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RESUMO

LOPES, L. P. Ensaios sobre precificação de opções bivariadas via cópulas e modelos he-
terocedásticos: abordagem clássica e bayesiana. 2019. 94 p. Dissertação (Mestrado em
Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ci-
ências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2019.

Essa dissertação é composta por dois principais ensaios independentes e complementares. No
primeiro discutimos a precificação de opções bivariadas sob uma perspectiva bayesiana. Neste
ensaio o principal objetivo foi precificar e analizar o preço justo da opção bivariada call-on-
max considerando modelos heterocedásticos para as marginais e a modelagem de dependência
realizada por funções cópulas. Para a inferência, adotamos o método computacionalmente
intensivo baseado em simulações Monte Carlo via Cadeia de Markov (MCMC). Um estudo
de simulação examinou o viés e o erro quadrático médio dos parâmetros a posteriori. Para a
ilustração da abordagem, foram utilizados preços de ações de bancos Brasileiros. Além disso, foi
verificado o efeito do strike e da estrutura de dependência nos preços das opções. Os resultados
mostraram que os preços obtidos pelo método utilizado difere substancialmente dos obtidos
pelo modelo clássico derivado de Black e Scholes. No segundo capítulo, consideramos os
modelos GARCH-in-mean com especificações assimétricas para a variância com o objetivo de
acomodar as características da volatilidade dos ativos-objetos sob uma perspectiva da dinâmica
do risco-neutro. Além do mais, as funções cópulas foram utilizadas para capturar as possíveis
estruturas de dependência linear, não-linear e caudais entre os ativos. Para ilustrar a metodologia,
utilizamos dados de duas companhias Brasileiras. Confrontando os resultados obtidos com o
modelo clássico extendido de Black e Scholes, notamos que a premissa de volatilidade constante
sub-precifica as opções bivariadas, especialmente dentro-do-dinheiro.

Palavras-chave: Precificação, Opções, Modelos Heterocedásticos, Copula, Inferência Bayesi-
ana.





ABSTRACT

LOPES, L. P. Essays on bivariate option pricing via copula and heteroscedasticity models:
a classical and bayesian approach. 2019. 94 p. Dissertação (Mestrado em Estatística – Pro-
grama Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2019.

This dissertation is composed of two main and independents essays, but complementary. In the
first one, we discuss the option price under a bayesian perspective. This essay aims to price
and analyze the fair price behavior of the call-on-max (bivariate) option considering marginal
heteroscedastic models with dependence structure modeled via copulas. Concerning inference,
we adopt a Bayesian perspective and computationally intensive methods based on Monte Carlo
simulations via Markov Chain (MCMC). A simulation study examines the bias and the root
mean squared errors of the posterior means for the parameters. Real stocks prices of Brazilian
banks illustrate the approach. For the proposed method is verified the effects of strike and
dependence structure on the fair price of the option. The results show that the prices obtained by
our heteroscedastic model approach and copulas differ substantially from the prices obtained
by the model derived from Black and Scholes. Empirical results are presented to argue the
advantages of our strategy. In the second chapter, we consider the GARCH-in-mean models
with asymmetric variance specifications to model the volatility of the assets-objects under the
risk-neutral dynamics. Moreover, the copula functions model the joint distribution, with the
objective of capturing non-linear, linear and tails associations between the assets. We aim to
provide a methodology to realize a more realistic pricing option. To illustrate the methodology,
we use stocks from two Brazilian companies, where our the modeling offered a proper fitting.
Confronting the results obtained with the classic model, which is an extension of the Black and
Scholes model, we note that considering constant volatility over time underpricing the options,
especially in-the-money options.

Keywords: Pricing, Option, Heterocedastic Model, Copula, Bayesian Inference.
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CHAPTER

1
INTRODUCTION

A financial option is a contract where the investor acquires the right, but not the obligation,
to buy or sell a particular asset for a predetermined price and time, where the price is known
as strike price. Therefore, a put option can be interpreted as an automobile insurance policy,
allowing the investor to recover a value previously established by the asset, even if it devalued.
With regard to the call option, we can compare to a paid signal on the purchase of a house, as it
guarantees the fixed price and also the preference in the buy.

A practical example of the use of options is the scenario where an investor believes that
a stock will go up 5% next month and he makes an options contract, and he has the right, but not
the obligation, to buy the stock with an extra of 3% of the current value, for example. Therefore,
when the closing date of the option (maturity date) arrives, the investor can exercise his right
over the option and earn 2% (disregarding the price of the premium and others costs). However,
if the stock is worth less then the investor loses the amount paid for the premium and does not
exercise the option.

The development of models with the purpose of pricing options began with the authors
Black and Scholes (1973) and Merton (1973). The models proposed by the authors use Brownian
motion techniques to obtain the fair price of an option in the univariate case. In the multivariate
case, there is the extension of the model of Black and Scholes (1973), where this approach
consists of the use of Brownian geometric movement for n assets considering the constant
volatility.

Another model proposed by Galichon et al. (2014) is an extension of the local volatility
model introduced by Dupire et al. (1994), where the objective was to construct a stochastic
correlation model. Goorbergh, Genest and Werker (2005) used a GARCH process (1,1) for each
asset under the physical measure and used the transformation proposed by Duan (1995) to obtain
the joint distribution under neutral risk.

To analyze and understand the price behavior of a multivariate option is necessary use the
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jointly model on the underlying processes. The approach used by the methods derived from the
traditional Black and Scholes model is the use of the normal multivariate distribution. However,
the use of this approach implies in linear associations as a measure of dependence between the
assets and their symmetrical behavior, but empirical evidence shows that the joint behavior of
financial assets is much more complex (LOPES; PESSANHA, 2018).

Margrabe (1978), Johnson and Shanno (1987), Nelsen (2007) and Shimko (1994) used
the linear correlation coefficient to analyze and capture dependence among the underlying assets.
However, Embrechts, McNeil and Straumann (2002) and Forbes and Rigobon (2002) criticize the
use of this tool, where the authors highlight the stylized facts in finance, such as the heavy tails of
returns distributions, their autocorrelations, groupings of volatilities over time and non-normality.

As an alternative, the use of the copulas theory allows the joint modeling of the assets
in which there is a separation of the structure of dependence between the variables and their
marginal distributions, where this dependence can be linear, nonlinear and even dependence on
the tails. Therefore, Rosenberg (2000) and Cherubini and Luciano (2002) used the copula theory
in an attempt to capture the dependence among the assets in the derivative pricing process.

In addition, many models use the premise of constant volatility over time, which is not
observed in finance series (FRENCH; SCHWERT; STAMBAUGH, 1987; FRANSES; DIJK et

al., 2000). Thus, to make the pricing process more realistic, Duan (1995) explored the concept
of pricing options considering the heteroskedasticity of the assets, where the author proposed to
follow a modification of the GARCH process.

1.1 Objectives and Overview

Therefore, the main objective of this dissertation is to price and analyze the fair price
behavior of bivariate options considering marginal heterocedastic models and the dependence
structure modeled via copulas. The remainder of this work is organized as follows:

1. In Chapter 2 is presented the theoretical tools of the models and their most important
properties for the development of the next two independent chapters.

2. In Chapter 3 the first empirical article of this dissertation is presented, where call-on-max
options are computed using Bayesian inference and computationally intensive methods
based on Monte Carlo simulations via the Markov Chain (MCMC) and the DGARCH
model under neutral-risk meansure.

3. In Chapter 4 we consider the GARCH-in-mean models with asymmetric variance specifi-
cations to model the volatility of the assets-objects under the risk-neutral dynamics and
copulas. In relation to the inferential method, the Quasi Maximum Likelihood method was
used.
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4. Finally, in Chapter 5 we present some general comments and possible extensions of this
current work.

Each chapter contains results of Monte Carlo simulations and empirical applications. In
addition, the results found will be compared with the values obtained by the classic extended
models of Black and Scholes. It is important to highlight the innovative character of this work in
the sense of performing the pricing in the Brazilian stock market, differing from other works
found in the literature. It is justified as an innovation to be the first application in a volatile stock
market (CONG, 2017; LUNDEN, 2007), a fact that can be explained by the characteristic of
being an emerging market (ABUGRI, 2008; TABAK; GUERRA, 2007).
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CHAPTER

2
PRELIMINARES

In this chapter, we present a brief literature review of some important topics that are
covered throughout this dissertation.

2.1 Factors that Impact the Price of Options

According to the literature of options, there are six main factors influencing the price
of the options, namely the current price of the underlying asset, strike price, maturity time,
dividends expected over the life of the option, price volatility of stock and the risk-free interest
rate (BESSADA; BARBEDO; ARAÚJO, 2005).

At first, it will not be worked with options that pay dividends, for this reason, this factor
of the analysis is discarded. The current price and the strike price similarly influence the price of
the option. An example is, if the call option is actually exercised at some future time, the payoff
will be the value that exceeded the quotation of the asset in the market in relation to the strike
price.

Therefore, as the spot price increases, the option becomes more valuable to the buyer of
the option, as the margin of gain increases. In contrast, the higher strike price of the option, the
lower the premium. With regard to put options the situation is the opposite. That is, as the spot
price rises, the option is worth less. The higher strike price, the better the option, given that there
is a right to sell the stock at a higher price (MELO, 2012).

The third variable that affects the price of an option is the maturity time. The interpretation
for the buying and selling options are similar, as the tendency is for the option price to increase
as the maturity period increases. There are other interpretations when considering dividends, but
this will not be the case in this work.

The next variable is the volatility. This metric represents the risk inherent in the option,
so the higher the risk, the higher the premium charged by the launcher, both in the call and put
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options. Thus, volatility increases the premiums of the options. The fifth variable is the risk-free
interest rate. This rate represents the cost of opportunity to obtain an asset for a given time. An
increase in the interest rate impacts on an increase in the value of the call option and the lower
value of the put option.

In addition to these factors, the impact of the dependency structure between the object
assets and the Moneyness concept fit in this scenario. The interpretation of the impact of the
correlation depends on the option in question, for example, if Call on Min option, the strongly
negative dependence between the two underlying assets produces lower prices, because when an
asset decreases its price, the other is likely to be in a low level as well. On the other hand, when
there is a strong positive dependence, the indices benefit when prices rise.

In the case of a Call on Max option, if the correlation between assets is positive, the
price of asset 1 tends to increase when asset 2 rises, which is good for this option. However, if
it maintains the positive correlation and the price of asset 1 falls the price of asset 2 also falls,
which is not desirable in the case of this option. Therefore, a trade-off between the two situations
is noted. Therefore, it is important to analyze this variable.

Lastly, we have the variable Moneyness. The moneyness is the ratio of the last share
price observed in the spot market and the strike price has been classified into three categories:
in-the-money - ITM, at-the-money -ATM and out-the-money (OTM). This metric is associated
with the probability of the option presenting a positive payoff on its maturity date, or the option
to be exercised. Table 1 presents its classification for the univariate case and for each type of
option.

Table 1 – Classification of Options in relation to Moneyness - Univariate Case.

Classification Call Option Put Option

ITM Market price > Strike Market price < Strike
ATM Market price = Strike Market price = Strike
OTM Market price < Strike Market price > Strike

More out-the-money the option is, the less likely it is to exercise on the part of the holder
and consequently the more within the money, the more likely it is to exercise. An adaptation of
this concept will be used in this work with the aim of expanding to the bivariate case. Let S1 be
the market price of asset 1 and S2 the market price of asset 2, Table 2 shows which classification
will be used from now on.
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Table 2 – Classification of Options in Relation to Moneyness - Bivariate Case

Classification Call Option Put Option

ITM Min(S1,S2) > Strike Max(S1,S2) < Strike
ATM Max(S1,S2) = Strike Max(S1,S2) = Strike
OTM Max(S1,S2) < Strike Min(S1,S2) > Strike

This extrapolation of the concepts of moneyness has as objective to analyze the effect of
its classification in the final prices of the options.

2.2 Some Useful Probability Results

This chapter aims to address some mathematical definitions that will be used in the
course of this dissertation.

Definition 2.2.1 (Filtration). F = {Ft}t∈T is a filtration if it is a increasing family of sub-σ -
algebras, i.e., if it is a family of σ -algebras such that for all s < t:

Ft ⊂ F, Fs ⊂ Ft .

In addition, a filtration is complete and is continuous, i.e.,

Ft =
⋂

s>t Fs, t ∈ T .

Definition 2.2.2 (Stochastic Process). A continuous-time stochastic process X assumes values
in a measurable space (E,ε) and is a family of random variables {Xt} defined in space (Ω,F,P),
indexed in time t.

Definition 2.2.3 (Martingales). A real valued adapted process (Mt) is said to be a martingale
with respect to the filtration {Ft}t∈T if E(|Mt |)< ∞ for all t and for all s≤ t:

E(Mt |Fs) = Ms a.s.

The martingale condition can be regarded as E(Xt |Fs) being a version of the process Xt :

∫
AE(Xt |Fs)dP=

∫
A XsdP, A ∈ Fs,

but by definition of conditional expectation we have:

∫
AE(Xt |Fs)dP=

∫
A XtdP, A ∈ Fs,
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so that for s≤ t:

∫
A XsdP=

∫
A XtdP, A ∈ Fs.

Therefore, the martingale give the information available about the process until now, the
expected value is the present value. A martingale is a process constant in mean, in the sense that

E(Mt) = E(M0) for all t ≥ 0.

Indeed,

E(Mt |Fs) = Ms a.s. s≤ t,

implies

E(E(Mt |Fs)) = E(Ms),

so that by interated expectation property:

E(Mt) = E(Ms) for all s≤ t.

Definition 2.2.4 (Risk-neutral Probability Measure). A probability measure Q is called a risk-
neutral probability measure if

1. Q is equivalente to the real world measure P.

2.
St

Bt
= EQ

(
St+r

Bt+r
|Ft

)
for all t,r ∈ R+, where Bt is the deterministic price process of a

risk-free asset, where Bt = B0exp
(∫ t

0 r(s)ds) , and r(t) is the short rate.

2.3 Bivariate Black and Scholes Approach
Consider a Call-on-max European option, denoted by f (S1,S2) = max(max(S1,S2)−

K),0). The classical Black and Scholes approach for option pricing with one underlying is the
lognormal random walk

∂S
S

= µ∂ t +σ∂W,

where µ is a trend (drift rate) of the stock S, σ is the stock volatility and W is the brownian - the
term ∂W represents any source of uncertainty in the historical price of the stock.

This was readily extended to a scenario containing two assets via models for each asset
underlying
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∂S1

S1
= µ1∂ t +σ1∂W1

dS2

S2
= µ2∂ t +σ2∂W2,

where ∂Wi, i = 1, 2, is a random variable drawn from a Normal distribution with mean zero and
standard deviation ∂ t1/2 so that E(∂Wi) = 0 and E(∂W 2

i )∂ t, but the random variables ∂W1 and
∂W2 are correlated by E(∂W1∂W2) = ρ∂ t. Here ρ is the linear correlation coefficient between
the two random walks. Let V (S1,S2,T ) be the option value. Since there are two sources of
uncertainty, we construct a portfolio of one long option position, two short positions in some
quantities of underlying assets:

Π =V −∆1S1−∆2S2,

where ∆i is a change in the value of the Si in a short interval, i = 1,2.

Consider the increment ∂Π= ∂V−∆1∂S1−∆2∂S2. Now, apply the Ito Lemma involving
two variables.

∂V =

[
∂V
∂ t

+
1
2

σ2
1 S2

1
∂ 2V
∂S2

1
+ρσ1σ2S1S2

∂ 2V
∂S1∂S2

+
1
2

σ2
2 S2

2
∂ 2V
∂S2

2

]
∂ t +

∂V
∂S1

∂S1 +
∂V
∂S2

∂S2.

The two dimensional Ito Lemma can be derived by using Taylor series and the rules of

thumb: ∂W 2
i = ∂ t, i = 1,2 and ∂W1∂W2 = ρ∂ t. Taking ∆1 =

∂V
∂S1

and ∆2 =
∂V
∂S2

to eliminate

risk, we then have

∂Π =

[
∂V
∂ t

+
1
2

σ2
1 S2

1
∂ 2V
∂S2

1
+ρσ1σ2S1S2

∂ 2V
∂S1∂S2

+
1
2

σ2
2 S2

2
∂ 2V
∂S2

2

]
∂ t.

Then the portolio is riskless and then earn riskless return, namely

∂Π = rΠ = r
(

V − ∂V
∂S1

S1−
∂V
∂S2

S2

)
∂ t.

So we arrive at an equation

∂V
∂ t

+
1
2

σ2
1 S2

1
∂ 2V
∂S2

1
+ρσ1σ2S1S2

∂ 2V
∂S1∂S2

+
1
2

σ2
2 S2

2
∂ 2V
∂S2

2
+ rS1

∂V
∂S1

+ r
∂V
∂S2

S2− rV = 0.

The solution domain is {S1 > 0,S2 > 0, t ∈ [0,T )}, and the final condition is V (S1,S2,T )=

f (S1,S2) form a complete model.

The result displayed was the motivation of other works, and some authors provided
approximations of closed formulas for the above equation. In order to compare, in this work
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we will use the closed formula introduced by Stulz (1982) and later extended by Johnson and
Shanno (1987), Boyle, Evnine and Gibbs (1989), Boyle and Tse (1990), Rubinstein et al. (1991)
and others. The fair price for the call-on-max option is defined by

cmax(S1,S2,K,T ) = S1e−rT M(y1,d;ρ1)+S2e−rT M(y2,−d +σ
√

T ;ρ2)−Ke−rT

∗ [1−M(−y1 +σ1
√

T ,−y2 +σ2
√

T ;ρ)],

which

d =
log(S1/S2)+(σ2/2)T

σ
√

T
,

y1 =
log(S1/K)+(σ2

1/2)T
σ1
√

T
,

y2 =
log(S2/K)+(σ2

2/2)T
σ2
√

T
,

σ =
√

σ2
1 +σ2

2 −2ρσ1σ2,

ρ1 =
σ1−ρσ2

σ
,

ρ2 =
σ2−ρσ1

σ
.

The formulas derived from the Black and Scholes model imply erroneous pricing pro-
cesses because they consider the volatility constant over the maturity time of the options and
consider the linear association between the underlying assets. Therefore, the next section presents
the pioneer model to accommodate the heteroscedasticity of the asset-object.

2.4 Duan and Heterocedastic Approach

To meet the constant variance limitation over time of the Black and Scholes model, Duan
(1995) developed a method of pricing options considering GARCH processes. It highlights
three main advantages of this method.First, is a function of the risk premium embedded in
the underlying asset. Second, the model is non-Markovian, i.e., do not require that underlying
asset value is usually assumed to follow a diffusion process.Third, can potentially explain some
well-documented systematic biases associated with BS model, where the main biases is under-
pricing of out-of-the-money options (BLACK, 1975; GULTEKIN; ROGALSKI; TINIC, 1982),
underpricing of options on low-volatility securities (BLACK; SCHOLES, 1973; WHALEY,
1982) and underpricing of short-maturity option (WHALEY, 1982).
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2.4.1 Risk Neutral Valuation for Option Pricing

The theory of Risk Neutral Valuation Relationship (RNVR) proposed by Rubinstein
(1976) and Brennan and Schwartz (1979) has the objective of pricing an option contract as an
expected value of the payoff function discounted under a martingale measure. Therefore, the
construction of a new measure of probability allows us to price options under the hypothesis
that economic agents are risk neutral. This section aims to introduce the measure of risk-neutral
probability in which it is equivalent to physical measure P.

Let Q be a measure of martingale in a discrete time economy with a risk free asset and a
complete filtration probability space (Ω,F,Ft ,P), where Ft is an increasing information filtration
at time t and P is the physical probability measure.

Definition 2.4.1 (Duan (1995)). The measure of probability Q is equivalent to measure P if:

1. Q≈ P, i.e., for all event X , Q(X) = 0 and P(X) = 0.

2. EQ[St |Ft−1] = St−1, i.e., the discounted price process St is a martingale under Q.

Therefore, the martingale condition for the discounted stock price can be replaced by

EQ [Ŝt |Ft−1
]
= Ŝt−1 <=> EQ [ertSt |Ft−1] = e−(t−1)St−1 <=> EQ

[
St

St−1
|Ft−1

]
= er <=>

EQ [eyt |Ft−1] = er.

Duan (1995) extended the RNVR to Locally Risk Neutral Valuation Relationship
(LRNVR) by assuming a conditional Normal distriburion for the log-reutrn with an unchanged
volatility after change of measure.

Definition 2.4.2 (Duan (1995)). A measure Q satisfies the local risk-neutral valuation relation-
ship (LRNVR) if:

1. yt |Ft−1 is normally distributes under measure Q.

2. EQ[St/St−1|Ft−1] = er.

3. VarQ[log(St/St−1)|Ft−1] =VarP[log(St/St−1)|Ft−1].

Theorem 1. The LRNVR implies that, under pricing measure Q,

log
St

St−1
= r− 1

2
ht + εt ,
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where ε|φt−1 ∼ N(0,ht) and ht = α0 +∑
q
i=1 αi

(
εt−i−λ

√
ht−i
)2

+∑
p
i=1 βiht−i.

Moreover, the conditional mean and variance of yt are:

mt = E(yt |Ft−1) and ht =Var(yt |Ft−1).

Under LRNVR, we notice that the conditional mean of yt is dependent on the conditional
volatility process, i.e., the form of mt affects the volatility dynamics while the risk neutralized

conditional mean return the same, i.e., r− 1
2

ht .

Observe that the LRNVR can be applied only when the driving noise is normally
distributed. When the LRNVR concept is present, the future prices of the asset-objects can be
expressed by

Si(T ) = Si(0) = exp
[
rT −0.5∑

T
t=1 hi,t +∑

T
t=1
√

hi,tε
i,t],

which Si(0) is the last price of the period under review for each i = 1,2.

2.5 Copula Functions
The definition of copulas refers to the decomposition of a n-dimensional cumulative

function F into two parts, these being their marginal cumulative distributions Fi for i = 1, ...,n,
and the copula C, where it describes the dependency part of the distribution. Thus, a copula is a
multivariate distribution function in which it has uniform marginal distributions in [0,1] and was
introduced by Sklar (1959).

Definition 2.5.1. Let S = (S1, ...,Sn) a random vector with cumulative distribution F and marginal
distributions Fi, Si ∼ Fi, 1≤ i≤ n and Si is a uniform random variable. A distribution function C

with uniform marginal in [0,1] is called the copula of S if

F =C(F1, ...,Fn).

For the bivariate case, we have that the integral probability transform of the random
variables S1 e S2 guarantees that they are distributed as uniform variables Ui, for i = 1,2:

F1(S1)∼U1 e F2(S2)∼U2.

Similarly, we have to F(−1)
i denotes the quantile transformation of Fi, denoted by

F(−1)
i (t) = in f{x ∈R1 Fi(x)≥ t},
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which

F(−1)
i (Ui)∼ Fi.

As Fi(Si)∼U(0,1), C is a copula and has the following representation

C(u1,u2) = P(F1(S1)≤ u1,F2(S2)≤ u2)

= P(S1 ≤ F(−1)
1 (u1),S2 ≤ F(−1)

2 (u2))

= FS(F
(−1)
1 (u1),F

(−1)
2 (u2)).

Therefore, C is an F copula by definition

F(x1,x2) = P(S1 ≤ x1,S2 ≤ x2)

= P(F1(S1)≤ F1(x1),F2(S2)≤ F2(x2))

=C(F1(x1),F2(x2)).

Definition 2.5.2 (Sklar (1959)). Let F a bivariate distribution function together with marginal
F1 e F2. Then there is a copula C such that for all x1 e x2 ∈ R

F(x1,x2) =C(F1(x1),F2(x2)).

If F1 e F2 are continuous, so C it’s unique. In other cases, C is uniquely defined in Rang
F1 × Rang F2. Conversely, if C is a copula and F1 e F2 are real distribution functions, so F(x1,x2)

defined by the equation above is a joint distribution function with marginal F1 and F2.

In other words, we represent a joint probability using the marginal ones and a copula
represents in a unique way the relation between S1 and S2, and hence copulas are known as
dependency functions. In the case of continuous and differentiable marginal distributions, the
joint density function of the copula is given by

f (x1,x2) = f1(x1) f2(x2)c(F1(x1),F2(x2)),

which fi(xi) is the respective density for the distribution function Fi e

c(u1,u2) =
∂ 2C(u1,u2)

∂u1u2
,

is the density of the copula.

Definition 2.5.3 (Analytical Interpretation). A bivariate copula is a function C with the following
properties:
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1. C : [0,1]2 −→ [0,1];

2. C(u,0) = c(0,u) = 0 e C(u,1) =C(1,u) = u, para todo u ∈ [0,1];

3. C é 2-increase, i.e. , C(u2,v2)+C(u1,v1)−C(u1,v2)−C(u2,v1) ≥ 0, for all u1,u2,v1 e
v2 ∈ [0,1] which u1 ≤ u2 e v1 ≤ v2.

2.5.1 Dependency Measures

As described earlier, a copula function describes the degree and structure of dependence
among random variables. In the form of parametric copulas, its parameter describes the strength
of the dependency relation and the copula is associated with two measures of dependence, being
they the Kendall Tau and the Spearman Rho.

Before presenting the two measures, let us define the concept of agreement. We say that
(xi,yi) and (x j,y j) are concordant if xi < x j and yi < y j or xi > x j e yi > y j. Otherwise, we say that
(xi,yi) and (x j,y j) are discordant if xi < x j and yi > y j or xi > x j and yi < y j. Therefore, we have
that pairs are concordant case (xi− x j)(yi− y j)> 0 and discordant when (xi− x j)(yi− y j)< 0.

Definition 2.5.4 (Kendall Tau). Let X1 e X2 two random variables, the population version of the
Kendall Tau is given by

τC = P[(X1−X2)(Y1−Y2)> 0]−P[(X1−X2)(Y1−Y2)< 0],

which (X2,Y2) is an independent copy of (X1,Y1). Thus, for a sample, Kendall’s tau is the
empirical probability of the difference between the concordant pairs and the discordant pairs.

Considering a random sample of n observations given by {(xi,yi)}n
i=1. Let nc the number

of matching pairs and nd the number of discordant pairs. For every sample, we have
(n

2

)
pairs,

and the Kendall’s Tau is given by

τC =
nc−nd

nc +nd
=

(nc−nd)(n
2

) =
(nc−nd)

0,5n(n−1)
.

The relationship between Kendall’s Tau and a copula function C is expressed by

τC = 4
∫ 1

0

∫ 1

0
C(u,v)dC(u,v)−1.

Therefore, we can calculate the degree of dependence between random variables through
copula and their estimated parameters. The proof can be viewed in Nelson (1991).

Definition 2.5.5 (Spearman’s Rho). Let two random variables X1 and Y1, the Spearman Rho
population version is given by
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ρC = 3(P[(X1−X2)(Y1−Y3)> 0]−P[(X1−X2)(Y1−Y3)< 0]),

which (X1,Y1),(X2,Y2) and (X3,Y3) are independent copies of (X1,Y1).

Its sample version can be calculated by applying the linear correlation coefficient of
Pearson in the data converted in stations, that is, in a vector ordered in ascending order. Let

x̄ =
∑

n
i=1 xi

n
and ȳ =

∑
n
i=1 yi

n
, the linear correlation coefficient of Pearson between X and Y is

given by

ρ(X ,Y ) =
∑(xi− x̄)(yi− ȳ)√

∑(xi− x̄)2
√

∑(yi− ȳ)2
.

Given the copula C, we can rewrite the rho Spearman by

ρC = 12
∫ 1

0

∫ 1

0
C(u,v)dudv−3.

2.5.2 Some Types of Copulas

There is a huge amount of copula functions in the literature (NADARAJAH; AFUECHETA;
CHAN, 2018), and therefore, this work will be limited in the definition and application of the
nonparametric copula denominated empirical copula and five parametric copula models, being
they copula Normal, copula t-student, copula Gumbel, copula Frank and copula Joe.

The normal and t-student copulas are part of the elliptic copula family, where they are
characterized by multivariate distributions functions that result from the functions of elliptic
distributions. The advantage of using copulas from this family instead of multivariate distributions
is the possibility of obtaining structures of non-normal dependencies, that is, a more flexible
approach.

The copulas Gumbel, Frank and Joe are part of the Archimedean copula family. In prac-
tice, the main difference from this family to ellipticals is the possibility of capturing a dependence
structure in the tails in cases where there is some asymmetry. Obtaining an Archimedean copula
is not given direct by the Sklar theorem and multivariate distributions.

According to Nelson (1991), to express an Archimedean copula it is necessary to define
the generating function of the copula in question φ and its pseudo-inverse function φ−1. So, let
φ : [0,1]−→ [0,∞[ which

1. φ(1) = 0;

2. For all t ∈ (0,1), φ
′
(t)< 0, that is, φ and decreasing;

3. For all t in (0,1), φ
′′ ≥ 0, that is, φ is convex.
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In addition, let φ [−1] : [0,∞[−→ [0,1], which

φ [−1](t) =

φ−1(t), se 0≤ t ≤ φ(0),

0, se φ(0)≤ t ≤ ∞.

Case φ be convex, the copula function C : [0,1]2 −→ [0,1] is defined by

C(u,v) = φ
[−1][φ(u)+φ(v)], 0≤ u,v≤ 1.

If φ(0) = ∞, so φ [−1] = φ−1.

Empirical Copula

Introduced by Deheuvels (1979), the nonparametric estimation of a copula function is
used as a tool in the visual and exploratory fit adequacy analysis.

Definition 2.5.6. Consider the random vector (X,Y). Let (xk,yk)
n
k=1 an observed sample of size

n obtained from (X,Y).The empirical copula Cn associated with these variables is defined by

Cn

(
i
n
,

j
n

)
=

1
n

n

∑
k=1

I(x≤ x(i),y≤ y( j)), i, j = 1, ...,n,

which x(i) e y( j) are sample order statistics.

One important result is that empirical copula converges to true copula when sample size
grows (DEHEUVELS, 1979; VAART; WELLNER, 1996).

Normal Copula

The normal copula or commonly known as Gaussian copula is called this because it
comes from the normal density function for n ≥ 2. A bivariate Normal copula is expressed by

C(u,v) =
∫ x1

−∞

∫ x2

−∞

1

2π
√

1−ρ2
exp
(
−

t2
1 −2ρt1t2 + t2

2
2(1−ρ2)

)
dt2

1 dt2
2 ,

which x1 = Φ−1(u), x2 = Φ−1(v), where Φ(.) denotes the cumulative function of the N(0,1)
and −1 ≤ ρ ≤ 1. Therefore, by definition, the functions of marginal distributions are normal
standard.

This type of copula has no dependence on the tails of the distributions and is symmetric.
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t-student Copula

A t-student copula coincides with the distribution function of bivariate t-student,where
its form is expressed by

C(u,v) =
∫ x1

−∞

∫ x2

−∞

1

2π
√

1−ρ2

(
1+

t2
1 −2ρt1t2
ν(1−ρ2)

)−(ν+2)/2

dt1dt2,

which ν represents the degrees of freedom of t-student. As in the case of normal copula, the
marginal bivariate t-student copula t-student coincide with standard t-student, where x1 = t−1

ν (u)

and x2 = t−1
ν (v).

This type of copula does not have association in the tails, which favors its use in extreme
events, such as, for example, unplanned oscillations in the stock market. However, given the
symmetry of the function, the degree of dependence on the upper tail is equal to the lower tail.

Gumbel Copula

The Gumbel copula is characterized by the dependence only on the upper tail and is
represented by

C(u,v) = exp
(
−
[
(−ln(u))θ +(−ln(v))θ

]1/θ
)
,

which θ ∈ [1,∞]. When θ −→ ∞ dependence is perfectly positive and independent when θ = 1.

Frank Copula

The form of a Frank copula is expressed through

C(u,v) =− 1
θ

ln
(

1+
[exp(−θu)−1][exp(−θv)−1]

exp(−θ)−1

)
which θ 6= 0. When θ −→ ∞ we have perfect positive dependence and we have the case of
independence when we θ −→ 0. This copula has the same dependence on both function tails,
such as elliptic copulas.

Joe Copula

The Copula Joe is expressed by

C(u,v) = 1−
(
[1−u]θ +[1− v]θ − [1−u]θ [1− v]θ

)1/θ

,

which 1≤ θ ≤∞. When θ = 1 we have the case of independence and the case of perfect positive
dependence when θ −→ ∞.
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2.5.3 Graphical Representation of a Copula

In the case of bivariate copulas, the graphical representation is performed on a continuous
surface in the unit cube [0,1]3, where its limits are defined by the quadrilateral of vertices (0,0,0),
(0,1,0), (1,0,0) e (1,1,1). The comparison of different copulas is performed through the contour
curves (contours), which are sets in [0,1] given by C(u,v) = k, which k is a constant.

Figures 1, 2, 3, 4 and 5 show the densities functions for the parametric copulas defined
in the previous subsection and their respective contours for a fixed parameter.

Figure 1 – Density of copula Normal left and right contour with θ = 0.7.

Figure 2 – Density of Copula t-student left and right contour with θ = 0.7 and ν = 15.
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Figure 3 – Density of the Gumbel copula on the left and right contour with θ = 4.

Figure 4 – Density of the Frank copula on the left and right contour with θ = 4.

Figure 5 – Density of the Joe copula on the left and right contour with θ = 4.
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2.5.4 Simulating from Copulas

This subsection aims to describe the algorithms used to generate random samples from a
copula model.

Normal and t-student Copula

In this case, copulas are derived from a sklar theorem and multivariate distribution, the
process of generating pseudo random variables becomes particularly easier. The first step is to
simulate pseudo observations of the multivariate variable intrinsic to the copula in question and
in the second step to transform those results into even marginal ones through the cumulative
distribution. Therefore, in both cases we will use the algorithms proposed by Schmidt (2007),
which are described below.

Algorithm 1: (Cópula Normal)

1. For an arbitrary covariance matrix Σ̃ we obtain the correlation matrix Σ through the scaling
of each component to obtain variance equal to 1.

2. Performs decomposition Cholesky Σ = A
′
A.

3. Generate pseudo independent and identically distributed observations (i.i.d) of a standard
normal X̃1, ..., X̃d .

4. Calculate (X1, ...,Xd)
′
= X = AX̃ from X̃ = (X̃1, ..., X̃d).

5. Return Ui =Φ(Xi), i= 1, ...,d which Φ is the cumulative distribution function of a standard
normal.

Algorithm 2: (Cópula t-student)

1. For an arbitrary covariance matrix Σ̃ we obtain the correlation matrix Σ through the scaling
of each component to obtain variance equal to 1.

2. Generate a multivariate normal X with covariance matrix obtained in step 1.

3. Generate independent samples ε ∼ χ2
ν from ε = ∑

ν
i=1Y 2

i , which Yi are sample i.i.d. N(0,1).

4. Return Ui = tν(Xi/
√

ε/ν), i = 1, ...,d which tν is the cumulative function of a univariate
t-student distribution with degrees of freedom ν .
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Archimedean Copula

For the Gumbel copula, we will follow the algorithm defined by Genest and Rivest (1993)
and Nelsen (2007). Let FC(t) be the distribution function of the copula of interest with generating
function φ :

Algorithm 3: (Copula Gumbel)

1. Generate two independent samples of uniform distribution (v1,v2).

2. Fix w = F(−1)
C (v2), Fc(t) = t− φ(t)

φ(t)′
.

3. Fix u1 = φ (−1)[v1φ(w)] and u2 = φ (−1)[(1− v1)φ(w)].

Therefore, the pair of interest is (u1,u2). In the case of the Gumbel copula, we obtain

1. Generate two independent samples of uniform distribution (v1,v2).

2. Fix FC(w) = w
(

1− ln(w)
θ

)
= v2, and solve numerically for 0 < w < 1.

3. Fix u1 = exp[v1/θ

1 ln(w)] and u2 = exp[(1− v1)
1/θ ln(w)].

Frank Copula

Sampling from the Frank copula can be obtained through the conditional distribution
approach discussed in Nelson (1991).

Algorithm 4: (Copula Frank)

1. Generate two independent samples of uniform distribution (v1,v2).

2. Fix u2 =−
1
θ

ln
(

1+
v2(1− e−θ )

v2(e−θu1−1)− e−θu1

)
.

Joe Copula

It is possible to generate random samples of Joe copula through the algorithm discussed
in the case of Gumbel copula.

Algorithm 5: (Copula Joe)

1. Generate two independent samples of uniform distribution (v1,v2).
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2. Fix FC(w) = w− 1
θ

[ln(1− (1−w)θ )][1− (1−w)θ ]

(1−w)θ−1 = v2 and solve numerically for 0 <

w < 1.

3. Fix u1 = 1− [1− [1− (1−w)θ ]v1]1/θ e u2 = 1− [1− [1− (1−w)θ ]1−v1]1/θ .
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CHAPTER

3
OPTION PRICING WITH BIVARIATE

RISK-NEUTRAL DENSITY VIA COPULA
AND HETEROSCEDASTIC MODEL: A

BAYESIAN APPROACH

3.1 Introduction

An option is a financial derivative which the investor acquires the right, but not the
obligation, to buy or sell a particular asset for a predetermined price and time, where that price is
known as the exercise price. Thus, a put option may be interpreted as an auto insurance policy,
where it allows the investor to recover a pre-established value for the asset, even if it has devalued.
Regarding the call option, it is compared to the signal paid in the purchase of a house, as it
guarantees the fixed price and also the preference in the purchase.

The elaboration of models with the purpose of pricing options began with the authors
Black and Scholes (1973) and Merton (1973). The model proposed by the authors uses Brownian
motion techniques to obtain the fair price of an option in the univariate case. In the multivariate
case, there are several methodologies for achieving the fair price of the options, one of them
being the multivariate model of Black and Scholes, where this approach consists of the use of
Brownian geometric movement for n assets considering the volatility constant over time.

Tools that accommodate the co-movements between its underlying processes are needed
to understand the price behavior of a multivariate option. A primary tool that is widely used by
the methods derived from the traditional Black and Scholes model is the multivariate normal
distribution. However, the use of this approach implies in linear associations as a measure of
dependence between the assets, and empirical evidence shows that a real association between
financial series is much more complex (LOPES; PESSANHA, 2018).
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The works of Margrabe (1978), Johnson and Shanno (1987), Nelsen (2007) and Shimko
(1994) used the linear correlation coefficient to analyze and capture dependence among the
underlying assets. However, Embrechts, McNeil and Straumann (2002) and Forbes and Rigobon
(2002) criticize the use of this tool, where the authors highlight the stylized facts in finance,
such as the heavy tails of returns distributions, their autocorrelations, autocorrelation in squared,
groupings of volatilities over time and non-normality.

As an alternative, the use of the copulas theory allows the joint modeling of the assets
in which there is a separation of the structure of dependence between the variables and their
marginal distributions, where this dependence can be linear, nonlinear and even dependence on
the tails. Therefore, Rosenberg (2000) and Cherubini and Luciano (2002) used the copula theory
in an attempt to capture the dependency among the assets in the derivative pricing process.

Besides, many models use the premise of constant volatility over time, which may not be
observed in finance series (FRENCH; SCHWERT; STAMBAUGH, 1987; FRANSES; DIJK et

al., 2000). Thus, to make the pricing process more realistic, Duan (1995) explored the concept
of option pricing considering the heteroscedasticity of the assets, where the author proposed to
follow a modification of the GARCH process.

Therefore, this paper aims to price and analyze the fair price behavior of bivariate call-on-
max option considering marginal heteroscedastic models and the dependence structure modeled
via copulas. Besides, the results found will be compared with the values obtained by the classic
extended models of Black and Scholes, known as Stulz Closed-form for a call-on-max option.

This work differs from the others found in the literature in two aspects: no studies are
comparing the heteroscedastic approach with the classical one (derivations from the Black and
Scholes model) for the bivariate case and, furthermore, there are no studies with this methodology
considering the Brazilian stock market.

The structure of this paper is divided as follows. Section 3.2 presents the classical models
and the heteroscedastic approach for pricing call-on-max option. Section 3.3 gives the Bayesian
inference procedure. Section 3.4 presents a simulation study. Section 3.5 shows the application
of the methodology in real data of the Brazilian stock market. Finally, Section 3.6 gives some
final remarks on this work.

3.2 Conceptual Framework and Model Formulation

In this chapter, we introduce the Stulz (1982) model, which is an extension of the Black
and Scholes model for the bivariate case for the call-on-max option and the Duan (1995) model,
where the author considers the heteroskedasticity of the underlying assets of the option. Besides,
we will introduce how to use the copula theory to model the joint distribution of assets, to capture
non-linear dependence between the assets.
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3.2.1 Call-on-max Option

A European option call on the maximum of two risky assets (call-on-max) is defined
based on the maximum price between two assets. The payoff function of this option is given by

g(S(T )) = max[max(S1(T ),S2(T ))−K,0],

where Si is the price of the i− th asset (i = 1,2) at the maturity date T and K is the strike price or
exercise price. In this work will be discussed two methodologies for obtaining g(S(T )), where
the first approach below considers the heteroskedasticity of the object assets and the non-linear
correlation structure. For comparing this methodology, the second approach is the closed-formula
proposed by Stulz (1982), where it was the first approach for pricing the call-on-max option,
where the author considered the volatility constant over the maturity time of the option and the
linear correlation between the assets.

3.2.2 First Approach: Duan Model and Copulas

To introduce heteroscedasticity, we will use the fundamental theorem of asset pricing
described by Delbaen and Schachermayer (1994). This theorem states that since the stock price
Si(T ) (i=1,2) is free from arbitrage and present in a complete market (HULL, 1991), there
exists a measure of probability Q such that the discounted price of the stock, e−r(T−t)Si(T ), is a
martingale under Q and Q is equivalent to the real world probability measure P.

The fair price of the call-on-max option depends on the dependency structure among the
object assets since its price is defined as an expected value (by definition and ownership of a
martingale measure, for more details, see Madan and Milne (1991)). Therefore, we define the
following theorem to perform the pricing.

Definition 3.2.1. Let S1 and S2 be two stocks traded in a complete and free arbitrary market. In
addition, be t the present date, T the maturity date and r the fixed risk-free rate yield, then the
option price considering the payoff function g(S1,S2) = max[max(S1(T ),S2(T ))−K,0] is

v(t,S1,S2) = e−r(T−t)EQ[max[max(S1(T ),S2(T ))−K,0]|Ft ] (3.1)

= e−r(T−t)
∫

∞

0

∫
∞

0
max[max(S1(T ),S2(T ))−K,0] fQS1,S2

(x1,x2)dx1dx2, (3.2)

which fQS1,S2
is the the joint density function of the two measures under neutral risk probability

Q, which in this work will be modeled by copula functions, and Ft is a filtering containing all
information about the assets up to time t.

Thus, we will express the joint density function using the marginal densities fS1(x1) e
fS2(x2) by means of copula functions as follows

fQS1,S2
(x1,x2) = cQ(FQ

S1
(x1),F

Q
S2
(x2)) fQS1

(x1) fQS2
(x2),
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which cQ =
∂ 2CQ(x1,x2)

∂x1∂x2
, which CQ(.) is a copula function.

Copulas are useful tools in constructing joint distributions (SHARIFONNASABI et

al., 2018). That is, copula is a multidimensional distribution function in which the marginal
distributions are uniform in [0,1]. A bivariate copula is a function that satisfies C : I2 −→ I ∈
[0,1] that satisfies the following conditions

C(x1,0) =C(0,x1) = 0 and C(x1,1) =C(1,x1) = x1, x1 ∈ I,

and the 2-increasing condition

C(u2,v2)−C(u1,v2)−C(u2,v1)+C(u1,v1)≥ 0,

for all u1,u2,v1 and v2 ∈ [0,1] such u1 ≤ u2 and v1 ≤ v2.

One of the most famous theorems in copula theory is the Sklar theorem. According to
Sklar’s theorem (SKLAR, 1959), any bivariate cumulative distribution HS1,S2 can be represented
as a function of the marginal distributions FS1 and FS2 . Besides, if the marginal distributions are
continuous, the copula exists, is unique and is given by

HS1,S2(x1,x2) =C(FS1(x1),FS2(x2)),

which C(u,v) = P(U ≤ u,V ≤ v), U = FS1(x1) and V = FS2(x2).

In the case of continuous and differentiable marginal distributions, the joint density
function of the copula is given by

f (x1,x2) = fS1(x1) fS2(x2)c(FS1(x1),FS2(x2)),

which fS1(x1) and fS2(x2) are the density for the distribution function FS1(x1) and FS2(x2),
respectively, and

c(u,v) =
∂ 2C(u,v)

∂uv
,

is the density of copula. For further details about copulas, see Nelsen (2007) and Sanfins, Valle
et al. (2012). In this work we will use the Normal, t-Student, Gumbel, Frank and Joe copulas.
Details are given in an annex at the end of this paper.

Therefore, to construct a joint process of neutral risk for the bivariate distribution of the
option, the marginal processes are derived first. Duan (1995) defined an option pricing model
considering that the variance of the asset-object is not constant over time.



3.2. Conceptual Framework and Model Formulation 47

Definition 3.2.2. Let r a fixed risk-free interest rate and λ > 0. Under the Duan GARCH process

(DGARCH) the log returns, xt = log
(

St

St−1

)
= log(st)− log(st−1), for t = 1, ...,n., are given

by

xt = r+λ
√

ht +
1
2

ht +
√

htεt , εt ∼ N(0,1), (3.3)

ht = α0 +
q

∑
j=1

α jε
2
t− jht− j +

p

∑
j=1

β jht− j, (3.4)

which the parameters α0 > 0, α1 ≥ 0, β ≥ 0 and ∑
q
j=1 α j +∑

p
j=1 β j < 1, which the latter

condition guarantees that the process variance will not explode, i.e. to maintain the stationarity
of the process. The parameter λ can be interpreted as the risk premium.

To apply the DGARCH model in the option pricing process, Duan (1995) defined the
concept of locally risk-neutral valuation relationship (LRNVR), where it transforms the model
of equation 3.4 into a neutral risk measure Q. For more details on the transformation of the
real-world measure P to the neutral risk measure Q, see Duan (1995).

Definition 3.2.3. A measure Q satisfies the LRNVR if a measure Q is absolutely continuous in
respect to the measure P (real world). Under Q we have

EQ
[

St

St−1
|Ft

]
= er and VarQ(xt |Ft) =VarP(xt |Ft).

This definition shows that the conditional variance is the same for both measures so that
we can use the parameters of equation 3.4 under P. With this definition, Duan showed that under
local measurement of neutral risk Q, the previously defined DGARCH process becomes

xt = r− 1
2

ht +
√

htε
∗, ε

∗ ∼ N(0,1), (3.5)

ht = α0 +
q

∑
j=1

α j(ε
∗
t− j−λ

√
ht− j)

2 +
p

∑
j=1

β jht− j, (3.6)

and in this work, as in Duan (1995) and Zhang and Guegan (2008), the orders p = 1 and q =

1 will be used. The construction and derivation of the Duan model is based on the premise of
normality of the errors, but it is possible to consider other distributions, as in Fonseca et al.

(2012). These extensions are being studied in a different manuscript.

When the concept of locally risk-neutral valuation relationship is present, the futures
prices of the individual assets can be expressed by
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Si(T ) = Si(0)exp

[
rT −0.5

T

∑
t=1

hi,t +
T

∑
t=1

√
hi,tε

∗
i,t

]
,

which Si(0) is the last price of the period under analysis for each i = 1,2.

To obtain the expected value of the continuous function given by equation 3.1 of a
bivariate vector (S1,S2) with cumulative distribution function H(x1,x2), we will use Monte Carlo
integration expressed by

E[g(S1,S2)] =
∫

∞

−∞

∫
∞

−∞

g(S1,S2)dH(x1,x2),

which can be approximated by following the algorithm below:

1. Generate n observations of bivariate random vector (S1,S2);

2. For each observation i, calculate gi = g(x1i,x2i), for i = 1,2, ...,n;

3. E[g(S1,S2)]≈
1
n

∑
n
i=1 gi.

To generate n samples of the specific copula we will use the algorithms proposed by
Schmidt (2007) and Nelsen (2007). Therefore, under the probability measure of neutral risk Q,
the fair price of the option with payoff function g(.) at the maturity time T is given by

v(t,S1,S2) =
e−r(T−t)

N

N

∑
i=1

g(S1,i(T ),S2,i(T )). (3.7)

In order to compare the consistency of the results obtained by the duan model and copulas
approach, we will examine the prices generated by applying the closed formula of Stulz (1982),
where it is a derivation of the Black and Scholes model for the bivariate case, where the author
considers that the active objects follow a geometric Brownian motion, as in Black and Scholes
(1973) and Merton (1973).

3.2.3 Second Approach: Stulz Closed-Form Solution

The closed formula proposed by Stulz (1982) has two significant limitations, being that
the volatility of the asset-object is considered constant throughout the time of maturity and the
joint distribution is a bivariate normal, which implies a linear correlation between the assets. The
fair price for the call-on-max option is set by

cmax(S1,S2,K,T ) = S1e−rT M(y1,d;ρ1)+S2e−rT M(y2,−d +σ
√

T ;ρ2)−

Ke−rT ∗ [1−M(−y1 +σ1
√

T ,−y2 +σ2
√

T ;ρ)],
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where

d =
ln(S1/S2)+(σ2/2)T

σ
√

T
, y1 =

ln(S1/K)+(σ2
1 /2)T

σ1
√

T
, y2 =

ln(S2/K)+(σ2
2 /2)T

σ2
√

T
,

σ =
√

σ2
1 +σ2

2 −2ρσ1σ2, ρ1 =
σ1−ρσ2

σ
and ρ2 =

σ2−ρσ1

σ
,

where Si is the price of stock i, K the strike price, T the time for the option to expire in
years, r the risk-free interest rate, σi the stock volatility of asset i, ρ the linear correlation between
the two assets, N(x) the cumulative function of the standard normal distribution and M(a,b;ρ)

the cumulative function of the bivariate normal distribution in (a,b) with linear correlation
coefficient ρ .

3.3 Bayesian Inference

Given a 2-dimensional copula, C(u1,u2), and two univariate distributions, FS1(x1) and
FS2(x2), the joint density function is given by

f (x1,x2) = c(FS1(x1),FS2(x2))
2

∏
i=1

fSi(xi),

where fSi represents the marginal density functions and c is the density funcion of the copula
which is given by

c(u1,u2) =
f (F−1

S1
(u1),F−1

S2
(u2))

∏
2
i=1 fSi(F

−1
Si

(ui))
.

The marginal distribution for each xit is given by uit = FSi(xit) = Fεi([xit − µit ]/
√

hit),
where Fεi(.) denotes the univariate distribution function of εit (AUSIN; LOPES, 2010; ROSSI;
EHLERS; ANDRADE, 2012). Therefore, the joint density of xt is then given by,

f (x1t ,x2t) = c(u1t ,u2t)
2

∏
i=1

fSi(xit) = c(u1t ,u2t)
2

∏
i=1

1√
hit

fεi

(
xit−µit√

hit

)
,

where fεi(.) is the marginal density function of each εit and µit is the mean of duan process.

Now, given a bivariate density function f (.) with joint distribution function F(.) and
corresponding marginal densities fSi(.) the copula density is obtained and then,

f (x1t ,x2t) =
f (F−1

S1
(u1t),F−1

S2
(u2t))

∏
2
i=1 fSi(F

−1
Si

(uit))

2

∏
i=1

1√
hit

fεi

(
xit−µit√

hit

)
.
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In this work we will use bayesian inference, which is an approach that describes the model
parameters by probability distributions. It offers a natural way to introduce parameter uncertainty
in the estimation of volatilities. We design here a two-step Bayesian algorithm, for more details
in Ausin and Lopes (2010). In the first step, we estimate each marginal series independentyly
considering a univariate Duan GARCH model under measure P given in equation 3.3, where
xit |hit ∼ N(r+λ

√
ht−1/2ht ,ht), for i=1,2. For each marginal series, we have four parameters

to estimate θ i = (α0,i,α1,i,βi,λi), for i = 1,2, and the log-likelihood is given by

l(θ i|xt) =−
n
2

[
log(2π)+

1
n

n

∑
t=1

[
log(ht)+

(xt− r−λ
√

ht +1/2ht)
2

ht

]]
.

Therefore, we define an MCMC algorithm for sample from the posteriori distribution
of θ i for each series with a Gibbs sampling scheme, where each parameter is updated using a
Metropolis-Hastings. For each element of the Monte Carlo sample of size N, we can obtain a set
of residuals,

α
(n)
0,i ,α

(n)
1,i ,β

(n)
i ,λ

(n)
i =⇒ ε

(n)
it =

xit−µ
(n)
i√

h(n)it

,

for t = 1,...,T, and for n = 1,...,N, where µt = r+λ
√

ht−1/2ht denote the mean process.

Thus, we can estimate the residual for each time t for each series as follows,

ε̂it =
1
N

N

∑
n=1

ε
(n)
it ,

for i=1,2.

To estimate the copula parameters, θ c, we plug in these estimations in the likelihood of
specific copula using

Ûit = F−1(F(ε̂it)),

and obtaining the following likelihood functions for θ c,

l(θ c|xt) =
n

∑
i=1

logcθ (Ûit),

where cθ is the density of the copula displayed in annex, θ is a vector of the parameters of the
copula and Ûi refers to the pseudo uniform sample.

Now, we construct another Markov Chain to sample from the posterior distribution of θc

using Metropolis-Hasting steps, as in Ausin and Lopes (2010) and Rossi, Ehlers and Andrade
(2012).
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3.3.1 Prior Distributions

In the Bayesian approach we need to specify prior distributions for the vector of param-
eters which define the marginal Duan GARCH model, i.e. α0,i,α1,i,βi and λi, i=1,2 plus the
parameters in the copula functions, i.e. ρi in the Normal, Gumbel, Frank and Joe Copulas and
ρi and νi in the t copula. Following Ausin and Lopes (2010), for each parameter we assume a
uniform prior over their respective domains imposing the stationary condition, i.e., α1,i +βi ≤ 1.
We shall adopt these prior choices in the simulation studies of Section 3.4.

3.3.2 Selection Criteria for Marginal and Joint Models

In order to verify if the distribution of the residues follows a standard normal distribu-
tion the Kolmogorov-Smirnov and Shapiro-Wilk tests will be used for a random sample. The
Kolmogorov-Smirnov (KS) test for a random sample is used to compare a dataset through its
empirical distribution function F(x) with a known cumulative function G(x). The null hypothesis
is that x∼ G, and the KS statistic is defined by DKS = max(|F(x)−G(x)|). The Shapiro-Wilk
(SW) test statistic is W = (∑n

i=1 aix(i))2/∑
n
i=1(xi− x̄)2, where x(i) is the i-th order statistic, x̄ is

the sample mean and the constants ai is given by (a1, ...,an) = mTV−1/(mTV−1V−1m)0.5, where
m = (m1, ...,mn)

T , and m1, ...,mn are the expected values of the order statistics of independent
and identically distributed random variables sampled from the standard normal distribution, and
V is the covariance matrix of those order statistics.

The Ljung-Box test (LB) will be performed to test whether residuals from marginal
distributions have independent increments. Considering the null hypothesis that the residuals

do not have autocorrelation, the Ljung-box test statistic is given by Q = N(N +2)∑
M
k=1

ρ2
k

N− k
,

which N is the sample size, M is the number of autocorrelated lags and ρk is the autocorrelation in
lag k. Moreover, under the null hypothesis, the test statistic follows asymptotically a distribution
χ2(M).

In order to make the choice of the best copula model in the bivariate distribution fitted,
the Expected Akaike Information Criteria (EAIC), Expected Bayesian Information Criterion
(EBIC) and Deviance Information Criteria (DIC) will be adopted. These are given by EAIC =

E[D(θ M)]+2npM, EBIC = E[D(θ M)]+ log(n)npM and DIC = 2E[D(θ M)]−D(E[θ M]) respec-
tively, where npM represents the number of parameters in model M, θ M is the set os parameters
in model M, n is the sample size and D(.) is the deviance function defined as minus twice the
log-likelihood function. For more details see, Spiegelhalter et al. (2002).

3.4 Simulation Study

In this chapter, we illustrate the proposed methodology with artificial time series. The
simulation study main concern is to assess the bias, mean squared error (MSE) and coverage
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probabilities of the posterior means for the parameters of marginals and copula obtained by
two-step Bayesian algorithm described previously.

First, we simulate the innovation distribution (ε1t and ε2t) through a copula with a fix
parameter ρ . For show the proposed simulation study will be used the Frank copula, where it
obtains good fitted to financial series in several works in the literature (KLUGMAN; PARSA,
1999; CHERUBINI; LUCIANO, 2002; HÜRLIMANN, 2004). Then we simulate bivariate time
series Duan GARCH processes with these copula-dependent innovations for each sample size (n
= 250, 500 and 1000) and fixed interest rate r at 7% per annum with the following univariate
models,

x1t = r− 1
2

h1t +
√

h1tε1t , ε1t ∼ N(0,1),

x2t = r− 1
2

h2t +
√

h2tε2t , ε2t ∼ N(0,1),

h1t = 0.012+0.17(ε1t−1−0.12
√

h1t−1)
2 +0.81h1t−1,

h2t = 0.01+0.15(ε2t−1−0.1
√

h2t−1)
2 +0.8h2t−1,

and the Frank copula parameter is fixed in ρ = 2.

The priors were chosen following Ausin and Lopes (2010), as described in the previous
subsection. For each setup, we generated 500 (replication) bivariate time series. The proposed
two-stage MCMC algorithm is run for 20,000 iterations with first 10,000 as burn-in iterations.
The code was made in R.

The Table 3 presents the true values, posterior mean, posterior median, highest posterior
density (HPD) interval 95%, size of HPD interval, bias, MSE and coverage probabilities for
each model parameter obtained from MCMC outputs. Observe that, the bias and MSEs decrease
tending to zero when the sample size increases. We also noticed that the posterior means are
very close to the posterior medians. Furthermore, the amplitude of the HPD interval tends to
decrease as the sample size increases. The coverages are closer to the nominal ones for increasing
sample sizes. Therefore, through this simulation study, the asymptotic properties of the model
are satisfactorily verified.

3.5 Application to Brazilian Stock Market Data

In this chapter our methodology is illustrated on real Brazilian stock market data, specif-
ically the stock price of Banco do Brasil (BBAS3) and Itau (ITUB4), where the prices of
the option will be compared with the results of the methodology proposed by Stulz (1982)
presented in chapter 2. The data is from 03/Jul/2014 to 22/Mar/2017, containing 754 daily
observations and here S0 is R$ is the stock price at 22/Jul/2017. Data was collected on the Google



3.5. Application to Brazilian Stock Market Data 53

Finance website. Table 4 presents the descriptive statistics of log-return data, where it is given by
xit = log(Sit/Sit−1) = log(Sit)− log(Sit−1) for t = 1, ...,n and i = 1,2.
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Table 3 – Simulation Results to n = 250, 500 and 1000.
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Table 4 – Summary descriptive statistics of the daily log returns.

Min. Median Mean Max. S.D. Skewness Kurtosis

Banco do Brasil -0.2378 0.0000 0.0008 0.1342 0.0322 -0.2236 7.6770
Itau -0.0909 0.0003 0.0007 0.1036 0.0215 0.2432 4.7957

As expected, the mean returns of the two stocks are close to zero, means are close to
medians, and the returns have kurtosis greater than 3. The skewness presents a different result
for the series, where the Banco do Brasil obtained left (negative) asymmetry and the Itau right
asymmetry (positive). Figure 6 shows the behavior of the original series and the log-returns,
respectively. Similar variability becomes apparent, as indicated by the standard deviation (S.D.)
in the descriptive statistics table. This result is expected, given that the two companies are from
the same sector industry.

Figure 6 – Original Time Series of Prices and Log-returns.

The scatterplot and histograms provide us a visual analysis of the log-returns dispersions
and are shown in Figure 7. Concerning the joint dispersion of the log-returns, we observed the
greatest agglomeration around the point of origin (0,0) and a smaller concentration, but not
insignificant, in the tails, which is corroborated by the histograms.
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Figure 7 – Histograms and Scatterplot of the log-returns.

Prior distributions for marginals and joint distributions were equal to ones specified in
the simulation study. We considered two chains of 100 000 iterations and the first 40 000 were
ignored to avoid the influence of first value, i.e., as burn-in. The resulting samples are checked
for absence of convergence using the test and the graphics analysis proposed by Geweke et al.

(1991).

Table 5 shows the values of the Geweke’s statistic for each parameter obtained for
marginals. Using statistical convergence diagnostics, we can not prove convergence, but these
provide evidence for no lack of convergence, since, if the samples are drawn from the stationary
distribution of the chain, the Geweke’s statistic has an asymptotically standard normal distribution.
Also, Figure 8 and Figure 9 show the traces of the posterior samples of each model parameter.
These indicate a good mixing performance of the Markov chain as it moves fluidly through all
possible states.

Table 5 – Values of the Geweke’s statistic for each parameter obtained.

α01 α11 β1 λ1 α02 α12 β2 λ2

Chain 1 -0.2564 1.0583 -0.4843 1.3618 -0.7262 -1.4010 1.2620 -0.6024
Chain 2 -1.3027 -0.3860 1.5931 0.7212 1.3068 0.8917 -1.1425 -0.9654
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Figure 8 – Densities and Convergence diagrams of the posterior samples of each parameter for the Banco
do Brasil.

Figure 9 – Densities and Convergence diagrams of the posterior samples of each parameter for the Itau.

Table 6 presents the posterior means together with their 95% HPD credibility intervals
for the marginals process and their standard desviation (s.d).

Table 6 – Parameter estimation results.

Parameter Posterior Mean S.D. HPD 95%

α01 0.00004 0.00001 [0.00001;0.00008]
α11 0.10940 0.02495 [0.06025;0.15737]
β1 0.85390 0.03123 [0.77720;0.91061]
λ1 0.05035 0.02944 [0.00018;0.10332]
α02 0.00001 0.00000 [0.00000;0.00003]
α12 0.06698 0.02022 [0.03591;0.10247]
β2 0.90230 0.03278 [0.84367;0.95212]
λ2 0.06529 0.03260 [0.00871;0.12427]

The DGARCH model assumes that the residues follow a standard normal distribution
and that they have independent increments. Table 7 shows the results of KS, Shapiro-Wilk and
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LB test for the significance level of 5%. As we can see, we do not reject the null hypothesis that
the residues follow a normal distribution and have independent increments.

Table 7 – Kolmogorov-Smirnov, Shapiro-Wilk and Ljung-Box test.

Test Banco do Brasil Itau

KS statistic (p-value) 0.0325 (p-value = 0.4553) 0.0428 (p-value = 0.2792)
Shapiro statistic (p-value) 0.9464 (p-value = 0.3193) 0.8639 (p-value = 0.1613)

LB statistic (p-value) 2.7249 (p-value = 0.1249) 0.0791 (p-value = 0.7502)

Figure 10 shows the normal quantile plot for the standardized residuals of the fitted
DGARCH(1,1) model for each series. In this particular case, the Gaussian assumption is not
perfect, but acceptable for this paper. Here, it is worth mentioning that the normality premise
was used due to the original construction of the Duan model (DUAN, 1995). Other asymmetric
distributions could and can be used, but it is necessary to obtain the model under measure Q,
which may complicate the calculations, for example, to have to use the conditional Esscher
transform or Radon-Nikodym derivative method (ROMBOUTS; STENTOFT, 2015; FENGLER;
MELNIKOV, 2018).

Figure 10 – QQ-plot for the standardized residuals - Banco do Brasil (left) and Itau (right).

Therefore, we conclude that there was a good fit of the DGARCH(1,1) model for both
series and, thus, we can follow in the joint modeling through the copulas theory. Table 8 presents
the posterior means (mean), s.d, 95% HPD credibility intervals and their corresponding EAIC,
EBIC and DIC criteria for copulas fitted.
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Table 8 – Copulas Fitted.

Copula Mean S.D. HPD 95% EAIC EBIC DIC

Normal 0.7596 0.0123 [0.7354;0.7843] 16839.35 16838.51 16836.48
t-student

(ν)
0.7724

[4.9530]
0.0146

[0.5216]
[0.7435;0.7996]
[3.9518;5.9857] 16672.18 16676.8 16670.18

Gumbel 2.1183 0.0661 [2.0729;2.1387] 17928.41 17937.65 17926.3
Frank 7.2524 0.3146 [6.6251;7.8433] 16652.83 16657.45 16651.82

Joe 2.2792 0.0796 [2.0294;2.5283] 19743.26 19742.41 19740.39

Table 8 shows that the best copula according to the selection criteria was Frank, followed
by t-student, Normal, Gumbel and Joe copulas. The Geweke criterion for Frank’s copula obtained
the values of 0.2482 and 0.6438 for the first and second chain, respectively, showing that there is
no evidence of non-convergence. Figure 11 shows the density and convergence diagram of its
parameter.

Figure 11 – Density and Convergence diagram of the posterior samples of Frank Copula.

For the sake of space, we omit here the tables and figures with the same results considering
the marginal processes but changing the copula structure, which we obtained the same satisfactory
results presented for the Frank copula.

3.5.1 Fixed parameters used in Black and Scholes models

To make a comparison of the results of the methodology discussed in this work with
the classic Stulz model, we will define some necessary parameters presented in chapter 2. The
parameters, their interpretations, and their values are given below.

1. Interest Rate: An annualized rate expresses the annual interest rate takes into account the
effect of compound interest. That is, the average daily interest rate, annualized based on
252 traded days. In this wotk we used the value 7% per year was chosen in an attempt to
standardize the rate over the maturity period according to the SELIC rate presented by
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Central Bank of Brazil. However, other rates can be used as a proxy for market expectations,
such as the CDI curve.

2. Si: Stock price of asset i, i=1,2. And we observe S1 = R$33.05 and S2 = R$38.05.

3. T: Time of maturity. That is, 1/2 means half a year. We adopt one year.

4. σi: The annualized volatility of the stock i. Volatility is the annualized expression of the
average variability of the stock return. As the returns were calculated on a daily basis, to
obtain volatility, the standard deviation obtained by multiplying the squared root of the
annual term used, which in this work is 252 days, should be annualized. We calculate and
obtained σ1 = 43.44% and σ2 = 30.19% for the last year of each stock price.

5. ρ: The coefficient of linear correlation between the returns of the two assets in the last
year. We calculate ρ = 0.7374.

6. K: The strike price of the option. The chosen had as a criterion the use of ATM (moneyness)
defined below.

Moneyness is the difference between the strike price and the asset value and is classified
into three categories: in-the-money (ITM), at-the-money (ATM) and out-the-money (OTM). The
more out-the-money the option is, the less likely it is to exercise on the part of the holder and
consequently the more in-the-money, the more likely it is to exercise. Let S1 be the market price
of asset 1 and S2 the market price of asset 2, Table 9 shows which classification will be used
from now on.

Table 9 – Classification of Moneyness.

Classification Call Option Put Option

ITM Min(S1,S2) >Strike Max(S1,S2) <Strike
ATM Max(S1,S2) = Strike Max(S1,S2) = Strike
OTM Max(S1,S2) <Strike Min(S1,S2) >Strike

As we are interested in calculating a call option, we have that an option will be ATM
when striking (K) = R$38.05. This extrapolation of the concepts of moneyness to the bivariate
case aims to analyze the effect of its classification on the final prices of the options.

3.5.2 Comparison of Methodologies

The call and put of multivariate options are traded over the counter, that is, from individual
to individual. Moreover, for this reason, there is no series in which we can check their prices
for comparison of fit of models concerning their errors. However, the comparison of models
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with different assumptions is and can be performed, to efficiently price an option with realistic
characteristics.

In this paper we will perform the fitted of several models and compare them, mainly in
relation to the models from Stulz (1982), where the latter is the most widely used, widespread
and with more credibility in the literature and the market for call-on-max option, because it is a
derivation of the model of Black and Scholes (ZHANG; GUEGAN, 2008). Table 10 shows the
price of the options considering the call-on-max option defined in chapter 2 and the parameters
presented previously, considering all the copulas and the Stulz model. Moreover, 100,000 Monte
Carlo simulations were performed to obtain the fair price of the option in equation 3.7.

Table 10 – Option Pricing Call-on-max (R$) with K=R$38.05 and T = 1 year.

Model Option Price
Stulz Model R$ 5.755644

Normal Copula R$ 5.563650
t Copula R$ 5.593955

Gumbel Copula R$ 5.666805
Frank Copula R$ 5.600540
Joe Copula R$ 5.875227

Two strong arguments to give credibility to the results obtained by the copulas are: 1) the
marginals process and copulas obtained good joint fitted of the series, and 2) the dependencies
derived from these models take into account the non-linear dependence between the observations,
which is inherent in the universe of finance. Therefore, the difference obtained between these
models and Stulz model brings with it these two arguments that make modeling more realistic.

To analyze the effect of strike price, Table 11 shows the values of the call-on-max option
for all models varying strike from R$ 31.00 to R$ 42.00. We verified the same behavior in all
the models, that is when we increase the strike price the value of the option decreases. This
result was expected because, according to the logic of the options contract, if we expect to buy
an option for a higher price on the maturity date, the price of its premium tends to be lower
(CHIOU; TSAY, 2008). Figure 12 shows the same results in graphic form.
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Table 11 – Option Prices Call on Max (R$) varying Strike.

Strike Stulz Normal t Gumbel Frank Joe

31 9.77469 10.98429 11.02635 11.03995 11.01208 11.36508
32 9.10702 10.10753 10.14828 10.16287 10.13688 10.48244
33 8.47138 9.25741 9.29584 9.31168 9.28815 9.62346
34 7.86822 8.43997 8.47662 8.49324 8.47240 8.79502
35 7.29764 7.66072 7.69669 7.71314 7.69550 8.00356
36 6.75950 6.92642 6.96056 6.97811 6.96281 7.25351
37 6.25337 6.24172 6.27292 6.29216 6.27855 6.54970
38 5.77858 5.60880 5.63776 5.65781 5.64567 5.89643
39 5.33430 5.03038 5.05693 5.07829 5.06646 5.29689
40 4.91953 4.50697 4.53031 4.55341 4.54263 4.75068
41 4.53313 4.03815 4.05868 4.08241 4.07271 4.25778
42 4.17390 3.62216 3.63895 3.66288 3.65373 3.81750

Note that Joe copula obtained the highest values when we varied the variable strike (K).
The result is justified because this copula obtained the worst fitted according to the criteria of
selection of models used. Besides, the classical Stulz model also obtained discrepant results from
the others, a finding that can be based on the constant volatility over time of the option and the
modeling through the normal bivariate distribution. The normal, t-student, Gumbel and Frank
copulas obtained results very close to each other, an expected result because these distributions
obtained very close results in EBIC, EAIC and DIC metrics.

Figure 12 – Option Prices Call on Max (R$) varying Strike.

It should be noted that at the beginning of the graph, when the strike price is at R$ 31.00,
there is the most significant difference between the models and that, with the increasing strike,
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this difference becomes smaller. The finds of Hull and White (1987), Johnson and Shanno (1987)
and Kang and Brorsen (1993) corroborate this result, where the authors empirically demonstrated
that, in the in-the-money options, the Black and Scholes (BS) model (Stulz model is derived
from BS Model) underestimates the options. This result highlights the importance of the joint
distribution to capture the dependency structure in the pricing process.

To analyze the impact of the dependency parameter on the final price of the option we
adopted the following criterion. The choice of copula for this analysis was based on the good fitted
shown in Table 8 and on the selection of a copula that presents negative and positive dependence.
So, the analysis of this subsection is based on the t-student copula with 4.9530 degrees of
freedom. Besides, authors such as Zhang and Guegan (2008) and Lopes and Pessanha (2018)
have found empirical results that t-student copula has a good fit and functional characteristics in
the joint modeling of stock returns.

Figure 13 emphasized that when the dependence is negative, the values are higher than
with positive dependence. This result corroborates with those found by Chiou and Tsay (2008)
for the call-on-max option using the American and Taiwanese indices. An intuitive interpretation
is that the values of this option tend to be smaller when the underlying assets move in the same
direction as when in opposite directions.

Figure 13 – Option Prices Call on Max (R$) vs. Correlation.

Furthermore, this figure represents the importance of copula selection to represent the
joint structure and especially the importance of a good inferential approach, where a high
discrepancy between the values is observed, varying the correlation coefficient of the t-student
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copula, which is between -1 and 1.

3.6 Final Remarks
In this paper, we proposed to accommodate the heteroskedasticity of the assets-objects

through the marginal model Duan GARCH and to capture the structure of dependency between
them through copulas functions. To compare and analyze the method proposed in this work with
Stulz’s already consolidated model, we price the call-on-max option for two Brazilian companies
stock prices.

As a result, there was evidence that the DGARCH(1,1) model fitted well to the data of
the Banco do Brasil and Itau stocks prices, as we did not reject the normality of residues using
the KS and SW tests and its increments were not autocorrelated through the Ljung-box test.
These results are prerequisites for transforming the data into uniform distribution to adjust the
copula functions.

Besides, we verified the good fit of the copula functions, especially Frank and t-student,
and these two copulas obtained the values closest to each other. Another result shown in this
paper, which corroborates with the options literature, is the effect of a strike at the fair price.
Besides, we illustrate the impact of choosing the dependency structure on the final options prices.
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CHAPTER

4
GARCH-IN-MEAN MODELS WITH

ASYMMETRIC VARIANCE PROCESSES FOR
BIVARIATE EUROPEAN OPTION

EVALUATION

4.1 Introduction

Multivariate options are excellent tools to manage a portfolio’s risk. The first works that
had as objective the pricing of options in the univariate case were Black and Scholes (1973) and
Merton (1973). Through these works, other authors have used the same theory, i.e., asset-objects
follow a Brownian geometric motion and have proposed bi and multivariate models, such as
Stulz (1982), Margrabe (1978), Johnson and Shanno (1987), Nelson (1991) and Shimko (1994).
However, models derived from Brownian geometric motion methods have the assumptions that
the volatilities of the assets are constant over time.

To carry out the pricing with more realistic assumptions, researchers have developed
other models. For instance, we use the generalized autoregressive conditional heteroskedasticity
(GARCH) family of models, because of its ability to incorporate the stylized facts about asset
return dynamics. This kind of modeling is popular in economics and finance (ALMEIDA;
HOTTA, 2014). Furthermore, with Black Scholes (BS) models assumptions, any contingent
claim can be perfectly replicated by its underlying asset and a riskless bond, so the price of a
contingent claim is merely the cost of the replicating portfolio. However, using GARCH-type
models, it is generally not possible to construct a perfect replicating portfolio, as the volatility of
asset returns is permitted to vary over time. It is necessary to define a risk-neutral measure to use
the GARCH-type models to consider a general market equilibrium (LIU; LI; NG, 2015).

The model of Duan (1995) derives a measure of risk-neutral through the standard GARCH
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model, which the author shows the potential of it concerning the Black and Scholes approach.
However, one of the main limitations of the standard GARCH model is the inability to incorporate
the effect of asymmetry caused by unplanned returns (NELSON, 1991). Introduced by Black
(1976), this effect implies that volatility tends to grow more when there is an unanticipated
drop in returns (i.e. "bad news") than when there is an unanticipated increase of the same
magnitude in returns (i.e. "good news"). This effect, also known as a leverage effect, has been
included in the GARCH-type models, such as the exponential GARCH (EGARCH), the non-
linear asymmetric GARCH (NGARCH) and the Glosten, Jagannathan, and Runkle GARCH
(GJR-GARCH) models. It can be used to price options by deriving their risk-neutral measure.

Furthermore, to understand the price behavior of a multivariate option, it is necessary
to use tools that accommodate the co-movements between its underlying processes. A primary
tool that is widely used by the methods derived from the traditional Black and Scholes model is
the multivariate normal distribution modeling. However, the use of such an approach implies
in linear associations as a measure of dependence between the assets. However, empirical
evidence presents that a real association between financial series is much more complex (LOPES;
PESSANHA, 2018).

Therefore, this paper aims to price bivariate options by overcoming two of the above
constraints of the classical approach, where asset-objects are modeled marginally by deriving
their risk-neutral considering the GARCH, EGARCH, NGARCH and GJR-GARCH models,
with copula functions modeling the joint distribution models, with the objective of capturing
linear, non-linear and tails dependence. The entire methodology described here may be extended
to any multivariate case.

An innovative feature of the present work is the comparison among methodologies,
where we consider marginal processes that capture the effect of asymmetry, usually present in
financial series. A second point is the performance of a simulation study of the pricing models
with the purpose of verifying the good fit of the models used in the literature. It is highlighted as
a third point the comparison of the methodology exposed to the standard method, extended from
the Black & Scholes model to the bivariate case. Finally, the implementation of such methods in
the Brazilian stock market, which is characterized as a volatile and unstable market concerning
developed markets. Then, compared with the previous papers, the approach in the present paper
makes the dynamic pricing more reasonable and tractable.

The paper organization follows. Section 4.2 presents the conceptual framework and
the models. Section 4.3 shows the bivariate model methodology and the inference procedures.
Section 4.4 presents the results of the proposed method under an artificial and a real data set.
Finally, Section 4.5 ends the paper with concluding remarks.
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4.2 Conceptual Framework and Models Specification

4.2.1 Option Pricing

A European option call on the maximum of two risky assets (call-on-max) is defined
based on the maximum price between two assets. The payoff function of this option is given by

g(S(T )) = max[max(S1(T ),S2(T ))−K,0],

where Si is the price of the i− th asset (i = 1,2) at the maturity date T and K is the strike price or
exercise price.

To introduce heteroscedasticity, we use the fundamental theorem of asset pricing (DEL-
BAEN; SCHACHERMAYER, 1994). This theorem states that once the stock prices S1(T ) and
S2(T ) is free from arbitrage and present in a complete market (HULL, 1991), there is a measure
of probability Q such that the discounted price of the payoff function, e−r(T−t)g(S1(T ),S2(T )),
is a martingale under Q and Q is equivalent to the real world probability measure P. Therefore,
we define the following definition to perform the pricing.

Thus, we express the joint density function using the marginal densities fS1(x1) e fS2(x2)

by means of copula functions as follows

fQS1,S2
= cQ(FQ

S1
,FQ

S2
) fQS1

(x1) fQS2
(x2),

which cQ =
∂ 2CQ(x1,x2)

∂x1∂x2
, which CQ(.) is a copula function.

Copulas are useful tools for constructing joint distributions (SHARIFONNASABI et

al., 2018). That is, copula is a multidimensional distribution function in which the marginal
distributions are uniform in [0,1]. A bivariate copula is a function C : I2 −→ I ∈ [0,1] that satisfies
the following conditions: C(x1,0) =C(0,x1) = 0 and C(x1,1) =C(1,x1) = x1, x1 ∈ I and
the 2-increasing condition C(u2,v2)−C(u1,v2)−C(u2,v1)+C(u1,v1)≥ 0, for all u1,u2,v1 and
v2 ∈ [0,1] such u1 ≤ u2 and v1 ≤ v2.

One of the most famous theorems in copula theory is the Sklar theorem. According to
Sklar’s theorem (SKLAR, 1959), any bivariate cumulative distribution HS1,S2 can be represented
as a function of the marginal distributions FS1 and FS2 . Besides, whether the marginal distributions
are continuous, the copula exists, is unique and is given by

HS1,S2(x1,x2) =C(FS1(x1),FS2(x2)),

which C(u,v) = P(U ≤ u,V ≤ v), U = FS1(x1) and V = FS2(x2).

In the case of continuous and differentiable marginal distributions, the joint density
function of the copula is given by

f (x1,x2) = fS1(x1) fS2(x2)c(FS1(x1),FS2(x2)),
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which fS1(x1) and fS2(x2) are the density for the distribution function FS1(x1) and FS2(x2),
respectively, and

c(u,v) =
∂ 2C(u,v)

∂uv
,

is the density of copula. For further details about copulas, see Nelsen (2007) and Sanfins, Valle
et al. (2012). In this work, we consider the Normal, t-Student, Gumbel, Frank and Joe copulas.
Therefore, to construct a joint process of risk-neutral for the bivariate distribution of the option,
the marginal processes are derived first.

4.2.2 GARCH-in-mean Specification under P

Instead of deriving the bivariate risk-neutral distribution directly, each marginal process
is proposed to transform separately. Duan (1995) defined an option pricing model considering
that the variance of the asset-object is not constant over time. To implement non-constant
volatility over the maturity time of the option, we use in this work the generalized autoregressive
conditional heteroskedastic (GARCH) models. Bollerslev (1986) introduced the GARCH model
by modifying the ARCH model presented by Engle (1982). The use of GARCH models in pricing
leads to the correction of some biases in the model of Black and Scholes (1973), including return
skewness and leptokurtic behavior.

On the other hand, GARCH-in-mean refers to the inclusion of an extra term mt in the
conditional mean of the model introduced by Bollerslev (1986). An intuitive idea to use these
models in derivative pricing is that conditional variance is not constant over time and hence the
conditional mean of market returns is a linear function of conditional variance. Another definite
reason to work with the GARCH-in-mean models is that these models explain the presence of
conditional left skewness observed in stock returns.

The general GARCH-M(p,q) model for the return yt = log(St/St−1), where St is the
specific stock price at time t, is defined as

yt = mt +
√

htεt and ht = α0 +
p

∑
i=1

αiht−iφ(εt−i)+
q

∑
i=1

βiht−i. (4.1)

where εt is a sequence of independent and identically distributed (i.i.d) random variables with
normal distribution N(0,1); the conditional mean return mt is assumed to be an Ft-predictable
process. In many studies, mt is assumed to be a function of the conditional variance ht of the
return and a risk premium quantifier at time t; the function φ(.) describes the impact of random
shock of return εt on the conditional variance ht and α0 > 0,αi and βi ≥ 0.

The conditional mean and variance of yt are mt = E[yt |Ft−1] and ht =Var[yt |Ft−1]. The
effect of past innovations εt−1 under the conditional variance ht have different impacts depending
on the function φ(εt−1), and consequently we have different extensions of the GARCH model.
For example, considering p = q = 1, when φ(εt−1) = ε2

t−1, the sign of εt−1 there is no effect over
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ht , and we have the traditional GARCH proposed by Bollerslev (1986). Thus, the innovations
have a symmetric effect on the conditional variance, expressed by

ht = α0 +α1ht−1ε
2
t−1 +β1ht−1. (4.2)

Following Liu, Li and Ng (2015), Duan (1995) and Chiou and Tsay (2008), mt =

r+λ
√

ht−kεt (
√

ht), which kεt (
√

ht) is the cumulate generating function of the innovation εt e λ

is the premium risk parameter. When εt follows a normal distribution, we have kεt (
√

ht) =
1
2

ht .

Because standard GARCH models given by equation 4.2 respond in the same way to
positive and adverse events, such models cannot correctly capture the leverage effect. Other
forms of the GARCH model, such as EGARCH, NGARCH, and GJR-GARCH, include the
asymmetry effect, can thus be used in option pricing and are used in the present work. Nelson
(1991) proposed the exponential GARCH (EGARCH) model. The author assumes that the
dynamic of the logarithm of the conditional variance of EGARCH(1,1) is given by

lnht = α0 +α1(|εt−1|+ γ1εt−1)+β1ln(ht−1), (4.3)

where α0, α1, β1 and γ1 are constant parameters and ε forms a sequence of independent standard
normal random variables representing random shocks. The EGARCH model does not require
such parameter restrictions since the conditional variance is expressed as the exponential of a
function. Including the random shock term in absolute value and with a parameter γ1, the author
made volatility a function of both magnitude and sign of the shock.

Engle (1982) introduced the non-linear asymmetric GARCH (NGARCH), which takes
into account the leverage effect. In their model, the dynamic of the conditional variance of
NGARCH(1,1) is given by

ht = α0 +α1ht−1(εt−1− γ1)
2 +β1ht−1, (4.4)

where α0 > 0, α1 ≥ 0, β1 ≥ 0 and γ1 is a non-negative parameter that captures the negative
correlation between return and volatility innovations. Since the parameter α1 is typically non-
negative, a positive γ1 means that negative random shocks increase volatility more than positive
random shockes of similar magnitude. Hence, the NGARCH allows for the levarage through its
paramater γ1.

Another model that takes into account the asymmetry effect of news on volatility is the
GJR-GARCH introduced by Glosten, Jagannathan and Runkle (1993). According to this model,
the conditional variance dynamic of GJR-GARCH(1,1) is given by

ht = α0 +α1ht−1ε
2
t−1 +β1ht−1 + γ1ht−1max(0,−εt−1)

2, (4.5)

where α0 > 0, α1 ≥ 0, β1 ≥ 0 and γ1 ≥ 0 are constant parameters. This model allows for the
leverage effect by adding the extra term γ1ht−1max(0,−εt−1)

2 when εt is negative since γ1 is
typically non-negative.
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All the models presented above are in the physical measure (P measure). Now, we discuss
their representations in the risk-neutral measure (Q measure), a prerequisite for pricing options
under heteroscedasticity.

4.2.3 Risk-neutral with GARCH-in-mean process

The concept of risk-neutral valuation relationship (RNVR) has a fundamental role in the
process of pricing options. This principle has as the base an asset, which is priced according to
the discount of the expected value of a payoff function under a martingale measure, i.e., that the
economic agents are risk-neutral.

To apply this pricing methodology, we assume that a measure of martingale Q exists in
a discrete economy time, with interest rate and a probability space (Ω,F,Ft ,P), where P is a
measure of physical probability and Ft is a filtering at time t.

Definition 4.2.2 (Duan (1995)). The measure of probability Q is equivalent to measure P if:

1. Q≈ P, i.e., for all event X , Q(X) = 0 and P(X) = 0.

2. EQ[St |Ft−1] = St−1, i.e., the discounted price process St is a martingale under Q.

Brennan and Schwartz (1979) represents a starting point by providing conditions which
ensure the existence of the risk-neutral measure. Duan (1995) proposes an extension of RNVR,
referred to as Locally Risk-Neutral Valuation Relationship (LRNVR) by assuming a conditional
Gaussian distribution for the log-returns with unchanged volatility after the change of measure.

Definition 4.2.3 (Duan (1995)). A measure Q satisfies the local risk-neutral valuation relation-
ship (LRNVR) if:

1. yt |Ft−1 is normally distributes under measure Q.

2. EQ[St/St−1|Ft−1] = er.

3. VarQ[log(St/St−1)|Ft−1] =VarP[log(St/St−1)|Ft−1].

In the previous definition, the conditional variance under the two measures is required
to be equal. This requirement is necessary to estimate the conditional variance under P and
use the framework to obtain the option pricing under Q. This property and the fact of the risk-
free rate can replace the conditional mean, yield a well-specified model that does not locally
depend on preferences. Duan (1995) proved this latter fact. Here we reduce all preference
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consideration to the unit risk premium λ . Since Q is absolutely continuous for P, the almost
certain relationship under P also holds true under Q. Duan (1995) and Duan et al. (2006) shows
that under the risk-neutral measure Q given by LRNVR, the asset return dynamic becomes

yt = r− 1
2

ht +
√

ht ε̃t , ε̃t ∼ N(0,1) and

GARCH(1,1): ht = α0 +α1ht−1(ε̃t−1−λ1)
2 +β1ht−1.

EGARCH(1,1): ht = α0 +α1[|ε̃t−1−λ1|+ γ1(ε̃t−1−λ1)]+β1log(ht−1).

NGARCH(1,1): ht = α0 +α1ht−1(ε̃t−1− γ1−λ1)
2 +β1ht−1.

GJR-GARCH(1,1): ht = α0 +ht−1[β1 +α1(ε̃t−1−λ1)
2 + γ1max(0,−ε̃t−1 +λ1)

2].

Under LRNVR, the form of mt just affects the volatility dynamics while the risk-

neutralized conditional mean return remains the same, i.e., r− 1
2

ht . Now, we have all the
variance specification in the risk-neutral measure. According to the equations above, the final
asset price is derived from the following corollary.

Corollary 1. When the locally risk-neutral valuation relationship holds, the terminal
price for the i-th (i=1,2) asset can be expressed as

Si,T = Si,texp[(T − t)r− 1
2

T

∑
s=t+1

hi,s +
T

∑
s=t+1

√
hi,sε̃i,s].

Therefore, under the locally risk-neutral probability measure Q, the option with exercise
price K at maturity T has the value

v(t,S1,S2) = e−r(T−t)EQ[max[max(S1(T ),S2(T ))−K,0]].

Due to the complexity of the GARCH process, analytical solution for the GARCH-
in-mean Copula option-pricing model, in general, is not available. Therefore, we work with
numerical methods to price the option described in the next section.

4.3 Methodology and Inference

In this chapter, we present the procedure to obtain the price of a bivariate option using
the asymmetric variance process by GARCH-in-mean under risk-neutral, copulas theory and
Monte Carlo simulations. Chiou and Tsay (2008) and Zhang and Guegan (2008) have inspired
this approach.

Given y1 and y2, two vectors containing the log-returns for the two stocks, we consider
the following steps,
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1. For each yi (i = 1,2), use quasi-maximum likelihood described in the next subsection to
estimates the parameters α0, α1, β1 and λ in equation 4.2 and α0, α1, β1, γ and λ for each
marginals given in equation (4.3), (4.4) and (4.5). Thus, the problem is to maximize with
respect to the parameters.

l(θ ,ht) =−
n
2

[
log(2π)+

1
n

n

∑
t=1

[
log(ht)+

(yit−mit)
2

ht

]]
,

which mit is the mean of GARCH-in-mean given by r+λ
√

ht−1/2ht , which r is the fixed
risk-free rate yield and ht corresponds to each variance specification proposed in section
2.2.

2. Use the estimated parameters to calculate ht for each specification and εt in equation (4.1)
with mt = r+λ

√
ht−1/2ht for each stock.

3. Therefore, the proposed technique is that the objective copula and the risk-neutral copula
are assumed to be the same. To fit the copulas, we transform the data into uniformly
distributed random variables. Thus we transform the εi (i = 1,2), obtained in Step 2 for
each stock into uniformly distributed variables, by ui = Φ(εi), where Φ(.) is the standard
normal cumulative distribution function.

4. Fit a copula to pairs [u1,u2] using maximum likelihood, i.e., estimate the copula parameters
θc

θc = argmaxθc

n

∑
t=1

log[c((u1,t ,u2,t);θc)],

where θc are the parameters for the specific copula function C and the c is the density
function for the given copula in annex.

5. Now, using the Monte Carlo simulation, we obtain the option price. In the first step
generate a sample {u∗1,t ,u∗2,t}T

t=1 from a uniform marginal distribution from one specific
copula using the algorithm proposed by Nelsen (2007). Here T is the time to maturity for
the option.

6. For each time step, transform the generated margins to standard normal margins, in the
risk-neutral measure, by ε̃i,t = Φ−1(u∗i,t), for i = 1,2.

7. Working with ε̃i,t calculate the conditional variances under risk-neutral and the parameters
estimated in step 1. The two future stock prices at time T are

Si,T = Si,texp[(T − t)r− 1
2

T

∑
s=t+1

hi,s +
T

∑
s=t+1

√
hi,sε̃i,s].

8. Now, repeat Steps 5 to 7 for N runs. Thus we obtain the Monte Carlo option price as

v(t,S1,S2) =
e−r(T−t)

N

N

∑
i=1

max[max(S1,i(T ),S2,i(T ))−K,0].
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4.3.1 Quasi-Maximum Likelihood Estimation

The assumption of conditional normality is not always appropriate in financial data.
However, Weiss (1986) and Bollerslev and Wooldridge (1992) shows that even when normality
is inappropriately assumed, maximizing the normalized log-likelihood results in quasi-maximum
likelihood estimates (QMLEs) that are consistent and asymptotically normally distributed.
Besides, the authors claim that the conditional mean and variance functions of the GARCH
models are correctly specified.

In particular, a robust covariance matrix conditional non-normality for the parameter
estimates is consistently estimated by A(θ̂)−1B(θ̂)A(θ̂)−1, where A(θ̂) and B(θ̂) are the Hes-
sian Matrix and the outer product of the gradients, respectively, calculated for θ . The coefficient
standard errors, computed from the square roots of the diagonal elements, are sometimes called
Bollerslev-Wooldridge standard errors. For more details, see Bollerslev and Wooldridge (1992).

4.3.2 Model Selection

We notice that for each time series we have four specification for variance processes, i.e.,
GARCH(1,1), EGARCH(1,1), NGARCH(1,1) and GJR-GARCH(1,1). Choosing an adequate
model is the essence of data analysis, which ultimately returns with good forecasting results.

In this paper, for model selection, we use five different criteria. The first one is Akaike
Information Criterion (AIC) (AKAIKE, 1973), which is given by AIC =−2log(`)+2k, where
` is the maximized value of the likelihood function and k is the number of free parameters
in the model. The second one is the BIC developed by Schwarz et al. (1978), which is given
by BIC = −2log(`) + klog(n), where n is the number of observations. The third criteria is
the Hannan-Quinn proposed by Hannan and Quinn (1979). The criteria is given by HQ =

−2log(`)+ 2klog(log(n)). The fourth criteria is the Akaike Information Corrected Criterion
(AICc), developed by Hurvich and Tsai (1989). The AICc is −2log(`)+2kn/(n− k−1). The
fifth criteria is the CAIC (Consistent Akaike Information Criteria) given by−2log(`)+klog(n)+

1.

Following Genest, Rémillard and Beaudoin (2009), we use the goodness-of-fit test, which
is based on a comparison of the distance between the estimated and empirical copula by using
the Cramer Von Mises statistic method, to compare the copula models.

The goodness-of-fit test employed is defined bellow, tests the null hypothesis that data is
fitted by Cθn , a copula with vector of parameters θ ,

Sn =
∫
[0,1]d

Cn(u)2dCn(U),

which Cn(U)= 1/n∑
n
i=1 I(Ui1≤ u1;Ui2≤ u2) is known as the empirical copula; U j =(U1 j, ...,Ui j)

are the pseudo-observations; u = (u1,u2) ∈ [0,1]2; Cn =
√

n(Cn−Cθn) is the empirical process
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that assess the distance between the empirical copula and the estimation Cθn and n is the number
of observations.

We chose this procedure because it can deal with non-linearity, asymmetry, serial de-
pendence and also the well-known heavy-tails of financial assets (RIGHI; CERETTA et al.,
2011). Furthermore, we make the comparison of the adjusted copula with the empirical copula
by the diagonal method (SUNGUR; YANG, 1996). Besides, the AIC, AICc, CAIC, BIC and HQ
criteria are also used to support decision making in choosing the model.

4.4 Data Analysis
In this chapter, we illustrated the proposed methodology under two data sets. We used

the software R for implementing the entire methods exposed here. The codes are available from
the authors. The first one is artificial data, where we know the parameter values, and then we can
verify if the methodology is reliable. The second data set is the Brazilian stock market data.

4.4.1 Artificial Data

We consider here 1000 replications of two correlated time-series for each sample size
(n= 250, 500 and 1000) generated from same parameter structure with the Frank (θ = 8) and
marginals as follows:

GARCH(1,1):

h1,t = 0.02+0.15ht−1(ε̃t−1−0.12)2 +0.8ht−1,

h2,t = 0.03+0.2ht−1(ε̃t−1−0.08)2 +0.7ht−1,

EGARCH(1,1):

h1,t =−0.3057+0.1223[|ε̃t−1−0.12|+(−0.5057)(ε̃t−1−0.12)]+0.98ln(ht−1),

h2,t =−0.3057+0.1223[|ε̃t−1−0.12|+(−0.5057)(ε̃t−1−0.12)]+0.98ln(ht−1),

NGARCH(1,1):

h1,t = 0.012+0.15ht−1(ε̃t−1−0.5−0.12)2 +0.8ht−1,

h2,t = 0.03+0.2ht−1(ε̃t−1−0.2−0.08)2 +0.7ht−1,

GJR-GARCH(1,1):

h1,t = 0.00961+ht−1[0.93+0.024(ε̃t−1−0.065)2 +0.059max(0,−ε̃t−1 +0.065)2],

h2,t = 0.00961+ht−1[0.93+0.024(ε̃t−1−0.065)2 +0.059max(0,−ε̃t−1 +0.065)2].

For each configuration, we calculated the average of the quasi-maximum likelihood
estimates (QMLEs), as well as the robust standard deviation (S.D.) of the QMLEs, the size of
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confidence intervals 95% (C.I.), coverage probability (C.P.), bias and mean squared error (MSE)
of the QMLEs. Table 12, 13, 14 and 15 show the simulation results, for GARCH, NGARCH,
EGARCH, and GJR-GARCH, respectively.

Table 12 – Parameter estimation of both artificial time-series for each GARCH process.

Parameter α0,1 α1,1 β1 λ1 α0,2 α1,2 β2 λ2 θ

Real Value 0.02 0.15 0.8 0.12 0.03 0.2 0.7 0.08 8
n = 250 Mean 0.0355 0.1479 0.7511 0.1192 0.0429 0.2020 0.6442 0.0834 7.9349

S.D. 0.1695 0.4596 0.9783 0.1798 0.0337 0.0927 0.1983 0.0786 0.5777
Size Int. 0.1213 0.2297 0.5095 0.2345 0.1347 0.2784 0.6594 0.1919 2.4122

C.P. 0.9880 0.9490 0.9560 0.9760 0.9480 0.9289 0.9480 0.9750 0.9229
Bias -0.0155 0.0021 0.0489 0.0009 -0.0129 -0.0020 0.0558 -0.0034 0.0652
MSE 0.0002 0.0000 0.0024 0.0000 0.0002 0.0000 0.0031 0.0000 0.0042

n = 500 Mean 0.0255 0.1492 0.7830 0.1198 0.0347 0.1998 0.6806 0.0825 7.9836
S.D. 0.0126 0.0403 0.0615 0.0479 0.0156 0.0562 0.0917 0.0523 0.4092

Size Int. 0.0493 0.1462 0.2403 0.1838 0.0541 0.1992 0.3349 0.1572 1.6726
C.P. 0.9720 0.9500 0.9570 0.9470 0.9470 0.9269 0.9289 0.9720 0.9399
Bias -0.0055 0.0008 0.0170 0.0003 -0.0047 0.0002 0.0194 -0.0025 0.0164
MSE 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0004 0.0000 0.0003

n = 1000 Mean 0.0223 0.1500 0.7931 0.1181 0.0323 0.2004 0.6908 0.0780 8.0054
S.D. 0.0089 0.0314 0.0437 0.0403 0.0112 0.0413 0.0659 0.0401 0.2896

Size Int. 0.0282 0.0990 0.1442 0.1251 0.0360 0.1308 0.1885 0.1111 1.2808
C.P. 0.9600 0.9580 0.9570 0.9530 0.9439 0.9550 0.9550 0.9600 0.9469
Bias -0.0023 0.0000 0.0069 0.0019 -0.0023 -0.0004 0.0092 0.0020 -0.0054
MSE 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

We observe that the averages of the quasi-maximum likelihood estimates are close to the
true values as the sample size increases, as well as decreasing the standard deviations in all the
models. We also note low bias and MSEs as the sample size increases. Concerning the size of
the confidence interval, we noticed they are getting smaller as the sample size increases. Besides,
the empirical coverages are closer to the nominal ones for all four models. With this results, we
noticed that all the models have good asymptotic properties.
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Table 13 – Parameter estimation of both artificial time-series for each NGARCH process.

Parameter α0,1 α1,1 β1 λ1 γ1 α0,2 α1,2 β2 λ2 γ2 θ

Real Value 0.012 0.15 0.8 0.12 0.5 0.03 0.2 0.7 0.08 0.2 8
n = 250 Mean 0.0266 0.1431 0.7656 0.1162 0.5517 0.0416 0.1962 0.6503 0.0798 0.3461 7.9343

S.D. 0.1107 0.7069 0.7901 0.5111 6.3509 0.0444 0.1538 0.2345 0.1130 1.1610 0.5773
Size Int. 0.0923 0.2061 0.3251 0.2349 0.9699 0.1046 0.2832 0.5296 0.1851 0.9900 2.5200

C.P. 0.9860 0.9580 0.9620 0.9820 0.9730 0.9620 0.9429 0.9499 0.9870 0.9960 0.9289
Bias -0.0146 0.0069 0.0344 0.0038 -0.0517 -0.0116 0.0038 0.0497 0.0002 -0.0461 0.0657
MSE 0.0002 0.0000 0.0012 0.0000 0.0027 0.0001 0.0000 0.0025 0.0000 0.0021 0.0043

n = 500 Mean 0.0162 0.1435 0.7894 0.1178 0.5345 0.0348 0.1972 0.6796 0.0811 0.3250 7.9601
S.D. 0.0277 0.0744 0.1240 0.0964 0.4538 0.0149 0.0510 0.0778 0.0542 0.1790 0.4083

Size Int. 0.0296 0.1412 0.1665 0.1859 0.8008 0.0553 0.2005 0.2963 0.1601 0.9699 1.7088
C.P. 0.9860 0.9399 0.9520 0.9730 0.9620 0.9540 0.9299 0.9520 0.9740 0.9640 0.9269
Bias -0.0042 0.0065 0.0106 0.0022 -0.0345 -0.0048 0.0028 0.0204 -0.0011 -0.0250 0.0399
MSE 0.0000 0.0000 0.0001 0.0000 0.0012 0.0000 0.0000 0.0004 0.0000 0.0006 0.0016

n = 1000 Mean 0.0142 0.1479 0.7934 0.1174 0.5167 0.0323 0.1973 0.6921 0.0789 0.3135 7.9780
S.D. 0.0132 0.0425 0.0577 0.0535 0.1983 0.0121 0.0406 0.0625 0.0404 0.1285 0.2890

Size Int. 0.0167 0.0971 0.1066 0.1322 0.4957 0.0336 0.1274 0.1810 0.1291 0.6677 1.1894
C.P. 0.9520 0.9469 0.9600 0.9640 0.9590 0.9580 0.9479 0.9540 0.9640 0.9590 0.9479
Bias -0.0022 0.0021 0.0066 0.0026 -0.0167 -0.0023 0.0027 0.0079 0.0011 -0.0135 0.0220
MSE 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0001 0.0000 0.0002 0.0005

Table 14 – Parameter estimation of both artificial time-series for each EGARCH process.

Parameter α0,1 α1,1 β1 λ1 γ1 α0,2 α1,2 β2 λ2 γ2 θ

Real Value -0.3067 0.1223 0.98 0.12 -0.5057 -0.3067 0.1223 0.98 0.12 -0.5057 8
n = 250 Mean -0.2852 0.0876 0.9793 0.1204 -0.5080 -0.2874 0.0891 0.9793 0.1204 -0.5065 7.9388

S.D. 0.8405 1.1478 0.0244 0.2555 0.3996 0.6754 0.7820 0.0242 0.2362 0.2318 0.5781
Size Int. 0.3182 0.2010 0.0180 0.2353 0.1900 0.3250 0.2215 0.0176 0.2367 0.1876 2.5276

C.P. 0.9139 0.8759 0.8829 0.9570 0.9249 0.9149 0.8679 0.8749 0.9640 0.9269 0.9139
Bias -0.0205 0.0347 0.0007 -0.0004 0.0023 -0.0183 0.0332 0.0007 -0.0004 0.0008 0.0612
MSE 0.0004 0.0012 0.0000 0.0000 0.0000 0.0003 0.0011 0.0000 0.0000 0.0000 0.0037

n = 500 Mean -0.2960 0.1070 0.9798 0.1205 -0.5060 -0.2968 0.1082 0.9798 0.1198 -0.5067 7.9560
S.D. 0.0649 0.0374 0.0035 0.0515 0.0408 0.0607 0.0493 0.0026 0.0571 0.0437 0.4085

Size Int. 0.1790 0.1478 0.0081 0.1756 0.1239 0.1818 0.1592 0.0084 0.1707 0.1248 1.6859
C.P. 0.9069 0.9118 0.9009 0.9289 0.9139 0.9179 0.9278 0.9309 0.9379 0.9199 0.9339
Bias -0.0097 0.0153 0.0002 -0.0005 0.0003 -0.0089 0.0141 0.0002 0.0002 0.0010 0.0440
MSE 0.0001 0.0002 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000 0.0019

n = 1000 Mean -0.3033 0.1171 0.9799 0.1212 -0.5061 -0.3039 0.1176 0.9799 0.1210 -0.5054 7.9865
S.D. 0.0391 0.0226 0.0020 0.0362 0.0242 0.0456 0.0233 0.0026 0.0457 0.0448 0.2892

Size Int. 0.1116 0.0842 0.0047 0.1231 0.0733 0.1098 0.0838 0.0048 0.1286 0.0707 1.2940
C.P. 0.9459 0.9409 0.9591 0.9429 0.9599 0.9449 0.9689 0.9339 0.9419 0.9489 0.9579
Bias -0.0024 0.0052 0.0001 -0.0012 0.0004 -0.0018 0.0047 0.0001 -0.0010 -0.0003 0.0135
MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
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Table 15 – Parameter estimation of both artificial time-series for each GJR-GARCH process.

Parameter α0,1 α1,1 β1 λ1 γ1 α0,2 α1,2 β2 λ2 γ2 θ

Real Value 0.00961 0.024 0.93 0.065 0.059 0.00961 0.024 0.93 0.065 0.059 8
n = 250 Mean 0.0582 0.0306 0.8326 0.0741 0.0548 0.0524 0.0334 0.8346 0.0725 0.0563 7.9335

S.D. 3.1908 1.2611 7.8901 1.5276 1.5033 6.3504 7.0343 1.9827 6.7417 7.2567 0.5774
Size Int. 0.4059 0.0949 0.9637 0.1953 0.1697 0.3703 0.1123 0.9627 0.1965 0.1697 2.5486

C.P. 0.9970 0.9970 0.9880 0.9800 0.9990 0.9870 0.9990 0.9790 0.9840 0.9990 0.9199
Bias -0.0486 -0.0066 0.0974 -0.0091 0.0042 -0.0428 -0.0094 0.0954 -0.0075 0.0027 0.0665
MSE 0.0024 0.0000 0.0095 0.0001 0.0000 0.0018 0.0001 0.0091 0.0001 0.0000 0.0044

n = 500 Mean 0.0219 0.0260 0.9045 0.0672 0.0572 0.0224 0.0262 0.9047 0.0682 0.0563 7.9695
S.D. 0.2226 0.2865 0.7740 0.2871 0.2983 0.4872 0.4015 1.3715 0.4177 0.4554 0.4087

Size Int. 0.0753 0.0611 0.2013 0.1516 0.1141 0.0845 0.0634 0.2057 0.1496 0.1141 1.7545
C.P. 0.9790 0.9760 0.9610 0.9730 0.9680 0.9730 0.9670 0.9720 0.9790 0.9440 0.9239
Bias -0.0122 -0.0020 0.0255 -0.0022 0.0018 -0.0128 -0.0022 0.0253 -0.0032 0.0027 0.0305
MSE 0.0001 0.0000 0.0007 0.0000 0.0000 0.0002 0.0000 0.0006 0.0000 0.0000 0.0009

n = 1000 Mean 0.0134 0.0251 0.9225 0.0651 0.0564 0.0137 0.0252 0.9211 0.0661 0.0577 7.9674
S.D. 0.0160 0.0537 0.0640 0.0981 0.0590 0.0198 0.0521 0.0759 0.0901 0.0618 0.2888

Size Int. 0.0299 0.0466 0.0818 0.1209 0.0902 0.0325 0.0476 0.0988 0.1188 0.0875 1.2196
C.P. 0.9560 0.9590 0.9410 0.9570 0.9420 0.9510 0.9561 0.9440 0.9520 0.9492 0.9499
Bias -0.0037 -0.0011 0.0075 -0.0001 0.0026 -0.0041 -0.0012 0.0089 -0.0011 0.0013 0.0326
MSE 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0011

4.4.2 Brazilian Data

In principle, price data are not available, since the call-on-max option is typically traded
over-the-counter. For this reason, we cannot test the valuation models empirically. However,
comparing models with different assumptions can be implemented, as in Zhang and Guegan
(2008), Liu, Li and Ng (2015) and Chiou and Tsay (2008). In this chapter, we carry on the
illustration of the proposed methodology on a real data set concerning the two stock prices of
Brazilian companies.

We choose the companies Bradespar (BRAP4) and Vale S.A. (VALE3) with the aim of
investigating two companies that could have a high correlation. The Brazilian company Bradespar
admits the shareholdings that the bank Bradesco had in non-financial companies, among them:
VCB, Vale, Scopus, and Globo. Thus, Bradespar’s stocks price would be directly related to the
stocks of Vale S.A., where the company holds the latter’s stock control at 17.4 %. The analyzed
period is from 07/01/2015 to 07/17/2018, containing 753 observations.

Figure 14 shows the high positive association between the two series, evidencing the
requirement subject is financial options using these stocks, given its high correlation. Table 16
shows the similarity between the returns series, both concerning the minimum, mean, median,
maximum, standard deviation (S.D.) and kurtosis, but the VALE3 series has a slightly more
pronounced positive asymmetry than the BRAP4 series. As evidenced in section 4.2, asymmetry
is present in financial series, a feature that symmetric GARCH processes have no potential to
discriminate between positive and negative asymmetry.
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Figure 14 – Original Series and Returns.

Table 16 – Descriptive statistics of returns.

Serie Minimum Mean Median Maximum S.D. Kurtusis Skewness

BRAP4 -0.134 0.000 0.000 0.153 0.027 0.050 5.150
VALE3 -0.156 0.000 0.000 0.137 0.026 0.047 5.702

Before present the estimated coefficients of time series models, we focus on the analysis
of the best model according to the selection criteria. Given the flexibility of the use of models
based on copula functions, we select for each marginal the best model according to the selection
criteria defined in Section 3.2. According to Table 17, all criteria corroborate that the model
GARCH best fit the BRAP4 series, evidencing that there is no asymmetry present in this series,
while, the best model for the VALE3 series is the EGARCH (evidencing the asymmetry) - even
Table 16 evidencing the asymmetry of the series by the coefficient. This result is in agreement
with the statement in Table 16, where the VALE3 stock had an asymmetric coefficient more
pronounced than BRAP4.
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Table 17 – Selection Criteria for Marginals.

BRAP4 GARCH NGARCH EGARCH GJR-GARCH

AIC -3071.3128 -3069.3172 -3070.1057 -3069.3678
AICc -3071.2591 -3069.2367 -3070.0252 -3069.2872
CAIC -3048.8271 -3041.2102 -3041.9987 -3041.2607
BIC -3052.8271 -3046.2102 -3046.9987 -3046.2607
HQ -3064.1903 -3060.4142 -3061.2027 -3060.4647

VALE3 GARCH NGARCH EGARCH GJR-GARCH
AIC -3151.2693 -3150.0533 -3153.7289 -3151.7989
AICc -3151.2156 -3149.9728 -3153.6484 -3151.7183
CAIC -3123.6918 -3121.9463 -3128.7836 -3125.6219
BIC -3128.6918 -3126.9463 -3132.7836 -3130.6219
HQ -3144.1468 -3141.1503 -3144.8258 -3142.8958

Table 18 shows the coefficients estimated via QMLEs and their respective robust standard
errors. According to this result, we noticed that the best model for the BRAP4 series was the
GARCH model, where it does not have an asymmetry parameter. We view in this model the
high persistence, that is, α1+β1 very close to one, suggesting that the volatility can be persistent
(strong temporal dependence), which opens options of models to analyze series with this feature.
The best model for the VALE3 series was the EGARCH, where it presented a parameter of
positive asymmetry, that is, a positive shock decreases its volatility.

Table 18 – Estimated coefficients and corresponding robust standard errors for marginals.

BRAP4 GARCH NGARCH EGARCH GJR-GARCH

α̂0
6.9191e-06

(4.8306e-06)
6.8024e-06

(4.7823e-06)
-0.1399
(0.0455)

7.0316e-06
(4.9614e-06)

α̂1
0.0479

(0.0125)
0.0477

(0.0127)
0.1005

(0.0248)
0.0507

(0.0175)

β̂
0.9454

(0.0138)
0.9457

(0.0140)
0.9914

(0.0050)
0.9446

(0.0144)

λ̂
0.0568

(0.0358)
0.0560

(0.0365)
0.0560

(0.0359)
0.0576

(0.0364)

γ̂ -
0.0121

(0.1628)
-0.0618
(0.0235)

4.2924e-03
(0.0180)

VALE3 GARCH NGARCH EGARCH GJR-GARCH

α̂0
3.7157e-06

(2.9974e-06)
3.0711e-06

(2.9524e-06)
-0.1081
(0.0386)

2.5848e-06
(2.9020e-06)

α̂1
0.0434

(0.0116)
0.0428

(0.0111)
0.0969

(0.0221)
0.0555

(0.0152)

β̂
0.9519

(0.0121)
0.9522

(0.0117)
0.9957

(0.0004)
0.9554

(0.0113)

λ̂
0.0579

(0.0357)
0.0671

(0.0365)
0.0762

(0.0387)
0.0679

(0.0363)

γ̂ -
0.1771

(0.1854)
0.1433

(0.1438)
0.0278

(0.0171)
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We consider the Kolmogorov-Smirnov, Jarque-Bera, Shapiro-Wilk, and Anderson-
Darling tests to verify the assumption of normality of the residuals for the fitted models. Table 19
shows their p-values. All tests did not reject the null hypothesis at 5% that residuals follow a
standard normal distribution. Besides, to verify that the increments are independent, Table 19
also shows the result of the Ljung-Box test with lag = 1, where, for all fitted models we do not
reject the null hypothesis at 5 % that the residuals are independent.

Table 19 – Tests of Normality and Independent Increments for residuals.

BRAP4 GARCH NGARCH EGARCH GJR-GARCH

Kolmogorov-Smirnov 0.9315 0.9403 0.9514 0.9343
Jarque-Bera 0.1159 0.1142 0.2351 0.1225
Shapiro-Wilk 0.2571 0.2572 0.3802 0.2633

Anderson-Darling 0.6680 0.6725 0.6572 0.6652
Ljung-Box 0.4940 0.4938 0.4988 0.4944

VALE3 GARCH NGARCH EGARCH GJR-GARCH
Kolmogorov-Smirnov 0.8737 0.8752 0.8761 0.8733

Jarque-Bera 0.2059 0.1680 0.2548 0.1433
Shapiro-Wilk 0.1752 0.1895 0.2644 0.1718

Anderson-Darling 0.2288 0.2627 0.3426 0.2697
Ljung-Box 0.1927 0.2079 0.2145 0.2152

Figure 15 shows the QQ-plots for the two best models for the series, that is, on the left
panel is the GARCH for the BRAP4 series and on the right panel the EGARCH for the VALE3
series, corroborating with the tests in the Table 19, evidencing the non-rejection of the normality
of the residuals.

Figure 15 – QQ-plots of residuals - GARCH BRAP4 (left panel ) and EGARCH VALE3 (right panel).

Figure 16 illustrates the individual behavior of each set of residual fitted through the
histograms and the joint behavior through the scatterplot in the center of the figure. As expected,
the series has a highly positive association behavior, which is evidenced in the adjustment of the
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copulas given in Table 20, where the normal and t-student copulas obtained high and positive
values of their parameters (-1 ≤ θ ≤ 1).

Figure 16 – Scatterplot and Histograms of residuals - GARCH BRAP4 and EGARCH VALE3.

Table 20 – Estimated coefficients and corresponding standard errors (in parentheses) for copulas.

Normal t-student Gumbel Frank Joe

θ̂
0.9059

(0.0048)
0.9133

(0.0053)
3.4082

(0.1040)
14.0430
(0.4965)

4.0173
(0.1423)

The degree of freedom of the t-student copula and its respective
standard deviation were 7.63401 and 1.7263.

According to the selection criteria adopted, the best copula for this dataset was the
t-student copula, though the results found for the t-student copula are very similar to the one
observed for the Frank copula. The empirical copula and the copula adjusted by the diagonal
method, where the excellent fit of the two copulas is noted, corroborate this result.
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Table 21 – Selection model of Copulas.

Normal t-student Gumbel Frank Joe

AIC -1290.6171 -1334.1487 -1231.5615 -1310.8730 -970.63696
AICc -1290.6117 -1334.1327 -1231.5562 -1310.8676 -970.63162
CAIC -1285.9957 -1324.9059 -1226.9401 -1306.2516 -966.01556
BIC -1288.8365 -1330.5875 -1229.7809 -1309.0924 -968.85635
HQ -1284.9957 -1322.9059 -1225.9401 -1305.2516 -965.01556

The result of the Cramer Von Mises method was 0.0025, 0.0023, 0.0042, 0.0018 and
0.01122, for Normal, t-Student, Gumbel, Frank and Joe copula, respectively. The result shows
that Frank copula yields the smallest distance between fitted and empirical copula. We note
that there is a minimal difference between the Frank and t-Student copula. Therefore, these two
copulas are considered in this work as the best fittings.

Figure 17 – Comparing the empirical copula and the true copula on the diagonal.

Given the good fitting of the marginals obtained via time series models and the good joint
fitting via copulas, we now calculate and analyze the option prices considering the call-on-max
payoff function. To perform the comparison process, as a benchmark, we compare the results
through the methodology proposed with the classical method, which is a Black & Scholes
extension for the bivariate case Haug (2007), where this model considers the volatility constant
over time and the linear dependence structure from the bivariate normal distribution.
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The entire study was performed with 100 000 Monte Carlo simulations, 7 % a.a. interest
rate and maturity time of one year. According to Table 20, as expected, the same behavior is
observed for all models, i.e., as the strike variable increases it is likely that, in a call option, the
price of the option becomes cheaper. We note that the classical model obtained the lowest values
for all strike values. Geske and Roll (1984), Black (1975) and MacBeth and Merville (1980)
corroborate this result for the univariate case, where the authors showed that the models that
consider constant volatility over time underpricing the options, especially in-the-money (ITM)
options. That is, a call option’s strike price is below the market price in the univariate case. In
this work we define ITM options when the strike price is less than the minimum between the two
assets.

Moreover, in Table 22, we can see that the t-student and Frank copula models have the
closest results to each other. The similarity in the excellent fit of the data can explain this result.
We noticed the values obtained through normal copula obtained high results. The inability of the
normal copula to capture observations in the tails of the distribution, a recurring fact in finances,
can explain this result. The copula Joe obtained higher values mainly when the strike was smaller
than 40, approaching the model of the normal copula. The Gumbel copula was the one that
received the lowest values between the models.

Table 22 – Prices of a call-on-max option under various Strikes values (R$).

Strike Classic Normal t-Student Gumbel Frank Joe

20 31.1182 32.3619 32.2648 32.2532 32.2711 32.5083
22 29.2693 30.5241 30.4283 30.4148 30.4329 30.6440
24 27.4764 28.7327 28.6402 28.6228 28.6425 28.8293
26 25.7468 26.9951 26.9054 26.8845 26.9045 27.0694
28 24.0867 25.3171 25.2295 25.2061 25.2258 25.3714
30 22.5003 23.7025 23.6169 23.5918 23.6110 23.7401
32 20.9906 22.1572 22.0733 22.0457 22.0646 22.1787
34 19.5594 20.6831 20.6028 20.5704 20.5889 20.6899
36 18.2071 19.2840 19.2055 19.1678 19.1867 19.2758
38 16.9331 17.9601 17.8810 17.8399 17.8602 17.9371
40 15.7360 16.7112 16.6316 16.5866 16.6093 16.6745
42 14.6140 15.5377 15.4571 15.4103 15.4349 15.4901
44 13.5643 14.4379 14.3578 14.3081 14.3346 14.3826
46 12.5842 13.4087 13.3304 13.2795 13.3062 13.3498
48 11.6705 12.4495 12.3723 12.3199 12.3477 12.3877
50 10.8198 11.5571 11.4799 11.4270 11.4576 11.4945
52 10.0288 10.7290 10.6522 10.5987 10.6321 10.6678
54 9.2941 9.9621 9.8872 9.8339 9.8675 9.9020
56 8.6122 9.2533 9.1807 9.1278 9.1613 9.1933
58 7.9798 8.6001 8.5283 8.4762 8.5101 8.5392
60 7.3937 7.9981 7.9271 7.8762 7.9117 7.9372

Figure 18 shows the behavior of the option price (z-axis) varying the maturity from 1
to 12 months (y-axis, in days) and strike (R$ 40.00 to R$ 60.00). We note that the higher the
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maturity the values differ little between strike prices, which does not happen when the option
has a short maturity, where we indicate that setting at 50 maturity days there is a relatively
significant difference varying the price of the strike. For example, Table 23 presents the prices
for considering maturity = one month, six months and one year and strike = 20, 40 and 60.

Figure 18 – Price (R$) behavior of the call-on-max option ranging from Maturity to Strike.

Table 23 – Prices (R$) of a call-on-max option varying some Maturity time and Strike (R$).

Maturity\Strike R$ 20.00 R$ 40.00 R$ 60.00

One Month 30.9671 10.9067 0.5537
Six Months 30.9190 13.6608 4.1864
One Year 30.7311 15.6953 7.0992

Another fundamental aspect in the management of options risks is to know the levels of
dependence between stocks. Therefore, Figure 19 presents the price behavior of the call-on-max
option for the t-student copula by varying its degrees of dependence. This result corroborates
with those found by Chiou and Tsay (2008) for the call-on-max option using the American and
Taiwanese indices. An intuitive interpretation is: the values of this option tend to be smaller
when the underlying assets move in the same direction as when in opposite directions.
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Figure 19 – Behavior of the call-on-max option price by varying the copula parameter.

Besides, Figure 19 further shows that in-the-money options have the most substantial
differences between dependency levels than out-the-money options (i.e., when the strike is
higher than the maximum between the two assets). Therefore, it was empirically verified the
importance of a good joint fit of the stocks, and above all, the calculation of the correlation
between the assets. Moreover, by employing the copulas functions, it is possible to capture linear,
non-linear and caudal associations. Recalling, the traditional models derived from a Brownian
geometric movement consider bivariate normal to price call-on-max options for two assets, and
consequently, the linear correlation coefficient as the measure of association.

4.5 Concluding Remarks

In this paper, we propose an analysis and comparison among pricing models that consider
the volatility of underlying assets and in the presence of dependence between copula framework.
The model is an adequate methodology to realize a more realistic pricing option. To consider
the modeling of asymmetry present in financial series, we examined three models that are
extensions of the GARCH model under the neutral risk measure Q, a pre-requisite to price
options (NGARCH, EGARCH, and GJR-GARCH). Therefore, through the flexibility of the
copula functions, we chose which marginal processes fit best with each stock and thus proceeded
in the joint fitted.

Two databases illustrate the application of the methodology. The first one was an artificial
database with the objective of carrying out a simulation study and the second a database of two
Brazilian companies. The simulation study showed that all models presented good asymptotic
properties. Besides that, in the real time-series of two Brazilian stock companies, the model
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offered a proper fitting and the results obtained were confronted with the classic model, which is
an extension of the Black and Scholes model.
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CHAPTER

5
FINAL REMARKS

In this dissertation we investigated two approach to bivariate option pricing. Overall, the
contributions of the proposed methods in the present work are as follows: (1) using the best
copula makes the model more suitable; (2) the heteroscedastic model approach and the capture
of dependence via copulas bring more realistic support for the modeling of financial assets and
consequently more credibility; (3) a comparison of methodologies highlights the role of risk
management; (4) due to the good marginal and joint fitted, in addition to the values obtained in
relation to the classical consolidated model, there are arguments to believe that the differences
obtained between the best models, through the copulas and the extension of the conventional
method, are improvements in the calculation of the fair value; (5) the empirical relevance of such
alternatives is apparent given the evidence of non-joint-normality in financial emerging markets;
(6) it is possible to use the same tooling to obtain the fair price for various payoff functions, this
is not verified in the case of extensions of the Black and Scholes model, as presented in Haug
(2007), because for each option one formula is required; (7) it is an empirical study providing
evidence and corroborating the use of techniques that consider the modeling of non-normality
in financial markets, especially considering this approach in emerging markets; (8) lastly, there
was no previous study to this dissertation evidencing the simulation study approach in pricing
options.

In future work, we shall address the following issues:

• Adoption of other copula functions, such as power variance function (PVF) family
copulas;

• Consider recents and advanced marginals processes;

• Even with extensions to asymmetric models, we often have financial series with heavy
tails, which should derive a risk-neutral measure Q for these models, such as considering the
non-normality of the residuals;

• Propose a multivariate model to pricing option, with the mix of the past items;
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• The use of non-parametric copulas, copulas with dependency parameter varying in
time;

• Trivariate and/or multivariate case using Vine copulas;

• Comparison of different sectors stocks. In this work we use stocks with very similar
prices. With the goal of hedge management, it would be interesting to work with different sectors;

• The use of the predictive density to calculate the option price and so on.
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