
Regis Francisco Teles Martins

Packet Routing Analyses Using Probabilistic
Data Structures in Multi-Tenant Networks

based on Programmable Devices

Sorocaba, SP

September 2019

Regis Francisco Teles Martins

Packet Routing Analyses Using Probabilistic Data
Structures in Multi-Tenant Networks based on

Programmable Devices

Masters dissertation submitted to Postgradu-
ate Program in Computer Science of Federal
University of São Carlos in partial fulfillment
of the requirements for the degree of Master
of Computer Science. Research area: Software
Engineering and Computer Networking.

Universidade Federal de São Carlos – UFSCar

Centro de Ciências em Gestão e Tecnologia – CCGT

Programa de Pós-Graduação em Ciência da Computação – PPGCC-So

Supervisor: Prof. Dr. Fábio Luciano Verdi
Co-supervisor: Prof. Dr. Rodolfo da Silva Villaça

Sorocaba, SP
September 2019

Teles Martins, Regis Francisco
Packet Routing Analyses Using Probabilistic Data Structures in Multi-Tenant

Networks based on Programmable Devices/ Regis Francisco Teles Martins. – 2019.
147 f. : 30 cm.

Dissertation (Masters) – Universidade Federal de São Carlos – UFSCar
Centro de Ciências em Gestão e Tecnologia – CCGT
Programa de Pós-Graduação em Ciência da Computação – PPGCC-So, campus
Sorocaba, Sorocaba
Supervisor: Prof. Dr. Fábio Luciano Verdi
Co-supervisor: Prof. Dr. Rodolfo da Silva Villaça
Examination board: Prof. Dr. Fábio Luciano Verdi, Prof. Dr. Leobino N. Sampaio,
Profa. Dra. Yeda Regina Venturini
Bibliografia

1. Network Monitoring. 2. Sketches. 3. Multi-tenant. I. Prof. Dr. Fábio Luciano
Verdi, Prof. Dr. Rodolfo da Silva Villaça. II. Universidade Federal de São Carlos.
III. Packet Routing Analyses Using Probabilistic Data Structures in Multi-Tenant
Networks based on Programmable Devices.

To my beloved wife Patrícia
To my lovely children Hadassa, Sarah and Samuel

Acknowledgements

I would like to thank,

God, who is the source of life, knowledge, and true wisdom.

My wife for your love and patience during this journey, providing me with unfailing support
and continuous encouragement .

My children, who served as my inspiration to pursue this undertaking.

My parents for all motivational words and for the unceasing encouragement, support and
attention.

Professor Fábio Verdi and Professor Rodolfo Villaça for the excellent cooperation and hard
work reviewing and advising my work, and for the opportunity I was given to conduct my
research and further my dissertation at UFSCar.

Professor Luciana Zaina, for advising and steering me in the right direction.

The Sandvine company, for the support.

UFSCar PPGCCS teachers, for the great classes and knowledge transferred.

UFSCar, for providing me with all the necessary facilities for the research.

My colleagues from the LERIS and the University, especially Johannes Von Lochter, for
all the guidance.

One and all, who directly or indirectly, have lent their hand in this venture.

“For I am persuaded, that neither death, nor life, nor angels, nor principalities, nor
powers, nor things present, nor things to come, nor height, nor depth, nor any other

creature, shall be able to separate us from the love of God, which is in Christ Jesus our
Lord.”

(Romans 8.38-39)

“Whether you think you can or think you can’t, you’re right.”
(Henry Ford)

Abstract
Given the network traffic growth, due to applications that heavily use computational cloud
infrastructure, the need for improving the monitoring traffic techniques has increased. For
traffic engineering, it is essential to gain total visibility into the traffic flowing across the
network. The most used methods for traffic monitoring in the industry are those based
on dedicated monitoring protocols as SNMP (Simple Network Management Protocol),
NetFlow, SFlow, among others.

With processing capacity evolution of forwarding devices, new techniques have been
proposed. The use of sketches has become widely popular for traffic monitoring tasks.
Sketches are compact data structures capable of summarizing and store information
about the state of packets. Using sketches, it is possible to monitor a network traffic,
understanding the path travelled by each packet and which devices were responsible for
the packet forwarding.

Analyzing traffic over the network is a challenge that changes the traditional monitoring
approach. The current performance indicator metrics provided by network devices are not
enough to analyze and create insights for the network traffic as a whole. We need a way
to produce key performance indicators that can be correlated across different network
devices on the same network. This new approach opens opportunities for researching
and developing novel techniques to obtain a holistic network traffic visibility, to support
decisions in traffic engineering, to detect traffic anomalies and other applications.

Using a single sketch named BitMatrix, proposed in this work, it is possible to monitor
network traffic, understand the path travelled per packet and which devices forwarded this
packet along its path. In this context, this probabilistic structure was adopted to identify
the path used to forward a packet in a multi-tenant network in two different scenarios: a)
in an emulated network, using P4 routers and, b) in a simulated network, processing real
traffic traces, using a Python framework. As a result, overloaded routers, links and paths
and heavy user tenants were identified.

Key-words: Network Monitoring, Sketches, Bitmaps, Multi-tenant, P4 Language, Pro-
grammable Network.

Resumo
Com o crescimento do tráfego de rede, devido às aplicações que utilizam serviços de
infraestrutura computacional em nuvem, aumentou a necessidade de se otimizar a utilização
dos dispositivos responsáveis pelo encaminhamento e monitoramento do tráfego. Para
engenharia de tráfego, é essencial ter visibilidade do tráfego que está sendo encaminhado.
Os métodos mais comuns para monitoramento de tráfego são baseados em protocolos
dedicados a esse fim, como o SNMP (Simple Network Management Protocol), NetFlow,
SFlow, entre outros.

Com a evolução da capacidade de processamento dos equipamentos de encaminhamento,
novas técnicas têm sido propostas. Dentre estas, o uso de sketches tem se tornado cada
vez mais comum. Os sketches são estruturas de dados compactas, capazes de armazenar
de forma sumarizada informação sobre o estado de um pacote. Com o uso de sketches
é possível monitorar o tráfego de uma rede, entendendo o caminho percorrido por cada
pacote e quais dispositivos foram responsáveis pelo seu encaminhamento.

A análise do tráfego através da rede é um desafio científico que redireciona a forma
tradicional de monitoramento, movendo o foco dos elementos de rede e seus contadores
para o tráfego em si. Esse redirecionamento de foco cria oportunidades para pesquisa
e desenvolvimento de novas formas de se obter visibilidade do tráfego para auxiliar nas
tomadas de decisão em engenharia de tráfego, detecção de anomalias e outras aplicações.

Fazendo uso do sketch denominado BitMatrix, proposto neste trabalho, foi posssivel
monitorar o trafico de rede, entendendo o caminho percorrido por cada pacote e o quais
dispositivos de rede foram responsaveis pelo encaminhamento desse pacote atraves da rede.
Nesse contexto, esta estrutura probabilistica foi adotada para identificar a rota usada
para o encaminhamento do pacote em uma rede multi-tenant em dois diferentes scenarios:
a) em uma rede emulada, utilizando roteadores P4 (Programming Protocol-Independent
Packet Processors) e, b) Em uma rede simulada, processando capturas de trafico reais,
utilizando Python. Como resultado, tornouu-se possível identificar quais rotas e elementos
estão sobrecarregados e quais os usuários (tenants) com maiores demandas.

Palavras-chaves: Network Monitoring, Sketches, Bitmaps, Multi-tenant, Linguagem P4,
Redes Programaveis.

List of Figures

Figure 1 – Example of a traditional distributed network model, showing network
devices executing application function, control and data planes. 39

Figure 2 – Example of a SDN network. 40
Figure 3 – P4 abstraction model. 40
Figure 4 – Simple Switch target architecture. 43
Figure 5 – The BitMatrix is a group of n bitmap vectors. 47
Figure 6 – The proposed framework architecture for the project, showing the

interaction between its components. 51
Figure 7 – The phases for collect, parse and store the BitMatrix information. . . . 56
Figure 8 – The network diagram proposed to illustrate the analytics possibilities. . 57
Figure 9 – An example of a traffic matrix. 59
Figure 10 – Proposed topology to exemplify the sketches deployment in a P4 pro-

grammable network device. 61
Figure 11 – Parse graph for the P4 deployment. 63
Figure 12 – Top-level control graph, generated for the ingress control block, of the

P4 BitMatrix code. 74
Figure 13 – Top-level control graph, generated for the egress control block, of the

P4 BitMatrix code. 74
Figure 14 – BitMatrix structure and its bitmaps. 78
Figure 15 – Mininet emulated network topology with P4-enabled forwarding. 79
Figure 16 – Relation between % of collision X % of occupation. 82
Figure 17 – BitMatrix Occupancy and Collisions for tenant A in P4 switch 1. . . . 83
Figure 18 – Amount of packets per tenant in P4 switch 1. 84
Figure 19 – Total amount of packets per P4 switch. 84
Figure 20 – Amount of bytes per tenant in P4 switch 1. 85
Figure 21 – Total amount of bytes per P4 switch. 85
Figure 22 – Amount of packets on path AB+BA. 86
Figure 23 – Amount of bytes on paths AB+BA. 86
Figure 24 – Time for BitMatrix collection via Thrift interface - using the command

bm_register_read . 88
Figure 25 – Time for BitMatrix collection via Thrift interface - using the command

bm_register_read_all . 88
Figure 26 – Average hash collisions per hash algorithm broken down by source of

the trace and set of fields selection. 93
Figure 27 – Average hash collisions per hash algorithm 94
Figure 28 – Average hash collisions set of fields selection. 94

Figure 29 – New T3 Backbone Service for NSFNET 1992 95
Figure 30 – Topology detail for tenants, routers and links. 96
Figure 31 – Average throughput per link on every 10 seconds. 98
Figure 32 – Packets per second average rate, per router, on every 10 seconds. . . . 99
Figure 33 – Packets per second average rate on router 12, per tenant, on every 10

seconds. 99
Figure 34 – Packets per second average rate per tenant in the network, on every 10

seconds. 100
Figure 35 – Dashboard showing the traffic contribution for each tenant per router. . 100
Figure 36 – Number of processed packets measured by the BitMatrix counter and

the packet counter for Router 2 and Tenant 11, on every 10 seconds. . . 102
Figure 37 – Number of processed packets measured by the BitMatrix counter and

the packet counter for Router 1 and Tenant 1, on every 10 seconds.. . . 102
Figure 38 – Number of processed packets measured by the BitMatrix counter and

the packet counter for Router 3 and Tenant 3, on every 10 seconds. . . 103
Figure 39 – Percentage of bitmap occupation versus the percentage of collisions, per

bitmap. 103
Figure 40 – Number of packets processed measured by the BitMatrix counter, packet

counter and the BitMatrix adjusted, for Router 2 and Tenant 11, on
every 10 seconds. 106

Figure 41 – Number of packets processed measured by the BitMatrix counter, packet
counter and the BitMatrix adjusted, for Router 1 and Tenant 1, on
every 10 seconds. 107

Figure 42 – Number of packets processed measured by the BitMatrix counter, packet
counter and the BitMatrix adjusted, for Router 3 and Tenant 3, on
every 10 seconds. 107

List of Tables

Table 1 – Main works in the area . 37
Table 2 – Data Dictionaty . 53
Table 3 – Primitive Actions . 68
Table 4 – Traffic path between tenants . 79
Table 5 – Different hash algorithm and set of fields used to calculate the packet

position in the corresponding bitmap, for each packet. 93
Table 6 – Tenants and theirs assigned group of network prefixes. 97
Table 7 – Database partitioning for k-fold cross validation 104
Table 8 – Average MSE (mean squared error) and Average STDDEV (standard

deviation) for the test database, per method used as hypotheses. 104
Table 9 – Path used for traffic between tenants . 147

List of Algorithms

1 Bitmap vector packet store algorithm . 46
2 BitMatrix packet store algorithm . 48

Listings

5.1 Partial P4_14 code defining headers . 61
5.2 Partial P4_14 code defining parser . 63
5.3 Partial P4_14 code defining field list definition 64
5.4 Partial P4_14 code defining metadata . 65
5.5 Partial P4_14 code calculation process . 66
5.6 Partial P4_14 code register definition . 67
5.7 Partial P4_14 code actions . 69
5.8 Partial P4_14 code tables definitions . 70
5.9 Partial P4_14 code tables definitions . 70
5.10 Partial P4_14 code tables definitions . 71
5.11 Partial P4_14 code counter definition . 72
5.12 Partial P4_14 code control . 73
5.13 Commands for the run-time process of table population, in the network device 75
6.1 Partial P4_14 code defining Header and Parser 80
6.2 Partial P4 code defining input fields for hashing and the hash algorithm used. 81
6.3 bm_register_read commnad definition in standard.thrift code for the

behavioral-model . 87
6.4 bm_register_read_all command definition in standard.thrift code for the

behavioral-model . 87
6.5 Function definition in Python for Checksum 16 hash calculation 89
6.6 Using crcmod Python library to compute the CRC hash code. 90
6.7 Using MD5 - message-digest algorithm Python module to obtain the MD5

hash code. 91
A.1 P4_14 code implementing BitMatrix . 119
A.2 P4_14 code for tables feed via Thrift runtime interface 125
A.3 Mininet enviromnet defined by topo.py . 125
A.4 Collector and Controller component implemented in Python 129
A.5 Python framework for NSF 92 network simulation 139

List of abbreviations and acronyms

ADDR Address

API Application Programming Interface

ARP Address Resolution Protocol

ASIC Application-Specific Integrated Circuit

BMv2 Behavioral Model version 2

CAIDA Center for Applied Internet Data Analysis

CLI Command Line Interface

CPU Central Processing Unit

CRC16 Cyclic Redundancy Check 16 bit

CRC32 Cyclic Redundancy Check 32 bit

DF Degrees of Freedom

DSCP Differentiated Services Code Point

DST Destination

ECN Explicit Congestion Notification

ETL Extract Transform and Load

ForCES Forwarding and Control Element Separation

FPGA Field Programmable Gate Arrays

IDS Intrusion Detection System

ICMP Internet Control Message Protocol

IHL Internet Header Length

IP Internet Protocol

ISP Internet Service Provider

JSON JavaScript Object Notation

KPI Key Performace Indicator

MAC Media Access Control

MAPE Mean Absolute Percentage Error

Mbps Megabits per second

MD5 Message Digest algorithm 5

MSE Mean Squared Error

NETRESEC Network Forensics and Network Security Monitoring

NPU Network Processor Unit

NSFNET National Science Foundation Network

OLAP Online Analytical Processing

OS Operational System

OVS Open Virtual Switch

P4 Programming Protocol-Independent Packet Processor

PISA Protocol-Independent Switch Architecture

POC Proof of Concept

POF Protocol-oblivious Forwarding

PPS Packets per second

RPC Remote Procedure Call

RSA Rivest Shamir and Adelman

SCREAM Sketch Resource Allocation for Software-defined Measurement

SDN Software Defined Network

sFlow Sampled Flow

SNMP Simple Network Management Protocol

SRC Source

SSE Sum Squared Error

TCP Transmission Control Protocol

TTL Time To Live

UDP User Datagram Protocol

UnivMon Universal Monitoring

List of symbols

Σ Greek letter Sigma

Contents

1 INTRODUCTION . 31

2 TECHNICAL BACKGROUND . 35
2.1 Related Work . 35
2.2 Sketches . 36
2.3 Software Defined Networks . 38
2.4 P4 Language . 40
2.4.1 BMv2 - Behavioural Model version 2 . 41
2.5 Mininet . 42

3 BITMATRIX . 45
3.1 Architecture . 45
3.1.1 Muti-tenant Environment . 46
3.2 Monitoring Architecture . 47
3.3 Caveats and Limitations . 49

4 MONITORING FRAMEWORK . 51
4.1 Framework Architecture . 51
4.2 Network Traffic Monitoring per Tenant 53
4.2.1 Network Device Packet Processing . 53
4.2.2 Collection and Control . 54
4.2.3 Parse and Storage . 55
4.2.4 Analyses . 56
4.3 Network Traffic Matrix . 59

5 BITMATRIX IN P4 LANGUAGE . 61

6 TESTS AND RESULTS . 77
6.1 P4 implementation using Mininet . 77
6.1.1 BitMatrix Tests and Methodology . 77
6.1.2 Parsing the Packet Header . 80
6.1.3 Hashing and Hash Inputs . 81
6.1.4 Collisions versus Occupation Tests . 82
6.1.5 Retrieving and Processing BitMatrix . 82
6.1.6 Results . 83
6.1.7 Contribution - New Command bm_register_read_all added to Thrift interface 87
6.2 Python Implementation . 88

6.2.1 Hash Algorithms and Packet headers Selection 89
6.3 NSF92 Framework in Python . 94
6.3.1 Results . 98
6.4 Machine Learning for BitMatrix Measurement Adjustment 101

7 CONCLUDING REMARKS . 109

Bibliography . 113

APPENDIX A – APPENDIX . 119
A.1 Deployment in P4 example . 119
A.2 Mininet modifications for P4 network emulation 125
A.3 Collector and Controller component implemented in Python 129
A.4 NSF 92 Python framework . 138
A.5 Routing table for NSF 92 Python framework 145

31

1 Introduction

The exponential growth of network traffic emphasizes the importance of network
monitoring, management, planning and traffic engineering. In addition, cloud computing
have been widely used, and the number of cloud-based services has increased rapidly in
the last years, increasing the complexity of the infrastructure behind these services. In
this way, data centers need to have an accurate and fine-grained monitoring to operate
efficiently, considering the use of shared resources by multiple tenants. Consequently, cloud
administrators could use monitoring information for essential processes such as accounting,
audit tracking, debugging, fault detection, job scheduling and performance analysis.

Faced with the need for more effective ways to monitor and understand how
network traffic is handled and what changes should be made on traffic routing, a valuable
contribution is made with the utilization of compact data structures (sketches). These
data structures can be implemented on P4 enabled devices, to monitor network traffic.

In this context, sketches are probabilistic data structures used to store summarized
information about the network traffic. The two primary advantages of using sketches are;
the low memory usage in the device and the adjustable accuracy achieved regarding the
amount of memory used to store information. There are several applications in measurement
tasks for sketches, such as heavy-hitter detection (MATHEW; KATKAR, 2011; YU;
JOSE; MIAO, 2013; KRISHNAMURTHY et al., 2003), traffic pattern change detection
(KRISHNAMURTHY et al., 2003; SCHWELLER et al., 2004), flow-size distribution
estimation (DUFFIELD; LUND; THORUP, 2005), and others.

As an evolution of Software Defined Networking (SDN), P4 (Programming Protocol-
Independent Packet Processor) was presented as a high-level programming language for
packet forwarding devices (BOSSHART et al., 2014). The P4 language makes programming
devices (targets) more flexible. To use a program written in P4, it needs to be compiled to
the target device, which can be a hardware or software-based system and the program
can be simple or very complex, depending on the behaviour planned for the device when
forwarding packets. P4 allows the creation of several mechanisms for traffic measurement
(KIM et al., 2015; SIVARAMAN et al., 2017), among them, the implementation of
probabilistic data structures, or sketches.

So, the main goal of this work is to propose and implement a framework, based on
the well-known bitmap and counter-array sketches, that goes further than the traditional
monitoring process of counting packets and bytes. A new compact probabilistic struc-
ture, named BitMatrix, is presented. BitMatrix was created to support the multi-tenant
monitoring using an array of bitmaps, combined with a storage method that enables the

32 Chapter 1. Introduction

information to be segmented per tenant, in a later phase. Besides the general statistics,
it enables detail analyses on a packet level in the network, i.e. it is possible, using the
BitMatrix, to determine how many packets travelled through a specific set of network
devices. Thus, we demonstrate how to produce critical and frequent monitoring information
such as the number of bytes and packets per network device per tenant, the number of
packets per path per tenant and also the paths being used by each tenant.

Using bitstreams collected from bitmaps and counter arrays at pre-determined
periods, sufficient information is obtained to understand the volume of traffic being
processed in a given network. The data collecting from data structures must happen in the
same time; thus, they will correspond to the same period in all elements. This time frame
is called epoch. After collecting bitstreams, data structures are restarted to proceed with
collecting information for the next epoch. Once the information from the data structures is
collected and stored, it is possible to process this information from two or more elements,
to obtain indicators about forwarding traffic in the network.

Performance indicators such as data volume and the number of packets processed
by each network device and the path that a given packet has taken through the network
can be obtained and used for decision making in the planning, expansion and traffic
engineering process.

Objectives

The main objective of this project is to create a sketches-based framework capable
of generating tenant segmented data streams for storing packets and bytes across network
devices, enabling several traffic analyses. This framework consists of three elements that
will digest packets and temporarily store the information in the memory of the data plane
element, collect the information from memory, parse and store it in a database and present
statistics and key performance indicators based on that information.

The main goals for this project are:

• Creation of a bitmap array using P4 language for traffic segmentation. In this project,
segmentation will be by tenant and may be extended to other types of segmentation;

• Perform a near-to-synchronous collection of data streams to estimate the number of
packets and bytes processed in network devices or, for a given path in the network;

• Determine the number of packets and bytes that traveled through a given route,
allowing segmentation by source tenant.

33

Outline
The remaining of this dissertation is organized as follows:

• Chapter 2: presents related works and technical background that are the basis for
this work;

• Chapter 3: details the BitMatrix architecture, features and operation.

• Chapter 4: explain the implementation of a framework using the BitMatrix to store
the packets and other elements to collect, parse, store a and a analyze the information
obtained. Also, an introduction about how to create a network traffic matrix, using
BitMatrix information.

• Chapter 5: walks through a deployment example in P4 Language, explaining the P4
structure and primitives used to implement it.

• Chapter 6: describes the testing methodology and its respective results, detailing
two frameworks, one for emulation, using Mininet and another for simulation using
Python language, developed to validate the BitMatrix and all its elements. Also
presents a discussion about the impact of using different hash algorithms with
different inputs and finally, the result of using machine learning, to correct the error
introduced by the process;

• Conclusion: contains our final remarks and future works that can be developed based
on this work.

35

2 Technical Background

This chapter presents the related works for this project and gives an introduction
about the enabling technologies used in this work.

2.1 Related Work

Monitoring network traffic is the method used to understand issues or problems
within a network environment. In order to understand, prevent and resolve issues, there are
numerous methods available for traffic monitoring. The study and research of monitoring
network traffic evolved due to the increase in traffic over the years. By monitoring, we can
extract relevant information for performing network management tasks such as attack and
anomaly detection (MATHEW; KATKAR, 2011; ZHANG, 2013), forensic analysis (XIE
et al., 2005) and engineering of traffic (BENSON et al., 2011; FELDMANN et al., 2001).

Metrics at different levels are required for each management task, such as flow size
distribution (KUMAR et al., 2004), heavy hitters (BENSON et al., 2011), or changes in
the pattern of traffic detection (SCHWELLER et al., 2004), according to what we want
to achieve. At a high level, there are two classes of techniques for obtaining performance
metrics.

The first is traffic measurement using counters. The most widely used monitoring
protocol for this purpose is the Simple Network Management Protocol (SNMP) (CASE
J. D.; DAVID, 1990). SNMP collects real-time performance indicator values and maintains
an in-memory database with this information available for queries, furthermore, it can
send alarms when an indicator threshold is reached.

The second class of techniques involves two approaches to estimate the traffic
metrics. The first approach is based on generic flow monitoring, typically using some
protocol to collect traffic samples to estimate these metrics. Among the most popular
protocols are NetFlow (CLAISE, 2004) and SFlow 1. Although generic flow monitoring
is sufficient to monitor traffic in general, previous work has shown the low accuracy of
this technique in generating more granular metrics (DUFFIELD; LUND; THORUP, 2005;
ESTAN; VARGHESE, 2001; RAMACHANDRAN et al., 2008). The limitations of sampling
methods have led to an alternative sketching approach, where real-time algorithms and
compact data structures are designed to generate specific metrics (BRAVERMAN et al.,
2015; ESTAN; VARGHESE, 2001; RAMACHANDRAN et al., 2008; KRISHNAMURTHY

1 sFlow is a sampling technology for monitoring network traffic. - Available at: http://www.sflow.org/ -
Accessed 08/06/2019.

36 Chapter 2. Technical Background

et al., 2003; LALL et al., 2006; YU; JOSE; MIAO, 2013).

While research in sketching and data streaming areas make a significant contribution,
in the long run, it is impossible to sustain the continued creation of dedicated purpose
algorithms. The need to support new metrics demands the development of new algorithms,
as well as hardware and languages that support them. Tools like OpenSketch (YU; JOSE;
MIAO, 2013) and SCREAM (MOSHREF et al., 2015) provide libraries that reduce
implementation effort and provide efficient resource allocation. However, they do not
address the fundamental need to create new sketches for each task. Also, the fact that
sketches are implemented on demand according to the set of metrics we want to monitor
creates blind spots on the metrics not monitored. Recently, UnivMon (LIU et al., 2016)
presented a proposal for a framework that reconciles generality and high fidelity for a
broad spectrum of monitoring tasks, and the FlexSketchMon that introduces a novel data
plane architecture for collecting traffic flow statistics and provide flow aggregations for
monitoring applications (WELLEM et al., 2019). The work presented here focused on a
lightweight sketches structure, named BitMatrix, able to cover a wide range of metrics
generation, using the intelligence provided by the control plane.

From the environment perspective, monitoring sketches can be implemented in
software defined networks (SDN), where the responsible processing and population are
the controllers (HUANG et al., 2017; SHAHBAZ et al., 2016), as well as through the use
of packet-oriented languages such as P4 (BOSSHART et al., 2014). There are enough
implementations with complex algorithms (HUANG et al., 2017; SIVARAMAN et al.,
2015; KIM et al., 2015; DANG et al., 2016), in addition to UnivMon, which is the first
published work in monitoring using sketches and implemented in P4 language. Table 1
showns the main works related to this project.

2.2 Sketches

Sketch is the most common name existing in literature for describing data structure.
By definition, sketches are a compact data structure used in streaming algorithms to store
and summarize traffic statistics (DIMITROPOULOS; HURLEY; KIND, 2008). Different
from the traditional traffic measurement techniques, as Netflow (CLAISE, 2004) and
Sflow (SFLOW-RT, 2019), this data structure offers a fine-grained measurement not only
sampling packets from traffic but processing every packet forwarded in the network, making
very effective usage of the memory and with provable tradeoffs of memory and accuracy
(YU; JOSE; MIAO, 2013; CORMODE; MUTHUKRISHNAN, 2005; ESTAN; VARGHESE,
2003; HUANG; LEE, 2015; MITZENMACHER; PAGH; PHAM, 2014; SCHWELLER et
al., 2004).

There are restrictions when implementing sketches in traditional devices, as vendors

2.2. Sketches 37

W
or
k

C
ita

tio
n

Pu
rp
os
e

M
et
ho

do
lo
gy

M
ic
ro
T
E

(M
AT

H
EW

;K
AT

K
A
R
,2

01
1)

Tr
affi

c
en
gi
nn

er
in
g
,H

ea
vy

H
itt

er
s

O
pe

nF
lo
w

O
pe

nW
at
ch

(Z
H
A
N
G
,2

01
3)

A
no

m
al
y
de
te
ct
io
n

O
pe

nF
lo
w

Lo
ss
y
D
at
a
St
ru
ct
ur
e

(K
U
M
A
R

et
al
.,
20
04
)

Tr
affi

c
en
gi
ne
er
in
g

Sk
et
ch
s,

tr
ac
e
an

al
ys
es

R
ev
er
sib

le
Sk

et
ch
es

(S
C
H
W

EL
LE

R
et

al
.,
20
04
)

Pa
tt
er
n
of

tr
affi

c
de
te
ct
io
n

Sk
et
ch
s,

tr
ac
e
an

al
ys
es

Es
tim

at
in
g
Fl
ow

D
ist

ri.
(D

U
FF

IE
LD

;L
U
N
D
;T

H
O
RU

P,
20
05
)

Fl
ow

m
on

ito
rin

g
St
at
ist

ic
al

in
fe
re
nc
e,

tr
ac
e
an

a.
Fl
ex
Sa

m
pl
e

(R
A
M
A
C
H
A
N
D
R
A
N

et
al
.,
20
08
)

A
no

m
al
y
de
te
ct
io
n,

tr
affi

c
m
on

.
Sk

et
ch
s,

tr
ac
e
an

al
ys
es

Sk
et
ch
-b
as
ed

C
hg

D
et
ec
t.

(K
R
IS
H
N
A
M
U
RT

H
Y

et
al
.,
20
03
)

A
no

m
al
y
de
te
ct
io
n

Sk
et
ch
s,

tr
ac
e
an

al
ys
es

O
pe

nS
ke
tc
h

(Y
U
;J

O
SE

;M
IA

O
,2

01
3)

A
no

m
al
y
de
te
ct
io
n,

tr
affi

c
m
on

.
N
et
FP

G
A
,s

ke
tc
hs
,tr

ac
e
an

a.
Sc
re
am

(M
O
SH

R
EF

et
al
.,
20
15
)

Tr
affi

c
en
gi
ne
er
in
g

Sk
et
ch
s,

tr
ac
e
an

al
ys
es

U
ni
vM

on
(L

IU
et

al
.,
20
16
)

Fl
ow

m
on

ito
rin

g
P4

,s
ke
tc
hs
,t
ra
ce

an
al
ys
es

Fl
ex
Sk

et
ch
M
on

(W
EL

LE
M

et
al
.,
20
19
)

Fl
ow

m
on

ito
rin

g
Sk

et
ch
s,

tr
affi

c
m
on

.,
N
et
FP

G
A

Ta
bl
e
1
–
M
ai
n
wo

rk
s
in

th
e
ar
ea

38 Chapter 2. Technical Background

would need to re-engineer their programmable ASIC to deploy a specific sketch function, for
this reason, sketches were not widely deployed in the past. With the advent of programmable
devices and soft-switches, many sketch-based solutions began to emerge, especially given
the low overhead in the packet processing pipeline and the low memory usage, when
compared to flow-based counters (HUANG; LEE, 2015). However, contrary the common
sense, analyses from HUANG et al., shows that a sketch-based solution in software can
consume substantial computing resources, causing overload in the CPU, given that sketches
are only primitives and often requires additional extensions and components incurring in
a heavy load in CPU, especially during traffic bursts in the data plane.

Some examples of measurement solutions implemented using sketches are heavy
hitter detection (BANDI et al., 2007), traffic change detection (SCHWELLER et al., 2004),
flow size distribution estimation (KUMAR et al., 2004), global iceberg detection (Guanyao
Huang et al., 2009), and fine-grained delay measurement (SANJUàS-CUXART et al.,
2011). Furthermore, sketches have many applications in networking problems, specifically,
in estimating the flow-size distribution of traffic streams (KUMAR et al., 2004; ZHANG
et al., 2004), in identifying anomalies (KRISHNAMURTHY et al., 2003; SCHWELLER et
al., 2004; LI et al., 2006).

Sampling techniques to reduce the necessary memory resources and the processing
overhead were addressed by GIBBONS; MATIAS, DEMAINE; LóPEZ-ORTIZ; MUNRO,
and KAMIYAMA; MORI, for identifying heavy hitters. As a trade, sampling techniques
typically present lower accuracy. Moreover, several other studies for related problems,
such as data streaming algorithms for finding sources and destinations, communicating
with other distinct destinations or sources (ZHAO et al., 2005), and algorithms for the
distributed version of the top-k problem, to minimize communication overhead between
vantage points for finding the globally k most frequent elements (BABCOCK; OLSTON,
2003).

In this work, we used a simple data structure, named BitMatrix to store digested
packets using a unique bitmap, and its bytes using a counter array, segmented by a tenant.
This storing process results in several datastreams, that are processed in background, to
produce several network traffic statistics.

2.3 Software Defined Networks

In a traditional network, devices operate independently, holding management and
configuration functions on themselves. Each device is built to perform a specific function
in the network such as packet switching, routing and deep packet inspection. They process
packets according to instructions configured into the device or received through the network,
via a dedicated protocol or distributed algorithm. Indeed, network devices process packets

2.3. Software Defined Networks 39

based on information from many sources with different mechanisms, in an autonomous
way. The control information and the hardware and software elements responsible for its
exchange constitutes the control plane in the network. The data plane is the set of hardware
and software elements in the path of data packets. In the distributed network model the
control plane and the data plan are independent for each device and are composed of
proprietary hardware and software elements, designed to a specific function in the network,
as shown in Figure 1. As each vendor has different concepts and different operational
systems, configuring, debugging and troubleshooting those devices can be a challenge for
network operators. Moreover, as the devices are task-oriented, the ability to change their
packet processing behaviour, for implementing new solutions, is limited.

Application Function

Control Plane

Data Plane

Firewall Router DPI Router

Figure 1 – Example of a traditional distributed network model, showing network devices
executing application function, control and data planes.

The SDN paradigm creates a separation between the control plane and data plane
functions in a network devices’ software and hardware perspective. Figure 2 presents
the SDN network model. In the data plane, resides only packet processing abstractions,
which is used by the control plan to define the packet processing behaviour for the
data plane devices. Data plane, in SDN terminology are often referred as forwarding
devices and are enabled with SDN technology like OpenFlow (MCKEOWN et al., 2008),
ForCES (Forwarding and Control Element Separation) (HALPERN et al., 2010), POF
(Protocol-oblivious Forwarding) (SONG, 2013) and P4 (BOSSHART et al., 2014).

A centralized control plane offers control and management for all data plane devices
in the network. The element that provides a logically centralized control plane is the SDN
controller. It provides control APIs to connect to network devices and control their packet
processing behaviour, using the configuration and management protocols mentioned above.
Those protocols provide standard open interfaces to manage data plane network devices.
This control and data plane separation model make the network data plane devices open
to change their packet processing behaviour even after deployment.

P4 language extends the SDN concepts by enabling network devices not only to

40 Chapter 2. Technical Background

Firewall Router DPI Router

Control Plane

Data Plane

SDN Controller

SDN Devices

Figure 2 – Example of a SDN network.

have their packet processing behaviour controlled, but also to program them. It allows to
parse the packet to obtain required fields, process the parsed fields and deparse the packet
using the processed fields.

2.4 P4 Language

P4 is a high-level language used for expressing how a hardware or software network
device, such as network interface card, switch or any other network function appliance,
will process packets on its pipeline. It is based on a model divided into ingress and egress
pipelines, which consists of a parser, a set of match+action tables and a deparser. The
parser will create fields based on headers’ definitions for each incoming packet. Tables
perform a lookup using a set of header fields for a match and apply corresponding actions,
expressed on each table. Figure 3 diagram shows the P4 model.

Parser DeparserMatch+Action
Stage (Unit)

Match+Action
Stage (Unit)

Queueing
Replication
Scheduling

Ingress Pipeline Egress Pipeline

Figure 3 – P4 abstraction model.

2.4. P4 Language 41

P4 is a protocol-independent language and allows expressing any forwarding plane
protocol, specifying the following for each element:

• Header and Parser: Headers will describe the layout of fields in a packet, providing
names to be referenced later in the code. Fields in a header are defined in a structure
describing fields belonging to the header and their length, in bits. The parser will use
this definition structure to create a header instance parsing each header field in the
packet sequentially, according to the number of bits in header definitions for each
field. Headers can also define metadata instances, which are registers maintained
during the packet processing mainly for controlling purposes, as holding the port
number that the egress pipeline should use to forward the packet processed to the
next hop.

• Match and Action: These tables contain rules defining the exact set of fields that
should be examined to find a match on the header fields that were extracted from
the parser and execute user-defined actions. In case of no matches are found, the
default action for the table will be applied. Actions can create or modify header
fields, select output ports or drop the packet. Tables are empty when the target
starts and the population happens by using a target specific API at runtime. The
P4 specification does not define any specific API to be used for this task, leaving it
open to vendors to define.

• Pipelines and Queues: The match and action process will compose the ingress
and egress pipelines and will generate an egress specification to determine the port
that each packet will be sent, creating a queue. This egress queue may buffer packets
when an output port is overloaded. The metadata egress_spec is used to specify
the port destination of a packet. This metadata indicates the queue to be used with
each destination and may represent a physical or logical port, or even a multicast
group. After all processing in the egress pipeline, the packet instance’s header is
deparsed and the resulting packet is transmitted.

Devices that are able to compile P4 programs are called targets. The target will provide a
framework for implementation, a P4 compiler and an API for managing the behaviour of
data plane objects from the control plane. In this work, we used the Behavioral Model
version 2 (BMv2) target, which uses the Thrift API for runtime interactions.

2.4.1 BMv2 - Behavioural Model version 2

The Behavioural Model version 2 (BMv2) is a framework, developed in C++,
allowing P4 programming, and acting as a software switch. The project is committed to
implementing full support for P4 specifications and being architectural independent. Three

42 Chapter 2. Technical Background

different targets can be implemented using this framework: simple_router, l2_switch
and simple_switch. In this work, we used the simple_switch, which is widely used
to test and deploy different P4 features for most users. This target is equivalent to the
abstract switch model described in the P4 specifications (The P4 Language Consortium,
2017).

The main components for the BMv2 framework are the following:

• P4 Compiler: There are two P4 compilers available for BMv2: the p4c-bm, which
is the legacy compiler, supporting only sources written in P4_14 language version
and the p4c. The p4c is the recommended compiler to be used, and it offers support
for P4 version 14 and 16 programs.

• Runtime Interface: Each BMv2 instance runs a Thrift RPC server that the
command line interface runtime_CLI.py can access to populate tables, read and
write information on counters, meters and registers. The CLI uses Python’s cmd
command and supports auto-completion. This interface is used in this work to collect
the BitMatrix information from the BMv2 switch.

• Debbuger: The BMv2 also has a debugger component that enables event logging,
using the Python nanolog library. The debug feature needs to be enabled when
compiling the BMv2 and can be used to display event of significance, such as table
hits/misses and parse transitions, for each packet.

The BMv2 workflow is simplistic. The P4 program is compiled to a JSON rep-
resentation by the p4c compiler. The BMv2 loads this JSON file and initialize its data
structures resulting in the desired switching behaviour. Figure 4 shows the simple_switch
architecture. The ingress_thread is responsible for receiving the packet from the switch
ports and executing the specified ingress pipeline. Then, it forwards the packets to an
egress thread, which is responsible for the egress pipeline. Finally, the packet is delivered
to the transmit thread and transmitted to the output port.

2.5 Mininet

Mininet is a Python-based framework that allows creating a complete emulated
network of switches, Openflow switches, controllers, hosts and links in a virtual environment.
Mininet uses process abstraction to create virtualization to run network elements on a single
machine, using its OS kernel. Using Linux virtualization features, it provides exclusive
processes with isolated network interfaces, routing and ARP tables. Linux traffic control
can limit the bandwidth for links to manage the traffic to a specific rate. Each emulated

2.5. Mininet 43

Packets In

program.p4

Port Interface

Linux Kernel
veth0... n

Packets Out

si
m

p
le

_s
w

it
ch

 (
B

M
v2

)

program.json

p4c

program.json

simple_switch_CLI

Program-independent
Control Server

lo
g

d
eb

u
g

Program-independent
CLI and Client

Thrift

Figure 4 – Simple Switch target architecture.

host can have one or more exclusive network interfaces. The Linux Bridge or the Open
vSwitch (PFAFF et al., 2015) is used to switch packets across host and switches interfaces.

Mininet is mostly used to develop experiments with OpenFlow and SDN systems.
In this work, we used a modified version of Mininet to support the BMv2 soft switch for
tests. This version was initially created to be used in P4 tutorials, and we adapted it to
run the environment for our experiments. The Appendix A.2 Mininet modifications for P4
network emulation shows the modifications done in the original code.

45

3 BitMatrix

In this chapter, we describe in detail the BitMatrix paradigm, exposing its concep-
tion, implementation and statistics that can be generated from information provided from
it.

3.1 Architecture

A bitmap vector, in this context, is a sequence of bits with a fixed length, as shown
in Definition 3.1. Thus, each bit position will create an index for the bitmap, making it
possible to refer to a specific position by using this index. The bitmap vector was used
to store each packet processed by a network device. To determine which index position a
packet should occupy, we use a hash function.

bitmap = {bit1, bit2, bit3, . . . , bitn} (3.1)

The packet’s fields, used as input for the hash algorithm, must be able to represent
the packet uniquely and may not change across hops during the forwarding process. The
hash will be calculated using the invariant portion of the packet and the first 8 bytes of
the payload - TCP, UDP or another subsequent layer - if present. IP fields modified during
the packet forwarding across the network are not used as input as this would result in
a different hash for the same packet along its path. According to Snoeren, the first 28
invariant bytes of a packet, are sufficient to differentiate almost all non-identical packets
(SNOEREN et al., 2001).

With each packet represented by a hash, the bitmap vector was used to store
packets, by setting the index bit corresponding to the hash to one. Initially, the bitmap has
all positions set to zero, and then, for each packet processed, one position, defined by the
hash algorithm, is set to one. In this way, every time a packet is processed, it will generate
a hash number and will change the value of the bit in the position corresponding to the
hash value to 1. In case of the bitmap vector has fewer positions than the hash value, a
modulo function needs to be used to adjust the corresponding index to that packet.

Algorithm 1 demonstrates the procedure used to process a packet, generate a hash,
and determine the corresponding position for that packet in the bitmap vector.

46 Chapter 3. BitMatrix

Algorithm 1 Bitmap vector packet store algorithm
1: procedure Bitmap vector population

Input: First 28 invariant bytes of the packet
Output: Corresponding bitmap vector position set to 1

2: hash_value = hash_function(i)
3: if hash_value > bitmap_length then
4: bitmap_position = mod (bitmap_length, hash_value)
5: else
6: bitmap_position = hash_value
7: end if
8: bitmap[bitmap_position] = 1
9: end procedure

Furthermore, an counter array sketch is used to store the total length of the packet
processed. It will use the same hash code calculated for the bitmap, to store the packet
length in the counter array. In this way, it is possible to recover the total length of the
packet by using the index from the bitmap sketch.

3.1.1 Muti-tenant Environment

The use of the bitmap vector, however, is limited to store packets indistinctly and
does not allow any segmentation, as it is composed of a single vector. In a multi-tenant
environment, it may be desired to use one bitmap vector to store packets for each tenant
using the network. Instead of using several vectors individually, we proposed a bitmap
matrix, that we called BitMatrix, and it is represented in Definition 3.2.

BitMatrix = {bitmap1, bitmap2, bitmap3, . . . , bitmapn} (3.2)

The BitMatrix is a group of bitmap vectors, used to store packets in a segmented
manner, as shown in Figure 5. The main benefit of this method is that it is still possible to
segment the packet storage using a single probabilistic structure. This segmentation can
happen in different ways, such as per sub-net, per layer three protocol, or layer four port,
although for a multi-tenant network, we are using a per tenant segmentation approach,
where every packet originated by a specific tenant, identified by the packet source IP
address, will be stored in the same bitmap vector in the BitMatrix.

The number of bitmaps in the BitMatrix will depend on the number of tenants
monitored in the network. The number of tenants will determine how many bits the
BitMatrix will use in each position, as it will use one bit per bitmap per position. From
another perspective, a BitMatrix storing several bits on a position will create an integer
number that represents the position bits. e.g., Consider that a BitMatrix is composed
of four bitmaps. Consequently, it has four bits for every position. The first bit, for the

3.2. Monitoring Architecture 47

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
...

...

...

...

0

1

2

n-1

n

position (index)b
it

m
ap

 1

b
it

m
ap

 2

b
it

m
ap

 m

2n positions

BitMatrix

Figure 5 – The BitMatrix is a group of n bitmap vectors.

bitmap1, second bit for the bitmap2, third bit for the bitmap3 and fourth bit for the
bitmap4. Each position of the BitMatrix has a single value that can vary from zero, if
there is no packet stored in that position for any bitmap - [0000], to 15, if all bitmaps have
packets stored in the same position - [1111].

Thus, for the storing procedure, it is not enough to determine the position that
the packet will be stored in the BitMatrix but also, what bitmap to use. The bitmap1,
from the previous example, will store packets in the first bit of the position, so the value
is 1 - [0001]. The bitmap2, will store packets in the second bit of the position, so the value
is 2 - [0010]. Hence, it is not possible only write this value in the BitMatrix position, as it
would delete a previous value stored in the same position, and consequently the packet
previously stored in another bitmap. Instead, the logical disjunction operator (OR) is used,
avoiding any loss of packets previously stored from other bitmaps.

Algorithm 2 shows the procedure for storing packets in the BitMatrix on its different
bitmaps.

Using the described technique is possible to segment the packets stored in a
BitMatrix by creating a process to distinguish different tenants. In this work, we are
identifying different tenants by using the source IP address of the packet. In this way, it is
possible to identify which tenant originated the stored packet.

3.2 Monitoring Architecture

The monitoring process used in this work aims to determine:

48 Chapter 3. BitMatrix

Algorithm 2 BitMatrix packet store algorithm
1: procedure BitMatrix vector population

Input: First 28 invariant bytes of the packet
Output: Corresponding bit in the BitMatrix associated position set to 1

2: hash_value = hash_function(i)
3: if hash_value > BitMatrix_length then
4: BitMatrix_position = mod (BitMatrix_length, hash_value)
5: else
6: BitMatrix_position = hash_value
7: end if
8: BitMatrix_Stored_V alue = BitMatrix[BitMatrix_position]
9: if bitmap = bitmap1 then
10: BitMatrix_value = 1 [0001]
11: else if bitmap = bitmap2 then
12: BitMatrix_value = 2 [0010]
13: else if bitmap = bitmap3 then
14: BitMatrix_value = 4 [0100]
15: . . .
16: else
17: BitMatrix_value = m
18: end if
19: BitMatrix[BitMatrix_position] = BitMatrix_Stored_V alue OR

BitMatrix_value
20: end procedure

• How many unique packets crossed the network.

• What were their origin and destination.

• What were the network devices responsible for routing those packets.

The BitMatrix, allied with the network topology information, is sufficient to perform
the proposed monitoring and further analysis.

We deployed an identical BitMatrix on every device in the network. In this way,
we will have the same packet stored precisely in the same position in the BitMatrix, on
each device responsible for forwarding it across the network. On a fixed period, we collect
the BitMatrix with all packets stored on it. The number of packets processed in a specific
device, per tenant and in total can be obtained by analyzing the information from the
BitMatrix.

The number of packets processed in a specific device can be obtained by summing
bits, which represent packets, stored in the BitMatrix. The number of packets counted
in the BitMatrix will always be less than the number of packets processed by the device,
given the probability of a hash collision to happen, as exposed in Section 3.3 Caveats and
Limitations. To estimate the number of packets for a specific tenant, it is needed to select

3.3. Caveats and Limitations 49

the correspondent bitmap to that tenant inside the BitMatrix, and then, perform the sum.
The total number of packets processed by a device, can be estimated by counting the
number of bits stored in the whole BitMatrix. Assuming that all packets from tenantA

were stored in the bitmap1, the Equation 3.3 represents the total number of packets sent
from tenantA.

Total of packets from tenantA =
∑

bitmap1 (3.3)

Equation 3.4 expresses the total amount of packets processed by the network device
from where the BitMatrix was collected.

Total processed packets =
∑

BitMatrix (3.4)

To obtain the number of unique packets processed in the network, per tenant
and in total, we used a logical disjunction in the tenant related bitmaps collected from
BitMatrices across the network devices, in the same time frame. The logical operator OR
will avoid counting the same packet more than once. The Expression 3.5 shows the sum
of the bits resulting from the logical disjunction of all bitmaps correspondent to tenantA,
collect from all BitMatrices accross the network. The notation is: bitmapTenant,BitMatrix.
The total number of unique packets processed in the network can be obtained by summing
the total number of unique bits per tenant.

Total of unique packets of tenantA =
∑
{bitmapA,1 ∨ bitmapA,2 ∨ . . . bitmapA,n} (3.5)

The packet’s tenant source can be determined according to the bitmap in which
the packet is stored, as each bitmap corresponds to one tenant. The destination of the
packet is defined by analyzing which network devices stored the same packet. This is where
the network topology knowledge becomes necessary. Thus, it is possible to create a traffic
matrix based on that information.

3.3 Caveats and Limitations
Even using the invariant bytes of a packet for hash calculation, it is possible that

two hashes with different parameters result in the same value. This occurrence is called
hash collision and creates a gap between the number of packets actually forwarded by
the network device and the total number of positions marked in the bitmap. There are
three main factors that can cause variation in the number of hash collision in the proposed
scenario: a) the size of the bitmap or, in other words, the number of positions available in

50 Chapter 3. BitMatrix

the vector; b) the occupation of the bitmap when marking a new position; c) the type of
the hash function used to generate the hash value.

The size of the bitmap and the size of the hash value are related, in a sense that
there is no point in setting a bitmap with more positions than a hash value. Positions
beyond the maximum hash value will never be used. Nevertheless, setting a bitmap smaller
than the maximum hash value will demand a modulo operation, using the bitmap size
and the resulted hash value to determine the offset for the present packet. For example,
in a given bitmap with 100 possible positions and a hash algorithm that returns a value
between 1 and 1000, suppose that for the first packet the hash operation returned a value
of 20. Thus, the marked position in the bitmap is position 20. For the next packet, the hash
operation returns a value of 320. Once the returned value is bigger than the bitmap size,
there is a need for performing the modulo operation to determine the bitmap position for
this packet, which will result in position 20, causing a hash collision. And finally, but also
important, we need to consider the bitmap occupancy. It is clear that the more occupied is
a bitmap, bigger are the chances of a hash collision. Later in this work, in Chapter 6 Tests
and Results, Section 6.1 P4 implementation using Mininet, Subsection 6.1.4 Collisions
versus Occupation Tests, we discuss the relation between the bitmap occupancy and the
number of hash collisions and the results of the usage of different hash algorithms.

51

4 Monitoring Framework

In this chapter, we describe the framework proposed for monitoring the traffic in a
data center. We also discuss some example analyses that can be performed, and how to
create a network traffic matrix, using the information provided by this framework.

4.1 Framework Architecture

The framework consists of four main components: data structures - sketches,
collector and controller component, database and a query and presentation component.
Figure 6 presents an overview of the complete architecture.

Programmable Devices

Network

Data Structure - Sketch

Collect and

Control ModuleDatabase

Query and

Presentation Module

Figure 6 – The proposed framework architecture for the project, showing the interaction
between its components.

The next paragraphs describe in detail each component of the proposed framework
for this project.

Data Structures - Sketches: We implemented two types of data structures: an
array of bitmaps, named BitMatrix in this context, intended to store each packet processed,
segmented by a tenant which originated the packet, and a counter array, to store the
number of bytes corresponding to each packet. The counter array will use the same hash

52 Chapter 4. Monitoring Framework

generated for BitMatrix, in order to determine the position in the structure that the device
must add the bytes of the packet processed.

Due to the time constraint to collect the bitstreams generated by these structures,
we implemented a redundant pair of sketches in an active-standby fashion. We explain in
more detail its operation in the collector and controller component description.

Collector and Controller component: The primary function of this component
is to collect the bitstream, which contains information from packets processed, and stores
it out of the network device. Once had the bitstream collected, this component will reset
the structure in the device, and the device will start to store new packets information
on it. However, this process incurs in an issue, caused by the fact that network device
process packets uninterruptedly and the collector component should take some time to
perform the bitstream collection and reset the structure to make it ready to restart storing
information of new packets. This lapse of time creates a gap where all packets forwarded
by the device during that time, will not be stored in the data structure.

To overcome this obstacle, we created the previously mentioned active-standby
redundant pair of sketches. The active sketch is the one in current use for storing information
of the packet processing, and the standby sketch is an idle sketch ready to get into operation.
The Collector and Controller mechanism, after a predefined interval of time, from now on
referred to as the epoch, performs an active-standby switchover, making the hitherto active
sketchs available to have its information collected, as the device will not store any more
information into it. After the component performs the collection, it resets the sketches,
now in a standby state, making it ready to get into operation when the next epoch starts.

After the Collector and Controller component has retrieved the bitstream from
the sketches, it will parse and store this information in the database. The component will
include meta-data for the bitstream, as the time and date for collection, network device
information from where the component collected the bitstream and correspondent tenant.

Database: In this work, the relational database PostgreSQL was used to store
the information produced by the sketches and parsed by the Collector and Controller
component. Once stored, the information becomes available to be queried as needed. In
Table 2 the data dictionary for the table used in database to store the bitstream information
is detailed.

Query and Presentation Component: We used the commercial analytics plat-
form Tableau to retrieve sketches information from the database and present relevant key
performance indicators (KPIs) to support decision making in network traffic engineering.
Many other tools could be used, such as MicroStrategy or Microsoft Excel. Tableau was
selected due to our familiarity with the tool and the grant for a student licence from
Tableau. We can use the indicators to create the following insights:

4.2. Network Traffic Monitoring per Tenant 53

Table 2 – Data Dictionaty

Table Column Data type PK Nullable Description
bitmatrix bitstreamid INT Y not null bitstream identification
bitmatrix deviceid INT Y not null device identification
bitmatrix tenantid INT Y not null tenant identification
bitmatrix collectdate DATE Y not null date of collection
bitmatrix collecttime TIME Y not null time of collection
bitmatrix bitstream VARBIT Y not null tenant bitstream
bitmatrix countstream ARRAY Y null tenant bytes counter array

• Estimate the total number of packets and bytes processed in the network device in a
specific time interval;

• Estimate the number of packets and bytes sent per a tenant, processed in the network
device in a given time interval;

• Estimate how many packets and bytes used a specific path in the network, segmented
per a tenant, in a given time interval; and

• Compare traffic among paths for load balancing.

4.2 Network Traffic Monitoring per Tenant
The network traffic monitoring approach, adopted for this work, uses compact

probabilistic structures, also known as sketches, to store traffic information of packets
forwarded across the network. Based on sketches, we created an array of bitmaps called
BitMatrix to store packets processed by the network device, using a different bitmap to
store packets originated by each tenant. From the BitMatrix, we can extract estimated
measurements based on packets information. We also used a counter array sketch per
tenant, to store the packet length information and then to be able to estimate the volume
of the network traffic.

To better explain the network traffic monitoring process, we described it step by
step, including packet processing and forwarding, sketches’ information collection and the
different analyses performed.

4.2.1 Network Device Packet Processing

Every time the network device receives a new packet, it parses the packet header
to create a list of header fields that hash function will use as input to process and obtain
the hash correspondent to the packet. The packet header fields used as input for the hash
algorithm must uniquely represent the packet across all devices in the network, for that,
the list will include only header fields that do not change across the hops in the forwarding

54 Chapter 4. Monitoring Framework

path. Thus, the input list for the hash algorithm excludes the following information from
the packet headers: Time To Live (TTL), Differentiated Services Code Point (DSCP),
Explicit Congestion Notification (ECN) and Checksum. The following fields from the
packet header are used to compute the hash: Version, Internet Header Length (IHL), Total
Length, Identification, Flags, Fragment Offset, Protocol, Source Address and Destination
Address. Additionaly, as part of the input list, the first 8 bytes of the IP payload was also
included.

There are numerous hashing algorithms that a network device can use to process
these fields and output a hash number representing the packet. We tested different
techniques and hashing algorithms, as discussed in Section 6.2.1 Hash Algorithms and
Packet headers Selection. In summary, the main concern is to make sure that the hashing
algorithm used can generate a number bigger or equal to the BitMatrix length. Otherwise,
the BitMatrix will never use the positions indexed above the hash generated number. e.g.
If the network device uses the Fletcher-16 checksum hash algorithm, the output will never
be higher than 216 or 65,536. If the BitMatrix length is bigger than this value, it will never
use those positions above that value.

Taking this into consideration, the hashing algorithm will generate a number, that
will be used by the device to set the correspondent position for the tenant in the BitMatrix.
Also, the device will use the same hash number to determine a position in the tenant’s
counter array. Once the position is defined, the device will sum the value from the Total
Length packet header to the value in that position of the counter array.

Next, the network device will forward the packet, based on its forwarding table.
The network device will change the frame header to reflect the new layer 2 addresses
(source and destination MAC addresses) and forward it using the appropriate network
interface to the next hop in the network, which will repeat the process described here
hop by hop, until the packet reaches its final destination, according to its IP destination
address.

4.2.2 Collection and Control

The Collector and Controller component starts the BitMatrix and counter array
collection process, for all network devices at the same time, aiming to achieve some degree
of synchronism for the collection. Synchronism in the collecting process is desired to assure
that all sketches have stored packets forwarded in the same epoch, in all network devices.
Even though, packets in a forwarding process across the network, in the moment of the
collection, will not be stored in all network devices because it is not delivered yet. This
packet will be stored on the network devices that has already processed it, but not in
those devices on the next hops, as the packet has not reached them at that moment.

4.2. Network Traffic Monitoring per Tenant 55

In a network, real-time traffic processing, sketches collection and reset is a challeng-
ing task. This process would take a short time to execute, even so, during its execution,
packets are continuing to be processed on the network device, and will not be stored in
the BitMatrix. Depending on the time spent for the collection, those lost packets may
introduce even more errors in the measurements. In order to avoid this, as previously
stated, we use a pair of BitMatrix for every network device, in an active-standby fashion.
This architecture changes the collection process introducing a control layer on it. The
control will make the standby BitMatrix take over the active one. This action will make the
BitMatrix available to be collected without any losses of packets, as the network device will
be storing packets in the other BitMatrix instance. After collection, the standby BitMatrix
is reset and made available to switchover to active again when the next collection occurs.
The same mechanism is also used for the counter array sketch control and collection.

The period for collection will vary mainly to assure that the BitMatrix is not
saturated, as discussed in Chapter 6 Tests and Results, Section 6.1 P4 implementation
using Mininet, Subsection 6.1.4 Collisions versus Occupation Tests. Once it is a probabilistic
structure, there is the possibility to occur a hash collision, making the device trying to
store a packet in an already occupied position in the BitMatrix. The chances of a collision
to happen increases as the BitMatrix gets more occupied along the time. Ideally, the
collection frequency should happen often enough to avoid the saturation of the BitMatrix.
Other factors that will directly impact the occupancy are the BitMatrix length and the
number of packets processed per second on the device. The BitMatrix length and the
period of the collection are the parameters that can be manipulated to keep the BitMatrix
occupancy at an acceptable level.

4.2.3 Parse and Storage

Once collected, the BitMatrix data runs through a parsing process, to extract the
bitstream corresponding to every tenant stored in there. In a raw state, the BitMatrix
data will look like a counter array, as each position contains many bits, indeed, one for
each tenant to store a packet. The parsing process will extract from BitMatrix data, the
bitstream for every tenant individually. Figure 7 demonstrates the parsing process of a
BitMatrix that was designed to store information for four tenants.

In Figure 7, the phases of the parse and store processes are exposed in letters
A to D; phase A is the BitMatrix collection phase. For this process, the collector and
controller component will connect to the network device and retrieve the bitstreams from
the BitMatrix, storing it locally, in memory. Phase B is the conversion of the decimal
values from BitMatrix to binary values. The next phase, C, is when the parsing happens
dividing the BitMatrix into bitmaps, one for each tenant; T1, T2, T3 and T4. In this
example, we are using four tenants to simplify, but a BitMatrix can scale to accommodate

56 Chapter 4. Monitoring Framework

5

15

9

3

13

...

0 1 0 1

1 1 1 1

1 0 0 1

0 0 1 1

1 1 0 1

...

0

1

0

1

0

1

1

1

1

1

...

0

1

1

0

1

1

1

0

0

1

...

...

...
Network
Device

Database

BitMatrix BitMatrix Bitmaps

T3T4 T2 T1

0

1

2

n-1

n

position
(index)

A B C D

Figure 7 – The phases for collect, parse and store the BitMatrix information.

a higher number of tenants, depending on the memory available in the network device,
and finally, in phase D is when the bitmap and the metadata are stored in the database.

4.2.4 Analyses

Bitmaps can be used to estimate the volume of traffic between two observed network
devices in any period during the monitoring activity. For this, it is required to retrieve the
set of bitmaps collected during this interval for both devices and then compare the two
sets of bitmaps. The more common bits in the same position, the more common packets
have passed through these devices. If the intersection of bits in the same position is small,
it is possible to conclude that few common packets have passed by these elements.

Several analyses can be done by using the tenants’ bitmaps and counter arrays
stored in the database. This collection of bitmaps and counter arrays will enable us
to perform network analyses by selecting and manipulating the bitmap information to
create measurements, and using its metadata as dimensions. For more clarity, consider the
network diagram from Figure 8.

Based on the collected bitmaps and counter arrays information, it is possible to
answer the following questions, for a given period:

• How many packets were exchanged between tenantA and tenantB?

• What was the network device with the highest load?

• What was the link with higher throughput? Also, what was the average throughput
on it?

How many packets exchanged between tenantA and tenantB? To answer
this question, we will need to do two separated analysis, one to identify the packets sent
from tenantA to tenantB, and another to identify packets sent from tenantB to tenantA.

4.2. Network Traffic Monitoring per Tenant 57

Tenant A

Tenant B

Tenant D

Tenant C

1

2

3

4

s

t u

r

Figure 8 – The network diagram proposed to illustrate the analytics possibilities.

Firstly, for packets sent from tenantA to tenantB, we can infer, once knowing the network
topology, that those packets are the ones present in devices number 1 and 2 but not
present in devices 3 and 4. The Equation 4.1 shows the logical operations. The notation is
bitmaptenant,router.

Total Pkts A→ B =
∑
{bitmapA,1 ∧ bitmapA,2 ∧ ¬bitmapA,3 ∧ ¬bitmapA,4} (4.1)

Secondly, we will use the same logic to calculate packets sent from tenantB to
tenantA, now using the bitmaps associated with tenantB. Equation 4.2 shows these logical
operations.

Total Pkts B→ A =
∑
{bitmapB,1 ∧ bitmapB,2 ∧ ¬bitmapB,3 ∧ ¬bitmapB,4} (4.2)

Finally, to answer the question, we need to determine the total number of the
packets exchanged between tenantA and tenantB. For this, we need to sum the results

58 Chapter 4. Monitoring Framework

from Equation 4.1 and 4.2. The Equation 4.3 shows the final result and the answer to the
question.

Total Pkts A↔ B =
∑
{Total Pkts A→ B,Total Pkts B→ A} (4.3)

What was the network device with the highest load? It is possible to
determine the element with the higher load by estimating the number of packets processed
for each one. To do this calculation, we need to sum the number of bits from every tenant’s
bitstream. The Equation 4.4 demonstrates how to estimate the total number of packets
for a device.

Total Pkts Dev_1 =
∑
{bitmapA,1, bitmapB,1, bitmapC,1, bitmapD,1} (4.4)

A similar process will be used to calculate the number of total packets for all other
devices. Once calculated, we can sort by the total number of packets, determining what
was the network device with the highest load in the network.

What was the link with higher throughput? Also, what was the average
throughput on it? To determine what was the link with higher throughput, we need to
identify what packets are present in a pair of directly connected devices. e.g. all packets
present in device 1 and device 2 may have used the link r to travel from one device to
another. However, it is possible to go from device 1 to device 2 through links t, u and
s. This is possible, but unlikely in a regular network, unless an abnormal situation has
happened, like a link failure. We will not consider this likelihood for this scenario. Thus,
to find the total number of packets that crossed the link, we need to sum the packets
present in both devices. We can determine what packet are present in both devices by
using a logical conjunction operation between both tenants corresponding bitstream. The
Equation 4.5 shows the operation to find the number of packets that crossed the link r.

Total in Dev 1 and Dev 2 =
∑
{bitmapA,1 ∧ bitmapA,2,

bitmapB,1 ∧ bitmapB,2,

bitmapC,1 ∧ bitmapC,2,

bitmapD,1 ∧ bitmapD,2}

(4.5)

The next step is to find the average throughput for each link. For this we will use
the counter array created for every tenant. As discussed before, once the network device
stores the packet in the BitMatrix, it uses the same index to store the total length packet
header value in the tenant correspondent counter array. The counter array to be used can

4.3. Network Traffic Matrix 59

be either from device 1 or device 2, as both arrays will have the packet length value for
the packet. To estimate the total amount of bytes from packets that crossed the link, we
will use the result of the logical conjunction operation to find what position to read values
from the counter array, as the packets stored in the BitMatrix and the packet length value
stored in the counter array corresponds to the same packet.

Finally, reading the total packet length value, from positions in the counter array
that correspond to the packets present in both devices, we can estimate the total amount
of bytes that travelled through the link by summarizing values on the specified position.
To calculate the average throughput, we will need to divide the total amount of the bytes
by the period we are querying, in seconds.

4.3 Network Traffic Matrix

Traffic Matrix, in summary, is a representation of the traffic volume exchanged
between source and destination pairs. These pairs can be composed of single routers or even
of networks. The traffic volume measurements are in packets or bytes. Traffic matrices are
used in several network engineering processes as capacity planning, network optimization,
and anomaly detection among others (TUNE; ROUGHAN, 2013).

A traffic matrix is represented by a three-dimensional model, with i,j-th entries
representing the incoming traffic from node i and outgoing traffic on the node j. Each
entry represents the traffic volume, in packets or bytes, for the pair i.j in a time interval
(XIAO, 2008). Figure 9 presents an example of a traffic matrix.

B

A

X =

xAA xAB xAC

xBA xBB xBC

...

...
......

...

...

Figure 9 – An example of a traffic matrix.

Using the data set from BitMatrices, generated by the network devices, it is possible
to build a traffic matrix with packets or bytes measurements, employing logical operators.

60 Chapter 4. Monitoring Framework

Using the network diagram from Figure 8, as an example, we can create a traffic matrix
using the following steps.

• The ingress in the network is determined by the packet source IP address.

• The egress can be defined by observing the peers of a specific device. Packets present
in the BitMatrix of the device in question and in one or any peer device, are egressing
packets. Let us take the device 3 as an example. If one packet is present in device 3
and in device 1 OR in device 4, the packet is egressing the network by the device 3, if
it was not ingressed the network by the device 3. A situation where the packet is not
observed in any other peer device shows that the device in question, was responsible
for the ingress end the egress of that packet.

• Once determining the packets to be counted as ingressing or egressing, it is possible
to retrieve their length from counter arrays. This information can be used to create
a traffic matrix based on throughput.

The proposed method for creating traffic matrices, using sketches, improves network
visibility by generating information near to real-time, by analyzing a small volume of
data. This improvement is possible because sketches are compact structures, and they
are collected often, enabling traffic matrices creation for every set collected. According
to TUNE; ROUGHAN, the generation of traffic matrix will depend on the application
and available measurement and 5 minutes to an hour are common choices. In our tests,
we collect sketches in periods of 10 seconds to 1 minute. This short period for collection
allows detecting abnormalities in network traffic, in a near real-time manner.

61

5 BitMatrix in P4 Language

This Chapter describes the implementation of the sketches, described in the previous
sections, in P4 language. We created a multi-tenant BitMatrix to store packets and counter
arrays, to store packet’s length (bytes). Also, for comparison purposes, we create counters
to count the total number of packets and the sum of all packets length. In this way, it will
be possible to compare the numbers from BitMatrix with those from counters.

The proposed topology is composed of two hosts, interconnected by a P4 network
device. The network addresses corresponding to tenants and the IP and MAC addresses of
each element can be found in Figure 10.

Network
DeviceHost A1

10.0.0.10
Hosts B1
10.0.1.10

00:04:00:00:00:00 00:05:00:00:00:00

00:aa:bb:00:00:01 00:aa:bb:00:00:02

Tenant A
10.0.0.0/24

Tenant B
10.0.1.0/24

Figure 10 – Proposed topology to exemplify the sketches deployment in a P4 programmable
network device.

P4 is a declarative language that expresses how a P4 enabled network device will
process and forward a packet in the network. It is divided into an ingress and egress
pipeline and consists of parsing and using match+action tables to manipulate the packet.
The parsing process maps the headers present in the packet and the tables perform a
lookup for a specific header field and applies the corresponding action for each table.
Hereafter we describe the elements present in the code and how the packet processing
happens. We will highlight parts of the code, explaining the processing instructions on it.
The entire code can be found in Appendix A.1 Deployment in P4 example.

The first phase of the packet processing in P4 is the parsing. The parsing process
occurs according to definitions made in the header, producing a parsed representation of
the packet. The Header Type P4 abstraction in lines 3 and 13 in Listing 5.1, specifies the
fields within the Ethernet layer header and the IP header. In lines 11 and 31, the header
instance specifies the instance of the packet header.

Listing 5.1 – Partial P4_14 code defining headers

62 Chapter 5. BitMatrix in P4 Language

1 // header
2
3 header_type eth_t {
4 fields {
5 dstAddr : 48;
6 srcAddr : 48;
7 etherType : 16;
8 }
9 }

10
11 header eth_t eth;
12
13 header_type ipv4_t {
14 fields {
15 version : 4;
16 ihl : 4;
17 diffserv : 8;
18 totalLen : 16;
19 id : 16;
20 flags : 3;
21 fragOffset : 13;
22 ttl : 8;
23 protocol : 8;
24 hdrChecksum : 16;
25 srcAddr : 32;
26 dstAddr : 32;
27 payload8B : 64;
28 }
29 }
30
31 header ipv4_t ipv4;

The parser in P4 works as a finite state machine. Figure 11 represent the parse
graph for the Listing 5.2, with each state transition as an edge and each state as a node.
This Figure shows a header for each state.

63

ethernet

ipv4

Figure 11 – Parse graph for the P4 deployment.

The parser creates a parsed representation of the packet, on which match+action
stages will work. Match+action may update the parsed representation by modifying a
field and by changing which header instances are valid, resulting in adding and removing
headers. The parsed representation holds packet headers as the match+action process
updates them.

Listing 5.2 – Partial P4_14 code defining parser

33 // parse
34
35 parser start {
36 return parse_eth ;
37 }
38
39 # define ETHERTYPE_IPV4 0x0800
40
41 parser parse_eth {
42 extract (eth);
43 return select (latest . etherType) {
44 ETHERTYPE_IPV4 : parse_ipv4 ;
45 default : ingress ;
46 }
47 }
48
49 parser parse_ipv4 {
50 extract (ipv4);
51 return ingress ;

64 Chapter 5. BitMatrix in P4 Language

52 }

The field list declaration in Listing 5.3 specifies the header fields used for checksum
calculation, from line 57 to line 67, and for the hash function, from line 71 to line 80. The
fields used for hash calculation are the unvarying fields from the IP layer and the first 8
bytes of its payload.

Listing 5.3 – Partial P4_14 code defining field list definition

54 // field_list definitions
55
56 field_list ipv4_checksum_list {
57 ipv4. version ;
58 ipv4.ihl;
59 ipv4. diffserv ;
60 ipv4. totalLen ;
61 ipv4.id;
62 ipv4.flags;
63 ipv4. fragOffset ;
64 ipv4.ttl;
65 ipv4. protocol ;
66 ipv4. srcAddr ;
67 ipv4. dstAddr ;
68 }
69
70 field_list hash_fields {
71 ipv4. version ;
72 ipv4.ihl;
73 ipv4. totalLen ;
74 ipv4.id;
75 ipv4.flags;
76 ipv4. fragOffset ;
77 ipv4. protocol ;
78 ipv4. srcAddr ;
79 ipv4. dstAddr ;
80 ipv4. payload8B ;
81 }

The Listing 5.4 is defining a different kind of header type abstraction. This time,
the header type has been used to declare metadata instances. The network device uses
these metadata during the packet processing to store values for BitMatrix and counter
array population and for packet forwarding.

In BitMatrix, there are four metadata fields used:

• bitmatrix_idx: is used to store the position corresponding to the packet, in the

65

BitMatrix. This position is calculated using a modulo function with the value returned
from the hash function and the BitMatrix length.

• bitmatrix_flag: this field stores the value read from the position determined by the
bitmatrix_idx. This value is used to perform the logical disjunction operation with
the tenant corresponding value. Then, the result of the operation will be stored in
the field again, to be written in the BitMatrix later.

• bitmatrix_tenant: the tenant information will be stored in this field during the
BitMatrix population process and will be used later to determine what counter array
will be used to store the packet length, as there is one counter array structure for
each tenant.

• bitmatrix_value: this metadata is used to store the number of bytes already stored
in the counter array position, determined by the bitmatrix_idx, and add the packet
length value to it. After this operation, the new value is written in the same position
of the counter array.

The metadata used in the routing process are the following two fields:

• nhop_ipv4: this field will store the next hop IP address returned from the match
process in the table ipv4_lpm, then, it will be used to determine what is the
destination MAC address.

• nhop_add: will store the destination MAC address to be used in the deparse process,
when sending the packet.

Listing 5.4 – Partial P4_14 code defining metadata

83 // defining metadata
84
85 header_type custom_metadata_t {
86 fields {
87 bitmatrix_idx : 16;
88 bitmatrix_flag : 2;
89 bitmatrix_tenant : 2;
90 bitmatrix_value : 20;
91 }
92 }
93
94 metadata custom_metadata_t custom_metadata ;
95
96 header_type routing_metadata_t {
97 fields {

66 Chapter 5. BitMatrix in P4 Language

98 nhop_ipv4 : 32;
99 nhop_add : 48;
100 }
101 }
102
103 metadata routing_metadata_t routing_metadata ;

In P4 language it is possible to use a primitive to perform calculation, having as
input a list of fields, parsed from the packet. This calculation process is defined in Listing
5.5. The textttfield_list_calculation declaration has as input, the textttfield_list defined
in Listing 5.3. Using this list as input for the algorithm will result in an output that can
be referenced as the textttfield_list_calculation name. On line 115, as an example, we
can find the textttfield_list_calculation name hash. This hash will be used later in this
code. The textttcalculated_field declaration, on line 123, uses the textttipv4_checksum
field_list_calculation to update the IPv4 checksum value for the packet.

Listing 5.5 – Partial P4_14 code calculation process

105 // field_list_calculations
106
107 field_list_calculation ipv4_checksum {
108 input {
109 ipv4_checksum_list ;
110 }
111 algorithm : csum16 ;
112 output_width : 16;
113 }
114
115 field_list_calculation hash {
116 input {
117 hash_fields ;
118 }
119 algorithm : crc16;
120 output_width : 16;
121 }
122
123 calculated_field ipv4. hdrChecksum {
124 update ipv4_checksum if (ipv4.ihl == 5);
125 }

Counters, meters and registers are called stateful memories and maintain state for
longer than one packet. Its instantiation requires memory resources on the target. The
stateful memory is organized in arrays of cells, and these cells can be read or update by an
action, applied by a table. The action will reference a cell from its array name and index.
For sketches used in this work, we used registers to create the structure in the network

67

device. On line 129 from Listing 5.6, we created a register that represents the BitMatrix
structure, to store packets on each position. The width: 2 creates space to accommodate
two tenants, in this case, tenantA and tenantB. And the textttinstance_count represent
the number of positions of the BitMatix. Register on lines 134 and 139 are used to store
the bytes from packets stored in the BitMatrix. Notice that the textttinstance_count,
which represents the length of the registers, are the same across all registers (8,192). This
fact is because the index corresponding to a specific packet will be the same in BitMatrix
and in tenant’s counter_array.

Listing 5.6 – Partial P4_14 code register definition

127 // register definitions
128
129 register bitmatrix {
130 width : 2;
131 instance_count : 8192;
132 }
133
134 register counter_array_A {
135 width : 20;
136 instance_count : 8192;
137 }
138
139 register counter_array_B {
140 width : 20;
141 instance_count : 8192;
142 }

Action functions are called in tables. They receive parameters from tables to perform
modifications in headers and metadata in parsed representation or in the stateful memory.
The values passed to these parameters are programmed into the table entry by the run time
API. P4 exposes a standard set of actions that may or may not be supported by the target.
A brief summary for all primitive actions can be found in (The P4 Language Consortium,
2017). Here, in Table 3, are the actions used in this P4 code example.

API Name Summary
drop Drop a packet (in the egress pipeline).
modify_field_with_-
hash_based_offset

Apply a field list calculation and use the result to generate an
offset value.

register_read Read from an indexed instance of a register and store the value
into a field.

bit_or Perform bitwise OR operation on two val- ues and store in a
field.

68 Chapter 5. BitMatrix in P4 Language

register_write Write a value into an indexed instance of a register.
modify_field Set the value of a field in the packet’s parsed representation.
add_to_field Add a value to a field.

Table 3 – Primitive Actions

The action in Listing 5.7 is the one responsible for storing the packet in the
BitMatrix, in the correct position for the correspondent tenant. The parameter tenant_-
flag, passed to the action function, indicates what tenant generated the packet. The table
is a declarative structure specifying match and action operations. In this case, the table
uses the packet’s source IP address to match the tenant flag, and then invoke the action
set_bitmatrix, passing the tenant_flag value to it.

In line 147, the action modify_field_with_hash_based_offset will determine
what index position in the BitMatrix the packet will be stored, even in the case of the
hash value returned from the hash function is bigger than the BitMatrix length. e.g., If we
are using the hash function csum16, the value returned by this function can assume any
value between 0 and 65,535. It will be a problem if the BitMatrix length is smaller than
the hashed value. The action modify_field_with_hash_based_offset will use three
parameters to calculate the hash and apply a modulo function to find the corresponding
index for the packet. The first one, custom_metadata.bitmatrix_idx, will be used to
save the result for the action modifying the field instance to the resulted value. The next
parameter, 0, represents the base value to add to the hash value. In our case, we do not
need to add any value, as the BitMatrix can store a packet in positions starting from zero.
The third paramenter specifies the field list calculation used to generate the hash value. In
this case, the hash list name is hash. Please, refer to Listing 5.5, line 115, to verify the
hash field_list_calculation declaration, and to Listing 5.3, to see the fields used in
the hash calculation, in line 70. The fourth and last parameter will determine the size of
the hash value range. It must be larger than 0, but can not be bigger than the BitMatrix
length.

The packet store process in the BitMatrix needs to preserve the existing value
for all positions, as one position will store, into a single value, packets from different
tenants, one packet per bit. In order to achieve this, we perform a logical disjunction
operation between the value stored in BitMatrix, in the position stored in the metadata
by the modify_field_with_hash_based_offset action, and the value corresponding to
the tenant in question, represented by the parameter tenant_flag. The code on line 148,
is for the action register_read, which stores the value at an specific position (custom_-
metadata.bitmatrix_idx) from the bitmatrix register array , into another metadata
field instance (custom_metadata.bitmatrix_flag) to be used in the next step, by the

69

bit_or operation.

The bit_or operation, will execute a logical disjunction operation using the value
read from the BitMatrix and the tenant_flag. This operation will assure that the
previously stored packet in the BitMatrix, will not be deleted. i.e., the tenant_flag is
for tenantA uses the first bit of the BitMatrix position to store the packet. If there is a
packet from tenantB already stored in the same position, using the second bit, the P4
action will read the value 2 (binary 10) and will perform an OR operation with the value
corresponding to tenantA, which is 1 (binary 01), resulting in a new value 3 (binary 11).
Therefore, the new value will be written back into the BitMatrix, representing the packets
stored in that position, one in each bit. The action register_write is the responsible
for this write process. Finally, there is a primitive action used to store the tenant_flag
parameter value into a metadata field instance for future use in the code. Line 151, shows
how the modify_field primitive performing this action.

Listing 5.7 – Partial P4_14 code actions

144 // actions
145
146 action set_bitmatrix (tenant_flag) {
147 modify_field_with_hash_based_offset (custom_metadata .

bitmatrix_idx , 0, hash , 8191);
148 register_read (custom_metadata . bitmatrix_flag , bitmatrix ,

custom_metadata . bitmatrix_idx);
149 bit_or (custom_metadata . bitmatrix_flag , custom_metadata .

bitmatrix_flag , tenant_flag);
150 register_write (bitmatrix , custom_metadata . bitmatrix_idx ,

custom_metadata . bitmatrix_flag);
151 modify_field (custom_metadata . bitmatrix_tenant , tenant_flag);
152 }

In Listing 5.8, the counter array used in the structure, accumulates the number
of bytes processed by the network device. In P4 compilation time, the device creates one
counter array per tenant. On the Listing, we can see two counter arrays, one for tenantA

and another for tenantB. The primitives in each action are the same, but the counter array
used to store the bytes are different. As seem in Listening 5.6, registers used for the counter
array have the same length as registers defined for the BitMatrix. However, there is a
difference in terms of width; while the register used for BitMatrix has a length equivalent
to the number of tenants to be monitored, the register used for counter array has a fixed
width of 20 bits, allowing to store up to 1,048,576 bytes. Considering that a packet will
carry up to 1,500 bytes, one position in the counter array is enough to store bytes for
almost 700 packets. This width is way bigger than it needs to be, and we defined it with
that size to not run into the risk of overflowing the register. The width was arbitrarily

70 Chapter 5. BitMatrix in P4 Language

defined and should be reviewed for production use. In line 155 of the Listing 5.8, the
primitives actions are used to populate the counter array for tenantA. The actions will
read the value existing in the position, sum the total length value from the packet header
to the retrieved value, and write the result to the same position in the counter array. The
set_counter_array selection happens in the control flow.

Listing 5.8 – Partial P4_14 code tables definitions

154
155 action set_counter_array_A () {
156 register_read (custom_metadata . bitmatrix_value , counter_array_A

, custom_metadata . bitmatrix_idx);
157 add_to_field (custom_metadata . bitmatrix_value , ipv4. totalLen);
158 register_write (counter_array_A , custom_metadata . bitmatrix_idx ,

custom_metadata . bitmatrix_value);
159 }
160
161
162 action set_counter_array_B () {
163 register_read (custom_metadata . bitmatrix_value , counter_array_B

, custom_metadata . bitmatrix_idx);
164 add_to_field (custom_metadata . bitmatrix_value , ipv4. totalLen);
165 register_write (counter_array_B , custom_metadata . bitmatrix_idx ,

custom_metadata . bitmatrix_value);
166 }

The other actions in Listing 5.9 are for forwarding the packet, and they will set the
correct source and destination MAC addresses, according to the egress port defined for
the packet. Also, the Time To Live (TTL) in the IPv4 header is decreased in 1, as per the
normal forwarding packet process in any network routing device. The drop() primitive
will cause a packet drop in the device.

Listing 5.9 – Partial P4_14 code tables definitions

168
169 action set_nhop (nhop_ipv4 , port) {
170 modify_field (routing_metadata .nhop_ipv4 , nhop_ipv4);
171 modify_field (standard_metadata . egress_spec , port);
172 modify_field (ipv4.ttl , ipv4.ttl - 1);
173 }
174
175 action set_dmac (dmac) {
176 modify_field (eth.dstAddr , dmac);
177 }
178
179 action rewrite_mac (smac) {

71

180 modify_field (eth.srcAddr , smac);
181 }
182
183 action _drop () {
184 drop ();
185 }

Tables Section specify match and action operations and other attributes. The
action specification in a table designates which action functions are available to the table’s
entries. The table declaration specifies a list of field matches used for matching packets. A
field match can be a reference to a header, the validity bit for a header, a reference to a
field, or a masked reference to a field. The returned information from the matching step is
used in an action defined in the table. The table population happens in run time, and the
values can be changed at any time. The logic that selects which tables are applied to a
packet when a pipeline processes it, is defined in the control flow. The Listing 5.10 shows
all tables for the packet processing, and in Listing 5.13 are the values used in the tables’
population.

Listing 5.10 – Partial P4_14 code tables definitions

186 // tables
187
188 table set_bitmatrix_table {
189 reads {
190 ipv4. srcAddr : lpm;
191 }
192 actions {
193 set_bitmatrix ;
194 }
195 size: 32;
196 }
197
198
199 table set_counter_array_A_table {
200 actions {
201 set_counter_array_A ;
202 }
203 size : 1;
204 }
205
206 table set_counter_array_B_table {
207 actions {
208 set_counter_array_B ;
209 }
210 size : 1;
211 }

72 Chapter 5. BitMatrix in P4 Language

212
213 table ipv4_lpm {
214 reads {
215 ipv4. dstAddr : lpm;
216 }
217 actions {
218 set_nhop ;
219 _drop;
220 }
221 size: 1024;
222 }
223
224 table forward {
225 reads {
226 routing_metadata . nhop_ipv4 : exact;
227 }
228 actions {
229 set_dmac ;
230 _drop;
231 }
232 size: 512;
233 }
234
235 table send_frame {
236 reads {
237 standard_metadata . egress_port : exact;
238 }
239 actions {
240 rewrite_mac ;
241 _drop;
242 }
243 size: 256;
244 }

Counters maintain state for longer than one packet, and they are called stateful
memories. On Listing 5.11 we created counter to compare the result obtained through
the sketches summarization and the byte and packet actually processed by the network
device. The pkt_counter counter declares a set of counters attached to the table named
set_bitmatrix_table. It allocates one counter cell for each entry in that table.

Listing 5.11 – Partial P4_14 code counter definition

245 // counter definition
246
247 counter pkt_counter {
248 type: packets_and_bytes ;
249 direct : set_bitmatrix_table ;

73

250 }

The control flow uses a sequence of tables for processing a packet. At configuration
time, the control flow will express in what order the tables are to be applied. Control
flow may apply tables, call other control flow functions or test conditions. The apply
instruction indicates the execution of a table. The apply instruction may influence the
control flow by specifying a set of control blocks from which one is selected to be executed.
The control flow on Listing 5.12 will first test if the packet is valid and if the time to live
is bigger than 0, in line 255. If so, it will apply the set_bitmatrix_table. Next, based on
the custom_metadata.bitmatrix_tenant value, it will apply the tenant’s corresponding
counter array table. After that, all tables for the packet forwarding process are applied.

Listing 5.12 – Partial P4_14 code control

252 // control flow
253
254 control ingress {
255 if(valid(ipv4) and ipv4.ttl > 0) {
256 apply(set_bitmatrix_table);
257 if (custom_metadata . bitmatrix_tenant == 1) {
258 apply(set_counter_array_A_table);
259 }
260 else {
261 apply(set_counter_array_B_table);
262 }
263 apply(ipv4_lpm);
264 apply(forward);
265 }
266 }
267
268 control egress {
269 apply(send_frame);
270 }

As part of p4c compiler, the graphs backend produces a visual representation of
a P4 program. This representation helps to understand the control flow, showing which
conditions and tables will be applied during the packet processing on ingress and egress
pipelines. Figure 12 represents the control flow commands for the ingress pipeline and
Figure 13 shows the command for egress pipeline.

74 Chapter 5. BitMatrix in P4 Language

Figure 12 – Top-level control graph, generated for the ingress control block, of the P4
BitMatrix code.

Figure 13 – Top-level control graph, generated for the egress control block, of the P4
BitMatrix code.

Tables population is a process that takes place during the run-time period. This
procedure happens just after the network device has loaded the P4 code. Although, it is
possible to add or delete entries anytime during the run-time period. Also, it is possible to
set a default action to a table. The default action is performed when no table entry matches.

75

If no default action is designated, the table does not affect the packet and processing
continues according to the control flow. The list of supported commands includes:

• table_set_default <table name> <action name> <action parameters>

• table_add <table name> <action name> <match fields> => <action parameters>
[priority]

• table_delete <table name> <entry handle>

The Listing 5.13 shows the table commands used in this P4 code.

Listing 5.13 – Commands for the run-time process of table population, in the network
device

table_set_default send_frame _drop
table_set_default forward _drop
table_set_default ipv4_lpm _drop
table_set_default set_bitmatrix_table set_bitmatrix
table_set_default set_counter_array_A_table set_counter_array_A
table_set_default set_counter_array_B_table set_counter_array_B

table_add set_bitmatrix_table set_bitmatrix_0 10.0.0.0/24 => 1
table_add set_bitmatrix_table set_bitmatrix_0 10.0.1.0/24 => 2
table_add ipv4_lpm set_nhop 10.0.0.10/32 => 10.0.0.10 1
table_add ipv4_lpm set_nhop 10.0.1.10/32 => 10.0.1.10 2
table_add forward set_dmac 10.0.0.10 => 00:04:00:00:00:00
table_add forward set_dmac 10.0.1.10 => 00:05:00:00:00:00
table_add send_frame rewrite_mac 1 => 00: aa:bb :00:00:01
table_add send_frame rewrite_mac 2 => 00: aa:bb :00:00:02

As demonstrated, the P4 language offers enough resources to deploy a model, using
sketches for traffic analysis purposes. In this deployment, we could create, populate and
retrieve information from the probabilistic structures and perform analysis regarding the
network traffic in a multi-tenant environment.

It is possible to create several analyses, using the datastreams generated from
the probabilistic structure, offering different insights about the network, devices and
links behaviour. Those analyses are fundamental for decision making during the traffic
engineering process for the network, also for capacity planning, performance and tenant
behaviour analysis. Although, the method exposed focused more on explaining the process
of information generation and lacks parameters’ definition for deployment in a real-life
network environment. Some of those parameters, and theirs factors will be discussed in
Chapter 6 Tests and Results.

77

6 Tests and Results

This chapter is divided into two main sections. Section 6.1 outlines test and results
for a P4 implementation in a adapted Mininet environment. In Section 6.3, we explore
the usage of traces from real internet traffic, simulating a bigger network and running
substancial more traffic on it. By the end of the chapter, in Section 6.4 we detail how we
used machine learning to apply a adjusting factor to traffic statistics generated by the
BitMatrix framework.

6.1 P4 implementation using Mininet

In this section, we describe the BitMatrix framework implementation using Mininet
to emulate a simple network aiming to validate the results.

6.1.1 BitMatrix Tests and Methodology

The main goal for this test is to implement the BitMatrix using available commands
and structures in the P4 language. To do that, the BitMatrix was implemented as a P4
register wide enough to host several bitmaps, each one used to measure traffic from a
different tenant, identified by its Source IP subnetwork. The BitMatrix is used to aggregate
bitmaps in order to register packets from different tenants. Tenant is defined as an external
network, connected to the P4 network device. The goal is to use BitMatrix associated with
counter arrays to estimate the amount of packets and bytes transmitted for each tenant
and, in addiction, understand the path taken by those packets inside the network. Each
packet received by the P4 device computes a hash value. This value is used to determine
which position will be set in the BitMatrix, according to its origin (tenant). In this way, it
is possible to determine which tenant is responsible for each packet in the network.

In this proof of concept, a BitMatrix composed by three bitmaps was used. Figure
14 shows its structure of this BitMatrix. This resulted in a P4 register with a width equal to
3. Thus, it is possible to segment traffic from up to three tenants, setting different bitmaps
in the BitMatrix according to which tenant originated the packet. Using a P4 table, a value
for each tenant was assigned, according to its source IP network: 1 to tenant A, 2 to tenant
B and 4 to tenant C. Once the hash value of each packet is computed, a modulo operation
is applied to the value to determine what position should be set in the BitMatrix. This is
achieved by using the P4 primitive action modify_field_with_hash_based_offset. As
each position of the BitMatrix has three bits, we used another P4 primitive action named
bit_or to set the correct bit in that position of BitMatrix by performing a logical OR

78 Chapter 6. Tests and Results

operation using the current value for the selected position and the tenant value.

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0

0
1
2
3
4
5

n-1
n

Positionb
it

m
ap

 1
b

it
m

ap
 2

b
it

m
ap

 3
..

.

2n positions

BitMatrix

Figure 14 – BitMatrix structure and its bitmaps.

As an example, consider that the current value for a selected position is 4 (100
in binary). This indicates that a packet originated from tenant C has already set that
position. Nevertheless, this has no impact for the same position in other bitmaps in the
BitMatrix. If a packet from tenant A falls in the same position, the logical OR operation
is applied using the current value in the BitMatrix (4 or 100 in binary) and the tenant A
value (1 or 001 in binary), resulting in the new value 5 (101 in binary).

A P4 register was also used to create counter arrays. The usage of counter array
targets to count the number of bytes transmitted for each packet. For this, the register
used to create the counter array has the same length of BitMatrix, but a width large
enough to avoid overflow. We used a width of 20 bits, which allows to store up to 1 Mbyte.
Considering that each packet has a size of 1,500 bytes, it is enough to sum bytes from up
to 699 packets, for each position. So, this can still counting bytes from packets until it
reaches 700 hash collisions for that one specific position. Different from BitMatrix, the
counter arrays can not be combined into an unique register. Thus, one counter array was
defined for each tenant.

To continue the BitMatrix evaluation we used the results from Figure 16 and
the percentage of hash collision was target to keep under 10%. The hash collision was
calculated by dividing the total number of positions marked in the bit array by the number
of processed packets. This approach resulted in an epoch of 60s, a bandwidth limited to
1Mbps and bitmap size of 16384 positions. The setup for this experiment was constructed
using Mininet network emulator customized in order to enable P4 switch in the emulated

6.1. P4 implementation using Mininet 79

network.

The topology used was composed of three hosts and four P4 switches. Each host
received an IP address from a different network, emulating different tenants. The topology
is presented in Figure 15.

sw1

sw2

sw3

sw4
P4

P4

P4

P4

Tenant C

Tenant B

Tenant A

Figure 15 – Mininet emulated network topology with P4-enabled forwarding.

The paths between tenants were arbitrarily defined as shown in Table 4.

Table 4 – Traffic path between tenants

Tenant Pairs Switches hop by hop in order
A to B sw1 - sw3
B to A sw3 - sw1
A to C sw1 - sw2 - sw4
C to A sw4 - sw2 - sw1
B to C sw3 - sw4
C to B sw4 - sw3

Every packet processed by the P4 switches generates entries in its corresponding
BitMatrix (instantiated in each switch). Our P4 implementation consists of processing
packets for the BitMatrix and can be described in the following general steps:

• Completely parse the packet headers of Layer 2, 3, 4 and the first 8 Bytes of the
payload;

• Select the packet headers to be used in the hashing algorithm;

• Determine the position in the bitmap;

80 Chapter 6. Tests and Results

• Determine the position (using the same hashing value) in the counter array to sum
the total bytes of the current packet with the previous ones;

• Forward the packet to the next hop.

6.1.2 Parsing the Packet Header

Parsing the packet header in a customized fashion is a flexibility provided by P4
(BOSSHART et al., 2014). The P4 implementation used in this work enabled the P4 switch
to completely parse the packet headers from layer 2 to layer 4 and also the first 8 Bytes
(64 bits) of the payload. We implemented the parser for TCP, UDP and ICMP protocols.
As the TCP layer usually brings optional headers, we used a variable length header to
accommodate it. Ignoring TCP optional header would mislead the parsing of the payload.

The parsing of payload was done by creating one header field to receive the 8 bytes
(64 bits) subsequent to the Layer 4 header. The code in Listing 6.1 is part of the P4 source
code for header definition and parsing instruction and shows how packet payload was
parsed.

Listing 6.1 – Partial P4_14 code defining Header and Parser

...
parser parse_ipv4 {

extract (ipv4);
return select (latest . protocol) {

IP_PROTOCOLS_ICMP : parse_icmp ;
IP_PROTOCOLS_TCP : parse_tcp ;
IP_PROTOCOLS_UDP : parse_udp ;
default : ingress ;

}
}

...

parser parse_tcp {
extract (tcp);
return parse_payld ;

}

...

header_type payld_t {
fields {

userdata8B : 64;
}

}

6.1. P4 implementation using Mininet 81

header payld_t payld;

parser parse_payld {
extract (payld);
return ingress ;

}

6.1.3 Hashing and Hash Inputs

To identify a packet as unique across all hops in a network, the packet’s headers
used as input for the hash algorithm, must not vary during the forwarding process. Duffield
and Gross-glauser (DUFFIELD; GROSSGLAUSER, 2001) define that the IPv4 fields with
low entropy are those which do not vary along the forwarding path for a given packet.
Then, to have a low entropy, in this work we used the invariant IPv4 header fields and
the first 8 bytes of the payload as input for the hash algorithm. According to Snoeren
(SNOEREN et al., 2001), those inputs are sufficient to differentiate unique packets.

The fields to be used in the hash operation for each packet are defined in the P4
field_list hash_fields as shown in the code of Listing 6.2.

Listing 6.2 – Partial P4 code defining input fields for hashing and the hash algorithm used.

field_list hash_fields {
ipv4. version ; // 4
ipv4.ihl; // 4
ipv4. totalLen ; //16
ipv4.id; //16
ipv4.flags; // 3
ipv4. fragOffset ; //13
ipv4. protocol ; // 8
ipv4. srcAddr ; //32
ipv4. dstAddr ; //32
payld. userdata8B ; //64

}

field_list_calculation hash {
input {

hash_fields ;
}
algorithm : crc16;
output_width : 16;

}

82 Chapter 6. Tests and Results

6.1.4 Collisions versus Occupation Tests

Towards to determine what is the more efficient setup for the BitMatrix size and
maximum occupancy to be target for it, we conducted tests using a fixed hash value size
and varying the BitMatrix length and the percentage of occupancy. The hash algorithm
used was the checksum 16 (csum16), which generates a value of 16 bits length. The
BitMatrix tested were 2,048, 4,096, 8,192, 16,384, 32,768 and 65,536 bits length. We did
not control the occupation itself, instead, we processed an amount of packets to be 5%,
10%, 25%, 50% and 100% of the BitMatrix length. The output was the occupation smaller
than the amount of packets processed due the hash collision inherent to the process. The
results can be observed in Figure 16.

Figure 16 – Relation between % of collision X % of occupation.

There are pros and cons on every setup. While a setup with a longer BitMatrix
can provide more positions for packets, it will also demand more available memory in the
device which, sometimes, can be a limiting factor. Therefore, it will demand tests and a
better assessment when implementing in a production environment.

6.1.5 Retrieving and Processing BitMatrix

To understand what was the path of a certain packet, it was necessary to compare
the datastreams from different devices in the network. The data to be compared need to
belong to the same epoch (monitoring interval). An Epoch is the time frame in which the
P4 device stored information in the BitMatrix. From time to time, the data structures
need to be collected and reset. This determines the beginning of a new epoch.

The P4 switch is not in charge of collecting and storing the data structures. This
task was performed by the collector and controller component, who collected the values

6.1. P4 implementation using Mininet 83

from the P4 registers and reset them to start a new epoch. For this experiment, the time
frame for each epoch was set to 60 seconds.

After collecting the data structures, they were stored in a database from where
they can be retrieved and processed in order to provide the information requested. By
processing the stored data from bitmaps and counter arrays, it is possible not only to
obtain information regarding the amount of packets and bytes processed by each device
per tenant, but also to identify how may packets and bytes per tenant went through a
specific path in the network.

6.1.6 Results

An interesting metric directly related to the accuracy of the method is the occupancy
of the bitmap. As demonstrated in Figure 16, the higher is the occupancy in a bitmap the
lower is its accuracy. In Figure 17, the occupancy for the bitmap corresponding to tenant
A was calculated for each epoch and plotted as a time series graphic. For this calculation,
we took the number of bits set in the bitmap divided by the bitmap total length to find
what was the bitmap occupancy for a given epoch, in percentage.

Figure 17 – BitMatrix Occupancy and Collisions for tenant A in P4 switch 1.

In Figure 18, the amount of packets per tenant can be visualized during a specific
period. This metric was a result of the sum of all set positions in the bitmap corresponding
to each tenant in the BitMatrix in each epoch.

By counting the positions with bits set to 1 from all bitmaps of the BitMatrix, we
obtain the approximated total number of packets processed by each P4 device. Figure
19 shows these numbers. This value reflects less packets than each P4 switch actually
processed due to the hash collisions.

84 Chapter 6. Tests and Results

Figure 18 – Amount of packets per tenant in P4 switch 1.

Figure 19 – Total amount of packets per P4 switch.

The amount of bytes sent by tenants was computed by counting the total values of
each position from every tenant-correspondent counter array. In Figure 20, we present the
amount of bytes transmitted for each tenant computed from P4 switch 1.

The total amount of bytes processed by each P4 switch is presented in Figure
21. The total number of Bytes related to packets forwarded by a particular P4 switch is
computed by counting the values from each position in every tenant’s counter array. As
counter arrays indeed count the number of bytes, there is no hash collision and this result
will reflect exactly the volume of bytes processed by the P4 switches.

By computing bitmaps from different network devices, it is possible to determine
what was the path a packet went through in the network. In Figure 22, it is possible to
see the amount of packets per minute originated by tenant A with destination to tenant B

6.1. P4 implementation using Mininet 85

Figure 20 – Amount of bytes per tenant in P4 switch 1.

Figure 21 – Total amount of bytes per P4 switch.

and packets originated from tenant B with destination to tenant A. Those metrics were
calculated using logical operations with the bitmaps for tenants A and B from every P4
switch responsible for forwarding packets between those two tenants. Considering the
information in Table 4, it is possible to state that packets going from tenant A to tenant
B will take the path passing through P4 switch 1 and then switch 3, and packets going
from tenant B to tenant A will take the reverse route, passing firstly through P4 switch 3
and finally through P4 switch 1. With this information, it was possible to estimate which
packets flowed from tenant A to tenant B. To do that, we used the logical expression
((sw1_A & sw3_A) & !sw4_A) where sw1_A is the bitmap corresponding to tenant A
from P4 switch 1, sw3_A is the bitmap corresponding to tenant A from P4 switch 3,
sw4_A is the bitmap corresponding to tenant A from P4 switch 4. Similar logic was used

86 Chapter 6. Tests and Results

to determine which packets sent from tenant B went through P4 switch 3 and P4 switch
1, towards tenant A. This logic indicates what position was set by packets exchanged
between tenants A and B.

Figure 22 – Amount of packets on path AB+BA.

Once these positions are known, we were able to count how many bytes were
involved in the data transfer between tenants A and B, as shown in Figure 23.

Figure 23 – Amount of bytes on paths AB+BA.

The amount of possibilities in terms of processing and mining the collected infor-
mation is immense. Once the BitMatrix and counter array data are obtained, it is just
a matter of making logic operations, counting and crossing the bitstreams to generate
network information for each tenant and as a whole.

6.1. P4 implementation using Mininet 87

6.1.7 Contribution - New Command bm_register_read_all added to Thrift
interface

The Thrift interface was used to retrieve the BitMatrix bitstreams periodically
from the Behavioral Model v2 (BMv2) framework. However, when we were working in
this project, the only command supported on Thrift interface, by the BMv2 was the bm_-
register_read. The runtime CLI bm_register_read command will read the information
in the register, returning the value for one position per reading. This happens because the
parameters needed for the command are the register name and the index position. Thus,
if the register has 8,192 positions, to retrieve all values, we need to perform the command
8,192 times. The Listing 6.3 shows how the bm_register_read command is defined in the
BMv2 context.

Listing 6.3 – bm_register_read commnad definition in standard.thrift code for the
behavioral-model

BmRegisterValue bm_register_read (
1: i32 cxt_id ,
2: string register_array_name ,
3: i32 idx

) throws (1: InvalidRegisterOperation ouch)

Reading a register several times creates an overload in the BMv2 framework, besides
to introduce a considerable delay until to retrieve all the values from a register. These
issues had a negative impact when scaling the solution. By increasing the traffic, the
sketches need to be increased in length, and the time for reading needs to be shorter to
avoid a high level of hash collisions. At a certain point, the time for collection will be
longer than the sketch epoch, making the process unfeasible.

To solve this problem, after some discussions in the P4 community group (p4-dev-
request@lists.p4.org - P4-dev Digest, Vol 24, Issue 1), the support for a new command was
included in the commit #419 of the Behavioral Model v2. The command bm_register_-
read_all was created to read all register cells in one row, using the Thrift interface. Also,
a modification in the bm_register_read runtime CLI command was done, making the
index optional. If it is not declared, the entire register array will be read. Listing 6.4 shows
the new command introduced in the BMv2 context.

Listing 6.4 – bm_register_read_all command definition in standard.thrift code for the
behavioral-model

list < BmRegisterValue > bm_register_read_all (
1: i32 cxt_id ,
2: string register_array_name

) throws (1: InvalidRegisterOperation ouch)

88 Chapter 6. Tests and Results

Tests using the new command in the scenario described in section 6.1 P4 imple-
mentation using Mininet resulted in a reduction from tenths of seconds to less than 2
seconds. Figure 24 shows time enlapsed to collect the bitmaps from each elemente (sw1,
sw2, sw3 and sw4) using the bm_register_read command, and Figure 25 shows time of
collection when using the bm_register_read_all command.

711 PM 713 PM 715 PM 717 PM 719 PM 721 PM 723 PM 725 PM

Time stamp

0

5

10

15

20

25

Se
co
nd
s
(s
)

Time for BitMatrix collecting via Thrift interface - using bm_register_read
Measure Names
Sw1.Time2Collect

Sw2.Time2Collect

Sw3.Time2Collect

Sw4.Time2Collect

The trends of Sw1.Time2Collect, Sw2.Time2Collect , Sw3.Time2Collect and Sw4.Time2Collect for Time stamp Minute. Color shows details
about Sw1.Time2Collect, Sw2.Time2Collect , Sw3.Time2Collect and Sw4.Time2Collect. The data is filtered on Time stamp, which ranges
from 1899-12-30 71000 PM to 1899-12-30 72532 PM.

Figure 24 – Time for BitMatrix collection via Thrift interface - using the command bm_-
register_read

814 PM 816 PM 818 PM 820 PM 822 PM 824 PM 826 PM 828 PM

Time stamp

0.0

0.5

1.0

1.5

2.0

2.5

Se
co
nd
s
(s
)

Time for BitMatrix collecting via Thrift interface - using bm_register_read_all
Measure Names
Sw1.Time2Collect

Sw2.Time2Collect

Sw3.Time2Collect

Sw4.Time2Collect

The trends of Sw1.Time2Collect, Sw2.Time2Collect , Sw3.Time2Collect and Sw4.Time2Collect for Time stamp Minute. Color shows details
about Sw1.Time2Collect, Sw2.Time2Collect , Sw3.Time2Collect and Sw4.Time2Collect. The data is filtered on Time stamp, which ranges
from 1899-12-30 81103 PM to 1899-12-30 82800 PM.

Figure 25 – Time for BitMatrix collection via Thrift interface - using the command bm_-
register_read_all

6.2 Python Implementation
The python implementation aims to simulate network devices, executing the Bit-

Matrix algorithm on a set of packets from real-world traffic traces. Tests described in
Section 6.1 P4 implementation using Mininet were performed in a emulated environment,

6.2. Python Implementation 89

using Mininet, BMv2 and iperf3 to generate traffic. The results may suffer some bias from
the traffic generation tool used. In python implementation, we used real traffic traces
from CAIDA, captured from one of the routers in Equinix datacenter in San Jose, CA,
connected to a backbone link of a Tier1 ISP between San Jose, CA and Los Angeles, CA
(http://www.caida.org/data/passive/passive_2012_dataset.xml). The dataset contains
anonymized passive traffic traces from CAIDA’s equinix-sanjose monitors on high-speed
Internet backbone links. Traffic traces were anonymized using prefix-preserving anonymiza-
tion, and the payload was removed from all packets. Traces can be read with any software
that reads the pcap (tcpdump) format. Depending on tests to be performed, we used a
different Python framework to simulate packets processing and collect information gener-
ated from this process. The following subsections expose details about each framework
used for tests and the results.

6.2.1 Hash Algorithms and Packet headers Selection

Ideally, the optimal result will happen when we don’t have any hash collision storing
packets in the sketch. However, this is not how it works in practice. Hash collisions happen
very often and it is related to several factors, such as sketch elevate level of occupation,
fragmented packets, and even for casuality. In order to verify other factors that could
contribute in raising the collision number of incidences, we performed tests using different
hash algorithms, different hash inputs and processing traffic traces from different sources.

In the sense of hash code and checksum are similar things - a numeric value,
computed for a block of data, that is relatively unique, we used four algorithms for the
tests, as follows:

Checksum 16
CRC 16
CRC 32
MD5

For checksum 16, the algorithm was programmed in Python as a function, using
the logic for calculating the checksum for a string of bits. Listing 6.5 shows the code for
the checksum calculation.

Listing 6.5 – Function definition in Python for Checksum 16 hash calculation

def checksum (str_):
str_ = bytearray (str_)
csum = 0
countTo = (len(str_) // 2) * 2

for count in range (0, countTo , 2):
thisVal = str_[count +1] * 256 + str_[count]

90 Chapter 6. Tests and Results

csum = csum + thisVal
csum = csum & 0 xffffffff

if countTo < len(str_):
csum = csum + str_ [-1]
csum = csum & 0 xffffffff

csum = (csum >> 16) + (csum & 0xffff)
csum = csum + (csum >> 16)
answer = ~csum
answer = answer & 0xffff
answer = answer >> 8 | (answer << 8 & 0xff00)
return answer

To generate the hash code using the cyclic redundancy check (CRC), we used the
crcmod 1.7 package, which is a Python module for generating objects that compute the
CRC. It includes a optional C extension for fast calculation, although we used its pure
Python implementation. This package allows the use of any 8, 16, 24, 32, or 64 bit CRC.
There is no attempt to explain how the CRC works. For the tests, we generated a Python
function for the CRC 16 and 32 bits, as shown in Listing 6.6.

Listing 6.6 – Using crcmod Python library to compute the CRC hash code.

def crc16_comp (str_):
str_ = bytearray (str_)
crc16 = crcmod . mkCrcFun (0 x18005 , rev=False , initCrc =0 xFFFF ,

xorOut =0 x0000)
answer = crc16(str(str_))
return answer

def crc32_comp (str_):
str_ = bytearray (str_)
crc32 = crcmod . mkCrcFun (0 x104C11DB7 , rev=False , initCrc =0

xFFFFFFFF , xorOut =0 xFFFFFFFF)
answer = crc32(str(str_))
return answer

The last hash algorithm used was the MD5 - message-digest algorithm. This module
implements the interface to RSA’s MD5 message digest algorithm. First, we need to use
new() method to create an md5 object and then, feed this object with arbitrary strings
using the update() method, in our case the string of bits representing the selected packet
headers as input for the hash function. The output will be obtained using the digest()
method. As the MD5 algorithm generates an output of 128 bits, we decided to use only
the first 4 octets of the output as the hash code. Listing 6.7 presents the implementation
of the MD5 algorithm.

6.2. Python Implementation 91

Listing 6.7 – Using MD5 - message-digest algorithm Python module to obtain the MD5
hash code.

def md5_comp (str_):
str_ = bytearray (str_)
m = md5.new ()
m. update (str(str_))
answer = int (("0x" + m. hexdigest () [:4]) ,16)
return answer

From the perspective of packet header fields used as input for hash functions, we
created three sets of fields: Set 1, Set 2 and Set 3.

The Set 1 of fields includes the unvarying header fields from the IP layer, and the
first eight bytes of the layer 4 payload, counted after the layer 4 protocol header (TCP or
UDP). The following fields were used as input for the hash function:

ipv4.version;
ipv4.ihl;
ipv4.totalLen;
ipv4.id;
ipv4.flags;
ipv4.fragOffset;
ipv4.protocol;
ipv4.srcAddr;
ipv4.dstAddr;
first 8 bytes after TCP or UDP layer.

Another field selection was Set 2. This selection uses the same unvarying header
fields from the IP layer and the first eight bytes of its payload. The payload, in this case,
does not depend on the layer 4 protocol used in the packet. It will include the next 8 bytes
just after the IP protocol header. The following list shows the fields used for the Set 2 :

ipv4.version;
ipv4.ihl;
ipv4.totalLen;
ipv4.id;
ipv4.flags;
ipv4.fragOffset;
ipv4.protocol;
ipv4.srcAddr;
ipv4.dstAddr;
next 8 bytes after IP layer.

The last variation, Set 3, was a combination of Set 1 and Set 2 payloads. In this

92 Chapter 6. Tests and Results

list of fields, we used the same IP layer header fields, but now combining the payload from
Set 1 with the payload from Set 2. This results in the fields below:

ipv4.version;
ipv4.ihl;
ipv4.totalLen;
ipv4.id;
ipv4.flags;
ipv4.fragOffset;
ipv4.protocol;
ipv4.srcAddr;
ipv4.dstAddr;
first 8 bytes after TCP or UDP layer;
next 8 bytes after IP layer.

Moreover, we used traffic traces from 3 different sources to perform the analyses
for all possible combinations of hash algorithms and input field selection: From CAIDA,
NETRESEC and iperf3 traffic.

CAIDA: These traffic traces are from CAIDA’s monitors and includes anonymized
data from Internet backbone links. The payload has been removed from all packets.
More information can be found at http://www.caida.org/data/passive/passive_2012_-
dataset.xml.

NETRESEC: This is a list of public packet capture repositories, which are freely
available on the Internet. The trace used in tests is available in the repository Bro IDS trace
files (no application layer data) at ftp://ftp.bro-ids.org/enterprise-traces/hdr-traces05/.

iperf3: This traffic trace was from traffic generated in a local network between
two hosts running iperf3.

The methodology used for this test consisted of calculate the hash code, using
different algorithms and sets of fields, for every packet from captures. Then, analyze the
number of hash collisions produced while setting the bit in the bitmap corresponding to
the [hash algorithm - set of fields] combination, as shown in Table 5.

We created 12 bitmaps, with 65,536 positions each, and processed 10,000 packets
from each capture. Each packet was processed 12 times, one per hash algorithm - set of
fields combination, and stored in the corresponding bitmap, as per Table 5. This procedure
was performed five times, with a different set of 10,000 packets, from each capture. The
number of collisions were measured, and an average from five results was used in the
analysis.

Figure 26 shows the average of hash collisions after processing five sets of ten
thousand packets and store in a bitmap with 65,536 positions, broken down by source of

6.2. Python Implementation 93

Table 5 – Different hash algorithm and set of fields used to calculate the packet position
in the corresponding bitmap, for each packet.

Hash Algorithm Set of fields Bitmap
Checksum 16 Set 1 bitmap_1
Checksum 16 Set 2 bitmap_2
Checksum 16 Set 3 bitmap_3
CRC 16 Set 1 bitmap_4
CRC 16 Set 2 bitmap_5
CRC 16 Set 3 bitmap_6
CRC 32 Set 1 bitmap_7
CRC 32 Set 2 bitmap_8
CRC 32 Set 3 bitmap_9
MD5 Set 1 bitmap_10
MD5 Set 2 bitmap_11
MD5 Set 3 bitmap_12

the trace and the different set of fields selection.

Source of the trace / Field selection set / Hash Algorithm

CAIDA

Set 1 Set 2 Set 3

NETRESEC

Set 1 Set 2 Set 3

iperf3

Set 1 Set 2 Set 3

CR
C1
6

CR
C3
2

CS
U
M
16

M
D
5

CR
C1
6

CR
C3
2

CS
U
M
16

M
D
5

CR
C1
6

CR
C3
2

CS
U
M
16

M
D
5

CR
C1
6

CR
C3
2

CS
U
M
16

M
D
5

CR
C1
6

CR
C3
2

CS
U
M
16

M
D
5

CR
C1
6

CR
C3
2

CS
U
M
16

M
D
5

CR
C1
6

CR
C3
2

CS
U
M
16

M
D
5

CR
C1
6

CR
C3
2

CS
U
M
16

M
D
5

CR
C1
6

CR
C3
2

CS
U
M
16

M
D
5

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
ve
ra
ge
 H
as
h
Co
lli
si
on
s

Average Hash Collisions
Hash Algorithm
CRC16

CRC32

CSUM16

MD5

Sum of Hash Collisions for each Hash Algorithm broken down by Source of the trace and Field selection set. Color shows details about Hash
Algorithm.Figure 26 – Average hash collisions per hash algorithm broken down by source of the trace

and set of fields selection.

The hash collisions average per hash algorithm, across all traffic traces and field
selections is shown in Figure 27, in ascending order. Furthermore, Figure 28 presents the
hash collisions average per fields selection, across all traffic traces and hash algorithms.

Observing the results, it is not possible to conclude that any hash algorithm has a
better performance on avoiding hash collisions, despite the MD5 algorithm has a higher

94 Chapter 6. Tests and Results

Hash Algorithm

CRC16 CRC32 CSUM16 MD5

0

200

400

600

A
ve
ra
ge
 H
as
h
Co
lli
si
on
s

Average Hash Collisions per Hash Algorithm

Average of Hash Collisions for each Hash Algorithm.

Figure 27 – Average hash collisions per hash algorithm

Field selection set

Set 1 Set 2 Set 3

0

200

400

600

A
ve
ra
ge
 H
as
h
Co
lli
si
on
s

Average Hash Collisions per Set of Fields

Average of Hash Collisions for each Field selection set.
Figure 28 – Average hash collisions set of fields selection.

rate of collisions, when compared to other hash algorithms, for iperf3 traffic trace - as
observed in Figure 26 -, the hash collisions average was not different from other traffic traces
(CAIDA and NETRESEC). Also, none set of fields selection demonstrate a significant
decrease in the average hash collisions rate. Thus, based on tests, the hash algorithm
and the field selection do not seem to have a material impact on hash collisions rate.
When implementing the BitMatrix on a network device, other factors should be taken into
consideration, such as the capabilities for a specific hash algorithm implementation.

6.3 NSF92 Framework in Python

The NSFNET represents one of the more important pieces of Internet history.
Staring in 1985, the communication infrastructure initiative, from the National Science
Foundation, the NSFNET was the foundation of the United States Internet and the
main precursor for the computer network around the world. The NSFNET backbone
connected researchers located on university campuses to each other and their counterparts,
in universities and research centers around the world.

6.3. NSF92 Framework in Python 95

The partnership that built the NSFNET backbone service also founded a model
of technology transfer. From 217 networks connected in 1988 to more than 50,000 in
1995 when the NSFNET backbone service was retired, the NSFNET’s growth stimulated
the expansion of the Internet and provided an environment for the development of
communications technologies. The NSFNET notable history made it one of the most
knowledge and studied network model in academia.

To create a more realistic simulated model for the tests, we create a network
environment based on the NSFNet from 1992, just after the sixteen T3 sites start operating,
in the fall of 1991, and production traffic was phased in. It linked sixteen sites and over
3,500 networks. The new and improved NSFNET backbone service provided the community
with networking and connectivity to the fastest production network in the world. Figure
29 shows the locations and T3 links interconnecting them, forming the NSF Network of
1992.

Figure 29 – New T3 Backbone Service for NSFNET 1992

The network diagram in Figure 30 has the same topology as the NSFNET 1992.
The location names become tenants, from 1 to 16, representing the 16 sites in the NSF
network, and the routers and link are identified with numbers, with a total of 12 routers
and 31 links interconnecting the tenants and routers. This model was the network design
used in the tests.

Also, we created a routing table to specify the path that a packet needs to travel
across the network to go from a source tenant to a destination tenant. Table 9 in Appendix
A.5 Routing table for NSF 92 Python framework shows the path composed by routers for
every pair of tenants. The same path is used for upstream and downstream traffic. Then,
we did not include all the entries for the routing table here.

Once defined the network topology and the routing table, the next step is to

96 Chapter 6. Tests and Results

12 4 6

3 5

7 8 11

10

9

12

Ten_1Ten_2

Ten_3

Ten_4

Ten_5

Ten_7

Ten_9
Ten_10

Ten_8

Ten_6 Ten_12

Ten_11

Ten_15

Ten_16

Ten_14

Ten_13
1

2
17

19

9 25

24

4

5

20 23

7

8

22

21

18

3 6

29

28

27

26

10

11

14

31

13

30

15

16

12

Figure 30 – Topology detail for tenants, routers and links.

determine what traffic to use for the simulation. The CAIDA traffic traces offer a sufficient
volume of packets to create relevant traffic for all tenants in the simulated network. Ideally,
every tenant should generate a similar volume of traffic, so the traffic load in the network
tends to be more balanced across the devices. Therefore, we distributed the packets’ source
IP address network among the tenants. By analyzing a sample of one million packets from
a traffic capture, we created 16 groups of networks, based on packets’ source IP addresses
in a way that each group of networks has a similar number of packets. Then, we assigned
those groups of networks to tenants, one group per tenant. In this manner, each tenant
receives networks prefixes that summarize approximately the same number of packets.
Table 6 shows the network prefixes assigned to each tenant. Packets with IP address not
belonging to any of the listed network prefixes from tenants 1 to 15 were assigned to tenant
16, which is a sort of catch-all tenant.

Tenant Network prefixes assigned to the tenant
Tenant 1 180.0.0.0/8, 128.0.0.0/8
Tenant 2 223.0.0.0/8, 208.0.0.0/8, 55.0.0.0/8, 108.0.0.0/8
Tenant 3 48.1.159.0/24, 151.0.0.0/8, 48.0.0.0/8
Tenant 4 145.0.0.0/8, 158.0.0.0/8, 54.0.0.0/8
Tenant 5 61.0.0.0/8, 184.0.0.0/8, 181.0.0.0/8, 203.0.0.0/8
Tenant 6 48.1.136.0/24, 132.0.0.0/8, 177.0.0.0/8, 186.0.0.0/8, 197.0.0.0/8
Tenant 7 48.1.137.0/24, 83.0.0.0/8, 34.0.0.0/8, 141.0.0.0/8, 116.0.0.0/8
Tenant 8 48.2.0.0/8, 155.0.0.0/8, 49.0.0.0/8, 187.0.0.0/8, 37.0.0.0/8
Tenant 9 135.0.0.0/8, 144.0.0.0/8, 60.0.0.0/8, 220.0.0.0/8, 236.0.0.0/8,

118.0.0.0/8, 113.0.0.0/8

6.3. NSF92 Framework in Python 97

Tenant Network prefixes assigned to the tenant
Tenant 10 41.0.0.0/8, 142.0.0.0/8, 147.0.0.0/8, 247.0.0.0/8, 50.0.0.0/8,

32.0.0.0/8, 125.0.0.0/8
Tenant 11 178.0.0.0/8, 70.0.0.0/8, 221.0.0.0/8, 148.0.0.0/8, 248.0.0.0/8,

219.0.0.0/8, 152.0.0.0/8, 138.0.0.0/8, 115.0.0.0/8
Tenant 12 53.0.0.0/8, 150.0.0.0/8, 48.1.156.0/24, 201.0.0.0/8, 42.0.0.0/8,

228.0.0.0/8, 68.0.0.0/8, 104.0.0.0/8, 35.0.0.0/8, 85.0.0.0/8
Tenant 13 39.0.0.0/8, 159.0.0.0/8, 183.0.0.0/8, 36.0.0.0/8, 33.0.0.0/8,

112.0.0.0/8, 182.0.0.0/8, 242.0.0.0/8
Tenant 14 143.0.0.0/8, 218.0.0.0/8, 79.0.0.0/8, 78.0.0.0/8, 77.0.0.0/8,

253.0.0.0/8, 254.0.0.0/8, 163.0.0.0/8, 98.0.0.0/8, 109.0.0.0/8,
105.0.0.0/8

Tenant 15 176.0.0.0/8, 40.0.0.0/8, 140.0.0.0/8, 190.0.0.0/8, 149.0.0.0/8,
43.0.0.0/8, 146.0.0.0/8, 231.0.0.0/8, 174.0.0.0/8, 48.1.226.0/24,
80.0.0.0/8, 84.0.0.0/8, 134.0.0.0/8, 131.0.0.0/8, 210.0.0.0/8

Tenant 16 0.0.0.0/0

Table 6 – Tenants and theirs assigned group of network prefixes.

In order to determine how many packets should be processed before collecting
statistics and reset the counters, we needed to set some variables. Once the links capacity
have being arbitrarily defined in 100Mbps, the question to be responded was: How many
packets do the framework need to process to generate satisfactory traffic load in the
simulated network, respecting the imposed limit for the links? To answer this question,
we created measurements per link, to calculate the average throughput, in Mbps, after
processing the number of packets that we considered ten seconds of traffic. So, the only
variable now is the number of packets to be processed. By varying the number of packets
processed, we can increase or decrease the throughput in the links. Figure 31 shows the final
result for determining the number of packets to be processed to create a time dimension in
the structure. The framework processed a batch of 430,000 packets, summarizing statistics
on every 10 seconds, to generate the graph. With this bound created, we can translate one
second in time on every 43,000 packets processed. With this number of packets processed,
we can maintain the simulated traffic under the pre-determined link capacity of 100 Mbps.

The next step was to determine the parameters for the sketches’ structure creation
and collection. The main parameters were the sketches’ length and the period for collection
(epoch). Both parameters are related, so we start using a period for collection equal to 10
seconds or, on every 430,000 packets. Based on that, we used a length of 65,536 positions
for the BitMatrices sketches creation. The main goal here was to maintain a level of
BitMatrix occupancy that avoids a high level of hash collisions and, at the same time,

98 Chapter 6. Tests and Results

1200 AM 1201 AM 1202 AM 1203 AM 1204 AM 1205 AM

Second of Time Stamp

0

10

20

30

40

50

60

70

80

90

100

A
vg
. T
hr
ou
gh
pu
t
(M
bp
s)

Average throughput per Link
Link Id
link#1

link#2

link#3

link#4

link#5

link#6

link#7

link#8

link#9

link#10

link#11

link#12

link#13

link#14

link#15

link#16

link#17

link#18

link#19

link#20

link#21

link#22

link#23

link#24

link#25

link#26

link#27

link#28

link#29

link#30

link#31

The trend of average of Throughput for Time Stamp Second. Color shows details about Link Id.Figure 31 – Average throughput per link on every 10 seconds.

was coherent in terms of memory occupancy and time for collection. Using the described
parameter, we created statistics presented in Section 6.3.1 Results.

6.3.1 Results

To analyze the statistics generated by the Python framework, we used the Tableau
software. This methodology allows us to create different insights and to validate the
information extracted from the BitMatrix with information from counters. We create a
sample of 30 minutes of traffic, for traffic analyses. The simulator processed 77,400,000
packets from CAIDA traces, giving a good idea about the BitMatrix solution operation
environment.

Figure 32 shows the packets per second processing rate, per router. To calculate
this key performance indicator (KPI), we summarized the total number of packets per
router from its BitMatrix and divided the number by 10, as the BitMatrix collection occurs
on every ten simulated seconds.

Analyzing the graph in Figure 32, the router with higher packets traffic is router
12. We may want to understand what is the traffic on router 12. So, in Figure 33 we can
see a graph for that specific router, breaking down the traffic by tenant.

We can identify the high traffic of packets in the router 12, from tenant 3, 15 and

6.3. NSF92 Framework in Python 99

1203 AM 1208 AM 1213 AM 1218 AM 1223 AM 1228 AM

Time

0K

2K

4K

6K

8K

10K

12K

14K

16K

18K
Pa
ck
et
s
pe
r
Se
co
nd
 (p
ps
)

Packets per Second per Router
router
1

2

3

4

5

6

7

8

9

10

11

12

The trend of pps for date Second. Color shows details about router.

Figure 32 – Packets per second average rate, per router, on every 10 seconds.

1203 AM 1208 AM 1213 AM 1218 AM 1223 AM 1228 AM

Time

0

500

1000

1500

2000

2500

3000

Pa
ck
et
s
pe
r
Se
co
nd
 (p
ps
)

Packets per Second on Router 12 by Tenant
tenant
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

The trend of pps for date Second. Color shows details about tenant. The data is filtered on router, which keeps 12.

Figure 33 – Packets per second average rate on router 12, per tenant, on every 10 seconds.

16, when compared to other tenants. It is expected that every router receives higher traffic
from tenants directly connected to it, thus the unexpected traffic is from tenant 3. Let
us analyze the traffic per tenant in the network to better understant each tenant traffic
profile. Figure 34 shows traffic per tenant.

The graph in Figure 34 demonstrates the higher traffic from tenant 3, which
can be identified as the biggest offender in the perspective of traffic generation in the
network. Figure 35 presents a dashboard with a complete view representing tenant traffic

100 Chapter 6. Tests and Results

1203 AM 1208 AM 1213 AM 1218 AM 1223 AM 1228 AM

Time

0K

2K

4K

6K

8K

10K

12K

14K

16K

18K

20K

22K

24K

Pa
ck
et
s
pe
r
Se
co
nd
 (p
ps
)

Packets per Second per Tenant
tenant
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

The trend of pps for date Second. Color shows details about tenant.

Figure 34 – Packets per second average rate per tenant in the network, on every 10 seconds.

contribution on every router in the period. The percentage is only presented to the tenant
with the highest contribution.

52%

Router 1

22%

Router 4

33%

Router 2

52%

Router 3

20%

Router 9

23%

Router 5

33%

Router 10

16%

Router 6

22%

Router 11

20%

Router 7

13%

Router 12

18%

Router 8

tenant
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 35 – Dashboard showing the traffic contribution for each tenant per router.

6.4. Machine Learning for BitMatrix Measurement Adjustment 101

Several other analyses can be performed with the bitstreams collected, as previously
described in this work. In this framework implementation, we could comprehend a few
insights and better understand the possible analyses that can be done using the packet
digested information from BitMatrix. Another crucial point is that, as the information
collection occurs every 10 seconds, we can have a near real-time view about network
behaviour and performance analysis.

The BitMatrix concept, however, is based on a probabilistic structure of sketches,
and hash collisions are part of the process. The hash collisions introduce errors in the
measurements performed using the data collected from sketches. In Section 6.4 Machine
Learning for BitMatrix Measurement Adjustment, we explore the statistics about collisions,
bitmap occupation and propose a model, based on polynomial regression to adjust the
results, compensating the losses due to the hash collision.

6.4 Machine Learning for BitMatrix Measurement Adjustment

The Python framework generates one BitMatrix containing 16 bitmaps (one per
tenant), per router on every 10 seconds (or, on every 430.000 packets processed). In total,
after processing packets to simulate 30 minutes of traffic, it creates about 34,500 bitmaps.
The Python framework, besides generating BitMatrices, also was used to create counters
to evaluate the quality of the information provided by the BitMatrix structure. When
comparing measurements from bitmaps and counters, we notice that there is a gap between
these two values.

In Figures 36, 37 and 38 , we can observe the gap between the packets measurement
based on BitMatrix and the Packet Counter. The Packet Counter reports the actual
number of packets processed and the BitMatrix Counter is the sum of the bits for the
corresponding router/tenant bitmap. This difference is due to hash collisions during the
process of storing digested packets in some index of the BitMatrix. If the position is already
in use, then the interference happens.

We observed that the difference between BitMatrix Counter and Packet Counter
increases as more packets are processed. Note that the gap between trend lines in Figure
37 is more significant than in Figure 36, and in Figure 38 is more prominent than in Figure
37. That gap amplification happens as a result of the hash collision probability increasing
as more packets are processed. Chances of collision rise as the bitmap get more occupied.

Aiming to find a machine learning algorithm based on the historical data to apply
an adjustment to the BitMatrix counter approximating it to the real value, which is the
Packet Counter, we used the relation between the percentage of bitmap occupation and
the percentage of hash collisions. Figure 39 shows the relation between these two indirect
measurements.

102 Chapter 6. Tests and Results

1203 AM 1208 AM 1213 AM 1218 AM 1223 AM 1228 AM

Time

0K

1K

2K

3K

4K

5K

6K

7K

Pr
oc
es
se
d
Pa
ck
et
s

Processed Packets - Router 2, Tenant 11

Measure Names
BitMatrix Counter
Packet Counter

The trends of BitMatrix Counter and Packet Counter for date Second. Color shows details about BitMatrix Counter and Packet Counter. The data is
filtered on router and tenant. The router filter keeps 2. The tenant filter keeps 11.Figure 36 – Number of processed packets measured by the BitMatrix counter and the

packet counter for Router 2 and Tenant 11, on every 10 seconds.

1203 AM 1208 AM 1213 AM 1218 AM 1223 AM 1228 AM

Time

0K

5K

10K

15K

20K

25K

30K

Pr
oc
es
se
d
Pa
ck
et
s

Processed Packets - Router 1, Tenant 1

Measure Names
BitMatrix Counter
Packet Counter

The trends of BitMatrix Counter and Packet Counter for date Second. Color shows details about BitMatrix Counter and Packet Counter. The data is
filtered on router and tenant. The router filter keeps 1. The tenant filter keeps 1.Figure 37 – Number of processed packets measured by the BitMatrix counter and the

packet counter for Router 1 and Tenant 1, on every 10 seconds..

For the percentage of bitmap occupation and hash collisions calculation, we used
the total length of the bitmap as a reference, as in Equation 6.1 for occupation rate and
in Equation 6.2 for collision rate. In this framework, we used a length of 65,536 bits for
the BitMatrix; consequently, the bitmap derivative from the BitMatrix will have the same
length. We computed the percentage values in Figure 39 using this length value. e.g. If
during the process, the framework counted 2,000 hash collisions when storing packets
for the same tenant in the BitMatrix, the percentage of collisions will be 2,000 divided

6.4. Machine Learning for BitMatrix Measurement Adjustment 103

1203 AM 1208 AM 1213 AM 1218 AM 1223 AM 1228 AM

Time

0K

10K

20K

30K

40K

50K

60K

70K

80K

90K
Pr
oc
es
se
d
Pa
ck
et
s

Processed Packets - Router 3, Tenant 3

Measure Names
BitMatrix Counter
Packet Counter

The trends of BitMatrix Counter and Packet Counter for date Second. Color shows details about BitMatrix Counter and Packet Counter. The data is
filtered on router and tenant. The router filter keeps 3. The tenant filter keeps 3.Figure 38 – Number of processed packets measured by the BitMatrix counter and the

packet counter for Router 3 and Tenant 3, on every 10 seconds.

0.00% 20.00% 40.00% 60.00% 80.00% 100.00% 120.00%

Percentage of Bitmap Occupation [sum(bitmap)/bm_length] (%)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Pe
rc
en
ta
ge
 o
f C
ol
lis
io
ns
 [c
ol
lis
io
ns
/b
m
_l
en
gt
h]
 (%
)

Relation between Occupation Rate vs Collisions Rate

%occupation vs. calculated % of collision.Figure 39 – Percentage of bitmap occupation versus the percentage of collisions, per
bitmap.

by 65,536, which is equal to 0.03051758 or 3.051758%. In the same way, for a bitmap
occupation of 32,768 positions, the percentage of occupation will be 32,768 divided by
65,536, which is equal to 0.5 or 50%.

% of occupation =
∑

bitmap/len(bitmap) (6.1)

% of collisions = number of collision/len(bitmap) (6.2)

104 Chapter 6. Tests and Results

Thus, this relation was used to create a model. This model uses the bitmap
occupation rate to predict the number of hash collisions that occurred during the BitMatrix
population. Using this value to adjust the BitMatrix measurement by adding it to the
bitmap sum of bits value, we got the BitMatrix adjusted measurement, which approximates
to the real number of packets in Packet Counter measurement.

We explored a limited space of possible hypotheses for the problem, including linear
and polynomial regression.The bitmap database used has 33,600 samples and was divided
into five partitions of 6,720 samples each, for the k-fold validation. In k-fold validation, we
used 4 partitions for training the algorithm and 1 partition for testing. Each field of the
database has its index, from 1 to 33,600. The index field was used for field selection, as
shown in Table 7.

Table 7 – Database partitioning for k-fold cross validation

Training set Test Set
Partition 1 [Idx] < 26881 [Idx] > 26880
Partition 2 [Idx] > 6720 [Idx] < 6721
Partition 3 [Idx] < 6721 OR [Idx] > 13440 [Idx] > 6720 AND [Idx] < 13441
Partition 4 [Idx] < 13441 OR [Idx] > 20160 [Idx] > 13440 AND [Idx] < 20161
Partition 5 [Idx] < 20161 OR [Idx] > 26880 [Idx] > 20160 AND [Idx] < 26881

Table 8 demonstrates the results for the k-fold cross-validation process for the
used methods. The average mean squared error is the average for the results from the five
partitions, and can indicate the best hypothesis to be applied to the problem. The lower
the error, better is the result. The Table is sort in ascending order, showing the method
with best results first.

Table 8 – Average MSE (mean squared error) and Average STDDEV (standard deviation)
for the test database, per method used as hypotheses.

Method Average Mean Squared Error Average Std. Deviation
Polynomial Degree 4 1.76E-05 0.039634
Polynomial Degree 3 1.84E-05 0.039674
Polynomial Degree 2 3.66E-05 0.039381
Linear 4.95E-04 0.034805
Logarithmic 1.30E-03 0.025877
Exponential 5.96E-00 2.466112

6.4. Machine Learning for BitMatrix Measurement Adjustment 105

The best result was the polynomial regression degree 4, and it is described as follow:
Model formula: (%occupation4 + %occupation3 + %occupation2 + %occupation +
intercept)

Number of modeled observations: 25891
Number of filtered observations: 0
Model degrees of freedom: 5
Residual degrees of freedom (DF): 25886
SSE (sum squared error): 0.330595
MSE (mean squared error): 1.277e-05
R-Squared: 0.99365
Standard error: 0.0035737
p-value (significance): < 0.0001

Individual trend lines:

Panes Lines
Row Column P-value DF
%collision %occupation < 0.0001 25886

Coefficients
Term Value StdErr t-value p-value
%occupation4 0.0600287 0.0045164 13.2912 < 0.0001
%occupation3 -0.226063 0.0088914 -25.4249 < 0.0001
%occupation2 0.531893 0.0053133 100.105 < 0.0001
%occupation 0.0019715 0.0010979 1.79571 0.0725523
intercept 0.0007011 5.91e-05 11.8629 < 0.0001

The Equation 6.3 expresses the number of collisions as a function of the occupation
rate (%occupation).

number of collision = bm_length ∗ (0.0600287 ∗%occupation4

+−0.226063 ∗%occupation3 + 0.531893 ∗%occupation2

+ 0.0019715 ∗%occupation + 0.000701056) (6.3)

Using the number of collisions, resulting from the algorithm, we calculated a
BitMatrix adjusted value as a more accurate traffic indicator. Equation 6.4 expresses the

106 Chapter 6. Tests and Results

new adjusted value for the traffic.

bitmap adjusted = number of collision +
∑

bitmap (6.4)

Figures 40, 41 and 42, present the three values, for comparison:

• BitMatrix Counter: it is the value resulting from summarizing the number of bits in
the bitmap.

• Packet Counter: it is the number of packets counted by a counter, created for
reference. This is the real number of packet processed for the router, tenant, selected.

• BitMatrix Adjusted it is the value resulting from summarizing the number of bits
in the bitmap and adding the calculated delta using the polynomial regression
algorithm, based on the bitmap occupation.

The BitMatrix adjusted measurement has an mean absolute percentage error
(MAPE) of ±6.14%. It is also possible to observe that even under low or high occupation,
the adjusting performance of the algorithm does not degrade.

1203 AM 1208 AM 1213 AM 1218 AM 1223 AM 1228 AM

Time

0K

1K

2K

3K

4K

5K

6K

7K

8K

Pr
oc
es
se
d
Pa
ck
et
s

Processed Packets - Router 2, Tenant 11
Measure Names
BitMatrix Counter

Packet Counter

BitMatrix Adjusted

The trends of BitMatrix Counter, Packet Counter and BitMatrix Adjusted for date Second. Color shows details about BitMatrix Counter, Packet Counter and
BitMatrix Adjusted. The data is filtered on router and tenant. The router filter keeps 2. The tenant filter keeps 11.Figure 40 – Number of packets processed measured by the BitMatrix counter, packet

counter and the BitMatrix adjusted, for Router 2 and Tenant 11, on every 10
seconds.

6.4. Machine Learning for BitMatrix Measurement Adjustment 107

1203 AM 1208 AM 1213 AM 1218 AM 1223 AM 1228 AM

Time

0K

5K

10K

15K

20K

25K

30K

Pr
oc
es
se
d
Pa
ck
et
s

Processed Packets - Router 1, Tenant 1
Measure Names
BitMatrix Counter

Packet Counter

BitMatrix Adjusted

The trends of BitMatrix Counter, Packet Counter and BitMatrix Adjusted for date Second. Color shows details about BitMatrix Counter, Packet Counter and
BitMatrix Adjusted. The data is filtered on router and tenant. The router filter keeps 1. The tenant filter keeps 1.Figure 41 – Number of packets processed measured by the BitMatrix counter, packet

counter and the BitMatrix adjusted, for Router 1 and Tenant 1, on every 10
seconds.

1203 AM 1208 AM 1213 AM 1218 AM 1223 AM 1228 AM

Time

0K

10K

20K

30K

40K

50K

60K

70K

80K

90K

Pr
oc
es
se
d
Pa
ck
et
s

Processed Packets - Router 3, Tenant 3
Measure Names
BitMatrix Counter

Packet Counter

BitMatrix Adjusted

The trends of BitMatrix Counter, Packet Counter and BitMatrix Adjusted for date Second. Color shows details about BitMatrix Counter, Packet Counter and
BitMatrix Adjusted. The data is filtered on router and tenant. The router filter keeps 3. The tenant filter keeps 3.Figure 42 – Number of packets processed measured by the BitMatrix counter, packet

counter and the BitMatrix adjusted, for Router 3 and Tenant 3, on every 10
seconds.

109

7 Concluding remarks

Networking monitoring is a crucial task for a network operator. Information provided
by monitoring tools offers intelligence for the decision-making process for capacity planning
and traffic engineering. The solution proposed in this work, the BitMatrix framework, goes
further than the traditional monitoring process of counting packets and bytes. Besides
the general statistics, it enables detail analyses on a packet level, in the network, i.e. it is
possible, using the BitMatrix, to determine how many packets travelled through a specific
set of network devices. This information cannot be obtained only using counters, making
this method the key contribution from this work. Furthermore, using a single sketch,
BitMatrix can store digested packet information, segmented by a tenant, enabling the
solution to offer the same capabilities in a multi-tenancy network.

The BitMatrix framework, made up of three modules, one composed of sketches,
deployed directly in the data plane, and other two, implemented in Python, responsible for
the application control plane, collecting information from sketches, storing in a database
and post-processing the information to create a broad set of statistics, from a single device
packet count to a traffic matrix for the network.

In this work, we implemented BitMatrix sketches using the Behavioral Model v2
P4 soft switch in a Mininet emulated environment to generate traffic statistics, segmented
by tenant, observing packets and bytes exchanged between them. For this deployment, the
Mininet code required to be adapted to create the emulated network using the P4 target
BMv2. The code modification creates a small contribution for the community willing to
use the same topology in Mininet for P4 implementations.

For a larger scale statistics generation, we used a framework, written in Python,
to process real traffic captures in a simulated network, based on the Network Science
Foundation from 1992 producing a considerable number of traffic statistics for routers,
broken down by tenant. Moreover, using the generated statistics from this simulation
framework, we could create an algorithm, using supervised machine learning, to reduce
the errors in statistics introduced by hash collisions, which is another contribution.

Future Work

We plan to keep working in BitMatrix development, improving it in many aspects.
The Query and Presentation module would require a more user-friendly interface for
creating rules to generate specific metrics from the bitstream information, stored in the
database. Another task, aiming to speed access to the statistics, would be the creation

110 Chapter 7. Concluding remarks

of OLAP multidimensional cubes, using an ETL tool to retrieve the information from
bitstreams in the database, aggregating the metrics (number of packets and bytes) by
network device and tenant dimensions, rolling up to a 5 minutes, hourly and daily to create
a faster access to the statistics by a reporting tool, such as Tableau or MicroStrategy.

We hope to see the following topics being explored in future works:

• Networking Slicing: In this work, the BitMatrix is segmented by tenant. Another
possibility is to create a different and/or additional segmentation for the network
statistics. Network slicing segmentation would allow us to created different views of
the traffic, analyzing different slices of the network, as an independent system.

• Virtual BMv2 instance and bare-metal implementation: In preliminary tests realized
in this work, it was possible to create a virtual machine running the BMv2 P4 target.
Creating and testing a network using these elements would create not an emulated
or simulated as those used in this work, but a more real environment where we
could study the overhead in terms of memory and CPU utilization for a BitMatrix
deployment.

• There are other projects, besides BMv2, that attempts to enable P4 support for
OVS. The popular one is the PISCES project (SHAHBAZ et al., 2016), which is a
programmable, protocol-independent soft switch derived from Open vSwitch, whose
behaviour can be customized using P4. They are also an excellent field to test
BitMatrix implementation.

• Several other programmable network devices, supporting P4, could be used to deploy
and test BitMatrix implementation. Network hardware vendors are investing in
different architectures such as Protocol-Independent Switch Architecture (PISA),
Network Processor Unit (NPU) and Field Programmable Gate Arrays (FPGA).
Among others, we can cite NetFPGA-SUME Virtex-7 FPGA development board
from Xilinx (INC., 2019), designed in a collaborative effort between Digilent, the
University of Cambridge, and Stanford University, supporting P4 and widely used
for the research community.

Publications
The following publications are the output from this work:

1. “Using Probabilistic Data Structures for Monitoring of Multi-tenant P4-based Net-
works”, IEEE Symposium on Computers and Communications 2018 .
Regis F. T. Martins, Fábio L. Verdi, Luis F. U Garcia, Rodolfo S Villaça.

111

2. “Minicurso - Introdução à Linguagem P4 - Teoria e Prática”, Simpósio Brasileiro de
Redes de Computadores e Sistemas Distribuídos 2018.
Luis F. U. Garcia, Rodolfo S. Villaça, Moises R. N. Ribeiro, Regis F. T. Martins,
Fábio L. Verdi, Cesar A. Marcondes.

113

Bibliography

BABCOCK, B.; OLSTON, C. Distributed top-k monitoring. Proceedings of the ACM
SIGMOD International Conference on Management of Data, 03 2003. Cited in page 38.

BANDI, N. et al. Fast data stream algorithms using associative memories. In: Proceedings
of the 2007 ACM SIGMOD International Conference on Management of Data. Beijing,
China: ACM, 2007. (SIGMOD ’07), p. 247–256. ISBN 978-1-59593-686-8. Disponível em:
<http://doi.acm.org/10.1145/1247480.1247510>. Cited in page 38.

BENSON, T. et al. Microte: Fine grained traffic engineering for data centers. In:
Proceedings of the Seventh COnference on Emerging Networking EXperiments
and Technologies. Tokyo, Japan: ACM, 2011. (CoNEXT ’11), p. 8:1–8:12. ISBN
978-1-4503-1041-3. Disponível em: <http://doi.acm.org/10.1145/2079296.2079304>.
Cited in page 35.

BOSSHART, P. et al. P4: Programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., ACM, New York, NY, USA, v. 44, n. 3, p. 87–95, jul.
2014. ISSN 0146-4833. Disponível em: <http://doi.acm.org/10.1145/2656877.2656890>.
Cited 4 times in pages 31, 36, 39, and 80.

BRAVERMAN, V. et al. New bounds for the CLIQUE-GAP problem using graph
decomposition theory. Mathematical Foundations of Computer Science 2015: 40th
International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings,
Part II, Springer Berlin Heidelberg, Berlin, Heidelberg, p. 151–162, Jan 2015. ISSN
1432-0541. Disponível em: <https://doi.org/10.1007/978-3-662-48054-0_13>. Cited 2
times in pages 35 and 36.

CASE J. D., F. M. S. M. L.; DAVID, J. R. A Simple Network Management Protocol
(SNMP). http://www.ietf.org/rfc/ rfc1157.txt, 1990. RFC 1157. Cited in page 35.

CLAISE, E. B. Cisco Systems NetFlow Services Export Version 9.
https://www.ietf.org/rfc/rfc3954.txt, 2004. RFC 3954. Cited 2 times in pages
35 and 36.

CORMODE, G.; MUTHUKRISHNAN, S. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, v. 55, n. 1, p. 58 – 75, 2005.
ISSN 0196-6774. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0196677403001913>. Cited in page 36.

DANG, H. T. et al. Paxos made switch-y. SIGCOMM Comput. Commun. Rev., ACM,
New York, NY, USA, v. 46, n. 2, p. 18–24, maio 2016. ISSN 0146-4833. Disponível em:
<http://doi.acm.org/10.1145/2935634.2935638>. Cited in page 36.

DEMAINE, E. D.; LóPEZ-ORTIZ, A.; MUNRO, J. Frequency estimation of internet
packet streams with limited space. In: . [S.l.: s.n.], 2002. v. 2461, p. 348–360. Cited in
page 38.

http://doi.acm.org/10.1145/1247480.1247510
http://doi.acm.org/10.1145/2079296.2079304
http://doi.acm.org/10.1145/2656877.2656890
https://doi.org/10.1007/978-3-662-48054-0_13
http://www.sciencedirect.com/science/article/pii/S0196677403001913
http://www.sciencedirect.com/science/article/pii/S0196677403001913
http://doi.acm.org/10.1145/2935634.2935638

114 Bibliography

DIMITROPOULOS, X.; HURLEY, P.; KIND, A. Probabilistic lossy counting: An efficient
algorithm for finding heavy hitters. Computer Communication Review, v. 38, p. 5, 01
2008. Cited in page 36.

DUFFIELD, N.; LUND, C.; THORUP, M. Estimating flow distributions from
sampled flow statistics. IEEE/ACM Trans. Netw., IEEE Press, Piscataway,
NJ, USA, v. 13, n. 5, p. 933–946, out. 2005. ISSN 1063-6692. Disponível em:
<http://dx.doi.org/10.1109/TNET.2005.852874>. Cited 3 times in pages 31, 35, and 37.

DUFFIELD, N. G.; GROSSGLAUSER, M. Trajectory sampling for direct traffic
observation. IEEE/ACM Trans. Netw., IEEE Press, Piscataway, NJ, USA, v. 9, n. 3, p. 280–
292, jun. 2001. ISSN 1063-6692. Disponível em: <http://dx.doi.org/10.1109/90.929851>.
Cited in page 81.

ESTAN, C.; VARGHESE, G. New directions in traffic measurement and accounting.
In: Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement. San
Francisco, California, USA: ACM, 2001. (IMW ’01), p. 75–80. ISBN 1-58113-435-5.
Disponível em: <http://doi.acm.org/10.1145/505202.505212>. Cited 2 times in pages 35
and 36.

ESTAN, C.; VARGHESE, G. New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. ACM Transactions on Computer Systems,
v. 21, p. 270–313, 2003. Cited in page 36.

FELDMANN, A. et al. Deriving traffic demands for operational ip networks:
Methodology and experience. IEEE/ACM Trans. Netw., IEEE Press, Piscataway,
NJ, USA, v. 9, n. 3, p. 265–280, jun. 2001. ISSN 1063-6692. Disponível em:
<http://dx.doi.org/10.1109/90.929850>. Cited in page 35.

GIBBONS, P. B.; MATIAS, Y. New sampling-based summary statistics for improving
approximate query answers. ACM SIGMOD Record, v. 27, 10 1999. Cited in page 38.

Guanyao Huang et al. Uncovering global icebergs in distributed monitors. In: 2009 17th
International Workshop on Quality of Service. [S.l.: s.n.], 2009. p. 1–9. ISSN 1548-615X.
Cited in page 38.

HALPERN, J. M. et al. Forwarding and Control Element Separation (ForCES) Protocol
Specification. RFC Editor, 2010. RFC 5810. (Request for Comments, 5810). Disponível
em: <https://rfc-editor.org/rfc/rfc5810.txt>. Cited in page 39.

HUANG, Q. et al. Sketchvisor: Robust network measurement for software packet
processing. In: Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. Los Angeles, CA, USA: ACM, 2017. (SIGCOMM ’17), p. 113–126. ISBN
978-1-4503-4653-5. Disponível em: <http://doi.acm.org/10.1145/3098822.3098831>.
Cited 2 times in pages 36 and 38.

HUANG, Q.; LEE, P. P. A hybrid local and distributed sketching design for accurate
and scalable heavy key detection in network data streams. Comput. Netw., Elsevier
North-Holland, Inc., USA, v. 91, n. C, p. 298–315, nov. 2015. ISSN 1389-1286. Disponível
em: <https://doi.org/10.1016/j.comnet.2015.08.025>. Cited 2 times in pages 36 and 38.

http://dx.doi.org/10.1109/TNET.2005.852874
http://dx.doi.org/10.1109/90.929851
http://doi.acm.org/10.1145/505202.505212
http://dx.doi.org/10.1109/90.929850
https://rfc-editor.org/rfc/rfc5810.txt
http://doi.acm.org/10.1145/3098822.3098831
https://doi.org/10.1016/j.comnet.2015.08.025

Bibliography 115

INC., D. NetFPGA-SUME Virtex-7 FPGA Development Board. 2019. <https:
//store.digilentinc.com/netfpga-sume-virtex-7-fpga-development-board/>. [Online;
accessed 15-Aug-2019]. Cited in page 110.

KAMIYAMA, N.; MORI, T. Simple and accurate identification of high-rate flows by
packet sampling. In: . [S.l.: s.n.], 2006. Cited in page 38.

KIM, C. et al. In-band Network Telemetry via Programmable Dataplanes. In: Proceedings
of the 1st ACM SIGCOMM Symposium on Software Defined Networking Research. Santa
Clara, CA, USA: ACM, 2015. (SOSR ’15). Cited 2 times in pages 31 and 36.

KRISHNAMURTHY, B. et al. Sketch-based change detection: Methods, evaluation,
and applications. In: Proceedings of the 3rd ACM SIGCOMM Conference on Internet
Measurement. Miami Beach, FL, USA: ACM, 2003. (IMC ’03), p. 234–247. ISBN
1-58113-773-7. Disponível em: <http://doi.acm.org/10.1145/948205.948236>. Cited 5
times in pages 31, 35, 36, 37, and 38.

KUMAR, A. et al. Data streaming algorithms for efficient and accurate estimation
of flow size distribution. SIGMETRICS Perform. Eval. Rev., ACM, New York,
NY, USA, v. 32, n. 1, p. 177–188, jun. 2004. ISSN 0163-5999. Disponível em:
<http://doi.acm.org/10.1145/1012888.1005709>. Cited 3 times in pages 35, 37, and 38.

LALL, A. et al. Data streaming algorithms for estimating entropy of network traffic.
SIGMETRICS Perform. Eval. Rev., ACM, New York, NY, USA, v. 34, n. 1, p. 145–156, jun.
2006. ISSN 0163-5999. Disponível em: <http://doi.acm.org/10.1145/1140103.1140295>.
Cited 2 times in pages 35 and 36.

LI, X. et al. Detection and identification of network anomalies using sketch subspaces. In:
. [S.l.: s.n.], 2006. p. 147–152. Cited in page 38.

LIU, Z. et al. One sketch to rule them all: Rethinking network flow monitoring with
univmon. In: Proceedings of the 2016 ACM SIGCOMM Conference. Florianopolis, Brazil:
ACM, 2016. (SIGCOMM ’16), p. 101–114. ISBN 978-1-4503-4193-6. Disponível em:
<http://doi.acm.org/10.1145/2934872.2934906>. Cited 2 times in pages 36 and 37.

MATHEW, R.; KATKAR, V. Survey of low rate dos attack detection mechanisms. In:
Proceedings of the International Conference & Workshop on Emerging Trends in
Technology. Mumbai, Maharashtra, India: ACM, 2011. (ICWET ’11), p. 955–958. ISBN
978-1-4503-0449-8. Disponível em: <http://doi.acm.org/10.1145/1980022.1980227>.
Cited 3 times in pages 31, 35, and 37.

MCKEOWN, N. et al. Openflow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., ACM, New York, NY, USA, v. 38, n. 2, p. 69–74, mar. 2008.
ISSN 0146-4833. Disponível em: <http://doi.acm.org/10.1145/1355734.1355746>. Cited
in page 39.

MITZENMACHER, M.; PAGH, R.; PHAM, N. Efficient estimation for high
similarities using odd sketches. In: Proceedings of the 23rd International Conference
on World Wide Web. New York, NY, USA: Association for Computing Machinery,
2014. (WWW ’14), p. 109–118. ISBN 9781450327442. Disponível em: <https:
//doi.org/10.1145/2566486.2568017>. Cited in page 36.

https://store.digilentinc.com/netfpga-sume-virtex-7-fpga-development-board/
https://store.digilentinc.com/netfpga-sume-virtex-7-fpga-development-board/
http://doi.acm.org/10.1145/948205.948236
http://doi.acm.org/10.1145/1012888.1005709
http://doi.acm.org/10.1145/1140103.1140295
http://doi.acm.org/10.1145/2934872.2934906
http://doi.acm.org/10.1145/1980022.1980227
http://doi.acm.org/10.1145/1355734.1355746
https://doi.org/10.1145/2566486.2568017
https://doi.org/10.1145/2566486.2568017

116 Bibliography

MOSHREF, M. et al. Scream: Sketch resource allocation for software-defined measurement.
In: Proceedings of the 11th ACM Conference on Emerging Networking Experiments and
Technologies. Heidelberg, Germany: ACM, 2015. (CoNEXT ’15), p. 14:1–14:13. ISBN
978-1-4503-3412-9. Disponível em: <http://doi.acm.org/10.1145/2716281.2836099>.
Cited 2 times in pages 36 and 37.

PFAFF, B. et al. The design and implementation of open vswitch. In: 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15). Oakland,
CA: USENIX Association, 2015. p. 117–130. ISBN 978-1-931971-218. Disponível em:
<https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff>.
Cited in page 43.

RAMACHANDRAN, A. et al. Fast monitoring of traffic subpopulations. In: Proceedings
of the 8th ACM SIGCOMM Conference on Internet Measurement. Vouliagmeni,
Greece: ACM, 2008. (IMC ’08), p. 257–270. ISBN 978-1-60558-334-1. Disponível em:
<http://doi.acm.org/10.1145/1452520.1452551>. Cited 3 times in pages 35, 36, and 37.

SANJUàS-CUXART, J. et al. Sketching the delay: Tracking temporally uncorrelated
flow-level latencies. Proceedings of the ACM SIGCOMM Internet Measurement Conference,
IMC, 11 2011. Cited in page 38.

SCHWELLER, R. et al. Reversible sketches for efficient and accurate change detection
over network data streams. In: Proceedings of the 4th ACM SIGCOMM Conference on
Internet Measurement. Taormina, Sicily, Italy: ACM, 2004. (IMC ’04), p. 207–212. ISBN
1-58113-821-0. Disponível em: <http://doi.acm.org/10.1145/1028788.1028814>. Cited 5
times in pages 31, 35, 36, 37, and 38.

SFLOW-RT. 2019. [Online; accessed 9-Aug-2019]. Disponível em: <https://sflow-rt.com/>.
Cited in page 36.

SHAHBAZ, M. et al. Pisces: A programmable, protocol-independent software switch.
In: Proceedings of the 2016 ACM SIGCOMM Conference. Florianopolis, Brazil:
ACM, 2016. (SIGCOMM ’16), p. 525–538. ISBN 978-1-4503-4193-6. Disponível em:
<http://doi.acm.org/10.1145/2934872.2934886>. Cited 2 times in pages 36 and 110.

SIVARAMAN, A. et al. Dc.p4: Programming the forwarding plane of a data-center
switch. In: Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research. Santa Clara, California: ACM, 2015. (SOSR ’15), p. 2:1–2:8. ISBN
978-1-4503-3451-8. Disponível em: <http://doi.acm.org/10.1145/2774993.2775007>.
Cited in page 36.

SIVARAMAN, V. et al. Heavy-hitter detection entirely in the data plane.
In: Proceedings of the Symposium on SDN Research. Santa Clara, CA, USA:
ACM, 2017. (SOSR ’17), p. 164–176. ISBN 978-1-4503-4947-5. Disponível em:
<http://doi.acm.org/10.1145/3050220.3063772>. Cited in page 31.

SNOEREN, A. C. et al. Hash-based ip traceback. SIGCOMM Comput. Commun. Rev.,
ACM, New York, NY, USA, v. 31, n. 4, p. 3–14, ago. 2001. ISSN 0146-4833. Disponível
em: <http://doi.acm.org/10.1145/964723.383060>. Cited 2 times in pages 45 and 81.

SONG, H. Protocol-oblivious forwarding: Unleash the power of sdn through a
future-proof forwarding plane. In: Proceedings of the Second ACM SIGCOMM

http://doi.acm.org/10.1145/2716281.2836099
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
http://doi.acm.org/10.1145/1452520.1452551
http://doi.acm.org/10.1145/1028788.1028814
https://sflow-rt.com/
http://doi.acm.org/10.1145/2934872.2934886
http://doi.acm.org/10.1145/2774993.2775007
http://doi.acm.org/10.1145/3050220.3063772
http://doi.acm.org/10.1145/964723.383060

Bibliography 117

Workshop on Hot Topics in Software Defined Networking. New York, NY, USA:
ACM, 2013. (HotSDN ’13), p. 127–132. ISBN 978-1-4503-2178-5. Disponível em:
<http://doi.acm.org/10.1145/2491185.2491190>. Cited in page 39.

The P4 Language Consortium. The P4 Language Specification - version 1.0.4.
https://p4.org, 2017. v. 2017. Cited 2 times in pages 42 and 67.

TUNE, P.; ROUGHAN, M. Internet Traffic Matrices : A Primer. Recent Advances in
Networking, p. 108–163, 2013. Disponível em: <http://sigcomm.org/education/ebook/
SIGCOMMeBook2013v1{_}chapter3.> Cited 2 times in pages 59 and 60.

WELLEM, T. et al. A flexible sketch-based network traffic monitoring infrastructure.
IEEE Access., IEEE Press, Piscataway, NJ, USA, v. 7, p. 92476–92498, jul. 2019. ISSN
2169-3536. Disponível em: <https://ieeexplore.ieee.org/abstract/document/8758822>.
Cited 2 times in pages 36 and 37.

XIAO, X. Chapter 11 - the new technical approach. In: XIAO, X. (Ed.). Technical,
Commercial and Regulatory Challenges of QoS. Boston: Morgan Kaufmann, 2008,
(The Morgan Kaufmann Series in Networking). p. 171 – 199. Disponível em:
<http://www.sciencedirect.com/science/article/pii/B9780123736932000112>. Cited in
page 59.

XIE, Y. et al. Worm origin identification using random moonwalks. In: 2005 IEEE
Symposium on Security and Privacy (S P’05). Oakland, California, USA: IEEE, 2005. p.
242–256. ISSN 1081-6011. Cited in page 35.

YU, M.; JOSE, L.; MIAO, R. Software defined traffic measurement with opensketch.
In: Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation. Lombard, IL: USENIX Association, 2013. (NSDI’13), p. 29–42. Disponível
em: <http://dl.acm.org/citation.cfm?id=2482626.2482631>. Cited 4 times in pages 31,
35, 36, and 37.

ZHANG, Y. An adaptive flow counting method for anomaly detection in sdn. In:
Proceedings of the 9th ACM Conference on Emerging Networking Experiments and
Technologies. Santa Barbara, California, USA: ACM, 2013. (CoNEXT ’13), p. 25–30.
ISBN 978-1-4503-2101-3. Disponível em: <http://doi.acm.org/10.1145/2535372.2535411>.
Cited 2 times in pages 35 and 37.

ZHANG, Y. et al. Online identification of hierarchical heavy hitters: Algorithms,
evaluation, and applications. In: . [S.l.: s.n.], 2004. p. 101–114. Cited in page 38.

ZHAO, Q. G. et al. Data streaming algorithms for accurate and efficient measurement of
traffic and flow matrices. In: Proceedings of the 2005 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems. Banff, Alberta, Canada:
ACM, 2005. (SIGMETRICS ’05), p. 350–361. ISBN 1-59593-022-1. Disponível em:
<http://doi.acm.org/10.1145/1064212.1064258>. Cited in page 38.

http://doi.acm.org/10.1145/2491185.2491190
http://sigcomm.org/education/ebook/SIGCOMMeBook2013v1{_}chapter3.
http://sigcomm.org/education/ebook/SIGCOMMeBook2013v1{_}chapter3.
https://ieeexplore.ieee.org/abstract/document/8758822
http://www.sciencedirect.com/science/article/pii/B9780123736932000112
http://dl.acm.org/citation.cfm?id=2482626.2482631
http://doi.acm.org/10.1145/2535372.2535411
http://doi.acm.org/10.1145/1064212.1064258

119

APPENDIX A – Appendix

A.1 Deployment in P4 example
Code created as an example of BitMatrix implementation in P4 language, as

detailed in Chapter 5.

Listing A.1 – P4_14 code implementing BitMatrix

1 // header
2
3 header_type eth_t {
4 fields {
5 dstAddr : 48;
6 srcAddr : 48;
7 etherType : 16;
8 }
9 }
10
11 header eth_t eth;
12
13 header_type ipv4_t {
14 fields {
15 version : 4;
16 ihl : 4;
17 diffserv : 8;
18 totalLen : 16;
19 id : 16;
20 flags : 3;
21 fragOffset : 13;
22 ttl : 8;
23 protocol : 8;
24 hdrChecksum : 16;
25 srcAddr : 32;
26 dstAddr : 32;
27 payload8B : 64;
28 }
29 }
30
31 header ipv4_t ipv4;
32
33 // parser
34
35 parser start {

120 APPENDIX A. Appendix

36 return parse_eth ;
37 }
38
39 # define ETHERTYPE_IPV4 0x0800
40
41 parser parse_eth {
42 extract (eth);
43 return select (latest . etherType) {
44 ETHERTYPE_IPV4 : parse_ipv4 ;
45 default : ingress ;
46 }
47 }
48
49 parser parse_ipv4 {
50 extract (ipv4);
51 return ingress ;
52 }
53
54 // field_list definitions
55
56 field_list ipv4_checksum_list {
57 ipv4. version ;
58 ipv4.ihl;
59 ipv4. diffserv ;
60 ipv4. totalLen ;
61 ipv4.id;
62 ipv4.flags;
63 ipv4. fragOffset ;
64 ipv4.ttl;
65 ipv4. protocol ;
66 ipv4. srcAddr ;
67 ipv4. dstAddr ;
68 }
69
70 field_list hash_fields {
71 ipv4. version ;
72 ipv4.ihl;
73 ipv4. totalLen ;
74 ipv4.id;
75 ipv4.flags;
76 ipv4. fragOffset ;
77 ipv4. protocol ;
78 ipv4. srcAddr ;
79 ipv4. dstAddr ;
80 ipv4. payload8B ;
81 }
82

A.1. Deployment in P4 example 121

83 // defining metadata
84
85 header_type custom_metadata_t {
86 fields {
87 bitmatrix_idx : 16;
88 bitmatrix_flag : 2;
89 bitmatrix_tenant : 2;
90 bitmatrix_value : 20;
91 }
92 }
93
94
95 metadata custom_metadata_t custom_metadata ;
96
97
98 header_type routing_metadata_t {
99 fields {

100 nhop_ipv4 : 32;
101 nhop_add : 48;
102 }
103 }
104
105 metadata routing_metadata_t routing_metadata ;
106
107 // field_list_calculations
108
109
110 field_list_calculation ipv4_checksum {
111 input {
112 ipv4_checksum_list ;
113 }
114 algorithm : csum16 ;
115 output_width : 16;
116 }
117
118 field_list_calculation hash {
119 input {
120 hash_fields ;
121 }
122 algorithm : crc16;
123 output_width : 16;
124 }
125
126 calculated_field ipv4. hdrChecksum {
127 update ipv4_checksum if (ipv4.ihl == 5);
128 }
129

122 APPENDIX A. Appendix

130 // register definitions
131
132 register bitmatrix {
133 width : 2;
134 instance_count : 8192;
135 }
136
137 register counter_array_A {
138 width : 20;
139 instance_count : 8192;
140 }
141
142 register counter_array_B {
143 width : 20;
144 instance_count : 8192;
145 }
146
147 // actions
148
149 action _drop () {
150 drop ();
151 }
152
153 action set_bitmatrix (tenant_flag) {
154 modify_field_with_hash_based_offset (custom_metadata .

bitmatrix_idx , 0, hash , 8191);
155 register_read (custom_metadata . bitmatrix_flag , bitmatrix ,

custom_metadata . bitmatrix_idx);
156 bit_or (custom_metadata . bitmatrix_flag , custom_metadata .

bitmatrix_flag , tenant_flag);
157 register_write (bitmatrix , custom_metadata . bitmatrix_idx ,

custom_metadata . bitmatrix_flag);
158 modify_field (custom_metadata . bitmatrix_tenant , tenant_flag);
159 }
160
161 action set_counter_array_A () {
162 register_read (custom_metadata . bitmatrix_value , counter_array_A

, custom_metadata . bitmatrix_idx);
163 add_to_field (custom_metadata . bitmatrix_value , ipv4. totalLen);
164 register_write (counter_array_A , custom_metadata . bitmatrix_idx ,

custom_metadata . bitmatrix_value);
165 }
166
167
168 action set_counter_array_B () {
169 register_read (custom_metadata . bitmatrix_value , counter_array_B

, custom_metadata . bitmatrix_idx);

A.1. Deployment in P4 example 123

170 add_to_field (custom_metadata . bitmatrix_value , ipv4. totalLen);
171 register_write (counter_array_B , custom_metadata . bitmatrix_idx ,

custom_metadata . bitmatrix_value);
172 }
173
174
175 action set_nhop (nhop_ipv4 , port) {
176 modify_field (routing_metadata .nhop_ipv4 , nhop_ipv4);
177 modify_field (standard_metadata . egress_spec , port);
178 modify_field (ipv4.ttl , ipv4.ttl - 1);
179 }
180
181 action set_dmac (dmac) {
182 modify_field (eth.dstAddr , dmac);
183 }
184
185 action rewrite_mac (smac) {
186 modify_field (eth.srcAddr , smac);
187 }
188
189 // tables
190
191 table set_bitmatrix_table {
192 reads {
193 ipv4. srcAddr : lpm;
194 }
195 actions {
196 set_bitmatrix ;
197 _drop;
198 }
199 size: 32;
200 }
201
202 table set_counter_array_A_table {
203 actions {
204 set_counter_array_A ;
205 }
206 size : 1;
207 }
208
209 table set_counter_array_B_table {
210 actions {
211 set_counter_array_B ;
212 }
213 size : 1;
214 }
215

124 APPENDIX A. Appendix

216 table ipv4_lpm {
217 reads {
218 ipv4. dstAddr : lpm;
219 }
220 actions {
221 set_nhop ;
222 _drop;
223 }
224 size: 1024;
225 }
226
227 table forward {
228 reads {
229 routing_metadata . nhop_ipv4 : exact;
230 }
231 actions {
232 set_dmac ;
233 _drop;
234 }
235 size: 512;
236 }
237
238 table send_frame {
239 reads {
240 standard_metadata . egress_port : exact;
241 }
242 actions {
243 rewrite_mac ;
244 _drop;
245 }
246 size: 256;
247 }
248
249 // counter definition
250
251 counter pckt_counter {
252 type: packets_and_bytes ;
253 direct : set_bitmatrix_table ;
254 }
255
256 // control
257
258 control ingress {
259 if(valid(ipv4) and ipv4.ttl > 0) {
260 apply(set_bitmatrix_table);
261 if (custom_metadata . bitmatrix_tenant == 1) {
262 apply(set_counter_array_A_table);

A.2. Mininet modifications for P4 network emulation 125

263 }
264 else {
265 apply(set_counter_array_B_table);
266 }
267 apply(ipv4_lpm);
268 apply(forward);
269 }
270 }
271
272 control egress {
273 apply(send_frame);
274 }

Listing A.2 – P4_14 code for tables feed via Thrift runtime interface

table_set_default send_frame _drop
table_set_default forward _drop
table_set_default ipv4_lpm _drop
table_set_default set_bitmatrix_table set_bitmatrix
table_set_default set_counter_array_A_table set_counter_array_A
table_set_default set_counter_array_B_table set_counter_array_B

table_add set_bitmatrix_table set_bitmatrix_0 10.0.0.0/24 => 1
table_add set_bitmatrix_table set_bitmatrix_0 10.0.1.0/24 => 2
table_add ipv4_lpm set_nhop 10.0.0.10/32 => 10.0.0.10 1
table_add ipv4_lpm set_nhop 10.0.1.10/32 => 10.0.1.10 2
table_add forward set_dmac 10.0.0.10 => 00:04:00:00:00:00
table_add forward set_dmac 10.0.1.10 => 00:05:00:00:00:00
table_add send_frame rewrite_mac 1 => 00: aa:bb :00:00:01
table_add send_frame rewrite_mac 2 => 00: aa:bb :00:00:02

A.2 Mininet modifications for P4 network emulation
Code created to define the Mininet environment for the tests, as described in

chapter 6 Tests and Results, section 6.1 P4 implementation using Mininet.

Listing A.3 – Mininet enviromnet defined by topo.py

#!/ usr/bin/ python

from mininet .net import Mininet
from mininet .topo import Topo
from mininet .log import setLogLevel , info
from mininet .cli import CLI

126 APPENDIX A. Appendix

from mininet .link import TCLink
from mininet .link import TCIntf

from p4_mininet import P4Switch , P4Host

import argparse
from time import sleep
import os
import subprocess

_THIS_DIR = os.path. dirname (os.path. realpath (__file__))
_THRIFT_BASE_PORT = 22222

parser = argparse . ArgumentParser (description =’Mininet demo ’)
parser . add_argument (’--behavioral -exe ’, help=’Path to behavioral

executable ’,
type=str , action ="store", required =True)

parser . add_argument (’--json ’, help=’Path to JSON config file ’,
type=str , action ="store", required =True)

parser . add_argument (’--cli ’, help=’Path to BM CLI ’,
type=str , action ="store", required =True)

args = parser . parse_args ()

class MyTopo (Topo):
def __init__ (self , sw_path , json_path , nb_hosts , nb_switches ,

links , ** opts):
Initialize topology and default options
Topo. __init__ (self , ** opts)

for i in xrange (nb_switches):
switch = self. addSwitch (’s%d’ % (i + 1),

sw_path = sw_path ,
json_path = json_path ,
thrift_port =

_THRIFT_BASE_PORT + i,
pcap_dump = True ,
device_id = i)
enable_debugger = True ,
log_console = True)

for h in xrange (nb_hosts):
host = self. addHost (’h%d’ % (h + 1),

ip = " 10.0.% d .10/24 " % h,
mac = ’00:04:00:00:00:%02 x’ % h)

i = 0

A.2. Mininet modifications for P4 network emulation 127

for a, b in links:
self. addLink (a, b,

addr1 = ’00: aa:bb :00:00:%02 d’ % i,
addr2 = ’00: aa:bb :00:00:%02 d’ % (i + 1),
bw =1)

i += 2

def read_topo ():
nb_hosts = 0
nb_switches = 0
links = []
with open("topo.txt", "r") as f:

line = f. readline () [: -1]
w, nb_switches = line.split ()
assert (w == " switches ")
line = f. readline () [: -1]
w, nb_hosts = line.split ()
assert (w == "hosts")
for line in f:

if not f: break
a, b = line.split ()
links. append ((a, b))

return int(nb_hosts), int(nb_switches), links

def main ():
nb_hosts , nb_switches , links = read_topo ()

topo = MyTopo (args. behavioral_exe ,
args.json ,
nb_hosts , nb_switches , links)

net = Mininet (topo = topo ,
host = P4Host ,
switch = P4Switch ,
link = TCLink ,
controller = None)

net.start ()

sw_mac = ["00: aa:bb :00:00:%02 x" % n for n in xrange (nb_hosts)]

sw_addr = [" 10.0.% d.1" % n for n in xrange (nb_hosts)]

for n in xrange (nb_hosts):
h = net.get(’h%d’ % (n + 1))
print " ********** "
print " Hostname : %s" %(h.name)

128 APPENDIX A. Appendix

for off in ["rx", "tx", "sg"]:
cmd = "/sbin/ ethtool --offload eth0 %s off" % off
print cmd
h.cmd(cmd)

print " disable ipv6"
h.cmd(" sysctl -w net.ipv6.conf.all. disable_ipv6 =1")
h.cmd(" sysctl -w net.ipv6.conf. default . disable_ipv6 =1")
h.cmd(" sysctl -w net.ipv6.conf.lo. disable_ipv6 =1")
h.cmd(" sysctl -w net.ipv4. tcp_congestion_control =reno")
h.cmd(" iptables -I OUTPUT -p icmp --icmp -type destination -

unreachable -j DROP")
h. describe ()
print " ********** "

sw_addr = [" 10.0.% d.1" % n for n in xrange (nb_hosts)]

s = net.get(’s1’)
sw_mac_s1_eth1 = s.intf("s1 -eth1").MAC ()
h = net.get(’h1’)
h. setARP (sw_addr [0], sw_mac_s1_eth1)
h. setDefaultRoute ("dev eth0 via %s" % sw_addr [0])

s = net.get(’s3’)
sw_mac_s3_eth1 = s.intf("s3 -eth1").MAC ()
h = net.get(’h2’)
h. setARP (sw_addr [1], sw_mac_s3_eth1)
h. setDefaultRoute ("dev eth0 via %s" % sw_addr [1])

s = net.get(’s4’)
sw_mac_s4_eth1 = s.intf("s4 -eth1").MAC ()
h = net.get(’h3’)
h. setARP (sw_addr [2], sw_mac_s4_eth1)
h. setDefaultRoute ("dev eth0 via %s" % sw_addr [2])

sleep (1)

for i in xrange (nb_switches):
s = net.get(’s%d’ % (i + 1))
print " ********** "
print " Switch Name: %s" %(s.name)
print " Switch DPID: %s" %(s.dpid)
for j in s.ports:

print "port: %s - intf: %s - mac: %s" %(
s.ports[s.intf(j)],
j,

A.3. Collector and Controller component implemented in Python 129

s.intf(str(j)).MAC ()
)

print " Running command_s %d.txt" % (i + 1)
cmd = [args.cli , "--json", args.json ,

"--thrift -port", str(_THRIFT_BASE_PORT + i)]
with open(" command_s %d.txt" % (i + 1), "r") as f:

print " ".join(cmd)
try:

output = subprocess . check_output (cmd , stdin = f)
#print output

except subprocess . CalledProcessError as e:
print e
print e. output

print " ********** "

sleep (1)

print "Ready !"

CLI(net)
net.stop ()

if __name__ == ’__main__ ’:
setLogLevel (’info ’)
main ()

A.3 Collector and Controller component implemented in Python
Code created to collect information from the P4 network devices, as described in

chapter 4 Monitoring Framework, section 4.2.2 Collection and Control. Also, this code
perform the tenants’ bitmap extraction from the BitMatrix, summarize the statistics and
send all the information to Graphite platform (https://graphiteapp.org) that is a platform
for store numeric time-series data and render graphs of this data on demand.

Listing A.4 – Collector and Controller component implemented in Python

#!/ usr/bin/env python2 .7

import time
import threading
import bmpy_utils as utils
from bm_runtime . standard import Standard
import socket
import schedule

130 APPENDIX A. Appendix

sw_list = [
[" localhost ", 22222] ,
[" localhost ", 22223] ,
[" localhost ", 22224] ,
[" localhost ", 22225]
]

matrix_size = 32768
connections = [[] for _ in range(len(sw_list))]
results = [[] for _ in range(len(sw_list))]
services = [(" standard ", Standard . Client)] + [(None , None)]

def connections_setup ():
for i in xrange (0, len(sw_list)):

globals ()[’std_client_s {}’. format (i + 1)], globals ()[’
mc_client_s {}’. format (i + 1)] = utils. thrift_connect (
sw_list [(i)][0] ,
sw_list [(i)][1] ,
services)

connections [i] = globals ()[’std_client_s {}’. format (i + 1)]
globals ()[’result_s {}’. format (i + 1)] = []
results [i] = globals ()[’result_s {}’. format (i + 1)]

def collect_switch_info (self , result , bitmatrix , counter_arr):
bitmatrix_pointer = self. bm_register_read (0, ’

bitmatrix_pointer ’, 0)
if bitmatrix_pointer == 0:

register_name = " bitmatrix_0 "
counter_array_A = " counter_array_0A "
counter_array_B = " counter_array_0B "
counter_array_C = " counter_array_0C "
counter_array_D = " counter_array_0D "
counter_table = " set_bitmatrix_0_table "
self. bm_register_write (0, ’bitmatrix_pointer ’, 0, 1)

else:
register_name = " bitmatrix_1 "
counter_array_A = " counter_array_1A "
counter_array_B = " counter_array_1B "
counter_array_C = " counter_array_1C "
counter_array_D = " counter_array_1D "
counter_table = " set_bitmatrix_1_table "
self. bm_register_write (0, ’bitmatrix_pointer ’, 0, 0)

counter_name = " pckt_counter "
packet_counter = int(self. bm_counter_read (0, counter_name , 0).

packets)
bytes_counter = int(self. bm_counter_read (0, counter_name , 0).

bytes)

A.3. Collector and Controller component implemented in Python 131

self. bm_counter_reset_all (0, counter_name)

bitmatrix_snapshot = []
counter_A_snap = []
counter_B_snap = []
counter_C_snap = []
counter_D_snap = []
counter_table_snap = []
start = time.time ()

bitmatrix_snapshot . extend (self. bm_register_read_all (0,
register_name))

counter_A_snap . extend (self. bm_register_read_all (0,
counter_array_A))

counter_B_snap . extend (self. bm_register_read_all (0,
counter_array_B))

counter_C_snap . extend (self. bm_register_read_all (0,
counter_array_C))

counter_D_snap . append (self. bm_register_read (0,
counter_array_D , idx))

for idx in range (4):
counter_table_snap . append (self. bm_mt_read_counter (0,

counter_table , idx). packets)
counter_table_snap . append (self. bm_mt_read_counter (0,

counter_table , idx).bytes)
self. bm_register_reset (0, register_name)
self. bm_register_reset (0, counter_array_A)
self. bm_register_reset (0, counter_array_B)
self. bm_register_reset (0, counter_array_C)
self. bm_register_reset (0, counter_array_D)
self. bm_mt_reset_counters (0, counter_table)
end = time.time ()
retrieve_time = (end - start)
occupation = 100*(float (packet_counter) / (matrix_size * 4))
info = self. bm_mgmt_get_info (). device_id
result . extend ([info , start , packet_counter , occupation ,

retrieve_time ,
counter_table_snap [0], counter_table_snap [1],
counter_table_snap [2], counter_table_snap [3],
counter_table_snap [4], counter_table_snap [5],
counter_table_snap [6], counter_table_snap [7]])

bitmatrix . append (bitmatrix_snapshot)
counter_arr . extend ([counter_A_snap ,

counter_B_snap ,
counter_C_snap ,
counter_D_snap])

132 APPENDIX A. Appendix

print (" Finish collecting from sw%s at: %s" %(str(info), time.
strftime ("%H:%M:%S")))

def tenant_breakout (bitmatrix):
tenant = [[] for _ in range (4)]
for flag in bitmatrix [0]:

flag = int(flag)
flag = "{0:04b}". format (flag)
tenant [3]. append (int(flag [0]))
tenant [2]. append (int(flag [1]))
tenant [1]. append (int(flag [2]))
tenant [0]. append (int(flag [3]))

bitmatrix . extend ([tenant [0], tenant [1], tenant [2], tenant [3]])

def counters_sw_tenant (result , bitmatrix , counter_arr):
pkt_counter_ten_a = sum(bitmatrix [1])
pkt_counter_ten_b = sum(bitmatrix [2])
pkt_counter_ten_c = sum(bitmatrix [3])
pkt_counter_ten_d = sum(bitmatrix [4])
total_pckt_counter = sum ([pkt_counter_ten_a ,

pkt_counter_ten_b ,
pkt_counter_ten_c ,
pkt_counter_ten_d])

bytes_counter_ten_a = sum(counter_arr [0])
bytes_counter_ten_b = sum(counter_arr [1])
bytes_counter_ten_c = sum(counter_arr [2])
bytes_counter_ten_d = sum(counter_arr [3])

if result [2] == 0:
collision = 0

else:
collision = 100*(1 - (float (total_pckt_counter) / result

[2]))

if result [5] == 0:
collision_a = 0

else:
collision_a = 100*(1 - (float (pkt_counter_ten_a) / result

[5]))

if result [7] == 0:
collision_b = 0

else:
collision_b = 100*(1 - (float (pkt_counter_ten_b) / result

[7]))

if result [9] == 0:

A.3. Collector and Controller component implemented in Python 133

collision_c = 0
else:

collision_c = 100*(1 - (float (pkt_counter_ten_c) / result
[9]))

if result [11] == 0:
collision_d = 0

else:
collision_d = 100*(1 - (float (pkt_counter_ten_d) / result

[11]))

occupation_a = 100*(float (pkt_counter_ten_a) / matrix_size)
occupation_b = 100*(float (pkt_counter_ten_b) / matrix_size)
occupation_c = 100*(float (pkt_counter_ten_c) / matrix_size)
occupation_d = 100*(float (pkt_counter_ten_d) / matrix_size)

result . extend ([total_pckt_counter ,
collision ,
pkt_counter_ten_a ,
occupation_a ,
collision_a ,
bytes_counter_ten_a ,
pkt_counter_ten_b ,
occupation_b ,
collision_b ,
bytes_counter_ten_b ,
pkt_counter_ten_c ,
occupation_c ,
collision_c ,
bytes_counter_ten_c ,
pkt_counter_ten_d ,
occupation_d ,
collision_d ,
bytes_counter_ten_d])

print result

def count_routes (route_counter , bitmatrix , counter_arr):
counter_AB_pkt = 0
counter_AC_pkt = 0
counter_BA_pkt = 0
counter_BC_pkt = 0
counter_CA_pkt = 0
counter_CB_pkt = 0
counter_AB_bytes = 0
counter_AC_bytes = 0
counter_BA_bytes = 0
counter_BC_bytes = 0

134 APPENDIX A. Appendix

counter_CA_bytes = 0
counter_CB_bytes = 0

for i in range(matrix_size):
Tenant A
if bitmatrix [0][1][i] == 1:

if bitmatrix [2][1][i] == 1:
counter_AB_pkt += 1
counter_AB_bytes += counter_arr [0][0][i]

elif bitmatrix [3][1][i] == 1:
if bitmatrix [1][1][i] == 1:

counter_AC_pkt += 1
counter_AC_bytes += counter_arr [0][0][i]

else:
pass

else:
pass

else:
pass

Tenant B
if bitmatrix [2][2][i] == 1:

if bitmatrix [0][2][i] == 1:
counter_BA_pkt += 1
counter_BA_bytes += counter_arr [2][1][i]

elif bitmatrix [3][2][i] == 1:
counter_BC_pkt += 1
counter_BC_bytes += counter_arr [2][1][i]

else:
pass

else:
pass

Tenant C
if bitmatrix [3][3][i] == 1:

if bitmatrix [2][3][i] == 1:
counter_CB_pkt += 1
counter_BA_bytes += counter_arr [3][2][i]

elif bitmatrix [0][3][i] == 1:
if bitmatrix [1][3][i] == 1:

counter_CA_pkt += 1
counter_BA_bytes += counter_arr [3][2][i]

else:
pass

else:
pass

else:
pass

route_counter . extend ([counter_AB_pkt , counter_AC_pkt ,

A.3. Collector and Controller component implemented in Python 135

counter_BA_pkt , counter_BC_pkt ,
counter_CA_pkt , counter_CB_pkt ,
counter_AB_bytes , counter_AC_bytes ,
counter_BA_bytes , counter_BC_bytes ,
counter_CA_bytes , counter_CB_bytes])

def post_graphite (content):
s = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
s. connect ((’192.168.25.8 ’, 2003))
s. sendall (content)
s.close ()

def sched_job ():
schedule .every (). second .do(collect_cycle)
return schedule . CancelJob

def collect_cycle ():

bitmatrix = [[] for _ in range(len(sw_list))]
counter_arr = [[] for _ in range(len(sw_list))]
results = [[] for _ in range(len(sw_list))]
route_counter = []

print ("Start collecting at: %s" %(time. strftime ("%H:%M:%S")))
start_collect_time = time.time ()

threads = []

for i in range (4):
t = threading . Thread (target = collect_switch_info , args =(

connections [i],
results

[
i
],

bitmatrix
[
i
],

counter_arr
[
i

136 APPENDIX A. Appendix

])
)

threads . append (t)
t.start ()

while threading . activeCount () >1:
time. sleep (1)

for bitmatrix_sX in bitmatrix :
tenant_breakout (bitmatrix_sX)

for i in range (4):
counters_sw_tenant (results [i],

bitmatrix [i],
counter_arr [i])

count_routes (route_counter , bitmatrix , counter_arr)

print route_counter

print (" Finish collecting at: %s" %(time. strftime ("%H:%M:%S"))
)

for i in xrange (0 ,4):
post_graphite ("sw%d. counter %s %s\n" %(i+1, results [i][2] ,

results [i][1]))
post_graphite ("sw%d. occup_pct %s %s\n" %(i+1, results [i

][3] , results [i][1]))
post_graphite ("sw%d. time2colletc %s %s\n" %(i+1, results [i

][4] , results [i][1]))
post_graphite ("sw%d. ten_A_counter_pckt %s %s\n" %(i+1,

results [i][5] , results [i][1]))
post_graphite ("sw%d. ten_A_counter_bytes %s %s\n" %(i+1,

results [i][6] , results [i][1]))
post_graphite ("sw%d. ten_B_counter_pckt %s %s\n" %(i+1,

results [i][7] , results [i][1]))
post_graphite ("sw%d. ten_B_counter_bytes %s %s\n" %(i+1,

results [i][8] , results [i][1]))
post_graphite ("sw%d. ten_C_counter_pckt %s %s\n" %(i+1,

results [i][9] , results [i][1]))
post_graphite ("sw%d. ten_C_counter_bytes %s %s\n" %(i+1,

results [i][10] , results [i][1]))
post_graphite ("sw%d. ten_D_counter_pckt %s %s\n" %(i+1,

results [i][11] , results [i][1]))
post_graphite ("sw%d. ten_D_counter_bytes %s %s\n" %(i+1,

results [i][12] , results [i][1]))

A.3. Collector and Controller component implemented in Python 137

post_graphite ("sw%d. sum_bitmtx_pckts %s %s\n" %(i+1,
results [i][13] , results [i][1]))

post_graphite ("sw%d. collision_pct %s %s\n" %(i+1, results [
i][14] , results [i][1]))

post_graphite ("sw%d. pkt_counter_A %s %s\n" %(i+1, results [
i][15] , results [i][1]))

post_graphite ("sw%d. occup_pct_A %s %s\n" %(i+1, results [i
][16] , results [i][1]))

post_graphite ("sw%d. collision_A %s %s\n" %(i+1, results [i
][17] , results [i][1]))

post_graphite ("sw%d. bm_bytes_counter_A %s %s\n" %(i+1,
results [i][18] , results [i][1]))

post_graphite ("sw%d. pkt_counter_B %s %s\n" %(i+1, results [
i][19] , results [i][1]))

post_graphite ("sw%d. occup_pct_B %s %s\n" %(i+1, results [i
][20] , results [i][1]))

post_graphite ("sw%d. collision_B %s %s\n" %(i+1, results [i
][21] , results [i][1]))

post_graphite ("sw%d. bm_bytes_counter_B %s %s\n" %(i+1,
results [i][22] , results [i][1]))

post_graphite ("sw%d. pkt_counter_C %s %s\n" %(i+1, results [
i][23] , results [i][1]))

post_graphite ("sw%d. occup_pct_C %s %s\n" %(i+1, results [i
][24] , results [i][1]))

post_graphite ("sw%d. collision_C %s %s\n" %(i+1, results [i
][25] , results [i][1]))

post_graphite ("sw%d. bm_bytes_counter_C %s %s\n" %(i+1,
results [i][26] , results [i][1]))

post_graphite ("sw%d. pkt_counter_D %s %s\n" %(i+1, results [
i][27] , results [i][1]))

post_graphite ("sw%d. occup_pct_D %s %s\n" %(i+1, results [i
][28] , results [i][1]))

post_graphite ("sw%d. collision_D %s %s\n" %(i+1, results [i
][29] , results [i][1]))

post_graphite ("sw%d. bm_bytes_counter_D %s %s\n" %(i+1,
results [i][30] , results [i][1]))

post_graphite (" traffic .A-> B_pkts %s %s\n" %(route_counter [0],
results [0][1]))

post_graphite (" traffic .A-> C_pkts %s %s\n" %(route_counter [1],
results [0][1]))

post_graphite (" traffic .B-> A_pkts %s %s\n" %(route_counter [2],
results [2][1]))

post_graphite (" traffic .B-> C_pkts %s %s\n" %(route_counter [3],
results [2][1]))

post_graphite (" traffic .C-> A_pkts %s %s\n" %(route_counter [4],
results [3][1]))

138 APPENDIX A. Appendix

post_graphite (" traffic .C-> B_pkts %s %s\n" %(route_counter [5],
results [3][1]))

post_graphite (" traffic .A-> B_bytes %s %s\n" %(route_counter [6],
results [0][1]))

post_graphite (" traffic .A-> C_bytes %s %s\n" %(route_counter [7],
results [0][1]))

post_graphite (" traffic .B-> A_bytes %s %s\n" %(route_counter [8],
results [2][1]))

post_graphite (" traffic .B-> C_bytes %s %s\n" %(route_counter [9],
results [2][1]))

post_graphite (" traffic .C-> A_bytes %s %s\n" %(route_counter
[10] , results [3][1]))

post_graphite (" traffic .C-> B_bytes %s %s\n" %(route_counter
[11] , results [3][1]))

while (int(time. strftime ("%S")) != 29) and (int(time. strftime
("%S")) != 59):
while int(time. strftime ("%S")) != 59:

time.sleep (0.3)

print ("Ready for new collecting at: %s" %(time. strftime ("%H:%
M:%S")))

def main ():

connections_setup ()

start_time = time. strftime ("%H:") + str(int(time. strftime ("%M"
))+1)

print ("Job will start at %s" %(start_time))

schedule .every ().day.at(start_time).do(sched_job)

while True:
schedule . run_pending ()
time.sleep (1)

if __name__ == ’__main__ ’:
main ()

A.4 NSF 92 Python framework
Python framework used to simulate the network model based on NSF 1992, running

the CAIDA traffic and generating BitMatrices and traffic packet statistics based on

A.4. NSF 92 Python framework 139

BitMatrices, as describe in chapter 6 Tests and Results, section 6.3 NSF92 Framework in
Python.

Listing A.5 – Python framework for NSF 92 network simulation

#!/ usr/bin/ python2 .7

from scapy.all import *
import csv
import crcmod
import os
import ipaddress
import datetime
import time
import sys

def crc16_comp (str_):
str_ = bytearray (str_)
crc16 = crcmod . mkCrcFun (0 x18005 , rev=False , initCrc =0 xFFFF

, xorOut =0 x0000)
answer = crc16(str(str_))
return answer

def hashing (pkt):
p=12
hashlst =[pkt[p+0], #version ,

ihl
pkt[p+2], pkt[p+3], #

totallenght
pkt[p+4], pkt[p+5], #

identification
pkt[p+6], pkt[p+7], #

flag , fragOffset
pkt[p+9], #

protocol
pkt[p+12] , pkt[p+13] , pkt[p+14] , pkt[p+15] , #

srcAddr
pkt[p+16] , pkt[p+17] , pkt[p+18] , pkt[p+19] , #

dstAddr
pkt[p+20] , pkt[p+21] , pkt[p+22] , pkt[p+23] , #

payld bytes 1-4
pkt[p+24] , pkt[p+25] , pkt[p+26] , pkt[p+27]] #

payld bytes 5-8
hash_crc16 = crc16_comp (hashlst)
return hash_crc16

def setup ():

140 APPENDIX A. Appendix

define global variable to:
global rtable , \ # load src , dst tenants

routing table in memory
topo , \ # to load tenant ’s

src ip in memory
pkt_counter , \ # number of packet

processed
bm_len , \ # bitmatrix lenght
bm_pkt_size # number of packet

to process per bitmatrix
bm_rtr_1 , \
bm_rtr_2 , \
bm_rtr_3 , \
bm_rtr_4 , \
bm_rtr_5 , \
bm_rtr_6 , \
bm_rtr_7 , \
bm_rtr_8 , \
bm_rtr_9 , \
bm_rtr_10 , \
bm_rtr_11 , \
bm_rtr_12 , \
colision_rtr_0 , \
colision_rtr_1 , \
colision_rtr_2 , \
colision_rtr_3 , \
colision_rtr_4 , \
colision_rtr_5 , \
colision_rtr_6 , \
colision_rtr_7 , \
colision_rtr_8 , \
colision_rtr_9 , \
colision_rtr_10 , \
colision_rtr_11 , \
colision_rtr_12 , \
pktcounter_rtr_1 , \
pktcounter_rtr_2 , \
pktcounter_rtr_3 , \
pktcounter_rtr_4 , \
pktcounter_rtr_5 , \
pktcounter_rtr_6 , \
pktcounter_rtr_7 , \
pktcounter_rtr_8 , \
pktcounter_rtr_9 , \
pktcounter_rtr_10 , \
pktcounter_rtr_11 , \

A.4. NSF 92 Python framework 141

pktcounter_rtr_12

pkt_counter = 0
bm_len = 65536 #65536
num_of_tenants = 17
bm_rtr_1 = [[0 for x in range(bm_len)] for y in range(

num_of_tenants)]
bm_rtr_2 = [[0 for x in range(bm_len)] for y in range(

num_of_tenants)]
bm_rtr_3 = [[0 for x in range(bm_len)] for y in range(

num_of_tenants)]
bm_rtr_4 = [[0 for x in range(bm_len)] for y in range(

num_of_tenants)]
bm_rtr_5 = [[0 for x in range(bm_len)] for y in range(

num_of_tenants)]
bm_rtr_6 = [[0 for x in range(bm_len)] for y in range(

num_of_tenants)]
bm_rtr_7 = [[0 for x in range(bm_len)] for y in range(

num_of_tenants)]
bm_rtr_8 = [[0 for x in range(bm_len)] for y in range(

num_of_tenants)]
bm_rtr_9 = [[0 for x in range(bm_len)] for y in range(

num_of_tenants)]
bm_rtr_10 = [[0 for x in range(bm_len)] for y in range(

num_of_tenants)]
bm_rtr_11 = [[0 for x in range(bm_len)] for y in range(

num_of_tenants)]
bm_rtr_12 = [[0 for x in range(bm_len)] for y in range(

num_of_tenants)]
colision_rtr_1 = [0] * num_of_tenants
colision_rtr_2 = [0] * num_of_tenants
colision_rtr_3 = [0] * num_of_tenants
colision_rtr_4 = [0] * num_of_tenants
colision_rtr_5 = [0] * num_of_tenants
colision_rtr_6 = [0] * num_of_tenants
colision_rtr_7 = [0] * num_of_tenants
colision_rtr_8 = [0] * num_of_tenants
colision_rtr_9 = [0] * num_of_tenants
colision_rtr_10 = [0] * num_of_tenants
colision_rtr_11 = [0] * num_of_tenants
colision_rtr_12 = [0] * num_of_tenants
pktcounter_rtr_1 = [0] * num_of_tenants
pktcounter_rtr_2 = [0] * num_of_tenants
pktcounter_rtr_3 = [0] * num_of_tenants
pktcounter_rtr_4 = [0] * num_of_tenants

142 APPENDIX A. Appendix

pktcounter_rtr_5 = [0] * num_of_tenants
pktcounter_rtr_6 = [0] * num_of_tenants
pktcounter_rtr_7 = [0] * num_of_tenants
pktcounter_rtr_8 = [0] * num_of_tenants
pktcounter_rtr_9 = [0] * num_of_tenants
pktcounter_rtr_10 = [0] * num_of_tenants
pktcounter_rtr_11 = [0] * num_of_tenants
pktcounter_rtr_12 = [0] * num_of_tenants

bm_rtr [tenant] [position]
load src , dst tenants routing table in memory
with open(’routing .csv ’, ’rb’) as csvfile :

reader = csv. reader (csvfile , delimiter =’,’)
rtable = [[int(row [0]) , int(row [1]) , int(row [2]) ,

int(row [3]) , \
int(row [4]) , int(row [5]) , int(row

[6]) , int(row [7])] \
for row in reader]

load tenant ’s src ip in memory
with open(’topology .csv ’, ’rb’) as csvfile :

reader = csv. reader (csvfile , delimiter =’,’)
topo = [[ipaddress . ip_network (unicode (row [0]) ,

strict =False), int(row [1])] \
for row in reader]

def routing_table (ten_a , ten_b):
for row in rtable :

if (row [0] == ten_a and row [1] == ten_b):
while 0 in row:

row. remove (0)
return row [2:]

def lookup_tenant (tenant_ip):
for row in topo:

if (ipaddress . ip_address (unicode (tenant_ip)) in \
ipaddress . ip_network (unicode (row [0]))):
return row [1]

def bitmatrix (router , ten , hash):
comm = ’pktcounter_rtr_ ’ + str(router) + \

’[’ + str(ten) + ’]’+ \
’ += 1’

exec(comm)
load = 0
comm = ’load = bm_rtr_ ’ + str(router) + \

A.4. NSF 92 Python framework 143

’[’ + str(ten) + ’]’+ \
’[’ + str(hash% bm_len) + ’]’

exec(comm)
if load == 1:

comm = ’colision_rtr_ ’ + str(router) + \
’[’ + str(ten) + ’]’+ \

’ += 1’
exec(comm)

comm = ’bm_rtr_ ’ + str(router) + \
’[’ + str(ten) + ’]’+ \
’[’ + str(hash% bm_len) + ’] = 1’

exec(comm)

def print_counters_bitmatrix ():
global recordtime
recordtime = recordtime + datetime . timedelta (seconds =10)
file = open(" bitmatrix_stats_4sics .csv","a")
for i in range (1 ,17):

for j in xrange (1 ,13):
pkt_cnt = 0
comm0 = ’pkt_cnt = pktcounter_rtr_ ’+ str(j

) + ’[’ + str(i) +’]’
colli = 0
comm1 = ’colli = colision_rtr_ ’+ str(j) +

’[’ + str(i) +’]’
sumbm = 0
comm2 = ’sumbm = sum(bm_rtr_ ’ + str(j) + ’

[’ + str(i) +’])’
exec(comm0)
exec(comm1)
exec(comm2)
file.write(str(recordtime) + ","+

str(i) + ","+
str(j) + ","+
str(pkt_cnt) + ","+
str(colli) + ","+
str(sumbm) + ","+
str("{:3.2f}". format ((

pkt_cnt /float (bm_len
))*100)) + ’%’ + ","
+

str("{:3.2f}". format ((
colli/ float (bm_len))
*100)) + ’%’ + "\n")

file.close ()

144 APPENDIX A. Appendix

def ppu(pkts):
for i in xrange (len(pkts)):

try:
global pkt_counter , pkt_counter_master
43 ,000 pkts corresponds to 1 second of

traffic
if pkt_counter > 430000:

print_counters_bitmatrix ()
setup ()

pkt = [ord(c) for c in raw(pkts[i])]
for f in range (28- len(pkt)):

pkt. append (0)
hash = hashing (pkt)
ten_A = lookup_tenant (pkts[i][IP]. src)
ten_B = lookup_tenant (pkts[i][IP]. dst)
routers = routing_table (ten_A , ten_B)
for router in routers :

bitmatrix (router , ten_A , hash)
pkt_counter_master += 1
pkt_counter += 1

except Exception as e:
sys. stdout .write("\r pkt %d does not

exists or cant be processed " % i)
sys. stdout .flush ()

def loader ():
cap_files = []
for (dirpath , dirnames , filenames) in os.walk("../4 sics"):

cap_files . extend (filenames)
print cap_files
return cap_files

def main ():
setup ()
global pkt_counter_master , recordtime
recordtime = datetime . datetime (2020 , 1, 1, 0, 0, 0)
pkt_counter_master = 0
cap_files = loader ()
for cap_file in cap_files :

startload = time.time ()
print ’loading capture file "’ + cap_file + ’"

please , be patient ... ’
pkts= rdpcap ("../4 sics/" + cap_file)
endload = time.time ()

A.5. Routing table for NSF 92 Python framework 145

print ’capture file "’ + str(cap_file) + \
’" were loadede in ’ + str(" {:10.2 f}".

format (float (endload - startload))) + ’
seconds ’

print str(len(pkts)) + ’ packets were loaded from
’ + str(cap_file)

ppu(pkts)

main ()

A.5 Routing table for NSF 92 Python framework

Tenant pair Routers in path Tenant pair Routers in path
1,2 1,2 6,10 5,6,7,8
1,3 1,2,3 6,11 5,6,7,8
1,4 1,4 6,12 5,9
1,5 1,4 6,13 5,9,10
1,6 1,2,3,5 6,14 5,9,10,11
1,7 1,4,6 6,15 5,9,12
1,8 1,4,6 6,16 5,9,12
1,9 1,2,7 7,8 6
1,10 1,2,7,8 7,9 6,7
1,11 1,2,7,8 7,10 6,7,8
1,12 1,4,6,5,9 7,11 6,7,8
1,13 1,2,7,8,11,10 7,12 6,5,9
1,14 1,2,7,8,11 7,13 6,5,9,10
1,15 1,4,6,5,9,12 7,14 6,7,8,11
1,16 1,4,6,5,9,12 7,15 6,5,9,12
2,3 2,3 7,16 6,5,9,12
2,4 2,1,4 8,9 6,7
2,5 2,1,4 8,10 6,7,8
2,6 2,3,5 8,11 6,7,8
2,7 2,7,6 8,12 6,5,9
2,8 2,7,6 8,13 6,5,9,10
2,9 2,7 8,14 6,7,8,11
2,10 2,7,8 8,15 6,5,9,12
2,11 2,7,8 8,16 6,5,9,12
2,12 2,3,5,9 9,10 7,8
2,13 2,7,8,11,10 9,11 7,8

146 APPENDIX A. Appendix

Tenant pair Routers in path Tenant pair Routers in path
2,14 2,7,8,11 9,12 7,6,5,9
2,15 2,3,5,9,12 9,13 7,8,11,10
2,16 2,3,5,9,12 9,14 7,8,11
3,4 3,5,6,4 9,15 7,8,11,12
3,5 3,5,6,4 9,16 7,8,11,12
3,6 3,5 10,11 8
3,7 3,5,6 10,12 8,11,10,9
3,8 3,5,6 10,13 8,11,10
3,9 3,2,7 10,14 8,11
3,10 3,2,7,8 10,15 8,11,12
3,11 3,2,7,8 10,16 8,11,12
3,12 3,5,9 11,12 8,11,10,9
3,13 3,5,9,10 11,13 8,11,10
3,14 3,2,7,8,11 11,14 8,11
3,15 3,5,9,12 11,15 8,11,12
3,16 3,5,9,12 11,16 8,11,12
4,5 4 12,13 9,10
4,6 4,6,5 12,14 9,10,11
4,7 4,6 12,15 9,12
4,8 4,6 12,16 9,12
4,9 4,6,7 13,14 10,11
4,10 4,6,7,8 13,15 10,11,12
4,11 4,6,7,8 13,16 10,11,12
4,12 4,6,5,9 14,15 11,12
4,13 4,6,5,9,10 14,16 11,12
4,14 4,6,7,8,11 15,16 12
4,15 4,6,5,9,12 1,1 1
4,16 4,6,5,9,12 2,2 2
5,6 4,6,5 3,3 3
5,7 4,6 4,4 4
5,8 4,6 5,5 4
5,9 4,6,7 6,6 5
5,10 4,6,7,8 7,7 6
5,11 4,6,7,8 8,8 6
5,12 4,6,5,9 9,9 7
5,13 4,6,5,9,10 10,10 8
5,14 4,6,7,8,11 11,11 8
5,15 4,6,5,9,12 12,12 9

A.5. Routing table for NSF 92 Python framework 147

Tenant pair Routers in path Tenant pair Routers in path
5,16 4,6,5,9,12 13,13 10
6,7 5,6 14,14 11
6,8 5,6 15,15 12
6,9 5,6,7 16,16 12

Table 9 – Path used for traffic between tenants

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Tables
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Technical Background
	Related Work
	Sketches
	Software Defined Networks
	P4 Language
	BMv2 - Behavioural Model version 2

	Mininet

	BitMatrix
	Architecture
	Muti-tenant Environment

	Monitoring Architecture
	Caveats and Limitations

	Monitoring Framework
	Framework Architecture
	Network Traffic Monitoring per Tenant
	Network Device Packet Processing
	Collection and Control
	Parse and Storage
	Analyses

	Network Traffic Matrix

	BitMatrix in P4 Language
	Tests and Results
	P4 implementation using Mininet
	BitMatrix Tests and Methodology
	Parsing the Packet Header
	Hashing and Hash Inputs
	Collisions versus Occupation Tests
	Retrieving and Processing BitMatrix
	Results
	Contribution - New Command bm_register_read_all added to Thrift interface

	Python Implementation
	Hash Algorithms and Packet headers Selection

	NSF92 Framework in Python
	Results

	Machine Learning for BitMatrix Measurement Adjustment

	Concluding remarks
	Bibliography
	Appendix
	Deployment in P4 example
	Mininet modifications for P4 network emulation
	Collector and Controller component implemented in Python
	NSF 92 Python framework
	Routing table for NSF 92 Python framework

