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ABSTRACT

Several  bottlenecks  need  to  be  overcome  in  order  to  establish  the  biorefinery

concept  as  a  feasible  and lucrative  second  generation  ethanol  production  technology.

Lignocellulosic  biomass enzymatic  saccharification  presents  itself  as  one  of  the  major

challenges.  This  process  needs  high  productivity  while  retaining  low  cost  in  order  to

become  a  regular  practice.  However,  high  enzymatic  cocktail  cost  and  complex

phenomena makes its optimization a difficult task. Different strategies are necessary to

deal with this task. In this work, different research fronts have been explored to improve

the sugarcane bagasse enzymatic hydrolysis process performance. To improve modeling,

a Fuzzy reaction rate model was proposed. Aiming to improve hydrolysis state prediction,

specially  under  fed-batch  conditions.  This  methodology  proved  to  be  useful  in  this

situation,  improving  prediction  both  in  training  and  validation  assays.  This  model  was

coupled to a state estimator to enable monitoring of the hydrolysis process in real time. To

do such, a Moving Horizon Estimator was implemented, and instrumentation data was

obtained  from  a  soft-sensor  using  an  Artificial  Neural  Network  to  predict  solids

concentration from the reactor’s mixing power requirement.  This algorithm was able to

predict the desired state variables, however, further studies are necessary before online

implementation. Another research front explored in this work was the design of a new

reactor  architecture.  A Semisolid  Horizontal  Saccharification  Bioreactor  was developed

and coupled to a stirred reactor to compose a parallel reactor system. An automated solids

feeder and liquid autosampler were also developed. These apparatus improved energy

consumption of the process, while retaining performance indexes from other architectures.

The development  of  the new reactor  architecture opens new technologies possibilities

inside the bioethanol biorefinery.

Key-words: Biomass Saccharification, Biorefinary, Fuzzy Modeling, Power Consumption,

Reactor Development, State Estimation.
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RESUMO

Diversos desafios devem ser superados para assegurar o conceito de biorrefinaria

como uma tecnologia de produção de etanol de segunda geração eficiente e lucrativa.

Uma  das  etapas  mais  desafiadores  é  a  sacarificação  enzimática  da  biomassa

lignocelulósica. Esse processo necessita ter alta produtividade e baixo custo. No entanto,

alto custo do complexo enzimático e fenômenos complexos fazem com que a otimização

deste processo seja difícil. Diferentes estratégias devem ser usadas para lidar com essa

tarefa. Neste trabalho, diferentes frentes de trabalho foram investigadas a fim de melhorar

o desempenho do processo de hidrólise enzimática de bagaço de cana-de-açúcar. Para

melhorar  a  modelagem do processo,  um modelo de reação utilizando lógica  fuzzy foi

proposto.  Seu objetivo foi  predizer  a  concentração de variáveis  de estado com maior

precisão do que modelos clássicos, especialmente de processos de batelada alimentada.

Esta metodologia se provou eficiente, melhorando predição em ensaios de treinamento e

validação, quando comparado a outros modelos usuais. Este modelo foi usado em um

estimador de estado para viabilizar a predição em tempo real de variáveis de estado da

hidrólise. Para tanto, um Estimador de Estado de Janela Móvel foi desenvolvido. Dados

de instrumentação obtidos de uma Rede Neuronal Artificial que transcreve potência de

agitação do reator para concentração de sólidos foram utilizados neste algorítimo. Este se

provou capaz de predizer concentração, no entanto, estudos ainda são necessários para

aumentar  sua robustez.  Outra  frente  de trabalho foi  o  desenvolvimento  de uma nova

arquitetura de reator. Um Biorreator Horizontal Semi-sólido foi desenvolvido e acoplado a

um reator agitado. Um aparelho de alimentação de sólidos e um amostrador automático

de fase líquida foram desenvolvidos juntamente ao reator. Esta aparelhagem diminuiu a

necessidade  de  energia  do  processo,  enquanto  manteve  índices  de  produtividade

semelhantes ao de outras arquiteturas de reatores. O desenvolvimento deste novo reator

abre novas vias de produção no interior da biorrefinaria. 

Palavras  Chave:  Biorrefinaria,  Desenvolvimento  de  Reator,  Consumo  de  Potência,

Estimação de Estado, Modelagem com Lógica Difusa, Sacarificação de biomassa.
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1. INTRODUCTION

The growing demand for energy, alongside with population growth and a relative

decrease  in  fossil  sources  for  fuels  productions  has  led  to  investigations  for  new

renewable energy sources. A possible solution to substitute some liquid fossil fuels is the

use  of  bioethanol  (Naik  et  al.,  2010).  Bioethanol  has  been  a  reliable  and  extensive

renewable energy source used for several decades, with several countries committing to

further expand the utilization of this fuel in their energetic matrix, in order to comply to

targets for reduction of the carbon footprint. The technology for production of bioethanol

from sugar cane juice or from corn is well stablished (Rastogi and Shrivastava, 2017).

In Brazil, large-scale production and feasibility of first generation bioethanol as an

automotive fuel occurred in the 1970s when the Brazilian government initiated the National

Ethanol Program (PROALCOOL) to diminish the national dependency on importing foreign

refined oil used on gasoline production. The PROALCOOL program had as main feedstock

material sugarcane. This culture was intensified during this period, especially in Brazil’s

southeast (Furlan et al., 2013).

A coproduct  of  the  first  generation  ethanol  production  is  sugarcane  bagasse.

Sugarcane  bagasse  is  a  lignocellulosic  biomass  and  it  is  a  byproduct  of  milling  the

sugarcane to produced juice  (Carvalho et  al.,  2013).  These materials are the basis of

second  generation  biofuels.  These  are fuels  produced  from  non-edible  lignocellulosic

feedstocks and biowaste (Özdenkçi et al., 2017). Thus, second generation biofuels can

simultaneously increase productivity per land area, while diminishing competition with food

production and reducing waste production (Zabed et al., 2017). 

Lignocellulosic biomass is composed, mainly, by cellulose, hemicellulose and lignin.

These are polymers formed by different molecules, but mostly, carbohydrates. One can

then assume that  these should  be used to  produce more  bioethanol.  However,  these

carbohydrates  are  not  fermentable  when  using  first  generation  production  technology

(Souza et al.,  2013).  Other processes are necessary to make these sugar available to

fermentation,  specially  if  the  fermentation  will  be  done  using  first  generation

microorganisms.

One  of  the  main  processes  added  to  the  production  plant  to  adequate  the

lignocellulosic material  for fermentation is the hydrolysis stage. The hydrolysis stage is

where  previously  treated  biomass  is  broken  down  to,  mostly,  fermentable  monomers.
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described as the most cost intensive stage. During initial biorefinery studies, enzymes cost

alone would account to 50% of the bioethanol production cost (Chen and Qiu, 2010), and

the energy necessary to mixing during hydrolysis can be more than half of the total energy

contained in the produced bioethanol  (Zhang et al., 2010). These figures have improved

with research advances, but, if the establishment of the biorefinery is the final goal, the

hydrolysis stage should be further optimized. This stage, as the technology stands, has

small chances to overcome the described process. A drastic change is necessary, both in

the reactor operation policy and, specially, in the reactor architecture itself. If this changes

are not  conducted in  the near  future,  the entire  biorefinery implementation remains in

jeopardy. 
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2. OBJECTIVE

The main  goal  of  this  doctoral  thesis  is  to  advance the task  of  adequating the

enzymatic hydrolysis process to an industrial scale within a biorefinery. This was done in

two  main  work  lines  within  the  enzymatic  hydrolysis  stage.  First  by  elucidating  the

hydrolysis  kinetic  behavior  under  different  operating policies,  monitoring the processes

reliably,  to  ensure  full  process  understanding  and  enable  future  process  control.  And

second,  by  designing  a  new  reactor  architecture  that  promotes  the  hydrolysis  stage

energetic efficiency.

2.1 SPECIFIC OBJECTIVES

- Modeling  the  enzymatic  hydrolysis  of  sugarcane bagasse under  different  operational

policies.

- Monitoring the process by state estimation using instrumentation and kinetic model data.

-  Developing  a  scalable  bioreactor  architecture  that  enables  hydrolysis  at  high  solids

concentration, separation of solid-liquid phases, while keeping operational cost low.

- Operating the reactor and assess its performance.

-  Estimating  compounds  concentration  online  in  the  new  reactor  architecture  via

instrumentation data.
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3. LITERATURE REVIEW

3.1. LIGNOCELLULOSIC BIOMASS

Lignocellulose are the fibrous materials found in plants and vegetables. Their main

function is to provide structural support, however, other functions include microbiological

and  chemical  protection.  These  compounds  are  an  aggregation  of  several  polymers,

mostly composed by cellulose (32 – 55%), hemicellulose (19 – 24%), lignin (23 – 32%)

and ashes (3.2 – 5.5%) varying with biomass and culture conditions (Santos et al., 2012).

Cellulose and hemicellulose are both carbohydrate polymers chains, as lignin is a

three dimensional phenyl-propane polymer. These structures are highly linked by covalent

and  non-covalent  bonds.  This  configuration  makes  for  a  strong  matrix,  resistant  to

digestion or saccharification (Sun et al., 2016).

3.1.1. Sugarcane Bagasse

Lignocellulosic biomass is obtained from several crops processing industries, waste

management and even dedicated plantations. One of the most important is sugarcane

bagasse, specially in tropical countries (Brazil, India, Cuba, China, Mexico, Indonesia and

Colombia,  to  name a few).  Sugarcane bagasse is obtainment from ethanol  and sugar

industries, where it is generated as a biproduct from sugarcane milling, used to extract the

sugar rich juice from the plant.  Each ton of sugarcane, after processing, can produce,

approximately, 280 kg of bagasse (Cardona et al., 2010).

As it is the case for most crop based products, the composition of the biomass itself

can vary with culture’s condition, however, it is feasible to assume that average values for

bagasse composition are 40% cellulose, 27% hemicellulose and 15% lignin, for its main

components (Dyk and Pletschke, 2012).

3.1.2. Cellulose Morphology

Cellulose (molecular formula, (C6H1005)n) is the most abundant polysaccharide in

lignocellulosic  materials.  Its  ordered  structure  consists  of  several  hundred  glucose

molecules (Xu et al., 2013). 

The cellulose spatial conformation is determined by three main interactions. The

first interaction is the glycosidic linkage that unites a glucose to another glucose molecule

through a covalent bound. This generates a unit of cellobiose, and this disaccharide is the

repeating unit in the cellulose chain (Dias et al., 2011).
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The second interaction is between hydrogen molecules from the same chain and

the third is the between adjacent chains, both through hydrogen bridges  (Corrêa et al.,

2010). How the intermolecular interaction occurs between two separate chains dictates the

degree of crystallinity. Due to these interactions, cellulose molecules can form high density

areas, called crystalline regions, with high cohesiveness and resistant to hydrolysis, or

amorphous regions , more susceptible to saccharification. 

Amorphous cellulose can be obtained from crystalline cellulose through different

processes, but, in the presence of water, the constructed amorphous cellulose is prone to

retrograde into  a  crystalline  structure  (Karimi  and Taherzadeh,  2016).  This  process is

represented in Figure 3.1.

Figure 3.1 Cellulose Transformation During Pretreatment

Source: Adapted from Karimi and Taherzadeh (2016)

The highly packed crystalline cellulose structure is called Cellulose I,  and is the

naturally occurring variety in most higher plants. Cellulose I is constructed from parallel

chains of cellulose with the same orientations (as presented in the most left side of Figure

3.1), this type remains mostly unchanged during hydrolysis if no prior treatment is used in

the biomass. 

Cellulose II, III and IV don’t occur naturally, and are obtained when cellulose I is

subjected  to  chemical  treatments  (Phanthong  et  al.,  2018).  These  structures  are  less

crystalline  and  more  susceptible  to  hydrolysis.  Cellulose  II  if  often  called  regenerated

cellulose, and is generated when treated Cellulose I returns from amorphous organization

to  a  more  organized  form  during  precipitation  (Corrêa  et  al.,  2010).  However,  this
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reorganization is not enough to hinder saccharification to the same degree as Cellulose I

(Sun et al., 2016).

3.1.3. Hemicellulose And Lignin Morphology

Hemicellulose  differs  significantly  from  cellulose.  It  is  a  heteropolysaccharide

composed  by  hexoses  (glucose,  galactose  and  mannose),  pentoses  (xylose  and

arabinose), acetic acid, glucuronic acid and 4-O-methy-glucuronic acid, this substances

ratios differs among vegetables. Hemicellulose does not forms crystalline regions, thus it

can be removed or hydrolyzed more easily than cellulose (Canilha et al., 2012).

Lignin  is  formed by  the  polymerization  of,  mainly,  p-coumarilic  alcohol,  synapyl

alcohol  and  coniferilic  alcohol.  It  is  the  second  most  abundant  polymer  in  the

lignocellulosic  biomass,  and provides a  barrier  to  the  structure  against  foreign  agents

(Rahikainen et al., 2013). In order to prevent this effect, a delignification procedure may be

applied, since the recuperated lignin mass may be used in other processes with in the

refinery (Özdenkçi et al., 2017).

3.2. SECOND GENERATION BIOFUELS PRODUCTION IN BIOREFINERIES

Second  generation  biofuels  are  produced  from  non-food  feedstocks,  usually

lignocellulosic biomass and biowaste (Łukajtis et al., 2018). These are the only truly fuels

that can be carbon neutral  or even carbon negative. However, the production of these

fuels  may not  yet  be cost-effective,  several  hurdles have to  be overcome to establish

second generation production as a viable mean of production (Naik et al., 2010).

Therefore,  to  make  biofuels  production  a  feasible  and  lucrative  venture  the

production  plant  needs  to  be  highly  optimized  in  terms  of  finances.  Furthermore,  the

production of only one product from the biomass, the biofuel itself, may be insufficient to

ascertain plant viability.

From this issue, the biorefinery concept arises. The International Energy Agency

defines a biorefinery as a production plant that can synergistically and sustainably produce

energy (fuels, power and heat), products (chemicals and materials) and food and feed

ingredients from biomass (IEA Bioenergy, 2014). This sort of plant may be the solution to

the  hurdles  in  second  generation  biofuels  production,  since  aggregating  all  that  is

necessary during the production process under a single company reduces overall  cost

(Longati et al., 2018).
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The biorefinery design is greatly influenced by its surroundings, and are based on

available feedstock. Plants can be based on commonly produced crops (corn, wheat, rice,

barley  and others)  or  using  wood materials  from natural  or  designed forests.  Tropical

countries, alongside the previously described biomasses, have more diversified feedstocks

(coconut, sorgham, grass) (Bhowmick et al., 2018). One particular interesting biomass for

biorefineries is sugarcane bagasse, specially in Brazil.

As  previously  described,  sugarcane  bagasse  is  a  byproduct  of  first  generation

ethanol  and  refined  sugar  production.  This  technology  is  widely  used  in  Brazil,  and

generates great amounts of bagasse.  In the first generation technology, part of the total

bagasse produced is burned in boilers to  generate power for the plant, and the power

surplus is sold to the grid to generate more profit  (Dantas et al., 2013). The bagasse is

then a readily  available  source of  carbohydrates that is not  currently used to produce

ethanol in its entirety.

To  produce  ethanol  from lignocellulosic  materials  the  structural  polysaccharides

must be hydrolyzed, so that their monosaccharides units (mostly pentoses and hexoses)

become available to  fermentation by microorganisms  (Souza et al.,  2013).  In  addition,

before the hydrolysis process, a pretreatment stage is required to separate and adequate

the lignocellulosic compounds constituents (cellulose, hemicellulose and lignin) to a less

recalcitrant form that is susceptible to hydrolysis. In particular, the crystalline structures in

cellulose has to be destabilized, otherwise hydrolysis yield is very low. A representation of

the entire process is presented in Figure 3.2.
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Figure 3.2 Lignocellulosic Biomass Processing for Bioethanol Production

Source: Adapted from Santos et al. (2012)

These processes are energy intensive, and increase the cost of the final product, to

an  extent  that,  under  current  economic  market,  may  negate  a  stand-alone  second

generation bioethanol production plant (Dias et al., 2012). 

However,  adapting  the  current  established  Brazilian  first  generation  ethanol

production to also produce second generation ethanol can diminish installation costs and

help control uncertainties in the production cost of the new technology. This alternative has

been the most studied within Brazilian research groups (Longati et al., 2018). 

Furthermore, extending the Brazilian production matrix update from first to second

generation  to  a broader  biorefinery  concept,  more  products can be obtained from the

biomass.  The  products  range  from;  hydrocarbons,  syngas,  biogas  and  hydrogen

production  to  generate  bioenergy;  to  fine  chemicals  such  as  organic  acids,  phenolic

compounds and materials based on nanocellulose fibers and crystals  (Bhowmick et al.,

2018;  Farinas  et  al.,  2018).  The  fabrication  of  these  products  depend  on  the  plant’s

installation, especially in the choice of pretreatment and hydrolysis technologies.

Nevertheless,  independent  assessments  of  which  pretreatment  and  hydrolysis

technologies are to be used in a potential biorefinery is of little necessity or importance. All

sub-processes must be taken into account at once when designing the production plant. A

more expensive  process may have its  cost  offset  by  smaller  subsequent  downstream
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treatment. Yet, it is important that research projects retain a certain level of abstraction

from these integration procedures.  All  basis  can not  be covered by a single assay or

thesis, and a starting position needs to be established in order to generate reliable data,

even if certain operational policies are changed in the production plant. 

3.3. BIOMASS PRETREATMENT

The pretreatment procedure is conducted to destabilize the lignocellulosic structure,

making it more susceptible to subsequent processes. This is achieved by increasing the

material porosity and reducing cellulose crystallinity.

The entire procedure must be applied to an intensity that generates an optimum

platform to subsequent operations, while considering the formation of inhibitors and cost

effectiveness (Chiaramonti et al., 2012). 

Several  methodologies  are  available  to  this  processes,  each  one  with  different

necessities and, different end products. Thus, the choice of correct pretreatment varies

with the feedstock, process plant design and financial situation. A summary of the main

used pretreatments for biofuels production is presented in Table 3.1.

Analysis of Table 3.1 demonstrates that choosing the pretreatment to be used within

a biorefinery is not a trivial task. Not only the change in biomass structures differs greatly

from technology to technology, the liquid effluent from each also varies.

Since  the  biorefinery  concept  deals  with  the  utilization  of  the  whole  biomass

production potential, choosing only one technology can be difficult, if not impossible. It is

possible  to  assume that  an optimized biorefinery may need two or more pretreatment

techniques depending on the targeted products (Bhowmick et al., 2018).

Among  the  several  available  pretreatments,  special  attention  must  be  given  to

Liquid  Hot  Water  and  the  Steam  Explosion  pretreatments,  both  are  considered

Hydrothermal  pretreatments,  but,  in this work this name is  used as a synonym to the

Liquid  Hot  Water  pretreatment.  These  technologies  use  small  amounts  of  chemical

compounds during the process, yielding a less toxic effluent than other operations. This

can  amount  to  a  cheaper  operation  cost.  However,  this  pretreatment  generates  little

alteration and removal of lignin, and this can hinder downstream processes (Menon and

Rao, 2012).
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Table 3.1 Main Pretreatments Characteristics and Effects Summary 

Pretreatment Action Advantages Disadvantages
 Cellulose

Decrystalization
Hemicellulose

Removal
Lignin

Removal

Mechanical Milling Surface area increase
High energy
consumption

Minor Effect No Effect
No

Effect

Liquid Hot
Water

Pressurized reactor with
liquid water for a wide range

of retention times

Low inhibitors
production

Low environment
impact

High energy and water
consumption

Minor Effect Major Effect
Minor
Effect

Steam
Explosion

Exposure to steam for small
retention time

Low water
requirement

Low environment
impact

High inhibitors
production

High installation cost
Minor Effect Major Effect

Minor
Effect

Diluted Acid
Pressurized and

unpressurized reactors with
diluted acid solutions

High depolymerization
Hemicellulose

hydrolysis

High water consumption
High effluent treatment

cost
Minor Effect Major Effect

Minor
Effect

Alkali
Pressurized and

unpressurized reactors with
basic solutions

High depolymerization
Facilitates lignin

recuperation

High water consumption
High effluent treatment

cost
Major Effect Minor Effect

Major
Effect

Organosolv
Pressurized and

unpressurized with organic
and polar compounds

High lignin and
hemicellulose

depolymerization

High solvent recovery
cost

Fire and explosions risk
Minor Effect Minor Effect

Major
Effect

Ammonia
Fiber

Extension

Pressurized liquid ammonia
at moderate temperature

with sudden release

Low inhibitors
production

High effluent treatment
cost

Lignin content sensible
Major Effect Minor Effect

Major
Effect

Source: Adapted from literature Gandla et al. (2018), Mosier et al. (2005) and Rastogi and Shrivastava (2017)
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3.4. LIGNOCELLULOSIC BIOMASS HYDROLYSIS

The pretreated biomass must  then be further  processed to  provide  fermentable

carbohydrates. This process is denominated hydrolysis, or saccharification. At this stage,

the polymers released by the pretreatment stage are converted to free monomers, this is

necessary since microorganisms responsible for the anaerobic fermentation, where the

ethanol is produced, can not digest long polymers, or at least, not in a rate needed by

industrial  scale.  Two  main  technologies  are  used  in  order  to  hydrolyze  lignocellulosic

materials, using acid solutions or using enzymatic complexes (Aditiya et al., 2016).

3.4.1. Acid Hydrolysis

Acid hydrolysis is usually divided into two groups, diluted and concentrated acid

hydrolysis. Diluted acid hydrolysis uses acid’s concentrations bellow 10 g.100gMedia
-1, while

concentrated  acid  operates  above  the  10  g.100gMedia
-1   threshold  and  reaching

concentrations of up to 90 g.100gMedia
-1. The most used acid is sulfuric, but others have

been researched (Kumar et al., 2015). 

Regardless  of  acid  or  concentration  a high concentration of  toxic  and inhibitors

compounds for  downstream processes are expected from this  technology.  During acid

hydrolysis,  inhibitors  are  generated  by  degradation  and  condensation  of  hexoses  and

pentoses, mostly furfurals. This degradation does not only decreases the hydrolysis final

yield,  since  part  of  the  carbohydrates  are  being  condensed,  but  also  decreases

downstream hydrolysis and fermentation yields (Limayem and Ricke, 2012). Furthermore,

since acids are utilized, even at mild conditions, corrosive issues inside reactors are fairly

common.  In  addition,  disposal  costs  are  also  increased,  since  the  acid  needs  to  be

recovered or treated (Bansal et al., 2009).

3.4.2. Enzymatic Hydrolysis

The issues with acid hydrolysis leads to the necessity for a more environmental

suitable  process,  one  alternative  is  enzymatic  hydrolysis.  This  procedure  yields  high

conversions, with fewer risks of producing toxic secondary products (Limayem and Ricke,

2012).

Due to the high complexity of the lignocellulosic material, the enzymatic catalyst

used in the biomass hydrolysis is not composed by only one active protein, but a cocktail

of several molecules, each interacting with a portion of the lignocellulosic substrate (Sun
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and Cheng, 2002). 

This generates a large amount of proposed mechanisms, with varying degrees of

complexity. In this item, the main groups and structures from fungal produced enzymatic

cocktails are described. 

It is important to remember that other cocktails are used, such as bacterial made

cocktails. However, fungal cocktails are the most used both in academy and industry and,

in this work, it will be used as the case studied (Teter et al., 2014).

3.4.2.1. Carbohydrate Binding Module

Lignocellulose digesting enzymes are modular, meaning that more than one active

site can be found within the protein molecule and they can differ in function. Within fungal

secreted enzymes, it is common to find a catalytic center, where the hydrolysis occurs, and

a Carbohydrate Binding Module (CBM). This region is responsible for directing the enzyme

to its substrate, increasing activity (Zhang et al., 2017).

These structures are of extreme importance in a heterogeneous media. They can

greatly increase the enzyme affinity when compared to the same molecule without a CBM

site. These are also credited with being able to disrupt and make crystalline regions prone

to hydrolysis (Hildén and Johansson, 2004).

CBMs are found in both cellulose and hemicellulose digesting enzymes, and they

can  be  divided  into  three  different  categories,  CBM  A binds  to  insoluble,  crystalline

substrates, CBM B binds to soluble polysaccharides and CBM C binds to small sugars

(Dyk and Pletschke, 2012).

3.4.2.2. Cellulose Hydrolysis

The  portion  of  active  proteins  that  interacts  with  cellulose,  and  hydrolysis

intermediates from cellulose, are called cellulases. Cellulases are divided into four main

groups. Endoglucanases (endo-1,4-β-glucanase, abbreviation EG), Cellobiohydrolases, or

Exoglucanases  (exo-1,4-β-glucanase,  abbreviation  CBH),   β-glucosidases  (bG)  and

Polysaccharide Monooxygenases (PMO) also know as GS61. The interaction of these

enzymes are presented in Figure 3.3.
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Figure 3.3 Cellulases Synergistic Cellulose Hydrolysis

Source: Teter et al. (2014)

 EG works in the uninterrupted region of available cellulose molecule and binds

randomly, liberating reductive ends in the polymer chain. EGs are usually linked to CBMs

A,  they  adhere  to  crystalline  structures,  cleave  the  internal  glycosidic  bonds  in  the

cellulose  where  the  chain  is  susceptible.  This  activity  may  not  generate  a  free

carbohydrate, but generates two ends in the cellulose chain, one reducing and one non-

reduncing. Since the attack is random, the length in each side of the chain is also random,

from one glucose unit to almost a full chain (Balat, 2011; Teter et al., 2014).

The chain ends newly formed by EG activity and the naturally occurring ones in the

cellulose molecule are the biding site  for  CBHs. These are the bulk  of  the enzymatic

cocktail and can be divides into two groups. CBH I acts in the reductive ends of the chain,

as CBH II binds to the non-reduncing end of the chain. Both produce soluble cellobiose

and are usually associated to a CBM A (Zhang et al., 2017). This is the main reaction

responsible for the biomass liquefaction, since it is the primary mechanism by which the in-

soluble matter becomes soluble.

Some authors propose loosening the strict division between EGs and CBHs as the
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mechanisms for each is more elucidated. Some EGs appear to present CBHs activity, as

some CBHs can modify  their  structure to  achieve EG activity  (Hildén and Johansson,

2004). 

This idea is strengthen when the mechanisms for EG and CBH are considered, and

how similar  they  seem.  The  most  accepted  mechanism is  that  first  the  enzymes are

adsorbed to cellulose with the help of the CBM. The adsorbed enzymes then slide through

the cellulose fibril until a reactive site is found, a susceptible bond to EG and a chain end

to CBH. Then the enzyme-substrate complex is formed. This is followed by the hydrolysis

of the glycosidic bond and sliding of the enzymes along the polymer. The enzyme can then

desorb from the cellulose molecule or continuing sliding to find another reactive site and

repeat the process (Bansal et al., 2009).

However, this is not a consensus in the literature. Authors have reported that EG

does not slide on top of the cellulose molecule after hydrolysis and the mechanism through

which the CBH deals with the cellulose is still a point of much debate (Bansal et al., 2009;

Hildén and Johansson, 2004; Teter et al., 2014).

Regardless of the mechanism from each enzyme, their synergistic cooperation is

undeniable.  The  utilization  of  a  EG  improves  the  substrate  concentration  for  CBHs,

improving hydrolysis productivity.  Both enzymes use CBM to react with heterogeneous

substrates, and the product of their cooperation are small soluble carbohydrates, mostly

glucose or cellobiose (Dyk and Pletschke, 2012).

Cellobiose and other small soluble polymers need further hydrolysis to be readily

fermentable.  These  hydrolysis  reactions  are  catalyzed  by  bGs.  Since  this  stage  of

hydrolysis occurs in liquid phase, bGs are not usually linked to CBM (Reilly, 2007).

The last  group is  a  somewhat  new addition  to  describe  lignocellulosic  biomass

hydrolysis, PMOs. PMOs are a metalloenzymes that can cleave glycosidic bond without

the  need for  a  polymer  end,  generating  either  a  new end or  small  molecules.  These

enzymes require molecular oxygen and reductant cofactors. The cofactors can be supplied

by adjacent enzymes in the cocktail or chemically supplemented (Beeson et al., 2011). 

With the reaction substrates allocated the reaction occurs. However, the reaction

mechanism is still under debate. What is clear is that the PMO inserts molecular oxygen

within the carbon-hydrogen bounds adjacent to glycosidic bounds, destabilizing them and
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leading to cleave. Similar to CBHs and EGs, PMOs are usually bounded to CBMs (Li et al.,

2007).

3.4.2.3. Hemicellulose Hydrolysis

Hemicellulose hydrolysis is more complex than cellulose due to its composition,

requiring a wider group of proteins. Core groups of enzymes are endo-xylanases, that

cleave xylan polymer to shorter chains, and β-xylosidases to hydrolyze the xylan chains

into  xylose.  The  same manner  occurs  with  mannans  chains,  where  endo-mannanase

breaks the backbone of the chain, and  β-mannosidase reduces the chains to mannose.

Since xylose and mannose are not the only constituents of hemicellulose, several other

secondary enzymes also take part in this hydrolysis process (Dyk and Pletschke, 2012).

3.4.2.4. Enzymatic Cocktail Inhibition and Inactivation

Inactivation and inhibition of  enzymes are issues well  covered in  literature ever

since the early studies in enzymology. Studies have tried to explain varying reaction rates

since before  the  publication  of,  the  now famous,  Michaelis-Menten enzymatic  kinetics

paper (Cornish-Bowden, 2013). The hydrolysis of lignocellulosic material differs from those

initial studies conditions, however, several effects described in the past can be extended to

this process with minor alterations.

The enzymatic cocktail  is susceptible to denaturation, as other more simple and

isolated proteins are. Enzyme activity increases with temperature until it reaches a certain

level that the molecule is unstable, and the molecule is unable to retain its conformity.

Alterations  in  quaternery,  tertiary  and  secondary  structures  of  the  enzyme  renders  it

inactive, this process is called denaturarion, and it is, often, irreversible  (Campbell and

Farrel, 2007).

Temperature  denaturation  is  among,  if  not,  the  first  efforts  in  enzymes  kinetics

inhibition studies, and advances in this field are still being made more than a century later

(Daniel and Danson, 2013). This only demonstrates how complex the reaction mechanism

is, even for simple solutions, containing few reactants. The complexity is multiplied by a

large factor when the entire hydrolysis of lignocellulosic material is considered. Thus, even

areas considered simple and well described should be investigated.

Similarly to temperature, enzymatic complexes have an optimum pH and salinity

range. Bellow and above the thresholds of the range, sharp decreases in the enzyme
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activity are to be expected. These are related to several effects in the protein, but the most

important can be attributed to the solubility of the enzyme within its medium. The amount

of charges surrounding the enzyme, if outside the optimum range, can impede catalyst

activity, or, in more extreme concentrations, destabilize the entire molecule, precipitating it

and ceasing activity. Opposite to temperature, loss of activity due to solubility issues are,

usually, reversible (Trevor Palmer, 1985).

As is the case for most enzymes, enzymatic cocktails for lignocellulosic biomass

hydrolysis operates in, relative, mild temperature and pH conditions. It is widely accepted

that optimum values for these enzymes are around 40-50 oC and pH 4.50-5.00 (Battista

and Bolzonella, 2018). 

However, pH and temperature are important variables for process design and they

can  be  changed  if  the  loss  of  enzymatic  hydrolysis  does  not  hinder  the  whole  plant

economic optimization. Thus, it is of little meaning the search for optimum temperature and

pH ranges for a given cocktail. Instead, the research effort should be focus in constructing

robust models for the entire operational range.

Another important plant wide design task is the selection of pretreatment technology

considering the inhibitors produced in this stage that can hinder the subsequent hydrolysis.

Degradation products from lignocellulose, such as weak acids, furfurals, 5-hydroxymethyl

furfural  and soluble phenolic compounds, can all  be produced during pretreatment and

they are of great toxicity to subsequent fermentation (Sun et al., 2016).

During  the  hydrolysis  itself,  the  generation  of  smaller  saccharides  causes  a

decrease  in  productivity,  due  to  product  inhibition,  a  well  documented  effect.  Enzyme

activity inhibition by products is well documented. Cellulases are inhibited by cellobiose, as

bG is inhibited by glucose. The reaction decrease can even surpass the productivity loss

by inhibitors from other processes upstream (Dyk and Pletschke, 2012).

With the description of recent mechanism proposals, new inhibition sources have

been described.  Lignin inactivation onto the several  enzymes involved in  the biomass

hydrolysis is an effect that has been the focus of several research groups efforts (Guo et

al., 2014).

Lignin can hinder the hydrolysis in three ways, physically shielding the cellulose and

hemicellulose  surface:  soluble  lignin  can  interact  with  catalytic  sites,  rendering  the
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molecule inactive; enzymes can adsorb non-productively onto insoluble lignin surface. The

non-productivity, together with the shield effect, have been considered the majors effects in

enzyme activity depletion (Rahikainen et al., 2013). The shielding effect may be mitigated

with the choice of pretreatment, since the lignin extraction is dependent on the technology

used. 

The non-productivity aspect has more of a connection with the enzyme structure

itself.  As previously described, the enzymes involved in heterogeneous reactions (EGs,

CBHs, PMOs, xilanases and mannanases) are linked to CBMs to improve reaction site

location capacity.  However,  the CBM can also bind to  lignin,  often in a  non-reversible

manner. This can account to as much as a 50% loss of the total hydrolysis activity to non-

productivity lignin interactions (Jørgensen and Pinelo, 2017).

3.4.2.5. Biomass Enzymatic Hydrolysis Cost

From  the  described  mechanisms  and  issues  within  the  reactive  system,  it  is

possible to see how sensible the enzymatic hydrolysis process is, and furthermore, how

cost  can  increase  rapidly  when  more  cocktail  is  used  to  cope  with  activity  depletion.

Therefore, the amount of enzyme used is a very important parameter since, with current

technology, enzymatic complex cost can amount to  50% of the total second generation

bioethanol production cost (Chen and Qiu, 2010).

To  adequate  enzymatic  hydrolysis  to  a  financial  feasible  technology,  several

research  fronts  are  been  explored  to  diminish  cost;  Enzyme  production  within  the

biorefinery  (Farinas et al.,  2018);  enzymatic complex recycling  (Jørgensen and Pinelo,

2017); elucidation of inhibition mechanisms  (Li and Zheng, 2017); additives to diminish

inhibition  (Rocha-martín et al., 2017); and process intensification, especially through the

utilization  of  high  solids  concentration  within  the  enzymatic  hydrolysis  bioreactor

(Modenbach and Nokes, 2013).

3.5. HIGH SOLIDS ENZYMATIC HYDROLYSIS

In order to adequate enzymatic hydrolysis to a more profitable state, a higher ratio

of  substrate,  i.  e.,  solids  loading,  is  necessary,  generating  a  more  concentrated

carbohydrate solution at the end of the process. A more concentrated final product could

possibly generate more ethanol in subsequent stages, and enable the integration of the

second generation process with the first generation facility (Dias et al., 2013). 
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Solids are the dispersed phase of  lignocellulosic  biomass suspended inside the

reactor liquid phase, the continuous phase. Several manners can be used to express the

concentration of solids in the reactor, in this work, % will be used, and this is the mass of

insoluble material per 100 units of reactor media (gSolids.gMedia
-1).

High solids reactor also generates economical advantages, since the operational

volume is lower than in a low-solids operation, resulting in less energy to heat or cool the

reactor, as well as reduce effluent disposal and treatment costs due to lower water usage

(Hodge et al., 2008).

High Solids processes are those where the ratio of solid material to aqueous phase

is such that very little free liquid is present (Hodge et al., 2009). As water becomes sparse

within the reactor, issues arise.

It  is  well  documented  that  conversion  decreases  when  enzymatic  hydrolysis  is

carried  out  at  increasing  solids  concentrations.  This  effect  is  related  to  the  previously

described enzymatic cocktails inhibition phenomena. Several authors have described this

phenomenon,  both  for  hydrolysis  and  for  when  hydrolysis  and  fermentation  occurs

simultaneously,  known  as  Simultaneous  Saccharification  and  Fermentation  (SSF)

processes. This trend is presented in Figure 3.4, where data from several authors are

combined into one plot.

Figure 3.4 Conversions at Varying Solids Concentrations

Source: Adapted from  Kristensen et al. (2009). Data taken from;  Cara et al. (2007) ●
Hydrolysis; Schwald et al. (1989) □ Hydrolysis; Varga et al. (2004) ■ SSF; Jørgensen (et
al., 2007)  ▽  Hydrolysis and × SSF, Mohagheghi et al. (1992) ◆ Hydrolysis.

The data in Figure 3.4 is from different sources of lignocellulosic biomasses and
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with different  initial  solids concentrations.  A negative linear  relation between the solids

concentration and conversion can be observed.

It is easy to attribute this tendency to the inhibition effects described in Item 3.4.2.4.,

and these are only intensified when using a high solids operation policy. With the higher

products  concentration,  product  competitiveness  is  enhanced.  More  solids  also  mean

more  lignin,  if  this  fraction  was  not  removed  in  other  upstream processes,  within  the

reactor, increasing shielding and unproductive biding. More substrate also brings in more

pretreatment generated inhibitors (Kristensen et al., 2009).

Furthermore,  new  activity  hindering  effects,  previously  negligible  at  low  solids

concentrations, are established. Water is also necessary in order to provide a medium in

which the enzyme is suspended the lack of it can interfere in the enzyme solubility. Water

and its ions are also frequently substrates or cofactors in the hydrolysis reaction. All of

these can interfere with the cocktail activity (Modenbach and Nokes, 2013). 

Another issue is the reactive media lubricity. Normally the continuous phase (liquid

water) viscosity is low, but with the addition of high amounts of disperse phase (solids)

interaction  between  both  phases  increases,  this  causes  a  behavior  in  the  medium

rheology, changing from a Newtonian fluid to a non-Newtonian one. The change in the

fluid apparent density and viscosity requires alterations in the reactor’s mixing apparatus

and vessel design, otherwise, the mixture departs greatly from a uniform state  (Battista

and Bolzonella, 2018). Even with the change in the reactor hardware, an increase in the

energy necessary to agitate the reactor is to be expected, specially if the standard reactor

agitation hardware is used (Wang et al., 2013).

These characteristics of high solids systems may indicate that this is not a feasible

manner  to  operate  the  hydrolysis  reactor.  However,  the  benefits  of  high  product

concentration  can  outweigh  the  described  issues.  Therefore,  several  authors  have

dedicated efforts to increase this technology feasibility, particularly by altering the reactor’s

operation policy and design.

3.5.1. Biomass Hydrolysis in Semi-continuous Operations

Biomass hydrolysis in fed-batch processes appears as a promising strategy since

adverse conditions of  the standard high solids batch are diminished.  A process policy

where substrate is fed into the reactor continuously avoids the necessity of beginning the
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process with high solids loading, facilitating system initial homogenization. Furthermore,

adding  solids  after  the  previously  added  substrate  are  already  liquefied  can  not  only

increase  media  homogenization,  but  also  decrease  the  energy  necessary  to  mix  the

reactor (Corrêa et al., 2016a; Hernández-beltrán and Hernández-escoto, 2018). Table 3.2

presents the main cited publications that investigate fed-batch strategies for enzymatic

hydrolysis of lignocellulosic biomass.

The analysis of Table 3.2 brings important discussing points. 

First  point  is  the  wide  range  of  conversions  obtained  by  the  several  works

presented. Calculating cellulose conversion seems straightforward, most papers calculate

it by subtracting the fraction of hydrolyzed substrate, calculated stoichiometrically from the

products, from the initial substrate concentration.

This methodology assumes; a constant slurry density; that the volume of liquid is

equal to the total slurry; that the volume of liquid remains unchanged in the reactor. All of

these can be altered during hydrolysis. And with the increase of solids, the deviations from

this characteristics are further increased (Zhu et al., 2011). Thus, even though important,

the conversion data should be interpreted carefully.

Table 3.2 also demonstrates how modeling of fed-batch processes usually involves

altering a previous batch generated model to fit the fed-batch assay. This seems trivial,

since during batches the kinetic parameters are more easily predicted, and these models

can be used in fed-batch processes by alternating the systems mass balances. However,

this is not straightforward for high solids enzymatic hydrolysis. The kinetic model may not

hold when the new substrate feeding policy is introduced.

Previously unforeseen phenomena can arise with the addition of fresh solids. The

work of Chandra et al. (2011), for instance, demonstrated that at low enzyme loadings (5

FPU.gCellulose
-1)  the  cocktail  appeared  to  irreversible  bound  in  a  non-productive  way  to

inactive solids, this behavior was accessed via free protein analysis during hydrolysis. This

can  demonstrate  that  even  though  two  processes  amount  to  the  same  substrate

concentrations, their performances can differ, furthermore, it is reasonable to assume that

addition of fresh enzymatic complex is as important as solids feeding.
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Table 3.2 Fed-Batch Lignocellulosic Biomass Enzymatic Hydrolysis Literature Review

Publication
Feeding
Variable

Addition Control Policy Kinetic Model Principal Results and Conclusions
Cellulose

Conversion

Rosgaard et
al. (2007)

Solids
Enzyme

Empirical discrete addition No model fitting
Conversions with batch policies

superior than with fed-batch;
Viscosity in fed-batch lower

83.3 %

Hodge et al.
(2009)

Solids
Enzyme 

Optimum control profile to
maintain15% solids; Discrete

addition

Previously fitted Langmuir-
type kinetic model (Kadam et

al., 2004)

Controlled fed-batch reached batch
conversion with 25% solids; High

retention time (300 h)
82.0 %

Morales-
Rodríguez

et al. (2010)

Solids
Enzyme 

Simulation of Proportional-
Integral control used with

different controlled variables

Re-calibration of Langmuir-
type kinetic model

(Kadam et al., 2004)

No validation essay performed;
Reduction of 107% in Enzyme

Addition
88.9 %

Chandra et
al. (2011)

Solids Empirical discrete addition No model fitting
Irreversible cellulase biding; Batch
conversion superior to fed-batch

66.0 %

Yang et al.
(2011)  

Solids
Enzyme 

Empirical discrete addition No model fitting
Fed-batch policy improved

conversion and retention time over
batch process

85.1%

Gupta et al.
(2012)

Solids
Enzyme 

Open loop simulation of
different feeding; Validation

with discrete feeding

First order kinetic model fitted
with batch assay data

Experimental fed-Batch conversion
superior to batch

63.5%

Wang et al.
(2012)

Solids
Enzyme

Empirical discrete addition No model fitting
Conversion superior with lower

solids concentrations; Fed-batch
policy superior over batch

68.6 %

Zhang et al.
(2012)

Solids Empirical discrete addition No model fitting
High product concentrations;

Conversion decreased with final
solids addition.

50.8 %
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Table 3.2 Fed-Batch Lignocellulosic Biomass Enzymatic Hydrolysis Literature Review - Continued

Publication
Feeding
Variable

Addition Control Policy Kinetic Model Principal Results and Conclusions
Cellulose

Conversion

Cavalcanti-
montaño et
al. (2013)

Solids
Enzyme 

Optimal control to maximize
product and conversion;

Empirical control to maintain
rates; Discrete feeding

Michaelis-Menten kinetic
model fitted with batch assay

data

200 g.L-1 experimental glucose
concentration; Simulation of

successive batches show process
economy improvement

66,4 %

Tai et al.
(2015)

Solids
Enzyme

Optimal control to maximize
product and conversion with

automated feeding

Previously established
Epidemic Based kinetic model

(Tai et al., 2014)

Experimental fed-Batch conversion
superior to batch; 

72.1%

Corrêa et
al. (2016a)

Solids
Enzyme

Empirical discrete addition No model fitting
Fed-batch conversion superior to

batch; Fed-batch strategies
improved power requirement

52.0%

Eko et al.
(2016)

Solids
Enzyme

Empirical discrete addition No model fitting
Sequential cocktail feeding

improved hydrolysis performance
55,2 %

Sotaniemi
et al. (2016)

Solids
Empirical discrete addition;

Open loop to maintain power 
No model fitting

Fed-batch strategies improved
power requirement

49.0%

Tervasmäki
et al. (2017)

Solids
Empirical discrete addition;

Addition schedule to maintain
stirring power constant

Langmuir-type model
discretized between an initial
adsorption and an adsorption

model with inhibitions

Model separation improved
prediction; Adsorption parameters

and activity are influenced by
conversion

40,0%

Battista et
al. (2018)

Solids Empirical discrete addition No model fitting
Fed-batch strategies improved

power requirement
20.2%

Ren and
Zhang
(2018)

Solids Empirical discrete addition No model fitting
Experimental fed-batch conversion

superior to batch
83.0%

Source: Literature review, sources within the table.
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The improvement of performance when enzyme is added throughout the process

statement is supported by the works of Corrêa et al. (2016) and Eko et al. (2016), where

feeding policies with addition of fresh solids and enzyme cocktail  obtained conversions

better  then  the  same  solids  addition  with  the  total  amount  of  cocktail  added  in  the

beginning of the process.

From the 6 presented papers that either did model fitting, or used a model in some

manner, only one had a dedicated structure to deal with fed-batch operation, the rest were

either  modified,  re-calibrated parameters or  used without  any alteration batch reaction

rates to simulate fitting profiles.

Tervasmäki et al. (2017) used a Langmuir-type adsorption kinetic model to describe

both batch and fed-batch operations in the same model. However, to do so, the model was

discretized between initial kinetics, where only the adsorption phenomenons are occurring

in a significant rate, and a complete model, where the initial kinetics are coupled to terms

describing decrease in enzyme adsorption and activity and product competitive inhibition. 

This structure performed well not only for Tervasmäki’s and collaborators data, but

also to other literature data analyzed by these authors. This demonstrates that a single

model may be insufficient to represent hydrolysis data, and some manner of discretization

and interpolation between models may be needed to describe different operation policies. 

However, from all the studies containing modeling, only  Morales-Rodríguez et al.

(2010),  considered cellobiose as a state  variable,  and none used hemicellulose or  its

products in the process description. It is clear then that several advances are still needed

in fed-batch modeling until a definitive strategy is created. Specially if the model is to be

used in monitoring and control, where high extrapolation capacities are necessary.

Concurrently,  with  advances  in  fed-batch  technology,  and  the  establishment  of

better performance over batch operations, authors began to focus in the energy required

to agitate the reactor. In this subject the advantages of fed-batch were overwhelming over

batch operation. 

Sotaniemi  et  al.  (2016)  based  the  feeding  scheduling  to  minimize  power

requirements. The methodology was successful, diminishing the agitation power necessity

to less than 10 W over the more than 20 W for the equivalent batch, while improving

conversion, 49% for fed-batch and 38% for batch. The same trend was found in all papers
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that evaluated energy efficiency.

However, in the same papers the best conditions obtained for total mixing energy

were 1500 W.m-3 in Corrêa et al. (2016), 6000 W.m-3 in Sotaniemi et al. (2016) and 15.000

W.m-3 in Battista et al.  (2018). All  are above the lower bound of 100 W.m -3 and upper

bound of 500 W.m-3 for typical volumetric power range for industrial stirred tank reactor

(Bouquet and Morin, 2006).

This may indicate that the Stirred Tank Reactor (STR), used in all the described

publications, is not the adequate architecture to conduct lignocellulosic material at high

solids  concentration.  A  change  in  the  reactor  structure  is  necessary  to  enable  the

enzymatic hydrolysis technology inside the biorefinery with low energy requirements.

3.6. MODELING ENZYMATIC LIGNOCELLULOSIC BIOMASS HYDROLYSIS

As described, modeling enzymatic lignocellulosic biomass hydrolysis is a grueling

task. Specially if the model is composed to describe batches and fed-batches in different

conditions simultaneously.

 To cope with such complexity, a large number of publications are dedicated to the

research of models that can elucidate the saccharification process. Several categories of

models have been used to describe the process, a summary of these are presented in

Table 3.3.

The analysis of Table 3.3 demonstrates that the model choice must be based in the

situation’s  goal.  As  the  model's  phenomenon  explanation  degree  rises,  so  does  its

complexity, generating the necessity of more specific data.

The least complex structures are non-mechanistic models. These are not based in

any information regarding the reactions and kinetics of the hydrolysis process, and thus,

can not elucidate reaction mechanisms  (Sousa Jr et al.,  2011).  Nevertheless, they are

useful  in initial  studies, since they are of easy implementation and use  (Bansal  et  al.,

2009).

On the other hand, models designed from the ground up to generate a high level of

details  can  elucidate  several  underling  phenomenons  otherwise  overlooked.  However,

some saccharification assays or substrates characterization methods may not provide the

detailed level necessary to more complex models. To produce such data, several particular

reaction  conditions  are  necessary  to  decouple  masquerading  phenomena.  These

25



conditions can be difficult to maintain among replication trials and scale-up  (Sousa Jr et

al., 2011). 

Table 3.3 Lignocellulosic Hydrolysis Modeling Classification

Model Category Basis Properties Limitations

Non-mechanistic
Models

Based on data
correlation; No

mechanism basis

Good data
adherence and easy

of use

Little extrapolation
capacity; No
phenomenon
understanding

Semi-
mechanistic

Models

Based on Enzyme/
Substrate

interactions

Enables reactor
design; Identification
of main mechanism

effects

No understanding of
reactants features

besides concentration

 Functionally
Based

Based on Enzyme/
Substrate

interactions and
features

Enables mechanism
and substrates

changes and types
description

Data availability; Model
complexity increases
rapidly; Hinder reactor
and molecular design

Structurally
Based

Based on
cellulases features

Enables molecular
design

Very specific model;
Hard development

Fractal Based
Based on jamming
effects of spatially
confined kinetics 

Realistic
assumptions

generates better
adherence

Difficult interpretation;
Utility and extrapolation

capacity to be
determined

Source: Adapted from Zhang and Lynd (2004) and (Bansal et al., 2009)

Such  is  the  case  for  most  Functionally  and  Structurally  based  models.  These

contribute  greatly  to  enhance  understanding  of  enzymes  and  substrate  interaction,  in

particular  those  that  require  adsorption,  and  the  substrate  itself,  since  as  previously

described  cellulose  is  a  heterogeneous  substrate  when  considering  its  reactive  sites

distribution.  However,  the  very  capacity  to  elucidate  secondary  kinetics  altering

phenomena is its hindering point when reactor design and control  is considered. Their

complexity makes deriving kinetics behavior from then a difficult  task, if not, unfeasible

(Zhang  and  Lynd,  2004).  The  amount  of  details  in  these  models  may  not  even  be

significant to the process itself in larger scales. Thus adequate trade-off between available

data and model complexity must be observed.

A new approach to deal with this trade-off is the utilization of Fractal Kinetics. These

occur in spatially confined reactions, generating apparent rate orders and time-dependent

parameters from non-uniform mixing  (Kopelman, 1988). Furthermore, these models can

be modified to cope with heterogeneous substrate surfaces (Haerifar and Azizian, 2014).

26



and fractal parameters can be coupled to preexisting classical kinetic models  (Bansal et

al.,  2009).  It is easy to acknowledge how similar conditions are found in lignocellulosic

material  hydrolysis,  thus,  several  studies  using  this  model  type  have  been  published

(Aguiar et al., 2013; Berry, 2002; Väljamäe et al., 2003; Wang and Feng, 2010; Xu and

Ding, 2007; Yao et al., 2011). However, one of the most important point when generating

this type of model is describing which reaction rate is limiting, as it is the case with most

models. But in fractal kinetics, the time dependency of parameters can make this task

more difficult.  Thus,  significant  research is  still  needed to  validate this  approach as a

robust modeling methodology (Bansal et al., 2009).

A good trade-off between model simplicity and mechanism elucidation, while using

a proven modeling methodology, are semi-mechanistic models. These can be based in

several assumptions generating different reaction rates equations. Two of the most used in

lignocellulosic  saccharification,  with  high  solids  operations  in  particular  are  Michaelis-

Menten Kinetics (MMK) and Langmuir-Type Kinetics (LK)

3.6.1. Michaelis-Menten Kinetics

The most  popular semi-mechanistic  model  for  lignocellulosic biomass enzymatic

hydrolysis  are  Michaelis-Mentem models.  These  are  derived  from the  early  works  of,

arguably,  the  pioneers  of  modern  enzymology  professors  Leonor  Michaelis  Ph.D.  and

Maud Leonora Menten Ph.D., more precisely their work on the description of the inversion

of sucrose catalyzed by a invertase enzyme  (Cornish-Bowden, 2013). Since then, their

model has been altered and applied to several enzymatic reactions.

MMK are based in mass action laws that are only valid to homogeneous reaction

systems, this is not true for lignocellulosic hydrolysis since the substrate is suspended in

the reactive media. The excess substrate concentration ([S]) to enzyme concentration ([E])

condition ([S]>>[E]), necessary to the quasi-steady-state condition, if achieved, is quickly

dismissed,  since  the  fraction  of  glucosidic  bounds  available  to  hydrolysis  is  not  high

enough to establish the excess. Furthermore, the hydrolysis of cellulose itself is usually

described  as  a  one  dimensional  procedure,  since  CBHs  bind  to  cellulose  and  slides

through the molecule to search for new reactive sites. (Lynd et al., 2002; Zhang and Lynd,

2004). All of these depart from the assumptions of the MMKs.

Nevertheless, literature has shown that a pseudo-homogenous assumption for the

biomass as  soluble  substrate  and using  MMK usual  formulation  is  sufficient  to  model
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lignocellulosic  material  hydrolysis  (Bezerra  and  Dias,  2004).  This  is  a  Pseudo-

homogenous Michaelis-Menten (PMM) and does not differs from the classical MMK rate

equation, presented in Equation 3.1.

αi=
kc i⋅[E i ]⋅[S i ]
Km i+[S i ]

Equation 3.1

Where  αi is the reaction rates (g.L-1.min-1), where the subscripted “i" denotes the

reaction where it is used, the same nomenclature is used in the subsequent varibles, kci is

turnover  kinetic  constant  (min-1),  [Ei]  is  enzyme concentrations  (g.L-1),  [Si]  is  substrate

concentrations (g.L-1) and Kmi is the Michaelis-Menten constant (g.L-1).

Another proposed alteration based on the MMK is using a modification within the

model to consider the substrate solid and that the soluble enzyme has to adsorb to the

substrate and adsorption sites are rapidly occupied.

This modification is derived from the work of  Bailey (1989), where it is first stated

that cellulose hydrolysis  is slow enough that researchers can not  assume an infinitely

small enzyme concentrations ([S]>>[E]), and thus, MMK assumptions can not be upheld.

Bailey  (1989)  proceeds  to  describe  that  it  is  more  feasible  to  use  as  reaction

velocity calculation base the total amount of soluble enzyme in the medium, and not the

substrate concentration, as it is the case for the classical MMK convention. This is feasible

since for a given amount of solid substrate, the initial velocity increases with total enzyme

concentration growth until a saturation point. Thus, the new underling assumption is that in

the  steady-state  it  is  the  free  enzyme  concentration  that  is  in  excess  over  substrate

([E]>>[S]), Equation 3.1 is then modified to its new modified form presented in Equation

3.2.

α0=
VeMax⋅[E i ]⋅[S i ]

Km i+[E i ]
Equation 3.2

Where  α0 is  the  initial  reaction  rate  (g.L-1.min-1),  Kmi is  the  Michaelis-Menten

constant  (g.L-1)  but  has  a  different  physical  meaning,  is  the  half  enzyme  saturation

constant and VeMax is  the maximun initial  velocity  (g.L-1.s-1)  for  the Modified Michaelis-

Menten (MMM) model.  The modified structure has been proven to enhance initial  rate

prediction in lignocellulosic biomass hydrolysis (Carrillo et al., 2005).

To enable the utilization of the MMM with data from the entire assay, and not only

with initial reaction rates, two other assumptions are added, first is that the adsorption sites
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change with the saccharification progress, according to Equation 3.3 and that the amount

of  bounded  enzyme  ([Ebi]) is  far  lower  than  the  free  enzyme  ([Efi])  in  the  solution

([Efi]>>[Ebi]) (Carvalho et al., 2013).

[S i ]=[S i 0]−[P i ] Equation 3.3

Where [Si] is the available substrate concentration (g.L-1), [Si0] is the initial substrate

concentration (g.L-1),  and  [Pi]  is  the  reaction  product  concentration (g.L-1).  With  these

alterations Equation 3.2 is modified into Equation 3.4.

α i=
kc i⋅[E i ]⋅[S i ]
Km i+[E i ]

Equation 3.4

Both models are showed to be able of fitting hydrolysis data. However, they do not

account for inhibitions present in the process. Literature has shown that utilizing a PMM or

MMM with product competitive inhibition improved both models performance (Bezerra and

Dias, 2004; Carvalho et al., 2013). Thus Equation 3.1 is modified to Equation 3.5. 

αi=
kc i⋅[E i ]⋅[S i ]

Km i⋅(1+
[P i ]
Kpi

)+[S i ]
Equation 3.5

Where Kpi is the product competitive inhibition constant (g.L-1). The same addition

can  be  applied  to  Equation  3.4  to  generate  a  modified  MMM with  product  inhibition,

presented in Equation 3.6.

αi=
kc i⋅[E i ]⋅[S i ]

Km i⋅(1+
[P i ]
Kpi

)+[E i ]
Equation 3.6

3.6.2. Langmuir Type Kinetics

Kinetics based on Langmuir adsorption isotherm are another way to incorporate

adsorption kinetics into lignocellulosic biomass hydrolysis.

This type of model has been adapted to cellulose hydrolysis since the late nineteen

seventies  (Huang, 1975). Many derivations of this model class have been  proposed to

contemplate different lignocellulosic materials and assay conditions. Perhaps one of the

most popular and cited versions of the LK is the one presented by Kadam et al. (Kadam et

al., 2004), the Langmuir-type isotherm used in this paper is presented in Equation 3.7.

[Ebi ]=
Em i⋅Kad i⋅[Ef i ]⋅[S i ]

1+Kad i⋅[Ef i ]
Equation 3.7

Where  Kadi is  the  dissociation  constants  for  the  enzyme  adsorption/desorption
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reaction (gProtein.gSubstrate
-1). This was coupled to an enzyme mass balance to account for the

different  states  in  which  the  enzyme presents  itself  during  hydrolysis.  This  balance is

presented by Equation 3.8.

[Et i ]=[Ef i ]−[Ebi ] Equation 3.8

Where [Eti] is the total enzyme concentration (g.kg-1).

Kadam et al.  (2004) model considers three reactions. The breakdown of cellulose

into cellobiose and glucose, as two heterogeneous separate reactions, thus an adsorption

isotherm was considered for EG and another for CBH. After that, for both reactions, a first

order reaction, with competitive inhibition by glucose, cellobiose and xylose, was assumed

in the surface of substrate. The breakdown of cellobiose by bG was modeled by a MM

kinetic model with competitive inhibition by glucose and xylose.

The  authors  also  introduced  a  “substrate  reactivity”  parameter,  related  to  the

amount  of  substrate  that  can  be  hydrolyzed  within  the  system.  This  is  an  empirical

parameter that correlates to the degree of polymerization of the lignocellulosic material,

and  to  other  transport  phenomena  hindering  interactions.  Indeed,  the  degree  of

polymerization may be considered an important parameter for modeling reaction rates,

since different  biomasses or  pretreatment  methods may  generate  different  crystallinity

indexes.  These  directly  correlates  to  the  amount  of  cellulose  that  is  available  to  the

enzymatic complex  (Karimi and Taherzadeh, 2016). Thus, using a “reactivity” parameter,

or  alternatively,  evaluating  the  amount  of  available  substrate,  can  improve  model

prediction.

In fact, all these lumping structures and simplifications generated a widely usable

and  adaptable  model.  However,  some  of  their  underlying  assumptions  may  not  hold

throughout the entire assays, since significant changes in the reaction media occur during

the liquefaction of biomass. For instance, the rheology of the reaction medium may change

drastically throughout the process (Samaniuk et al., 2011).

3.7. HIGH SOLIDS HYDROLYSIS IN NONCONVENTIONAL ARCHITECTURES

As described previously,  a highly optimized fed-batch operation still  generates a

power consumption beyond of what is generally considered to be suitable for industrial

operation.

To deal with this situation, several author’s have dedicated efforts to alter STRs in
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order  to  extended  the  solids  concentrations  that  these  can  operate  while  diminishing

agitation energy.  The most  common manner to  do such is  to  alter  the  reactor  mixing

system,  particularly  by  altering  impellers  geometry.  The  main  impeller  types  used  in

biomass saccharification are presented in Figure 3.5.

Figure 3.5 Impellers for High Solids Operation

Figure 3.5a Rushton impeller;  Figure 3.5b Elephant Ear impeller;  Figure 3.5c Triple
paddles impeller;  Figure  3.5d Quadruple  paddles impeller;  Figure  3.5e S  shaped
impeller; Figure 3.5f Anchor impeller;  Figure 3.5g Helical Ribbon impeller;  Figure 3.5h
Double Helical Ribbon impeller; Figure 3.5i Peg impeller; Figure 3.5j Segmented Helical
impeller.
Source: Adapted from Liguori et al. (2015)

The most common impeller in bioreactor is the Rushton type (Figure 3.5a). With this

type  of  impeller,  in  high  apparent  viscosity  media,  stagnated  zones  are  generated,

hindering  homogenization  (Pino  et  al.,  2018).  These  stagnated  zones  generation  are

called Cavern Effect, since only the media adjacent to the impeller is moved, while the

media close to the reactor’s walls remains still (McCabe et al., 2005). Thus, this impellers

are usually changed for other configurations.

Elephant ear impellers (Figure 3.5b) were used with success to increase media

homogenization  and  energetic  efficiency  during  high  solids  hydrolysis  of  pretreated

sugarcane bagasse (Corrêa et al., 2016b). This configuration also generates an agitation

in  the  axial  direction  of  the  reactor  in  addition  to  a  radial  direction,  increasing  media

circulation.

Impellers similar to the previously described are the Triple paddles (Figure 3.5c),

Quadruple paddles (Figure 3.5d) and S shaped paddles (Figure 3.5e). These are used in

high solids concentrations, but can suffer from the same issues presented by Rushton
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impellers (Liguori et al., 2015). The same is true for Elephant ears impellers. 

To diminish stagnated zones, specifically designed impellers can be constructed to

deal with high solids loadings. These impellers are less susceptible to inefficient mixing

since they usually operate in the entire reactor volume  (Modenbach and Nokes, 2013).

Examples of these impellers are the Anchor (Figure 3.1f), Helical Ribbon (Figure 3.1g),

Double Helical  Ribbon (Figure 3.1h),  Peg (Figure 3.1i) and Segmented Helical (Figure

3.1j) impellers.

However, even when using optimized special impellers, operating in STRs with high

solids can still not obtain suitable power consumption. The necessary energy to agitate the

hydrolysis reactor can be so large, that ca account to more than half the energy contained

in  the  final  product  (Zhang  et  al.,  2010).  This  value,  as  it  stands,  can  prevent  the

implementation not only of the enzymatic hydrolysis process, but the entire biorefinery.

Therefore, a change in architecture is necessary in this process. A non-conventional

design  that  not  only  can  cope  with  high  solids  operation,  but  also  reduce  energy

consumption is necessary.

Horizontal Reactor (HR) is a type of reactor used in production plants to mix solids

and liquids in high viscosity systems using low sheer forces. This incentives their use as

bioreactors  (Wang  et  al.,  2013).  In  addition,  these  reactors  also  demand  low  energy

consumption by usable volume (Dasari et al., 2009). 

These reactors can be agitated either by rotating themselves along their longitudinal

axis, containing baffles or not, in this cases they are called Rotating Drum reactor, or by

using an impeller in the longitudinal axis of the reactor (Liguori et al., 2016).

Studies of biomass saccharification with HR are scarce, specially when compared

to the amount of studies in STR and in orbital agitated flasks. The main publications using

HR for  Independent  Hydrolysis  (IH),  Independent  Fermentation  (IF)  and Simultaneous

Saccharification and Fermentation (SSF) of lignocellulosic biomass are presented in Table

3.4.

Table 3.4 demonstrates how researches with this type of reactor are recent, with

different  structures  and  operation  policies.  However,  throughout  the  cited  works,  HRs

improve  or  matches  STRs  performances  in  equivalent  operation.  This  characteristic,

together  with  the  expected  energy  demand  improvement,  makes  this  a  promising
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architecture for the biorefinery hydrolysis stage. This is supported by already operating

pilot plants  (Jørgensen et al., 2007; Larsen et al., 2012).

Table 3.4 Publications with Horizontal Reactors for Biofuels Production

Publication Biomass Process Operation Agitation Solids Main Conclusion

Jørgensen
et al. (2007)

Wheat
straw

IH
SSF

Batch
Vertical
paddles

2–
40%

IH and SSF in pilot
scale

Dasari et al.
(2009)

Corn stover IH Batch
Scraping
blades

10–
25%

60% glucose
conversion

Roche et al.
(2009)

Corn stover IH Batch
Rotating

drum
15–
30%

170 g.L-1 glucose
concentration

Larsen et
al. (2012)

Wheat
straw

IH
IF

Batch
Vertical
paddles

25–
30%

6 h for biomass
liquefaction

Salles
(2013)

Sugarcane
bagasse

IH
Batch

Fed-batch
Rotating

drum
10%

Conversion in HR
better than flasks

Lin et al.
(2013)

Sugarcane
bagasse

SSF Batch
Rotating

drum
10%

92,2% of total ethanol
theoretical yield

Du et al.
(2014)

Corn stover IH
Batch

Fed-batch

Rotating
drum with
paddles

20–
25%

Product concentration
improved over STR

Pino et al.
(2019)

Agave
bagasse

IH
Batch

Fed-batch
Peg mixer

20–
30%

Conversions close to
98% 

Source: Literature review, sources within the table.

3.8. BIOPROCESS MONITORING

With  new  reactor  architectures,  and  after  the  reaction  process  within  them  is

elucidated  to  a  sufficient  degree,  the  next  step  is  applying  process  control  to  further

improve  saccharification  performance  economy.  Modern  control  techniques,  such  as

optimal  control,  have been used to  improve reactor  performance indexes  (Cavalcanti-

montaño et al., 2013; Fenila and Shastri, 2016; Furlong, 2015; Tai et al., 2015). 

However, most efforts in controlling the hydrolysis reactor are not validated, and

even more rarely are operated in closed loop. Close loop operations requires the utilization

of data feedback to the controller in order to update the controlled variable setpoint. In

bioprocesses, feedback is specially difficult since the reaction’s products are usually not

covered by commercial sensors. Thus, monitoring hardware has to be, frequently, tailor-

made to the application where it is used (Vojinovi et al., 2006).

Another scenario is when instrumentation hardware to monitor a desired variable is
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unfeasible. This may be the case of biomass saccharification at high solids, the media high

viscosity and heterogeneous nature can impede single instrument utilization. 

From this  situation,  new techniques  that  can compose predictions  from several

simultaneous measurements and filter the inherent noise in the prediction, have arisen.

Data from established instrumentation from secondary variables can be processed

by a soft sensor, a software aided sensor, to predict more complex variables, mainly state

variables (Luttmann et al., 2012).

However, the soft sensor may be unable to predict all the state variables involved in

the reaction, or the noise from the data can be high, hindering the usage of this data in

subsequent stage, mainly the reactor control. A possible alternative to circumvent these

issues is to use a State Estimator.  State estimation is a type of algorithm that uses a

previously  established  kinetic  model  with  instrumentation  data  to  enhance  the  state

variables  prediction,  or  to  estimate  variables  that  are  not  monitored  on-line  (Dochain,

2003). 

3.8.1 Data Driven Soft Sensors

 When the direct instrumentation of a process is unfeasible a soft sensor can be

applied. Soft sensor are softwares capable of predicting non-measured process variables

from readily available process data (Sagmeister et al., 2013). 

Soft sensor performance is closely related to the data from the instrumentation used

to generate the prediction, and the support  model  used to translate the data from the

instrumentation to appreciable process variables, usually reactants concentrations. The

models  used  in  data  driven  soft  sensor  are  usually  empirical  models  and  several

algorithms alternatives are presented in literature (Kadlec et al., 2009). 

3.8.1.1. Principal Components and Partial Least Squares Regressions

Data  driven  soft  sensors  are  usually  generated  utilizing  several  instrumentation

sensors running simultaneously inside the reactor, this can lead to an amount of data that

needs to be pre-processed in order to reduce the dimensionality of the modeling stage.

This is  particularly  expected with  modern  spectroscopy hardware,  where  scans of  the

entire available spectrum are performed continuously. Thus, a data reduction stage may

be necessary.

Two widely used algorithms for this purpose are Principal Components Regression
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(PCR) and Partial Least Squares (PLS).

PCR is a methodology to transcribe available  data into new domains to reduce

dimensionality.  The underling  assumption  in  this  methodology is  that  the  data  can be

describe in terms of linear combinations, new axis can be generated to describe the data

with fewer values (Wold et al., 2001). 

The generic formulation for a PCR (as presented by Nelles (2001)) is to maximize

data variance from a data matrix  Am,n where  m is the number of data points and  n the

dimension of the input data, along new separate axis xi. The new axis is a vector, and has

the dimension of the input data, and as many axis as the number of data points can be

obtained (i=1,…,m). A generic axes is presented in Equation 3.9.

x i=[x i 1 , x i 2 ,…, x i N ]1, n

T
Equation 3.9

The variance in the new axes is obtained with the square of the projection of A over

xi (Am,n·xi). The axes vector also need to be normalized to prevent infinite solutions to the

system (xi
T·xi =  1). Thus the constrained optimization problem becomes:

(Am ,n⋅x i n ,1)1 ,m
T ⋅(Am ,n⋅x i n ,1)m ,1+λ⋅(1−x i n ,1

T ⋅x i n,1)→max
xi

Equation 3.10

Where λ is the Lagrangian multiplier for the constraint. The solution of this problem

is:

(Am ,n
T ⋅Am ,n)⋅x i n ,1=λ⋅x i n,1 Equation 3.11

The eigenvectors are the optimal axis, and they are organized by their conjugated

eigenvalue,  the  one  with  the  highest  value  is  the  first  component  and  the  other  are

organized in a decreasing manner. The eigenvectors and eigenvalues can be calculated

with singular value decomposition. 

The components are concatenated column-wise in a matrix  Qn,h where h are the

chosen components to be used in the modeling. The number of regressors (h) should be

enough to describe the data reasonably, and should be restricted to prevent overtraining.

The utilization of a model optimization procedure is advised. 

With the appropriate  Qn,h, the projection matrix  Bm,h is obtained by projecting  Am,n

onto Qn,h.

Bm , h=Am , n⋅Qn ,h Equation 3.12

The projection matrix  Bm,h is a dimensionally reduced matrix from matrix  Am,n, and

can be used in the regression rather than the initial input data matrix.
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However, this methodology uses only data from the input independent variables,

and the relation between Am,n and the output data Ym,l, where l is the number of predicted

variables, is negleted.

A PLS algorithm is similar to the PCA algorithm, however, it  uses the data from

matrix  Ym,l with  Am,n data to produce the new axis. To do so, if  the system is linear, in

Equations 3.10 and 3.11 the matrix  Am,n needs to  be substituted by the cross-relation

matrix  Am,n  ·Ym,l and the output  variable  xi is  substituted  by  yi before  the eigenvectors

calculation.

This  increases  synergy  between  the  input  and  output  data  before  dimensions

decrease and can improve model prediction over PCR (Haaland and Thomas, 1988).

3.8.1.2 Neural Networks

Artificial Neural Networks (ANN) are empirical mathematical models based in how

the human brain handles information, and are used for pattern recognition. The definition

of an ANN varies with the used literature, in this thesis the description used is the one

developed by Nelles (2001).

ANNs models are organized as a network of artificial neurons called perceptrons.

Figure 3.6 presents a perceptron example.

Figure 3.6 Perceptron Representation

Source: Adapted from Nelles (2001)

A perceptron  works  by  first  taking  input  variables  vector  (u),  projecting  it  onto

nonlinear weights parameters vector (w) and adding all transformed variables to a scalar

vector, this process is called ridge construction. The scalar variable is then transformed by
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an activation function to generate a projected output (ŷ). The weights vector, as well as the

parameters inside the activation function can be subjected to optimization to achieve a

predicted output that correlates to analytical data (Nelles, 2001).

ANN are networks of independent perceptrons. Several methodologies can be used

to connect the perceptrons and generate the network. One that it is important to highlight

is the Multilayer Perceptron (MLP) architecture. Figure 3.7 presents and example of this

network.

Figure 3.7 Multilayer Perceptron Network

Source: Nelles (2001)

In this architecture several neurons are used in parallel in a same layer, this is the

hidden layer. Each neuron receives input data and is connected to a single neuron output

neuron. As the input data is provided by analytical data, using only one hidden layer with

neurons facilitates the control of the model complexity, i. e., its number of parameters, by

adding neurons to the internal layer as needed to improve prediction (Nelles, 2001).

ANNs  are  used  as  models  for  several  tasks  in  second  generation  biofuels

production,  from  hydrolysis  kinetic  data  modeling  (Nikzad  et  al.,  2012),  substrate

enzymatic digestibility prediction from composition (O’Dwyer et al., 2008), and to monitor

and control of ethanol production (Amornchai and Shomchoam, 2009; Xiong and Zhang,

2005).

3.8.1.3. Torque Measurement

Torque measurement is an important variable when analyzing the rheometry of a

solution  or  suspension.  Usually,  torque  measurement  is  done  in  an  off-line,  where  a

sample of the reactive media is conducted to a bench rheometer  (Corrêa et al., 2016b;
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Scott  et  al.,  2011).  In  studies  that  monitor  rheometry  throughout  the  process  a  clear

decrease in the torque necessary to agitate the media is observed when the solids in the

reactor are hydrolyzed (Palmqvist and Lidén, 2012; Samaniuk et al., 2011), demonstrating

that this measurement can be used to monitor the reactor in some capacity

More  recently,  this  was  realized  with  biomass  hydrolysis  to  some  success.

However,  data from the instrumentation retains high inherent noise, and no filtering or

state estimation methodology was used (Jawad et al., 2019), thus several improvements

can be achieved with data processing improvement.

3.8.1.4. Visible and Ultra Violet Spectroscopy

An analytical inline system, capable of analyzing the supernatant optical properties,

alongside the hydrolysis reactor can uncover new behaviors in the hydrolysis kinetics.

Specially the kinetics of inhibitors within the reactor. 

This is supported by the fact that lignin absorbs electromagnetic radiation strongly

in  the  ultraviolet  region,  and  some  methodologies  use  this  characteristic  in  order  to

ascertain lignin content in the biomass (Gouveia et al., 2009; Kline et al., 2010; Sluiter et

al., 2012).

3.8.1.5. Near Infrared Spectroscopy

In the same field of spectroscopy data is Near Infrared Spectroscopy (NIR). This

technology is used in a much broader range of reactants determinations. Both in offline

methodologies  (Rambla et al.,  1997; Ribeiro et al.,  2008; Xie et  al.,  2009),  and online

operation  (Dodds  and  Heath,  2005).  These  studies  also  point  out  the  diversity  of

compounds that can be analyzed by NIR, carbohydrates, proteins and antibiotics.

Furthermore,  this  technology  has  been  proved  to  suit  bioprocesses  containing

biomass (Rodríguez-zúñiga et al., 2014). However, few measurements are realized online.

Nevertheless, the high adaptability of this equipment to several molecules motivates its

use in biomass hydrolysis (Skvaril et al., 2017).

3.8.1.6. Conductance/Capacitance Spectroscopy

Conductance  and  Capacitance  Spectroscopy  is  the  generation  of  alternating

electrical  fields in the reactive media inside the reactor with varying frequencies, some

groups of molecules are polarized by this field.  The polarization changes the dielectric

constant  of  the  media.  This  can  be  measured  as  variations  in  the  conductance,  the
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capacity of the media to allow an electrical current to travel inside itself, and permittivity,

the capacity of a media to maintain an electromagnetic field (Vojinovi et al., 2006). 

This sort of measurement has been used in order to monitor lignocellulosic material

hydrolysis (Bryant et al., 2013), in which a linear correspondence between the capacitance

and the reduction of solids inside the reactor was found. 

Therefore, an instrument of this sort can be used to aide in the reactor monitoring

as a standalone instrument or as an input to the soft sensor layer.

3.8.2. State Estimation

Coupling untreated measurements or soft sensor predictions to a state estimator

can increase state estimation precision. State observers are algorithm used to estimate

state variables that are not direct measured, either by lack of instrumentation or sensor

high price, or to diminish estimation error in the measured variables (Mohd et al., 2015).

Several observers can be used and have been described, one of the most used is a

Moving Horizon Estimator  (MHE).  This  sort  of  algorithm uses a dynamic  window and

optimization steps to predict the desired state variables, based on both measurements and

model data. 

MHE are very well established as state estimators for chemical processes because

they  can  deal  with  the  nonlinear  dynamics  and  state  constraints,  inherent  to  most

bioprocesses systems, in a fairly straightforward manner (Haseltine and Rawlings, 2005). 

The moving horizon estimator is a modification of the full information estimator in

order to diminish the total number of parameters to be optimized with a moving estimation

window. The cost function of the optimization problem is presented to Equation 3.13.

min
X (T−N :T )

=V T −N (X (T −N ))+ ∑
j=T−N

T−1

Lw ( X̂ −X -)+ ∑
j=T−N

T

Lv (Ŷ −Y ) Equation 3.13

Where N is the size of the estimation windows, VT-N is the arrival cost, representing

the information in the previous prediction window, X is the state variable, X̂ is the predicted

state variable, X- and is the modeled state variable, Ŷ is the predicted measurement, Y is

the  instrumentation  measurement,  Lw and  Lv are  the  filtering  weights  for  the  model

prediction  and  the  measurement  prediction,  respectively.  By  correctly  tuning  the  filter

weights, the moving horizon can estimate the current value of a given state variable.
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4. MATERIALS AND METHODS

The materials and methodologies described in this chapter are used in the following

chapters.  Which  methodologies  are  used  in  a  particular  chapter,  and  previously  not

described special methodologies, are described within it.

4.1. LIGNOCELLULOSIC BIOMASS

Sugarcane bagasse was used as lignocellulosic material, it was pretreated in two

different manners, steam-explosion and hydrothermal pretreatments.

The hydrothermally  pretreated bagasse was obtained from  bagasse donated by

Usina Ipiranga S/A (Descalvado, SP).  The pretreatment was carried out in pressurized

reactor, with a maximum pressure of 200 psi, at 200 RPM. The reactor was loaded with

0.010 grams of dry bagasse per milliliter of reactor media. The reactor heating element

was then programmed to reach 195ºC and hold this temperature for 10 min. After the

pretreatment, the bagasse was placed in a sleeve cloth filter and washed with distilled

water for 2 h. The pretreated bagasse was, then, dried in kiln for 24h at 60ºC, reaching a

humidity of approximately 5 %. 

The steam-exploded bagasse (1667 kPa and 205 oC for 20 min) was provided by

the Centro de Tecnologia Canavieira (CTC, Piracicaba, São Paulo, Brazil).

The pretreated bagasse composition was determined in previous researches via

literature established methodology  (Gouveia et  al.,  2009).  Their  main components  are

presented in Table 4.1.

Table 4.1 Pretreated Bagasses Compositions

Bagasse Cellulose Hemicellulose Lignin Ash

Hydrothermal 60.1±0.2 % 4.76±0.5 % 27.3±0.3 % 1.1±0.1%

Steam-explosion 43.1±0.1% 12.4±0.1 % 28.8±1.9% 4.7±0.1%

Values in the table are average of triplicates and followed by the distribution standard
deviation (Average±Standard Deviation).
Source: Previously established experimental data.

These data were used to in calculations when needed. 

4.2. ENZYMATIC HYDROLYSIS

The biomass was hydrolyzed under different operating policies and reactors. Each

condition are presented in its pertinent chapter,  as well  as the reactor architecture. All
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enzymatic hydrolysis were carried with enzymatic complex CELIC CTEC 2, donated by

Novozymes  Latin  America  (Araucária,  Paraná,  Brazil),  and  the  hydrolysis  media  was

citrate buffer with pH 4.80 and ionic force of 50 mM. 

4.3. CARBOHYDRATES DETERMINATION

Glucose,  cellobiose  and  xylose  were  the  soluble  products  quantified  in  the

hydrolysis liquid phase samples. The analysis was performed through High-Performance

Liquid Chromatography (HPLC) methodology as described by Sluiter et al. (2008). These

were  analyzed  in  a  Shimadzu SCL-10A chromatograph,  with  refraction  index  detector

RID10-A,  column  Animex  HPX-87H  Bio-rad,  mobile  phase  sulfuric  acid  5  mM at  0.6

mL.min-1. 

Calibration curves of each compounds were constructed to calibrate linear models

between the standard concentration and a peak area in a given retention time, determined

in the pure standard injection. Glucose standard ranged from 0.5 to 15.0 g.L -1, cellobiose

from 0.2 to 2.0 g.L-1 and xylose from 0.5 to 8 g.L-1. All samples were suspended in the

buffer used in the reaction.

A  curve  validation  standard  was  also  generated  by  mixing  all  carbohydrates

standards with  concentrations in the midpoint of  their  ranges.  This solution is used to

evaluate both the analysis in itself, as well as the linear model prediction.

These curves were used to estimate concentration of two groups of carbohydrates

in the hydrolysis, free and potential carbohydrates.

“Free” carbohydrates are those hydrolyzed by enzymes in the process, i. e., those

in the reactive media when the sample was withdrawn, the potential carbohydrates are the

sum of free and those still binded to other molecules, i. e., still polymerized.  

The term free in this analysis  denotes that  no further  hydrolysis  procedure was

applied to the sample. Thus, even though cellobiose is a polymer, it is considered to be

free in the solution, due to its small size. Any carbohydrates larger than 2 glucose units is

considered  polymerized,  and  are  part  of  the  potential  concentration.  The  same  liquid

sample is quantified for its free and potential carbohydrates.

4.3.1. Free Carbohydrates Analysis

Free carbohydrates  were quantified  by  injecting  the  raw liquid  fraction from the

sample.  Before  each  injection,  samples  and  standards  were  filtered  through  0.22  µm
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hydrophilic polyvinylidene fluoride filter and injections were performed in triplicate. This

generated three separated curves, one for each analyzed carbohydrate, and these were

used to quantify their concentration in the process samples.

4.3.2. Potential Carbohydrates Analysis

To obtain the potential carbohydrates concentrations, 200 µL of the free sample was

combined with 50 µL of fresh enzymatic cocktail and 1.5 mL of distilled water. This mixture

was then incubated at 50 oC for 6h. After this period, the samples were placed in boiling

water for 10 min to denature enzymes and stop the reaction. These were then filtered

through  0.22  µm  hydrophilic  polyvinylidene  fluoride  filter  and  injected  in  the

chromatograph. 

This  procedure  was  applied  to  both  the  samples  and  standards,  apart  from

cellobiose  calibration  standards.  Cellobiose  was  not  quantified  after  the  analytic

depolymerization stage since it is considered that it would be broken into glucose, and

thus, is already quantified by the potential glucose concentration. 

Thus, two calibration curves were generated, one for potential glucose and one for

potential xylose. These were used only to quantify depolymerized samples.

It  is  important  to  highlight  that  other  methodologies  can  be  used  to  determine

soluble polymers, specially when using other HPLC columns and detectors. However, this

methodology can be a useful indication of these polymers when the mentioned hardware

is not available.

4.4. ENZYME ACTIVITY ANALYSIS

Enzymatic  cocktail  activity  is  determined  with  a  modification  of  the  procedure

delineated in the guidelines of the International Union of Pure and Applied Chemistry, as

described by  Adney and Baker (2008) which is itself a modification of the methodology

proposed by Ghose (1987). The method is used to ascertain the Filter Paper Units (FPU)

per mL of enzymatic complex.

One FPU unit is the amount of enzyme necessary to generate 2 mg of glucose from

50 mg of Whatman® Number 1 filter paper (4% conversion) in 60 min at 50 oC. 

The reasoning behind this methodology is that several enzymes are involved in the

reaction and the reactions are complex, resulting in a non-linear production rate. Using an

activity unit in the International Unit (IU,  µMol.min-1) based in product formation for initial
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rates over small time periods would hinder comparison between different cocktails. The

activity of cellulase cocktails should be instead based on a, relatively, large conversion of a

standard substrate over long periods of time (Ghose, 1987). To do so, several dilutions of

the initial  cocktail  are prepared.  The dilutions are combined with  a strip  of  Whatman®

Number  1  filter  paper  cut  in  a  rectangular  shape  that  amounts  to  50  mg  (roughly  a

rectangle of 6 cm by 1 cm), and citrate buffer. Samples containing; each dilution of the

cocktail and citrate buffer (enzyme control assays), filter paper and buffer  (paper control

assay); citrate buffer (blank assay) are also prepared. A glucose standard calibration curve

is also prepared.

All samples, controls and blank assays are incubated for 60 min at 50 oC. At the end

of  the  incubation period,  dinitrosalicylic  acid  color  development  reagent  is  added.  The

reagent  is  part  of  the methodology proposed by  Miller  (1959) and is  used to  quantify

reducing sugar (carbohydrate molecules with at least one reducing end) in solutions. The

tubes with the acid solution are boiled for 5 minutes for color development. The solutions

are then diluted with water, and the absorbance at 540 nm of all tubes are measured.

With the glucose standard curve, a linear model between absorbance at 540 nm

and  reducing  sugar  concentration  is  constructed.  With  the  model,  reducing  sugar

concentrations are determined in all  the assays, controls and blanks. The effect of the

controls and blanks are subtracted from the enzyme dilutions. An interpolation is carried

with the logarithmic transformed enzyme concentrations (inverse of the dilution) to predict

the concentration that  relizes 2 mg of sugars in  these conditions,  the Critical  Enzyme

Concentration (mLEnzyme.mLSolution
-1). The FPU is then determined by the Equation 4.1.

FPU= 0.37
Criticar Enzyme Concentration

Equation 4.1

The  value  0.37  in  the  numerator  of  the  right  hand side  of  Equation  4.1  is  the

derivation  of  FPU  unit.  It  is  generated  by  altering  the  international  unit  for  enzyme

activities.  2 mg of reducing sugar converted to mols is 0.18 µMol, when using glucose as

calculation basis, this is produced by 0.5 mL, the enzyme volume in the assay, over 60

min, generating 0.37  µMol.mL-1.min-1. Even though the dimensional analysis shows that

the  FPU should  have  a  time  component  in  its  denominator,  as  previously  described,

Ghose (1987)  argues that  it  should  be suppressed,  and thus,  the  cellulase activity  is

FPU.mL-1. 
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4.4.1. Modified FPU Assay for Cocktail

This works uses a minimization of the original FPU assay, validated by the author

(unpublished data). In the original methodology, 0.5 mL of enzymatic cocktail dilutions is

used to hydrolyze the filter paper, and 1.5 mL of buffer are added, these quantities were

also used in the modified method. The incubation time and temperature were also the

same as the  original  proposal.  The modifications  were  performed in  the  carbohydrate

analysis. Standards of glucose were used in the same range as the one in item 4.3, five

concentrations equally distributed from 0.5 to 15 g.L-1. 

The original method used 3.0 mL of color generating reagent added to the tubes

containing the samples, and after incubation, 0.2 mL of sample were diluted in 2.5 mL of

water. The modification was in another vessel, combine 0.1 mL of the hydrolysis assay

with 0.3 mL of color generating reagent, incubating for the same period as the original

description,  10  min  at  100  oC,  and  diluting  the  mixture  with  1.5  mL of  water.  This

modification proved to generate the same results as the original methodology, and was

applied to the cocktail used in the hydrolysis assays.

4.4.2. Free Cellulase Activity

A  separate  methodology  was  generated  following  the  principle  of  the  FPU

determination  methodology  and  was  used  to  determine  cellulase  activity  in  the  liquid

phase.  When  the  liquid  phase  cellulase  activity  was  desired,  3  mL of  solution  were

sampled. Half was placed in a vessel containing the same filter paper used in the FPU

assay (activity  assay).  The other  half  was placed in  an  empty  vessel  (control  assay).

These were incubated following the  FPU methodology,  for  60 min at  50  oC. After  the

incubation, the modified reducing sugars method was applied to the samples, and the

reducing sugars concentration after incubation was determined with previously established

calibration curves. 

The control  assay reducing sugar concentration was subtracted from the activity

assay. This procedure ensures that the hydrolysis of polymers already in the sample, that

were going to be hydrolyzed in the reactor, would not interfere in the activity determination.

The treated value is divided by the vessel volume (1.5 mL) to generate the Free Cellulase

Activity (FCA, mgReducing Sugar.mL-1.min-1).
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5. HYDROLYSIS FUZZY-ENHANCED MODELING IN STIRRED TANK REACTOR

5.1 MOTIVATION AND OBJECTIVE

As previously described, several models have been proposed to describe biomass

saccharification in high solids operations. However, the models may not fully describe the

system behavior change during the whole long-term process (in fed-batch operation, for

instance). Yet, adding complexity to the model, by acknowledging other effects during its

mathematical formulation, by using structurally or functionality, or adding these features to

semi-mechanistic models, will  demand more parameters, which, can be very correlated

when estimated from the same empirical data. As a result, the parameters frequently loose

physical meaning.

An alternative approach is using a simpler structure, with fewer parameters fitted in

different regions. These regions can be obtained by using feeding policies where all the

substrate  is  added prior  to  enzymes addition,  generating  a  high  solids  content  at  the

beginning, or a more liquefied medium with, generated by scattered solids feeding, and

using as model an interpolation between the models fitted in other solids concentrations.

Another alternative is using different models in the same process. Some authors proposed

to  separate  the  process  into  two  separate  dynamics,  liquefaction,  when  the  solids

concentration is very high in the slurry and saccharification reactors/reactions, when most

of  the  substrate  has  been  liquefied  (Liu  et  al.,  2015).  This  methodology  is  fairly

straightforward for a batch reactor. However, during a fed-batch process liquefaction and

saccharification occur simultaneously, since new solid material is added throughout the

process.  This  is  probably  the  reason  for  the  lack  of  fit  when  model  predictions  are

extrapolated to operational conditions different to those used for parameter fitting.

This chapter proposes to include a model layer that can smoothly drive the model

switches. This idea comes from the previously described fact that the hydrolysis process

goes through different stages of liquefaction of the biomass. Besides, when fresh material

is fed to the reactor, two mechanisms may co-exist: one driven by the enzymatic attack of

the solid by the enzymes, and the other reflecting the fact that part of the substrate present

in the reactor has already been, at least partially, hydrolyzed. Therefore, only one simple

class of model may not be sufficient to describe the reaction kinetics. Using computational

intelligence, different classes of models can be combined in certain regions where no clear

mechanism prevails. Instead of just an on-off shifting between kinetic models, their action
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will be combined.

To guarantee a smooth transition between models,  a  Takagi-Sugeno (TS)  fuzzy

system was implemented. The TS fuzzy model may be composed by several models, all

connected via a set of fuzzy membership rules. In other words, each model represents

part of the system behavior and the degree of membership varies with a set of established

rules  (Al-hadithi et al., 2012). Fuzzy logic has been shown to improve the estimation of

lignocellulosic material in a hydrolysis process with different combinations of substrates in

a robust and reliable manner (Suarez et al., 2014).

Moreover, using a fuzzy logic addendum to the kinetic model can improve the model

extrapolation capability. A consortium of models, coordinated by the fuzzy logic layer, can

increase the overall robustness of the predictions, spanning regions of the state variables

regions that were not used to fit each model of the consortium. This approach may be

useful for a system that undergoes drastic physical transformations along process time.

In  short,  we  propose  a  methodology  where  simple  models  may  describe  the

behavior of the enzymatic hydrolysis of sugarcane bagasse in reactors under batch and

fed-batch  operation.  Initially,  semi-mechanistic  Michaelis-Menten  and  Langmuir-based

models were evaluated as a basis to predict batch and fed-batch data. When the utilization

of only one model  is  not enough accurate,  a novel  modeling methodology enters into

action: a consortium of simplified kinetic models coupled to a fuzzy logic membership rule,

which combine the responses of the simple standalone models.

5.2 MATERIALS AND METHODS

5.2.1 Hydrolysis Assays

Different feeding policies of solids were evaluated. Enzymatic complex was CELIC

CTEC  2  and  lignocellulosic  substrate  was  steam-exploded  sugarcane  bagasse.  The

assays were conducted in duplicates in a 3 L working volume stirred reactor with tow

elephant ear impellers, the one in the top of the axle generating a flow downward, and the

one in the bottom generating flow upward,  at 50oC and 470 RPM. Manual sampling was

performed at 0.5,  1, 2, 4,  6, 8, 12, 24, 36, 48, 60, 72 and 96 h and supernatant free

carbohydrates were determined. 

Three feeding profiles were assessed. A High Solids Batch (HSB) process, Assay 1,

where 200 g.L-1 of substrate and 3.7 mgprotein.gsubstrate
-1 (approximately 10 FPU.gsubstrate

-1) of
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enzymatic complex were added in the beginning of the process. And two fed-batches,

where the feeding profiles amounted to the same substrate mass as the batch process.

However, the lignocellulosic material was distributed in four discrete feeding times, with

different  addition  times.  These feeding profiles generated two assay conditions  a  Low

Solids Fed-Batch (LSF) and a Mixed Profile Fed-Batch (MPF). Table 5.1 presents the three

assays feeding profiles.

Table 5.1 Assay Feeding Profiles

Fitting Assays Validation Assays

Assay 1 – High Solids Batch 
Assay 2 – Low Solids Fed-

Batch 
Assay 3 – Mixed Profile Fed-

Batch

Feeding
Time (h)

Solids
Feeding
(g.L-1)

Enzyme
Feeding
(mg.g-1)

Feeding
Time (h)

Solids
Feeding
(g.L-1)

Enzyme
Feeding
(mg.g-1)

Feeding
Time (h)

Solids
Feeding
(g.L-1)

Enzyme
Feeding
(mg.g-1)

0 200 3.70 0 50 3.70 0 50 3.70

- - - 2 50 - 0,5 50 -

- - - 12 50 - 1 50 -

- - - 24 50 - 2 50 -

Source: Author’s library

The first two assays (Fitting Assays) were used for model fitting, and the third one

was the Validation Assay, used to check models’ prediction capacity.

5.2.2 Mathematical Modeling

5.2.2.1 Process Modeling

Six reactions were considered.

Reaction 1:  Cellulose → γCel-Ceb Cellobiose

Reaction 2:  Cellulose → γCel-Glu Glucose

Reaction 3:  Cellobiose → γCeb-Gli Glucose

Reaction 4:  Hemicellulose → γHe-Xyl Xylose

Reaction 5:  Lignin → Lignin

Reaction 6:  Enzyme → Inactive Enzyme

In the reaction scheme,  γ are the pseudo-stoichiometric mass relations between

substrates and products for each reaction. The values used for these parameters were:
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γCel-Ceb = 1.056 gCellobiose.gCellulose
-1 (Kadam et al., 2004),  γCel-Glu = 1.111 gGlucose.gCellulose

-1 (Kadam

et  al.,  2004),  γCeb-Gli =  1.056  gGlucose.gCellobiose
-1  (Kadam  et  al.,  2004),  γHe-Xyl =  0.841

gXylose.gHemicellulose
-1 (Yao et al., 2015).

Throughout  the  modeling  stages  reactions  1,  2  and  4  are  considered  to  be

heterogeneous, since they represent the breakdown of cellulose (reactions 1 and 2) and

hemicellulose (Reaction 4).  Both substrates are solids that are hydrolyzed into soluble

sugars.

The  hydrolysis  of  cellobiose  into  glucose  (Reaction  3)  is  considered  to  be

homogeneous, since cellobiose has a solubility far superior than the cellulose polymers.

Reaction 5 is included, despite lignin is an inert. Thus, this “reaction” just reflects the

accumulation of lignin in the reactor when it operates in fed-batch mode.

As previously described, several effects are responsible for enzyme inactivation and

inhibition. Here, Reaction 6 represents a generic inactivation of the enzymatic complex.

Using such a simple mechanism may not fully elucidate how the several effects affect each

enzyme during hydrolysis. However, the underlying idea is to use as few parameters as

possible, while retaining a robust model.

Mass balances for the components in the reactor are in Equation 5.1, following the

formalism  proposed  by  Bastin  and  Dochain  (1990).  Since  feeding  was  accomplished

discretely, the addition of substrate was calculated outside the model integration. In other

words,  when  substrate  addition  was  performed,  the  integration  was  re-initialized  with

proper initial conditions. Thus, the total mass balance of the system became a sequence

of batch processes.

d
dt

⋅[
Cl
Cb
Gl
He
Xy
Lg
E
]

7x 1

=[
−1 −1 0 0 0 0

γ Cel −Ceb 0 −1 0 0 0
0 γCel − Gli γ Ceb−Gli 0 0 0
0 0 0 −1 0 0
0 0 0 γ He− Xi 0 0
0 0 0 0 0 0
0 0 0 0 0 −1

]
7x 6

⋅[
α1

α2

α3

α4

α5

α6

]
6x 1

Equation 5.1

The column vector in the right-hand side of the equations are the concentrations of

reactive cellulose ([Cl]), cellobiose ([Cb]), glucose ([Gl]), hemicellulose ([He]), xylose ([Xy]),

lignin ([Lg]) and enzymatic complex activity ([E]). The 7 by 6 matrix at the right-hand side

of  the  equation  is  the  pseudo-stoichiometric  matrix  and  the  vector  (αi)  is  the  instant
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reaction rate calculated with different models.

The first  approach,  called “standalone reaction rate models”,  was based on the

previously described models, Michaelis-Menten Kinetic and Langmuir-Type Kinetics, within

the conventional implementation, i. e., using one set of parameters to fit the models to all

data of training assays (1 and 2) simultaneously, and checking prediction capacity through

validation data (Assay 3), not used for parameter estimation. Item 5.2.2.2. describes the

models used in this stage. It  is important to emphasize that this strategy applies each

individual model throughout each complete assay’s experimental data.

The second strategy, called “fuzzy kinetic model”, consists in using the models from

the first strategy with best adherence to experimental data, but instead of fitting the two

training assays simultaneously, one specific model, with the best fit, was parametrized with

data from Assay 1 and another one with data form Assay 2. Following, an optimized TS

fuzzy system was implemented, to interpolate between these models,  according to the

state of the system with respect to the amount of solids inside the reactor. The quality of fit

of this consortium of models was checked for both the training and the validation assays.

This modeling technique is described in Item 5.2.2.3.

5.2.2.2 Standalone Reaction Rate Models

The kinetic models tested in this chapter are depicted in Table 5.2. Equations 5.2

and 5.3 are Michaelis-Menten based models (equivalent to Equations 3.1 and 3.4 in Item

3.6.1).   Equations  5.4  to  5.8  are  kinetic  models  based  on  the  Langmuir  adsorption

isotherm, as described by Kadam et al. (2004) and extended to hemicellulose hydrolysis

(Angarita et al., 2015). The parameters in these equations follow the same units used by

Kadam et al. (2004). Equation 5.8 are the equations that described the enzyme adsorption

itself (equivalent to Equations 3.7 and 3.8 in Item 3.6.2.),  in these equations, a subscribed

number in the enzyme concentrations variables denotes the enzymes in that equation, 1 is

for  is  for  CBH  and  EG  together,  2  is  for  bG  and  4  is  for  hemicellulose  hydrolyzing

enzymes. 
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Table 5.2 Addressed Reaction Rates

Model Type
Used in
Reaction

Model
 Equation
Number

Pseudo-Homogeneous
Michaelis-Menten with
Competitive Product

Inhibition

3
α i=

k i⋅ [Ei ]⋅ [Si ]

K mi⋅(1+ [P i ]
K P, i

)+[Si ]
5.2

Modified Michaelis-Menten
with competitive product

inhibition 
1, 2 and 4

α i=
k i⋅ [E i ]⋅ [S i ]

K mi⋅(1+ [Pi ]
K P, i

)+[E i ]
5.3

Langmuir Based Model with
competitive inhibition by

several inhibitors

1
α 1=

k1⋅ [Eb1 ]⋅Rs⋅ [Cl ]

1+
[Cl ]
K i1Cb

+
[Gl ]
K i1Gl

+
[Xy ]
K i1 Xl

5.4

2
α 2=

k2⋅([Eb1 ]+[E b2 ])⋅Rs⋅ [Cl ]

1+
[Cb ]
K i2Cb

+
[Gl ]
K i2Gl

+
[Xy ]
K i2 Xy

5.5

4
α 4=

k 4⋅ [Eb4 ]⋅Rs⋅ [He ]

1+
[Cb ]
K i4Cb

+
[Gl ]
K i4Gl

+
[Xy ]
K i4 Xy

5.6

1 Rs=αR
[Cl ]
[C l0 ]

5.7

6
[Ebi ]=

Emi⋅Kad i⋅ [E f i ]⋅ [Si ]
1+Kadi⋅ [E f i ]

,

 E t i=E f i+Ebi

5.8

Enzyme inactivation 6 v=ke⋅ [E ] 5.9

Source: Carvalho et al. (2013); Kadam et al. (2004)

Equations 5.4 to 5.6 are the first rate with products inhibition reactions occurring in

the  solid  substrate  surface,  KiCb,  KiGl and  KiXl,  are  the  inhibition  constants  (g.kg-1)  for

cellobiose, glucose and xylose, respectively.

Equation 5.7 is the equation that models the change in substrate reactivity, Rs is the

substrate  reactivity,  αr is  reactivity  dimensionless  constant,  Cl0 is  the  initial  cellulose

concentration (g.kg-1). 

It is important to notice that the information regarding the amount of each enzyme

within the enzymatic complex was unavailable.  In order to use the described model, the
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enzymatic complex mass was divided equally between the different types of enzymes.

Since the  real  fraction of  certain  type of  enzyme is  always constant,  the  activity  of  a

specific enzyme will be lumped into their kinetic constants, and the model can be used, but

its parameters do not relay the correct value.

Two sets of kinetic models were used in the standalone fitting stage. One set was

based on Michaelis-Menten Kinetics (MMK), where the reactions involving solid substrates

(Reactions 1, 2, and 4) were represented by a Modified Michaelis-Menten models with

product inhibition (Equation 5.3). Cellobiose hydrolysis (Reaction 3), where the substrate is

soluble,  was represented by a classical  Michaelis-Menten with  product  inhibition.  First

order inactivation was assumed for the whole enzymatic complex (Equation 5.9, where ke

is a first order inactivation parameter (min-1)).

The other set was based on the Langmuir Kinetics (LK), where Reactions 1, 2 and 4

were represented by Equations 5.4, 5.5 and 5.6 respectively. The cellobiose hydrolysis

(Reaction 3) was also represented by a classical Michaelis-Menten equation with product

inhibition (Equation 5.3).

5.2.2.3. Fuzzy Kinetic Model

The Fuzzy Model (FM) used a TS Fuzzy system (Takagi and Sugeno, 1985). The

fitting procedure for the FM was carried out in three steps. Firstly, a standalone High Solids

Model (HSM) was fitted using the MMK reaction rates as described in Item 5.2.2.2., and

data from Assay 1 (HSB).  Second, a Low Solids Model  (LSM) was fitted in the same

manner,  but only using data from Assay 2 (LSB). Both models generated independent

reaction rates (αHSM and αLSM) for every equation in a same reaction instant. Until this point,

no fuzzy methodology was used. Figure 5.1 illustrates how the FM weighs the two models.

The third step was optimizing a Membership Function (MSF) to dictate how the total

reaction rate of the FM should smoothly change between the HSM and LSM. An MSF is

used to calculate the Membership Degree (MD) of each model,  MDHSM
 for the HSM and

MDLSM for LSM, the latter obtained by subtracting MDHSM from 1.

The MSF calculates the MD using the total amount of Reactive Solids (RS). RS is

the sum of solid cellulose and hemicellulose concentrations. A pure positive piece-wise

linear MSF was used, as presented in Figure 5.1b.  
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Figure 5.1 Fuzzy Model Reaction Rate Calculation

Fig. 5.1a Example Rates for Independent HSM an LSM; Fig. 5.1b Example MSF for HSM
and LSM; Fig. 5.1c Resulting Hypothetical FM Rate from HSM and LSM Rates.
Source: Author’s library

With the HSM and LSM membership degrees, the reaction rate for the FM is the

output of the Takagi-Sugeno System (Nelles, 2001) was calculated with Equation 5.10,

where αFUZZY are the reaction rates for each hydrolysis reaction.

αFuzzy=M DHSM ⋅αHSM+(1−M DHSM )⋅αLSM Equation 5.10

 The MSF optimization stage was performed to determine where lower and upper

bounds of the MDHSM should be placed. These parameters were optimized via Levenberg-

Marquardt algorithm using the data from Assays 1 and 2, the optimization procedure is

described in Item 5.2.2.4.

To evaluate the model prediction capacity, the previously unused data of Assay 3

were used for validation of the procedure. 

5.2.2.4. Fitting Algorithm and Statistics

To estimate the different models’ kinetic parameters and MDHSM lower and upper

bounds, a Levenberg-Marquardt algorithm was used. 

The sum of weighted squares errors (F) was used as cost function, it was calculated

via Equation (5.11). 

F=eT⋅Q⋅e Equation 5.11

Where Q is an n x n diagonal weight matrix,  e is the error column vector,  n is the

number  of  experimental  data.   The  elements  Qii are  the  inverse  of  the  carbohydrate

replicate variance (σ-2
i). The variance estimated for glucose was 0.392 g2/L2, and for xylose

was 0.773 g2/L2. 
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To obtain the standard errors of the optimized parameters, Equation 5.12 was used.

The equation is based on the linearization of the model in relation to the parameters at

their optimum values.

Cov (θ) )=( Xr T⋅Q⋅Xr )−1
⋅ F

m−n
Equation 5.12

Where Cov(θ)θ)) is the parameters covariance matrix, Xr is the linear sensitivity matrix,

with derivatives approximated via finite differences,  Q is the diagonal weight matrix.  F is

the objective function at the optimum value. The parameters standard error was estimated

by the square root of the parameters’ matrix main diagonal. 

All  fitting procedures were implemented in  SCILAB 6.0.0.  To integrate the state

variables,  with  the  generated  model  parameters,  SCILAB’s  default  ordinary  differential

equation solver was used, with the option for stiff systems enabled in a computer with an

AMD FXTM-8350 and 15,7 Gb of random access memory running, as operating system,

64-bit Linux Mint 18.3

5.3. RESULTS AND DISCUSSION

It is important to emphasize once again that any model here presented is a strong

simplification  of  the  phenomenology  behind  the  saccharification  of  lignocellulosic

materials. Several other reactions are occurring within the reactor. Specially when using

new enzymatic complexes, with improved bG activity and the addition of new cellulose

oxidizing enzymes such as PMOs (Bansal et al., 2009). Furthermore, different molecules

not considered here are generated during the hydrolysis, specially from hemicellulose (Yao

et al., 2015).

However, modeling such complex interactions can be strenuous and the complexity

of the generated model can compromise future studies, such as applications in reactor

monitoring and control. The consortium of simple models here proposed intends to have

enough complexity to predict the concentrations of the main compounds, while retaining

enough simplicity and flexibility to be applied to engineering problems. 

The  distinct  feeding  profiles  generated  different  situations  within  the  reactor,  as

expected.  In  Assay  1  (HSB),  the  amount  of  substrate  added  in  the  beginning  of  the

process generated a very high viscosity medium, where there was little visible free water

within  the  reactor  before  the  initial  solids  liquefaction.  As the  hydrolysis  occurred,  the

viscosity  of  the  media  decreased  rapidly.  In  Assay  2  (LSF),  the  feeding  of  substrate
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occurred sparsely enough as not to build a load of solids within the reactor that could

cause a significant visual change in the reactive medium, and the amount of visible free

water remained constant. In Assay 3 (MPF), the initial substrate concentration was not

enough to change the medium pseudo-viscosity greatly; however, the subsequent small

intervals  between  feedings  modified  the  medium  towards  a  high-solids  state.  As  the

hydrolysis continued, the reactor once again returned to a low solids state. Thus, Assay 3

is a strong validation test, since the path of the reaction system was very different from the

two first assays.

5.3.1. Standalone Models Fitting

Assay 1 and 2 data were first used to test the prediction capacities of the LK and

MMK models structures. The optimized models’ fitting for these kinetics are presented in

Figure 5.2.

Both models present  the same fitting trend:  overestimation of  final  glucose and

xylose concentrations in HSB (Assay 1),  and with similar predictions for products final

concentrations in the LSF (Assay 2) However, a deviation from initial sugar concentration

occurs. This behavior may indicate that both model sets are being compromised when

their parameter are forced to cope with slower reaction rates in the LSF and higher rates in

the HSB. 

It is important to notice that the Mean Squared Error (MSE) for the LK kinetics was

27.77 g2.L-2, using 23 parameters, while the MMK model set, containing 13 parameters,

obtained a MSE of 8.90 g2.L-2 after optimization. In this case, the model that contained

almost 60% more parameters showed no improvement over the simpler model.
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Figure 5.2 Standalone Models Fitting

Error bar in data points are the assay standard error for the compound concentration;
Vertical dotted lines are the solids feeding time; Fig 2a Fitting for Assay 1; Fig. 2b Fitting
for Assay 2.
Source: Author’s library

5.3.2. Fuzzy Kinetic Model Fitting

Using one model alone for a wide range of solids’ concentrations was not enough to

take into account the reactor medium change during liquefaction. Here, the FM was built

using the MMK models, since they have fewer parameters (13) than then LK (23), when all

equations are considered.

Firstly,  two different  sets  of  MMK parameters  were  obtained:  the HSM set  was

obtained using data from Assay 1 only, and the LSM set from Assay 2, these models are

presented in Figure 5.3 and the parameters resulting from the optimization of HSM and

LSM are in Table 5.3. Figure 5.3a shows the LSM only to enable a comparison between

this model and the HSM, as described, the data in this figure was not used to fit the LSM.

The same occurs in Figure 3b but this time for HSM presence.

The  models  performed  well  within  their  fitting  data,  however,  their  prediction

capacity with validation data is subpar. The LSM greatly overestimates the concentration

of products in the end of Assay 1, and the HSM cannot describe the reaction rate of Assay

2.

 The models were then used in the fuzzy optimization, as reaction rates generators.

The  lower  and  upper  bounds  of  the  FM  (see  Fig.  5.1)  were  then  optimized.  After

optimization, the Low and High thresholds for the linear fuzzy rule were 70.56 g.L -1 and
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74.70 g.L-1 respectively. This is an interesting result, since the threshold of the upper bond

agrees with the empirical  observations during the assays: visually,  around this load of

solids, the reactor seems to change its behavior from an almost semisolid process to one

with high free water content. The resulting fitting of the FM, alongside the HSM and LSM

for comparison, are presented in Figure 5.4.

Figure 5.3 High and Low Solids Models Fitting

Error bar in data points are the assay standard error for the compound concentration;
Vertical dotted lines are the solids feeding time; Fig 3a Fitting for Assay 1; Fig. 3b Fitting
for Assay 2.
Source: Author’s library

Table 5.3 High and Low Heterogeneous Michaelis-Menten Model Parameters

Reaction
Solids
Model

Parameters

k (min-1) Km (g.L-1) Kp (g.L-1) ke (min-1)

1
High (1.01 ± 9.57).10-3 (4.96 ± 2.11).10-2 (6.06 ± 4.22).10-6 -

Low (0.51 ± 1.70).10-2 (0.50 ± 2.31).10-6 (1.60 ± 1.03).10-4 -

2
High (1.24 ± 2.91).10-3 (7.74 ± 5.38).10-3 (0.49 ± 2.14).10-1 -

Low (4.60 ± 6.47).10-4 (0.31 ± 1.48).10-2 (1.62 ± 0.00).10-2 -

3
High (3.93 ± 6.53).10-2 (5.06 ± 0.12).10-4 (0.93 ± 3.32).10-1 -

Low (5.41 ± 2.68).10-2 (0.10 ± 3.58).10-9 (2.27 ± 0.00).10-1 -

5
High (2.11 ± 1.29).10-3 (2.76 ± 0.73).10-2 (1.80 ± 1.25).10-1 -

Low (3.11 ± 0.69).10-3 (7.13 ± 0.16).10-2 (1.17 ± 0.01).10-1 -

6
High - - - (8.43 ± 2.09).10-1

Low - - - (1.06 ± 0.01).10-1

Values are presented as (Parameter ± Standard Error)
Source: Author’s library
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Figure 5.4 Fuzzy, High and Low Solids Models Fitting

Error bar in data points are the assay standard error for the compound concentration;
Vertical dotted lines are the solids feeding time; Fig 4a Fitting for Assay 1; Fig. 4b Fitting
for Assay 2.
Source: Author’s library

A summary of the fitting errors for all assays and models are presented in Table 4.

Table 5.4 Fitting Error Summary for Proposed Models

Model
Assay 1

High Solids
Batch

Assay 2
Low Solids
Fed-batch

Assay 3
Mixed

Profile Fed-
batch

Total
Training

MSE

Total
Validation

MSE

Langmuir-
Type

Kinetics

Usage Training Training
No

Prediction
27.77 g2.L-2 No

PredictionMSE 12.72 g2.L-2 42.82 g2.L-2

Michaelis-
Menten
Kinetics

Usage Training Training
No

Prediction
8.90 g2.L-2 No

PredictionMSE 7.12 g2.L-2 10.69 g2.L-2

High Solids
Model

Usage Training Validation Validation
0.39 g2.L-2 42.77 g2.L-2

MSE 0.39 g2.L-2 61.51 g2.L-2 24.03 g2.L-2

Low Solids
Model

Usage Validation Training Validation
1.81 g2.L-2 30.44 g2.L-2

MSE 49.48 g2.L-2 1.81 g2.L-2 11.40 g2.L-2

Fuzzy
Model

Usage Training Training Validation
1.16 g2.L-2 6.18 g2.L-2

MSE 0.51 g2.L-2 1.81 g2.L-2 6.18 g2.L-2

Source: Author’s library

Analysis of Table 4 demonstrates several interesting aspects of the fuzzy modeling

methodology. The FM has a higher MSE (0.51 g.L-1) than HSM (0.39 g.L-1) when predicting

data  used in  the  training  of  the  latter  model.  This  is  to  be  expected,  as  the  HSM is
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generated with a smaller data sets, using only one batch assay condition. 

However, using restrict data sets decreases model flexibility. This is presented in

Figure 5.4, where a poor adherence from the HSM to the data in Assay 2 and from the

LSM to the data in Assay 1 is clear. The fuzzy model, through its model’s interpolation

capacity, generates a much better fit in both assays simultaneously using only one model.

When the FM is compared to standalone models trained with the same data, it is

clear that FM gives a much better fitting. The FM fitted with data from assays 1 and 2

obtained a MSE (1.16 g2.L-2)  23 times smaller than a LK model (27.07 g2.L-2) and 7 times

smaller than the MMK model (8.90 g2.L-2) trained with the same data. However, the FM

greatest feature is its prediction outside training data. As presented in Figure 5.5.

Figure 5.5 Fuzzy, High and Low Solids Validation Data Prediction

Error bar in data points are the assay standard error for the compound concentration;
Vertical dotted lines are the solids feeding time; Fig 5a Fitting for Glucose in Assay 3; Fig.
5b Fitting for Xylose in Assay 3.
Source: Author’s library

The Fuzzy Model extrapolation ability clearly is superior. MSEs for the validation

assay data (MPF), predicted by FM, HSM and LSM were respectively  6.18 g2.L-2,  24.03

g2.L-2 and  11.40 g2.L-2.These results indicate that the use of Fuzzy logic to coordinate a

consortium  of  simple  models  is  a  powerful  methodology  when  applied  to  enzymatic

saccharification of sugarcane bagasse,  an extremely complex reaction system. This is

achieved by the fuzzy model’s  capacity to interpolate between its predecessor models

when necessary. Figure 5.6 demonstrates the change in reaction rates for the training and

validation assays for the FM and its parent models, HSM and LSM, as a function of the

solids concentration.
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Figure 5.6 FM, HSM and LSM Reaction Rates

Fig. 6a Solids concentration and rates for reactions 1 through 4 for the models in Assay
1;  Fig. 6b Solids concentration and rates for reactions 1 through 4 for the models in
Assay 2;  Fig. 6c Solids concentration and rates for reactions 1 through 4 for the models
in  Assay  3;  Horizontal  lines  in  the  first  row  are  the  optimized  thresholds  for  the
Membership Degree of the High Solids Model during the Fuzzy optimization (Item 5.2.2.3)
and vertical lines are biomass feedings.
Source: Author’s library

The first row of figures in Figure 5.6 displays the reactive solids concentration for

each assay, it is calculated by adding the concentration of cellulose and hemicellulose,

these are calculated using the predicted value of its hydrolysis products. The solids value

is  the  one  used  to  calculate  the  membership  degree  for  each  parent  model  used  in

Equation 10 to generate the fuzzy reaction rate. This relationship explains the correlation

between the solids concentration and the most pertinent reaction rate. For instance, during

Assay 1 the reactive solids concentration remains above the upper bound of  the high
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model membership function until halfway through the process, thus, up until this point, the

Fuzzy Reaction Rate (FRR) is equal to the HSM reaction rate, and switches to the LSM

reaction rates in the second half of the assay. The LSM has a faster dynamic than the

HSM, and thus, after the change in predominant reaction rate, the apparent reactive solids

hydrolysis seems to accelerate.

For  Assay  2,  the  opposite  is  true.  The  assay  begins  with  a  small  solids

concentration, and thus, the FRR is equivalent to the LSM rate. The subsequent solids

addition does not amount to a solids concentration that can cause the FRR to deviate from

the HSM reaction rate.

This  is  a  very  interesting  capability,  as  the  model  can  be  adapted  quickly  to

situations not present in the training data using only the knowledge of apparent reactive

solids concentration. And such is what occurs in the reaction rates from Assay 3. The FM

starts in the LSM rate and quickly changes to the HSM rate with the close feeding time

periods. As the solids are liquefied, the model becomes a halfway interpolation of the two

precursor  models,  and continues to  approach the  LSM rate at  the  process’ end.  This

improves validation data prediction greatly, as presented in Figure 5.5.

Thus, the FM methodology can be used to predict the trajectory of the reactor for

operational conditions different from those used for training the algorithm. Furthermore,

this methodology requires little alterations in software development and can be applied to

small datasets.

5.4. CONCLUSIONS

In this chapter a Fuzzy Model (FM) for reaction rates was proposed to describe the

enzymatic saccharification of sugarcane bagasse. Simple models, such as those based on

Michaelis-Menten  Kinetics  (MMK)  fit  well  to  the  data  for  a  particular  feeding  policy.

However, the same model could not be used to predict with accuracy the process behavior

when the feeding policy was changed. The use of a fuzzy rule to weight between two

simple models, each one fitted for different solids’ concentrations, has greatly improved the

bioreactor trajectory prediction for different operation modes. This approach seems to be a

good trade-off between phenomenological and empirical-driver model,  and was able to

describe a very complex system. Of course, the methodology can be applied to different

systems, for example, the enzymatic liquefaction of other lignocellulosic materials.
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6. HYDROLYSIS STATE ESTIMATION IN STIRRED TANK REACTOR

6.1. MOTIVATION AND OBJECTIVE

Optimization of reactors to operate at high solids concentrations is an important step to

enable enzymatic hydrolysis biomass as a feasible technology. However, due to several

phenomena,  operating  under  high  solids  conditions  can  cause  several  issues  in  the

saccharification kinetics. Some issues can be traced to reactor homogenization, a difficult

task at high apparent viscosity. The suspended solids also increase greatly the power for

the  stirring  motor  itself,  creating  the  necessity  to  study  the  reactor  and  propellers

architectures.

These sort of bottlenecks are overcome by studying the torque necessary to stir the

reactor, and thus, indirectly, the reactor rheology. Stirring torque is a measurement widely

used  to  design  reactor  and  their  coupled  stirring  apparatus,  as  well  as  the  power

consumption  of  a  given reactor  architecture  during  operation  (Bondancia  et  al.,  2018;

Corrêa et al.,  2016b). Furthermore, torque dynamometers can also be used to monitor

reaction rates and fluid rheology during process (Jawad et al., 2019).

Nonetheless, torque measurement can be susceptible to a lot of noise. Coupling the

torque measurement to a state estimator can increase state estimation precision. State

observers are algorithm used to estimate state variables that are not directly measured

(either by lack of instrumentation or sensor high cost) and to diminish estimation error in

the measured variables (Mohd et al., 2015).

Several observers can be used, one possible approach is the Moving Horizon Estimator

(MHE). This sort of algorithm uses a dynamic window and optimization steps to predict the

observed state variables, based on both measurements and model data. MHE are very

well established as state estimators for chemical processes because it can deal with the

nonlinear dynamics and state constraints  inherent  to  most  reaction systems in  a fairly

straightforward manner (Lima and Rawlings, 2011).

Thus, the aim of this work was to design and test an MHE estimator based in torque

measurements  of  suspended  solids  during  fed-batch  operation  of  sugarcane  bagasse

enzymatic hydrolysis.

6.2. MATERIALS AND METHODS

6.2.1 Hydrolysis Assays
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Different feeding policies of solids were evaluated. Enzymatic complex was CELIC

CTEC  2  and  lignocellulosic  substrate  was  steam-exploded  sugarcane  bagasse.  The

assays were conducted in duplicates in a 3 L working volume stirred reactor with tow

elephant ear impellers, the one in the top of the axle generating a flow downward, and the

one in the bottom generating flow upward,  at 50oC and 470 RPM. Manual sampling was

performed at 0.5,  1, 2, 4,  6, 8, 12, 24, 36, 48, 60, 72 and 96 h and supernatant free

carbohydrates were determined. 

Three feeding profiles were assessed.  A High Solids Fed-Batch (HFB)  process,

Assay 1, where 300 g of substrate and 3.7 mgprotein.gsubstrate
-1 (approximately 10 FPU.gsubstrate

-

1) of enzymatic complex were added in the beginning of the process, and after 1 and 2 h,

150 g were added. And two fed-batches, where the feeding profiles amounted to the same

substrate mass as the first fed-batch process. However, the lignocellulosic material was

distributed into four feeding times. These feeding profiles generated two assay conditions

a Low Solids Fed-Batch (LSF) and a Mixed Profile Fed-Batch (MPF). Table 6.1 presents

the three assays feeding profiles.

Table 6.1 Assay Feeding Profiles

Fitting Assays Validation Assays

Assay 1 – High Solids Fed-
Batch 

Assay 2 – Low Solids Fed-
Batch 

Assay 3 – Mixed Profile Fed-
Batch

Feeding
Time (h)

Solids
Feeding
(g.L-1)

Enzyme
Feeding
(mg.g-1)

Feeding
Time (h)

Solids
Feeding
(g.L-1)

Enzyme
Feeding
(mg.g-1)

Feeding
Time (h)

Solids
Feeding
(g.L-1)

Enzyme
Feeding
(mg.g-1)

0 100 3.70 0 50 3.70 0 50 3.70

1 50 - 2 50 - 0,5 50 -

2 50 - 12 50 - 1 50 -

- - - 24 50 - 2 5

Source: Author’s library

6.2.2. Experimental Apparatus

To perform the assays, a 3L working volume reactor was used, this reactor was

developed by Corrêa et al. (2016a). The stirring motor was placed on top of a plate with a

bearing  so  the  motor  was  free  to  rotate  when  opposing  forces  acted  upon  it.  A

dynamometer was coupled to the lid. This enabled the stirring torque measurement. The

experimental apparatus is presented in Figure 6.1.
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Figure 6.1 Experimental Apparatus

Elements key; 1 Thermostatic Bath; 2 Frequency Inverter; 3 Motor; 4 Dynamometer; 5
Reactor; 6 Elephant Ear impeller; 7 Baffles
Source: Corrêa et al. (2016a)

6.2.3. Solids Monitoring

Solids concentration is not directly obtainable from the torque measurement, since

no straight  forward correlation is clearly  discernible.  Thus, an Artificial  Neural  Network

(ANN)  was  used  to  transcribe  torque  data,  and  other  available  data,  into  solids

concentration.  The  ANN models  were  implemented  in  SciLab  6.0.0.  with  the  Artificial

Neural Network Module 2.0.

6.2.4. Instrumentation Data

ANN training requires a relatively large amount of data to fully recognize useful

patterns in the data. Solids concentration was calculated stoichiometrically from the free

carbohydrates  concentration.  However,  this  wouldn’t  generate  enough  data  to  predict

concentration.  Thus,  the  solids  concentrations  were  interpolated  with  a  cubic  spline

algorithm, to generate new data points where previously there were none. It is clear that

interpolated  data  may  not  be  completely  accurate  to  actual  state  variables  profiles,

however, this sort of procedure is necessary when the available data set is not sufficient to

fit complex empirical models, such as ANNs.

Torque  measurement  was  realized  during  the  assays  every  10  seconds.  The

resulting data was fed through a LoWeSS (Locally Weighted Scatterplot Smoothing) filter

to diminish operational noise. The other two input data sets to the neural network were
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lignin  and  enzyme  concentrations.  Since  the  feeding  was  done  discretely,  and  no

hydrolysis  of  lignin  or  enzyme  inactivation  was  considered,  these  compounds

concentration were calculated with the amount present in each feeding point,  plus the

previous concentration before the feeding.

6.2.5. Neural Network Architecture Optimization

Cross validation approach was used to avoid overfitting issues (Nelles, 2001). The

sample universe was first randomized. The samples were then divided in 4 sets. 3 sets

were used in a cross-validation approach. 2 sets were used for the training of the network

(the current training group) and the unused set was used to validate (the validation group)

the current training. This approach was repeated until all the sets were used as validation

set. The average of the standard error of training and the average of the standard error of

validation were used to evaluate the architecture performance. The last group is the test

group. This group does not take place in the cross-validation and training procedure. A

graphical representation of this procedure is presented in Figure 6.2.

Figure 6.2 Cross Validation Procedure

Source: Adapted from Nelles (2001)

The architectures taken into account were multilayer perceptrons with one hidden

layer, the numbers of neurons in the hidden layer ranged from 1 to 10. The evaluated

transfer functions for the hidden layer and the sum layer are displayed in Figure 6.3. Each
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transfer function was evaluated both for the hidden layer and the sum layer.

Figure 6.3 Evaluated Transfer Functions

Source: Adapted from Nelles (2001)

The NN optimum architecture is achieved when the average standard error from the

validation departs from the linear tendency of accompanying the average standard error

from the training. When this happens, a possible interpretation is that the complexity of the

networks has become larger than the necessary for the system. The networks starts to

contemplate, in the pattern recognition, the noise from the samples disrupting the network

inference (overfitting). 

Therefore, the optimum architecture is when the errors are closely related (Nelles,

2001). An example of the behavior is presented in Figure 6.4. In the presented example,

the point  in  which the  validation  error  departs  from the  training error  is  at  around 12

neurons in the hidden layer, thus demonstrating to be the optimum architecture for this

hypothetical network. 

Figure 6.4 Training and Validation Errors Departure

Source: Adapted from Nelles (2001)

6.2.6. Mathematical Modeling

The mathematical model used in the state estimator was the fuzzy model described

and optimized in Chapter 5. The same parameters and reactions described in that item
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were used in the MHE as a mean to obtain the a-priori model state estimation.

6.2.7. Moving Horizon State Estimator

The moving horizon estimator cost function was presented in equation 3.13.

min
X (T−N :T )

=V T −N (X (T −N ))+ ∑
j=T−N

T−1

Lw ( X̂ −X -)+ ∑
j=T−N

T

Lv (Ŷ −Y ) Equation 3.13

The instrumentation data (Y) is obtained by using the torque measurement with the

ANN, and the model prediction (X-) is obtained with the fuzzy model. At each observation

step, the filter estimation (X̂ and Ŷ) is optimized via a Levenberg-Marquardt algorithm, with

10 iterations. in this case, the instrumentation data has the same unit as the state variable,

and thus X̂ and Ŷ are equal.

The filter estimation is highly sensitive to the optimization weights. To estimate the

correct  weights,  a range of  these values were tested with  the filter  algorithm and the

experimental data. A pseudo-code of the tuning algorithm is presented in Table 6.2.

This  methodology  was  used  to  access  the  performance  of  the  filter.  In  this

methodology, only the errors from glucose and xylose were used as performance index.

6.3. RESULTS AND DISCUSSION

6.3.1. Neural Network Optimization

From all the evaluated ANN structures, the one that obtained the lowest total error,

regardless of the group used to train or predict solids concentration, was the network with

a Tangent-Sigmoid transfer function in the first layer hidden layer and a pure linear transfer

function in the sum layer. The dispersion between the training, validation and test groups

for this network, as a function of the number of neurons in the hidden layer is presented in

Figure 6.5.

The network training does not presents a scatter plot similar from the one expected,

represented  in  Figure  3.4.  After  the  7th neuron  the  scatter  plot  becomes  erratic,  not

displaying any clear behavior. One possible explanation is that the algorithm used to train

the network is preventing over-fitting by stopping the learning phase before the optimum

minimum is reached.
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Table 6.2 Moving Horizon Estimator Tuning Pseudo-code
# Initialization
Set Initial Parameters: VT-N=0.5 N=4 Km and k Initial Values
Set Weight Values to be Tested: Lw =[0.01 1 100] and Lv =[0.01 1 100] 
# Main Loop
For: Every Combination of Weights
      For: Every Feeding Profile
            For:
                  If: Window Size < Maximum Size do:
                        Adds States to Window
                        Measurement from the Neural Network
                  Else:
                        Updates Window
                        Measurement from the Neural Network
                  End If
                  # Optimization Step
                  While: Stopping Criteria = False do:
                        Integrate Model for Window
                        Evaluate Cost Function
                        Update Kinetic Parameters and State Variables Prediction
                  End While
                  If: Feeding Time = True
                        Update State With Substrate
                        Reinitialize Moving Horizon Window
                  End If
            End For
      End For
End For
# Finishing Procedures
Calculate the tracking Error = (Analytical Data - Predicted State)

Nevertheless, the trend expected by Figure 6.4 can be seen until the 7 th neuron.

Within  this  interval,  the  training  error  decreases  greatly  with  the  addition  of  the  3 rd

neuronand  remains  somewhat  stable.  Validation  error  also  remains  stable,  thus,  the

considered optimum architecture is  the one in where the errors first  stabilized,  with  3

neurons in the hidden layers. In this structure, the test group error was not much larger

then the validation and training groups.

The error  scatter  plot  for  all  the  validation and training  groups for  the  optimum

architecture are presented in Figure 6.6.

The network presented a fairly adequate relation between the predicted and actual

values, demonstrating that it can be used to monitor the concentration of solids inside the

reactor. And this trained network was used in the MHE tuning.
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Figure 6.5 Training and Validation Errors for Optimal Network

Source: Author’s library

Figure 6.6 Training and Validation Errors Dispersion

Source: Author’s library

6.3.2. Moving Horizon Tuning

After the analysis of the several levels for the weights of the filters, the condition

that obtained the smallest total tracking error was the one that used 100 for the Lv and 1

for the Lw. The best tuning are presented for the training assays are presented in Figures

6.7 and validation assay in Figure 6.8.

The grid optimization methodology, although simple, generated interesting results.

The obtained weights demonstrate that, for these assays, the instrumentation was more

significant for the state prediction, as it has a higher penalty in the cost function. Figure 6.7

demonstrates this fact as for both assays, the state prediction is more closely related to

the state variable prediction generated by the neural network.
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Figure 6.7 Assay 1 and 2 State Estimation Prediction

Source: Author’s library

Figure 6.8 Assay 3 State Estimation Prediction – Low Solids Fed-batch

Source: Author’s library

In  the  initial  stage  of  the  process,  this  is  a  welcome  trend,  as  the  prediction

generated by the instrumentation data follows the production of free carbohydrates more

closely. However, in the late saccharification stages, when most of the biomass has been

liquefied,  the instrumentation reaches a plateau of prediction, since changes in the solids

concentrations are not significant enough to alter the stirring power. 

This  generates  a  deviation  between  the  filtered  estimate  and  the  compound

concentration, presented in both assays. Using a more thorough tuning methodology can

improve the estimator prediction, specially with more tuning weights possibilities.

However, a better alternative is the utilization of a dynamic weight, similar to the
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fuzzy rule used in the fuzzy reaction rate model, to increase and decrease value according

to the instrumentation necessity. he same trends discussed for the training assays were

also observed in the validation assay. Demonstrating the necessity of further optimization

in the state estimator.

6.4. CONCLUSION

The ANN optimized in this study was capable of predicting the solids concentration

in a robust manner. A state estimator was also constructed and tuned. It proved to be an

interesting tool, however, its structures necessitates further optimization. 
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7. SEMISOLID HORIZONTAL SACCHARIFICATION BIOREACTOR DEVELOPMENT

7.1. MOTIVATION AND OBJECTIVE

Horizontal Reactors (HR) can greatly increase the economics of the lignocellulosic

biomass hydrolysis process, while retaining high conversion rates. However, in horizontal

or standard reactors, a build up of insoluble material is unavoidable. The accumulation by

the end of a fed-batch process may reach a level of solids close to those in the beginning

of a unoptimized batch process. 

A secondary characteristic of this type of reactor is the lack of separation between

the liquid and solid phases of the slurry. This characteristic seems unnecessary at first,

since most reactors do not separate phases. Yet, much can be gained from performing

phase separation, both in the sense of energy consumption and reaction kinetics.

In  a normal  horizontal  reactors,  where  the  liquid  and solid  phases are  agitated

together, it  is feasible to assume that the liquid agitation is responsible by most of the

power consumption. This is supported by the work of  Jin et al. (2010), where increasing

the solids content inside the reactor had a smaller effect than adding more solids in the

volumetric power consumption. This trend is presented in Figure 7.1.

Figure 7.1 Volumetric Power Consumption in Horizontal Reactor

Source: Adapted from Jin et al. (2010)

At the rotational speed of 11 RPM, the empty reactor used, approximately, 1.58 W,

adding water inside the reactor increased this value to 1.8 W. When 5% solids were added

the power consumption increased to 2.1 W. Thus, the solids addition had a small effect in

the power consumption when compared to the addition of water into the system. This is

expected, since the liquid phase density is greater than the solids density and the mass of

water inside the reactor is also higher than the solids mass.
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Nevertheless, increasing the solids content from 5% to 9.7 % increased the power

consumption  to  2.18  W,  demonstrating  that  after  a  threshold,  increasing  solids

concentration causes a smaller power increment. This further demonstrates, as described

previously, that operation at higher solids concentrations is more energy efficient. 

Another plausible  assumption is  that  the liquid  phase does not  requires intense

agitation. The work of Liu et al., (2015) reinforces this hypothesis since it showed that an

intense mixing liquefaction stage followed by subsequent no mixing saccharification stage

did not reduce greatly the process conversion while reducing the total power consumption

by  60  %,  demonstrating  that  agitation  may  only  be  indispensable  in  initial  hydrolysis

stages. However, the initial mixing was realized in STR reactor, and under batch operation,

when using a fed-batch policy agitation is required in other times other than the initial

mixing, and mixing power can increase.

Thus, one can stipulate that separating liquid and solids phases and diminishing

water content in the HR can decrease energy consumption. Furthermore, recirculating the

separated liquid back into the HR can diminish enzyme inhibition issues that occurs under

low water content.

Separating the phases also enables easy hydrolysis  product  withdraw.  With the

separated liquid, already free carbohydrates can be removed from the system, diminishing

enzyme activity inhibition by product accumulation. This has been one of the objectives of

developing membrane bioreactors. These use ultrafiltration to remove inhibitors from the

medium, and increase cellulose conversion (Abels et al., 2013). However, these reactors

come  with  high  aggregated  costs,  since  the  membrane  and  its  maintenance  can  be

expensive (Pino et al., 2018).

The separated solids also enables more cost-effective manufacture of other high

added  value  products.  An  interesting  alternative  is  the  production  of  nanocellulose

compounds. These are a product of cellulose hydrolysis, under certain conditions, and can

be used to generate polymers with application in different fields,  from food packing to

mechanical reinforcement of structures (Farinas et al., 2018).

Moreover,  liquid  and  solids  products  independent  removals  means  that  their

hydraulic retention times are decoupled. This is an important characteristic, as it generates

more flexibility in the production plant. The liquid can be extracted earlier than the solids

and be used in another process where it is required more rapidly, and solids hydrolysis can
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continued unfazed to a desirable degree. This phase separation structure is used in other

heterogeneous processes with high solids contents and high hydraulic retention times, as

is the case biogas production from anaerobic fermentation. 

In  anaerobic  digestion  of  waste,  a  process  involving  several  microorganisms

immobilized in solids or free in the solution, several architectures of reactors have been

develop to decouple liquid and solid phase reactions. These reactors are called Phase-

Separated Reactors, and their main focus is diminishing reactor volume and retention time

(Xu et al., 2016). 

However, in this application, the utilization of phase separation means an increase

in  reactor  cost,  since anaerobic  fermentation  reactor  are  highly  optimized and robust.

Thus,  increasing  reactor  complexity  becomes  unfeasible  in  waste  management

(Karthikeyan et al., 2016). 

This  happens because anaerobic fermentation is,  usually,  a  waste management

technology, and increase in investment cost is not easily translated into profitability. For

biomass saccharification inside a biorefinery this is not true, since the reactor complexity

increase can generate new production pathways inside the plant, from which several new

products can be generated.

Due  to  all  the  described  characteristics,  the  system presented  in  Figure  7.2  is

proposed.

Figure 7.2 Initial Proposal for Parallel Phase-Separated Hydrolysis Reactors

Source: Author’s library

In the proposed architecture, the solids remains in the horizontal reactor, designed

to operate at high solids concentrations, while the liquid phase is directed to a stirred tank

73



reactor.  The  separation  between the  phases  is  done by  a  passive  filter,  negating  the

necessity  of  additional  energy.  The  liquid  phase  can  be  recirculated  back  into  the

horizontal reactor on demand.

The  proposed  system  can  operate  under  batch  or  fed-batch  policies,  with

automated biomass feeding. The feeding system is necessary to diminish the instabilities

originated from discrete feeding, specially in modeling, as well as to enable feeding control

continuously.

To enhance data gathering, facilitating modeling and other studies, the system also

possesses an automated sampler. The sampler enables liquid phase sampling without the

necessity of an operator.

Therefore, this chapter objective is to describe the development and construction of

horizontal  and  stirred  tank  parallel  reactor  system  with  phase-separation  capabilities

through  a  passive  filter.  Moreover,  the  development  description  of  automated  solids

feeding and liquid phase sampler.

7.2. MATERIALS AND METHODS

7.2.1. Reactors Construction

The  reactors  were  developed,  designed,  constructed  and  operated  in  the

Laboratory for Development and Automation of Bioprocesses, in the Chemical Engineering

Department, in the Federal University of  São Carlos. The main characteristics that the

reactor should attain to were:

-  Automatic  operation,  with  little  to  no  operator  supervision,  besides  during  manual

sampling. 

- Phase-separation without the need for extra energy.

- Biomass saccharification energy consumption minimization when compared to STR.

- Automated solids feeding and liquid sampling.

- Scale-up capacity to any necessary volume.

To achieve these goals,  different  iterations  of  several  parts  of  the system were

tested, and altered if needed. The following items contains a description of the main parts

development and their latest iteration.
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7.2.1.1. Three Dimensional Modeling Software and Fast Prototype Hardware

Most reactors parts were designed in Fusion 360® da Autodesk® software, and were

constructed in 3d printer Sethi 3D® S2®. The parts material were poly lactic acid.

7.2.2. System Control

The system control, i. e., the activation of motors, valves and pumps of the parallel

reactors  system was  constructed  in  Arduíno® platform.  A Arduíno  Mega® was  used  a

microcontroller. The algorithms were programmed and in the language and compiled in the

native Arduíno® compiler.

7.2.3. Horizontal Reactor Power Consumption

The finished reactor power consumption was estimated by the model proposed by

Wang et al. (2013), in this work, experimental data was used to fit a model that can predict

the power number of a horizontal reactor, first loaded with only liquid phase and modified

to predict power consumption with slurries.

However, Wang et al. (2013) generated a model for a reactor with baffles, and the

horizontal reactor designed in this work does not have baffles. Nevertheless, as an initial

rough estimate, the equation generated by the authors was extrapolated to an architecture

without baffles, but using the original baffle relations.

This is feasible since the authors describes that the utilization of baffles, although

improving mixing, increases power consumption. Thus, the value generated would only be

overestimated, and can be used in early project stages. The modification of Wang’s and

collaborators to the baffleless reactor is presented in Equation 7.1

NPL=0.025⋅Re
0.106⋅F r

−0.807⋅NR
0.261⋅(V L

V R
)

−0.212

⋅( L
D)

3.85

Equation 7.1

Where NPL is the power number for the reactor when it is loaded with water,  NR is

the reactor rotational speed (s-1), VL is the volume of liquid inside the reactor (m3), VR is the

reactor total volume (m3),  L is the reactor length (m), D is the reactor diameter (m). Re is

the Reynolds number described for flow in horizontal reactors, calculated with Equation

7.2, and Fr is the Froude Number, calculated with Equation 7.3.

Re=
ρL⋅NR⋅D2

μL
Equation 7.2

F r=
N R

2⋅D

g
Equation 7.3
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Where, ρL is the liquid phase density (kg.m3), μL is the Liquid phase viscosity (Pa.s)

and g is gravity’s acceleration (m.s-2). With the reactor’s power number when loaded with

liquid,  the  reactor’s  power  number  when  loaded  with  a  slurry  (Nps)  is  calculated  with

Equation 7.4.

NPS=
ρL
ρSL

⋅N PL⋅(1+φ0.13+0.0224⋅φ0.13⋅NPL) Equation 7.4

Where, ρSL is the slurry density (kg.m3), φ is the solid phase volume fraction in the slurry.

With the modified power number,  the specific power consumption of the reactor

when loaded with a slurry (PLS  W.m3) is calculated with Equation 7.5.

PLS=2.9⋅NR
0.59+

N PL⋅ρL⋅NR⋅D5

V L

Equation 7.5

This value is the estimate of power consumption if the reactor were loaded with a

given amount of solids and no reaction occurs. If the value was calculated considering the

saccharification of the biomass, it is feasible to assume that it would decrease over time in

a batch policy. 

7.3. RESULTS AND DISCUSSION

The reactors went through several versions to contemplate all the objectives while

operating  robustly.  A global  view of  the  parallel  reactors  and the  Semisolid  Horizontal

Saccharification Bioreactor (SHSB) is presented in Figure 7.3.

Figure 7.3 Parallel Phase-Separated Hydrolysis Reactors Design And Prototype

Figure 7.3a SHSB project; Figure 7.3b SHSB prototype.
Source: Author’s library

Figure 7.3a presents the design in the three dimensional modeling software, and
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Figure 7.3b the assembled prototype.

7.3.1. Solids Feeding Hardware

The  developed  solids  feeding  basis  is  a  screw  conveyor  coupled  to  a  solids

reservoir. The project of the system is presented in Figure 7.4. The feeder is powered by a

stepper motor Moons® Nema 17 with 200 steps in each turn. The power of the motor is

transmitted by a pulley and belt system, where a reduction of 8 times was applied. This

was necessary as initial tests demonstrated that the power from the motor was insufficient

to maintain a smooth operation. Several ratios were tested, and the 8:1 ratio generated the

best results.

The motor is commanded by the system’s main microcontroller. A stepper motor

driver  based  on  a  L293D  microchip.  In  the  software,  the  libraries  AccelStepper  and

AFMotor were used to provide the motor and driver commands functions.

Figure 7.4 Solids Feeding System

Source: Author’s library

The feeder operates by rotating the screw conveyor in the bottom of the solids

dispenser. The solids used must have humidity close to 5 % to facilitate transport.

Initial tests of the systems demonstrated that after an initial period of constant solids

feeding, the transport of biomass was interrupted, despite the screw continuing to rotate.
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Troubleshooting demonstrated that the rotation of the screw inside the dispenser

generated a packing of  the bagasse bed around the screw. To prevent  this  issue,  an

unbalanced motor was placed on the top of the dispenser (Figure 7.4, Item 4). The motor

was activated periodically, this generates a vibration inside the dispenser that breaks the

bed packing and guarantees that the feeding continues.

The solids feeding, more precisely the screw conveyor, channel and extruder had

two main versions. A larger initial version, with a bigger diameter, that occupied excessive

amount  of  volume  inside  the  SHSB.  Therefore  a  new,  smaller,  version  of  all  these

components were designed and constructed.

To  calibrate  the  feeder,  it  was  mounted  on  the  SHSB  structure,  and  a  scale

connected to a computer was placed beneath it. The computer controlled the feeder to

rotate 10 times and then read the scale value. This procedure was repeated for 1000

rotations, in three essays to determinate the mass of biomass dispensed by turn. The

obtained value was 7.492 mg.Turn-1 with the associated standard error of 0.012 mg.Turn-1.

Using the feeder within the reactor demonstrated that its operation is sensible to

humidity. If the solids in the end of the screw becomes humid, either by the liquid vapor

inside the reactor or by contact with humid solids, the water permeates quickly towards the

solids reservoir. This increases the power to rotate the screw severely, to a point where

either the motor begins to slip, or the screw breaks.

Several extruder ends were tested to shield the solids in the screw from becoming

humid, these obtained mixed results. The main strategy to ensure that this does not occurs

is operating the reactor with smaller solids in the reactor, diminishing the chance of dry and

humid solids coming into contact. 

7.3.2 Autosampler

The autosampler,  although not  vital  to  the  operation,  is  of  great  value,  since it

generates much more data from an assay. With more carbohydrate’s concentration data

obtained,  modeling,  monitoring  and  controlling  subsequent  stages  are  facilitated.  The

autosampler is presented in Figure 7.5.
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Figure 7.5 Autosampler System

Figure 7.5a Autosampler schematics; Figure 7.5b Carousel sampler and motor coupling;
Figure 7.5c Pumping and carousel coupling; Figure 7.5d Autosampler prototype.
Source: Author’s library

Fig. 7.5a presents the sampler schematic and the other internal figures of Figure 7.5

depicts the experimental apparatus. The autosampler is controlled by the system’s main

microcontroller. 

The  autosampler  operates  by  first  receiving  a  liquid  sample  into  the  Degasser

(Figure 7.5 – Item 1), this is an open vessel to remove any bubbles that might have been

present in the liquid sample drawn from the reactor. 

After  the  filling  of  the  degasser,  the  Sampler  Pump (Figure  7.5  –  Item 3)  was

activated, this directs the sample through the Regulatory Valves (Figure 7.5 – Item 2).

These valves are used to fix the amount of volume liquid that will be sampled. The tubing

from the first valve to the second one has a length that amounts to 1.8 mL of sample.

When the tubing is filled, the valves are activated, and the trapped liquid between them is

directed to the sample vessel. 

The sample is pumped through a Cooling Coil (Figure 7.5 – Item 4). This coil is a

long section of coiled tubing residing inside a thermal box filled with ice water. It is used to

quickly decrease the sample’s temperature and diminish hydrolysis rate and preserve the
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sample’s carbohydrates concentration close to the one inside the reactor in the sampling

time.

The sample passes through the cooling stage and is then directed to a sampling

vessel. The vessel resides inside another thermal box, connected to another thermal box,

the Cooling Source (Figure 7.5 – Item 7). This box contains ice packs used to decrease

ambient temperature inside the boxes. Two coolers in the connections between the boxes

promote air circulation from the source to the box containing the samples. This is used to

keep the samples activity to a minimum, and further preserve the sample nature. Two

500g  gel  ice  packs,  at  -86  oC,  are  placed  in  the  cooling  source  and  can  keep  the

temperature at approximately 9 oC for 12 h.

The sample vessels are placed in a rotating Sampler Carousel (Figure 7.5 – Item 5)

this is linked to a stepper motor, the Carousel Motor (Figure 7.5 – Item 6). The motor is the

same model and uses the same driver and libraries as the motor in the feeder. When the

sample pouring into  the vessel  is  completed,  the  motor  is  activated and the  carousel

rotates to the next empty sampling vessel. The carousel can store 18 vessels.

After  the sampling procedure is  completed,  the valves are deactivated,  and the

remaining  liquid  inside  the  degasser  is  returned  to  the  reactor.  The  entire  sampling

automatic operation lasts for approximately 12 min, and thus, this is the minimum sampling

period for the instrument.

The sampler cooling system is a second iteration of the apparatus. The first version

used no cooling method and instead relied in placing 0,2 mL of sodium hydroxide inside

the sampling vessels to  interrupt  the hydrolysis  reaction.  This  method proveded to  be

ineffective, as subsequent HPLC carbohydrates analysis showed that these decayed in

the sampling vessels.

Thus, the cooling stages were implemented. To guarantee that the system was able

to prevent products’ concentration alterations, for two 12 h batch assays manual liquid

sampling was performed alongside the autosampler every two hours. The manual sample

was boiled immediately for 5 min to denature enzymes, halting the reaction and preserving

the sample until  HPLC was performed. The samples in the autosampler carousel were

collected only in the ending of the assay, and boiled then. This enabled the comparison

between the methodologies. Figure 7.6 presents methodologies comparison.
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Figure 7.6 Manual and Autosampler Concentrations

Error bar in data points are standard error for the compound concentration.
Source: Author’s library

The  data  distribution  demonstrated  that  the  automated  sampling  and  delayed

denaturation obtained similar results from the manual methodology, and thus, it can be

used with the reactor. 

7.3.3 Semisolid Horizontal Saccharification Bioreactor

The SHSB project was previously presented in Figure 7.3. Its name is derived from

the phase separation technology used in the reactor. The reactor wall is lined with filtering

material, as presented in Figure 7.7, the mesh retained the solids while liquids were free to

permiate. This left very little free water in the horizontal drum, thus generating a semisolid

reactive media.

Figure 7.7 Horizontal Filtering Media Drum

Figure 7.7a Filtering media project; Figure 7.7b Filtering media prototype.
Source: Author’s library

The external  structures were printed, and the filter was fixated to its interior.  As
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filtering medium, a stainless steel mesh, with aperture 0.074 mm (Tyler 200). A first version

of the horizontal drum had a mesh with aperture 0.500 mm (Tyler 32), this mesh proved to

be ineffective, as dry solids would permeate through the sieve.

Another version of the horizontal  was constructed with screw like baffles.  These

were constructed as a coil with a triangular profile fixed to the reactor wall. Two coils were

used, if the reactor were to be divided into three sections, one coil was placed in the first

third of the reactor, where the solid feeding occurs, it would carry solids to the middle third

of  the reactor,  that  was kept  empty,  and another  in  the last  third,  facing the opposite

direction, to carry towards the middle section as well. This version prototype is presented

in Figure 7.8.

Figure 7.8 Horizontal Reactor with Screw Baffle – Mid Section Cut

Source: Author’s library

These  were  added  to  improve  slurry  mixing  inside  the  reactor.  However,  when

applied, the solids were not dry enough to move freely, and the slurry did not have enough

liquid to behave as a liquid, and the solids remained in the extremities with the coils walls

acting as barriers to movement. Thus, the interior baffles were excluded from subsequent

test.

In the extremities of the horizontal drum, septa were used to prevent free water flow

through the ends of the reactor instead of the filtering medium. The septa placement is

presented in Figure 7.9.
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Figure 7.9 Septa Positioning

Figure 7.9a Septum project in the feeder side; Figure 7.9b Feeder Septum; Figure 7.9c
Septum project in the dripper side; Figure 7.9d Dripper septum.
Source: Author’s library

The septa have orifices with the size of the hardware that passes through it. This

improved the liquid retention inside the SHSB. This was necessary since in initial trials

liquid was lost through the reactor’s extremities.

The horizontal drum is coupled to a bearing mounted on a flange. On top of the right

flange is the stepper motor responsible by the reactor rotation (Figure 7.3, Item 2). The

motor and shield is equal to the ones in the feeding and sampler apparatus. The motor is

coupled  to  one  the  reactors  bearing  mounts  via  a  gear  system in  both.  There  is  no

reduction applied in this motor.

7.3.4 Stirred Tank Reactor and Liquid Recirculation

The SHSB is coupled to a STR. The STR is made of acrylic tubing, and its lid was

modeled  and  printed  to  be  used  in  the  parallel  reactor  system.  The  lid  has  several

entrances for different instrumentation probes and hardware from the system. Figure 7.10

demonstrates both reactors coupled.

The SHSB is mounted in a stainless steel frame to be raised from the base of the

STR. This facilitates integration between the reactors and liquid flow. The frame also has

mounts for the solids feeder and the liquid recovery ramp.

Liquid from the STR is transported to the SHSB by a peristaltic pump (Figure 7.10

Item 4), this is directed to a dripper that spreads the liquid inside the horizontal reactor.

The dripper (Figure 7.10 Item 3) project and prototype is presented in Figure 7.11.

The dripper was the most altered and redesigned part of the entire system. Several

architectures were tested, from using perforated hoses outside of the reactor, to several
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tubed in different locations inside the reactor and from all these iterations the dripper was

the one that displayed the best trade-off between robust operation and liquid dispersion. 

Figure 7.10 Parallel Reactors Coupling

Source: Author’s library

Figure 7.11 Horizontal Reactor Dripper

Figure 7.11a Dripper project; Figure 7.11b Dripper prototype.
Source: Author’s library

The orifices are placed in a square profile section, above a semicircular section.

The  liquid  flows  from the  bottom of  the  circular  section  and  rises  until  the  holes  are

reached.  This  improves  flow through  all  orifices  simultaneously.  Silicon tubes  are  tied

through the holes from one side of the dripper to the other. This helps to break surface

84



tension in the liquid and homogenize flow along all the exits in the dripper.

After recirculation to the interior of the SHSB, the liquid mixes with the solids and

then permeates through the filter. The liquid is recuperated by slanted ramp, the ramp

directs the liquid back to the STR interior.

During  operation,  to  emulate  an  industrial  scale  solids  feeding,  an  equivalent

amount of liquid is fed to the STR. This is done because it is feasible to assume that with

larger  scale  hardware  the  solids  will  not  need  to  be  dried  to  facilitate  transport.  A

secondary peristaltic pump is used to perform this addition. Another pump is responsible

for enzymatic cocktail feeding.

7.3.5 Power Consumption Estimate

Using the dimensions of the constructed SHSB, diameter of 75 mm and length 92

mm, power consumption was calculated with Equations 7.1 through 7.5.

To do so a hypothetical process was assumed. The reactor was considered to be

loaded slurry composed of 180 ml of liquid with a density of 1 kg.L -1 and 20 g of solids with

a density of 0,147 kg.L-1, determined by measuring the volume of a 100 g of biomass. The

reactor walls were assumed to be not permeable, i. e., the mass inside the reactor remains

constant, and the rotational speed was 5 RPM. 

This is an approximation of a batch process initial condition, before the hydrolysis

occurred, loaded with the maximum possible amount of a slurry with 15 % solids. This is

the worst case scenario for power consumption, when the reactor is at capacity working,

and no reduction in the mass inside it occurred. Therefore, it is feasible to assume that the

power consumption at this condition is the maximum that the reactor can create.

It is also important emphasize that the reactor architecture deviates from the one

used by Wang et al. (2013) to fit the models, and thus, its extrapolation can differ from

actual values. 

Nevertheless, with these conditions, the reactor obtained a power consumption of

50.58 W.m-3. This value is less than half the lower bound (100 W.m-3) of the specific power

range for an industrial reactor (Bouquet and Morin, 2006). This value is also far lower than

values obtained during hydrolysis in STRs (15.000 W.m-3 in Battista et al. (2018)), and

lower than in hydrolysis reactors in similar horizontal architecture (560 W.m -3 in Dasari et

al. (2009)).

85



The consumption level, as is expected via analysis of Equation 7.5 and empirical

knowledge,  increases  rapidly  with  the  rotational  speed  of  the  reactor.  Reducing  this

velocity to 1 RPM, maintaining the other variables, decreases power consumption to 5.03

W.m3,  a full  order of magnitude smaller than the value with 5 RPM. However, this can

hinder reactor mixing. Thus, this is an important variable that need to be optimized.

Further studies are also necessary to fully describe the consumption behavior of the

parallel  reactors,  since  other  secondary  apparatus  are  necessary,  increasing  power

necessity.  Data from actual power consumption during the hydrolysis process are also

necessary. 

Nevertheless, these values are a major improvement in power consumption for the

biomass saccharification stage.

7.4. CONCLUSION

Operating new reactors is a complex task. Unforeseen behaviors can be expected,

and a significant amount of empirical knowledge needs to be acquired before the reactor

can operate robustly. Frequently, initial assays are discontinued due to severe issues in

the reactor operation. The data from the interrupted process is also often lost.

This was the case for the parallel reactors, as from the first 8 assays, only 4 were

successful  to  a  degree  where  the  generated  data  were  reliable  enough  to  enable

examination. 

Nevertheless, these initial experiments with the hardware are necessary to improve

the  platform  overall  robustness.  With  the  subsequent  operations,  and  the  empirical

changes in the parts, the reactor issues were decreased, to a degree where all described

independent  systems,  solids  feeder,  autosampler  and  parallel  reactor  operated

concurrently  with  no  issues.  Validating  this  system  as  a  biomass  saccharification

technology.

The SHSB phase-separation capacity was also validated. Where little to no solids

were washed to the interior of the STR.

The  solids  feeding  hardware  also  operated  successfully.  After  configuration

optimization, biomass was fed to the system in a robust manner. The utilization of the

unbalanced  motor  on  top  of  the  dispenser  was  the  fundamental  system change  that

enabled the system utilization, without it, it is likely that a screw conveyor based system
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would be unsuccessful. 

This enables several research opportunities since the fed-batch biomass hydrolysis

solids feeding profile is no more bounded to discrete feedings. This is an important result,

since, as presented in Table 3.2, only the work of  Tai et al. (2015) used an automated

feeding system, and in this case, the used instrument was only capable of working with

very fine powders. Although an important tool in fed-batch studies, using the biomass as a

fine powder can generate deviations from the large scale process, since the biomass state

can influence hydrolysis.

Using  the  architecture  proposed  here,  however,  is  a  more  appropriate

approximation of the apparatus used in production plants, and thus, a better starting point

for scale up calculations. Furthermore, with minor alterations, this system can be applied

to other reactors that may benefit from solids feeding.

The autosampler also operated in a satisfactory fashion. With this instrument, more

data can be generated from an assay, improving subsequent studies with the generated

data. This instrument can also be easily modified to be used in other reactors.

Another  important  conclusion  regards  the  power  consumption  of  the  SHSB.  A

significant decrease in energy necessity is estimated in this reactor. To a degree that may

enable its application in a biorefinery.

Therefore, the SHSB here developed is a novel reactor architecture, that can be

easily scaled to larger volumes, and can generate several new production routes within the

biorefinery, with or without its utilization parallel to another reactor.
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8. SEMISOLID HORIZONTAL MESH BIOREACTOR APPLICATION

8.1. MOTIVATION AND OBJECTIVE

After the development of the parallel reactors, initial trials with the architecture were

performed.  These  were  used  to  both  test  the  hardware  and  the  reactors’ operational

characteristics. To establish initial dynamics behavior elucidation, trials under batch and

fed-batch operational policies were applied. During the reactors operation, instrumentation

in the liquid phase was also applied in order to initiate data gathering for future monitoring

softwares.

Monitoring  reactions and estimating  its  state  variable  is  a  difficult  task.  Several

methodologies are available,  and each application usually demands special  tools.  The

selection of which tool is to be used can occur in different ways, however, in some form or

another, different methodologies have to be used to enable performance comparison. As

initial monitoring trial, a Partial Least Square algorithm was applied to instrumentation and

compounds concentration to determine if this tool is useful in this application. Thus, this

chapter objective is to perform assays in the parallel reactors under batch and fed-batch

policies with instrumentation and to test initial monitoring software.

8.2. MATERIAL AND METHODS

8.2.1. Batch and Fed-batch Assays

With the system described in chapter 7, two assays were performed in duplicate. A

12 h batch  and a 48 h fed-batch assay.  Both  used a total  of  20  g  of  hydrothermally

pretreated biomass, as described in item 4.1. In the batch assay all  the substrate was

added into the SHSB before the begging of the process, in the fed-batch 5 g was added in

the beginning in the horizontal reactor and the 15 g remaining were added by the feeder

from the first  to the 36th h of the process, resulting in a mass flow of approximately 7

mg.min-1. 

The assays were initiated by adding to the dry pretreated biomass enough buffer to

generate a slurry with 15% solids. Enzymatic cocktail was added to the slurry in this stage.

Enzyme loading was 12.5 mgprotein.gsolids
-1 (approximately 10 FPU.gsubstrate

-1), calculated with

the 20g of final substrate mass. In the fed-batch assay, a concurrent feeding of buffer was

used to simulate a feeding with 15 % solids, by adding, roughly, the 40 µL.min-1.

The STR was initiated with 400 mL of citrate buffer. This volume was used to ensure
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that the instrumentation inside the liquid reactor could work properly. Every 8 h, 50 mL of

distilled water was added to counteract the system evaporation.

8.2.2. Analytical Procedures

Analytical procedures occurred in two ways. With the automated sampler and via

manual sampling.

8.2.2.1. Automated Sampling

Liquid phase from the STR reactor was collected by the autosampler every 2 h, in

the method described in item 7.3.2, and the vessels with the samples remained in the

autosampler until  the next manual sampling period. At this moment, the samples were

retrived boiled for 5 min and kept under refrigeration until subsequent analysis. In these

samples, free and potential carbohydrates were determined. During the manual sampling,

fresh ice was added in the autosampler cooling coil and the ice packs in the cooling source

were changed.

8.2.2.2. Manual Sampling

Manual sampling occurred every 6 h in the batch process and every 8 h in the fed-

batch. Liquid phase was sampled and FCA was performed in it as described in item 4.5.2.

Sample from the solids were also sampled at this time. Approximately 5 g of slurry

were removed from the SHSB. This mass was placed in  a  glass petri  dish and Near

Infrared Reflectance Analysis (NIRA) with a Frontier NIR Standard from Perkin Elmer® with

NIRA attachment.  This instrument scanned the solid through reflectance from 10000 cm -1

to 4000 cm-1 with 4 cm-1 resolution

The slurry sample was divided, 1 g was used to determinate moisture, evaluated in

moisture analyzer ID50 from Mater Balanças®, and the rest was suspended in 50 mL of

water, boiled for 10 min to stop adsorbed enzymes activities. After boiling, the sample was

placed  in  a  vacuum aided filtering  apparatus  with  a  general  purpose filter  paper  and

washed with 200 mL of water. The washed solids in the filter were then dried for 24h at 40
oC in kiln. The dry solids were scraped of the filter and kept under refrigeration until further

analysis could be performed.

8.2.3. Process Monitoring

During the assays, several instrumentation probes were added to the STR. These

89



instruments were used to generate data, that together with the data from the analytical

procedures, could be used in subsequent modeling and monitoring stages.

8.2.3.1. Near Infrared Spectrum Scanning

A reflectance probe Falcata 6 was used coupled to a Frontier NIR Standard from

Perkin Elmer®. This instrument performed NIR scans every 6 min of process that ranged

from 10000 cm-1 to 1200 cm-1 with 4 cm-1 resolution.

8.2.3.2. Ultraviolet and Visible Spectrum Scanning

A reflectance probe was also applied in the STR, coupled to a Lambda 456 from

Perkin Elmer®.  This instrument performed scans in the Ultraviolet and Visible (UV/VIS)

region of the light spectrum every 6 min of process that ranged from 180 nm to 1100 nm

with 1 nm resolution.

8.2.3.3. Capacitance and Conductance Scanning

An  Incyte  Cell  Density  Sensor  from  Hamilton® was  place  in  the  STR.  This

instrument performed permittivity (pF.cm-1) and conductance (mS.cm-1) measurements in

the reactive media every 6 min.

8.2.3.4. Software Sensor Modeling

The data obtained with the automated carbohydrate sampling were used with the

on-line data from the NIR and UV/VIS spectrum scans from the time were carbohydrate

sampling occurred to calibrate PLS model to be used as a soft sensor. Separate models

for each spectrum range was develop.

Data from both batch assays and one fed-batch assay were used as fitting data to

generate  the  PLS  model,  and  one  fed-batch  was  used  as  test  data,  to  evaluate

extrapolation.

To determine the number of regressors in each PLS, a cross validation procedure

was used, in a manner similar to item 6.2.7. In this instance, 88% of the training data was

used  in  each  fitting  evaluation,  and  12% was  used  as  validation  data.  The  optimum

architecture was chosen based in the deviation between training and test data error, as

described in Figure 6.4.

8.3. RESULTS AND DISCUSSION

8.3.1. Analytical Results
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A first important result that should be observed is the slurry moisture analysis, for it

did not change during assays, maintaining a level of approximately 85% independent of

the reactor policy and hydrolysis degree. This behavior means that effectively the SHSB

operates at a fixed value of 15 % solids, irregardless of feeding policy. 

At  first,  this  seems  to  be  an  issue,  since  higher  solids  concentrations  are

unattainable. However, when considering that the liquid phase hydraulic retention time is

decoupled from the solids retention time, and that it  can be recirculated back into the

horizontal reactor at will, it becomes clear that this is an advantage of this structure. 

Since solids are naturally kept at 15%, the product concentration varies only with

the volume of recirculated liquid phase. If a more concentrated product is necessary, less

liquid phase in the STR can be used.

This can help diminish product concentration after hydrolysis, possibly enabling the

usage of the saccharification liquid phase with the sugarcane juicy without dilution of the

latter.

Furthermore, the reactor performance is no longer bounded to its maximum solids

concentration, and can be operated until its maximum working volume is reached without

losing mixing efficiency. Thus, if more biomass needs to be processed, an architecture

change is not necessary, only additional reactors or a larger reactor.

Data from the remaining analytical procedures applied in the assays are presented

in Figure 8.1 for the batch assay, and in Figure 8.2 for the fed-batch assay.

The figures demonstrate that the parallel reactors were successful in hydrolyzing

the biomass, to a degree similar to other studies described in Table 3.2. However, this

value may be underestimated. 

Since the liquid phase is separated from the solids and recirculates back into the

reactor, it is responsible for carrying the sugars formed from the solids into the STR. One

can stipulate that if the flow of liquid is not enough, an accumulation of carbohydrates

occurs in the liquid surrounding the solids, thus, considering that the sugar concentration is

homogeneous  throughout  the  reactor  liquid  phase  can  become  unrealistic,  and  the

evaluated mass of sugars is smaller than the actual value. Therefore, strategies to retrieve

more sugars from the horizontal reactor are necessary.
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Figure 8.1 Parallel Reactors Batch Assay Analytical Data

Figure 8.1a Data from cellulose related variables; Figure 8.1b Data from hemicellulose
related variables.
Source: Author’s library

In both policies, a clear accumulation of polymerized carbohydrates from cellulose

and hemicellulose occurs. Conversion can be improved if these were further hydrolyzed. If

conversion of cellulose was calculated at the end of the fed-batch assay with the potential

glucose  concentration  instead  of  the  free  glucose  concentration,  conversion  would

increase from 37.7 % to 68.9 %. Therefore, a significant amount of sugars are not being

fully hydrolyzed due to cocktail inhibition.

This is further supported by trend in free cellulase activity from both assays. An

initial  increase  of  activity  is  observed,  followed  by  a  sharp  decrease.  This  happens

because the  enzyme was mixed with  the  solids  prior  to  adding it  to  the reactor.  It  is
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feasible to assume that the medium recirculation promotes washing of some enzymes

from the  solids,  increasing  the  activity  in  the  liquid  phase.  The  subsequent  decrease

occurs due to several effects, as described in item 3.4.2.4. 

Figure 8.2 Parallel Reactors Fed-batch Assay Analytical Data

Figure 8.2a Data from cellulose related variables; Figure 8.2b Data from hemicellulose
related variables.
Source: Author’s library

To overcome this behavior, several strategies can be employed. One alternative is

adding  more  cocktail  during  the  process,  in  particular,  β-glucosidases,  as  cellobiose

quickly rises and enter a pseudo-stationary state. Since cellobiose is an intermediate of

glucose production, and described to be an inhibitor of cellulose hydrolysis (Angarita et al.,

2015),  supplementing  this  enzyme  can  improve  conversion,  but  causing  an  increase

process cost. To reduce the cost increase, since this enzyme catalyzes a homogeneous
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reaction, an immobilized version of this enzyme can be used in the STR.

However,  another  critical  aspect  of  the free cellulase activity  analysis from both

assays must be observed. Even though the assays were initiated with the same amount of

cocktail but with different initial solids loadings, free activity was similar between both in

the process beginning. 

The batch assay, initialized with 20 g of solids and 12.5 mgprotein.gsubstrate
-1, had in its

first data point a free activity and standard error of 1.80±0.53 g.L-1.min-1,  the fed-batch

assay, with the same amount of enzyme but with only 5 g of solids, had 2.27±0.37 g.L-

1.min-1 in its first activity analysis. A T-test with 95 % confidence level demonstrates that

there is no significant statistical difference between the means.

This is unexpected. It would be simpler to assume that when mixing a amount of

enzyme to two different masses of solids, a smaller free cellulase activated was to be

encountered when more solids were used. However, the amount of solids does seem to

have little  effect  in the amount  of  adsorbed cellulases. This  appears to show that the

concentration of enzyme is in excess, or, the amount of available substrate is limiting.

The  concentrations  of  potential  glucose  and  free  cellobiose  further  aids  this

observation, since after two hours no significant statistical difference is observed in this

variable between the assays. This may indicate that the solids were liquefied in the same

initial rate.

Even though the errors in the activity measurements are relatively high, this is an

important  conclusion.  This  demonstrates  that  high  initial  loads  of  enzymes  may  not

increase  liquefaction  speed.  Considering  also  that  enzymes  are  more  susceptible  to

inhibition the longer they are inside the reactor, adding enzyme throughout the process

can greatly improve its performance. 

8.3.2. Online Instrumentation Data

Instrumentation data from the assays are presented in Figure 8.3 for  the batch

assay, and in Figure 8.4 for the fed-batch assay.

Instrumentation from optical scanning of the liquid sample seems to present a trend

of increasing absorbance through the processes. In the UV/VIS it appears to be strong in

the range of 200 to 380 nm, this is specially interesting since it  is the range at which

soluble lignin compounds peak absorbance occurs (Sluiter et al., 2012). 
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Figure 8.3 Parallel Reactors Batch Assay Instrumentation Data

Figure 8.3a NIR liquid scanning; Figure 8.3b NIR solids scanning; Figure 8.3c UV/VIS
liquid  scanning;  Figure  8.3d Permittivity  scanning;  Figure  8.3e Permittivity  and
Conductivity measurement.
Source: Author’s library

Figure 8.4 Parallel Reactors Fed-batch Assay Instrumentation Data

Figure 8.4a NIR liquid scanning; Figure 8.4b NIR solids scanning; Figure 8.4c UV/VIS
liquid  scanning;  Figure  8.4d Permittivity  scanning;  Figure  8.4e Permittivity  and
Conductivity measurement. 
Source: Author’s library

A similar phenomenon occurs in the NIR liquid scanning, from 7200 to 1100 cm-1.

Even though no clear substance or group of substance can be solely credited as being
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responsible  be  absorbing in  this  range,  it  has been proven to  be able to  monitor  the

reactions with similar substrates (Pinto et al., 2016).

8.3.3. Software Sensor Monitoring

The data from NIR and UV/VIS monitoring presented in the previous item were used to

compose the PLS models. Analytical free carbohydrates and instrumentation data from the

batch assays and one fed-batch assay were used to fit the model with the cross validation

method, and the remaining fed-batch assay data was used to test the model extrapolation

capacity.

The algorithm, as it stands, was unable to generate models from the NIR data. This

was due to the amount of data generated by each assay, during the fed-batch the NIR

scans  generates  4.22.106 data-points,  thus,  any  processing  of  these  data  is

computationally  expensive.  Even  though  only  the  scans  from when  analytical  data  is

available  were  used,  a  data  pretreatment  stage  is  still  necessary  in  order  to  enable

modeling, and thus, no model is presented. 

For the UV/VIS data, the fitting was possible,  and the cross validation result  for

number of eigenvectors in the regression is presented in Figure 8.5.

Figure 8.5 Cross Validation for PLS Fitting With UV/VIS Data

Figure 8.5a Cross Validation for Glucose Concentrations;  Figure 8.5b Cross Validation
for Cellobiose Concentrations; Figure 8.5c Cross Validation for Xylose Concentrations.
Source: Author’s library

For all the predicted carbohydrates, the deviation between training and validation

error occurred when 3 eigenvectors were used as dimensions for the partial regression.

Thus, this value was used for the regression. The model prediction for the test fed-batch

data is presented in Figure 8.6.

96



Figure 8.6 Prediction for PLS Regression With UV/VIS Data

Figure  8.6a Cellulose  Related  State  Variables  UV/VIS  PLS  Prediction;  Figure  8.6b
Xylose UV/VIS PLS Prediction.
Source: Author’s library

A good  adherence  was  achieved  with  the  model  as  is.  However,  it  is  highly

susceptible to instrumentation data noise. Specially the formation of unexpected bubbles

in the probes, as this is an optical measurement. To overcome this effect, the data from the

other instruments must be added into the software sensor layer. Furthermore, the studies

of modeling and state estimation described in previous chapter should also be applied in

the parallel reactors.

8.4. CONCLUSIONS

Lignocellulosic  biomass  hydrolysis  performance  with  the  parallel  reactors  was

similar to other reactors conversionwise, with the added capacity of separating reaction
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phases.  The  SHSB  reactor  operates  under  conditions  that  are  not  common  in  other

reactors, opening new possibilities of control policies, that could improve overall process

efficiency.

PLS proved to be a promising tool to monitor the saccharification process. However,

further studies are necessary to apply the full data generated from instruments, as well as

to improve monitoring capacity.
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9. CONCLUSIONS

Several conclusions can be drawn from the studies presented in this thesis. First by

enhancing  modeling  and  monitoring  of  the  saccharification  process  under  different

operational policies, and also by altering the reactor in which the process is conducted.

Fuzzy enhanced modeling improved the prediction of simple kinetic models in high

solids  saccharification  in  stirred  tank  reactors.  Monitoring  was  also  possible  using

simplified instrumentation and models in this architecture.

The  main  result  here  presented  is  the  new  reactor  structure  for  lignocellulosic

material hydrolysis. Using a horizontal reactor capable of separating the liquid and solid

phases of the reaction and using a parallel stirred tank coupled to it can not only diminish

the energy necessary  to  conduct  the  process,  but  can also  generate  new processing

technologies within the biorefinery. This is achieved with small reactor complexity increase,

and while retaining process performance when compared to similar architectures. 

Further studies are necessary to fully described the saccharification process in the

reactors in order to fully optimize its performance and explore new process technologies.
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10. FURTHER STUDIES

-  Apply  more  feeding  profiles  to  the  parallel  reactors  systems.  Specially  policies  with

continuous addition of enzyme.

- Apply the soft-sensor methodology to the remaining instrumentation data. Including the

solids analysis data in the soft-sensor.

- Modify the modeling and monitoring softwares developed for the stirred-tank reactor to

operate with the data from the parallel reactors.
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