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RESUMO

GOMES, J. C. B. Métodos de estimação em modelos de efeitos mistos não line-
ares de caudas pesadas. 2020. 112 p. Tese (Doutorado em Estatística – Programa
Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas
e de Computação, Universidade de São Paulo, São Carlos – SP, 2020.

A estimação de parâmetros em modelos não lineares com efeitos mistos é muitas vezes
desafiadora. Neste trabalho, propomos a comparação de alguns de métodos de estimação
nesses modelos sob o enfoque frequentista. Em um primeiro momento, propomos um esti-
mador de máxima verossimilhança em um esquema de estimação exata contra o estimador
de máxima versossimilhança em um modelo linearizado pela expansão de Taylor, o que é
frequentemente utilizado na literatura. No primeiro cenário usamos o algoritmo MCEM.
Em um segundo momento, visando diminuir o viés para estimativas das componentes de
variância, propomos um estimador de máxima verossimilhança restrita também dentro de
um esquema de estimação exata, baseada na integração da função de verossimilhança em
relação aos efeitos fixos. Esse estimador é comparado com o de máxima verossimilhança.
Neste caso, usamos o algoritmo SAEM, para os dois métodos de estimação. Assume-se
para os erros e efeitos aleatórios algumas distribuições simétricas multivariadas de escala
de misturas de distribuições normais, que compõem a classe de distribuições de caudas
pesadas, a saber: normal, t e slash. Por último propomos um modelo não linear mais fle-
xível, em que não é assumida uma forma linear para a inclusão dos efeitos aleatórios. Em
todos os casos utilizamos dados reais e estudos de simulação para avaliar as propriedades
dos estimadores.

Palavras-chave: modelos não-lineares, modelos mistos, dados correlacionados, métodos
de estimação, máxima verossimilhança, máxima verossimilhança restrita .





ABSTRACT

GOMES, J. C. B. Estimation methods in heavy-tailed nonlinear mixed-effects
models. 2020. 112 p. Tese (Doutorado em Estatística – Programa Interinstitucional de
Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2020.

Parameter estimation in nonlinear mixed-effects models is often challenging. In this thesis,
a comparison of estimation methods for these models is proposed under a frequentist
approach. In the first study, a comparison of maximum likelihood estimates under an
exact method via Monte Carlo expectation-maximization (MCEM) and an approximate
method based on a Taylor expansion, frequently used in the literature, is provided. In
a second study, a restricted maximum likelihood estimation method is proposed, aiming
to decrease the bias for the variance components estimates, based on the integration of
the likelihood function on the fixed-effects, also in an exact likelihood context. These
estimates are compared to the maximum likelihood ones. For the latter comparison,
stochastic approximation of expectation-maximization (SAEM) algorithms are considered.
The random effects and errors are assumed to follow multivariate symmetric distributions,
namely the scale mixture of normal distributions, which include the normal, t and slash
distributions. Finally, a general nonlinear mixed-effects model is proposed, where no
linear relation is assumed in the random effects structure. In all the proposals, real data
sets and simulation studies are used to illustrate the estimates’ properties.

Keywords: nonlinear models, mixed-effects models, correlated data, estimation methods,
maximum likelihood, restricted maximum likelihood..
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CHAPTER

1
INTRODUCTION

Nonlinear mixed-effects models (NLME) aim to model the nonlinear relationship
between a response variable and covariates. Mixed-effects models are usually proposed for
problems with correlated data, such as longitudinal or clustered data, with applications
in several areas such as epidemiology, pharmacokinetics, economics and agriculture. An
introduction to the theory of nonlinear mixed-effects models can be found in Davidian and
Giltinan (2003) and in Vonesh and Chinchilli (1997) and a large number of applications
can be found in Demidenko (2013) and Pinheiro and Bates (2000). Although nonlinearity
often occurs in both fixed and random effects, some authors assume that the random
effects can be added linearly to the model (see, for instance, Russo, Paula and Aoki
(2009)). However, even when the random effects are included nonlinearly in the model,
they are often linearly connected to a set of covariates.

Nonlinear models usually bring a great challenge in parameter estimation; fre-
quently the likelihood does not have an analytic solution (PINHEIRO; BATES, 2000)
which leads to using numerical methods. There are several numerical approximation meth-
ods useful for approximation, namely: linearization methods, such as first-order Taylor-
series expansion; integral approximation methods which use Laplace approximation meth-
ods based on the second-order Taylor-series expansion, Gaussian quadrature and impor-
tance sampling; expectation-maximization (EM) algorithms.

Approximation methods often face estimation problems when intraindividual mea-
sures are small and the variability of random effects is large (Davidian and Giltinan (1995);
Pinheiro and Bates (1995), Lindstrom and Bates (1990)). To circumvent these problems,
exact methods such as Monte Carlo EM methods are proposed by Wei and Tanner (1990),
Walker (1996) and Wang (2007). These methods are efficient but require considerable com-
putation time. Delyon, Lavielle and Moulines (1999) proposed a stochastic version of the
EM algorithm. Later, Kuhn and Lavielle (2005) showed that the SAEM is very efficient
for calculating ML estimates (see also in Meza, Jaffrézic and Foulley (2007) and Meza,
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Osorio and De La Cruz (2012)).

The model by Meza, Osorio and De La Cruz (2012), for example, is too restrictive
in the sense that the model assumes a linear predictor for the subject-specific parameter
vector in nonlinear function. Here, we propose to remove this condition for subject-specific
parameter vector in such a way that it is not necessary to specify it.

A Bayesian approach to NLME models was proposed by Bennett and Wakefield
(1993), Wakefield (1996) and Wakefield et al. (1994). These authors studied a three-stage
model and Monte Carlo via Markov Chains (MCMC). In the first stage they specified
the conditional density of the observations given the random effects and the fixed effects.
In the second stage, they specified the density of the random effects, and in the third
stage, an a prior density for the parameters. The posterior density of the random effects
can be obtained using an MCMC algorithm. The most popular MCMC methods are
Gibbs sampler and Metropolis-Hastings. MCMC has enormous potential in dealing with
mixed-effect models with high-dimensional random effects.

In the Bayesian context, many authors have been investing in estimating models
with mixed effects, linear and non-linear. Chen (2012) studied mixed models, with asym-
metric elliptical distributions whereas Kazemi et al. (2013) considers a class of asymmetric
elliptical distributions in mixed multivariate linear models.

Lachos, Castro and Dey (2013) considered independent normal distributions for
errors and random effects in the Bayesian context, namely: normal, t, slash and contami-
nated normal distribution. The authors also studied diagnostics based on the case deletion
and data perturbation, model selection criteria and presented an application in data from
patients infected with AIDS/HIV.

De La Cruz (2014) studied an application of the theophylline data set in the
estimation of NLME, considering the same class of distributions addressed in Lachos,
Castro and Dey (2013) using Bayesian methodology.

1.1 Preliminary results
As preliminary results related to this thesis, one can cite:

• Gomes, J. C. B.; Russo, C.M. REML in nonlinear mixed-effects models with heavy-
tailed distributions. In: 32nd International Workshop on Statistical Modelling, 2017,
Groningen. Proceedings of the 32nd International Workshop on Statistical Mod-
elling, v.1. p.184-189.

• Gomes, J. C. B.; Russo, C. M. Estimador de máxima verossimilhança restrita em
modelos não-lineares com efeitos mistos. In: XV Escola de modelos de Regressão,
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2017, Goiânia. XV Escola de modelos de Regressão, 2017. (In Portuguese)

• Russo, C. M, Gomes, J. C. B., Lachos, V. H., Aoki, R. and Paula, G. A. Fast in-
ference for robust nonlinear mixed–effects models. Submitted to Journal of Applied
Statistics, 2018.

It is important to comment that the participation in the 32nd IWSM was granted
by the Statistical Modelling Society, as follows.

• IWSM Travel Grant from Statistical Modelling Society, to participate in the 32nd
International Workshop on Statistical Modelling in Groningen, Netherlands.

Other production developed in the period of the PhD course but not included as
chapters of this thesis is

• Gomes, J. C. B.; Fossaluza, V. ; Russo, C. M. . Modelling cortisol data in Brazil-
ian children using Bayesian linear mixed-effects models. In: 60th ISI World Statis-
tics Congress (WSC), 2015, Rio de Janeiro. Proceedings: 60th ISI World Statistics
Congress (WSC), 2015.

1.2 Aim and outline of this thesis
The main objective of this thesis is to study estimation methods in nonlinear

mixed-effects models with heavy-tailed distributions assumed for the random compo-
nents, namely the random effects and errors. In particular, for the variance compo-
nents, restricted maximum likelihood and maximum likelihood methods are considered,
using expectation-maximization and variants as stochastic-approximation expectation-
maximization (SAEM) and Monte-Carlo expectation-maximization (MCEM) methods.

In Chapter 2, the motivating examples for the development of the nonlinear mixed-
effects (NLME) models are presented. The first one is related to growth curve models,
for which a three-parameter logistic model will be used. The second one is related to
pharmacokinetics of theophylline, for which a first compartment model will be considered.
The third motivating example deals with measurements of signal intensity in the songbird
brain.

Chapter 3 is devoted to preliminary definitions of scale mixture of normal distri-
butions, as well as specific distributions in this class and the criteria used for models
selection, that are AIC and BIC.

Chapter 4 aims to compare two simple methods for maximum likelihood estimation
in nonlinear mixed-effects models, namely the exact method, which is based on a Monte
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Carlo EM-type algorithm and an approximated method based on the first-order Taylor
expansion of the nonlinear function. The approximated method is the most common ap-
proach used for nonlinear mixed-effects models in the literature. A Monte Carlo simulation
study is presented to compare both methods according to bias and mean-squared error.

In Chapter 5, the main interest lies in comparing a restricted maximum likeli-
hood (REML) estimation to maximum likelihood (ML) estimation methods, aiming to
verify mainly if the REML produces less-biased estimates for the variance components in
NLMEMs. A very interesting result is shown via a simulation study: maximum likelihood
methods may underestimate variance components. In some scenarios, more than 50% of
obtained estimates for specific variance components are lower than the theoretical value
used to generate the data.

Chapter 6 brings a new proposal for general nonlinear mixed-effects models, where
the random effects may be included nonlinearly to the model, without needing a linear
structure to link the random effects to the nonlinear function. Scale mixture of normal
distributions are also considered for the distribution of the response given the random
effects and a stochastic-approximation expectation maximization algorithm (SAEM) is
used. The songbird data is considered for numerical illustration and global influence is
performed to assess the effect of excluding observations in the estimating process.

Finally, in Chapter 7 some discussion and future research ideas are provided.
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CHAPTER

2
MOTIVATING EXAMPLES

In this chapter, three motivating examples of nonlinear correlated data are pre-
sented. The first dataset deals with a growth curve problem and it was discussed in
Pinheiro and Bates (1995). The second dataset appears frequently in nonlinear mixed-
effects model studies and describes the pharmacokinetic absorption and elimination of
the anti-asthmatic theophylline. Authors that have already worked on this application
with nonlinear mixed-effects models are Pinheiro and Bates (2000) and Meza, Osorio and
De La Cruz (2012). The third motivating example was discussed by Molenberghs and Ver-
beke (2005), chap. 20, and Serroyen et al. (2009) and deals with measurements of signal
intensity in different areas of song control system in the songbird brain.

2.1 Growth curve problem
The three-parameter logistic model is frequently used to model growth curve data

where the mean of a response variate Y is related to a covariate T (frequently the time)
according to the nonlinear function g as follows:

E(Y ) = g(β1,β2,β3,T ) =
β1

1+ exp{−[T −β2]/β3}
.

One example is the growth of soybean plants (see, for instance, Pinheiro and
Bates (2000)), where Y is the average leaf weight per plant (in g) and T is the time after
planting (in days). The parameters β1, β2 and β3 have physical interpretations according
to the response variable, in the example where Y represents the leaf weight, then the
parameters β1, β2 and β3 represent the asymptotic leaf weight, the time at which the
leaf reaches half of its asymptotic weight and the time elapsed between the leaf reaching
half and 1/(1+ e−1)≈ 3/4 of its asymptotic weight, respectively. The observed dataset,
unbalanced, is presented in Figure 1, where the points indicate the measurements and
line segments illustrate subsequent measurements taken in the same plot. The leaf weight
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Figure 1 – Leaf weight versus the time for the soybean plant dataset.

measurements come from two plant varieties, P (plant introduction) and F (forrest), in
1988, 1989 and 1990. This dataset is available in the computational package R under
the name Soybean {nlme}. Further details on the dataset will be discussed in Subsection
4.5.1.

2.2 Pharmacokinetic problem
Another nonlinear problem considered here is the pharmacokinetics of a substance

in the body. This type of problem involves the absorption and elimination of a substance,
and it is usual to model the mean concentration of the substance, Y , by using the nonlinear
function g of time, T , and dose, D, as follows

E(Y ) = g(lKe, lKa, lCl,T,D) = Dexp(lKe + lKa − lCl)
[exp(−elKeT )− exp(−elKaT )]

elKa − elKe
.

An example is described by Pinheiro and Bates (2000) on the anti-asthmatic agent
theophylline, where the serum concentration of the substance, Y (in mg/L), was measured
eleven times (in h) after administering a D dose (in mg/kg) in each of the 12 patients.



2.3. Songbird - RA data 31

Time (h)

T
he

op
hy

lli
ne

 c
on

ce
nt

ra
tio

n 
(m

g/
L)

0
2
4
6
8

10

0 5 10 15 20 25

1 2

0 5 10 15 20 25

3 4

5 6 7

0
2
4
6
8
10

8
0
2
4
6
8

10

9

0 5 10 15 20 25

10 11

0 5 10 15 20 25

12

Figure 2 – Theophylline dataset.

The nonlinearity of the data can be observed in Figure 2. This dataset is available in the
R program under the name Theoph {datasets}.

It is usual to call this nonlinear model a first order compartment model, with the
following interpretation for the parameters: lKa represents the logarithm of the substance
absorption rate, lKe is the logarithm of the substance elimination rate and lCl represents
the logarithm of plasma clearance. In this case, the fixed effects parameter vector is
βββ = (lKa, lke, lCl)

⊤. For more details, refer to Section 4.5.2.

2.3 Songbird - RA data

The songbird data were initially presented by Van der Linden et al. (2002) and
Van Meir et al. (2004), who established a novel in vivo magnetic resonance imaging
(MRI) approach to discern the functional characteristics of specific neuronal populations
in a strongly connected brain circuitry, the so-called song control system in the songbird
brain. The high vocal center (HVC), one of the major nuclei in this circuit, contains
interneurons and two distinct types of neurons projecting respectively to the so-called
nucleus robustus arcopallii (RA) or to area X, according to Molenberghs and Verbeke
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(2005), Chap. 20. A representation of the song control nuclei in the songbird brain can be
found in Figure 3. Serroyen et al. (2009) analyzed this dataset with a nonlinear mixed-
effects model assuming normal distribution. After selecting the model, they settled on the
following model for MRI signal intensity (SI) in RA.

Figure 3 – Schematic representation of song control nuclei in the songbird brain, figure from
Serroyen et al. (2009).

The model to be considered is

E(Y ) = g(ϕ0,τ0,η0,η1,T,G) =
(ϕ0)T η0+η1G

(τ0)η0+η1G +T η0+η1G ,

where Y is the measurement of MRI signal intensity for the bird, G is an indicator for
group membership, where 1 is for testosterone treated birds and 0 otherwise, and T is the
measurement time. The fixed effects are described as: ϕ0 is the maximal signal intensity,
sometimes called SImax, for an untreated bird; τ0 is the time required to reach 50% of
this maximum (T50); η0 and η0+η1 govern the shape of the curve. In this case, the fixed
effects parameter vector is βββ = (ϕ0,η0,η1,τ0).

Figures 4 and 5 show the data for songbird HVC and RA.
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Figure 4 – Songbird data for SI in RA for each individual bird.
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Figure 5 – Songbird data for SI in HVC for each individual bird.
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CHAPTER

3
PRELIMINARIES

In this chapter, some preliminary definitions about scale mixture of normal distri-
butions are presented, as well as some basic properties and particular distributions.

3.1 Scale mixture of Normal distributions
In this section, we present a subclass of elliptical contoured distributions, the scale

mixture of normal (SMN) distributions. This subclass of distribution includes heavy-tailed
multivariate distributions, for instance, normal, t, slash and normal contaminated are
presented by Lange and Sinsheimer (1993), where the ideas of stochastic representation
were investigated in Andrews and Mallows (1974).

Let Y be a m-dimensional random vector with a scale mixture of normal distribu-
tion. It has a stochastic representation given by

Y = µ +U−1/2Z, (3.1)

where Z has a multivariate normal distribution with mean vector 0 and variance-covariance
matrix Σ and U is a positive random variable independent of Z. We denote the mixing
cumulative distribution function of U by H(u;ν), satisfying H(0) = 0, where ν is a scalar
or vector valued parameter. Note that the conditional distribution of Y given U = u is
normal with mean vector µ and covariance matrix u−1Σ. The probability density function
(pdf) of Y is given by

f (y) =
∫ ∞

0
ϕm(y|µ,u−1Σ)dH(u;ν)

=
1

(2π)m/2|Σ|1/2

∫ ∞

0
um/2 exp

{
− 1

2
u(y−µ)⊤Σ−1(y−µ)

}
dH(u;ν), (3.2)

where ϕm(·|µ,Σ) denotes an m-dimensional normal probability density function with mean
vector µ and covariance matrix Σ. For a random vector with distribution in (3.2), we



36 Chapter 3. Preliminaries

say that Y ∼ SMNm(µ,Σ;H). The form of the SMNm distribution is determined by the
distribution of U and H(u;ν) is called the mixture distribution. However when U is
assigned 1 we have the normal distribution.

Using iterated expectations, we calculate the expectation and the covariance of Y,
if they exist, as respectively:

(i) E(Y) = E[E(Y|U)] = µ ;

(ii) Cov(Y) = E[Cov(Y|U)]+Cov[E(Y|U)] = E(U−1)Σ.

The SMN subclass has been used as an important tool in robust estimation. Among
these subclasses we can cite the normal, slash and t distribution, described as follows:

3.1.1 Multivariate t distribution
Consider that U has a gamma distribution with shape and rate parameters ν/2

and ν/2, respectively with pdf

h(u;ν) =
(ν/2)ν/2

Γ(ν/2)
u(ν/2)−1 exp

{
−ν

2
u
}
, u > 0, ν > 0.

Now, replacing the gamma distribution in equation (3.2) the multivariate t distribution
is recovered with ν degree of freedom with pdf

f (y) =
Γ(m+ν

2 )

Γ
(ν

2

)
πm/2 ν−m/2|Σ|−1/2

(
1+

d
ν

)−m+ν
2

, y ∈ Rm, (3.3)

(3.4)

where d = (y−µ)⊤Σ−1(y−µ) is the Mahalanobis distance. Later we will see this distance
as a very useful tool for evaluating possible outliers. The limiting case, as v goes to infinity,
the distribution becomes a multivariate normal.

3.1.2 Multivariate slash distribution
The multivariate slash distribution can be generated from equation (3.2), assuming

to the U variable a Beta distribution with parameter ν and parameter one, Beta(ν ,1) with
a probability density function given by

h(u) = νuν−1, 0 ≤ u ≤ 1, ν > 0. (3.5)

From this, the density of the slash is given by

f (y) = |2πΣ|−1/2ν
∫ 1

0
xν+m/2−1e−xd/2dx (3.6)

=


ν |Σ|−1/22ν+m/2 γ(ν+m/2; d/2)

(2π)m/2dν+m/2 , y ̸= µ,
|Σ|−1/22ν

(2π)m/2(2ν+m)
, y = µ,

(3.7)
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where γ(b;c) =
∫ c

0 xb−1e−xdx is the incomplete gamma function and d = (y−µ)T Σ−1(y−
µ). We can say that Y ∼ slash(µ,Σ,ν), representing the location parameter µ ∈Rm, posi-
tive definite scatter matrix parameter Σ and degree of freedom ν . Here, the limiting case,
as v goes to infinity, the distribution becomes a multivariate normal.

3.2 Graphical representation of distributions
Figure 6 shows the effect of degrees of freedom on the t and slash distribution

tails compared to the normal distribution. Note that the gain from working with t and
slash distributions is on the tails of these distributions, with heavier tails compared to
the normal distribution.
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Figure 6 – Univariate representations of slash, t distributions with degrees of freedom 1.5, 4 and
12 and the standard normal distribution.

We provided in Figure 7 the density contours of the bivariate standard normal,

slash and t-distributions with µ =

(
0
0

)
, Σ =

(
0.5 0.3
0.3 1

)
. Both t and slash distribu-

tions with d f = 4 degrees of freedom.
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Figure 7 – Panels show the contour plot of the bivariate standard normal distribution, the con-
tour plot of the bivariate t-distribution and the contour plot of the bivariate slash
distribution. Both t and slash distributions with µ, Σ and d f = 4 degrees of freedom.

3.3 Selection of models
The selection of models in mixed-effects models is usually performed by the Akaike

information criterion (AIC) from Akaike (1973) and Bayesian information criterion (BIC)
from Schwarz (1978), respectively

AIC =−2log(L)+2p (3.8)

and
BIC =−2log(L)+ log(n)p, (3.9)

where L is the likelihood function, p is the total number of parameters to be estimated and
n the number of subjects. The best choice of the model is given by the lowest value of AIC
or BIC. It is also important to note that the BIC model uses the number of individuals in
its formula, and not the total observations of all individuals. This is due to a modification
by Raftery (1995).
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CHAPTER

4
EXACT AND APPROXIMATE ESTIMATION

METHODS IN NLME MODELS

In this chapter, a comparison of exact and approximate methods for estimating pa-
rameters in nonlinear mixed-effects models is revisited. Initially proposed in Russo (2010)
and presented in Russo et al. (2018), a scale mixture of normal distributions is consid-
ered for nonlinear mixed-effects models. An exact likelihood-based method is developed
and an approximated method, as usually considered in the literature, is considered for
comparison.

4.1 Robust nonlinear mixed-effects models
Suppose that y = (y⊤

1 , . . . ,y⊤
n )

⊤ is a vector of observed continuous multivariate
responses with yi a (ni ×1) vector containing the observations for the experimental unit
i, i = 1, . . . ,n, such that

yi = g(φ i,Xi)+ ε i,

φ i = Aiβββ +bi,
(4.1)

in which Xi = (Xi1, . . . ,Xini)
⊤ is a matrix of explanatory variables for the i-th unit, bi

is a (q× 1) vector of random effects, ε i is an (ni × 1) vector of random errors values for
i = 1, . . . ,n, βββ = (β1, . . . ,βp)

⊤ is a (p× 1) location vector and Ai is a full rank (q× p)

matrix of known constants. This nonlinear model was considered by Lee and Xu (2004),
for instance, under normality. In this work, we assume that(

ε i

bi

)
ind.∼ SMNni+q

((
0
0

)
,

(
Σi 0
0 D

)
;H

)
, (4.2)

where D and Σi are positive-definite dispersion matrices. We assume that D = D(τ) =
diag(τ) is a diagonal matrix and denote its elements by τ = (τ1,τ2, . . . ,τq)

⊤. The matrix
Σi with dimension (ni × ni) is typically dependent upon i through its dimension, and
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it is considered, for example, Σi = σ2Ini for i = 1, . . . ,n and σ > 0 a scalar. Since Ai

and Xi are known matrices, we simplify the notation by writing g(βββ ,bi) to represent
g(φ i,Xi) = g(Aiβββ +bi,Xi). Finally, as it was indicated in the previous section, H =H(·,ν)
is the cumulative distribution function (cdf) generator that determines the specific SMN
model that was assumed.

Table 1 shows characterizations based on the scale mixture of multivariate normal
distributions for slash (MSl) and t-distribution (Mt).

Table 1 – Characterization of some SMN distributions.

Distribution κ(u) U Density function f (y)

Mtm(µ,Σ,ν)
1
u

Gamma
(ν

2
,
ν
2

)
,

u > 0,ν > 0

Γ(m+ν
2 )

Γ
(ν

2

)
πm/2 ν−m/2|Σ|−1/2

(
1+

d
ν

)−m+ν
2

MSlm(µ,Σ,ν)
1
u

Beta(ν ,1),
0 < u < 1,ν > 0 ν

∫ 1

0
uν−1ϕm(y|µ,u−1Σ)du

with d = (y−µ)⊤Σ−1(y−µ)

Remarks:

(i) From (4.2) , it follows that marginally

ε i
ind.∼ SMNni(0,Σi;H) and bi

iid.∼ SMNq(0,D;H) i = 1, . . . ,n. (4.3)

(ii) Since for each i = 1, . . . ,n, bi and ε i are indexed by the same scale mixing factor
Ui, they are not independent in general. The independence corresponds to the case
where Ui = 1, i = 1, . . . ,n, so that the SMN–NLME model reduces to the normal
NLME model as defined in Walker (1996). However, conditional on Ui, bi and ε i

are independent for each i = 1, . . . ,n, which implies that bi and ε i are not correlated,
once Cov(bi,ε i) = E[biε⊤i ] = EUi[E[biε⊤i |Ui]] = 0. Therefore, an attractive and con-
venient way to specify (4.1) and (4.2) is the following hierarchical representation:

bi|Ui = ui
ind.∼ Nq(0,κ(ui)D) and ε i|Ui = ui

ind.∼ Nni(0,κ(ui)Σi), i = 1, . . . ,n,

bi|Ui = ui and ε i|Ui = ui are independent, where Ui
iid∼ h(ui,ν), and κ(·) is the weight

function, i = 1, . . . ,n.

(iii) Aiming to choose between the different fitted models, we use the Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC), which also provide
an alternative to select parameter ν from the scale mixture of normal distributions.
To obtain an approximation for the log-likelihood, the importance sampling method
is considered, following the suggestion of Meza, Osorio and De La Cruz (2012). Fur-
ther discussion about fixing or estimating the extra parameters may be found in
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the literature (for more details, see Lucas (1997)), taking into account the possible
sensitivity added by unbounded behaviour of the influence and change-of-variance
functions of the location parameter. However, the methodology proposed here could
be easily adapted for the case in which ν is estimated.

(iv) The hierarchical representation (three–stage) to the NLMEM defined in (4.1) and
(4.2) is given by

yi|bi,Ui = ui
ind.∼ Nni(g(βββ ,bi),κ(ui)Σi), (4.4)

bi|Ui = ui
ind.∼ Nq(0,κ(ui)D), and (4.5)

Ui
iid.∼ h(ui,ν). (4.6)

Classical inference of the parameter vector θ = (βββ⊤,τ⊤,σ2)⊤, is based on the
marginal distribution of yi, particularly by the frequentist approach, and the maximum
likelihood estimates (ML) of the parameters can be obtained from the joint distribution

f (y1, . . . ,yn) =
n

∏
i=1

∫ ∫
ϕni(yi|g(βββ ,bi),κ(ui)Σi)ϕq(bi|0,κ(ui)D)dbidH(ui,ν), (4.7)

which generally does not have a closed form expression because the model function is not
linear in the random effect. In the next section, we propose a Monte Carlo EM algorithm
that facilitates the likelihood inference and also an approximate method based on iterative
approximations to the linear mixed-effects model.

4.2 Maximum likelihood estimation

4.2.1 Monte Carlo EM method
Initially proposed by Dempster, Laird and Rubin (1977), the EM algorithm rep-

resents an efficient tool to obtain the maximum likelihood estimates in problems with
incomplete data, for instance. By augmenting the observed data with a “missing” quan-
tity, it is worth using this iterative procedure when the maximization of the complete
data likelihood is easier than the original data. Basically, the process consists of repeat-
ing the steps of expectation and maximization of the complete data likelihood until the
convergence is achieved. These steps are known in the literature as the E-step and M-step,
respectively.

In the (t+1)th iteration, the E-Step usually consists of calculating the expectation
of the log-likelihood of the full data ℓc(θ) conditional on the observed data y in the current
estimate of the parameters θ (t),

Q(θ |θ (t)) = E[ℓc(θ)|y;θ (t)].
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The M-step consists of finding θ (t+1) which maximizes Q(θ |θ (t)), such that

Q(θ (t+1)|θ (t))≥ Q(θ |θ (t)).

Since it is not always straightforward to obtain the E-step expressions explicitly,
additional tools may be required to estimate the expected values numerically. In particular,
the Monte Carlo EM algorithm (MCEM) has been used for mixed-effects models by
treating the random effects as latent data (see, for instance, Wei and Tanner (1990) and
Walker (1996)) and is used here to obtain the maximum likelihood estimates for the
NLMEM parameters. Modified versions of the EM algorithm for NLMEM are presented
in the literature, as for instance the SEM or SAEM algorithms (Kuhn and Lavielle (2005)).
However, previous papers have shown that the results considering these different methods
are very close to each other, therefore in this work we only consider the MCEM method.

Considering the model defined in (4.1-4.2), the unobserved random effect bi and
the scale factor Ui are considered as missing data, so that the “complete data” is given by
{(yi,bi,ui), i = 1, . . . ,n}. Therefore, the complete–data log-likelihood for all individuals
can be written as

ℓc(θ) =
n

∑
i=1

ℓ(θ ;yi,bi,ui)

=
n

∑
i=1

{log f (yi|bi,ui,βββ ,σ2)+ log f (bi|ui,τ)+ logh(ui,ν)},

where τ is the parameter vector of the scale matrix D and Σi = σ2Ini.

Let θ (t) be the parameter estimates from the t-th EM iteration. The Expectation
step (“E step”) from individual i at the (t +1)th iteration can be written as

Qi(θ |θ (t)) = E[ℓ(θ ;yi,bi,ui)|yi,θ (t)]

=
∫ ∫ {

logϕni(yi|g(βββ ,bi),κ(ui)σ2Ini)+ logϕq(bi|0,κ(ui)D)

+ logh(ui,ν)
}
× f (ui,bi|yi,θ (t))duidbi. (4.8)

It is well known that the foregoing integral does not have a closed form in general and
the evaluation of the integral by numerical quadrature is in general unfeasible except
for simple cases. However, note that expression (4.8) is an expectation with respect to
f (ui,bi|yi,θ (t)), and therefore it may be evaluated by using the Monte Carlo EM algorithm
by Wei and Tanner (1990), as discussed by Wu (2004). Specifically, we may use the Gibbs
sampler with a Metropolis-Hastings step (Gilks, Richardson and Spiegelhalter (1996)) to
generate samples from [ui,bi|yi,θ (t)] by sampling from the full conditionals [ui|bi,yi,θ (t)]
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Table 2 – Full conditional distributions of (ui|bi,yi,θ).

Distribution f (ui|bi,yi,θ)

Mtm(µ,Σ,ν) Gamma(ν+ni+q
2 , ν+G

2 ), with ui > 0 and ν > 0

MSlm(µ,Σ,ν) TGamma(ν + ni+q
2 , G

2 ,1), with 0 < ui < 1 and ν > 0

with G =

[
b⊤

i D−1bi +
||yi −g(βββ ,bi)||2

σ2

]
and [bi|ui,yi,θ (t)]. Note that

f (ui|bi,yi,θ (t)) ∝ h(ui,ν)ϕni(yi|g(βββ ,bi),κ(ui)σ2Ini)ϕq(bi|0,κ(ui)D)

∝ h(ui,ν)κ−(ni+q)/2(ui)exp

{
− 1

2
κ−1(ui)

[
b⊤

i D−1bi

+
||yi −g(βββ ,bi)||2

σ2

]}
(4.9)

and

f (bi|ui,yi,θ (t)) ∝ ϕni(yi|g(βββ ,bi),κ(ui)σ2Ini)ϕq(bi|0,κ(ui)D). (4.10)

Monte Carlo samples can be generated from these full conditionals by using re-
jection sampling methods, in this case the Gibbs sampler is considered (see, for instance,
Gelfand et al. (1990)). It can be seen that the full conditional distribution of ui under
the t model follows a gamma distribution and under the slash case it follows a truncated
gamma (TGamma) distribution (see Table 2), in which the notation tgamma(a,b, t) repre-
sents a random variable with gamma(a,b) distribution with right truncation at the value
t. Meanwhile, the full conditional distribution of bi does not have a closed form as it ap-
pears inside the nonlinear function g(βββ ,bi), and one alternative would be to implement
the Metropolis-Hastings algorithm (see, for instance, Gilks, Richardson and Spiegelhalter
(1996)) to obtain samples from bi. Notice that if g(βββ ,bi) is linear with respect to bi,
for instance φ i = Aiβββ +bi, then depending on the distribution of ui the full conditional
distribution of bi could also be written in a closed form expression.

For individual i, let {(b(1)
i ,u(1)i ), . . . ,(b(M)

i ,u(M)
i )} denote a random sample of size

M generated from [ui,bi|yi,θ (t)] then the E step at the (t + 1)th EM iteration can be
written as

Q(θ |θ (t)) =
n

∑
i=1

Qi(θ |θ (t)) =
n

∑
i=1

[
1
M

M

∑
j=1

ℓ(θ ;yi,b
( j)
i ,u( j)

i )

]

∝
n

∑
i=1

M

∑
j=1

1
M

[
−ni

2
logσ2 −

κ−1(u( j)
i )

2σ2 ||yi −g(βββ ,b( j)
i )||2

]

+
n

∑
i=1

M

∑
j=1

1
M

[
−1

2
log |D|−

κ−1(u( j)
i )

2
b( j)⊤

i D−1b( j)
i

]
.
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The Maximization step (“M step”) of the Monte Carlo EM algorithm (MCEM) maximizes
Q(θ |θ (t)) to produce an updated estimate θ (t+1), and therefore it is like a complete-data
maximization. From Q(θ |θ (t)) it can be easily seen that the unique solution is given by

σ̂2(t+1) =
1
N

n

∑
i=1

M

∑
j=1

1
M

[
κ−1(u( j)

i )||yi −g(βββ (t),b( j)
i )||2

]
, N =

n

∑
i=1

ni, (4.11)

D̂(t+1)
=

1
n

n

∑
i=1

M

∑
j=1

1
M

[
κ−1(u( j)

i )diag(b( j)
i b( j)⊤

i )
]
, (4.12)

To update βββ , Newton-Raphson algorithm iterations are used, which are given by

β̂ββ
(t+1)

= β̂ββ
(t)

+

(
n

∑
i=1

M

∑
j=1

J(t)⊤
i J(t)

i

κ(u( j)
i )

)−1 n

∑
i=1

M

∑
j=1

J(t)⊤
i [yi −g(βββ (t),b( j)

i )]

κ(u( j)
i )

(4.13)

where Ji = ∂g(βββ ,bi)/∂βββ⊤.

In summary, the MCEM algorithm takes the following steps:

Algorithm 1 Monte Carlo EM for the obtention of maximum likelihood estimates.
1: Start with initial values M = M0, βββ = βββ 0, τ = τ0 and σ2 = σ2

0 ;
2: Sample u(1), . . . ,u(m) and b(1), . . . ,b(m) from (4.9) and (4.10), respectively;
3: M step:

a. Compute σ̂2(t+1) and D̂(t+1) according to (4.11) and (4.12), respectively;

b. Obtain β̂ββ
(t+1)

according to (4.13);
4: Repeat steps 2 and 3 until convergence.

We used the stopping criterion described in Wang (2007) to diagnose convergence.
In particular, the criterion for the algorithm is given by

max
i

(
|θ (t+1)

i −θ (t)
i |

|θ (t)
i |

)
< δ ,

where δ is a small fixed constant.

4.2.2 An approximate method to maximum likelihood estimation
In this section, we discuss using an approximate method proposed by Wu (2004)

in the normal case, which represents an alternative to the MCEM method and avoid some
challenges found in the MCEM approach, such as the difficulty of convergence, for instance.
As stated by Wu (2004), the approximate method may involve less computational effort
than the MCEM method, specially when the dimension of the random effects vector is
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high. The main advantages of the approximate method are that sampling the random
effects in the E step is not necessary and the explicit M step expressions may be obtained
trivially. On the other hand, the approximation of the model may also provide additional
errors to the problem.

The most frequently approximate methods found in the literature are based on
Taylor expansions of the nonlinear function or Laplace approximations. Here we consider
a method which is similar to the one used by Wolfinger (1993) and consists of itera-
tively solving the linear mixed-effects (LME) model and proceeds in the standard way to
estimate the parameters.

First, we rewrite the SMN–NLME model (4.1) and (4.2) as a single equation by
combining the first two stages

yi j = gi j(βββ ,bi)+ εi j for i = 1, . . . ,n and j = 1, . . . ,ni.

Denote the current estimates of (βββ ,bi) by (β̂ββ , b̂i). Taking the first-order Taylor expansion
of gi j around the current parameter estimate β̂ββ and the random effect estimates b̂i, the
approximate method consists of iteratively solving the LME response model

ỹi = Wiβββ +Tibi + ε i, (4.14)

where ỹi = yi −gi(β̂ββ , b̂i)+Wiβ̂ββ +Tib̂i with gi = (gi1, . . . ,gini)
⊤, Wi = (W⊤

i1, . . . ,W⊤
ini
)⊤,

Ti = (T⊤
i1, . . . ,T⊤

ini
)⊤ and ỹi = (ỹi1, . . . , ỹini)

⊤, in which

Wi j =
∂gi j(βββ , b̂i)

∂βββ⊤

∣∣∣∣∣
βββ=β̂ββ

and Ti j =
∂gi j(β̂ββ ,bi)

∂b⊤
i

∣∣∣∣∣
bi=b̂i

for i = 1, . . . ,n, and j = 1, . . . ,ni.

Note that the dimensions of Wi and Ti are (ni × p) and (ni ×q), respectively.

Now we combine the LME response model (4.14) with (4.2). Therefore, by standard
arguments of scale mixture of normal distributions and matrix algebra, it is not difficult
to see that

bi|ỹi, θ̂ ,ui ∼ Nq(b̃i,κ(ui)Σ̃i), (4.15)

with Σ̃i = (D̂−1
+ σ̂−2Ti

⊤Ti)
−1 and b̃i = σ̂−2Σ̃iT⊤

i (ỹi −Wiβ̂ββ ).

After some algebra, we can then integrate out bi and ui from (4.8) and obtain the
following E step

Q(θ |θ (t)) =
n

∑
i=1

Qi(θ |θ (t)),

where

Qi(θ |θ (t)) = E[ℓ(θ ; ỹi,bi,ui)|ỹi,θ (t)]

∝ −ni

2
logσ2 − 1

2σ2

[
ũi(ỹi −Wiβββ −Tib̃i)

⊤(ỹi −Wiβββ −Tib̃i)+ tr(Σ̃iTi
⊤Ti)

]
−1

2
log |D|− 1

2
tr
(
(Σ̃i + ũib̃ib̃

⊤
i )D−1

)
,
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with ũi = E[κ−1(ui)|ỹi,θ (t)].

Finally, we can update the parameter estimates as follows:

β̂ββ =

(
n

∑
i=1

ũiW⊤
i Wi

)−1[ n

∑
i=1

ũiW⊤
i (ỹi −Tib̃i)

]
,

σ̂2 =
1
N

n

∑
i=1

[
ũi(ỹi −Wiβ̂ββ −Tib̃i)

⊤(ỹi −Wiβ̂ββ −Tib̃i)+ tr(Σ̃iTi
⊤Ti)

]
,

D̂ =
1
n

n

∑
i=1

(
Σ̃i + ũib̃ib̃

⊤
i

)
.

It can be shown that ỹi ∼ SMNni(Wiβββ ,TiDT⊤
i +σ2Ini;H) and the values of ũi =

E[κ−1(ui)|ỹi,θ (t)] for some distributions are given in Table 3. It is important to note in the
same table that the maximum likelihood estimates bring a type of robustness to the model
as the iterative processes encompass terms to control the influence of large Mahalanobis
distances. Further discussion about the robustness in heavy-tailed mixed-effects models
can be found in Paula, Medeiros and Vilca-Labra (2009), Osorio, Paula and Galea (2007)
and Russo, Aoki and Paula (2012) for example.

Table 3 – Characterization of ũi = E[κ−1(ui)|ỹi,θ (t)] for some distributions

Distribution ũi

Mtm(µ,Σ,ν)
ν +ni

ν +di

MSlm(µ,Σ,ν)
2ν +ni

di

P1(ni/2+ν +1,di/2)
P1(ni/2+ν ,di/2)

with di = (yi −µ)⊤Σ−1(yi −µ) and Px(a,b) =
ba

Γ(a)

∫ x

0
sa−1e−bsds

is the cdf of a random variable with distribution gamma(a,b).

4.3 Standard error estimates
Following the expressions developed in Louis (1982) and used by Tan, Tian and

Fang (2007), the observed information matrix may be written as

−E
{

∂ 2ℓ(θ |y,b,u)
∂θ∂θ⊤

}∣∣∣∣
θ=θ̂

− Var
{

∂ℓ(θ |y,b,u)
∂θ

}∣∣∣∣
θ=θ̂

, (4.16)

in which y = (y⊤
1 , . . . ,y⊤

n )
⊤, b = (b⊤

1 , . . . ,b⊤
n )

⊤ and u = (u1, . . . ,un)
⊤ and the expectation

and variance are computed with respect to f (ui,bi|yi,θ (t)). Since the expressions in equa-
tion (4.16) may not be easily evaluated analytically, one alternative is to obtain estimates
of these quantities by using the samples generated in the Monte Carlo method, and the
standard errors are obtained from the square roots of the diagonal elements of the inverse
of the estimated information matrix.
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In the next section, we present a simulation study to compare the two methodolo-
gies.

4.4 Simulation study
A Monte Carlo simulation study was conducted to compare the MCEM and ap-

proximate methods considering the normal, t and slash distributions. In each of the sce-
narios considered, 2000 data sets were generated according to the growth curves model
or to the pharmacokinetic model. In general, in order to evaluate parameter estimates,
for each parameter we present the sample mean, the bias and mean squared error (MSE),
respectively

Mean =
1

2000

2000

∑
l=1

θ̂l,

Bias = 1
2000

2000

∑
l=1

θ̂l −θ

and

MSE(θ̂) = 1
2000

2000

∑
l=1

(θ − θ̂l)
2.

For the fixed-effects parameters, theoretical values were fixed close to the maximum likeli-
hood estimates since they provide an interpretation to the physical phenomenon in the two
data sets. For the variance components, we have considered some variations, as follows.

• Growth curves model: the theoretical fixed-effects parameters were taken as (β1,β2,β3)
⊤=

(19,55,9)⊤ for the three scenarios and for the theoretical values for the variance
components were

(1) (τ1,τ2,τ3,σ2)⊤1 = (16,6,0.1,1)⊤;

(2) (τ1,τ2,τ3,σ2)⊤2 = (10,10,1,1)⊤; and

(3) (τ1,τ2,τ3,σ2)⊤3 = (16,6,0.1,5)⊤.

• Pharmacokinetic model: for the fixed-effects parameters, theoretical values were
taken as (lKe, lKa, lCl)

⊤ = (−2.5,0.5,−3)⊤ for the three scenarios and for the theo-
retical values for the variance components were

(1) (τ1,τ2,τ3,σ2)⊤1 = (0.02,0.05,0.5,0.5)⊤;

(2) (τ1,τ2,τ3,σ2)⊤2 = (0.05,0.05,0.05,3)⊤; and

(3) (τ1,τ2,τ3,σ2)⊤3 = (0.02,0.05,0.5,1)⊤.

The results presented in Tables 4 and 5 were obtained considering the growth
curves model in the first and second scenarios. In all the scenarios, n = 48 and the sizes
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of the groups were the same as in soybean application. The normal distributions, t with
ν ∈ {4,5,6,7,8} and slash with ν ∈ {4,5,6,7,8} were considered and we present here
the results for normal, t with ν = 4 and slash with ν = 4. No significant differences were
observed for the other cases. The obtained results in the third scenario, where (τ⊤,σ2)⊤3 =

(16,6,0.1,5)⊤, were similar to the other ones and are omitted here. In general, the methods
are equivalent, but in some cases the estimates presented a slightly larger bias under the
MCEM method. Regarding the MSE, in most cases the MCEM method also performed
worse than the approximate method.

Table 4 – Simulation results for growth curves model with theoretical fixed-effects param-
eters (β1,β2,β3)

⊤ = (19,55,9)⊤ and theoretical variance components (τ⊤,σ2)⊤1 =
(16,6,0.1,1)⊤.

MCEM Approximate
Dist. Par. Mean Bias MSE Mean Bias MSE

Normal β1 19.560 0.560 0.543 19.536 0.536 0.592
β2 54.997 -0.003 0.279 54.659 -0.341 0.384
β3 9.580 0.580 0.396 9.381 0.381 0.200
τ1 15.965 -0.035 13.516 15.624 -0.376 12.963
τ2 5.928 -0.072 3.807 5.783 -0.217 3.577
τ3 0.252 0.152 0.114 0.213 0.113 0.079

σ2 0.858 -0.142 0.025 0.860 -0.140 0.025
t4 β1 19.680 0.680 0.723 19.619 0.619 0.733

β2 55.018 0.018 0.333 54.620 -0.380 0.465
β3 9.647 0.647 0.493 9.409 0.409 0.232
τ1 15.952 -0.048 18.575 15.517 -0.483 17.314
τ2 6.735 0.735 6.354 6.613 0.613 5.724
τ3 0.317 0.217 0.189 0.230 0.130 0.098

σ2 0.841 -0.159 0.040 0.846 -0.154 0.039
Slash4 β1 19.762 0.762 0.892 19.727 0.727 0.929

β2 55.003 0.003 0.337 54.557 -0.443 0.514
β3 9.736 0.736 0.621 9.476 0.476 0.296
τ1 15.812 -0.188 13.702 15.392 -0.608 12.951
τ2 6.100 0.100 4.133 5.925 -0.075 3.736
τ3 0.277 0.177 0.141 0.223 0.123 0.089

σ2 0.844 -0.156 0.031 0.848 -0.152 0.030
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Table 5 – Simulation results for growth curves model with theoretical fixed-effects param-
eters (β1,β2,β3)

⊤ = (19,55,9)⊤ and theoretical variance components (τ⊤,σ2)⊤2 =
(10,10,1,1)⊤.

MCEM Approximate
Dist. Par. Mean Bias MSE Mean Bias MSE

Normal β1 19.473 0.473 0.384 19.239 0.239 0.216
β2 54.854 -0.146 0.395 54.409 -0.591 0.699
β3 9.828 0.828 0.766 9.551 0.551 0.378
τ1 9.947 -0.053 5.462 9.907 -0.093 5.315
τ2 10.052 0.052 8.265 9.804 -0.196 7.520
τ3 1.139 0.139 0.345 0.949 -0.051 0.308

σ2 0.858 -0.142 0.026 0.865 -0.135 0.024
t4 β1 19.512 0.512 0.439 19.257 0.257 0.263

β2 54.863 -0.137 0.433 54.318 -0.682 0.863
β3 9.917 0.917 0.951 9.586 0.586 0.437
τ1 10.062 0.062 7.456 9.878 -0.122 6.964
τ2 11.280 1.280 15.993 11.216 1.216 14.773
τ3 1.349 0.349 0.625 0.986 -0.014 0.372

σ2 0.846 -0.154 0.039 0.856 -0.144 0.036
Slash4 β1 19.616 0.616 0.571 19.329 0.329 0.315

β2 54.812 -0.188 0.525 54.208 -0.792 1.073
β3 10.052 1.052 1.215 9.691 0.691 0.572
τ1 9.903 -0.097 5.950 9.817 -0.183 5.703
τ2 10.172 0.172 9.618 9.843 -0.157 8.419
τ3 1.143 0.143 0.356 0.912 -0.088 0.308

σ2 0.850 -0.150 0.030 0.858 -0.142 0.028

The results presented in Tables 6 were obtained considering the pharmacokinetic
model and the theoretical values (τ⊤,σ2)⊤1 = (0.02,0.05,0.5,0.5)⊤. In the three scenarios,
n = 12 and the sizes of the groups are ni = 11, i = 1, . . . ,12, the same as in the theophylline
application. The obtained results for the other cases were similar to the results in Table
6 and they are omitted here.

As the results of the simulation study, we highlight that the MCEM method pro-
duced slightly larger bias in some of the cases but as a general result, this method does
not seem to produce important deviations from the results obtained in the approximate
method.
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Table 6 – Simulation results for the pharmacokinetic model with theoretical fixed-effects parame-
ters (lKe, lKa, lCl)

⊤ = (−2.5,0.5,−3)⊤ and theoretical variance components (τ⊤,σ2)⊤1 =
(0.02,0.05,0.5,0.5)⊤.

MCEM Approximate
Dist. Par. Mean Bias MSE Mean Bias MSE

Normal lKe -2.524 -0.024 0.006 -2.517 -0.017 0.006
lKa 0.506 0.006 0.009 0.499 -0.001 0.009
lCl -3.018 -0.018 0.004 -3.014 -0.014 0.006
τ1 0.019 -0.001 0.000 0.018 -0.002 0.000
τ2 0.044 -0.006 0.001 0.043 -0.007 0.001
τ3 0.321 -0.179 0.048 0.314 -0.186 0.050

σ2 0.481 -0.019 0.005 0.482 -0.018 0.005
t4 lKe -2.532 -0.032 0.008 -2.524 -0.024 0.007

lKa 0.509 0.009 0.010 0.500 0.000 0.010
lCl -3.029 -0.029 0.006 -3.026 -0.026 0.008
τ1 0.020 0.000 0.001 0.019 -0.001 0.001
τ2 0.049 -0.001 0.002 0.047 -0.003 0.002
τ3 0.277 -0.223 0.065 0.269 -0.231 0.068

σ2 0.503 0.003 0.019 0.505 0.005 0.019
Slash4 lKe -2.535 -0.035 0.009 -2.526 -0.026 0.008

lKa 0.510 0.010 0.011 0.501 0.001 0.011
lCl -3.030 -0.030 0.006 -3.026 -0.026 0.008
τ1 0.020 0.000 0.001 0.018 -0.002 0.001
τ2 0.045 -0.005 0.002 0.044 -0.006 0.001
τ3 0.272 -0.228 0.063 0.265 -0.235 0.066

σ2 0.480 -0.020 0.006 0.482 -0.018 0.006

4.5 Application
Two real applications are discussed in this section; the first one about a growth

curve problem and the second one about a pharmacokinetic problem.

4.5.1 Growth curve data
Considering the growth soybean data set analyzed by Pinheiro and Bates (2000),

Chap.6, and Davidian and Giltinan (1995), Chap.1, it is usual to consider a mixed-effects
model with the random effect in the three fixed-effects parameters, which leads to the
model

yi j =
φ1i

1+ exp{−[xi j −φ2i]/φ3i}
+ εi j, j = 1, . . . ,ni, i = 1, . . . ,n, (4.17)

where φ1i = β1 + b1i, φ2i = β2 + b2i, φ3i = β3 + b3i and ni assumes the values 8, 9 or 10
depending on the value of i ∈ {1, . . . ,n = 48}.

The measurements of leaf weights were taken within approximately weekly inter-
vals after planting, over three years, 1988, 1989 and 1990, and two genotypes, P (plant
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introduction) and F (forrest). The observed value yi j represents the jth mean weight (in
g) of leafs from soybean plants in the ith plot, after t days of being planted, where for
each of the 6 year-genotype combination there were 8 plots. In this case, β1, β2 and β3

represent the asymptotic leaf weight, the time at which the leaf reaches half of its asymp-
totic weight and the time elapsed between the leaf reaching half and 1/(1+ e−1) of its
asymptotic weight, respectively.

The maximum likelihood estimates of the parameters obtained by the MCEM and
the approximate method with standard errors considering the normal, t and slash distri-
bution are given in Table 7. In all the cases, the same distribution was considered for the
random effects and error. Parameter ν was selected from a range of integer values, ac-
cording to the lower AIC (BIC) achieved. The parameter estimates and the values of the
asymptotic standard errors of the parameters are close considering these two methodolo-
gies, but it is worth noting that the approximate method is much faster than the MCEM
method. The fitted profiles under the t model with 4 degrees of freedom for one plant
randomly chosen for each combination of variety and year are presented in Figure 8. The
model seems to deliver an adequate fit to the data set.
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Figure 8 – Fitted profiles (lines) for randomly chosen plants under the t model with 4 degrees
of freedom for the growth curves problem. The dots represent the observed values.
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4.5.2 Pharmacokinetic data
In the experiment described by Pinheiro and Bates (2000) on the agent theo-

phylline, serum concentration (in mg/L) of the substance was measured at eleven times
(in h) after administering of D dose (in mg/kg) in each of the twelve patients. First,
nonlinear mixed-effects models with three random effects were considered, namely

yi j = Di j exp(φ1i +φ2i −φ3i)
[exp(−eφ1iTi j)− exp(−eφ2iTi j)]

eφ2i − eφ1i
+ εi j,

where i = 1, . . . ,n and j = 1, . . . ,ni, φ1i = lKe+b1i, φ2i = lKa+b2i and φ3i = lCl+b3i, where
lKe, lKa and lCl are the fixed-effects and b1i, b2i and b3i are the random effects.

The estimates and standard errors for the parameters in the normal selected mod-
els, t with ν = 4 and the slash with ν = 4 are presented in Table 8 and the fitted profiles
for the chosen model (t with 4 degrees of freedom) are illustrated in Figure 9. Note that
the model delivers an adequate fit for most of the individuals.
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Figure 9 – Fitted profiles (lines) under the t model with 4 degrees of freedom for the pharma-
cokinetic problem.

4.5.2.1 Computational aspects

For the estimation process based on MCEM, samples of size M ≥ 10000 of the full
conditionals of [ui|bi,yi,θ (t)] and [bi|ui,yi,θ (t)] were generated by using the Monte Carlo
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EM method, with Metropolis-Hastings within Gibbs algorithm for the E-step. Initially we
made M = 10000 and for the following iterations, we increment M with 1000 more until
reaching convergence. Four parallel runs were generated in each case; the first 80% were
discarded and, with a spacing of size 100, four samples with the remaining elements were
used. The convergence was monitored by using the ANOVA diagnostic method proposed
by Gelman and Rubin (1992), observing that the estimated potential scale reduction
factor R̂ was smaller than 1.1 in all the cases.

An important discussion concerns the computational aspects of the two estimation
methods. Although the Monte Carlo EM may deliver slightly better estimates to the
parameters, it is significantly more expensive than the approximate method, as it requires
sampling from the distribution of [ui,bi|yi,θ (t)]. This computational effort increases with
the inclusion of more random effects, the number of individuals and depends on initial
values. On the other hand, the approximate method provides sufficiently good estimates
for the parameters in few seconds. For the pharmacokinetic application, for instance, the
MCEM method takes around one hour (3600s) and the approximate method takes around
2s to reach convergence. Moreover, it is worth noting that the approximate method can
be easily implemented. The routines were implemented in Ox (Doornik (2009)) and run
in a DELL PowerEdge 1950 server, with 2 Xeon 5430 with 2.66 GHz and 16 GB of RAM.
The figures were produced using R (R Core Team (2016)).

4.5.2.2 Robustness aspects

It is widely discussed in the literature that heavy-tailed distributions may deliver
robust estimates for the parameters (see, for instance, Paula, Medeiros and Vilca-Labra
(2009), Osorio, Paula and Galea (2007), Russo, Aoki and Paula (2012)). For models with
scale mixture of normal distributions, this robustness is due to ui, included in the model
according to equations (4.4-4.6) through the function κ(ui). It is worth noting that κ(ui)

appears as weights on the expressions of the maximization step for the Monte Carlo EM
estimation. For the approximate method, the weights are defined by ũi in the iterative
procedure expressions, and the robustness may be achieved due to the characterization of
this quantity, according to Table 3.

For the presented models, the observations with bigger Mahalanobis distance re-
ceive the lowest weights in the iterative procedure. Thus, a possible procedure to identify
outlying observations would be the graphs of the posterior mean of κ(ui)|bi,yi,θ for the
Monte Carlo EM method and ũi for the approximate method, as shown in Figures 10
and 11 for the growth curves and pharmacokinetic applications considering the t with 4
degrees of freedom. Both estimation methods lead to the identification of the same ob-
servations. For the growth curves problem, observations 10, 14 and 32 are identified as
outliers and for the pharmacokinetic application, individuals 1, 2 and 5 are pointed out
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Figure 10 – Posterior means of κ(ui) given bi,yi,θ (MCEM) and 1/ũi (approximate method)

under the t model with 4 degrees of freedom for the soybean application.
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Figure 11 – Posterior means of κ(ui) given bi,yi,θ (MCEM) and 1/ũi (approximate method)

under the t model with 4 degrees of freedom for the theophylline application.

as outlying observations.

In the growth curve application, the three experimental units identified (Figure
10) present a non-expected behaviour, as can be observed in Figure 12. Although the
leaf weight measurements are expected to grow between two subsequent observing times,
the opposite situation occurs for some experimental units including the three identified,
namely observations 10, 14 and 32. When compared to the other data collected in 1988
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from variety P, observation 10 has the smallest of the measurements and the second largest
measurement of that group. Observation 14 has the biggest of the measurements when
compared to the data collected in 1988 from variety P and that measurement has a large
distance of the previous point. Observation 32 has a high growth curve when compared
with the data collected in 1989 from variety P. For that observation, the 7th and 8th

measurements are the biggest and the smallest of the group, respectively, indicating an
unexpected decrease in the mean leaf weight.

20 40 60 80

0
5

10
15

20
25

30

Obs. 10

Time since planting (days)

Le
af

 w
ei

gh
t/p

la
nt

 (
g)

20 40 60 80

0
5

10
15

20
25

30

Obs. 14

Time since planting (days)

Le
af

 w
ei

gh
t/p

la
nt

 (
g)

20 40 60 80

0
5

10
15

20
25

30

Obs. 32

Time since planting (days)

Le
af

 w
ei

gh
t/p

la
nt

 (
g)

Figure 12 – Leaf weight measurements (dots) and fitted profiles (lines) for the observations
identified in the robustness analysis.

For the theophylline application, patient 1 presented a slower substance elimina-
tion than predicted by the model (see Figure 9). Moreover, the highest dose of theophylline
was administered to individual 5, who also presented the highest substance concentration
among all the individuals. It is important to observe that the substance doses adminis-
tered were 4.02, 4.40, 4.53, 4.40, 5.86, 4.00, 4.95, 4.53, 3.10, 5.50, 4.92 and 5.30 for
the twelve subjects.

The case deletion diagnostics was performed and indicated a larger variation in the
estimates under a normal model than under the t and slash models for the fixed-effects
parameters, which confirms the robustness of heavy-tailed models. For the variance com-
ponents, in some cases, the t and slash distributions led to larger variations.

4.6 Discussion
The assumption of the scale mixture of normal distributions for the joint distri-

bution of the random effects and errors in nonlinear mixed-effects models represent an
important tool to fit nonlinear correlated data as it may provide robust estimates to
the involved parameters. In this work, we compare two approaches to obtain the maxi-
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mum likelihood estimates in these models, and perform a simulation study to compare
the MCEM and approximate method. It was observed that in general the approximate
method may perform well when compared to the MCEM method and it is computation-
ally efficient. Although there are no important differences in the bias of the estimates of
the parameters related to the fixed effects and to the variance of the random errors, there
is a significant gain in the computational time when the approximate method is applied.
In conclusion, we recommend using the approximate method to reach reasonably good
estimates for the parameters in nonlinear mixed-effects models, and if the researcher aims
to obtain more accurate estimates, the approximate method can also provide fairly good
initial values to the MCEM algorithm.
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CHAPTER

5
RESTRICTED MAXIMUM LIKELIHOOD

ESTIMATION IN NLME UNDER SMN

In this chapter, a formulation for frequentist estimating methods are presented,
namely the maximum likelihood (ML) and restricted maximum likelihood (REML), for
obtaining estimates for fixed effects and variance parameters in the NLME model using
the SAEM algorithm. In Section 5.1, a brief introduction is provided, in Section 5.2, a
motivating Monte Carlo simulation study is presented using the nlme R package for a
first order compartment model and for a growth curve model. In Section 5.3, a REML
formulation is presented using a scale mixture of normal distributions in the heavy tails
distribution class, such as t and slash.

5.1 Introduction

Estimation methods usually considered for linear mixed-effects models cannot al-
ways be applied for nonlinear mixed-effects models. The most used procedures for these
models are based on linearizations of the likelihood function through the Taylor series.
The main concern of these approximated methods is the possibility of producing incon-
sistent estimates, mainly when the number of intragroup observations are not sufficiently
large. On the other hand, working with the original likelihood function in NLME may
require stochastic methods based on Monte Carlo via Markov chain (MCMC) procedures.

Many studies on NLME are based on the maximum likelihood estimates, as seen in
Meza, Osorio and De La Cruz (2012) and Pinheiro and Bates (2000). However, some au-
thors, such as Pinheiro and Bates (1995), Meza, Jaffrézic and Foulley (2007) and Arribas-
Gil et al. (2014) claim that the variance components ML estimates might present a larger
bias, since they do not consider the degrees of freedom lost in the estimation of the fixed
effects.
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The idea of REML is to provide bias correction through the maximization of
residual contrasts. However, the original formulation of REML proposed by Patterson and
Thompson (1971) to estimate the variance components via the likelihood maximization
subject to a set of errors contrasts, in the context of unbalanced linear models, do not
extend to cases beyond these models as centered error contrasts do not make sense for
nonlinear models.

Alternatively, other proposals for the obtention of REML estimates were devel-
oped by Liao and Lipsitz (2002), Harville (1974) and Meza, Jaffrézic and Foulley (2007).
The first two authors proposed, in the context of generalized linear mixed-effects models,
the bias correction on the profile score function of the variance components, although
this algorithm showed to be extremely slow, whereas the latter proposed the obtention
of REML estimates by integrating the likelihood function on the fixed effects. This in-
tegration may be solved by Gaussian quadrature or stochastic methods. However, for
NLME, it is not straightforward to apply the Gaussian quadrature method due to the
dimensionality growth.

5.2 REML and ML with nlme package
The nlme package is based on the linearization method proposed by Lindstrom

and Bates (1990) and also presented in Pinheiro and Bates (2000). A brief description of
the method is provided as follows.

We rewrite the nonlinear mixed-effects model from Chapter 4 below. This is the
mixed-effects model that we will use here,

yi = g(φ i,Xi)+ ε i, i = 1, . . . ,n,
φ i = Aiβββ +bi.

(5.1)

For the model (5.1), writing the random effects variance-covariance matrix in terms
of a precision factor, ∆, such that D−1 = σ2∆⊤∆, the probability density function of y
may be written as

p(y;βββ ,σ2,∆) =
|∆|n

(2πσ2)(N+nq)/2

n

∏
i=1

∫
exp
{
∥yi −gi(βββ ,bi)∥2 +∥∆bi∥2

−2σ2

}
dbi. (5.2)

The estimating algorithm described by Lindstrom and Bates (1990) alternates
between two steps, a step with the obtention of penalized nonlinear least squares (PNLS)
and the other with the obtention of linear mixed-effects. In the PNLS step, an estimate for
∆ is fixed, then the random effects are predicted as bi and the fixed effects are estimated
β by minimizing

n

∑
i=1

[
∥yi −gi(βββ ,bi)∥2 +∥∆bi∥2] . (5.3)
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In the LME step, matrix ∆ is updated based in the first order Taylor expansion
of the g function around the current estimates of β and bi, denoted by β̂

(w)
and b̂(w)

i ,
respectively. Let us define

ŵ(w)
i = yi −gi(β̂ββ

(w)
, b̂(w)

i )+ X̂(w)
i β̂ββ

(w)
+ Ẑ(w)

i b̂(w)
i , (5.4)

where

X̂(w)
i =

∂gi

∂βββ⊤

∣∣∣∣∣
β̂ββ
(w)

,b̂(w)
i

and Ẑ(w)
i =

∂gi

∂b⊤
i

∣∣∣∣
β̂ββ
(w)

,b̂(w)
i

. (5.5)

Thus, the approximate log-likelihood function to estimate ∆ is given by

ℓLME(βββ ,σ2,∆;y) = −N
2 log(2πσ2)− 1

2

n
∑

i=1

{
log |Σi(∆)|

+σ−2
[
w(w)

i − X̂(w)
i βββ

]⊤
Σ−1

i (∆)
[
w(w)

i − X̂(w)
i βββ

]}
,

(5.6)

where Σi(∆) = III + Ẑ(w)
i ∆−1(∆−1)⊤Ẑ(w)⊤

i .

Similar to what is done for linear mixed-effects models, one can obtain values for
βββ and σ2, which maximizes (5.6), as a function of ∆ and works with the profile likelihood
function of ∆. For more details, see for instance, Pinheiro and Bates (2000).

To obtain the restricted maximum likelihood estimates for ∆, one can replace the
log-likelihood function of step LME on the restricted log-likelihood, given by

ℓREML(σ2,∆|y) = ℓLME

(
β̂ββ (∆),σ2,∆|y

)
−1

2

n
∑

i=1
log
∣∣∣∣σ−2X̂(w)⊤

i Σ−1
i (∆)X̂(w)

i

∣∣∣∣. (5.7)

Notice that the restricted likelihood contains ℓLME

(
β̂ββ (∆),σ2,∆|y

)
, the log-likelihood

in (5.6) with β̂ββ in the place of βββ . The algorithm alternates between the PNLS and LME
steps until convergence is achieved, according to some specific criterion.

A Monte Carlo simulation study with 2000 samples is performed, as follows. Let
θ̂ l be the estimate obtained from of the lth simulated sample and θ the true parameter
value. In the equations shown in (5.8), the mean indicates the average of the estimates
θ̂l; bias denotes the parameter empirical bias, the difference between the mean and the
theoretical value; square root of the mean squared error (RMSE) which gives the standard
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deviation of the model predicting error, considered as a standard measure of efficiency,

Mean =
1

2000

2000

∑
l=1

θ̂l,

RMSE =

√√√√√2000
∑

l=1
(θ̂l −θ)2

2000
and (5.8)

Bias =
1

2000

2000

∑
l=1

θ̂l −θ .

The same proposal in the equation (5.8) is used for the fixed-effects and variance
component parameters to be estimated in the next two subsections.

5.2.1 First order compartment model
The model used for the simulation study is the same as the one used for the

theophylline data set from Pinheiro and Bates (2000). As in the data set, the sample sizes
considered are n = 12 and ni = 11, i = 1, . . . ,12, j = 1, . . . ,11. The nonlinear mixed-effects
model is given by

yi j =
Dosei j × exp(−(β1 +bi1)+(β2 +bi2)+β3)

exp(β2 +bi2)− exp(β3)
×

{exp[−exp(β2 +bi2) ti j]− exp[−exp(β2 +bi2) ti j]}+ εi j,
(5.9)

where yi j is the observed concentration (mg/L) of the ith subject in the time j (hours),
i = 1, . . . ,12. Dosei is the dose level for the ith subject, the fixed effects βββ = (β1,β2,β3)

⊤ =

(−3.2, 0.5, −2.5)⊤ and the random effects bi = (bi1,bi2)
⊤ ∼ N2(0,D) are assumed to be

independent and identically distributed (i.i.d.), the random errors εi j ∼ N(0,σ2) also i.i.d
and independent of bi.

Similar to what was done by Pinheiro and Bates (1995), Wolfinger and Lin (1997)
and Zhou (2009), two situations are considered for the variance components, which we
called large and small variances. For the small variances, the values were assumed

D =

[
D11 0

0 D22

]
=

[
0.04 0

0 0.15

]
(5.10)

and σ2 = 0.1, and for the large variances, the values of small variances were multiplied
by 5

D =

[
0.2 0
0 0.75

]
(5.11)

and σ2 = 0.5.

In Figure 13, an example of the simulated first order compartment curves can be
observed, assuming small variances (left) and large variances (right).
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Figure 13 – Examples of first order compartment curves simulated for small and large variance
components.

In Tables 9 and 10, the fixed-effects and variance component estimates can be
seen in the first order compartment model for small and large variances, respectively.
The estimates for the fixed effects do not differ much between REML and ML, since
these estimates are obtained from the same procedure, varying in the function nlme from
package nlme between REML and ML. There may be some rounding error between the
two estimates. In this package, REML has a greater effect than ML on the variance
components. We recall that the goal of REML is to verify bias reduction in the estimates
of variance components.

Two scenarios can be observed, considering small variances (Table 9) and large
variances (Table 10), where, in an absolute value, REML presents a smaller bias for the
variance components D11 and D22, whereas for the σ2 parameter, the biases are equivalent
to the first and second cases, where bias for ML estimates are smaller. Both methods led
to similar RMSE and standard deviation. It is worth noting that ML estimates tend to
underestimate the theoretical values of variance components.
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Table 9 – REML and ML estimates’ means, biases, standard deviations (sd) and square roots of
the mean square error (RMSE) for the first-order compartment in the scenario with
small variances .

Parameters Mean Bias sd RMSE
β1 =−3.2

REML -3.203 -0.003 0.059 0.059
ML -3.203 -0.003 0.059 0.059

β2 = 0.5
REML 0.497 -0.003 0.116 0.116

ML 0.497 -0.003 0.116 0.116
β3 =−2.5

REML -2.399 0.001 0.021 0.021
ML -2.399 0.001 0.021 0.021

D11 = 0.04
REML 0.038 -0.002 0.016 0,016

ML 0.037 -0.003 0.016 0,016
D22 = 0.15

REML 0.141 -0.009 0.064 0.064
ML 0.138 -0.012 0.062 0.063

σ2 = 0.1
REML 0.101 0.001 0.014 0.014

ML 0.099 -0.001 0.013 0.014

5.2.2 Logistic model
In this section, the three-parameter logistic model is considered with two random

effects. Simulations with this model were studied by Pinheiro and Bates (1995), then by
Wolfinger and Lin (1997) and Zhou (2009).

For the jth observation of the ith subject, with i = 1, . . . ,15 and j = 1, . . . ,10, a
NLME model is given by

yi j =
β1 +bi1

1+ exp{−[ti j − (β2 +bi2)]/β3}
+ εi j, (5.12)

where the time points are ti j ∈ {100,267,433,600,767,933,1100,1267,1433,1600}, the ran-
dom effects bi ∼ N2(0,D) are assumed to be i.i.d, the random errors εi j ∼ N(0,σ2) are
supposed to be independent of bi. We assume that βββ = (β1,β2,β3)

⊤ = (200,700,350)⊤.

For the variance components, two situations were assumed, small and large vari-
ances. The small variances assumed the values

D =

[
D11 D12

D21 D22

]
=

[
40 0
0 250

]
(5.13)

and σ2 = 10, and for large elements of D, we considered the values of the small D multi-
plied by 10

D =

[
400 0
0 2500

]
(5.14)
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Table 10 – REML and ML estimates’ means, biases, standard deviations and square roots of
the mean square error for the first-order compartment in the scenario with large
variances.

Parameters Mean Bias sd RMSE
β1 =−3.2

REML -3.206 -0.006 0.133 0.133
ML -3.206 -0.006 0.133 0.133

β2 = 0.5
REML 0.468 -0.032 0.249 0,251

ML 0.468 -0.032 0.249 0,251
β3 =−2.5

REML -2.395 0.005 0.042 0.043
ML -2.395 0.005 0.042 0.043

D11 = 0.2
REML 0.188 -0.012 0.086 0.086

ML 0.184 -0.016 0.084 0.085
D22 = 0.75

REML 0.667 -0.083 0.298 0.309
ML 0.652 -0.098 0.291 0.307

σ2 = 0.5
REML 0.508 0.008 0.068 0.069

ML 0.496 -0.004 0.067 0.067

and σ2 = 10.

In Figure 14, examples of simulated logistic curves can be observed, assuming small
and large variances.
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Figure 14 – Examples of simulated logistic curves for two variance component sizes, small D
(left) and large D (right).

In Tables 11 and 12, the fixed-effects and variance component estimates can be
observed, considering small and large elements of D, respectively. It can be observed that,
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considering small variances (Table 11) and large variances (Table 12), where in all the
cases the variance component estimates present, in absolute value, smaller biases for the
REML method, although the RMSEs are smaller in the ML method. It is worth noting
that the ML tends to underestimate the real parameter values.

Table 11 – REML and ML estimates’ means, biases and square roots of the mean square error
for the logistic model in the scenario with small variances.

Parameters Mean Bias RMSE
β1 = 200

REML 199.8476 -0.1524 2.0433
ML 199.8476 -0.1524 2.0432

β2 = 700
REML 699.0669 -0.9331 7.3304

ML 699.0668 -0.9332 7.3305
β3 = 350

REML 349.4032 -0.5968 4.6469
ML 349.4033 -0.5967 4.6471

D11 = 40
REML 37.8627 -2.1373 17.0137

ML 37.1062 -2.8938 16.7932
D22 = 250

REML 241.6320 -8.3680 169.0272
ML 236.7354 -13.2646 165.9916

σ2 = 10
REML 10.0963 0.0963 1.2794

ML 9.8945 -0.1055 1.2547

5.3 Restricted maximum likelihood estimation
The restricted maximum likelihood estimation (REML) can be formulated by at

least two different ways; the first one assuming error contrasts and the other applying a
Bayesian approach, which is the approach considered in this thesis. When error contrasts
are considered, REML estimates are obtained by maximizing the likelihood of θ based,
not on y but on any set of full rank values, u⊤y, such that E(u⊤y) = 0. For this approach,
details can be found in Searle, Casella and McCulloch (2009).

Now, let us show details of the construction of the REML estimation criterion
by the Bayesian formulation. One definition that provides computational convenience by
Laird and Ware (1982) is to write the likelihood function as

ℓ(σ2,D|y) =
∫

ℓ(βββ ,σ2,D|y)dβββ

which, in a Bayesian parallel consists of assuming a uniform prior distribution for the
fixed effects βββ and integrating them out in the likelihood function.
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Table 12 – REML and ML estimates’ means, biases and square roots of the mean square error
for the logistic model in the scenario with large variances.

Parameters Mean Bias RMSE
β1 = 200

REML 199.7517 -0.2483 5.1521
ML 199.7517 -0.2483 5.1521

β2 = 700
REML 698.5224 -1.4776 14.2591

ML 698.5224 -1.4776 14.2591
β3 = 350

REML 349.0707 -0.9293 4.6217
ML 349.0707 -0.9293 4.6217

D11 = 400
REML 380.4476 -19.5524 145.2181

ML 372.8387 -27.1613 143.6098
D22 = 2500

REML 2355.8713 -144.1287 998.9081
ML 2308.7537 -191.2463 987.3851

σ2 = 10
REML 10.0995 0.0995 1.3071

ML 9.8975 -0.1025 1.2813

It is important to observe that this method does not consist of a full Bayesian
approach, but refers to the Bayesian technique to estimating fixed-effect parameter βββ .

Zhou (2009) developed REML for simple and multilevel nonlinear mixed-effects
models, using the EM algorithm with fully exponential Laplace approximation. In the
context of linear mixed-effects models, Dempster, Laird and Rubin (1977) and Laird and
Ware (1982) showed that the integration on fixed effects to obtain REML estimates can
be developed by using the EM algorithm. In fact, using a Bayesian model formulation,
the REML estimates can be obtained by considering fixed effects as part of the missing
data using a normal distribution with a very large variance. They are integrated with
other random effects through the EM algorithm.

The hierarchical representation of the NLME defined in (5.1) is given by,

Yi|bi,ui
ind∼ SMNni(g(φ i,Xi),u−1

i σ2Ini), i = 1, . . . ,n,

bi|vi
ind∼ SMNq(0,v−1

i D), (5.15)

ui
ind∼ H1(ν) and vi

ind∼ H2(ω),

where ui and vi are random weights; ν and ω are scalar or vector parameters indexing the
mixture distribution. D = D(τ) = diag(τ) is a positive-definite dispersion matrix with its
elements given by τ = (τ1,τ2, . . . ,τq)

⊤.

In this section, fixed effects are considered random, as described by Foulley and



68 Chapter 5. Restricted maximum likelihood estimation in NLME under SMN

Quaas (1995), adopting a noninformative prior, π(βββ ), proportional to a constant. Meza,
Jaffrézic and Foulley (2007) considered βββ normally distributed with infinite variance.

Now, for obtaining REML estimates, consider that the parameters vector θ become
θ̃ = (σ2,τ⊤)⊤ and the vector of unobserved quantities is denoted by zzz= (βββ⊤,b⊤,u⊤,v⊤)⊤.
As the vector z contains unobserved quantities, the maximum likelihood estimation is
based on the marginal distribution of y. Assuming a noninformative prior for the fixed
effects βββ , the REML estimation for the variance-covariance components τ and σ2 can be
obtained by integrating the function on the fixed-effects, as well as integrating it into b,
u and v, which is given by

f (y;τ,σ2) =
n
∏
i=1

∫ ∞
0
∫
Rq
∫
Rp ϕni(yi|g(βββ ,bi),u−1

i Σi)ϕq(bi|0,v−1
i D)

×ϕp(βββ )dbi dβββ dH1(ν) dH2(ω).
(5.16)

The integral in (5.16) usually does not have an analytic expression as g is a nonlin-
ear function on the fixed and random effects. Here, to solve this integral we use Stochastic
Approximation Expectation-Maximization (SAEM) algorithm which makes the exact like-
lihood inference easier.

Originally proposed by Patterson and Thompson (1971) in linear mixed-effects
models, REML has become widely used to estimate the variance components as it presents
itself as an alternative estimation that reduces the bias of the estimates, unlike ML. There
are several ways to calculate the REML, however, still in the linear context, the most used
method in the literature is the one where REML is obtained from the likelihood function
of a linear combination of observations, called error contrasts. Another way is to consider
the fixed-effects parameters as random, such that the variance component estimates are
obtained from the likelihood of the observed data after integrating out the fixed-effects
and random effects, as considered by Harville (1974). Foulley and Quaas (1995) used the
EM algorithm and a flat prior for the fixed effects parameters.

In nonlinear mixed-effects models, the linearization technique is frequently used to
calculate the REML as it is done in linear mixed models as error contrasts do not apply
to the model. Here we calculate the REML by integrating the fixed effect and we will
assign it a flat prior, combining with the algorithm SAEM of the same way described in
Meza, Jaffrézic and Foulley (2007) and more recently Arribas-Gil et al. (2014). Note that
it is not necessary to use likelihood approximation methods.

Let us denote y = (y⊤
1 , . . . ,y⊤

n )
⊤ the observed data, b = (b1, . . . ,bn)

⊤ the random
effects vector and u = (u1, . . . ,un)

⊤, v = (v1, . . . ,vn)
⊤ the scalar factor. Then consider

z = (βββ⊤,b⊤,u⊤,v⊤)⊤ as missing data. The complete log-likelihood function associated
with the complete data yc = (y⊤,z⊤)⊤, considering θ̃ = (σ2,τ⊤)⊤ as the vector of variance
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components, given

lc(θ̃ ;yc) =
n

∑
i=1

log l(θ̃ ;yi,zi)

=
n

∑
i=1

[log p(yi|βββ ,bi,ui;σ2)+ log p(bi|βββ ,vi;τ)+ log p(βββ )

+ logh1(ui;ν)+ logh2(vi;ω)]. (5.17)

We can write the complete log-likelihood as

lc(θ̃ ;yc) = −1
2

{
N logσ2 +n log |D|+ 1

σ2

n

∑
i=1

ui∥yi −g(βββ ,bi)∥2

+
n

∑
i=1

vib⊤
i D−1bi

}
+C, (5.18)

where N = ∑n
i=1 ni and C is a constant that does not depend on θ and the Q-function in

this case is given by

Q(θ̃ |θ̃ (k)
) = E[lc(θ̃ ;yc)|y, θ̃

(k)
]

= −1
2

{
N logσ2 +n log |D|+ 1

σ2

n

∑
i=1

E
[
ui∥yi −g(βββ ,bi)∥2|y, θ̃ (k)

]
+

n

∑
i=1

E
[
vib⊤

i D−1bi|y, θ̃
(k)
]}

+C. (5.19)

The SAEM is useful for fitting models that belong to the exponential family, as it
can be seen, for instance, in (MEZA; OSORIO; De La Cruz, 2012).

The (k+ 1)th iteration of the SAEM algorithm consists of three steps, one sim-
ulation, stochastic approximation and the maximization step. The steps of the SAEM
algorithm to accomplish the REML are as follows:

In the first step (simulation), we generate M values of the missing data vector

z(k+1,m) = (βββ (k+1,m),b(k+1,m),u(k+1,m),v(k+1,m))

from the conditional distribution p(·|y; θ̃ (k)
).

The E step cannot always generate data directly from the conditional distribution
p(βββ ,b,u,v|y; θ̃), then Monte Carlo Markov Chain methods are useful to simulate values of
each element of z. The elements βββ (k+1,m) and b(k+1,m) are considered Markov Chains with
transition kernels Πθ̃ (k)

generating from the transition probability (KUHN; LAVIELLE,
2004).

The full conditional distribution of βββ is given by

p(βββ |yi,bi,ui,vi; θ̃) ∝ ϕni(yi|g(βββ ,bi),u−1
i σ2Ini)p(βββ ) (5.20)
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p(bi|yi,βββ ,ui,vi; θ̃) ∝ ϕni(yi|g(βββ ,bi),u−1
i σ2Ini)ϕq(bi|0,v−1

i D)

∝ exp
{
− 1

2
[

1
σ2 ui∥yi −g(βββ ,bi)∥2 + vib⊤

i D−1bi]

}
. (5.21)

The full conditional distribution of ui is given by

p(ui|yi,βββ ,bi,vi; θ̃) ∝ ϕni(y|g(βββ ,bi),u−1
i σ2Ini)ϕq(bi|0,v−1

i D)h1(ui;ν). (5.22)

We can explicit it, considering each situation: when within-subject error is the multivariate
t-distribution, (5.22) corresponds to a Gamma distribution

p(ui|yi,βββ ,bi,vi; θ̃) = Gamma
(

ni +ν
2

,
σ−2∥yi −g(βββ ,bi)∥2 +ν

2

)
(5.23)

and when the within-subject error is assumed multivariate slash distribution, (5.22) cor-
responds to a truncated Gamma distribution

p(ui|yi,βββ ,bi,vi; θ̃) = Truncated-Gamma
(

ni

2
+ν ,

σ−2∥yi −g(βββ ,bi)∥2

2
,T
)
, (5.24)

where we do T = 1, representing the point which the right truncation occurs.

Similarly to the full conditional distribution in (5.22), the full conditional distri-
bution of vi is given by

p(vi|yi,βββ ,bi,ui; θ̃) ∝ ϕni(y|g(βββ ,bi),u−1
i σ2Ini)ϕq(bi|0,v−1

i D)h2(vi;ω) (5.25)

and considering each case of distribution for random effects we have: when the random
effects assume multivariate t-distribution

p(vi|yi,βββ ,bi,ui; θ̃) = Gamma
(

q+ω
2

,
b⊤

i D−1bi +ω
2

)
(5.26)

and when the random effects are assumed multivariate slash distribution, (5.22) corre-
sponds to a truncated Gamma distribution

p(vi|yi,βββ ,bi,ui; θ̃) = Truncated-Gamma
(

q
2
+ω,

b⊤
i D−1bi

2
,T
)
, (5.27)

where we make T = 1, representing the point in which the right truncation occurs.

In the second step, the stochastic approximation step, we update Q(θ̃ |θ̃ (k+1)
) ac-

cording to

Q(θ̃ |θ̃ (k+1)
) = Q(θ̃ |θ̃ (k)

)+ γk+1

[
1
M

M

∑
m=1

lc(θ̃ ;y,z(k+1,m))−Q(θ̃ |θ̃ (k)
)

]
, (5.28)

where γk+1 is the decreasing sequence to zero of positive numbers in such a way which
makes the convergence faster to parameter θ̃ . The convergence of SAEM to a maximum
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local of the likelihood is proved by Delyon, Lavielle and Moulines (1999) under fairly
general conditions. We follow the strategy adopted by Kuhn and Lavielle (2005), where
the following is pointed out: 1 for the first K iterations and (k−K)−1 from iteration K+1
for, as follows:

γk =

{
1, if 1 ≤ k ≤ K

1
(k−K) , if k ≥ K +1.

(5.29)

The value of K is set as in Jank (2006). First, the algorithm is run with γk = 1. After finding
the K value, the simulation runs again. The number of simulated samples is considered
until convergence is reached, according to the graph of the estimates.

When the complete data likelihood in (5.18) belongs to the exponential family, we
can extract minimal sufficient statistics S(y,z) such that step (5.28) is set as:

s(k) = s(k)+ γk+1

[
1
M

M

∑
m=1

S(y,z(k+1,m))− s(k)
]
.

Then, the minimal sufficient statistics for variance components, D and σ2 are respectively
given by

s(k+1)
1 = s(k)1 + γk+1

[
1
M

M

∑
m=1

n

∑
i=1

u(k+1,m)
i (b(k+1,m)

i b(k+1,m)⊤
i )− s(k)1

]
(5.30)

and

s(k+1)
2 = s(k)2 + γk+1

[
1
M

M

∑
m=1

n

∑
i=1

v(k+1,m)
i ∥yi −g(βββ (k+1,m),b(k+1,m)

i )∥2 − s(k)2

]
. (5.31)

The last step is the maximization step where θ̃ (k) is updated in a general form by

θ̃ (k+1)
= argmaxQ(θ̃ |θ̃ (k)

), (5.32)

and each parameter estimator is represented by

D̂(k+1)
=

1
n

s(k+1)
1 and σ̂2(k+1) =

1
N

s(k+1)
2 . (5.33)

It is still possible to compute estimates for fixed-effects parameters. As the fixed
effects have a prior distribution, then we can update its estimate from the expectation of
the conditional distribution of fixed effects given the observations y and under the REML
of the variance components,

β̂ββ = E(βββ |y; θ̃). (5.34)

In practice, estimates of βββ are computed from the elements of the MCMC simulation.

In summary, the SAEM algorithm is given by
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Algorithm 2 SAEM for the obtention of restricted maximum likelihood estimates.
1: Start with initial values τ = τ0 and σ2 = σ2

0 ;
2: Simulation step: Draw samples of βββ (1), . . . ,βββ (m); b(1), . . . ,b(m); u(1), . . . ,u(m) and

v(1), . . . ,v(m) from (5.20), (5.21), (5.22) and (5.25) respectively;
3: Stochastic Approximation: Compute the values in (5.30) and (5.31);
4: Maximization step:

a. Compute σ̂2(k+1) and D̂(k+1) according to (5.33);

b. Obtain β̂ββ
(k+1)

according to (5.34);
5: Repeat steps 2 and 4 until convergence.

5.4 Simulation study of REML using the SAEM algorithm
In this section, we present a comparison of our proposed SAEM-REML and SAEM-

ML by simulation studies. A Monte Carlo simulation study was conducted to evaluate
the REML and ML estimators using the SAEM algorithm. The SAEM algorithm was
performed in R.

Again the model used for the simulation study is the first-order compartment
model used in the theophylline dataset from Pinheiro and Bates (2000) which is available
in the R nlme package. The NLME model is given below with two random effects,

yi j = Dosei j exp(lKa + lKe − lCl)
{exp[−exp(lKe)ti j]− exp[−exp(lKa)ti j]}

[exp(lKa)− exp(lKe)]
+ εi j,

where yi j is the observed concentration (mg/L) of the ith subject in the time j (hours),
i = 1, . . . ,n and j = 1, . . . ,ni. Dosei is the dose level for the ith subject, with lCl = β1 +

bi1; lKa = β2 +bi2; lKe = β3 the fixed-effects βββ = (β1,β2,β3)
⊤ = (−3.0, 0.5, −2.0)⊤ and

the random effects bi = (bi1,bi2)
⊤.

We consider symmetric distributions of a scale mixture of normal distributions in
the class of heavy-tailed distributions for error and random effects, εi j ∼ SMN(0,σ2,H1)

and bi ∼ SMN2(0,D;H2). The slash and t-distributions are assumed with four degrees of
freedom each one in all scenarios presented.

The study consists of five scenarios, where in each scenario we use theoretical
fixed-effects parameters (lCl, lKa, lKe)⊤ = (−3.0,0.5,−2.0)⊤ and for theoretical variance
components the following values are used

(1) (τ1,τ2,σ2)⊤1 = (0.04,0.15,0.1)⊤, with n = 12 and ni = 11;

(2) (τ1,τ2,σ2)⊤2 = (0.2,0.75,0.1)⊤, with n = 12 and ni = 11;

(3) (τ1,τ2,σ2)⊤3 = (0.04,0.15,0.1)⊤, with n = 20 and ni = 20;

(4) (τ1,τ2,σ2)⊤4 = (0.04,0.15,0.1)⊤, with n = 5 and ni = 7;
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(5) (τ1,τ2,σ2)⊤5 = (0.04,0.15,0.5)⊤, with n = 12 and ni = 11.

From now on, we describe the scenarios considered and we detail how the SAEM
was used in the simulation process. Monte Carlo simulation studies were performed from
3000 artificial data sets.

The SAEM algorithm handles a number of Markov chains in each iteration. The
Markov chains number were fixed at 20 for the parameter estimates by the ML method
and we fixed at 30 chains for the REML method. The smoothing parameter of the SAEM
algorithm was chosen as described in Meza, Osorio and De La Cruz (2012), in both cases
we use γk = 1, for 1 ≤ k ≤ 300 and γk = 1/(k−500), for 301 ≤ k ≤ 500. The number 301
was chosen after a first run of the algorithm, considering the smoothing parameter equal
to 1 and observing from which iteration the estimates converged.

Considering θ̂l, a parameter estimate at the lth simulation and θ for the theoretical
value of the parameter, Mean = ∑3000

l=1 θ̂l/3000, RMSE =
√

∑3000
l=1 (θ̂l −θ)2/3000 and

Bias = 1
3000 ∑3000

l=1 θ̂l −θ .

Regarding the five scenarios from the simulation study, we have that the scenarios
1, 2 and 5 have the same configuration as the theophylline data, which corresponds to
12 individuals with 11 observations. Moreover, scenarios 2, and 5 can be found in the
appendix. Scenario 3 can also be found in the appendix, Also in the appendix is the
scenario 3, we increased both the number of individuals and number of observations to
20. Finally, we have scenario 4, where we use a smaller number of both individuals and
observations, 5 and 7, respectively. In the next section, we have comments on scenario 1.

5.4.1 Scenario One
In the first scenario we use theoretical fixed-effects parameters (lCl, lKa, lKe)⊤ =

(−3.0,0.5, −2.0)⊤ and theoretical variance components (τ1,τ2,σ2)⊤1 = (0.04,0.15,0.1)⊤,
and the number of subjects is n = 12 and the number of observations is ni = 11. Table 13
shows the simulation results for fixed-effects and variance components.

When errors and random effects assume normal distribution, it can be observed
that numerically the absolute bias of the lKl parameter is greater for the ML estimator
and the RMSE are equal; lKa has a lower absolute bias in ML but the RMSE is higher
than the RMSE in the REML; lKe presents the same bias in both estimation methods,
with lower RMSE in REML. For the variance components, it can be observed that the
bias is lower for all components τ1, τ2 and σ2 in the REML, however the RMSE are lower
in the ML method. When errors and random effects assume t distribution with 4 degrees
of freedom, it can be observed for parameter lKl that numerically the absolute bias and
RMSE are higher in the ML estimator than for the REML; lKa has a lower absolute bias,
but the RMSE is higher in ML than for REML; lKe presents the same bias in the two
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estimation methods, ML and REML, with the RMSE being higher in ML. For the variance
components τ1, τ2 and σ2, it can be observed that the biases are numerically smaller for
the REML than for the ML, however the RMSE are smaller in the ML. Finally, when
both errors and random effects assume a slash distribution with 4 degrees of freedom, it
can be observed that for lKl, numerically, the absolute bias and RMSE are greater in the
ML method; lKa presents the same bias in both estimation methods, but the RMSE is
higher in ML; lKe has a lower bias in the ML method but its RMSE is greater than in
the REML estimation method. Regarding the variance components τ1, τ2 and σ2, we can
see that all biases are lower in the REML method, however the RMSE are lower for the
ML estimator.

Table 13 – Simulation results for the pharmacokinetic model with theoretical fixed-effects pa-
rameters (lCl, lKa, lKe)⊤ = (−3.0,0.5,−2.0)⊤ and theoretical variance components
(τ⊤,σ2)⊤1 = (0.04,0.15,0.1)⊤.

ML REML
Dist. Par. Mean Bias RMSE Mean Bias RMSE

Normal lCl -3.0009 -0.0009 0.0589 -3.0003 -0.0003 0.0589
lKa 0.5002 0.0002 0.1172 0.4996 -0.0004 0.1162
lKe -2.5003 -0.0003 0.0288 -2.5003 -0.0003 0.0286
τ1 0.0368 -0.0032 0.0168 0.0402 0.0002 0.0183
τ2 0.1384 -0.0116 0.0637 0.1516 0.0016 0.0684

σ2 0.0987 -0.0013 0.0138 0.0995 -0.0005 0.0139
t4 lCl -3.0067 -0.0067 0.0647 -3.0035 -0.0035 0.0634

lKa 0.5017 0.0017 0.1364 0.5043 0.0043 0.1337
lKe -2.5014 -0.0014 0.0307 -2.5014 -0.0014 0.0304
τ1 0.0360 -0.0040 0.0204 0.0404 0.0004 0.0222
τ2 0.1313 -0.0187 0.0781 0.1485 -0.0015 0.0850

σ2 0.0990 -0.0010 0.0254 0.0996 -0.0004 0.0256
Slash4 lCl -3.0065 -0.0065 0.0675 -3.0035 -0.0035 0.0664

lKa 0.4974 -0.0026 0.1324 0.4974 -0.0026 0.1321
lKe -2.5017 -0.0017 0.0324 -2.5020 -0.0020 0.0322
τ1 0.0371 -0.0029 0.0179 0.0406 0.0006 0.0194
τ2 0.1401 -0.0099 0.0678 0.1544 0.0044 0.0738

σ2 0.0996 -0.0004 0.0158 0.1002 0.0002 0.0160
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In Figure 15, the letter (a) represents boxplots for variance components when er-
rors and random effects assume normal distribution; letter (b) represents boxplots for
variance components when errors and random effects assume t distribution with degree of
freedom 4; letter (a) represents boxplots for variance components when errors and random
effects assume slash distribution, which also has 4 degrees of freedom. The horizontal line
represents the theoretical parameter in each case. It can be seen that the ML method
underestimates the variance components. This underestimation is more intense in param-
eters τ1 and τ2 for all distributions. The worst case can be observed in the figures in line
(b), where at least 50% of the estimates are lower than the theoretical value used for the
simulation. REML provides, in these cases, better estimates for the parameters τ1 and τ2.
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Figure 15 – Boxplots of the variance component estimates obtained from the simulation study.
Panels in line (a) correspond to the normal distribution, panels in line (b) represent
the t4 distribution and in line (c) slash4 distribution. The horizontal dotted lines
are the theoretical values.



76 Chapter 5. Restricted maximum likelihood estimation in NLME under SMN

5.5 Application

5.5.1 Theophylline data
Here we use theophylline data as an illustration for REML and ML estimation

methods. The nonlinear function is slightly different from that described in Chapter 4.
Here we assume two random effects. Thus, the way of displaying the fixed effects is
slightly different.

Table 14 shows the parameter estimates and standard errors of REML and ML for
the theophylline data set using SAEM algorithm. We consider the same distributions for
both errors and random effects. The degrees of freedom for the t and slash distributions
were fixed.

Figures 16 and 17 show the SAEM iterations of the estimates by the REML and
ML methods, respectively in model t3.5 / t4. Note that there was convergence in all cases
and that did not take long to happen.

Table 14 – Restricted Maximum likelihood and Maximum likelihood estimates of the parameters
for the theophylline data set.

REML SE ML SE
Normal / Normal lCl -3.21539 0.04722 -3.22293 0.09783

lKa 0.47662 0.20236 0.54101 0.46812
lKe -2.45389 0.05992 -2.45885 0.05198
τ1 0.03050 0.00951 0.02816 0.00874
τ2 0.48223 0.15317 0.44156 0.14939
σ2 0.50606 0.06921 0.50063 0.06839

REML SE ML SE
t3.5 / t4 lCl -3.19259 0.05722 -3.18037 0.05589

lKa 0.37114 0.23242 0.31371 0.22543
lKe -2.43740 0.05302 -2.43354 0.04318
τ1 0.02171 0.00371 0.01657 0.00310
τ2 0.43803 0.04358 0.28037 0.03142
σ2 0.27938 0.07954 0.27361 0.07346

REML SE ML SE
Slash2.5 / Slash3 lCl -3.20929 0.06162 -3.20832 0.06981

lKa 0.42541 0.23156 0.48424 0.22078
lKe -2.44107 0.05403 -2.43988 0.04898
τ1 0.01963 0.00480 0.01822 0.00713
τ2 0.31760 0.08571 0.30380 0.12140
σ2 0.26502 0.05370 0.26397 0.05388
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Figure 16 – Iterations of the SAEM algorithm of REML estimates for the theophylline model
for t3.5 / t4.

5.6 Discussion

In this chapter, we study the ML and REML estimators in NLME models. The
purpose of the REML estimator is to estimate the variance components as the ML esti-
mators tend to underestimate the parameters while the REML generally obtains the least
bias. At first, we analysed the gain in the REML bias in the NLME model implemented
nlme package of the R program proposed by Pinheiro and Bates (2000). The estimation
method of the fixed-effects parameter and random-effects parameters of the NLME model
of the R package is based on the method that linearizes the non-linear model by the Tay-
lor approximation and considers the normal distribution for errors and random effects.
We did a simulation study with 2000 sets of artificial data, assuming distribution, with
the characteristics of a first order compartment model and also for a growth curve model.
There was a gain in terms of bias for the REML estimators of the variance components
against the ML estimators in both the first order compartment model and the curve model
growth. It is worth mentioning that in the growth curve model, the absolute biases of the
variance components were not close to zero in comparison, even though REML still had
less bias. In the second step, we propose a Harville (1974)-based REML estimator where
fixed effects are integrated into the function likelihood of complete data. In this case, we
propose the class of mixtures of normal distribution scale symmetric to errors and random
effects, more specifically we use the slash, t heavy tails distributions and compare it to
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Figure 17 – Iterations of the SAEM algorithm of ML estimates for the theophylline model t3.5 /
t4.

normal. To the best of our knowledge, there are no studies in the literature about the
REML estimator in NLME models for this class of distributions following the Harville ap-
proach. Meza, Jaffrézic and Foulley (2007) studied only to the usual normal distribution.
Moreover, to compare the performance of the REML estimator, we calculated the bias
and root of the mean square error in a Monte Carlo simulation study for 3000 artificial
dataset. The parameter estimation was obtained using the version of the stochastic ap-
proximation of the EM algorithm proposed by Kuhn and Lavielle (2005), known as SAEM.
This algorithm, according to reports by Meza, Osorio and De La Cruz (2012), has the
advantage of being faster than the MCEM algorithm, because it uses few Markov chains
in each iteration. With the data from the theopylline application, the SAEM algorithm
obtained the parameter estimates in around 130 seconds (ML) and around 100 seconds
(REML) when the distribution was normal for errors and random effects; also around 130
seconds (ML) and around 133 seconds for slash distribution in both errors and random
effects; and around 127 seconds (ML) and around 105 seconds (REML) for t distribution
in both errors and random effects. The routine were implemented in R Core Team (2016)
and run in a DELL Inspiron 14 5448 with Intel Core i7−5500 CPU 2.40 GHz and 8 GB
of RAM.
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CHAPTER

6
GENERAL NONLINEAR MIXED-EFFECTS

MODEL

This chapter brings a new proposal of general nonlinear mixed-effects models,
where the random effects, which do not necessarily follow a normal distribution are not
included in a linear structure as usual in the literature.

6.1 Introduction

Nonlinear mixed-effects models are widely used to model correlated data where
there is generally a strong appeal for longitudinal data, but in general the use of re-
peated measure is mandatory. Several authors have developed works in this area, some
present both the linear mixed-effects model and the nonlinear mixed-effects models. Some
works that we can highlight are Molenberghs and Verbeke (2005), (RUSSO; LESAFFRE;
PAULA, 2012), Lachos, Castro and Dey (2013), De La Cruz (2014) and Meza, Osorio and
De La Cruz (2012).

More recently, Pereira and Russo (2019) developed asymmetric nonlinear mixed-
effects models as opposed to symmetric ones. They worked with the SMN distribution
class in order to detect atypical observations. In the nonlinear model of their work, ran-
dom effects enter linearly and they use the EM-type and Newton-Raphson algorithms to
estimate the parameters.

The model by Meza, Osorio and De La Cruz (2012) is too restrictive, as the model
assumes a linear predictor for the a subject-specific parameter vector in the nonlinear
function. Here, we propose to replace this condition for subject-specific parameter vector
in such a way that it is not necessary to specify it.

In this chapter, we work on the obtention of ML estimates for fixed-effects and
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variance components in the context of the NLME model, where the error distributions
and random effects do not follow a normal distribution. Here we assume symmetric heavy-
tailed distributions in the scale mixture of normal distribution class for error and random
effects. These types of distributions are appropriate to accommodate outlying observa-
tions, as it can be seen, for instance, in Savalli, Paula and Cysneiros (2006), Russo, Paula
and Aoki (2009), Staudenmayer, Lake and Wand (2009), Meza, Osorio and De La Cruz
(2012) in a frequentist context and Rosa, Padovani and Gianola (2003), Lachos, Castro
and Dey (2013), De La Cruz (2014) in a Bayesian approach. Here we assume outliers
within subjects, which are evaluated by within-subject error.

6.2 The SMN nonlinear mixed-effect model

The NLME can be written as in Molenberghs and Verbeke (2005), Chap. 20, by

Yi = fi(Xi,βββ ,Zi,bi)+ ε i, i = 1, . . . ,n, (6.1)

where Yi (ni ×1) denotes the response vector for subject i, Xi and Zi are design matrices,
where in the longitudinal study usually the time should be entered into either Xi or Zi

or both. n is the number of subjects, ni the number of observations of subject i and ε i

the within-subject errors, independent across subjects and are assumed to have normal
distribution Nni(0,Σi). Furthermore, function f is allowed to be non-linear, βββ (p × 1)
denotes the vector of fixed-effects parameters, bi (q× 1) denotes the vector of random
effects, assumed independent and with normal distribution Nq(0,Γi). We assume that the
ε i and bi are mutually independent.

The most common assumption for the distribution of errors and random effects in
NLME models is multivariate normal, which may not be the most appropriate choice in
cases of heavy-tailed data or the presence of outliers. Here we will use the SMN distribu-
tions for random effects as well, allowing the distributions for errors and random effects
to be assumed differently. From (6.1), the model takes the form of

Yi|bi
ind∼ SMNni( fi(Xi,βββ ,Zi,bi),Σi;H1)

bi
ind∼ SMNq(0,Γ;H2), (6.2)

where Σi and Γ are positive-definite dispersion matrices. Here we assume Γ = Γ(τ) with
elements τ = (τ1, . . . ,τP)

⊤ its elements and Σi = σ2Ini , with σ2 > 0 a scalar and Ir (r× r)

the identity matrix .

For i = 1, . . . ,n, the hierarchical representation of the NLME defined in (6.2) is
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given by

Yi|bi,ui
ind∼ SMNni( fi(Xi,βββ ,Zi,bi),u−1

i σ2Ini),

bi|vi
ind∼ SMNq(0,v−1

i Γ), (6.3)

ui
ind∼ H1(ν) and vi

ind∼ H2(ω),

where ui and vi are random weights; ν and ω are scalar or vector parameters indexing
the mixture distribution.

The SMN subclass has been used as an important tool in robust estimation.
Among these subclasses we can cite the t, slash, normal and contaminated normal dis-
tributions and the Laplace or double exponential. In this chapter, the t and slash dis-
tributions are considered to illustrate the proposed methodology. In fact, the representa-
tion of the multivariate t distribution occurs when in (6.2) Y ∼ Mt(µ,Σ;ν), ν > 0 and
u ∼ Gamma(ν/2,ν/2) while that for the multivariate slash distribution is denoted by
Y ∼ MSl(µ,Σ;ν), ν > 0 and u ∼ Beta(ν ,1), ν > 0. For both, the t and slash distributions,
ν represents the degrees of freedom and this parameter controls the kurtosis of the dis-
tribution. It is interesting to note that when ν → ∞ the normal distribution is recovered.
The joint distribution is represented as

f (y;βββ ,τ,σ2) =
n

∏
i=1

∫ ∞

0

∫
Rq

ϕni(Yi; fi(Xi,βββ ,Zi,bi),u−1
i σ2Ini)ϕq(bi;0,v−1

i Γ)dbidH1(ν)dH2(ω),

(6.4)
where ϕn(·|µ,Σ) denotes the n-dimensional normal probability density function with loca-
tion and scale parameters µ and Σ, respectively.

6.3 Maximum likelihood estimation

Let us denote by y = (y⊤
1 , . . . ,y⊤

n )
⊤ the observed data, b = (b1, . . . ,bn)

⊤ the ran-
dom effects vector and u = (u1, . . . ,un)

⊤ and v = (v1, . . . ,vn)
⊤, the scalar factors. Then

consider z = (b⊤,u⊤,v⊤)⊤ as missing data. The complete log-likelihood function associ-
ated with the complete data yc = (y⊤,z⊤)⊤, considering θ = (βββ⊤,σ2,τ⊤)⊤ as parameter
vector given by

lc(θ ;yc) =
n

∑
i=1

log l(θ ;yic)

=
n

∑
i=1

[log p(yi|bi,ui;βββ ,σ2)+ log p(bi|vi;τ)+ logh1(ui;ν)+ logh2(vi;ω)].
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We can write the complete log-likelihood as

lc(θ ;yc) = −1
2

{
N logσ2 +n log |Γ|+ 1

σ2

n

∑
i=1

ui∥yi − f (Xi,βββ ,Zi,bi)∥2

+
n

∑
i=1

vib⊤
i Γ−1bi)

}
+C, (6.5)

where N = ∑n
i=1 ni and C is a constant that does not depend on θ and the Q-function in

this case is given by

Q(θ |θ (k)) = E[lc(θ ;yc)|y,θ (k)]

= −1
2

{
N logσ2 +n log |Γ|+ 1

σ2

n

∑
i=1

E
[
ui∥yi − f (Xi,βββ ,Zi,bi)∥2|y,θ (k)

]
+

n

∑
i=1

E
[
vib⊤

i Γ−1bi|y,θ (k)
]}

+C. (6.6)

The SAEM is useful for fitting models that belong to the exponential family. How-
ever it is discussed by Meza, Osorio and De La Cruz (2012) that when the degrees of
freedom regarding the distribution of weights are known, the likelihood belongs to the
exponential family.

The (k+1)th iteration of the SAEM algorithm is consists of three steps: the simula-
tion, stochastic approximation and maximization steps. The steps of the SAEM algorithm
to accomplish the ML are as follows:

In the first step, the simulation step, we generate M values of the missing data
vector z(k+1,m) = (b(k+1,m), u(k+1,m),v(k+1,m)) from the conditional distribution p(·|y;θ (k)).
This step cannot always generate data directly from the conditional distribution p(b,u,v|y;θ).
Then, Monte Carlo Markov Chain methods are useful to simulate values of each element
of z. The elements and b(k+1,m) are considered Markov chains with transition kernels Πθ (k)

generated from the transition probability, Kuhn and Lavielle (2004)

p(bi|yi,ui,vi;θ) ∝ ϕni(yi| f (Xi,βββ ,Zi,bi),u−1
i σ2Ini)ϕq(bi|0,v−1

i Γ)

∝ exp
{
− 1

2

[
1

σ2 ui∥yi − f (Xi,βββ ,Zi,bi)∥2 + vib⊤Γ−1bi

]}
. (6.7)

The full conditional distribution of ui is given by:

p(ui|yi,bi,vi;θ) ∝ ϕni(y| f (Xi,βββ ,Zi,bi),u−1
i σ2Ini)ϕq(bi|0,v−1

i Γ)h1(ui;ν). (6.8)

We can explicitate it, considering each situation: when the within-subject error is assumed
to follow a multivariate t-distribution, (6.8) corresponds to a gamma distribution

p(ui|yi,bi,vi;θ) = Gamma
(

ni +ν
2

,
σ−2∥yi − f∥2 +ν

2

)
(6.9)



6.3. Maximum likelihood estimation 83

and when the within-subject error is assumed to follow a multivariate slash distribution,
(6.8) corresponds to a truncated gamma distribution

p(ui|yi,bi,vi;θ) = Truncated-Gamma
(

ni

2
+ν ,

σ−2∥yi − f∥2

2
,T
)
, (6.10)

where we set T = 1, representing the point at which the right truncation occurs. Similar
calculations can be made for a variable v, following the steps in the equations (6.8) to
(6.10).

In the second step, i.e, the stochastic approximation step, we update Q(θ |θ (k+1))

according to

Q(θ |θ (k+1)) = Q(θ |θ (k))+ γk+1

[
1
M

M

∑
m=1

lc(θ ;y,z(k+1,m))−Q(θ |θ (k))

]
, (6.11)

where γk+1 is a smoothing parameter, a sequence decreasing to zero, of positive numbers,
chosen to improve the convergence to parameter θ . The convergence of SAEM to a local
maximum of the likelihood is proved by Delyon, Lavielle and Moulines (1999) under fairly
general conditions. Here, the choice of the smoothing parameter is the same adopted by
Kuhn and Lavielle (2005), given as γk = 1, for 1 ≤ k ≤ K ; γk =

1
(k−K) , if k ≥ K + 1. The

value of K is set as in Jank (2006).

When the complete data likelihood in (6.5) belongs to the exponential family, we
can extract minimal sufficient statistics S(y,z) such that in (6.11) is set to:

s(k) = s(k−1)+ γk

[
1
M

M

∑
m=1

S(y,z(k,m))− s(k−1)

]
.

Then, the minimal sufficient statistics for variance components Γ and σ2 are given by,
respectively:

s(k)1,i = s(k−1)
1,i + γk

[
1
M

M

∑
j=1

u(k,m)
i J(k)⊤ni J(k)ni − s(k−1)

1,i

]
and

s(k)2,i = s(k−1)
2,i + γk

[
1
M

M

∑
j=1

J(k)⊤ni u(k,m)
i [Yi − f (βββ (k),b( j)

i )]− s(k−1)
2,i ,

]

where Jni = ∂ f (βββ ,bi)/∂βββ⊤. Thus,

s(k)3,i = s(k−1)
3,i + γk

[
1
M

M

∑
m=1

v(k,m)
i b(k,m)

i b(k,m)T
i − s(k−1)

3,i

]
,

and

s(k)4,i = s(k−1)
4,i + γk

[
1
M

M

∑
m=1

u(k,m)
i ∥yi − f (βββ (k,m),b(k,m)

i )∥2 − s(k−1)
4,i

]
.
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The last step is the maximization step where θ (k) is updated in a general form by θ (k+1) =

argmaxQ(θ |θ (k)), and each parameter estimator is represented by

β̂ββ
(k+1)

= β̂ββ
(k)

+

(
n

∑
i=1

s(k)1,i

)−1( n

∑
i=1

s(k)2,i

)
,

Γ̂
(k+1)

=
1
n

n

∑
i=1

s(k)3,i and

σ̂2(k+1) =
1
N

n

∑
i=1

s(k)4,i .

In M-step a Newton-Raphson method was used to obtain fixed-effects parameter estimates
β̂ (k+1).

6.3.1 Estimation of the likelihood function
For the likelihood estimation, we used the scheme of importance sampling consid-

ering the likelihood function of the observed data y

l(θ ;y) =
∫

f (;θ)db =
∫

f (y|b;θ) f (b;θ)db, (6.12)

where f (y|b) and f (b;θ) are the densities of the models.

The scheme of importance sampling consists of rewriting the equation (6.12) as

l(θ ;y) =
∫

f (y|b;θ)
f (b;θ)
f ∗(b;θ)

f ∗(b;θ)db (6.13)

where f ∗ is any continuous distribution. Thus, we can generate b∗ ∼ f ∗(b∗;θ) and in a
Monte Carlo scheme substitute b∗ in the function

l(θ ;y) = 1
M

M

∑
l=1

f (y|bl;θ)
f (bl;θ)
f ∗(bl;θ)

. (6.14)

6.4 Application
In this section, we present an application in a songbird data set.

6.4.1 Songbird - RA data
The songbird data were initially presented by Van der Linden et al. (2002) and

Van Meir et al. (2004), who established a novel in vivo magnetic resonance imaging
(MRI) approach to discern the functional characteristics of specific neuronal populations
in a strongly connected brain circuitry, the so-called song control system in the songbird
brain. The high vocal center (HVC), one of the major nuclei in this circuit, contains
interneurons and two distinct types of neurons projecting respectively to the so-called
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nucleus robustus arcopallii (RA) or to area X. Molenberghs and Verbeke (2005), chap. 20,
analysed this data set by way of an NLME assuming normal distribution. After selecting
the model, they settled on the following model for signal intensity (SI) in RA.

SIi j(RA) =
(ϕ0 + fi)T

η0+η1Gi
i j

(τ0 + ti)η0+η1Gi +T η0+η1Gi
i j

+ εi j (6.15)

where, SIi j(RA) is the measurement at time j for bird i, Gi is an indicator for group
membership (1 for testosterone treated birds and 0 otherwise), and Ti j is the measurement
time. The fixed effects are described as: ϕ0 is the maximal signal intensity, sometimes called
SImax, for an untreated bird; τ0 is the time required to reach 50% of this maximum (T50);
η0 and η0 +η1 govern the shape of the curve.

The vector ( fi, ti) is a bird-specific vector of random effects, assumed to follow a
bivariate normal distribution with mean 0 and covariance matrix Γ. Here, we consider εi j

random error following SMN distributions. Table 15 shows the parameter estimations for
the model in (6.15).

Although many structures for variance-covariance matrix could be assumed for the
random effects, in this analysis we use a diagonal variance-covariance matrix.

The metric used to identify possible outliers, assuming SMN distributions, was
the usual Mahalanobis distance Russo, Paula and Aoki (2009). Regarding the distance of
Mahalanobis we rewrote it as,

MD1 =
∥yi − fi(Xi,βββ ,Zi,bi)∥2

σ2

when we consider identifying atypical points due to within-subject error, ε−outliers and

MD2 = b⊤
i Γ−1bi

to consider identifying atypical points due to random effects, b−outliers. In the case
where the random effects and errors are normally distributed, MD1 follows a chi-squared
distribution with ni degrees of freedom and MD2 follows a chi-squared distribution with q

degrees of freedom. In the t and slash cases, the Mahalanobis distance distribution does
not have an expression that refers to specific known distribution, but the expression in
terms of cumulative distributions functions can be seen in Lange and Sinsheimer (1993).

As seen previously, a great Mahalanobis distance indicates possible outlying or even
influence observations. These points are related to lower weights in SMN distributions, as
it can be noted in Table 16.

Considering the mentioned distances and the benchmarks corresponding to the
97,5%-quantiles, according to Figure 18, assuming normal distribution in errors and ran-
dom effects, for the random effects observation 6 stands out the benchmark. For the error
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term, two observations stand above the benchmark, cases 6 and 7. Figure 19, a normal
Q-Q plot can be observed. Notice one outstanding point in the first plot. In the second
plot, two more outstanding points are observed, possibly influential points. Given this, we
use other t and slash distributions for random effects.

In Figures 20–27 one can observe Mahalanobis distances assuming normal, t, and
slash combinations for errors and random effects.

For the degrees of freedom choice in the SMN distributions, we considered a grid
of predefined values and select the one that leads to the low AIC (Burnham and Anderson
(2002)), as discussed by Russo, Paula and Aoki (2009) and Lucas (1997).

The model parameters were estimated via maximum likelihood method using
SAEM algorithm, and standard errors using Kuhn and Lavielle (2005).

To select the most adequate model, among the proposed ones, AIC and BIC were
used. Both criteria are based on the minimization of Kullback-Leibler distance Akaike
(1973) and Schwarz (1978). The model with the lowest AIC is the model assuming slash2

/ t4 distribution. Note that the model with t2.5 / t3.5 has the second lowest AIC. Now,
relating these choices to the respective Mahalanobis distance, we can see that the slash2

/ t4 model still has an out point for the random error unlike the t2.5 / t3.5 model which
has no points outside.
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Table 15 – Maximum likelihood estimates for the songbird data: SI-RA, using multivariate nor-
mal (N), slash (Sl) and t distribution.

Par. N / N Sl2.5 / Sl2 t2.5 / t3.5
ϕ0 0.42859 (0.02391) 0.42621 (0.00018) 0.37293 (0.01681)
η0 2.18154 (0.08593) 2.18015 (0.01942) 2.18548 (0.15735)
η1 0.43263 (0.10042) 0.33332 (0.00313) 0.30579 (0.64117)
τ0 2.87180 (0.15725) 2.89418 (0.00138) 2.75117 (0.02536)
d11 0.02061 (0.00807) 0.01406 (0.00485) 0.00946 (0.00801)
d22 0.25282 (0.11069) 0.15552 (0.05828) 0.07163 (0.03347)
σ2 0.00019 (0.00002) 0.00007 (0.00003) 0.00015 (0.00009)
LogLik 700.1577 725.1677 726.6103
AIC -1386.315 -1436.335 -1439.221
BIC -1384.197 -1434.217 -1437.102
Par. N / Sl2 N / t3.5 Sl3.5 / N
ϕ0 0.43345 (0.00474) 0.40891 (0.01753) 0.41053 (0.16478)
η0 2.17925 (0.06067) 2.15301 (0.66766) 2.18521 (0.10784)
η1 0.32712 (0.15368) 0.35443 (0.65726) 0.42788 (0.63953)
τ0 2.90442 (0.01456) 2.92751 (0.01993) 2.84357 (0.14552)
d11 0.02145 (0.00764) 0.02303 (0.00219) 0.01651 (0.00165)
d22 0.26745 (0.10139) 0.26766 (0.01306) 0.18152 (0.01142)
σ2 0.00006 (0.00001) 0.00011 (0.00004) 0.00019 (0.00005)
LogLik 725.4588 726.4636 700.0004
AIC -1436.918 -1438.927 -1386.001
BIC -1434.8 -1436.809 -1383.883
Par. t3 / N Sl2 / t4 t3 / Sl2
ϕ0 0.42124 (0.00871) 0.39394 (0.01630) 0.40906 (0.03105)
η0 2.19140 (0.08836) 2.15482 (0.71667) 2.17737 (0.43392)
η1 0.40790 (0.15432) 0.34607 (0.20199) 0.32332 (0.26923)
τ0 2.87325 (0.03194) 2.87353 (0.00906) 2.90700 (0.03041)
d11 0.01240 (0.00356) 0.01331 (0.00441) 0.01254 (0.00478)
d22 0.12992 (0.04006) 0.12534 (0.01810) 0.12810 (0.04327)
σ2 0.00019 (0.00002) 0.00010 (0.00003) 0.00007 (0.00009)
LogLik 700.2355 726.9277 725.6607
AIC -1386.471 -1439.855 -1437.321
BIC -1384.353 -1437.737 -1435.203

Table 16 – Fitted weights considering Slash2 and t4 models in Songbird-RA data.

Bird 1 2 3 4 5 6 7 8 9 10
Random effects 0.76 0.70 0.72 0.61 0.74 0.67 0.27 0.53 0.74 0.75
Residual errors 1.83 0.89 1.93 0.58 0.82 0.20 0.29 0.66 1.42 1.50
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Figure 18 – Songbird SI-RA. Mahalanobis distance for random effects and error term, consider-
ing Normal/Normal Model.
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Figure 19 – Songbird SI-RA. Normal Q-Q plot for random effects bi. Normal/Normal.
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Figure 20 – Songbird SI-RA. Mahalanobis distance for random effects and error term, consider-
ing Slash2.5/Slash2.
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Figure 21 – Songbird SI-RA. Mahalanobis distance for random effects and error term, consider-
ing t2.5/t3.5.
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Figure 22 – Songbird SI-RA. Mahalanobis distance for random effects and error term, consider-
ing Normal/Slash2.
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Figure 23 – Songbird SI-RA. Mahalanobis distance for random effects and error term, consider-
ing Normal/t3.5.
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Figure 24 – Songbird SI-RA. Mahalanobis distance for random effects and error term, consider-
ing Slash3.5/Normal.
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Figure 25 – Songbird SI-RA. Mahalanobis distance for random effects and error term, consider-
ing t3/Normal.
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Figure 26 – Songbird SI-RA. Mahalanobis distance for random effects and error term, consider-
ing Slash2/t4.
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Figure 27 – Songbird SI-RA. Mahalanobis distance for random effects and error term, consider-
ing t3/Slash2.
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6.5 Standard error estimation via bootstrap simulation
The bootstrap simulation method introduced by Efron (1979), consists of resam-

pling the data with replacement a large number of times. There is a number of versions of
bootstrap in parametric and nonparametric versions, each one with its particularities. In
this thesis, a nonparametric version of bootstrap is used. In an adaptation of bootstrap,
the notation for this work is as follows:

1. Organize the observed values in pairs, (yi,Xi), i = 1, . . . ,n and resample from these
pairs, with replacements, into n new pairs. Repeat this a large number of times (B),
such that the new pairs are (y∗

i,1,X
∗
i,1), . . . ,(y∗

i,B,X∗
i,B), i = 1, . . . ,n.

2. Now estimate the fixed-effects and variance component parameters for each of the
bootstrap samples, resulting in B estimates for each parameter, θ̂ ∗1, θ̂ ∗2, . . . , θ̂ ∗B.

3. Estimate the parameters using equation (6.16) and find the standard error using
equation (6.17).

The measures used to evaluate the fixed and random effects after bootstraping are
the mean, the standard error and the percentile confidence interval.

The mean is computed as the average estimates from the resampled data

θ̂ ∗ =
1
B

B

∑
b=1

θ̂ ∗b (6.16)

and the standard error is given by

ŝe(θ̂) =


B
∑

i=1

(
θ̂ ∗b − θ̂ ∗

)2

B−1


1/2

, (6.17)

in which θ̂ ∗ = 1
B

B
∑

b=1
θ̂ ∗b.

The confidence interval based on the percentile method is used. This method takes
into account the estimate distributions form. After generating the bootstrap estimates,
they are ordered and the lower and upper percentiles are used to determine the percentile
confidence limits. In a percentile confidence interval with 95% confidence level, limits are
given by

(θ̂ ∗[0.025]; θ̂ ∗[0.975]). (6.18)

Notice that the lower limit corresponds to the 2.5% percentile and the upper limit to the
97.5% percentile. More details about the bootstrapping and percentile confidence interval
may be found in Efron and Hastie (2016).
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Table 17 shows summary statistics, the bootstrap mean, standard error (se) from
equation (17) and percentile confidence interval with a 95% confidence level from equation
(6.18). The same scenarios seen in Table 15 were used for the bootstrap simulations,
considering normal, t and slash distribution. It can be observed that the parameters
are significant in the normal distribution scenario as the confidence interval does not
contain zero. In the scenarios for the slash and t distributions, a confidence interval for
the parameter η1 contains zero, showing to be statistically non-significant. This parameter
represents the group effect.

Table 17 – Results of bootstrap simulation for songbird data, considering normal (N), t and
slash (Sl) distributions.

Dist. Par. Mean se 2.5% 97.5%
N/N ϕ0 0.42610 0.03382 0.36066 0.49479

η0 2.19670 0.08528 2.02953 2.39740
η1 0.42440 0.17521 0.07485 0.77414
τ0 2.87900 0.20068 2.55402 3.31096

d11 0.02140 0.00865 0.00538 0.04017
d22 0.24620 0.14886 0.01348 0.51878
σ2 0.00020 0.00005 0.00009 0.00030

t2.5 / t3.5 ϕ0 0.39770 0.01603 0.37094 0.43458
η0 2.17360 0.07801 2.06454 2.36179
η1 0.33550 0.17076 -0.04195 0.73579
τ0 2.89900 0.17944 2.61660 3.29534

d11 0.02610 0.01178 0.00531 0.05159
d22 0.25820 0.16046 0.01017 0.56041
σ2 0.00010 0.00003 0.00007 0.00017

Sl2.5 / Sl2 ϕ0 0.43310 0.03269 0.36785 0.49919
η0 2.18880 0.08068 2.06125 2.37838
η1 0.32870 0.16463 -0.03602 0.69720
τ0 2.90560 0.19145 2.60807 3.31878

d11 0.02180 0.00826 0.00530 0.03899
d22 0.25850 0.16113 0.00965 0.56459
σ2 0.00010 0.00002 0.00004 0.00011

6.6 Global Influence
The global influence was performed to evaluate the changes in the estimates when

each observation was excluded from the data set. It can be observed in Table 18 that
the larger percentual changes are caused in the variance components, namely d22, when
subjects 7 and 2 were individually excluded, and on d11 when subjects 8 and 4 were
excluded.
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Table 18 – Percentual changes in the estimates after excluding of individuals considering Slash2
and t4 models fitted to Songbird data.

Subject excluded Dist. ϕ0 η0 η1 τ0 d11 d22 σ2

1 N; N 2.87 0.96 -5.64 0.18 7.23 12.43 5.26
t2.5; t3.5 5.57 0.72 -3.89 2.47 44.19 75.15 -6.67
Sl2.5; Sl2 -0.27 1.28 -7.18 -2.16 13.44 7.37 14.29
Sl2; t4 -4.09 2.00 -15.26 -0.50 27.42 21.73 20.00

2 N; N 2.29 -1.21 5.91 -1.43 4.46 -5.98 0.00
t2.5; t3.5 1.78 -2.46 18.83 -1.12 -3.81 -50.55 -26.67
Sl2.5; Sl2 3.27 -2.46 14.99 -1.42 7.33 -19.79 -14.29
Sl2; t4 2.74 -1.50 10.89 -2.36 0.75 -45.17 40.00

3 N; N 4.66 0.51 0.60 1.00 -0.49 7.45 5.26
t2.5; t3.5 5.58 1.38 -13.42 1.16 18.71 27.64 -6.67
Sl2.5; Sl2 4.07 1.48 -8.04 -0.73 2.70 -1.34 14.29
Sl2; t4 3.50 2.10 -11.13 -1.44 -1.65 -12.04 30.00

4 N; N -3.59 0.64 -2.74 1.67 -8.83 1.90 -5.26
t2.5; t3.5 3.97 -0.87 8.97 1.84 -31.92 3.04 -40.00
Sl2.5; Sl2 -1.47 -0.44 1.15 1.62 -12.87 -0.30 0.00
Sl2; t4 -1.73 0.58 -2.11 0.99 -31.86 -9.71 30.00

5 N; N -0.53 -0.05 -3.49 0.52 8.25 13.28 0.00
t2.5; t3.5 9.31 -1.84 14.70 5.18 31.40 80.87 -26.67
Sl2.5; Sl2 -0.21 -1.28 1.69 1.00 14.65 24.71 -14.29
Sl2; t4 -1.74 -0.59 3.68 0.29 19.08 21.35 30.00

6 N; N 7.80 0.04 -13.17 4.87 -1.36 8.77 -26.32
t2.5; t3.5 7.84 -1.52 8.83 4.74 0.42 5.24 -40.00
Sl2.5; Sl2 6.48 -0.76 1.68 5.44 2.77 23.58 -14.29
Sl2; t4 6.23 0.08 -4.50 1.13 1.50 1.91 0.00

7 N; N -4.95 2.21 -31.91 -6.63 -3.20 -74.04 -15.79
t2.5; t3.5 0.41 -0.31 -12.53 -0.21 -11.10 -53.43 -26.67
Sl2.5; Sl2 -4.47 2.06 -32.44 -7.69 -2.63 -73.79 0.00
Sl2; t4 -1.61 1.56 -23.02 -6.31 -3.98 -67.15 0.00

8 N; N -4.79 0.29 26.54 -1.55 -36.00 1.67 -5.26
t2.5; t3.5 1.62 -1.14 16.44 2.74 -33.83 49.31 -26.67
Sl2.5; Sl2 -7.19 0.10 3.54 -1.33 -42.74 -14.38 -14.29
Sl2; t4 -0.09 0.46 5.22 -0.44 -46.36 -3.81 20.00

9 N; N 1.44 -0.49 14.36 1.60 -0.19 6.30 5.26
t2.5; t3.5 5.49 -0.69 29.68 4.93 15.75 71.56 -13.33
Sl2.5; Sl2 4.76 -0.87 26.90 1.98 1.21 15.60 -14.29
Sl2; t4 2.33 0.19 22.01 -0.23 7.29 20.72 50.00

10 N; N 2.39 -1.01 9.48 3.90 5.82 15.86 5.26
t2.5; t3.5 6.98 -1.19 0.54 2.36 23.26 69.65 -26.67
Sl2.5; Sl2 1.78 -0.16 -6.43 2.91 12.30 23.46 14.29
Sl2; t4 2.76 -0.05 -11.25 -1.81 1.43 -0.94 10.00

6.7 Discussion
In this chapter, we implemented a general nonlinear mixed-effects model where

random effects enter the model in a more flexible way. In the literature, for example, in
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Pinheiro and Bates (2000) and Demidenko (2013), the so-called subject-specific vector,
which accommodates fixed and random effects, assumes a linear function. Here we propose
to make the entry of random effects more flexible so that the subject-specific vector can
assume a non-linear function. The procedure for applying the fixed and random effects
parameters was the maximum likelihood method using the SAEM algorithm. We adopted
the methodology to estimate the NLME model parameters for songbird data studied by
Molenberghs and Verbeke (2005). We used the selection criteria of AIC and BIC models
in various distribution combinations for errors and random effects. The advantage of using
the SMN distribution is that it gives different weights to observations, so that a low weight
corresponds to a high Mahalanobis distance. The AIC (−1439.855) or BIC (−1437.737)
information criteria suggest selecting the Sl2 / t4 model (random effects/errors), but it is
still an indicator of the Mahalanobis distance corresponding to bird 7 which outstands the
benchmark (see Figure 23), but the t2.5/t3.5 scenario (see Figure 21) records a slightly larger
AIC (BIC) and does not show points from the Mahalanobis distance which outstands
the benchmark. It still obtains standard errors through the non-parametric bootstrap
simulation for scenarios N/N, t2.5/ t3.5 e Sl2.5/ Sl2.
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CHAPTER

7
DISCUSSION AND FUTURE RESEARCH

In this thesis, some estimation methods are proposed to obtain parameters’ esti-
mates in nonlinear mixed-effects models.

First, in Chapter 4, a comparison between a MCEM method and a Taylor-expansion
approximate method is made to obtain maximum likelihood estimates. This study showed
that the approximate method is much faster than Monte Carlo EM and can provide fairly
good initial estimates for the second method.

A second study, in Chapter 5, was devoted to compare REML to ML estimates
using the nlme R package and a stochastic-approximation EM (SAEM) method, to verify
if the REML produces more accurate or less-biased estimates for the variance components
in the NLMEMs. This study showed that in some cases the ML method underestimates
the variance components.

The third research topic, in Chapter 6, consisted of proposing a general nonlinear
mixed-effects model where no linear structure for random effects are considered, with
random components following a scale mixture of normal distributions. This model is
estimated via the SAEM algorithm and showed a superiority of heavy-tailed models over
the normal distribution.

As future research, a more intensive diagnostic study is intended to be done, by
considering local influence, for instance, Cook (1986) and Poon and Poon (2001). Other
data sets will also be considered, to illustrate the general nonlinear mixed-models proposed
in Chapter 6.

REML and the general mixed-effects models will be studied for skewed distribu-
tions in the scale-mixture of normal distributions.
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APPENDIX

A
OTHER SCENARIOS FOR THE REML

This appendix shows a summary of the statistics and figures from other scenarios
in the simulation study. In scenario 2, we used:

A.1 Scenario Two
Table 19 – Simulation results for the pharmacokinetic model with theoretical fixed-

effects parameters (lCl, lKa, lKe)⊤ = (−3.0,0.5,−2)⊤ and theoretical variance
components(τ⊤,σ2)⊤1 = (0.2,0.75,0.1)⊤.

ML REML
Dist. Par. Mean Bias RMSE Mean Bias RMSE

Normal lCl -2.9908 0.0092 0.0471 -2.9660 0.0340 0.0702
lKa 0.5118 0.0118 0.1838 0.5139 0.0139 0.1322
lKe -2.5017 -0.0017 0.0266 -2.5007 -0.0007 0.0278
τ1 0.1797 -0.0203 0.0781 0.2296 0.0296 0.0956
τ2 0.6977 -0.0523 0.3258 0.7613 0.0113 0.3423

σ2 0.0982 -0.0018 0.0139 0.0995 -0.0005 0.0141
t4 lCl -3.0037 -0.0037 0.0441 -2.9816 0.0184 0.0690

lKa 0.5133 0.0133 0.1966 0.5222 0.0222 0.1554
lKe -2.5029 -0.0029 0.0279 -2.5035 -0.0035 0.0285
τ1 0.1506 -0.0494 0.0879 0.1771 -0.0229 0.0776
τ2 0.6058 -0.1442 0.3555 0.6797 -0.0703 0.3508

σ2 0.0930 -0.0070 0.0233 0.0941 -0.0059 0.0230
Slash4 lCl -2.9984 0.0016 0.0514 -2.9813 0.0187 0.0695

lKa 0.5140 0.0140 0.2051 0.5193 0.0193 0.1650
lKe -2.5037 -0.0037 0.0303 -2.5044 -0.0044 0.0301
τ1 0.1674 -0.0326 0.0792 0.1979 -0.0021 0.0782
τ2 0.6780 -0.0720 0.3370 0.7449 -0.0051 0.3496

σ2 0.0981 -0.0019 0.0154 0.0990 -0.0010 0.0154
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Figure 28 – Boxplots of the variance component estimates obtained from the simulation study.
Panels in line (a) correspond to normal distribution, panels in line (b) represents t4
distribution and in line (c) the slash4 distribution. The horizontal dotted lines are
the theoretical values.



A.2. Scenario Three 107

A.2 Scenario Three
Table 20 – Simulation results for the pharmacokinetic model with theoretical fixed-effects pa-

rameters (lCl, lKa, lKe)⊤ = (−3.0,0.5,−2.0)⊤ and theoretical variance components
(τ⊤,σ2)⊤1 = (0.04,0.15,0.1)⊤.

ML REML
Dist. Par. Mean Bias RMSE Mean Bias RMSE

Normal lCl -2.9977 0.0023 0.0350 -2.9870 0.0130 0.0387
lKa 0.4980 -0.0020 0.0895 0.4988 -0.0012 0.0817
lKe -2.5001 -0.0001 0.0148 -2.5001 -0.0001 0.0149
τ1 0.0381 -0.0019 0.0126 0.0443 0.0043 0.0174
τ2 0.1427 -0.0073 0.0493 0.1507 0.0007 0.0514

σ2 0.0997 -0.0003 0.0072 0.0999 -0.0001 0.0072
t4 lCl -3.0035 -0.0035 0.0327 -2.9864 0.0136 0.0380

lKa 0.5017 0.0017 0.1016 0.5040 0.0040 0.0832
lKe -2.5007 -0.0007 0.0152 -2.5030 -0.0030 0.0181
τ1 0.0358 -0.0042 0.0155 0.0469 0.0069 0.0204
τ2 0.1326 -0.0174 0.0596 0.1474 -0.0026 0.0627

σ2 0.0988 -0.0012 0.0181 0.0999 -0.0001 0.0179
Slash4 lCl -3.0002 -0.0002 0.0384 -2.9861 0.0139 0.0407

lKa 0.4982 -0.0018 0.1049 0.5006 0.0006 0.0915
lKe -2.5007 -0.0007 0.0167 -2.5016 -0.0016 0.0169
τ1 0.0378 -0.0022 0.0135 0.0453 0.0053 0.0182
τ2 0.1428 -0.0072 0.0520 0.1529 0.0029 0.0552

σ2 0.0998 -0.0002 0.0093 0.1000 0.0000 0.0093
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Figure 29 – Boxplots of the variance component estimates obtained from the simulation study.
Panels in line (a) correspond to normal distribution, panels in line (b) represent t4
distribution and in line (c) the slash4 distribution. The horizontal dotted lines are
the theoretical values.
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A.3 Scenario Four
Table 21 – Simulation results for the pharmacokinetic model with theoretical fixed-effects pa-

rameters (lCl, lKa, lKe)⊤ = (−3.0,0.5,−2.0)⊤ and theoretical variance components
(τ⊤,σ2)⊤1 = (0.04,0.15,0.1)⊤.

ML REML
Dist. Par. Mean Bias RMSE Mean Bias RMSE

Normal lCl -3.0015 -0.0015 0.0925 -2.9997 0.0003 0.0925
lKa 0.5056 0.0056 0.1915 0.5066 0.0066 0.1912
lKe -2.5021 -0.0021 0.0511 -2.5017 -0.0017 0.0512
τ1 0.0317 -0.1683 0.1700 0.0398 -0.0002 0.0298
τ2 0.1205 -0.6295 0.6378 0.1550 0.0050 0.1330

σ2 0.0962 -0.0038 0.0280 0.0997 -0.0003 0.0288
t4 lCl -3.0053 -0.0053 0.0991 -3.0009 -0.0009 0.1022

lKa 0.4979 -0.0021 0.2180 0.5007 0.0007 0.2172
lKe -2.5066 -0.0066 0.0639 -2.5046 -0.0046 0.0578
τ1 0.0339 -0.0061 0.0338 0.0445 0.0045 0.0419
τ2 0.1260 -0.0240 0.1488 0.1756 0.0256 0.2111

σ2 0.1030 0.0030 0.0523 0.1069 0.0069 0.0540
Slash4 lCl -3.0054 -0.0054 0.1055 -3.0025 -0.0025 0.1057

lKa 0.5089 0.0089 0.2260 0.5128 0.0128 0.2283
lKe -2.5059 -0.0059 0.0590 -2.5056 -0.0056 0.0590
τ1 0.0331 -0.0069 0.0272 0.0414 0.0014 0.0328
τ2 0.1267 -0.0233 0.1209 0.1661 0.0161 0.1621

σ2 0.0968 -0.0032 0.0312 0.1004 0.0004 0.0323
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Figure 30 – Boxplots of the variance component estimates obtained from the simulation study.
Panels in line (a) correspond to normal distribution, panels in line (b) represent t4
distribution and in line (c) the slash4 distribution. The horizontal dotted lines are
the theoretical values.
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A.4 Scenario Five
Table 22 – Simulation results for the pharmacokinetic model with theoretical fixed-effects pa-

rameters (lCl, lKa, lKe)⊤ = (−3.0,0.5,−2.0)⊤ and theoretical variance components
(τ⊤,σ2)⊤1 = (0.04,0.15,0.5)⊤.

ML REML
Dist. Par. Mean Bias RMSE Mean Bias RMSE

Normal lCl -3.0214 -0.0214 0.0739 -3.0212 -0.0212 0.0728
lKa 0.5135 0.0135 0.1356 0.5145 0.0145 0.1359
lKe -2.5179 -0.0179 0.0665 -2.5176 -0.0176 0.0654
τ1 0.0359 -0.0041 0.0175 0.0394 -0.0006 0.0186
τ2 0.1353 -0.0147 0.0789 0.1516 0.0016 0.0851

σ2 0.4827 -0.0173 0.0703 0.4873 -0.0127 0.0700
t4 lCl -3.0377 -0.0377 0.0831 -3.0341 -0.0341 0.0790

lKa 0.5224 0.0224 0.1450 0.5216 0.0216 0.1431
lKe -2.5249 -0.0249 0.0712 -2.5214 -0.0214 0.0675
τ1 0.0305 -0.0095 0.0206 0.0341 -0.0059 0.0211
τ2 0.1040 -0.0460 0.0899 0.1205 -0.0295 0.0926

σ2 0.4512 -0.0488 0.1209 0.4563 -0.0437 0.1201
Slash4 lCl -3.0388 -0.0388 0.0881 -3.0364 -0.0364 0.0854

lKa 0.5225 0.0225 0.1548 0.5224 0.0224 0.1536
lKe -2.5294 -0.0294 0.0771 -2.5272 -0.0272 0.0743
τ1 0.0354 -0.0046 0.0180 0.0389 -0.0011 0.0191
τ2 0.1320 -0.0180 0.0830 0.1493 -0.0007 0.0898

σ2 0.4807 -0.0193 0.0783 0.4852 -0.0148 0.0779
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Figure 31 – Boxplots of the variance component estimates obtained from the simulation study.
Panels in line (a) correspond to normal distribution, panels in line (b) represent t4
distribution and in line (c) the slash4 distribution. The horizontal dotted lines are
the theoretical values.
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