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Resumo

Nesta tese, estudamos equacoes que envolvem o operador de Dirac na forma
—ia - Vu + afu + M(z)u = F,(z,u), em R?,

onde @ = (ay, as, as), sendo «; e S matrizes complexas 4x4, j = 1,2,3, e a > 0. Utilizando
métodos variacionais e elementos da teoria de pontos criticos para problemas fortemente
indefinidos obtemos resultados de existéncia e multiplicidade de solugdes u : R3 — C* sob
diferentes conjuntos de hipoteses sobre o potencial M e a nao-linearidade F. Inicialmente,
consideramos um problema com potencial nao periédico e uma nao-linearidade do tipo
concavo-convexo, nao periodica, contendo funcoes peso que podem apresentar mudanca
de sinal. Em seguida, utilizando a variedade de Nehari generalizada, estudamos problemas
em que a nao-linearidade satisfaz condi¢oes de monotonicidade fraca e pode se relacionar
com a funcao potencial. Dentre tais problemas, consideramos um caso periédico e, devido
as hipoteses, para obter resultados de multiplicidade utilizamos o subdiferencial de Clarke
e o género de Krasnoselskii. Finalmente, abordamos um problema com nao-linearidade
assintoticamente linear no infinito e potencial matricial. Neste caso, o potencial é descrito
como uma soma de um potencial matricial nao positivo adequado e uma matriz diagonal

cujos elementos sao fungoes em algum espago L%, 0 > 1, as quais podem mudar de sinal.
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Abstract

In this thesis, we study equations that involving the Dirac operator and which have
the form
—ia - Vu + afu + M(z)u = F,(z,u), in R?,

where a = (ay, ag, a3), with a; and 5 complex matrices 4 x4, j = 1,2,3, and a > 0. Using
variational methods and elements from critical point theory for strongly
indefinite problems we obtain existence and multiplicity results of solutions u : R3 — C*
under different sets of hypothesis about the potential M and the nonlinearity F. Firstly,
we consider a problem with nonperiodic potential and concave-convex type nonlinearity,
nonperiodic, which contain weight functions that can present signal change. Next, using
the generalized Nehari manifold, we study problems in which nonlinearity satisfies weak
monotonicity conditions and may relate to the potential function. Among such problems,
we consider a periodic case and, due to the assumptions, in order to obtain the multiplicity
results we use the Clarke’s subdifferential and Krasnoselskii genus. Finally, we approach
a problem with nonlinearity asymptotically linear at infinity and matrix potential. In this
case, the potential is described by a sum of a non-positive suitable matrix potential and a
diagonal matrix whose elements are function in some L? space, o > 1, which can change

signal.
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Mathematical notations

a;,j=1,2.3 complex matrices 4 x 4 defined by (2)
a = (aq,an, az) complex matrix vector
g real matrix 4 x 4 defined by (2)
1y identity matrix 4 x 4
o(T) spectrum of an operator T
o.(T) essential spectrum of an operator T'
o.(T) continuous spectrum of an operator T’
L5(U) = {u: U — C : u is Lebesgue mensurable, ||ul|zs < o0} (1 <s < 0)
1

l|ul|ps = (S |ul® d:c) T (1<s< o) norm in the Lebesgue space L*(U)

U
L®(U) ={u:U — C : u is Lebesgue mensurable, ||u||, < oo}
||u||oo = esssup per|u(z)] norm in the Lebesgue space L*(U)
||| g1 norm on H'(R3 C*) space
lull,, 3 norm on Hz(R? C*) space

L2(R?,CY) = L*(R?) @ L*(R?) @ L2(R®) @ L2(R?) described by (A.9)
4

w-v=>Y uv foruveC! inner product in C*

i—1
o2 = § f(z) - g(x)dz inner product in L*(R3, C*)

R3

X Y continuous or compact embeddings
Tp —xin U weak convergence in the space U
unmu,||-||norminU ||up —ul| > 0asn — o
Hy = —iaV +af free Dirac operator
Hy+ W, W suitable potential Dirac operator in a external field
A=Hy+ M M satisfies (M) defined by (1.2)
H=Hy,+M M satisfies (M) defined by (3.2)
|Al, |Hol, |H| absolute value of A, Hy, H operators
D(A), D(Hy), D(H) domain of an operator
(,)a inner product defined by (1.5)
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Introduction

The Dirac equation has its origin in quantum mechanics and was proposed by the
British theoretical physicist Paul Dirac in 1928 in an attempt to establish an equation
that describes the evolution of a free particle relativistic. In its original form, this equation
is given by

oy

ih—- = Dt (1)

where D, is described by

3
D, = —icha -V +mc*B = —ich Z ap0r + mc2p.

k=1

In this expression 0, = . ¢ denotes the speed of light, m > 0 the electron mass and
Ty
h denotes the Planck’s constant. Moreover, o = (ay, an, aig), where oy, k = 1,2,3 and

are 4 x 4 complex matrices whose standard form (in 2 x 2 blocks) is

I 0 0
5= ’ ) Qp = ok ) k=]—7273 (2>
0 _.[2 O 0
0 1 0 —2 1 0
o1 = , 09 = , 03 = i
Pl oo i oo T lo -1

These matrices satisfy the following anticommutation relations apo; + ooy, = 20514,
apf + Pag, = 0 and B? = I,. Due to these relations it is possible check that D, is a

with

symmetric operator such that D? = —c?h?A + m?2c*.

In general form, the Dirac equations are given by

3
ih%—lf = —z'chkzl Ok + me* By + V(x) + Gy(x, 1) (3)



whose solution ¢ : R x R — C* ¢(t,-) € L*(R3,C*) is a wave function, which represents
the state of a relativistic electron. The external fields are given by the real matrix potential
V(x) and the nonlinearity G : R® x C* — R represents a self-coupling nonlinearity.
Assuming that G(z, ) = G(z, ) for all 6 € |0, 2], by the Ansatz

10t

Y(t,x) =eru(x),

one can check that ¢ (x,t) satisfies (3) if and only if u : R® — C* satisfies the problem

3
—1 Z apOpu + afu + M(x)u = F,(z,u), (4)
k=1
where a = mec/h, M(z) = V(z)/ch + 014/h and F,(z,u) = G,(zx,u)/ch. We define
Hy = —iaV + af the Dirac operator that will be used throughout this study. The Dirac
equations are used in physics to describe the behavior of particles having spin 1/2 and also
in atomic, nuclear and gravitational physics [41, 65]. More details about the definition
of Dirac operator in the quantum mechanics, it domain and some of their properties are
presented in Appendix A.

Many researches interested in the existence and multiplicity of solutions to problems
involving the Dirac operator and different sets of hypotheses in nonlinearity have been
developed. However, one of the main difficulties of the study of these equations is due to
the spectral structure of the operator that makes the energy functional strongly indefinite,
that is, its domain has two subspaces of infinite dimension in which the energy has opposite
sign in each of them (see Appendix A). One possible alternative to overcome this fact
is consider the external interactions in the problem, that is, the operator A = Hy + W,
where W represents a suitable potential that can be vector or scalar, or tensor forces,
and describe, for example, the interferences of electromagnetic fields, quark particles, and
particle behaviour with anomalous electrical and magnetic moments [65]. By introducing
a term that accurately describes this energy interaction one obtains interesting spectral
properties for the new operator and enables different approaches to the problem.

In general, it is possible to establish three main classes of problems in relation to the

potential behavior of V' and nonlinearity F', as the authors observed in [36] and [73].

(I) autonomous systems: in these cases the potential V' is constant and F' does not
depend on the variable x. As examples of this class we can cite [4, 5, 16, 50|, in which the

authors considered the so-called Soler model, that is
1
F(u) = éH(uﬂ), H e C*(R, R), H(0) =0, where ui = fu - u,

with H satisfying suitable conditions. The authors assume V = w with w € (—a,0) and



used the particular Ansatz for the solutions in spherical coordinates:

1
v(r) < 0)

plr) = : (5)
zu(r)( cos(0) )

sin(6)e®

where r = |z| and (0, ¢) are angular parameters. Hence, the equation (4) was reduced to
a EDO’s system

{ u + 2 = o[h(v? —u?) - (a —w)] (6)

Vo= ulh(v? —u?) — (a +w)]

where h(s) = H'(s) and the existence of solution was obtained by shooting method, which
yields an infinity of localized solutions for (6). In [40], the authors also consider the Soler

model and required the main assumption
H'(s)-s>=60H(s) for all s€ R and some 6 > 1.

Therefore, considering the space E®  Hz2(R3,C*) of functions of the form (5) and
using variational methods, they obtain infinitely many solutions exploiting the inherent
symmetry F(u) = F(—u).

(IT) pertodic systems: this case occurs when V and F depend periodically on the
variable x. Bartsch and Ding in [8] considered a problem whose nonlinearity, in addition
to the periodicity in z, can be asymptotically quadratic or superquadratic when |u| — 0.
In both situations, the results of existence and multiplicity of solutions were obtained
when F'is even in u. In this same way, another study that considered, in addition to
the periodicity, the case of asymptotically quadratic nonlinearity in 0 and oo was recently
developed by Ding and Liu in [28]. In it, the authors obtained existence and multiplicity
of periodic solutions to the problem.

Yang and Ding in [71] also approached a periodic problem without the Ambrosetti-
Rabinowitz conditions. In this case, the authors used a weak variant of the Linking
Theorem and Lion’s concentration-compactness principle [69] to guarantee the results of
solution existence. It is interesting to note that, during the development of the work, the
authors proved a lemma that, combined with the Nehari manifold arguments, is widely
used to obtain stationary waves for Schrodinger equations. Despite this use, similar results
were obtained for the Dirac equation without a monotone Nehari type condition.

The problem
—iaVu + afu + wu = F,(z,u), in R?, (7)

with w € (—a,a) and F € C'(R3 x C*]0,00)) 1—periodic in z), k = 1,2, 3, and super-



linear growth was approached by Zhang, Tang and Zhang in |76]. Considering additional
conditions on F' and using a generalized variant Fountain Theorem, developed by Batkam
and Colin [10], the authors ensure the existence of infinitely many large energy solutions.
Similarly, Ding and Liu, in [31], considered F,(z,u) = G,(x,u) + P,(z,u) with w = V}
constant, G € C1(R3 x C* R) and P € C*(R? x C* R), where both were 1—periodic in zy,
k =1,2,3, and it satisfy another additional relations. In this case, the problem possesses
a sequence of periodic solutions with the corresponding energy sequence large enough.

Recently, Benhassine in [13| studied the following equation
—iaVu + (a + V(2))Bu + wu = F,(z,u), in R?, (8)

where w € (—a,a), V € C*(R?,[0,0)) and F € C'(R3 x C*,[0,0)) were both 1—periodic
in zp, k = 1,2,3. His work dealt with the superquadratic and asymptotically quadratic
cases with weaker conditions than those considered in [9, 25, 78|. Using the theory of
critical points developed by Bartsch and Ding, he obtained infinitely many solutions
geometrically distinct when F'is even in u.

We can also cite as examples of this class of problems, the studies developed in [27],
which is more detailed in Chapter 1, |29, 75|, which use the generalized Nehari manifold
method, and [78].

(III) nonperiodic systems: this class includes the cases in which V' and F' do not depend
periodically on the variable z, and, apparently, is the class of problems that involves
most of the existing works. To exemplify some of these elements, we can cite, initially,
the studies developed by Ding and Wei [36] which considered a Dirac equation with
superquadratic nonlinearity satisfying the Ambrosetti-Rabinowitz condition. Assuming,
further, that there was the limit when |z| — oo for both potential and nonlinearity,
the authors guaranteed the existence of least energy solutions and also studied their
exponential decay.

A important subclass of problems is the one that considers the following equations
—ihaVu + afu + V(z)u = Gy(z,u), in R®. (9)

For small A, the solitary waves are referred as semi-classical states. The existence
of solutions uy, h small, possesses important physical interest because it describe the
transition from quantum to classical mechanics. Indeed, one of the basic principles of
quantum mechanics is the correspondence principle, according to which, when A — 0,
the laws of quantum mechanics must reduce to those of classical mechanics. Ding [26]

considered the following problem

—ihaVu + afu = P(x)|u[’*u, in R? (10)



where P has neither hypothesis of periodicity nor limit at the infinity. Supposing that

inf P >0 and lim sup P(z) = max P(x),

|z|—00

the author proved, following the ideas developed by Ackermann [1| and the Nehari
manifold, that, for all ¢ = A > 0 small enough, the equation possesses at least one

least energy solution w, € (| W14(R3, C*). Moreover, the set of all least energy solution
=2

is compact and there exist a maximum point z. of |w.| such that

limd(z.,P) =0, (11)

e—0

where P = {x € R® : P(x) = max P(y)}. This fact guarantees that the concentration of
yeR

solutions occurs at the maximum of the coefficient of the nonlinear external field.
Following the same idea of studying the concentration phenomenon, Ding and Xu [35]
questioned when it is possible to find solutions which concentrate around local minima

(or maxima) of an external potential. For this, the authors studied the following problem
—ihaVu + afu + V(x)u = g(|u|)u, (12)

where V' is locally Holder continuous such that sup |V (z)| < a and F can be asymptotically

linear at infinity or superlinear. Moreover, it is assumed that there is a bounded domain
A < R3 such that

c=minV <minV, (13)
A oA

that is, the condition does not establish restrictions in the global behavior of the function
V. This is possible because the technique employed in the development of the work, called
the penalization method, modifies the original problem so that the behaviour of V' out of A
does not interfere on the conclusions obtained. Thus, it was guaranteed that, forh =& > 0

small enough, there exist a solution in (| W14(R3, C*) which has an exponential decay.
q=2
Moreover, it concentrates around the maxima point of V| that is, there exist z. € A a

global maximum point of solution |w.| such that

lim V(z.) =¢ and |w,| <Cexp(—£|x—xs|).
£

E—0

Recently, Wang and Zhang [67] considered this same problem with g¢(|u|) = |u|’ where
p € (2,3) and focused on proving the existence of an unbounded sequence of localized

bound states concentrating around the local minimum points of V. Then, supposing that

(V1) Ve CHR3R) e |V]p < a;



(V3) there exist a bounded domain A « R* with smooth boundary such that
7 () VV(z) >0, x € A,

where 77 () denotes the unit outward normal vector to 0A;

holds, the authors used a penalization method due to Del-Pino e Felmer [22, 23] and a
local Pohozaev type argument to obtain the conclusions.

The existence of semi-classical solutions for equations that involving critical nonlinear-
ities was approached by Ding and Ruf [34], in which the authors considered the problem
(12) with

g(ul) = W) (f(|ul) + |ul),

where f has superlinear and subcritical growth as |u| — oo. It should be noted that V'
and W, among other properties, satisfy V,W € C'(R3 R) with V(z) < 0 and inf W > 0.
In view of all the established hypotheses, a minmax value ¢; for the energy functional
associated with the problem, which depends on A, can not be considered directly a critical
value of this functional. Then, using Ackermann’s ideas [1], the authors obtained a reduced
energy functional for which the infimum over the classical Nehari manifold associated with
this reduced functional is exactly the minmax value c;. The arguments presented to obtain
the semi-classical solutions and to study the concentration phenomenon of these solutions
still involved some auxiliary problems, among them the limit problem, as well comparisons
between the minmax value ¢; and the least energy of a class of limit problems.

Finally, we cite the study developed by Zhang, Tang and Zhang [77] that considered

the following problem involving a Maxwell-Dirac system in R3:

{ —iaVu+afu+ M(z)u— K(@)gpu = F,(z,u) (14)

Ao = 4AnK(z)|ul?

This class of systems describes the interaction of a particle with its self-generated
electromagnetic field and plays an important role in quantum electrodynamics. In this
work, it was considered a subcritical nonlinearity, which is also asymptotically quadratic
nonautonomous and nonperiodic; K € L7, v € (6,00), and K(x) > 0 for all z € R3.

Moreover, M satisfies the following condition

(M) M e C(R3 R**) and there exists h > 0 such that Q; = {z € R3 : fM < hil,} is

nonempty and has finite Lebesgue measure,

which characterizes it as a indefinite and nonperiodic potential. This problem can be
considered an extension from Dirac equation to Maxwell-Dirac systems, since some pro-
cesses were adapted from the approach used for Dirac equations, taking into account the
effects of non-local terms. In this way, the authors recovered the compactness imposing a
control in the size of F'(x,u) in relation to the behavior of M at infinity in x. The tech-

nique used to obtain existence and multiplicity of solutions for this system is the theory



of critical points developed by Bartsch and Ding [8]. Ding and Ruf in [33] also studied a
Maxwell-Dirac system and were interested in obtaining multiple semi-classical solutions
to the problem in which nonlinearity may be subcritical or critical.

We can also cite another references with equations that involving the Dirac operator:
[9, 19, 25, 28, 30, 32, 42, 43, 72, 73, 74| and references therein. Our work, inspired by some
of these studies, establishes the necessary conditions to obtain existence and multiplicity
of solutions to Dirac equations in the form (4).

In Chapter 1, we consider a concave-convex problem, that is, the nonlinearity has the

following form
Fue,u) = A @)ul"2u + g(@)uf 2, in R, (15)

where 2 < p < 3 and 1 < ¢ < p’ being p’ the conjugate exponent of p. Moreover, A > 0
is a paremeter and the function f can presented a change signal. The vector potential
M (z), in this case, is nonperiodic and satisfies suitable conditions which ensure that the
embedding E = D(|H|2) — LP(R?,C*) is compact for all p € (2,3). This property is very
important since we are considering the problem in an unbounded domain. Then, for A > 0
sufficiently small, we prove, using the restriction of exponents, that any Cerami sequence
associated with the energy functional is bounded and, in addition, the functional satisfies
the Cerami’s condition. Moreover, we obtain the conditions required by the theorems
of the critical point theory for strongly indefinite functionals, (see Appendix B), which
allows us to conclude the existence of multiple solutions to the problem, whose energy
tends to oo.

In Chapter 2, we study the following problem
—iaVu + aBu + V(z)u = g(z,u), xeR3 (16)

under two different set of hyphoteses. In the first one, inpired by the results from [42],
we consider a nonperiodic situation where the potencial vanishing at infinity and it is
related with the nonlinearity, which satisfies a monotone growth condition. In the second
part, following the ideas from [53, 62|, we approach a periodic case, that is, the potential
and the nonlinearity are periodic and the nonlinearity also present a weak monotonicity
condition. In the development of both cases, we used the generalized Nehari manifold and
the Clarke’s subdifferential to ensure the existence of ground state solutions, since the
hypothesis on growth leads us to obtain a functional that is locally Lipschitz continuous.
To obtain the multiplicity of solutions we use the Krasnoselskii genus.

Finally, in the Chapter 3, we consider the equation
—iaVu + afu +W(z)u = f(z,u) in R? (17)

where W(x) = M(z) + AV (z)I4, A > 0 is a parameter and the nonlinearity is asymptoti-
cally liner at infinity. In this case, M is a Coulomb type potential and V is a integrable

7



function that can present a sign change. The Coulomb type of potential is important
because it guarantees the existence of eigenvalues in the discrete spectrum of the operator
H = Hy + M at interval (—a,a). In order to use this spectral property, we rewrite the

problem as follows
—iaVu + afu+ M(x)u = f(z,u) — \V(r)u in R (18)

In this case, we obtain a new energy functional that not satisfies all the conditions required
in the theorems established by Bartsch and Ding [8, 25| and not allows us conclude, for
example, the existence of a Cerami sequence. To overcome this difficult, considering
A > 0 small sufficiently, we use a suitable theorem due to Rabinowitz to obtain a Cerami
sequence and, for the multiplicity of solutions, we apply a theorem from critical points
theory, presented in Appendix B.

We conclude this work by presenting in the Appendix some historical aspects of Dirac
operator and it properties about self-adjointness and spectrum. Also, we mention some
results about theory of critical points presented by Bartsch and Ding that applies to the
class of strongly indefinite problems in which the equations involving the Dirac operator

are included.



CHAPTER 1

Multiple solutions for a nonperiodic Dirac equation with concave

and convex nonlinearities

In this chapter we will study, using the variational methods, the following version of

a Dirac equation
Hou + M(z)u = Af(2)|u|? *u + g(@)|u[’?u in R (1.1)

where A > 0 is a parameter which will be defined later and 2 < p <3 and 1 < ¢ < p/
with p' = Ll the conjugate exponent of p. This condition is a technical restriction used

to show t}?e boundedness of Cerami sequences for the functional associated to Problem
(1.1).

Many authors dedicated themselves to the study of problems whose operator had the
form A = Hy + M, where Hy = —iaV + af and M is a appropriate potential, vectorial
or scalar. Zhang, Qin, Zhao in [72], for example, considered a vector potential M (z) that

satisfies

(My) M :R3 — R*** is continuous and there is ry > 0 such that, for any h > 0

{xeR®: |z —y| <ro, BM(z) < h}| — 0if |y| — +oo. (1.2)

The relation between the matrix SM (x) and the number h > 0 is defined at Appendix
C. This condition ensures that the potential is nonperiodic and has some coercivity
behaviour, which help us to overcome the difficulties arising from of lack of
compactness of the Sobolev embedding, since the domain is the whole space. This fact
do not allow conclude that the energy functional satisfies (P.S).—condition and requires

another approach with another arguments. Notice that, if



a) M e C(R* R) and for any b > 0 there holds |Q;| < oo where , = {z € R? : M(z) <
b}

b) M e C(R* R***) and for any b > 0 there holds |Qg,| < oo where Qg;, = {z € R?:
pM(x) < b;

the hypotheses (M) is still valid. In this case, the authors studied two possibilities for
the nonlinearity F,(z,u): asymptotically quadratic and superquadratic. In both were
obtained existence results and multiplicity results if F'(z,u) is even in u. Other different
hypotheses about the vector potentials were considered by [32] and [36] in which the
authors obtained existence and multiplicity results for the problems, and, in some of
them, they studied the exponential decay of the solutions.

In our work, inspired by |72], we consider that M (z) is a vector potential that satisfies

the condition (My) stated above and f, g are real functions that satisfy, respectively:

such that

(Hy) 0# fe L'(R3) where v =
pP—q

Jf($)|v|qu >0 forall veE", (1.3)
R3

where E° = Ker(Hy + M).

(Hy) g€ L™(R?) such that g(z) = d > 0 for all x € R?;

The relation between the exponents classifies the problem into the class of concave
and convex problems and we can cite many studies that have been developed to solve
problems with this type of nonlinearities and weighted functions which may or not change
signal. For example, Wu, Tang, Wu in [70] studied a problem involving the Laplacian
operator, a nonperiodic potential V € C(RY R) and functions f(x,u) and g(z,u), which
have indefinite signal. Under different conditions, the authors studied various problems
and achieved results of existence and multiplicity of solutions for all of them. A relevant
research involving the Dirac operator and concave and convex nonlinearities was developed

by Ding and Liu in [27]. In this case, the authors solved the following problem
—iaVu + afu+ V(z)u = EFy(z,u) + nGy(x,u)  in R?, (1.4)

under the hypotheses

(P) V e C(R3[0,0)), F,G € C*(R3 x C* R); the functions V(z), F(z,u) and G(z,u)

are 1-periodic in zy with k = 1,2,3; F(z,u) and G(x,u) are even in u.

In addition were considered two distinct set of hypotheses: in the first one, these hypothe-
ses provide solutions with large norms, that is, a sequence of 1—periodic solutions (uy,)

was obtained satisfying {®(u,) — o as n — oo. In the second one, it was also found a
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sequence of solutions (v,) satisfying n®(v,) < 0, n®(v,) — 0 and ||vy ||ty — O as
n — oo, that is, solutions with small energies. Here ® is the energy functional associ-
ated with this problem, the set @ is the cube @ = [0,1] x [0,1] x [0, 1] and &, n are real
constants.

It is important to note that the set of conditions considered in our work guarantees
that H(x,u) is nonperiodic and, since f can change your signal, the nonlinearity has
indefinite signal. In our case, the non-periodicity of elements was a significant difficulty
since this condition does not allow making restriction of domain on cube @ = [0, 1] x
[0,1] x [0, 1] and, therefore, we need to consider a suitable potential to conclude stronger
results regarding immersions in L” spaces, not just locally, but all over space, for p €
[2,3). Moreover, this potential gives us a characterization of the H operator spectrum
as unlimited sequences of eigenvalues of opposite signals, ordered by their multiplicity, as
we conclude by Lemma 1.2. This fact allows us to decompose the domain into a suitable
form to guarantee multiplicity of solutions through Bartsch and Ding results presented in
Appendix B.

However, this decomposition also involves the elements from the kernel of H, which is

nonzero, that is, the norm of an element u € E = D(|H|z) is given by
v=ut+u+u e EYOE'®E".

Thus, although the kernel has finite dimension and even if we apply the known Holder
relation or other estimates in nonlinear terms, we need establish conditions on these
elements. The condition (H;) was necessary in the proof that guarantees one of the
conditions required by the theory of critical points, since without it we would not have
the guarantee that there is no sequence satisfying the relation (1.23).

Another necessary condition was the relationship between exponents, which was strongly
used to demonstrate the boundedness of Cerami sequence associated with energy func-
tional. In a standard way, it suffices to assume that the Cerami sequence has a divergent
norm, to define a normalized sequence, and to use the weak convergence properties to
obtain a contradiction. In our case, however, the superlinear term dominates the other
terms and so we would have no contradiction, which require an adaptation in the ex-
ponents and also that the function g to be a bounded function. In addition, we have
established the condition that g is positive to obtain fundamental relations, such as (1.24)
and (1.39), which helped to obtain the conditions for the existence of Cerami sequence
and its boundedness, respectively.

The contributions of this work are significant because the authors do not know in the
literature any other study that has considered the non-periodic case involving a convex
concave nonlinearity with weight functions that present signal change and potential with
some coercivity condition. Moreover, we developed the analysis over the whole space R?

without restrictions.

11



Under the above conditions, through linking theorems and critical point theory to

strongly indefinite functional, we have been able to prove the following result:

Theorem 1.1. Suppose (M), (Hy1) and (Hy) be satisfied. Then there is constant A > 0
such that, if A€ (0,A), the Problem (1.1) has infinitely many solutions.

This chapter is organized as follows. In Section 1.1, we analyse the operator A =
Hy + M, it spectrum and some additional properties. In Section 1.2, we prove that the
energy functional possesses the linking structure. In the Section 1.3, we guarantee the
existence and boundedness of a Cerami sequence (Ce). for some ¢ > 0 and prove that
the energy functional satisfies the Cerami condition, for all ¢ > 0, which is important to
conclude the existence and multiplicity of solutions. Therefore, we get all the elements to

prove Theorem 1.1.

1.1 Variational setting

Let the operator A = Hy+ M, where Hy = —ia'V +aff and M (z) satisfies (My), which
is a self-adjoint operator in L*(R3, C?) with D(A) < H'(R? C*). This space is a Hilbert

space equipped with the inner product

(u,v)a = (Au, Av)r2 + {u,vye (1.5)
and the induced norm || - || 4.
If B = —iaV + 3, which is still self-adjoint and D(B) = H'(R? C*), we obtain a
important relation between the norms from H' and || -||4.

Lemma 1.1. For all u € D(A) c¢ H'(R?,C*), there exist d > 0 such that
lullgr = [l Blullz> < df[u]] 4.
Proof: Notice that, for all u e D(B?) = H*(R3,C*),
[1Blull}2 = (Bu, Buyrz = (B*u, w2 = (A + Du, wypz = || Vullfz + [[ulf2 = [[ul .

Since H? is dense in H*(R*, C*), we obtain the first equality. Let By : D(A) — L? the
restriction of B to the set D(A), which is a linear and closed operator. Indeed, consider
(u,) < D(A) such that u, M4 4y and Byuy, iz v, as n — oo. Since D(A) is a Hilbert
space equipped with the norm || - ||4, we conclude that u € D(A). On the other hand, B

is a closed operator and, therefore,

Biu,, = Bu, ‘M Bu = Bju.

12



Using the uniqueness of the limit we obtain that v = Bju and, Theorem C.5, Bj is a

linear and continuous operator, that is,
|Bullr> = |[Biul|r2 < dl|u]4,

which demonstrate the result. m

The assumption (M;) ensures that the operator A is self-adjoint and that its spectrum
has only eigenvalues of finite multiplicity as justified by [72] in Lemma 2.2. Here we will

present this proof to complement our work.
Lemma 1.2. Suppose (My) holds. Then o(A) = c4(A).

Proof: Consider h > 0. By (M,), there exist ro > 0 such that

lim [{zxeR’: |z —y| <ry, BM(z) <h}| =0

ly| >0

where || denotes the Lebesgue measure. Set

M (z) —h, if (BM(x)—h)=0

. (1.6)
0, if (BM(x)—h)<0

(BM(2) ~ h)* = {

and (BM(z) —h)” = (BM(x) — h) — (BM(x) — h)". Then

A=Hy+ M =—iaV + (a + h)B — Bh + *M(x)
= —iaV + (a + h)B + B(BM(z) — h)

= —iaV + (a + h)B + B(BM (x) — h)" + B(BM (z) — h)~

) =

= Ay + B(BM(x) — h)™.

Notice that for u,v € C* and 8 defined in (2) we have that Su-v = u- fv = uf - v and
4
payp = —axf, k =1,2,3, where w-v = ) u;u;. Then
j=1

3

(—iaVu) - Bu = f(—iaVu) - T <Z ﬁakﬁku) T = (Z akﬂﬁku) -1 = (iaVu) - Bu.

k=1

13



Consequently,

(—iaVu, fuyr2 + (Pu, —iaVuyp> = f(—ionu) - Bu dx + Jﬁu - (—iaVu) dx
RS

R3

= J(iaVu) - Bu dx + [ fu - (iaVu) dx
R3 R3

= j(iaVu)-mdx—i- Pm dx
R3 R3

- f (iaVu) - Bu dz + f(—ionu) - Bu dx
R3 R3

~0. (1.7)
Moreover, since 2 = I,
((BBM () = 1) )u, Buyre + (Bu, B(BM (x) — h)upre = 2((BM () — h)"w,uppe. (1.8)
Hence, if u € D(A),

(Agu, Aguprs = ||(—iaV + B(BM (z) — h) " )ullz2 + (a + h)*||u|| 2
+{(—iaV + B(BM(z) — h)*)u, (a + h)Bu),,
+((a + h)Bu, (—iaV + B(BM (x) — h)*)uyrs

= |[(—iaV + B(BM (z) — h))ullz2 + (a + h)?|Jul|12
+2(a + R){(BM (x) — h)Tu,uy ,

> (a+ h)*[Jul[L2,
since (1.7) and (1.8) holds. Thus, for all u e D(A),
[ Azu = M)z = (a+ B)lJullzz — [NllullZ: = ((a + h) = [ADIJul[Z2, (1.9)

and, using [47] Lemma 10.4-1, X belongs to the resolvent set p(A) if and only if
((a + h) = |A]) > 0. That is,

0(Az) = R\p(Az) = R\(=(a + h), (a + h)).

This relation help us to prove that o.(A) N (—(a + h),(a + h)) = &.

Assume by contradiction that there exist v € o.(A) such that |v| < a + h. Using
the Weyl’s criterion, let (u,) < D(A) with [|un||zz = 1, u, — 0 in L*(R3,C*) and
I|(A — v)u,||rz — 0 as n — oo. Notice that the operator u — B(BM(x) — h) u is
compact, as defined by Definition C.1. Indeed, let (w,) < D(A) a bounded sequence
and, up to subsequence, we can suppose w, — w, w € D(A), since D(A) is a Hilbert

space. Suppose, without loss of generality, that w, — 0 in D(A) and we will prove that

14



||/B(BM(5E) - h)iwn||L2 — 0 asn — .
Fix R > 0 and denote Br(0) = {z € R*: |z] < R}. Let (y;) a sequence in B%(0) and
ro > 0 such that

(i) Bx(0) < B(y;,r0);

s

=1

(i1) each point z is contained in at most 23 such balls B(y;, o).

Denote By = {x € B4(0) : BM(x) < h}, B; = B(y;,70) n By and choose s € (1,3) with

s’ the conjugate exponent of s. Then

[ 18a1) —mywpae < 3 f B(8M () — h)w, Pda
BE(0) =1,

L
s

< Z (f |wn|25dw> % (f B(BM (x) — h>|2$’dx> “'

1

<s1yl_p 1B(BM () — h)~ |37 fdx) S

B;

w =

< i (J |wn|2sdx>
i1 \ ¢

< CR 5R23||wn||L2s

< CCR er2’||wall3,

since H! embeds into L?** continuously and Lemma 1.1 holds. Notice that we denotes

5(6M(l’) — h/)7||]\/[ and e =
|Bi| = |B(yi,r0) N Bu| < |B(yi,r0)| < 0. Using the assumption (My) we obtain that

Cr = sup,, , which is well defined because

er — 0 as R — oo and, therefore,
J B(BM () — ) wn2dz — 0 as R — oo,
B%(0)

On the other hand, as n — o0,

1

7

j |B(6M(:r)—h)‘wnl2dfv<< f |wn|28dx>s< j |6(5M(w)—h)‘l2‘9'dx>s 0,

Br(0) BRr(0) BRr(0)

since H' — [2% is compact. Then

|B(BM(x) — h) wy||z2z — 0 as n — oo.
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Hence

on(1) = [[(A = vD)un||r2 = [[(A2 + B(BM () — h)~ — vl)u|| 1
= [[Agun|[ 2 = [[vunl|r2 = [|B(BM () = h)~un|| L2
= ((a+h) = v]) = on(1),

that is, 0 < ((a + h) — |v|) < 0,(1) which is a contradiction. Hence

Oe(A) M (-(CL—Fh),((l—i-h)) %]
and, since h is arbitrary, o(A) = 04(A). n

This fact allows conclude that A has a sequence of eigenvalue
<>\_k<<)\_1<)\0:0<)\1<<)\k<,

such that lim A\, = foo and a sequence of eigenfunction {ey;} associated with these
J—a0

eigenvalues that form a orthogonal basis for L?*(R?, C%). Then, the space can be decom-

posed into
L*=L"@Ll’®L",

where A is positive definite (respectively, negative definite) in L™ (respectively, in L)
and L° = ker(A).

Let £ = D(JA|2) the domain of self-adjoint operator |A|z, which is a Hilbert space
equipped with the inner product

(uyv) = (A|2u, |A]20) 12 + (Pou, Pyvdre, (1.10)

where Py : E — LY the projection and ||u|| = (u, u)z. So, the space E also has a orthogonal

decomposition
E=E ®E°@FE", (1.11)

with E* = En L* and E° = LY = ker(A).
Using this structure and complex interpolation arguments it is possible to demonstrate
that embedding F — LP(R3 C*) is compact for all p € [2,3). Indeed, similar to [32] and

following the ideias from |72], we introduce in D(A) the following inner product
Lu,vyya = (Au, Avype + (Pou, Pyv)rz

whose induced norm will be denoted by |- |4. Then, considering A= |A| + Py we have
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lu|s = [|Au||12, Yu € D(A). (1.12)

Moreover, using that D(A) = D(A) is a core of A2 we obtain that

|| = Hﬁéu‘ forallue E. (1.13)
L
By complex interpolation theory we have H2 = D(|B|2) and there exists constants
ds,ds > 0 such that
ds||ully < H|B|%UH < dy|[ul|; for all u e Hz(R?,CY). (1.14)
L2

With this elements we can prove that

Lemma 1.3. The embedding E — H2(R3,CY) is continuous and the embedding
E — LP(R3,C*) is compact for all p € [2,3).

Proof: Notice that, by Lemma 1.1 and (1.12), there exist d5 > 0 such that
H|B|%UH < ds|| Aul|z2 = [|(dsA)ul|z2, for all u e D(A). (1.15)
L2

It follows from Proposition C.1 that {|Blu,udr2 < (dsAu,u)dr> for all u € D(A) and

therefore

1 2 ~ ~1 2
H|B|§UHL2 — (|Bu, e < {(dsA)u, udpe = d5HA5uHL2 for all we D(A).  (1.16)

2

2
, for all v € E. This

Since D(A) is core of A2, we obtain that H|B|%UH ‘
L

~1
< d5HA5U

L2
jointly with (1.13) shows that H|B|%u
(1.14) implies that

2
‘ , < ds|[ull® for all u € E, which together with
L

fully < dolJul

for all u € E and prove that E < Hz(R3, C*) is continuous.

For the second part, it suffices to prove that £ < L? is compact. Let
L; = spanfe_;,...,e_1,e1,...,e;}, jeN

and denotes P; : E — L; the orthogonal projection. Consider (u,) < E such that u,, — u

in £ and define w,, = u,, — u. Moreover, define K = sup,, ||w,||?, which exist because of

weak convergence. Given £ > 0 we choose j € N such that £ < 5, where v; = [A_;| + A;.

vj

Since Pjw, — 0 in L; as n — oo, then there exists ng € N such that ||Pjw,||* < § for all
n = ng. Let {E(7)}.er be the spectral family of A. It follows from
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2
leoal 2 = 11 = PyJun[* = || A3 (1 = Pyyun| |

= <| % (I — Pj)wn, |A|2(I_ Pj)IUN>L2

o0
f|r|dHE (I — P;)) wnHL2 JTdHE( (I — P)) wnHL2
Aj
> (Il + M) = Py,
that
2 2
s < ol el e
10 = Pl < g = T <
Then
[wal[72 = [[Pjwnll72 + |I(I = Pjwyl[7. < e forall n = mn.
This proves that u, — u in L?(R3 C*). u

Remark 1.1. It follows from the above lemma that there is a positive constant C.,., r €
[2,3] that
Collullzr < [lul]

for allue E.

Assuming (My), (Hy) and (Hs), we consider the functional ® : E' — R associated with
the problem (1.1) and defined by

o) = 5 (Il 1P = 1) =2 [ s@laltds = [ g@ppar, (1)

which is a C'(FE;R) functional. It is well known (see [25], [30]) that the critical points
of this energy functional are the solutions of the proposed problem and therefore our

objective is to study this functional in order to obtain a nontrivial critical point.

By the assumption (H;) and the Holder inequality, we obtain

<< | |f<x>|pfqda:)p< | |u|pdx> <Gl (118)

where Cy = || f||z+ > 0. It follows immediately from Lemma C.2 that

x) |ul? dx
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Lemma 1.4. Assume (Hy) and suppose (u,) < E such that u,, — u in E. Then
Jf(m)|un|q dr = Jf(m)|u|q dz + 0,(1).
R3 R3

Proof: Notice that, by Lemma 1.3, || |un|q||L§ < C,|up||?, for all n e N. Since

(u,) is bounded in E, it follows that (Ju,|?) = L7 (R?) is a bounded sequence. Moreover,
|un|? — |u|? a.e. in R3 and f e LY(R?) = (L1 (R3))*. -

In order to obtain the critical points to the functional ® we will use the critical points
results established in the Appendix B and throughout this chapter we consider Y = Et,
X = (E°@® E7) and, since H(z,u) is even in u, the action of group G can be considered

the antipodal action.

1.2 Linking structure

At this section, we will describe the linking structure of the functional ® which is impor-
tant to ensure the existence of Cerami sequences. This concept is based on the topological
notion of "linking" and was firstly introduced by Benci [11] and Rabinowitz [56]. It was
later generalized by [12] to include indefinite functionals as well and, recently, this concept
was extended to the infinite-dimensional setting by Bartsch and Ding [8, 9]. More details
can be founded at Appendix B.

Throughout this section we consider the constant
L a (e =2 " p =9\
AN =—C—n _ = 1.19
1 cv( P4<p—q>> Tolle (=2 (1-18)
and assume 0 < A < A;. Remember that 1 < ¢ < p',2 <p < 3 and C; > 0 is defined by
(1.18).

Lemma 1.5. Let (M), (Hy) and (Hs) be satisfied. Then there is p > 0 such that
k = inf ®(S) > ®(0) = 0 where S = 0B, n E*.

Proof: For any y € ET, since 0 < A < Ay, we observe that

1 -1 3 —1 ~
¢<y>>||y||2<§—<mcf(ch) 11172 + 1lglle (p C2) Il ))

1

cr op2—q)\"°
D p( q)) and S — {y c EJF’ ||y|| = p} lt fOHOWS that

Algll= (p —q)

Then, for p = <

1 1
q)(y)>p2<§—1> >O7 vyES7
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2
from which we conclude that inf ®(S) > pz > 0. n
Define Y,, = span{ei, es,...,e,} and E, = E-@® E°®Y,,, n € N. Using the properties

of eigenfunctions it is possible to prove that
Mlful[Ze < |l < Anllull22, Yu € Y.

Lemma 1.6. Suppose the same conditions and p > 0 from Lemma 1.5. There is a
sequence (R,,) with R,, > p such that sup ®(E,) < o and sup ®(E,\B,,) < inf ®(B,nE*),
where B, = {ue E, : ||u|| < R,}.

Proof:  For fixed n € N suppose, by contradiction, that there is a sequence (u;) < E,
and M > 0 such that ||u;|| — oo and ®(u;) = —M for all j e N.
The normalized sequence (v;) defined by v; = u;/||u;|| is weakly convergent in E for

v € E, and thus, it satisfies
v, > v in EY, 0} >0 in E° and v, —v inE as j— o

Suppose v = v = 0. Using the relation (1.18) we obtain, as j — 0o,

—M  D(uy) 1( - AC'y _
< <5 ||U-+||2—||U-||2)+—||U‘||q :. (1.20)
(g2 ][>~ 230 ! Gy
In other words,
_ 2\ _ _ 2M
0 < [l I < [lof [I* + = CCy llus |1~ + 5 = 0;(1).
q ]
Therefore |[v; [|* = 0;(1) and we obtain a contradiction since 1 = [[v;[]* = 0,(1), as

J — 0.
Define I' = {x € R% v(x) # 0} and notice that || > 0. By definition, |u;(x)| — oo for

all x € I" and it follows from Fatou’s Lemma C.1 that

J]—©

lim inf ﬂ|u-(x)|pdx = +400.
| sl
r
Thus, as j — oo in (1.20), we obtain

1( 12 - 2) oo 11 f
— o) = |Jv —liminf | ———— | g(x)|u,|? dz | = —oo0,
2 || || || || e p||uj||2r ( )| ]|

a contradiction. n

0

N

As a consequence, we have
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Corollary 1.1. Let 0 < A < Ay and e € Y,, with ||e|| = 1. There is R > p > 0 such that
®(2) < K, for all z € 0Q, where k > 0 is from Lemma 1.5 and Q = {u = u~ +u’+te; t >
0, uw+u'e E-®E® and ||lu]| < R}.

1.3 Cerami sequences

To ensure the existence of a Cerami sequence (Ce). for the functional ® we need first
demonstrate that this functional satisfies the properties (®g) and (P1) stated in the
Appendix B. As mentioned in Remark B.1, this conditions can be weakened and it

is sufficient to prove their validity for certain values of a. Let § € (0, 1) and

2

a>(1- 6)(%) >0, (1.21)

where p > 0 was defined in the Lemma 1.5. Consider the constants
2

-1l a = L q_sn(~
fo= ol and Ay = 21 5)(4),

where d,Cy > 0 are defined in (H;) and (1.18), respectively. In the development of this
section, suppose 0 < A < A where

A= miD{Al,AQ,Ag}. (122)

Lemma 1.7. Let (M), (Hy) and (Hs) be satisfied. The functional ® defined by (1.17)
satisfies (®1) for all a that satisfies the relation (1.21)

2

a>(1—6)(%) > 0.

Proof: Assume by contradiction that there is a sequence (u;) < ®, such that for j € N

[lus|* = jlluf 1. (1.23)

Suppose that, up to a subsequence, ||u;|| — oo and define, for each j € N, the normal-
ized sequence (w;) < E by w; = u;/||u;||. From the relation (1.23) we obtain

[l + llw5 [ = 1+ 0;(1) as j — oo.

On the other hand,

a O(u;) 1 _ -1 B
o < Tt < g (1P = 1wy 1) +ACs (4Ct) sl ™,
J J
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that implies

a

[l 2

-1
0. Jhuy |7 < fluf 1P + ACH(aC2) ™ gl + - = 0,(0),

that is,
|lw; []* = 0;(1) as j — oo.

As dim(Ey) < oo, it is valid that |[w°]|> = 1. Thus, there is a bounded set 2 = R? so that
Jg(m)|w0|2dx -0, (1.24)
0

since by the assumption (Hs), g(z) = d > 0 for all z € R3.
Set ; = {x € R% |u;(x)| < 1}. Then

a (I)(uj) f 2 2
< 2w) ) dx+jg<x>|w~|das
sl = Tl ~ ) 41 ﬂ

Zj.||2 ( J g(x)(|uj|2 — |uj|p)d:c

[l

< 0y(1) - | gla)fusfdo + -

QnQ;
v | g<x>(|uj|2—|uj|p)dx>
QmQj
<o) - [g@ufde+ o [ o) (juf - fup)ds
ol
Q QnQ;
Clloll|2
<0y(1) — [ gl Pao + L,
= J AT

that implies, as j — o0,

0<— Jg(m)|w0|2d1’ <0,
0

a contradiction.
Therefore, we obtain that (u;) is a bounded sequence, that is, there is M > 0 such
that ||u;|| < M for all j € N and
112
0 < |[uf|]? < sl ” M
J J

=0,(1) as j — 0. (1.25)

Suppose that there is a subsequence (u;, ) < (u;) such that ||u;,||r» = 1. Then, since
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0 < A < A, we obtain

1 1. _ A 1
Bui) = Sk P = 5l P = 2 [ f@us e = [ gtelu, s
R3

R3

1 1, As

< 5”“3’2”2 - §||Uj,€||2 + ?CfHuijqu — 5||Ujk||7£p
1 1., 1

< §||u;€||2 - §||Uj,€||2 + 5(||ujk||%p = [lus, [[70)

< 05(1),

which is a contradiction because (u;) < @, and then ®(uj;) > a > 0. Then, every

subsequence of (u;) satisfies ||u;,||z» < 1 and, since 0 < A < As,

1 1. _ A 1
B(uy) = 511} | = Gl 1P = 5 [ f@lusfide ~ - [ gl
R3

R3

1 1. A
< §||uj+||2 =5l I+ 50f||ujk||7;p
1 1 A-
+112 —112 3
< 5l 1P = Gl I + 220

1 o Ly p
< sl 2 = Sl 1P+ (1= 8) ()

It follows from (1.21) and ®(u;) > a, that

2
_ P
0 <7 |* < Il P+ (1= 9)(5) —a < 0,(1),

that is, ||u; || = 0;(1) as j — co. By virtue of dim(E°) < oo, we have u; — u° in F and,

as j — oo,
ffwmm%x=ff@Wﬂww+%ﬂl
R3 R3

Consequently,

1 1, _ A A
0<a< @) < gl P =5l IF =5 [ F@lultde < 001 = 2 [ fla)lurde
R3 R3

which is a contradiction by the assumption (H;). Thus, there are no sequence that satisfies
the relation (1.23). n

For the purposes of simplification of notation, define ¥ : F — R by

U(u) = 2 Jf(x)|u|qd:1: + }? Jg(az)|u|pd:p. (1.26)

R3
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From Lemma 1.3 and Lemma 1.4, we obtain that if u; — win E then U(u;) = U(u)+o0;(1).

Lemma 1.8. Under the same set of assumptions of Lemma 1.7, the functional ® : E — R
satisfies the property (®o) for all a that satisfies the relation (1.21)

P
a > (1—6)(—) > 0.
4
Proof: For the first part, suppose (u;) < ®, a Tp—convergent sequence to u € E,
where the Tp—topology was described in Appendix B. Particularly, u;r — u* in norm

and, from Lemma 1.7, (u;) is a bounded sequence. Hence, up to a subsequence, u; — u
in £ and

. .. 1 ) 112
a < liminf ®(u;) = hjniglf (§(||uj+|| — [Ju5 ] ) = \Il(uj))

J—00
1

L, -
< Sl = Sl I = () = o),

soued,.
To ensure the continuity of @' : (®,;Tp) — (E*; Tpx), it is sufficient to demonstrate
that if u; — u in E then

U (uj)(w) — V'(u)(w) Ywe E, (1.27)

since F is a Hilbert space and the norm v : E — [0,0), v(w) = |jw|| is C' with
V' (®y; Tp) — (E*; Ty ) sequentially continuous.

Notice that, as mentioned previously, if (u;) < ®, is a Tp—convergent sequence to
u € E, then (u;) is a bounded sequence and u; — wu as j — oo. Suppose, firstly,
¢ € CP(R?* C*). Then,

(V) - v)o)] = | [wx) (lgtr=2uy = ful7=20) + g(o) (Jus P~ — |u|P—2u)]¢dx

R3

<| [A|f<m>|\|uj|q2uj — Jul2u] + g(@) s~ 2u; - |u|p2u\] 9lda.

RS

Denote ¥ = supp(¢) the support of function ¢. Then, by Theorem C.3, Holder’s inequality

and the compact embedding at Lemma 1.3, we obtain that

(a—1)p

A J |f(x)|‘|uj|q’2uj — |u|? ?u|p|dz < éA||f||m J luj —ul |¢|§d:c
R3 5

< CA[| f 1wy — ullfoisy 1l res)
= 0;(1)
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and

2 2 ~ p=2
| ot@)| s 2us = e 2ufolde < Cllglle [ 1ay = ul (Jus|+ 1) foldz
R3 by
<€mmu<f(WA+h®ﬂm> (fwf—mﬂw%m>
by D)
<émmw<j0wwwmfw> las = ullzo) |16l 2ncs)
b
= Oj(l).
Then,
W (1y)(6) > W(w)(@) Vo e OX (R, CY. (1.2

Let w € E and € > 0. Using that C®(R3 C*) is a dense subset in F, there exist
(1) € C®(R3,C*) such that ||w — ¢p|| = ox(1) as k — co. Notice that, for all k € N,

(W) = (@) ()| < | (W) = @) (00| + | (W) = (@) ) (w = y)|- (1.29)
Using the same arguments from the previous step, we obtain

(W) = W) (w = 00)| < ClL ANl = wllf oo = 612

p—2

- P s
+mmu<f0%+um)m> ety = sl = Gl

R3
< Mjlw — ol (1.30)
where M = M ((u;), f,g,p,q), since (u;) is bounded. Let ky € N large enough such that

E
lfw — ¢, || < CYVA

By the relation (1.28), there exist jo € N such that if j > jo,

(W) = 9'() (60,)] < 5. (1.31)
Then, it follows from (1.30) and (1.31) that, if j > jo,
(W) = 2w ()] < (W' () = W) ()| + | (¥ (5) = W)} (w0 = 64,)| < =

that is,
U (u))(w) = V' (u)(w), YweE.
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]
This properties together with the deformation Lemma B.3 allows us to prove the
existence of a Cerami sequence to the energy functional ®. By Definition B.1, this sequence

satisfies
O(u;) — ¢ and (14 |Ju;]])® (u;) =0 in E* as j — oo. (1.32)

Lemma 1.9. Suppose (M,), (Hi),(Hy) are satisfied and 0 < X < A. Then there exist
Cerami sequence (Ce), with k < ¢ < sup ®(Q) where k > 0 and Q are defined in Lemma

1.5 and Corollary 1.1, respectively.

Proof: The arguments that will be used are similar to that found in [25], Teorema 4.2.
Using the Brouwer Degree Theory we obtain that Q = {u =u~"+u’+te; t >0, u=+u’ €
E-@®E° e ||u|] < R} finitely link with S = {u € E* : ||u|| = p}. Consider the set T'g s
described in (B.5) and, using their properties, which are also described in (B.5), we will
characterize the value ¢ > 0.

Indeed, let h € I'g . It follows from the property (hs) that ®(h(t,u)) < ®(u) for all
uwe @ and t € I = [0,1], that is, particularly, ®(h(1,u)) < ®(u) for all u € Q). Using the

continuity of ® we obtain that

sup ®(h(1,u)) < sup ®(u) < oo.
ue®) ueqQ

It remains to be shown that the set sup ®(h(1,u)) is bounded below for h € I'g . Note
ueQ)
that h(I x0Q)NS = & by the assumption (hy4) established in (B.5). Using the assumption

(hs), we have that for all (t,u) € I x @ there exist a P—open neighbourhood W such that
v — h(s,v) is contained in a finite dimensional subspace of E, for all (s,v) e W n I x Q.
Since () is a P—compact set, there is a finite subcollection that still cover (). Then, the
set {u — h(t,u) : (t,u) € I x Q} is contained in a finite dimensional subspace F < E.
Consequently, (t,u) € I x (Q n F) and

h(I x (QNnF))=h(I xQp) cF.

On the other hand, since @) finitely links with S, it follows from the Definition B.2 that
h(t,Qr) S # &, that is, there exist ug € @) such that h(t,ug) € S for all t € I. Then, for
all h e FQ757

sup ®(h(1,u)) = (h(1,up)) = infq@(u).
ue@ Uu€e

This allows us to define

c = inf sup®(h(1,u)) € [inf &(S5),sup P(Q)]. (1.33)

hel'q,s we@

Now, we will prove the existence of a Cerami sequence to this level c. Suppose that
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2
there exist & > 0 and ¢ € (O, c—(1-9) (pz)), d € (0,1), such that

(1 + ||u||) 19 (u)]| = o Vue o, (1.34)

where 0 < p < o0 is chosen so that sup ®(Q) < ¢+ pe < 0. Using the condition (®,)
there exist ¢ > 0 such that

2

llu|| < 8|u*|| for all ue ®, where a > (1 — 5)(%), (1.35)
and, particularly, this condition is still valid for u € @Ezfg )6 ) by the conditions stated
on € > 0. In the same way, by the property (®,), we have that ®_.) is P— closed
and @ : (®_o;Tp) — (E*;Tyx) is continuous. Then, by Theorem B.3, there exist a
deformation 7 : [0, 1] x ®(+#2) — le+re) that satisfies the properties (i) — (vid).

Choose h € I'g g such that sup ®(h(1,Q)) < ¢ + pe and define g : I x Q — E by

g(t,u) = n(t, h(t,u)). (1.36)

This element does exist, because otherwise, if sup ®(h(1,Q)) = ¢ + pe for all h € T g
then

c= inf sup®(h(1,Q)) = c+ pe,
hEFQ’S

which is a contradiction. Using properties (i) — (vii) of 1 established in Theorem B.3 we
obtain that g satisfies (h1)—(hs), that is g € ' g. We will briefly comment on some points
of the proof of this statement. To verify (h;) just observe that both i and 7 are continuous
in the T—topology because it satisfy (h1) and (i), respectively. To obtain (hs) notice that
we choose 0 < p < oo such that sup ®(Q) < ¢+ pe < o and, therefore, for all u € Q) we
obtain u € ®°*#¢. Now, using (zii), we have that ¢g(0,u) = n(0,h(0,u)) = n(0,u) for all
u € Q. For the item (hs), notice that u — g(t,u) = (u— h(t,u)) + (h(t,u) — n(t, h(t,u)))
for all (t,u) € I x Q. Then, just use the conditions (h;) and (vi) to obtain the finite

dimensional space of F suitable. Since g € I'g g, we obtain that

sup ®(g(1,u)) = c. (1.37)
ueQR

On the other hand, notice that h(1,Q) € ®(*#*) and, using the property (v) of the

function n, we have that
g(1,u) = n(1,h(1,u)) e &= for all u e Q,

that is, sup ®(g(1,u)) < ¢ — € < ¢, a contradiction with (1.37).
UEQ
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Therefore, there exist a sequence (u;) € (I)EZ:L)E) such that

(14 el ) 19 w) | = 03(1) Ve (0,0~ 57(§ — %)) (1.38)

and, choosing € > 0 sufficiently small, it satisfies the conditions that characterize a Cerami

sequence and the proof is finished. [

In the following, let (u;) < E be the (Ce).—sequence at the level ¢ obtained in the
previous Lemma 1.9. Then, by definition, there is constant M; > 0 such that

|2<I>(uj) — (I),(U])(U/])| < M17 V],

and

My [29(uy) — @'(u;) (uy)]

gl ~ [Jsll®

1 p—2 Py — 274 x)|u;|dx
= ||U]||S<< D )@[g(w)u] d >\< p ) RJ;f( )u|*d )
1 p—2 rdr — A 229 o0 o

’ <||uj||3> ( v >Big(x)“]d A( q )Cfo” l

for s € (q,p'), which exist by the relation between the exponents. Thus, for all j € N,

I [(p—=2 M 2 —q)C B
0<||uj||s< f)f g(f’”)'“j'pd“||ujf|s+A<%>||umq 3

R3

In order to guarantee that ® defined by (1.17) satisfies the Cerami condition, we first

verify the boundedness of sequence.

Lemma 1.10. The sequence (u;) C E is bounded.

Proof: Arguing indirectly, assume, up to a subsequence, that ||u;|| — o0 as j — .
The relation (1.39) implies that there is a constant M; > 0 and j, € N such that

| s@luraz < atlfusle 3 > do (1.40)
R3
Define, for each j € N, the normalized sequence v; = (u;/||[u;]]) such that

v; = v;.r -i-U;-) +v; € ET@E°® E~. After passing a subsequence, we have that v; ~ve FE

0

and v) — 07, since E° is a finite dimensional subspace. Notice that, by definition, for
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® (uy) (g —uy ) = [Juf I + g 117 = 9 (uy) (] — ;). (1.41)

J J J

The relation (1.18) and Hoélder’s inequality implies that

| @t o =)
R3

where Mz = M3(f,p,q) > 0 is a constant. Moreover, also the Holder’s inequality and
(1.40) implies that, if j = jo,

p—1

< ||g||sa< | g<x>|uj|pdx> ¢,

RS

j g(@) w2 - (" — 7 )da

R3

p—1

1
< llglleC,* (Mallul) ™

< [lgllC; s (7). (1.43)
Thus, applying the relations (1.42) and (1.43) we obtain

1 p—1
W () (" — )| < AM]lss]|7 + (gl B My P (55) (1.44)

if j = jo, and from this, we rewrite the (1.41) obtaining

1 A
|2 |2
q—2 % -1 S(E)fl
0;(1) + AMs|[u; |77 + [|g|[Cy " Ma|uy||*

< 0i(1)
< on(1),

lof + o7 [ = — O (uy) (uy —uy) + W () (uy — )

since s(p — 1) < p and (¢ —2) < 0. Then [[o)|| = [[v)[[2 = 1 = []0°]] .
For R > 0, set

Qp = {zeR’: [°(z)| = 2R} and Qjr = {zeR’:|(v; +v;)(z)| = R}.

Since v € C(R?) and |[v°||r2 = 1, we obtain that [Q| > 0 for all R small. Moreover, as

J = 0,
1 T 2
[Qrl < 55 | 1 +07)(@) dz = 0;(1).
R3
Hence, |QQ\Qjr| — |Qg| as j — oo. Therefore, there exist jo > 0 such that |v;(z)| =

R
2
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for all x € Qp\Q;r with j = jo. That is,
2luj(x)| = R||u;|| forall j=jo and z € Qp\Qjg.

This relation allows us to conclude that, for j > jo,

R p
[l@pae= [ w@pae= (5 ) luiriao
R3

QR\Q]'R

that is, ||u;||» — o0 as j — co. Then, using the definition of Cerami sequence,

My = 20 (uj) — @' (u;) (uy)|

> (222 [l rae - 2(221) ‘ | r@ulras
p q
R3 R3
p—2) 2—q
> (222 aus |, — A =L oplfus] |2,
( 2t ( q ) sl

which is an absurd. n

By the above Lemma 1.10, (u;) < E is bounded hence, without loss of generality, we

may assume

u, —u in B and u, —u in L"(R* C*) for re[2,3), (1.45)
by Lemma 1.3. Certainly, u is a critical point of .
Lemma 1.11. Let (M), (Hy),(Hs) and 0 < X\ < A. The functional ® : E — R satisfies

the Cerami condition (Ce). at the level ¢ > 0.

Proof: It follows immediately of (1.45) and the Lemma 1.3 that, as j — oo,

0i(1) = (@(wy) = @/(w) ) (u) — )
=l =P = (') = W) (uf — )

= [luf —u[]* + 0;(1).

Thus [|u] — u™|[* = 0;(1) and, in a similar way, ||u; —u~[[* = 0;(1) as j — . On

the other hand, how (u?) c E° is a bounded sequence in a finite dimensional space,
0
Jk
subsequence and the proof is complete. [

it has a convergent subsequence (u? ). Therefore, (u;) < (u;) is a strongly convergent

Proof of Theorem 1.1:  Assume that 0 < A < A where A was defined by (1.22). The
conditions (®y) and (®;) holds by Lemma 1.8 and Lemma 1.7, respectively, for all a that

satisfies (1.21). By Lemma 1.9, we conclude that ® possesses a Cerami sequence (Ce),.
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at the level 0 < k < ¢ < sup (@) where £ > 0 and the set ) were defined in Lemma 1.5
and Corollary 1.1, respectively.
Let (u;) this sequence, which is bounded by Lemma 1.10. Hence, without loss of

generality, we may assume
u; —u as j — 0,

where u is a critical point of ®. By Lemma 1.11, the functional satisfies the Cerami

condition at level ¢ > 0 and, thus,
c+0j(1) = ®(u;) = ®(u) + 0j(1) as j — .

Therefore, ®(u) = ¢ > 0 and wu is a nontrivial solution of the problem (1.1).

Notice that H(x,u)is even in v and ®(0) = 0. The Lemma 1.5 guarantee the hypothesis
(®3) and the Lemma 1.6 implies (®5). Lemma 1.11 shows that & satisfies the Cerami
condition for ¢ > 0, hence ® has an unbounded sequence of critical values by the Theorem
B.7. n
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CHAPTER 2

Ground state solutions for Dirac equations with weak monotonicity

conditions on the nonlinear term

In this chapter, we consider the following version of the Dirac equation
—iaVu + aBu + V(z)u = g(z,u), xeR? (2.1)
under two different sets of hypotheses. First, we assume

gl u) = K(2)f(Jul)u

and consider a set of conditions similar to those considered by |2] and [42] that established
a relation between the potential V' and the nonlinearity. That is, the continuous functions
V,K : R3 — R satisfy:

(VKy) V(z) >0, K(x) >0 for all x € R3; V, K € L®(R?) and ||V ||, < a;
(VK,) if (A,) © R? is a sequence of Borel sets such that its Lebesgue measure |A,| < R
for all n € N and some R > 0, then

lim J K(z)dr =0 uniformly in neN. (2.2)

r—00
AnnBg(0)

Furthermore, one of the conditions below occurs

(VK) g e L(R%);

(V K3) there exists s € (2,3) such that

K(x)
V(x)st

— 0 as |z| > oo. (2.3)
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Remark 2.1. In order to simplify the notation, when V and K satisfy the assumptions
set out above, we say that (V, K) € X.

Moreover, for the continuous nonlinearity f : RT — R, RT = [0,00), we assume the

following growth conditions:

(fl) f(O) = 0;

o) there are c;,co > 0 and p € (2,3) such that s)s| < cq|s| + co|sP7" for all s € ;
(f2) th 0 and p € (2,3) such that [f(s)s| < cis| + cofs[P™" for all s € RT

(f3) tli_)rgj F;L(;) = oo where F(t) =\ f(s)s ds;

O by

(f1) f is non-decreasing on (0, c0).

The our first main result concerns the existence of ground state solution to this non-

periodic problem.

Theorem 2.1. Let (V,K) € X and suppose that f € CO(R) satisfies (f1) — (f1). Then,

Problem (2.1) possesses a ground state solution.

This option of to choose nonlinearity as a product between a term that only depends on
x and another that only depends on w is justified because the imposed conditions establish
a relationship between nonlinearity and potential function, which are not periodicals.
Thus, we analyse only the operator Hy and consider the potential as an integral part of
the energy functional. The boundedness of this potential is due to the fact that, by relating
to the norms present in the energy functional, we obtain opposite signal coefficients, which

facilitates the definition of one of the norms in function of the other.

Now, for obtaining multiplicity of solutions to Problem (2.1) we assume

(Vo) V € C(R?R), 1-periodic in z;,j = 1,2,3 and 0 ¢ o(Hy + V'), where o(S) represent

the spectrum of an operator .S;
(G1) g is continuous and 1-periodic in z;,j = 1,2, 3;
(G3) there is ¢ > 0 and p € (2, 3) such that |g(x, u)| < (1 + [uP™!);
(G3) g(z,u) = o(u) uniformly in z, as |u| — 0;

(G4) G(x,u)/|ul* — oo uniformly in z, as |u| — oo, where G(z,u) =

Ol

g(x, s) ds;
(Gs) uw g(x,u)/|u| is non-decreasing on (—o0,0) and on (0, c0).

Notice that under these assumptions Problem (2.1) is periodic and we have the

following conclusion.
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Theorem 2.2. Suppose V satisfies (V) and g satisfies (G1) — (G5). Then, equation (2.1)
possesses a ground state solution. If, moreover, g is odd in u, then Problem (2.1) has

nfinitely many pairs of geometrically distinct solutions.

These kind of hypotheses has already been considered in some cases with the condition
(f1) or (G5) a little stronger. In [42], for example, Figueiredo and Pimenta considered
(V,K) e X and f € C°(R) satisfies (f;) — (f3) and the following condition

(f1) f is increasing on (0, o).

In this case, unlike many authors, they used a new method of approach and through a
Deformation Lemma applied in a appropriately way, obtained a ground-state solution for
the problem involving the Dirac operator similar to Problem (2.1).

Szulkin and Weth, in [62|, considered a nonlinear stationary Schrédinger equation
—Au+V(z)u = f(z,u), reRY,

where f and V satisfy the same set of hypotheses of Theorem 2.2, up to notation, except

for condition (G), which has been replaced by
(F%) uw f(x,u)/|u| is increasing on (—o0,0) and on (0, c0).

The authors used the Nehari manifold and a auxiliary functional C! to obtain a ground
state solution. Moreover, if f is odd in u, they obtained multiplicity of solutions using
Krasnoselskii genus.

Considering the Dirac equation, Zhang, Zhang and Zhao [73| studied the periodic

problem
—iaVu + afu+ V(z)u = f(z, [u|)u, e R,

similar to equation (2.1), under the assumptions (G7) — (G5) (with appropriate notation).
Then using the Cerami sequences and Nehari-Pankov manifold, the authors obtained a
existence result and approached the exponential decay of the solution, under the additional
hypotheses that V, f € C*. Moreover, they considered the situation where V and f were
asymptotically periodic in x and also ensured that the problem has at least a ground-
state solution. In this study, although the hypotheses are similar to those considered in
our periodic case, the authors did not obtain multiplicity results and they need require
additional conditions to analyse the exponential decay.

The technique present in our development involves the definition of a a functional that
is only locally Lipschitz continuous and the apply a tool suitable exactly at this class of
functionals, Clarke’s subdifferential. First, however, we consider the Generalized Nehari
manifold which was initially instituted by Pankov [54]. Recently, Szulkin and Weth have

ensured that the minimum energy associated functional points restricted to this range
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are also critical points of the unrestricted functional. We analyze the structure of the
set E(u) N M which, by the monotonous growth of f, can be a point or a line segment.
Thus, it was not possible to establish a homeomorphism between the manifold and the
S! sphere in E*, as in traditional approaches. Moreover, it was also not possible to
use a deformation lemma and the theory of topological degree, similar to that used by
authors Figueiredo and Pimenta in [42] since the possibility of intersection being more
than one point does not allow to obtain the relations for construct a suitable homotopy.
So, inspired by Paiva ideas [53] we developed some ideas from the Lipschitz continuous

functionals and combine with Krasnoselskii genus to obtain multiplicity results.

2.1 Variational setting

In this section we explore the properties of the free Dirac operator, that is, we consider
just Hy = —iaV + af without external interaction forces. As mentioned in Appendix
A, this operator is self-adjoint in L?*(R? C*), unbounded from above and from below.
Moreover, its domain D = D(Hy) = H'(R? C*) is a Hilbert space with the inner product

(u,v)p = (Hou, Hyv)rz + {u,v)re.

Let 0(5), 0.(S) and 04(S) denote, respectively, the spectrum, the continuous spectrum
and the discrete spectrum (that is, the set of eigenvalues of finite multiplicity) of a self-
adjoint operator S. It follows from Theorem A.2 and the subsequent further comments,
that the spectrum of operator Hy is o(Hy) = (—o0, —a|u|a, +00) and this structure allows

us to obtain a orthogonal decomposition of L*(R?, C?) into
L*R*CH=L"®L,

where Hj is negative definite (positive definite, respectively) in L~ (L%, respectively).

Let E = D(|Hp|2) the domain of self-adjoint operator |Hy|2, which is a Hilbert space
equipped with the inner product

(u,v) = Re (|Ho|2u, | Ho|?v) 12 (2.4)
and norm ||u|| = (u, u)z. Since o(Hy) = R\(—a, a), one has
allul[3 < ||u|[* forall ue E.

It follows from the complex interpolation arguments that £ = Hz (R3,C*) and || - ||
is equivalent to the usual norm of Hz(R3,C%). Indeed, E = [D, L?]
D(Hp) = H'(R3,C*), we have that

1 and since D =
2

[D. L]y ~ [H', L7], = H=.

1
2
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Furthermore, using the embedding properties of the fractional space H %(R?’, C*), we
obtain that E is continuously embedded into LI(R3 C*) for ¢ € [2,3] and compactly
embedded into L (R® C*) for g € [2,3) (see [14, 52|), that is, there is a constant C, > 0
such that

Collul|ze < Jul| forall ue E, ¢e]2,3]. (2.5)
Moreover, the space £ also has a orthogonal decomposition
E=E @®E", (2.6)

with E* = E n L*, and this sum is orthogonal with respect to both {-,-» and (-, ).

On E we define the following functional ® : E — R associated with Problem (2.1)

oa) = 5 (Il = Il ) + 5 | VeluPds - | o wyda, (2.7)

R?)

which is a C'(F;R) functional. Similar to Chapter 1, we can follow the ideias from
[25, 30]) and prove that the critical points of this energy functional are the solutions of
the proposed problem. Therefore our objective is to study this functional in order to

obtain nontrivial critical points. For this, let the following set introduced by Pankov [54]
M={ue EAE™ : ®'(u)(u) =0 and ®'(u)(v) =0, for all v e E~}, (2.8)

which is called generalized Nehari manifold or Nehari-Pankov manifold. The assumptions
(VKy) and (fy), at the nonperiodic case, and the conditions (Vj) and (G5) in the periodic
case guarantee that M contains all nontrivial critical points of ®.

Define, as in [62], for u € E\E~

E(u)=E ®Ru=FE ®Ru",
Ew)=E @Rtu=E @R u", (2.9)

where R™ = [0, 00). It has been shown in [42] and [62|, respectively, that if ( f4) is replaced
by (f1) and (Gs) is replaced by (FY), the intersection E n M occurs at a unique point
which is the unique global maximum of ®| Bu)- In the development of this work, we will
show that E(u) n M # ¢ and if w € E(u) n M there exist 0 < 0, < 1 < 7, such that
E(u) n M = [0y, Tw]w. In other words, this intersection is either a point or a finite line
segment. We can also show that a point w € [0y, T, ]w is a critical point for ® if and only
if the whole segment |0y, 7, |w consists of critical points.

Under the assumptions of Theorem 2.2 we obtain that the functional ® is invariant
with respect to the action of Z?® given by the translations k — u(- — k), k € Z3. Hence, if

u € F is solution, then so is u(- — k). We consider that two solutions u; and uy are called
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geometrically distinct if ug # uy(- — k) for any k € Z* and uy ¢ [04,, Tu, Ju1. In Theorem

2.1 there is no Z3—invariance and so uy, uy are geometrically distinct if ug ¢ [0y, , Tu, JUr.-

2.2 The nonperiodic case

At this section, we consider (V, K) € X and the assumptions (f1) — (f1) holds. Then the

functional (2.7) can be rewrite by

Br(u) = 5 (It = 7 I) + 5 [ V@lude - f K@)F(u)dr. (210

R3

and, for u,v € F, note that

P (u)(v) = W, vty —(u",v") + Re J V(z)u-v de — ReJK f(lup)u-v da

R3
= Re (u, Avyr2 + Re J V(z)u-v de — ReJK f(u))u - v de.
]R3
Here, u - v denotes the usual inner product in C*, that is u-v = > u;v;. The next

1=
proposition, proven by Figueiredo and Pimenta [42]|, Lemma 3.4, is a compactness result
which is very important and will be used later. We outline the proof to complement our

studies.
Proposition 2.1. Suppose (V, K) € K. If (u,) € E a sequence such that u,, — v in E as
n — oo, then
a) if (VK3) holds, then, for all q € (2,3),
JK(m)|un|qu — JK(x)|u|qu as mn — oo;

b) if (VK3) holds, then,

fK(x)|un|5dx — JK(m)|u|5dx as n — oo.

Proof: For the first item, assume that (V K3) holds. Fixed ¢ € (2,3) and € > 0, there

exist 0 < ty < t; a positive constant C' > 0 such that
K(z)[t|* < eC(V(@)[t] + |t]*) + CK (@)X (Jt)[LP,  for all teR.
Denoting Q(u) = { V(z)lul?dz + { Jul*dz and A = {x € R® : {5 < |u(z)| < 1}, we
R3

R3
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have

J K(z)|u|'dr < eCQ(u) + C f K(z)dx forallue E.
Bg(0) AnBg(0)
Since (u,) is a weakly convergent sequence, by Banach-Steinhaus Theorem C.4, it is
bounded in E. Using the continuous embedding £ — L*(R? C*),E — L3(R? C*) and
the fact that V e L®(R?), there exists C; > 0 such that Q(u,) < C for all n € N, where

(' denotes a constant.
On the other hand, denoting A, = {x € R3 : ¢y < |u,(z)| < 1}, it follows that

to)A,l < J [un|*dx < Cy, for any n € N,
An

and then sup |A,| < +oo, where Cy denotes a arbitrary constant. Using the hypothesis
neN

(VK) there exist a positive radius r > 0 large enough such that, for all n € N,
€
J K(e)dz < .

AnBg(0)
Consequently, for all n € N,

Jkummm<@a

Bg(0)

where C5 = C(Cy, 1), and then

n—aco
R3

lim K@MWWzJK@WW@
R3

since in B, (0) we can use the Sobolev embeddings for ¢ € (2,3) and the continuity of K.

For the second item, define
g(t) = V(z)t* 1+ 779, for every t > 0.

Using the minimum value of this function and combining this fact with (V K3), we obtain
again the conditions to apply the Banach-Steinhaus Theorem C.4. We can proceed as the

previous case to obtain the expected conclusion about the convergence. [

Immediately, using the Lebesgue Dominated Convergence Theorem, Alves and Souto

[2], Lemma 2.2., obtained the following result:
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Corollary 2.1. If u, — u in FE, then

JK |un|dx—>fK Flul)dz as n— .

Our objective, at this moment, is to study the structure of the set E(u) A M and, for

this, the next result is crucial.

Proposition 2.2. Let x € R3, t € RY and u,v € C* such that f(|u|) # 0. Then

hy(t,v) = Re f(|u])u - (gu — %u + tv) + F(|u]) — F(Jtu + v]) < 0. (2.11)

Moreover, there are 0 < s, < 1 < t,, such that h,(t,v) = 0 if and only if t € [s,,t.] €
v =0 (the case s, = t, not excluded).

Proof:  Note that h, : R x C* —» R and, by the assumption f(|Ju|) # 0, we obtain
|u| # 0 and, consequently, u # 0. Define z = tu+v,t > 0, and suppose that Re(u-z) < 0.
Then

talt o) = 1u)(§ = 3 )l + 7R ) + F(ul) — F(2)

(5 = 5 ) + DR o) + 3 F(uluP = F(l2)

=~ S S (bl + ¢ (u)Re(u - 2) — F(J2]
<0 (2.12)

So, we only need to analyse Re(u - z) > 0. Obviously, h,(1,0) = 0 and, moreover, for
C > 0 large enough, if 1 f(Ju]) < C < oo,

2

hult, ) < =5 F(ubluf? + ££(jul) Re(u-2) = CleP + CJaf? — F(J2])
< —5 f(ublsu— = + CleP ~ F(lz)
1
= —S (Dl + Claf? = F(j2]).

It follows from (f3) that h,(t,v) < 0 as |z| — 0. So, there is (ty,v9) € B = {(s,w) :
s>0 and w e C*} such that

hy(to,v9) = max g(s,w) =0 (2.13)
(s,w)eB
and Re (u - (tou + vp)) > 0. As

u(0,0) < =3 S (ul)ul? + F(Jul) <
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the maximum value is attained at some (fo,vg) with ¢y > 0. Particularly, for w € C*,

0 = (hy),(to, vo)w = tof(|u]) Re(u-w) — f(|tou + vo]) Re((tou + vo) - w)
= (f(|u|) — J(|tou + Uo|)> Re((tou + vo) - w) — f(lul) Re(vy - w)(2.14)

On the other hand,

0 = (hu)i(to,vo) = f(lul) Re(tou - u) + f(Jul) Re(u - vo) — f(|tou + vo|) Re((tou + vo) - u)
- (f(|u|) — f(tou + v0|)> Re((tou + vo) - u)

and, since Re((tou + vp) - u) > 0,

(#(0ul) = #(ltou +wal)) = 0.

Hence, by (2.14), f(Ju|) Re(vy - w) = 0 for all w € C*. Using that f(|u|) # 0 we obtain
that v = 0 and

f(lul) = F(ltoul) = 0.

By (fs) there must exist 0 < s, < 1 and ¢, > 1 such that ¢y € [sy,%,]. From this
relation, we can characterize the maximum point as (to,vg) : to € [Su,t,] and vy = 0.

Moreover, for t € sy, t,], we have that

f(lul) = f(Jtul) (2.15)
and
hy(t,0) = f(lu|)u - (%u — %u) + F(|u|) — F(|tu|) = 0. (2.16)

Then, using that ¢(¢,0) = g(1,0) = 0 for all ¢ € [s,,t,]| and the relation holds, we obtain
the conclusion, that is, h,(t,v) < 0 for all (¢,v) € B and g(t,v) = 0 if and only if ¢ € [s,, t.]
and v = 0. (]

Corollary 2.2. Suppose ue M,t >0 and ve E~. Then

2

Re f K (x) [f(|u|)u - (%u _ %u T w) + F(lul) — F(jtu + v|)]da: <0 (217)

and there are 0 < s, < 1 < t,, such that the equality holds if and only if t € |sy,t,] and
v =0.

It follows from this auxiliary results the following characterization to the set E (u) "M
when u € E\E~.
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Proposition 2.3. Let ue E\E . Then:

(i) E(u) n M # &;

(ii) if w e E(u) nM there are 0 < s, < 1 < t,, such that E(uw) nM = [sy,, tw]w. Moreover,
O/ (sw) = Pr(w), P)(sw) = s (w) for all s € [Sw,tw]| and ®;(z) < ®r(w) for the others

Proof: For the item (i) see |[42]. We outline the proof. Define, for any ue E\E~
function 7, : R* x E~ — R by v, (t,v) = ®;(tu” +v) and notice that v, € C* (Rt x £~ ,]R).
Let (t,v) € R x E~ a critical point of ~,, that is,

%m(t,v) =0 and a—i%(t,v)w =0 forall weE™. (2.18)

Then,

0 0
(p/ + + = —_— —_— =
T(tu” +u)(tu” 4+ v) t&%awy+&ﬂ4amv 0
and, for all we E~,

P (tu™ + v)w = 0.

Then, tut + v € M. Conversely, if (tu™ + v) € M, we have (t,v) € RT x E~ is a critical
point of ,.

In order to obtain that E(u) n M # &, u € E\E~, we will prove that there exist
tyu™ + v, € E(u) such that

Qr(t,ut +v,) = max Pr(tu’ +v), (2.19)
t=0, veE~
since that, if this maximum point exist, by the previous analysis, t,u™ + v, € M and we
obtain the desired conclusion.

Assume, without loss of generality, that w € E+ and ||u|| = 1, since E(u) = E(u*/|[u*])).
The first step to obtain the maximum point is to guarantee that there exist R > 0 such
that

®;(u) <0, Ywe E(u)\Bg(0).

Arguing by contradiction, suppose that there exist (w,) < E(u) such that ||w,|] — +o0
and ®;(w,) > 0 for all n € N. Then, there exist (t,) < R* and (v,) € E~ such that

w, = tyu + v, and we can define

t _
w, = Yn__ o u + Un_ - t,u + v,.
lwall  flwall ™ ]

Using that F'(t) = 0 in R* it follows that

(I)[ (wn)

0<
|, |[2

1 1 ;
(Fn = 10l [*) + SV llo @l 7, + |[al[72)
2

=3l
1|- V| V|
_[t <1+ IVl >_”@"”2<1_ VIl )]
2 a a
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Then, using that t2 + |[v,,]|*> = |[w,.||* = 1, we obtain, for all n € N,

_ a+ [[V]|r- a— [Vl _+
0<||U”||2<T and 0<T<tn<1
This implies that there exist £y > 0 and vy € £~ such that

W, = tyu + 7, — wy = Sou + vy # 0,

and using the Fatou’s Lemma C.1, we obtain that

o 1 *
0< limsupM < =(t2 — [Jvol?) + [Vlle- lim inf J K(z)

oo |Jwal[? 2 20 now [lwnl[?
{wo()20}

which is an absurd.

Let (u,) © E(u) a maximizing sequence such that

lim ®;(u,) = 8 = max &y,

which exists because ®; is bounded from above in E(u) Since 0 < 8 < 0, it follows from
the above estimates that (u,) is bounded. So, up to subsequence, there exist ug € £(u)
such that u, — ug as n — oo. Using the Corollary 2.1 and the properties of weak upper
semicontinuous functions (for more details see the approach on Proposition 2.7), we obtain
that ®(ug) = 5. Therefore, ug € M N E(u) and conclude the proof of (7).

For the item (i), note that if w € M then

O/ (tw + v) < Pr(w) forallt =0, ve E.

Obviously, using the assumption (V Kj), the variational properties from M and Corol-
lary 2.2, it follows that

Brftw +0) = () = 5 | ViloPdo - 5ol
+Re f K(x) [f(|w|)w (gw — % + 7“11) + F(lw]) — F(jrw + vl|) |dz
<0. (2.20)

Moreover, there exists 0 < s,, < 1 < t,, such that ®;(tw + v) = ®;(w) if, and only if,
t € [Sw,tw] and v = 0.
Let w € E(u) n M given by (i). Since M < E\E~, we obtain that w* # 0 and there

exists t > 0 and v; € E~ such that w = tu™ + v;. Particularly,
ut =t w—wv). (2.21)
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Clearly w € [y, ty|w. Let z € E(u) N M and z # w. It follows from (2.21) that there
exists 7 > 0 and vy € E~ such that z = rw + vy, that is z € E(w). So, it follows from
(2.20) that

O(2) < Oy(w) (2.22)

and the equality holds if and only if r € [s,,t,] and vy = 0, that is, ®;(z) = &;(w) if and
only if z € [y, t]w. Since also w € E(z) and z € M, using again the relation (2.20), we
have that ®;(w) < ®;(z). Then ®;(w) = ®;(z) and holds E(u) A M < [su, te]w.

On the other hand, from the above arguments, if s € [s,,t,] then ®;(sw) = ®;(w)

and

max ®;(z) = ¢r(w) = ¢;(sw),

eB(u)
that is,
@' (sw)(z) = 0 for all z € E(u).
Since E- < E(u) and w € E(u), it follows that
P (sw)(sw) = s (sw)(w) =0 and P} (sw)(v) =0 forallve E™,

that is, sw € E(u) n M for all s € [s,,t,]. Hence E(u) A M = [s4, ty]w. The equality
' (sw) = sP(w) follows from the relation f(|sw|) = f(Jw]|) for all s € [s,,t,] in (2.15).

Remark 2.2. [t follows from the Proposition 2.3 that if u € M then u € E(u) nmathcal M
and there exists 0 < s, < 1 < t, such that ®;(su) = ®;(u) for all s € [sy,t,] and
®;(2) < ®r(u) for the others z € E(u).

Proposition 2.4. There exists 6 > 0 such that

l[u™|| =6 for allue M (2.23)
and
¢ = inf ®;(u) > 0. (2.24)
ueM

Moreover, M is closed and ®p |y is coercive, i.e., ®r(u) — o as u e M and ||u|| — 0.

Proof: The relation (2.24) will be proved firstly and then we will show that there exists
p,a > 0 such that

P/(u) =« forall ue ET ndB,(0). (2.25)
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By the assumptions (f1) and (fs), for all € > 0, there is . > 0 such that
|f(s)s] < e|s| + pe|s[P! for all s € RY,

where p € (2,3) is like in (f3). Then, for all u e E™,

Bi(u) = lulf + f |u|dx—fK F(lul)d

1 c
> 3l = 1l [ (Sl + %Iul”)dw

]R3

1
(5 - cie ) P - ncalta,
(0%

A\

=

just by choosing 0 < ¢ < (2C}) 7!, for all w € E* such that |[u™|| = p, where

p = (2012’% (1 - 2015>) = and o= %2(% - Cﬁ) > 0,

proving the relation (2.25). Now, by the Remark 2.2, for all ue M

O (u) = q>,<||up+||u+> >a >0,

which guarantee the relation (2.24).

Moreover, if u € M, we obtain

1 1
0< e < i) = 3llut P = il |+ [V |u|d:v—jf< F(lul)d

RS

Lfa+]V]| a—||V]] -
< | ——= ||u+||2—— — = | lu |
2 a 2 a

2ac 2
utl] > | ———— 2.26
o <a+||vnw> (2.26)

hence

which proves (2.23).

Since ®;(v) < 0 for all v € E~, we obtain that M is closed. Finally, let us prove
the coercivity. Arguing by contradiction, suppose that there exists a sequence (u,) € M
such that |ju,|| — o as n — oo and ®;(u,) < d for some d € [¢,00). Let (v,) < E,

Up, = Up/||unl|, which is unitary. After passing to a subsequence we have v,, — v in E and
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vn(z) = v(z) a.e. x € R®. Then, for each n € N,

®r(u,) 1 L, o 1 F(|un|)
0= TE = Sl I = Sl [P+ 5 [ Vi@leaPde — [ K@) T
Il B Tual
R3 R3
[ (sl .
<4<———E|MW— O o |
a a
that is
— ||V + ||V
(9;—itiﬁﬁ>|hgwﬁ < (9——ﬂ—ik9>uvzu2. (2.27)
a a
Since ||v|[? = [|vf][* + ||v; ||* = 1 we obtain that, for any n € N,
@+ [Vl @ |Vl
< < ————% and — = < )P 2.2
0< I l? < 0 and 0 < T < o) (2.28)

On the other hand, (v;) and (v, ) are bounded, so we may assume that there exists
vT,v" € E such that v — v* in E* and v, — v~ in £~ as n — o0. Now let us prove
that v* # 0. On the contrary, if vt — 0in E*, for all s > 0 fixed, sv — 0in E* and by

Corollary 2.1

s 1 1
d=o(u,) = ®I<||u ||u:[> = §||sv;[||2 + 5 J V(z)|sv,! |*dr — jK(x)F(|sv;{)|)dx
R3 R3
2 — 1
> % (%) +3 j V(z)|sv]|*dx + o, (1)
R3

82

> 1 (@ = Vi) +0u(1),

which is a contradiction for s > 0 large enough. Hence, v* # 0 and v, = v} + v, — v =
v+ v #0inkE as n — .
Let us define T' = {r € R3v(z) # 0}, 0 < || < oo. Note that, for all z € T,

|tun ()| — oo and

Dy (un) o Lo 120 1 2 F(|un|)
—(gwﬁ| sl 5 | VlnPdr = [ KT e
R3

RS

O e 1 J F(|un|)
< _Z e o AN el V4
<3 2||Un|| + 5 K(x) dx

R

<5 (2=t lP) - [ K@)

3
(),
[[un]]
Hence, using Fatou’s Lemma C.1, we obtain that
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. (I)I(un) 1 —112 ..
0 < limsup Tanl? < 5(2 — v ) —hgriglfJK(x) TulP? dr = —o0 (2.29)
r

n—00
which is a contradiction and proves the result. [

According the Proposition 2.3, for each u € E+\{0} there exist w € E(u) n M and
0 < s, <1<t, such that

m(u) = [S, tw]w = E(u) n M < E. (2.30)

This is a multivalued map from ET\{0} to E. However, the map ¥ : E\{0} — R given
by

~

U(u) = &r(m(u)) = ng@a(z) D/(2) (2.31)

is single-valued because ®; is constant on £(u) A M, by Proposition 2.3.

Proposition 2.5. The map U s locally Lipschitz continuous.

Proof: This argument follow the ideas from [53|, Proposition 2.6 and [62], Lemma 2.11
and we outline the proof. By [17], recall that f : X — R is a locally Lipschitz continuous
functional on a Banach space X if for every x € X, there exists a neighbourhood N, of x

and a constant K, > 0 such that
f(y) = J(2)| < Kully — 2] forall y,zeN,.

If ug € E*\{0}, there exist a neighbourhood U < E*\{0} of up and R > 0 such that
®(w) < 0for all w e U and w € E(u), ||w|]| = R. If not, we can find sequences (u,,),
(w,) such that u, — g, wy € E(uy), ®(w,) > 0 and |jw,|| — o0. Since ug, ug, us, ...
is a compact set, it follows from [62], Lemma 2.5, that ®(w) < 0 for some R and all
w e E(Uj>7j =0,1,2,...,||w|| = R, which is a contradiction.

We may assume without loss of generality that U is bounded and bounded away from
0. Let U, R as above and sju; + vy € m(uy), Soug + vo € m(uy), where uy,us € U and
vi,v2 € EY@® E~. Then ||wi||,|Jws]] < R for all w; € m(uy),ws € m(uy). Using the

maximality property of m(u) and the mean value theorem,

~

\I/(ul) — CI}(UQ) = @(slul + Ul) — (I)(SQUQ + 1)2)
< CD(Slul + 'Ul) — (I)(SlUQ + ’Ul)

< 81 sup || (s1(tur + (1 — t)ug) + v1)|] |Jur — usl|
te[0,1]

< Cllur — us],
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where the constant C depends on R but not on the particular choice of points in m(u,),
m(uz) (because ||sy(tus + (1 —t)ug)+v1|| < CyR for some Cy > 0; recall that U is bounded
and bounded away from 0). Similarly, [|¥(us) — U(u;) < C|Juy — us]|, and the conclusion

follows. u

Therefore, instead of the derivative of ¥ we need another tool that applies to this class
of functionals. We present, now, some basic ideas and concepts from the calculus of gen-
eralized gradients that were firstly developed by F. H. Clarke and are required to develop
variational methods for nondifferentiable (locally Lipschitz continuous) functionals. More
details about this can be found |17, 18|.

The generalized directional derivative of U at u in the direction v is defined by

- U(u+h+t)—U(u+h
U0 (u;v) = limsup (uth+tv) (uth)

, ue E"\{0}, v,he ET. (2.32)
h—0, 10 t

The function v — W°(u;v) is subadditive, positively homogeneous (hence, it is convex)
and its subdifferential oW (u) is called the generalized gradient (or Clarke’s subdifferential)
of U at u, that is,

oW (u) = {we E* : W°(u;v) = (w,v) for all v e B} (2.33)

In a general way, if we consider f : X — R a locally Lipschitz functional on a Banach

space X, we can cite the following properties of the Clarke’s subdifferential:

Proposition 2.6 (17|, Proposition 7.1.1). Assume that f : X — R is a locally Lipschitz

functional on a Banach space X. The generalized gradient
of(x) ={we X*; fo(x;v) = (w,v) forall ve X},
where f°(x;v) is the generalized directional derivative, has the following properties:

(1) For each x € X, df(x) is conver and w* — compact subset of X*;
(it) For each w € 0f(z), we have ||w||x» < Ky;

(1ii) Let f: X - R and g: X — R be locally Lipschitz continuous functionals, then
o(f + g)(x) < of (x) + dg(x);
(iv) For each X € R,
OAf) (@) = Adf(x);

(v) The set valued mapping x — Of (x) is upper semicontinuous in the following sense:
for each xy € X,e > 0 and v € X, there exist 6 > 0 such that for each w € 0f(x)

with ||z — xo|| < 9, there is wy € Of (xo) such that [{w — wo, v)| < &;

47



(vi) A functional A : X — R defined by

ANz) = mi .
() wreg}?x)llwllx

is lower semicontinuous, that is, lim \(x) = A(xo);

T—T0

(vii) For each v e X, we have
fo(w;v) = max{{§, v); & € Of (x)};

(viii) Let ¢ € C1([0,1], X) and let f : X — R be a locally Lipschitz continuous functional,
then the function h = fo ¢ :[0,1] > R is differentiable a.e. and

W(t) < max{(w; ¢'(2)) - w € 0f (6(t))} a-¢;

(iz) The set valued function x — Jf(x) is weak*-closed, that is, if (x;) and (&) are
sequences in X and X*, respectively, such that & € 0f(x;), x; — x and £ is a cluster
point (limit point) of (&;) in the weak*—topology, then & € Of(x).

In our approach we consider Since E is a Hilbert space, we may assume via duality that
OW(u) is a subset of ET. A point u is called a critical point of W if 0 € oW (u), iec.
T (u;v) = 0 for all v € E*. A sequence (uy,) is called a Palais-Smale sequence for U (or
(PS)—sequence) if W(u,) is bounded and there exist w, € oV (u,) such that w, — 0. Here

and thereafter, the following notations will be used:

ST ={ue BT :|jul| =1}, T,57={veE*:{uv)=0}, ¥=1g,
U= fueST:U(u)<d}, V,={ueSt:V(u)=c}, V'=V.nv)
K={ueS":0€¢ 8@(u)}, K. =VinK, 0V(u) = 6@(u),where ue ST

Remark 2.3. Notice that, if u € S™, there exist an orthogonal decomposition of E into
E = E(u) ®T,S*. Indeed, E(u) n T,S* = {0}. On the contrary, there exist 0 # w €
E(u) nT,S™, that is, there exist t € R and v e E~ such that

w=tu+v and {w,uy=0.
Hence
0 = {w,uy = {tu +v,u) = t||ul|* + (v,u) =t

and then w =v e E~. Since we T,,ST < ET we obtain that w = 0 which is a contradic-
tion.

Let z € E\{0} since, obviously, z = 0¢€ E(u)®T,S*. By definition, z = zt + 2= where
zteEtandz e B . Ifz=2 € E~ we can write 2 = (Ou+2) +0€ E(u)®T,St. If
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not, define t = (z*,uye R. Then, z = (tu+ 2" ) + (27 —tu) € E(u) ®T,S™, since

Y —tu,uy = &Y uy — tlu,uy = 0.

Proposition 2.7. (i) u € ST is a critical point of\ff if and only if m(u) consists of critical
points of ®;. The corresponding critical values coincide.
(ii) (un) = S is a Palais-Smale sequence of U if and only if there ezist w, € m(uy,) such

that (wy,) is a Palais-Smale sequence for ®;.

Proof: (i) Let we S*. The first item can be rewritten by: W°(u;v) = 0 for all v € E* if
and only if m(u) consists of critical points of ®;. By Remark 2.3, there exist a orthogonal
decomposition F = E(u) ® T,ST and, by definition, ®}(w)(v) = 0 for all w € m(u)
and v € E(u). Moreover, since U(u) = U(ou), for all ¢ > 0, and U is locally Lipschitz

continuous, is valid, for s € R fixed, that
U (u+ h+ t(su) — Ulu + B)| = [((1 + ts)u + h) — U((1 + ts)(u + h)| < Ct |s| ||h]|

for h € E*, ||h]| and ¢ > 0 small. Then U°(u;su) = 0 for all s € R. So we only need to
consider v € T,,S™T.

Let s,u+z, € E’(u), where s, > 0 and z, € E~, denote an (arbitrarily chosen) element
of m(u). Using the Mean Value theorem and the maximizing property of m(u), we obtain
that

V(u+h+t0) = U(u+h) = O (sushsro(t + h+10) + Zasnitw) — Pr(Susn(t + h) + 2usn)
< (pl(su-‘rh-‘rtv (U +h+ tl)) + Zu+h+tv)

— D (Suthito(t + h) + Zyushitw)

= 1Sushsto P (Sushito(U + I+ 010) + 2y hii0)V

for some 6 € (0,1) (here and below h € E™). Letting subsequences h,, — 0 and ¢,, | 0, by
the maximizing property of m(u + h, +t,v) and the coercivity of ®;|y, we conclude that
(Sn(u+ hp, 4+ t,v) + 25 )nen is @ bounded sequence. Then, as n — oo, we may suppose that
Sn = Suthpat,o — 8> 0and z, = zy4p, 11,0 — 2 in E~, where § > 0 follows from (2.23).
Since E is a Hilbert space, V € L*(R?) and CX(R?) is a dense subset of F, we obtain
that

TO(u;v) < 50 (5u + 2)v. (2.34)

Moreover, su + z € M. Indeed, consider

1 1
oI+ 5 [ VP d
R3

1
Dw) = 5w -
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and define the T, : = — R by T, (v) = I'(u 4+ v), which is a concave function. Therefore

T, is weak upper semicontinuous, i.e., if v, — v in £, then

T(u+v) = limsup Y (u + vy,).

n—aeo

Since s, (u+ hy, +t,v) + 2, — Su+Z in E and s,(u+ h, +t,0) > §in E*, as n — oo,

we have that

limsup Y (s, (u + hy, + t,0) + 2,) < T(Su + 2).

n—0o0

Then, it follows from the Corollary 2.1 that

U(u) = lim Pr(s,(u+ by + tav) + 2,) < O;(5u+ 2) < max P;(w) = U(u).

n—w weF(u)

This implies that Su + % € E(u) n M. Since E(u) n M may be a line segment, it is not
sure that s and z are the same for different v. However, if s7, s5 and 27, 25 correspond to

vy and vy, then by Proposition 2.3,
S1u+ z1 = 7(Sou + ) and D (S1u + Z1)vy = TP (Shu + Z2)ve,
for some 7 > 0. Taking this into account, we observe that, for all y € 8@(u),
{y, vy < W0 (u;0) < 7(0)® (5u + 2)v, (2.35)

where 7 is bounded and bounded away from 0.

It follows from this inequality that u is a critical point of ¥ if and only if m(u) consists
of critical points of ®;. Indeed, if u is a critical point of U we obtain that \Tlo(u; v) =0
for all v € T7,5% and then ®7(5u + Z2)v = 0 for all v € T,5%. Using the orthogonal

decomposition E = E(u) @ T,,S™, this relation ensures that, for w e E,

D" (Su + 2)(w) = P (Su+ 2)((tu + w™) + v)
=&} (Su+ 2)(tu + w) + P (Su+ 2)v
— 0,

where (tu + w™) € E(u) and v € T,,S™, that is, Su + Z is a critical point for ®;. Then,

by the Proposition 2.3 (ii), the claim follows. Conversely, note that if w € E* by the
orthogonal decomposition, w = tu+wv, where t € R and v € T,,S™. Then, for all y € 5@(u),

~

(y,w) < WO(u; w) < WO (u; tu) + WO (u; v) < W0(u; v) < 7(0) P (5u + 2)v = 0,

since we are assuming that Su+ Z is a critical point for ®;. Hence (y, w) < 0 for all w € E*
and this implies that y = 0, that is, 0 € é@(u), as desired.
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(ii) The arguments are similar to the previous case. We take y,, € 0¥ (u,) and w, €
m(uy,). Since @y is coercive, the boundedness of ®;(m(u,)) implies that (w,,) is bounded.
Similarly to (2.35), we see that

(Y, v) < \ifo(u; v) € 1, P (wy)v, (2.36)

where v € E* and 7, is bounded and bounded away from 0. So the conclusion follows. m

Remark 2.4. If (w,) < (m(uy,)) is a Palais-Smale sequence for @, then so is any

sequence (w)) < (m(uy)).

Proof of Theorem 2.1 It follows from the Proposition 2.4 that

¢ = inf ®;(w) = inf ¥(u) > 0.

weM uesS+

Using the Ekeland’s variational principle, there exist a sequence (u,) < ST such that
U(u,) — c and

1
U(w) = ¥(u,) — —||w—u,|| forall weS.
n

Let v € T,,, ST and define z,(t) = (u, + tv)/||u, + tv|]. Since {(u,,v) = 0 we obtain that
[un + tv]]2 = 1 = O(2) as t — 0. Moreover, U (u, + tv) = U(z,(t)) and

~ W(zn(t)) — Y(uy,
U°(u;v) = limsup Ga(t)) (1n)
t10 t

1
= —— 2.37
~jo (27)

for some v € T, S™. Note that m(u,) is bounded by coercivity of ®|y and by the second
inequality in (2.36) we obtain

1

— vl < V0 (15 0) < 7@ (wn ), (2.38)

where w, € m(u,) € M and 7, is bounded and bounded away from 0. This relation
ensures that &} (w,)v = 0,(1) as n — o and v € T,,,ST. By the maximizing property
of m(uy,), it follows that ®’(w,)z = 0 for all z € E(u,) and, then, (w,) is a bounded
Palais-Smale sequence for ®;. Passing to a subsequence, we may assume that w, — w in

E. Note that w™ # 0. Indeed, since (w,) is a Palais-Smale sequence for ®; there exists
M > 0 such that ®;(w,) < M, for all n € N. Then, if w} — 0 in E* for all t > 0,

O |

2

R3

2 2ac
= —| ———— | +0,(1),
2 <a+||V||oo> (1)

o1

1
Elluf |+ 5 | Vil do | K@F(t; s
R3



using the Corollary 2.1 and Proposition 2.4, which is a contradiction by ¢ > 0 large enough.
Then w, — w # 0 in E and, by the density arguments, we obtain that ®}(w) = 0 and
w e M.

It remains to show that ®;(w) = ¢. By the assumptions (f;) and (fy),

¢+ on(1) = Oy (wy) — ;q)[(wn)(wn)

JK [ (|wn|)ws, - wn_F(|wﬂ|)]

dx + o,(1)

f K(s [ (ol w = F(fu)

Hence ®;(w) < ¢. Since w € M, we have that ¢ = injg[ ®;(z) < &;(w) and hence we obtain
ZE

the reverse inequality. n

2.3 The periodic case

Through this section, assume that (V5) and (G1) — (G5) are satisfied. Then, considering
the operator Ay = Hy+V there exists an equivalent inner product in £ and, consequently,
an equivalent norm, which will be also denoted by ||-||, such that the associated functional
(2.7) has the following form

®ir(u) = 5 (P = [l ) - | o w)da,

R3

and, for u,v € F,

O (u)(v) =<ut vy —(u”,v7) — Re J g(x,u)v dx

R3

= Re(u, Av)r2 — Re f g(z,u)v dx.

R3

Remark 2.5. Notice that if (Vp) is replaced by
(Vg) V = BM, where M € C*(R?,[0,0)) and M(x) is I-periodic in xj,j = 1,2,3;
we can study the following problem
—iaVu + (a + M)Bu = g(z,u), zeR> (2.39)
Generally, if M € L2 (R3 R), the operator Hy = —iaV + (a + M)8 is self-adjoint in
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L*(R3,C*), unbounded from above and from below. As before, its domain D = D(Hy) is
a Hilbert space with an appropriated inner product and D = H'(R3 C*) with equivalent
norms (see [9], Lemma 3.2). Moreover, by Lemma 3.8 in [9], o(Hy) = oo(Hy) <
(—0,a] U [a,0) and inf o(|Hy|) < a + sup M(R?), that is, we also obtain a orthogonal
decomposition of L*(R3,C*) into

L*R*CH=L"®L,

where Hyy is negative definite (positive definite, respectively) in L~ (LT, respectively).
The domain E= D(|Hy|2) of self-adjoint operator |Hy|? is a Hilbert space equipped with

the following inner product
{u, v)) = Re(|Hyg|7u, | Hyg |70 2 (2.40)

and ||u|]; = u,ud)z. It follows from the complex interpolation arqguments, similar those
mentioned at the previous section, that E = H2(R3,C*) with equivalent norms (see [9],

Lema 3.4). Since E is a subspace of L*(R3,C%), it also has a orthogonal decomposition
E=EFE @®F", (2.41)
with EX = EAL*, and this sum is orthogonal with respect to both ((-,-»y and {-,->12. Then,
the solutions of the equation (2.39) will be obtained as critical points of the functional
1 12 —2
) = 5 (Il = [~ |) = | G(ou)da, (2.42)
R3

which as the same form as ®yj.

Following the same arguments from the previous section we obtain the next results
which are important to study the structure of the set E(u) n M. Due to the similarity of
the statements they will be omitted.

Proposition 2.8. Let x € R3 t € RY and u,v € C* such that g(x,u) # 0. Then

2

h(t,v) = Re g(z,u) (%u — %u + tv) + G(x,u) — Gz, tu + v) <O0.

Moreover, there are 0 < s, < 1 < t,, such that h(t,v) = 0 if and only if t € [sy,t,] ev =0

(the case s, = t, not excluded).

Corollary 2.3. Suppose ue M,s >0 and ve E~. Then

Jh(s,v) dr <0,

Rlﬂ
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and there are 0 < s, < 1 < t,, such that the equality holds if and only if s € |sy,t,] and
v =0.

With this preliminaries results, we obtain the following characterization to the set
E(u) A M when u e E\E .

Proposition 2.9. Let ue E\E~. Then:

(i) E(u) n M # &;

(ii) if w € E(u) "M there are 0 < s, < 1 < ty, such that E(u) nM = [sy, t]w. Moreover,
O/ (sw) = Prp(w), Y, (sw) = s, (w) for all s € [Sy,ty] and ®r(2) < ®r(w) for the
others z € E(u),

(171) M is closed, ¢ = ggj\f/tq)n(u) > 0 and @l is coercive, i.e., ®r(u) — 00 asueM
and ||ul| — oo;

(1v) there exists 0 > 0 such that ||u™|| = 0 for all ue M.

Following the same notations associated with the Clarke’s subdifferential used at
the previous section, we consider for each v € ET\{0} the multivalued map m(u) =
[Sw, tw]w = E(u) n M < E and the map ¥ : ET\{0} — R given by

W(u) = ®yr(m(u)) = max &r(z),
zeE(u)
which is locally Lipschitz continuous, since we can apply the same arguments used in

Proposition 2.5. Therefore, with small changes at the proof of Proposition 2.7, we obtain

Proposition 2.10. (i) u € ST is a critical point of U if and only if m(u) consists of
critical points of ®r;. The corresponding critical values coincide.
(ii) (u,) < St is a Palais-Smale sequence of U if and only if there exist w, € m(uy,) such

that (wy,) is a Palais-Smale sequence for ®p;.

Proof of Theorem 2.2 (Ezistence) With the same arguments presented at the proof
of Theorem 2.1, we obtain a sequence (u,) < ST and w,, € m(u,) < M such that (w,)
is a bounded Palais-Smale sequence for ®;;. Now we may proceed as |62], Theorem 1.1.

Passing to a subsequence, we may assume that w, — w in E. Let y,, € R? satisfy

J lw,|* dr = max J lw, | d.

yeR™
Bi(yn) Bi(y)
Since ®;; and M are invariant under translations of the form u — u(- — k), k € Z3, we
may suppose that (y,,) is bounded in R3. If
J lw,|* dz — 0 as n — o, (2.43)
Bl(yn)
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then, by the Lion’s Lemma [69], Lemma 1.21, u,, — 0 in LP(R?), 2 < p < 3. Note that
(G1) — (G3) imply that for each € > 0 there is C. > 0 such that |g(z,u)| < e|u| + Ce|ufP™?
for all u € E. Using this relation and the Sobolev embeddings (2.5), we infer that

| st waus do = o) as > o

R3

hence

on(|lwy[) = @7 (wa) (wy) = [Jwy |* - fg(w,wn)wi dz = [Jw[|* = on(||wy )

]RS

and therefore ||w,”|| — 0, contrary to Proposition 2.9, (iv). Then (2.43) cannot holds and
w, — w # 0 in E. Using the same arguments from the proof of Theorem 2.1, we obtain
that ), (w) =0, we M and &;;(w) = ¢ = Zlgj\f{ ®7(z), that is, w is a ground state solution
for the problem (2.1). 0O

The remainder of this section is devoted to the proof of multiplicity of solutions and,
for this, we assume that the nonlinearity g = g(z,v) is odd in v. The preliminary results
that will be presented here taken from [53, 62|. For u e ST, let

oW = {pe W)l = min flall} and je(u) = inf {10 WE) + lu— =)}

Hence K = {u e S*: ¢ ¥(u) = 0}, the function p is continuous in S* and v € K if
and only if p(u) = 0. Indeed, notice that for u,v,a € ST we have that

p(u) < |07 (a)|| + [fu = al| < l|7W(a)|[ + [Jv = a] + [ju —v]], (2.44)

and taking the infimum over a on the right-hand side we obtain p(u) < u(v) + ||u — v||.
In the same way, |u(u) — p(v)| < ||u — v|| and hence, p is (Lipschitz) continuous. Since
0 < p(u) < ||0"T(u)|l, it is clear that pu(u) = 0 if ue K. If u(u) = 0, there exist a,, such
that 0~ ¥(a,) — 0 and a,, — u. Hence, u € K since u — ||0~ ¥ (u)|| is lower semicontinuity

by Proposition 2.6 (vi).
This preliminaries allows us to construct a pseudo-gradient vector field H : ST\ K —

TST for .

Proposition 2.11. There ezists a locally Lipschitz continuous vector field H : ST\K —
TS* such that ||H(u)|| <1 and inf{(p, H(u)) : p € 0V (u)} > 1u(u) for all ue SY\K. If

D, is even, the H may be chosen to be odd.

Proof:  This proof can be found in [53|, Proposition 2.10 and here we outline the
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arguments. Consider u € ST\ K, define

o 0~V (u)
to e e ()]
and
X:w— inf (p, v, — (v, wHw) — l,u(w), we ST\K. (2.45)
ped¥(w) 2

Since 0W(u) is convex and }a%f( )<p, vy = ||07W(u)|| = p(u) we conclude that
pe u

Moreover, by Proposition 2.6 (vii),

peéglgw)@, Uy — Wy W) = =T (w: vy, WHw — v,) (2.46)
and WO is upper semicontinuous in both arguments. Hence we conclude that y is lower
semicontinuous and there exists a neighbourhood U, of u such that x(w) > 0 for all
w e U,.

Take a locally finite open refinement (Uy, )ier (with corresponding points v,,) of the

open cover (U,)ues+\x and a subordinated locally Lipschitz continuous partition of unity
(Xi)ier- So, define

H(u) = Y Ni(u) vy, = vy upu),  uwe STK, (2.47)

i€l

which satisfies the required conditions. Moreover, if ® is even, then so is ¥ and we may
replace H(u) by 3(H(u) — H(—u)). "

In order to obtain infinitely many geometrically distinct solutions for the problem,
suppose, by contradiction, that this does not occur. Since to each [s,,t,Jw < M
there corresponds a unique point v € S*, the set K consists of finitely many orbits
O(u) = {u(-— k) : ue K,k € Z*}. We may choose a subset F < K such that F = —F and

each orbit has a unique representative in &, that is,

F is a finite set. (2.48)

~

Define m : M — S*, m(u) = ut/[|u™||. This map is Lipschitz continuous since, for
all u,ve M,

ut vt

[t} [l

_ _ 2 . 2
() = (o) =‘ < e =oil< (5) =l (249
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where 6 > 0 was obtained at Proposition 2.9. Moreover,
k= inf{|lv —w|| : v,w e K, v # w}>0. (2.50)

Indeed, there exist v,,w, € F and k,,l,, € Z* such that v,(- — k,) # w,(- — 1,,) for all n
and
lim ||v,(- — k) — w, (- = 1) = k.

n— o0
Define m,, = k, — [,,. Since JF is finite, after passing a subsequence, v, = v € F and
w, = w € F. Moreover, either m,, = m € Z? for almost n or |m,,| — . If m,, = m € Z*

for almost n then
0 <{loa(- = kn) —wn(- = W)l = [[v —w(- = m)|| = k, Vn.
In the second case, w(- — m,) — 0 and therefore

k= lim |jv —w(- —m,)|| < ||| =1,
n—aoco

since v e K < S*. So, the relation (2.50) holds.

The next result, related with Palais-Smale sequences for ¥, is fundamental to obtain an
important property of the corresponding pseudo-gradient flow (see Proposition 2.13
below).

Proposition 2.12. Let d > c. If (v}), (v?) < U9 are two Palais-Smale sequences for ¥,

n

then either ||[vl — v2|| = 0 as n — o or |[vl —v2|| = p(d) > 0, where p depends on d but

not on the particular choice of PS-sequences in U<,

Notice that by Proposition 2.9, to (vi) = ¥? there correspond Palais-Smale sequences
(uw!) with w/, € m(v!), j = 1,2. Thus, once (u)) have been chosen, we can follow similar
arguments of [62], Lemma 2.14 and analyse two distinct cases: ||u} — u2||z» — 0 and

[|lul —u?||» » 0 as n — oo, for p € (2,3) defined in (G3).

Let H the vector field constructed in Proposition 2.11 and consider the flow
n:9§— ST\K given by

{ Iptow) = —H(n(t,w)

n(0,w) = w

where
G={(t,w):we ST\K, T (w) <w < T*}

and (T~ (w),T*(w)) is the maximal existence time for the trajectory ¢t — n(t,w) in

negative and positive direction. Notice that, by Proposition 2.6 (viii) and the Proposition
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2.11,

d . 1
U((n(t,w)) < sup (p,—H(n(t,w)))=— _inf {p,H(n(t,w))) < —zp(w) <0,
dt pedU(n(t.w)) ped(n(t.w)) 2

that is, ¢ — W(n(t,w)) is strictly decreasing.
The following result is important for deformation type arguments.

Proposition 2.13. For each w € ST\K the limit lim n(t,w) exists and is a critical

t—>T*(w)
point of U.

The proof of this result is an adaptation from a similar result contained on [62] and in
their development the authors consider the possibilities T*(w) < o0 and T (w) = o0. In
the first case, they used the definition of 7 and the maximality property of TF (w). In the
second one, using the properties of pseudo-gradient vector field H and the function u the
authors obtain that for each ¢ > 0 there exist t. > 0 such that ||n(t.,u) — n(t,u)|| < e,

which guarantee that lir+n( )n(t, w) exists.
t—-T+ (w

In the following, for a subset P < S* and 5 > 0, we put
Us(P) = {we S* : dist(w, P) < 6}. (2.51)

Lemma 2.1. Let d > c. Then for each B > 0 there exists € > 0 such that \IJZJ:E NK =Ky

£

and

lim Y(n(t,w)) <d—e (2.52)

t—>T+(w)
for all w e W\Uz(Ky).

Proof: Since JF is finite, the first part holds for £ > 0 small enough. Suppose, without
loss of generality, that Us(K,) < ¥4 and 8 < p(d + 1) (p is from Proposition 2.12).
Define

7 = inf {u(w) : w e Us(Ka)\Us (Ka) }- (2.53)

We claim that 7 > 0. Indeed, if not, there exist (v}) < Ug(Ky)\Us(K,) such that
2

p(v}) — 0. By definition of p, there exist (w}) such that

ol —wl|| =0 and [|[0"¥(wl)||—0 asn — oo, (2.54)

1
n

Hence, (w}) is a (PS)-sequence for W. Using that ¥ is finite and ¥ is Z*—invariant,
we may assume that, up to subsequence, w; € Us(wy)\Us(wp) for some wy € Ky. Let
2

(v2) such that v2 — wy as n — oo. Since p is continuous and wy € K4, we obtain that
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p(v?) — 0. Repeating the previous argument, we obtain another (PS)-sequence for ¥,

denoted by (w?), such that ||v2 — w?|| — 0 as n — 0. So, we obtain

gglimsup||w;—wg|| < B<p(d+1), (2.55)

n—a0

which contradict the Proposition 2.12. Hence 7 is positive.
Consider ¢ < (%) such that \Iffilfi N K = K,;. By Proposition 2.13, the unique way
that (2.52) can fail is that n(t,w) — v € K4 as t —> T (w) for some w € W \Ug(Ky). In

this case, consider

t; = sup{t € [0, T"(w)) : n(t,w) ¢ Us(v)}
to = inf{t € [t;, T (w)) : n(t,w) € Us (v)}.

Then,

5 = lnerow) = it )l < [ IHG )] de < o2 = 1)

and

to to

Ytz w)) — U((ty, w)) < j sup (p, —H(n(t, w))dt < — j uln(t, w))dt < —27.
) peawntt.u) ;

Hence

pT pr
4

U(n(tsw) < Uln(ts, w)) — % <w(now) - T <dre-"T<a (200

and n(t,w) - v € K, since W is strictly decreasing along trajectories of 1. So we obtain

a contradiction and hence the proof is complete. [

Proof of Theorem 2.2 (Multiplicity) For j € N, we consider the family ¥; of all closed
and symmetric subsets A < ST with v(A) > j, where v denotes the usual Krasnoselskii

genus (see, e.g. |55, 60]), that is,
v(A) = min{m e N : there exist an odd continuous map ¢ : A - R™{0}}. (2.57)

Particularly, v(A) = oo if there does not exist a finite m and () = 0. For A and B
closed and symmetric subsets, we can stablish the following important properties for the

usual Krasnoselskii genus:
(i) (Mapping property) If there exists an odd map f € C(A, B), then v(A) < v(B);

(i) (Monotonicity property) If A < B, then v(A) < v(B);
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(iii) (Subadditivity) v(A v B) < v(A) + v(B);

(iv) (Continuity property) If A is compact and 0 ¢ A, then v(A) < oo and there is 8 > 0

such that Ug(A) is a closed and symmetric subset and v(Ug(A)) = v(A), where
Us(+) is defined in (2.51).

Consider the nondecreasing sequence of Lusternik-Schnirelman values for ¥ defined
by

cp = inf{de R:y(V") =k} (keN).
To ensure that F is not finite, let’s show that, for all k£ € N,
K., #g and ¢ < g (2.58)

Define, for k € N, d = ¢;. Using the property (iv) from the genus, there exist 5 > 0

such that v(U) = v(Kq), where U = Ug(K4) and § < § (x > 0 is defined by (2.50)).

Consider ¢ = £(f8) > 0 such that the conditions of Lemma 2.1 holds. Hence, for
w € WITE\U there exist ty € [0, 7" (w)) such that ¥(n(ty, w)) < d — & and we may define
the entrance time map e : W4\U — [0, o) by

e(w) =inf {t € [0, T (w)) : (n(t,w)) < d—e}. (2.59)
Notice that e(w) < T™(w) and e is continuous and even map. Consequently,
h: WU — 0o h(w) = nle(w), w)
is continuous and odd. Hence, using the properties of genus, we obtain that
V() = (U) < (TFAU) <y () <k - 1
Since v(U) < v(U) = vy(K,) we obtain
Y(Ka) = 7(¥9) =k +1.

It follows from the definition of d = ¢; and ¢y that, if ¢, < ¢iq, then v(Ky) = 1.
Also, if ¢, = g1, then v(Ky) > 1. On the other hand, using that x > 0, we obtain that
v(Ky) <1 (depending on K is empty or not). Therefore v(K,) = 1, that is, the relation
(2.58) holds.

This imply that there is an infinite sequence (+wy) of pairs of geometrically distinct
critical points of ¥ with WU(wy) = ¢, contrary to (2.48), and the proof of Theorem 2.2 is
finished. n
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CHAPTER 3

Solutions of nonlinear Dirac equations with possibly sign-changing

potentials and asymptotically linear nonlinearities

In this chapter, using variational methods, we deal the existence of solution for the

following problem:
—iaVu + afu + W (x)u = f(z,u) in R? (3.1)
where W(x) = M(z) + AV (x)l4, I, denotes the 4 x 4 identity matrix and A > 0 is a

parameter. Moreover, the matrix M (x) and the real function V : R?* — R satisfy:

(My) M(z) = (M;r(x))1<jresa symmetric, real, defined a.e. in R® and continuous in
R3\{0} such that

— 1
0> M(z) = T where £ < 5 (3.2)
T

(Vo) Ve L (R3R), o = 55 P € (2,3), such that V_ 0.

Notice that by the assumption (M), for each x € R3\{0}, the matrix M (z) is negative
definite, that is, their eigenvalues &;(x), j = 1,2,3,4 are negative, but not essentially

distinct. Moreover, by definition, the following relation is valid:

—k
W < 6](37) < O, VJ = 1,2,3,4
x

and

max {l¢ (@)} = o(fal) s Jo] - .

Then there exist a invertible matrix (x) and a diagonal matrix D(z), whose elements
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are the eigenvalues of M (z), such that

W(z) = Q(2)D(2)Q ' (z) + V(2)Q()Q *(2) = Q(z)(D(z) + V(2)11)Q ' (x),

that is, for each z € R3\{0}, the matrix W(z) is also diagonalizable and its eigenvalues

has the following form
aj(@) = §(@) + AV(z), j=1,234,

thus enabling the potential to present a signal change.

The Coulomb type potentials are considered, for example, at the studies developed by
Ding and Ruf [32]. In this case, the authors using the condition (M;) with x < */7?’ and
demonstrated the existence and multiplicity of solutions for a problem with asymptotically
linear nonlinearity when |u| — oo. The authors also considered the semi-classical case with
potential M (x) = V(z)8, where V : R? — R is a real function that is nonpositive at some
point. In this case, the potential is scalar and the results obtained relate the existence

and multiplicity of solutions to the parameter €2 := & in the equation
—ie?aVu + (a + V(2))Bu = Ry(z, |u))u, reR>

Zhang, Zhang and Zhao [73| used the generalized Nehari manifold and variational
methods to study a Dirac equation with potential and nonlinearity asymptotically periodic
in z. Under suitable assumptions, the authors combined generalized linking theorems [48|
and diagonal method [63], [64] to construct a bounded Cerami sequence whose weak limit
is exactly the ground-state solution. In addition, they studied properties of these solutions,
such as its exponential decay.

It is important to mention that, in this case, the potential function V' may also present
a signal change. In this sense, we also have the recent work developed by Chen and Jiang

[19], where the authors studied the following problem
—iaVu + Bu+ V(z)u = VF(u), zeR?

with a potential V' that can change the signal and satisfies suitable conditions in order that
the essential spectrum o.(T) of T = —iaV + 3+ V it be (—o0, 1] U[1, ) and the operator
has infinitely many eigenvalues in (—1, 1) which accumulate in 1. The nonlinearity satisfies
a resonant condition in essential spectrum of T'. To ensure the existence and multiplicity
of solutions it was demonstrated that the functional satisfies the Cerami condition (see

Definition B.1) and used a critical point theorem presented in [6].

In our approach, let rewrite the problem (3.1) as follows

—iaVu + afu + M(z)u = f(x,u) — \V(z)u, v e R (3.3)
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and consider the operator H = Hy + M, where Hy = —iaV + af.

Lemma 3.1. Suppose (M;) holds. Then H is self-adjoint with D(H) = H'(R3,C*) and
oe(H) = R\(—a,a) and  og(H) n (—a,a) # &, (3.4)

where o, denotes the essential spectrum and o4 denotes the discrete spectrum of H.

Proof: For the first part of this proof, see [36], Lemma 2.1. We outline the proof.
Letting Wy(z) = %, it follows from (M) that ||[Mul[7. < |[Wiu|[7.. Then, by the Kato’s
inequality,

[IWiul[7> < 467 Vul[72 < 47| Houl[7.

Recall that by Kato-Rellich theorem (see [20] IX.2, Theorem 2), if 2k < 1, H is self-
adjoint and o(H) < R\(—(1 — 2k)a, (1 — 2k)a). Using the results presented in Appendix
A, Theorem A.4 and their Remarks, we obtain that

o0c(H) = 0.(Hy) = R\(—a,a).

To characterize the eigenvalue in the spectral gap (—a, a), consider the minmax principle
developed by Morozov and Miiller, [51]|, Theorem 2, which use in their proof sesquilinear
forms and was developed precisely for the Hy operator when combined with Coulomb

type potentials. [

Remark 3.1. If M(x) = ﬁ, Kato has proved in []5], Theorem 5.10, that H = Hy + M
defined on CF(R¥\{0}) is self-adjoint if |k| < 5. On the other hand, for r < ‘/75, Thaller
[65], Theorem 4.4, proved that H is essentially self-adjoint on CF (R*\{0}) and self-adjoint
on D(Hy).

To matriz potentials, also Thaller [65], Theorem 4.2, has considered M a hermitian
matriz such that each component M;; is a function that satisfies |M;;(x)| < sa T 0 Jor
all v € RMN\{0}, 1,7 = 1,2,3,4 for some constants k < 1 and b > 0. Then, based on the
Kato-Rellich theorem, he concluded that H is essentially self-adjoint on C(R3\{0}) and
self-adjoint on D(Hy).

As some of the results for the scalar Coulomb potentials can be extended for matrix

potentials, it is expected that for a hermitian matriz that satisfies sup |x||M(x)| < k with
X

k| < \/73 we also obtain the essential self-adjointness for H. Indeed, this is not true.
Arai [3] demonstrated that for any € > 0 there exists an Hermitian symmetric potential
Q-(x) satisfying |z]|Q(z)| < L + & for which the Dirac operator H is not essentially

self-adjoint.

About the nonlinearity f(x,u), we consider the asymptotically linear case, that is, f
is a Carathéodory function and it satisfies:
(Fy) f(z,u) = o(|u]) as |u| = 0 uniformly in z € R3;
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(Fz) f(z,u) — Q(x)u = o(|u|) uniformly in z € R? as |u| — oo, where Q : R* — (0, 00) is
a continuous function and there is ¢y > inf o(H) n (0, 00) that satisfies Q(z) = qo
for all x € R3;

(F3) 7 =limsup (sup M) < a;
w0 \uw o [Uf

(Fy) F(z,t) =
that

sf(z,t)t — F(x,t) = 0 and there are constants D > 0 and R > 0 such

~

F(z,t)=D if |t|> R.

With this conditions we can state our main result.

Theorem 3.1. Suppose (M), (Vo), (F1) - (Fy) be satisfied. Then, there is A > 0 such
that, for 0 < A\ < A, the problem (3.1) has at least a nontrivial solution. If F(x,u) is

even in u, equation (3.1) has | pairs of solutions, where | will be defined in (3.13).

Remark 3.2. Notice that the condition (F3) is equivalent to
|f (z, )]

(F3) limsup ———— < a uniformly in u;
o [Y]

Our work has a significant contribution since it combines a potential, which can present
a signal change, with an asymptotically linear nonlinearity at infinity. The Coulomb
potential considered is very important because it represents an interaction with an eletric
field due to a point charge. Observing the properties obtained in the spectral structure of
operator H, the authors chose to rewrite the problem and consider the term that involves
the potential as a potential on the right. This operation allowed us establish all the
conditions for a new orthogonal decomposition on E space as a sum of two subspaces
being one of them with finite dimension, which helped the proof of boundedness of a
Cerami sequence associated with the energy functional.

However, the signal change of the potential on the right and the decomposition or-
thogonal £ = E* @ E° @ E~ does not allow the authors to obtain a condition (@)
from Bartsch and Ding critical point Theory presented in Appendix B, since it has no
estimates about the elements of the kernel of H. Therefore, it uses another more classic
result concerning the infinite linking argument, due to Benci and Rabinowitz [55]. This
result consists of adequately rewriting the functional so that each element satisfies proper
conditions and, combining with linking argument, to ensure the existence of an critical

nontrivial value.
Remark 3.3. The following are examples where the conditions (Fy) — (Fy) holds.
a. F(z,u) = 3Q(x)u - u(l — m),

b. f(z,u) = g(z,|u|)u, where g(x,s) is even in s; g(x,s) — 0 as s — 0 uniformly in

z; g(x, s) is non-decreasing for s € [0,00) and g(x,s) - Q(z) as s — 0.
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Remark 3.4. By the assumptions (Fy) — (F3) we obtain that, for any ¢ > 0, given
p € [2,3), there is constant p. > 0 such that

o) < el plt and [P 1) < (§)|t|2+(&)|t|p, for all (e,1). (3.5)
p

3.1 Variational Setting

Consider the operator H = Hy + M, where Hy = —iaV + aff and M satisfies (M;). Its
domain is contained in the space H'(R?, C*) and it is a self-adjoint operator in L?(R3, C*).

The relations (3.4) and a > 0 induces a orthogonal decomposition of L*(R3, C*) into
L=L"®L L

where H is negative definite (positive definite, respectively) in L~ (L™, respectively) and
L’ = Ker(H).

Let E = D(|H|z) be the domain of self-adjoint operator |H|2, which is a Hilbert space
equipped with the inner product

(u,v) = (|H|3u, |H|20) + (Pou, Pyodr2,

where Py : L? — L° denotes the projection of L? in the subspace L°. This inner product
induces in £ < L2(R3, C*) a norm defined by ||u|| = (u,u)2 and the following decompo-

sition
E=E"®E @®E°, where E*f=EnL* and E°=1L°,

which is orthogonal with respect to both inner products ¢, - and (-, -)72. With this prop-
erties, and using interpolation theory, Ding and Ruf [32], Lemma 3.3, proved important

relations of embedding. Here, we outline the proof.

Lemma 3.2. The embedding £ — H%(R?’,(C‘l) 15 continuous; moreover, the embedding
E — L*(R3,C*) is continuous for all s € [2,3] and E — L (R3 C*) compactly for all
rel[2,3).

Proof:  Notice that the norm ||u||g: of H'(R3 C*) is equivalent to the one given by
H|HO|UHL2, where as usual |Hy| denotes the absolute value of Hy. Hence, by complex in-
terpolation theory, the norm |Jul[ 1 of H? is equivalent to the one given by H|HO|UHL2'
Remark that by the spectral structure, 0 is at most an isolated eigenvalue of finite mul-
tiplicity of H. We will define some notations that will be useful to prove just this result.

Define the (strictly) positive selfadjoint operator acting in L?*(R3, C*)

H=|H|+ P, with D(H)=D(H).
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where Py : E — L" denotes the projection of FE onto E°. The space D(H) is a Hilbert

space with the norm
i = 11l = (|[1E ][} + 1 Poull )
and, since D(H) < H', we have
|ull ;3 < callullp forall weD(H).
Therefore, by complex interpolation,
lellg3 < calliFofted s < ol 122 = ealful

for all u e D(H), where ¢y, ¢y, c3 are constants. n

Remark 3.5. We will denote C, > 0 the constant of embedding of E in L"(R3, C*), that

18, forue F,
Collul]pr < JJul]

Remark 3.6. From the continuous embedding E — Hz (R3,C*Y), there exist ki > 0 such
that

]| < Eallv]l 3, Vv e E. (3.6)

On the other hand, since C*(R3,C*) is a dense subset of H2(R3,C*), if v € E <
H2(R3,CY) is any element, there exist a sequence (¢;) < CP(R3,C*) such that

o5 —vll ;3 = 0;(1), as j — 0.
That 1s,

16 = oll < kg =l ;3 = 0;(1), as j — oo,

The relations (3.4) guarantee that there is at least one element of the discrete spectrum
of H contained in the interval (—a,a) and, thus, it is possible to find v > 0 such that

T<y<a (3.7)

and there is at least one eigenvalue of H in [—v,~]. Let n; be the eigenvalue in [—v,7]

and f; the respective eigenfunctions associated for j = 1,2,...,n. Setting

Ld = Span{fla f27 "'7fn}7
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we have another orthogonal decomposition
L*=L"®L° (3.8)
and, consequently,
E=F'®E°, where E¢=1% and E°=FE n L,
which is a orthogonal decomposition with respect to both the inner products {-,-) and
<.7 '>L2~

It follows from the assumption (F3) and the relation (3.7), that there are vy € (7,7)
and Ry > 0 such that

So, if
D={zeR’: |z| < Ro}, (3.9)
we have that
sup % <7 in R¥\D.

Moreover, since vy < 7, there exist s > 0 such that

1 g (3.10)

v

and this constant will be used later.
As we said before, consider the following problem
—iaVu + afu+ M(z)u = f(x,u) — \V(z)u, v e R? (3.11)

whose energy functional associated is denoted by ® : ' — R and described by

B(u) = (1| = )+ 5 [VlPds ~ [ Foude, (312)

R3 R3

that lies in C*(E,R). Additionally, for u,v € F,

Q' (u)(v) = ut, vy = (u, v ) + JV(x)u v dr — Jf(:zs,u) v du,

RS
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4
where (u - v) denotes the inner product in C*, that is u-v = Z w;v;. 1t is well known

(see |25], [30]) that the critical points of this energy functional are the solutions of the
proposed problem and therefore our objective is to study this functional in order to
obtain a nontrivial critical points. This existence will be ensured by the theorems from
critical points theory for strongly indefinite problems, which was state in Appendix B.
Throughout this chapter we consider Y = E™ and X = (E°@ E™).

3.2 Linking structure

At this section we obtain the linking structure to functional ®, which will be used to

guarantee the existence of critical points.

Lemma 3.3. There is p > 0 and Ay > 0 such that k = inf ®(0B, n E*) > 0 whenever
0< <A

Proof: It follows from (3.5) that, for any £ > 0, given p € [2,3), there is constant

Pl < (5 )i+ (2 e

for all w € E. Since (Vp) holds, consider Ay = % where s < 1 was defined by (3.10).

te > 0 such that

For any u € E* we have

A

D) = L Jull* + §JV(:E)W dr — JF(m,u) da

R3 R3

IIU|Ip

1 2 Al -2 2 2
= = — —=IV-llo
Sl = GVl C 2l = 5l ~
2

f 2 P
> (2 2CQ)H 1~ gl
&

since ||V_||, < ||V]|o. Thus, choosing 0 < ¢ < (ST), we obtain the conclusion for

||u|| = p and p sufficiently small. =

By the assumption (F3), consider [ the number of elements in the (0,q0) N og(H). If

we arrange these eigenvalues, counted in multiplicity, we obtain
O<m €< < w<q (3.13)

and, if we denotes the corresponding eigenfunctions e;, 1 < j < [, we can define the

subspace

Yy = spanfeq, es, ...e;}, (3.14)
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for which it is valid that

pllwllZz < [lwl* < mllwl|f, we Yo

Define B = E°@ E~ @ F, where F is any subspace Yy < E* and A > 0 by

Azmind 379G @G (0= m)G (3.15)
Ve VIl 527 20| V]| e '

where K > 0 is the equivalence constant of norms in E°
[[w®|] < K|[w°||p2, for all w’ e E°,
which exist since dim(Ey) < co.

Lemma 3.4. Let p > 0 be the constant from Lemma 3.3 and 0 < A < A. Thus there is
Rr > 0 such that

sup®(Er) < oo and ®(u) <inf®(@B,n E™)

for all u e Er and ||u|| = Rr.

Proof: It is sufficient to show that
O(u) - —0, as ||u|| » +w0, ue Ep.

Suppose, by contradiction, that there is a sequence (u,) < Ep with ||lu,|| — 400 and
k > 0 such that

O (u,) = —k, Yn. (3.16)

Define the sequence (v,) < E by v, = u,/||u,||, which is unitary. Hence, up to a

subsequence, there is v € F such that v,, — v in E as n — oo, that is,

v, — v, v >ovt ey, and v? — Y, asn — oo,

since dim(E) < oo. Notice that v # 0. Indeed, if v = 0 we had that v — 0 and, using the

continuity from projection operator,
L= [Joall* = [loal " + [Jog [ + log [I* = [Jo7 |* + 0a(1), as n— oo,
that is,

o []* =1+ 0,(1), asn — oo, (3.17)
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On the other hand, using the Holder’s inequality, as n — oo, we obtain

Tk (I = ezl + 5 [Vl de - [ R do

Tul? ~ 2 2 TualP?
R3 R3
1 _ A _ _
< (IR = 1 1) + SIVICy (I 1 + e 112 + 11o0112)

1 _ A o —
S (12 =l 1) + SV o€y 21 2 + on(1).

N

By (3.16) and the above estimate, we obtain

2k

Tl + 0,(1) = 0,(1),

0 <sllo, 12 < (1= AIVILG 2l 1P < llofll+ =

that is,
o, || = on(1) as n — oo,

a contradiction with (3.17). Then, we conclude that v # 0.
It follows from (v;"), < F that vt € F. Moreover, if

n

. AV |5 MV, AV,
O e [ (R o [ N O e [ f@ ol
p p

we obtain that g(v) < 0. Indeed, since the relations (3.13) and (3.15) are valid, we have
that

AV, AWV, —
[(1+%)uz—%] < (u —qo) + (%)%<(Ml—%)+w<0
p

and

AV ]|, K?
(—HCUQ )—qo<@—qo<0.
p

Then,
AV AWVILY,p -y (Vs
( ||v +||2 T Tz v ||2Jr oz ||UO||2—CJO||U||%2
p p
A||V||a AWVI, e, (A
( ll 1 = (1= 2 1P+ (S0 ) 2 = ol
AV Al|V]|, K2
[(H y =) u—q]Hv*H%a— (M) -
p

A||V||g
(1 101 = qolleP]2

o |110°[17:

since v # 0, at least one of v, v~ or v° is nonzero. From this relation, we obtain that
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there is 6 > 0 such that

AlV]|» AlV|» _
(1 25 Yt = (1= 22 Yo 1 AWV 1 ~ [ @Gl <0. 313
p p By

Moreover, notice that also by (F3),

lim (F@”“)_% @”wy>dx20. (3.19)

n—0oo

Indeed, consider the set
={reR% v(x) 20}, 0<|Al <o (3.20)
and notice that, for all n € N,

F(z,u,) — %Q( |un|2

|F(z,u,) — 3Q(x)|u
< |7

[unl® | 12
|vn|” da

[[n ]| Up |
F TL nQ F y Yn _l nQ
J| U | |2 Q)| | |vn—v|2dx+2f| (z,u )| 2|§2(:c>|u | 0f? d
Unpn Unp,
f)

F n) — 9 n2 F y Un —1 n2
<2J|(%un TR BLCATES LI
Unp, Un,

Bs BsnA
F n -1 n2 F s Un n
Ly [FFem) 0@l 1w 0@
|un|? |un|?
BsnA
F(x,u,) — 2Q(x)|u,|? F(x,u,) — 2Q(x)|u,|?
f| : ( )| | | |'Un—'U|2 dx+2 Sup | ( ) 22Q( )| | | ||'U||%2
|un| A |tn|

|F (2, un) = 3Q(@)]un’|
< 20 ||v, — v||%2(35) + ZSgp < 2 0] |22

|un |?

By the definition of (v,), |u,(x)| — oo for all x € A. Then, by the compact embedding
E — L} (R®) and the assumption (Fy), follows that the first and second term on the

right-hand side of this equation, respectively, converge to zero, as n — oo, that is,

im (iﬂﬂ%**%@mf>mzo

n—a [Jun?

8
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Therefore, using (3.16) and (3.19) we have that, as n — oo,

—2k [ A||V||U] 2 A||V||a —112 AHVHJ 2
< |1+ loa[|* = |1 = o |7 + [lvnll
|| |2 Cy Cy Cy

— J Q(z)|vn|Pdz + 0,(1).

Hence, using the properties of weak convergence, the compact embedding E — L2 (R? C*)

and (3.18) we obtain that, as n — oo,

ALV, AIVIL Y, -
o<(1+ ez I = (1= S ) P + AVIIRIE: — | @)lePds <o,
p p B

8

a contradiction. n

Corollary 3.1. Under the assumptions of Lemma 3.4, for any e € Yy, |le|| = 1, there is
R, > 0 such that
sup ®(Q) =0,

where Q = {w = (w™ +w°) +te: (w™ +w’) e E-®Et > 0,||w|| < R.}.

3.3 Cerami condition

At this section our objective is to ensure that the functional satisfies the Cerami condition
(see Definition B.1). In order that, we will verify, firstly, that any (Ce).—sequence for ®

is bounded.

Lemma 3.5. Let ® be the energy functional defined in (3.12) with 0 < X\ < A and
(un) € E any (Ce).—sequence for ®, c € R. Then (u,) is bounded.

Proof: Arguing indirectly we assume that, up to a subsequence, ||u,| — o as n — .
By definition, there is M > 0 and n; € N such that, if n > nq,

O (u,) — %@'(un)(un) = %ff(:c,un)un dr — JF(:c,un) dr < M. (3.21)

RS

Define the unitary sequence (v,) € E by v, = u,/||u,||- Up to a subsequence, we can

suppose v, — v in E as n — 0. By Lemma 3.2, v,, — v in L} (R3) for all r € [2,3) and

vp(x) = v(z) a.e. in R3.

Claim 1. v e E\{0} is solution of the differential equation Hv = (Q — V')v.
In order to prove this claim, suppose by contradiction, that v = 0. Using the decom-

position (3.8) and dim(L?) < oo, we obtain that v, = v +v¢ — 0, that is,

[v¢]| = 0,(1) and v, — 0 in L] (R®* C*), re[2,3), as n — . (3.22)

loc
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Notice that, for all n € N,

() (g — ) 1

n

(<un, usy + <un,uf;>> + m J V() u, - (u€ —ul )da

RS

[l G

+

1 _
—Wff(x,un) (ug — g )dx

]' e e
- QWIP+W%H)+AJV@Mm@JFwnMx

|2

RS

1 e e
_m ff(x,un)(vn+ — v )dx
RS

- 1
— IR+ A [ V@ 0 =) = o [ )0t e
R3 R3

that is, as n — oo,

022 = on(1) — /\jV(x)vn( e+ ff o) (08 — o Vo
R3 n
+AJ|V )| 1ol 067 — ve |d1:+f|f| 7" || — ¢ [|undz
— e e~ |f x un)| e
< 0,(1) + AV C 2 ual] [Jog" = v || + | "= e =g [Joa|dz. (3.23)

|t
Notice that, as n — o0,

_ . 1
s = e ol < 11" =08 Neallonlles < Nelas (lesllos + loflzs) = eI + o),
D(‘

since (v%) is bounded and the relation (3.22) holds. Moreover,

f Mg = onlae = [ g+ [0

<kajw§—msuwum+%JW@*—ﬁwthx

< Kloy” =05 llaaoy [loallz2o) + %HUZHQ +on(1)

Yo el12
= o0n(1) + —|lvrlI,
Y

since, by (3.9), D is a compact set and ||v,||r2(py = 0,(1), by Lemma 3.2. Then, returning
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to relation (3.23), we obtain
-9 ’YO ell2
(1= MV = T2 I < 0 (1)

and, using the definition (3.15) of A and (3.10), follows that

LAV G2 =Lz —(1—g) = Loy -T0 5
f}/

Y Y
Hence,

o ll* = 0u(1), as n — oo,

4?2 = ||[va]]> = 1 # 0,(1). Therefore, v # 0. For
the second part of the Claim 1, notice that for any x € R? such that v(z) # 0 we have

which is an absurd, since |[v¢]* + ||v

|un ()| — o0, as n — oo. Moreover,

f(z,
) ||Un( JQ () dx + 0,(1)

and

for any ¢ € C*(R3,C*), as n — oo. Therefore,

_ (@) - . (L
(1) = e = o} ,m@+Agv<> )z j
=@t —vT, )+ JV(I) r)dr — JQ P(x)dx + 0,(1)

R3
ou seja, v é solugao fraca nao trivial da equagao Hv = (Q — \V)w.

Returning to the proof of Lemma, following the ideas from [32], set
={zeR’:v(z) #0}.

By the weak unique continuation property for Dirac operator one has | X| = co. There
exist # > 0 and B < X such that v(z) > 260 for z € B and

2M
— < |B| < oo,
- <|B| <
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where D > 0 is from (F}). By Egoroft’s theorem, there is B’ ¢ B with
|B'| > % and v, — v uniformly on B'. (3.24)
Set, for each n € N, the set
[(R,0) = {zeR’: |u,(x)| > R},

where R > 0 is also from (F}). Using (3.21), we have that

M > J (%f(x,un)un — F(m,un)un> dx > J F(x,u) dz > D |Iy(R, )|,
R3

I'n(R,0)
that is,

M

(R, 0)] < =,
Tu(R. )| < 5

A\

n ny.

Moreover, there is ny € N such that B’ < T',(R,00) for n > ny and, hence, if

nog = max{ny, na},

M
|B/| < |FH(R7 OO)| < 57 n =z Nno,
a contradiction with (3.24), and the proof is complete. n

The previous Lemma allows assume that if (u,) < E is a (Ce).— sequence for @, up

to subsequence, u,, — u in E and w is a critical point for .

Lemma 3.6. For any € > 0, there are subsequence (u,,) and . > 0 such that

lim |t |
J—0

Bj\By

<e Vr=r.and a=2,p.

Proof:  This proof follows the ideias from [24], Lemma 5.2. Indeed, notice that, for

each 5 € N, we have

f up | d J | dz + on(1),
B B;

as n — o0. S0, there exists 7; € N such that

| (e = fuf) s

B;

1
<-, Yn=14;+m, m=123, ..
J
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Assume, without loss of generality, that ¢;,, = 4;. Then,

| (= 1ui)

B;

1
<=, forn=i;+j (3.25)
J

On the other hand, as u € L*(R?), there is r. > 0 such that

f Ju|® dz < %, Vr = .. (3.26)
R3\B,
Therefore,
1 ¢
f |unj|adx = f (|unj|04 _ |u|a) dx + J |u|adx < =+ 5 - f (|unj|a _ |u|a>d$
J
B} B] B] B,

where B! = B;\B, and the last inequality follow directly from (3.25) and (3.26),
respectively. Thus,

lim J |, |“dz < lim (—_ v J (|un|a — |u|°‘)d:ﬁ> < g,
J—0 ]—)OO 2 J
By

by the strong convergence in LY (R?), a = 2, p. "

The next results are very similar to those appearing in [32] and we shall describe them
to complement our work. Let a smooth function 7 : [0,00) — [0, 1] such that n(s) = 1, if
s <1 and n(s) = 0, if s > 2. Define, in R?, the functions

wj(r) = 7](%) u(z) and hj(zr) = u(x) —w;(x). (3.27)

J

Lemma 3.7. Consider w; and h; the functions previously defined by (3.27) and suppose
(M), (Vo) and (Fy) — (Fy) be satisfied. Then:

(1) ||hj|]| = 0 as j — oo. Particularly, — 0, se(2,3).

(11) For allr >0

lim =0
J]—00

f (f(x,unj) — [z, up, —wj) — f(x,wj)) o(z) dx

By

uniformly in ¢ € E and ||¢|| <1
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(iii)

lim =0
J—0

f (f(x,un]) — [z, up, —w;) — f(x,wj)) () dx

R3

uniformly in ¢ € E and ||¢|| < 1.

Proof:  The conclusion (i) follows from the definition of the functions and the Lemma
3.2. To prove the item (i7), consider r > 0 fixed. Then, by the estimate (3.5) with ¢ = 1,

as j — oo,

[ 176, = il ot < [ fun, = s foldn + s [ fu, = s o] d
B,

B, By
_ 251
< (C5 M lum, = wll 2y + B, = wsllioan ) 9]
p
= 0j (1)7

since B, is a compact set. Moreover, using the continuity of the Nemytskii operator

associated to f, we have that, as j — oo,

< C||Nf(up,) (@) — Ny(u)(z)]|

jum%wwwM¢mw

B,

12 |19l

< C||Ng(u,, ) () — Ny(u)(z)]]
= 0;(1)

_p_
LP=1(B,)

and

f [f(@,w5) = flz,w)] ¢la)de| < Cl|Np(w;)(z) = Ne(w)(@)]] 2y p ) = 05(1).

Then,

lim
J—0

J (f(x,unj) — [, up, —wj) — f(x,wj)) o(z) dx

B,

for all r > 0 uniformly in ¢ € F such that ||¢|| < 1.

To demonstrate the item (zii), set € > 0. By Lemma 3.6, there exists r. > 0 such that,

Vr = r. and a = 2, p,

lim sup ||uy, |
J—©

%u(Bj\Br) <e (328)
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and

J |u|* dx < i,
2

R3\B,

since u € L*(R*, C*). Then,

| s [ s [ e de<

B;\B- Bj\Br R3\B;
that is,
. o €
limsup [|w;|[Za(p8,) < 5- (3.29)
J—00 ! 2

Using the item (i¢) and the relations (3.28), (3.29), we obtain that there are constants
01,09 > 0 satisfying

25,67 25,57
hmsup Jv(f(‘raun)_f(xvun_wj)_f(‘raw]))ﬁb dx < 1° + 2€ ,
j—>cx) J J 02 Op
RB
uniformly in ¢ € FE with ||¢|| < 1 and any £ > 0, which concludes the proof. -

Lemma 3.8. Under the same conditions of the Lemma 3.7, we have:

(a) Tim @ (up; —w;) = ¢ — P(u);

J—0
(b) lim ||® (un, — w;)|| = 0 in E*.
J—0
Proof:  (a) By definition of the energy functional ® and the assumptions (V) follows
that
D, — w5) = D(un,) — D) + 0;(1)

+ J (F(x,un].) — (2, up, —wj) — F(:E,wj))dm, as j — oo.

Rlﬂ

Through a similar proof of item (i7i) and of the Lemma 3.7, we obtain

lim (F(a:, Up;) — F (2, up, —w;) — F(z, wj)> dr =0
J—00
R3

and, then,

lim ®(u,, —w;) = c— ®(u).

J—x©
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For the item (b), notice that, for all ¢ € E,

@t — w7) () = ¥, ) (6) — @' (1;)(9)
+f (f(:z;,unj) — [, un, — w;) — f(x,wj)) o(z)dz

R3

and, by (zii) of Lemma 3.7,

lim =0
J—0

J (f(:p,unj) — f(@, un; —w;) — f(x,wj)) o(x)dx

R3

uniformly in ¢ € E and [|¢|| < 1. As (uy,) is subsequence of a Cerami sequence and u is

critical point of ¢, as j — oo,

9, =)l = s [, =) (0)] < 03(1)
c L, <

Theorem 3.2. ¢ satisfies the Cerami condition.

Proof:  Consider the decomposition £ = E¢@® E? and define, for j € N, the element

Yj = Un, —w; =y +yJ. Then, as j — o0
11l = [lun, — will < |lug, — ul] + |[u® = wi|| = 0;(1),

since ||w; — u|] = 0;(1) in E and dim E? < oo. It follows from Lemma 3.8 that
O(y;) = ¢ = @(u) + 0j(1) and [|®'(y;)[| = 0;(1), as j — 0. Then,

(1) = # ) 5" — ) = 1P+ [ Vs 5 — o= [ Flo)” - )

R3

By the same arguments presented in the demonstration of Claim 1, we obtain that
15117 < 0;(1) + AV - G ly5 | + ? 15117,
that is,
1511 = 0;(1), as j — oo
Therefore, as 7 — o0,
[ltn; = ull < lly;1] + [lhs]] = 0;(1),

that is, (un,) converges strongly to u and ®(u) = c. Hence ® satisfies the Cerami condition.
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3.4 Proof of the main result

The results obtained in the previous sections allow to conclude that the functional satisfies
the linking geometry conditions and also the Cerami condition. In order to prove the main

results of this study we will verify other important properties.

Let E = F) + Fy, where I}, = Et, [, = (E~ ® E°) and Py, P are the projections onto

F, and F;, respectively. For any v € E, u = u" + u" + u~ and, hence,
[t = [l [* = {u® =™ w) = b —u” —u’ uy + (uf w) = (Pru— Pyu,upy + [[u°]7,

which allows rewrite the energy functional ®, described in (3.12), by

A

1 1
B(u) = 3(Pru = Pavyu) + 510+ 5 [ ViluPds = | Flouyds

R3 R3

1
= §<P1u — Pyu,uy + ¢(u)

1
= §<L1P1u + Lo Pyu,uy + ¢(u), (3.30)
where L, = id, Ly = —id and

o) = %||u0||2 + %JV(m)|u|2dx _ JF(x,u)dx. (3.31)

The next auxiliary results will be used in the proof of the main result.

Lemma 3.9. Suppose (M), (Vo), (F1) - (Fy) be satisfied and consider ¢ : E — R defined
in (3.31) with 0 < X < A. Then ¢ is compact, that is, if u, — u in E

¢ (u) (w) — @' (u)(w), Yuw € E.

Proof: Let (u,) = E be a sequence such that u, — u as n — o0 and ¢ € C*(R3, C*).

Then,
[0 (un) (@) = ' (W) ()] < [Cuy = u®, )| + Al[V] e || — ullzoery [ ] o)

[ 1t = e wl i,
T

where T = supp(v)), which is a compact subset. From the compact embedding described

in Lemma 3.2 and dim Ey < oo, the terms on the right side of this equation tend to zero.

Thus,

¢ (un) (@) = ¢'(u)(¥), Yy e CZ(R?, CY). (3.32)
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Set w e E and ¢ > 0. It follows from the Remark 3.6 that there is (¢;) < C*(R? C*)
such that ||w — ;|| = 0j(1) as j — co. Thus, for fixed j € N,

(') = ') ()] < | () = ¢/ ()) ()

+] () = (@) (w = )],
Using the estimate (3.5) with £ = 1, we obtain
| (i@l + 1wl lw = osldz < [ (1l ulaP™" + ] + gl = s
R3 R3

< (lullzz + lwnllz2) o = 111

([l + el ) [ = ol 2o
< Mylw = 45|

since (u,) is a bounded sequence. Then, assuming that ||u, — ul||p» < M, for all n € N,

(') = @) (w =)

<Kﬁ—u%w—%N+AfW@mwwaw—mwx
R3

+J (|f(x,u)| + |f(x,un)|)|w — ¢jldx
R3
AVl

< ‘(ug—uo,w—¢j>‘ + c
p

Molw = 5[] + Mifw — 5]
AVl

p

= Mlw — 1],

< (M + My + M, ) [ = |

since dim E° < co. That is, we obtain a constant M = M (u,,u,V, E°, Cy) > 0 such that

() = ¢/ () (w = )

< Mljw = ].

Choose jo € N fixed such that ||w — ;|| < (ﬁ) For this jo € N, there is N € N such
that forn > N

(') = ¢/ ()) ()

<

I

DO | ™

and thus, for n = N,

< €.

() = @) ()| < | (#wn) =/ ()) (53)

] (' m) = ¢/ ) (w0 = 53)

Now, for the next lemma, remember the condition (®() stated in Appendix B:

(®y) ® e CHE,R),®: (F;Tp) — R is upper semicontinuous, that is, ®, is P—closed for
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a€R and ¢ : (Dy;Tp) — (E*; Typ#) is continuous for a € R;

Lemma 3.10. Suppose ® defined by (3.12) with 0 < A < A and (M), (Vo), (F1) - (Fy)
be satisfied. Then ® satisfies (Py).

Proof: Set (u,) < ¥4, a € R, such that (u,) P—converges toward u. We will prove

that u € ®,. By definition, v,/ — u™ in norm as n — o and, for all n € N,

1 N A
0 < @) < 5 (i = llay + w2IP) + S + 5 [ V@l do

RS

1 A||V||L" 2 A||V||L” — 0112 0|2
<§[<1+T3 [ |17 — 1—0—5 [ty + |7+ |, ||

1
< 5[(2 = $)l[un |1* = sllu, +up* + ||UZ||2]~

So
0 < lluy +udl? < |2 = )llif ]2 = 20 + |25~

Notice that, if (u?) is a bounded sequence then, the right hand side of this inequality
is bounded. So, we conclude that (u,) is bounded and, up to sequence, we may suppose
that u, — w in E. Then, it follows from the properties of weak convergence in £ and

LP—spaces and Fatou’s Lemma C.1 that

1 A
< lim ®(u,) < §(||u+||2 — ||u7||2) +3 J V(z)|u)® = liminf | F(z,u,)dz < ®(u),

n—>00 n—>00 J
that is, u € ®,,.

Suppose that there exists a subsequence of (ul), still denoted by (ul), such that
[|ul|] — oo. Hence, particularly, ||u,|| — 0. Define the unitary sequence (w,) < E by
w, = (up/||un|]), which, we may suppose without loss of generality, satisfies w, — w in

E. By the boundedness of (u), it follows that ||w|]* = 0,(1) as n — o0. Moreover,

w, —w~ and w — w" as n — oo,

n

since dim(E°) < co. Suppose that w® = 0. Then, [|w?||? = 0,(1) and

lw,[|> =1+ 0,(1) as n — oo. (3.33)
However, as n — o0,
a un) _ 1 2 2 AWVl Si 12
< < gllerll ——|| w, |7+ [|wa||” < 0n(1) = S|w, |
[lunl? " [un][? 2 G 2
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and hence,

[lw, |I* = on(1)

which is a contradiction with (3.33). Then w® # 0 and, consequently, w # 0. Using the

same arguments of Lemma 3.4, we obtain that there is 6 > 0 such that

7||2 + A||V||L"

—s||lw
&

w?l = [ Q@lufds <0

noting that w = w~ + w? since ||w,"||* = 0,(1), as n — . So,

a D (uy,)
[l T

1 AllV]|Le _ AV ||Le 1
ou(1) - (5 e >||wn||2 . (—”ZC'JL >||w2||2 -3 | Q@
p
Bs

1 AV || Lo
<on<1>—§<s||w;||2 e j@ o dw)

N

and, as n — o0,

1 B AV 70
0 < 2 sl + 2NVl ||w°||2—fc2<x>|w|2dx <0
2 C2
Bs

0

which is a contradiction. Then, (u,

) is a bounded sequence and, consequently (u,) is

bounded, as we mentioned earlier.

To guarantee the continuity of @ : (®,;Tp) — (E*;Tyx), consider again (u,) < @,
such that u,, — u according to the Jp—topology. Then, as establish above, u, — u in F,

as n — o0, and we must ensure that
' (u,) — ®'(u), in E*,
that is
O (uy,)(w) = ' (u)(w) + 0,(1), forall we E, asn — oo, (3.34)

since F/ is a Hilbert space. This relation follows from the weak convergence and Lemma
3.9. [

Proof of Theorem 3.1:  Consider 0 < A < A, where A > 0 is defined by (3.15).
It follows from Lemma 3.2 that the functional ® satisfies the Cerami condition for all

¢ € R. Rewriting the functional in the form (3.30), we guarantee the condition (I;) of
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Theorem B.8. The condition (/) follows from Lemma 3.9, hence, it is sufficient to justify
the hypothesis (I3).

Consider e € F1\{0}, ||e|| = 1, the constant p > 0 from of the Lemma 3.3, the constant
R. > 0 and set €2 from of the Corollary 3.1. Then we have

Q={we L®R%e: ||lw|]| < R} = [F,®R e| n Bg,

and

S ={zeF:|z|]| = p} = F1 nIB,.

Then S < F}, Q < [FQ @R*e] and, following the steps of [8], Example 4.3, we guarantee
that S and 0 finitely link. Moreover, it follows from Lemma 3.3 and Corollary 3.1 that

O(2) =2 p>0, Vze S and sup ®(092) =0,

obtaining the condition (I3). Therefore, it follows from the Theorem B.8, ® has a critical
value ¢ = p > 0, and the problem (3.1) has a nontrivial solution.

Suppose that F'(z,u) is even in u. Then, ® is even in u and, by Lemma 3.10, satisfies
(®g). The Lemma 3.3 and Lemma 3.4 guarantee (®3) and (®4) of Theorem B.5 with Y
defined by (3.14). Thus, the problem (3.1) has at least [ = dim(Y{) pairs of nontrivial

solutions. -
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APPENDIX A

The Dirac operator and some properties

The objective of this appendix is to show some aspects of the Dirac operator, it
historical origin, interesting properties about the self-adjointness and it spectrum. The
facts presented here can be found basically in [65] and [20]. More details and another
properties can be found also in 38, 39, 45, 49, 59, 68| and the references therein.

The transition from classical mechanic to quantum mechanic can be constructed
using the correspondence principle, that is, replacing classical quantities by some
appropriate operators. Usually, these operators are differential or multiplication operators
acting on suitable wave functions. In particular, for the energy F and the momentum p

of a free particle, the substitution

E — Zh% and p — —ihV, (A.1)

where £ is the Planck constant, is familiar from the nonrelativistic theory. Moreover, (A.1)
is formally Lorentz invariant and if applied to the classical relativistic energy-momentum

relation, we obtain

E = +/cp? + m3ct, (A.2)

where ¢ denotes the speed of light and m > 0 the electron mass, and then, the square

from Klein-Gordon equation, that is,

ihgw(t, r) = V—c2R2A + m2ct Y(t,z), (t,z) e R x R?, (A.3)

where A denotes the Laplace operator and v is a wave function.
In general, the square root of a differential operator can be defined with the help

of Fourier-transformations, but, in this case, due to the asymmetry of space and time
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derivatives Dirac found it impossible to include external electromagnetic fields in a rel-
ativistically invariant way. So he looked for another equation which can be modified in
order to describe the action of electromagnetic forces and also should describe the internal
structure of the electrons, the spin. That is, it provide a relativistic description of the
spin particles 1/2 consistent with the requirements of the special theory of relativity and,
in doing so, opened the path to application from the theory of groups to the description
of particles of arbitrary spin.
The relativistic equation of Klein-Gordon
o2
hgﬁ (t,7) = (=*R*A + m*cMY(t, x)

describes a spinless particle and, moreover, it is of second order, so was not able to do
this, since a quantum mechanical evolution equation should be of first order in the time
derivative. Thus, Dirac reconsidered the energy-momentum equation (A.2) and, by a

linearization argument, obtained

3
E = CZ api + fmc® =c a-p + fmc?, (A.4)
i=1
where o = (ay, an, a3) and  do not depend on either coordinates or time and it will be
determined by the relation (A.2). Indeed, by combining (A.2) and (A.4), one readily gets
the following

Qo + g0y = 0, if k #J
apf + Bag =0
ap=p3"=1I, j=1,2.3, (A.5)

where [, and 0 are n—dimensional unit and zero matrices. Hence, o and [ are anticom-
muting quantities which are most naturally represented by n x n matrices. They also have
to be hermitian because the Hamiltonian and the momentum operators are hermitian, and
then their eigenvalues are +1. Moreover, tr(ag) = tr(8%ay) = —tr(Bagf) = —tr(az) and
tr(5) = —tr(5), therefore

tr{ag) = tr(B) = 0.

It follows from this relation that the number of positive and negative eigenvalues has
to be the same, that is, the order n of the matrices has to be an even number. Considering
n = 2, we obtain at most three linearly independent anticommuting matrices (the fourth

one is the unit matrix which commutes with all matrices): the Pauli matrices
0 1 0 —1 1 0
o1 = , 09 = , 03 = .
lto S \ioo P \o -1
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Hence, the smallest possible dimension of a and § matrices is 4, that is, the relations

(A.5) are satisfied by choosing

I, 0 0
g=| 2 o= %) k=123, (A.6)
0 —IQ (% 0

where o}, are Pauli matrices.

Using this quantities, we obtain the formulation of the Dirac equation

0
Zha@b(t, x) = Ho(t, ) (A7)

with Hy given explicitly by the matrix-valued differential expression

(A.8)

HOZ—ihcoz-V—l—mczﬁ:( mc iz the o )7

—ihco -V —mc*l,
where o = (o, g, a3) and o = (07, 09, 03) are triplets of matrices.

Remark A.1. If m = 0 the mass term in (A.4) vanishes and only three anticommuting
quantities o; are needed. In this case, it is sufficient to use the 2 x 2 Pauli matrices defined

above. In this case, the two component equation
(1) = co - p (1)
15 called Weyl equation.
Consider the Hilbert space
L*(R*)* = L*(RY) @ L*(R?) @ L*(R*) ® L*(R?) = L*(R?,C*) = L*(R*) @ C*  (A.9)

which consists of wave functions with four components column vectors ¢ = (1, 19, 3, 94) 7,
where each component 1); is a complex valued function of the space variable . The Dirac
operator Hy can be defined in a natural way as a self-adjoint operator in this space (this
will allow the approach of cases in which the particle is subjected to the action of a

potential or of an electromagnetic field), as proved by Dautray and Lion [20]:

Theorem A.1. The unbounded operator in H = L*(R3,C*), denoted by L and defined by
> 0
L=—i E —
/) 2 Qe Fr + oy

and with domain
D(L) = {u e H; Lu (in sense of D*(R*,C*)) € H}

18 selfadjoint, and such that:
D(L) = H'(R*,C*) = H'(R?)". (A.10)
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(Notice that in this case, h=c=m =1 and § = ay.)

The suitable domain expressed in (A.10) is a natural domain for first order differential
operator and, as we will prove, besides being self-adjoint in H*(R?®)*, the operator is essen-
tially self-adjoint on the dense domain CP(R*\{0},C*) and has an absolutely continuous
spectrum. In order to obtain this conclusions, we will analyze the Dirac operator in the
Fourier spaces.

Consider p the differential operator defined by p = —iV = —i(0/dx1, 0/dxs, 0/dx3),
called momentum operator, which act component-wise on the vectors 1. Also, consider
F the Fourier transformation defined for integrable functions by

(Sjlpk)(p) = : 3/2 J 6_ip'xl/)k(x)d3xv k= 17 27 37 47 (All)

(2m)
R3
which extends to a uniquely defined unitary operator in L2(IR*)%. Hence, using the matrix-

valued differential expression of Dirac operator (A.8), we obtain that

_ mc*ly co-p
(FHoT™)(p) = h(p) = < ’ ) ) : (A.12)
co-p —mcly
For each p, we define p = |p| and obtain a Hermitian 4 x 4—matrix which has the

eigenvalues

AM(p) = Xa(p) = =A3(p) = Ma(p) = A/ 2p* + m2ct = A(p). (A.13)

Moreover, there exist a unitary transformation u(p) (see [65] to explicit form) such

that u(p)h(p)u(p) ™' = BA(p) and so, the unitary transformation
W =ud
converts the Dirac operator Hy into an operator of multiplication by the diagonal matrix
(WHoW ") (p) = BA(p) (A.14)

in the Hilbert space L?*(R? d®p)*. This informations help us to prove the following im-

portant result.

Theorem A.2 ([65], Theorem 1.1). The Dirac operator Hy is essentially self-adjoint
on the dense domain CP(R3\{0},C*) and self-adjoint on the Sobolev space D(H,) =

HY(R3,C*). Its spectrum is purely absolutely continuous and given by
o(Hy) = (—o0, —a] v [a, +0).

Proof: It follows from (A.14) that H, is unitarily equivalent to the operator SA(-) of
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multiplication by a diagonal matrix-valued function of p, and hence is self-adjoint on
D(Hy) = W ID(BA()) =T 'u "D(A() = T D(A()).

Notice that u(p)~' is a multiplication by a unitary matrix and does not change the
domain of any multiplication operator. Recall that H'(R3)? is defined as the inverse

Fourier transform of the set
1
{f € LX(R®,d’p)* : (14 p])2f e L*(R?, d°p)*}. (A.15)

On the other hand, the domain of multiplication operator D(A(+)), where A(-) is defined
by (A.13), is exactly this set (A.15). Then,

D(Hy) = FIDA()) = H (R?),

Moreover, the unitary equivalence guarantee that the spectrum of Hy is the same of
from multiplication operator SA(-), which is given by the range of the functions \;(p),
1 =1,2,3,4, that is

o(Hy) = (—o0, —mc*] u [me?, +o0).

Finally, recall that a symmetric operator 7' is said to be essentially self-adjoint if its
closure T is self-adjoint. Moreover, T is the unique self-adjoint extension of T [57]. To
demonstrate that Hy has this property in the set C°(R*\{0},C*), consider Hy the Dirac
operator defined on the set §(IR?, C*), which is the set of functions of rapid decrease. It is
known that this set is invariant by Fourier transformation, that is, FS(R3, C*) = §(R3, C?),
and then the operator Hy is unitarily equivalent to the restriction of h(p) to S(R?, C*).
Since this is an essentially self-adjoint operator (its closure is the self-adjoint multiplication
operator h(p)), the same is true for ﬁo, and its closure is Hy, the self-adjoint Dirac
operator.

Denotes the Dirac operator in C*(R3\{0},C*) by Hy. Our objective is prove that the

closure of

Ho = Ho, (A.16)

since Hyj is the self-adjoint Dirac operator. Notice that HO c ﬁo and this same relation is

true for their closure, that is, H, < Hy. Then, by definition,

D(fo)  D(Hy) and Ho(¥) = Hy(v), Y € D(Fo). (A.17)

This relation guarantee that is sufficient to prove

D(Hy) < D(Hy) (A.18)

to obtain the relation (A.16). Indeed, supposing that we have already proved the above
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relation, let v € D(Ily) = D(IIy) and we obtain, by (A.17), Ho(¢)) = () = Ho(h) =
Hy(t)). That is, H_O is an extension of Hy, which is essentially self-adjoint. By the unique-
ness of self-adjoint extension, we obtain (A.16). Therefore, it remains to demonstrate
that (A.18) holds.

For every ¢ € §(R?,C*) = D(Hy), we need to find a sequence v, € CP(R3, C*) such
that

lim ¢, =, lim Ho(4,) = Ho(v). (A.19)
Define

Un(@) = f(n'2)(1 = f(nx))y(2),

where f € C®(R3) with f(z) = 1for |z| <1, f(x) =0 for |[z| = 2 and 0 < f(x) < 1 for all
x € R3. Obviously, ¥, € CP(R3 C*) and v,, — 1. Moreover, using the assumptions on f
and suitable estimates, we obtain that Ho(¢),) — Ho(¢), which proves (A.19) and hence
(A.18). ]

Remark A.2. Similar results about the essentially self-adjointness (self-adjointness, re-
spect.) of Hy in CL(R®)* (in D(Hy), respect.) were proved by Kato [45], §5 Sect.4, and
Jorgens [{4]. The least also consider the perturbed cases Hy + V' for suitable potentials.

As mentioned by Thaller [65], considering the Hilbert WL?(R3)?, where the Dirac
operator is diagonal, the upper two components of wave functions belong to positive
energies, while the lower components to negative energies. Hence, we define the subspace

of positive energies H™ < L?(R3)* as the subspace spanned by vectors of the type
YT =W+ WY, v e (RS, &),

Similarly, we define the vectors
YT =W - Wy, e LR, ),

that span the negative energy subspace H ™. Since these subspaces are orthogonal, we can
write L2 = H = H" @ H~ as an orthogonal direct sum and each 1) can be written as a
sum of ¢* and ¢~. Moreover, considering ¢ = (1 + )W), we have

W™, Hop™) = (WoH, WIA()6™) = (07, A()oT) > 0,
that is, Hy acts as a positive operator on H*1. Similarly, Hy acts as a negative operator

on H™.

We can also define the self-adjoint operator |Hy| as

|Ho| = A/ HE = V—c2A + m2c* 1,
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where the square root can be defined as a inverse Fourier transformation of the multipli-
cation operator v/c2A + m?2ct in L*(R?, d*p). Obviously,

Hyp* = +|Holp™.

The essential spectrum is very stable under perturbations. We present here the famous
theorem of H. Weyl that was proved, e.g., in [57], Theorem XIII.14:

Theorem A.3 ([65], Theorem 4.5.). Let Hy and Hy be self-adjoint operators such that
for one (and hence all) z € C\R the operator

(Hl - Z)_l - (HO - Z)_l

15 compact. Then
O'e(Hl) = O'E(Ho).

Theorem A.4 ([65], Theorem 4.1.). Let Hy = Ho+V be self-adjoint, and V' be Hy—bounded
with

Jlim [|V(Hy = Z)~'x(|z| = R)|| = 0. (A.20)
Then
o.(Hy) = (—oo, —mc?*] u [mc?, ). (A.21)

Remark A.3. The equation (A.20) is a very weak decay condition on the potential. If V

18 a multiplication operator, it is equivalent to
T ([V(le| > R)(Hy — )7 = 0. (A.22)
—00

It is possible to prove that the relations (A.20) and (A.22) are equivalent. For this,
just consider a suitable differentiable function fg : [0,00) — [0, 1] such that fz(r) = 0 for
r < g,fR(r) =1 for r > R and sup, fR(r) < %. Then, x(|z| = R) = fr(lz))x(|z] = R)

and
Vx(lz| = R)(Ho — 2) Y| < ||V(Ho — 2)"ea- (Vfr)(Ho — 2) | + ||V fr(Ho — 2) ]|

Hence, just make sure that both terms vanishing when R — oo.

Remark A.4. Any potential matriz, with V(x) — 0, as |x| — oo satisfies

IVx (x| = R)I| = sup [V(2)] = 0, as R — o, (A.23)

|z|>R
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and hence (A.22). But the conditions (A.20) and (A.22) are more general than (A.23)

because they admit singularities of the potential even at large distances.

The condition (A.20) is not optimal, mainly because there are potentials which tend
to infinity, as |z| — oo, and still (A.21) holds. In particular, this occurs for unisotropic

potentials as well as for magnetic fields in three dimensions.
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APPENDIX B

Critical point theory

In order to find critical points for the energy functional associated with the problems
we will state some results of critical points theory for strongly indefinite functionals, which
was developed by Bartsch and Ding and presented in [8], |9] and [25]. Another similar
results about generalized linking and critical points can be found also in 7] and [48].

Consider £ = X @Y where X and Y Banach spaces and X is separable and reflexive.
Let || - || the norm in X, Y and E, and Px, Py denote the projections onto X and Y,
respectively. Let S < X* a dense subset and D = {d, : s € S} the family of semi-metrics

associated in X = X**. If P is a family of semi-norms in F defined by
ps: E =R, px+y)=Is(x)|+||y]], ses. (B.1)

hence, P induces a product topology in E described by D—topology in X and norm
topology in Y. This topology associated will be denoted by Ts.
Let ® : E — R a C" functional. Suppose that ® satisfies

(®y) ® e CY(E,R),® : (E;Tp) — R is upper semicontinuous, that is, ®, is P—closed for
a€R and ¢ : ($,;Tp) — (E*; Typ#) is continuous for a € R;

Remark B.1. These conditions can be weakened. Depending on the situation, it is re-
quired only for values in a certain interval and we can replace ®, by the subset like ®°.

Similarly, ®, can be P—closed for certain values of a only.
This assumption can be guaranteed by the following result.

Theorem B.1 ([8], Proposition 4.1; [25], Theorem 4.1 ). Consider a functional ® €
CY(E,R) of the form

2(w) = 5 (Il ~ lel?) ~ W(w) for u=r+yeE=XDY (B.2)
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such that
(i) ¥ e CY(E,R) is bounded from below;

(i) W : (F;T,) — R is sequentially lower semicontinuous, that is, u, — u in E implies
U(u) < liminf ¥(u,);

(15i) V' : (E;T,) — (E* Tyux) is sequentially continuous;

(iv)v: E —> R, vu = ||ul*is C' and V' : (E;T,) — (E* T,x) is sequentially

continuous.

Then ® satisfies (o).

Consider also a additional assumption:
(1) For any a > 0 there is 6 > 0 such that ||u|| < 0||Pyul|, for all u € ®,.

Under these hypothesis we present the following result which will be used to establish the

existence of a (Ce).—sequence for the energy functional ®. Recall that:

Definition B.1. The sequence (v,) < E is called a Cerami sequence, or a (Ce).—sequence

force R, if
®(v,) — ¢ and (1+ ||Un||)(1),(vn) — 0 E* as n — 0.

We say that ® satisfies Cerami’s condition at level ¢, or (Ce).—condition, if any (Ce).—

sequence for ® has a convergent subsequence.

Theorem B.2 ([9], Theorem 5.1; [25], Theorem 4.5). Let ® satisfies (o) and (P1) and
suppose there is R > r > 0 and ug € Y, ||ug|| = 1 such that for S = {z € Y;||z|| = r},
Q ={tug + ve E;ve X,||v|]| < R,0 <t < R} we have

k =inf &(S) > 0 and sup (0Q) < k. (B.3)

Then ® has a (Ce).—sequence with k < ¢ < sup ¢(Q).

Is important mention that, in their approach, the authors introduced a new linking in
the infinite-dimensional setting and used this to characterize the critical value obtained
in their theorems, like above. To do this, they consider the following notations: given a
locally convex topological vector space Z, denote L(A) = spT(A) for the smallest closed
linear subspace containing A, dA the boundary of A in L(A) and Ap = AnF (Fc Z

linear subspace).

Definition B.2. Given Q,S < Z with S n Q) = &, we say that Q finitely links with S
if for any finite-dimensional linear subspace F < Z with F' n S # & and any continuous
deformation h : I x Qp — F + L(S) with h(0,u) = u and h(I x 0Qr) NS = & there
holds h(t,Qr) NS # & for allt e I =10,1].
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Using this definition and Brouwer degree arguments, it is possible to show that @), S <
E in Theorem B.2 are such that () finitely links with S. Hence, the critical value found

in that theorem can be characterized by

c= hei%g,s ilég O(h(1,u)), (B.4)
where
Fos={heC(IxQ,E):hsatisties (h1) — (hs)} (B.5)
with

(h1) h: 1 x(Q,Tp) — (E,Tp) is continuous;
(hs) h(0,u) = u for all u € Q;

(hs) ®(h(t,u)) < B(u) for all t e I, ue Q;
(ha) h(I x0Q) S = &;

(hs) each (t,u) € I x @ has a P—open neighbourhood W such that the set {v — h(s,v) :

(s,v) e W n (I x @)} is contained in a finite dimensional subspace of FE.

The arguments used to obtain this characterization are presented in the proof of Lemma
1.9 in this work and in [25], Theorem 4.2. To ensure the existence of Cerami sequence, a

suitable deformation, obtained in the next result, was used.

Theorem B.3 (|25], Theorem 3.3). Consider a,be R with a <b so that ®, is P—closed

and @ : (% Tp) — (E*, T ) is continuous. Suppose moreover that
a = inf{(L + [[ul)||®'(w)]| : v e Dg} >0 (B.6)
and
there exists v >0 with |ju|| <¥||Pyul||, Yue ®°. (B.7)

Then there exists a deformation 1 : [0,1] x ®° — ®° with the properties (i) — (vii):
(i) n is continuous with either the P—topology or the norm topology on ®°;

(ii) for each t the map u — n(t,u) is a homeomorphism of ®° onto n(t, ®*) with the
P—topology or with the norm topology;

(iii) n(0,u) = u for all u € ®°;
(1) n(t,®°) < O for all c € |a,b] and all t € [0, 1];
(v) n(1,9%) < @
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(vi) each point u € ®° has a P—neighbourhood U in ®° so that the set {v —n(t,v) : v e

U,0 <t < 1} is contained in a finite-dimensional subspace of E;
(vii) if a finite group G acts isometrically on E and if ® is G—invariant, then n is

equivartant in u.

We turn our attention now to the symmetric functional ones, in search of condi-
tions that guarantee the existence of multiple solutions for the considered problems. Let
G = {62’””/1’ :0 <k <p}=7Z/p, paprime number, a symmetry group that acts linearly
and isometrically on X and Y, hence on £ = X x Y and has no fixed points in F\{0}.
Suppose, additionally to (®g) and (P;), the following conditions:

(®y) @ is G—invariant;
(®3) there exist » > 0 with k = inf &(S,Y) > &(0) = 0 where S,Y ={yeY :||y|| =r}

(®4) there exist a finite-dimensional G—invariant subspace Yy € Y and R > r such that
we have for Ey = X x Y; and By = {u€ Ej : ||u]| < R} :

b=sup®(Ey) <oo and sup®(Ey\By) < inf ®(B,Y).

With this conditions Bartsch and Ding established the following result.

Theorem B.4 (|8], Theorem 4.6). If ® satisfies (Pg), (P2)—(Py4) and the (Ce).—condition
for c € [k, b], then it has at least n = dim(Yy) G—orbits of critical points.

A special case of this theorem is presented by the same authors in 9], Theorem 5.2,

considering the antipodal action:

Theorem B.5. If ® is even, satisfies (Po), (P3), (Ps4) and the (Ce).—condition for all

c € [k, b], then it has at least n = dim(Yy) pairs of critical points.

In order to obtain infinitely many critical points we need replace the hypothesis ()
by

(®5) there exists an increasing sequence of finite-dimensional G—invariant subspaces Y,,
Y and there exist R,, > r such that we have for B, = {ue X x Y, : ||[u|| < R.} :

sup®(X xV,) <o and sup®(X x Y,\B,) < =inf®({ueY :|ul| <r}),

where 7 > 0 is from (®3).

Also, suppose the additionally condition, which is a replacement of the Palais-Smale
condition that is established in [25].

(®g) One of the following holds:
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(¢) for any interval I < (0,00) there is a (Ce);—attractor A with P*A bounded
and inf{||Py(u —v)|| : u,v € A, Py(u —v) # 0} > 0;

(17)  satisfies the (Ce).—condition for ¢ > 0.

These hypotheses are sufficient to state the following result, whose proof are based on
[8], Theorem 4.8:

Theorem B.6 ([|9], Theorem 5.3). Assume ® is even with ®(0) = 0 and let (), (P1),
(P3), (P5) and (Pg) be satisfied. Then & possesses an unbounded sequence of positive

critical values.
Also, we can mention a particular version of this multiplicity result.

Theorem B.7 (|72], Theorem 4.3). Assume that ® is even with ®(0) = 0 and ® satisfies
(D), (P1), (P3), (P5). If P satisfies the (Ce).—condition for ¢ > 0 be satisfied, hence ®

has an unbounded sequence of critical values.

Still related to critical point theory we mention the following result due to Benci and

Rabinowitz.

Theorem B.8 ([29], Theorem 2.5; [55], Theorem 5.29). Let E be a real Hilbert space with
E = F + Fy and Fy, = Fi-. Suppose I € C1(E,R), satisfies the Cerami condition (Ce).
for any ce R and

(1) I(u) = $(Lu,u) + ¢(u), where Lu = LiPiu+ LoPyu and L; : F; — F; is bounded
and self-adjoint, i = 1,2.

(Iy) ¢' is compact, and

(I3) there exist a subspace E c E and sets S « Fy, Q  E and constants p > w such
that

(i) ®(2) = p, for all z € S;
(17) Q is bounded and ®(z) < w for all z €
(17i) S and OS2 link.

Then ® possesses a critical value ¢ = p, with

¢ = inf sup ®(h(1,u)), (B.8)
hel’ eQ
where
I'={heC([0,1] x E,E): h satisfies (I'1)— (I's)}
here
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(I'y) h(0,u) = u,
(Ty) h(t,u) =u for ue 09,

(T'3) h(t,u) = @y + K(t,u), where § € C([0,1] x E,R) and K is compact.
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APPENDIX C

Abstract results and some mathematical notations

In this chapter, we present definitions and results that are important and which will

be used in the development of this work. We start with some definitions.

Definition C.1. A linear operator T : X — Y between normed spaces X and Y is called
a compact linear operator if for every bounded sequence (x,) in X, the sequence (T (xy,)

has a convergent subsequence.

Definition C.2. The sequence (v,) < E is called a Palais-Smale sequence, or a (PS).—

sequence for c € R, if
d(v,) = ¢ and P (v,) — 0 in E* as n — oo.

We say that ® satisfies Palais-Smale condition at level ¢, or (PS).—condition, if any

(PS).— sequence for ® has a convergent subsequence.

Definition C.3. The sequence (v,) < E is called a Cerami sequence, or a (Ce).—sequence
force R, if

D(v,) = ¢ and (1+|jv|)® (v,) — 0 in E* as n — 0.

We say that ® satisfies Cerami’s condition at level ¢, or (Ce).—condition, if any (Ce).—

sequence for ® has a convergent subsequence.

Sometimes, in the Chapter 1, for convenience, we consider a real function L(x) as a
symmetric matrix L(x)Iy, where I; denotes the 4 x 4 identity matrix. Moreover, for two
given symmetric 4 x4 real matrix functions L; (z) and Lo(x), we rewrite that Ly (x) < Lo(x)
if and only if

max (Ly(x) — Lo(x))€é - € <0.
56@4,\§|=1( 1(7) = La(2))€ - €
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Now we present some abstract results. Firstly, we mention the known results about

convergence whose proof can be found in [58|, Lemma 1.28 and Theorem 1.34, respectively.

Lemma C.1 (Fatou’s Lemma). If f, : X — [0,00] is mensurable, for each integer n,
then

f (lim inf fn) dr < lim infffn dz.
n—o0 n—0
X X

Theorem C.1 (Lebesgue’s Dominated Convergence Theorem). Suppose {f,} is a se-
quence of complex measurable functions on X such that f(z) = 7}1_{210 fnlx) exists for every
x € X. If there is a function g € LY(X) such that |f,(z)| < g(x) (n = 1,2,3...;2 € X),
then f e LY(X),

lim J|fn—f|d:1:=0,
n—>o0
X

and

lim | f.dx = dex
n—aco

X X
The following result about the Nemytskii operators was demonstrated by Figueiredo
[21], Theorem 2.3.

Theorem C.2 (Nemytskii operator continuity). Suppose that there is a constant ¢ > 0,
a function b(x) € L1(Q), 1 < ¢ < o0 and r > 0 such that

|f(z,s)| <c|s|"+b(x), VreQ, VseR. (C.1)
Then

(a) N¢ maps LY into L9, where N¢(v)(y) = f(y,v(y));

(b) Ny is continuous and bounded (that is, it maps bounded sets into bounded sets).

We also state a result about the weak convergence in L® that was proved by Kavian
[46], Lemma 4.8.

Lemma C.2. Let Q < RY an open domain and (g,) a bounded sequence in L*(SY), for
some 1 < a < o, such that g, — g q.t.p in Q. Then g € L*(Q) and g, — g weakly in
L*(Q).

We also use some inequalities that will be mention before.

Theorem C.3 (|66], Lemma A.1).
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(i) If p € |2,00) then:
o2z = 12| < 81z = l(lel + 1)) Wy zeRY and peR (C)

(ii) If pe (1,2] then:
‘|z|p_2,z - |y|p_2y‘ < Blz—ylPt Vy,zeRY and SeR. (C.3)

Remark C.1. At the proof of these estimates its is possible conclude that B > 0 as

y,z # 0 and, moreover, if r € (0, 0)

‘|a|’“ —b"| < |a =B Va,beRY. (C.4)

By identifying the space of the complex numbers C with the real vector space of dimen-

ston 2 we obtain that such conditions remain valid for complex vectors.

The following are two well-known results of Functional Analysis, which can be found

in Brezis, [15], Theorem 2.2 and Theorem 2.9, respectively.

Theorem C.4 (Banach-Steinhaus, uniform boundedness principle). Let E and F' be two
Banach spaces and let (T;), i € I, be a family (not necessarily countable) of continuous

linear operators from E into F. Assume that

sup ||Tiz|| <o VxeE.
i€l

Then

sup || T3] |¢(e,py < 0.
iel

In other words, there exists a constant ¢ such that
|| Tix|| < c||lz|]| VYxe E,Viel.

Here, the norm on the space L(E, F') of continuous (=bounded) linear operators from
E into F'is defined as

ITllee.ry = sup  [|Tx].

zelE||z||<1

Theorem C.5 (Closed Graph Theorem). Let E and F be two Banach spaces. Let T be
a linear operator from E into F. Assume that the graph of T, G(T), is closed in E x F.

Then T is continuous.

We also mention the following result that is useful to stablish relations between inner

product of some particular operators.

101



Proposition C.1 (|37|, Proposition III 8.11). Let T be selfadjoint and nonnegative and
let S be symmetric with D(T) < D(S) and ||Sf|| <||Tf]|| for all f € D(T). Then

(Sf.f)<(Tf,[)

for all f e D(T).
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