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RESUMO: 

A existência de espaços verdes em áreas urbanas e seus impactos na população têm sido objeto 

de muitos estudos, não apenas pelos importantes serviços ecossistêmicos prestados por essas 

áreas, mas também pela contribuição direta na saúde pública. Iniciativas para o controle da 

vegetação urbana, quanto à otimização do processo de corte/roçada, redução de custos e, 

potencialmente, redução de impactos no ecossistema natural urbano, não foram encontradas na 

literatura. Assim, este trabalho visa implementar um modelo de crescimento de gramíneas 

ajustado para o manejo adequado de áreas verdes urbanas, especificamente parques e praças 

públicas, e o entorno de ruas, estradas e corpos d’água. O modelo foi desenvolvido em Python 

e simula a dinâmica diária do índice de área foliar (IAF), biomassa, evapotranspiração e teor de 

água no solo, passando por processos de corte ou não, com configurações para a espacialização 

das informações e eventual inclusão em sistemas de informação geográfica (SIG). Entretanto, 

apenas o crescimento acima do solo é modelado. Teor de água no solo, temperatura e radiação 

são considerados as únicas limitações ao crescimento da planta. O modelo apresenta dois 

estágios de desenvolvimento para a planta, ciclo de crescimento e dormência. O período de 

dormência pode ser iniciado a partir de duas abordagens diferentes: duração do dia ou índice 

de umidade do solo - SMI, o que permite cobrir áreas temperadas e tropicais. É apresentado um 

estudo de caso utilizando a grama batatais (Paspalum notatum Flügge) como espécie de 

interesse para a execução do modelo, bem como os procedimentos de avaliação do desempenho 

do mesmo. Duas plataformas diferentes (um veículo aéreo não tripulado - imagens UAV e 

PlanetScope) foram utilizadas na aquisição de dados e os índices de vegetação NDVI, GNDI e 

EVI2 foram usados para recuperar o IAF a partir de medições in situ e dos sensores. O EVI2 

apresentou o melhor desempenho para a recuperação do IAF da grama batatais e, portanto, foi 

utilizado na avaliação do IAF simulado no modelo. Para avaliar o desempenho do modelo, foi 

realizada uma comparação entre o IAF do modelo (default e ajustado) e IAF recuperados de 

ambos os sensores, adotando como critério de analise o coeficiente de determinação associado 

(R2) e a raiz do erro quadrático médio (RMSE). Os resultados obtidos na análise sugerem que 

o modelo proposto é adequado à sua finalidade, e, sua eventual utilização pode auxiliar as 
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administrações governamentais na otimização dos processos de corte/roça das áreas verdes 

urbanas. Entretanto, alguns ajustes no desenvolvimento da curva LAI e no período de 

dormência ainda são sugeridos. 

 

Palavras-chave: Modelo de crescimento de gramíneas; Áreas urbanas; SIG. 
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ABSTRACT 

Green spaces in urban areas and its impacts on the population has been the subject of many 

studies, not only because of the important ecosystem services provided by these areas but also 

due to the direct contribution on public health. Initiatives for control of urban vegetation, 

regarding the optimization of the mowing process, reducing costs and potentially reducing 

impacts on the urban natural ecosystem have not been found in the literature. Thus, this work 

aims to implement a grass growth model suitable for appropriate management of urban green 

spaces, specifically in lawns, public parks squares, roadsides and around waterways. The model 

was developed in Python and simulates the daily dynamics of leaf area index (LAI), biomass, 

evapotranspiration and soil water content, going under mowing processes or not, with 

spatialization capability which might be integrated within geographic information system (GIS) 

environment. However, only above-ground growth is modeled. Soil water content, temperature, 

and radiation stress are considered the only environmental growth limitations. The model 

presents two development stages for the plant, growth cycle and dormancy. The dormant period 

can be trigged from two different approaches: daylength or the soil moisture index - SMI, which 

allows covering temperate and tropical areas. A case study using bahiagrass (Paspalum notatum 

Flügge) as input to run the model is presented as well as the evaluation procedures of the model 

performance. Two different platforms (an unmanned aerial vehicle – UAV and PlanetScope 

imagery) were used in the data acquisition and, the vegetation indices NDVI, GNDI, and EVI2 

were used to retrieve LAI from in situ measurements and from the sensors. EVI2 showed the 

best performance for bahiagrass LAI retrieval and thus it was used in the evaluation of the LAI 

simulated in the model. To assess the performance of the model, LAI from the model (default 

and adjusted) and LAI retrieved from both sensors are compared using the associated 

determination coefficient (R2) and root mean square error (RMSE) as criteria. The results 

obtained in the analysis suggest that the proposed model is suitable for its purpose and its 

eventual application may help government administrations with the optimization of mowing 

processes of urban green spaces (UGS). However, some adjustments in the LAI curve 

development and in the dormant period are suggested.  

 

Keywords: Grass growth model; Urban area; GIS. 
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ESTRUTURA DA DISSERTAÇÃO 

A dissertação foi elaborada no formato de artigos científicos. Os artigos são 

antecedidos por uma introdução geral que visa contextualizar a temática do trabalho e, em 

seguida, são apresentados os objetivos gerais e específicos que orientam este trabalho. 

 

O primeiro artigo, “A GRASS GROWTH MODEL ADAPTED TO URBAN 

AREAS. PART 1: MODEL DESCRIPTION”, teve como objetivo a implementação de um 

modelo de crescimento de gramíneas adaptado para áreas urbanas. O modelo apresentado neste 

trabalho foi estruturado a partir de componentes de modelos agrometeorológicos pré-existentes. 

 

O segundo artigo, “A GRASS GROWTH MODEL ADAPTED TO URBAN 

AREAS. PART 2: MODEL PERFORMANCE ASSESS BY COMPARISON BETWEEN 

SIMULATED LAI AND LAI RETRIEVED FROM VEGETATION INDEX”, descreve o processo 

de avaliação do desempenho do modelo. Essa avaliação foi feita a partir da comparação do 

índice de área foliar (IAF) simulado pelo modelo com IAF recuperado de índice de vegetação 

(VI) a partir de dados coletados de duas plataformas diferentes, um veículo aéreo não tripulado 

e satélites de pequeno porte (CubeSats). Para a construção da equação de regressão do IAF a 

partir de VI, foram coletados reflectância e IAF in situ e utilizados como referência.  

 

Subsequente aos artigos, são apresentadas as considerações finais, a conclusão 

geral da dissertação e recomendações para trabalhos futuros.  
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1. INTRODUÇÃO 

 

A forma que os aglomerados urbanos e as atividades humanas estão organizadas 

no espaço geográfico, juntamente com as altas taxas de crescimento da população e da área 

urbana, representam uma fonte de preocupação para a sociedade moderna, principalmente em 

termos de impactos socioambientais (CAMAGNI, CAPELLO, NIJKAMP, 1998; BUCK, 

MARIN, 2005). Ao longo da história, os modelos de infraestrutura dos assentamentos urbanos 

eram caracterizados por áreas compactas, com alta densidade populacional e lenta taxa de 

expansão, mas esse cenário tem mudado nas últimas décadas (SETO, SANCHEZ-

RODRIGUEZ, FRAGKIAS, 2010), sendo que atualmente a taxa de expansão urbana é em 

média duas vezes maior do que o seu crescimento populacional (ANGEL et al., 2011; SETO et 

al., 2011). 

 

De acordo com o relatório da Organização das Nações Unidas – ONU (UN, 

2017) sobre as perspectivas do mundo globalizado, a população mundial, no ano de 2017, era 

próxima de 7,6 bilhões de pessoas e com taxa de crescimento anual de 1,10%. Assim, segundo 

as projeções da ONU, é estimado que para o ano de 2030 a população mundial chegue a 8,6 

bilhões de pessoas, e que ultrapasse 11 bilhões de pessoas em 2100. Já a população urbana 

mundial, no ano de 2014, era de aproximadamente 3,9 bilhões de pessoas, o que representava 

54% da população global (UN, 2015). No cenário brasileiro, a grande expansão urbana é 

considerada recente, seu início data da década de 1930, mas foi somente a partir da década de 

70, do mesmo século, que a população urbana ultrapassou a população rural (BRITO, HORTA, 

AMARAL, 2001; BRITO, SOUZA, 2005; MARTINE et al., 2016). De acordo com o último 

censo demográfico realizado pelo Instituto Brasileiro de Geografia e Estatística – IBGE (2010), 

aproximadamente 161 milhões de pessoas residiam na área urbana, representando 85% da 

população total. 

 

No ambiente citadino, pode-se afirmar que as condições socioambientais são 

reflexo das relações intrínsecas existentes entre a dinâmica populacional, suporte físico do 

ambiente, desenvolvimento e as alterações antrópicas no meio ambiente (SOUSA, 

TRAVASSOS, 2008; MARTINE, 2007; MARTINE, MCGRANAHAN, 2010). Desta forma, o 

crescimento acelerado da população urbana poderá comprometer a capacidade dos governos 

locais de fornecer serviços básicos essenciais para a população, tais como habitação, 
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eletricidade, água potável, saneamento básico, aplicação da lei e ordem, e desenvolvimento do 

capital social (BUHAUG, URDAL, 2013). Como possíveis consequências, a qualidade de vida 

dos cidadãos sofrerá perturbações e problemas socioambientais serão potencializados 

(HARDOY, MITLIN, SATTERTHWAITE, 2013).  

 

Neste contexto, a existência de espaços verdes em áreas urbanas e seus impactos 

sobre a população têm sido documentados por diferentes autores (e.g. CHIESURA, 2004; 

GERMANN-CHIARI, SEELAND, 2004; JENERETTE, 2007; WOLCH, BYRNE, NEWELL 

2014). Além dos importantes serviços ambientais fornecidos por essas áreas, tais como 

purificação da água, do ar, filtragem dos ventos e dos ruídos, e estabilização do microclima, 

elas contribuem diretamente na saúde pública, pois proporcionam serviços sociais e 

psicológicos importantes para a manutenção do bem-estar dos seres humanos nos centros 

urbanos (CHIESURA, 2004; BOLUND, HUNHAMMAR, 1999). Logo, para propiciar 

qualidade ambiental à população urbana, é fundamental oferecê-la espaços que possibilitem a 

interação com o ambiente natural, principalmente com a presença de vegetação (BARGOS, 

MATIAS, 2012).  

 

No aspecto econômico, áreas urbanas com maior concentração de vegetação, 

apresentam, normalmente, maior valor monetário agregado (LUTTIK, 2000; MORANCHO, 

2003; JENERETTE, 2007). Essa tendência é justificada devido à relação positiva entre áreas 

verdes e qualidade de vida, em termos de conforto, o qual, por sua vez, está associado com 

fatores fisiológicos (temperatura) e psicológicos (nível de estresse, por exemplo) do ser 

humano. Dessa forma, essas áreas devem ser compreendidas como ecossistemas complexos e 

necessitam de maior entendimento para além de simples áreas de recreação (CHIESURA, 2004; 

GERMANN-CHIARI, SEELAND, 2004; JENERETTE, 2007; WOLCH, BYRNE, NEWELL, 

2014). 

 

A mitigação e a solução dos problemas socioambientais urbanos enfrentados 

pela sociedade moderna passam pela pesquisa, discussão e desenvolvimento do conhecimento 

científico tecnológico, além da educação ambiental e gestão pública, que devem ser adequadas 

à realidade local (FRANCISCO, 2005; BARGOS, MATIAS, 2012). Para assegurar condições 

ambientais que proporcionem qualidade de vida no contexto de crescimento urbano e 

populacional acelerado em todo o mundo, é importante um entendimento mais aprofundado do 
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conceito emergente de cidade inteligente (do inglês Smart City) (CHOURABI, 2012).  Até o 

momento não existe na literatura uma definição única para esse conceito, mas pode-se dizer 

que uma cidade inteligente busca o crescimento econômico sustentável e alta qualidade de vida 

para os seus residentes, com uma gestão sensata dos recursos naturais, por meio da governança 

participativa, incitadas pelo investimento em capital humano e social, e infraestrutura de 

comunicação tanto tradicional (transporte) quanto moderna (ICTs - Information and 

Communication Technologies) (CARAGLIU, DEL BO, NIJKAMP, 2011). 

 

Dentre as diversas iniciativas no contexto de implementação de cidades 

inteligentes, pode-se inserir iniciativas para o controle paisagístico da vegetação urbana, de 

forma a otimizar o processo de corte (poda), diminuindo os custos e ainda, potencialmente, 

diminuindo os impactos sobre o ecossistema natural urbano. Estes custos podem variar 

significativamente entre diferentes regiões e estratos socioeconômicos das cidades e regiões 

(ESCOBEDO et al., 2006). Entretanto, iniciativas específicas nesta direção não foram 

encontradas na literatura, sendo as existentes focadas apenas na avaliação da adequabilidade da 

distribuição espacial dos espaços verdes nas cidades utilizando Sistemas de Informação 

Geográfica – SIG (OH, JEONG, 2007). Desta forma, esse trabalho visa implementar um 

modelo de crescimento de gramíneas, o qual poderá ser utilizado como ferramenta para a gestão 

adequada de áreas verdes urbanas, especificamente gramados, parques e praças públicas, e 

entornos de corpos d’água e de rodovias.  

 

O trabalho proposto nessa dissertação está dividido em duas partes, a primeira 

se dá na implementação do modelo de crescimento de gramíneas adaptado para áreas urbanas, 

utilizando parâmetros de modelos de crescimento de vegetação pré-existentes. O modelo 

implementado, baseou-se, principalmente, nos componentes presentes em três modelos:  EPIC 

(WILLIAMS et al. 1989), ALMANAC (KINIRY et al., 1992), e o modelo de Jouven (JOUVEN 

et al., 2006a). Já a segunda parte envolve a avaliação do desempenho do modelo em uma área 

piloto. Nessa parte, utilizou-se a técnica de recuperação do índice de área foliar (IAF) a partir 

de índices de vegetação (IV). Para isso, foram coletados dados em in situ e de sensores 

acoplados em diferentes plataformas, por meio de um veículo aéreo não tripulado (VANT) e 

satélites de pequeno porte. Os valores obtidos a partir da recuperação do IAF foram adotados 

como referência e confrontados com os valores gerados na simulação do modelo. 
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Por fim, o monitoramento diário da dinâmica do crescimento da vegetação das 

áreas urbanas faz-se fundamental para viabilizar a gestão adequada dessas áreas. Assim, o 

modelo foi desenvolvido para possibilitar sua integração em ambiente SIG, visando facilitar, 

no futuro, o monitoramento das áreas verdes urbanas pelo poder público e otimizar o sistema 

de corte. 

 

 

1.1. OBJETIVO GERAL 

A ideia central deste trabalho é implementar um modelo de crescimento de 

gramíneas adaptado a áreas urbanas e configurado para ser integrado em ambiente SIG. Este 

trabalho resulta do fato de não terem sido encontradas, na literatura, iniciativas que utilizem 

modelos computacionais como foco nas variações do crescimento da vegetação em áreas 

urbanas que, entre outros fatores, são determinadas pelo corte regular. 

 

 

1.2. OBJETIVOS ESPECÍFICOS  

Dentre os objetivos específicos envolvidos no desenvolvimento deste trabalho, 

pode se destacar: 

• Implementação de um modelo de crescimento de gramíneas adaptado as 

condições urbanas. 

• Adaptação do modelo para incorporação do modelo em SIG;  

• Avaliação do desempenho do modelo em área piloto a partir a 

recuperação do IAF por meio de índices de vegetação (do inglês 

vegetation indices - VIs) obtidos de imagens de sensores acoplados em 

diferentes plataformas, um veículo aéreo não tripulado – VANT e 

satélites de pequeno porte. 
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2. A GRASS GROWTH MODEL ADAPTED TO URBAN AREAS. PART 

1: MODEL DESCRIPTION  

 

2.1. ABSTRACT 

In Brazil, grass species are widely grown in urban public areas, specifically in lawns, public 

parks squares, roadsides and around waterways. However, grass growth is often highly complex 

to predict. In this context, this work is intended to implement a grass growth model adapted to 

urban areas based on models already developed. The model was developed in Python and is 

designed to simulate the daily dynamics of leaf area index (LAI), biomass, evapotranspiration 

and soil water content, from local to large scales, going under mowing processes or not, in 

geographic information system (GIS) environment. However, only above-ground growth is 

modeled. Water, temperature, and radiation stress are considered the only environmental 

growth limitations since there are no records of the nutrient content in urban area soils. The 

model presents two development stages for the plant, growth cycle and dormancy. The dormant 

period threshold is based on two different approaches: daylength or the soil moisture index - 

SMI, which allow covering both temperate and tropical areas. During dormancy, a function 

with a sigmoidal decrease of LAI toward a minimum value (defined by the user) is applied. 

Lastly, a case study using bahiagrass (Paspalum notatum Flügge) as input to run the model is 

presented.  The results obtained in the analysis suggest that the proposed model is suitable for 

its purpose and it may be considered an important tool for grass mowing process of urban green 

spaces (UGS). 

 

Keywords: grass growth; model; urban area.  

 

 

2.2. INTRODUCTION 

According to the United Nations – UN (2015), more than half of world’s 

population lives in cities (approximately 3.9 billion people), and urban population numbers will 

continue to increase. The UN projects nearly 5.1 billion urban inhabitants by 2030, which 

represents an increase of 30% (UN, 2015). Thus, this expected urban population growth and its 

resulting urban sprawl and densification, especially in developing countries, presents an 
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enormous challenge for sustainable urban planning and management, and subsequently for 

human health and well-being. 

 

Directly or indirectly, urbanization may lead to problems such as environmental 

pollution, heat island effects, climate change, among others (McMichael, 2000). On the other 

hand, several scientific studies have suggested that urban green spaces – UGS (such as public 

parks, greenways, street trees, edges of roads, railways and waterways, public and private 

gardens, as well as remnant patches of natural vegetation) provides a wide range of 

environmental and social benefits (MAAS et al, 2006; BOWLER et al., 2010; WOLCH, 

BYRNE, NEWELL, 2014; BERTRAM, REHDANZ, 2015). These benefits are not only 

important for supporting the ecological integrity of cities but also to increase the citizens’ 

quality of life (BOLUND, HUNHAMMAR, 1999; PAULEIT, DUHME, 2000; TZOULAS et 

al., 2007; HAQ, 2011, WOLCH, BYRNE, NEWELL, 2014). 

 

As environmental benefits, UGS may filter air, remove or reduce pollution, 

attenuate noise, cool temperatures, infiltrate rainfall water, and replenish groundwater 

(BOLUND, HUNHAMMAR, 1999; NOWAK, CRANE, STEVENS, 2006; LAFORTEZZA et 

al., 2009; BOWLER et al., 2010). The social benefits for urban residents include improvements 

in mental and physical health such as stress reduction and relaxation associated with exposure 

to UGS (ULRICH, 1983; ULRICH et al., 1991; CHIESURA, 2004; MAAS ET AL, 2006). 

Furthermore, proximity to public parks and sport fields may increase physical activity levels, 

which is also important for mental health. (KACZYNSKI, HENDERSON, 2007; WOLCH, 

BYRNE, NEWELL, 2014). Thus, today’s policymakers can no longer ignore the role played 

by green areas in urban environments (HAQ, 2011; WOLCH, BYRNE, NEWELL, 2014). 

 

Monitoring and modelling of vegetation growth have been the subject of many 

studies on the field of agriculture, forestry and environmental science (BAIER, 1979; 

FOURCAUD et al., 2008; PIAO et al., 2011). In this scenario, several statistical approaches 

and process-based plant models have been developed to simulate plant development and 

growth, biomass production, and crop yield (ARAUJO, SOUZA, TSUKAHARA, 2011; TAO, 

YOKOZAWA, ZHANG, 2009; MARCELIS, HEUVELINK, GOUDRIAAN, 1998). However, 

once plant growth occurs on several scales, ranging from the cellular to the tissue level, its 

realistically modeling is extremely challenging (CHICKARMANE et al., 2010). 
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Computational models are powerful tools that not only describe, simulate, 

analyze, and forecast interactions of complex systems (physical or biological), but also test 

hypotheses and to improve existing knowledge (LENTZ, 1998; MARCELIS, HEUVELINK, 

GOUDRIAAN, 1998; CHICKARMANE et al., 2010; DELLA PERUTA, KELLER, 

SCHULIN, 2014). Furthermore, simulation models provide a suitable way to represent 

scientific understanding and theory in complex biological systems such as plants and trees (LE 

ROUX et al., 2001).  

 

Daily or time-steps vegetation models utilize physical and biological functional 

components to simulate how plants respond to environmental factors (e.g. light, air temperature, 

soil characteristics, and water availability) and management practices (e.g. sowing date, 

fertilizer application, harvesting and mowing processes) over time with given genetic traits 

(MULLER, MARTRE 2019, BOOTE et al., 2013). Moreover, the resulting simulations are 

used to predict not only temporal changes of the plant but also of its associated variables, such 

as canopy cover, canopy height, leaf area and biomass produced by the plants, which can be 

either removed during harvest operations or ends up as surface residue material (ARNOLD et 

al., 1995).  

 

Agroclimatic models, i.e. models that establish plant-climate relations, can be 

classified into three categories (BAIER, 1978):  i) growth simulation models, defined as a 

simplified mathematical representation of the complex underlying physical, chemical, and 

physiological mechanisms to plant growth responses;  ii) agrometeorological analysis models, 

providing a running account of the accumulated (daily) plant responses to selected 

agrometeorological variables as a function of time (or plant development);  iii) empirical-

statistical models, in which one or several variables – representing weather or climate, soil 

characteristics or a time trend – are statistically related mostly to seasonal yield or other plant 

statistics.   

 

Over the last 50 years, the development of process-based vegetation models has 

advanced considerably and nowadays there are several of them, which present different degrees 

of complexity depending on their application (FOURCAUD et al., 2008; MULLER, MARTRE 

2019). Agricultural Land Management Alternative with Numerical Assessment Criteria – 

ALMANAC (KINIRY et al., 1992), CROPGRO-Perennial-Forage model from Decision 
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Support System for Agrotechnology Transfer – DSSAT (JONES et al., 2003), Agricultural 

Production Systems Simulator – APSIM (MCCOWN et al., 1996), Environmental Policy 

Integrated Climate – EPIC (WILLIAMS et al. 1989), and the Jouven model (Jouven et al., 2006) 

are just a few examples of them. However, it is important to mention that most of the existing 

vegetation model was developed for farming purposes and, despite their variety, there are few 

references to vegetation growth models designed for urban areas, where vegetation growth is 

influenced by different situations and undergoes regular mowing processes. 

 

Therefore, the main purpose of this work is to implement a grass growth model 

adapted to urban area conditions adopting the concepts of models already developed. Thus, this 

paper identifies the key variables to vegetation growth models in urban areas and advance on 

its implementation. It also presents a case study using bahiagrass (Paspalum notatum Flügge) 

as input for the model. Furthermore, once the model is effectively implemented, all UGS 

(composed mainly by grasses) of an area of interest will be integrated with the support of 

georeferenced data, producing a simulation for the whole urban area. Thus, the model may be 

considered a promising tool for management of UGS, specifically in lawns, public parks 

squares, roadsides and around waterways.  

 

 

2.3. MATERIAL AND METHODS 

2.3.1. Model structure 

Fig. 1 illustrates the structure of the grass model, which incorporates components 

mainly from three models: EPIC (WILLIAMS et al. 1989), ALMANAC (KINIRY et al., 1992), 

and the J model (JOUVEN et al., 2006a). The model was implemented in Python 3.7, which is 

a user-friendly open-source programming language. Phyton provides tools suited to many 

applications and integrates well with geographical information systems (GIS), such as QGIS 

and ArcGIS.  
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Figure 1: A framework for the adapted vegetation growth model. Source: author. 
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Regarding the plant growth, the phenological development is hereby simulated 

based on daily cumulative heat units, the potential biomass production is calculated using 

Monteith’s approach (MONTEITH, 1977), and growth constraints are controlled by stress 

factors. Water, temperature, and radiation stress are considered the only environmental growth 

limitations. The model neither estimates the nutrient uptake by plants nor its potential stress 

since there are no records of the nutrient content in urban area soils. 

 

Modeling of vegetation growth dynamic is driven as a function of leaf area 

development, the light interception and conversion of intercepted light into biomass adopting a 

plant species-specific radiation-use efficiency. Leaf area development is guided by the 

maximum leaf area index (LAI), the accumulated heat unit on the day and two shape 

coefficients of the plant, which must be provided by the user of the model. The model simulates 

two complementary scenarios using daily time steps. The first one runs all variables under 

optimal conditions, and afterward, the second one generates the actual values (real situation) as 

a function of the potential plant growth and the maximum value of the stress factors 

(constraints). 

 

To terminate growing seasons and to repeat the annual growth cycles, the model 

provides the components dormancy for the grass species. The model is also able to reset the 

growth cycles after regular mowing processes. Daily precipitation, daily temperature (average, 

minimum and maximum) and daily solar radiation are the minimum weather data required to 

run the model. Two conditions may be used to trigger the dormant period (depending on the 

latitude of the study area), daylength or soil moisture index. The model is better described in 

the next section.  

 

 

2.3.2. Grass growth model 

Grass growth modeling depends on several factors (management, vegetation, 

soil and weather conditions) and hence a challenging task. This section presents the components 

which regulate the growth and dormant cycles adopted in the implemented model. 
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2.3.2.1. Heat unit 

 

Temperature plays one of the most important roles in the control and 

development of plant growth, acting as a limiting factor. The heat unit (HU) approach assumes 

a direct relation between plant growth and temperature, which allows to quantify and link plants 

heat unit requirement to the time of planting and maturity. Each plant has its own temperature 

requirements. To experience any growth, plant’s base temperature must be exceeded. Above 

the minimum temperature, the growth rate increases as a function of temperature until it reaches 

the range of optimum temperature. Once the optimum temperature range is exceeded, the 

growth rate starts to decrease as the temperature goes up until it reaches the maximum tolerated 

temperature is reached, at when growth ends. There is no growth below or at the base 

temperature and at or above the maximum temperature (NEITSCH et al., 2011; WILLIAMS et 

al., 1989). 

 

The HU approach has been used since about 1730 (WANG, 1960; MEDERSKI, 

MILLER, WEAVER, 1973) and the cumulative effect of daily air temperature over the growing 

season has proven to be a reliable predictor of the plant physiological growth as well as a 

descriptor of maturity (GILMORE, ROGERS, 1958). HU measures the amount of heat energy 

that is accumulated by a plant on a given day (PENG, KRIEG, HICKS, 1989) and it is obtained 

by calculating the daily maximum and minimum air temperature and subtracting the base 

temperature of the plant (NEITSCH et al., 2011; WILLIAMS et al., 1989). The plant’s base, 

optimum and maximum temperature may vary among species.  

 

The formulation to calculate the HU is presented below (ARNOLD et al., 1998; 

NEITSCH et al., 2011):   

  

when 𝑇av,𝑖 >  𝑇base (2.1) 

HU𝑖 =
𝑇𝑚𝑥,𝑖 +  𝑇𝑚𝑛,𝑖

2
−  𝑇base 

 

  

  

and when 𝑇av,𝑖 ≤  𝑇base  

HU𝑖 = 0  
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where HU𝑖 is the number of accumulated heat unit on day 𝑖 (heat units), 𝑇𝑚𝑥,𝑖 and 𝑇𝑚𝑛,𝑖 are 

respectively the maximum and minimum air temperatures (℃) for day 𝑖, and 𝑇base is the base 

temperature for growth (℃). No growth occurs for average temperatures at or below 𝑇base. 

 

A heat unit index (HUI), which varies from 0 at planting or the start of the 

growing season (for perennial grasses) to 1 at physiological maturity, is calculated by summing 

all daily HU accumulated during a growing season and dividing the resulting value by the 

number of the total heat units required for maturity (NEITSCH et al., 2011; ESPARZA et al., 

2007): 

  

𝐻𝑈𝐼𝑖,𝑘 = ∑ 𝐻𝑈𝑘

𝑖

𝑘=1

𝑃𝐻𝑈 ⁄  (2.2) 

  

where HUI𝑖,𝑘 is the heat unit index for day 𝑘 and PHU is the number of the total heat units 

required for vegetation maturity. The value of PHU must be given by the user, considering that 

each plant has its own total heat unit requirement for maturity. PHU is also referred as potential 

heat units. For trees and perennials, however, PHU refers to the number of the total heat units 

required (or the number of days) from budding to leaf dormancy. 

 

 

2.3.2.2. Dormancy 

The model simulates the plant dormant period, at which there is no growth.  At 

the beginning of the period, a fraction of the biomass (or total biomass depending on the species) 

is converted into residue and the leaf area of the plant starts to decline (NEITSCH et al., 2011). 

Dormancy is modeled assuming that there is a continuous decrease in rate of accumulation 

(JOHNSON, AMEZIANE, THORNLEY, 1983). The model presents two different approaches 

to trigger these periods: 

 

i) based on daylength (daylight hours) and latitude, which is more suitable for 

temperate regions (latitude ≥ 20°). The dormant period starts when the 

daylength approaches its annual minimum threshold and ends once the 
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daylength exceeds this minimum daylength in Spring (NEITSCH et al., 

2011).  

 

ii) from a soil moisture index (SMI), suitable for vegetation growth in 

monsoon-driven or tropical climates (latitudes between 20º S and 20º N), 

where vegetation growth dynamics are mainly controlled by the water 

availability in the soil profile rather than temperature (BORCHERT, 1994; 

JOLLY, RUNNING, 2004; ZHANG et al., 2005).  Thus, the dormant period 

is triggered when the SMI reaches a predefined minimum value during the 

drought season, and it ends once the SMI exceeds this value. It is worthy to 

mention that it is harder to distinguish between dry and wet season within 

the tropics as the study area gets closer to the equator, once there is no 

pronounced season in this area (MCGREGOR, NIEUWOLT, 1998). 

 

In both cases, the thresholds are defined by the user. The daylength is calculated 

as suggested by Allen et al. (1998): 

  

𝑁 =
24

π
× ω𝑠 (2.3) 

with  

ω𝑠 = 𝑎𝑟𝑐𝑐𝑜𝑠[−𝑡𝑎𝑛(𝜑) × 𝑡𝑎𝑛(𝛿)] (2.4) 

  

𝜑 =
𝜋

180
× [𝐿𝑎𝑡𝑖𝑡𝑢𝑡𝑒 𝑖𝑛 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒𝑠] (2.5) 

  

𝛿 = 0.409 × 𝑠𝑖𝑛 (
2𝜋 × 𝐽

365
− 1.39) 

(2.6) 

  

where N is the daylength (the number of daylight hours), ω𝑠 is the sunset hour angle in radians 

and π is a mathematical constant, Φ is latitude in radians, δ is the solar declination, and J is day 

of the year.  

 

The soil moisture index (SMI) is derived from the ratio between monthly 

precipitation and evapotranspiration (ALEMAYEHU et al., 2017): 
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𝑆𝑀𝐼 =
𝑃

𝐸𝑇𝑜
 

(2.7) 

  

where P and 𝐸𝑇𝑜 are precipitation and the reference evapotranspiration for the crop (mm), 

respectively. For more representative estimates, P and 𝐸𝑇𝑜 may be obtained from long-term 

climate data. 

 

 

2.3.2.3. Evapotranspiration and soil water content 

Potential transpiration is a function of the reference evapotranspiration 

(described below) adjusted for the evaporation of the amount of the water held in the canopy 

and LAI. In this work, LAI corresponds to half the total developed area of green leaves per unit 

of horizontal ground area (WATSON, 1947; CHEN, BLACK, 1992). The value for the potential 

transpiration is the portion of the occurring maximum transpiration on a given day having no 

water constraint, and as a function of plant’s LAI. Potential transpiration is computed as follows 

(NEITSCH et al., 2011): 

  

when 0 ≤ 𝐿𝐴𝐼 ≤ 3.0 (2.8) 

EtP =
𝐸𝑜

′ × 𝐿𝐴𝐼

3.0
 

 

when 𝐿𝐴𝐼 > 3.0   

𝐸𝑡𝑃 = 𝐸𝑜
′  (2.9) 

  

where 𝐸𝑡𝑃 is the potential (maximum) transpiration (mm), 𝐸𝑜
′  is the reference 

evapotranspiration adjusted for the evaporation of water held in the plant canopy (mm), i.e. 

remaining evaporative water demand (mm), and LAI is the leaf area index. 

 

The remaining evaporative water demand is then calculated from any rainfall 

intercepted by the plant canopy and reference evapotranspiration (NEITSCH et al., 2011) in 

such a way that: 

  

when 𝐸𝑇𝑜 > 𝐸𝑐𝑎𝑛  
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𝐸𝑜
′ = 𝐸𝑇𝑜 − 𝐸𝑐𝑎𝑛  

 (2.10) 

when 𝐸𝑇𝑜 ≤ 𝐸𝑐𝑎𝑛  

𝐸𝑜
′ = 0  

  

where 𝐸𝑐𝑎𝑛 is the amount of evaporation from water held in the canopy (mm) on a given day.  

 

The reference evapotranspiration (ETo) can be estimated from several methods, 

being the FAO Penman-Monteith method considered as the standard for computation of 𝐸𝑡𝑜 

from meteorological data (ALLEN et al., 1998). The Penman-Monteith method requires inputs 

such as solar radiation, air temperature, relative humidity, and wind speed. However, due to the 

possible absence of some of the mentioned variables and to avoid simulation of the missing 

required inputs, this model presents an alternative to calculate the reference evapotranspiration, 

the Hargreaves method (HARGREAVES, SAMANI, 1985). This alternative requires only solar 

radiation and air temperature, and it provides satisfactory results. It may be estimated as 

follows: 

  

ETo =  
[0.0023 × 𝑅𝑎 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 × (𝑇𝑎𝑣 + 17.8)]

λ
 

(2.11) 

  

where 𝑅𝑎 is the extraterrestrial solar radiation (MJ m−2d−1). 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛 and 𝑇𝑎𝑣  are 

respectively the maximum, minimum and mean air temperature (℃). λ is the latent heat of 

vaporization (MJ kg-1). 

 

The water held in the canopy is also expected to evaporate and the amount of 

this evaporation is calculated as follows (NEITSCH et al., 2011): 

  

when 𝐸𝑡𝑜 >  𝑐𝑎𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (2.12) 

𝐸𝑐𝑎𝑛 = 𝑐𝑎𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒  

  

when 𝐸𝑡𝑜 ≤  𝑐𝑎𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (2.13) 

𝐸𝑐𝑎𝑛 = 𝐸𝑡𝑜  
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where 𝑐𝑎𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 is the actual amount of water stored in the canopy (mm) on a given day. 

 

However, the described methods will depend on the amount of water that is 

effectively stored in the canopy on a given day, which is basically a function of the potential 

amount of water that can be trapped in the canopy and precipitation, in such a way that 

(NEITSCH et al., 2011): 

  

when 𝑃 > 𝑐𝑎𝑛𝑃  (2.14) 

𝑐𝑎𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑐𝑎𝑛𝑃  

when 𝑃 ≤ 𝑐𝑎𝑛𝑃 (2.15) 

𝑐𝑎𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑃   

where 𝑃 is precipitation (mm), and 𝑐𝑎𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 is the actual amount of water stored in the canopy 

(mm) on a given day. 

 

On the other hand, the potential amount of water that can be held in the canopy 

on a given day depends on the maximum amount of water that can be trapped in the plant 

canopy when the canopy is fully developed (which varies among species), the maximum LAI 

and the LAI on day 𝑖 (NEITSCH et al., 2011): 

  

𝑐𝑎𝑛𝑃 = 𝑐𝑎𝑛𝑚𝑥 ×
𝐿𝐴𝐼𝑖

𝐿𝐴𝐼𝑚𝑥
 

(2.16) 

  

where 𝑐𝑎𝑛𝑚𝑥  is the maximum amount of water (mm) that can be trapped in the canopy when 

the canopy is fully developed, 𝐿𝐴𝐼𝑚𝑥 is the maximum leaf area index for the plant.  

 

After determining the conditions for the water on the canopy, actual transpiration 

may be calculated from potential transpiration (Eq. 2.8) and the water stress coefficient (𝐾𝑠), as 

proposed below. 𝐾𝑠 is a function of field capacity, depletion point, and permanent wilting point 

(Fig. 2). Allen et al. (1998) proposed a  𝐾𝑠 with a linear decrease but in this work, it was assumed 

that a sigmoidal decay may be a more realistic approach.  𝐾𝑠 is equal 1 when there is no water 

stress and is less than 1 (and greater or equal to zero): 

  

when 𝐾𝑠 = 1 (2.17) 
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𝐸𝑡𝑎𝑐𝑡 = 𝐸𝑡𝑃  

when 0 ≤ 𝐾𝑠 < 1 (2.18) 

𝐸𝑡𝑎𝑐𝑡 = 𝐸𝑡𝑃  ×  𝐾𝑠  

  

with (2.19) 

𝐾𝑠 =

tanh (
𝛽 × (𝑆𝑊 −

(𝐷𝑃 + 𝑃𝑊𝑃)
2

)

𝐷𝑃
)

2
+ 0.5 

 

  

where 𝐸𝑡𝑎𝑐𝑡 is actual transpiration (mm), 𝐾𝑠 is the water stress coefficient, 𝛽 is a shape 

coefficient (which varies with the class of the soil), FC is field capacity (mm), SW is soil water 

(mm), DP is depletion point (mm), and PWP is permanent wilting point (mm).  

 

Figure 2: Proposed relation between water stress coefficient (𝐾𝑠) and soil moisture. Source: 

author. 

 

The soil water content may be calculated from a general equation of precipitation 

and two parameters, the retention water capacity of the soil (also known as field capacity) and 

terrain index (Tidx), which is here labeled as an estimate of the base flow. Tidx is obtained from 

a simplified exponential decay equation derived from HAND (Height Above the Nearest 

Drainage) method, which in turn, is a quantitative algorithm that normalizes the topography in 

respect to the drainage network on Digital Elevation Models (DEM) data (RENNÓ et al., 2008; 
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NOBRE et al., 2011). In summary, HAND uses a DEM to compute the vertical distance (height) 

of each grid cell in relation to the nearest stream cell it drains to (for a detailed description of 

the algorithm see RENNÓ et al., 2008). The elevation model used to calculate HAND results 

from a Digital Surface Model (DSM) with 5m resolution available from EMPLASA (São Paulo, 

2013). The model was corrected for depressions/sinks and for artifacts on the DSM (stream 

burning technique) using ArcHydro tools within ArcGIS 10.2. 

 

The combined use of water stress coefficient (𝐾𝑠) with terrain index (Tidx) seeks 

to encompass the local soil water dynamic (related to water uptake by plants) and the drainage 

network, improving the simulation.  

  

𝑤𝑠𝑜𝑖𝑙,𝑖 = (𝑃 × 𝜔) − 𝑐𝑎𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 +  𝑤𝑠𝑜𝑖𝑙,𝑖−1 (2.20) 

  

𝑤𝑠𝑜𝑖𝑙,𝑓 = (𝑤𝑠𝑜𝑖𝑙,𝑖 − 𝐸𝑡𝑎𝑐𝑡) × Tidx  (2.21) 

with  

Tidx =
𝐻𝐴𝑁𝐷𝑙𝑜𝑔 − min (𝐻𝐴𝑁𝐷𝑙𝑜𝑔)

max(𝐻𝐴𝑁𝐷𝑙𝑜𝑔) − min (𝐻𝐴𝑁𝐷𝑙𝑜𝑔)
  

(2.22) 

  

where 𝑤𝑠𝑜𝑖𝑙,𝑖 is the amount of available water in the soil at the beginning of a given day (mm), 

𝜔 is the field capacity for the site (when it is unknown, the models estimates this value from 

runoff curve number method (CN) and LAI), 𝑤𝑠𝑜𝑖𝑙,𝑖−1 is the soil water content on the previous 

day (mm), 𝑤𝑠𝑜𝑖𝑙,𝑓 is the amount of available water in the soil at the end of a given day (mm), 

and Tidx is terrain index, an normalized estimation of the subsurface runoff rate; and 𝐻𝐴𝑁𝐷𝑙𝑜𝑔 

is the value obtained with HAND method adjusted to a logarithmic scale. 

 

Urban areas are expected to present a different drainage network structure and 

water flow compared to natural watersheds, especially considering the removal of vegetation 

and replacement of pervious areas with impervious surfaces. However, in this study, it was 

assumed that UGS present a well-developed soil and, therefore, are not affected by these 

possible differences. 
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2.3.2.4. Potential vegetation growth 

As previously mentioned, vegetation growth is obtained for two conditions: 

potential growth and actual growth. The potential vegetation growth modeling is obtained by 

the simulation of the potential increase in plant biomass under ideal growing conditions. The 

potential increase in biomass for a given day is basically a function of intercepted light and the 

plant's efficiency in converting light into biomass, assuming a specific plant species radiation-

use efficiency – RUE (NEITSCH et al., 2011).  

 

The interception of solar radiation by the leaf area of the plant is estimated using 

Beer’s law (MONSI, SAEKI, 1953): 

  

H𝑝ℎ𝑜𝑠𝑦,𝑖 = 0.5 × H𝑑𝑎𝑦,𝑖 × (1 − exp(−𝑘𝑙 × 𝐿𝐴𝐼𝑖)) (2.23) 

  

where H𝑝ℎ𝑜𝑠𝑦,𝑖 is the intercepted photosynthetic active radiation (MJ m-2) on day 𝑖, H𝑑𝑎𝑦,𝑖 is the 

total incident solar radiation (MJ m-2) on day 𝑖, 𝑘𝑙 is the light extinction coefficient, 𝐿𝐴𝐼 is the 

leaf area index on day 𝑖. 0.5 × H𝑑𝑎𝑦,𝑖 is also kwon as the incident Photosynthetically Active 

Radiation – PAR (MJ m-2).  

 

The daily potential vegetation growth (kg ha-1) is estimated from the relation 

between intercepted active radiation and radiation-use efficiency (MONTEITH, 1977): 

  

PG𝑖 = RUE × H𝑝ℎ𝑜𝑠𝑦,𝑖 (2.24) 

  

where PG is daily potential growth (kg ha-1) on day 𝑖, also referred to as the daily potential 

increase in biomass, and RUE is the vegetation radiation-use efficiency (kg ha-1 ∙ (MJ/m-2)-1 or 

10-1g/MJ). 

 

During the initial stage of growth, the optimal leaf area development is 

controlled by the fraction of the maximum LAI of the plant and two shape coefficients, which 

vary among species. Once the maximum leaf area index is reached, the LAI will remain 

constant until the onset of the dormant period, after which it starts to decline. The optimal leaf 

area development is calculated as follows (NEITSCH et al., 2011): 
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frLAImx,𝑖 =
HUI𝑖

HUI𝑖 + exp(𝑙1−𝑙2 × HUI𝑖)
 (2.25) 

  

𝑙1 = ln [
HUI1

frLAI,1
− HUI1] + 𝑙2 × HUI1 (2.26) 

  

𝑙2 =  

(ln ⌊
HUI1

frLAI,1
− HUI1⌋ − ln ⌊

HUI2

frLAI,2
− HUI2⌋)

HUI2 − HUI1
 

(2.27) 

  

where, frLAImx,𝑖 is the fraction of the plant’s maximum LAI on day 𝑖, 𝑙1 is the first shape 

coefficient for optimal leaf area development curve and 𝑙2 is the second shape coefficient for 

optimal leaf area development curve. HUI1 is the fraction of growing season (i.e. fraction of 

total potential heat units) corresponding to the 1st (first) point on the optimal leaf area 

development curve, frLAI,1 is the fraction of the maximum plant leaf area index (i.e. fraction of 

LAImx) corresponding to the 1st (first) point on the optimal leaf area development curve, HUI2 

is the fraction of growing season corresponding to the 2nd (second) point on the optimal leaf 

area development curve and frLAI,2 is the fraction of the maximum plant leaf area corresponding 

to the 2nd (second) point on the optimal leaf area development curve. 

 

For annual and perennial species, the potential increase added in the leaf area on 

day 𝑖 is estimated as suggested by Neitsch et al. (2011): 

  

∆LAI𝑖 = (frLAImx,𝑖 − frLAImx,𝑖−1) × LAImx × (1 − exp(5 × (LAI𝑖−1−LAImx))) (2.28) 

  

where, ∆LAI𝑖  is the potential LAI increment on day 𝑖, frLAImx,𝑖 and frLAImx,𝑖−1 are the fractions 

of the plant’s maximum leaf area index on days 𝑖 and 𝑖 −1, respectively. LAI𝑖−1 is LAI on the 

previous day 𝑖 −1 and LAImx is the maximum leaf area index (it is provided by the user of the 

model). 

 

Based on Eq. 2.28, the potential total LAI is computed as function of potential LAI of the 

previous day and the LAI increment (NEITSCH et al., 2011):  
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LAIP,𝑖 = ∆LAI𝑖 + LAI𝑖−1 
(2.29) 

where LAIP,𝑖 is the potential total LAI on day 𝑖, ∆LAI𝑖 is the potential LAI increment on day 𝑖 

and LAI𝑖−1 is the LAI of the day before. 

 

 

2.3.2.5. Environmental constraints on growth 

Real plant growth may vary from potential plant growth (Eq. 2.24) due to the 

constraints caused by environmental stress factors (SCHAPENDONK et al., 1998; NEITSCH 

et al., 2011). The present model evaluates daily stresses caused by temperature, available water 

in the soil, and solar radiation. It is worth mentioning that since there are no records for the 

nutrient content in urban area soils, the model does not estimate the nutrient uptake by plants 

nor its potential stress. For each considered factor, the stress varies from 0.0 (under optimal 

conditions with the maximum growth rate) to 1.0 (no growth), which directly affect the plant 

development during the growing season. A better description of these factors is presented 

ahead. 

 

Temperature stress (𝑇𝑠𝑡𝑟) is used to evaluate the daily impact caused by air 

temperature variation in relation to the optimal temperature for the plant growth and 

development (ZAMAN, MORID, DELAVAR, 2016; NEITSCH et al., 2011). In summary, 

plants will not be subjected to temperature stress within the optimal temperature range 

(considering that some species present an optimal temperature range). However, the more the 

air temperature diverges from the plant’s optimal temperature, the more the plant suffers from 

temperature stress (NEITSCH et al., 2011). No growth occurs when the mean daily temperature 

is at base temperature or below, and at or above the maximal acceptable temperature.  

 

The range and equations used to determine temperature stress are 

(SCHAPENDONK et al., 1998): 

  

when 𝑇av,𝑖 = 𝑇𝑜𝑝𝑡 (2.30) 

𝑇𝑠𝑡𝑟,𝑖 = 0  

  

when 𝑇𝑚𝑖𝑛 < 𝑇av,𝑖 < 𝑇𝑜𝑝𝑡 (2.31) 
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𝑇𝑠𝑡𝑟,𝑖 = 1 −  
𝑇av,𝑖 − 𝑇𝑚𝑖𝑛

𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛
  

 

  

when 𝑇𝑜𝑝𝑡 < 𝑇av,𝑖 < 𝑇𝑚𝑎𝑥   (2.32) 

𝑇𝑠𝑡𝑟,𝑖 = 1 −  
𝑇av,𝑖 − 𝑇𝑚𝑎𝑥

𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑎𝑥
  

 
 

when (𝑇av,𝑖 ≤ 𝑇𝑚𝑖𝑛 and  𝑇av,𝑖 ≥ 𝑇𝑚𝑎𝑥) (2.33) 

𝑇𝑠𝑡𝑟,𝑖 = 1  

  

where 𝑇𝑠𝑡𝑟 is the temperature stress on day 𝑖, 𝑇av,𝑖 is the mean air temperature on day 𝑖 (℃), 

and 𝑇𝑚𝑖𝑛, 𝑇𝑜𝑝𝑡 and 𝑇𝑚𝑎𝑥 are the minimal, optimal and maximum temperatures (°C) for growth, 

respectively.  

 

Soil water stress (𝑊𝑠𝑡𝑟) is based on the evapotranspiration conditions. For this 

work, 𝑊𝑠𝑡𝑟 is a function of the water stress coefficient (Eq. 19), being equal to 0.0 when soil 

water content is optimal and increases up to 1.0 as soil water approaches the permanent wilting 

point. It is obtained as follows: 

 

when DP < SW ≤ FC (2.34) 

W𝑠𝑡𝑟,𝑖 = 0  

  

when SW < DP (2.35) 

W𝑠𝑡𝑟,𝑖 = max (1 −  𝐾𝑠)  

  

where 𝑊𝑠𝑡𝑟,𝑖 is the soil water stress on day 𝑖. 

 

Solar radiation stress (Radstr) is a function of photosynthetically active radiation 

– PAR (MJ m-2). Based on Schapendonk et al. (1998) and Jouven, Carrère and Baumont, (2006), 

the plant growth starts to be constrained when PAR is higher than 5 MJ m-2, i.e. the RUE 

decreases for PAR above 5 MJ m-2, and no growth is expected when PAR is at or higher than 

28 MJ m-2 (Fig. 3). It is computed as follows:  
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when 𝑃𝐴𝑅 <  5 (2.36) 

𝑅𝑎𝑑𝑠𝑡𝑟,𝑖 = 0  

  

when 𝑃𝐴𝑅 >  5 (2.37) 

𝑅𝑎𝑑𝑠𝑡𝑟,𝑖 = 0.044 × (𝑃𝐴𝑅 − 5)  

  

if  𝑅𝑎𝑑𝑠𝑡𝑟,𝑖 = 0.044 × (𝑃𝐴𝑅 − 5) > 1 (2.38) 

𝑅𝑎𝑑𝑠𝑡𝑟,𝑖 = 1  

  

where 𝑃𝐴𝑅 is photosynthetically active radiation on a given day (MJ m-2). Above a specific 

threshold, the higher the PAR, the higher the solar radiation stress. 

 

 

Figure 3: Upper and lower thresholds of the impact of photosynthetically active radiation 

(PAR) on the fraction of the optimal plant growth. Source: SCHAPENDONK et al., 1998. 

 

The environmental factor (EF), previously discussed and referred as stress 

factor, quantifies the environmental limitation undergone by the potential growth. EF is 

controlled by the greatest value of the three constraint parameters showed previously 

(temperature, water availability and solar radiation), and higher stress conditions implicate on 

lower EF values (NEITSCH et al., 2011): 

  

EF𝑖 = 1 −  max (𝑇𝑠𝑡𝑟,𝑖, 𝑊𝑠𝑡𝑟,𝑖, 𝑅𝑎𝑑𝑠𝑡𝑟,𝑖) (2.39) 
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where EF represents the growth limitation by environmental factors on a given day. T𝑠𝑡𝑟, W𝑠𝑡𝑟 

and Rad𝑠𝑡𝑟 are the temperature, water and solar radiation stress, respectively. 

 

 

2.3.2.6. Actual vegetation growth 

Based on the environmental stress factors, the actual plant growth may be 

computed as the product of the daily potential growth obtained in optimum conditions and the 

environmental factor at the same day (NEITSCH et al., 2011; SCHAPENDONK et al., 1998): 

  

RG𝑖 = 𝑃𝐺𝑖 × 𝐸𝐹𝑖 (2.40) 

  

where RG𝑖 is the real growth or the actual biomass accumulated on day 𝑖 (kg ha−1) and 𝐸𝐹𝑖 

represents the environmental growth constraints given day 𝑖.  

 

Subsequently, the biomass (kg ha−1)  on a given day is calculated based on the 

actual biomass (RG) and the biomass at the end of the previous day (kg ha−1)  (NEITSCH et 

al., 2011; HAN et al., 2015): 

  

bio𝑖 = RG𝑖 + bio𝑖−1 (2.41) 

  

where bio𝑖 is the biomass at the end of the day 𝑖 (kg ha−1) and bio𝑖−1 is the biomass at the end 

of the previous day (kg ha−1). 

 

The potential leaf area added on a given day in Eq. 2.28 may be also adjusted as 

follows (NEITSCH et al., 2011): 

  

∆LAIact,𝑖 = ∆LAI𝑖 × √EF𝑖 (2.42) 

  

where LAIact,𝑖 is the actual leaf area index added on day 𝑖. 

 

Then, the total leaf area index for a given day is computed as follows (NEITSCH 

et al., 2011): 
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LAI𝑖 = LAI𝑖−1 + ∆LAIact,𝑖 (2.43) 

  

where LAI𝑖  and LAI𝑖−1 are the leaf area index on day 𝑖 and leaf area index on day before, 

respectively. 

 

 

2.3.2.7. LAI decrement 

The mentioned conditions above refer to the growing period. Once the stage of 

dormancy is started, the LAI starts to decline, and for this model, the conditions for this period 

are being estimated as suggested by Strauch and Volk (2013): 

  

LAI𝑖 = (
LAImx,d − LAImin,d

1 + exp(𝑡)
) + LAImin,d 

(2.44) 

with (2.45) 

𝑡 = (−12) × (𝑟 − 0.5)  

  

𝑟 =
1 − HUI

1 − 𝑑𝑙𝑎𝑖
 (2.46) 

  

where the term used as the exponent is a function of time (t), and LAImx,d and LAImin,d are the 

maximum and minimum leaf area index expected during dormancy, respectively. 𝑑𝑙𝑎𝑖 is a user-

defined fraction of PHU (model parameter DLAI). 

 

It is important to mention that the daily values of LAI presented in this work do 

not apply for trees. In this case, the leaf area development is controlled by the age of the trees, 

and LAImax depends on the number of years for the tree species to reach full development 

(NEITSCH et al., 2011). All parameters of the vegetation model are listed in Table 1. 
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Table 1: Parameters of the vegetation model adapted for urban areas. 

Parameter Units Description 

RUE kg ha-1 ∙(MJ/m-2)-1 

or 10-1g/MJ 

Vegetation radiation-use efficiency 

LAI𝑚𝑥 m-2 /m-2 Maximum leaf area index for the plant 

LAImx,d m-2 /m-2 Maximum LAI expected during dormancy 

LAImin,d m-2 /m-2 Minimum LAI expected during dormancy 

𝑑𝑙𝑎𝑖 - User-defined fraction of PHU (model parameter DLAI) 

𝑙1  First shape coefficient for optimal leaf area development 

curve 

𝑙2 - Second shape coefficient for optimal leaf area 

development curve 

HUI1 - A fraction of growing season (i.e. fraction of total potential 

heat units) corresponding to the 1st (first) point on the 

optimal leaf area development curve 

frLAI,1 - A fraction of the maximum plant leaf area index (i.e. 

fraction of LAImx) corresponding to the 1st (first) point on 

the optimal leaf area development curve 

HUI2  - A fraction of growing season corresponding to the 2nd 

(second) point on the optimal leaf area development curve 

frLAI,2 - A fraction of the maximum plant leaf area corresponding 

to the 2nd (second) point on the optimal leaf area 

development curve 

𝑇𝑚𝑖𝑛 ℃ Plant’s minimal (base) temperature for growth 

𝑇𝑜𝑝𝑡 ℃ Plant’s optimal temperature for growth 

𝑇𝑚𝑎𝑥 ℃ Plant’s maximum temperature for growth 

𝑘𝑙 - A light extinction coefficient 

PHU - Potential heat unit required for maturity  
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2.3.2.8. Mowing processes 

The model allows the user to set up mowing processes. For each mowing event, 

all output data is stored before the model returns to its initial configuration, which should have 

already been provided by the user (e.g. temperature requirements, minimum and maximum 

LAI, PHU, dormancy trigger, etc.). Then, a new growth cycle is started. A detailed illustration 

of the mowing process component in a study case is shown in section 3. 

 

 

2.3.3. Study area 

In the present work, a snip in the southwestern of the urban area of São Carlos 

city (21º30’ – 22º30’S, and 47º30’ – 48º30’W) was used. The city is situated in the center-east 

of São Paulo state, in the southeast region of Brazil (Fig. 4). There are 204 UGS (including 

public squares, lawns, and edges of waterways) within the sniped area, totalizing 1.28 km2 

(green polygons in Fig. 3). The altitude in the area ranges from 704 to 861 m above sea level. 

Climate, based on information for the city of São Carlos and following Köppen’s system (1931), 

is classified as Cwa (tropical climate of altitude), and we separated it into i) wet summer, from 

October to April (seven months); ii) and dry winter, from June to August (three months). In this 

work, monthly average precipitation and temperature were generated using 27-year-data (1992 

– 2018) from the Embrapa Pecuária Sudeste agrometeorological station (21°57'42" S and 

47°50'28" W, altitude of 860 m, BRAZIL – EMBRAPA, 2019) located approximately 12 km 

from the area of interest. From the data, May and September were classified as transitions 

months. Mean annual rainfall and temperature (period 1992–2018) lie at 1,415.4 mm and 21.4 

ºC, respectively, as shown in Fig. 5. 
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Figure 4: Location map for the area of interest, which is located in São Carlos, São Paulo, 

Brazil. There are 204 UGS (green polygons) within the sniped area, totalizing 1.28 km2. 
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Figure 5: Annual variation of temperature and precipitation based on 27-year-data (1992–

2018): São Carlos, São Paulo, Brazil. 

 

 

2.3.4. Growth simulation 

Considering that many variables of the model depend on values that are intrinsic 

to each vegetation species, we selected bahiagrass as input to run the model considering that i) 

this species is widely grown in urban public areas in Brazil, especially in lawns, and public 

parks and squares; ii) the UGS mapped in the area of interest are mostly composed by this 

species. It requires a base temperature of 12℃, an optimal temperature range from 32℃ to 

40℃, and a maximum temperature of 45℃ for growth (RYMPH, 2004; KINIRY et al., 2007; 

PEDREIRA, BROWN, 2011). It was also assumed a light extinction coefficient of 1.1, a RUE 

of 1.6 (KINIRY et al., 2007) and a PHU of 3,300 for the study species. PHU is based on the 

annual mean of accumulated heat unit (i.e. higher than the base temperature) in the study area. 

Finally, independent simulations were performed in daily time steps for each one of the 204 

UGS mapped in the area under consideration for the period from January to December of 2018.  

 

 

2.4. RESULTS AND DISCUSSION 

To effectively run the model, the user first needs to set up the plant’s parameters, 

the minimum value for the dormant period, for the approach which will be used to start 
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dormancy and field capacity. (see Section 2.2.2). Hereafter, it is presented how the dormant 

period varies within the study area according to the two options available in the model.  

  

For the daylength approach, the area under consideration had 284 for the 

growing season and 81 days for the dormant period in 2018, a year with 365 days (Table 2). 

Fig. 6 illustrates the daylength variation throughout the year. The shortest day in the study area 

has 10 hours and 39 min of daylight; thus, following this approach, when daylength reaches 11 

hours (on May 10th), the model starts dormancy and it lasts until the daylength exceeds 11 hours 

again (July 29th).  

 

Table 2: Number of days of growing season and dormant period according to daylength 

approach. 

 GROWING SEASON DORMANT PERIOD 

YEAR DOY* Period 
Total 

(days) 

DOY* Period 
Total 

(days) 

 2018 
1-130 

211-365 

Jan 1st – May 9th  

Jul 30th – Dec 31st  

284 130-210 May 10th – Jul 29th  81 

*DOY: day of year. 

 

 

Figure 6: Daylength variation throughout the year in São Carlos, São Paulo, Brazil. The 

dormant period is considered while the daylight hours are less than 11 hours (red line). 
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Considering the SMI approach, which is more suitable for tropical areas 

(STRAUCH, VOLK, 2013), the limits for growing season and dormancy follow a long-term-

annual-pattern, from which the wet season (October to April) and dry season (June to August) 

were identified. May and September were classified as transitions months. The dry season (from 

June to August) shows the lowest SMI values (less than 0.55), as expected (Fig. 7). Thereby, 

the dormant period has a 92-day-period while growing season, in the study area, has 274 days 

in leap years, and 273 days in normal years (Table 3). 

 

 

Figure 7: The average moisture index (SMI) derived from precipitation (P) and reference 

evapotranspiration (ETo) based on observations from the annual mean (period 1992–2018) for 

São Carlos, SP, Brazil.  

 

Table 3: Number of days of growing season and dormant period according to wet season 

approach. 

 GROWING SEASON DORMANT PERIOD 

YEAR DOY* Period 
Total 

(days) 

DOY* Period 
Total 

(days) 

2018 
1-151 

244-365 

Jan 1st – May 31st  

Sep 1st – Dec 31st 

273 152-243 Jun 1st – Aug 31st 92 

*DOY: day of year. 
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Fig. 8 illustrates the constraint of potential growth as temperature varies. 

Following the temperature requirements of bahiagrass, there is no growth below or at 12℃ and 

at or above 45℃; and there is no temperature constraint for growth at or between 32℃ and 

40℃. Temperature constraint (0-1) is reduced when the daily air temperature nears 32℃ and 

increases for temperature above 40℃. For temperatures above 45℃, the stress is maximum and 

there is no growth. Since the model was conceived to be used in different areas (spatially 

distributed) and for a wide range of species, this simple (partial) linear relationship between 

temperature and growth constraint seems reasonable. This approach is suggested when the plant 

response curve to temperature variations is unknown. 

 

 

Figure 8: Thresholds of mean air temperature impact on the fraction of the optimal (potential) 

plant growth for bahiagrass. Source: RYMPH, 2004; KINIRY et al., 2007; PEDREIRA, 

BROWN, 2011. 

 

After all input parameters are given and the dormancy trigger is set, the model 

starts running the simulations using daily time steps, first for optimal conditions (potential plant 

growth) and then for real conditions (under EF constraints). For this study, the model was 

executed for the period between January 1 of 2018 to December 31 of 2018, considering all 204 

UGS as a single one. Fig. 9 presents the simulation of LAI change under optimal conditions 

with a maximum LAI of 3.2 and a minimum LAI of 0.5 (set at the beginning of the simulation). 

For this simulation, SMI was selected as the trigger for the dormant period, which starts on June 

1, when LAI begins to decrease, and it lasts until August 31. Once dormancy is over, LAI starts 

to increase again. Under optimal conditions, LAI change is ruled by daily accumulation of heat 
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units only (Fig. 10). There was no accumulation of heat units during the dormant period (from 

June to August). 

 

Figure 9: Daily Simulation of optimal LAI change for bahiagrass based on from SMI 

approach in São Carlos, São Paulo, Brazil for the year 2018. For initial LAI and minimum 

LAI during dormancy, a value of 0.5 was adopted. 

 

Figure 10: Daily accumulation of heat unit (2018) for bahiagrass with a base temperature of 

12℃ and a maximum temperature of 45℃ in São Carlos, São Paulo, Brazil. There was no 

heat unit accumulation during the dormant period (from June to August). 

 

As soon as daily potential plant growth is determined, the model starts simulating 

the actual plant growth. As stated earlier, it is calculated as a function of potential plant growth 

(Eq. 2.24) and EF (Eq. 2.39). Fig. 11 presents the variation of the three constraint parameters 
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in 2018, at which 0.0 means no stress and 1.0 means no plant growth. Water stress is not 

calculated during dormancy, thus from June to August, the water content in the soil is set to 

0.0. 

 

Figure 11: Daily plant's growth constraints (water, temperature and solar radiation stress) 

during the year 2018. 

 

It is clear from Fig. 11 that water and temperature stress play the most constraints 

in plant growth for this study area. It is worth mentioning that water stress shows values of 1.0 

(no plant growth) even in the wet season, which likely occurs due to the intense rain events 

followed by several days without any precipitation. Temperature stress presents its highest 

values in the period from the end of May to the beginning of September, which was expected 

since this period includes not only the winter season but its transitions. Lastly, radiation stress 

shows a low decrement from June to August, which is expected due to the reduction of the 

incident total solar radiation in this period. 

 

Once the three constraint parameters are calculated, the EF of each day is 

determined. The model is implemented to select the greatest value of the three constraint 

parameters (water, temperature and solar radiation stress). Fig. 12 illustrates EF variation, 

which is inversely proportional to the greatest value of the constraint parameter, i.e. the higher 
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the constraint parameter values, the lower the EF values (Eq. 2.39). EF shows values 0.0 for the 

dry season (from July to August), once that this was set as the dormant period.  

 

Figure 12: Daily variation of Environmental factor (EF) in 2018. EF was obtained from water, 

temperature and solar radiation stress. 

 

After all steps above, real growth is calculated from the quantification of the 

fraction of potential growth achieved on each day by EF (Fig. 13).  For the simulated period, it 

seems that there is a mean rate of biomass production for the period analyzed, with a slightly 

higher value for the period from September to December compared to the January to April 

interval. Furthermore, biomass production, also known as primary productivity, is presented in 

Fig. 13 and shows a substantial period without any growth in April, which is clearly an effect 

of the drought period for this month (as indicated by the water stress constraint in Fig. 11).  

 

Figure 13: Daily real growth (kg ha-1), also known as primary productivity, in 2018. 
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The outputs of optimal LAI (Eq. 2.29) and actual LAI (Eq. 2.43) for the period 

from January to December of 2018 are compared in Fig. 14. Actual LAI shows a maximum 

value of 2.15, while optimal LAI goes up to 3.2 (as stated before). It is apparent from Fig. 14 

that actual LAI reaches its maximum value a little bit later than the optimal LAI, which is likely 

related to the delayed full development of the plant caused by the constraints of EF. It is 

important to highlight that actual LAI shows a very small growth right after dormancy is over, 

which is caused by high-water stress in this period (Fig. 11).   

 

Figure 14: Comparison of actual and optimal LAI for the year 2018. An initial LAI of 0.5 was 

adopted. 

 

Aiming to simulate the dynamics of the model with regular mowing processes 

(something that is expected under real conditions) and considering the location of each UGS, it 

is presented a simulation of the actual LAI chance (Eq. 2.43) during 2018 for all 204 UGS 

mapped in the study area (Fig. 15), now as independent areas. The initial and maximum LAI 

were set to 0.5 and 2.0, respectively, for this simulation. The main idea of this procedure was 

to spatialize the vegetation growth (using LAI as an indicator) considering the variations in soil 

water conditions according to the drainage network (subsurface runoff dynamics). Terrain 

index (see Eq. 2.21) was considered as an essential parameter, once it was assumed that there 

is no solar radiation and temperature variation within the UGS (i.e. all areas have the same 

temperature and solar radiation conditions). 
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Figure 15: Actual LAI simulation for all UGS in the study area during the year 2018. 
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Eight stages of the LAI forecasting throughout the year 2018 for each area is 

displayed in Fig. 15, encompassing the four seasons. LAI values are displayed on a green scale 

so that the darker the green, the higher the LAI for the area. Soil moisture index was adopted 

in this simulation as the trigger for dormancy. To simulate plant growth with mowing regimes, 

it was considered that a new growth cycle would be started whenever the LAI of the area 

reached 2. Moreover, independently of the LAI before the dormant period, all areas reach a 

common minimum LAI (set by the user before the model is started) at the end of dormancy. It 

is also clear from the figure that areas which reach higher LAI first are closer to streams and/or 

at lower altitudes, hence not suffering from water stress as other elevated areas. However, in 

these areas, the mowing processes need to be cut more frequent. This approach not only 

provides the model a better representation of what happens in the environment but also helps 

the user to identify easily and faster the areas which need more attention regarding mowing 

management. Thus, the simulation presented in Fig. 15 represents a powerful tool for the 

management of UGS regarding mowing processes. 

 

Despite the compelling results, there are still some limitations to be addressed 

that could improve the model. Future improvements would include shadow conditions, which 

are expected to make the model more reliable for green areas dominated by trees. Adjustments 

in the dormant period threshold are necessary as well to improve the response of the model for 

shorter (longer) dry (rain) seasons. 

 

 

2.5. CONCLUSION 

In this study, a grass growth model adapted to urban area conditions is proposed 

and implemented, which includes dormant period, a LAI approach based with a sigmoidal 

decrease toward a minimum value (defined by the user) during dormancy, the regular mowing 

process, and spatial capabilities (designed for GIS environment). Only above-ground growth is 

modeled. The model allows setting the dormant period based on two different approaches: 

daylength or the soil moisture index - SMI, which allows covering temperate and tropical areas. 

In addition, the implemented model incorporates the local soil water dynamic (related to water 

uptake by plant) based on the drainage network (subsurface runoff dynamics) to generate the 

soil water stress. 



43 

 
 

The idea of adopting a sigmoidal LAI decrease up to a minimum value during 

the dormant period, as suggested by Strauch and Volk (2013), seems to give reasonable results 

and might be considered more realistic to both perennial and annual plants compared to a linear 

decrease. Moreover, bearing a minimum LAI greater than zero allows the model to cover 

simulations for LAI of trees and other plants, which usually do not necessarily fall to zero 

during dormancy. It is also important to emphasize that the model does not consider senescent 

plants, which may be an interesting adjustment for the future. 

 

Considering the spatial capabilities of the model, the dataset produced by the 

terrain index seems to be an interesting way to include groundwater level in the grass growth 

modeling and to spatialize the information of independent areas while the model runs, allowing 

integration with GIS. However, more studies in this field should be performed to better evaluate 

the results. 

 

The model here described enables the simulation of the dynamics of LAI, 

biomass, evapotranspiration and soil water content at different scales. Furthermore, the model 

is able to simulate grass growth under mowing processes in urban environments. No previous 

studies on this subject were found in the literature. However, further adjustments should be 

accomplished to improve model performance, such as regulation of the dormant period 

threshold and the inclusion of shadow conditions. Lastly, this model may help government 

administrations with the optimization of cleaning/mowing processes of UGS, decreasing 

management expenses and ecosystem impacts, which consequently may increase the quality of 

life and well-being of citizens. 
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3. A GRASS GROWTH MODEL ADAPTED TO URBAN AREAS. PART 

2: MODEL PERFORMANCE ASSESSMENT BASED ON LAI 

RETRIEVED FROM VEGETATION INDEXES 

 

3.1. ABSTRACT 

This paper presents a comparative analysis between the leaf area index (LAI) simulated by the 

model described in section 2 and the LAI retrieved from vegetation index (VI) from two 

different platforms, an unmanned aerial vehicle – UAV and PlanetScope imagery. Firstly, 

measurements of reflectance and leaf samples of bahiagrass (Paspalum notatum Flügge) were 

collected in situ and used as reference. Normalized difference vegetation index (NDVI), green 

normalized difference vegetation index (GNDI), and two-band enhanced vegetation index 

(EVI2) were calculated to estimate LAI using the ground-based data. EVI2 showed the best 

performance for this analysis and it was then applied to retrieve LAI from both the UAV and 

PlanetScope imagery. To evaluate the model performance, the associated determination 

coefficient (R2) and root mean square error (RMSE) between LAI simulated into the model 

(default and adjusted) and LAI retrieved from both sensors are reported. The findings obtained 

in the analysis suggest that the proposed model is suitable for its purpose. However, some 

adjustments in the LAI curve development and in the dormant period are proposed. 

 

Keywords: grass growth model; urban areas; LAI retrieval. 

 

 

3.2. INTRODUCTION 

Process-based plant models have significantly advanced with the development 

of computational science over the last decades. However, there are few references to vegetation 

growth models designed for urban areas (most of them are developed to simulate crop growth 

and yield). Thus, aiming to help government administrations with management and 

optimization of mowing processes of urban green areas – UGS (e.g. lawns, public parks squares, 

roadsides and around waterways), a grass growth model adapted to urban area conditions was 

implemented (section 2). 

 



51 

 
 

The model is designed to simulate the dynamics of leaf area index (LAI), 

biomass, evapotranspiration and soil water content, from local to large scales, going or not 

under mowing processes or not. However, only above-ground growth is modeled. The model 

presents two different approaches to trigger dormancy (from a daylength perspective or an 

annual soil moisture index – SMI). Phenological development is simulated based on daily 

cumulative heat units, biomass production is calculated using the light-use efficiency approach 

(MONTEITH, 1977), and plant growth constraints are controlled by stress factors. The model 

equations were either adapted from previous models (WILLIAMS et al. 1989; NEITSCH et al., 

2011; SCHAPENDONK et al., 1998; KINIRY et al., 1992; JOUVEN, CARRÈRE, 

BAUMONT, 2006) or newly developed, as presented and discussed in section 2. 

 

Plant development and health can be evaluated by LAI and biomass, which in 

turn can be estimated by either direct or indirect methods (GOWER, KUCHARIK, NORMAN, 

1999). Direct measurements, which involve destructive sampling, can be time-consuming, 

labor-intensive, and are difficult to apply over large areas or for repeated measurements. On the 

other hand, indirect measurements, mainly based on remote sensing techniques, are non-

destructive, cost-effective and faster (LIU, PATTEY, ADMIRAL, 2013; KROSS et al., 2015). 

One way to use remotely sensed data is through vegetation indices – VIs (KROSS et al., 2015).  

 

VIs, or more generally spectral indices, have been successful used in studies of 

various biophysical vegetation variables, such as canopy cover, leaf area index (LAI), biomass, 

productivity, and absorbed photosynthetically active radiation – APAR (HATFIELD ET AL., 

1984; ASRAR et al., 1984; SELLERS, 1985; ELVIDGE, CHEN, 1995; MYNENI, 

WILLIAMS, 1994; DAUGHTRY et al., 2000) regardless of the scale, going from ground leaf-

level to aerial and orbital measurements (HALL et al. 1992; HALL, SELLERS, 1995; 

DAUGHTRY et al., 2000; GLENN et at., 2008; BERNI et al., 2009). In addition, the underwent 

development of VIs has allowed reliable spatial and temporal inter-comparisons of terrestrial 

photosynthetic activity and variations of LAI and canopy structure (HUETE et al. 2002; 

GOBRON et al., 1999; ZHU et al., 2013), which are critical to monitoring and modeling 

vegetation dynamics (ZHU et al., 2013). Thus, VIs may be now considered indispensable tools 

to environmental studies, such as climate and land-use-change detection, land cover 

classification and monitoring, among others (GLENN et at., 2008). 
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The Most commonly used VIs utilize red and near-infrared (NIR)  canopy 

reflectance or radiance (HUETE, 1988), because of the unique properties exhibited by 

vegetation in these bands (BROGE, LEBLANC, 2000), i.e., an intense radiation absorption in 

the red wavelengths and a strong scattering/reflectance in the NIR region (GOBRON et al., 

1999). Ratio indices involve linear combinations of Photosynthetically Active Radiation (PAR) 

and NIR bands against another linear set of the same bands (TUCKER, 1979; HUETE, 

JACKSON, POST, 1985; BROGE, LEBLANC, 2000). The normalized difference vegetation 

index (NDVI – ROUSE, 1974), soil adjusted vegetation index (SAVI – HUETE, 1988), 

enhanced vegetation index (EVI – HUETE et al, 2002), two-band enhanced vegetation index 

(EVI2 – JIANG et al., 2008), and green normalized difference vegetation index (GNDVI – 

GITELSON, MERZLYAK,  LICHTENTHALER, 1996) are some examples of well-

established VIs.   

 

Thus, the goal of this work is to assess the performance of the model by 

comparing the LAI simulated by the previously proposed model (section 2) to the LAI retrieved 

from VIs, which was assumed to be a proxy of the “effective” or “true” LAI (LAI𝑒) obtained 

from destructive samplings. This paper is structured as follows: in Section 3.3, we introduce 

the model functioning, the application of VIs as a tool for LAI retrieving, and the data source 

and processing. In Section 3.4, the simulated and retrieved LAI are described, and the results 

are discussed. Lastly, we present the conclusions of this study in Section 3.5. 

 

 

3.3. MATERIAL AND METHODS 

3.3.1. Model functioning 

The model was developed in Phyton 3.7, a user-friendly open-source and high-

level programming language. It runs at a daily time-step with two scenarios, optimal and actual 

conditions, and the main outputs are LAI and biomass. The model is capable of simulating 

growth for both annual and perennial plants. Since there are no records for the nutrient content 

in urban area soils, the model neither estimates the nutrient uptake by plants nor its potential 

stress in the areas of interests (UGS). Three daily stresses conditions are used: stress caused by 

temperature, water available in the soil, and solar radiation. The required model inputs are (I) 

the maximum LAI for the considered species, (II) the plant’s minimal (base), optimal and 
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maximum temperatures for growth, (III) the light extinction coefficient, (IV) the potential heat 

units required for maturity, (V) field capacity for the site (when it is unknown, the model 

estimates this value from runoff curve number method [CN] and LAI), (VI) the weather data 

for the simulated period (solar radiation, temperature, precipitation, and reference 

evapotranspiration [when not provided, the model estimates it according to Hargreaves 

method]), and (VII) mowing regime based on specific dates or a user-defined maximum LAI 

value. The model resets the growth cycle after the regular mowing processes. 

 

3.3.2. LAI retrieval and model performance 

As already extensively suggested in the literature, LAI can be retrieved from VIs 

(see KROSS et al., 2015; TOWERS, STREVER, POBLETE-ECHEVERRÍA, 2019, and other 

references therein). Thus, to assess the performance of the model, this work uses the comparison 

between the LAI simulated in the model and the LAI retrieved from remotely sensed VIs, which 

were assumed to be a proxy of the effective LAI. Given that the model requires many variables 

that are intrinsic to each vegetation species, bahiagrass (Paspalum notatum Flügge) was 

selected as reference, since it is one of the most grown species in urban public areas in Brazil, 

especially in lawns, and public parks and squares. 

  

For the LAI retrieval, we firstly focused on gathering the spectral response 

(reflectance) in situ and measuring the effective LAI (LAI𝑒) using the destructive approach, 

which is better described in the next section. Then, NDVI, GNDVI, and EVI2 performance 

were evaluated (Table 4).  

 

Table 4: Vegetative indices evaluated in this study 

Index Equation Bands applied Reference 

NDVI 
( 𝜌𝑁𝐼𝑅  −  𝜌red ) 

( 𝜌𝑁𝐼𝑅  +  𝜌red )
 

660 nm (red)  

800 nm (NIR) 

Tucker  

(1979) 

GNDVI 
( 𝜌𝑁𝐼𝑅  −  𝜌green ) 

( 𝜌𝑁𝐼𝑅  +  𝜌green )
 

550 nm (green) 

800 nm (NIR) 

Gitelson et al. 

(1996) 

EVI2 
2.5 × ( 𝜌𝑁𝐼𝑅  − 𝜌red) 

( 𝜌𝑁𝐼𝑅  +  2.4 × 𝜌red  +  1)
 

660 nm (red) 

800 nm (NIR) 

Jiang et al.  

(2008) 
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Afterward, the index with the highest explanatory power against effective LAI 

was selected to be used on the LAI retrieval from the VIs derived from sensors of two different 

platforms, an unmanned aerial vehicle – UAV and PlanetScope imagery (from 

www.planet.com). This data acquisition is described in section 3.3.2.2. Once the LAI retrieved 

from both sensors were obtained, they were compared to the LAI simulated in the model. 

 

 

3.3.2.1. Reference sampling of LAI and reflectance signature 

Field reference data were collected in an open area composed mainly by 

bahiagrass located next to the Department of Environmental Science of Federal University of 

Sao Carlos (UFSCar), state of Sao Paulo, Brazil. This area was selected because it goes through 

regular mowing processes and was easy to keep in track.  

 

The data acquisition took place in May of 2018 and April of 2019, at which 

spectral signature and leaf sampling were collected (Table 5).  13 circular sites of 0.165 m2, 

randomly distributed over the site, were selected (Fig. 16a). After gathering the reflectance 

response, we harvested the spots and leaf area measurements were performed in the laboratory 

later. Photos of the leaves were taken with a Canon EOS 750D (Canon Inc.) camera and 

processed by using ImageJ software (SCHINDELIN et al., 2012) to estimate the effective LAI 

(LAI𝑒), in a procedure similar to Martin et al. (2013).  This LAI was set as reference in the 

retrieval of LAI (Fig. 16b). 

 

Canopy reflectance measurements were made before harvesting the leaves by 

using the portable analytical spectral device (ASD) Field-Spec 4 Hi-Res spectroradiometer 

(Fig.17). The ASD FieldSpec measures spectral signature over the 350 – 2500 nm region (2151 

spectral channels) with a sampling interval of 1.4nm between 350-1000nm. Bandwidth is 3 nm 

in the visible (VIS) and NIR and 8 nm in the short-wave infrared (SWIR). The measurements 

were made from about 1.15 m above the plot and a probe with 8°of a field of view (FOV) was 

used. As a result, at the plot level, a circular area of about 0.02 m2 was measured and each 

measurement represents the average of 6 readings at the same spot. Canopy reflectance was 

measured between 01:00 p.m. and 03:30 p.m, in clear sky conditions. Calibration was done by 

using a white Spectralon panel® (Labsphere, Inc., North Sutton, NH). The reflectance signature 

http://www.planet.com/
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for the 13 sites is shown in Fig. 17, which also indicates the spectral bands used to calculate the 

VIs. 

 

Table 5: Dates of ground-based data acquisition 

 MAY 2018 APRIL 2019 

 25th  30th  31st  24th  

Sample 1, 2, 3 and 4 5 and 6 7, 8, 9, 10, 11 and 12 13 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: (a) the view angle (80º) of the ASD FieldSpec measurements above one of the 

circular sites; (b) Example of photographs taken in the experiment for leaf area estimation by 

ImageJ software. 

b 

a 
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Figure 17: The canopy reflectance (from 350 to 850 nm) of the 13 sites were obtained by the 

average of 6 readings at each spot. The vertical lines represent the green (550 nm), red (660 

nm) and NIR (800 nm) wavelength used to calculate the VI. 

 

 

3.3.2.2. Image acquisition and processing 

As stated before, the VIs were also generated with imagery from two different 

platforms: collected with a UAV and from PlanetScope CubeSats. The UAV platform used in 

this study was a DJI Phantom 4 quadcopter (Shenzhen, China), equipped with a multispectral 

MAPIR Survey 3N RGN (MAPIR) camera equipped with an onboard GPS (Table 6). The 

MAPIR camera captures light in the green (550 nm), red (660 nm), and near-infrared (850 nm) 

wavelengths. The images are produced in JPG and RAW + JPG format with dimensions of 

4000 × 3000 pixels, with a ground sample distance (GSD) of 2.3 cm/px at 120 m. The MAPIR 

has a faster interval timer, 1.5 seconds for JPG mode and 2.8 seconds for RAW + JPG mode, 

which not only reduces the flight time but also enables higher overlapping (MAPIR, 2018). For 

the study, images overlap was sufficient to produce reasonable orthomosaics with a resolution 

of 1 cm/px. 
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Table 6: Specifications of Phantom 4 Professional aircraft and MAPIR Survey 3N RGN 

camera used in the UAV missions. 

Phantom 4  

Weight (Battery & Propellers Included) 1380g 

Flight time Approx. 28 min 

Max. speed 20 m/s (S-mode, no wind) 

Max. flight altitude 6000 m 

Operating temperature range 0° to 40°C 

  

MAPIR Survey 3N RGN  

Image size  4000 × 3000 (12MP) 

3264 × 2448 (8MP) 

Filter Transmission RGN (Red+Green+NIR): 

550nm/660nm/850nm 

Image format RAW (12bit) + JPG (24bit), JPG (24bit) 

Lens 41º f/3.0 

GSD 2.3 cm/pixel – 120 AGL 

Sensor Sony Exmor R IMX 117 12MP (Bayer RGB) 

Photo interval 1.5 s/JPG, 2.8 s/RAW+JPG 

ISO range 50 – 1600 

GPS/GNSS ublox UBX-G7020-KT  

 

 

A total of 11 flights were performed in the same area mentioned earlier, in the 

period from March to July of 2019, between 11:30 a.m. and 02:00 p.m., in clear sky conditions, 

and in flying altitude of 30 m (Table 7; Fig. 18). The first flight was carried out a couple of days 

after a mowing process, which allows one to assume this as a scenario with the smallest LAI 

value. A calibration target with white, grey and black patches was placed on the ground in a 

position to ensure to be a part of the final image mosaics, allowing the forward reflectance 

equalization. All Phantom missions, including takeoff and landing, were fully controlled by an 

autopilot system (the DroneDeploy software), with the same flight paths based on GPS 

waypoints programmed before the missions. The imagery taken by MAPIR were first processed 

and calibrated with MAPIR Camera Control application (MAPIR, 2019). Then, orthomosaics 

were generated with Agisoft Metashape software and, finally, ArcGIS Pro (version 2.4, 
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Environmental Systems Research Institute, Redlands, CA, USA) was used for geospatial 

processing. 

 

Table 7: Dates of UAV Phantom 4 flight. 

2019 

 30 March  

11, 18 and 30 April  

20, 22, 27 and 29 May  

5 June  

11 and 12 July  

 

 

Finally, imagery from the same region were acquired from the PlanetScope (PS), 

which is a constellation of small and standardized satellites, which are commercially operated 

by Planet Labs (or only Planet). Planet is an aerospace and data analytics company, which now 

runs the largest constellation of Earth imaging satellites (HOUBORG, MCCABE 2018). The 

PS constellation currently consists of approximately 130 active 3U (i.e., 10 x 10 x 30 cm) 

CubeSats with a mass around 4 kg, which are able to provide daily nadir-pointing land surface 

imaging of the entire Earth (PLANET, 2019).  

 

The PS constellation of CubeSats, so-called “Doves”, captures images at a 

spatial resolution of approximately 3 m (GSD) in four spectral bands, red (590 – 670 nm), green 

(500 – 590 nm), blue (455 – 515 nm), and near-infrared – NIR (780 – 860 nm). The PS 

nanosatellites are deployed into two different orbital configurations. Some of the CubeSats 

operate in International Space Station orbits, with an altitude of approximately 400 km, a 

variable equatorial crossing time and a GSD of approximately 3 m. Meanwhile, most of them 

are deployed into sun-synchronous orbits (approximately 475 km orbit altitude) with Equator 

crossing time between 9:30 – 11:30 a.m. (local solar time) and a nadir GSD of 3.7 m (Table 8). 
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Figure 18: Location of the study area. It is presented an RGB composition (false color) from 

MAPIR camera in the bottom left corner (d). For the VIs calculations from both sensors, the 

average value inside the red rectangle was considered. 
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Table 8: PlanetScope CubeSat constellation and sensor specifications 

 International Space Station 

Orbit 

Sun-synchronous Orbit 

Orbit Altitude 

(reference) 

400 km (51.6° inclination) 475 km (98° inclination approx.) 

Max/min latitude 

coverage 

± 52° (depending on season) ± 81.5° (depending on season)

  

Equator crossing 

time 

variable 9:30 – 11:30 am (local solar 

time) 

Sensor type Three-band frame Imager or 

four-band frame Imager with a 

split-frame NIR filter 

Three-band frame Imager or 

four-band frame Imager with a 

split-frame NIR filter 

Spectral bands Blue: 455 - 515 nm 

Green: 500 - 590 nm 

Red: 590 - 670 nm 

NIR: 780 - 860 nm 

Blue: 455 - 515 nm 

Green: 500 - 590 nm 

Red: 590 - 670 nm 

NIR: 780 - 860 nm 

Ground sample 

distance (nadir) 

3.0 m (approx.) 3.7 m 

Frame size 20 km x 12 km (approx.) 24.6 km x 16.4 km (approx.) 

Camera dynamic 

range 

12-bit 12-bit 

   

 

A total of 170 clipped PlanetScope Ortho Tiles encompassing the study area 

were downloaded using the “Explorer” online application (https://www.planet.com/explorer/), 

in the period between October of 2017 and June of 2019 (Table 9). To avoid potential 

uncertainties and any cloud contamination, only cloud-free images were selected. According to 

Planet, atmospheric and radiometric corrections were applied to all imagery, however, it may 

be possible that the images still present some limitations despite the corrections. All images 

downloaded PS-clipped TIFFs were processed with ESRI ArcGIS Pro afterward. After all data 

acquisition and processing, the calculation of the three VIs was performed: NDVI, GNDVI, and 

EVI2. From the resulting images, the average values of each VI were obtained from all images 

(UAV and PS constellation) and within a defined area, as shown by the polygon in Figure 17. 

Lastly, the LAI retrieved from the VI of both sensors was compared the LAI simulated in the 

model, and the associated determination coefficient (R2) and root mean square error (RMSE) 

were reported. 

 

https://www.planet.com/explorer/
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Table 9: Dates of PlanetScope imagery acquisition in the period between 2018 and 2019. 

2017 

month number of 

images 

day 

October 8 6, 10, 12, 13, 15, 16, 17 and 24 

November 5 12, 16, 17, 24 and 29 

December 7 5, 9, 13, 15, 16, 29 and 26 

   

2018 

month number of 

images 

day 

January 3 4, 20 and 24 

February 7 1, 3, 8, 9, 16, 23 and 28 

March 12 4, 5, 6, 14, 17, 18, 19, 23, 24, 25, 27 and 28 

April 11 6, 9, 10, 13, 17, 19, 23, 25, 26, 27 and 28 

May 17 2, 5, 6, 7, 10, 11, 14, 20, 21, 22, 23, 24, 26, 27, 28, 

30 and 31 

June 7 15, 17, 21, 26, 27, 29 and 30 

July 14 2, 5, 9, 11, 14, 16, 18, 19, 22, 24, 25, 27, 29 and 30 

August 11 8, 11, 13, 14, 19, 20, 24, 27, 28, 29 and 31 

September 9 6, 8, 9, 10, 11, 13, 24 and 25 

October 9 2, 3, 12, 16, 20, 21, 22, 28 and 30 

November 2 27 and 29 

December 3 7, 13 and 15 

   

2019 

month number of 

images 

day 

January 7 3, 7, 15, 18, 28, 29 and 31 

February 2 9 and 23 

March 5 13, 23, 26, 28 and 31 

April 11 2, 4, 10, 12, 18, 19, 20, 21, 22, 26 and 28 

May 6 7, 9, 13, 22, 27 and 30 

June 14 6, 7, 8, 9, 12, 14, 18, 22, 23, 24, 26, 28, 29 and 30 
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3.4. RESULTS AND DISCUSSION 

3.4.1. VIs sensitivity to LAI changes 

The effective LAI (LAIe;  𝑛 = 13) measured by destructive sampling and its 

respective reflectance in blue, green, red and NIR channels are presented in Table 10. The LAIe 

values ranged from 0.68 to 2.6. The relationship between NDVI, GNDVI, and EVI2 derived 

from the ground-based measurements and the effective LAI based on a linear regression is 

presented in Fig. 19 in terms of R2 and RMSE of the linear regression for their relationship with 

LAIe. In the experiment used as reference, NDVI, GNDVI, and EVI2 achieved R2 values of 

0.52, 0.56, and 0.75, respectively. In the same sense, RMSE values are of 0.37 for NDVI, 0.35 

for GNDVI, and 0.27 for EVI2. 

 

Table 10: The effective LAI (𝐿𝐴𝐼𝑒) from destructive measurements and its respective 

reflectance in blue, green, red and NIR bands gathered from ASD FieldSpec. 

Sample Date 𝐋𝐀𝐈𝐞 REFLECTANCE 

Blue 

460 nm 

Green 

550 nm  

Red 

680 nm 

NIR 

800 nm 

1 25 May 2018 0.68 0.025 0.060 0.049 0.252 

2 25 May 2018 0.88 0.031 0.076 0.055 0.293 

3 25 May 2018 0.96 0.028 0.072 0.057 0.253 

4 25 May 2018 1.49 0.035 0.082 0.080 0.284 

5 30 May 2018 1.71 0.037 0.105 0.079 0.444 

6 30 May 2018 0.97 0.035 0.078 0.084 0.304 

7 31 May 2018 1.05 0.037 0.083 0.088 0.268 

8 31 May 2018 1.88 0.035 0.096 0.064 0.398 

9 31 May 2018 1.24 0.042 0.098 0.088 0.366 

10 31 May 2018 1.81 0.037 0.101 0.052 0.445 

11 31 May 2018 1.60 0.033 0.093 0.049 0.434 

12 31 May 2018 2.11 0.037 0.097 0.066 0.435 

13 27 April 2019 2.60 0.019 0.065 0.026 0.474 
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Figure 19: NDVI, GNDVI, and EVI2 performances for LAI retrieval from ground-based 

measurements.  
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In this study, the agreement between the VIs and LAI was not as high as 

described in previous works (e.g. DARVISHZADEH et al., 2011; XIE et al., 2014; TOWERS, 

STREVER, POBLETE-ECHEVERRÍA, 2019), which may be related to the fact that only 13 

ground samples were collected and analyzed. It is also important to point out that since there 

were no LAI samples lower than 0.6, it is possible that additional measurements of LAI could 

lead to more suitable than they are at this moment. Despite that, since EVI2 showed the highest 

sensitivity to LAI changes, it was selected to be performed in the LAI retrieval for MAPIR 

Survey 3N and PlanetScope imagery, which will be later used to evaluate the model 

performance for LAI simulation. 

 

3.4.2. EVI2 from MAPIR Survey 3N and PlanetScope imagery 

EVI2 index was generated for the imagery from both sensors, MAPIR (11 

images) and PS (32 images), for the period from 30 of March of 2019 to 12 of July 2019, to 

thus compare their results (Fig. 20). It is important to highlight that the values were averaged 

over the study area returning a single value for each image (Fig. 18). EVI2 from MAPIR ranged 

from 0.29 to 0.56, while EVI2 from PS ranged from 0.22 to 0.72. There were two mowing 

processes for the interval under consideration, the first one was done on March 27 (three days 

before the first image acquired), and the second one was performed on May 28. A small decline 

of EVI2 was observed for MAPIR on the following days right after the second mowing process 

(between May 29 and June 5), which may have been caused by the hay on the ground. As there 

are more images for this sensor than for PS during this period, it is harder to compare the 

sensibility of both sensors for this situation. On the other hand, this behavior was not observed 

after the first mowing process, which may be justified by the fact that the hay could have been 

removed by the cleaners. 

 

EVI2 from PlanetScope shows higher values and variations than based on 

MAPIR, which may be resulted from the difference in the spatial and radiometric resolutions 

of the sensors or even due to some noise/disturbance in the image generation. However, in 

general, both sensors present similar trends for EVI2 derivation, i.e. they show an increase, 

decrement, or stability for the same periods. Furthermore, following the data presented in Fig. 

20, precipitation appears to be strongly related to the development of the plant (grass in this 

case). Dividing the period analyzed into 2 parts according to the mowing processes, it may be 
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affirmed that the growth cycle in the second part was possibly affected by the drought in June, 

while it did not occur after the first mowing since there were enough rainfalls during the 

beginning of the cycle. In addition, June is in the early winter, which means lower temperatures 

and a natural reduction in vegetation growth. 

 

 

Figure 20: EVI2 calculated for MAPIR and PlanetScope for the period between 30 April 2019 

and 12 July 2019, and the precipitation for the same period. Right axis shows the VIs values 

and left axis the precipitation. The red vertical lines represent the mowing processes. 

 

For a more effective analysis, EVI2 for the PlanetScope imagery (𝑛 = 170) was 

created for the period from October of 2017 to June of 2019 (Fig. 21). This analysis sought to 

create a representation for a whole growth cycle (from September of 2018 to May of 2019) as 

well as for the dormant period (June, July, and August of 2018). In addition, the analysis of 

some months before the cycles under interest is also presented as an attempt to identify some 

possible variations in the growth cycle and patterns in the mowing intervals. 
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Figure 21: Times series of EVI2 calculated from PlanetScope CubeSats from October of 2017 to June of 2019 and the precipitation for 

the same period. The red vertical lines represent the approximate dates for the mowing processes.
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For the analyzed presented, the index based on PS imagery ranged from 0.06 to 

0.80, with the maximum value in the growth cycle and the minimum in dormancy, respectively. 

EVI2 showed an (expected) considerable decrease during the dormant period (from 1st of June 

to 31st of July of 2018), followed by a slight increase at the end of dormancy (1st of August), 

which was not expected. This finding seems to be closely related to the precipitation for this 

period. Stable or decreasing periods regarding EVI2 values, regardless of the mowing 

processes, may have been driven by droughts (not only). 

 

Lastly, 9 mowing processes were identified with intervals ranging from 58 to 77 

days during the growth cycle (September to April). As the exact dates are unknown, the dates 

indicating the beginning of a new growth cycle in the model were defined based on the images 

(Table 11). A little decrement of the index was identified after some mows as well, which may 

be an effect of the hay that remains on the ground after the mowiing process. 

Table 11: More likely dates for growing processes identified in the imagery. 

1 5 December 2017 

2 1 February 2018 

3 6 April 2018 

4 15 June 2018 

5 11 September 2018 

6 27 November 2018 

7 28 January 2019 

8 27 March 2019 

9 28 May 2019* 

*according to the MAPIR images (see Fig. 20) 

 

 

3.4.3. LAI retrieval and model performance assessment 

As mentioned before, the model performance was assessed comparing the LAI 

simulated by the model with the LAI retrieved from the imagery from both sensors (Fig. 22). 

In a first moment, the model was run considering bahiagrass requirements for growth based on 
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the literature (called here as ‘default simulation’). The model simulation started on 5 December 

of 2017 and lasted until on 27 May of 2019. Seven growth cycles were simulated during what 

was considered the growth period (September to May). However, the mowing process identified 

in June of 2018 was not simulated in the model, once it was in the dormant period (the model 

simulates the LAI decrement for this period). Such conditions still need to be implemented in 

the model. On the other hand, the LAI retrieval was generated applying the linear regression 

from EVI2 to LAI for Survey and PS imagery, as described early. 

 

It should be noted that the images after the mowing process on May 28 were 

excluded, thus a total of 142 images from PS and 7 images from MAPIR were performed. The 

values of the retrieved LAI varied from 0 to 2.60 for PS whilst it ranged from 0.79 to 1.75 for 

MAPIR. On the other side, the LAI simulated in the model ranged from 0.50 to 1.90. It is 

important to emphasize that both the minimum LAI to begin the growth cycle and the minimum 

value at the end of dormancy was set to 0.50 (according to in situ samplings this is the minimum 

LAI for bahiagrass after mowing). 

 

The LAI retrieved from PS imagery showed higher values compared to the LAI 

from MAPIR. In addition, it also showed LAI equal to zero (i.e. the complete death of the 

biomass) during the dormant period (from May to July of 2018), which is quite unlikely, since 

this behavior was not observed in the area of interest. One possibility, in this case, is that the 

EVI2 from the PS imagery does not present a good sensibility for LAI changes in lower (< 0.5) 

and higher (>2.0) values. It is possible that the linear regression does not give a good 

representation of these intervals as well. On the other hand, a considerable part of LAI retrieval 

from MAPIR and PS shows similar values and behavior, regardless of some oscillations and 

high values from PS. A direct correlation between MAPIR and PS could not be performed, 

since there are only three images for the same date for both sensors (18 April, and 22 and 27 

May of 2019). 

 

Based on the parameters defined in the literature, it was observed that the LAI 

cycle simulated by the model did not follow as closely as expected the LAI based on EVI2 

curve. Given that, some adjustments were made in the leaf area development curve (see 

equations 2.24, 25 and 26) to approximate the model simulation to the retrieved LAI. Only the 

shape coefficients were modified. This scenario was called as model-adjusted (Fig. 22).  
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Figure 22: LAI retrieval from MAPIR (orange) and PS (gray) imagery, LAI simulated in the model using parameters from 

literature (dark blue), and LAI simulated in the model adopting LAI retrieval from MAPIR as reference (light blue). The black vertical lines 

represent the beginning of a new growth cycle. The orange vertical line represents the mowing process, that was not simulated in the model.  
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The model-adjusted LAI ranged from 0.50 to 1.95 and, compared to the default 

simulation, the former showed slightly higher maximum values for most of the growth cycles. 

However, the difference was only significantly bigger in the period from April to May of 2018. 

Furthermore, it seems that the adjusted simulation shows a better representation of growth 

cycles for a long-period simulation, regarding the development curve of the LAI retrieved from 

PS imagery. 

 

 A simple comparison of the values simulated in the model to the LAI retrieved 

from PS and MAPIR suggest that the last present a better correlation with the values from the 

model, but it is worth noting that the sample collection of MAPIR is much less that of PS (Fig. 

23). The values obtained from the model-adjusted simulation presented a better correlation for 

both sensors comparing to the default mode, R2 of 0.93 and RMSE of 0.19 for LAI retrieved 

from MAPIR, and R2 of 0.74 and RMSE of 0.32 for LAI retrieved from PS. 

 

Figure 23: LAI retrieved from both sensors versus LAI from the model (default and adjusted) 

with R2, RMSE and sample collection (𝑛). 
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It is also worth to mention, however, that the LAI retrieved from both UAV and 

satellite imagery depends on the model defined with in situ measurements, which is based on a 

reduced sampling. Thus, more data would be necessary to confirm the appropriateness of the 

fitted model. 

 

 

3.5. CONCLUSIONS 

The performance of LAI simulation obtained from the model proposed in 

Section 2 was evaluated based on the LAI retrieved from UAV and PlanetScope imagery. This 

LAI, based on VIs, was assumed as a proxy of the effective LAI. The findings show that the 

LAI values obtained with the “default” model (using values and thresholds obtained from the 

literature) have a good agreement with LAI retrieval from satellite measurements, despite a 

better relationship can be reached with a “model-adjusted” condition. For both scenarios, 

however, LAI reached approximate maximum values. This demonstrates that, by adopting the 

default configurations, the resulting LAI development curve will not provide an accurate 

representation of real conditions. Thus, further experiments are needed to obtain a better 

representation for the LAI curve development and, hence, may use it as the default mode. 

 

Regarding the LAI retrieval, a considerable increment in the LAI from PS was 

observed at the end of dormancy probably, which is probably associated with rainfall events 

that were not estimated in the model due to its boundary conditions (LAI only starts to increase 

in October). Thus, improvements should be implemented for this component. On the other 

hand, LAI retrieved from PS showed high oscillations in the growth cycle as well as in the 

dormant period. It is quite uncertain to affirm what caused these oscillations (uncertainties in 

satellite reflectance data or uncertainties related to in situ measurements), but improvements on 

the retrieval accuracy are expected for future studies, when larger ground samplings may be 

conducted. Moreover, the absence of a larger number of UVA samples precluded to make a 

correlation between the LAI retrieved from both sensors (MAPIR and PS) at this time.  

 

The results of the study show that the model, after some adjustments, can become 

a powerful tool for bahiagrass LAI simulation and, consequently, for plant development. In 



72 

 
 

addition, the tests reported in this paper demonstrated that bahiagrass LAI could be estimated 

through the inversion of EVI2 with reasonable accuracy. 
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4. CONSIDERAÇÕES FINAIS 

 

A qualidade de vida da população urbana está diretamente relacionada com a 

existência de áreas verdes, sejam elas pública ou privada, pois elas não apenas oferecem 

imprescindível serviços ecossistêmicos, mas também valorosos serviços sociais e psicológicos 

para a manutenção do bem-estar dos residentes urbanos. Portanto, a gestão adequada dessas 

áreas verdes é de suma importância. Nesse contexto, este estudo teve como objetivo 

desenvolver um modelo de crescimento de gramíneas para áreas urbanas, especificamente 

gramados, parques e praças públicas, e beiras de ruas, estradas e corpos d’água. Além disso, o 

modelo foi desenvolvido para ser integrado em ambiente SIG, o que poderá facilitar, no futuro, 

a gestão do ambiente citadino pelo poder público, otimizando o sistema de corte de gramíneas. 

 

Os resultados obtidos indicaram que o modelo, implementado a partir de 

modelos agrícolas pré-existentes (EPIC, ALMANAC e o modelo de JOUVEN), apresentou 

desempenho considerável nas simulações para o ambiente urbano e demonstra ser uma 

feramente de auxílio promissora na gestão de poda e controle paisagístico de gramíneas.  

 

No contexto da implementação do modelo, ao contrário do que acontece no setor 

agrícola, não há o controle de nutrientes no solo em áreas urbanas pelo poder púbico e, 

consequentemente, não se pratica a adição de fertilizantes. Assim, o modelo incorporou apenas 

os parâmetros temperatura, teor de água no solo e radiação solar como inibidores do 

crescimento da planta. Dentre os três parâmetros inibidores do crescimento, o teor de água no 

solo se mostrou ser o fator de maior impacto. Deste modo, o modelo proposto traz duas 

abordagens para o cálculo do estresse hídrico: (i) a dinâmica da quantidade de água infiltrada e 

retirada pela planta e (ii) o índice de terreno, o qual é considerado nesse trabalho uma estimativa 

da taxa de escoamento subterrâneo. Não foram encontrados registros na literatura de sistemas 

utilizando as duas abordagens no campo da modelagem do crescimento da vegetação, cuja 

integração se mostrou consistente, conforme observado nos resultados alcançados. 

 

A adaptação do modelo para ambiente SIG se dá a partir do mapeamento das 

áreas verdes urbanas de responsabilidade do poder público e, uma vez que o mapeamento seja 

concluído, as áreas são incorporadas ao modelo. O modelo simula o crescimento da vegetação 
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para cada área de forma independente, considerando as suas características e o seu regime de 

corte. Isso permite que áreas com maior necessidade de poda sejam identificadas e priorizadas. 

 

O modelo ainda apresenta dois estágios de desenvolvimento da planta, período 

de crescimento e dormência. Na dormência, o modelo apresenta um decaimento sigmoide ao 

invés de linear (comum na maioria dos modelos existentes), o que representa uma maior 

fidelidade ao observado em campo. Entretanto, observou-se que a grama batatais (Paspalum 

notatum Flügge) apresentou um pequeno crescimento no período que foi classificado como 

dormente. Assim, ajustes para esse parâmetro ainda precisam ser executados. 

 

Dessa forma, o modelo proposto nesse trabalho pode ser considerado uma 

ferramenta promissora de subsídio para a gestão apropriada de áreas verdes urbanas (compostas 

por gramíneas) quanto ao regime de corte e controle paisagístico. O modelo permite o 

acompanhamento diário da dinâmica do desenvolvimento da grama de cada área verde mapeada 

por meio da visualização da dinâmica do IAF. Dessa forma, uma vez que se tem o 

monitoramento do IAF, espera-se que haja uma otimização do processo de corte (i.e., 

identificação dos momentos mais apropriados para a sua aplicação do corte), o que por sua vez, 

significaria uma redução dos custos relacionados à essa prática. 

 

Quanto a trabalhos futuros e levando-se em consideração que o IAF recuperado 

por meio do VIs são uma representação do índice de área foliar efetivo, recomenda-se: (i) 

ajustes na curva de desenvolvimento do índice de área foliar (IAF), os quais devem ser 

incorporados às configurações padrão do modelo, (ii) adequações no estágio de dormência, e 

(iii) número amostral in situ maior do que o realizado nesse trabalho (𝑛 = 11), sobretudo 

amostras com IAF inferior a 1 ou superior a 2.  


