
UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

AN INCLUSIVE END-USER DEVELOPMENT
FRAMEWORK FOR TAILORABLE GAMES

FRANCO EUSÉBIO GARCIA

SUPERVISOR:Vânia Paula de Almeida Neris

São Carlos, São Paulo, Brazil
March/2019

UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

AN INCLUSIVE END-USER DEVELOPMENT
FRAMEWORK FOR TAILORABLE GAMES

FRANCO EUSÉBIO GARCIA

Thesis presented to the Programa de
Pós-Graduação em Ciência da Com-
putação of the Universidade Fed-
eral de São Carlos, as part of the re-
quirements to obtain the title of Doc-
tor of Computer Science, Concentra-
tion Area: Methodologies and Tech-
niques of Computation.

São Carlos, São Paulo, Brazil
March/2019

This thesis is dedicated to you,
the reader.

Inclusion towards universal access is a collaborative effort.

Every one shall contribute.

There is no “us” us without me, you, him, her, them.

We need you in this endeavor.

Acknowledgements

The first acknowledgments are for my family, friends, and to you, who is reading
this text. Thank you for your time and wiliness. I hope you find it useful – and that you
can extend it with your own perspectives, knowledge, skills, abilities, and goals.

Then, without specific order, I would like to thank all friends, professors, profes-
sionals, authors, and participants who have helped me – directly or indirectly – over a
lifetime. This research would have been impossible without the help of the people who
kindly provided their times and efforts to participate in our studies. Likewise, it would
had been impossible without the authors who wrote books and papers, scientists and
researchers, software and hardware makers. Finally, from the people who created the
games I have played over my life – as well as accessible games to expand gaming to new
audiences.

I would like to thank the people from the university and the department for the
aid over the years. Professors, staff, workers, students.

In particular, Vânia,who has been supervisingme since 2011, aswell asmy friends
from Laboratório de Interação Flexível e Sustentável (LIFeS) – and all the undergraduate
students and professors who have supportedme over the years. In the doctorate, Roberta
and Gabriel allowed people to appreciate using our systems, thanks to their artistic
skills and great taste. Renata helped us with the interface for the first prototype of the
creation tool – of which resulted Lepi. Paula helped us in our collaborative activities.
Fernanda and Angélica provided their healthcare expertise. Babette helped us with her
education and accessibility expertise. Pedro who has just joined us to further develop
support systems. Finally, to Carmo, who has kindly accepted to review our definitions.

I also would like to thank all the undergraduates who helped me over the gradu-
ation years. Alessandra, Diogo, Eduardo, Flávia, Gabriel, João Pedro, Leandro, Lucas,
Marcos, Paulo, Pedro(s), Rafael, Renata, Roberta, Vinícius, and Vitor. As well as my
friends from LIFeS. Benedito, Everton, Isaque, Kamila, Letícia, Maíra, Maílson, Marcel,
Maria Carolina, Newton, Paula, Renata(s) Rogério, Tatiana, Vinícius, and Willian.

I would also like to thank all the participants who created and played games
using our framework once again. Although I cannot name you, this research would
had been impossible without you. In advance, I would also like to thank our future
participants.

Finally, I would like to thank the funding agency who supported my studies.
This study was financed in part by the Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

The world of games is so varied and complex that there are numerous ways of studying
it. Psychology, sociology, anecdotage, pedagogy, and mathematics so divide its domain
that the unity of the subject is no longer perceptible. Not only are such works as Homo

Ludens by Huizinga, Jeu de l’Enfant by Jean Chateau, and Theory of Games and
Economic Behavior by von Neumann and Morgenstern not aimed at the same readers,
but they don’t even seem to be discussing the same subject. One may finally ask to what

extent semantic problems cause different and nearly incompatible researches to be
viewed as at heart concerning the same specific activity. It has even been doubted that

there are any common characteristics on the basis of which play may be defined in
order to facilitate a cooperative approach to studying it.

— Caillois (2001)

Resumo
Seguindo o aumento de propósitos e aplicações de jogos digitais, a criação tem se po-
pularizado nos últimos anos. Tanto indústria quanto academia têm estudado e criado
ferramentas, métodos, e técnicas para que usuários finais desenvolvam seus próprios
jogos. Entretanto, públicos-alvo ainda são restritos (normalmente a jovens anglófonos
sem deficiências físicas, cognitivas, e emocionais). Para superar barreiras, faz-se necessá-
rio permitir que pessoas com diferentes habilidades e necessidades de interação possam
contribuir com o desenvolvimento. Esta tese apresenta um framework para o desenvol-
vimento de jogos ajustáveis por usuários finais, com o objetivo de promover criação
inclusiva de jogos inclusivos. O lema desta pesquisa é jogos por e para todos. A tese parte
da hipótese de que se usuários finais utilizassem ferramentas de criação adequadas às
suas necessidades de interação e seguissem um modelo de contribuições colaborativas
para melhorar iterativamente funcionalidades de acessibilidade a serem inseridas em
uma arquitetura de software capaz de modificar a interação humano-computador em
tempo de uso, então eles poderiam criar jogos que satisfizessem necessidades de intera-
ção heterogêneas de possíveis jogadores. Nesta tese, explorou-se pesquisa documental
(revisão sistemática para a identificação de abordagens existentes), criação e especifi-
cação (para sistemas, modelos, e arquiteturas de software necessárias), e pesquisa de
campo (para entendimento de necessidades de interação e avaliação do framework). O
framework compreende uma arquitetura formal de software para implementação de jogos
inclusivos, um modelo de colaboração para co-criação de inclusão, e uma plataforma
inclusiva para criação de jogos ajustáveis por usuários finais (Lepi). O framework foi
usado por um público não considerado pela Literatura (pessoas adultas – algumas das
quais com baixo letramento e que nunca tinham usado computadores – em acompa-
nhamento para reabilitação de abuso de álcool e drogas) por quatro meses. Resultados
mostram que os participantes conseguiram criar jogos que satisfizessem tanto às suas
próprias necessidades de interação, quanto às de pessoas com necessidades diferentes
(confirmando, portanto, a hipótese de pesquisa). Observou-se ainda que as atividades
de criação e uso transformaram os participantes. Os benefícios foram além da co-criação
de software, rumo a auto-melhorias. Desta forma, contribui-se com criação e acesso
participativo e universal do cidadão brasileiro ao conhecimento. Como a arquitetura
permite a inclusão contínua de novos públicos por meio da inserção de novas alternati-
vas de uso, espera-se continuar permitindo novos públicos às práticas de criação e uso –
pequenos passos dos usuários, grandes saltos rumo ao acesso universal.

Palavras-chave: Acessibilidade em Jogos. Acessibilidade. Acesso Universal. Design Par-
ticipativo. Design Universal. Design de Jogos. End-User Development. Human-Centered
Computing. Interação Humano-Computador. Jogos. Sistemas Colaborativos.

Abstract
Following the growing purposes and applications of digital games, the creation of this
interactive media has been becoming more popular. Industry and academy alike have
studied and created tools, methods, and techniques to allow end-users to develop their
own games. However, intended audiences are still restricted (normally to anglophone
youngsters without physical, cognitive, and emotional disabilities). To overcome barriers,
it is necessary to allow people with different interaction abilities and needs to contribute
on game development. This thesis presents an end-user development framework for
tailorable games, with the purpose of promoting inclusive creation of inclusive games.
Our lemma is games for everyone, by everyone. The thesis starts from the hypothesis
that if end-users used creation tools suitable to their interaction needs and followed a
collaborative work model to iteratively improve accessibility features to be inserted into
a software architecture able to modify human-computer interaction at use-time, then
they would be able create games satisfying heterogeneous interaction needs of possible
players. In this thesis, we have explored documental research (systematic review to
identify current approaches), creation and specification (for required software systems,
models, and architectures), and field research (to understand interaction requirements
and evaluate the framework). The framework encompasses a formal software architec-
ture for implementing inclusive games, a collaborative work model for co-creation of
inclusion, and an end-user game development platform (Lepi). Our framework was
used by an audience not yet considered by the Literature (adult people – some of which
with low literacy and that had never used a computer before – undergoing supervision
for alcohol and drug abuse rehabilitation) over four months. Our results show that
the participants were able to create games that satisfied their own interaction needs,
as well as those from people with different needs than theirs (therefore, they have
confirmed our research hypothesis). We have also observed that game creation and play
transformed the participants. The benefits went beyond software co-creation, towards
self-improvements. In this way, we have contributed with participatory and universal to
creation and access of knowledge by the Brazilian citizen. Moreover, as the architecture
allows continuous inclusion of new audiences via the addition of new alternatives of
use, we hope that we can continue enabling more people to create and play – small steps
from users, giant leaps towards universal access.

Keywords: Accessibility. Collaborative Systems. End-User Development. Game Ac-
cessibility. Game Design. Games. Human-Centered Computing. Human-Computer
Interaction. Participatory Design. Universal Access. Universal Design.

List of Figures

Figure 1 – Run-time tailoring: full interaction (re-)mapping. 58
Figure 2 – Unified Design for Access Invaders. 66
Figure 3 – Tailoring elements from a Meta-Game to create two different Games. 70
Figure 4 – Interaction profiles creating different Games from the same Meta-

Game in a same play session. 71
Figure 5 – Data flow of the architecture. 73
Figure 6 – Activity diagram to convert Meta-Games into Games. 75
Figure 7 – A possible class diagram to describe the architecture. 76
Figure 8 – Deployment diagram illustrating the run-time tailoring. 78
Figure 9 – A state diagram representing the phases of the collaborative work

model. 88
Figure 10 – A use case diagram relating roles of the collaborative work model

with their tasks within each phase of the model. 92
Figure 11 – Creating games with Lepi combines the architecture with the collabo-

rative work model. 95
Figure 12 – Participants creating and playing games. 99
Figure 13 – Examples of games created by our participants loaded in Lepi. 100

Figure 14 – The pillars of the framework supporting people. 110
Figure 15 – Examples of three games created by our participants using Lepi. . . . 115
Figure 16 – Participants creating and playing games over multiple meetings. . . . 115

Figure 17 – Component types. 206
Figure 18 – An entity. 207
Figure 19 – An abstract entity. 211
Figure 20 – Concrete entities. 214
Figure 21 – Events and Event Handlers. 215
Figure 22 – Semantic commands with events. 218
Figure 23 – Input mapping. 219

Figure 24 – Interaction Profile. 222
Figure 25 – Profile based tailoring. 223
Figure 26 – Meta-Game and Games (with graphical effects) created in this section.233

Figure 27 – Each participant approached the Conversion phase differently, creat-
ing their stories based on their preferences. 291

Figure 28 – Creation phase using Lepi. 292
Figure 29 – Collaborators created an audio alternative to text on an Enrichment

phase, which the Supervisors approved for inclusion, resulting into
projects with text and audio output alternatives. 293

Figure 30 – Use phase session. 295
Figure 31 – A diagram for the C3-I. 299
Figure 32 – Phases of the game creation process. Below the name of a phase, we

list its main actor. 310

List of Tables

Table 1 – Summary of how the framework supported the goals of the participants.116

Table 2 – Reading, writing, speaking, and listening proficiency for students of a
hypothetical inclusive classroom. 287

Table 3 – Abilities for the students of the classroom of Table 2. 289
Table 4 – Summary of contributions for the classroom scenario. 290
Table 5 – Collaborative model workflow for each contribution of the example

presented in Section D.4. 302
Table 6 – Possible conversions of interaction features. 306
Table 7 – Examples of purpose and intent of use for common digital media, with

companion meta-data to ease user contribution. 309

List of definitions

1 Definition (Component) . 187
2 Definition (Logic Component) . 187
3 Definition (Input Component) . 187
4 Definition (Output Component) . 188
5 Definition (Entity) . 189
6 Definition (Abstract Entity) . 190
7 Definition (Concrete Entity) . 191
8 Definition (Agent) . 193
9 Definition (Human-Agent) . 193
10 Definition (AI-Agent) . 193
11 Definition (Event) . 195
12 Definition (Command) . 195
13 Definition (Event Handler) . 195
14 Definition (Logic Event Handler) . 195
15 Definition (Input Event Handler) . 196
16 Definition (Output Event Handler) . 196
17 Definition (Abstract Event Handler) . 198
18 Definition (Concrete Event Handler) . 198
19 Definition (Rule) . 200
20 Definition (Subsystem) . 200
21 Definition (Logic Subsystem) . 201
22 Definition (Input Subsystem) . 201
23 Definition (Output Subsystem) . 201
24 Definition (Meta-Game) . 202
25 Definition (Interaction Profile) . 203
26 Definition (Game) . 203

List of axioms, lemmas, and theorems

1 Lemma (Sets of Components) . 188
2 Lemma (Adding a Component to an Entity) 189
3 Lemma (Removing a Component from an Entity) 190
1 Theorem (Entity Reduction) . 191
2 Theorem (Entity Construction) . 192
3 Theorem (Entity Transformation) . 192
4 Theorem (Humanization) . 194
5 Theorem (Automation) . 194
6 Theorem (Agent Transformation) . 195
4 Lemma (Sets of Event Handlers) . 196
5 Lemma (Registering an Event Handler to an Event) 197
6 Lemma (Unregistering an Event Handler from an Event) 198
7 Theorem (Removing IO Event Handlers) 199
8 Theorem (Adding IO Event Handlers) . 199
9 Theorem (Event Handler Transformation) 200
7 Lemma (Entities of a Subsystem) . 201
8 Lemma (Entities of a Logic Subsystem) 202

List of listings

Listing 1 – XML Interaction Profile. 222
Listing 2 – XML Profile List. 225
Listing 3 – Run-time tailoring algorithm. 226
Listing 4 – Meta-Game to Game algorithm. 227
Listing 5 – Development method algorithm. 229
Listing 6 – Kinematic Component. 237
Listing 7 – Logic Subsystem. 238
Listing 8 – Game command. 240
Listing 9 – Interaction Profile for the usual version of the Game. 244
Listing 10 – Interaction Profile for the Meta-Game. 245
Listing 11 – High-level tailoring algorithm. 246
Listing 12 – Zooming Output Subsystem. 249
Listing 13 – Interaction Profile with graphical enhancement. 249
Listing 14 – Event handlers providing sound effects. 252
Listing 15 – Interaction Profile with graphical enhancement. 252
Listing 16 – Subsystem for sound effects. 254
Listing 17 – Interaction Profile with graphical effects. 255
Listing 18 – Interaction Profile with graphical effects. 257
Listing 19 – Simple Head-Up Display. 260
Listing 20 – Usual version of the game with head-up display. 261
Listing 21 – A game with sound and graphical effects, zoom, input reduction, and

a head-up display. 262

List of abbreviations and acronyms

2D Bi-dimensional

3D Tri-dimensional

AI Artificial Intelligence

ACM Association for Computing Machinery

API Application Programming Interface

ASL American Sign Language

BCI Brain-Computer Interface

C3-I Collaborative Co-Creation of Inclusion

C3-IDG Collaborative Co-Creation of Inclusive Digital Games

CAPS-AD Centro de Atenção Psicossocial – Álcool e Drogas

CBT Cognitive Behavioral Therapy

CSCW Computer-Supported Collaboration Work

CT Computational Thinking

CTP Computational Thinking Patterns

DD Data-Driven

DDA Data-Driven Architecture

DL Digital Literacy

DLL Dynamic Link Library

DSL Domain-Specific Language

ECS Entity-Component System

EDA Event-Driven Architecture

EDP Event-Driven Programming

ET Elemental Tetrad

EUD End-User Development

EUGD End-User Game Development

EUP End-User Programming

FPS First-Person Shooter

GBL Game Based Learning

GL Gaming Literacy

HCC Human-Centered Computing

HCI Human-Computer Interaction

HDD Hard of Hearing

HRTF Head-Related Transfer Functions

HTML Hypertext Markup Language

HUD Head-Up Display

ICT Information and Communications Technology

ID Identifier

IEEE Institute of Electrical and Electronics Engineers

IO Input and Output

JSON JavaScript Object Notation

LIBRAS Língua Brasileira de Sinais

LISP List Processor

MD Meta-Design

MG Meta-Game

ML Media Literacy

MSc Master of Science / Master’s Degree

MVC Model-View-Controller

NPC Non-Playable Characters

PD Participatory Design

PbD Programming by Demonstration

PhD Doctor of Philosophy / Doctorate

RIS Real-Time Interactive System

SDK Software Development Kit

UA-Game Universally Accessible Game

UDG Universal Digital Game

UD Universal Design

UGE UA Game Engine

UI User interface

URL Uniform Resource Locator

UUI Unified User Interface

UnD Unified Design

VP Visual Programming

VPL Visual Programming Language

VR Virtual Reality

XML Extensible Markup Language

CONTENTS

1 INTRODUCTION . 33

1.1 Problematic and Research Question 34

1.2 Goal . 35

1.3 Research Hypothesis . 35

1.4 Research Approach . 36

1.5 Summary of Contributions and Results 37

1.6 Thesis Organization / How to Read This Text 38

2 A FRAMEWORK FOR TAILORABLE GAMES: TOWARDS INCLU-
SIVE END-USER DEVELOPMENT OF INCLUSIVE GAMES 41

2.1 Introduction . 41

2.2 Related Work . 46

2.3 Towards Inclusive Creation of Tailorable Games 55

2.4 A Framework Towards Tailorable Game Creation: End-User Collab-
oration to Co-Create and Play Digital Games 57

2.5 The Architecture: Tailoring the Interaction to Individual Needs in
Use- and Run-Time . 60

2.6 The Collaborative Work Model for Co-Creation of Tailorable Dig-
ital Games: The Community for the Individual, the Individual for
the Community . 82

2.7 Support Systems and Approaches: Game Creation Tools 93

2.8 Evaluation . 96

2.9 Limitations . 100

2.10 Concluding Remarks and Current Work 101

3 ABLE TO CREATE, ABLE TO (SELF-)IMPROVE: HOW AN INCLU-
SIVE GAME FRAMEWORK FOSTERED SELF-IMPROVEMENT
THROUGH CREATION AND PLAY IN ALCOHOL AND DRUGS
REHABILITATION . 105

3.1 Introduction . 105

3.2 A Framework Towards Games For Everyone, By Everyone 109

3.3 Fostering Self-Improvement Through Game Creation and Play With
Adults in Alcohol and Drugs Rehabilitation 112

3.4 Design Recommendations from Lessons Learned 126
3.5 Concluding Remarks . 127

4 CONCLUSION . 131
4.1 Contributions and Results . 132
4.2 Final Remarks . 133
4.3 Future Work . 134

BIBLIOGRAPHY . 139

APPENDIX 157

APPENDIX A – THIS THESIS IN ITEMS 159

APPENDIX B – ONE (META-)GAME, INFINITE WAYS TO PLAY: RUN-
TIME TAILORABILITY FOR TAILORABLE GAMES . 175

B.1 Introduction . 175
B.2 Related Work . 178
B.3 Implementing Tailorable Games . 184
B.4 Formalization of a Tailorable Game 187
B.5 Elements of a Tailorable Game . 204
B.6 Operations on the Elements of a Tailorable Game 208
B.7 Abstract and Concrete Elements of a Tailorable Game 210
B.8 Conversions Between Abstract and Concrete Elements 212
B.9 Architecture for Implementing Tailorable Games 215
B.10 The Game to the Player: Iterative, Incremental, and Mutualistic Uni-

versal Access . 231
B.11 Discussion and Future Work . 265

APPENDIX C – REAL-TIME TAILORABLE GAMES: ADVANCEMENTS
IN RUN-TIME TAILORABILITY 269

C.1 Introduction . 269
C.2 Run-Time Tailorability is Turing Complete 269
C.3 Full Automation in Real-Time Interaction Is Not Always Possible . 269
C.4 Run-Time Tailorability in Practice . 270
C.5 Run-Time Tailorability Makes Accessibility a Use-Time Problem . . 271
C.6 Run-Time Tailorability Makes Accessibility a Community Problem 271
C.7 Concluding Remarks . 272

APPENDIX D – ONE SMALL STEP FROM A USER, A GIANT LEAP
FOR UNIVERSAL ACCESS: A COLLABORATIVE WORK
MODEL FOR CO-CREATION OF DIGITAL TAILORABLE
GAMES . 273

D.1 Introduction . 273
D.2 Related Work . 276
D.3 The Pillars of the Framework: Supporting Games by Everyone, For

Everyone . 282
D.4 Scenario: Co-Creation of Tailorable Games in an Inclusive School . 287
D.5 Scenario: Inclusive Game Creation to Aid People Undergoing Alco-

hol and Drugs Rehabilitation . 290
D.6 A Collaborative Work Model for Co-Creation of Universal Access:

Individual Collaborations to Reach the Moon 297
D.7 A Collaborative Work Model for Co-Creation of Universal Digital

Games: The Collaborative Work Model Applied to Games 304
D.8 Discussion . 316
D.9 Concluding Remarks and Current Work 319

33

Chapter 1

Introduction

The purposes of digital games expand beyond fun – professionals of education,
training, and rehabilitation have been using games to support their practices. New types
of literacy – such as Digital Literacy, Media Literacy, and Gaming Literacy (GL) (GEE;
TRAN, 2015; HAYES; GEE, 2010; MOUMOUTZIS et al., 2014; ROBERTSON, 2012) –
define Information and Communications Technologies (ICTs) and games ways of learning,
discovering, acquiring knowledge, and culture. GL, for instance, emphasizes that playing
promotes the development of abilities related to Computational Thinking (CT), storytelling,
communication, and problem solving skills in different knowledge areas (GEE; TRAN,
2015; HAYES; GEE, 2010; MOUMOUTZIS et al., 2014; ROBERTSON, 2012).

GL promotes games as a new way of literacy; thus, it becomes necessary to in-
crease the intended audience; people who can play games. Yet, Aguado-Delgado et
al. (2018) found that there are, currently, no study guaranteeing universally accessible
games. Although there are design guidelines and techniques (YUAN; FOLMER; HAR-
RIS, 2011; International Game Developers Association, 2004; ELLIS et al., 2013; BARLET;
SPOHN, 2012; GARCIA; NERIS, 2013b; GRAMMENOS; SAVIDIS; STEPHANIDIS, 2007;
GRAMMENOS; SAVIDIS; STEPHANIDIS, 2009; GRAMMENOS; SAVIDIS; STEPHANI-
DIS, 2011; GARCIA; NERIS, 2014; GARCIA, 2014; TORRENTE et al., 2015), the industry
does not follow them. Rather, software developers often make assumptions regarding
the abilities of their end-users (POZZI; BAGNARA, 2013). As a result, ICTs may become
inaccessible to people whose abilities deviate from these assumptions. According to
Mankoff, Hayes & Kasnitz (2010), “the person designing a piece of software is, in some
sense, defining who is disabled with respect to that software”. This also happens in
digital games – “whether people are disabled when playing the game is entirely up to
the designers and developers involved”, according to a participant in a study by Westin
(2017).

34 Chapter 1. Introduction

In a recent systematic review, Aguado-Delgado et al. (2018) found that:

None of the studied initiatives can guarantee universally accessible video
games:

1. Approaches that involve particular interfaces and custom developments may lead to a lack
of quality in the generated/adapted video games and the segregation of disabled players.

2. The frameworks often depend on the use of specific technologies. This dependence hinders
accessibility, since it necessarily involves the use of elements that can be beyond the control
of the developer (they belongs [sic] to third parties) and limit the available options.

3. The guidelines, techniques, strategies, etc. that facilitate the development of accessible video
games are ignored by many developers (due to ignorance, lack of comprehension, impossi-
bility of application, etc.).

What if we designed software without assuming particular ways of interacting
with the system? Instead of assumptions, we could define functionalities and seman-
tics of use – commands for interaction, what instead of how. Then, we could enable
how people use the system iteratively, according to their abilities. We defined this ap-
proach for games in (GARCIA, 2014). We have been since improving it. In particular,
we have also expanded the research into a new direction: towards End-User Development
(EUD) (LIEBERMAN et al., 2006) of digital games (hereafter called End-User Game
Development (EUGD)). In this new thesis, we enabled people, who, potentially, had
never played digital games or interacted with a computer, to create games for themselves
and for their peers. From each according to her/his abilities, to each according to her/his
needs. The community for the individual, the individual for the community.

1.1 Problematic and Research Question

The systematic review from Aguado-Delgado et al. (2018) reveals that inclusion
is an open issue in digital games. When we started this research, game creation focused
a specific demographic; for instance, in education contexts, it target primarily young
students Earp (2015).

More recently, we can observe efforts to promote inclusive creation by and for
other audiences (for instance, in (URBANEK; GÜLDENPFENNIG; SCHREMPF, 2018;
GIANNAKOPOULOS et al., 2018; YILDIZ et al., 2018)). Yet, game accessibility can
become more inclusive. The 4th Grand Challenge in Computer Science Research in
Brazil (CARVALHO et al., 2006) – participative and universal access to knowledge for
the Brazilian citizen – describes the importance of promoting universal and participatory
access to information. This importance, as stated by the Challenge, results from the
necessity of enabling people to perform active roles in the creation of knowledge.

Thus, we shall not restrict ourselves to passive access. Rather, we want to go
beyond, towards inclusive creation – of digital games, in this research. This motivated

1.2. Goal 35

our research question: “how can we enable more people to create and play digital games,
respecting and satisfying their own interaction needs?”

Although we may not guarantee universal access for every digital system and
game, we can always make them more inclusive, accessible, and usable for everyone.
We, thus, started working towards an End-User Game Development Framework For
Everyone, By Everyone.

1.2 Goal

As previously stated, our goal in this research was to enable more people to
create and play digital games. In this study, we focused on small scale digital games
with few mechanics – for instance, similar to Atari games such as Pong and Space
Invaders –, aiming for broader inclusion. We are considering inclusion as a broad
term, encompassing, for instance, physical, cognitive, and emotional (dis)abilities, age,
language, education and knowledge, culture, socioeconomic factors, computer literacy
and skills, and even time and context of use. By this definition, inclusion encompasses the
concepts of accessibility, usability, and inclusion defined inWorldWideWeb Consortium
(2016).

1.3 Research Hypothesis

Our research hypothesis was that if end-users used creation tools suitable to
their interaction needs and followed a collaborative work model to iteratively improve
accessibility features to be inserted into a software architecture able to modify human-
computer interaction at use-time, then they would be able create games satisfying
heterogeneous interaction needs of possible players.

The hypothesis defined the three pillars of this thesis, which we grouped into an
Inclusive End-User Game Development Framework1 for Tailorable2 Games:

1. A Run-Time Tailoring Software Architecture for Games;

2. Lepi, a game creation platform implemented exploring the architecture and gener-
ating games using the architecture;

1 The Cambridge Advanced Learner’s Dictionary & Thesaurus (2017) define the noun framework as:
“[C] a supporting structure around which something can be built; [C2] a system of rules, ideas, or beliefs that is
used to plan or decide something”.

2 Tailoring (NERIS; BARANAUSKAS, 2009; NERIS, 2010) proposes adapting systems according to their
context of use. In particular, we explore tailoring in this thesis for accessibility purposes. Tailoring is a
metaphor for adjusting a system to make it “tailor-made”, “custom-made” according to the needs of
the users (GARCIA, 2014).

36 Chapter 1. Introduction

3. A Collaborative Work Model for Co-Creation of Tailorable Digital Games – here-
after named Collaborative Co-Creation of Inclusive Digital Games (C3-IDG).

We define the elements of the architecture formally using set theory, to ensure
their correctness3. From the theory, we defined the run-time tailoring algorithm, which
enables software to re-redefine its user interaction at run-time, according to definitions
stored in an Interaction Profile.

The algorithm was implemented in Godot Engine4, to show that we can explore
interaction redefinition in state of the practice game development middleware. Lepi
was, afterwards, implemented using the algorithm, as a prototype of tailorable system
to develop tailorable games. As proof of concept, Lepi provided slots (abstracting
interaction alternatives) to enable end-users to create games for people who could
read, listen, and/or understand Língua Brasileira de Sinais (LIBRAS). If a player could
understand at least one of these alternatives, she/he could be able to play the resulting
game (for instance, a blind player could play using audio alternatives).

Finally, the C3-IDGorchestrated end-user creation of tailorable games. It provided
a process to help people to co-create tailorable games for themselves and for their peers.
In the C3-IDG, game development promotes inclusion – we try to enable as many people
to co-create and play games as possible, respecting their abilities and interaction needs.

The framework has been evaluated in ten meetings spanning four months by
adults undergoing alcohol and drugs rehabilitation at a Centro de Atenção Psicossocial
– Álcool e Drogas (CAPS-AD). Ten users of the service participated in game creation
activities. They had different interaction needs, levels of literacy, and experience using
computers and games. With their abilities, they created games using Lepi. With the help
from collaborators, they could generate games suiting their own interaction needs and
those of their friends – everyone could play the game from everyone else. This provided
evidence to accept our research hypothesis – the three pillars enabled a heterogeneous
public to create games for themselves and all their peers.

1.4 Research Approach

In this thesis and over the development of the framework, we have performed
documental research, creation and specification, and observational research.

For the documental research,we have employed a systematic literature review (KITCHEN-
HAM, 2004). We used a systematic literature review to identify approaches described in
3 At the final version of this thesis. It is currently undergoing a review for improvements (and a possible

simplification).
4 <https://godotengine.org/>

https://godotengine.org/

1.5. Summary of Contributions and Results 37

the Literature when we started this research. The review tried to identify tools, methods,
techniques, and strategies which enabled end-users to create their own games.

For defining the models, architectures, and required software systems explored
over this thesis, we have performed creation and specification activities. These activities
resulted in the implementation of the pillars of the framework.

Finally, we performed field research and case studies as observational research
to understand interaction requirements and evaluate the framework. These methods
contributed to further understand the interaction needs of particular audiences with
subsets of interaction needs (low literacy, hearing disabilities), as well as refine, iterate,
and evaluate the framework on subsequent creation and specification cycles.

1.5 Summary of Contributions and Results

As we will mention in , Appendix A provides a summary of the research and its
results. This section lists major and minor contributions and results of this thesis.

1.5.1 Major Contributions and Results

• Architecture: multiple games may co-exist within a unique Meta-Game.

– Composable interactions;
∗ Accessibility as add-ons / extensions / plug-and-play tailorable user

interfaces.
– Semantics for input and output;
– Commands as intents;
– User interfaces as interaction re-mapping via run-time tailoring. We can
always reshape how people perceive and control digital systems and games.

– Heuristic / Corollary: Can we define an algorithmwhich runs in suitable time
for the game (usually in milliseconds to a couple seconds) to enable use?
Whenever we can, we can enable creation and play.

• Work model: inclusion can be a dynamic, iterative, incremental, collaborative,
end-user powered process.

– Communistic collaborations;
– Mutualistic collaborations;
– Everyone can collaborate: contributions comes from abilities and skills;

38 Chapter 1. Introduction

– Interdependence in software may promote independence, once assistance
become part of the system.

• Lepi: tailorable editor for tailorable games.

– Abstracts creation with the architecture;
– Implements the architecture itself – we can enable more people to create;
– Makes inclusion part of the development process – slots showexisting/missing
alternatives of use.

• CAPS-AD: transforming lives is a major contribution.

– Digital inclusion;
– Self-growth.

1.5.2 Minor Contributions and Results

• Development method to design and implement games with the architecture;

• Capacitation course for professors, providing training in serious games, educa-
tional games, and using Lepi as a classroom tool for teaching;

• Source code repositories with examples and videos.

1.6 Thesis Organization / How to Read This Text

This thesis starts at this chapter (Chapter 1) and ends at Chapter 4. In the default
order, we present the core results of the thesis: a synthesis of the frameworkChapter 2
and its evaluationChapter 3.

Chapter 2 explains how the framework contributes to the goals defined in Sec-
tion 1.2. It defines each pillar, then discusses how theywork together to promote inclusive
creation of tailorable games to enable inclusive play.

Chapter 3 describes our evaluation outlined in Section 1.2. It presents a real world
scenario which used to framework as a tool to assist healthcare practices, on which
participants with heterogeneous interaction needs created and played their own games.

The appendices are optional. The reader might refer to them as needed. Readers
whowant a quick summary of this thesis can refer to Appendix A. It outlines the research
approach and its results in items written in (we hope) simple language. Therefore, even
if optional, it is, perhaps, a good starting point for reading this text.

1.6. Thesis Organization / How to Read This Text 39

Appendix B and Appendix C5 details the architecture (its formalization and
implementation), and Appendix D defines the collaborative work model (rationales,
models, workflows, and opportunities for collaboration based on abilities).

Although you can follow this order, there are many other ways to read it. In many
ways, this work is systemic – the whole is more than the combination of its parts. Thus,
although each pillar of the framework is standalone on its own, they also complement,
extend, and depend on one another.

First, there is the reductionist approach. Readers with a stronger development
or programming interests may benefit from this approach. It goes from technology to
people. It starts from the architecture, moving to the collaborative work model, then to
the development tools to form the framework. In this order, we establish the underlying
theory first, from its foundation – elements of the architecture, their properties, and
relationships. To follow this order, explore the thesis in the order:

1. Appendix B;

2. Appendix C;

3. Appendix D;

4. Chapter 2;

5. Chapter 3.

Next, there is the holistic approach. Readers with a stronger design or collabora-
tive work or Human-Computer Interaction (HCI) interests may benefit from it. It goes
from people to technology. It synthesizes the work, trying to bring apparently different
concepts together. To follow this order, explore the thesis reading:

1. Chapter 2;

2. Appendix D;

3. Chapter 3;

4. Appendix B;

5. Appendix C.

There is also an applicable approach. Readers who would rather want to apply
this research into practice rather analyzing its intricacies might benefit from it. Readers
who want to implement software using the architecture should read:
5 New findings regarding the architecture described in Appendix B, based on Computation Theory.

40 Chapter 1. Introduction

1. Appendix B;

2. Appendix C;

3. Chapter 2;

4. Appendix D;

5. Chapter 3.

Readers who want to implement a variation of our collaborative work model
should follow:

1. Appendix D;

2. Chapter 2.

Readers who want to use Lepi as a standalone tool may benefit from:

1. Chapter 2;

2. Appendix D.

Readers who want to use the framework without much reading can consult:

1. Chapter 2.

There is also the approach for practical programmers. Instead of text, readers may
skip directly to the algorithms and source code listings – or the source code repositories
directly. For the latter, search this text with the string francogarcia – the results will
provide Uniform Resource Locator (URLs) for the repositories.

If you are looking for ideas for your dissertation or thesis (or want to contribute
with advancing this research), refer to Section 4.3. Finally, you can choose a page or
section at random, or consult the Table of Contents, find something interesting, and
read it.

41

Chapter 2

A Framework for Tailorable Games:
Towards Inclusive End-User

Development of Inclusive Games

2.1 Introduction

In the digital games domain, there are efforts to enable end-users to develop
their own games. Game modifications (modding) and game making popularized the
practice, allowing end-users (modders) to modify games to their interests and creativity.
From the academic perspective, End-User Development (EUD) promotes end-users to
non-professional software developers, aiming to empower them.

Educators propose new types of literacy – such as Digital Literacy, Media Literacy,
and Gaming Literacy (GL) (GEE; TRAN, 2015; HAYES; GEE, 2010; MOUMOUTZIS
et al., 2014; ROBERTSON, 2012) –, considering that Information and Communication
Technologies (ICTs) and games can develop abilities related to computational thinking
(CT), storytelling, communication, and problem solving (GEE; TRAN, 2015; HAYES;
GEE, 2010; MOUMOUTZIS et al., 2014; ROBERTSON, 2012).

From the industry side, EUD for game development (hereafter called End-User
Game Development – EUGD) is an important practice as well. When end-users improve
their favorite games and share their modifications, they can learn and self-express,
benefit other players, studios and publishers, and extend the overall quality and shelve
life of the original product – potentially increasing the lifetime, popularity and sales
(GEE; TRAN, 2015; SCACCHI, 2011; El-Nasr; SMITH, 2006; POOR, 2014; POSTIGO,
2008; NIEBORG; VAN, 2008).

Like other digital devices and media, games can enhance the life of people.

42 Chapter 2. A Framework for Tailorable Games

Learning, working, entertainment, health, communication (and other areas) can benefit
from games (SCHELL, 2008; CAILLOIS, 2001; CHEUNG, 2006; MADER; NATKIN;
LEVIEUX, 2012; EARP, 2015; GEE; TRAN, 2015; GAMES, 2010; HAREL; PAPERT, 1991;
El-Nasr; SMITH, 2006; SALEN, 2007; HUIZINGA, 2016). In a world where virtual
environments are starting to merge with real one, being unable to interact with ICTs may
hinder opportunities. In this context, universal access becomes a key aspect to promote
digital and social inclusion. In the ideal scenario, this promotion should support use
and creation alike – technology should suit people’s needs to enable them to interact
and develop ICTs.

Considering the emergency of digital world into the real one, we should strive
to promote inclusion1. Ideally, we should empower people to create as well as use digi-
tal systems, regardless of (dis)abilities. Game design and programming are complex
disciplines requiring specialized knowledge. Schell (2008), for instance, mentions that
game designers benefit from a very wide range of skills and knowledge. A limited,
non-exhaustive list may include disciplines such as animation, anthropology, architec-
ture, art, communication, economy, engineering, mathematics, writing, and psychology.
Moreover, the Elemental Tetrad proposed by Schell (2008) divides game design into an
interconnected composition of four elements – mechanics, aesthetics, story, and tech-
nology. According to Schell (2008), technology are “any materials and interactions that
make your game possible”; aesthetics define “how your game looks, sounds, smells,
tastes, and feels”; story unfolds the “sequence of events that unfolds in your game”, and
mechanics provide “procedures and rules of your game”.

Although it may seem as an obstacle at first, should we adopt a different per-
spective; the variety of required skills suggests that virtually everyone may contribute
to game design activities based on their own strengths. If we focus on abilities, we can
enable people to co-create digital games.

However, for playing, although human abilities, knowledge, culture, and soft
skills vary, in a game accessibility context, the game industry intended audience is,mostly,
homogeneous (International Game Developers Association, 2004; YUAN; FOLMER;
HARRIS, 2011; GARCIA, 2014). In this text, hereafter, we use the expression “average
user” to refer to users belonging to a normal distribution of all users (FISCHER, 2001;
NERIS, 2010). For game playing, average users for games are usually alphabetized
people, without disabilities (GARCIA, 2014).

For game creation, the public seems even narrower. In a systematic review from
Earp (2015) considering an educational context, only 6 out of 494 studies (1.21%)
performed activities with people at least 23 years old. In contrast, 351 studies (71.05%)

1 In this chapter, we consider inclusion as a broad term, as defined in World Wide Web Consortium
(2016).

2.1. Introduction 43

targeted a younger audience – children, youngsters, and teenagers. Earp (2015) further
notices that inclusion in most studies explore “game making as a strategy for addressing
the underrepresentation of girls and women in computing”. Age and gender are, still,
only two variables when we consider diversity.

In this chapter, we explore a different approach. In this chapter, we are considering
very small scale, simple and slow paced digital games, with the intent of achieving
broader inclusion for creation and play. Thus, we consider games focused on a few game
mechanics (for instance, clones of Atari games such as Pong and Space Invaders), as a
re-imagination of digital game development from its start, focusing on accessibility to
enable more audiences to create and to play. Our goal is enabling inclusive development
of tailorable games2, with the lemma of “games by everyone, for everyone”. The lemma
does not mean that everyone will become able to create and play every game. Rather, it
means that games can always become more inclusive, accessible, usable, and fun for
more people, and that we can always enable new audiences to co-create them.

For broader inclusion, a possible way to enable more people to play is to en-
able more people to create. Creation, thus, predates playing, considering diversity and
inclusion from the start. Playing and creating make two fronts:

Game playing (use) The process of playing a game. For the player, there should be
her/his user interface (UI); the UI that suits her/his own interaction needs. For the
end-user acting as player, what truly matters is having suitable input and output
(IO) features enabling her/him to play. This means that we can explore multiple
accessible UIs in a very same game. We can provide people with choice. They can
interact with the standard game interface (as it happens now), use a pre-defined
version suitable for their abilities, or even combine existing interaction alternatives
to create their own.

Game creation (development) The process of creating or modifying a game, including
design and programming activities. In this case, accessibility would allow for new
audiences to make their own games. For broader inclusion, approaches (tools,
methods, techniques, and practices) should not be (exclusively) programming-
centered. Like game playing, we can provide multiple interaction alternatives
to enable creation. For the end-user acting as creator, the approach should suit
her/his needs to enable her/him to make games.

To the best of our knowledge, game accessibility currently guides researchers and
professional developers to create more inclusive content to players. For smaller, simpler
2 Tailoring ametaphor for the activities of tailors’ (NERIS; BARANAUSKAS, 2009; NERIS, 2010; GARCIA,

2014). They adjust materials for the best fit. We follow this same idea here – tailorable games are games
that provide alternatives for perceiving and command a game with the same rules.

44 Chapter 2. A Framework for Tailorable Games

games we can try to reach universal access (for instance, with Universally Accessible
Games – UA-Games) (GRAMMENOS; SAVIDIS; STEPHANIDIS, 2007; GRAMMENOS;
SAVIDIS; STEPHANIDIS, 2011). For complex projects requiring fast response times, tight
time constraints, and fast actions (for instance, games from big publishers – AAA games
–, or even smaller fast paced action games), we should aim for inclusion. Regardless, we
can always improve accessibility.

However, we do not have to think “one-size fits all” solutions for inclusion. Rather,
we can support “one core fits most” as well as multiple accessible versions at the same
time.

Different abilities lead to different ways of perceiving, processing, and providing
information. We should acknowledge this fact; if the interaction needs of one person
is different from another, we should not force them to play equally. Rather, we should
respect the abilities, and promote the best experience to suit the abilities of each person.
The core (logic and rules) of the game can be the same; the way to play it can be
completely different. This way, we can provide options. If a person wants to play the core
version, she/he can. If she/he wants to play an accessible version, she may. If she/he
is able combine existing interaction alternatives to create her/his own custom tailored
version, she/he might as well.

As proof of concept, we have chosen storytelling based games for our initial
efforts. They were easier to explain to people who had never played games (or used a
computer) before, focused on content creation, and allowed people with different skills
to contribute and co-create. In the future, we aim to expand it, including new audiences
first, then moving towards new mechanics, genres, and EUGD strategies over time.

Towards this goal, we have defined a framework to enable more individuals to
create games – for themselves and for others. Regardless of physical, cognitive, emotional
abilities, and technical knowledge, we aim to promote inclusion from design to use. Our
hypothesis is that if end-users used creation tools suitable to their interaction needs
and followed a collaborative work model to iteratively improve accessibility features to
be inserted into a software architecture able to modify human-computer interaction at
use-time, then they would be able create games satisfying heterogeneous interaction
needs of possible players.

To verify the hypothesis, we have defined a frameworkwith pillars: a collaborative
work model, a run-time tailoring software architecture, and a game creation platform.

The work model describes a process for co-creation of tailorable digital games,
on which people support each other, improving the interaction quality and existing
alternatives iteratively. Following the model, an inclusive game results from successive
iterations defining (adding or improving) interaction alternatives that, combined, results

2.1. Introduction 45

into broader inclusion. People who were, at a previous step, unable to interact may,
upon inclusion, become contributors who may include new people, forming cycles
of improvements (we will present more details in Section 2.63). In this perspective,
inclusion is constructed iteratively from abilities, skills, and collaboration.

The architecture describes a model which decouples logic from interaction. With
the architecture, we attach interaction to games, (re-)defining arbitrary input and out-
put (IO) interactions during use time, enabling end-users to select/switch IO devices
and mappings to match their own needs whilst a system is running. In practice, the
architecture enables us to explore any input device to provide commands, as well as any
output device to convey information. If we can map game data to these devices, we can
enable more people to play (we will discuss our approach in Section 2.44.).

Our principle is that software is indefinitely extensible at run-time within the
limits of what is computationally possible; therefore, conventional (“one core fits most”),
accessible, and even customdefined user interfaces can co-exist in the samedigital system
– and we can alternate among then at any time. As the logic is unique, we can, therefore,
build user interfaces to “fit” or “adjust” interaction features to the needs of the user. As a
tailor adjusts material to the best fit of her/his customers, we can tailor game interaction
with our run-time tailoring algorithm.

Finally, the game creation platform is an EUGD tool, acting as proof of concept
for inclusive end-user creation of tailorable games (Section 2.7). As a proof of concept,
it currently supports text, audio, and sign language to convey the content of adventure,
point-and-click and visual novel genres, as well as mouse, keyboard, and gamepads to
provide input to it. Other IO media and devices (including assistive technologies) could
be added for broader interaction needs. As interaction is composed, currently audiences
are always included; whenever we define new interaction alternatives, we can enable
more people to create and to play.

In its current state, our framework supported the hypothesis in a first evaluation
scenario, on which people undergoing alcohol and drugs rehabilitation created games5
(Section 2.8). These people had different interaction needs (including literacy and
proficiency with ICTs). With the framework, they could create alternatives to satisfy
needs of their peers, enabling them to play. In the remaining of this chapter, we describe
our framework.

3 For a detailed version, the reader may refer to Appendix D.
4 For a detailed version, the reader may refer to Appendix B.
5 We followed research ethics protocols throughout the entire processes – Certificado de Apresen-

tação de Apreciação Ética from Plataforma Brasil: CAAE: 89477018.5.0000.5504. As we will mention
in Section 2.8, although we have a second audience (including people with hearing and cognitive
disabilities), we were not able not perform activities with them yet.

46 Chapter 2. A Framework for Tailorable Games

2.2 Related Work

In this chapter, we explore a tailoring approach to inclusion (KAHLER et al.,
2000; PIPEK; KAHLER, 2006; NERIS, 2010). Tailoring proposes designing applications
according to their context of use.

2.2.1 Game Accessibility

Digital games, in particular, are challenging applications for accessibility, both
due to their complex, real-time, interactive nature, and to abilities required for interaction
(GARCIA, 2014; YUAN; FOLMER; HARRIS, 2011). There exists accessible games for spe-
cific audiences (for instance, audio games for visual disabilities), as well as games aiming
to include a broader public (for UA-Games) (GRAMMENOS; SAVIDIS; STEPHANIDIS,
2007; GRAMMENOS; SAVIDIS; STEPHANIDIS, 2011) 6. However, game accessibility is
an exception instead of a rule – most games provide only basic accessibility features (for
instance, subtitles).

The literature provides guidelines, strategies, and design processes to improve
accessibility in games (for example, (CHAKRABORTY et al., 2017; DARIN; ANDRADE;
SÁNCHEZ, 2018; DESURVIRE; WIBERG, 2015; PEREIRA et al., 2018; WESTIN et al.,
2018; MALINVERNI et al., 2017; BERNARDO et al., 2016; URBANEK; GÜLDENPFEN-
NIG; SCHREMPF, 2018; YILDIZ et al., 2018; MANGIRON; ZHANG, 2016; de Borba
Campos; OLIVEIRA, 2016; CANO; FERNÁNDEZ-MANJÓN; GARCÍA-TEJEDOR, 2018;
FORTES et al., 2017; BARLET; SPOHN, 2012; International Game Developers Associa-
tion, 2004; YUAN; FOLMER; HARRIS, 2011; GRAMMENOS; SAVIDIS; STEPHANIDIS,
2007; GRAMMENOS; SAVIDIS; STEPHANIDIS, 2011; GARCIA, 2011; GARCIA; NERIS,
2013b), Game Accessibility Guidelines7, and Accessible Player Experiences8). In partic-
ular, the Unified Design is a structured, participatory, user-centered, interactive process
for designing games (GRAMMENOS; SAVIDIS; STEPHANIDIS, 2007; GRAMMENOS;
SAVIDIS; STEPHANIDIS, 2011). With the Unified Design, designers, domain experts
(in accessibility and usability, for instance), and end-user collaborate to improve a game.

However, developers do not follow the game accessibility literature in prac-
tice (PORTER; KIENTZ, 2013; PORTER, 2014); reasons include costs and efforts to
development, lack of support from game programming middleware, or disinformation
(Aguado-Delgado et al., 2018; GRAMMENOS; SAVIDIS; STEPHANIDIS, 2009; PORTER;
KIENTZ, 2013; PORTER, 2014; YUAN; FOLMER; HARRIS, 2011; FORTES et al., 2017).
Games rarely support assistive technologies; when they do, interaction quality is might

6 For complex games, UA-Games can be unfeasible in practice.
7 <http://gameaccessibilityguidelines.com/>
8 <https://accessible.games/accessible-player-experiences/>

http://gameaccessibilityguidelines.com/
https://accessible.games/accessible-player-experiences/

2.2. Related Work 47

be poor (Aguado-Delgado et al., 2018; GRAMMENOS; SAVIDIS; STEPHANIDIS, 2009;
PORTER; KIENTZ, 2013)9.

In this chapter, the Interaction Model from Yuan, Folmer & Harris (2011) is
particularly useful. Yuan, Folmer & Harris (2011) defined game playing as a finite state
machine, where players cycle between receiving stimuli, determining a response, and
providing input – from the start of a playing session until its end. They have provided a
summary of accessibility strategies for each state of thewhichwere the basis to define our
engine (UGE) (GARCIA, 2014) that, upon simplification, resulted into the architecture
of our framework.

2.2.2 End-User Development and End-User Game Development

According to Lieberman et al. (2006), EUD:

EUD can be defined as a set of methods, techniques, and tools that allow users
of software systems, who are acting as non-professional software developers, at
some point to create, modify, or extend a software artifact.

According to Fischer et al. (2004), Meta-Design (MD):

Meta-design characterizes objectives, techniques, and processes for creating
new media and environments that allow "owners of problems" (or end-users)
to act as designers. A fundamental objective of meta-design is to create socio-
technical environments that empower users to engage actively in the continuous
development of systems rather than being restricted to the use of existing systems.

In the context of EUD and MD, another approach to promote game accessibility
would be enabling people to create their own accessible games. Towards this goal, we
performed a systematic literature review (KITCHENHAM, 2004). For the purposes of
this chapter, two review questions are important:

1. What are the approaches (strategies, tools, methods, techniques, and practices)
which support end-users to create digital games?

2. What are the challenges and opportunities to improve practices?

Weprovided the search string ("End-User Development" OR "EUD" OR "End-User

Programming" OR "EUP" OR "Modding") AND ("Digital Game" OR "Game"), to four aca-
demic databases: Association for ComputingMachinery (ACM)Digital Library, Institute
of Electrical and Electronics Engineers (IEEE) Xplore, Science Direct, and Scopus. The
review was last updated at April 2016. We did restrict results from starting date.
9 The Microsoft’s Xbox Adaptive Controller (<https://news.xbox.com/en-us/2018/05/16/

xbox-adaptive-controller/>) might help to improve assistive technology support in games.

https://news.xbox.com/en-us/2018/05/16/xbox-adaptive-controller/
https://news.xbox.com/en-us/2018/05/16/xbox-adaptive-controller/

48 Chapter 2. A Framework for Tailorable Games

We defined two lists with criteria for inclusion and exclusion of studies. For the
most part, they were mutually exclusive; however, there was the possibility that a study
was either unavailable or we could not access it. Thus, we rejected papers with at least
one exclusion criterium.

Inclusion criteria:

SRI1 Study provides a report of a challenge related to EUGD;

SRI2 Study describes an approach to promote EUGD;

SRI3 Study describes the process of development employed by an end-user to create a
game;

SRI4 Study describes an activity on which an end-user implemented or modified a game
through programming;

SRI5 Study describes an activity on which and end-user created or modified a game
without programming (she/he worked on aesthetics or story).

SRI6 Study describes a game design activity performed by end-users;

SRI7 Study describes how a end-user perceives the development of a game (for instance,
how she/he thinks, acts, or wishes).

Exclusion criteria:

SRE1 Study does not describe any approach, challenge, or activity related to EUGD;

SRE2 Study is related to game development; however, it is does not promote EUD.

SRE3 Study is related to EUD; however, not to game development;

SRE4 Study is not related to digital games;

SRE5 Study is unavailable for access.

We did not exclude surveys from the results. The search returned 582 potential
studies, 40 of which were duplicates. Of the remaining 542, 420 were rejected after we
read the title, abstract, and meta-data. From the remaining 122 studies, we selected 63
studies matching our inclusion criteria:

• 23 studies described challenges related to EUGD;

• 41 studies described related approaches (32 describing EUD approaches, 9 using
commercial games to promote the practice of modding);

2.2. Related Work 49

• 15 studies described end-user creation processes;

• 15 studies described activities on which modification explored programming;

• 6 studies described activities on which end-user modification did not require
programming (for instance, the focus was on aesthetics and/or storytelling);

• 1 study related how an end-user approached game creation.

Considering the selected studies, we could answer the review questions as fol-
lows:

1. Although exists multiple approaches that enable end-users to create their games10,
most of them contribute to the development of game technology. A common
goal is reducing programming barriers to enable creation. For instance, Visual
Programming (VP) was a common approach in selected studies – often used
together with Event-Driven Architectures (EDA) and Event-Driven Programming
(EDP), commonly present in games programmed by professionals (MCSHAFFRY;
GRAHAM, 2012; GREGORY, 2014).

2. For challenges and opportunities, we have noticed that few studies focused on the
creation of new game mechanics and that current audiences for approaches were
similar. For the latter, students were the most common audience for approaches
(both as intended audience and for evaluation). In particular, the most common
audience was composed by young anglophone students without disabilities.

More particularly, we could not identify studies that addressed accessibility
towards inclusion of people with disabilities as game creators.

Game Creation and EUD

For studies involving programming from an EUD perspective, program cre-
ation or modification was the main goal of approaches. Visual Programming (VP)
was the most common subcategory, explored by (AHMADI; JAZAYERI; REPENNING,
10 For instance, AgentSheets and AgentCubes (IOANNIDOU; REPENNING; WEBB, 2009; REPEN-

NING; IOANNIDOU, 2006a; IOANNIDOU; REPENNING;WEBB, 2008); Alice<http://www.alice.org/
> (COOPER; DANN; PAUSCH, 2000); Game Salad <https://gamesalad.com/>; Game Studio <http:
//3dgamestudio.com/>; Game-Editor <http://game-editor.com/>; GameMaker <https://www.
yoyogames.com/gamemaker/>; Gamestar Mechanic <http://gamestarmechanic.com/> (GAMES,
2010); Kodu <https://www.kodugamelab.com/> (MACLAURIN, 2009) and Project Spark <http:
//www.xbox.com/en-US/games/>; Panda 3D <http://www.panda3d.org/>; Phogram <http://
phrogram.com/>; PyGame <http://www.pygame.org/>; RPG Maker <https://www.rpgmakerweb.
com/>; Scratch <https://scratch.mit.edu> (RESNICK et al., 2009b); Sploder <http://www.sploder.
com/>; ToonTalk <http://toontalk.com/>.

http://www.alice.org/
http://www.alice.org/
https://gamesalad.com/
http://3dgamestudio.com/
http://3dgamestudio.com/
http://game-editor.com/
https://www.yoyogames.com/gamemaker/
https://www.yoyogames.com/gamemaker/
http://gamestarmechanic.com/
https://www.kodugamelab.com/
http://www.xbox.com/en-US/games/
http://www.xbox.com/en-US/games/
http://www.panda3d.org/
http://phrogram.com/
http://phrogram.com/
http://www.pygame.org/
https://www.rpgmakerweb.com/
https://www.rpgmakerweb.com/
https://scratch.mit.edu
http://www.sploder.com/
http://www.sploder.com/
http://toontalk.com/

50 Chapter 2. A Framework for Tailorable Games

2012a; AHMADI; JAZAYERI, 2014; de Leeuw et al., 2007; FERREIRA et al., 2012; IOAN-
NIDOU; REPENNING; WEBB, 2008; IOANNIDOU; REPENNING; WEBB, 2009; JAZAY-
ERI; AHMADI, 2011; KOH et al., 2014; MARCHIORI et al., 2011; MARCHIORI et al.,
2012; MOTA; FARIA; de Souza, 2012; MOUMOUTZIS et al., 2014; PERRONE; CLARK;
REPENNING, 1996; REPENNING; AMBACH, 1997; REPENNING; IOANNIDOU, 2006a;
REPENNING, 2006; REPENNING, 2011a; REPENNING, 2011b; REPENNING, 2013;
TONON; BAECKER, 2010; van Herk; VERHAEGH; FONTIJN, 2009). Programming by
Demonstration (PdB) was the second, used by (CYPHER; SMITH, 1995; MCDANIEL;
MYERS, 1997; MCDANIEL; MYERS, 1999; REA; IGARASHI; YOUNG, 2014; WOLBER,
1996; YOON; KIM, 2012). Scripting was the third, explored in (CARBONARO et al.,
2008; KAUHANEN; BIDDLE, 2007; TONON; BAECKER, 2010; van Herk; VERHAEGH;
FONTIJN, 2009). Finally, a single study usedmacros: (vanHerk; VERHAEGH; FONTIJN,
2009). Parameterization was explored by (BURLESON et al., 2009; CHILTON et al., 2009;
REPENNING; IOANNIDOU, 2008; YOON; KIM, 2012).

From an ET and EUD perspective, most studies (2311) aided on the creation of
the required technology for games. The minority of the studies focused on the remaining
elements: aesthetics (9 studies12), story (4 studies13), and mechanics (8 studies14). For
game design, this is a limitation when we consider the statement of (SCHELL, 2008)
that no element is more important than another.

Furthermore, we identified three main purposes for the listed tools – game
creation; learning game design; and content creation. For learning design, approaches
explore the principles of Constructionism (HAREL; PAPERT, 1991; KAFAI; BURKE,
2015): game creation is explored as means of learning programming. Content creation
either explored modding, or was the goal of games such as Super Mario Maker15 and
Little Big Planet16.

11 Technology: (IOANNIDOU; REPENNING; WEBB, 2009; REPENNING; IOANNIDOU, 2006a; AH-
MADI; JAZAYERI, 2014; BASAWAPATNA; REPENNING; KOH, 2015; PENA, 2011; FERREIRA et
al., 2012; REPENNING, 2013; REPENNING, 2011a; MOTA; FARIA; de Souza, 2012; KOH et al., 2014;
JAZAYERI; AHMADI, 2011; AHMADI; JAZAYERI; REPENNING, 2012a; van Herk; VERHAEGH;
FONTIJN, 2009; BURLESON et al., 2009; TONON; BAECKER, 2010; REPENNING, 2011b; LAGER-
STRÖM et al., 2014; AHMADI; JAZAYERI; REPENNING, 2012b; BERLAND et al., 2011; REPENNING;
AMBACH, 1997; KESER et al., 2010; IOANNIDOU; REPENNING; WEBB, 2008; PERRONE; CLARK;
REPENNING, 1996)

12 Aesthetics: (YOON; KIM, 2012; IOANNIDOU; REPENNING; WEBB, 2009; REPENNING; IOAN-
NIDOU, 2006a; AHMADI; JAZAYERI, 2014; JAZAYERI; AHMADI, 2011; REPENNING; IOANNIDOU,
2008; AHMADI; JAZAYERI; REPENNING, 2012a;WOLBER, 1996; IOANNIDOU; REPENNING;WEBB,
2008)

13 Story: (de Leeuw et al., 2007; MARCHIORI et al., 2012; MARCHIORI et al., 2011; CARBONARO et al.,
2008)

14 Mechanics: (REPENNING, 2006; MCDANIEL; MYERS, 1997; MCDANIEL; MYERS, 1999; CYPHER;
SMITH, 1995; SMITH; CYPHER; TESLER, 2001; REA; IGARASHI; YOUNG, 2014; SMITH; GRAHAM,
2010; REPENNING; AMBACH, 1997)

15 <http://supermariomaker.nintendo.com/>
16 <http://littlebigplanet.playstation.com/>

http://supermariomaker.nintendo.com/
http://littlebigplanet.playstation.com/

2.2. Related Work 51

Resnick & Silverman (2005) and Burke & Kafai (2014) explore a house as a
metaphor to define four desirable criteria for defining EUGD tools:

Low floors Tools should be intuitive and accessible for new users.

High ceilings Tools should allow the creation of complex applications.

Wide walls Tools should allow the creation of a wide range of applications.

New windows Tools should promote developing in communities: open “newwindows”
to encourage discussions, help, collaboration, and learning among users.

Audiences for EUGD

Although the “low floors” criteria mentioned accessibility, no study explored
accessibility for inclusion of people with disabilities. Rather, the criteria seems focused
on ease of learning and use to enable new users without disabilities to create their games.

Instead (or besides) describing approaches related to EUGD, 25 studies focused
on aspects related to end-user game creation. These studies explored two main con-
texts: 8 studies17 focused game making as means of acquiring GL. The remaining 17
studies18 focused on specifics of the development, including learning and motivations
regarding the practice of EUGD. Most GL studies have students as their intended au-
dience; the exception is Moumoutzis et al. (2014), which provided a framework for
teachers, acknowledging the importance of ensuring they knew GL before they taught
their studies.

Learning EUGD

End-users are not, necessarily, professional artists, designers, writers, and/or
programmers – specially at once. Besides, they do not always have a tutor or professor
to teach them. In this context, it is important to recognize common difficulties and strate-
gies to overcome them. Studies relating to learning EUGD affirm that children learn
with playing (PETRE; BLACKWELL, 2007) and collaborating (UZUNBOYLU; BAYTAK;
LAND, 2010), can communication via gamemechanics (MCARTHUR; TEATHER, 2015),
and acquiring Computational Thinking (CT) when playing and creating (BASAWAP-
ATNA et al., 2014). Ease of use, install, and sharing are important to game creation tools
17 GL: (MOUMOUTZIS et al., 2014; CHILTON et al., 2009; MCARTHUR; TEATHER, 2015; LIN; CHIOU,

2010; El-Nasr; SMITH, 2006; MORAIS; GOMES; PERES, 2012; HAYES; GEE, 2010).
18 Development process: (AHMADI; JAZAYERI; LANDONI, 2012; BASAWAPATNA et al., 2014; CHE-

UNG, 2011; COMUNELLO; MULARGIA, 2015; DENNER; WERNER; ORTIZ, 2012; HAYES, 2008;
HONG; CHEN, 2014; MCARTHUR; TEATHER, 2015; NIEBORG; VAN, 2008; OWENS, 2011; PETRE;
BLACKWELL, 2007; POOR, 2014; POSTIGO, 2008; RESNICK et al., 2009a; ROBERTSON, 2012; SOTA-
MAA, 2010; UZUNBOYLU; BAYTAK; LAND, 2010).

52 Chapter 2. A Framework for Tailorable Games

for children (PETRE; BLACKWELL, 2007). Furthermore, middle school students have
difficulty to understand condition and repetition commands, the use of variables and
their scope, and how to modularize their program (DENNER; WERNER; ORTIZ, 2012),
and traditional programming languages are hard for children (RESNICK et al., 2009a).

Basawapatna et al. (2014) defined a gentle slopemodel of Computational Thinking
(CT) acquisition: theConsume-Create Spectrum. Initially, themodel proposes that children
should consume existing technology to get familiar with them before creating their own.
Thus, they start learning passively, through using, observing, and interacting with that
currently exists. Next, they should start authoring their own technology, with increasing
levels of complexity: animations, interactive simulations, participatory simulations,
construction kits simulations, pattern based authoring, EUD, and, finally, traditional
programming. The model defines a process for creating a simulation: children should
start with a question, then develop a model to explain it; next, they should express their
model computationally, run it, visualize results, and, if necessary, review their model.

Ahmadi, Jazayeri & Landoni (2012) defended the development of problem solv-
ing skills, employing a storytelling method for game creation. In their method, the
end-user define a story (which describes the desired gameplay) for her/his game. Next,
they should determine objects and their behaviors. Story creation starts with the def-
inition of nouns and verbs to convert the story into a program. Nouns become scene
objects if they perform any role on it. Verbs become behaviors to program – if possible,
using a Computational Thinking Pattern (CTP).

Motivations for EUGD

Motivations for game modding included sense of control over the game, self-
expression, self-satisfaction, “cultural remixing”, artistic expression, cultural expression,
and to improve balance and historical authenticity (POOR, 2014; SOTAMAA, 2010;
OWENS, 2011; CHEUNG, 2011).

In general, collaboration and community are important elements for EUGD
(UZUNBOYLU; BAYTAK; LAND, 2010; POOR, 2014; COMUNELLO; MULARGIA, 2015;
HONG; CHEN, 2014). However, collaboration and community are not always positive,
potentially causing competition between modders, social pressure, maintenance of
reputation, and excess of work (HONG; CHEN, 2014; NIEBORG; VAN, 2008).

Demography

Students were the main intended audience for studies involving active end-users’
participation; 29 studies involved students on their activities19. Children and adolescents
19 Studentswith participation of students: (UZUNBOYLU; BAYTAK; LAND, 2010; IOANNIDOU; REPEN-

NING; WEBB, 2009; AHMADI; JAZAYERI, 2014; PETRE; BLACKWELL, 2007; BASAWAPATNA;

2.2. Related Work 53

of elementary and high schools in the United States of America were a common audience.
For EUGD applied to education, Earp (2015) found similar results – as mentioned in
Section 2.1, most studies focus on younger people.

Following students, modders were the second most common group, with 5
studies20. Communities of modders were more heterogeneous; for instance, (POOR,
2014) participants average age was 31 years old.

Three studies performed gender comparison for EUGD practices, stating that
girls create games as good – or better – than boys (DENNER; WERNER; ORTIZ, 2012;
ROBERTSON, 2012; HAYES, 2008). Hayes (2008) notices that interests are different
between genders – boy usually added cheats to the game; girls, however, showed more
interest on creating new characters, clothes, and items for customization.

2.2.3 Professional Game Development: Game Engine Architectures

To support broader inclusion and to enable more people to create and play digital
games, we also focused our attention on architectures for game developmentmiddleware
– including Application Programming Interfaces (APIs), Software Development Kits
(SDKs), and game engines. In particular, we wanted flexible architectures for design
and implementation of inclusive games.

In our architecture, we explore Entity-Component Systems (ECS), Event-Driven
Architectures (EDA), and Data-Driven Architectures (GARCIA; NERIS, 2014; MCSHAF-
FRY; GRAHAM, 2012; GREGORY, 2014). Although there are variations defining how
to implement these architectures, we are more concerned with their definitions and
flexibility in this chapter. In fact, we will provide our definitions in Subsection 2.5.1. The
reasoning if to provide more flexibility to developers who wish to implement their own
variations.

ECS decomposes games into components (groupings of data to abstract a single
responsibility) and entities (collections of components). An ECS is a more extreme
version of the Decorator pattern (GAMMA et al., 1994); in an ECS, components describe
what an entity is able to do. When we attach a component to an entity, it becomes able
to perform an activity related to the component; when we remove the component from

REPENNING; KOH, 2015; KAUHANEN; BIDDLE, 2007; DENNER; WERNER; ORTIZ, 2012; REPEN-
NING, 2013; MORAIS; GOMES; PERES, 2012; MOTA; FARIA; de Souza, 2012; KOH et al., 2014;
JAZAYERI; AHMADI, 2011; AHMADI; JAZAYERI; REPENNING, 2012a; HAYES, 2008; MCDANIEL;
MYERS, 1999; CARBONARO et al., 2008; El-Nasr; SMITH, 2006; ROBERTSON, 2012; REPENNING,
2011b; LIN; CHIOU, 2010; HAYES; GEE, 2010; SMITH; CYPHER; TESLER, 2001; REA; IGARASHI;
YOUNG, 2014; BERLAND et al., 2011; MCARTHUR; TEATHER, 2015; MOUMOUTZIS et al., 2014;
KESER et al., 2010; IOANNIDOU; REPENNING; WEBB, 2008; PERRONE; CLARK; REPENNING,
1996).

20 Studies involving modders: (POOR, 2014; AHMADI; JAZAYERI; LANDONI, 2012; POSTIGO, 2008;
PERRONE; CLARK; REPENNING, 1996; SOTAMAA, 2010).

54 Chapter 2. A Framework for Tailorable Games

it, it loses the ability.
EDA allow to decouple dependencies relationships from an event (point of

interest) and its processing (the event handler or event listener) (GAMMA et al., 1994).
Event handlers process events once they happen (they are triggered). This allows
applications to change their execution flow. Events and event handlers form many-to-
many relationships. An event can have multiple event handlers, and an event handler
may listen to many events.

Data-Driven Architectures allow to change the execution flow of a digital game
from an external data source (for instance, a file or a database). Game engines often
explore these architectures to increase their extensibility – instead of hard coding values
into variables, values can be fetched from the resource and loaded at run-time. These
are particularly useful when combined with Factory patterns (GAMMA et al., 1994;
MCSHAFFRY; GRAHAM, 2012; GARCIA; NERIS, 2014) to construct game entities.

From game engines, we also explore the concept of input (re-)mapping (GARCIA;
NERIS, 2014; MCSHAFFRY; GRAHAM, 2012; GREGORY, 2014). This technique allows
players to customize their bindings to provide input to a game. In our architecture, we
use this strategy for full input (re-)mapping – both for bindings and for devices. We
extended this same idea for output.

2.2.4 Computer-Supported Collaboration Work and EUD for Acces-

sibility

As collaboration is an important element in EUGD, we researched the Computer-
Supported Collaboration Work for references of people with disabilities co-creating
accessibility solutions. Although they are often recipients of assistance – many times
unfairly (BENNETT; BRADY; BRANHAM, 2018) –, we found success stories in (SHI-
RAISHI et al., 2017; BUEHLER et al., 2015; BENNETT et al., 2016; HURST; TOBIAS,
2011; PIPER et al., 2006; BENNETT; BRADY; BRANHAM, 2018). In these cases, people
co-created hardware and assistive technologies, (BUEHLER et al., 2015; BENNETT et
al., 2016; HURST; TOBIAS, 2011), communication for people with hearing disabilities
(SHIRAISHI et al., 2017), and participatory creation of a game for social therapy for
Asperger’s Syndrome (PIPER et al., 2006)21.

In particular, we found that we should consider inclusion as relations between
individuals and communities, and as independence and interdependence (BENNETT;
BRADY; BRANHAM, 2018; LIU; DING; GU, 2016a). Liu, Ding & Gu (2016a) highlights
“communistic interaction”, defined as “from each according to their abilities, to each
according to their needs”. This is supported by Bennett, Brady & Branham (2018), who
21 The game was implemented by the researchers, not by the participants (end-users).

2.3. Towards Inclusive Creation of Tailorable Games 55

says that ‘access is not only a solution to a disability-related barrier; it is a way of being
together and helping one another’.

Bennett, Brady & Branham (2018), in particular, affirm that interdependence
helps to notice connections between people and things. Interdependence highlights that
people can receive and provide access at the same time. People with disabilities can be
active contributors. In this work, we describe our efforts towards this goal – in digital
games.

2.3 Towards Inclusive Creation of Tailorable Games

Although there are approaches enabling end-users to create their own games,
they intended audiences are still limited. We should bring diversity and inclusion to the
house metaphor of Resnick & Silverman (2005) and Burke & Kafai (2014) (Section 2.2.2).
To promote games inclusive creation and use, we should aim to create opportunities for
collaboration, removing entry barriers in related activities.

The literature currently addresses people without disabilities acting as non-
professional programmers. Thus, the main barriers for the audience were technical
– to enable more people, we should reduce development complexity. Yet, although
technology is a fundamental part of digital games, technical barriers are only part of
whole. When we consider further diversity, a non-exhaustive enumeration of barriers
related to game creation and play could include:

1. Technical barriers:

• Programming knowledge;
• Game design knowledge;
• Academic knowledge (mathematics, physics. . .);
• ICTs proficiency;
• Language knowledge (especially for non-English speakers).

2. Physical and sensory barriers;

3. Cognitive barriers;

4. Emotional barriers;

5. Cultural barriers;

6. Required software/hardware barriers;

7. Socioeconomic barriers.

56 Chapter 2. A Framework for Tailorable Games

Wecan, thus, infer that overcoming barriers is amulti-domain endeavor, requiring
knowledge and skills inmultiple disciplines beyondComputer Science andGameDesign.
For a single person, it may be impossible to overcome all, for every conceivable scenario.
However, as in traditional EUGD, communities could be a key factor for success.

We argue that effective communication and participation could leverage indi-
vidual abilities and knowledge to collective ones. In other words, we could explore
strengths of individual members to, together, provide interaction alternatives benefiting
the community.

Although the size of community may vary (friends, families, schools, hospitals,
Internet forums, organizations), the principle is the same. Every single member has
her/his own interaction needs. Interests, abilities, experiences, knowledge, and interac-
tion needs of each member will vary. If we embraced these needs, people could help
each other. Instead of exclusion by particular skills, people could provide their abilities
to help themselves and their peers – inclusion as a collaborative effort.

People co-design a game, and provide interaction alternatives aimed to fulfill
accessibility gaps in the system. Instead of “able to play” and “unable to play”, people
are either “included” or yet “to be included” into a game. A goal of the community is,
thus, to alternatives to enable inclusion – inviting people from “to be included” to the
“included” one. Inclusion stops being sole responsibility of game developers. Instead,
developers could further provide modification tools letting end-users (players) to define
their own customization for interaction features. Analogously to traditional modding, it
could result into “accessibility modding” towards inclusion.

From our point of view, inclusion has a cascading effect, as included people may,
subsequently, help others to create and play. In this sense, people are empowered by
their abilities. We should match their abilities to opportunities to contribute. In a way,
this is similar to building jigsaw puzzles. People fit pieces to fill gaps, forming a bigger
picture in the process. Gaps are the currently missing interaction alternatives that could
enable someone to play. The pieces are software (and/or hardware, and/or media)
constructs to provide interaction alternatives22. More importantly, this means that, with
suitable approaches, everyone could contribute. People with disabilities could become
contributors, as they can share knowledge, expertise, and their skills to propose – and
to create – enhancements to the game. They could become empowered, active creators.

To achieve this perspective, it is necessary to enable end-users to contribute to-
wards accessibility. First, digital game creation should expand beyond creating software;
technology is only a part of digital game. Combining the four elements (mechanics,
aesthetics, story, and technology) of the ET with the extensive disciplines that can con-

22 As they are software, people can always create new pieces to fit gaps.

2.4. A Framework Towards Tailorable Game Creation: End-User Collaboration to Co-Create and Play Digital
Games 57

tribute to game design, we can expand game creation approaches to suit abilities of
creators, focusing on abilities and their goals. Thus, people with heterogeneous interac-
tion needs can work together to co-create multimodal content for stories, art, mechanics
– we should change questions such as “can we play the game?” into “how can I make
the game work for us?”

2.4 A Framework Towards Tailorable Game Creation: End-

User Collaboration to Co-Create and Play Digital Games

Due to multi domain barriers – a task requiring technological and human efforts
from people with multiple backgrounds –, we knew that there would not be a single
solution – a single tool, a single approach, a “silver bullet” – to more people to create
digital games23. Rather, to support the diversity, we needed a combination of approaches,
a collection of practices and alternatives. The Cambridge Advanced Learner’s Dictionary
& Thesaurus (2017) define the noun framework as “[C] a supporting structure around
which something can be built; [C2] a system of rules, ideas, or beliefs that is used to plan or
decide something”. To support diversity, thus, we needed a framework on its broader term
– a structure composed of tools, techniques, methods, strategies, guidelines, practices,
and systems used both to design as well to implement software.

To define our framework, we benefited from the EUGD (Section 2.2) and game
accessibility literature, which describes what we could offer in resulting games. Pre-
viously ((GARCIA, 2014; GARCIA; NERIS, 2013a; GARCIA; NERIS, 2014).), we had
defined a game engine based on game accessibility guidelines, the study from Yuan,
Folmer & Harris (2011) and using UA-Games as references. Our result was a way to
implement games abstractly, without any reference to human-related IO. The engine
allowed us to implement Meta-Games without human interaction, allowing us to define
multiple interactive Games to suit the needs of players at use-time. During use-time,
the Meta-Game could become multiple human-playable Games with re-attachable IO
features. With this possibility, we could re-introduce players to suitable version of the
same logical implementation base game (Meta-Game) tailored to their own interaction
needs.

To refine our previous solution, we extracted the tailoring features of the engine,
simplifying its complexity. We tried to define an architecture with few elements, high
flexibility, easy to implement operations, and providing maximum reuse of existing
features. Our goal was to enable to design and implement digital games for adaptation;
we implement for no one, to include everyone. As a result, the architecture enabled us to
23 Point in case, visual programming languages are, by definition, inaccessible to blind users; written

programming is inaccessible to illiterate people; spoken programming is inaccessible for mute people. . .

58 Chapter 2. A Framework for Tailorable Games

Figure 1 – Run-time tailoring: full interaction (re-)mapping.

Source – Created by the author.

Note – As every IO element can change, the task of the developer is to map what is happening into the
game simulation (the Meta-Game) to the abilities of the player. If there exists, at least, one possible
mapping via any existing IO technology, we can enable play. Interaction, is, thus, composed to the
Meta-Game. Furthermore, as IO is decoupled, we can always introduce aesthetic features to make
the game more fun – aesthetics are not part of the Meta-Game; therefore, they can be inserted at
will. Similarly, we can opt to introduce only subsets of interaction features to avoid stimuli overload.
This way, we can define custom tailored accessible versions of a game per public, or enable a user
to define her/his own from available alternatives.

implement gameswithout any references to human-related IO, defining (and re-defining
whenever needed) particular interactions during use-time (run-time) (Figure 1). It was
an interactive Meta-Game (MG) without user – we abstracted the user from the game,
to become able to provide an accessible game to suit her/his needs24. The next step
was defining tools to create games implementing the architecture. To achieve creation
inclusion, we explored the architecture to implement the creation tool. This resulted into
the second pillar of the framework – an inclusive game creation platform for tailorable
games.

Our goal with the platform was enabling people who were currently unable to
play to both create and play. The platform aimed to support their abilities and play to
their strengths. In particular, end-users with disabilities and/or low literacy may never
had interacted with computer and digital games before. Therefore, we needed to guide
and support creation activities beyond tools. Moreover, we acknowledged that, although

24 Once again, this does not mean that every game can become universally accessible. It does mean,
however, that every game can become more accessible.

2.4. A Framework Towards Tailorable Game Creation: End-User Collaboration to Co-Create and Play Digital
Games 59

no single person would possess skills to make games for everyone, a community could
work together to achieve greater inclusion. This defined the third pillar of the framework
– a collaborative work model to scaffold game development practices, aiming to promote
inclusive creation of inclusive games.

The collaborative work model explores communication and collaboration as
strategies to enable people with, potentially, heterogeneous interaction needs to create
and play games. In special, it defines transient roles according to what someone is
doing at a given time. Besides providing more opportunities for collaborating, the roles
promote a transfer of knowledge (or abilities) from people to people, aiming to allow
creators to surpass barriers25. Degrees of assistance may differ on purpose and need.
For instance, the creator might need temporary support, due to anxiety or depression,
or permanent aid, due to cognitive or motor disabilities. For these cases, one person may
help another to allow the creator to overcome barriers.

As with the ET for Game Design, pillars of the framework support each other to
empower people to make their own games, sharing their creations with their friends,
enabling people to play. Our rationale is that interaction requirements come from people,
emerging from the diversity. The diversity can also work together, as communities, to
provide solutions to enable creation and use. Thus, we can support end-user created
inclusion if we enable and support this workflow.

The architecture fully decouples logic from interaction. As a result, interaction can
be arbitrarily introduced to (or removed from) digital games, at use-time. In particular,
developers can consider interaction as extensions – add-ons – to the logical system,
aiming to enable use and (re-)define interaction when people are using the system.
This means that a user can choose how to interact with a system based on how she/he
combines existing interaction alternatives to command and perceive a game.

As digital games are software, interaction alternatives (as well as their required
software and hardware interfaces) have to be implemented. Traditionally, this imple-
mentation is a task for the developers; with EUD, we enable more non-developers to
contribute. The second requirement is, thus, enabling end-users to create game content
as well as interaction features. With game creation (or modification) tools, end-users
may provide new ways to interact with the logical system – both to command it (with
interaction alternatives for input) and to perceive it (with interaction alternatives for
output).

25 In parallel to the framework, weworkedwith non-programmers in educational and healthcare contexts,
exploring games in therapeutic and rehabilitation practices (RODRIGUES et al., 2014; RODRIGUES
et al., 2015). A related result was a visual language to help end-users design their own therapeutic
games (GARCIA; RODRIGUES; NERIS, 2016). In these studies, we observed that game creation can
contribute to learning and rehabilitation. Moreover, domain expert from these areas (professors and
healthcare professional for the last example) may assist others playing games.

60 Chapter 2. A Framework for Tailorable Games

The third requirement is benefiting from the diversity – combining EUD to
communistic interactions to define communities for “accessibility modding”. As com-
munities, every person able to create can, potentially, contribute to improve a project
based on her/his own abilities, skills, and knowledge. Multiple people can contribute;
one person may contribute multiple times. Improvements add to each other; a contribu-
tionmay enable someone new to play and create, as well as enhancing the overall playing
experience and interaction quality. This means that inclusion towards accessibility and
usability can be an iterative, mutualistic26, communistic, and collaborative process.

Alone, each pillar defines activities to allow the desired outcomes. As a whole,
the framework contributes to the three levels of tailoring (customization, integration,
and extension) proposed by Mørch (1997). At use level, players can customize and
integrate a MG to create their Game without coding – they select available interaction
alternatives to define how they shall interact with the software. With the collaborative
work model and the tools, they can reach the extension level.

Considering the definition of EUD andMD (from Subsection 2.2.2), the workflow
defined by the framework enables end-users to act as non-professional designers and
developers to collaborate iteratively towards inclusion. Together, the pillars of the frame-
work enable the desired workflow. The community provides interaction alternatives
(as add-ons) exploring EUD practices (in tools) to practice “accessibility modding”
towards improving inclusion. The MG allows for exploring MD and EUD to tailor user
interaction, transforming an abstract system into potentially accessible Games to a player.
If the game is not yet accessible, the community may work together (according the
abilities of its members) to provide new interaction alternatives aiming to include the
player. Once a player is included, she/he can, potentially, contribute in the future to
include new players – defining iterative cycles of inclusion.

We describe each pillar in the next sections.

2.5 The Architecture: Tailoring the Interaction to Individ-

ual Needs in Use- and Run-Time

We formalized a software architecture as a pillar of the framework27. For greater
potential of inclusion, the architecture decouples interaction from logic. This way, our
only limitations for inclusion are current available technologies, and what is possible to
implement software-wise.

As discussed in Section 2.4, we previously defined a game engine to support run-
26 As defined in Biology, mutualism defines a relationship in which organisms benefit from the existence

of each other.
27 Appendix B further details the architecture

2.5. The Architecture: Tailoring the Interaction to Individual Needs in Use- and Run-Time 61

time IO tailoring of digital games (GARCIA; NERIS, 2014; GARCIA, 2014). We defined
the engine based on the Interaction Model and high and low-level strategies for game
accessibility described by Yuan, Folmer & Harris (2011). We tried to support as many
strategies at engine level as possible. As a result, we ended with fully re-configurable
game interaction, which we can explore for accessibility purposes. In particular, EDA
and EDP, we can introduce input automation features to games with ease.

As the (re-)definition of IO interactions at run-time was more useful than the
engine itself, we decided to generalize the solution to self-contained definitions and a
corresponding architecture. This way, we could implement it into existing game creation
platforms to reduce development efforts – and to benefit from exists communities. For
brevity, in this section we provide an overview of the architecture.

2.5.1 Run-Time Tailorability for Games: High-Level Concepts

For greater flexibility,we needed an architecture able to provide run-time tailoring
to software. For simplicity and amore generic solution, we tried to create the architecture
using features provided bymainstreamprogramming languages. The reasoningwas that,
with a generic solutionwith simple programming constructs, wewould be able to explore
the architecture within existing game development middleware – including APIs, SDKs,
and game engines. With these requirements, we combined Entity–Component Systems
(ECS), Event Driven architectures (EDA), and Data-Driven (DD) architectures to define
our (MCSHAFFRY; GRAHAM, 2012; GREGORY, 2014). These are also architectures
commonly used by the industry and can be defined in software, if the underlying
middleware do not provide them.

Entity-Component Systems (ECS) provided the concepts of entity and com-
ponent. Event Driven architectures provided events and event handlers. Data-Driven
architectures allowed us to explore external data resources to change run-time behav-
iors of systems. To ensure the desired separation between logic and implementation,
components and event handlers were split into three mutually exclusive groups: logic,
input, and output. From these conceptions, we proposed the following definitions28:

Component. A component is a well-defined data set that has a single, well-defined
purpose for a digital game.
Components are divided in three disjoint groups according to their purposes:
input, output, and logic.

Entity. An entity is a finite set (collection) of components.

Event. An event is any happening of interest in a digital game.
28 These are a simplification of the original concepts defined by Garcia (2014).

62 Chapter 2. A Framework for Tailorable Games

Event Handler. A procedure that process events.

Event Handlers are divided in three disjoint groups according to their purposes:
input, output, and logic.

Subsystem. A subsystem process a finite and arbitrary subset of all the existing compo-
nents according to rules defined for the game.

Abstract [Component, Entity, Event Handler, Subsystem]. An element without refer-
ences to user related (human) IO. It is, therefore, logic only.

Concrete [Component, Entity, Event Handler, Subsystem]. An element which may
have references to user related (human) IO. Besides logic, it can have IO.

Rule. A rule is a relation among game entities which results into an event.

Combinations of rules can represent mechanics, small parts of a bigger mechanics,
or other functionalities for systems. Their first goal is to provide an event to avoid
implicit information that should be conveyed to players. Their second goal is to
enable developers to decouple how to handle interaction the implementation.
This way, rules semantically marked the code to, at a later time, enable finer IO
processing as necessary (we describe some possibilities later, in Subsection 2.5.5).

Agent. An agent is a concrete entity with, at least, one input component to become able
of interacting with the system.

Agents can be human or Artificial Intelligence (AI) controlled. At the one hand,
this means that we can change how controls an entity at any time – this can provide
automation for player who need assistance to provide input. At the other hand,
this means that the same algorithms that can control Non-Playable Characters
(NPCs) can provide partial automation to help the player.

Command. A command is an event triggered with the purpose of providing input to
enable interaction between an agent and the game.

Agents use command to interact with the game; this decouples how the players
interact with the game. Commands, thus, define what players are able to do.

Meta-Game (MG). An MG is a template to create games with the same elements and
rules. It is defined from a combination of events, commands, rules, and abstract
elements (components, subsystems, entities, and event handlers). A game simula-
tion emerges from the combination of the previous elements. As it is abstract, it
does not have references to human-related IO. Communication between entities
occur through commands.

2.5. The Architecture: Tailoring the Interaction to Individual Needs in Use- and Run-Time 63

Thus, an MG is a system without human-related interaction. The system is already
implemented; the data structures (entities and components) and important mo-
ments (events) to convey data are there, as well as the ways to interact with it
(commands). An MG is like a template to create clones of a very same game. As it
is free of user-related IO, it can be specialized to allow any desired interactions.
Such specialization occurs without effecting how the logic is processed.
The MG can be described by a set of abstract components (CMeta), a set of events
(V), a set of rules (R), a set of abstract subsystems (SMeta), a set of commands
(A), a set of abstract entities (EMeta), and a set of abstract event handlers (HMeta)
as follows:

MG = {CMeta, VMeta, RMeta, SMeta, AMeta, EMeta, HMeta} (2.1)

The MG abstracts human-interaction with commands. As we design and imple-
mentMGs for no one, we do not exclude any audience by design. Rather, we design
and implement software for adaptation.

Interaction Profile. An external resource which stores data describing how to convert
abstract into concrete elements – that is, how to (potentially) introduce arbitrary
IO to a Meta-Game.

Game. A Game is the result of transforming abstract elements from a Meta-Game into
concrete ones, generating a software artifact with human-related IO. Therefore, it
is, potentially, a specialization of the MG considering interaction needs of a user.
A Game is defined as an extension of anMG. It explores an Interaction profile to in-
troduce concrete elements (components, entities, subsystems, and event handlers)
to its base MG. A Game is a possible interactive system resulting from adding
features to enable people to interact with an MG. This way, interaction becomes
similar to a plug-in (add-on or extension) to define how a player should command
and perceive her/his Game.
A Game can be described by a set of concrete components (CGame), a set of events
(VGame), a set of rules (RGame), a set of concrete subsystems (SGame), a set of
commands (AGame), a set of concrete entities (EGame), and a set of concrete event
handlers (HGame), and an Interaction Profile (PGame) as follows:

G = {CGame, VGame, RGame, SGame, AGame, EGame, HGame, PGame} (2.2)

For convenience, we can consider CGame, SGame, and HGame as all existing compo-
nents, subsystems, and event handlers.

64 Chapter 2. A Framework for Tailorable Games

The Interaction Profile describes what human-related features will be present in
the game. All elements sets are supersets of the corresponding MG’s ones – this
means that a Game extends the MG to provide interaction features to enable use.
The idea is that we can attach IO elements to transform abstract elements into
interactive ones. Whenever we detach the IO elements, we revert the Game back
to an MG – and are able to completely (re-)define it once again.

The difference between abstract and concrete elements is of particular impor-
tance for this chapter; they refer, respectively, to absence or (possible) presence of
human-related IO. Hereafter, whenever we use the term “abstract” before an element
(component, event handler, or subsystem), it implies that the element must not have
any human-related IO. Analogously, the term “concrete” implies that the element may
have human-related IO. Considering the groups, abstract elements are contained in the
logic group; concrete elements belongs to either the logic, output, and input groups.

Abstract elements define semantics – what entities are able to do, how they react
to commands and rules, what happens as a result from a rule. This means that, although
there is an interactive game29 in MG, it is not playable by people. Rather, people interact
with Games. Concrete elements determine arbitrary mechanisms to convert semantics
into sensory information – how a user sees, hears, feels, touches, and smells the system,
as well as provide input to it – and/or receive commands from input devices.

In the architecture, components are composed/aggregated to entities, and event
handlers are registered to events. As a result, they can be inserted or removed arbitrarily
– or never be used at all. This makes accessibility features into plug-and-play solutions.
Developers can create their traditional games and define optimum presets for specific
audiences. Players may choose to use the ones that they wish and ignore the others. The
Interaction Profile stores these decisions; they can also store presets for audiences. This
way, every player may define her/his own game based on her/his abilities, needs, and
preferences.

Logic elements define the raw data model of the system that, when processed,
defines the simulation. Logic components are the parameters for the simulation, the
settings on which the logic subsystems and logic event handlers operate. For instance,
Position components abstract data about position; Kinematic components abstract veloc-
ities and accelerations; Collision components abstract collision shapes, areas and related
data30. A spaceship able to exist in the world, move, and collide would be logically
29 Hereafter, we will use the term “Game”, with upper case initial letter, to distinguish regular games

from our definition presented in this section.
30 Suffixing components with “able” is a helpful way to name (and think about) components. Once we

attach a component to an entity, the latter becomes able to do whatever the component abstracts. For
instance, the previous components could be renamed to “Positionable”, “Collidable”, “Kinematic-able”.

2.5. The Architecture: Tailoring the Interaction to Individual Needs in Use- and Run-Time 65

defined by these three components. Logic subsystems and event handlers define how to
process this data to define the game simulation.

Output elements provide meaning to the raw data existing in logic elements.
They define how the player should perceive the content to understand it using output
devices. Images, sounds, text, and haptic stimuli are possible implementations to convey
data as sensory information – as well as other assistive technologies, once we implement
support for them. For the spaceship example, we can sensory perceive its existence in
a game world after we add components to the entity (or register event handlers for
events related to the spaceship). Once we attach an image to the spaceship entity, it is
graphically represented into a screen as a Game. Likewise, once we register an event
handler to an event marking its movement, it reproduces sounds in speakers whenever
it moves.

Input elements enable controlling the raw data. They map how the player com-
mands entities to control the simulation with input devices. Traditional controllers
(such as mice, keyboard, and controllers), assistive technology, and even algorithms
can be used for command, once we implement support for them and add suitable input
elements. Similarly to output elements, once we add input elements to entities or register
them to events, we can arbitrarily control a Game entity.

2.5.2 Introductory Example: A Clone of Access Invaders Implemented

with the Architecture

We will explore a reference implementation to illustrate the architecture before
discussing it. As the architecture is for implementation rather than design, we will
adopt the game design of Access Invaders (GRAMMENOS; SAVIDIS; STEPHANIDIS,
2007; GRAMMENOS; SAVIDIS; STEPHANIDIS, 2009) to create a clone of it using the
architecture31. Figure 2 illustrated the Unified Design for the game.

Access Invaders’ Meta-Game

After designing the game using the Unified Design, we can map tasks into
elements of the architecture to plan the implementation. The first step to plan a project
using the architecture is determining the and events of the game. Analyzing Figure 2,
we can identify the following entities:

E1 Aliens;

E2 Bombs;
31 Available at <https://gitlab.com/francogarcia/GamesRunTimeTailorability>.

https://gitlab.com/francogarcia/GamesRunTimeTailorability

66 Chapter 2. A Framework for Tailorable Games

Figure 2 – Unified Design for Access Invaders.

Source – Extracted from (GRAMMENOS; SAVIDIS; STEPHANIDIS, 2007).

E3 Bullets;

E4 Spaceship;

E5 Shields;

E6 Terrain.

Similarly, the events (explicit and inferred) in Figure 2 are:

2.5. The Architecture: Tailoring the Interaction to Individual Needs in Use- and Run-Time 67

V1 Alien Moved;

V2 Alien Spawned (inferred from “Generate aliens”);

V3 Alien Destroyed;

V4 Alien Hit (inferred from “Destroy aliens”);

V5 Alien Fired;

V6 Spaceship Moved;

V7 Spaceship Spawned;

V8 Spaceship Destroyed;

V9 Spaceship Hit;

V10 Spaceship Fired;

V11 Bullet Spawned;

V12 Bullet Destroyed;

V13 Shied Spawned;

V14 Shield Destroyed;

V15 Shield Hit.

Next, we analyze the role of each entity to define their components. To identify
components, we should determine what entities are able to do in the game (for instance,
what they can do, react to, suffer from, and interact with). Events provide one way to
think about their abilities. From the list of events, we can infer creation and destruction
(based on health and damage),movement (based on position and velocity), and collision
(based on position and shape) are logic functionalities for the system. In the architecture,
these requirements become logic components (to store the data), and logic subsystems
and/or event handlers (to process the data).

Events further reveal input for the system. In the architecture, input becomes
commands. In this case, aliens and spaceship are able to fire projectiles (bombs and bullets).
Similarly, the spaceship may move to the right and to the left, revealing a bi-dimensional
control scheme. Those, are, thus, the commands for the Meta-Game. In the architecture,
we abstract those as input components (to store data related to commands, if needed),
and input subsystems and/or event handlers (to abstract an input as an event).

From these inferences,

68 Chapter 2. A Framework for Tailorable Games

E1 Aliens are logical compositions of Position, Collision, and Health components;

E2 Bombs are logical compositions of Position, Collision, and Damage components;

E3 Bullets are logically similar to Bombs;

E4 Spaceship is logically similar to Aliens;

E5 Shields are compositions of Position, Collision, and Health components;

E6 Terrainmay be purely aesthetic in simple implementations (for instance, it acts a
background). In this case, it does not affect the simulation; therefore, it is not part
of the Meta-Game, as it does not affect the game logic32.

After entities are defined, we can think about rules. Rules are abstract interactions
among entities. This means that we should consider how each entity interact with each
other entity in the game world. In Access Invaders, we can list, for instance, the following
rules:

R1 Create Alien 7→ Alien Spawned;

R2 Alien Collision Bullet 7→ Alien Hit;

R3 Alien Collision Bullet 7→ Alien Destroyed;

R4 Alien Command Fire Bomb 7→ Alien Fired;

R5 Alien Command Move Alien 7→ Alien Moved;

R6 Create Spaceship 7→ Spaceship Spawned;

R7 Spaceship Collision Bomb 7→ Spaceship Hit;

R8 Spaceship Collision Bomb 7→ Spaceship Destroyed;

R9 Spaceship Command Fire Bullet 7→ Spaceship Fired;

R10 Spaceship Command Move Spaceship 7→ Spaceship Moved;

R11 Shield Collision Bomb 7→ Shield Hit;

R12 Shield Collision Bomb 7→ Shield Destroyed.
32 This does not imply that aesthetics are not important; rather, they do not contribute to game logic.

2.5. The Architecture: Tailoring the Interaction to Individual Needs in Use- and Run-Time 69

Finally, we can define subsystems and event handlers to process components
and implement rules. For the given example, we need to calculate the position of bullets
and bombs on each game update. Similarly, we need to track and treat collision detection
and energy. After implementing the remaining rules, components, subsystems, and
event handlers, we conclude the Meta-Game. The result is a system without a player. In
practice, it is a non-interaction game that no one can play, as there is no human-related IO.
Therefore, to create interactive Games, we need to attach user related IO to aMeta-Game:
games are for humans, no for machines.

Access Invaders’ Games

Oncewe have theMeta-Game,we can create Games to the Players (this subsection
will be expanded in Subsection 2.5.4). As theMeta-Game have not made any assumption
about how the interaction should happen, we are free to define any IO scheme at is
currently allowed by existing hardware, and that is computationally possible by current
implementation techniques. Therefore, we are only limited to what is currently possible
to do with computers, and our abilities to translate data into information and human
input into Meta-Game commands.

The strategy is to tailor the elements of the Meta-Game to suit the interaction
needs of a player, (re-)mapping interactions according to her/his abilities and/or prefer-
ences (as suggested in Figure 1). For input, we should provide input elements to enable
her/him to control her/his Game. For output, we should materialize raw data from
components into suitable representations to convey what is happening to the player.
For immediate feedback and implicit events, we can introduce event handlers to convey
information whenever something important has just happened in the simulation.

70 Chapter 2. A Framework for Tailorable Games

Figure 3 – Tailoring elements from a Meta-Game to create two different Games.

Source – Created by the author.

Note – Components define the behaviors of entities. Entities with output components are represented
continuously. Entities with input components receive commands. As we can attach more than one
input component to an entity, we can provide partial automated assistance to players. Another
possibility is enabling multiple players to control a same entity, for situations when automation is
not possible.

2.5. The Architecture: Tailoring the Interaction to Individual Needs in Use- and Run-Time 71

Figure 4 – Interaction profiles creating different Games from the same Meta-Game in a
same play session.

(a) Interaction profile creator.

(b) Default version. (c) Alternative art (with controller input).

(d) Audio only (with text descriptions).
(e) Input automation (auto-fire, manual move-

ment).

Source – Created by the author.

Note – As we are composing interaction, we can fully change IO for the game. Although the images are
similar in this example, we could define something completely different. If we can implement it
with the elements of the architecture, we are able to introduce them at run-time.

72 Chapter 2. A Framework for Tailorable Games

As interaction is composed, we can define a potentially infinite number of differ-
ent Games sharing the same rules. However, each game can be played different. Changes
could be as simple as alternate images from graphical components to convey the content
slightly different, or as sophisticated as defining a voice-controlled audio only game or
simplified graphics with semi-automated input. It only depends on IO elements that we
imagine, implement, and introduce at run-time exploring an Interaction Profile.

Figure 3 and Figure 4 illustrate the idea for the clone of Access Invaders. The
Meta-Game could become a graphics-only Game (with graphical components, sub-
systems, and event handlers to represent content as images) controlled with a game
controller. It could become an audio-only Game (audio components, subsystems, and
event handlers to represent content with audio) controlled with a keyboard and partial
automation. It could become an audiovisual game on which two or more players control
the same Spaceship to help each other, sharing part of the input. It could explore assistive
technologies for IO.

Provided that we can implement the elements, design interfaces to transform
data into information to convey meaning with output devices, map input devices to
commands, we can define new ways to play33. Once we combine elements and attach
them to the Meta-Game, it results into a Game. Furthermore, we can combine any
existing interaction alternative to define custom Games. New interaction alternatives
may enable people to play, as well as provide more options to improve the experience
for those who could already play.

2.5.3 Games for Machines: Implementing Meta-Games, Simulations

Without (Human) Players

As a MG has no human players (it is abstract), it explores programming mecha-
nisms to abstract input as input semantics, allowing logical constructs to process and
react to them accordingly34. Event-driven architectures provide a way to implement
such mechanisms.

A command, implement as an event, is able to simulate input, decoupling system
logic from human IO handling. The MG not poll nor wait updates of input devices (in
fact, the MG has no concept of input device), because it not a physical level interaction
that changes its logical state. Instead, an MG reacts to intents expressed from commands.
An MG is a purely logical construct, on which logic data fully simulates a game world.
33 It is important to note that every new accessible version may require significant development efforts

(for design, implementation, and evaluation).
34 We omit output from the MG discussion, as it is irrelevant if there are no humans. A machine is

not concerned if it emits light, makes sounds, vibrates, or smells. For a system, the current state is
determined from its internal data. A more functional way of understanding is considering that, every
step of the game loop, the previous internal state is an input to the current one.

2.5. The Architecture: Tailoring the Interaction to Individual Needs in Use- and Run-Time 73

Figure 5 – Data flow of the architecture.

Source – Created by the author.

Note – An MG defines the entire game simulation from abstract elements. Game commands simulate
input, abstracting user interaction (and enabling the creation of AI Agents). Human-related IO
become unnecessary, allowing interaction customization at use-time.

There are no images, sounds, haptic stimuli, buttons, sticks, touches. There are only
numerical and categorical variables (for instance, positions, states, mensurable attributes
stored as logic components in entities), and relations (expressed as rules implemented
by subsystems) between them to abstract the system.

Figure 5 illustrates the data flow for the architecture. The game loop exists as
one or more logic subsystems, which processes logic data from components according
to rules. In the figure, the center (logic) is always running. The right side (output)
exists only in Games – they define a player should perceive each entity and event. The
left side (input) may exist in an MG in a form of AI agents. In Games, they will map
physical-level input from a player to the game.

Relations among components define how variables change over each iteration
of the game loop and due to commands (abstracting interactions). As an MG never
processes input directly, commands provides an intent for interaction (for instance,
instead of pressing the button “A” to make an entity jump, an MG handles a “jump”
command) (Figure 5, center). Once a command is issued, the MG reacts to it. A logic
subsystem translates commands to data variations over components. Provided the
variations are valid, other subsystems perform their computations as usual.

As commands are events, machines can play the game implementing algorithms.

74 Chapter 2. A Framework for Tailorable Games

If an algorithm reads logic components to gather data, it can analyze the current situation
(state of the system) to determine its play. As a command is an event, that means the
algorithm dispatches an event to provide its intent – how it plans to act on an abstract
game world. AI agents are, thus, similar to complex EUD macros. AI agents can define
abstract entities that are able to play the MG35.

2.5.4 The Game to the Player: Converting a Meta-Game to Human-

Playable Games

The main usefulness of an MG is abstracting interactive features despite its lack
of human-related IO. This enables us to attach any IO features that we want (both for
enabling interaction, and for aesthetics) to construct Games. In special, this means that
we can tailor the IO to suit interaction needs of people. We represent how to apply needs
in an Interaction Profile.

Figure 6 provides a high-level activity diagramof the run-time tailoring algorithm,
complementing the previous referenced Figure 5, which suggested the data flow for the
architecture. We divide components and event handlers according to their (mutually
exclusive) roles: input, output, or logic (non IO). An MG uses logic components and
event handlers to define game rules and gameplay. Instead of explicit user inputs, game
commands handle events to simulate the input. During run-time, an external resource
(a text file named as interaction profile) describes which IO components and events
should be added to the game. The game engine parses this resource to instance the
game’s interaction – transforming the MG into a playable game. This means that, as the
IO is generated at run-time, it is possible to redefine the game interaction by switching
the active interaction profile.

As the MG fully defines the logic (rules, commands for interaction, internal
state management) over non-IO data (stored in components), we can create arbitrary
ways to define the game aesthetics (how the game is presented sensorialy) for out-
put, and physical-level interactions for input. Interaction is the result from compo-
sition/aggregation of IO components, subsystems, and/or event handlers to convert
abstract elements into concrete ones. Consequently, an MG becomes a possible Game.
The composability is a direct result from the inner architectures – ECS for entities, EDA
for events (Figure 7 and Figure 8). As a result, we can create multiple IO versions from
the very same MG, which behave exactly the same way logically, but can appear, sound,
smell, taste, and touch completely different.

35 AI Agents provide a useful side effect – as they can provide input, they can be used for playing
automation. Formotor disabilities, this means that AI Agents can automate part of the input, potentially
helping Players to play the game. Similarly, they can help players with visual and cognitive disabilities
to play.

2.5. The Architecture: Tailoring the Interaction to Individual Needs in Use- and Run-Time 75

Figure 6 – Activity diagram to convert Meta-Games into Games.

Source – Created by the author.

As we aggregate interaction to the MG to define Games, we can combine any
previously combine interaction alternative with any new ones that we create. This way,
every new alternative may benefit enable new people to play, as well as provide more
options to all included users. The composability enables mix-and-matching alternatives
to define custom tailored Games to suit more granular needs36. For instance, we can
combine alternatives defined for hearing disabilities and motor disabilities to enable
someone with both disabilities.

36 Perhaps, with enough features, we could approach individual levels of accessibility (that is, supporting
the abilities of whoever was using the game) towards universal access; at worst, we would be able to
include as many audiences as possible.

76
Chapter2.

A
Fram

ew
ork

forTailorableG
am

es
Figure 7 – A possible class diagram to describe the architecture.

Source – Created by the author.

2.5. The Architecture: Tailoring the Interaction to Individual Needs in Use- and Run-Time 77

This interaction composability of the architecture allows to tailor the system in
use-time to the needs of the player – from the general to the particular cases. A player
can consult available options, combine a subset of them, define a Game, and play to
evaluate its suitability (Figure 4). At any time, she/he can change combinations and
resume playing – as the MG is the same, the simulation can continue as normal. The new
Game, however, can be completely different from the previous, both for appearance and
playing features. The way a player perceives and control a Game depends exclusively
on the chosen concrete elements attached to tailor the MG.

For examples of real-time prototypes implementing the architecture, the reader
may refer to two high fidelity tech demos37. One is a clone of Atari Inc’s Pong®38; the
other is a clone inspired in Access Invaders (GRAMMENOS; SAVIDIS; STEPHANIDIS,
2009) (which is a clone of Taito Corporation’s Space Invaders)39. Both games support
run-time (re-)mapping of IO provided by the architecture. In the games, we explore an
external data resource (a text file) as an Interaction Profile to represent desired concrete
elements to build a Game from the MG. Figure 4 shows different Games derived from
the same MG, in a same play session at different moments; attached IO-elements during
run-time define the interaction. The active Interaction Profile may redefine entire IO
features with the game running40.

For input, the MG is only concerned with commands. For the logic, it shall not
matter the origin of the command. Whenever it happens, the MG processes it. If it is
valid, the internal state changes. Therefore, it does not matter whether a command
request comes from a button press, a keyboard key press, a gamepad button press,
an automated command from a system, a voice command, or an assistive technology.
Provided that we can map a physical level interaction to the command, we can use the
device as controller. The MG knows about the command, how to process it, and what to
do when it is valid. Whenever it happens, it handles it. Developers are free to choose
and implement bindings for whatever input devices (and mappings) they want – from
traditional, to assistive technologies, to computer code (to provide automation to help
players with motor disabilities, for instance). The only requirement is dispatching the
command then the player uses her/his selected bindings.

37 They are demonstrations for the architecture, not the most inclusive games as possible. To make
them truly inclusive, we would need to improve the non-graphical versions, allow the use of more
input devices and assistive technology, and perform accessibility and usability evaluations. These
are demonstrations for the flexibility of the architecture, and to show our approach to inclusion with
tailorable games. We break the rule of not changing the MG at Section 2.5.5, to describe how we can
further explore the architecture for accessibility.

38 Available at <https://gitlab.com/francogarcia/RunTimeTailorability-PingPong>.
39 Available at <https://gitlab.com/francogarcia/GamesRunTimeTailorability>. We have chosen Access

Invaders as an example because it is an example of UA-Game.
40 Including UI elements for Head-Up Displays (HUDs); we can define alternatives and introduce them

arbitrarily.

https://gitlab.com/francogarcia/RunTimeTailorability-PingPong
https://gitlab.com/francogarcia/GamesRunTimeTailorability

78 Chapter 2. A Framework for Tailorable Games

Figure 8 – Deployment diagram illustrating the run-time tailoring.

Source – Created by the author.

Note – An interaction profile defines what input and output components should be aggregated to trans-
form abstract entities into concrete ones. Input and output subsystems mediate the communication
between software and hardware (IO devices). Similarly, the profile describes what input and
output event handlers should be subscribed to handle events when they occur.

Similarly, the MG handles the internal state with its logic components. As men-
tioned in Subsection 2.5.1, logic components hold plain-old data, with primitive types
(integers and real numbers, Boolean values, categorical values or strings) or data struc-
tures of primitive types. They do not store presentation data; they hold data to define
and simulate the game world. Therefore, developers are free to define concrete com-
ponents to represent them for any senses, devices, and technologies they want. The
representation of an entity might be a tangible object, an image, sounds, vibrations; a
combination of those, perhaps. IO elements can read logic ones without modifying them.
This ensures that the MG works without external intervention, granting Games with
freedom for representing it as desired.

Figure 3 illustrates possible combinations of components. Logic elements are
always present in any generatedGame, as they define theMG. Input and output elements
can be freely combined to define the interaction. As we attach IO behaviors to entities
at run-time, we can toggle them at any time. For input, as commands are decoupled
from interaction, multiple people may share a same entity to play together and help

2.5. The Architecture: Tailoring the Interaction to Individual Needs in Use- and Run-Time 79

each other (like co-pilots). Likewise, we can implement automation features to assist
players. For output, components represent an entity continuously.

2.5.5 Elements of the Architecture For Game Accessibility

The architecture defines few elements. As a result, if we can define an accessibility
feature exploring a combination of components and event handlers, then we are able
introduce it at run-time to assist a player. Plug-and-play accessibility. This applies to
strategies from Yuan, Folmer & Harris (2011), for implementation of the Unified Design
from Grammenos, Savidis & Stephanidis (2009), Grammenos, Savidis & Stephanidis
(2011), Grammenos, Savidis & Stephanidis (2007), as well as any other accessibility
guidelines and recommendations, as well as our own problem solving abilities. We can
define any number of concrete elements to implement the feature, as well as reading
any data from abstract elements. The only rule is that concrete elements cannot modify
abstract ones; otherwise, specific IO interactions would change the game logic41.

In particular, the definition of Rule states that relations among entities result in
events. For instance, considering e as entities, R as a rule, and v as event, a binary rule42
can be defined as:

ei R ej 7→ vk

In the expression, R could be a mechanic – for instance, fire, walk, talk. Each
of these mechanics results into an event (EntityFired, EntityWalked, EntityTalked)
– for player interaction, they can also have a companion command (FireAt, WalkTo,
TalkTo). The same reasoning applies to implicit behaviors between entities – for in-
stance, collision and EntityCollided, enter area and AreaEntered, leave area and
AreaLeft.

In conventional games, these events are usually marked by sound effects; when
even when they are not, the player can see them. In accessible games, they are more
important. As events mark relations, the MG semantically defines interactions between
entities with a mechanism that enables developers to decouple implementation. For
accessibility purposes, this allows us to provide instant stimuli as soon as the event
happens. As multiple event handlers may process an event, this enables developers to:

• Provide immediate sensory feedback (visual cues, sonification, haptic cues);

• Provide long term feedback (for instance, with a pair of begin/end events);
41 Actually, we can circumvent this rule for single player games, as we mention at the end of this section.
42 Developers can define other arities as needed.

80 Chapter 2. A Framework for Tailorable Games

• Assist automation – a subroutine may listen to events to support the player;

• Automatically toggle automation;

• Arbitrarily execute code (for instance, to provide an additional user interface to
help the player);

• Provide data to assistive technologies (for instance, text-to-speech);

• Change the execution flow (slowdown the game, increase response time, introduce
new content, pause the simulation to let the player think);

• Inspect the MG to provide further information to players.

These marks with events are useful to introduce accessibility features at the
moment they are needed. The help developers to analyze important moments to in-
troduce accessibility features – compose accessibility as IO –, and help players with
visual disabilities to perceive what is currently happening. Vision allows for scanning
the environment, providing an overview of what is happening into the game world.
These are implicit cues that players with visual disabilities cannot perceive. Semantic
events helps these players to perceive them via other sensory stimuli.

As commands are events, they share these same properties, with one additional
benefit: subroutines may dispatch commands to assist the user during play. Input ele-
ments may continuously analyze the MG to help the user, or to act on her/his behalf
to support him. These partial automation are usually already part of a game project
as implementation for AI – for instance, pathfinding, movement, and aiming can help
a player in an action game43. In the same way that they can control AI-agents, they
can help players with disabilities to play – the AI calculates the aid and/or execute
the command to help the player. We can also think of commands as a low level API
to define higher-level accessibility features – or macros, compounding commands in
sequence. For instance, we can fetch a list of nearby entities and define a higher level
WalkToEntity command based on the WalkTo one, and provide this into a pair of input
and output interfaces. When we compose these interfaces to the game, we provide the
new command (thus, players who do not want it will not have it). This can aid players
with motor, vision, or cognitive disabilities to navigate in the game world. The same
reasoning applies to other commands – in particular, cheating strategies in conventional
games can act as accessibility features.
43 Another approach is enabling cooperative play, on which multiple players share the same entity to

help one another to play.

2.5. The Architecture: Tailoring the Interaction to Individual Needs in Use- and Run-Time 81

Mutable Meta-Game: Every Rule has its Exception

Finally, there is the rule of never changing the MG. If we want to provide multi-
player support for players with different (dis)abilities with multiple tailorable versions,
we should notmodify theMG. If theMG is the same, the authoritative server for the logic
is the same, and, therefore, every Game runs equally – they can be tailored client-side to
each player. With client-side tailoring, every player can have his/her version with IO
features suiting her/his interaction needs. Every version can be completely different
from each other as well. The communication protocol (commands) are the same for
everyone.

For single player purposes, however, we can modify the MG if needed – param-
eterize it, change defaults – to suit the needs of single player games (or single player
mode).

Can we transform an action game into a turn based one? If it is computationally
possible, and we can decompose in the elements of the architecture, we can implement
and introduce a solution as at run-time. For instance, if time is an important constraint
to the game, controlling time can be a command. We can pause the game, modify the
interaction, provide more time to the player, introduce new ways to play; once done, we
resume, the Game provide the command to the MG. Milliseconds, thus, can become
seconds, minutes, hours – real-time can become non real-time. If we introduce it to the
game, it becomes a feature – perhaps a time warp mechanic44. Then we can make it fun.
Moreover, if we introduce this new feature as part of the original MG, we respect the
rule once again. An accessibility feature improved the game for everyone else.

Once again, we respect the interaction needs of the player and her/his choices. We
can provide, she/he can choose how to play. She/he can modify her/his playing choices
over a game session as well; it is a run-time tailoring architecture. We are only limited
to what we can computationally solve and implement, the available IO technologies,
and how we can translate data into information to people. If we can find a solution
and implement it, we can plug-and-play accessibility to create Games and enable more
people to play them. The MG to the machine, the Game to the Player45. Next step: the
Game from the Player.

44 For an example, the reader may refer to <https://gitlab.com/francogarcia/
RunTimeTailorability-PingPong/tree/interaction_remapping>. In this branch, one interaction
profile monitors the distance between the Player’s 1 paddle and the ball. When it is going to the side
of the player, the game slows down; when it approaches the paddle, we stop time and introduce a
different interface (a button, as proof of concept). The game resumes after the button is pressed. With
run-time tailoring, this feature is gone once we change profiles.

45 The reader may consult Appendix B for more information about the architecture, including its formal
definition and an example of how to implement games with it.

https://gitlab.com/francogarcia/RunTimeTailorability-PingPong/tree/interaction_remapping
https://gitlab.com/francogarcia/RunTimeTailorability-PingPong/tree/interaction_remapping

82 Chapter 2. A Framework for Tailorable Games

2.6 The Collaborative Work Model for Co-Creation of Tai-

lorable Digital Games: The Community for the Indi-

vidual, the Individual for the Community

Once we had a flexible architecture (Section 2.5), we built a collaborative work
model around it46. As the architecture allowed us towork iteratively towards accessibility,
we wanted a development process to work iteratively towards inclusion. We wanted this
process to be centered around abilities and skills, to show that everyone can contribute
towards making a better game for everyone else. As interaction was decoupled from the
logic implementation, people could add or improve existing alternatives based on their
abilities.

Therefore, when we refer to games for everyone, we aim to enable as many people
as possible to play. Games are the final product. With the architecture, we are able to
explore traditional “one core fits most” (for mainstream audiences), accessible, and
custom versions at the same time to address interaction needs for creation. It only
depends on the available elements to tailor the MG, how we combined then – IO is
composed to the game –, and of the people helping to achieve it – community-based
accessibility.

As in traditional development, programmers can include new accessibility fea-
tures. However, our audiences include people who are not programmers, who may
had never played a game before, or who had never used a computer before. Asset and
content creation are fundamental parts of game making. Therefore, they offer more
opportunities for collaboration. In particular, this would highlight abilities from people
with disabilities – they would have unique skills which could enable their peers to play,
as well as improve the game to everyone else.

In this context, we chose to provide pre-defined mechanics for EUGD at first. We
defined a mechanic, considered alternatives to use it and convey it to other audiences,
implemented them, and let the community provide content based on their abilities47.
EUD wise, these activities relate to parameterization and annotation. This way, people
would start with content creation; storytelling mechanics were an ideal initial scenario.
First, they are centered on content creation and communication. Second, the entry
barriers are low – skills including speech, writing, drawing, and sign language can be
explored to create stories and convert them to suit different interaction needs. Third,
people who had never played games would probably have had previous contact with
some form storytelling – for instance, books, theater plays, movies, or soap operas.
46 Appendix D further details the collaborative work model.
47 We provide the mechanics to define the Meta-Game, creators provide assets and content to convert

their Meta-Games into Games.

2.6. The Collaborative Work Model for Co-Creation of Tailorable Digital Games: The Community for the
Individual, the Individual for the Community 83

Fourth, collaborative storytelling could serve as a first contact with collaborative game
development. Finally, we could advance to role-playing games as a next step to introduce
new game mechanics (for instance, using the nouns and verbs strategy defined by
Ahmadi, Jazayeri & Landoni (2012)).

The idea becomes simpler with an example. In a therapy group, there are peo-
ple who can read, write, speak, and/or listen; different people may have different
(dis)abilities and proficiency. One of the members starts creating a game; she can-
not read nor write, but she can speak. She records her voice to create her story. Some
members can hear and write – they listen to her story and transcribe it into text. Some
members cannot hear, but can read the transcription. They create a sign language video
for the story. In this quick example, members of the group created three versions to
convey the story: in audio, text, and sign language. Using their own abilities and skills,
they overcome barriers to enable their peers to understand the content. We follow this
same principle for end-user creation of game content and assets – abilities are what
matters for creation.

Regardless of mechanics and genres, two possibilities arise when creating acces-
sible game content in EUD scenarios:

1. The creation tool may provide interaction alternatives for its default features. In
this case, creators use the built-in features to create their game. When someone
plays a game, the tool selects the best content and interaction alternatives to suit
the needs of the player.
In this case, the developers of the tools are responsible for creating and providing
interaction alternatives. Although this possibility ensures that there are alternatives
for existing content and features, it restricts what is possible to make – every
creation mixes and matches pre-existing game assets. The inclusion of new ones is
a task for the developers.

2. The creation tool may support user generated content. Creators canmake their own
game assets (such as code, media, story) to add to their games. This is the opposite
of the first possibility – although it provides greater creation flexibility, there are
no guarantees that new content will be accessible to heterogeneous interaction
needs. In other words, whenever the original creators do not (or cannot) create
alternatives, someone elsewill have to. Otherwise, some featurewill be inaccessible
for some audiences.

The trade-off may make the second alternative seems worst as the first, as, in
traditional approaches, developers provide feature and content to users. Users are
passive and isolated (a user, a group of users with similar interaction needs). Design

84 Chapter 2. A Framework for Tailorable Games

is for them. Instead, we should design with them, as well as promote Meta-Design to
enable them to improve the systems themselves. This way, we can reach by them. In
this way, users become partners and co-creators. We should empower users to be active
(providing efforts to improve the system) in the process, and consider them at individual
(with their own needs) and collective levels (communities with heterogeneous abilities
and needs). In this way, an individual may provide her/his abilities to improve a system
for the community, as well as receive improvements from others to overcome her/his
own needs.

This is the central idea of our collaborative work model, the Collaborative Co-
Creation of Inclusive Digital Games (C3-IDG), which is a pillar of the framework. We
focus on what people’s abilities, skills, and knowledge, interests as ways to improve a
digital game to other members of a community. The process is iteractive, for, whenever
someone becomes able to interact and improve the system, she/he may collaborate to
further improve it. Provided this new person can also interact and improve, we can
create a process of iterative, continuous accessibility improvements towards inclusion.
Instead of included and excluded users, we define collaborators as Enablers and En-
hancers, whose individual abilities transform To Be Included people into Included users
– potentially, new collaborators.

Due to the collaborative nature of the work model, a user who created the content
does not have to be the only person creating all alternatives. Rather, a community can
implement the required features (or include alternative, equivalent media) to enable
more people to play. This decision turns game accessibility itself into a collaborative
effort, on which people who could not use before may become able to use and to create,
and, possibly, enable others to play. The community for the individual, the individual
for the community. The community, working together, provide cycles of inclusion.

The model, thus, leads to a somewhat opportunistic strategy to inclusive design –
an end-user powered approach defining mutualistic48 and communistic improvements,
on which every single addition helps more people to play. Moreover, people who could
interact with the original systemmay become able to help to create it. As accessibility has
cascading effects, an improvement hardly ever benefit single individuals; on the contrary.
As an example, subtitles for dialogues are essential for players with hearing disabilities,
and helpful for sighted players to follow the audio (especially if they are not fluent on
its language). In turn, players with hearing disabilities might, then, become enablers;
for instance, they might provide sign language transcriptions, or translate the subtitles
to another language. When we include someone new, his/her abilities and knowledge
may further improve the game, and, possibly, include more people, providing another
step for this enabling loop.

48 Mutualism is a biology relationship on which organisms benefit from each other.

2.6. The Collaborative Work Model for Co-Creation of Tailorable Digital Games: The Community for the
Individual, the Individual for the Community 85

2.6.1 Transient Roles of the Model: “I Become What I am Doing”

In the collaborative work model, roles for participants are transient, in the sense
that they can change according towhat they are doing at a givenmoment. This transiency
happens at two levels. First, there are roles regarding the status of inclusion for a person
to a given version of the system:

Included Person for which the system provides suitable IO features for her/his interac-
tion needs. An Included person can use the system to play and create – even if the
interaction quality is not perfect.

To Be Included Person for which the system is not yet suitable. In this case, she/he
cannot use the system in any way.

Collaborator Someone whose abilities can improve the overall quality of the system.

Enhancer A Collaborator who can improve the system. An Enhancer can modify ex-
isting features to improve them (for instance, improving aesthetics and/or user
experience).

Enabler An Enhancer who can also enable new To Be Included to access the system.
The difference is that an Enabler can provide new IO features which can transform
To Be Included into Included users – in this way, they collaborate to improve the
overall accessibility of system towards universal access at best, maximum inclusion
at worst.

These roles depend on the available interaction features at a given version of the
system. For these roles, the goal is allowing Included users to act as Enablers and/or
Enhancers to increase the overall quality of the system, to improve quality of use and
promote access. In particular, upon inclusion, newly-Included users may become En-
ablers and/or Enhancers as well, potentially resulting into cycles of improvements –
newly-Included people may provide abilities, skills, and knowledge to iterate in the
process. This creates a dynamic roughly described as “once you helpme, I can potentially
help more people” – people’s abilities are for improvements.

Creation-wise, the second level defines three additional transient roles:

Supervisor Person who oversees the creation process, guiding it towards its conclusion.
For serious contexts, this can be domain experts such as professors or therapists
guiding their pupils. For casual contexts, this can be a person deciding the next
steps of her/his project.

Creator Person who is creating the content for the game.

86 Chapter 2. A Framework for Tailorable Games

Player Person who is playing the created game.

The previous roles depend on the context and current activity that someone is
performing. As the framework is for end-users, the roles further helps development, as
they are part of a game creation process.

2.6.2 Game Creation Process: Multiple Phases, Multiple Opportuni-

ties for Collaboration

To support their creating endeavors of end-users, we defined a game creation
process divided in eight phases lead activities. Each phase provides opportunities for
people with different skills and abilities to further collaborate and enrich a game project.
In this way, diversity brings greater wealth of ideas, needs, discussions, and features to
continuously improve a game.

The process decomposes game creation into eight iterative phases (Figure 9):

1. Conception. The initial phase. A Supervisor idealizes the game project, define
its goals (for instance, reflect about something, solve a problem, or a way of self-
expression). It proceeds to Conversion.

2. Conversion. Programming is not the end-goal of our framework; rather, we want
to enable them to create games. Shortcuts to programming are, therefore, welcome.
For instance, designing with drawings, collages, and textual descriptions. The
tangible material acts a low-fidelity prototype, which Collaborators (or automatic
conversion) can transform into an initial, high-fidelity game prototype49. The
prototype can be low, medium, or high-fidelity, depending on what is currently
available and its goals. Once created, the process proceeds to Evaluation.

3. Evaluation. A Supervisor evaluates of the current state of the project, to define
what the next phase should be, depending on what is currently needed (or more
important to continue the project). The next phase can be Creation, Enrichment,
Distribution, Use, or Conclusion.

4. Creation. Creation of content for the project. With the initial prototype, Creators
use an accessible editor to modify and improve the game. They add and refine art,
story, and mechanics to create interactive experiences. For accessible results, the

49 In the future, we could explore approaches including paper prototyping (PixelPress – <http://
projectpixelpress.com>), drawings (Google Quick, Draw! – <https://quickdraw.withgoogle.com>),
natural language (GURI VR – <https://gurivr.com/> and WordsEye – <http://www.wordseye.com/
>), and creative input devices (Makey Makey – <http://www.makeymakey.com/>, virtual reality).
This could promote multimodal creation involving words, speech, drawings, image recognition, move-
ments. . .Different approaches for different abilities. Provided there is a suitable one for a person, she/he
could become able contribute. Creation is about abilities.

http://projectpixelpress.com
http://projectpixelpress.com
https://quickdraw.withgoogle.com
https://gurivr.com/
http://www.wordseye.com/
http://www.wordseye.com/
http://www.makeymakey.com/

2.6. The Collaborative Work Model for Co-Creation of Tailorable Digital Games: The Community for the
Individual, the Individual for the Community 87

editor provides guidance on how to create accessible alternatives for new media
and mechanics. For instance, subtitles and sign languages for spoken dialogues,
onomatopoeias and graphics for sound effects, textual and aural descriptions for
images, and input automation. It proceeds to Evaluation.

5. Enrichment. Call for the aid of Collaborators, to request improvements for people
external to the original project. One single person does not have to provide all game
content. Rather, people may work on the project to add and/or improve content
collaboratively, according to their abilities, capabilities, interests, and strengths. It
proceeds to Evaluation.

6. Distribution. Generation of playable versions (or prototypes) of the project, trans-
forming them into playable games. For accessible games, distribution goes beyond
sharing the game: it includes the generation of a suitable version. In this phase,
the game is configured to suit the users’ abilities and capabilities – or personal
preferences. It proceeds to Use, if there are suitable alternatives; otherwise, it
backtracks to Evaluation (a Supervisor should request the alternatives).

7. Use. Players play the generated Game. It proceeds to Evaluation.

8. Conclusion. The final phase is the end of the project.

The Conversion phase of the framework tries to explore low-level technologies
for initial creation – in special, everyday material for game design. At the one hand,
this promotes the use of tactile material, which might be useful for motor and cognitive
disabilities; it also avoids overwhelming people who had never used computers or
played games. On the other hand, it (potentially) allows the exploration of nouveau
approaches for content creation. Currently, we have explored low-fidelity prototypes
created with paper and pencil, and high-fidelity prototypes created with our game
creation platform, Lepi.

Due to possible contexts of use and the enabler/assisted nature of collaboration
(with transfer of knowledge/abilities), a domain expert may explore the framework
as tool to support her/his professional activities. In this context, we embrace tailorable
game creation as a form of learning, practicing, and 21st literacy. Furthermore, this
expands game creation as a potential tool for reflection and self-knowledge – which
could be useful for educational and healthcare contexts.

Activities within the Phases

Subsection 2.6.1 and Subsection 2.6.2 defined the roles and the collaborative
creation process to create games with the framework. To manage the process, we defined

88 Chapter 2. A Framework for Tailorable Games

Figure 9 – A state diagram representing the phases of the collaborative work model.

Source – Created by the author.

a work flow for development, as follows (Figure 10)50:

1. Conception:

a) A Supervisor defines the scope for a new game project, defining domain-
specific goals, theme, and activities and milestones.

b) Actions:
• Define scope of the project;
• Select initial assets;
• Define game parameters;

50 Although we assume a single Supervisor for convenience, there could more multiple ones.

2.6. The Collaborative Work Model for Co-Creation of Tailorable Digital Games: The Community for the
Individual, the Individual for the Community 89

• Register creators;
• Provide the project.

c) The Supervisor invite Creator(s) to participate in the project.
d) Next phase: Conversion.

2. Conversion:

a) A Creator generates a first prototype for the project using whatever material
and fidelity the Supervisor instructs her/him to. The Creator might either use
a system to create her/his prototype, or request assistance from a Collaborator.

b) Actions:
• Generate the prototype;
• Submit prototype for evaluation.

c) After finishing, the Creator submits her/his results to the Supervisor.
d) Next phase: Evaluation.

3. Evaluation:

a) The Supervisor oversees and manages the project, and analyzes its current
state, verifying how it currently satisfies the proposed goals.

b) Actions:
• Fetch projects for evaluation;
• Select project for evaluation;
• Review project;
• Request improvements for the project;
• Request improvements for assets;
• Request interaction alternatives;
• Approve the project.

c) Next phase:
• Creation, if she/he requests further content creation for the Creator(s),

fixes, and/or improvements.
• Enrichment, if she/he desires external Collaborators to improve the

project, or to create interaction alternatives for existing content.
• Distribution, if she/he wishes to share the project for someone to play.
• Conclusion, if she/he considers that the project should be finished.

4. Creation:

90 Chapter 2. A Framework for Tailorable Games

a) A Creator uses a game editor (for instance, Lepi) to iterate on her/his game
(Meta-Game). She/he can add new features and content, and/or improve
existing ones.

b) Actions:
• Fetch available projects;
• Acquire project assets and content;
• Iterate on the project;
• Submit project for evaluation.

c) After finishing, she/he submits her/his results to the Supervisor.
d) Next phase: Evaluation.

5. Enrichment:

a) The Supervisor shared desired content with Collaborators.
b) A Collaborator works on a task assigned to her/him – either to improve

existing content (Enhancer), or to define new accessibility features and/or
content to iterate towards inclusion. They provide their knowledge and skills
to perform the tasks.

c) Actions:
• Fetch requests;
• Iterate on request;
• Submit artifact for evaluation.

d) Next phase: Evaluation.

6. Distribution:

a) The Supervisor defines her/his intended audience for to create a Game from
the Meta-Game.

b) She/he selected what interaction alternatives to include into the Game. The
system may support her/him by recommending combinations, excluding
conflicting alternatives which can lead to unsuitable interaction, and showing
interaction needs not yet contemplated.

c) Actions:
• Select interaction needs for intended audience;
• Select interaction alternatives;
• Generate the Game;
• Share the Game.

2.6. The Collaborative Work Model for Co-Creation of Tailorable Digital Games: The Community for the
Individual, the Individual for the Community 91

d) The system generates the Game;
e) The Supervisor distributes the Game to her/his intended audience;
f) Next phase: Use.

7. Use:

a) Players play the game. They may provide feedback regarding the game.
b) Actions:

• Play the Game;
• Provide feedback about the Game.

c) Next phase: Evaluation.

8. Conclusion:

a) Everything shall come to an end sometime. This is it for the project.
b) Actions:

• Decide the final purpose of the project;
• Archive the project.

92 Chapter 2. A Framework for Tailorable Games

Figure 10 – A use case diagram relating roles of the collaborative work model with their
tasks within each phase of the model.

Source – Created by the author.

2.7. Support Systems and Approaches: Game Creation Tools 93

2.7 Support Systems and Approaches: Game Creation Tools

Section 2.5 and Section 2.6 defined the theoretical parts of the framework – how
people could collaborate to create tailorable games using a suitable architecture.However,
as end-users are not professional programmers, the architecture is not particularly useful
to them. Similarly, if end-users cannot create the software, the collaborative work model
is not useful, either. To enable game creation, we need to provide inclusive EUGD
approaches. As developers, we should remove the barriers to enable users to create.
Afterwards, together and supported by the framework, we need to empower users them
to remove further barriers; this way, they may include their peers.

2.7.1 End-User Creation of (Meta-)Games: Lepi, an Inclusive Game

Creation Platform for Inclusive Storytelling Games

Although the architecture described in Section 2.5 was originally conceived for
games, it can support other interactive applications – including game development
approaches. As an additional test for the architecture and proof of concept, we built the
last pillar of our framework – the Lepi Game Creation platform. We opted to implement
Lepi using the Godot Game Engine instead of using our own (defined in (GARCIA,
2014))51 52. For the purposes of the framework, Godot provides the following benefits:

• It is open-source, allowing to modify it and include accessibility features directly
into the editor and engine;

• It provides a self-contained editor for the creation of games, with features to
implement, debug, and profile games;

• It has documentation and examples;

• It has an active community;

• It has support for internationalization;

• It supports for multiple programming languages (C++, C#, GDScript, a visual
programming language, and the possibility to integrate other languages);

• It is Multi-platform (Linux, Mac, Windows) and exports to multiple platforms
(including Linux, Mac, Windows, iOS, Android, Web);

• It could serve as an advanced tool for people who moved from our own solution
(that is, in the future, once it is mature).

51 <https://godotengine.org/>
52 Although, at this time, Lepi is an application created with Godot, it could, ideally, extend Godot in the

future.

https://godotengine.org/

94 Chapter 2. A Framework for Tailorable Games

As an initial study and proof of concept, Lepi supports the creation of digital
storytelling-based games, such as adventure, point-and-click, and visual novels. In this
proof of concept, we implemented features to support people with low literacy, people
with hearing disabilities, and average users for creation. Our intention is to expand
creation audiences first, then advancing to new mechanics over time53. People first,
inclusion second, technology next.

As an editor, Lepi abstracts the creation of MG from the users (Figure 11). Al-
though Creators think that they are making Games, they are actually programmingMGs.
To support games for everyone, Lepi promotes content alternatives towards inclusion by
tailoring. When producing new content, Creators are encouraged to include content
alternatives. We abstracted those as slots. For our current audiences, we support text,
audio, and video slots support reading, listening, and sign language (video) skills54.

A single user should try to provide alternatives for as many slots as she/he can.
However, she/he does not need to it alone. During the Evaluation phase of the work
model, Supervisors may request Collaborators to craft new alternatives. During the
Distribution phase, Supervisors build Games – they decide what interaction alternatives
should exist into the generated Game to suit the needs of their Players55.

To support games by everyone, Lepi as a program is, itself, a Game derived from
an MG. Creation features are commands implemented without IO references, which we
can map to devices and physical level interactions. To enable more people to create, we
re-map interaction – we create interaction alternatives, add to an existing (or define a
new) user interface, and provide them for use.

2.7.2 Generating Tailorable Games

To generate Games, we explore the architecture described in Section 2.5. Missing
concrete elements limits what is possible to tailor into the game; once we provide the
alternatives for the content, we can generate an accessible Game for an audience. With
53 Components and events handlers allow us to provide new mechanics as stencils. When Creators

attach a component to an entity, it enables the entity to perform the rule (mechanic). This way, we
can pre-define (implement) mechanics, figure interaction alternatives based on content (for instance,
media for different audiences), and add them as stencils for game creation. The same reasoning applies
to events and event handlers – for immediate feedback. Furthermore, we can expand this strategy for
programming in the future – people could start programming their own components, event handlers,
and subsystems to define new mechanics.

54 We will expand this same idea for new mechanics. We implement the mechanics (and related com-
mands), consider different ways to convey their information, provide them as templates into Lepi – or
a new tool –, and create slots that users can fill with alternatives. As we can define what an entity is
able to do via components, we can promote game creation by attaching “mechanics” components into
entities.

55 As the content, in the current version, is orthogonal, resulting Games can have any combination of
text, audio, and sign language videos to convey content to a Player. This means that any player able to
read, hear, or understand sign language in the languages of created games can play them.

2.7. Support Systems and Approaches: Game Creation Tools 95

Figure 11 – Creating games with Lepi combines the architecture with the collaborative
work model.

Source – Created by the author.

Note – With Lepi, activities involving implementation in the Conversion and Creation phases generate
MGs. To promote broader inclusion, a Supervisor may request improvements from Collaborators.
Collaborators can create or improve features and interaction alternatives in Enrichment phases
providing support for interaction needs. A project may have multiple Collaborators; any Col-
laborator may also contribute multiple times, providing their abilities, skills, and knowledge to
improve the project. Once provided, the features and alternatives may become part of the system,
potentially allowing for new ways of perceiving and controlling the Games derived from the MG.
At the Distribution phase, a Supervisor can choose among these alternatives to generate Games
to support the abilities for the Players at the following Use phase. Elements underlined in this
figure generates a possible Game assembled at the Distribution phase. Other combinations would
generate different Games from the same MG – the logic is always the same; the interaction can be
completely redefined.

the current implementation of Lepi, we have typical use/play cases mapped into a story
player.

For generating games suitable for different interaction needs, there should be a
way to determine who can interact with currently existing features. At a lower level, this
translates to being able to identify what interaction abilities are necessary to let a Player
use a given feature.

To transform an MG into a Game, every game feature (mechanic, aesthetics,
story, and technology) should map existing game content to the available interaction
alternatives. At an architectural level, this means that there should be alternatives to
transform abstract elements into concrete elements. Alternatives definewhat Supervisors
can generate at the Distribution phase, for they are the IO-features that may be exported
to generate playable Games56 57. In this sense, the Distribution phases can resemble

56 Although this is, currently, a task for Supervisor, we could do this programmatically. We could track
alternatives for each asset of the game, identify which are missing alternatives, and inform a Supervisor
to request them.

57 Likewise, although this is the central idea, in practice, it may not be enough. We need to ensure that
selected features are compatible with each other. Following Grammenos, Savidis & Stephanidis (2007),

96 Chapter 2. A Framework for Tailorable Games

software product lines, on which the final product (a Game) is composed of available
features (to tailor the MG).

2.7.3 Enabling Tailorable Creation

The solution to enable more people to create is the same as to enable them to play.
We learn from the needs an audience, consider a solution to enable use, implement it as a
combination of IO elements, add to Lepi, and provide the system to the audience. As we
are exploring a tailoring based approach, we can create a completely new user interface
if required – the underlying processing technology (the MG) is already defined. As we
have the commands (what a person can do to use the system), we can provide different
ways to use them (how someone uses the system).

As we are designing systems for adaptation, this means that, if there exists a
solution to enable use (for instance, assistive technologies), we can introduce it as a
combination of interaction alternatives and include them at run-time. This means that
we do not need to anticipate what accessibility features we will use, nor plan to add
them in advance. Rather, we can introduce them when they are needed – and include
them at use-time via run-time tailoring. The only requirement for this is to implement
new components, event handlers, and subsystems. Once they are implemented, we
can include them into an Interaction Profile to attach them to the system – accessibility
features become, thus, plug-and-play solutions to enable use.

2.8 Evaluation

Our goal in the evaluation was to verify whether our research hypothesis pre-
sented in Section 2.1 was valid. Thus, we had to verify if the pillars of the framework
fulfilled their goals to enable people to create games for people who had, potentially,
different abilities than their own.

We defined the architecture upon our reflections about UGE. We tried formalize
it with definitions, theorems, and algorithms. If our results are correct, we can express
digital games in sets of the elements defined in Subsection 2.5.1. We chose set theory
for the definitions because its ease of including and removing elements via unions,
intersections, and differences of sets. Sets provide simple operations for developers who
want to implement their own variations of the model. Moreover, the use of sets mean
that we can work towards inclusion iteratively, adding one interaction feature at a time,
including one audience a time, by defining concrete elements to tailor abstract ones. This

a possible approach consists of building a compatibility matrix to map game content alternatives that
can be used simultaneously. The matrix helps to avoid the generation of unsuitable or conflicting
versions of Games, as well as hinting on how to avoid sensory overloading (for instance, too many
sounds at once).

2.8. Evaluation 97

way, every new interaction alternative adds to every other pre-existing ones, potentially
enabling new people to interact, and offer more choices and quality of use for people
already included.

Moreover, we created two high-fidelity prototypes to showcase the run-time
flexibility of the architecture for separating logic from IO. The prototypes serve as
demonstrations for the viability and the concept of the architecture. Links to these
prototypes are available in Subsection 2.5.4; one of the prototypes is discussed with
more detail in Subsection 2.5.2. These prototypes extended our initial related to game
accessibility (for instance, audio games in (GARCIA, 2011; GARCIA; NERIS, 2013b) and
UA-Games in (GARCIA; NERIS, 2013a; GARCIA, 2014; GARCIA; NERIS, 2014)). The
implementation of Lepi serves as an additional viability study for the architecture – as
well as a showcase that we can explore it in traditional applications.

The collaborative work model and Lepi were evaluated together58,59. We per-
formed ten meetings over four months in a public healthcare service60, on which people
co-created digital games. Our participantswere two healthcare professionals, ten users of
the service, a team of five Collaborators, and the author of this thesis and his supervisor.

The users of the servicewere adults from lower socioeconomic gradeswhowere in
alcohol and drugs rehabilitation. They had no previous programming experience – some
had never used computers before –, and low literacy skills. Our participants followed the
work model activities, using Lepi during the Creation phase to implement their games61.
The users of the service participated as Creators and Players62. Healthcare professionals
participated as Supervisors. We also invited five people to aid as Collaborators. Three
had Computer Science backgrounds (two undergraduates students and an MSc), and
two had Nursing backgrounds (an undergraduate student and a PhD). Collaborators
acted as Enablers and Enhancers, depending on the tasks.

Our meetings followed a pattern, starting with a description of planned activities,
followed by a complete cycle composed of all eight phases of the workmodel, finished by
a discussion of activities and results. Strategies for the Conversion and Creation phases
varied according to the abilities of the participants. For instance, there were people who
could not read, nor write. In these cases, they recorded their voices to include as game
content, they drew their stories, and/or Collaborators helped them to transcribe content
58 We had two scenarios for the evaluation. The first was a public healthcare service, with people with

low literacy. The second was at an inclusive school, where some children had hearing or cognitive
disabilities. For the second course, we provided a capacitation course for teachers; however, we could
not start the activities with the students yet.

59 More details of the evaluation are provided in Chapter 3.
60 We followed research ethics protocols over the evaluation. Certificado de Apresentação de Apreciação

Ética from Plataforma Brasil: CAAE: 89477018.5.0000.5504.
61 Some preferred to use Lepi at the Conversion phase as well, instead of working with other materials.
62 Some times, they also participated as Collaborators; in one case, a user even participated as a “small

scale” Supervisor.

98 Chapter 2. A Framework for Tailorable Games

that they dictated. As Lepi supported text and audio as media for story, both approaches
were valid. For participants who, initially, drew their stories, Collaborators helped to
convert them to textual versions before inserting the content into Lepi.

We noticed that users could create their games using the framework for them-
selves and their peers (Figure 12 and Figure 13). This happened either independently or
assisted by Collaborators – independence and interdependence, as defined by Bennett,
Brady & Branham (2018). For the assisted approach, Collaborators helped the Creator to
overcome an accessibility barrier. For instance, they would read content for people who
could not read; they wrote content for people who could not write. Creators created ac-
cording to their abilities; Collaborators complemented them when needed. Some people
started assisted, becoming more independent over multiple meetings (interdependence
moving to independence). Some were independent since the start – initial instructions
and punctual questions were enough. Some people would need assistance for a very
long time, which is also acceptable.

They were all co-creating. More importantly, they were able to co-create games
suitable for both themselves and their peers. As the interaction abilities of the participants
varied, resulting games had textual, aural, and graphical content to present the game to
Players. Accessibility-wise, the most important result was verifying end-user created
interaction alternatives.

People who could hear became able to play games originally featuring textual
stories after Creators and/or Collaborators included audio transcriptions for the text.
Similarly, people who could speak shared their games with people who could hear. At a
later Enrichment phase, their stories embedded features textual alternatives included
by Collaborators. One of our Collaborators had basic knowledge in Brazilian’s Sign
Language (LIBRAS). After she included it into some projects, people who could not
hear had two options to play – read the textual version, or watch in-game LIBRAS videos
for dialogues.

Overall, the alternatives allowed all participants to play based on their abilities.
As a result, participants could play all projects created by the peers, which would not be
possible otherwise. Without audio versions, for instance, participants who could not
read would be unable to play projects with text only content. Once Creators and/or
Collaborators introduced the audio, they became able to play independently. Although
the participants at the service could hear, participants mentioned that they appreciated
the inclusion of LIBRAS.

The framework, therefore, helped people with different interaction needs to play.
It also resulted into an emergency of further benefits over meetings. Game creation
helped the participants themselves. In some projects, the participants shared stories
about themselves – their experienceswith alcohol anddrugs, the effects, how to overcome

2.8. Evaluation 99

Figure 12 – Participants creating and playing games.

(a) (b)

(c) (d)

Source – Created by the author.

the addiction. They reflected about their past choices, considered alternatives ways to act,
and taught and learned from each other. Over time, this dynamic leaded to self-growth.
Moreover, people who had never used computers before started helping others to use
the machines. This way, new people could play the games from the Creators – as well as
create their own63.

63 We provided more details of the evaluation in Chapter 3

100 Chapter 2. A Framework for Tailorable Games

Figure 13 – Examples of games created by our participants loaded in Lepi.

(a) (b)

(c) (d)

Source – Created by the author.

2.9 Limitations

We are considering very simple games in our study – with simple mechanics and
few entities. Nevertheless, this does not necessarily imply that the framework cannot be
explored in larger and more complex games. Rather, it means that the framework was
not explored in such games yet. Thus, in the future, there is an opportunity to identify
which mechanics and genres could benefit from it. With further research and increased
maturity, this opportunity could mean that some existing mechanics could be adapted
to enable broader audiences to play, as well as improve gaming experiences for currently
supported ones. The same reasoning applies to game creation.

Moreover, although strategies in this chapter may apply to the industry, they are
not our primary focus at this time, as they need scalability and real world evaluation. In
the future, the architecture and the collaborative work model could contribute towards
“accessibility modding” from end-user contributions, as well as game accessibility APIs,
which developers could provide to enable the community to generate partial input
automation. For professional developers, as a MG does not specify IO, the architecture
could potentially contribute to porting – especially if explored in game engines targeting
multiple devices.

2.10. Concluding Remarks and Current Work 101

Nevertheless, flexibility has its cost. The architecture incurs overhead that should
be unsuitable for high-performance games. Performance, scalability, memory layouts,
and cache coherence can be problems for adoption in large projects or real world sce-
narios. On the bright side, ECS, EDA, and Data-Driven Architectures are used in high-
performance games. As we have not assumed any particular implementation, some of
these issues could be mitigated with more advanced strategies64. However, with thou-
sands or millions of entities, rules could generate thousands of events per game loop,
severely impacting performance. Although we can optimize the solution, the discussion
is not in the scope of this chapter.

In the collaborative work model, we are also considering small scale projects,
with small communities. In particular, ICTs abilities are particularly low worldwide
(Organisation for Economic Cooperation and Development, 2016). Thus, we would need
to prepare Supervisors from non Computer Science domains to provide these practices.
As an initial step towards this goal, we provided a capacitation course. Moreover, in
these scenarios, interaction abilities of participants will be similar. We could expand
the model to address large scale projects and communities in the future – for instance,
adopting Hive (SALEHI; BERNSTEIN, 2018) for large scale collaborative distributed
work. Regardless, we are limited by accessible tools for assets creations.

Finally, Lepi is a proof of concept and shall be improved over time. In this initial
version, we have considered a subset of interaction alternatives of the audiences of our
studies. As we expand the audiences, we will provide more alternatives to address
more interaction needs and achieve broader inclusion. Additionally, as we expand
the repertory of mechanics, it is probable that we will have to reduce the number of
audiences who can create games per genre – at least if we think about individual creation.
There is an alternative, though. If we think about individuals and communities (LIU;
DING; GU, 2016b), as well as independence and interdependence (BENNETT; BRADY;
BRANHAM, 2018), abilities from different people can contribute to remove barriers to
enable co-creation and use. We can already do it with generated games (Figure 3); we
could further explore it with creation tools.

2.10 Concluding Remarks and Current Work

With the growing importance of ICTs, being able to use and interact with technol-
ogy becomes an essential ability for work, education, communication, and entertainment.
Digital, Media, and Gaming Literacies reinforce this statement, affirming that ICTs con-
tribute to acquisition of 21st skills and abilities. In this context, it is not enough to provide
access to new technologies to achieve digital inclusion; we should aim to enable more
64 For instance, with Data-Oriented Design (FABIAN, 2018).

102 Chapter 2. A Framework for Tailorable Games

people to create them as well.
This chapter presented our framework aiming to enable more people to create

and play digital tailorable games. The framework provides a software architecture, a
collaborative work model, and a game creation platform (Lepi). The software architec-
ture decouples interaction from logic, enabling people to define how they will interact
with a game at use time. The collaborative work model promotes collaborative creation
of digital games based on abilities. People become co-creators of the solution, providing
their own abilities, knowledge, and skills towards including their peers. Once someone
is included, she/he may become a new contributor, continuing the process towards in-
clusion. The game creation platform combines the architecture and the work model into
a game making tool to enable end-users to co-create their own games. As the platform
implements itself the architecture, it is also able to modify its IO features; thus, we are
able to extend it to include more people into creation activities.

Interaction requirements come from the diversity. Solutions can also come from
diversity. With the framework, people collaborated to co-create digital games, helping
each other in the process. Co-creation of inclusion became a community issue, which
the community could also address. The community for the individual, the individual
for the community. Contributions add over time, enabling new people to create and
play, as well as improving the quality of the project to already included people.

As we compose interaction to games and systems, we can always include more
people to create and play. Every new interaction alternative that we add can enable
more people to participate, as well as improve usability for people who were already
included. With the architecture, thus, accessibility can become an iterative, mutualis-
tic, communistic, and collaborative process. Every new interaction feature contribute
towards inclusion. Therefore, provided our results are right, the only limits to inclusion
are what are computationally possible, existing IO technologies, our abilities to map
interaction to human needs, and the game mechanics involved.

As we work with interaction alternatives in sets of features, this raises the ques-
tion: provided that we had enough interaction alternatives, could we start moving
towards accessibility suitable to the interaction needs of an individual? That is, could
we combine interaction alternatives to support interaction needs of the specific person
who is currently playing? With the architecture, we can always introduce alternatives
for use65. As sensory abilities perceive information differently, we cannot ensure that
every game can become universal; however, every game can become more accessible
and inclusive to a broader public. For traditional software and some game mechanics,
however, we could progress towards universal access for use and creation.

65 More details in Appendix B.

2.10. Concluding Remarks and Current Work 103

We will continue expanding this project in two ways. First, we plan by enabling
more people to create and play. We are refining our solution for current audiences, as
well as exploring new ones. At this moment, we are implementing accessibility features
in Lepi to support with people visual disabilities to create and play storytelling games.
This way, we can expand our support to new input and output strategies (for instance,
around the use of assistive technologies, text-to-speech, voice commands, and tactile
input). As a result, people with different (dis)abilities will start creating content others
with different (dis)abilities. This way, we move towards expanding the results from our
evaluation with low literacy.

Second, we can start to introduce new game mechanics (and genres) over time
to support more complex creations. Our goal is, initially, to explore non real-time me-
chanics first (as these will support broader inclusion) – from storytelling to exploration
and role-playing mechanics. We will follow our strategy of implementing mechanics,
considering interaction alternatives, and providing slots for creation. We provide the
code, people provide interaction alternatives according to their abilities to provide
content for IO components and event handlers. At the (probably distant) future, we
shall be able to explore others EUD activities – or game design frameworks, such as
Machinations (ADAMS; DORMANS, 2012) –, so people can start creating their own
mechanics and technology.

105

Chapter 3

Able to Create, Able to (Self-)Improve:
How an Inclusive Game Framework
Fostered Self-Improvement Through
Creation and Play in Alcohol and

Drugs Rehabilitation

3.1 Introduction

Information and Communication Technologies (ICTs) are part of the 21st century
life. In the same way that traditional literacy defined the abilities of reading and writing
as essential for gathering knowledge and communicating, proficient use of ICTs becomes
increasingly important, to the point of educators proposing modern types of literacies.
Digital Literacy (DL), Media Literacy (ML), Gaming Literacy (GL), and Game Based
Learning (GBL) provide examples and reasons to consider ICTs and games as ways of ac-
quiring knowledge and culture (GEE; TRAN, 2015; HAYES; GEE, 2010; MOUMOUTZIS
et al., 2014; ROBERTSON, 2012; EARP, 2015). GL, for instance, emphasizes that play-
ing develops abilities related to computational thinking (CT), communication, and
problem solving (GEE; TRAN, 2015; HAYES; GEE, 2010; MOUMOUTZIS et al., 2014;
ROBERTSON, 2012).

For digital media, serious games brought digital playing activities to educational,
professional, and healthcare contexts, for learning, training, and rehabilitation. Yet, even
before serious games and GL, the benefits and applications of games extended beyond
pure entertainment. Professionals from multiple domains often explored games on

106 Chapter 3. Able to Create, Able to (Self-)Improve

their activities. In fact, scholars such as Huizinga and Caillois argue that playing is so
important for humans that it predates culture itself – games and playing are central
activities in the formation of societies (HUIZINGA, 2016; CAILLOIS, 2001). From war
to law, religion to arts, studying games can help to understand civilizations.

If games have literacy value, then, ideally, we should allow everyone to create
and play them. Over time, tools, methods, and techniques (approaches, henceforth)
have been lowering technical barriers and popularizing game creation – for instance,
with modding and End-User Development (EUD) practices (HAYES, 2008; GEE; TRAN,
2015; BURKE; KAFAI, 2014; RESNICK; SILVERMAN, 2005).

There are guidelines and advice for EUD and for developing tools, highlighting
the importance of collaboration, direct manipulation, gentle increases of programming
complexity (“gentle slopes”), and incremental development practices (RESNICK; SIL-
VERMAN, 2005; BURKE; KAFAI, 2014; AHMADI; JAZAYERI, 2014; JAZAYERI; AH-
MADI, 2011; PENA, 2011; UZUNBOYLU; BAYTAK; LAND, 2010, 2010; POOR, 2014;
COMUNELLO; MULARGIA, 2015; HONG; CHEN, 2014; REPENNING; IOANNIDOU,
2006b). For storytelling, studies suggest focusing on story instead of technology, explor-
ing visual programming languages, and converting story to computer code (de Leeuw et
al., 2007; MARCHIORI et al., 2011; MARCHIORI et al., 2012; CARBONARO et al., 2008).
There are also recommendations for exploring game creation as a tool for learning pro-
gramming – for instance, exploring the principles of Constructionism (KAFAI; BURKE,
2015) –, acquiring GL (MOUMOUTZIS et al., 2014; MCARTHUR; TEATHER, 2015; LIN;
CHIOU, 2010; El-Nasr; SMITH, 2006; MORAIS; GOMES; PERES, 2012; HAYES; GEE,
2010), end-user perception of EUD activities, (PANE; MYERS, 2006; BLACKWELL, 2006;
LIEBERMAN; LIU, 2006; RADER; BRAND; LEWIS, 1997), and gender preferences for
creation (DENNER; WERNER; ORTIZ, 2012; ROBERTSON, 2012; HAYES, 2008).

Currently, there are game creation approaches for professionals (usually teams
consisting of designers, programmers, artists. . .), and for end-users (BURKE; KAFAI,
2014; KAFAI; BURKE, 2015; RESNICK; SILVERMAN, 2005; GEE; TRAN, 2015; EARP,
2015; WOODS; WOODS, 2015). The youth are an usual intended audience for end-user
game creation (EARP, 2015).

However, to the best of our knowledge, studies regarding game creation focus
on people without physical, cognitive, and emotional disabilities, living in favorable
socioeconomic environments. For GBL, for instance, Earp (2015) noticed in a systematic
review that only 6 out of 494 studies (1.21%) considered a public who were, at least, 23
years old, while 351 studies (71.05%) target children, youngsters, and teenagers. Earp
(2015) also comments that most studies considering inclusion focus on “game making
as a strategy for addressing the underrepresentation of girls and women in computing”.

In our analysis of academic studies considering end-user game development,

3.1. Introduction 107

the most common audience are young anglophone people – normally children and
adolescents of elementary and high schools in the United Stated of America (UZUN-
BOYLU; BAYTAK; LAND, 2010; AHMADI; JAZAYERI, 2014; BERLAND et al., 2011;
CARBONARO et al., 2008; DENNER; WERNER; ORTIZ, 2012; El-Nasr; SMITH, 2006;
HAYES, 2008; HAYES; GEE, 2010; IOANNIDOU; REPENNING;WEBB, 2009; JAZAYERI;
AHMADI, 2011; KAUHANEN; BIDDLE, 2007; KESER et al., 2010; LIN; CHIOU, 2010;
MCARTHUR; TEATHER, 2015; MORAIS; GOMES; PERES, 2012; MOTA; FARIA; de
Souza, 2012; MOUMOUTZIS et al., 2014; PETRE; BLACKWELL, 2007; REA; IGARASHI;
YOUNG, 2014; REPENNING, 2013; ROBERTSON, 2012; SMITH; CYPHER; TESLER,
2001). Communities of gamemodders – people whomodify their favourite games – form
a second popular audience for studies (POOR, 2014; POSTIGO, 2008; SOTAMAA, 2010).
Although older (in the study performed by Poor (2014), the average age of participants
was 31 years old), modders grew using ICTs and playing digital games.

Therefore, to the best of our knowledge, usual audiences for game creation and
modding are youths (“digital natives”) belonging to a normal distribution of abilities1.
These are, thus, audiences composed by young people without physical, cognitive, and
emotional disabilities. The more one person’s abilities from these assumptions, the
harder it is play games and ICTs. Thus, instead of reducing social and digital inclusion
gaps, current approaches are contributing to exclude those who deviate from the average.
Thus, age, socioeconomic grades, literacy, language and (dis)abilities are barriers we
ought to overcome.

We can revert this situation, for we can create technology to foster inclusion.
Instead of restricting and excluding, we should aim to enable and include, promote
creation and consumption practices. Ideally, the inclusion should aim for the broadest
possible audience as an end-goal – as proposed by the Universal Design (UD) (STORY;
MUELLER; MACE, 1998).

Game accessibility provides resources to help developers to enablemore people to
play (YUAN; FOLMER;HARRIS, 2011; InternationalGameDevelopersAssociation, 2004;
ELLIS et al., 2013; BARLET; SPOHN, 2012; GRAMMENOS; SAVIDIS; STEPHANIDIS,
2011; GARCIA; NERIS, 2014). Although these studies are currently aimed at developers,
we could explore these resources to design game creation approaches to enable people
with disabilities to make their own games.

To support this goal, we have been defining a framework to enable more people
to create and play digital games, regardless of their (dis)abilities. Our lemma is “games
by everyone, for everyone”, for we are working towards universalizing related practices,
lowering entry barriers, and exploring (dis)abilities as opportunities for improving

1 The term average users (FISCHER, 2001; NERIS, 2010) describes users belonging to a normal distribu-
tion of abilities. This excludes, for instance, users with disabilities.

108 Chapter 3. Able to Create, Able to (Self-)Improve

games for everyone2. The framework aims to extend modding with “accessibility mod-
ding”: besides game content, people can contribute to create accessibility features and
improve inclusion.

In our studies involving unusual (not yet considered) audiences (including
people with low literacy and heterogeneous interaction needs)3, we noticed evidence of
the participants transforming themselves when they made their own games, shared it
with their peers, and collaborated to improve their creations with what they knew and
were able to do. By focusing on what participants were able to do4, the activities boosted
their self-esteem, inner trust, and self-value, for they perceived they were capable of
doing and overcoming their previous limits. For this, abilities and disabilities became
opportunities for improvements, both for themselves and their peers. From the union of
the best abilities of each one, they created better systems for themselves and everyone
else.

In particular, this workflow could benefit serious contexts such as education and
healthcare. Healthcare professionals can already explore game playing as a rehabilitation
tool for their patients to address mental, physical, and behavioral conditions (ATILLA,
2010; KHARRAZI; FAIOLA; DEFAZIO, 2009; KHARRAZI et al., 2012; PRESCHL et al.,
2011). In Psychology, individuals express themselves with actions (CIALDINI, 2006). In
a clinical scenario, doing is the highest degree of competence (MILLER, 1990). Compe-
tence starts with fact gathering (knowing), proceeding with interpretation/application
(knowing how), demonstrating knowledge (showing), and performing in practice (do-
ing). We can infer, therefore, that creating (doing) requires knowing, knowing how,
and showing. From Psychology self-knowledge can contribute to psychotherapeutic
treatment – Cognitive Behavioral Therapy (CBT), for instance, stimulates the acquisi-
tion of self-knowledge as means of acknowledging one’s own values. ICTs and games
can explore CBT as for rehabilitation, aiming to promote behavioral and self-esteem
improvements, and provide motor and cognitive stimuli (MADER; NATKIN; LEVIEUX,
2012; RICHARDS; RICHARDSON, 2012).

Therefore, with suitable approaches, healthcare professionals could explore game
creation as well as playing.

In this chapter, we describe how our framework helped participants who are
currently digitally – and socially – marginalized to create and play games, including
their peers and transforming themselves in the process. A group of EUD users (adults
2 The lemma and our goals do not assume that everyone will be able to create and play every game.

That is impossible. Rather, it means that we should always strive for inclusion and accessibility. Even
when a system cannot become universal, it can always become more inclusive.

3 As end-users (including people with disabilities and/or situations of vulnerability) participated
actively in our study, we followed research ethics protocols throughout the entire processes. Certificado
de Apresentação de Apreciação Ética from Plataforma Brasil: CAAE: 89477018.5.0000.5504.

4 Instead of excluding participants from what they could not do.

3.2. A Framework Towards Games For Everyone, By Everyone 109

in alcohol and drugs rehabilitation) used our framework as a support activity for their
rehabilitation to create and play their own games. In the process, creation became a
“sandbox”, on which participants developed games for self-expression and to share
their experiences and knowledge to others. Ultimately, the framework enabled them
to create and play for a greater end – it provided participants with opportunities for
self-expression, learning, and growth. Nevertheless, this was only possible because
they could co-create in the first place. Therefore, we provide a summary of design
recommendations to enable inclusive creation based on the lessons that we have learned
during this study.

3.2 A Framework Towards Games For Everyone, By Ev-

eryone

To enable more people to create and play digital games, we should expand our
perspectives, focusing on game creation on people first, technology second. In this
perspective, abilities, knowledge, skills, and wiliness can foster creation. This way, we
find opportunities for inclusion and collaboration based on what people are able to
do. As a result, people with disabilities can start contributing, co-creating, and playing
games.

When we searched for EUD approaches which enabled end-users to make their
own games, we noticed that theywere designed for young anglophone students, without
disabilities. Thus, although approaches existed, they were not yet suitable for every-
one. In particular, interaction needs from our intended audiences – end-users with
heterogeneous (dis)abilities who were not fluent at English – deviated from the usual
EUD audience. Although the language barrier could be minimized, it would be hard to
enable end-users to create accessible content for their games, as the approaches were not
designed to support it. In particular, resulting games hard to be accessible as well – for as
many audiences as possible. In particular, the needs from creators may be different from
those of the players. Therefore, inclusion should encompass creation (game making)
and play (resulting games).

We, therefore, started at one step below. Instead of using existing approaches
(which could not ensure inclusive creation and play), we defined a framework aiming
towards supporting inclusive creation of tailorable games. Our goal is enabling people
with heterogeneous abilities to co-create and play games, creating accessibility alterna-
tives towards inclusion as a community. Hence, the term “universal” refers to the context
of UD. The lemma of our framework was, thus, “games by everyone, for everyone”, for
we needed to support creation and play alike aiming at maximum inclusion.

We argue that a framework to support inclusive game creation could enable

110 Chapter 3. Able to Create, Able to (Self-)Improve

Figure 14 – The pillars of the framework supporting people.

Source – Created by the author.

Note – The architecture provides a way to implement games without assumptions of how player will
interact with the game. It allows for the implementation of abstract games from a combination of
components (raw data illustrated as boxes and databases) and entities, events and event handlers
(stars), and subsystems (engines). These games can explore different interaction alternatives to
change how a player perceives and commands it, (re-)defining input and output (IO) interactions
at use-time. Interaction needs originate from people ((dis)abilities, skills, literacy, language).
Strategies to address then are implemented in the game creation platform (sign language, cap-
tions, audio-descriptions, internationalization, support for assistive technologies and automation).
Content to fill the strategies can be created by people (from multimedia content). Once people (as
a community) create interaction alternatives and provide content, they can enable people to play.

people to express their best abilities into creation. To overcome barriers, we aimed to
support communication, collaboration, and inclusion; combined collective efforts to
overcome individual needs. Thus, our framework was composed of three main pillars:
a software architecture5 (A), a collaborative work model6 (M), and a game creation
platform (L) (Figure 14).

The architecture enables developers to implement games for adaptation, based on
semantics of use instead of physical-level actions (what a player can do, instead of how
she/he will do it). Like a tailor, we create and adjust input and output (IO) interactions
alternatives to suit the abilities of a player for commanding and perceiving the game.
Our tailoring architecture allows arbitrary re-definition of human-computer interaction

5 Further detailed in Appendix B.
6 Further detailed in Appendix D.

3.2. A Framework Towards Games For Everyone, By Everyone 111

at use-time7. As a result, interaction becomes similar to an add-on that provide plug-
and-play accessibility to games. This allows us to consider interaction needs of one
audience a time, iteratively, to enable creation and play. As we can combine any existing
alternatives, we can promote accessibility for new audiences, and better usability and
choice for included ones.

In particular, the architecture enables exploring a “one core fits most” version
of a game, as well multiple accessible versions using the use-time tailoring approach.
With the latter, one can combine existing accessibility features of the system to define
custom ways of interaction based on her/his own needs. This merges Universal Design
with accessibility, as both approaches become able to co-exist in a system. We called
these result as tailorable games. Designers can create interfaces to suit the needs of the
broadest extension of people, as well as custom interfaces for specific interaction needs.
Users can choose and combine alternatives to define her/his best way of interacting with
the system.

The collaborative work model explores the architecture for both game creation
and accessibility modding, providing a dynamic and iterative process towards enabling
more people to play from community collaborations. The community can provide access
(with accessibility modding), as well as improve projects (with conventional modding).
Thus, we can enable access to new audiences, and provide better experience of use,
usability and interaction choices to those already included.

As a result, rather than excluded, people are yet to be included. Every member
of the community can improve a project based on their own abilities, knowledge, and
skills to create and improve game content and to provide accessibility features to enable
play. As a result, included people can further co-create and enable new people to play,
forming cycles of inclusion based on their abilities.

Finally, the game creation platform brings the architecture benefits to EUD prac-
tices. It promotes end-user creation of tailorable games, implementing the architecture
itself and for resulting games. As a proof of concept, we have implemented Lepi for
storytelling games. Lepi currently supports usual audiences, people with hearing dis-
abilities (providing graphics and text content for all media, sign language support as
videos) and people with low literacy (providing audio descriptions, large icons, voice
audio recordings)8

7 Like tailors, we adjust input and output (IO) interactions to suit abilities of a player (interaction as
add-ons for plug-and-play accessibility). Our tailoring architecture allows use-time re-definition for
perceiving and controlling games (for instance. text, audio, video, and/or graphics to convey content;
controllers, assistive technologies, and/or automation to command).

8 We are currently expanding Lepi to support to vision disabilities (with text-to-speech and voice input
for simple commands), then we plan to support motor disabilities. First we include new audiences,
then provide new mechanics, re-starting the process.

112 Chapter 3. Able to Create, Able to (Self-)Improve

Figure 14 outlines relations between the framework pillars and people. The col-
laborative work-model is the inner part of the figure, as it merges people, the architecture
and the game creation platform into a process to support end-user game creation. The
other parts cooperate to enable co-creation of tailorable games. From the architecture
and people, results interaction needs to address (for instance, disabilities). The goal
is to translate game entities and components (from Entity-Component Systems (NYS-
TROM, 2014)), events and event handlers (fromEvent-DrivenArchitectures (NYSTROM,
2014)) into interaction alternatives. The intersection from the architecture and the game
creation platform abstract this task into slots for accessible content (for instance, audio-
description, closed-captions, translations, alternative input devices, graphical, aural or
haptic effects). Slots representing alternatives to convey an information. The intersec-
tion between people and the game creation platform represent how people create and
implement the alternatives. Once someone creates an alternative, she/he may add the
artifact into its slot (from drawings, voice records, text, sign language videos, or other
media). This way, the resulting game can combine assets to generate accessible versions
for different audiences of players.

3.3 Fostering Self-Improvement Through Game Creation

and Play With Adults in Alcohol and Drugs Rehabil-

itation

To evaluate and refine the framework outlined in Section 3.2, we conducted
meetings focusing on end-user game creation and playing activities in a public healthcare
service (a Centro de Atenção Psicossocial – Álcool e Drogas). The service catered to
support the rehabilitation of adults with alcohol and drug addiction. Our meetings
become an additional activity provided by the service to help its users.

3.3.1 Overview of the Meetings

We have performed ten meetings at the healthcare service, spanning four months.
They followed a similar pattern:

1. They started with a brief description of the planned activities.

2. Next, we performed a complete cycle of the collaborative work model. The work
model had eight phases:

Conception idealization of the project;
Conversion first prototype of the game;

3.3. Fostering Self-Improvement Through Game Creation and Play With Adults in Alcohol and Drugs
Rehabilitation 113

Evaluation evaluation and guidance from the Supervisor;

Creation development of the game;

Enrichment improvement of game assets and usability, inclusion alternatives of
accessibility alternatives;

Distribution generation of the playable games;

Use play sessions with other participants;

Conclusion end of the project.

The work model provided transient roles, defined according to what participants
were performing at a given time. They could be Supervisors, Creators, Collabora-
tors, and Players. In particular, Collaborators could act as Enablers – providing
accessibility features to enable others to create and play –, and/or Enhancers –
improving the quality of existing features to refine the game.

3. After the cycle, we discussed the activities and results with the healthcare profes-
sionals to gather feedback and inform them about the next meeting.

In the first meeting, we presented our project to the users of service, inviting them
to participate. Recruiting andmeetings happened at the service. The meetings happened
at the healthcare service as a biweekly activity, lasting two hours each. We explained our
goals (refine and evaluate the framework; attempt game creation to support therapy)
for users of the service and provided a schedule of planned activities per meeting.
Interested users of the service participated out their free will, without other incentives
or rewards. Attendance was optional (both at the activity, as well as at the service itself).
Our participants were recovering from alcohol and drugs abuse at the service. They were
not hospitalized and they were not surrogates; they were receiving non-compulsory
support (guidance to stop use and avoid lapses) at the service.

From the second meeting onward, participants interacted only with games and
our game creation platform. As most participants had never used a computer before,
the second and third meetings employed games to teach them how to use mouse and
keyboard.

From the fourthmeeting onward, participants stopped consuming existing games
and started to create their own. They usedLepi, our game creation platform, and explored
the work model to create, share, and play their games. Each meeting introduced new
features and added complexity to the development process. This continued until the
last two meetings, on which our participants presented their games to other users of the
service, who had never participated in our activities.

114 Chapter 3. Able to Create, Able to (Self-)Improve

3.3.2 Participants and Their Goals

Our team consisted of the two authors of this chapter (anMSc and PhD candidate,
and a PhD in Computer Science) and five supporters who acted as Collaborators in
the work model (an MSc and two undergraduates in Computer Science, and a PhD
and undergraduate in Nursing). The service provided two healthcare professionals to
support and monitor the meetings, who participated in the research as Supervisors. For
the professionals, the meetings provided an additional strategy to perform their duty of
aiding the users of the service. Finally, ten users of the service agreed to participate in our
study as apprentices9 – in the work model, they participated as Creators, Collaborators,
and Players, according to phases of the work model and performed activities.

The participantswere not from the usual intended audience of EUDgame creation
approaches. They were adults (29 years old or older) from lower socioeconomic grades,
with no programming experience, low literacy skills (ranging from primary literacy
skills in Portuguese, to not being able to read and write), and either basic computer skills
(for instances, they were able to use office productivity suites) or never having used a
computer before. Emotionally-wise, they presented a subset of characteristics of young
drug addicts described by Rodrigues et al. (2015). Our participants were emotionally
vulnerable and insecure, with anxiety, low self-esteem and performance, suffering from
internal and external pressures (their own, from colleagues, from society), and sensing
a lack of power and hope10. Thus, from (RODRIGUES et al., 2015), we would have to
avoid situations involving failure during creation activities, as the participants could
judge themselves as unable to new perform activities, blame themselves (instead of the
tools), and give up.

Figure 15 and Figure 16 illustrate some games and participants. Table 1 outlines
motivations, needs, goals, and wishes of the participants and how the framework helped
to achieve them. It provides a summary of the following subsections. The features and
strategies in the table summarize how each pillar of the framework contributed to enable
the participants to create and play games. Later, these strategies will be generalized into
design recommendations from lessons learned in Section 3.4.

9 As participation of the users in the service was not mandatory, their presence varied in each meeting.
This was, actually, positive for the study, as it provided heterogeneity of proficiency using the game
creation platform itself – it had to be suitable for new and old participants alike, at different phases of
the creation process.

10 Other characteristics mentioned by Rodrigues et al. (2015) (such as aggressiveness, impulsiveness, hy-
peractivity, oppositional defiant disorder) were not observed in our study involving older participants.

3.3. Fostering Self-Improvement Through Game Creation and Play With Adults in Alcohol and Drugs
Rehabilitation 115

Figure 15 – Examples of three games created by our participants using Lepi.

(a) Participants meeting each other at
a room in the service.

(b) Two participantsmeeting at a town
square.

(c) Game to promote the healthcare
service. A person invites his friend
to seek aid in the service.

(d) Scene resulting from seeking aid in
the service, following Figure 15c.

Source – Created by the author.

Figure 16 – Participants creating and playing games over multiple meetings.

(a) P2 creating his game. (b) P2 proud of his game.
(c) Participants creating

their games.

(d) P3 playing a game on
which her image was not
her.

(e) Supervisor helping a Cre-
ator.

(f) The creator from Fig-
ure 16e decided to dictate
his story.

Source – Created by the author.

116 Chapter 3. Able to Create, Able to (Self-)Improve

Table 1 – Summary of how the framework supported the goals of the participants.
Goal Participants needs and/or wishes Pillar(s) Framework features/strategies

1.1 Be able to succeed A, M, L Increase creation complexity over time (M, L); avoid creation
errors (L)

1.2 Learn how to use computers L Prefer easier interactions (L)
1.3 Create the game A, M, L Provide alternatives for creation (A,M, L); promote external aid

with Collaborators (M)
1.4 Help friends to play the game A, M, L Provide alternatives for use (A, L); promote creation of accessi-

ble content (M) and external aid (Collaborator; M)
1.5 Understandwhat the game is presenting A, M, L Provide interaction alternatives (text, speech, sign) for play (A,

L); promote creation of alternatives (M); explore aid for creation
and play (M)

1.6 Be part (inside of) the game M, L Co-create image of participants (M); include images into game
(L)

1.7 Be with friends in-game, in a common
physic space

M, L Co-create assets (M); inclusion of assets in game (L)

1.8 Show what was being learned in the ser-
vice

M, L Define game choices with different outcomes and scores (L);
play and discuss games with domain experts (M)

1.9 Promote the healthcare service, remov-
ing negative stigmas

L Co-create as marketing, game play as publicity (L)

1.10 Help players to develop character and
values – especially kids

M, L Co-create to teach (L); provide scores to provide feedback (L);
play and discuss to learn (M)

1.11 Express ideas (share ideas in a different
media)

M, L Co-create for self-expression (L); supervision for evaluation
(M)

1.12 Feel important, at least for a day M, L Co-create to self-express, demonstrate skills and knowledge,
and demonstrate progress (L); validation from community use
(M)

1.13 Learn with a game created by others M, L Play to experience creation from others, receive feedback from
domain experts, and foster community discussion (M); scores
to measure performance (L)

1.14 Understand what would happen after
bad choices

M, L Perceive outcomes from choices (L); receive advice, guidance,
and support from main experts (M)

1.15 Share opinions, discuss similar experi-
ences

M, L Play to foster discussion (L); discuss with community and re-
ceive guidance from domain expert (healthcare professional)
(M)

1.16 Share the gamewith friends (with differ-
ent interaction needs)

A, M, L Define interaction alternatives (M); include alternatives in
project and export project as games with different accessibility
features (A, L)

1.17 Share experiences and perceptions M, L Co-create to teach and self-express (L); share game to commu-
nicate with others (M)

Pillars: Architecture (A), Collaborative Work Model (M), Lepi (L)
Source – Created by the author.

3.3.3 Becoming Able to Create: Exploring the Framework to Suit In-

teraction Needs of the Participants

“I want to be able to do it”. “I can do it, I will be able to.”. When the activities
started, three participants stated that the most important goal was being able to succeed
(Goal 1.1 in Table 1). Overall, the participants wanted to have opportunities, to feel they
were members of the society (“I hear in the streets: ‘you can’t do it, because you are an
addicted, you are this, you are that’; no, we are not like that, we can do it”’). To define
a path for the success, the framework needed to support interaction needs and skills
enable participants to create and play games. This need was, thus, the ultimate goal of
the study, requiring all three pillars of the framework. At a high-level, the architecture
allowed to tailor the game creation platform (Lepi) to suit the interaction needs of the
audience. The work model guided the creation process. Lepi enabled the creation of the
software.

The process to achieve Goal 1.1 was incremental. It was built gradually exploring

3.3. Fostering Self-Improvement Through Game Creation and Play With Adults in Alcohol and Drugs
Rehabilitation 117

the work model, increasing complexity of activities over time. The initial step was
enabling the participants to create digital games. Therefore, before any creation activities,
participants needed basic computer skills – they had to learn how to use computers
(Goal 1.2)11. Among the participants, there were people who had never used ICTs and
digital games before. Some were scared of touching a mouse, with the fear of being
unable to interact with the computer (“I never thought I would be able to use the
computer; I had seen others using it, but never thought I would.”); others did not have
access to computers (“you know, it is a very good experience, because children in school
have computers, and I would never have one.”), nor could afford to do computing
courses (“I never thought I would do a computing course in my life.”).

To promote the first contact and provide basic training, participants played two
games to develop basic mouse and keyboard skills at the second meeting. At the third,
we introduced two additional games: a therapeutic game for elders with depression
– composed of puzzle and action mini-games –, and a visual novel in Portuguese. As
visual novels emphasizes the story over other mechanics, we found they were suitable
for initial playing and creation activities. Storytelling activities are closer to traditional
media – for instance, books, movies, and soap operas –, focusing on content. This way,
our activities could start focusing on the creation on stories, introducing more complex
strategies and game mechanics incrementally12.

Once the participants had minimal proficiency with input devices, we proceeded
to creation activities (Goal 1.3). The architecture of the framework enabled us to define
different IO schemes to suit our participants, for creation and use alike (play)13. Lepi
provided abstract commands for creation (for instance, adding media and characters,
editing dialogues), for which we could implement physical-level interactions. In practice,
we could define custom bindings for any available feature in the platform, for any input
device we wanted to use. Likewise, Lepi supported graphical (image and video), textual,
and aural output interchangeable14.

As our intended audience had fine motor skills, the participants used mouse and
keyboard to provide input (this is illustrated, for instance, in Figure 16d). The strategies to
map abstract commands into the input devices varied according to the interaction needs
of the participants. For instance, although some participants could not read nor write,
they were able to listen, speak, and draw. Thus, there were two ways of overcoming
11 Strictly speaking, this goal precedes the framework. For our purposes, this meant that the creation

platform itself required simpler interactions.
12 The focus on the story allowed us to explore interactive storytelling practices of increasing difficult

over multiple meetings. We could, for example, start creation activities with linear stories, following
with non-linear, branching stories afterwards. This way, we could explore “gentle slopes” within
non-programming activities.

13 The goal of the architecture is to allow users and developers to change IO interactions within the
system. To avoid repetitions it is, hereafter, implicit in systems which required alternatives of use.

14 Due to the architecture, we could add other input and output features, if needed.

118 Chapter 3. Able to Create, Able to (Self-)Improve

the writing barrier: providing alternatives in Lepi, or exploring the work model for
collaboration. This resulted into two approaches for content creation: independent and
assisted. Independent meant that a Creator performed activities independently, on
her/his own – this is how existing approaches work. Assisted meant that a Collaborator
(acting as Enabler) helped the Creator to perform her/his activities. In the assisted
approach, the Collaborator acted as a human-powered assistive technology, extending
the Creator’s abilities with her/his own to overcome interaction barriers (Figure 16f).
Furthermore, the assisted approach works both for IO. In both cases, the Collaborator
acts as an interpreter and/or mediator. For input, she/he translated commands from the
Creator to the system. For output, she/he transformed content information from the
System to the Creator.

With the two approaches, participants could create content based on their own
abilities, skills, preferences, and goals. The participants stated that they enjoyed creation
activities from the beginning (“creating is very good. It is an experience of my own life”;
“it is, a new experience, a good experience.”), and it was something that they looked
forward to do at the service (“I don’t mindmissing the lunch, I want to create my game.”;
“I count the time for the workshop.”).

For first prototypes, the Conversion phase of the work model varied. Strategies
included to generate a first prototype included:

• Following traditional practices, typing stories and exploring the visual program-
ming language offered by Lepi. This was the strategy of choice for participants
who had previous experience with ICTs and could write well.

• Creating low-fidelity prototypes with paper and pencil containing drawings,
sketches, graph-based schemes, or comic books. These were strategies adopted by
participants who preferred to communicate visually. Participants who could write
annotated their illustrations. Participants who could not write dictated the content
to Collaborators.

• Creating low-fidelity prototypes via speaking,with voice recording or transcription.
Participants who did not like to draw or preferred speaking followed this strategy.
Collaborators transcribed the text for participants who could not write.

After Conversion, the healthcare professionals performed the Evaluation phase
to analyze the projects. They advised the Creators on how to proceed in order to succeed
– treatment wise. For instance, they asked questions to prompt reflections, requested
the description of past experiences, provided alternative scenarios for thinking, and
asked the Creators to explain their reasoning and rationale for story branches and their
impacts to the Player’s score. Game-wise, Creators addressed content-related requests at

3.3. Fostering Self-Improvement Through Game Creation and Play With Adults in Alcohol and Drugs
Rehabilitation 119

the Creation phase. For the most independent participants, the Conversion and Creation
phases were similar, as they used had used Lepi from the start (their first prototype was
a high-fidelity one). For assisted participants, the strategies to implement a high-level
prototype (the game) varied to suit the preferences of each Creator. For characters,
environments, scenes and story flows (transitions and branches), decisions (choices
and consequences), they used the visual constructs of Lepi. For defining their story,
participants opted to type them, record a voice narration of their voices, or asked a
Collaborator to type for them. To each according to their abilities.

After further phases of Creation and Evaluation, they played each other games in
the Distribution and Use phases. They could also play games that we created15, which
showcased further possibilities supported by Lepi. Following this process over meetings,
some participants who, initially, followed the assisted approach started using Lepi on
their own16. Participants who had permanent assistance on their initial uses started
becoming more independent. Compared to their first games, their following creations
were more complex, with longer stories and exploring more features and resources
provided by Lepi.

3.3.4 Easing Creation, Enhancing Play: Accessible Platform to Cre-

ators, Accessible Games to Players

To better suit the interaction needs of the participants, we tweaked Lepi every
meeting. New versions provided new features, improvements to accessibility and usabil-
ity, and new default assets to explore. To improve accessibility and usability, changed
included: alternative colors schemes (from darker to lighter); increased contrast; in-
creased font sizes; types faces with better readability; short and objective text instructions
(whenever possible); and large graphical icons. For input, we avoided interactions that
participants had had difficult – such as holding to drag –, and offered large areas for
selection. We also tried to provide input automation whenever applicable – for instance,
for scene playback using audio. Automation avoided errors and minimized user input,
reducing the chance of mistakes. This was helpful for the audience – Rodrigues et al.
(2015) highlighted that people with drug addiction may have difficulty to concentrate.
Therefore, we tried to keep the activities continuous, avoiding idle intervals, dispersion,
and errors. This helped participants to maintain their concentration. In the same way,
the presence of Supervisors and Collaborators was helpful, for Creators could ask and
request assistance when they had doubts on how to proceed.

15 In particular, the Collaborators with Nursing background created several games involving drugs and
alcohol usage in daily activities.

16 In some cases, Collaborators transcribed narrations or dictated characters, to allow Creators to type
their stories.

120 Chapter 3. Able to Create, Able to (Self-)Improve

Nevertheless, adapting Lepi’s user interface satisfied only part of the require-
ments. To promote play, created games had to accessible as well, for the abilities of
Players could be different from those of the Creators. This was the primary goal of the
architecture, which we explored both for Lepi and for games created with Lepi. As a
result, the IO interactions of resulting games could be changed at the Distribution phase
to suit Players’ needs at the Use phase.

For default assets included with Lepi, we offered images, textual description,
speech narration, and sign language videos as output alternatives. For Creator made
content, participants had to define and include their own alternatives. With the work
model, this meant that Creators and Collaborators could provide alternatives according
to their abilities and skills. At the healthcare service, Creators told their stories using text,
speech, and drawings. In Lepi, stories were, often, added as text. As a result, participants
who could not read could not play during the Use phase (“I see the story and options,
but I can’t read them.”). This was a concern from participants in Goal 1.4 and Goal 1.5.

As the architecture and Lepi allowed inclusion and choice of interaction alterna-
tives during use-time, the work model guided the process of including them into the
creation process. We planned this for the Enrichment phase. In the Enrichment phase,
a Supervisor may request Collaborators to improve the project, either refining game
assets and usability, or request the inclusion of accessibility features and alternatives of
use. For the healthcare service audience, the main request was providing speech content
for the textual one, to allow participants who could not read to play the games without
assistance. Between meetings, our team of Collaborators acted as Enablers to convert
text into voice. The voice content was inserted back into the projects; enabling Players
who could listen to play games from other participants on their own.

As each Creator developed their own game, we did not know how they would
react to the inclusion of alternatives defined by others to their projects – it was an external
collaboration. However, they greatly appreciated the inclusion, for they increased the
quality of the projects, enhanced the playing experience, and allowed their friends to play
their games17. In particular, some participants noted that they could record their voices
and include the recording into their own games in the future, to avoid the situation.

Furthermore, in practice, following an assisted approach, a Collaborator can act
as an Enabler at the Use phase to translate the content to those who cannot perceive it18.
In particular, the roles in the work model are transient; participants can contribute based
17 As one of our Collaborators knew basic Língua Brasileira de Sinais (LIBRAS), some games also

received videos to enable people with hearing disabilities to play. Although none of the participants
in the healthcare service needed sign language, they appreciated the inclusion, considering it was
important and helpful.

18 In the case of motor disabilities, she/he could also help the Player to play. In this scenario, the Enrich-
ment phase could provide automation features to ease interaction with the game, or the inclusion of
other input devices and/or assistive technologies for independent use.

3.3. Fostering Self-Improvement Through Game Creation and Play With Adults in Alcohol and Drugs
Rehabilitation 121

on their skills and abilities, as well as the context of use. Thus, whenever the activity
occurs in a shared environment (such as this service or a classroom), a Creator may
become a Collaborator to provide the assistance. For example, in this study, a Supervisor
requested that one participant read his story to help his friend who could not read
(Figure 16b). This Creator, thus, became a Collaborator (Enabler) at that point, who
assisted his friend. He provided an ability (reading) that was necessary to overcome the
accessibility barrier, exploring another ability that he possessed (speaking) and one that
his friend had (listening). At other meetings, participants acting as Players explored
this strategy at Use phases whenever there was not an audio transcription of the story
added to the project yet.

3.3.5 Being Part of the Game: Creators within the Creation

One of our participants (hereafter called P1) was an outlier. Unlike the remaining
participants, his interaction needs were similar to the usual audience for game creation
solutions. Although P1 had never programmed before, he used ICTs and played games
daily. From the first meeting, P1 had a unique wish: he wanted his “game character to be
inside the game. He should look like me and walk like me!” (Goal 1.6). At this time, no
other participant made the same request. To address the request within the framework’s
work model, we asked a Collaborator to create a game model representing P1, which we
added a base asset once it was completed.

At the fourthmeeting, P1’s character model was not available as an asset yet. Thus,
in the first round of creation, participants created their games with default characters.
On the fifth meeting, however, we included his model as a new default asset. Once
a friend (P2) saw the model, he promptly – and happily – identified P1 – “Look, it is
P1!”. P2 requested a character to represent himself as well. With both models, P2 quickly
perceived that he would be able to create games on which he and his friends were the
characters. He, thus, requested that the healthcare service became an environment (a
place) (Goal 1.7), as, this way, he could tell stories of the participants and the activities
the performed at the service. Furthermore, P2 perceived that he and his friends could
“voice my characters to help my friends to play my game.”

Huizinga (2016) defined game playing as being in a “magic circle”; P2 was, at this
time, the Creator of his own “magic circle” – in particular, one that he defined himself.
Later, other participants requested their own models as well (Figure 15a). Ultimately, a
healthcare professional and a participant co-created a game to promote the healthcare
service (Goal 1.9). In their game, they described how the service truly worked, trying to
demystify the public opinion about it, and having the approval of people who used the
service (Figure 15c and Figure 15d).

122 Chapter 3. Able to Create, Able to (Self-)Improve

3.3.6 Self-Improving with Games: Self-Expression Leading to Self-

Knowledge

After several Evaluation phases, a healthcare professional affirmed that most
stories related – directly or indirectly – to the participants’ own lives. Although, in the
first meeting, we encouraged that the participants shared either their own stories or
fictitious ones (for instance, to share their experiences with alcohol and drugs), some
quickly opted to portrait themselves in the stories.

The inclusion of their own images and the service’s environment was a catalyst
for this option. This awareness suggested that some participants were, already, exploring
the framework to create games asmean of self-expression – somethingwewere expecting
to happen in the future. “I will do this story for me, because I want to live this moment,
show that I can do it. I am able, because no one is born knowing.” Moreover, we were
not expecting participants to explicitly admit their own substance abuse in their stories
from the start. They were honest about the facts (for instance, how they happened, what
they had done, when it happened, with whom they were): “If you put what you are
passing in the game, you can go much much further than you think.”. According to
professionals, even fictitious stories were related to participants’ lives.

Professionals and collaborators helped participants to consider different ways to
address situations (for example, other ways to act) as decisions in stories. By analyzing
their past experiences and reflecting about them, participants started to identify other
ways they could act from a given scenario. At first, many participants had difficult to
define other ways to act other than how they had acted originally. Like traditional media,
they were thinking linearly, creating linear stories with a single outcome – the real
one, what happened to them. With the support work model, during Evaluation phases,
healthcare professional started broadening options, suggesting Creators to consider
different scenarios and ways to address a given situation. This way, they conceived
alternatives and choices – from linear, to branching stories. According to a participant,
this approached “helped us to think more about life”, because “in any path, there is
always a better exit.”

As part of the creation process in work model, we asked the Supervisors to define
attributes to the game – in this case, health, social relationships, and work. These would
vary according to Players’ choices when they played the game. Good choices lead to
improvement in the attributes; bad choices lead to decreases. With multiple choices,
Creators could compare prompts and outcomes to see how could they could affect their
own lives19. Then, they would define a score for how suitable was their action. Although
the choice was that of a character, the result was a consequence of the Player choice,

19 This was easier to observe when the in-game character was the person herself/himself.

3.3. Fostering Self-Improvement Through Game Creation and Play With Adults in Alcohol and Drugs
Rehabilitation 123

attributed based by the Creator’s own judgment. For Players, scores provided means to
track progress. For Creators, they provided another way to show and apply what they
were learning at the service, as well as share this knowledge with others. This helped to
materialize abstract ideas in quantifiable outcomes in Lepi (Goal 1.8). Outcomes based
by decisions and results, with could foster reflection during creation and play (“people
will learn a lot with my game, they can start thinking that they can re-start their life if
they believe in it.”).

With their games, creators could “can count experiences, learn good things, move
always forwards, interact with friends.” In this way, their creations were self-expressions
of what they remembered, analyzed, and materialized from game elements within Lepi
to make games (Goal 1.11). Their prompts for decisions were had consequences that
they oversaw and judge according to fixed parameters (“creation helps to find paths,
consider the consequences for each”).

For Computer Science, the framework had sole goals of creation and playing.
For serious activities, however, games became means instead of ends – for participants
who act as Creators, the journey becomes more important than the resulting artifact.
From enabling participants to make and collaborate, greater results may emerge. For
instance, although participants recognized that they could share values and teach oth-
ers (Goal 1.10), the creation aided them to learn as well (“creating games is great for
participation and learning.”). Participants applied the knowledge provided by the pro-
fessionals in practice – even if they were unaware of it. Moreover, creation activities
could provide therapeutic value themselves, as, according to a participant, “creation
occupies the mind with fun. I avoid thinking bad things.”

3.3.7 Sharing Knowledge: Learning and Experiencing from Playing

Still, the resulting game is an important artifact, as others can play it (Goal 1.16):
“people can do what I did, see what I did, what I created (...) then the person can say ‘I
can change, it only depends on me, we can find a way for everything”’.

Since the first meeting, P1 mentioned that game creating and playing could be
good for his own treatment and of others. In the third, when he saw the novel, P1 had
an insight that his game could be a tool to bring awareness on the effects of drugs and
alcohol abuse, and the content could advise players to avoid it based on his experience.
He wished, thus, to share his game in schools, because, then, “kids can play my game
and learn from my mistakes”.

In the work model, the Supervisor decides who can play the game, as well as the
interaction features that will be available. This step, thus, combines all three pillars to
generate playable games that support the abilities of Players. Playing is part of phase

124 Chapter 3. Able to Create, Able to (Self-)Improve

of the work model (Use phase); it also has benefits. For the Creators, we observed that
sharing their games made them proud (Goal 1.12): “knowing that someone will play
my game is very good.”; “it is very fun to show people my game; you keep thinking
‘how is it possible to create a game and see your friends playing it?”’

Creators could teach their Players what they knew with the in-game content.
They can show that they could do, how they overcome their disbelieves, insecurities,
and fears. Creators made measurable progress overtime, as they could track how their
games evolved – each new scene and inserted content showed progress. They observed
this progressed both with the created technology and within their therapeutic practices
at the service (“when I started, I wanted to learn many things, but I see that I learned a
lot already.”).

Players can lean from others what they shared (Goal 1.13). In special, games
provide a safe environment for experimenting, meaning that even bad choices can lead to
learning. Some players purposely made bad choices to discover their effects (Goal 1.14),
comparing them to the better ones, seeing how their differed.

Furthermore, we observed that the participants adopted a new posture when
showing their games to others. A participant who was initially scared to use the mouse
taught a friend to use them to interact with her game. A second participant stated that
“seeing my friends playing, for me, is an honour, because I could share the game with
them here to see that they care about me”. Another explained his reasoning to the scores
in an activity where the healthcare professional acting as a Supervisor used the game
with other participants. They discussed the game (Goal 1.15), shared similar experiences
Goal 1.17. In this way, the Supervisor addressed multiple participants at once – the game
was a tool for her professional practice, contributing towards her own goals.

3.3.8 Games Transforming Participants: Anecdotal Stories

Once again, this was evidence of changes and improvement. The participants
were initially uncertain if they could create games; some of them had not even played
digital games – or used a computer – before. Gradually, they became (visibly) more
confident, skilled, and proud. At the end, some of them started teaching their peers how
to play and improve their games. To illustrate some transformations over the meetings,
we share the reactions one participant (P2) in a meeting, whose experienced motivated
another (P3) to further participate (Figure 16a, Figure 16b). In a Use phase, a Supervisor
asked P2 to explain his game to the public (Goal 1.11, Goal 1.15, Goal 1.17). As there
were participants who could not read in the room, she also requested P2 to read his
story aloud (Goal 1.5). P2 started nervous and insecure about his creation, with his
body language reflecting his low confidence (“I don’t know. . .”, “I am not sure. . .”). As
he proceeded reading his story and answering questions, he – visibly and gradually

3.3. Fostering Self-Improvement Through Game Creation and Play With Adults in Alcohol and Drugs
Rehabilitation 125

– started changing. His body language improved, he started to smile and laugh, and,
at a certain point, his eyes started glowing. Upon peer acceptance (Goal 1.12), he was
clearly proud and pleased with his creation, because it showed him it was successful
(Goal 1.1; Figure 16b). In special, when we showed him the improved version of the
game, he became delighted. After he interacted with a new version of his game with
speech, he became enthusiastic about the changes, as they increased the quality of his
game and allowed his friends to play the game without his help (Goal 1.3, Goal 1.5).

With this new version, a participant (P3) shared her experiences with the public
(Goal 1.17). P3 provided her own insights and personal experiences about his story. P2

and the Supervisor greatly appreciated her insights (Goal 1.8, Goal 1.13). It provided
approval and appreciation for P2 – who asked if he could present his game to the
community in an upcoming soirée at the service. For the Supervisor, it offered new
information regarding P3, which she could explore to further help the participant.

After this experience, P3 became motivated to create her own games, as she
had not participated in creation activities before. “I want my kids to [play my game
and] think, ’wait a second; my mother is making games, I can also do it’. It is very
beautiful.” She had never went to school, nor used ICTs – she was one of the participants
scared of using computers and touching the mouse. P3 saw P1 and P2’s models, and
requested her own as well (Goal 1.6). After a few meetings, she was using mouse and
keyboard (Goal 1.2) to create her game (Goal 1.3) – sometimes typing text that she
dictated to a Collaborator who, then, transcribed it to her, sometimes adding her voice to
narrate (Goal 1.11). In all her stories, P3 included herself, her friends, and the service’s
environment (Goal 1.7; Figure 15a and Figure 15b). As a Creator and a mother, she
advised her friends to take better decisions on her stories (Goal 1.10, Goal 1.17), the
same way her Supervisor advised herself (Goal 1.15). As a Player, she always chose the
best options when prompted for decisions; she also played her own games several times
(Goal 1.13, Goal 1.8). P3 told about her games to her daughter, who could not believe her:
“my daughter thought I was lying when I told her I created a game.”. At a later meeting,
when the healthcare professionals invited other users to play the games (Goal 1.16),
P3 started teaching others to play her game (Goal 1.4) – including her boyfriend. From
scared of using computers, she taught other people how to use them.

Finally, with her own character, P3’s model also became an asset for creation
(Figure 16d). In P3’s stories, her model was truly herself (“I wanted to put myself in the
game to show that I could do it, I can be there, I can be anywhere, I can think what I
should do, what I should not do.”). In other stories from other participants, her model
was someone else, with different names. Although it was her own image, it was not
her. Every time she saw her image, she asked: “is this me?” She was an actress. She felt
important for a day (Goal 1.12). She (and other participants) had succeeded (Goal 1.1).

126 Chapter 3. Able to Create, Able to (Self-)Improve

Even though she had “never imagined I would be able to do it”, she perceived that she
was able to do it, could further improve (“you can create lots of things there to show
people.”), and have opportunities for social inclusion (“I had never had this many
opportunities in life.”). This feeling was shared by other participants (for instance, “I
could never imagine something like that could come out from my head.”), as well as
by a healthcare professional. After the meetings, the professional stated that the game
creation activity had “contributed [with therapeutic activities] by a enabling patients to
have contact with technology, develop cognitive abilities and creativity, encourage game
creation, [self-]identify with the activity, and provide opportunities to think about real
or imaginary situations to learn behaviors to deal with daily situations of conflict [in real
life], develop self-esteem during creation, and teach patients that they are responsible
for their choices and [their] consequences.”

3.4 Design Recommendations from Lessons Learned

The framework aimed to enable inclusive co-creation of inclusive games. To
achieve this, it provided:

1. A flexible software architecture that enabled use-time modification of human-
computer interaction;

2. A collaborative work model to transform inclusion into a community problem,
which the community could collaborate to address;

3. Tools to enable the workflow, accessible to a subset of interaction needs (usual
audiences, hearing disabilities, and low literacy) and a single genre (storytelling)
as proof of concept.

In this first study, we noticed that the framework contributed to the proposed
workflow. With the tool, participants could co-create story-based games with their
abilities. With the collaborative work model, contributors inserted media and content to
address other interaction needs of the community. Due to architecture, participants could
insert this new content to the game. This way, participants could co-create inclusion as
a community. As proposed by Liu, Ding & Gu (2016a), we applied the communistic
lemma “from each according to their abilities, to each according to their needs” to game
creation.

The strategies outlined in Table 1 can be summarized into the following design
recommendations:

1. Design for semantics of use. If we design for semantics of use, we do not assume
abilities for use, and, therefore, we do not exclude people by design.

3.5. Concluding Remarks 127

2. Implement for modification. We can re-shape human-computer interaction at-use
time to enable people to perceive and command digital games according to their
needs and abilities.

3. Provide different ways to create and play. Digital inclusion does not have to imply
“one-size fits all solutions”; rather, a game may have the same rules, but play
differently (multiple accessible versions as one game).

4. Compose interaction. We can provide interaction alternatives and (re-)combine
them to define custom user interfaces to enable interaction. We can group alterna-
tives into profiles aimed at particular interaction needs (for instance, for visual,
hearing, or motor disabilities) – or allow people to define their own.

5. Focus on abilities and skills. People can always contribute based on their own
strengths (abilities, skills, knowledge, interests, experience). Therefore, one impor-
tant goal for co-creation is to identify and provide opportunities for contributions.

6. Foster community inclusion. Accessibility towards inclusion can be an iterative
process, based on abilities.

7. Consider inclusion as a dynamic process. Once people are included and able to
create, they can enable more people to use and/or create.

• Corollary: people with disabilities can become contributors once included.

8. Foster community collaboration. People can teach, learn and benefit from each
others strengths, and perceive how they, as a community, can achieve more than
individually. Thisworkflowbenefits both sharer and receiver: theymay feel empow-
ered, important and valued, as well as creating bonds with each other. In serious
contexts, domain experts can further benefit from community collaboration and
discussion to provide advice, guidance, and feedback to their participants.

3.5 Concluding Remarks

DL, ML, and GL show the growing importance of technology for acquiring
knowledge and developing important skills for the 21st century. However, although
there exists approaches to enable people to create their own digital solutions, their
intended audience are, currently, narrow — especially when we consider digital games.
If games are a new form of literacy, enabling people to play and create are important
steps towards digital and social inclusion. For this, reducing entry barriers and providing
interaction alternative are important to enable a broader public to actively co-create.

128 Chapter 3. Able to Create, Able to (Self-)Improve

In this chapter, we presented our experiences of exploring a framework towards
universalizing the practices of creating and playing digital games with a unusual au-
dience. We have explored inclusive game co-creation as an attempt to support ther-
apeutic practices (assisting self-improvement) by adults in drug and alcohol misuse
rehabilitation. Co-creation was supported by a framework for game accessibility towards
accessibility modding. We presented outcomes from several workshops to demonstrate
how the framework supported the participants’ self-improvement.

Once able to create, our participants created games as activities as an additional
tool to combat the addiction to alcohol and drugs, improving their lives in the process.
With a combination of an architecture, a collaborative work model, and a game creation
platform that, together, could suit interaction needs of the participants, the framework
enabled participants to create their games. From the architecture, we could build creation
tools and games able to modify IO interactions arbitrarily, at use time. From the model,
we could guide end-users to create games collaboratively, potentially learning from
(non-computing) domain experts in the process. From the game creation platform,
participants created and shared their own games. We provided the framework and
observed; the framework’s approaches and the participants efforts, motivations, and
collaborations made greater results emerge. During the process – their journeys –, the
participants learned about the treatment, themselves, their friends.

Once able to create, they became able to self-improve performing the activities
– and further learn and develop with the health of domain experts. Games became
platforms for self-expression and self-growth. Participants created to teach and share
what they knew, and played to experience and learn from others. Instead of an end,
gaming became a journey, onwhich the participants acquired and shared knowledge and
skills, crafting a game in the process. They learned and showed that they were capable
of improving themselves, to create, to share and teach; during uncertainties, Supervisors
were there to support them. The game was the artifact, their way of expression, their gift
to others. It started from acceptance, believing in oneself that she/he would be able to do
it. Next, working towards doing it, iterating to improving the creation, and continuously
observing the progress towards the completion. Thus, for Creators, the main result was
self-growth, improved confidence and hope, and the recognition that they are able to
do whatever they put effort into, even if it seems impossible at first.

One is not restricted bywhat she/he cannot do; rather, her/his potential is limitless
when she/he performs what she/he is able to do. Human-Computer Interaction should,
therefore, provide technology to enable more people to create and use ICTs, regardless of
(dis)abilities. Our framework is a step in this direction; we are currently working towards
including new audiences – for instance, people with visual and hearing disabilities as
creators and players –, as well as supporting new goals – for instance, digital co-creation

3.5. Concluding Remarks 129

as therapy.

131

Chapter 4

Conclusion

We have started this research with technology, we have finished it with people.
Over the course of the research, we progressed from technology for developers (a
software architecture), to collaborative co-creation and playing (with the collaborative
work model and Lepi), stepping towards transforming lives

In Section 1.2, we have stated our research hypothesis as: “if end-users used
creation tools suitable to their interaction needs and followed a collaborative workmodel
to iteratively improve accessibility features to be inserted into a software architecture
able to modify human-computer interaction at use-time, then they would be able create
games satisfying heterogeneous interaction needs of possible players”. Then we defined
the three pillars for the architecture: the software architecture, the C3-IDG, and Lepi.

In Section 2.8, we discussed how each pillar was evaluated. In Chapter 3, we
further described how the framework, as a whole, was evaluated to promote inclusive
creation of inclusive games. For our study considering a subset of audiences, interaction
needs, and mechanics, we observed that, with the Lepi, people could co-create story-
based games with their abilities. With the collaborative work model, people inserted
media, assets, and content to address other interaction needs of the community. Due
to the architecture, people could insert this new content to the game. This way, people
could co-create inclusion as a community – from each according to their abilities, to
each according to their needs – and introduce their contributions in game projects.

We, therefore, argue that we have confirmed our hypothesis that people could
co-create games for themselves and for people with different abilities and interaction
needs, provided that they had suitable tools and a collaborative work model. More
importantly, we noticed that creation and play can transform people, improve their lives
and from their peers, promote learning, teaching and sharing, and bring fun and joy.

With the architecture, we can indefinitely enable more people to create and play.

132 Chapter 4. Conclusion

The interactive Meta-Game (Meta-System) does already exist in there. It is up to us to
map its commands to suitable input alternatives, and convert its raw data into output
alternatives to convey information. We enable the first creators and players, they enable
the next ones, defining cycles of inclusion towards universal access – as close as we can
reach it.

The Game to the Player. The Game from the Player. The Game from the Commu-
nity. The Game to the Community. An End-User Development Framework for Tailorable
Games, towards games by everyone, for everyone.

4.1 Contributions and Results

We have outlined the main contributions and results of this thesis in Section 1.5.
With the framework,

• Due to the architecture, inclusion is restricted to currently available technologies,
to what it is possible to implement with them, solve computationally in suitable
time intervals, and how we can map interaction to the interaction needs of a user;

• Due to the co-creation models, inclusion can be extended iteratively and mutualis-
tically by communities, based on abilities, skills, and knowledge of their members;

• Due to the co-creation tools, inclusion can be built and improve by end-users acting
as non-professional developers.

The framework as a whole extends the state of the art by enabling the entire
workflow. This results from individual contributions from its pillars, which extends the
state of the art by:

• (Architecture, Models, Tools) Extending who can create and play digital games;

• (Architecture) Defining how to implement digital games (and systems) with
composable interactions;

• (Architecture) Defining how to describe interaction with IO semantics and intents
(from commands).

• (Models) Exploring communistic, mutualistic, and collaborative contributions
from abilities, skills, and knowledge;

• (Models) Noticing that interdependence can promote independence in software;

• (Tools) Allowing end-user creation of MGs;

4.2. Final Remarks 133

• (Tools) Abstracting inclusion as part of the development process.

With these contributions, we may revisit the quote from Aguado-Delgado et al.
(2018), who affirmed that, currently, there were no initiatives to guarantee universal
access in digital games. Although, in this thesis, we have not managed to change their
statement, we can partially address their reasons.

With the framework described in this thesis, we avoided the first reason in two
ways. For the “lack of quality in the generated/adapted video games”, we have not
assumed any user interfaces. For the “segregation of disabled players” we are able to
continuously include more people into creation and play activities.

We address the second reason (“frameworks often depend on the use of specific
technologies”)whenwe became able to introduce new IO features in software. Assuming
that the underlying technology implements the architecture, developers may become
able to register new devices to define multiple user interfaces and ways to provide
interaction – even if they had not planned for them before.

Finally, when end-users become able contribute, communities may be able to
overcome omissions from the developers of the game (“guidelines, techniques, strategies,
etc. that facilitate the development of accessible video games are ignored by many
developers”). Thus, with the framework, we can explore a different approach towards
universal access: coordinated collaborations from an active and empowered community,
supported by a dynamic inclusion process with iterative contributions towards inclusion.

4.2 Final Remarks

Although this may be the end of a work, it is the start of a longer journey. We can
define new tools (or extend Lepi) to enable the creation of more complex games with
newmechanics. We can iteratively support more people to create and play digital games.
We can explore the framework in serious contexts (education, healthcare, training),
towards inclusive game creation for improvement.

Moreover, digital games provide many accessibility constraints for game devel-
opment. Thus, they required a robust solution to support run-time tailoring. We can
simplify and generalize a solution for traditional software. This way, we could further
contribute towards digital inclusion and social inclusion.

We shall explore this route, because, once people can use and create, everyone is
equal to a digital system.

134 Chapter 4. Conclusion

4.3 Future Work

We outline a non-exhaustive list of possibilities below. As a possible heuris-
tic to identify unique possible contributions, the reader may combine two or more
research/theoretical frameworks and explore it within the models. Another possible
heuristic is that we can extend the framework by depth (technology related; game design
and programming complexity), or by breadth (human related; audiences to create and
play; compatibility with assistive technologies).

1. Architecture:

• Industry related – applied approaches:
– Verify scalability for large scale scenarios;
– Improve performance, reduce overheads;
– Implement on other game development APIs, SDKs, engines, and frame-
works;
∗ Start by most popular / used first.
∗ Ideal scenario: include the tailoring approaches themselves into game

engines.
– Collection of best programming practices;
– Evaluate efforts of implementing the approaches versus traditional ap-
proaches;

– Evaluate difficulty of learning the approach / the required practices.
• EUD / MD related:

– Define a design language to abstract the architecture;
– Explore the architecture in other EUGD approaches.

• UD / UA-games related:
– Create a library of mechanics with pre-defined interaction alternatives;
– Implement multiplayer support for people with different interaction
needs;

– Multiplayer:
∗ Client-server (network/architecture) like;
∗ As adaptations happen at local machines, each person can play her

own version of the adapted game.
– Support real-time games with limited time constraints;
– Figure how we can benefit the most from assistive technologies.
– Cognitive abilities:

4.3. Future Work 135

∗ Explore cheating as a form of assistance.
∗ Propose allowed Meta-Game changes (warning: affects multiplayer

games for all players):
· Time can be an input outside the game.
· Difficult can be parameterized in components.

– Motor abilities:
∗ Record runs of multiple players to provide variation for automation,

if there is any other solution.
• Semiotics:

– Explore communication using games – identify purpose of mechanics
to find how designers use them to convey messages. This could help
defining interaction alternatives per purpose (potentially a taxonomy).

• Artificial intelligence and machine learning;
– Explore automation and input reduction to assist players (bots, pathfind-
ing, auto-aim);

– “Computer Assisted Gameplay”;
– “Computer Assisted Game Design”;
– “Computer Assisted Human-Computer Interaction”.

2. Work model:

• CSCW related:
– Expand to support larger scale scenarios;
– Define distributed workflows;
– Explore existing CSCWmodels within the work model;
– Implement the accessibility model for other domains.
– Extend/modify the creation model other domains;
– Find ways to foster collaboration.

• MD / EUD related:
– Identify more ways to enable people to contribute;
– Define formats for enriched media alternatives;
– Automated strategies for the Conversion phase.

• UD / UA-games related:
– Implement media creation tools for new audiences;
– Collaboration workflows based on abilities;

136 Chapter 4. Conclusion

– Foster collaboration in heterogeneous teams, with different interaction
needs;

– Analyze relations of interdependence among participants.
• HCC related:
• PD related:

3. Lepi:

• EUD / MD related:
– Merge the solution into Godot, to benefit from its editor;
– Support new mechanics and game genres;
– Support new EUD activities (macros, PbD, VPL, scripting);
– Support game design frameworks (for instance, Machinations);
– Support alternative input devices and strategies.

∗ Speech;
· Single letter shortcut.

∗ Modal editing (Vim like) for commands.
– Explore non-verbal game creation / games without stories, mechanics
only.

– Advance on the ’gentle slope’ creation method.
– Define interaction adaptations per mechanic and genres.

• CSCW related:
– Explore accessible, collaborative and distributed creation of accessible
games;

• UD / UA-games related:
– Explore game accessibility guidelines within Lepi – both for use and for
creation;

– Extend the solution to enable new audiences to create;
– Support assistive technologies for input and output;
– Improve functionality to cycle among interaction alternatives;
– Define special playing modes to simulate disabilities;
– Define automated player simulating common problems from a lack of
interaction alternatives;

– Automate game generation by player abilities at the Distribution phase;
• Artificial intelligence and machine learning:

– AI assisted EUGD;

4.3. Future Work 137

– Recommendation of next steps based on history of actions;

4. Framework in general:

• Practice:
– Implement a Web system (or other support tool) to centralize practices;

∗ Register participants by abilities;
∗ Register skills to request Collaborators;
∗ Showcase projects;
∗ Match abilities and skills required to implement a missing interaction

feature at a project to Collaborators who could provide it.
– Version control system.

• Inclusive Design / UD / Universal Access / HCC related:
– Support systems to optimize workflows (Web system, for instance);
– Content creation tools for people with disabilities;
– Human perceptions regarding inclusive game creation and play;
– Explore co-creation and cooperative / multiplayer play between people
with different interaction needs – same MG for both, different Games for
each;

– Support cognitive disabilities;
– Support multiple disabilities;
– Investigate accessible game co-creation as culture;
– Investigate accessible game co-creation in education, healthcare, rehabili-
tation, training;

– Investigate accessible game co-creation for digital inclusion;
– Investigate effects of inclusion in shared living environments over time.

5. Other ideas:

• Theory of computation, artificial intelligence, and machine learning:
– Although it is not needed for the definitions (as, in practice, as games for
humans), for what games could we define a human-agent that can play
the entire game?
∗ How does NP-completeness affect the creation of such agent?
∗ Many interesting games areNP-hard /NP-complete / PSPACE-complete.

• Game design:
– What are universal game genres / mechanics?

∗ First Person Shooter (FPS);

138 Chapter 4. Conclusion

∗ Card games;
∗ Board games;
∗ Storytelling games / interactive fiction;
∗ Text based games;
∗ Slow paced games;
∗ Casual games.

– How does tailorable design affect traditional game design approaches?
– Figure ethics of extending commercial systems;
– Define an inclusive game creation curriculum for serious activities.
– Define polymorphic mechanics.

• Programming:
– Enforce the separation of concerns at the language level (same program-
ming language, different ways to present it).

– Design a programming language that represents code using different
modalities (for instance, supporting textual and visual programming;
perhaps expand it to support tactile).

• Compilers:
– Implement a compiler that enforces the separation proposed in this thesis
as a feature.

– Explore “static-time” tailoring: a compiler that generates tailored versions
to avoid the overhead and run-time memory and performance penalties.

• Security:
– Explore risks and vulnerabilities from co-creation, sharing, and attaching
interaction.

• Privacy:
– Research risks for confidentiality, privacy, anonymity.

Furthermore, ifwe consider that people can apply the framework to non-Computer
Science domains, the research opens possibilities for humanistic studies, for instance.
Readers with different backgrounds may find nouveau opportunities that we have not –
due to our technology bias.

139

Bibliography

ADAMS, E.; DORMANS, J. Game Mechanics: Advanced Game Design. 1 edition. ed.
Berkeley, CA: New Riders, 2012. ISBN 978-0-321-82027-3. Cited once on page 103.
Aguado-Delgado, J. et al. Accessibility in video games: A systematic review. Universal
Access in the Information Society, ago. 2018. ISSN 1615-5297. Cited 8 times on pages 33,
34, 46, 47, 133, 274, 277, and 278.
AHMADI, N.; JAZAYERI, M. Analyzing the learning process in online educational
game design: A case study. In: Proceedings of the Australian Software Engineering
Conference, ASWEC. [S.l.: s.n.], 2014. p. 84–93. ISBN 978-1-4799-3149-1. Cited 6 times on
pages 50, 52, 53, 106, 107, and 279.
AHMADI, N.; JAZAYERI, M.; LANDONI, M. Helping Novice Programmers to
Bootstrap in the Cloud: Incorporating Support for Computational Thinking into the
Game Design Process. In: 2012 IEEE 12th International Conference on Advanced Learning
Technologies. [S.l.: s.n.], 2012. p. 349–353. Cited 4 times on pages 51, 52, 53, and 83.
AHMADI, N.; JAZAYERI, M.; REPENNING, A. Engineering an Open-Web Educational
Game Design Environment. In: 2012 19th Asia-Pacific Software Engineering Conference.
[S.l.: s.n.], 2012. v. 1, p. 867–876. Cited 4 times on pages 50, 52, 53, and 279.
AHMADI, N.; JAZAYERI, M.; REPENNING, A. Performance Evaluation of
User-created Open-web Games. In: Proceedings of the 27th Annual ACM Symposium
on Applied Computing. New York, NY, USA: ACM, 2012. (SAC ’12), p. 730–732. ISBN
978-1-4503-0857-1. Cited 2 times on pages 50 and 279.
ALATALO, T. An Entity-Component Model for Extensible Virtual Worlds. IEEE Internet
Computing, v. 15, n. 5, p. 30–37, set. 2011. ISSN 1089-7801. Cited once on page 182.
ARCHAMBAULT, D. et al. Towards Generalised Accessibility of Computer Games. In:
PAN, Z. et al. (Ed.). Technologies for E-Learning and Digital Entertainment. [S.l.]: Springer
Berlin Heidelberg, 2008, (Lecture Notes in Computer Science, 5093). p. 518–527. ISBN
978-3-540-69734-3 978-3-540-69736-7. Cited once on page 181.
ATILLA, T. Video games in psychotherapy. Review of General Psychology, v. 14, n. 2, p.
141–146, 2010. ISSN 1939-1552(Electronic);1089-2680(Print). Cited once on page 108.
BARLET, M. C.; SPOHN, S. D. Includification: A Practical Guide to Game Accessibility. 2012.
Cited 6 times on pages 33, 46, 107, 161, 277, and 317.

140 Bibliography

BASAWAPATNA, A. R.; REPENNING, A.; KOH, K. H. Closing The Cyberlearning Loop:
Enabling Teachers To Formatively Assess Student Programming Projects. In: Proceedings
of the 46th ACM Technical Symposium on Computer Science Education. New York, NY, USA:
ACM, 2015. (SIGCSE ’15), p. 12–17. ISBN 978-1-4503-2966-8. Cited 3 times on pages 50,
52, and 53.

BASAWAPATNA, A. R. et al. The Consume - Create Spectrum: Balancing Convenience
and Computational Thinking in Stem Learning. In: Proceedings of the 45th ACM Technical
Symposium on Computer Science Education. New York, NY, USA: ACM, 2014. (SIGCSE
’14), p. 659–664. ISBN 978-1-4503-2605-6. Cited 4 times on pages 51, 52, 171, and 279.

BENNETT, C. L.; BRADY, E.; BRANHAM, S. M. Interdependence As a Frame for
Assistive Technology Research and Design. In: Proceedings of the 20th International ACM
SIGACCESS Conference on Computers and Accessibility. New York, NY, USA: ACM, 2018.
(ASSETS ’18), p. 161–173. ISBN 978-1-4503-5650-3. Cited 12 times on pages 54, 55, 98,
101, 168, 270, 274, 280, 281, 287, 294, and 298.

BENNETT, C. L. et al. An Intimate Laboratory?: Prostheses As a Tool for Experimenting
with Identity and Normalcy. In: Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems. New York, NY, USA: ACM, 2016. (CHI ’16), p. 1745–1756. ISBN
978-1-4503-3362-7. Cited 3 times on pages 54, 280, and 281.

BERLAND, M. et al. Programming on the move: Design lessons from IPRO. In:
Conference on Human Factors in Computing Systems - Proceedings. [S.l.: s.n.], 2011. p.
2149–2154. ISBN 978-1-4503-0228-9. Cited 4 times on pages 50, 52, 53, and 107.

BERNARDO, C. G. et al. Multimodality by electronic games as assistive technology for
visual disabilities. In: 2016 1st International Conference on Technology and Innovation in
Sports, Health and Wellbeing (TISHW). [S.l.: s.n.], 2016. p. 1–8. Cited once on page 46.

BIGHAM, J. P.; LADNER, R. E.; BORODIN, Y. The Design of Human-powered Access
Technology. In: The Proceedings of the 13th International ACM SIGACCESS Conference on
Computers and Accessibility. New York, NY, USA: ACM, 2011. (ASSETS ’11), p. 3–10.
ISBN 978-1-4503-0920-2. Cited 4 times on pages 274, 280, 281, and 287.

BLACKWELL, A. F. Psychological Issues in End-User Programming. In: LIEBERMAN,
H.; PATERNÒ, F.; WULF, V. (Ed.). End User Development. [S.l.]: Springer Netherlands,
2006, (Human-Computer Interaction Series, 9). p. 9–30. ISBN 978-1-4020-4220-1
978-1-4020-5386-3. Cited once on page 106.

BOUISSAC, P. (Ed.). Encyclopedia of Semiotics. New York: Oxford University Press, 1998.
ISBN 978-0-19-512090-5. Cited once on page 303.

BRADY, E.; BIGHAM, J. P. Crowdsourcing Accessibility: Human-Powered Access Technologies.
Boston: Now Publishers Inc, 2015. ISBN 978-1-68083-034-7. Cited 4 times on pages 274,
280, 281, and 287.

BUEHLER, E. et al. Sharing is Caring: Assistive Technology Designs on Thingiverse. In:
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems.
New York, NY, USA: ACM, 2015. (CHI ’15), p. 525–534. ISBN 978-1-4503-3145-6. Cited
2 times on pages 54 and 280.

Bibliography 141

BURKE, Q.; KAFAI, Y. B. Decade of Game Making for Learning: From Tools to
Communities. In: ANGELIDES, r. C.; AGIUS, H. (Ed.). Handbook of Digital Games. [S.l.]:
John Wiley & Sons, Inc., 2014. p. 689–709. ISBN 978-1-118-79644-3. Cited 4 times on
pages 51, 55, 106, and 279.

BURLESON, W. et al. Game as life - Life as game. In: Proceedings of IDC 2009 - The 8th
International Conference on Interaction Design and Children. [S.l.: s.n.], 2009. p. 272–273.
ISBN 978-1-60558-395-2. Cited once on page 50.

CAILLOIS, R. Man, Play and Games. Reprint edition. Urbana: University of Illinois Press,
2001. ISBN 978-0-252-07033-4. Cited 4 times on pages 9, 42, 106, and 169.

Cambridge Advanced Learner’s Dictionary & Thesaurus. Framework. [S.l.]: Cambridge
University Press, 2017. Cited 2 times on pages 35 and 57.

CANO, A. R.; FERNÁNDEZ-MANJÓN, B.; GARCÍA-TEJEDOR, Á. J. Using game
learning analytics for validating the design of a learning game for adults with
intellectual disabilities. British Journal of Educational Technology, v. 49, n. 4, p. 659–672,
2018. ISSN 1467-8535. Cited once on page 46.

CARBONARO, M. et al. Interactive story authoring: A viable form of creative expression
for the classroom. Computers & Education, v. 51, n. 2, p. 687–707, set. 2008. ISSN
0360-1315. Cited 5 times on pages 50, 52, 53, 106, and 107.

CARDONHA, C. et al. A Crowdsourcing Platform for the Construction of Accessibility
Maps. In: Proceedings of the 10th International Cross-Disciplinary Conference on Web
Accessibility. New York, NY, USA: ACM, 2013. (W4A ’13), p. 26:1–26:4. ISBN
978-1-4503-1844-0. Cited once on page 280.

CARVALHO, A. C. P. d. L. F. de et al. Grandes Desafios Da Pesquisa Em Computação No
Brasil - 2006 – 2016. São Paulo, 2006. 26 p. Cited once on page 34.

CHAKRABORTY, J. et al. Designing video games for the blind: Results of an empirical
study. Universal Access in the Information Society, v. 16, n. 3, p. 809–818, ago. 2017. ISSN
1615-5297. Cited once on page 46.

CHEUNG, G. Customization for games: Lessons from variants of Texas Hold’em. In:
Conference on Human Factors in Computing Systems - Proceedings. [S.l.: s.n.], 2011. p.
1849–1854. ISBN 978-1-4503-0228-9. Cited 2 times on pages 51 and 52.

CHEUNG, M. Therapeutic Games And Guided Imagery: Tools for Mental Health And School
Professionals Working With Children, Adolescents, And Their Families. [S.l.]: Lyceum Books,
2006. ISBN 0-925065-94-3. Cited once on page 42.

CHILTON, L. et al. Seaweed: A web application for designing economic games. In:
Proceedings of the ACM SIGKDD Workshop on Human Computation, HCOMP ’09. [S.l.:
s.n.], 2009. p. 34–35. ISBN 978-1-60558-672-4. Cited 2 times on pages 50 and 51.

CIALDINI, R. B. Influence: The Psychology of Persuasion, Revised Edition. Revised edition.
New York: Harper Business, 2006. ISBN 978-0-06-124189-5. Cited once on page 108.

CLIFFORD, R. et al. The Complexity of Flood Filling Games. Theory of Computing
Systems, v. 50, n. 1, p. 72–92, jan. 2012. ISSN 1433-0490. Cited once on page 270.

142 Bibliography

COMUNELLO, F.; MULARGIA, S. User-generated video gaming: Little big planet
and participatory cultures in Italy. Games and Culture, v. 10, n. 1, p. 57–80, 2015. ISSN
1555-4120. Cited 4 times on pages 51, 52, 106, and 279.

COOPER, S.; DANN, W.; PAUSCH, R. Alice: A 3-D tool for introductory programming
concepts. In: Journal of Computing Sciences in Colleges. [S.l.]: Consortium for Computing
Sciences in Colleges, 2000. v. 15, p. 107–116. Cited once on page 49.

CYPHER, A.; SMITH, D. C. KidSim: End User Programming of Simulations. In:
Conference Companion on Human Factors in Computing Systems. New York, NY, USA: ACM,
1995. (CHI ’95), p. 35–36. ISBN 978-0-89791-755-1. Cited once on page 50.

DAHL, T. et al. A Virtual World Web Client Utilizing an Entity-Component Model.
In: 2013 Seventh International Conference on Next Generation Mobile Apps, Services and
Technologies. [S.l.: s.n.], 2013. p. 7–12. Cited once on page 182.

DARIN, T.; ANDRADE, R.; SÁNCHEZ, J. SLUP: A Standard List of Usability Problems
in Multimodal Video Games designed for People Who Are Blind. Anais Estendidos do
Simpósio Brasileiro de Fatores Humanos em Sistemas Computacionais (IHC), out. 2018. ISSN
0000-0000. Cited once on page 46.

de Borba Campos, M.; OLIVEIRA, J. D. Usability, Accessibility and Gameplay Heuristics
to Evaluate Audiogames for Users Who are Blind. In: ANTONA, M.; STEPHANIDIS,
C. (Ed.). Universal Access in Human-Computer Interaction. Methods, Techniques, and Best
Practices. [S.l.]: Springer International Publishing, 2016. (Lecture Notes in Computer
Science), p. 38–48. ISBN 978-3-319-40250-5. Cited once on page 46.

de Leeuw, K. et al. A documental approach to adventure game development. Science of
Computer Programming, v. 67, n. 1, p. 3–31, jun. 2007. ISSN 0167-6423. Cited 2 times on
pages 50 and 106.

DEMAINE, E. D.; HOHENBERGER, S.; Liben-Nowell, D. Tetris is Hard, Even to
Approximate. In: WARNOW, T.; ZHU, B. (Ed.). Computing and Combinatorics. [S.l.]:
Springer Berlin Heidelberg, 2003. (Lecture Notes in Computer Science), p. 351–363.
ISBN 978-3-540-45071-9. Cited 2 times on pages 167 and 270.

DENNER, J.; WERNER, L.; ORTIZ, E. Computer games created by middle school girls:
Can they be used to measure understanding of computer science concepts? Computers &
Education, v. 58, n. 1, p. 240–249, jan. 2012. ISSN 0360-1315. Cited 5 times on pages 51,
52, 53, 106, and 107.

DESURVIRE, H.; WIBERG, C. User Experience Design for Inexperienced
Gamers: GAP—Game Approachability Principles. In: BERNHAUPT, R. (Ed.).
Game User Experience Evaluation. Cham: Springer International Publishing, 2015,
(Human–Computer Interaction Series). p. 169–186. ISBN 978-3-319-15985-0. Cited once
on page 46.

EARP, J. Game Making for Learning: A Systematic Review of the Research Literature. In:
Proceedings of 8th International Conference of Education, Research and Innovation, ICERI2015.
Seville, Spain: IATED Academy, 2015. p. 6426–6435. ISBN 978-84-608-2657-6. Cited 7
times on pages 34, 42, 43, 53, 105, 106, and 279.

Bibliography 143

El-Nasr, M. S.; SMITH, B. K. Learning Through Game Modding. Comput. Entertain., v. 4,
n. 1, jan. 2006. ISSN 1544-3574. Cited 7 times on pages 41, 42, 51, 52, 53, 106, and 107.

ELLIS, B. et al. Game Accessibility Guidelines: A Straightforward Reference for Inclusive Game
Design. 2013. Http://www.gameaccessibilityguidelines.com/. Cited 4 times on pages
33, 107, 161, and 277.

FABIAN, R. Data-Oriented Design: Software Engineering for Limited Resources and Short
Schedules. [S.l.]: Richard Fabian, 2018. ISBN 978-1-916478-70-1. Cited once on page 101.

FERREIRA, J. J. et al. Combining cognitive, semiotic and discourse analysis to explore
the power of notations in visual programming. In: 2012 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). [S.l.: s.n.], 2012. p. 101–108. Cited
once on page 50.

FISCHBACH, M.; WIEBUSCH, D.; LATOSCHIK, M. E. Semantic Entity-Component
State Management Techniques to Enhance Software Quality for Multimodal VR-Systems.
IEEE Transactions on Visualization and Computer Graphics, v. 23, n. 4, p. 1342–1351, abr.
2017. ISSN 1077-2626. Cited once on page 182.

FISCHER, G. User Modeling in Human–Computer Interaction. User Modeling and
User-Adapted Interaction, v. 11, n. 1-2, p. 65–86, mar. 2001. ISSN 0924-1868, 1573-1391.
Cited 2 times on pages 42 and 107.

FISCHER, G. End-User Development and Meta-design: Foundations for Cultures
of Participation. In: PIPEK, V. et al. (Ed.). End-User Development. [S.l.]: Springer
Berlin Heidelberg, 2009, (Lecture Notes in Computer Science, 5435). p. 3–14. ISBN
978-3-642-00425-4 978-3-642-00427-8. Cited once on page 297.

FISCHER, G.; FOGLI, D.; PICCINNO, A. Revisiting and Broadening the Meta-Design
Framework for End-User Development. In: PATERNÒ, F.; WULF, V. (Ed.). New
Perspectives in End-User Development. Cham: Springer International Publishing, 2017. p.
61–97. ISBN 978-3-319-60291-2. Cited 2 times on pages 175 and 297.

FISCHER, G. et al. Meta-design: A Manifesto for End-user Development. Commun.
ACM, v. 47, n. 9, p. 33–37, set. 2004. ISSN 0001-0782. Cited 2 times on pages 47 and 175.

FOGLI, D.; COLOSIO, S.; SACCO, M. Managing accessibility in local e-government
websites through end-user development: A case study. Universal Access in the Information
Society, v. 9, n. 1, p. 35–50, mar. 2010. ISSN 1615-5297. Cited once on page 280.

FONTANA, T. et al. How Game Engines Can Inspire EDA Tools Development: A Use
Case for an Open-source Physical Design Library. In: Proceedings of the 2017 ACM on
International Symposium on Physical Design. New York, NY, USA: ACM, 2017. (ISPD ’17),
p. 25–31. ISBN 978-1-4503-4696-2. Cited once on page 182.

FORTES, R. P. M. et al. Game Accessibility Evaluation Methods: A Literature Survey. In:
ANTONA, M.; STEPHANIDIS, C. (Ed.). Universal Access in Human–Computer Interaction.
Design and Development Approaches and Methods. [S.l.]: Springer International Publishing,
2017. (Lecture Notes in Computer Science), p. 182–192. ISBN 978-3-319-58706-6. Cited
once on page 46.

144 Bibliography

GAMES, I. A. Gamestar Mechanic: Learning a designer mindset through
communicational competence with the language of games. Learning, Media and
Technology, v. 35, n. 1, p. 31–52, mar. 2010. ISSN 1743-9884. Cited 2 times on pages 42
and 49.

GAMMA, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software. 1. ed.
[S.l.]: Addison-Wesley Professional, 1994. ISBN 0-201-63361-2. Cited 6 times on pages
53, 54, 182, 183, 184, and 185.

GARCIA, F. E. Um Estudo Sobre Diretivas de Design Para Audio Games. Tese (Trabalho de
Conclusão de Curso) — Universidade Federal de São Carlos, São Carlos, 2011. Cited 2
times on pages 46 and 97.

GARCIA, F. E. Um Motor para Jogos Digitais Universais. Tese (Dissertação) —
Universidade Federal de São Carlos, São Carlos, 2014. Cited 28 times on pages 33, 34,
35, 42, 43, 46, 47, 57, 61, 93, 97, 160, 162, 175, 177, 178, 183, 211, 218, 219, 221, 266, 274,
275, 276, 277, 283, and 301.

GARCIA, F. E.; NERIS, V. P. d. A. Design de Jogos Universais: Apoiando a Prototipação
de Alta Fidelidade com Classes Abstratas e Eventos. In: Proceedings of the 12th Brazilian
Symposium on Human Factors in Computing Systems. Porto Alegre, Brazil, Brazil: Brazilian
Computer Society, 2013. (ICH ’13), p. 82–91. ISBN 978-85-7669-278-2. Cited 5 times on
pages 57, 97, 183, 276, and 283.

GARCIA, F. E.; NERIS, V. P. d. A. Design Guidelines for Audio Games. In: KUROSU,
M. (Ed.). Human-Computer Interaction. Applications and Services. [S.l.]: Springer Berlin
Heidelberg, 2013, (Lecture Notes in Computer Science, 8005). p. 229–238. ISBN
978-3-642-39261-0 978-3-642-39262-7. Cited 6 times on pages 33, 46, 97, 161, 181,
and 277.

GARCIA, F. E.; NERIS, V. P. d. A. A Data-Driven Entity-Component Approach to
Develop Universally Accessible Games. In: STEPHANIDIS, C.; ANTONA, M. (Ed.).
Universal Access in Human-Computer Interaction. Universal Access to Information and
Knowledge. [S.l.]: Springer International Publishing, 2014, (Lecture Notes in Computer
Science, 8514). p. 537–548. ISBN 978-3-319-07439-9 978-3-319-07440-5. Cited 17 times
on pages 33, 53, 54, 57, 61, 97, 107, 160, 162, 177, 178, 182, 183, 274, 276, 277, and 283.

GARCIA, F. E.; RODRIGUES, K. R. H.; NERIS, V. P. d. A. Uma Linguagem deModelagem
de Interação para Aplicações Terapêuticas. In: Simpósio Brasileiro Sobre Fatores Humanos
Em Sistemas Computacionais. São Paulo: [s.n.], 2016. Cited once on page 59.

GEE, E. R.; TRAN, K. M. Video Game Making and Modding. In: Handbook of Research on
the Societal Impact of Digital Media. Hershey, PA: Information Science Reference, 2015. p.
238–267. ISBN 978-1-4666-8310-5. Cited 5 times on pages 33, 41, 42, 105, and 106.

GIANNAKOPOULOS, G. et al. Accessible electronic games for blind children and
young people. British Journal of Educational Technology, v. 49, n. 4, p. 608–619, 2018. ISSN
1467-8535. Cited once on page 34.

GRAMMENOS, D.; SAVIDIS, A.; STEPHANIDIS, C. Unified Design of Universally
Accessible Games. In: Proceedings of the 4th International Conference on Universal
Access in Human-Computer Interaction: Applications and Services. Berlin, Heidelberg:

Bibliography 145

Springer-Verlag, 2007. (UAHCI’07), p. 607–616. ISBN 978-3-540-73282-2. Cited 9 times
on pages 33, 44, 46, 65, 66, 79, 95, 162, and 277.

GRAMMENOS, D.; SAVIDIS, A.; STEPHANIDIS, C. Designing universally accessible
games. Magazine Computers in Entertainment (CIE) - SPECIAL ISSUE: Media Arts and
Games, v. 7, p. 29, fev. 2009. ISSN 15443574. Cited 11 times on pages 33, 46, 47, 65, 77, 79,
162, 181, 232, 274, and 277.

GRAMMENOS, D.; SAVIDIS, A.; STEPHANIDIS, C. Unified Design of Universally
Accessible Games. In: STEPHANIDIS, C. (Ed.). Universal Access in Human-Computer
Interaction. Applications and Services. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011. v. 4556, p. 607–616. ISBN 978-3-540-73282-2. Cited 11 times on pages 33, 44, 46, 79,
107, 162, 175, 180, 181, 232, and 277.

GREGORY, J. Game Engine Architecture, Second Edition. 2 edition. ed. Boca Raton: A K
Peters/CRC Press, 2014. ISBN 978-1-4665-6001-7. Cited 12 times on pages 49, 53, 54, 61,
160, 162, 178, 182, 183, 184, 218, and 303.

HABICHT, H.; OLIVEIRA, P.; SHCHERBATIUK, V. User Innovators: When Patients Set
Out to Help Themselves and End Up Helping Many. Rochester, NY, 2012. Cited once on
page 281.

HARA, K.; LE, V.; FROEHLICH, J. Combining Crowdsourcing and Google Street View
to Identify Street-level Accessibility Problems. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. New York, NY, USA: ACM, 2013. (CHI ’13), p.
631–640. ISBN 978-1-4503-1899-0. Cited once on page 280.

HAREL, I.; PAPERT, S. (Ed.). Constructionism. Westport, CT, US: Ablex Publishing, 1991.
xi. ISBN 0-89391-785-0 (Hardcover); 0-89391-786-9 (Paperback). Cited 2 times on pages
42 and 50.

HAYES, E. Game content creation and IT proficiency: An exploratory study. Computers
& Education, v. 51, n. 1, p. 97–108, ago. 2008. ISSN 0360-1315. Cited 5 times on pages 51,
52, 53, 106, and 107.

HAYES, E.; GEE, J. No selling the genie lamp: A game literacy practice in The Sims.
E-Learning, v. 7, n. 1, p. 67–78, 2010. ISSN 1741-8887. Cited 8 times on pages 33, 41, 51,
52, 53, 105, 106, and 107.

HONG, R.; CHEN, V.-H. Becoming an ideal co-creator: Web materiality and intensive
laboring practices in game modding. New Media and Society, v. 16, n. 2, p. 290–305, 2014.
ISSN 1461-4448. Cited 4 times on pages 51, 52, 106, and 279.

HOPCROFT, J. E.; MOTWANI, R.; ULLMAN, J. D. Introduction to Automata Theory,
Languages, and Computation. 2 edition. ed. Boston: Addison Wesley, 2000. ISBN
978-0-201-44124-6. Cited 3 times on pages 159, 269, and 283.

HUIZINGA, J. Homo Ludens: A Study of the Play-Element in Culture. Kettering, OH:
Angelico Press, 2016. ISBN 978-1-62138-999-6. Cited 5 times on pages 42, 106, 121, 169,
and 294.

146 Bibliography

HURST, A.; TOBIAS, J. Empowering Individuals with Do-it-yourself Assistive
Technology. In: The Proceedings of the 13th International ACM SIGACCESS Conference on
Computers and Accessibility. New York, NY, USA: ACM, 2011. (ASSETS ’11), p. 11–18.
ISBN 978-1-4503-0920-2. Cited 2 times on pages 54 and 280.

International Game Developers Association. Accessibility in Games: Motivations and
Approaches. [S.l.], 2004. Cited 7 times on pages 33, 42, 46, 107, 161, 181, and 277.

IOANNIDOU, A.; REPENNING, A.; WEBB, D. Using scalable game design to
promote 3D fluency: Assessing the AgentCubes incremental 3D end-user development
framework. In: 2008 IEEE Symposium on Visual Languages and Human-Centric Computing.
[S.l.: s.n.], 2008. p. 47–54. Cited 5 times on pages 49, 50, 52, 53, and 279.

IOANNIDOU, A.; REPENNING, A.; WEBB, D. C. AgentCubes: Incremental 3D end-user
development. Journal of Visual Languages & Computing, v. 20, n. 4, p. 236–251, ago. 2009.
ISSN 1045-926X. Cited 6 times on pages 49, 50, 52, 53, 107, and 279.

JAZAYERI, M.; AHMADI, N. End-user Programming of Web-native Interactive
Applications. In: Proceedings of the 12th International Conference on Computer Systems and
Technologies. New York, NY, USA: ACM, 2011. (CompSysTech ’11), p. 11–16. ISBN
978-1-4503-0917-2. Cited 6 times on pages 50, 52, 53, 106, 107, and 279.

KAFAI, Y. B.; BURKE, Q. Constructionist Gaming: Understanding the Benefits of
Making Games for Learning. Educational Psychologist, v. 50, n. 4, p. 313–334, out. 2015.
ISSN 0046-1520. Cited 2 times on pages 50 and 106.

KAHLER, H. et al. Computer Supported CooperativeWork: The Journal of Collaborative
Computing. Computer Supported Cooperative Work (CSCW), v. 9, n. 1, p. 1–4, mar. 2000.
ISSN 0925-9724, 1573-7551. Cited 3 times on pages 46, 175, and 180.

KANE, S. K. Everyday Inclusive Web Design: An Activity Perspective. Information
Research: An International Electronic Journal, v. 12, n. 3, abr. 2007. ISSN 1368-1613. Cited 2
times on pages 280 and 281.

KAUHANEN, M.; BIDDLE, R. Cognitive Dimensions of a Game Scripting Tool. In:
Proceedings of the 2007 Conference on Future Play. New York, NY, USA: ACM, 2007. (Future
Play ’07), p. 97–104. ISBN 978-1-59593-943-2. Cited 5 times on pages 50, 52, 53, 107,
and 279.

KESER, H. et al. Troubleshooting assessment: An authentic problem solving activity for
it education. Procedia - Social and Behavioral Sciences, v. 9, p. 903–907, jan. 2010. ISSN
1877-0428. Cited 4 times on pages 50, 52, 53, and 107.

KHARRAZI, H.; FAIOLA, A.; DEFAZIO, J. Healthcare Game Design: Behavioral
Modeling of Serious Gaming Design for Children with Chronic Diseases. In: JACKO,
J. A. (Ed.). Human-Computer Interaction. Interacting in Various Application Domains.
[S.l.]: Springer Berlin Heidelberg, 2009, (Lecture Notes in Computer Science, 5613). p.
335–344. ISBN 978-3-642-02582-2 978-3-642-02583-9. Cited once on page 108.

KHARRAZI, H. et al. A Scoping Review of Health Game Research: Past, Present,
and Future. Games for Health Journal, v. 1, n. 2, p. 153–164, abr. 2012. ISSN 2161-783X,
2161-7856. Cited once on page 108.

Bibliography 147

KITCHENHAM, B. Procedures for Performing Systematic Reviews. Keele, Staffs, 2004.
1–26 p. Cited 3 times on pages 36, 47, and 182.

KOH, K. H. et al. Early Validation of Computational Thinking Pattern Analysis. In:
Proceedings of the 2014 Conference on Innovation & Technology in Computer Science Education.
New York, NY, USA: ACM, 2014. (ITiCSE ’14), p. 213–218. ISBN 978-1-4503-2833-3.
Cited 3 times on pages 50, 52, and 53.

LAGERSTRÖM, S. et al. Meta-designing interactive outdoor games for children: A case
study. In: ACM International Conference Proceeding Series. [S.l.: s.n.], 2014. p. 325–328.
ISBN 978-1-4503-2272-0. Cited once on page 50.

LANGE, P.; WELLER, R.; ZACHMANN, G. Wait-free hash maps in the entity-
component-system pattern for realtime interactive systems. In: 2016 IEEE 9th Workshop
on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS). [S.l.:
s.n.], 2016. p. 1–8. Cited once on page 182.

LASECKI, W. S.; KUSHALNAGAR, R.; BIGHAM, J. P. Helping Students Keep Up
with Real-time Captions by Pausing and Highlighting. In: Proceedings of the 11th Web
for All Conference. New York, NY, USA: ACM, 2014. (W4A ’14), p. 39:1–39:8. ISBN
978-1-4503-2651-3. Cited once on page 280.

LI, Q.-C.; WANG, G.-P.; ZHOU, F. High-extensible scene graph framework based on
component techniques. Journal of Zhejiang University: Science, v. 7, n. 7, p. 1247–1252,
2006. Cited once on page 182.

LIEBERMAN, H.; LIU, H. Feasibility Studies for Programming in Natural Language.
In: LIEBERMAN, H.; PATERNÒ, F.; WULF, V. (Ed.). End User Development. [S.l.]:
Springer Netherlands, 2006, (Human-Computer Interaction Series, 9). p. 459–473. ISBN
978-1-4020-4220-1 978-1-4020-5386-3. Cited once on page 106.

LIEBERMAN, H. et al. End-User Development: An Emerging Paradigm. In:
LIEBERMAN, H.; PATERNÒ, F.; WULF, V. (Ed.). End User Development. [S.l.]:
Springer Netherlands, 2006, (Human-Computer Interaction Series, 9). p. 1–8. ISBN
978-1-4020-4220-1 978-1-4020-5386-3. Cited 3 times on pages 34, 47, and 278.

LIN, H. Z. S.; CHIOU, G. F. Modding Commercial Game for Physics Learning: A
Preliminary Study. In: 2010 Third IEEE International Conference on Digital Game and
Intelligent Toy Enhanced Learning (DIGITEL). [S.l.: s.n.], 2010. p. 225–227. Cited 5 times
on pages 51, 52, 53, 106, and 107.

LIU, P.; DING, X.; GU, N. “Helping Others Makes Me Happy”: Social Interaction and
Integration of People with Disabilities. In: Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social Computing. New York, NY, USA: ACM,
2016. (CSCW ’16), p. 1596–1608. ISBN 978-1-4503-3592-8. Cited 10 times on pages 54,
126, 270, 274, 280, 281, 285, 287, 297, and 298.

LIU, P.; DING, X.; GU, N. “Helping Others Makes Me Happy”: Social Interaction and
Integration of People with Disabilities. In: Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social Computing. New York, NY, USA: ACM,
2016. (CSCW ’16), p. 1596–1608. ISBN 978-1-4503-3592-8. Cited 2 times on pages 101
and 168.

148 Bibliography

MACLAURIN, M. Kodu: End-user Programming and Design for Games. In: Proceedings
of the 4th International Conference on Foundations of Digital Games. New York, NY, USA:
ACM, 2009. (FDG ’09), p. 2:xviii–2:xix. ISBN 978-1-60558-437-9. Cited once on page 49.

MADER, S.; NATKIN, S.; LEVIEUX, G. How to Analyse Therapeutic Games: The
Player / Game / Therapy Model. In: HERRLICH, M.; MALAKA, R.; MASUCH, M.
(Ed.). Entertainment Computing - ICEC 2012. [S.l.]: Springer Berlin Heidelberg, 2012,
(Lecture Notes in Computer Science, 7522). p. 193–206. ISBN 978-3-642-33541-9
978-3-642-33542-6. Cited 2 times on pages 42 and 108.

Mahelaqua et al. Community-oriented Spoken Web Browser for Low Iiterate Users. In:
Proceedings of the 2013 Conference on Computer Supported Cooperative Work. New York, NY,
USA: ACM, 2013. (CSCW ’13), p. 503–514. ISBN 978-1-4503-1331-5. Cited once on page
280.

MALINVERNI, L. et al. An inclusive design approach for developing video games
for children with Autism Spectrum Disorder. Computers in Human Behavior, v. 71, p.
535–549, jun. 2017. ISSN 0747-5632. Cited once on page 46.

MANGIRON, C.; ZHANG, X. Game Accessibility for the Blind: Current Overview and
the Potential Application of Audio Description as the Way Forward. In: MATAMALA,
A.; ORERO, P. (Ed.). Researching Audio Description: New Approaches. London: Palgrave
Macmillan UK, 2016, (Palgrave Studies in Translating and Interpreting). p. 75–95. ISBN
978-1-137-56917-2. Cited once on page 46.

MANKOFF, J.; HAYES, G. R.; KASNITZ, D. Disability Studies As a Source of Critical
Inquiry for the Field of Assistive Technology. In: Proceedings of the 12th International ACM
SIGACCESS Conference on Computers and Accessibility. New York, NY, USA: ACM, 2010.
(ASSETS ’10), p. 3–10. ISBN 978-1-60558-881-0. Cited 3 times on pages 33, 276, and 282.

MARCHIORI, E. J. et al. A visual language for the creation of narrative educational
games. Journal of Visual Languages & Computing, v. 22, n. 6, p. 443–452, dez. 2011. ISSN
1045-926X. Cited 2 times on pages 50 and 106.

MARCHIORI, E. J. et al. A narrative metaphor to facilitate educational game authoring.
Computers & Education, v. 58, n. 1, p. 590–599, jan. 2012. ISSN 0360-1315. Cited 2 times
on pages 50 and 106.

MAZAYEV, A.; MARTINS, J. A.; CORREIA, N. Improving Accessibility Through
Semantic Crowdsourcing. In: Proceedings of the 7th International Conference on Software
Development and Technologies for Enhancing Accessibility and Fighting Info-Exclusion. New
York, NY, USA: ACM, 2016. (DSAI 2016), p. 408–413. ISBN 978-1-4503-4748-8. Cited
once on page 280.

MCARTHUR, V.; TEATHER, R. J. Serious mods: A case for modding in serious games
pedagogy. In: 2015 IEEE Games Entertainment Media Conference (GEM). [S.l.: s.n.], 2015.
p. 1–4. Cited 5 times on pages 51, 52, 53, 106, and 107.

MCDANIEL, R. G.; MYERS, B. A. Gamut: Demonstrating whole applications. In: UIST
(User Interface Software and Technology): Proceedings of the ACM Symposium. [S.l.: s.n.],
1997. p. 81–82. Cited once on page 50.

Bibliography 149

MCDANIEL, R. G.; MYERS, B. A. Getting More out of Programming-by-demonstration.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New
York, NY, USA: ACM, 1999. (CHI ’99), p. 442–449. ISBN 978-0-201-48559-2. Cited 3
times on pages 50, 52, and 53.

MCSHAFFRY, M. L.; GRAHAM, D. Game Coding Complete, Fourth Edition. 4. ed. [S.l.]:
Course Technology PTR, 2012. ISBN 1-133-77657-4. Cited 10 times on pages 49, 53, 54,
61, 160, 162, 178, 182, 183, and 218.

MEADOWS, D. H. Thinking in Systems: A Primer. White River Junction, Vt: Chelsea
Green Publishing, 2008. ISBN 978-1-60358-055-7. Cited once on page 298.

MELONIO, A.; GENNARI, R. How to Design Games for Deaf Children: Evidence-Based
Guidelines. In: VITTORINI, P. et al. (Ed.). 2nd International Workshop on Evidence-Based
Technology Enhanced Learning. [S.l.]: Springer International Publishing, 2013, (Advances
in Intelligent Systems and Computing, 218). p. 83–92. ISBN 978-3-319-00553-9
978-3-319-00554-6. Cited once on page 181.

MILLER, G. E. The assessment of clinical skills/competence/performance. Academic
medicine: journal of the Association of American Medical Colleges, v. 65, n. 9 Suppl, p. S63–67,
set. 1990. ISSN 1040-2446. Cited once on page 108.

MORAIS, D.; GOMES, T.; PERES, F. Desenvolvimento De Jogos Educacionais pelo
Usuário Final: Uma Abordagem Além do Design Participativo. In: Proceedings of the 11th
Brazilian Symposium on Human Factors in Computing Systems. Porto Alegre, Brazil, Brazil:
Brazilian Computer Society, 2012. (IHC ’12), p. 161–164. ISBN 978-85-7669-262-1. Cited
5 times on pages 51, 52, 53, 106, and 107.

MØRCH, A. Three levels of end-user tailoring: Customization, integration, and
extension. In: Computers and Design in Context. [S.l.: s.n.], 1997. p. 51–76. Cited once on
page 60.

MOTA, M. P.; FARIA, L. S.; de Souza, C. S. Documentation Comes to Life in
Computational Thinking Acquisition with Agentsheets. In: Proceedings of the 11th
Brazilian Symposium on Human Factors in Computing Systems. Porto Alegre, Brazil, Brazil:
Brazilian Computer Society, 2012. (IHC ’12), p. 151–160. ISBN 978-85-7669-262-1. Cited
4 times on pages 50, 52, 53, and 107.

MOUMOUTZIS, N. et al. The ALICE experience: A learning framework to promote
gaming literacy for educators and its refinement. In: 2014 International Conference on
Interactive Mobile Communication Technologies and Learning (IMCL). [S.l.: s.n.], 2014. p.
257–261. Cited 9 times on pages 33, 41, 50, 51, 52, 53, 105, 106, and 107.

NERIS, V. P. d. A. Estudo e Proposta de um Framework para o Design de Interfaces de Usuário
Ajustáveis. Tese (Tese (Doutorado)) — Universidade de Campinas, Campinas, 2010.
Cited 8 times on pages 35, 42, 43, 46, 107, 175, 179, and 180.

NERIS, V. P. d. A.; BARANAUSKAS, M. C. C. Interfaces for All: A Tailoring-Based
Approach. In: FILIPE, J.; CORDEIRO, J. (Ed.). Enterprise Information Systems. [S.l.]:
Springer Berlin Heidelberg, 2009, (Lecture Notes in Business Information Processing,
24). p. 928–939. ISBN 978-3-642-01346-1 978-3-642-01347-8. Cited 4 times on pages 35,
43, 274, and 276.

150 Bibliography

NERIS, V. P. d. A.; BARANAUSKAS, M. C. C. Designing tailorable software systems
with the users’ participation. Journal of the Brazilian Computer Society, v. 18, n. 3, p.
213–227, set. 2012. ISSN 1678-4804. Cited once on page 276.

NIEBORG, D.; VAN, D. G. The mod industries? The industrial logic of non-market
game production. European Journal of Cultural Studies, v. 11, n. 2, p. 177–195, 2008. ISSN
1367-5494. Cited 3 times on pages 41, 51, and 52.

NYSTROM, R. Game Programming Patterns. 1 edition. ed. [S.l.]: Genever Benning, 2014.
ISBN 978-0-9905829-0-8. Cited 2 times on pages 112 and 178.

OBRENOVIC, Z.; ABASCAL, J.; STARCEVIC, D. Universal accessibility as a multimodal
design issue. Communications of the ACM, v. 50, p. 83–88, maio 2007. ISSN 00010782.
Cited once on page 301.

ORENDT, E. M.; HENRICH, D. Design of robust robot programs: Deviation detection
and classification using entity-based resources. In: 2015 IEEE International Conference on
Robotics and Biomimetics (ROBIO). [S.l.: s.n.], 2015. p. 1704–1710. Cited once on page
182.

Organisation for Economic Cooperation and Development. Skills Matter: Further Results
from the Survey of Adult Skills. Paris: Organisation for Economic Co-operation and
Development, 2016. ISBN 978-92-64-25804-4. Cited once on page 101.

OSSMANN, R.; ARCHAMBAULT, D.; MIESENBERGER, K. Computer Game
Accessibility: From Specific Games to Accessible Games. In: Proceedings of CGAMES
2006 Conference. Dublin, Ireland: [s.n.], 2006. p. 104–108. Cited once on page 181.

OSSMANN, R.; MIESENBERGER, K. Guidelines for the Development of Accessible
Computer Games. In: MIESENBERGER, K. et al. (Ed.). Computers Helping People with
Special Needs. [S.l.]: Springer Berlin / Heidelberg, 2006, (Lecture Notes in Computer
Science, v. 4061). p. 403–406. ISBN 978-3-540-36020-9. 10.1007/11788713_60. Cited once
on page 181.

OWENS, T. Modding the history of science: Values at play in modder discussions of sid
meier’s civilization. Simulation and Gaming, v. 42, n. 4, p. 481–495, 2011. ISSN 1046-8781.
Cited 2 times on pages 51 and 52.

PANE, J. F.; MYERS, B. A. More Natural Programming Languages and Environments.
In: LIEBERMAN, H.; PATERNÒ, F.; WULF, V. (Ed.). End User Development. [S.l.]:
Springer Netherlands, 2006, (Human-Computer Interaction Series, 9). p. 31–50. ISBN
978-1-4020-4220-1 978-1-4020-5386-3. Cited 2 times on pages 106 and 279.

PENA, J. Collaborative Framework for Browser Games Development. In: Proceedings of
the 2011 Workshop on Open Source and Design of Communication. New York, NY, USA:
ACM, 2011. (OSDOC ’11), p. 65–72. ISBN 978-1-4503-0873-1. Cited 3 times on pages 50,
106, and 279.

PEREIRA, A. F. et al. Game accessibility guidelines for people with sequelae from
macular chorioretinitis. Entertainment Computing, v. 28, p. 49–58, dez. 2018. ISSN
1875-9521. Cited once on page 46.

Bibliography 151

PERRONE, C.; CLARK, D.; REPENNING, A. WebQuest: Substantiating education in
edutainment through interactive learning games. Computer Networks and ISDN Systems,
v. 28, n. 7, p. 1307–1319, maio 1996. ISSN 0169-7552. Cited 3 times on pages 50, 52,
and 53.
PETRE, M.; BLACKWELL, A. F. Children as Unwitting End-User Programmers. In:
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2007).
[S.l.: s.n.], 2007. p. 239–242. Cited 4 times on pages 51, 52, 53, and 107.
PIPEK, V.; KAHLER, H. Supporting Collaborative Tailoring. In: LIEBERMAN, H.;
PATERNÒ, F.; WULF, V. (Ed.). End User Development. [S.l.]: Springer Netherlands,
2006, (Human-Computer Interaction Series, 9). p. 315–345. ISBN 978-1-4020-4220-1
978-1-4020-5386-3. Cited 2 times on pages 46 and 276.
PIPER, A. M. et al. SIDES: A Cooperative Tabletop Computer Game for Social Skills
Development. In: Proceedings of the 2006 20th Anniversary Conference on Computer
Supported Cooperative Work. New York, NY, USA: ACM, 2006. (CSCW ’06), p. 1–10. ISBN
978-1-59593-249-5. Cited 2 times on pages 54 and 280.
PIPER, A. M.; WEIBEL, N.; HOLLAN, J. Audio-enhanced Paper Photos: Encouraging
Social Interaction at Age 105. In: Proceedings of the 2013 Conference on Computer Supported
Cooperative Work. New York, NY, USA: ACM, 2013. (CSCW ’13), p. 215–224. ISBN
978-1-4503-1331-5. Cited once on page 280.
POOR, N. Computer game modders’ motivations and sense of community: A
mixed-methods approach. New Media and Society, v. 16, n. 8, p. 1249–1267, 2014. ISSN
1461-4448. Cited 7 times on pages 41, 51, 52, 53, 106, 107, and 279.
PORTER, J. R. Understanding and Addressing Real-world Accessibility Issues in
Mainstream Video Games. SIGACCESS Access. Comput., n. 108, p. 42–45, jan. 2014. ISSN
1558-2337. Cited 4 times on pages 46, 274, 277, and 318.
PORTER, J. R.; KIENTZ, J. A. An Empirical Study of Issues and Barriers to Mainstream
Video Game Accessibility. In: Proceedings of the 15th International ACM SIGACCESS
Conference on Computers and Accessibility. New York, NY, USA: ACM, 2013. (ASSETS ’13),
p. 3:1–3:8. ISBN 978-1-4503-2405-2. Cited 5 times on pages 46, 47, 274, 277, and 318.
POSTIGO, H. Video game appropriation through modifications: Attitudes concerning
intellectual property among modders and fans. Convergence, v. 14, n. 1, p. 59–74, 2008.
ISSN 1354-8565. Cited 4 times on pages 41, 51, 53, and 107.
POZZI, S.; BAGNARA, S. Individuation and diversity: The need for idiographic HCI.
Theoretical Issues in Ergonomics Science, v. 14, n. 1, p. 1–21, jan. 2013. ISSN 1463-922X.
Cited 3 times on pages 33, 273, and 276.
PRESCHL, B. et al. E-Health Interventions for Depression, Anxiety Disorders,
Dementia and Other Disorders in Older Adults: A Review. Journal of CyberTherapy and
Rehabilitation, v. 3, n. 4, p. 371–385, 2011. Cited once on page 108.
RADER, C.; BRAND, C.; LEWIS, C. Degrees of Comprehension: Children’s
Understanding of a Visual Programming Environment. In: Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM,
1997. (CHI ’97), p. 351–358. ISBN 978-0-89791-802-2. Cited once on page 106.

152 Bibliography

REA, D. J.; IGARASHI, T.; YOUNG, J. E. PaintBoard: Prototyping Interactive Character
Behaviors by Digitally Painting Storyboards. In: Proceedings of the Second International
Conference on Human-Agent Interaction. New York, NY, USA: ACM, 2014. (HAI ’14), p.
315–322. ISBN 978-1-4503-3035-0. Cited 4 times on pages 50, 52, 53, and 107.

REIN, P. et al. Group-Based Behavior Adaptation Mechanisms in Object-Oriented
Systems. IEEE Software, v. 34, n. 6, p. 78–82, nov. 2017. ISSN 0740-7459. Cited once on
page 182.

REPENNING, A. Excuse Me, I Need Better AI!: Employing Collaborative Diffusion to
Make Game AI Child’s Play. In: Proceedings of the 2006 ACM SIGGRAPH Symposium
on Videogames. New York, NY, USA: ACM, 2006. (Sandbox ’06), p. 169–178. ISBN
978-1-59593-386-7. Cited once on page 50.

REPENNING, A. Conversational programming in action. In: 2011 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). [S.l.: s.n.], 2011. p. 263–264.
Cited once on page 50.

REPENNING, A. Making programming more conversational. In: 2011 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). [S.l.: s.n.], 2011. p.
191–194. Cited 3 times on pages 50, 52, and 53.

REPENNING, A. Conversational Programming: Exploring Interactive Program
Analysis. In: Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software. New York, NY, USA: ACM, 2013.
(Onward! 2013), p. 63–74. ISBN 978-1-4503-2472-4. Cited 4 times on pages 50, 52, 53,
and 107.

REPENNING, A.; AMBACH, J. The Agentsheets Behavior Exchange: Supporting
Social Behavior Processing. In: CHI ’97 Extended Abstracts on Human Factors in
Computing Systems. New York, NY, USA: ACM, 1997. (CHI EA ’97), p. 26–27. ISBN
978-0-89791-926-5. Cited 2 times on pages 50 and 279.

REPENNING, A.; IOANNIDOU, A. AgentCubes: Raising the Ceiling of End-User
Development in Education through Incremental 3D. In: IEEE Symposium on Visual
Languages and Human-Centric Computing, 2006. VL/HCC 2006. [S.l.: s.n.], 2006. p. 27–34.
Cited 3 times on pages 49, 50, and 279.

REPENNING, A.; IOANNIDOU, A. What Makes End-User Development Tick? 13
Design Guidelines. In: LIEBERMAN, H.; PATERNÒ, F.; WULF, V. (Ed.). End User
Development. [S.l.]: Springer Netherlands, 2006, (Human-Computer Interaction Series,
9). p. 51–85. ISBN 978-1-4020-4220-1 978-1-4020-5386-3. Cited 2 times on pages 106
and 279.

REPENNING, A.; IOANNIDOU, A. End-user Visualizations. In: Proceedings of the
Working Conference on Advanced Visual Interfaces. New York, NY, USA: ACM, 2008. (AVI
’08), p. 492–493. ISBN 978-1-60558-141-5. Cited once on page 50.

RESNICK, M. et al. Growing Up Programming: Democratizing the Creation of Dynamic,
Interactive Media. In: CHI ’09 Extended Abstracts on Human Factors in Computing Systems.
New York, NY, USA: ACM, 2009. (CHI EA ’09), p. 3293–3296. ISBN 978-1-60558-247-4.
Cited 2 times on pages 51 and 52.

Bibliography 153

RESNICK, M. et al. Scratch: Programming for All. Commun. ACM, v. 52, n. 11, p. 60–67,
nov. 2009. ISSN 0001-0782. Cited once on page 49.
RESNICK, M.; SILVERMAN, B. Some Reflections on Designing Construction Kits for
Kids. In: Proceedings of the 2005 Conference on Interaction Design and Children. New York,
NY, USA: ACM, 2005. (IDC ’05), p. 117–122. ISBN 978-1-59593-096-5. Cited 4 times on
pages 51, 55, 106, and 279.
RICE, M. T. et al. Crowdsourcing to Support Navigation for the Disabled: A Report on the
Motivations, Design, Creation and Assessment of a Testbed Environment for Accessibility.
[S.l.], 2013. Cited once on page 280.
RICHARDS, D.; RICHARDSON, T. Computer-based psychological treatments for
depression: A systematic review and meta-analysis. Clinical Psychology Review, v. 32,
n. 4, p. 329–342, jun. 2012. ISSN 0272-7358. Cited once on page 108.
ROBERTSON, J. Making games in the classroom: Benefits and gender concerns.
Computers & Education, v. 59, n. 2, p. 385–398, set. 2012. ISSN 0360-1315. Cited 8 times
on pages 33, 41, 51, 52, 53, 105, 106, and 107.
RODRIGUES, K. et al. Personas-Driven Design for Mental Health Therapeutic
Applications. SBC Journal on Interactive Systems, v. 6, n. 1, p. 18–34, out. 2015. ISSN
2236-3297. Cited 4 times on pages 59, 114, 119, and 290.
RODRIGUES, K. R. H. et al. Enriquecimento De Personas Para Apoio ao Design De
Aplicações Terapêuticas Para a Saúde Mental. In: Proceedings of the 13th Brazilian
Symposium on Human Factors in Computing Systems. Porto Alegre, Brazil, Brazil:
Sociedade Brasileira de Computação, 2014. (IHC ’14), p. 51–60. ISBN 978-85-7669-291-1.
Cited 2 times on pages 59 and 290.
SALEHI, N.; BERNSTEIN, M. S. Hive: Collective Design Through Network Rotation.
Proc. ACM Hum.-Comput. Interact., v. 2, n. CSCW, p. 151:1–151:26, nov. 2018. ISSN
2573-0142. Cited 2 times on pages 101 and 281.
SALEN, K. Gaming Literacies: A Game Design Study in Action. Journal of Educational
Multimedia and Hypermedia, v. 16, n. 3, p. 301–322, jul. 2007. ISSN 1055-8896. Cited once
on page 42.
SAVIDIS, A.; STEPHANIDIS, C. Unified User Interface Development: The Software
Engineering of Universally Accessible Interactions. Universal Access in the Information
Society, v. 3, n. 3-4, p. 165–193, out. 2004. ISSN 1615-5289, 1615-5297. Cited once on page
274.
SAVIDIS, A.; STEPHANIDIS, C. Inclusive development: Software engineering
requirements for universally accessible interactions. Interacting with Computers, v. 18,
n. 1, p. 71–116, jan. 2006. ISSN 0953-5438. Cited 2 times on pages 181 and 274.
SCACCHI, W. Modding As a Basis for Developing Game Systems. In: Proceedings of the
1st International Workshop on Games and Software Engineering. New York, NY, USA: ACM,
2011. (GAS ’11), p. 5–8. ISBN 978-1-4503-0578-5. Cited once on page 41.
SCHELL, J. The Art of Game Design: A Book of Lenses. 1. ed. [S.l.]: Morgan Kaufmann,
2008. ISBN 0-12-369496-5. Cited 4 times on pages 42, 50, 169, and 305.

154 Bibliography

SCHULER, D.; NAMIOKA, A. Participatory Design: Perspectives on Systems Design.
Hillsdale, N.J.: L. Erlbaum Associates, 1993. ISBN 0-8058-0951-1 978-0-8058-0951-0
0-8058-0952-X 978-0-8058-0952-7. Cited once on page 297.
SELLERS, M. Advanced Game Design: A Systems Approach. 1 edition. ed. Indianapolis, IN:
Addison-Wesley Professional, 2017. ISBN 978-0-13-466760-7. Cited once on page 298.
SHIRAISHI, Y. et al. Crowdsourced real-time captioning of sign language by deaf and
hard-of-hearing people. International Journal of Pervasive Computing and Communications,
v. 13, n. 1, p. 2–25, abr. 2017. ISSN 1742-7371. Cited 2 times on pages 54 and 280.
SIPSER, M. Introduction to the Theory of Computation 2nd (Second) Edition. [S.l.]: 2nd
Edition, 2005. Cited 3 times on pages 159, 269, and 283.
SMITH, D. C.; CYPHER, A.; TESLER, L. Novice Programming Comes of Age. In:
LIEBERMAN, H. (Ed.). Your Wish Is My Command. San Francisco: Morgan Kaufmann,
2001, (Interactive Technologies). p. 7–19. ISBN 978-1-55860-688-3. Cited 4 times on
pages 50, 52, 53, and 107.
SMITH, J. D.; GRAHAM, T. C. N. Raptor: Sketching Games with a Tabletop Computer.
In: Proceedings of the International Academic Conference on the Future of Game Design
and Technology. New York, NY, USA: ACM, 2010. (Futureplay ’10), p. 191–198. ISBN
978-1-4503-0235-7. Cited once on page 50.
SOTAMAA, O. When the game is not enough: Motivations and practices among
computer game modding culture. Games and Culture, v. 5, n. 3, p. 239–255, 2010. ISSN
1555-4120. Cited 4 times on pages 51, 52, 53, and 107.
STORY, M. F.; MUELLER, J. L.; MACE, R. L. The Universal Design File: Designing for
People of All Ages and Abilities. Revised Edition. [S.l.: s.n.], 1998. Cited 3 times on pages
107, 175, and 179.
TAKAGI, H. et al. Social Accessibility: Achieving Accessibility Through Collaborative
Metadata Authoring. In: Proceedings of the 10th International ACM SIGACCESS Conference
on Computers and Accessibility. New York, NY, USA: ACM, 2008. (Assets ’08), p. 193–200.
ISBN 978-1-59593-976-0. Cited once on page 280.
TEKINBAŞ, K. S.; ZIMMERMAN, E. Rules of Play: Game Design Fundamentals. Cambridge,
Mass: The MIT Press, 2003. ISBN 978-0-262-24045-1. Cited once on page 169.
TONON, K.; BAECKER, R. GameSoup: A Two-stage Game Development Environment.
In: Proceedings of the International Academic Conference on the Future of Game Design
and Technology. New York, NY, USA: ACM, 2010. (Futureplay ’10), p. 255–256. ISBN
978-1-4503-0235-7. Cited 2 times on pages 50 and 279.
TORRENTE, J. et al. Evaluation of semi-automatically generated accessible interfaces
for educational games. Computers & Education, v. 83, p. 103–117, 2015. ISSN 0360-1315.
Cited 2 times on pages 33 and 277.
URBANEK, M.; GÜLDENPFENNIG, F.; SCHREMPF, M. T. Building a Community of
Audio Game Designers - Towards an Online Audio Game Editor. In: Proceedings of the
2018 ACM Conference Companion Publication on Designing Interactive Systems. New York,
NY, USA: ACM, 2018. (DIS ’18 Companion), p. 171–175. ISBN 978-1-4503-5631-2. Cited
2 times on pages 34 and 46.

Bibliography 155

UZUNBOYLU, H.; BAYTAK, A.; LAND, S. M. A case study of educational game design
by kids and for kids. Procedia - Social and Behavioral Sciences, v. 2, n. 2, p. 5242–5246, jan.
2010. ISSN 1877-0428. Cited 6 times on pages 51, 52, 53, 106, 107, and 279.

van Herk, R.; VERHAEGH, J.; FONTIJN, W. F. ESPranto SDK: An Adaptive
Programming Environment for Tangible Applications. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2009.
(CHI ’09), p. 849–858. ISBN 978-1-60558-246-7. Cited 2 times on pages 50 and 279.

VOYKINSKA, V. et al. How Blind People Interact with Visual Content on Social
Networking Services. In: Proceedings of the 19th ACM Conference on Computer-Supported
Cooperative Work & Social Computing. New York, NY, USA: ACM, 2016. (CSCW ’16), p.
1584–1595. ISBN 978-1-4503-3592-8. Cited once on page 280.

WESTIN, T. Inclusive Digital Socialisation : Designs of Education and Computer Games
in a Global Context. 2017. Cited once on page 33.

WESTIN, T. et al. Game Accessibility Guidelines and WCAG 2.0 – A Gap Analysis.
In: MIESENBERGER, K.; KOUROUPETROGLOU, G. (Ed.). Computers Helping People
with Special Needs. [S.l.]: Springer International Publishing, 2018. (Lecture Notes in
Computer Science), p. 270–279. ISBN 978-3-319-94277-3. Cited once on page 46.

WIEBUSCH, D.; LATOSCHIK, M. E. Decoupling the entity-component-system
pattern using semantic traits for reusable realtime interactive systems. In: 2015 IEEE
8th Workshop on Software Engineering and Architectures for Realtime Interactive Systems
(SEARIS). [S.l.: s.n.], 2015. p. 25–32. Cited once on page 182.

WOLBER, D. Pavlov: Programming by stimulus-response demonstration. In: Conference
on Human Factors in Computing Systems - Proceedings. [S.l.: s.n.], 1996. p. 252–259. Cited
once on page 50.

WOODS, C.; WOODS, C. The Rise of Interactive Game Development and Multimedia
Project Creation Among School-Aged Children. In: Society for Information Technology &
Teacher Education International Conference. [S.l.: s.n.], 2015. v. 2015, p. 1971–1975. ISBN
978-1-939797-13-1. Cited once on page 106.

World Wide Web Consortium. Accessibility, Usability, and Inclusion. 2016.
Https://www.w3.org/WAI/intro/usable. Cited 3 times on pages 35, 42,
and 276.

YILDIZ, S. et al. Design of a Game Community Based Support System for Cognitive
Game Accessibility. In: BROOKS, A. L.; BROOKS, E.; VIDAKIS, N. (Ed.). Interactivity,
Game Creation, Design, Learning, and Innovation. [S.l.]: Springer International Publishing,
2018. (Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering), p. 238–247. ISBN 978-3-319-76908-0. Cited 2 times
on pages 34 and 46.

YOON, D.; KIM, K.-J. 3D GameModel and Texture Generation Using Interactive Genetic
Algorithm. In: Proceedings of the Workshop at SIGGRAPH Asia. New York, NY, USA: ACM,
2012. (WASA ’12), p. 53–58. ISBN 978-1-4503-1835-8. Cited once on page 50.

156 Bibliography

YUAN, B.; FOLMER, E.; HARRIS, F. Game Accessibility: A Survey. Universal Access in
the Information Society, v. 10, n. 1, p. 81–100, mar. 2011. ISSN 1615-5289. Cited 22 times
on pages 33, 42, 46, 47, 57, 61, 79, 107, 161, 164, 178, 181, 217, 247, 251, 255, 256, 259, 274,
277, 301, and 303.
ZYSKOWSKI, K. et al. Accessible Crowdwork?: Understanding the Value in and
Challenge of Microtask Employment for People with Disabilities. In: Proceedings of the
18th ACM Conference on Computer Supported Cooperative Work & Social Computing. New
York, NY, USA: ACM, 2015. (CSCW ’15), p. 1682–1693. ISBN 978-1-4503-2922-4. Cited
once on page 281.

Appendix

159

APPENDIX A

This Thesis in Items

1. Although we cannot make every game universal, we should always strive for
maximum accessibility and inclusion.

2. In potential, this thesis show that infinite accessible versions of a game can co-exist
with the traditional one. We called this result as a tailorable game.

3. To include everyone (as many as possible), we implement for no one.

• The Meta-Game to the machine.
• The Game to the Player.

4. Run-time tailoring for full interaction re-mapping.

• This thesis is very programming oriented, and considers games exploring
our architecture as databases from which we transform data into information
to enable play.

• The algorithm allows defining custom Games to suit how someone needs to
perceive and control it.

• If we are able to inspect the data, extract information from it, and convey it to
the Player, we can enable her/him to perceive a Game.

• Likewise, if we canmap commands to her/his abilities, we can enable her/him
to control a game.

• Finally, we can re-map interaction to remove time constraints from gameplay.
• People play the same Meta-Game. However, the Game from one player can

be completely different from a Game from another.

5. Computation Theory (SIPSER, 2005; HOPCROFT; MOTWANI; ULLMAN, 2000):

160 APPENDIX A. This Thesis in Items

• Turing Machine: mathematical model that represents what machines can
compute.

• Turing Completeness: ability of systems to simulate Turing machines.
• Any Turing Machine can simulate any other Turing Machine.
• Universal Turing Machines: Turing Machine that is able to simulate any other

Turing Machine.
• Church-Turing thesis: any real-world computation can have an equivalent

computation performed by a Turing Machine.
• In practice, any Turing Complete programming language is able to simulate

an algorithm that any other Turing Complete language can simulate.
• The Halting Problem defines whether a computer program can finish in finite

time.
• Complexity theory defines what can be solved by computers and how effi-

ciently.
– Complexity classes include NL, P, NP, PSPACE, EXPTIME, EXPSPACE.
– We are concerned with problems up to the P complexity class, because
they can be solved by Deterministic Turing Machines, and that can be
solved with finite time (generally in the order of milliseconds, for games).

6. If our results are correct, we can think about games as Entity-Component Systems
(ECS) and Event-Driven Architectures (EDA).

• ECS decomposes games into entities and components; EDA decouples im-
plementation with events and event handlers (GARCIA; NERIS, 2014; MC-
SHAFFRY; GRAHAM, 2012; GREGORY, 2014; GARCIA, 2014).

• If we limit the number of game elements, we reduce the scope to look for
solutions.

• This allows us to introduce new / remove existing features at use-time (run-
time).

• If we implement these architectures in a Turing Complete programming
language following our approach, we can simulate any computation as event
handlers and subsystems (fetching data from components stored on entities).
– Therefore, we are not limited by technology.
– In this thesis, the run-time tailoring algorithm enables changing how a
game works at use-time.

– We can, thus, create and insert anything that has been programmed so
far – and will be programmed in the future – to software and games.

161

This means that we can introduce accessibility at the times when they are
needed. We can start inserting many accessibility features (for instance,
from guidelines (YUAN; FOLMER; HARRIS, 2011; International Game
Developers Association, 2004; ELLIS et al., 2013; BARLET; SPOHN, 2012;
GARCIA; NERIS, 2013b) and the collection from Game Accessibility
Guidelines1) even if they were not previously there.

• In this thesis, we think of game elements in terms of:
Components (C) are structures to hold data for a purpose / responsibility.

– Components provide abilities to an entity.
– Components provide semantics to entity.
∗ For instance, we can suffix the names of components with “able”.

– If we want to know what an entity can do, we can query its compo-
nents.

Entities (E) are sets of components.
– An entity is nothing by itself (it can be as simple an identifier, for
example).

– An entity becomes able to do something once we attach a component
that provide that ability to it.

– An entity becomes unable to do something once we detach the re-
spective component from it.

Events (V) are structures to abstract that something of interest has just hap-
pened in the simulation.

Event Handlers (E) are subroutines to act once an event has happened.
– Events and event handlers define many-to-many relationships.
– An event can have multiple event handlers.
– An event handler can process multiple events (if applicable).

Subsystems (S) are system that processes components to do computation.
– A subsystem handles entities which have all components that con-
cerns to it.

Commands (A) are events used to interact with a simulation.
– Commands represent intents for actions: what something wants to
do, rather than how it will do.

Rules (R) express relations between entities; each Rule results into an event.
– Rules can represent mechanics, or small interactions between entities.
– The resulting event provides a callback that enable us to arbitrarily
act once something has happened.

1 <http://gameaccessibilityguidelines.com/>

http://gameaccessibilityguidelines.com/

162 APPENDIX A. This Thesis in Items

• We can explore Data-Driven Architectures (DDA) (GARCIA; NERIS, 2014;
MCSHAFFRY; GRAHAM, 2012; GREGORY, 2014; GARCIA, 2014) to store
customization and specializations to transform Meta-Games into Games. We
can also explore input-mapping (or input re-mapping) (GREGORY, 2014;
GARCIA, 2014) to provide players with options of devices and bindings for
inputs. We store these preferences in Interaction Profiles (P).

7. We can fully decouple interaction from logic with a rigid separation of input and
output (IO) concerns from the logic ones.

Meta-Game (MG) MG = {CMeta, VMeta, RMeta, SMeta, AMeta, EMeta, HMeta}

Games (G) G = {CGame, VGame, RGame, SGame, AGame, EGame, HGame, P}

8. The Meta-Game is abstract – it does not have human players.

• It is a logic construct.
• We can use the Unified Design (GRAMMENOS; SAVIDIS; STEPHANIDIS,

2009; GRAMMENOS; SAVIDIS; STEPHANIDIS, 2011; GRAMMENOS; SA-
VIDIS; STEPHANIDIS, 2007) to design it, then we can think on the elements
of the architecture to refine the design and implement it.

• The Meta-Game runs only using logical elements.
• The Meta-Game only reacts to its own commands (events).

– Commands express an intent: the wiliness to do something in the game.
– As commands are events, their origin are irrelevant.

9. Games are concrete – they have human players.

• They can be custom-tailored to suit abilities from Players.
• Oncewe fully interact IO andwe can introduce them to the game arbitrarily, at

the correct times (events) and all the time (components), we can fully re-map
interaction. We can generate infinite specializations of the same Meta-Game;
however, they can be totally different in aesthetics and in how to interact.

10. If we think about interaction alternatives as sets of concrete elements, we can easily
add and remove human-related interaction from a system using set operations
(union, intersection, differences).

• When we add concrete elements to the Meta-Game, it becomes a potentially
playable Game.

163

• When we remove all concrete elements from a Game, it is reverted to its
unique Meta-Game2.

11. Interaction is, thus, composed/aggregated to the system.

• We can convert a Meta-Game to any possible Game, and revert it back to the
Meta-Game state. Then we can convert it to other possible Games.

• The Run-Time Tailoring algorithm describes the steps to implement these
transformations in software.

12. If we compose interaction, accessible can co-exist with conventional (as well as
other variations – universal, inclusive. . .). We called this result as tailorable. For
games, we can define tailorable games.

• We can decouple interaction.
• We can reshape (re-map, tailor) interaction.
• We can alternate among versions.
• Players can combine existing alternatives to make their own.

– We can pre-define defaults by ability, they can tweak to make their own.

13. If we think of interaction as sets of interaction abilities, accessibility can become an
iterative process – at best, towards universal access; at worst, towards maximum
inclusion.

• The logic construction (Meta-Game) already exists.
• We can enable use of one audience at a time.
• Can we provide interaction alternatives to enable human play?

– Every time we can, we can enable a new audience to play.
– All interaction alternatives sums to previous one.

• Interaction alternatives are software and media.
– We are only limited to what we can implement.
– If we can implement a solution (and it finished in a suitable time interval

for the game), we can define the alternative and introduce it to the system.
– For games, solutions should be fast.

∗ We can split computations into several frames (or specific threads) if
needed.

• If we can provide interaction alternatives to convey information and allow
commands, we can progress with inclusion until universal access.

2 Technically, the Meta-Game is always contained into the Game.

164 APPENDIX A. This Thesis in Items

– We should enable people to perceive information and command the
system.

• Once again, although we cannot make every game universal, we should strive
for inclusion.

14. Meta-Game: semantic simulation.

• Logic components and events can generate semantics (what) to games.
• Only handles entities that are essential to the simulation.

– Aesthetic entities are not simulated.
– If they have purposes for the logic (in other words, they have logic com-
ponents), they are not aesthetic.
∗ Position andworld transforms are not always logic – if they only serve

for feedback (for instance, visual, aural, of haptic effect), they serve
for aesthetic purposes (although they do convey information, they
are not required for the game logic).

• IO components and event handlers can generate physical-level actions (/how)
to games.

• Events help designers to think about implicit happenings.
• Rules can generate events to define “breakpoints” with the events – we can

assume control of the execution at the right time that it is needed, either to
tailor the solution or to inform the player what is happening.
– Entity Collide Entity →Collided.
– Entity Walk Entity →Walked.
– Entity Interact Entity →Interacted.

15. Interaction model (implicit in this thesis and expanding the model from (YUAN;
FOLMER; HARRIS, 2011); based on Semiotics and human senses): Perceive, Plan,
Control, Wait.

• Perceive: receive and request information.
– How can we convert all this data into accessible information to the player?
– How should we provide this information to the player?

∗ What is the best way to provide this information for {vision, audition,
olfaction, gustation, and somatosensation}?
· Different abilities require different strategies to convey the informa-
tion.

· Once we acknowledge this fact, we can tailor the interaction in
run-time to suit these needs.

165

∗ If we can provide the data, we can fulfill this step.
– Could we avoid overloading the player with information?
– With entities, the player can request descriptions of what are around
her/him, what they are, and what they can do (components), and how
she/he can interact with them (components and commands).

• Plan: think about response and decide the play.
– How can we help the player to think on (or plan) her/his play?
– Can we provide heuristics?
– Can we simplify the problem?
– Can we modify the time constraints (from real-time to non-real time, for
instance)?

• Control: provide response as command.
– How can we enable the player to provide her/his command?
– Can we provide partial automation?

• Wait: let the system process the command and determine its response.
– Howcanwe show the player that her/his commandwas accepted/rejected?
– How can we provide immediate feedback?

16. Meta-Game: only essential entities for the simulation.

• It is the simulation behind every interactive game.
• The Meta-Game is a “game for machines”.
• It does not have to output information, because machines do not need output.
• It only reacts to its Commands.
• We abstract the player from the game to, at a later step, provide an accessible

Game for him/her.

17. Games: sensory activities tailored to the needs of the player.

• How should we map the abstract data and provide it to the player?
• Output with components:

– Constant feedback.
• Output with events:

– Instant feedback.
– Constant feedback (start/end pairs).

• What components and event handlers should we create and attach to the
Meta-Game to create enable play?

166 APPENDIX A. This Thesis in Items

– Accessibility can become a plug-and-play feature of games.
• We can provide any aesthetic features and user interfaces that we want.
• Once an event happen (for instance, due to a Rule), we can insert anything

that is computationally possible to enable play. For instance, we can define a
custom user interface that appears to change how the game play.

• Alternatively, we can define input components and subsystems that monitor
the Meta-Game to provide automation.

• We can think of time as an input to the Meta-Game. This way, we can even
remove time constraints from real-time interactive systems.
– For instance, we could assume a sequence of:
Task →Command Do Something→New Task.

– We could change it to something like:
Command Pause →Sub Task 1 →Local (non Meta-Game) command
→Sub Task 2 →Local (non Meta-Game) command →. . .→Sub Task Final
→Command Resume→Command Do Something.
As the Meta-Game is paused and the local commands do not concern
it, it only reacts to the Commands Pause, Resume, and Do Something. We
converted a real-time interaction into one with longer (possible infinite)
time for interaction.
Players who could play in real-time do not use the components, event
handlers, and subsystems to re-map the interaction. People who need it
may become able to play when they are introduced. Players who think
they provide a fun effect (or want to try something new) may also use it
after it was provided as an interaction alternative.

• As we can introduce any IO to a Game, we can always make it more fun.

18. Commands: semantic input to express intents.

• Commands provide ease of automation.
• Commands provide ease of exploring devices (mouse, keyboard, controller,

voice, assistive technologies) for input.
– If we can map a device (and its buttons, axis, triggers. . .) to a command,
we can use it to enable play.

• Commands can be automated by algorithms, to assist the player.
• Commands API: macros/combinations of commands and logic to define

higher-level commands to assist players.
– Move→Go To Entity.

167

– Attack→Attack Entity.
– Enter→Enter Entity.

19. Games that can become simulations can probably become universal.

• Automation (in-game, analyzing the game states) can contribute to it.
• If the player cannot provide the input, the system can send a command to

play on her/his behalf.
• Partial automation can assist players (input reduction).

– We can provide partial automation from traditional game middleware
solutions.
∗ Pathfinding.
∗ Raycasting.
∗ Interpolations.
∗ Bots: Aiming / moving.

• AI and machine learning could enable playing patterns for predicting next
moves over time.

20. Full automation is outside the P complexity class for most (any?) non-trivial game
(for instance, Tetris is NP-complete (DEMAINE; HOHENBERGER; Liben-Nowell,
2003)).

• There are alternatives.
a) Small scale (partial) automation.

– Game Artificial Intelligence (AI) as assistance to enable play.
– The game provides heuristics and lets the player determine the re-
sponse.

– AI-assistance can guide players.
∗ AI as a “co-pilot”.

b) People helping each other to play.
– Cooperative play – players share the same entity to combine their
abilities and enable play.

– Human as a “co-pilot”.

21. As interaction is composed, we can adapt it over time.

• Run-time tailoring.
• Players can change it.
• We could monitor the game to adapt it.

168 APPENDIX A. This Thesis in Items

• We can define custom user interfaces to suit different abilities (reshape, re-
map, tailor the interaction).

• With creativity, we can transform some real time interactions into non-real
time ones.

22. Interaction alternatives can be created by communities instead of being the sole
responsibility of developers.

• If we decouple and compose interaction alternatives, we canmake accessibility
a collaborative and iterative process.

23. Individuals and Communities: the individual for the community, the community
for the individual.

• Communistic interactions (LIU; DING; GU, 2016b):
– “From each according to their abilities, to each according to their needs”.

• Independence and interdependence (BENNETT; BRADY; BRANHAM, 2018).
– People can help each other.
– “Cross-ability cooperation”: the abilities from one person can comple-
ment the abilities from another.

• Mutualistic contributions:
– As we are considering sets of interaction alternatives, every new addition

adds to every previous one. A new alternative may enable more people to
play. For people who can already play, it provides more choices – which
may lead to better usability, improvements for use experience, and even
new ways to interact.

– Accessibility can have a compound effects. Features that enable use for
some users can enhance usability and quality interaction for others.

24. With sets of interaction alternatives, inclusion can be transient.

• Transient roles: abilities and inclusion may change over time.
Included Person for whom the existing interaction alternatives enable use.
To Be Included Person for whom existing interaction alternatives are not yet

enough to enable use.
Collaborator Person who can contribute to improve the system.

Enabler Person who can provide an interaction alternative to enable use.
Enhancer Person who can improve existing interaction alternatives to

improve usability and experience of use.

169

• Included people can become Contributors – abilities and skills are what truly
matter.

• People with disabilities can become Collaborators once they are Included.
• Even imperfect contributions can lead to inclusion.

– Once people are included, they can act as Enhancers to improve former
contributions.

25. Once an interaction alternative becomes part of a game, we can transition gradually
from interdependence to independence (for the public that it was designed).

• When independence is not possible, co-creation, co-use, and cooperative play
are perfectly valid strategies to enable use and creation.

• Independence and interdependence can co-exist.

26. Game design is a multi-domain discipline.

• Every area of human knowledge can contribute in game design (CAILLOIS,
2001; SCHELL, 2008; HUIZINGA, 2016; TEKINBAŞ; ZIMMERMAN, 2003).
Therefore, everyone can contribute.

• Every piece of knowledge can lead to the construction of interesting games.
• People can provide technology, aesthetics, story, and/or mechanics to create

games (SCHELL, 2008).

27. Towards universal access, we need to enable creation and use alike.

• Once people can create and use, they are equal to any other user of any digital
system.

• If we implement for semantics of use and for modification, without assuming
abilities or fixedways interact with a system –, we canmove towards including
everyone.
– We should design and implement for adaptation.

• If we enable one person / group to use and create, they can enable more
people to use and create.

• We can form cycles of inclusion once people can co-create digital systems.

28. “Accessibility modding” – a collaborative work model for co-creation of inclusion.

• We can include audiences gradually, by defining interaction alternatives to
suit their needs.

• Every alternative sums to every other (mutualistic contributions).

170 APPENDIX A. This Thesis in Items

• Creation comes from abilities and skills – everyone can contribute.
• People can share interaction alternatives.
• People can share interaction profiles.

29. “Inclusive creation” – a collaborative work model for co-creation of tailorable
games.

• If we provide tools, people can co-create games.
• Transient roles: roles can also change according to what someone is currently

doing.
Supervisor person who orchestrates the creation, determining the next steps

to advance the project.
Creator person who is creating game content.
Collaborator person who can provide improvements for accessibility, usabil-

ity, and use experience (assets, art, content).
Player person who is playing a project.

• A creation process with multiple phases can provide more opportunities for
collaboration and making.

30. In our small scale game creation process for tailorable games, we defined the
following phases:

Conception idealization and planning of the project.
Conversion generation of an initial prototype.

• We can explore low and medium fidelity prototyping techniques to gen-
erate initial prototypes, then request an initial implementation from a
Collaborator.

Evaluation definition of how the project should continue. Who should act next?
• Should we create more content? Creators at Creation.
• Should we improve its accessibility? Collaborators (Enablers) at Enrich-

ment.
• Should we improve existing content? Collaborators (Enhancers) at En-

richment.
• Should we generate accessible versions and organize a play session?

Players at Distribution and Use.
• Should we finish the project?

Creation game making activities using technology and creation/authoring tools.

171

Enrichment external improvements to the project, requested to Collaborators to
enable access for broader audiences, improve usability, and provide a better
experience of use.
• We can co-create inclusion as a community.

Distribution if the tool generate Meta-Games, we can define which interaction
alternatives will be attached to the resulting Games.

Use once we have a Game, Players should play it. If they cannot play it, we have
to further enrich it.

Conclusion every project should end at some point.

31. We can support the Conversion and Creation phases with creation tools for end-
user development.

• If the creation tool implements Meta-Games and Games, we can generate
games sharing their same benefits.

• If the creation tool is a Meta-Game itself, we can enable more people to create
Meta-Games/Games iteratively.
– The commands already exist; we just have to define new interaction
alternatives to suit the needs of new Creators.

32. If we define tailorable creation tools, many potential Creators might had never
used a computer before.

• We can initiate the activities exploring activities that they are already used to.
• Storytelling is a rich strategy for newcomers, as they probably have had

previous experiences with it (for instance, from books, soap operas, movies,
and theatre plays).

• We can advance gradually to other activities over time. Based on the Create-
Consume Spectrum (BASAWAPATNA et al., 2014), we defined the following
“gentle-slope” activities:
Linear Storytelling Simple stories with a single narrative thread.
Branching Storytelling Branching (non-linear) storytelling;
Collaborative Storytelling Multiple people contribute to create a story to-

gether;
Storytelling with Pre-Defined Mechanics Characters, places, and objects

become interactive entities in a game world.
Computational Thinking Patterns Pattern-based authoring, on which com-

plex interactions may result from a combination of mechanics.

172 APPENDIX A. This Thesis in Items

Creation of NewMechanics End-User Development (EUD) and program-
ming approaches to enable Creators to move towards defining their own
games and technologies.

33. Co-creation using pre-defined mechanics:

• Once we figure interaction alternatives for a mechanic, we can implement it
in an authoring tool.

• We can abstract interaction alternatives as “slots” that people can fill with
content.

• We can provide slots so that people can contribute to create accessibility.
• We can provide slots so that people can consider the needs of their peers.
• Community efforts to fill slots and promote use.

34. Towards end-user programming of newmechanics with co-creation of accessibility:

• Creators can define mechanics with entities, events, subsystems, and event
handlers.

• To convey the information, they need to think on different ways to present its
results.

35. As proof of concept, we have created a tailorable game creation platform: Lepi.

• Lepi explores the storytelling strategy from the activities – up to Collaborative
Storytelling.

• The commands are related to what Creators can do define their story – for
instance, insert characters and dialogues, insert and cycle among scenes, and
play the project.
– If the default interface is suitable to the needs of a new audience, we can
improve it.

– Otherwise, we can define new interfaces around these commands to suit
interaction needs of audiences with other interaction needs.

– With the architecture, accessible and traditional can co-exist – to alternate
between them, we just have to switch profiles and tailor the digital system.

• Lepi supports creation by traditional audiences of average users, as well as
those from people with hearing disabilities and low literacy.

• Lepi provides slots for text, audio, and videos (for sign language). Resulting
games can have any combination of these resources to convey the story to
Players.

173

• Creators can insert characters, objects, and places into their stories. These
media have pre-defined interaction alternatives for the three slots – this way,
we can convey what they represent to Players with different abilities.

• With the collaborative work model, when a Creator cannot provide an inter-
action alternative, a Supervisor can request its inclusion by Collaborators.

36. The architecture, the collaborative work model, and support systems (Lepi, at this
time) defined our framework.

• Three pillars to enable inclusive co-creation of tailorable games.

37. Our research hypothesis assumed the pillars of the frameworkwould enable people
with different interaction needs to create and play games – both for themselves,
and for people with different interaction needs than their own.

• Evaluation:
– The architecture was formally defined;
– The algorithms of the architecture were implemented; we created two
tech demos to demonstrate the tailoring.

– The architecture, the collaborative work model, and Lepi were evaluated
together.
∗ Lepi implemented the architecture and generated games exploring it.
∗ The framework was evaluated over four months and ten meetings,

exploring full cycles of the creation process.
∗ A not yet considered audience (people undergoing alcohol and drugs

rehabilitation, including people with low literacy who had never used
computers or played digital games before)was able to co-create games
which satisfied their own interaction needs, as well as those of their
peers (who might have had different needs).

• We argue, thus, that we were able to confirm our research hypothesis. We
are currently improving Lepi to suit the needs of new audiences, to achieve
broader inclusion.

38. In our activities, we have also observed evidence that game creation can transform
people over the development process.

• Creation and use contributed to social and digital inclusion.
• People became very proud and happy with their creations.
• People enjoyed when playing their own games and those of their friends.
• In serious contexts, game creation can be a journey on which the making is

not the most valuable result.

174 APPENDIX A. This Thesis in Items

• The journey can lead to self-growth, self-expression, self-transformation,
increase the self-esteem, and provide opportunities for sharing experiences,
perceptions and knowledge.

175

APPENDIX B

One (Meta-)Game, Infinite Ways to Play:
Run-Time Tailorability for Tailorable

Games

B.1 Introduction

Practicing the Universal Design(STORY; MUELLER; MACE, 1998) in digital
systems may be challenging, especially when we consider Real-Time Interactive Systems
(RIS), such as digital games. Interaction models and devices that work well for a group
of users might not be suitable for others, as interaction needs and abilities may vary.
Every user is unique.

It is, therefore, necessary to embrace differences. We should design and im-
plement systems that respect and allow satisfying individual needs. Although it is
impossible to satisfy every possible interaction need with a single set of interactions –
especially in digital games1 –, we can modify user interactions in software – even during
use-time. Tailoring and tailoring-based approaches (KAHLER et al., 2000; NERIS, 2010)
describe how to design use-time flexible software solutions2. Techniques and frame-
works, such as the Unified Design (GRAMMENOS; SAVIDIS; STEPHANIDIS, 2011) for
digital games, show how to design universally accessible games.

However, for digital systems, design alone may not be enough. The implementa-
tion should match the design flexibility to achieve run-time tailorability. Due to meta-
design (FISCHER et al., 2004; FISCHER; FOGLI; PICCINNO, 2017) characteristics of
tailoring and the Universal Design itself, the implementation should match the flexibil-
1 <http://includification.com/>
2 In this chapter, we adopt the term “tailoring” as defined by Garcia (2014): as a metaphor for something

that is “custom made” to suit the abilities of a user.

http://includification.com/

176 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

ity of the design; thus, the architecture of the system must be extensible and support
run-time modifications.

To achieve the desired flexibility, one approach is to make user interaction itself
run-time extensible. For this chapter, enabling accessibility improvements is a benefit
of the approach that we will describe. For digital systems, use-time happens at run-
time. Therefore, provided that we could modify interaction functionalities when an
application is running, we would be able to potentially tailor it to suit interaction needs
of a user.

One approach towards run-time extensibility for user interaction is to abstract
input and output (IO) functionalities of a system instead of pre-defining physical-level
interactions. In this approach, developers define what a user can do when interacting
instead of how she/he will perform an action. Therefore, developers define semantic
interactions instead of specific actions. Instead of defining how a user should interact
with the system, developers define what the user can do with the system (intents and
meanings), and leave the user to decide how (the physical action) she/he will perform
the interaction.

Semantic interactions, are, thus, related to intent, meanings, and goals of what
one can do with a system (for instance, she/he can jump; afterwards, she/he can map
a button press to perform the jump). To implement semantic interactions, an essential
requirement is to map physical-level interactions into existing commands during run-
time. That is, to redefine during how the user will perform IO by selecting and combining
alternatives (keys, buttons, sticks, gestures. . .) to realize her/his intents (select an option,
advance to the next option, return to the previous option, jump. . .).

From an implementation standpoint, the system, therefore, does not assume
the existence of a user. The system is implemented to no one. It reacts to a finite set
of pre-defined semantic interactions to compute its next state. This suggests that, to
achieve universally accessible systems, it is first necessary to remove the user from
the application to, at a later step, include the user into an ideal application, gifting
her/him with accessible interaction that matches her/his needs. We called these games
as tailorable games. At first, this might seem paradoxical, for an interactive system
presupposes the existence of a user. There is no interactive system without a user – or is
there?

In an interactive user-less system, there is no human. Thus, it is not useful for
human beings – at least not practically. Rather, it is useful as theoretical result: if it
is possible to create an interactive, abstract, IO-free system from the user perspective
(thereafter calledmeta-system), and it is also possible to define all IO interactions during
run-time, then it should be possible to create fully tailorable systems. The meta-system
is used as the basis to build the exact same (logical) system. Derived systems differ from

B.1. Introduction 177

it by defining different physical-level interactions, transforming it into an interactive
system for humans. Thus, the meta-system allows implementing the system logic once
and to specialize the IO multiple times.

The meta-system approach with composition-able (composable) interaction
can lead to the construction of tailorable systems, by considering finite sets of users
interactions which should be met. An interactive system with no users is universal
per se (GARCIA, 2014) – if there are no users for it, it trivially follows that it includes
everyone. The same reasoning is valid to include a given set interaction needs. When we
define the required IO to suit the interaction needs of a group of users and introduce
them to the system, it becomes universal for no users (the base case) and for this new
group of users. Thus, to reach the status of universal, we may introduce new groups of
users iteratively, by considering their needs and implementing the required alternatives
to enable physical-level interactions. At each iteration, the system will remain accessible
to previously included users, as well as enable more people to use it. Provided that we
can repeat this process for every interaction needs, the system would (theoretically)
become universal. Otherwise, it would reach the most inclusion that is possible to
achieve.

At a theoretical level, the meta-system could be a useful implementation artifact.
Could we implement one? To answer this question, we could divide problem into two:

1. Is it possible to create an interactive system without user IO, that is, is it possible
to implement a meta-system?

2. Is it possible to define all physical-level IO interactions for an application at run-
time?

We address these questions in the remainder of chapter, exploring mathematical
set theory on carefully selected elements to define meta-systems, create them, and
convert them into user-interactive systems. The proposed approach extends the authors
previous work in digital games domain (GARCIA; NERIS, 2014; GARCIA, 2014), by
providing a general case theory and algorithms. As the original work explored games –
and our chosen architectures are more common in game programming – the remainder
of this chapter refers to systems as games. Nevertheless, although this chapter uses
digital games to represent interactive systems, it could be extended to other digital
applications built following the same process. This chapter will, thereafter, use the term
Meta-Game for digital game meta-systems3.
3 Therefore, we use meta-systems and Meta-Games, and systems and games, interchangeably in this

chapter, unless we state otherwise. The same applies to users, players, and humans; we use them as
synonyms, unless stated otherwise to avoid ambiguities.

178 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

To define and implement meta-systems, we explore and combine three different
software architectures in this chapter: Event-Driven Architectures (EDA), Data-Driven
Architectures (DDA), and Entity-Component Systems (ECS) (GARCIA; NERIS, 2014;
MCSHAFFRY; GRAHAM, 2012; GREGORY, 2014; GARCIA, 2014; NYSTROM, 2014).
The gaming industry has been exploring them to empower game developers, as they
provided run-time flexibility to create complex gameplay. We, in turn, explore them
to redefine the entire input and output (IO) of a digital system, decoupling semantic
from physical-level interactions to define the meta-system and to tailor it into accessible
systems afterwards.

Our resulting approach turns accessibility functionalities into run-time modi-
fications, enabling run-time IO tailoring. With the approach, provided that there is a
combination of entities, components, events, and event handlers which we combine to
satisfy desired accessibility and interaction requirements, it becomes possible to create
an accessible specialization of the Meta-Game for a given public. In this chapter, we will
call specializations of the Meta-Game as Games (with capital ‘G’).

More importantly, provided that the digital system uses events, event handlers,
and entities, components, it is possible to attach or to detach data and behaviors at
run-time. This means that, for any given interaction required for an interaction need,
if we can decompose the interaction into a finite set of events, event handlers, entities,
and components, then we can create an accessible version of the application to that
need. Therefore, if there are not enough elements to include a user yet, we can define
and implement new accessible elements. As we can repeat this process infinitely, for all
desired interaction needs, we could create a universal tailorable system – at least, for
as far as existing technology and assistive technologies allows us. If we cannot achieve
universal access, we would reach maximum inclusion with what is currently possible.

B.2 Related Work

This section presents related work and concepts explored in this chapter. As
stated in Section B.1, we focus on digital systems in the game domain. We start with
game interaction, following with Universal Design in general and in games, and game
accessibility guidelines and strategies. Afterwards, we describe required programming
architectures (ECS, DDA, and EDA) that we will employ to define meta-systems/Meta-
Games.

B.2.1 Game Interaction

Yuan, Folmer & Harris (2011) described a generic interaction model for games
(hereafter referred to as interaction model), relating accessibility and interaction prob-

B.2. Related Work 179

lems that a user may face when playing digital games. According to the model, a user
continuously performs three steps when she/he is playing a digital game:

1. receives stimuli,

2. determines response, and

3. provides input.

The user repeats these steps from the beginning of a play session until its end.
As they divide the playing activity, they allow identifying possible interaction issues.
For instance, at Step (1), a user receives sensory stimuli from the system. The received
stimuli are usually visual, aural, or haptic; thus, to perform this step, the user must
have the required visual, hearing, and motor abilities to perceive the content. In other
words, she/he must not have the corresponding disabilities if there are not other ways
to perceive the content.

At Step (2), the user needs to interpret and comprehend the stimuli that she/he
was received, which requires cognitive abilities. Finally, at Step (3), the user has to
interact with the input devices to translate her/his cognitive response into physical-level
interactions – with the current technologies, this usually requires motor/speech abilities
to provide input to a device.

B.2.2 Universal Design

Albeit the interaction model allows one to identify interaction problems in a
game, developers are responsible for designing accessible experiences. One approach
for inclusive design is the Universal Design (also known as Design For All) (STORY;
MUELLER; MACE, 1998).

The Universal Design proposes the conception of solutions aiming to enable the
largest possible extension of users, considering their physical, sensory, and cognitive
abilities (NERIS, 2010; STORY; MUELLER; MACE, 1998). The principles of Universal
Design are a good way to describe the practice (STORY; MUELLER; MACE, 1998):

1. equitable use;

2. flexibility in use;

3. simple and intuitive use;

4. perceptible information;

5. tolerance for error;

180 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

6. low physical effort; and

7. size and space for approach and use.

According to the principles, a universal solution encompasses the diversity in
the design, aiming to be as inclusive as possible.

Tailoring (KAHLER et al., 2000) is one of the approaches to Universal Design,
allowing changing a software application according to its use context. This enables us to
“design for change” (NERIS, 2010), as it allows meeting contexts of use or scenarios not
previously anticipated.

Tailoring is not restricted to aesthetics modifications on a system. It does also
enable the inclusion of new functionalities. This is particularly useful for digital systems,
as we can define multiple interfaces to suit interaction needs of a user. Instead of “one-
size fits all”, we can define different interaction alternatives to suit the needs of multiple
audiences.

B.2.3 Universally Accessible Games

Different users may have different interaction needs. Due to accessibility barriers
in games, there is not a single set of universally accessible interactions. It is, therefore, im-
possible to enable every one to interact with the very same game, without modifications.
Due to this restriction, game accessibility approaches aim to enable persons with a spe-
cific disability to interact with a given game (GRAMMENOS; SAVIDIS; STEPHANIDIS,
2011) – instead of enabling every need at once, we can focus at improving the interaction
for one disability at a time.

UniversallyAccessibleGames (UA-Games) (GRAMMENOS; SAVIDIS; STEPHANI-
DIS, 2011) describe games designed according to the Universal Design principles. The
goal of a UA-Game is the necessity is to make games more accessible and playable by
a wider range of users. UA-Games can be tailoring-based – they can offer interaction
alternatives to suit interaction needs of a user. In special, they can also allow users with
different interaction needs to play together.

Grammenos, Savidis & Stephanidis (2011) defined the Unified Design, a partici-
patory, iterative, and user centered framework on which developers, domain experts
and users work together to design UA-Games. The Unified Design aims to define an
abstract game, on which the activities of a user are defined without specific input or
output (IO) interactions.

The abstract game design allows developers to define multiple IO interaction
schemes, each of which aiming to address a specific interaction need. Multiple schemes

B.2. Related Work 181

allow a user to choose, according to her/his own interaction needs, the one that better
suits her/his needs. This choice defines the specific IO for the game session.

B.2.4 Game Accessibility Guidelines and Strategies

Several studies describe guidelines and strategies to improve game accessibil-
ity, including (ARCHAMBAULT et al., 2008; GARCIA; NERIS, 2013b; GRAMMENOS;
SAVIDIS; STEPHANIDIS, 2009; GRAMMENOS; SAVIDIS; STEPHANIDIS, 2011; Inter-
national Game Developers Association, 2004; MELONIO; GENNARI, 2013; OSSMANN;
ARCHAMBAULT; MIESENBERGER, 2006; OSSMANN; MIESENBERGER, 2006; SA-
VIDIS; STEPHANIDIS, 2006; YUAN; FOLMER; HARRIS, 2011). Institutions and foun-
dations do also provide help and advice, such as The Game Accessibility project4, The
Able Gamers’ Includification5, Game Accessibility Guidelines6, and the UPS Project
Guidelines7.

Based on the analysis of the interactionmodel and on game accessibility resources,
Yuan, Folmer & Harris (2011) identified, generalized, and summarized techniques for
improving game accessibility. Their summary groups the approaches in high and low-
level strategies. High-level strategies aim enabling users to interact with a game in a
specific step of their interactionmodel. Low-level strategies are possible implementations
of a high-level strategy, used to address a specific disability.

For Step (1), Yuan, Folmer & Harris (2011) identified two high-level strategies:
enhancing or replacing stimuli. Enhancing stimuli aims to augment visual cues. Possible
low-level strategies include using accessible color themes, zoom, and increased font size.
Replacing stimuli aims to convert the original stimuli into another; for instance, audio
might be converted into textual (subtitles, closed captions) or non-textual conversions
(visual cues, sign language). The same reasoning can be applied to replace visual content
with audio or haptic stimuli.

For Step (2), they identified three high-level strategies: reducing stimuli, time
constraints, or input. Those are aimed at cognitive impairments. Low-level strategies
include limiting the number of game objects, simplifying the story line, increasing or
decreasing times, and removing or automating game input.

Lastly, for Step (3), the high-level strategies explore reducing or replacing input,
to aid on motor impairments. Low-level strategies include scanning, removing input,
automating input, and alternative control schemes, potentially using different input
devices (such as using voice or brain control).
4 <http://game-accessibility.com/>
5 <http://includification.com/>
6 <http://gameaccessibilityguidelines.com/>
7 <http://web.archive.org/web/20110724181620/http://gameaccess.medialt.no/guide.php>

http://game-accessibility.com/
http://includification.com/
http://gameaccessibilityguidelines.com/
http://web.archive.org/ web/20110724181620/http://gameaccess.medialt.no/guide.php

182 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

B.2.5 Entity-Component Systems

Entity-Component Systems (ECS) (GARCIA; NERIS, 2014; MCSHAFFRY; GRA-
HAM, 2012; GREGORY, 2014) allow the definition and characterization of entities by
the composition (or aggregation) of components. An ECS is similar, although more
extreme, variation of the Decorator pattern (GAMMA et al., 1994). In an ECS, an entity
may be fully described by its components.

Strategies to implement entities and components may vary. For this chapter, one
particularly important difference is how the ECS defines components’ data and processes
them. One option is to define data-only components. In this case, subsystems process
certain types of components to define game behavior and mechanics. For this chapter,
we assume data-only components, for it eases the required separation of logic and
interaction functionalities. A second option is to process data in the component itself –
in this case, subsystems are not needed. Regardless of strategy, it is possible to add to
and to remove components from an entity at will and at any time, including at run-time.
Thus, an ECS allows us to fully modify entities during run-time, should we desire so.

For this chapter purposes, thus, a component is raw data which add attributes
and characteristic behaviors to an entity, when attached to it8. A component aggregates
well-defined data and behaviors to entities, defining what it is able to do in a game
world. As such, the approach eases the creation of game objects, increases the flexibility
for the design, and promotes software reuse.

Although they were originally defined and used in games, the Academic Lit-
erature describes the use of ECSs for other purposes. When we performed a System-
atic Review (KITCHENHAM, 2004) using the string “entity component” OR “enti-

ty-component” (at November of 2017) in the Association for Computing Machinery
(ACM) Digital Library, Institute of Electrical and Electronics Engineers (IEEE) Xplore,
and Scopus databases, we identified 10 studies which described ECSs or systems us-
ing ECSs. Alatalo (2011), Dahl et al. (2013), and Li, Wang & Zhou (2006) use ECSs
to define interactive virtual worlds. Wiebusch & Latoschik (2015), Lange, Weller &
Zachmann (2016), and Fischbach, Wiebusch & Latoschik (2017) describe enhancements
for using ECSs in Real-Time Interactive Systems (RIS). Rein et al. (2017) describe how
the approach can allow adapting objects and class memberships in Object-Oriented
Systems. Fontana et al. (2017) and Orendt & Henrich (2015) describe the use of ECSs in
non-gaming domains. The first applies an ECS to build a tool to create physical designs;
the second employs an ECS in robotics.
8 It is, thus, important to note that these components are not exactly similar to Commercial Off-The-Shelf

components – they are much more flexible, as they are raw data. For instance, a transform matrix
may become a component that, when attached, enables an entity to acquire a position, rotation, and
orientation in a game world. A sprite, or model and texture may provide data for one to graphically
view an entity; a sound effect may enable one to hear an entity.

B.2. Related Work 183

The last study is ours. In a previous work, we (Garcia & Neris (2014)) outlined
how ECSs can contribute to promote game accessibility. It was an improvement from
Garcia & Neris (2013a), and completed in Garcia (2014), with UGE (available at <https:
//github.com/francogarcia/uge>). UGE fully decoupled game logic from IO, allowing
one to fully redefine how to interact and perceive a game with the same rules (logic). In
this chapter, in a way, UGE turned into case study serving as technology proof for the
implementation of this chapter. However, instead of requiring a full engine to achieve
our purposes, we simplified it to its core strategies. In the remained of this chapter, we
discuss the architectures we have explored in UGE, and simplify the original approach
to its core, resulting in theorems for run-time tailorability in digital games.

B.2.6 Data-Driven Architectures

Data-Driven Architectures (DDAs) (MCSHAFFRY; GRAHAM, 2012; GREGORY,
2014) allow input data to define the content and the execution flow of a digital game. A
DDA loads the required data of the game while its running, from external data resources
(such as text files or databases). For example, instead of hard-coding variable and
constant values, we can define them into an Extensible Markup Language (XML) file
and load it when required. This allows the values to be modified without changes to the
game source code, avoiding compiling and, potentially, the need for a software engineer
to make a change.

DDAs are often present in game engines to increase their extensibility, ease the
inclusion or modification of content, and allow the development of new games using the
engine. Some additional benefits include the possibility of creating and using external
tools to generate assets (such as image processing and modeling tools), developing
specific game content creation tools (such as scenario and world editors), and allowing
end-user created modifications (mods).

It is possible to combine ECSwith a Factory pattern (GAMMA et al., 1994) to ease
the creation of the entities (MCSHAFFRY; GRAHAM, 2012). In this case, an external
data resource describes the components that an entity shall have. The application parses
the resource, and, using a Factory, creates the desired entity by adding the specified
components to it. In this approach, the data resource acts as a blueprint to create entities
according to a data-driven definition.

B.2.7 Event-Driven Architectures

According to Gregory (2014), are “anything of interest that happens during
gameplay”, and “games are inherently event-driven”. An event is a data structure used
to convey the occurrence of something important to the game – something on which

https://github.com/francogarcia/uge
https://github.com/francogarcia/uge

184 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

further functionalities, processing or detailing depends.
Event-Driven Architectures (EDAs) explore events to decouple the game logic

from its implementation. By exploring strategies such as the Observer pattern (GAMMA
et al., 1994), we can define dependency relationships between a point of interest (the
event) and its processing (the event handler, also known as event listener). When the
event happens, the event handlers registered for it are called to perform their work. This
allows changing the execution flow of the application, decoupling the implementation,
and easing the communication of different parts of the application.

Events and event handlers form many-to-many relationships. An event can have
as many registered event handlers as we desire; an event handler may also be registered
for as many events as needed. Registering and unregistering an event handler for an
event are both run-time operations.

B.2.8 Input Mapping (Input Re-Mapping)

Input mapping (or re-mapping) (GREGORY, 2014) enable players to customize
how they control a game. The degree of choice vary according how it is implemented.
Simpler implementations assume a fixed input device – for instance, a controller or a
keyboard –, and allow the player to change the bindings. More sophisticated implemen-
tations abstract the input device as well, granting greater flexibility. In this chapter, we
follow the approach to abstract devices and bindings9.

B.3 Implementing Tailorable Games

As previously stated in Section B.1, practicing the Universal Design may be
challenging – requirements change according to abilities and capabilities of users. When
we consider RIS, such as digital games, there may be further complexities, such as
available IO devices and time constraints for user interaction.

For an inclusive game, accessibility functionalities will vary depending on inter-
action needs to address in order to enable people to play. When we consider a tailorable
game, the ultimate goal for the design would be suiting needs at an individual level
(that is, providing features to support the abilities of the user who is playing). Therefore,
the implementation, ideally, should support individual levels of adaptability as well –
flexibility, extensibility, and adaptability are important requirements –, via tailoring.

Moreover, the adaptability should occur at run-time. Thus, the system has to be
extensible and modifiable at run-time, being able to change itself according to arbitrary
9 A reference for implementation is available at <https://www.gamedev.net/blogs/entry/

2250186-designing-a-robust-input-handling-system-for-games/>.

https://www.gamedev.net/blogs/entry/2250186-designing-a-robust-input-handling-system-for-games/
https://www.gamedev.net/blogs/entry/2250186-designing-a-robust-input-handling-system-for-games/

B.3. Implementing Tailorable Games 185

sets of specifications. This implies that the building blocks of the implementation must
have these characteristics as well, both by themselves and when combined. Furthermore,
they should allow the architecture to support run-time modifications of the execution
flow with minimal changes to the existing source code.

The ideal situation, therefore, is to fully decouple the system’s logic from user
interaction. This decoupling would allow coding the system logic once, and to define
multiple interaction alternatives. In particular, it would allow for adapting interactions
to match abilities of a user as needed, case by case. For accessibility purposes, it is not the
game logic that have to change. Rather, we should be able to define IO and physical-level
interactions at run-time. The user who will interact with the game is not known before
the game is running; as such, we cannot impose specific and immutable IO interactions
on the game.

Paradoxically, from the technology side, one possibility would be to create in-
teractive human-agnostic systems – systems without human IO. That is, to achieve a
tailorable game, it is first necessary to take away the user from the game to, at a later
step, include the user into an accessible game. Provided that it is possible to simulate
external input without user interaction (with any programming mechanism), it might
be possible to create an IO-free digital game that might be later tailored to include any
desired IO interactions.

With an IO-free implementation, we could implement games at an abstract level,
without any references to user physical-level interactions. Such non-human interactive
game can be seen as a Meta-Game: a template for the creation of infinite similar Games
with the same run-time logic10. When we add IO interactions to the Meta-Game, it

10 This goes a step further than tiered implementation patterns, such as the Model-View-Controller
(MVC) (GAMMA et al., 1994): both the input and the output can be changed at any time, without
assuming any kind of specific interaction. MVC proposes making the model (logic, in this chapter)
independent of views (which handles output) and controllers (responsible for handling input).

For implementation, views and controllers may be merged together – and frequently are people
without any physical, cognitive, and emotional disabilities are assumed as average users. For this
chapter, this is a limitation. For universality purposes, it is equally important not to assume any
particular views nor controllers – in fact, not even assume the use of any single views and controllers
at a time. Instead, the use of multiple controllers at once may be useful for motor impairments. Thus,
a more flexible approach is to explore composition/aggregation to define IO interactions. In MVC
terms, the aim is to define “single-responsibility” views and controllers. Not a single view to handle
all output, or a single controller to handle all input. Instead, we can define individual views and
controllers for each/important (sub-)models. In this case, a complete view would be the aggregation
of smaller sub-views; the same reasoning applies for a complete controller. The “whole system” would
be, thus, the combination of model, views, and controllers, which, combined, may generate multiple
systems with different combinations of views and controllers. This enables the use of multiple IO
devices and schemes, providing users with choices to suit their needs and interests. In this chapter, we
name the “whole system” as a resulting “Game”; the “model” with software constructs to simulate
interaction as “Meta-Game”

Although a sophisticated MVC with Command, Composite, Decorator, Observer, and Strategy
patterns could be one option for the implementation considering Object-Oriented Systems, it is not the
only one. In fact, Object-Oriented Systems are not even required for the implementation of a system

186 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

transforms itself into a full-fledged Game, with which a user can interact.
We may explore the concepts of Meta-Game and Game for universal access

purposes via tailorable games. Provided that it is possible to construct an entire digital
game without physical-level references for user interaction, it becomes possible to tailor
the IO during run-time to suit interaction needs of a user. In each specialization, we tailor
the available abstracts elements by defining physical-level interactions aimed to enable a
user to play. Different specializations may address different interaction problems. When
a user wishes to play, she/he combines the most adequate specializations to her/his
needs, creating a personal version of the Game for herself/himself.

Thus, a possible approach to implementing universal tailorable games begins
with an IO-free implementation: the Meta-Game, which defines what users can do. Then,
at use-time, it aggregates/composes functionalities to define human interactions – how
the user provides input to her/his Game, and how the Game provides feedback for
him/her.

How couldwe implement aMeta-Game? For this chapter, based on our experience
with UGE, we chose entities, components, events, and event handlers as primitive
elements to implement a tailorable game, as discussed following in Section B.5. Entities
and components enable us to attach components to or to detach them from the entities
during run-time; this grants the digital game with re-definitions of the data members
from any entities during run-time. Events and event handlers allow decoupling the
implementation, by separating an important happening from its processing.

Components and event handlers can make a game independent of user output.
Events and events handlers can make the game independent of input – in this proposal,
events serve asmeans of providing semantic interactions (what it is possible to do), whilst
handlers provide the implementation (how to do it). Events are, therefore, themechanism
for game communication. In this way, it is possible to decouple the user interaction from
the game implementation: the Meta-Game does not react to user input, but to events
(thus, it does not care about the origin of the event, only about its occurrence). The
combination of both parts enables us to implement an IO-free Meta-Game.

An interactive system without users is not practically useful, though. Therefore,
it is necessary to introduce the user back to the Game: this is the role of the DDA. It
allows us to define an external data source – defined as an Interaction Profile, discussed

sharing the same benefits. The algorithms described later in this chapter, for instance, may be imple-
mented in Procedural, Imperative, Functional, Object-Oriented, or Aspect-Oriented Programming
alike, as its requirements are software constructs and basic IO functionalities, such as file IO. Provided
that developers follow the proposed logic and IO separation, IO-tailoring is guaranteed by design
(due to the systematic nature of set constructs).Moreover, provided developers follow the principles
of the set operations, they may be able to use other data structures (such as trees and hash tables) as
sets. If they avoid repetition, they can define data hierarchies for their elements and still benefit from
the approach.

B.4. Formalization of a Tailorable Game 187

in Section B.9 –, which represents and includes the necessary changes into the Game.
It also enables the persistence of the changes for future uses, allowing the users to use
or tweak the interaction in later sessions – or share interesting or useful configurations
with a community.

B.4 Formalization of a Tailorable Game

In the remainder of this chapter, we aim to define a structured and systematic way
to combine EDA, DDA, and ECS to provide an architecture to implement Meta-Games
and Games.

To achieve this, our first goal is to provide a formalization to define concepts and
operations for our architecture. We have chosen set theory to represent the formalization,
for two reasons. First, it allows demonstrating the validity of the architecture a compact
and non-ambiguous way. Second, because the final result allows for an interesting
interpretation: if we can convert any functionality into a combination of the concepts of
the architecture, then we will be able to insert this functionality into a digital game at
run-time.

In this section, we present the formalization for the architecture. We will intro-
duce and discuss how to develop software with the formalization from Section B.5
onward. The results from the formalization will serve as the basis for the construction of
the Meta-Game (abstract system: interactive system without human-interaction) and its
conversion into a Game (concrete system: interactive system with human-interaction).
The goal is to create abstract Meta-Games without human-interactions, to, at use-time,
combine existing IO functionalities to transform a Meta-Game into one (or more) inter-
active Games. As it will be discussed in Section B.7, if we can implement the Meta-Game,
then we can create, by adding IO functionalities, the desired physical-level interactions
with components, events, and event handlers to tailor the Meta-Game into a Game.

B.4.1 Components (C)

Definition 1 (Component). A component is a data record that has a single, well-defined
purpose. J

Definition 2 (Logic Component). Logic components are components that store data to
abstract the behaviors of a system. A logic component cannot be an input component,
neither can it be an output component. J

Definition 3 (Input Component). Input components are components that store input
data. An input component cannot be a logic component, neither can it be an output
component. J

188 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

Definition 4 (Output Component). Output components are components that store
output data. An output component cannot be a logic component, nor can it be an input
component. J

Lemma 1 (Sets of Components). It is possible to join the disjoint sets of logic components,
input components, and output components into a single set of unique components, which can be
split back into the three original, disjoint component sets. F

Proof. Let C be a non-empty finite set of components. Let CL a set of logic components,
CI be a set of input components, and CO a set of output components. C is the union of
the pairwise disjoint subsets CL, CI , and CO.

By definition, CL (Definition 2), CI (Definition 3), and CO (Definition 4) are all
components that do not overlap.

CL ∩ CI = ∅

CL ∩ CO = ∅

CI ∩ CO = ∅

(B.1)

Therefore, CL, CI , and CO are pairwise disjoint. Furthermore, as CL, CI , and CO

are components, they belong to C.

CL ⊆ C

CI ⊂ C

CO ⊂ C

(B.2)

As these are all possible categories for components, the union of CL, CI , and CO

results in the universe set C.

CL = {cL
1 , cL

2 , . . . , cL
ncl} Logic Components

CI−H = {cI−H
1 , cI−H

2 , . . . , cI−H
ncih } Human Input Components

CI−AI = {cI−AI
1 , cI−AI

2 , . . . , cI−AI
nciai } AI Input Components

CI = CI−H ∪ CI−AI Input Components

CO = {cO
1 , cO

2 , . . . , cO
nco} Output Components

B.4. Formalization of a Tailorable Game 189

CIO = CI ∪ CO Input and Output Components

C = CL ∪ CIO = CL ∪ CI ∪ CO

C = {cL
1 , cL

2 , . . . , cL
ncl, cI−H

1 , cI−H
2 , . . . , cI−H

ncih , cI−AI
1 , cI−AI

2 , . . . , cI−AI
nciai , cO

1 , cO
2 , . . . , cO

nco}
nc = ncl + ncih + nciai + nco

Components

B.4.2 Entities (E)

Definition 5 (Entity). An entity is a non-empty finite set of components. J

E = {e1, e2, . . . , ene | ei ⊆ C, ei 6= ∅, 1 ≤ i ≤ ne} Entities

Examples:

E = {e1, e2, e3}
e1 = {cL

1 , cO
1 }

e2 = {cL
1 , cL

2 , cI−H
1 , cO

1 }
e3 = {cL

3 , cL
4 , cI−AI

1 }

(B.3)

B.4.2.1 Modifying Entities

B.4.2.1.1 Addings Components to an Entity

Lemma 2 (Adding a Component to an Entity). Adding a component to an entity results
into a new entity, which introduces the behaviors from the new component to all existing ones
from the original entity. F

Proof. Let e be an entity belonging to the set of entities E, and c be a component belonging
to the set of components C. As entities are sets of components, the entity e′ results from
the union of e and {c}.

e′ = e ∪ {c} (B.4)

This result holds even if c does already belong to e: in this case, the resulting
entity e′ is e itself.

190 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

e
′
i = ei ∪ {c}, ex ∈ E, c ∈ C,

E
′
= (E \ ei) ∪ e

′
i

Adding a Component to an Entity

Examples (entities from Equation B.3):

E = {e1, e2, e3}
e1 = {cL

1 , cO
1 }

e
′
1 = e1 ∪ {cO

2 } = {cL
1 , cO

1 , cO
2 }

E
′
= {e′1, e2, e3}

(B.5)

B.4.2.1.2 Removing Components from an Entity

Lemma 3 (Removing a Component from an Entity). Removing a component from an entity
results into a new entity, which retains all existing behaviors except to the ones aggregated by the
former component. F

Proof. Let e be an entity belonging to the set of entities E, and c be component belonging
to the set of components C. As entities are sets of components, e′ is the entity resulting
from the difference of e and {c}.

e′ = e\{c} (B.6)

This result holds even if c does not belong to e: in this case, the resulting entity e′

is e itself.

e
′
i = ei \ {c},

E
′
= (E \ ei) ∪ e

′
i

Removing a Component from an Entity

Example: (entities from Equation B.3):

E = {e1, e2, e3}
e1 = {cL

1 , cO
1 }

e
′
1 = e1 \ cO

1 = {cL
1}

E
′
= {e′1, e2, e3}

(B.7)

B.4.2.2 Abstract Entities (EL)

Definition 6 (Abstract Entity). An abstract entity is an entity defined only by logic
components. J

B.4. Formalization of a Tailorable Game 191

EL = {e1 ∩ CL, e2 ∩ CL, . . . , ene ∩ CL} Abstract Entities

Examples (entities from Equation B.3):

eL
1 = {cL

1}
eL

2 = {cL
1 , cL

2}
eL

3 = {cL
3 , cL

4}

(B.8)

B.4.2.3 Concrete Entities (EIO−H)

Definition 7 (Concrete Entity). A concrete entity is an entity defined by any components,
provided at least one is a logic component. J

EIO = {eIO
1 , eIO

2 , . . . , eIO
ne | eIO = ei∪X, ei ∈ E, ∀X ∈ P(CI ∪CO), 1 ≤ i ≤ ne}

Concrete Entities
Examples (entities from Equation B.3):

e1 = {cL
1 , cO

1 }
e2 = {cL

1 , cL
2 , cI−H

1 , cO
1 , cO

3 }
e3 = {cL

3 , cL
4 , cI−AI

1 , cO
2 }

(B.9)

B.4.2.4 Converting Entities

Theorem 1 (Entity Reduction). Any entity can be converted to an equivalent (and unique)
abstract entity, which retains the original logic behavior. F

Proof. According to Definition 5, an entity is a finite set of unique components. According
to Definition 6, an abstract entity is an entity without any input or output components.
Thus, intuitively, to convert an entity into a corresponding abstract entity, it is necessary
to remove all original input and output components of an entity (Lemma 3).

From the definition of entity, an arbitrary entity e is a set of finite components
belonging to the digital game set of components C. From Lemma 1, it is possible to
decompose C into the sets CL, CI , and CO, corresponding to the sets of logic, input and
output components, respectively.

The corresponding abstract entity a is obtained from the intersection of e and CL.

a = e ∩ CL (B.10)

192 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

As the intersection results in a set of unique logic components, all references to
input and output components are removed in the process. Thus, the resulting entity is
abstract.

It is interesting to note that this is valid for any IO composition for a given entity:
the intersection will result in the same set of logic components. Thus, the abstract entity
is unique for this set of entities.

Theorem 2 (Entity Construction). Any entity can be converted into a logically equivalent
concrete entity, although with, potentially, different input and output components. F

Proof. According to Definition 5, an entity is a finite set of unique components. According
to Definition 7, a concrete entity is an entity that may have input or output components.
Thus, intuitively, to convert an entity into its corresponding concrete entity, it is necessary
to add at least one input or output component to the original entity (Lemma 2).

From the definition of entity, an arbitrary entity e is a set of finite components
belonging to the digital game set of components C. From Lemma 1, it is possible to
decompose C into the sets CL, CI , CO, corresponding to the sets of logic, input and
output components, respectively. From the theorem enunciate, there is at least one input
or output component; thus, the intersection of CI and CO is not empty.

As CI and CO are not empty, it is possible to create as many corresponding
concrete entities as the number of possible subsets from the power set of the union of CI

and CO. In fact, assuming the set CI has cardinality n and the set CO has cardinality m,
it is possible to create 2nm corresponding concrete entities from the original entity E11.

Consider e, C, CL, CI , and CO as defined above, CIO = CI ∪ CO, P(CIO) the
power set of CIO, cIO a non-empty subset of P(CIO), then a possible logically equivalent
concrete entity f generated from e is:

f = e ∪ cIO, ∀cIO ∈ P(CIO) (B.11)

Theorem 3 (Entity Transformation). Provided that the Entity Construction conditions are
valid, a concrete entity may be converted into an equivalent abstract entity, and vice-versa. F

Proof. Let e be an arbitrary entity. From the Entity Reduction, it is possible to reduce
e to a corresponding abstract entity a. Afterwards, from the Entity Construction, it is
possible to convert a back into e – e is one of the possible concrete entities resulting
11 One of the possible results might be abstract entity provided that the initial entity is also abstract, one

of the possible subsets is the empty subset.

B.4. Formalization of a Tailorable Game 193

from the union of a with a subset of the power set of the union of input and output
components.

The reciprocal does hold as well. Starting with e, it is possible to obtain the same
entity e from the Entity Construction – this time, the very same IO components of e.
Afterwards, from the Entity Reduction, it is possible to reduce e to a corresponding
abstract entity a.

B.4.2.5 Agents

Definition 8 (Agent). An agent is an entity with an input component, which is able to
interact with the system. J

B.4.2.5.1 Human Agents (eH)

Definition 9 (Human-Agent). A human-agent is a human-controlled agent, that is, it
has a human-controlled input component. J

eH
i = (ei ∩ CL) ∪ X, ei ∈ E, ∀X ∈ P(CI ∪ CO) | X ∩ CI−H 6= ∅ Human-Agent

Examples (entities from Equation B.3):

eL
1 = {cL

1 , cI−H
1 , cO

3 }
eL

2 = {cL
1 , cL

2 , cI−H
1 , cI−H

3 }
eL

3 = {cL
3 , cL

4 , cI−H
2 , cI−AI

1 , cO
1 }

(B.12)

B.4.2.5.2 AI Agents (eAI)

Definition 10 (AI-Agent). An AI-agent is an artificial-intelligence-controlled agent, that
is, it has an AI-controlled input component. J

eH
i = (ei ∩ CL) ∪ X, ei ∈ E, ∀X ∈ P(CI−AI ∪ CO) | X ∩ CI−AI 6= ∅ AI-Agent

Examples (entities from Equation B.3):

eL
1 = {cL

1 , cI−AI
1 , cO

3 }
eL

2 = {cL
1 , cL

2 , cI−AI
2 , cO

1 }
eL

3 = {cL
3 , cL

4 , cI−AI
1 }

(B.13)

194 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

B.4.2.5.3 Transforming Agents

Theorem 4 (Humanization). An AI-agent may be converted into a corresponding human-
agent. F

Proof. LetCI = {cI
1, cI

2, . . . , cI
i } be the set of input components,CI−H = {cI−H

1 , cI−H
2 , . . . , cI−H

j }
(1 ≤ j ≤ i) the set of human-controlled components, andCI−A = {cI−A

1 , cI−A
2 , . . . , cI−A

i−j }
the set of AI-controlled components, with CI−H and CI−A subsets of CI , and with
CI−A ∪ CI−H = CI and CI−H ∩ CI−A = ∅. Let a be an AI-agent.

Due to Definition 8, a is an entity that has an input component; Definition 10
ensures that the input component is an AI-controlled input component. As a is an entity,
it has a set of components {c1, c2, . . . , cn−y, x1, x2, . . . , xy}, with xn (1 ≤ n ≤ y) one the
AI-controlled input component, belonging to the set of the existing AI-controlled input
components CI−A.

To remove the AI-controlled components from a, we perform a set difference with
CI−A, resulting in the non-agent entity e. To promote e to a human-controlled entity h,
we can perform the union with s, one of the possible non-empty subsets of the power-set
of P(CI−H). Thus, h is:

h = e ∪ s (B.14)

Theorem 5 (Automation). A human-agent may be converted into a corresponding AI-agent.
F

Proof. The proof is similar to Theorem 4.
LetCI = {c1, c2, . . . , ci} be the set of input components. LetCI−H = {cI−H

1 , cI−H
2 , . . . , cI−H

j }
(1 ≤ j ≤ i) be the set of human-controlled components, andCI−AI = {cI−AI

1 , cI−AI
2 , . . . , cI−AI

i−j }
be the set of AI-controlled components, with CI−H and CI−AI subsets of CI , and with
CI−H ∪ CI−AI = CI and CI−H ∩ CI−AI = ∅. Let h be a human-agent.

Due to Definition 8, h is an entity that has an input component; Definition 9
ensures that the input component is a human-controlled input component.

As an entity, h has a set of components {c1, c2, . . . , cn−x, x1, x2, . . . , xx}, with xn

(1 ≤ n ≤ x) a human-controlled input component, belonging to the set of the existing
input components CI−H.

To remove the human-controlled components from h, we perform a set difference
with CI−H, resulting in the non-agent entity e. To promote e to an AI-controlled entity a,

B.4. Formalization of a Tailorable Game 195

we can perform the union with s, one of the possible non-empty subsets of the power-set
of CI−AI . Thus, a is:

a = e ∪ s (B.15)

Theorem 6 (Agent Transformation). A human-agent may be converted into an AI-agent,
and vice-versa. F

Proof. Let a be an arbitrary AI-agent. From the Theorem 4, it is possible to reduce a to a
corresponding human-agent h. Afterwards, from the Theorem 5, it is possible to convert
h back into a – a is one of the possible AI-agents resulting from the union of H with a
subset of the power set of the union of AI-controlled input components.

The reciprocal does hold as well. Starting from h, it is possible to convert it into a
with the Theorem 5. Then, with the Theorem 4, it is possible to convert a back into h – h
is one of the possible human-agents resulting from the union of a with a subset of the
power set of the union of human-controlled input components.

B.4.3 Events (V) and Commands (A)

Definition 11 (Event). An event is anything (that designers consider) important that
just has happened. J

Definition 12 (Command). A command is an event issued with the purpose of enabling
interaction between an agent (input provider) and the game (input reactor). J

A = {a1, a2, . . . , anva} Commands

V = {v1, v2, . . . , vnvv} ∪ A

V = {v1, v2, . . . , vnvv, a1, a2, . . . , anva}
nv = nvv + nva

Events

B.4.4 Event Handlers (H)

Definition 13 (Event Handler). An event handler is procedure with a single and well-
defined purpose that processes an event. J

Definition 14 (Logic Event Handler). Logic event handlers are event handlers that
process an event (that it has been registered to) to implement the behaviors of the

196 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

system. A logic event handler cannot be an input event handler, neither can it be an
output event handler. J

Definition 15 (Input Event Handler). Input event handlers are event handlers process
an event (that it has been registered to) to provide input. An input event handler cannot
be a logic event handler, neither can it be an output event handler. J

Definition 16 (Output Event Handler). Output event handlers are event handlers pro-
cess an event (that it has been registered to) to provide output. An output event handler
cannot be a logic event handler, neither can it be an output event handler. J

Lemma 4 (Sets of Event Handlers). It is possible to join the disjoint sets of input event
handlers, output event handlers, and logic event handlers into a single set of unique event
handlers, which can be split back into the three original, disjoint component sets. F

Proof. Let H be a finite and non-empty set of event handlers. Let HL be a set of logic
event handlers, H I a set of input event handlers, and HO a set of output handlers. H
results from the union of the pairwise disjoint subsets HL, H I and HO, representing
input, output and logic, respectively.

By definition, HL (Definition 14), H I (Definition 15), and HO (Definition 16) are
all event handlers that do not overlap.

HL ∩ H I = ∅

HL ∩ HO = ∅

H I ∩ HO = ∅

(B.16)

Thus, HL, H I , and HO are pairwise disjoint. As HL, H I , and HO are event handlers,
they belong to H.

HL ⊆ H

H I ⊂ H

HO ⊂ H

(B.17)

As these are all possible categories for event handlers, the union of HC, H I , and
HO results in the universe set H.

HL = {hL
1 , hL

2 , . . . , hL
nhl} Logic Event Handlers

H I−H = {hI−H
1 , hI−H

2 , . . . , hI−H
nhih } Human Input Event Handlers

B.4. Formalization of a Tailorable Game 197

H I−AI = {hI−AI
1 , hI−AI

2 , . . . , hI−AI
nhiai } AI Input Event Handlers

H I = H I−H ∪ H I−AI Input Event Handlers

HO = {hO
1 , hO

2 , . . . , hO
nho} Output Event Handlers

H IO = H I ∪ HO Input and Output Event Handlers

H = SL ∪ SIO = SL ∪ SI ∪ SO

H = {hL
1 , hL

2 , . . . , hL
nhl, hI−H

1 , hI−H
2 , . . . , hI−H

nhih , , hI−AI
1 , hI−AI

2 , . . . , hI−AI
nhiai , hO

1 , hO
2 , . . . , hO

nho}
nh = nhl + nhih + nhiai + nho

Event Handlers

B.4.4.1 Modifying Event Handlers

B.4.4.1.1 Register Event Handlers

Lemma 5 (Registering an Event Handler to an Event). An event for which one registers a
new event handler keeps all former processing functionalities, as well as incorporating new ones
provided by the new handler. F

Proof. Let v be an event belong to the set of events V, and h be a set of events processed
by an event handler to the set of event handlers H. As event handlers handle sets of
events, h′ is the resulting set from the union of H1 and {v}.

h′ = h ∪ {v} (B.18)

This result holds even if v does already belong to h: in this case, the resulting set
of events handled by h′ is h itself.

h
′
i = hi ∪ {v}, hx ∈ H, v ∈ V,

H
′
= (H \ hi) ∪ h

′
i

Registering an Event Handler to an Event

198 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

B.4.4.1.2 Unregistering Event Handlers

Lemma 6 (Unregistering an Event Handler from an Event). An event from which one
unregisters a new event handler keeps all former processing functionalities, except the ones
provided by the former handler. F

Proof. Let v be an event belonging to the set of events V, and h be a set of events processed
by an event handlers belonging to the set of event handlers H. As event handlers process
sets of events, h′ is the resulting set from the difference of h and {v}.

h′ = h\{v} (B.19)

This result holds even if v does not belong to h: in this case, the resulting set of
events handled by h′ is h itself.

h
′
i = hi \ {v}, hx ∈ H, v ∈ V,

H
′
= (H \ hi) ∪ h

′
i

Unregistering an Event Handler to an Event

B.4.4.2 Abstract Event Handlers (HL)

Definition 17 (Abstract Event Handler). An abstract event handler is an event handler
that handles an event without having input or output side-effects; only logic processing
is allowed. J

HL Abstract Event Handlers

B.4.4.3 Concrete Event Handlers (H IO−H)

Definition 18 (Concrete Event Handler). A concrete event handler is an event handler
that may handle an event using logic, input, or output side-effects. J

H IO = {hIO
1 , hIO

2 , . . . , hIO
nh | hIO = hi ∪ X, hi ∈ H, ∀X ∈ P(H I ∪ HO), 1 ≤ i ≤ nh}

Concrete Event Handlers

B.4. Formalization of a Tailorable Game 199

B.4.4.4 Converting Event Handlers

Theorem 7 (Removing IO Event Handlers). For any event, it is possible to obtain a subset
of abstract event handlers from all event handlers. F

Proof. According to Definition 13, Definition 14, Definition 15 and Definition 16, an event
handler might serve three different purposes: handle logic, input or output. According to
Definition 17, an abstract event handler does not perform IO operations. Thus, intuitively,
to achieve the theorem result, it is necessary to remove all original set all event handlers
related to IO operations (Lemma 6).

Assuming H is the set of all event handlers for a game, from Lemma 4, it is
possible to decompose H into the sets HL, H I , and HO, corresponding to the sets of
logic, input, and output event handlers, respectively.

Assuming hV is the set of components for an event v, the corresponding set of
abstract event handlers a for v is obtained from the intersection of hV with HL.

a = hV ∩ HL (B.20)

As the intersection results in a set of unique logic event handlers, all references
to input and output components are removed in the process. Thus, the resulting set
contains only abstract event handlers.

Theorem 8 (Adding IO Event Handlers). For any event, it is possible to obtain a logically
equivalent superset of event handlers, albeit with different input or output handlers. F

Proof. According to Definition 13, Definition 14, Definition 15 and Definition 16, an
event handler might serve three different purposes – handle logic, input or output.
According to Definition 17, an abstract event handler does not perform IO operations.
Thus, intuitively, to achieve the theorem result, it is necessary to add to the original set
at least one event handler that performs IO operations (Lemma 5).

Assuming H is the set of all event handlers for a game, from Lemma 4, it is
possible to decompose H into the sets HL, H I , and HO, corresponding to the sets of
input, output, and logic event handlers, respectively.

As H I and HO are not empty, it is possible to add asmany corresponding concrete
event handlers as the number of possible subsets from the power set of the union of H I

and HO. In fact, assuming the set has cardinality n and the set O has cardinality m, it is
possible to add up to 2mn event handlers to the original set E12.
12 As with the Entity Construction, one of the possible results is the empty set.

200 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

Considering H, HL, H I , and HO as defined above, H IO = H I ∪ HO, P(H IO) the
power set of H IO, hIO a non-empty subset of (H IO), v the considered event, hV the initial
set of event handlers for v and fV is the final set of event handlers for v, then a logically
equivalent set of event handlers fv generated from hv is:

fv = hv ∪ hIO, ∀hIO ∈ P(H IO) (B.21)

Theorem 9 (Event Handler Transformation). Provided that the Adding IO Event Handlers
conditions are valid, an event may have event handlers added to, or removed from, it to obtain
subsets of abstract and supersets of concrete event handlers. F

Proof. The proof is similar to Entity Transformation.
Let v be an arbitrary event and hv its set of event handlers. From the Removing

IO Event Handlers, it is possible to remove all IO event handlers from hv to obtain its
corresponding set of abstract event handlers a. Afterwards, from the Adding IO Event
Handlers, it is possible to convert a back into hv – hv is one of the possible sets resulting
from the union of a with a subset of the power set of the union of input and output event
handlers.

The reciprocal does hold as well. Starting with hv, it is possible to obtain the same
set hv from the Adding IO Event Handlers – this time, the considered subset will be
the one with the very same IO even handlers from hv. Afterwards, from the Removing
IO Event Handlers, it is possible to reduce hv to a corresponding abstract set of event
handlers a.

B.4.5 Rules (R)

Definition 19 (Rule). A rule is a relation depending on entities that can trigger an
event. J

R = {r1, r2, . . . , rnr}
ei rj ek 7→ vl , 1 ≤ i ≤ ne, 1 ≤ j ≤ ne, 1 ≤ j ≤ nr, 1 ≤ l ≤ nv

Rules

Designers can define other arities as needed.

B.4.6 Subsystems (S)

Definition 20 (Subsystem). A subsystem processes a finite and arbitrary subset of all
existing components according to the defined rules. J

B.4. Formalization of a Tailorable Game 201

Definition 21 (Logic Subsystem). Logic subsystems are subsystems that handle logic
components according to a finite set of pre-defined rules. They can read and write logic
components. J

Definition 22 (Input Subsystem). Input subsystems are subsystems that handle logic
components and input components according to a finite set of pre-defined rules. They
can read and write input components, and they may read (and must not write) logic
components. J

Definition 23 (Output Subsystem). Output subsystems are subsystems that handles
logic components and output components according to a finite set of pre-defined rules.
They can read and write output components, and they may only read (and must not
write) logic components. J

SL = {sL
1 , sL

2 , . . . , sL
nsl} Logic Subsystems

SI−H = {sI−H
1 , sI−H

2 , . . . , sI−H
nsih } Human Input Subsystems

SI−AI = {sI−AI
1 , sI−AI

2 , . . . , sI−AI
nsiai } AI Input Subsystems

SI = SI−AI ∪ SI−H Input Subsystems

SO = {sO
1 , sO

2 , . . . , sO
nso} Output Subsystems

SIO = SI ∪ SO Input and Output Subsystems

S = SL ∪ SIO = SL ∪ SI ∪ SO

S = {sL
1 , sL

2 , . . . , sL
nsl, sI−H

1 , sI−H
2 , . . . , sI−H

nsih , sI−A
1 , sI−A

2 , . . . , sI−A
nsiai, sO

1 , sO
2 , . . . , sO

nso}
ns = nsl + nsih + nsiai + nso

Subsystems

B.4.6.1 Entities of a Subsystems (Esi)

Lemma 7 (Entities of a Subsystem). A subsystem registers all entities that have all components
that it processes. F

202 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

Proof. Let:

1. G be a digital game;

2. C = {c1, c2, . . . , cn} be a non-empty finite set of components for G;

3. E = {e1, e2, . . . , eo} be a non-empty finite set of entities, each defined by a non-
empty finite set of components from C;

4. Si be a subsystem of G, with CSi ⊆ C the subset of components required by Si.

The entities required by Si are those whose corresponding set of components has
each of its components in CSi .

Lemma 8 (Entities of a Logic Subsystem). Logic subsystems can process only logic compo-
nents. F

Proof. The result follows from Definition 21: as it only handles logic components, it is a
particular case for Lemma 7. In this case, the set of logic components (CL).

si ∈ S,

Csi ⊆ C,

Csi = {csi
1 , csi

2 , . . . , csi
ncsi | ncsi ≤ nc},

Esi = {e1, e2, . . . , ej, . . . , enesi | ej ⊆ Csi , ∀ej ∈ E, nesi ≤ ne}
Entities of a Subsystem

Examples (entities from Equation B.3):

S = {s1, s2}
Cs1 = {cL

1}
Es1 = {e1, e2}

Cs2 = {cL
2 , cI−H

1 }
Es2 = {e2}

(B.22)

B.4.7 Meta-Games

Definition 24 (Meta-Game). Let CMeta be a set of components, VMeta be a set of events,
RMeta be a set of rules, SMeta be a set of subsystems, AMeta be a set of commands, EMeta

B.4. Formalization of a Tailorable Game 203

be a set of entities, and HMeta be a set of event handlers. The Meta-Game M is defined
as:

M = {CMeta, VMeta, RMeta, SMeta, AMeta, EMeta, HMeta} (B.23)

With AMeta being a subset of VMeta; EMeta a set of abstract entities, each of which
subset of CMeta; HMeta a set of abstract event handlers, each of which handles events
from VMeta; and with:

CMeta = CL
Meta ∪ CI−AI

Meta

SMeta = SL
Meta ∪ SI−AI

Meta

HMeta = HL
Meta ∪ H I−AI

Meta

(B.24)

For a non-interactive Meta-Game (there is not any input or output), CI−AI
Meta = ∅,

SI−AI
Meta = ∅, and H I−AI

Meta = ∅. Otherwise, for an interactive Meta-Game, there are AI-
agents. Regardless of the case, the Meta-Game does not have any user related physical-
level interactions. J

M = {CMeta, VMeta, RMeta, SMeta, AMeta, EMeta, HMeta}
CMeta ⊆ (CL ∪ CI−AI), CMeta 6= ∅

VMeta ⊆ V, VMeta 6= ∅

RMeta ⊆ R, RMeta 6= ∅

SMeta ⊆ (SL ∪ CI−AI), SMeta 6= ∅

AMeta ⊆ A, AMeta 6= ∅

EMeta = {e1, e2, . . . , er | ei ∩ CMeta = ei, ei ∩ eL
i = eL

i , eL
i ∈ EL}, EMeta 6= ∅

HMeta ⊆ (HL ∪ H I−AI), HMeta 6= ∅
Meta-Game

Non-interactive: CI−AI = ∅, SI−AI = ∅, and H I−AI = ∅.

B.4.8 Games

Definition 25 (Interaction Profile). An Interaction Profile is a data resource external
to the application, which describes required logic, input, and output components and
event handlers adaptations to convert a Meta-Game into a Game suitable for a human
player. J

Definition 26 (Game). Let CGame be a set of components, VGame be a set of events, RGame

be a set of rules, SGame be a set of subsystems, AGame be a set of commands, EGame be a

204 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

set of entities, HGame be a set of event handlers, and PGame be the Interaction Profile. The
game GGame is defined as:

G = {CGame, VGame, RGame, SGame, AGame, EGame, HGame, PGame} (B.25)

With AGame being a subset of VGame; EGame a set of entities, each of which subset
of CGame; HGame a set of event handlers, each of which handles events from VGame; and
with:

CGame ⊃ Cmeta

VGame ⊇ VMeta

RGame ⊇ RMeta

SGame ⊃ Smeta

AGame ⊇ AMeta

EGame ⊇ EMeta

HGame ⊃ HMeta

(B.26)

For convenience, we can consider CGame, SGame, and HGame as all existing compo-
nents, subsystems, and event handlers.

The Interaction Profile PGame defines the sets of input and output components,
subsystems, and events handlers to enable human interaction with the Game. J

G = {CGame, VGame, RGame, SGame, AGame, EGame, HGame}
CGame ⊃ CMeta, CGame ⊆ C, CGame 6= ∅

VGame ⊇ VMeta, VGame ⊆ V, VGame 6= ∅

RGame ⊇ RMeta, RGame ⊆ R, RGame 6= ∅

SGame ⊃ SMeta, SGame ⊆ S, SGame 6= ∅

AGame ⊇ AMeta, AGame ⊆ A, AGame 6= ∅

EGame ⊇ EMeta, EGame ⊆ E, EGame 6= ∅

HGame ⊃ HMeta, HGame ⊆ H, HGame 6= ∅

Game

B.5 Elements of a Tailorable Game

EDA, DDA, and ECS have some important similarities, including promoting
decoupling, extensibility, and the ability to modify run-time execution. As each of the
approaches is flexible on its own, when combined, the resulting architecture maintains
these properties, allowing developers to modify a game in run-time without changing its

B.5. Elements of a Tailorable Game 205

source code. To achieve this goal, we start to discuss how to implement the formalization
defined in Section B.4.

B.5.1 Component

Digital systems require data to manipulate. In an ECS, data come from compo-
nents (Definition 1).

According to Definition 1, a component abstracts a single purpose for the game.
It stores the required data to address a desired functionality of the system (that is, to im-
plement a functionality and nothing else). A game has a finite set of components, which
developers can combine to create entities (later defined in Definition 5). Subsystems
(defined in Definition 20) process components according to the game purposes.

Types of Components

For the purposes of this formalization, it is convenient to differentiate three
pairwise disjoint components types: logic components, input components, and output
components.

Logic components do not store data describing how input or output will happen.
Rather, these components describe what data show become information. They are, there-
fore, independent of physical-level interactions on their own. Thus, Definition 2 means
that, from the perspective of a user, logic components are fully abstract components, as
they do not have any IO-related information. In turn, this will, later, enable an IO-free
simulation: instead of physical-level interactions, the simulation will define semantics.

An entity that has an input component is able to receive external input, such as
the input provided by a human user to control the entity. The input component stores
data to define how the user will control the system.

An entity that has an output component acquires output stimuli (for instance,
graphical, aural, or haptic stimuli) to represent it. Similarly to input components, output
components define data describing how to represent data as information to a user.

Considering the three types of components as well as Definition 1, it follows that
it is possible to join them into a single component set without duplicates, as well as
splitting this single set into three disjoint sets considering their types (Lemma 1). This
is illustrated in Figure 17.

B.5.2 Entity

An entity (Definition 5) is a composition of existing components, each of which
defined by following the Definition 1.

206 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

Figure 17 – Component types.

Source – Created by the author.

Note – Components are divided into three disjoint sets: logic (L), input (I), and output (O). The union
for the input and output sets define the available components for human-interaction. The same
applies to event-handlers.

Any arbitrary entity is a non-empty subset of existing components. This means
that, given an entity E, and a set of components C, then:

E ⊆ C

E ∩ C = E

E ∪ C = C

(B.27)

are valid for any possible entity.
Definition 5 has an important, less obvious meaning – an entity is nothing by

itself13. An entity is defined exclusively by its components, as they provide all its data.
This is important for it implies that entities can become anything one wishes, provided
that there exists required components, and they that are attached to them.

A game has a finite set of components (defined as in Definition 1) which stores
its data. All game relationships derive from the data stored by components owned by
the entities.

For instance, the entity in Figure 18 is defined by four components, namely: a
TransformableComponent, a CollidableComponent, an AudibleComponent, and a DrawableComponent.
The TransformableComponent stores the position, orientation and scale of an entity
in the simulation world (thus, only the data required by a transform matrix). The
CollidableComponent stores the data for physical-collection, such as physical shape
and density (only the data required for the collision). The DrawableComponent and the
AudibleComponent store, respectively, its graphical and aural output data (such as its
13 Some ECSs implement an entity as an identifier (ID), for example.

B.5. Elements of a Tailorable Game 207

corresponding image or sound, respectively; once again, only the required data to fulfill
its purpose).

If one wishes to remove any of data records (alongside with the behaviors that
they grant the entity with), she/he only needs to remove the corresponding component.
Removing the DrawableComponent from the entity in Figure 18 would, in turn, remove
the output graphical representation, leaving the entity with only aural representation
for its output.

Figure 18 – An entity.

Source – Created by the author.

Note – An entity is a collection of components, defined as a subset from the existing components. As each
component has a single, specific purpose, they are either related to logic processing, input handling,
or stimuli output. As components enable an entity to perform activities, the entity in this image
can: have a position, orientation, and scale in a game world (TransformableComponent); collide
with other collidable entities (CollidableComponent); have a graphical output representation
(DrawableComponent); have an aural output representation (AudibleComponent). However, it
cannot be controlled component-wise, for it does not have an input-related component. For the
Meta-Game, this entity is a box with which other collidable entities can collide; for a game (and,
thus, for a user playing it), it may be a noisy airplane that other collidable entities can collide with.

B.5.3 Event

We define events in Definition 11.
In the same way a digital game has a finite set of components, it also has a

finite set of events. The event itself does not alter the execution flow of a digital system.
Instead, event handlers (Definition 13; functions or methods, for instance) subscribe to
it, providing the required processing when it happens. As events define many-to-many
relationships (Subsection B.2.7), it is not necessary to distinguish events into groups; an
event might trigger, altogether, logic, input, and output functionalities, depending on its
event handlers.

An event may have as many event handlers as desired. In theory, an event handler
could process multiple events (provided that they are suitable and general enough).
However, in practice, each event handler implemented with this formalization will be

208 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

specialized to process a single event. Thus, in this formalization, an event may trigger
a finite set of event handlers, and, in practice, each event handler will handle a single
event14.

Types of Event Handler

As with components, it is also convenient to differentiate three pairwise disjoint
event handlers types: logic event handlers, input event handlers, and output event
handlers.

As event handler types are also disjoint, they allow for a result similar to the one
presented in Lemma 1, as states Lemma 4.

B.6 Operations on the Elements of a Tailorable Game

Elements cannot define a game by themselves, in isolation. Instead, they are the
building blocks to allow developers to design simulations. Simulations often combine
elements with each other, preferably in a non ad hoc way. This section details operations
to change and process game data using game elements defined in Section B.5.

B.6.1 Modifying Entities

Operations such as union, intersection, and difference allow us to create new sets
based on the original ones. We can extend this idea to entities and components. As an
entity is a set of components (Definition 5), inclusion and removal of data members and
behaviors can be implemented as simple set operations. These operations will create
a new set with the properties that we want to achieve. We can add new components
to an entity using set unions (then a set different to remove the original one), remove
components from it by using set differences (once again, with a set different to remove
the original one), or query the existence of an arbitrary component with set intersection
(if the intersection is not the empty set, the entity has the queried component).

B.6.2 Modifying Event Handling

Operations to manipulate events are similar to those for manipulating compo-
nents, except that they apply to event handlers instead of events themselves. Thus, we
can register (add) an event handler for a given event, or unregister it (remove) from the
event. Thus, for each event, we may define a set of event handlers to process it. Moreover,
for each event handler, we may define a set of handled events that it processes.
14 To define many-to-many relationships, we could define events and event handlers similarly to entities

and components.

B.6. Operations on the Elements of a Tailorable Game 209

B.6.3 Defining Relationships Among Elements

At this point, we can create and modify entities, components, events, and event
handlers. However, there is no way to combine them, nor there are ways of binding
entities interactions to events. For this purpose, we may define rules (Definition 19).
Rules govern and define the behaviors of digital games. They are akin to business rules
that define the game elements that should behave in the simulation.

According to Definition 19, rules define resulting side-effects from the interaction
of entities. As they result in an event, they allow we to build complex relationships
among entities, and to trigger further asynchronous processing on their components.

Considering a finite set of entities E = {e1, e2, . . . , en} and a set of events V =

{v1, v2, . . . , vm}, a binary rule has the form:

ei R ej 7→ vk (B.28)

in which ei, and ej are entities belonging to E (i, j = 1, . . . , |E|), and vk is an event which
belongs to V (k = 1, . . . , |V|). The developer may define rules with different arities as
needed (for instance, unary, ternary, or n-ary rules).

B.6.4 Data Processing for a Tailorable Game

It is necessary to process the game data stored in elements according to the
defined rules. To divide types of processing according to their functionalities (input,
output, or logic), we can define subsystems (Definition 20).

If an entity has a component that a subsystem processes, then it is registered
on the subsystem (this will be defined in Section B.6.4). This guarantees that entities
behaviors depend on their components15.

Types of Subsystems

As with components and event handlers, it is possible to divide subsystems into
three pairwise disjoint types, according to their functionalities: logic (Definition 21),
input (Definition 22), and output (Definition 23).

Once again, as with components and event handlers, dividing subsystems by
type ensures that logic subsystems do not process any IO data; thus, the logic subsystem
is effectively abstract in terms of physical-level interactions.
15 For ECSs that defines components with data and logic, subsystems are often merged into components

themselves.

210 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

Subsystems Operations

A subsystem registers for itself only suitable entities, that is, entities composed
by components that they process. The general registering process is the set that results
from the intersection between the subsystem managed components and all existing
entities (Lemma 7).

Lemma 7 ensures that each subsystem only processes entities that are supersets
of components required by the subsystem. In particular, we may define Lemma 8 for
logic subsystems:

A similar reasoning can ensure that the entities registered for the input or out-
put subsystems have, at least, one input or one output component, respectively. The
implication for this choice is that none of the IO subsystems can register nor process an
entity composed exclusively of logic components. Effectively, the division makes logic
processing disjoint of input and output ones. We can infer, thus, that a Meta-Game will
use only logic components to its subsystem. To promote this idea, we might want to
distinguish elements types into two types: related or non-related to user interactions.

B.7 Abstract and Concrete Elements of a Tailorable Game

After defining elements and operations for tailorable games, a necessary feature to
formalization is the addition and removal of user-related interaction data and behaviors.
This section introduces the concepts of abstract and concrete game elements, which act
as building pieces of tailorable software that implements the formalization. Assuming
that it is possible to convert abstract into concrete elements during run-time, then it
becomes possible to create run-time extensible games that may consider the interaction
needs of their users to provide a customized (and potentially accessible) experience.

Lemma 1 and Lemma 4 show it is possible to categorize components and event
handlers according to their IO behaviors. This section uses the results presented in
the previous sections to create new definitions aiming to ease comprehension and to
demonstrate the validity of the proposed formalization.

B.7.1 Abstract Entity

Definition 5 defines entities as sets of components. This means that it is possible to
create and change an entity by altering its set of components, by adding new components
to itself (Lemma 2) or removing some existing ones from it (Lemma 3). One may
suggest that, provided that an entity only uses logic components, it is possible to build
IO-free entities. This is indeed possible, and leads to the definition of abstract entities
(Definition 6).

B.7. Abstract and Concrete Elements of a Tailorable Game 211

According to Definition 6, an abstract entity is entirely IO-free, as it does not
have any input or output components. Furthermore, considering CL as the set of logic
components, CI as the set of input components, CO as the set of output components,
and A is an abstract entity, then:

A ⊆ CL

A ∩ CL 6= ∅

A ∩ CI = ∅

A ∩ CO = ∅

(B.29)

For instance, the entity in Figure 19 is an abstract entity. It only has logic com-
ponents – the TransformableComponent and the CollidableComponent. As such, there
are no output stimuli to convey its existence to a user, neither can she/he control it, as it
cannot receive input.

Figure 19 – An abstract entity.

Source – Adapted from Garcia (2014).

Note – An abstract entity does not have IO information. Although it exists in the game, a user cannot
interact with it nor know it exists. However, as logic subsystems do not process IO data, they can
process abstract entities to define the game simulation (as anticipated in Figure 18).

B.7.2 Concrete Entity

If there are entities without IO functionalities (abstract entities), we may define
concrete entities with IO functionalities (Definition 7).

According to Definition 7, a concrete entity may or may not have input and
output components – they are optional (thus, both entities in Figure 18 and Figure 19
are concrete entities, though only the latter is also an abstract entity). Considering I as

212 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

the set of input components, O as the set of output components, L as the set of logic
components, and F a concrete entity, then:

F ⊆ L

F ⊂ I

F ⊂ O

(B.30)

It is important to note that, for practical purposes in this formalization, a concrete
entity has, at least, one logic component – otherwise, it would have no utility for the
logic processing (in other words, its purpose would be purely aesthetic). Input and
output have no practical meaning if they are not related to other data, as they would not
convey nor modify any information.

B.7.3 Abstract Event Handler

The abstract event handler (Definition 17) is the event handler counterpart of
the abstract component.

According to Definition 17, and following components types in Section B.5.1,
should an abstract event handler need to process any data in a game, it shall only process
logic components from entities.

B.7.4 Concrete Event Handler

The concrete event handler (Definition 18) is the event handler counterpart of
the concrete entity.

Due to Definition 13, a concrete event handler will only perform one of the
possible side-effects types. This is not an issue, as an event may have multiple event
handlers – thus, when it is necessary to trigger more than one side effect for a given
event, we should define a corresponding number of event handlers and register them
for the event.

B.8 Conversions Between Abstract and Concrete Elements

This section is the basis for the creation of a Meta-Game. If we can create an
abstract element from a concrete one, it becomes possible to convert a Game into a Meta-
Game. Likewise, if we can add physical-level interactions to a Meta-Game, it is possible
to convert it into, at least, one Game. The idea is to transform interactive systems with
human-related interaction into simulations that abstracts human-related interaction
with commands. This way, we will be free to arbitrarily re-define interaction to map how
users will play a Game.

B.8. Conversions Between Abstract and Concrete Elements 213

B.8.1 Converting Entities into Abstract Entities

Theorem 1 transforms a concrete entity into an abstract entity. Due to the use of
sets to represent the entities, the operation is straightforward.

For instance, the entity in Figure 19 is the abstract entity representation of
Figure 18. Logically, both entities are equivalent, as all logic data are present: the
TransformableComponent and the CollidableComponent define its logical data. This
means that its simulation in the Meta-Game is equivalent to the original one. However,
the lack of IO components in the abstract entity makes it non-interactive – the user
cannot perceive it, nor can she/he control it. Although it is there, the user has no way to
know about it, or interact with it.

B.8.2 Converting Abstract Entities into Concrete Entities

Theorem 2 transforms an abstract entity into a concrete one. This does the inverse
of the Theorem 1.

For instance, the entity in Figure 18 is a possible concrete entity for the abstract
one in Figure 19. However, it is not the only: any combination of IO components will
result in other equivalent representation, as suggest in Figure 20.

B.8.3 Transforming Entities

Theorem 3 combines Theorem 1 and Theorem 2 into one, showing that is possible
to transform a concrete entity into an abstract one, and vice versa.

Due to Lemma 2 and Lemma 3, the Entity Transformation can be seen, informally,
as the result of adding or removing required components to convert the entity.

B.8.4 Converting Event Handlers Sets into Abstract Event Handlers

Sets

After transforming entities, it is necessary to transform event handlers. The
reasoning and the procedures are the same. However, instead of changing an event, it
will be necessary to add – or to remove – event handlers to – from – it.

214 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

Figure 20 – Concrete entities.

Source – Created by the author.

Note – Each of these entities has a different subset of IO components; thus, the way a user perceives them
is different: for the top, she/he views the entity; for the bottom, she/he hears it. However, although
they are different when one considers their concrete representation, they have the same abstract
entity (the one in Figure 19). Thus, for the Meta-Game, they are the same.

B.8.5 Converting Event Handlers Sets into Concrete Event Handlers

Sets

B.8.6 Transforming Event Handlers Sets

This result is illustrated in Figure 21. The concrete version combines the top and
bottom halves of the image, having both logic and output event handlers. The abstract
version only has the events defined at the top half of the image. For the Meta-Game,
both versions behave equally.

Due to Lemma 5 and Lemma 6, Event Handler Transformation can be seen,
informally, as the result of adding or removing the required events to convert the event
handlers.

B.9. Architecture for Implementing Tailorable Games 215

Figure 21 – Events and Event Handlers.

Source – Created by the author.

Note – An event itself does not trigger further processing; it only conveys that something important
happened. Event handlers to the processing, according to their goals. In the top half of the image,
the game logic is updated due to the event. The data of components change as required. In the
bottom half, event handlers dispatch user feedback for the event.

B.9 Architecture for Implementing Tailorable Games

Entity Transformation and Event Handler Transformation show that it is possible
to add and to remove components to/from any existing entity, and event handlers
to/from any existing event. Considering Definition 5 and Definition 11, alongside the
proposed operations and theorems results, we can draw an interesting interpretation: it
is possible to alter how entities and events are processed, and their behaviors.

According toDefinition 5, the behaviors of an entity are defined by its components
– as stated in Definition 1, a component holds all relevant data to allow the entity to
achieve its purpose. The same reasoning applies to events: according to Definition 11
and Definition 13, an event by itself does not impose any side-effects; instead, side-effects
are caused exclusively by their corresponding event handlers.

Combining the last two paragraphs, we may suggest that building a digital
game using components and events can allow modifying the digital game itself. The
modification only depends on which components and event handlers we add/remove
to change behaviors. This statement is valid for logic, input, and output. Furthermore, it
is a useful result for accessibility purposes. Provided that we implement game rules and
logic processing using only logic components (Definition 2) and logic event handlers
(Definition 14), the simulation will not depend on neither user input nor output. If we

216 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

decouple the IO from the simulation, this could mean, in turn, that we could define
suitable IO interactions by, later, choosing adequate IO-specific components and event
handlers.

It is, thus, possible to define a system without user IO using entities, components,
events, and event handlers. Next, it is necessary to make it interactive – both with
and without users –, and to define a communication protocol for input. This section
approaches each of these issues. First, we need to define an interactive system without
users. The idea is letting the system to simulate itself without user interaction. In order
to this, we should define an input protocol which users and machines could use alike.
This would allow, at a later step, switching the interactions of “machines” to interactions
of humans, defining the system input. Lastly, we have to bind the available actions to
physical-level interactions, to enable the user to play. This effectively creates a human-
controlled input subsystem.

The same reasoning applies to the system output. In this case, at a conceptual
level, it is simpler. As machines do not need sensory stimuli to perceive the system, we
only ought to add the desired output stimuli afterwards. Thus, the output is a form of
sensory conveying the system current state of simulation to the user. In order to achieve
this, we add the required output components to the entities, and define and register
output event handlers for the events.

With the possibility of defining both input and output, it is, finally, necessary to
tailor the system at run-time for the interaction needs of a user. This will use the last
architectural choice for the approach – the DDA, which we can explore to transform
Meta-Games into user-playable Games.

B.9.1 Input Handling

The first step to define an interactive Meta-Game is to enable non-human input.
As entities, components, events, and event handlers are the only proposed elements,
it is necessary to combine these elements to handle input. The interactive actor, for
convenience, will be called agent (Definition 8).

As an agent has an input component, input subsystems will register it for them-
selves and process its input. Thus, for the system, an agent in an interactive entity.
However, it is important to note that the definition is generic – it does not require the
agent to be human. This branches the possible agent types into two, as it was the case
with abstract and concrete, as defined in Definition 9 and in Definition 10.

The distinction is important as, in fact, the interactive Meta-Game simulation
will use only AI-controlled agents. This agent will use an algorithm and AI techniques
to play the game like a user, exploring the available game rules to interact with the

B.9. Architecture for Implementing Tailorable Games 217

game16 17 18.
Thus, instead of a user, an AI-agent “plays” the interactive Meta-Game. An

abstract simulation will have only AI-agents; on the other hand, a human playable Game
will have, at least, one human-agent. The only remaining detail is how to convert between
AI-agents and human-agents – each of these conversions in shown in Theorem 4 and
Theorem 5, and generalized in Theorem 6 (Agent Transformation).

Input Protocol and Mechanism

At this point, when we use agents, it is possible to affirm that AI and human
users are, at least theoretically, exchangeable for the implementation19. The next step is
to use the elements to create an input protocol. The input protocol would mediate the
input communication between the elements and the logic implementation.

One possible approach to implement the input protocol is to use events. With
an EDA, we may define semantic commands for the input interactions (Definition 12).
The Meta-Game logic, implemented using an EDA, processes the defined commands
according the existing rules to change the flow of its simulation.

Thus, with commands, instead of defining how the user should interact with
the game, the developers define what the user is allowed to perform when using the
system. Commands define semantic inputs to represent what an agent should be able to
perform in the game, instead of mapping this ability to how a user may perform it at
physical-level. For instance, instead of binding a controller button tomake an entity jump,
the developers define a jump command20. The jump command might be performed
16 We can see the AI-controlled input component as a logic component, as the system performs the

input. In fact, it would be possible to convert it into pure AI implementation using techniques such as
decision trees and finite-state machines.

17 The AI-agent does not have to be sufficiently “intelligent” to play like a human. In fact, it does not need
to play at all, neither have any sort of intelligence; rather, it only needs to be able to play. For this chapter,
that means it only needs to be able to issue Commands (defined later in Definition 12), which we can
implement as an algorithm to trigger an event. However, AI-Agents can act as computer-controlled
opponents if the developers program input subsystems to do so. Likewise, the better the AI-agent, the
better automation we can provide to support players with motor disabilities (or other disabilities).
Moreover, if we desire to simulate specific instances of an AI-Agent acting as Human-Agent, it would
be possible to record commands and time stamps on a file and replay them in a new instance of the
game. In this case, the AI-Agent would not have any intelligence; however, it would be able to play the
game.

18 At times, it may be useful to consider Human-Agents as Agents in general, that is, potentially having
human and AI-controlled input components – a hybrid. The idea is to reduce required game input,
or to automate parts of the game, as potential implementations of input reduction and automation
strategies described by Yuan, Folmer & Harris (2011).

19 Once again, only regarding what they are theoretically able to do – semantically – they are able to
provide the game with any input required.

20 It is important to notice that a command, in this chapter, is an event. This mean event handlers will
process them after the command event occur. This also means that, potentially, many input devices or
algorithms may be registered for a same command, as well as a same input mechanism (button, key,
movement. . .) may be bound to one or more commands at different contexts.

218 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

by an agent; the game logic subsystems, in turn, process the event to allow its entity to
jump.

The benefit of using event-driven input handling is that it allows different sources
and devices to provide input to the system. This grants implementation flexibility, as,
provided that the source is able to trigger an event, it is able to provide the system
with input. As EDAs promote decoupling, it does not matter what originates the input
event. It could be a human providing input via a device (or assistive technology), an
AI-controlled agent, or even macros defined by a developer to play for or aid the user
(Figure 22). The latter, in turn, allows the developers to define automated input schemes
to change the interaction, and, if needed, aid the user in case of motor disabilities.

Figure 22 – Semantic commands with events.

Source – Adapted from Garcia (2014).

Note – Semantic commands allowdevelopers to definewhat a usermay dowhen interactingwith the game,
instead of how she/he should interact. Instead of forcing an arbitrary physical-level interaction
for the input, this allows the definition of multiple input schemes, ranging from traditional input
devices for users, to automated AI-controller to play against and for the user, promoting input
automation when needed.

Input Mapping

The use of semantic commands allows developers to define what the user can do
when interactingwith the system. It does not impose a singleway on how to do it, though.
Rather, it grants the user liberty to define how to provide input to the system (with
devices and mechanism) according to her/his interaction needs, via input mapping
(also known as input re-mapping (MCSHAFFRY; GRAHAM, 2012; GREGORY, 2014)).
Input mapping, thus, allow users to rebind existing game commands according to their
preferences and needs. In this chapter, it is not enough to explore input mapping for a
single device. Rather, we need to abstract the device as well.

B.9. Architecture for Implementing Tailorable Games 219

To map a command to a specific physical-level interaction, we may define two
different events per command (Figure 23). The first-event maps the physical action to a
low-level event. This binds an action (such as pressing a specific key) to a possible game
action (a command such as requesting the entity to jump). An input subsystem processes
this event and generates corresponding high-level events (the semantic command itself)
for the game logic subsystems. They process the events according to the existing rules
and generate the output for the simulation (for this example, the controlled entity would
jump).

Figure 23 – Input mapping.

Source – Adapted from Garcia (2014).

Note – Semantic commands are the first step to decouple the physical-level interaction from the imple-
mentation. However, to enable run-time re-mapping, it is necessary to go a step further, using an
indirect approach with two events. The first event converts the physical action into the desired
input; the second event converts the input into a semantic command. This splits the input into
two phases: a physical (physical-level interaction and low-level event) and a logical one (high-
level event (the command) and subsystems’ processing). This allows us to change the first phase
without compromising or affecting the second.

We use two different events instead of a single one to allow run-time command re-
mapping. As the high-level command does not depend on the physical-level interaction,
it is possible to modify the input action or even the input device without affecting the
remaining of the input sequence implementation. The new biding would still translate
the low-level command into the respective high-level semantic command, without
compromising the logic implementation.

At this point, with input mapping, the current result satisfies the input aspects
of the two questions presented in Section B.1: they allow creating a system without user
input, and they allow defining the user input interaction at run-time. This achieves half
of the goals; next, it is necessary to tackle the output of the system.

B.9.2 Output Handling

As stated, at a conceptual level, it is simpler to tailor the output of a Meta-Game
than its input. Assuming input handling is available, the simulation of the Meta-Game
is already complete, orchestrated by logic subsystems processing existing rules, and
with commands (events) originating the input. This makes the output a sort of digital

220 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

storyteller – the functionality responsible for conveying sensory stimuli to the user; that
is, what is happening at a given moment in the simulation.

As all data belong to components, non-sensory information which should be
conveyed to users already exist in the system – it is stored on logic components. Thus,
the goal of output systems is to translate data into accessible stimuli for presentation,
exploring the available output devices (potentially including assistive technologies) and
the senses of a user.

As with input, this approach defines only entities, components, events, and event
handlers as primitive elements. Thus, we should define the presentation using output
components and output event handlers. These operations explore Entity Transformation
and Event Handler Transformation – they share the same abstract concepts in the
Meta-Game, and add concrete resources to transform it into a Game. We add output
components to existing entities to provide output stimuli (Figure 20), and add output
event listeners to provide feedback on relevant events (Figure 21). These additions shall
provide required output data for presentation; the usage of output components will
allow output subsystems to register the required entities to convey the desired media.

The output data generated by output components and event handlers can com-
plement each other. Components can hold data for continuous presentation, which we
may wish to present on every update frame. This includes, for instance, images, text,
and music. On the other hand, event handlers provide (usually instant) feedback when
an important event happens. This may include, for instance, graphical or sound effects,
and haptic stimuli such as vibration.

Output subsystems will use available output data to present the chosen represen-
tation to the user. It is important to note that, as output data do not modify nor intersect
with logic data, the presentation does not change logic data at all – the data are disjoint
by construction (Lemma 1 and Lemma 4), respecting output subsystems definition
(Definition 23). Thus, the simulation is the same, regardless of the chosen presentation
and of explored output strategies.

It is also important to note that rules, representing the entities interactions, may
result in events. Thus, it is possible to provide feedback when anything of interest
happens – in particular, at the exact time after it happens. Moreover, input commands
are events themselves. This makes trivial to add input feedback to the system: it requires
registering desired output event handlers for a corresponding command.

Therefore, the simulation is semantic and the input is semantic; the output can be
shown according to purposes defined by developers and needs of users. As such, we can define
different output schemes to see, hear, smell, touch, or taste the moment of the simulation
– it only depends on available output components, subsystems, event handlers, and

B.9. Architecture for Implementing Tailorable Games 221

output devices. The system logic implementation is not, at this point, the limitation for
the output. Rather, the available output devices, technologies, components and event
handlers determine how it is possible to tailor for the presentation.

At this point, the results satisfy the two questions presented in Section B.1 – they
allow creating a system without user input and output, and they allow defining the IO
interaction at run-time. It is time to include the user back into action, using the DDA.

B.9.3 Run-Time Tailoring

The previous results allow one to affirm that it is possible to build an interactive
Meta-Game. Entities, components, events, and event handlers define a fully extensible
and interactive run-time architecture, which allows us to modify logic, input, and output
behaviors.

The interactive Meta-Game itself does not have user interaction: it is a game for
machines. Rather, it simulates the interaction using AI-agents providing input com-
mands, without the compromise of outputting stimuli (because the machine does not
need the output). A real user, however, has specific interaction abilities and capabilities;
it is necessary to address them adequately.

From the previous subsections,we can create, implement, and add IO components
and events to define the interaction. The goal of the additions is to convert the abstract
elements into concrete ones, that is, to transform the Meta-Game into a Game.

This justifies the choice of a DDA. We can use an external data resource – the
Interaction Profile (Definition 25) – to represent required IO specializations, that is,
necessary IO inclusions to adapt the system to the user (Figure 24).

The Interaction Profile is an external data resource, such as a plain-text file, a
structured text-file, such as XML or JavaScript Object Notation (JSON), or a database.
Although the format may vary, its goal is to list, for each entity and event present in
the Meta-Game, which components or event handlers, respectively, should be added
to define the system IO. The Interaction Profile, therefore, represents the necessary
set-up to transform the Meta-Game into a potentially accessible game, allowing a user
to interact with a full Game (Figure 25).

Listing 1 outlines an example of Interaction Profile – it is based on the author’s
UGE game engine (GARCIA, 2014). In addition to tailoring data, this Profile stores
options to customize the game logic. It groups the tailoring information into a few
groups:

General Settings. This group may store general data, such as the desired language for
the game.

222 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

Figure 24 – Interaction Profile.

Source – Created by the author.

Note – The Interaction Profile represents the necessary adaptations to convent a Meta-Game into a Game,
aiming to meet interaction needs or a user (or group of users).

Input Settings. This group defines desired input subsystems (provided that there are
multiple possibilities for a given set of input components), and defines the desired
mapping between physical-level interactions for input and game commands. Here
the user can specify, therefore, desired input devices, keybindings, and actions to
the game with input. These changes do not affect the game logic.

Output Settings. This group represents desired output subsystems (provided that
there are multiple possibilities for a given set of output components), output
components to add to each entity, output event handlers to register for the events.
It may also allow further customization, such as typefaces and sizes of fonts, and
window size. As with the input settings, these changes do not affect the game
logic.

Gameplay Settings. This allows modifying game logic settings for gameplay, such as
speed, game constants, and difficulty level.

Listing 1 – XML Interaction Profile.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <PlayerProfile name="Default"

3 resource="profiles/default/profile.xml">

4 <GeneralSettings>

5 <PlayerPreferences

B.9. Architecture for Implementing Tailorable Games 223

Figure 25 – Profile based tailoring.

Source – Created by the author.

Note – As logic components and logic event handlers do not depend on IO, theMeta-Game simulation can
be the same, regardless of physical-level interactions. The interaction profile allows the conversion
from a Meta-Game into a system, describing required IO data and how a user should interact with
the system. Thus, the logic is always the same (left side of the figure); however, they physical-level
interactions may vary according to the users’ interaction needs (some possibilities are outlined at
the right side of the figure).

6 resource=

7 "profiles/default/general/player_preferences.xml"/>

8 </GeneralSettings>

9

10 <InputSettings>

11 <InputSubsystems

12 resource=

13 "profiles/default/input/input_subsystems.xml"/>

14 <InputMapping

15 resource=

16 "profiles/default/input/input_mapping.xml"/>

17 </InputSettings>

18

224 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

19 <OutputSettings>

20 <OutputSubsystems

21 resource=

22 "profiles/default/output/output_subsystems.xml"/>

23 <EntitySpecialization

24 resource=

25 "profiles/default/output/entity/entities.xml"/>

26 <EventSpecialization

27 resource=

28 "profiles/default/output/events/events.xml"/>

29 <TextSettings

30 resource=

31 "profiles/default/output/text.xml"/>

32 <WindowSettings

33 resource=

34 "profiles/default/output/window.xml"/>

35 </OutputSettings>

36

37 <GameplaySettings>

38 <AutomationSpecialization

39 resource=

40 "profiles/default/gameplay/automation/automation.xml"/>

41 <EntitySpecialization

42 resource=

43 "profiles/default/gameplay/entity/entities.xml"/>

44 <EventSpecialization

45 resource=

46 "profiles/default/gameplay/events/events.xml"/>

47 <ProjectionSpecialization

48 resource=

49 "profiles/default/gameplay/projection.xml"/>

50 </GameplaySettings>

51 </PlayerProfile>

Note – The Interaction Profile describes how to adapt the Meta-Game to convert it into a Game. For
accessibility related tailoring, it requires how to add physical-level input and output interactions
to the Game. However, it may also be used to parameterize the game logic, should the developers
wish to do so.

As the Profile is used as an external input resource for the system, it is possible to

B.9. Architecture for Implementing Tailorable Games 225

define many of them, such as in Listing 2. The variability is important, as they allow the
user to choose the best one for her/his interaction needs. The complexity and granularity
of a Profile may vary from a general use case, such as trying to include the largest
extension possible of users, to specific interaction needs, ranging from a given disability
to a user-level Profile.

Listing 2 – XML Profile List.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <PlayerProfiles resource="profiles/profiles.xml">

3 <PlayerProfile

4 name="Default"

5 resource="profiles/default/profile.xml"/>

6

7 <PlayerProfile

8 name="Cognitive Impairment"

9 resource="profiles/cognitive_impairment/profile.xml"/>

10

11 <PlayerProfile

12 name="Motor Impairment"

13 resource="profiles/motor_impairment/profile.xml"/>

14

15 <PlayerProfile

16 name="Visual Impairment: Blind"

17 resource="profiles/blindness/profile.xml"/>

18

19 <PlayerProfile

20 name="Visual Impairment: Low Vision"

21 resource="profiles/low_vision/profile.xml"/>

22

23 <PlayerProfile

24 name="Franco's Personal Profile"

25 resource="profiles/users/franco/profile.xml"/>

26 </PlayerProfiles>

Note – Developers may define as many Interaction Profiles as they wish. Each Profile will adapt the game
according to the defined IO specifications.

When a game application parses the Interaction Profile, it adds the chosen ele-
ments to their respective targets – a Factorymay be useful pattern for this. As entities and
events hold sets, the addition is a simple algorithm (Listing 3) – the chosen architectures

226 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

and the combined approachmake run-time tailoring a relatively simple task. This results
in data-driven defined (and tailored) entities and events.

Listing 3 – Run-time tailoring algorithm.

1 Open the Interaction Profile with reading permissions

2

3 # Tailoring the Meta-Game input.

4 Read the Input Settings Element

5 Read the Input Subsystems Element

6 For each Subsystem in the Input Subsystems Element

7 Instantiate the corresponding Subsystem implementation

8 Add the instance to the available Input Subsystems

9

10 Read the Input Mapping Element

11 For each Mapping in the Input Mapping Element

12 For each Entity in the Entity Specialization Element

13 For Input Component in the Entity

14 Instantiate the corresponding Input Component implementation

15 Add the Input Component to the Entity

16

17 # Tailoring the Meta-Game output.

18 Read the Output Settings Element

19 Read the Output Subsystems Element

20 For each Subsystem in the Output Subsystems Element

21 Instantiate the corresponding Subsystem implementation

22 Add the instance to the available Output Subsystems

23

24 Read the Entity Specialization Element

25 For each Entity in the Entity Specialization Element

26 For each Output Component in the Entity

27 Instantiate the corresponding Output Component implementation

28 Add the Output Component to the Entity

29

30 Read the Event Specialization Element

31 For each Event in the Event Specialization Element

32 For each Output Event Handler in the Event

33 Instantiate the corresponding Output Event Handler implementation

34 Register the Output Event Handler for the Event

35

B.9. Architecture for Implementing Tailorable Games 227

36 # At this point, the Meta-Game was converted into an interactive Game.

37

38 # Initialize other settings, such as general and gameplay settings.

Albeit not required for IO tailoring, this is important for

accessibility purposes.

↪→

↪→

39 Close the Interaction Profile

Note – The application parses the Interaction Profile, adding the specified components and event handlers
to convert the Meta-Game into a Game.

As the tailoring algorithm operates at run-time, this process results in run-time
tailoring. The tailored Meta-Game results in a full-fledged Game. For the user, it behaves
like any other game, except it may suit her/his needs perfectly. Developers, however,
may create new IO components and event handlers to continuously improve the Game
– both for new users and interaction needs and for old users, as the new elements can
also be used to improve older Profiles.

B.9.4 Meta-Game and Game

At this point, it is possible to define Meta-Games (Definition 24) and Games
(Definition 26). They group all elements, concepts, and results described in this chapter.

The conversions between each definition use the theorems to convert abstract
elements into concrete elements, and to convertAI-agents into human-agents. Converting
abstract into concrete results in the Game; converting between concrete into abstract
results in the Meta-Game.

B.9.5 Two Steps to Universal Access Implementation

When we analyze the mathematical part of Definition 24 and of the Definition 26,
we can note that differences between them are the existence of (or lack thereof) the In-
teraction Profile and of IO components, event handlers, subsystems. The IO is, therefore,
fully decoupled from the implementation in the approach.

The creation of the Meta-Game can benefit from the same approaches used for
the run-time tailoring. This brings the benefits of the DDA to the initialization of the
logic; it is outlined in Listing 4. It is not necessary, though; we can skip the reading from
the external data resource and hard-code the initialization into the application.

Listing 4 – Meta-Game to Game algorithm.

1 # Initialization.

2 Register all available Components

228 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

3 Register all available Events

4 Register all available Event Handlers

5 Register all available Subsystems

6

7 # Create the Meta-Game simulation.

8 # Data-driven Logic.

9 Open the Logic Resource with reading permissions

10

11 Read the Logic Settings Element

12 Read the Logic Subsystems Element

13 For each Subsystem in the Logic Subsystems Element

14 Instantiate the corresponding Subsystem implementation

15 Add the instance to the available Logic Subsystems

16

17 Read the Abstract Entity Definitions Element

18 For each Abstract Entity in the Abstract Entity Definitions Element

19 For each Logic Component in the Abstract Entity

20 Instantiate the corresponding Logic Component implementation

21 Add the Logic Component to the Abstract Entity

22

23 Read the Event Definitions Element

24 For each Event in the Event Definitions Element

25 For each Logic Event Handler in the Event

26 Instantiate the corresponding Logic Event Handler implementation

27 Register the Logic Event Handler for the Event

28

29 Read the Command Definitions Element

30 For each Command in the Command Definitions Element

31 Find the required Event for the Command

32 Bind the Command to the Event

33

34 Close the Logic Resource

35

36 # Create the Game.

37 # Add physical-level interactions to transform the Meta-Game into a Game.

38 # The application parses the Interaction Profile to define the desired

IO.↪→

39

40 Run the Tailoring Algorithm

B.9. Architecture for Implementing Tailorable Games 229

41

42 # At this point, the Meta-Game was converted into an interactive system:

the Meta-Game became a Game with which the user can interact.↪→

Note – The first step is to instantiate the Meta-Game. Afterwards, in the second step, the application
parses and instantiates the Interaction Profile, using Listing 3.

The first step defines the Meta-Game: the entire Game simulation is created. The
simulation is the same for any possible physical-level interactions. Thus, the application
logic is coded once. Afterwards, by creating the implementation for the IO and applying
it to the Meta-Game with the tailoring algorithm (Listing 3), the second step creates an
interactive Game for the user.

As the approach is based on sets, it is also possible to define a development
method to the implementation, as outlined in Listing 5.

Listing 5 – Development method algorithm.

1 # Use the appropriate constraint to the end.

2 Repeat until Developers and Users are Happy

3

4 Brainstorm a new Functionality

5 # (Idea, Mechanic, Target User, Interaction Need...)

6

7 Decompose the Functionality into Elements

8 # (Entities, Components, Events and Event Handlers)

9

10 For each Element in the Functionality

11 Classify the Elements into a Category

12 # (Logic, Input, or Output)

13

14 For each Element in Logic

15 If the Element already Exists

16 # It was already implemented before.

17 Reuse the existing Element

18 Else

19 Develop the Element

20 Register the Element into the Application

21 Create (or Modify) Logic Subsystem(s) to Handle the Element

22 # Modify if it is related to existing Functionalities.

23 Register the Subsystem into the Application

24

230 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

25 # Use the same steps for IO.

26 # The category ensures the new Functionality will be disjoint from the

others.↪→

27

28 For each Element in Input

29 If the Element already Exists

30 Reuse the existing Element

31 Else

32 Develop the Element

33 Register the Element into the Application

34 Create (or Modify) Input Subsystem(s) Handle the Element

35 Register the Subsystem into the Application

36

37 For each Element in Output

38 If the Element already Exists

39 Reuse the existing Element

40 Else

41 Develop the Element

42 Register the Element for the Application

43 Create (or Modify) Output Subsystem(s) to Handle the Element

44 Register the Subsystem into the Application

45

46 # Test the new created content.

47 # If it involves IO, include accessibility and usability tests, etc.

Note – The set definition of the proposed approach allow for the definition of some steps for the develop-
ment.

By applying the method in Listing 5, in every iteration of the development, the
number of available entities, components, events, and event handlers will increase; it is
important to note that, as input, output, and logic functionalities are categorized, the
Meta-Game is defined implicitly. As every iteration reuses existing elements, it may
take less effort to develop a new functionality. However, when a functionality is entirely
new, it may require implementing all elements – this may happen, unfortunately, to
accessibility functionalities.

However, due to reusing functionalities, it is possible that every new functionality
may improve the experience for more users than the target ones. This will become clearer
in the next section, as it illustrates the development method.

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 231

B.10 The Game to the Player: Iterative, Incremental, and

Mutualistic Universal Access

Interaction Profiles enable developers to design multiple interaction schemes to
convert a Meta-Game into (potentially several) Games. Provided the implementation
follows the approach described so far, developers code the logic – Meta-Game – only
once. Afterwards, they are able to define accessible versions of the Game by creating new
and/or combining existing IO functionalities. Users may pick an existing Interaction
Profile to play a given Game, or even select IO functionalities to play a personalized,
self-tailored Game. Moreover, as the adaptation occurs at run-time, users are also able
to customize IO whilst the application is running – combine and recombine elements
to tweak the interaction, evaluating the results in real-time, without restarting the
application.

If developers follow Listing 5, the first version of their product can be, simultane-
ously, a conventional Game and a Meta-Game21. Particularly, this implies that creating a
Meta-Game can be an opportunity cost of the traditional development process. Follow-
ing Listing 5, provided they decouple IO implementation from the game logic using
components and event handlers, the Meta-Game is the conventional game stripped of its
IO components and event handlers. Due to Theorem 1 and Theorem 7, this is as simple
as removing IO-related elements to convert concrete into abstract elements.

The simplicity of obtaining the Meta-Game does not imply that accessibility func-
tionalities are free, though: accessible specializations requires fully implementing new
IO-related functionalities; therefore, improving accessibility still requires (considerable)
efforts. Fortunately, this chapter’s approach may ease the process. Although it does not
automate it, all chosen development architecture promote software reuse by themselves
and combined. After implementing components and event handlers, any Interaction
Profile – new and exiting alike – may benefit from the new and improved functionality
to improve the overall game accessibility and quality. Developers – and even users
themselves – may combine existing elements to change how they play and perceive
the resulting Game. In other words, this makes improving accessibility an iterative,
incremental, and mutualistic process: small improvements may be (re-)combined to
achieve greater improvements.

In this section,we illustrate the suggested development approach and accessibility
improvement process using a simple clone of Atari Inc’s Pong® as a viability study. Pong®
is a game in which two players controls their paddles, hitting a ball back and forth, trying
to make the ball avoid the paddle of their opponents to score a point. The game occurs

21 Conceptually, a Meta-Game always exist for a Game. However, if IO functionalities are not decoupled
from logic, decoupling it may require significant refactoring efforts – including architectural changes.

232 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

in a virtual field; when the ball hits the extremes orthogonal to paddles, it rebounds,
changing direction.

Although mechanically simple, Pong is a good viability study. First, it is a well-
known game – thus requiring little explanation. Second, and more importantly, it pro-
vides typical game functionalities, including real-time game loop, graphics, sounds, and
user input, which allows showing how to include interactions to tailor aMeta-Game. The
source code for the implementation is available at <https://gitlab.com/francogarcia/
RunTimeTailorability-PingPong>22. To avoid confusion with the original game of Atari,
in this chapter we will call, hereafter, the prototype Ping-Pong. Ping-Pong will pass
through several IO specializations in the following subsections; Figure 26 illustrates
some of them.

We have also provided a second viability study exploring a more complex game
– a clone of Access Invaders (GRAMMENOS; SAVIDIS; STEPHANIDIS, 2009; GRAM-
MENOS; SAVIDIS; STEPHANIDIS, 2011) –, which is available at <https://gitlab.com/
francogarcia/GamesRunTimeTailorability>23 24. Both prototypes were created using the
Godot game engine25 without modifying it. Rather, we implemented the approaches de-
scribed in this chapter to create the prototypes using the scripting language (GDScript)
of Godot26. This choice illustrates that all tailoring operations can convert Meta-Game
into Games (and back to Meta-Game) during run-time27 28.

22 The implementation of the tailoring algorithm is available at <https://gitlab.com/francogarcia/
RunTimeTailorability-PingPong/blob/master/game/engine/tailoring/tailoring.gd>.

23 This prototype has a few game states, including a menu to illustrate the approach in non-gaming
digital systems.

24 The tailoring implementation is available at <https://gitlab.com/francogarcia/
GamesRunTimeTailorability/blob/master/game/scenes/tailoring/tailoring.gd>. A sim-
plified, albeit functional version of the code is available choosing the commit
b017ac41bcf8a868a49cf6f426220518f4b833dc of the repository (<https://gitlab.com/francogarcia/
GamesRunTimeTailorability/tree/b017ac41bcf8a868a49cf6f426220518f4b833dc>). For instance, the
tailored game scene can be accessed at <https://gitlab.com/francogarcia/GamesRunTimeTailorability/
blob/b017ac41bcf8a868a49cf6f426220518f4b833dc/game/scenes/usual_game/usual_game.gd>

25 <https://godotengine.org/>
26 It is important to note that Godot scene hierarchy is tree-based instead of set-based; thus, components

are added to entities as leaf nodes at the same level (therefore, an entity is their root), avoiding
duplicates to assure each component is unique in a given entity. The same reasoning allow for using
other data structures (such as hash-tables) and successfully applying the approach described in this
chapter.

27 Our Access Invaders clone includes a graphical user interface to build custom Interaction Profiles,
instead of requiring manual changes of the profile resources.

28 A third example is our original work implementing an C++ engine, UGE, cited at Subsection B.2.5.
This chapter approach, however, simplified UGE core tailoring strategies into the proposed definitions
and theorems.

https://gitlab.com/francogarcia/RunTimeTailorability-PingPong
https://gitlab.com/francogarcia/RunTimeTailorability-PingPong
https://gitlab.com/francogarcia/GamesRunTimeTailorability
https://gitlab.com/francogarcia/GamesRunTimeTailorability
https://gitlab.com/francogarcia/RunTimeTailorability-PingPong/blob/master/game/engine/tailoring/tailoring.gd
https://gitlab.com/francogarcia/RunTimeTailorability-PingPong/blob/master/game/engine/tailoring/tailoring.gd
https://gitlab.com/francogarcia/GamesRunTimeTailorability/blob/master/game/scenes/tailoring/tailoring.gd
https://gitlab.com/francogarcia/GamesRunTimeTailorability/blob/master/game/scenes/tailoring/tailoring.gd
https://gitlab.com/francogarcia/GamesRunTimeTailorability/tree/b017ac41bcf8a868a49cf6f426220518f4b833dc
https://gitlab.com/francogarcia/GamesRunTimeTailorability/tree/b017ac41bcf8a868a49cf6f426220518f4b833dc
https://gitlab.com/francogarcia/GamesRunTimeTailorability/blob/b017ac41bcf8a868a49cf6f426220518f4b833dc/game/scenes/usual_game/usual_game.gd
https://gitlab.com/francogarcia/GamesRunTimeTailorability/blob/b017ac41bcf8a868a49cf6f426220518f4b833dc/game/scenes/usual_game/usual_game.gd
https://godotengine.org/

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 233

Figure 26 – Meta-Game and Games (with graphical effects) created in this section.

(a) Meta-Game.

(b) Meta-Game
(debug
drawings). (c) Usual Game. (d) Zoom.

(e) Zoom with multiple viewports.
(f) Graphical

effects.
(g) Head-up dis-

play.
(h) All specializa-

tions.

Source – Created by the author.

Note – TheMeta-Game (Figure 26a) is present in all games, regardless of specialization. Even if no human
player can interact or perceive it, it is running behind the scenes (Figure 26b). Interaction Profiles
add input and output functionalities to the Meta-Game, defining how one sees, hears, smells,
touches, speaks, and interacts with a possible Game derived from the Meta-Game. The Game with
sound effects was not included as sounds cannot be print – the graphical effects one (Figure 26f)
replaces it –, nor the Games with input automation, as it would take several images to suggest the
movement of the paddle.

234 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

B.10.1 First Iteration: Creating the Original Game (Conventional Game)

and Obtaining the Meta-Game

In a conventional implementation, the first iteration defines the (only) game.
Game and Meta-Game are the same: the Meta-Game lies hidden into the Game, as
developers defined IO suitable for their intended audience. However, if developers
followed the steps of Listing 5, they can untangle Game and Meta-Game from each
other. In this pass, developers defined rules, events (including game commands), event
handlers, components, and entities. Due to the proposed division, elements can be
split into three disjoint groups: logic, input, and output. Thus, instead of a Game, after
removing IO functionalities, the first iteration defined the Meta-Game and its first
specialization: the conventional Interaction Profile of the Game.

Removing IO Elements from the Conventional Game: A Generic Introduction

The Meta-Game gathers the logic of the implementation: namely logic compo-
nents, event handlers, and subsystems. Rules define existing relationships between
entities. Events include the available command for game input. Definition 24 proposed
the Meta-Game as:

M = {CMeta, VMeta, RMeta, SMeta, AMeta, EMeta, HMeta} (B.31)

The Meta-Game is unique, the common logic core of the application, serving as
basis for every possible playable game derived from it. The first Game extends the Meta-
Game with input and output elements, and an Interaction Profile, as in the previous
Definition 26:

G1 = {C1
Game, V1

Game, R1
Game, S1

Game, A1
Game, E1

Game, H1
Game, P1} (B.32)

Supposing a typical 2D game, some examples of output components could in-
clude:

DrawableComponent stores a 2D image (such as a sprite) to visually convey how an
entity should look like.

WritableComponent stores a string to describe an entity with words.

AudibleComponent stores a monaural sound for continuous playback to describe how
an entity sounds.

These components would require output subsystems for processing:

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 235

DrawingSubsystem draws entities with DrawableComponents into the screen. It reads
the position data from a TransformableComponent and the graphical data from a
DrawableComponent to draw an image to the screen.

TextSubsystem draws entities with WritableComponents to the screen. It reads the text
from the data of the component, and draws it to the screen with a default font
typeface and size.

AudioSubsystem playbacks entities with AudibleComponents to the speakers. It fetches
the sound to reproduce from the data of the component.

For human input, possibilities could include:

HumanInputComponent human input from a game controller;

InputSubsystem receives input from a game controller attached to the HumanInputCom-
ponent of a human-agent and converts it to commands.

Thus, the components and subsystems for the first Game include, respectively:

C1
Game = CMeta ∪ {DrawableComponent, WritableComponent,

AudibleComponent, HumanInputComponent, . . .}
CMeta = {TransformableComponent, . . .}

S1
Game = SMeta ∪ {DrawingSubsystem, TextSubsystem,

TextSubsystem, AudioSubsystem, InputSubsystem, . . .}

(B.33)

As this example suggests, the Game contains the Meta-Game; thus G1′ ∩M = M,
after the conversion of concrete into abstract elements (G1′). Therefore, all elements of
G1 either are a super-set or are equal to their respective elements in M.

Instancing the Generic Introduction: the First Iteration of Ping-Pong

The first step to create Ping-Pong is identifying existing game elements and rules,
which provides the game mechanics. The brief description of the original Pong® in the
beginning of this section contains four entities:

1. Two paddles, which are the game agents;

2. A court (hereafter called field), on which parallel extremities to the paddles are
goals (hereafter called goals), and orthogonal parts are rebounding areas (here-
after called walls);

236 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

3. A ball, which moves on the game field, rebounding when hitting either a paddle
or a wall.

The second step is decomposing entities into entities and components of ECS.
Analyzing the entities and their behaviors, we may identify the following functionalities
abstracting behaviors:

1. Positions, orientations, and velocity in the field (the game world);

2. Controllers to move the paddles parallel to the goals;

3. Images to represent the entities.

Using the components definedpreviously in this chapter, TransformableComponent,
CollidableComponent, HumanInputComponent, and DrawableComponentwould cover the
data for all functionalities except velocity. For velocity, we could define a new compo-
nent – hereafter KinematicComponent –, storing a velocity vector (as well as, perhaps,
an acceleration vector) to address the shortcomings. Thus, set-wise, concrete entities for
a conventional Ping-Pong game are:

• Apaddle is a set of {TransformableComponent, CollidableComponent, KinematicComponent
DrawableComponent, and HumanInputComponent}.

• Aball is a set of {TransformableComponent, CollidableComponent, KinematicComponent,
and DrawableComponent}.

• The field (including the goal and walls) is a set of {TransformableComponent,
CollidableComponent, and DrawableComponent}.

The third step is identifying, gameplay-wise, whatmoments are important during
a play session of the game. These moments will define game mechanics, and, thus, its
rules, commands, and events. For Ping-Pong, these moments are:

1. When the ball is released (EventBallReleased, moment which the rule goal and
the rule game start triggers);

2. When a player (either human or AI) scores a goal (EventGoal, triggered by the
rule ball hits goal – which, in turn, triggers the rule goal);

3. When a ball hits a paddle (EventBallHitPaddle), which the rule ball his paddle
triggers;

4. When a ball hits a wall (EventBallHitWall, triggered by the rule ball hits wall);

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 237

5. Whenever the ballmoves (EventBallMoved, which occurs from the logic subsystem,
due to the rule ball moves whenever it has velocity);

6. Whenever the paddle moves (EventPaddleMoved, triggered when the game logic
subsystem accepts a valid input command, due to the rule paddle moves towards an
orientation whenever it is within – and not colliding with – the walls).

Next, in the fourth step, it is necessary to determine what users can do when
playing: the game commands, that is, semantics of what they intend to do, along with
their choices. For Ping-Pong, the only interaction is moving the paddle parallel to the
goals. Assuming the goals are at north and south sides of the field (hereafter, we assume
that north is top and south is bottom), gameplay commands are:

1. Move paddle west (left, for simplicity);

2. Move paddle east (right, for simplicity).

As the player intent for both inputs is the same, We could generalize them into
a single parameterized game command: EventMovePaddle(paddle, direction). For
a simple Pong® clone, those components and events should suffice to move towards
implementing the Meta-Game and the (first) Game.

Implementing Ping-Pong in Godot

Whenever using a programming framework, it is useful to explore its resources
instead of “re-inventing thewheel”. For instance, Godot offers Position2D, whichwe can
use as the TransformableComponent, and Sprite, suitable to be a DrawableComponent,
as the rendering system of Godot does not modify position (logic) data. Creating non-
existing components is not an issue, though, as they are data-only – Listing 6 shows the
definition of the logic component KinematicComponent.

Listing 6 – Kinematic Component.

1 var m_Direction = Vector2(0, 0)

2 var m_Acceleration = Vector2(0, 0)

3 var m_Speed = Vector2(0, 0)

Note – For this chapter, ECSs components are data only; thus, to define new components, it is only
necessary to identify and group together relevant data to perform a single purpose.

The fifth step is creating subsystems to handle the game elements, to implement
the rules, and, thus, the game mechanics. To implement Ping-Pong logic, we identify

238 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

its logic operations, processing suitable logic elements into one (or more) logic sub-
system(s) to implement the rules. Due to the simplicity of the logic of Pong®, a single
subsystem may implement the core mechanics – collisions handling, real-time move-
ments, and responding (reacting) to game commands. Listing 7 provides examples of
how to implement some of these functionalities. The responding part is essential – the
game logic is reactive: it is not providing input to the Meta-Game, only responding to
it. Consequently, logic subsystems only react to game commands, not to user input directly.
Although subtle, this choice decouples input from the logic by letting input subsys-
tems dispatch game commands whenever they detect an input from whatever source.
This was explored in Section B.9.1 to allow mapping input to different physical-level
interactions.

Listing 7 – Logic Subsystem.

1 func _process(delta):

2 # ...

3

4 # Fetch data from the components.

5 var fieldSize = Vector2(get_node("Field/Collidable").m_Width,

get_node("Field/Collidable").m_Height)#

get_viewport().get_rect().size

↪→

↪→

6

7 var ballPosition = get_node("Ball/Transformable").get_pos()

8 var ballSize = Vector2(get_node("Ball/Collidable").m_Width,

get_node("Ball/Collidable").m_Height)↪→

9

10 var player1Position = get_node("Player1/Transformable").get_pos()

11 var player1Size = Vector2(get_node("Player1/Collidable").m_Width,

get_node("Player1/Collidable").m_Height)↪→

12

13 var player2Position = get_node("Player2/Transformable").get_pos()

14 var player2Size = Vector2(get_node("Player2/Collidable").m_Width,

get_node("Player2/Collidable").m_Height)↪→

15

16 var ballRectangle = Rect2(ballPosition - 0.5 * ballSize, ballSize)

17 var player1Rectangle = Rect2(player1Position - 0.5 * player1Size,

player1Size)↪→

18 var player2Rectangle = Rect2(player2Position - 0.5 * player2Size,

player2Size)↪→

19

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 239

20 # Rule: move ball whenever it has non-zero velocity.

21 ballPosition += m_BallDirection * m_BallSpeed * delta

22 # Rule: detect ball collision with walls.

23 if (ballPosition.x > fieldSize.x):

24 ballPosition.x = fieldSize.x

25 m_BallDirection.x *= -1

26 g_MetaGameEvents.emit_signal("EventBallHitWall", k_WallRight,

ballPosition)↪→

27 elif (ballPosition.x < 0):

28 ballPosition.x = 0

29 m_BallDirection.x *= -1

30 g_MetaGameEvents.emit_signal("EventBallHitWall", k_WallLeft,

ballPosition)↪→

31

32 var bBallHitPlayer1 = player1Rectangle.has_point(ballPosition)

33 var bBallHitPlayer2 = player2Rectangle.has_point(ballPosition)

34 # Rule: detect ball collision with paddles (rebound).

35 if ((bBallHitPlayer1) or (bBallHitPlayer2)):

36 m_BallDirection.y *= -1

37 m_BallSpeed *= 1.1

38 if (m_BallSpeed > k_MaxBallSpeed):

39 m_BallSpeed = k_MaxBallSpeed

40 if (bBallHitPlayer1):

41 g_MetaGameEvents.emit_signal("EventBallHitPaddle",

k_Player1, ballPosition)↪→

42 else:

43 g_MetaGameEvents.emit_signal("EventBallHitPaddle",

k_Player2, ballPosition)↪→

44 else:

45 get_node("Ball/Transformable").set_pos(ballPosition)

46 g_MetaGameEvents.emit_signal("EventBallMoved", m_BallDirection)

47

48 # Rule: detect ball collision with walls (goal).

49 if (ballPosition.y > fieldSize.y):

50 reset_positions()

51 reset_kinematics()

52 m_Player1Score += 1

53 g_MetaGameEvents.emit_signal("EventGoal", k_Player1)

54 elif (ballPosition.y < 0):

240 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

55 reset_positions()

56 reset_kinematics()

57 m_Player2Score += 1

58 g_MetaGameEvents.emit_signal("EventGoal", k_Player2)

Note – This snippet shows how a logic subsystem processes and updates its entities. Whenever a rule
occurs, it dispatches an event to signal its occurrence.

The sixth step is creating IO subsystems29. For input, each paddle receive an input
component. An HumanInputComponent is attached to the paddle entity of human players,
whilst paddles controlled by AI-agent receive an AIInputComponent. Input subsystems
handle those entities, either receiving input from a device of the user and converting
it to a game command (assuming it handles the HumanInputComponent), or running
an algorithm to provide the game command. Listing 8 illustrates these possibilities: in
both cases, the input subsystem does not (and must not) modify logic data. Although
the AI-agent, for instance, may access entities relevant data (such as positions from
TransformableComponent) to perform suitable calculations, it must not modify them.
The logic subsystem in Listing 7 will modify the data of the entities to reflect the request
movement on its next update.

Listing 8 – Game command.

1 # From Human-Input Subsystem:

2 func human_input():

3 var metaGame = get_node("/root/MetaGame")

4 if (metaGame.get_node("Player1").has_node("HumanInput")):

5 if (Input.is_action_pressed("player1_move_left")):

6 g_MetaGameEvents.emit_signal("EventMovePaddle",

metaGame.k_Player1, metaGame.k_PlayerMovementLeft)↪→

7 if (Input.is_action_pressed("player1_move_right")):

8 g_MetaGameEvents.emit_signal("EventMovePaddle",

metaGame.k_Player1, metaGame.k_PlayerMovementRight)↪→

9

10 if (metaGame.get_node("Player2").has_node("HumanInput")):

11 if (Input.is_action_pressed("player2_move_left")):

12 g_MetaGameEvents.emit_signal("EventMovePaddle",

metaGame.k_Player2, metaGame.k_PlayerMovementLeft)↪→

13 if (Input.is_action_pressed("player2_move_right")):

29 As Pong® is a simple game, the description could separate each subsystems implementation in order –
logic, input, and output. In real world scenarios, this would not be the case. However, this is not an
issue: provided each subsystems respects their definitions, the separation is ensured.

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 241

14 g_MetaGameEvents.emit_signal("EventMovePaddle",

metaGame.k_Player2, metaGame.k_PlayerMovementRight)↪→

15

16 # From AI-Input Subsystem:

17 func ai_input():

18 var metaGame = get_node("/root/MetaGame")

19 var ballPosition = metaGame.get_node("Ball/Transformable").get_pos()

20

21 if (metaGame.get_node("Player1").has_node("AIInput")):

22 var player1Size =

Vector2(metaGame.get_node("Player1/Collidable").m_Width,

metaGame.get_node("Player1/Collidable").m_Height)

↪→

↪→

23 var player1Position =

metaGame.get_node("Player1/Transformable").get_pos()↪→

24

25 var player1MoveDirection = Vector2(0.0, 0.0)

26 if (metaGame.m_BallDirection.y < 0.0):

27 player1MoveDirection = player1Position - ballPosition

28 if (player1MoveDirection.x > 0.0):

29 g_MetaGameEvents.emit_signal("EventMovePaddle",

metaGame.k_Player1, metaGame.k_PlayerMovementLeft)↪→

30 elif (player1MoveDirection.x < 0.0):

31 g_MetaGameEvents.emit_signal("EventMovePaddle",

metaGame.k_Player1, metaGame.k_PlayerMovementRight)↪→

32

33 if (metaGame.get_node("Player2").has_node("AIInput")):

34 var player2Size =

Vector2(metaGame.get_node("Player2/Collidable").m_Width,

metaGame.get_node("Player2/Collidable").m_Height)

↪→

↪→

35 var player2Position =

metaGame.get_node("Player2/Transformable").get_pos()↪→

36

37 var player2MoveDirection = Vector2(0.0, 0.0)

38 if (metaGame.m_BallDirection.y > 0.0):

39 player2MoveDirection = player2Position - ballPosition

40 if (player2MoveDirection.x > 0.0):

41 g_MetaGameEvents.emit_signal("EventMovePaddle",

metaGame.k_Player2, metaGame.k_PlayerMovementLeft)↪→

42 elif (player2MoveDirection.x < 0.0):

242 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

43 g_MetaGameEvents.emit_signal("EventMovePaddle",

metaGame.k_Player2, metaGame.k_PlayerMovementRight)↪→

44

45

46 # From the Meta-Game Logic:

47 func on_event_move_paddle(playerIndex, directionIndex):

48 if (playerIndex == k_Player1):

49 if (directionIndex == k_PlayerMovementLeft):

50 m_bPlayer1MoveLeft = true

51 else:

52 m_bPlayer1MoveRight = true

53 elif (playerIndex == k_Player2):

54 if (directionIndex == k_PlayerMovementLeft):

55 m_bPlayer2MoveLeft = true

56 else:

57 m_bPlayer2MoveRight = true

58

59

60 # From the Meta-Game Logic:

61 func _process(delta):

62 # Process game commands.

63 if (m_bPlayer1MoveLeft):

64 get_node("Player1/Transformable").translate(delta *

-k_PaddleSpeed)↪→

65 g_MetaGameEvents.emit_signal("EventPaddleMoved", k_Player1,

k_PlayerMovementLeft)↪→

66 if (m_bPlayer1MoveRight):

67 get_node("Player1/Transformable").translate(delta *

k_PaddleSpeed)↪→

68 g_MetaGameEvents.emit_signal("EventPaddleMoved", k_Player1,

k_PlayerMovementRight)↪→

69 if (m_bPlayer2MoveLeft):

70 get_node("Player2/Transformable").translate(delta *

-k_PaddleSpeed)↪→

71 g_MetaGameEvents.emit_signal("EventPaddleMoved", k_Player2,

k_PlayerMovementLeft)↪→

72 if (m_bPlayer2MoveRight):

73 get_node("Player2/Transformable").translate(delta *

k_PaddleSpeed)↪→

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 243

74 g_MetaGameEvents.emit_signal("EventPaddleMoved", k_Player2,

k_PlayerMovementRight)↪→

75 m_bPlayer1MoveLeft = false

76 m_bPlayer1MoveRight = false

77 m_bPlayer2MoveLeft = false

78 m_bPlayer2MoveRight = false

79

80 # Logic subsystem continues here...

Note – Whenever an input subsystem detects an input (either from a Human- or an AI-agent), it triggers
a game command.

For output, the engine uses the sprite stored in the DrawableComponent alongside
its world position stored in the TransformableComponent to draw each entity to the
screen. Logic-wise, this does not change any game data: it only conveys a representation
of the current internal data of the game world in sensory ways.

Adding IO completes the first version of the game. The seventh step is extracting
the Meta-Game from the created Game. As logic implementation does not process
any input or output (it only reacts to game commands), obtaining the Meta-Game
from the current implementation is straightforward: the only requirement is striping IO
components and event handlers from the Game. Thus, resulting abstract entities are30:

• Apaddle is a set of {TransformableComponent, CollidableComponent, KinematicComponent,
AIInputComponent}31.

• Aball is a set of {TransformableComponent, CollidableComponent, KinematicComponent}.

• The field is a set of {TransformableComponent, CollidableComponent}.

Data-Driven Customization: Interaction Profiles

If we explore Factory-related patterns together with the DDA, stripping IO from
the Game becomes a trivial operation. Developers would be able to perform this oper-
ation without code. This is one benefit of using an Interaction Profile: as it describes
necessary IO elements to aggregate into the game, changing IO elements implies in
30 At this point, there are two options for paddles controlled by humans: leave it without an input

component (it does not play anymore), or create and attach an AIInputComponent which an input
subsystem handles to generate EventMovePaddle commands. At this moment, instead of discussing
the AI counterpart, let us move to new iterations of development to enable new audiences to play. The
reason for this is that we could use a variation of the AIInputComponent as an aid to enable people
with motor impairments to play (Section B.10.5).

31 The AIInputComponent allows an AI-agent to “play” the Meta-Game – an “AI-interactive” game.
Omitting it would result into a non-interactive simulation.

244 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

adding/removing entries from the Profile. Listing 9 (Figure 26c) and Listing 10 (Fig-
ure 26a) show this possibility: the differences between them refer exclusively to IO
components, event handlers, and subsystems32. Combinations of these elements change
how one interacts with a Game, both for input and for output. Listing 11 applies or
removes the specializations defined in an Interaction Profile to/from the Meta-Game.

Listing 9 – Interaction Profile for the usual version of the Game.

1 {

2 "InteractionProfile": {

3 "Scenes": {

4 "PingPong": {

5 "InputMapping": {

6 "player1_move_left": ["Keyboard", "A"],

7 "player1_move_right": ["Keyboard", "D"],

8 "player2_move_left": ["Keyboard", "LEFT"],

9 "player2_move_right": ["Keyboard", "RIGHT"]

10 },

11 "EventSpecialization": {

12 },

13 "ComponentSpecialization": {

14 "Field": [

15 "res://scenes/game/entities/drawable_field.tscn"

16],

17 "Ball": [

18 "res://scenes/game/entities/drawable_ball.tscn"

19],

20 "Player1": [

21 "res://scenes/game/entities/drawable_player1.tsc c
n",↪→

22 "res://scenes/game/components/human_input_compon c
ent.tscn"↪→

23],

24 "Player2": [

25 "res://scenes/game/entities/drawable_player2.tsc c
n",↪→

26 "res://scenes/game/components/human_input_compon c
ent.tscn"↪→

32 In this section, Interaction Profiles use JSON instead of XML (Listing 1), as Godot provides high-level
functionalities to parse JSON into its dictionary data structures. For a more concise resource, the
Profiles used in this section only contains fields used to tailor the Meta-Game in the prototype.

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 245

27],

28 },

29 "InputSubsystemSpecialization": {

30 "human_input":

"res://scenes/game/subsystems/human_input.tscn"↪→

31 },

32 "OutputSubsystemSpecialization": {

33 "graphical_output": "res://scenes/game/subsystems/gr c
aphical_output.tscn"↪→

34 }

35 }

36 }

37 }

38 }

Note – The regular version of the game is the first product of the implementation. This Profile allows two
human users to play the Game.

Listing 10 – Interaction Profile for the Meta-Game.

1 {

2 "InteractionProfile": {

3 "Scenes": {

4 "PingPong": {

5 "InputMapping": {

6 },

7 "EventSpecialization": {

8 },

9 "ComponentSpecialization": {

10 },

11 "InputSubsystemSpecialization": {

12 },

13 "OutputSubsystemSpecialization": {

14 }

15 }

16 }

17 }

18 }

246 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

Note – Assuming the use of a Factory pattern to aggregate IO elements to the Meta-Game, obtaining the
Meta-Game is simply removing these components from the resulting Game. With this Profile,
although the simulation is still running, human users are unable to perceive it (as there is no
output) and to interact with it (as there is no input).

Listing 11 – High-level tailoring algorithm.

1 func tailor_to_profile(interactionProfile, sceneName):

2 if (m_bTailored):

3 untailor_to_profile(interactionProfile, sceneName)

4

5 # Input mapping.

6 tailor_input_mapping(interactionProfile, sceneName)

7

8 # Register event handlers.

9 tailor_event_handlers(interactionProfile, sceneName)

10

11 # Tailor existing entities.

12 tailor_entities(interactionProfile, sceneName)

13

14 # Add input and output subsystems.

15 tailor_input_subsystems(interactionProfile, sceneName)

16 tailor_output_subsystems(interactionProfile, sceneName)

17

18 m_bTailored = true

19

20

21 func untailor_to_profile(interactionProfile, sceneName):

22 if (not m_bTailored):

23 return

24

25 # Remove input mapping.

26 untailor_input_mapping(interactionProfile, sceneName)

27

28 # Remove event handlers.

29 untailor_event_handlers(interactionProfile, sceneName)

30

31 # Untailor existing entities.

32 untailor_entities(interactionProfile, sceneName)

33

34 # Remove input and output subsystems.

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 247

35 untailor_input_subsystems(interactionProfile, sceneName)

36 untailor_output_subsystems(interactionProfile, sceneName)

37

38 m_bTailored = false

Note – This algorithm applies or remove the Interaction Profile tailoring to/from the Meta-Game, con-
verting to a Game (or back to a Meta-Game).

B.10.2 Second Iteration: Visual Impairments (Low Vision)

For simplicity, the remainder of this section assumes that the logic implemen-
tation does not change any longer, unless stated otherwise33. This way, the following
subsections will include accessible functionalities for different interaction needs, based
on high and low-level strategies defined by Yuan, Folmer & Harris (2011) as possible
modifications. For brevity, we omit discussions about the strategies themselves, as our
focus is showing how this approach of this chapter enables adding/removing IO to
tailor the application.

Yuan, Folmer & Harris (2011) cite enhancing the output stimuli to aid users with
low vision. For this, low-level strategies include accessible color schemes, zoom options,
and font size – all output-related functionalities. Developers should, therefore, define
new output elements: that is, they should create new (or improve existing) output
components, event handlers, and subsystems to improve the solution.

As new functionalities can be presented continuously, one approach would be to
extend image and text components with a scale value and the new font properties to
their existing data. This would redefine the following:

DrawableComponent stores a sprite (2D image), with a scaling value, to draw.

WritableComponent stores a string to write, alongside with a font typeface, and a size.

DrawingSubsystem draws entities with DrawableComponents to the screen. It reads posi-
tion data froma TransformableComponent and graphical data froma DrawableComponent
to draw a scaled image to the screen.

TextSubsystem draws entities with WritableComponents to the screen. It reads the text
from the string stored in the component, and draws it to the screen with the size
and typeface stored in the component.

33 In other words, this assumes the Meta-Game was fully implemented in the first version. It would not
be a problem if it changed, however. In this case, it would be necessary to add new functionalities and
update the Interaction Profile with those inclusions, promoting iterative development.

248 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

For the remainder of the implementation, it is possible to fully reuse existing
logic and input functionalities of G1, and, possibly, some output functionalities (at least
partially). After a second iteration, this would result in:

G2 = {C2
Game, V2

Game, R2
Game, S2

Game, A2
Game, E2

Game, H2
Game, P2} (B.34)

With:

C2L

Game = C1L

Game = CMeta,

C2I

Game = C1I

Game

C2O

Game ⊇ C1O

Game,

V2
Game = V1

Game = VMeta

R2
Game = R1

Game = RMeta

S2L

Game = S1L

Game = SL
Meta,

S2I

Game = S1I

Game

S2O

Game ⊇ S1O

Game,

A2
Game = A1

Game = AMeta

E2
Game ⊇ E1

Game, E2
Game ∩ E1

Game = EMeta

H2
Game ⊇ H1

Game

P2 6= P1

(B.35)

It is possible to make the same comparisons for any new Profile. It is important to
note that the logical implementation does not change. Developers create and implement
new accessibility functionalities for game interaction, adding them to the system, and
updating Interaction Profiles to apply new IO to the Meta-Game. For this first case, We
could achieve an accessible version of the game for users with low vision. However,
improvements are not restricted to them. Previously included users may modify the
original Profile to benefit from scaling (for instance, better display in higher resolution
screens) and text customization (size and typeface) improvements. After implementing
new IO functionalities, adding them to an Interaction Profile is enough to merge them
into a Game34.

The Second Iteration of Ping-Pong: Adding Zoom

Zoom options are a possible example of functionality for enhancing output
stimuli. In game programming, one approach to implement zooming is using a camera.
Godot offers a camera node which can be aggregated to an entity, acting as component.
34 That is, assuming they are not incompatible with each other.

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 249

We explore it in this example to provide a “Zooming Output Subsystem” (Listing 12),
including it into the existing Profile from Listing 9 to aggregate to it basic scaling
(Listing 13, resulting into Figure 26d).

Listing 12 – Zooming Output Subsystem.

1 func _process(delta):

2 if (Input.is_action_pressed("zoom_in") or

Input.is_action_pressed("zoom_out")):↪→

3 var camera = self

4 var zoom = get_zoom()

5 if (Input.is_action_pressed("zoom_out")):

6 zoom += Vector2(0.25, 0.25)

7 if (Input.is_action_pressed("zoom_in")):

8 zoom -= Vector2(0.25, 0.25)

9 if (zoom.x <= 0.0):

10 zoom.x = 0.25

11 zoom.y = 0.25

12 set_zoom(zoom)

13

14 var metaGame = get_node("/root/MetaGame")

15 var fieldPosition =

metaGame.get_node("Field/Transformable").get_pos()↪→

16 var fieldSize = metaGame.get_node("Field/Collidable")

17 set_pos(fieldPosition + 0.5 * Vector2(fieldSize.m_Width,

fieldSize.m_Height))↪→

Note – Using a camera is an easy way to implement graphical stimuli enhancing to games. As every
output subsystem, this listing does not modify data from logic elements – it only reads from them
to acquire relevant data to achieve its goal. In this case, it uses the position and size of the field to
center the camera into the center of the field.

Listing 13 – Interaction Profile with graphical enhancement.

1 {

2 "InteractionProfile": {

3 "Scenes": {

4 "PingPong": {

5 "InputMapping": {

6 "player1_move_left": ["Keyboard", "A"],

7 "player1_move_right": ["Keyboard", "D"],

8 "player2_move_left": ["Keyboard", "LEFT"],

250 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

9 "player2_move_right": ["Keyboard", "RIGHT"]

10 },

11 "EventSpecialization": {

12 },

13 "ComponentSpecialization": {

14 "Field": [

15 "res://scenes/game/entities/drawable_field.tscn"

16],

17 "Ball": [

18 "res://scenes/game/entities/drawable_ball.tscn"

19],

20 "Player1": [

21 "res://scenes/game/entities/drawable_player1.tsc c
n",↪→

22 "res://scenes/game/components/human_input_compon c
ent.tscn"↪→

23],

24 "Player2": [

25 "res://scenes/game/entities/drawable_player2.tsc c
n",↪→

26 "res://scenes/game/components/human_input_compon c
ent.tscn"↪→

27],

28 },

29 "InputSubsystemSpecialization": {

30 "human_input":

"res://scenes/game/subsystems/human_input.tscn"↪→

31 },

32 "OutputSubsystemSpecialization": {

33 "graphical_output": "res://scenes/game/subsystems/gr c
aphical_output.tscn",↪→

34 "camera_output":

"res://scenes/game/subsystems/camera_output.tscn"↪→

35 }

36 }

37 }

38 }

39 }

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 251

Note – Comparing this Profile to Listing 9, the only difference was the inclusion of the Zooming Output
Subsystem, by means of instancing the “camera_output”.

The functionality could be refined, for instance, including multiple zoomed view
ports of the Game (Figure 26e).

B.10.3 Third Iteration: Visual Impairments (Blindness)

To improve the game for blind users, Yuan, Folmer & Harris (2011) highlight
strategies focusing on stimuli replacement. The current application only supports basic
visual stimuli. To further improve it, we could create audio stimuli by defining new
output components and subsystems aiming for stimuli replacement. The overall strategy
is similar to the one outlined in the previous subsection. Component-wise, developers
could, for instance, add cue to the AudibleComponent, improve sonification in existing
output subsystems, or define multiple subsystems, exploring different technologies or
approaches:

AudibleComponent stores a stereo sound for binaural playback.

BinauralAudioSubsystem playbacks entities with AudibleComponents, exploring bin-
aural sounds for depth and position. It fetches sounds to reproduce from the
AudibleComponent and the position from the TransformableComponent.

HRTFAudioSubsystem playbacks entities with AudibleComponents, exploring binaural
sounds for depth andposition. It fetches sounds to reproduce from the AudibleComponent
and the position from the TransformableComponent; it calculates head-related
transfer functions (HRTF) from the TransformableComponent of the human-agent
to provide spatial positioning.

Event-wise, however, they could define new output event handlers as well. As
there are already events in the game-logic, developers would implement new handlers
to provide audio cues to suitable occasions, registering them for events corresponding
to the occasions. The same approach could be explored for haptic cues, to provide
haptic/tactile feedback.

When defining new handlers, developers may notice important events they had
not considered before: in this case, they could define new events, and create/register
event handlers for them. These new events are not important to the Meta-Game: they
are related to human interaction with Games. Thus, the game logic may dispatch the
events to enable interaction improvements – that is, these events are provided to allow
IO event handlers to improve the feedback and overall aesthetics of the Game. Once
again, this may benefit other users: perhaps with better sound playback and quality,
perhaps with better audio cues or haptic feedback.

252 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

The Third Iteration of Ping-Pong: Adding Sound Effects

To illustrate a new approach, this section adds sound effects as output event
handlers (Listing 14). The goal is twofold – providing flexibility to enable/disable sound
effects to play for events using the Interaction Profile (Listing 15), and to show an output
subsystem may register output event handlers to itself (Listing 16).

Listing 14 – Event handlers providing sound effects.

1 func on_event_ball_released_audio():

2 g_SceneManager.get_user_interface_overlay().play_sound_effect(k_Star c
t)↪→

3

4

5 func on_event_goal_audio(playerIndex):

6 g_SceneManager.get_user_interface_overlay().play_sound_effect(k_Goal)

7

8

9 func on_event_ball_hit_wall_audio(wallIndex, position):

10 g_SceneManager.get_user_interface_overlay().play_sound_effect(k_Ping c
PongWall)↪→

11

12

13 func on_event_ball_hit_paddle_audio(playerIndex, position):

14 g_SceneManager.get_user_interface_overlay().play_sound_effect(k_Ping c
PongPaddle)↪→

15

16

17 func on_event_ball_moved_audio(directionVector):

18 g_SceneManager.get_user_interface_overlay().play_sound_effect(k_Ball)

Note – For simplicity, these handlers play a sound when triggered by an event.

Listing 15 – Interaction Profile with graphical enhancement.

1 {

2 "InteractionProfile": {

3 "Scenes": {

4 "PingPong": {

5 "InputMapping": {

6 "player1_move_left": ["Keyboard", "A"],

7 "player1_move_right": ["Keyboard", "D"],

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 253

8 "player2_move_left": ["Keyboard", "LEFT"],

9 "player2_move_right": ["Keyboard", "RIGHT"]

10 },

11 "EventSpecialization": {

12 "EventBallReleased": [

13 "on_event_ball_released_audio"

14],

15 "EventGoal": [

16 "on_event_goal_audio"

17],

18 "EventBallHitWall": [

19 "on_event_ball_hit_wall_audio"

20],

21 "EventBallHitPaddle": [

22 "on_event_ball_hit_paddle_audio"

23],

24 "EventBallMoved": [

25 "on_event_ball_moved_audio"

26],

27 "EventPaddleMoved": [

28]

29 },

30 "ComponentSpecialization": {

31 "Field": [

32 "res://scenes/game/entities/drawable_field.tscn"

33],

34 "Ball": [

35 "res://scenes/game/entities/drawable_ball.tscn"

36],

37 "Player1": [

38 "res://scenes/game/entities/drawable_player1.tsc c
n",↪→

39 "res://scenes/game/components/human_input_compon c
ent.tscn"↪→

40],

41 "Player2": [

42 "res://scenes/game/entities/drawable_player2.tsc c
n",↪→

254 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

43 "res://scenes/Meta-Game/components/ai_input_comp c
onent.tscn"↪→

44],

45 },

46 "InputSubsystemSpecialization": {

47 "ai_input": "res://scenes/Meta-Game/subsystems/ai_in c
put.tscn",↪→

48 "human_input":

"res://scenes/game/subsystems/human_input.tscn"↪→

49 },

50 "OutputSubsystemSpecialization": {

51 "graphical_output": "res://scenes/game/subsystems/gr c
aphical_output.tscn"↪→

52 }

53 }

54 }

55 }

56 }

Note – Starting from the Profile of Listing 9, this listing adds the name of desired event handlers to
play sound effects when an event happens. For instance, when the Meta-Game triggers the event
EventBallReleased, the game will dispatch the event handler on_event_ball_released_audio.

Listing 16 – Subsystem for sound effects.

1 func _ready():

2 # Register event handlers.

3 g_MetaGameEvents.connect("EventBallReleased", g_EventHandlers,

"on_event_ball_released_audio")↪→

4 g_MetaGameEvents.connect("EventGoal", g_EventHandlers,

"on_event_goal_audio")↪→

5 g_MetaGameEvents.connect("EventBallHitWall", g_EventHandlers,

"on_event_ball_hit_wall_audio")↪→

6 g_MetaGameEvents.connect("EventBallHitPaddle", g_EventHandlers,

"on_event_ball_hit_paddle_audio")↪→

7 g_MetaGameEvents.connect("EventBallMoved", g_EventHandlers,

"on_event_ball_moved_audio")↪→

Note – This output subsystem registers event handlers to play sound effects when an event happens.
Registering it to an Interaction Profile would be similar to adding zoom in Listing 13.

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 255

B.10.4 Fourth Iteration: Hearing Impairment

For hearing impairment, Yuan, Folmer & Harris (2011) comment that strate-
gies involve stimuli replacement. This time, however, one possibility is converting au-
dio into visual media. We may improve the text component and create a derivative
CaptionableComponent with a SubtitleSystem. Another approach include exploring
event handlers to create onomatopoeia, or graphical effects and animations.

Once again, benefits are not restricted to hearing impaired users. For instance,
subtitles may aid foreign users to play, if there is no option for their native language.
Graphical effects, on the other hand, may improve the playing experience to sighted
users, providing further feedback to the Game.

The Fourth Iteration of Ping-Pong: Adding Graphical Effects

As, currently, Ping-Pong does not have voice-over for subtitles, this section adds
graphical and animations to convert sound effects into graphical stimuli. Graphical
effects implementation resembles sound effects as both provide instantly feedback for
when something important happens. Thus, as discussed in Subsection B.9.2, creating
output event handlers workwell for them. For brevity, we omit the implementation of the
handlers and have added them to an output subsystem (“graphical_output”), showing
only changes in the new Interaction Profile (Listing 17, resulting into (Figure 26f)). As
with sound effects, for more granularity, event handlers for graphical effects could be
globally available to allow an Interaction Profile to enable/disable it individually.

Listing 17 – Interaction Profile with graphical effects.

1 {

2 "InteractionProfile": {

3 "Scenes": {

4 "PingPong": {

5 "InputMapping": {

6 "player1_move_left": ["Keyboard", "A"],

7 "player1_move_right": ["Keyboard", "D"],

8 "player2_move_left": ["Keyboard", "LEFT"],

9 "player2_move_right": ["Keyboard", "RIGHT"]

10 },

11 "EventSpecialization": {

12 },

13 "ComponentSpecialization": {

14 "Field": [

15 "res://scenes/game/entities/drawable_field.tscn"

256 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

16],

17 "Ball": [

18 "res://scenes/game/entities/drawable_ball.tscn"

19],

20 "Player1": [

21 "res://scenes/game/entities/drawable_player1.tsc c
n",↪→

22 "res://scenes/game/components/human_input_compon c
ent.tscn"↪→

23],

24 "Player2": [

25 "res://scenes/game/entities/drawable_player2.tsc c
n",↪→

26 "res://scenes/Meta-Game/components/human_input_c c
omponent.tscn"↪→

27],

28 },

29 "InputSubsystemSpecialization": {

30 "human_input":

"res://scenes/game/subsystems/human_input.tscn"↪→

31 },

32 "OutputSubsystemSpecialization": {

33 "graphical_output": "res://scenes/game/subsystems/gr c
aphical_output.tscn",↪→

34 "graphical_effect_output": "res://scenes/game/subsys c
tems/graphical_effect_output.tscn"↪→

35 }

36 }

37 }

38 }

39 }

Note – Starting from the Profile of Listing 9, this listing adds graphical effects to specialize the Meta-Game
using a subsystem. To combine graphical effects with sound effects, we could add event handlers
(or the subsystem) from Listing 15 to create a new Profile with both sound and graphical effects.

B.10.5 Fifth Iteration: Motor Impairment

When we consider motor impairment, the focus of accessibility functionalities
change from output to input. Yuan, Folmer &Harris (2011) provide two high-level strate-

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 257

gies for motor impairments: input reduction and input replacement. Input replacement
requires the creation of new input components, event handlers, and subsystems.

Input reduction, on the other hand, is greatly simplified from the choice of using
events to implement semantic game commands. To automate parts of the interaction,
developers define input components and subsystems to send game commands on behalf
of the user. This effectively implements input reduction – AI-agents perform part of what
the human-agent would to aid her/him. This can further help users who use assistive
technologies – the AI-agents may become like the user’s co-pilot.

Developers may go further, offering input queues to allow users to create their
own input macros. With this approach, a macro can be a queue of game commands,
with a specific time in between triggering them.

Lastly, it is possible to simulate the scanning technique with a combination of
components, events and event handlers. We could create OrdenableComponent to assign
order to components. Next, Previous, Select events allow cycling between adjacent
entities, and to select the desired one. Cycling can be manual or automated; the latter
uses the same idea of the AI-agent: a subsystem send a Next or Previous event at regular
time intervals, allowing the Game to cycle the options.

The Fifth Iteration of Ping-Pong: Automating User Input

Every listing up to this point defined Ping-Pong Games with two human users
instead of one human-agent and oneAI-agent (or even twoAI-agents). Input automation
address this shortcoming, provide both a non-human opponent and an accessibility
functionality for motor impairment. Listing 8 provided the implementation for the core
of the AI-Input Subsystem in function ai_input(). However, as all agents use game
commands to provide input to the Meta-Game, human-agents may also benefit from it
to acquire full or partial input automation. Listing 18 illustrates an Interaction Profile
for both cases into a single one. “Player1” is a human-agent, meaning a human user
control the paddle. “Player2”, in the other hand, has both an HumanInputComponent

and an AIInputComponent, meaning that a human-agent and an AI-agent are able to
control it35.

Listing 18 – Interaction Profile with graphical effects.

1 {

2 "InteractionProfile": {

3 "Scenes": {

4 "PingPong": {

5 "InputMapping": {

35 For an AI-Agent, we could remove the HumanInputComponent from “Player2”.

258 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

6 "player1_move_left": ["Keyboard", "A"],

7 "player1_move_right": ["Keyboard", "D"],

8 "player2_move_left": ["Keyboard", "LEFT"],

9 "player2_move_right": ["Keyboard", "RIGHT"]

10 },

11 "EventSpecialization": {

12 },

13 "ComponentSpecialization": {

14 "Field": [

15 "res://scenes/game/entities/drawable_field.tscn"

16],

17 "Ball": [

18 "res://scenes/game/entities/drawable_ball.tscn"

19],

20 "Player1": [

21 "res://scenes/game/entities/drawable_player1.tsc c
n",↪→

22 "res://scenes/game/components/human_input_compon c
ent.tscn"↪→

23],

24 "Player2": [

25 "res://scenes/game/entities/drawable_player2.tsc c
n",↪→

26 "res://scenes/Meta-Game/components/ai_input_comp c
onent.tscn",↪→

27 "res://scenes/game/components/human_input_compon c
ent.tscn"↪→

28],

29 },

30 "InputSubsystemSpecialization": {

31 "ai_input": "res://scenes/Meta-Game/subsystems/ai_in c
put.tscn",↪→

32 "human_input":

"res://scenes/game/subsystems/human_input.tscn"↪→

33 },

34 "OutputSubsystemSpecialization": {

35 "graphical_output": "res://scenes/game/subsystems/gr c
aphical_output.tscn"↪→

36 }

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 259

37 }

38 }

39 }

40 }

Note – Input reduction with the approach explores game commands and AI-agents to partially or fully
automate human interaction with the Meta-Game.

Due to the current implementation from Listing 8, the AI-agent is able to fully
automate interaction of the user. For Ping-Pong, the one option for input reduction
would be letting the AI-agent move the paddle into a single direction (left, for instance),
leaving the user with the other one (right, for the previous case). A second option would
be using a timer, letting the AI-agent provide input for the user only after a pre-defined
time without interaction had elapsed.

B.10.6 Cognitive Impairment: Parameterizing the Meta-Game

At this point, the remaining high-level strategies from Yuan, Folmer & Harris
(2011) regard cognitive impairments. Input reduction is the same strategy aimed at
motor impairments. Stimuli reduction, and time constraints’ reduction, on the other
hand, are more related to game design (as they relate to game logic). It is possible to
partially satisfy them with parameterization; in this case, it could be useful to include
values of the parameters in the Interaction Profile. This could lead to derived simpler
versions of the Meta-Game.

However, modifying the logic would modify the Meta-Game directly, which
would go against the goal of this chapter (tailor IO) and could cause confusion. Therefore,
we avoid it here36.

B.10.7 Sixth Iteration: A Simple Head-Up Display

Although the previous iterations all focused on how to convey game information
and provide interaction to entities, subsystems may have important data that developers
might want to provide to users. For graphical games, one popular approach is using
head-up displays. For aural games, an alternative is providing an “on request” auditory
interface – use a game command to request speech information.

In this chapter, we provide an example of graphical head-up display using an
36 An alternative to address this situation would be using the elapsed time as a parameter to the Meta-

Game via a command. In this way, we would be able to arbitrarily slow down and/or pause/resume
the Meta-Game simulation.

260 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

output subsystem in Listing 1937. As with any IO subsystem, an Interaction Profile may
add the head-up display into a Game (Listing 20, which results into Figure 26g).

Listing 19 – Simple Head-Up Display.

1 # Time elapsed since this interface was created.

2 var m_TimeElapsed = null

3

4

5 func _ready():

6 set_process(true)

7

8 on_event_goal_score_text_output(-1)

9

10 # Register event handlers.

11 g_MetaGameEvents.connect("EventGoal", self,

"on_event_goal_score_text_output")↪→

12

13

14 func _process(delta):

15 m_TimeElapsed += delta

16 update_score()

17

18

19 func update_score():

20 var metaGame = get_node("/root/MetaGame")

21 get_node("RoundTime").set_text("Round time: %.02fs" % m_TimeElapsed)

22

23

24 func on_event_goal_score_text_output(playerIndex):

25 var metaGame = get_node("/root/MetaGame")

26 get_node("Player1Score").set_text("Player 1: %d" %

metaGame.m_Player1Score)↪→

27 get_node("Player2Score").set_text("Player 2: %d" %

metaGame.m_Player2Score)↪→

28

29 m_TimeElapsed = 0.0

37 The prototype has a second one, proving text description for the last event of interest that happened in
the game. It is called “text_output”, and appears in the Profile of Listing 21.

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 261

Note – An output subsystem to display the score stored in the Meta-Game into the screen, and the time
elapsed since the head-up display subsystem was created.

Listing 20 – Usual version of the game with head-up display.

1 {

2 "InteractionProfile": {

3 "Scenes": {

4 "PingPong": {

5 "InputMapping": {

6 "player1_move_left": ["Keyboard", "A"],

7 "player1_move_right": ["Keyboard", "D"],

8 "player2_move_left": ["Keyboard", "LEFT"],

9 "player2_move_right": ["Keyboard", "RIGHT"]

10 },

11 "EventSpecialization": {

12 },

13 "ComponentSpecialization": {

14 "Field": [

15 "res://scenes/game/entities/drawable_field.tscn"

16],

17 "Ball": [

18 "res://scenes/game/entities/drawable_ball.tscn"

19],

20 "Player1": [

21 "res://scenes/game/entities/drawable_player1.tsc c
n",↪→

22 "res://scenes/game/components/human_input_compon c
ent.tscn"↪→

23],

24 "Player2": [

25 "res://scenes/game/entities/drawable_player2.tsc c
n",↪→

26 "res://scenes/game/components/human_input_compon c
ent.tscn"↪→

27],

28 },

29 "InputSubsystemSpecialization": {

30 "human_input":

"res://scenes/game/subsystems/human_input.tscn"↪→

262 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

31 },

32 "OutputSubsystemSpecialization": {

33 "graphical_output": "res://scenes/game/subsystems/gr c
aphical_output.tscn",↪→

34 "score_text_output": "res://scenes/game/subsystems/s c
core_text_output.tscn"↪→

35 }

36 }

37 }

38 }

39 }

Note – Creating (non-gaming) user interfaces for the Meta-Game follows the same principles of the
general approach.

B.10.8 Seventh Iteration: Combining All Profiles into One

IO specialization do not modify the Meta-Game. The logic implementation of the
game is not affected bywhom is interactingwith it, nor for whom the output is conveying
stimuli to represent it. Thus, we can combine IO specializations as “unit functionalities”
to improve the accessibility of the game. Listing 21 provides an example grouping all
specializations from the previous subsections into a single Interaction Profile (illustrated
in Figure 26h). The resulting Games, thus, have sound and graphical effects, zooming,
input reduction, and game information from the head-up display.

Listing 21 – A game with sound and graphical effects, zoom, input reduction, and a
head-up display.

1 {

2 "InteractionProfile": {

3 "Scenes": {

4 "PingPong": {

5 "InputMapping": {

6 "player1_move_left": ["Keyboard", "A"],

7 "player1_move_right": ["Keyboard", "D"],

8 "player2_move_left": ["Keyboard", "LEFT"],

9 "player2_move_right": ["Keyboard", "RIGHT"]

10 },

11 "EventSpecialization": {

12 "EventBallReleased": [

13 "on_event_ball_released_audio"

B.10. The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access 263

14],

15 "EventGoal": [

16 "on_event_goal_audio"

17],

18 "EventBallHitWall": [

19 "on_event_ball_hit_wall_audio"

20],

21 "EventBallHitPaddle": [

22 "on_event_ball_hit_paddle_audio"

23],

24 "EventBallMoved": [

25 "on_event_ball_moved_audio"

26],

27 "EventPaddleMoved": [

28 "on_event_paddle_moved_audio"

29]

30 },

31 "ComponentSpecialization": {

32 "Field": [

33 "res://scenes/game/entities/drawable_field.tscn"

34],

35 "Ball": [

36 "res://scenes/game/entities/drawable_ball.tscn"

37],

38 "Player1": [

39 "res://scenes/game/entities/drawable_player1.tsc c
n",↪→

40 "res://scenes/Meta-Game/components/ai_input_comp c
onent.tscn",↪→

41 "res://scenes/game/components/human_input_compon c
ent.tscn"↪→

42],

43 "Player2": [

44 "res://scenes/game/entities/drawable_player2.tsc c
n",↪→

45 "res://scenes/Meta-Game/components/ai_input_comp c
onent.tscn",↪→

46 "res://scenes/game/components/human_input_compon c
ent.tscn"↪→

264 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

47],

48 },

49 "InputSubsystemSpecialization": {

50 "ai_input": "res://scenes/Meta-Game/subsystems/ai_in c
put.tscn",↪→

51 "human_input":

"res://scenes/game/subsystems/human_input.tscn"↪→

52 },

53 "OutputSubsystemSpecialization": {

54 "text_output":

"res://scenes/game/subsystems/text_output.tscn",↪→

55 "audio_output":

"res://scenes/game/subsystems/audio_output.tscn",↪→

56 "graphical_output": "res://scenes/game/subsystems/gr c
aphical_output.tscn",↪→

57 "graphical_effect_output": "res://scenes/game/subsys c
tems/graphical_effect_output.tscn",↪→

58 "camera_output": "res://scenes/game/subsystems/camer c
a_output.tscn",↪→

59 "score_text_output": "res://scenes/game/subsystems/s c
core_text_output.tscn"↪→

60 }

61 }

62 }

63 }

64 }

Note – This Profile combines all specialization into a single one. To create other possible Games, one could
remove elements from it.

Although, in this case, all functionalities are compatible, some specializations
might be inherently incompatible with others. For instance, a specialization which
adds music to the game may hinder spatial audio for visual impairment. However,
the possibility to mix and match specialization exists, and users may benefit from
combinations. Extending specializations, thus, may, indirectly, allow combinations to
improve the accessibility for more users.

B.10.9 Further Iterations: User-Level Accessibility?

A new profile can combine any existing IO components and event handlers
defined so far. Accessibility improvements aimed at a specific public tend to benefit

B.11. Discussion and Future Work 265

users without the disabilities of the original public as well. This chapter approach
allows one to combine any existing element and add it to her/his Interaction Profile. It
makes it possible to combine components and event handlers, mixing-and-matching
combinations to define new interaction profiles.

Assuming that there are enough components and event handlers implemented,
can this lead to the construction of an accessible game at the user-level? This is what the
approach aims towards.

B.11 Discussion and Future Work

Although digital systems can be flexible, implementation decisions might impose
predetermined interaction to users. This may work well for some users, but not for
everyone. Everyone is unique. Abilities, capabilities, knowledge, culture, beliefs do vary
according to individuals. These differences reflect on expectations and needs of a person.
This is valid for all aspects of life – digital system interaction included.

Practices such as the Universal Design and tailoring offer a different approach,
trying to include the user and allowing her/him to have a more suitable interaction
according to her/his user needs. The system should adapt itself to suit users needs,
not force the other way around. The implementation should, therefore, allow tailoring
modifications to improve the use experience.

This chapter presented an approach to enable run-time tailorability in digital
games. We called the result as tailorable games. The approach combines a few elements
(entities, components, events, and event handlers) using set operations to decouple the
logical implementation of the game from its interaction. The decoupled implementation
results in a system without user interaction (here named meta-system – or Meta-Game,
in the game domain), on which we can include different input and output interactions
by adding IO-specific elements at run-time. This allows developers to conceive different
interaction models to the Game, effectively enabling the creation of multiple schemes
for physical-level interaction.

One can combine existing input and output elements to define her/his own way
of interacting with the system, by creating an Interaction Profile to convert a user-free
Meta-Game into a (potentially) user-accessible Game. If the desired interactions does
not already exist in the system, developers can create them. As long as it is possible
to convert a new functionality into entities, components, events, and event handlers, it
should be possible to include the functionality on the game at run-time.

Other than decoupling the implementation and providing run-time flexibility,
the described approach has the benefit of promoting software reuse. We may reuse

266 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

existing elements to create new functionalities, or define news ones to extend the original
possibilities. The result is a mutualistic development process, in which improvements
may benefit a wider number of users than originally conceived. By creating accessibility
functionalities, we improve the system for new and old users alike. Every new interac-
tion alternative provides better accessibility and variety and choice for physical level
interactions are functionalities that may enhance the quality for the human interaction.

It is important to note that the presented approach is based on set theory. As
such, we can implement the approach using any programming language which can
implement a set data structure (or a data structure equivalent to sets to enable run-time
manipulation) and has file IO (for the DDA). As we can implement entities, components,
events, and event handlers on software, the approach has low requirements for imple-
mentation. For the prototype that motivated this work – a game engine –, a C++ imple-
mentation was discussed in (GARCIA, 2014), and is available at <https://github.com/
francogarcia/uge>. Two newer prototypes, created with the open-source Godot engine,
are available at <https://gitlab.com/francogarcia/RunTimeTailorability-PingPong> and
at <https://gitlab.com/francogarcia/GamesRunTimeTailorability>. These prototypes
do not change the engine. Rather, they implement the approach described in this chap-
ter in implementation of the games itself, performing the proposed operations during
run-time.

Although the approach used games as an example, it could be extended to other
interactive systems, provided that the implementation followed the same principles.
Games are a class of interactive systems.

Once again, the mutualistic improvements raise a question. Assuming that there
are enough components and event handlers implemented, can this lead to the construc-
tion of an accessible game at the user-level? If it does, the approach described approach
in this chapter provides a step towards the implementation of universally-accessible
digital systems.

It is important to note, however, that the approach has its drawbacks. Computing
always have trade-offs. There are four main issues. First, there is a trade-off between
raw performance versus run-time flexibility. The implementation is dynamic, requiring
memory allocations and manipulation of data structures at run-time. For instance,
entities could have static definitions in conventional systems, allowing for compile time
optimization and, possibly, exploring better memory model. With the approach, they
are created during run-time. A user interacts with a running system, not with the code.
There are possibilities around this problem, although they are not in the scope of this
chapter38.

38 One example is loading compiled dynamic link libraries (DLLs) during run-time, avoiding script-
ing languages and the use of slower strategies (such as polymorphism and reflection). This re-

https://github.com/francogarcia/uge
https://github.com/francogarcia/uge
https://gitlab.com/francogarcia/RunTimeTailorability-PingPong
https://gitlab.com/francogarcia/GamesRunTimeTailorability

B.11. Discussion and Future Work 267

Second, the approach does require deep knowledge of the underlying archi-
tectures and programming concepts. The proposed definitions and theorems explore
fundamentals of the concepts to improve run-time flexibility and customizability39.
The theoretical work and algorithms presented here aims to avoid ambiguities and
reduce required knowledge and programming expertise. Even though, working with
undergraduate students, we found they are not used to think of systems in terms of the
elements of this chapter, which required time and willingness to learn.

Third, the proposed interaction (IO) separation from logic is very systematic and
rigid. The separation makes prototyping slower, as the programmer must consciously
avoid mixing these functionalities. As components, event handlers, and subsystems
process different functionalities (potentially cross-cutting concerns), developers have to
be careful, assuring the correct order for the operations. Besides, although it is possible
to refactor an implementation to achieve it, it requires significant efforts for non-trivial
applications. The result for this trade-off is always having to choose among simple
code, optimizations, and convenience. Prototyping game mechanics and new ideas, in
special, benefit from sloppy code, which the approach discourages. Specialized tools
may aid in this regard (and we are working on one, mentioned at the end of this section).
Functionalities for refactoring and extracting elements are also helpful. The scene model
explored for Godot, for instance, allows developers to extract new components and
entities with ease.

Fourth, the creation of input and output functionalities require design and im-
plementation efforts. This chapter has not discussed design issues, as it focused on the
implementation. The prototype was also more focused on tailoring the IO than pro-
viding truly accessible game experiences. Designing accessible systems is challenging
– the existing Literature is proof. However, provided that we can design an accessible
interaction and decompose it into the elements of this approach, we will be able to
tailor this functionality to the Meta-Game, as we illustrated with the prototypes. The
approach, thus, considers universal access as an iterative, incremental, and mutualistic
approach, including more people when new elements are created or improved. In a
way, it resembles set theory. At first, there is the Meta-Game, which is inaccessible for
all. Considering an empty set of possible users, however, it is universal. Next, there is
the conventional game, which is accessible to users belonging to a normal distribution
of abilities. For this group and for no one, the game is universal. Then, for each new
accessible version, a new public can be introduced to the game. Following this reasoning,

duces the performance penalty to the first library load. For more information on this topic, <http:
//runtimecompiledcplusplus.blogspot.com.br/>, <https://github.com/RuntimeCompiledCPlusPlus/
RuntimeCompiledCPlusPlus>. A second example is exploring Data-Oriented Design within an ECS
implementation.

39 An instance is the use of event handlers themselves, which are registered in a data-driven way. We pro-
vide a self-contained example in <https://github.com/francogarcia/Data-Driven-Event-Handlers>.

http://runtimecompiledcplusplus.blogspot.com.br/
http://runtimecompiledcplusplus.blogspot.com.br/
https://github.com/RuntimeCompiledCPlusPlus/RuntimeCompiledCPlusPlus
https://github.com/RuntimeCompiledCPlusPlus/RuntimeCompiledCPlusPlus
https://github.com/francogarcia/Data-Driven-Event-Handlers

268 APPENDIX B. One (Meta-)Game, Infinite Ways to Play

possibilities for specialization become gradually more accessible.
It is, however, only an initial step towards a greater goal. There are interesting

alternatives in to improve and extend the possibilities. For one example, we are working
on combining the presented approach with end-user development practices. The goal
is to allow users with different (dis)abilities to create and modify games themselves,
improving them to better suit their needs and of their family and friends. To support this
goal, a (meta-)game creation tool is under development as a meta-system, following
the same principles of Meta-Games and Games to provide different IO specializations
for game creation. The creation meta-system provides abstract functionalities to create
game, offering specializations to enable people with different abilities to contribute on
game creation. Instead of games, the tool create Meta-Games and aid specializing them
to Games. This enables people with different (dis)abilities to create games for people
with, potentially, different (dis)abilities. Therefore, it changes creation fromwhat people
are unable to do to what they are able to do: individuals are able to use their knowledge
and abilities to enable more people to play. Combined with a text-based Interaction
Profile and with a sharing network, we intend to allow users to create, improve, and
share their modifications to enable more people to interact with their favorite games.
We have selected two public as case studies, which should start this year and provide
feedback to improve this approach.

269

APPENDIX C

Real-Time Tailorable Games:
Advancements in Run-Time Tailorability

C.1 Introduction

This appendix complement the Appendix B, with our latest findings regarding
run-time tailorability.

C.2 Run-Time Tailorability is Turing Complete

If we implement run-time tailorability into a Turing Complete (SIPSER, 2005;
HOPCROFT; MOTWANI; ULLMAN, 2000) language, it immediately follows that it is
Turing Complete. Therefore, provided that we can find a solution and implement it
into an algorithm that runs in suitable time (acceptable time for use), we can introduce
any computationally possible accessibility feature at run-time – either at specific points
(event handlers), or for permanent presentation (components). We can affirm this due
to the Church-Turing thesis (SIPSER, 2005), which states that any Turing machine can
run any algorithm that any other Turing machine could.

C.3 Full Automation in Real-Time Interaction Is Not Al-

ways Possible

For a truly universal game, an AI-agent would have to be able to beat any game
alone. This is impossible, as it is not computationally possible to solve all classes of
computational complexity theory (SIPSER, 2005; HOPCROFT; MOTWANI; ULLMAN,
2000). with current programming approaches in suitable time for games. For instance,

270 APPENDIX C. Real-Time Tailorable Games

many interesting games are NP-complete(DEMAINE; HOHENBERGER; Liben-Nowell,
2003; CLIFFORD et al., 2012); full automation would not be possible within suitable
time limits.

However, in practice, it is not necessary to simulate a human playing games.
There are some alternatives to create tailorable games.

C.4 Run-Time Tailorability in Practice

Can we reach user level accessibility, for any user? Currently we cannot, as we
do not have the technology to do so.

Could run-time tailorability enable the creation of universal tailorable games? As
it is Turing Complete, as we can introduce any computationally possible with run-time
tailorability at specific moments, we are able to use any existing assistive technology at
the correct moment with events. As we can read any meta-game data, it follows that,
provided that we could translate the data to the assistive technology, we could enable
use. Therefore, run-time tailorability is a potential candidate for the implementation of
universal tailorable games with everything that is currently available – and everything
that could be made available in the future. It allows for arbitrary code execution at the
exact times that they are needed.

For simple user interfaces – like from conventional applications –, automation
is possible. If we can reduce the game to a parameterized application (for instance, a
command-line program), we can automate it. At least in this way, we argue that we
could step towards universal tailorable games – for as many people as we can with the
currently existent technology.

For complex applications, we cannot yet automate solutions. We have found
an interesting alternative. The first is considering inclusion both as independence and
interdependence, and people both as individuals and communities (BENNETT; BRADY;
BRANHAM, 2018; LIU; DING; GU, 2016a).

Instead of a single human playing, we could enable multiple people to play at
once. As the input is decoupled from the meta-game, each people could provide a subset
of commands, everyone could provide all commands – or any combinations in between.

Then, we can slowly move towards independence, as we start figuring out how
to convert core game loops into composable commands. Although an AI-agent may not
be able to beat a full game, it can perform smaller tasks within games.

C.5. Run-Time Tailorability Makes Accessibility a Use-Time Problem 271

C.5 Run-Time Tailorability Makes Accessibility a Use-Time

Problem

If we implement games for no one, we design for everyone. As we do not assume
any interaction abilities, we are free to redefine them at use-time. As there only exists
data, we are free to define as many ways to represent the data as we want. In the same
ways, as commands are the only input, we can define as many ways to provide input to
the game as we wish. In particular, we can explore this for accessibility.

We are free to explore assistive technologies (software and hardware) and any
other accessibility features without anticipating their use. Rather, we can attach them at
run-time. Once we implement software to introduce them into the solution, we are free
to recombine them.

The underlying assumption is that software can be re-configurable within the
limits of Turing completeness. In this way, we abstract the interaction, and become able
to attach it later. If it helps, you may thing it as an add-on/extension/plugin; however,
instead of task-related features, it introduces interaction features to the game.

This way, run-time tailorability makes interaction a composable part of digital
games. We can redefine everything, because we have access to all inner data. There can
co-exist potentially infinite variations of an application that shares the same logic. We
are free to define multiple.

Thus, we can use tailoring as a strategy towards universal access. We can explore
“one core fits mosts” alongside “accessible” versions. We can define multiple interfaces,
multiple ways to interact, and allow the user the build her/his own.

C.6 Run-Time Tailorability Makes Accessibility a Com-

munity Problem

As information results from interpretation of data, it is up for designers to figure
out how to present them is as many ways as they can, they introduce alternatives to
the game. This makes accessibility an opportunity cost for developers – if they follow
the approach, they can enable the community to improve accessibility even if they do
not. In the same way, they do not have to assume a particular accessibility feature in
advance; they can add them over time, as needed.

272 APPENDIX C. Real-Time Tailorable Games

C.7 Concluding Remarks

With our results from Appendix B, we can implement games in expansive and
expressive ways. The only limits to what we can introduce at use-time with run-time
tailorability are what we can implement as algorithms that runs in suitable time. If we
can find a solution to map data into representation within the limits of what we are able
to implement, we can attach it to the solution to enable use.

The Meta-Game to digital games, the Game to the player. The Meta-System to
applications, the System to the user.

We cannot assume that every game may become universal, but accessibility can
always be improved. If we are correct, we can move towards maximum inclusion to
universal access in digital games – as far as technology, programming knowledge, and
creativity allows us. Let us move towards tailorable creation of tailorable games. Once
people can use and create digital games, everyone is equal.

273

APPENDIX D

One Small Step From a User, a Giant
Leap for Universal Access: A

Collaborative Work Model for
Co-Creation of Digital Tailorable

Games

D.1 Introduction

Information and Communication Technologies (ICTs) are part of modern life.
They extend human abilities and capabilities to improve productivity, reduce distances,
connect people, and enhance quality of life. However, despite their importance, ICTs
are not yet for everyone. ICTs are commonly designed for average users instead of
for individuals (POZZI; BAGNARA, 2013). As a result, people who deviate from the
intended audience of an ICT may struggle to use it. At best, they may face poor usability.
At worst, the ICT might be inaccessible for them.

When we consider inclusion, there are multiple barriers hindering possibilities
of use. As a broad term, inclusion may encompass physical, cognitive, and emotional
(dis)abilities, age, language, education and knowledge, culture, socioeconomic factors,
computer literacy and skills, and even time and context of use. When these factors affect
the quality of interaction1, people may suffer from usability and accessibility issues.

Although there are approaches to design towards universal access (for instance,
Inclusive Design, and Universal Design / Design For All (SAVIDIS; STEPHANIDIS,

1 Even if temporarily, as in situational disabilities (for instance, while driving).

274 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

2006; SAVIDIS; STEPHANIDIS, 2004; NERIS; BARANAUSKAS, 2009)), their intended
audience are professional developers. End-users are the people who suffer from the
limitations of inaccessible systems. Nevertheless, their abilities enable them to overcome
everyday difficulties – either alone or assisted (BIGHAM; LADNER; BORODIN, 2011;
BRADY; BIGHAM, 2015). What if end-users could contribute to improve accessibility
and usability of digital systems?

Collaboration is a key concept inComputer-SupportedCollaborationWork (CSCW).
If we focus on abilities over disabilities, and individuals as well communities, and if we
provided computational support to empower end-users, people could collaborate to
co-create digital systems.

In this perspective, we could explore abilities of end-users to address accessibility
issues from other end-users – universal access become a community problem. Instead
of considering people as average users, we should adopt two perspectives: people alone
as individuals, and people together as communities. Individuals provide their abilities
to the community. From each one, what she/he is able to do. The community provide
support for the individuals. For each one, what she/he needs to become able to do.
Although recent work (for instance, (BENNETT; BRADY; BRANHAM, 2018; LIU; DING;
GU, 2016a)) share this perspective in real world scenarios, they examine real world
“hardware” scenarios. Software, however, has a unique feature of being able to redefine
its features for human-computer interaction at run-time, and therefore, at use-time
(GARCIA, 2014; GARCIA; NERIS, 2014). With this possibility, every time we enable
someone new to use and create, she/he can potentially enable someone else to use and
create. Therefore, rather than a static process, inclusion becomes a dynamic process –
incremental, collaborative, and iterative. Software accessibility comes from within the
software itself; instead of adaptations at use-time, people provide interaction alternatives
to minimize the need for external adaptation (for instance, assistive technologies).

This approach can be particularly useful for systems on which traditional ac-
cessibility solutions are hard. Digital games are in this situation; they are complicated
applications for accessibility and universal access, due to their real-time interactive
constraints, poor compatibility with assistive technologies, and costs and efforts for
development versus potential revenue (GRAMMENOS; SAVIDIS; STEPHANIDIS, 2009;
PORTER; KIENTZ, 2013; PORTER, 2014; Aguado-Delgado et al., 2018; YUAN; FOLMER;
HARRIS, 2011).

We have beenworking towards improving game accessibility – especially towards
enabling as many people as possible to create and play digital games. Our lemma is
“games by everyone, for everyone”, emphasizing the importance of inclusion and of
respecting (dis)abilities of creators and players, as well as recognizing that creators

D.1. Introduction 275

may have different interaction needs than those of players (and vice-versa)2. To support
the lemma, we have defined a framework with three pillars – a run-time tailorable
architecture which enables full input and output definition during use time, which is
an evolution from (GARCIA, 2014)3; a game creation platform (Lepi) that implements
that architecture itself and to generate the games made with it; and a collaborative work
model – our Collaborative Co-Creation of Inclusive Digital Games (C3-IDG) – to define
and guide an end-user game development process.

The C3-IDG conducts inclusive game co-creation of tailorable games. It aims to
transform skills and abilities into opportunities to improve accessibility and usability in
games. We aim to change the focus of use and creation from what people are unable to
do to what they are able to do. Then, with support from the other pillars, people become
able to introduce their contributions into a game. This way, they become able to co-create
content and accessibility – potentially at the same time.

In the collaborative work model, contributions provide content redundancy and
alternatives of use to enable more people to use a digital system. Each small contribution
from a person combines to every other previous contributions from the community. As a
result, a combination of small individual steps result into giant leaps towards universal
access, for they address interaction needs successively.

Our intended audiences are not professional programmers, neither accessibility
experts. However, in our evaluations on non-average users created and played digital
games4, we observed that participants managed to co-create accessible games for people
with different interaction needs than their own.

Although the C3-IDG was conceived for games, many concepts also apply to
interactive digital systems in general. As a result, we generalized a smaller contribution
model from it – the Collaborative Co-Creation of Inclusion (C3-I). In this chapter, we
describe the C3-I and the C3-IDG. This chapter is organized as follows. Section D.2
discusses related work. Section D.3 discuss how we can expand the current Literature
towards collaborative end-user development of universal access – especially for digital
games. Section D.4 and Section D.5 introduces the C3-I and the C3-IDG, respectively,
through our study scenarios. They serve as introductions to the models. Section D.6
presents the C3-I. Subsection D.6.1 describe examples of end-user collaborations to

2 When reading games created with the framework, remember to think about small, simple games. For
non-real time games, conversion of mechanics are not a problem. For real-time games, our current
research suggests that, if we can automate it, we can generate accessibility. Regardless, this work acts an
alternative timeline with re-start of game development, focusing on accessible creation and accessible
play.

3 We defined the underlying theory for the run-time interaction Tailoring is described in Appendix B.
4 As end-users – including people with disabilities and/or situations of vulnerability – participated ac-

tively in our models, we followed research ethics protocols throughout the entire processes. Certificado
de Apresentação de Apreciação Ética from Plataforma Brasil: CAAE: 89477018.5.0000.5504.

276 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

provide interaction alternatives to digital systems. In Section D.7, we describe the C3-
IDG. Section D.8 and Section D.9 discusses the results and our conclusions.

D.2 Related Work

D.2.1 Inclusion

The World Wide Web Consortium (2016) defines inclusion as:

Inclusive design, universal design, and design for all involves designing
products, such as websites, to be usable by everyone to the greatest extent
possible, without the need for adaptation. Inclusion addresses a broad
range of issues including access to and quality of hardware, software, and
Internet connectivity; computer literacy and skills; economic situation;
education; geographic location; and language — as well as age and
disability.

We adopt this definition in this chapter because it is broad and coined for theWeb,
which has traditional accessibility standards – which is not the case for every domain,
such as digital games.

According to Pozzi & Bagnara (2013), software developers often make assump-
tion regarding the abilities of their end-users. As such, people who deviate from these
abilities might be unable to interact with resulting systems. In fact, Mankoff, Hayes &
Kasnitz (2010) affirm that “the person designing a piece of software is, in some sense,
defining who is disabled with respect to that software”. As systems are commonly
designed for average users instead of individuals, this means that many people may be
unable to interact with the resulting system.

Unlike hardware or physical solutions, software is a construct of instructions and
data. With techniques such as tailoring, developers can design software flexible to its
context of use (NERIS; BARANAUSKAS, 2009; NERIS; BARANAUSKAS, 2012; PIPEK;
KAHLER, 2006). Tailoring explores software flexibility to promote use-time adaptation;
with tailoring, end-users may modify interfaces to suit their preferences and needs.

In this chapter, we argue later (in SectionD.3) that, if we applied tailoring towards
universal access, we could start changing the preamble of the definition of inclusion
from products “without the need of adaptation” to products designed for adaptation.
This is a solution we have explored previously for digital games in (GARCIA; NERIS,
2013a; GARCIA, 2014; GARCIA; NERIS, 2014).

D.2.2 Digital Game Accessibility

Albeit game accessibility is an emerging study topic, there are studies providing
advice on how to design and implement suitable solutions for broader public. They may

D.2. Related Work 277

range from guidelines (YUAN; FOLMER;HARRIS, 2011; International GameDevelopers
Association, 2004; ELLIS et al., 2013; BARLET; SPOHN, 2012; GARCIA; NERIS, 2013b)
to approaches promoting more accessible game design and implementation (GRAM-
MENOS; SAVIDIS; STEPHANIDIS, 2007; GRAMMENOS; SAVIDIS; STEPHANIDIS,
2009; GRAMMENOS; SAVIDIS; STEPHANIDIS, 2011; GARCIA; NERIS, 2014; GARCIA,
2014; TORRENTE et al., 2015).

However, there is a divide between what the academic community recommends,
and what the industry effectively needs and uses; as a result, games have not benefited
so far from accessibility standards (PORTER; KIENTZ, 2013; PORTER, 2014; Aguado-
Delgado et al., 2018). Most games are not compatible with traditional accessibility
solutions; in the rare cases when games support assistive technologies, interaction
quality and usability are usually poor (GRAMMENOS; SAVIDIS; STEPHANIDIS, 2009;
PORTER; KIENTZ, 2013)5.

These issues persist to this day. In a recent systematic review, Aguado-Delgado
et al. (2018) found that:

None of the studied initiatives can guarantee universally accessible video
games:

1. Approaches that involve particular interfaces and custom developments may lead to a lack
of quality in the generated/adapted video games and the segregation of disabled players.

2. The frameworks often depend on the use of specific technologies. This dependence hinders
accessibility, since it necessarily involves the use of elements that can be beyond the control
of the developer (they belongs [sic] to third parties) and limit the available options.

3. The guidelines, techniques, strategies, etc. that facilitate the development of accessible video
games are ignored by many developers (due to ignorance, lack of comprehension, impossi-
bility of application, etc.).

Nevertheless, these problems did not stop people from playing games; for ex-
ample, there are more than 100 million players with disabilities worldwide (BARLET;
SPOHN, 2012). There are accessible games, developed for specific disabilities – ex-
amples include audio games for visual disabilities, and one switch games for motor
disabilities (YUAN; FOLMER; HARRIS, 2011; International Game Developers Associ-
ation, 2004) and there are a few Universally-Accessible Games, aiming for inclusion
of a broader public (GRAMMENOS; SAVIDIS; STEPHANIDIS, 2007; GRAMMENOS;
SAVIDIS; STEPHANIDIS, 2009; GRAMMENOS; SAVIDIS; STEPHANIDIS, 2011). There
are also the rest of existing games, that people may want to play regardless of their abili-
ties. In these cases, a strategy is to request assistance from family and friends, who offer
their abilities to remove accessibility barriers temporarily (PORTER; KIENTZ, 2013).
5 There are efforts to improve this situation. For example, Microsoft’s Xbox Adaptive Controller (<https:

//news.xbox.com/en-us/2018/05/16/xbox-adaptive-controller/>) might become a viable alternative
to mediate the use of assistive technologies to provide input in games.

https://news.xbox.com/en-us/2018/05/16/xbox-adaptive-controller/
https://news.xbox.com/en-us/2018/05/16/xbox-adaptive-controller/

278 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

Another is to play against all the odds; people use their abilities – and good design
features which provide “accidental” accessibility features – as well as they can6. People
will find a way to play.

There are, however, opportunities for improvements. Aguado-Delgado et al.
(2018) concluded their systematic review stating that:

a specific developmentmethodology arising from the adaptations and/or
modifications of existing solutions could have a notable impact on the
level of accessibility of the video games.

Later, we further argue that the methodology should be for developers and for
players. If developers and the industry do not follow the methodology, the situation
will not change. In our opinion, digital inclusion is only truly complete once people can
use and create. This way, they could potentially improve solutions even if the original
developers do not plan to.

D.2.3 End-User Development and End-User Game Development

End-User Development (EUD) enables end-users to act as non-professional
software developers with activities including parameterization, macros, visual pro-
gramming languages (VPL), programming by demonstration (PbD), and scripting
(LIEBERMAN et al., 2006). These activities try to lower technology barriers to enable
end-users to create or modify digital systems. To map EUD studies for EUGD, we per-
formed a systematic literature review in 20177. We wanted to find out what were the
approaches (and respective audiences) that enabled end-users to create their games.
We selected 63 out of 542 unique studies matching our inclusion criteria.
6 The interested reader may refer to <https://www.youtube.com/watch?v=nmmqarQRSSE&list=

PLXcBFfRlLcpiGcMcdCpJ_L1Okqm2uQvrL> for an example on which a blind player describes how
he plays a traditional video game.

7 Search string: ("End-User Development" OR "EUD" OR "End-User Programming" OR "EUP" OR
"Modding") AND ("Digital Game" OR "Game").

Databases: Association for Computing Machinery (ACM) Digital Library, Institute of Electrical and
Electronics Engineers (IEEE) Xplore, Science Direct, and Scopus.

Inclusion criteria:

1. Study described challenges related to EUGD;

2. Study described approaches related to EUGD;

3. Study described end-user creation process;

4. Study described activities on which modification explored programming;

5. Study described activities on which end-user modification did not require programming;

6. Study described how an end-user approached game creation.

https://www.youtube.com/watch?v=nmmqarQRSSE&list=PLXcBFfRlLcpiGcMcdCpJ_L1Okqm2uQvrL
https://www.youtube.com/watch?v=nmmqarQRSSE&list=PLXcBFfRlLcpiGcMcdCpJ_L1Okqm2uQvrL

D.2. Related Work 279

For development activities, we found three important recommendations. The
first were four desirable criteria for EUGD tool by Resnick & Silverman (2005) and Burke
& Kafai (2014), stating that tools should:

1. Be intuitive and accessible for new users.

2. Allow the creation of complex applications.

3. Allow the creation of a wide range of applications.

4. Promote developing in communities – encourage discussions, help, collaboration,
and learning among users.

Yet, in our review, we noticed that, although there existed multiple approaches,
they had similar intended audiences – usually young anglophone students. No study
addressed accessibility towards broader inclusion for heterogeneous interaction needs
and abilities. For instance, Earp (2015) noticed in his systematic literature review that
inclusion in game making for learning is, usually, “a strategy for addressing the under-
representation of girls and women in computing”. This accounts for an important factor
(gender inclusion); we should include other audiences as well.

The second was the need for “gentle slopes” – gentle and incremental increases
of creation complexity over time (PANE; MYERS, 2006; IOANNIDOU; REPENNING;
WEBB, 2009; REPENNING; IOANNIDOU, 2006a; IOANNIDOU; REPENNING; WEBB,
2008; KAUHANEN; BIDDLE, 2007). One approach to achieve them was defining layers
for creation, exploring different EUD activities (TONON; BAECKER, 2010; van Herk;
VERHAEGH; FONTIJN, 2009). Following this approach, VPLs, PbD, macros, scripting,
and traditional programming languages can co-exist into a same tool, to suit needs
of different creators. As a result, layers can define a path for learning programming
and to develop more complex games over time. Another approach was transitioning
from consuming (use) to creation practices – the Create-Consume Spectrum defined
by Basawapatna et al. (2014) proposes that a “gentle slope” spectrum could explore,
in order: animation, interactive simulation, collective simulation, construction set sim-
ulation, pattern-based authoring, end-user programming, to, finally, reach traditional
programming.

Finally, the third recommendation was the importance of community, which pro-
vides benefits including collaboration, sharing, learning and teaching, and co-creation
(BURKE; KAFAI, 2014; REPENNING; AMBACH, 1997; AHMADI; JAZAYERI, 2014;
JAZAYERI; AHMADI, 2011; AHMADI; JAZAYERI; REPENNING, 2012a; AHMADI;
JAZAYERI; REPENNING, 2012b; PENA, 2011; UZUNBOYLU; BAYTAK; LAND, 2010,
2010; POOR, 2014; COMUNELLO; MULARGIA, 2015; HONG; CHEN, 2014; REPEN-
NING; IOANNIDOU, 2006b). As collaboration was mentionedmultiple studies, the next

280 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

step was identifying how CSCW and EUD could promote inclusion; this way, people
could become able to create and play regardless of (dis)abilities.

D.2.4 CSCW and EUD for Accessibility

The CSCW community has since been involved in accessibility research. However,
to the best of our knowledge, there seem to be few studies considering people with
disabilities as creators of inclusion in software. Rather, they are traditionally portrayed
– at time even unfairly – as recipients of assistance (BENNETT; BRADY; BRANHAM,
2018). In particular, it seems that most studies consider a perspective centered on individ-
uals, with the goal of promoting independence for people with disabilities (BENNETT;
BRADY; BRANHAM, 2018; LIU; DING; GU, 2016a). As a result, although there are
design principles, recommendations, and guidelines to improve accessibility through
crowdwork (BIGHAM; LADNER; BORODIN, 2011; BRADY; BIGHAM, 2015; KANE,
2007; VOYKINSKA et al., 2016), people without disabilities (often professionals) usu-
ally assist people with disabilities (LIU; DING; GU, 2016a; SHIRAISHI et al., 2017)
– for instance, in (Mahelaqua et al., 2013; PIPER; WEIBEL; HOLLAN, 2013; FOGLI;
COLOSIO; SACCO, 2010; TAKAGI et al., 2008; BIGHAM; LADNER; BORODIN, 2011;
BRADY; BIGHAM, 2015; LASECKI; KUSHALNAGAR; BIGHAM, 2014; SHIRAISHI et
al., 2017; MAZAYEV; MARTINS; CORREIA, 2016; CARDONHA et al., 2013; HARA; LE;
FROEHLICH, 2013; RICE et al., 2013)

Yet, with suitable approaches, people with disabilities can also contribute to
include their peers. For instance, Shiraishi et al. (2017) described an approach on which
deaf and hard of hearing (HDD) people provided Japanese sign language alternatives
support their peers. Buehler et al. (2015), Bennett et al. (2016), andHurst & Tobias (2011)
explored crowdsourcing for end-user creation of (hardware) assistive technologies. Piper
et al. (2006) described Participatory Design activities on which they co-designed a coop-
erative computer game for social therapy with game with adolescents with Asperger’s
Syndrome and adult moderators. In a case study from Bennett, Brady & Branham (2018),
two participants defined the expression “cross-ability cooperation” to refer to how they
benefited each other from their abilities – on participant was blind, the other was a
wheelchair user. Together, they helped each other overcome issues to perform daily life
and work activities.

To extend these success stories, we should consider individuals and communities,
as well as interdependence and independence (BENNETT; BRADY; BRANHAM, 2018;
LIU; DING; GU, 2016a).

For accessibility as communities, Liu, Ding & Gu (2016a) recommends “com-
munistic interaction”: “from each according to their abilities, to each according to their
needs”. They argue that we should focus on groups of people instead of individuals, and

D.2. Related Work 281

on abilities instead of disabilities. In this way, people can contribute to help themselves
and their peers. This is supported by Zyskowski et al. (2015) – a “possible avenue for
research is to understand how crowdworkers with disabilities are currently interacting
together and helping one another” –, and by Bennett, Brady & Branham (2018) – “access
is not only a solution to a disability-related barrier; it is a way of being together and
helping one another”. Similarly, Habicht, Oliveira & Shcherbatiuk (2012) described that,
in a healthcare context, people who helped themselves to overcome a problem could
help others in similar conditions.

For accessibility as interdependence, Bennett, Brady & Branham (2018) affirm
that interdependence as frame:

• helps to see connections and relations between people and things;

• helps to observe “simultaneous forms of assistance in action”, that is, in a given
event, there might occur multiple assistance, potentially with people providing
and receiving access simultaneously;

• highlights contributions from people with disabilities;

• destabilizes “traditional hierarchies that rank abilities”, that is, it asserts that
“people with and without disabilities are equal”.

Combining inclusion, EUD, and CSCW, systems could provide features to im-
prove their accessibility (KANE, 2007). However, assistance can go beyond technology.
Friends, family, acquaintances, and even strangers can help people with disabilities
to overcome accessibility barriers at use-time (BIGHAM; LADNER; BORODIN, 2011;
BRADY; BIGHAM, 2015; BENNETT; BRADY; BRANHAM, 2018).

As final digressions, Bennett et al. (2016) states that co-creation reinforces the
sense of identity in people with disabilities. In the other hand, Liu, Ding & Gu (2016a)
mentions that people with severe motor disabilities avoided requesting assistance for
the fear of becoming indebted to those who helped them. Finally, for distributed teams,
Salehi & Bernstein (2018) describes Hive, an approach to support collective design.
Hive intermixes people working towards a common goal with the intent of helping
participants understand perspectives from each other. In particular, Hive defines the
role of facilitators to manage that workflows and contributions achieve their goal.

282 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

D.3 The Pillars of the Framework: Supporting Games by

Everyone, For Everyone

In Subsection D.2.1, we highlighted the need for a broad concept of inclusion to
support universal access. This could be particularly important in domains such as digital
games, (Subsection D.2.2), which does not yet benefit from traditional accessibility
solutions.

From Subsection D.2.1, developers define “who is disabled with respect to that
software” when they design it. This a harsh truth, because traditional software de-
velopment restricts interaction to specific input and output devices and interactions.
Physical-level interactions defined at design-time results into fixed ways for human-
computer interaction at use-time. Fixed means immutable; this is the reason that the
preamble for the definition of inclusion specifies “without the need for adaptation”. This
quote has two underlying assumptions – immutability and passiveness.

First, immutability. Although there exists the possibility for external adaption
(for instance, with assistive technologies), its potential is limited. External adaptation
cannot access the internal state of a process8. In best case scenarios for output – for
instance, interpreted languages on which the source-code is available – the tool could
inspect the source code and attach to the process to examine it9. At worst case scenarios,
the tool would have to act as a human perceiving the system – potentially in real time, as
with digital games10. It would try to extract information from users interfaces, transform
it to another media, and convey it to the user – in a digital game, even milliseconds could
be too long. Similar reasoning applies to input. In this case, at worst case, the tool would
have to act as a human providing input to the system11. Although applications such
as the Web have standard input mechanisms and interactions, other systems – such as
digital games – do not. If the process does not inform where and how to interact, the
tool cannot guess.

Within this context, our answer is that we should design software for adaptation
– not only in the traditional task-oriented EUD perspective, but also for interaction
adaptation. This would solve the problem described byMankoff, Hayes & Kasnitz (2010)
– if developers do not assume specific audiences, they do not define “who is disabled
8 Even in cases that it could scan and monitor the machine’s memory, a general purpose tool would not

able to understand the data without knowing variables addresses and meanings. The same reasoning
applies to provide input; although the tool could modify the memory directly, it would need to know
variable addresses before modifying them.

9 For instance, screen readers benefit from patterns in Hypertext Markup Language (HTML) elements.
The interested read may refer to <https://thepaciellogroup.github.io/AT-browser-tests/> for exam-
ples of how a screen reader parses a document.

10 Games use their own technologies andmiddleware for implementation, which typically do not support
assistive technologies.

11 In this case, automation software can help.

https://thepaciellogroup.github.io/AT-browser-tests/

D.3. The Pillars of the Framework: Supporting Games by Everyone, For Everyone 283

with respect to that software”. Instead of designing for an audience, we should develop
interactive systems for no particular audience, then we enable people iteractively to it
(GARCIA, 2014). In this approach, although we have a fully interactive logical system
from the start, everyone starts unable to interact with it. The system has semantics of use,
commands for interaction, and primitives representing the information to convey. For
each semantic, developers define multiple, composable interaction alternatives to define
physical-level interactions for input and output. In turn, end-users become able to build
their own way to interact with the system, based on alternatives they combine. In other
words, there is no interaction until a end-user defines her/his own. Once this happens,
she/he have the interaction that she/he has chosen. This may sound paradoxical, as
it is not a conventional approach; we provide two prototypes for demonstration at
<https://gitlab.com/francogarcia/RunTimeTailorability-PingPong> and at <https://
gitlab.com/francogarcia/GamesRunTimeTailorability>.

The approach relies on the principle that, unlike physical products, software
can change indefinitely at run-time within the limits of Turing completeness (and the
Halting problem) (SIPSER, 2005; HOPCROFT; MOTWANI; ULLMAN, 2000). It is the
underlying (also software) architecture that limits software flexibility. Therefore, with
suitable architectures, software can change at run-time to redefine interaction with
accessibility purposes (GARCIA; NERIS, 2013a; GARCIA; NERIS, 2014; GARCIA, 2014).
A refinement of this work resulted into the first pillar of our framework— an architecture
which enables software able to fully redefine human-computer interaction at use-time.
Following the approach, to build systems for everyone, we can start designing interactive
systems for no one. As we work with games, we called this system a Meta-Game. The
fully simulation runs on it, interactively, without human-intervention. All the interactive
elements exist there; input exists as a semantic abstraction (command). Output does not
exist, for machines do not need it; there is data. The task of developers, thus, is to define
physical-level interactionsmapping abstract input to human-input, and computer data to
human-output. In particular, they can create multiple interaction alternatives. As a result,
players can choose among existing alternatives to define their own interaction with a
system – which we called a Game. A Game is a Meta-Game attached with elements
to enable human interaction – the Game to the Player. As interaction alternatives are
composed to the system, detaching them all reverts a Game to its unique Meta-Game.
The process, thus, is reversible. The architecture, therefore, provides a way to implement
games for everyone – provided that we can define interaction alternatives to support
their needs12.

12 Although the framework is for games, most approaches apply to any interactive digital system. Our
game creation platform Lepi, is a system implementing the architecture. As strategies for the architec-
ture originated from game programming, we opted to focus the framework on games. Our reasoning
is that we can extract generic parts later, to extend the approach for other domains – as we did with the
C3-I, which resulted from the C3-IDG. Moreover, we found digital games suitable for the framework

https://gitlab.com/francogarcia/RunTimeTailorability-PingPong
https://gitlab.com/francogarcia/GamesRunTimeTailorability
https://gitlab.com/francogarcia/GamesRunTimeTailorability

284 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

At this point, we can reach the second assumption – passiveness. If we design for
no end-user adaptation, we assume that end-users are passive; they are recipients of
technology. However, if we design for adaptation, we design for change – for activeness.
From Subsection D.2.4, most studies assume an individual perspective to accessibility.
When there is amismatch between the interaction design of a system and the real abilities
of its end-users, the system might become inaccessible. Hitherto, there are three main
approaches to solve this mismatch:

1. End-users try to use the system as it is –with an assistive technology, when possible;

2. End-users request developers to fix it;

3. End-users request assistance from a community (for instance, close persons or via
crowdwork) to overcome the problem.

In the first two approaches, the underlying premise is that digital systems are
static entities. Developers deploy new versions, end-users interact with them. This
matches traditional software approaches. In the third approach, traditional software
approaches do not consider that the contributions might become part of the original
system.

The CSCW and EUD communities, in particular, recognize that people cooperate
to co-create digital systems, for end-users can modify and improve them. In this per-
spective, digital systems are dynamic entities. They can change, end-users can change
them; developers do not have to be the sole responsible for changes.

When systems allow EUD, end-users for whom the system is currently usable
join developers as potential creators. Inclusion, by definition, “address a broad range of
issues” (Subsection D.2.1). When end-users are potential creators, they become able
to provide their own skills and abilities to improve systems. In particular, this can help
with accessibility – Item (3); the state of art.

To extend it, we should consider inclusion as a dynamic, iterative, and collabora-
tive process. Inclusion should not remain a dichotomy of accessible/usable for some,
inaccessible/unusable for others. Rather, it should be dynamic – accessible/usable for
some, currently inaccessible/unusable for others. Although subtle, the difference is mean-
ingful, because inclusion becomes iterative. Once included, people become potential
co-creators as well. This is valid for the whole “broad range of issues”. Once included,
people with disabilities, different computer skills, knowledge, and socioeconomic situations
become potential co-creators. Once included, anyone can potentially help to further
improve the system to themselves and for others. In special, one can enable someone

(Subsection D.2.2). More constraints lead to more robust solutions; it is easier to generalize a solution
from more to fewer constraints than the contrary.

D.3. The Pillars of the Framework: Supporting Games by Everyone, For Everyone 285

else to use a digital system – from currently unusable, the system may become usable to
her/him. This newly-included person becomes another potential co-creator. If she/he –
or anyone else already included – can further contribute, the dynamic process continues.

We can see this as a possible application of “communistic interaction” described
by Liu, Ding & Gu (2016a) applied to software. People contribute with their abilities,
with what they are able to do and to provide. Besides communistic, we argue that it
is also a mutualistic13 process on which individuals benefit the community (with new
contributions), and the community benefits individuals (from previous contributions).
Contributions add to each other over time; every new collaboration complements every
previous one. This could be especially useful for purposes of universal access – that is,
provided people could collaborate, regardless of their interaction needs.

In SubsectionD.2.3, wemoved our focus to digital games. The Literature provided
strategies to enable EUGD – desirable criteria, the need for “gentle slopes”, and the
importance of community. If we implemented an EUGD approach which built Meta-
Games and Games exploring the architecture, we could enable people to make games
for everyone – provided that there were people who could create interaction alternatives.
For everyone is good, but it is half the battle towards universal access; more people need
to create.

If we consider inclusion as a dynamic process, people could co-create interaction
alternatives. If the prior EUGD approach implemented the architecture itself, we could
enable game creation by everyone. Current audiences would be limited by currently
available interaction alternatives14.

Still, end-users are not professional developers. We have to help them to create
their games and define interaction alternatives. Although they could not develop tai-
lorable games alone, we assumed that, with suitable computational support – the game
creation platform –, they could co-create together. Communities as well as individuals,
and interdependence as well as independence. With these focuses, we defined the last
pillar of the framework: the C3-IDG. With the work model, cooperation and assistance
become part of development processes. Inclusion becomes a dynamic, iterative process.
Rather than passive recipients, end-users become active software co-creators, who can in-
clude the community and be included by the community; they can promote accessibility
and improve usability.

Although the proposed perspective defies the status quo, our current (small) study
scenarios (with a small subset of possible interaction needs) suggests that people could

13 Mutualism is no longer a new term, it has first been used in Biology to describe a relationship in which
two organisms benefit from each other.

14 This is a longitudinal, long-term goal. A smaller step is enabling one audience at a time. We learn from
them to enable them to enable others.

286 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

co-create once they had computational and community support – and enable everyone
in the community to play their creations. We start this chapter from the scenarios. Our
intention is inducing possible collaborations and workflows, hoping to show how daily
life skills can support end-user contributions towards digital accessibility, and that
end-users can extend systems with those contributions.

We start with the C3-I (Section D.4), to highlight how people can contribute
based on their abilities and how inclusion is an iterative, dynamic process. Next we
advance to the C3-IDG (Section D.5), with a real world study on which people with
low literacy and who had never used computers created games for themselves and their
peers. In these sections, it is important to note that:

• Accessibility and inclusion become iterative, incremental, and dynamic processes;

• The workflows are generic enough to support other collaborative workflows, if
needed;

• The workflows are comprehensive accessibility-wise, that is, they support diversity
and multiple (dis)abilities instead of particular ones;

• People are empowered and active. Besides informing their needs, they can actively
contribute to co-create digital inclusion;

• Any included people may collaborate based on what they are able to do – abilities
before disabilities;

• Inaccessibility is a result from a lack of interaction alternatives in a digital system.
Once we introduce suitable alternatives to the system, they might enable people
who needed them to use and create15;

• Inclusion becomes transient – included versus to be included, instead of a dichotomy
included versus excluded;

• Upon inclusion, people for whom the system was previously inaccessible might
become potential enablers of others;

• As changes are incorporated to the system (software), interaction alternatives may
minimize dependence upon assistive technology;

15 A jigsaw puzzle acts a metaphor for this perspective. We can visualize (tailorable) games as building
jigsaw puzzles – the combination of puzzle pieces contributes to the creation of the final interactive
system (the game). Each person has her/his own personal assembling board. Although a part of the
board is the same for everyone (the Meta-Game), individual boards may vary slightly from person
to person, as every one has her/his own interaction needs. When there are suitable pieces to fill the
board, a person can play the game. When there are not, the community creates new pieces. However,
these are software pieces – the only limit for software is Turing completeness. Developers create pieces.
End-users shall be able to create pieces as well.

D.4. Scenario: Co-Creation of Tailorable Games in an Inclusive School 287

• Contributions are not restricted to code; rather, daily life skills can promote inclu-
sion;

• Following the Literature, workflows focus on communities as well as individuals,
and independence as well as interdependence (LIU; DING; GU, 2016a; BENNETT;
BRADY; BRANHAM, 2018). Likewise, people can help each other at use time
provide temporary assistance to enable use (BIGHAM; LADNER; BORODIN,
2011; BRADY; BIGHAM, 2015).

D.4 Scenario: Co-Creation of Tailorable Games in an In-

clusive School

One of our study scenarios is at an inclusive school. In a classroom, among the
students there are people with hearing or cognitive disabilities. The real case scenario
is still a work in progress; although we provided a capacitation course for professors,
we have not performed activities with the students yet. Therefore, in this section, we
describe an expanded hypothetical situation based on our study scenario. In this situa-
tion, fictitious participants add heterogeneous interaction alternatives gradually to fulfill
needs – from simpler and easier to understand, to more complex and richer situations.
Successive contributions from the participants will induce the model logically.

In a bilingual classroom, there are Anglophone and Lusophone students, with
varying proficiency and skills. Table 216 describes abilities of hypothetical students; to
maximize collaborations, no one is perfectly fluent on both languages at the same time.
16 Some students in the table cannot talk and/or listen, or read and/or write in both languages. This is

intentional for later iterations.

Table 2 – Reading, writing, speaking, and listening proficiency for stu-
dents of a hypothetical inclusive classroom.

Portuguese English
Student Read Write Speak Listen Read Write Speak Listen

Ana Ë Ë
João Ë Ë Ë
Isabela Ë Ë Ë Ë
Pedro
Linda Ë Ë
James Ë Ë
Robert Ë
Elizabeth

Source – Created by the author.

Note – Ë: Student has the ability.

288 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

If we analyze Table 2, to include every student, (1) the content should be able in
both languages in written and spoken forms, and (2) input alternatives should match
motor abilities. Although Maria, the teacher, may be fluent in both languages17, she
would rather let their students practice. Rather than doing it herself, she will act as a
Supervisor, identifying studentswhose abilities and skills allow them to translate content
between languages, and to convert between written and speaking representations.

Maria selects Ana to start creating a story for a game. Ana can speak Portuguese;
she records a narration of her story. When Ana finishes, Maria knows that only Ana
and João can play a game in Portuguese; the other students cannot. João can listen to
and write Portuguese, so Maria asks him to transcribe her narration into written text.
João does so, becoming the first Collaborator, an Enabler – someone whose contribution
enabled people (Isabela, in this case) to interact with a previously inaccessible content.
João does not only provide temporary assistance; he enriches the original game with his
provided interaction alternative. He, therefore, helps people who can read Portuguese
at any future interactions. In this case, it helped Isabela.

Isabela can read Portuguese and write (non-perfectly) English. Maria requests a
translation from Isabela, who becomes the second Collaborator – an Enabler – and adds
her contribution to the game project. Her collaboration includes students who can read
English – Linda and James.

Maria knows the translation has spelling and syntax mistakes. She requests a
review from Linda. Linda becomes the third Collaborator, an Enhancer – someone
who improves the quality of existing artifacts. As Linda cannot read Portuguese, it was
the collaboration from Isabela who enabled her to understand the story and further
collaborate. Abilities and skills may provide interaction feature to full interaction needs
from others. As a result, Linda became an active participant. She was assisted, she
became able to assist.

In its current state, people are able to play if they can read either language or
listen to Portuguese. Maria continues her supervision, requesting James to record his
narration of the story and insert into the game. With James’ contribution, Robert became
able to listen to Ana’s story18. James, therefore, is the fourth Collaborator (an Enabler).

Elizabeth and Pedro want to play Ana’s game as well. Their entries in Table 2
where blank – they cannot read, neither can they hear. Table 3 describes disabilities of
the students. It does not make the situation any different, though. According to Table 3,
Ana and James had disabilities. They contribute successively because collaborations
came from abilities, skills, and knowledge.

17 She/he does not need to, though – collaborations will fulfill needs as the scenario unfolds.
18 Text to speech versions helpmay support low literacy and visual disabilities. Accessibility improvement

meant for an interaction need may help others.

D.4. Scenario: Co-Creation of Tailorable Games in an Inclusive School 289

Table 3 – Abilities for the students of the class-
room of Table 2.

Physical Disability
Student Vision Hearing Speech Motor

Ana Ë
João
Isabela Ë
Pedro Ë

Linda
James Ë
Robert
Elizabeth Ë Ë

Source – Created by the author.

Note –Ë: Student has the disability

For plot convenience, João and Robert know Língua Brasileira de Sinais (LIBRAS)
andAmerican Sign Language (ASL), respectively. João becomes a Collaborator (Enabler)
once again, in his second contribution and the fifth collaboration overall. Robert provides
the sixth collaboration, becoming a Collaborator (Enabler). They insert their creations
into the game; they were not experts and made mistakes; Pedro and Elizabeth were glad
to fix them as soon as they could play the game (seventh and eighth collaborations),
becoming Collaborators (Enhancers).

In this hypothetical scenario, it was easy — perhaps even cheating – to make João
and Robert know sign language. However, when working at inclusive institutions, there
are domain experts – or other people – who can help to overcome accessibility barriers.
Outsider collaborators – parents, friends, colleagues – may also help; if people can
request improvements, they generate opportunities for contributions. We focus on what
people can do and how they can contribute to enable others. Even imperfect contributions
can help, as they may include someone to improve them (like Pedro and Elizabeth).

In this particular example, in eight collaborations, seven different people con-
tributed with something they knew how to – and could – do (Table 4 summarizes their
collaborations). However, if João, Isabela, James, and Robert had not contributed (and
had not received earlier contributions), only João would be able to enjoy Ana’s game.
Isabela, Pedro, Linda, Robert, James and Elizabeth would miss it, even though, together,
they could co-create accessibility. As they co-created, any person to whom there exists
suitable interaction alternative can play the game.

290 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

Table 4 – Summary of contributions for the classroom scenario.

Student # Contribution Role

Ana 0 Original content creator (story narrated in
Portuguese)

João 1 Transcription of Portuguese audio to Por-
tuguese text

Enabler

5 LIBRAS video based on the Portuguese
written text

Enabler

Isabela 2 Translation of written Portuguese text to
written English text

Enabler

Pedro 7 Improvements to the LIBRAS version Enhancer
Linda 3 Proofreading and reviewofwritten English

text
Enhancer

James 4 English audio version of text Enabler
Robert 6 ASL version based on the English audio Enabler
Elizabeth 8 Improvements to the ASL version Enhancer

Source – Created by the author.

Note –Ë: Student has the ability #: Contribution number

D.5 Scenario: Inclusive Game Creation to Aid People Un-

dergoing Alcohol and Drugs Rehabilitation

Our second study scenario is at an alcohol and drug rehabilitation public health-
care service. The interaction needs of participants in this scenario is different from those
in the school. In this section, we explore cognitive, emotional, and literacy abilities of
users of the service undergoing alcohol and drugs rehabilitation – design considerations
for the public are described in (RODRIGUES et al., 2014; RODRIGUES et al., 2015).

Besides the two authors of this chapter, two healthcare professionals of a Centro
de Atenção Psicossocial – Álcool e Drogas (CAPS-AD), ten users of the service, and five
Collaborators (two Computer Science and one Nursing undergraduate students, one
MSc in Computer Science, and one PhD in Nursing) participated in the study. In the
study, the participants co-created games. Users of the service shared their stories and
experiences about alcohol and drugs rehabilitation. The users of the service were young
adults to adults, with varying degrees of literacy (from being unable to read and write,
to having basic skills) and computer knowledge (from never having using a computer
to using them at work). No one had programming nor game design experience. To
promote a first contact with computers and digital games, we explored three games that
we had created for mouse and keyboard training (one for mouse, one for keyboard, one
for both).

The healthcare professionals participated as Supervisors. The users of the service
assumed the roles of Creators and Players, depending on the context. We first describe

D.5. Scenario: Inclusive Game Creation to Aid People Undergoing Alcohol and Drugs Rehabilitation 291

Figure 27 – Each participant approached the Conversion phase differently, creating their
stories based on their preferences.

(a) Project 1: Story in the for-
mat of a comic book.

(b) Project 2: Story in the for-
mat of a children book.

(c) Project 3: Story dictated
by the Creator and tran-
scribed by a Collaborator.

Source – Created by the author.

how three participants designed their games. Although the first (Project 1) did not
implement her game, the other two (Projects 2 and 3) were implemented by the partici-
pants using Lepi. Each of these three participants started their project differently; thus,
we can describe three different approaches for the game creation.

In the C3-IDG, we define a game creation process with nine phases (Subsec-
tion D.7.1; Figure 32). Game creation starts in the Conception phase. In this phase,
Supervisors define their goals for the project. As the healthcare professionals were not
experienced with digital games, we helped them to define the scope and goals of the
projects. For these three projects, the goal for Creators was to share experiences related
to the use of alcohol and drugs using the branching storytelling activity. At each branch
of the story, a Creator would have to define a prompt for the Player with different forms
of addressing the situation. For each choice, the Creator would define a score affecting
three parameters defined by the Supervisors: health, social relationships, and work.

After the Conception, comes the Conversion. In this phase, Creators define initial
prototypes for their game projects (Figure 27). Each Creator from these three projects
had different abilities and skills. The Creator of Project 1 (Creator 1) drew her story in
the format of a comic, writing short phrases in balloons to define dialogues (Figure 27a).
The Creator of Project 2 (Creator 2) drew his story in the form of a children’s book
(narration on top of the page, drawings on the bottom – Figure 27b) The Creator of
Project 3 (Creator 3) participant could not write. He dictated his story to a Collaborator,
who made a diagram to represent it (Figure 27c).

After a Creator finished her/his project, the process started an Evaluation phase.

292 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

Figure 28 – Creation phase using Lepi.

(a) Project 2: Creator using Lepi.

(b) Project 2: Designing a prompt to request a
decision from the Player.

(c) Project 3: Good ending, after a decision that
the Creator designed as positive.

Source – Created by the author.

Supervisors analyzed each project, asking questions and providing advice to its Creator.
Upon approval, Creators started the Creation phase. In the Creation phase, Creators used
Lepi to create high-fidelity game prototypes (Figure 28). Once again, the approaches to
implementation varied by Creator. Creator 2 built his game in Lepi himself, without any
external help (Figure 28a and Figure 28b). The Creator 3 created entities (characters,
places, and things) for his game, and added dialogue boxes to his scene (Figure 28c).
Although he could not write, the Collaborator offered to spell each word for him, so he
could type them. He typed a few, then smiled and refused to proceed. Rather, he asked
the Collaborator to type it from him.

A new Evaluation phase succeeded the Creation. Supervisors knew that some
participants could not read, and that most participants would have difficulties reading.
Upon inspection of the projects, they also noticed that the texts would benefit from

D.5. Scenario: Inclusive Game Creation to Aid People Undergoing Alcohol and Drugs Rehabilitation 293

Figure 29 – Collaborators created an audio alternative to text on an Enrichment phase,
which the Supervisors approved for inclusion, resulting into projects with
text and audio output alternatives.

(a) Project 2: Updated version of Figure 28b,
with the text to voice collaboration.

(b) Project 3: Bad ending, resulting from a
choice the Creator designed as negative.

Source – Created by the author.

revision – spell checking, punctuation, capitalization, and accentuation. Therefore, they
determined that the next phasewould be Enrichment – theywould request Collaborators
to review the text and provide speech as an output alternative. This way, participants
would be able to play regardless of reading skills. A first Collaborator improved the
text of the projects (Enhancer). A second Collaborator used the reviewed texts to create
the spoken alternative of use (Enabler). Once a Collaboration happens and is accepted,
the resulting artifact can become part of the system, enabling people who needed it
(or improving interaction and usability for everyone who used it before). Lepi uses a
metaphor of slots to represent media alternatives. This is a differential of our approach.
It is not limited to one aspect of inclusion; rather, it is general to support multiple, as
interaction needs are heterogeneous.

For example, to support Players with hearing disabilities, a Collaborator created
LIBRAS videos to complement text and spoken content (Figure 30c). With the LIBRAS
video, people could define the written version of the LIBRAS for the game, for instance.

When the alternatives of use (new audio and improved text) were ready, the
Supervisor revised the content, and authorized inclusion to the projects (Figure 2919).
The process was back to Evaluation. With text and audio, Supervisors were able to fulfill
the interaction needs for the Players; thus, they decided that the next phases would
be Distribution and Use. At Distribution, we generated two versions of the games: one
with text, one with text and audio. With those versions, the process advanced to the Use
phase.
19 Screenshots of Lepi may change in figures, for we adjusted its interface to better suit the interaction

needs of the participants over the meetings. For example, to improve readability with a larger font size
and a light theme for better contrast.

294 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

At the Use phase (Figure 30), to our surprise, a strategy which we had not
anticipated emerged from the activity20. One of the Supervisors conducted the Use
phase as an evaluation activity itself – she asked the Creators to explain how they created
their games while they were being played by other Players21. Thus, she conducted both
an Evaluation and a Use phase simultaneously, on which a Creator explained her/his
rationales for her/his project, its origin (imagination or past experience), how she/he
defined the choices and consequences.

The strategy worked well for Creators and Players – and a fourth user of the
service (who did not participate in previous creation activities) who was watching
(Person 4). We will highlight two particular reactions that occurred during two Use
phases. The first Use phase used a text version of a game. Project 2 started describing his
project timidly, often mentioning he did not remember why he had opted for a particular
decision. While a Player played his game, a Supervisor asked the Creator to read his
story aloud, as Person 4 (currently To Be Included) could not read – she had never
gone to school22. As the Player progressed at his game, the Creator became bolder and
prouder of his creation. The Supervisors were approving his game story, the prompts for
decisions that he provided, and the outcomes he had defined (both for the parameters
and for the resulting dialogues and scenarios).

His transformation peaked during the second Use phase, on which the Player
interacted with the version of his game with spoken text. When the Creator heard his
game the first time, his eyes were gleaming of pride and satisfaction, as he perceived
the collaboration as a way to increase the quality of his game and enable his friend who
cannot read to play his game. Short after, the Creator realized that he could narrate the
game with his friends23. Then he noticed that he could conceive new stories portraying
the CAPS-AD as its space, on which his friends participated. In Homo Ludens, Huizinga
(2016) describes the act of playing as entering a “magic circle”. Creator 2, then, had
just perceived that he, himself, had created his own magic circle, on which he could
share his knowledge and experiences with others. As Bennett, Brady & Branham (2018)
mentioned, co-creation reinforces a sense of identity in people with disabilities. Based
on the reaction from Creator 2, we guess it applies to everyone.

The second reaction worth noting was from Person 4. Besides having a stronger
feeling of being part of the group once the was included (first via the reading, next with
the audio), the Supervisor’s strategy acted as trigger which helped Person 4 to share her

20 One could say it was a meta-collaboration, as it improved the C3-IDG itself.
21 Although we had planned and designed the C3-IDG to enable a Supervisor to use the game as a tool

to support her/his practice, we did not foresee her/him using the created game collaboratively with
the game Creator and other Players simultaneously.

22 At this point, thus, the Creator became a Collaborator in the session (Enabler), and Person 4 became
Included.

23 In Portuguese, this is called “jogral”.

D.5. Scenario: Inclusive Game Creation to Aid People Undergoing Alcohol and Drugs Rehabilitation 295

Figure 30 – Use phase session.

(a) Project 2: Player prompted for the decision
created in Figure 28b during a Use session.

(b) Project 2: Positive modifications in the pa-
rameters during use, after the Player made
a choice considered good when designed
by the Creator.

(c) Project 2: Image of LIBRAS video added to the project, showed in the sign language
version generated at a later Distribution phase a few dialogues before the prompt
of Figure 30a.

Source – Created by the author.

296 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

experiences. In particular, she shared a similar story to that of the Creator. In this way,
she both provided insights to the Creator on how to improve the game (acting, therefore,
as a co-Creator), and received orientation from the Supervisors for her rehabilitation.
She had, therefore, started to co-create the game. Moreover, at a smaller scale, she acted
as a Supervisor herself, as she was helping the Creator within the serious context of his
game and – especially important – the real Supervisors approved her contributions.

At this point, the Supervisors ended the Project 2 (Conclusion phase). Person 4
showed up showed in the next meetings. If we design for change and acknowledge that
inclusion should encompass use and creation, we step into a uniqueness of our models.
From the moment she became able to play, Person 4 became a Player. From the moment
we improved Lepi to suit her interaction needs, she became a Creator as well (Creator
4). From yet To Be Included, she became Included; from Player, she became a Creator.
Creator 4 was someone who had never used computers before. Although she wanted a
smartphone, it was too expensive24.

Creator 4 was, at first, scared of touching a mouse. Her daughter taught her
how to read simple, small words (“yes”, “no”) and how to write her name. Creator 4
really wanted to learn and “master” the keyboard. With the help from a Collaborator,
she narrated her story at a Conversion phase. The Collaborator recorded it. Later, at
an Enrichment phase, another Collaborator transcribed her story into text. Likewise, a
third Collaborator recorded multiple voices – one for each of her characters. When the
Creation phase started, she had digital content for her game. She built the remaining
game entities using Lepi to define her characters and scenarios. Then a Collaborator
helped her to introduce the media to the game. Based on her abilities and with the help
fromCollaborators, Creator 4 finished her first game. She played it multiple times, shared
with other participants (Use phase). She told her daughter, who could not believe her.
Then Creator 4 created a second game – more complex, with more features, receiving
less assistance.

From interdependence, Creator 4 started moving towards independence – to the
best of her abilities and interaction needs. From someone scared of using a mouse, she
became confident in her skills, sure that she could do it. Later, there was a Use phase on
which the Supervisors invited other users of the service. In this session, Creator 4 taught
people how to use the computer to play her game. Some Players read her story, other
players listened to it. She demonstrated Lepi to the Players, showing that they could
create games as well.

Overall, there were people who could use Lepi almost unassisted from the start –
24 ICTs and technology in general are very expensive in Brazil – the “Brazil cost”. This fact combined with

extreme inequality and awful wealth distribution make access to technology hard for the population.
Costs also reflect to infrastructure. For instance, the healthcare service and the inclusive school had a
single old each computer for all staff.

D.6. A Collaborative Work Model for Co-Creation of Universal Access: Individual Collaborations to Reach the
Moon 297

both for Conversion and Creation phases. There were people who needed assistance in
the beginning, becoming more independent over time. There were people who would
need assistance for a very long time – which is fine. They were all co-creating software as
non-professional developers – for themselves and for everyone else. No single participant
in this study could define interaction alternatives to support everyone else or modify a
game to include them; however, the community could co-create them together and use
Lepi to combine alternatives. This is not possible with EUD, Meta-Design (MD) (FIS-
CHER, 2009; FISCHER; FOGLI; PICCINNO, 2017), Participatory Design (SCHULER;
NAMIOKA, 1993), crowdwork, universal design practices, and tailoring alone. Rather, it
requires the best of them all: coordinated collaborations from an active and empowered
community, supported by a dynamic inclusion process with iterative contributions
towards universal access. This way, universal access become a community issue, which
the community itself may be able to improve.

D.6 A Collaborative Work Model for Co-Creation of Uni-

versal Access: Individual Collaborations to Reach the

Moon

In Section D.4, we described a scenario on which people at a school provided
their abilities to enable their peers to play digital games. In particular, they created
content alternatives based on skills that they already had. Every alternative could enable
others to use, and, potentially, to contribute back. With suitable (meta-)design, digital
systems could support similar workflows.

If we analyze the scenario, interaction needs came from people; solutions to
address these needs were provided by people. Individually, each one had her/his own
needs, skills, preferences, knowledge. Collectively, the abilities from one person could
provide solutions to another. In Section D.4, every time that Maria identified a Student
A who could not play, she tried to identify a Student B who could provide assistance.
Student B used her/his abilities to develop something to help Student A. If the contribu-
tion from Student B satisfied the needs of Student A, Student B removed an accessibility
barrier for Student A. As defined by Liu, Ding & Gu (2016a), “from each according to
their abilities, to each according to their needs” – from Student B, to Student A.

However, we argue that inclusion is a dynamic process. First, once the contri-
bution of Student B was introduced to the system, it can help multiple people with
similar abilities to those of Student A. Second, Student A (as well as others) was not
only included to the system – she/he became a potential provider of assistance in fur-
ther iterations. Therefore, Student A was (previously) assisted by the community to

298 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

(prospectively) assist the community. Thus, she/he does not need to concerned or in
debt (as people with disabilities may feel (LIU; DING; GU, 2016a)), for she/he can re-
ciprocate assistance in the future. Once able to use and create, every person is equal. The
Collaborative Co-Creation of Inclusion (C3-I), thus, aims to enable people to co-create
for inclusion to enable others, who potentially, may further co-create – forming cycles of
inclusion. People are assisted to assist – generalizing to software the idea behind the term
“cross-ability cooperation” mentioned by two participants in the study of Bennett, Brady
& Branham (2018). When the contribution becomes part of the software, it changes from
temporary support for interdependence to a feature for independence.

Figure 31 illustrates a cycle of inclusion. Contributions could potentially happen
in other orders, in parallel, others with similar abilities, or multiple from a same person.
They all benefit the community, potentially increasing its size. Small features add to
each other, resulting into greater effects over cycles. Every contribution complements all
others; they define different means to achieve a same goal (enable / improve human
interaction). We are, after all, designing for adaption.

Aristotle’s quote “the whole is greater than the sum of its parts” became an
important concept in system thinking (SELLERS, 2017; MEADOWS, 2008). The quote
means that, when parts are combined, there may emerge properties and behaviors that
did not exist separately. This happens here. Individually, the system was usable for
some, unusable for others. Together, inclusion was built iteratively. People were yet To
Be Included. Once Included, they may further improve the system25. Thus, roles for
inclusion at a given version (state, time, set of features) of a digital system can be:

Included Person for whom the version of the system is accessible.

To Be Included Person for whom the version of the system is inaccessible. If there is
an Enabler who can provide an interaction alternative which makes the system
usable to a To Be Included person, she/he becomes an Included person at the next
version.

Collaborator A special case of Included person – a person who helps to improve the
system. Collaborators can be Enablers or Enhancers.

Enabler At a given version of a digital system, she/he may provide an interaction
feature that enables To Be Included persons to use it upon her/his contribu-
tion.

Enhancer At a given version of a digital system, she/he may improve the quality
of an existing interaction feature. Although it will not include new people,

25 Creation, thus, may come from non-professionals as active makers.

D.6. A Collaborative Work Model for Co-Creation of Universal Access: Individual Collaborations to Reach the
Moon 299

Figure 31 – A diagram for the C3-I.

(a) The original system was accessible to a
user, who introduced spoken content to
enhance it.

(b) She/he included (new) a user with low-
vision, who converted the content to a
braille-printer friendly format.

(c) This included a user with blindness,
who could translate the content to a new
language.

(d) A foreigner user could, then, provide
audio descriptions to the content.

(e) A userwith hearing disabilities thanked
the collaboration with new input map-
pings to simplify user input.

(f) This helped a user with motor disabil-
ities to interact with the system. Poten-
tially, iterations could happen to reach
universal access.

Source – Created by the author.

Note – In each subfigure, an existing user introduces a new interaction feature created by her/him. This
feature enables new people to use the system, who may, potentially, keep improving the overall
accessibility with their knowledge and skills.

300 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

her/his contribution may improve the system for those already Included26.

These roles are transient, potentially varying at a new version of a system. Towards
universal access, there must exist Enablers among Included users at each version of
a not yet universal system to transform To Be Included people into Included ones. If
there are not any, it is not possible to progress into universal access without outside
participants, because available abilities and skills of current Included members cannot
provide required alternatives for the remaining To Be Included people.

With the roles, we can generalize a workflow from the scenario described in
Section D.4 with a few steps. Towards universal access, each iteration follows the same
pattern27:

1. Identify existing interaction issues;

2. Choose an existing interaction issue;

3. Identify a feature to overcome the chosen issue;

4. Identify people (Enablers) who can create the feature;

5. Request the features to an Enabler;

6. Upon conclusion, add the feature to the system.

Theoretically, a version Vi of the system starts with a set of interaction features Fi,
and a set of users U, which is the superset of the disjoint subsets Ii of included users
and Oi of To Be Included people. Ai is the set of possible interaction features at version i.
Ei is a subset of Ii describing potential Enablers at version i. Each Enabler can contribute
a subset of features belonging to Ai; in other words, the Enabler n can provide the
contributions Cn,i ⊆ Ii at version i.

The issue is selected at Step 2; its solution defined S at Step 3, affecting TI ⊆ Oi

people. If there exists an Enabler Eu who can provide S (that is, S ∩ Cu,i 6= ∅, ∀u ∈
{1, 2, ..., |E|}), and Eu contributes S, then, after conclusion of Step 6, Vi+1 will have
Ii+1 = I ∪ T Included users and Oi+1 = Oi \ T To Be Included people28. At i + 1, people
26 The difference between Enablers and Enhancers is more theoretical than practical. An Enhancer is an

Enabler whose inclusions contributions already exists in the system. The Enhancer role is not inferior
to the Enabler. We defined this role for, although a systemwith only Enhancers can still improve, it will
not include new people. Thus, theoretically, although there is a limit to the contributions of Enablers,
Enhancers can keep improving the system indefinitely.

27 For usability improvements, switch “Enablers” with “Enhancers”, “create” with “improve”, “add”
with “update” or “modify”.

28 For simplicity, this assumes that every person needs a single interaction feature. Otherwise, each
person would have a set of required interaction needs. After they were all satisfied, the person would

D.6. A Collaborative Work Model for Co-Creation of Universal Access: Individual Collaborations to Reach the
Moon 301

who could provide S became enhancers. Likewise, newly-Included people may become
Enablers and Enhancers, depending on their abilities and skills29.

Table 5 traces the collaboration dynamics of the C3-I instanced to the scenario
described in Section D.4. It presents successive iterations of end-user collaborations30. It
starts from the original system (V0), proceeding to next versions as people contributed
to it. Although not in the table, upon contribution, the role of a Enabler may change to
Enhancer (if she/he cannot included new people once again).

D.6.1 Strategies to Foster End-Users as Enablers and Enhancers Col-

laborators

For inclusion, adaptation should be oriented to modify human-computer inter-
action. The first step is acknowledging that human senses define boundaries for any
interaction. The five basic senses (vision, audition, olfaction, gustation, and somatosen-
sation) are the “primitives” to define input and output strategies. Vision, audition,
and somatosensation are, currently, the three main options for human interaction with
digital systems31. Graphical, auditory, and haptic interfaces are examples of mediating
human-computer interaction with each sense. For digital accessibility, sensory-wise im-
provements may happen in seven main ways (OBRENOVIC; ABASCAL; STARCEVIC,
2007; GARCIA, 2014; YUAN; FOLMER; HARRIS, 2011):

1. Replacing representation of media from one sense to another;

2. Simplifying representation of media to its essential information;

3. Enhancing representation of media to magnify its contents;

4. Reducing the universe of possible commands;

5. Automating part of the interaction;

6. Enabling the use of a new input device;

7. Adding/improving the compatibility with an assistive technology.

become Included. To support this mathematically, we could a new set representing required interaction
features per person. A person would be Included when the system provided all interactive needs that
she/he needed.

29 Mathematically, Enablers who became Enhancers would remain Enhancers. As real people, however,
people may learn or acquire new knowledge, which could they transform into Enablers once again.
This is a positive deviation from the theory, and emphasizes the transiency: the role of a user may be
altered whenever new (dis)abilities, knowledge, skills, and needs change. For completeness, a real
person may also lose abilities (temporarily or permanently), which may revert her/his role back to yet
To Be Included.

30 Different orders or collaborations would result into other outcomes.
31 Further alternatives may exist in the future. For instance, advances in brain-computer interfaces (BCI).

302
A
PPEN

D
IX

D
.
O
neSm

allStep
From

a
U
ser,a

G
iantLeap

forU
niversalA

ccess
Table 5 – Collaborative model workflow for each contribution of the example presented in Section D.4.

System Student
Features Name Needs Can Provide Role

Portuguese English Portuguese English Portuguese English
~ Á i ~ Á i ~ Á i ~ Á i ~ Á i ~ Á i

0 Ë Ana Ë Ë Included
João Ë á á Included
Isabela á á To Be Included
Pedro á á To Be Included
Linda á á To Be Included
James á á To Be Included
Robert á á To Be Included
Elizabeth á á To Be Included

1 Ë Ë João Ë Ë á Enabler
Isabela Ë á Included

2 Ë Ë Ë Isabela Ë Ë Ë Enabler
Linda Ë á Included
James Ë á Included

3 Ë Ë Ë Linda Ë Ë Enhancer
4 Ë Ë Ë Ë James Ë Ë Enabler

Robert Ë á Included
5 Ë Ë Ë Ë Ë João Ë Ë Ë Enabler

Pedro Ë á Included
6 Ë Ë Ë Ë Ë Ë Robert Ë Ë Enabler

Elizabeth Ë á Included
7 Ë Ë Ë Ë Ë Ë Pedro Ë Ë Enhancer
8 Ë Ë Ë Ë Ë Ë Elizabeth Ë Ë Enhancer

Source – Created by the author.

Note – Ë: Feature is part of the system; requirement fulfilled. á: Feature is needed; someone can contribute it. ~: Text
transcription. Á: Audio speech. i: Sign language video. #: Version of the system (in text, V#); contribution number

D.6. A Collaborative Work Model for Co-Creation of Universal Access: Individual Collaborations to Reach the
Moon 303

The second step is noticing that messages can be decoupled from their repre-
sentation in digital communication, and, thus, from their implementation. Concepts
from Semiotics such as sign and signifier are helpful for this regard (BOUISSAC, 1998).
Signs exist by themselves. They abstract conceptions and functions for things. Signifiers
provide denotation for the content. They define a representation for a sign – for instance,
icons and symbols represented by sounds, images, and words. Signifiers result from
perception and interpretation of a sign, generating mental thoughts – connotation for
content.

From Semiotics, a sign may have multiple signifiers representing it. For accessibil-
ity – and, especially, for our purposes –, decoupling messages from representations can
be useful. If a very same message can have multiple media to convey it, we are able to
define interaction alternatives to provide the same content. In this perspective, universal
access for digital systems does not necessarily imply “one-size fits all” solutions. Rather,
it can mean “adjustable solutions” composed of subsets of interaction features. It is,
therefore, a tailoring approach to universal access. People define the way they interact
with digital systems by selecting the most suitable alternatives to their needs.

For input, interaction alternatives assist people to command the system. Strategies
include input reduction, automation, and scanning (YUAN; FOLMER; HARRIS, 2011).
In this case, systems should define semantics of use instead of particular physical-level
interactions and implementations – for instance a command to confirm instead of button
to confirm. This enables input mapping/remapping to define multiple schemes for use
(GREGORY, 2014).

For input, interaction alternatives are input devices and mappings. The system
should not assume any particular devices for input; rather, it should provide application
programming interfaces (APIs) that allows developers to introduce any device they
want to communicate with the system. For output, interaction alternatives are media
transformation. For the main interfaces, at a high-level, they are transformations of:

• Animation/Video to/from Audio;

• Animation/Video to/from Graphics;

• Animation/Video to/from Text;

• Animation/Video to/from Haptic Stimuli;

• Audio to/from Graphics;

• Audio to/from Text;

• Audio to/from Haptic Stimuli;

304 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

• Graphics to/from Text;

• Graphics to/from Haptic Stimuli;

• Text to/from Haptic Stimuli.

At a low-level, approaches define how to perform transformations. From Sub-
section D.2.2, we can note that sensory-wise improvements to accessibility in games
(real-time interactive systems) related to content redundancy. If we define ways for end-
users to create content redundancy based on their abilities, we enable them to co-create
accessibility features for inclusion. Table 6 provides examples of possible approaches.
The table is not exhaustive in any way; our goal is to provide examples of modifications
that do not, necessarily, requires expert knowledge from end-users. Instead, we focus
on daily life skills that can help others to overcome accessibility barriers.

Table 7 provides examples of possible companion meta-data for common dig-
ital media. Enablers and Enhancers are not, necessarily, digital systems experts; thus,
anticipating alternatives provide guidance to suggest what they may include into the
digital system. On the other hand, by anticipating possibilities, developers may imple-
ment features to adapt their system to suit the content it will need to reproduce. Hive
combined with interdependence as a frame (SectionD.2.4) could contribute to identify
more possibilities.

D.7 A Collaborative Work Model for Co-Creation of Uni-

versal Digital Games: The Collaborative Work Model

Applied to Games

The C3-I from Section D.6 originated from our Collaborative Co-Creation of
Inclusive Digital Games (C3-IDG), a pillar of our framework. The C3-IDG defines a
game creation process to support creation and use32. It has four transient roles:

Supervisor Person (usually a domain expert in serious contexts) responsible for defin-
ing the goal of the creation. She/he guides (correct, suggest, recommend) Creators
during the development of the project; requests, whenever needed, improvements
from Collaborators; and shares the project to Players.

Creator Person who creates game content.
32 Even though, most of the model is sufficiently generic to support other creation activities, with adjusts

in terminology and goals.

D.7. A Collaborative Work Model for Co-Creation of Universal Digital Games: The Collaborative Work Model
Applied to Games 305

Collaborator Person who can improve aesthetics and functional qualities of the game
by providing a new resource or interaction alternative, or modifying an existing
one. This is a combination of the Enabler and the Enhancer roles from the C3-I.

Player Person who plays the game, without modifying it (at use time).

The C3-IDG defines a process of creation, which is overseen by Supervisors. For
inclusion, Supervisors track interaction problems to enable their intended audiences
(for Players) to play projects (by Creators). This way, they play “Maria” in the scenario
from Section D.4 – whenever a Creator cannot provide interaction alternatives and/or
improvements on her/his own, a Supervisor can request aid from Collaborators. This
way, Creators and Collaborators co-create inclusion – the community may provide what
a single person cannot.

Game creation is the end practice of our framework. Thismeans that development
shortcuts are welcome instead of condemned; programming and technology in general
are part of the process – not the process itself. The Elemental Tetrad (ET) from Schell
(2008) provided a useful game design framework for our purposes, because it divided
game design into four interconnected and equally important elements: mechanics, story,
aesthetics, and technology. With four elements, we could provide different opportunities
for collaboration. In turn,more opportunities resulted into greater possibilities to support
diversity, because we could explore more approaches to suit heterogeneous abilities.
In serious contexts, this had the added benefit to aiding domain experts who by any
chance wanted to apply game creation as part of their activities.

D.7.1 Game Creation Process

To help end-users to create tailorable games as non-professional developers,
we divided game creation into eight phases, which orchestrates when and how roles
(Supervisor, Player, Collaborator, and Player) collaborated (Figure 32):

306
A
PPEN

D
IX

D
.
O
neSm

allStep
From

a
U
ser,a

G
iantLeap

forU
niversalA

ccess
Table 6 – Possible conversions of interaction features.

Ability Skills / Knowledge
Existing Fea-
ture

Perception Perception Contribution Provided
Feature

Potential Inclusion For

Audio in lan-
guage (speech)

Audition Language,
speech

Language,
writing

Subtitles Hearing disabilities, Cogni-
tion (foreigners)

Audio in lan-
guage (speech)

Audition Language,
speech

Sign lan-
guage,
speech

Sign lan-
guage video

Hearing disabilities

Text in language Cognition Language,
reading

Sign lan-
guage,
writing

Subtitles Hearing disabilities

Text in language Cognition Language,
reading

Language
(another)

Subtitles
(translation)

Cognition (foreigners)

Video Vision, au-
dition

Language,
speech

Language,
audio
description

Audio De-
scription

Vision disabilities

Video (with au-
dio description)

Audition Language,
reading

Language,
writing

Subtitles Hearing disabilities, Cogni-
tion (foreigners)

Controls SomatosensationFine
motor
skills

Programming Alternate
control

Motor disabilities

Controls SomatosensationFine
motor
skills

Programming Control (au-
tomation)

Motor disabilities, Cognitive
disabilities

Sound effects Audition Language,
speech

Language,
writing

Text effects
(onomato-
peas)

Hearing disabilities, Vision
disabilities

D
.7.

A
CollaborativeW

ork
M
odelforCo-Creation

ofU
niversalD

igitalG
am

es:TheCollaborativeW
ork

M
odel

A
pplied

to
G
am

es
307

Ability Skills / Knowledge
Existing Fea-
ture

Perception Perception Contribution Provided
Feature

Potential Inclusion For

Sound effects Audition Language,
speech

Cognition,
drawing

Visual effects Hearing disabilities

Visual effects Vision Language,
writing

Text effects
(onomato-
peas)

Hearing disabilities

Visual effects Vision Language,
speech

Sound
effects

Vision disabilities

Text effects (ono-
matopoeia)

Cognition Language,
reading

Language,
speech

Sound
effects

Vision disabilities

Text effects (ono-
matopoeia)

Cognition Language,
reading

Cognition,
drawing

Visual effects Hearing disabilities

Image (colors) Vision Fine
motor
skills

Cognition,
drawing

Image (col-
ors for color
blindness)

Vision disabilities

Map (graphi-
cal)

Vision Cognition,
language

Sonar, GPS,
Audio com-
pass

Vision disabilities

Standard diffi-
cult

Cognition Programming Difficult lev-
els

Cognitive disabilities

Navigation SomatosensationFine
motor
skills

Programming Text (list of
navigable ar-
eas)

Motor disabilities, Cognitive
disabilities, Visual disabilities

Exploration SomatosensationFine
motor
skills

Programming Text (list of
nearby enti-
ties)

Motor disabilities, Cognitive
disabilities, Visual disabilities

308
A
PPEN

D
IX

D
.
O
neSm

allStep
From

a
U
ser,a

G
iantLeap

forU
niversalA

ccess
Ability Skills / Knowledge

Existing Fea-
ture

Perception Perception Contribution Provided
Feature

Potential Inclusion For

Simultaneous in-
put

SomatosensationFine
motor
skills

Programming Sequential
input

Motor disabilities

Instructions Cognition Language Language Instructions
(with finer
details)

Cognition

Informative con-
tent

Cognition Language,
reading,
hearing

Language,
writing,
speech

Simpler lan-
guage

Cognition (literacy)

Informative con-
tent

Cognition Language,
reading,
hearing,

Language,
writing,
speech

Summary of
information

Cognition (literacy)

Sensory stimuli Sensory
skill

Ability Programming Assistive
technology
support

Disabilities addressed by the
technology

Text Cognition Language,
reading

Programming Font for
dyslexia

Cognition (dyslexia)

Source – Created by the author.

D.7. A Collaborative Work Model for Co-Creation of Universal Digital Games: The Collaborative Work Model
Applied to Games 309
Table 7 – Examples of purpose and intent of use for common digital media, with com-

panion meta-data to ease user contribution.

Media Purpose Context of Use Meta-Data Alternate Form

Text Information Label Content Image, Sound
Description Content Image, Sound
Subtitle Subject, content Image, Sound
Instructions Content Image, Sound

Image Information Graph Summary of data Text, Sound (speech)
Illustration Description of illustration Text, Sound (speech)

Aesthetic Static Description Text, Sound (speech)
Animation Description Text, Sound (speech)

Sound Information Instructions Description Text, Image, Video (sign)
Dialogue Subject, content Text (script)

Aesthetic Sound effect Description, graphical effect Text, Image
Music Lyric Text, Video (sign)

Video Information Documentary Description, subtitles Text, Audio, Video (sign)
Aesthetic Music clip Lyric Text, Audio, Video (sign)

Source – Created by the author.

1. Conception. The starting phase is the conception of the game project. In this phase,
Supervisors plan the project, defining its scope, goals, parameters, and the Creators
who will participate. After they finish planning, Creators can start working on the
project – transitioning the process to the Conversion phase.

2. Conversion. In the Conversion phase, Creators define the first prototype for the
game project. As the first prototype is not the final game, its technology may differ
from the final game’s. Thus, the Conversion phase acts as a phase of “adaptation”
for Creators, whomay had never created games, programmed, or used TICs before.
Creators who are tech savvy may opt to create their first prototype with the chosen
technology for the final product – this results into a high-fidelity prototype, the first
version of the project. Other Creators, however, may explore different technologies
to express their ideas. For instance, text descriptions, drawings, and collages –
or whatever material is suitable for the needs of the Creator – can materialize
low-fidelity prototypes to explore ideas. With them, a Creator can build her/his
game iteratively at future Creation phases. Alternatively, a Supervisor may request
that a Collaborator implements an initial version of the game based on the low-
fidelity prototype33. Instead of creating the technology from scratch, this enables
Creators to work with an existing project first – a possible way to remove an initial
accessibility barrier34. Regardless of the approach, the next phase is Evaluation.

33 Therefore, although Creators are the main actors for the Conversion phase, Collaborators may aid
them.

34 In the future, the goal is to expand the Conversion phase to include noveau ways to create prototypes –
for instance, with approaches similar to Pixel Press (<http://projectpixelpress.com>), Google Quick

http://projectpixelpress.com

310 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

Figure 32 – Phases of the game creation process. Below the name of a phase, we list its
main actor.

3. Evaluation. In the Evaluation phase, Supervisors analyze the current state of the
project. Their goal is verifying whether the project fulfill their plans. If it does not,
Supervisors plan the next step, providing feedback to Creators on what should
improve, on how to succeed. This way, the Evaluation phase promotes share and
transfer of knowledge – a master and apprentice metaphor, on which a Supervisor
supports her/his apprentices with the creation. The game becomes a medium of
communication for the apprentice. Consequently, it becomes means of counseling,
reviewing, suggesting, teaching, and sharing for domain experts.
Depending on the evaluation of Supervisors, the next phase is:

• Creation, if theywant Creators to act next. In this case, Supervisor suggests the
next steps for Creators – for instance, improvements, problems and corrections,
new scenarios for consideration.

• Enrichment, if Collaborators should be the next actors. In this case, Supervi-
sors want external improvements for the project; they can request new assets,
features, or interaction alternatives for Collaborators to improve the project.

Draw! (<https://quickdraw.withgoogle.com>), GURI VR (<https://gurivr.com/>), and WordsEye
(<http://www.wordseye.com/>)

https://quickdraw.withgoogle.com
https://gurivr.com/
http://www.wordseye.com/

D.7. A Collaborative Work Model for Co-Creation of Universal Digital Games: The Collaborative Work Model
Applied to Games 311

• Distribution, if the next audience are Players. In this case, a play session comes
next.

• Conclusion, should they consider that the project fulfilled its purpose – or
they want to terminate it for any other reason.

4. Creation. The Creation phase is the main development phase for Creators. This is
the moment that Creators iterate on the development of their game, considering
comments from Supervisors to work towards the next version. Creation may
encompass any combination of elements of the ET (mechanics, aesthetics, story,
and/or technology) suitable to address the requests from the Supervisors, and to
implement ideas into game content.
For inclusion, Creators should provide as many interaction alternatives for created
content as they can, according to their abilities. However, as the C3-IDG is for
co-creation, it is not expected that Creators provide all; rather, Supervisors can
request them to Collaborators at the next Evaluation phase. Likewise, if there
were new assets and content alternatives provided by Collaborators at an earlier
Enrichment phase, Creators add them to their games at this step.
When a cycle of creation ends, it starts a new Evaluation phase.

5. Enrichment. When Supervisors notice that some features are missing or can be
improved, they may request these features in a future Creation phase. However,
Creators might not be able to fulfill their requests at times – they might be outside
their abilities. In these cases, external Collaborators may help.
Collaborators act as Enablers and/or Enhancers. If a Supervisor requested improve-
ments for aesthetics or for existing features – to improve the gaming experience –,
Collaborators are Enhancers. If a Supervisor requested features to enable access,
they are Enablers. In this case, the goal of a Collaborator is to provide a feature
to promote inclusion. Contributions can include, for instance, media transforma-
tions from Subsection D.6.1, alternatives for input (mappings, devices), support
for assistive technologies, and/or even programming support (for end-users are
not professional developers). Collaborators can be end-users, professional from
various domains, participants from other projects – whoever the Supervisors can
or want to reach and request.
When a Collaborator finishes, she/he provides her/his work to the Supervisor.
This starts a new Evaluation phase.

6. Distribution. At the Distribution phase, Supervisors assemble a game to suit the
needs of their intended audience of Players. Interaction needs from the Players
may differ from those of the Creators and Supervisors themselves – or even among

312 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

Players. Assuming that there are suitable interaction alternatives suitable for the
needs of Players, the Supervisor selects them at the Distribution phase to generate
games accessible to them. Distribution is the phase on which the “adjustable solu-
tions” materialize via tailoring. Supervisors select desired alternatives to compose
playable games matching the abilities of Players. If they do not exist yet, Supervi-
sors should request them before proceeding; the process returns to the Evaluation
phase. If they exist, the creation platform should combine the chosen interactions
to generate the game35 36. The process advances to the Use phase when the game
is ready.

7. Use. If the Distribution phase is successful, Players can play games suitable to their
interaction needs and abilities at the Use phase. Supervisors may participate in
game sessions, if it suits their goals, to request feedback to Players, share projects
among Creators, evaluate if interaction alternatives are working properly, promote
new experiences, or any other purposes they consider relevant. When the session
ends, a new Evaluation phase starts.

8. Conclusion. “Art is never finished, only abandoned”. Da Vinci is right, for, al-
though it is always possible to improve it, it must end (normally abandoned)
sometime.

D.7.2 From Story to Mechanics to Programming: A Creation First Ap-

proach to End-User Game Development

We wanted to foster game creation from the start in our activities. Considering
the ET, we chose story as the starting point, with goal of progressing towards technology
(promoting computational thinking) over time. Our reasoning was that story-related
activities were closer to daily experiences of end-users – especially of those who had
never used computers before – than programming activities.With this choice, we selected
the following activities as an approach for game-centered EUD:

1. Linear storytelling;

2. Branching storytelling;

3. Collaborative storytelling;

4. Storytelling with pre-defined mechanics;
35 This is the role of our software architecture and creation platform. Another alternative would be

generating a game with all available alternatives, and letting Players combine the ones they want at
run-time.

36 The metaphor of the jigsaw puzzle applies here again – we are placing the pieces to create a game.

D.7. A Collaborative Work Model for Co-Creation of Universal Digital Games: The Collaborative Work Model
Applied to Games 313

5. Computational thinking patterns;

6. Creation of new mechanics.

Our inspiration were the phases of the Consume-Create Spectrum (Subsec-
tion D.2.3): animation, interactive simulation, collective simulation, construction set
simulation, pattern-based authoring, end-user programming, and traditional program-
ming. With a storytelling approach, we assumed that most people would not start
clueless. People are used to consume non-interactive, story-centered media – including
books, theater plays, movies, and soap operas – in daily life activities. This way, they
would have a head start in the process. The consumption part of the model could happen
at Use phases of the process – Creators (as Players) could play the games from each
other, as well as examples that we provided exploring more techniques and possibilities.

To follow the “gentle slope” of the original Consume-Create Spectrum,wedefined
linear storytelling as the initial creation activity, as we argue it is similar to animation.
Like an Animation, a linear story has a single plot flow; it always starts, progresses, and
finishes the same way. Moreover, people can create and share stories in multiple ways –
they can tell, write, draw, diagram, stage. For accessibility, thus, storytelling was a rich
medium to define low, medium, or high-fidelity prototypes quickly. Game-wise, linear
storytelling relates to simple visual novels.

Branching storytelling came next, as an approximation to interactive simulations.
Non-linear, branching stories can define ramifications for the plot. Events, decisions,
and choices can define how a story progresses; scores based on choices allows Creators
to communicate how they evaluated a match from a Player. Programming-wise, we
approach variables, conditional structures, and – for creative Creators – repetition
commands (a branch may return to a previous one). Game-wise, we approached visual
novels and interactive fiction games.

Collaborative storytelling follows. It approaches collective simulations when we
consider that multiple Creators can co-create a story if each of them creates her/his
own branches. Programming-wise, defining and merging branches acted as a primitive
strategy of modularization.

Hitherto, games are interactive storytelling. Characters and dialogues were fun-
damental for the plot; places and objects were secondary, backgrounds to the story.
From storytelling with pre-defined mechanics on, end-users start to dabble with game
programming.

In storytelling with pre-defined mechanics, characters, places, and objects start
becoming dynamic entities in game worlds. Instead of story players, games become
simulations with agency due to game mechanics. Players Act to play, Creators add

314 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

pre-defined game mechanics to convert entities into interactive elements with behaviors
– it is our take on construction set simulation. Mechanics including dialogues, movement,
character and object interaction, object picking and using add behaviors to entity. Events
enable Creators to define how an entity reacts upon interaction. Programming-wise, this
strategy approaches component based programming and event-driven programming.
Game-wise, it approaches adventure and role-playing games.

Next comes computational thinking patterns, based on pattern-based authoring.
From a combination of mechanics, there might emerge more complex interactions.
This strategy includes more complex pre-defined mechanics, with pre-defined systems
combining them. For instance, places, characters, objects and physics allow the creation
of platform games37. Programming-wise, this strategy promotes computational thinking
patterns and systemic design. Game-wise, it approaches action and platform games.

Finally, comes the creation of new mechanics, reaching the end-user program-
ming phase of the Consume-Create Spectrum. At this point, scripting, macros, and
visual programming languages come, moving towards more traditional programming
practices. As these activities can be Turing-complete, there are not theoretic limits towhat
can be implemented; rather, the underlying creation platform imposes the limitations.

Although these mechanics may appear impossible for some audiences, people
should not have to create and play exactly the same way. “One size fits all” solutions are
limited; tailoring is not.

In this chapter, games are not video games; they are Meta-Games and Games.
We should, thus, think differently – we design for no one to include everyone. Thus,
we should think on ways to convey what is happening in the game world by ability;
the Meta-Game has data, not human-IO content. The goal of the Game is to provide
different ways to present the data and request input. All Games share the same rules
(as they are the same Meta-Game); however, each of them may be played differently.

Do all games need to be played the same way by all players? We argue that they
do not. If we design for adaptation, we can explore the best way to convey a mechanic
for each ability.

D.7.3 Supporting The Other Pillars for Inclusive End-User Creation:

Collaboration and the Lepi Game Platform

Interaction composability is not the goal of traditional software, for most systems
are concerned with limited options for interaction. Consequently, current development
approaches do not promote designing for interaction composability. To address both
issues, we needed to support use and creation.
37 Side scroller.

D.7. A Collaborative Work Model for Co-Creation of Universal Digital Games: The Collaborative Work Model
Applied to Games 315

Lepi is an end-user game creation platform based on our architecture. It imple-
ments our run-time Tailoring algorithm, which allows run-time (re-)definition of user
interaction. As an EUGD approach, Lepi enables Creators to define our approach to
tailorable games without having to understand the underlying architecture and the
theory behind it. Although games created with Lepi share the same logical rules, their
interaction features may vary to support particular interaction needs of players. At this
time, Lepi supports the three first strategies outlined in Subsection D.7.2 – it focus on
storytelling based games38.

From Subsection D.6.1, interaction alternatives are an important aspect for in-
clusion. When people co-create and provide alternatives, they can enable others to use
and create. Lepi encourages this workflow. Output in Lepi uses Semiotics’ signs as its
primitive abstraction for content. As a sign, content may have multiple representations
to convey the same message. Lepi express this concept to end-users as slots39 – as proof
of concept, we have text, audio, and sign language video slots. For instance, “Hello” is a
textual representation of a message; it goes into the text slot. Similarly, a voice narration
of the phrase goes into the audio slot; and a sign language interpretation can be attached
to the video slots. Creators, thus, have three ways to insert game content into their
project: writing to a text input field, attaching a recording of spoken content, or attaching
a video of sigh language content. Together, these alternatives can generate seven possible
output combinations to convey the story to Players (text; audio; sign; text and audio;
text and sign; audio and sign; text, audio, and sign)40 41. If a Player can perceive at least
one of these combinations, she/he may perceive the output of game to play.

Input in Lepi explore semantics of use to define game commands. Instead of
physical-level interactions, commands express actions abstracting Players’ intents. For
interactive storytelling, actions include “advancing the story”, “selecting an option
of a decision”, “confirm/provide the selected option”. With input mapping, people
can assign any input mechanism (button, stick, axis, sensor. . .) of an input device to
play. Accessibility-wise, this means that developers can provide implementations to
support for any input devices and assistive technologies that they desire. Once an
implementation is added to Lepi, Players can use its underlying input device to play.
Moreover, as commands express semantics, developers can define macros and bots to
help people with motor disabilities (instead of a mapping from an input device, the

38 This will expand once we approach next phases with new mechanics.
39 This reinforces the metaphor of game composition and inclusion as a jigsaw puzzle, on which people

create and place pieces to improve accessibility. Each slot is a placeholder for pre-defined media
alternatives.

40 This is for a single language. Internationalization would multiply this number, as well as dialetic
variations, and written forms of sign language.

41 The total will not always be a combination, for some alternatives may clash with others. For instance,
we could not support audio in two different languages at the same time. Likewise, complex game
mechanics will result into more clashes in the future.

316 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

command comes from an algorithm). Lepi currently supports mouse, keyboard, and
gamepads as input devices. As we explore new audiences, we could add more.

Lepi supports, primarily, the Creation, Distribution, and Use phases of the game
creation process described SubsectionD.7.1. For Creatorswho are tech savvy, had created
gameswith the framework before, orwish to start fromahigh-fidelity prototype, Lepi can
also be an approach for the Conversion phase. Likewise, due to its slots, Supervisors can
monitor what interaction alternatives are missing, and, thus, request them at Enrichment
phases. People whose abilities can fill a slot can create the desired alternative; afterwards,
Creators can attach them to their games into a later Creation phase. Finally, at the
Distribution phases, Evaluators can choose which slots will be part of a game generated
by Lepi. The underlying implementation combines the chosen alternatives to present
the game to the Players at the Use phase of the process.

D.8 Discussion

One small step from a user, a giant leap for universal access. This adaptation of Neil
Armstrong’s quote serves as a motto for this chapter, as end-users collaborate to improve
accessibility in digital systems. People contribute based on their own abilities, knowledge,
and skills. People fulfill their interaction needs from the kindness of others. From each,
small and punctual improvements. To each, the possibility of combining improvements
from community to choose how to interact with a system.

Even more important than providing digital inclusion, the mutualistic and com-
munistic processes empowers end-users. Abilities become themeans bywhich a end-user
can assist her/his peers, whose interaction needs are potentially different that those of
herself/himself. From the individual to the community. From the community to the
individual. Every contribution helps to build universal access.

Inclusion should be part of software. If support for accessibility comes from
within the software, it is easier to include people – with better usability and interac-
tion quality. If we consider inclusion as a dynamic process, people can work together
towards universal access. Together, they may overcome barriers that a single person
could not alone. Co-creation supersedes stagnation, as additions enable people to use,
and modifications improves the ease of use. If developers enable end-users to work
together towards universal access, the community may provide accessibility solutions
towards inclusion. Rather than external, assistive technology become part of the system
as means of alternatives of use – for software is mutable, and, thus, inclusion can be
iterative, incremental, and dynamic.

One approach to foster collaboration is defining work models for software cre-
ation – like we presented in this chapter – and build architectures and system to support

D.8. Discussion 317

and embrace them. As end-users are not developers, they need computational support
to use, co-create, and share. Moreover, they need to know that their contributions may
help others, and what they can provide. In the C3-IDG from Section D.7, we centralized
decisions in the role of Supervisor and with abstractions in creation tools (slots in Lepi).

In the generic C3-I from Section D.6, other developers could define their protocols
and mechanisms for their own software – potentially digital systems for other domains.
To avoid “re-inventing the wheel”, a better approach could be defining open formats
to describe and store content enriched with interaction alternatives. With a standard,
there could exist multiple tools for content creation. With multiple tools, end-users have
choice to use the most suitable for their abilities and/or other preferences. In this way,
we start supporting universal access for use and creation alike.

D.8.1 Limitations and Currently Unresolved Issues

The models presented in this chapter assume that end-users can modify inter-
action features of a system. This is not a traditional approach. As such, we can list the
following limitations and unresolved issues:

• We are considering very small scale games in this study, with few mechanics. Our
goal is to expand over time – by audiences, mechanics, and complexity.

• It is not realistic to expect every system to become universal – for games, in partic-
ular, it is often impossible (BARLET; SPOHN, 2012). However, every system can
become more accessible and include a broader public.

• Implementation requires particular architectural choices, which are not present in
state of practice software development kits. There is not a single user interface to
suit everyone; rather, people compose their own interfaces by selecting existing
interaction alternatives;

• Every human-interactive feature requires alternatives. This requires greater efforts
than defining a single way for interaction, as it is now. People must collaborate to
provide interaction alternatives for every new feature;

• There are, currently, few approaches to enable people with disabilities to create
digital systems and game content, potentially limiting contributions;

• Our evaluation scenarios did not consider every possible disability and/or interac-
tion barriers. Rather, they aimed to evaluate the C3-IDG. They were small tests of
viability so far;

• The C3-IDG centralizes the orchestration of the process in the roles of Supervi-
sors. For large case scenarios involving many participants, this might become

318 APPENDIX D. One Small Step From a User, a Giant Leap for Universal Access

unfeasabile. In such cases, distributed approaches could be desirable42. An even
better solution would be having a large scale Web system on which people could
register their abilities and skills, so others could request improvements;

• Content enriched with media will be much larger, incurring costs for storage and
distribution;

• Reuse of enriched media will probably be low for many domains – games, for
instance;

• Alternatives involving human voice, image, and videomay incur potential breaches
of confidentiality, privacy, and anonymity. This brings the question of authoring
and rights for redistribution;

• People may choose not to collaborate, even if they could;

• Whether it is ethical to explore community improvements to commercial products;

• Interaction alternatives and the architecture incur performance overheads;

• It is not realistic to expect every system to be universal, as it would depend on the
participants;

Especially for games, our approach is very distant from the needs of the game
industry43 – at least at this time. We may list costs, performance, security, and even
ethical and legal issues for commercial products as potential issues 44.

Especially for games, our C3-IDG is very distant from the needs of the game
industry45. We focus on very small scale games. We may list costs, performance, security,
and even ethical and legal issues for commercial products as potential issues. Although
the architecture can help with some of these issues, the discussion fall out of scope
of this chapter. The general idea is that the implementation strategies would allow
developers to keep their traditional processes, while still enabling the community to
modify the game for accessibility. Nevertheless, it incurs overheads, which is unsuitable
for high-performance games – and it would need a large scale version of the C3-I.
42 Hive exploring the C3-I, for instance, could be an alternative.
43 The reader may refer to (PORTER; KIENTZ, 2013; PORTER, 2014)).
44 Although the architecture can help with some of these issues, the discussion fall out of scope of

this chapter. The general idea is that the implementation strategies would allow developers to keep
their traditional processes, while still enabling the community to modify the game for accessibility.
Nevertheless, it incurs overheads (which are unsuitable for high-performance games), modifications
occur at run-time (restricting the potential for compile time optimizations and complicating efficient
memory layouts), and it would require significant design, implementation, and evaluation efforts.

45 The reader may refer to (PORTER; KIENTZ, 2013; PORTER, 2014)).

D.9. Concluding Remarks and Current Work 319

D.9 Concluding Remarks and Current Work

In this chapter, we described a generic collaborative work model to improve
accessibility of digital systems by means of end-user collaboration (C3-I) and one
for games (C3-IDG). The models explore what people are able to do – their abilities,
capabilities, knowledge, and skills – to enable others to interact with a game. People
are active; they create and improve. Their contributions become part of the system,
helping people with similar needs. The process is communistic, for people contribute
according to their abilities, and receive according to their needs, and mutualistic, as
every improvement contributes with an overall net gain of interaction quality.

In special, people who were previously unable to interact with a system may be-
come potential collaborators upon inclusion. They understand the difficulties from using
inaccessible and unusable solutions; this knowledge makes them (non-professionals)
experts who truly understand the struggles of using inaccessible systems. When they
become able to use and improve a digital system, their knowledge and expertise may
improve interaction quality for themselves and their peers.

For this, developer should empower people to transform inclusion into a dynamic,
iterative, and collaborative process. When people have the means for collaborating, ev-
ery small step from individuals results into potentially giant leaps of inclusion for the
community. Each contribution enables more people to use a digital game. Interaction
alternatives allow users to customize game interaction to suit their needs and abilities.
More alternatives allow for more combinations, suiting a broader range of interaction
needs. In this way, every contribution makes systems more inclusive, progressing to-
wards universal access.

The C3-IDG originated from our ongoing work on developing a framework to
support tailorable end-user creation of tailorable games. Our motto is the ideal scenario
of “games by everyone, for everyone”. The model, a software architecture and a game
creation platform form the three pillars of our framework. With the architecture, games
and creation platforms allow users to tailor all input and output at run-time to define
human-computer interaction suitable for their needs. End-users create for fun, learning,
and to contribute with digital and social inclusion. We are currently performing par-
ticipatory activities on which end-users (with different (dis)abilities) create games for
themselves and people with, potentially, different needs than theirs. We have started
with people with low literacy and hearing disabilities; we plan to expand our audiences
to include other interaction needs. Furthermore, our plan is to follow the activities in
our game-centered EUD activities as a road map to introduce complex game mechanics
over time.

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of definitions
	List of axioms, lemmas, and theorems
	List of listings
	List of abbreviations and acronyms
	Contents
	Introduction
	Problematic and Research Question
	Goal
	Research Hypothesis
	Research Approach
	Summary of Contributions and Results
	Major Contributions and Results
	Minor Contributions and Results

	Thesis Organization / How to Read This Text

	A Framework for Tailorable Games: Towards Inclusive End-User Development of Inclusive Games
	Introduction
	Related Work
	Game Accessibility
	End-User Development and End-User Game Development
	Professional Game Development: Game Engine Architectures
	Computer-Supported Collaboration Work and EUD for Accessibility

	Towards Inclusive Creation of Tailorable Games
	A Framework Towards Tailorable Game Creation: End-User Collaboration to Co-Create and Play Digital Games
	The Architecture: Tailoring the Interaction to Individual Needs in Use- and Run-Time
	Run-Time Tailorability for Games: High-Level Concepts
	Introductory Example: A Clone of Access Invaders Implemented with the Architecture
	Games for Machines: Implementing Meta-Games, Simulations Without (Human) Players
	The Game to the Player: Converting a Meta-Game to Human-Playable Games
	Elements of the Architecture For Game Accessibility

	The Collaborative Work Model for Co-Creation of Tailorable Digital Games: The Community for the Individual, the Individual for the Community
	Transient Roles of the Model: ``I Become What I am Doing''
	Game Creation Process: Multiple Phases, Multiple Opportunities for Collaboration

	Support Systems and Approaches: Game Creation Tools
	End-User Creation of (Meta-)Games: Lepi, an Inclusive Game Creation Platform for Inclusive Storytelling Games
	Generating Tailorable Games
	Enabling Tailorable Creation

	Evaluation
	Limitations
	Concluding Remarks and Current Work

	Able to Create, Able to (Self-)Improve: How an Inclusive Game Framework Fostered Self-Improvement Through Creation and Play in Alcohol and Drugs Rehabilitation
	Introduction
	A Framework Towards Games For Everyone, By Everyone
	Fostering Self-Improvement Through Game Creation and Play With Adults in Alcohol and Drugs Rehabilitation
	Overview of the Meetings
	Participants and Their Goals
	Becoming Able to Create: Exploring the Framework to Suit Interaction Needs of the Participants
	Easing Creation, Enhancing Play: Accessible Platform to Creators, Accessible Games to Players
	Being Part of the Game: Creators within the Creation
	Self-Improving with Games: Self-Expression Leading to Self-Knowledge
	Sharing Knowledge: Learning and Experiencing from Playing
	Games Transforming Participants: Anecdotal Stories

	Design Recommendations from Lessons Learned
	Concluding Remarks

	Conclusion
	Contributions and Results
	Final Remarks
	Future Work

	Bibliography
	Appendix
	This Thesis in Items
	One (Meta-)Game, Infinite Ways to Play: Run-Time Tailorability for Tailorable Games
	Introduction
	Related Work
	Game Interaction
	Universal Design
	Universally Accessible Games
	Game Accessibility Guidelines and Strategies
	Entity-Component Systems
	Data-Driven Architectures
	Event-Driven Architectures
	Input Mapping (Input Re-Mapping)

	Implementing Tailorable Games
	Formalization of a Tailorable Game
	Components (C)
	Entities (E)
	Modifying Entities
	Addings Components to an Entity
	Removing Components from an Entity

	Abstract Entities (EL)
	Concrete Entities (EIO-H)
	Converting Entities
	Agents
	Human Agents (eH)
	AI Agents (eAI)
	Transforming Agents

	Events (V) and Commands (A)
	Event Handlers (H)
	Modifying Event Handlers
	Register Event Handlers
	Unregistering Event Handlers

	Abstract Event Handlers (HL)
	Concrete Event Handlers (HIO-H)
	Converting Event Handlers

	Rules (R)
	Subsystems (S)
	Entities of a Subsystems (Esi)

	Meta-Games
	Games

	Elements of a Tailorable Game
	Component
	Entity
	Event

	Operations on the Elements of a Tailorable Game
	Modifying Entities
	Modifying Event Handling
	Defining Relationships Among Elements
	Data Processing for a Tailorable Game

	Abstract and Concrete Elements of a Tailorable Game
	Abstract Entity
	Concrete Entity
	Abstract Event Handler
	Concrete Event Handler

	Conversions Between Abstract and Concrete Elements
	Converting Entities into Abstract Entities
	Converting Abstract Entities into Concrete Entities
	Transforming Entities
	Converting Event Handlers Sets into Abstract Event Handlers Sets
	Converting Event Handlers Sets into Concrete Event Handlers Sets
	Transforming Event Handlers Sets

	Architecture for Implementing Tailorable Games
	Input Handling
	Output Handling
	Run-Time Tailoring
	Meta-Game and Game
	Two Steps to Universal Access Implementation

	The Game to the Player: Iterative, Incremental, and Mutualistic Universal Access
	First Iteration: Creating the Original Game (Conventional Game) and Obtaining the Meta-Game
	Second Iteration: Visual Impairments (Low Vision)
	Third Iteration: Visual Impairments (Blindness)
	Fourth Iteration: Hearing Impairment
	Fifth Iteration: Motor Impairment
	Cognitive Impairment: Parameterizing the Meta-Game
	Sixth Iteration: A Simple Head-Up Display
	Seventh Iteration: Combining All Profiles into One
	Further Iterations: User-Level Accessibility?

	Discussion and Future Work

	Real-Time Tailorable Games: Advancements in Run-Time Tailorability
	Introduction
	Run-Time Tailorability is Turing Complete
	Full Automation in Real-Time Interaction Is Not Always Possible
	Run-Time Tailorability in Practice
	Run-Time Tailorability Makes Accessibility a Use-Time Problem
	Run-Time Tailorability Makes Accessibility a Community Problem
	Concluding Remarks

	One Small Step From a User, a Giant Leap for Universal Access: A Collaborative Work Model for Co-Creation of Digital Tailorable Games
	Introduction
	Related Work
	Inclusion
	Digital Game Accessibility
	End-User Development and End-User Game Development
	CSCW and EUD for Accessibility

	The Pillars of the Framework: Supporting Games by Everyone, For Everyone
	Scenario: Co-Creation of Tailorable Games in an Inclusive School
	Scenario: Inclusive Game Creation to Aid People Undergoing Alcohol and Drugs Rehabilitation
	A Collaborative Work Model for Co-Creation of Universal Access: Individual Collaborations to Reach the Moon
	Strategies to Foster End-Users as Enablers and Enhancers Collaborators

	A Collaborative Work Model for Co-Creation of Universal Digital Games: The Collaborative Work Model Applied to Games
	Game Creation Process
	From Story to Mechanics to Programming: A Creation First Approach to End-User Game Development
	Supporting The Other Pillars for Inclusive End-User Creation: Collaboration and the Lepi Game Platform

	Discussion
	Limitations and Currently Unresolved Issues

	Concluding Remarks and Current Work

