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ABSTRACT

ALMEIDA, M. P. Statistical inference for non-homogeneous Poisson process with compet-
ing risks: a repairable systems approach under power-law process. 2019. 111 p. Doctoral
dissertation (Doctorate Candidate joint Graduate Program in Statistics DEs-UFSCar/ICMC-USP)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2019.

In this thesis, the main objective is to study certain aspects of modeling failure time data of
repairable systems under a competing risks framework. We consider two different models and
propose more efficient Bayesian methods for estimating the parameters. In the first model, we
discuss inferential procedures based on an objective Bayesian approach for analyzing failures
from a single repairable system under independent competing risks. We examined the scenario
where a minimal repair is performed at each failure, thereby resulting in that each failure mode
appropriately follows a power-law intensity. Besides, it is proposed that the power-law intensity
is reparametrized in terms of orthogonal parameters. Then, we derived two objective priors
known as the Jeffreys prior and reference prior. Moreover, posterior distributions based on these
priors will be obtained in order to find properties which may be optimal in the sense that, for
some cases, we prove that these posterior distributions are proper and are also matching priors.
In addition, in some cases, unbiased Bayesian estimators of simple closed-form expressions
are derived. In the second model, we analyze data from multiple repairable systems under
the presence of dependent competing risks. In order to model this dependence structure, we
adopted the well-known shared frailty model. This model provides a suitable theoretical basis
for generating dependence between the components’ failure times in the dependent competing
risks model. It is known that the dependence effect in this scenario influences the estimates of
the model parameters. Hence, under the assumption that the cause-specific intensities follow a
PLP, we propose a frailty-induced dependence approach to incorporate the dependence among
the cause-specific recurrent processes. Moreover, the misspecification of the frailty distribution
may lead to errors when estimating the parameters of interest. Because of this, we considered a
Bayesian nonparametric approach to model the frailty density in order to offer more flexibility
and to provide consistent estimates for the PLP model, as well as insights about heterogeneity
among the systems. Both simulation studies and real case studies are provided to illustrate the
proposed approaches and demonstrate their validity.

Keywords: competing risks, power-law process, non-homogeneous Poisson process, Bayesian
inference, repairable system.





RESUMO

ALMEIDA, M. P. Inferência estatística para processo de Poisson não-homogêneo com ris-
cos competitivos: uma abordagem de sistemas reparáveis sob processo de lei de potência.
2019. 111 p. Doctoral dissertation (Doctorate Candidate joint Graduate Program in Statistics
DEs-UFSCar/ICMC-USP) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2019.

Nesta tese, o objetivo principal é estudar certos aspectos da modelagem de dados de tempo
de falha de sistemas reparáveis sob uma estrutura de riscos competitivos. Consideramos dois
modelos diferentes e propomos métodos Bayesianos mais eficientes para estimar os parâmetros.
No primeiro modelo, discutimos procedimentos inferenciais baseados em uma abordagem
Bayesiana objetiva para analisar falhas de um único sistema reparável sob riscos competitivos
independentes. Examinamos o cenário em que um reparo mínimo é realizado em cada falha,
resultando em que cada modo de falha segue adequadamente uma intensidade de lei de potência.
Além disso, propõe-se que a intensidade da lei de potência seja reparametrizada em termos
de parâmetros ortogonais. Então, derivamos duas prioris objetivas conhecidas como priori de
Jeffreys e priori de referência. Além disso, distribuições posteriores baseadas nessas prioris serão
obtidas a fim de encontrar propriedades que podem ser ótimas no sentido de que, em alguns
casos, provamos que essas distribuições posteriores são próprias e que também são matching

priors. Além disso, em alguns casos, estimadores Bayesianos não-viesados de forma fechada
são derivados. No segundo modelo, analisamos dados de múltiplos sistemas reparáveis sob
a presença de riscos competitivos dependentes. Para modelar essa estrutura de dependência,
adotamos o conhecido modelo de fragilidade compartilhada. Esse modelo fornece uma base
teórica adequada para gerar dependência entre os tempos de falha dos componentes no modelo
de riscos competitivos dependentes. Sabe-se que o efeito de dependência neste cenário influencia
as estimativas dos parâmetros do modelo. Assim, sob o pressuposto de que as intensidades
específicas de causa seguem um PLP, propomos uma abordagem de dependência induzida
pela fragilidade para incorporar a dependência entre os processos recorrentes específicos da
causa. Além disso, a especificação incorreta da distribuição de fragilidade pode levar a erros
na estimativa dos parâmetros de interesse. Por isso, consideramos uma abordagem Bayesiana
não paramétrica para modelar a densidade da fragilidade, a fim de oferecer mais flexibilidade e
fornecer estimativas consistentes para o modelo PLP, bem como insights sobre a heterogeneidade
entre os sistemas. São fornecidos estudos de simulação e estudos de casos reais para ilustrar as
abordagens propostas e demonstrar sua validade.

Palavras-chave: riscos competitivos, processo de lei de potência, processo de Poisson não-
homogêneo, inferência Bayesiana, sistemas reparáveis.
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CHAPTER

1
INTRODUCTION

1.1 Introduction and bibliographical review

Studying recurrent event data is important in many areas such as engineering, social
and political sciences and in the public health setting. In all these fields of study, the event of
interest occurs on a recurring basis. For example, failure of a mechanical or electrical component
may occur more than once; the recurrence of bugs over time in a software system that is under
development; successive tumors in cancer studies; myocardial infarction and epileptic seizure in
patients, to name but a few.

In particular, in reliability analysis, interest is usually centered on failure data from
complex repairable systems (ASCHER; FEINGOLD, 1984). Monitoring the status of a repairable
system leads to a recurrent events framework, where events correspond to failures of a system. A
system is defined as repairable when it receives any corrective measure (other than replacing the
whole system) in order to restore its components when they have failed and can be returned to
the satisfactory operation state where it is able to perform all its functions. On the other hand,
a nonrepairable system is a system that is discarded when the first failure occurs (RIGDON;
BASU, 2000). However, we will just focus on repairable system case.

The primary challenge when modeling repairable systems data is how to account for
the effect of a repair action performed immediately after a failure. In general, one assumes that
repair actions are instantaneous and repair time is negligible. The most explored assumptions
are either minimal repair and perfect repair. In the former, it is supposed that the repair action,
after a failure, returns the system to the exact condition it was immediately before it failed. In
the latter, the repair action leaves the system as if it were new. In the engineering literature,
these types of repair or corrective maintenance are usually called: as bad as old (ABAO) and
as good as new (AGAN) (BARLOW; HUNTER, 1960; AVEN, 1983; AVEN; JENSEN, 2000;
FINKELSTEIN, 2004; MAZZUCHI; SOYER, 1996). More sophisticated models which account
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for repair action that leave the system somewhere between the ABAO and AGAN conditions are
possible, although they will not be considered here; see for instance, Doyen and Gaudoin (2006).

Statistical modeling of the occurrence of failures is done using point processes, par-
ticularly, as we will see later, counting processes. In this framework, the model is completely
characterized by its failure intensity function. The failure history of a repairable system, under a
minimal repair strategy, is usually modeled according to a non-homogenous Poisson process
(NHPP). In the repairable system literature, one of the most important and well-known parametric
forms for the NHPP model is the power-law process (PLP). The PLP process is convenient
because it is easy to implement, it is flexible and the parameters have good interpretations.
Regarding classical inference for the PLP, see, for instance, Ascher and Feingold (1984) or
Rigdon and Basu (2000). Bayesian inference has been considered among others by Bar-Lev,
Lavi and Reiser (1992), Guida, Calabria and Pulcini (1989), Pievatolo and Ruggeri (2004) and
Ruggeri (2006).

Additionally, in this thesis, we emphasize an alternative specification of the PLP, which
is obtained by using a simple operational definition of its parameters, making them orthogonal to
each other. This formulation is considered by Oliveira, Colosimo and Gilardoni (2012) motivated
by ideas from Guida, Calabria and Pulcini (1989) and Sen (2002). The former authors show
that this reparametrization leads to some advantageous results such as orthogonality among
parameters, the likelihood function becomes proportional to a product of gamma densities and
the expected Fisher information matrix is diagonal. The model we discuss here is based on such
reparametrization because it results in mathematical and computational simplifications for our
research.

In reliability theory, the most common system configurations are series systems, parallel
systems, and series-parallel systems. In a series system, components are connected in series, in
such a way that the failure of a single component results in system failure. The same setting may
be expressed in an alternative way by a repairable system in which components can perform
different operations, and thus be subject to different types of failures. Traditionally, models with
this characteristic are known as competing risks. In complex systems, such as supercomputers,
aircraft generators, industrial plants, jet engines, and cars, the presence of multiple types (or
causes) of failure is common. From an economic perspective, such systems are commonly
repaired rather than replacing the system with a new one after failure. Thus, this model can
also be called a repairable competing risks system. As we pointed out already, commonly used
methodologies for analyzing multi-type recurrent event data are based on multivariate counting
processes and cause-specific intensity functions (ANDERSEN et al., 2012; COOK; LAWLESS,
2007).

It is worth noticing that the existing literature on competing risks in reliability is extensive
and focuses particularly on analysis for nonrepairable systems, e.g., Crowder (2001), Lawless
(2011), Crowder et al. (1994) to cite a few. On the other hand, a number of authors have
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considered modeling competing risks in a repairable systems framework. For example, some
authors have mainly been interested in questions concerning maintenance analysis (LANGSETH;
LINDQVIST, 2006; LINDQVIST, 2006; DOYEN; GAUDOIN, 2006). Others have highlighted
the relevance of failure analysis of the components of the system based on cause-specific intensity
function, such as Liu and Tang (2010), Fu, Tang and Guan (2014), Somboonsavatdee and Sen
(2015a), Somboonsavatdee and Sen (2015b).

After considering the scenarios mentioned above, we can highlight two remarkable
aspects which pose as major statistical challenges of a model for competing risks systems with
minimal repair policy:

Firstly, by considering the setting where a single complex repairable system is under the
action of independent competing risks whose failures behavior is based on intensity functions
using PLP, one knows that most of the literature considers this problem from a classical approach
viewpoint, i.e. the statistical inference for the PLP is generally based on the maximum likelihood
theory (SOMBOONSAVATDEE; SEN, 2015b), which may require a large sample size in order
to reach good estimators for each cause of failure. However, in practice, Corset, Doyen and
Gaudoin (2012) argue that complex systems are required to be highly reliable and for this reason
only a few failures occur. Therefore, using asymptotic results on MLE should be avoided. In this
case, one may propose a Bayesian analysis of this model as an advantageous procedure to usual
classical methods. Additionally, when there is no expert opinion or there is little knowledge about
the parameters (e.g., higher-dimensional parameter spaces or complex dependence structure
between parameters ), it is not feasible to elicit prior distributions (CONSONNI et al., 2018).

To circumvent these problems, we propose an objective Bayesian analysis (BERNARDO,
1979; BERNARDO, 2005). The objective Bayesian method has several attractive features. In
addition to solving the problem of few observations, the most worthwhile feature is the use of
objective (or noninformative) priors. In this context, the data play a predominant role in obtaining
of the posterior distribution. In other words, the inference is based only on information from the
data and with the minimum (or absence) of subjective prior information; see Migon, Gamerman
and Louzada (2014). There are few articles studying objective priors for competing risks, mainly
in the engineering field. Related work (FU; TANG; GUAN, 2014) has provided a discussion on
reference priors in order to estimate the cause-specific intensity functions taking into account the
HPP. On the other hand, there is a large number of published studies that describe appropriate
procedures for the formulation of objective priors; see, e.g., Bernardo and Smith (2009), Kass
and Wasserman (1996), and references therein.

Secondly, in the field of reliability engineering, much of the current literature on com-
peting risks pays particular attention to the hypothesis that the components’ (causes) failures
are independent from each other (LIU; TANG, 2010; HONG; MEEKER, 2010; MEEKER;
ESCOBAR, 2014; SOMBOONSAVATDEE; SEN, 2015b). However, this assumption is restric-
tive in some real situations because there are many ways of dependence between components.
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We can call this case dependent competing risks. Moreover, it is important to point out that
neglecting existing dependence can lead to estimation errors and bad predictions of system
behavior (ZHANG; YANG, 2015). A seminal study in this area is the work of Moeschberger
(1974). Wu, Shi and Zhang (2017) and Zhang and Wilson (2017) give an extensive discussion
on copula theory in order to model the dependence between components (competing failure
modes) in particular settings. Zhang and Yang (2015) discuss an optimal maintenance planning
for dependent competing risks systems. Liu (2012) mentions a particular situation where the
components within a system are physically, logically, or functionally connected, as an example
of dependent failure causes. It means that the condition of a component influences or induces the
failure of other components and vice-versa. This author works with the dependence framework
based on a gamma frailty model. An interesting perspective has been explored by Lindley and
Singpurwalla (1986), who argue that dependence can be induced by the environment the system
is subjected to, i.e., the situation where the components of the system (or cluster) share the same
environmental stress. Along the same lines, Somboonsavatdee and Sen (2015a) assert that in
a repairable systems context such clustering arises naturally across the recurrent failures of a
system. The approach proposed by Somboonsavatdee and Sen (2015a) for modeling dependence
is also based on frailty.

These examples demonstrate the importance of the theme and, therefore, the need
to develop new analysis methodologies. However, very few articles address the dependence,
particularly in the setting of recurrent competing risks in repairable systems with PLP. Based on
these reasons, we propose a shared frailty (WIENKE, 2003; HOUGAARD, 2012) model using a
(multivariate) counting process framework whose intensity function is that of reparametrized
PLP. Specifically, the intensity is multiplied by a frailty (or random effect) term, which follows a
suitable distribution for a positive random variable. This model provides a suitable theoretical
basis for generating dependence between the components’ failure times. In other words, the
components belonging to a cluster (or system) share a common factor (frailty term), which
generates such dependence. The assignment of a probability distribution to frailty plays an
important role in the analysis of models with random effects. However, in order to avoid making
incorrect model specifications when there is uncertainty about some inherent characteristics of a
distribution (e.g., multimodality, skewness, and heavy tails) (WALKER; MALLICK, 1997), we
propose a nonparametric approach to model the frailty density (density estimation) (FERGUSON,
1973; FERGUSON et al., 1974; MÜLLER; QUINTANA, 2004). Our approach to these problems
is fully Bayesian and based on both MCMC methods (for frailty) and closed-form Bayesian
estimators (for PLP parameters) for estimation.

The main contributions of the proposed research include: (i) in the objective Bayesian
context, we propose noninformative priors whose resulting posterior distributions are proper.
Furthermore, the Bayes estimators have simple closed-form expressions and returned marginal
posterior intervals with accurate coverage in the frequentist sense. Our findings outperform
those of classical inference, especially in real situations where systems have high reliability
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and failures are rare; (ii) Our modeling of the dependence effect on multi-component systems,
based on multivariate recurrent processes and the shared frailty model, is advantageous because
we can perform an individual posterior analysis of the quantities of interest, i.e., we estimate
the interest parameters of the PLP (our main focus) separately from nuisance parameter of
frailty distribution (variance). Regarding PLP parameters, we consider noninformative priors so
that the posterior distributions are proper. With respect to frailty, our proposal avoids making
incorrect specifications of the frailty distribution when there is uncertainty about some inherent
characteristics of distribution. In this case, we use nonparametric Bayesian inference. Besides, a
particular novelty is our hybrid MCMC algorithm for computing the posterior estimates with
respect to the frailty distribution.

1.2 Objectives

In this thesis, the main objective is to study certain aspects of modeling failure time data
of repairable systems under a competing risks framework. We consider two different models and
propose more efficient Bayesian methods for estimating the model parameters. Thus, we can list
some specific objectives:

∙ to consider an orthogonal parametrization for the PLP model parameters (which is common

for all chapters) such that the likelihood function becomes proportional to a product of
gamma densities and the expected Fisher information matrix is diagonal;

∙ in the independent competing risks setting, to derive overall objective priors (Jeffreys prior
and reference prior) for the PLP model parameters that allow one to obtain proper posterior
distributions with advantageous properties. In particular, to obtain unbiased estimators that
have simple closed-form expressions, as well as marginal posterior intervals with accurate
coverage in the frequentist sense (Chapter 4);

∙ in the dependent competing risks setting, to propose a frailty-induced dependence approach
to incorporate the dependence among the cause-specific recurrent processes. Besides, to
consider a nonparametric approach to model the frailty density using a Dirichlet pro-
cess mixture (DPM) prior. Additionally, to propose a hybrid Markov chain Monte Carlo
(MCMC) sampler algorithm composed by Hamiltonian Monte Carlo (HMC) and Gibbs
sampling to compute the posterior estimates with respect to the frailty distribution. Regard-
ing PLP parameters, to propose a class of noninformative priors whose resulting posterior
distributions are proper and to obtain closed-form Bayesian estimators (Chapter 5).
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1.3 Overview of the chapters
This thesis consists of three main chapters (based on an overview of two papers), which

are somewhat related, but each is in itself an independent portion and is a new contribution for
research. The chapters are explored around a central theme that is repairable systems under a
competing risks framework and minimal repair assumption with PLP. Each chapter is independent
of the others, in the sense that intrinsic notations and comments are introduced to each one of
them. In Chapter 4, results from Chapter 3 are cited, but the function of each of these chapters is
to be independent.

Therefore, this thesis is organized as follows. In Chapter 2, we present notions and
definitions that are necessary for our discussions later. First, we give a short overview of
fundamental concepts regarding counting processes, repairable systems, competing risks, frailty
and Bayesian inference. In Chapter 3, we initially present a dataset in order to motivate our
discussion about a single complex repairable system subject to independent competing risks. We
explore an alternative parametrization for the PLP parameters based on orthogonal parameters.
Results of classical inference are presented and used in the dataset. Chapter 4 begins with a
previously unpublished dataset about recurrent failures history of a sugarcane harvester, as a
motivating example. Moreover, we present an objective Bayesian methodology to analyze a
repairable system subject to several independent failure modes. A simulation study was carried
out to analyze the efficiency of the methods proposed and compare both classical and Bayesian
approaches. We apply our proposed methodology in the dataset analysis described initially.
Finally, we present the conclusion and make some concluding remarks. Chapter 5 begins with
the fundamentals of multiple repairable systems, dependent competing risks and a shared frailty
model. The Bayesian framework (parametric and nonparametric) is developed with a discussion
on the choice of prior distributions for the proposed model and the computation of posterior
distributions. An extensive simulation study is described in order to evaluate the efficiency of the
proposed Bayesian estimators, and uses them to analyze a real data set that comprises the failure
history for a fleet of cars under warranty. Moreover, we conclude the chapter with final remarks.
In Chapter 6, general comments and extension possibilities of this current research are presented.

1.4 Products of the thesis

∙ Almeida, M.P.; Tomazella, V.L.D.; Gilardoni, G.L.A; Ramos, P.L.; Louzada, F.; Nicola,
M., (2019). Objective Bayesian Inference for a Repairable System Subject to Competing

Risks. This paper is currently under review (IEEE Transactions on Reliability).

∙ Almeida, M.P.; Paixão, R.S; Ramos, P.L.; Tomazella, V.L.D.; Ehlers, R.S.; Louzada, F.,
(2019). Multiple repairable systems under dependent competing risks with nonparametric

Frailty. This paper is currently under review (Technometrics).
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CHAPTER

2
BACKGROUND

In this chapter, basic concepts and literature review of some important topics that are
covered throughout this thesis will be described.

2.1 Counting process
A univariate point process can be described by an increasing sequence of positive random

variables 0 < T1 ≤ T2 ≤ . . . , or by its corresponding counting process N(t) = Nt(ω) with t ∈R+,
this being a random variable that counts the number of points Tn that occur until the time t,
formally written as

Nt(ω) = ∑
k≥1

I(Tk(ω)≤ t), (2.1)

which is, for each realization ω , a non-decreasing, right-continuous step function with size jump
1. Let I(·) be the indicator function that represents the number of events up to time t . Thus, the
specifications N(t) and Tn are equivalent and carry the same information.

Definition 2.1.1 (Counting Process). {N(t) : t ≥ 0} is a random variable that denotes the random
number of points (i.e. the events of interest) that have occurred in the time interval [0, t] and must
satisfies the following conditions:

1. N(t)≥ 0 and N(0) = 0;

2. N(t) is integer valued;

3. t → N(t) is right-continuous;

4. ∆N(t) = limh→0 N(t)−N(t −h) = 0.

Definition 2.1.2. A counting process has stationary increments if for all k,

P(N(t, t + s] = k) (2.2)
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is independent of t.

Definition 2.1.3. A counting process {N(t) : t ≥ 0} has independent increments if for all n and
for all r1 < s1 ≤ r2 < s2 ≤ ·· ·< rn ≤ sn, the random variables N(r1,s1],N(r2,s2], . . . ,N(rn,sn]

are independent, i.e.,

P(N(r1,s1] = k1, . . . ,N(rn,sn] = kn) =
n

∏
i=1

P(N(ri,si] = ki). (2.3)

The assumption of independent increments means that the number of events in nonoverlapping
intervals are independent.

The process of counting is governed by its intensity λ (t), and takes into account the
history Ht = {ti : i = 1,2, . . . ,N(t)} from the occurrence of events of a process up until t.
According to Andersen et al. (2012) and Krit (2014), all the random variables N(t), are defined in
the same probability space (Ω,A,P). A filtration {Ht : t ≥ 0} is an increasing sequence of sub-σ
algebras of A, i.e., s < t ⇒Hs ⊂Ht . {N(t) : t ≥ 0} is Ht-adapted if and only if for all t ≥ 0, N(t)

is Ht-mensurable. So, one can say that the filtration Ht consists of all information of the history
at time t. Thus, this "history", in turn, influences N(t). As {N(t) : t ≥ 0} is a non-decreasing,
right-continuous step function that alters its values only at the times T1,T2, . . . ,Tn, its history at
time t is fully known by the number and the times of events occurred in [0, t]. Hence, Ht is the
σ -algebra generated by the history of the process at time t, i.e., Ht = σ(N(t),T1, . . . ,TN(t)).

Definition 2.1.4. The complete intensity function is specified by

λ (t) = lim
∆t→0

P(N(t, t +∆t]≥ 1|Ht)

∆t
, (2.4)

which represents the instantaneous probability of an event occurring, conditioned to the process
history.

The counting process that has the property of independent increments has its intensity
function given by

λ (t) = lim
∆t→0

P(N(t, t +∆t]≥ 1)
∆t

, (2.5)

and its cumulative intensity function is

Λ(t) =
∫ t

0
λ (u)du. (2.6)

Multivariate counting processes

A collection of n univariate counting processes {Ni(t) : t ≥ 0, i = 1, . . . ,n} constitutes
a multivariate counting process, denoted {N(t) : t ≥ 0} or N(t) = (N1(t), . . . ,Nn(t))T , with the
additional assumption that no two components jump simultaneously (with probability one).
Associated with a multivariate counting process {N(t) : t ≥ 0} is an intensity process {λ (t) : t ≥
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0} where λ (t) = (λ1(t), . . . ,λn(t))T is a collection of n intensity processes, where λi(t) is the
intensity process of Ni. This process is adapted to a filtration (or history) {Ht}. The smallest
filtration that makes N(t) adapted is the filtration generated by the process itself (ANDERSEN
et al., 2012; AALEN; BORGAN; GJESSING, 2008).

2.1.1 Poisson process

Poisson processes are a particular case of point processes and can be used to model
occurrences (and counts) of rare events over time, when they are not affected by the past. In
particular, they are applied to describe and predict the failures of a given system.

In many situations in reliability, medicine and social sciences, we need to count events to
a specific point in time in such a way that we can describe them by a Poisson process. A Poisson
process is a particular case of the Markov process in continuous time, where the only possible
jumps are to the next higher state. A Poisson process can also be seen as a counting process that
has good properties. Technical details of the subject can be found in Kingman (1993), Aalen,
Borgan and Gjessing (2008), Rigdon and Basu (2000).

One can define the Poisson process based on an infinitesimal representation of the
distribution of points in small intervals. Toward this end, we use little-oh notation. One define
f (h) = o(h) to mean that limh→0

f (h)
h = 0.

Definition 2.1.5. A counting process {N(t) : t ≥ 0} is said to be a Poisson process with rate λ ,
λ > 0, if:

(i) N(0) = 0;

(ii) the process has independent and stationary increments;

(iii) P{N(h) = 1}= λh+o(h);

(iv) P{N(h)≥ 2}= o(h).

It is worth pointing out that, a Poisson process in which the rate does not depend on time
is called the homogeneous Poisson process (HPP).

Definition 2.1.6. The counting process {N(t) : t ≥ 0} is a NHPP with intensity function λ (t),
t ≥ 0, if:

(i) N(0) = 0;

(ii) the process has independent increments;

(iii) P{N(t +h)−N(t) = 1}= λh+o(h);

(iv) P{N(t +h)−N(t)≥ 2}= o(h).
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The importance of the NHPP lies in the fact that it does not require the condition of
stationary increments. Furthermore, the independent increments property of the Poisson process
mandates that λ (t) does not depend on the history of the process up until t.

From Definitions 2.1.1 to 2.1.5, it is possible to deduce the property that the number of
events (e.g., failures) in a interval is a random variable with Poisson distribution.

Theorem 2.1.7. As a consequence of Definitions 2.1.1 to 2.1.5, for n ∈ Z+,

P{N(t) = n}= 1
n!

(∫ t

0
λ (s)ds

)n

exp
(
−
∫ t

0
λ (s)ds

)
with n = 0,1,2, . . . (2.7)

Proof. See Rigdon and Basu (2000).

In particular, for a HPP with rate λ , we have that N(a,b]∼ Poisson(λ (b−a)), and the
increments are stationary, since their distribution does not depend on the starting point of the
interval, but only on its length, i.e., the process rate will be λ for all times.

Definition 2.1.8. The mean function of a Poisson process is given by Λ(t)=E[N(t)] =
∫ t

0 λ (s)ds,
t ≥ 0.

The expected number of events in the interval (a,b] is Λ(a,b] = Λ(b)−Λ(a). For the
HPP case, we have that the mean number of points within the interval (a,b] is Λ(a,b] =

∫ b
a λds =

λ (b−a) and for (0, t] is Λ(t) =
∫ t

0 λds = λ t. The constant λ is interpreted as the average rate of
process points. With regard to NHPP, we have that Λ(t) =

∫ t
0 λ (s)ds and Λ(a,b] =

∫ b
a λ (s)ds. In

terms of differentiable Λ, the rate of occurrences of failures (ROCOF) is determined by d
dt Λ(t).

From Equation (2.7), one can define the reliability of a system through of P(T > t) =

P{N(0, t] = 0}= e−λ t , which is the probability of not finding points (events/failures) in a interval
of length t. According to Meeker and Escobar (2014), Rigdon and Basu (2000), Ascher and
Feingold (1984), the NHPP intensity function can be seen as a reliability measure because it is
capable of modeling systems which wear out or improve over time. For instance, if the intensity
is increasing, the times between failures are decreasing over time, and the system is deteriorating;
and if the intensity is decreasing, the times between failures are increasing, and therefore, the
system is improving.

2.2 Repairable system

In line with the definition given by Rigdon and Basu (2000), a repairable system is
understood to be a system which, after failure, can be restored to an operating condition by some
repair action other than replacement of the entire system. On the other hand, a nonrepairable
system is one that is discarded after the first and only failure.
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As we have pointed out already, the effect of a failure and subsequent repair action on the
performance of a repairable system is what differentiates many models for repairable systems, as
these repairs can have different effects on the reliability of a system. For example, if the repair
returns the system to the exact condition it was in immediately before it failed, then the repair is
said to be minimal or ABAO. This leads to the NHPP. By contrast, if a system is replaced with a
new one (or the repair action leaves the system as if it were new) then the times between failures
are independent and identically distributed. Such a repair action is called a renewal process or
AGAN. Imperfect repair models are ones in which repair actions leave the system somewhere
between the ABAO and AGAN. As we mentioned earlier, only the minimal repair model will be
treated in this thesis.

2.2.1 A single repairable system

In order to be consistent with the current literature, we will borrow some definitions
and notations from Reis et al. (2019). Failures times of a repairable system are described by
a stochastic point process T1,T2, . . . , where Ti denotes the i-th failure time, measured from the
instant at which the system was first put into operation, T = 0. Time is not necessarily the
calendar time, but it can be the length of a crack, operation time, total mileage of a vehicle,
number of cycles, etc. When a failure occurs, a repair action is taken to bring the system back into
operation. We make the assumption that repair times are negligible. The failure times generate a
counting process {N(t) : t ≥ 0}, where N(t) counts the failures in the interval (0, t].

In general, there are two ways to observe data from a repairable system. When the
system observation window terminates after a predetermined number of failures, the data is
said to be failure truncated. On the other hand, the data is said to be time truncated when the
system observation period ends at a pre-specified time τ . Analyzing data from a time truncated
system, both the number of failures N(τ) and the failure times (T1,T2, . . . ,TN(τ)) are random. The
following theorem, due to Rigdon and Basu (2000), provides conditions concerning specifying
the joint distribution of (N(τ);T1,T2, . . . ,TN(τ)).

Theorem 2.2.1. If an NHPP with intensity function λ (t) is observed until time τ , and if the
failure times are T1 < T2 < · · ·< TN(τ) where N(τ) is the random number of failures in the interval
(0,τ], then conditioned on N(τ) = n, the random variables T1 < T2 < · · ·< Tn are distributed as
n order statistics from the distribution with a cumulative distribution function

G(t) =


0, t ≤ 0;

Λ(t)/Λ(τ), 0 < t ≤ τ;

1, t > τ.
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Hence, the aforementioned joint distribution is given by

P(N(τ) = n;T1 = t1, . . . ,Tn = tn) = P(N(τ) = n)P(T1 = t1, . . . ,Tn = tn|N(τ) = n)

=
1
n!

(∫
τ

0
λ (s)ds

)n

exp
{
−
∫

τ

0
λ (s)ds

}
×n!

{
n

∏
j=1

G
′
(t j)

}

=

{
n

∏
j=1

λ (t j)

}
exp{−Λ(τ)}, 0 < t1 < t2 < · · ·< tn < τ.

Proof. See Rigdon and Basu (2000).

2.2.2 Multiple repairable systems

In this section, we present a brief overview to analyze data from multiple repairable
systems, but we refer the reader to Rigdon and Basu (2000) and Oliveira, Colosimo and Gilardoni
(2012) for details and proofs. Here, we highlight just two important assumptions in this context.
The first is to assume that all systems are identical or different. The second is to assume that all
systems have the same truncation time τ or, otherwise, have different truncations at τ j. However,
for the sake of simplicity and brevity of exposition, we assumed the observation lengths, τ , for
each system to be equal. Moreover, in this thesis, we assume all systems to be identical, i.e., the
systems are specified as m independent realizations of the same process, with intensity function
λ .

If the multivariate counting processes N1(t), . . . ,Nm(t) are all observed at the same time
τ , the NHPP resulting from the superposition of NHPPs is given by N(t) = ∑

m
j=1 N j(t) and has

an intensity function given by λ (t) = mλ (t); e.g., overlapping realizations of a PLP. Therefore,
inferences in models proposed for this framework can be made through the following likelihood
function

L(λ ) =

(
m

∏
j=1

n j

∏
i=1

λ (t ji)

)
exp

(
−

m

∑
j=1

∫
τ

0
λ (s)ds

)
.

Unobserved heterogeneity between multiple systems

The m systems are considered to be identical, and therefore have the same intensity
function and thus we would have a random sample of systems. On the other hand, this assump-
tion may not be true. That is, in many real-world reliability applications there may be some
heterogeneity between "apparently identical" repairable systems. In this case, it is necessary to
propose a statistical model capable of capturing this heterogeneity. Cha and Finkelstein (2014),
Asfaw and Lindqvist (2015), Slimacek and Lindqvist (2016) and Slimacek and Lindqvist (2017)
discuss frailty models for modeling and analyzing repairable systems data with unobserved
heterogeneity.
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2.2.3 The minimal repair model

Before turning to formal definitions, we provide an intuitive and real example. We said
earlier that a minimal repair policy is enough to make the system operational again. For example,
if the water pump fails on a car, the minimal repair consists only of repairing or replacing the
water pump. As we said before, the purpose is to bring the car (system) back to operation as
soon as possible. From an economic perspective, complex systems are commonly repaired rather
than replacing the system with a new one after failure.

Recalling that NHPP is completely specified by its intensity function, then when para-
metric models are adopted for the intensity function of an NHPP, we are interested in making
inferences about the parameters of this function. In addition, one knows that the NHPP forms
a class of models that naturally applies to a “minimal repair”, i.e., the repair brings the system
back into the same state it was in just prior to the failure. One of the most important and used
functional forms is the PLP.

The parametric form for the PLP intensity is given by

λ (t) = (β/µ)(t/µ)β−1, (2.8)

where µ,β > 0. Its mean function is

Λ(t) = E[N(t)] =
∫ t

0
λ (s)ds = (t/µ)β . (2.9)

The scale parameter µ is the time for which we expect to observe a single event, while β

is the elasticity of the mean number of events with respect to time (OLIVEIRA; COLOSIMO;
GILARDONI, 2012).

Since (2.8) increases (decreases) in t for β > 1 (β < 1), the PLP can accommodate both
systems that deteriorate or improve over time. Of course, when β = 1, the intensity (2.8) is
constant and hence the PLP becomes an HPP.

Under minimal repair, the failure history of a repairable system is modeled as an NHPP.
As mentioned above, the PLP (2.8) provides a flexible parametric form for the intensity of the
process. Under the time truncation design, i.e. when failure data is collected up to time T , the
likelihood becomes

L(β ,µ | n, t) =
β n

µnβ

(
n

∏
i=1

ti

)β−1

exp

[
−
(

T
µ

)β
]
, (2.10)

where we assume that n ≥ 1 failures at times t1 < t2 < .. . < tn < T were observed, i = 1, . . . ,n
(RIGDON; BASU, 2000). The maximum likelihood estimators (MLEs) of the parameters are
given by

β̂ = n/
n

∑
i=1

log(T/ti) and µ̂ = T/n1/β̂ . (2.11)



36 Chapter 2. Background

2.2.4 Criticisms of classical inference in the scenario of repairable
systems with PLP model

The obtained MLEs in (2.11) are biased. Some studies have attempted to overcome
the shortcomings encountered in this approach in terms of bias and confidence intervals for
the model parameters. For instance, Bain and Englehardt (1991) and Rigdon and Basu (2000)
discussed unbiased estimators for the shape parameter β (except for the scale parameter µ). The
latter authors presented the following estimator

β̃ =
n−1

n
β̂ , (2.12)

which is called the conditionally unbiased estimator (CMLE) (hereafter referred to as CMLE),
i.e.,

E
[(

n−1
n

)
β̂

∣∣∣∣n]= β . (2.13)

The proof of (2.13) can be found in the references mentioned above. It is important to note that
the authors do not present a natural way to obtain such unbiased estimator (for β ). However, as
we will see in Chapter 4, we overcome this problem by proving that this CMLE is the Bayes
estimator under maximum a posteriori (MAP) estimator using objective priors. Regarding the
µ parameter, we will also discuss a way to obtain an unbiased estimator (in the same Bayesian
framework) taking into account an advantageous reparametrization.

Another potential concern is regarding the procedures to derive confidence intervals
under the classical inference. Rigdon and Basu (2000) argued that the confidence interval for
the scale parameter has no simple interpretation and, the usual methodologies return extremely
wide intervals. Moreover, in some situations, the pivotal quantity used to obtain such intervals
does not exist or it is difficult to be derived. Bain and Englehardt (1991, ch. 9) were emphatic
about the difficulties of obtaining confidence intervals for the scale parameter because of the
non-existence of the pivotal quantity in the context of time-truncated data. Recent studies have
been presented to derive confidence intervals for the scale parameter. However, the majority
has presented limitations. For instance, Gaudoin, Yang and Xie (2006) investigated the interval
estimation for the scale parameter from the PLP model. They used the Fisher information matrix
to obtain asymptotic confidence intervals. Nevertheless, their results have many restrictions.
Wang, Xie and Zhou (2013) considered a procedure to derive a generalized confidence interval
for the scale parameter under some general conditions. However, the authors advertise that the
proposed procedure is more complex than the asymptotic confidence interval from the findings
of Gaudoin, Yang and Xie (2006). Somboonsavatdee and Sen (2015b) provided methods for
deriving confidence intervals for the scale parameter for a system failing due to competing risks
from a frequentist perspective. The study showed that the use of the large-sample confidence
intervals for scale parameters are wide.
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2.2.5 Reparametrized PLP

Oliveira, Colosimo and Gilardoni (2012) suggest reparametrizing the model (2.8) in
terms of β and α , where the latter is given by

α = E[N(T )] = (T/µ)β , (2.14)

so that the likelihood (2.10) becomes

L(β ,α|n, t) = c
(

β
ne−nβ/β̂

)(
α

ne−α
)

∝ γ(β |n+1,n/β̂ )γ(α|n+1,1) ,
(2.15)

where c = ∏
n
i=1 t−1

i , β̂ = n/∑
n
i=1 log(T/ti) is the MLE of β and γ(x|a,b) = baxa−1e−bx/Γ(a) is

the probability density function (PDF) of the gamma distribution with shape and scale parameters
a and b, respectively. It is important to point out that β and α are orthogonal parameters. For the
advantages of having orthogonal parameters, see Cox and Reid (1987).

2.3 Competing risks

In reliability theory, the most common system configurations are the series systems,
parallel systems, and series-parallel systems. In a series system, components are connected in
such a way that the failure of a single component results in system failure. Such a system is
depicted in Figure 1. A series system is also referred to as a competing risks system since the
failure of a system can be classified as one of the p possible risks (components) that compete for
the failure of the system. In general, the observations of a competing risks model consist of the

   . . . 1 2 p 

Figure 1 – Diagram for a competing risks system (i.e., series system) with p risks (components).

pair (t, δ ), where t ≥ 0 represents the time of failure and δ is the indicator of the component
which failed. An example follows to illustrate the failure history data for this kind of framework.

Example 2.3.1. Suppose a repairable system, and let 0 < T1 < T2 < T3 < · · ·< TN(τ) < τ be the
failure times of the system observed until a pre-fixed time τ . Moreover, there are two (p = 2)
recurrent causes of failure, and at the i-th failure time Ti, we also observe δ ∈ {1,2}, which is
the cause of the failure related to the i-th failure (see Figure 2).

Basically, we could say that in most of the literature, there are two main approaches
when analyzing failure times with competing risks: independent and dependent competing failure
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0 τ 

T1 T2 T3 TN(τ) ⋯ 

𝛿 = 2 δ = 1 δ = 1 𝛿 = 2 ⋯ 

Figure 2 – Observable quantities from failure history of a repairable competing risks system with two
recurrent causes of failure.

modes. For reliability models under competing risks, most research has been carried out con-
sidering statistical independence of component failure (CROWDER et al., 1994; HØYLAND;
RAUSAND, 2009; SOMBOONSAVATDEE; SEN, 2015b; TODINOV, 2015; WU; SCARF,
2017). Thus, one assumes that independent risks are equivalent to independent causes of failure.
However, in some particular contexts (for instance, the existence of interactions between compo-
nents in complex systems), the assumption of independent risks may lead to seriously misleading
conclusions. To overcome this issue, some important and general approaches have been presented
in the literature for modeling dependent competing risks data (DIJOUX; GAUDOIN, 2009;
ZHANG; YANG, 2015; ZHANG; WILSON, 2017).

Considering Daniel Bernoulli’s attempt in the 18th century to separate the risk of dying
due to smallpox from other causes (BERNOULLI, 1760; BRADLEY; BRADLEY, 1971),
the competing risks methodology has disseminated through various fields of science such as
demography, statistics, actuarial sciences, medicine and reliability analysis. Therefore, one
knows that both the theory and application of competing risks is too broad to cite here, but
for an overview of the basic foundations, please see Pintilie (2006), Crowder (2001), Crowder
(2012). For repairable systems failing due to competing risks, we refer the reader to Langseth and
Lindqvist (2006), Doyen and Gaudoin (2006), Somboonsavatdee and Sen (2015b). Particularly,
this thesis responds directly to the application in repairable systems under a recurrent data
structure based on stochastic processes, which is the most natural way to describe the recurrence
of multiple event types that occur over time.

2.3.1 Recurrent competing risks model for a single repairable system

The assumption of the repairable system under examination is that the components
can perform different operations, and thus be subject to different types of failures. Hence, in
our model there are K causes of failure. If n failures have been observed in (0,T ], then we
observe the data (t1,δ1), . . . ,(tn,δn), where 0 < t1 < · · · < tn < T are the system failure times
and δ (ti) = δi = q represents the q-th associated failure cause with i-th failure time, i = 1, . . . ,n
and q = 1, . . . ,K.

One can introduce a counting process {Nq(t); t ≥ 0} whose behavior is associated with
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the cause-specific intensity function

λq(t) = lim
∆t→0

P(δ (t) = q,N(t +∆t]−N(t) = 1 | N(s),0 ≤ s ≤ t)
∆t

. (2.16)

Let Nq be the cumulative number of observed failures for the q-th cause of failure
and N(t) = ∑

K
q=1 Nq(t) be the cumulative number of failures of the system. Thus, N(t) is a

superposition of NHPPs and its intensity function is given by

λ (t) = lim
∆t→0

P(N(t +∆t]−N(t) = 1 | N(s),0 ≤ s ≤ t)
∆t

=
K

∑
q=1

λq(t). (2.17)

The cause-specific and the system cumulative intensities are, respectively,

Λq(t) =
∫ t

0
λq(u)du and Λ(t) =

K

∑
q=1

Λq(t). (2.18)

Under minimal repair, the failure history of a repairable system is modeled as an NHPP.
We give special attention to functional form for the cause-specific intensity according to the PLP,
as follow

λq(t) =
βq

ψq

(
t

ψq

)βq−1

, (2.19)

with t ≥ 0, ψq > 0, βq > 0 and for q = 1, . . . ,K. The model is quite flexible because it can
accommodate both decay (βq < 1) and growth (βq > 1) in reliability. The corresponding mean
function considering time-truncated scenario (with fixed time T ) is

E[Nq(T )] = Λq(T ) =
(

T
ψq

)βq

. (2.20)

If we reparametrize (2.19) in terms of βq and αq, where the latter is given by

αq =

(
T
ψq

)βq

, (2.21)

one obtains the following advantageous likelihood function

L(θ |t,δ ) =

{
n

∏
i=1

K

∏
q=1

[
βqαqtβq−1

i T−βq
]I(δi=q)

}
exp

{
K

∑
q=1

αq

}

∝

K

∏
q=1

γ(βq|nq +1,nq/β̂q)
K

∏
q=1

γ(αq|nq +1,1),

(2.22)

where n=∑
K
q=1 nq; nq =∑

n
i=1 I(δi = q); θ = (β ,α) with β = (β1, . . . ,βK) and α = (α1, . . . ,αK);

β̂q = nq/∑
nq
i=1 log(T/ti) = nq/∑

n
i=1 log(T/ti)I(δi = q).
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2.4 Frailty model

Frailty models are generalizations of the well-known Cox model (COX, 1972), introduced
by Vaupel, Manton and Stallard (1979). Over the past decades, most research in frailty has
emphasized the analysis of medical and reliability data that present heterogeneity, which cannot
be adequately explained by the Cox model. To be more precise, it can be said that, the frailty
term is a random effect that acts multiplicatively on the hazard function of the Cox model.
This random effect could represent misspecified or omitted covariates (unknown or unmeasured
effects). Thus, one can say that such a term (frailty) is an unobservable (latent) quantity. In
addition, the frailty methodology is very effective to account for dependency in event times that
result from unknown sources of heterogeneity. For more details on general frailty theory, see
Hougaard (2012), Hanagal (2011).

Considering recurrent event data, several approaches of the Cox model with a frailty
factor have been discussed in the literature (TOMAZELLA, 2003; BERNARDO; TOMAZELLA,
2011). Additional results on frailty in the counting process context are given in Aalen, Borgan
and Gjessing (2008) and Andersen et al. (2012). In the reliability field, the frailty model is
commonly used to model heterogeneous repairable systems (CHA; FINKELSTEIN, 2014;
ASFAW; LINDQVIST, 2015). Such heterogeneity is generated because some units have a higher
(or lower) event rate than other units due to unobserved or unknown effects (e.g., instability of
production processes, environmental factors, etc.). On the other hand, Somboonsavatdee and Sen
(2015a) present a classical inference for repairable systems under dependent competing risks
where the frailty is considered to model the dependence between the components arranged in
series.

The many approaches differ in the modeling of the baseline hazard or in the distribution
of the frailty. There is a vast amount of published studies describing fully parametric approaches.
Regarding the probability distribution that should be assigned to the frailty term (random effect),
in general, it follows a distribution appropriate for a positive random variable. Parametric frailty
models are standard in the literature (AALEN; BORGAN; GJESSING, 2008; HOUGAARD,
2012) and the so-called gamma frailty model, in which the unobserved effects are assumed to be
gamma distributed, is probably the most popular choice. Various frailty distributions are presented
in Hougaard (2012) and the references therein such as the gamma, inverse Gaussian, log-normal
or the positive stable frailty. Other distributions include the power variance frailty (AALEN;
BORGAN; GJESSING, 2008) and the threshold frailty (LINDLEY; SINGPURWALLA, 1986).

Extensive research has been carried out on frailty distributions, as cited above, and it is
well known that, generally, such distributions are primarily used by mathematical convenience.
Furthermore, in general, such distributions do not encompass a range of possible features includ-
ing skewness and multimodality. Furthermore, because the frailty variable is an unobservable
quantity, it cannot be tested to verify whether or not it satisfies the distributional assumption
(FERREIRA; GARCIA, 2001). It is known that the misspecification of this distribution can
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lead to several types of errors, including, for example, poor parameter estimates (WALKER;
MALLICK, 1997). A more flexible and robust approach would be to estimate such a density
using the nonparametric Bayesian methodology. In this thesis, this solution will be explored in
Chapter 5.

Finally, a suitable choice of the distribution of unobserved effects can provide interesting
general results, but generally the main quantity of interest is the variance of the unobserved
effects. Usually, a significant variance may indicate high dependence (WIENKE, 2003; SOM-
BOONSAVATDEE; SEN, 2015a).

2.4.1 Shared frailty

In order to emphasize the subject matter of the repairable systems under dependent
competing risks, we introduce the shared frailty model using the multivariate counting processes
framework based on cause-specific intensity functions.

The referred dependency between competing risks may be modeled through a frailty
variable, say Z, in such a way that, when the frailty is shared among several units in a cluster,
it leads to dependence among the event times of the units (WIENKE, 2003; TOMAZELLA,
2003; HOUGAARD, 2012). Suppose that m clusters (or systems) are under observation, where
each cluster is composed by K units (or components). The intensity function of the j-th cluster
( j = 1, . . . ,m) of a shared frailty model is that of the Cox model multiplied by a frailty term Z j

(multiplicative random effect model). More specifically, for each individual counting process,
{N j(t) : t ≥ 0}, their intensity function, conditionally on the frailty Z j, is given by

λ j(t | Z j) = Z jλ (t), (2.23)

where λ (t) is the basic intensity function and j = 1,2, . . . ,m. The intensity function (2.23)
describes the recurrent failure process on the j-th cluster and the intensity associated to the q-th
component from the j-th cluster is defined as

λ jq(t | Z j) = Z jλq(t), (2.24)

where λq(t) is the basic intensity function from the q-th component (cause-specific intensity
function), q = 1,2, . . . ,K. Note that intensities (2.23) and (2.24) follow the relation λ (t) =

∑
K
q=1 λq(t) (ANDERSEN et al., 2012). Henceforth, we will omit the subscript j from λ jq in

(2.24) since we are assuming that the systems are identical, therefore λq(t | Z j) = Z jλ
′
q(t). Note

also that λ
′
q(t) is referred to as the (basic) intensity function for type q events (e.g., PLP). Let

Z = (Z1, . . . ,Zm) denote the vector of Z js, which we assume arises from density fZ(·), where
each Z j is independent and identically distributed (iid). These are typically parametrized so
that both E(Z) and Var(Z) are finite, for j = 1,2, ...,m. It is worth pointing out that the Z js are
assumed to be stochastically independent of the failure process λ

′
q(t) (ANDERSEN et al., 2012;

SOMBOONSAVATDEE; SEN, 2015a).
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The term of frailty in (2.23) aims to control the unobserved heterogeneity among systems.
If we consider the situation where the dataset is divided into clusters (multiple units in a cluster),
this term evaluates the dependence between the units that share the frailty Z j. Thus, units from
heterogeneous populations can be considered independent and homogeneous, conditionally to
the terms of frailty (Z js) attributed to the units or cluster of units.

The evaluation of the influence of unobserved heterogeneity in this type of data is made
on the basis of the variability of the frailty distribution. In addition, it is worth pointing out
that higher values of Var(Z) mean greater heterogeneity among units and more dependence
between the event times for the same unit. In general, in the literature, it is common to specify a
distribution for the frailty variable with mean 1 and variance, say Var(Z) = η , in order to obtain
two main advantages: (1) the model parameters become identifiable, and (2) it is possible to
obtain an easily understandable interpretation of the model, because, as previously argued, η

acts as a dependence parameter, meaning that, if the frailty variance is zero, it implies that we
have independence between the event times in the clusters (since it is assumed that the mean is
1).

We emphasize here that the main focus of Chapter 5 of the present work will be to
analyze data from multiple repairable systems under the presence of dependent competing risks.
Thus, to estimate the model parameters considering shared frailty. In this sense, naturally, we
can consider the dependence between the components as a nuisance parameter via frailty.

2.5 Bayesian inference

Because the chapters of this thesis present two different approaches to the Bayesian
framework (parametric and nonparametric), it is important to define some differences between
them. Then, to facilitate the exposure without the intention of exhausting the subject, we will
present a brief definition of the tools used in each approach.

According to currently accepted theories (COX; HINKLEY, 1979; PAWITAN, 2001;
CASELLA; BERGER, 2002; MÜLLER; QUINTANA, 2004; SCHERVISH, 2012), the fun-
damental problem to which the study of Statistics is addressed is that in which randomness
is present. The statistical methodology to deal with the resulting uncertainty is based on the
construction of probabilistic models that represent, or approximate, the generating mechanism
of a random phenomenon under study. Specifically, data are conceived as realizations of a
collection of random variables y1, . . . ,yn, where yi itself could be a vector of random variables
corresponding to data that are collected on the i-th observational unit in a sample of n units
from some population of interest. A usual assumption is that the yis are drawn independently
from some underlying probability distribution F. The statistical problem begins when there is
uncertainty about F. Let f denote the PDF of F. A statistical model arises when f is known to be
a member fθ from a family F * = { fθ : θ ∈ Θ} labeled by a set of parameters θ from an index
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set Θ.

In addition, it is known that probabilistic models that are specified through a vector θ of
a finite number of, usually, real values are referred to as finite-dimensional or parametric models.
Parametric models can be described as F * = { fθ : θ ∈ Θ ⊂ Rp}. The purpose of the analysis is
then to use the observed sample to account for a plausible value for θ , or at least to determine a
subset of Θ‚ which plausibly contains θ . In many situations, however, constraining inference to a
specific parametric form may limit the scope and type of inferences that can be drawn from such
models. Therefore, one can relax parametric assumptions to allow greater modeling flexibility and
robustness against misspecification of a parametric statistical model. In these cases, one may want
to consider models where a richer and larger class of densities which can no longer be indexed
by a finite-dimensional parameter θ , and one can therefore require parameters θ in an infinite-
dimensional space. Such a procedure is the central idea of traditional nonparametric analysis.
In particular, to conduct Bayesian inference in a nonparametric framework, it is necessary to
complete the probability model with a prior distribution on the infinite-dimensional parameter.
Such priors are known as nonparametric Bayesian priors (MÜLLER; QUINTANA, 2004).

With this clear and succinct overview given above, we can describe the Bayesian tools
we used. First, we briefly present the parametric case with objective Bayesian inference (required
in Chapter 4). Second, we present the nonparametric case in which we describe the general and
concise idea of nonparametric Bayesian inference (required in Chapter 5).

2.5.1 Objective Bayesian inference

In this context, the prior distribution used to obtain the posterior quantities is of primary
concern. Historical data or expert knowledge can be used to obtain a prior distribution. However,
the elicitation process may be difficult and time-consuming. An alternative is to consider objective
priors. In this case, we want to select a prior distribution in which subjective information
obfuscates the information provided by the data. The formal rules to obtain such priors are
presented next (BERNARDO; SMITH, 2009; KASS; WASSERMAN, 1996).

2.5.1.1 Jeffreys Prior

Jeffreys (1946) proposed a rule for deriving a non-informative prior which is invariant to
any one-to-one reparametrization. The Jeffreys prior is one of the most popular objective priors
and (in the multiparameter case) its density is proportional to the square root of the determinant
of the expected Fisher information matrix H(θ), i.e.,

π
J(θ) ∝ |H(θ)|1/2,

where the elements of H(θ) can be obtained through the Hi, j(θ) =−Eθ

[
∂ 2`(θ |t)
∂θi∂θ j

]
, i, j = 1, . . . ,k,

θ = (θ1, . . . ,θk) and | · | denotes a determinant.
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Although Jeffreys prior performs satisfactorily in one-parameter cases, Jeffreys himself
noticed that it might be reasonable for the multi-parameter case. The same author also argues that
Bayesian estimators directly obtained from the Jeffreys prior usually have excellent frequentist
properties.

2.5.1.2 Reference Prior

Reference priors can be seen as a collection of formal consensus prior functions which
can be used as standards for scientific communication (BERNARDO, 2005). Bernardo (1979)
introduced a class of objective priors known as reference priors. This class of priors maximizes
the expected Kullback-Leibler divergence between the posterior distribution and the prior. The
reference prior has minimal influence in a precise information-theoretical sense that separates
the parameters into the parameters of interest and nuisance parameters. To derive the reference
prior function, the parameters need to be set according to their order of inferential importance.
See for instance, Bernardo (1979), Bernardo (2005).

However, the main problem is that different orderings of the parameters return different
priors and selecting the more adequate prior may be quite challenging. To overcome this problem,
Berger et al. (2015) discussed different procedures to construct the overall reference prior for all
parameters. Additionally, under certain conditions, such a prior is unique in the sense of being
the same regardless of the ordering of the parameters. The expected Fisher information matrix
must have a diagonal structure to obtain this prior. The following result can be used to obtain the
overall reference prior.

Theorem 2.5.1. [Berger et al. (2015)] Consider the unknown vector of parameters θ =(θ1, . . . ,θk).
If the Fisher information matrix H(θ) is of the form

H(θ) = diag( f1(θ1)g1(θ−1), . . . , fk(θk)gk(θ−k)),

where θ−i = (θ1, . . . ,θi−1,θi+1, . . . ,θk), diag is a diagonal matrix, fi(·) and gi(·) are positive
functions of θ i, for i = 1, . . . ,k, then the one-at-a-time reference prior, for any chosen parameter
of interest and any ordering of the nuisance parameters in the derivation, hereafter, the overall
reference prior is given by

π
R(θ) ∝

√
f1(θ1) . . . fk(θk). (2.25)

Proof. See Berger et al. (2015).

In this context, nuisance parameters are those that are not of primary interest but must be
included in the analysis. On the other hand, in this scenario, all the parameters are of interest
without a specific ordering of inferential interest.

The reference posterior distribution has desirable theoretical properties such as invariance
under one-to-one transformations of the parameters, consistency under marginalization and
consistent sampling properties.
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2.5.1.3 Matching Priors

Researchers attempted to evaluate inferential procedures with good coverage errors for
the parameters. While the frequentist methods usually rely on asymptotic confidence intervals,
under the Bayesian approach, formal rules are proposed to derive such estimators. Tibshirani
(1989) discussed sufficient conditions to derive a class of non-informative priors π(θ1,θ2), where
θ1 is the parameter of interest so that the credible interval for θ1 has a coverage error O(n−1) in
the frequentist sense, i.e.,

P
[
θ1 ≤ θ

1−a
1 (π; t)|(θ1,θ2)

]
= 1−a−O(n−1), (2.26)

where θ
1−a
1 (π; t)|(θ1,θ2) denote the (1−a)th quantile of the posterior distribution of θ1. The

class of priors satisfying (2.26) are known as matching priors (DATTA; MUKERJEE, 2012).

To obtain such priors, Tibshirani (1989) proposed to reparametrize the model in terms
of the orthogonal parameters (ω,ζ ), in the sense discussed by Cox and Reid (1987). That
is, Iω,ζ (ω,ζ ) = 0 for all (ω,ζ ), where ω is the parameter of interest and ζ is the orthogonal
nuisance parameter and Iω,ζ (ω,ζ ) = 0 is the element of the Fisher information matrix given by

I(ω,ζ ) =

[
Iω,ω(ω,ζ ) Iω,ζ (ω,ζ )

Iω,ζ (ω,ζ ) Iζ ,ζ (ω,ζ )

]
.

In this case, the matching priors are all priors of the form

π(ω,ζ ) = g(ζ )
√

Iωω(ω,ζ ), (2.27)

where g(ζ )> 0 is an arbitrary function and Iωω(ω , ζ ) is the ω diagonal entry of the Fisher
information matrix. The same idea is applied to derive priors when there is a vector of nuisance
parameters.

Bayesian point estimators

There are different types of Bayesian estimators. The three most commonly used are the
posterior mean (quadratic loss function), the posterior mode (0-1 loss function) and the posterior
median (absolute error loss). For more technical details, see Schervish (2012), O’Hagan (1994).
In this thesis, we will consider both posterior mean (Chapters 4 and 5) and MAP (only in Chapter
4) estimators, that are usually referred to as the Bayes estimators. The MAP estimator, θ̂

MAP
, is

obtained by maximizing the posterior distribution, π(θ |t), as follows

θ̂
MAP = argmax

θ

π(θ |t)

= argmax
θ

n

∏
i=1

f (ti|θ)π(θ)

= argmax
θ

(
log(π(θ))+

n

∑
i=1

log( f (ti|θ))

)
.

(2.28)
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It is more suitable to derive the argmaxθ of the log of the MAP function. Two recent
studies proposed by Ramos, Louzada and Ramos (2016), Ramos, Louzada and Ramos (2018)
investigate MAP estimators for the Nakagami-m distribution parameters. The authors showed
that the MAP estimates have a closed-form expression and can be rewritten as a bias corrected
MLE.

2.5.2 Bayesian nonparametric inference

Traditionally, the key idea of the Bayesian nonparametric methods is to obtain inference
on an unknown distribution (density estimation). In this context, we can highlight two arguments
for using this approach: (1) allowing model flexibility and (2) avoiding making incorrect model
specifications when there is uncertainty about some inherent characteristics of a distribution
and such distributional assumptions are untestable, (e.g., multimodality, skewness, and heavy
tails). Before presenting the formal definitions on this topic, firstly, we will present a simple
comparative example between the parametric and nonparametric Bayesian approaches, for ease
of understanding.

In the parametric Bayesian approach, given a specific dataset, a family of models is
chosen. In the gamma family of distributions case, denoted by G (a,b), this relates to shape and
scale parameters. We then specify prior distributions for such parameters. This procedure induces
a prior on the family of distributions. This same procedure is done in the nonparametric case,
however, instead of having a finite number of parameters that identify the family of distributions
for the data, we will have an infinite number of parameters. Since we have limitations in dealing
with infinite quantities, both analytically and computationally, then in practice these models
must be truncated to have a possibly large but finite number of parameters (CARVALHO, 2016).
Technically this means that nonparametric Bayesian modeling requires a prior distribution on
the infinite-dimensional parameters, similarly, this is equivalent to placing a prior distribution on
the space of all distribution functions. This leads to models on function spaces.

Example 2.5.2. Let zi ∈ Ω, zi | F ∼ iid F , F ∈ F *, F * = {G (a,b) : a,b ∈ R+}. In this
parametric specification a prior on F * is equivalent to a prior on (a,b). Nevertheless, F * is
very small relative to F = {the entirety distributions on Ω}; see Figure 3 (KOTTAS, 2018).
Therefore, the nonparametric Bayesian approach requires priors on much larger subsets of F

(infinite-dimensional spaces).

In order to introduce a few new terms and keep consistent with the current literature, in
this section we summarize basic definitions and notations. We will mostly follow the definitions
and notations from Escobar and West (1995), Müller and Quintana (2004), Kvam and Vidakovic
(2007) .

The Dirichlet process (DP), with precursors in the work of Freedman et al. (1963), was
formally developed by Ferguson (1973), Ferguson et al. (1974). The idea is to use the DP as a
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Figure 3 – Diagram for a simple comparison between the parametric and nonparametric Bayesian ap-
proaches.

prior on a set of probability measures in order to consider certain nonparametric problems from
a Bayesian approach. It is the first prior developed for spaces of distribution functions. The DP is
a probability measure (distribution) on the space of probability measures (distributions) defined
on a common probability space χ . Hence, a realization of DP is a random distribution function.

Formally, the DP is described by two parameters: Q0, a specific probability measure on
χ (or equivalently, G0 a specified distribution function on χ); c, a positive scalar parameter.

Definition 2.5.3. [Ferguson (1973)] The DP generates random probability measures (random
distributions) Q on χ such that, for any finite partition B1, . . . ,Bk of χ ,

(Q(B1), . . . ,Q(BK))∼ D (cQ0(B1), . . . ,cQ0(BK)),

where Q(Bi) (a random variable) and Q0(Bi) (a constant) denote the probability of set Bi under
Q and Q0, respectively. Thus, for any B,

Q(B)∼ B(cQ0(B),c(1−Q0(B)))

and

E(Q(B)) = Q0(B).

Let B denote the beta distribution and let D denote the Dirichlet distribution. The
probability measure Q0 plays the role of the center of the DP, while c can be viewed as a precision
parameter. Large c implies small variability of DP with respect to its center Q0. The above can be
expressed in terms of distribution function, rather than in terms of probabilities. For B = (−∞,x],
the probability Q(B) = Q((−∞,x]) = G(x) is a distribution function. As a result, we can write
G(x)∼ B(cG0(x),c(1−G0(x))) and E(G(x)) = G0(x); Var(G(x)) = G0(x)(1−G0(x))/c+1.
The notation G ∼ DP(cG0) indicates that the DP prior is placed on the distribution G.

An often useful constructive definition of a DP is given by Sethuraman (1994).

Definition 2.5.4. Let Ui ∼ B(1,c), i = 1,2, . . . , and Vi ∼ G0, i = 1,2, . . . , be two independent
sequences of iid random variables. Define weights ωi = Ui and ωi = Ui ∏

i−1
j=1(1−U j), i > 1.

Then,

G = ∑
∞
k=1 ωkδ (Vk)∼ DP(c,G0),
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where δ (Vk) is a point mass at Vk.

However, limiting the prior to discrete distributions may not be appropriate for some
applications. A simple extension to remove the constraint of discrete measures is to use a
convoluted DP: X |F ∼ F; F(x) =

∫
f (x|θ)dG(θ); G ∼ DP(c,G0). This model is called DPM,

because the mixing is done by the DP. Posterior inference for DPM models is based on MCMC
posterior simulation. Efficient MCMC simulation for general DPM models is discussed, among
others, in Escobar (1994), Escobar and West (1995).
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CHAPTER

3
CLASSICAL INFERENCE FOR A
REPAIRABLE SYSTEM UNDER

INDEPENDENT COMPETING RISKS WITH
REPARAMETRIZED PLP

This chapter presents classical inference results for a specific scenario where we analyze
failure data from a single repairable system with independent competing risks. The results
presented here will be used in the following chapter for the purpose of comparing them with the
results of the objective Bayesian approach.

3.1 Motivating situation

This section begins with an illustration of a single repairable system data under recurrent
competing risks. We reanalyze the data extracted from Somboonsavatdee and Sen (2015b), which
consist of warranty claims of a automobile fleet (see Table 1). The data describe the cumulative
mileage at failure along with the associated cause of failure. The cars were observed from 0 to
a maximum of 3000 mileage (truncated time). The authors state that this data set is consistent
with the framework of a single repairable system under competing risks and they assume that the
failures for each mode are according to a NHPP with a intensity function PLP.

The recurrence of failure causes can be seen in Figure 4. The histogram (Figure 5)
simply shows the number of failures in each 250-mileage interval. Overall, there were 99 failures
attributed to failure cause 1, 118 to failure cause 2 and 155 attributed to failure cause 3.

Figure 5 suggests that as the mileage increases, the number of failures is decreasing. We
suppose that framework is that of a competing risks. This is done by considering a multicompo-
nent system connected in series.
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Table 1 – Automobile fleet warranty data.

mileage cause mileage cause mileage cause mileage cause mileage cause

1.21 1 30.00 1 174.00 1 514.00 2 879.00 3

1.48 2 38.00 3 175.00 2 515.00 3 887.00 1

1.53 2 40.05 2 182.00 2 519.00 2 888.26 3
...

...
...

...
...

...
...

...
...

...

1.66 2 40.35 3 189.00 2 520.00 1 888.91 3

500 1000 1500 2000 2500 3000
Mileage

1

2

3

Causes of failure

Figure 4 – Recurrence of failures by cause and mileage. The black points on the x-axis indicate the system
(fleet) failures.

0 500 1000 1500 2000 2500 3000
Mileage0

20

40

60

80

100

120
System failures

Figure 5 – Histogram of car failures. The black points on the x-axis indicate the system (fleet) failures;
the mileage axis is divided into 250-mileage interval.
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3.2 Modeling minimal repair under competing risks

Following Somboonsavatdee and Sen (2015b), let us assume the scenario where a
minimal repair is performed at each failure thereby resulting in the NHPP as the suitable model.
Moreover, we emphasize the use of the parametric form PLP for the intensity function of the
NHPP. In particular, we present throughout this thesis a modified version of the PLP model, as
given in Section 2.3.1.

In addition, we will use the definitions given in Section 2.3.1, with some modifications
in the notation of quantities of interest.

Notation:

j: cause of failure index, j = 1, . . . , p.

i: recurrent event index, i = 1, . . . ,n j.

(0,T ]: observation period of the data truncated at T.

δi = j: indicator of cause of failure, the j-th associated failure cause with i-th failure time.

n j = ∑
n
i=1 I(δi = j): number of failures due to cause- j.

n = ∑
p
j=1 n j: number of system failures.

λ j(t): cause-specific intensity function associated to cause- j.

Λ j(T ): cause-specific cumulative intensity associated to cause- j.

λ (t) = ∑
p
j=1 λ j(t): intensity function of the system.

Λ(T ) = ∑
p
j=1 Λ j(T ): system cumulative intensity function.

λ j(t) = β jα jtβ j−1T−β j : reparametrized PLP.

E[N j(T )] =
(

T
µ j

)β j
: cause-specific mean function.

We assume that repair times are negligible. Then, the observable quantities for a system
under competing risks and minimal repair can be summarized by Figure 6.

3.2.1 Maximum likelihood estimation for the reparametrized model

Recalling that causes of failure act independently and they are mutually exclusive, the
likelihood contribution from the j-th cause is

L j(θ |t,δ ) =
n

∏
i=1

[λ j(ti)]I(δi= j) exp[−Λ j(T )], (3.1)
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0 τ 𝑡1 𝑡2 𝑡3 𝑡N(τ) ⋯ 
𝛿1 = 2 𝛿2 = 1 𝛿3 = 1 𝛿N(τ) = 2 ⋯ 

MR MR MR MR 

Figure 6 – Occurrence of minimal repair (MR) at each failure, for a repairable system under competing
risks with two causes of failure (or components).

where I(δi = j) represents the indicator function of the cause j associated with i−th time
of failure and θ = (µ1,β1,µ2,β2, . . . ,µp,βp). Thus, the full likelihood function L(θ |t,δ ) =
∏

p
j=1 L j(θ |t,δ ) can be written as

L(θ |t,δ ) =
n

∏
i=1

p

∏
j=1

[λ j(ti)]I(δi= j) exp

[
−

p

∑
j=1

Λ j(T )

]
. (3.2)

To achieve the MLEs, firstly we considered the scenario where p = 2 and the shape
parameters are equal, i.e., β1 = β2. Then, we obtain the estimators with no restriction in the
shape parameters, i.e., β1 ̸= β2. Finally, we extend our analysis to p causes. Besides, hereafter
we will assume that the system is observed until time T and the model PLP is reparametrized in
terms of β j and

α j = E[N j(T )] = (T/µ j)
β j . (3.3)

MLEs for case p = 2 with β1 = β2

Denote by β the common value of β1 and β2. The full likelihood function considering
the proposed reparametrization is given by

L(θ |t,δ ) = β
n
(

T α
− 1

β

1

)−n1β (
T α

− 1
β

2

)−n2β

×[ n1

∏ ti
n2

∏ ti

]β−1

e−α1−α2

∝ γ(β |n+1,n/β̂ )
2

∏
j=1

γ(α j|n j+1,1),

(3.4)

where ∏
n j ti = ∏

n
i=1 tI(δi= j)

i , ∑
n
i=1 I(δi = j) = n j, n = ∑

p
j=1 n j, β̂ = n/∑

n
i=1 log(T/ti) is the MLE

of β and θ = (β ,α1,α2). The factorization in (3.4) implies that β and α j are orthogonal. A
detailed explanation to derive the likelihood (3.4) is described in Appendix A.

The log-likelihood `(θ |t,δ ) = log(L(θ |t,δ ) is given by

`(θ |t,δ ) = c+n log(β )−nβ log(T )+β

n

∑
i=1

log(ti)+

n1 log(α1)+n2 log(α2)−α1 −α2,

(3.5)
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where c =− log(∏n1 ti ∏
n2 ti).

By maximizing (3.5), the MLEs of β and α j are found to be

β̂
MLE =

n
∑

n
i=1 log(T/ti)

, (3.6)

and

α̂
MLE
j = n j. (3.7)

Note that the MLEs only exist if n j ≥ 1 for j = 1,2. Note also that α̂MLE is unbiased. Hereafter,
it is assumed that at least one failure from each cause should occur.

The Fisher information matrix is also presented as it is an important metric that has many
properties. It is also used to derive asymptotic intervals and it is a key tool in objective Bayesian
framework to achieve objective priors. The Fisher information matrix of θ is defined as

H(θ) =−Eθ

[
∂ 2`(θ |t,δ )

∂θ j∂θ j′

]
, j, j′ = 1, . . . , p. (3.8)

To compute the Fisher information matrix, note that the partial derivatives are

∂`(θ |t,δ )
∂β

= n/β −n log(T )+
n

∑
i=1

log(ti),

∂`(θ |t,δ )
∂α j

=
n j

α j
−1,

∂ 2`(θ |t,δ )
∂β 2 =−nβ

−2,

∂ 2`(θ |t,δ )
∂α2

j
=

−n j

α2
j

and

∂ 2`(θ |t,δ )
∂β∂α1

=
∂ 2`(θ |t,δ )

∂β∂α2
=

∂ 2`(θ |t,δ )
∂α1∂α2

= 0

(since we are considering time truncation, both n = ∑
p
j=1 n j and the n js are random). Hence, the

expectation of the second derivatives above are given by

−E
[

∂ 2`(θ |t,δ )
∂β 2

]
=

(α1 +α2)

β 2 ,

and

−E

[
∂ 2`(θ |t,δ )

∂α2
j

]
=

1
α j

·
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It follows that the Fisher information matrix is diagonal and given by

H(θ) =


(α1 +α2)/β 2 0 0

0 1/α1 0

0 0 1/α2

 , (3.9)

and the asymptotic covariance matrix of θ̂ is Var(θ̂) ≈ diag(β 2/(α1 +α2),α1,α2).

To build confidence intervals for θ we can consider the asymptotic theory where
√

n(θ̂ n−
θ)

d−→ Np(0,H−1(θ)) when n → ∞. The Delta method may be necessary when there is interest
in a function that depends on θ . For the latter, the reader is referred to Somboonsavatdee and
Sen (2015b) for a detailed discussion. See Bain and Englehardt (1991) and Lehmann (2004) for
more technical details.

MLEs for case p = 2 with β1 ̸= β2

For the case of the different shape parameters, β1 ̸= β2, the likelihood function is given
by

L(θ |t,δ ) = c
[
β

n1
1 e−n1β1/β̂1

][
β

n2
2 e−n2β2/β̂2

]
×[

e−α1α
n1
1
][

e−α2α
n2
2
]

∝ γ(β1|n1 +1,n1/β̂1)γ(β2|n2 +1,n2/β̂2)×

γ(α1|n1 +1,1)γ(α2|n2 +1,1)

∝

2

∏
j=1

γ(β j|n j +1,n j/β̂ j)γ(α j|n j +1,1),

(3.10)

where θ = (β1,β2,α1,α2), c = (∏n1 ti ∏
n2 ti)

−1 and β̂ j is the MLE of β j given below.

The MLEs have explicit solutions

β̂
MLE
j =

n j

∑
n
i=1 log(T/ti)I(δi = j)

, (3.11)

and
α̂

MLE
j = n j j = 1,2. (3.12)

Since E[N j(T )] = α j, for j = 1,2, the Fisher information matrix is

H(θ) =



α1β
−2
1 0 0 0

0 α2β
−2
2 0 0

0 0 α
−1
1 0

0 0 0 α
−1
2


. (3.13)
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MLEs for case p > 2, at least two β js are different

The likelihood function in this case is

L(θ |t,δ ) ∝

p

∏
j=1

γ(β j|n j +1,n j/β̂ j)γ(α j|n j +1,1), (3.14)

where θ = (β1, . . . ,βp,α1, . . . ,αp).

The MLEs for p causes are the same as (3.11) and (3.12), but for j = 1, . . . p. The Fisher
information matrix is

H(θ) =



α1β
−2
1 0 . . . . . . . . . 0

0 . . . 0 . . . . . . 0
... 0 αpβ−2

p 0 . . . 0
...

... 0 α
−1
1 0 0

...
...

... 0 . . . 0
0 . . . 0 . . . 0 α−1

p


. (3.15)

The MLEs are asymptotically normally distributed with a multivarite normal distribution
given by

θ̂
MLE ∼ Np[θ ,H−1(θ)] for n → ∞,

where θ̂
MLE

= (β̂ MLE
1 , . . . , β̂ MLE

p , α̂MLE
1 , . . . , α̂MLE

p ) .

3.3 A real data application

We apply our proposed methodology to real-data example described in Section 3.1, under
the assumption of minimal repair performed at each failure and considering the situation where
such a system was monitored from 0 to a maximum of 3000 mileage (time truncated case).

Following Somboonsavatdee and Sen (2015b), we assessed the adequacy of the PLP for
each cause of failure with the help of a Duane plot; see Rigdon and Basu (2000). Figure 7 shows
plots of the logarithm of number of failures N j(t) against the logarithm of accumulated mileage
at failure, for j = 1,2,3. Since the three plots exhibit reasonable linearity, they suggest that the
PLP model is adequate.

The MLEs are presented in Table 2, along with the standard deviation (SD) and 95%
confidence interval (CI) .

The results suggest that the reliability of all components are improving, since β̂1 = 0.329,
β̂2 = 0.451 and β̂3 = 0.749 are smaller than 1. We remark that this information can provide
important insights to the maintenance crew.
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Figure 7 – Duane plots: cause 1 (blue), cause 2 (red), cause 3 (black).

Table 2 – Point and interval estimates for the PLP parameters for the warranty claims data.

Parameter MLE SD 95% CI

β1 0.329 0.033 (0.264, 0.393)

β2 0.451 0.042 (0.370, 0.533)

β3 0.749 0.060 (0.631, 0.867)

α1 99 9.950 (79.498, 118.502)

α2 118 10.863 (96.709, 139.291)

α3 155 12.450 (130.598, 179.402)

3.4 Conclusions
In this chapter, we provided a study of classical statistical inference for failure data arising

from a single repairable system under independent competing risks (a complex multicomponent
system where the components are connected in series). At failures, we use the minimal repair
concept. In particular, we presented the parametric framework of a PLP reparametrized in terms
of orthogonal parameters. Here, our major concern lies on the inference of the model parameters.

The insights gained from this study may be of assistance to evaluate progress in develop-
ing the reliability of a repairable system. Technically, reliability growth is an iterative process
of testing, identifying problems, analyzing their causes, designing solutions, and implementing
them in the system being tested (RIGDON; BASU, 2000; HØYLAND; RAUSAND, 2009;
TODINOV, 2015).

It is worth mentioning that some results of this chapter will be used in Chapter 4, and
they will be used in an extensive simulation study in the mentioned chapter.
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CHAPTER

4
OBJECTIVE BAYESIAN INFERENCE FOR A

REPAIRABLE SYSTEM SUBJECT TO
COMPETING RISKS

In this chapter, we discuss inferential procedures based on an objective Bayesian approach
for analyzing failures from a single repairable system under independent competing risks. We
examined the scenario where a minimal repair is performed at each failure, thereby resulting
in that each failure mode appropriately follows a power-law intensity. Besides, we derived two
objective priors known as Jeffreys prior and reference prior. Moreover, posterior distributions
based on these priors will be obtained in order to find advantageous properties. We prove
that these posterior distributions are proper and are also matching priors. In addition, in some
cases, unbiased Bayesian estimators of simple closed-form expressions are derived. To the
best of our knowledge, no studies have investigated the referred setting based on objective
Bayesian reasoning. As Somboonsavatdee and Sen (2015b) state: "... However, no systematic

treatment of statistical inference of PLP subject to multiple failure modes has been documented

in the literature.". Therefore, the main message of this part is that one can contribute with the
advantages of the objective Bayesian philosophy in order to fill this gap.

4.1 Motivating data

This section begins with a real example of a single repairable system data under a
recurrent competing risks framework in order to motivate our proposed methodology.

Table 3 shows failure times and causes for a sugarcane harvester during a crop. This
machine harvests an average of 20 tons of sugarcane per hour, and its malfunction can lead to
significant losses. It can fail either due to malfunction of electrical components, the engine or the
elevator, which are denoted as cause 1, 2 and 3, respectively, in Table 3. There are 10, 24 and 14



58 Chapter 4. Objective Bayesian inference for a repairable system subject to competing risks

Table 3 – Failure data for a sugarcane harvester.

Time Cause Time Cause Time Cause Time Cause
4.987 1 7.374 1 15.716 1 15.850 2

20.776 2 27.476 3 29.913 1 42.747 1
47.774 2 52.722 2 58.501 2 65.258 1
71.590 2 79.108 2 79.688 1 79.794 3
80.886 3 85.526 2 91.878 2 93.541 3
94.209 3 96.234 2 101.606 3 103.567 2

117.981 2 120.442 1 120.769 3 123.322 3
124.158 2 126.097 2 137.071 2 142.037 3
150.342 2 150.467 2 161.743 2 161.950 2
162.399 3 185.381 1 193.435 3 205.935 1
206.310 2 210.767 3 212.982 2 216.284 2
219.019 2 222.831 2 233.826 3 234.641 3

failures for each of these causes. During the harvest time that consists of 256 days, the machine
operates on a 7× 24 regime. Therefore, we assume that each repair is minimal (i.e. it leaves
the machine at precisely the same condition it was in before it failed) and that data collection
is time truncated at T = 256 days. Figure 8 shows the recurrent failure process of the machine.
Note that this system had very few failures. It seems possible that this occurred due to a highly

50 100 150 200
Time

1

2

3

Causes of failure

Figure 8 – Recurrence of failures by cause and time. The black points on the x-axis indicate the system
(sugarcane harvester) failures.

reliable system. In this case, one knows that the frequentist paradigm has serious drawbacks
with small sample sizes. For this reason, we propose an objective Bayesian approach in order to
obtain efficient estimates for model parameters even for small sample sizes.

4.1.1 Objective Bayesian inference for the model

This subsection will rely on the same scenarios (the two cases: equal and unequal shape
parameters) described in Chapter 3, as well as notation, MLEs and the Fisher information
matrix. We will provide the Jeffreys and overall reference prior distributions for the parameters
of the model for both these cases aforementioned. Moreover, we include a discussion about
good properties of the resulting posterior distributions related to unbiased Bayesian estimators
and accurate credibility intervals. Furthermore, we use the following notation conventions:
θ̂ MAP = (α̂MAP

j , β̂ MAP
j ) for the MAP estimators and θ̂ MEAN = (α̂MEAN

j , β̂ MEAN
j ) for the posterior

mean estimators, j = 1,2, . . . , p.



4.1. Motivating data 59

Case p = 2, β1 = β2

Jeffreys Prior

Let β be the common value of β1 and β2. It follows from (3.9) that the Jeffreys prior
distribution is given by

π
J(θ) ∝

1
β

√
α1 +α2

α1α2
. (4.1)

Proposition 4.1.1. The Jeffreys prior (4.1) is a matching prior for β .

Proof. Let β be the parameter of interest and denote by ζ = (α1,α2) the nuisance parameter.
First, since the information matrix is diagonal, the Jeffreys prior can be written in the form
(2.27).

The joint posterior distribution for β and α j produced by Jeffreys prior is proportional to
the product of the likelihood function (3.4) and the prior distribution (4.1), resulting in

π
J(β ,α1,α2|t,δ ) ∝

√
α1 +α2

[
β

n−1e−nβ/β̂

]
×[

α
n1−1/2
1 e−α1

][
α

n2−1/2
2 e−α2

]
.

(4.2)

The posterior (4.2) does not have a closed-form and this implies that it may be improper,
which is undesirable. Moreover, to obtain the necessary credible intervals, we would have to
resort to Monte Carlo methods.

Reference prior

From (3.9), note that, if in Theorem 2.5.1 we take f1(β ) = β−2, g1(α1,α2) = (α1 +α2),
f2(α1) = α

−1
1 , g2(β ,α2) = 1, f3(α2) = α

−1
2 and g3(β ,α1) = 1, the overall reference prior is

π
R(β ,α) ∝

1
β

√
1

α1α2
. (4.3)

Proposition 4.1.2. The overall reference prior (4.3) is a matching prior for all the parameters.

Proof. If β is the parameter of interest and ζ = (α1,α2), then the proof is analogous to that for
the Jeffreys’ prior above but considering g(ζ ) = 1√

(α1+α2)α1α2
. If α1 is the parameter of interest

and ζ = (β ,α2) are the nuisance parameters. Then, as Hα1,α1(α1,ζ ) =
1

α1
and g(ζ ) = 1

β
√

α2
.

Hence, the overall reference prior (4.3) can be written in the form (2.27). The case that α2 is the
parameter of interest is similar.
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Thus, the joint posterior distribution for (β ,α1,α2) is proportional to the product of the
likelihood function (3.4) and the prior distribution (4.3), resulting in

π
R(β ,α1,α2|t,δ ) ∝

[
β

n−1e−nβ/β̂

][
α

n1−1/2
1 e−α1

]
×[

α
n2−1/2
2 e−α2

]
,

(4.4)

which can be recognized as

π
R(β ,α1,α2|t,δ ) ∝ γ(β |n,n/β̂ )

2

∏
j=1

γ(α j|n j +1/2,1), (4.5)

which is the product of independent gamma densities and β̂ as given earlier in (3.6). Note that if
there is at least one failure for each cause, this posterior is proper. Then, the marginal posterior
distributions are given by

π
R(β |t,δ ) ∝

[
β

n−1e−nβ/β̂

]
∼ γ(β |n,n/β̂ ) (4.6)

and
π

R(α j|t,δ ) ∝

[
α

n j−1/2
j e−α j

]
∼ γ(α j|n j +1/2,1), (4.7)

for j = 1,2.

From (4.6) and (4.7), one can obtain the Bayesian estimators and the CIs for β and α js,
respectively. Regarding β , we calculated the MAP estimator using (2.28) and (4.6), which is
given by

β̂
MAP =

(
n−1

n

)
β̂

MLE . (4.8)

A detailed explanation to derive (4.8) is discussed in Appendix A. Next, the Bayesian estimator
using the posterior mean for β is given by

E(β |t,δ ) = β̂
MEAN = β̂

MLE . (4.9)

Note that the estimators (4.8) and (4.9) present simple closed-form expressions, but just the MAP
estimator is unbiased.

Now, with respect to α j (for j = 1,2), the Bayesian estimators are obtained from (4.7).
Using also (2.28), we calculated the MAP estimator, which is given by

α̂
MAP
j = n j −

1
2
. (4.10)

The posterior mean is given by

E(α j|t,δ ) = α̂
MEAN
j = n j +

1
2
. (4.11)

In this case, the estimators (4.10) and (4.11) also present simple closed-form expressions,
however, are biased.
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Credibility intervals for β and α js can also be obtained directly from (4.6) and (4.7),
respectively, considering the 2.5% and 97.5% percentiles posteriors. Note that, as was proved
in Proposition 4.1.2, the marginal posterior intervals have accurate frequentist coverage for all
parameters.

Case p=2, β1 ̸= β2

Jeffreys Prior

It follows from (3.13) that the Jeffreys prior distribution is given by

π
J(θ) ∝

1
β1β2

. (4.12)

Proposition 4.1.3. The Jeffreys prior (4.12) is a matching prior for β1 and β2.

Proof. Let β1 be the parameter of interest and λ = (β2,α1,α2) be the nuisance parameters. Since
the information matrix is diagonal and Hβ1,β1(β1,λ ) =

α1

β 2
1

, taking g(λ ) = 1
β2
√

α1
, (4.12) can be

written in the form (2.27). The case when β2 is the parameter of interest is similar.

The joint posterior distribution obtained using the Jeffreys prior (4.12) and the likelihood
function (3.10) is given by

π
J(θ |t,δ ) ∝

2

∏
j=1

γ(β j|n j,n j/β̂ j)γ(α j|n j +1,1), (4.13)

where β̂ j is the same as given in (3.11). From this it follows that the marginal posterior distribu-
tions for β j and α j ( j = 1,2) are given by

π
J(β j|t,δ ) ∝ γ(β j|n j,n j/β̂ j) (4.14)

and
π

J(α j|t,δ ) ∝ γ(α j|n j +1,1). (4.15)

Thus, the Bayesian estimators for β j using the MAP and the posterior mean are given, respectively,
by

β̂
MAP
j =

(
n j −1

n j

)
β̂

MLE
j (4.16)

and
E(β j|t,δ ) = β̂

MEAN
j = β̂

MLE
j . (4.17)

Note that these estimators have simple closed-form expressions and only the MAP estimator is
unbiased.

In terms of α j, the Bayesian estimators are given by

α̂
MAP
j = n j (4.18)
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and
E(α j|t,δ ) = α̂

MEAN
j = n j +1. (4.19)

In this case, the estimators (4.18) and (4.19) present closed-form expressions and only the MAP
estimator is unbiased.

Credibility intervals for β js and α js are obtained directly from (4.14) and (4.15), re-
spectively, considering the 2.5% and 97.5% percentiles posteriors. Note that, as was proved in
Proposition 4.1.3, the marginal posterior intervals have accurate frequentist coverage only for
β js.

Reference prior

On the other hand, considering (3.13) and Theorem 2.5.1, the overall prior distribution is

π
R(θ) ∝

1
β1β2

1
√

α1α2
· (4.20)

Proposition 4.1.4. The overall reference prior (4.20) is a matching prior for all parameters.

Proof. The proofs for β1 and β2 follow the same steps as in the proof of Proposition 4.1.3. The
cases of α1 and of α2 follow directly from Proposition 4.1.2.

From the product of the likelihood function (3.10) and the overall prior distribution
(4.20), the joint reference posterior distribution for θ is given by

π
R(θ |t,δ ) ∝

2

∏
j=1

γ(β j|n j,n j/β̂ j)γ(α j|n j +
1
2 ,1). (4.21)

Thus, the marginal posterior distributions for β j and α j are given, respectively, by

π
R(β j|t,δ ) ∝ γ(β j|n j,n j/β̂ j), (4.22)

and
π

R(α j|t,δ ) ∝ γ(α j|n j +
1
2 ,1). (4.23)

Therefore, the Bayesian estimators for β j using the MAP and the posterior mean are given,
respectively, by

β̂
MAP
j =

(
n j −1

n j

)
β̂

MLE
j (4.24)

and
E(β j|t,δ ) = β̂

MEAN
j = β̂

MLE
j . (4.25)

Note that these estimators have closed-form expressions and only MAP estimator is unbiased.

With regard to α j, the Bayesian estimators are given by

α̂
MAP
j = n j −

1
2

(4.26)
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and
E(α j|t,δ ) = α̂

MEAN
j = n j +

1
2
. (4.27)

In this case, the estimators (4.26) and (4.27) present simple closed-form expressions, however,
are biased.

Regarding CIs for β js and α js using the overall reference prior (4.20), note that, as was
proved in Proposition 4.1.4, the marginal posterior intervals have accurate frequentist coverage
for all parameters.

The following is a brief description of the extended model for p > 2. As the results are
the same as those we just presented, we will omit some comments.

Case p > 2, at least two β js are different

Jeffreys prior

From (3.15) the Jeffreys’ prior is given by

π
J(θ) ∝

p

∏
j=1

1
β j

, (4.28)

which gives the posterior distribution

π
J(θ |t,δ ) ∝

p

∏
j=1

γ(β j|n j,n j/β̂ j)γ(α j|n j +1,1). (4.29)

To prove that (4.28) is a matching prior only for β j, j = 1, . . . , p, we can consider the
same steps of the proof of Proposition 4.1.3.

The Bayes estimators for β j using the MAP and the posterior mean are the same as given
in (4.16) and (4.17). In terms of α j, the Bayesian estimators are the same as given in (4.18) and
(4.19).

Reference prior

The overall reference prior using Theorem 2.5.1 and (3.15) is given by

π
R(θ) ∝

p

∏
j=1

β
−1
j α

−1/2
j . (4.30)

Proposition 4.1.5. The overall reference prior (4.30) is a matching prior for all parameters.

Proof. The proof is essentially the same as that of Proposition 4.1.4.

The joint reference posterior distribution for θ , produced by the overall prior distribution,
is proportional to the product of (3.14) and (4.30), resulting in

π
R(θ |t,δ ) ∝

p

∏
j=1

γ(β j|n j,n j/β̂ j)γ(α j|n j +
1
2 ,1). (4.31)
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As discussed above, the Bayes estimators for β j using the MAP and the posterior mean
are the same as given in (4.24) and (4.25). With respect to α j, the Bayesian estimators are the
same as given in (4.26) and (4.27).

4.2 Simulation study

In this section, we present a simulation study to compare the Bayes estimators and the
MLEs (from Chapter 3). The simulation design proposed is consistent with the setup described
so far. The R software has been used for simulation (R Core Team, 2016).

We assume that there is a single system observed on the fixed time interval (0,T ], with
T =20. For ease of presentation, we consider two and three independent causes of failure with
distinct parameters for each cause θ = (α j,β j), for j = 1,2,3. The parameter values were
selected in order to obtain different sample sizes. Besides, among the many parameter choices
made, we provide details of the findings for five scenarios due to the lack of space:

∙ Scenario 1: β1 = 1.2,α1 = 18.21,β2 = 0.6,α2 = 16.28;

∙ Scenario 2: β1 = 0.25,α1 = 4.23,β2 = 1.12,α2 = 6.75;

∙ Scenario 3: β1 = 1.5,α1 = 44.72,β2 = 0.7,α2 = 16.28, β3 = 0.6,α3 = 14.50;

∙ Scenario 4: β1 = 1.5,α1 = 26.83,β2 = 0.9,α2 = 44.46, β3 = 1.2,α3 = 29.12;

∙ Scenario 5: β1 = 1.2,α1 = 7.28,β2 = 0.7,α2 = 16.28, β3 = 1.0,α3 = 8.6.

For each setup of parameters, we obtain the mean number of failures (18.21, 16.28), (4.23, 6.75),
(44.72, 16.28, 14.50), (26.83, 44.46, 29.12) and (7.28, 16.28, 8.6), respectively. In the first two
scenarios, the setting is a two-component system where each component supplies almost the
same mean number of failures. On the other hand, the last three scenarios refer to the case where
the failures of one component predominate more than other system’s components. It is worth
noting that the obtained results are similar for other parameter combinations and can be extended
to more causes, i.e., p > 3.

Using the fact that the causes are independent and also using the known results from the
literature about NHPPs (RIGDON; BASU, 2000), in each Monte Carlo replication the failure
times and indicators of the cause of failure were generated as shown in Algorithm 1.

We used three criteria to evaluate the estimators’ behavior. (i) The bias given by Bias
θ̂i
=

1
M ∑

M
j=1 θ̂i, j −θi; (ii) the mean absolute error given by MAE

θ̂i
= 1

M ∑
M
j=1 |θ̂i, j −θi| and (iii) the

mean square error given by MSE
θ̂i
= ∑

M
j=1

(θ̂i, j−θi)
2

M , where M is the number of estimates (i.e. the
Monte Carlo size), which we take M = 50,000 throughout the section, and θ = (θ1, . . . ,θp) is
the vector of parameters.
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Algorithm 1 – Algorithm for generating random data from a single system with PLPs under
competing risks.

1: For each cause of failure, generate random numbers n j ∼ Poisson(Λ j) ( j = 1, . . . , p).

2: For each cause of failure, let the failure times be t1, j, . . . , tn j, j, where ti, j = T U1/β j
i, j and

U1, j, . . . ,Un j, j are the order statistics of a size n j random sample from the standard uniform
distribution.

3: Finally, to obtain the data in the form (ti,δi), let the tis be the set of ordered failure times
and set δi equal to j according to the corresponding cause of failure (i.e., set δi = 1 if
ti = th,1 for some h or δi = j depending on the cause of failure).

Additionally, for the objective Bayesian credible intervals and the asymptotic maximum
likelihood based confidence intervals for β1, β2, α1 and α2, we computed the 95% coverage
probability, denoted by CP95%. Good estimators should have Bias, MAE and MSE close to zero
and adequate intervals should be short while showing CP95% close to 0.95. The Bias and MSE
are widely used to measure the performance evaluation (SOMBOONSAVATDEE; SEN, 2015b),
while some recent studies have put forward considering the MAE as well; see for instance,
Willmott and Matsuura (2005).

The Bayes MAP estimators for β j and α j using the Jeffreys prior (MAP Jeffreys) are
computed from (4.16) and (4.18). While the Bayes MAP estimators obtained using the reference
prior (MAP Reference) are computed from (4.24) and (4.26). In these cases, no MCMC was
needed as the estimators have closed-form expressions. Additionally, we consider MCMC
techniques, as well as the posterior mean since this estimator is obtained when considering
squared error loss or Kullback-Leibler as loss in the risk. Hence, the estimators called Mean
Jeffreys and Mean Reference were obtained by considering the posterior mean of θ using the
Jeffreys and reference prior and MCMC techniques. Since the marginal distributions for the
parameters are gamma distributions, we can sample directly from the target distribution. In this
sense, for each simulated data set, 10,000 iterations were performed using MCMC methods.
These values were used to compute the posterior means and the credibility intervals obtained
by the 2.5% and 97.5% quantile values. We also considered confidence intervals based on the
CMLE (2.12) in which the asymptotic variances are estimated from the Fisher information
matrix, similar to what is done to obtain the maximum likelihood (ML) intervals.

Tables 4 - 7 present the results of our simulation study. It is important to point out that, in
Table 4 the estimators for β j and α j, j = 1,2, are the same for the Jeffreys prior and the CMLE.
However, they are different when computing the credibility/confidence intervals and the CPs.
The CIs using the Jeffreys prior are obtained from the quantile of gamma distributions, the CIs
of the CMLE are obtained from the asymptotic theory as discussed above.

We note, from Tables 4 and 6, that the MAP Jeffreys estimator returned improved



66 Chapter 4. Objective Bayesian inference for a repairable system subject to competing risks

Table 4 – The Bias, MAE, MSE from the estimates considering different values of θ , with M = 50,000
simulated samples using the different estimation methods.

Scenario 1 Scenario 2
Parameter Method Bias MAE MSE Bias MAE MSE

MLE 0.0760 0.2493 0.1180 0.1013 0.1587 0.2204
MAP Jef. 0.0011 0.2366 0.0977 0.0009 0.1170 0.0692

β1 MAP Ref. 0.0011 0.2366 0.0977 0.0009 0.1170 0.0692
Mean Jef. 0.0760 0.2493 0.1180 0.1013 0.1587 0.2198
Mean Ref. 0.1509 0.2758 0.1515 0.2017 0.2299 0.4808

MLE 0.0608 0.1616 0.0581 0.2337 0.4556 0.8856
MAP Jef. -0.0006 0.1484 0.0418 0.0012 0.3822 0.3913

β2 MAP Ref. -0.0006 0.1484 0.0418 0.0012 0.3822 0.3913
Mean Jef. 0.0608 0.1616 0.0581 0.2337 0.4557 0.8883
Mean Ref. 0.1222 0.1887 0.0857 0.4662 0.5928 1.7400

MLE -0.0020 3.4207 18.3446 0.2874 1.4991 3.6142
MAP Jef. -0.0020 3.4207 18.3446 0.2874 1.4991 3.6142

α1 MAP Ref. -0.5020 3.4612 18.5966 -0.2126 1.5464 3.5769
Mean Jef. 0.9982 3.4861 19.3437 1.2873 1.7248 5.1892
Mean Ref. 0.4979 3.4346 18.5932 0.7875 1.5644 4.1525

MLE -0.0263 2.7671 12.1555 0.0522 2.0908 6.8925
MAP Jef. -0.0263 2.7671 12.1555 0.0522 2.0908 6.8925

α2 MAP Ref. -0.5263 2.8380 12.4318 -0.4478 2.1612 7.0903
Mean Jef. 0.9735 2.8404 13.1046 1.0522 2.2040 7.9984
Mean Ref. 0.4739 2.7958 12.3834 0.5521 2.1226 7.1953

estimates when compared with the MLE across the different scenarios, since the Bias, MAE
and MSE are closer to zero. This Bayes estimator also returned better results for both β j and α j

parameters when compared to the posterior mean of the Jeffreys and reference priors obtained
through MCMC, specially for α j. These results are expected since the marginal posterior
distribution with Jeffreys prior is given by γ(α j|n j + 1,1), therefore posterior mean will be
αMEAN

j = n j + 1 and the expected bias will be 1 since n j is an unbiased estimator for α j.
Considering the marginal posterior distributions with reference prior we have the marginals
given by γ(α j|n j +

1
2 ,1), then the expected bias will be 0.5 using the posterior mean and −0.5

when we considered the MAP as an estimator. In fact, from our simulation study we observed
that the bias for α js were close to theoretical bias.

Regarding the coverage probabilities in Tables 5 and 7, we note that for both the MLE
and the CMLE CIs, the CPs are far from the assumed levels, especially for the scale parameters
α j. On the other hand, the CIs of the Bayes MAP estimators using the reference prior returned
accurate coverage probabilities when compared with the other estimators. In some cases the
values for the CPs are very close to the assumed levels and some of the other methods may have
a closer value for a specific value of θ . However, taking the average of the CPs the reference
prior was the one that returned closer values of 0.95 when compared with the other estimators. It
is worth mentioning that the MAP Jeffreys estimator returned CIs very close to the ones obtained
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Table 5 – Coverage probabilities from the estimates considering different scenarios, with M = 50,000
simulated samples and different estimation methods.

θ Method Scenario 1 Scenario 2
MLE 0.9532 0.9531

CMLE 0.9279 0.8268
β1 MAP Jef. 0.9490 0.9501

MAP Ref. 0.9490 0.9501
Mean Jef. 0.9489 0.9499
Mean Ref. 0.9394 0.9071

MLE 0.9545 0.9556
CMLE 0.9161 0.8796

β2 MAP Jef. 0.9501 0.9496
MAP Ref. 0.9501 0.9496
Mean Jef. 0.9497 0.9490
Mean Ref. 0.9373 0.9222

MLE 0.9366 0.9958
CMLE 0.9366 0.9958

α1 MAP Jef. 0.9535 0.9697
MAP Ref. 0.9515 0.9697
Mean Jef. 0.9526 0.9693
Mean Ref. 0.9460 0.9697

MLE 0.9476 0.9075
CMLE 0.9476 0.9075

α2 MAP Jef. 0.9402 0.9551
MAP Ref. 0.9565 0.9518
Mean Jef. 0.9408 0.9551
Mean Ref. 0.9564 0.9518

using the reference prior. In short, considering the MAP with the reference prior we obtained
accurate confidence intervals but the obtained punctual estimates have a systematic Bias which
is undesirable. On the other hand, considering the MAP Jeffreys estimator, we obtained unbiased
estimators for the parameters but only with matching priors for β j. Since our simulation study
showed that the CIs of the MAP using the Jeffreys prior are also satisfactory and taking into
the account the bias and CPs, we suggest the use of the closed-form MAP estimator with the
Jeffreys prior to perform inference on the unknown parameters of the PLP model with competing
risks. Notice that while we suggested using the MAP Jeffreys estimator, some concerns must
be taken into account when selecting one of the two proposed MAP estimators. If the analyst is
only interested in interval estimates, the MAP reference estimator should be used.
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Table 7 – Coverage probabilities from the estimates considering different scenarios, with M = 50,000
simulated samples and different estimation methods.

θ Method Scenario 3 Scenario 4 Scenario 5
MLE 0.9503 0.9522 0.9559

CMLE 0.9409 0.9359 0.8843
β1 MAP Jef. 0.9493 0.9494 0.9504

MAP Ref. 0.9493 0.9494 0.9504
Mean Jef. 0.9491 0.9492 0.9502
Mean Ref. 0.9471 0.9429 0.9247

MLE 0.9558 0.9502 0.9536
CMLE 0.9274 0.9399 0.9261

β2 MAP Jef. 0.9524 0.9489 0.9497
MAP Ref. 0.9524 0.9489 0.9497
Mean Jef. 0.9521 0.9491 0.9493
Mean Ref. 0.9411 0.9465 0.9391

MLE 0.9565 0.9529 0.9549
CMLE 0.8785 0.9398 0.8962

β3 MAP Jef. 0.9503 0.9508 0.9498
MAP Ref. 0.9503 0.9508 0.9498
Mean Jef. 0.9500 0.9507 0.9493
Mean Ref. 0.9210 0.9461 0.9285

MLE 0.9417 0.9413 0.9290
CMLE 0.9417 0.9413 0.9290

α1 MAP Jef. 0.9491 0.9466 0.9456
MAP Ref. 0.9484 0.9466 0.9456
Mean Jef. 0.9500 0.9505 0.9506
Mean Ref. 0.9499 0.9472 0.9535

MLE 0.9225 0.9387 0.9232
CMLE 0.9225 0.9387 0.9232

α2 MAP Jef. 0.9533 0.9478 0.9529
MAP Ref. 0.9533 0.9478 0.9529
Mean Jef. 0.9505 0.9478 0.9504
Mean Ref. 0.9511 0.9494 0.9505

MLE 0.8976 0.9444 0.9247
CMLE 0.8976 0.9444 0.9247

α3 MAP Jef. 0.9630 0.9407 0.9633
MAP Ref. 0.9528 0.9516 0.9442
Mean Jef. 0.9630 0.9450 0.9626
Mean Ref. 0.9481 0.9510 0.9442

4.3 A real data application

We illustrate the proposed methodology by applying it to the real-world reliability dataset
described in Section 4.1. This dataset is related to a sugarcane harvester machine. There were 10
failures attributed to cause 1, 24 to cause 2 and 14 to cause 3. Figure 9 shows a histogram of
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the evolution of the number of failures of the sugarcane harvester in an observation window of
approximately 8 months. The harvester processes 20 tons of cane per hour, and with the purpose
of avoiding losses, a corrective action (minimal repair) is performed at each failure to make the
machine operational again. Although the machine is used intensively, very few failures occur.

0 50 100 150 200
Time0

1

2

3

4

5

6

System failures

Figure 9 – Histogram of sugarcane harvester failures. The black points on the x-axis indicates the system
(sugarcane harvester) failures; the time axis is divided into 20-day intervals.

Following Somboonsavatdee and Sen (2015b), we assessed the adequacy of the PLP
for each cause of failure with the help of a Duane plot; see Rigdon and Basu (2000). Figure 10
shows plots of the logarithm of number of failures N j(t) against the logarithm of accumulated
mileage at failure, for j = 1,2,3. Since the three plots exhibit reasonable linearity, they suggest
that the PLP model is adequate.

We summarize here the results concerning the objective Bayesian inference using the
Jeffreys prior (4.28). Table 8 shows the Bayes estimates, as well as the corresponding marginal
posterior SD and CI. We remark that this posterior summary does not require a stochastic
simulation to be obtained. For instance, the credible intervals can be calculated directly from the
posterior quantiles from (4.29).

Table 8 – Bayesian estimates for sugarcane harvester machine dataset.

Parameter Bayes SD CI (95%)

β1 0.499 0.175 [0.266 ; 0.947]

β2 1.038 0.221 [0.694 ; 1.558]

β3 1.220 0.351 [0.718 ; 2.086]

α1 10.000 3.317 [5.491 ; 18.390]

α2 24.000 5.000 [16.179 ; 35.710]

α3 14.000 3.873 [8.395 ; 23.490]
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Figure 10 – Duane plots: Cause of failure 1 depicted by blue points; Cause of failure 2 depicted by red
points; Cause of failure 3 depicted by black points.

Considering the point estimates of Table 8, the results suggest that the reliability of
the electrical components (cause 1) is improving over time, since the corresponding β̂1 =

0.499 < 1, while the reliability of the elevator is decreasing (β̂3 = 1.220 > 1). The engine shows
an intermediate behavior since β̂2 = 1.038 is slightly greater than one. We remark that this
information can provide important insights into the maintenance crew.

4.4 Conclusions

In this chapter, we discussed inferential procedures based on an objective Bayesian
approach for analyzing failures from a repairable system under competing risks. Besides, we
assume that the multiple causes of failure are stochastically independent of each other. The
competing risks approach may be advantageous in the engineering field because it may lead to a
better understanding of the various causes of failure of a system, and hence design strategies to
improve the overall reliability.

Since the Bayesian methods have been not well explored in this context, we proposed
Bayesian estimators for the parameters of the failure intensity assuming the PLP model. We de-
rived two objective priors known as Jeffreys prior and reference prior. The obtained posteriors are
proper distributions and have interesting properties, such as one-to-one invariance and consistent
marginalization. In addition, the Bayes MAP estimates have closed-form expressions. The MAP
Jeffreys estimator is naturally unbiased for all the parameters, while the MAP Reference returned
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marginal posterior intervals with accurate coverage in the frequentist sense. A simulation study
suggests confirming the theoretical results showing that the MAP Jeffreys estimator behaves
consistently better than the other estimators across the different scenarios, since the Bias, MAE
and MSE are closer to zero. On the other hand, the CIs of the Bayes MAP estimators using
the reference prior returned improved coverage probabilities when compared with the other
estimators. From a simulation study, we observed that the CIs of the MAP using the Jeffreys
prior are also satisfactory and taking into the account the Bias and CPs, we suggest using such
an estimator to perform inference on the parameters of the model.

The importance and originality of this study come from using orthogonal reparametriza-
tion that enabled us to obtain posterior distributions that return accurate estimates concerning
bias and credibility intervals for the parameters of the PLP intensities under competing risks.
The proposed methodology was applied for an original dataset regarding failures of a sugarcane
harvester classified according to three possible causes. Since the data contain few failures, classi-
cal CIs based on the asymptotic ML theory could be inadequate in this case. Although in the
application we considered three causes of failure, the proposed methodology can be applied to
multiple causes.

Our findings can be applied in real data sets based on following assumptions. To consider
a single multi-component repairable system whose components (causes of failures) are arranged
in series. The causes of failures must be independent of each other. The recurrent data structure
(failure history) should be based on cause-specific intensity functions with PLP. The data
sampling scheme (system observational period) is the time truncated case. The dataset should be
structured as Tables 1 and 3, containing: time at failure and the exact cause of failure (two columns
is enough). It is worth pointing out that it is not feasible to consider the issue of dependence
between components in the context proposed in this chapter because of the inestimability of the
frailty parameter in the lack of multiple systems; see Somboonsavatdee and Sen (2015b).

There may be some interesting extensions of this work. One can consider that more
significant challenge could be to investigate data where the cause of failure is unknown (masked
failure data). Another possible extension of this work is to consider different truncation times.
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CHAPTER

5
MULTIPLE REPAIRABLE SYSTEMS UNDER

DEPENDENT COMPETING RISKS WITH
NONPARAMETRIC FRAILTY

In this chapter, we propose a model to analyze data arising from multiple repairable
systems under the presence of dependent competing risks. It is known that the dependence
effect in this scenario influences the estimates of the model parameters. Hence, under the
assumption that the cause-specific intensities follow a PLP, we propose a shared frailty model to
incorporate the dependence among the cause-specific recurrent processes. Our approach allows
us to carry out an individual posterior analysis of the quantities of interest, i.e., we estimate
the interest parameters of the PLP (our main focus) separately from nuisance parameters of
frailty distribution (variance). Regarding PLP parameters, we consider noninformative priors so
that the posterior distributions are proper. With respect to frailty, our proposal avoids making
incorrect specifications of the frailty distribution when there is uncertainty about some inherent
characteristics of distribution. Thus, we considered a nonparametric approach to model the
frailty density using a DPM prior. Besides, a particular novelty is our hybrid MCMC algorithm
composed by HMC algorithm and Gibbs sampler. This algorithm was built for computing the
posterior estimates with respect to the frailty distribution. Moreover, our model can provide
information on unobserved heterogeneity among systems. This is meaningful information even
when "identical" systems are considered.

5.1 Introduction

As mentioned before, the nonparametric frailty distribution takes into account a flexible
class of distributions. In particular, we used the DPM model to describe the frailty distribution due
to its flexibility in modeling unknown distributions. Many approaches on nonparametric Bayesian
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models have been explored in the literature related to reliability, for instance, Salinas-Torres,
Pereira and Tiwari (2002) give a comprehensive theoretical exposition on Bayesian nonparametric
estimation for survival functions arising from observed failures of a competing risks model
(or a series system). Li et al. (2014) provide a flexible Bayesian nonparametric framework
to modeling recurrent events in a repairable system to test the minimal repair assumption.
Bayesian nonparametric inference for NHPPs is considered by Kuo and Ghosh (1997), who
employed several classes of nonparametric priors. As mentioned above, the idea of our approach
is to apply a Bayesian nonparametric prior (i.e., DPM prior) to modeling uncertainty in the
distribution of shared frailty. Although this model has infinite parameters, due to the infinite
mixture model, it is a flexible mixture, parsimonious and simple to sample. We chose the
stick-breaking representation of the DP prior (SETHURAMAN, 1994), because of a simple
implementation to build the algorithm. To obtain the posterior distribution, we created a hybrid
MCMC algorithm (KALLI; GRIFFIN; WALKER, 2011), using the Gibbs sampler (SMITH;
ROBERTS, 1993) and the HMC method (NEAL et al., 2011). It is important to point out that
no studies have been found which explore the use of DPM for frailty density in the context of
multiple repairable systems under the action of dependent competing risks.

This research highlights the importance of modeling the dependence structure among
competing causes of failure by using a more flexible distribution for unknown frailty density
in order to provide good estimates of the model parameters. As stated before, our primary
inference goal is to estimate PLP parameters. To this end, firstly, we model the dependence effect
with shared frailty, and secondly, we consider the frailty distribution nonparametrically using a
DPM. Regarding frailty, the advantage is that one obtains more flexibility at the level of density
estimation and providing insights in terms of heterogeneity among systems.

5.2 Multiple repairable systems subject to multiple causes
of failure

Here, we highlight the used notations in the multivariate counting process context.
Hereafter, random variables are denoted by capital letters (e.g., Z j, N jq), while their realizations
are denoted by the lowercase (e.g., z j, n jq).

Consider a sample of m identical systems in which each system is under the action of
K different types of recurrent causes of failure. Let N jq(t) = ∑

n j
i=1 I(δ ji = q) be the cumulative

number of type q failures occurring over the interval [0, t] for the j-th system ( j = 1, . . . ,m;
q = 1, . . . ,K and i = 1,2, . . . ,n j), where {N jq(t) : t ≥ 0} is a counting process. Note that N j∙(t) =

∑
K
q=1 N jq(t) represents the cumulative number of failures of system j taking into account all

failures arising from all components from the j-th system. Let N∙q(t) = ∑
m
j=1 N jq(t) denote the

number of failures of cause q for all systems.

Suppose that each system is under observation for all types of events over the same
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period of time, i.e., [0,T ]. Thus, let t ji, i = 1,2, . . . ,n j, be the observed failure times for system
j, satisfying 0 < t j1 < t j2 < · · ·< t jn j < T . Besides, denote that δ ji = q is the failure mode (or
component) that caused the system failure. Hence, the observed data is D j = {(t ji,δ ji = q), i =

1,2, . . . ,n j;q = 1, . . . ,K}. The complete data is given by D = (D1, . . . ,Dm).

As mentioned earlier, our focus is mainly on the component level failure process which
conforms to a PLP, therefore the cause-specific intensity function that governs the counting
process N∙q(T ), taking into account a orthogonal parametrization in terms of αq and βq, is
defined as

λq(t) = βqαqtβq−1T−βq, q = 1, . . . ,K, (5.1)

where αq is the mean function given by

αq = E
[
N∙q(T )

]
= Λq(T ) =

∫ T

0
λq(s)ds. (5.2)

5.3 The shared frailty model for the PLP
It is worth pointing out that the main quantity of interest in the shared frailty methodology

adopted here is the variance of the frailty (although it is considered as a nuisance parameter,
because our major interest is to estimate the PLP parameters). This parameter should be estimated
using information of multiple systems. Somboonsavatdee and Sen (2015b) state that in the single
system setting there are limitations. Therefore, our approach requires multiple systems as
presented so far.

We specify the model (2.24) in terms of (5.1) in order to present the likelihood function
with a special form. To achieve this purpose, suppose a minimal repair is undertaken at each
failure, thus the NHPP is the model of choice. Specifically, the failures from each component
follow an NHPP, with PLP intensity function given in (5.1). Furthermore, let us consider that a
realization z j ∼ fZ acts on all the cause-specific intensities (2.24) belonging to the j-th system.
Thus, conditioning on the frailty term, the model is expressed as

λq(t|Z j) = Z jβqαqtβq−1
ji T−βq (5.3)

and the mean function is given by

Λq(T |Z j) = Z jαq. (5.4)

It is important to point out that, hereafter, our analysis relies on the constraint Z̄ =
1
m ∑

m
j=1 Z j = 1.

5.3.1 Likelihood function

To simplify notation in this section, we will drop the subscript ∙ and refer to n j∙ and n∙q

as n j and nq, respectively. The likelihood contribution from the j-th system based on (5.3) is
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given by

L j(θ ,Z j|D j) =

[
n j

∏
i=1

K

∏
q=1

[λq(t ji|Z j)]
I(δ ji=q)

]
exp

[
−

K

∑
q=1

Λq(T |Z j)

]
, (5.5)

where I(δ ji = q) represents the indicator function aforementioned and θ = (β ,α) with β =

(β1, . . . ,βK) and α = (α1, . . . ,αK); for i = 1, . . . ,n j; j = 1, . . . ,m and q = 1, . . . ,K. Thus, the
overall likelihood function is represented by

L(θ ,Z | D) =
m

∏
j=1

L j(θ ,Z j|D j)

= c
m

∏
j=1

Zn j
j

K

∏
q=1

[
β

n jq
q α

n jqβq
q T−n jqβq

n jq

∏
i=1

(
tβq

ji

)]
exp

[
−Z j

K

∑
q=1

αq

]

∝

m

∏
j=1

Zn j
j

K

∏
q=1

γ(βq | nq +1,nqβ̂
−1
q )γ(αq | nq +1,m),

(5.6)

where n j = ∑
K
q=1 n jq; nq = ∑

m
j=1 n jq; n jq = ∑

n j
i=1 I(δ ji = q); ∏

n jq
i=1(·) = ∏

n j
i=1(·)I(δ ji=q); c =

∏
m
j=1 ∏

n jq
i=1 t−1

ji . In addition,

β̂q = nq/
m

∑
j=1

n jq

∑
i=1

log(T/t ji) (5.7)

is the MLE for βq.

As indicated previously, the overall likelihood function (5.6) may be factored as a product
of three quantities, as follows:

L(θ ,Z | D) = L1(Z | D)L2(β | D)L3(α | D), (5.8)

where L1(Z |D)=∏
m
j=1 Zn j

j ; L2(β |D)=∏
k
q=1 γ(βq | nq+1,nqβ̂q

−1
) and L3(α |D)=∏

k
q=1 γ(αq |

nq +1,m) and it will be used later in our posterior analysis.

5.4 Bayesian analysis
This section, in turn, is divided into two parts. In the first, we present the choice of the

prior distributions for βq and αq (q = 1, . . . ,k) in the PLP model. In this case, we consider a
similar approach according to the study of Bar-Lev, Lavi and Reiser (1992). In the second, we
discuss a Bayesian nonparametric approach to model the uncertainty about the distribution of
shared frailty. As we will see in this section, we can carry out an individual posterior analysis of
the quantities of interest due to the orthogonality among αq and βq and the assumption that Z js
are stochastically independent of the failure processes λqs.

5.4.1 Prior specification for α and β

Selecting an adequate prior distribution using formal rules has been widely discussed in
the literature (KASS; WASSERMAN, 1996). In the repairable systems context, Bar-Lev, Lavi
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and Reiser (1992) considered the following class of prior for the PLP model

π(α,β ) ∝ α
−1

β
−ζ , (5.9)

where ζ > 0 is a known hyperparameter. Following these authors, we apply their main results
in the setting of repairable systems under competing risks using the particular parametric
formulation of PLP (5.3). Thus, we propose the prior distribution for the referred context as
follows:

π(α,β ) ∝

K

∏
q=1

α
−1
q β

−ζ
q . (5.10)

This class of prior distributions includes the invariant Jeffreys’ prior when ζ = 1. More-
over, it reduces to (5.9) when q= 1. Further, we will discuss the chosen value for ζ , and necessary
conditions for the obtained posterior to be proper.

Note that, due to (5.8) and the assumption that Z js are stochastically independent of
the failure processes λqs, the joint posterior distribution of (5.10) is proper. Note also that, the
marginal distributions π(β | D) and π(α | D) are proper since they are independent, as follows:

π(β | D) =
k

∏
q=1

γ

(
βq | nq +1−ζ ,nqβ̂

−1
q

)
and π(α | D) =

k

∏
q=1

γ(αq | nq,m). (5.11)

Since π(α | D) is the product of independent gamma distributions, then the marginal
joint distribution π(α | D) is proper. Using the same idea, π(β | D) is the product of independent
gamma distributions if nq > ζ and, therefore, is a proper marginal posterior distribution.

This work adopts the quadratic loss function, hence the Bayes estimator is the posterior
mean which has optimality under Kullback-Leibler divergence. It is worth pointing out that, in
this chapter, the notation adopted for posterior mean will be α̂

Bayes
q and β̂

Bayes
q . Therefore,

α̂
Bayes
q = E(αq | D) =

nq

m

β̂
Bayes
q = E(βq | D) =

(nq +1−ζ )

nq
β̂q. (5.12)

Besides the good properties mentioned above, we have that

E
[
α̂

Bayes
q

]
= αq and

E
[
β̂

Bayes
q

]
= E

[
(nq +1−ζ )

nq
β̂q

]
= βq if ζ = 2.

(5.13)

Therefore, assuming that ζ = 2 we have that both α̂
Bayes
q and β̂

Bayes
q are unbiased estima-

tors for αq and βq.
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5.4.2 Bayesian nonparametric approach for frailty distribution

This work presents the frailty distribution as an unknown distribution, therefore we will
apply the Bayesian nonparametric methodology. Traditionally, the key idea of the Bayesian
nonparametric approach is to obtain inference on an unknown distribution function using process
priors on the spaces of densities. According to a definition provided by Sethuraman (1994),
the nonparametric Bayesian model involves infinitely many parameters. To better understand
the technical definition of Bayesian nonparametric models in a broad way, please see Dey,
MüIler and Sinha (2012), Antoniak (1974), for example. There are many methods that specify
more flexible density such as finite mixtures, DP, DPM, and mixture of Polya trees. Here, we
considered DPM for logarithm of the frailty W = log(Z), represented by

W1, . . . ,Wm ∼ F

F ∼ D(c,F0), (5.14)

where D is the DP prior with base distribution F0; c is the concentration parameter and W =

(W1, . . . ,Wm)
′. c can also be interpreted as a precision parameter that indicates how close the F

distribution is to the base distribution F0 (ESCOBAR; WEST, 1995).

Using the stick-breaking representation discussed in Sethuraman (1994), a DPM of
Gaussian distribution can be represented as infinite mixtures of Gaussian, which is an extension
of the finite mixture model. Therefore, a density function of W can be represented by

fW (W ) = fW (W | Ω) =
∞

∑
l=1

ρlN (w | µl,τ
−1
l ), (5.15)

where N (· | µ,τ−1) denotes a normal density function with parameters (µ,τ−1); Ω = {ρ,µ,τ}
is the infinite-dimensional parameter vector describing the mixture distribution for W ; ρ =

{ρl}∞
l=1 represents the vector of weights, µ = {µl}∞

l=1 is the vector of means and τ = {τl}∞
l=1 is

the vector of precision, for l = 1,2, . . . . Note that the density function of Z can be calculated as
follows:

fZ(Z) = fZ(Z | Ω) =
∞

∑
l=1

ρlL N (z | µl,τ
−1
l ), (5.16)

where L N (· | µ,τ−1) denotes log-normal density functions with parameters µ and τ−1. There-
fore, Z can be represented as the infinite mixture log-normal. Note that the base distributions of
Z and W are a log-normal and a normal distribution, respectively.

Prior specification for Ω

As shown before, Ω represents a collection of all unknown parameters in (5.15) and
(5.16). Based on this, we specified a prior distribution for Ω as follows. Firstly, we specify a
prior for ρ .
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Using the stick-breaking representation for prior distribution of ρ , denoted by π(ρ),
parameter vector ρ is reparameterized as follows:

ρ1 = ν1,

ρl =
l−1

∏
o=1

(1−νo)νl, ∀ o = 2,3, . . . , (5.17)

where the prior distribution of the vector ν = {νl}∞
l=1 is independent and identically distributed

with beta distribution denoted by

ν ∼ B(1,c), (5.18)

and the hyper-prior distribution of c is

π(c)∼ G (ac0,bc0), (5.19)

where G (·, ·) represents the gamma distribution (ESCOBAR; WEST, 1995). Besides, we chose a
normal-gamma distribution as the prior of (µl,τl)∼ N G (m0,s0,d0 p0,d0), for l = 1,2, . . ., due
to the fact that this prior is conjugate to the normal distribution, where

µl | τl ∼ N (m0,(s0τl)
−1) ,

τl ∼ G (d0,d0 p0) .

Thus, joint prior density of Ω can be expressed as

π(Ω) = π(c)π(ρ)π(µ,τ). (5.20)

For our Bayesian estimation scheme, the joint posterior distribution of Z and all the
unknown parameters in Ω are reached by joining all the prior information (5.16), (5.20) and the
likelihood function (5.8), as follows:

π(Z,Ω | D) ∝ L1(Z|D) fZ(Z | Ω)π(Ω). (5.21)

However, it is easy to see that (5.21) does not have a closed form. Besides, the marginal
posterior of Z is intractable and it is therefore necessary to use MCMC algorithms, as we will
see next. Recalling that one of our primary goals is to estimate Z js, thus, the Bayes estimator of
Z is given by

ẐBayes
=

L

∑
i=1

Z(i)

L
, (5.22)

where Z(i) is the i-th iteration and L is the total number of iterations of the MCMC chain.
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MCMC algorithm

This section describes an MCMC algorithm to sample from the posterior distribution
of Z. Our algorithm is based on Kalli, Griffin and Walker (2011), and its main characteristic
is to estimate infinite parameters by introducing latent variables. We introduce a finite set of
latent variables with uniform distribution with parameters 0 and 1, denoted by U ∼ Uniform[0,1].
Therefore, applying the variable U in (5.16) follows the joint density of (Z,U)

fZ,U(z,u | Ω) =
∞

∑
l=1

L N (z | µl,τ
−1
l )I(u < ρl), (5.23)

where I(·) is an indicator function. Note that there is a finite number of elements in ρ which are
greater than u, denoted as Aρ(u) = { j : ρ j > u}. Therefore, the representation in (5.23) is similar
to

fZ,U(z,u | Ω) = ∑
l∈Aρ

L N (z | µl,τ
−1
l ), (5.24)

so that, given U, the number of mixture components is finite for Z.

In order to simplify the likelihood, we introduce a new discrete latent variable Y which
indicates the mixture component that Z comes from

fZ,U,Y (z,u,Y = l | Ω) = L N (z | µl,τ
−1
l )I(l ∈ Aρ(u)). (5.25)

Note that Pr(Y = l | Ω) = ρl , ∀l = 1,2, . . ., therefore the conditional distribution of Z |U,Y = l

is log-normal with parameters µl and τ
−1
l , so W |U,Y = l ∼ N (µl,τ

−1
l ). Hence, the complete

posterior distribution of Z,Ω with the latent variables U and Y is given by

π(Z,Ω,U,Y | D) ∝ L1(Z|D) fZ,U,Y (Z | Ω,U ,Y ) fU(U)Pr(Y | Ω)π(Ω), (5.26)

where U = {U j}m
j=1 and Y = {Yj}m

j=1 are latent variables.

Hybrid MCMC - computational strategy

Using the latent variables presented above, we now construct the following MCMC
algorithm which is a combination of the Gibbs sampler with the HMC method. For more details
on the HMC method, see Neal et al. (2011). We chose the HMC algorithm because it generates
samples with less dependence with a high probability of acceptance between state if compared
with the Random Walk Metropolis-Hastings algorithm. The Gibbs algorithm requires knowledge
of complete conditional distributions in order to be able to sample from them. For further details,
see Kalli, Griffin and Walker (2011) and Escobar and West (1995). The complete conditional
distributions are listed below.

1. Conditional Distribution of c
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Escobar and West (1995) shows that given Y, the parameter is independent of all other
parameters and the conditional distribution of c is given by

π(c | Y) ∝ (c+m)cy*−1G (c | ac0,bc0)B(c+1,m)I(c > 0), (5.27)

where y* = max(Y) and B(·, ·) is the Beta function. Using the definition of the Beta
function we can create an auxiliary variable ξ with the joint distribution for which the
marginal distribution is (5.27) and is given by

π(c,ξ | Y) ∝ (c+m)cy*−1
ξG (c | ac0,bc0)ξ

c (1−ξ )m−1 I(c > 0)I(0 < ξ < 1). (5.28)

Hence, it follows that the conditional posteriors of ξ and c are given by

ξ | c,Y ∼ B(c+1,m) (5.29)

and

c | ξ ,Y ∼ pξ G (a*1,b
*
1)+(1− pξ )G (a*2,b

*
1), (5.30)

where a*1 = a0 + y*, a*2 = a*1 +1, b*1 = b0 − log(ξ ) and pξ = (a0 + y*−1)/(a0 + z*−1+
m(b0 − log(ξ ). Therefore, c can be sampled using the auxiliary ξ with equations (5.29)
and (5.30).

2. Conditional Distribution of ν

Note that by equations (5.25) and (5.26), ν depends on Y, U and c, therefore the conditional
distribution of ν is

νl | Y,U,c ∼

{
B(nl +1,m+∑

l
o=1 no + c) ,∀l = 1, . . . ,y*

B(1,c) ,∀l = y*+1,y*+2, . . . ,
(5.31)

where nl is the number of observations in the l-th component. It is worth noting that in
order to sample ρ it is enough to simulate ν calculated by equation (5.17).

3. Conditional Distribution of U

The latent variable U depends only on ρ , and the conditional distribution of U is

U j | ρ ∼ Uniform[0,ρ j] ∀ j = 1,2, . . . ,m. (5.32)

4. Conditional Distribution of µ and τ

The µ and τ parameters of each component are independent and adding the fact that the
Normal-Gamma is conjugated from the Normal distribution, the conditional distribution
of µ and τ is given by

µl,τl | Y ∼

{
N G (ml,sl,dl pl,dl) ,∀l = 1, . . . ,y*

N G (m0,s0,d0 p0,d0) ,∀l = y*+1,y*+2, . . . ,
(5.33)
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where

ml =
s0m0 +nlw̄

s0 +nl
,

sl = s0 +nl ,

dl pl = d0 p0 + ∑
j:y j=l

(w j − w̄)2 +
s0nl

s0 +nl
(m0 − w̄)2 ,

dl = d0 +nl ,

w̄ = ∑
j:y j=l

w j

nl
.

5. Conditional Distribution of Y

The latent variable Y is discrete, therefore using equations (5.25) and (5.26) the conditional
distribution of Y is

Pr(Yj = l | Ω,W,U,D) ∝ N (w | µl,τ
−1
l )I(l ∈ Aρ). (5.34)

6. Conditional Distribution of Z

The conditional distribution of Z is given by

π(Z | Ω,U ,Y ,D) ∝

m

∏
j=1

L N (z j | µY j ,τ
−1
Y j

)L1(Z|D), (5.35)

with restriction Z̄ = 1. Different from the previous parameters and latent variable, we
simulate them using the HMC algorithm. However, the HMC algorithm requires that
the support random variable is unrestricted. Therefore, we transform the variable Z to a
variable with unrestricted support as explained below.

Let Z* be a random vector with m−1 elements and unrestricted support. We define the
following variables:

B j = logit−1(Z*
j − log(m− j)),

A j =

1−
j−1

∑
j′=1

A j′

BJ ∀ j = 1,2, . . . ,m−1,

Am = 1−
m−1

∑
j′=1

A j′ , (5.36)

where logit−1 is an inverse function of logit. Note that the functions of transformed
variables are bijection, B j ∈ (0,1) and sum(A) = 1. Naturally, we assume that Z = mA.
Therefore, the determinant of the Jacobian matrix is given by,

| J(z*) |=
m−1

∏
j=1

b j(1−b j)

1−
j−1

∑
j′=1

a j′

 .

Therefore, the conditional distribution of Z* is given by

π(Z* | Ω,U ,Y ,D) ∝| J(z*) | L N (z j | µY j ,τ
−1
Y j

)L1(Z|D). (5.37)
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Thus, we constructed a Hybrid MCMC algorithm that combines Gibbs sampling with
HMC sampling to sample Z and Ω; see Algorithm 2.

Algorithm 2 – Hybrid MCMC algorithm.

1: Initialize c(0), Z*(0) and Y(0).

2: Calculate Z(0) of Equation (5.36) and W(0) = log(Z(0)).

3: Draw ξ (i) from π(ξ | c(i−1),Y(i−1)) of Equation (5.29).

4: Draw c(i) from π(c | ξ (i),Y(i−1)) of Equation (5.30).

5: Draw ν
(i)
l from π(νl | Y(i−1),c(i)) of Equation (5.31), ∀l = 1,2, . . . ,y*.

6: Calculate ρ
(i)
l of Equation (5.17) ∀l = 1,2, . . . ,y*.

7: Draw U (i)
j from π(U j | ρ(i)) of Equation (5.32) ∀ j = 1,2, . . . ,m.

8: Find the smallest l* such that ∑
l*
l=1 ρl > (1 − min(U(i))) and draw ν

(i)
l from π(νl |

Y(i−1),c(i)) , ∀l = y*+1, . . . , l*.

9: Draw µ
(i)
l and τ

(i)
l from π(µl,τl | Y(i−1)) of Equation (5.33) ∀l = 1,2, . . . , l*.

10: Draw Y (i)
j from Pr(Yj | µ(i),τ(i),W(i−1),U(i),D) of Equation (5.34) ∀ j = 1,2, . . . ,m.

11: Draw Z*(i) from π(Z* | µ(i),τ(i),U (i),Y (i)) of Equation (5.37).

12: Calculate Z(i) of Equation (5.36) and W(i) = log(Z(i)).

13: Set i = i+1 and go to Step #3.

In this scheme, the HMC sampler is applied in Step #11. The algorithm was developed in
the C++ language using the RccpArmadilho library (EDDELBUETTEL; SANDERSON, 2014).
Its main advantages are processing speed and interaction with the R program (R Core Team,
2016). This code was used both in the generation of posterior sampling and in the simulation
study presented in the following section.

5.5 Simulation study
In this section, a simulation study is performed to evaluate the efficiency of the Bayesian

estimators via the Monte Carlo method. To make our presentation easier, we consider two
causes of failure with distinct parameters for each cause θ = (β1,α1,β2,α2). The proposed
simulation design is consistent with the following setup: (i) there are m = (10,50,100) systems,
each observed on the fixed time interval from (0,20]; (ii) the failure process for each component
follows a power-law NHPPs with intensity (5.3); (iii) among the many possible parameter
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choices, we provide details for (β1 = 1.2,α1 = 5,β2 = 0.7,α2 = 13.33) and (β1 = 0.75,α1 =

9.46,β2 = 1.25,α2 = 12.69); and (iv) we generate each random observation z j, j = 1, . . . ,m, iid

with mean one and variance η , according to a gamma distribution. In addition, we consider a set
of values for variance of Z, η = (0.5,1,5), indicating low, middle and high dependence degrees,
respectively. For each setup of parameters, we obtain the mean number of failures (5, 13.3), (9.5,
12.7), respectively. In the first simulated scenario, the mean number of failures of one of the
components is predominant over the other component. In the last scenario, the mean number of
failures of each component are almost equal to each other. It is worth noting that the obtained
results are similar for other parameter combinations and can be extended to more causes, i.e.
p > 2. Using the fact that the causes are dependent due to frailty term Z j and also using the
known results from the literature about NHPPs (RIGDON; BASU, 2000), in each Monte Carlo
replication the failure times and indicators of the cause of failure were generated as shown in
Algorithm 3.

Algorithm 3 – Algorithm for generating random data from multiple systems with PLPs under
competing risks.

1: Generate iid z j ∼ γ(η ,1/η) for j = 1,2, . . . ,m, with mean one and variance η .

2: For each cause of failure, generate random numbers n j1 and n j2, j = 1, . . . ,m, both from a
Poisson distribution with mean z jαq, for q = 1,2, respectively.

3: For the q-th cause of failure from j-th system, let the failure times be t j,1,q, . . . , t j,n j,q,

where t j,i,q = T U1/β jq
j,i,q and U j,1,q, . . . ,U j,n j,q are the order statistics of a size n j random

sample from the standard uniform distribution.

4: Finally, to obtain the data in the form (ti,δi), let the tis be the set of ordered failure times
and set δi equal to j according to the corresponding cause of failure (i.e., set δi = 1 if
ti = th,1 for some h or δi = j depending on the cause of failure).

Software R was used to implement this simulation study (R Core Team, 2016). We
considered two criteria to evaluate the estimators’ behaviour: the Bias, given by Bias

θ̂i
=

∑
M
j=1(θ̂i, j −θi)/M and the MSE, given by MSE

θ̂i
= ∑

M
j=1 (θ̂i, j −θi)

2/M, where M is the number
of estimates (i.e. the Monte Carlo size), where we take M = 50,000 throughout the section,
and θ = (θ1, . . . ,θp) is the vector of parameters. Additionally, we computed the CP95%. Good
estimators should have Bias, MSE close to zero and adequate intervals should be short while
showing CP95% close to 0.95. The Bias and MSE are widely used to measure the performance
evaluation.

The Bayes estimators for β j and α j were obtained using independent marginal posteriors
according to gamma distributions given in (5.11). Since the marginal posterior distributions for
the parameters β j and α j follow gamma distributions, we can obtain closed-form expressions for
the posterior means and obtain the credibility intervals based on the 2.5% and 97.5% percentile
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posteriors. Hence, no MCMC was needed to obtain the estimates for these parameters. On the
other hand, to obtain the estimates of the Z js, j = 1, . . . ,m, we considered the HMC described in
Section 5.4.2. For each simulated data set, 10,000 iterations were performed using the MCMC
methods. As a burn-in, the first 5,000 initial values were discarded. The Geweke criterion
(GEWEKE, 1992) was considered to check the convergence of the obtained chains under a 95%
confidence level. In addition, trace and autocorrelation plots of the generated sampled values of
each Z j showed that they converged to the target distribution. The remaining 5,000 were used
for posterior inference. Specifically, these values were used to compute the posterior means of
Z js. Table 9 presents the Bias, the MSE and coverage probability with a 95% confidence level of
the Bayes estimates for α1,α2,β1,β2 and the variance of Z.

As shown in Tables 9 and 10, the biases of the Bayes estimator are very close to zero
for all the parameters, while both Bias and MSE tend to zero as m increases. Hence, in terms of
Bias and MSE, the Bayes estimators provided accurate inferences for the parameters of the PLP

Table 9 – The Bias, MSE, CP(95%) from the estimates considering different values for variance of Z and
number of systems (m) with scenario θ=(1.2, 5, 0.7, 13.3).

η Parameter m α1 α2 β1 β2 η

10 -0.0041 0.0083 -0.0001 0.0007 0.0784
Bias 50 0.0011 -0.0055 -0.0001 0.0002 0.0276

100 -0.0001 0.0074 0.0000 -0.0001 0.0165
10 0.7035 1.1696 0.0729 0.0882 0.2709

0.5 MSE 50 0.3182 0.5093 0.0321 0.0390 0.1359
100 0.2230 0.3650 0.0225 0.0276 0.0957
10 0.9427 0.9443 0.9449 0.9501 0.8395

CP(95%) 50 0.9483 0.9500 0.9459 0.9506 0.9366
100 0.9502 0.9496 0.9512 0.9488 0.9444
10 0.0084 -0.0105 0.0003 -0.0023 0.0307

Bias 50 0.0020 -0.0007 -0.0006 0.0001 0.0253
100 0.0010 0.0039 0.0000 0.0000 0.0158
10 0.6996 1.1449 0.0735 0.0879 0.5395

1 MSE 50 0.3120 0.5185 0.0316 0.0393 0.2891
100 0.2231 0.3690 0.0226 0.0275 0.2015
10 0.9444 0.9517 0.9432 0.9477 0.9423

CP(95%) 50 0.9532 0.9488 0.9477 0.9477 0.9544
100 0.9477 0.9472 0.9489 0.9492 0.9478
10 0.0174 -0.0120 -0.0005 0.0009 -0.1693

Bias 50 -0.0017 -0.0085 -0.0009 0.0000 0.0453
100 0.0000 0.0005 0.0001 -0.0004 -0.0425
10 0.7156 1.1508 0.0723 0.0873 2.2234

5 MSE 50 0.3179 0.5141 0.0317 0.0390 2.1358
100 0.2239 0.3711 0.0223 0.0276 1.5038
10 0.9419 0.9508 0.9460 0.9483 0.9340

CP(95%) 50 0.9476 0.9504 0.9500 0.9472 0.9473
100 0.9470 0.9462 0.9505 0.9476 0.9426
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Table 10 – The Bias, MSE, CP(95%) from the estimates considering different values for variance of Z
and number of systems (m) with scenario θ=(0.75, 9.5, 1.25, 12.7)

η Parameter m α1 α2 β1 β2 η

10 0.0215 -0.0189 0.0004 0.0000 0.0745
Bias 50 0.0017 -0.0003 0.0004 -0.0004 0.0218

100 0.0025 -0.0005 0.0003 0.0001 0.0155
10 0.9632 1.1248 0.0787 0.1120 0.2691

0.5 MSE 50 0.4341 0.4992 0.0347 0.0495 0.1312
100 0.3085 0.3569 0.0243 0.0350 0.0946
10 0.9498 0.9477 0.9467 0.9470 0.8346

CP(95%) 50 0.9506 0.9516 0.9497 0.9508 0.9377
100 0.9471 0.9462 0.9509 0.9482 0.9417
10 -0.0025 -0.0013 0.0003 0.0003 0.0233

Bias 50 0.0005 0.0039 -0.0004 0.0003 0.0155
100 0.0024 -0.0013 0.0001 -0.0003 0.0087
10 0.9678 1.1311 0.0780 0.1138 0.5279

1 MSE 50 0.4340 0.5065 0.0346 0.0497 0.2808
100 0.3087 0.3592 0.0246 0.0355 0.1987
10 0.9497 0.9503 0.9478 0.9471 0.9407

CP(95%) 50 0.9495 0.9465 0.9477 0.9515 0.9510
100 0.9456 0.9470 0.9463 0.9482 0.9495
10 -0.0148 -0.0076 -0.0008 -0.0002 -0.1558

Bias 50 -0.0027 -0.0039 0.0007 -0.0001 0.0577
100 0.0040 -0.0040 -0.0003 0.0002 -0.1141
10 0.9663 1.1197 0.0785 0.1119 2.2178

5 MSE 50 0.4366 0.5044 0.0348 0.0497 2.0724
100 0.3075 0.3592 0.0246 0.0347 1.4197
10 0.9517 0.9512 0.9493 0.9491 0.9354

CP(95%) 50 0.9491 0.9471 0.9499 0.9522 0.9479
100 0.9489 0.9467 0.9497 0.9551 0.9485

model. In terms of coverage probabilities, we observed that using our Bayes estimators returned
accurate credibility intervals even for a small number of system m. This result may be explained
by the fact that our proposed Bayes estimators do not depend on asymptotic results to obtain the
credibility intervals, which leads to accurate results for small sample sizes.

5.6 Application to the warranty repair data

The dataset considered in this section comprises the recurrent failure history of a fleet of
identical automobiles obtained from a warranty claim database presented in Somboonsavatdee
and Sen (2015a). For the sake of clarity, our graphics present only the cars that presented failures
in the observation period. Figure 11 shows the recurrence of failures of the 172 cars according to
the cause of failure and the car mileage at each failure. The x-axis indicates the mileage. It is
worth noting that the process of data collection has truncated time, where the observation period
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is 3000 miles for all cars. Each car from the fleet is represented by a horizontal line, where the
cause of failure 1 is identified by the green circle, the cause of failure 2 by the red triangle and
the cause of failure 3 by the blue square. We suppose that maintenance policy is minimal repair.
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Figure 11 – Recurrences of three causes of failure for 172 cars from warranty claims data. The green
circle represents the cause of failure 1, the red triangle represents the cause of failure 2 and
the blue square represents the cause of failure 3.

The main authors make only a table available (omitted here) containing the mileage
to repeated failures of 172 vehicles, as well as the associated cause of failure. There were 76
failures related to the cause of failure 1, 87 related to the cause of failure 2 and 111 related to
the cause of failure 3. They also pointed out that there were 267 cars that did not fail during the
observation period. However, following the correct methodology, we consider 439 automobiles
in our analysis.

Following Somboonsavatdee and Sen (2015a), Somboonsavatdee and Sen (2015b), we
assessed the adequacy of the PLP for each cause of failure using the Duane plot (DUANE, 1964;
CROW, 1974; RIGDON; BASU, 2000). Figure 12 shows plots of logarithm of the number of
failures Nq(t) (for q = 1,2,3) against the logarithm of the accumulated mileage at failure. Since
the three plots exhibit reasonable linearity, the PLP model seems to be adequate.

Since the PLP is adequate we consider our proposed approach to fit the data. As presented
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Figure 12 – The plot shows a fairly linear pattern for the three causes of failure indicating the fit according
to the PLP model: cause 1 (blue circles); cause 2 (red circles) and cause 3 (black circles)

in Section 5.4, we assume the prior distribution (5.10) for parameters αq and βq (q = 1,2,3) and,
consequently, the marginal posterior distributions (5.11). On the basis of the latter consideration,
the posterior mean estimates are computed in closed-form and the CIs are obtained directly from
the gamma distribution. The results of the analysis are presented in Table 11, which show Bayes
estimates along with the corresponding SDs and CIs. According to these data, the estimates
of the shape parameters

(
β̂1, β̂2, β̂3

)
are smaller than 1; see Table 11. This clearly indicates

improvement in reliability.

Table 11 – Parameter estimates for warranty claim dataset

Parameter Bayes SD CI (95%)

β1 0.300 0.035 [0.236 ; 0.372]

β2 0.409 0.044 [0.327 ; 0.500]

β3 0.698 0.067 [0.574 ; 0.835]

α1 0.173 0.020 [0.136 ; 0.214]

α2 0.198 0.021 [0.159 ; 0.242]

α3 0.253 0.024 [0.208 ; 0.302]

Var(Z) 1.755 0.438 [1.050 ; 2.777]

The hybrid MCMC sampler algorithm presented in Section 5.4.2 was used to obtain a
sample from the joint posterior distribution related to the frailty distribution. The initial values to
start the sample of the chains for the DPM were random. For the MCMC chain, we considered
10,000 iterations initially, where the first 5,000 were discarded as burn-in samples and the last
5,000 iterations were used to compute the posterior estimates of Var(Z) (at the bottom of the
Table 11) and the individual values of Z js, as presented in Figure 13. The convergence was
monitored for the Geweke test assuming a 95% confidence level (see Figure 16 in Appendix B).
For completeness, we also present MCMC diagnostic plots, such as traces and autocorrelations
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for the HMC algorithm; see Appendix B.

It is worth pointing out that higher values of Var(Z) signify greater heterogeneity among
systems and more dependence between the times of the causes of failure for the same system.
Therefore, as Table 11 shows, the posterior mean of Var(Z) provides evidence of a meaningful
dependence between the times of the causes of failure within a system.

5.6.1 Insights on the unobserved heterogeneity

As shown in Table 11, the estimate of Var(Z) shows that there is strong posterior evidence
of a meaningful degree of heterogeneity in the population of systems. Table 12 (Appendix B)
shows the estimated posterior means and the corresponding standard deviations of the ẑ js.

Figure 13 shows the individual frailty estimates (posterior means) of ẑ j, j = 1, . . . ,172.
As mentioned earlier, each Z j acts in a multiplicative way in the specific-cause intensities. Thus
it follows that values of Z j equal to or very close to 1 (red line) do not significantly affect such
intensities. On the other hand, values larger than 1 indicate increased intensity. It is apparent that
some cars have values of Z j greater than 2. These cars are probably subject to environmental
stress variations or other unobserved issues, which make them more vulnerable than those with
Z j values closer to or less than 1.
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Figure 13 – The individual frailty estimates, ẑ j’s. The red line highlights value 1 in the y-axis.

Figure 14 indicates that the estimated frailties are overall larger for cars that had a failure
early than those who had a failure later. We also note that a system with a large value of ẑ j

experienced more failures than a system with a smaller value of ẑ j (see Figure 15).

These outcomes indicate that neglecting these effects can result in an underestimation of
the parameters. Overall, the multiplicative shared frailty model is appropriate for modeling this
effect accurately.



90 Chapter 5. Multiple repairable systems under dependent competing risks with nonparametric frailty

0 500 1000 1500 2000 2500 3000

2
4

6
8

1
0

mileage

ẑ
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Figure 14 – Estimated frailty versus mileage observed at failure for each car in automobile warranty data.
The red line highlights value 1 in the y-axis. The reasoning is that cars that are more frail
failed earlier than ones that are less frail.

0

4

8

12

0.0 2.5 5.0 7.5 10.0

Cumulative number of failures by car

ẑ
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Figure 15 – Scatterplot of individual estimates ẑ j against cumulative number of failures by car. Note that
systems with a large value of ẑ j experienced more failures than a system with a smaller value
of ẑ j.

5.7 Conclusions

In this chapter, we proposed a new approach to analyzing multiple repairable systems data
under the action of dependent competing risks. We have shown how to model the frailty-induced
dependence nonparametrically using a DPM which does not make restrictive assumptions about
the density of the frailty variable. Although some research has been carried out on nonparametric
frailty in the reliability field (SLIMACEK; LINDQVIST, 2016; SLIMACEK; LINDQVIST,
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2017), to the best of our knowledge, the proposed approach is the first for this competing risks
setup. The main focus of this chapter was to provide estimates for the PLP model taking into
account the dependence effect among component failures of the system. Such a dependence
effect influences the statistical inferences of the model parameters, thus the misspecification of
the frailty distribution may lead to errors when estimating the quantities of interest.

An orthogonal parametrization for the cause-specific intensity PLP parameters was
presented, which allowed us to consider a generalized version of Bar-Lev, Lavi and Reiser (1992)
prior distribution for the parameters of the model. Assuming the quadratic loss function as the
risk function, we obtained the posterior mean for the parameters in closed-form expression.
Moreover, since the marginal posterior distributions for the PLP parameters follow gamma
distributions, we obtained the credibility intervals directly for the quantile function. Assuming
a specific value for ζ , we obtained unbiased estimators for the cited parameters. A simulation
study was conducted to confirm our theoretical results, as well as to measure if the variability
of the frailty distributions was correctly computed. This study returned excellent results that
confirmed that our Bayes estimators are robust in terms of Bias, MSE and coverage probabilities.

Using nonparametric Bayesian methods with a mixture prior distribution enabled us to
increase the amount of information beyond the parameter estimates. We considered a Bayesian
nonparametric prior to describing the frailty distribution due to its flexibility in modeling
unknown distributions. Although this model has infinite parameters, it is a flexible mixture model,
parsimonious and straightforward to sample from. In this case, we chose the stick-breaking
representation of the DP prior because of a simple implementation to build the algorithm. Hence,
we proposed a hybrid MCMC algorithm that comprises a mixture of the Gibbs sampler and the
HMC method, thus generating a chain with little dependence.

The results of this investigation show that we can obtain more precise parameter estima-
tions by considering the high flexibility due to nonparametric Bayesian prior density for Z. It
also enables us to obtain insights into the heterogeneity between the systems by individually
estimating Z js, as presented in Section 5.6.1. The methodology proposed in this study may
be of assistance to industrial applications and also where the interest may be in the phases of
developmental programs of prototypes with purposes to predict the reliability, for example.

Our findings can be applied in real data sets based on the following assumptions. The
proposed model requires m identical repairable systems subjected to K competing risks (assuming
dependece). Minimal repair policy is assumed. The recurrent data structure (failure history)
should be based on cause-specific intensity functions with PLP. The data sampling scheme
(system observational period) is the time truncated case. Consider the shared frailty model to
incorporate the dependence among the cause-specific recurrent processes. Finally, the dataset
should be structured as Table 13 in Appendix C.

More flexible modeling can be further proposed by extending our approach to model
the intensity function of failures of the NHPP nonparametrically since that the PLP intensity
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cannot capture non-monotonic behaviors. This extension would make the model more robust and
flexible. In this case, we would have a fully nonparametric approach. The proposed study can
also be further adapted under other types of repair such as perfect or imperfect. Our approach
should be investigated further in these contexts.
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CHAPTER

6
COMMENTS AND FURTHER

DEVELOPMENT

6.1 Comments

In this thesis, we studied certain aspects of modeling failure time data of repairable
systems under a competing risks framework. Furthermore, we paid our attention to minimal
repairs. The minimal repair concept is suitable for complex systems (multi-components) when the
purpose is to bring the system back to operation as soon as possible and also from an economic
viewpoint, where such systems are commonly repaired rather than replacing the system with a
new one after failure. In this case, we specified the parametric framework of a power-law process.
The failure history of each component is governed by a PLP. Throughout all the chapters we
used an advantageous parametrization for the specific-cause intensity. In accordance with this
framework, we considered two different models and proposed more efficient Bayesian methods
for estimating the model parameters.

The first model refers to failure data arising from a single repairable system under
independent competing risks. Using the Jeffreys prior and reference prior, we obtained proper
posterior distributions with interesting properties such as one-to-one invariance and consistent
marginalization. In addition, the Bayes MAP estimates have closed-form expressions. Besides, in
some cases, the marginal posterior intervals have accurate frequentist coverage for all parameters.
In addition to the theoretical proofs, an extensive simulation study is presented, which confirms
that the resulting Bayes estimates are more accurate than the estimates obtained from the classical
approach regarding bias and accurate credibility intervals.

In the second model, we explore a new methodology for analyzing failures from multiple
repairable systems under the action of dependent competing risks. We specify a joint prior
distribution for the PLP parameters that returned closed-form estimators for the posterior mean.
Besides, we have shown how to model the frailty-induced dependence nonparametrically using a
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DPM which does not make restrictive assumptions about the density of the frailty variable. The
main focus here is to provide estimates for the PLP model taking into account the dependence
effect among component failures of the system. The results of this investigation show that we can
obtain more precise parameter estimation by considering the high flexibility due to nonparametric
Bayesian prior density for Z. It also enables us to obtain insights into the heterogeneity between
the systems by individually estimating Z js.

In addition, the background of applications of the methodologies described in this thesis
is expected to be advantageous in reliability analysis, engineering applications and other fields
where the setup is equivalent. To this end, we also present at the end of each chapter the
assumptions that must be considered for the correct use of each model.

6.2 Further developments
More flexible modeling can be further proposed by extending our approach to model

the intensity function of failures of the NHPP nonparametrically since the PLP intensity cannot
capture non-monotonic behaviors. This extension would make the model more robust and flexible.
In this case, we would have a fully nonparametric approach. The proposed study can also be
further adapted under other types of repair such as perfect or imperfect. Our approach should be
investigated further in these contexts.
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APPENDIX

A
TECHNICAL DETAILS

We present the deductions for some results from Chapter 3.

MAPs

The MAP estimate is the mode of the “posterior” distribution for θ (roughly speaking,
one should choose the value for our parameters that is the most likely given the data). The MAP
estimator using Jeffreys Prior is given by:

The likelihood function

L(θ) = c
[
β

n1
1 e−n1β1/β̂1

][
β

n2
2 e−n2β2/β̂2

]
×[

e−α1α
n1
1
][

e−α2α
n2
2
]
.

The log-likelihood
`(θ) = n1 logβ1 +n2 logβ2 −

n1

β̂1
β1 −

n2

β̂2
β2

+n1 logα1 +n2 logα2 −α1 −α2.

The MLEs
β̂

MLE
j =

n j

∑
n
i=1 log(T/ti)(I(δi = j))

and α̂
MLE
j = n j.

Jeffreys Prior

π
J(θ) ∝

1
β1β2

log−→ logπ
J(θ) ∝ − logβ1 − logβ2.

Definition of MAP estimator: It will be more convenient to find the argmax of the log of the
MAP function

θ̂
MAP

= argmax
θ

π(θ |t,δ )

= argmax
θ

L(θ |t,δ )π(θ)

= argmax
θ

(log(π(θ))+ `(θ |t,δ )) .
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Applying the definition of MAP above, we obtain the MAP estimator of β j for j = 1,2

β̂
MAP
j =argmax

θ

2

∑
j=1

(n j −1) logβ j −
2

∑
j=1

n j

β̂ MLE
j

β j

+
2

∑
j=1

n j logα j −
2

∑
j=1

α j.

The Score equations for β j can be obtained

∂`

∂β j
=

n j −1

β̂ MAP
j

−
n j

β̂ MLE
j

= 0.

Thus, the MAP estimator for β j is given by

β̂
MAP
j =

n j −1
n j

β̂
MLE
j .

For α j follow the same steps

∂`

∂α j
=

n j

α̂ j
MAP −1 = 0.

Thus, the MAP estimator for α j is given by

α̂ j
MAP = n j.

Likelihood kernel under reparametrization

In the following, we will show how to obtain the kernel of full likelihood function (3.4).
For the sake of brevity and simplicity, we present only 2 causes of failure j = 1,2, β1 = β2 = β

and α j =
(

T
µ j

)β

:

L(β ,α|t,δ ) =β
n
(

T α
− 1

β

1

)−n1β (
T α

− 1
β

2

)−n2β

×
[ n1

∏ ti
n2

∏ ti

]β−1

e−α1−α2

=β
n T−n1β−n2β

α
−n1
1 α

−n2
2

[ n1

∏ ti
n2

∏ ti

]β−1

e−α1e−α2

=β
nT−βn

α
n1
1 α

n2
2

[
∏

n1
i=1 ti ∏

n2
j=1 t j

]β[
∏

n1
i=1 ti ∏

n2
j=1 t j

] e−α1e−α2

=cβ
n

[
T−n

n1

∏
i=1

ti
n2

∏
j=1

t j

]β [
α

n1
1 e−α1

][
α

n2
2 e−α2

]
,
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where c=
[
∏

n1
i=1 ti ∏

n2
j=1 t j

]−1
and where β̂ = n/∑

n
i=1 log(T/ti) = n/{n(log(T ))−∑

n
i=1 log(ti)}.

Note that [
T−n

n1

∏
i=1

ti
n2

∏
j=1

t j

]β

= exp

log(

[
T−n

n1

∏
i=1

ti
n2

∏
j=1

t j

]β


= exp

{
β

[
−n log(T )+

n1

∑
i=1

log(ti)+
n2

∑
j=1

log(t j)

]}

= exp

{
−β

[
n log(T )−

n

∑
i=1

log(ti)

]}
= exp

{
−nβ/β̂

}
= e−n1β/β̂ e−n2β/β̂ .

Hence, it follows that the likelihood kernel is proportional to a product of independent gamma
densities.

L(β ,α|t,δ ) =c[β n1e−n1β/β̂ ][β n2e−n2β/β̂ ]
[
α

n1
1 e−α1

][
α

n2
2 e−α2

]
=c
[
β

ne−nβ/β̂

][
α

n1
1 e−α1

][
α

n2
2 e−α2

]
∝γ(β |n+1,n/β̂ )

2

∏
j=1

γ(α j|n j +1,1).
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TECHNICAL DETAILS

In this appendix, we presented estimates of some Z j’s associated to cars 1, 17, 26, 161,
165 and 169, according to Figure 13 (these are the estimates that presented the highest values).
For completeness, we also present here the Geweke diagnostic test for checking the convergence
of the chains, as well as MCMC diagnostic plots, such as trace and autocorrelations for the HMC
algorithm of some Z js.

Table 12 – Bayesian estimates of some Z js with their SD.

Z j Bayes SD

Z1 2.469 1.711
...

...
...

Z17 5.1 2.87
...

...
...

Z26 8.269 3.669
...

...
...

Z161 11.519 4.359
...

...
...

Z165 9.941 4.038
...

...
...

Z169 6.615 3.354
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Figure 16 – Geweke diagnostic test - implemented using CODA package in R software.
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Figure 17 – Markov chain and autocorrelation plots for the HMC algorithm - Z1.
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Figure 18 – Markov chain and autocorrelation plots for the HMC algorithm - Z17.
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Trace plot of Z26
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Figure 19 – Markov chain and autocorrelation plots for the HMC algorithm - Z26.
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Figure 20 – Markov chain and autocorrelation plots for the HMC algorithm - Z161.
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Figure 21 – Markov chain and autocorrelation plots for the HMC algorithm - Z165.
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Figure 22 – Markov chain and autocorrelation plots for the HMC algorithm - Z169.
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Table 13 – Data structure - Observations for m systems with K competing risks.

System Competing Risks (δ ) Failure times (t ji) Number of failures (n jq)

1 t11, t12, . . . , t1n11 n11

1 2 t11, t12, . . . , t1n12 n12
...

...
...

K t11, t12, . . . , t1n1K n1K
...

...
...

...
...

...
...

...
...

...
...

...
...

1 tm1, tm2, . . . , tmnm1 nm1

m 2 tm1, tm2, . . . , tmnm2 nm2
...

...
...

K tm1, tm2, . . . , tmnmK nmK


