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Abstract
The purpose of this work is to establish sufficient conditions for closed range estimates on
(0, q)-forms, for some fixed q, 1 ≤ q ≤ n− 1, for ∂̄b in both L2 and L2-Sobolev spaces in
embedded, not necessarily pseudoconvex CR manifolds of hypersurface type. The condition,
named weak Y (q), is both more general than previously established sufficient conditions
and easier to check. Applications of our estimates include estimates for the Szegö projection
as well as an argument that the harmonic forms have the same regularity as the complex
Green operator. We use a microlocal argument and carefully construct a norm that is
well-suited for a microlocal decomposition of form. We do not require that the CR manifold
is the boundary of a domain. Finally, we provide an example that demonstrates that weak
Y (q) is an easier condition to verify than earlier, less general conditions.

Keywords Cauchy Riemann operator. Tangential Cauchy Riemann operator. CR mani-
folds. Weak Y(q) condition. Closed range estimates.





Resumo
O objetivo de este trabalho é estabelecer condições suficientes para estimativas de imagem
fechada sob (0, q)-formas, com q fixo e 1 ≤ q ≤ n− 1, para ∂̄b nos espaços L2 e L2 Sobolev
sob variedades CR do tipo hipersuperfície. A condição, chamada Y (q) fraca, é mais geral
do que as condições suficientes estabelecidas anteriormente e é mais fácil de verificar. As
aplicações de nossas estimativas incluem estimativas para a projeção Szegö, bem como
um argumento de que as formas harmônicas têm a mesma regularidade que o operador
Green complexo. Utilizamos um argumento microlocal e construímos cuidadosamente uma
norma que é adequada para uma decomposição microlocal das formas. Não exigimos que
a variedade CR seja a fronteira de um domínio. Finalmente, fornecemos um exemplo que
demonstra que a condição Y (q) fraca é uma condição mais fácil de verificar que as versões
anteriores menos gerais.

Keywords: Operador de Cauchy Riemann. Operador tangencial de Cauchy Riemann.
Variedade CR. Condição Y(q) fraca. Estimativas de imagem fechada.
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chapter 1

INTRODUCTION

One of the principal operators that appears in the study of theory of functions of
several complex variables, is the Cauchy Riemann operator ∂̄ which is deeply related to
analytic functions, domains of holomorphy, extension problems of Hartog’s type, the Levi
problem; and the existence and regularity of solutions for the well known non-homogeneous
equation

∂̄u = f (1.1)

where f a (p, q)-form defined on a bounded open set Ω ⊂ Cn, n ≥ 2, with smooth boundary
bΩ, with the necessary condition that f is ∂̄-closed. It is in the last topic where the present
work is focused, and its equivalent non homogeneous equation associated to its analogue
operator, the tangential Cauchy Riemann operator ∂̄b. Many advances for the existence of
solutions for the equation (1.1) were done in decades of 50’s and 60’s, by Garabedian and
Spencer [7], Morrey [23], Kohn [17], Hormander [14]. Two things to remark in these last
three works, is the use of Hilbert space tools to solve (1.1), once they considered the (p, q)
forms on a more general set, L2

p,q(Ω), and look for solutions on distributional sense; and the
other one is the conditions imposed on the geometry on bΩ. The use of Hilbert space tools
allowed then to relate the existence of solutions with the property of closed range of the
operator ∂̄, once it was defined as a unbounded closed densely defined operator. One of the
first geometrical conditions imposed in the boundary of Ω was strongly pseudoconvexity by
Kohn in [17], who proved that strongly pseudoconvexity implied not just the closed range
property for ∂̄ but 1/2 Sobolev estimates (as it is also reiterated by Kohn and Niremberg in
[21]). On the other hand Hormander in [14] introduced weighted spaces getting advantage
of existence of well behaved functions (plurisubharmonic functions) defined on the environ-
ment Cn, and he could imply the property of closed range for the operator ∂̄ assuming just
pseudoconvexity in bΩ. The Chapter 2 in this work is focused in the study of this operator
∂̄ (in fact just in closed range property in L2), written in the spirit of the Chapter 4 in [4].
And we consider add the study concerning to the study of the operator ∂̄, because gives
an overview of the philosophy behind technique and machinery used to map the steps to
follow in the analysis of tangential Cauchy Riemann operator, which is our principal topic.
In Chapter 3 we give a sketch about oldness results and approaches obtained through
time about operator ∂̄b, and its origins, and thus give a motivation about the principal topic.

The principal topic of this work is made in Chapters 4 - 6, where we consider the
study of operator ∂̄b on CR manifolds of hypersurface type. A CR manifold of hypersurface
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type is an odd real dimensional manifold whose tangent bundle splits into a complex
subbundle and another line bundle. An appropriate restriction of the ∂̄ operator to the
complex subbundle yields the tangential Cauchy Riemann operator ∂̄b.

The ∂̄b operator was introduced by Kohn and Rossi [22] to study the boundary
values of holomorphic functions on domains in Cn, and it was soon realized that the ∂̄b-
complex was deeply intertwined with the geometry and potential theory of such domains
and their boundaries. The story of the L2-theory of the ∂̄b operator begins with Shaw [28]
and Boas and Shaw [2] (in the top degree) on boundaries of pseudoconvex domains in
Cn and with Kohn [20] on the boundaries of pseudoconvex domains in Stein manifolds.
Nicoara [24] established closed range for ∂̄b (at all form levels) on smooth, embedded,
compact, orientable CR manifolds of hypersurface dimension in the case that n ≥ 3 and
Baracco [1] established the n = 2 case. Thus, from the point of view closed range, the
pseudoconvex case is completely understood.

Harrington and Raich [10] began an investigation of the ∂̄b-problem on non-
pseudoconvex CR manifolds of hypersurface type. Specifically, they fixed a level q,
1 ≤ q ≤ n − 2, and sought a general condition that sufficed to prove closed range
of ∂̄b on (0, q)-forms (and in L2-Sobolev spaces in suitably weighted spaces). They worked
on CR manifolds of hypersurface type, and our results generalize theirs by showing that
the conclusions they draw are still true with a weaker hypothesis, namely, the weak Y (q)
condition from [11]. The analysis in [11] is loosely based on the ideas of Shaw and does not
use a microlocal argument, but rather ∂̄-methods. This requires the CR manifold to be
the boundary of a domain, a hypothesis that we relax. The name weak Y (q) stems from
the fact that it is a weakening of the classical Y (q) condition, a geometric condition that
is equivalent to the complex Green operator (inverse to the Kohn Laplacian) satisfying
1/2-estimates on (0, q)-forms.

In this work, we show that the tangential Cauchy-Riemann operator has closed
range on (0, q)-forms, for a fixed q, 1 ≤ q ≤ n − 1, in L2 and L2-Sobolev spaces on a
general class of embedded CR manifolds of hypersurface type that satisfy the general
geometric condition weak Y (q). We work on a smooth CR submanifold M ⊂ Cn that
may be neither pseudoconvex nor the boundary of a domain. The weak Y (q) condition,
first written down by Harrington and Raich [11] and applied to boundaries of domains
in Stein manifolds, is the most general known condition that ensures closed range of the
tangential Cauchy-Riemann operator on (0, q)-forms. We also provide an example that
shows that the generality provided by the definition makes it easier to verify than previous
and more restrictive conditions. Additionally, we show that for any Sobolev level, there is
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a weight such that the (weighted) complex Green operator (inverse to the weighted Kohn
Laplacian) is continuous and the harmonic forms in this weighted space are elements of
the prescribed Sobolev space.

Also, we generalize both [10] and [11] in the following ways. We do not require our
CR manifold to be the boundary of a domain. In effect, we translate the ∂̄-techniques of
[11] to the microlocal setting. In [10], they prove results akin to our main results, but the
“weak Y (q)" condition they define is more restrictive than the weak Y (q) condition here.
Additionally, we use a reengineered elliptic regularization argument to show that (weighted)
harmonic (0, q)-forms are smooth, a fact not mentioned in [10, 11]. Additionally, we are
careful to monitor the regularized operators and the fact that they preserve orthogonality
with the space of (weighted) harmonic forms, a fact that has not been observed before (in
part because we prove smoothness of harmonic forms early in regularization process).

Our methods to analyze the tangential Cauchy Riemann Operator involve a microlo-
cal argument in the spirit of [24, 25, 10] and a recently reengineered elliptic regularization
that not only allows for a weighted complex Green operator to solve the ∂̄b-problem in
a given L2-Sobolev space, but also shows that the weighted L2-harmonic forms reside
in that Sobolev space [16, 9]. This last fact is not clear from the elliptic regularization
methods used in [24, 10]. For a discussion of the weak Y (q) condition and its related,
non-symmetrized version, weak Z(q), please see [10, 11, 8, 12, 13] and for discussion on
the elliptic regularization method, [9, 16].

The outline of the argument is as follows: we start by proving a basic identity
that is well suited to the geometry of M . The problem with basic identities for ∂̄b is
that the Levi form appears with in a term that also contains the derivative in the totally
real direction T . The microlocal argument is used to control this term – specifically, we
construct a norm based on a microlocal decomposition of our form which allows us to use
a version of the sharp Gårding’s inequality and eliminate the T from the inner product
term. This allows us to prove a basic estimate (Proposition 4.6.1) from the basic identity
and the main results are due to careful applications of the basic estimate.

We conclude this chapter giving an outline of the work. As we said before, the
Chapter 2 is focused on as well general ideas and procedures to study the ∂̄ operator. In
Chapter 3 we relate the origins in the study of ∂̄b operator. Into Chapter 4, we define our
notations, give some computations in local coordinates and the microlocal decomposition,
to prove the basic estimate, Proposition 4.6.1. In Chapter 5, we prove the Theorem 5.0.2,
and we outline how to pass from Theorem 5.0.2 to Theorem 5.0.1. We conclude the work
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in Chapter 6 with two examples comparing the older version and new version of weak Z(q)
condition.
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chapter 2

L2 ESTIMATES FOR THE ∂ OPERATOR

In this chapter we give some details about the approach given to study of operator
∂̄. We follow the process given in [4, Chapter 4]. In the first section we give some definitions
and important functional analysis results in the study of operators we are interested. In
second section we present the L2 theory about operators ∂̄ and � on L2 as well as some
computations related to them. The third and fourth section have L2 existence theorems
about the equation associated to operators ∂̄ and �. The last section has an application
of these results to solve the Levi problem.

2.1 Unbounded operators in Hilbert spaces
Let H1, H2 be Hilbert spaces, and T : Dom(T ) ⊂ H1 → H2 be an unbounded

linear, closed and densely defined operator, that is, the graph of T, Graph(T ), is closed in
H1 ×H2 and Dom(T ) is a dense linear subspace of H1. If T is not a bounded operator, by
the Closed Graph Theorem, Dom(T ) is going to be a proper subset of H1.

Let ‖.‖1 and ‖.‖2 denote the norms of H1 and H2 respectively. If v ∈ H∗2 and
there is C ≥ 0 such that | (v, T (u)) | ≤ C‖u‖1 for all u ∈ Dom(T ), by the analytic
form of Hahn-Banach Theorem there is a fv ∈ H∗1 that extended the linear function
u ∈ Dom(T ) 7→ (v, T (u)) to all H1 and | (fv, u) | ≤ C‖u‖1 . Moreover, fv is unique because
Dom(T ) = H1. We define the adjoint of T by T ∗ and so T ∗ : Dom(T ∗) ⊂ H∗2 → H∗1 where

Dom(T ∗) = {v ∈ H∗2 : ∃C ≥ 0 such that | (v, T (u)) | ≤ C‖u‖1, ∀u ∈ Dom(T )}

and T ∗(v) := fv. If v, w ∈ Dom(T ∗) then (v + w, T (u)) = (fv + fw, u) for all u ∈ Dom(T ).
By the uniqueness of fv+w we have T ∗(v + w) = T ∗(v) + T ∗(w). Then T ∗ is linear. Also,
T ∗ is closed. Indeed, if (vn) in Dom(T ∗) such that vn → v in H∗2 and T ∗(vn)→ f in H∗1 ,
since

(vn, T (u)) = (T ∗(vn), u)

for all u ∈ Dom(T ) we have (v, T (u)) = (f, u). Then v ∈ Dom(T ∗) because | (v, T (u)) | ≤
‖f‖‖u‖1 for all u ∈ Dom(T ). Also, T ∗(v) = f from the uniqueness of T ∗(v).

If we consider the isomorphism I : F ∗×E∗ → E∗×F ∗ defined by I(v, f) = (−f, v)
we have that I(G(A∗)) = G(A)⊥.
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Theorem 2.1.1 Let E and F reflexive Banach spaces. Let T : Dom(T ) ⊂ E → F be a
unbounded operator that is densely defined and closed. Then Dom(T ∗) is dense in F ∗. Thus
T ∗∗ : Dom(T ∗∗) ⊂ E∗∗ → F ∗∗ is well defined and it may also be viewed as an unbounded
operator from E into F . Then we have T ∗∗ = T .

Proof. First let’s show that Dom(T ∗) is dense in F ∗. Let ϕ ∈ F ∗∗ such that ϕ (Dom(T ∗)) =
{0}. Since F is reflexive ϕ(v) = (v, ξ) for all v ∈ F ∗ and some ξ ∈ F . Then is sufficient show
that ξ = 0. If ξ 6= 0 then (0, ξ) /∈ Graph(T ). By the geometric form of Hahn-Banach theo-
rem, there is a (w, z) ∈ E∗×F ∗ ∼= (E×F )∗ (with the isomorphism (f, g) ∈ E∗×F ∗ 7→ f×g
where f × g(t, r) = f(t) + g(r)) such that (w, z)(u, Tu) < α < (w, z)(0, ξ) for all
u ∈ Dom(T ), and for some α ∈ R. Then

(w, u) + (z, Tu) = (w, z)(u, Tu) = 0 ∀u ∈ Dom(T ).

Then z ∈ Dom(T ∗) and 0 < α < (z, ξ). This is a contradiction. Thus ξ = 0, and then
Dom(T ∗) is dense in F ∗.

With this, T ∗ is considered as an unbounded operator that is densely defined
and closed. Then we can define the operator (again closed and densely defined) T ∗∗ :
Dom(T ∗∗) ⊂ E∗∗ → F ∗∗.

Since E, F are reflexive spaces, T ∗∗ is an operator from E into F . As we saw

I(G(T ∗)) = G(T )⊥ I(G(T ∗∗)) = G(T ∗)⊥.

Let the isomorphism S : E∗ × F ∗ → F ∗ × E∗ given by S(f, g) = (g, f) for (f, g) ∈
E∗×F ∗. Then I(G(T ∗))⊥ = T−1I−1(G(T ∗)⊥), also I(G(T ∗∗))⊥ = T−1I−1(G(T ∗∗)⊥). Thus

G(T ) = G(T )⊥⊥ = I(I(G(T ∗∗))⊥)⊥ = T−1I−1T−1I−1(G(T ∗∗)⊥⊥)

= G(T ∗∗)⊥⊥ = G(T ∗∗)

because G(T ), G(T ∗) and G(T ∗∗) are closed. Then T = T ∗∗.

Now, we rewrite two important theorems used by Hörmander in [14] to study the
closed range property of unbounded operators. Assuming H1 and H2 two Hilbert spaces
and let T : H1 → H2 be linear, closed, and densely defined operator. By the results above
T ∗ : H2 → H1 has the same properties, and T ∗∗ = T . By definition of the adjoint operator,
the orthogonal complement of the range Ran(T ) of T is the kernel Ker(T ∗) of T ∗. Which
implies that the orthogonal complement of Ker(T ∗) is the closure Ran(T ) of Ran(T ). This
means

H1 = Ker(T )⊕ Ran(T ∗), (2.1)
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Similarly, we have that H2 = Ker(T ∗)⊕ Ran(T ). The next two theorems appears in [14].

Theorem 2.1.2 Let H1 and H2 be two Hilbert spaces and let T : H1 → H2 be linear,
closed, and densely defined operator. The following conditions on T are equivalent:

1. Ran(T ) is closed.

2. There is a constant C such that

‖f‖1 ≤ C‖Tf‖2, f ∈ Dom(T ) ∩ Ran(T ∗). (2.2)

3. Ran(T ∗) is closed.

4. There is a constant C such that

‖g‖2 ≤ C‖T ∗g‖1, g ∈ Dom(T ∗) ∩ Ran(T ). (2.3)

The best constants in (2.2) and in (2.3) are the same.

Proof. Assume that (1) holds. Since Ran(T ∗) = Ker(T ), the restriction of T to Dom(T )∩
Ran(T ∗) is a closed, one to one, linear mapping onto the closed subspace Ran(T ) of H2.
Hence the inverse is continuous by the closed graph theorem, which proves (2). Conversely,
(2) obviously implies (1). In a similar way, (3) will be equivalent to (4). Now we prove that
(2) implies (4). Notice that

|(g, Tf)2| = |(T
∗g, f)1| ≤ C‖T ∗g‖1‖Tf‖2

for g ∈ Dom(T ∗) and f ∈ Dom(T ) ∩ Ran(T ∗). Thus

|(g, h)2| ≤ C‖T ∗g‖1‖h‖2

for g ∈ Dom(T ∗) and h ∈ Ran(T ). So |(g, h)2| ≤ C‖T ∗g‖1‖h‖2 for g ∈ Dom(T ∗) and
h ∈ Ran(T ), which implies (4) (take a sequence in Ran(T ) converging to g and use this
last inequality). Similarly, (4) implies (2).

Let H3 be another Hilbert space and S : H2 → H3 be another unbounded linear,
closed densely defined operator, such that ST = 0, that is, Ran(T ) ⊂ Ker(S).

Theorem 2.1.3 A necessary and a sufficient condition for Ran(T ) and Ran(S) both to
be closed is that

‖g‖2
2 ≤ C2

(
‖T ∗g‖2

1 + ‖Sg‖2
3

)
; g ∈ Dom(T ∗) ∩Dom(S), g ⊥ K := Ker(T ∗) ∩Ker(S).

(2.4)
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Proof. First note that
H2 = Ran(T )⊕K ⊕ Ran(S∗) (2.5)

In fact, since T ∗S∗ = 0 then Ran(T ) and Ran(S∗) are orthogonal, and the intersection of
the orthogonal complements of this spaces, Ker(T ∗) and Ker(S) respectively, is K. Now,
if (2.4) holds, then (4) is valid because S vanishes in Ran(T ), and, changing T by S,
(2) is valid because T ∗ vanishes in Ran(S∗). So (2.4) implies that Ran(T ) and Ran(S)
are closed. Reciprocally, if Ran(T ) and Ran(S) are closed, by the decomposition (2.5), if
g ∈ Dom(T ∗) ∩Dom(S) with g ⊥ K := Ker(T ∗) ∩Ker(S) there exist α ∈ Dom(T ∗) such
that T ∗α2 ∈ Dom(T ) and β ∈ Dom(S) such that Sβ ∈ Dom(S∗), with g = TT ∗α+ S∗Sβ.
Then inequality (2.4) follows by (2.2) and (2.3) and since ST = 0, we have T ∗S∗ = 0.

2.2 L2 theory for ∂̄ operator
Let Ω is a open subset in Cn, with n ≥ 2, C∞(p,q)(Ω) the set of smooth (p, q)-forms

in Ω, C∞(p,q)(Ω) the set of smooth (p, q)-forms in Cn restricted to Ω. D(p,q)(Ω) the set of
smooth (p, q)-forms with compact support in Ω. Then any (p, q)-form f ∈ C∞(p,q)(Ω) can be
expressed as

f =
∑
I,J

′fI,Jdz
I ∧ dz̄J (2.6)

where I = (i1, i2, ..., ip) and J = (j1, j2, ..., jq) are multiindices, dzI = dzi1 ∧ dzi2 ∧ ...∧ dzip ,
dz̄J = dz̄j1∧dz̄j2∧ ...∧dz̄jq ,

∑ ′ means summation over strictly increasing multiindices, and
fI,J are smooth functions defined in Ω for arbitrary I and J so that they are antisymmetric.

Writing
dzj = dxj + idyj , dz̄j = dxj − idyj,

and
∂

∂zj
= 1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂z̄j
= 1

2

(
∂

∂xj
+ i

∂

∂yj

)
,

if f ∈ C∞(Ω) is a complex-valued function then

we define the operators ∂̄ and ∂ for functions by

∂f =
n∑
j=1

∂f

∂zj
dzj and ∂̄f =

n∑
j=1

∂f

∂zj
dzj.

Then we will have df = ∂f + ∂̄f . Once we have defined the ∂̄ and ∂ operator on complex
valued functions, we define the ∂̄ and ∂ for (p, q)-forms as (2.6) by

∂f =
∑
I,J

′∂fI,J ∧ dzI ∧ dz̄J ,



2.2. L2 theory for ∂̄ operator 25

∂̄f =
∑
I,J

′∂̄fI,J ∧ dzI ∧ dz̄J , (2.7)

and also we will have df = ∂f + ∂̄f .

Since 0 = d2 = ∂2 + (∂̄∂ + ∂∂̄) + ∂̄2 and ∂2, ∂̄∂ + ∂∂̄, ∂̄2 are of bidegree (p+ 2, q),
(p+ 1, q + 1) and (p, q + 2) respectively, we have

∂2 = 0, ∂̄∂ + ∂∂̄ = 0, ∂̄2 = 0.

For 0 ≤ q ≤ n and 0 ≤ q ≤ n− 1, define ∂̄ = ∂̄(p,q) : C∞(p,q)(Ω)→ C∞(p,q+1)(Ω) as in
(2.7) and then we have Ran(∂̄(p,q)) ⊂ Ker(∂̄(p,q+1)). If p is fixed, we can to define the short
sequence

0→ C∞(p,0)(Ω)
∂̄(p,0)−→ C∞p,1(Ω)

∂̄(p,1)−→ · · ·
∂̄(p,n−1)−→ C∞(p,n)(Ω)

∂̄(p,n)−→ 0

and the natural question is, is this a exact sequence?. To answer this question, we need to
solve the equation

∂̄u = f, (2.8)

with the necessary condition ∂̄f = 0, called the compatibility condition.

Example If n > 1, f = ∑n
i=1 fjdz̄j with fj ∈ Ck(Cn) and k > 0, such that ∂fi

∂z̄j
= ∂fj

∂z̄i

(or ∂̄f = 0) and supp f := ∪nj=1 supp fj is a compact subset in Cn; the complex-valued
function

u(z) = 1
2πi

∫
C

fi(ζ, z2, ..., zn)
ζ − z1

dζ ∧ dζ

is in Ck
0 (Cn) such that ∂̄u = f (see Theorem 2.3.1 in [15], and observe its implication on

the analytic extension of Hartog’s theorem; together the clarification made on n > 1 ).

We are interested in solving the equation (2.8), using tools of Hilbert spaces re-
garding results on unbounded operators and find solutions in a more general sense. For
this purpose, we need to define the operator ∂̄ appropriately.

From now on, we consider D to be a bounded open subset in Cn. Let L2(D) denote
the space of square integrable functions in D with respect to the Lebesgue measure. Here
we are using the volume element dV = (i/2)ndz1 ∧ dz1 ∧ dz2 ∧ dz2... ∧ dzn ∧ dzn. Let
L2

(p,q)(D) denote the space of (p, q)-forms with coefficients in L2(D). We define

‖f‖2 :=
∑
I,J

′
∫
D
|fI,J |2dV ∀f =

∑
I,J

′fI,J ∈ L2
(p,q)(D).

This turns L2
p,q(D) into a Hilbert space. And, if we use ( , )D to denote the inner product

in L2
(p,q)(D), we have that∑

I,J

′fI,Jdz
I ∧ dz̄J ,

∑
I,J

′gI,Jdz
I ∧ dz̄J


D

=
∑
I,J

′ (fI,J , gI,J)
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where ( , ) is a given inner product in L2(D). Note that, when p = q = 0, ( , )D = ( , ) .
Sometimes, when there is no danger confusion, we drop the subscript D in the notation.
Also, if φ ∈ C(D), we denote L2(D,φ) the space of complex-valued functions ψ such
that ψe−φ/2 ∈ L2(D), similarly L2

(p,q)(D,φ) the space of (p, q)-forms with coefficients in
L2(D,φ). We define

‖f‖2
φ =

∑
I,J

′
∫
D
|fI,J |2e−φdV ∀f =

∑
I,J

′fI,J ∈ L2
(p,q)(D,φ)

and (L2
(p,q)(D,φ), ‖ ‖φ) is also a Hilbert space. We use ( , )φ to denote the inner product

in L2
(p,q)(D,φ). Note that if φ ∈ C(D) then L2

(p,q)(D,φ) = L2
(p,q)(D), because in this case

we will have

min
D
|e−φ|

∫
D
|f |2dV ≤

∫
D
|f |2e−φdV ≤ max

D
|e−φ|

∫
D
|f |2dV (2.9)

for all f ∈ L2(D,φ), and the norms ‖ ‖ and ‖ ‖φ are equivalents. Similarly, we can to
define L2

(p,q)(D, loc) the space of (p, q)-forms with coefficients in L2
loc(D), where L2

loc(D) is
a space of complex-valued functions in L2(K) for all K ⊂ D compact.
For 0 ≤ q ≤ n − 1, we define the formal adjoint operator ϑ = ϑ(p,q+1) : C∞p,q+1(D) →
C∞(p,q)(D) of ∂̄ = ∂̄(p,q) : C∞p,q(D)→ C∞p,q+1(D) by requiring

(ϑf, g) =
(
f, ∂̄g

)
for all g ∈ D(p,q)(D). Then if f ∈ C∞(p,q+1)(D) is expressed by (2.6), then

ϑ(f) = (−1)p+1∑
I,K

′
n∑
l=1

∂fI,lK
∂zl

dzI ∧ dzK (2.10)

where fI,lK = sgn
(
J
lK

)
fI,J . In fact, if g = ∑

I,K
′gI,Kdz

I ∧ dz̄K ∈ D(p,q)(D) then

(
f, ∂̄g

)
=
∑
I,J

′fI,Jdz
I ∧ dz̄J ,

∑
I,K

′
n∑
l=1

∂gI,K
∂zl

dzl ∧ dzI ∧ dzK


= (−1)p
n∑
l=1

∑
I,J

′fI,Jdz
I ∧ dz̄J ,

∑
I,K

′∂gI,K
∂zl

dzI ∧ dzl ∧ dzK


= (−1)p
n∑
l=1

∑
I,K

′
(
fI,lK ,

∂gI,K
∂zl

)
(2.11)

but, since g ∈ D(p,q)(D), integrating by parts we have

(
f, ∂̄g

)
= (−1)p+1

n∑
l=1

∑
I,K

′
(
∂fI,lK
∂zl

, gI,K

)
. (2.12)

Now (2.10) follows from (2.12).
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Observe that ϑ2 = 0, thus, similarly as before, we define ϑφ : C∞p,q+1(D)→ C∞p,q(D)
the L2(D,φ) adjoint of ∂̄ = ∂̄(p,q) : C∞p,q(D)→ C∞p,q+1(D) by requiring

(ϑφf, g)φ =
(
f, ∂̄g

)
φ
, ∀g ∈ Dp,q(D). (2.13)

So, we have the relation between ϑ and ϑφ given by the following

(ϑφf, ψ)φ =
(
f, ∂̄ψ

)
φ

=
(
fe−φ, ∂̄ψ

)
=
(
ϑ(fe−φ), ψ

)
=
(
eφϑ(fe−φ), ψ

)
φ

for all ψ ∈ D∞(p,q)(D), that is ϑφ(f) = eφϑ(fe−φ) for all f ∈ C∞p,q+1(D).

Now, if φ ∈ C1(D), we extend the definition of the unbounded densely defined
operator ∂̄(p,q) : C∞p,q(D) ⊂ L2

(p,q)(D,φ)→ L2
(p,q+1)(D,φ), and we will still denote it by ∂̄p,q.

For distributions we define as follows: an element u ∈ L2
(p,q)(D,φ) is in the domain of ∂̄,

denoted by Dom(∂̄), if ∂̄u, defined in the distribution sense, belong to L2
(p,q)(D,φ). Since

the convergence in L2(D) implies in convergence in distributions and the differentiation is
a continuous operation in distributions, we have that the operator ∂̄ is closed. We denote
∂̄∗φ to be the adjoint operator of ∂̄ and Dom(∂̄∗φ) the domain of ∂̄∗φ. When φ = 0 we denote
∂̄∗ to be the adjoint operator of ∂̄ and Dom(∂̄∗) the domain of ∂̄∗. By the Theorem 2.1.1
∂̄∗ and ∂̄∗φ are unbounded closed densely defined operators.

By the definition of Dom(∂̄∗φ), an element f belongs to Dom(∂̄∗φ) if there is a
g ∈ L2

(p,q)(D,φ) such that for every ψ ∈ Dom(∂̄), we have
(
f, ∂̄ψ

)
φ

= (g, ψ)φ. We define

∂̄∗φf = g. Defining ϑφ in distributional sense (this means (ϑφf, h)φ :=
(
f, ∂̄h

)
φ
for any

h ∈ Dp,q(D)), and if f ∈ Dom(∂̄∗φ) then ϑφf = ∂̄∗φf in L2 sense. We make here a small
parenthesis to talk about definition functions, then we will continue talking about the
domain of Dom(∂̄∗φ).

Definition 2.2.1 A domain D ⊂ Rn, n ≥ 2, is said to have Ck (1 ≤ k ≤ ∞) boundary
at the boundary point p if there exists a real-valued Ck function ρ defined in a some open
neighborhood U of p such that

D ∩ U = {x ⊂ U : ρ(x) < 0} , bD ∩ U = {x ∈ U : ρ(x) = 0}

and dρ(x) 6= 0 on bD ∩U . The function ρ is called a Ck local defining function for D near
ρ. If U is an open neighborhood of D̄ then ρ is called a global defining function for D, or
simply a defining function for D.

The next lemma give us the relationship between two defining functions.
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Lemma 2.2.2 Let ρ1 and ρ2 be two local defining functions for D of class Ck (1 ≤ k ≤ ∞)
in a neighborhood U of p ∈ bD. Then there exist a positive Ck−1 function h on U such that
(1) ρ1 = hρ2 on U
(2) dρ1(x) = h(x)dρ2(x) for all x ∈ bD ∩ U

Proof. Suppose first that p = 0 and ρ2(x) = xn and bD ∩ U = {x ∈ U : xn = 0}. Denote
x = (x′, xn) where x′ = (x1, x2, ..., xn−1). Then by the Fundamental Theorem of Calculus
we have that

ρ1(x) = ρ1(x′, xn)− ρ1(p) =
∫ xn

0

∂ρ1

∂xn
(x′, s)ds = xn

∫ 1

0

∂ρ1

∂xn
(x′, txn)dt (2.14)

and the function h(x′, xn) =
∫ 1

0
∂ρ1
∂xn

(x′, txn)dt ∈ Ck−1 and by (2.14) is a positive function
in U .

In general case, for each x ∈ bD ∩ U , since dρ2(x) 6= 0, without loss of generality,
we may assume that ∂ρ2(x)

∂xn
6= 0, thus there are a neighborhood Ux ⊂ U of x and a Ck

diffeomorphism Φ : Ux → Φ(Ux) such that 0 ∈ Φ(Ux), Φ(0) = x and ρ2◦Φ−1(y1, ..., yn) = yn.
Then Φ(bD ∩ Ux) = {y : yn = 0} and by the first part there is a positive Ck−1 function
Hx defined in Φ(Ux) such that ρ1 ◦ Φ−1(y) = Hx(y)ρ2 ◦ Φ−1(y) for all y ∈ Φ(Ux). With
this, there is a positive Ck−1 function hx defined in Ux such that ρ1(z) = hx(z)ρ2(z)
for all z ∈ Ux. Varying x in bD ∩ U , using the continuity of the function hx and since
hx = ρ1/ρ2 in Ux \ bD, we may define a function h defined in the open set ∪x∈bDUx such
that ρ1(z) = h(z)ρ2(z) for all z ∈ ∪x∈bDUx. In the same way we can extend the definition
of h for all z ∈ U to define h(z) = ρ1(z)/ρ2(z) for z ∈ U \ ∪x∈bDUx.

If k ≥ 2, (2) follows from the product rule. If k = 1 and x ∈ dD ∩ U , then from
the definition of differentiation of ρ1 in 0 we have ρ1(x + v) = dρ1(x)v + R(v) for some
function R such that limv→0R(v)/|v| = 0. By (1), we obtain dρ2(x) = dρ1(x)/h(x) for all
x ∈ bD ∩ U .

Continuing the discussion about the domain of Dom(∂̄∗φ), we can see that C1
(p,q)(D) ⊂

Dom(∂̄), however not every element in C∞(p,q)(D) is in Dom(∂̄∗φ). The next result is given
in [4, Lemma 4.2.1].

Lemma 2.2.3 Let D be a bounded domain with C1 boundary bD and ρ be a C1 defining
function for D. For any f ∈ Dom(∂̄∗φ) ∩ C1

(p,q)(D̄), where φ ∈ C(D̄), f must satisfy the
boundary condition

σ(ϑ, dρ)f(z) = 0, z ∈ bD, (2.15)
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where σ(ϑ, dρ)f(z) = ϑ(ρf)(z) denotes the symbol of ϑ in the dρ direction evaluated at z.
More explicitly, if f is expressed as in (2.6), then f must satisfy

∑
j

fI,jK
∂ρ

∂zj
= 0 on bD for all I,K, (2.16)

where |I| = p and |K| = q − 1.

Proof. We first assume that φ = 0. By (2.10) we have

ϑ(ρf) = (−1)p+1∑
I,K

′
n∑
j=1

∂

∂zj
(ρfI,jK) dzI ∧ dz̄K

= (−1)p+1∑
I,K

′
n∑
j=1

∂ρ

∂zj
fI,jKdz

I ∧ dz̄K + (−1)p+1∑
I,K

′
n∑
j=1

ρ
∂fI,jK
∂zj

dzI ∧ dz̄K ,

and (2.15) and (2.16) are equivalent. Now, we can see that the condition given does not
depend to the choice of ρ as follows. If ρ1 is other defining function for D, by Lemma 2.2.2,
then there is a continuous positive function h defined in a open neighborhood of D such
that ρ1 = hρ in D and dρ1 = hdρ on bD. Following the above computations

ϑ(ρ1f) = ϑ(ρ1f) = (−1)p+1∑
I,K

′
n∑
j=1

∂

∂zj
(ρ1fI,jK) dzI ∧ dz̄J

= (−1)p+1∑
I,K

′
n∑
j=1

h
∂

∂zj
(ρfI,jK) dzI ∧ dz̄J

= (−1)p+1∑
I,K

′
n∑
j=1

h
∂ρ

∂zj
fI,jKdz

I ∧ dz̄J + (−1)p+1∑
I,K

′
n∑
j=1

hρ
∂fI,jK
∂zj

dzI ∧ dz̄J

= hϑ(ρf),

then (2.15) and (2.16) are independent of the defining function. With this, we can assume
that ρ is such that |dρ| = 1 on bD.

First, assume f be (0, 1)-form and f = ∑n
j=1 fjdz̄j. Using integration by parts and

(2.10), we have, for any ψ ∈ C∞(D̄) ⊂ Dom(∂̄), that

(ϑf, ψ) =
n∑
j=1

(
−∂fj
∂zj

, ψ

)

=
n∑
j=1

(
fj,

∂ψ

∂z̄j

)
−

n∑
j=1

∫
bD
fj
∂ρ

∂z̄j
, ψ̄dS

=
(
f, ∂̄ψ

)
+
∫
bD

(σ(ϑ, dρ)f, ψ) dS,

where dS is the surface measure of bD (that is ). Similarly, for a (p, q)-form f and
ψ ∈ C∞(p,q−1)(D̄) ⊂ Dom(∂̄), using integration by parts, we obtain

(ϑf, ψ) =
(
f, ∂̄ψ

)
+
∫
bD

(σ(ϑ, dρ)f, ψ) dS. (2.17)
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Since f ∈ Dom(∂̄∗), D(p,q−1)(D) is dense in L2
p,q−1(D) and ∂̄∗f = ϑf in D(p,q−1)(D), we

must have (ϑf, ψ) =
(
∂̄∗f, ψ

)
=
(
f, ∂̄ψ

)
for any ψ ∈ C∞p,q−1(D) and so

∫
bD

(σ(ϑ, dρ)f, ψ) dS = 0 for all ψ ∈ C∞(p,q−1)(D̄).

This implies that σ(ϑ, dρ)f(z) = 0 for all z ∈ bD.

The case φ 6= 0 can be proved similarly, using instead of (2.17), the following

(ϑφf, ψ)φ =
(
f, ∂̄ψ

)
φ

+
∫
bD

(σ(ϑ, dρ)f, ψ) e−φdS.

Remark. Reciprocally, if f ∈ C1
(p,q)(D) and satisfies one of the equivalent con-

ditions (2.15) or (2.16), by (2.17) (and assuming Ω with at least C2 boundary), then
f ∈ Dom(∂̄∗φ) by the density Lemma 2.3.2 below. With this, a function f ∈ C1

(p,q)(D̄) is in
Dom(∂̄∗φ) if and only if f satisfies one of the equivalent conditions (2.15) or (2.16). Also,
observe that the arguments in the proof of this lemma works for elements in C`

p,q(D̄) with
` ≥ 1.

Another way to express condition (2.15) or (2.16) is as follows. Let ∨ the interior
product defined as the dual of the wedge product with ∂̄ρ. For an (p, q)-form f , ∂̄ρ ∨ f is
defined as the (p, q − 1)-form satisfying

(
g ∧ ∂̄ρ, f

)
=
(
g, ∂̄ρ ∨ f

)
, g ∈ C∞(p,q−1)(Cn).

Using this notation, condition (2.15) or (2.16) can be expressed as

∂̄ρ ∨ f = 0 on bD. (2.18)

Then f ∈ C1
(p,q)(D̄)∩Dom(∂̄∗φ) if and only if f satisfies one of the three equivalent conditions

(2.15), (2.16) or (2.18).

Now, for fixed 0 ≤ p ≤ n, 1 ≤ q ≤ n, we define the Laplacian of the ∂̄ complex.

Definition 2.2.4 Let �(p,q) = ∂̄(p,q−1)∂̄
∗
(p,q) + ∂̄∗(p,q)∂̄(p,q−1) be the operator from L2

(p,q)(D)
to L2

(p,q)(D) such that

Dom(�(p,q)) = {f ∈ L2
(p,q)(D) : f ∈ Dom(∂̄(p,q)) ∩Dom(∂̄∗(p,q)),

∂̄(p,q)f ∈ Dom(∂̄∗(p,q+1)), ∂̄∗(p,q)f ∈ Dom(∂̄(p,q−1))}.

Proposition 2.2.5 �(p,q) is a linear, closed, densely defined self-adjoint and positive
operator.
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Proof. Clearly �(p,q) is linear. �(p,q) is densely defined because Dom(�(p,q)) contains
D(p,q)(D).

Now we prove that �(p,q) is closed. Let (fn) ∈ Dom(�(p,q)), f ∈ L2
(p,q)(D) such that

fn → f in L2
(p,q)(D) and �(p,q)fn converge in L2

(p,q)(D). Since fn ∈ Dom(∂̄) ∩Dom(∂̄∗) for
all n ∈ N, we have

(
�(p,q)fn, fn

)
=
(
∂̄∂̄∗fn, fn

)
+
(
∂̄∗∂̄fn, fn

) (
∂̄∗fn, ∂̄

∗fn
)

+
(
∂̄fn, ∂̄fn

)
=
∥∥∥∂̄∗fn∥∥∥2

+
∥∥∥∂̄fn∥∥∥2

≥ 0.

Since �(p,q)fn and fn converge in L2
(p,q)(D) we have that ∂̄∗fn and ∂̄fn converge in L2

p,q−1(D)
and L2

p,q+1(D) respectively. Now, f ∈ Dom(∂̄) ∩Dom(∂̄∗) and

∂̄fn → ∂̄f, ∂̄∗fn → ∂̄∗f (2.19)

in L2
p,q(D), because ∂̄ and ∂̄∗ are closed operators.

Also for h ∈ Dom(�(p,q))∥∥∥�(p,q)h
∥∥∥2

=
(
∂̄∂̄∗h+ ∂̄∗∂̄h, ∂̄∂̄∗h+ ∂̄∗∂̄h

)
=
∥∥∥∂̄∂̄∗h∥∥∥2

+
∥∥∥∂̄∗∂̄h∥∥∥2

+

+
(
∂̄∂̄∗h, ∂̄∗∂̄h

)
+
(
∂̄∗∂̄h, ∂̄∂̄∗h

)
=
∥∥∥∂̄∂̄∗h∥∥∥2

+
∥∥∥∂̄∗∂̄h∥∥∥2

,

we have that ∂̄∂̄∗fn and ∂̄∗∂̄fn are Cauchy sequences, then, they converge. Again, since ∂̄
and ∂̄∗ are closed, using (2.19) we have that ∂̄f ∈ Dom(∂̄∗), ∂̄∗f ∈ Dom(∂̄) and

∂̄∂̄∗fn → ∂̄∂̄∗f and ∂̄∗∂̄fn → ∂̄∗∂̄f in L2
(p,q)(D). (2.20)

Then f ∈ Dom(�(p,q)) and by (2.20), �(p,q)fn → �(p,q)f . With this �(p,q) is a closed
operator.

Now we prove that �(p,q) is a self-adjoint operator. Let �∗(p,q) be the adjoint operator
of �(p,q). It is easy to see that �∗(p,q) = �(p,q) on Dom(�(p,q)) ∩ Dom(�∗(p,q)), because if
f ∈ Dom(�(p,q)) ∩Dom(�∗(p,q)), and u ∈ Dom(�(p,q))(

�∗(p,q)f, u
)

=
(
f,�(p,q)u

)
=
(
f, ∂̄∂̄∗u

)
+
(
f, ∂̄∗∂̄u

)
=
(
∂̄∗f, ∂̄∗u

)
+
(
∂̄f, ∂̄u

)
=
(
∂̄∂̄∗f, u

)
+
(
∂̄∗∂̄f, u

)
=
(
�(p,q)f, u

)
.
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In order to prove that Dom(�(p,q)) = Dom(�∗(p,q)) we consider the operator

L1 = ∂̄∂̄∗ + ∂̄∗∂̄ + I = �(p,q) + I

defined on Dom(�(p,q)), and we will prove that L1 is self-adjoint.

Since ∂̄ and ∂̄∗ are closed and densely defined operators, by a theorem of Von
Neumann (see Section 118 in [26]), the operators

(I + ∂̄∂̄∗)−1 and (I + ∂̄∗∂̄)−1

are defined everywhere, bounded and self-adjoint.

We define Q1 = (I + ∂̄∂̄∗)−1 + (I + ∂̄∗∂̄)−1 − I, then Q1 is defined everywhere,
self-adjoint bounded operator. Note that

(I + ∂̄∂̄∗)−1 − I = (I − (I + ∂̄∂̄∗))(I + ∂̄∂̄∗)−1

= −∂̄∂̄∗(I + ∂̄∂̄∗)−1 (2.21)

and

(I + ∂̄∗∂̄)−1 − I = (I − (I + ∂̄∗∂̄))(I + ∂̄∗∂̄)−1

= −∂̄∗∂̄(I + ∂̄∗∂̄)−1, (2.22)

and (2.21), (2.22) are true everywhere, then Ran(I + ∂̄∂̄∗)−1 ⊂ Dom(∂̄∂̄∗) and Ran(I +
∂̄∗∂̄)−1 ⊂ Dom(∂̄∗∂̄). Besides, we have

Q1 = (I + ∂̄∗∂̄)−1 − ∂̄∂̄∗(I + ∂̄∂̄∗)−1, (2.23)

Q1 = (I + ∂̄∂̄∗)−1 − ∂̄∗∂̄(I + ∂̄∗∂̄)−1. (2.24)

By (2.23) and since ∂̄2 = 0, we see that Ran(∂̄∂̄∗(I + ∂̄∂̄∗)−1) ⊂ Dom(∂̄∗∂̄), so Ran(Q1) ⊂
Dom(∂̄∗∂̄) and

∂̄∗∂̄Q1 = ∂̄∗∂̄(I + ∂̄∗∂̄)−1. (2.25)

In the same way, by (2.24) since (∂̄∗)2 = 0, we see that Ran(∂̄∗∂̄(I + ∂̄∗∂̄)−1) ⊂ Dom(∂̄∂̄∗),
so Ran(Q1) ⊂ Dom(∂̄∂̄∗), so

∂̄∂̄∗Q1 = ∂̄∂̄∗(I + ∂̄∂̄∗)−1. (2.26)

Then Ran(Q1) ⊂ Dom(L1) and by (2.25), (2.26) and (2.23) we have

L1Q1 = ∂̄∂̄∗(I + ∂̄∂̄∗)−1 + ∂̄∗∂̄(I + ∂̄∗∂̄)−1 +Q1

= ∂̄∗∂̄(I + ∂̄∗∂̄)−1 + (I + ∂̄∗∂̄)−1

= (∂̄∗∂̄ + I)(I + ∂̄∗∂̄)−1
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= I. (2.27)

Moreover L1 is injective, because, if u ∈ Dom(L1) and L1(u) = 0, then the
computations

0 = (L1u, u) =
(
∂̄∂̄∗u+ ∂̄∗∂̄u+ u, u

)
=
(
∂̄∂̄∗u, u

)
+
(
∂̄∗∂̄u, u

)
+ ‖u‖2

=
(
∂̄∗u, ∂̄∗u

)
+
(
∂̄u, ∂̄u

)
+ ‖u‖2

=
∥∥∥∂̄∗u∥∥∥2

+
∥∥∥∂̄u∥∥∥2

+ ‖u‖2

shows that u = 0. With this and (2.27) we have Q1 = L−1
1 . Then L1 is selfadjoint. Then

L1 − I = �(p,q) is self-adjoint. As we wished to prove.

The next proposition give us two necessary boundary conditions for (p, q)-forms
belong to Dom(�(p,q)), they are namely, the ∂̄-Neumann boundary conditions.

Proposition 2.2.6 Let D be a bounded domain with C1 boundary and ρ be a C1 defining
function. If f ∈ C2

(p,q)(D̄) then f ∈ Dom(�(p,q)) if and only if

σ(ϑ, dρ)f = 0 and σ(ϑ, dρ)∂̄f = 0 on bD. (2.28)

If f = ∑
I,J
′fI,Jdz

Idz̄J ∈ C2
(p,q)(D̄) ∩Dom(�(p,q)), we have

�(p,q)f = −1
4
∑
I,J

′∆fI,JdzI ∧ dz̄J , (2.29)

where ∆ = 4∑n
k=1 ∂

2/∂zk∂z̄k = ∑n
k=1(∂2/∂x2

k+∂2/∂y2
k) is the usual Laplacian on functions.

Proof. If f ∈ Dom(�(p,q)) then f ∈ Dom(∂̄∗) and ∂̄f ∈ Dom(∂̄∗) and by Lemma 2.2.3
we obtain (2.28). Conversely, if f ∈ C2

(p,q)(D̄) and satisfies (2.28), by observation af-
ter Lemma 2.2.3 we have f ∈ Dom(∂̄∗) and ∂̄f ∈ Dom(∂̄∗). Since f ∈ C2

(p,q)(D̄) and
f ∈ Dom(∂̄∗), ∂̄∗f = ϑf ∈ C1

(p,q)(D̄), so ∂̄∗f ∈ Dom(∂̄). And obviously f ∈ Dom(∂̄). Then
f ∈ Dom(�(p,q)).

Let’s prove (2.29) for p = 0 (the proof for p 6= 0 is similar). In this proof, J and
R are the multiindices of length q, K and S are multiindices of length q − 1 and q + 1
respectively. If f ∈ Dom(�(p,q)) we have ∂̄∗f = ϑf and ∂̄∗∂̄f = ϑ∂̄f , because f ∈ Dom(∂̄∗)
and ∂̄f ∈ Dom(∂̄∗). With this, if f is written as in this proposition, we have

∂̄ϑf = −
∑
K

′∑
j

∑
l

∂2flK
∂z̄j∂zl

dz̄j ∧ dz̄K
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= −
∑
K

′∑
j

∂2fjK
∂z̄j∂zj

dz̄j ∧ dz̄K −
∑
K

′∑
j

∑
l 6=j

∂2flK
∂z̄j∂zl

 dz̄j ∧ dz̄K
= −

∑
J

′

∑
j∈J

∂2fJ
∂z̄j∂zj

 dz̄J −∑
K

′∑
j

∑
l 6=j

∂2flK
∂z̄j∂zl

 dz̄j ∧ dz̄K

= −
∑
J

′

∑
j∈J

∂2fJ
∂z̄j∂zj

 dz̄J −∑
R

′


∑
K

′∑
j

K∪{j}=R

εRjK∑
l 6=j

∂2flK
∂z̄j∂zl


 dz̄

R, (2.30)

where εRjK is 0 if {j} ∪ K 6= R as sets and is the sign of the permutation that
reorders jK as R. Let {j, J}′ denote the multiindex in increasing order with elements
in {j, J}, for some j /∈ J . Before to proceed in the calculation of ϑ∂̄f , note that for any
smooth function g and multiindex S

ϑ(gdz̄S) = −
∑
R

′
{∑

l

εSlR
∂g

∂zl

}
dz̄R.

Then

ϑ∂̄f =
∑
J

′∑
j

ϑ{∂fJ
dz̄j

dz̄j ∧ dz̄J} =
∑
J

′∑
j

ε
{j,J}′
jJ ϑ{∂fJ

dz̄j
dz̄{j,J}

′}

= −
∑
J

′∑
j

ε
{j,J}′
jJ

{∑
R

′∑
l

ε
{j,J}′
lR

∂2fJ
∂zl∂z̄j

dz̄R
}

= −
∑
R

′

∑
J

′∑
j

∑
l

ε
{j,J}′
jJ ε

{j,J}′
lR

∂2fJ
∂zl∂z̄j

 dz̄R

= −
∑
R

′

∑
j /∈R

∂fR
∂zj∂z̄j

 dz̄R −∑
R

′


∑
J

′∑
j

∑
l

j 6=l

ε
{j,J}′
jJ ε

{j,J}′
lR

∂2fJ
∂zl∂z̄j

 dz̄
R. (2.31)

The first term on the right in this last equality arises from collecting terms where
j = l, and also from the fact the sum on index j is for j /∈ J .

Now we claim that the second term in (2.30) is equal to minus the second term
in (2.31). To show this, it is enough to inspect the coefficients of dz̄R. For a fixed R, we
proceed to compute the coefficient of the second term in (2.31). Notice first that if l 6= j

then ε{j,J}
′

lR = 0 when j /∈ R. Fixed j0 ∈ R; for l 6= j0, ε{j0,J}
′

lR 6= 0 just for l and J such that
l ∈ J and R \ {j0} = J \ {l}. Denote K0 the unique multiindex in increasing order such
that {K0} = R \ {j0}. Then

∑
J

′∑
l

l 6=j0

ε
{j0,J}′
j0J ε

{j0,J}′
lR

∂2fJ
∂zl∂z̄j0

= −
∑
l

l 6=j0

εRj0K0

∂2flK0

∂zl∂z̄j0
. (2.32)
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because the sum in the first member of this last equality is reduced for multiindices J
containing K0, and also ε{j0,J}

′

j0J ε
{j0,J}′
lR = −εRj0K0ε

J
lK0 . The second member in (2.32) is equal

to the sum of terms inside of

−
∑
K

′∑
j

K∪{j}=R

εRjK∑
l 6=j

∂2flK
∂z̄j∂zl


when j = j0 and K = K0. With this we proved our claim. Adding (2.30) and (2.31), we
obtain

�(0,q)f = −
∑
J

′
n∑
j=1

∂2fJ
∂zj∂z̄j

dz̄J = −1
4
∑
J

′∆fJdz̄J .

Example LetD be a smooth bounded domain in Cn such that 0 ∈ bD. We assume that for
some neighborhood U of 0, D ∩U = {Im zn = yn < 0} ∩U . Let f = ∑

k fkdz̄k ∈ C2
(0,1)(D)

and the support of f lies in U ∩ D̄. Then f is in Dom(�(0,1)) if, and only if satisfies

(a) fn = 0 on bD ∩ U ,

(b) ∂fj
∂z̄n

= 0 on bD ∩ U , j = 1, ..., n− 1.

If we consider the defining function ρ of D such that ρ(z) = Im zn = yn in D ∩ U , since
∂/∂zj for 1 ≤ j ≤ n− 1 are tangential to bD ∩ U , that is, ∂ρ/∂zj = 0 for j = 1, ..., n− 1,
and ∂ρ

∂zn
(z) = −i on bD ∩ U , we have (a) from the Lemma 2.2.3. In the same way, since

∂̄f =
n∑
k=1

n∑
j=1, j 6=k

∂fk
∂z̄j

dz̄j ∧ dz̄k

=
∑

1≤j<k≤n

{
∂fk
∂z̄j
− ∂fj
∂z̄k

}
dz̄j ∧ dz̄k

then
∂fk
∂z̄n
− ∂fn
∂z̄k

= 0 ∀k = 1, ..., n− 1 on bD ∩ U.

By (a), and since ∂/∂zj for 1 ≤ j ≤ n−1 are tangential to bD∩U we have ∂fn/∂z̄j(z) = 0
for z ∈ bD ∩ U for j = 1, ..., n− 1. Then we obtain (b).

2.3 L2 existence theorems for ∂̄ in pseudoconvex domains
Let D be a domain with C2 boundary bD. Let ρ be a C2 defining function in a

neighborhood of D such that D = {z|ρ(z) < 0} and |dρ| = 1 on bD. For each l ∈ N, we set

Dl
(p,q) = Dom(∂̄∗) ∩ C l

(p,q)(D̄)

and
D(p,q) = Dom(∂̄∗) ∩ C∞(p,q)(D̄).
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Let φ ∈ C2(D̄) be a fixed function and let

Dφ
(p,q) = Dom(∂̄∗φ) ∩ C∞(p,q)(D̄).

By Lemma 2.2.3 (and the remark done after) we have that, f ∈ Dφ
(p,q) if and only

if σ(ϑ, dρ)f(z) = 0 for any z ∈ bD, a condition independent of φ. So Dφ
(p,q) = D(p,q), which

is also independent of φ. Similarly we have that Dom(∂̄∗φ) ∩ C l
(p,q)(D̄) = Dl

(p,q).

Let Qφ be the form on D(p,q) defined by

Qφ(f, f) = ‖∂̄f‖2
φ + ‖∂̄∗φf‖

2
φ
.

Proposition 2.3.1 (Morrey-Kohn-Hörmander’s Identity) Let D ⊂ Cn be a do-
main with C2 boundary bD and ρ be a C2 defining function for D such that |dρ| = 1 on
bD. Let φ ∈ C2(D̄). For any f = ∑

|I|=p,|J |=q
′fI,Jdz

Idz̄J ∈ Dl
(p,q),

Qφ(f, f) := ‖∂̄f‖2
φ + ‖ϑφf‖2

φ

=
∑

|I|=p,|K|=q−1

′∑
i,j

∫
D

∂2φ

∂zi∂z̄j
fI,iK f̄I,jKe

−φdV

+
∑

|I|=p,|J |=q

′∑
k

∫
D

∣∣∣∣∣∂fI,J∂z̄k

∣∣∣∣∣
2

e−φdV

+
∑

|I|=p,|K|=q−1

′∑
i,j

∫
bD

∂2ρ

∂zi∂z̄j
fI,iK f̄I,jKe

−φdS. (2.33)

Proof. Let δφj u = eφ ∂
∂zj

(e−φu) and L̄j = ∂/∂z̄j. Then

‖∂̄f‖2
φ + ‖ϑφf‖2

φ =
∑
I,J,L

′∑
j,l

εjJlL
(
L̄j(fI,J), L̄l(fI,L)

)
φ

+
∑
I,K

′∑
j,k

(
δφj fI,jK , δ

φ
kfI,kK

)
φ
, (2.34)

where εjJlL = 0, unless j /∈ J , l /∈ L and {j} ∪ J = {l} ∪ L, in which case εjJlL is the sign of
permutation

(
jJ
lL

)
. Rearranging the terms in (2.34) gives

‖∂̄f‖2
φ + ‖ϑφf‖2

φ =
∑
I,J

′∑
j

‖L̄jfI,J‖
2
φ −

∑
I,K

′∑
j,k

(
L̄kfI,jK , L̄jfI,kK

)
φ

+
∑
I,K

′∑
j,k

(
δφj fI,jK , δ

φ
kfI,kK

)
φ
. (2.35)

Note that, if u, v ∈ C2(D̄) applying integration by parts we have(
u, δφj v

)
φ

= −
(
L̄ju, v

)
φ

+
∫
bD

∂ρ

∂z̄j
uv̄e−φdS

and [
δφj , L̄k

]
u = δφj L̄ku− L̄kδ

φ
j u = u

∂2φ

∂zj∂z̄k
.
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So,

(
δφj u, δ

φ
kv
)
φ

=
(
−L̄kδφj u, v

)
φ

+
∫
bD

∂ρ

∂z̄k
(δφj u)v̄e−φdS

=
(
−δφj L̄ku, v

)
φ

+
([
δφj , L̄k

]
u, v

)
φ

+
∫
bD

∂ρ

∂z̄k
(δφj u)v̄e−φdS

= −
(
v, δφj L̄ku

)
φ

+
(
u

∂2φ

∂zj∂z̄k
, v

)
φ

+
∫
bD

∂ρ

∂z̄k
(δφj u)v̄e−φdS

=
(
L̄ku, L̄jv

)
φ

+
(
u

∂2φ

∂zj∂z̄k
, v

)
φ

+
∫
bD

∂ρ

∂z̄k
(δφj u)v̄e−φdS −

∫
bD

∂ρ

∂zj
(L̄ku)v̄e−φdS. (2.36)

When u, v are in C1(D̄), (2.36) also holds by approximation (convolution with a
sequence of mollifiers) since C2(D̄) is a dense subset in C1(D̄) (still the regularization of
u and v convergence uniform in compacts to u and v, and so also their derivatives). Using
(2.36) for each I,K, it follows that

∑
j,k

(
δφj fI,jK , δ

φ
kfI,kK

)
φ

=
n∑

j,k=1

(
L̄kfI,jK , L̄jfI,kK

)
φ

+
n∑

j,k=1

(
∂2φ

∂zj∂z̄k
fI,jK , fI,kK

)
φ

+
n∑

j,k=1

∫
bD

∂ρ

∂z̄k
(δφj fI,jK)f̄I,kKe−φdS

−
n∑

j,k=1

∫
bD

∂ρ

∂zj
(L̄kfI,jK)f̄I,kKe−φdS. (2.37)

Since f ∈ D1
(p,q), by (2.16) in Lemma 2.2.3 we have

n∑
k=1

∂ρ

∂z̄k
f̄I,kK = 0 on bD (2.38)

for each I,K. Thus ∑n
k=1 f̄I,kK

∂
∂z̄k

is tangential to bD, then

n∑
k=1

f̄I,kK
∂

∂z̄k

 n∑
j=1

fI,jK
∂ρ

∂zj

 = 0

on bD for each I,K. This implies

n∑
k=1

n∑
j=1

f̄I,kK
∂ρ

∂zj

∂fI,jK
∂z̄k

+
n∑
k=1

n∑
j=1

fI,jK f̄I,kK
∂2ρ

∂zj∂z̄k
= 0 (2.39)

on bD. Combining (2.35)-(2.39), we proved (2.33).

We invoke the next density lemma, whose proof could be find it on [4] as Lemma
4.3.2, or on [30] as Proposition 2.3.
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Lemma 2.3.2 Let D be a domain with C l+1 boundary bD, l ≥ 1 and φ ∈ C2(D̄). Then
Dl

(p,q) is dense in Dom(∂̄) ∩Dom(∂̄∗φ) in the graph norm

f → ‖f‖φ + ‖∂̄f‖φ + ‖∂̄∗φf‖φ.

This density result allows us to work more comfortably on forms with smooth
regularity on the boundary with tangential conditions expressed on the Lemma 2.2.3, and
get estimates on Dom(∂̄) ∩ Dom(∂̄∗φ), as we will see below. Now we will use a concept
called pseudoconvexity, and for this reason we make the next definition.

Definition 2.3.3 Let D be a bounded domain, with C2 boundary in Cn, n ≥ 2, and let
r be a C2 defining function for D. The Levi form of the function r at the point p ∈ bD
denoted by Lp(r; t), is defined by the Hermitian form

Lp(r; t) :=
n∑

j,k=1

∂2r

∂zj∂z̄k
(p)tjtk (2.40)

for all t in

T 1,0
p (bD) :=

t = (t1, ..., tn) ∈ Cn :
n∑

j,k=1
tj (∂r/∂zj) (p) = 0

 .
Definition 2.3.4 Let D be a bounded domain in Cn with n ≥ 2, and let r be a C2 defining
function for D. D is called pseudoconvex, or Levi pseudoconvex, at p ∈ bD, if the Levi
form Lp(r; t) is nonnegative for any t in T 1,0

p (bD). The domain D is said to be strictly
(or strongly) pseudoconvex at p, if the Levi form is positive for all such t 6= 0. D is called
a (Levi) pseudoconvex domain if D is (Levi) pseudoconvex at every boundary point of
D. D is called a strictly (or strongly) pseudoconvex domain if D is strictly (or strongly)
pseudoconvex at every boundary point of D.

We can see that this definition is clearly independent of the choice of the defining
function r, because, if ρ is another C2 defining function, then ρ = hr for some C1 function
h with h > 0 on some open neighborhood of bD, and so for any p ∈ bD and t ∈ T 1,0

p (bD)
we have

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)tjtk =

n∑
j,k=1

∂r

∂zj
(p) ∂h

∂z̄k
(p)tjtk +

n∑
j,k=1

∂h

∂zj
(p) ∂r

∂z̄k
(p)tjtk

+ h(p)
n∑

j,k=1

∂2r

∂zj∂z̄k
(p)tjtk

= h(p)
n∑

j,k=1

∂2r

∂zj∂z̄k
(p)tjtk

that is Lp(ρ; t) = hLp(r; t).
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We say that a C2 real valued function ϕ on D is (strictly) plurisubharmonic if
Lz(ϕ, t) is (positive) non negative for all t = (t1, ..., tn) ∈ Cn, and all z ∈ D. When we do
not have a C2 boundary for D we define the pseudoconvexity as follows:

Definition 2.3.5 An open domain D in Cn, n ≥ 2, is called pseudoconvex if there exists
a smooth strictly plurisubharmonic function ϕ on D, such that, for any c ∈ R the set
Dc := {x ∈ D : ϕ(x) < c} is relatively compact in D. The function ϕ, if exists, is called
exhaustion function for D.

Proposition 2.3.6 Let D be a bounded pseudoconvex domain in Cn with C2 boundary
and φ ∈ C2(D). For every f ∈ Dom(∂̄) ∩Dom(∂̄∗φ), we have

∑
I,K

′∑
j,k

∫
D

∂2φ

∂zj∂z̄k
fI,jK f̄I,kKe

−φdV ≤ ‖∂̄f‖2
φ + ‖∂̄∗φf‖

2
φ
. (2.41)

Proof. By the density lemma, Lemma 2.3.2, is sufficient to prove (2.41) for f ∈ D1
(p,q) =

Dom(∂̄∗) ∩ C1
(p,q)(D̄). For f ∈ D1

(p,q), f satisfies (2.16) so by the pseudoconvexity of the
domain D we have ∫

bΩ

∂2ρ

∂zi∂z̄j
fI,iKfI,jKe

−φdS ≥ 0.

Then by the equality of Morrey-Kohn-Hörmander, Proposition 2.3.1, we have (2.41).

The next theorem is in [14], as Theorem 2.2.3, and it shows an existence of solution
for the equation (2.8) in bounded pseudoconvex domains in Cn. Note how the closure of
the range of the operators ∂̄ and ∂̄∗φ implies on the existence of solutions for this equation.

Theorem 2.3.7 Let D be a bounded pseudoconvex domain in Cn. For every f ∈ L2
(p,q)(D),

where 0 ≤ p ≤ n, 1 ≤ q ≤ n with ∂̄f = 0, one can find u ∈ L2
(p,q−1)(D) such that ∂̄u = f

and
q
∫
D
|u|2 dV ≤ eδ2

∫
D
|f |2 dV,

where δ = supz,w∈D |z − w| is the diameter of D.

Proof. First, we consider D with C2 boundary. Without loss of generality, we may assume
that 0 ∈ D. On (2.41) we choice the weight function φ = t |z|2 ∈ C2(D). So we have

‖g‖φ = tq
∫
D
|g|2 e−t|z|

2
dV ≤ ‖∂̄g‖2

φ + ‖∂̄∗φg‖
2
φ
.

Thus, if g ∈ Dom(∂̄∗φ) ∩Ker(∂̄) ⊂ Dom(∂̄∗φ) ∩Dom(∂̄), then

tq‖g‖2
φ ≤ ‖∂̄

∗
φg‖

2
φ
. (2.42)
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By the Lemma 2.1.2 we have Ran(∂̄) is closed in L2
(p,q)(D,φ) and Ran(∂̄∗φ) is closed in

L2
(p,q−1)(D,φ).

We claim that: for f ∈ Ker(∂̄), there exist a constant C > 0 such that∣∣∣(f, g)φ
∣∣∣ ≤ C‖∂̄∗φg‖φ for all g ∈ Dom(∂̄∗φ).

In fact, since Ran(∂̄∗φ) is closed we have Ker(∂̄)⊥ = Ran(∂̄∗φ) and

L2
p,q(D,φ) = Ker(∂̄)⊕Ker(∂̄)⊥ = Ker(∂̄)⊕ Ran(∂̄∗φ)

thereby if g = g1 + g2 ∈ Dom(∂̄∗φ) with g1 ∈ Ker(∂̄) and g2 ∈ Ker(∂̄)⊥ = Ran(∂̄∗φ) ⊂
Ker(∂̄∗φ) ⊂ Dom(∂̄∗φ) (because ∂̄2 = 0) then g1 = g − g2 ∈ Dom(∂̄∗φ) and by (2.42) we have

∣∣∣(f, g1)φ
∣∣∣ ≤ ‖f‖φ‖g1‖φ ≤

1√
tq
‖f‖φ‖∂̄

∗
φg1‖φ

and (f, g2)φ = 0. Then

∣∣∣(f, g)φ
∣∣∣ =

∣∣∣(f, g1)φ
∣∣∣ ≤ 1√

tq
‖f‖φ‖∂̄

∗
φg1‖φ ≤

1√
tq
‖f‖φ‖∂̄

∗
φg‖φ.

Using the Hahn-Banach theorem and the Riesz representation applied to ∂̄∗φg 7→
(f, g)φ, there exist u ∈ L2

(p,q)(D,φ) such that (f, ∂̄∗φg) = (u, g) for all g ∈ Dom(∂̄∗φ) and

‖u‖φ ≤
1√
tq
‖f‖φ.

This implies that u = ∂̄f in the distribution sense and u satisfies (since, we assumed
0 ∈ D, then |z| ≤ δ2 for all z ∈ D)

q
∫
D
|u|2 dV ≤ qetδ

2
∫
D
|u|2 e−t|z|

2
dV

≤ 1
t
etδ

2
∫
D
|f |2 e−t|z|

2
dV

≤ 1
t
etδ

2
∫
D
|f |2 dV.

Since the function 1
t
etδ

2 achieves its minimum when t = δ−2, we have

q
∫
D
|u|2 dV ≤ eδ2

∫
D
|f |2 dV.

This proves the theorem when the boundary bD is C2.

For a general pseudoconvex domain, we will use the exhaustion of the domain D
by a sequence of pseudoconvex domains with C∞ boundary Dν . We write

D = ∪∞ν=1Dν ,
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where each Dν is a bounded pseudoconvex domain with C∞ boundary and C∞ boundary
and Dν ⊂ Dν+1 ⊂ D for each ν. Let δν the diameter for Dν . Because of the above, on
each Dν , there exists a uν ∈ L2

(p,q)(Dν) such that ∂̄uν = f in Dν and

q
∫
Dν
|uν |2 dV ≤ eδ2

ν

∫
Dν
|f |2 dV ≤ eδ2

∫
D
|f |2 dV.

By Banach-Alaoglu theorem, we can choose a subsequence of uν , still denoted by uν , such
that uν ⇀ u weakly in L2

(p,q−1)(D). Furthermore, u satisfies the estimate

q
∫
D
|u|2 dV ≤ lim inf eδ2

ν

∫
Dν
|f |2 dV ≤ eδ2

∫
D
|f |2 dV,

and ∂̄u = f in D in the distribution sense. So the theorem is proved.

The result above could be obtained on (p, q)-forms locally square integrable func-
tions defined on pseudoconvex domains not necessary bounded, as it is shown on [4] in
Theorem 4.3.5. Note that, we have just proved that Ran(∂̄(p,q−1)) is closed and is equal to
Ker(∂̄(p,q)). Obviously, uniqueness is not guaranteed, for example if f ∈ Ker(∂̄0,1) the u+h

will be another solution for any holomorphic function h, but we could have uniqueness of
solution on a particular subspace as we will see on Corollary 2.4.2.

Even the domain D is not bounded, we could have existence of solutions, as it is
established in the next theorem proved by Hörmander as Theorem 2.2.4 in [14].

Theorem 2.3.8 Let D be a pseudoconvex domain in Cn. For every f ∈ L2
(p,q)(D, loc),

where 0 ≤ p ≤ n, 1 ≤ q ≤ n with ∂̄f = 0, one can find u ∈ L2
(p,q−1)(D, loc) such that

∂̄u = f .

Proof. Since D is pseudoconvex domain, there exist a C∞ strictly plurisubharmonic
exhaustion function σ for D. For any f ∈ L2

(p,q)(D, loc), we can choose a rapidly increasing
convex function η(t), t ∈ R such that η(t) = 0 when t ≤ 0 and f ∈ L2

(p,q)(D, η(σ)). Let
Dν = {z ∈ D : σ(z) < ν}, then D = ∪∞ν=1Dν , where each Dν is a bounded pseudoconvex
domain with C∞ boundary and Dν ⊂ Dν+1 ⊂ D for each ν. Since η(σ) is plurisubharmonic,
the function φ = η(σ) + |z|2 is strictly plurisubharmonic with

n∑
j,k=1

∂2φ

∂zj∂z̄k
(z)aj āk ≥ |a|2

for all (a1, ..., an) ∈ Cn and all z ∈ D. Applying Proposition 2.3.6 to each Dν we have for
any g ∈ Dom(∂̄) ∩Dom(∂̄∗φ),

q‖g‖2
φ(Dν) ≤

∫
Dν

∑
I,K

′∑
j,k

∂2φ

∂zj∂z̄k
gI,jK ḡI,kKe

−φdV
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≤ ‖∂̄g‖2
φ(Dν) + ‖∂̄∗φg‖

2
φ(Dν).

With the same argument in the proof of the Theorem 2.3.7, there exists a uν ∈ L2
(p,q−1)(Dν , φ)

such that ∂̄uν = f in Dν and

q
∫
Dν
|uν |2 e−φdV ≤

∫
Dν
|f |2 e−φ ≤

∫
D
|f |2 e−φdV <∞,

Due to L2
(p,q)(D,φ) is a Hilbert space and {uνχν}ν is a bounded sequence in L2

(p,q)(D,φ),
where χν equal to 1 in Dν and 0 in D\Dν , there exists a subsequence

{
uνjχνj

}
j
converging

weakly to some u ∈ L2
(p,q)(D,φ). Also we have ∂̄u = f in D and

q
∫
D
|u|2 e−φdV ≤

∫
D
|f |2 e−φdV.

The theorem is proved.

2.4 L2 existence theorems for the operator �(p,q)

Assuming that our bounded domain is pseudoconvex, we show the existence of
the ∂̄-Neumann operator N . This operator will be presented as an inverse operator of
the �(p,q) operator defined before for 1 ≤ q ≤ n. Before establishing this result we recall
some properties about the �(p,q) operator, its range Ran(�(p,q)), and kernel Ker(�(p,q)).
By Proposition 2.2.5, Ker(�(p,q)) is closed, and by (2.1)

L2
(p,q) = Ran(�(p,q))⊕Ker(�(p,q)).

We claim that

Ker(�(p,q)) = Ker(∂̄) ∩Ker(∂̄∗) = 0 for q ≥ 1. (2.43)

In fact, the first equality follows from the fact, for any α ∈ Ker(�p,q) we have

‖∂̄α‖2 + ‖∂̄∗α‖2 =
(
�(p,q)α, α

)
= 0

thus Ker(�(p,q)) ⊂ Ker(∂̄) ∩Ker(∂̄∗). To see the other inclusion is sufficient to note that
Ker(∂̄) ∩Ker(∂̄∗) ⊂ Dom(�(p,q)). The second equality in (2.43), we use Theorem 2.3.7 to
see that, if α ∈ Ker(∂̄) ∩Ker(∂̄∗) then there exists a (p, q − 1)-form β such that ∂̄β = α,
and since 0 = ∂̄∗α we will have

‖α‖2 =
(
∂̄β, ∂̄β

)
=
(
∂̄∗∂̄β, β

)
= 0,

then, the equality follows.

Now we prove that Ran(�(p,q)) is closed for q ≥ 1, and so the existence of an
operator N which inverts the operator �(p,q), as it is established in [4] by Theorem 4.4.1.
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Theorem 2.4.1 Let D be a bounded pseudoconvex domain in Cn, n ≥ 2. For each
0 ≤ p ≤ n, 1 ≤ q ≤ n, there exists a bounded operator N(p,q) : L2

(p,q)(D)→ L2
(p,q)(D) such

that

(a) Ran(N(p,q)) ⊂ Dom(�(p,q)), N(p,q)�(p,q) = �(p,q)N(p,q) = I on Dom(�(p,q)).

(b) For any f ∈ L2
(p,q)(D), f = ∂̄∂̄∗N(p,q)f ⊕ ∂̄∗∂̄N(p,q)f .

(c) ∂̄N(p,q) = N(p,q+1)∂̄ on Dom(∂̄), 1 ≤ q ≤ n− 1.

(d) ∂̄∗N(p,q) = N(p,q−1)∂̄
∗ on Dom(∂̄∗), 2 ≤ q ≤ n.

(e) Let δ be the diameter of D. The following estimates hold for any f ∈ L2
(p,q)(D):

‖N(p,q)f‖ ≤
eδ2

q
‖f‖,

‖∂̄N(p,q)f‖ ≤
√
eδ2

q
‖f‖, (2.44)

‖∂̄∗N(p,q)f‖ ≤
√
eδ2

q
‖f‖. (2.45)

Proof. By Theorem 2.3.7 we have Ran(∂̄(p,q−1)) = Ker(∂̄(p,q)), and by (2.1) we may write

L2
(p,q)(D) = Ran(∂̄(p,q−1))⊕ Ran(∂̄∗(p,q+1)), for q ≥ 1. (2.46)

Then, if f ∈ Dom(∂̄(p,q)) ∩ Dom(∂̄∗(p,q)) and f = f1 + f2 where f1 ∈ Ran(∂̄(p,q−1)), f2 ∈
Ran(∂̄∗(p,q+1)), again by Theorem 2.3.7, and Theorem 2.1.2 (applied on ∂̄(p,q−1) and ∂̄(p,q))
we have

‖f1‖2 ≤ cq‖∂̄∗(p,q)f1‖
2
,

‖f2‖2 ≤ cq+1‖∂̄(p,q)f2‖
2

where cq = eδ2/q, because in this case f1, f2 ∈ Dom(∂̄(p,q)) ∩ Dom(∂̄∗(p,q)). Since the
decomposition in (2.46) is orthogonal, we obtain

‖f‖2 = ‖f1‖2 + ‖f2‖2 ≤ cq
(
‖∂̄(p,q)f‖

2 + ‖∂̄∗(p,q)f‖
2)

for every f ∈ Dom(∂̄(p,q)) ∩Dom(∂̄∗(p,q)).

Now, if f ∈ Dom(�(p,q)), by the last inequality, we will have

‖f‖2 ≤ cq
((
∂̄f, ∂̄f

)
+
(
∂̄∗f, ∂̄∗f

))
= cq

(
�(p,q)f, f

)
≤ cq‖�(p,q)f‖‖f‖.
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Hence, for any f ∈ Dom(�(p,q)),

‖f‖ ≤ cq‖�(p,q)f‖. (2.47)

Then by Theorem 2.1.2, �(p,q) has closed range. Also, by (2.1) and (2.43), L2
(p,q)(D) =

Ran(�(p,q)). By (2.47), �(p,q) is injective. Then there exist a unique inverse N(p,q) :
L2

(p,q)(D)→ Dom(�p,q) such that �(p,q)N(p,q) = Id, that is

f = ∂̄∂̄∗N(p,q)f + ∂̄∗∂̄N(p,q)f for any f ∈ L2
(p,q)(D).

and N(p,q)�(p,q) = Id on Dom(�(p,q)). The assertions (a) and (b) have been established.

By (b), if f ∈ Dom(∂̄), we have

N(p,q+1)∂̄f = N(p,q+1)∂̄ �(p,q)N(p,q)f = N(p,q+1)∂̄∂̄
∗∂̄N(p,q)f = N(p,q+1)�(p,q+1)∂̄N(p,q)f = ∂̄N(p,q)f

then (c) follows. (d) follows on a similar way.

The first inequality in (e) follows by (2.47) and (a). To obtain the other inequalities,
observe that

‖∂̄N(p,q)f‖
2 + ‖∂̄∗N(p,q)f‖

2 =
(
�(p,q)N(p,q)f,N(p,q)f

)
=
(
f,N(p,q)f

)
≤ ‖f‖‖N(p,q)f‖,

and (2.44), (2.45) follow by the first inequality.

Corollary 2.4.2 Let D and N(p,q) be the same as in Theorem 2.4.1, where 0 ≤ p ≤ n,
1 ≤ q ≤ n. For any α ∈ L2

(p,q)(D) such that ∂̄α = 0, the (p, q − 1)-form

u = ∂̄∗N(p,q)α (2.48)

satisfies the equation ∂̄u = α and the estimate

‖u‖2 ≤ eδ2

q
‖α‖2. (2.49)

The solution u is called the canonical solution to the equation ∂̄u = α with compatibility
condition on α, and it is the unique solution which is orthogonal to Ker(∂̄(p,q−1)).

Proof. If u is defined by (2.48) then u is orthogonal to Ker(∂̄). Moreover

∂̄u = ∂̄∂̄∗N(p,q)α = �(p,q)N(p,q)α− ∂̄∗∂̄N(p,q)α = α− ∂̄∗∂̄N(p,q)α

then by (c) in Theorem 2.4.1 and the compatibility condition on α we have ∂̄∗∂̄N(p,q)α = 0,
and so ∂̄u = α. The inequality (2.49) follows by (e) on Theorem 2.4.1. If v is another
solution orthogonal to Ker(∂̄), we will have u− v ∈ Ker(∂̄), and also by the orthogonality
to Ker(∂̄(p,q−1)), u− v ∈ ⊥Ker(∂̄(p,q−1)). Then u− v = 0. The corollary is proved.

It is possible to define the Neumann operator on the level (p, 0) as it is made in [4]
Section 4.4, and with similar properties as given in Theorem 2.4.1.
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2.5 Pseudoconvexity and the Levi problem
As an application we did before, we will solve the well-known Levi problem. But

before, we have to give a definition of an object involving this problem.

Definition 2.5.1 A domain D in Cn is called a domain of holomorphy, if we cannot find
two nonempty open sets D1 and D2 in Cn with the following properties:

(1) D1 is connected, D1 * D and D2 ⊂ D1 ∩D.

(2) For every holomorphic function f in D there is a holomorphic function f̃ in D1

satisfying f = f̃ in D2.

The Levi problem consist fo showing whether pseudoconvex domains are domains of
holomorphy. To prove this result, for any p ∈ bD one must find a holomorphic function f
which cannot be continued holomorphically near p.

In the case of D is a strongly pseudoconvex domain with C∞ boundary bD and
p ∈ bD one can to construct a function f in an open neighborhood U of p such that f is
holomorphic in U ∩D, f ∈ C(

{
D ∩ U

}
\ {p}) and |f | → +∞ when z ∈ D approaches p.

In fact f can be obtained as follows: Let r be a strictly plurisubharmonic defining function
for D and assume that p = 0. Let

F (z) = −2
n∑
i=1

∂r(0)
∂zi

zi −
n∑

i,j=1

∂2r(0)
∂zj∂zi

zjzi

F (z) is holomorphic in Cn, and it is called the Levi polynomial of r at 0. Using Taylor’s
expansion of r at 0, by the strictly plurisubharmonicity of r, there exists a sufficiently
small neighborhood U of 0 and C > 0 such that for any z ∈ D ∩ U ,

Re(F ) = −r(z) +
n∑

i,j=1

∂2r(0)
∂zi∂z̄j

ziz̄j +O(|z|3) ≥ C|z|2.

Thus F (z) 6= 0 when z ∈
{
D̄ ∩ U

}
\ {0}. Setting f = 1/F , it is easily seen that f

is holomorphic in D ∩ U which cannot be extended holomorphically across 0.

The general case is proved using the next result.

Theorem 2.5.2 Let D be a pseudoconvex domain in Cn. For every f ∈ C∞(p,q)(D), where
0 ≤ p ≤ n, and 1 ≤ q ≤ n, with ∂̄f = 0, one can find u ∈ C∞(p,q−1)(D) such that ∂̄u = f .

Proof. Let f ∈ C∞(p,q)(D) with 0 ≤ p ≤ n and 1 ≤ q ≤ n, then f ∈ L2
(p,q)(D, loc), and by

the proof of Theorem 2.3.8 there exists a function φ ∈ C2(D) (strictly plurisubharmonic)
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such that, f ∈ L2
(p,q)(D,φ), and there exists u ∈ L2

(p,q−1)(D, loc) with ∂̄u = f , and

‖u‖φ ≤ ‖f‖φ. (2.50)

Then using the inequality (2.50) and repeating the same arguments as in Section 2.4
the L2 existence theorem for the ∂̄-Neumann operator, there exists a weighted ∂̄-Neumann
operator Nφ such that for any g ∈ L2

(p,q)(D,φ), we have

g = ∂̄∂̄∗φNφg + ∂̄∗φ∂̄Nφg.

Since ∂̄f = 0 we have f = ∂̄∂̄∗φNφf . Let u = ∂̄∗φNφf . It is sufficient to prove that
u ∈ C∞(p,q−1)(D). Due to ∂̄∗φu = 0, we have ϑu = −A0u ∈ L2

(p,q)(D, loc) where A0 is some
zero order operator.

Note that if α is a (p, q)-form in C∞(p,q)(D̄) with compact support in D, we have

4
(
‖∂̄α‖2 + ‖ϑα‖2

)
= 4

((
∂̄α, ∂̄α

)
+ (ϑα, ϑα)

)
= 4

((
∂̄∗∂̄α, α

)
+
(
∂̄∂̄∗α, α

))
= 4 (�α, α) = (−∆α, α) = ‖∇α‖. (2.51)

Where ∆ is the real Laplacian and ∇ is the gradient, both acting on α componentwise.
When q = 0 (2.51) also holds since � = ϑ∂̄ = ∂̄∗∂̄ is equal to −∆/4.

Then the Sobolev 1-norm

‖α‖2
1(Ω) := ‖α‖2 + ‖∇α‖2 ≤ C

(
‖α‖+

∥∥∥∂̄α∥∥∥+ ‖ϑα‖
)

(2.52)

with C > 0 is a constant.

Let ũ = ζu where ζ ∈ C∞0 (D) and define uε = ũ ∗ χε where χ is a nonnegative
function such that χ ∈ C∞0 (Cn),

∫
χ = 1, suppχ ⊂ B(0, 1) and χε(z) = 1

εn
χ( z

ε
). It follows,

from Young’s inequality that ‖uε‖ ≤ ‖ũ‖, ∂̄uε = ∂̄ũ ∗χε and ϑuε = ϑũ ∗χε. Taking α = uε

in (2.52) we have

‖uε‖1(D) ≤ C
(
‖uε‖+

∥∥∥∂̄uε∥∥∥+ ‖ϑuε‖
)

≤ C
(
‖ũ‖+

∥∥∥∂̄ũ∥∥∥+ ‖ϑũ‖
)

thus, there exists a subsequence (uεj) such that converges weak in W 1
(p,q−1)(D) (Because

W 1(D) is a Hilbert space). Since uε → ũ in L2
(p,q−1)(D) we have ũ ∈ W 1

(p,q−1)(D). So
∇ũ ∈ L2

(p,q−1)(D). Due to ∇uε = ∇ũ ∗χε, we have ∇uε → ∇ũ in L2
(p,q−1)(D), then uε → ũ

in W 1
(p,q−1)(D). Thereby, we have u ∈ W 1

(p,q−1)(D, loc).

Applying the process above to ∇u we obtain that u ∈ W 2
(p,q−1)(D, loc). We conclude

by induction that u ∈ W k+1
(p,q−1)(D, loc) for any k ∈ N. By Sobolev’s embedding theorem,

u ∈ C∞(p,q−1)(D).
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The following result solves the Levi Problem through the existence theorem for the
Cauchy-Riemann equations given by Theorem 2.5.2.

Theorem 2.5.3 Let D be a domain in Cn, n ≥ 1. If the next property,

For every f ∈ C∞p,q(D) where 0 ≤ p ≤ n, 1 ≤ q ≤ n with ∂̄f = 0, one can find
u ∈ C∞(p,q−1)(D) such that ∂̄u = f,

(2.53)
is satisfied, then D is a domain of holomorphy.

Proof. We will use an induction argument in n to prove the theorem. For n = 1 this is
obvious because all open set in C are domains of holomorphy.

Assume the affirmation is true for n− 1, i.e., if Ω is a domain in Cn−1 satisfying
the property (2.53) in Ω, then Ω is a domain of holomorphy.

Let D ⊂ Cn and (2.53) is fulfilled in D. To prove D is domain of holomorphy, for
each z0 ∈ D (or maybe, for each z0 in a dense subset of bD) we need construct a holomorphic
function in D which cannot be extended holomorphically across any neighborhood of z0.

First of all, if for every z ∈ D and rz > 0 is such that rz = dist(z,Cn ⊂ D), we
claim the set F = ∪z∈D

(
B(z, rz) ∩ bD

)
is dense in bD. In fact, if p0 ∈ bD, there exists

a sequence {zj} in D such that |zj − p0| → 0 when j → +∞. Taking ζj ∈ Cn such that
ζj ∈ B(zj, rzj) ∩ bD. Then rzj ≤ |zj − p0|. So we have |ζj − p0| ≤ |ζj − zj| + |zj − p0| ≤
2 |zj − p0| → 0 when j → +∞. The claim is proved.

Let z0 ∈ F , and z0 ∈ B(ζ0, rζ0)∩bD. Take Σ0 being the complex (n−1)-dimensional
hyperplane passing through ζ0 and z0. Note that z0 ∈ Σ0 ∩ bD. By a linear transformation
we may assume that z0 = 0 and Σ0 = D∩{zn = 0}. Let A ⊂ Cn−1 such that Σ0 = A×{0};
π : D → Cn−1 with π(z′, zn) = z′, D0 = D \ π−1(A).

To construct the required function, we will need the next claim:


For all g ∈ C∞(p,q)(A) with 0 ≤ p ≤ n− 1, 0 ≤ q ≤ n− 1
and ∂̄g = 0, there exist G ∈ C∞(p,q)(D) such that
G|A×{0} = g, ∂̄G = 0

(2.54)

Since Σ0 and D0 are relatively closed disjoint subsets of D, using Urysohn’s lemma,
there exist a smooth function η in D, such that η ≡ 0 in a neighborhood of Σ0 and η ≡ 1
in a neighborhood of D0.

Let g̃(z ∈ D) = η(z)(π∗g)(z) where π∗g is the pull-back of the form g by π∗, that
is, if g = ∑

gI,Jdz
I ∧ dz̄J (note that n /∈ J) then π∗g = ∑

I,J,n/∈J gI,Jdz
I ∧ dz̄J . ∂̄g̃ = 0

in a neighborhood of D0, and ∂̄g̃ ≡ 0 in a neighborhood of Σ0, because g̃ = π∗g in a
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neighborhood of Σ0 and ∂̄g̃ = ∂̄(π∗g) = π∗∂̄g = 0 (this because π is a holomorphic map).
So the (p, q + 1)-form ∂̄g̃

zn
is well defined in D, and is in C∞(p,q+1)(D), and

∂̄
∂̄g̃

zn
= ∂̄

( 1
zn
∂̄ [η(π∗g)]

)
= ∂̄

( 1
zn

{
∂̄η ∧ π∗g

})
= 1
zn

(
∂̄∂̄η ∧ π∗g − ∂̄η ∧ ∂̄(π∗g)

)
= 0.

Since property (2.53) is satisfied in D, there exist u ∈ C∞(p,q)(D) such that ∂̄u =
∂̄g̃/zn. Let G(z) = g̃(z)− znu(z). Then G ∈ C∞(p,q)(D),

∂̄G = ∂̄g̃ − ∂̄(znu) = ∂̄g̃ − zn∂̄u = ∂̄g̃ − ∂̄g̃ = 0

when zn 6= 0 and also ∂̄G = 0 when zn = 0 because ∂̄g̃ = 0 on a neighborhood of Σ0.

If (z′, 0) ∈ A× {0}, then G(z′, 0) = g̃(z′, 0) = g(z′). This proves affirmation made
in (2.54).

We next claim that A is a domain of holomorphy. In fact, if f ∈ C∞p,q(A), 0 ≤ p ≤
n − 1, 1 ≤ q ≤ n − 1 such that ∂̄f = 0, by (2.54) there exists F ∈ C∞(p,q)(D) such that
∂̄F = 0 and F |A×{0} = f . Since property (2.53) is fulfilled in D there exists U ∈ C∞(p,q−1)(D)
such that ∂̄U = F ; if we define u(z′) = U(z′, 0); we have ∂̄u = f and u is in C∞(p,q)(A). So
by the induction hypothesis, A is domain of holomorphy.

Finally, since A is domain of holomorphy, there exists a holomorphic function
h(z′) = h(z1, ..., zn−1) in A such that it cannot be extended holomorphically across 0. By
(2.54) there exist a function H ∈ C∞(D) such that ∂̄H = 0 in D and H(z′, 0) = h(z′) for
all z ∈ A. So, H is holomorphic function in D which cannot be extended holomorphically
across 0, i.e. D is a domain of holomorphy. The theorem is proved.
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chapter 3

APPROACH TO THE OPERATOR ∂b

In this chapter we want to show some results that appeared over the years in the
study of this operator, in order to explain the motivation and the approaches given to it,
as well as to report the conditions, methods, papers and some researchers involved in the
development of the theory about the operator ∂̄b.

One of the first works where the operator ∂̄b appeared was in Kohn and Rossi’s
paper [22]. This paper was focused on extension problems inspirited on Hartog’s theorem.
As it is known the Hartog’s Theorem guarantees the property of holomorphic extension in
a hole bounded domain Ω ⊂ Cn for functions whose are holomorphic in connected open
subsets of the type Ω \K, with K being a compact set in Ω. The discussion made by Kohn
and Rossi starts by asking about the sufficient conditions to imply the same affirmation
for functions defined just in bΩ. Even more, the problem was proposed for (p, q)-forms
f being restrictions in bΩ of forms in Cn, looking for (p, q)-forms f̃ such that f̃ bΩ = f

and ∂̄-closed in Ω, that is ∂̄f̃ = 0 in Ω. One of the conditions imposed by Kohn and Rossi
was that f had to be ∂̄b-closed in bΩ, that is ∂̄bf = 0 in bΩ. The operator ∂̄b was defined
extrinsically in [22] as follows.

Let Ω be a bounded domain in Cn with smooth boundary bΩ. Denote for the
moment M = bΩ. We define Λp,qT ∗(Cn)|M to be the restriction of the bundle of (p, q)-
forms on Cn, Λp,qT ∗(Cn), to M . Define Ip,q as the ideal in Λp,qT ∗(Cn) which is generated
by ρ and ∂̄ρ where ρ is any smooth function that vanishes inM and |dρ| 6= 0 (that is, ρ is a
defining function). Any element in Ip,q is of the form ρΦ1 + ∂̄ρ∧Φ2 where Φ1 ∈ Λp,qT ∗(Cn)
and Φ2 ∈ Λp,q−1T ∗(Cn), and observe that Ip,q is independent of the choice of ρ. Let Ip,q|M
denote the restriction of Ip,q to M . Ip,q|M is the ideal locally generated by ∂̄ρ. Define
Λp,qT ∗(M) the orthogonal complement of Ip,q|M in Λp,qT ∗(Cn)|M . The space Λp,qT ∗(M)
is not intrinsic to M , i.e., it is not a sub space of the exterior algebra generated by the
complexified cotangent bundle of M , this is due ∂̄ρ in not orthogonal to cotangent bundle
of M . Λp,qT ∗(M) = 0 if either p > n or q > n− 1. For an open set U ⊂ M the space of
smooth sections of Λp,qT ∗(M) over U will be denoted Ep,qM (U), and Dp,q

M (U) will denote the
space of compactly supported elements in Ep,qM (U). Define tM : Λp,qT ∗(Cn)|M → Λp,qT ∗(M)
to be the orthogonal projection map on Λp,qT ∗(M). We will denote tM(f) by ftM . ftM is
called the tangential part of f .
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Definition 3.0.1 For an open set U ⊂ M , the tangential Cauchy-Riemann complex
∂̄b : Ep,qM (U)→ Ep,q+1

M (U) is defined as follows. For f ∈ Ep,qM (U), let Ũ be an open set in Cn

with Ũ ∩M = U and let f̃ ∈ Ep,q(Ũ) with f̃tM = f on Ũ ∩M = U then

∂̄bf = (∂̄f̃)tM .

Note that if α ∈ Ep,q(Ũ), β ∈ Ep,q−1(Ũ), and if ρ : Ũ → R vanishes on M ∩ Ũ , then
∂̄(αρ+β∧ ∂̄ρ) = ρ∂̄α+ (α+ ∂̄β)∧ ∂̄ρ. So ∂̄b maps smooth sections of Ip,q to Ip,q+1. Then if
f̃1, f̃2 ∈ Ep,q(Ũ) with (f̃1)tM = (f̃2)tM onM ∩ Ũ we have f̃1− f̃2 ∈ Ip,q so ∂̄f̃1− ∂̄f̃2 ∈ Ip,q+1,
then (∂̄f̃1)tM − (∂̄f̃2)tM = (∂̄f̃1 − ∂̄f̃2)tM = 0. With this ∂̄b is well defined. Also, we have

(a) ∂̄b(f ∧ g) = ∂̄bf ∧ g + (−1)p+qf ∧ ∂̄bg for f ∈ Ep,qM and g ∈ Er,s.

(b) ∂̄2
b = ∂̄b ◦ ∂̄b = 0.

Note that in case f is a function, the condition ∂̄bf = 0 in bΩ is equivalent to f
satisfying the tangential Cauchy Riemann equations, that is

n∑
j=1

αj
∂f

∂z̄j
= 0 on bΩ

for any α1, ..., αn satisfying ∑n
j=1 αj

∂ρ
∂z̄j

= 0 in bΩ. These functions f are called CR func-
tions. Kohn and Rossi’s ideas required of result about existence and regularity up to
the boundary of solutions for the operator ∂̄, so they impose convexity conditions on
the boundary with this objective. To precise, the condition was the Z(q) condition (the
Levi form, at every point in bΩ, has at least n− q positive eigenvalues or at least q + 1
negative eigenvalues), because it was proved by Hormander in [14] that this property
offered regularity up to boundary in addition to only solutions.

In [18], Kohn presented an approach to the existence and regularity of solutions
for the equation

∂̄bu = f (3.1)

defined just not only for manifolds being the boundary of domains in n dimensional
complex manifolds, but in more general structures, now known as CR manifolds. These
objects were compact C∞ manifolds 2n−1 real dimensional M , endowed with a subbundle
S of the complexified tangent bundle CTM of M which satisfies the next conditions:
Every fiber of S has complex dimension n− 1, S ∩ S = 0 (so we can define a Hermitian
metric such that S ⊥ S), and the integrability condition, that is, S is preserved by Lie
bracket ([L1, L2] ∈ S for any L1, L2 ∈ S). This last condition allows us to imply on
the compatibility conditions for the equation (3.1), that is ∂̄2

b = 0. Having in mind this
structure, it is possible to present the operator ∂̄b as a differential operator, satisfying
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the properties (a) and (b) above, as we prove in Chapter 4 (Section 4.1.1). It is worth
clarifying that the approaches of the operator ∂̄b given above and the given in Chapter
4 are different, because they are extrinsic and intrinsic approaches respectively, but the
complexes that these operators provide are isomorphic. Let Ep,q denote the space of smooth
sections of Λp(S∗)⊗ Λq(S∗). One of Kohn’s goals was to obtain local estimates (it was in
fact subelliptic estimates, once appropriate geometrical conditions were assumed), whose
permit him imply just not closed range of the operator ∂̄b, but regularity of solutions. The
process implemented was as follows. Let U be an open set in M , L1, ..., Ln−1 are vectors
field of the type (1, 0), that is Lj ∈ S for j = 1, . . . , n− 1, T a purely imaginary vector
field in CTM such that {L1, ..., Ln−1, L̄1, ..., L̄n−1, T} is a basis for CTM in U . Let cjk be
smooth functions in U such that

[Lj, L̄k] = cjkT mod S ⊕ S.

The Hermitian form defined by cjk is called the Levi form. Define ϑb : Ep,q → Ep,q−1 the
formal adjoint of ∂̄b (throughout an inner product (·, ·) defined in the standard way), and
denote

Qb(ϕ, ψ) = (∂̄bϕ, ∂̄bψ) + (ϑbϕ, ϑbψ) + (ϕ, ψ),

for any ϕ, ψ ∈ Ep,q. The main estimate established by Kohn in [18] (Theorem 5.3), is
stated as follow.

Theorem 3.0.2 If x0 ∈ M and if the Levi form at x0 has max(n − q, q + 1) non-zero
eigenvalues of the same sign, then there exist a neighborhood U os x0 and a constant C
such that

n−1∑
j=1

∑
J∈Iq
‖LjfJ‖2 +

n−1∑
j=1

∑
J∈Iq
‖L̄jfJ‖

2 +
∑
J∈Iq
|Re (TfJ , fJ)| ≤ CQb(f, f). (3.2)

for any (p, q)-form f whose support lies in U .

The condition imposed in the Levi form in this theorem is now known as Y (q) condition.
And to obtain local 1/2-estimates, he stated the next (Proposition 6.8).

Theorem 3.0.3 If U is a coordinate neighborhood in M and if there exist a constant C0

such that
n−1∑
j=1

∑
J∈Iq
‖LjfJ‖2 +

n−1∑
j=1

∑
J∈Iq
‖L̄jfJ‖

2 +
∑
J∈Iq
|Re (TfJ , fJ)| ≤ C0Qb(f, f).

for any (p, q)-form f whose support lies in U , then for any open set V with V ⊂ U there
exists a constant C such that

‖f‖1/2 ≤ CQb(f, f) (3.3)

for all f ∈ Ep,q whose support lies in V .
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And over orientability conditions in M ; that is M can be covered by neighborhoods in
which the dual forms of Lj , 1 ≤ j ≤ n− 1, T have been chosen so that in the intersection
of two neighborhoods the duals of T are positive multiples to each others; he was allowed
to pass from local estimates to global estimates after an argument of partition of unity,
that is, (3.3) is going to be true for any f ∈ Ep,q (Theorem 6.14 in [18]). Once this good
estimates (1/2-estimates) were reached Kohn applied an argument, named by Niremberg
and Kohn as “elliptic regularization" in [21], to obtain smooth solutions. This method, still
used today, consists in adding ε times an elliptic operator so that the resulting equation
becomes elliptic and coercive for ε > 0. This new equation, being coercive elliptic, has a
smooth solution uε in M and, the method of obtaining a priori estimates applies as well
to the new equation as to the original one, and yields estimates for derivatives of uε which
are independent of ε. Doing ε→ 0 through a sequence εj, it follows that a subsequence
of uεj , together with derivatives, converges to a smooth solution of the original problem.
As an example, we explain here how the elliptic regularization works in this case. Define
the Kohn Laplacian �b := ∂̄bϑb + ϑb∂̄b. Once it is obtained (3.3) for f ∈ Ep,q, by using an
induction process and a small constant/large constant argument, obtain the next estimate
(the a priori estimates)

‖f‖s+1/2 ≤ Cs‖�bf + f‖s−1/2

for f ∈ Ep,q, and for any non negative integer s. Define for ε > 0

Qε
b(ϕ, ψ) = Qb(ϕ, ψ) + εK(ϕ, ψ), for ϕ, ψ ∈ Ep,q

where K(., .) is the elliptic term (chosen in a suitable way). The ellipticity of Qε
b(., .) will

imply that for any α ∈ Ep,q (a smooth section) there will exist a unique ϕε ∈ Ep,q such that
Qε
b(ϕε, ψ) = (α, ψ) for all ψ ∈ Ep,q, and also (by using the same method to get the a priori

estimates) for each integer s ≥ 0 there exists Cs > 0, Cs being independent of ε, such that

‖ϕε‖s+1/2 ≤ Cs‖α‖s−1/2.

Then using Rellich’s lemma and the diagonal process, there will exist a subsequence ϕεj
converging in ‖ ‖s for every s > 0, hence the limit ϕ is in Ep,q (a smooth section) and
satisfies the equation �bϕ+ϕ = α. In this way, Kohn could imply in the existence of smooth
solutions for equation (3.1) on CR manifolds of hypersurface type assuming Y (q) condition.

Shawn, in [29], reaffirmed the result obtained by Rosay in [27] but using a more
direct method, and also proved the existence of smooth solutions as Kohn did in [18],
on manifolds being the boundary of a bounded weakly pseudoconvex domain Ω in Cn

(n ≥ 2). Part of this result is established as follows: the necessary and sufficient conditions
for the solvability and regularity of the solutions for the equation (3.1), where f is a
smooth (p, q)-form on bΩ, and q < n− 1, is ∂̄bf = 0. This result was also valid for forms
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in top level q = n− 1, after appropriate orthogonality conditions on f . The approach was
done using ∂̄-closed extension as done in [22], and using the existence of smooth solutions
up to the boundary for the operator ∂̄ on weakly pseudoconvex domains obtained by
Kohn in [19]. Although this process could be useful to guarantee existence of smooth
solutions, the argument could not be applied to establish L2 closed range estimates for
operator ∂̄b. So Shaw gave in [28], a method to obtain results about global solvability
of the ∂̄b complex on the boundary of a bounded weakly pseudoconvex domain Ω ⊂ Cn

(n > 3), in L2 as well as in Sobolev spaces, and exposed their respective estimates, in levels
0 < q ≤ n− 2. This procedure includes the construction of two-sided ∂̄-closed extensions
with good estimates of any given ∂̄b-closed form on bΩ, using results already known at that
time about existence and regularity for ∂̄-Neumann operator, as well on pseudoconvex
domains as on strongly pseudoconvex domains. In [2], Boas and Shaw contour the result,
offering same estimates obtained by Shaw in [28] in top degree q = n− 1 (so it allows them
work in the boundary of Ω ⊂ C2). It means in particular, for any bounded domain Ω ⊂ C2

with a smooth weakly pseudoconvex boundary bΩ (with induced CR structure), the op-
erator ∂̄b has closed range in L2 as well asW s for any nonegative integer s (Corollary in [2]).

On the other hand, Kohn in [20] gave an approach to study the operator ∂̄b on
manifolds which were not just boundaries of domains in Cn, as it was studied in [28] and
[2]. As Kohn described there, he was interested to know whether ∂̄b on an embedded,
compact CR manifold M ⊂ Cn, (of higher co-dimension) has closed range. He introduced
a microlocal method suited to the study of ∂̄b on CR manifolds, and proved that if M is
compact, pseudoconvex, and the boundary of a smooth complex manifold which admits
a strictly plurisubharmonic function defined in a neighborhood of M , then ∂̄b has closed
range. In this work we are focused in study the question stated here by Kohn, and also
in obtaining results about closed range estimates as well Nicoara obtained in [24], but
imposing weaker hypothesis than pseudoconvexity. We close this chapter here because the
results that come after the scopes given so far were mentioned in the Introduction of this
work.
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chapter 4

L2 CLOSED RANGE ESTIMATES FOR ∂b AND THE WEAK
Y (q)-CONDITION

The objective of this chapter is prove L2
0,q(M) estimates (indeed, the estimate (4.15))

in order to prove the closure of the range of the operators �b and ∂̄b. We understand this
by dominating the L2-norm with the energy Qb(·, ·) generated by ∂̄b and its adjoint as
it was done for the operator ∂̄. On the first two sections we give the definitions of the
key terms including CR manifolds of hypersurface type, the Levi form, the operator ∂̄b,
and the sufficient geometrical condition used here to imply the L2 closed range estimates,
named weak Y (q) condition. The weak Y (q) condition is obtained throughout weak Z(q)
condition (see definition 4.1.3). A first version of this property, weak Z(q) condition, was
given in [10], which required the local existence of a vector field of type (1, 1), whose
coefficients of the diagonal terms are zeros or one and the other terms are taken to be zeros,
such that the sum of any q eigenvalues of the Levi matrix minus the Levi form applied
to this (1,1) vector field is not negative. The difference with the new version used here
(given by Harrington and Raich in [11]) is basically that we can take this (1,1) vector field
with more liberty, taking care that its coefficients make a positive semidefinite hermitian
matrix with eigenvalues not bigger than one.

The approach for operator ∂̄b is similar to what we gave for the operator ∂̄, with
suitable differences. For example since we work on manifolds with no boundary, boundary
terms will not appear on, instead the Levi form will appear with terms with the totally real
part of the tangent bundle, or more commonly known “bad direction". To get control of this
term we will use microlocal analysis. The microlocal analysis is developed in Section 4.3,
and we also prove some technical results in Sections 4.4 and 4.5 below. All this machinery
together with the weak Y (q) is used in Section 4.6 below. Finally, on the Subsection 4.6.1
we show the process to handle terms appearing on our main estimate (4.16), and so imply
in our objective estimate (4.15).

This technique was developed by Nicoara [24] and refined by Harrington and Raich
[10], and in fact many of results used in these works will be used here. Nicoara proved
in [24] the closure of the range of ∂̄b using a weak pseudoconvexity (the Levi form is
positive semidefinite) on CR manifolds of hypersurface type with real dimension at least
5. Her result (when dimR · ≥ 5 ) extends to those obtained in [2, 21, 28] who worked on
boundaries of a pseudoconvex domain. Harrington and Raich proved in [10], closure of the
range of ∂̄b, at level q, on CR manifolds of hypersurface type assuming a first version of
the weak Y (q) condition given in [10].
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4.1 Definitions
Let CT (Cn) := T (Cn)⊗ C denote the complexified tangent bundle of T (Cn). Let

{z1, ...zn} with zj = xj + iyj be holomorphic coordinates to Cn. Define the vector fields

∂

∂zj
= 1

2

(
∂

∂xj
− i ∂

∂yj

)
and ∂

∂z̄j
= 1

2

(
∂

∂xj
+ i

∂

∂yj

)

and for z ∈ Cn define T 1,0
z (Cn) and T 0,1

z (Cn) the complex vector spaces generated by
{∂/∂z1, ..., ∂/∂zn} and {∂/∂z̄1, ..., ∂/∂z̄n} respectively. Then, is easy to see T 1,0

z (Cn) ∩
T 0,1
z (Cn) = {0} for any z ∈ Cn, and CTz(Cn) = T 1,0

z (Cn) ⊕ T 0,1
z (Cn) (with the usual

Hermitian product). For 0 ≤ p, q ≤ n and a point z ∈ Cn, define the space Λp,q
z T ∗(M) =

Λp
{
T ∗z

1,0(Cn)
}
⊗̂Λq

{
T ∗z

0,1(Cn)
}
, where ⊗̂ denotes the antisymmetric tensor product, T ∗z 1,0

denotes the space generated by {dz1, ..., dzn} with dzj := dxj + idyj, T ∗z 0,1 = T ∗z
1,0,

and Λp
{
T ∗z

1,0(Cn)
}
(Λq

{
T ∗z

0,1(Cn)
}
) denotes the p-th (q-th) exterior power of T ∗z 1,0(Cn)

(T ∗z 0,1(Cn)). And define the bundle of (p, q)-forms Λp,qT ∗(M) by ⋃z∈Cn Λp,q
z T ∗(M).

Let M a real manifold of real dimension 2n− 1 with n ≥ 2, and denote T (M) the
tangent bundle of M , and CT (M) := T (M)⊗ C the complexified tangent vector bundle
over M . A CR structure manifold of hypersurface type is defined as follows:

Definition 4.1.1 Let M a smooth manifold of real dimensional 2n− 1. M is called a CR
manifold of hypersurface type if M is equipped with a subbundle of the complexified tangent
bundle CT (M) denoted by T 1,0(M) satisfying:

i dimCT
1,0
x (M) = n− 1 where T 1,0

x (M) is the fiber at each x ∈M .

ii T 1,0
x (M) ∩ T 0,1

x (M) = {0} where T 0,1
x (M) is the complex conjugate os T 1,0

x (M).

iii If L,L′ ∈ T 1,0(M) then [L,L′] := LL′ − L′L is in T 1,0(M).

T 1,0(M) is called the CR structure of M .

IfM is a submanifold of CN of real dimension 2n−1, for some N ≥ n, such that the
complex dimension of T 1,0

z (M) := T 1,0
z (CN ) ∩ {Tz(M)⊗ C} (under the natural inclusions)

has complex dimension n− 1 for all z ∈M , we can let T 1,0(M) = ⋃
z∈M T 1,0

z (M), and this
will define a CR structure on M of hypersurface type as follows: Obviously, (i) is satisfied.
T 0,1
z (M) := T 1,0

z (M) = T 0,1
z (CN )∩ {Tz(M)⊗ C}, so T 1,0

z (M)∩ T 0,1
z (M) = {0}, then (ii) is

satisfied. Since T 1,0(M) =
{
T 1,0(CN)|M

}
∩CT (M), and the bundle T 1,0(CN ) is involutive

because the Lie bracket of any two vector fields spanned by {∂/∂z1, ..., ∂/∂zn} is again
spanned by {∂/∂z1, ..., ∂/∂zn}, and the bundle CT (M) is involutive because the tangent
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bundle of any manifold is involutive, we obtain (iii). We will call T 1,0(M) = Uz∈MT
1,0
z (M)

by induced CR structure on M .

In what follows, we will assume M being a smooth, orientable CR manifold of real
dimension 2n − 1 of hypersurface type embedded in CN . Next we proceed to give the
definition of our operator ∂̄b, and here we prefer to give a intrinsic approach of the for our
purpose. To see the extrinsic approach, and a equivalence between these approaches, we
invite the reader to see the Chapter 8 in [3].

4.1.1 The ∂̄b operator

Here we give the definition of the operator ∂̄b on a intrinsic way inspired in [3,
Section 1], slightly different for our purposes. This approach could be done for any abstract
CR manifold (M,T 1,0(M)) , with a Hermitian metric defined on the complexified tangent
bundle CT (M) such that T 1,0(M) is orthogonal to T 0,1(M) = T 1,0(M). For each p ∈M
we let Xp be the orthogonal complement of T 1,0

p (M) ⊕ T 0,1
p (M) in CT (M). The space

{Xp, p ∈M} fit together smoothly (since Lp⊕Lp does), and so the space X(M) = ⋃
p∈M Xp

forms a subbundle of CT (M). Denote by T ∗0,1(M), T ∗1,0(M) and X∗(M) the dual
spaces of T 0,1(M), T 1,0(M) and X(M) respectively. Define the bundles Λp,qT ∗(M) =
Λp(T ∗1,0(M))⊗̂Λq(T ∗0,1(M)) and Λp,q

X T ∗(M) = Λp(T ∗1,0(M))⊗̂Λq(T ∗0,1(M))⊗̂X∗(M), where
⊗̂ denotes the antisymmetric tensor product. Since dimCX(M) = 1 we have Λp,qT ∗(M) =
{0} = Λp,q

X T ∗(M) when p > n − 1 or when q > n − 1. The pointwise metric on CT (M)
induces a pointwise dual metric on CT ∗(M) in the usual way. The metric for CT ∗(M)
extends to a metric on Λr(CT ∗(M)). So we have the following orthogonal decomposition

Λr(CT ∗(M)) = (⊕p+q=rΛp,qT ∗(M))⊕ (⊕p+q=r−1Λp,q
X T ∗(M)) .

Define Πp,q : ΛrCT ∗(M)→ Λp,qT ∗(M) and Πp,q
X : ΛrCT ∗(M)→ Λp,q

X T ∗(M) like the natural
projection maps. For a open set U ⊂M , denote by Er(U) the space of r-forms on an open
set U ⊂ M , Ep,q(U), Ep,qX (U) the spaces of smooth section of Λp,qT ∗(M) and Λp,q

X T ∗(M)
over U respectively, and Dp,q

M (U) the space of compactly supported elements on U of
Ep,q(U). We will omit U in these notations when U = M . Let dM : Er → Er+1 be the
exterior derivative.

Definition 4.1.2 The tangential Cauchy Riemann operator ∂̄b : Ep,q → Ep,q+1 is defined
by ∂̄b := Πp,q+1 ◦ dM .

Now if φ ∈ E1,0 and θ ∈ E0,0
X we have for L̄1, L̄2 ∈ L then by the Cartan-Frobenius identity,

and since L satisfies the condition of integrability (iii) on the definition of CR manifolds,
we will have(

dMφ, L̄1 ∧ L̄2
)

= L̄1
{(
φ, L̄2

)}
− L̄2

{(
φ, L̄1

)}
−
{
φ,
[
L̄1, L̄2

]}
= 0
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(
dMθ, L̄1 ∧ L̄2

)
= L̄1

{(
θ, L̄2

)}
− L̄2

{(
θ, L̄1

)}
−
{
θ,
[
L̄1, L̄2

]}
= 0

(dMθ, L1 ∧ L2) = L1 {(θ, L2)} − L2 {(θ, L1)} − {θ, [L1, L2]} = 0

Then dM (E1,0) ⊂ E2,0 ⊕ E1,1 ⊕ (⊕r+s=1Er,sX ), and dM (E0,0
X ) ⊂ ⊕r+s=1Er,sX . And also we have

dM(E0,1) ⊂ E2,0 ⊕ E1,1 ⊕ E0,2 ⊕ (⊕r+s=1Er,sX ). In general case, by the product rule of dM
and the cases above, we have

dM(Ep,q) ⊂ Ep+2,q−1 ⊕ Ep+1,q ⊕ Ep,q+1 ⊕ (⊕r+s=p+qEr,sX ) , dM(Ep,qX ) ⊂ ⊕r+s=p+q+1Er,sX ,

With this, if φ is a smooth (p, q)-form, that is φ is an element of Ep,q, we have

∂̄bφ = dMφ−

Πp+2,q−1dMφ+ Πp+1,qdMφ+
∑

r+s=p+q
Πr,s
X dMφ

 , (4.1)

and

∂̄b ◦ ∂̄bφ = Πp,q+2(dM ∂̄bφ)

= −Πp,q+2

dMΠp+2,q−1dMφ+ dMΠp+1,qdMφ+
∑

r+s=p+q
dMΠr,s

X dMφ


= 0

So we will have the complex

0 ∂̄b−→ Ep,0 ∂̄b−→ Ep,1 ∂̄b−→ ....
∂̄b−→ Ep,n−1 ∂̄b−→ 0.

Now if f is a smooth (p, q)-form and if g is a (r, s)-form, we will have from the product
rule for the exterior derivative

∂̄b(f∧g) = Πp+r,q+s+1dM (f ∧ g) = Πp+r,q+s+1 ((dMf) ∧ g)+(−1)p+qΠp+r,q+s+1(f∧(dMg)),

By (4.1) we will have

Πp+r,q+s+1 ((dMf) ∧ g) = Πp+r,q+s+1

∂̄bf ∧ g + (Πp+2,q−1dMf) ∧ g + (Πp+1,qdMf) ∧ g

+
 ∑
r+s=p+q

Πr,s
X dMf

 ∧ g


= (∂̄bf) ∧ g

and also in the same way we have Πp+r,q+s+1(f ∧ (dMg)) = f ∧ ∂̄bg. Then we will have the
product rule for ∂̄b

∂̄b(f ∧ g) = (∂̄bf) ∧ g + (−1)p+qf ∧ ∂̄bg.

On analogous way, the operator ∂b : Ep,q → Ep+1,q is defined by ∂b := Πp+1,q ◦ dM .
We are going to consider just smooth, orientable CR manifolds of hypersurface type



4.1. Definitions 59

embedded in a complex space CN with the induced CR structure. It is therefore only
natural to choose as a metric the restriction on CT (M) of the natural Hermitian inner
product on CN . And this metric will be compatible with the induced CR structure, i.e., the
vector spaces T 1,0

z (M) and T 0,1
z (M) will be orthogonal spaces under this inner product. Let

ω the real 2-form of type (1,1) associated to this Hermitian metric. So if L,L′ ∈ T 1,0(M)
then the inner product 〈L,L′〉 between L and L′ is given by

〈L,L′〉 = ω(iL′ ∧ L).

We can define a Hermitian inner product on E0,q(M) by

(f, g)0 =
∫
〈f, g〉ω dV

where dV is the volume element on M and 〈f, g〉ω is the induced inner product on
Λ0,q(M) by ω. The Hermitian inner product above gives rise to an L2-norm ‖.‖0, and
we also denote the closure of ∂̄b in this norm by ∂̄b (by an abuse of notation). In this
way, ∂̄b : L2

0,q(M) → L2
0,q+1(M) is a well-defined, closed, densely defined operator, and

we define ∂̄∗b : L2
0,q+1(M) → L2

0,q(M) to be the L2 adjoint of ∂̄b. The Kohn Laplacian
�b : L2

0,q(M)→ L2
0,q(M) is defined as

�b := ∂̄∗b ∂̄b + ∂̄b∂̄
∗
b ,

which is also an unbounded, closed, densely defined operator.

4.1.2 The Levi form

Next, we will assume M orientable and we give a definition of the Levi form as
follows. Let γ be a purely imaginary global 1-form on M , that is γ̄ = −γ such that

(a) annihilates T 1,0(M)⊕T 0,1(M)

(b) If L1, ..., Ln−1 is a basis of the (1,0)-vector fields in a neighborhood U of one
point in M , T is a vector field taken purely imaginary (T̄ = −T ) on U such that
L1, ..., Ln−1, L̄1, ..., L̄n−1, T generate T (U), then 〈γ, T 〉 = −1 (Here 〈·, ·〉 is related by
the metric ω).

The Levi form at a point x ∈M is the Hermitian form given by
(
dγx, L ∧ L̄′

)
where L and

L′ are two vectors fields in T 1,0
x (U), and U is a neighborhood of x ∈M . For L,L′ ∈ T 1,0(M)

and by Cartan’s Formula and by (a), we have

〈dγ, L ∧ L̄′〉 = −〈γ,
[
L, L̄′

]
〉. (4.2)

And if cLjk are such that[
Lj, Lk

]
= cLjkT mod T 1,0(U)⊕ T 0,1(U) ∀1 ≤ j, k ≤ n− 1
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we have 〈dγ, Lj ∧ Lk〉 = cLjk. We will call
[
cLjk
]

1≤j,k≤n−1
the Levi matrix respect to

L1, ..., Ln−1. Now, if S1, ..., Sn−1 is another basis for T 1,0(M) and the change of basis
matrix is given by a non singular matrix B then the Levi matrix [cSjk] respect to the basis
S1, ..., Sn−1 will be equal to B∗[cLjk]B, where B∗ denotes the Hermitian transpose of the
matrix B. So the inertia, that is, the number of positive, negative and zero eigenvalues
(all counting multiplicity), of the the Levi matrix is preserved. Even more, if we assume
L1, ..., Ln−1 and S1, ..., Sn−1 as orthonormal basis, then the eigenvalues of the Levi forms
are preserved. When there is no danger of confusion, we drop the superscript L in the
notation of the Levi matrix. The CR structure is called (strictly) pseudoconvex in some
point p ∈M if the matrix [cjk(p)], is positive (definite) semidefinite. If the CR structure is
(strictly) pseudoconvex in every point, then it is called (strictly) pseudoconvex. And if the
matrix [cjk] vanishes completely on a open set U ⊂M , M is called Levi flat. We say that
the CR structure has the Z(q) property in some point p ∈ M if the Levi matrix in the
point p has at least n− q positive eigenvalues or at least q + 1 negative eigenvalues. And
we say that the CR structure has the Z(q) property if it has this property at every point.

4.1.3 The weak Z(q) condition

Now, we introduce the main geometrical hypothesis, given by Harrington and Raich
on [11].

Definition 4.1.3 Let M be a smooth, compact, oriented CR manifold of hypersurface type
of real dimension 2n− 1. For 1 ≤ q ≤ n− 1 we say M satisfies the weak Z(q) condition if
there exist a real Υ ∈ T 1,1(U) satisfying

(A) |θ|2 ≥ (iθ ∧ θ)(Υ) ≥ 0 for all θ ∈ Λ1,0(M)

(B) µ1 + µ2 + ...+ µq − i 〈dγ,Υ〉 ≥ 0 on U , where µ1, ..., µn−1 are the eigenvalues of Levi
matrix [cjk] (respect to an orthonormal basis) in increasing order.

(C) ω(Υ) 6= q.

We say M satisfies the weak Y (q) condition if the weak Z(q) and weak Z(n−1− q)
conditions are satisfied.

Remark Assume the weak Z(q) condition is satisfied. In a sufficiently small open set
U ⊂ M , we can write Υ = i

∑n−1
j,k=1 bjkL̄k ∧ Lj, in some orthonormal basis L1, ..., Ln−1

of T 1,0(U), where [bjk] is a hermitian matrix. If we choose a local orthonormal basis
L1, ..., Ln−1 of T 1,0(U) such that the Levi matrix [cjk(x)], at a point x ∈ U , is a diagonal
matrix with diagonal entries λ1, ..., λn−1 in increasing order, by (A), the diagonal entries
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of the matrix [bjk] are in [0, 1], and so we will have

0 ≤ λ1 + ...+ λq − λ1b11 − λ2b22 − ...− λn−1b(n−1)(n−1)

≤ λ1(1− b11) + λ2(1− b22) + ...+ λq(1− bqq)− λq+1b(q+1)(q+1) − ...− λn−1b(n−1)(n−1)

≤ λq(q − b11 − ...− bqq)− λq(b(q+1)(q+1) − ...− b(n−1)(n−1))

= λq(q − ω(Υ)), (4.3)

and also

0 ≤ λ1 + ...+ λq − λ1b11 − λ2b22 − ...− λn−1b(n−1)(n−1)

≤ λ1(1− b11) + λ2(1− b22) + ...+ λq(1− bqq)− λq+1b(q+1)(q+1) − ...− λn−1b(n−1)(n−1)

≤ λq+1(q − b11 − ...− bqq)− λq+1(b(q+1)(q+1) − ...− b(n−1)(n−1))

= λq+1(q − ω(Υ)). (4.4)

So, a necessary condition of the weak Z(q) condition appears as follows: if ω(Υ) < q, by
(4.3) we will have λq ≥ 0 and so, the Levi matrix will have at least n − q nonnegative
eigenvalues in x. Now, if ω(Υ) > q, by (4.4) the Levi matrix will have at least q + 1
nonpositive eigenvalues in x.

Note that the Definition 4.1.3 requires global existence of a real Υ ∈ T 1,1(M)
satisfying conditions (A), (B) and (C). Nevertheless conditions (A), (B) are local properties
and the third one is local modulo bounded connected components, as it was noted in [11].

Lemma 4.1.4 For 1 ≤ q ≤ n− 1, let σ : M → {−1, 1} continuous, and suppose for every
p ∈M there exist an open set Up such that Up ∩M is connected and a real Υp ∈ T 1,1(Up)
satisfying

(a) |θ|2 ≥ (iθ ∧ θ)(Υ) ≥ 0 for all θ ∈ Λ1,0(Up)

(b) µ1 +µ2 + ...+µq− i 〈dγ,Υ〉 ≥ 0 on Up, where µ1, ..., µn−1 are the eigenvalues of Levi
matrix [cjk] in increasing order.

(c) σ(p)(ω(Υ)− q) > 0 on Up.

Then M satisfies the weak Z(q) condition.

Proof. SinceM is compact, there exist a finite cover ∪jUpj forM . Let {χj}j a partition of
unity subordinate to ∪jUpj . If we take Υ = ∑

j χjΥpj , the conditions (A), (B) are satisfied
by linearity. Now, if x ∈M , let j1, ..., js such that χjr(x) 6= 0, and ∑s

r=1 χjr(x) = 1. Since
∪sr=1Upjr is connected (because x is there) we will have σ(pjr) = σ(x) for r = 1, ..., s, it
follows that

(ω(Υ)− q ) x =
s∑
r=1

χjr(x)
(
ω(Υpjr)− q

)
x =

s∑
r=1

χjr(x)σ(x)σ(pjr)
(
ω(Υpjr)− q

)
x
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= σ(x)
s∑
r=1

χjr(x)σ(pjr)
(
ω(Υpjr)− q

)
x 6= 0,

because, in the last equality the sum is a positive number.

Examples of weak Z(q) include:

• If the CR structure M is pseudoconvex then it is sufficient consider Υ = 0 to imply
in the weak Z(q) condition, for any 1 ≤ q ≤ n− 1.

• Υ = 0 also works if the sum of any q eigenvalues of the Levi matrix is nonnegative.

• If Z(q) is satisfied, choose a local orthonormal coordinates L1, ..., Ln−1 of T 1,0(U) for
some neighborhood U in M , where the Levi form is a diagonal matrix at x, that is,
cjk|x = δjkµj. If there exist at least n− q positive eigenvalues, then µq > 0, so we
could take Υx = i

∑q−1
j=1 Lj ∧ L̄j which satisfies (A),

0 < µq = µ1 + ...+ µq − i 〈dγ,Υx〉 ,

and also 1 = q − ω(Υx) > 0, and by continuity, this last inequalities will be satisfied
on a neighborhood of x. Note that, if for x there exists another Υ′x satisfying (A)
and (B) and (C) in some neighborhood of x then by (4.3) we will have

0 ≤ µq(q − ω(Υ′x)),

so, ω(Υ′x) < q. Thus, the inequality ω(Υy) < q will be satisfied for any y in the
connected component of x inM . In the same way, if there exist at least q+1 negative
eigenvalues at x we choose Υx = i

∑q+1
j=1 Lj ∧ L̄j, which satisfies condition (A),

0 < −µq+1 = µ1 + ...+ µq − i 〈dγ,Υx〉 ,

on a neighborhood of x and the inequality ω(Υy) > q will be satisfied for any y in
the connected component of x in M . Thus, by Lemma 4.1.4, the weak Z(q) condition
will be satisfied on M .

• The argument of the previous item, could be used also when the Levi form has a
local diagonalization with increasing entries along the diagonal, and the Levi matrix
on each connected components, has at least n− q nonnegative eigenvalues (so we
take Υx = i

∑q−1
j=1 Lj ∧ L̄j) or it has at least q + 1 nonpositive eigenvalues (we take

Υx = i
∑q+1
j=1 Lj ∧ L̄j).

The condition weak Z(q) appeared first in [10] where the matrix [bjk] was considered
a diagonal matrix with entries like been zero or one. Below, we will refer the weak Z(q),
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and so the weak Y (q), condition by the concept given in this present work.

If M is a CR manifold satisfying the Y (q) condition, then the Υ corresponding
to weak-Z(q) does not need to have relation with the other one corresponding to weak-
Z(n − q − 1). We will use the notation Υq to refer the weak-Z(q) and Υn−q−1 to the
weak-Z(n− q − 1).

4.2 Special functions
In this section, we want to compare the Hermitian forms 1

2

(
∂b∂̄b − ∂̄b∂b

)
φ and

1
2

(
∂∂̄ − ∂̄∂

)
φ, restricted to elements in T 1,0(M), for smooth functions φ defined on a

neighborhood of M ⊂ CN . We recall that M is a smooth, orientable CR manifold of real
dimension 2n− 1 of hypersurface type embedded in CN .

Let U = Ũ∩CN , with Ũ an open set in CN , be a local path ofM , {L1, ..., Ln−1} a lo-
cal basis of T 1,0(U), T a tangential vector totally imaginary such that

{
L1, ..., Ln−1, L̄1, ..., L̄n−1, T

}
is a local basis for CT (U). Let ωj, 1 ≤ j ≤ n − 1, and γ be the dual elements of Lj,
1 ≤ j ≤ n − 1, and T respectively. Define cijk as the Li-component of

[
Lj, L̄k

]
. By the

definition of ∂̄b, ∂b, and Cartan’s formula, we have

cijk = ωi(
[
Lj, L̄k

]
) = −∂̄bωi(Lj ∧ L̄k).

Then
∂̄bωi = −

n−1∑
j,k=1

cijkωj ∧ ω̄k, ∂bω̄i =
n−1∑
j,k=1

cikjωj ∧ ω̄k,

and [
Lj, L̄k

]
= cjkT +

n−1∑
i=1

cijkLi −
n−1∑
i=1

cikjL̄i. (4.5)

where cjk is the Levi matrix associated to the basis
{
L1, ..., Ln−1, L̄1, ..., L̄n−1, T

}
. Using

the product rule for ∂̄b, for a smooth function φ on Ũ , we have

∂b∂̄bφ =
n−1∑
j,k=1

(
LjL̄k(φ) +

n−1∑
i=1

cikjL̄i(φ)
)
ωj ∧ ω̄k.

Similarly we have

∂̄b∂bφ =
n−1∑
j,k=1

(
−L̄kLj(φ) +

n−1∑
i=1

cijkLi(φ)
)
ωj ∧ ω̄k.

Then for 1 ≤ j, k ≤ n− 1

1
2
(
∂b∂̄bφ− ∂̄b∂bφ, Lj ∧ L̄k

)
= 1

2

(
LjL̄k + L̄kLj +

n−1∑
i=1

(
cikjL̄i(φ) + cijkLi(φ)

))
.
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On the other hand, let Ln, ..., LN be vector fields in T 1,0(Ũ) such that {L1, .., Ln−1, Ln, ..., LN}
forms a basis for T 1,0(Ũ). Denote ωj , for n ≤ j ≤ N , the dual forms of Lj , for n ≤ j ≤ N .
Let θijk smooth functions such that ∂̄ωi = ∑N

j.k=1 θ
i
jkω̄j ∧ ωk. Then by the definition of ∂̄

and using Cartan’s formula we have

θijk = ∂̄ωi(L̄j ∧ Lk) = −dωi(
[
Lk ∧ L̄j

]
) = ωi(

[
Lk, L̄j

]
). (4.6)

θijk = cikj for 1 ≤ j, k, i ≤ n− 1. Also, for 1 ≤ j, k ≤ n− 1 we have

1
2
(
∂∂̄φ− ∂̄∂φ, Lj ∧ L̄k

)
= 1

2

(
LjL̄k + L̄kLj +

N∑
i=1

(
θijkL̄i(φ) + θikjLi(φ)

))
.

Then if L = ∑n−1
j=1 ξjLj is an element in T 1,0(U)

1
2
(
(∂∂̄φ− ∂̄∂φ)− (∂b∂̄bφ− ∂̄b∂bφ), L ∧ L̄

)
= 1

2

n−1∑
j,k=1

ξj ξ̄k

(
N∑
i=n

(θijkL̄iφ+ θikjLiφ)
)
. (4.7)

Since T ∈ CT (CN) (under the natural inclusions) we have that

T =
n−1∑
i=1

αiLi +
n−1∑
i=1

βiL̄i +
N∑
i=n

riLi +
N∑
i=n

siL̄i.

for smooth functions αi, βi, ri, si. By (4.5) and (4.6) we have ricjk = θikj and sicjk = −θijk
for n ≤ i ≤ N . Then by (4.7) we have

1
2
(
(∂∂̄φ− ∂̄∂φ)− (∂b∂̄bφ− ∂̄b∂bφ), L ∧ L̄

)
= 1

2

n−1∑
j,k=1

ξj ξ̄kcjk

(
N∑
i=n

(riLiφ− siL̄iφ)
)
.

Observe here that ν := ∑N
i=n(riLi − siL̄i) is a totally real vector field in CT (Ũ)

(ν̄ = ν) , because T = −T implies ri = −si. Now, if we choose Ln, ..., LN such that
{L1, ..., LN} forms an orthonormal basis for T 1,0(Ũ), ν is a real vector field orthogonal
to CT (U) (〈ν, Lj〉 = 0, 1 ≤ j ≤ n− 1 and 〈ν, T 〉 = |ri|2 − |si|2 = 0). As a conclusion we
made above, we establish the next proposition.

Proposition 4.2.1 Let M be a smooth, orientable CR manifold of real dimension 2n− 1
of hypersurface type embedded in CN . If φ is smooth function defined on a neighborhood of
M , and L ∈ T 1,0(M) then

1
2
〈
(∂∂̄φ− ∂̄∂φ)− (∂b∂̄bφ− ∂̄b∂bφ), L ∧ L̄

〉
= 1

2ν(φ)
〈
dγ, L ∧ L̄

〉
.

where ν is a smooth real vector field in CT (CN), ν̄ = ν, and orthogonal to CTM .

Observe that since we are working on compact smooth manifold M , ν(φ) will be a
bounded quantity.
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As usual, when it is trying to get L2 estimates to the operators ∂̄, ∂̄b, we need to
consider well behaved global functions like weight functions. Let λ be a smooth function
defined near to M ⊂ Cn. We define the next 2-form

Θλ := 1
2(∂b∂̄bλ− ∂̄b∂bλ) + 1

2ν(λ)dγ.

Also, we will consider the (n− 1)× (n− 1) matrix
[
Θλ
jk

]
with entries Θλ

jk := 〈Θλ, Lj ∧ L̄k〉.

The importance of this 2-form will be seen in computations to control terms whose
allow us imply in our basic estimate (4.16), in Section 4.6. By Proposition 4.2.1, we can
see if λ = |z|2 then we will have Θ|z|2 = ∂∂̄(|z|2) = −iω. So, if M satisfies the weak Z(q)
condition then in local coordinates

• b1 + · · ·+ bq − i
〈
Θλ,Υq

〉
= q −∑n−1

l=1 bll > 0 if ω(Υq) = ∑n−1
l=1 bll < q.

• bn−1 + · · ·+ bn−q − i
〈
Θλ,Υq

〉
= q −∑n−1

l=1 bll < 0 if ω(Υq) = ∑n−1
l=1 bll > q.

where {b1, ..., bn−1} denote the eigenvalues of Θ|z|
2

jk = 〈Θ|z|2 , Lj ∧ L̄k〉 = ω(iL̄k ∧ Lj) in in-
creasing order. Since the inequality is strictly, by compactness of M , there will exist a
positive constant Bq such that minM |q − ω(Υ)| > Bq.

4.3 Pseudodifferential operators
We will follow the setup for the microlocal analysis in [25]. By the compactness of

M , there exists a finite cover {Uν}ν , so each Uν has a special boundary system and can be
parameterized by a hypersurface in Cn (Uν may be shrunk as necessary).

Let ξ = (ξ1, ..., ξ2n−2, ξ2n−1) = (ξ′, ξ2n−1) be the coordinates in Fourier space so
that ξ′ is the dual variable to the part of T (M) in the maximal complex subspace
(T 1,0(M) ⊕ T 0,1(M)) and ξ2n−1 is dual to the totally real part of T (M), i.e., the“bad"
direction T. Define

C+ =
{
ξ : ξ2n−1 ≥

1
2 |ξ

′| and |ξ| ≥ 1
}

; C− =
{
ξ : −ξ ∈ C+

}
;

C0 =
{
ξ : −3

4 |ξ
′| ≤ ξ2n−1 ≥

3
4 |ξ

′|
}
∪ {ξ : |ξ| ≤ 1} .

C+ and C− are disjoint, but both intersect C0 nontrivially. Next, we define smooth functions
ψ+, ψ− and ψ0, on {|ξ| : |ξ|2 = 1}. Let

ψ+(ξ) = 1 when ξ2n−1 ≥
3
4 |ξ

′| and supp ψ+ ⊂
{
ξ : ξ2n−1 ≥

1
2 |ξ

′|
}

;
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ψ−(ξ) = ψ+(−ξ); ψ0(ξ) satisfies ψ0(ξ)2 = 1− ψ+(ξ)2 − ψ−(ξ)2.

Extend ψ+, ψ−, and ψ0 homogeneously outside of the unit ball, i.e., if |ξ| ≥ 1, then

ψ+(ξ) = ψ+(ξ/ |ξ|), ψ−(ξ) = ψ−(ξ/ |ξ|), and ψ0(ξ) = ψ0(ξ/ |ξ|).

Also, extend ψ+, ψ− and ψ0 smoothly inside the unit ball so that (ψ+)2 + (ψ−)2 +
(ψ0)2 = 1. Finally, for a fixed constant A > 0 to be chosen later, define for any t > 0.

ψ+
t (ξ) = ψ+(ξ/(tA)), ψ−t (ξ) = ψ−(ξ/(tA)), and ψ0(ξ) = ψ0(ξ/(tA)).

Next, let Ψ+
t ,Ψ−t , and Ψ0

t be the pseudodifferential operators of order zero with
symbols ψ+

t , ψ
−
t , and ψ0

t , respectively. The equality (ψ+
t )2 + (ψ−t )2 + (ψ0

t )2 = 1 implies that

(Ψ+
t )∗Ψ+

t + (Ψ−t )∗Ψ−t + (Ψ0
t )∗Ψ0

t = Id.

We will use pseudodifferential operators that“dominate" a given pseudodifferential
operator. Let ψ be a cut-off function and ψ̃ be another cut-off function so that ψ̃|suppψ ≡ 1.
If Ψ and Ψ̃ are pseudodifferential operators with symbols ψ and ψ̃, respectively, then we
say that Ψ̃ dominates Ψ.

For each ν, we can define Ψ+
t ,Ψ−t and Ψ0

t to act on functions or forms supported
in Uν , so let Ψ+

ν,t,Ψ−ν,t and Ψ0
ν,t be the pseudodifferential operators of order zero defined on

Uν , and C+
ν , C−ν and C0

ν be the regions of ξ−space dual to Uν on which the symbol of each
of those pseudodifferential operators is supported. Then it follows that

(Ψ+
ν,t)∗Ψ+

ν,t + (Ψ−ν,t)∗Ψ−ν,t + (Ψ0
ν,t)∗Ψ0

ν,t = Id. (4.8)

Let Ψ̃+
µ,t and Ψ̃−µ,t be pseudodifferential operators that dominate Ψ+

µ,t and Ψ−µ,t respectively
(where Ψ+

µ,t and Ψ−µ,t are defined on some Uµ ). If C̃+
µ and C̃−µ are the supports of the

symbols of Ψ̃+
µ,t and Ψ̃−µ,t, respectively, then we can choose {Uµ}, ψ̃+

µ,t, and ψ̃−µ,t so that the
following result holds.

Lemma 4.3.1 Let M be a compact, orientable, embedded CR manifold. There is a finite
open covering {Uµ}µ of M so that if Uµ, Uν ∈ {Uµ} have nonempty intersection, then there
exits a diffeomorphism ϑ between Uν and Uµ with Jacobian Jϑ such that
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(i) tJϑ(C+
µ ) ∩ C−ν = ∅ and C+

ν ∩ tJϑ(C−ν ) = ∅ where tJθ is the inverse of the transpose of
the Jacobian of ϑ;

(ii) let ϑΨ+
t,µ,

ϑΨ−t,µ and ϑΨ0
t,µ be the transfer of Ψ+

t,µ,Ψ−t,µ and Ψ0
t,µ, respectively via ϑ, then

on
{
ξ : ξ2n−1 ≥ 4

5 |ξ
′| and |ξ| ≥ (1 + ε)tA

}
, the principal symbol of ϑΨ+

t,µ is identi-
cally equal to 1, on

{
ξ : ξ2n−1 ≤ −4

5 |ξ
′| and |ξ| ≥ (1 + ε)tA

}
, the principal symbol of

ϑΨ−t,µ is identically equal to 1, and on
{
ξ : −1

3 |ξ
′| ≤ ξ2n−1 ≤ 1

3 |ξ
′| and |ξ| ≥ (1 + ε)tA

}
,

the principal symbol of ϑΨ0
t,µ is identically equal to 1, where ε > 0 and can be very

small.

(iii) Let ϑΨ̃+
t,µ,

ϑΨ̃−t,µ be the transfer via ϑ of Ψ̃+
t,µ, Ψ̃−t,µ respectively. Then the principal

symbol of ϑΨ̃+
t,µ is identically 1 on C+

ν and the principal symbol of ϑΨ̃−t,µ is identically
1 on C−ν ;

(iv) C̃+
ν ∩ C̃−ν = ∅.

We will suppress the left superscript ϑ as it should be clear from the context which
pseudodifferential operator must be transferred. The proof of this lemma is contained in
Lemma 4.3 and its subsequent discussion in [24]. If P is any of the operators Ψ+

t,µ,Ψ−t,µ or
Ψ0
t,µ then it is immediate that

Dα
ξ σ(P ) = 1

|t|α
qα(x, ξ)

for |α| ≥ 0, where qα(x, ξ) is bounded independently of t.

4.4 Norms
Considering the inner product (·, ·) defined above, if φ is a real function de-

fined on M , we define the weighted inner product for (0, q)-forms f and g, denoted
by (f, g)φ, by (f, g)φ =

(
e−φf, g

)
. For example, if f = ∑

J∈Iq fJ ω̄
J is a (0, q)-form sup-

ported on neighborhood U , where Iq = {J = {j1, ..., jq} : 1 ≤ j1 < ... < jq ≤ n− 1}, and
ωJ = ωj1 ∧ · · · ∧ ωjq , with {ω1, . . . , ωn−1} a local orthonormal basis for the (1, 0)-forms, we
have ‖f‖φ = ∑

J∈Iq ‖fJ‖φ where ‖fJ‖φ =
∫
M |fJ |

2 e−φdV , and we denote the corresponding
weighted L2 space by L2

0,q(M, e−φ).

We now construct a norm that is well adapted to the microlocal analysis. Let {Uµ}µ
be a covering ofM that admits the families of pseudodifferential operators

{
Ψ+
µ,t,Ψ−µ,t,Ψ0

µ,t

}
and a partition of unity {ζµ}µ subordinate to the cover satisfying ∑µ ζ

2
µ = 1. For each µ
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let ζ̃µ be a cutoff function that dominates ζµ such that supp ζµ ∈ Uµ , and φ+, φ− smooth
functions defined on M . We define the global inner product and norm as follows:

(f, g)± :=
∑
µ

[(
ζ̃µΨ+

µ,tζµf
µ, ζ̃µΨ+

µ,tζµg
µ
)
φ+

+
(
ζ̃µΨ0

µ,tζµf
µ, ζ̃µΨ0

µ,tζµg
µ
)

0

+
(
ζ̃µΨ−µ,tζµfµ, ζ̃µΨ−µ,tζµgµ

)
φ−

]
and ∥∥∥∣∣∣f∥∥∥∣∣∣2

±
:=
∑
µ

[
‖ζ̃µΨ+

µ,tζµf
µ‖2

φ+ + ‖ζ̃µΨ0
µ,tζµf

µ‖2
0 + ‖ζ̃µΨ−µ,tζµfµ‖

2
φ−

]

where fµ and gµ are the forms f and g, respectively, expressed in the local
coordinates on Uµ. The superscript µ will often omitted. In the case that φ+(z) = t |z|2 or
−t |z|2 and φ−(z) = −t |z|2 or t |z|2, we denote the norm by

∥∥∥∣∣∣ ∥∥∥∣∣∣
t
and in general replace

the subscript with t (e.g., we write ct for cφ+,φ−).

For a form f on M , the Sobolev norm of order s is given by the following:

‖f‖2
s =

∑
µ

‖ζ̃µΛsζµf
µ‖2

0

where Λ is defined to be the pseudodifferential operator with symbol (1 + |ξ|2)1/2. The
proof of the next is in [25],

Theorem 4.4.1 There exist constant c± and C± so that

c±‖ϕ‖2
0 ≤

∥∥∥∣∣∣ϕ∥∥∥∣∣∣2
φ+,φ−

≤ C±‖ϕ‖2
0 (4.9)

where c± and C± depend on maxM {|φ+|+ |φ−|} (assuming tA ≥ 1).

Proof. It is sufficient to prove the result when ϕ is a function. Let r± = maxM {|λ+| , |λ−|},
then ∥∥∥∣∣∣ϕ∥∥∥∣∣∣2

±
≤ er±

∑
ν

(
‖ζ̃Ψ+

ν,tζνϕ
ν‖2

0 + ‖ζ̃Ψ0
ν,tζνϕ

ν‖2
0 + ‖ζ̃Ψ−ν,tζνϕν‖

2
0

)
We can express ζ̃Ψ+

ν,tζνϕ
ν = Ψ+

ν,tζνϕ
ν − (1− ζ̃)Ψ+

ν,tζνϕ
ν . Then

(1− ζ̃ν(x))Ψ+
ν,tζνϕ

ν(x) = (1− ζ̃ν(x))
∫
e2πixξψ+

ν,t(ξ)ζ̂ϕ(ξ)dξ

=
∫
ϕ(y)(1− ζ̃ν(x))ζ(y)

∫
e2πiξ(x−y)ψ+

ν,t(ξ)dξdy.

Define
K(x, y) := (1− ζ̃ν(x))ζ(y)

∫
e2πiξ(x−y)ψ+

ν,t(ξ)dξ

Since supp(ζ) ∩ supp(1 − ζ̃ν) is empty, there exists βν > 0 such that |x− y| > βν for
any x ∈ supp(1− ζ̃ν) and y ∈ supp ζν . Then 1 + |x− y| = β+|x−y|

β
≤ |x− y| (1 + 1/β), so

|x− y|−|α| ≤ (1 + 1/β)|α|(1 + |x− y|)−|α| for any multiindex α. Then, by integration by
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parts, for tA ≥ 1, for any x ∈ supp(1− ζ̃ν) and y ∈ supp ζν and for |α| sufficiently large
(e.g., 2n− 1 < |α|), there exists a Cα such that

|K(x, y)| =
∣∣∣∣∣(1− ζ̃ν(x))ζ(y) 1

(2πi)|α| (x− y)α

∫
e2πξ(x−y)Dα

ξ ψ
+
ν,t(ξ)dξ

∣∣∣∣∣
≤

∣∣∣1− ζ̃(x)
∣∣∣ |ζ(y)|

(2π)|α||x− y||α|

∣∣∣∣∣
∫
e2πiξ(x−y)

(
1

(tA)|α|

)
Dαψ+

ν

(
ξ

tA

)
dξ

∣∣∣∣∣
≤

∣∣∣1− ζ̃(x)
∣∣∣ |ζ(y)|

(2π)|α| |x− y||α| (tA)|α|

∫ (
1 +

∣∣∣∣∣ ξtA
∣∣∣∣∣
)−|α| (

1 +
∣∣∣∣∣ ξtA

∣∣∣∣∣
)|α| ∣∣∣∣∣Dαψ+

ν

(
ξ

tA

)∣∣∣∣∣ dξ
≤

∣∣∣1− ζ̃(x)
∣∣∣ |ζ(y)|

(2π)|α| |x− y||α| (tA)|α|
Cα

∫ (tA)2n−1

(1 + |w|)|α|
dw ≤

∣∣∣1− ζ̃(x)
∣∣∣ |ζ(y)|

(2π)|α| |x− y||α| (tA)|α|−2n+1
Cα

≤

∣∣∣1− ζ̃(x)
∣∣∣ |ζ(y)|

(1 + |x− y|)|α|
CαCβν .

Then the operator (1− ζ̃ν)Ψ+
ν,tζν is bounded linear operator on L2 and

‖(1− ζ̃ν)Ψ+
ν,tζνϕ‖0 ≤ C‖f‖0

where C is just depending of α and βν , but not of A (e.g. see Theorem 6.18 in [5]). On the
other hand, although the range of Ψ+

ν,tζν is not L2(Uν) but L2(R2n−1), this operator is a
smoothing operator outside the Dom(ζν) ⊂ Uν , and by the definition of Ψ+

t,ν it is bounded
on L2(Rn), so

‖ζ̃νΨ+
ν,tζνϕ

ν‖2
0 ≤ 2‖Ψ+

ν,tζνϕ
ν‖2

0 + 2‖(1− ζ̃ν)Ψ+
ν,tζνϕ

ν‖2
0 ≤ C‖ζνϕν‖2

0

with C is a constant independent of tA. A similar bound will also hold for Ψ0
ν,t and Ψ−ν,t.

So it follows the upper bound of the lemma, because the sum on ν is finite.

To get the lower bound we proceed as follows. Since ∑ν ζ
2
ν = 1 = ∑

ν ζ̃νζ
2
ν , by (4.8),

we can write

‖ϕ‖2
0 =

∑
ν

‖ζνϕν‖2
0

=
∑
ν

(
((Ψ+

ν,t)∗Ψ+
ν,t + (Ψ0

ν,t)∗Ψ0
ν,t + (Ψ−ν,t)∗Ψ−ν,t)ζνϕν , ζνϕν

)
0

=
∑
ν

(
‖(ζ̃ν + (1− ζ̃ν))Ψ+

ν,tζνϕ
ν‖2

0 + ‖(ζ̃ν + (1− ζ̃ν))Ψ0
ν,tζνϕ

ν‖2
0

+ ‖(ζ̃ν + (1− ζ̃ν))Ψ−ν,tζνϕν‖
2
0

)
.

Now, ‖(ζ̃ν + (1− ζ̃ν))Ψ+
ν,tζνϕ

ν‖2
0 ≤ 2‖ζ̃νΨ+

ν,tζνϕ
ν‖2

0 + 2‖(1− ζ̃ν)Ψ+
ν,tζνϕ

ν‖2
0. Since Ψ+

ν,tζν

is pseudolocal (indeed, (1 − ζ̃ν)Ψ+
ν,tζνϕ

ν is infinitely smoothing), ‖ζ̃νΨ+
ν,tζνϕ

ν‖2
0 controls

‖(1− ζ̃ν)Ψ+
ν,tζνϕ

ν‖2
0 and similarly for Ψ−ν,t and Ψ0

ν,t. As a result,

‖ϕ‖2
0 ≤ C

∑
ν

(
‖ζ̃νΨ+

ν,tζνϕ
ν‖2

0 + ‖ζ̃νΨ0
ν,tζνϕ

ν‖2
0 + ‖ζ̃νΨ−ν,tζνϕν‖

2
0

)
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≤ C±
∑
ν

(
‖ζ̃νΨ+

ν,tζνϕ
ν‖2

φ+ + ‖ζ̃νΨ0
ν,tζνϕ

ν‖2
0 + ‖ζ̃νΨ−ν,tζνϕν‖

2
φ−

)
Since we are assuming M as compact manifold, φ+ and φ− are bounded.

Like a result of the equivalence between the norms
∥∥∥∣∣∣ · ∥∥∥∣∣∣

±
we imply the next result,

proved in [24] as Corollary 4.6.

Corollary 4.4.2 There exist a self adjoint operator E± such that

(ϕ, φ)0 = (ϕ,E±φ)±

for any two (0, q)-forms ϕ, φ in L2
(0,q)(M). E± is the inverse of

∑
ν

(
ζν(Ψ+

ν,t)∗ζ̃νe−φ
+
ζ̃νΨ+

ν,tζν + ζν(Ψ0
ν,t)∗ζ̃2

νΨ0
ν,tζν + ζν(Ψ−ν,t)∗ζ̃νe−φ

−
ζ̃νΨ−ν,tζν

)
.

Proof. By the equivalence between the norms
∥∥∥∣∣∣ ∥∥∥∣∣∣

±
and ‖ ‖0 and the Riesz Representation

theorem there must be bounded operators E± and F±, inverse of each other, on L2
(0,q)(M)

such that (f, g)0 = (f, E±g)± and (f, F±g)0 = (f, g)± for any f, g ∈ L2
(0,q)(M). Also E±

and F± are injective operators and E∗± = E± = E∗,±± , F ∗± = F± = F ∗,±± . On the other hand,
by the definition of (·, ·)± we have

(f, g)± =
∑
ν

((
ζ̃νΨ+

ν,tζνf, e
−φ+

ζ̃νΨ+
ν,tζνg

)
0

+
(
ζ̃νΨ0

ν,tζνf, ζ̃νΨ0
ν,tζνg

)
0

+
(
ζ̃νΨ−ν,tζνf, e−φ

−
ζ̃νΨ−ν,tζνg

)
0

)
=
∑
ν

((
ζνf, (Ψ+

ν,t)∗ζ̃νe−φ
+
ζ̃νΨ+

ν,tζνg
)

0
+
(
ζνf, (Ψ0

ν,t)∗ζ̃2
νΨ0

ν,tζνg
)

0

+
(
ζνf, (Ψ−ν,t)∗ζ̃νe−φ

−
ζ̃νΨ−ν,tζνg

)
0

)
=
(
f,
∑
ν

(
ζν(Ψ+

ν,t)∗ζ̃νe−φ
+
ζ̃νΨ+

ν,tζν + ζν(Ψ0
ν,t)∗ζ̃2

νΨ0
ν,tζν + ζν(Ψ−ν,t)∗ζ̃νe−φ

−
ζ̃νΨ−ν,tζν

)
g

)

for any f and g in L2
(0,q)(M). Then

F± :=
∑
ν

(
ζν(Ψ+

ν,t)∗ζ̃νe−φ
+
ζ̃νΨ+

ν,tζν + ζν(Ψ0
ν,t)∗ζ̃2

νΨ0
ν,tζν + ζν(Ψ−ν,t)∗ζ̃νe−φ

−
ζ̃νΨ−ν,tζν

)
.

4.5 ∂̄b and its adjoints
Working locally in a small open set U ⊂ M , let L1, ..., Ln−1 denote a basis for

T 1,0(U), and ω1, ..., ωn−1 the dual basis for L1, ..., Ln−1; if f is a function on M , locally we
have ∂̄bf = ∑n−1

j=1 L̄jfω̄j , and if f = ∑
J∈Iq fJ ω̄

J is a (0, q)-form then, there exist functions
mJ
K such that

∂̄bf =
∑

J∈Iq ,K∈Iq+1

n−1∑
j=1

εjJK L̄jfJ ω̄K +
∑

J∈Iq ,K∈Iq+1

fJm
J
Kω̄K
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where εjJK is equal to 0 if {K} 6= {j} ∪ J and is the sign of the permutation that reorders
jJ to K otherwise. We also define

fjI =
∑
J∈Iq

εjIJ fJ (4.10)

(in this case, I ∈ Iq−1). Let L̄∗j be the adjoint of L̄j in ( , )0, L̄
∗,φ
j be the adjoint of L̄j in ( , )φ.

Then on a small neighborhood U we will have L̄∗j = −Lj + σj and L̄∗,φj = −Lj + Ljφ+ σj

where σj is smooth function on U . Because we will need it later, we observe that there are
smooth functions d`sr so that

[
Lj, L̄k

]
= cjkT +∑n−1

`=1 (d`jkL` − d̄`kjL̄`). Then[
L̄r, L̄

∗,φ
s

]
=
[
L̄r,−Ls

]
+
[
L̄r, Lsφ

]
+
[
L̄r, σs

]
= csrT +

n−1∑
`=1

(d`srL` − d̄`rsL̄`) + L̄rLsφ+ L̄rσs. (4.11)

We denote the L2 adjoint of ∂̄b in the L2
0,q(M, e−φ) by ∂̄∗,φb . For the remainder of

this work, φ stands for φ+ or φ− and∣∣∣φ+(z)
∣∣∣ =

∣∣∣φ−(z)
∣∣∣ = |t| |z|2 ,

though virtually all of our calculations hold for general φ (up to the point when our
calculation require an analysis of the eigenvalues of the Levi form).

To keep track of the terms that arise in our integration by parts, we use the
following shorthand for forms f supported in a neighborhood Uµ (recognizing that these
operators depend on our choice of neighborhoods {Uµ}):

‖∇Υf‖
2
φ :=

n−1∑
j,k=1

(
bkjL̄kf, L̄jf

)
φ

=
∑
J∈Iq

n−1∑
j,k=1

(
bkjL̄kfJ , L̄jfJ

)
φ

; (4.12)

‖∇Υf‖2
φ :=

n−1∑
j,k=1

(
bk̄jL̄∗,φj f, L̄∗,φk f

)
φ

=
∑
J∈Iq

n−1∑
j,k=1

(
bk̄jL̄∗,φj fJ , L̄

∗,φ
k fJ

)
φ

; (4.13)

‖∇L̄∗,φf‖
2
φ :=

n−1∑
j=1
‖L̄∗,φj f‖2

φ
=
∑
J∈Iq

n−1∑
j=1
‖L̄∗,φj fJ‖

2
φ
;

‖∇L̄f‖
2
φ :=

n−1∑
j=1
‖L̄jf‖

2
φ =

∑
J∈Iq

n−1∑
j=1
‖L̄jfJ ω̄J‖

2
φ,

where Υ = i
∑n−1
j,k=1 b

k̄jL̄k ∧ Lj is a real (1, 1) vector defined on U initially satisfying (A) in
Definition 4.1.3 . Again, if f = ∑

J∈Iq fJ ω̄
J is defined locally, then

∂̄∗b f =
∑

I∈Iq−1,J∈Iq

n−1∑
j=1

εjIJ L̄
∗
jfJ ω̄

I +
∑

I∈Iq−1,J∈Iq
fJm

I
J ω̄

I

=
∑

I∈Iq−1

n−1∑
j=1

L̄∗jfjI ω̄
I +

∑
I∈Iq−1,J∈Iq

fJm
I
J ω̄

I
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and
∂̄∗,φb f =

∑
I∈Iq−1

n−1∑
j=1

L̄∗,φj fjI ω̄
I +

∑
I∈Iq−1,J∈Iq

fJm
I
J ω̄

I .

Note that a consequence of the compactness of M and the boundedness of φ, the
domains of ∂̄∗b and ∂̄∗,φb are equal. Also we have ∂̄∗,φb = ∂̄∗b −

[
∂̄∗b , φ

]
. Let ∂̄∗b,t be the adjoint

of ∂̄b with respect to the inner product (·, ·)t. We also define the weighted Kohn Laplacian
�b by �b,t := ∂̄b∂̄

∗
b,t + ∂̄∗b,t∂̄b where

Dom(�b,t) :=
{
φ ∈ L2

0,q(M) : φ ∈ Dom(∂̄b) ∩Dom(∂̄∗b,t), ∂̄bφ ∈ Dom(∂̄∗b,t), and ∂̄∗b,tφ ∈ Dom(∂̄b)
}
.

The computations proving Lemmas 4.8 and 4.9 and equation (4.4) in [24] can be
applied here with only a change of notation, so we have the following two results, recorded
here as Lemmas 4.5.1 and 4.5.2. The meaning of the results is that ∂̄∗b,t acts like ∂̄∗,φ

+

b

(denoted just by ∂̄∗,+b ) for forms whose support is basically C+ and ∂̄∗,φ
−

b (denoted just by
∂̄∗,−b ) on forms whose support is basically C−.

Lemma 4.5.1 On smooth (0, q)-forms,

∂̄∗b,± = ∂̄∗b −
∑
µ

ζ2
µΨ̃+

µ,t

[
∂̄∗b , φ

+
]

+
∑
µ

ζ2
µΨ̃−µ,t

[
∂̄∗b , φ

−
]

+
∑
µ

(
ζ̃µ
[
ζ̃µΨ+

µ,tζµ, ∂̄b
]∗
ζ̃µΨ+

µ,tζµ + ζµ(Ψ+
µ,t)∗ζ̃µ

[
∂̄∗,+b , ζ̃µΨ+

µ,tζµ
]
ζ̃µ

+ ζ̃µ
[
ζ̃µΨ−µ,tζµ, ∂̄b

]∗
ζ̃µΨ−µ,tζµ + ζµ(Ψ−µ,t)∗ζ̃µ

[
∂̄∗,−b , ζ̃µΨ−µ,tζµ

]
ζ̃µ + EA

)
where the error term EA is a sum of order zero terms and “lower order" terms. Also, the
symbol of EA is supported in C0

µ for each µ.

We use the following energy forms in our calculations:

Qb,±(f, g) :=
(
∂̄bf, ∂̄bg

)
±

+
(
∂̄b,±f, ∂̄b,±g

)
±
,

Qb,+(f, g) :=
(
∂̄bf, ∂̄bg

)
φ+

+
(
∂̄∗,+b f, ∂̄∗,+b g

)
φ+
,

Qb,0(f, g) :=
(
∂̄bf, ∂̄bg

)
0

+
(
∂̄∗b f, ∂̄

∗
b g
)

0
,

Qb,−(f, g) :=
(
∂̄bf, ∂̄bg

)
φ−

+
(
∂̄∗,−b f, ∂̄∗,−b g

)
φ−
.

The space of weighted harmonic forms Hq
t is defined by

Hq
t :=

{
f ∈ Dom(∂̄b) ∩Dom(∂̄∗b ) : ∂̄bf = 0, ∂̄∗b,tf = 0

}
=
{
f ∈ Dom(∂̄b) ∩Dom(∂̄∗b ) : Qb,t(f, f) = 0

}
.

We have the following relationship between these energies. It says us that, up to well
behaved terms, to estimate the energy Qb,±(., .) is sufficient to estimate the energies
Qb,+(., .) and Qb,−(., .) applied on parts, up to smooth terms, whose Fourier transform are
supported in C+ and C− respectively. See [10, Lemma 3.4] or [24, Lemma 4.9].
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Lemma 4.5.2 If f is a smooth (0, q)-form on M , then there exist constant K,K± and
K ′ with K ≥ 1 so that

KQb,±(f, f) +K±
∑
ν

‖ζ̃νΨ̃0
ν,tζνf

ν‖2
0 +K ′

∥∥∥∣∣∣f∥∥∥∣∣∣2
±

+Ot(‖f‖2
−1)

≥
∑
ν

[
Qb,+(ζ̃νΨ+

ν,tζνf
ν , ζ̃νΨ+

ν,tζνf
ν)

+ Qb,0(ζ̃νΨ0
ν,tζνf

ν , ζ̃νΨ0
ν,tζνf

ν) +Qb,−(ζ̃νΨ−ν,tζνf ν , ζ̃νΨ−ν,tζνf ν)
]

K and K ′ do not depend on t, φ− or φ+.

4.6 The main estimate
In this section, we compile the technical pieces that will allows us to establish a

basic estimate the ground level L2 estimates for the closure of our operator ∂̄b and �b,t.

Proposition 4.6.1 Let M2n−1 be a smooth, compact, orientable CR manifold of hyper-
surface type embedded in CN , that satisfies weak Y (q) for some fixed 1 ≤ q ≤ n − 2.
Set

φ+(z) =

t|z|
2 if ω(Υq) < q

−t|z|2 if ω(Υq) > q
and φ−(z) =

−t|z|
2 if ω(Υn−1−q) < n− 1− q

t|z|2 if ω(Υn−1−q) > n− 1− q.
(4.14)

There exist constants K and Kt where K does not depend on t so that

t
∥∥∥∣∣∣f∥∥∥∣∣∣2

t
≤ KQb,t(f, f) +Kt‖f‖2

−1, (4.15)

for t sufficiently large.

Note that, functions φ+ and φ− are well defined, since the signs of ω(Υq)− q and
ω(Υn−1−q)− n− 1− q are constants modulo connected components.

The main work in establishing (4.15) is to prove the following:

t
∥∥∥∣∣∣f∥∥∥∣∣∣2

t
≤ KQb,t(f, f) +K

∥∥∥∣∣∣f∥∥∥∣∣∣2
t

+Kt

∑
µ

∑
J∈Iq
‖ζ̃µΨ̃0

µ,tζµf
µ
J ‖

2
0 +K ′t‖f‖

2
−1. (4.16)

In order to prove (4.16), we estimate a (0, q)-form f with support in neighborhood
U for a generic energy form Qb,φ(f, g) := (∂̄bf, ∂̄bg)φ + (∂̄∗,φb f, ∂̄∗,φb g)φ. Throughout the
estimate, we will make use of three terms, E0(f), Ẽ1(f), and Ẽ2(f) to collect the error
terms that we will bound later. We want E0(f) = O(‖f‖2

φ) and

Ẽ1(f) =
∑

J,J ′∈Iq

n−1∑
j=1

(
L̄jfJ , aJJ ′fJ ′

)
φ

and Ẽ2(f) =
∑

J,J ′∈Iq

n−1∑
j=1

(
L̄∗,φj fJ , ãJJ ′fJ ′

)
φ
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for some collection of smooth functions aJJ ′ and ãJJ ′ that may change from line to line.

Similarly to the computations done in [25, Lemma 4.2], we have

Qb,φ(f, f) = ‖∇L̄f‖
2
φ +

∑
J,J ′∈Iq

n−1∑
j,k=1
j 6=k

εkJjJ ′
([
L̄∗,φj , L̄k

]
fJ , fJ ′

)
φ

+
∑
J∈Iq

∑
j∈J

([
L̄j, L̄

∗,φ
j

]
fJ , fJ

)
φ

+ Ẽ1(f) + Ẽ2(f) + E0(f).

Using (4.11), εkJjJ ′ = −∑I∈Iq−1 ε
jI
J ε

kI
J ′ for j 6= k, and by (4.10) we have

Qb,φ(f, f) = ‖∇L̄f‖
2
φ +

∑
J∈Iq

∑
j∈J

(cjjTfJ , fJ)φ −
∑

J,J ′∈Iq

n−1∑
j 6=k,j,k=1

εkJjJ ′ (cjkTfJ , fJ ′)φ

−
∑

J,J ′∈Iq

n−1∑
j 6=k,j,k=1

εkJjJ ′

(L̄kLjφfJ , fJ ′)
φ

+
(
n−1∑
`=1

(d`jkL` − d̄`kjL̄`)fJ , fJ ′
)
φ


+
∑
J∈Iq

∑
j∈J

(L̄jLjφfJ , fJ)
φ

+
(
n−1∑
`=1

(d`jjL` − d̄`jjL̄`)fJ , fJ
)
φ


+ Ẽ1(f) + Ẽ2(f) + E0(f)

= ‖∇L̄f‖
2
φ +

∑
I∈Iq−1

n−1∑
j,k=1

(cjkTfjI , fkI)φ

+
∑

I∈Iq−1

n−1∑
j,k=1

(L̄kLjφfjI , fkI)
φ

+
(
n−1∑
`=1

(d`jkL` − d̄`kjL̄`)fjI , fkI
)
φ


+ Ẽ1(f) + Ẽ2(f) + E0(f)

= ‖∇L̄f‖
2
φ +

∑
I∈Iq−1

n−1∑
j,k=1

(cjkTfjI , fkI)φ

+
∑

I∈Iq−1

n−1∑
j,k=1

(L̄kLjφfjI , fkI)
φ

+
(
n−1∑
`=1

d`jkL`fjI , fkI

)
φ


+ Ẽ1(f) + Ẽ2(f) + E0(f) (4.17)

where Ẽ1 now includes the term

∑
I∈Iq−1

n−1∑
j,k=1

(
n−1∑
l=1

d̄lkjL̄lfjI , fkI

)
φ

.

Now, since Lj = −L̄∗,φj + Ljφ+ σj, by (4.17) we have

Qb,φ(f, f) = ‖∇L̄f‖
2
φ +

∑
I∈Iq−1

n−1∑
j,k=1

Re (cjkTfjI , fkI)φ
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+
∑

I∈Iq−1

n−1∑
j,k=1

Re
(L̄kLjφfjI , fkI)

φ
+
(
n−1∑
`=1

d`jkL`φfjI , fkI

)
φ


+ Re

(
Ẽ1(f) + Ẽ2(f) + E0(f)

)
and Ẽ2 now includes the term

∑
I∈Iq−1

n−1∑
j,k=1

(
n−1∑
`=1

d`jkL̄
∗,φ
` fjI , fkI

)
φ

.

Note that

Re
∑

I∈Iq−1

n−1∑
j,k=1

(
L̄kLjφfjI , fkI

)
φ

= 1
2

 ∑
I∈Iq−1

n−1∑
j,k=1

(
L̄kLjφfjI , fkI

)
φ

+
∑

I∈Iq−1

n−1∑
j,k=1

(
L̄kLjφfjI , fkI

)
φ


= 1

2

 ∑
I∈Iq−1

n−1∑
j,k=1

(
L̄kLjφfjI , fkI

)
φ

+
∑

I∈Iq−1

n−1∑
j,k=1

(
fkI , L̄kLjφfjI

)
φ


= 1

2

 ∑
I∈Iq−1

n−1∑
j,k=1

(
L̄kLjφfjI , fkI

)
φ

+
∑

I∈Iq−1

n−1∑
j,k=1

(
fjI , L̄jLkφfkI

)
φ


= 1

2

 ∑
I∈Iq−1

n−1∑
j,k=1

(
L̄kLjφfjI , fkI

)
φ

+
∑

I∈Iq−1

n−1∑
j,k=1

(
LjL̄kφfjI , fkI

)
φ


= 1

2
∑

I∈Iq−1

n−1∑
j,k=1

(
(L̄kLjφ+ LjL̄kφ)fjI , fkI

)
φ

Re
∑

I∈Iq−1

n−1∑
j,k=1

(
n−1∑
`=1

d`jkL`φfjI , fkI

)
φ

= 1
2

∑
I∈Iq−1

n−1∑
j,k=1

(
n−1∑
`=1

(d`jkL`φ+ d̄`kjL̄`φ)fjI , fkI
)
φ

and also

1
2
(
L̄kLjφ+ LjL̄kφ

)
+ 1

2

n−1∑
`=1

(d`jkL`φ+ d̄`kjL̄`φ) = Θφ
jk −

1
2ν(φ)cjk.

It follows that

Qb,φ(f, f) = ‖∇L̄f‖
2
φ +

∑
I∈Iq−1

n−1∑
j,k=1

Re (cjkTfjI , fkI)φ

+
∑

I∈Iq−1

n−1∑
j,k=1

(
(Θφ

jk −
1
2ν(φ)cjk)fjI , fkI

)
φ

+ Re
(
Ẽ1(f) + Ẽ2(f) + E0(f)

)
. (4.18)

On the other hand, using notation given in (4.12) we have

‖∇Υf‖
2
φ =

n−1∑
j,k=1

(
bk̄jL̄kf, L̄jf

)
φ

=
n−1∑
j,k=1

(
bk̄jL̄∗,φj L̄kf, f

)
φ

+
n−1∑
j,k=1

(
L̄∗,φj (bk̄j)L̄kf, f

)
φ

=
n−1∑
j,k=1

[(
L̄kL̄

∗,φ
j f, bj̄kf

)
φ

+
([
L̄∗,φj , L̄k

]
f, bj̄kf

)
φ

+
(
L̄∗,φj (bk̄j)L̄kf, f

)
φ

]
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=
n−1∑
j,k=1

[(
bk̄jL̄∗,φj f, L̄∗,φk f

)
φ

+
([
L̄∗,φj , L̄k

]
f, bj̄kf

)
φ

+
(
L̄∗,φj (bk̄j)L̄kf, f

)
φ

]

+
n−1∑
j,k=1

(
L̄∗,φj f, L̄∗,φk (bj̄k)f

)
φ

=
n−1∑
j,k=1

(bk̄jL̄∗,φj f, L̄∗,φk f
)
φ

+
(

(−cjkT −
n−1∑
`=1

(d`jkL` − d̄`jkL̄`)− L̄kLjφ− L̄kσj)f, bj̄kf
)
φ


+

n−1∑
j,k=1

[(
L̄∗,φj f, L̄∗,φk (bj̄k)f

)
φ

+
(
L̄∗,φj (bk̄j)L̄kf, f

)
φ

]

=
n−1∑
j,k=1

[(
bk̄jL̄∗,φj f, L̄∗,φk f

)
φ
−
(
bk̄jcjkTf, f

)
−
(
L̄kLjφf, b

j̄kf
)
φ
−

n−1∑
`=1

(
d`jkL`f, b

j̄kf
)
φ

]

+
n−1∑
j,k=1

[(
L̄∗,φj f, L̄∗,φk (bj̄k)f

)
φ

+
(
L̄∗,φj (bk̄j)L̄kf, f

)
φ
−

n−1∑
`=1

(
d̄`jkL̄`f, b

j̄kf
)
φ

]
+ E0(f)

=
n−1∑
j,k=1

[(
bk̄jL̄∗,φj f, L̄∗,φk f

)
φ
−
(
bk̄jcjkTf, f

)
φ
−
(
L̄kLjφf, b

j̄kf
)
φ
−

n−1∑
`=1

(
d`jkL`φf, b

j̄kf
)
φ

]

+
n−1∑
j,k=1

[(
L̄∗,φj f, L̄∗,φk (bj̄k)f

)
φ

+
(
L̄∗,φj (bk̄j)L̄kf, f

)
φ
−

n−1∑
`=1

(
d̄`jkL̄`f, b

j̄kf
)
φ

]

+
n−1∑
j,k,`=1

(
d`jkL̄

∗,φ
` f, bj̄kf

)
φ

+ E0(f)

=
n−1∑
j,k=1

[(
bk̄jL̄∗,φj f, L̄∗,φk f

)
φ
−
(
bk̄jcjkTf, f

)
φ
−
(1

2(L̄kLjφ+ LjL̄kφ)f, bj̄kf
)
φ

]

−
n−1∑
j,k=1

(
bk̄j

1
2

n−1∑
`=1

(d`jkL`φ+ d̄`jkL̄`φ)f, f
)
φ

+ Ẽ2(f) + Ẽ1(f) + E0(f)

=
n−1∑
j,k=1

[(
bk̄jL̄∗,φj f, L̄∗,φk f

)
φ
−
(
bk̄jcjkTf, f

)
φ
−
(
bk̄j(Θφ

jk −
1
2ν(φ)cjk)f, f

)
φ

]

+ Ẽ2(f) + Ẽ1(f) + E0(f). (4.19)

where Ẽ1(f) includes terms
n−1∑
j,k,`=1

(
d̄`kjL̄`f, b

j̄kf
)
φ
,

n−1∑
j,k=1

(
L̄∗,φj (bk̄j)L̄kf, f

)
φ

and Ẽ2(f) includes
n−1∑
j,k,`=1

(
d`jkL̄

∗,φ
` f, bj̄kf

)
φ
,

n−1∑
j,k=1

(
L̄∗,φj f, L̄∗,φk (bj̄k)f

)
φ
.

Motivated by [11, p.1725], we write ‖∇L̄f‖
2
φ =

(
‖∇L̄f‖

2
φ − ‖∇Υf‖

2
φ

)
+ ‖∇Υf‖

2
φ.

Using (4.19) and (4.13) we obtain

Qb,φ(f, f) =
(
‖∇L̄f‖

2
φ − ‖∇Υf‖

2
φ

)
+ ‖∇Υf‖2

φ +
∑

I∈Iq−1

n−1∑
j,k=1

Re (cjkTfjI , fkI)φ
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−
n−1∑
j,k=1

[(
bk̄jcjkTf, f

)
φ

+
(
bk̄j(Θφ

jk −
1
2ν(φ)cjk)f, f

)
φ

]

+
∑

I∈Iq−1

n−1∑
j,k=1

(
(Θφ

jk −
1
2ν(φ)cjk)fjI , fkI

)
φ

+ Ẽ1(f) + Ẽ2(f) + E0(f)

=
(
‖∇L̄f‖

2
φ − ‖∇Υf‖

2
φ

)
+ ‖∇Υf‖2

φ +
∑

I∈Iq−1

n−1∑
j,k=1

Re (cjkTfjI , fkI)φ

− (i〈dγ,Υ〉Tf, f)φ +
∑

I∈Iq−1

n−1∑
j,k=1

(
(Θφ

jk −
1
2ν(φ)cjk)fjI , fkI

)
φ

−
(
i〈Θφ,Υ〉f, f

)
φ

+
(1

2ν(φ)i〈dγ,Υ〉f, f
)
φ

+ Ẽ1(f) + Ẽ2(f) + E0(f).

Since ∑
J∈Iq

(afJ , fJ)φ =
∑

I∈Iq−1

n−1∑
j,k=1

(
aδkj
q
fjI , fkI

)
φ

where (δkj ) is the identity matrix In−1, we have

Qb,φ(f, f) =
(
‖∇L̄f‖

2
φ − ‖∇Υf‖

2
φ

)
+ ‖∇Υf‖2

φ

+
∑

I∈Iq−1

n−1∑
j,k=1

Re
((

cjk −
i〈dγ,Υ〉δkj

q

)
TfjI , fkI

)
φ

+
∑

I∈Iq−1

n−1∑
j,k=1

((
Θφ
jk −

i〈Θφ,Υ〉δkj
q

)
fjI , fkI

)
φ

−
∑

I∈Iq−1

n−1∑
j,k=1

(
1
2ν(φ)

(
cjk −

i〈dγ,Υ〉δkj
q

)
fjI , fkI

)
φ

+ Ẽ1(f) + Ẽ2(f) + E0(f).

Bounding the error terms Ẽ1(f) and Ẽ2(f) uses the same argument, and we
demonstrate the bound for Ẽ1(f). Terms of the form ∑n−1

j=1

(
ajL̄jg, h

)
φ
comprise Ẽ1 for

various functions g and h, and we compute
n−1∑
j=1

(
ajL̄jg, h

)
φ

=
n−1∑
j,k=1

(
(δjk − bj̄k)L̄jg, ākh

)
φ

+
n−1∑
j,k=1

(
bj̄kL̄jg, ākh

)
φ
. (4.20)

To estimate the first terms, observe that for ε > 0, a small constant/large constant
argument shows that∣∣∣∣∣∣

n−1∑
j,k=1

(
(δjk − bj̄k)L̄jg, ākh

)
φ

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n−1∑
k=1

n−1∑
j=1

(δjk − bj̄k)L̄jg, ākh

φ

∣∣∣∣∣∣∣
≤

n−1∑
k=1

∥∥∥∥ n−1∑
j=1

(δjk − bj̄k)L̄jg
∥∥∥∥
φ
‖akh‖φ

≤ ε
n−1∑
k=1

∥∥∥∥ n−1∑
j=1

(δjk − bj̄k)L̄jg
∥∥∥∥2

φ
+O 1

ε
(‖h‖2

φ).
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Stepping away from the integration (momentarily), suppose that at some point
in U , A is a unitary matrix that diagonalizes the hermitian matrix B̄ = (bj̄k) of Υ such
that B̄ = A∗ΛA, where Λ = diag {λ1, . . . , λn−1} and λ1, · · · , λn−1 are the eigenvalues of B̄.
Consider [L̄jg] as a column vector with components [L̄jg]k. Then since (1−λj)2 ≤ (1−λj)
for all j,

n−1∑
k=1

∣∣∣∣∣∣
n−1∑
j=1

(δjk − bj̄k)(L̄jg)

∣∣∣∣∣∣
2

=
∣∣∣[Id−B]

[
L̄jg

]∣∣∣2 =
∣∣∣∣[Id− B̄] [L̄jg]j

∣∣∣∣2

=
∣∣∣∣A∗ [Id− Λ]A

[
L̄jg

]
j

∣∣∣∣2 =
∣∣∣∣[Id− Λ]A

[
L̄jg

]
j

∣∣∣∣2
=

n−1∑
k=1

(1− λk)2
∣∣∣[A [L̄jg]]

k

∣∣∣2 ≤ n−1∑
k=1

(1− λk)
∣∣∣[A [L̄jg]]

k

∣∣∣2

=
n−1∑
j=1

∣∣∣L̄jg∣∣∣2
− [L̄jg]∗ B̄ [L̄jg]

=
n−1∑
j=1

∣∣∣L̄jg∣∣∣2 − n−1∑
j,k=1

bk̄jL̄jgL̄kg.

Returning to the integration, we now observe,

n−1∑
k=1

∥∥∥∥ n−1∑
j=1

(δjk − bj̄k)L̄jg
∥∥∥∥2

φ
≤ ‖∇L̄g‖

2
φ − ‖∇Υg‖

2
φ.

For the second term in (4.20), in a similar way, a small constant/large constant argument
shows

n−1∑
j,k=1

(
bj̄kL̄jg, ākh

)
φ

=
n−1∑
j,k=1

(
akg, b

k̄jL̄∗,φj h
)
φ

+O(‖g‖φ‖h‖φ)

∣∣∣∣∣∣
n−1∑
j,k=1

(akg, bk̄jL̄∗,φj h)φ

∣∣∣∣∣∣ ≤ O 1
ε
(‖g‖2

φ) + ε
n−1∑
k=1

∥∥∥∥n−1∑
j=1

bk̄jL̄∗,φj h
∥∥∥∥2

φ
,

and linear algebra (as above) helps to establish

n−1∑
k=1

∣∣∣∣∣∣
n−1∑
j=1

bk̄jL̄∗,φj h

∣∣∣∣∣∣
2

=
∣∣∣∣B̄ [L̄∗,φj h

]
j

∣∣∣∣2 =
∣∣∣ΛA∗ [L̄∗,φj h

]∣∣∣2 =
n−1∑
k=1

λ2
k

∣∣∣[A∗ [L̄∗,φj h
]]
k

∣∣∣2

≤
n−1∑
k=1

λk
∣∣∣[A∗ [L̄∗,φj h

]]
k

∣∣∣2 =
[
L̄∗,φj h

]∗
j
B̄
[
L̄∗,φj h

]
j

=
n−1∑
j,k=1

bk̄jL̄∗,φj hL̄∗,φk h.

Then
n−1∑
k=1

∥∥∥∥ n−1∑
j=1

bk̄jL̄∗,φj h
∥∥∥∥2

φ
≤

n−1∑
j,k=1

(
bk̄jL̄∗,φj h, L̄∗,φk h

)
φ

= ‖∇Υh‖2
φ
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Summarizing the above calculations, for ε sufficiently small and f supported in a small
neighborhood, we have

Qb,φ(f, f) ≥
∑

I∈Iq−1

n−1∑
j,k=1

Re
((

cjk −
i〈dγ,Υ〉δkj

q

)
TfjI , fkI

)
φ

+
∑

I∈Iq−1

n−1∑
j,k=1

((
Θφ
jk −

i〈Θφ,Υ〉δkj
q

)
fjI , fkI

)
φ

−
∑

I∈Iq−1

n−1∑
j,k=1

(
1
2ν(φ)

((
cjk −

i〈dγ,Υ〉δkj
q

))
fjI , fkI

)
φ

+O(‖f‖2
φ) (4.21)

To handle the T terms, we recall the following results. The first is a well-known multilinear
algebra result that appears (among other places) in Straube [30]

Lemma 4.6.2 Let B = (bjk)1≤j,k≤n−1 be a Hermitian matrix and 1 ≤ q ≤ n − 1. The
following are equivalent:

i. If u ∈ Λ0,q, then ∑K∈Iq−1

∑n−1
j,k=1 bjkujKukK ≥M |u|2.

ii. The sum of any q eigenvalues of B is at least M .

iii. ∑q
s=1

∑n−1
j,k=1 bjkt

s
jt
s
k ≥M for any orthonormal vectors {ts}1≤s≤q ⊂ Cn−1.

The next two results are consequences of the sharp Gårding Inequality and appear as [25,
Lemma 4.6, Lemma 4.7]

Lemma 4.6.3 Let f a (0, q)-form supported on U so that up to a smooth term f̂ is
supported in C+, and let [hjk] a Hermitian matrix such that the sum of any q eigenvalues
is ≥ 0. Then

Re
{ ∑
I∈Iq−1

n−1∑
j,k=1

(hjkTfjI , fkI)φ
}
≥ tARe

∑
I∈Iq−1

n−1∑
j,k=1

(hjkfjI , fkI)φ−O(‖f‖2
φ)−Ot(‖ζ̃Ψ̃0

tf‖
2
0).

Lemma 4.6.4 Let f a (0, q)-form supported on U so that up to a smooth term f̂ is
supported in C−, and let [hjk] a Hermitian matrix such that the sum of any n − 1 − q
eigenvalues is ≥ 0. Then

Re

∑
J∈Iq

n−1∑
j=1

(hjj(−T )fJ , fJ)φ −
∑

I∈Iq−1

n−1∑
j,k=1

(hjk(−T )fjI , fkI)φ


≥ tARe

∑
J∈Iq

n−1∑
j=1

(hjjfJ , fJ)φ −
∑

I∈Iq−1

n−1∑
j,k=1

(hjkfjI , fkI)φ

−O(‖f‖2
φ)−Ot(‖ζ̃Ψ̃0

tf‖
2
0).
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We are now ready to control derivatives in the bad direction T appearing in energies
Qb,+(·, ·) and Qb,−(·, ·).

Lemma 4.6.5 Let f a (0, q)-form supported on U so that up to a smooth term f̂ is
supported in C+, and let [hjk] a Hermitian matrix such that the sum of any q eigenvalues
is ≥ 0. Then

Re

 ∑
I∈Iq−1

n−1∑
j,k=1

(hjkTfjI , fkI)φ

 ≥ tARe
∑

I∈Iq−1

n−1∑
j,k=1

(hjkfjI , fkI)φ

−O(‖f‖2
φ)−Ot(‖ζ̃νΨ̃0

tf‖
2
0)

Proof. Let Ψ̃+
t be the pseudodifferential operator of order zero whose symbol dominates

f̂ (up to smooth error) and is supported in C̃+. By the support condition of f and f̂ , we
will have

∑
I∈Iq−1

n−1∑
j,k=1

(hjkTfjI , fkI)φ =
∑

I∈Iq−1

n−1∑
j,k=1

(
hjkTfjI ,

(
(Ψ̃+

t )∗Ψ̃+
t +

(
Id− (Ψ̃+

t )∗Ψ̃+
t

))
fkI
)
φ

=
∑

I∈Iq−1

n−1∑
j,k=1

(
hjkTfjI , (Ψ̃+

t )∗Ψ̃+
t fkI

)
φ

+ smoother terms

=
∑

I∈Iq−1

n−1∑
j,k=1

(
ζ̃e−φhjkΨ̃+

t TfjI , ζ̃Ψ̃+
t fkI

)
0

+ smoother terms

=
∑

I∈Iq−1

n−1∑
j,k=1

(
ζ̃(Ψ̃+

t )∗ζ̃2e−φhjkΨ̃+
t TfjI , fkI

)
0

+ smoother terms

where smoother terms areO(‖f‖2
−1). We look for the symbol of the operator (Ψ̃+

t )∗ζ̃2e−φhjkΨ̃+
t T .

Let ψ̃+
t (x, ξ) be the symbol of Ψ̃+

t . Note that σ(T ) = ξ2n−1. Then the symbol of the com-
position T Ψ̃+

t is given by

∑
β

1
β!∂

β
ξ (ξ2n−1)Dβ

x ψ̃
+
t (x, ξ) = ξ2n−1ψ̃

+
t (x, ξ) +D(0,...,0,1)

x ψ̃+
t (x, ξ).

Since φ̂ is supported in C+ (up to smooth term) and ψ̃+
t ≡ 1 on C+, any of its derivatives

will be zero, so σ(Ψ̃+
t T ) = σ(T Ψ̃+

t ) = ξ2n−1ψ̃
+
t (x, ξ) up to smooth terms when applied

to f . Now since σ(Ψ̃+
t ) ≡ 1 on C+, it follows that σ((Ψ̃+

t )∗) ≡ 1 on C+ as well. Then
σ((Ψ̃+

t )∗) = ψ̃+
t (x, ξ) up to terms supported in C0 \ C+. This implies

σ
(
(Ψ̃+

t )∗ζ̃2e−φhjk
)

=
∑
β

1
β!∂

β
ξ ψ̃

+
t (x, ξ)Dβ

x(ζ̃2e−φhjk) = ψ̃+
t (x, ξ)ζ̃2e−φhjk,

up to errors on C0 \ C+. So, on C+ we will have

σ
(
(Ψ̃+

t )∗ζ̃2e−φhjkΨ̃+
t T
)

=
∑
β

1
β!∂

β
ξ σ((Ψ̃+

t )∗ζ̃2e−φhjk)Dβ
xσ(T Ψ̃+

t )
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=
∑
β

1
β!∂

β
ξ (ψ̃+

t (x, ξ)ζ̃2e−φhjk)Dβ
x(ξ2n−1ψ̃

+
t (x, ξ))

= ζ̃2e−φhjkξ2n−1.

Since ξ2n−1 ≥ tA on C+ and ζ̃e−φhjk is such that the sum of any of its q eigenvalues is
nonnegative, by the Proposition 4.6.3 there exist a constant C independent of t such that

Re

 ∑
I∈Iq−1

n−1∑
j,k=1

(hjkTfjI , fkI)φ

 ≥ tARe
∑

I∈Iq−1

n−1∑
j,k=1

(
ζ̃2e−φhjkfjI , fkI

)
0

− C‖f‖2
φ +O(‖f‖2

−1) +Ot

(
‖ζ̃Ψ̃0

tf‖
2
0

)

= tARe
∑

I∈Iq−1

n−1∑
j,k=1

(hjkfjI , fkI)φ

−O(‖f‖2
φ)−Ot

(
‖ζ̃νΨ̃0

tf‖
2
0

)
,

where all the error whose Fourier transforms are supported in C0 \ C+ have included in
Ot(‖ζ̃νΨ̃0

tf‖
2
0).

By a similar argument, we can prove the following:

Lemma 4.6.6 Let f a (0, q)-form supported on U so that up to a smooth term f̂ is
supported in C−, and let [hjk] a Hermitian matrix such that the sum of any n-1-q eigenvalues
is ≥ 0. Then

Re

∑
J∈Iq

n−1∑
j=1

(hjj(−T )uJ , uJ)φ −
∑

I∈Iq−1

n−1∑
j,k=1

(hjk(−T )ujI , ukI)φ


≥ tARe

∑
J∈Iq

n−1∑
j=1

(hjjuJ , uJ)φ −
∑

I∈Iq−1

n−1∑
j,k=1

(hjkujI , ukI)φ

−O(‖u‖2
φ)−Ot(‖ζ̃νΨ̃0

tu‖
2
0).

Now, we are ready to estimate the energies Qb,+(., .) and Qb,−(., .). We start with
the energy Qb,+(., .) as follows:

Proposition 4.6.7 Let f ∈ Dom∂̄b ∩Dom∂̄∗b be a (0, q)-form supported in U and let φ+

be as in (4.14). Then there exists a constant C so that

Qb,+
(
ζ̃Ψ+

t f, ζ̃Ψ+
t f
)

+ C‖ζ̃Ψ+
t f‖φ+ +Ot(‖ζ̃Ψ̃0

tf‖
2
0) ≥ tBq‖ζ̃Ψ+

t f‖
2
φ+ (4.22)

Proof. By (4.21), the fact that the Fourier transform of ζ̃Ψ+
t f is supported in C+ up to

smooth term, and Proposition 4.6.5, we have

Qb,+(ζ̃Ψ+
t f, ζ̃Ψ+

t f) ≥ tA
∑

I∈Iq−1

n−1∑
j,k=1

Re
((

cjk −
i〈dγ,Υq〉δkj

q

)
ζ̃Ψ+

t fjI , ζ̃Ψ+
t fkI

)
φ+
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+
∑

I∈Iq−1

n−1∑
j,k=1

Θφ+
jk −

i〈Θφ+
,Υq〉δkj
q

 ζ̃Ψ+
t fjI , ζ̃Ψ+

t fkI


φ+

−
∑

I∈Iq−1

n−1∑
j,k=1

(
1
2ν(φ+)

((
cjk −

i〈dγ,Υq〉δkj
q

))
ζ̃Ψ+

t fjI , ζ̃Ψ+
t fkI

)
φ+

−O(‖ζ̃Ψ+
t f‖

2
φ+)−Ot(‖ζ̃Ψ̃0

tf‖
2
0)

Now choosing A ≥ 1
2

∣∣∣ν(|z|2)
∣∣∣ (we can because M is compact), tA− 1

2ν(φ+) ≥ 0, and by
Lemma 4.6.2 and the last inequality we have

Qb,+(ζ̃Ψ+
t f, ζ̃Ψ+

t f) + C‖ζ̃Ψ+
t f‖

2
φ+ +Ot(‖ζ̃Ψ̃0

tf‖
2
0)

≥
∑

I∈Iq−1

n−1∑
j,k=1

Θφ+
jk −

i〈Θφ+
,Υq〉δkj
q

 ζ̃Ψ+
t fjI , ζ̃Ψ+

t fkI


φ+

. (4.23)

Since |q − ω(Υq)| > Bq, if ω(Υq) > q then φ+ = −t |z|2. Then Θφ+ = tiω, and so
i〈Θφ+

,Υq〉 = −tω(Υq). Thus the sum of any q eigenvalues of Θφ+

jk − i〈Θφ+
,Υq〉δkj /q =

−tδkj + tω(Υq)δkj /q equals to t(ω(Υq) − q) > tBq. In the same way, if ω(Υq) < q then
φ+ = t |z|2 and Θφ+ = −tiω. So i〈Θφ+

,Υq〉 = tω(Υq), and the sum of any q eigenvalues of
Θφ+

jk − i〈Θφ+
,Υq〉δkj /q = tδkj − tω(Υq)δkj /q equals to t(q−ω(Υ)) > tBq. Then using Lemma

4.6.2 in (4.23) we have (4.22).

In order to estimate the terms Qb,−(ζ̃Ψ−t f, ζ̃Ψ−t f) we have to modify the analysis
slightly from the Qb,+ case. Similarly to (4.18), we have

Qb,φ(f, f) ≥ ‖∇L̄∗,φf‖
2
φ +

∑
I∈Iq−1

n−1∑
j,k=1

Re (cjkTfjI , fkI)φ −
∑
j

Re (cjjTf, f)φ

+
∑

I∈Iq−1

n−1∑
j,k=1

(
(Θφ

jk −
1
2ν(φ)cjk)fjI , fkI

)
φ

−
n−1∑
j=1

(
(Θφ

jj −
1
2ν(φ)cjj)f, f

)
φ

−Oε(‖∇L̄∗,φf‖
2
φ − ‖∇Υf‖2

φ)−Oε(‖∇Υf‖
2
φ)−O 1

ε
(‖f‖2

φ)−O(‖f‖2
φ). (4.24)

Analogously to (4.19), we have

‖∇Υf‖2
φ ≥

n−1∑
j,k=1

[(
bk̄jL̄kf, L̄jf

)
φ

+
(
bk̄jcjkTf, f

)
φ

+
(
bk̄j(Θφ

jk −
1
2ν(φ)cjk)f, f

)
φ

]

−Oε(‖∇L̄∗,φf‖
2
φ − ‖∇Υf‖2

φ)−Oε(‖∇Υf‖
2
φ)−O 1

ε
(‖f‖2

φ)−O(‖f‖2
φ). (4.25)

It now follows from (4.24) and (4.25) that

Qb,φ(f, f) ≥
∑

I∈Iq−1

n−1∑
j,k=1

Re (cjkTfjI , fkI)φ −
n−1∑
j=1

Re (cjjTf, f)φ
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+
∑

I∈Iq−1

n−1∑
j,k=1

Re
((

i〈dγ,Υ〉δkj
q

)
TfjI , fkI

)
φ

+
∑

I∈Iq−1

n−1∑
j,k=1

((
Θφ
jk −

1
2ν(φ)cjk

)
fjI , fkI

)
φ

+
n−1∑
j,k=1

(
bk̄j

(
Θφ
jk −

1
2ν(φ)cjk

)
f, f

)
φ

−
n−1∑
j=1

((
Θφ
jj −

1
2ν(φ)cjj

)
f, f

)
φ
−O(‖f‖2

φ)

=
∑

I∈Iq−1

n−1∑
j,k=1

Re (cjkTfjI , fkI)φ − Re
n−1∑
j=1

cjjTf, f


φ

+ Re (i〈dγ,Υ〉Tf, f)φ

+
∑

I∈Iq−1

n−1∑
j,k=1

(
Θφ
jkfjI , fkI

)
φ
−

n−1∑
j=1

Θφ
jjf, f


+
(
i〈Θφ,Υ〉f, f

)
−

∑
I∈Iq−1

n−1∑
j,k=1

Re
(1

2ν(φ)cjkfjI , fkI
)
φ

+
1

2ν(φ)
n−1∑
j=1

cjjf, f


−
(1

2ν(φ)i〈dγ,Υ〉f, f
)
−O(‖f‖2

φ). (4.26)

If we set

h−jk = cjk − δjk
i〈dγ,Υ〉
n− 1− q , and hΘ

jk = Θφ
jk − δjk

i〈Θφ,Υ〉
n− 1− q

then we can rewrite (4.26) by

Qb,φ(f, f) ≥ −
n−1∑
j=1

h−jjTf, f

+
∑

I∈Iq−1

n−1∑
j,k=1

(
h−jkTfjI , fkI

)

−

n−1∑
j=1

hΘ
jjf, f

+
∑

I∈Iq−1

n−1∑
j,k=1

(
hΘ
jkfjI , fkI

)

+
1

2ν(φ)
n−1∑
j=1

h−jjf, f

− ∑
I∈Iq−1

n−1∑
j,k=1

(1
2ν(φ)h−jkfjI , fkI

)
−O(‖f‖2

φ).

Since the sum of q eigenvalues of the matrix Tr(H)
q

Id − H is equal to sum of
(n− 1− q) eigenvalues of the matrix H, we may now proceed as in the proof of Proposition
4.6.7 (with Υ = Υn−1−q) to obtain the following proposition.

Proposition 4.6.8 Let f ∈ Dom(∂̄b) ∩Dom(∂̄∗b ) be a (0, q)-form supported in U and let
φ− be as in (4.14). Then there exists a constant C so that

Qb,−
(
ζ̃Ψ−t f, ζ̃Ψ−t f

)
+ C‖ζ̃Ψ−t f‖φ− +Ot(‖ζ̃Ψ̃0

tf‖
2
0) ≥ tBn−1−q‖ζ̃Ψ−t f‖

2
φ− .
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Proof of the estimate (4.16) Increasing the size of K,K ′ and K± in Lemma 4.5.2, and
by Propositions 4.6.7 and 4.6.8 and the definition of

∥∥∥∣∣∣.∥∥∥∣∣∣
t
, we obtain (4.16).

4.6.1 Ellipticity on C̃0

In order to handle the term Ot

(
‖ζ̃Ψ̃0

t‖
2
0

)
appearing in our estimate (4.16), the

objective of this section is to prove the Proposition 4.6.11 below, that is statemented in
[25] as the Proposition 4.11. In contrast with the estimates in Propositions (4.6.7) and
(4.6.8) for forms supported on C+ and C− up to smooth terms, we have better estimates
for forms supported on C0 up to smooth terms, as we show below.

Lemma 4.6.9 Let ϕ be a (0, q)-form supported on a path U ′, such that, up to a smooth
term, ϕ̂ is supported in C0. Then exists positive constants C and C ′ independent of t for
which

CQb,0(ϕ, ϕ) + C ′‖ϕ‖2
0 ≥ ‖ϕ‖

2
1. (4.27)

Proof. On a similar way as in beginning of the last section, using bc/sc argument, for a
small ε > 0 we have

Qb,0(ϕ, ϕ) ≥ (1− ε)
∑
J∈Iq

n−1∑
j=1
‖L̄jϕJ‖

2 + Re
∑

I∈Iq−1

n−1∑
j,k=1

(cjkTϕjI , ϕkI) +O(‖ϕ‖2). (4.28)

On the other hand, note that ‖T ·‖2 + ‖∇L̄·‖
2 + ‖∇L̄∗·‖

2 dominates ‖.‖2
1, and since

ϕ̂ is supported in C0 we have∑
J∈Iq
‖TϕJ‖2 =

∑
J∈Iq

(T ∗TϕJ , ϕJ) =
∑
J∈Iq

(|ξ2n−1|2ϕ̂J , ϕ̂J)

≤ C
∑
J∈Iq

2n−2∑
j=1

(|ξj|2ϕ̂J , ϕ̂J)

≤ C
∑
J∈Iq

2n−2∑
j=1

(‖L̄jϕJ‖
2 + ‖L̄∗jϕJ‖

2) +O(‖ϕ‖2) (4.29)

for some constant C. Then to show (4.27), it is sufficient control the derivatives L̄j and
L̄∗j by Qb,0(., .) as we will see below. We claim

Qb,0(ϕ, ϕ) ≥ (1− ε)
∑
J∈Iq

n−1∑
j=1
‖L̄jϕJ‖

2 +O(‖ϕ‖2) (4.30)

Qb,0(ϕ, ϕ) ≥ (1− ε)
∑
J∈Iq

n−1∑
j=1
‖L̄∗jϕJ‖

2 +O(‖ϕ‖2) (4.31)

In fact. Proving (4.30) and (4.31) are similar. We show (4.31). First note that by (4.29)
and using small constant/large constant we have

−
∑

I∈Iq−1

n−1∑
j,k=1

Re(cjkTϕjI , ϕkI) ≥ −εC
∑
J∈Iq

n−1∑
j=1

(‖L̄jϕJ‖
2 + ‖L̄∗jϕJ‖

2) +O(‖ϕ‖2). (4.32)
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For a smooth function α and by small constant/large constant argument, we have
|(αLjϕJ , ϕJ)| ≤ ε‖L̄∗jϕJ‖

2 +O(‖ϕ‖2) and |(αL̄jϕJ , ϕJ)| ≤ ε‖L̄∗jϕJ‖
2 +O(‖ϕ‖2). Then

∑
J∈Iq

n−1∑
j=1
‖L̄jϕJ‖

2 =
∑
J∈Iq

n−1∑
j=1

{
(
[
L̄∗j , L̄j

]
ϕJ , ϕJ) + (L̄∗jϕJ , L̄∗jϕJ)

}

=
∑
J∈Iq

n−1∑
j=1

{
‖L̄∗jϕJ‖

2 + (−
[
Lj, L̄j

]
ϕJ , ϕJ)

}
+O(‖ϕ‖2)

=
∑
J∈Iq

n−1∑
j=1

{
‖L̄∗jϕJ‖

2 + (−cjjTϕJ , ϕJ)
}

+

+
∑
J∈Iq

n−1∑
j=1

n−1∑
`=1

(
(d`jjL` − d̄`jjL̄`)ϕJ , ϕJ

)
+O(‖ϕ‖2) (4.33)

≤ (1 + 2ε)
∑
J∈Iq

n−1∑
j=1
‖L̄∗jϕJ‖

2 + Re
∑
J∈Iq

n−1∑
j=1

(−cjjTϕJ , ϕJ)

+O(‖ϕ‖2). (4.34)

On the other hand, using a small constant/large constant argument and (4.29)

−
∑
J∈Iq

n−1∑
j=1

Re(cjjTϕJ , ϕJ) ≤ ε
∑
J∈Iq
‖TϕJ‖2 +O(‖ϕ‖2)

≤ εC
∑
J∈Iq

n−1∑
j=1

(‖L̄jϕJ‖
2 + ‖L̄∗jϕJ‖

2) +O(‖ϕ‖2)

≤ εC ′
∑
J∈Iq

n−1∑
j=1
‖L̄∗jϕJ‖

2 + ε(1 + 2ε)
∑
J∈Iq

n−1∑
j=1
‖L̄∗jϕJ‖

2

− εC ′
∑
J∈Iq

n−1∑
j=1

Re(cjjTϕJ , ϕJ) +O(‖ϕ‖2). (4.35)

Absorbing terms in this last inequality, we have

−
∑
J∈Iq

n−1∑
j=1

Re(cjjTϕJ , ϕJ) ≤ 2ε(1 + ε)
1− εC ′

∑
J∈Iq

n−1∑
j=1
‖L̄∗jϕJ‖

2 +O(‖ϕ‖2). (4.36)

Thus, by using (4.36) in (4.34) we have

∑
J∈Iq

n−1∑
j=1
‖L̄jϕJ‖

2 ≤ (1 + 2ε+ 2ε(1 + ε)
1− εC ′ )

∑
J∈Iq

n−1∑
j=1
‖L̄∗jϕJ‖

2 +O(‖ϕ‖2). (4.37)

Also by (4.33)

∑
J∈Iq

n−1∑
j=1
‖L̄jϕJ‖

2 ≥ (1− 2ε)
∑
J∈Iq

n−1∑
j=1
‖L̄∗jϕJ‖

2 −Re
∑
J∈Iq

n−1∑
j=1

(cjjTϕJ , ϕJ) +O(‖ϕ‖2) (4.38)

and using a small constant/large constant argument, by (4.29) and (4.37)

−
∑
J∈Iq

n−1∑
j=1

Re(cjjTϕJ , ϕJ) ≥ −ε
∑
J∈Iq

n−1∑
j=1
‖L̄∗jϕJ‖

2−ε(1+2ε+2ε(1 + ε)
1− εC ′ )

∑
J∈Iq

n−1∑
j=1
‖L̄∗jϕJ‖

2+O(‖ϕ‖2).
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Thus, using this last inequality in (4.38), for some ε′ > 0 sufficiently small we have

∑
J∈Iq

n−1∑
j=1
‖L̄jϕJ‖

2 ≥ (1− ε′)
∑
J∈Iq

n−1∑
j=1
‖L̄∗jϕJ‖

2 +O(‖ϕ‖2). (4.39)

Now, using (4.39), (4.32) in (4.28) we obtain (4.31) after choosing ε′, ε sufficiently small.
This proves (4.27).

Observe the next relation between ∂̄∗b and ∂̄∗b,t = ∂̄∗b,± below. Using the operators
F± and E± defined before, we have

(
ϕ, ∂̄bφ

)
±

=
(
F±ϕ, ∂̄bφ

)
0

=
(
F±∂̄

∗
bϕ, φ

)
0

+
([
∂̄∗b , F±

]
ϕ, φ

)
0

=
(
∂̄∗bϕ, φ

)
±

+
(
E±

[
∂̄∗b , F±

]
ϕ, φ

)
±
.

Then,
∂̄∗b,± = ∂̄∗b + E±

[
∂̄∗b , F±

]
. (4.40)

Lemma 4.6.10 Let ϕ be a (0, q)-form supported in Uµ for some µ such that up to smooth
term, ϕ̂ is supported in C̃0

µ. There exists a positive constants C > 1 independent of t and
another positive constant C± for which:

CRe Qb,±(ϕ,E±ϕ) + C±‖ϕ‖2
0 ≥ ‖ϕ‖1. (4.41)

Proof. Keeping in mind that F± and E± are self-adjoint and inverse of each other and
that ∑µ ζ

2
µ = 1, we compute Qb,±(., .), in terms of Qb,0(., .). By (4.40)

Qb,±(ϕ,E±ϕ) =
(
∂̄bϕ, ∂̄bE±ϕ

)
±

+
(
∂̄∗b,±ϕ, ∂̄

∗
b,±E±ϕ

)
±

=
(
∂̄bϕ, F±∂̄bE±ϕ

)
0

+
∑
µ

(
ζµ(∂̄∗b + E±

[
∂̄∗b , F±

]
)ϕ, ζµF±(∂̄∗b + E±

[
∂̄∗b , F±

]
)E±ϕ

)
0

=
(
∂̄bϕ, ∂̄bϕ

)
0

+
(
∂̄bϕ,

[
F±, ∂̄b

]
E±ϕ

)
0

+
(
∂̄∗bϕ, ∂̄

∗
bϕ
)

0
+
(
∂̄∗bϕ,

[
F±, ∂̄

∗
b

]
E±ϕ

)
0

+
∑
µ

(
ζµE±

[
∂̄∗b , F±

]
ϕ, ζµF±∂̄

∗
bE±ϕ

)
0

+
∑
µ

(
ζµE±

[
∂̄∗b , F±

]
ϕ, ζµ

[
∂̄∗b , F±

]
E±ϕ

)
0

+
(
∂̄∗bϕ,

[
∂̄∗b , F±

]
E±ϕ

)
0

= Qb,0(ϕ, ϕ) +
(
∂̄bϕ,

[
F±, ∂̄b

]
E±ϕ

)
0

+
(
∂̄∗bϕ,

[
F±, ∂̄

∗
b

]
E±ϕ

)
0

+
∑
µ

(
ζµE±

[
∂̄∗b , F±

]
ϕ, ζµF±∂̄

∗
bE±ϕ

)
0

+
∑
µ

(
ζµE±

[
∂̄∗b , F±

]
ϕ, ζµ

[
∂̄∗b , F±

]
E±ϕ

)
0

+
(
∂̄∗bϕ,

[
∂̄∗b , F±

]
E±ϕ

)
0
.

(4.42)
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Since F± and E± are of order zero∣∣∣(∂̄bϕ, [F±, ∂̄b]E±ϕ)0

∣∣∣ ≤ ε‖∂̄bϕ‖
2
0 + C±,1/ε‖ϕ‖2

0,∣∣∣(∂̄∗bϕ, [F±, ∂̄∗b ]E±ϕ)0

∣∣∣ ≤ ε‖∂̄∗bϕ‖
2
0 + C±,1/ε‖ϕ‖2

0,∣∣∣(∂̄∗bϕ, [∂̄∗b , F±]E±ϕ)0

∣∣∣ ≤ ε‖∂̄∗bϕ‖
2
0 + C±,1/ε‖ϕ‖2

0,∣∣∣∣∣∑
µ

(
ζµE±

[
∂̄∗b , F±

]
ϕ, ζµ

[
∂̄∗b , F±

]
E±ϕ

)
0

∣∣∣∣∣ ≤ C±‖ϕ‖2
0,

∣∣∣∣∣∑
µ

(
ζµE±

[
∂̄∗b , F±

]
ϕ, ζµF±∂̄

∗
bE±ϕ

)
0

∣∣∣∣∣ ≤
∣∣∣∣∣∑
µ

(
ζµE±

[
∂̄∗b , F±

]
ϕ, ζµF±

[
∂̄∗b , E±

]
ϕ
)

0

∣∣∣∣∣
+
∣∣∣∣∣∑
µ

(
ζnuE±

[
∂̄∗b , F±

]
ϕ, ζµ∂̄

∗
bϕ
)

0

∣∣∣∣∣
≤ ε‖∂̄∗bϕ‖

2
0 + C±,1+1/ε‖ϕ‖2

0,

for any small constant ε > 0 and some positives constants C±,1/ε and C±,1+1/ε. Taking
a constant ε sufficient small, by (4.42) and by these six last inequalities above, we can
prove that there exists a positive constant C ′ > 1 independent of t and another positive
constant C± such that

C ′Re Qb,±(ϕ,E±ϕ) + C±‖ϕ‖2
0 ≥ Qb,0(ϕ, ϕ).

Now we can apply Lemma 4.6.9 with Uµ as U ′ and C̃0
µ as C0 to see that

cQb,0(ϕ, ϕ) + c′‖ϕ‖2
0 ≥ ‖ϕ‖

2
1

with c and c′ independent of t. Putting this last two inequalities together and enlarging
C ′ > 1 (that does not depend on t), it follows the inequality (4.41).

Proposition 4.6.11 For any ε > 0, there exists Cε,± > 0 so that

‖ζ̃µΨ0
µ,tζµϕ

µ‖2
0 ≤ εQb,±(ϕµ, ϕµ) + Cε,±‖ϕµ‖2

−1.

Proof. Note that ‖ζ̃µΨ0
µ,tζµϕ

µ‖0 = ‖Λ−1ζ̃µΨ0
µ,tζµϕ

µ‖1. The Fourier transform of the (0, q)-
form ζ̃µΨ0

µ,tζµϕ
µ, up to smooth terms, is supported in C0, so we can apply the Lemma

4.6.10 with ϕ = ζ̃µΨ0
µ,tζµϕ

µ. Although the range of Λ−1 is outside Uµ, we can write
Λ−1ζ̃µ = ζ ′µΛ−1ζ̃µ + (1− ζ ′µ)Λ−1ζ̃µ where ζµ′ is a smooth bump function that is identically
one on the support of ζ̃µ. Then (1− ζ ′µ)Λ−1ζ̃µ is infinitely smoothing and hence can be
absorbed in the ‖ϕ‖2

−1 term. By the Lemma 4.6.10 we have

‖ζ ′µΛ−1ζ̃µΨ0
µ,tζµϕ

µ‖2
1 ≤ C±‖ζ ′µΛ−1ζ̃µΨ0

µ,tζµϕ
µ‖2

0

+ C ′Re Qb,±(ζ ′µΛ−1ζ̃µΨ0
µ,tζµϕ

µ, E±ζ
′
µΛ−1ζ̃µΨ0

µ,tζµϕ
µ)
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≤ C±‖ϕµ‖−1 + C ′Re Qb,±(ζ ′µΛ−1ζ̃µΨ0
µ,tζµϕ

µ, E±ζ
′
µΛ−1ζ̃µΨ0

µ,tζµϕ
µ).

Let P = ζ ′µΛ−1 and P ∗,± be the adjoint of P .(
ζµ
′Λ−1u, v

)
t

=
(
u,Λ−1ζµ

′F±v
)

0
=
(
u,E±Λ−1ζµ

′F±v
)
t

=
(
u,Λ−1ζµ

′ +
[
E±,Λ−1ζµ

′
]
F±v

)
t
,

That is, P ∗,± = Λ−1ζµ
′ + [E±,Λ−1ζµ

′]F±, then P ∗,± − P = [Λ−1, ζµ] + [E±,Λ−1ζµ
′]F±

is a pseudodifferential operators of order −2. In the same way (E±P )∗,± − E±P is a
pseudodifferential operators of order −2. By Lemma 2.4.2 in [6] we have

Re Qb,±(P ζ̃µΨ0
µ,tζµϕ

µ, E±P ζ̃µΨ0
µ,tζµϕ

µ) ≤ 1
2Qb,±(P ζ̃µΨ0

µ,tζµϕ
µ, P ζ̃µΨ0

µ,tζµϕ
µ)

+ 1
2Qb,±(E±P ζ̃µΨ0

µ,tζµϕ
µ, E±P ζ̃µΨ0

µ,tζµϕ
µ)

= 1
2Re Qb,±(ζ̃µΨ0

µ,tζµϕ
µ, P ∗,±P ζ̃µΨ0

µ,tζµϕ
µ)

+ 1
2Re Qb,±(ζ̃µΨ0

µ,tζµϕ
µ, (E±P )∗,±E±P ζ̃µΨ0

µ,tζµϕ
µ)

+O±
(
‖ζ̃µΨ0

µ,tζµϕ
µ‖2
−1

)
≤ εQb,±(ϕµ, ϕµ) + Cε,±‖ϕµ‖2

−1.

Proof of Proposition 4.6.1 By Proposition 4.6.11, choosing sufficiently large constants
K and t in (4.16) we obtain (4.15).
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chapter 5

CLOSURE AND REGULARITY THEOREMS FOR THE OPERATOR
∂b AND �b

Now that we have the tools of last Chapter, we can prove strong closed range
estimates using many of the arguments of [10]. We do, however, use a substantially
different elliptic regularization to pay particular attention to the regularity of the weighted
harmonic forms, the relationship of the harmonic forms with the regularized operators,
and an especially detailed look at the induction base case.

Specifically, the objective of this chapter is to prove the next result about closure
and regularity of the ∂̄b and the �b operators.

Theorem 5.0.1 Let M2n−1 be an embedded C∞ compact, orientable CR manifold of
hypersurface type that satisfies weak Y (q) for some fixed q, 1 ≤ q ≤ n − 2. Then the
following hold:

1. The operators ∂̄b : L2
0,q(M)→ L2

0,q+1(M) and ∂̄b : L2
0,q−1(M)→ L2

0,q(M) have closed
range;

2. The operators ∂̄∗b : L2
0,q+1(M)→ L2

0,q(M) and ∂̄∗b : L2
0,q(M)→ L2

0,q−1(M) have closed
range;

3. The Kohn Laplacian �b := ∂̄b∂̄
∗
b + ∂̄∗b ∂̄b has closed range on L2

0,q(M);

4. The complex Green operator Gq exists and is continuous on L2
0,q(M);

5. The canonical solution operators, ∂̄∗bGq : L2
0,q(M)→ L2

0,q−1(M) and Gq∂̄
∗
b : L2

0,q+1(M)→
L2

0,q(M) are continuous;

6. The canonical solution operators, ∂̄bGq : L2
0,q(M)→ L2

0,q+1(M) and Gq∂̄b : L2
0,q−1(M)→

L2
0,q(M) are continuous;

7. The space of the harmonic forms H0,q(M), defined to be the (0, q)-forms annihilated
by ∂̄b and ∂̄∗b , is finite dimensional;

8. If α ∈ L2
0,q(M) ∩ ⊥H0,q(M) is ∂̄b-closed, then there exists u ∈ L2

0,q−1(M) so that

∂̄bu = α

and ‖u‖0 ≤ C‖α‖0 for some constant C independent of α;



90 Chapter 5. Closure and Regularity Theorems for the Operator ∂b and �b

9. The Szegö projection Sq = I − ∂̄∗b ∂̄bGq is continuous on L2
0,q(M).

We start by proving the result by considering weighted spaces but then in the last
section we show the results in the unweighted spaces follows from the equivalence of the
norms. From now on, the functions φ+ and φ− are going to be as (4.14). The dependence
of t of this functions will be considered. We denote now the norm

∥∥∥∣∣∣ · ∥∥∥∣∣∣
±
by

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
, and in

general we replace the subscript ± with t (e.g. we write ct for φ±).

Theorem 5.0.2 Let M2n−1 be a C∞ compact, orientable, weakly Y (q) CR manifold of
hypersurface type embedded in CN , N ≥ n, and 1 ≤ q ≤ n− 2. For each s ≥ 0 there exists
Ts ≥ 0 so that the following hold:

i. The operators ∂̄b : L2
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) → L2

0,q+1(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) and ∂̄b : L2

0,q−1(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) →

L2
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) have closed range. Additionally, for any s > 0 if t ≥ Ts, then

∂̄b : Hs
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) → Hs

0,q+1(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) and ∂̄b : Hs

0,q−1(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) → Hs

q (M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
)

have closed range.

ii. The operators ∂̄∗b,t : L2
0,q+1(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) → L2

0,q(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) and ∂̄∗b,t : L2

0,q(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) →

L2
0,q−1(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) have closed range; Additionally, if t ≥ Ts, then ∂̄∗b,± : Hs

0,q+1(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
)→

Hs
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) and ∂̄∗b,± : Hs

0,q(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
)→ Hs

0,q−1(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) have closed range.

iii. The Kohn Laplacian �b,t := ∂̄b∂̄
∗
b,t + ∂̄∗b,t∂̄b has closed range on L2

0,q(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
), and

if t ≥ Ts, �b,t also has closed range on Hs
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
).

iv. The space of (weighted) harmonic forms Hq
t (M), defined to be the (0, q)-forms

annihilated by ∂̄b and ∂̄∗b,t, is finite dimensional.

v. The complex Green operator Gq,t exists and is continuous on L2
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) and also

on Hs
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) if t ≥ Ts.

vi. The canonical solution operator for ∂̄b, ∂̄∗b,tGq,t : L2
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
)→ L2

0,q−1(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) is

continuous. Additionally, ∂̄∗b,tGq,t : Hs
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
)→ Hs

0,q−1(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) is continuous

if t ≥ Ts.

vii. The canonical solution operator for ∂̄∗b,t, ∂̄bGq,t : L2
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
)→ L2

0,q+1(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) is

continuous. Additionally, ∂̄bGq,t : Hs
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
)→ Hs

0,q+1(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) is continuous

if t ≥ Ts.

viii. The Szegö projection Sq,t = I − ∂̄∗b,t∂̄bGq,t is continuous on L2
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) . Addition-

ally, if t ≥ Ts then Sq,t is continuous on Hs
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) .
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We start doing some observations about the space of weighted harmonic (0, q)-forms
denoted by Hq

t (M) and defined by

Hq
t (M) :=

{
f ∈ Dom(∂̄b) ∩Dom(∂̄∗b ) : ∂̄bf = 0, ∂̄∗b.±f = 0

}
=
{
f ∈ Dom(∂̄b) ∩Dom(∂̄∗b ) : Qb,±(f, f) = 0

}
.

Lemma 5.0.3 Let M be a smooth, embedded CR manifold of hypersurface type that
satisfies Y (q) weakly. If t > 0 is suitably large and the functions φ+, φ− are as in (4.14),
then

(i) Hq
t is finite dimensional;

(ii) There exists C that does not depend on φ+ and φ− so that for all (0, q)-forms
u ∈ Dom(∂̄b) ∩Dom(∂̄∗b ) satisfying u ⊥ Hq

t (with respect to (·, ·)t) we have∥∥∥∣∣∣u∥∥∥∣∣∣2
t
≤ CQb,t(u, u). (5.1)

Proof. If u ∈ Hq
t (M) by (4.15) we have

∥∥∥∣∣∣u∥∥∥∣∣∣
t
≤ Ct‖u‖−1. Then the identity map from

H−1
0,q (M)∩Hq

t (M) to L2
0,q(M)∩Hq

t (M) is bounded. By Rellich’s theorem, L2
0,q(M)∩Hq

t (M)
is compactly embedded in H−1

0,q (M) ∩ Hq
t (M) via the identity map. The composition of

a bounded operator with a compact operator is a compact operator, which implies the
identity map from L2

0,q(M) ∩Hq
t (M) to L2

0,q(M) ∩Hq
t (M) is compact. It follows that the

unit sphere on Hq
t (M) is compact. Then Hq

t (M) is finite dimensional.

We prove (5.1) by contradiction. Assume (5.1) is not true, then there exists a
sequence {uk} ⊂ ⊥Hq

t (M) with
∥∥∥∣∣∣uk∥∥∥∣∣∣

t
= 1, so that

1 =
∥∥∥∣∣∣uk∥∥∥∣∣∣2

t
≥ kQb,t(uk, uk). (5.2)

Again, by the Rellich’s theorem L2
0,q(M)∩⊥Hq

t (M) is compact in H−1
0,q (M)∩⊥Hq

t (M), then
there exists a subsequence ukj that converges in H−1

0,q (M). Now using (4.15), we obtain∥∥∥∣∣∣ukr − uks∥∥∥∣∣∣2t ≤ Ct
(
Qb,t(ukr , ukr) +Qb,t(uks , uks) + ‖ukr − uks‖

2
−1

)
Then, by (5.2) and since ukj converges in H−1

0,q (M), ukj is a Cauchy sequence in L2
0,q(M), so

it converges in L2
0,q(M). Also (5.2) implies that ukj converges in the Qb,t(·, ·)1/2 norm, so in

the
(
Qb,t(·, ·) +

∥∥∥∣∣∣ · ∥∥∥∣∣∣2
t

)1/2
norm. If u is the limit of ukj in L2

0,q(M) then u ∈ ⊥Hq
t (M) and∥∥∥∣∣∣u∥∥∥∣∣∣

t
= 1, and by the closure of operator ∂̄b and ∂̄∗b,t, u ∈ Dom(∂̄b) ∩Dom(∂̄∗b ). However, a

consequence of (5.2) is that u ∈ Hq
t (M). Then u = 0 and this is a contradiction.

Now by the Theorem 2.1.3 we have the closure of the range of the operators
∂̄b : L2

0,q(M)→ L2
0,q+1(M) and ∂̄∗b,t : L2

0,q(M)→ L2
0,q−1(M) in the norm

∥∥∥∣∣∣.∥∥∥∣∣∣
t
. Then by the

Theorem 2.1.2 we have the closure of the range of the operators ∂̄b : L2
0,q−1(M)→ L2

0,q(M)
and ∂̄∗b,t : L2

0,q+1(M)→ L2
0,q(M) in the norm

∥∥∥∣∣∣.∥∥∥∣∣∣
t
.
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5.1 Existence of the Green operator Gq,t

Here we prove the existence of the Green operator, which is defined as the inverse
of the Kohn Laplacian �b,t := ∂̄b∂̄

∗
b,t + ∂̄∗b,t∂̄b where

Dom(�b,t) :=
{
φ ∈ L2

0,q(M) : φ ∈ Dom(∂̄b) ∩Dom(∂̄∗b,t), ∂̄bφ ∈ Dom(∂̄∗b,t), and ∂̄∗b,tφ ∈ Dom(∂̄b)
}
.

For this purpose, we will use the next theorem established in [24] in Lemma 5.4.

Lemma 5.1.1 Let H be a Hilbert space equipped with the inner product (., .) and corre-
sponding norm ‖.‖ and Q a positive definite Hermitian form defined on a dense D ⊂ H

satisfying
‖ϕ‖2 ≤ CQ(ϕ, ϕ) (5.3)

for all ϕ ∈ D. D and Q are such that D is a Hilbert space under the inner product Q(., .).
Then there exists a unique self-adjoint operator injective F with Dom(F ) ⊂ D satisfying

Q(ϕ, φ) = (Fϕ, φ)

for all ϕ ∈ Dom(F ) and φ ∈ D. F is called the Friedrich’s representative.

Proof. For each α ∈ H, we define the antilinear functional Ωα on (D, ‖.‖) given by
Ωα : D 3 φ→ (α, φ). By (5.3)

|Ωα(φ)| ≤ ‖α‖‖φ‖ ≤ C‖α‖Q(φ, φ)1/2

so by the Riesz representation theorem there exists some ϕα ∈ D such that Q(ϕα, φ) =
(α, φ) for every φ ∈ D. Let S be the operator associated to α ∈ H with ϕα ∈ D, that is,
S : H 3 α→ ϕα ∈ D. Again by (5.3) we have

‖Sα‖2 ≤ CQ(Sα, Sα) = C(α, Sα) ≤ C‖α‖‖Sα‖,

so S is a bounded operator and ‖Sα‖ ≤ ‖α‖. Now, if Sα = 0 then (α, φ) = Q(Sα, φ) = 0
for all φ ∈ D. Since D is dense in H, (α, φ) = 0 for all φ ∈ H and α = 0. This implies
that S is injective. Also

(Sα, β) = (β, Sα) = Q(Sβ, Sα) = Q(Sα, Sβ) = (α, Sβ),

so S is self-adjoint. Define F := S−1 : Ran(S)→ H. F is self-adjoint, Dom(F ) = Ran(S) ⊂
D, F is onto and

Q(ϕ, φ) = (Fϕ, φ)

for all ϕ ∈ Dom(F ) and φ ∈ D.

In order to use Lemma 5.1.1, we need the following lemma.
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Lemma 5.1.2
(
Dom(∂̄b) ∩Dom(∂̄∗b ) ∩ ⊥H

q
t (M), Qb,t(., .)1/2

)
is a Hilbert space and Dom(∂̄b)∩

Dom(∂̄∗b ) ∩ ⊥H
q
t (M) is dense in ⊥Hq

t (M).

Proof. Suppose {u`} ⊂ Dom(∂̄b)∩Dom(∂̄∗b )∩⊥Hq
t (M) is a Cauchy sequence with respect

to the norm Qb,t(·, ·)1/2. Then ∂̄bu` and ∂̄∗b,tu` are Cauchy sequences in L2
0,q+1(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
)

and L2
0,q−1(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
), respectively, so they converge to v1 ∈ L2

0,q+1(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) and v2 ∈

L2
0,q−1(M,

∥∥∥∣∣∣·∥∥∥∣∣∣
t
) respectively. By (5.1), this means {u`} is a Cauchy sequence in L2

0,q(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
),

hence converges to some u ∈ L2
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
). Thus u ∈ Dom(∂̄b)∩Dom(∂̄∗b ), ∂̄bu = v1, and

∂̄∗b,tu = v2 since ∂̄b and ∂̄∗b,t are closed operators. Since 0 = (u`, w)t for all w ∈ Hq
t and∥∥∥∣∣∣u` − u∥∥∥∣∣∣

t
→ 0, u ∈ ⊥Hq

t (M). Thus u ∈ Dom(∂̄b) ∩Dom(∂̄∗b ) ∩ ⊥H
q
t .

Next, suppose u ∈ ⊥Hq
t (M) is nonzero and u` ∈ Dom(∂̄b) ∩ Dom(∂̄∗b ) satisfies

u` → u on L2
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
). Let v` = (I −Hq

t )u`, with Hq
t the orthogonal projection onto

Hq
t . The forms v` ∈ ⊥Hq

t (M) ∩ Dom(∂̄b) ∩ Dom(∂̄∗b ). Since u 6= 0, it cannot be the
case that v` = 0 for every `. Since

∥∥∥∣∣∣u`∥∥∥∣∣∣2
t

=
∥∥∥∣∣∣Hq

t u`
∥∥∥∣∣∣2
t

+
∥∥∥∣∣∣v`∥∥∥∣∣∣2

t
, and the forms Hq

t u` and
v` are orthogonal, Hq

t u` and v` both converge in L2
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
). Let α = lim`→∞H

q
t u`,

v = lim`→∞ v`, and since Hq
t u` = u` − v`, α = u − v ∈ ⊥Hq

t (M). However, α ∈ Hq
t since

Hq
t is closed, forcing α = 0. Thus,

∥∥∥∣∣∣u− v`∥∥∥∣∣∣
t
≤
∥∥∥∣∣∣u− u`∥∥∥∣∣∣

t
+
∥∥∥∣∣∣Hq

t u`
∥∥∥∣∣∣
t
→ 0. Consequently

Dom(∂̄b) ∩Dom(∂̄∗b ) ∩ ⊥H
q
t (M) is dense in ⊥Hq

t (M).

We now can establish the existence and L2-continuity of the complex Green operator Gq,t

using the following well-known result (we adapt the presentation and argument in [24,
Corollary 5.5]).

Corollary 5.1.3 Let M be a smooth compact, orientable embedded CR manifold of hy-
persurface type that satisfies weak Y (q). If t > 0 is suitable large, φ+, φ− are as in (4.14),
and α ∈ ⊥Hq

t , then there exists a unique ϕt ∈ ⊥H
q
t ∩Dom(∂̄b) ∩Dom(∂̄∗b ) such that

Qb,t(ϕt, φ) = (α, φ)t , ∀φ ∈ Dom(∂̄b) ∩Dom(∂̄∗b ).

We define the Green operator Gq,t to be the operator that maps α into ϕt. Gq,t is a bounded
operator, and if additionally α is closed, then ut = ∂̄∗b,tGq,tα satisfies ∂̄but = α. We define
Gq,t to be identically 0 on Hq

t (M).

Proof. We apply Lemma 5.1.1 with H = ⊥Hq
t (M),

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
as ‖·‖, Qq,t(·, ·) as Q and

Dom(∂̄b) ∩Dom(∂̄∗b ) ∩ ⊥H
q
t (M) as D. By the Lemma 5.1.2, for t suitably large and (5.1),

we have both the existence of the Friedrichs representative F , (and using the notation
on Lemma 5.1.1), the existence of its inverse self-adjoint S : ⊥Hq

t (M) → Ran(S) =
Dom(F ) ⊂ Dom(∂̄b) ∩ Dom(∂̄∗b ) ∩ ⊥H

q
t (M). We affirm Dom(�b,t) ∩ ⊥Hq

t (M) ⊂ Dom(F ).
In fact, let α ∈ Dom(�b,t)∩⊥Hq

t (M) and β = �b,tα. Then β ∈ ⊥Hq
t (M) and Qb,t(Sβ, φ) =
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(β, φ)t = Qb,t(α, φ) for any φ ∈ Dom(∂̄b) ∩ Dom(∂̄∗b ) ∩ ⊥H
q
t (M). Then α = Sβ and

α ∈ Ran(S) = Dom(F ). Moreover Dom(�∗b,t) ∩ ⊥H
q
t (M) ⊃ Dom(F ∗). Since �b,t and F

are self-adjoint, Dom(�b,t)∩⊥Hq
t (M) = Dom(F ). Then F = �b,t on Dom(�b,t)∩⊥Hq

t (M).
So Gq,t := S : ⊥Hq

t (M)→ Dom(�b,t) ∩ ⊥Hq
t (M), and

Qb,t(Gq,tα, φ) = (α, φ)t , ∀φ ∈ Dom(∂̄b) ∩Dom(∂̄∗b ) ∩ ⊥H
q
t (M)

with Gb,tα unique on Dom(∂̄b) ∩ Dom(∂̄∗b ) ∩ ⊥H
q
t (M), and

∥∥∥∣∣∣Gq,tα
∥∥∥∣∣∣
t
≤ C

∥∥∥∣∣∣α∥∥∥∣∣∣
t
. Since

α ⊥ Hq
t (M), also we have

Qb,t(Gq,tα, φ) = (α, φ)t , ∀φ ∈ Dom(∂̄b) ∩Dom(∂̄∗b ) ∩H
q
t (M). (5.4)

So (5.4) is satisfied for all φ ∈ Dom(∂̄b) ∩Dom(∂̄∗b ).

5.2 Smoothness of harmonic forms
Here we will prove that Hq

t (M) ⊂ Hs
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) for t sufficiently large, assuming

(4.15). We adapt the arguments of [16, 9]. See also [24, 19].

Fix s ≥ 1. For forms f, g ∈ H1
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
), set

Qδ,ν
b,t (f, g) = Qb,t(f, g) + δQdb(f, g) + ν (f, g)t

where Qdb(·, ·) is the hermitian inner product associated to the de Rham exterior derivative
db, i.e., Qdb(u, v) = (dbu, dbv)t +

(
d∗b,tu, d

∗
b,tv
)
t
, and δ, ν ≥ 0. Also note that Q0,ν

b,t (f, g) =
Qb,t(f, g) + ν (f, g)t for f, g ∈ Dom(∂̄b) ∩Dom(∂̄∗b ). Then∥∥∥∣∣∣ϕ∥∥∥∣∣∣2

t
≤ 1
ν
Qδ,ν
b,t (ϕ, ϕ).

for all ϕ ∈ H1
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) if δ > 0 and all ϕ ∈ Dom(∂̄b) ∩ Dom(∂̄∗b ) if δ = 0. By Lemma

5.1.1, there exist self-adjoint operators (for 0 ≤ δ ≤ 1 and 0 < ν ≤ 1) �δ,ν
b,t : Dom(�δ,ν

b,t )→
L2

0,q(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
), with inverses Gδ,ν

q,t : L2
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
)→ Dom(�δ,ν

b,t ) satisfying

∥∥∥∣∣∣Gδ,ν
q,tϕ

∥∥∥∣∣∣2
t
≤ 1
ν

∥∥∥∣∣∣ϕ∥∥∥∣∣∣2
t

(5.5)

for all ϕ ∈ L2
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) and all δ ∈ [0, 1].

Our goal is to prove

‖G0,ν
q,tϕ‖Hs ≤ Kt‖ϕ‖Hs + Ct,s‖G0,ν

q,tϕ‖0. (5.6)

In fact, (5.6) is the main tool that we need to prove that Hq
t (M) ⊂ Hs

0,q(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
), for t

sufficiently large.

We now prove (5.6). The operator �δ,ν
b,t is elliptic when δ > 0 which means that

Gδ,ν
q,t : Hs

0,q(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
)→ Hs+2

0,q (M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
).
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If ϕ ∈ Hs
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
), then

‖Gδ,ν
q,tϕ‖

2
Hs = ‖ΛsGδ,ν

q,tϕ‖
2
0 ≤ Ct

∥∥∥∣∣∣ΛsGδ,ν
q,tϕ

∥∥∥∣∣∣2
t
.

Since Gδ,ν
q,tϕ ∈ Hs+2

0,q (M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
), the basic estimate yields

∥∥∥∣∣∣ΛsGδ,ν
q,tϕ

∥∥∥∣∣∣2
t
≤ K

t
Qb,t(ΛsGδ,ν

q,tϕ,ΛsGδ,ν
q,tϕ) + Ct,s‖Gδ,ν

q,tϕ‖
2
Hs−1

≤ K

t
Qδ,ν
b,t (ΛsGδ,ν

q,tϕ,ΛsGδ,ν
q,tϕ) + Ct,s‖Gδ,ν

q,tϕ‖
2
Hs−1 . (5.7)

On the other hand, if (Λs)∗,t is the adjoint of Λs under the inner product (·, ·)t,
then

(Λsu, v)t = (u,ΛsFtv)0 = (u,EtΛsFtv)t = (u, (Λs + [Et,Λs]Ft)v)t
implies that (Λs)∗,t = Λs +P s−1

t , where P s−1
t is a pseudodifferential operator of order s− 1

depending on t. A careful integration by parts shows that∥∥∥∣∣∣∂̄bΛsGδ,ν
q,tϕ

∥∥∥∣∣∣2
t

=
(
∂̄∗b,tΛs∂̄bG

δ,ν
q,tϕ,ΛsGδ,ν

q,tϕ
)
t
+
(
[∂̄b,Λs]Gδ,ν

q,tϕ, ∂̄bΛsGδ,ν
q,tϕ

)
t

=
(
Λs∂̄∗b,t∂̄bG

δ,ν
q,tϕ,ΛsGδ,ν

q,tϕ
)
t
+
(
[∂̄b,Λs]Gδ,ν

q,tϕ, ∂̄bΛsGδ,ν
q,tϕ

)
t
+
(
[∂̄∗b,t,Λs]∂̄bGδ,ν

q,tϕ,ΛsGδ,ν
q,tϕ

)
t

=
(
Λs∂̄∗b,t∂̄bG

δ,ν
q,tϕ,ΛsGδ,ν

q,tϕ
)
t
+
(
[∂̄b,Λs]Gδ,ν

q,tϕ, ∂̄bΛsGδ,ν
q,tϕ

)
t

+
(
Λs∂̄bG

δ,ν
q,tϕ, (Λ−s)∗,t

[
(Λs)∗,t, ∂̄b

]
ΛsGδ,ν

q,tϕ
)
t

=
(
Λs∂̄∗b,t∂̄bG

δ,ν
q,tϕ,ΛsGδ,ν

q,tϕ
)
t
+
(
[∂̄b,Λs]Gδ,ν

q,tϕ, ∂̄bΛsGδ,ν
q,tϕ

)
t

+
(
Λs∂̄bG

δ,ν
q,tϕ,

([
(Λs)∗,t, ∂̄b

]
+ Λ−s

[[
(Λs)∗,t, ∂̄b

]
,Λs

]
+ P−s−1

t

[
(Λs)∗,t, ∂̄b

]
Λs
)
Gδ,ν
q,tϕ

)
t

=
(
Λs∂̄∗b,t∂̄bG

δ,ν
q,tϕ,ΛsGδ,ν

q,tϕ
)
t
+
(
[∂̄b,Λs]Gδ,ν

q,tϕ, ∂̄bΛsGδ,ν
q,tϕ

)
t

+
(
∂̄bΛsGδ,ν

q,tϕ,
([

(Λs)∗,t, ∂̄b
]

+ Λ−s
[[

(Λs)∗,t, ∂̄b
]
,Λs

]
+ P−s−1

t

[
(Λs)∗,t, ∂̄b

]
Λs
)
Gδ,ν
q,tϕ

)
t

+
(
[Λs, ∂̄b]Gδ,ν

q,tϕ,
([

(Λs)∗,t, ∂̄b
]

+ Λ−s
[[

(Λs)∗,t, ∂̄b
]
,Λs

]
+ P−s−1

t

[
(Λs)∗,t, ∂̄b

]
Λs
)
Gδ,ν
q,tϕ

)
t
.

Applying the same sequence of integration by parts and commutators we have∥∥∥∣∣∣∂̄∗b,tΛsGδ,ν
q,tϕ

∥∥∥∣∣∣2
t

=
(
Λs∂̄∗b,t∂̄bG

δ,ν
q,tϕ,ΛsGδ,ν

q,tϕ
)
t
+
(
[∂̄∗b,t,Λs]Gδ,ν

q,tϕ, ∂̄
∗
b,tΛsGδ,ν

q,tϕ
)
t

+
(
∂̄∗b,tΛsGδ,ν

q,tϕ,
([

(Λs)∗,t, ∂̄∗b,t
]

+ Λ−s
[[

(Λs)∗,t, ∂̄∗b,t
]
,Λs

]
+ P−s−1

t

[
(Λs)∗,t, ∂̄∗b,t

]
Λs
)
Gδ,ν
q,tϕ

)
t

+
(
[Λs, ∂̄∗b,t]G

δ,ν
q,tϕ,

([
(Λs)∗,t, ∂̄∗b,t

]
+ Λ−s

[[
(Λs)∗,t, ∂̄∗b,t

]
,Λs

]
+ P−s−1

t

[
(Λs)∗,t, ∂̄∗b,t

]
Λs
)
Gδ,ν
q,tϕ

)
t
;

∥∥∥∣∣∣dbΛsGδ,ν
q,tϕ

∥∥∥∣∣∣2
t

=
(
Λsd∗b,tdbG

δ,ν
q,tϕ,ΛsGδ,ν

q,tϕ
)
t
+
(
[db,Λs]Gδ,ν

q,tϕ, dbΛsGδ,ν
q,tϕ

)
t

+
(
dbΛsGδ,ν

q,tϕ,
([

(Λs)∗,t, db
]

+ Λ−s
[[

(Λs)∗,t, db
]
,Λs

]
+ P−s−1

t

[
(Λs)∗,t, db

]
Λs
)
Gδ,ν
q,tϕ

)
t
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+
(
[Λs, db]Gδ,ν

q,tϕ,
([

(Λs)∗,t, db
]

+ Λ−s
[[

(Λs)∗,t, db
]
,Λs

]
+ P−s−1

t

[
(Λs)∗,t, db

]
Λs
)
Gδ,ν
q,tϕ

)
t
;

∥∥∥∣∣∣d∗b,tΛsGδ,ν
q,tϕ

∥∥∥∣∣∣2
t

=
(
Λsdbd

∗
b,tG

δ,ν
q,tϕ,ΛsGδ,ν

q,tϕ
)
t
+
(
[d∗b,t,Λs]Gδ,ν

q,tϕ, d
∗
b,tΛsGδ,ν

q,tϕ
)
t

+
(
d∗b,tΛsGδ,ν

q,tϕ,
([

(Λs)∗,t, d∗b,t
]

+ Λ−s
[[

(Λs)∗,t, d∗b,t
]
,Λs

]
+ P−s−1

t

[
(Λs)∗,t, d∗b,t

]
Λs
)
Gδ,ν
q,tϕ

)
t

+
(
[Λs, d∗b,t]G

δ,ν
q,tϕ,

([
(Λs)∗,t, d∗b,t

]
+ Λ−s

[[
(Λs)∗,t, d∗b,t

]
,Λs

]
+ P−s−1

t

[
(Λs)∗,t, d∗b,t

]
Λs
)
Gδ,ν
q,tϕ

)
t
.

Since ∂̄∗b,t = ∂̄∗b +P 0
t , d∗b,t = d∗b +P 0

t , using, small constant/large constant argument,
we can absorb terms to obtain

Qδ,ν
b,t (ΛsGδ,ν

q,tϕ,ΛsGδ,ν
q,tϕ) ≤ C

∥∥∥∣∣∣Λsϕ
∥∥∥∣∣∣2
t

+ Cs
∥∥∥∣∣∣ΛsGδ,ν

q,tϕ
∥∥∥∣∣∣2
t

+ Ct,s‖Gδ,ν
q,tϕ‖

2
Hs−1 (5.8)

where C does not depend t, s, δ, or ν, and Cs does not depend on t, δ, or ν. By (5.7), for t
sufficiently large

‖Gδ,ν
q,tϕ‖

2
Hs ≤ Kt‖ϕ‖2

Hs + Ct,s‖Gδ,ν
q,tϕ‖

2
Hs−1 .

By induction, we can reduce the Hs−1-norm to an L2-norm, and by (5.5), we observe

‖Gδ,ν
q,tϕ‖

2
Hs ≤ Kt‖ϕ‖2

Hs + Ct,s,ν‖ϕ‖2
0,

uniformly in δ > 0. Then there exists a sequence {Gδk,ν
q,t ϕ}k converging weakly to an

element uν in Hs
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) when δk → 0, and satisfying both

‖uν‖Hs ≤ Kt‖ϕ‖Hs + Ct,s,ν‖ϕ‖0 and ‖uν‖Hs ≤ Kt‖ϕ‖Hs + Ct,s‖uν‖0. (5.9)

Since Hs
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
) embeds compactly in Hs′

0,q(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) for s′ < s, it follows that

Gδk,ν
q,t ϕ → uν strongly in Hs′

0,q(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
). Also, observe that the next conclusion is not

automatic in the s = 1 case.∥∥∥∣∣∣∂̄bGδ,ν
q,tϕ

∥∥∥∣∣∣2
t

+
∥∥∥∣∣∣∂̄∗b,tGδ,ν

q,tϕ
∥∥∥∣∣∣2
t
≤ Qδ,ν

q,t (Gδ,ν
q,tϕ,G

δ,ν
q,tϕ)

=
(
ϕ,Gδ,ν

q,tϕ
)
t
≤
∥∥∥∣∣∣ϕ∥∥∥∣∣∣

t

∥∥∥∣∣∣Gδ,ν
q,tϕ

∥∥∥∣∣∣
t
≤ Cν

∥∥∥∣∣∣ϕ∥∥∥∣∣∣2
t
, (5.10)

and, moreover, ∂̄bGδk,ν
q,t ϕ and ∂̄∗b,tG

δk,ν
q,t ϕ are Cauchy sequences in L2. Indeed, assuming

δk ≤ δj we have∥∥∥∣∣∣∂̄bGδk,ν
q,t ϕ− ∂̄bG

δj ,ν
q,t ϕ

∥∥∥∣∣∣2
t

+
∥∥∥∣∣∣∂̄∗b,tGδk,ν

q,t ϕ− ∂̄∗b,tG
δj ,ν
q,t ϕ

∥∥∥∣∣∣2
t

≤ Qδk,ν
b,t (Gδk,ν

q,t ϕ−G
δj ,ν
q,t ϕ,G

δk,ν
q,t ϕ−G

δj ,ν
q,t ϕ)

=
(
ϕ,Gδk,ν

q,t ϕ−G
δj ,ν
q,t ϕ

)
t
−Qδk,ν

q,t (Gδj ,ν
q,t ϕ,G

δk,ν
q,t ϕ) +Qδk,ν

q,t (Gδj ,ν
q,t ϕ,G

δj ,ν
q,t ϕ)

≤
(
ϕ,Gδk,ν

q,t ϕ−G
δj ,ν
q,t ϕ

)
t
−Qδk,ν

q,t (Gδj ,ν
q,t ϕ,G

δk,ν
q,t ϕ) +Q

δj ,ν
q,t (Gδj ,ν

q,t ϕ,G
δj ,ν
q,t ϕ)

=
(
ϕ,Gδk,ν

q,t ϕ−G
δj ,ν
q,t ϕ

)
t
−
(
G
δj ,ν
q,t ϕ, ϕ

)
t
+
(
ϕ,G

δj ,ν
q,t ϕ

)
t

≤
∥∥∥∣∣∣ϕ∥∥∥∣∣∣

t

∥∥∥∣∣∣Gδk,ν
q,t ϕ−G

δj ,ν
q,t ϕ

∥∥∥∣∣∣
t
.
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Since ∂̄b and ∂̄∗b,t are closed operators it follows that uν ∈ Dom(∂̄b)∩Dom(∂̄∗b ), ∂̄bGδk,ν
q,t ϕ→

∂̄buν and ∂̄∗b,tG
δk,ν
q,t ϕ → ∂̄∗b,tuν in L2. This means Gδk,ν

q,t ϕ converges strongly to uν in the
Q0,ν
b,t (·, ·)1/2-norm. Thus, we will have, for any v ∈ H2

0,q(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
), by (5.5),

∣∣∣Q0,ν
b,t (Gδk,ν

q,t ϕ−G0,ν
q,tϕ, v)

∣∣∣ =
∣∣∣Qδk,ν

b,t (Gδk,ν
q,t ϕ, v)− δk

(
dbG

δk,ν
q,t ϕ, dbv

)
t

−δk
(
d∗b,tG

δk,ν
q,t ϕ, d

∗
b,tv
)
t
− (ϕ, v)t

∣∣∣
= δk

∣∣∣(Gδk,ν
q,t ϕ, (d∗b,tdb + dbd

∗
b,t)v

)
t

∣∣∣ ≤ δkCν,t
∥∥∥∣∣∣ϕ∥∥∥∣∣∣

t
‖v‖2.

It now follows that G0,ν
q,tϕ = uν and

‖G0,ν
q,tϕ‖Hs ≤ Kt‖ϕ‖Hs + Ct,s‖G0,ν

q,tϕ‖0. (5.11)

With this last inequality, we can now prove thatHq
t (M) ⊂ Hs

0,q(M), for t sufficiently
large. We proved that Hq

t (M) is finite dimensional, so assume dimHq
t (M) = N . If N = 0

there is nothing to prove. Otherwise assuming θ0 = 0 and let θj ∈ Hs
0,q(M) for 0 ≤ j ≤

l < N , where {θ1, ..., θN} is a basis for Hq
t (M). We will construct some θ ∈ Hs ∩Hq

t (M)
such that ‖θ‖0 = 1 and (θ, θj)t = 0 for all j ≤ l. Let α ∈ Hs

0,q(M) such that α ⊥ θj for all
j ≤ l and α is not orthogonal to θl+1 (α exists because otherwise it would imply θl+1 = 0).
By (5.11) we have

‖G0,ν
q,t α‖Hs ≤ Ct,s(‖α‖Hs + ‖G0,ν

q,t α‖0),

for all ν ∈ (0, 1). We claim
{
‖G0,ν

q,t α‖0, 0 < ν < 1
}
is unbounded. If it were bounded, then

by the last inequality, there would be a sequence G0,νk
q,t α converging weakly to u ∈ Hs

0,q(M).
Additionally, by a previous argument for Gδ,ν

q,t (done in (5.10)), u ∈ Dom(∂̄b) ∩Dom(∂̄∗b ),
G0,νk
q,t α→ u strongly in the Qb,t(., .)1/2-norm and so

Qb,t(u, φ) = lim
k→+∞

Qb,t(G0,νk
q,t α, φ) = lim

k→+∞
Q0,νk
b,t (G0,νk

q,t α, φ)− νk
(
G0,ν
q,t α, φ

)
t

= (α, φ)− lim
k→+∞

νk
(
G0,νk
q,t α, φ

)
t

= (α, φ)t , ∀φ ∈ Dom(∂̄b) ∩Dom(∂̄∗b )

(because we assumed
∥∥∥∣∣∣G0,ν

q,t α
∥∥∥∣∣∣
t
is bounded) for every φ ∈ Dom(∂̄b) ∩ Dom(∂̄∗b ). Setting

φ = θj the left-hand side is zero for all j, whereas the right-hand side is non zero for
j = l + 1. The claim is therefore established. It now follows that there exists some
subsequence

{
G0,νk
q,t α

}
such that limk→∞ ‖G0,νk

q,t α‖0 =∞. We set γk = G
0,νk
q,t α

‖G0,νk
q,t α‖

0

and note
that

Q0,νk
b,t (γk, φ) = (α, φ)t

‖G0,νk
q,t α‖0

. (5.12)

By (5.11) there exists a subsequence γkj which converges weakly in Hs
0,q(M) to some

θ ∈ Hs
0,q(M), so it converges strongly in L2

0,q(M). Since ‖γkj‖0 = 1, we have ‖θ‖0 = 1 and

∥∥∥∣∣∣∂̄bγkj∥∥∥∣∣∣2t +
∥∥∥∣∣∣∂̄∗b,tγkj∥∥∥∣∣∣2t ≤ Q

0,νkj
b,t (γkj , γkj) = 1

‖G
0,νkj
q,t α‖0

(
α, γkj

)
t
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≤
Ct
∥∥∥∣∣∣α∥∥∥∣∣∣

t

‖G
0,νkj
q,t ‖0

Then ∂̄bγkj → 0 and ∂̄∗b,tγkj → 0 in L2
0,q(M). Since ∂̄b and ∂̄∗b,t are closed operators,

θ ∈ Dom(∂̄b) ∩Dom(∂̄∗b ), ∂̄bθ = 0, and ∂̄∗b,tθ = 0. Thus θ ∈ Hq
t . Finally, by (5.12)

νkj
(
γkj , θr

)
= Q

0,νkj
q,t (γkj , θr) = (α, θr)t

‖G
0,νkj
q,t ‖0

= 0,

this means γkj is orthogonal to θr for r = 1, ..., l. Since γkj converges strongly in L2
0,q(M) to

θ; θ will be orthogonal to θr for r = 1, ..., l. So with this, we have proved Hq
t (M) ⊂ Hs

0,q(M)
for t sufficiently large.

5.3 Regularity of the Green operator and the canonical solutions.
In this section we assume t is sufficiently large and the weighted harmonic (0, q)-

forms, if they exist, are elements ofH1
0,q(M), so ⊥Hq

t (M)∩H1
0,q(M) 6= {0}. We use an elliptic

regularization argument. The operator Gq,t : L2
0,q(M,

∥∥∥∣∣∣ · ∥∥∥∣∣∣
t
)→ L2

0,q(M,
∥∥∥∣∣∣ · ∥∥∥∣∣∣

t
) ∩ ⊥Hq

t (M).
Consequently, the regularity result for Gq,t must be on ⊥Hq

t (M) ∩ Hs
0,q(M) for s ≥ 0.

Continuity on all of Hs
0,q(M) then follows because we already established that harmonic

forms are elements of Hs
0,q(M).

The quadratic form Qδ
q,t(·, ·) := Qδ,0

q,t(·, ·) is an inner product on H1
0,q(M). By (5.1)∥∥∥∣∣∣u∥∥∥∣∣∣2

t
≤ CQb,t(u, u) ≤ CQδ

b,t(u, u) (5.13)

for all u ∈ H1
0,q(M) ∩ ⊥Hq

t (M). If f ∈ L2
0,q(M) then

|(f, g)t| ≤
∥∥∥∣∣∣f∥∥∥∣∣∣

t

∥∥∥∣∣∣g∥∥∥∣∣∣
t
≤
∥∥∥∣∣∣f∥∥∥∣∣∣

t
C1/2Qδ

b,t(g, g)

for all g ∈ ⊥Hq
t (M)∩H1

0,q(M). This means the mapping g 7→ (f, g)t is a bounded conjugate
linear functional on ⊥Hq

t (M) ∩ H1
0,q(M). By the Riesz Representation Theorem, there

exists an element Gδ
q,tf ∈ ⊥H

q
t (M) ∩ H1

0,q(M) such that (f, g)t = Qδ
b,t(Gδ

q,tf, g) for all
g ∈ ⊥Hq

t (M) ∩H1
0,q(M).

Moreover, by (5.13)

C−1
∥∥∥∣∣∣Gδ

q,tf
∥∥∥∣∣∣2
t
≤ Qδ

b,t(Gδ
q,tf,G

δ
q,tf) =

(
f,Gδ

q,tf
)
t
≤
∥∥∥∣∣∣f∥∥∥∣∣∣

t

∥∥∥∣∣∣Gδ
q,tf

∥∥∥∣∣∣
t
,

where C is independent of δ. Consequently,∥∥∥∣∣∣Gδ
q,tf

∥∥∥∣∣∣
t
≤ C

∥∥∥∣∣∣f∥∥∥∣∣∣
t
. (5.14)

Since Qδ
b,t(·, ·) satisfies Qδ

b,t(f, f) ≥ δ
∥∥∥∣∣∣Λ1f

∥∥∥∣∣∣
t
for every f ∈ H1

0,q(M), the bilinear
form Qδ

b,t(·.·) is elliptic onH1
0,q(M). This means that ϕ ∈ Hs

0,q(M) implies Gδ
q,tϕ ∈ Hs+2

0,q (M)
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(before, we only knew that Gδ
q,tϕ ∈ ⊥H

q
t (M) ∩H1

0,q(M)).

Let ϕ ∈ Hs
0,q(M), then

‖Gδ
q,tϕ‖

2
Hs = ‖ΛsGδ

q,tϕ‖
2
0 ≤ Ct

∥∥∥∣∣∣ΛsGδ
q,tϕ

∥∥∥∣∣∣2
t
. (5.15)

We apply the basic estimate to Gδ
q,tϕ ∈ Hs+2

0,q (M) and observe
∥∥∥∣∣∣ΛsGδ

q,tϕ
∥∥∥∣∣∣2
t
≤ K

t
Qb,t(ΛsGδ

q,tϕ,ΛsGδ
q,tϕ) + Ct,s‖Gδ

q,tϕ‖
2
Hs−1 . (5.16)

Using the argument of (5.8), we can establish

Qb,t(ΛsGδ
q,tϕ,ΛsGδ

q,tϕ) ≤ Qδ
b,t(ΛsGδ

q,tϕ,ΛsGδ
q,tϕ)

≤ C
∥∥∥∣∣∣Λsϕ

∥∥∥∣∣∣2
t

+ Cs
∥∥∥∣∣∣ΛsGδ

q,tϕ
∥∥∥∣∣∣2
t

+ Ct,s‖Gδ
q,tϕ‖

2
Hs−1 (5.17)

where C is independent of t, s, δ, and ν and Cs is independent of t, δ, and ν.

Plugging (5.17) into (5.16) we have∥∥∥∣∣∣ΛsGδ
q,tϕ

∥∥∥∣∣∣2
t
≤ K

t

(
Ct‖ϕ‖2

s + Cs
∥∥∥∣∣∣ΛsGδ

q,tϕ
∥∥∥∣∣∣2
t

)
+ Ct,s‖Gδ

q,tϕ‖
2
Hs−1 ,

and choosing t sufficiently large to absorb terms, it follows that∥∥∥∣∣∣ΛsGδ
q,tϕ

∥∥∥∣∣∣2
t
≤ Kt‖ϕ‖2

Hs + Ct,s‖Gδ
q,tϕ‖

2
Hs−1 , (5.18)

since
∥∥∥∣∣∣ΛsGδ

q,tϕ
∥∥∥∣∣∣
t
<∞. Plugging (5.18) into (5.15)

‖Gδ
q,tϕ‖

2
Hs ≤ Kt‖ϕ‖2

Hs + Ct,s‖Gδ
q,tϕ‖

2
Hs−1 .

Using (5.14) and induction, for the last inequality above we have

‖Gδ
q,tϕ‖

2
Hs ≤ Kt‖ϕ‖2

Hs + Ct,s‖ϕ‖2
0. (5.19)

With (5.19) in hand, we now turn to sending δ → 0, in a similar manner to [10]. If
ϕ ∈ Hs

0,q(M) then
{
Gδ
q,tϕ : 0 < δ < 1

}
is bounded in Hs

0,q(M), so there exists δk → 0 and
ũ ∈ Hs

0,q(M) so that Gδk
q,tϕ → ũ weakly in Hs

0,q(M). Since the inclusion of Hs
0,q(M) in

L2
0,q(M) is compact, we have Gδk

q,tϕ → ũ strongly in L2
0,q(M) and ũ ∈ ⊥Hq

t (M). Also we
have

‖ũ‖2
Hs ≤ Kt‖ϕ‖2

Hs + Ct,s‖ϕ‖2
0. (5.20)

Also,∥∥∥∣∣∣∂̄bGδ
q,tϕ

∥∥∥∣∣∣2
t
+
∥∥∥∣∣∣∂̄∗b,tGδ

q,tϕ
∥∥∥∣∣∣2
t
≤ Qδ

b,t(Gδ
q,tϕ,G

δ
q,tϕ) =

(
ϕ,Gδ

q,tϕ
)
t
≤
∥∥∥∣∣∣ϕ∥∥∥∣∣∣

t

∥∥∥∣∣∣Gδ
q,tϕ

∥∥∥∣∣∣
t
≤ Ct

∥∥∥∣∣∣ϕ∥∥∥∣∣∣2
t
,

and, as in the previous section, we can prove ∂̄bGδ
q,tϕ and ∂̄∗b,tGδ

q,tϕ are Cauchy sequences in
L2

0,q+1(M) and L2
0,q−1(M) respectively. Since ∂̄b and ∂̄∗b,t are closed operators we will have
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ũ ∈ Dom(∂̄b)∩Dom(∂̄∗b ), ∂̄bGδ
q,tϕ→ ∂̄bũ and ∂̄∗b,tGδ

q,tϕ→ ∂̄∗b,tũ in L2
0,q+1(M) and L2

0,q−1(M)
respectively, and ∥∥∥∣∣∣∂̄bũ∥∥∥∣∣∣2

t
+
∥∥∥∣∣∣∂̄∗b,tũ∥∥∥∣∣∣2t ≤ Ct

∥∥∥∣∣∣ϕ∥∥∥∣∣∣2
t
. (5.21)

Consequently if v ∈ Hs+2
0,q (M), then limQδk

b,t(G
δk
q,tϕ, v) = Qb,t(ũ, v). However,Qδk

b,t(G
δk
q,tϕ, v) =

(ϕ, v)t = Qb,t(Gq,tϕ, v). So by uniqueness Gq,tϕ = ũ and by (5.20) we have

‖Gq,tϕ‖2
Hs ≤ Kt

∥∥∥∣∣∣ϕ∥∥∥∣∣∣2
Hs

+ Ct,s‖ϕ‖2
0, (5.22)

and by (5.21) ∥∥∥∣∣∣∂̄bGq,tϕ
∥∥∥∣∣∣2
t

+
∥∥∥∣∣∣∂̄∗b,tGq,tϕ

∥∥∥∣∣∣2
t
≤ Ct

∥∥∥∣∣∣ϕ∥∥∥∣∣∣2
t
.

These two last equations prove the continuity of Gq,t on Hs
0,q(M), and as well as ∂̄bGq,t

and ∂̄∗b,tGq,t in L2
0,q(M).

Now, we show some estimates to prove the regularity of canonical solutions. Let

(κ) :=
∥∥∥∣∣∣Λs∂̄bG

δ
q,tϕ

∥∥∥∣∣∣2
t

+
∥∥∥∣∣∣Λs∂̄∗b,tG

δ
q,tϕ

∥∥∥∣∣∣2
t

+ δ(
∥∥∥∣∣∣ΛsdbG

δ
q,tϕ

∥∥∥∣∣∣2
t

+
∥∥∥∣∣∣Λsd∗bG

δ
q,tϕ

∥∥∥∣∣∣2
t
).

By integration by parts we have
∥∥∥∣∣∣Λs∂̄bG

δ
q,tϕ

∥∥∥∣∣∣2
t

=
(
Λs∂̄∗b,t∂̄bG

δ
q,tϕ,ΛsGδ

q,tϕ
)
t
+
([
∂̄∗b,t,Λs

]
∂̄bG

δ
q,tϕ,ΛsGδ

q,tϕ
)
t

+
(
Λs∂̄bG

δ
q,tϕ,

[
Λs, ∂̄b

]
Gδ
q,tϕ

)
t
,∥∥∥∣∣∣Λs∂̄∗b,tG

δ
q,tϕ

∥∥∥∣∣∣2
t

=
(
Λs∂̄b∂̄

∗
b,tG

δ
q,tϕ,ΛsGδ

q,tϕ
)
t
+
([
∂̄b,Λs

]
∂̄∗b,tG

δ
q,tϕ,ΛsGδ

q,tϕ
)
t

+
(
Λs∂̄∗b,tG

δ
q,tϕ,

[
Λs, ∂̄∗b,t

]
Gδ
q,tϕ

)
t
,∥∥∥∣∣∣ΛsdbG

δ
q,tϕ

∥∥∥∣∣∣2
t

=
(
Λsd∗bdbG

δ
q,tϕ,ΛsGδ

q,tϕ
)
t
+
(
[d∗b ,Λs] dbGδ

q,tϕ,ΛsGδ
q,tϕ

)
t

+
(
ΛsdbG

δ
q,tϕ, [Λs, db]Gδ

q,tϕ
)
t
,∥∥∥∣∣∣Λsd∗bG

δ
q,tϕ

∥∥∥∣∣∣2
t

=
(
Λsdbd

∗
bG

δ
q,tϕ,ΛsGδ

q,tϕ
)
t
+
(
[db,Λs] d∗bGδ

q,tϕ,ΛsGδ
q,tϕ

)
t

+
(
Λsd∗bG

δ
q,tϕ, [Λs, d∗b ]Gδ

q,tϕ
)
t
.

Then using a small constant/large constant argument and the absorbing of error
terms by (κ) we have

(κ) ≤ C
∥∥∥∣∣∣Λsϕ

∥∥∥∣∣∣2
t

+ Ct,s‖Gδ
q,tϕ‖

2
Hs .

where C does not depend on t, s, ν, δ. So by (5.19), for t sufficiently large

‖∂̄bGδ
q,tϕ‖Hs + ‖∂̄∗b,tGδ

q,tϕ‖Hs ≤ Ct,s(‖ϕ‖Hs + ‖ϕ‖0). (5.23)

In particular
‖∂̄bGδk

q,tϕ‖Hs + ‖∂̄∗b,tG
δk
q,tϕ‖Hs ≤ Ct,s(‖ϕ‖Hs + ‖ϕ‖0), (5.24)
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where Gδk
q,tϕ is the same subsequence that we took to prove (5.22).We proved that Gδk

q,tϕ→
Gq,tϕ strongly in L2

0,q(M). Now, by (5.24), there exist subsequences ∂̄bG
δkj
q,t ϕ and ∂̄∗b,tG

δkj
q,t ϕ

that converges weakly to v1 ∈ Hs
q+1(M) and v2 ∈ Hs

q−1(M) respectively, and

‖v1‖Hs + ‖v2‖Hs ≤ Ct,s(‖ϕ‖Hs + ‖ϕ‖0).

Since ∂̄bG
δkj
q,t ϕ→ v1, ∂̄∗b,tG

δkj
q,t ϕ→ v2 strongly in L2

0,q+1(M) and L2
0,q−1(M) respectively and

Gδk
q,tϕ→ Gq,tϕ strongly in L2

0,q(M), then v1 = ∂̄bGq,tϕ and v2 = ∂̄∗b,tGq,tϕ. So

‖∂̄bGq,tϕ‖Hs + ‖∂̄∗b,tGq,tϕ‖Hs ≤ Ct,s(‖ϕ‖Hs + ‖ϕ‖0).

This proves the continuity of the canonical solution operators in Hs
0,q(M).

5.3.1 Some facts about the canonical solutions

Here we make computations in order to find weak solutions to the ∂̄b and ∂̄∗b,t

problems. All of this sections will be done for elements on ⊥Hq
t (M). Remember that here,

in ⊥Hq
t (M), we will have �b,tGq,t = Id and Gq,t�b,t = Id on Dom(�b,t).

Claim 1. If α is a (0, q)-form in Ker(∂̄b), then ∂̄∗b,t∂̄bGq,tα = 0, and if it is in Ker(∂̄∗b,t)
then ∂̄b∂̄∗b,tGq,tα = 0. In fact, since 0 = ∂̄bα = ∂̄b∂̄

∗
b,t∂̄bGq,tα + ∂̄b∂̄b∂̄

∗
b,tGq,tα = ∂̄b∂̄

∗
b,t∂̄bGq,tα

we have 0 =
(
∂̄b∂̄

∗
b,t∂̄bGq,tα, ∂̄bGq,tα

)
t

= ‖∂̄∗b,t∂̄bGq,tα‖
2
t
. Then ∂̄∗b,t∂̄bGq,tα = 0. The other

equality is proved in a similar way.

With this claim and the fact �b,tGq,t = Id, we have that ∂̄∗b,tGq,tα satisfies weakly
the equation ∂̄bu = α. We will call ∂̄∗b,tGq,t the canonical solution operator to ∂̄b. Similarly,
we can prove that the canonical solution operator to ∂̄∗b,t is given by ∂̄bGq,t.

Also, we can see that these canonical solutions, given by the operator ∂̄∗b,tGq,t

and ∂̄bGq,t, are the unique solutions orthogonal to Ker(∂̄b) and Ker(∂̄∗b,t) respectively. For
example if u is in ⊥Ker(∂̄b) and ∂̄bu = α = ∂̄b∂̄

∗
b,tGq,tα we will have u− ∂̄∗b,tGq,tα ∈ Ker(∂̄b),

and so u = ∂̄∗b,tGq,tα.

Claim 2 Gq,t commutes with the operators ∂̄b∂̄∗b,t and ∂̄∗b,t∂̄b on Dom(�b,t)∩Ker(∂̄b)
and Dom(�b,t) ∩Ker(∂̄∗b,t) respectively. In fact, by above if ∂̄bα = 0 then ∂̄∗b,t∂̄bGq,tα = 0.
Then since �b,tGq,t = Gq,t�b,t on Dom(�b,t), we have ∂̄b∂̄∗b,tGq,tα = �b,tGq,tα = Gq,t�b,tα =
Gq,t∂̄b∂̄

∗
b,tα. The other equality is proved similarly.

Claim 3 Gq,t(Ker(∂̄b) ∩ ⊥Hq
t (M)) ⊂ Ker(∂̄b) and Gq,t(Ker(∂̄∗b,t) ∩ ⊥H

q
t (M)) ⊂

Ker(∂̄∗b,t). In fact, if ∂̄bα = 0, by the claim 1 ∂̄∗b,t∂̄bGq,tα = 0, then 0 =
(
∂̄∗b,t∂̄bGq,tα,Gq,tα

)
t

=
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∥∥∥∣∣∣∂̄bGq,tα
∥∥∥∣∣∣2
t
. So ∂̄bGq,tα = 0. The other equality is proved similarly.

5.4 The Szego projection Sq,t
The Szego projection Sq,t is the projection of L2

0,q(M) onto Ker(∂̄b). We claim that

Sq,t = I − ∂̄∗b,t∂̄bGq,t (5.25)

and by the claim 2 above, Sq,t = I − Gq,t∂̄
∗
b,t∂̄b. In fact, obviously (5.25) is true in

Hq
t (M). Now if α ∈ Ker(∂̄b) ∩ ⊥Hq

t (M), by the claim 1 we will have ∂̄∗b,t∂̄bGq,tα = 0;
so (5.25) is checked. If α ∈ ⊥Ker(∂̄b) ∩ ⊥Hq

t (M), since α − ∂̄∗b,t∂̄bGq,tα = ∂̄b∂̄
∗
b,tGq,tα

and ∂̄∗b,t∂̄bGq,t ⊥ Ker(∂̄b), we have ∂̄b∂̄∗b,tGq,tα ⊥ Ker(∂̄b). But ∂̄b∂̄∗b,tGq,tα ∈ Ker(∂̄b), then
∂̄b∂̄

∗
b,tGq,tα = 0; so (5.25) is satisfied, because in this case α− ∂̄∗b,t∂̄bGq,tα = 0.

In the same way we can prove that the projection of L2
0,q(M) on Ker(∂̄∗b,t) is given

by I − ∂̄b∂̄∗b,tGq,t.

We know that ∂̄∗b,t∂̄bGq,tϕ ∈ L2
0,q(M), because we proved that Ran(Gq,t) = Dom(�b,t)∩

⊥Hq
t (M), but we can have a quantitative bound for it as follows:

∥∥∥∣∣∣∂̄∗b,t∂̄bGq,tϕ
∥∥∥∣∣∣2
t

=
(
∂̄b∂̄

∗
b,t∂̄bGq,tϕ, ∂̄bGq,tϕ

)
t

=
(
∂̄bϕ, ∂̄bGq,tϕ

)
t

=
(
ϕ, ∂̄∗b,t∂̄bGq,tϕ

)
t
≤
∥∥∥∣∣∣ϕ∥∥∥∣∣∣

t

∥∥∥∣∣∣∂̄∗b,t∂̄bGq,tϕ
∥∥∥∣∣∣
t

(5.26)

Then, since
∥∥∥∣∣∣∂̄∗b,t∂̄bGq,tϕ

∥∥∥∣∣∣
t
<∞, we will have∥∥∥∣∣∣∂̄∗b,t∂̄bGq,tϕ

∥∥∥∣∣∣
t
≤
∥∥∥∣∣∣ϕ∥∥∥∣∣∣

t
. (5.27)

And this proves that the operator Sq,t is continuous in L2
0,q(M).

Note that in the same way; it is true that
∥∥∥∣∣∣∂̄b∂̄∗b,tGq,tϕ

∥∥∥∣∣∣
t
≤
∥∥∥∣∣∣ϕ∥∥∥∣∣∣

t
. In fact we will

have that, if ϕ ∈ ⊥Hq
t (M), the decomposition ϕ = ∂̄∗b,t∂̄bGq,tϕ+ ∂̄b∂̄

∗
b,tGq,tϕ is orthogonal

and so
∥∥∥∣∣∣∂̄∗b,t∂̄bGq,tϕ

∥∥∥∣∣∣2
t

+
∥∥∥∣∣∣∂̄b∂̄∗b,tGq,tϕ

∥∥∥∣∣∣2
t

=
∥∥∥∣∣∣ϕ∥∥∥∣∣∣2

t
.

Now let s > 0. In order to prove the continuity of the operator Sq,t in Hs
0,q(M), it

is suffices to show that the operator ∂̄∗b,t∂̄bGq,t is continuous in Hs
0,q(M), this is, it suffices

to prove ∥∥∥∣∣∣Λs∂̄∗b,t∂̄bGq,tϕ
∥∥∥∣∣∣2
t
≤ Ct,s

∥∥∥∣∣∣Λsϕ
∥∥∥∣∣∣2
t
,



5.5. Proof of the Theorem 5.0.1 103

for some constant Ct,s > 0. In this case, we can not do just integration by parts like above
in (5.26) to get (5.27), because we do not know if

∥∥∥∣∣∣Λs∂̄∗b,t∂̄bGq,tϕ
∥∥∥∣∣∣
t
is finite. Instead we

will use a density argument.

Let t sufficiently large such that Gq,t is continuous in Hs+3
0,q (M) and Hs

0,q(M), ∂̄bGq,t

continuous in Hs
0,q(M). Let ϕ ∈ Hs

0,q(M) and ϕj ∈ Hs+3
0,q (M), such that ϕj → ϕ in Hs

0,q(M).
Then for any j we have

∥∥∥∣∣∣Λs∂̄∗b,t∂̄bGq,tϕj
∥∥∥∣∣∣2
t

=
(
Λs∂̄b∂̄

∗
b,t∂̄bGq,tϕj,Λs∂̄bGq,tϕj

)
t
+
([
∂̄b,Λs

]
∂̄∗b,t∂̄bGq,tϕj,Λs∂̄bGq,tϕj

)
t

+
(
Λs∂̄∗b,t∂̄bGq,tϕj,

[
Λs, ∂̄∗b,t

]
∂̄bGq,tϕj

)
t

=
(
Λs∂̄bϕj,Λs∂̄bGq,tϕj

)
t
+
([
∂̄b,Λs

]
∂̄∗b,t∂̄bGq,tϕj,Λs∂̄bGq,tϕj

)
t

+
(
Λs∂̄∗b,t∂̄bGq,tϕj,

[
Λs, ∂̄∗b,t

]
∂̄bGq,tϕj

)
t

=
([

Λs, ∂̄b
]
ϕj,Λs∂̄bGq,tϕj

)
t
+
(
Λsϕj,

[
∂̄∗b,t,Λs

]
∂̄bGq,tϕj

)
t

+
(
Λsϕj,Λs∂̄∗b,t∂̄bGq,tϕj

)
t
+
([
∂̄b,Λs

]
∂̄∗b,t∂̄bGq,tϕj,Λs∂̄bGq,tϕj

)
t

+
(
Λs∂̄∗b,t∂̄bGq,tϕj,

[
Λs, ∂̄∗b,t

]
∂̄bGq,tϕj

)
t

≤ Ct
∥∥∥∣∣∣Λsϕj

∥∥∥∣∣∣
t

∥∥∥∣∣∣Λs∂̄bGq,tϕj
∥∥∥∣∣∣
t
+ Ct

∥∥∥∣∣∣Λsϕj
∥∥∥∣∣∣
t

∥∥∥∣∣∣Λs∂̄bGq,tϕj
∥∥∥∣∣∣
t

+
∥∥∥∣∣∣Λsϕj

∥∥∥∣∣∣
t

∥∥∥∣∣∣Λs∂̄∗b,t∂̄bGq,tϕj
∥∥∥∣∣∣
t
+ Ct

∥∥∥∣∣∣Λs∂̄∗b,t∂̄bGq,tϕj
∥∥∥∣∣∣
t

∥∥∥∣∣∣Λs∂̄bGq,tϕj
∥∥∥∣∣∣
t

+ Ct
∥∥∥∣∣∣Λs∂̄∗b,t∂̄bGq,tϕj

∥∥∥∣∣∣
t

∥∥∥∣∣∣Λs∂̄bGq,tϕj
∥∥∥∣∣∣
t
.

Then using a large constant/small constant argument we have
∥∥∥∣∣∣Λs∂̄∗b,t∂̄bGq,tϕj

∥∥∥∣∣∣
t
≤ Ct

∥∥∥∣∣∣Λsϕj
∥∥∥∣∣∣
t
.

Then ∂̄∗b,t∂̄bGq,tϕj is bounded in Hs
0,q(M). Then there exists a subsequence ∂̄∗b,t∂̄bGq,tϕjk

converging weakly to an element β ∈ Hs
0,q(M) (in particular in L2

0,q(M)), and

‖β‖Hs ≤ Ct‖ϕ‖Hs . (5.28)

Since ∂̄bGq,t is continuous in Hs
0,q(M), ∂̄bGq,tϕjk converges to ∂̄bGq,tϕ in Hs

0,q(M), in
particular in L2

0,q(M). Since ∂̄∗b,t is a closed operator, β = ∂̄∗b,t∂̄bGq,tϕ, and (5.28) is satisfied
with ∂̄∗b,t∂̄bGq,tϕ instead of β. This proves the continuity of the Szego projection in Hs

0,q(M)
for t sufficiently large.

5.5 Proof of the Theorem 5.0.1
Since ∂̄b : L2

0,q(M) → L2
0,q+1(M) has closed range in the norm

∥∥∥∣∣∣.∥∥∥∣∣∣
t
, by Theorem

2.1.2 and by (4.9), we have ∂̄b : L2
0,q(M) → L2

0,q+1(M) and ∂̄∗b : L2
0,q+1(M) → L2

0,q(M)
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have closed range in the norm ‖.‖0. In the same way, by Theorem 2.1.2 and by (4.9)
we will have the closure of the range of the operators ∂̄b : L2

0,q−1(M) → L2
0,q(M) and

∂̄∗b : L2
0,q(M) → L2

0,q−1(M) in the norm ‖.‖0. Now by Theorem 2.1.3 we will have the
estimate

‖f‖0 ≤ C
(
‖∂̄bf‖0 + ‖∂̄∗b f‖0

)
for every f ∈ Dom(∂̄b) ∩ Dom(∂̄∗b ) and f ∈ ⊥Hq(M), where Hq(M) is the space of the
(0, q) harmonic forms, that is,

Hq(M) :=
{
f ∈ f ∈ Dom(∂̄b) ∩Dom(∂̄∗b ) : ∂̄bf = 0, and ∂̄∗b f = 0

}
.

And so, again by the Theorem 2.1.3, the operator �b := ∂̄b∂̄
∗
b + ∂̄∗b ∂̄b has closed range. In a

similar manner to our argument for the existence of the weighted Green operator Gq,t, we
can prove the existence of the Green operator Gq, defined to be the inverse of the operator
�b on ⊥Hq(M) and ≡ 0 in Hq(M). Also the operator Gq is continuous on L2

0,q(M). And
by Hodge decomposition for every f ∈ ⊥Hq(M), f = ∂̄b∂̄

∗
bGqf ⊕ ∂̄∗b ∂̄bGqf we have

‖∂̄b∂̄∗bGqf‖0 + ‖∂̄∗b ∂̄bGqf‖0 = ‖f‖0 (5.29)

and

‖∂̄∗bGqf‖
2
0 + ‖∂̄bGqf‖

2
0 =

(
∂̄b∂̄

∗
bGqf,Gqf

)
0

+
(
∂̄∗b ∂̄bGqf,Gqf

)
0

= ‖f‖0‖Gqf‖0

Thus, the canonical solutions ∂̄∗bGqf : L2
0,q(M) → L2

0,q−1(M) and ∂̄bGqf : L2
0,q(M) →

L2
0,q+1(M) are continuous (Gq ≡ 0 on Hq(M)).

Now, if t is sufficient large (so Hq
t (M) has finite dimension and there exists the

Green operator Gq,t) observe that if f is a (0, q)-form such that f ∈ Ker(∂̄b) and f ⊥
Ran(∂̄b) (⊥ respect to (., .)t), we will have f ⊥ ∂̄b∂̄

∗
b,tGq,tf , and since Ran(∂̄∗b,t) ⊥ Ker(∂̄b),

f ⊥ ∂̄∗b,t∂̄bGq,tf . Then by Hodge decomposition f = ∂̄b∂̄
∗
b,tGq,tf+ ∂̄∗b,t∂̄bGq,tf+Hq

t f , we have
f = Hq

t f ∈ Hq
t (M). This means Ker(∂̄b) = Ran(∂̄b) ⊕ Hq

t (M) (⊕ with respect to (., .)t)
for any t sufficiently large. In the same way, we can show Ker(∂̄b) = Ran(∂̄b)⊕Hq

t (M) (⊕
with respect to (., .)0). But since Ker(∂̄b) and Ran(∂̄b) do not depend on the weights φ+

and φ−, it follows that the dimensions of Hq
t (M) and Hq(M) are equal. So Hq(M) is finite

dimensional, with dimension equal to dimHq
t (M).

As we proved above, the Szego projection Sq, defined as the projection (with respect
to (., .)0) is given by I − ∂̄∗b ∂̄bGq , and it is continuous by (5.29).
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chapter 6

EXAMPLES

In this Chapter, we present two examples involving the two versions of weak Z(q).
The first example compares the two version showing whose satisfies the new version of
weak Z(q) condition but not the older one given by Harrington and Raich in [10]. The
second example, inspired in the first one, shows that the new version of weak Y (q) is
satisfied easier than the older weak-Y (q) condition (OW-Z(q) condition).

6.1 Example 1
In order to compare the two versions of weak Z(q) condition we remember here

the older weak Z(q) condition (OW-Z(q)).

Definition 6.1.1 (OW-Z(q)) Let M be a smooth, compact, oriented CR manifold of
hypersurface type of real dimension 2n − 1. We say M satisfies OW-Z(q) condition is
satisfied at p if there exists

(i) a neighborhood U ⊂M containing p;

(ii) an integer m = m(U) 6= q;

(iii) an orthonormal basis L1, ..., Ln−1 of T 1,0(U) so that µ1 + ...+ µq − (c11 + ...cmm) ≥ 0
on U , where µ1, ..., µn−1 are the eigenvalues of the Levi form in increasing order.

We say M satisfies the OW-Z(q) condition if M satisfies OW-Z(q) at every point in M ,
and the condition m > q or m < q is independent of p. As above, M satisfies OW-Y (q)
condition at p if M satisfies OW-Z(q) and OW-Z(n− 1− q).

The next example was given by Harrington and Raich in [11]. OW-Z(q) is not
satisfied but weak Z(q) is.

In C3 consider the hypersurface M = {z : ρ(z) = 0} with ρ(z) = −Imz3 +P (z1, z2)
where P (z1, z2) = 2x |z2|2 − xy4 where we denote z1 = x + yi. Then Lj = ∂/∂zj +
2i∂P/∂zj∂/∂z3 ∈ T 1,0(M), for j = 1, 2. The Levi matrix CL in this basis is given by

CL =
 −3xy2 z2

z̄2 2x

 .
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We claim that the Levi matrix CL does not satisfy OW-Z(2) condition at the
origin. In fact, let ajk, for 1 ≤ j, k ≤ 2, be smooth functions on a neighborhood of the
origin such that the matrix A := [ajk] be a 2× 2 nonsingular matrix on a neighborhood of
the origin. Let u1 and u2 be vectors of type (1, 0) with uj = ∑2

k=1 ajkLk. The Levi matrix
Cu in the basis {u1, u2} is given by Cu = ACLA∗.

Now since A is not a singular matrix, the inertia of Cu (the number of positive,
negative and zero eigenvalues, all counting multiplicity) is equal to the inertia of the matrix
CL. Then Cu has a negative eigenvalue and the other eigenvalue is zero when y = 0 = z2

and x < 0. Then second condition in 6.1.1, and so OW-Z(2), can not be satisfied with
m = 0.

Now, assume OW-Z(2) is satisfied with m = 1 in a neighborhood of the origin.
Then by (iii) in Definition 6.1.1, the trace of the matrix Cu − 1

2Tr(C
udiag {1, 0})Id =

Cu − (cu11/2)Id is nonnegative. A direct calculation shows

Tr(Cu − (cu11/2)Id) = cL11 |a21|2 + cL22 |a22|2 + 2Re(cL12a21a22)

= −3xy2 |a21|2 + 2x |a22|2 − 2Re(z2a21a22).

Observe here that Tr(Cu − (cu11/2)Id) admits a minimum value when x = z2 = 0, so any
first derivatives on x or z2 applied on x = z2 = 0 must be equal to zero. Then

−3y2 |a21(0, y, 0)|2 + 2 |a22(0, y, 0)|2 = 0,

a21(0, y, 0)a22(0, y, 0) = 0.

This implies a21(0, y, 0) = 0 = a22(0, y, 0) for any y 6= 0. But this is contradiction, because
A was supposed to be a non-singular matrix on a neighborhood of the origin. Thus
OW-Z(2) is not satisfied with m = 1. So, OW-Z(2) condition is not satisfied at the origin
(in any Hermitian metric considered in M , because of the arbitrariness of matrix A).

Now consider the next matrix R given by

R =
 2 0

0 3y2

 .
Let ajk, for 1 ≤ j, k ≤ 2, be smooth functions on a neighborhood of the origin such that
the matrix A := [ajk] be a 2× 2 nonsingular matrix on a neighborhood of the origin, and a
matrix D such that DA = Id. Let Cu the Levi matrix given by the basis uj = ∑2

k=1 ajkLk,
for j = 1, 2. Define for t > 0 the matrix B = [bjk] by B := Id−tD∗RD. A direct calculation
gives

Tr(Cu − 1
2(Tr(CuB))Id) = Tr(Cu)− Tr(CuB) = tT r(ACLA∗D∗RD) = tT r(CLR) = 0.
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Since D is nonsingular matrix and R has nonnegative eigenvalues, for t sufficiently small
the matrix B will have nonnegative eigenvalues in [0, 1]. On the other hand, if A is such
that the basis {u1, u2} is an orthonormal basis, defining the (1,1)-vector Υ defined by
Υ = i

∑2
j,k=1 bjku1 ∧ u2, we have ω(Υ) = Tr(B) = 2 − tT r(D∗BD) > 0 for sufficiently

small t, because in this case D∗BD has a positive eigenvalue and the other is nonnegative
(so Tr(D∗BD) > 0). Thus weak Z(2) is satisfied at the origin.

6.2 Example 2

Inspired by this last example, we now show a hypersurface in C5 where weak Y (2)
is satisfied and OW-Y (2) is practically impossible to check.

In C5, letM = {z : ρ(z) = 0} with ρ = −Imz5+P (z1, z2, z3, z4) where P (z1, z2, z3, z4) =
2x |z2|2 − xy4 + |z3|2 + |z4|2, and z1 = x + iy. Let Lj := ∂/∂zj − 2i∂P/∂zj∂/∂z5, so
Lj ∈ T 1,0(M := {ρ = 0}). Then the Levi matrix CL associated to the basis {Lj}1≤j≤4 is
given by

CL =


−3xy2 z2 0 0
z2 2x 0 0
0 0 1 0
0 0 0 1

 .

Note that, since CL has three positive eigenvalues whenever either z2 6= 0 or both
x 6= 0 and y 6= 0, it follows that Z(2) is satisfied on a dense subset of M ∩ U , with U a
neighborhood of the origin.

Let ajk, for 1 ≤ j, k ≤ 4, be smooth functions on a neighborhood of the origin
such that the matrix A := [ajk] be a 4× 4 non-singular matrix on a neighborhood of the
origin. Let uj = ∑4

k=1 ajkLk for 1 ≤ j ≤ 4. Then the Levi matrix Cu in the basis {uj} for
1 ≤ j ≤ 4 is given by Cu = ACLA∗. Then a direct calculation gives us

cujj = 2Re(z2aj1aj2)− 3xy2 |aj1|+ 2x |aj2|2 + |aj3|2 + |aj4|2 .

Since A is not a singular matrix Cu will have the same inertia of CL. So Cu will have one
negative eigenvalue, one zero eigenvalue, and two positive eigenvalues when y = 0 = z2

and x < 0. The OW-Z(2) condition cannot be satisfied with m = 0, because in this case
the sum of the two minor eigenvalues will be negative.

In the same way, when x = z2 = 0, Cu has two zero eigenvalues and two positive
eigenvalues. So OW-Z(2) condition cannot be satisfied with m = 4, because in this case
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the trace of Cu will be positive.

Now, assume that the OW-Z(2) condition is satisfied with m = 3. When x = z2 = 0,
the sum of two minor eigenvalues of Cu is zero. Then OW-Z(2) condition implies
(cu11 + cu22 + cu33) x=z2=0 ≤ 0. So a13 = a14 = a23 = a24 = a33 = a34 = 0 when x = z2 = 0.
But this will imply that detA x=z2=0 = 0. But this is contradiction because A was supposed
to be a nonsingular matrix on a neighborhood of origin. Then OW-Z(2) condition can not
be satisfied with m = 3.

Now, in order to prove the OW-Z(2) condition is satisfied, the unique possibility for
m is 1. So we have to show that the sum of two minor eigenvalues (sometimes being zero,
and sometimes being negative) is greater than or equal to cu11, for the second condition in
Definition 6.1.1 be satisfied. But this appears not to be easy (or true).

Now, we will prove that new version of weak Z(2) condition is satisfied on U ∩M ,
with U a neighborhood of the origin, and considering the Euclidian metric. Let A = [ajk]
a 4× 4 matrix defined by

A =
 A1 0
A2 A3


with Aj a 2 × 2 matrix of smooth functions for j = 1, 2, 3, such that the set of vector
{u1, ..., u4} with uj = ∑4

k=1 ajkLk for 1 ≤ j ≤ 4, is an orthonormal basis for T 1,0(M).
Then A is a nonsingular matrix, and in particular A1 is also a nonsingular matrix. The
Euclidean metric gives the next condition on A,

Id = A(Id− F )A∗

where F is a matrix such that F z=0 = 0. This implies that

(Id− A1A
∗
1)z=0 = 0. (6.1)

Now, the Levi matrix Cu written in the basis {uj} is equal to

ACLA∗ =
 A1CA

∗
1 A1CA

∗
2

A2CA
∗
1 A2CA

∗
2 + A3A

∗
3


where

C =
 −3xy2 z2

z2 2x

 .
Since u1 and u2 are in the span of L1 and L2, the sum of the smallest eigenvalues of the
Levi form is given by

µ1 + µ2 = L(iū1 ∧ u1 + iū2 ∧ u2) = Tr(Cudiag {1, 1, 0, 0}) = Tr(A1CA
∗
1).
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For t > 0, define Υ = i
∑4
j,k=11 bkjūj ∧ uk with

[bjk] = diag {1, 1, 0, 0} − t diag
{
D∗1 diag

{
2, 3y3

}
D1, 0, 0

}
,

where D1 is a matrix such that D1A1 = Id. Then

µ1 + µ2 − L(Υ) = Tr(A1CA
∗
1)− Tr(Cu[bjk])

= Tr(A1CA
∗
1)− Tr(A1CA

∗
1) + tT r

(
A1CA

∗
1D
∗
1 diag

{
2, 3y2

}
D1
)

= tT r(C diag
{

2, 3y2
}

)

= 0.

By (6.1), for t sufficiently small, the matrix [bjk] will have eigenvalues in [0, 1]. Also, for
t sufficiently small ω(Υ) = Tr([bjk]) = 2 − tT r(D1 diag {2, y2}D∗1) < 2 because D1 is a
nonsingular matrix and diag {2, 3y2} has one positive eigenvalues and the other eigenvalue
is nonnegative. Then the example is satisfying the new version of the weak Z(2) condition
at the origin.
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