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Abstract

In this work we study the formalism of Conformal Field Theory (CFT) and apply it to
the theory of strings and superstrings. We also use the BRST quantization technique
to obtain the string spectrum together with the celebrated critical dimension for the
bosonic string, i.e. the d = 26. By performing a supersymmetric extension of the
Polyakov action of the bosonic string we construct a superstring, which now includes
fermionic degrees of freedom as well. The gauged fixed action of the latter theory
leads to the critical dimension d = 10 after imposing the condition of the vanishing of

the conformal anomaly at the quantum level.
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Resumo

Neste trabalho estudamos o formalismo da Teoria do Campo Conformal (CFT) e apli-
camos a teoria das cordas e supercordas. Também usamos a técnica de quantiza¢do
BRST para obter o espectro de cordas junto com a célebre dimensdo critica para a
corda bosonica, ou seja, a d = 26. Ao realizar uma extensdo supersimétrica da agdo de
Polyakov da corda bosodnica, construimos uma supercorda, que agora inclui também
graus de liberdade fermidnicos. A acdo do calibre fixo da tltima teoria leva a dimen-
sdo critica d = 10 apds impor a condi¢do do desaparecimento da anomalia conformal

no nivel quantico.
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Chapter 1

Introduction

Historical remarks

In 1966 Patashinskii, Pakrovskii and Kadanoff suggested that the fluctuations of some
statistical systems are scale-invariant at a phase transition point, further, in 1970, Polyakov
pointed out that the scale invariance may be seen as a particular case of conformal
invariance[1]. In turn, conformally invariant quantum field theories describe the crit-
ical behavior of systems at second order phase transitions, the typical example is the
Ising model in two dimensions. Therefore, the study of the conformal symmetries
caught the interest of the physics community in the attempt to give a better expla-
nation about these critical phenomenas raised in the quantum statistical mechanics.
Two dimensional conformal field theories also provide the dynamical setup in string
theory. In that context conformal invariance imposes constraints on the allowed space-
time (which is called critical) dimension and the possible internal degrees of freedom.
By these reasons, a classification of two dimensional conformal field theories could
provide useful information on the set of different consistent first-quantized string the-
ories that can be constructed.

Conformal invariance is therefore an extension of scale invariance, a symmetry
under local dilations of space. Belavin, Polyakov and Zamolodchikov combined the
representation theory of the Virasoro algebra with the idea of an algebra of local op-
erators and showed how to construct completely solvable conformal theories, known
as minimal models, in 1984[2]. Almost at the same time, in the attempt to unify all the
forces of the nature into a single one, born string theory, in which two-dimensional
scale invariance appears naturally. String theory, therefore, originated in the late 1960s
at a time when no consistent field theories could describe strong and weak interac-
tions. It arose as an attempt to explain the observed spectrum of hadrons and their
interactions. In fact, Veneziano found in 1969 a formula for the scattering amplitude of
four particles[3]. Afterwards, Nambu and Susskind showed that the dynamical object

from which the Veneziano formula can be derived is a relativistic string. Nonetheless,
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String theory was discarded as a candidate theory of strong interactions, because the
existence of a critical dimension, which we will show in this work to be 26 for the
bosonic string and 10 for the superstring. Another obstacle for the interpretation of
string theory as a theory of strong interactions was the existence of a massless spin
two particle which is not present in the hadronic world. In 1974 Scherk and Schwarz
suggested to interpret this massless spin two particle as the graviton, that is, the field
quantum of gravity. This means that the tension of a string is related to the character-
istic mass scale of gravity. They also pointed out that at low energies this “graviton”
interacts according to the covariance laws of general relativity. This results imply that

string theory could be, in principle, a candidate for a quantum theory of gravity.

Motivations

Here, we state a list of reasons which were considered at the time of choosing String
theory as our subject of discussion in this work. Most of these reasons has to do with
the introductory historical remarks mentioned above. The first reason has to do with
the importance that string theory currently plays in the theoretical physic, it is the best
proposal to couple gravity with quantum field theory, as mentioned, a manifestation of
this will appear when we study the spectrum of the bosonic string. The second reason
is more pragmatic, most of the methods used in string theory can be used to resolve
another physical problems, this is for instance the case of the conformal field theory
or also the study of supersymmetric theories, these are treatments that also serve for
models in statistical mechanics, among others. The Faddeev-Popov procedure and
BRST quantization are another examples of methods that we use in this work but their
application extends to another theories endowed with a gauge symmetry. No less im-
portant is the fact that we will use recurrently the tools of quantum field theory in this
work. A final reason which motivated this dissertation has to do with the mathemat-
ical structure of the string theory, in particular, because it is the best arena to use the

machinery of some of the modern mathematics.

The residual symmetry

It is pertinent to explain how the conformal invariance, which will be defined in the
chapter 2, will manifest itself in the bosonic string theory. We begin with the Polyakov

action
1

S =—
47ta’

/dzm/—gg“ﬁ&,xX”aﬁXVnw, det g,p = & (1.1)
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An explanation is in order: Gravity couples with field theory, in string theory, through
the degrees of freedom of a two-parameter depending field, g.3 (¢%,0)!, where the
two parameters ¢ and ¢! parameterize the world-sheet. By the way, the world-sheet
is the two-dimensional analogue of the world-line for the point particle when prop-
agates in a d—dimensional Minkowski spacetime. This field is manipulated as being
a metric, however it does not correspond exactly to a metric. Then, in analogy with
a point-particle, where there are d coordinates x* (7) on the target space (Minkowski
spacetime), we have in string theory d scalar fields X* (¢°,0?). The parameter &’ is re-

lated to the tension of the string, namely, if T is the tension of the string, then &’ = 51~

Polyakov action presents one global symmetry, Poincaré invariance, and two local
symmetries. The first of these local symmetries is the invariance under reparametriza-
tions, o — % (0¥, ¢!), in infinitesimal form corresponding to &* = o® 4 ¢* (¢?, o).
The second one is the Weyl invariance, that is, invariance under point-wise rescaling of

the metric g5 — 02 (0, 01) g4 g for Q = o2w(a%0t)

, this corresponds to the infinites-
imal transformations of the form 6g,s — 2w (09, 0!) gup. These local invariances al-
low for the gauge choice g, = O (09, 0) 17,5, where 17,5 = diag(—1,1). Weyl invari-
ance allows to perform a transformation such that we set g,5 = 77,5. This gauge choice
is called the conformal gauge. If we use light-cone coordinates, c* = ¢¥ £ ¢! —
204 = d,0 £

is invariant under reparametrizations of the form c* — &+ (¢*), which correspond,

»1, we can note that the action (1.1) still has a local symmetry, this action
in infinitesimal form, to & = o* + &* (¢*), this symmetry is called a residual sym-
metry. If we perform a Wick rotation (¢ — —ic?), the metric g, acquires a (+, +)

signature with parameters o! and o2. The light-cone coordinates o=

can be promoted
to complex coordinates z and Z, and the residual symmetry transformations acquire
the form z/ = z+ ¢ (z) and 2’ = zZ + ¢ (2). These functions ¢ (z) and & () are holomor-
phic and antiholomorphic mappings from the complex plane onto itself. This is how

conformal symmetry appears in string theory.

About this work

The topics in this dissertation are presented in the following form: Chapter 2 spans
the main topics of this work, therefore, we are going to explain how it is organized. In
section 2.1 the conformal group is presented and the generators are derived. In section
2.2 we see what conformal invariance implies on classical fields, we also introduce the
energy-momentum tensor. Section 2.3 is devoted to explain how conformal invariance

affects the correlation functions and we derive the Ward identity. In the first three sec-

This metric has (—, +) signature , if we make a Wick rotation (¢ — —io?) we obtain a metric g, B
with parameters ¢! and ¢.
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tions mentioned before, we work in dimension d > 3. In sections 2.4 and 2.5 we repeat
the process of the previous sections but in the d = 2 case, we will see that there are infi-
nite generators of the conformal transformations in this dimension. However, between
this infinite group we distinguish the global conformal group, which is formed only
by the one to one invertible mappings of the complex plane onto itself, primary fields
are introduced as well. Also, the residual symmetry of the Polyakov action is identi-
tied with the two dimensional conformal transformations. In section 2.6 we study two
systems which have to do with the bosonic string. The first one is the matter or XX
system, this system is nothing but the gauge-fixed Polyakov action after performing
a Wick rotation. The second system is the b, c ghost system, which is presented in a
general way, later we will see how particular cases of this system arise in string the-
ory. In section 2.7 we introduce the concept of central charge or conformal anomaly,
the Schwarzian derivative is presented and it is showed how the energy-momentum
tensor transforms as a primary field only under the global conformal transformations.
Section 2.8 and 2.9 are devoted to present CFT in an operator formalism, we calculate
the Virasoro algebra and review the Hilbert space for the CFT. In section 2.10 and 2.11
we apply the operator formalism to the matter and the ghost systems respectively.
Section 2.12 is devoted to carry out the Faddeev-Popov procedure on the Polyakov
action, we will see then that a particular b, c ghost system arises as the Faddeev-Popov
determinant. The BRST quantization, which is a method of quantizing gauge theories,
is presented in section 2.13%. We find the celebrated critical dimension for the bosonic
string theory, this critical dimension results to be d = 26. Section 2.14 is devoted to ob-
tain the spectrum of the bosonic string by imposing the physical state conditions over
the excited states. At level zero this leads us to the Tachyon in both, open a closed
string, at level one this leads us to the Photon state in the open string and to the Gravi-
ton, Dilaton and Kalb-Ramond states in the closed string case. The appearance of the
Tachyon and its meaning won’t be considered in this work.

Despite the above mentioned, the bosonic string does not present fermion states in
its spectrum, namely it is called a toy model. This is one of the main motivations to
introduce fermionic degrees of freedom to the theory by coupling to Polyakov action
(1.1) two kind of spinors fields. The first spinor field ¥# is a two-dimensional Majo-
rana spinor corresponding to the supersymmetric partner of the X* field. The second
is the gravitino x, which is the supersymmetric partner of g,5. There is an analogue
to the conformal gauge for these supersymmetric theory, which is called the super-
conformal gauge and where we set x, = 0 in addition to the usual conformal gauge.

As in the bosonic case, this gauge choice will give rise to a residual symmetry, the su-

2“BRST quantization is a refinement of the Faddeev-Popov procedure that makes explicit the fact
that the quantization is independent of a choice of a particular gauge”, P. Deligne, P. Etingof, D. S.
Freed, L. S. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, E. Witten, Quantum Fields and Strings:
A course for mathematicians, Vol 1.
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perconformal invariance. The new non-gauge-fixed action won’t be presented in this
work and we will begin to work directly with the gauge-fixed (superstring) action in
the section 3.1.
The superstring action is invariant under supersymmetry transformations, they are
transformations interchanging bosonic and fermionic degrees of freedom, the genera-
tor of such transformations is a field Tr with conformal dimension % Since the matter
part or Polyakov action has been augmented by adding fermionic degrees of freedom,
new ghost terms will appear, thus giving rise to a 8,y system. We don’t implement
the BRST procedure in full for the superstring action. However, by demanding the
vanishing of the central charge of a system formed by the matter, b, c and 8, 7y systems,
we obtain the critical dimension for the superstring action, this result to be d = 10.
In the section 3.2 we make a slightly discussion about the periodicity conditions over
the fermionic fields and how different sectors arise, they are called the Ramond and
Neveu-Schwarz sectors. The algebra satisfied by the Virasoro modes (the modes of
the energy momentum tensor) and the modes of Tr, will be called the Ramond or
Neveu-Schwarz algebra depending on the sector where we are on.

This work is just a concise review about the formalism and some topics of interest
to me, but it does not pretend to make some new contribution. It is for this reason that
it will not be presented some specific application of String theory per se.



Chapter 2
Conformal invariance and string action

In this chapter the basic concepts and tools in conformal field theory (CFT) are intro-
duced, it is made a short review of the conformal group in dimension d > 3, to go
after to the case of interest in string theory, the d = 2 case. By doing so, it is presented
recurrence expressions to calculate the Noether’s currents, energy momentum-tensor,
Ward identities and the operator product expansion OPE. We use these tools to find
the TT OPE in the matter XX —system (gauge-fixed action of the bosonic string ) and
the b, c—ghost system, (this arises as the Faddeev-Popov ghost system) and leads to
the concept of central charge, which we will show to be related to the Weyl anomaly.
We present the BRST quantization procedure, which leads to the critical dimension
d = 26, in which the BRST charge satisfy the nilpotency condition, also, it allows to
decouple non physical states from the string-spectrum.

The main reference used to develop conformal field theory are the books by Di
Francesco [4], Ginsparg lectures [5], Liist and Theisen [6] and the last version of this
with Blumenhagen [7] and also the book by Polchinski [8]. Another useful references
used were [9], [10], [11], [12] and [13], it was of great help the readings [14] and [15].

2.1 The conformal group

A conformal transformation of the coordinates in the d — dimensional spacetime is an

invertible map x — x’, which leaves the metric tensor invariant up a scale factor

ox® oxP
g;w (x') = ax_/ymgrxﬁ (x) = A(x) guv (x), (2.1)

where we have denoted by g, the metric tensor in the space-time of dimension d. The
transformation only preserves angles not lengths. Considering the definition eq.(2.1)
and an infinitesimal transformation x# — x* = x" + ¢/ (x) on it, we see that the
metric at first order in €, changes as,
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S — v — (9pey + 0vey) (2.2)

the requirement for the transformation to be conformal is then
du€y +0vey = f(X) Quv- (2.3)

By taking the trace on both sides we have that

f(x) g = g'oues + g avey,
f(x) = Ea(,e”. (2.4)

We assume, for simplicity, that the conformal transformation is an infinitesimal defor-
mation of the Euclidean metric Suv = Ny, Wwheren,, = diag (1,1,..,1). By applying an
extra derivative d, on eq.(2.3), permuting the indices and taking a linear combination,

we arrive at

20,9v€p = HupOv f + NovOuf — N9y f, (2.5)

by contracting with #*” on both sides of the equation above, we get
20%¢, = (2—d) 9, f. (2.6)

Applying 9, on this expression and 9* on eq.(2.3), we find on the one side

2—-d

e, = 2 Vo,

P (duey +dvey) = (2—d)3,duf,

and from eq.(2.3)

& (9u€y + dvey) = 1uwd*f,

so that
(2—d)oudvf = Wyvazf- (2.7)

Finally, contracting with 7", we have

(2—d)d*f = do*f,
(d—1)0*f = 0. (2.8)
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From egs. (2.3)-(2.8), we can derive the explicit form of a conformal transformation
in d dimensions. First, if d = 1, the equations above do not impose any constraint
on the function f, because the notion of angle does not exist, and then any smooth
transformation is a conformal transformation in one dimension. The case d = 2 will
be studied in detail later. At the moment we concern in the cases d > 3. Equations
(2.8) and (2.7) imply that d,0,f = 0, that is, the function f is at least lineal in the
coordinates:

f(x) = A+ Bux", (A, B, constants) . (2.9)

By substituting this in eq.(2.5), we see that d,,d,¢€, is constant, which means that ¢, is,

at least, quadratic in the coordinates. Therefore we can write
€y = ay + buyx” + cuypx’xP, Cuvp = Cppu- (2.10)

We treat each power separately. The constant term a4, amounts to an infinitesimal

translation. Substitution of the linear term into (2.3), after used (2.4), yields

O (ay + bypxP) + 3y (ay +byyx?) = Z0o <ag + baﬁxﬁ> Nyvs

) (2.11)
b +bw = V%N
It is the sum of an antisymmetric part and a pure trace:
b‘uy — 0677;41/ + m]“/, m’[y — _mvy. (2.12)

'The pure trace represents an infinitesimal scale transformation, while the antisym-
metric part is an infinitesimal rigid rotation. Finally, using (2.4) and by substituting
the quadratic term in (2.10) into (2.5) yields

Iudv€p = % (4p0v00€” + 1py0u0€” — 11, 0p0r€”) ,
900 (et = (oD + i — 1udp) 3 (e, 7)),
Covp = iyypéc‘fw + ﬁpv%c‘fw — ﬂyu%c%p,
that is ,
Covu = Nupby + Npvby — Nuvbp , by = HCU‘TV' (2.13)

1Since we can decompose all tensor as the sum of a symmetric part and an antisymmetric part, we

have . . .
(buw + buy) + 5 (b — buy) = Hbga’?w 3 (b — buy) -

N| =

b =
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The corresponding infinitesimal transformation is then

Xt = M4 C;"‘Vvaxp
= X"+ 1" (peby + Hovbp — Npubo) XV
= X" (2(b- %) 20 — o)
— 4 2(bex) 5 - b 2.14)

which is called special conformal transformation (SCT). The finite transformations cor-

responding to those above are the following:

translation x'* = x¥ 4 at,
dilatation x'* = axt, (2.15)
rigid rotation x* = M, xV, '
oo xH —pHy?
SCT X T 1-2b-x+b%x%°

We can check that the infinitesimal version of the last expression is indeed (2.14). The
SCT can also be expressed as (if from (2.15) we take the term x"*x;,)

x'M xH

e bH, (2.16)
in other words, the SCTs can be understood as an inversion of x# plus a translation of
b#, and following again by an inversion. Now, we are going to recall some definitions.

2.1.1 Noether’s theorem and Ward identity

In this section we give a precise meaning of the symmetries in the context of a gen-
eral field theory and derive Noether’s theorem, which states that to every continuous
symmetry in a field theory there is a conserved current.

Consider a collection of fields, which we collectively denote by ®. The action func-

tional will depend in general on ® and its derivative:
S = / dxL (®,9,®). (2.17)

We study the effect, over this action, of a transformation affecting the position and the
fields

x — D (x) — @ (x) = F (@ (x)). (2.18)

Such that, the new field @' at x’ is expressed as a function of the old field ® at x. The

change of the action under the transformation (2.18) is obtained by substituting ®’ (x)
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by @ (x), the argument x is the same in both cases. The new action is
s = / d'xL (@ (x),0,@ (x))
— / ax'c (@ ('), 0,9 (¥))
_ /ddx',c (F(@ (), 5,7 (@ (x))

1%
_ /ddx ox

ox’
In the second line we have performed a change of integration variables x — x’ ac-

cording to the transformation (2.18), which allows us to express ®' (x’) in terms of
® (x) in the third line. In the last line we express x" in terms of x. We now study the

effect, on the action, of an infinitesimal transformations of the general form

OF (x)
be,

Xt =xt + ¢, o O (x) =@ (x) +e (2.20)
a

Here {e,} is a set of infinitesimal parameters. The generators G, of a symmetry trans-
formation is usually defined by the following expression for the infinitesimal transfor-

mation at the same point:
5@ =@ (x) — @ (x) = —ie;G, @ (x) . (2.21)

It can be related to (2.20) by noting that at first order in €, we have

oxH oF oxH
(5" = " _ e VYV
@' (x) i) (x € 56“) + €, e, (x €, 5€a>

B N oxt 9 , OF (x) _ 2
= ¢ (x ) €ugwq) (x ) + €4 5€a O (€a) 4+ ... . (222)
From (2.21) follows that
. _ oxt OF (x)
iGy® (x) = 5e. 0, P (x) Ge, " (2.23)

Noether’s theorem states that for each continuous symmetry of the action one may
associate a current which is classically conserved. Given a symmetry, the action is
invariant under the transformation (2.20) only if the parameters €, are independent
of the position. However, we will suppose that the infinitesimal transformation (2.20)

is not rigid (e, depending on the position), in order to derive the Noether’s theorem.
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From (2.20) we can write

v v
= (et ) g (e ). (2.24)

Jx#  oxt o€, o€,

The determinant of this matrix may be calculated to first order from the formula

det(I+E)~1+Tr(E), (E small). (2.25)
We obtain v s sh
X X X

2With the help of these results above, the transformed action s, eq.(2.19), may be

written as

fe(one)
(oo g o8)) 003 (722)).

(2.27)

The variation §S = S’ — S of the action contains terms with no derivatives of €,. These
terms are zero if the action is symmetric under rigid transformations, which is as-
sumed. Then JS involves just the first derivative of €;, obtained by expanding the

Lagrangian to first order in €,. We write,

s = /ddx (1+ay (e?é:))
<L (cp @ +e’Z ™ 0,0 (x) +a, (e%) 3, (e(;%) 3,® (x))

a a

= [t (1+ayea‘; e fsi) {c(cp (3), 9@ (1)) + e, 2 08
+% (ay (%) — 9y (‘%) 0y ® (x)) €
ot (- Ee )}

Then, as mentioned above, all the terms proportional to €, vanishes if S is invariant,

2The inverse Jacobian matrix may be obtained to first order simply by inverting the sign of the
transformation parameter

axv oxv
W—(s ay(€g5€a>.
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thus the remaining is

s = /ddx{z(qu),aﬂ(x))}

oL OF (x) oL oxY oxH
d
/d ( 3(0,@) des  3(29,®) 06, ()+5ea£>a’*€“

= S§5+96S,

which means that

— / d?x jl9,€q, (2.28)
where
. oL SxV 0L OF (x)
P = 9,® (x) —6'L | — — . 2.29
Ja (a(aycp) v® (x) =9 ) Sea 0 (0,®) deq (229)

The j} is the associated current of the infinitesimal transformation (2.20). It is called
a current in the sense that this satisfies a continuity equations, as we will see below.
Integration by parts yields

/ dx (9,j%) €a- (2.30)

Noether’s theorem follows; if the field configuration obeys the classical equations
of motion, the action is stationary against some variation of the field. Therefore, S
should vanish for any position dependence parameters €, (x). This implies the con-
servation law

dujh =0, (2.31)

which is a continuity equation, as anticipated. The expression (2.29) for the conserved
current is called “canonical”, because there are other admissible expressions. In fact,
we may freely add to it the divergence of an antisymmetric tensor without affecting
its conservation:

ji —ji+aB" ., Bl=-B, (232)

where, 9,0y B," = 0 by antisymmetry.

We will now work with correlation functions, they are the diagonal matrix ele-
ments of a product of local operators corresponding to the vacuum vector. However,
one can also compute correlation functions with respect to any pair of states, they are
arbitrary matrix elements of the product of local operators. These correlation functions
are related with the scattering amplitudes between various asymptotic states.

Again, we consider a classical field theory involving a collection of fields ® with
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an action S [®] that is invariant under a transformation of the type (2.18). Then, the

general correlation function of its associated quantum field theory is
! ~s{e)
(D (x1)..@ (x)) = 7 DO D (x1)..® (x,)e , (2.33)

where Z is the vacuum functional. We assume that symmetry is not anomalous in the
sense that D®’ = D®. The consequence under the transformation (2.18) is obtained
as follows,

(@ (1)@ () = 5 [DO®(x)..0 (x) e 5
- %/ch’ @ (x}) .. @ (x)) e S

_ %/Dd)]—"(d)(xl))...}"(cb (%)) &SI
— (F(® (x1)) T (® (x0))), (2.34)

where the mapping F is as in Eq.(2.18). In going from the first to second line in (2.34),
we have just renamed the dummy integration variable ® — ®’, without performing
a real change of integration variables. In going from the second to the third line, we
have performed a change of functional integration variables, in which ®' (x) is ex-
pressed in terms of @ (x). The action is invariant under such a change, by hypothesis.
Also, we need to assume that the Jacobian of this change of variable does not depend
on the field ®.

At quantum level the consequences of a symmetry of the action and the measure
are reflected through constraints on the correlation functions. These constraints are
called Ward identities, we will now demonstrate them. An infinitesimal transforma-

tion may be written in terms of the generators as (Eq.2.21)
D (x) =P (x) + 6P (x) = @ (x) — i, G, P (x) . (2.35)

We make a change of functional integration variables in the correlation function (2.33)
in the form of the above infinitesimal transformation, with €, now a function of x.
The action is not invariant under such local transformation, its variation is given by
(2.30). By simplicity, we denote by X the collection ® (x7) ...® (x,) of fields within the

correlation function and by 4. X its variation under the transformation, we can write

(X) = %/Dd)’ (X + 6.X) e (S[91+55)

_ % / DO’ (X + 6.X) (S8 '3 (3 )eal)} (2.36)
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We again assume that D®’' = D®. When expanding to first order in €, (x), the above

expression becomes
(x) = {%/DCI)'XeS[‘I’ /D(I)/(S Xe ™S } = (O Jea

= {l/quXeS[‘I’ /ch’5 Xe S[® }(1—/dd Oujh ) >

— /ch Xe Sl® /ch’(s Xe S®]

{ /Dd) Xe SI® /ch’ e Xe SI® }/ddx Oujh ) €a,
(X5 ~ (X + 5X——/dd /chX dujt) €ae™51®)
0x) = 5 [atx [ DO/X @, s ()12

Q

Now, we can express X (9, i ) as 9y (]5 X), since the insertion points in X, that is

(x1,x2, ..., x,), are in general, different to the point x. Then we have
(6X) = % / i / Do’ 3, (jX) 5%, (x)
= / dx9, (jh X) €q (x) . (2.37)

The variation X is explicitly given by (as the variation of a product), since 6® (x;) =
—ieq (x7) Ga® (x));

5X = —i Zea %)) (@ (x1) ..Ga®@ () .. @ (xn))

_ —z/ddxea ® (1) ..Go® (%)) @ (x,)) 0 (x— ;). (2.38)
i

Since (2.37) holds for any infinitesimal function, we obtain the following local relation

oy = —i Z Ga® (%)) . @ (%)) 6 (x — x/) . (2.39)

This is the Ward identity for the current ji. We integrate the Ward identity (2.39) over
a region of space-time that includes all the points x;. On the left-hand side (L.h.s), we
obtain a surface integral, via divergence theorem

/V dxd,, (J1X) = /déy (X = /déy (1@ (x1) @ (x,))  (2.40)
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where d¢, is an outward-directed differential orthogonal to the boundary 0V of the
domain of integration. Therefore, as a operator equation® we can express the Ward

identity for a single operator field ® (x() as

| deiie () = 6@ (xo). .41)
1%

We will use later the above result to see how a conformal transformation affect an
operator conformal field.

2.1.2 Generators of the Conformal group

Now, we use the results above to calculate the generators of the conformal group. We
suppose by the moment that the fields are not affected by the transformation (that is,
F(P)=—= % = 0), therefore, in particular, from (2.14) we can see that

X" = xt 4 2% xxt — b x? = x4+ b* <2x,xx" = (5sz> , (2.42)
which, according to (2.20), allows us to identify % = 2 xt — 62 by promoting
€; — b%, thus, by using (2.23) we have that the generator of the special conformal
transformations K, is such that

iK,® (x) = <2xyx" - §;x2> 9@ (x) = <2xyx"av - xzay> ®(x).  (243)

By repeating this process for all the infinitesimal versions of the transformations (2.15),

we obtain the generators

translation Py, = —idy,
| 'dilatati(')n D = .—ixﬂay, (2.44)
rigid rotation Ly, = i (xu0y —x,0,),
SCT K, = —i(2x,x"9, —x%d,).

3When we say “as an operator equation” we means that the expression referred just has sense within
a correlation function.
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They obey the following commutation rules, thus defining the conformal algebra

[D, P u} = Py,
[D, Ky} —1Ky,
[Ku, Py] = 2i (gD —Lyu), (2.45)
(Ko, Luw] =i (ouKy — 1pKy) ,
[Po, Luv] =i (nouPy — 1pvPu) ,
[Luvs Loo] = i (fvpLye + fueLup — NupLve — tuoLyp) -

In order the put the above commutation rules into a simpler way, we define the fol-

lowing combinations of generators:

_ 1
]yv — L]/n// ]—1,y % (Py - Ky) s (2.46)
J-i0 = D, Jou = 3 (PutKy),
where [, = —Jj;and a, b € {—1,0,1, ..., d}. These new generators obey the commu-
tation relations of SO (d +1,1):
Uabs Jeal = 1 (MadJoe + Moc)ad — NacTva — ModJac) , (247)

where the metric 77, is diag (—1,1, 1, ..., 1) if the space-time is Euclidean (otherwise an
additional component, say 7,44, is negative). This shows the isomorphism between the
conformal group in d dimensions and the SO (d + 1, 1) group, which has 1 (d +2) (d + 1)
elements.

We now build functions I (x;) of the N points x; that are left invariant under ev-
ery type of conformal transformations. Translational and rotational invariances imply
that ' can depend on the distances |x; — x]-| between pairs of different points. Scale

invariance implies that only ratios of such a distances, such as

|xi — x|
| — x|

are allowed. Finally, under a special conformal transformation, the distance separating

two points x; and x; becomes in

= 5~ % (2.48)

172
(1—2b-x;+ blez)l/2 (1 —2b-x;+ b2x]2>

/
-

therefore, it is impossible to construct and invariant I' with only just 2 or 3 points (by
the scale invariance). The simplest possibilities are then the following functions of four
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points:

X1 — x| |x3 — x4 |1 — %o |5 — x4 (2.49)

|1 — 3] |22 — x4 %2 — x3] |21 — x4
Such expressions are called anharmonic ratios or cross-ratios. With N distinct points,

N (N — 3) /2 independent anharmonic ratios can be constructed.

2.2 Conformal invariance in classical field theory

We define the effect of conformal transformation on classical fields. Also, we show
how, in certain theories, complete conformal invariance is a consequence of the scale

and the Poincaré invariance.

2.21 Representation of the Conformal Group in d Dimensions

Given an infinitesimal conformal transformation parametrized by €, we look for a
representation matrix Tg such that a multicomponent field (classical) ® (x) transforms
as

@ (1) = (1 —ie;Ty) ® (x) = e sTs (x). (2.50)

The generator Ty must be added to the space-time part in (2.44) to obtain the full gen-
erator of the symmetry, as in eq.(2.23). In order to find the allowed form of these
generators, we start by studying the subgroup of the Poincaré group that leaves the
point x = 0 invariant, that is, the Lorentz group. We then introduce a matrix repre-
sentation S, to define the action of infinitesimal Lorentz transformations on the fields
® (0):

Lyw® (0) = S,y ® (0). (2.51)

Suv is a spin operator associated with the field ®. Next, by use of the commutation

relations of the Poincaré group, we translate the operator to a non-zero value of x

e Pl e = 8, — x, Py + x,Py (2.52)
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The translation above is explicitly calculate by using the Hausdorff formula ( A and B
are two operators®):

e Be’ = B+ [B, A + % [[B, A], A] + % [[[B, A], A], A] + ... (2.53)

This allows us to write the action of the generators:

Py®(x) = —id,®(x),

Lw® (x) = i(xdy —x,0,) @ (x) + S ® (x). (2.54)

We proceed in the same way for the full conformal group. The subgroup that leaves
the origin x = 0 invariant is generated by rotations, dilatations and special conformal
transformations. We denote S, A, and x,, the respective values of the generators L,

D, and K, at x = 0. These must form a matrix representation of the reduced algebra

A Sw] =0,
[A, K] = —iky,
[k k0] = 0, (2.55)
[0, Sw] = i (o — Nopxv) ,
[Suvs Spe] =i (upSpe + HuoSvp — NupSve — Mo Spp) -

The commutations (2.45) allows us to translate the generators, by using again the
Hausdorff formula (2.53) :

e De~ P = D+ xtP,,

. . 2.56

4We have then

1 . .

5 [[Lyv, —ixPPy] , —ixPPy] + ...

. 0 . 1 . .

= Suy — i[Luryxf P, — ix? [Lyy, Bo] + 5 [[Lyv, —ixP Py, —ixPP,] + ...

. . 1 . )
= Sy —ixPi (10u Py — 1puPy) + 3 [[Lyv, —ixPPy] , —ixP Py + ...
0

1 :
= Sy —xyPy+xyPy — 5 (%, Py — 2P —ixP Py | + ...

eixPPpLVVefixpPp — Lyv| + [L;n// _ixppp] +

= Sy —xuPy+x,Py,

since x* is not an operator in this case, it is rather a extended value of x°, a function, we have then
[Lyv, xP] = 0.
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Therefore,

D® (x) = (—ix"d,+A)®

b P (2.57)
K, ® (x) {rey +2x,A — SW 2ix,x"0y +ix?0, } @ (x)

If we demand that the field ® (x) belong to an irreducible representation of the Lorentz
group, then, by the Schur’s lemma, any matrix that commutes with all the generators
Sy must be a multiple of the identity. In consequence, the matrix A is a multiple of
the identity and the algebra (2.55) forces all the matrices x;, to vanish. A is then simply
a number, manifestly equal to —iA, where A is the scale dimension of the field ®, it is
defined by

X =Ax — & (Ax) = 1 72® (x). (2.58)

In principle, we can derive from the above the change in ® under a finite conformal
transformation. However, we just will give the result for spinless fields (S,, = 0).

Under a conformal transformation x — x’, a spinless field ¢ (x) transform as

—A/d

0x’ ¢ (x), (2.59)

P — () = |

ox’

where ‘ ‘ is the Jacobian of the conformal transformation of the coordinates. A field

transforming as that above is called “quasi-primary”.

2.2.2 The energy momentum tensor

For an arbitrary local transformation of the coordinates x'# — x# + e/ (x), the action

changes according to (2.28) as follows:

— /dde“VE)ﬂey = —% /ddeW (0u€y + Ovey) , (2.60)

where T"" is the energy-momentum tensor, assumed to be symmetric. For an in-
tinitesimal translation (in flat space), this is the associated conserved current and, ac-

cording to eq.(2.29), takes the canonical form

oL
‘MV _= quJ - ‘MV£’ 2'61
© 0(0u®) T (2.61)
after identifying in (2. 20) 5 e’X = 0 and % = ¢, the index ¢ stands for “canoni-

cal”. The definition (2.3) of an infinitesimal conformal transformation implies that the
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variation corresponding to the action is (using 2.4)

1 1
85 =~ [ 3T () =~ [ dixT e 2:62)

Thus, the tracelessness of the energy-momentum tensor implies the conformal invari-
ance of the action. Note also that, from eq.(2.2), we have é¢;,y = d,€e, + dyey, and

since

0S
Ogu

6S = / iy 02 Oguy = 0S = ! / dIXTH6g,y = TH = —2
08 12 2
However, for a general curved space g, (x), some factors must be included, and the

energy momentum tensor bears the more general form

Top = —%é—iﬁ, 5S = —ﬁ / 420\ /308 P T, p. (2.63)
Under certain conditions, the energy momentum tensor of a theory with scale invari-
ance can be made traceless. If this is possible, then it follows from above that the
full conformal invariance is a consequence of the scale invariance and the Poincaré
invariance. In order to show that, we first consider a generic field theory with scale
invariance in dimension d > 2. We now compute the conserved current associated

with the infinitesimal dilation

= (1+a)xl, F(p)=(1—aN)®, (2.64)
so that
B _ e, 5F
dsep  oa dep  da ¢
Then, from (2.29) we have
oL
i = Thx" A¢. 2.65
D X + P (aygb) ¢ ( )
Since by hypothesis this current is conserved, it satisfies
ujhy = Th+03, [ 2£<¢ ) =0. 2.66
#lp cu + H (a(ay(l,)gb ( )
We now define the virial of the field ®;
oL oL
VF=__ """ _ (pHPA 1+ {SHFY D = KON 1 jSHP D, 2.67
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where S is the spin operator of the field ®. We also assume that the virial is the
divergence of other tensor c*#:

VFE = 9,0%". (2.68)
Then, we define
o’ = %( o),
e e 26)

1
I (17“)17”” - 17“‘17”) Uia}
and we consider the following modified energy-momentum tensor:
1
TH = T +9,B " + Eaﬂ’aprPW. (2.70)

The first two terms of the above expression constitute the Belinfante tensor or the
symmetrized energy-momentum tensor. The last term is an addition that will make
TH traceless. By the symmetry properties of x**#?, this additional term doesn’t spoil

the conservation law:
040,01 = 0. (2.71)

It would not be so if the x**#" term had a part completely symmetric in the first three
indices, but this is not the case. This new term doesn’t spoil the symmetry of the

Belinfante tensor either, since the part of xAonv antisymmetric in y, v is

2
Apuv L Apvp AoV _ AV oU !
X x (d—Z)(d—l){n n Ny }Uﬂ. (2.72)
Finally, the trace of the new term is
1 A A
59A9px Pr = 0,007 =9, V", (2.73)

since E)poyy = —idp (Mg—}ﬁ)»S”Pd)), it follows from (2.66) and (2.67) that

T, = Oujh. (2.74)



CHAPTER 2. CONFORMAL INVARIANCE AND STRING ACTION 22

>Therefore, scale invariance implies that the modified energy-momentum tensor (2.70)
is traceless, provided the virial satisfies the condition (2.68). This relation also means

that the dilation current can generally be written as
i =Thx'. (2.75)

®This argument holds only for dimensions more than two, since x***" is defined just
for d > 2. However, this result also holds in two dimensions, but for other reasons.
For instance, by using the Schwinger function, the expectation value of the square of
the trace of the energy-momentum tensor. This vanishes in two dimensions.

2.3 Conformal Invariance in Quantum Field Theory

We now see how conformal transformations affect the correlation functions, this is

done through the Ward identities, introduced before.

2.3.1 Correlation functions
Correlation functions of quasi primary fields (2.59), transform according to (2.34) as

A /d ox' Ny /d

5 (91 (x1) 2 (x2)) (2.76)

X=X2

a_x'
ox

(91 (x1) P2 (x2)) =

X=X1

If we specialize to a scale transformation x — Ax, we obtain

A /d Ay /d
(@ (e g (x2)) = (A1) (A1) (@ (Ax) 2 (Axa)) = ASI22 (g (Axr) 9 (Axa))
(2.77)
Rotational and translational invariance require that
(@1 (1) 92 (x2)) = f (I¥1 = x2), (2.78)
>That is
T = Th +3,B", + %aAapx%

oL oL
Mo 12 _q up M
= 0dujp — A0 <a(ai4 )cp) i9p <(5(a# )5 c1>>+ayv

oL 5L oL
= it _ = —1 T GHp = (pMe | SHP
ity — A9 (a(aﬂ )cp) zap<5(ay 75 ¢>+ay(a(ap ("8 +i )<I>>.

Then, we rename the dummy indices, such that just the first term doesn’t cancel out, we obtain (2.74)
6The above relation is obvious since T", is also conserved we have

Ouipy = (That) = Thayx' = They, = T,
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where f (x) = A%1+52f (Ax) because of (2.77). In other words

Ci2

X1 — x2|

(91 (x1) P2 (x2)) = R (2.79)
where Cy; are constant coefficients.
It remains to use invariance under special conformal transformations. Recall that, for

such transformations

a_x’
ox

_ 1 _~—d
C(1-2b-x+022)7 T (280)

Given the transformations (2.48) for the distances |x; — x|, the covariance of the cor-

relation function (2.79) implies that

Ci2 _ S (7172)! 14272 (2.81)
B 2 R Fr e P
with

vi =1—2b-x; + b*x>. (2.82)

1

This constraint is satisfied only if A = Ay = A, thatis

2 A if A=A =7y,
(1 (x1) P2 (x2)) = ¢ =l , (2.83)
0 Zf Aq 75 Ay.

Similarly, covariance under the rotations, translations and dilations forces a general

three-point function to have the following form:

C(abc)
(@1 (x1) 92 (%2) 93 (33)) = 22—, (2.84)
X12%23%713
where x;; = |xi — xj| and with a, b, ¢ such that
a+b+c=A0+20+As. (2.85)

7Under conformal transformations, eq.(2.84) becomes

b 2 b/2 2
C&C) (1172)"2 (7273)"% (1173)"
AL A A b
T 1’)’22’)’33 x%2x23x53

7A sum (over a, b, ¢) of such terms is also acceptable, as long as the equality (2.85) is satisfied.
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In order to this expression to be of the same form as eq.(2.84), all the factors involving
the transformation parameter b* must disappear, which leads to the following set of
constraints . .

a ¢ a

T2 A T2 A el

SR R R R

The solution to these constraints is unique

c
— = Aq. 2.
> 1 (2.86)

a=»MAN+AN — A3, b=Ay+ A3 — AN, c=A0A3+M — A (2.87)

Therefore, the correlation functions of three quasi-primary fields is made of a single
term of the form (2.84), that is

C(abc)
(1 (x1) 2 (x2) ¢3 (%3)) = 333 A, 1A a) A A (2.88)
*12 23 13

With four points or more, it is also possible to construct conformal invariants, the
anharmonic ratios (2.49). The n— point function made have an arbitrary dependence
(that is, not fixed by conformal invariance) on these ratios. For example, the four-point

function may take the following form:

(1 (x1) s (x4)) = f (—x12x34, —x12x34) ﬁxs/gAiAj, (2.89)

Y13X24 X33X14 /) G

where we have defined A = 2?21 A

2.3.2 Ward Identities

Let us now find the Ward identities (2.39) associated with the generators (2.54) and
(2.57). First, we see that the Ward identity associated with the translation invariance

is:

0, (TN, X) = 25 x—xj) (¢ (x1) .00 (%)) p (%)) = — ) _ 0 (x —x/) 0y, (X).
(2.90)

This identity holds even after a modification of the energy-momentum tensor, as in
eq.(2.70). Consider now a Ward identity associated with the Lorentz invariance (or
rotational). Once the energy-momentum tensor has been symmetrized, the associated
current j#'f has the form

jHP = THxP — THPxY, (2.91)
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The generator of Lorentz transformations is given by
LPY =i (xP9" — x"0") 4+ SF”, (2.92)

in turn, the Ward identity is

0y ((THxf — THxV) X) = ié (x —xj) [(x}/a;) — xf&}’) (X) — iS}/p <X>} , (293)
=i

where Sf " is the spin generator for the i—th field of the set X. The derivative on the
left hand side (L.h.s) of the above equation may act either on the energy-momentum
tensor or on the coordinates. Using the Ward identity (2.90) we reduce the above to

(TP - T"") X) = —iZd (x—x,) S (X), (2.94)

8which is the Ward identity associated with Lorentz invariance. Finally, we consider
the Ward identity associated with scale invariance. We will assume that the dilation
current ]% may be written as in (2.75), which supposes that the energy-momentum
tensor has been modified to be traceless. Since the generator of dilations is D =
—ixVdy — iA for a field of scale dimension A, the Ward identity is

9, (T, Z(s aav (X) + A0 (X)] . (2.95)

Here again the derivative 9, can act on T', and on x". Using eq.(2.90), this equation
reduces to
(ThX) ==Y 6(x—x) A (X). (2.96)
i

8The eq.(2.94) is showed as follows: We take the Lh.s of (2.93), that is
O ((THxP = THPXY) X) = 9, ((THxP) X) — 9, ((THx") X))
9o, (1) + ((1%35) X)
—x"3,, TV"’X) ((Tresy) x)

{
= P2, (TMX) — x"d, (THX)
<TPVX> (T"PX>

(2.90) 1 0
=" =) x5 (x—xj) 0} (X —|—Zx"(5(x—x])8 (X)
i=1 j=1

+ (T ) X)
= Z 5 (x—x)) (x,vaf - xfay) (X) + (TP — TP X).
j=1

A delta function property was used to obtain the last line, thatis f (x)d (x —x;) = f (x;)  (x — x;).
By comparing the result above with the r.h.s of (2.93) we obtain (2.94).
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Egs. (2.90), (2.94) and (2.96) are the three Ward identities associated with the conformal
invariance. As a final calculation we will compute the Ward identity for a SCT, but first
we calculate its canonical conserved current according to (2.29), that is

K' = M <2xl,éx,3 - ;M;x2> . (2.97)
The generator of the SCT is given in (2.57), then
K = —i {Zx"‘A i, S 4 2%V, — xza“} : (2.98)

From (2.39), we have

n

d <T”5 (2x x5 — (5I3x) > = — Y 6 (x—x) (¢ (x1) .

i=1
{2xf‘A —ix, ;S 4+ 2x7x] 0, ; — xfaf‘} ¢ (%) ...¢p (xn)> :

(2.99)

The derivative of the 1.h.s above is
0y <T”ﬁ (Zx“xl; — (5ng> X> = 20, <T”l3 <x"‘xﬁ> X> 0 <T”“ < > X>

- 2{r (s vef) x) 2{ (90 (1)

~2(T5,X) = (%9, (T"X))
= 2 (T = TP) X)) + 26 (TH,X)
+2 () 0, (T X ) — 52 (9, T"X).

Now, we use the identities (2.90, 2.94,2.96), and obtain
d <TW3 <2x xg — O%x ) > = —iZZxﬁé (x — x;) SP* () — ZZx"‘(S (x — x;) A; (X)

—2Zx xPo (x —xj) 9p, (X +2x(5 (x — ;) oF (X)
j=1 =

= —Z(S (x — x;) (—12x515 P + 2x7 A + 2x7 xﬁGﬁl —x28“> (X).
(2.100)
By renaming the dummy index f as v it yields exactly to the right hand side of (2.99).

This means that the Ward identity (2.99) is a consequence of translations, rotations and
dilations, or Ward identities, i.e. (2.90, 2.94,2.96) respectively.



CHAPTER 2. CONFORMAL INVARIANCE AND STRING ACTION 27
2.4 The Conformal Group in Two Dimensions

We now show that in dimension d = 2, there exists an infinite number of coordi-
nate transformations which are locally conformal, they are analytic or holomorphic
mappings from the complex plane onto itself. Among this infinite set of mappings
one must distinguish the global conformal group, made of invertible mappings of the
complex plane into itself.

We begin with the identification g;,, = J,y and d = 2, in eqs.(2.3,2.4), we see that

the conformal transformation satisfy

which yields to the following equations

5},“/ = 0y = d12, 0162 + 0261 = 0 = 0162 = —0r€y (2.102)
and
Sy = 011 = O, 01€1 + 91€1 = 9r€] + 0262 == J1€1 = €2, (2.103)

which are recognized as the Cauchy-Riemann equations. A complex function whose
real an imaginary part satisfy eqs.(2.102,2.103) is called a holomorphic function. This

motivates the use of complex coordinates z and z, with the following translation rules

z = ol4id? ol = l(z+z),

S AL (2.104)
J; = 3(01—1id2), di = 0:+0;z

0z 2(0141i9,), d = i(d,—0z).

We will sometimes write 9, = d and d; = d when there is no ambiguity about the

differentiation variable. In term of the coordinates z and Z, the metric tensor is

S = ( ) , g = ( g 3 ) , (2.105)

where the index p takes the values z and Z, in that order. The metric tensor allows to

Ni— O
S NI

transform a covariant holomorphic index into a contravariant antiholomorphic index

and vice versa. The antisymmetric tensor ¢;,, in holomorphic form is

0 —%) . (o —2i>
ew = | 4 t, et = . . (2.106)
( Lo 2 0
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In terms of the complex functions
w(z,2) = w' (z,2) +iw* (z,2), W (z,2) = w' (z,2) — iw? (z,2). (2.107)
The Cauchy-Riemann condition becomes
dzw (z,2) =0 and 0:w(z,Z) =0, (2.108)
whose solution is any holomorphic mapping
z — w(z), z—w(Z). (2.109)

The conformal group in two dimension is therefore the set of holomorphic maps. This
set is infinite dimensional, since a infinite number of parameters (the coefficients of a
Laurent series) is needed to specify all holomorphic functions in some neighborhood.
The physical space is the two-dimensional submanifold (called the “real surface”) de-

fined by the condition z* = z, but in general z and z are two different coordinates.

2.4.1 Global Conformal Transformations

In order to form a group, the mappings that satisfy (2.102) and (2.103) must be invert-
ible, and must map the whole plane into itself. Global conformal transformations satisfy
these requirements, while local conformal transformations are those no everywhere well-
defined. The set of global conformal transformations form what is called the “special

conformal group” or complex Mobius group. The complete set of such mappings is

_az+b
cz+d

w(z) with  ad —bc =1, (2.110)

where g, b, c and d are complex numbers, when these parameters are real the mapping
(2.110) represents the modular group. These mappings are called projective transfor-

mations, and to each of them we can associate the matrix

a b
A:(C d). (2.111)

The composition of two maps w; o w, correspond to the matrix multiplication A, A;.
Therefore, what we call the global conformal group in two dimensions is isomorphic to
the group of complex invertible 2 x 2 matrices with unit determinant, or SL (2,C) /Z;.
The quotient Z; is caused by the fact that the transformation (2.110) is not sensitive to
simultaneous change of sign of all parameters a, b, ¢, d. It is known that SL (2,C) /Z;

is isomorphic to the Lorentz group in four dimensions, that is, SO (3,1). Therefore,
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about the conformal group, we have learned nothing new since the previous section:
the global conformal group is the 6-parameter’ (3 complex) pseudo-orthogonal group
SO (3,1). The transformations eq.(2.110) are the only globally defined invertible holo-
morphic mappings. The condition ad — bc = 1isjust the chosen normalization, strictly
it is just required that ad — bc # 0.

2.4.2 The Witt algebra
Any holomorphic infinitesimal transformation may be expressed as
Z = zt+e(z)=z+) cuz", (2.112)

Z = z4e(z)=z+) 2", (2.113)

where, by hypothesis, the infinitesimal mapping admits a Laurent expansion around
z = 0. The effect of such mapping on a spinless and a dimensionless field ¢ (z, Z) living

on the plane, is

¢ (Z,7) = ¢(zz)=¢(F —¢7 —¢)
= ¢(,2)—e(Z)dp(,2)—e(Z) ¢ (,2) (2.114)

or
5p = — i 2" 10 (z,2) — i e 2" 19¢ (2, 2)
= i {cnlng (2,2) + Culn¢ (2,2) }, (2.115)
where they were introduced the operators
I, = —z"t19, I, = —z"19. (2.116)

These are the generators of the conformal transformations and obey the following

commutator relations:

L, L] = (n —m) Ly, L, ln] = (n—m) L, [In,In] = 0. (2.117)

%It is just 6 real parameters because the condition det A = 1 let fix one complex parameter, say, d.
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19Thus, the conformal algebra is the sum of two isomorphic algebras. The algebra
(2.117) is called the Witt algebra. Each of these infinite dimensional algebras contains a
finite subalgebra generated by I_1, [y and /1. This is the subalgebra associated with the
global conformal group. We see from the definition (2.116) that [_; = —d, generates
translations on the complex plane, that [y = —zd, generates dilations and rotations,
and that I, = —z29, generates special conformal transformations. In particular, [y + [

generates dilations on the real surface, and i (lo — Z_o) generates rotations.

2.4.3 Primary Fields

For a given field with scaling dimension A and planar spin s, we define the “(anti)holomorphic

conformal dimension (fz) h” as
A=h+h, s=h-—h. (2.118)

Under a conformal map z — w (z), Z — @ (2), a quasi-primary field transforms as

—h -\ —h
sb’(w,w):(fi—f) @—?) ¢ (z,2). (2.119)

For infinitesimal mappings w = z + € (z) and @ = Z + € (Z), the variation of quasi-
primary fields is obtained from (2.119) by expanding at first order in € and € , we

obtain

Secd = ¢ (2,2) — ¢ (z,2) = —hpd,e — €0,¢p — hpds€ — ED=¢ . (2.120)

A field whose variation under any local conformal transformation in two dimensions
is given by (2.119) (or, equivalently, (2.120)) is called primary. All primary fields are
also quasi-primary, but the reverse is not true. Quasi-primary fields may transform
according to (2.119) only under an element of the global conformal group SL (2,C).

10This is shown as follow

Tl = Iulwp — Lylngp
_ ( n+la) ( m+1a) ¢ — (zmﬂa) (z”*la) ¢
(Z”H) ( m+1)z"9 + zm“az) ¢ — (z’”“@) ((n +1)z"9 + z”*laz) ¢
_ ( (m+1) n+m+1a+zn+1ﬂ—|—282) ¢ — ((n+1)zn+m+1a+zn+m+282) ¢
(m
(n—

+ 1) n+m+1a¢ (n + 1) Zn+m+1a¢
(1’1 . m) n+m+1a¢

m) lysm.

In the same way it can be shown the other relations.
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2.4.4 Correlation Functions

Expressed in terms of holomorphic and antiholomorphic coordinates the identity (2.34)
of n primary fields ¢;, with conformal dimensions 4; and ;, becomes under conformal

transformations

n —h; =\ —hi
o) o) =TT (%)~ (G), 01 Gra)tutenm).

(2.121)

This relation fixes the form of two- and three-point functions. The difference here is

the possibility of nonzero spin, incorporated in the difference h; — ;. Let us express

the relations (2.83) and (2.88) in terms of complex coordinates, taking spin into account

when imposing rotation invariance. The distance x;; is equal to (zi]-zij) /2 and eq.(2.83)

becomes

_ _ Ci2 ~ =hy=h
, . oy =l 2.122
(1 (z1,21) P2 (22,22)) (21 — Zz)Zh (21— Z2)2h 1 { ) ( )

The two-point function vanishes if the conformal dimensions of the two fields are
different. The additional condition on the conformal dimensions come from rotation
invariance; the sum of spin within a correlator should be zero. For the three-point

function, eq.(2.88) becomes

Ci23

(91 (21,21) 92 (22,22) 93 (23, %3)) = hi+hy—h3 h2+h3 hy hz+hi—hy h1+h2 s sha+h3 = —h3+h1
212 13 223
(223)
Again, the sum of the spins of the holomorphic part cancels that of the antiholomor-
phic part, thus ensuring rotational invariance.

As before, global conformal invariance does not fix the precise form of the four-
point correlation function and beyond, because of the existence of the anharmonic ra-
tios. However, in two dimensions the number of anharmonic ratios is reduced, since
the four points of the ratio are forced to lie in the same plane, which leads to an addi-

tional linear relation between them. Indeed, we have

2122 21422 212234
T P T__ . (2.124)
213224 213224 1—7n  z14223

The four-point function may depend on 7 and 7 in an arbitrary way, provided the

result is real. The general expression (2.89) translates into

4 A
(p1 (x1) s (x4)) = f (17,77 sz] ik z; il (2.125)

i<j

"y
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whereh =Y} (hjand h = Y4 ;.

2.5 Ward Identities

2.5.1 Holomorphic form of the Ward Identities

In section 2.3 we have derived a set of Ward identities associated with translational
(2.90), rotational (2.94) and scale invariance (2.96). In doing so, we used the canoni-
cal definition of the energy-momentum tensor, with suitable modifications needed to
make it symmetric and traceless. Recall that the traceless of the energy-momentum
tensor implies the conformal invariance of the action. Let us assemble these three
Ward identities:

0 & 0
o (TH %) = =100 % (%),
e (TH (x) X) = —i i i0 (x —x;) (X), (2.126)
i=1
(Th, () X) = - 3 5 (x—x;) A (X).

i=1

In the second equation we have used the specific form of the spin generators, S? b=
s;e"’, in two dimensions, where ¢, is the two-dimensional antisymmetric tensor and
s; is the spin of the field ¢;. We have written the identity (2.94) according to

((TFY — TP) X)) = <<5§5;; - 5;52) T“5X> — 4 <T“ﬁX> .
We wish to rewrite these identities in terms of complex coordinates (eq.(2.104)) as com-

plex components. We use expression (2.105) and (2.106) for the metric tensor and an-
tisymmetric tensor respectively. For the delta function we use the identity

5(x) = —0:— = —azé. (2.127)

This identity is justified as follows. We first express the divergence theorem in terms

of complex coordinates, ( (2.106))

/ d*x0,F! = 1 515 (dzF* — dzF?) . (2.128)
v 2i Jov

Here the contour 9V circles counterclockwise. If F# (F?) is holomorphic (antiholomor-
phic), then Cauchy’s theorem may be applied; otherwise the contour 0V must stay
fixed. We consider then a holomorphic function f (z) and check the correctness of the
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tirst representation in eq.(2.127) as follows

: IR
[ @xswfe = [ #xf o

Lo (19)
1

= Eﬁév dz (’@) = £(0). (2.129)

In the second equation we have used the assumption that f (z) is analytic within V, in
the third equation we used the form (2.128) of Gauss theorem with F* = % and F* =

0, an in the last step we used the Cauchy’s theorem. A similar proof may be applied

N

to the second representation in eq.(2.127), but with an antiholomorphic function f (z).
The Ward identities are then explicitly written as

L 1
2710, (T X) + 27105 (T2 X) = — l; azz s A, (X), (2.130)
270, (TzzX) + 2705 (TozX) = — 1_21 aZZ_L_iawi (X), (2.131)
2(TozX) +2(T.X) = ~— f 5 (x —x;) A (X)), (2.132)
i=1
—2(TezX) +2(Tz.X) = ~— f 5 (x—x;)s; (X). (2.133)

i=1

HUThe x; points are now described by the 2n complex coordinates (w;, @;), on which the
set of primary fields generally depends. If we add and subtract the last two equations

of the above, we find

2 (T X) = — Xy 0 hi (X)),

=192 (2.134)
27T <T22X> = — Ziil azmhi <X> ,

'We will illustrate this process by computing explicitly the relations (2.130,2.131). We begin with the
equation (2.90),
and by considering the form (2.105) for the metric, we have

A <T”VX> = 3y (§" Ty X) = 3, (§7Te X)) 40z (§%Teu X) = — Y6 (x — x7) 3y (X) .
i
Since 9, = % — (aiwi
(2.127) Z

d

, ﬁ) = (Ow;, 9w,), we have then the following two equations, after employ

0: (T X) + 92 (§7TecX) = — Li zdzzgdu, (X)),
9z (85T X) + 0z (§9TeX) = — YL #0:5-9a, (X)) .

Since ¢ = ¢** = 2, we get the desired relations. The last equation is deduced by using the form
(2.191) for ev.
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where we have chosen the representation (2.127) appropriated to each case and used
the definition (2.118) of the holomorphic and antiholomorphic conformal dimensions.
Inserting these relations into eq.(2.130), we get

0 { (T (2:2)X) ~ Xy | 2500 (0 + i 0|} = o

zZ—w
(2.135)
2 {(T(@2)%) ~ Ty | 2500, (0 + Lo 0|} = o
12ywhere we have introduced a rescaled energy-momentum tensor
T = -271T,, T = —27Tss. (2.136)

Thus the expression between braces in (2.135) are respectively holomorphic and anti-
holomorphic; we may write

z 1 1

(T(z)X) =) du; (X) + ————hi (X) ¢ +reg., (2.137)
i=1 (27 Wi (z — w;)

where reg. means holomorphic function of z, regular at z = w;. There is a similar

expression for the antiholomorphic counterpart with reg. depending on z and regular

atz = ;.

2.5.2 The Conformal Ward Identity

Let us now express the three Ward identities (2.126) into a single relation. In order to

do so we consider an arbitrary conformal coordinate variation €” (x). We write

1 1

2.3 1 1
23) €0, TH + 5 (00 ny) TH + >

1 1
= €,0,T" + EapepTVH + Ee”‘ﬁaaeﬁsw”ﬂ’”, (2.138)

(5;;(55 _ 555@ duepTH

where the relation e*fe,, = 5555 —oF &5, has been used. We note that 3 (9p€?) is the
local scale factor f (x) of eq.(2.3) and %s"‘ﬁaaeﬁ is a local rotation angle. Integrating
both sides of (2.138), the three Ward identities (2.126) derived in Sect. 2.3.2 may be

12Note that we have effectuated the derivatives 9 (Z%wj and 05 ( 1 )

Z—w;
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encapsulated into

n 3
/V Pxd, (e, T"X) = /V Pxe’ (x) (—gé(x—xi) gx)

i

—i—/vdzxf(x) (— Z&(x—xi)AiX)

i=1

n
+/ d%x (%g“ﬁaa€ﬁ> <—i25i(5 (x—xl-) X> .
v i=1

(2.139)

By comparing with equation (2.38) we see that eq.(2.139) is the sum of the three varia-
tions of 6X, that is, translations, dilations and rotations, where in each case ¢, (x) and
G, take the respective form. This allows us to identify

5 (X) = /V #x3, (T (x) €, (x) X), (2.140)

where . (X) is the variation of X under a local conformal transformation. Here the
integral is taken over a domain V containing the position of all the fields in the string
X. Applying Gauss’s theorem (2.128) to F* = (T"* (x) e, (x) X), one finds

Sz (X) = % %av {—dz (T%e:X) + dz (T%e.X) } . (2.141)

We defined € = €* and € = €*. The terms (Tz, X) and (T.:X) do not contribute to the
contour integrals, since the contour do not exactly go through the positions contained
in X, and since these expressions vanish outside these points, according to eq.(2.96).
Finally, substituting the definition (2.136), we obtain the so called conformal Ward iden-
tity:

Sep (X) = — 5'% 92 (T (2) X) +§1§ 92 (2T (2) X). (2.142)

271 c 271

13 If the fields in X are primary, one can use the equation (2.137) and its antiholomor-
phic counterpart in (2.142), to obtain:

be (X) = —)_{e (w;) du, + 9€ (w;) hi} (X). (2.143)

i
BNote the following relations, from the definitions (2.136) T** = ¢7*¢"*T,c = 4Tz; = —%T (2), in
the same way T = — 2T (z). Similarly, we have that €, = g€/ = gu-€* + guz€* = guz€ (z) + guz€ (2),

thus e, = %é and €; = %e.
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We recover formula (2.120) for a variation of a primary field under an infinitesimal

holomorphic conformal mapping:
dep = — {€d + deh} ¢. (2.144)

We now apply the conformal ward identity to the global conformal transformations
(the SL (2,C) mapping of eq.(2.110)). The variation J¢ (X) must vanish for infinites-
imal SL (2,C) mappings, since they constitute a true symmetry of the theory. Such
infinitesimal mappings have the form

(1+a)w;+ B

f(w;) = PO g = w; + € (w;), (2.145)

where &, B and v are infinitesimal. At first order, the coordinate variation e (w;) is
€ (w;) = B+ 2aw; — yw?. (2.146)

For «, B and 7 arbitrary, this implies the following three relations on correlators of
primary fields according to(2.143):

'BZawi (p1 (w1, @1) oty (W, D)) = 0,

ZaZ(wiawi+hi) (1 (w1, @1) -y (W, @y)) = 0, (2.147)

1

—7 Y (0F0u, + 201k ) (g1 (w1, @1) o (w0, @) = O,

The Ward identity (2.142) summarizes the consequences of local conformal symmetry
on correlation functions. The application of (2.142) rests on the assumption that the

energy-momentum tensor is everywhere well-defined or regular.

2.6 Free Fields Examples and the OPE

2.6.1 The Free Boson, the XX CFT

Here we are going to study the free massless boson X* (y = 0,1, ...,d — 1) system, with

the following action:

5= ﬁ / oy ™9, X 9 X, — ﬁ / d?20X"3X,,. (2.148)
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141t is known that &’ is the only one free parameter in string theory™. The equations
of motion are d:9, X" = 0. The two point function, or propagator, can be calculated
through the path integral formalism, that is as follows

0 = /DX(SXF% [e_SX" (w,w)]
- / DX{ csxy Z, z)XU (w’w)“Lda})((y((ZZ:;)} e

— /DX {ﬁazazw (z,2) X" (w, @) + '8 (z — w,Z — w)} e ®
= 0. (XM (5,2 X (w,@)) " (8 (2w, z - D))
7_(“/ 7 7 4 7
where it was used the fact that the path integral of a total derivative is zero. Thus
0:0; X" (2,2) XV (w, @) = —ma'n" 6% (z — w,Z — @) (2.149)

holds inside a general expectation value or as an operator equation. We now define

normal ordering of a general operator A, denoted : A :, as follows,

: XM (z,2): = XV'(z,

Ny

)/
/
: XM (z,2) XV (w,w) : = X'(z,2) X" (w, )+ %17”” In|z—w|*. (2.150)

The point of this definition is the property

/

0,0z : X (2,2) XV (w,@): = 0.0:X"(2,2) X" (w, @) + %177“/8282 In |z — wl|?

29 —ma'yt 6% (z — w, 2 — @) + ma'yt 6% (z — w,zZ — @),
_ (2.151)

where we used a result derived from the eq.(2.127), that is

9,9 In |2[? = 3.9: (Inz + In2) — 9 G) +a. G) — 2 (2,3). (2.152)

4Henceforth we use latin indices for the two-dimensional metric 7% = diag(1,1) to differentiate it
from that #"¥ of the d—dimensional Minkowski target spacetime.

15As mentioned in the introduction, the parameter a’and the tension of the string T are related
through the relationship o’ = 1/27T. A classical string has two free parameter, namely, its tension
and its linear mass density. However, in string theory, the string is assumed to be massless and the
remaining only free parameter is the tension. More about this discussion in the Barton Swiebach book
[10].
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Then we have

/

(X" (2,2) X" (w,®)) = —%17”” {m Iz — w]z} + const.
!/
= —%17’” {In(z—w)+In(z—®@)} + const.. (2.153)

The holomorphic and antiholomorphic components can be separated by taking the
derivatives d,X and d; X:

(0:XF (2,2) 9 X" (
_ 1%

 (2=0) (2.154)
(9:XH (2,2) 9 X" (

wo) = %1
w, &

In the following we will concentrate in the holomorphic fields 0X# = 9, X*.

2.6.2 The Operator Product Expansion OPE

The operator product expansion, or OPE, is the representation of a product of opera-
tors (at positions z and w respectively) by a sum of terms. Each of them being a single
operator, well defined as z — w, multiplied by a c—number (c for classical) function
of z — w, possibly diverging as z — w, and which embodies the infinite fluctuations
as the two positions tend toward each other. We can represent that in the form

Ai (z) Aj (w) = ;cki]- (z —w) A (w). (2.155)

This holds inside a general expectation value, indeed
(Ai(z) Aj(w)...) =Y (z —w) (A (w)..). (2.156)
k

The ... represent operator insertions at points far away from z and w. The terms are
conventionally arranged in order of decreasing size in the limit as z — w. The defi-
nition of normal ordering for arbitrary number of field is given recursively as

: XM (zq,21) ... XM (20, 20) i= XM (21, 21) ... XP (20, 20) + Zsubtractions. (2.157)
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For example,

: XM (21,21) X2 (20,2) X% (23,23) 1 = XM (z1,21) XP2 (20, 22) X (23, 23)
/
o 2 >
_'_Enylluﬁ’) ln |Zl3‘ XﬂZ (ZZI 22)
/

+%’7ﬂ3ﬂ2 In |z05]* X (21,21), (2.158)

where z;; = z; — z;. The definition (2.150) can be put in compact form

. L 0(/ ) ) 2 0 0
: 3§ = exp (4 /d 214z In |z1| 5K (21, 21) 6%, (22, 52) 3, (2.159)

for any functional § of X. We can see that, in effect, equation (2.159) reproduces (2.53),
that is

Nap 6X* (27,2}) 6XP (25,2,
x XM (z,2) XV (w, )

o 0 °
_ 1 o dz dz 1 2 (X‘B .os
< + 1 / z210"Zp n‘212’ i G (Zllel) SXP (22122) "

x X (z,2) XV (w, @)
= X"(z,2) X" (w,m)

/
: XH (Z,Z) XV (w,zf)) 1 = exp (%/dzzlldzzéln}z/lz‘zi b 5 ))

o
+E / d221d222 In ‘212|2 1’]“'35 (Zl —2Z,Z1 — Z) ) (22 —W,Zy — ZTJ) 55(5;

/

= X' (z,2) XY (w,®) + “E”W In|z — w]?. (2.160)

By acting on both sides of (2.159) with the inverse exponential we obtain

a/ 2 2 2 5 (S
= —— 1 :
5 exp ( 1 /d zdzpIn |z o5 (2,21) 3%, (22,22)) 5
= :§:+ Zcontractions. (2.161)

That is what we will call OPE, where a contraction is — ”‘7/17“1'”7 In |z;; |2 for the XX sys-
tem and in general it corresponds to the propagator of the theory. The generalization

of this expression for the OPE of any pair of operators is

1 §uB =356+ Zcross — contractions, (2.162)
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for arbitrary functionals § and & of X. Cross-contractions stands for the propagators
formed only between fields of § with those of &. We make recurrent use of this last ex-
pression. We will use “~” instead of “=" when writing the OPEs, which means equal
up to nonsingular terms. In that sense, we have according to (2.162,2.137), the OPE of
the energy-momentum tensor with a primary field ¢ (w, @) of conformal dimensions
hand h,

1 1
Z—w

A (w, ), (2.163)

da (w0, ) . (2.164)

2.6.3 The XX energy-momentum tensor

From the definition of the OPE and (2.154) we then have

oX" (z) 0XY (w) ~ —IX—/U—W. (2.165)
2 (z—w)*

The OPE reflects the bosonic character of the fields: exchanging the two factors doesn’t
affect the correlator. The energy-momentum tensor associated with the free massless

boson (according to eq.(2.61) ) is:

oL

Ty = _gab*c“‘mabxy
1 1
= o <3aX” Xy — anbacX”E)CXy) . (2.166)

Its quantum version (2.136) in complex coordinates isl®

T(z) = —%  9X9X, : . (2.167)

Like all composite fields, the energy momentum tensor has to be normal ordered, in

order to ensure the vanishing of its vacuum expectation value. The OPE of T (z) with

16That is as follows

1 1 1
2nT,; = " <aszaZX}t - Z%ngachadXV) = yazXHaZXﬂ =-T(z),
2T = = (0:X10:X, — Lorre™d, XM, X, ) = ~0:X10:X, = —T (2
TTlzz = A 2;1—5%8 c adu ) = 50z Xy =-T(2),
T, — 0:X"9,X ! 29, X190, X ! 29, X19:X
zz = ﬁ z z &y — Egz‘zg z z &y — EgZzg z z Ay

1

ﬁ (azX”azXH - afx}[az}(y) - TZZ - O,
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0X" may be calculated by considering cross contractions according to (2.162):
T (z) oX¥ (w) = —% 10Xy (2) 0X" (z) : 0X¥ (w)
2
~ —EBX,, (z) (0X" (z) X" (w))
K
~ 8X_(z)2 (2.168)
(z—w)
By expanding 0X* (z) around w, we arrive at the OPE
2 2XH — 3xH —w)?
T (2)9XF (w) ~ 0X (w)2 - XM (w) (22 w)  1°XH (w) (22 w) + reg.
(z—w) (z—w) 2 (z—w)
p 2XH
. X (w)2 IX(®) | reg. (2.169)
(z —w) (z—w)

We will always expand the OPE around the insertion point of the second field, it is

possible because by definition the OPE show the behavior of one field at a point near
to the other field. According to eqs.(2.163), eq.(2.169) shows that dX* is a primary
tield with conformal dimension i = 1. Now, we calculate the OPE of the energy-

momentum tensor with itself. To calculate that, we consider the cross-contractions of

the fields in T (z) and those in T (w). We have therefore

T(z2)T(w) = % :0X" (2) 09X, (z) : 0XH (2) 90X, (2) :
~ L {4 (—%’#) : 9, (2) 9%, (w) -
S L W T
“( 2 <z—w>2> ( 2 <z—w>2)}

1 2 OXH(2)0X, (w): a2 7,
N W{_z”‘ - 7(2_,;))4}
N _E:aXV(w)aXy(w):_3:32XV(w)aXH(w):+1 d

o’ (z — w)? o (z —w) 2(z—w)*
Sl eeiag e A 70

where we have done four single cross-contractions and two double cross-contractions

and also, we expanded 0X* (z) around w. We immediately see that the energy-momentum

tensor is not strictly a primary field, because of the anomalous term

z—

not appear in eq.(2.163).

da/2

+, which does
w)
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2.6.4 The Ghost System

Another theory of interest is the ghost system, which consists in considering a family
of CFTs with anticommuting fields b and ¢ with action

_ Y [ 25
S = E/d z bac. (2.171)

This is conformally invariant for b and c transforming as tensors of weights (/;,0) and
(h¢,0) such that
hy=A ,  he=1-A, (2.172)

for any given constant A. The operator equations of motion are
S = i/dzz (8b) dc — dc =0,
27
58S = % / d*zbo (dc)
- —%/dzz (3b) 6c —» 3b = 0

and the propagator may be calculated in the same way as the matter system, that is

0 — / DbDe- [ ¢ (z,7)]
_ /Dch[ D (Z'le)_es%;j))}
i / e [P0 (02 1)
_ (b(z2)c(7,2)) - 27r<(52(z—z zZ— Z/)>'

Summarizing,
dc=0b=0, 9:b(z2)c(0,0) =2m%(z,2) = a%. (2.173)

The OPEs are

c(z)b(w) ~ , (2.174)

where in the second OPE there have been two sign flips, one from anti-commutations

and one from z <— w. Other OPEs are nonsingular:

b(z)b(w)=0(z—w) , c(z)c(w)=0(z—w). (2.175)
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Before to continue, an interesting result can be derived from eq.(2.60) for the variation
of the metric in complex coordinates, that is as follows

= — /dZZ zZTZZaz€Z +gzszzaZ€z)
(2136) / iz (T (z) 3¢* + T (2) 9€7)

_ / iz (T (z) de + T (2) 9€) (2.176)

7Therefore, this tells us that T (z) is the generator of the conformal transformations,
and the eq.(2.144) tells us how a infinitesimal conformal transformation € (z), affect an
arbitrary primary field, we use that on the fields b and c to obtain

O0b= —A(de)b(z) —edb(z), and dc=—(1—A)(d€)c(z)—edc(z). (2.177)

Noether’s methods gives the energy momentum by considering these variations (2.177)
over the action (2.171), that is

1 - -
5 = o / d*z {5bdc + basc}
— 2_—;/5122 {(A0eb + €db) dc + ba ((1 — A) (9€) ¢ + €dc) }

— 2_—71/5122 {Adetoc + edboc + (1 — A) bddec
+bdedc — Abdedc + boedc + ebdac} .

We replace

(1—A)bddec = (1—A)0 (bdec) — (1 — A)dbdec — (1 — A) boedc
bdedc = 9 (bedc) — dbedc — beddc.

Thus we have
S = — / d*z { A) dbc + Abac} de
- 2 _ _ 3
= Zn/d z {(1 — A)dbc — Abdc} o,

so that
T(z)=(1—=A):(db)c:—A:bdc:=:(db)c:—Ad(:bc:). (2.178)

7we have defined for convenience € (z) = 2¢7 and € (2) = 2¢”.
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The OPE of T with b and ¢ has the standard tensor form (2.163). In another hand,
the TT OPE is of form (2.170). However, in this case the coefficient of the order fourth
pole is a constant c¢/2, where

c=-302A-12%+1 (2.179)
There is a corresponding antiholomorphic theory
g1 / d?z boc (2.180)
s 2 ’ '

which is the same as above with z <— Z. The bc theory has a ghost number symmetry
under the transformations b — e¢~b and ¢ — e'“c, which imply the infinitesimal

translations 6b = —ieb and dc = iec. The corresponding Noether current is
1 [ o on
05 = - d°z (6bdc + bdéc)
— %/dzz (—iebdc + bo (iec))
— %/dzz (—iebdC + b (die) ¢ + bicde)
= ;—;/dzz (—bc) die.

That is
j(z)=—:b(2)c(z):. (2.181)

The above is the holomorphic component, antiholomorphic part vanishes. When there
are both holomorphic and antiholomorphic bc fields, the ghost number are separately
conserved. We now calculate the OPE of T (z) with b(z) and c(z), by doing so we
won't use (2.162) as we have done so far, rather, we use the conformal Ward identity
(2.142) and compare that with their variations (2.177). Thus we have

(2.142)

27 %b (w)

~f e TR b @)
G0 )\ (3€) b (w) — edb (w).

By the Residue Cauchy’s theorem, we know that, in order to the equality above be
satisfied, the T (z) b (w) OPE must be

ab (w b(w
- z:—(w)Jr (z—(az)z'

T (z)b(w) (2.182)
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In the same way for

T(z)c(w) ~ (1—A) (ZC_(“:Z)Z + azc_(“;]). (2.183)

The current (2.181) is not a tensor, to show this we calculate the T (z) j (w) OPE, in this
case we use (2.162) because a priori we don’t know the conformal weight of j (z), thus

we have
:T(z)j(w): = (A=1):(9b(z))c(z):bc(w):+A:boc(z) i be (w)
: B 4y 9b(z)c(w) (@b (1-A)
T(z)j(w) = (A 1)—z—w +(1-A) (z—w)? + (z—w)
_Ab((z)_c (;{;) _I_/\ac (ZZ)_baEW) B ( (_A) - + reg.
o (1=21) db(w)c(w) L (A—1) b(w)c(w) b(w)dc(w)
e 2-w E N
_Ab(w)c(w)
(z—w)?
L =21 9 (w)c(w)) b(w)c(w)
(z—w)’ 2w (z—w)?
o Az ) 9(®) (2.184)

(z-w)’  (z-w)? z-w

According to the conformal Ward identity (2.142) this implies the transformation law
dz
si — _ &9z .
= ~fre@T@jw)

g (12w o)
B ?gzm' ()((z—w)3+(z—w)2+2—w>

= ———03%(z) — e (z)j (w) — e (z)dj (w), (2.185)

where we see that the ghost number current transforms as a primary field just for
A= %, here € (z) is an infinitesimal conformal transformation. We now use the above

results to calculate explicitly the TT OPE and, in this way, we verify the equation
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(2.179). We have then

:T(z)u=T(w): = {(1=A):(3b(z2))c(z):—A:b(z)dc(z):}
< {(1=A): (3b(w))c(w):—A:b(w)dc(w):}
L a2l i@@)c): ze(z)ab(w): 11 }
( ) { (z — w)2 (z — w) (z — w)2 (z — w)2
_%1_MA{uw@wq w): 2:c(x)bw): 1 2
z-w (z-w)?  Z-W (z-w)
2:b(z)c(w):  :0c(z)ab(w): 2 1
—(1=A)A{— - :
( ) { (z —w)® T w (z—w)’ z-w
*ﬂg{JbgT2¥%+f&é?Z¥%_Xszf'@fw2}+m&

We expand around w, so we get, after canceling some terms,

—6A+6A—1 2(1—A):0b(w)c(w): 2A:b(w)dc(w):

AT Ty @) o)
+(1—A) ::?)Z(Uw)c(w):_'_ (1—-A7) Zab_(zj)ac(w)
_yi0b (w) ac (w) : _/\:b(w) 0%c (w) :
z—w z—w
N —12/\2+12);—2 LT (w)2 N E)T(w)’ (2.186)
2(z—w) (z—w) z—w

which allows us to identify the coefficient of the order four pole c = —12A2 + 124 — 2,
thus coinciding with (2.179). The bc theory for A = 2 will arise as the Faddeev-Popov
ghosts from gauge fixing the Polyakov string.

2.7 The Central charge

The specific models treated in the last section lead us to the following general OPE of
the energy- momentum tensor with itself:

c/2 2T (w) n oT

TET@ -~ it wr T ey

(2.187)

where the constant c depends on the specific model under study, it is equal to d for the
free boson and —26 for the ghost system (if A = 2). This model dependent constant
is called the “central charge” or “the conformal anomaly”. Except for this anomalous
term, the OPE (2.187) simply means that T is a quasi-primary field with conformal
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dimension it = 2. The value of the central charge is determined by the short-distance
behavior of the theory but not by symmetry. For free fields, as seen in the previous sec-
tion, it is determined by applying the OPE on the normal ordered energy-momentum
tensor with itself. The central charge is somehow an extensive measure of the number
of degrees of freedom of the system. Therefore, if we consider a more general theory

containing the matter plus the ghost systems, the central charge will be
c=d—26. (2.188)

If we demand the vanishing of the central charge, as we will do, we find the celebrated

critical dimension d = 26, of the bosonic string.

2.7.1 Transformation of the Energy-Momentum Tensor

By comparing the OPE (2.187) with the general form (2.163), we see that the energy
momentum tensor does not exactly transform like a primary field of dimension 2,
contrary to that we expect classically. According to the conformal Ward identity (2.142)

the variation of T under a local conformal transformation is

1
5.T (w) = —2—m,§l£dze (2) T (2) T (w)

= L dze (z) /2 v 21 (w)2 + IT (w)

2mi Jc (z—w)* (z—w)* (z—w)
- —éa% (w) — 2T (w) de (w) — € (w) IT (w) . (2.189)
The “exponentiation” of this infinitesimal variation to a finite transformation z —

w(z) is
T (w) = (2 - T(2) - = {wiz}] (2.190)
-\ dz 12t '

where we have introduced the Schwarzian derivative:

dPw 2
dz3

3 (23
{w;z} = (d_w> -5 (%) : (2.191)
dz

dz
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We will just verify it for infinitesimal transformations. For a infinitesimal map w (z) =
z + € (z), the Schwarzian derivative becomes, at first order in €,

93¢ 3 e \?
{wzh = {z+ez} = (140e) 2 (1 —|—8€)
_ e (1—2e) - goz (€) + ..
de. (2.192)

Q

The infinitesimal version of (2.190) is therefore, at first order in €,

T (z+¢€) = (140¢) 2 [T (z) — %a%}

T' (z) +€dT (z) ~ (1—20e) [T (z) — %836} (2.193)

Q

T(z)— éa% — 20€T (z)

or
5T (w) =T (z) — T () = —%a% —29€T (z) — €T (), (2.194)

which, indeed, coincides with eq.(2.189). To confirm the validity of the transformation
law (2.190), we must verify the following group property: The result of two successive
transformations z — w — u should coincide with what is obtained from the single

transformation from z — u, that is
du\ 2 c
1 o / L P
W) = (dw) [T ()= 5 {ww}

- (&)

- () Clre - wa). 2.195)

The last equality requires the following relation between Schwarzian derivatives:

{u; 2} = {w;z} + (i—f)z {u;w}. (2.196)
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181f we set u = z, we find that (with {z;z} = 0)

{w;z} = — (”f%")z (zw} (2197)

and this relation allows us to write the transformation law (2.190) as

2
T (w) = <i—2") T(z)+ 15 {zw}. (2.198)

We can also verify that the Schwarzian derivative of the Global conformal map

_az+b

= ad —bc =1, (2.199)

w(z)

(n)

18 A demonstration of (2.196) is in order. We denote ZZ,”,‘ =u,

2
=3 (42)
T T 2\m )

Then, we must use the following results

O _ M 1)

Uz Wz Uy,

R <1>>2 (2)

Uz = Wz Uy Wy Uy,

O @0 | 32,0 +(w§1>)3u<a),

=
N
|

wZ u w wZ uZU
Therefore

3 2
afuld) 130 au® 1+ (00 5 (o2l 4 () )
lwz} = @, () 2 @, )

Wz "Uy Wz "Uy

w3 (wf : )2 (us) 3 (uf) ’
= o 2(tm +(“’) o 2\ "W
w2\ w uly) 2\ u,
dw

= {w;z} + <d)2 {u;w}.

z
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vanishes!”. This need to be so, because T (z) is a quasi-primary field. The Schwarzian
derivative in (2.190) is the only possible addition to the tensor transformations.

2.7.2 The Weyl anomaly

The trace of the energy-momentum tensor vanishes at the classical level for a con-
formal invariant theory. We will see that for this symmetry to hold at the quantum
level, the total central charge of the theory must vanishes. We can always put any

2w ( ol o2

two dimensional metric in the form g,5 = e )(5&,3. So the only non-vanishing

Christoffel symbols are
I, =13, =15 =-T)=0w, and T},=T} =T%=-T% =dw. (2200)
In another hand, we have that for an orthogonal metric,

Rup = 0,T7 s —9pI",, R = g"PRyp, (2.201)

p

which are the Ricci curvature tensor and the scalar curvature respectively. So that
Rij=Rp=-V?w and R =g!Ry;+¢*?Ry = —20729V3w. (2.202)

Let us go to see how this curvature is related to the central charge and in general to the
energy-momentum tensor trace (T%,). We know that in complex coordinates the trace
of Typ is given by g"P Tup = 28%°T:z, so that, in order to study its behavior at quantum
level, we need to find a expression for the T,;Ty» OPE. This leads us to express the

conservation equation 0T,z = 0 in complex coordinates, that is

0"Top = §*70,Typ = 0 = ¢70, Top + §7°0: T = 20, Tz + 20:To5 = 0,

and
azTZZ == —aszz and aZTZZ = _azTZZ. (2.203)
9That is as follows, we have that
d_ 1 e du e
dz (cz+d)* 422 (cz+d)? 4P (ez4+d)t
From (2.191)
2 2 2\ 2 2 2
(w2} = 6c* (cz+d)” 3 [ —2c(cz+4d) __ 6c 3 4 _o.
(cz4+d)* 2\ (cz+4d)? (cz4+d)* 2 (cz+d)?
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Then we use the T,, Ty, OPE, that is
0T, (Z/ Z) ow Tow (wl ZU) = 0:1% (Z/ Z) 9w Tww (Z(_J, ZU) ’
U

900 (Tuz (2,2) Tawo (@, w)) = azaw[ ¢/2 , 2T(w) , 9T (w)

(z—w)4 (z—w)2 zZ—w

+ ... (2.204)

Classically the right hand side above must be zero, but now we must consider the
effect of the poles. We can see that the only non-vanishing term is the first one, the
others vanish because the OPE has meaning, only inside a correlator and the expecta-

tion value of T (z) is zero. Therefore we have

1 1 e 1

1 1
2
- %aﬁawaw(s (z—w,z—). (2.205)
Inserting that result in (2.204), we have

7T

9:9: (%azawa (z—wz— w)) ,

<~

Tx. (2,2) Taw (0, w) %azaw(s (z—w,z— ). (2.206)

Then, there is a singular behavior when z — w. We assume that in flat space
(T%,) = 0. From the definition of the energy-momentum tensor (2.63) we consider

the following correlation function under an infinitesimal metric change

5(T% (@) = & [ DpeT (@)
- / Dee ST, (0) (—3,S)
= % / Depe~> (T"‘a (o) / d*0’\/363P Ty, (a’)). (2.207)

We consider now an infinitesimal Weyl rescaling ¢,5 = ez“’&alg, so that 0g,p = 2wy
and 6¢*F = —2ws*P (we consider also that ¢ = e?“ ~ 1). Thus, we may write (2.207)
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as follows
1 -5
5(T%(0) = 4= / Dope (T"‘a (o) / Po' (28 Ty, (a')>
_ _% / DpeS <T"‘“ () / #o'w (') T, ((T’)). (2.208)

We now transform the OPE (2.206) to Euclidean coordinates through the usual trans-

formation rules eq.(2.104). Thus we have

~ act aov
Tap(z2) = SagTm (7h?).
T (2,2) = ~Ti+ T = ~T% (o)
zz\Z,2 — 4 11 4 22 — 4 « ’
which means that
1
TZZ (Z,Z) T‘LTJZU (w, ZU) = BTIXIX (0') T'B’B (0'/) . (2209)

In another hand we get

9,006 (2 —w,% — @) — % (31 — idn) % (3, + idh) %5 (o' ~") 5 (>~ o?)

= (310] + 1019} — 0,9}, + 9,9) %5&) (0—0').

Using the delta property 9,6 (¢ — ¢’) = —d,6 (¢ — ¢’), we have that

1

0.030 (z —w,Z — W) = 5 (9191 + 2292) 6@ (0 — ¢’) = —%Vzé(z) (c—0'). (2210)

Therefore, we can write the OPE (2.206) in Euclidean coordinates as follows

T (o) TE, (o) = —Zv2@ (0 - o). (2.211)

3

Substituting in (2.208) we have

5(T% (0)) = —i /D¢e_5 (—% /dza’w (o) V2@ (0 - (7’))
= ¢ / Dge V2w (0) = £ V7w (0). (2212)
Now in eq.(2.202) we take e 2% ~ 1, because we are considering an infinitesimal w, so

that R = —2V2w, which allows to identify

5 (T (o)) = —%R. (2.213)
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Therefore, the central charge is associated to the Weyl anomaly, for this reason we

demand its vanishing in flat space in order to this symmetry to survive quantization.

2.8 The Operator Formalism of Conformal Field Theory

2.8.1 Radial Quantization

So far, we have used complex coordinates according to (2.104) with the form —iw =

0% —io!, or equivalent iw = 02 + icl.
In the closed string case we impose a periodicity condition on the spatial coordinate
alie.

o' ~ot+27r  while = —o0<0? < oo, (2.214)

where ¢? is the time parameter, such that, the complex coordinates define a infinite
cylinder.
The coordinate transformation

y— i e*l'(71+(72/ 5 — pi® _ pio'+0? (2.215)
maps the cylinder to the complex plane. This choice of space and time leads to the
so-called radial quantization of two dimensional CFTs. In terms of the w coordinates,
times corresponds to translations of ¢ = Im (w). In terms of z times runs radially,
the infinite past (02 — —o0) is situated at the origin z = 0, whereas the remote fu-
ture (0> —» o) lies on the point at infinity on the Riemann sphere. Within radial

quantization, states of the form

9m) = _lim ¢ (z,2)[0) (2.216)
stand for asymptotic “in” states at the limit when an interaction is attenuated, where
|0) is the vacuum state of the Hilbert space. The corresponding bra, called the asymp-
totic “out” state, is defined is concordance with the definition of Hermitian conjuga-
tion

¢ (z,2)] =222 (1/2,1/2), (2.217)

where by assumption ¢ is a quasi-primary field of dimensions 4 and . Thus we have

(pourl = lim (0]¢(z2)"

z,z—0

= lim z22720]¢(1/2,1/2). (2.218)

z,z—0

This definition is in concordance with eq.(2.122) and therefore
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(Pout] = |¢in) " (2.219)

2.8.2 Mode Expansions

A conformal field ¢ (z,Z) of dimensions (h, 1) may be mode expanded as follows:

D= L I e gun = o g (2,

ez 27 27
(2.220)
20 A hermitian conjugation on the real surface (Z = z*) leads to
p(z,2) = Y Y gmhpnhgt (2.221)
meZ neZ
Thus, in order to (2.221) be compatible with (2.217), it must be satisfied that
P = P—m—n- (2.222)

If the “in” and “out” states are well-defined, the vacuum must satisfy the conditions

Gmnl0) =0, m>1-h, n>1-h (2.223)

2IThere are a similar regularity condition for the “out” state. We will simplify the
notation by dropping the dependence of fields upon the antiholomorphic coordinate.
Thus, (2.220) will be written in the following simplified form:

$(z,2) =) z7 "y, , Pm = ¢Ezm+h_lcp (z,2). (2.224)

meZ 27t

However, it must be kept in mind that the antiholomorphic dependence is always

there. Alternatively, the “in” state can be defined as

d dz
tim ¢(22)[0) = ¢, 510) = 52z o Z 9 (22 0) = 9(0,0)[0).
(2.225)

and similarly for the out state.

20This is simply the Fourier expansions of the field.

1In the equation (2.223) the conditions (m > —h, n > —h) is due to the fact that the “in” and “out
states” are defined at the limit zZ,z — 0, so that, according to the definition (2.216) and the expression
for the modes ¢y, in 2.220 we must have

pin) = lim Y Y zmhznhg, o)

zZ—0 meZ neZ

The above limit diverges for (m > —h, n > —h) unless the condition (2.223) be satisfied.



CHAPTER 2. CONFORMAL INVARIANCE AND STRING ACTION 55

2.8.3 Radial Ordering and Operator Product Expansion

In radial quantization, the time ordering appearing in the definition of correlation
functions becomes a “radial ordering”, explicitly defined by

) #1(2) 2 (w) if |z| > |w],
R (g1(z)¢2 () = { o (@)t (z) i o > |2 (2.226)

If the two fields are fermions, a minus sign is added in front of the second expression.
Thus, the OPE’s written previously have an operator meaning only if |z| > |w|. One
of the advantages of radial quantization is that the commutator of two fields can be
expressed in terms of their OPE . In order to show that, let a(z) and b (z) be two
holomorphic fields, and consider the following integral

§1§ dza(z)b (w). (2.227)

z z Z

)

Figure 2.1: Integration contour deformation (image taken from [7]).

In order to this integral to have an operator meaning within correlation functions,
it must satisfy (2.226). Therefore, we split the integration contour into two fixed-time
circles (see Fig. 2.1) . Then

dza(z)b(w) = dza(z)b(w) - dzb(w)a(z)=[Ab(w)], (2.228)
Cuw C G

where

A= ?gdz a(z) (2.229)

and C; and C; are circles centered around the origin of radii respectively equal to
|w| + € and |w| — €, € being infinitesimal. Our integral is now seen to be a commutator.
If a and b are fermions, the commutator is replaced by an anticommutator. The integral
(2.227) is evaluated by substituting the OPE of a (z) with b (w). Thus, the commutator
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[A, B] of two operators,
Az%dza(z), B:yﬁdzb(z), (2.230)
is obtained by integrating eq.(2.228) over w, that is
[A,B] = §é dw ) dza(z)b(w). (2.231)
0 w

Henceforth, contour integrals without a specified contour will be understood as inte-

grate along circles centered at the origin. Otherwise, the contour will be indicated.

2.9 The Virasoro Algebra and Hilbert space

2.9.1 Conformal Generators

By applying (2.228) and (2.231) to the conformal identity (2.142), we find

— 0 (w =5 ygdz € ¢ (w), (2.232)

where € (z) is the holomorphic component of an infinitesimal conformal transforma-

tion. We then define the conformal charge by

Qe =5 51{ dze( (2.233)

Then, by (2.228), the conformal Ward identity translates into

O () = = [Qe ¢ (w)], (2.234)

which means that the operator Qe is the generator of conformal transformations. We

now expand the energy momentum tensor according to (2.220) and obtain

T(z) = YLiez z7"2L, L, = 25%1 n+1T( ),
(2.235)
T(Z)= Y,ezZ " 2L, L, =¢LT(2).
We also expand the infinitesimal conformal change e (z) as follows
=) e (2.236)

nez
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The expression (2.233) for the conformal charge becomes

Qe = Zm}lgdz neZ enT (2)

= ?ﬁdz 2" (2
nEZ <

= ) euln (2.237)

nez

The mode operators L, and L, of the energy-momentum tensor are the generators
of the local conformal transformations on the Hilbert space, exactly like /,, and I, of
(2.116) are the generators of conformal mappings on the space of functions. The gen-
erators of SL (2,C) in the Hilbert space are L1, Ly (and their antiholomorphic coun-
terparts). The operator Ly + L generates the dilations (z,z) — A (z,2), that is, time
translations in radial quantization. Therefore, Ly + Ly must be proportional to the
Hamiltonian of the system. The operators L, obey the algebra (2.117), except for a
new term depending on the central charge,

[Ly,Lu] = O, (2.238)

These relations may be derived from the mode expansion (2.235), the OPE (2.187) and
(2.231)?? as follows,

[Ln/ Lm] =

m“ygdzz”“T( )T( )

B 0"+ S M c/2 2T (w) oT (w) re
= 27_[1 ;gd +y§d { w)4+(z—w)2+(z—w)+ g.}

— %%wm+l{%n(7l+1) (n—1)w”*2+2(n_|_1)T(w)wn+wn+1aT(w)}

22Here is useful to recall the residue theorem for a regular function f (z), we have

b o = i ) = 20)

20 2771 (z — zg
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By using the result % $dz Zk = Ok, —1, we have

_ i 2 1 m+n+1
Ly, L] = " (n 1) 5m+n+2(n—|—1)—(2m,) %dwT(w)w
1 m—+n+2
— aT
+ @) &l{dww (w)

= ‘a (n2 — 1) Sman+2(m+1) Lyym — (m+n+2) L§1§dw W™ TLT (w)

12 (27ti)

c
= (n2 - 1) Supn -+ (1 — 1) Ly, (2.239)

where, in the third term of the second line, we have integrated by parts. This is the
Virasoro algebra. For the [L,, L] the process is identical and, [Ly, L,,] = 0 follows
from the OPE T (z) T (@) ~ 0.

2.9.2 The Hilbert Space

The vacuum state |0) must be invariant under SL (2, C) transformations. This means
that L11]0) = Lo |0) = 0, with the same condition applying for the antiholomorphic
counterparts, fixing the ground state energy to zero. This, in turn, can be recovered
from the condition that T (z) |0) and T (2) |0) are well-defined as z,z — 0, which
implies, for the holomorphic component that

lim T (z)[0) = lim Y z7""?L,[0) =0. (2.240)
z—0 ne?

In the sum above, the terms diverging in the limit z — 0 are all of those for which
n > —1. Then, this is precisely the requirement

L,[0)=0, L,[0)=0, n> -1, (2.241)

which includes as a sub-condition the invariance of the vacuum |0) with respect to the
global conformal group. It also implies the vanishing of the vacuum expectation value
of the energy momentum tensor:

(0|T (2)|0) = (0|T (2)| 0) = 0. (2.242)
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Primary fields, when acting on the vacuum, create asymptotic states, which are eigen-
states of the Hamiltonian, as can be shown from (2.163,2.228)

Lo 0,@)] = 36 d=21T () (w0

-t dzz”“{ f + c Eiww) +reg.}<p(w,w)

271 Jy (z —w)?

= h(n+1)w"(w,®) +w" oy (w,m), n>—1. (2.243)

By analogy

(L, ¢ (w,@)] =k (n+1) @"¢ (w, @) + @9 (w, @), n>—1. (2.244)

Applying these relations to the asymptotic state = ¢ (0,0) |0), we have

Log (w,@) [0) “Z" [Lo,¢ (w,@)][0) = (h (1, @) + g (w, ) 0) ,(2.245)

which implies

Lo¢ (0,0) [0) =

Log (0,0) [0) = Lo

(2.246)
Thus (Lo+ Lo — H). Likewise, we have

from eqs. (2.241,2.243)

/_>:0/

Excited states above the asymptotic state

Jhy=0 if  n>0. (2.247)

operators. Explicitly, if we expand the holomorphic field ¢ (w) in modes, according to
(2.224), then we find according to the prescription (2.231) that

dw dZ Zn+1T m+h l(P ( )

[Lnr47m] =

— %dwyg dzz"* { ) 9w (w, @) +reg. p "1

271’1 w)? (z—w)
— ygdw h]’l + h) n+m+h—1 ( ) + wn+m+haw¢ (w/u—])} )
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Integrating by parts yields to

Ly, ¢m] = L jlgdw (hn 4+ 1) w"™ =1 (w, @) — (n + m + h) w" 7" (w, w)}
= —— jlgdw — m] w1 (w, )
= —1) = m] ppim. (2.248)

Of which a special case is
(Lo, o] = —mepm. (2.249)

This means that the operators ¢, act as raising and lowering operator for the eigen-
states of Lg : Each application of ¢!, = ¢_,, (m > 0) increase the conformal dimen-
sion of the state by m. The generators L_,, (m > 0) also increase the conformal
dimension, since the Virasoro algebra (2.238) gives

[Lo,L_m] = mL_,. (2.250)

This means that excited states may be obtained by successive applications of these
operators on the asymptotic state |h):

Lot L gL, |, 1<k <ky<..<kn (2.251)

By convention, the L, appear in increasing order of the k;, a different ordering can
always be brought by applying the commutation rules (2.238). The state (2.251) is an
eigenstate of Lo with eigenvalue.

W=h+ki+ky+..+k,=h+N. (2.252)

The states (2.251) are called descendants of level N of the asymptotic state |i). The
number of distinct, linearly independent states at level N is simply the number p (N)
of partitions of the integer N. The generating function of the partition numbers is

H =Y p(n)q", (2.253)
n=1 n=0

where ¢ (g) is the Euler function. The effect of a conformal transformation on a state
is obtained by acting on it with a suitable function of generators L;,. The subset of the
full Hilbert space generated by the asymptotic state |/1) and its descendants is closed

under the action of the Virasoro generators and form the so-called “Verma module”.
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210 The XX matter system revisited

Here we apply the results above to study the mode expansion of the XX —matter sys-
tem. If we calculate the TX OPE, we obtain by using (2.153)

T(z) XM (w) = —%ﬁ) v(z)0X" (z) : XM (w)
2 / nv
- —EBX (2) (_%zﬂ—u) T reg.
. X (w) (2.254)
zZ— W

According to (2.163) this means that X¥ is not exactly a primary field, however, from
the OPE (2.169) we see that 9X* and 0X* are, in fact, primary fields of conformal di-
mensions (1, h1) = (1,1). From (2.153) we see that the holomorphic and antiholomor-
phic part of X* decouple, therefore, according to (2.220) we may expand in Laurent

series as follows

/ 00
X" (z =—u/ Yol X (2) = —i ”‘5 Y ozl (2.255)

m=—o00 m=—0o0

Equivalently,

\/7 55 z "X (z &b, = — \/; yg z MoXH (z (2.256)

Single-valuedness of X and its periodicity condition for the closed string, imply that

&) = . The Noether current for space-time translations, X" = a, is 1,8 X" so the

space-time momentum is

1
pt = 27'(1 (dz]"—dz]”)

S (yﬁ ﬁaXﬂ( - yf 92 5 xn (z))
- & (V5 50)
_ \f ol (2.257)

Integrating the expansion (2.255) gives

/dzaX” (z,2) = /dzaXﬁ (z) = Xk (z) = L —z—p”lnz—kz\/» Z —ocm

m#£0
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In the same way

/dZSXV (z,2) = X} (2) =« — z—pV Inz + 1\/ 2 ocm,
m;éO
such that

K

XM (z,2) = XI (z) + XI' (2) = u_z_pu1n|z| +u/ Z = <“”’ ”"”). (2.258)
From the contour argument and the XX OPE (2.165), one derives
[, ] = [&h, &3] = MmOy, [x*, p'] = in", (2.259)

for instance, by using eq.(2.231), this follows that

2 [dz dw _,, _
[whon] = S T "w™ "X (z) X" (w)
(2154) 2 [ dz dwz_mw_n g
N 27 Jo 27 2z—w
= m5m+n;7V ) (2.260)

In a similar way we can obtain the other relations.

2.10.1 Vertex Operators

According to eq.(2.254) the canonical scaling dimension of the boson X (z, Z) vanishes,
then, it is possible to construct an infinite variety of local fields related to X (z, z) with-

out introducing a scale, namely the so-called vertex operators:
Ve (z,2) = FXE2) (2.261)

The normal ordering has the following meaning, in terms of the operators appearing
in (2.258)

ik{xo—%pln(zz)—l—i\/%z 7&01 0z "z }
Vi(z,2) = e o ) :

{ikxo—i—\/%/ Yoo %k(a_nz”—i—&_nf”)} {%’kp In(z2)—\/ % Lo %k(anz*”wﬁ”)}
e e .

(2.262)
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Within each exponential, the different operators commutes. We will now demonstrate
that these fields are primary, with holomorphic and antiholomorphic dimensions

/
(k) =T (k) = "‘Zkz. (2.263)
We first calculate the OPE of dX with V}. Then, by expressing Vi in power series,
yields
X (2,2) Vs (w,@) = Y (1:') 90X (z,2) : X (w,@)" : . (2.264)
n=0

This is needed to use a previous result, the OPE (2.165). We will omit the antiholomor-
phic coordinate in the notation, thus we have

X (2) Ve (w) = Zﬂ(maX(z)X(w»:X(w)”—l :)

= n!
- Eatyle () we
- My ((;kfl‘; X ()"
- e LG X
N _%% (2.265)

Next, we calculate the OPE of VV,, with the energy momentum tensor. We can compute
this OPE just by considering the cross contractions between the fields in T (z) and
those in V), (w), that is

T(z)Vp (w) = Z z)9X (z) = X (w)"

wE

SélH Ql;—\

{n L 9X (2) X (w)" 1 1 (90X (2) X (w))

+1:0X (z) X (w)" ' : (3X (2) X (w))
+ ﬁ (9X (2) X (w)) (3X (2) X (w)) : X (w)" 2 :}

~ L M{Zn:@X(Z)X(w)n_1:<_%Z_1 )
X

af = n!
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where we have used that the number of variation of n fields taking in pairs without

repeated elements is (ni—'Z)' = n (n —1). Therefore

/ 2 i n
T (2)V, (w) ~ —"‘Z (Z_lw) Z(n(f)z)!;X(w)"z:

n=2

Y (ip)" (n :9X (2) X (w)"™! ’>

|
ne1 n.

1
Z—w

Lo 1 P)" oy -
I (Z_w)zmzo o : X (w)"

1 (ip)" (. n—1,
+Z_wn; B2 (10X (w) X ()" 2)

zZ—w

We have replaced 90X (z) by 0X (w) in the last equation since the difference between
the two leads to a regular term. Thus we see that by the form of this OPE, V), is
primary, with conformal weight indicated by (2.263). The OPE with T has exactly the
same form. In order to calculate the OPE of products of vertex operators, we may use
the following relation for a single harmonic oscillator:

Bi iy B2 i—; eB1t B2, e<BlBZ>, (2.267)

te
where B; = «;a + ,Bia+ is some linear combination of annihilation and creation opera-
tors. In particular, we may write

aX(z,z) bX(w,) X(z,2)+bX(w,m)

e e i=:¢" : b (X (z2)X(w ) (2.268)
If we apply that to the Vertex operators, and use the equation (2.153), for the correlator

(X (2,2) X (w,@)) = —% In|z — w|?, we have

VP (Z’ Z) Vk (w/ ZD) = : €ipX(Z’Z) e eikx(w/w) .
. ot (PX(z2)+kX(w,)) , ,—pk(X(z2,2) X (w,))

, - - 2! pk
~ o (PX(z2)HkX () , 75 Infz—w]|
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Now, we expand the first exponential of the r.h.s above, around (w, @). That is

Vp (Z,Z) Vi (w, ZD) ~ |z — w|“lpk (: ol (p+k) X (w,w) +ip (Z _ ZU) Xt (P+h) X (w,w)
Fip (2 - @) IXHX@D) 1)
~ |Z — w|1x/pk Vp—|—k (w, ZD) + lp |Z . ZU|[X/pk <(Z . ZU) . aXei(p+k)X(w,w) .

+ (2 @) : XX ) 4 (2.269)

However, we have seen, (2.122), that invariance under global conformal group force
the fields within a non-zero two-point correlation function to have the same conformal
dimension. Furthermore, the requirement that the correlation function (V, (z,2) Vi (w, @))
does not grow with the distance imposes the constraint pk < 0, which, after fixing

o' =2, leaves p = —k as the only possibility

Vp (2,2)V_p (0, @) ~ |z — w|_2p2 +.. (2.270)

From now on, the normal ordering of the vertex operator will not be explicitly written

but always be implicit.

2.10.2 The Fock Space

Since p* commutes with all the ), and &), these operators cannot change the values
of p" and the Fock space is built upon a one parameter family of vacuum |0; k*) =
0) @ |k"), where k* is the continuous eigenvalue of a}, = \/g pH. As mentioned above,
the conformal modes &}, and &), are annihilation operators for n > 0 and creation

operators for n < 0:
ahy [KHY = &) [k =0 (n>0) and  af [K') = af [K') =K' kM), (2.271)

Explicitly, we are using a notation such that a}; |k*) stands for I ® ), (|0) ® |k*)). The
holomorphic energy-momentum tensor is given by (2.167) and by using (2.255) we get

T(z) = —%: (—i\/g ) ocnz_”_1> : <_i\/§ ) ocmz_m_1> :

nez meZ.

1 n—m—
5 Yooz Ry, (2.272)
n,meZ
which implies, by using (2.235)
1 X
L, = 5 Z Sy Uy 2 0007, (2.273)
mez
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X

where a# is a normal ordering constant to be determined, it shifts the vacuum energy.

However, it is zero in this case because
2L0 ’0, 0> = [LlrL—l] |0,0> = (LlL—l - L—lLl) |0,0> = 0. (2274)

As mentioned above, the operator Ly + Ly generate the dilations on the plane, which
correspond to time translations on the cylinder, therefore the Hamiltonian may be

written as follows
H = Lo+ Lo. (2.275)

The mode operators «,, play a role vis-a-vis Ly similar to L,,, because of the commu-
tation [Lo, a m] = mal - This means that its effect on the conformal dimension (the
eigenvalue of Ly) is the same that of L,,. From the equations (2.246) and (2.273) we see
that |k*) has conformal dimension kz—z, since Lg |k') = ‘%% ki) = % |k*). The elements
of the Fock space are obtained by acting on |k#) with the creation operators &" , and
& (n>0):

T W e T S W | G nj,mj > 0. (2.276)

These states are eigenstates of Ly and Ly with conformal dimensions

K e
h= 2+ m h=2+) jmi (2.277)
i j

Each vacuum |k*) may be obtained from the SL (2, C) invariant vacuum |0) by appli-

cation of the vertex operator Vj (z,z) =: e/X(z?)

:. We now show it explicitly, that
is

k") =V (0) ]0) . (2.278)
We will proceed by showing that V (0) |0) is an eigenstate of p* with eigenvalue k*.

For this we rewrite p# according to eq.(2.257) as

dz i ik-
PV (0)]0) = 2§£ SZ DX (2) £ X0 ;o)
(2.265) dz i [ ik'a’ Vi (0)
B 2§£ 27t o/ ( 2z 0)
dz (1

— —_— | = H

$ e (3) 10
— KV (0)]0). (2.279)

Thus, equations (2.279) allows us to identify the state Vi (0) |0) as |k*) provided we set
o' =2, such that a}) = pH.
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211 bc CFT System revisited

Let us now study the mode expansion and the Fock space for the b, c system.

2.11.1 bc Mode Expansion

The fields b and c have the Laurent expansions
bz)= Y, 2" Mw ., c(z)= Y 2", (2.280)

m=—oo m=—0o0

These are only Laurent expansions if A is an integer, which we will assume for now.

The OPE gives the anticommutators
{bm,cn} = Smin => {bo,co} =1, bi=c5=0. (2.281)

Consider first the states that are annihilate by all of the n > 0 operators. The by, co
oscillator algebra generates two such ground states |]) and |1), with the properties

bold) = 0, bo[t) = ),
cold) = [T, col|t) = 0, (2.282)
bull) = bult) = all) = alt) =0 n>0.

The most general state is obtained by acting on these states with the n < 0 modes
at most once each because these anticommute. It is conventional to group by with
lowering operators and cj with raising operators, so we will single out ||) as the ghost
vacuum |0). In string theory we will have a bc and a b¢ theory, each with A = 2.
The closed string spectrum thus includes a product of two copies of the above. The
states |]) and |1) are not, however, the SL (2, C) invariant vacuum |0), ., because this

vacuum state must satisfy (A = 2)
bul0)y. =0 Vn>-1,  cu|0), =0 Vm>2. (2.283)

According to the regularity condition (2.223). Since it is not annihilated by all the neg-
ative frequency modes, in fact, we can note that b_1 || ) satisfy the conditions above,
and can be identified as |0),, ., then

c1]0)y. = b1 [d) =) —b_1c1[) =) (2.284)

From (2.282) it yields
co|[d) =|1) = coc1 |O>b,c' (2.285)
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We note also that (| | ) = (1 |b| 1) = 0and (+|1) = (| |cj] |) = 0, however
(M) = (1) = be(0fc_1coc1|0)y, # O, therefore, we choose a normalization such
that

be (0]c_1cocq| O>b,c =1. (2.286)

The Virasoro generators are found from (2.178,2.280,2.235) as follows
T(z) = (1—=A):(db)c:—A:boc:
G20 12y (- Y (n+A) z”/\lbn> Y 2R

n=—o0 k=—o0

—A: i z7 " b, ( i (A—k— 1)z_k_2+)‘ck> :
n=-—00 k=—o00
=T R (1) (o A b~ A (A~ k— 1) by o)

n,k=—o0

= i z k=2 (A(m+k)—n) :bucy = .

nk=—co

Now we rename the index k by n + k = m = k = m — n, and we have

T(z) = i z7" 2 (Am —n) : byCyn

n,m=—00

— i z7m2 i (Am —n) : bycm—n ¢,

m—=—o0 n=—oo

which, from (2.235) allows us to identify
Lw= Y (Am—n):bpcpy_n: +m0a8. (2.287)

n=—oo

Note that if we rename a index by —k = m — n, we have, for A =2

Ln = ). (m—+m—n):bucmp:+06mu0a8
n=—oo
= Y (m—k):bepmCg: +0m0aS. (2.288)
k=—c0

As for the X—system, the Ly includes a normal ordering constant. This constant can
be determined by the physical condition (Ly — a8) ||) = 0, then

0
2Lo|L) = (Liloq — Lo1Ly) |4) = LiLoq |4) — Loq L.
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It is not hard to see that L1 |]) = 0 because (2.281,2.282). In another hand, we have

Lyl = ¥ (“A—n)buc g ald).
n=—0o0
The sum above has just one possibility that does not annihilate ||), thatis n = —1,

because this casts a term b_1cg. From eq.(2.287) we have then

2o[y) = Lilog )
= (1-A) _Z (A —=n)bycr_nb_1c0|4)
G2V 1 ZA) Abeco | 1) — (1= A) Y (A= m)bosbucoern [4).

In the second term of the last line we have used the fact that {c,;, c,} = 0and {b,, b} =
0. Then, using a last time (2.281) for the last term, we can see that it vanishes, therefore,
using also (2.282)

2L |4 = (1= A) Aboco | 4) = (1= A) A[4) (2.289)

Thus a8 = (1 —A)Aand
= 1
Lu= Y, (mA—n):bycmp: +§ (1 —=A) Ady, o (2.290)

n=-—oo

From the mode expansions eq.(2.280) (A = 2) we obtain the mode expansion of the
ghost number current eq.(2.181), that is

j(z)=—:b(z)c(z):= 227”71]’”, where  j, =) :cumbp:. (2.291)

The ghost charge is given by the contour integral of j (z)

1 T
NS=o b 2m Lo dz (7" ) =jo= Lt combui.  (2292)

m
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We must add a normal ordering constant which is compute by opening the sum above,

as follows
Ng — Z C_nbn

n=—0o0
n>0 n>0

2.281

CEY Y b+ Y (1= bcn) + cobo
n>0 n>0
n>0 n>0

We regularize ), 1 through the Riemann zeta functions, thatis, { (0) = Y., % =
— %, which leads to

1
N8 =Y (c—uby — b_ncy) + cobo — =. (2.293)
n>0 2
It satisfies

and so counts the number of ¢ minus the number of b excitations. The ground states
have ground number :l:%:

NS =2 ), NS =D, (2.295)

This depends on the value of the ordering constant and can be shown as follows

[@Ng[0) = I® <C0b0 - ;) |0, k") @ |1) = (1 - ;) |0, kM) @ 1) = % |0), (2.296)
I8N J0) = I® <c0b0 - ;) o) B =0k @)= —2[0).  (@297)

212 Path integral quantization

In order to carry out the path integral quantization of the Polyakov action S [X, g|, we
must consider the path integral,

7= / DXDge SX8l, (2.298)

However this expression is ill-defined, because when we are integrating over all possi-
ble configurations of g, contained in the integration measure Dg. We are integrating
over conformal related surfaces, which contribute with the same information, so we

must redefine the expression above by dividing by the volume of the local gauge sym-



CHAPTER 2. CONFORMAL INVARIANCE AND STRING ACTION 71

metry group. That is

7 — / _DXDg —sixgl (2.299)
Vd1ff><Wey1

In order to obtain the correct measure, we follow the Faddeev-Popov procedure. The
idea is to separate the path integral into an integral over the gauge group times an
integral along the gauge slice, and to divide by the volume of the gauge group. The
Faddeev-Popov determinant is the Jacobian of this change of variables. So that the
integral runs along a slice parameterized by the X* alone, after fixing the metric. We
will represent by { a combined coordinate and Weyl transformation,

do¢ 9o
g gl g (0) = s g (0). (2:300)

We define the Faddeev-Popov measure Arp by

1=/Dg5(g—§)—>1=App(g)/DCrS(g—gg), (2.301)

where ¢, is a “fiducial” metric, a simple choice is §,;, (0) = J, or the conformal gauge
gap (0) = 10
The delta function is actually a delta functional, requiring g,;, = ggb at every point.
Inserting (2.301) into the functional (2.299), it yields

Oqp- In (2.301) D is a gauge invariant measure of the diff x Weyl group.

. [ D{DXDg D -
208 = [ Gr a9 (s~ &)ep(-SXg). @30

We will denote explicitly the dependence of Z on the choice of fiducial metric. Carry

out the integration over g,;, and also rename the dummy variable X — X¢, to obtain

Z[§] = /%Am (gé) exp (—s [Xé,gAgb. (2.303)

Now we show the gauge invariance of Arp (§¢) as follows

AFP SC /DC 6 gg - 85 = /DC' o (g - §€71'§/> = /DC" o <8 - 8A€//> = App(8)7,
(2.304)

where "/ = {71 . In the second equality we have used the gauge invariance of the

delta function and, in the third, the invariance of the measure.

Now we use the gauge invariance of Arp, of DX¢, and of the action to obtain

21§ = [ e () exp (<S[X,4). (2.305)
Vdift x Weyl
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Finally, nothing in the integrand depend on (, so the integral over { just produces the

volume of the gauge group and cancels the denominator, leaving

ZIg) = [ DX () exp (-5 X,8])- (2:306)

Thus, Arp ($) is the correct measure on the slice. To evaluate (2.301) for the Faddeev-
Popov measure, let us pretend that (2.300) are two infinitesimal transformations. There-

fore, for { near the identity we can expand

0% = §— g€ = 20wgp — Vabop — Voo,

= (26w — Veb0°) gy — 2 (P160) (2.307)

ab’

The term 20wg,;, corresponds the Weyl rescaling and the remaining to the reparametriza-
tion. In the equation above we have defined a differential operator P; that takes vectors

into traceless symmetric 2-tensors
2 (P1o0),, = Vadoy + Voo, — gap Voo, (2.308)
We will use the functional delta function

/ DF ¢l [#0V8F@)60) — 5(G] = []6 (G (). (2.309)

[

Near the identity the inverse determinant becomes

s (@7 = [P0 (g-)
= /D(SwD(S(T O [—0gab]
= / DéwDbo & [— (26w — V - 60) &ap + 2 (P160) , ]
- / DéwDBDIC exp {27ri / d?ogt/ 2" [~ (26w — V - 60) §ap + 2 (P1o0) ] } :

Integrating in dw we have
App (8)7' = / DBDS0 [—2/3”1’3%} exp {Zm' / o2 [V - 508y +2 (Pr60r) ] } .

The delta functional & [—Zﬁ”b $ap) forces B to be traceless. Thus, we now integrate
over the functional DB’, which are the traceless symmetric tensors. This is made by
effecting a change of variables which divides % in a traceless part and a pure trace
part. The pure trace part integral is a constant after effecting the integration over the
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functional delta 6 [—28¢,,]. We have

App(8)7 ' = / DB'Déc exp {4m‘ / d*ogl/2pg (Pléa)ab}- (2.310)

We now have a representation of Arp ( g)_l as a functional integral over a vector field
50® and over a traceless symmetric tensor f/”. We can invert this path integral by

replacing each bosonic field with a corresponding Grassmann ghost field. Namely,
S0 — °, Bly — bap, (2.311)

with b*? as B/ being traceless. Thus,

Arp (8) = /Dch exp (—Sq), (2.312)

where the ghost action S e with a convenient normalization for the fields, is

1 ~ 1 — A \ab
¢ = 53 | FovBn Ve = o [ do G (Po)”. (2313)

Locally on the world-sheet, the path integral is now

Z[g] = /DXDch exp (—Sx — Sg) - (2.314)

In the conformal gauge, ¢, (¢) = ¢2“(?),,. By using complex coordinates as defined

in eq.(2.104) we have a new metric g, (2, 2), such that

L 1,,(01 P 1,
gab(Z,Z):Eez ( )/ gb(Z,Z)=Ze 2 ( ), \/§:§€2 .

10 10
(2.315)
The only non-vanishing Christoffel symbols are

%, = 0,w(z,2) and T3%; = 0:w(z,2). (2.316)
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In this way we have the ghost action (2.313)

1 .
S5¢ = E/dszgl/zbabgac <accb+r?dcd>
1 1 _ _
= E/dzz (EeZw) (bzbgzc+bzbgzc> <aCCb+FEZCZ+F?ZCZ>
1 1 . _ _ B}
+bzbgzzazcb + bzbgzzrgzcz + bzbgzzfi’zcz) .
Since 0 = §g"?b,, = bz, = b,z = 0. We have

1 1 - z gy
S¢ = 27T d*z (§€2w> (bzz <26 2w> 0z¢° + bz g TZ C* + bz g T %"

—|—bzz (26_2w> aZCZ + bzngZ%Cz —+ bzzgzz ;ZCZ>
= / 02 (b2:0:C% + bz2d:7) (2.317)

Notice that w (c) does not appears in the final form. As anticipated, this is a bc CFT
with (hy, he) = (2, —1) and a be CFT with (hy, he) = (2, —1).

2,13 BRST Quantization

To consider the most general possible variation of the gauge condition, we must allow
0gqp to depend on the fields in the path integral. We consider the path integral pro-
vided with a local symmetry. The path integral fields X* (¢) and g, (¢) are denoted
by ¢;. Here i labels the fields and also the coordinate ¢. The gauge invariance is €,
(that is an “operator variation”), where « includes the coordinates. We assume the

gauge parameter €* to be real. The gauge transformation satisfy the algebra
00, 8p] = f g0y (2.318)
Now fix the gauge by imposing the conditions
FA(¢) = 0. (2.319)
Once again A includes the coordinate. Following the Faddeev-Popov procedure

/ DPi s, / D DB Db Dce 175275, (2.320)
Vgauge
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where 57 is the original gauge invariant action, Sy is the gauge fixing action, given by
Sy = —i / d*c\/gBAFA (¢1;0) . (2.321)

Last, S3 is the Faddeev-Popov action
S3 = bac* S, FA (). (2.322)

We have introduced the field B4 to procedure an integral representation of the gauge-
fixing 6 (F4), that is a functional, so by using the eq.(2.309)

/ DB et/ #ovEBAF (9i0) — 5 (PA> : (2.323)

This total action is invariant under Becchi-Rouet-Stora-Tyutin (BRST) transformation

opp; = —iec“dnp;, (2.324)
0gBs = 0, (2.325)
0gba = By, (2.326)
opct = —ef mc c7 (2.327)

where € must be taken to be anticommuting. The original action S; is invariant by
itself, since the action of dp on ¢; is just a gauge transformation with parameter iec”.
The variation of S, cancels the variation of b4 in S3, while the variations of §,F4 and
c® in S3 cancel. In order to see the invariance of the full action in (2.320) under a BRST
transformation we see that the following results holds

5 (bAF* (9)) = (d5ba) F* (9) +ba (55F* ()
— eBAFA (¢) + by (—iec“(S,XFA (cp))

— e (—iBAFA (¢) + bac" 5, FA (<P))
= 1e(S2+S3), (2.328)

where in third line was used the anticommuting character of € and b4. Then we note
that

55 (S1+ Sz + S3) = J5 (51 - 2(53 (bAFA (¢))) = 0. (2.329)

The first term in th r.h.s vanishes because S is invariant under BRST transformations
by itself, as mentioned above, the second term vanishes by the nilpotency of the BRST
transformation, that is, 63 = 0, which can be checked explicitly from the eqs. (2.324),
(2.325), (2.326) and (2.327). Thus, the total action is BRST invariant by construction.
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The BRST symmetry is used to derive the physical spectrum in the gauge theory. A

quantum amplitude is of the form
(f | i) = / D¢ DB Db Dcte 5175275, (2.330)

for any initial i and final f states. If this amplitude is physical, it must be independent
of the gauge-fixing made to calculate the path integral. We consider a small change in
the gauge condition 6F. Then, the change in S, and S3 actions gives

ed(fli) = —e / DPDB Dby Dcte™ ($1752F53)5 (5 4+ 5, + S3)
- _ , —(51+52+S3) E
€/D(P,DBADbADC e <é5{+ i€5 (Sp + 53)>
B 1
= —e/Dq),-DBADbADC“e (51+S2+53)E(5 (53 (bAFA (‘P)))
= i / D§;DB Dby Dcte (S1+52153) 5, (bA(SFA (cp)>
= i<f’(53 (basF? (¢)>‘i>
= ¢ <fHQB,bA5FA (([))H i). (2.331)

In the last line we have written the BRST variation as an anticommutator with the
corresponding conserved charge Qp. Since §F4 (¢) is arbitrary, it must be required

that all physical states |) must satisfy

<¢ ‘ {QB, b46FA (¢)} ’ 1p’> — 0. (2.332)
Therefore, the physical states must be BRST invariant
Qply) = Qply') =0, (2.333)

where we assumed QE = 0Op. As we mentioned the BRST variation is a nilpotent
operation, so that
Q2 =0. (2.334)

Which implies that a state of the form

Qs |x) (2.335)

will be annihilated by Qp for any x and so is physical. However, it is orthogonal to all
physical states (say |¢)) including itself

(¥ (@8 1x) = ((¥] LB) [x) = 0. (2.336)
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Such states are called null states or spurious. All amplitudes involving states of the
form (2.335) vanish. Two states are said to be physically equivalent if

') = 19) + Qs x) - (2.337)

The true physical space is identified with a set of equivalence classes, where states
which differ by a null state belong to the same equivalence class. Physical states belong
to the cohomology of Qp. In cohomology, states annihilated by Qp are “BRST closed”
and states of the form (2.335) are “BRST exact”. Therefore, the BRST Hilbert space
Hprst is given by taking the quotient between the Hilbert space formed by the BRST
closed states H ys¢q and the Hilbert space for the BRST exact states Heyqct, that is

HpBRrsT = Helosed : (2.338)
Hexact

2.13.1 BRST Quantization of the Bosonic string

In string theory, the total BRST invariant action is

S=5p+ Sghost + Sar, (2-339)
where
1 -
Sp=— / d*z 9X"0X,, (2.340)
1 ol
Sehost = 5 / iz (bdc + boc) , (2.341)
and ,
1
Scr = i /dza\/(g_fB”b (Oap — ab) - (2.342)

Equations (2.340) and (2.341) results after integration over B*. If we consider the
variation of the metric g,;, we obtain an equation of motion relating B; to the energy-
momentum tensor T;i + Tf: ! because of the definition of the energy-momentum ten-

sor itself, as a variation of the action with respect to the metric, that is as follows

= §g5p — iég/dzU\/gBAPA (qbi;O') —+ 5g5ghost.
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Then, we have that FA —s F% =
then

58 = 5g5p+5gﬁ / @0\ /ZB (8ed — gea) + FgSgios
- —Lll—n/dza\/gégabTﬁ,— ﬁ/dza\/g(;gabeb
+é/d2a (—%\@gtzﬁg”b) B (8ca — gea)
+L / o /3B (—0g.4)

Lol

where we have used eq.(2.63). Thus we have

after gauge fixing we have F* = 0, therefore

78
(8ap — Oap), we must use further 6¢ = —g9,,68",
Tab + ZgabB (8cd — §ed) + iBub} 581117
= — /dza\/_{ T szb + EgabBchCd - Bab} 63",
1 . host
EgabBchCd + By = 1 (Ta)l(? + T ) ’
Bz =i (TE +TE™). (2.343)

B.. — i (Tz{g i T§Z’Z°Sf) )

The corresponding BRST infinitesimal transformations eqs.(2.324-2.327) for the bosonic

string theory become

opXH
ogb

ie (cd 4 ¢d) X¥,
ic (TX + Tghost) ,
ic (TX + Tghost) ,
iecdc,

i€ecac.

(2.344)
(2.345)

(2.346)
(2.347)
(2.348)

After integration over the auxiliary field B4 = B, the path integral (2.320) becomes

/ DXHDb Db Dc Dee 5P~ Sghost

(2.349)

where Sp and S5 are given by (2.340) and (2.341) respectively. Therefore, we now

use the Noether procedure to find the BRST current associated to the transformations
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(2.344-2.348). Thus, we write
0gS = 0gSp + 5BSghost- (2.350)

We promote the symmetry parameter € to depend on the world-sheet variables z and
z. For the Polyakov action we have

1 2 = -
ogSp = ﬁ/d z (a&BXVaXﬂ +8X“853Xy)
i
27!

/ dz {8 (e (cd + 09) XV) X,
1+ 9X,3 (e (c + d) X))
= = / 22 { (9ecdX" + decdX” + e (3 (coX¥) + 2 (X)) OX,
19X, (3ecaX? + decaX? + e (3(caX") + 3 (cIX))) )
i

= 5— /dzz {9e (c0X"9X,) + de (c0X'0X,,) + (decoX'0X, + €d (coX") 0X,)

+ (0ecoX"9X, +0X,ed (¢0X"))}.  (2.351)
In another hand, for the ghost action we write

6BSghost = % / d*z {dpbac + bddpc + dpbac + badpc}

= é / d*z {e <TX - Tgh05t> dc + ba (ecac) + € <TX - Tgh05t> ac + bo (ec‘éc‘)}
= / d2 { (bcdc) e + (bedc) ae) . (2.352)

We have used the equations of motion dc = 0 = 9¢. The last two terms in (2.351) are a
total derivative since 90X, = 99X, = 0 because of the equation of motion. Therefore,
after consider the anti-commutativity of the terms (9,€) c? , we write the variation of

the total actions as

oS = é/dzz {—%E : 0XM"9X, : 9e — %c : 0XM9X,, : de
+ : bcdc : de+ : beoe : 86}

= %/dzz {(—c‘% : 0XM"9X,, : + : beoc :) de
(—cl :0X 90X, : + : beoc :) 36}

— i/dzz {(ETX+ : beoe :) de + (cTX+ : bede :) ée}. (2.353)
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We thus identify the holomorphic and anti-holomorphic parts of the BRST current

jB = cTX+ :bcoc: +ga%, (2.354)

jB = ¢TX+:beoc: +§ézcﬂ (2.355)
The final term in the current is a total derivative and does not contribute to the BRST
charge, it has made been added by hand to make the BRST current a tensor which
transform as a primary field. From the ghost energy-momentum tensor (2.178), which
we now denote T8, in contrast to the matter energy momentum tensor TX (XX —system),
we have for A = 2,

T8(z) = —:0b(z)c(z):—2:b(z)ac(z):,
(T8 (z)+:0b(z)c(z):) = —:b(z)ac(z):

N[~

We see that

j(z) = c(z) T (z) —c(z)b(z)ac(z) + gazc (2)

= c(2) T (2) + c(2) T8 (2) + =9%c (2), (2.356)

where we have used the fact that ¢ (z) ¢ (z) = 0, because c (z) is a Grassmann field.
There is a similar form for jg. The form (2.356) for the BRST current is very useful if

we want to extend it to the superstring theory.
Now we are gonna calculate the OPEs of the BRST current with the ghost fields

and the bosonic fields. We will use the previous result for the OPEs of bc system with
A = 2. Therefore we have

jp(z)b(w) = ( YTX (2) :b(w)+:b(z)c(z)ac(z): b(w) +§820 (z) b (w)

z _b(z)ac(z)+ 3
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We expand the depending on z operator up to regular terms, that is

TX(w)_b(w)c(w)_a(b(w)c(w))_b(w)ac(w)+ 3

jg (z) b (w) ~ pe—— (z— w)? Z—w z—w (z—w)3+..,
P, fw) T, 3
z—w | (z—w)? z—w (z — w)?
N TX+8 (w) 8 (w) 3
—w T (z —w)? ! (z —w)® T -

In the same way we can compute

jp(z)c(w) = :c(2) T (z):c(w)+:b(z)c(z)ac(z):c(w)+ gBZC (z) c(w)
~ ¢(z)dc(z) (b(z)c(w))+
c(z)dc(z)
~ - —w 4+ ...
@), (2.358)

Clearly jg (z) b (w) ~ regular terms. We now calculate the OPE with a general bosonic

primary field ¢ (w), so we have

jB(2) ¢ (w) = :c(z TX(Z)=¢(W)+=b(Z)C(Z)aC(Z)=<P(ZU)+§326(Z)¢(W)

~ o) Tt
| he@)g(w) | hac(w)g () |, c@)apw)
(z—w)2 zZ—w zZ—w
h 1
~ C(iwj Z)@ + — (hde (w) ¢ (w) +c () 3p (w)). (2.359)
We define now the BRST charge Qp as usually
QB = ZLT[Z (deB — dZ]TB) . (2.360)
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From the OPE (2.357) we calculate the following anticommutator

{Qs/ b} = %2 151{2 i )wnH
o ot ds (T @) L3
- y§2_mw 75,27(1' z—w —|—(Z_w)2—|—(z_w)3—|—...

— %dw n+1TX+g( )

2711
= LX4+ LS (2.361)

From (2.360) we find the mode expansion of the BRST charge,

1 . T s
Qp = 5 (dzjg (z) —dzjp (2))
dz CmLyy bycici , :
— yg e (n; ST ka:l (I-1) SR | antiholomorphic part
= Z CnLXSman — Y (I —1) byckcibp 4 k1 + antiholomorphic part
pk,1
= ZcmLX Z (I — 1) b_g_jcxc; + antiholomorphic part
k1
x 1 1 :
= ZcmL_m — = Z (I —=1)b_g_jckc) — = Z (I = 1) b__jckc; + anti. part
m 2% 2%
x 1 1 .
= Y ewl®, ==Y (1 =1)byjepe; — = Y (k— 1) b_j_gcicx + anti. part
m 2 k,1 2 Lk
1
= ZcmL}—(m_EZ(l_l)b k—1CkC1 + = Z —1 b_;_kcxcr + anti. part
m k,1
1
= Y eulX, + =Y (k—1)b_y_jckc; + anti. part
m 247
1
= Zcmlgm +=3) (m—n):cmcnb_yy—yn : +anti. part . (2.362)
m 2 mmn

Then, including the antiholomorphic part explicitly and the normal ordering, we have

Qp = Z(cmL§m+EmI:§m>

m

where the normal ordering constant a® is such that a® = a8 = —1. Comparing the
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above expression with (2.288), we also can write the mode expansion of Op as

- 1 -

05 = Y (enlXu + nl¥,) + 5 X (enlSy +0nlS,) +08 (co+). (2364
m m

Now we will show that the charge Qp is not nilpotent when ¢X # 26. That is, we need

to show
{Qp,Qp} =0  onlyif X =26 (2.365)

Therefore we have to use the definition (2.360) and compute the jg (z) jp (w) OPE since
the jp (2) jp (@) will be the same but replacing the corresponding antiholomorphic

components. Thus we have

jg (z) jp (w) = <c (z) TX (z) + : b (2) c (2) 9c (2) : —|—§82c (z))
X (c (w) TX (w) + : b (w) ¢ (w) dc (w) : —{—%EJZC (w))
= z)c(w) : TX (z) TX (w) 4 ¢ (z) TX () : b (w) ¢ (w) dc (w) : +

~—~ 0O

¢
:b(z)c(z)dc(z):c(w) TX (w) + (:b(z)c(z)ac(z):) (: b (w) c (w) dc (w) :)
:b(z)c(z)ac(z) : o%c(w) + ga% (z) :b(w)c(w)dc(w) :+... . (2.366)

We will calculate term by term in order to be clear with these count. Therefore

cX/2 2TX (w) = 9T (w)
(z—w)4+ (z—w)2+ (z—w)>
cX/2 n 2TX (w))

(z—w)3 zZ—w

sc(2)c(w): TX(2) TX (w) = :c(z)c(w): (

(z - w)

+%B3c (w) c(w) ( .

c

zZ—w

) . (2.367)
In the second line we performed a Taylor expansion. The next two terms are

c(z) TX (2) : b (w) c (w) dc (w) :

I
D§]
>
—~
N
~—
—
a
N
~—

~ (2.368)
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and

~ : (2.369)

_:c(z)dc(z)b(w)ac (w): +:c(z)ac(z)b(w)c(w):

zZ—w (z— w)2
tb(z)e(z)c(w)de(w):  :b(z)dc(z)c(w)de(w):
(z— w)2 z—w
ac(z)ac(w): :0c(z)c(w)
(z— w)’ (z—w)
ic(z)dc(w): :c(z)c(w)
PR R -
N +8c((wzac>(2w) 9%c (szau(): (w)
Coc(w)c(w)  *c(w)c(w) 183c (w) c (w)
(z —w)? (zz—w)2 2 z—w
c(w)oc(w) 19%c (w)adc (w)
+ (z— w)3 2 Z—w
_dc(w)c(w) 1820 (w)c(w) 183c (w) c (w)
(z—w)> 2 (z—w)? 6 z-—w

where we have used the fact that b (w) and c (w) are Grassmann fields, and then its

square and those of their derivatives vanish. This gives

§a2c (w) ac (w) _38c (w) c (w)

2 zZ—w (Z_w)3
39% (w)c(w) 2% (w)c(w)

2 (z—w)2 3 z—w

:b(z)c(z)dc(z) i b(w)c(w)oc(w): ~

. (2.370)
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Now the fifth term,

et ) =

N WN W

w)
9 (c (w) ac (w)) N 392 (¢ (w) dc (w))
(z — w)z 2 zZ—w
c(w)d*c(w) 3dc(w)d*c (w)
(z— w)2 + 2 z—w

3¢ (w)d3c (w)
SO @an)

(2.372)

Replacing all these results in (2.366) we get
dc (w) c (w) (c*/2)
(z—w)’

+0%¢ (w) ¢ (w) (

3% (w)c(w) 2c(w)c(w)  ,c(w)dc(w)
2 (z—w)? 3 z-w (z —w)?

+ }Lazc (w) c(w)

jg (2) jg (w) ~

(z—
X/12> _g9c(w)c(w)

zZ—w

—18> +3ZC(W)C(W) (CX—18) +53C(W)C(W) <CX—26).

(Z — w)z 4 zZ— W 12
(2.373)

Since

. dw 7 -
{9B, OB} = 7{27[1 yg z_m]B 5627” §I§ 578 , (2.374)
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we note that Qp is nilpotent only if the simple pole in (2.373) does not exist, that is, if
and only if ¢X = d = 26. This is the celebrated critical dimension.

214 BRST Cohomology of the string

2.14.1 Little group

Consider a group G acting on a space X, then some elements ¢ € G may fix a point
x € X, these elements form a subgroup Gy, called isotropy group or little group,
defined by

Gyr={g€eG: gx=ux}. (2.375)

For instance, consider the group SO (3) of all rotations of a sphere S?, and x = (0,0,1).
The rotations which does not change x correspond to action of the circle group S!
on the equator, that is SO (2). Now, consider a massive particle moving into a d —
dimensional Minkowski space. Since any massive particle necessary move slower
that the light, we can make a Lorentz boost a go to its rest frame. In this frame
the particle momentum is k¥ = (m,0,...,0) with k> = —m? whose little group is
SO (d —1). This means that massive string excitations can be classified by representa-
tions of SO (d — 1). In massless particles case, since they satisfy k* = 0, we can choose
a frame in which its momentum is k* = (E,OQ,...,E). The little group of this vector
is the group of motion in (d —2) —dimensional Euclidean space, E (d —2). Massless
string states form, however, representations of its connected component SO (d —2) C
E(d—2).

2.14.2 open string spectrum

Let us now look at the BRST cohomology at the lowest levels of the string. The inner
product is defined by specifying

() = o, (&) =4,
(b’i)-l- - bﬁml (_7};1 +:E}imr
) =, @) =, (2.376)

The Hermiticity of the BRST charge requires that the ghosts fields be Hermitian as
well. The Hermiticity of the ghosts zero modes forces the inner products of the ground
states to take the form

open string: (0;k |co| 0;K') = (271)% 6% (k — k), (2.377)
closed string: (0;k |Goco| O; k') = i (27)*0 6% (k — k). (2.378)
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Here |0; k) denotes |0;k) ® ||) with momentum k. The ¢y and ¢j insertions are nec-
essary for a nonzero result. The factor of i is needed in the ghost zero modes inner
product for Hermiticity. Inner product of general states are then obtained by using the
commutations relations and the adjoint (2.376).

We begin with the open string spectrum. We will claim that physical states must sat-

isfy the additional condition
bo |¢) = 0. (2.379)

From eqs.(2.333) and (2.361) this also implies

Lo[¢) = {Qs bo} [y) = 0. (2.380)

The operator L is
Ly=L¥+L1=2a <p2 + m2> . (2.381)

From equation (2.290) we have

n=—oo

%) 1
= =) nibycy:i— Y, nibue_y:+ad
n=1

n=—oo
= 2 nc_yb, + Z nb_,c, + ad, (2.382)
(l::l J/ 521 J
I:rfc Np
then
(XZ 00 00 00
Ly = EO Z Dilin“ny + aX + Z nc_pby + Z nb_ncy + aé
n=1 n=1 n=1
= a'p>  + Nx + N, + N, — 1, (2.383)

Zwhere Nx = Y51 &y - a. It is not hard to show that [N, b},] = mb},, [N, cl] =

mc}, and [Ny, a",,] = ma" . Therefore,
a'm?>=N,+N.+Nx—1=N-1, (2.384)

where N = Nj, + N. + Nx. Thus, the Ly condition (2.380) determines the mass spec-
trum of the string. BRST invariance with (2.379) implies that every string state is on
the mass shell. We will denote 7 the space of sates satisfying (2.379) and (2.380).

ZFor the open string ag = v/2a’p, while for closed string &g = 1/ %’p.
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The inner products (2.378) are not well defined because the ghost zero modes give
zero, while 6?° (k — k') contains a factor 6 (0) since the momentum is restricted to the
mass shell. Therefore, we use in H a reduced inner product (||) in which we simply
ignore the X and ghost zero modes. Let us now see the first levels of the d = 26 flat

spacetime string. At the lowest level, N = 0, we have

1 1
m?|0; k) = ——10:k), —k* = - (2.385)
24This state is BRST invariant,
Qp|0;k) = <00L5( —Co> 10; k)
= o (oc’kz — 1) |0; k)
= 0, (2.386)

because of the mass shell condition. Therefore, there are no exact states at this level,
so each of these states correspond to a cohomology class. The associated particle with
these states is called the Tachyon. At the level, N = 1, there are 26 + 2 states,

1) = (G + Bb_1 + e 1) [0;k), —K2 =0, (2.387)

depending on a 26-vector ¢, and two constants, f and <y. The norm of this state is

(prlgn) = (O k| (g™ af + Bbr+ 7" 1) (1poGPaly + Bb_1 +yc 1) |0 K)
= {(0;k | (7o &P a1 + B ybic_1 + v Berb_1)| 0; k)
= (0K | (1uunpe™ 3 (1" +a%q0f)) + By (L —c_1by) + 7" B (1 —b_1c1)) | 0; k)
= (0 k| (7u00p &G + By +71*B)| 0 k)
= (&"-C+ By +7B) (0:K|0;K"). (2.388)

In the second line we have written only the non commuting or non anticommuting
products, in third line we have used the equations (2.150) and (2.281) to put the an-
nihilation operators to the right. Going to an orthogonal basis, there are 26 positive
norm states

1
V2

24Note also that the state cg |0; k) obeys the mass-shell conditions, however, since bycg |0; k) = |0; k)
we excluded this state from the physical spectrum.

&' 0;k) with i€ {1,..,25}, and (b_14c_1)|0;k),  (2.389)
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and 2 negative norm states

«’,|0;k)  and \%(bl—cl)|o;k>. (2.390)

The BRST condition is, from (2.363) (holomorphic part)25

0=0plyp) = <c,1L{( +coL¥ + o LY,
+coc—1b1 + c1cob—1 — co) [¢1)
= (co1m0- a1 +cra0-a—1) [¢1)
= \/@(c_lk a1+ crk-a_q)
X (§-a_q+ pb_1 +yc1) |0 k)
= V2o (c_1k- &4 Bk-a_1)|0;k), (2.391)

where we selected only the non commuting terms with the operators forming the state
|¢1). Physical states therefore must satisfy k- ¢ = f = 0. Thus, from (2.387), the
physical states are those of the form

lp) = (Eua?  +9c 1) [0k), K =0, k-&=0. (2.392)

In particular, we can consider massless open string states with momentum spacetime
k' = (E,E,...,0), therefore, an orthogonal basis satisfying the physical conditions k -

¢=p=0is

c|0k), ka1 |0;k) =E (=% +aly) |0k), ol [0K) i€ {2,.,25},
(2.393)
The two first states above are exact, since they are of the form (2.391) and therefore
have zero norm, then we exclude these two states from the proper physical spectrum.
In turn, for the momentum spacetime k* = (E, E, ...,0) a basis for the physical states is

o |0;k), ie{2..,25}. (2.394)

We have then that the proper physical states at N = 1 are the cohomology classes of

states of the form
E-a_1]|0;k), K=0, k-¢=0. (2.395)

25

m—n
0y = ZcmL)_(m + 2 ( 5 ) : CmCnb_m—n : +aPcy
m

mn

= ..+ C,zLé( + C,lLi( + C0L8< + ClL)jl + 62L§2... + c1c0b_1 + cgc_1by — c_pcoby + ... + ﬂBCQ
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We say that two states ¢ - a1 |0;k) and ¢’ -
there exists a constant 8’ such that ¢’ = ¢, + 'k,

Since these states are massless with polarization vector ¢, such that k- ¢ = 0, it is

natural identify these states with the states of the photon.

2.14.3 Closed string spectrum

The generalization to the closed string is simple. We restrict attention to the space H

of states satisfying

bo ) = bo |¢) =0, (2.396)
implying also
Loly) = Lo |p) =0, (2.397)
where we have
_a, 2 sood s,
Lo—z<p —|—m>, Lo—z<p +m), (2.398)
and
/
"‘Zm2 — Ny+N,+Nx—1=N-1, (2.399)
/
“Zmz — Ny + N +Nx—-1=N-1. (2.400)

Physical conditions imply the level matching condition, N = N. At the lowest state,
N = N = 0, we have again the Tachyonic state with mass m? = —4/a.
At the next level, N = N = 1, the most general state takes the form

1) = (Gyv“]illilil +e-a_1b_1+e-a_1b_4
+f-aqC g+ f-a_jcq+Bb_1b_y
+yc_1C_1 + Cb_1C_1 +nb_1c_1) [0;k), —K2 =0, (2.401)

so we have (26)% + 4 (26) + 4 = 784 states, of these 104 are negative norm states.
The BRST invariant conditions are obtained in analogy to (2.391) but including the
antiholomorphic modes, thus, it is obtained (see [16] ) the general form for the exact
states

0= QB |1/J1 \/ { eyk —|—€1/ ;110(1/_1 +‘B (k'DClEfl —k'ﬁélbfl)
+e- kb_lc_l +e- kb_lc_l + (fy + fu) ch_lc_l) |0; k) .(2.402)



CHAPTER 2. CONFORMAL INVARIANCE AND STRING ACTION 91

BRST invariance amounts 104 conditions, just the same as the number of negative
norm states. If we set k¥ = (E,E,...,0), the BRST conditions lead to a basis of 680

physical non-negative norm states, however, between them there are spurious states

J

of zero norm with a general form given by (2.402), provided we remove the 062156_1

terms. Therefore, the most general physical state, at this level, has the form
G & | 0;k), i€ {2,..,25}, (2.403)

and transforms under the transverse rotation group SO (d —2) = SO (24) as a 2-
tensor, however, this representation is reducible and can be decomposed in irreducible
representations as follows

Gij = &(ij) + Cij] + 0 (2.404)
~—~ ~~
symmetric traceless  antisymmetric ~ tracepart

That is

! 15‘j—1 0;k) = “[i15‘]11 10; k) + [“g15‘j—)1 - 21715ij“1<—15‘1c—1] 10; k)

- y (2.405)
+5560ak a8 |0; k),

where indices in parentheses and brackets are symmetrized and anti-symmetrized, re-
spectively. The symmetric traceless tensor ((;;) is identified with the graviton, a mass-
less spin two particle. The antisymmetric tensor ¢;;; = Bj; with the degrees of freedom
of a tensor field called the Kalb-Ramond field. Last, the remaining massless scalar field
&) is called the Dilaton.



Chapter 3
Superstrings

We now present a brief revision of the superstring action, the goal of this short chapter
is to show that the critical dimension reduces to d = 10. In doing so we see that the
superstring action is invariant under supersymmetric transformation, that is, trans-
formations that mix bosonic and fermionic degrees of freedom. The generator of such
transformations is treated in a similar way to the energy-momentum tensor and its
OPE relations with T and itself generate the Ramond algebra and the Neveu-Schwarz
algebra, depending on the periodicity of the fermionic fields. This idea arises naturally
if we try to include spacetime fermions in the spectrum, and by guesswork we are led
to superconformal symmetry. In this chapter we discuss the (1,1) superconformal al-
gebra.

The main references to study the super conformal field theory is [19], standard
literature for superstring are [17] and [18], some physical concepts and mathematical
definitions were studied from [20] and the final chapters of Liist and Theisen books.

3.1 The superconformal algebra
In the bosonic string theory the physical state condition
Lo[p) =0 (3.1)
and also from L |p) = 0 in the closed string, implies the mass-shell condition
pup! +m* =0, (3.2)

which, is the Klein-Gordon equation in momentum space. This is one way to moti-
vate the following generalization, we require that physical condition implies the Dirac
equation

ip " +m=0. (3.3)

92
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For the bosonic string, Ly and Ly are the center of mass modes of the world-sheet
energy-momentum tensor (T, Tg). A subscript ”B” for bosonic has been added to
distinguish these for the fermionic currents, which we introduce now. Then, we need
new conserved quantities Tr, Tr, whose center-of-mass modes give the Dirac equation,
and which play the same role as Tg, and T in the bosonic string. Noting further that
the space-time momenta p# are the center of mass modes of the world-sheet current

(0X*,0X"), and it is natural to guess that the gamma matrices with algebra
{TH, TV} =2¢M (3.4)

are the center-of-mass modes of an anticommuting world-sheet field ¥, that is, the
gamma matrices will be proportional to the zero modes of ¢*. This previous analysis

leads us to consider the world-sheet action
1 2, (29x15 "y 1O

The fields i* and # are respectively holomorphic and antiholomorphic and the OPEs

are o a
P (2) 9 (w) ~ ——, ¢ (2) §" (@) ~ ——. (3.6)

zZ—w zZ—w

This OPEs are justified because the fermionic part of this action correspond to a bc
system with A = %, therefore h, = h, = %, for which the central charge ¢ = 1. Then,
we use the notation b — 1, ¢ — 1. For this case the bc CFT can be split in two in a

conformally invariant way;,

P = % (p1+ig), 9= % (1 — iyp2) (3.7)

and the ghost action takes the form

1 - 1 - _
$=o— / d*zbdc — P / A%z (Y1091 + Y20¢2) . (3.8)

Each ¢ theory has central charge % Thus we have

Ty (z) = (1—%):(ab)c:—%:bac:

= 411 (0y1 +i0¢n) (1 — itpa) — 31 (1 +iy) (91 — i0Yy)

= Y~ 0. 39)

Therefore, we have d holomorphic * theories, with ¢ = %, and the same number
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of antiholomorphic theories. The holomorphic energy-momentum tensor is then
1 1
Tp = —EBX”E)XP - Etp?‘atpy. (3.10)

The world-sheet supercurrents

Tr (2) = i@w (2) 9, (2), T; (2) = i\/;w (2)3X,(2), (1D

are also holomorphic and antiholomorphic, respectively. In the following, the factors
\/% will be eliminated by working in units where #’ = 2. The normal ordering is
implicit. This gives the desired result: The modes 1pg and 4_73 will satisfy the gamma
matrix algebra, as mentioned above, and the center of mass of Tr and Tr will have the
form of Dirac operators. We can see how these supercurrents act on the matter fields
by computing the OPEs, this gives

oXH (w)

Tr (z) X¥ (w) ~ —ii’bﬂ—(w) and Tr (z) " (w) ~ i . (3.12)
z—w’ z—w
We can write the Ward identity (2.41) in complex coordinates as
i9(z2) = [ dle ()

v

= / (eds’jt) ¢ (z,2)
aV

-1 (dzji — dzjZ) ¢ (z,2), (3.13)

21 oV

where we have used a differential ds” parallel to the contour dV, defined by d¢, =
¢ypds”. From these OPEs and the Ward identity it follows that the currents

je (z) = mjze = €(2) Tr (2), je (2) = mjze = €(2) TF (2) (3.14)

generate the superconformal transformations

0Xt(z,z) = e(z)yp" (z)+€(2)yP" (2), (3.15)
Pt (z) = —e(z)oX"(z), (3.16)
St (z) = —€(z)aX"(2). (3.17)

This transformation mixes the commuting fields X* with the anticommuting fields #
and ¢#, so the parameter € (z) must be anticommuting. As with conformal symmetry
the parameters are holomorphic or antiholomorphic functions. The fact that this is a
symmetry of the action (3.5) follows at once because the current is (anti)holomorphic,
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and so conserved.
The commutator of two superconformal transformations is a conformal transfor-
mation,
561562 - 562561 = 55,‘/ g (Z) = —2¢€; (Z) €2 (Z) (3.18)

as can be checked by acting on the various fields. We now do that:

[0e1,0e,] X (2,2) = bei€2(2) P (2) — deren (2) P (2
= —€ Z) 561‘/7# (Z) + €1 (Z) (Sezlpy
( )

= —2¢1(z) € (z)9X¥ (z). (3.19)

Since X" (z,z) has conformal dimension & = 0, we know that this transform under an
infinitesimal conformal transformation, with parameter ¢ (z), according to 6X* (z) =
¢ (z) 0X# (z). Similarly, the commutator of a conformal and superconformal transfor-
mation is a superconformal transformation. The conformal and superconformal trans-
formations thus close to form the superconformal algebra. The OPEs of Tr with itself
and with Tp closes. That is, only Tr and Tg appears in the singular terms:

3d
Tg (z) Tg (w) ~ : _4w) .+ (ZZTf (ww))z + aZTB_ (;U), (3.20)
Tp (z) T (w) ~ i:ri (ww))z + aZTF_ (;“), (3.21)
T (2) Tr (w) ~ — 2+ 2B (3.22)

(z—w)® z—w

and similarly for the antiholomorphic currents.
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We proceed now to show explicitly (3.21), that is

:Tg(z) = T (w): = —é : (w0 XFOXY + 1oy (2) : pep?oX (w) :

- "é"hwaxﬂaxv(z)x;hg¢PaX“(a0:-—é:ihw¢”3¢v(z)3’hv¢paxg(w):
= g 1 X" (2) ¥ () : (X" (2) 9K (w))
_éwmw : 0XY (z) ¥F (w) : (9XF (2) 9X (w))
Lo 7 (2) (99" (2) 9 (0)) X7 ()
e £ 99" (2) (9 (2) 9 () DX (w) :
_ _imWWU(_qweaXﬂ&)W%w):_nwﬁaX”@ﬁW(W%>

(z—w)’ (z—w)’

i (_W FPH (2) X7 (w) M 9y (2) 0X7 (w) )
wloo

(z — w)2 zZ—w
(X ()5 | ad] 10X (2) 9 )
2 (z—w)’ (z—w)’
N % (nwég L (2) azxv( w):, fdl Y (2) 9K (w) : )
(z—w) zZ—w
o OX! (w) Py (w) = s 2 XH (w) Py, (w) : iyt (w) oXy (w) :
(z — w)? (z —w) 2 (z — w)?
i: 0yt (w)oXy (w) : N i 0yt (w)0Xy (w) :
2 (z—w) 2 z—w
N §i: P (w) 0Xy, (w) : s P (w) X, (w) : : 0Pt (w) 90X, (w) :
2 (z — w)? (z —w) (z —w)
o Biiyl(w) Xy (w) : N 9 (z iyt (w) 90X, (w) :)
2 (z —w)? (z —w)
- § Tp (ZU) 4 an (ZU)
2(z—w)* (z—w)

The TpTr OPE implies that Tr is a tensor of weight (%,0). Each bosonic field 0 X*

contributes 1 to the central charge and each fermion, ¥, contributes 1, for a total

1 3

We will impose this enlarged algebra with Tr and Tr as well as T and T, on the states
as a constraint algebra, it must annihilate physical states in the sense of BRST quanti-

zation.
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More generally, the N = 1 superconformal algebra in operator product form is
5 2T oT
Ty (2) Ts(w) ~ —2 4B w) | 95 () (3.24)
(z—w)" (z—w) z-w
3
5Tr (ZU) an (ZU)
T (z) Tr (w) ~ -2 + 3.25
B (z) Tr (w) w? z-w (3.25)
2
Te (2) Tp (w) ~ —3° 4218 (w) (3.26)

(z—w)3 Z—w

Here, N = 1 refers to the number of (%, 0) currents. In the present case there is also an
antiholomorphic copy of the same algebra, so we have an (N, N) = (%, %) supercon-

formal field theory (SCFT).

3.1.1 Superconformal ghosts and critical dimension

The matter system studied in the previous chapter was the result of a gauge fixation.
In the same way, the superstring action presented above do, a detailed construction
of the non gauge-fixed action is presented in [21, 22]. Therefore, in the path integral
quantization, the gauge fixation will give rise an extra term for the ghost action, due

to the new fermionic terms incorporated above. This new contribution is

1
Spy = 5 / d*zB0z7, (3.27)

where the equations of motion are
(3.28)

In general, we can consider 8 and y as commuting holomorphic fields of conformal
weights hg = A — Jand h, = 3 — A, very similar to the b,c system. The OPE is
compute as in the b, ¢ system but, since the statistical are changed, some signs are
different

1
B(z1) 7 (22) = =7 (z1) B (22) ~ — : (3.29)
21 — 22
The energy-momentum tensor is (eq.(2.178))
3 1
Tgy (2) = 5—)\ :(0B)y: — A—E :Boy ;. (3.30)
The central charge is simply

c=302A-27%-1. (3.31)
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For A = 2, weights (hﬁ' ha,) = < %, —%), we recover the 8,y theory as the Faddeev-
Popov ghost from gauge-fixing the superstring.
Then, we consider a general free SCFT which combines an anticommuting bc the-

ory with a commuting By system, with weights

1 3
=2 he=1-A  hg=A—z, hy=5—A (3.32)
The action is .
St = 5 / iz (bdc + p37) . (3.33)

Since the generator of the supersymmetry transformations is Tr, we have

1 -
0§ = / d°2TpghostOe, (3.34)

where € is an infinitesimal supersymmetry transformation. We then consider the fol-

lowing superconformal infinitesimal variations
0ePf = %eb, ocb = %eaﬁ + g (de) B, dcC = 1c—:fy, dey = %eac — (d€) c.

2
(3.35)
We have by considering these variations on Sgj05; that

6eS = % / d*z (8boc + bdéc + 5poy + Bosy)

N S 4 VOV IO WG| 1 Na (1

= 2ﬂ/dz{<2eaﬁ+2aeﬁ) dc + bo (267)+ (2€b> dy + Bo (268c aec)}
= L/dzz 168 3c+18c—: §c+1b5<—: +13(—: 8c+1<—: 0dc — ddefc

T o g€0poc+ g0epoct Fbdey + 50epde + 5ep pey-

Now, we replace the following terms

—ddefc = —a (deBc) + dedBc + depac,
1 - 1 - 1. - 1 . -
Eeﬁaac = 58 (eBoc) — iaeﬁac - Eeaﬁac.
Then,
5s—i/d2z L — 3pac — apc ) de (3.36)
€Y — 27T 2 /Y Zﬁ ﬁ * ‘
Thus, we have
Tr = %b'y - ;BE)C — (9B) c. (3.37)

In another hand, Tp for the total ghost system is simply the sum of the b, ¢ part plus
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the B, v part, that is (for A = 2)
1 3
Tg = — (9b) ¢ — 2bdc + > (0B) v — 51387. (3.38)

In general, for an arbitrary entire A , we have

Tg = (9b)c—Ad(bc)+ (0B) vy — (/\ - %) a(By), (3.39)

20 —1
2

Tr = —% (0B) c + d (Bc) — 2by. (3.40)

The central charge is
Cghost = |—3(2A = 1) +1] + [3(2A 2> = 1] =9 - 124, (3.41)

There is a corresponding antiholomorphic theory. With A = 2, the ghost central charge
is then cgpost = —26 + 11 = —15.

Taking a total energy-momentum tensor, formed by (3.38) Tpep,s; and the (3.10)
energy-momentum tensors, we have

Tt — _2bdc — (9b) ¢ — gﬁafy - % (9B) v — %BXP‘aXV - %tpﬂatpy. (3.42)

The total central charge of this system is the sum of the central charge of each system,
since the matter system contribute with a central charge cytter = d + % = %d, we have

that the condition to the total central charge ¢ = Cohost + Cmatter vanishes, implies

%d —15=0=d = 10. (3.43)

Hence, we obtain d = 10, as the celebrated critical dimension of the superstring.

3.2 Ramond and Neveu-Schwarz sectors and the super-

algebra

We won’t deepen in the study of the spectrum of the X*i# super conformal field the-
ory. However, we going to show how the different periodicity conditions give rise
to different sector which will have different Fock spaces. We start with the cylinder

coordinate w = ¢! + io?. The matter fermion action

1 -
i / d*w (P" oty + P wPy) (3.44)
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must be invariant under the periodic identification of the cylinder, w = w + 27r. There
are two possible periodicity conditions for ¥,

Ramond(R):  ¢" (w+2n) = +y* (w), (3.45)
Neveu Schwarz(NS): P (w+2m) = —¢p¥(w), (3.46)

where the sign must be the same for all y. Similarly there are two possible periodicities

for ¢#. Summarizing, we will write

P (w+2m) = ™Yt (w), (3.47)
Pr (o +2m) = e‘zmﬁt/ﬁ‘ (D), (3.48)

where a and a take the values 0 and % We are interested just in theories with X*

periodic. The supercurrents has then the same periodicity as the corresponding 1,

Tr (w+27) = Ty (w), (3.49)
Tr (0 +27) = e ™ Tf (@). (3.50)

Thus, there are four different ways to put on a cylinder, we will denote this by (a,a) or
by NS-NS, NS-R, R-NS, and R-R. Each of which will lead to a different Hilbert space.

To study the spectrum in a given sector we must expand in Fourier modes,

prw) =it Y gle™,  gr@) =it Y gle (3.51)
re€Z+ta reZ+a
On each side the sum runs over integers in the R sector and over (Z + %) in the NS

sector. Let us also write these as Laurent expansion. After replacing e ¥ — z we
must transform the fields according to eq.(2.119)

dw\ /2 1
Pr (z) = (E) pr (w) = 2272y (w). (3.52)
The frame is indicated implicitly by the argument of the field. The Laurent expansion
are then
) = Y wiaTh @)= g (35
reZ+a reZ-+a

Notice that in the NS sector the branch cut in z~2 offsets the original anti-periodicity,
while in the R sector it introduces a branch cut. Let us also recall the corresponding
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bosonic expansions

oX" (z Z z "y, XM (2)=—i Y z"la, (3.54)

m=—oo m=-—00

where we have set &’ = 2, such that oy = & = p".

The OPE and the Laurent expansions give the anticommutators

{f, 0} = {9F, 9L} = 6p4an™,  [ady o] = (&b, &3] = mEpuynn?”.  (3.55)

For Tr and T the Laurent expansions are

Tr(z) = Y z7"73G, Te(e)= Y 273G, (3.56)
re€Z+a re€Z+a

Tg(z) = Y, z" 2Ly, Tg(z)= Y, z " 2Ly (3.57)
m=—00 m=—o00

From the OPEs egs. (3.24-3.26) and the usual CFT contour calculation gives the mode

algebra
C
Lo La] = (=) L+ 75m (1% = 1) Gy, (3.58)
c 1
{Gr, GS} == 2Lr+s + g (1’2 - Z) §r+s, (3.59)
m
L, Gy = (E - r) Gonir- (3.60)

This is called the Ramond algebra for 7, s integers and as the Neveu-Schwarz algebra
for r, s half integer. The antiholomorphic fields give a second copy of these algebras.

The superconformal generators in either sectors are

Ly = = Z Xm—n Dén.—}- Z (7’——> Ym—r 1pr.+a’”c5m,0, (3.61)
neZ r€Z+a
G = Z 0Pyt (3.62)
nesz

The normal ordered constant can be obtained by any method from the bosonic case.
Before, we see that unitarity for representations of the Virasoro algebra amounts the
following conditions, for n > 0

(B |LuL—nh) = (h|[Ln,L-n]| h)

= <h‘<2nL0+En (n? —1)>‘h>

= {omn+ En (" =1)} iy > 0. (3.63)
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For n = 1, we have that 1 > 0, and by taking n large we have ¢ > 0. Now, for the
superconformal case by considering (r > 0), we have

(|GG [h) = (h{Gr, G-} )

_ cfp_1
= i+ (n[f (2 \h>
= (Zh + = ( — %)) (hlh) >0 (3.64)
from which we find that (NS (7 ( %) and R (r > 0))
h >0 NS, (3.65)
c
> — . .
h > Y R (3.66)
Since ¢ = 3 d we have £ = ie therefore
m d m
R: a" = T NS: 4" =0. (3.67)

We already know that the |h) are eigenstates of Ly with eigenvalue h. According to
equations (2.198) and (2.215) when we map from the cylinder to the complex plane we

have e ™ =z = (—i) " 42 = L, thus we have {z;w} = 1,
and then
_ 2
Teyr (w) = —z°T (z) + ﬂ (3.68)
This implies that
c
(LO)Cyl (LO) ﬂ/ (369)

where (L) oyl is the translation operator on the cylinder. Therefore, each periodic
boson contributes —ﬁ because ¢ = 1. Each periodic fermion contribute % and each
antiperiodic fermion —ﬁ. We are going to explain the last sentences. For a periodic

fermion or R sector, using (3.69) and the results (3.65,3.66), we have

1 (1/2) 1

while for the NS sector we have simply
(1/2) 1
(Logp)er. = (Loy) =~ = (Loy)p. — 25 (3.71)

Thus, since the modes Lj are proportional to the Hamiltonian, what the expressions
above say us is that there is a shift of the energy when we map from the cylinder to
the complex plane.



Chapter 4
Conclusions

The main goal of this work was to study string theory using the formalism of two
dimensional conformal field theory. We made a detailed study of the bosonic string
theory, which was made by applying the tools of CFT to the gauge-fixed Polyakov
action, also called matter system, and the ghost system, which was the result of the
Faddeev-Popov procedure. We have presented the operator formalism of conformal
tield theory in a quite general way, such that this could be applied for those systems
different than the string ones. We focused in explaining and to make the counts of the
BRST quantization, trying to give a greater detail than the one found in the standard
literature about it. This allowed us to find the critical dimension as 26 by demanding
the nilpotency of the BRST charge, also, by demanding the vanishing of the central
charge. In a slight different way, it was presented the procedure to obtain the physical
spectrum of the bosonic string.

It was also presented a basic introduction to the the superstring theory, this study
began with a quite general introduction of the superconformal field theory as a super-
symmetric extension of the conformal ones. Afterwards, this superconformal formal-
ism was applied to the superstring action, by doing so, we presented the superstring
action, which couple fermionic degrees of freedom and it is invariant under local su-
persymmetry transformations. This superstring action is also the result of a gauge-
fixing, in turn, gives rise to new ghosts extra terms. By demanding the vanishing of
the conformal anomaly of the gauge-fixed superstring theory led us to the critical di-
mension d = 10. We have not explored the superstring spectrum but have motivated
it by presenting the two sectors of a general superconformal theory. As an aside, it
is good to mention that in this dissertation were used different ways to calculate the
operator product and the energy-momentum tensor, such that we have analyzed al-
ternative procedure and techniques to work out all the systems.
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