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Abstract

The purpose of this work is to establish sufficient conditions for closed range estimates on
(0, q)-forms, for some fized q, 1 < ¢ < n — 1, for 9, in both L? and L?-Sobolev spaces in
embedded, not necessarily pseudoconvex CR manifolds of hypersurface type. The condition,
named weak Y'(¢), is both more general than previously established sufficient conditions
and easier to check. Applications of our estimates include estimates for the Szegd projection
as well as an argument that the harmonic forms have the same regularity as the complex
Green operator. We use a microlocal argument and carefully construct a norm that is
well-suited for a microlocal decomposition of form. We do not require that the CR manifold
is the boundary of a domain. Finally, we provide an example that demonstrates that weak

Y (q) is an easier condition to verify than earlier, less general conditions.

Keywords Cauchy Riemann operator. Tangential Cauchy Riemann operator. CR mani-

folds. Weak Y(q) condition. Closed range estimates.






Resumo

O objetivo de este trabalho é estabelecer condigoes suficientes para estimativas de imagem
fechada sob (0, ¢)-formas, com ¢ fixo e 1 < ¢ < n — 1, para J, nos espacos L* e L? Sobolev
sob variedades CR do tipo hipersuperficie. A condi¢ao, chamada Y (g) fraca, é mais geral
do que as condigoes suficientes estabelecidas anteriormente e é mais facil de verificar. As
aplicagoes de nossas estimativas incluem estimativas para a projecao Szegd, bem como
um argumento de que as formas harmoénicas tém a mesma regularidade que o operador
Green complexo. Utilizamos um argumento microlocal e construimos cuidadosamente uma
norma que é adequada para uma decomposi¢ao microlocal das formas. Nao exigimos que
a variedade CR seja a fronteira de um dominio. Finalmente, fornecemos um exemplo que
demonstra que a condi¢ao Y'(q) fraca é uma condi¢do mais facil de verificar que as versoes

anteriores menos gerais.

Keywords: Operador de Cauchy Riemann. Operador tangencial de Cauchy Riemann.

Variedade CR. Condicao Y(q) fraca. Estimativas de imagem fechada.
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CHAPTER 1

INTRODUCTION

One of the principal operators that appears in the study of theory of functions of
several complex variables, is the Cauchy Riemann operator 0 which is deeply related to
analytic functions, domains of holomorphy, extension problems of Hartog’s type, the Levi
problem; and the existence and regularity of solutions for the well known non-homogeneous
equation

ou = f (1.1)

where f a (p, q)-form defined on a bounded open set Q C C", n > 2, with smooth boundary
b2, with the necessary condition that f is d-closed. It is in the last topic where the present
work is focused, and its equivalent non homogeneous equation associated to its analogue
operator, the tangential Cauchy Riemann operator 0,. Many advances for the existence of
solutions for the equation (1.1) were done in decades of 50’s and 60’s, by Garabedian and
Spencer [7], Morrey [23], Kohn [17], Hormander [14]. Two things to remark in these last
three works, is the use of Hilbert space tools to solve (1.1), once they considered the (p, q)
forms on a more general set, Lf,’q(Q), and look for solutions on distributional sense; and the
other one is the conditions imposed on the geometry on b§2. The use of Hilbert space tools
allowed then to relate the existence of solutions with the property of closed range of the
operator 0, once it was defined as a unbounded closed densely defined operator. One of the
first geometrical conditions imposed in the boundary of €2 was strongly pseudoconvexity by
Kohn in [17], who proved that strongly pseudoconvexity implied not just the closed range
property for @ but 1/2 Sobolev estimates (as it is also reiterated by Kohn and Niremberg in
[21]). On the other hand Hormander in [14] introduced weighted spaces getting advantage
of existence of well behaved functions (plurisubharmonic functions) defined on the environ-
ment C”, and he could imply the property of closed range for the operator 0 assuming just
pseudoconvexity in ). The Chapter 2 in this work is focused in the study of this operator
O (in fact just in closed range property in L?), written in the spirit of the Chapter 4 in [4].
And we consider add the study concerning to the study of the operator 9, because gives
an overview of the philosophy behind technique and machinery used to map the steps to
follow in the analysis of tangential Cauchy Riemann operator, which is our principal topic.
In Chapter 3 we give a sketch about oldness results and approaches obtained through

time about operator 0, and its origins, and thus give a motivation about the principal topic.

The principal topic of this work is made in Chapters 4 - 6, where we consider the

study of operator 9, on CR manifolds of hypersurface type. A CR manifold of hypersurface
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type is an odd real dimensional manifold whose tangent bundle splits into a complex
subbundle and another line bundle. An appropriate restriction of the 0 operator to the

complex subbundle yields the tangential Cauchy Riemann operator 0.

The 0, operator was introduced by Kohn and Rossi [22] to study the boundary
values of holomorphic functions on domains in C", and it was soon realized that the J;-
complex was deeply intertwined with the geometry and potential theory of such domains
and their boundaries. The story of the L*theory of the d, operator begins with Shaw [28]
and Boas and Shaw [2] (in the top degree) on boundaries of pseudoconvex domains in
C"™ and with Kohn [20] on the boundaries of pseudoconvex domains in Stein manifolds.
Nicoara [24] established closed range for J, (at all form levels) on smooth, embedded,
compact, orientable CR manifolds of hypersurface dimension in the case that n > 3 and
Baracco [1] established the n = 2 case. Thus, from the point of view closed range, the

pseudoconvex case is completely understood.

Harrington and Raich [10] began an investigation of the J,-problem on non-
pseudoconvex CR manifolds of hypersurface type. Specifically, they fixed a level gq,
1 < g < n—2, and sought a general condition that sufficed to prove closed range
of 0, on (0, q)-forms (and in L>-Sobolev spaces in suitably weighted spaces). They worked
on CR manifolds of hypersurface type, and our results generalize theirs by showing that
the conclusions they draw are still true with a weaker hypothesis, namely, the weak Y (q)
condition from [11]. The analysis in [11] is loosely based on the ideas of Shaw and does not
use a microlocal argument, but rather d-methods. This requires the CR manifold to be
the boundary of a domain, a hypothesis that we relax. The name weak Y (¢q) stems from
the fact that it is a weakening of the classical Y (¢) condition, a geometric condition that
is equivalent to the complex Green operator (inverse to the Kohn Laplacian) satisfying

1/2-estimates on (0, ¢)-forms.

In this work, we show that the tangential Cauchy-Riemann operator has closed
range on (0, q)-forms, for a fized ¢, 1 < ¢ < n — 1, in L? and L3-Sobolev spaces on a
general class of embedded CR manifolds of hypersurface type that satisfy the general
geometric condition weak Y (¢). We work on a smooth CR submanifold M C C" that
may be neither pseudoconvex nor the boundary of a domain. The weak Y'(¢) condition,
first written down by Harrington and Raich [11] and applied to boundaries of domains
in Stein manifolds, is the most general known condition that ensures closed range of the
tangential Cauchy-Riemann operator on (0, ¢)-forms. We also provide an example that
shows that the generality provided by the definition makes it easier to verify than previous

and more restrictive conditions. Additionally, we show that for any Sobolev level, there is
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a weight such that the (weighted) complex Green operator (inverse to the weighted Kohn
Laplacian) is continuous and the harmonic forms in this weighted space are elements of

the prescribed Sobolev space.

Also, we generalize both [10] and [11] in the following ways. We do not require our
CR manifold to be the boundary of a domain. In effect, we translate the d-techniques of
[11] to the microlocal setting. In [10], they prove results akin to our main results, but the
“weak Y'(¢)" condition they define is more restrictive than the weak Y'(¢) condition here.
Additionally, we use a reengineered elliptic regularization argument to show that (weighted)
harmonic (0, ¢)-forms are smooth, a fact not mentioned in [10, 11]. Additionally, we are
careful to monitor the regularized operators and the fact that they preserve orthogonality
with the space of (weighted) harmonic forms, a fact that has not been observed before (in

part because we prove smoothness of harmonic forms early in regularization process).

Our methods to analyze the tangential Cauchy Riemann Operator involve a microlo-
cal argument in the spirit of [24, 25, 10] and a recently reengineered elliptic regularization
that not only allows for a weighted complex Green operator to solve the dy-problem in
a given L2-Sobolev space, but also shows that the weighted L?-harmonic forms reside
in that Sobolev space [16, 9]. This last fact is not clear from the elliptic regularization
methods used in [24, 10]. For a discussion of the weak Y'(¢) condition and its related,
non-symmetrized version, weak Z(q), please see [10, 11, 8, 12, 13] and for discussion on

the elliptic regularization method, [9, 16].

The outline of the argument is as follows: we start by proving a basic identity
that is well suited to the geometry of M. The problem with basic identities for 0, is
that the Levi form appears with in a term that also contains the derivative in the totally
real direction 7. The microlocal argument is used to control this term — specifically, we
construct a norm based on a microlocal decomposition of our form which allows us to use
a version of the sharp Garding’s inequality and eliminate the T" from the inner product
term. This allows us to prove a basic estimate (Proposition 4.6.1) from the basic identity

and the main results are due to careful applications of the basic estimate.

We conclude this chapter giving an outline of the work. As we said before, the
Chapter 2 is focused on as well general ideas and procedures to study the 0 operator. In
Chapter 3 we relate the origins in the study of d, operator. Into Chapter 4, we define our
notations, give some computations in local coordinates and the microlocal decomposition,
to prove the basic estimate, Proposition 4.6.1. In Chapter 5, we prove the Theorem 5.0.2,

and we outline how to pass from Theorem 5.0.2 to Theorem 5.0.1. We conclude the work
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in Chapter 6 with two examples comparing the older version and new version of weak Z(q)

condition.
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CHAPTER 2

L? ESTIMATES FOR THE 0 OPERATOR

In this chapter we give some details about the approach given to study of operator
9. We follow the process given in [4, Chapter 4]. In the first section we give some definitions
and important functional analysis results in the study of operators we are interested. In
second section we present the L? theory about operators 9 and O on L? as well as some
computations related to them. The third and fourth section have L? existence theorems
about the equation associated to operators 0 and [J. The last section has an application

of these results to solve the Levi problem.

2.1 Unbounded operators in Hilbert spaces

Let Hy, Hs be Hilbert spaces, and T : Dom(7T") C H; — Hy be an unbounded
linear, closed and densely defined operator, that is, the graph of T, Graph(T), is closed in
Hy x Hy and Dom(T) is a dense linear subspace of H;. If T is not a bounded operator, by
the Closed Graph Theorem, Dom(7') is going to be a proper subset of Hj.

Let ||.||; and [|.||, denote the norms of H; and H, respectively. If v € Hj and
there is C' > 0 such that | (v,T(u))| < C|lul|, for all w € Dom(T"), by the analytic
form of Hahn-Banach Theorem there is a f, € Hf that extended the linear function
uw € Dom(T) — (v,T(u)) to all Hy and | (f,,w)| < C||ul|; . Moreover, f, is unique because
Dom(T) = H,. We define the adjoint of T' by T* and so T* : Dom(T*) C H} — H; where

Dom(T™) = {v € H; : 3C > 0 such that | (v,T(u)) | < C||lu||,, Yu € Dom(T)}

and T%(v) := f,. lf v, w € Dom(T™) then (v 4 w,T(u)) = (f, + fuw,w) for all u € Dom(T).
By the uniqueness of f,,, we have T*(v + w) = T*(v) + T*(w). Then T* is linear. Also,
T* is closed. Indeed, if (v,) in Dom(T™*) such that v, — v in Hy and T*(v,) — f in H},
since

(0n, T(u)) = (T (vn), u)
for all u € Dom(7T") we have (v, T(u)) = (f,u). Then v € Dom(T™*) because | (v,T(u))| <
Il £Illlze]|; for all w € Dom(T'). Also, T*(v) = f from the uniqueness of 7%(v).

If we consider the isomorphism [ : F* x E* — E* x F* defined by I(v, f) = (= f,v)
we have that I(G(A4*)) = G(A)*.
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Theorem 2.1.1 Let E and F reflezive Banach spaces. Let T : Dom(T) C E — F be a
unbounded operator that is densely defined and closed. Then Dom(T™) is dense in F*. Thus
T : Dom(T™) C E** — F*™* is well defined and it may also be viewed as an unbounded
operator from E into F. Then we have T"* =T

Proof. First let’s show that Dom(7™) is dense in F™*. Let ¢ € F** such that ¢ (Dom(7™)) =
{0}. Since F' is reflexive p(v) = (v,§) for all v € F* and some £ € F. Then is sufficient show
that £ = 0. If £ # 0 then (0,€) ¢ Graph(T). By the geometric form of Hahn-Banach theo-
rem, thereis a (w, z) € E* x F* = (E x F')* (with the isomorphism (f,g) € E*x F* — fxg
where f x g(t,r) = f(t) + g(r)) such that (w,2)(u,Tu) < a < (w,z)(0,§) for all
u € Dom(T'), and for some o € R. Then

(w,u) + (z,Tu) = (w, z)(u, Tu) =0 Yu € Dom(T).

Then z € Dom(7*) and 0 < o < (z,€). This is a contradiction. Thus £ = 0, and then
Dom(7™) is dense in F*.

With this, T* is considered as an unbounded operator that is densely defined
and closed. Then we can define the operator (again closed and densely defined) T :
Dom(T**) C E** — F**.

Since F, F' are reflexive spaces, T** is an operator from F into F. As we saw

I(G(T") = G(T)* I(G(T™)) = G(T")*.

Let the isomorphism S : E* x F* — F* x E* given by S(f,g) = (g, f) for (f,g) €
E* x F*. Then I(G(T*))* = T-'I"1(G(T*)4), also I(G(T*))* = T I-(G(T*)*). Thus

G(T) — G(T)J_J_ — [(I(G(T**))J_)J_ — T—1[—1T—1[—1<G(T**)J_J_)

because G(T'), G(T*) and G(T**) are closed. Then T' = T**. B

Now, we rewrite two important theorems used by Hérmander in [14] to study the
closed range property of unbounded operators. Assuming H; and Hs; two Hilbert spaces
and let T': Hy — Hs be linear, closed, and densely defined operator. By the results above
T* : Hy — H; has the same properties, and T** = T'. By definition of the adjoint operator,
the orthogonal complement of the range Ran(7") of T" is the kernel Ker(7™) of T*. Which
implies that the orthogonal complement of Ker(7T*) is the closure Ran(T') of Ran(T'). This

means

H, = Ker(T') ® Ran(7™), (2.1)
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Similarly, we have that Hy = Ker(7™) @ Ran(7T’). The next two theorems appears in [14].

Theorem 2.1.2 Let H, and Hy be two Hilbert spaces and let T : Hy — Hy be linear,

closed, and densely defined operator. The following conditions on T are equivalent:

1. Ran(T) is closed.

2. There is a constant C such that

1l <CITFl,,  f € Dom(T) N Ran(T*). (2.2)
3. Ran(T™) s closed.

4. There is a constant C' such that

lglly < ClIT"glly, g € Dom(T™) N Ran(T). (2.3)

The best constants in (2.2) and in (2.3) are the same.
Proof. Assume that (1) holds. Since Ran(7*) = Ker(T'), the restriction of 7' to Dom(T) N
Ran(T*) is a closed, one to one, linear mapping onto the closed subspace Ran(T) of H.
Hence the inverse is continuous by the closed graph theorem, which proves (2). Conversely,
(2) obviously implies (1). In a similar way, (3) will be equivalent to (4). Now we prove that
(2) implies (4). Notice that

(9, Tf)ol = [(T7g, F), | < CIT g, [IT 11
for g € Dom(T™*) and f € Dom(7T") N Ran(7™). Thus
(g, h)ol < ClIT gl IRl

for ¢ € Dom(T™) and h € Ran(T). So |(g,h),| < C||T"g||,||h|, for ¢ € Dom(7T*) and
h € Ran(T"), which implies (4) (take a sequence in Ran(T") converging to g and use this
last inequality). Similarly, (4) implies (2). B

Let H3 be another Hilbert space and S : Hy — H3 be another unbounded linear,
closed densely defined operator, such that ST = 0, that is, Ran(T") C Ker(S).

Theorem 2.1.3 A necessary and a sufficient condition for Ran(T") and Ran(S) both to
be closed is that

lgl < C* (ITgl1F + I1S9l5): g € Dom(T*) 1 Dom(S), g L K i= Ker(T") N Kex(S).
(2.4)
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Proof. First note that
H; = Ran(T) @ K @ Ran(S*) (2.5)

In fact, since 7%S* = 0 then Ran(7") and Ran(S*) are orthogonal, and the intersection of
the orthogonal complements of this spaces, Ker(T*) and Ker(S) respectively, is K. Now,
if (2.4) holds, then (4) is valid because S vanishes in Ran(7T), and, changing T by S,
(2) is valid because T* vanishes in Ran(S*). So (2.4) implies that Ran(7) and Ran(S)
are closed. Reciprocally, if Ran(7") and Ran(S) are closed, by the decomposition (2.5), if
g € Dom(T*) N Dom(S) with g L K := Ker(7™) N Ker(S) there exist a € Dom(7™) such
that T*as € Dom(T') and $ € Dom(S) such that S8 € Dom(S*), with g = TT*a+ S*Sf5.
Then inequality (2.4) follows by (2.2) and (2.3) and since ST = 0, we have T*S* = 0.
|

2.2 L? theory for O operator

Let €2 is a open subset in C", with n > 2, CF 1 (€2) the set of smooth (p, g)-forms
in Q, C¥ () the set of smooth (p, ¢)-forms in C" restricted to Q. Dy, ) (Q2) the set of
smooth (p, ¢)-forms with compact support in Q. Then any (p, ¢)-form f € Co q)(Q) can be

expressed as

f = Z /fLJdZ[ A dZJ (26)
1,J
where I = (i1, 42, ..., 1) and J = (j1, jo, ..., Jq) are multiindices, dz! = dz;, Adzi, A ... Ndz;,,

dz7 = dz;, Ndz;, N...\Ndz;,, 3 means summation over strictly increasing multiindices, and

f1.s are smooth functions defined in €2 for arbitrary I and J so that they are antisymmetric.

Writing
de = dﬂ?j + Zdyj > déj = d$j — idyj,

B _t(o oy o 10 o)
0z, 2 \0x; Oy;) 0z dxj; Oy

if f e C>(Q) is a complex-valued function then

and

we define the operators 0 and 0 for functions by

of = Z dzj and Of = Z dzj

]

Then we will have df = 0f + 0f. Once we have defined the 0 and 9 operator on complex
valued functions, we define the 0 and 0 for (p, ¢)-forms as (2.6) by

(9f = Z /af[’] AN dZI A ng,
1,J
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of = ""0fr; ndz" NdZ, (2.7)
1,J

and also we will have df = 0f 4+ Of.

Since 0 = d? = 9% + (00 + 90) + 9% and 02, 90 + 00, 07 are of bidegree (p + 2, q),
(p+1,¢+ 1) and (p, g + 2) respectively, we have

P =0 00+00=0, 0*=0.

For 0 < g<nand 0<gqg<n-—1,define 0 = 5(1,,(1) : C( )(Q) — CMH)(Q) as in
(2.7) and then we have Ran(0,,q)) C Ker(Op4+1)). If p is fixed, we can to define the short
sequence
i

(e’e} é(?! ) 00 5(?1 ) 5(}7,”* ) 00 p,n)
0= C3oy(Q) 2RO (Q) - S O () %0

(pn
and the natural question is, is this a exact sequence?. To answer this question, we need to

solve the equation

ou=f, (2.8)

with the necessary condition 9f = 0, called the compatibility condition.

Example If n > 1, f = >, f;dz; with f; € C*(C") and k > 0, such that af’ = %

(or of = 0) and supp f := U’_; supp f; is a compact subset in C"; the complex—valued

fz Ca 2y ey 2 )
2m/ (—2 L, dendd

is in C¥(C") such that du = f (see Theorem 2.3.1 in [15], and observe its implication on

function

the analytic extension of Hartog’s theorem; together the clarification made on n > 1 ).

We are interested in solving the equation (2.8), using tools of Hilbert spaces re-
garding results on unbounded operators and find solutions in a more general sense. For

this purpose, we need to define the operator 0 appropriately.

From now on, we consider D to be a bounded open subset in C". Let L?*(D) denote
the space of square integrable functions in D with respect to the Lebesgue measure. Here
we are using the volume element dV = (i/2)"dz; A dz1 A dzo A\ dZ3... N\ dz, N dZ,. Let

L, »(D) denote the space of (p, q)-forms with coefficients in L?(D). We define

1P =3 [ 1fralfav ¥f =3 frg € L, (D).
I1,J 1,J
This turns Liq(D) into a Hilbert space. And, if we use (, ), to denote the inner product
in L%M)(D), we have that

S fradzt AdzT ) g ad NdET | =D (fra,9n0)
1,7 1,7 IJ

D
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where (, ) is a given inner product in L*(D). Note that, whenp=¢ =0, (, ), =1(, ).
Sometimes, when there is no danger confusion, we drop the subscript D in the notation.
Also, if ¢ € C(D), we denote L*(D, ) the space of complex-valued functions 1) such
that 1e~?? € L?(D), similarly L{, (D, ¢) the space of (p, g)-forms with coefficients in
L*(D, ¢). We define

1A =X [ VfralPedv f = 3" fru € L, (D.9)
I,J I,J

and (L¢, (D, ), 1l |l,) is also a Hilbert space. We use ( , ), to denote the inner product
in L? (D, ¢). Note that if ¢ € C(D D) then L? (D,¢) = L? (D), because in this case

(g (p,9) (p,9)
we will have

minle~| [ [fPav < [ |fPetav < max|e~?| [ |f1Pav (2.9)
D D D D D

for all f € L?(D,¢), and the norms || || and || ||, are equivalents. Similarly, we can to

(D), where L? (D) is

loc

define L, (D, loc) the space of (p, g)-forms with coefficients in Lj,

loc
a space of complex-valued functions in L*(K) for all K C D compact.

For 0 < ¢ < n — 1, we define the formal adjoint operator ¥ = 9, 411) : C%H(D) N
CE??,@(D) of 0 = a(m) : C%(D) - C]?,Oq+1(D) by requiring

(9f.9) = (f,99)

for all g € Dy, q)(D). Then if f € CF 11)(D) is expressed by (2.6), then

(p,g+1)

I(f) = +1Z’Zaf”Kd A dz" (2.10)

LK I=1 0z

where fix = sgn(lé) fry. In fact, if g = ZLK’gLKdzI AN dz® € D, q)(D) then

(faég): (Z fradz" ndz? > ZagIKdz ANdz' A dz )

IK =1
= —1)pZ (Z,fI,JdZI/\dZJ;Z 8gIZKd ANdzZ; Ndz )
—1 \1,J

=1 I,K

Yy (fz,m, %) (2.11)

I=11,K

but, since g € Dy, 4 (D), integrating by parts we have

_ n o
(f,09) = (—1)*! Z:E; ( ‘g;’/iK7gI,K> : (2.12)

Now (2.10) follows from (2.12).
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Observe that 1> = 0, thus, similarly as before, we define 9y : C75, (D) — Cp%(D)

the L2(D, ¢) adjoint of 9 = 0y, : Cro (D) — €55 (D) by requiring

(91.9),= (£.09),, Vg € Dypy(D). (2.13)
So, we have the relation between ¢ and ¥, given by the following
(Wof ), = (£.00), = (fe2.00) = (0(fe %), 0) = (?0(fe ™), ¥),

for all ¢ € D (D), that is 94(f) = e?I(fe ?) for all f € Cro (D).

(,9)

Now, if ¢ € C'(D), we extend the definition of the unbounded densely defined
operator Q(pq) : C5%(D) C LY, (D, ¢) = L, ,11y(D, ¢), and we will still denote it by 3.

(p,9)
For distributions we define as follows: an element u € L%p, q)(D, ¢) is in the domain of 0,
denoted by Dom(d), if Ju, defined in the distribution sense, belong to L%p,q)(D7 ¢). Since

the convergence in L?(D) implies in convergence in distributions and the differentiation is
a continuous operation in distributions, we have that the operator  is closed. We denote
5; to be the adjoint operator of 9 and Dom(é;';) the domain of 5(’; When ¢ = 0 we denote
J* to be the adjoint operator of @ and Dom(9*) the domain of 0*. By the Theorem 2.1.1

0* and 5; are unbounded closed densely defined operators.

By the definition of Dom(éj,), an element f belongs to Dom(a’;) if there is a

g e L%qu)(D, ¢) such that for every ¢ € Dom(é), we have (f, 5¢>¢ — (9>¢)¢' We define
95f = g. Defining ¥y in distributional sense (this means (J,f, h), = (f, 5h)¢ for any
h € D,4(D)), and if f € Dom(9;) then dyf = 95f in L* sense. We make here a small
parenthesis to talk about definition functions, then we will continue talking about the

domain of Dom(a}i) .

Definition 2.2.1 A domain D C R*, n > 2, is said to have C* (1 < k < co) boundary
at the boundary point p if there exists a real-valued C* function p defined in a some open
neighborhood U of p such that

DNU={xzCU:p(x)<0}, bDNU ={x €U :p(x)=0}

and dp(x) # 0 on bD NU. The function p is called a C* local defining function for D near
p. If U is an open neighborhood of D then p is called a global defining function for D, or
simply a defining function for D.

The next lemma give us the relationship between two defining functions.
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Lemma 2.2.2 Let p; and py be two local defining functions for D of class C* (1 < k < 00)
in a neighborhood U of p € bD. Then there exist a positive C*~1 function h on U such that
(1) pr = hpy on U

(2) dpi(z) = h(x)dps(z) for allz € bDNU

Proof. Suppose first that p = 0 and pe(z) = 2, and bD NU = {x € U : z,, = 0}. Denote
x = (2',x,) where 2’ = (21, %2, ...,2,_1). Then by the Fundamental Theorem of Calculus
we have that

19
pi(2) = pi(a 20) — pi(p) = [ A, s)ds =y | o
o Oxp

o Oz,

(o tx,)dt (2.14)

and the function h(z’,z,) = [y 22 (2, tz,)dt € C*' and by (2.14) is a positive function

0 9z,
inU.

In general case, for each z € bD N U, since dps(x) # 0, without loss of generality,
we may assume that agQT(:) # 0, thus there are a neighborhood U, C U of x and a C¥
diffeomorphism @ : U, — ®(U,) such that 0 € ®(U,), ®(0) = z and p20® (Y1, ..., Yn) = Yn-
Then ®(bD NU,) = {y : y, = 0} and by the first part there is a positive C*~! function
H, defined in ®(U,) such that p; o ®~!(y) = H,(y)p2 0o P! (y) for all y € ®(U,). With
this, there is a positive C*~! function h, defined in U, such that pi(z) = h,(2)pa(2)
for all z € U,. Varying = in bD N U, using the continuity of the function A, and since
hy = p1/p2 in U, \ bD, we may define a function h defined in the open set U,eppU,. such
that p1(z) = h(z)p2(2) for all z € UgeppU,. In the same way we can extend the definition
of h for all z € U to define h(z) = p1(z)/p2(2) for z € U \ UpeppUs,.

If £ > 2, (2) follows from the product rule. If k = 1 and € dD N U, then from
the definition of differentiation of p; in 0 we have p;(z + v) = dp;(x)v + R(v) for some
function R such that lim,_,o R(v)/|v| = 0. By (1), we obtain dps(x) = dpy(x)/h(x) for all
rebDNU. [ |

Continuing the discussion about the domain of Dom(a’;), we can see that C{, ) (D) C
Dom(3), however not every element in Cooa (D) is in Dom(((};). The next result is given
in [4, Lemma 4.2.1].

Lemma 2.2.3 Let D be a bounded domain with C' boundary bD and p be a C* defining
function for D. For any [ € Dom((i”;) N C’(lm)(D), where ¢ € C(D), f must satisfy the

boundary condition

o(¥,dp)f(z) =0, z € bD, (2.15)



2.2. L? theory for O operator 29

where o(V,dp) f(z) = I(pf)(z) denotes the symbol of ¥ in the dp direction evaluated at z.
More explicitly, if f is expressed as in (2.6), then f must satisfy

0
Zf[,jKi =0 on bD for all I, K, (2.16)
j (92]-
where |I| =p and |K| =q— 1.
Proof. We first assume that ¢ = 0. By (2.10) we have

Ipf) = p+1z Z pr]K Ydz' A dZE
=g

p+1z Z fI]KdZ A dzE + ( PHZ Z afI]Kd I sk

IKjl 1K j—1 0z

and (2.15) and (2.16) are equivalent. Now, we can see that the condition given does not
depend to the choice of p as follows. If p; is other defining function for D, by Lemma 2.2.2,
then there is a continuous positive function h defined in a open neighborhood of D such

that p; = hp in D and dp; = hdp on bD. Following the above computations

o1 f) =9 pif) = (—1)“12 i@a (prfrjx)dz" ndz’

= p+1212h7 pr]K dZ /\dZ

ILK j=1 0z;
= (PSS R et nd= (1P P gt
= IjK z y4 02 Z z
LK j=1 Y% 1K j=1 Zj

hd(pf),

then (2.15) and (2.16) are independent of the defining function. With this, we can assume
that p is such that |dp| =1 on bD.

First, assume f be (0,1)-form and f = °%_, f;dz;. Using integration by parts and
(2.10), we have, for any ¢ € C*°(D) C Dom(), that

0f0) =3 (—wa)
:f:<fj, ) Z/ fja_,wds
= (£.00) + [ (o(v.dp)f.v)dS

where dS is the surface measure of bD (that is ). Similarly, for a (p,q)-form f and

Y eCy, (D D) C Dom(0), using integration by parts, we obtain

(0F,0) = (£.00) + [ (00, dp)f. ) ds. (217)
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Since f € Dom(0*), D,4-1)(D) is dense in L2, (D) and O f =9f in Dy g1y (D), we

must have (9f, 1) = ( *f,¢) = (f 8@/}) for any ¢ € Cp5_ 1(D) and so

/b (0W.dp)f¥)dS =0 forall ¢ € (5, (D).

This implies that o (¢, dp) f(z) = 0 for all z € bD.

The case ¢ # 0 can be proved similarly, using instead of (2.17), the following

(of. ), = (£.00), + [ (00, dp)f.v)e?ds. M

Remark. Reciprocally, if f € C{, (D) and satisfies one of the equivalent con-
ditions (2.15) or (2.16), by (2.17) (and assuming 2 with at least C? boundary), then
fe Dom(éjg) by the density Lemma 2.3.2 below. With this, a function f € C'(lpvq)(l_?) is in
Dom(3}) if and only if f satisfies one of the equivalent conditions (2.15) or (2.16). Also,
observe that the arguments in the proof of this lemma works for elements in C} (D) with
0>1.

Another way to express condition (2.15) or (2.16) is as follows. Let V the interior
product defined as the dual of the wedge product with dp. For an (p, q)-form f, dpV fis
defined as the (p, g — 1)-form satisfying

(970p. f) = (9,00 V f), g€ CFy)(C.
Using this notation, condition (2.15) or (2.16) can be expressed as
dpV f =0 on bD. (2.18)

Then f € C o (D )ﬁDom(@d,) if and only if f satisfies one of the three equivalent conditions
(2.15), (2.16) or (2.18).

Now, for fixed 0 < p < n, 1 < ¢ < n, we define the Laplacian of the d complex.

Definition 2.2.4 Let O, 5pq_1)5?p7q) + 0, )Owa—1) be the operator from LE, (D)
to L7, (D) such that

Dom(Ogp.q) = {f € L{, (D) : [ € Dom(Jp,q)) N Dom(3}, ),

8(p ol € Dom(apq-‘rl ), (p,q)f € Dom(é(p,qfl))}-

Proposition 2.2.5 [, is a linear, closed, densely defined self-adjoint and positive

operator.
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Proof. Clearly O, is linear. [y, 4 is densely defined because Dom ([, 4)) contains
D (p,q)(D )-

Now we prove that O, q) is closed. Let (f,) € Dom(Og,g)), f € L{, (D) such that
fo— fin L{, (D) and O, ) f converge in LY, (D). Since fn € Dom(9) N Dom(9*) for

all n € N; we have

(T fus £) = (00" Fus fu) + (90 fs £) (0" f, 0" f2) + (0 1)
~Jor s+ o 2 o0

Since O, ) fn and f,, converge in L7, (D) we have that O* f, and O, converge in L2, (D)
and L2 ., (D) respectively. Now, f € Dom(d) N Dom(9*) and
Ofn = 0f, O fu—0'f (2.19)

in L;yq(D), because 0 and 9* are closed operators.

Also for h € Dom(D(p,q))

HD(p,q)hH2 = (55*h + &*0h, D0*h + 5*5h)
= |00 + |&-an||” +
+ (09*h, 5" 0n) + (0*0h, 00" 1)
= |00 + |&-am||".

[ +]

we have that 90" f, and 0*0f, are Cauchy sequences, then, they converge. Again, since 0
and 0* are closed, using (2.19) we have that 0f € Dom(9*), 9*f € Dom(d) and

00" f — 00°f and  0°0f, — 0°0f in L}, (D). (2.20)

Then f € Dom(O,q)) and by (2.20), Oy o frn — Qg f. With this O, ) is a closed

operator.

Now we prove that U, ,) is a self-adjoint operator. Let Dfn 9 be the adjoint operator
of Opg)- It is easy to see that Uf, ) = Up,e) on Dom(Uy,q)) N Dom(L, ),
f € Dom(dg, 4)) N Dom (O, ), and u € Dom(Oy,q))

(g) />

), because if

(D?m)f’ u) - (f’ D(p,q)u) = (f, 5§*U) + (f, 5*5u)
= (0°.0°u) + (0f.0u)
= (@0 f,u) + (7°0f,u) = (D o)
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In order to prove that Dom((, 4)) = Dom (¢

(pyq)) we consider the operator

Ly =00"+00+1=04p,+1
defined on Dom((, 4)), and we will prove that L; is self-adjoint.

Since 0 and 9 are closed and densely defined operators, by a theorem of Von

Neumann (see Section 118 in [26]), the operators
(I+00°)™" and (I+4090)™*
are defined everywhere, bounded and self-adjoint.
We define Q; = (I +090*)~' + (I + 0*9)~" — I, then Q is defined everywhere,
self-adjoint bounded operator. Note that

(I+00°) ™ —1=(I—(I+00"))I+ 00")~"

= —00*(I1 +90")™" (2.21)
and
(I+0°0) ' —T1=(I—(I+09)I+00)""
= —0"(I +070)*, (2.22)

and (2.21), (2.22) are true everywhere, then Ran(/ + 909*)~! C Dom(99*) and Ran(I +
9*0)~' C Dom(9*0). Besides, we have

Q= (I+09%9)™" —00*(I +00")7", (2.23)
Q= +00)" =001 +00)". (2.24)
By (2.23) and since 9% = 0, we see that Ran(00* (I + 00*)~') € Dom(9*0), so Ran(Q,) C
Dom(9*0) and
070Q, = 09I +079) . (2.25)
In the same way, by (2.24) since (9*)? = 0, we see that Ran(9*9(I + 9*9)~') C Dom(d9*),
so Ran(Q,) € Dom(99*), so

00" Q1 = 00*(I + 00*)~". (2.26)

Then Ran(®4) C Dom(L;) and by (2.25), (2.26) and (2.23) we have
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_ I (2.27)

Moreover L; is injective, because, if v € Dom(L;) and L;(u) = 0, then the

computations
0= (Liu,u) = (55’% + 0" 0u + u, u)
( ) + (5*5u,u) + JJul®
( “u, 0" u ) (5u,5u) + JJul®
= ‘ O*u
shows that u = 0. With this and (2.27) we have Q; = L;*. Then L, is selfadjoint. Then
Ly — I =0, is self-adjoint. As we wished to prove. B

0]+ u?

The next proposition give us two necessary boundary conditions for (p, ¢)-forms

belong to Dom(, ), they are namely, the d-Neumann boundary conditions.

Proposition 2.2.6 Let D be a bounded domain with C* boundary and p be a C' defining
function. If f € C(p q)( D) then f € Dom(Oy,q)) if and only if

o(®,dp)f =0 and o(9,dp)0f =0 onbD. (2.28)
If f =1, frsdz"dz" € CF, (D) N Dom(Oy,g), we have

Opaf = _,Z Afrgde" A dz’, (2.29)
IJ

where A = 431, 0%/02,0z, = 37 _1(0? /023 +0?/0y}) is the usual Laplacian on functions.

Proof. If f € Dom(0,,) then f € Dom(0*) and df € Dom(9*) and by Lemma 2.2.3
we obtain (2.28). Conversely, if f € C7 \( D) and satisfies (2.28), by observation af-
ter Lemma 2.2.3 we have f € Dom(9*) and df € Dom(0*). Since f € CF, (D) and
f € Dom(0*), 0" f =Vf € C( (D D), so 0 f € Dom(d). And obviously f € Dom(9). Then
J € Dom(0gpq)-

Let’s prove (2.29) for p = 0 (the proof for p # 0 is similar). In this proof, J and
R are the multiindices of length ¢, K and S are multiindices of length ¢ — 1 and ¢ + 1
respectively. If f € Dom(O, q)) we have O*f = Vf and 0*0f = 93 f, because f € Dom(9*)
and Of € Dom(9*). With this, if f is written as in this proposition, we have

2
dIf = —Z’ZXZ: 0 Jg’;dzj/\dsz
J

K
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K 3 \#A

/ 0 f«] =J / 82flK - _K
7 { 0%;0z; } * ; Z {Z 002 Nz

jed J I#]
dz/ =3NS REEN O fie (L yon (2.30)
82']02] = | % 5| 7" 7 0704 ’

I#j

_ l a fJK / 82flK s _K
— Z Z@z]azjd A dZE ; Z{ZazjaZl}dz]Adz

jeJ
KU{j}=R

where efK is 0 if {j} UK # R as sets and is the sign of the permutation that
reorders jK as R. Let {j, J} denote the multiindex in increasing order with elements
in {4, J}, for some j ¢ .J. Before to proceed in the calculation of 90 f, note that for any

smooth function g and multiindex S

W(gdz®) = -Y"' {Z gzl}dzR.

R

Then
19(9]" Z Zﬁ{adez]/\dzJ} Z Z {7} ﬁ{%]d'g{j7J}l}
J
Z ZE{JJ} {Z S ez {3,y afJ e }
0207; 20%;
— -SSP gL
R IR 02,0%;

- _¥ Ofr SR 3.7y 457y 0/ =R
= %: {J% azjazj}dz Z Z ZZ W 505 dz". (2.31)

#l

The first term on the right in this last equality arises from collecting terms where

j =1, and also from the fact the sum on index j is for j ¢ J.

Now we claim that the second term in (2.30) is equal to minus the second term
n (2.31). To show this, it is enough to inspect the coefficients of dz*. For a fixed R, we
proceed to compute the coefficient of the second term in (2.31). Notice first that if [ # j
then el{f%‘]} =0 when j ¢ R. Fixed jy € R; for | # jo, e{jo 7Y 2£ 0 just for [ and J such that
l€Jand R\ {jo} = J \ {l}. Denote Ky the unique multiindex in increasing order such
that {Ko} = R\ {Jjo}. Then

Z Z {Go.TY Lot Ofr _ o Pl (2.32)
€joJ 0210%, l joKo 02,07,
175]0 I#jo
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because the sum in the first member of this last equality is reduced for multiindices J

{go,J}Y {jo.JY _ R

containing Ko, and also €;7;"" /5" = _EjoKoez]Ko’ The second member in (2.32) is equal

to the sum of terms inside of

. Z/Z ER Z anZK
F; K 1£j 82]'(921
KU{j}=R

when j = jo and K = K,. With this we proved our claim. Adding (2.30) and (2.31), we

obtain

n 82fj B 1 , _
Conf ==3' ggbds’ = =33 A’ W

Example Let D be a smooth bounded domain in C” such that 0 € bD. We assume that for
some neighborhood U of 0, DNU = {Im z, =y, <0} NU. Let f =Y frdz) € 0(20’1)(5)
and the support of f lies in U N D. Then f is in Dom(Oo,1y) if, and only if satisfies

(a) fu=0onbDNU,

(b) 2L =0onbDNU,j=1,.,n— 1
If we consider the defining function p of D such that p(z) = Im z, =y, in D N U, since
0/0z; for 1 < j <n —1 are tangential to bD N U, that is, dp/0z; =0 for j=1,...,n—1,

and 687’;(2) = —i on bDNU, we have (a) from the Lemma 2.2.3. In the same way, since

_ n n a
af = Z Z ajzckdzj A dz
k=1j=1, j#k

o 0RO,
= Z {an 6Ek}d2] A dz,

1<j<k<n

then

gZ—g‘Z:O Vek=1,...n—1onbDNU.
By (a), and since 0/0z; for 1 < j < n—1 are tangential to bD NU we have 0f,,/0z;(z) =0
for z € bDNU for j =1,...,n — 1. Then we obtain (b).

2.3 L2 existence theorems for O in pseudoconvex domains

Let D be a domain with C? boundary bD. Let p be a C? defining function in a
neighborhood of D such that D = {z|p(z) < 0} and |dp| = 1 on bD. For each [ € N, we set

CD( Dom(@*)ﬂC (D D)

p,a)

and
D(p,q = Dom(9") N C(C’;q)(D).
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Let ¢ € C2(D) be a fixed function and let

9( = Dom(9) N Cf’;q)(b).

P,q)

By Lemma 2.2.3 (and the remark done after) we have that, f € @‘fpy 9 if and only
if 0(9,dp)f(z) =0 for any z € bD, a condition independent of ¢. So @?p’q) = D (p,q), Which

is also independent of ¢. Similarly we have that Dom(éz) N C’ép,q)(l_)) = @l(p’q).

Let Q% be the form on D, 4 defined by
S o2 1Ak 2
Q°(f, ) = 1071+ 11

Proposition 2.3.1 (Morrey-Kohn-Hérmander’s Identity) Let D C C" be a do-
main with C* boundary bD and p be a C? defining function for D such that |dp| =1 on
bD. Let ¢ € C*(D). For any f = S\ |=py =g fr.0dz'dZ7 € Q(pq

Q°(f. £) = 01, + 19 £1,
2
= > Z/ 88;)_ frir frjxe ?dV

|I|=p,|K|=g—1 i.Jj

ofrs|" _
+ Z /Z - e ¢’dV
1=pisi=a * /0| O
+ ) Z/DE)ZZ quijKe °ds. (2.33)

|I|=p,|K|=q—1 i.Jj

Proof. Let 5;% = e¢%(e’¢u) and L; = 0/0z;. Then

105116+ 19615 = 3 " elf (Ls(fr), Lulfrn) , + 22" 32 (8 Fre S frrc) o (2:34)

L il LK jk
where € =0, unless j ¢ J, 1 ¢ L and {j} U .J = {I} U L, in which case ¢/; is the sign of

. 3J
permutation (z I

||5f||i+||19¢f||i:Z'Z|lijf1,Jll¢ S5 (LS Lifrecc),

). Rearranging the terms in (2.34) gives

I,K jk
+y Z@ J1jK, 05 fle) (2.35)
I,K 3,k
Note that, if u, v € C?(D) applying integration by parts we have
(u,éj’ ) L U, U +/ —uve"z’dS
and
0%¢

¢ 7 _SP7T ., TSP, _
{(5j , Lk] u=0; Lyu — Lypd;u = “azjazk‘
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So,
(69u,8¢v), = (~Lidfu,0)  + /b 5o (8uype2ds
= ( 5¢Lku v) + ([6?,&4 U, v —|—/D 9z 5¢ Yoe~?dS
k
= —(v. 0y L), ( 5o ) /D gzi (60u)ve¢dS

- ¢
= (Lk%[ﬂ'”) M <uazjazk7v>¢

0P (56, \ 50—
+/ (05 u)ve”?dS — /D 7, (Lyu)ve?dS. (2.36)

bD OZ

When u, v are in C'(D), (2.36) also holds by approximation (convolution with a
sequence of mollifiers) since C?(D) is a dense subset in C*(D) (still the regularization of

u and v convergence uniform in compacts to u and v, and so also their derivatives). Using
(2.36) for each I, K, it follows that

n _ _ n 82¢
> 07 fr w00 frpw ) = > (Lufrjx Lifrex), + D (f[, ‘Kafl,kK)
> (97 1 o= 320 (Bafuw Lafuase) 4 3 { G5 frome frarc |
£y 00 (5%, 110) Frae*dS
2 o, 1K) J1 kK
— L ¢ds. 2.37
j,%—:1/bD azj( kfIgK)fIkKe ( )
Since f € ®{, ), by (2.16) in Lemma 2.2.3 we have
}nj o on bD (2.38)
= 82
for each I, K. Thus >}, ffv“ﬂ%k is tangential to bD, then
LR 0 " dp
e k= | =0
kz::l J1rx 7, (; J1iK 84)
on bD for each I, K. This implies
n o n 8 a n n 2
> frex o2 ijK +ZZfI]KfIkK =0 (2.39)
k=1j=1 9z k=1j=1 &
on bD. Combining (2.35)-(2.39), we proved (2.33). B

We invoke the next density lemma, whose proof could be find it on [4] as Lemma
4.3.2, or on [30] as Proposition 2.3.
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Lemma 2.3.2 Let D be a domain with C™' boundary bD, | > 1 and ¢ € C*(D). Then
@l(m) is dense in Dom(d) N Dom(éz) in the graph norm

F= Al +10f 1 + 19551,

This density result allows us to work more comfortably on forms with smooth
regularity on the boundary with tangential conditions expressed on the Lemma 2.2.3, and
get estimates on Dom(9) N Dom(éj’;), as we will see below. Now we will use a concept

called pseudoconvexity, and for this reason we make the next definition.

Definition 2.3.3 Let D be a bounded domain, with C* boundary in C*, n > 2, and let
r be a C? defining function for D. The Levi form of the function r at the point p € bD
denoted by L,(r;t), is defined by the Hermitian form

kz 8zk i (2.40)

for all t in

n

T)°(bD) := {t = (t1, . ta) €C" 2 > 1;(9r/02) (p) = 0} .
k=1
Definition 2.3.4 Let D be a bounded domain in C™ with n > 2, and let r be a C* defining
function for D. D is called pseudoconvex, or Levi pseudoconvex, at p € bD, if the Levi
form L,(r;t) is nonnegative for any t in Tpl’o(bD). The domain D is said to be strictly
(or strongly) pseudoconvex at p, if the Levi form is positive for all such t # 0. D is called
a (Levi) pseudoconver domain if D is (Levi) pseudoconvex at every boundary point of
D. D is called a strictly (or strongly) pseudoconvex domain if D is strictly (or strongly)

pseudoconvex at every boundary point of D.

We can see that this definition is clearly independent of the choice of the defining
function r, because, if p is another C? defining function, then p = hr for some C! function
h with h > 0 on some open neighborhood of 6D, and so for any p € bD and t € T,-°(bD)

we have
X G = 3 G s 3 ZL 0
n 2
+ h(p) %::1 82 arzk (p)t;te
n 2
= h(p) MZ:l afjgzk (p)tty

that is £,(p;t) = hL,(7;1).
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We say that a C? real valued function ¢ on D is (strictly) plurisubharmonic if
L.(p,t) is (positive) non negative for all t = (¢4, ...,t,) € C", and all z € D. When we do

not have a C? boundary for D we define the pseudoconvexity as follows:

Definition 2.3.5 An open domain D in C", n > 2, is called pseudoconvez if there exists
a smooth strictly plurisubharmonic function @ on D, such that, for any ¢ € R the set
D.:={x € D: ¢(x) < c} is relatively compact in D. The function v, if exists, is called

exhaustion function for D.

Proposition 2.3.6 Let D be a bounded pseudoconvexr domain in C* with C* boundary
and ¢ € C*(D). For every f € Dom(0) N Dom(9;;), we have

8%

W~

fI]KfI ke PdV < H@f”¢ + Ha:;fH (2.41)

Proof. By the density lemma, Lemma 2.3.2, is sufficient to prove (2.41) for f € @%p,q) =
Dom(9*) N Clpg(D D). For f € D, [ satisfies (2.16) so by the pseudoconvexity of the

domain D we have

82
/Q azza— fIszI]Ke ¢ds > 0.

Then by the equality of Morrey-Kohn-Hérmander, Proposition 2.3.1, we have (2.41). ||}

The next theorem is in [14], as Theorem 2.2.3, and it shows an existence of solution
for the equation (2.8) in bounded pseudoconvex domains in C". Note how the closure of

the range of the operators 0 and 5;‘; implies on the existence of solutions for this equation.

Theorem 2.3.7 Let D be a bounded pseudoconvex domain in C". For every f & L%p’q)(D),
where 0 < p<n, 1<qg<n withdf =0, one can find u € L(pq 1)(D) such that Ou = f

and
q/ 2 dv < e52/ f2av,
D D

where § = sup, ,ecp |z — w| is the diameter of D.

Proof. First, we consider D with C? boundary. Without loss of generality, we may assume
that 0 € D. On (2.41) we choice the weight function ¢ = ¢ |z|> € C2(D). So we have

it 5 2 e 12
lgll, = ta [ 1o " av < 9g]; + 19;911.
Thus, if g € Dom(8}) N Ker(d) € Dom(8};) N Dom(d), then

7* 2
tallgll; < 1091l (2.42)
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By the Lemma 2.1.2 we have Ran(9) is closed in L{, (D, ¢) and Ran(éjg) is closed in
L(2p7q_1)(D, ¢).
We claim that: for f € Ker(0), there exist a constant C' > 0 such that

‘(f, g)d)) < C’||5:;gH¢ for all g € Dom(9*¢).

In fact, since Ran(é};) is closed we have Ker(0)*+ = Ran(éjg) and
5 5L 5 ¢
L2 (D, ) =Ker(d) ® Ker(9)" = Ker(9) @ Ran(})
thereby if ¢ = g1 + g2 € Dom(((;;;) with g1 € Ker(9) and g, € Ker(9)* = Ran(ég‘,) C
Ker(a’;) C Dom(a’;) (because 9% = 0) then g = g — gy € Dom((i’;) and by (2.42) we have
1 O
(L g0] < 17 1lanlls < —Z= NSN3l

and (f, g2) 5 = 0. Then

1
Viq

1

(£:900| = |(£,90)| < N

£ 1959101, < —=II£ll,l10591l,,

Using the Hahn-Banach theorem and the Riesz representation applied to 5;g —
(f,9)y there exist u € L7, (D, ¢) such that (f, 5;;g) = (u,g) for all g € Dom((i’;) and

(p,9)

1
lull, < ﬁHfII(;)-

This implies that u = df in the distribution sense and u satisfies (since, we assumed
0 € D, then |z| < §2 for all z € D)

q/ 2V < qens?/ uf? et qv

D D

1

e [ et av
D

1
< ¥€t62/ |f\2dV.
D

IN

. . 2 . . o —
Since the function %et‘s achieves its minimum when ¢ = =2, we have

q/ |u]2dV§e<52/ 2 av.
D D

This proves the theorem when the boundary bD is C2.

For a general pseudoconvex domain, we will use the exhaustion of the domain D

by a sequence of pseudoconvex domains with C'* boundary D,. We write

D =U%,D,,
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where each D, is a bounded pseudoconvex domain with C'*° boundary and C'*° boundary
and D, C D,;; C D for each v. Let §, the diameter for D,. Because of the above, on
each D, there exists a u, € L%p,q)(D,,) such that du, = f in D, and

af lwPav<est [ fPav<es [ |fPav.
D, D, D

By Banach-Alaoglu theorem, we can choose a subsequence of u,, still denoted by wu,,, such

that u, — u weakly in L7, (D). Furthermore, u satisfies the estimate
q/ > dv < hmmfe53/ If2aV < 652/ 2 av,
D D, D

and Ju = f in D in the distribution sense. So the theorem is proved. [ |

The result above could be obtained on (p, ¢)-forms locally square integrable func-
tions defined on pseudoconvex domains not necessary bounded, as it is shown on [4] in
Theorem 4.3.5. Note that, we have just proved that Ran(g(m_l)) is closed and is equal to
Ker(é(p,q)). Obviously, uniqueness is not guaranteed, for example if f € Ker(dy,) the u+ h
will be another solution for any holomorphic function A, but we could have uniqueness of

solution on a particular subspace as we will see on Corollary 2.4.2.

Even the domain D is not bounded, we could have existence of solutions, as it is

established in the next theorem proved by Hérmander as Theorem 2.2.4 in [14].

Theorem 2.3.8 Let D be a pseudoconvex domain in C". For every f € L%M)(D,loc),
where 0 < p < mn, 1 < q <n with Of =0, one can find u € L( (D,loc) such that
ou=f.

p,q—1)

Proof. Since D is pseudoconvex domain, there exist a C* strictly plurisubharmonic
exhaustion function o for D. For any f € L%p, o (D loc), we can choose a rapidly increasing
convex function 7(t), t € R such that n(t) = 0 when ¢ <0 and f € L{, ,(D,n(c)). Let
D, ={z€ D:o(z) <v}, then D =U2,D,, where each D, is a bounded pseudoconvex
domain with C* boundary and D, C D, 1 C D for each v. Since (o) is plurisubharmonic,
the function ¢ = (o) + |2|* is strictly plurisubharmonic with

" 92

i T > lal?
azjagk (Z)a]ak - |a|

J,k=1

for all (aq,...,a,) € C" and all z € D. Applying Proposition 2.3.6 to each D, we have for
any g € Dom(d) N Dom(éjg),

2 —¢
< e ?dV
(I||9||¢( = /VI o 92’]9_ AT Ao ILiKILkK
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= 2 S 112
< Hag||¢(Dy) + ”ngH(b(Dy)-

With the same argument in the proof of the Theorem 2.3.7, there exists a u, € L%p’ a—1) (D, )
such that du, = fin D, and

af lwlPetav< [ et < [ |fPetav <o
D, D, D

(p,g
where x, equal to 1in D, and 0 in D\ D,, there exists a subsequence {ul,j Xv; (. converging
J

Due to L%M)(D, ¢) is a Hilbert space and {u,Y,}, is a bounded sequence in L? (D, 9),

weakly to some u € Lf, (D, ¢). Also we have Ou= fin D and

q/ |u]26_¢dV§/ |f\26_¢dV.
D D

The theorem is proved. [ |

2.4 L? existence theorems for the operator D)

Assuming that our bounded domain is pseudoconvex, we show the existence of
the 0-Neumann operator N. This operator will be presented as an inverse operator of
the [, ,) operator defined before for 1 < ¢ < n. Before establishing this result we recall
some properties about the 0, 4 operator, its range Ran(C, ), and kernel Ker(O, ).
By Proposition 2.2.5, Ker(, 4)) is closed, and by (2.1)

L%p,q) = Ran(0O(,q)) ® Ker(Og,q))-

We claim that
Ker(O,) = Ker(9) NKer(0*) =0 for ¢ > 1. (2.43)
In fact, the first equality follows from the fact, for any o € Ker(O, ;) we have
10all” + 100" = (Qgga.a) =0

thus Ker(O,q) C Ker(9) N Ker(9*). To see the other inclusion is sufficient to note that
Ker(d) N Ker(0*) € Dom (). The second equality in (2.43), we use Theorem 2.3.7 to
see that, if a € Ker(d) N Ker(0*) then there exists a (p, ¢ — 1)-form 3 such that 93 = a,

and since 0 = 9*a we will have
lolf* = (98,08) = (998, 8) =0,

then, the equality follows.

Now we prove that Ran((,,) ) is closed for ¢ > 1, and so the existence of an

operator N which inverts the operator [, 4, as it is established in [4] by Theorem 4.4.1.
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Theorem 2.4.1 Let D be a bounded pseudoconvex domain in C", n > 2. For each
0 <p<n,1<q<n, there exists a bounded operator Ny, : L (D) — L%M)(D) such

(,9)
that

(a) Ran(Npp,q)) € Dom(Dg); NpgBp.g = D Nipgy = I on Dom(gpq)).-
(b) For any f € LY, (D), f = 00"Npg) f & 0" ONgg f-

(¢) ONgpg) = Nipgr1)0 on Dom(9), 1 < g <n—1.

(d) O* Ny = Nipg-1)0* on Dom(9*), 2 < g < n.

(e) Let § be the diameter of D. The following estimates hold for any f € L? (D):

(p,9)

ed?
[N fII < 7||f||a

= [ed?
HaN(p,q)fH < 7“f”7 (2-44)

= ed?
1" Nposll < 7||f||- (2.45)

Proof. By Theorem 2.3.7 we have Ran(9y,,_1)) = Ker(d(,.,)), and by (2.1) we may write

L}, (D) = Ran(9p,q—1)) ® Ran(d], ), forg>1. (2.46)

(g (p,g+1)

Then, if f € Dom(dgq) N Dom(8;, ) and f = fi + fo where f; € Ran(9pq-1)), f2 €

Ran(9y, ,.1)), again by Theorem 2.3.7, and Theorem 2.1.2 (applied on Iipg—1) and Dy q))

we have

2 Ak 2
11l < l|0G, g f11I7

2 S 2
1F2l" < cqnllOpa ol

where ¢, = e§?/q, because in this case fi, fo € Dom(Jpq) N Dom(é&“p,q)). Since the

decomposition in (2.46) is orthogonal, we obtain

= 2 = 2
12 = 1A+ 107 < o (1000 fI7 + 105.0/17)

for every f € Dom(0(p,q)) N Dom(aikp,q))'

Now, if f € Dom(0,q)), by the last inequality, we will have

IFIP < e ((0f,0F) + (1,0 F))
=G (D(p,q)f’ f)
< ¢|Og0 NI
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Hence, for any f € Dom(O, ),

1A < call B fI- (2.47)
Then by Theorem 2.1.2, g, ) has closed range. Also, by (2.1) and (2.43), L{, (D) =

(psq
Ran(O,q)). By (2.47), Oq) is injective. Then there exist a unique inverse N

L%p,q)(D) — Dom(0, ) such that O, o) Npq) = Id, that is
f=00"Nygf+00Nygf forany fe L, (D).

) -

and N,Opg) = Id on Dom(, 4)). The assertions (a) and (b) have been established.

By (b), if f € Dom(0), we have

Nipg)0f = Npg+1)9 D) Npa) f = Nipigs1) 09 ON gy f = Nipgie) Dipg)ONipay f = ONGo) f

then (c) follows. (d) follows on a similar way.

The first inequality in (e) follows by (2.47) and (a). To obtain the other inequalities,

observe that

= 2 = 2
[ONo fII + 0" Npg fII” = (D(nq)N(p,q)fa N(p,q)f> - (f’ N(m)f)
< HfH”N(p,q)f”a
and (2.44), (2.45) follow by the first inequality. [ ]

Corollary 2.4.2 Let D and N, 4 be the same as in Theorem 2.4.1, where 0 < p < n,

1<qg<n. Foranya € L%qu)(D) such that da = 0, the (p,q — 1)-form

u=9"Ny g (2.48)

satisfies the equation Ou = o and the estimate

ed?
ul* < 7\!@”2- (2.49)

The solution u is called the canonical solution to the equation du = o with compatibility

condition on «, and it is the unique solution which is orthogonal to Ker(dyp q-1))-

Proof. 1f u is defined by (2.48) then u is orthogonal to Ker(9). Moreover
Ou = 09" Ny = O Npga — 00N = a — 00N g0

then by (c) in Theorem 2.4.1 and the compatibility condition on o we have 0*9N(, 4 = 0,
and so Ou = a. The inequality (2.49) follows by (e) on Theorem 2.4.1. If v is another

solution orthogonal to Ker(0), we will have u — v € Ker(9), and also by the orthogonality

to Ker(dp,q-1)), u — v € + Ker(d,4-1)). Then v — v = 0. The corollary is proved. B

It is possible to define the Neumann operator on the level (p,0) as it is made in [4]

Section 4.4, and with similar properties as given in Theorem 2.4.1.
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2.5 Pseudoconvexity and the Levi problem

As an application we did before, we will solve the well-known Levi problem. But

before, we have to give a definition of an object involving this problem.

Definition 2.5.1 A domain D in C" is called a domain of holomorphy, if we cannot find

two nonempty open sets Dy and Do in C™ with the following properties:

(1) Dy is connected, D1 ¢ D and Dy C Dy N D.

(2) For every holomorphic function f in D there is a holomorphic function f in D,
satisfying f = f in Ds.

The Levi problem consist fo showing whether pseudoconvex domains are domains of
holomorphy. To prove this result, for any p € bD one must find a holomorphic function f

which cannot be continued holomorphically near p.

In the case of D is a strongly pseudoconvex domain with C'* boundary bD and
p € bD one can to construct a function f in an open neighborhood U of p such that f is
holomorphic in UN D, f € C’({ﬁ N U} \ {p}) and |f| = 400 when z € D approaches p.
In fact f can be obtained as follows: Let r be a strictly plurisubharmonic defining function

for D and assume that p = 0. Let

", 0r(0)
-2
; 0z

Q

*r(0)
szazi

-y

1,j=1

ZjZq

F(2) is holomorphic in C", and it is called the Levi polynomial of r at 0. Using Taylor’s
expansion of r at 0, by the strictly plurisubharmonicity of r, there exists a sufficiently
small neighborhood U of 0 and C > 0 such that for any z € DN U,

Re(F) = ) + Z

2,7=1

= 3y > 2
8218,2] zzz] +O(|z]°) > Cl7]|

Thus F(z) # 0 when z € {D N U} \ {0}. Setting f = 1/F, it is easily seen that f

is holomorphic in D N U which cannot be extended holomorphically across 0.

The general case is proved using the next result.

Theorem 2.5.2 Let D be a pseudoconvexr domain in C™. For every f € Cf‘lj’q)(D), where

0<p<mn,andl<q<n, withdf =0, one can find u € CF 1(D) such that Ou = f.

Proof. Let f € Ci (D) with 0 <p <nand 1 < ¢ <n, then f € L, ,(D,loc), and by
the proof of Theorem 2.3.8 there exists a function ¢ € C*(D) (strictly plurisubharmonic)
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such that, [ € L%p,q)(D, ®), and there exists u € L? (D, loc) with Ou = f, and

(p,g—1)

lull, < [I.f[]4- (2.50)

Then using the inequality (2.50) and repeating the same arguments as in Section 2.4
the L? existence theorem for the 9-Neumann operator, there exists a weighted 0-Neumann

operator Ny such that for any g € L%m)(D, ®), we have
g = 00;Nyg + 0;0N,g.

Since df = 0 we have f = 55;;N¢f. Let u = 5;‘5N¢f. It is sufficient to prove that
u € Cy,_1)(D). Due to 5(’;u = 0, we have Yu = —Apu € L%m)(D, loc) where Ay is some

zero order operator.
Note that if « is a (p, ¢)-form in C’(";q)(l_)) with compact support in D, we have
4 ([0al” + [9a]*) = 4 ((9a. 8a) + (Yo, o))
=4 ((8*804 a) (55*04,04))
=4 (0a,a) = (-Aa,a) = [|[Va|l. (2.51)
Where A is the real Laplacian and V is the gradient, both acting on o componentwise.
When ¢ = 0 (2.51) also holds since 0 = 90 = 9*0 is equal to —A /4.

Then the Sobolev 1-norm
lalliq = lal® + [Val* < ¢ (llall + | 9a] + val)) (2.52)

with C' > 0 is a constant.

Let & = (u where ¢ € C3°(D) and define u. = @ * x. where y is a nonnegative
function such that x € C3°(C™), [x =1, supp x C B(0,1) and x.(2) = an(i) It follows,
from Young’s inequality that ||Ju.|| < ||@||, Ou. = Ot * x. and Yu, = Vi * x.. Taking a = u,
n (2.52) we have

ltelly py < € (Jluell + | Oue | + [[9ue])
< (flall + |oa] + [val)

thus, there exists a subsequence (u.,) such that converges weak in W, ,,,(D) (Because
W(D) is a Hilbert space). Since u. — @ in L, (D) we have @ € Wy, (D). So
Vi e L%pq 1y(D). Due to Vu, = Vi x., we have Vu, — Vi in L7, (D), then u. — @
in W(, .1 (D). Thereby, we have u € W, . 1,(D, loc).

Applying the process above to Vu we obtain that u € Wp a—1) (D, loc). We conclude
by induction that u € W’;Zl 1y(D, loc) for any k € N. By Sobolev’s embedding theorem,
ueCy

pa—n(D): |
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The following result solves the Levi Problem through the existence theorem for the

Cauchy-Riemann equations given by Theorem 2.5.2.

Theorem 2.5.3 Let D be a domain in C*, n > 1. If the next property,

For every f € C5% (D) where 0 <p <n, 1 < q <n with of =0, one can find
u € Cf, 1y(D) such that Ou = f,
(2.53)
is satisfied, then D is a domain of holomorphy.

Proof. We will use an induction argument in n to prove the theorem. For n = 1 this is

obvious because all open set in C are domains of holomorphy.

Assume the affirmation is true for n — 1, i.e., if Q is a domain in C"! satisfying

the property (2.53) in €2, then Q is a domain of holomorphy.
Let D C C™ and (2.53) is fulfilled in D. To prove D is domain of holomorphy, for

each zp € D (or maybe, for each z in a dense subset of bD) we need construct a holomorphic

function in D which cannot be extended holomorphically across any neighborhood of z.

First of all, if for every z € D and r, > 0 is such that r, = dist(z,C" C D), we
claim the set F' = U,¢p (m N bD) is dense in bD. In fact, if pg € bD, there exists
a sequence {z;} in D such that |z; — py| = 0 when j — 4o00. Taking (; € C" such that
¢; € B(zj,r.,) NbD. Then r,, < |z; — po|. So we have |¢; — po| < ¢ — 2| + |27 — po| <
2|z; — po| = 0 when j — 4o00. The claim is proved.

Let zy € F, and zy € B(Co, r¢,)NbD. Take ¥y being the complex (n— 1)-dimensional
hyperplane passing through (y and zy. Note that zyg € ¥ N bD. By a linear transformation
we may assume that zg = 0 and Xy = DN{z, = 0}. Let A C C"! such that Xy = A x {0};
m: D — C" ! with n(2/,2,) =2/, Dy = D\ n*(A).

To construct the required function, we will need the next claim:

Forall g € O (A) with0<p<n—-1, 0<g<n-—-1
and 0g = 0, there exist G € Ch.p (D) such that (2.54)
G|A><{0} =4g, éG =0

Since X and Dy are relatively closed disjoint subsets of D, using Urysohn’s lemma,
there exist a smooth function 1 in D, such that n = 0 in a neighborhood of ¥y and n =1
in a neighborhood of D.

Let g(z € D) =n(z)(7*g)(z) where 7*g is the pull-back of the form g by 7*, that
is, if g = ¥ gr,ydz" A dz’ (note that n ¢ J) then m*g = 37 ;45 915d2" Adz’. 0§ = 0
in a neighborhood of Dy, and 9§ = 0 in a neighborhood of ¥, because j = 7*g in a
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neighborhood of ¥y and 9§ = 9(n*g) = 7*9g = 0 (this because 7 is a holomorphic map).
So the (p, ¢ + 1)-form f—f is well defined in D, and is in Cf; . 1y(D), and

05 (Vi N (1l
02 =0(0lg)) =9 (- {mnna})
1 - L
= (8877 AT g —0On A 8(7r*g)) = 0.
Since property (2.53) is satisfied in D, there exist u € Cfy (D) such that ou =
93/ 2. Let G(2) = §(z) — zou(2). Then G € Cor (D),

0G = 0§ — 0(zpu) = 0§ — 2,0u = 0§ — 0§ =0

when 2, # 0 and also 0G = 0 when z, = 0 because 9§ = 0 on a neighborhood of ¥.

If (2/,0) € A x {0}, then G(2/,0) = g(z’,0) = g(z’). This proves affirmation made
in (2.54).

We next claim that A is a domain of holomorphy. In fact, if f € C3%(A4), 0 <p <
n—1,1<q<n—1such that 9f = 0, by (2.54) there exists F € Ci.p (D) such that
OF =0 and F|axo = f. Since property (2.53) is fulfilled in D there exists U € CF (D)
such that OU = F; if we define u(z') = U(2',0); we have du = f and u is in Cf; 1 (A). So

by the induction hypothesis, A is domain of holomorphy.

Finally, since A is domain of holomorphy, there exists a holomorphic function
h(z') = h(z1, ..., z,—1) in A such that it cannot be extended holomorphically across 0. By
(2.54) there exist a function H € C*(D) such that 9H = 0 in D and H(2',0) = h(') for
all z € A. So, H is holomorphic function in D which cannot be extended holomorphically

across 0, i.e. D is a domain of holomorphy. The theorem is proved. [ |
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CHAPTER 3

APPROACH TO THE OPERATOR 0,

In this chapter we want to show some results that appeared over the years in the
study of this operator, in order to explain the motivation and the approaches given to it,
as well as to report the conditions, methods, papers and some researchers involved in the

development of the theory about the operator 9.

One of the first works where the operator 9, appeared was in Kohn and Rossi’s
paper [22]. This paper was focused on extension problems inspirited on Hartog’s theorem.
As it is known the Hartog’s Theorem guarantees the property of holomorphic extension in
a hole bounded domain 2 C C" for functions whose are holomorphic in connected open
subsets of the type Q\ K, with K being a compact set in 2. The discussion made by Kohn
and Rossi starts by asking about the sufficient conditions to imply the same affirmation
for functions defined just in bQ2. Even more, the problem was proposed for (p, q)-forms
f being restrictions in bS2 of forms in C", looking for (p, ¢)-forms f such that f ‘ wr=f
and O-closed in Q, that is df = 0 in Q. One of the conditions imposed by Kohn and Rossi
was that f had to be 0y-closed in b2, that is 9 f = 0 in bS2. The operator 9, was defined

extrinsically in [22] as follows.

Let €2 be a bounded domain in C* with smooth boundary b{). Denote for the
moment M = b2. We define AP4T*(C™)|5; to be the restriction of the bundle of (p, q)-
forms on C", AP9T*(C"), to M. Define I™ as the ideal in AP2T*(C™) which is generated
by p and Op where p is any smooth function that vanishes in M and |dp| # 0 (that is, p is a
defining function). Any element in 79 is of the form p®; +dp A @5 where ®; € APIT*(C")
and ®, € AP41T*(C"), and observe that I is independent of the choice of p. Let 17|y,
denote the restriction of 177 to M. 1P|, is the ideal locally generated by dp. Define
APAT*(M) the orthogonal complement of I79|y, in AP9T*(C™)|p;. The space AP4T*(M)
is not intrinsic to M, i.e., it is not a sub space of the exterior algebra generated by the
complexified cotangent bundle of M, this is due dp in not orthogonal to cotangent bundle
of M. AP9T*(M) = 0 if either p > n or ¢ > n — 1. For an open set U C M the space of
smooth sections of AP4T*(M) over U will be denoted E4(U), and DY (U) will denote the
space of compactly supported elements in E(U). Define ¢y, : APIT*(C")| 5y — APIT*(M)
to be the orthogonal projection map on AP9T*(M). We will denote tp(f) by fi,,- fry 18
called the tangential part of f.
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Definition 3.0.1 For an open set U C M, the tangential Cauchy-Riemann complex
Dy : EVIU) — EXITHU) is defined as follows. For f € EXA(U), let U be an open set in C"
with UNM = U and let f € EP9(U) with f,,, = f on UNM = U then

5bf = (5f)tM'

Note that if a € EP9(U), € Era=1(T), and if p : U — R vanishes on M N U, then

d(ap+ BAOp) = pda+(a+0B) Adp. So 0, maps smooth sections of 17 to I74+!. Then if
fi, fo € EPA(U) with (1), = (fg)tM on MNU we have f — fo € IP 50 Of, — 0 fy € IP9H,
then (0f1),, — (0f2)e,, = (0f1 — Of2)s,, = 0. With this 9, is well defined. Also, we have

(a) Op(fAg)=0uf ANg+ (=1)Pr9f A Oyg for f € EVF and g € E™.

(b) 55251,051,:0.

Note that in case f is a function, the condition 9,f = 0 in b2 is equivalent to f

satisfying the tangential Cauchy Riemann equations, that is
"0
Z aj—f =0 on b
P 82j

for any o, ..., o, satistying 327, ozjg—zf’j = 0 in 0€2. These functions f are called CR func-
tions. Kohn and Rossi’s ideas required of result about existence and regularity up to
the boundary of solutions for the operator 9, so they impose convexity conditions on
the boundary with this objective. To precise, the condition was the Z(q) condition (the
Levi form, at every point in b2, has at least n — ¢ positive eigenvalues or at least ¢ + 1
negative eigenvalues), because it was proved by Hormander in [14] that this property

offered regularity up to boundary in addition to only solutions.

In [18], Kohn presented an approach to the existence and regularity of solutions

for the equation

opu = f (3.1)

defined just not only for manifolds being the boundary of domains in n dimensional
complex manifolds, but in more general structures, now known as CR manifolds. These
objects were compact C°° manifolds 2n — 1 real dimensional M, endowed with a subbundle
S of the complexified tangent bundle CT'M of M which satisfies the next conditions:
Every fiber of S has complex dimension n — 1, SN S = 0 (so we can define a Hermitian
metric such that S L S), and the integrability condition, that is, S is preserved by Lie
bracket ([L1,Ly] € S for any L, Ly € S). This last condition allows us to imply on
the compatibility conditions for the equation (3.1), that is 9? = 0. Having in mind this

structure, it is possible to present the operator 9, as a differential operator, satisfying
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the properties (a) and (b) above, as we prove in Chapter 4 (Section 4.1.1). It is worth
clarifying that the approaches of the operator 0, given above and the given in Chapter
4 are different, because they are extrinsic and intrinsic approaches respectively, but the
complexes that these operators provide are isomorphic. Let £P¢ denote the space of smooth
sections of AP(S*) ® AY(S”). One of Kohn’s goals was to obtain local estimates (it was in
fact subelliptic estimates, once appropriate geometrical conditions were assumed), whose
permit him imply just not closed range of the operator 0y, but regularity of solutions. The
process implemented was as follows. Let U be an open set in M, L4, ..., L,,_; are vectors
field of the type (1,0), that is L; € S for j =1,...,n — 1, T a purely imaginary vector
field in CT'M such that {Ly,..., L,_1, Ly, ..., Ly_1, T} is a basis for CT'M in U. Let cjk be

smooth functions in U such that
[L;, L] = cixT mod S & S.

The Hermitian form defined by cjj, is called the Levi form. Define 9, : E79 — EPa~1 the
formal adjoint of d, (throughout an inner product (-, -) defined in the standard way), and

denote
Qu(0, 1) = (Op, ) + (Voip, D) + (0, ),
for any ¢,1 € EP7. The main estimate established by Kohn in [18] (Theorem 5.3), is

stated as follow.

Theorem 3.0.2 If zo € M and if the Levi form at xo has max(n — q,q + 1) non-zero
eigenvalues of the same sign, then there exist a neighborhood U os xy and a constant C
such that

ni > HLijH?+ni STILif 4+ S Re (T, £ < CQu(f ). (3:2)

j=1JeI, j=1JeT, JET,

for any (p, q)-form f whose support lies in U.

The condition imposed in the Levi form in this theorem is now known as Y (q) condition.
And to obtain local 1/2-estimates, he stated the next (Proposition 6.8).

Theorem 3.0.3 If U is a coordinate neighborhood in M and if there exist a constant Cj
such that

n—1 n—1
SOSTL R+ ST+ S Re (T, £1)] < CoQu(f, f).

j=1 JeI, j=1JeT, JET,

for any (p, q)-form f whose support lies in U, then for any open set V with V. C U there

exists a constant C' such that
1£1ly)5 < CQu(f, f) (3.3)

for all f € EP9 whose support lies in V.
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And over orientability conditions in M; that is M can be covered by neighborhoods in
which the dual forms of L;, 1 < j <n —1, T have been chosen so that in the intersection
of two neighborhoods the duals of T are positive multiples to each others; he was allowed
to pass from local estimates to global estimates after an argument of partition of unity,
that is, (3.3) is going to be true for any f € 77 (Theorem 6.14 in [18]). Once this good
estimates (1/2-estimates) were reached Kohn applied an argument, named by Niremberg
and Kohn as “elliptic regularization" in [21], to obtain smooth solutions. This method, still
used today, consists in adding e times an elliptic operator so that the resulting equation
becomes elliptic and coercive for € > 0. This new equation, being coercive elliptic, has a
smooth solution u. in M and, the method of obtaining a priori estimates applies as well
to the new equation as to the original one, and yields estimates for derivatives of u. which
are independent of €. Doing ¢ — 0 through a sequence ¢;, it follows that a subsequence
of u.,, together with derivatives, converges to a smooth solution of the original problem.
As an example, we explain here how the elliptic regularization works in this case. Define
the Kohn Laplacian [, := 00y 4+ 940,. Once it is obtained (3.3) for f € EP4, by using an
induction process and a small constant/large constant argument, obtain the next estimate

(the a priori estimates)
[ lles1y2 < CsllBof + flls-yy

for f € EP9 and for any non negative integer s. Define for € > 0

Qla)(gpa ’QD) = Qb(%pv 1/]) + 5K(90, ’QZ)), for ©, ¢ c EPY

where K(.,.) is the elliptic term (chosen in a suitable way). The ellipticity of Q5(.,.) will
imply that for any o € EP7 (a smooth section) there will exist a unique p. € 77 such that
Q5 (g, V) = (a, ) for all ¢ € P9, and also (by using the same method to get the a priori
estimates) for each integer s > 0 there exists Cy > 0, Cy being independent of e, such that

pellssrye < Csllalls—yyo-

Then using Rellich’s lemma and the diagonal process, there will exist a subsequence ¢,
converging in || ||, for every s > 0, hence the limit ¢ is in €7 (a smooth section) and
satisfies the equation [y +¢ = «. In this way, Kohn could imply in the existence of smooth

solutions for equation (3.1) on CR manifolds of hypersurface type assuming Y (¢) condition.

Shawn, in [29], reaffirmed the result obtained by Rosay in [27] but using a more
direct method, and also proved the existence of smooth solutions as Kohn did in [18],
on manifolds being the boundary of a bounded weakly pseudoconvex domain €2 in C"
(n > 2). Part of this result is established as follows: the necessary and sufficient conditions
for the solvability and regularity of the solutions for the equation (3.1), where f is a

smooth (p, ¢)-form on b2, and ¢ < n — 1, is dpf = 0. This result was also valid for forms
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in top level ¢ = n — 1, after appropriate orthogonality conditions on f. The approach was
done using O-closed extension as done in [22], and using the existence of smooth solutions
up to the boundary for the operator d on weakly pseudoconvex domains obtained by
Kohn in [19]. Although this process could be useful to guarantee existence of smooth
solutions, the argument could not be applied to establish L? closed range estimates for
operator J,. So Shaw gave in [28], a method to obtain results about global solvability
of the 9, complex on the boundary of a bounded weakly pseudoconvex domain Q C C”
(n > 3), in L? as well as in Sobolev spaces, and exposed their respective estimates, in levels
0 < g < n — 2. This procedure includes the construction of two-sided d-closed extensions
with good estimates of any given dy-closed form on b€), using results already known at that
time about existence and regularity for d-Neumann operator, as well on pseudoconvex
domains as on strongly pseudoconvex domains. In [2], Boas and Shaw contour the result,
offering same estimates obtained by Shaw in [28] in top degree ¢ = n — 1 (so it allows them
work in the boundary of Q C C?). It means in particular, for any bounded domain 2 C C?
with a smooth weakly pseudoconvex boundary Q) (with induced CR structure), the op-

erator d, has closed range in L? as well as TW* for any nonegative integer s (Corollary in [2]).

On the other hand, Kohn in [20] gave an approach to study the operator d, on
manifolds which were not just boundaries of domains in C", as it was studied in [28] and
[2]. As Kohn described there, he was interested to know whether d, on an embedded,
compact CR manifold M C C", (of higher co-dimension) has closed range. He introduced
a microlocal method suited to the study of 9, on C'R manifolds, and proved that if M is
compact, pseudoconvex, and the boundary of a smooth complex manifold which admits
a strictly plurisubharmonic function defined in a neighborhood of M, then 0, has closed
range. In this work we are focused in study the question stated here by Kohn, and also
in obtaining results about closed range estimates as well Nicoara obtained in [24], but
imposing weaker hypothesis than pseudoconvexity. We close this chapter here because the
results that come after the scopes given so far were mentioned in the Introduction of this

work.
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CHAPTER 4

L* CLOSED RANGE ESTIMATES FOR 8, AND THE WEAK
Y (q)-CONDITION

The objective of this chapter is prove L§ (M) estimates (indeed, the estimate (4.15))
in order to prove the closure of the range of the operators [, and d,. We understand this
by dominating the L*norm with the energy Q,(-,-) generated by 9, and its adjoint as
it was done for the operator 9. On the first two sections we give the definitions of the
key terms including CR manifolds of hypersurface type, the Levi form, the operator 0,
and the sufficient geometrical condition used here to imply the L? closed range estimates,
named weak Y'(¢) condition. The weak Y'(¢) condition is obtained throughout weak Z(q)
condition (see definition 4.1.3). A first version of this property, weak Z(q) condition, was
given in [10], which required the local existence of a vector field of type (1,1), whose
coefficients of the diagonal terms are zeros or one and the other terms are taken to be zeros,
such that the sum of any ¢ eigenvalues of the Levi matrix minus the Levi form applied
to this (1,1) vector field is not negative. The difference with the new version used here
(given by Harrington and Raich in [11]) is basically that we can take this (1,1) vector field
with more liberty, taking care that its coefficients make a positive semidefinite hermitian

matrix with eigenvalues not bigger than one.

The approach for operator 0, is similar to what we gave for the operator 9, with
suitable differences. For example since we work on manifolds with no boundary, boundary
terms will not appear on, instead the Levi form will appear with terms with the totally real
part of the tangent bundle, or more commonly known “bad direction". To get control of this
term we will use microlocal analysis. The microlocal analysis is developed in Section 4.3,
and we also prove some technical results in Sections 4.4 and 4.5 below. All this machinery
together with the weak Y (q) is used in Section 4.6 below. Finally, on the Subsection 4.6.1
we show the process to handle terms appearing on our main estimate (4.16), and so imply

in our objective estimate (4.15).

This technique was developed by Nicoara [24] and refined by Harrington and Raich
[10], and in fact many of results used in these works will be used here. Nicoara proved
in [24] the closure of the range of Oy using a weak pseudoconvexity (the Levi form is
positive semidefinite) on CR manifolds of hypersurface type with real dimension at least
5. Her result (when dimg - > 5 ) extends to those obtained in [2, 21, 28] who worked on
boundaries of a pseudoconvex domain. Harrington and Raich proved in [10], closure of the
range of 0y, at level ¢, on CR manifolds of hypersurface type assuming a first version of

the weak Y'(¢) condition given in [10].
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4.1 Definitions

Let CT(C") := T(C™) ® C denote the complexified tangent bundle of 7'(C"). Let

{z1,...2n} with z; = x; + iy; be holomorphic coordinates to C". Define the vector fields

0 10 .0 0 1o .0

3530 ay) 5 =5 (o 3y
and for z € C" define T}(C") and T>'(C") the complex vector spaces generated by
{0/02, ..., 0/0z,} and {9/0z1,...,0/0%,} respectively. Then, is easy to see T}(C") N
T%1(C") = {0} for any z € C", and CT,(C") = TH°(C") @ T>'(C") (with the usual
Hermitian product). For 0 < p,q¢ < n and a point z € C", define the space AP9T*(M) =
AP {T;,k 1’0(((3”)} QA {T x 0’1((3”)}, where & denotes the antisymmetric tensor product, T:"°
denotes the space generated by {dzi,...,dz,} with dz; := dx; + idy;, T:%" = T
and AP {TZ*LO((C”)} (A9 {T:O’l(Cn)}) denotes the p-th (g-th) exterior power of T:1°(C")
(Tr%*(C™)). And define the bundle of (p, q)-forms APIT*(M) by U,ecn APIT*(M).

Let M a real manifold of real dimension 2n — 1 with n > 2, and denote T'(M) the
tangent bundle of M, and CT (M) := T (M) ® C the complexified tangent vector bundle
over M. A CR structure manifold of hypersurface type is defined as follows:

Definition 4.1.1 Let M a smooth manifold of real dimensional 2n — 1. M is called a CR
manifold of hypersurface type if M is equipped with a subbundle of the complexified tangent
bundle CT(M) denoted by T*°(M) satisfying:

i dimcTH (M) =n — 1 where TH (M) is the fiber at each x € M.
i THO (M) NTOY (M) = {0} where TOY (M) is the complex conjugate os TO(M).

iti If L, L' € TYO(M) then [L,L'] :== LL' — L'L is in T*°(M).

TYO(M) is called the CR structure of M.

If M is a submanifold of CV of real dimension 2n— 1, for some N > n, such that the
complex dimension of TH0(M) := TH(CV) N {T,(M) ® C} (under the natural inclusions)
has complex dimension n — 1 for all z € M, we can let T'O(M) = U,y THO(M), and this
will define a CR structure on M of hypersurface type as follows: Obviously, (i) is satisfied.
TOYM) := T(M) = TOHCN) N {T.(M) @ C}, so T (M) N T (M) = {0}, then (ii) is
satisfied. Since TH0(M) = {TLO(CN)|M} NCT (M), and the bundle TH9(CV) is involutive
because the Lie bracket of any two vector fields spanned by {9/0z,...,0/0z,} is again
spanned by {0/0z1, ...,0/0z,}, and the bundle CT'(M) is involutive because the tangent
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bundle of any manifold is involutive, we obtain (iii). We will call T'9(M) = U,/ T (M)
by induced CR structure on M.

In what follows, we will assume M being a smooth, orientable CR manifold of real
dimension 2n — 1 of hypersurface type embedded in CV. Next we proceed to give the
definition of our operator 9, and here we prefer to give a intrinsic approach of the for our
purpose. To see the extrinsic approach, and a equivalence between these approaches, we

invite the reader to see the Chapter 8 in [3].

4.1.1 The 0, operator

Here we give the definition of the operator J, on a intrinsic way inspired in 3,
Section 1], slightly different for our purposes. This approach could be done for any abstract
CR manifold (M, T"°(M)) , with a Hermitian metric defined on the complexified tangent
bundle CT (M) such that T"°(M) is orthogonal to T%' (M) = T19(M). For each p € M
we let X, be the orthogonal complement of T))°(M) & T)"'(M) in CT(M). The space
{X,,p € M} fit together smoothly (since L, L, does), and so the space X (M) = Upepr X,
forms a subbundle of CT(M). Denote by T*%*(M), T*'°(M) and X*(M) the dual
spaces of TOY (M), THO(M) and X (M) respectively. Define the bundles APIT*(M) =
AP(T*HO(M)QAYT* (M) and ARIT*(M) = AP(T*HO(M)QAY(T*OH(M))&X*(M), where
® denotes the antisymmetric tensor product. Since dimeX (M) = 1 we have AP4T*(M) =
{0} = ARIT*(M) when p > n — 1 or when ¢ > n — 1. The pointwise metric on CT (M)
induces a pointwise dual metric on CT*(M) in the usual way. The metric for CT*(M)

extends to a metric on A"(CT*(M)). So we have the following orthogonal decomposition
N (CT*(M)) = (@1 gee APIT* (M) © (g1 MIT(M)).
Define [177 : A"CT*(M) — APIT*(M) and TIR? : A"CT*(M) — AR*T*(M) like the natural

projection maps. For a open set U C M, denote by £ (U) the space of r-forms on an open
set U C M, EPI(U), EXY(U) the spaces of smooth section of APIT*(M) and ARAT*(M)
over U respectively, and DV/(U) the space of compactly supported elements on U of
EPA(U). We will omit U in these notations when U = M . Let dy; : E" — E™! be the

exterior derivative.

Definition 4.1.2 The tangential Cauchy Riemann operator 9, : EP9 — EPITL is defined
by 51) = Hp,q+1 o dM.

Now if ¢ € £M0 and 0 € £Y° we have for Ly, L, € L then by the Cartan-Frobenius identity,
and since L satisfies the condition of integrability (iii) on the definition of CR manifolds,

we will have

(4aa L A L) = L { (9 La) } = Lo {(¢: L)} = {1 L. La] } =0



58 Chapter 4. L?* Closed Range Estimates for O, and the Weak Y (q)-condition

(0.2 12) = 12 {(0.22)} ~ 22 {(0.22)} — (o[22 =0
{

(da, Ly A L) = Ly {(0, Lo)} — Lo {(6, L1)} — {6, [L1, Ls]} = 0

Then dy (EM0) C E20 @ EV' @ (B 4s-1EYY), and dp(E3°) C Briysr €Y. And also we have
dy(E%) Cc E20 @ EV @ 92 @ (B,44=1EY). In general case, by the product rule of dy;

and the cases above, we have
dp(EP) C gpt2a-l g gptla g gpatl g (Brisepte€yx) s du(ERY) C Brismpror1Ey,

With this, if ¢ is a smooth (p, ¢)-form, that is ¢ is an element of £P9, we have

ngb = dMgZ5 - (HP+2’q_1dM§Z5 + Hp+1’qu(;5 + Z H;’(SdMgb) , (41)

r+s=p+q

and

By © Oy = TIP2(d 1 Oy0)
= P92 dy PP g+ dy TPy g+ Y daglTy dagd
r+s=p+q
=0
So we will have the complex
Dy gp0 Doy gt Dy Dy gpnt D

Now if f is a smooth (p, ¢)-form and if ¢ is a (r, s)-form, we will have from the product

rule for the exterior derivative
Op(fNg) = TPFP 05Ty (f A g) = TIPFHIHHY ((dpg f) A g)+ (1P 4 (f A (darg)),

By (4.1) we will have

Hp+r,q+s+1 ((de) A g) — Hp+r,q+s+1 (517]0 A g+ (Hp+2,qflde) A g+ (Herl,quf) A

r+s=p+q
=(Df) Ny

and also in the same way we have IIP*"9++1(f A (dyrg)) = f A Oyg. Then we will have the

product rule for 9,
Do(f A g) = (Duf) A g+ (=1)""f A Dyg.

On analogous way, the operator @, : £P4 — EPTL4 is defined by ) := [Pt o d,.

We are going to consider just smooth, orientable CR manifolds of hypersurface type
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embedded in a complex space CV with the induced CR structure. It is therefore only
natural to choose as a metric the restriction on CT'(M) of the natural Hermitian inner
product on CV. And this metric will be compatible with the induced CR structure, i.e., the
vector spaces TH0(M) and T (M) will be orthogonal spaces under this inner product. Let
w the real 2-form of type (1,1) associated to this Hermitian metric. So if L, L/ € T1%(M)
then the inner product (L, L') between L and L’ is given by

(L, L'y = w(il’ N L).
We can define a Hermitian inner product on £%9(M) by

(£.9)0 = [ (f.9).dV

where dV is the volume element on M and (f,g)  is the induced inner product on
A%(M) by w. The Hermitian inner product above gives rise to an L?*-norm |.||,, and
we also denote the closure of 0 in this norm by J, (by an abuse of notation). In this
way, Op : L (M) — L3 (M) is a well-defined, closed, densely defined operator, and
we define 9§ : L%, (M) — L (M) to be the L? adjoint of §,. The Kohn Laplacian
O : L (M) — L§ (M) is defined as

Db = 5;55 + 5552(,

which is also an unbounded, closed, densely defined operator.

4.1.2 The Levi form

Next, we will assume M orientable and we give a definition of the Levi form as

follows. Let v be a purely imaginary global 1-form on M, that is 4 = —~ such that

(a) annihilates T%(M) @ T% (M)

(b) If Ly,...,L,_1 is a basis of the (1,0)-vector fields in a neighborhood U of one
point in M, T is a vector field taken purely imaginary (T = —T') on U such that

Li,.;lpy_1, Ly, ..., L,_y, T generate T'(U), then (v, T) = —1 (Here (-,-) is related by

the metric w).

The Levi form at a point x € M is the Hermitian form given by (d'yx, LAL ) where L and
L are two vectors fields in T}0(U), and U is a neighborhood of x € M. For L, ' € T*°(M)

and by Cartan’s Formula and by (a), we have
(dy, LAL) =—(y, |L,L')). (4.2)
And if ¢, are such that

Ly L] = T mod T (U) @ TN (U) V1< jik<n—1



60 Chapter 4. L?* Closed Range Estimates for O, and the Weak Y (q)-condition

we have (dvy,L; A L) = ck.. We will call {c’; the Levi matrix respect to

J ]1gj,k§n—1
Ly,...,;L,_1. Now, if Si,..., S, is another basis for T'9(M) and the change of basis
matrix is given by a non singular matrix B then the Levi matrix [¢5,] respect to the basis
S1, ..., Sp—1 will be equal to B*[cl] B, where B* denotes the Hermitian transpose of the
matrix B. So the inertia, that is, the number of positive, negative and zero eigenvalues
(all counting multiplicity), of the the Levi matrix is preserved. Even more, if we assume
Ly,....L, 1 and Sy, ..., S,_1 as orthonormal basis, then the eigenvalues of the Levi forms
are preserved. When there is no danger of confusion, we drop the superscript L in the
notation of the Levi matrix. The CR structure is called (strictly) pseudoconvex in some
point p € M if the matrix [c;(p)], is positive (definite) semidefinite. If the CR structure is
(strictly) pseudoconvex in every point, then it is called (strictly) pseudoconvex. And if the
matrix [c;;] vanishes completely on a open set U C M, M is called Levi flat. We say that
the CR structure has the Z(q) property in some point p € M if the Levi matrix in the
point p has at least n — ¢ positive eigenvalues or at least ¢ + 1 negative eigenvalues. And

we say that the CR structure has the Z(q) property if it has this property at every point.

4.1.3 The weak Z(q) condition

Now, we introduce the main geometrical hypothesis, given by Harrington and Raich
on [11].

Definition 4.1.3 Let M be a smooth, compact, oriented CR manifold of hypersurface type
of real dimension 2n — 1. For 1 < q <n—1 we say M satisfies the weak Z(q) condition if
there exist a real T € T (U) satisfying

(A) 16> > (i0 A G)(Y) >0 for all § € AVO(M)

(B) pi+ o+ ...+ g —i{dy, ) >0 on U, where pu, ..., i1 are the eigenvalues of Levi

matriz [c;i] (respect to an orthonormal basis) in increasing order.

(C) w(T) #q.

We say M satisfies the weak Y(¢) condition if the weak Z(q) and weak Z(n —1—q)

conditions are satisfied.

Remark Assume the weak Z(q) condition is satisfied. In a sufficiently small open set
U C M, we can write T = izz;il bjkik A Lj, in some orthonormal basis Ly, ..., L,,—1
of TH(U), where [b;r] is a hermitian matrix. If we choose a local orthonormal basis
Ly, ...;Ly—q of TYO(U) such that the Levi matrix [cjx(2)], at a point z € U, is a diagonal

matrix with diagonal entries Aj, ..., \,_1 in increasing order, by (A), the diagonal entries
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of the matrix [bj;] are in [0, 1], and so we will have

0 < A+ o4 Ay — Abir — Aabag — . — A 1bm1)(mo1)
<A (1= 1) 4 A1 = by) + oo+ Ag(1 = byg) = Agi1bigs)igrt) — ~ — An_1bin-1)(n-1)
< Ag(q = bir — oo = bgg) = Ag(bgs1y(g+1) — -+ = bn—1)(n—1))
= A(g — w(Y)), (4.3)

and also

0 < A+ o4 Ay — Abir — Aabag — . — A 1bn1)(mo1)
<A (1= byg) + A1 = b2) + oo+ A (1 = byg) = Agr1bgin)(ar1) — - — An1bm-1)(m-1)
< Agi1(q = b = o = bgg) = A1 (Dgt1)(g41) = -+ = Din-1)(n-1))
= Ag1(g — w(Y)). (4.4)

So, a necessary condition of the weak Z(q) condition appears as follows: if w(T) < ¢, by
(4.3) we will have A\, > 0 and so, the Levi matrix will have at least n — ¢ nonnegative
eigenvalues in z. Now, if w(Y) > ¢, by (4.4) the Levi matrix will have at least ¢ + 1

nonpositive eigenvalues in x.

Note that the Definition 4.1.3 requires global existence of a real T € T"(M)
satisfying conditions (A), (B) and (C). Nevertheless conditions (A), (B) are local properties

and the third one is local modulo bounded connected components, as it was noted in [11].

Lemma 4.1.4 For1 <qg<n-—1,leto: M — {—1,1} continuous, and suppose for every
p € M there exist an open set U, such that U, N M is connected and a real Y, € T (U,)
satisfying

(a) 6] > (i AG)(Y) >0 for all § € AYO(U,)

(b) pr+po+ ...+ pug—i{dvy, Yy >0 on U,, where puy, ..., pin—1 are the eigenvalues of Levi

matriz [c;x] in increasing order.
(¢) o(p)(w(Y)—¢q) >0 on U,.

Then M satisfies the weak Z(q) condition.

Proof. Since M is compact, there exist a finite cover U;U,,, for M. Let {x; }j a partition of
unity subordinate to U;U,,. If we take T = 3. x;T,,, the conditions (A), (B) are satisfied
by linearity. Now, if € M, let ji, ..., js such that x; (z) # 0, and >>7_; x;, () = 1. Since
U?_,Up, is connected (because z is there) we will have o(p;,) = o(z) for r = 1,..., s, it
follows that

awn—n>x=§p@uxwwwj—@

T

xzimeuw%xmnm—d
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— o(x) ilxjxx)o(pm(w(m) —q)« 0,

because, in the last equality the sum is a positive number. [ |

Examples of weak Z(q) include:

e [f the CR structure M is pseudoconvex then it is sufficient consider T = 0 to imply

in the weak Z(g) condition, for any 1 < ¢ <mn — 1.
e T = 0 also works if the sum of any ¢ eigenvalues of the Levi matrix is nonnegative.

e If Z(q) is satisfied, choose a local orthonormal coordinates Ly, ..., L, of T*(U) for
some neighborhood U in M, where the Levi form is a diagonal matrix at x, that is,
Cikle = Ojipt;. If there exist at least n — ¢ positive eigenvalues, then y, > 0, so we
could take Y, = izg;} L;j A L; which satisfies (A),

0 <pig=pin+ ...+ pg—ildy,Ta),

and also 1 = ¢ — w(Y,) > 0, and by continuity, this last inequalities will be satisfied
on a neighborhood of x. Note that, if for x there exists another Y! satisfying (A)
and (B) and (C) in some neighborhood of = then by (4.3) we will have

0 < pg(q — w(Y7)),

so, w(Y’) < ¢. Thus, the inequality w(Y,) < ¢ will be satisfied for any y in the
connected component of  in M. In the same way, if there exist at least ¢+ 1 negative

eigenvalues at = we choose T, = izgi} L; A Lj, which satisfies condition (A),

0 < —figr1 = pn + o+ ptg — i {dy, Ta),

on a neighborhood of = and the inequality w(Y,) > ¢ will be satisfied for any y in
the connected component of z in M. Thus, by Lemma 4.1.4, the weak Z(q) condition
will be satisfied on M.

e The argument of the previous item, could be used also when the Levi form has a
local diagonalization with increasing entries along the diagonal, and the Levi matrix
on each connected components, has at least n — ¢ nonnegative eigenvalues (so we
take T, = izg;% L; A Ej) or it has at least ¢ + 1 nonpositive eigenvalues (we take
Y, =iX5 LA Ly).

The condition weak Z(q) appeared first in [10] where the matrix [b;;] was considered

a diagonal matrix with entries like been zero or one. Below, we will refer the weak Z(q),
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and so the weak Y'(¢), condition by the concept given in this present work.

If M is a CR manifold satisfying the Y (¢) condition, then the T corresponding
to weak-Z(q) does not need to have relation with the other one corresponding to weak-
Z(n —q—1). We will use the notation Y, to refer the weak-Z(¢) and Y,_,_1 to the
weak-Z(n —q—1).

4.2 Special functions

In this section, we want to compare the Hermitian forms % (&ﬁb — 51,81,) ¢ and
2 (88_ - 58) ¢, restricted to elements in TH°(M), for smooth functions ¢ defined on a
neighborhood of M C CV. We recall that M is a smooth, orientable CR manifold of real

dimension 2n — 1 of hypersurface type embedded in CV.

Let U = UNCY, with U an open set in CV, be a local path of M, {Ls, ..., L,_1} alo-
cal basis of TH0(U), T a tangential vector totally imaginary such that {Ll, s L1, Ly, ooy Ly, T}
is a local basis for CT'(U). Let wj, 1 < j < n — 1, and v be the dual elements of L;,
1 <7 <n-—1,and T respectively. Define cék as the L;-component of {Lj, Ek]. By the
definition of 0y, 0y, and Cartan’s formula, we have

Then
_ n-1 n—1 _
Opwi = — Y Cpwj AWy, Oy = > Chjwj A,
Jk=1 Jk=1
and
B n—1 ) n—lf_
[ AR S e 5
i=1 i=1

where cjj is the Levi matrix associated to the basis {Ll, e L1, L1, ..., L1, T}. Using

the product rule for 8y, for a smooth function ¢ on U, we have

n—1 nfli_
DR (Ljik(¢) +> C%jLi(ﬁé)) wj N Wk
=1

J,k=1

Similarly we have

n—1 n—1
5bab¢ = Z (—LkL](¢) + Z C;kLZ(qb)) Wj VAN (Dk.
Gk=1 i=1

Then for 1 < j,k<n-—1

(8b5b¢ — Oy, Lj A Z_}k) =

N |

n—-1 _ )

=1

N | —
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On the other hand, let L,,, ..., Ly be vector fields in T"°(U7) such that {Ly, .., Ly_1, L, ...
forms a basis for T O(U) Denote wj, for n < j < N, the dual forms of L;, for n < j < N.
Let 0%, smooth functions such that Ow; = kazl 05,005 A wy. Then by the definition of )

and using Cartan’s formula we have
03, = Owi(Lj A Li) = —duw;(|Li A Lj|) = wil[ i, Lj])- (4.6)

01, = ci; for 1 < j,k,i <n—1. Also, for 1 < j,k < n—1 we have

N | —

N —— .
(006 — 006, L; A Ly) = ; (szk + Ll + - (0% Li() + egjLi(gb))) .
=1

Then if L = Y771 ¢;L; is an element in TH0(U)

N —

((35¢ — 90¢) — (000 — DyDp), L N L) ; i (Z (0L + QlijLi¢)> . (47)

7,k=1 i=n

Since T' € CT(CY) (under the natural inclusions) we have that

n—1 n—1 N N
i=1 i=1 i=n i=n

for smooth functions «;, 3, i, s;. By (4.5) and (4.6) we have r;c;, = 9};]- and s;cj, = —Gj-k
for n <i¢ < N. Then by (4.7) we have

— N
((65¢ — 58¢) — (abébqb — 51;01;@5), L A [:) ; Z fjgkc]k <Z T qu — Slngb)) .
7,k=1 i=n

DN | —

Observe here that v := ¥ (r;L; — s;L;) is a totally real vector field in (CT(U )
(7 = v) , because T = —T implies 7; = —s;. Now, if we choose L,, ..., Ly such that
{Ly,..., Ly} forms an orthonormal basis for T"°(U), v is a real vector field orthogonal
to CT(U) ((v,L;) =0,1<j<n—1and (,T) = |r;]> = |s;]° = 0). As a conclusion we

made above, we establish the next proposition.

Proposition 4.2.1 Let M be a smooth, orientable CR manifold of real dimension 2n — 1

of hypersurface type embedded in CN. If ¢ is smooth function defined on a neighborhood of
M, and L € TY°(M) then

1 = = = = - 1 -
5 (000 —006) — (0,056 — 0,06), LA L) = Sv(6) (dy. LAL).
where v is a smooth real vector field in CT(CY), v = v, and orthogonal to CT M.

Observe that since we are working on compact smooth manifold M, v(¢) will be a

bounded quantity.
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As usual, when it is trying to get L? estimates to the operators 9, J,, we need to
consider well behaved global functions like weight functions. Let A be a smooth function
defined near to M C C". We define the next 2-form

1. = = 1
@)\ = 5(8{;8{,)\ - 8b8b)\) + §V()\)d’y
Also, we will consider the (n — 1) X (n — 1) matrix [@?k} with entries ©%, := (0%, L; A Ly).
The importance of this 2-form will be seen in computations to control terms whose
allow us imply in our basic estimate (4.16), in Section 4.6. By Proposition 4.2.1, we can

see if A = |z|? then we will have OF" = 99(|z|*) = —iw. So, if M satisfies the weak Z(q)

condition then in local coordinates

o byt by —i (O Ty) = q— 75 by > 0if w(y) = Y75 bu < g

o byt by —i (0N Ty) = q— 15 by < 0if w(Ty) = 75 by > g

where {by,...,b,_1} denote the eigenvalues of @'ﬁf = (O, Lj A L) = w(iLy, A Lj) in in-
creasing order. Since the inequality is strictly, by compactness of M, there will exist a

positive constant B, such that miny, |¢ — w(Y)| > B,.

4.3 Pseudodifferential operators

We will follow the setup for the microlocal analysis in [25]. By the compactness of
M, there exists a finite cover {U, },, so each U, has a special boundary system and can be

parameterized by a hypersurface in C" (U, may be shrunk as necessary).

Let & = (&1, &on—2,8on-1) = (£,&2,—1) be the coordinates in Fourier space so
that ¢ is the dual variable to the part of T(M) in the maximal complex subspace
(T (M) & T (M)) and &, _; is dual to the totally real part of T'(M), i.e., the“bad"
direction T. Define

¢ ={e ez leland gl 21} € ={e-¢ect)s
e ={e: 2l <oz 2} ute <y,

C* and C~ are disjoint, but both intersect C° nontrivially. Next, we define smooth functions

¢t~ and ¢°, on {|¢] : |€]° = 1}. Let

UHE) = Lwhen &1 2 5 1] and supp o+ €2 s > 5161}
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Y€)= v (=€) ¥O(g) satisfies ¥7(§)* = 1 —¥H(€)* — ¥ (6)".

Extend 9", 4™, and 1° homogeneously outside of the unit ball, i.e., if || > 1, then

) = v/ 1ED), v () = v (E/[€]), and ¥°(§) = vO(&/ [€)).

Also, extend ¢, 1~ and 1° smoothly inside the unit ball so that (*)2 + (¢7)% +
(¢°)? = 1. Finally, for a fixed constant A > 0 to be chosen later, define for any ¢ > 0.

U () = ¥ (€/(tA)), vy (€) = ¥ (§/(tA)), and ¢7(€) = ¥ (§/(tA)).

Next, let U7, ¥, and ¥? be the pseudodifferential operators of order zero with
symbols 1;", 1, , and 9!, respectively. The equality (¢;)% + (¢; )* + (¥?)? = 1 implies that

(U)W + (W) 0y + ()"0 = Id.

We will use pseudodifferential operators that“dominate’ a given pseudodifferential
operator. Let ¢ be a cut-off function and ¢ be another cut-off function so that 1;|Suppw =1
If U and U are pseudodifferential operators with symbols ¢ and v, respectively, then we
say that ¥ dominates .

For each v, we can define ¥}, U, and ¥? to act on functions or forms supported
in U,, so let \Il,jt, v, , and \I/&t be the pseudodifferential operators of order zero defined on
U,, and C

of those pseudodifferential operators is supported. Then it follows that

+.C; and C? be the regions of é—space dual to U, on which the symbol of each

[ Z2it 2

(‘Ijj,t)*\l'j,t + (‘Ij;t)*\l’;t + (‘Ijg,t)*qjg,t = Id. (4-8)

Let \if:[t and \i/;t be pseudodifferential operators that dominate \Il;t and W, respectively
(where ¥, and ¥, are defined on some U, ). If C?[ and C~; are the supports of the
symbols of \If;t and V¥, ,, respectively, then we can choose {U,}, w;t, and v, so that the
following result holds.

Lemma 4.3.1 Let M be a compact, orientable, embedded CR manifold. There is a finite
open covering {Uu}u of M so that if U,, U, € {U,} have nonempty intersection, then there

exits a diffeomorphism O between U, and U,, with Jacobian Jy such that
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(i) *Ts(CH)NC, =0 and C; N'Ty(C,) = O where ' Ty is the inverse of the transpose of
the Jacobian of ¥;

(ii) let 19\1/;;“ 19\11,;“ and 19\11?# be the transfer of \If:fﬂ, v, , and \I/?’H, respectively via v, then
on {f o1 > 2] and |€] > (1+ 5)tA}, the principal symbol of "W}, is identi-
cally equal to 1, on {5 tono1 < —2 €] and €] > (1 + 5)tA}, the principal symbol of
W, is identically equal to 1, and on {f P35 €] < o1 <5 E) and €] > (1+ 5)tA},

the principal symbol of "W? s identically equal to 1, where ¢ > 0 and can be very

t,p
small.

(iii) Let ‘9\1/2?“,19@{# be the transfer via ¥ of \i/:fu, \i/t_u respectively. Then the principal
symbol of "W

1 s identically 1 on Cf and the principal symbol ofﬁ\if,zu is identically
1onC,;

(w) CrnC; = 0.

We will suppress the left superscript ¢ as it should be clear from the context which
pseudodifferential operator must be transferred. The proof of this lemma is contained in
Lemma 4.3 and its subsequent discussion in [24]. If P is any of the operators \If;r u iy, OF

WY, then it is immediate that
o 1
ng(P> = ‘t|aQa($7f)

for |a| > 0, where g, (, &) is bounded independently of t.

4.4 Norms

Considering the inner product (-,-) defined above, if ¢ is a real function de-
fined on M, we define the weighted inner product for (0,q)-forms f and g, denoted
by (f,9)4: by (f,9)y = (e‘¢f, g). For example, if f = 3,7, fr07 is a (0, q)-form sup-
ported on neighborhood U, where Z, = {J = {j1, ..., Jo} : 1 < j1 < ... < j, <n—1}, and
w’ =wj A+ Awj,, with {wi,...,w,—1} a local orthonormal basis for the (1,0)-forms, we
have || fll; = X ez, [1f7ll, where [ £l = [ar |f;|” e ?dV, and we denote the corresponding
weighted L? space by L(z),q(M, e ?).

We now construct a norm that is well adapted to the microlocal analysis. Let {U M}”
be a covering of M that admits the families of pseudodifferential operators {\I/:;t? s \Ilg,t}

and a partition of unity {CM}M subordinate to the cover satisfying >, Cﬁ = 1. For each p
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let 5u be a cutoff function that dominates (, such that supp ¢, € U, , and ¢*, ¢~ smooth

functions defined on M. We define the global inner product and norm as follows:
(£.9)e = X |GGl G0 Gug”) (G0 G G ),
o
+ (G G G G |

and

I = 211G Gt I+ 1T G + 11 ¥ 1

m

where f# and ¢* are the forms f and g, respectively, expressed in the local
coordinates on U,. The superscript u will often omitted. In the case that ¢+ (z) =t |z|* or
—t|z|* and ¢~ (2) = —t|2|* or t|z|*, we denote the norm by ‘H H’t and in general replace

the subscript with ¢ (e.g., we write ¢; for ¢4+ 4-).

For a form f on M, the Sobolev norm of order s is given by the following:
~ s 2
||f||§ - Z 1CuA°Cuf [l
o

where A is defined to be the pseudodifferential operator with symbol (1 + |£|*)"/2. The
proof of the next is in [25],

Theorem 4.4.1 There exist constant ¢+ and Cy so that

2

2
< Culell? (49)

cellells < |
where cx and Cy depend on maxy {|¢T| + [¢7|} (assuming tA > 1).

Proof. 1t is sufficient to prove the result when ¢ is a function. Let r.. = maxy, {|AT], |[A7]},
then

el < e 5 (10056l + 10006 g + 10926 )

We can express @I’Itggp” =UF e —(1- f)llf,ttgygo". Then

(1= G @NBGw (@) = (1= &) [ ey (€)Cple)d
= [ w1 =L@ty [ ey, ) dedy.
Define
K(w,y) = (1= G@))Cy) [ et )de

Since supp(¢) Nsupp(1l — ¢,) is empty, there exists 4, > 0 such that |z —y| > 3, for
any x € supp(1 — ¢,) and y € supp(,. Then 1+ |z —y| = w <l|z—yl(1+1/5), so
|z — y]_w < (1+1/8)(1 4 |z — y|)~!*! for any multiindex .. Then, by integration by
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parts, for tA > 1, for any = € supp(1 — Ctu) and y € supp ¢, and for |« sufficiently large
(e.g., 2n — 1 < |a), there exists a C,, such that

1

K ()] = |<1 & (@)C)

(2m)*! (z — y)o
L= C@ IO | [ e (1 e
= @m)lla— g /e ) )<(tA>a'> o (tA) dg‘

1- @)k T TEN e (€
< eyt () (o) e ()l

1-¢ x\m R 11— C(@)] [6w)
—@m)ele =y @A)l (L fw) T @mle - g (pA) el
_ =@ Kw)
T (=)

/ e2“5<x—y>Dgw:t<£>ds|

« 51/'

Then the operator (1 — gy)\Il;ftC,, is bounded linear operator on L? and

11 =&)L Gelly < ClEl

where C'is just depending of o and 5, but not of A (e.g. see Theorem 6.18 in [5]). On the
other hand, although the range of W},(, is not L*(U,) but L*(R**~!), this operator is a
smoothing operator outside the Dom((,) C U,, and by the definition of \I!f , it is bounded
on L*(R"), so

~ v 2 e v 2 v
16T Gw Il < 20195, G I+ 201 (1 — GGt Il < ClIGII2

with C' is a constant independent of tA. A similar bound will also hold for WY vy and W

So it follows the upper bound of the lemma, because the sum on v is finite.

To get the lower bound we proceed as follows. Since 3, (2 =1=3, C,, , by (4.8),

we can write
il = 2 16 1
=2 (W) W+ (W0 )W, + (U)W, )G, G,
= 3 (G + (1= ENEG Tl + G+ (1= GG,
G+ (=Gl

. x 2 > 2 > 2 ..
NOW? H(CV + (1 - Cl/))qj:tCV(PVHO < QHCV\IJj,tCV(pVHO + 2”(1 - CZ/)\Ijj,tCVSOVHO' Since ‘I]:tgl/
is pseudolocal (indeed, (1 — (,)¥;},(,¢" is infinitely smoothing), ||(V\I’Itggp”||§ controls
(1 — @)\I/Itggo”ﬂi and similarly for U, and ¥),. As a result,

2 > o2 > o2 o o2
lells < ¢ (16 WG Il + 11690 G Il + 116,956 )
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e 2 ~ un2 o un2
<Y (16 W Gw Il + 169060l + 169,60 I, )

Since we are assuming M as compact manifold, ¢ and ¢~ are bounded. [ |

Like a result of the equivalence between the norms m . ‘Hi we imply the next result,

proved in [24] as Corollary 4.6.

Corollary 4.4.2 There exist a self adjoint operator E. such that
(@7 ¢>0 - (907 Ei¢)i
for any two (0, q)-forms ¢, ¢ in L%qu)(M). E. is the inverse of

S () G GG+ G U G ¥ G L)

Proof. By the equivalence between the norms H’ ‘Hi and || ||, and the Riesz Representation

theorem there must be bounded operators £y and F, inverse of each other, on L%& o(M)

such that (f,9), = (f, E+g),. and (f, Fyrg), = (f,9), for any f,g € L(0 o(M). Also E.
and F, are injective operators and £} = E, = E:*t’i, Fi =F, = Fli. On the other hand,

by the definition of (-,-), we have
(£,9) =2 (GG r, e CvlGg) + (G066 0,G0),

+ (Q:qu;tguf ei(b_év\p;,t@g)o)
=2 (G (W) Ge QW Gg) + (Gof, (W0, G0 Gg)

+ (CVf?( V,t) CVe ¢75V\I];,t<’l/g)0)
= (f, > (G Ce QUG+ G0, QUG+ G () Ce ™ (0,6 g)
for any f and ¢ in L%O’q)(M). Then

Fy o= Z (CU(\IJIt)*C;e*ng\I/ItCV + Cu(\pg ) CQ\PO WG+ G (¥ ut)*gueid)_ EV\IJ;tCV) |

45 0, and its adjoints

Working locally in a small open set U C M, let Ly, ..., L,_; denote a basis for
TY(U), and wy, ..., w,_1 the dual basis for Ly, ..., L,_1; if f is a function on M, locally we
have O, f = Z’;:_ll Ljfa;, and if f = > ez, fs007 is a (0, g)-form then, there exist functions

mi, such that

Ohf = > e Lifror + > fimjak

JeLy,KeTyt1 j=1 JE€Ly,Kelyt1
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where €}/ is equal to 0 if {K} # {j} U J and is the sign of the permutation that reorders
7J to K otherwise. We also define

fir="> € fs (4.10)

JET,

(in this case, I € Z,_1). Let L be the adjoint of L; in ( , ),, E;’¢ be the adjoint of L; in ( , )4
Then on a small neighborhood U we will have E}‘ = —L;+ 0 and E?qﬁ =—L;+ L;jp+oj
where o; is smooth function on U. Because we will need it later, we observe that there are
smooth functions d%,. so that [Lj, l_}k} = T + X)) (db Ly — Jijf/g). Then

Lo L3?] = (L, =Lo] + [Lr, L] + L0
n—1
=cy T+ > (d\ Ly — d',Ly) + L, Ls¢ + L,o. (4.11)
=1
We denote the L? adjoint of 9, in the L2 (M, e~?) by 0;°. For the remainder of
this work, ¢ stands for ¢™ or ¢~ and

67(2)] = ¢ (2)] = It |2,

though virtually all of our calculations hold for general ¢ (up to the point when our

calculation require an analysis of the eigenvalues of the Levi form).

To keep track of the terms that arise in our integration by parts, we use the
following shorthand for forms f supported in a neighborhood U, (recognizing that these

operators depend on our choice of neighborhoods {U,}):

n—1 - _ n—1 - _

IVeslly =3 (WInf Lif), = 3 X0 (Lufs. Lifs),; (4.12)
Ji.k=1 JEL, j,k=1
n—1 - B n—1 - _

IVefIly =30 (VL Lf), = X X (L L) (4.13)
Jik=1 JETL, j,k=1

n—1 . 9 n—1 . 9
IVzeofll5 =D WL f I, = X2 DOILT fall,
j=1

JET, j=1
n—1 n—1
= 2 = . 72
IVeflls = ILifll, = 2 DI fa el
j=1 JETL, j=1
where T = iZZZil b¥i Ly A L; is a real (1,1) vector defined on U initially satisfying (A) in
Definition 4.1.3 . Again, if f =3 c7, f7 w7 is defined locally, then
n—1
af= Y YdLifo+ Y fmho!

1€T, 1,J€T, j=1 I€T, 1,J€T,

n—1
- Y Yhpes ¥ g

I€T, 1 j=1 1€T, 1,J€T,
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and

— nil_
ulr= > Y Lo+ Y pmhel

IeZy 1 j=1 1€y 1,J€1y

Note that a consequence of the compactness of M and the boundedness of ¢, the
domains of 8 and 9;'? are equal. Also we have 9;° = 9; — [5{;, qb} Let 5§t be the adjoint
of 0, with respect to the inner product (-, -);. We also define the weighted Kohn Laplacian
O, by Oy := 9405, + 05,0, where

Dom([0y;) := {gzﬁ €Ly, (M):¢e Dom(8,) N Dom(8;,), Oy € Dom(J;,), and 05,0 € Dom(éb)} .

The computations proving Lemmas 4.8 and 4.9 and equation (4.4) in [24] can be
applied here with only a change of notation, so we have the following two results, recorded
here as Lemmas 4.5.1 and 4.5.2. The meaning of the results is that 5,;} acts like 5;’¢+
(denoted just by 5;‘ "™ for forms whose support is basically C* and 5;‘ * (denoted just by

d;”) on forms whose support is basically C~.

Lemma 4.5.1 On smooth (0,q)-forms,
Oy =0; — Z AN Z GV, 05,07
+ 3 (G [y ) GG+ Gl ) G [0, GG
+ c (GG O] GG+ Gul(W,) G [ 357 Gy iG] G+ E)

where the error term E4 is a sum of order zero terms and “lower order" terms. Also, the

symbol of E 4 is supported in Cﬂ for each p.

We use the following energy forms in our calculations:

Qo+(f.9) = (5bf 51)9) + <5b,if, 5b,ig)i,
Qui(f.9) = (Bf.009) . + (0 1, 0,9) .
Qbo( f,9) = (0. 8bg) (@Tf,é;g)o,

v (1:9) = (0uf.0bg), + (87 1.0,79), -

The space of weighted harmonic forms H{ is defined by
H{ == {f € Dom(9,) N Dom(d;) : Bpf = 0,0;,f = 0}
= {f € Dom(3,) N Dom(d;) : Quu(f, f) = 0}

We have the following relationship between these energies. It says us that, up to well
behaved terms, to estimate the energy (1 (.,.) is sufficient to estimate the energies
Qb+ (.,.) and @ —(.,.) applied on parts, up to smooth terms, whose Fourier transform are

supported in CT and C~ respectively. See [10, Lemma 3.4] or [24, Lemma 4.9].
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Lemma 4.5.2 If f is a smooth (0,q)-form on M, then there exist constant K, K. and
K" with K > 1 so that

KQue(f, 1)+ Ke 1S + || 7] + oulif1)
>3 Qo (GG, GG )
+ Quo(G0 G f”, G0 G f) + Q- (GG, G0 G f)]

K and K' do not depend on t,¢~ or ¢T.

4.6 The main estimate

In this section, we compile the technical pieces that will allows us to establish a

basic estimate the ground level L? estimates for the closure of our operator d, and Clp ¢

Proposition 4.6.1 Let M*"~! be a smooth, compact, orientable CR manifold of hyper-
surface type embedded in CV, that satisfies weak Y (q) for some fivred 1 < q¢ < n — 2.
Set

¢+<Z) _ t|Z|2 ifw(Tq) <q and (b*(z) _ —t|z|2 ifw(Tn—l—q) <n—1-gq
—tlz|*  ifw(T,) >q |22 Fw(Tur ) >n—1—q.
(4.14)

There exist constants K and K; where K does not depend on t so that

A7 < KQuats, )+ K1, (.15)

for t sufficiently large.

Note that, functions ¢* and ¢~ are well defined, since the signs of w(Y,) — ¢ and

w(Y,_1-4) —n — 1 — g are constants modulo connected components.

The main work in establishing (4.15) is to prove the following:

7l < KQuatr )+ K|} + 5SS X 16 GuFH + KA (416)

n JeT,

In order to prove (4.16), we estimate a (0, g)-form f with support in neighborhood
U for a generic energy form Qu4(f,9) = (Oof,Dg)s + (O5°f,0;%g)s. Throughout the
estimate, we will make use of three terms, Fy(f), FEi(f), and Ey(f) to collect the error

terms that we will bound later. We want Ey(f) = O(||f||i) and

n—1 n—1
El(f) = Z Z (iijanJ’fJ’)¢ and Ez(f) = Z Z (E;’(be,dJJ’fJ/)

JJ €T, j=1 JJ €T, j=1 ¢
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for some collection of smooth functions a;; and @y that may change from line to line.

Similarly to the computations done in [25, Lemma 4.2], we have

Quolho ) = IVef e+ S 5 4 (£, 1) 10, 1)

JJ' €Ty dk=1
ik

+ 2 S ([L0 L] f ),

JET, jeJ

+ Ei(f) + Ex(f) + Eo(f).

¢

Using (4.11), €%, = — Y jc7, | €}/ bl for j # k, and by (4.10) we have

n—1
Qvo(f, f) = ||Vif||z + > > (Tl f,— > > e, (kD' fr, far) g

JEIy jeJ JJ €Ty j#k,5,k=1
n—1 n—1
kJ 7 - =
-y Y & (Lij¢fJ,er)¢+(Z(dﬁkLg—ding)fJ, fJ,>
J"]/GI(] ]#k‘,],k,‘:l (=1 ¢

uDIDY

JET, jeJT

+ Ei(f) + Eao(f) + Eo(f)

n—1
=IVLflls+ > >0 (T for fin)y

n—1
(LLsors o), + (L= a0t )
)

(=1

I1€Zy 1 jk=1
n—1 _ n—1 o
+ 3 Y (Lij<z>fﬂ,fM)¢+( (dﬁkLe—df;jLAfﬂ,fM)
I€Ty_1 jk=1 =1 b

+ Ei(f) + Eao(f) + Eo(f)

n—1
= IVeflo+ > > (T fin far)y

1€y 1 j,k=1
n—1 _ n—1
+ >y (Lij¢fj17ka)¢ + (Z dgkLéijafkl>
1€T, 1 jik=1 =1 8

+ Ev(f) + Ex(f) + Eo(f) (4.17)

where E; now includes the term

n—1 n—1
DS (zcﬂkjilfﬂ,fm) |
¢

1€T, 1 jk=1 \I=1

Now, since L; = —E;’¢ + L;¢ + 0}, by (4.17) we have

n—1
Qvo(f, f) = HVLij) + > > Re (T firs frr) g

IEZq_l 7,k=1
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n—1
+ Z Z Re
I1€ly_1 j,k=1

+ Re (E1<f) + Ez(f) + EO(f))

and F» now includes the term

n—1 n—1
D (zdszz’¢fjf,fk1) |
¢

I€T, 1 jk=1 \1=1
Note that
n—1 _ 1
Re > > (Lij¢fj17ka =35 Lij¢ij7fk1)¢ +
I€Zy 1 jk=1 1€y 1 jk=1

[\D\»—l

¢

l\D\»—t

IeTy 1 j,k=1 ¢

o} \

IeZ, 1]k; 1

{
{
ST

(Eij¢fj17 fkl)¢ + (ni &5, Led fir, fkl) ]
(=1 1)

Lij¢ij>fk1> +
Z Lij¢fj1,fk1> +

Z Lij¢fjb fkl>¢ +

n—1

>y (Eij¢fj17fk1)¢

IEZq_l 7,k=1

—_

n—

33

I€ly 1 jk=

1 (fk:]a Eij¢ij>¢

n

>

IEqul j7

1 (fj[; I/ij¢ka)¢

—_

n—

> X (Likwofir fur),

1€l 1 jk=1

H
—_— —— ——

= 5 Z ((Lijqb +L; chb)fgf,fkf)

1€y 1 j,k=1

n—1 n—1 n—1 n—1
Re > > (Z dgkLZbejI’ka) —; Z Z <Z(d§kL€¢+dijf/ﬂqs)fjlaka)
¢ ¢

IET, 1 jk=1 \i=1 =1

and also

1! .
+ 5 2 (djyLed + di; Lid) =

(=1

(LiLjo+ L;Lyo)

DO | —

It follows that

Quolf. f) = IVLfI2 +

1€Zy 1 j,k=1

n—1

1
@jk — §V(¢)Cjk

n—1
Z Z Re (¢;iT fjr, fk1)¢

+ > D <<@?k_;y<¢)cjk)fjbszl>¢

1€y 1 j,k=1

+Re (Ei(f) + Ba(f) + Eo(f)

On the other hand, using notation given in (4.12) we have

n—1 _ B n—1 _ _

Vel = 3 (WLt Lif), = 3 (WITPLuf.f), +
7,k=1 7,k=1 7,k=1
n—1

(4.18)

Z(*d)bkj[/ff)

[(Z,J;*ﬁ 1.648), + (B2 L] £.67F), + (5209 L, f)A
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= ; (PLnL00), + (57 164, + (PO )
n—1

+ 3 (L°f. Ly (7))

¢

g, k=1
S (bkji}k-’d)f, EZ’¢f)¢ + ((—CjkT - S(dﬁku —dyLy) — LpLj¢ — Lyoy) f, bﬁ“f)
G.k=1 =1 é
n—l = — .=
+ > [(E;’¢f, LW ), + (L3209 L f, f)dj
g k=1
n—1 o B o - _ n—1 _
= [(b’%;@f, Li0f), = (MenTf. ) = (Leliof V5 F) = 32 (dLef, bﬂ’ff)qj
Jk=1 =1
n—1

n Z [( *¢f L*¢(b]k)f)¢ (L*d)(bkj L ef f) Z( kLKfabjkf)¢‘| +E0(f)

1

(Lo f,0F f) ]

~
Il

1

_ [(b’_“jL;"ﬁf, Lif), — (WenT 1), — (LeLyof 1), — S
1 _

+ Y [( Ly f, L)), + (L P09k f), g (A Lef 0" f )J

+ 2 (WL VRS + Eolf)

= [(b’fjijﬂS FLF), = (WenTf.f), ~ (;(Eijqﬁ +L;Lio) f, bj’“f) J
1

_ n—1 o - ~
_ (bkf; ST (dy Lot + Aoy L) f, f> + Ex(f) + Ev(f) + Eo(f)
. 1 ¢

7.k= /=1
5 [(higeer o ki ki 1
= kZ (WL L0F), = (WenT ). 1), - (bk (85 = (@), f) J
+ E(f) + Ev(f) + Eolf). (4.19)

where F(f) includes terms

n—1 o - n-1 o
(i Lef V" f) DY (Ly* (M) Ly f, f)(b
7,k 0=1 j.k=1
and E,(f) includes
n—1 B - n-1 B _'
(i s 0f), X (L L), -
J,k, =1 j.k=1

Motivated by [11, p.1725], we write HVEin = (HVEsz — HvaHZ) + HVTij,.
Using (4.19) and (4.13) we obtain

n—1
Quolf: 1) = (IVLFI5 = IV II;) + IV FI5+ 3 D Re(enTfir, fur),

IEIq_l 7,k=1
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- [0Perr), (P05 - o)
k=1

n—1 B

5 X (O~ gro)em i fur) + B+ AL + )

€Lly—1 7,k=1

= (IV2fl5 = INef15) + IV fl5+ X2 i Re (cjeT fjr, frr),

I€T, 1 k=1

(i, T ), + 3 Z( - ¢>c]k>fﬂ,fm)¢

I1€ly_1 j,k=1

~ (ite* 1)1.4), + (3100ildr D)1 £) + Eif) + Eald) + Eal),

Since

n—1 5]6
Z(afJ,fJ Z Z (afﬂ,fk1>
¢

JET, I€T4—1 jik=1

where (6%) is the identity matrix I,_;, we have
= 2
Qoo f 1) = (IVLF 15 = 192 fllg) + IV 1
n—l ildy, T)o*
+ 2. > Re ((Cjk— e 100y 7q > )Tf]hfld)

[€T,_1 jik=1 ¢
n—l (02, T)"
+ > > ((@;%—< >]>fﬂ,fk1>
1€z, u‘kﬂ q ¢
i(d, T)oF
Z Z < (Cjk I fgI,fch
1€T, 1 k=1 q ¢

+ Ei(f) + Ex(f) + Eo(f).

Bounding the error terms Ei(f) and Fy(f) uses the same argument, and we
demonstrate the bound for F;(f). Terms of the form PP ( a;L;g, h) comprise F, for

various functions g and h, and we compute

nll (ajf/jg, h)¢ = n%:l <<5j]€ - bjk)[_/jg, dkh>¢ + n%:l (bjk[_/jg7 dkh)d) . (420)
i= dk=1 drk=1

To estimate the first terms, observe that for ¢ > 0, a small constant/large constant

argument shows that

n—1 n—1 [n—1

BT aa — L _WR\T..q A

J - )
Z ((5 p— U )ngaakh)¢| Z (2(5]k v )ng akh)
7,k=1 k=1 \j=1 6

<5

k=1

Z Jk_bjk i9

ot

]k — b]k L]g

o).
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Stepping away from the integration (momentarily), suppose that at some point
in U, A is a unitary matrix that diagonalizes the hermitian matrix B = (bg *) of T such
that B = A*AA, where A = diag {\1,..., A1} and Ay, - -, \,_1 are the eigenvalues of B.

Consider [L;g] as a column vector with components [L;g],. Then since (1 —X;)? < (1— ;)

for all j,
n—1|n—1 _ 2 _ _ 2
> [0 =) (sg)| = [l1d— ] [Lig] | = [1a- B] L],
=1 |j=

I

I M ]
)_\
|

S
??‘

s
\b
&

L

A
—

|

S
T

s
k}b‘

2 |
Enl

7=1 J,k=1

Returning to the integration, we now observe,

n—1

Z(éjk — vt )ng

Jj=1

< |IVzgll5 = Vgl

For the second term in (4.20), in a similar way, a small constant/large constant argument

shows
n—1 o ~ n—1 P
S (bﬂijg, akh)q5 = > (akg, b’”Lj’d)h)¢ + O([lgll4lIP[l,5)
Jk=1 Jik=1
n—1 _ n—1,n—1 -
> (arg, I LTR)o| < Ox(llgllg) +e > | Do LT
G k=1 k=1"j=1

and linear algebra (as above) helps to establish

2

MLk izl —Z”HA*[ o],

n—1
>
k=1

‘B *%}

1

< 3ol [£en]], " = 28] B[00,

3
|

3 e
7l
_ -

= > VLKL h.

jk=1

Then

b’fﬂL*%H < Z (BH92;°h, Li%h), = | Vxhlf}

k=1 j=1 j k=1
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Summarizing the above calculations, for € sufficiently small and f supported in a small

neighborhood, we have

T (5
Qus(f )= D Z Re ((Cjk - @l%q>> nghfld)

Iqu 15,k=1 ¢
n-1 (07, 1)5}
+ > ((@fk — Z<q>> firs fk1>
1€y jk=1 ¢
n-1 [ (dvy, 7)ok
. (;uw) ((—m)) fﬂ,fm) LO(fIE)  (a2)
1€T, 1 j k=1 q ¢

To handle the T terms, we recall the following results. The first is a well-known multilinear

algebra result that appears (among other places) in Straube [30]

Lemma 4.6.2 Let B = (bjk), <4<, 1 be a Hermitian matriz and 1 < ¢ < n —1. The
following are equivalent:

i. If ue A%, then Y ger, | S0ty biujxtng > M ul?.

1. The sum of any q eigenvalues of B is at least M.

it Y4y Y Tpty bitSty > M for any orthonormal vectors {t°}, ., C C" 1.

The next two results are consequences of the sharp Garding Inequality and appear as [25,

Lemma 4.6, Lemma 4.7]

Lemma 4.6.3 Let f a (0,q)-form supported on U so that up to a smooth term f 18
supported in C*, and let [hji] a Hermitian matriz such that the sum of any q eigenvalues
1s > 0. Then

n—1 o~
Z Z (hjkajI’fk[)d)} > tARe Z Z ]kf][?fk[ (”f”i)_Ot(”C\D?in)

1€l j,k=1 IeTy_1j,k=1

Lemma 4.6.4 Let [ a (0,q)-form supported on U so that up to a smooth term f 18
supported in C~, and let [h;i] a Hermitian matriz such that the sum of any n —1 — ¢

eigenvalues is > 0. Then

{Z Z fJ7fJ Z Z f]laflc[) }

JeZ, j=1 1€Zy_1 j,k=1

n—1 o~
> tARe { X ( hiif, 1) - > Z hjwfirs fur) } - O(Hf“?a) - Ot(HC‘Ijngz).

JET, j=1 I€T, 1 jk=1
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We are now ready to control derivatives in the bad direction T" appearing in energies

Qv+ (-, ) and Qp (-, ).

Lemma 4.6.5 Let [ a (0,q)-form supported on U so that up to a smooth term f 18
supported in CT, and let [hj] a Hermitian matriz such that the sum of any q eigenvalues
is > 0. Then

Re{ > ni (hjkajI;ka)¢} > tARe Y Z ik firs frr) g

I€T, 1 j k=1 IeT, 1 jk=1

—O(I£12) = Ou(IIG B0 £[13)

Proof. Let \Iff be the pseudodifferential operator of order zero whose symbol dominates
f (up to smooth error) and is supported in cr. By the support condition of f and f , We

will have

> ni (hixT fir, fer)y = D Z (P fyrs ((FF) 0 + (1d = (U7)* 7)) fk1)¢

I€T, 1 j k=1 I€T, 1 jk=1

= ) Z ( hieT fir, ( ‘Iﬁ) ‘I’Jrfk[) + smoother terms

1€l 1 j,k=1

n—1
= > > (Ce_%jk‘PZLTfﬂ,C\Ifffk[) + smoother terms
I€T, 1 j k=1 0

n—1

= Z (CN(N ) ¢ e_¢hjk\11 T fir, fk[) + smoother terms
1€y 1 j,k=1

where smoother terms are O(|| f|| ;). We look for the symbol of the operator (¥ )*C2e™?h; U T
Let QZ;“(:E, €) be the symbol of T Note that o(T) = &3,—1. Then the symbol of the com-
position T{IV/:“ is given by

Z ﬁ,ag@zn DD (2,6) = Gonrif (2,€) + DLV (,€).

Since ¢ is supported in C* (up to smooth term) and Y =1 on C*, any of its derivatives
will be zero, so o(UFT) = o(TU}) = &yp19f (x,€) up to smooth terms when applied
to f. Now since o(¥;) = 1 on C*, it follows that o((¥;)*) = 1 on C* as well. Then
o((T7)*) = ¢;f (z,€) up to terms supported in C°\ C*. This implies

() Cehi) =3 SO0 (. DA ) = B ()G,

6'
up to errors on C°\ C*. So, on C™ we will have

o ((UF) e hu ¥/ T) =3 ;,85 o(UF) (e ) Dio(TU])
]
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Z gﬁ wt xr £)C € ¢hjk>Dﬁ(§2n 1% (z,€))
B

- C2€ ]k£2n 1-

Since &,—1 > tA on Ct and 56_¢hjk is such that the sum of any of its ¢ eigenvalues is

nonnegative, by the Proposition 4.6.3 there exist a constant C' independent of ¢ such that

n—1 n—1
Re{ >, (hjkaanka)d,} >tARe > > (CN 6_¢hjkfj17fk1)0

I€T, 1 jk=1 1€T, 1 jk=1

~ CISIE + O + 00 (IS
=tARe ) Z hji fir, fer) g

1€y 1 j,k=1
—0(I712) - 0c (169515

where all the error whose Fourier transforms are supported in C° \ C* have included in

S~ a2
O T f o). H
By a similar argument, we can prove the following:

Lemma 4.6.6 Let f a (0,q)-form supported on U so that up to a smooth term f 18

supported in C~, and let [hj| a Hermitian matriz such that the sum of any n-1-q eigenvalues
is > 0. Then

Re{ Z ni: (hjj(—T)UJ,UJ)d) - Z ni: (hjk(—T)Uj],uk1)¢}

Jel, j=1 I€T, 1 jk=1

n—1 ~ o~ 2
> tARe{ > > (hjjugug)y— D2 Z (hjrujr, un ¢,} — O(llull) — OulI& Tully)-

JEL, j=1 I1€T, 1 jk=1

Now, we are ready to estimate the energies Q4 (.,.) and Qp (., .). We start with
the energy Q.+ (.,.) as follows:

Proposition 4.6.7 Let f € Domd, N Domd; be a (0, q)-form supported in U and let ¢+
be as in (4.14). Then there exists a constant C so that

Qur (CUS £.0U7 £) + CICWS fll + OICTOFII) = tBICYS f1154 (422)

Proof. By (4.21), the fact that the Fourier transform of (U f is supported in C* up to

smooth term, and Proposition 4.6.5, we have

. N n—l (dy, T, )0\ - -
Qo+ QUL f,CU ) =tA > > Re((%k—wqq)]) C‘I/jij,C‘I’ij)

I€T,—1 j,k=1 ot
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LY ¥ ((@j’; <@qT>‘S) C‘I’+fg1,<‘1’+fk1>

I1€ly_1 j,k=1 ot
ildy, TR\ - .
Z Z <V </5+ ((Cjk - M)) C‘I’jij,C‘I’ij)
I€Zy_1 j k=1 q o+

—O(|ICTF 1151 = Ou(ICTVF112)

Now choosing 4 > 1 ’u(|z|2)‘ (we can because M is compact), tA — sv(¢7) > 0, and by

Lemma 4.6.2 and the last inequality we have
> ~ - 2 220 o2
Qo+ (CTL . CTLf) + CICTE fllye + OICTL 1)

! %", T,)0
> > > | |en - Uo7 1)) SV fin GV fur | (4.23)
1€, 1 j k=1 q o+

Since |q —w(Y,)| > By, if w(Y,) > ¢ then ¢ = —t|z[>. Then ©¢" = tiw, and so
i(©9,Y,) = —tw(T,). Thus the sum of any ¢ eigenvalues of @j’,: — (07, )6k /q =
—t0% + tw(Yy)0% /q equals to t(w(Ty) — ¢) > tBy. In the same way, if w(Yy) < ¢ then
¢t =t]z|* and ©9" = —tiw. So (0", T,) = tw(T,), and the sum of any ¢ eigenvalues of
@jk —i(©97, Tq)05 /q = t6F —tw(T4)07 /q equals to t(q —w(T)) > tB,. Then using Lemma
4.6.2 in (4.23) we have (4.22). B

In order to estimate the terms Qby_(f U f, 00 f ) we have to modify the analysis
slightly from the @ 1 case. Similarly to (4.18), we have

Quo(f, f) > IV ¢>f||¢+ Z Z Re ( CJka]I7ka ZRG ciiT'f, f)

IGIq 1 7,k=1

n—1 1
+ > > <(@?k_2’/(¢)cjk)fjhfkl>
I€Ty 1 jk=1 ¢

Z( 37Ol 1)
E(||Vz*,¢f||¢—HVerqg)—Oe(HVeri) O1(If12) ~ OIS ). (4.2

Analogously to (4.19), we have

n_l 7. - —_ 7 . 7.
IV fls > > [(bkﬂka,Ljf)¢+(bkﬂcjka, f),+ (b“(@?k—;uw)cjk)f,f) ]
Jk=1 @
OV s fIl5 = V2 F12) = OV £II5) = O (1£12) = O(IF113)-  (4.25)

It now follows from (4.24) and (4.25) that

Quo(f. )= > Z Re (cieT fir, frr) g ZRG (ci;Tf, 1)y

I€T, 1 j,k=1 Jj=1
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2 E ()

[€T,_1 jik=1
+ Ie;qﬂi% (<@?k - ;V(Cb)cjk) fir, sz>¢
+§; <bkj <@fk ; (¢)c]k> 7, f)
—n: ((@;@- - ; (¢ )%) f, f) —O(If1I%)

= > Tf Re (¢jiT fj1, fur), — Re (Z c;iTf, f)
I€T, 1 j k=1 .

+ Re (i(dy, T)T'f, f),
+ > ni (@fkfﬂ,sz)¢— (nz_: 0% f, f)
I€T, 1 j k=1 =
+ (0%, 1)1, f)
- > Z Re< Cjkfﬂafkl>¢‘|‘ (;V(Cb);cjjf» f)

_ (;y@)z«d% )1.f) = OlIf12): (4.26)

If we set

i{dy, T)
Pt
then we can rewrite (4.26) by

Z%Tf f)+ > 5 (T fu)

1€y 1 j,k=1

(0%, 7)

hjk = Cjk = Oj o —

and h]% = @?k — djk

Quvo(fi f) =

1€ly_1 j,k=1

I€T, 1 jk=1

)

(Zh i/ f>+ > 5 (W f)
(;y(@éhﬂf,f) 2 Z( Vi fir, fkf)
O(

I£115)-

Since the sum of ¢ eigenvalues of the matrix %] d — H is equal to sum of
(n —1—q) eigenvalues of the matrix H, we may now proceed as in the proof of Proposition

4.6.7 (with T = 7T,,_1_,) to obtain the following proposition.

Proposition 4.6.8 Let f € Dom(d,) N Dom(d;) be a (0,q)-form supported in U and let
¢~ be as in (4.14). Then there exists a constant C' so that

Qo (CU7 £,CU7 £) + ClICU; fl,- + OIICTLF) > tBomr |0 f1}--
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Proof of the estimate (4.16) Increasing the size of K, K’ and K. in Lemma 4.5.2, and
o we obtain (4.16). B

by Propositions

4.6.1 Ellipticity on Cy

In order to handle the term Oy (HE@SH@) appearing in our estimate (4.16), the
objective of this section is to prove the Proposition 4.6.11 below, that is statemented in
[25] as the Proposition 4.11. In contrast with the estimates in Propositions (4.6.7) and
(4.6.8) for forms supported on C* and C~ up to smooth terms, we have better estimates

for forms supported on C° up to smooth terms, as we show below.

Lemma 4.6.9 Let ¢ be a (0, q)-form supported on a path U’, such that, up to a smooth
term, ¢ is supported in C°. Then exists positive constants C' and C" independent of t for

which
CQuo(p, ) +C'lloll = llell%. (4.27)

Proof. On a similar way as in beginning of the last section, using bc/sc argument, for a

small € > 0 we have

n—1 n—1

Quolp, ) > (1=2) 3 S I Ljesl 4+ Re Yo Y (enTsmonn) + Ollgll). (4.28)

JEI, j=1 1€l jk=1

On the other hand, note that ||T-||> + | Vz-||* + || V.- ||?

¢ is supported in C° we have

STl = X (T Tes p0) = 3 (1€on 1[G, )

dominates ||.||?, and since

J€eIy JeIy J€eIy
2n—2

<O D (P, 00)
JeZ, j=1
2n—2

= 2 Tk 2 2
<C > > (Ljwsl” + ILjesll") + Olell) (4.29)

JeZ, j=1

for some constant C'. Then to show (4.27), it is sufficient control the derivatives L; and

E; by Quo(.,.) as we will see below. We claim

Qoolpr0) > (1—2) 3 ZHLJ%H +O(lle)l?) (4.30)
Jely j=1

Qoolp, ) > (1—2) 3 z ILzes]” + Ol el®) (4.31)
J€Ly j=1

In fact. Proving (4.30) and (4.31) are similar. We show (4.31). First note that by (4.29)
and using small constant/large constant we have

n—1

— 2 D Re(cuTpjrpur) = —eC ) Z 1Zs0s1” + 1 L5041) + OClel?).  (4.32)

I€Ty—1 jk=1 JET, j=1
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For a smooth function a and by small constant/large constant argument, we have
(aLips o) < el Liesl” + O(l¢l) and [(aLses, ¢)| < el Ll + O(ll]*). Then

S S ULl = X S {25 B wsp) + (Lien L)}

JET, j=1 JET, jfl

g2}
5

=2

{
(501" + (= [Li L] 0. 00)} + Ollel?)
{ (-

1Z5011” + (=T s, 00)} +

JeT, j=1
n—1n—1 o
Y S5 (L - &y Les e) + OUel?)  (4.33)
JeZ, j=1 4=1
n—1 9 n—1
<(1+2¢) > > NLjesll” +Re Y D (—c;Tps,00)
JeZy j=1 JeIy j=1
O(llpl?). (1.3)

On the other hand, using a small constant/large constant argument and (4.29)

n—1
— > Y ReleTes,p0) <e > Tl + O(ll¢l)
JeLy j=1 JEL,
n—1
= 2 Tk 2
<eC 3 Y (ILswsll” + IL5esl1) + Ollel?)
J€ELy j—l
<el’ ) ZHL el +e(1+2) Y Z 1251
Jely j=1 Jez, j=1
n—1
—eC" Y 3 Re(e;Tes, )+ O(llel?). (4.35)
JeLy j=1

Absorbing terms in this last inequality, we have

e(1 + €)
- ZRG ¢jiTes,01) < > Z 111" + O(lle]). (4.36)
JET, j=1 JeT, j=1
Thus, by using (4.36) in (4.34) we have
n—1
- 2 2 (1 + €)
> 2 Ll < (U +2e+ ——=7) > Z 1Z5e1” + Olllell®)- (4.37)
JeT, j=1 JeZ, j=1

Also by (4.33)
n—1
= 2
D2 MLjesll” = (1 —2¢) > Z ILssl” —Re S Z ¢;iTes,0) + O(lel”) (4.38)
J€EIq j=1 Je, j=1 Je, j=1

and using a small constant/large constant argument, by (4.29) and (4.37)

n—1

— > Y Relc;Tys,p1) > — > Z ||L 0 || —¢( 1+26+ Z Z ||L SOJH +O(|l¢l?).

JeTy j=1 JeLy j=1 JeTy j=1
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Thus, using this last inequality in (4.38), for some &’ > 0 sufficiently small we have

S S el 2 =) S S [ Eesl + Olel). (4.39)

JET, j=1 JeT, j=1

Now, using (4.39), (4.32) in (4.28) we obtain (4.31) after choosing €', ¢ sufficiently small.
This proves (4.27). B

Observe the next relation between J; and 5§t = gg‘i below. Using the operators

F. and E. defined before, we have
(¢.000), = (Few.010), = (Febi o) + ([0, Fe] 0.0),
- (5;:@7 (b):t T (Ei {5;’}?*} gp,gzﬁ)i.

Then,
Oy =0+ By |05, Fsl. (4.40)

Lemma 4.6.10 Let ¢ be a (0, q)-form supported in U, for some p such that up to smooth
term, ¢ is supported in C~2 There exists a positive constants C > 1 independent of t and

another positive constant Cy for which:

CRe Qo (¢, Bep) + Cellollo = llell;- (4.41)

Proof. Keeping in mind that F. and Ey are self-adjoint and inverse of each other and
that 3, ¢ = 1, we compute Q+(.,.), in terms of Qyo(.,.). By (4.40)

Qv+ (0, B=p) = (bsp, 5bEi90)i + (G52, 5Z,iEi90>i
= (51)80, FiébEi(P>0
+> (Cu(éff + By [557 Fib% CuFe(0; + By [555 FibEiSO>O
o
(e + (B 8] Bo), + (5500, (5] £20),
+ Z (C,uEi {555, Fi} ©, CuFigf,kEiSD)o
I
5 (6B 5] v 1. B, (3] ),
o
- Qb,o(QO, gp) + (51’90’ {Fi’ 54 Eiso)o T <5;¢’ {Fi’ 5{:} Ei¢)o
+ 3 (GB35, Fe| ¢, Q0 Exp)
o
+ Z (C#E:t {5;7 F:t} ©, C,u [élj? F:l:} E:I:SO)O + (é;(p, {él; F:i:} E:I:QD)O .
I

(4.42)
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Since Fy and E. are of order zero
(Do, [Fie, 0] Bwp) | < ellOuilly + Caryellllo,

(05, [ e 03] Brp) | < ellBlly + Caellelle,

(B0, 05, Fx] Bai) | < 2105ly + Corellel,

> (GuBx |35, Fe) 0,6 |05, Fu] Exg) | < Calloly,

I

Z (guE:i: [5;7 F:I:} @, guF:taZE:t@)O‘ S ’Z (CMEZE [5;7 F:I:} @, guF:t [5;:7 E:I:} @)0‘
B B

+

Z (CHUEi {5;:7 Fi} P, Cpél;k@)o‘

nw
S 2 2
<ellgelly + Cratisellells,

for any small constant ¢ > 0 and some positives constants C ;/. and C4 141/.. Taking
a constant ¢ sufficient small, by (4.42) and by these six last inequalities above, we can
prove that there exists a positive constant C’ > 1 independent of ¢t and another positive

constant Cy such that

C'Re Qy+(p, E+) + Cillolly > Quol(i0, 0).

Now we can apply Lemma 4.6.9 with U, as U’ and C~2 as CY to see that

c@uol0) +Clgllo = lell:

with ¢ and ¢’ independent of ¢. Putting this last two inequalities together and enlarging
C’ > 1 (that does not depend on t), it follows the inequality (4.41). B

Proposition 4.6.11 For any € > 0, there ezists C.+ > 0 so that
x 2
1G5 Cutlly < Qo (9, 0) + Ceello24.

Proof. Note that ||C~#\I/27t§mo“|]0 = [|A1, W0 ,Cue”|],- The Fourier transform of the (0, g)-
form C#\I/g,t@go“, up to smooth terms, is supported in C°, so we can apply the Lemma
4.6.10 with ¢ = CM\I/?MCMQO‘“. Although the range of A™! is outside U,, we can write
AIC, = (LA*@L +(1— (L)A_lgtﬂ where ¢,/ is a smooth bump function that is identically
one on the support of ¢,. Then (1 —¢/,)A™'(, is infinitely smoothing and hence can be

absorbed in the [¢||?; term. By the Lemma 4.6.10 we have

1= 2 1z 2
¢, A P Cue Il < CllGAT G Gl
+C'Re Qu (A0 G, BT (0 (G



88 Chapter 4. L?* Closed Range Estimates for O, and the Weak Y (q)-condition

< Cyll?]l, + C'Re Qb,i((LA_lfu‘I’g,téuw“, EiCLA_IEu\I/g,tCMPH)'
Let P = ¢,A~" and P** be the adjoint of P.
(CH/A_lu, U)t = (u, A_IC#/FHJ)O = (u, EiA_ICu’Fiv)t = (u7A_1C“/ + [Ei, A_IC#'] Fiv)t,

That is, P** = A7, + [Ex, A7'¢/] Fy, then P** — P = [A71 (] + [Ex, A7'¢)/] Fi
is a pseudodifferential operators of order —2. In the same way (ELP)** — ELP is a

pseudodifferential operators of order —2. By Lemma 2.4.2 in [6] we have

. . 1 3 B
Re Qb,:l:(PCM\D,Z,tCMSOM»E:tpgu\pz,tcmpu) < EQb,:t(PCu\Dg,tCugpuvPCqug,tCM‘pu)
1 ~ -
+ §Qb,i(EiPCu‘l’2,tCM“;EiPCu‘Ifg,tCM“)
_1 * 1,0 o *,+ D~ 1,0 I
= 2Re Qb,i(Cu‘I’#,tCmo , P PCM\I};L,tCNSO )
1 ~ . -
+ §Re Qb,i(Cu\Ijg,tCu90“7 (ELP) ’iEiPCu\Ilg,tCMPu)

~ 2
+ O4 (HCu‘I’g,tCM”H,l)
<eQoa(¢", @) + Conlle?y N

Proof of Proposition 4.6.1 By Proposition 4.6.11, choosing sufficiently large constants
K and t in (4.16) we obtain (4.15). B
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CHAPTER 5

CLOSURE AND REGULARITY THEOREMS FOR THE OPERATOR
d, AND [0,

Now that we have the tools of last Chapter, we can prove strong closed range
estimates using many of the arguments of [10]. We do, however, use a substantially
different elliptic regularization to pay particular attention to the regularity of the weighted
harmonic forms, the relationship of the harmonic forms with the regularized operators,

and an especially detailed look at the induction base case.

Specifically, the objective of this chapter is to prove the next result about closure

and regularity of the Jy and the O, operators.

Theorem 5.0.1 Let M?**~ ! be an embedded C™ compact, orientable CR manifold of
hypersurface type that satisfies weak Y (q) for some fized q, 1 < q < n — 2. Then the
following hold:

1. The operators O : L§ (M) — L§ .1 (M) and Dy : Lg (M) — L§ (M) have closed
range;

2. The operators 95 : L3 .y (M) — L3 (M) and 0; : L§ (M) — L3 ,_ (M) have closed

range;
3. The Kohn Laplacian O, := 0,05 + 950y has closed range on L3 ,(M);
4. The complex Green operator G, exists and is continuous on L(%’q(M);

5. The canonical solution operators, 9y Gy : L (M) — L3 ,_ (M) and G,0; : L3 . (M) —

2 - .
Lg (M) are continuous;

6. The canonical solution operators, G, : L§ (M) — L§ . (M) and G0 : Lg (M) —

2 ~ .
Lg (M) are continuous;

7. The space of the harmonic forms Ho,(M), defined to be the (0, q)-forms annihilated

by O, and 5,’; , 1s finite dimensional;
8 Ifae L (M) N+Hoq(M) is Oy-closed, then there exists u € L§ .1 (M) so that
5bu =

and ||ullo < Cllallo for some constant C' independent of «;
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9. The Szegé projection S, = I — 0;0,G is continuous on L(%,q(M).

We start by proving the result by considering weighted spaces but then in the last
section we show the results in the unweighted spaces follows from the equivalence of the
norms. From now on, the functions ¢t and ¢~ are going to be as (4.14). The dependence
of ¢ of this functions will be considered. We denote now the norm ‘H : ’Hi by H’ : H‘t, and in

general we replace the subscript + with ¢ (e.g. we write ¢; for ¢4).

Theorem 5.0.2 Let M**~! be a C* compact, orientable, weakly Y (q) CR manifold of
hypersurface type embedded in CN, N > n, and 1 < g < n — 2. For each s > 0 there exists
Ts > 0 so that the following hold:

i. The operators 0y Laq(M, H’ . ‘Ht) — L .1 (M, H‘ . ‘Ht) and 0O, : Lg,q_l(M, m . ‘Ht) —
L§ (M, m : H’t) have closed range. Additionally, for any s > 0 if t > Ty, then
o 4,00 ) g 31.] [ and 3 00— 00

have closed range.

ii. The operators é{ft D LE (M, m . Ht) — L3 (M, H‘ : H’t) and égt L L2 (M, H’ . H’t) N
L(Q)’q_l(M7 H‘ . ‘Ht) have closed range; Additionally, ift > Ty, then 5{:i D HG (M, ’H . ‘Ht) N
He (M. || - ||) and 8 - 13, 0 || -||) = Hsy 1 (3| -[],) have closed range.

ii. The Kohn Laplacian Oy, := 5;,5{,} + 5{,}51, has closed range on L§ (M, ‘H : H‘t), and
ift > T, Oy, also has closed range on Hg (M, m . H‘t)

iv. The space of (weighted) harmonic forms H}(M), defined to be the (0,q)-forms

annihilated by O, and 5;;15, is finite dimensional.

v. The complex Green operator G, exists and is continuous on L%yq(M, ’H . H’t) and also
on Hg (M || - ||) if ¢ > To.

vi. The canonical solution operator for Oy, (‘5;’th¢ L L (M, ’H : H‘t) — L, (M, ‘H : ’Ht) is
continuous. Additionally, 52‘7th¢  Hp (M, ’H : H’t) — Hg (M, ‘H : ’Ht) is continuous
ift>T..

vii. The canonical solution operator for 5,’;715, DGy : L§ (M, ‘H . H‘t) — L 1 (M, W : ’Ht) is
continuous. Additionally, 0,G; : H (M, m : ‘Ht) — Hp (M, m : mt) is continuous
if t > Ts.

vigi. The Szegd projection S,y = 1 — 5;,55qu¢ is continuous on L§ (M, H’ : H’t) . Addition-
ally, if t > Ty then Sy, is continuous on Hj (M, H’ . H’t) )
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We start doing some observations about the space of weighted harmonic (0, ¢)-forms
denoted by H{(M) and defined by

H{(M) == {f € Dom(3,) "Dom(d;) : Opf = 0,05 .f =0}
_ {f € Dom(dy) N Dom(d;) : Qp+(f, f) = 0} ,

Lemma 5.0.3 Let M be a smooth, embedded CR manifold of hypersurface type that
satisfies Y (q) weakly. If t > 0 is suitably large and the functions ¢*, ¢~ are as in (4.14),
then

(i) H{ is finite dimensional;

(i) There exists C' that does not depend on ¢+ and ¢~ so that for all (0,q)-forms
u € Dom(0y) N Dom(5;) satisfying u L H{ (with respect to (-,-),) we have

Jllly < 0@uetes v (1)

Proof. If u € H{(M) by (4.15) we have ‘Humt < Cy|lu|| ;- Then the identity map from
Hoy(M)NHI(M) to L3 ,(M)NH{(M) is bounded. By Rellich’s theorem, L3 (M) NH{(M)
is compactly embedded in H, ;(M )N H{(M) via the identity map. The composition of
a bounded operator with a compact operator is a compact operator, which implies the
identity map from L§ (M) NH{(M) to L§ (M) NH{(M) is compact. It follows that the
unit sphere on H{ (M) is compact. Then H{(M) is finite dimensional.

We prove (5.1) by contradiction. Assume (5.1) is not true, then there exists a
sequence {uy} C +H{(M) with ‘Hukmt =1, so that
2
1 = H’ukwt Z ka,t(uk,uk). (52)
Again, by the Rellich’s theorem L3 ,(M)N+H{ (M) is compact in H (M) N+H{ (M), then

there exists a subsequence wy, that converges in Hy, (M). Now using (4.15), we obtain

%)

Then, by (5.2) and since uy, converges in Hy, (M), uy, is a Cauchy sequence in Lg (M), so

2
, < Cy (Qbﬂf(ukra Uk, ) + Qb (Up,, uk, ) + |lug, — wk,

[

it converges in L (M). Also (5.2) implies that uy, converges in the Qp(-,-)"/2 norm, so in
o 1/2
the (Qb,t('a )+ H’ : HL) norm. If u is the limit of w, in L§ (M) then u € *H{(M) and

‘Humt = 1, and by the closure of operator d;, and 5;;“ u € Dom(d,) N Dom(d;). However, a
consequence of (5.2) is that u € H{(M). Then v = 0 and this is a contradiction. B

Now by the Theorem 2.1.3 we have the closure of the range of the operators
Dy : Lg (M) — L§ . (M) and 52‘t : Lg (M) — L§,, (M) in the norm HHHt Then by the
Theorem 2.1.2 we have the closure of the range of the operators 9y : L3 ,_, (M) — L% (M)

and 5g‘t  Lg g (M) — L§ (M) in the norm HHHt
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5.1 Existence of the Green operator G

Here we prove the existence of the Green operator, which is defined as the inverse

of the Kohn Laplacian U, := 5bél;k,t + 5;@;, where
Dom(C,) == {¢ € L (M) : ¢ € Dom(d,) N Dom(d;,), G € Dom(d;,), and 35,6 € Dom(dy) } .
For this purpose, we will use the next theorem established in [24] in Lemma 5.4.
Lemma 5.1.1 Let H be a Hilbert space equipped with the inner product (.,.) and corre-
sponding norm ||.| and Q a positive definite Hermitian form defined on a dense D C H
satisfying

lell* < CQp, ) (5.3)

for all p € D. D and Q are such that D is a Hilbert space under the inner product Q(.,.).
Then there ezists a unique self-adjoint operator injective F with Dom(F') C D satisfying

Qp,0) = (Fp,9)
for all o € Dom(F) and ¢ € D. F is called the Friedrich’s representative.
Proof. For each a € H, we define the antilinear functional Q, on (D, |.||) given by

Qo :D>¢— (a,0). By (5.3)

2(0)] < llallli¢ll < CllallQ(o, ¢)"?

so by the Riesz representation theorem there exists some ¢, € D such that Q(¢q, ¢) =
(cr, @) for every ¢ € D. Let S be the operator associated to o € H with ¢, € D, that is,
S:H>a— g, €D. Again by (5.3) we have

ISall* < CQ(Sa, Sa) = Ca, Sa) < Cllal||Sal,

so S is a bounded operator and ||Sa|| < ||a||. Now, if S = 0 then (o, ¢) = Q(Sa, ¢) =0
for all ¢ € D. Since D is dense in H, (o, ¢) = 0 for all ¢ € H and o = 0. This implies
that S is injective. Also

(Sa, B) = (B, 50) = Q(56, Sa) = Q(Se, SP) = (a, 5p),

so S is self-adjoint. Define F := S~! : Ran(S) — H. F is self-adjoint, Dom(F') = Ran(S) C
D, F' is onto and
Qlp, ) = (Fp,9)

for all ¢ € Dom(F) and ¢ € D. B

In order to use Lemma 5.1.1, we need the following lemma.
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Lemma 5.1.2 (Dom(éb) N Dom(9;) NEHE(M), Qp(., .)1/2> is a Hilbert space and Dom ()N
Dom(d;) N+H{(M) is dense in *HI(M).

Proof. Suppose {u;} € Dom(9,) N\Dom(d;) N+H{(M) is a Cauchy sequence with respect

1)

) H‘ ) and vy €
[l
: H’t) Thus « € Dom(d,) N Dom(3;), dyu = vy, andt
égitu = vy since 0, and J;, are closed operators. Since 0 = (uy, w), for all w € H{ and
H‘W — umt — 0, u € *H{(M). Thus u € Dom(9,) N Dom () N +H.

to the norm Q(-,-)"/2. Then Oyu, and abth are Cauchy sequences in L§ ,,(
and L, (

2
LO,qfl(M
hence converges to some u € Lqu(M

‘H respectively, so they converge to v; € L2 g (M

. ) respectively. By (5.1), this means {u,} is a Cauchy sequence in L§ (M

Next, suppose u € +H{(M) is nonzero and u, € Dom(d,) N Dom(9;) satisfies

: H’t) Let v, = (I — H)uy, with H} the orthogonal projection onto
H{ . The forms v, € *H{(M) N Dom(d,) N Dom(d;). Since u # 0, it cannot be the

2 2 2
case that v, = 0 for every /. Since ‘Hugmt = H‘Hfugmt + ‘va E and the forms Hlu, and

vy are orthogonal, Hlu, and v, both converge in L37q(M, m . HL) Let o = limy_,o Hluy,

v = limy_,o ¢, and since Hiuy = ug — vy, « = u — v € TH{(M). However, a € H{ since

H{ is closed, forcing o = 0. Thus, ‘u — W’Ht < H‘u — W’Ht + H‘Hﬁu@mt — 0. Consequently
Dom(d,) N Dom(d;) N+ HI(M) is dense in ~H{(M). B

We now can establish the existence and L2-continuity of the complex Green operator G,
using the following well-known result (we adapt the presentation and argument in [24,
Corollary 5.5]).

Corollary 5.1.3 Let M be a smooth compact, orientable embedded CR manifold of hy-
persurface type that satisfies weak Y (q). If t > 0 is suitable large, ¢, ¢~ are as in (4.14),
and o € “H], then there exists a unique ¢, € ~H; N Dom(d,) N Dom(5;) such that

Qb,t(gpta ¢) = (Oé, ¢)t J v¢ € DOHI(éb) N Dom(él;k)

We define the Green operator G, to be the operator that maps o into . Gyt is a bounded
operator, and if additionally o is closed, then u; = 5§7th’ta satisfies Oyuy = av. We define
Gy to be identically 0 on H{(M).

Proof. We apply Lemma 5.1.1 with H = *H{(M ’H as |||, Qqt(+,-) as @ and
Dom(d,) N Dom(d;) N+ HI(M) as D. By the Lemma 5.1.2, for ¢ suitably large and (5.1),

we have both the existence of the Friedrichs representative F', (and using the notation

on Lemma 5.1.1), the existence of its inverse self-adjoint S : *H{(M) — Ran(S) =
Dom(F) C Dom(d,) N Dom () N+H{(M). We affirm Dom(O,,) N +H{(M) C Dom(F).
In fact, let o € Dom (O, ;) Nt HI (M) and 8 = Oy . Then 8 € T HI(M) and Qy4(S3, ¢) =
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(B,8), = Qui(a,¢) for any ¢ € Dom(y) N Dom(d;) N +H{(M). Then a = SB and
o € Ran(S) = Dom(F). Moreover Dom([J;,) N +H{(M) D Dom(F*). Since [, and F
are self-adjoint, Dom (O, ;) N+H{(M) = Dom(F). Then F = Oy, on Dom (O ) NH(M).
So Gy := S : *HI(M) — Dom(O,,) N+HI(M), and

Qbﬂf(Gqﬂfa? ¢) - (Oé, ¢)t ) v¢ € Dom(éb) N Dom(él;k) N LH?(M)

with Gy unique on Dom(d,) N Dom(J;) N +H{ (M), and H‘Gwamt < C’H‘amt. Since
a L HI(M), also we have

Qo+(Gyia,d) = (a,0),, V¢ € Dom(d,) N Dom(d;) NHI(M). (5.4)

So (5.4) is satisfied for all ¢ € Dom(d,) N Dom(9;). B

5.2 Smoothness of harmonic forms

Here we will prove that H{(M) C Hg (M,
(4.15). We adapt the arguments of [16, 9]. See also [24, 19].

. for t sufficiently large, assuming
t

Fix s > 1. For forms f,g € Hj (M,

[l et

W (f.9) = Quilf,9) +0Qa,(f.9) +v(f.9),

where (g, (-, -) is the hermitian inner product associated to the de Rham exterior derivative
dy, i.e., Qq,(u,v) = (dyu, dpv), + (datu,dz’tv)t, and d,v > 0. Also note that ng(f, g) =
Qoi(f,9) +v (f,9), for f,g € Dom(d,) N Dom(d;). Then

L s

H“PHE < > bity((pa ©).

for all ¢ € Hy (M, |- || ) if > 0 and all ¢ € Dom(d,) N Dom(J;) if § = 0. By Lemma
5.1.1, there exist self-adjoint operators (for 0 < § <1land 0 <v <1) Dg:;’ : Dom(Dif) —

Lg (M, || - H‘t), with inverses Gz’f{ C Lg (M| - ’Ht) — Dom(D‘Z:t”) satisfying
sv 12 1 2
llezzell, < Zliell, (55)
for all ¢ € L3 (M, || - ||.) and all 5 € [0,1].
Our goal is to prove
IGer el < Killoll e + CosllGr el (5.6)
In fact, (5.6) is the main tool that we need to prove that H{(M) C Hg (M, || - ‘Ht), for t

sufficiently large.

We now prove (5.6). The operator Di;? is elliptic when § > 0 which means that
67'/ . s S
Gyt Hy || - || ) = He> (|| - |])-




5.2. Smoothness of harmonic forms 95

If o € H (M, ]| - ||), then
Gl = 1A Gl < Cil|aGase|

Since Gg’f{(p € HS:;Q(M, H‘ . H‘t), the basic estimate yields

S v 2 K S v S v 14 2
[acire|l, < TnAGle, AGlre) + Cull G el e
K v S v v
< SO (NG, NGye) + CLllGh el (5.7)

On the other hand, if (A*)*' is the adjoint of A® under the inner product (-,-),,
then
(ASU, /U)t = (u, AsFt/U)O = (u, EtASFtU)t = (u, (AS + [Et, AS]Ft)U)t

implies that (A®)** = A® + P!, where P! is a pseudodifferential operator of order s — 1
depending on t. A careful integration by parts shows that
e
= (F5° ab o NG o) + (100, AIGYY 0, NG ),
= (M0;,0,Ge 0, N GYY ) ( b A)GRY 0, BN GYY o) + ([0, M]OGyte, N Gote).
( *,t

. +
. +
(A 0;,06Gy 0, A Ggiw + A*)GoY o, DpA° thgo)
+ (M BGye, (A7) [(A%)" éb} NGl),

= (M°0;,0:Gat0, N°Gotp) + (10 A)Gyl 0, BN Gyio),

(0, ([ 8] ¢ A [, 8] A Pt [ 8 ) Gt
= (A0;,0,Gy 0, NGl o)+ (00 NGt 0, BN Gt),

+(anayie, ([0 a] + A [ 0] A+ B [0, a6 &) Glte),

+ ([A% 3)Gere, ([(A), 0] + A= [[(A%), 0], A*] + Pt [(A), 0] A%) Gip)
Applying the same sequence of integration by parts and commutators we have
llg: avciiel];
= (M0;,0Gor 0, N Gotp) + (1054 NIGYl 0, 05 NGy,
+ (0 NG, ([(A) 05, + A7 [[(A), 05, ], A°) + P [(A), 05, A°) GRilp),
+ ([0, 3;0Gore, ([(A),35,] + A= [[(A), 05, ], A°] + Bt [(A)™, 05, A%) GRip)

e
= (A dbtdba“go N Gote) + ([ A)GRY 0, dpA°GRio)

q

+(deagip, ([0 ] + a7 [y ] 4 + 227 [, ] 47) Gi)
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+ ([A%, )G, ([ dy] + A7 [[(A),dy] , A%] + Pt [(A)™, dy] A*) Gy o)

t 9

[Ty
= (Ndudy Gl o, N°Gtp), + ([dhe, MG 0, i A Gl),
+ (5 NGt ([(A) | + A7 [[(A) g ] A7) + B [(AD) dp | A) Gtp).

+ ([0 dg JGore, ([(A) 7 dy| + A7 [[(A), 5, ] A + Pt [(A0), dy ] A°) Gotp)

Since 5§t =0 + PP, dy, = dj + P, using, small constant/large constant argument,

we can absorb terms to obtain

QNG o, NoGitg) < ||| + [ acie||] + CuslGltelle (58)

where C' does not depend t, s, 6, or v, and Cs does not depend on t, 4, or v. By (5.7), for ¢
sufficiently large
o,V 2 2 o,v 2
1GGi el e < Killollys + CesllGieoll o

By induction, we can reduce the H*~'-norm to an L?>-norm, and by (5.5), we observe

5, 2 2 2
1Gi el e < Killollgs + Crsolloll,

uniformly in 6 > 0. Then there exists a sequence {Gg’ft’ygo}k converging weakly to an

element u,, in Hg (M, ’H : ‘Ht) when 9, — 0, and satisfying both
lwllgs < Killollgs + Crsullelly and Jlusllye < Kelloll e + Cosllun[lo- (5.9)

Since Hj (M, ‘H : ‘Ht) embeds compactly in Hg:q(M,’H : H‘t) for s’ < s, it follows that

Gg’ft’”go — u, strongly in Hg:q(M , ‘H . H‘t) Also, observe that the next conclusion is not

automatic in the s = 1 case.

et

2 R N EPP R B
e ¢ + H‘glith,t@ . < Qq,t(Gq,t¢7Gq7t ©)

= (e Gaie), < lell llcaie

ol 6o

<
t_C”

and, moreover, 55Ggf“t"’g0 and 5§7tGg’jt’”g0 are Cauchy sequences in L2, Indeed, assuming
0r < 0; we have
2 Yk Ok,V L 6j,l/ 2
Ht + ab,tc;’q,t "2 ab,tClq,t 2 ‘
< Ok,V Gék,y o G6j7V G(sk’l/ o G(Sjﬂf
= Qb,t ( q,t 2 q,t P, q,t 2 q,t 90)
— 6k7V 6j7'/ 6kul’ 6j7V ‘sk’y 5k7V 5171/ 6j7'/
- (@7 Gq,t Y — Gq,t 90)15 - Qq,t (Gq,t 2 Gq,t QO) + Qq,t (Gq,t s Gq,t QD)
O,V dj,v O,V [ 405,V O,V 8,V ~O5,V 8;,v
S (907 qujt 2 Gq{t Sp)t - Qq]jt (qut s Gq]jt ()0) + Qq{t (qut 2 Gq{t 90)
OV 65,V 65,V 6,V
(()07 qu,ct Y — Gq{t @)t - (Gq{t P So)t + (qu Gq{t Sp)t
O,V 85,V
el flezie = caie

’HébGék’VSO - 5ngf£V%0

q,t

IN

.
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Since 0y and 5;1: are closed operators it follows that 1, € Dom(d,) N Dom(d;), 81,G6t o —
dpu,, and 6th6’“ o — 8btuy in L?. This means G %Yo converges strongly to u, in the

ot (-, )Y2norm. Thus, we will have, for any v € Hg’q ,’ H‘t , by (5.5),

Qhi(GRi"e — Gatov)| = @1 (Gii o, v) = 6 (AGT" 0. duv),
— 0 (dZtngtV% db,tv)t = (i, v),
= 0k (G, (dy oy + oy )v) | < 6kClg

][ 1ol

It now follows that Gq ¢ = u, and

s+ Crsll Gt ol (5.11)

IGeT @l < Killel

With this last inequality, we can now prove that Hj(M) C Hg (M), for ¢ sufficiently
large. We proved that H{(M) is finite dimensional, so assume dimH{(M) = N.If N =0
there is nothing to prove. Otherwise assuming 6, = 0 and let 6; € Hqu(M) for 0 <5 <
[ < N, where {6y, ...,0y} is a basis for H{(M). We will construct some 6 € H* N H{(M)
such that [|0]|, = 1 and (0, 0;), = 0 for all j <. Let a € Hj (M) such that o L 0; for all
j <l and « is not orthogonal to ;1 (« exists because otherwise it would imply 6,11 = 0).
By (5.11) we have

G2l

. < Cis(llaf

H st ||G2:504||0)7

for all v € (0,1). We claim {HGS:?aHO, O<v< 1} is unbounded. If it were bounded, then
by the last inequality, there would be a sequence Gg:ty "o converging weakly to u € Hg ,(M).
Additionally, by a previous argument for Gg’f{ (done in (5.10)), u € Dom(d,) N Dom (),
ngt”’“a — u strongly in the Qp(.,.)"?-norm and so

Quau.0) = lim_ Quu(Goi"an ) = lim Q7 (Gyita,0) — vy (Goyan9),

= (a.9) = lim v (Ggi*a.0), = (@.9),, ¥ € Dom(8y) N Dom(d;)

(because we assumed ’HGS;’I;O‘HL is bounded) for every ¢ € Dom(d,) N Dom(d;). Setting

¢ = 0; the left-hand side is zero for all j, whereas the right-hand side is non zero for

7 = 1l 4+ 1. The claim is therefore established. It now follows that there exists some
subsequence {Gg:;”“&} such that limy_, HGS”?"'@HO = oo0. We set v, = ||G°0”V:|| and note
that

0 (e, ) = O (5.12)

0
Gzl

By (5.11) there exists a subsequence ~;, which converges weakly in Hg (M) to some

0 € Hg (M), so it converges strongly in L§ ,(M). Since ||y, ||, = 1, we have [|0]|, = 1 and

Ouk 1
< Que T (M) = A0E (@,ij)t
1Gae” el

o I
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Gl
<

.
0,v,

>~ Uk
||Gq,t ! ||0

Then 51,%]. — 0 and 5;{}/;9]. — 0 in Laq(M ). Since 0, and 5[% are closed operators,
0 € Dom(3d,) N Dom(d;), 0,0 = 0, and 5,’;159 = 0. Thus 0 € H{. Finally, by (5.12)

0,vg . Q, 07"
sy (1y260,) = QU (i, 0) = e
||Gq,t ! “0

this means 7, is orthogonal to 6, for r = 1, ..., I. Since 7, converges strongly in L§ (M) to
0; 6 will be orthogonal to 6, for = 1,...,1. So with this, we have proved H{(M) C Hg (M)
for ¢ sufficiently large.

5.3 Regularity of the Green operator and the canonical solutions.

In this section we assume ¢ is sufficiently large and the weighted harmonic (0, ¢)-
forms, if they exist, are elements of Hj (M), so *H{(M)NH; (M) # {0}. We use an elliptic
3= sy | .
Consequently, the regularity result for Gy; must be on *H{(M) N Hy (M) for s > 0.

Continuity on all of H (M) then follows because we already established that harmonic

regularization argument. The operator G, : L(2),q<M ,

forms are elements of Hg (M).

The quadratic form Q9 ,(-,-) := ng;(., ) is an inner product on Hg ,(M). By (5.1)
2
el < CQualuu) < CQF (u,w) (5.13)
for all u € H (M) N+H{(M). If f e L§ (M) then

()l < [l Nlell, < [l71l.c**@h 0.9

for all g € *H{(M)NH;,(M). This means the mapping g — (f, g), is a bounded conjugate
linear functional on *#{(M) N Hj (M). By the Riesz Representation Theorem, there
exists an element GO ,f € *Hj(M) N Hj (M) such that (f,g), = @Q},(G,f,g) for all
g e HI(M)n H (M).

Moreover, by (5.13)

ot < @i et - (1651), < A,

where C' is independent of §. Consequently,

ll<zeAll, < <lisll. (514)

Since Qp,(-,-) satisfies Q) ,(f, f) > 5H‘A1fwt for every f € Hj (M), the bilinear
form Qp ,(-.-) is elliptic on H} ,(M). This means that ¢ € Hj (M) implies G2 .o € Hyt?(M)
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(before, we only knew that G o € *H{(M) N Hj (M)).

Let » € H (M), then

162 ol = I8°G3 ol < |G |- (5.15)

We apply the basic estimate to G;tgp € HS;Q(M ) and observe

Using the argument of (5.8), we can establish

2
Hs—1°

2 K
NG, < T QNG NG 0) + Ol Gl

(5.16)

Qb,t(AsGitS@a Ang,t@) < Qg,t(Angﬂf@? Ang,t@)

< cfjag]l; + Cl|chie|l) + CallGiue (5.17)

2
Hs—1

where C' is independent of ¢, s,d, and v and C; is independent of ¢,9, and v.

Plugging (5.17) into (5.16) we have

and choosing ¢ sufficiently large to absorb terms, it follows that

H

Angtng’t < 00. Plugging (5.18) into (5.15)

2
Hs—1)

vage; < 7 (Gl + i) + CulGhu

S 2 2
A Gg,tS"H‘t < KtH%O“Hs + Ct,sHGg,tSO’ (5.18)

2
Hs—1)

since H

2
GGl < Killgl

2
i+ + Cusll Gl oo

Using (5.14) and induction, for the last inequality above we have

2
G el < Killolz. + Crslliells. (5.19)

With (5.19) in hand, we now turn to sending 6 — 0, in a similar manner to [10]. If
¢ € Hg (M) then {G;tgp 0<d< 1} is bounded in Hj (M), so there exists 6, — 0 and
@ € Hj, (M) so that Gg’ftcp — @ weakly in Hg,(M). Since the inclusion of Hg (M) in
L% (M) is compact, we have Gy — @ strongly in L2 (M) and @ € “H{(M). Also we
have

qus < Kiflo|

7 Cralloll. (5.20)

|l
Also,

~ s 2 2
oGz, +| "
and, as in the previous section, we can prove 81,G§’tg0 and ag“’tGg’tgo are Cauchy sequences in

Lqu (M) and Laq_l(M ) respectively. Since J, and 5{;,5 are closed operators we will have

%G, < QuGlurGlug) = (#:Glas), < [l Icivl, < il
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@ € Dom(d,) NDom (), 5;,6’277590 — 0y and 52‘7,56?3750 — 55}11 in L3,q+1(M) and L%,q—1(M)

respectively, and
o], el (5:21)

Consequently if v € HH?(M), then lim Qg’}(thgo v) = Qp+(@,v). However, th(thgp v) =
(0,v), = Qui(Ggrp,v). So by uniqueness Gg = @ and by (5.20) we have

IGaeely. < Kollo||.. + Caliol (5.22)
and by (5.21)
_ 2 — 2 2
18Gacel], + |65 Gasel; < ],

These two last equations prove the continuity of G, on H (M), and as well as DG
and 95 ,Gqq in L2 (M).

Now, we show some estimates to prove the regularity of canonical solutions. Let

NaGl + NG o+ || o)

Asé,jtaétgom +6(

(k) :==

By integration by parts we have

N0G || = (805,006 0. A°G8 0) + ([0 A7) DGE 0, MG 0)
NOGS o, A5, 06| G2 p)

vl Ry (b )

A N T

Asdng’tgp’Hf = J(FA(‘*/c\lij;fqt;pAEAG‘s ta;t)} qu([pd)ii ;\S] Ao, NGy p),
Ndy G, [N, dy) G

T (A( dbd:GéiZ AsGél;p) tSD)( dy, A] A5G 0, NG )
+ (MGG o, [N, 5] GO p)

t

Then using a small constant /large constant argument and the absorbing of error
terms by (k) we have

2
(k) < NGl

where C' does not depend on ¢, s,v,6. So by (5.19), for ¢ sufficiently large

10:Gy 0l g + 105,Ggull e < Crslll@ll e + llelly). (5.23)

In particular
3 9 ) 0
105Gl e + 105,G el e < Crs(llel e + lleello), (5.24)
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where Ggftgp is the same subsequence that we took to prove (5.22).We proved that Gg‘ftgp —

_ 5k A
G, strongly in L§ (M). Now, by (5.24), there exist subsequences &,quﬁ v and (9;‘7th?{ %

that converges weakly to v; € Hy (M) and vy € H; (M) respectively, and

we < Cs(lle]

|1 gs T [|va| s T ||‘P||0)-

— S — Ok -
Since 0,G g7 ¢ — v1, O, Gy @ — vo strongly in L2 . (M) and L2 (M) respectively and
Ggftgo — Ggup strongly in Lg (M), then vy = 9Gyrp and vy = 5;‘7th¢§0. So

|’5qu,t90|

wo H105:Gaaell e < Corsllloll s + llello)-

This proves the continuity of the canonical solution operators in Hg ,(M).

5.3.1 Some facts about the canonical solutions

Here we make computations in order to find weak solutions to the 9, and 5{,}
problems. All of this sections will be done for elements on +H{(M). Remember that here,
in *H{(M), we will have [0, ,G,, = Id and G0y, = Id on Dom([J,,;).

Claim 1. If a is a (0, ¢)-form in Ker(0,), then 5§’t(§qu7toz =0, and if it is in Ker(é{f’t)
then 55,5;‘7th¢04 = 0. In fact, since 0 = Dy = 5b5§7t55Gq,toz + 5;,51,5;15(;%1504 = 5b5;‘7t(§qu,toz
we have 0 = <5b5;7t5qu7ta,5qu7ta)t = Hég,téqu,taHf. Then 5,;‘,755qu¢04 = 0. The other

equality is proved in a similar way.

With this claim and the fact U, G+ = Id, we have that 5§7th7ta satisfies weakly
the equation Jyu = a. We will call 5;,“7th¢ the canonical solution operator to d,. Similarly,

we can prove that the canonical solution operator to 5{,} is given by 0,G..

Also, we can see that these canonical solutions, given by the operator 5{,‘7th¢
and 0,Gqy, are the unique solutions orthogonal to Ker(d) and Ker(d;,) respectively. For
example if u is in + Ker(8,) and Oyu = a = 9,05 G0 we will have u — 9, Gy € Ker(0p),

_ Ax
and so u = 0;,Gg .

Claim 2 (;; commutes with the operators 555{,} and 5{;@;, on Dom () NKer(0,)
and Dom(0,) N Ker(9;,) respectively. In fact, by above if dyor = 0 then 8;,0,Ggcx = 0.
Then since 0, Gy = G40y on Dom(0y ), we have 5b5§’th7toz =0, Gy = Gyl a0 =
Gq,tébél’;ta. The other equality is proved similarly.

Claim 3 G, (Ker(3,) N +H{(M)) C Ker(3,) and Gy (Ker(d;,) N+HI(M)) C
Ker(ég:t). In fact, if 9y = 0, by the claim 1 5;,55quth =0, then 0 = (5;,55qu¢04, Gqﬂga)t =
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H‘équ’tamf' So 5qu,ta = 0. The other equality is proved similarly.

5.4 The Szego projection S
The Szego projection S, is the projection of Lg’q(M) onto Ker(d,). We claim that
S%t - I - 5;7755qu¢ (525)

and by the claim 2 above, S,; = I — G,,0;,0,. In fact, obviously (5.25) is true in
HI(M). Now if a € Ker(9y) N ~H{(M), by the claim 1 we will have 5{;2&5qu¢& = 0;
so (5.25) is checked. If o € *Ker(dy) N +*HI(M), since a — 9;,00G g = 005G
and 5{;t5qu¢ 1 Ker(9y), we have 5;,5;‘7th¢& 1 Ker(9,). But 5},5;‘7th¢04 € Ker(0y), then

0505 ,Gaacr = 0; so0 (5.25) is satisfied, because in this case o — 0;,0,Ggrx = 0.

In the same way we can prove that the projection of L(Q),q(M ) on Ker(é,;’:t) is given
by I — aba;’thﬂg.

We know that 5§,t(€)qu7t<p € Lj (M), because we proved that Ran(Gy,) = Dom ()N

LH{ (M), but we can have a quantitative bound for it as follows:

‘Hég,téqu,tQOHE = (5b5;,t(§qu,t80’ 5qu,t90)lt = (5%07 5qu,t90)t
= (#:0.0Gure), < ||| [|9n.0Gace], (5:26)

Then, since H‘ég,téqu,tgomt < 00, we will have
195 00Gasse], < ] (5.27)

And this proves that the operator Sy, is continuous in L§ ,(M).

Note that in the same way; it is true that H’ébé;’th,tgomt < H‘gomt In fact we will
have that, if ¢ € YH] (M), the decomposition p = 5;7t5qu,t90 + 0505 G is orthogonal
and 50 (|05 Gaue]|; + |05, Garel]; = el

Now let s > 0. In order to prove the continuity of the operator S, in Hg (M), it

is suffices to show that the operator ég‘ﬁtéqu,t is continuous in Hg (M), this is, it suffices

to prove

_ 2 2
A‘*@;t@bG%th‘t S Ct,s

ANy

t?
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for some constant C; s > 0. In this case, we can not do just integration by parts like above
in (5.26) to get (5.27), because we do not know if H

will use a density argument.

Aség"tébG%tgoH’t is finite. Instead we

Let ¢ sufficiently large such that G is continuous in HgH?(M) and Hg (M), 0,G gy
continuous in Hj (M). Let ¢ € Hj (M) and @; € H!t?(M), such that ¢; — ¢ in Hj (M).

Then for any 7 we have

\HAség,téqu,tgojmf = (N°0,05,06 G105, N0Gaaps), + ([06 M%) 55000G 05 N OGoap; )
+ (M5, 0,Gups, [N, 05 DiGaugs),
= (M°0yp5, A 0Gou; ), + (00 A°] 05,0 G 05, N 0Gaapy ),
+ (M05,0,Gau, [N, O3] DuGaees),
= (|4%0] 05 A0Guse), + (V'ess 850 A°] DCcs),
+ (N5, N°0;,:05Gaue5), + ([0 4] 95,00Glauips, A DuGlep;),
+ (M0, 0,Gups, [N, 05, ] 0Gags),
8| J|4°BuGases|, + Gl |4 OCaces
i |x 0. 0G s |, + G205, 0 Guwes]| || A0Gaaes],
+ Cil|[ 20 BuGavi ||| 4* OG-

< G

Then using a large constant/small constant argument we have

Then 0;,0,Gq¢; is bounded in Hg (M). Then there exists a subsequence 0;,0,Gq10,

A3, D Goues|, < Co

Ag],

converging weakly to an element § € Hg (M) (in particular in L (M)), and

1]

Hs SCL‘

(5.28)

Since 0,G; is continuous {n H (M), 0,Gyrpj, converges to OyGaup in Hj (M), in
particular in Lg ,(M). Since 5, is a closed operator, § = 05 ,0,Gq e, and (5.28) is satisfied
with 0;,0,Gq . instead of 3. This proves the continuity of the Szego projection in H (M)
for ¢ sufficiently large.

55 Proof of the Theorem 5.0.1

Since 9y : L3 (M) — L3 ., (M) ,» by Theorem
2.1.2 and by (4.9), we have 9 : L} (M) — L% (M) and 0; : Oq+1(M) — L% (M)
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have closed range in the norm ||.|[,. In the same way, by Theorem 2.1.2 and by (4.9)
we will have the closure of the range of the operators 0, : L, (M) = L§ (M) and
O : L§ (M) — L, (M) in the norm |.|[,. Now by Theorem 2.1.3 we will have the

estimate
1£llo < C (106£1ly + 135 £11,)
for every f € Dom(d,) N Dom(0;) and f € +HI(M), where HI(M) is the space of the

(0, ¢) harmonic forms, that is,
HYM) = {f € f € Dom(d,) NDom(5;) : Opf =0, and 0} f = O}.

And so, again by the Theorem 2.1.3, the operator [, := 51)5;‘ + 5;‘5;, has closed range. In a
similar manner to our argument for the existence of the weighted Green operator G, we
can prove the existence of the Green operator Gy, defined to be the inverse of the operator
Oy on ~H(M) and = 0 in H?(M). Also the operator G, is continuous on L ,(M). And
by Hodge decomposition for every f € *HI(M), f = 0,0;Gof ® 9;0,G,f we have

10505 G fllo + 10506G o f1lg = 1 £l (5.29)
and

N 2 3 2 a a* % O
105Gt llg + 10:Gafllg = (D5 Gaf Gof ), + (F50uGof, Gof ) = I FllolIGaflly

Thus, the canonical solutions J;G,f : L3 (M) — L& (M) and 0,Gof : L3 (M) —
L§ o1 (M) are continuous (G4 = 0 on H9(M)).

Now, if ¢ is sufficient large (so H{(M) has finite dimension and there exists the
Green operator G, ;) observe that if f is a (0, q)-form such that f € Ker(dy) and f L
Ran(d) (L respect to (.,.),), we will have f L 5b5§,th,tf, and since Ran(ég‘,t) 1 Ker(0,),
fL 5§,t5qu7tf. Then by Hodge decomposition f = 5b5§7th7tf+(§§7t5qu7tf—I—Hff, we have
f = H{f € H{(M). This means Ker(9,) = Ran(d,) ® H{(M) (@& with respect to (.,.),)
for any t sufficiently large. In the same way, we can show Ker(d,) = Ran(0,) @ H{(M) (&
with respect to (.,.),). But since Ker(J,) and Ran(d,) do not depend on the weights ¢*
and ¢, it follows that the dimensions of H{ (M) and HI(M) are equal. So H?(M) is finite

dimensional, with dimension equal to dim H{(M).

As we proved above, the Szego projection S, defined as the projection (with respect
to (.,.),) is given by I — 90,G, , and it is continuous by (5.29).
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CHAPTER 6

EXAMPLES

In this Chapter, we present two examples involving the two versions of weak Z(q).
The first example compares the two version showing whose satisfies the new version of
weak Z(q) condition but not the older one given by Harrington and Raich in [10]. The
second example, inspired in the first one, shows that the new version of weak Y (q) is
satisfied easier than the older weak-Y (¢) condition (OW-Z(q) condition).

6.1 Example 1

In order to compare the two versions of weak Z(q) condition we remember here
the older weak Z(q) condition (OW-Z(q)).

Definition 6.1.1 (OW-Z(q)) Let M be a smooth, compact, oriented CR manifold of
hypersurface type of real dimension 2n — 1. We say M satisfies OW-Z(q) condition is
satisfied at p if there exists

(i) a neighborhood U C M containing p;
(7i) an integer m = m(U) # q;
(iii) an orthonormal basis Ly, ..., L,_1 of TYO(U) so that puy + ... + pig — (c11 + - Crum) > 0

on U, where iy, ..., o1 are the eigenvalues of the Levi form in increasing order.

We say M satisfies the OW-Z(q) condition if M satisfies OW-Z(q) at every point in M,
and the condition m > ¢ or m < ¢ is independent of p. As above, M satisfies OW-Y (q)
condition at p if M satisfies OW-Z(q) and OW-Z(n — 1 — q).

The next example was given by Harrington and Raich in [11]. OW-Z(q) is not
satisfied but weak Z(q) is.

In C? consider the hypersurface M = {z : p(z) = 0} with p(2) = —Imzs + P(21, 22)
where P(z1,2) = 2z |z|° — 2y* where we denote z; =  + yi. Then L; = 9/0z; +
2i10P/02;0/0z3 € T*°(M), for j = 1,2. The Levi matrix C” in this basis is given by

ck =

—3zy?
22 2x ‘
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We claim that the Levi matrix C* does not satisfy OW-Z(2) condition at the
origin. In fact, let aj;, for 1 < j,k < 2, be smooth functions on a neighborhood of the
origin such that the matrix A := [a;;] be a 2 X 2 nonsingular matrix on a neighborhood of
the origin. Let u; and uy be vectors of type (1,0) with u; = >27_; a;xLx. The Levi matrix
C" in the basis {u1,us} is given by C* = ACTA*.

Now since A is not a singular matrix, the inertia of C* (the number of positive,
negative and zero eigenvalues, all counting multiplicity) is equal to the inertia of the matrix
CT. Then C* has a negative eigenvalue and the other eigenvalue is zero when y = 0 = 2
and z < 0. Then second condition in 6.1.1, and so OW-Z(2), can not be satisfied with

m = 0.

Now, assume OW-Z(2) is satisfied with m = 1 in a neighborhood of the origin.
Then by (iii) in Definition 6.1.1, the trace of the matrix C* — $Tr(C"diag {1,0})Id =

C" — (cY,/2)1d is nonnegative. A direct calculation shows

Tr(C" — (c}1/2)Id) = cfy |asi|* + ¢k |ass|* + 2Re(clyaz @)

= 32y |c121|2 + 2z |a22]2 — 2Re(29a91a23).

Observe here that Tr(C* — (¢},/2)Id) admits a minimum value when z = 2z, = 0, so any

first derivatives on x or zs applied on x = zo = 0 must be equal to zero. Then

_3y2 |CL21(0’ Y, O)F +2 |CL22(07 Y, O>|2 = 07
CL21(O, Y, 0)@(07 Y, 0) =0.

This implies a91(0,y,0) = 0 = as(0,y,0) for any y # 0. But this is contradiction, because
A was supposed to be a non-singular matrix on a neighborhood of the origin. Thus
OW-Z(2) is not satisfied with m = 1. So, OW-Z(2) condition is not satisfied at the origin

(in any Hermitian metric considered in M, because of the arbitrariness of matrix A).

Now consider the next matrix R given by

2
R = 0 :
0 312

Let aji, for 1 < j,k < 2, be smooth functions on a neighborhood of the origin such that
the matrix A := [a;;] be a 2 x 2 nonsingular matrix on a neighborhood of the origin, and a
matrix D such that DA = Id. Let C* the Levi matrix given by the basis u; = S27_; a;x Lx,
for j = 1,2. Define for ¢ > 0 the matrix B = [bj;| by B := Id—tD*RD. A direct calculation

gives

Tr(C" — ;(TT(C“B))M) =Tr(C") — Tr(C"B) = tTr(AC*A*D*RD) = tTr(C*R) = 0.
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Since D is nonsingular matrix and R has nonnegative eigenvalues, for ¢ sufficiently small
the matrix B will have nonnegative eigenvalues in [0, 1]. On the other hand, if A is such
that the basis {u;,us} is an orthonormal basis, defining the (1,1)-vector Y defined by
T =iy}, bjrur ATz, we have w(T) = Tr(B) = 2 — tTr(D*BD) > 0 for sufficiently
small ¢, because in this case D*BD has a positive eigenvalue and the other is nonnegative
(so Tr(D*BD) > 0). Thus weak Z(2) is satisfied at the origin.

6.2 Example 2

Inspired by this last example, we now show a hypersurface in C° where weak Y'(2)

is satisfied and OW-Y(2) is practically impossible to check.

InC® let M = {2z : p(z) = 0} with p = —Imzs+P(z1, 29, 23, 24) Where P(z1, 20, 23, 24) =
2 |2a)* — wy* + |zs|” + |2al?, and 2 = x +dy. Let L; := 9/dz; — 2i0P/dz;0/dz5, s0
L;j € T (M := {p = 0}). Then the Levi matrix C'" associated to the basis {L;},;, is
given by

—3zy®> 2z 0 0

oL _ Za 2 0 0
0 0 1 0

0 0 0 1

Note that, since CF has three positive eigenvalues whenever either z, # 0 or both
x # 0 and y # 0, it follows that Z(2) is satisfied on a dense subset of M NU, with U a
neighborhood of the origin.

Let ajx, for 1 < j,k < 4, be smooth functions on a neighborhood of the origin
such that the matrix A := [a;;] be a 4 x 4 non-singular matrix on a neighborhood of the
origin. Let u; = Y4, ajuLy, for 1 < j < 4. Then the Levi matrix C* in the basis {u;} for
1 < j <4is given by C* = ACTA*. Then a direct calculation gives us

¢ = 2Re(za5a5) — 3uy” laj | + 2 [aj|* + |ags|” + azal*.

Since A is not a singular matrix C* will have the same inertia of C*. So C* will have one
negative eigenvalue, one zero eigenvalue, and two positive eigenvalues when y = 0 = 2z
and z < 0. The OW-Z(2) condition cannot be satisfied with m = 0, because in this case

the sum of the two minor eigenvalues will be negative.

In the same way, when x = zo = 0, C" has two zero eigenvalues and two positive

eigenvalues. So OW-Z(2) condition cannot be satisfied with m = 4, because in this case
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the trace of C* will be positive.

Now, assume that the OW-Z(2) condition is satisfied with m = 3. When z = z, = 0,
the sum of two minor eigenvalues of C" is zero. Then OW-Z(2) condition implies
(4 + Yy 4 43) zmz—0 < 0. S0 a13 = a14 = a3 = agq = asz3 = azg = 0 when x = 2z = 0.
But this will imply that detA |,—.,—o = 0. But this is contradiction because A was supposed
to be a nonsingular matrix on a neighborhood of origin. Then OW-Z(2) condition can not
be satisfied with m = 3.

Now, in order to prove the OW-Z(2) condition is satisfied, the unique possibility for
m is 1. So we have to show that the sum of two minor eigenvalues (sometimes being zero,
and sometimes being negative) is greater than or equal to ¢}, for the second condition in

Definition 6.1.1 be satisfied. But this appears not to be easy (or true).

Now, we will prove that new version of weak Z(2) condition is satisfied on U N M,
with U a neighborhood of the origin, and considering the Euclidian metric. Let A = [a ]
a 4 x 4 matrix defined by
A 0
Ay Az
with A; a 2 x 2 matrix of smooth functions for j = 1,2, 3, such that the set of vector
{uy,...;us} with u; = Sy a Ly, for 1 < j < 4, is an orthonormal basis for TH0(M).

Then A is a nonsingular matrix, and in particular A; is also a nonsingular matrix. The

Euclidean metric gives the next condition on A,
Id = A(Ild— F)A”
where F'is a matrix such that F|,—y = 0. This implies that

({d — A1A}):=0 = 0. (6.1)

Now, the Levi matrix C* written in the basis {u;} is equal to

A C A A C A3

ACT A* =
AyCAT AyC A + AsAj
where
o —3zy® 2 ] '
Z 2z

Since uy and uy are in the span of Ly and Lo, the sum of the smallest eigenvalues of the

Levi form is given by

w1+ pro = L(iuy A uy + tug Aug) = Tr(C*diag {1,1,0,0}) = Tr(A;CAY).
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For ¢ > 0, define T =i Y7, 1, beyii; A uy with
[bjk] = diag{1,1,0,0} —t diag {DI diag {2, 3y3} D1, 0, 0} ,
where D, is a matrix such that D;A; = Id. Then

pn + pp — L£(T) = Tr(ACAT) — Tr(C*[bji])
= Tr(A,CA}) = Tr(A\CA}) +tTr (A\CA{D; diag {2,3y%} D)
=tTr(C diag {2, 3y2})
— 0.

By (6.1), for t sufficiently small, the matrix [b;;] will have eigenvalues in [0, 1]. Also, for
t sufficiently small w(Y) = Tr([bjr]) = 2 — tTr(D; diag {2,y*} D) < 2 because D is a
nonsingular matrix and diag {2, 3y*} has one positive eigenvalues and the other eigenvalue
is nonnegative. Then the example is satisfying the new version of the weak Z(2) condition

at the origin.
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