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RESUMO 

 

PROPOSIÇÃO DE MODELOS DE CLASSIFICAÇÃO E DE CALIBRAÇÃO PARA 

POLÍMEROS PRESENTES EM RESÍDUOS ELETRÔNICOS EMPREGANDO LASER-

INDUCED BREAKDOWN SPECTROSCOPY (LIBS) E FERRAMENTAS 

QUIMIOMÉTRICAS. Esta tese propõem o desenvolvimento de métodos analíticos para 

análise de polímeros provenientes dos resíduos de equipamentos elétricos eletrônicos 

(WEEE), por laser-Induced breakdown spectroscopy (LIBS). Os resultados 

apresentados nos capítulos 2 e 3 dessa tese foram desenvolvidos em colaboração com 

uma empresa de reciclagem de WEEE chamada REVERSA. No primeiro método 

proposto a LIBS foi usada para à identificação e classificação de seis polímeros e um 

total de 477 amostras foram analisadas. Modelos de classificação usando o k-nearest 

neighbors (KNN) e soft independent modelling of class analogy (SIMCA), foram usados 

para classificar os polímeros. Os modelos propostos apresentaram resultados 

satisfatórios para as amostras de validação, com exatidão de 98% para o KNN e 92% 

para o SIMCA. Além disso, os demais parâmetros de validação como sensibilidade, taxa 

de alarme falso e especificidade mostraram-se adequados. No segundo método a LIBS 

foi empregada para determinação dos constituintes policarbonato (PC) e acrinolitrila-

butadieno-estireno (ABS) nas blendas PC/ABS. Para isso foram construídos modelos 

de calibração multivariada usando partial least squares (PLS). Os modelos PLS obtidos 

para o PC e ABS apresentaram bons parâmetros analíticos, como: i) standard error 

calibration (SEC) de 3,4 (m/m%); ii) standard error of cross-validation (SECV) de 5,6 

(m/m%); iii) coeficiente de correlação linear de 0,996; iv) número de variáveis latentes 

igual a 2; v) variância explicada de 70%. Para a validação dos modelos PLS foram 

analisadas blendas PC/ABS com concentrações desconhecidas de PC e ABS e as 

informações previstas pela LIBS estava em concordância com a técnica de referência. 

Um terceiro método foi desenvolvido em parceria com uma empresa de reciclagem de 

plásticos de baterias de carro. Esses plásticos estavam contaminados com Pb e objetivo 

foi avaliar diferentes estratégias de calibração em LIBS visando a determinação 

quantitativa deste analito. Estratégias de calibração multivariada e uma nova estratégia 

univariada foram propostas. A nova estratégia de calibração univariada foi denominada 

de transferência de calibração com dois pontos e os resultados apresentados foram 

satisfatorios. As ferramentas quimiométricas, incluindo planejamento experimental, 

métodos supervisionados para classificação, métodos não supervisionados e calibração 

multivariada foram empregadas durante o desenvolvimento dos métodos propostos 

nesta tese. 
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ABSTRACT 

 

PROPOSITION OF CLASSIFICATION AND CALIBRATION MODELS FOR 

POLYMERS PRESENT IN WASTE ELECTRICAL AND ELECTRONIC EQUIPAMENTS 

(WEEE) EMPLOYING LASER-INDUCED BREAKDOWN SPECTROSCOPY (LIBS) 

AND CHEMOMETRIC TOOLS. This thesis proposes the development of analytical 

methods for the analysis of polymers from waste electrical electronic equipment (WEEE) 

by laser-Induced breakdown spectroscopy (LIBS). The results presented in the chapters 

2 and 3 of this thesis were developed in collaboration with a recycling company of WEEE 

called REVERSA. In the first method proposed LIBS was used for the identification and 

classification of six polymers and a total of 477 samples were analyzed. Classification 

models using k-nearest neighbors (KNN) and soft independent modeling of class 

analogy (SIMCA) were used to classify the polymers. The proposed models presented 

satisfactory results for the validation samples, with accuracy of 98% for KNN and 92% 

for SIMCA. In addition, other validation parameters such as sensitivity, false alarm rate 

and specificity showed adequate. In the second method, the LIBS was employed to 

determination of the constituents polycarbonate (PC) and acrylonitrile-butadiene-styrene 

(ABS) in PC/ABS blends. For this were built multivariate calibration models using partial 

least squares (PLS). The PLS models obtained for the PC and ABS presented good 

analytical parameters as:  i) standard error calibration (SEC) of 3.4 (w/w%); (ii) standard 

error of cross-validation (SECV) of 5.6 (w/w%); iii) linear correlation coefficient of 0.996; 

iv) number of latent variables equal to 2; v) explained variance of 70%. For the validation 

of the PLS models PC/ABS blends with unknown concentrations of PC and ABS were 

analyzed, and the information provided by LIBS was in agreement with the reference 

technique. A third method was developed in collaboration with a plastics recycling 

company of car batteries. These plastics were contaminated with Pb and the objective 

was to evaluate different calibration strategies in LIBS for the quantitative determination 

of this analyte. Multivariate calibration strategies and a new univariate strategy were 

proposed. The new univariate calibration strategy was called a two-point calibration 

transfer and the results presented were satisfactory. The chemometrics tools including 

experimental desing, supervised methods for classification, unsupervised methods and 

multivariate calibration were employed during the development of the methods proposed 

in this thesis. 
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1. Introduction  

 The widespread generation of large amounts of electronic waste is a significant 

problem in several countries. This type of material is normally designated as waste electrical 

and electronic equipment (WEEE) and is the type of solid waste that presents the fastest 

growing worldwide. In 2014 the global amount of WEEE produced was around 42 million metric 

tons (Mt) and in 2018 the generation was of 52 Mt. This scenario is worrying, taking into 

consideration that in just four years there was a growth of 20% in WEEE generation. Currently, 

the countries that most produce WEEE are China (CN) and the United States of America 

(USA), with a generation of 7.2 and 6.3 Mt, respectively. In this scenario, Brazil (BR) is in the 

sixth position with a production of 1.5 Mt, however it is the largest producer of the Latin America 

[1-4]. Figure 1 shows a summary of world production of WEEE. 

 

FIGURE 1 Summary of world production of WEEE. 

 WEEE is basically composed of iron/steel (average 48%), polymers (average 21%), 

printed circuit boards (PCB, average 13%), flame retardants (FR, average 10%), glass 

(average 3%) and other materials (average 5%). Among the above mentioned WEEE 

components highlight the polymers. Scientific studies have reported at least 15 different types 

of polymers in WEEE. The most common are the acrylonitrile-butadiene-styrene (ABS), 

polyamide (PA), polycarbonate (PC), polyethylene (PE), polypropylene (PP), polystyrene (PS) 

África 2.2 Mt

Europe 12.3 Mt
Asia 18.2 Mt

Oceania 
0.7 Mt

America 11.7 Mt

BR 1.5 Mt

USA 6.3 Mt

CN 7.2 Mt
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and styrene acrylonitrile (SAN) and blends PC/ABS [5-7]. Considering the large amount and 

complexity of the polymers generated from WEEE, adequate management is necessary for 

the correct disposal or recovery of these materials. One of the positive points of WEEE 

polymers is the fact that this material is thermoplastics, and when heated can be processed 

without any damage allowing them to be recycled. The goal of recycling is to return to the 

productive chain, reducing the amount of improperly disposed of post-consumer solid material 

[8]. 

 In this sense, some methods for identification of polymers have been proposed, among 

which the following stand out: i) identification by means of codes, in which each polymer has 

a specific code. However, this method does not include the main polymers of WEEE; ii) 

identification by the density difference between the polymers in relation to water; iii) 

identification through of the burning characteristics (flame color, smell of vapor, vapor pH and 

flammability). In this case, characteristics are identified through the organoleptic properties that 

can be perceived by the human senses. Despite being rustic this method is very efficient and 

is the most used for identification of polymers in the recycling companies in Brazil [9]. Although 

the methods mentioned are widely used, they are laborious and time-consuming, which is not 

interesting for recycling companies. In this sense, several analytical techniques can be used 

for the chemical inspection of polymers from WEEE, aiming its identification and classification. 

Among the most often employed, there are mass spectrometry (MS) [10], near-infrared (NIR) 

[11], differential scanning calorimetry (DSC) [12], inductively coupled plasma mass 

spectrometry (ICP-MS) [13], and inductively coupled plasma optical emission spectrometry 

(ICP OES) [14]. Among these mentioned techniques, NIR and DSC are the most frequently 

used in the identification of polymers of WEEE. The main advantage of NIR is its portability, 

and some instruments have a library with spectra of several polymers, in addition have a high 

analytical frequency. These characteristics are desired by recycling companies. However, NIR 

is not suitable for the analysis of black plastic samples, which limits its application considering 

that most of the polymers of WEEE are black [15]. DSC is used to identify polymers mainly 

because of their accuracy, since the measurements are carried out in function of the glass 
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transition temperature specific for each polymer. However, these techniques have a low 

analytical frequency (2 samples per hour), which is not appropriate for routine analyzes, 

especially in recycling companies [16].  

 Another demand of the recycling companies is related to the proper management of 

PC/ABS blends. Differently of the other polymers (ABS, PA, PC, PE, PP, PS and SAN), the 

problems of the blends are not related to its identification, but in quantification the proportions 

between the PC and ABS constituents. This information is very important for recycling 

companies, because often the proper management and marketing of these blends depends 

on this data. Moreover, it is important to note that this information is not provided by the 

manufacturers. Some of the techniques used for identification of polymers can also be used 

for this purpose, among these stand out NIR and DCS. But as already mentioned, the NIR has 

limitations for analyzes of black plastics and the DSC has problems of low analytical frequency 

[15,16]. 

 In this context, it is recurrent presentation of analytical techniques that are increasingly 

fast, which are suitability for direct use in an environmental factory, with minimum sample 

preparation and that solve issues such as the identification of polymers and the quantification 

of the constituents PC and ABS in blends. In this perspective, the technique laser-induced 

breakdown spectroscopy (LIBS) is an advantageous alternative and has particular 

characteristics that fulfill the aforementioned requirements.  

 LIBS is an optical emission spectroscopy technique that presents high energy laser 

source. The laser may have a duration of nano, pico or femto seconds. The energy of the laser 

pulse produces a high temperature plasma (in the order of 10,000 - 20,000 K) in the surface 

of the sample, causing the ablation, evaporation, atomization, ionization, and excitation, of the 

chemical species present in the sample. During relaxation of the excited atoms, ions and 

molecular fragments in the plasma emit radiations at specific emission lines. The emitted light 

is then collected, spectrally resolved and then detected by a charge-coupled detector (CCD) 

or intensified (I) CCD [17-19]. Figure 2 shows a typical scheme of a LIBS system, in which the 

main components are: (1) energy source;  (2) lenses to focus the laser pulse on the sample 
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surface;  (3) sample holder which can be mounted in an ablation chamber;  (4) optical fiber 

responsible for the collection of radiation from plasma; (5) detection system 

(spectrometer/detector) and; (6) computer for precise control of temporal events, such as: laser 

pulse triggering and spectrum recording [19]. 

 

FIGURE 2 Typical scheme of a LIBS system. 

 LIBS presents some advantages such as: (i) high analytical frequency; (ii) 

multielementar capability; (iii) direct analysis with minimal or no sample preparation; (iv) allows 

analysis under atmospheric conditions; (v) the instrumentation can have small size and 

portability; (vi) possibility of coupling with other analytical techniques; and (vii) can be 

implemented in online systems in several segments of the industry. These advantages 

combined with the simplicity of the technique make LIBS one of the most versatile examples 

already developed, and its consolidation can be seen in the applications in several fields of 

activity [20-29], as shown in Figure 3. 

(3) Ablation chamber
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     FIGURE 3 Applications of the LIBS in different segments [19]. 

 The growing interest using LIBS can be seen from the number of scientific publications 

in the last 30 years, as shown in Figure 4a. According to the Web of Science database, about 

4500 papers were published during that period and the last 11 years (2008-2018) account for 

about 78% of total publications. These data exemplify the interest in using LIBS, being possible 

to find currently a wide variety of studies proposing innovations and improvements to the 

technique. Within of context LIBS and polymers it is also possible to find scientific publications. 

The first publication involving the theme was reported in 1998 [30], and since then about 65 

publications can be found according to the Web of Science database, as shown in Figure 4b. 

Of the publications involving the topic, about 95% are related to qualitative analysis and only 

5% focused on quantitative purposes. In addition, about 70% of the publications with the theme 

use the chemometric tools for interpretation of the data. These data show the importance of 

chemometrics in the advancement of methods involving LIBS. This tool is required because 

permits better interpretation of the large amount of generated data by LIBS, especially when 

using a large number of samples. 
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FIGURE 4 Number of (a) LIBS publications and (b) LIBS and polymers publications. 

 Considering the demand of the companies of recycling by fast methods for the analysis 

of polymers, this PhD thesis had as goal use LIBS for this purpose. Chapters 2 and 3 of this 

thesis were developed in collaboration with the recycling company REVERSA in order to meet 

their main demands. REVERSA is an electronic waste management company, established at 

the city of Andradas, Minas Gerais, Brazil. In Chapter 2, we used LIBS in combination with 

chemometric tools to develop classification models for the main polymers found in WEEE. The 

highlight of this proposal in relation to existing publications is the large number of samples 
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(approximately 500). This allowed for obtaining robust and very accurate models. In Chapter 

3 we used multivariate calibration models in combination with LIBS for the determination of 

concentration of the constituents PC and ABS in blends PC/ABS. It is important to highlight 

that this was the first scientific proposal showing this type of method. In Chapter 4, we used 

LIBS for the quantitative determination of Pb in recycled PP from car batteries. Although, the 

samples were not from WEEE, we decided to add this chapter to the thesis, since PP is one 

of the most found plastics in WEEE. Thus, in this chapter we evaluate different calibration 

strategies for the direct determination of Pb in PP samples recycled. Multivariate strategies 

were evaluated, in addition, a new univariate calibration strategy named two-point calibration 

transfer (TP CT) was proposed with success. The Chapter 5 presents a general conclusion 

about of the thematic LIBS and polymers and show an overview into the contributions of the 

results achieved in this thesis. 

1.2 LIBS and polymers 

 The increasing generation of polymers from WEEE is a problem of great industrial and 

environmental concern, and depending on the type of polymer or blend, certain industrial 

processes such as recycling and the production of new blends can be implemented. This 

scenario has attracted research with the goal of developing new simple and fast analytical 

methods for the analysis of these residues [16]. As already mentioned, LIBS can be a powerful 

analytical tool for this purpose due to their advantageous characteristics. 

 In this sense, we will present a review of the most relevant research involving the 

analysis of polymers of WEEE using LIBS. The first step for identifying polymers by LIBS is 

based on evaluation of specific emission lines corresponding to the original chemical 

constitution of the polymers. Commonly, the elements and molecular bands present in the 

original chemical composition of the polymers of the WEEE are C, N, O, H, CN and C2. 

However, other elements such as Al, Ba, Br, Ca, Fe, Mg, Na, P, S, Sb and Ti can also be found 

in large quantities because these are added to the polymers as additives in order to improve 

the properties of these materials [6,16]. 
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 The identification and classification of different polymers of WEEE using LIBS is highly 

challenging because: i) The variety of polymers found in the WEEE is very wide (up to 15 

different types); ii) These materials can consist of mixtures of two or more polymers (blends); 

iii) They may contain different concentrations of FR (as high as 1% w/w) and additives; iv) They 

present similar original chemical compositions (mainly aromatic polymers). However, these 

problems can be minimized using chemometric tools associated with LIBS spectra [31,32].  

In general, the polymers can be classified and identified based on the original LIBS 

spectra. In this sense, Sattmann et al. [30] proposed the combination of polymers and LIBS 

for the first time. In this study the authors used artificial neural network (ANN) combined with 

LIBS spectra to identify polymers with an accuracy of 93-96% for PE and PP and of >99% for 

polyethylene terephthalate (PET) and polyvinyl chloride (PVC).  Lasheras et al. [33] 

successfully used the methods of normalized coordinates (MNC) and linear and rank 

correlation in combination with LIBS spectra to identify eleven polymers with similar chemical 

compositions. In another study, Unnikrishnan et al. [34] used LIBS spectra and the selection 

of specific emission lines associated with principal component analysis (PCA) to classify four 

different classes of polymers (PE, PET, PP and PS).  Spectra were recorded in the range 200 

- 900 nm. From this spectral data, three small regions were chosen for the analysis based on 

the existence of characteristic spectral information related to C, H, CN. These regions were: 

Region 1 (R1) 245 - 260 nm, Region 2 (R2) 375 - 390 nm and Region 3 (R3) 485 - 500 nm. 

The R2 showed the best results when compared to others. 

 In study proposed by Aquino and Pereira-Filho [35] chemometric tools such as soft 

independent modeling of class analogies (SIMCA), k-nearest neighbors (KNN) and partial least 

squares for discriminant analysis (PLS-DA) in combination with spectral information from LIBS 

was used in the identification and classification of polymers from mobile phones. Classification 

models were proposed using black and white polymers separately to identify the manufacturer 

and origin. The proposed models for the manufacturer showed percentage of correct 

predictions ranging from 80% (for PLS-DA) to 99% (for KNN). In the case of origin, the 

percentage of correct predictions ranged from 98% (for SIMCA) to 100% (for KNN). The 
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analytical method proposed extends the applicability of the LIBS technique and open 

possibilities for polymer manufacturers identification. 

Following this approach, Shameem et al. [36] proposed a LIBS–Raman system 

combined with PCA to identify four types of polymers (PE, PET, PP and PS). Atomic and 

molecular information of PE, PET, PP and PS were studied using plasma emission spectra 

and scattered signal obtained in the LIBS and Raman technique, respectively. The molecular 

information collected via Raman spectroscopy exhibits clearly distinct features for the 

transparent plastics (100% discrimination), whereas the LIBS technique shows better spectral 

feature differences for the colored samples. The study shows that the information obtained 

from these complementary techniques allows the complete classification of the plastic 

samples, irrespective of the color or additives. 

Tang et al. [37] used LIBS combined with unsupervised learning algorithms of self-

organizing maps (SOM) to discriminate between industrial polymers in the open air. Only the 

intensities of two molecular bands (CN and C2) and four atomic emission lines (C, H, N and 

O), were used. First, the SOM neural network with adjusting spectral weighting (ASW) was 

applied for a preliminary separation of 20 types of polymers. The results were obtained in the 

output space indicating that 18 polymers were separated, except for PC and PS. Afterwards, 

the K-means clustering algorithm was utilized to separate PC and PS. For 20 polymers, the 

accuracy of the industrial polymer classification was 99%. 

 All of the aforementioned studies used the range of LIBS spectra to identify the 

polymers. Although it is a widely used strategy in some cases, polymers cannot be identified 

from the raw LIBS spectra alone. In this case, the information about molecular spectral lines 

and the ratio of the molecular bands and the element lines can be used. This strategy is very 

interesting because it reduces the amount of variables and facilitates the manipulation of the 

data. This approach was employed for the first time by the group of Prof. Anzano from the 

University of Zaragoza (Spain). Anzano and his co-workers deserve special mention for their 

significant contributions to this particular application of LIBS and polymers [38,39]. 
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 Using this strategy Grégoire et al. [40], observed that the aromatic polymers (PS and 

PC) can be distinguished from aliphatic polymers (PE, PP and PA) using the emission lines 

related to (C2, CN, H, C, N and O), the ratios of emission lines and molecular bands (H/C2, H/C 

and O/N). In the aromatic group, the PC and PS showed a separation based on the C2 intensity 

and the O/N ratio; in the aliphatic group, PA could be distinguished from PE and PP, but PE 

could not be distinguished from PP, due to their similar chemical structures. In addition, the 

authors used PCA and partial least squares (PLS) to analyze the data. 

Banaee and Tavassoli [41] used discriminant function analysis (DFA) combined with 

PCA to analyze five polymers (PET, PE, PVC, PP and PS). The authors used the following 

ratios among the emission lines and molecular bands: Cl/C, C2/C, H/C, O/C, CN/C, N/C, CN/C, 

N/C, N/O, C2/C. The results of this study show that LIBS/DFA is a simple, low cost, accurate 

and fast method that can be used for identification and classification of polymers, showing an 

ability to correctly classify 99% of the polymers. 

An approach combining LIBS and ASW with the use of the ratio of the emission lines 

and molecular bands was employed by Yu et al. [42]. This approach has been achieved 

through increasing the intensities of specific characteristic spectral lines that are important for 

polymer identification but are difficult to excite. Using the ASW method, the identification 

accuracy of all 11 polymers was increased to nearly 100%, while the accuracy of PE, PP, PC 

and polyurethane (PU) were only 98%, 74%, 90% and 98%, respectively, when the ASW 

method was not used. In this same perspective, Babier et al. [43] used the C2/He and CN/He 

ratios associated with PCA to discriminate among four different plastics (PS, PP, ABS and 

PC/ABS). 

The quantitative analysis in WEEE polymers by LIBS is a major problem. The polymer 

matrix is very complex, in addition LIBS exhibits severe problems with calibration, and the use 

of the information acquired by a laser system in combination with reference techniques is 

mandatory in several cases. Some elements that are considered hazardous, emerging 

contaminants and environmental pollutant agents can be added in the polymer matrix as FR 

(as high as 1% w/w).  Guidelines such as the Restriction of Hazardous Substances (RoHS) 
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Directive D.2002/95/EC [44] stipulate the maximum permissible concentrations of these 

elements in WEEE. To address this problem, Aquino et al. [45] proposed a new method for 

directly determining Sb in PC/ABS blends using LIBS. A calibration curve (Sb: 0 to 2.6% w/w) 

was prepared and analyzed using LIBS and more than 10,000 spectra were obtained. Carbon 

(247.85 nm) and Sb (259.80 nm) signals were recorded and normalized by their individual 

norm values. The best results were obtained when C was used as the internal standard and 

the Sb concentration observed in the samples ranged from 0.15 to 0.68% (w/w). Standard 

addition tests were performed, and the recoveries ranged from 63 to 83%. 

1.3 LIBS and chemometrics 

 In analytical chemistry, the term "chemometrics" was introduced by Svante Wold in 

1971, to describe the use of mathematical models and statistical principles. Currently, 

chemometrics is defined as a science that employs a multidisciplinary approach, which also 

includes mathematics and statistics, and has become indispensable for modern researchers 

in analytical chemistry [46]. 

 LIBS spectra are very complex, due to some factors related to signal-to-noise ratio, 

such as: laser energy fluctuations, ablation rate and laser-plasma coupling. These factors 

directly reflect in precision of the measures, causing high standard deviation values. These 

drawbacks makes impossible a wide application of the LIBS in the field of the analytical 

chemistry. In the last years some of these difficulties have been overcome with combination 

between LIBS and chemometrics. In addition, the chemometrics is fundamental for 

interpretation of the large amount of generated data by LIBS [47]. 

 In this sense, the use of chemometrics is practically indispensable in LIBS analysis. 

Figure 5 shows how the use of LIBS associated with chemometric tools has been growing over 

the years. According to the Web of Science database, since 2001, about 375 scientific articles 

using some type of chemometric tool were published, accounting about 10% of the total LIBS 

publications. Moreover, since 2011 the number of publications with the term has growing 

significantly, and the trend is that this number will continue to increase.  
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FIGURE 5 Number of publications involving LIBS and chemometrics. 

 Before, the application of any chemometric tool, the data need to be transformed to 

reduce the influence of sample surface morphology or microheterogeneity [48]. This 

transformation is even more important for the direct analysis of solid samples. Several types 

of transformations, such as the use of digital filters [49] and the application of normalizations 

based on Euclidean norm, signal area or height [50,51] have been reported. This process is 

required because LIBS spectra are sensitive to several potential problems, including variations 

in the sample surface, the stability of the laser and the interaction between the laser and the 

sample [47]. Our research group used mainly the data normalizations strategy to minimize 

above mentioned problems and used for the first time in the quantitative analysis metal alloys 

[51]. Subsequently, these normalizations were applied successfully for qualitative and 

quantitative analysis of a wide range of samples [52-57].  

 The chemometrics can be divided into four areas, as shown in Figure 6: (i) experimental 

desing; (ii) supervised methods for classification; (iii) unsupervised methods; and (iv) 

multivariate calibration. All the mentioned areas are widely used in the development of 

analytical methods by LIBS. Experimental design is very employed for optimization of the 

instrumental parameters in LIBS, and the most used tools are factorial design and response 
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surface methodology [51,53,55,56]. The supervised methods of pattern recognition using the 

chemometric tools, SIMCA, KNN and PLS DA are widely used in LIBS. The use of these tools 

is indispensable when the goal is to employ the spectral information from LIBS to propose 

classification models. The mentioned tools were employed with successfully in proposition of 

classification models in metal alloys [51], leather [58] and cosmetics [59]. 

 Unsupervised methods such as PCA and hierarchical cluster analysis (HCA) are also 

employed for interpretation of the LIBS data [46]. According to Porinzka et al. (2018) [60], the 

first step in interpretation LIBS data for a large sample set is the application of the PCA. 

Moreover, according to the authors, the PCA is the chemometric tool most used in LIBS data. 

Another chemometric approach widely used in LIBS analysis is the use of multivariate 

calibration. The main tools of multivariate calibration used in LIBS are ANN [61], PLS [62], and 

principal component regression (PCR) [63].  

 

FIGURE 6 Representative scheme of the main areas of chemometrics. 

 As can be observed is wide the applications of the chemometrics tools for interpretation 

of LIBS data. Despite extract and maximize useful information and to improve the precision of 

qualitative and quantitative analysis, the chemometric universe applied to LIBS still requires a 
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greater improvement, aiming to obtain good performance of the technique in several fields of 

application. 

1.4 Approaches for quantitative analysis by LIBS  

 LIBS is an analytical technique established for qualitative analysis purposes, aiming 

the identification of chemical elements in a wide variety of samples [16,18]. However, for 

quantitative analysis it requires considerable efforts, mainly due to severe matrix effects and 

difficulties in obtaining compatible solid standards for calibration, which can compromise 

precision and accuracy of the measures, making difficult a broader application of LIBS [19]. 

 To overcome the problems aforementioned, several calibration strategies have been 

reported in the literature over the years to improve the precision and accuracy of the 

measurement in LIBS [19]. Among the calibration strategies employed in LIBS, the matrix-

matching calibration (MMC) is more employed. In MMC method the calibration standards are 

matched with sample matrix, usually using certified reference materials (CRMs), or a set of 

samples with reference values as calibration standards. In this case, matrix effects can be 

minimized when the physical properties of the calibration standards closely match those 

samples being analyzed. Despite its advantages, MMC is not able to correct for spectral 

interferences. In addition, obtaining reference values for some analytes by other techniques 

may be difficult in some cases (e.g. for samples of difficult decompositions like glass) and when 

there is a small set of samples or CRMs [64]. 

 Other effective alternative to minimize the main limitations associated with LIBS, is the 

use of calibration by standard additions (SA) [19]. In SA, a constant amount of sample is added 

to the blank and all calibration standards, ensuring that both samples and standards are 

subjected to the same conditions, thus minimizing matrix effects. The limitations of this 

calibration approach include its inability to correct for spectral interferences and the 

requirement for large amounts of sample. In addition, SA may be considered cumbersome 

since a calibration curve with a few calibration standards (typically four or five standards) must 

be prepared for each individual sample [64]. 
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 The internal standardization (IS) is another calibration alternative for minimizing signal 

bias due to fluctuations in instrumental operational conditions, sampling errors, and, to a lesser 

extent, matrix effects [45,65]. However, choosing an appropriate internal standard specie is 

not a trivial task since it must go through similar plasma temporal processes as the analytes, 

which is usually challenging in LIBS. In addition, IS is not able to overcome some of the severe 

matrix effects observed in LIBS analyses [19]. 

 Calibration-free LIBS (CF-LIBS) uses the intensities of emission lines and some plasma 

properties (e.g. plasma electron density and temperature), which are calculated from the 

Boltzmann distribution, to determine the analyte concentration in the sample. In this case, only 

a CF-LIBS algorithm is required, with no need for a calibration curve or matrix-matched 

standards. For this strategy to be employed it is necessary local thermodynamic equilibrium in 

the plasma generated in the analysis of the samples [19,66]. 

 Recently, Babos et al. [55] proposed a new calibration strategy called multi-energy 

calibration (MEC). The MEC uses only two calibration standards, for each sample, and various 

emission wavelengths of the analyte with different sensitivities to determine its concentration 

in the sample. Both calibration standards are prepared using the same amount of sample, 

which contributes to efficiently minimize the matrix effect. The standard 1 is composed of 50% 

w/w of sample and 50% w/w of an appropriate blank, while the standard 2 is composed of 50% 

w/w of sample and 50% w/w of a reference standard containing the analytes. Some limitations 

of this method are related to the difficulty of choosing an appropriate blank and homogenization 

of standards [67]. In another study, Babos et al. [68] proposed a calibration strategy called 

one-point gravimetric standard addition (OP GSA). Similarly, to MEC calibration, OP GSA uses 

only two calibration standards. However, in this strategy an analytical curve is constructed with 

only one point. 

 Multivariate calibration strategies also provide measurements with satisfactory 

precision and accuracy in LIBS. One of the main advantages of these methods is the possibility 

of proposing a calibration model in the presence of the interferents, provided that they are 

present in the calibration set used to construct the model. In addition, some intrinsic limitations 
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of each multivariate method must be known so that erroneous conclusions are not obtained in 

the calibration of the method [19,61,62,63].  

 As can be seen, the calibration strategies applied in LIBS are varied and each has its 

advantages and limitations. The choice of the employed calibration strategy in the analytical 

method to be developed will depend on the intrinsic properties of the sample analyzed and 

knowledge of the advantages and limitations of each strategy. 
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a b s t r a c t

In the recycling of polymer e-waste, there is a pressing need for rapid measurement technologies for the
simple identification and classification of these materials. The goal of this work was to instantly identify
e-waste polymers by laser-induced breakdown spectrometry (LIBS). The studied polymers were
acrylonitrile-butadiene-styrene (ABS), polystyrene (PS), polyethylene (PE), polycarbonate (PC), poly-
propylene (PP), and polyamide (PA). Emission lines were selected for C (247), H (656), N
(742 þ 744 þ 747), and O (777), as well as the molecular band of C2 (516), and the ratios of the emission
lines and molecular band were utilized. Classification models, k-nearest neighbors (KNN) and soft in-
dependent modeling of class analogy (SIMCA), were used to rank the polymers. Both constructed models
gave satisfactory results for the validation samples, with average accuracies of 98% for KNN and 92% for
SIMCA. These results prove the predictive analytical capabilities of the LIBS technique for plastic iden-
tification and classification.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Electronic segments are considered as the world's largest and
fastest growing industry [1]. Associated with this rapid growth in
electrical and electronic applications, a relatively new type of waste
stream, termedwaste electronic and electrical equipment (WEEE or
e-waste), has become a major area of concern worldwide [2].
During the last three decades, the amount of e-waste generated has
increased dramatically, and this trend is currently projected to keep
increasing for the next several years [3,4].

A recent report by United Nations University estimated that
approximately 42 million metric tons (Mt) of e-waste was gener-
ated in 2014 and that 50 million Mt will be generated in 2018 [4].
Electronic waste is a type of solid waste with the fastest growth in
the world, mainly due to the rapid obsolescence of equipment (2e3
years or less). Its composition is complex, and the amount of
polymer e-waste is estimated to be between 10 and 30% by weight
(average 21%) and varies according to the type of device [5,6].

Polymers that constitute e-waste are diverse, and at least 15
different types exist. Among the most commonly used are
acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), high-
impact polystyrene (HIPS), polypropylene (PP) and polyethylene
(PE) [7e9].

Considering the large amount and complexity of polymers that
can be generated from e-waste, adequatemanagement is necessary
for the correct disposal or recovery of these materials. In this sense,
the process of recycling is presented as an attractive alternative [6].
The goal of recycling is to return polymeric waste to the productive
chain, reducing the amount of improperly disposed of post-
consumer solid material. Therefore, recycling is a solution to this
problem, and the first step is the identification and classification of
the polymer composition in a given e-waste.

Several techniques are used to identify polymers. Among the
most often employed are mass spectrometry (MS) [10,11], infrared
spectrometry (IR) [12] thermal analysis [13,14], inductively coupled
plasma-mass spectrometry (ICP-MS) [15] and inductively coupled
plasma optical emission spectrometry (ICP OES) [16]. Among these
mentioned techniques, IR is one of the most frequently used in the
identification of polymers [12]; however, it is not suitable for the* Corresponding author.
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analysis of black plastic samples [17]. Thermal analysis is commonly
used but is destructive [12] and presents a low analytical frequency.
Other techniques such as ICP-MS and ICP OES normally require
time-consuming or extensive sample preparation routines and are
destructive in order to turn the solid sample into a homogeneous
aqueous solution [18]. In this regard, laser-induced breakdown
spectroscopy (LIBS) is an analytical technique that presents great
potential for this application (high analytical frequency, portability,
no or minimal sample preparation, and the possibility of hyphen-
ation) [19e22].

Laser-induced breakdown spectroscopy is primarily an
elemental analysis technique that is applied in several fields
[23e25], such as qualitative and quantitative samples analysis.
However, molecular materials are almost entirely atomized when
exposed to the intense laser radiation that is sufficient for break-
down. This implies that limitations exist in the application of LIBS
to the identification of compounds because of the loss of molecular
information in the plasma, especially for organic compounds that
only contain mostly carbon and hydrogen, as well as oxygen and
nitrogen [17,26]. These limitations can be addressed using statis-
tical chemometric tools. Many research groups are working to
identify polymeric materials using LIBS, particularly through the
use of different chemometric tools [17].

Several studies in the scientific literature conducted to identify
plastics employed different strategies combining LIBS and chemo-
metric tools. Determining the ratios of different emission lines and
molecular bands [27,28] is a strategy found in the literature.
Methods of normalized coordinates (MNC) and linear and rank
correlation were applied to identify polymers with very similar
chemical compositions [29]. A complete analysis of several poly-
mers was made using principal component analysis (PCA) [30,31].
A chemometric method based on discriminant function analysis
(DFA) was used to discriminate polymers with slight differences
between their spectra [32]. Other chemometric tools such as soft
independent modeling of class analogy (SIMCA), k-nearest
neighbor (KNN) and partial least squares for discriminant analysis
(PLS-DA) have been widely used in the identification and classifi-
cation of polymers [33]. Artificial neural networks (ANNs) com-
bined with LIBS have been used with success to identify polymers
[34].

In this context, this study presents an alternative method for the
identification and classification of six polymer types most
commonly found in e-waste. The studied polymers were
acrylonitrile-butadiene-styrene (ABS), polystyrene (PS), poly-
ethylene (PE), polycarbonate (PC), polypropylene (PP) and poly-
amide (PA). Initially, PCA was applied in an exploratory analysis,
and SIMCA and KNN were later applied for the proposition of
classification models based on the LIBS spectra. These classification
models can be used for the recycling of e-waste polymers,
contributing to the management of these wastes by different in-
dustrial segments.

2. Experimental

2.1. Instrumentation

2.1.1. Laser-induced breakdown spectroscopy (LIBS)
LIBS spectra were obtained on a J200 LIBS system (Applied

Spectra, Fremont, CA, USA) using the control software Axiom 2.5
(Applied Spectra). This system consisted of a nanosecond Nd:YAG
laser (Quantel Ultra, Bozeman, MT, USA) that provided up to 100mJ
of energy, a 6-channel CCD spectrometer with a fixed gate width of
1.05 m in a spectral window from 186 to 1042 nm and an xeyez
translational ablation chamber with a 1280-1024 CMOS color
camera imaging system. The emission lines of the elements of

interest and the internal standards were identified using Aurora
software (Applied Spectra).

2.1.2. Differential scanning calorimetry (DSC)
Differential scanning calorimetry measurements were carried

out on a DSC Netzsch Maia F3 200 instrument under a nitrogen
purge. Scanning analysis was carried out from 20 �C to 200 �C, with
heating and cooling rates of 20 �C.min�1. The glass transition
temperature (Tg) was determined during the second heating by the
inflection method.

2.2. Samples

A total of 477 recyclable polymers derived from e-waste pos-
sessing different characteristics (colors, sizes and precedence) were
used. These polymers contained several additives that were min-
eral, metallic, or organic. The organic additives involved the pres-
ence of oxygen, nitrogen, or carbon that did not originate from the
polymer chain. These elements can jeopardize the classification of
polymers. For this study, six types of polymers were used that
represent the most commonly found polymers in e-waste. The
studied polymers were divided into the following classes: (1) ABS
and PS, (2) PE, (3) PC, (4) PP, and (5) PA. For the calibration set, 277
samples were used, and 200 samples were used for the validation
set. For additional evaluation of models 15 samples of polymers
were supplied by a polymer e-waste recycling company. These
samples were identified through the company's routine method,
which consisted of burning the polymers followed by identification
by the human senses.

2.3. Optimization of the instrumental conditions of LIBS

A Doehlert design [35] was used to optimize the experimental
LIBS variables. The variables and their respective levels were as
follows: a laser energy of 50, 63, 75, 88, and 100 mJ, delay time of 0,
0.1, 0.2, 0.5, 1.0, 1.5, and 2.0 ms and spot size of 50,100, and 150 mmA
total of 15 experiments were performed in triplicate, considering
the central point. The experiments for the optimization of the
conditions were performed using four classes of polymers (poly-
ethylene PE, polycarbonate PC, polypropylene PP and polyamide
PA).

2.4. Data collection and chemometric evaluation

For data treatment, twelve different normalization modes were
tested to compensate for signal variations and sample matrix dif-
ferences [36]. The best results were those normalized by the indi-
vidual norm and averaged over n pulses. The data set was organized
using Microsoft Excel, and a routine developed in Matlab 2009
(MathWorks, Natick, USA) was used for data normalization. Aurora
software (Applied Spectra) was employed for the identification of
emission lines, and Pirouette 4.5 (Infometrix, Bothell, USA) was
used to calculate the data classification models. The data set was
organized into a matrix with 477 rows and 10 columns, in which
the rows represented the polymer samples and the columns rep-
resented the variables.

For all polymer fragments, 5 points were randomly selected,
upon which 10 laser pulses per point were performed. A previous
surface cleanup had been performed using a single pulse of 10 mJ
and with a 200 mm spot size. After this procedure, the optimized
conditions were used. Initially, PCA was performed to evaluate
whether LIBS could differentiate the classes of polymers investi-
gated. Variable selection was based on the intensity ratios of
selected elemental lines and molecular bands: C (247), H (656), N
(742 þ 744 þ 747), O (777) and C2 (516). After this selection, two
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classification models for the identification and classification of
polymers were proposed: KNN and SIMCA.

3. Results and discussion

3.1. Optimization of LIBS

In order to evaluate the conditions of the LIBS instrumental
parameters, the interclass distance (ICD) from the SIMCA classifi-
cation model was used with the goal of identifying an experimental
condition that reflected a high ICD, i.e., high discrimination among
the polymers investigated. Six interclass distances (PExPC, PExPS,
PExPA, PCxPS, PCxPA, PSxPA) were calculated and converted to a
geometric average in order to obtain a committed experimental
condition. To obtain dependable results, the quality of the mathe-
matical model was evaluated, i.e., if the model can satisfactorily
describe the behavior of the experimental values. To assess the
quality of the model, the lack of fit was verified. If the mathematical
model presents a good fit to the experimental data, the mean
square lack of fit (MSlof) should reflect only the random errors
inherent to the system. Additionally, the mean square pure error
(MSpe) should also be an estimate of these errors, and it is assumed
that these two values are not significantly different. Thus, it was
possible to use the F distribution to assess whether there was any
significant difference between these two means. The quality of the
model was tested by analysis of variance (ANOVA). Thus, for the
considered model, there was no lack of fit because MSlof/MSpe
(0.33) was lower than Ftable (19.16). After evaluation of the model,
the best experimental conditions (high interclass distances) were
represented by the central point: laser energy of 75 mJ, delay time
of 0.5 ms and spot size of 100 mm.

3.2. Selection of emission lines and molecular bands for analysis

A typical spectrum of each polymer analyzed is presented in
Fig. 1. As expected, carbon and hydrogen had spectral lines with
high intensity. Additionally, molecular bands for C2 can be
observed. Other lines observed were related to N, O, Ca, Na, Mg and
Ca. The emission intensity ratios of the molecular bands of C2, as
well as C, H, O and N, were the parameters required for the iden-
tification of organic compounds. Under the experimental condi-
tions, atmospheric nitrogen and oxygen may have influenced the
spectra obtained. Therefore, signals of nitrogen and oxygen could
appear in the spectra but were not present in the polymers. A better
approach would be to use an inert atmosphere composed of helium
or argon, for example. However, our objective was to analyze
polymer e-waste in real conditions of a recycling company, in
which is not possible use an inert atmosphere.

Variable selection was based on the intensity ratios of emission
lines and molecular bands commonly used for the qualitative
identification of polymers [30,31]. The emission lines of C (247), H
(656), N (742 þ 744 þ 747), and O (777) and the molecular band of
C2 (516) were used to calculate the theoretical ratios, which are
shown in Table 1. After analyzing this table, several observations are
apparent: the polyamide (PA) polymer, for instance, was mainly
characterized by a high C(247)/C2(516) ratio, and the C2(516)/
N(742 þ 744þ777) ratio was high for ABS and PS.

3.3. Exploratory analysis using PCA

With the obtained data matrix (277 samples and 10 variables),
PCA analysis was conducted with the autoscaled data. Initially, PCA
was generated with six classes of polymers (ABS, PS, PE, PC, PP and
PA); however, it was not possible to obtain separation between ABS
and PS. This separation difficulty was due to the similarity between

the styrene repeating unity found in both of these polymers.
Therefore, these two polymers were grouped into a single class, and
PCA with five classes was newly generated. Five classes were
analyzed, assessing the ratios of the emission lines of C (247), H
(656), N (742 þ 744 þ 747), and O (777) and the molecular band of
C2 (516). The scores and loadings of first three principal compo-
nents were evaluated, and Fig. 2a presents the score plot for
PC1xPC2 for different samples, with 61.3% of the explained vari-
ance. Fig. 2b presents the loading plot for PC1xPC2 using different
ratios of the emission lines and molecular band.

In Fig. 2a, there is separation between the five classes of poly-
mers in our study. The aliphatic polymers (PE, PP and PA) are
separated from the aromatic polymers (ABS, PS and PC). This dif-
ferentiation was possible because the C2 signal was lower for the
aliphatic polymers [29].

3.4. Classification model proposition

Fig. 3 shows the figures of merit for the proposed classification
models. Five classes of polymers were studied, and two classifica-
tion models were proposed for each class: KNN and SIMCA. In the
case of KNN, three neighbors were selected for the five classes. For
SIMCA, the number of principal components was 2 or 3 for the five
classes considered. The data set was divided into calibration (277)
and validation (200) samples, and Fig. 3 shows the accuracy,
sensitivity, false alarm rate and specificity calculated for validation
data set in each model. Between the two models, KNN presented
the best results, with an accuracy of 91e100%. In the case of SIMCA,
the accuracy ranged from 89 to 92%.
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Fig. 1. Representative spectra of the analyzed polymers: ABS, PS, PE, PC, PP and PA.
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Table 1
Polymers used and their average and range ratios.

Variable Evaluated ratio ABS and PS PE PC PP PA

Average
Ratio

Range
Ratio

Average
Ratio

Range
Ratio

Average
Ratio

Range
Ratio

Average
Ratio

Range
Ratio

Average
Ratio

Range
Ratio

1 C(247)/H(656) 2.8 1.3e4.2 1.8 0.9e2.5 3.0 1.4e5.1 1.6 0.5e2.5 1.9 0.7e3.1
2 C(247)/C2(516) 5.2 2.2e10.3 8.6 2.5e12.5 7.6 2.8e16.8 6.0 1.1e20.6 23.9 7.8e49.1
3 C(247)/N(742 þ 744þ747) 4.5 2.0e7.4 3.9 1.7e6.0 3.9 1.9e7.8 3.6 0.9e6.2 3.2 1.2e5.6
4 C(247)/O(777) 2.7 1.2e4.6 2.3 1.0e3.7 2.1 1.1e4.1 2.1 0.5e3.9 1.8 0.7e3.2
5 H(656)/C2(516) 1.9 1.0e3.0 4.7 2.3e6.3 2.6 0.9e4.5 3.5 1.4e8.8 13.5 3.8e32.7
6 H(656)/N(742 þ 744þ747) 1.7 1.3e2.1 2.1 1.9e2.4 1.3 0.8e1.7 2.2 1.5e2.9 1.7 1.2e2.3
7 H(656)/O(777) 1.0 0.8e1.3 1.3 1.1e1.4 0.7 0.5e0.9 1.3 0.9e1.6 1.0 0.6e1.3
8 C2(516)/

N(742 þ 744þ777)
1.0 0.6e1.7 0.5 0.3e0.8 0.6 0.3e1.0 0.7 0.2e1.4 0.15 0.05e0.45

9 C2(516)/O(777) 0.6 0.3e1.0 0.3 0.2e0.5 0.3 0.1e0.6 0.4 0.1e0.8 0.09 0.03e0.26
10 O(777)/N(742 þ 744þ747) 1.7 1.6e1.8 1.7 1.6e1.8 1.8 1.7e1.9 1.7 1.6e1.9 1.8 1.6e2.1

-8 -6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

a)
 ABS and PS
 PE
 PC
 PP
 PA

)
%3.12(

2
C

P

PC1 (40.4%)

-0.4 -0.2 0.0 0.2 0.4
-0.6

-0.4

-0.2

0.0

0.2

0.4 C/H

C/C2

C/N
C/O

H/C2

H/N
H/O

C2/N
C2/O

O/N

b)

)
%

3.12(
2

C
P

PC1 (40.4%)

Fig. 2. (a) Score and (b) loading plots for PC1xPC2 of the analyzed polymers.
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and (b) SIMCA models.
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3.5. Identification of samples by recycling company, DSC and
proposed models

The 15 samples provided by the recycler were initially identified
by the KNN and SIMCA models and then analyzed by DSC, which is
a reference technique based on the principles of thermal analysis.
All samples were identified by their DSC glass transition tempera-
ture (Tg) except samples 3 and 4, which were identified by their
fusing temperature. Table 2 shows the results obtained from DSC,
KNN, SIMCA and the results provided by the company when con-
ventional identification was used.

The results were consistent for most samples; however, there
were discrepancies between the results of samples 2, 3, 4 and 5.
According to the recycling company, sample 2 was a blend of pol-
y(phenylene oxide)/polystyrene, which is consistent with the re-
sults obtained from DSC. However, using KNN, the predicted class
was 1 (ABS or PS), and the SIMCA model did not predict any of the
studied classes. The KNNmodel is deterministic and thus predicted
the sample to be Class 1. However, the model was not calibrated to
identify the sample in question. On the other hand, the SIMCA
model is probabilistic and did not predict this sample class because
the model had not been calibrated to identify that type of polymer.
Samples 3 and 4 were identified by the recycling company as pol-
yoxymethylene (POM) and PS, respectively. These results were not
consistent with those obtained from DSC and KNN, which showed
that these samples belonged in class 2 (PE). The SIMCA model did
not predict sample 3 but predicted sample 4 to be PE, which agrees
with the results of DSC and KNN. Sample 5 was identified by the
recycling company as ABS; DSC identified this sample as PS, and the
KNN and SIMCAmodels classified this sample in Class 1 (ABS or PS).
A limitation of KNN and SIMCA models is that it is not possible to
discriminate between ABS and PS samples.

4. Conclusion

LIBS together with discriminant function analysis were used for
the identification and classification of five groups of the most
commonly used polymers in the electronics industry. Classification
models (KNN and SIMCA) were developed using the theoretical
ratios of the emission lines and molecular bands obtained from
LIBS. The predictive abilities of the models were similar, showing
that these two models can be used to identify and classify the
investigated polymers. The results show that LIBS combined with
chemometric tools is a simple, inexpensive, accurate and fast
method that can be used for the identification and classification of

e-waste polymers.
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a b s t r a c t

Due to the continual increase in waste generated from electronic devices, the management of plastics,
which represents between 10 and 30% by weight of waste electrical and electronic equipment (WEEE
or e-waste), becomes indispensable in terms of environmental and economic impacts. Considering the
importance of acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and their blends in the electron-
ics and other industries, this study presents a new application of laser-induced breakdown spectroscopy
(LIBS) for the fast and direct determination of PC and ABS concentrations in blends of these plastics
obtained from samples of e-waste. From the LIBS spectra acquired for the PC/ABS blend, multivariate cal-
ibration models were built using partial least squares (PLS) regression. In general, it was possible to infer
that the relative errors between the theoretical or reference and predicted values for the spiked samples
were lower than 10%.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The worldwide demand for technical plastics and the conse-
quent accumulation of these residues from end-of-life products
are constantly increasing. In 2013, the global production of plastic
was approximately 300 million tons, showing an increase of 4%
from 2012 (Anuar Sharuddin et al., 2016). The same behavior is
exhibited by waste from electrical and electronic equipment
(WEEE or e-waste) (Vazquez and Barbosa, 2016), which is growing
exponentially and contains large amounts of plastic materials
(Aquino et al., 2016).

The technical plastic fraction of WEEE is composed by more
than 15 different polymers. However, acrylonitrile-butadiene-
styrene (ABS), polycarbonate (PC), and their blends are among
the most important plastics used by the electronics industry
(Buekens and Yang, 2014; Tarantili et al., 2010; Taurino et al.,
2010), due to its good characteristics, which can be improved
through the mixture of them. In PC/ABS blends, desirable features,
such as the toughness and heat distortion temperature, are
enhanced from PC, while ABS leads to better processability and

cost reduction. For these reasons, PC/ABS blends are widely used
in important industries, such as the electronics and automotive
(Buekens and Yang, 2014; Kuram et al., 2016).

Regarding the management of plastic residue, which often con-
tains hazardous flame retardants (Aquino et al., 2016; Shao et al.,
2016), the option to dispose these materials in landfills has become
increasingly undesirable, due to the low sustainability, high cost,
and decreasing available space (Ignatyev et al., 2014; Vazquez
and Barbosa, 2016). In this context, the recycling of PC, ABS, and
their blends has been a target of research and practical action in
the last years (Balart et al., 2005; Barthes et al., 2012; Farzadfar
et al., 2014; Hopewell et al., 2009; Jing-ying et al., 2012; Kuram
et al., 2016; Liu and Bertilsson, 1999; Tarantili et al., 2010).

Concerning the analytical aspects, it is evident that precise
knowledge of the amount of PC and ABS in their blends is very
important, from the early steps of recycling (identification/classifi
cation) to the analysis of the obtained product. In addition, precise,
simple, and fast analytical methods are required in quality control
laboratories in industry and research or academic centers.

Several strategies have been employed to determine the com-
position of polymer blends of PC/ABS. The presence of both poly-
mers in the blends can be confirmed using differential scanning
calorimetry (DSC) and dynamic mechanical analysis (DMA), as

https://doi.org/10.1016/j.wasman.2017.09.027
0956-053X/� 2017 Elsevier Ltd. All rights reserved.
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two glass transition temperatures (Tg) are readily observed at 85–
105 �C (ABS) and 150–155 �C (PC) (Adams et al., 1993; Babbar and
Mathur, 1994). Mechanical analyses, such as impact and tensile
tests, are also widely used (Krache and Debah, 2011; Kuczynski
et al., 1994). However, these techniques are time consuming,
require unusual sample preparation for an analytical chemistry
laboratory, conditioning protocols prior to measurement, and pre-
sent low analytical frequency. Near-infrared (NIR) has also been
used to evaluate the proportion of PC and ABS in blends (Scaffaro
et al., 2012); however, it is not suitable for the analysis of black
plastic samples (Beigbeder et al., 2013; Maris et al., 2012;
Masoumi et al., 2012; Roh and Oh, 2016). In this regard, laser-
induced breakdown spectroscopy (LIBS) is an analytical technique
that presents great potential for this application, due to the follow-
ing advantages: high analytical frequency, portability, no or mini-
mal sample preparation, and the possibility of hyphenation
(Galbács, 2015; El Haddad et al., 2014).

LIBS is a multi-elemental technique in which a laser beam
excites and intensively heats a small volume of the sample. The
heated sample is converted to a gaseous plasma state and broken
down into atoms, which produces a characteristic radiation of
light. This light is analyzed spectrally, and through calibration,
the intensity of the spectra indicates the concentration of the ele-
ments in the sample (Musazzi and Perini, 2014). However, some
challenges are still present, such as the low availability of
matrix-matched standards for quantitative analyses and pulse-
to-pulse signal fluctuations that can lead to relative standard devi-
ation (RSD) values higher than 10% (Aquino et al., 2016; Aquino
and Pereira-Filho, 2015; Galbács, 2015).

Despite this, since 1998, a relative high number of publications
have been presented methods for plastic identification using LIBS,
particularly combining the use of different chemometric tools.
Banaee and Tavassoli (2012), for instance, used a chemometric
method based on discriminant function analysis (DFA) to identify
polymers with slight differences among their spectra. Sattmann
et al. (1998) used Artificial neural networks (ANNs) combined with
LIBS with success to identify polymers. Lasheras et al. (2010) used
with success the methods of normalized coordinates (MNC) and
linear and rank correlation to identify polymers with very similar
chemical compositions. Other chemometric tools such as soft inde-
pendent modeling of class analogy (SIMCA), k-nearest neighbor
(KNN) and partial least squares for discriminant analysis (PLS-
DA) have been widely used in the identification and classification
of polymers (Aquino et al., 2016; Aquino and Pereira-Filho, 2015;
Costa et al., 2017). Determining the ratios of different emission
lines and molecular bands associated with the use of principal
component analysis (PCA), was a strategy found in the literature
for identification and classification of polymers (Grégoirie et al.,
2011; Unnikrishnan et al., 2013; Xia and Bakker, 2014).

However, these above mentioned chemometric tools are lim-
ited to classification models proposition for the identification of
samples according to their similarity. Thus, its application for
quantitative analysis of PC and ABS in blends associated to chemo-
metric tools is not reported in the literature. In this sense, partial
least-squares (PLS) technique is often used for the analysis in mul-
tivariate calibration methods aiming quantitative analysis of vari-
ous analytes (Mota et al., 2015; Viegas et al., 2016). PLS
multivariate calibration is strongly used in combination with
near-infrared (NIR) spectroscopy. Sulub and DeRudder (2013), for
example, determining the concentration of polycarbonate and rub-
ber in blends of these materials using PLS models NIR. Thus, the
present study shows and discuss a new application of laser-
induced breakdown spectroscopy (LIBS) using PLS for fast and
direct determination of the amount of PC and ABS in blends of
these materials obtained from samples of e-waste.

2. Materials and methods

2.1. Laser-induced breakdown spectroscopy (LIBS)

LIBS spectra were obtained using a J200 LIBS system (Applied
Spectra, Fremont, CA, USA) controlled by the Axiom 2.5 software
(Applied Spectra). This instrument consists of a 1064 nm Nd:
YAG laser and a 6-channel charge-coupled device (CCD) spectrom-
eter recording spectra information from 186 to 1042 nm. Channel 1
goes from 186 to 309 nm, channel 2 from 309 to 460 nm, channel 3
from 460 to 588 nm, channel 4 from 588 to 692 nm, channel 5 from
692 to 884 nm and channel 6 from 884 to 1042 nm. The spectral
resolution is <0.1 nm from UV to VIS and <0.12 nm from VIS to
NIR. The Axiom 2.5 software from the same manufacturer con-
trolled the operational parameters of the equipment. These param-
eters were the laser pulse energy, which ranging from 0 to 100 mJ,
the gate delay - the time interval between the incidence of the
laser pulse and the start of signal recording by the spectrometer
– ranging from 0 to 2 ms, and the spot size, ranging from 50 to
250 mm. The Axiom 2.5 software also manages the movement of
the sample, assisted by an automated XYZ stage and a
1280 � 1024 complementary metal-oxide semiconductor (CMOS)
color camera imaging system. The software at 1.05 ms establishes
the gate width, which is the time interval that the spectrometer
registers the emission signals.

2.2. Differential scanning calorimetry (DSC)

Differential scanning calorimetry measurements were per-
formed on a Netzsch F3 200 Maia DSC (Netzsch-Gerätebau GmbH,
Selb, Germany) instrument under nitrogen purge. Scanning analy-
sis was carried out from 20 �C to 200 �C with heating and cooling
rates of 20 �C�min�1. The glass transition temperature (Tg) was
determined during the second heating by the inflection method.

2.3. Blend and sample preparation

The multivariate calibration model was built using a set of 11
mixtures of PC/ABS in the following proportions: 100/0, 90/10,
80/20, 70/30, 60/40, 50/50, 40/60, 30/70, 20/80, 10/90 and 0/100
(w/w%). These mixtures were prepared according to the following
procedure:

i) Individual dissolution of PC (polycarbonate Lexan 101, Sabic
Company, Campinas, Brazil), ABS granule resin (Cycolac EX
58 Sabic Company, Campinas, Brazil), and sample pieces in
dichloromethane (p.a. ACS reagent, Sigma-Aldrich, St. Louis,
MO, USA) until obtaining a 10% w/v solution.

ii) Attainment of polymer/sample chips after dichloromethane
evaporation, and spreading the solution on a glass plate
under air flux at room temperature (25 �C).

iii) Attainment of polymer/sample powder through grinding the
chips in an analytical mill at 28,000 rpm, and subsequent
sifting of the gross powder through a stainless-steel mesh
sieve (0.5 mm).

iv) All mixtures or sample pellets were prepared using 0.5 g of
the respective powder material. This mass was added in an
aluminum mold and heated in a thermopress at 200 �C for
10 min with a pressure of 0.4 metric tons. Additional details
of this procedure are available in a previous publication
(Aquino et al., 2016).

To evaluate the multivariate calibration model, 6 plastic sam-
ples containing only ABS (black and white pieces) obtained from
scraps of a telephone, keyboards computer, two computer casings
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and monitor were spiked with several amounts of PC. The amount
of the spikes was calculated in order to distribute the samples
along the lower, middle and highest intervals of the calibration
range. After the sample spiking procedure, the 6 samples provided
11 different PC/ABS mixtures, which were prepared using the same
procedure previously described. The choice to use a black piece
was made in order to evaluate the behavior of the method for an
unprepared sample, as black pigments (carbon black) are often
troublesome in near-infrared (NIR) spectroscopy analysis
(Beigbeder et al., 2013; Maris et al., 2012; Masoumi et al., 2012;
Roh and Oh, 2016).

Additionally, 33 samples (from sample 7 to sample 39) with
unknown PC and ABS concentrations were analyzed. These sam-
ples were directly subjected to LIBS analysis without the need for
preparation. Moreover, polypropylene (PP, sample 37), polyethy-
lene (PE, sample 38) and polystyrene (PS, sample 39) samples were
analyzed in order to verify the robustness and specificity of PLS
models for PC and ABS detection. The results were also compared
through visual inspection of the thermogram obtained by DSC
analysis. In addition, the analysis becomes much faster, since the
sample need not be prepared.

2.4. Data collection and analyses

The conditions used for LIBS analyses in this study have been
previously described by Aquino et al. (2016). Before each data
collection the analyzed area was cleaned with laser pulses with
10 mJ laser pulse energy, and 200 mm spot size (Fluence around
32 mJ/cm2). In each sample was performed a data collection in scan
mode with the following laser operation setup: 10 Hz repetition
rate, 75 mJ laser pulse energy, 0.5 ms delay time, 1.05 ms gate
width, and 75 mm spot size (Fluence around 1700 mJ/cm2). For
each sample, approximately 600 spectra (in both sides of the
samples) were obtained at different parts of the samples. The spec-
tra were obtained in 6 lines, and in each one approximately 100
laser pulses were obtained. The following additional laser settings
were used: a scan length of 18 mm, and a speed of 1.0 mm/s. The
emission lines of the elements of interest were identified using
the Aurora software (Applied Spectra).

After spectra acquisition, the workflow was as follows:

i) Organization of data matrices (Microsoft Excel).
ii) Preliminary data inspection performed using the Matlab

software version 2009a (The Matworks, Natick, MA) and a
homemade routine ‘‘libs_treat” (Castro and Pereira-Filho,
2016); libs_treat was applied to detect eventual outlier spec-
tra. In this case, for each sample (rows in the data matrix),
the standard deviation, area, maximum and Euclidean norm
were calculated. If an outlier was detected (e.g., standard
deviation equal to 0), this spectrum was removed by the
analyst, and then 12 normalization modes were automati-
cally executed. This process was required because LIBS spec-
tra are sensitive to several potential problems, including
variations in the sample surface, the stability of the laser
and the interaction between the laser and the sample.

iii) Multivariate calibration model using Pirouette software ver-
sion 4.5 (Infometrix, Bothell, WA). The calibration model
was obtained by partial least squares (PLS) regression of
the normalized sample data set. In the application of PLS,
the data set was subdivided into 11 samples for calibration
(the 11 mixtures PC/ABS) and 44 for validation: 11 mixtures
that were prepared using the same procedure described for
calibration data set and 33 samples without preparation. In
this step the whole peak profile (12,288 variables) was ini-
tially used. The efficiency of the 12 normalization modes
was assessed comparing the values of standard error of cal-

ibration (SEC) for the proposed models. The best results
were those that presented the lowest SEC. Fig. 1 shows a pic-
torial description of steps for construction of the calibration
models.

3. Results and discussion

3.1. General characteristics of LIBS spectra obtained for PC/ABS blends
in different proportions

Fig. 2 shows LIBS spectra for different materials used in the
multivariate calibration. Fig. 2a and b correspond to the PC/ABS
(100/0 w/w%) and PC/ABS (0/100 w/w%) blends, respectively.
Fig. 2c was obtained from sample 1, black telephone scrap that
was 100% ABS (labeled identification), and was spiked with PC to
provide a final mixture of PC/ABS of 50/50 w/w% (mixture 2), while
Fig. 2d was acquired from sample 7, computer keyboard, and was
analyzed as obtained (not prepared, nor spiked).

The four spectra in Fig. 2 represent samples at the extremes and
around the center of the calibration range, and the main emission
signals, indicated in Fig. 2 and listed in Table 1, are associated with
the same elements, with the exception of Mg.

This indicates that the simple selection of a line or line ratios to
generate a univariate calibration will hardly provide a satisfactory
prediction of the PC and ABS content of the blend. Based on this, a
multivariate calibration using PLS regression was performed. In
PLS regression, all relevant variables are considered. This allows
the identification of factors (linear combinations of the indepen-
dent variables X) that better fit one or more dependent variables
Y (response variables) (Geladi and Kowalski, 1986; Sjöström
et al., 1983).

Using the PLS regression vectors, the evaluation of the most
important emission lines, listed in Table 1, was possible for the
development of the multivariate calibration model. In addition,
the peak profiles for the most important emission lines (high
regression vectors) are shown in Fig. 3a–i. Carbon emission lines
(Fig. 3a and b) presented high regression vectors as expected.
The molecular band of C2 (Fig. 3c) is important in differentiation
between the polymers aromatic rings in PC and ABS. This differen-
tiation is possible because PC has a more intense signal in relation
to ABS and several studies have using this property to separate
polymers (Anzano et al., 2008; Costa et al., 2017; Grégoirie et al.,
2011). Emission lines related to CN (Fig. 3d), N (Fig. 3e), and O
(Fig. 3f) presented also high regression vectors.

Calcium (Fig. 3g), present in the spectra, is commonly added to
polymers in the form of calcium carbonate (CaCO3). Calcium com-
pounds can be used as pigments, fillers, reinforcement agents, sta-
bilizers and flame retardants (Aquino and Pereira-Filho, 2015;
Buekens and Yang, 2014; Kumar and Gupta, 2003). The Na signal
(Fig. 3h) can be attributed to residual concentrations of sodium
persulfate used as a water-soluble initiator during thermoplastic
production (e.g., PC and ABS, which are widely used in electronic
devices) by the emulsion polymerization technique (Kumar and
Gupta, 2003). Na in the polymers can be also explained because
NaOH is used in polycarbonate synthesis, as bisphenol A ((CH3)2C
(C6H4OH)2) is treated with this base (Ebewele, 2000). The last
emission line (Fig. 3i) is related to H 656.28 nm.

Additionally, emission lines were observed for Sb and Ti, which
are very common in PC and ABS plastics (Aquino et al., 2016). The
presence of Sb is strongly linked to antimony trioxide (Sb2O3),
which is an inorganic flame retardant widely used in plastics
employed in electronic devices (Buekens and Yang, 2014). The Ti
lines are related to the white pigment, and surely, the main source
is from the addition of titanium dioxide (TiO2) (Kumar and Gupta,
2003).
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The stability of the blend signals was confirmed over thirty
days. The first analysis was performed on the day of mixtures pro-
duction, the second was carried out after 15 days, and the third on
the thirtieth day. The RSDs for the signals over the full spectrum
varied from 8 to 19%. All analyses were performed in triplicate,
and the number of laser pulses per mixture in each analysis was
600. The signal to background ration (SBR) and signal to noise ratio
(SNR) for C I 193.09 emission line was 116 and 101, respectively.

3.2. PLS models for the prediction of PC and ABS in plastics produced
from their blends

The spectral profile obtained by LIBS presents high complexity
due to the abundance of emission lines for several elements, in
addition, presents problems of repeatability of signals. In LIBS anal-
ysis, these reported limitations are usually caused by the complex-
ity of the interaction between the laser and the sample
(particularly with physically or chemically heterogeneous sam-
ples). Fluctuations in laser-plasma interactions includes the rate
of ablation and plasma characteristics, or differences in instrumen-
tal settings (i.e., laser pulse energy, integration gate time, focal
length and detector settings), as well as differences in the number
of accumulated pulses (Tognoni and Cristoforetti, 2016). To over-
come the signal fluctuations and sample matrix variations, were
employed 12 normalization modes of signal after obtained around
600 spectra for each sample: signal average (Norm_1), signal nor-
malized by individual norm and then averaged (Norm_2), normal-
ized by area (Norm_3) and by maximum (Norm_4) and then
averaged, signal sum (Norm_5), signal sum after normalization
by individual norm (Norm_6), area (Norm_7) and maximum
(Norm_8) and signal average (Norm_9 and Norm_11) and
sum (Norm_10 and Norm_12) after normalization by C signals

(I 193.09 and I 247.85 nm). Additional details about normalization
modes are available in publication of Castro and Pereira-Filho
(2016). The lowest SEC was the criteria to select the best normal-
ization to obtain the calibration models. SEC values were calcu-
lated according to Eq. (1):

SEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyi � ŷiÞ2

q

n� 1
ð1Þ

where yi is the reference concentration PC and ABS and ŷi is the pre-
dicted concentration for dataset calibration and n is the number of
samples.

In this step, the 11 PC/ABS blends were used: 100/0, 90/10,
80/20, 70/30, 60/40, 50/50, 40/60, 30/70, 20/80, 10/90 and
0/100 w/w%. Initial models were calculated using the entire spec-
tral range (186–1042 nm). Later, other models were calculated
excluding the range from 278.01 to 281.78 nm in order to disre-
gard the most intense Mg emission lines (see Fig. 2). This change
in relation to the first model was performed to take into account
that Mg is not present in PC or ABS molecules. Mg in the form of
compounds, such as magnesium hydroxide and hydromagnesite,
is used as a flame retardant, and its concentration in the samples
can change according to the polymer application (Hornsby, 2001;
Laoutid et al., 2009; Morgan and Gilman, 2013; Visakh and Arao,
2015). Thus, keeping the interval of the LIBS spectra where the
Mg lines are the most intense in the model can reduce its accuracy.
Fig. 4 shows the comparison among the 12 normalization modes,
and the best result (lowest SEC) was obtained with signal normal-
ized by individual area and sum over n pulses (Norm_7). A horizon-
tal red line was inserted in this figure in order to compare the
results. As can be observed, the SEC value for PC or ABS was around
3% and using only the signal average (Norm_1) the SEC value was
2-fold higher.
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Fig. 1. Pictorial description of steps for signal normalization selection and construction of the calibration models.
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Table 2 shows the correlations obtained between the predicted
and expected values for PC (0.996) and ABS (0.996) and the figures
of merit for the calculated PLS models. Standard error of calibration
(SEC) and cross-validation (SECV) were 3.4–5.6%, respectively, and
in both models 2 latent variables (LV) were used with almost 70%
of explained variance.

To verify the applicability of the results obtained with the PLS
models, a reference method, DSC, was used to verify the presence
of PC and ABS in the constructed mixtures blends. DSC is a robust
analysis widely employed to identify polymer matrices and also
quantitative estimation of polymer blends (Ehrenstein et al.,
2004) in especially PC/ABS blends (Greco et al., 1994; Santana
et al., 1998).

The DSC thermograms for all mixtures blends in the calibration
model presented in Fig. 5 show two glass transitions. The only
exceptions are Fig. 5a (PC/ABS = 100/0) and Fig. 5k (PC/
ABS = 0/100), which present only one glass transition. The glass
transition temperatures were estimated as the half-step tempera-
ture related to the change in heat capacity. The higher glass transi-
tion temperature of 145 �C (Tg1) is attributed to first blend
component, polycarbonate (PC), and the lower glass transition
temperature of 110 �C (Tg2) is attributed to the second blend com-
ponent, acrylonitrile-butadiene-styrene (ABS). It is observed that
the profiles obtained from the thermograms are concordant with
the results presented in Table 2.

3.3. Application

To validate the PLS models, the 11 mixtures obtained from sam-
ples 1 to 6, listed in Table 3, were analyzed. For a better interpre-
tation of these data, the relative error between the concentrations
predicted by the combination of LIBS and the PLS model was calcu-
lated and added according to Eq. (2):
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Fig. 2. LIBS emission spectra for the 100% w/w PC (a), 100% w/w ABS (b), sample 1 spiked to provide a PC/ABS 50/50 w/w% mixture (c), and sample 7 without spiking (d).

Table 1
More intense emission lines (I, atomic and II, ionic) associated with the observed
elements in the spectra shown in Fig. 2.

Chemical
species

k (nm)

aC2 469.74; 471.50; 473.70; a516.52; 558.54 and 563.55
aC I a193.09 and a247.85
Sb II 259.08
Sb I 252.85
Ca I 422.67
aCa II a393.35 and a396.82
Ti I 498.17; 499.10; 499.95; 500.72; 501.41; 517.37; 519.29 and

521.03
aCN a386.17; a387.12 and a388.31
aNa I 588.99 and 589.59
H 656.28
aN I 742.36; 744.22 and 746.83
K I 766.48; 769.89
aO I a777.19; a777.41 and 777.53

a Emission lines that presented high regression values.
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Relative error% LIBS;Addedð Þ ¼ LIBSPredicted � Addedvalue
Addedvalue

� 100 ð2Þ

The results are presented in Table 3, where negative numbers
represent that the polymer content predicted by the PLS model
is lower than the theoretical (reference) value added to the sam-
ple. In general, it is possible to infer that the differences between
the theoretical and predicted values are on average lower than
10%, except for mixtures originating from samples 1 and 4. A
possible explanation for this difference is that this material
(samples 1 and 4) may not be 100% ABS, mainly because this
is a recycled plastic. Despite it being labeled pure ABS, it is rel-
atively common that recycled plastics present residual amounts
of other plastics. Since the morphology of ABS is based on a con-

tinuous phase of styrene-acrylonitrile copolymer (SAN) and a
microdispersed elastomeric phase of polybutadiene, thermos-
oxidative degradation can significantly affect the chemical nature
of these phases in the recycling processes (Karahaliou and
Tarantili, 2009).

In addition, regarding samples 1 and 4, at least theoretically,
another factor that can contribute to the difference between the
predicted and obtained results is a variation in the proportions
of the monomers that compose ABS, making them different than
those of the ABS used in the construction of the PLS models.

A point that needs be highlighted is that the standard deviations
were consistently lower than 5% and the Relative Standard Devia-
tion (RSD) values are lower than 10% in all cases (n = 3). This is very
good behavior, since the LIBS technique usually presents standard
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Fig. 3. Signal profiles of the most important emission lines selected by PLS regression vectors: C I 193.09 (a); C I 247.85 (b); C2 516.52 (c); CN 386.17, 387.12 and 388.21 (d); N
I 742.36, 744.22 and 746.83 (e); O I 777.19 and 777.41 (f); Ca II 393.35 and 396.82 (g); Na I 588.99 and 589.59 (h); and H 656.28 (i).
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deviations higher than 10% (Aquino et al., 2016; Aquino and
Pereira-Filho, 2015; Galbács, 2015).

In addition, 33 samples (see Table 4), which had an unknown
PC/ABS content, were analyzed as obtained (not spiked), and its
predicted PC and ABS content was obtained using LIBS and the
PLS model. The results were also compared through visual inspec-
tion of the thermogram obtained by DSC analysis.

These results prove the feasibility of the LIBS method as a useful
and fast alternative for the determination of the PC and ABS con-
tent in their blends. Table 4 shows 33 samples that were analyzed
without preparation. As can be observed there is a good concor-
dance between the results obtained with DSC and those with the
PLS model. Sample 8, for instance, presented only one Tg value in
DSC and it was related to ABS. The PLS model predicted 1 and
99% for PC and ABS, respectively. Samples 37, 38 and 39 were iden-
tified as PP, PE and PS, respectively, when DSC was used. The PLS
models predicted inconsistent values (negative and higher than
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Fig. 4. Standard error of calibration (SEC) using the normalization modes (from
Norm_1 to Norm_12) proposed to obtain calibrations models for PC and ABS.

Table 2
Predicted PC and ABS concentrations (w/w%) of samples in the calibration data set
and figures of merit for the PLS models.

PC/ABS PC ABS
Reference concentrations
(expected)

Predicted
concentrations

Predicted
concentrations

100/0 97 3
90/10 86 14
80/20 83 17
70/30 71 29
60/40 60 40
50/50 50 50
40/60 44 56
30/70 33 67
20/80 21 79
10/90 5 95
0/100 0 100
SEC (w/w%) 3.4 3.4
SECV (w/w%) 5.6 5.6
R2 0.996 0.996
LV 2 2
Explained variance (%) 69.3 69.3
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SEC) for PC and ABS. The thermograms obtained for the analyzed
samples can be seen in the supplementary material.

4. Conclusion

The results presented in this study clearly demonstrate the
capability of LIBS combined with PLS as a fast and quasi-non-

destructive tool for determining the PC and ABS content in their
blends originating from plastic scraps of e-waste and other
sources. In addition, LIBS can supply relevant information on the
metallic composition in these samples with analytical frequency
of 20 samples per hour. An example of this is the investigation of
species related to flame retardants, such as Mg, Al, and Sb, pig-
ments or additives. With the information provided in this study a

Fig. 5. DSC thermograms obtained for the calibration model with different concentrations of PC and ABS (w/w%): 100/0 (a); 90/10 (b); 80/20 (c); 70/30 (d); 60/40 (e); 50/50
(f); 40/60 (g); 30/70 (h); 20/80 (i); 10/90 (j); and 0/100 (k).

Table 3
Added and found concentrations of PC and ABS in the PC/ABS blends (average ± standard deviation, n = 3).

Samples Mixtures
prepared

PC added
reference

PC predict
concentrations

Relative error (%) between added and predicted
concentrations (see Eq. (2) for details)aManufacturer labeled composition and sample description

Sample 1 (ABS black mobile phone) 1 20 24 ± 1.5 20
2 50 46 ± 3.2 �8.0

Sample 2 (ABS black computer casing) 1 60 63 ± 4.7 5.0
2 50 54 ± 3.7 8.0
3 70 69 ± 2.5 1.4

Sample 3 (ABS white computer casing) 1 40 43 ± 4.1 7.5
2 50 53 ± 2.9 6.0
3 60 62 ± 0.8 3.3

Sample 4 (ABS white computer monitor) 1 10 12 ± 1.5 20
Sample 5 (ABS white computer keyboards) 1 40 43 ± 2.5 7.5
Sample 6 (ABS white computer monitor) 1 80 77 ± 6.0 3.5

a Relative error for PC predicted concentration (LIBS and PLS).
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LIBS system can be adapted in a conveyor belt providing a faster
technical plastic identification or quantification. In addition, porta-
ble system can be used in fast identification.
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Abstract 

In this study, a new univariate calibration strategy named two-point calibration transfer (TP CT) 

was applied to solid sample analysis by laser-induced breakdown spectroscopy (LIBS). In 

addition, the strategies of multivariate calibration, known as partial least squares (PLS) and 

principal component regression also were evaluated. The proposed calibration strategies were 

used for direct determination of Pb in recycled polypropylene from car batteries. The 

%trueness values calculated by comparing the predicted concentrations for PLS, PCR and TP 

CT calibrations strategies were evaluated from reference concentrations obtained by 

inductively coupled plasma emission spectrometry (ICP OES).  For PLS the trueness value 

ranged of 74 to 139%, for PCR ranged of 74 to 123% and for TP CT ranged of 100 to 127%, 

showing in general the good predictive capacity of the proposed strategies. In addition, the 

relative standard deviation (%RSD) values for PLS ranged of 3 to 37%, for PCR ranged of 5 

to 30% and TP CT ranged of 6 to 21%. In general, the values of the % trueness and %RSD 

for TP CT strategy were best. The calibration strategies proposed in this study is highly 

compatible with LIBS, and it may contribute to minimizing matrix effects in direct solid analyses 

in complex samples as polymers 

Keywords: LIBS; matrix effects; polymers; multivariate calibration; two-point calibration 

transfer. 
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1. Introduction 

 Polypropylene (PP) is a polymer produced from polymerization of the propylene 

or propene gas. It is a type of plastic that can be molded when subjected to high 

temperature, so being classified as a thermoplastic, which can be recycled. The PP is 

widely used in various applications, due to its characteristics as low cost, good 

chemical, mechanical and thermal resistance [1,2]. The automotive industry is one of 

the main segments where the PP is employed, as casing material in car batteries. 

However, other plastics of greater resistance as acrylonitrile-butadiene-styrene (ABS) 

has been becoming more widespread. Thus, tons of PP have been generated after the 

end of the useful life of batteries, and as a form of reuse are used in the manufacture 

of other materials such as, chairs, cups and plates [3]. 

 Recycling is a viable alternative to minimize the generation of PP solid waste 

from car batteries. However, these materials may have high concentrations of lead 

(Pb) due to the battery constituents [4]. Thus, the monitoring of the Pb level must be 

carried out before the materials are sent for recycling. Generally, the determination of 

Pb in polymers is perfomed by spectroanalytical techniques as, atomic absorption 

spectrometry (AAS) [5], inductively coupled plasma optical emission spectrometry (ICP 

OES) [6] or inductively coupled plasma-mass spectrometry (ICP-MS) [7]. These 

techniques require the introduction of the sample in solution form, and for this, acid 

digestions procedures using open or closed system are employed. In general, this step 

of the analytical sequence is laborious, and systematic errors can also be introduced 

from due to contamination, sample manipulation or analytes losses by volatilization, 

which affect the accuracy of the final results [8,9]. 

 In contrast to conventional sample preparation methods involving acid digestion, 

the direct analysis of solid samples shows up as a less laborious and attractive 
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alternative. In this scenario laser-induced breakdown spectroscopy (LIBS) has been 

gaining prominence due its attractive features such as: (i) high analytical frequency; 

(ii) multi elementary capability; (iii) nondestructive analysis; (iv) minimum sample 

preparation; (v) allows analysis under atmospheric conditions; and (vi) real-time and 

on-situ analysis [10,11]. LIBS is a powerful tool for qualitative analysis, however, it 

requires considerable effort in quantitative analysis, mainly due to matrix effects [12]. 

Commonly the matrix effects are more pronounced in complex samples, such as 

polymers, which contain in their composition different amounts of flame retardants (Al, 

Br, Mg, P and Sb), pigments (Ti) and loading agents (Ca) [13,14].  

In order to minimize these matrix effects and allow direct analysis of the sample 

by LIBS, some univariate and multivariate calibration strategies have been used. 

Among the univariate calibration strategies more employed, stand out, matrix-matching 

calibration (MMC) [15], standard addition (SA) [16], internal standardization (IS) [17] 

and calibration-free (CF) [18]. Recently new univariate calibration alternatives have 

proposed, such as multi-energy calibration (MEC) [19], one-point gravimetric standard 

addition (OP GSA) [20] and slope ratio calibration [21]. These strategies are presenting 

satisfactory results for the quantitative determination by LIBS, because employ an 

efficient matrix-matching method between samples and standards, which minimizes 

the matrix effects related to the direct analysis of solids [22-24]. 

 Multivariate calibration strategies also provide measurements with satisfactory 

precision and accuracy in LIBS. One of the main advantages of these methods is the 

possibility of proposing a calibration model in the presence of interferents. In addition, 

some intrinsic limitations of each multivariate method must be known, so that 

erroneous conclusions are not obtained in the calibration of the method. The main 

multivariate calibration tools applied in LIBS are partial least squares (PLS) [25], 
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multiple linear regression (MLR) [26], principal component regression (PCR) [27] and 

artificial neural networks (ANN) [28]. 

 Given the above, this study aims to evaluate different calibration strategies for 

the direct determination of Pb in PP samples recycled. A new univariate calibration 

strategy named two-point calibration transfer (TP CT) [29] is evaluated, in addition the 

multivariate calibration strategies as PLS and PCR are used for comparison. This study 

is the first application of TP CT for polymers. 

2. Experimental Section 

2.1. Instrumentation 

LIBS spectra were obtained using a J200 LIBS system (Applied Spectra, Fremont, CA, 

USA) controlled by the Axiom 2.5 software (Applied Spectra). This instrument consists of a 

1064 nm Nd:YAG laser and a 6-channel charge-coupled device spectrometer recording 

spectral information from 186 to 1,042 nm. Channel spectral range (1) from 186 to 309 nm, 

channel (2) from 309 to 460 nm, channel (3) from 460 to 588 nm, channel (4) from 588 to 692 

nm, channel (5) from 692 to 884 nm and channel (6) from 884 to 1042 nm. The spectral 

resolution is < 0.1 nm from UV to Vis and < 0.12 nm from Vis to NIR. The Axiom 2.5 software 

from the same manufacturer controlled the operational parameters of the instrument. These 

parameters were the laser pulse energy, ranging from 0 to 100 mJ, the gate delay, that is the 

time interval between the incidence of the laser pulse and the start of signal recording by the 

spectrometer, ranging from 0 to 2 µs, and the spot size (diameter of laser beam), ranging from 

50 to 250 µm. The Axiom 2.5 software also manages the movement of the sample, assisted 

by an automated XYZ stage and a 1280 x 1024 complementary metal-oxide semiconductor 

(CMOS) color camera imaging system. At 1.05 ms, the software establishes the gate width, 

which is the time the spectrometer registers the emission signals.  

An ICP OES (iCAP 7000, Thermo Scientific, Waltham, MA, USA) was used as a 

comparative technique for the Pb determination. Argon gas (99.996%, White Martins-Praxair, 
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Sertãozinho, SP, Brazil) was used to generate the plasma in all ICP OES measurements. The 

instrumental conditions were established as the manufacturer recommendations, as being: 

power (1.2 kW), plasma gas flow (15.0 L min-1), auxiliary gas flow (1.5 L min-1), nebulizer gas 

flow (0.7 L min-1) and sample introduction flow rate (2.1 ml min-1). The emission lines monitored 

were Pb 216.9 and 220.3 nm. 

2.2 Reagents and solutions 

Ultrapure water (18.2 MΩ cm resistivity) produced by a Milli-Q® Plus Total Water 

System (Millipore Corp., Bedford, MA, USA) was used to prepare all the solutions. Nitric acid 

(HNO3) and hydrochloric acid (HCl) were previously purified using a sub-boiling distillation 

system DistillacidTM BSB-939-IR (Berghof, Eningen, Germany), for digestion of the samples. 

All glassware and polypropylene flasks were washed with soap, soaked in 10% v/v HNO3 for 

24 h, and rinsed with deionized water prior to use. 

2.2. Strategy of the sample preparation to analyze samples by LIBS and ICP OES  

 The crushed PP samples were provided by a recycling company, and they had different 

sizes and shapes with masses ranging from 50 to 200 mg. This mass is sufficient for analysis 

by LIBS, however it is not enough to perform an acid digestion in triplicate (n=3) for further 

analysis by ICP OES. As, LIBS exhibits severe problems with calibration, the use of the 

information acquired in combination with reference techniques as ICP OES is mandatory. In 

this sense, the samples were submitted to a single step of preparation aiming at sequential 

analysis by LIBS and ICP OES. The samples were prepared according to the following 

procedure, and Figure 1 shows a pictorial description of steps. A total of 10 samples encoded 

between S1 to S10 were obtained from this procedure. 

 a) Several fragments of polymers were confined in an aluminum holder (central 

diameter 2.4 cm, 3.0 mm thick) up to complete a final mass of 1.5 g; 

 (b) The aluminum holder was placed between two pieces of Teflon foil and the full set-

up was packed between two stainless steel plates; 
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 (c) After this, the material was placed in a thermopress (Caver Inc. model C Wabash, 

IN, USA) and it was heated at 200°C over 10 minutes, with a pressure of 0.4 metric tons (to 

avoid molten polymer losses); 

 (d) After cooling, the pellets were ready for analysis by LIBS. Three different regions 

(n=3) were analyzed and a total of 460 spectra were obtained from each region, totalizing 1360 

spectra per samples;  

 (e) Afterwards, the regions (n=3) analyzed by LIBS were carefully cut with the aid of a 

ceramic knife. A portion of each region (n=3) was removed and an acidic digest was performed; 

 (f) Finally, the digested samples were analyzed by ICP OES for the Pb determination. 

These values were used as references for proposition of the calibration strategies by LIBS. 

 

Figure 1.  Pictorial description of the experimental procedure used for sample preparation and 

data collection. 

2.3. Sample preparation for ICP OES analysis 

 ICP OES was used as a comparative technique to evaluate the accuracy of the LIBS 

proposed method. Approximately 100 mg of sample was directly weighted in Teflon-PFA 

digestion vessels followed by the addition of 8 mL of acid mixture of HNO3/HCl (3:1 v/v). The 
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samples were digested in an assisted microwave oven (Speedwave xpert, Berghof, Germany) 

with 60 mL volume-closure bottles (DAP 60). The heating program was composed of the 

following steps: (1) temperature ramp up to 200°C in 5 minutes, (2) kept at 200°C for 10 

minutes and (3) 5 min to reach 230°C and (4) 20 min hold at 230°C. After the digested, the 

solutions were transferred to falcon tubes, and high-purity water was added to achieve a total 

volume of 50 mL. In order to evaluate the accuracy of the digestion procedure, a certified 

reference materials (CRM) ERM-EC681k of polyethylene was submitted to the same 

procedure. 

2.4. Multivariate optimization of LIBS instrumental parameters 

 In the LIBS system used, it was possible to adjust two parameters: laser fluence (FL) 

and delay time (DT). These variables play an important role in the quality of the spectral 

information acquired. In this case, a central composite design (CCD) was used to optimize 

these variables. The laser pulse fluence was tested at five levels (1448, 1811, 2699, 3514 and 

3820 J·cm-2) and delay time was also tested at five levels (0.5, 0.7, 1.2, 1.7 and 1.9 µs). A total 

of 11 experiments were carried including triplicate in the central point, that was used to 

estimate the pure error (PE) of the models proposed. A single sample was used to optimize 

instrumental conditions used in LIBS analyses, and a total of 112 spectra per experiment were 

obtained at different parts of the sample surface. The analyzes were made in raster mode. 

 The area, height and signal-to-background ratio (SBR) was used as response to CCD. 

A mathematical approach proposed by Derringer and Suich [30], which is based on desirability 

functions applied to optimize multi-response experiments, was used in this study. This 

approach first converts each response into an individual desirability value (di), which ranges 

between 0 ≤ di ≤ 1. In this case, di = 1 corresponds to a desired response (the highest area, 

height and SBR), while di = 0 represents a undesired response (the lowest area, height and 

SBR). Later, the di was combined into one single response call overall desirability (OD) [31]. 

Moreover, twelve normalization modes [32] were employed for data processing, and each 
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normalization mode was tested from the adjustment of the best regression model using the 

analysis of variance (ANOVA). 

2.5. Calibration strategies 

 Three calibration strategies were evaluated, including two multivariate strategies using 

PLS and PCR and one new univariate strategy named two-point calibration transfer (TP CT). 

For the proposition of the PLS and PCR models, several emission lines of Pb were selected, 

and the area and height of the signal were calculated for each one. For each pellet, around 

460 spectra were acquired to obtain a representative analysis, and 12 normalization modes 

were calculated. In function of each normalization type, 12 models PLS and PCR were 

evaluated. The best normalization was selected through lowest standard error of cross 

validation (SECV).  

 For calibration strategy using TP CT, is necessary the use of a standard, that can be a 

certified reference material or even a sample. In this case, it was used the sample S10 that 

present 0.20% w/w Pb. This sample was chosen as the standard because, it has an 

intermediary concentration between the all samples investigated. First, the 460 spectra 

obtained for each pellet (n=3) are divided in two sets (two points): one with 100 spectra and 

other one with 360 spectra. These sets were separately summed (raw data), where the 

intensity of point 2 is higher than point 1. After this, the area and height of emission lines of Pb 

were selected. So, is made a calibration curve with two points for each emission line evaluated, 

where in the axis x is the number of spectra (100 and 360) and in the axis y is the intensity of 

both points. This is made for an interrogated sample and for the sample chosen as standard, 

combining the slopes of both curves (slopesample and slopestd) and the Pb standard 

concentration (known) (Cstd) to calculate the unknown sample concentration (Csample), as 

showed in Eq. (1). 

𝐶𝑠𝑎𝑚𝑝𝑙𝑒 = 𝐶𝑠𝑡𝑑 ×
𝑆𝑙𝑜𝑝𝑒𝑠𝑎𝑚𝑝𝑙𝑒

𝑆𝑙𝑜𝑝𝑒𝑠𝑡𝑑
                           Equation 1 
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2.6 LIBS data handling 

 Aurora (Applied Spectra) and National Institute of Standards and Technology (NIST) 

were used for emission lines identification of Pb. All spectra obtained by LIBS were first 

normalized/standardized using two homemade routines calculated using MATLAB® 2018a 

(The Mathworks Inc., Natick, MA, USA).  

 i) The first routine, libs_treat, was applied to calculated 12 different modes of 

normalization: (norm_1) average of all spectra; (norm_2) signal normalization by the 

norm, then, average over all spectra; (norm_3) signal normalization by the area, then, 

average over all spectra; (norm_4) signal normalization by the highest signal, then, 

average over all spectra; (norm_5) sum of all spectra; (norm_6) signal normalization by 

the norm, then, sum over all spectra; (norm_7) signal normalization by the area, then, 

sum over all spectra; (norm_8) signal normalization by the highest signal, then, sum over 

all spectra; (norm_9) signal normalization by C I 193.09 nm emission line, then, average 

over all spectra; (norm_10) signal normalization by C I 193.09 nm emission line, then, 

sum over all spectra; (norm_11) signal normalization by C I 247.85 nm emission line, 

then, average over all spectra; (norm_12) signal normalization by C I 247.85 nm 

emission line, then, sum over all spectra [32].  

 ii) The second routine, libs_par2, was used to calculate the peak area (sum of signals) 

and peak maximum (height of signal) of a selected region of the spectra for Pb emission 

lines. With these values of area and height of this selected region, the models can be 

calculated. 

3. Results and discussion 

3.1 Reference method by ICP OES 

 After acid digestion of the samples, the determinations of Pb were obtained by ICP 

OES. The certified reference material of polyethylene ERM-EC681k which have a certified 

value of 98 ± 6 mg kg-1 of Pb, was employed for evaluation of the accuracy of the digestion 
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procedure. Using the proposed procedure of digestion, the concentration of Pb found was 94 

± 9 mg kg-1 (n=3). Statistical evaluation, using Student t-test, showed there is no significant 

difference between values obtained and the certified value at 95% confidence level, confirming 

the accuracy of this procedure. In this way the values of references by ICP OES can be used 

with reliability for the proposition of the strategies of calibration by LIBS. According to the 

values obtained by ICP OES the samples concentrations (%w/w ± standard deviation) were: 

S1 (0.213 ± 0.016 ); S2 (0.368 ± 0.015); S3 (0.172 ± 0.012); S4 (0.214 ± 0.009); S5 (0.146 ± 

0.014); S6 (0.184 ± 0.005); S7 (0.178 ± 0.013); S8 (0.167 ± 0.013); S9 (0.125 ± 0.033); and 

S10 (0.205 ± 0.008). 

3.2. Multivariate optimization of LIBS instrumental parameters 

 LIBS spectra are sensitive to several potential problems, including variations in the 

sample surface, the stability of the laser and the interaction between the laser and the sample 

[33]. In this context, the instrumental parameters of the LIBS must be optimized in order to 

minimize undesired effects during the analyzes. Thus, the instrumental conditions of the LIBS 

were studied in detail, and one representative sample was used to optimize the variables laser 

pulse fluence and delay time, using a CCD. 

 As response to CCD, the di value was obtained from signal area, height and SBR using 

the most intense emission line of Pb I 405.78 nm. Subsequently, the di values were combined 

into a single response. This process was repeated for each normalization and 12 regression 

models were calculated. The best normalization mode was selected through the regression 

model with the best adjustment. Table 1 presents the operating conditions for all the 

experiments performed, i.e., the eleven experiments that correspond to the selected 

experimental design, including triplicate at the central point, and the responses in function of 

the OD using the best normalization mode.  

 The ANOVA evaluation showed that normalization 3 presented the best regression 

model. In normalization 3 the signal is normalized by the individual area and averaged over n 

pulses. The model was generated in function of OD to obtain the best description of the 
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experimental region and six coefficients b0 constant, b1 (FL) and b2 (DT) linear coefficient, b1
2 

(FL)2 and b2
2 (DT)2 quadratic coefficients, and b12 (DT x FL) interaction coefficients, were 

calculated. The coefficients b2 (DT) and b12 (DT x FL) were not significant at the 95% 

confidence level, thus, the non-significant coefficients were removed, and the model was 

calculated again.  

 The new model calculated was statistically significant, by comparing the mean square 

of regression (MSR) and mean square of residue (MSr), the F_calculated (188.85) being 37-

fold higher than the F_tabulated (5.12) at the 95 % confidence level. In addition, the proposed 

model do not presented lack of fit because the F_calculated (0.513) for ratio between mean 

square of lack of fit (MSlof) and mean square of pure error (MSpe) was lower than the value 

of F_tabulated (19.37) at the 95 % confidence level. Table 2 shows the final ANOVA results 

for the optimization of instrumental parameters.  

Table 1. Matrix of central composite design (CCD) with the variables evaluated for LIBS 

and results obtained from overall desirability (OD) for normalization 3. 

Experiment  Laser pulse fluence Delay time OD 

 Coded Real (Jcm-2) Coded Real/ (µs)  

1 -1 1811 -1 0.7 0.09 

2 1 3514 -1 0.7 0 

3 -1 1811 1 1.7 0.54 

4 1 3514 1 1.7 0.54 

5 (CP) 0 2699 0 1.2 0.44 

6 (CP) 0 2699 0 1.2 0.47 

7 (CP) 0 2699 0 1.2 0.50 

8 -1.42 1448 0 1.2 0.31 

9 1.36 3820 0 1.2 0.26 

10 0 2699 -1.41 0.5 0 

11 0 2699 1.41 1.9 0.71 

    CP, central point.  

76



 
 

 These parameters demonstrate good predictive capability of the model. Eq. (2) 

presents the final regression model with the significant coefficients and their confidence 

intervals at a confidence level of 95%, calculated in function of OD. 

Eq. (2)   OD = 0.473 ± 0.040 (b0) + 0.249 ± 0.023 (DT) - 0.102 ± 0.029 (FL)2 - 0.065 ± 0.028(DT)2 

 After obtaining the appropriate model, it is possible to choose the conditions of 

commitment to the variables studied. The analysis of Figure 2 (contour plot) shows that the 

appropriate conditions corresponds to a delay time of 1.9 μs and laser pulse fluence of 2699 

J.cm-2. These conditions are in agreement with the high OD values presented at Table 1 in the 

experiment 11. 

  Table 2. ANOVA in function of the OD with a 95% confidence level.  

SS, sum of square; df, degree of freedom; MS, media of square. 

Parameter  SS Df MS Fcalculated Ftabulated 

Regression 0.5682 5 0.1136 189.85 5.12 

Residual 0.0030 5 0.0006   

Lack of fit 0.0013 3 0.0004 0.513 19.37 

Pure error 0.0017 2 0.0009   

Total 0.5712 10 0.0571   
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Figure 2. Contour plot for variables laser pulse fluency and delay time. 

3.2 Evaluation of the calibration strategies  

 In this study, we evaluated three calibration strategies: two multivariate and one 

univariate strategy. The predictive capacity of these strategies were evaluated comparing the 

reference concentrations obtained by ICP OES. The multivariate calibration tools used in this 

study were PLS and PCR, and they are useful for analysis of complex samples, because allow 

to develop calibration models in the presence of interferents. This is very interesting for 

analysis by LIBS, mainly because the technique is susceptible to matrix effects. These tools 

are widely used, mainly PLS, and have the capability to use entire spectrum to perform 

calibrations (multivariate). However, in this study we do not use all the LIBS emission lines, 

since correlation errors between the emission line of the analyte and other emission lines can 

occur, generating erroneous results. 

 Thus, for the proposition of the PLS and PCR models, were selected only Pb emission 

lines free from interference. The selected emission lines (nm), in decreasing order of relative 
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intensity were: (I) 405.78; (I) 368.34; (I) 363.95; (I) 266.31 and (I) 287.33. Afterwards, the 12 

normalization modes were assessed for these emission lines, and after normalizations, values 

of area and height were calculated. Thus, 24 models PLS and PCR were obtained, and the 

best normalization mode in combination with the area and the height of the several emission 

lines were selected in function of the lowest SECV. These normalizations are important to 

compensate the signal fluctuations (area or height) and sample matrix differences during data 

acquisition. Figure 3 shows the 24 models PLS and PCR using values of area and height, and 

as can be observed the SECV values for PLS and PCR models using the height were the 

lowest for normalization 1, that is only the average of the spectra.  

 For PLS and PCR models it was not possible to perform an external validation, since 

the number of samples is very small. In this sense, the models were validated in function of 

the cross-validation. The parameters obtained for proposed models were: to (i) PLS, 2 latent 

variables; standard error of calibration of 0.021% w/w; R2 of 0.9203; SECV of 0.023 %w/w; 

explained variance of 98%; to (ii) PCR, 2 principal components; standard error of calibration 

of 0.024% w/w; R2 of 0.9196; SECV of 0.026 %w/w; explained variance of 97%. 

 In relation to the univariate strategy called of TP CT it was not necessary to apply the 

normalizations mode because this strategy uses only the sum of the spectra. This strategy is 

a type of matrix-matching, and while on the matrix-matching conventional, a set of samples 

with concentrations determined by a reference technique, or certified reference materials are 

used as calibration standards, in the TP CT only one standard is required (certified reference 

material or a sample with intermediate concentration) [29].  
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Figure 3. Standard error of cross validation (SECV) for all normalizations in function of the 

PLS and PCR models.  

 For the evaluation of this strategy the same emission lines (area and height) employed 

for PCR and PLS models were used. The criterion used to select the best emission line 

consisted of the evaluation of the % trueness in function of the reference values of ICP OES. 

The emission line more appropriate was (I) 363.95 using the height of the signal. Figure 4 

shows an example of the S10 sample (0.20% w/w Pb), used as standard, and the samples S2 

(0.36% w/w Pb) with highest and S9 (0.12% w/w Pb) with the lowest concentration, and their 

respective trueness. As in this case the reference matrix (standard) is similar to the sample, 

the results tend to be consistent, because the atomic emission phenomenon of the analyte is 

similar in the presence of the sample matrix and the calibration standard. 

  The calibration by TP CT were built using the Eq. (1), where in the axis x is the number 

of spectra (100 or 360) and in the axis y is the intensity of both points. Some studies have 

demonstrated that if the instrumental method is linear, the extrapolation using two point can 
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be obtained with the same precision than using multipoint [20,34-36]. The linearity was tested 

applying the test F, and in this case the ratio Fexperimental/Ftabulated was calculated. This ratio ≥10 

demonstrated that the variances are statistically different (the mean of square the regression 

is statistically different when compared with the mean of square the residues), thus the model 

can be considered linear, and the TP CT can be used. 

 

Figure 4. TP CT applied for sample S2 and S9 using sample S10 as standard. 

 Figure. 5 shows the trueness values calculated by comparing the predicted 

concentrations for PLS, PCR and TP CT calibration strategies that were evaluated to the 

reference concentrations obtained by ICP OES.  As can be observed for PLS the trueness 

values ranged from  74 to 139%, for PCR ranged from  74 to 123% and for TP CT ranged from 

100 to 127%, showing in general the best predictive capacity of the proposed strategies. The 

sample S2 showed trueness values of 74% for the PLS and PCR models, and this was due to 

the limitation of cross-validation, which removes one sample for prediction while the other 

samples are used to calibrate. In the case of sample S4 that has the highest concentration 

(0.36 %w/w) cross-validation is not very efficient because the model is predicting a 
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concentration that is outside the domain of the calibration samples. The samples S3 and S5 

showed a trueness above 120% for the three calibration strategies. Probably this is a reflection 

of the lack of homogeneity of the sample during the preparation step. 

 

Figure 5. Trueness (%) values according to reference values for the three calibration 

strategies. 

 In addition, the relative standard deviation (%RSD) values for PLS ranged from 3 to 

37%, for PCR ranged from 5 to 30% and TP CT ranged from 6 to 21%, demonstrating a better 

precision with the TP CT strategy. The lowest values %RSD for measurements using TP CT, 

when compared to the other strategies, may be related to the fact that in the TP CT only one 

emission line for Pb is used in the proposition of the linear calibration model, different from the 

models obtained for PLS and PCR where 5 emission lines were used, for both. Although using 

spectrum normalizations, which greatly contribute to the minimization of spectrum fluctuations 

obtained, the use of different lines in different spectral regions may contribute to the proposition 

of calibration model that increase the %RSD of the measurements. In general, the range of 
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trueness and %RSD value using all calibration strategies are in agreement with the values 

normally reported for determinations using LIBS.  

 The main advantage of the TP CT approach in relation to PLS and PCR is its simplicity 

because only two points are used in the calibration curve for each sample and only one 

emission line is used for the analyte. Besides that, it is important to mention that none 

normalization is required. In this case, for multivariate analysis just the average was enough, 

but on the other hand, in many studies is almost always necessary to do some normalization 

approach. In addition, choosing the best calibration method will depend of the problem in 

question and its complexity. Furthermore, it is important to highlight that there is no report in 

the literature using TP CT for LIBS for polymers analysis. The results presented demonstrate 

the considerable potential of the strategies proposed for determination of Pb in PP recycled 

using LIBS. 

4. Conclusion 

 The calibration strategies proposed in this study is highly compatible with LIBS, and it 

may contribute to minimizing matrix effects in direct solid analyses in complex samples as 

polymers. The PLS and PCR model calibrations obtained presented good results with 

robustness and precision. In relation the new proposed univariate calibration strategy TP CT, 

we can highlight that it presented some advantages over PLS and PCR, as lower %RSD 

values, better values of %trueness and simplicity. Additional studies are required to evaluate 

the performance of this method for other solid samples, TP CT may represent an effective 

strategy in LIBS analyses, especially considering the accuracies observed for such complex 

matrix as the one evaluated in the present study. Each calibration approach has its advantages 

and limitations and can be observed according to its necessity and the intrinsic characteristics 

of the sample and the analyte. In addition, it is important to highlight that Pb concentrations in 

PP samples are alarming considering, that this material can be reused to the manufacture new 

objects such as mugs, plates and others. 
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Chapter 5 – Conclusions
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5. Conclusions 

 In this thesis, it was possible to demonstrate several approaches for the 

qualitative and quantitative analysis of polymers samples by LIBS. In second chapter the 

LIBS together with several chemometrics tools were used for identification and 

classification of five groups of the most commonly used polymers in the electronics 

industry. Classification models (KNN and SIMCA) were developed using the theoretical 

ratios of the emission lines and molecular bands obtained from LIBS.  In third chapter, 

showed that LIBS combined with PLS is a fast and quasi-nondestructive tool for 

determining the PC and ABS content in their blends originating from plastic scraps of e-

waste and other sources. In addition, LIBS can supply relevant information about the 

metallic composition in these samples with analytical frequency of 20 samples per hour. 

In the fourth chapter, several calibration strategies were proposed in this study is 

combining solid sample and LIBS, and it may contribute to minimizing matrix effects in 

direct solid analyses in complex samples as polymers the new proposed univariate 

calibration strategy TP CT presented some advantages over PLS and PCR, as lower 

%RSD values, better values %trueness and simplicity. 
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