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Resumo

Nesta tese, estudamos equações que envolvem o operador de Dirac na forma

�iα �∇u� aβu�Mpxqu � Fupx, uq, em R3,

onde α � pα1, α2, α3q, sendo αj e β matrizes complexas 4�4, j � 1, 2, 3, e a ¡ 0. Utilizando

métodos variacionais e elementos da teoria de pontos críticos para problemas fortemente

inde�nidos obtemos resultados de existência e multiplicidade de soluções u : R3 Ñ C4 sob

diferentes conjuntos de hipóteses sobre o potencialM e a não-linearidade F. Inicialmente,

consideramos um problema com potencial não periódico e uma não-linearidade do tipo

côncavo-convexo, não periódica, contendo funções peso que podem apresentar mudança

de sinal. Em seguida, utilizando a variedade de Nehari generalizada, estudamos problemas

em que a não-linearidade satisfaz condições de monotonicidade fraca e pode se relacionar

com a função potencial. Dentre tais problemas, consideramos um caso periódico e, devido

as hipóteses, para obter resultados de multiplicidade utilizamos o subdiferencial de Clarke

e o gênero de Krasnoselskii. Finalmente, abordamos um problema com não-linearidade

assintoticamente linear no in�nito e potencial matricial. Neste caso, o potencial é descrito

como uma soma de um potencial matricial não positivo adequado e uma matriz diagonal

cujos elementos são funções em algum espaço Lσ, σ ¡ 1, as quais podem mudar de sinal.
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Abstract

In this thesis, we study equations that involving the Dirac operator and which have

the form

�iα �∇u� aβu�Mpxqu � Fupx, uq, in R3,

where α � pα1, α2, α3q, with αj and β complex matrices 4�4, j � 1, 2, 3, and a ¡ 0. Using

variational methods and elements from critical point theory for strongly

inde�nite problems we obtain existence and multiplicity results of solutions u : R3 Ñ C4

under di�erent sets of hypothesis about the potential M and the nonlinearity F. Firstly,

we consider a problem with nonperiodic potential and concave-convex type nonlinearity,

nonperiodic, which contain weight functions that can present signal change. Next, using

the generalized Nehari manifold, we study problems in which nonlinearity satis�es weak

monotonicity conditions and may relate to the potential function. Among such problems,

we consider a periodic case and, due to the assumptions, in order to obtain the multiplicity

results we use the Clarke's subdi�erential and Krasnoselskii genus. Finally, we approach

a problem with nonlinearity asymptotically linear at in�nity and matrix potential. In this

case, the potential is described by a sum of a non-positive suitable matrix potential and a

diagonal matrix whose elements are function in some Lσ space, σ ¡ 1, which can change

signal.
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Mathematical notations

αj, j � 1, 2, 3 complex matrices 4� 4 de�ned by (2)

α � pα1, α2, α3q complex matrix vector

β real matrix 4� 4 de�ned by (2)

I4 identity matrix 4� 4

σpT q spectrum of an operator T

σepT q essential spectrum of an operator T

σcpT q continuous spectrum of an operator T

LspUq � tu : U Ñ C : u is Lebesgue mensurable, ||u||Ls   8u p1 ¤ s   8q
||u||Ls �

� ³
U

|u|s dx
	 1
s p1 ¤ s   8q norm in the Lebesgue space LspUq

L8pUq � tu : U Ñ C : u is Lebesgue mensurable, ||u||8   8u
||u||8 .� ess sup xPU |upxq| norm in the Lebesgue space L8pUq
||u||H1 norm on H1pR3,C4q space
||u||

H
1
2

norm on H
1
2 pR3,C4q space

L2pR3,C4q � L2pR3q ` L2pR3q ` L2pR3q ` L2pR3q described by (A.9)

u � v �
4°
i�1

uivi for u, v P C4 inner product in C4

xf, gyL2 � ³
R3

fpxq � gpxqdx inner product in L2pR3,C4q
X ãÑ Y continuous or compact embeddings

xn á x in U weak convergence in the space U

un
||�||ÝÑ u, || � || norm in U ||un � u|| Ñ 0 as nÑ 8

H0 � �iα∇� aβ free Dirac operator

H0 �W, W suitable potential Dirac operator in a external �eld

A � H0 �M M satis�es pM0q de�ned by (1.2)

H � H0 �M M satis�es pM1q de�ned by (3.2)

|A|, |H0|, |H| absolute value of A,H0, H operators

DpAq,DpH0q,DpHq domain of an operator

p�, �qA inner product de�ned by (1.5)

vi



CONTENTS vii

|| � ||A norm induced by the inner product (1.5)

x�, �y inner product de�ned by (2.4)
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E � Dp|H0| 12 q � E� ` E� Hilbert space in Chapter 2
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pCeqc condition, c P R Cerami condition - De�nition B.1

X� dual space of X

TP�topology topology product induced by P�family of semi-norms (B.1)

Tw��topology weak topology on dual space

P�open set open set in TP�topology
Φa

.� tu P E : Φpuq ¥ au, a P R
Φb .� tu P E : Φpuq ¤ bu, b P R
Φb
a
.� Φa X Φb, a, b P R

ΓQ,S set de�ned by (B.5)

M generalized Nehari manifold de�ned by (2.8)pEpuq .� E� ` R�u, u P EzE� de�ned by (2.9)

mpuq .� pEpuq XM de�ned by (2.30)pΨopu; vq generalized directional derivative (2.32)

BpΨpuq generalized gradient de�ned by (2.33)

tn Ó t0 tn is going to t0 from above (2.32)

UδpP q .� tw P S� : distpw,P q   δu de�ned for P � E� by (2.51)

γpAq Krasnoselskii genus de�ned by (2.57)

L1pxq ¤ L2pxq, L1, L2 matrices max
ξPC4,|ξ|�1

�
L1pxq � L2pxq

�
ξ � ξ ¤ 0



Introduction

The Dirac equation has its origin in quantum mechanics and was proposed by the

British theoretical physicist Paul Dirac in 1928 in an attempt to establish an equation

that describes the evolution of a free particle relativistic. In its original form, this equation

is given by

i~
Bψ
Bt � Dcψ, (1)

where Dc is described by

Dc � �ic~α �∇�mc2β � �ic~
3̧

k�1

αkBk �mc2β.

In this expression Bk � B
Bxk , c denotes the speed of light, m ¡ 0 the electron mass and

~ denotes the Planck's constant. Moreover, α � pα1, α2, α3q, where αk, k � 1, 2, 3 and β

are 4� 4 complex matrices whose standard form (in 2� 2 blocks) is

β �
�
I2 0

0 �I2

�
, αk �

�
0 σk

σk 0

�
, k � 1, 2, 3 (2)

with

σ1 �
�

0 1

1 0

�
, σ2 �

�
0 �i
i 0

�
, σ3 �

�
1 0

0 �1

�
.

These matrices satisfy the following anticommutation relations αkαl � αlαk � 2δklI4,

αkβ � βαk � 0 and β2 � I4. Due to these relations it is possible check that Dc is a

symmetric operator such that D2
c � �c2~2∆�m2c4.

In general form, the Dirac equations are given by

i~
Bψ
Bt � �ic~

3̧

k�1

αkBkψ �mc2βψ � V pxqψ �Gψpx, ψq (3)
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whose solution ψ : R�R3 Ñ C4, ψpt, �q P L2pR3,C4q is a wave function, which represents

the state of a relativistic electron. The external �elds are given by the real matrix potential

V pxq and the nonlinearity G : R3 � C4 Ñ R represents a self-coupling nonlinearity.

Assuming that Gpx, eiθψq � Gpx, ψq for all θ P r0, 2πs, by the Ansatz

ψpt, xq � e
iθt
~ upxq,

one can check that ψpx, tq satis�es (3) if and only if u : R3 Ñ C4 satis�es the problem

�i
3̧

k�1

αkBku� aβu�Mpxqu � Fupx, uq, (4)

where a � mc{~,Mpxq � V pxq{c~ � θI4{~ and Fupx, uq � Gupx, uq{c~. We de�ne

H0
.� �iα∇� aβ the Dirac operator that will be used throughout this study. The Dirac

equations are used in physics to describe the behavior of particles having spin 1{2 and also

in atomic, nuclear and gravitational physics [41, 65]. More details about the de�nition

of Dirac operator in the quantum mechanics, it domain and some of their properties are

presented in Appendix A.

Many researches interested in the existence and multiplicity of solutions to problems

involving the Dirac operator and di�erent sets of hypotheses in nonlinearity have been

developed. However, one of the main di�culties of the study of these equations is due to

the spectral structure of the operator that makes the energy functional strongly inde�nite,

that is, its domain has two subspaces of in�nite dimension in which the energy has opposite

sign in each of them (see Appendix A). One possible alternative to overcome this fact

is consider the external interactions in the problem, that is, the operator A .� H0 �W,

where W represents a suitable potential that can be vector or scalar, or tensor forces,

and describe, for example, the interferences of electromagnetic �elds, quark particles, and

particle behaviour with anomalous electrical and magnetic moments [65]. By introducing

a term that accurately describes this energy interaction one obtains interesting spectral

properties for the new operator and enables di�erent approaches to the problem.

In general, it is possible to establish three main classes of problems in relation to the

potential behavior of V and nonlinearity F , as the authors observed in [36] and [73].

(I) autonomous systems: in these cases the potential V is constant and F does not

depend on the variable x. As examples of this class we can cite [4, 5, 16, 50], in which the

authors considered the so-called Soler model, that is

F puq � 1

2
Hpu�uq, H P C2pR, Rq, Hp0q � 0, where u�u .� βu � u,

with H satisfying suitable conditions. The authors assume V � ω with ω P p�a, 0q and

2



used the particular Ansatz for the solutions in spherical coordinates:

ϕpxq �

������
vprq

�
1

0

�

iuprq
�

cospθq
sinpθqeiφ

�
�����
, (5)

where r � |x| and pθ, φq are angular parameters. Hence, the equation (4) was reduced to

a EDO's system #
u1 � 2u

r
� vrhpv2 � u2q � pa� ωqs

v1 � urhpv2 � u2q � pa� ωqs (6)

where hpsq � H 1psq and the existence of solution was obtained by shooting method, which

yields an in�nity of localized solutions for (6). In [40], the authors also consider the Soler

model and required the main assumption

H 1psq � s ¥ θHpsq for all s P R and some θ ¡ 1.

Therefore, considering the space Es � H
1
2 pR3,C4q of functions of the form (5) and

using variational methods, they obtain in�nitely many solutions exploiting the inherent

symmetry F puq � F p�uq.

(II) periodic systems: this case occurs when V and F depend periodically on the

variable x. Bartsch and Ding in [8] considered a problem whose nonlinearity, in addition

to the periodicity in x, can be asymptotically quadratic or superquadratic when |u| Ñ 8.

In both situations, the results of existence and multiplicity of solutions were obtained

when F is even in u. In this same way, another study that considered, in addition to

the periodicity, the case of asymptotically quadratic nonlinearity in 0 and 8 was recently

developed by Ding and Liu in [28]. In it, the authors obtained existence and multiplicity

of periodic solutions to the problem.

Yang and Ding in [71] also approached a periodic problem without the Ambrosetti-

Rabinowitz conditions. In this case, the authors used a weak variant of the Linking

Theorem and Lion's concentration-compactness principle [69] to guarantee the results of

solution existence. It is interesting to note that, during the development of the work, the

authors proved a lemma that, combined with the Nehari manifold arguments, is widely

used to obtain stationary waves for Schrödinger equations. Despite this use, similar results

were obtained for the Dirac equation without a monotone Nehari type condition.

The problem

�iα∇u� aβu� ωu � Fupx, uq, in R3, (7)

with w P p�a, aq and F P C1pR3 � C4, r0,8qq 1�periodic in xk, k � 1, 2, 3, and super-

3



linear growth was approached by Zhang, Tang and Zhang in [76]. Considering additional

conditions on F and using a generalized variant Fountain Theorem, developed by Batkam

and Colin [10], the authors ensure the existence of in�nitely many large energy solutions.

Similarly, Ding and Liu, in [31], considered Fupx, uq � Gupx, uq � Pupx, uq with ω � V0

constant, G P C1pR3�C4,Rq and P P C1pR3�C4,Rq, where both were 1�periodic in xk,
k � 1, 2, 3, and it satisfy another additional relations. In this case, the problem possesses

a sequence of periodic solutions with the corresponding energy sequence large enough.

Recently, Benhassine in [13] studied the following equation

�iα∇u� pa� V pxqqβu� ωu � Fupx, uq, in R3, (8)

where w P p�a, aq, V P C1pR3, r0,8qq and F P C1pR3 �C4, r0,8qq were both 1�periodic
in xk, k � 1, 2, 3. His work dealt with the superquadratic and asymptotically quadratic

cases with weaker conditions than those considered in [9, 25, 78]. Using the theory of

critical points developed by Bartsch and Ding, he obtained in�nitely many solutions

geometrically distinct when F is even in u.

We can also cite as examples of this class of problems, the studies developed in [27],

which is more detailed in Chapter 1, [29, 75], which use the generalized Nehari manifold

method, and [78].

(III) nonperiodic systems: this class includes the cases in which V and F do not depend

periodically on the variable x, and, apparently, is the class of problems that involves

most of the existing works. To exemplify some of these elements, we can cite, initially,

the studies developed by Ding and Wei [36] which considered a Dirac equation with

superquadratic nonlinearity satisfying the Ambrosetti-Rabinowitz condition. Assuming,

further, that there was the limit when |x| Ñ 8 for both potential and nonlinearity,

the authors guaranteed the existence of least energy solutions and also studied their

exponential decay.

A important subclass of problems is the one that considers the following equations

�i~α∇u� aβu� V pxqu � Gupx, uq, in R3. (9)

For small ~, the solitary waves are referred as semi-classical states. The existence

of solutions u~, ~ small, possesses important physical interest because it describe the

transition from quantum to classical mechanics. Indeed, one of the basic principles of

quantum mechanics is the correspondence principle, according to which, when ~ Ñ 0,

the laws of quantum mechanics must reduce to those of classical mechanics. Ding [26]

considered the following problem

�i~α∇u� aβu � P pxq|u|p�2u, in R3, (10)

4



where P has neither hypothesis of periodicity nor limit at the in�nity. Supposing that

inf P ¡ 0 and lim sup
|x|Ñ8

P pxq � maxP pxq,

the author proved, following the ideas developed by Ackermann [1] and the Nehari

manifold, that, for all ε � ~ ¡ 0 small enough, the equation possesses at least one

least energy solution wε P
�
q¥2

W 1,qpR3,C4q. Moreover, the set of all least energy solution

is compact and there exist a maximum point xε of |wε| such that

lim
εÑ0

dpxε,Pq � 0, (11)

where P � tx P R3 : P pxq � max
yPR3

P pyqu. This fact guarantees that the concentration of

solutions occurs at the maximum of the coe�cient of the nonlinear external �eld.

Following the same idea of studying the concentration phenomenon, Ding and Xu [35]

questioned when it is possible to �nd solutions which concentrate around local minima

(or maxima) of an external potential. For this, the authors studied the following problem

�i~α∇u� aβu� V pxqu � gp|u|qu, (12)

where V is locally Hölder continuous such that sup |V pxq|   a and F can be asymptotically

linear at in�nity or superlinear. Moreover, it is assumed that there is a bounded domain

Λ � R3 such that

c
.� min

Λ
V   min

BΛ
V, (13)

that is, the condition does not establish restrictions in the global behavior of the function

V. This is possible because the technique employed in the development of the work, called

the penalization method, modi�es the original problem so that the behaviour of V out of Λ

does not interfere on the conclusions obtained. Thus, it was guaranteed that, for ~ � ε ¡ 0

small enough, there exist a solution in
�
q¥2

W 1,qpR3,C4q which has an exponential decay.

Moreover, it concentrates around the maxima point of V , that is, there exist xε P Λ a

global maximum point of solution |wε| such that

lim
εÑ8

V pxεq � c and |wε| ¤ C exp

�
� c

ε
|x� xε|



.

Recently, Wang and Zhang [67] considered this same problem with gp|u|q � |u|p where

p P p2, 3q and focused on proving the existence of an unbounded sequence of localized

bound states concentrating around the local minimum points of V. Then, supposing that

(V1) V P C1pR3,Rq e |V |8   a;

5



(V2) there exist a bounded domain Λ � R3 with smooth boundary such that

ÝÑη pxq �∇V pxq ¡ 0, x P BΛ,

where ÝÑη pxq denotes the unit outward normal vector to BΛ;

holds, the authors used a penalization method due to Del-Pino e Felmer [22, 23] and a

local Pohozaev type argument to obtain the conclusions.

The existence of semi-classical solutions for equations that involving critical nonlinear-

ities was approached by Ding and Ruf [34], in which the authors considered the problem

(12) with

gp|u|q � W pxqpfp|u|q � |u|q,

where f has superlinear and subcritical growth as |u| Ñ 8. It should be noted that V

and W , among other properties, satisfy V,W P C1pR3,Rq with V pxq ¤ 0 and inf W ¡ 0.

In view of all the established hypotheses, a minmax value c~ for the energy functional

associated with the problem, which depends on ~, can not be considered directly a critical

value of this functional. Then, using Ackermann's ideas [1], the authors obtained a reduced

energy functional for which the in�mum over the classical Nehari manifold associated with

this reduced functional is exactly the minmax value c~. The arguments presented to obtain

the semi-classical solutions and to study the concentration phenomenon of these solutions

still involved some auxiliary problems, among them the limit problem, as well comparisons

between the minmax value c~ and the least energy of a class of limit problems.

Finally, we cite the study developed by Zhang, Tang and Zhang [77] that considered

the following problem involving a Maxwell-Dirac system in R3:#
�iα∇u� aβu�Mpxqu�Kpxqφu � Fupx, uq

�∆φ � 4πKpxq|u|2 . (14)

This class of systems describes the interaction of a particle with its self-generated

electromagnetic �eld and plays an important role in quantum electrodynamics. In this

work, it was considered a subcritical nonlinearity, which is also asymptotically quadratic

nonautonomous and nonperiodic; K P Lγ, γ P p6,8q, and Kpxq ¡ 0 for all x P R3.

Moreover, M satis�es the following condition

(M) M P CpR3,R4�4q and there exists h ¡ 0 such that Ωh
.� tx P R3 : βM   hI4u is

nonempty and has �nite Lebesgue measure,

which characterizes it as a inde�nite and nonperiodic potential. This problem can be

considered an extension from Dirac equation to Maxwell-Dirac systems, since some pro-

cesses were adapted from the approach used for Dirac equations, taking into account the

e�ects of non-local terms. In this way, the authors recovered the compactness imposing a

control in the size of F px, uq in relation to the behavior of M at in�nity in x. The tech-

nique used to obtain existence and multiplicity of solutions for this system is the theory

6



of critical points developed by Bartsch and Ding [8]. Ding and Ruf in [33] also studied a

Maxwell-Dirac system and were interested in obtaining multiple semi-classical solutions

to the problem in which nonlinearity may be subcritical or critical.

We can also cite another references with equations that involving the Dirac operator:

[9, 19, 25, 28, 30, 32, 42, 43, 72, 73, 74] and references therein. Our work, inspired by some

of these studies, establishes the necessary conditions to obtain existence and multiplicity

of solutions to Dirac equations in the form (4).

In Chapter 1, we consider a concave-convex problem, that is, the nonlinearity has the

following form

Fupx, uq � λfpxq|u|q�2u� gpxq|u|p�2u, in R3, (15)

where 2   p   3 and 1   q   p1 being p1 the conjugate exponent of p. Moreover, λ ¡ 0

is a paremeter and the function f can presented a change signal. The vector potential

Mpxq, in this case, is nonperiodic and satis�es suitable conditions which ensure that the

embedding E � Dp|H| 12 q ãÑ LppR3,C4q is compact for all p P p2, 3q. This property is very

important since we are considering the problem in an unbounded domain. Then, for λ ¡ 0

su�ciently small, we prove, using the restriction of exponents, that any Cerami sequence

associated with the energy functional is bounded and, in addition, the functional satis�es

the Cerami's condition. Moreover, we obtain the conditions required by the theorems

of the critical point theory for strongly inde�nite functionals, (see Appendix B), which

allows us to conclude the existence of multiple solutions to the problem, whose energy

tends to 8.

In Chapter 2, we study the following problem

�iα∇u� aβu� V pxqu � gpx, uq, x P R3, (16)

under two di�erent set of hyphoteses. In the �rst one, inpired by the results from [42],

we consider a nonperiodic situation where the potencial vanishing at in�nity and it is

related with the nonlinearity, which satis�es a monotone growth condition. In the second

part, following the ideas from [53, 62], we approach a periodic case, that is, the potential

and the nonlinearity are periodic and the nonlinearity also present a weak monotonicity

condition. In the development of both cases, we used the generalized Nehari manifold and

the Clarke's subdi�erential to ensure the existence of ground state solutions, since the

hypothesis on growth leads us to obtain a functional that is locally Lipschitz continuous.

To obtain the multiplicity of solutions we use the Krasnoselskii genus.

Finally, in the Chapter 3, we consider the equation

�iα∇u� aβu�W pxqu � fpx, uq in R3, (17)

where W pxq �Mpxq � λV pxqI4, λ ¡ 0 is a parameter and the nonlinearity is asymptoti-

cally liner at in�nity. In this case, M is a Coulomb type potential and V is a integrable

7



function that can present a sign change. The Coulomb type of potential is important

because it guarantees the existence of eigenvalues in the discrete spectrum of the operator

H � H0 �M at interval p�a, aq. In order to use this spectral property, we rewrite the

problem as follows

�iα∇u� aβu�Mpxqu � fpx, uq � λV pxqu in R3. (18)

In this case, we obtain a new energy functional that not satis�es all the conditions required

in the theorems established by Bartsch and Ding [8, 25] and not allows us conclude, for

example, the existence of a Cerami sequence. To overcome this di�cult, considering

λ ¡ 0 small su�ciently, we use a suitable theorem due to Rabinowitz to obtain a Cerami

sequence and, for the multiplicity of solutions, we apply a theorem from critical points

theory, presented in Appendix B.

We conclude this work by presenting in the Appendix some historical aspects of Dirac

operator and it properties about self-adjointness and spectrum. Also, we mention some

results about theory of critical points presented by Bartsch and Ding that applies to the

class of strongly inde�nite problems in which the equations involving the Dirac operator

are included.
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CHAPTER 1

Multiple solutions for a nonperiodic Dirac equation with concave

and convex nonlinearities

In this chapter we will study, using the variational methods, the following version of

a Dirac equation

H0u�Mpxqu � λfpxq|u|q�2u� gpxq|u|p�2u in R3, (1.1)

where λ ¡ 0 is a parameter which will be de�ned later and 2   p   3 and 1   q   p1

with p1 � p

p� 1
the conjugate exponent of p. This condition is a technical restriction used

to show the boundedness of Cerami sequences for the functional associated to Problem

(1.1).

Many authors dedicated themselves to the study of problems whose operator had the

form A � H0 �M, where H0 � �iα∇ � aβ and M is a appropriate potential, vectorial

or scalar. Zhang, Qin, Zhao in [72], for example, considered a vector potential Mpxq that
satis�es

pM0q M : R3 Ñ R4�4 is continuous and there is r0 ¡ 0 such that, for any h ¡ 0���tx P R3 : |x� y| ¤ r0, βMpxq   hu
���Ñ 0 if |y| Ñ �8. (1.2)

The relation between the matrix βMpxq and the number h ¡ 0 is de�ned at Appendix

C. This condition ensures that the potential is nonperiodic and has some coercivity

behaviour, which help us to overcome the di�culties arising from of lack of

compactness of the Sobolev embedding, since the domain is the whole space. This fact

do not allow conclude that the energy functional satis�es pPSqc�condition and requires

another approach with another arguments. Notice that, if
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a) M P CpR3,Rq and for any b ¡ 0 there holds |Ωb|   8 where Ωb � tx P R3 : Mpxq  
bu;

b) M P CpR3,R4�4q and for any b ¡ 0 there holds |Ωβ,b|   8 where Ωβ,b � tx P R3 :

βMpxq   bu;

the hypotheses (M0) is still valid. In this case, the authors studied two possibilities for

the nonlinearity Fupx, uq: asymptotically quadratic and superquadratic. In both were

obtained existence results and multiplicity results if F px, uq is even in u. Other di�erent

hypotheses about the vector potentials were considered by [32] and [36] in which the

authors obtained existence and multiplicity results for the problems, and, in some of

them, they studied the exponential decay of the solutions.

In our work, inspired by [72], we consider thatMpxq is a vector potential that satis�es
the condition pM0q stated above and f, g are real functions that satisfy, respectively:

pH1q 0 � f P LγpR3q where γ � p

p� q
such that

»
R3

fpxq|v|qdx ¥ 0 for all v P E0, (1.3)

where E0 � KerpH0 �Mq.

pH2q g P L8pR3q such that gpxq ¥ d ¡ 0 for all x P R3;

The relation between the exponents classi�es the problem into the class of concave

and convex problems and we can cite many studies that have been developed to solve

problems with this type of nonlinearities and weighted functions which may or not change

signal. For example, Wu, Tang, Wu in [70] studied a problem involving the Laplacian

operator, a nonperiodic potential V P CpRN ,Rq and functions fpx, uq and gpx, uq, which
have inde�nite signal. Under di�erent conditions, the authors studied various problems

and achieved results of existence and multiplicity of solutions for all of them. A relevant

research involving the Dirac operator and concave and convex nonlinearities was developed

by Ding and Liu in [27]. In this case, the authors solved the following problem

�iα∇u� aβu� V pxqu � ξFupx, uq � ηGupx, uq in R3, (1.4)

under the hypotheses

pP q V P CpR3, r0,8qq, F,G P C1pR3 � C4,Rq; the functions V pxq, F px, uq and Gpx, uq
are 1-periodic in xk with k � 1, 2, 3; F px, uq and Gpx, uq are even in u.

In addition were considered two distinct set of hypotheses: in the �rst one, these hypothe-

ses provide solutions with large norms, that is, a sequence of 1�periodic solutions punq
was obtained satisfying ξΦpunq Ñ 8 as n Ñ 8. In the second one, it was also found a
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sequence of solutions pvnq satisfying ηΦpvnq   0, ηΦpvnq Ñ 0 and ||vn||L8pQ,C4q Ñ 0 as

n Ñ 8, that is, solutions with small energies. Here Φ is the energy functional associ-

ated with this problem, the set Q is the cube Q � r0, 1s � r0, 1s � r0, 1s and ξ, η are real

constants.

It is important to note that the set of conditions considered in our work guarantees

that Hpx, uq is nonperiodic and, since f can change your signal, the nonlinearity has

inde�nite signal. In our case, the non-periodicity of elements was a signi�cant di�culty

since this condition does not allow making restriction of domain on cube Q � r0, 1s �
r0, 1s � r0, 1s and, therefore, we need to consider a suitable potential to conclude stronger

results regarding immersions in LP spaces, not just locally, but all over space, for p P
r2, 3q. Moreover, this potential gives us a characterization of the H operator spectrum

as unlimited sequences of eigenvalues of opposite signals, ordered by their multiplicity, as

we conclude by Lemma 1.2. This fact allows us to decompose the domain into a suitable

form to guarantee multiplicity of solutions through Bartsch and Ding results presented in

Appendix B.

However, this decomposition also involves the elements from the kernel of H, which is

nonzero, that is, the norm of an element u P E � Dp|H| 12 q is given by

u � u� � u0 � u� P E� ` E0 ` E�.

Thus, although the kernel has �nite dimension and even if we apply the known Hölder

relation or other estimates in nonlinear terms, we need establish conditions on these

elements. The condition pH1q was necessary in the proof that guarantees one of the

conditions required by the theory of critical points, since without it we would not have

the guarantee that there is no sequence satisfying the relation (1.23).

Another necessary condition was the relationship between exponents, which was strongly

used to demonstrate the boundedness of Cerami sequence associated with energy func-

tional. In a standard way, it su�ces to assume that the Cerami sequence has a divergent

norm, to de�ne a normalized sequence, and to use the weak convergence properties to

obtain a contradiction. In our case, however, the superlinear term dominates the other

terms and so we would have no contradiction, which require an adaptation in the ex-

ponents and also that the function g to be a bounded function. In addition, we have

established the condition that g is positive to obtain fundamental relations, such as (1.24)

and (1.39), which helped to obtain the conditions for the existence of Cerami sequence

and its boundedness, respectively.

The contributions of this work are signi�cant because the authors do not know in the

literature any other study that has considered the non-periodic case involving a convex

concave nonlinearity with weight functions that present signal change and potential with

some coercivity condition. Moreover, we developed the analysis over the whole space R3

without restrictions.

11



Under the above conditions, through linking theorems and critical point theory to

strongly inde�nite functional, we have been able to prove the following result:

Theorem 1.1. Suppose pM0q, pH1q and pH2q be satis�ed. Then there is constant Λ ¡ 0

such that, if λ P p0,Λq, the Problem (1.1) has in�nitely many solutions.

This chapter is organized as follows. In Section 1.1, we analyse the operator A �
H0 �M , it spectrum and some additional properties. In Section 1.2, we prove that the

energy functional possesses the linking structure. In the Section 1.3, we guarantee the

existence and boundedness of a Cerami sequence pCeqc for some c ¡ 0 and prove that

the energy functional satis�es the Cerami condition, for all c ¡ 0, which is important to

conclude the existence and multiplicity of solutions. Therefore, we get all the elements to

prove Theorem 1.1.

1.1 Variational setting

Let the operator A � H0�M, where H0 � �iα∇�aβ andMpxq satis�es pM0q, which
is a self-adjoint operator in L2pR3,C4q with DpAq � H1pR3,C4q. This space is a Hilbert

space equipped with the inner product

pu, vqA � xAu,AvyL2 � xu, vyL2 (1.5)

and the induced norm || � ||A.
If B � �iα∇ � β, which is still self-adjoint and DpBq � H1pR3,C4q, we obtain a

important relation between the norms from H1 and || � ||A.

Lemma 1.1. For all u P DpAq � H1pR3,C4q, there exist d ¡ 0 such that

||u||H1 � |||B|u||L2 ¤ d||u||A.

Proof: Notice that, for all u P DpB2q � H2pR3,C4q,
����|B|u����2

L2 � xBu,BuyL2 � xB2u, uyL2 � xp�∆� 1qu, uyL2 � ||∇u||2L2 � ||u||2L2 � ||u||2H1 .

Since H2 is dense in H1pR3,C4q, we obtain the �rst equality. Let B1 : DpAq Ñ L2 the

restriction of B to the set DpAq, which is a linear and closed operator. Indeed, consider

punq � DpAq such that un
||�||AÝÑ u and B1un

||�||L2ÝÑ v, as n Ñ 8. Since DpAq is a Hilbert

space equipped with the norm || � ||A, we conclude that u P DpAq. On the other hand, B

is a closed operator and, therefore,

B1un � Bun
||�||L2ÝÑ Bu � B1u.
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Using the uniqueness of the limit we obtain that v � B1u and, Theorem C.5, B1 is a

linear and continuous operator, that is,

||Bu||L2 � ||B1u||L2 ¤ d||u||A,

which demonstrate the result.

The assumption pM0q ensures that the operator A is self-adjoint and that its spectrum

has only eigenvalues of �nite multiplicity as justi�ed by [72] in Lemma 2.2. Here we will

present this proof to complement our work.

Lemma 1.2. Suppose pM0q holds. Then σpAq � σdpAq.

Proof: Consider h ¡ 0. By pM0q, there exist r0 ¡ 0 such that

lim
|y|Ñ8

��tx P R3 : |x� y| ¤ r0, βMpxq   hu�� � 0

where |Ω| denotes the Lebesgue measure. Set

pβMpxq � hq� �
#
βMpxq � h, if pβMpxq � hq ¥ 0

0, if pβMpxq � hq   0
(1.6)

and pβMpxq � hq� � pβMpxq � hq � pβMpxq � hq�. Then

A � H0 �M � �iα∇� pa� hqβ � βh� β2Mpxq
� �iα∇� pa� hqβ � βpβMpxq � hq
� �iα∇� pa� hqβ � βpβMpxq � hq� � βpβMpxq � hq�
.� A2 � βpβMpxq � hq�.

Notice that for u, v P C4 and β de�ned in (2) we have that βu � v � u � βv � uβ � v and

βαk � �αkβ, k � 1, 2, 3, where u � v �
4°
j�1

ujvj. Then

p�iα∇uq � βu � βp�iα∇uq � u � �i
� 3̧

k�1

βαkBku


� u � i

� 3̧

k�1

αkβBku


� u � piα∇uq � βu.
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Consequently,

x�iα∇u, βuyL2 � xβu,�iα∇uyL2 �
»
R3

p�iα∇uq � βu dx�
»
R3

βu � p�iα∇uq dx

�
»
R3

piα∇uq � βu dx�
»
R3

βu � piα∇uq dx

�
»
R3

piα∇uq � βu dx�
»
R3

piα∇uq � βu dx

�
»
R3

piα∇uq � βu dx�
»
R3

p�iα∇uq � βu dx

� 0. (1.7)

Moreover, since β2 � I,

xpβpβMpxq � hq�qu, βuyL2 � xβu, βpβMpxq � hq�quyL2 � 2xpβMpxq � hq�u, uyL2 . (1.8)

Hence, if u P DpAq,

xA2u,A2uyL2 � ||�� iα∇� βpβMpxq � hq��u||L2 � pa� hq2||u||L2

�@�� iα∇� βpβMpxq � hq��u, pa� hqβuD
L2

�xpa� hqβu, �� iα∇� βpβMpxq � hq��uyL2

� ||�� iα∇� βpβMpxq � hq��u||L2 � pa� hq2||u||L2

�2pa� hq@pβMpxq � hq�u, uD
L2

¥ pa� hq2||u||2L2 ,

since (1.7) and (1.8) holds. Thus, for all u P DpAq,

||A2u� λuq||L2 ¥ pa� hq||u||2L2 � |λ|||u||2L2 � ppa� hq � |λ|q||u||2L2 , (1.9)

and, using [47] Lemma 10.4-1, λ belongs to the resolvent set ρpA2q if and only if

ppa� hq � |λ|q ¡ 0. That is,

σpA2q � RzρpA2q � Rzp�pa� hq, pa� hqq.

This relation help us to prove that σepAq X p�pa� hq, pa� hqq � H.
Assume by contradiction that there exist ν P σepAq such that |ν|   a � h. Using

the Weyl's criterion, let punq � DpAq with ||un||L2 � 1, un á 0 in L2pR3,C4q and

||pA � νqun||L2 Ñ 0 as n Ñ 8. Notice that the operator u ÞÑ βpβMpxq � hq�u is

compact, as de�ned by De�nition C.1. Indeed, let pwnq � DpAq a bounded sequence

and, up to subsequence, we can suppose wn á w, w P DpAq, since DpAq is a Hilbert

space. Suppose, without loss of generality, that wn á 0 in DpAq and we will prove that
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||βpβMpxq � hq�wn||L2 Ñ 0 as nÑ 8.
Fix R ¡ 0 and denote BRp0q � tx P R3 : |x|   Ru. Let pyjq a sequence in Bc

Rp0q and
r0 ¡ 0 such that

(i) Bc
Rp0q �

8�
i�1

Bpyi, r0q;

(ii) each point x is contained in at most 23 such balls Bpyi, r0q.

Denote BM
.� tx P Bc

Rp0q : βMpxq   hu, Bi � Bpyi, r0q X BM and choose s P p1, 3q with
s1 the conjugate exponent of s. Then»
BcRp0q

|βpβMpxq � hq�wn|2dx ¤
8̧

i�1

»
Bi

|βpβMpxq � hq�wn|2dx

¤
8̧

i�1

�»
Bi

|wn|2sdx
� 1

s
�»
Bi

|βpβMpxq � hq�|2s1dx
� 1

s1

¤
8̧

i�1

�»
Bi

|wn|2sdx
� 1

s
�

sup
yi

||βpβMpxq � hq�||2s1M

»
Bi

dx

� 1
s1

�
8̧

i�1

�»
Bi

|wn|2sdx
� 1

s

C2
R

��Bi

�� 1
s1

¤ C2
R εR23||wn||2L2s

¤ CC2
R εR23||wn||2A,

since H1 embeds into L2s continuously and Lemma 1.1 holds. Notice that we denotes

CR � supyi ||βpβMpxq � hq�||M and εR � supyi
��Bi

��, which is well de�ned because��Bi

�� � ��Bpyi, r0q X BM

�� ¤ ��Bpyi, r0q
��   8. Using the assumption pM0q we obtain that

εR Ñ 0 as RÑ 8 and, therefore,»
BcRp0q

|βpβMpxq � hq�wn|2dxÑ 0 as RÑ 8.

On the other hand, as nÑ 8,

»
BRp0q

|βpβMpxq � hq�wn|2dx ¤
� »
BRp0q

|wn|2sdx
� 1

s
� »
BRp0q

|βpβMpxq � hq�|2s1dx
� 1

s1

Ñ 0,

since H1
ãÑ L2s

loc is compact. Then

||βpβMpxq � hq�wn||L2 Ñ 0 as nÑ 8.
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Hence

onp1q � ||pA� νIqun||L2 � ||pA2 � βpβMpxq � hq� � νIqun||L2

¥ ||A2un||L2 � ||νun||L2 � ||βpβMpxq � hq�un||L2

¥ ppa� hq � |ν|q � onp1q,

that is, 0   ppa� hq � |ν|q ¤ onp1q which is a contradiction. Hence

σepAq X p�pa� hq, pa� hqq � H

and, since h is arbitrary, σpAq � σdpAq.

This fact allows conclude that A has a sequence of eigenvalue

... ¤ λ�k ¤ ... ¤ λ�1   λ0 � 0   λ1 ¤ ... ¤ λk ¤ ...,

such that lim
jÑ8

λ�k � �8 and a sequence of eigenfunction te�ku associated with these

eigenvalues that form a orthogonal basis for L2pR3,C4q. Then, the space can be decom-

posed into

L2 � L� ` L0 ` L�,

where A is positive de�nite (respectively, negative de�nite) in L� (respectively, in L�)

and L0 � kerpAq.
Let E � Dp|A| 12 q the domain of self-adjoint operator |A| 12 , which is a Hilbert space

equipped with the inner product

xu, vy � x|A| 12u, |A| 12vyL2 � xP0u, P0vyL2 , (1.10)

where P0 : E Ñ L0 the projection and ||u|| � xu, uy 1
2 . So, the space E also has a orthogonal

decomposition

E � E� ` E0 ` E�, (1.11)

with E� � E X L� and E0 � L0 � kerpAq.
Using this structure and complex interpolation arguments it is possible to demonstrate

that embedding E ãÑ LppR3,C4q is compact for all p P r2, 3q. Indeed, similar to [32] and

following the ideias from [72], we introduce in DpAq the following inner product

xxu, vyyA � xAu,AvyL2 � xP0u, P0vyL2

whose induced norm will be denoted by | � |A. Then, considering pA .� |A| � P0 we have
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Dp pAq � DpAq and

|u|A � || pAu||L2 , @u P DpAq. (1.12)

Moreover, using that DpAq � Dp pAq is a core of pA 1
2 we obtain that

||u|| �
������ pA 1

2u
������
L2

for all u P E. (1.13)

By complex interpolation theory we have H
1
2 � Dp|B| 12 q and there exists constants

d3, d4 ¡ 0 such that

d3||u|| 1
2
¤
������|B| 12u������

L2
¤ d4||u|| 1

2
for all u P H 1

2 pR3,C4q. (1.14)

With this elements we can prove that

Lemma 1.3. The embedding E ãÑ H
1
2 pR3,C4q is continuous and the embedding

E ãÑ LppR3,C4q is compact for all p P r2, 3q.

Proof: Notice that, by Lemma 1.1 and (1.12), there exist d5 ¡ 0 such that������|B| 12u������
L2
¤ d5|| pAu||L2 � ||pd5

pAqu||L2 , for all u P DpAq. (1.15)

It follows from Proposition C.1 that x|B|u, uyL2 ¤ xd5
pAu, uyL2 for all u P DpAq and

therefore������|B| 12u������2
L2
� x|B|u, uyL2 ¤ xpd5

pAqu, uyL2 � d5

������ pA 1
2u
������2
L2

for all u P DpAq. (1.16)

Since DpAq is core of pA 1
2 , we obtain that

������|B| 12u������2
L2
¤ d5

������ pA 1
2u
������2
L2

for all u P E. This
jointly with (1.13) shows that

������|B| 12u������2
L2

¤ d5||u||2 for all u P E, which together with

(1.14) implies that

||u|| 1
2
¤ d6||u||

for all u P E and prove that E ãÑ H
1
2 pR3,C4q is continuous.

For the second part, it su�ces to prove that E ãÑ L2 is compact. Let

Lj
.� spante�j, ..., e�1, e1, ..., eju, j P N

and denotes Pj : E Ñ Lj the orthogonal projection. Consider punq � E such that un á u

in E and de�ne wn � un � u. Moreover, de�ne K .� supn ||wn||2, which exist because of

weak convergence. Given ε ¡ 0 we choose j P N such that M
νj
  ε

2
, where νj � |λ�j| � λj.

Since Pjwn Ñ 0 in Lj as n Ñ 8, then there exists n0 P N such that ||Pjwn||2   ε
2
for all

n ¥ n0. Let tEpτquτPR be the spectral family of A. It follows from
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||wn||2 ¥ ||pI � Pjqwn||2 �
������ pA 1

2 pI � Pjqwn
������2
L2

� @| pA| 12 pI � Pjqwn, | pA| 12 pI � Pjqwn
D
L2

�
λj»

�8

|τ |d����EpτqpI � Pjqwn
����2
L2 �

8»
λj

τd
����EpτqpI � Pjqwn

����2
L2

¥ p|λ�j| � λjq
����pI � Pjqwn

����2
L2

that

||pI � Pjqwn||2L2 ¤ ||wn||2
|λ�j| � λj

� ||wn||2
νj

  ε

2
.

Then

||wn||2L2 � ||Pjwn||2L2 � ||pI � Pjqwn||2L2   ε for all n ¥ n0.

This proves that un Ñ u in L2pR3,C4q.

Remark 1.1. It follows from the above lemma that there is a positive constant Cr, r P
r2, 3s that

Cr||u||Lr ¤ ||u||

for all u P E.

Assuming (M0), (H1) and (H2), we consider the functional Φ : E Ñ R associated with

the problem p1.1q and de�ned by

Φpuq � 1

2

�
||u�||2 � ||u�||2

	
� λ

q

»
R3

fpxq|u|qdx� 1

p

»
R3

gpxq|u|pdx, (1.17)

which is a C1pE;Rq functional. It is well known (see [25], [30]) that the critical points

of this energy functional are the solutions of the proposed problem and therefore our

objective is to study this functional in order to obtain a nontrivial critical point.

By the assumption pH1q and the Hölder inequality, we obtain

�����
»
R3

fpxq |u|q dx
����� ¤

� »
R3

|fpxq| p
p�q dx

� p�q
p
� »

R3

|u|p dx
� q

p

¤ CfC
�q
p ||u||q, (1.18)

where Cf
.� ||f ||Lγ ¡ 0. It follows immediately from Lemma C.2 that
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Lemma 1.4. Assume pH1q and suppose punq � E such that un á u in E. Then»
R3

fpxq|un|q dx �
»
R3

fpxq|u|q dx� onp1q.

Proof: Notice that, by Lemma 1.3, || |un|q||
L
p
q
¤ C�q

p ||un||q, for all n P N. Since
punq is bounded in E, it follows that p|un|qq � L

p
q pR3q is a bounded sequence. Moreover,

|un|q Ñ |u|q a.e. in R3 and f P LγpR3q � pL p
q pR3qq�.

In order to obtain the critical points to the functional Φ we will use the critical points

results established in the Appendix B and throughout this chapter we consider Y � E�,

X � pE0 ` E�q and, since Hpx, uq is even in u, the action of group G can be considered

the antipodal action.

1.2 Linking structure

At this section, we will describe the linking structure of the functional Φ which is impor-

tant to ensure the existence of Cerami sequences. This concept is based on the topological

notion of "linking" and was �rstly introduced by Benci [11] and Rabinowitz [56]. It was

later generalized by [12] to include inde�nite functionals as well and, recently, this concept

was extended to the in�nite-dimensional setting by Bartsch and Ding [8, 9]. More details

can be founded at Appendix B.

Throughout this section we consider the constant

Λ1
.� q

Cf

�
C2
p

pp� 2q
4pp� qq

� p�q
p�2

�
p

||g||8
p2� qq
pp� 2q

� 2�q
p�2

(1.19)

and assume 0   λ   Λ1. Remember that 1   q   p1, 2   p   3 and Cf ¡ 0 is de�ned by

(1.18).

Lemma 1.5. Let pM0q, pH1q and pH2q be satis�ed. Then there is ρ ¡ 0 such that

κ
.� inf ΦpSq ¡ Φp0q � 0 where S � BBρ X E�.

Proof: For any y P E�, since 0   λ   Λ1, we observe that

Φpyq ¡ ||y||2
�

1

2
�
�

Λ1Cf

�
q Cq

p

	�1

||y||q�2 � ||g||8
�
p Cp

p

	�1

||y||p�2

��
.

Then, for ρ �
�

Cp
p

4||g||8
pp2� qq
pp� qq

� 1
p�2

and S � ty P E�; ||y|| � ρu it follows that

Φpyq ¡ ρ2

�
1

2
� 1

4

�
¡ 0, @y P S,
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from which we conclude that inf ΦpSq ¥ ρ2

4
¡ 0.

De�ne Yn � spante1, e2, ..., enu and En � E� ` E0 ` Yn, n P N. Using the properties

of eigenfunctions it is possible to prove that

λ1||u||2L2 ¤ ||u||2 ¤ λn||u||2L2 , @u P Yn.

Lemma 1.6. Suppose the same conditions and ρ ¡ 0 from Lemma 1.5. There is a

sequence pRnq with Rn ¡ ρ such that sup ΦpEnq   8 and sup ΦpEnzBnq   inf ΦpBρXE�q,
where Bn

.� tu P En : ||u|| ¤ Rnu.

Proof: For �xed n P N suppose, by contradiction, that there is a sequence pujq � En

and M ¡ 0 such that ||uj|| Ñ 8 and Φpujq ¥ �M for all j P N.
The normalized sequence pvjq de�ned by vj � uj{||uj|| is weakly convergent in E for

v P En and thus, it satis�es

v�j Ñ v� in E�, v0
j Ñ v0 in E0 and v�j á v� in E� as j Ñ 8.

Suppose v� � v0 � 0. Using the relation (1.18) we obtain, as j Ñ 8,

�M
||uj||2 ¤

Φpujq
||uj||2 ¤

1

2

�
||v�j ||2 � ||v�j ||2

	
� λCf
qCq

p
||uj||q�2. (1.20)

In other words,

0 ¤ ||v�j ||2 ¤ ||v�j ||2 �
2λ

q
CfC

�q
p ||uj||q�2 � 2M

||uj||2 � ojp1q.

Therefore ||v�j ||2 � ojp1q and we obtain a contradiction since 1 � ||vj||2 � ojp1q, as
j Ñ 8.

De�ne Γ
.� tx P R3; vpxq � 0u and notice that |Γ| ¡ 0. By de�nition, |ujpxq| Ñ 8 for

all x P Γ and it follows from Fatou's Lemma C.1 that

lim inf
jÑ8

»
Γ

gpxq
||uj||2 |ujpxq|

pdx � �8.

Thus, as j Ñ 8 in (1.20), we obtain

0 ¤ 1

2

�
||v�||2 � ||v�||2

	
� lim inf

jÑ8

�
1

p

1

||uj||2
»
Γ

gpxq|uj|p dx
�
� �8,

a contradiction.

As a consequence, we have
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Corollary 1.1. Let 0   λ   Λ1 and e P Yn with ||e|| � 1. There is R ¡ ρ ¡ 0 such that

Φpzq ¤ κ, for all z P BQ, where κ ¡ 0 is from Lemma 1.5 and Q
.� tu � u��u0� te; t ¥

0, u� � u0 P E� ` E0 and ||u|| ¤ Ru.

1.3 Cerami sequences

To ensure the existence of a Cerami sequence pCeqc for the functional Φ we need �rst

demonstrate that this functional satis�es the properties (Φ0) and (Φ1) stated in the

Appendix B. As mentioned in Remark B.1, this conditions can be weakened and it

is su�cient to prove their validity for certain values of a. Let δ P �0, 1� and
a ¡ p1� δq

�ρ2

4

	
¡ 0, (1.21)

where ρ ¡ 0 was de�ned in the Lemma 1.5. Consider the constants

Λ2
.� 1

p

q

Cfd
and Λ3

.� q

Cf
p1� δq

�ρ2

4

	
,

where d, Cf ¡ 0 are de�ned in pH2q and (1.18), respectively. In the development of this

section, suppose 0   λ   Λ where

Λ � mintΛ1,Λ2,Λ3u. (1.22)

Lemma 1.7. Let pM0q, pH1q and pH2q be satis�ed. The functional Φ de�ned by (1.17)

satis�es pΦ1q for all a that satis�es the relation (1.21)

a ¡ p1� δq
�ρ2

4

	
¡ 0.

Proof: Assume by contradiction that there is a sequence pujq � Φa such that for j P N

||uj||2 ¥ j||u�j ||2. (1.23)

Suppose that, up to a subsequence, ||uj|| Ñ 8 and de�ne, for each j P N, the normal-

ized sequence pwjq � E by wj � uj{||uj||. From the relation (1.23) we obtain

||w0
j ||2 � ||w�

j ||2 � 1� ojp1q as j Ñ 8.

On the other hand,

a

||uj||2 ¤
Φpujq
||uj||2 ¤

1

2

�
||w�

j ||2 � ||w�
j ||2

	
� ΛCf

�
qCq

p

	�1

||uj||q�2,
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that implies

0 ¤ ||w�
j ||2 ¤ ||w�

j ||2 � ΛCf

�
qCq

p

	�1

||uj||q�2 � a

||uj||2 � ojp1q,

that is,

||w�
j ||2 � ojp1q as j Ñ 8.

As dimpE0q   8, it is valid that ||w0||2 � 1. Thus, there is a bounded set Ω � R3 so that»
Ω

gpxq|w0|2dx ¡ 0, (1.24)

since by the assumption pH2q, gpxq ¥ d ¡ 0 for all x P R3.

Set Ωj � tx P R3; |ujpxq|   1u. Then

a

||uj||2 ¤
Φpujq
||uj||2 �

»
Ω

gpxq|wj|2dx�
»
Ω

gpxq|wj|2dx

¤ ojp1q �
»
Ω

gpxq|wj|2dx� 1

p||uj||2
� »

ΩXΩj

gpxq
�
|uj|2 � |uj|p

	
dx

�
»

ΩXΩcj

gpxq
�
|uj|2 � |uj|p

	
dx

�

¤ ojp1q �
»
Ω

gpxq|wj|2dx� 1

p||uj||2
»

ΩXΩj

gpxq
�
|uj|2 � |uj|p

	
dx

¤ ojp1q �
»
Ω

gpxq|wj|2dx� C||g||8|Ω|
p||uj||2 ,

that implies, as j Ñ 8,

0 ¤ �
»
Ω

gpxq|w0|2dx   0,

a contradiction.

Therefore, we obtain that pujq is a bounded sequence, that is, there is M ¡ 0 such

that ||uj|| ¤M for all j P N and

0 ¤ ||u�j ||2 ¤
||uj||2
j

¤ M

j
� ojp1q as j Ñ 8. (1.25)

Suppose that there is a subsequence pujkq � pujq such that ||ujk ||Lp ¥ 1. Then, since
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0   λ   Λ2, we obtain

Φpujkq �
1

2
||u�jk ||2 �

1

2
||u�jk ||2 �

λ

q

»
R3

fpxq|ujk |qdx�
1

p

»
R3

gpxq|ujk |pdx

¤ 1

2
||u�jk ||2 �

1

2
||u�jk ||2 �

Λ2

q
Cf ||ujk ||qLp �

d

p
||ujk ||pLp

¤ 1

2
||u�jk ||2 �

1

2
||u�jk ||2 �

1

p
p||ujk ||qLp � ||ujk ||pLpq

¤ ojp1q,

which is a contradiction because pujq � Φa and then Φpujkq ¥ a ¡ 0. Then, every

subsequence of pujq satis�es ||ujk ||Lp   1 and, since 0   λ   Λ3,

Φpujq � 1

2
||u�j ||2 �

1

2
||u�j ||2 �

λ

q

»
R3

fpxq|uj|qdx� 1

p

»
R3

gpxq|uj|pdx

¤ 1

2
||u�j ||2 �

1

2
||u�j ||2 �

λ

q
Cf ||ujk ||qLp

¤ 1

2
||u�j ||2 �

1

2
||u�j ||2 �

Λ3

q
Cf

¤ 1

2
||u�j ||2 �

1

2
||u�j ||2 � p1� δq

�ρ2

4

	
.

It follows from (1.21) and Φpujq ¥ a, that

0 ¤ ||u�j ||2 ¤ ||u�j ||2 � p1� δq
�ρ2

4

	
� a ¤ ojp1q,

that is, ||u�j || � ojp1q as j Ñ 8. By virtue of dimpE0q   8, we have uj Ñ u0 in E and,

as j Ñ 8, »
R3

fpxq|uj|qdx �
»
R3

fpxq|u0|qdx� ojp1q.

Consequently,

0   a ¤ Φpujq ¤ 1

2
||u�j ||2 �

1

2
||u�j ||2 �

λ

q

»
R3

fpxq|uj|qdx ¤ ojp1q � λ

q

»
R3

fpxq|u0|qdx,

which is a contradiction by the assumption pH1q. Thus, there are no sequence that satis�es
the relation (1.23).

For the purposes of simpli�cation of notation, de�ne Ψ : E Ñ R by

Ψpuq � λ

q

»
R3

fpxq|u|qdx� 1

p

»
R3

gpxq|u|pdx. (1.26)
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From Lemma 1.3 and Lemma 1.4, we obtain that if uj á u in E then Ψpujq � Ψpuq�ojp1q.

Lemma 1.8. Under the same set of assumptions of Lemma 1.7, the functional Φ : E Ñ R
satis�es the property pΦ0q for all a that satis�es the relation (1.21)

a ¡ p1� δq
�ρ2

4

	
¡ 0.

Proof: For the �rst part, suppose pujq � Φa a TP�convergent sequence to u P E,
where the TP�topology was described in Appendix B. Particularly, u�j Ñ u� in norm

and, from Lemma 1.7, pujq is a bounded sequence. Hence, up to a subsequence, uj á u

in E and

a ¤ lim inf
jÑ8

Φpujq � lim inf
jÑ8

�
1

2

�
||u�j ||2 � ||u�j ||2

	
�Ψpujq



¤ 1

2
||u�||2 � 1

2
||u�||2 �Ψpuq � Φpuq,

so u P Φa.

To ensure the continuity of Φ1 : pΦa;TPq Ñ pE�;Tw�q, it is su�cient to demonstrate

that if uj á u in E then

Ψ1pujqpwq Ñ Ψ1puqpwq @w P E, (1.27)

since E is a Hilbert space and the norm ν : E Ñ r0,8q, νpwq � ||w|| is C1 with

ν 1 : pΦa;TPq Ñ pE�;Tw�q sequentially continuous.

Notice that, as mentioned previously, if pujq � Φa is a TP�convergent sequence to

u P E, then pujq is a bounded sequence and uj á u as j Ñ 8. Suppose, �rstly,

φ P C8
c pR3,C4q. Then,

���pΨ1pujq �Ψ1puqqpφq
��� � �����

»
R3

�
λfpxq

�
|uj|q�2uj � |u|q�2u

	
� gpxq

�
|uj|p�2uj � |u|p�2u

	�
φdx

�����
¤

»
R3

�
Λ|fpxq|

���|uj|q�2uj � |u|q�2u
���� gpxq

���|uj|p�2uj � |u|p�2u
����|φ|dx.

Denote Σ
.� supppφq the support of function φ. Then, by Theorem C.3, Hölder's inequality

and the compact embedding at Lemma 1.3, we obtain that

Λ

»
R3

|fpxq|
���|uj|q�2uj � |u|q�2u

���|φ|dx ¤ �CΛ||f ||Lγ
»
Σ

|uj � u| pq�1qp
q |φ| pq dx

¤ �CΛ||f ||Lγ ||uj � u||q�1
LppΣq||φ||LppΣq

� ojp1q
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and»
R3

gpxq
���|uj|p�2uj � |u|p�2u

���|φ|dx ¤ �C||g||8
»
Σ

|uj � u|
�
|uj| � |u|

	p�2

|φ|dx

¤ �C||g||8
�»

Σ

�
|uj| � |u|

	p
dx

� p�2
p
�»

Σ

|uj � u| p2 |φ| p2dx
� 2

p

¤ �C||g||8
�»

Σ

�
|uj| � |u|

	p
dx

� p�2
p

||uj � u||LppΣq||φ||LppΣq

� ojp1q.

Then,

Ψ1pujqpφq Ñ Ψ1puqpφq @φ P C8
c pR3,C4q. (1.28)

Let w P E and ε ¡ 0. Using that C8
c pR3,C4q is a dense subset in E, there exist

pφkq � C8
c pR3,C4q such that ||w � φk|| � okp1q as k Ñ 8. Notice that, for all k P N,����Ψ1pujq �Ψ1puq

	
pwq

��� ¤ ����Ψ1pujq �Ψ1puq
	
pφkq

���� ����Ψ1pujq �Ψ1puq
	
pw � φkq

���. (1.29)

Using the same arguments from the previous step, we obtain����Ψ1pujq �Ψ1puq
	
pw � φkq

��� ¤ �C||f ||Lγ ||uj � u||q�1
Lp ||w � φk||Lp

��C||g||8
� »

R3

�
|uj| � |u|

	p
dx

� p�2
p

||uj � u||Lp ||w � φk||Lp

¤M ||w � φk||, (1.30)

where M �Mppujq, f, g, p, qq, since pujq is bounded. Let k0 P N large enough such that

||w � φk0 || ¤
ε

2M.

By the relation (1.28), there exist j0 P N such that if j ¡ j0,����Ψ1pujq �Ψ1puq
	
pφk0q

��� ¤ ε

2
. (1.31)

Then, it follows from (1.30) and (1.31) that, if j ¥ j0,����Ψ1pujq �Ψ1puq
	
pwq

��� ¤ ����Ψ1pujq �Ψ1puq
	
pφk0q

���� ����Ψ1pujq �Ψ1puq
	
pw � φk0q

���   ε,

that is,

Ψ1pujqpwq Ñ Ψ1puqpwq, @w P E.
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This properties together with the deformation Lemma B.3 allows us to prove the

existence of a Cerami sequence to the energy functional Φ. By De�nition B.1, this sequence

satis�es

Φpujq Ñ c and p1� ||uj||qΦ1pujq Ñ 0 in E� as j Ñ 8. (1.32)

Lemma 1.9. Suppose pM0q, pH1q, pH2q are satis�ed and 0   λ   Λ. Then there exist

Cerami sequence pCeqc with κ ¤ c ¤ sup ΦpQq where κ ¡ 0 and Q are de�ned in Lemma

1.5 and Corollary 1.1, respectively.

Proof: The arguments that will be used are similar to that found in [25], Teorema 4.2.

Using the Brouwer Degree Theory we obtain that Q .� tu � u��u0� te; t ¥ 0, u��u0 P
E� ` E0 e ||u|| ¤ Ru �nitely link with S � tu P E� : ||u|| � ρu. Consider the set ΓQ,S

described in (B.5) and, using their properties, which are also described in (B.5), we will

characterize the value c ¡ 0.

Indeed, let h P ΓQ,S. It follows from the property ph3q that Φphpt, uqq ¤ Φpuq for all
u P Q and t P I � r0, 1s, that is, particularly, Φphp1, uqq ¤ Φpuq for all u P Q. Using the

continuity of Φ we obtain that

sup
uPQ

Φphp1, uqq ¤ sup
uPQ

Φpuq   8.

It remains to be shown that the set sup
uPQ

Φphp1, uqq is bounded below for h P ΓQ,S. Note

that hpI�BQqXS � H by the assumption ph4q established in (B.5). Using the assumption

ph5q, we have that for all pt, uq P I �Q there exist a P�open neighbourhood W such that

v � hps, vq is contained in a �nite dimensional subspace of E, for all ps, vq P W X I �Q.

Since Q is a P�compact set, there is a �nite subcollection that still cover Q. Then, the

set tu � hpt, uq : pt, uq P I � Qu is contained in a �nite dimensional subspace F � E.

Consequently, pt, uq P I � pQX F q and

hpI � pQX F qq � hpI �QF q � F.

On the other hand, since Q �nitely links with S, it follows from the De�nition B.2 that

hpt, QF qXS � H, that is, there exist u0 P Q such that hpt, u0q P S for all t P I. Then, for
all h P ΓQ,S,

sup
uPQ

Φphp1, uqq ¥ Φphp1, u0qq ¥ inf
uPS

Φpuq.

This allows us to de�ne

c
.� inf
hPΓQ,S

sup
uPQ

Φphp1, uqq P rinf ΦpSq, sup ΦpQqs. (1.33)

Now, we will prove the existence of a Cerami sequence to this level c. Suppose that
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there exist α ¡ 0 and ε P
�

0, c� p1� δq
�ρ2

4

		
, δ P p0, 1q, such that

�
1� ||u||

	
||Φ1puq|| ¥ α @u P Φ

pc�µεq
pc�εq , (1.34)

where 0   µ   8 is chosen so that sup ΦpQq ¤ c � µε   8. Using the condition (Φ1)

there exist θ ¡ 0 such that

||u|| ¤ θ||u�|| for all u P Φa where a ¡ p1� δq
�ρ2

4

	
, (1.35)

and, particularly, this condition is still valid for u P Φ
pc�µεq
pc�εq by the conditions stated

on ε ¡ 0. In the same way, by the property (Φ0), we have that Φpc�εq is P� closed

and Φ
1

: pΦc�ε;TPq Ñ pE�;Tw�q is continuous. Then, by Theorem B.3, there exist a

deformation η : r0, 1s � Φpc�µεq Ñ Φpc�µεq that satis�es the properties piq � pviiq.
Choose h P ΓQ,S such that sup Φphp1, Qqq   c� µε and de�ne g : I �QÑ E by

gpt, uq � ηpt, hpt, uqq. (1.36)

This element does exist, because otherwise, if sup Φphp1, Qqq ¥ c � µε for all h P ΓQ,S

then

c � inf
hPΓQ,S

sup Φphp1, Qqq ¥ c� µε,

which is a contradiction. Using properties piq � pviiq of η established in Theorem B.3 we

obtain that g satis�es ph1q�ph5q, that is g P ΓQ,S.We will brie�y comment on some points

of the proof of this statement. To verify ph1q just observe that both h and η are continuous
in the T�topology because it satisfy ph1q and piq, respectively. To obtain ph2q notice that
we choose 0   µ   8 such that sup ΦpQq ¤ c � µε   8 and, therefore, for all u P Q we

obtain u P Φc�µε. Now, using piiiq, we have that gp0, uq � ηp0, hp0, uqq � ηp0, uq for all
u P Q. For the item ph5q, notice that u � gpt, uq � pu � hpt, uqq � phpt, uq � ηpt, hpt, uqqq
for all pt, uq P I � Q. Then, just use the conditions ph5q and pviq to obtain the �nite

dimensional space of E suitable. Since g P ΓQ,S, we obtain that

sup
uPQ

Φpgp1, uqq ¥ c. (1.37)

On the other hand, notice that hp1, Qq P Φpc�µεq and, using the property pvq of the
function η, we have that

gp1, uq � ηp1, hp1, uqq P Φpc�εq for all u P Q,

that is, sup
uPQ

Φpgp1, uqq ¤ c� ε   c, a contradiction with (1.37).
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Therefore, there exist a sequence pujq P Φ
pc�µεq
pc�εq such that

�
1� ||uj||

	
||Φ1pujq|| � ojp1q @ε P

�
0, c� ρ2

�1

4
� δ2

		
(1.38)

and, choosing ε ¡ 0 su�ciently small, it satis�es the conditions that characterize a Cerami

sequence and the proof is �nished.

In the following, let pujq � E be the pCeqc�sequence at the level c obtained in the

previous Lemma 1.9. Then, by de�nition, there is constant M1 ¡ 0 such that

|2Φpujq � Φ1pujqpujq| ¤M1, @j,

and

M1

||uj||s ¥
|2Φpujq � Φ1pujqpujq|

||uj||s

¥ 1

||uj||s
��

p� 2

p

� »
R3

gpxq|uj|pdx� λ

�
2� q

q

������
»
R3

fpxq|uj|qdx
�����
�

¥
�

1

||uj||s
� �

p� 2

p

� »
R3

gpxq|uj|pdx� Λ

�
2� q

q

�
CfC

�q
p ||uj||q�s

for s P pq, p1q, which exist by the relation between the exponents. Thus, for all j P N,

0 ¤ 1

||uj||s
�
p� 2

p

� »
R3

gpxq|uj|pdx ¤ M1

||uj||s � Λ

�
p2� qqCf
qCq

p

�
||uj||q�s. (1.39)

In order to guarantee that Φ de�ned by (1.17) satis�es the Cerami condition, we �rst

verify the boundedness of sequence.

Lemma 1.10. The sequence pujq � E is bounded.

Proof: Arguing indirectly, assume, up to a subsequence, that ||uj|| Ñ 8 as j Ñ 8.
The relation (1.39) implies that there is a constant M2 ¡ 0 and j0 P N such that»

R3

gpxq|uj|pdx ¤M2||uj||s, j ¥ j0. (1.40)

De�ne, for each j P N, the normalized sequence vj � �
uj{||uj||

�
such that

vj � v�j � v0
j � v�j P E�`E0`E�. After passing a subsequence, we have that vj á v P E

and v0
j Ñ v0, since E0 is a �nite dimensional subspace. Notice that, by de�nition, for
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j P N,

Φ1pujqpu�j � u�j q � ||u�j ||2 � ||u�j ||2 �Ψ1pujqpu�j � u�j q. (1.41)

The relation (1.18) and Hölder's inequality implies that�����
»
R3

fpxq|uj|q�2uj � pu�j � u�j qdx
����� ¤M3||uj||q (1.42)

where M3 � M3pf, p, qq ¡ 0 is a constant. Moreover, also the Hölder's inequality and

(1.40) implies that, if j ¥ j0,

�����
»
R3

gpxq|uj|p�2uj � pu�j � u�j qdx
����� ¤ ||g||

1
p
8

� »
R3

gpxq|uj|pdx
� p�1

p

C�1
p ||uj||

¤ ||g||
1
p
8C�1

p

�
M2||uj||s

	 p�1
p ||uj||

¤ ||g||
1
p
8C�1

p M2||uj||s
�
p�1
p

�
�1. (1.43)

Thus, applying the relations (1.42) and (1.43) we obtain

|Ψ1pujqpu�j � u�j q| ¤ ΛM3||uj||q � ||g||
1
p
8C�1

p M2||uj||s
�
p�1
p

�
�1, (1.44)

if j ¥ j0, and from this, we rewrite the (1.41) obtaining

||v�j � v�j ||2 � � 1

||uj||2 Φ1pujqpu�j � u�j q �
λ

||uj||2 Ψ1pujqpu�j � u�j q

¤ ojp1q � ΛM3||uj||q�2 � ||g||
1
p
8C�1

p M2||uj||s
�
p�1
p

�
�1

¤ onp1q,

since spp� 1q   p and pq � 2q   0. Then ||v0
j || � ||v0

j ||L2 Ñ 1 � ||v0||L2 .

For R ¡ 0, set

ΩR � tx P R3 : |v0pxq| ¥ 2Ru and ΩjR � tx P R3 : |pv�j � v�j qpxq| ¥ Ru.

Since v0 P CpR3q and ||v0||L2 � 1, we obtain that
��ΩR

�� ¡ 0 for all R small. Moreover, as

j Ñ 8,

|ΩjR| ¤ 1

R2

»
R3

|pv�j � v�j qpxq|2dx � ojp1q.

Hence, |ΩRzΩjR| Ñ |ΩR| as j Ñ 8. Therefore, there exist j0 ¡ 0 such that |vjpxq| ¥ R
2
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for all x P ΩRzΩjR with j ¥ j0. That is,

2|ujpxq| ¥ R||uj|| for all j ¥ j0 and x P ΩRzΩjR.

This relation allows us to conclude that, for j ¥ j0,»
R3

|ujpxq|pdx ¥
»

ΩRzΩjR

|ujpxq|pdx ¥
�
R

2


p

||uj||p|ΩRzΩjR|,

that is, ||uj||Lp Ñ 8 as j Ñ 8. Then, using the de�nition of Cerami sequence,

M1 ¥ |2Φpujq � Φ1pujqpujq|

¥
�
p� 2

p


 »
R3

gpxq|uj|pdx� λ

�
2� q

q


�����
»
R3

fpxq|uj|qdx
�����

¥
�
p� 2

p



d||uj||pLp � Λ

�
2� q

q

�
Cf ||uj||qLp ,

which is an absurd.

By the above Lemma 1.10, pujq � E is bounded hence, without loss of generality, we

may assume

un á u in E and un Ñ u in LrpR3,C4q for r P r2, 3q, (1.45)

by Lemma 1.3. Certainly, u is a critical point of Φ.

Lemma 1.11. Let pM0q, pH1q, pH2q and 0   λ   Λ. The functional Φ : E Ñ R satis�es

the Cerami condition pCeqc at the level c ¡ 0.

Proof: It follows immediately of (1.45) and the Lemma 1.3 that, as j Ñ 8,

ojp1q �
�

Φ1pujq � Φ1puq
	
pu�j � u�q

� ||u�j � u�||2 �
�

Ψ1pujq �Ψ1puq
	
pu�j � u�q

� ||u�j � u�||2 � ojp1q.

Thus ||u�j � u�||2 � ojp1q and, in a similar way, ||u�j � u�||2 � ojp1q as j Ñ 8. On
the other hand, how pu0

jq � E0 is a bounded sequence in a �nite dimensional space,

it has a convergent subsequence pu0
jk
q. Therefore, pujkq � pujq is a strongly convergent

subsequence and the proof is complete.

Proof of Theorem 1.1: Assume that 0   λ   Λ where Λ was de�ned by (1.22). The

conditions (Φ0) and (Φ1) holds by Lemma 1.8 and Lemma 1.7, respectively, for all a that

satis�es (1.21). By Lemma 1.9, we conclude that Φ possesses a Cerami sequence pCeqc
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at the level 0   κ ¤ c ¤ sup ΦpQq where κ ¡ 0 and the set Q were de�ned in Lemma 1.5

and Corollary 1.1, respectively.

Let pujq this sequence, which is bounded by Lemma 1.10. Hence, without loss of

generality, we may assume

uj á u as j Ñ 8,

where u is a critical point of Φ. By Lemma 1.11, the functional satis�es the Cerami

condition at level c ¡ 0 and, thus,

c� ojp1q � Φpujq � Φpuq � ojp1q as j Ñ 8.

Therefore, Φpuq � c ¡ 0 and u is a nontrivial solution of the problem (1.1).

Notice thatHpx, uq is even in u and Φp0q � 0. The Lemma 1.5 guarantee the hypothesis

(Φ3) and the Lemma 1.6 implies (Φ5). Lemma 1.11 shows that Φ satis�es the Cerami

condition for c ¡ 0, hence Φ has an unbounded sequence of critical values by the Theorem

B.7.
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CHAPTER 2

Ground state solutions for Dirac equations with weak monotonicity

conditions on the nonlinear term

In this chapter, we consider the following version of the Dirac equation

�iα∇u� aβu� V pxqu � gpx, uq, x P R3, (2.1)

under two di�erent sets of hypotheses. First, we assume

gpx, uq � Kpxqfp|u|qu

and consider a set of conditions similar to those considered by [2] and [42] that established

a relation between the potential V and the nonlinearity. That is, the continuous functions

V,K : R3 Ñ R satisfy:

pV K0q V pxq ¡ 0, Kpxq ¡ 0 for all x P R3; V,K P L8pR3q and ||V ||8   a;

pV K1q if pAnq � R3 is a sequence of Borel sets such that its Lebesgue measure |An| ¤ R

for all n P N and some R ¡ 0, then

lim
rÑ8

»
AnXBcrp0q

Kpxqdx � 0 uniformly in n P N. (2.2)

Furthermore, one of the conditions below occurs

(V K2)
K

V
P L8pR3q;

(V K3) there exists s P p2, 3q such that

Kpxq
V pxq3�s Ñ 0 as |x| Ñ 8. (2.3)
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Remark 2.1. In order to simplify the notation, when V and K satisfy the assumptions

set out above, we say that pV,Kq P K.

Moreover, for the continuous nonlinearity f : R� Ñ R, R� .� r0,8q, we assume the

following growth conditions:

(f1) fp0q � 0;

(f2) there are c1, c2 ¡ 0 and p P p2, 3q such that |fpsqs| ¤ c1|s| � c2|s|p�1 for all s P R�;

(f3) lim
tÑ8

F ptq
t2

� 8 where F ptq �
t³
0

fpsqs ds;

(f4) f is non-decreasing on p0,8q.

The our �rst main result concerns the existence of ground state solution to this non-

periodic problem.

Theorem 2.1. Let pV,Kq P K and suppose that f P C0pRq satis�es pf1q � pf4q. Then,
Problem (2.1) possesses a ground state solution.

This option of to choose nonlinearity as a product between a term that only depends on

x and another that only depends on u is justi�ed because the imposed conditions establish

a relationship between nonlinearity and potential function, which are not periodicals.

Thus, we analyse only the operator H0 and consider the potential as an integral part of

the energy functional. The boundedness of this potential is due to the fact that, by relating

to the norms present in the energy functional, we obtain opposite signal coe�cients, which

facilitates the de�nition of one of the norms in function of the other.

Now, for obtaining multiplicity of solutions to Problem (2.1) we assume

pV0q V P CpR3,Rq, 1-periodic in xj, j � 1, 2, 3 and 0 R σpH0 � V q, where σpSq represent
the spectrum of an operator S;

(G1) g is continuous and 1-periodic in xj, j � 1, 2, 3;

(G2) there is c ¡ 0 and p P p2, 3q such that |gpx, uq| ¤ cp1� |u|p�1q;

(G3) gpx, uq � opuq uniformly in x, as |u| Ñ 0;

(G4) Gpx, uq{|u|2 Ñ 8 uniformly in x, as |u| Ñ 8, where Gpx, uq �
u³
0

gpx, sq ds;

(G5) u ÞÑ gpx, uq{|u| is non-decreasing on p�8, 0q and on p0,8q.

Notice that under these assumptions Problem (2.1) is periodic and we have the

following conclusion.
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Theorem 2.2. Suppose V satis�es pV0q and g satis�es pG1q�pG5q. Then, equation (2.1)

possesses a ground state solution. If, moreover, g is odd in u, then Problem (2.1) has

in�nitely many pairs of geometrically distinct solutions.

These kind of hypotheses has already been considered in some cases with the condition

pf4q or pG5q a little stronger. In [42], for example, Figueiredo and Pimenta considered

pV,Kq P K and f P C0pRq satis�es pf1q � pf3q and the following condition

pf 14q f is increasing on p0,8q.

In this case, unlike many authors, they used a new method of approach and through a

Deformation Lemma applied in a appropriately way, obtained a ground-state solution for

the problem involving the Dirac operator similar to Problem (2.1).

Szulkin and Weth, in [62], considered a nonlinear stationary Schrödinger equation

�∆u� V pxqu � fpx, uq, x P RN ,

where f and V satisfy the same set of hypotheses of Theorem 2.2, up to notation, except

for condition pG5q, which has been replaced by

pF 1
5q u ÞÑ fpx, uq{|u| is increasing on p�8, 0q and on p0,8q.

The authors used the Nehari manifold and a auxiliary functional C1 to obtain a ground

state solution. Moreover, if f is odd in u, they obtained multiplicity of solutions using

Krasnoselskii genus.

Considering the Dirac equation, Zhang, Zhang and Zhao [73] studied the periodic

problem

�iα∇u� aβu� V pxqu � fpx, |u|qu, x P R3,

similar to equation (2.1), under the assumptions pG1q�pG5q (with appropriate notation).

Then using the Cerami sequences and Nehari-Pankov manifold, the authors obtained a

existence result and approached the exponential decay of the solution, under the additional

hypotheses that V, f P C1. Moreover, they considered the situation where V and f were

asymptotically periodic in x and also ensured that the problem has at least a ground-

state solution. In this study, although the hypotheses are similar to those considered in

our periodic case, the authors did not obtain multiplicity results and they need require

additional conditions to analyse the exponential decay.

The technique present in our development involves the de�nition of a a functional that

is only locally Lipschitz continuous and the apply a tool suitable exactly at this class of

functionals, Clarke's subdi�erential. First, however, we consider the Generalized Nehari

manifold which was initially instituted by Pankov [54]. Recently, Szulkin and Weth have

ensured that the minimum energy associated functional points restricted to this range
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are also critical points of the unrestricted functional. We analyze the structure of the

set pEpuq XM which, by the monotonous growth of f , can be a point or a line segment.

Thus, it was not possible to establish a homeomorphism between the manifold and the

S1 sphere in E�, as in traditional approaches. Moreover, it was also not possible to

use a deformation lemma and the theory of topological degree, similar to that used by

authors Figueiredo and Pimenta in [42] since the possibility of intersection being more

than one point does not allow to obtain the relations for construct a suitable homotopy.

So, inspired by Paiva ideas [53] we developed some ideas from the Lipschitz continuous

functionals and combine with Krasnoselskii genus to obtain multiplicity results.

2.1 Variational setting

In this section we explore the properties of the free Dirac operator, that is, we consider

just H0 � �iα∇ � aβ without external interaction forces. As mentioned in Appendix

A, this operator is self-adjoint in L2pR3,C4q, unbounded from above and from below.

Moreover, its domain D � DpH0q � H1pR3,C4q is a Hilbert space with the inner product

pu, vqD � xH0u,H0vyL2 � xu, vyL2 .

Let σpSq, σcpSq and σdpSq denote, respectively, the spectrum, the continuous spectrum

and the discrete spectrum (that is, the set of eigenvalues of �nite multiplicity) of a self-

adjoint operator S. It follows from Theorem A.2 and the subsequent further comments,

that the spectrum of operator H0 is σpH0q � p�8,�asYra,�8q and this structure allows
us to obtain a orthogonal decomposition of L2pR3,C4q into

L2pR3,C4q � L� ` L�,

where H0 is negative de�nite (positive de�nite, respectively) in L� (L�, respectively).

Let E � Dp|H0| 12 q the domain of self-adjoint operator |H0| 12 , which is a Hilbert space

equipped with the inner product

xu, vy � Re x|H0| 12u, |H0| 12vyL2 (2.4)

and norm ||u|| � xu, uy 1
2 . Since σpH0q � Rzp�a, aq, one has

a||u||22 ¤ ||u||2 for all u P E.

It follows from the complex interpolation arguments that E � H
1
2 pR3,C4q and || � ||

is equivalent to the usual norm of H
1
2 pR3,C4q. Indeed, E � rD, L2s 1

2
and since D �

DpH0q � H1pR3,C4q, we have that

rD, L2s 1
2
� rH1, L2s 1

2
� H

1
2 .
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Furthermore, using the embedding properties of the fractional space H
1
2 pR3,C4q, we

obtain that E is continuously embedded into LqpR3,C4q for q P r2, 3s and compactly

embedded into LqlocpR3,C4q for q P r2, 3q (see [14, 52]), that is, there is a constant Cq ¡ 0

such that

Cq||u||Lq ¤ ||u|| for all u P E, q P r2, 3s. (2.5)

Moreover, the space E also has a orthogonal decomposition

E � E� ` E�, (2.6)

with E� � E X L�, and this sum is orthogonal with respect to both x�, �y and x�, �yL2 .

On E we de�ne the following functional Φ : E Ñ R associated with Problem (2.1)

Φpuq � 1

2

�
||u�||2 � ||u�||2

	
� 1

2

»
R3

V pxq|u|2dx�
»
R3

Gpx, uqdx, (2.7)

which is a C1pE;Rq functional. Similar to Chapter 1, we can follow the ideias from

[25, 30]) and prove that the critical points of this energy functional are the solutions of

the proposed problem. Therefore our objective is to study this functional in order to

obtain nontrivial critical points. For this, let the following set introduced by Pankov [54]

M � tu P EzE� : Φ1puqpuq � 0 and Φ1puqpvq � 0, for all v P E�u, (2.8)

which is called generalized Nehari manifold or Nehari-Pankov manifold. The assumptions

pV K0q and pf4q, at the nonperiodic case, and the conditions pV0q and pG5q in the periodic

case guarantee that M contains all nontrivial critical points of Φ.

De�ne, as in [62], for u P EzE�

Epuq .� E� ` Ru � E� ` Ru�,pEpuq .� E� ` R�u � E� ` R�u�, (2.9)

where R� � r0,8q. It has been shown in [42] and [62], respectively, that if pf4q is replaced
by pf 14q and pG5q is replaced by pF 1

5q, the intersection pE XM occurs at a unique point

which is the unique global maximum of Φ|
pEpuq. In the development of this work, we will

show that pEpuq XM � H and if w P pEpuq XM there exist 0   σw ¤ 1 ¤ τw such thatpEpuq XM � rσw, τwsw. In other words, this intersection is either a point or a �nite line

segment. We can also show that a point w P rσw, τwsw is a critical point for Φ if and only

if the whole segment rσw, τwsw consists of critical points.

Under the assumptions of Theorem 2.2 we obtain that the functional Φ is invariant

with respect to the action of Z3 given by the translations k ÞÑ up� � kq, k P Z3. Hence, if

u P E is solution, then so is up� � kq. We consider that two solutions u1 and u2 are called

36



geometrically distinct if u2 � u1p� � kq for any k P Z3 and u2 R rσu1 , τu1su1. In Theorem

2.1 there is no Z3�invariance and so u1, u2 are geometrically distinct if u2 R rσu1 , τu1su1.

2.2 The nonperiodic case

At this section, we consider pV,Kq P K and the assumptions pf1q � pf4q holds. Then the

functional (2.7) can be rewrite by

ΦIpuq � 1

2

�
||u�||2 � ||u�||2

	
� 1

2

»
R3

V pxq|u|2dx�
»
R3

KpxqF p|u|qdx, (2.10)

and, for u, v P E, note that

Φ1
Ipuqpvq � xu�, v�y � xu�, v�y � Re

»
R3

V pxqu � v dx� Re

»
R3

Kpxqfp|u|qu � v dx

� Re xu,AvyL2 � Re

»
R3

V pxqu � v dx� Re

»
R3

Kpxqfp|u|qu � v dx.

Here, u � v denotes the usual inner product in C4, that is u � v �
4°
i�1

uivi. The next

proposition, proven by Figueiredo and Pimenta [42], Lemma 3.4, is a compactness result

which is very important and will be used later. We outline the proof to complement our

studies.

Proposition 2.1. Suppose pV,Kq P K. If punq � E a sequence such that un á u in E as

nÑ 8, then

aq if pV K2q holds, then, for all q P p2, 3q,»
R3

Kpxq|un|qdxÑ
»
R3

Kpxq|u|qdx as nÑ 8;

bq if pV K3q holds, then,»
R3

Kpxq|un|sdxÑ
»
R3

Kpxq|u|sdx as nÑ 8.

Proof: For the �rst item, assume that pV K2q holds. Fixed q P p2, 3q and ε ¡ 0, there

exist 0   t0   t1 a positive constant C ¡ 0 such that

Kpxq|t|q ¤ εCpV pxq|t|2 � |t|3q � CKpxqχrt0,t1sp|t|q|t|3, for all t P R.

Denoting Qpuq � ³
R3

V pxq|u|2dx � ³
R3

|u|3dx and A � tx P R3 : t0 ¤ |upxq| ¤ t1u, we
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have »
Bcrp0q

Kpxq|u|qdx ¤ εCQpuq � C

»
AXBcrp0q

Kpxqdx for all u P E.

Since punq is a weakly convergent sequence, by Banach-Steinhaus Theorem C.4, it is

bounded in E. Using the continuous embedding E ãÑ L2pR3,C4q, E ãÑ L3pR3,C4q and
the fact that V P L8pR3q, there exists C1 ¡ 0 such that Qpunq ¤ C1 for all n P N, where
C1 denotes a constant.

On the other hand, denoting An � tx P R3 : t0 ¤ |unpxq| ¤ t1u, it follows that

t30|An| ¤
»
An

|un|3dx ¤ C2, for any n P N,

and then sup
nPN

|An|   �8, where C2 denotes a arbitrary constant. Using the hypothesis

pV K1q there exist a positive radius r ¡ 0 large enough such that, for all n P N,»
AXBcrp0q

Kpxqdx ¤ ε

t31
.

Consequently, for all n P N, »
Bcrp0q

Kpxq|un|qdx ¤ C3ε

where C3 � CpC1, t1q, and then

lim
nÑ8

»
R3

Kpxq|un|qdx �
»
R3

Kpxq|u|qdx,

since in Brp0q we can use the Sobolev embeddings for q P p2, 3q and the continuity of K.

For the second item, de�ne

gptq � V pxqt2�q � t3�q, for every t ¡ 0.

Using the minimum value of this function and combining this fact with pV K3q, we obtain
again the conditions to apply the Banach-Steinhaus Theorem C.4. We can proceed as the

previous case to obtain the expected conclusion about the convergence.

Immediately, using the Lebesgue Dominated Convergence Theorem, Alves and Souto

[2], Lemma 2.2., obtained the following result:
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Corollary 2.1. If un á u in E, then»
R3

KpxqF p|un|qdxÑ
»
R3

KpxqF p|u|qdx as nÑ 8.

Our objective, at this moment, is to study the structure of the set pEpuq XM and, for

this, the next result is crucial.

Proposition 2.2. Let x P R3, t P R� and u, v P C4 such that fp|u|q � 0. Then

hupt, vq .� Re fp|u|qu �
�
t2

2
u� 1

2
u� tv



� F p|u|q � F p|tu� v|q ¤ 0. (2.11)

Moreover, there are 0   su ¤ 1 ¤ tu such that hupt, vq � 0 if and only if t P rsu, tus e
v � 0 (the case su � tu not excluded).

Proof: Note that hu : R � C4 Ñ R and, by the assumption fp|u|q � 0, we obtain

|u| � 0 and, consequently, u � 0. De�ne z � tu� v, t ¥ 0, and suppose that Repu � zq ¤ 0.

Then

hupt, vq � fp|u|q
�
t2

2
� 1

2



|u|2 � tfp|u|qRepu � vq � F p|u|q � F p|z|q

  fp|u|q
�
t2

2
� 1

2



|u|2 � tfp|u|qRepu � vq � 1

2
fp|u|q|u|2 � F p|z|q

� �t
2

2
fp|u|q|u|2 � tfp|u|qRepu � zq � F p|z|q

¤ 0. (2.12)

So, we only need to analyse Repu � zq ¡ 0. Obviously, hup1, 0q � 0 and, moreover, for

C ¡ 0 large enough, if 1
2
fp|u|q   C   8,

hupt, vq   �t
2

2
fp|u|q|u|2 � tfp|u|q Repu � zq � C|z|2 � C|z|2 � F p|z|q

¤ �1

2
fp|u|q|su� z|2 � C|z|2 � F p|z|q

� �1

2
fp|u|q|v|2 � C|z|2 � F p|z|q.

It follows from (f3) that hupt, vq   0 as |z| Ñ 8. So, there is pt0, v0q P B .� tps, wq :

s ¥ 0 and w P C4u such that

hupt0, v0q � max
ps,wqPB

gps, wq ¥ 0 (2.13)

and Re pu � pt0u� v0qq ¡ 0. As

hup0, vq ¤ �1

2
fp|u|q|u|2 � F p|u|q   0,
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the maximum value is attained at some pt0, v0q with t0 ¡ 0. Particularly, for w P C4,

0 � phuq1vpt0, v0qw � t0fp|u|q Repu � wq � fp|t0u� v0|q Reppt0u� v0q � wq
�
�
fp|u|q � fp|t0u� v0|q

	
Reppt0u� v0q � wq � fp|u|q Repv0 � wq.(2.14)

On the other hand,

0 � phuq1tpt0, v0q � fp|u|q Rept0u � uq � fp|u|q Repu � v0q � fp|t0u� v0|q Reppt0u� v0q � uq
�
�
fp|u|q � fp|t0u� v0|q

	
Reppt0u� v0q � uq

and, since Reppt0u� v0q � uq ¡ 0,�
fp|u|q � fp|t0u� v0|q

	
� 0.

Hence, by (2.14), fp|u|q Repv0 � wq � 0 for all w P C4. Using that fp|u|q � 0 we obtain

that v0 � 0 and

fp|u|q � fp|t0u|q � 0.

By (f4) there must exist 0   su ¤ 1 and tu ¥ 1 such that t0 P rsu, tus. From this

relation, we can characterize the maximum point as pt0, v0q : t0 P rsu, tus and v0 � 0.

Moreover, for t P rsu, tus, we have that

fp|u|q � fp|tu|q (2.15)

and

hupt, 0q � fp|u|qu �
�
t2

2
u� 1

2
u



� F p|u|q � F p|tu|q � 0. (2.16)

Then, using that gpt, 0q � gp1, 0q � 0 for all t P rsu, tus and the relation holds, we obtain

the conclusion, that is, hupt, vq ¤ 0 for all pt, vq P B and gpt, vq � 0 if and only if t P rsu, tus
and v � 0.

Corollary 2.2. Suppose u PM, t ¥ 0 and v P E�. Then

Re

»
R3

Kpxq
�
fp|u|qu �

�
t2

2
u� 1

2
u� tv



� F p|u|q � F p|tu� v|q

�
dx ¤ 0 (2.17)

and there are 0   su ¤ 1 ¤ tu such that the equality holds if and only if t P rsu, tus and
v � 0.

It follows from this auxiliary results the following characterization to the set pEpuqXM

when u P EzE�.
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Proposition 2.3. Let u P EzE�. Then:

piq pEpuq XM � H;

piiq if w P pEpuqXM there are 0   sw ¤ 1 ¤ tw such that pEpuqXM � rsw, twsw. Moreover,

ΦIpswq � ΦIpwq, Φ1
Ipswq � sΦ1

Ipwq for all s P rsw, tws and ΦIpzq   ΦIpwq for the others

z P pEpuq.
Proof: For the item (i) see [42]. We outline the proof. De�ne, for any u P EzE� , the

function γu : R��E� Ñ R by γupt, vq � ΦIptu��vq and notice that γu P C1pR��E�,Rq.
Let pt, vq P R� � E� a critical point of γu, that is,

B
Btγupt, vq � 0 and

B
Bvγupt, vqw � 0 for all w P E�. (2.18)

Then,

Φ1
Iptu� � vqptu� � vq � t

B
Btγupt, vq �

B
Bvγupt, vqv � 0

and, for all w P E�,

Φ1
Iptu� � vqw � 0.

Then, tu� � v P M. Conversely, if ptu� � vq P M, we have pt, vq P R� � E� is a critical

point of γu.

In order to obtain that pEpuq XM � H, u P EzE�, we will prove that there exist

tuu
� � vu P pEpuq such that

ΦIptuu� � vuq � max
t¥0, vPE�

ΦIptu� � vq, (2.19)

since that, if this maximum point exist, by the previous analysis, tuu� � vu P M and we

obtain the desired conclusion.

Assume, without loss of generality, that u P E� and ||u|| � 1, since pEpuq � pEpu�{||u�||q.
The �rst step to obtain the maximum point is to guarantee that there exist R ¡ 0 such

that

ΦIpuq ¤ 0, @w P pEpuqzBRp0q.

Arguing by contradiction, suppose that there exist pwnq � pEpuq such that ||wn|| Ñ �8
and ΦIpwnq ¡ 0 for all n P N. Then, there exist ptnq � R� and pvnq � E� such that

wn � tnu� vn and we can de�ne

wn � wn
||wn|| �

tn
||wn||u�

vn
||wn||

.� tnu� vn.

Using that F ptq ¥ 0 in R� it follows that

0   ΦIpwnq
||wn||2 ¤ 1

2
pt2n � ||vn||2q � 1

2
||V ||L8pt2n||u||2L2

� ||vn||2L2q

¤ 1

2

�
t
2
n

�
1� ||V ||L8

a

�
� ||vn||2

�
1� ||V ||L8

a

��
.
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Then, using that t2n � ||vn||2 � ||wn||2 � 1, we obtain, for all n P N,

0 ¤ ||vn||2 ¤ a� ||V ||L8
2a

and 0   a� ||V ||L8
2a

¤ t
2
n ¤ 1.

This implies that there exist t0 ¡ 0 and v0 P E� such that

wn � tnu� vn á w0 � s0u� v0 � 0,

and using the Fatou's Lemma C.1, we obtain that

0 ¤ lim sup
nÑ8

ΦIpwnq
||wn||2 ¤ 1

2
pt20 � ||v0||2q � ||V ||L8

2a
� lim inf

nÑ8

»
tw0pxq�0u

KpxqF p|wn|q||wn||2 dx � �8,

which is an absurd.

Let punq � pEpuq a maximizing sequence such that

lim
nÑ8

ΦIpunq � β
.� max

pEpuq
ΦI ,

which exists because ΦI is bounded from above in pEpuq. Since 0   β   8, it follows from
the above estimates that punq is bounded. So, up to subsequence, there exist u0 P pEpuq
such that un á u0 as n Ñ 8. Using the Corollary 2.1 and the properties of weak upper

semicontinuous functions (for more details see the approach on Proposition 2.7), we obtain

that Φpu0q � β. Therefore, u0 PMX pEpuq and conclude the proof of (i).

For the item (ii), note that if w PM then

ΦIptw � vq ¤ ΦIpwq for all t ¥ 0, v P E�.

Obviously, using the assumption pV K0q, the variational properties from M and Corol-

lary 2.2, it follows that

ΦIptw � vq � ΦIpwq � 1

2

»
R3

V pxq|v|2dx� 1

2
||v||2

�Re

»
R3

Kpxq
�
fp|w|qw

�
t2

2
w � w

2
� rv

�
� F p|w|q � F p|rw � v|q

�
dx

¤ 0. (2.20)

Moreover, there exists 0   sw ¤ 1 ¤ tw such that ΦIptw � vq � ΦIpwq if, and only if,

t P rsw, tws and v � 0.

Let w P pEpuq XM given by (i). Since M � EzE�, we obtain that w� � 0 and there

exists t ¡ 0 and v1 P E� such that w � tu� � v1. Particularly,

u� � t�1pw � v1q. (2.21)
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Clearly w P rsw, twsw. Let z P pEpuq XM and z � w. It follows from (2.21) that there

exists r ¡ 0 and v2 P E� such that z � rw � v2, that is z P pEpwq. So, it follows from
(2.20) that

ΦIpzq ¤ ΦIpwq (2.22)

and the equality holds if and only if r P rsw, tws and v2 � 0, that is, ΦIpzq � ΦIpwq if and
only if z P rsw, twsw. Since also w P pEpzq and z P M, using again the relation (2.20), we

have that ΦIpwq ¤ ΦIpzq. Then ΦIpwq � ΦIpzq and holds pEpuq XM � rsw, twsw.
On the other hand, from the above arguments, if s P rsw, tws then ΦIpswq � ΦIpwq

and

max
zP pEpuq

ΦIpzq � ΦIpwq � ΦIpswq,

that is,

Φ1
Ipswqpzq � 0 for all z P pEpuq.

Since E� � pEpuq and w P pEpuq, it follows that
Φ1
Ipswqpswq � sΦ1

Ipswqpwq � 0 and Φ1
Ipswqpvq � 0 for all v P E�,

that is, sw P pEpuq XM for all s P rsw, tws. Hence pEpuq XM � rsw, twsw. The equality

Φ1
Ipswq � sΦ1

Ipwq follows from the relation fp|sw|q � fp|w|q for all s P rsw, tws in (2.15).

Remark 2.2. It follows from the Proposition 2.3 that if u PM then u P pEpuqXmathcalM
and there exists 0   su ¤ 1 ¤ tu such that ΦIpsuq � ΦIpuq for all s P rsu, tus and
ΦIpzq   ΦIpuq for the others z P pEpuq.
Proposition 2.4. There exists δ ¡ 0 such that

||u�|| ¥ δ for all u PM (2.23)

and

c
.� inf
uPM

ΦIpuq ¡ 0. (2.24)

Moreover, M is closed and ΦI |M is coercive, i.e., ΦIpuq Ñ 8 as u PM and ||u|| Ñ 8.

Proof: The relation (2.24) will be proved �rstly and then we will show that there exists

ρ, α ¡ 0 such that

ΦIpuq ¥ α for all u P E� X BBρp0q. (2.25)
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By the assumptions pf1q and pf2q, for all ε ¡ 0, there is µε ¡ 0 such that

|fpsqs| ¤ ε|s| � µε|s|p�1 for all s P R�,

where p P p2, 3q is like in pf2q. Then, for all u P E�,

ΦIpuq � 1

2
||u||2 � 1

2

»
R3

V pxq|u|2dx�
»
R3

KpxqF p|u|qdx

¥ 1

2
||u||2 � ||K||8

»
R3

�
ε

2
|u|2 � µε

p
|u|p



dx

¥
�

1

2
� C1ε



||u||2 � µεC2||u||p,

¥ α

just by choosing 0   ε   p2C1q�1, for all u P E� such that ||u�|| � ρ, where

ρ
.�
�

1

2C2µε

�
1� 2C1ε

	
 1
p�2

and α � ρ2

2

�1

2
� C1ε

	
¡ 0,

proving the relation (2.25). Now, by the Remark 2.2, for all u PM

ΦIpuq ¥ ΦI

�
ρ

||u�||u
�
�
¥ α ¡ 0,

which guarantee the relation (2.24).

Moreover, if u PM, we obtain

0   c ¤ ΦIpuq � 1

2
||u�||2 � 1

2
||u�||2 � 1

2

»
R3

V pxq|u|2dx�
»
R3

KpxqF p|u|qdx

¤ 1

2

�
a� ||V ||8

a

�
||u�||2 � 1

2

�
a� ||V ||8

a

�
||u�||2

hence

||u�|| ¥
�

2ac

a� ||V ||8

� 1
2

(2.26)

which proves (2.23).

Since ΦIpvq   0 for all v P E�, we obtain that M is closed. Finally, let us prove

the coercivity. Arguing by contradiction, suppose that there exists a sequence punq � M

such that ||un|| Ñ 8 as n Ñ 8 and ΦIpunq ¤ d for some d P rc,8q. Let pvnq � E,

vn
.� un{||un||, which is unitary. After passing to a subsequence we have vn á v in E and
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vnpxq Ñ vpxq a.e. x P R3. Then, for each n P N,

0 ¤ ΦIpunq
||un||2 � 1

2
||v�n ||2 �

1

2
||v�n ||2 �

1

2

»
R3

V pxq|vn|2dx�
»
R3

KpxqF p|un|q||un||2 dx

¤ 1

2

��
a� ||V ||8

a

�
||v�n ||2 �

�
a� ||V ||8

a

�
||v�n ||2

�
,

that is �
a� ||V ||8

a

�
||v�n ||2 ¤

�
a� ||V ||8

a

�
||v�n ||2. (2.27)

Since ||vn||2 � ||v�n ||2 � ||v�n ||2 � 1 we obtain that, for any n P N,

0 ¤ ||v�n ||2 ¤
a� ||V ||8

2a
and 0   a� ||V ||8

2a
¤ ||v�n ||2. (2.28)

On the other hand, pv�n q and pv�n q are bounded, so we may assume that there exists

v�, v� P E such that v�n á v� in E� and v�n á v� in E� as n Ñ 8. Now let us prove

that v� � 0. On the contrary, if v�n á 0 in E�, for all s ¡ 0 �xed, sv�n á 0 in E� and by

Corollary 2.1

d ¥ ΦIpunq ¥ ΦI

�
s

||un||u
�
n

�
� 1

2
||sv�n ||2 �

1

2

»
R3

V pxq|sv�n |2dx�
»
R3

KpxqF p|sv�n q|qdx

¥ s2

2

�
a� ||V ||8

2a

�
� 1

2

»
R3

V pxq|sv�n |2dx� onp1q

¥ s2

4a

�
a� ||V ||8

	
� onp1q,

which is a contradiction for s ¡ 0 large enough. Hence, v� � 0 and vn � v�n � v�n á v
.�

v� � v� � 0 inE as nÑ 8.
Let us de�ne Γ

.� tx P R3; vpxq � 0u, 0   |Γ| ¤ 8. Note that, for all x P Γ,

|unpxq| Ñ 8 and

ΦIpunq
||un||2 �

�
1

2
||v�n ||2 �

1

2
||v�n ||2 �

1

2

»
R3

V pxq|vn|2dx�
»
R3

KpxqF p|un|q||un||2 dx
�

¤ 1

2
� 1

2
||v�n ||2 �

||V ||8
2a

�
»
R3

KpxqF p|un|q||un||2 dx

¤ 1

2

�
2� ||v�n ||2

	
�
»
Γ

KpxqF p|un|q||un||2 dx.

Hence, using Fatou's Lemma C.1, we obtain that
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0 ¤ lim sup
nÑ8

ΦIpunq
||un||2 ¤ 1

2

�
2� ||v�||2

	
� lim inf

nÑ8

»
Γ

KpxqF p|un|q||un||2 dx � �8 (2.29)

which is a contradiction and proves the result.

According the Proposition 2.3, for each u P E�zt0u there exist w P pEpuq XM and

0   sw ¤ 1 ¤ tw such that

mpuq .� rsw, twsw � pEpuq XM � E. (2.30)

This is a multivalued map from E�zt0u to E. However, the map pΨ : E�zt0u Ñ R given

by

pΨpuq .� ΦIpmpuqq � max
zP pEpuq

ΦIpzq (2.31)

is single-valued because ΦI is constant on pEpuq XM, by Proposition 2.3.

Proposition 2.5. The map pΨ is locally Lipschitz continuous.

Proof: This argument follow the ideas from [53], Proposition 2.6 and [62], Lemma 2.11

and we outline the proof. By [17], recall that f : X Ñ R is a locally Lipschitz continuous

functional on a Banach space X if for every x P X, there exists a neighbourhood Nx of x

and a constant Kx ¡ 0 such that

|fpyq � fpzq| ¤ Kx||y � z|| for all y, z P Nx.

If u0 P E�zt0u, there exist a neighbourhood U � E�zt0u of u0 and R ¡ 0 such that

Φpwq ¤ 0 for all u P U and w P pEpuq, ||w|| ¥ R. If not, we can �nd sequences punq,
pwnq such that un Ñ u0, wn P pEpunq, Φpwnq ¡ 0 and ||wn|| Ñ 8. Since u0, u1, u2, ...

is a compact set, it follows from [62], Lemma 2.5, that Φpwq ¤ 0 for some R and all

w P pEpujq, j � 0, 1, 2, ..., ||w|| ¥ R, which is a contradiction.

We may assume without loss of generality that U is bounded and bounded away from

0. Let U,R as above and s1u1 � v1 P mpu1q, s2u2 � v2 P mpu2q, where u1, u2 P U and

v1, v2 P E0 ` E�. Then ||w1||, ||w2|| ¤ R for all w1 P mpu1q, w2 P mpu2q. Using the

maximality property of mpuq and the mean value theorem,

pΨpu1q � pΨpu2q � Φps1u1 � v1q � Φps2u2 � v2q
¤ Φps1u1 � v1q � Φps1u2 � v1q
¤ s1 sup

tPr0,1s
||Φ1ps1ptu1 � p1� tqu2q � v1q|| ||u1 � u2||

¤ C||u1 � u2||,
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where the constant C depends on R but not on the particular choice of points in mpu1q,
mpu2q (because ||s1ptu1�p1�tqu2q�v1|| ¤ C0R for some C0 ¡ 0; recall that U is bounded

and bounded away from 0). Similarly, ||pΨpu2q � pΨpu1q ¤ C||u1 � u2||, and the conclusion

follows.

Therefore, instead of the derivative of pΨ we need another tool that applies to this class

of functionals. We present, now, some basic ideas and concepts from the calculus of gen-

eralized gradients that were �rstly developed by F. H. Clarke and are required to develop

variational methods for nondi�erentiable (locally Lipschitz continuous) functionals. More

details about this can be found [17, 18].

The generalized directional derivative of pΨ at u in the direction v is de�ned by

pΨopu; vq .� lim sup
hÑ0, tÓ0

pΨpu� h� tvq � pΨpu� hq
t

, u P E�zt0u, v, h P E�. (2.32)

The function v ÞÑ pΨopu; vq is subadditive, positively homogeneous (hence, it is convex)

and its subdi�erential BpΨpuq is called the generalized gradient (or Clarke's subdi�erential)

of pΨ at u, that is,

BpΨpuq .� tw P E� : pΨopu; vq ¥ xw, vy for all v P E�u. (2.33)

In a general way, if we consider f : X Ñ R a locally Lipschitz functional on a Banach

space X, we can cite the following properties of the Clarke's subdi�erential:

Proposition 2.6 ([17], Proposition 7.1.1). Assume that f : X Ñ R is a locally Lipschitz

functional on a Banach space X. The generalized gradient

Bfpxq � tw P X�; fopx; vq ¥ pw, vq for all v P Xu,

where fopx; vq is the generalized directional derivative, has the following properties:

piq For each x P X, Bfpxq is convex and ω� � compact subset of X�;

piiq For each w P Bfpxq, we have ||w||X� ¤ Kx;

piiiq Let f : X Ñ R and g : X Ñ R be locally Lipschitz continuous functionals, then

Bpf � gqpxq � Bfpxq � Bgpxq;

pivq For each λ P R,
Bpλfqpxq � λBfpxq;

pvq The set valued mapping x ÞÑ Bfpxq is upper semicontinuous in the following sense:

for each x0 P X, ε ¡ 0 and v P X, there exist δ ¡ 0 such that for each w P Bfpxq
with ||x� x0||   δ, there is w0 P Bfpx0q such that |xw � w0, vy|   ε;
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pviq A functional λ : X Ñ R de�ned by

λpxq � min
wPBfpxq

||w||X�

is lower semicontinuous, that is, lim
xÑx0

λpxq ¥ λpx0q;

pviiq For each v P X, we have

fopx; vq � maxtxξ, vy; ξ P Bfpxqu;

pviiiq Let φ P C1pr0, 1s, Xq and let f : X Ñ R be a locally Lipschitz continuous functional,

then the function h � f � φ : r0, 1s Ñ R is di�erentiable a.e. and

h1ptq ¤ maxtxw;φ1ptqy : w P Bfpφptqqu a.e;

pixq The set valued function x ÞÑ Bfpxq is weak�-closed, that is, if pxiq and pξiq are

sequences in X and X�, respectively, such that ξi P Bfpxiq, xi Ñ x and ξ is a cluster

point (limit point) of pξiq in the weak��topology, then ξ P Bfpxq.

In our approach we consider Since E is a Hilbert space, we may assume via duality that

BpΨpuq is a subset of E�. A point u is called a critical point of pΨ if 0 P BpΨpuq, i.e.pΨopu; vq ¥ 0 for all v P E�. A sequence punq is called a Palais-Smale sequence for pΨ (or

pPSq�sequence) if pΨpunq is bounded and there exist wn P BpΨpunq such that wn Ñ 0. Here

and thereafter, the following notations will be used:

S� .� tu P E� : ||u|| � 1u, TuS
� .� tv P E� : xu, vy � 0u, Ψ

.� pΨ|S� ,
Ψd .� tu P S� : Ψpuq ¤ du, Ψc

.� tu P S� : Ψpuq ¥ cu, Ψd
c
.� Ψc XΨd,

K
.� tu P S� : 0 P BpΨpuqu, Kc

.� Ψc
c XK, BΨpuq .� BpΨpuq,where u P S�.

Remark 2.3. Notice that, if u P S�, there exist an orthogonal decomposition of E into

E � Epuq ` TuS
�. Indeed, Epuq X TuS

� � t0u. On the contrary, there exist 0 � w P
Epuq X TuS

�, that is, there exist t P R and v P E� such that

w � tu� v and xw, uy � 0.

Hence

0 � xw, uy � xtu� v, uy � t||u||2 � xv, uy � t

and then w � v P E�. Since w P TuS� � E� we obtain that w � 0 which is a contradic-

tion.

Let z P Ezt0u since, obviously, z � 0 P Epuq`TuS�. By de�nition, z � z��z� where

z� P E� and z� P E�. If z � z� P E� we can write z � p0u � zq � 0 P Epuq ` TuS
�. If
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not, de�ne t � xz�, uy P R. Then, z � ptu� z�q � pz� � tuq P Epuq ` TuS
�, since

xz� � tu, uy � xz�, uy � txu, uy � 0.

Proposition 2.7. (i) u P S� is a critical point of pΨ if and only if mpuq consists of critical
points of ΦI . The corresponding critical values coincide.

(ii) punq � S� is a Palais-Smale sequence of pΨ if and only if there exist wn P mpunq such
that pwnq is a Palais-Smale sequence for ΦI .

Proof: (i) Let u P S�. The �rst item can be rewritten by: pΨopu; vq ¥ 0 for all v P E� if

and only if mpuq consists of critical points of ΦI . By Remark 2.3, there exist a orthogonal

decomposition E � Epuq ` TuS
� and, by de�nition, Φ1

Ipwqpvq � 0 for all w P mpuq
and v P Epuq. Moreover, since pΨpuq � pΨpσuq, for all σ ¡ 0, and pΨ is locally Lipschitz

continuous, is valid, for s P R �xed, that

|pΨpu� h� tpsuqq � pΨpu� hq| � |pΨpp1� tsqu� hq � pΨpp1� tsqpu� hq| ¤ Ct |s| ||h||

for h P E�, ||h|| and t ¡ 0 small. Then pΨopu; suq � 0 for all s P R. So we only need to

consider v P TuS�.
Let suu�zu P pEpuq, where su ¡ 0 and zu P E�, denote an (arbitrarily chosen) element

of mpuq. Using the Mean Value theorem and the maximizing property of mpuq, we obtain
that

pΨpu� h� tvq � pΨpu� hq � ΦIpsu�h�tvpu� h� tvq � zu�h�tvq � ΦIpsu�hpu� hq � zu�hq
¤ ΦIpsu�h�tvpu� h� tvq � zu�h�tvq
�ΦIpsu�h�tvpu� hq � zu�h�tvq
� tsu�h�tvΦ1

Ipsu�h�tvpu� h� θtvq � zu�h�tvqv

for some θ P p0, 1q (here and below h P E�). Letting subsequences hn Ñ 0 and tn Ó 0, by

the maximizing property of mpu� hn� tnvq and the coercivity of ΦI |M, we conclude that
psnpu� hn� tnvq � znqnPN is a bounded sequence. Then, as nÑ 8, we may suppose that

sn
.� su�hn�tnv Ñ s̃ ¡ 0 and zn

.� zu�hn�tnv á z̃ in E�, where s̃ ¡ 0 follows from (2.23).

Since E is a Hilbert space, V P L8pR3q and C8
c pR3q is a dense subset of E, we obtain

that

pΨopu; vq ¤ s̃Φ1
Ips̃u� z̃qv. (2.34)

Moreover, s̃u� z̃ PM. Indeed, consider

Γpwq � 1

2
||w�||2 � 1

2
||w�||2 � 1

2

»
R3

V pxq|w|2 dx
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and de�ne the Υu : E� Ñ R by Υupvq � Γpu� vq, which is a concave function. Therefore

Υu is weak upper semicontinuous, i.e., if vn á v in E�, then

Υpu� vq ¥ lim sup
nÑ8

Υpu� vnq.

Since snpu�hn� tnvq� zn á s̃u� z̃ in E and snpu�hn� tnvq Ñ s̃ in E�, as nÑ 8,
we have that

lim sup
nÑ8

Υpsnpu� hn � tnvq � znq ¤ Υps̃u� z̃q.

Then, it follows from the Corollary 2.1 that

pΨpuq � lim
nÑ8

ΦIpsnpu� hn � tnvq � znq ¤ ΦIps̃u� z̃q ¤ max
wP pEpuq

ΦIpwq � pΨpuq.
This implies that s̃u � z̃ P pEpuq XM. Since pEpuq XM may be a line segment, it is not

sure that s̃ and z̃ are the same for di�erent v. However, if s̃1, s̃2 and z̃1, z̃2 correspond to

v1 and v2, then by Proposition 2.3,

s̃1u� z̃1 � τps̃2u� z̃2q and Φ1
Ips̃1u� z̃1qv2 � τΦ1

Ips̃2u� z̃2qv2,

for some τ ¡ 0. Taking this into account, we observe that, for all y P BpΨpuq,
xy, vy ¤ pΨopu; vq ¤ τpvqΦ1

Ips̃u� z̃qv, (2.35)

where τ is bounded and bounded away from 0.

It follows from this inequality that u is a critical point of pΨ if and only if mpuq consists
of critical points of ΦI . Indeed, if u is a critical point of pΨ we obtain that pΨopu; vq ¥ 0

for all v P TuS
� and then Φ1

Ips̃u � z̃qv � 0 for all v P TuS
�. Using the orthogonal

decomposition E � Epuq ` TuS
�, this relation ensures that, for w P E,

Φ1
Ips̃u� z̃qpwq � Φ1

Ips̃u� z̃qpptu� w�q � vq
� Φ1

Ips̃u� z̃qptu� w�q � Φ1
Ips̃u� z̃qv

� 0,

where ptu � w�q P Epuq and v P TuS�, that is, s̃u � z̃ is a critical point for ΦI . Then,

by the Proposition 2.3 piiq, the claim follows. Conversely, note that if w P E� by the

orthogonal decomposition, w � tu�v, where t P R and v P TuS�. Then, for all y P BpΨpuq,
xy, wy ¤ pΨopu;wq ¤ pΨopu; tuq � pΨopu; vq ¤ pΨopu; vq ¤ τpvqΦ1

Ips̃u� z̃qv � 0,

since we are assuming that s̃u� z̃ is a critical point for ΦI . Hence xy, wy ¤ 0 for all w P E�

and this implies that y � 0, that is, 0 P BpΨpuq, as desired.
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(ii) The arguments are similar to the previous case. We take yn P BΨpunq and wn P
mpunq. Since ΦI |M is coercive, the boundedness of ΦIpmpunqq implies that pwnq is bounded.
Similarly to (2.35), we see that

xyn, vy ¤ pΨopu; vq ¤ τnΦ1
Ipwnqv, (2.36)

where v P E� and τn is bounded and bounded away from 0. So the conclusion follows.

Remark 2.4. If pwnq � pmpunqq is a Palais-Smale sequence for ΦI , then so is any

sequence pw1
nq � pmpunqq.

Proof of Theorem 2.1 It follows from the Proposition 2.4 that

c � inf
wPM

ΦIpwq � inf
uPS�

Ψpuq ¡ 0.

Using the Ekeland's variational principle, there exist a sequence punq � S� such that

Ψpunq Ñ c and

Ψpwq ¥ Ψpunq � 1

n
||w � un|| for all w P S�.

Let v P TunS� and de�ne znptq � pun � tvq{||un � tv||. Since xun, vy � 0 we obtain that

||un � tv||2 � 1 � Opt2q as tÑ 0. Moreover, pΨpun � tvq � Ψpznptqq and

pΨopu; vq ¥ lim sup
tÓ0

Ψpznptqq �Ψpunq
t

¥ � 1

n
||v|| (2.37)

for some v P TunS�. Note that mpunq is bounded by coercivity of ΦI |M and by the second

inequality in (2.36) we obtain

� 1

n
||v|| ¤ pΨopu; vq ¤ τnΦ1

Ipwnqv, (2.38)

where wn P mpunq � M and τn is bounded and bounded away from 0. This relation

ensures that Φ1
Ipwnqv � onp1q as n Ñ 8 and v P TunS�. By the maximizing property

of mpunq, it follows that Φ1
Ipwnqz � 0 for all z P pEpunq and, then, pwnq is a bounded

Palais-Smale sequence for ΦI . Passing to a subsequence, we may assume that wn á w in

E. Note that w� � 0. Indeed, since pwnq is a Palais-Smale sequence for ΦI there exists

M ¡ 0 such that ΦIpwnq ¤M, for all n P N. Then, if w�
n á 0 in E� for all t ¥ 0,

M ¥ ΦIpwnq
¥ ΦIptw�

n q
� 1

2
t2||w�

n ||2 �
1

2

»
R3

V pxq|tw�
n |2 dx�

»
R3

KpxqF p|tw�
n |qdx

¥ t2

2

�
2ac

a� ||V ||8

�
� onp1q,
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using the Corollary 2.1 and Proposition 2.4, which is a contradiction by t ¥ 0 large enough.

Then wn á w � 0 in E and, by the density arguments, we obtain that Φ1
Ipwq � 0 and

w PM.

It remains to show that ΦIpwq � c. By the assumptions pf1q and pf4q,

c� onp1q � ΦIpwnq � 1

2
Φ1
Ipwnqpwnq

�
»
R3

Kpxq
�

1

2
fp|wn|qwn � wn � F p|wn|q

�
dx

¥
»
R3

Kpxq
�

1

2
fp|w|qw � w � F p|w|q

�
dx� onp1q

� ΦIpwq � onp1q.

Hence ΦIpwq ¤ c. Since w PM, we have that c � inf
zPM

ΦIpzq ¤ ΦIpwq and hence we obtain

the reverse inequality.

2.3 The periodic case

Through this section, assume that pV0q and pG1q � pG5q are satis�ed. Then, considering
the operator AV � H0�V there exists an equivalent inner product in E and, consequently,

an equivalent norm, which will be also denoted by ||�||, such that the associated functional
(2.7) has the following form

ΦIIpuq � 1

2

�
||u�||2 � ||u�||2

	
�
»
R3

Gpx, uqdx,

and, for u, v P E,

Φ1
IIpuqpvq � xu�, v�y � xu�, v�y � Re

»
R3

gpx, uqv dx

� Rexu,AvyL2 � Re

»
R3

gpx, uqv dx.

Remark 2.5. Notice that if pV0q is replaced by

pV 1
0q V � βM, where M P C1pR3, r0,8qq and Mpxq is 1-periodic in xj, j � 1, 2, 3;

we can study the following problem

�iα∇u� pa�Mqβu � gpx, uq, x P R3. (2.39)

Generally, if M P L2
locpR3,Rq, the operator HM � �iα∇ � pa �Mqβ is self-adjoint in
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L2pR3,C4q, unbounded from above and from below. As before, its domain D � DpHMq is
a Hilbert space with an appropriated inner product and D � H1pR3,C4q with equivalent

norms (see [9], Lemma 3.2). Moreover, by Lemma 3.3 in [9], σpHMq � σcpHMq �
p�8, as Y ra,8q and inf σp|HV |q ¤ a � supMpR3q, that is, we also obtain a orthogonal

decomposition of L2pR3,C4q into

L2pR3,C4q � L� ` L�,

where HM is negative de�nite (positive de�nite, respectively) in L� (L�, respectively).

The domain �E� Dp|HM | 12 q of self-adjoint operator |HM | 12 is a Hilbert space equipped with

the following inner product

xxu, vyy .� Rex|HM | 12u, |HM | 12vyL2 (2.40)

and ||u||1 � xxu, uyy 1
2 . It follows from the complex interpolation arguments, similar those

mentioned at the previous section, that �E � H
1
2 pR3,C4q with equivalent norms (see [9],

Lema 3.4). Since �E is a subspace of L2pR3,C4q, it also has a orthogonal decomposition

E � E� ` E�, (2.41)

with E� � EXL�, and this sum is orthogonal with respect to both xx�, �yy and x�, �yL2 . Then,

the solutions of the equation (2.39) will be obtained as critical points of the functional

Φpuq � 1

2

�
||u�||21 � ||u�||21

	
�
»
R3

Gpx, uqdx, (2.42)

which as the same form as ΦII .

Following the same arguments from the previous section we obtain the next results

which are important to study the structure of the set pEpuq XM. Due to the similarity of

the statements they will be omitted.

Proposition 2.8. Let x P R3, t P R� and u, v P C4 such that gpx, uq � 0. Then

hpt, vq .� Re gpx, uq
�
t2

2
u� 1

2
u� tv



�Gpx, uq �Gpx, tu� vq ¤ 0.

Moreover, there are 0   su ¤ 1 ¤ tu such that hpt, vq � 0 if and only if t P rsu, tus e v � 0

(the case su � tu not excluded).

Corollary 2.3. Suppose u PM, s ¥ 0 and v P E�. Then»
R3

hps, vq dx ¤ 0,
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and there are 0   su ¤ 1 ¤ tu such that the equality holds if and only if s P rsu, tus and
v � 0.

With this preliminaries results, we obtain the following characterization to the setpEpuq XM when u P EzE�.

Proposition 2.9. Let u P EzE�. Then:

piq pEpuq XM � H;

piiq if w P pEpuqXM there are 0   sw ¤ 1 ¤ tw such that pEpuqXM � rsw, twsw. Moreover,

ΦIIpswq � ΦIIpwq, Φ1
IIpswq � sΦ1

IIpwq for all s P rsw, tws and ΦIIpzq   ΦIIpwq for the

others z P pEpuq;
piiiq M is closed, c

.� inf
uPM

ΦIIpuq ¡ 0 and ΦII |M is coercive, i.e., ΦIIpuq Ñ 8 as u P M

and ||u|| Ñ 8;

pivq there exists δ ¡ 0 such that ||u�|| ¥ δ for all u PM.

Following the same notations associated with the Clarke's subdi�erential used at

the previous section, we consider for each u P E�zt0u the multivalued map mpuq .�
rsw, twsw � pEpuq XM � E and the map pΨ : E�zt0u Ñ R given by

pΨpuq .� ΦIIpmpuqq � max
zP pEpuq

ΦIIpzq,

which is locally Lipschitz continuous, since we can apply the same arguments used in

Proposition 2.5. Therefore, with small changes at the proof of Proposition 2.7, we obtain

Proposition 2.10. (i) u P S� is a critical point of pΨ if and only if mpuq consists of

critical points of ΦII . The corresponding critical values coincide.

(ii) punq � S� is a Palais-Smale sequence of pΨ if and only if there exist wn P mpunq such
that pwnq is a Palais-Smale sequence for ΦII .

Proof of Theorem 2.2 (Existence) With the same arguments presented at the proof

of Theorem 2.1, we obtain a sequence punq � S� and wn P mpunq � M such that pwnq
is a bounded Palais-Smale sequence for ΦII . Now we may proceed as [62], Theorem 1.1.

Passing to a subsequence, we may assume that wn á w in E. Let yn P R3 satisfy»
B1pynq

|wn|2 dx � max
yPRn

»
B1pyq

|wn|2 dx.

Since ΦII and M are invariant under translations of the form u ÞÑ up� � kq, k P Z3, we

may suppose that pynq is bounded in R3. If»
B1pynq

|wn|2 dxÑ 0 as nÑ 8, (2.43)

54



then, by the Lion's Lemma [69], Lemma 1.21, un Ñ 0 in LppR3q, 2   p   3. Note that

pG1q� pG3q imply that for each ε ¡ 0 there is Cε ¡ 0 such that |gpx, uq| ¤ ε|u| �Cε|u|p�1

for all u P E. Using this relation and the Sobolev embeddings (2.5), we infer that»
R3

gpx,wnqw�
n dx � onp||w�

n ||q as nÑ 8,

hence

onp||w�
n ||q � Φ1

IIpwnqpw�
n q � ||w�

n ||2 �
»
R3

gpx,wnqw�
n dx � ||w�

n ||2 � onp||w�
n ||q

and therefore ||w�
n || Ñ 0, contrary to Proposition 2.9, pivq. Then (2.43) cannot holds and

wn á w � 0 in E. Using the same arguments from the proof of Theorem 2.1, we obtain

that Φ1
IIpwq � 0, w PM and ΦIIpwq � c � inf

zPM
ΦIIpzq, that is, w is a ground state solution

for the problem (2.1).

The remainder of this section is devoted to the proof of multiplicity of solutions and,

for this, we assume that the nonlinearity g � gpx, vq is odd in v. The preliminary results

that will be presented here taken from [53, 62]. For u P S�, let

B�Ψpuq �
!
p P BΨpuq : ||p|| � min

aPBΨpuq
||a||

)
and µpuq � inf

zPS�
t||B�Ψpzq|| � ||u� z||u.

Hence K .� tu P S� : B�Ψpuq � 0u, the function µ is continuous in S� and u P K if

and only if µpuq � 0. Indeed, notice that for u, v, a P S� we have that

µpuq ¤ ||B�Ψpaq|| � ||u� a|| ¤ ||B�Ψpaq|| � ||v � a|| � ||u� v||, (2.44)

and taking the in�mum over a on the right-hand side we obtain µpuq ¤ µpvq � ||u � v||.
In the same way, |µpuq � µpvq| ¤ ||u � v|| and hence, µ is (Lipschitz) continuous. Since

0 ¤ µpuq ¤ ||B�Ψpuq||, it is clear that µpuq � 0 if u P K. If µpuq � 0, there exist an such

that B�Ψpanq Ñ 0 and an Ñ u. Hence, u P K since u ÞÑ ||B�Ψpuq|| is lower semicontinuity

by Proposition 2.6 pviq.

This preliminaries allows us to construct a pseudo-gradient vector �eld H : S�zK Ñ
TS� for Ψ.

Proposition 2.11. There exists a locally Lipschitz continuous vector �eld H : S�zK Ñ
TS� such that ||Hpuq|| ¤ 1 and inftxp,Hpuqy : p P BΨpuqu ¡ 1

2
µpuq for all u P S�zK. If

ΦII is even, the H may be chosen to be odd.

Proof: This proof can be found in [53], Proposition 2.10 and here we outline the
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arguments. Consider u P S�zK, de�ne

vu
.� B�Ψpuq
||B�Ψpuq||

and

χ : w ÞÑ inf
pPBΨpwq

xp, vu � xvu, wywy � 1

2
µpwq, w P S�zK. (2.45)

Since BΨpuq is convex and inf
pPBΨpuq

xp, vuy ¥ ||B�Ψpuq|| ¥ µpuq we conclude that

χpuq ¥ 1

2
µpuq ¡ 0.

Moreover, by Proposition 2.6 (vii),

inf
pPBΨpwq

xp, vu � xvu, wywy � �pΨ0pw; xvu, wyw � vuq (2.46)

and pΨ0 is upper semicontinuous in both arguments. Hence we conclude that χ is lower

semicontinuous and there exists a neighbourhood Uu of u such that χpwq ¡ 0 for all

w P Uu.
Take a locally �nite open re�nement pUuiqiPI (with corresponding points vuiq of the

open cover pUuquPS�zK and a subordinated locally Lipschitz continuous partition of unity

pλiqiPI . So, de�ne

Hpuq .�
¸
iPI
λipuqpvui � xvui , uyuq, u P S�zK, (2.47)

which satis�es the required conditions. Moreover, if Φ is even, then so is Ψ and we may

replace Hpuq by 1
2
pHpuq �Hp�uqq.

In order to obtain in�nitely many geometrically distinct solutions for the problem,

suppose, by contradiction, that this does not occur. Since to each rsw, twsw � M

there corresponds a unique point u P S�, the set K consists of �nitely many orbits

Opuq .�  
up�� kq : u P K, k P Z3

(
. We may choose a subset F � K such that F � �F and

each orbit has a unique representative in F, that is,

F is a �nite set. (2.48)

De�ne qm : M Ñ S�, qmpuq � u�{||u�||. This map is Lipschitz continuous since, for

all u, v PM,

||qmpuq � qmpvq|| � �����
����� u�||u�|| �

v�

||v�||

�����
����� ¤ 2

||u�|| ||pu� vq�|| ¤
�2

δ

	
||u� v||, (2.49)
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where δ ¡ 0 was obtained at Proposition 2.9. Moreover,

κ
.� inft||v � w|| : v, w P K, v � wu ¡ 0. (2.50)

Indeed, there exist vn, wn P F and kn, ln P Z3 such that vnp� � knq � wnp� � lnq for all n
and

lim
nÑ8

||vnp� � knq � wnp� � lnq|| � κ.

De�ne mn � kn � ln. Since F is �nite, after passing a subsequence, vn � v P F and

wn � w P F. Moreover, either mn � m P Z3 for almost n or |mn| Ñ 8. If mn � m P Z3

for almost n then

0   ||vnp� � knq � wnp� � lnq|| � ||v � wp� �mq|| � k, @n.

In the second case, wp� �mnq á 0 and therefore

κ � lim
nÑ8

||v � wp� �mnq|| ¤ ||v|| � 1,

since v P K � S�. So, the relation (2.50) holds.

The next result, related with Palais-Smale sequences for Ψ, is fundamental to obtain an

important property of the corresponding pseudo-gradient �ow (see Proposition 2.13

below).

Proposition 2.12. Let d ¥ c. If pv1
nq, pv2

nq � Ψd are two Palais-Smale sequences for Ψ,

then either ||v1
n � v2

n|| Ñ 0 as nÑ 8 or ||v1
n � v2

n|| ¥ ρpdq ¡ 0, where ρ depends on d but

not on the particular choice of PS-sequences in Ψd.

Notice that by Proposition 2.9, to pvjnq � Ψd there correspond Palais-Smale sequences

pujnq with ujn P mpvjnq, j � 1, 2. Thus, once pujnq have been chosen, we can follow similar

arguments of [62], Lemma 2.14 and analyse two distinct cases: ||u1
n � u2

n||Lp Ñ 0 and

||u1
n � u2

n||Lp Û 0 as nÑ 8, for p P p2, 3q de�ned in pG2q.

Let H the vector �eld constructed in Proposition 2.11 and consider the �ow

η : GÑ S�zK given by #
d
dt
ηpt, wq � �Hpηpt, wqq
ηp0, wq � w

where

G
.� tpt, wq : w P S�zK, T�pwq   w   T�u

and pT�pwq, T�pwqq is the maximal existence time for the trajectory t ÞÑ ηpt, wq in

negative and positive direction. Notice that, by Proposition 2.6 pviiiq and the Proposition
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2.11,

d

dt
Ψppηpt, wqq ¤ sup

pPBΨpηpt,wqq
xp,�Hpηpt, wqqy � � inf

pPBΨpηpt,wqq
xp,Hpηpt, wqqy   �1

2
µpwq   0,

that is, t ÞÑ Ψpηpt, wqq is strictly decreasing.

The following result is important for deformation type arguments.

Proposition 2.13. For each w P S�zK the limit lim
tÑT�pwq

ηpt, wq exists and is a critical

point of Ψ.

The proof of this result is an adaptation from a similar result contained on [62] and in

their development the authors consider the possibilities T�pwq   8 and T�pwq � 8. In
the �rst case, they used the de�nition of η and the maximality property of T�pwq. In the

second one, using the properties of pseudo-gradient vector �eld H and the function µ the

authors obtain that for each ε ¡ 0 there exist tε ¡ 0 such that ||ηptε, uq � ηpt, uq||   ε,

which guarantee that lim
tÑT�pwq

ηpt, wq exists.

In the following, for a subset P � S� and β ¡ 0, we put

UβpP q .� tw P S� : distpw,P q   δu. (2.51)

Lemma 2.1. Let d ¥ c. Then for each β ¡ 0 there exists ε ¡ 0 such that Ψd�ε
d�εXK � Kd

and

lim
tÑT�pwq

Ψpηpt, wqq   d� ε (2.52)

for all w P Ψd�εzUβpKdq.

Proof: Since F is �nite, the �rst part holds for ε ¡ 0 small enough. Suppose, without

loss of generality, that UβpKdq � Ψd�1 and β   ρpd � 1q (ρ is from Proposition 2.12).

De�ne

τ
.� inf

 
µpwq : w P UβpKdqzUβ

2
pKdq

(
. (2.53)

We claim that τ ¡ 0. Indeed, if not, there exist pv1
nq � UβpKdqzUβ

2
pKdq such that

µpv1
nq Ñ 0. By de�nition of µ, there exist pw1

nq such that

||v1
n � w1

n|| Ñ 0 and ||B�Ψpw1
nq|| Ñ 0 as nÑ 8. (2.54)

Hence, pw1
nq is a (PS)-sequence for Ψ. Using that F is �nite and Ψ is Z3�invariant,

we may assume that, up to subsequence, w1
n P Uβpw0qzUβ

2
pw0q for some w0 P Kd. Let

pv2
nq such that v2

n Ñ w0 as n Ñ 8. Since µ is continuous and w0 P Kd, we obtain that
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µpv2
nq Ñ 0. Repeating the previous argument, we obtain another (PS)-sequence for Ψ,

denoted by pw2
nq, such that ||v2

n � w2
n|| Ñ 0 as nÑ 8. So, we obtain

β

2
¤ lim sup

nÑ8
||w1

n � w2
n|| ¤ β   ρpd� 1q, (2.55)

which contradict the Proposition 2.12. Hence τ is positive.

Consider ε  
�βτ

4

	
such that Ψd�ε

d�ε XK � Kd. By Proposition 2.13, the unique way

that (2.52) can fail is that ηpt, wq Ñ v P Kd as tÑ T�pwq for some w P Ψd�εzUβpKdq. In
this case, consider

t1 � suptt P r0, T�pwqq : ηpt, wq R Uβpvqu
t2 � inftt P rt1, T�pwqq : ηpt, wq P Uβ

2
pvqu.

Then,

β

2
� ||ηpt1, wq � ηpt2, wq|| ¤

t2»
t1

||Hpηpt, wqq|| dt ¤ pt2 � t1q

and

Ψpηpt2, wqq �Ψpηpt1, wqq ¤
t2»
t1

sup
pPBΨpηpt,wqq

xp,�Hpηpt, wqqydt ¤ �1

2

t2»
t1

µpηpt, wqqdt ¤ �βτ
4
.

Hence

Ψpηpt2, wqq ¤ Ψpηpt1, wqq � βτ

4
¤ Ψpηp0, wqq � βτ

4
¤ d� ε� βτ

4
  d (2.56)

and ηpt, wq Û v P Kd, since Ψ is strictly decreasing along trajectories of η. So we obtain

a contradiction and hence the proof is complete.

Proof of Theorem 2.2 (Multiplicity) For j P N, we consider the family Σj of all closed

and symmetric subsets A � S� with γpAq ¥ j, where γ denotes the usual Krasnoselskii

genus (see, e.g. [55, 60]), that is,

γpAq .� min
 
m P N : there exist an odd continuous map ϕ : AÑ Rmzt0u(. (2.57)

Particularly, γpAq .� 8 if there does not exist a �nite m and γpHq � 0. For A and B

closed and symmetric subsets, we can stablish the following important properties for the

usual Krasnoselskii genus:

(i) (Mapping property) If there exists an odd map f P CpA,Bq, then γpAq ¤ γpBq;

(ii) (Monotonicity property) If A � B, then γpAq ¤ γpBq;
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(iii) (Subadditivity) γpAYBq ¤ γpAq � γpBq;

(iv) (Continuity property) If A is compact and 0 R A, then γpAq   8 and there is β ¡ 0

such that UβpAq is a closed and symmetric subset and γpUβpAqq � γpAq, where
Uβp�q is de�ned in (2.51).

Consider the nondecreasing sequence of Lusternik-Schnirelman values for Ψ de�ned

by

ck
.� inftd P R : γpΨdq ¥ ku pk P Nq.

To ensure that F is not �nite, let's show that, for all k P N,

Kck � H and ck   ck�1. (2.58)

De�ne, for k P N, d � ck. Using the property pivq from the genus, there exist β ¡ 0

such that γpUq � γpKdq, where U � UβpKdq and β   κ
2
(κ ¡ 0 is de�ned by (2.50)).

Consider ε � εpβq ¡ 0 such that the conditions of Lemma 2.1 holds. Hence, for

w P Ψd�εzU there exist t0 P r0, T�pwqq such that Ψpηpt0, wqq   d � ε and we may de�ne

the entrance time map e : Ψd�εzU Ñ r0,8q by

epwq � inf
 
t P r0, T�pwqq : Ψpηpt, wqq ¤ d� ε

(
. (2.59)

Notice that epwq   T�pwq and e is continuous and even map. Consequently,

h : Ψd�εzU Ñ Ψd�ε, hpwq � ηpepwq, wq

is continuous and odd. Hence, using the properties of genus, we obtain that

γpΨd�εq � γpUq ¤ γpΨd�εzUq ¤ γpΨd�εq ¤ k � 1.

Since γpUq ¤ γpUq � γpKdq we obtain

γpKdq ¥ γpΨdq � k � 1.

It follows from the de�nition of d � ck and ck�1 that, if ck   ck�1, then γpKdq ¥ 1.

Also, if ck � ck�1, then γpKdq ¡ 1. On the other hand, using that κ ¡ 0, we obtain that

γpKdq ¤ 1 (depending on Kd is empty or not). Therefore γpKdq � 1, that is, the relation

(2.58) holds.

This imply that there is an in�nite sequence p�wkq of pairs of geometrically distinct

critical points of Ψ with Ψpwkq � ck, contrary to (2.48), and the proof of Theorem 2.2 is

�nished.
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CHAPTER 3

Solutions of nonlinear Dirac equations with possibly sign-changing

potentials and asymptotically linear nonlinearities

In this chapter, using variational methods, we deal the existence of solution for the

following problem:

�iα∇u� aβu�W pxqu � fpx, uq in R3, (3.1)

where W pxq � Mpxq � λV pxqI4, I4 denotes the 4 � 4 identity matrix and λ ¡ 0 is a

parameter. Moreover, the matrix Mpxq and the real function V : R3 Ñ R satisfy:

(M1) Mpxq � pMjkpxqq1¤j,k¤4 symmetric, real, de�ned a.e. in R3 and continuous in

R3zt0u such that

0 ¡Mpxq ¥ �k
|x| , where k   1

2
; (3.2)

(V0) V P LσpR3,Rq, σ .� p
p�2

, p P p2, 3q, such that V� � 0.

Notice that by the assumption pM1q, for each x P R3zt0u, the matrixMpxq is negative
de�nite, that is, their eigenvalues ξjpxq, j � 1, 2, 3, 4 are negative, but not essentially

distinct. Moreover, by de�nition, the following relation is valid:

�k
|x| ¤ ξjpxq   0, @j � 1, 2, 3, 4

and

max
1¤j¤4

t|ξjpxq|u � op|x|q as |x| Ñ 8.

Then there exist a invertible matrix Qpxq and a diagonal matrix Dpxq, whose elements
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are the eigenvalues of Mpxq, such that

W pxq � QpxqDpxqQ�1pxq � V pxqQpxqQ�1pxq � Qpxq�Dpxq � V pxqI4

�
Q�1pxq,

that is, for each x P R3zt0u, the matrix W pxq is also diagonalizable and its eigenvalues

has the following form

αjpxq � ξjpxq � λV pxq, j � 1, 2, 3, 4,

thus enabling the potential to present a signal change.

The Coulomb type potentials are considered, for example, at the studies developed by

Ding and Ruf [32]. In this case, the authors using the condition pM1q with κ  
?

3
2

and

demonstrated the existence and multiplicity of solutions for a problem with asymptotically

linear nonlinearity when |u| Ñ 8. The authors also considered the semi-classical case with

potential Mpxq � V pxqβ, where V : R3 Ñ R is a real function that is nonpositive at some

point. In this case, the potential is scalar and the results obtained relate the existence

and multiplicity of solutions to the parameter ε2 :� ~ in the equation

�iε2α∇u� pa� V pxqqβu � Rupx, |u|qu, x P R3.

Zhang, Zhang and Zhao [73] used the generalized Nehari manifold and variational

methods to study a Dirac equation with potential and nonlinearity asymptotically periodic

in x. Under suitable assumptions, the authors combined generalized linking theorems [48]

and diagonal method [63], [64] to construct a bounded Cerami sequence whose weak limit

is exactly the ground-state solution. In addition, they studied properties of these solutions,

such as its exponential decay.

It is important to mention that, in this case, the potential function V may also present

a signal change. In this sense, we also have the recent work developed by Chen and Jiang

[19], where the authors studied the following problem

�iα∇u� βu� V pxqu � ∇F puq, x P R3,

with a potential V that can change the signal and satis�es suitable conditions in order that

the essential spectrum σepT q of T .� �iα∇�β�V it be p�8, 1sYr1,8q and the operator

has in�nitely many eigenvalues in p�1, 1q which accumulate in 1. The nonlinearity satis�es

a resonant condition in essential spectrum of T . To ensure the existence and multiplicity

of solutions it was demonstrated that the functional satis�es the Cerami condition (see

De�nition B.1) and used a critical point theorem presented in [6].

In our approach, let rewrite the problem (3.1) as follows

�iα∇u� aβu�Mpxqu � fpx, uq � λV pxqu, x P R3, (3.3)
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and consider the operator H � H0 �M, where H0 � �iα∇� aβ.

Lemma 3.1. Suppose pM1q holds. Then H is self-adjoint with DpHq � H1pR3,C4q and

σepHq � Rzp�a, aq and σdpHq X p�a, aq � H, (3.4)

where σe denotes the essential spectrum and σd denotes the discrete spectrum of H.

Proof: For the �rst part of this proof, see [36], Lemma 2.1. We outline the proof.

Letting Wkpxq � κ
|x| , it follows from pM1q that ||Mu||2L2 ¤ ||Wku||2L2 . Then, by the Kato's

inequality,

||Wku||2L2 ¤ 4κ2||∇u||2L2 ¤ 4κ2||H0u||2L2 .

Recall that by Kato-Rellich theorem (see [20] IX.2, Theorem 2), if 2κ   1, H is self-

adjoint and σpHq � Rzp�p1 � 2κqa, p1 � 2κqaq. Using the results presented in Appendix

A, Theorem A.4 and their Remarks, we obtain that

σepHq � σepH0q � Rzp�a, aq.

To characterize the eigenvalue in the spectral gap p�a, aq, consider the minmax principle

developed by Morozov and Müller, [51], Theorem 2, which use in their proof sesquilinear

forms and was developed precisely for the H0 operator when combined with Coulomb

type potentials.

Remark 3.1. If Mpxq � κ
|x| , Kato has proved in [45], Theorem 5.10, that H � H0 �M

de�ned on C8
0 pR3zt0uq is self-adjoint if |κ|   1

2
. On the other hand, for κ  

?
3

2
, Thaller

[65], Theorem 4.4, proved that H is essentially self-adjoint on C8
0 pR3zt0uq and self-adjoint

on DpH0q.
To matrix potentials, also Thaller [65], Theorem 4.2, has considered M a hermitian

matrix such that each component Mij is a function that satis�es |Mijpxq| ¤ κ
2|x| � b for

all x P R3zt0u, i, j � 1, 2, 3, 4 for some constants κ   1 and b ¡ 0. Then, based on the

Kato-Rellich theorem, he concluded that H is essentially self-adjoint on C8
0 pR3zt0uq and

self-adjoint on DpH0q.
As some of the results for the scalar Coulomb potentials can be extended for matrix

potentials, it is expected that for a hermitian matrix that satis�es sup
x
|x||Mpxq|   κ with

|κ|  
?

3
2

we also obtain the essential self-adjointness for H. Indeed, this is not true.

Arai [3] demonstrated that for any ε ¡ 0 there exists an Hermitian symmetric potential

Qεpxq satisfying |x||Qεpxq|   1
2
� ε for which the Dirac operator H is not essentially

self-adjoint.

About the nonlinearity fpx, uq, we consider the asymptotically linear case, that is, f

is a Carathéodory function and it satis�es:

pF1q fpx, uq � op|u|q as |u| Ñ 0 uniformly in x P R3;
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pF2q fpx, uq �Qpxqu � op|u|q uniformly in x P R3 as |u| Ñ 8, where Q : R3 Ñ p0,8q is
a continuous function and there is q0 ¡ inf σpHq X p0,8q that satis�es Qpxq ¥ q0

for all x P R3;

pF3q τ
.� lim sup

|x|Ñ8

�
sup
u

|fpx, uq|
|u|



  a;

pF4q pF px, tq .� 1
2
fpx, tqt � F px, tq ¥ 0 and there are constants D ¡ 0 and R ¡ 0 such

that

pF px, tq ¥ D if |t| ¡ R.

With this conditions we can state our main result.

Theorem 3.1. Suppose pM1q, pV0q, pF1q - pF4q be satis�ed. Then, there is Λ ¡ 0 such

that, for 0   λ   Λ, the problem (3.1) has at least a nontrivial solution. If F px, uq is
even in u, equation (3.1) has l pairs of solutions, where l will be de�ned in (3.13).

Remark 3.2. Notice that the condition pF3q is equivalent to

pF3q lim sup
|x|Ñ8

|fpx, uq|
|u|   a uniformly in u;

Our work has a signi�cant contribution since it combines a potential, which can present

a signal change, with an asymptotically linear nonlinearity at in�nity. The Coulomb

potential considered is very important because it represents an interaction with an eletric

�eld due to a point charge. Observing the properties obtained in the spectral structure of

operator H, the authors chose to rewrite the problem and consider the term that involves

the potential as a potential on the right. This operation allowed us establish all the

conditions for a new orthogonal decomposition on E space as a sum of two subspaces

being one of them with �nite dimension, which helped the proof of boundedness of a

Cerami sequence associated with the energy functional.

However, the signal change of the potential on the right and the decomposition or-

thogonal E � E� ` E0 ` E� does not allow the authors to obtain a condition pΦ1q
from Bartsch and Ding critical point Theory presented in Appendix B, since it has no

estimates about the elements of the kernel of H. Therefore, it uses another more classic

result concerning the in�nite linking argument, due to Benci and Rabinowitz [55]. This

result consists of adequately rewriting the functional so that each element satis�es proper

conditions and, combining with linking argument, to ensure the existence of an critical

nontrivial value.

Remark 3.3. The following are examples where the conditions pF1q � pF4q holds.
a. F px, uq � 1

2
Qpxqu � u

�
1� 1

lnpe�|u|q

	
;

b. fpx, uq � gpx, |u|qu, where gpx, sq is even in s; gpx, sq Ñ 0 as s Ñ 0 uniformly in

x; gpx, sq is non-decreasing for s P r0,8q and gpx, sq Ñ Qpxq as sÑ 8.
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Remark 3.4. By the assumptions pF1q � pF3q we obtain that, for any ε ¡ 0, given

p P r2, 3q, there is constant µε ¡ 0 such that

|fpx, tq| ¤ ε|t| � µε|t|p�1 and |F px, tq| ¤
�
ε

2



|t|2 �

�
µε
p



|t|p, for all px, tq. (3.5)

3.1 Variational Setting

Consider the operator H � H0 �M , where H0 � �iα∇ � aβ and M satis�es pM1q. Its
domain is contained in the space H1pR3,C4q and it is a self-adjoint operator in L2pR3,C4q.
The relations (3.4) and a ¡ 0 induces a orthogonal decomposition of L2pR3,C4q into

L2 � L� ` L� ` L0,

where H is negative de�nite (positive de�nite, respectively) in L� (L�, respectively) and

L0 � KerpHq.
Let E .� Dp|H| 12 q be the domain of self-adjoint operator |H| 12 , which is a Hilbert space

equipped with the inner product

xu, vy .� x|H| 12u, |H| 12vyL2 � xP0u, P0vyL2 ,

where P0 : L2 Ñ L0 denotes the projection of L2 in the subspace L0. This inner product

induces in E � L2pR3,C4q a norm de�ned by ||u|| � xu, uy 1
2 and the following decompo-

sition

E � E� ` E� ` E0, where E� � E X L� and E0 � L0,

which is orthogonal with respect to both inner products x�, �y and x�, �yL2 . With this prop-

erties, and using interpolation theory, Ding and Ruf [32], Lemma 3.3, proved important

relations of embedding. Here, we outline the proof.

Lemma 3.2. The embedding E ãÑ H
1
2 pR3,C4q is continuous; moreover, the embedding

E ãÑ LspR3,C4q is continuous for all s P r2, 3s and E ãÑ LrlocpR3,C4q compactly for all

r P r2, 3q.

Proof: Notice that the norm ||u||H1 of H1pR3,C4q is equivalent to the one given by����|H0|u
����
L2 , where as usual |H0| denotes the absolute value of H0. Hence, by complex in-

terpolation theory, the norm ||u||
H

1
2
of H

1
2 is equivalent to the one given by

����|H0|u
����
L2 .

Remark that by the spectral structure, 0 is at most an isolated eigenvalue of �nite mul-

tiplicity of H. We will de�ne some notations that will be useful to prove just this result.

De�ne the (strictly) positive selfadjoint operator acting in L2pR3,C4q

H
.� |H| � P0 with DpHq � DpHq.

65



where P0 : E Ñ L0 denotes the projection of E onto E0. The space DpHq is a Hilbert

space with the norm

||u||H .� ||Hu||L2 � �����|H|u����2
L2 � ||P0u||2L2

� 1
2

and, since DpHq � H1, we have

||u||
H

1
2
¤ c1||u||H for all u P DpHq.

Therefore, by complex interpolation,

||u||
H

1
2
¤ c2

����|H0| 12u
����
L2 ¤ c3||H

1
2
u||L2 � c3||u||

for all u P DpHq, where c1, c2, c3 are constants.

Remark 3.5. We will denote Cr ¡ 0 the constant of embedding of E in LrpR3,C4q, that
is, for u P E,

Cr||u||Lr ¤ ||u||.

Remark 3.6. From the continuous embedding E ãÑ H
1
2 pR3,C4q, there exist k1 ¡ 0 such

that

||v|| ¤ k1||v||H 1
2
, @v P E. (3.6)

On the other hand, since C8
c pR3,C4q is a dense subset of H

1
2 pR3,C4q, if v P E �

H
1
2 pR3,C4q is any element, there exist a sequence pφjq � C8

c pR3,C4q such that

||φj � v||
H

1
2
� ojp1q, as j Ñ 8.

That is,

||φj � v|| ¤ k1||φj � v||
H

1
2
� ojp1q, as j Ñ 8.

The relations (3.4) guarantee that there is at least one element of the discrete spectrum

of H contained in the interval p�a, aq and, thus, it is possible to �nd γ ¡ 0 such that

τ   γ   a (3.7)

and there is at least one eigenvalue of H in r�γ, γs. Let ηj be the eigenvalue in r�γ, γs
and fj the respective eigenfunctions associated for j � 1, 2, ..., n. Setting

Ld � spantf1, f2, ..., fnu,
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we have another orthogonal decomposition

L2 � Ld ` Le (3.8)

and, consequently,

E � Ed ` Ee, where Ed � Ld and Ee � E X Le,

which is a orthogonal decomposition with respect to both the inner products x�, �y and
x�, �yL2 .

It follows from the assumption pF3q and the relation p3.7q, that there are γ0 P pτ, γq
and R0 ¡ 0 such that

sup
|x|¥R0

�
sup
u

|fpx, uq|
|u|

�
  γ0.

So, if

D �  
x P R3 : |x|   R0

(
, (3.9)

we have that

sup
u

|fpx, uq|
|u|   γ0 in R3zD.

Moreover, since γ0   γ, there exist s ¡ 0 such that

γ0

γ
  s   1 (3.10)

and this constant will be used later.

As we said before, consider the following problem

�iα∇u� aβu�Mpxqu � fpx, uq � λV pxqu, x P R3, (3.11)

whose energy functional associated is denoted by Φ : E Ñ R and described by

Φpuq � 1

2
p||u�||2 � ||u�||2q � λ

2

»
R3

V pxq|u|2dx�
»
R3

F px, uqdx, (3.12)

that lies in C1pE,Rq. Additionally, for u, v P E,

Φ1puqpvq � xu�, v�y � xu�, v�y �
»
R3

V pxqu � v dx�
»
R3

fpx, uq � v dx,
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where pu � vq denotes the inner product in C4, that is u � v �
4°
i�1

uivi. It is well known

(see [25], [30]) that the critical points of this energy functional are the solutions of the

proposed problem and therefore our objective is to study this functional in order to

obtain a nontrivial critical points. This existence will be ensured by the theorems from

critical points theory for strongly inde�nite problems, which was state in Appendix B.

Throughout this chapter we consider Y � E� and X � pE0 ` E�q.

3.2 Linking structure

At this section we obtain the linking structure to functional Φ, which will be used to

guarantee the existence of critical points.

Lemma 3.3. There is ρ ¡ 0 and Λ1 ¡ 0 such that k
.� inf ΦpBBρ X E�q ¡ 0 whenever

0   λ   Λ1.

Proof: It follows from (3.5) that, for any ε ¡ 0, given p P r2, 3q, there is constant

µε ¡ 0 such that

|F px, uq| ¤
�
ε

2



|t|2 �

�
µε
p



|t|p

for all u P E. Since pV0q holds, consider Λ1 � p1�sqC2
p

||V ||Lσ where s   1 was de�ned by (3.10).

For any u P E� we have

Φpuq � 1

2
||u||2 � λ

2

»
R3

V pxq|u|2 dx�
»
R3

F px, uq dx

¥ 1

2
||u||2 � Λ1

2
||V�||σC�2

p ||u||2 � ε

2C2
2

||u||2 � µε
pCp

p
||u||p

¥
�
s

2
� ε

2C2
2



||u||2 � µε

pCp
p
||u||p,

since ||V�||σ ¤ ||V ||σ. Thus, choosing 0   ε  
�
sC2

2

2



, we obtain the conclusion for

||u|| � ρ and ρ su�ciently small.

By the assumption pF2q, consider l the number of elements in the p0, q0q X σdpHq. If
we arrange these eigenvalues, counted in multiplicity, we obtain

0   µ1 ¤ µ2 ¤ � � � ¤ µl   q0 (3.13)

and, if we denotes the corresponding eigenfunctions ej, 1 ¤ j ¤ l, we can de�ne the

subspace

Y0 � spante1, e2, ...elu, (3.14)

68



for which it is valid that

µ1||w||2L2 ¤ ||w||2 ¤ µl||w||2L2 , w P Y0.

De�ne EF � E0 ` E� ` F , where F is any subspace Y0 � E� and Λ ¡ 0 by

Λ
.� min

#
p1� sqC2

p

||V ||Lσ ,
q0C

2
p

||V ||LσK2
,
pq0 � µlqC2

p

2q0||V ||Lσ

+
(3.15)

where K ¡ 0 is the equivalence constant of norms in E0

||w0|| ¤ K||w0||L2 , for all w0 P E0,

which exist since dimpE0q   8.

Lemma 3.4. Let ρ ¡ 0 be the constant from Lemma 3.3 and 0   λ   Λ. Thus there is

RF ¡ 0 such that

sup ΦpEF q   8 and Φpuq   inf ΦpBBρ X E�q

for all u P EF and ||u|| ¥ RF .

Proof: It is su�cient to show that

Φpuq Ñ �8, as ||u|| Ñ �8, u P EF .

Suppose, by contradiction, that there is a sequence punq � EF with ||un|| Ñ �8 and

k ¡ 0 such that

Φpunq ¥ �k, @n. (3.16)

De�ne the sequence pvnq � E by vn � un{||un||, which is unitary. Hence, up to a

subsequence, there is v P E such that vn á v in E as nÑ 8, that is,

v�n á v�, v�n Ñ v� P Y0 and v0
n Ñ v0, as nÑ 8,

since dimpE0q   8. Notice that v � 0. Indeed, if v � 0 we had that v á 0 and, using the

continuity from projection operator,

1 � ||vn||2 � ||v0
n||2 � ||v�n ||2 � ||v�n ||2 � ||v�n ||2 � onp1q, as nÑ 8,

that is,

||v�n ||2 � 1� onp1q, as nÑ 8. (3.17)
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On the other hand, using the Hölder's inequality, as nÑ 8, we obtain

Φpunq
||un||2 � 1

2

�
||v�n ||2 � ||v�n ||2

	
� λ

2

»
R3

V pxq|vn|2 dx� 1

||un||2
»
R3

F px, unq dx

¤ 1

2

�
||v�n ||2 � ||v�n ||2

	
� Λ

2
||V ||σC�2

p

�
||v�n ||2 � ||v�n ||2 � ||v0

n||2
	

¤ 1

2

�
||v�n ||2 � ||v�n ||2

	
� Λ

2
||V ||σC�2

p ||v�n ||2 � onp1q.

By (3.16) and the above estimate, we obtain

0 ¤ s||v�n ||2 ¤
�

1� Λ||V ||σC�2
p

	
||v�n ||2 ¤ ||v�n || �

2k

||un||2 � onp1q � onp1q,

that is,

||v�n || � onp1q as nÑ 8,

a contradiction with p3.17q. Then, we conclude that v � 0.

It follows from pv�n qn � F that v� P F. Moreover, if

gpvq .�
�

1� Λ||V ||σ
C2
p



||v�||2 �

�
1� Λ||V ||σ

C2
p



||v�||2 �

�
Λ||V ||σ
C2
p



||v0||2 �

»
R3

Qpxq|v|2dx,

we obtain that gpvq   0. Indeed, since the relations (3.13) and (3.15) are valid, we have

that��
1� Λ||V ||σ

C2
p



µl � q0

�
  pµl � q0q �

�
Λ||V ||σ
C2
p



q0 ¤ pµl � q0q � pq0 � µlq

2
  0

and �
Λ||V ||σK2

C2
p



� q0 ¤ q0

2
� q0   0.

Then,

gpvq ¤
�

1� Λ||V ||σ
C2
p



||v�||2 �

�
1� Λ||V ||σ

C2
p



||v�||2 �

�
Λ||V ||σ
C2
p



||v0||2 � q0||v||2L2

¤
�

1� Λ||V ||σ
C2
p



µl||v�||2L2 �

�
1� Λ||V ||σ

C2
p



||v�||2 �

�
Λ||V ||σ
C2
p



K2||v0||2L2 � q0||v||2L2

�
��

1� Λ||V ||σ
C2
p



µl � q0

�
||v�||2L2 �

��
Λ||V ||σK2

C2
p



� q0

�
||v0||2L2

�
�

1� Λ||V ||σ
C2
p



||v�||2 � q0||v0||2L2

  0,

since v � 0, at least one of v�, v� or v0 is nonzero. From this relation, we obtain that
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there is δ ¡ 0 such that�
1� Λ||V ||σ

C2
p



||v�||2 �

�
1� Λ||V ||σ

C2
p



||v�||2 � Λ||V ||σ||v0||2L2 �

»
Bδ

Qpxq|v|2dx   0. (3.18)

Moreover, notice that also by pF2q,

lim
nÑ8

»
Bδ

�
F px, unq � 1

2
Qpxq|un|2

||un||2
�
dx � 0. (3.19)

Indeed, consider the set

A � tx P R3; vpxq � 0u, 0   |A| ¤ 8. (3.20)

and notice that, for all n P N,�����
»
Bδ

F px, unq � 1
2
Qpxq|un|2

||un||2 dx

����� ¤
»
Bδ

|F px, unq � 1
2
Qpxq|un|2

|un|2 |vn|2 dx

¤ 2

»
Bδ

|F px, unq � 1
2
Qpxq|un|2

|un|2 |vn � v|2dx� 2

»
Bδ

|F px, unq � 1
2
Qpxq|un|2|

|un|2 |v|2 dx

¤ 2

»
Bδ

|F px, unq � 1
2
Qpxq|un|2|

|un|2 |vn � v|2dx� 2

»
BδXA

|F px, unq � 1
2
Qpxq|un|2|

|un|2 |v|2 dx

� 2

»
Bδ

|F px, unq � 1
2
Qpxq|un|2|

|un|2 |vn � v|2dx� 2

»
BδXA

|F px, unq � 1
2
Qpxq|un|2|

|un|2 |v|2 dx

¤ 2

»
Bδ

|F px, unq � 1
2
Qpxq|un|2|

|un|2 |vn � v|2 dx� 2 sup
A

�
|F px, unq � 1

2
Qpxq|un|2|

|un|2
�
||v||2L2

¤ 2C1||vn � v||2L2pBδq � 2 sup
A

�
|F px, unq � 1

2
Qpxq|un|2|

|un|2
�
||v||2L2 .

By the de�nition of pvnq, |unpxq| Ñ 8 for all x P A. Then, by the compact embedding

E ãÑ L2
locpR3q and the assumption pF2q, follows that the �rst and second term on the

right-hand side of this equation, respectively, converge to zero, as nÑ 8, that is,

lim
nÑ8

»
Bδ

�
1
2
F px, unq �Qpxq|un|2

||un||2
�
dx � 0.
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Therefore, using (3.16) and (3.19) we have that, as nÑ 8,

�2k

||un||2 ¤
�

1� Λ||V ||σ
C2
p

�
||v�n ||2 �

�
1� Λ||V ||σ

C2
p

�
||v�n ||2 �

Λ||V ||σ
C2
p

||v0
n||2

�
»
Bδ

Qpxq|vn|2dx� onp1q.

Hence, using the properties of weak convergence, the compact embeddingE ãÑ L2
locpR3,C4q

and (3.18) we obtain that, as nÑ 8,

0 ¤
�

1� Λ||V ||σ
C2
p



||v�||2 �

�
1� Λ||V ||σ

C2
p



||v�||2 � Λ||V ||σ||v0||2L2 �

»
Bδ

Qpxq|v|2dx   0,

a contradiction.

Corollary 3.1. Under the assumptions of Lemma 3.4, for any e P Y0, ||e|| � 1, there is

Re ¡ 0 such that

sup ΦpBΩq � 0,

where Ω
.� tw � pw� � w0q � te : pw� � w0q P E� ` E0, t ¥ 0, ||w|| ¤ Reu .

3.3 Cerami condition

At this section our objective is to ensure that the functional satis�es the Cerami condition

(see De�nition B.1). In order that, we will verify, �rstly, that any pCeqc�sequence for Φ

is bounded.

Lemma 3.5. Let Φ be the energy functional de�ned in (3.12) with 0   λ   Λ and

punq � E any pCeqc�sequence for Φ, c P R. Then punq is bounded.
Proof: Arguing indirectly we assume that, up to a subsequence, ||un|| Ñ 8 as n Ñ 8.
By de�nition, there is M ¡ 0 and n1 P N such that, if n ¥ n1,

Φpunq � 1

2
Φ1punqpunq � 1

2

»
R3

fpx, unqun dx�
»
R3

F px, unq dx ¤M. (3.21)

De�ne the unitary sequence pvnq � E by vn � un{||un||. Up to a subsequence, we can

suppose vn á v in E as n Ñ 8. By Lemma 3.2, vn Ñ v in LrlocpR3q for all r P r2, 3q and
vnpxq Ñ vpxq a.e. in R3.

Claim 1. v P Ezt0u is solution of the di�erential equation Hv � pQ� V qv.
In order to prove this claim, suppose by contradiction, that v � 0. Using the decom-

position (3.8) and dimpLdq   8, we obtain that vn � vdn � ven á 0, that is,

||vdn|| � onp1q and vn Ñ 0 in LrlocpR3,C4q, r P r2, 3q, as nÑ 8. (3.22)
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Notice that, for all n P N,

Φ1punqpue�n � ue
�

n q
||un||2 � 1

||un||2
�
xun, ue�n y � xun, ue�n y

	
� λ

||un||2
»
R3

V pxqun � pue�n � ue
�

n qdx

� 1

||un||2
»
R3

fpx, unq pue�n � ue
�

n qdx

� 1

||un||2
�
||ue�n ||2 � ||ue�n ||2

	
� λ

»
R3

V pxqvn � pve�n � ve
�

n qdx

� 1

||un||
»
R3

fpx, unqpve�n � ve
�

n qdx

� ||ven||2 � λ

»
R3

V pxqvn � pve�n � ve
�

n qdx�
1

||un||
»
R3

fpx, unqpve�n � ve
�

n qdx,

that is, as nÑ 8,

||ven||2 � onp1q � λ

»
R3

V pxqvnpve�n � ve
�

n qdx�
1

||un||
»
R3

fpx, unqpve�n � ve
�

n qdx

¤ onp1q � Λ

»
R3

|V pxq| |vn| |ve�n � ve
�

n |dx�
»
R3

|fpx, unq|
|un| |ve�n � ve

�

n ||vn|dx

¤ onp1q � Λ||V ||LσC�2
p ||vn|| ||ve�n � ve

�

n || �
»
R3

|fpx, unq|
|un| |ve�n � ve

�

n ||vn|dx. (3.23)

Notice that, as nÑ 8,»
Dc

|ve�n � ve
�

n | |vn|dx ¤ ||ve�n � ve
�

n ||L2 ||vn||L2 ¤ ||ven||L2

�
||ven||L2 � ||vdn||L2

	
� 1

γ
||ven||2 � onp1q,

since pvenq is bounded and the relation (3.22) holds. Moreover,

»
R3

|fpx, unq|
|un| |ve�n � ve

�

n ||vn|dx �
»
D

|fpx, unq|
|un| |ve�n � ve

�

n ||vn|dx�
»
Dc

|fpx, unq|
|un| |ve�n � ve

�

n ||vn|dx

¤ K1

»
D

|ve�n � ve
�

n | |vn|dx� γ0

»
Dc

|ve�n � ve
�

n | |vn| dx

¤ K1||ve�n � ve
�

n ||L2pDq ||vn||L2pDq � γ0

γ
||ven||2 � onp1q

� onp1q � γ0

γ
||ven||2,

since, by (3.9), D is a compact set and ||vn||L2pDq � onp1q, by Lemma 3.2. Then, returning
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to relation (3.23), we obtain�
1� Λ||V ||LσC�2

p � γ0

γ

	
||ven||2 ¤ onp1q,

and, using the de�nition (3.15) of Λ and (3.10), follows that

1� Λ||V ||LσC�2
p � γ0

γ
¥ 1� p1� sq � γ0

γ
� s� γ0

γ
¡ 0.

Hence,

||ven||2 � onp1q, as nÑ 8,

which is an absurd, since ||ven||2 � ||vdn||2 � ||vn||2 � 1 � onp1q. Therefore, v � 0. For

the second part of the Claim 1, notice that for any x P R3 such that vpxq � 0 we have

|unpxq| Ñ 8, as nÑ 8. Moreover,»
R3

fpx, unq
||unpxq|| φpxq dx �

»
R3

Qpxq vpxq φpxq dx� onp1q

and »
R3

V pxq vnpxq � φpxq dx �
»
R3

V pxq vpxq φpxq dx� onp1q,

for any φ P C8
c pR3,C4q, as nÑ 8. Therefore,

onp1q � Φ
1punqpφq
||un|| � xv�n � v�n , φy � λ

»
R3

V pxqvnpxq � φpxqdx�
»
R3

fpx, unq
||un|| φpxqdx

� xv� � v�, φy �
»
R3

V pxqvpxq � φpxqdx�
»
R3

Qpxqvpxq � φpxqdx� onp1q

ou seja, v é solução fraca não trivial da equação Hv � pQ� λV qv.
Returning to the proof of Lemma, following the ideas from [32], set

X � tx P R3 : vpxq � 0u.

By the weak unique continuation property for Dirac operator one has |X| � 8. There

exist θ ¡ 0 and B � X such that vpxq ¥ 2θ for x P B and

2M

D
¤ |B|   8,
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where D ¡ 0 is from pF4q. By Egoro�'s theorem, there is B1 � B with

|B1| ¡ M

D
and vn Ñ v uniformly on B1. (3.24)

Set, for each n P N, the set

ΓnpR,8q � tx P R3 : |unpxq| ¡ Ru,

where R ¡ 0 is also from pF4q. Using (3.21), we have that

M ¥
»
R3

�
1

2
fpx, unqun � F px, unqun

�
dx ¥

»
ΓnpR,8q

pF px, uq dx ¥ D |ΓnpR,8qq|,

that is,

|ΓnpR,8q| ¤ M

D
, n ¥ n1.

Moreover, there is n2 P N such that B1 � ΓnpR,8q for n ¥ n2 and, hence, if

n0 � maxtn1, n2u,

|B1| ¤ |ΓnpR,8q| ¤ M

D
, n ¥ n0,

a contradiction with p3.24q, and the proof is complete.

The previous Lemma allows assume that if punq � E is a pCeqc� sequence for Φ, up

to subsequence, un á u in E and u is a critical point for Φ.

Lemma 3.6. For any ε ¡ 0, there are subsequence punjq and rε ¡ 0 such that

lim
jÑ8

»
BjzBr

|unj |α ¤ ε, @r ¥ rε and α � 2, p.

Proof: This proof follows the ideias from [24], Lemma 5.2. Indeed, notice that, for

each j P N, we have »
Bj

|un|α dx �
»
Bj

|u|α dx� onp1q,

as nÑ 8. So, there exists ij P N such that�����
»
Bj

�
|un|α � |u|α

	
dx

�����   1

j
, @n � ij �m, m � 1, 2, 3, ...
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Assume, without loss of generality, that ij�1 ¥ ij. Then,�����
»
Bj

�
|unj |α � |u|α

	
dx

�����   1

j
, for n � ij � j. (3.25)

On the other hand, as u P LαpR3q, there is rε ¡ 0 such that»
R3zBr

|u|α dx   ε

2
, @r ¥ rε. (3.26)

Therefore,»
Bjr

|unj |αdx �
»
Bjr

�
|unj |α � |u|α

	
dx�

»
Bjr

|u|αdx   1

j
� ε

2
�
»
Br

�
|unj |α � |u|α

	
dx,

where Bj
r

.� BjzBr and the last inequality follow directly from (3.25) and (3.26),

respectively. Thus,

lim
jÑ8

»
Bjr

|unj |αdx ¤ lim
jÑ8

�
1

j
� ε

2
�
»
Br

�
|unj |α � |u|α

	
dx

�
¤ ε,

by the strong convergence in LαlocpR3q, α � 2, p.

The next results are very similar to those appearing in [32] and we shall describe them

to complement our work. Let a smooth function η : r0,8q Ñ r0, 1s such that ηpsq � 1, if

s ¤ 1 and ηpsq � 0, if s ¥ 2. De�ne, in R3, the functions

wjpxq � η

�
2|x|
j

�
upxq and hjpxq � upxq � wjpxq. (3.27)

Lemma 3.7. Consider wj and hj the functions previously de�ned by p3.27q and suppose

pM1q, pV0q and pF1q � pF4q be satis�ed. Then:

(i) ||hj|| Ñ 0 as j Ñ 8. Particularly, ||hj||LspR3q Ñ 0, s P r2, 3q.

(ii) For all r ¡ 0

lim
jÑ8

�����
»
Br

�
fpx, unjq � fpx, unj � wjq � fpx,wjq

	
φpxq dx

����� � 0

uniformly in φ P E and ||φ|| ¤ 1.
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(iii)

lim
jÑ8

�����
»
R3

�
fpx, unjq � fpx, unj � wjq � fpx,wjq

	
φpxq dx

����� � 0

uniformly in φ P E and ||φ|| ¤ 1.

Proof: The conclusion piq follows from the de�nition of the functions and the Lemma

3.2. To prove the item piiq, consider r ¡ 0 �xed. Then, by the estimate p3.5q with ε � 1,

as j Ñ 8,»
Br

|fpx, unj � wjq| |φpxq|dx ¤
»
Br

|unj � wj| |φ|dx� µ1

»
Br

|unj � wj|p�1 |φ| dx

¤
�
C�1

2 ||unj � wj||L2pBrq �
µ1

Cp
||unj � wj||LppBrq

	
||φ||

� ojp1q,

since Br is a compact set. Moreover, using the continuity of the Nemytskii operator

associated to f, we have that, as j Ñ 8,�����
»
Br

�
fpx, unjq � fpx, uq� φpxqdx����� ¤ C||Nf punjqpxq �Nf puqpxq||

L
p
p�1 pBrq

||φ||LppBrq

¤ C||Nf punjqpxq �Nf puqpxq||
L

p
p�1 pBrq

� ojp1q

and�����
»
Br

rfpx,wjq � fpx, uqs φpxqdx
����� ¤ C||Nf pwjqpxq �Nf puqpxq||

L
p
p�1 pBrq

� ojp1q.

Then,

lim
jÑ8

�����
»
Br

�
fpx, unjq � fpx, unj � wjq � fpx,wjq

	
φpxq dx

����� � 0,

for all r ¡ 0 uniformly in φ P E such that ||φ|| ¤ 1.

To demonstrate the item piiiq, set ε ¡ 0. By Lemma 3.6, there exists rε ¡ 0 such that,

@r ¥ rε and α � 2, p,

lim sup
jÑ8

||unj ||αLαpBjzBrq ¤ ε (3.28)
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and »
R3zBr

|u|α dx   ε

2
,

since u P LαpR3,C4q. Then,»
BjzBr

|wj|α dx ¤
»

BjzBr

|upxq|α dx ¤
»

R3zBr

|u|α dx ¤ ε

2
,

that is,

lim sup
jÑ8

||wj||αLαpBjzBrq ¤
ε

2
. (3.29)

Using the item (ii) and the relations (3.28), (3.29), we obtain that there are constants

δ1, δ2 ¡ 0 satisfying

lim sup
jÑ8

�����
»
R3

�
fpx, unjq � fpx, unj � wjq � fpx,wjq

	
φ dx

����� ¤
�

2δ1ε
1
2

C2

�
�
�

2δ2ε
p�1
p

Cp

�
,

uniformly in φ P E with ||φ|| ¤ 1 and any ε ¡ 0, which concludes the proof.

Lemma 3.8. Under the same conditions of the Lemma 3.7, we have:

paq lim
jÑ8

Φpunj � wjq � c� Φpuq;
pbq lim

jÑ8
||Φ1punj � wjq|| � 0 in E�.

Proof: (a) By de�nition of the energy functional Φ and the assumptions pV0q follows
that

Φpunj � wjq � Φpunjq � Φpwjq � ojp1q
�
»
R3

�
F px, unjq � F px, unj � wjq � F px,wjq

	
dx, as j Ñ 8.

Through a similar proof of item piiiq and of the Lemma 3.7, we obtain

lim
jÑ8

»
R3

�
F px, unjq � F px, unj � wjq � F px,wjq

	
dx � 0

and, then,

lim
jÑ8

Φpunj � wjq � c� Φpuq.
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For the item pbq, notice that, for all φ P E,

Φ1punj � wjqpφq � Φ1punjqpφq � Φ1pwjqpφq
�
»
R3

�
fpx, unjq � fpx, unj � wjq � fpx,wjq

	
φpxqdx

and, by piiiq of Lemma 3.7,

lim
jÑ8

�����
»
R3

�
fpx, unjq � fpx, unj � wjq � fpx,wjq

	
φpxqdx

����� � 0

uniformly in φ P E and ||φ|| ¤ 1. As punjq is subsequence of a Cerami sequence and u is

critical point of Φ, as j Ñ 8,

||Φ1punj � wjq|| � sup
φPE,||φ||¤1

|Φ1punj � wjqpφq| ¤ ojp1q.

Theorem 3.2. Φ satis�es the Cerami condition.

Proof: Consider the decomposition E � Ee ` Ed and de�ne, for j P N, the element

yj � unj � wj � yej � ydj . Then, as j Ñ 8

||ydj || � ||udnj � wdj || ¤ ||udnj � ud|| � ||ud � wdj || � ojp1q,

since ||wj � u|| � ojp1q in E and dim Ed   8. It follows from Lemma 3.8 that

Φpyjq � c� Φpuq � ojp1q and ||Φ1pyjq|| � ojp1q, as j Ñ 8. Then,

ojp1q � Φ
1pyjqpye�j � ye

�

j q � ||yej ||2 �
»
R3

V pxqyj � pye�j � ye
�

j qdx�
»
R3

fpx, yjqpye�j � ye
�

j qdx.

By the same arguments presented in the demonstration of Claim 1, we obtain that

||yej ||2 ¤ ojp1q � Λ||V ||LσC�2
p ||yej ||2 �

γ0

γ
||yej ||2,

that is,

||yej ||2 � ojp1q, as j Ñ 8.

Therefore, as j Ñ 8,

||unj � u|| ¤ ||yj|| � ||hj|| � ojp1q,

that is, punjq converges strongly to u and Φpuq � c. Hence Φ satis�es the Cerami condition.
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3.4 Proof of the main result

The results obtained in the previous sections allow to conclude that the functional satis�es

the linking geometry conditions and also the Cerami condition. In order to prove the main

results of this study we will verify other important properties.

Let E � F1�F2, where F1 � E�, F2 � pE�`E0q and P1, P2 are the projections onto

F1 and F2, respectively. For any u P E, u � u� � u0 � u� and, hence,

||u�||2 � ||u�||2 � xu� � u�, uy � xu� � u� � u0, uy � xu0, uy � xP1u� P2u, uy � ||u0||2,

which allows rewrite the energy functional Φ, described in (3.12), by

Φpuq � 1

2
xP1u� P2u, uy � 1

2
||u0||2 � λ

2

»
R3

V pxq|u|2dx�
»
R3

F px, uqdx

� 1

2
xP1u� P2u, uy � ϕpuq

� 1

2
xL1P1u� L2P2u, uy � ϕpuq, (3.30)

where L1 � id, L2 � �id and

ϕpuq � 1

2
||u0||2 � λ

2

»
R3

V pxq|u|2dx�
»
R3

F px, uqdx. (3.31)

The next auxiliary results will be used in the proof of the main result.

Lemma 3.9. Suppose pM1q, pV0q, pF1q - pF4q be satis�ed and consider ϕ : E Ñ R de�ned

in (3.31) with 0   λ   Λ. Then ϕ1 is compact, that is, if un á u in E

ϕ1punqpwq Ñ ϕ1puqpwq, @w P E.

Proof: Let punq � E be a sequence such that un á u as n Ñ 8 and ψ P C8
c pR3,C4q.

Then,

��ϕ1punqpψq � ϕ1puqpψq�� ¤ ��xu0
n � u0, ψy��� Λ||V ||Lσ ||un � u||LppΥq||ψ||LppΥq

�
»
Υ

��fpx, uq � fpx, unq
��|ψ|dx,

where Υ � supppψq, which is a compact subset. From the compact embedding described

in Lemma 3.2 and dimE0   8, the terms on the right side of this equation tend to zero.

Thus,

ϕ1punqpψq Ñ ϕ1puqpψq, @ψ P C8
c pR3,C4q. (3.32)
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Set w P E and ε ¡ 0. It follows from the Remark 3.6 that there is pψjq � C8
c pR3,C4q

such that ||w � ψj|| � ojp1q as j Ñ 8. Thus, for �xed j P N,����ϕ1punq � ϕ1puq
	
pwq

��� ¤ ����ϕ1punq � ϕ1puq
	
pψjq

���� ����ϕ1punq � ϕ1puq
	
pw � ψjq

���.
Using the estimate (3.5) with ε � 1, we obtain»
R3

�
|fpx, uq| � |fpx, unq|

	
|w � φj|dx ¤

»
R3

�
|u| � µ1|u|p�1 � |un| � µ1|un|p�1

	
|w � ψj|dx

¤ �||u||L2 � ||un||L2

�||w � ψj||L2

�µ1

�||un||p�1
Lp � ||u||p�1

Lp

�||w � ψj||Lp
¤M1||w � ψj||

since punq is a bounded sequence. Then, assuming that ||un � u||Lp  M2 for all n P N,����ϕ1punq � ϕ1puq
	
pw � ψjq

��� ¤ ��xu0
n � u0, w � ψjy

��� λ

»
R3

|V pxq||un � u| |w � ψj|dx

�
»
R3

�
|fpx, uq| � |fpx, unq|

	
|w � φj|dx

¤ ��xu0
n � u0, w � ψjy

��� Λ||V ||Lσ
Cp

M2||w � ψj|| �M1||w � ψj||.

¤
�
M3 � Λ||V ||Lσ

Cp
M2 �M1

	
||w � ψj||

.�M ||w � ψj||,

since dimE0   8. That is, we obtain a constant M �Mpun, u, V, E0, C2q ¡ 0 such that����ϕ1punq � ϕ1puq
	
pw � ψjq

��� ¤M ||w � ψj||.

Choose j0 P N �xed such that ||w � ψj0 ||  
�

ε

2M



. For this j0 P N, there is N P N such

that for n ¥ N ����ϕ1punq � ϕ1puq
	
pψj0q

���   ε

2
,

and thus, for n ¥ N,����ϕ1punq � ϕ1puq
	
pwq

��� ¤ ����ϕ1punq � ϕ1puq
	
pψj0q

���� ����ϕ1punq � ϕ1puq
	
pw � ψj0q

���   ε.

Now, for the next lemma, remember the condition (Φ0) stated in Appendix B:

(Φ0) Φ P C1pE,Rq,Φ : pE;TPq Ñ R is upper semicontinuous, that is, Φa is P�closed for

81



a P R and Φ1 : pΦa;TPq Ñ pE�;Tw�q is continuous for a P R;

Lemma 3.10. Suppose Φ de�ned by (3.12) with 0   λ   Λ and pM1q, pV0q, pF1q - pF4q
be satis�ed. Then Φ satis�es pΦ0q.

Proof: Set punq � Φa, a P R, such that punq P�converges toward u. We will prove

that u P Φa. By de�nition, u�n Ñ u� in norm as nÑ 8 and, for all n P N,

a ¤ Φpunq ¤ 1

2

�
||u�n ||2 � ||u�n � u0

n||2
	
� 1

2
||u0

n||2 �
λ

2

»
R3

V pxq|un|2 dx

¤ 1

2

��
1� Λ||V ||Lσ

C2
p



||u�n ||2 �

�
1� Λ||V ||Lσ

C2
p



||u�n � u0

n||2 � ||u0
n||2

�

¤ 1

2

�
p2� sq||u�n ||2 � s||u�n � u0

n||2 � ||u0
n||2

�
.

So

0 ¤ ||u�n � u0
n||2 ¤

�
p2� sq||u�n ||2 � 2a� ||u0

n||2
�
s�1.

Notice that, if pu0
nq is a bounded sequence then, the right hand side of this inequality

is bounded. So, we conclude that punq is bounded and, up to sequence, we may suppose

that un á u in E. Then, it follows from the properties of weak convergence in E and

Lp�spaces and Fatou's Lemma C.1 that

a ¤ lim
nÑ8

Φpunq ¤ 1

2

�
||u�||2 � ||u�||2

	
� λ

2

»
R3

V pxq|u|2 � lim inf
nÑ8

»
R3

F px, unqdx ¤ Φpuq,

that is, u P Φa.

Suppose that there exists a subsequence of pu0
nq, still denoted by pu0

nq, such that

||u0
n|| Ñ 8. Hence, particularly, ||un|| Ñ 8. De�ne the unitary sequence pwnq � E by

wn �
�
un{||un||

�
, which, we may suppose without loss of generality, satis�es wn á w in

E. By the boundedness of pu�n q, it follows that ||w�
n ||2 � onp1q as nÑ 8. Moreover,

w�
n á w� and w0

n Ñ w0 as nÑ 8,

since dimpE0q   8. Suppose that w0 � 0. Then, ||w0
n||2 � onp1q and

||w�
n ||2 � 1� onp1q as nÑ 8. (3.33)

However, as nÑ 8,

a

||un||2 ¤
Φpunq
||un||2 ¤

1

2
||w�

n ||2 �
1

2
||w�

n ||2 �
Λ

2

||V ||Lσ
C2
p

||wn||2 ¤ onp1q � s

2
||w�

n ||2
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and hence,

||w�
n ||2 � onp1q

which is a contradiction with (3.33). Then w0 � 0 and, consequently, w � 0. Using the

same arguments of Lemma 3.4, we obtain that there is δ ¡ 0 such that

�s||w�||2 � Λ||V ||Lσ
C2
p

||w0||2 �
»
Bδ

Qpxq|w|2dx   0

noting that w � w� � w0 since ||w�
n ||2 � onp1q, as nÑ 8. So,

a

||un||2 ¤
Φpunq
||un||2

¤ onp1q �
�

1

2
� Λ||V ||Lσ

2C2
p

�
||w�

n ||2 �
�

Λ||V ||Lσ
2C2

p

�
||w0

n||2 �
1

2

»
Bδ

Qpxq|wn|2dx

¤ onp1q � 1

2

�
s||w�

n ||2 �
Λ||V ||Lσ
C2
p

||w0
n||2 �

»
Bδ

Qpxq|wn|2dx
�

and, as nÑ 8,

0 ¤ 1

2

�
s||w�||2 � Λ||V ||Lσ

C2
p

||w0||2 �
»
Bδ

Qpxq|w|2dx
�
  0

which is a contradiction. Then, pu0
nq is a bounded sequence and, consequently punq is

bounded, as we mentioned earlier.

To guarantee the continuity of Φ1 : pΦa;TPq Ñ pE�;Tw�q, consider again punq � Φa

such that un Ñ u according to the TP�topology. Then, as establish above, un á u in E,

as nÑ 8, and we must ensure that

Φ1punq á Φ1puq, in E�,

that is

Φ1punqpwq � Φ1puqpwq � onp1q, for all w P E, as nÑ 8, (3.34)

since E is a Hilbert space. This relation follows from the weak convergence and Lemma

3.9.

Proof of Theorem 3.1: Consider 0   λ   Λ, where Λ ¡ 0 is de�ned by (3.15).

It follows from Lemma 3.2 that the functional Φ satis�es the Cerami condition for all

c P R. Rewriting the functional in the form (3.30), we guarantee the condition (I1) of
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Theorem B.8. The condition (I2) follows from Lemma 3.9, hence, it is su�cient to justify

the hypothesis (I3).

Consider e P F1zt0u, ||e|| � 1, the constant ρ ¡ 0 from of the Lemma 3.3, the constant

Re ¡ 0 and set Ω from of the Corollary 3.1. Then we have

Ω
.� tw P F2 ` R�e : ||w|| ¤ Reu �

�
F2 ` R�e

�XBRe

and

S
.� tz P F1 : ||z|| � ρu � F1 X BBρ.

Then S � F1, Ω � �
F2 `R�e

�
and, following the steps of [8], Example 4.3, we guarantee

that S and BΩ �nitely link. Moreover, it follows from Lemma 3.3 and Corollary 3.1 that

Φpzq ¥ ρ ¡ 0, @z P S and sup ΦpBΩq � 0,

obtaining the condition (I3). Therefore, it follows from the Theorem B.8, Φ has a critical

value c ¥ ρ ¡ 0, and the problem (3.1) has a nontrivial solution.

Suppose that F px, uq is even in u. Then, Φ is even in u and, by Lemma 3.10, satis�es

(Φ0). The Lemma 3.3 and Lemma 3.4 guarantee (Φ3) and (Φ4) of Theorem B.5 with Y0

de�ned by (3.14). Thus, the problem (3.1) has at least l � dimpY0q pairs of nontrivial
solutions.
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APPENDIX A

The Dirac operator and some properties

The objective of this appendix is to show some aspects of the Dirac operator, it

historical origin, interesting properties about the self-adjointness and it spectrum. The

facts presented here can be found basically in [65] and [20]. More details and another

properties can be found also in [38, 39, 45, 49, 59, 68] and the references therein.

The transition from classical mechanic to quantum mechanic can be constructed

using the correspondence principle, that is, replacing classical quantities by some

appropriate operators. Usually, these operators are di�erential or multiplication operators

acting on suitable wave functions. In particular, for the energy E and the momentum p

of a free particle, the substitution

E Ñ i~
B
Bt and pÑ �i~∇, (A.1)

where ~ is the Planck constant, is familiar from the nonrelativistic theory. Moreover, (A.1)

is formally Lorentz invariant and if applied to the classical relativistic energy-momentum

relation, we obtain

E �
a
c2p2 �m2c4, (A.2)

where c denotes the speed of light and m ¡ 0 the electron mass, and then, the square

from Klein-Gordon equation, that is,

i~
B
Btψpt, xq �

?
�c2~2∆�m2c4 ψpt, xq, pt, xq P R� R3, (A.3)

where ∆ denotes the Laplace operator and ψ is a wave function.

In general, the square root of a di�erential operator can be de�ned with the help

of Fourier-transformations, but, in this case, due to the asymmetry of space and time
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derivatives Dirac found it impossible to include external electromagnetic �elds in a rel-

ativistically invariant way. So he looked for another equation which can be modi�ed in

order to describe the action of electromagnetic forces and also should describe the internal

structure of the electrons, the spin. That is, it provide a relativistic description of the

spin particles 1{2 consistent with the requirements of the special theory of relativity and,

in doing so, opened the path to application from the theory of groups to the description

of particles of arbitrary spin.

The relativistic equation of Klein-Gordon

~2 B2

Bt2ψpt, xq � p�c2~2∆�m2c4qψpt, xq

describes a spinless particle and, moreover, it is of second order, so was not able to do

this, since a quantum mechanical evolution equation should be of �rst order in the time

derivative. Thus, Dirac reconsidered the energy-momentum equation (A.2) and, by a

linearization argument, obtained

E � c
3̧

i�1

αipi � βmc2 � c α � p� βmc2, (A.4)

where α � pα1, α2, α3q and β do not depend on either coordinates or time and it will be

determined by the relation (A.2). Indeed, by combining (A.2) and (A.4), one readily gets

the following

αjαk � αkαj � 0, if k � j

αkβ � βαk � 0

α2
k � β2 � In, j � 1, 2, 3, (A.5)

where In and 0 are n�dimensional unit and zero matrices. Hence, α and β are anticom-

muting quantities which are most naturally represented by n�n matrices. They also have

to be hermitian because the Hamiltonian and the momentum operators are hermitian, and

then their eigenvalues are �1. Moreover, trpαkq � trpβ2αkq � �trpβαkβq � �trpαkq and
trpβq � �trpβq, therefore

trpαkq � trpβq � 0.

It follows from this relation that the number of positive and negative eigenvalues has

to be the same, that is, the order n of the matrices has to be an even number. Considering

n � 2, we obtain at most three linearly independent anticommuting matrices (the fourth

one is the unit matrix which commutes with all matrices): the Pauli matrices

σ1 �
�

0 1

1 0

�
, σ2 �

�
0 �i
i 0

�
, σ3 �

�
1 0

0 �1

�
.
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Hence, the smallest possible dimension of α and β matrices is 4, that is, the relations

(A.5) are satis�ed by choosing

β �
�
I2 0

0 �I2

�
, αk �

�
0 σk

σk 0

�
, k � 1, 2, 3, (A.6)

where σk are Pauli matrices.

Using this quantities, we obtain the formulation of the Dirac equation

i~
B
Btψpt, xq � H0ψpt, xq (A.7)

with H0 given explicitly by the matrix-valued di�erential expression

H0 � �i~c α �∇�mc2β �
�

mc2I2 �i~c σ �∇
�i~c σ �∇ �mc2I2

�
, (A.8)

where α � pα1, α2, α3q and σ � pσ1, σ2, σ3q are triplets of matrices.

Remark A.1. If m � 0 the mass term in (A.4) vanishes and only three anticommuting

quantities αi are needed. In this case, it is su�cient to use the 2�2 Pauli matrices de�ned

above. In this case, the two component equation

i~
B
Btψptq � cσ � p ψptq

is called Weyl equation.

Consider the Hilbert space

L2pR3q4 � L2pR3q ` L2pR3q ` L2pR3q ` L2pR3q � L2pR3,C4q � L2pR3q b C4 (A.9)

which consists of wave functions with four components column vectors ψ � pψ1, ψ2, ψ3, ψ4qT ,
where each component ψi is a complex valued function of the space variable x. The Dirac

operator H0 can be de�ned in a natural way as a self-adjoint operator in this space (this

will allow the approach of cases in which the particle is subjected to the action of a

potential or of an electromagnetic �eld), as proved by Dautray and Lion [20]:

Theorem A.1. The unbounded operator in H � L2pR3,C4q, denoted by L and de�ned by

L � �i
3̧

k�1

αk
B
Bxk � α4

and with domain

DpLq � tu P H;Lu pin sense of D�pR4,C4qq P Hu

is selfadjoint, and such that:

DpLq � H1pR3,C4q � H1pR3q4. (A.10)
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pNotice that in this case, ~ � c � m � 1 and β � α4.q

The suitable domain expressed in (A.10) is a natural domain for �rst order di�erential

operator and, as we will prove, besides being self-adjoint in H1pR3q4, the operator is essen-
tially self-adjoint on the dense domain C8

0 pR3zt0u,C4q and has an absolutely continuous

spectrum. In order to obtain this conclusions, we will analyze the Dirac operator in the

Fourier spaces.

Consider p the di�erential operator de�ned by p � �i∇ � �ipB{Bx1, B{Bx2, B{Bx3q,
called momentum operator, which act component-wise on the vectors ψ. Also, consider

F the Fourier transformation de�ned for integrable functions by

pFψkqppq � 1

p2πq3{2
»
R3

e�ip�xψkpxqd3x, k � 1, 2, 3, 4, (A.11)

which extends to a uniquely de�ned unitary operator in L2pR3q4. Hence, using the matrix-

valued di�erential expression of Dirac operator (A.8), we obtain that

pFH0F
�1qppq � hppq �

�
mc2I2 cσ � p
cσ � p �mc2I2

�
. (A.12)

For each p, we de�ne p � |p| and obtain a Hermitian 4 � 4�matrix which has the

eigenvalues

λ1ppq � λ2ppq � �λ3ppq � λ4ppq �
a
c2p2 �m2c4 � λppq. (A.13)

Moreover, there exist a unitary transformation uppq (see [65] to explicit form) such

that uppqhppquppq�1 � βλppq and so, the unitary transformation

W � uF

converts the Dirac operator H0 into an operator of multiplication by the diagonal matrix

pWH0W
�1qppq � βλppq (A.14)

in the Hilbert space L2pR3, d3pq4. This informations help us to prove the following im-

portant result.

Theorem A.2 ([65], Theorem 1.1). The Dirac operator H0 is essentially self-adjoint

on the dense domain C8
0 pR3zt0u,C4q and self-adjoint on the Sobolev space DpH0q �

H1pR3,C4q. Its spectrum is purely absolutely continuous and given by

σpH0q � p�8,�as Y ra,�8q.

Proof: It follows from (A.14) that H0 is unitarily equivalent to the operator βλp�q of
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multiplication by a diagonal matrix-valued function of p, and hence is self-adjoint on

DpH0q �W�1Dpβλp�qq � F�1u�1Dpλp�qq � F�1Dpλp�qq.

Notice that uppq�1 is a multiplication by a unitary matrix and does not change the

domain of any multiplication operator. Recall that H1pR3q4 is de�ned as the inverse

Fourier transform of the set

tf P L2pR3, d3pq4 : p1� |p|2q 1
2f P L2pR3, d3pq4u. (A.15)

On the other hand, the domain of multiplication operator Dpλp�qq, where λp�q is de�ned
by (A.13), is exactly this set (A.15). Then,

DpH0q � F�1Dpλp�qq � H1pR3q4.

Moreover, the unitary equivalence guarantee that the spectrum of H0 is the same of

from multiplication operator βλp�q, which is given by the range of the functions λippq,
i � 1, 2, 3, 4, that is

σpH0q � p�8,�mc2s Y rmc2,�8q.

Finally, recall that a symmetric operator T is said to be essentially self-adjoint if its

closure T is self-adjoint. Moreover, T is the unique self-adjoint extension of T [57]. To

demonstrate that H0 has this property in the set C8
0 pR3zt0u,C4q, consider �H0 the Dirac

operator de�ned on the set SpR3,C4q, which is the set of functions of rapid decrease. It is

known that this set is invariant by Fourier transformation, that is, FSpR3,C4q � SpR3,C4q,
and then the operator �H0 is unitarily equivalent to the restriction of hppq to SpR3,C4q.
Since this is an essentially self-adjoint operator (its closure is the self-adjoint multiplication

operator hppqq, the same is true for �H0, and its closure is H0, the self-adjoint Dirac

operator.

Denotes the Dirac operator in C8
0 pR3zt0u,C4q by 
H0. Our objective is prove that the

closure of


H0 � H0, (A.16)

since H0 is the self-adjoint Dirac operator. Notice that 
H0 � �H0 and this same relation is

true for their closure, that is, 
H0 � �H0. Then, by de�nition,

Dp 
H0q � Dp�H0q and 
H0pψq � �H0pψq, @ψ P Dp 
H0q. (A.17)

This relation guarantee that is su�cient to prove

Dp�H0q � Dp 
H0q (A.18)

to obtain the relation (A.16). Indeed, supposing that we have already proved the above
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relation, let ψ P Dp�H0q � Dp 
H0q and we obtain, by (A.17), 
H0pψq � �H0pψq � H0pψq �
�H0pψq. That is, 
H0 is an extension of �H0, which is essentially self-adjoint. By the unique-

ness of self-adjoint extension, we obtain (A.16). Therefore, it remains to demonstrate

that (A.18) holds.

For every ψ P SpR3,C4q � Dp�H0q, we need to �nd a sequence ψn P C8
0 pR3,C4q such

that

lim
nÑ8

ψn � ψ, lim
nÑ8


H0pψnq � �H0pψq. (A.19)

De�ne

ψnpxq � fpn�1xqp1� fpnxqqψpxq,

where f P C8pR3q with fpxq � 1 for |x| ¤ 1, fpxq � 0 for |x| ¥ 2 and 0 ¤ fpxq ¤ 1 for all

x P R3. Obviously, ψn P C8
0 pR3,C4q and ψn Ñ ψ. Moreover, using the assumptions on f

and suitable estimates, we obtain that 
H0pψnq Ñ �H0pψq, which proves (A.19) and hence

(A.18).

Remark A.2. Similar results about the essentially self-adjointness (self-adjointness, re-

spect.) of H0 in C8
0 pR3q4 (in DpH0q, respect.) were proved by Kato [45], �5 Sect.4, and

Jörgens [44]. The least also consider the perturbed cases H0 � V for suitable potentials.

As mentioned by Thaller [65], considering the Hilbert WL2pR3q4, where the Dirac

operator is diagonal, the upper two components of wave functions belong to positive

energies, while the lower components to negative energies. Hence, we de�ne the subspace

of positive energies H� � L2pR3q4 as the subspace spanned by vectors of the type

ψ� �W�1 1

2
p1� βqWψ, ψ P L2pR3, d3xq.

Similarly, we de�ne the vectors

ψ� �W�1 1

2
p1� βqWψ, ψ P L2pR3, d3xq,

that span the negative energy subspace H�. Since these subspaces are orthogonal, we can

write L2 � H � H� ` H� as an orthogonal direct sum and each ψ can be written as a

sum of ψ� and ψ�. Moreover, considering φ� � 1
2
p1� βqWψ, we have

pψ�, H0ψ
�q � pW�1φ�,W�1λp�qφ�q � pφ�, λp�qφ�q ¡ 0,

that is, H0 acts as a positive operator on H�. Similarly, H0 acts as a negative operator

on H�.

We can also de�ne the self-adjoint operator |H0| as

|H0| �
b
H2

0 �
?
�c2∆�m2c4 I,
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where the square root can be de�ned as a inverse Fourier transformation of the multipli-

cation operator
?
c2∆�m2c4 in L2pR3, d3pq. Obviously,

H0ψ
� � �|H0|ψ�.

The essential spectrum is very stable under perturbations. We present here the famous

theorem of H. Weyl that was proved, e.g., in [57], Theorem XIII.14:

Theorem A.3 ([65], Theorem 4.5.). Let H1 and H0 be self-adjoint operators such that

for one (and hence all) z P CzR the operator

pH1 � zq�l � pH0 � zq�l

is compact. Then

σepH1q � σepH0q.

·

Theorem A.4 ([65], Theorem 4.1.). Let H1 � H0�V be self-adjoint, and V be H0�bounded
with

lim
RÑ8

||V pH0 � Zq�lχp|x| ¥ Rq|| � 0. (A.20)

Then

σepH1q � p�8,�mc2s Y rmc2,8q. (A.21)

Remark A.3. The equation (A.20) is a very weak decay condition on the potential. If V

is a multiplication operator, it is equivalent to

lim
RÑ8

||V χp|x| ¥ RqpH0 � zq�1|| � 0. (A.22)

It is possible to prove that the relations (A.20) and (A.22) are equivalent. For this,

just consider a suitable di�erentiable function fR : r0,8q Ñ r0, 1s such that fRprq � 0 for

r   R
2
, fRprq � 1 for r ¡ R and supr f

1
Rprq   4

R
. Then, χp|x| ¥ Rq � fRp|x|qχp|x| ¥ Rq

and

||V χp|x| ¥ RqpH0 � zq�1|| ¤ ||V pH0 � zq�1cα � p∇fRqpH0 � zq�1|| � ||V fRpH0 � zq�1||.

Hence, just make sure that both terms vanishing when RÑ 8.

Remark A.4. Any potential matrix, with V pxq Ñ 0, as |x| Ñ 8 satis�es

||V χp|x| ¥ Rq|| � sup
|x|¡R

|V pxq| Ñ 0, as RÑ 8, (A.23)

91



and hence (A.22). But the conditions (A.20) and (A.22) are more general than (A.23)

because they admit singularities of the potential even at large distances.

The condition (A.20) is not optimal, mainly because there are potentials which tend

to in�nity, as |x| Ñ 8, and still (A.21) holds. In particular, this occurs for unisotropic

potentials as well as for magnetic �elds in three dimensions.
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APPENDIX B

Critical point theory

In order to �nd critical points for the energy functional associated with the problems

we will state some results of critical points theory for strongly inde�nite functionals, which

was developed by Bartsch and Ding and presented in [8], [9] and [25]. Another similar

results about generalized linking and critical points can be found also in [7] and [48].

Consider E � X `Y where X and Y Banach spaces and X is separable and re�exive.

Let || � || the norm in X, Y and E, and PX , PY denote the projections onto X and Y,

respectively. Let S � X� a dense subset and D � tds : s P Su the family of semi-metrics

associated in X � X��. If P is a family of semi-norms in E de�ned by

ps : E Ñ R, pspx� yq � |spxq| � ||y||, s P S. (B.1)

hence, P induces a product topology in E described by D�topology in X and norm

topology in Y. This topology associated will be denoted by TP.

Let Φ : E Ñ R a C1 functional. Suppose that Φ satis�es

(Φ0) Φ P C1pE,Rq,Φ : pE;TPq Ñ R is upper semicontinuous, that is, Φa is P�closed for

a P R and Φ1 : pΦa;TPq Ñ pE�;Tw�q is continuous for a P R;

Remark B.1. These conditions can be weakened. Depending on the situation, it is re-

quired only for values in a certain interval and we can replace Φa by the subset like Φb
a.

Similarly, Φa can be P�closed for certain values of a only.

This assumption can be guaranteed by the following result.

Theorem B.1 ([8], Proposition 4.1; [25], Theorem 4.1 ). Consider a functional Φ P
C1pE,Rq of the form

Φpuq � 1

2

�
||y||2 � ||x||2

	
�Ψpuq for u � x� y P E � X ` Y (B.2)
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such that

(i) Ψ P C1pE,Rq is bounded from below;

(ii) Ψ : pE;Twq Ñ R is sequentially lower semicontinuous, that is, un á u in E implies

Ψpuq ¤ lim inf Ψpunq;

(iii) Ψ1 : pE;Twq Ñ pE�,Tw�q is sequentially continuous;

(iv) ν : E Ñ R, νpuq � ||u||2 is C1 and ν 1 : pE;Twq Ñ pE�,Tw�q is sequentially

continuous.

Then Φ satis�es pΦ0q.

Consider also a additional assumption:

(Φ1) For any a ¡ 0 there is θ ¡ 0 such that ||u|| ¤ θ||PY u||, for all u P Φa.

Under these hypothesis we present the following result which will be used to establish the

existence of a pCeqc�sequence for the energy functional Φ. Recall that:

De�nition B.1. The sequence pvnq � E is called a Cerami sequence, or a pCeqc�sequence
for c P R, if

Φpvnq Ñ c and p1� ||vn||qΦ1pvnq Ñ 0 in E� as nÑ 8.

We say that Φ satis�es Cerami's condition at level c, or pCeqc�condition, if any pCeqc�
sequence for Φ has a convergent subsequence.

Theorem B.2 ([9], Theorem 5.1; [25], Theorem 4.5). Let Φ satis�es pΦ0q and pΦ1q and
suppose there is R ¡ r ¡ 0 and u0 P Y, ||u0|| � 1 such that for S � tz P Y ; ||z|| � ru,
Q � ttu0 � v P E; v P X, ||v||   R, 0   t   Ru we have

κ
.� inf ΦpSq ¡ 0 and sup ΦpBQq ¤ κ. (B.3)

Then Φ has a pCeqc�sequence with κ ¤ c ¤ sup ΦpQq.
Is important mention that, in their approach, the authors introduced a new linking in

the in�nite-dimensional setting and used this to characterize the critical value obtained

in their theorems, like above. To do this, they consider the following notations: given a

locally convex topological vector space Z, denote LpAq .� spanpAq for the smallest closed

linear subspace containing A, BA the boundary of A in LpAq and AF � A X F (F � Z

linear subspace).

De�nition B.2. Given Q,S � Z with S X Q � H, we say that Q �nitely links with S

if for any �nite-dimensional linear subspace F � Z with F X S � H and any continuous

deformation h : I � QF Ñ F � LpSq with hp0, uq � u and hpI � BQF q X S � H there

holds hpt, QF q X S � H for all t P I � r0, 1s.
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Using this de�nition and Brouwer degree arguments, it is possible to show that Q,S �
E in Theorem B.2 are such that Q �nitely links with S. Hence, the critical value found

in that theorem can be characterized by

c
.� inf
hPΓQ,S

sup
uPQ

Φphp1, uqq, (B.4)

where

ΓQ,S
.� th P CpI �Q,Eq : h satis�es ph1q � ph5qu (B.5)

with

ph1q h : I � pQ,TPq Ñ pE,TPq is continuous;

ph2q hp0, uq � u for all u P Q;

ph3q Φphpt, uqq ¤ Φpuq for all t P I, u P Q;

ph4q hpI � BQq X S � H;

ph5q each pt, uq P I �Q has a P�open neighbourhood W such that the set tv � hps, vq :

ps, vq P W X pI �Qqu is contained in a �nite dimensional subspace of E.

The arguments used to obtain this characterization are presented in the proof of Lemma

1.9 in this work and in [25], Theorem 4.2. To ensure the existence of Cerami sequence, a

suitable deformation, obtained in the next result, was used.

Theorem B.3 ([25], Theorem 3.3). Consider a, b P R with a   b so that Φa is P�closed
and Φ1 : pΦb

a,TPq Ñ pE�,Tw�q is continuous. Suppose moreover that

α
.� inftp1� ||u||q||Φ1puq|| : u P Φb

au ¡ 0 (B.6)

and

there exists γ ¡ 0 with ||u||   γ||PY u||, @u P Φb
a. (B.7)

Then there exists a deformation η : r0, 1s � Φb Ñ Φb with the properties piq � pviiq:

piq η is continuous with either the P�topology or the norm topology on Φb;

piiq for each t the map u Ñ ηpt, uq is a homeomorphism of Φb onto ηpt,Φbq with the

P�topology or with the norm topology;

piiiq ηp0, uq � u for all u P Φb;

pivq ηpt,Φcq � Φc for all c P ra, bs and all t P r0, 1s;

pvq ηp1,Φbq � Φa;
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pviq each point u P Φb has a P�neighbourhood U in Φb so that the set tv � ηpt, vq : v P
U, 0 ¤ t ¤ 1u is contained in a �nite-dimensional subspace of E;

pviiq if a �nite group G acts isometrically on E and if Φ is G�invariant, then η is

equivariant in u.

We turn our attention now to the symmetric functional ones, in search of condi-

tions that guarantee the existence of multiple solutions for the considered problems. Let

G
.� te2kiπ{p : 0 ¤ k   pu � Z{p, p a prime number, a symmetry group that acts linearly

and isometrically on X and Y, hence on E � X � Y and has no �xed points in Ezt0u.
Suppose, additionally to (Φ0) and (Φ1), the following conditions:

(Φ2) Φ is G�invariant;

(Φ3) there exist r ¡ 0 with κ .� inf ΦpSrY q ¡ Φp0q � 0 where SrY
.� ty P Y : ||y|| � ru;

(Φ4) there exist a �nite-dimensional G�invariant subspace Y0 � Y and R ¡ r such that

we have for E0
.� X � Y0 and B0

.� tu P E0 : ||u|| ¤ Ru :

b
.� sup ΦpE0q   8 and sup ΦpE0zB0q   inf ΦpBrY q.

With this conditions Bartsch and Ding established the following result.

Theorem B.4 ([8], Theorem 4.6). If Φ satis�es pΦ0q, pΦ2q�pΦ4q and the pCeqc�condition
for c P rκ, bs, then it has at least n

.� dimpY0q G�orbits of critical points.

A special case of this theorem is presented by the same authors in [9], Theorem 5.2,

considering the antipodal action:

Theorem B.5. If Φ is even, satis�es pΦ0q, pΦ3q, pΦ4q and the pCeqc�condition for all

c P rκ, bs, then it has at least n
.� dimpY0q pairs of critical points.

In order to obtain in�nitely many critical points we need replace the hypothesis (Φ4)

by

(Φ5) there exists an increasing sequence of �nite-dimensionalG�invariant subspaces Yn �
Y and there exist Rn ¡ r such that we have for Bn

.� tu P X � Yn : ||u|| ¤ Rnu :

sup ΦpX � Ynq   8 and sup ΦpX � YnzBnq   β
.� inf Φptu P Y : ||u|| ¤ ruq,

where r ¡ 0 is from (Φ3).

Also, suppose the additionally condition, which is a replacement of the Palais-Smale

condition that is established in [25].

(Φ6) One of the following holds:
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piq for any interval I � p0,8q there is a pCeqI�attractor A with P�A bounded

and inft||PY pu� vq|| : u, v P A, PY pu� vq � 0u ¡ 0;

piiq Φ satis�es the pCeqc�condition for c ¡ 0.

These hypotheses are su�cient to state the following result, whose proof are based on

[8], Theorem 4.8:

Theorem B.6 ([9], Theorem 5.3). Assume Φ is even with Φp0q � 0 and let pΦ0q, pΦ1q,
pΦ3q, pΦ5q and pΦ6q be satis�ed. Then Φ possesses an unbounded sequence of positive

critical values.

Also, we can mention a particular version of this multiplicity result.

Theorem B.7 ([72], Theorem 4.3). Assume that Φ is even with Φp0q � 0 and Φ satis�es

pΦ0q, pΦ1q, pΦ3q, pΦ5q. If Φ satis�es the pCeqc�condition for c ¡ 0 be satis�ed, hence Φ

has an unbounded sequence of critical values.

Still related to critical point theory we mention the following result due to Benci and

Rabinowitz.

Theorem B.8 ([29], Theorem 2.5; [55], Theorem 5.29). Let E be a real Hilbert space with

E � F1 � F2 and F2 � FK
1 . Suppose I P C1pE,Rq, satis�es the Cerami condition pCeqc

for any c P R and

pI1q Ipuq � 1
2
pLu, uq � ϕpuq, where Lu � L1P1u � L2P2u and Li : Fi Ñ Fi is bounded

and self-adjoint, i � 1, 2.

pI2q ϕ1 is compact, and

pI3q there exist a subspace pE � E and sets S � F1, Ω � pE and constants ρ ¡ ω such

that

piq Φpzq ¥ ρ, for all z P S;

piiq Ω is bounded and Φpzq ¤ ω for all z P BΩ;

piiiq S and BΩ link.

Then Φ possesses a critical value c ¥ ρ, with

c � inf
hPΓ

sup
uPΩ

Φphp1, uqq, (B.8)

where

Γ
.� th P Cpr0, 1s � E,Eq : h satis�es pΓ1q � pΓ3qu

here
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pΓ1q hp0, uq � u,

pΓ2q hpt, uq � u for u P BΩ,

pΓ3q hpt, uq � eθpt,uqLu�Kpt, uq, where θ P Cpr0, 1s � E,Rq and K is compact.
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APPENDIX C

Abstract results and some mathematical notations

In this chapter, we present de�nitions and results that are important and which will

be used in the development of this work. We start with some de�nitions.

De�nition C.1. A linear operator T : X Ñ Y between normed spaces X and Y is called

a compact linear operator if for every bounded sequence pxnq in X, the sequence pT pxnq
has a convergent subsequence.

De�nition C.2. The sequence pvnq � E is called a Palais-Smale sequence, or a pPSqc�
sequence for c P R, if

Φpvnq Ñ c and Φ
1pvnq Ñ 0 in E� as nÑ 8.

We say that Φ satis�es Palais-Smale condition at level c, or pPSqc�condition, if any

pPSqc� sequence for Φ has a convergent subsequence.

De�nition C.3. The sequence pvnq � E is called a Cerami sequence, or a pCeqc�sequence
for c P R, if

Φpvnq Ñ c and p1� ||vn||qΦ1pvnq Ñ 0 in E� as nÑ 8.

We say that Φ satis�es Cerami's condition at level c, or pCeqc�condition, if any pCeqc�
sequence for Φ has a convergent subsequence.

Sometimes, in the Chapter 1, for convenience, we consider a real function Lpxq as a
symmetric matrix LpxqI4, where I4 denotes the 4� 4 identity matrix. Moreover, for two

given symmetric 4�4 real matrix functions L1pxq and L2pxq, we rewrite that L1pxq ¤ L2pxq
if and only if

max
ξPC4,|ξ|�1

�
L1pxq � L2pxq

�
ξ � ξ ¤ 0.
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Now we present some abstract results. Firstly, we mention the known results about

convergence whose proof can be found in [58], Lemma 1.28 and Theorem 1.34, respectively.

Lemma C.1 (Fatou's Lemma). If fn : X Ñ r0,8s is mensurable, for each integer n,

then »
X

�
lim inf
nÑ8

fn

�
dx ¤ lim inf

nÑ8

»
X

fn dx.

Theorem C.1 (Lebesgue's Dominated Convergence Theorem). Suppose tfnu is a se-

quence of complex measurable functions on X such that fpxq � lim
nÑ8

fnpxq exists for every
x P X. If there is a function g P L1pXq such that |fnpxq| ¤ gpxq pn � 1, 2, 3...;x P Xq,
then f P L1pXq,

lim
nÑ8

»
X

|fn � f |dx � 0,

and

lim
nÑ8

»
X

fndx �
»
X

fdx.

The following result about the Nemytskii operators was demonstrated by Figueiredo

[21], Theorem 2.3.

Theorem C.2 (Nemytskii operator continuity). Suppose that there is a constant c ¡ 0,

a function bpxq P LqpΩq, 1 ¤ q ¤ 8 and r ¡ 0 such that

|fpx, sq| ¤ c|s|r � bpxq, @x P Ω, @s P R. (C.1)

Then

(a) Nf maps Lqr into Lq, where Nf pvqpyq � fpy, vpyqq;

(b) Nf is continuous and bounded (that is, it maps bounded sets into bounded sets).

We also state a result about the weak convergence in Lα that was proved by Kavian

[46], Lemma 4.8.

Lemma C.2. Let Ω � RN an open domain and pgnq a bounded sequence in LαpΩq, for
some 1   α   8, such that gn Ñ g q.t.p in Ω. Then g P LαpΩq and gn á g weakly in

LαpΩq.

We also use some inequalities that will be mention before.

Theorem C.3 ([66], Lemma A.1).
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(i) If p P r2,8q then:���|z|p�2z � |y|p�2y
��� ¤ β|z � y|

�
|z| � |y|

	p�2

@y, z P RN and β P R. (C.2)

(ii) If p P p1, 2s then:���|z|p�2z � |y|p�2y
��� ¤ β|z � y|p�1 @y, z P RN and β P R. (C.3)

Remark C.1. At the proof of these estimates its is possible conclude that β ¡ 0 as

y, z � 0 and, moreover, if r P p0,8q���|a|r � |b|r
��� ¤ |a� b|r @a, b P RN . (C.4)

By identifying the space of the complex numbers C with the real vector space of dimen-

sion 2 we obtain that such conditions remain valid for complex vectors.

The following are two well-known results of Functional Analysis, which can be found

in Brezis, [15], Theorem 2.2 and Theorem 2.9, respectively.

Theorem C.4 (Banach-Steinhaus, uniform boundedness principle). Let E and F be two

Banach spaces and let pTiq, i P I, be a family (not necessarily countable) of continuous

linear operators from E into F. Assume that

sup
iPI

||Tix||   8 @x P E.

Then

sup
iPI

||Ti||LpE,F q   8.

In other words, there exists a constant c such that

||Tix|| ¤ c||x|| @x P E,@i P I.

Here, the norm on the space LpE,F q of continuous (=bounded) linear operators from
E into F is de�ned as

||T ||LpE,F q � sup
xPE,||x||¤1

||Tx||.

Theorem C.5 (Closed Graph Theorem). Let E and F be two Banach spaces. Let T be

a linear operator from E into F . Assume that the graph of T , GpT q, is closed in E � F.

Then T is continuous.

We also mention the following result that is useful to stablish relations between inner

product of some particular operators.
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Proposition C.1 ([37], Proposition III 8.11). Let T be selfadjoint and nonnegative and

let S be symmetric with DpT q � DpSq and ||Sf || ¤ ||Tf || for all f P DpT q. Then

pSf, fq ¤ pTf, fq

for all f P DpT q.
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