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including the ones necessary to develop satisfactorily this research project.

To my friends, colleagues and professors of the Department of Mathematics of Univer-

sidade Federal of São Carlos, I owe you my gratitude for the contributions and, of course,

the fun in the past four years.

This work had the indispensable financial support of CAPES, for which I am grateful.





Resumo

Neste trabalho, estudamos a caracterização espectral e existência de cones de Dirac,

sempre utilizando modelos de grafos quânticos periódicos, em três situações. Na primeira,

modelamos materiais bidimensionais e hexagonais, como o Grafeno e Nitreto de Boro.

Neste caso, consideramos o operador de Dirac com condições de vértices de Robin. Na

segunda situação, propomos uma modelagem de duas e três camadas de grafeno no em-

pilhamento do tipo Bernal (também chamado de empilhamento do tipo AB). Utilizando

o operador de Schrödinger com condições de vértice de Neumann, conseguimos expressões

exatas para as relações de dispersão desses materiais. Na última situação, também con-

siderando o operador de Schrödinger com condições de Neumann, propomos a modelagem

do grafeno multicamada para n folhas, no empilhamento do tipo AA. Para n = 2, 3, ex-

pressões exatas para a relação de dispersão foram obtidas, enquanto que para n ≥ 4,

utilizamos aproximações para o estudo dos cones de Dirac. Ainda no empilhamento AA,

um grafo quântico tridimensional foi proposto para a modelagem e estudo dos cones de

Dirac do grafite.

Palavras-Chave: Grafeno, Nitreto de Boro, operador de Schrödinger, operador de Dirac,

Grafeno Multicamadas, cones de Dirac, relação de dispersão.
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Abstract

We study the spectral characterization and Dirac cones, always through periodic quan-

tum graphs, in three situations. Firstly, we model bidimensional honeycomb materials,

for instance, Graphene and Boron Nitride. We consider the Dirac operator with more

general Robin vertex condition. Secondly, we propose a model for Bernal-stacked (also

called AB-stacked) bilayer and trilayer graphene. Considering the Schrödinger operator

with the standard Neumann vertex condition, we have obtained the exact expressions of

the dispersion relation for these materials. Finally, also considering the Schrödinger op-

erator with Neumann conditions, we propose the modelling of the AA-stacked multilayer

graphene (for n any positive integer) and AA-stacked graphite (a 3D model). For n = 2, 3,

exact expressions for the dispersion relations were obtained. For n ≥ 4, approximations

was employed for the study of the Dirac cones.

Keywords: Graphene, Boron Nitride, Schrödinger operator, Dirac operator, Multilayer

Graphene, Dirac cones, dispersion relation.
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Chapter 1

Introduction

In practical terms, graphene is a two-dimensional material, a single layer of graphite,

with carbon atoms arranged in the well-known honeycomb periodic structure [19, 9, 7]; it

is the union of two triangular sublattices (see (2.1)), gA (with atoms of type-A) and gB

(with atoms of type-B), each atom of type-A has exactly three nearest neighbors, all of

type-B, and vice versa. From the spectral viewpoint, the presence of the so-called Dirac

cones, at the Dirac points of the Brillouin zone of graphene, has outstanding physical

consequences; for instance, the motion of an electron in this region is effectively described

by a two-dimensional Dirac operator with effective zero mass and effective speed of light

c/300; this Dirac operator was first identified in [11] (and experimentally in [45]).

The experimental isolation of graphene, in 2004, has triggered a large amount of re-

search papers on the subject, mainly in the physics and chemistry literature. Usually such

theoretical works are based on tight-binding approximations and numerical simulations,

and it is interesting that the first tight-binding consideration was done in 1947 by Wal-

lace [43] as a starting point for understanding the properties of bulk graphite (see also [8]),

with the rather surprising result of a zero-gap semiconductor with a linear dispersion rela-

tion (Dirac cone), at a finite number of Dirac points. To be more precise, let θ = (θ1, θ2)

denotes the quasimomentum in the first Brillouin zone B := [−π, π]2, and λ(θ) the associ-

ated dispersion relation; θD ∈ B is a Dirac point candidate (D-point) if there is a constant

γ 6= 0 so that

λ(θ)− λ(θD) +O((λ(θ)− λ(θD))2) = ±γ|θ − θK |+O(|θ − θK |2),

and we have a Dirac cone, since valence (the “-” sign above) and conducting (the “+”
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sign) bands touch linearly in lowest order approximation.

For mathematical studies of the spectrum and Dirac cones of models based on Schrö-

dinger operators, we mention the works by Fefferman and Weinstein [14] and Kuchment

and Post [23]. In [14] the Schrödinger operator with honeycomb periodic smooth potentials

is considered and, under some conditions, the presence of Dirac cones was proved. In [23]

the authors have considered an approach of a quantum graph model for the graphene

and derive its spectral properties, including the presence of Dirac cones (see also [1, 8,

40]). An approach through quantum graphs seems to have been first proposed by Linus

Pauling [37] to describe some chemical systems and implemented in [40]. Recall that,

in quantum graph models, the electron is confined to the edges of the graph, and the

model starts with Schrödinger operators on edges; the usual boundary conditions at the

vertices are the Neumann conditions, characterized by continuity and zero total flux at the

vertices [23] (it is also explicitly stated in (2.6)). Although the quantum honeycomb graph

is an approximation as a model of graphene, it is possible to (rigorously) explicitly obtain

the exact dispersion relation via the Floquet-Bloch theory [13, 38] of periodic Schrödinger

operators.

Other works with a mathematical approach discuss self-adjoint extensions of the Dirac

operator with specific boundary conditions [3, 16], the approximation of the Schrödinger

dynamics by a massless Dirac operator [15], confinement of Dirac fermions in graphene [18],

etc.

However, about 700 bidimensional materials have been predicted to be stable1! One

outstanding material is the boron nitride BN2, with the same honeycomb structure of

graphene but with nitrogen atoms at type-A vertices and boron at type-B ones. We

restrict ourselves to one or two kinds of atoms and use the BN as a practical paradigm in

our discussion.

There is also theoretical and experimental interest in systems composed of finite layers

of graphene (see, for instance [2, 6, 24, 26, 30, 32, 33, 35, 36, 39]), also as an approximation

for the bulk graphite. There are two important remarks here; first, the strength of the bond

between consecutive layers are much weaker than the bonds between neighbor carbon atoms

in the same layer (see Remark 3.1.1); second, there are different possibilities for stacking

layers of graphene, and it was experimentally found that physical properties depend on

1https://en.wikipedia.org/wiki/Two-dimensional_materials
2https://en.wikipedia.org/wiki/Boron_nitride
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Figure 1.1: A representation of AB-stacked bilayer graphene. Half of atoms lies over atoms

and the other half of atoms lies over the center of a hexagon.

how layers are stacked.

The main configurations of multilayer graphene are the AB-stacked form (also called

Bernal-stacked), for which half of the atoms lie over an atom of the previous layer and

half of the atoms lie directly over the center of a hexagon in the previous layer (see Figure

1.1), and the AA-stacked form, in which all layers are aligned. It has been physically

observed that the AB-stacked configuration is more stable than the AA-stacked structure,

and so the theoretical and experimental works are more abundant for AB-stacked systems

(usually for bilayer and trilayer graphene); however, in some situations the presence of

bilayer graphene with AA-stacking is also common [28, 2, 10, 33, 39]. It is expected that the

increasing interest in theoretical AA-stacking, including this work, will trigger additional

experimental research for this configuration. Here we also consider the AA-stacked bulk

graphite as infinitely many layers indexed by the set of integer numbers.

This work is divided in three situations. The first one has a threefold motivation;

always through the quantum graph model of a honeycomb structure with at most two

different kinds of atoms. First, are there Dirac cones if the graphene is modelled directly

by the (massive) Dirac operator, instead of the Schrödinger one? Would we have a possible

“relativistic Dirac cone,” or is it an artifact of the spectral theory of Schrödinger operators?

Second, what is the result if graphene is modelled through the more general Robin boundary

condition (see (2.6); which is reduced to the Neumann case when some parameters vanish)?

Will Dirac cones be present? Third, we propose to model BN by using two different
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parameter values in the Robin boundary conditions; is such model capable to rigorously

reproduce basic BN results from the physics and chemistry literature? Note that the second

and third motivations apply to the Schrödinger case as well.

In the second situation we investigate spectral properties and the possible presence of

Dirac cones for bilayer and trilayer graphene systems, Bernal-stacked (AB-stacked) and

modelled by quantum graphs, that is, we extend the mathematical analysis of [23] to two

and three AB-stacked graphene sheets. In this setting, we need that all edges are of equal

lengths, so the weak interaction between layers should be modelled in an alternative way.

Note that we no longer will consider the Dirac operator. Instead, from this point we will

consider the Schrödinger operator with the standard Neumann vertex condition; we require

the continuity of wavefunctions at the vertices and propose to model the weak interaction

between layers through a parameter t0 > 0 in the total flux (i.e., sum of derivatives of

wavefunctions) at each vertex (t0 is the same for all vertices, see (1.4)). Details of the

proposed model appear in Section 3.1.

In the last situation we perform a similar study to the case of AB-stacked multilayer

graphene, but now for the AA-stacked multilayer graphene and AA-stacked graphite. As

before, we suppose that all edges are of equal lengths and models the weak interaction

between layers with the parameter t0 in the Neumann vertex condition (see (1.4) and also

(4.4) and (4.5)).

Now we summarize the main results in each situation described above. Details appear

in other chapters. Recall that, in the usual quantum graph model, the Schrödinger operator

in an edge e of the graph is

Heu(x) = −d2u

dx2
(x) + q(x)u(x), (1.1)

for an even potential q(x), and the full operator is the sum of such operators over all edges

with self-adjoint boundary conditions at each vertex v. The Robin vertex condition (also

called δ-type condition) is given byu is continuous at v∑
e±u′e(v) = δvu(v),

(1.2)

with real parameters δv. The first condition is just the continuity of domain elements at

each vertex. In the second one, the sum of derivatives is over all edges connected to v,

with the “+” sign if v is a initial point of the edge and “−” if it is a final point, the “total
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flux at each edge,” that here is proportional to the value of the own function at v; if the

parameter δv = 0 for all vertices v, we have the habitual Neumann condition (considered,

e.g., in [23]). We suppose that δv may take two values, δA and δB, for atoms of type-A

(e.g., nitrogen) and B (e.g., boron), respectively. Since for the hexagonal graph one may

suppose that all type-A vertices are initial points of edges and all type-B vertices are final

points, the second condition in (1.2) takes the form∑
e

u′e(v) = δAu(v),
∑
e

u′e(v) = −δBu(v), (1.3)

if v is of type-A and type-B, respectively.

In Chapter 2, instead of the usual operator He above, we consider the Dirac operator De

on each edge e, whose action is

Deu(x) = −i}cdu(x)

dx
α +mc2u(x)β + q(x)u(x)I,

where α and β are Pauli matrices (see Section 2.1), I the 2× 2 identity matrix, },m and c

are Planck’s constant, the mass of the electron and the speed of light, respectively. The

above Robin vertex condition has a version for Dirac operators presented in (2.6), and here

we again consider the two values δA and δB for the parameter δv.

In Section 2.1 we present details of the construction of the hexagonal graph model with

Dirac operators and the Robin boundary conditions; a main difference is that each vector u

has two components and the operator is of first order.

In Subsection 2.2 we adapt the spectral description of [23] (Schrödinger with Neumann

condition) to the Dirac case with Robin vertex conditions; although we have got similar

statements, the proofs require suitable adaptations for the Dirac case; however, we have

not obtained eigenvalues of infinite multiplicity, since the construction in [23] does not

adjust to the two-components Dirac case.

Then we investigate the possible presence of the Dirac cones in this setting of Dirac

operator and more general boundary conditions at vertices; this is the contents of Sec-

tion 2.3. Here we have (in our opinion) the most interesting results of that chapter; we

have proved that Dirac cones may be present in this relativistic model, and they occur if,

and only if, δA = δB, that is, the parameter δv is the same for all vertices (so the same

kind of atoms in the honeycomb lattice; of course, including the Neumann case δv = 0 for

all v discussed in [23]); see Theorem 2.3.1. More precisely, if δA 6= δB, there is a (positive)

gap between the valence and conduction bands and no point in the dispersion relation is

(approximately) linear.
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It is worth mentioning that these results also hold true for the Schrödinger case (i.e.,

Dirac cones do exist if and only if δA = δB), although we do not present technicalities since

they may be adapted from the proof of Theorem 2.3.1 ahead. So, in Section 2.3 we are able

to conclude that, from the point of view of the proposed model with honeycomb symmetry,

Dirac cones and their physical consequences, as ballistic electron motion [19, 9, 7], occur

only for the graphene and not for BN where a gap in the dispersion relation is found

[1, 17, 44, 27]; this is exactly the results from the physics and chemistry literature, where the

gap in the BN dispersion relation is usually considered a consequence of electronegativity

difference between B and N atoms, here modelled by different Robin parameters.

In Chapter 3, we propose a quantum graph model that is supposed to represent the

AB-stacked bilayer and trilayer graphene. We consider the Schrödinger operator described

in (1.1) with the usual Neumann vertex condition,u is continuous at v∑
e u
′
e(v) +

∑
f t0u

′
f (v) = 0,

(1.4)

where “e” represent the edges on layers and “f” the edges between two consecutive layers,

and the parameter t0 models the weak interaction between consecutive layers of graphene;

see details in Section 3.1. In Section 3.2 we perform the spectral analysis of the Schrödinger

operator for the AB-stacked bilayer and trilayer graphene. For both bilayer and trilayer

cases, the spectra have eigenvalues of infinite multiplicity (the eigenvalues of the Dirichlet

Hamiltonian in a single edge). Moreover, an absolutely continuous component built of

closed intervals (bands). The singular continuous spectrum is always absent.

In Section 3.3, we prove our main result about Dirac cones for such situation. We show

that the bilayer graphene model has no Dirac cones, whereas such cones are present in

trilayer graphene dispersion relation. However, the bilayer dispersion relation is gapless

and with quadratic touching. Finally, in Section 3.4, we see that the obtained results are

consistent with the physics literature.

In Chapter 4, we perform a similar study from Chapter 3. Here we summarize the main

differences from both cases. For bilayer and trilayer systems, we have got the presence and

exact descriptions of Dirac cones (there are no higher order corrections). For the n-layer

graphene, n ≥ 4, we employ an approximation for general model determinants so that we

need to consider small values of t0 > 0, and we have also shown the presence of Dirac cones.

It was observed that, for our argument, the higher the number of layers n the closer to
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zero t0 needs to be. Here is a important remark about considering AB-stacked multilayer

graphene with n layers of graphene: by employing approximations (and further physical

literature) we had evidence that, for n even, the dispersion relation has no Dirac cones.

However, we did not managed to prove, in this model, that the approximated parabolic

touch does not turns into a Dirac cone for the original problem.

The AA-model for graphite is also shown to present Dirac cones; no approximate model

is employed in this situation. Note that Dirac fermions (a consequence of Dirac cones) have

also been experimentally reported in graphite [45]. We compare our findings with results

obtained in the physics literature for small values of n and graphite. Our work seems to be

the first one that considers any finite number of graphene layers, and in a mathematically

rigorous approach.

In Section 4.1 we present the construction of the quantum periodic graph that models

the AA-stacked multilayer graphene and AA-stacked graphite. In Section 4.2 we study the

spectra of the Schrödinger operator in each case. The presence of Dirac cones is proved in

Section 4.3 and the obtained results are compared with the physics literature in Section 4.4.





Chapter 2

Dirac Operator on hexagonal 2D

lattice

In this chapter, we perform the spectral analysis for the Dirac operator D defined on the

hexagonal 2D structure, represented by a quantum periodic graph (see Figure 2.1). The

main goal here is to check that we are able to extend some results of [23] about spectral

characterization of D and Dirac cones.

In Section 2.1 we present the construction of the quantum periodic graph that is pro-

posed to represent one single layer of a hexagonal 2D material. Examples of hexagonal 2D

materials are Graphene and Boron Nitride, but about 700 two-dimensional materials have

been predicted to be stable1!

The study of the spectrum of D is presented in Subsection 2.2. Finally, in Section 2.3

we prove our main result about Dirac cones (see Theorem 2.3.1).

2.1 Dirac graph for single layer graphene

Let G be the hexagonal 2D lattice defined as the union of two triangular sublattices gA

and gB,

gA := ZE1 ⊕ ZE2 and gB := (1, 0) + ZE1 ⊕ ZE2

where

E1 = (3/2,
√

3/2) and E2 = (0,
√

3) (2.1)

1https : //en.wikipedia.org/wiki/Two− dimensional−materials

16



2.1. Dirac graph for single layer graphene 17

E
1

E
2

A
B

A

A
B

B

Figure 2.1: The hexagonal 2D lattice G and its lattice vectors E1 and E2; some type-A

and type-B points are labeled.

are the lattice vectors. It is supposed that atoms are situated at the vertices of G and the

covalent bonds are represented by edges of length 1 (see Figure 2.1). We denote by E(G)

and V (G) the set of edges and set of vertices of G, respectively.

Consider the action of group Z2 on G defined by the shift of x ∈ G by a vector

p = (p1, p2) ∈ Z2, that is,

Z2 ×G 3 (p, x) 7−→ x+ p1E1 + p2E2. (2.2)

As fundamental domain of this action, we choose the set W , as shown in Figure 2.2. It

contains two vertices v1, v2 and three edges a1, a2 and a3, which are conveniently directed

as in Figure 2.2.

Since G is supposed to be embedded into the Euclidean space R2, we can naturally

identify each edge e ∈ E(G) with the segment [0, 1], which identifies the end points of e

with 0 and 1. The arc length metric induces a measure, denoted by dx, which permits

to integrate functions on G. We denote a function on G by u = {ue}E(G), where ue =[
u1
e u2

e

]ᵀ
. Then we can define the Hilbert space of all square integrable functions on G,

L2(G,C2) =
⊕

e∈E(G)

L2(e,C2),

with norm ‖u‖L2(G,C2) given by

‖u‖2
L2(G,C2) =

∑
e∈E(G)

‖ue‖2
L2(e,C2).

Now we define the Dirac operator acting on functions of L2(G,C2). Let q0 be a real even

continuous function on [0, 1], that is, q0(x) = q0(1 − x), for all x ∈ [0, 1]. Since each edge
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E
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Figure 2.2: The fundamental domain W . It contains three edges a1, a2 and a3 and two

vertices v1 and v2.

r
2

r
1

H
1

H
2

Figure 2.3: The reflection lines r1 and r2 and hexagons H1 and H2.

e ∈ E(G) is identified with the segment [0, 1], we can define a potential q on G acting in

each edge of G as q0. Note that due the evenness assumption on q0, the potential q does

not depend on the orientations chosen along the edges. We have the following result:

Lemma 2.1.1. The potential q defined as above is invariant with respect to the symmetry

group of the G.

Proof. The proof of this lemma is analogous to the one presented in [12]. For completeness,

we present here the arguments.

Let Tp denote the shift by the integer vector p1E1 + p2E2, where p = (p1, p2) ∈ Z2 and

let R1 and R2 denote the reflections with respect to the lines r1 and r2 in the Figure 2.3,
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T(H )1

T(H )1
T(H )1

T(H )1

T(H )2

T(H )2

T(H )2

T(H )2

(a)

(d)

(b)

(c)

Figure 2.4: The four possibilities for T (H).

respectively. First we prove that the symmetry group of the graph G is generated by Tp,

R1 and R2, and then show that q is invariant under each of these transformations.

Let F : G→ G be an isometry from the symmetry group of the graph G. Let H1 and H2

be the shaded hexagons in the Figure 2.3 and denote H := H1∪H2. Let p0 = (p0
1, p

0
2) ∈ Z2

such that

T (H1) := Tp0(F (H1))

coincides with H1, as hexagons. Since T preserves distances, then T (H) is one of the four

possibilities of the Figure 2.4.

In the case (a), T = Id, then F = Tp0 . In the case (b), we have that T = R1, thus

F = Tp0R1. In the case (c), F = Tp0R2R1, since T = R2R1. Finally, in the case (d), T = R2

which implies F = Tp0R2. Therefore, we can represent any isometry of the symmetry group

of G as a combination of Tp, R1 and R2.

Now we prove that the potential q is invariant with respect of each of the transforms

Tp, R1 and R2. Let M ∈ e, e ∈ E(G), be some point of the graph G. Let xe(M) be the

point in the interval [0, 1] that is identified with M . Since the directions of the edges of G

are defined periodically from the directions of the edges a1, a2 and a3 of the fundamental

domain W (see Figure 2.2), it follows that xe(M) = xTp(e)(Tp(M)), p ∈ Z2. Then,

q(M) = q0(xe(M)) = q0(xTp(e)(Tp(M))) = q(Tp(M)). (2.3)

Thus the potential q is invariant with respect to the shifts Tp, p ∈ Z2. For the reflections

R1, and R2, due the directions of the edges we have

xe(M) = 1− xR1(e)(R1(M))
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and

xe(M) = xR2(e)(R2(M)).

Analogous to (2.3), we see that q(M) = q(R2(M)), and since q0 is even on [0, 1], it follows

that

q(M) = q0(xe(M)) = q0(1− xR1(e)(R1(M)))

= q0(xR1(e)(R1(M))) = q((R1(M))).

Therefore, the potential q is invariant with respect to the symmetry group of the graph

G.

Let D be the Dirac operator [42] which acts along each edge e ∈ E(G) as

Due(x) = −i}cdue(x)

dx
α +mc2ue(x)β + q(x)ue(x)I, (2.4)

where

ue(x) =

u1
e(x)

u2
e(x)

 , α =

0 1

1 0

 , β =

1 0

0 −1

 , I =

1 0

0 1

 (2.5)

and }, m and c are Planck’s constant, the mass of the electron and the speed of light,

respectively. The matrices α and β are Pauli matrices and satisfy the algebraic relations

α2 = β2 = I and αβ + βα = 0,

The domain of the Dirac operator is the subspace domD that consists the functions u

on G such that:

(i) ue ∈ H1(e,C2), for all e ∈ E(G), where H1(e,C2) is the usual Sobolev Space in the

edge e and ue is the restriction of u to e;

(ii)
∑

e∈E(G) ‖ue‖2
H1(e,C2) <∞;

(iii) The Robin condition at vertex v (adapted from (1.2)-(1.3)), is defined asu
1 is continuous at v∑
e∈Ev(G)±u2

e(v) = δvu
1(v),

(2.6)

were Ev(G) is the set of edges of G that contains the vertex v, δv is a fixed real

number, and the “+” sign in ±u2
e(v) if v is the initial point of the edge e and “−”
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sign if it is an end point. In the graphene we may take (and we do) type-A vertex

as initial points and type-B as final points of vertices, so that the second equation

in (2.6) takes the form ∑
e∈Ev(G)

u2
e(v) = ±δvu1(v),

with “+” for type-A vertices and “−” for type-B vertices. The particular case when

δv = 0, for all v ∈ V (G), is called Neumann vertex condition and it is usually

considered the “standard” one.

Remark 2.1.1. Graphene is composed by a hexagonal 2D lattice such that the carbon

atoms are situated at the vertices. In [23], the graphene was modeled by the Schrödinger

periodic graph G with Neumann vertex condition, that is, δv = 0 for all vertices. A more

general suitable boundary condition is to consider a constant δv = δC, for all v ∈ V (G), as

we do.

Boron nitride is a 2D material with hexagonal structure composed by nitrogen and boron

atoms; here, nitrogen atoms are situated at type-A vertices whereas the boron atoms are

located at type-B vertices. We propose to use different values of the parameter δv in Robin

condition (2.6) as a way to differentiate such atoms in the model: if v is a type-A (type-B)

vertex, we choose δv = δN (δv = δB), with δN 6= δB.

Remark 2.1.2. If we consider the Robin vertex condition (2.6) for the Schrödinger op-

erator (instead the Neumann vertex condition presented in [23]), we see that the first u1

and second u2 components of u ∈ domD play the role of the function u ∈ domH and its

derivative u′, respectively.

This definition makes D an unbounded self-adjoint operator ([22, Theorem 1.4.19] is

easily adapted for the Dirac operator) and, by the evenness condition on the potential and

Lemma 2.1.1, its action is invariant with respect to all symmetries of G.

2.2 Spectral Analysis of the Dirac operator

In this section we use the Floquet-Bloch theory [5, 13, 21, 25, 5, 38] to study the spec-

trum σ(D) of D. This theory also holds in the quantum graph case ([23] and references

therein). For each quasimomentum θ = (θ1, θ2) in the Brillouin zone B := [−π, π]2, let
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D(θ) be the Bloch Dirac operator acting as in (2.4) on functions of H1(W,C2) that sat-

isfy the conditions (i), (ii) and (iii) of domD and also the cyclic condition (or Floquet

condition)

u(x+ p1E1 + p2E2) = ei(p1θ1+p2θ2)u(x), (2.7)

for any p = (p1, p2) ∈ Z2 and x ∈ G. It is known that D(θ) has purely discrete spectrum

σ(D(θ)) = {λn(θ)}n. The function θ 7→ {λn(θ)}n is called the dispersion relation of D and

it determines its spectrum [5]

σ(D) =
⋃
θ∈B

σ(D(θ)). (2.8)

Thus, we need to determine the spectra of D(θ), for θ ∈ B, by solving the eigenvalue

problem

D(θ)u = λu, u ∈ domD(θ), (2.9)

for λ ∈ R and u 6= 0.

Let us write out the vertex conditions (iii) and the cyclic condition (2.7) on the funda-

mental domain W . As we identify each edge e ∈ E(G) with the interval [0, 1], it follows

that v1 ∼ 0 and vi ∼ 1, for i = 2, 3, 4 (see Figure 2.2). Thus,ua1(1) = u(v2) = u(v3 + E1) = eiθ1u(v3) = eiθ1ua2(1)

ua1(1) = u(v2) = u(v4 + E2) = eiθ2u(v4) = eiθ2ua3(1)
. (2.10)

Hence, by (2.10), the conditions (iii) and (2.7) on W are equivalent to

u1
a1

(0) = u1
a2

(0) = u1
a3

(0) := β1

u1
a1

(1) = eiθ1u1
a2

(1) = eiθ2u1
a3

(1) := β2

u2
a1

(0) + u2
a2

(0) + u2
a3

(0) = δNβ1

u2
a1

(1) + eiθ1u2
a2

(1) + eiθ2u2
a3

(1) = −δBβ2

. (2.11)

We will use now an auxiliary operator. Let DD denote the Dirichlet Dirac operator

acting as in (2.4) on functions of L2([0, 1],C2) that satisfy the Dirichlet boundary conditions,

that is,

u1(0) = u2(0) and u1(1) = u2(1). (2.12)

It is well known (see [41]) that DD has pure point spectrum, denoted here by σ(DD) =

{λDn }n . Let λ /∈ σ(DD). Then there exists two linearly independent solutions ϕλ,0 =[
ϕ1
λ,0 ϕ2

λ,0

]ᵀ
and ϕλ,1 =

[
ϕ1
λ,1 ϕ2

λ,1

]ᵀ
of the eigenvalue problem

Dϕ = λϕ
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such that ϕ
1
λ,0(0) = 1

ϕ1
λ,0(1) = 0

ϕ
1
λ,1(0) = 0

ϕ1
λ,1(1) = 1

(2.13)

and

ϕ2
λ,1(x) = −ϕ2

λ,0(1− x), ∀x ∈ [0, 1]. (2.14)

In fact, it is easy to show that ϕλ,0 =
[
ϕ1
λ,0 ϕ2

λ,0

]ᵀ
exists, then we just take ϕλ,1 =[

ϕ1
λ,1 ϕ2

λ,1

]ᵀ
as ϕ1

λ,1(x) = ϕ1
λ,0(1−x) and ϕ2

λ,1(x) = −ϕ2
λ,0(1−x), for all x ∈ [0, 1]. We can

define ϕλ,0 and ϕλ,1 in each edge e ∈ E(G) as (ϕλ,i)e = ϕλ,i, for i = 0, 1, since each edge of

the graph G is identified with the interval [0, 1]. We will keep the same notation ϕλ,i for

such functions.

Remark 2.2.1. In [23], the Schrödinger-Dirichlet operator considered was HD, which acts

on functions u ∈ L2[0, 1] as

HDu(x) = −d2u(x)

dx2
+ q0(x)u(x)

and satisfies the Dirichlet boundary condition u(0) = u(1) = 0. Note that there is no con-

dition on the derivative u′(x), differently from the Dirac case that ties the first and second

components of u, as we see in (2.12). This leads to some technical differences between

the Schrödinger and Dirac cases. For instance, in the latter, we can not construct eigen-

functions with infinite multiplicity by following the process presented in [23] (see Remark

2.2.4).

For each λ /∈ σ(DD), let 
ua1 = β1ϕλ,0 + β2ϕλ,1

ua2 = β1ϕλ,0 + e−iθ1β2ϕλ,1

ua3 = β1ϕλ,0 + e−iθ2β2ϕλ,1

. (2.15)

With the representation (2.15), the continuity (first two) conditions in (2.11) and the

eigenvalue problem (2.9) are satisfied. It remains to impose the third and fourth conditions

in (2.11). By substituting (2.15) into (2.11),3ϕ2
λ,0(0)β1 + F̄ (θ)ϕ2

λ,1(0)β2 = δNβ1

F (θ)ϕ2
λ,0(1)β1 + 3ϕ2

λ,1(1)β2 = −δBβ2

, (2.16)
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where F (θ) := 1+eiθ1 +eiθ2 and F̄ (θ) is its complex conjugate. Since ϕ2
λ,1(x) = −ϕ2

λ,0(1−x)

for all x ∈ [0, 1], by (2.14) we have that (2.16) is equivalent to−3ϕ2
λ,1(1)β1 + F̄ (θ)ϕ2

λ,1(0)β2 = δNβ1

−F (θ)ϕ2
λ,1(0)β1 + 3ϕ2

λ,1(1)β2 = −δBβ2

. (2.17)

Since ϕ2
λ,1(0) 6= 0, the quotients

η(λ) := ϕ2
λ,1(1)/ϕ2

λ,1(0), αN := δN/ϕ
2
λ,1(0), αB := δB/ϕ

2
λ,1(0)

are well defined. Hence, after dividing the system (2.17) by ϕ2
λ,1(0) and multiplying the

second equation by −1, we obtain(−3η(λ)− αN)β1 + F̄ (θ)β2 = 0

F (θ)β1 + (−3η(λ)− αB)β2 = 0
. (2.18)

Write (2.18) in matrix form, that is

M(λ, θ)

β1

β2

 =

0

0

 ,
where

M(λ, θ) =

−3η(λ)− αN F̄ (θ)

F (θ) −3η(λ)− αB

 . (2.19)

Hence, if there exists θ ∈ B such that detM(λ, θ) = 0, then the representation (2.15)

solves the eigenvalue problem (2.9) and, by (2.8), it follows that λ ∈ σ(D). Such arguments

prove the following result:

Proposition 2.2.1. Let λ /∈ σ(DD). Then λ ∈ σ(D) if and only if there exists θ ∈ B such

that

9η2(λ) + 3(αN + αB)η(λ) + αNαB − F (θ) ¯F (θ) = 0. (2.20)

Proposition 2.2.1 says that, in order to obtain the spectrum of the Dirac operator D,

except for the countable set σ(DD), we need to know the range of the roots of (2.20), which

are given by

η±(λ, θ) =
−(αN + αB)±

√
(αN − αB)2 + 4F (θ)F̄ (θ)

6
. (2.21)
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Remark 2.2.2. Note that the range of the function

F (θ)F̄ (θ) = |F (θ)|2 = 1 + 8 cos

(
θ1 − θ2

2

)
cos

(
θ1

2

)
cos

(
θ2

2

)
is [0, 9] with maximum and minimum attained at (0, 0) and ±(2π/3,−2π/3), respectively.

Hence, the functions ±
√
F (θ)F̄ (θ) touch each other at 0 if and only if F (θ)F̄ (θ) = 0, that

is, if and only if θ = ±(2π/3,−2π/3). Since these points belongs to the diagonal

Bd := {θ ∈ B : θ1 = −θ2}, (2.22)

in order to analyze the range and maximum/minimum points of (2.21), it suffices to con-

sider θ ∈ Bd.

Now, the proof of the following result is straightforward:

Lemma 2.2.1. Let λ /∈ σ(DD). Then η±(λ, θ) given by (2.21) are not constant functions

in θ ∈ B and their ranges are given by

img η+(λ, θ) = [a+, b+] and img η−(λ, θ) = [b−, a−] ,

where

a± =
−(αN + αB)± |αN − αB|

6

b± =
−(αN + αB)±

√
(αN − αB)2 + 36

6
.

Moreover,

(i) max
θ∈B

η+(λ, θ) = b+ and min
θ∈B

η+(λ, θ) = a+ which are attained at (0, 0) and ±(2π/3,−2π/3),

respectively.

(ii) max
θ∈B

η−(λ, θ) = a− and min
θ∈B

η−(λ, θ) = b−, which are attained at ±(2π/3,−2π/3) and

(0, 0), respectively.

It will be convenient to consider the Dirac Periodic operator Dper acting on functions

u ∈ H1(R,C2) as

Dperu(x) = −i}cdu(x)

dx
α +mc2u(x)β + q(x)u(x)I, (2.23)

where α and β are the Pauli matrices given by (2.5) and q(x) is the potential obtained by

extending periodically the even potential q0 (see Section 2.1) to the whole axis R.
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For the spectral problem

Dperϕ = λϕ, (2.24)

let M(λ) be the monodromy matrix of Dper, given by the equationϕ1(1)

ϕ2(1)

 = M(λ)

ϕ1(0)

ϕ2(0)

 , (2.25)

where ϕ is any solution of (2.24). The monodromy matrix shifts a solution ϕ of (2.24) by

the period of the potential. In our case, the period is 1. Let

d(λ) := tr(M(λ))

be the discriminant of the periodic Dirac operator Dper. It is known that d(λ) plays

the major role in the spectral theory of the periodic Dirac operator (see [5]). In the

following, we gather well-known results about the relation between the spectra of Dper and

its discriminant d(λ).

Proposition 2.2.2.

(i) The spectrum σ(Dper) of periodic Dirac operator is purely absolutely continuous.

(ii) σ(Dper) = {λ ∈ R : |d(λ)| ≤ 2}.

(iii) Let {αn}n and {βn}n be the spectra of the Dirac operator with periodic and semi-periodic

conditions on [0, 1], respectively, and let

B2n = [α2n, β2n] and B2n+1 = [β2n+1, α2n+1].

Here,

. . . ≤ αn < βn ≤ βk+1 < αk+1 ≤ αk+2 < . . . ,

with lim
n→±∞

αn = ±∞. Therefore, σ(Dper) = ∪nBn. The closed non-overlapping intervals

Bn are called spectral bands (or just bands) of σ(Dper) and the segments (αn, αn+1) and

(βn, βn+1) are called spectral gaps (or just gaps).

(iv) Let λDk ∈ σ(DD) the kth Dirichlet eigenvalue. Then λDk belongs to the closure of (k+1)th

gap. If the gap closes, λDk is the intersection point of two bands.

(v) Let Bk be the kth band of σ(Dper) and let λ ∈ Bk. Then d′(λ) 6= 0 and d(λ) : Bk −→
[−2, 2] is a homeomorphism. Moreover, d(λ) is decreasing on B2k, increasing on B2k+1 and

has a single extremum in each spectral gap.
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(vi) If q0 = 0, the dispersion relation for Dper is given by

d(λ) = 2 cos

(√
λ2 − (mc2)2

}2c2

)
. (2.26)

Proof. (i)-(v) is a collection of well-known results concerning the spectra of periodic Dirac

operators (see [13, 21, 25, 5, 38]). Here we present the proof of the item (vi). First, note

that, if q0 = 0, then

ψ̄0(x) = ei
p
}x

 1

cp
λ+mc2

 and ψ̄1(x) = e−i
p
}x

− cp
λ−mc2

1

 ,
are two linearly independent solutions of the eigenvalue problem (2.24). It is easy to see

that

φ0(x) :=
1

2
ψ̄0(x)− 1

2

cp

λ+mc2
ψ̄1(x)

and

φ1(x) :=
1

2

cp

λ−mc2
ψ̄0(x) +

1

2
ψ̄1(x)

are also solutions of (2.24) such that

φ0(0) =

1

0

 and φ1(0) =

0

1

 .
Hence the monodromy matrix is given by (see [5])

M(λ) =

φ1
0(1) φ1

1(1)

φ2
0(1) φ2

1(1)

 . (2.27)

Calculating φ1
0(1) we have:

φ1
0(1) =

1

2
ei

p
} − 1

2

cp

λ+mc2

−cp
λ−mc2

e−i
p
} = cos

(p
}

)
,

since
(cp)2

λ2 − (mc2)2
= 1

by the energy-momentum relation

λ2 = (cp)2 + (mc2)2. (2.28)

Similarly we have that φ2
1(1) = cos

(
p
}

)
. Hence, by (2.28) it follows that

p

}
= ±

√
λ2 − (mc2)2

c2}2
,

and (2.26) is proved.
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Now we check that one is able to extend some results of [23] in order to characterize

the spectrum of D. First, we relate the roots η(λ) of (2.20) to the discriminant d(λ) of

the periodic Dirac operator Dper (see Lemma 2.2.2). Next, we present two lemmas that

give conditions on the parameters αN and αB in order to obtain |η±(λ, θ)| ≤ 1, for θ ∈ B.

The proofs of these two results are straightforward from Lemma 2.2.1. This is important

to relate the spectra of the Dirac operator D to the Dirac-periodic operator Dper, given by

(2.4) and (2.23), respectively (see Remark 2.2.6).

Lemma 2.2.2. Let λ /∈ σ(DD) and d(λ) be the discriminant of the periodic Dirac operator

Dper. Then, we have

η(λ) =
d(λ)

2
, (2.29)

where η(λ) is a root of (2.20).

Proof. First, we have that d(λ) = φ1
0(1) + φ2

1(1), by (2.27). Since (2.25) holds for any

solution of eigenvalue problem (2.24), it is still valid for ϕ0,λ and ϕ1,λ. Then, by (2.25)

and (2.27),

ϕ1
0,λ(1) = φ1

0(1) + ϕ2
0,λ(0)φ1

1(1) (2.30)

ϕ2
0,λ(1) = φ2

0(1) + ϕ2
0,λ(0)φ2

1(1) (2.31)

ϕ1
1,λ(1) = ϕ2

1,λ(0)φ1
1(1) (2.32)

ϕ1
2,λ(1) = ϕ2

1,λ(0)φ2
1(1) (2.33)

By (2.13), (2.14) and (2.31), we have that φ1
0(1) = ϕ2

1,λ(1)φ1
1(1). Since φ1

1(1) = 1/ϕ2
1,λ(0),

by (2.33), it follows that φ1
0(1) = η(λ). Finally, (2.33) implies immediately that φ2

1(1) =

η(λ). Therefore, (2.29) is proved.

Lemma 2.2.3. Let αB = αN . Then (2.21) turns to

η±(λ, θ) =
−αN ±

√
F (θ)F̄ (θ)

3
. (2.34)

Moreover,

(i) If αN ∈ [0, 3], then |η+(λ, θ)| ≤ 1, for all θ ∈ B.

(ii) If αN ∈ [−3, 0], then |η−(λ, θ)| ≤ 1, for all θ ∈ B.
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(iii) If αN ∈ (−3, 3), then the touch

η+(λ,±θD) = η−(λ,±θD) =
−αN

3
, (2.35)

with θD = (2π/3,−2π/3), lies in (−1, 1). The unique case that

|η+(λ, θ)| ≤ 1 and |η−(λ, θ)| ≤ 1

simultaneously is when αN = αB = 0, representing the standard Neumann vertex

condition and the Graphene material (see (2.6)).

Remark 2.2.3. In Theorem 2.3.1 we shall prove that the touch (2.35) is, in fact, a Dirac

cone (see Definition 2.3.1).

The proof of this lemma is analogous to the presented in [12]

Lemma 2.2.4. Let αN 6= αB. Then (2.21) satisfies:

(i) |η+(λ, θ)| ≤ 1, for all θ ∈ B, if αB ∈ (−3,+∞) and −3αB

3+αB
≤ αN ≤ 3.

(ii) |η−(λ, θ)| ≤ 1, for all θ ∈ B, if αB ∈ (−∞,+3) and −3 ≤ αN ≤ −3αB

3−αB
.

Remark 2.2.4. We shall have a look at a spectral difference between D and the Schrödinger

operator H, presented in [23]. It was shown that every Schrödinger-Dirichlet eigenvalue is

an eigenvalue of infinite multiplicity of the Schrödinger operator H. Moreover, each of the

corresponding eigenfunctions vanishes at the vertices of G and are supported on a single

hexagon of G (see Lemma 3.5 of [23]).

However, for the Dirac operator D and λ ∈ σ(DD), we cannot construct an eigen-

function ψλ of D, supported on a single hexagon, with the Robin vertex boundary condi-

tions (2.6). Indeed, the continuity condition of (2.6) implies that the first component ψ1
λ

of ψλ must vanish at the vertices of G; then, since ψλ is an eigenfunction of DD, it follows

that the second component ψ2
λ of ψλ must vanish at all vertices of G, by (2.12). Hence,

necessarily, ψλ = 0.

Finally, we can describe the spectral structure of the Dirac operator D on the hexagonal

2D structure G.

Theorem 2.2.1. Let D be the Dirac operator given by (2.4). Then:

(i) The singular continuous spectrum of D is empty.
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(ii) Except possibly for λ in a countable set, the dispersion relation of D is given by

d(λ) =
−(αN + αB)±

√
(αN − αB)2 + 4F (θ)F̄ (θ)

3
, (2.36)

where αN and αB are taken such that |η±(λ, θ)| ≤ 1, for all θ ∈ B (see Lemmas 2.2.3

and 2.2.4), and η±(λ, θ) are given by (2.21).

(iii) The absolutely continuous spectrum σac(D) coincides, as a set, with σ(Dper), that is,

it has band-gap structure and

σac(D) = {λ ∈ R : |d(λ)| ≤ 2}. (2.37)

Remark 2.2.5. The countable set considered in Theorem 2.2.1(ii) is, in fact, the eigen-

values of the Dirac operator DD with Dirichlet boundary conditions.

Proof. The proof of this theorem is based on Theorem 3.6 of [23] and Theorem 7 of [12].

In the following we present the arguments for (ii) and (iii).

(ii) Let λ /∈ σ(DD). Then, by Proposition 2.2.1, (λ, θ) lies in the dispersion surface

of D if and only if, η(λ) is a root of (2.20), that is,

η(λ) =
−(αN + αB)±

√
(αN − αB)2 + 4F (θ)F̄ (θ)

6
.

By Lemma 2.2.2, d(λ) = 2η(λ). Now, take the parameters αN and αB such that |η+(λ, θ)| ≤
1 and/or |η−(λ, θ)| ≤ 1, for all θ ∈ B, that is, αN and αB according to Lemma 2.2.3 or 2.2.4.

Hence, (λ, θ) is in the dispersion surface of D if and only if (2.36) holds. This proves (ii).

(iii) Let λ /∈ σ(DD) and αN and αB according to Lemmas 2.2.3 or 2.2.4. Then λ ∈ σ(D)

if and only if (2.36) holds. By Lemma 2.2.1, we see that λ ∈ σ(D) if and only if |η(λ)| ≤ 1

(for appropriate αN and αB). Since d(λ) = 2η(λ), it follows that λ ∈ σ(D) if and only if

|d(λ)| ≤ 2, that is, λ ∈ σ(Dper), by Proposition 2.2.2. Hence

σ(D) = σ(Dper) = {λ ∈ R : |d(λ)| ≤ 2}.

Again by Lemma 2.2.1, η±(λ, θ) are not constant functions in θ ∈ B, for all λ /∈ σ(DD).

Therefore, (2.37) holds.

Remark 2.2.6. We underline the importance of Lemmas 2.2.3 and 2.2.4. The Proposition

2.2.1 and Lemma 2.2.2 shown that if λ /∈ σ(DD), then λ ∈ σ(D) if and only if d(λ) = 1
2
η(λ)

is a root of (2.20). However, with only this information we can not describe the spectrum
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σ(D). Since Proposition 2.2.2 has a complete spectral characterization of Dper in terms of

d(λ) (see item (ii)), then it is convenient to ensure that

|η(λ)| ≤ 1, (2.38)

in order to be able to compare the spectra σ(D) and σ(Dper). The conditions imposed on

δB and δN in Lemmas 2.2.3 and 2.2.4 implies (2.38) and the spectral characterization of

D is guaranteed.

2.3 Dirac cones

In this section, we prove our results about existence of Dirac cones for the dispersion

relation d(λ), given by (2.36). As mentioned in the Introduction, roughly, a Dirac cone

is a point where two spectral bands linearly touch each other, at least in lowest order

approximation. Precisely, we have:

Definition 2.3.1. A point (λ, θD) in the dispersion relation, for λ ∈ R and θD ∈ B, is

called a Dirac cone if there is a constant γ 6= 0 so that

λ(θ)− λ(θD) +O((λ(θ)− λ(θD))2) = ±γ |θ − θD|+O(|θ − θD|2). (2.39)

In this case, the quasimomentum θD is called a D-point. In (2.39), the “−” and “+” are

signs for the valence and conducting bands, respectively.

Theorem 2.3.1 presents necessary and sufficient conditions on the parameters αN and

αB to obtain a Dirac cone in the dispersion relation of the Dirac operator D.

Theorem 2.3.1. Let D be the Dirac operator on the hexagonal 2D lattice G with Robin

vertex condition (2.6). Suppose that αN and αB are according to Lemmas 2.2.3/2.2.4.

Then,

(i) If αN = αB, the dispersion relation of D has Dirac cones at the Dirac points

±(2π/3,−2π/3) (see Figure 2.5).

(ii) If αN 6= αB, the dispersion relation of D does not have Dirac points (see Figure 2.6).

Proof. Recall that it suffices to consider θ in the diagonal Bd = {θ ∈ B : θ1 = −θ2} of

the Brillouin zone, since the possible D-points of the function F (θ)F̄ (θ), ±(2π/3,−2π/3),

belongs to Bd (see Remark 2.2.2). In Bd, we have that

F (θ) = F̄ (θ) = 1 + 2 cos(θ1).
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Let αN = αB ∈ (−3, 3) (Lemma 2.2.3(iii)). Then by Theorem 2.2.1(ii), it follows that

the dispersion relation of D is given by d(λ) = 2η±(λ, θ), for λ /∈ σ(DD), where

η±(λ, θ) =
−αN ± |F (θ)|

3
. (2.40)

In order to prove (2.39), we expand in Taylor’s series d(λ) around λ(±θD) and η±(λ, θ)

around ±θD, where θD = 2π/3. Expanding F (θ) around θD, we obtain

1 + 2 cos(θ1) = −
√

3(θ1 − θD) +O((θ1 − θD)2).

Hence,

|F (θ)| =
√

3|θ1 − θD|+O(|θ1 − θD|2). (2.41)

Since η±(λ, θD) = −αN/3, after substituting (2.41) on (2.40), it follows that

η±(λ, θ) =
−αN

3
±
√

3

3
|θ1 − θD|+O(|θ1 − θD|2),

which implies

η±(λ, θ)− η±(λ, θD) = ±
√

3

3
|θ1 − θD|+O(|θ1 − θD|2). (2.42)

Now we expand d(λ) around λ(θD). Since we are considering λ /∈ σ(DD), then d′(λ) 6= 0

by Proposition 2.2.2(v). Hence,

d(λ(θ))− d(λ(θD)) = d′(λ(θD))(λ(θ)− λ(θD)) +O((λ(θ)− λ(θD))2). (2.43)

In particular, if q0 = 0, then by Proposition 2.2.2(vi),

d(λ) = 2 cos

√
λ2 − (mc2)2

}2c2
. (2.44)

Hence,

d′(λ(θ)) = − 2λ(θD)

}c
√
λ(θD)2 − (mc2)2

sin

(√
λ(θD)2 − (mc2)2

(}c)2

)
. (2.45)

Combining (2.42) and (2.43), we obtain

λ(θ)− λ(θD) +O((λ(θ)− λ(θD))2) = ± 2√
3

1

d′(λ(θD))
|θ − θD|+O(|θ − θD|2),

that is, (2.39) holds for

γ =
2√

3d′(λ(θD))
. (2.46)
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Figure 2.5: The Dirac cones on the dispersion relation of the Dirac operator on the diago-

nal Bd; here, αN = αB = 0. The solid line for the conduction band and the dashed one for

the valence band.

If we consider −θD, the proof is analogous. Therefore, (i) is proved.

Now, suppose that αN 6= αB and recall Lemmas 2.2.1 and 2.2.4. Let θ ∈ Bd, as before.

By Lemma 2.2.1,

η±(λ, θD) =
−(αN + αB)± |αN − αB|

6
,

and so η+(λ, θ) and η−(λ, θ) never touch each other in this case. Furthermore, we will show

that η±(λ, θ) does not have a linear behavior around ±θD. In fact, expanding in Taylor’s

series, we obtain

η±(λ, θ)− η±(λ,±θD) =
dη±(λ,±θD)

dθ1

(θ1 − (±θD)) +O((θ − (±θD))2);

however,

dη±(λ,±θD)

dθ1

=
4F (±θD)dF (±θD)

dθ√
(αN + αB)2 + 4F (±θD)2

= 0,

since F (±θD) = 0. Therefore, η±(λ, θ) is not linear around ±θD. Therefore, the dispersion

relation of the Dirac operator does not have any Dirac points if αN 6= αB.

Therefore, we conclude that

Corollary 2.3.1. The dispersion relation of the Dirac operator D modelling the boron

nitride, that is, δN 6= δB in the Robin vertex condition (2.6) (see Remark 2.1.1), does not

have Dirac cones. On the other hand, if one has just one kind of atom on all vertices, then

Dirac cones are present.

Remark 2.3.1. We had a quick look at the formal nonrelativistic limit of the discrimi-

nant (2.44), used to derive the dispersion relation for the (graphene) quantum graph model
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Figure 2.6: The dispersion relation of the Dirac operator with parameters αN = 1 and

αB = 0. The solid line for the conduction band and the dashed one for the valence band.

There is no Dirac cone.

through Dirac operator with zero potential, that is,

dD(λD) = 2 cos

(√
λ2
D − (mc2)2

}2c2

)
.

We have appended the subindex D to indicate the relativistic version, for both, dD and

energy λD. We have then computed such quantity for the Schrödinger case, also with zero

potential, but taking into account the physical constants, so that

Heu(x) = − }2

2m

d2u

dx2
(x),

and have got

dS(λS) = 2 cos

(√
2m

}2
λS

)
, (2.47)

with the subindex S to indicate the nonrelativistic version. Let’s assume that the electron

is in a regime so that the nonrelativistic energy 0 < λS � mc2 and that the relativistic one

is λD = mc2 +λS, that is, the nonrelativistic energy plus the electron rest mass energy. So,

after inserting

λ2
D − (mc2)2 = λ2

S + 2λSmc
2 ≈ 2λSmc

2

into (2.44), the nonrelativistic version (2.47) is recovered. Furthermore, for the important

slope γ of the Dirac cones we have (see (2.46))

γD =
2√
3

1

d′D(λD)
, γS =

2√
3

1

d′S(λS)
,

and, under the above conditions, the nonrelativistic γS is recovered from the relativistic

one γD as well.





Chapter 3

AB-Stacked Bilayer and Trilayer

Graphene

In this chapter, we propose a quantum graph model that is supposed to represent the

Bernal-stacked (also called AB-stacked) bilayer and trilayer graphene. This approach is

based on the quantum graph model for a single layer of graphene, proposed by Kuchment

and Post in [23]. We investigate the spectral properties of the Schrödinger operator HAB
n ,

n = 2, 3, defined on this structure (see (3.2)). Also, we study the possible presence of Dirac

cones in the dispersion relation of HAB
n (see Definition 2.3.1). We decided to consider here

(as well in Chapter 4), the Schrödinger operator instead the Dirac operator, since the

obtained results in Chapter 2 are similar to those obtained in [23].

In Section 3.1 we present the proposed quantum graph geometry and the Schrödinger

operators that represent the variations of Bernal-stacked graphene. A spectral analysis of

the bilayer and trilayer Schrödinger operator is performed in Section 3.2. The possible pres-

ence of Dirac cones is presented in Section 3.3. Finally, in Section 3.4, some comparisons

with the physics literature are done.

3.1 Quantum graphs for multilayer graphene struc-

tures

Now we introduce the periodic quantum graphs that is proposed to represent the AB-

stacked bilayer/trilayer graphene; we need a metric graph structure and a suitable Hamil-

35
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(a) Bilayer graphene.

(b) Trilayer graphene.

Figure 3.1: The lattice structures of the AB-stacked multilayer graphene. Some type-A

and type-B points are labelled. For simplicity, in (b) we present only a few links between

sheets.

tonian.

In following, Gi always denote a single layer of graphene, defined in Chapter 2 (see

Figure 2.1) . The structure of the bilayer graphene, denoted by GAB2 , consists of two sheets

of graphene, G1 and G2 stacked such that a type-A vertex of G1 is located exactly above

the corresponding type-A vertex of G2 and alike for type-B vertices; that is, the sheets

are alined. The only connections between G1 and G2 are that each type-A vertex of G1 is

connected with the nearest three type-B vertices of G2 (see Figure 3.1(a)); such connections

are performed through additional edges.

The trilayer graphene, denoted by GAB
3 , consists of three graphene sheets, G1, G2 and

G3, in an analogous alined stacking of the bilayer case, but now each type-B vertex of G2 is

linked up (only) with the nearest three type-A vertices of G1 and the nearest three type-A

vertices of G3, a total of six additional connections (see Figure 3.1(b)). In both cases, the

distance between two consecutive graphene sheets is taken in such way that every edges in

GAB
n have length 1, for n = 2, 3; ahead we describe how we control the interaction intensity

between consecutive graphene sheets.

Consider the action of group Z2 on GAB
n ,

S : Z2 × GAB
n → GAB

n , S(p, x) := x+ p1E1 + p2E2, (3.1)

where E1 and E2 are given by (2.1) and x = x1E1 + x2E2, that is, S shifts x ∈ GAB
n by
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(a) WAB
2 of the bilayer graphene.
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(b) WAB
3 of the trilayer graphene.

Figure 3.2: The fundamental domains WAB
2 and WAB

3 .

p1E1 + p2E2, p = (p1, p2) ∈ Z2. As fundamental domain of S, we choose the set WAB
n as

shown in Figure 3.2, which contains two points and three edges of each graphene sheet Gk,

and the edges that connect consecutive layers (as discussed above). It will be convenient

to direct the edges as in Figure 3.2. We label the sheet’s edges by the letter “a” whereas

the edges between two consecutive sheets are labeled by “f”. Let E(GAB
n ) denote the set

of edges of GAB
n . Moreover, let Ē(GAB

n ) and Ẽ(GAB
n ) denote the set of edges of graphene

sheets and between the graphene sheets, respectively. Hence, E(GAB
n ) = Ē(GAB

n )∪ Ẽ(GAB
n ).

Since GAB
n is supposed to be embedded into the Euclidean space R3, we identify each

edge e ∈ E(GAB
n ) with the segment [0, 1], which identifies the end points of e with 0 and 1.

Hence, we can define, derivate and integrate functions on GAB. We denote a function on

GAB
n by u = {ue}e∈E(GAB

n ), where ue is a function defined on the edge e. One can naturally

define the Hilbert space of all square integrable functions on GAB
n ,

L2(GAB
n ) =

⊕
e∈E(GAB

n )

L2(e),

with norm

‖u‖2
L2(GAB) :=

∑
e∈E(GAB

n )

‖ue‖2
L2(e).
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To see GAB
n as a periodic quantum graph, it remains to introduce the Schrödinger

operator acting in L2(GAB
n ). Let q0 : [0, 1] → R be an even continuous function, that is,

q0(x) = q0(1−x) for all x ∈ [0, 1]. As we have identified the edges of GAB
n with the segment

[0, 1], we can define a potential q = {qe}e∈E(GAB
n ) on GAB

n , where qe = q0, for all e ∈ E(GAB
n ).

Note that due the evenness assumption on q0, the potential q does not depend on the

orientations chosen along the edges; an even potential is a consequence of the fact that we

have the same kind of atoms at the vertices. The following result is easily extended from

Lemma 2.1.1 for this case.

Lemma 3.1.1. The above potential q is invariant with respect to the symmetry group of

GAB
n .

Finally, we introduce the Bernal-stacked multilayer graphene Schrödinger operator HAB
n ,

n = 2, 3, which acts on a function u ∈ dom (HAB
n ) as

HAB
n ue(xe) := (−∆ + q(x))ue(xe) = −d2ue(xe)

dx2
+ qe(xe)ue(xe) , (3.2)

for all e ∈ E(GAB
n ). When the context is clear, the subscript “e” will be omitted. The

domain dom (HAB
n ) consists of the functions u on GAB

n such that

(i) ue ∈ H2(e), for all e ∈ E(GAB
n ), where H2(e) is the usual Sobolev Space in the edge e;

(ii)
∑

e∈E(GAB
n )

‖ue‖2
H2(e) <∞;

(iii) The Neumann vertex conditions (or Kirchhoff vertex conditions), which requires the

continuity of the functions (3.3) at each vertex v ∈ V (GAB
n ) and the vanishing of the

total flux (3.4) at v, that is,

ue1(v) = ue2(v), for all e1, e2 ∈ Ev(GAB
n ), (3.3)∑

a∈Ēv(GAB
n )

u′a(v) +
∑

f∈Ẽv(GAB
n )

t0 u
′
f (v) = 0, (3.4)

where Ēv(GAB
n ) is the set of edges of the graphene sheets that contains the vertex

v, Ẽv(GAB
n ) is the set of edges between consecutive sheets of graphene sheets that

contains v, u′e(v) is the derivate of ue directed from v to the other vertex of e and

0 < t0 is an interaction (real) parameter between consecutive layers.
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This definition makes HAB
n an unbounded self-adjoint operator [22, 20, 4] and, by the

evenness condition on the potential and Lemma 3.1.1, it is invariant with respect to all

symmetries of the graph GAB
n .

Remark 3.1.1. A word on the role of the interaction parameter t0. The interaction between

consecutive layers of graphene is weaker than the interaction between neighboring carbon

atoms in the same layer. If t0 = 1 we would have no distinction between the interactions;

so we have proposed to take 0 < t0 < 1 as a way to control the influence of an atom in a

different sheet to the flux through a vertex; the smaller t0 smaller the influence. However,

the general results here (Theorems 3.2.1 and 4.3.1) hold true for all positive values of the

interaction parameter t0 > 0, and so it is natural to ask whether such property is shared

with other models, as the tight-binding one; we don’t know the answer.

3.2 Spectral Analysis of the AB-stacked multilayer

graphene operator

In this section we use Floquet-Bloch theory [13, 21, 38, 5] to study the spectrum of HAB
n ;

we extend results of [23]. We begin with general remarks, then we specialize to bilayer ad

trilayer graphene.

For each quasimomentum θ = (θ1, θ2) in the Brillouin zone B = [−π, π]2, let HAB
n (θ)

be the Bloch Hamiltonian acting in L2(WAB
n ) as in (3.2), but with a different domain:

dom (HAB
n (θ)) is the subspace of functions u that satisfy (i), (ii) and (iii) in dom (HAB

n ),

and also the following Floquet condition

u(x+ p1E1 + p2E2) = eipθu(x) = ei(p1θ1+p2θ2)u(x), (3.5)

for all p = (p1, p2) ∈ Z2 and all x ∈ GAB
n . It is well known that HAB

n (θ) has purely discrete

spectrum [22], denoted by σ(HAB
n (θ)) = {λk(θ)}k≥1. The function θ 7→ {λk(θ)} is called

the dispersion relation of HAB
n and it determines its spectrum [13, 21, 38, 5]

σ(HAB
n ) =

⋃
θ∈B

σ(HAB
n (θ)). (3.6)

The goal now is to determine the spectra of σ(HAB
n (θ)), θ ∈ B, by solving the eigenvalue

problem

HAB
n (θ)u = λu, λ ∈ R, u ∈ dom (HAB

n (θ)). (3.7)
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Consider two auxiliary operators. The first one is the Dirichlet Schrödinger operator

HD that acts in L2([0, 1]) as

HDu(x) = −d2u(x)

dx2
+ q0(x)u(x), (3.8)

where u satisfies the Dirichlet boundary condition, that is,

u(0) = u(1) = 0. (3.9)

It is well known that HD has purely discrete spectrum, denoted by σ(HD) = {λDk }k≥1 (see,

for instance, [5]).

In order to describe the second operator, let qp be the potential function obtained by

extending periodically q0 to the whole real axis R. The Hill operator Hper acts in L2(R) as

Hperu(x) = −d2u(x)

dx2
+ qp(x)u(x). (3.10)

For the spectral problem

Hperϕ = λϕ, (3.11)

consider the monodromy matrix M(λ) of Hper given by (see [5])ϕ(1)

ϕ′(1)

 = M(λ)

ϕ(0)

ϕ′(0)

 , (3.12)

where ϕ is any solution of the problem (3.11). The matrix M(λ) shifts
[
ϕ(0) ϕ′(0)

]ᵀ
by

the period of qp (in our case, 1). Let

D(λ) := tr(M(λ))

be the discriminant of the Hill operator Hper. There are many results and properties about

the spectrum of the Hill operator Hper and its discriminant D(λ) (similar to the Proposition

2.2.2 for periodic Dirac operator). The next proposition is a collection of well-known results

concerning the Hill operator and its discriminant (see [13, 21, 25, 5, 38]).

Proposition 3.2.1. Let Hper be the Hill operator given by (3.10). Then:

(i) The spectrum σ(Hper) of the Hill operator is purely absolutely continuous.

(ii) σ(Hper) = {λ ∈ R : |D(λ)| ≤ 2}.
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(iii) Let {αn}n and {βn}n be the spectra of the Hill operator with periodic and anti-periodic

conditions on [0, 1], respectively, and let

B2k = [α2k, β2k] and B2k+1 = [β2k+1, α2k+1].

Here,

α0 < β0 ≤ β1 < α1 ≤ α2 < . . . ,

with lim
k→∞

αk =∞. Therefore, σ(Hper) = ∪kBk. The closed non-overlapping intervals

Bk are called bands of σ(Hper) and the segments (αk, αk+1) and (βk, βk+1) are called

spectral gaps.

(iv) Let σ(HD) = {λdk}k and let λdj ∈ σ(HD) the jth Dirichlet eigenvalue. Then λdj belongs

to the closure of the jth gap. If q0 is symmetric, then λdj is one of the two edges of the

gap. If the gap closes (to a single point), λdj is the intersection point of two bands.

(v) Let Bj be the jth band of σ(Hper) and let λ ∈ Bj. Then D′(λ) 6= 0 and D(λ) : Bj −→
[−2, 2] is a homeomorphism. Moreover, D(λ) is decreasing on (−∞, β0) and B2k,

increasing on B2k+1 and has a single extremum in each spectral gap.

(vi) If q0 = 0, the dispersion relation for Hper is given by

D(λ) = 2 cos(θ), (3.13)

where θ is the one-dimensional quasimomentum.

Bilayer graphene

The structure that represents the AB-stacked bilayer graphene GAB
2 consists of two graphene

sheets, as described in Section 3.1; see Figures 3.1(a) and 3.2(a). Let us write out the

conditions (3.3), (3.4) and (3.5) on the fundamental domain WAB
2 (Figure 3.2(a)). As we

identify each edge e with the interval [0, 1], it follows that vi1 ∼ 0 and vi2 ∼ 1, for i = 1, 2.

By the continuity condition (3.3),ua11(0) = ua12(0) = ua13(0) = uf1(0) =: A1

ua21(0) = ua22(0) = ua23(0) =: A2

. (3.14)

The Floquet condition (3.5) implies that

uai1(1) = eiθ1uai2(1) and uai1(1) = eiθ2uai3(1), i = 1, 2, (3.15)
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so by (3.3), ua11(1) = eiθ1ua12(1) = eiθ2ua13(1) =: B1

ua21(1) = eiθ1ua22(1) = eiθ2ua23(1) = uf1(1) =: B2

. (3.16)

Similarly, by the zero-flux condition (3.4),

u′a11(0) + u′a12(0) + u′a13(0) + t0 u
′
f1

(0) = 0

u′a11(1) + eiθ1u′a12(1) + eiθ2u′a13(1) = 0

u′a21(0) + u′a22(0) + u′a23(0) = 0

u′a21(1) + eiθ1u′a22(1) + eiθ2u′a23(1) + t0 u
′
f1

(1) = 0

. (3.17)

Let λ /∈ σ(HD). Then there exists two linearly independent solutions ϕλ,0, ϕλ,1 of the

problem

−d2ϕ(x)

dx2
+ q(x)ϕ(x) = λϕ(x), (3.18)

such that ϕλ,0(0) = 1

ϕλ,0(1) = 0

ϕλ,1(0) = 0

ϕλ,1(1) = 1
(3.19)

and

ϕ′λ,1(x) = −ϕ′λ,0(1− x), x ∈ [0, 1]. (3.20)

Since each edge of WAB
2 is identified with the interval [0, 1], we can define ϕλ,i in each

edge and we will keep the same notation ϕλ,i for such functions. Hence, for each λ /∈ σ(HD),

we can represent 

uai1 = Aiϕλ,0 +Biϕλ,1

uai2 = Aiϕλ,0 + e−iθ1Biϕλ,1

uai3 = Aiϕλ,0 + e−iθ2Biϕλ,1

uf1 = A1ϕλ,0 +B2ϕλ,1

i = 1, 2. (3.21)

It is easy to see that the function defined by (3.21) satisfies the continuity conditions (3.14)

and (3.16) and solves the eigenvalue problem (3.7). It remains to verify condition (3.17).
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By substituting (3.21) into (3.17), we get

(3 + t0)A1ϕ
′
λ,0(0) + F̄ (θ)B1ϕ

′
λ,1(0) + t0B2ϕ

′
λ,1(0) = 0

F (θ)A1ϕ
′
λ,0(1) + 3B1ϕ

′
λ,1(1) = 0

3A2ϕ
′
λ,0(0) + F̄ (θ)B2ϕ

′
λ,1(0) = 0

t0A1ϕ
′
λ,0(1) + F (θ)A2ϕ

′
λ,0(1) + (3 + t0)B2ϕ

′
λ,1(1) = 0

, (3.22)

where F (θ) := 1 + e−iθ1 + e−iθ2 and F̄ (θ) is its complex conjugate. By (3.20), we have that

ϕ′λ,0(1) = −ϕ′λ,1(0) and ϕ′λ,0(0) = −ϕ′λ,1(1). Thus the system (3.22) is equivalent to

−(3 + t0)A1ϕ
′
λ,1(1) + F̄ (θ)B1ϕ

′
λ,1(0) + t0B2ϕ

′
λ,1(0) = 0

−F (θ)A1ϕ
′
λ,1(0) + 3B1ϕ

′
λ,1(1) = 0

−3A2ϕ
′
λ,1(1) + F̄ (θ)B2ϕ

′
λ,1(0) = 0

−t0A1ϕ
′
λ,1(0)− F (θ)A2ϕ

′
λ,1(0) + (3 + t0)B2ϕ

′
λ,1(1) = 0

. (3.23)

Since ϕ′λ,1(0) 6= 0, the quotient

η(λ) :=
ϕ′λ,1(1)

ϕ′λ,1(0)
(3.24)

is well defined. Hence, dividing the system (3.23) by ϕ′λ,1(0) and multiplying the second

and fourth lines by −1, we obtain

−T0ηA1 + F̄B1 + t0B2 = 0

F A1 − 3ηB1 = 0

−3ηA2 + F̄B2 = 0

t0A1 + F A2 − T0ηB2 = 0

, (3.25)

where T0 = 3 + t0, η = η(λ) and F = F (θ). The matrix form of the system (3.25) is

MAB
2 (λ, θ)X = 0, (3.26)

where X =
[
A1 B1 A2 B2

]ᵀ
and

MAB
2 (λ, θ) =


−T0η F̄ 0 t0

F −3η 0 0

0 0 −3η F̄

t0 0 F −T0η

 . (3.27)
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From now on, we will omit the dependence on θ in the matrix MAB
2 (λ, θ). Note that

det(MAB
2 (λ)) = 0 is a quartic polynomial in η(λ). Hence, if there exists a θ ∈ B such that

det(MAB
2 (λ)) = 0, that is, η(λ) is one of the four roots of det(MAB

2 (λ)) = 0, it follows that

the representation (3.21) solves the eigenvalue problem (3.7) and so λ ∈ σ(HAB
2 ), by (3.6).

Trilayer graphene

We now analyze the case n = 3; GAB
3 consists of three graphene sheets G1, G2 and G3.

Similarly to the case n = 2, lets write out the conditions (3.3), (3.4) and (3.5) on the

fundamental domain WAB
3 (see Figure 3.2(b)). Since

uai1(1) = eiθ1uai2(1) and uai1(1) = eiθ2uai3(1), i = 1, 2, 3,

it follows that the continuity condition (3.3) is equivalent to

ua11(0) = ua12(0) = ua13(0) = uf1(0) =: A1

ua11(1) = eiθ1ua12(1) = eiθ2ua13(1) =: B1

ua21(0) = ua22(0) = ua23(0) =: A2

ua21(1) = eiθ1ua22(1) = eiθ2ua23(1) = uf1(1) = uf2(1) =: B2

ua31(0) = ua32(0) = ua33(0) = uf2(0) =: A3

ua31(1) = eiθ1ua32(1) = eiθ2ua33(1) =: B3

, (3.28)

and the zero-flux condition (3.4) is equivalent to

u′a11(0) + u′a12(0) + ua13(0) + t0 u
′
f1

(0) = 0

u′a11(1) + eiθ1u′a12(1) + eiθ2u′a13(1) = 0

u′a21(0) + u′a22(0) + u′a23(0) = 0

u′a21(1) + eiθ1u′a22(1) + eiθ2u′a23(1) + t0 u
′
f1

(1) + t0 u
′
f2

(1) = 0

u′a31(0) + u′a32(0) + u′a33(0) + t0 u
′
f2

(0) = 0

u′a31(1) + eiθ1u′a32(1) + eiθ2u′a33(1) = 0

. (3.29)
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Let λ /∈ σ(HD) and let ϕλ,0 and ϕλ,1 be the two linearly independent solutions of the

problem (3.18) that satisfies (3.19) and (3.20). If we write

uai1 = Aiϕλ,0 +Biϕλ,1

uai2 = Aiϕλ,0 + e−iθ1Biϕλ,1

uai3 = Aiϕλ,0 + e−iθ2Biϕλ,1

uf1 = A1ϕλ,0 +B2ϕλ,1

uf2 = A3ϕλ,0 +B2ϕλ,1

i = 1, 2, 3, (3.30)

the continuity condition (3.28), as well problem (3.7), are satisfied. It remains to verify

the zero-flux condition (3.29). Similar to the bilayer graphene case, the matrix form of the

obtained system in this case is

MAB
3 (λ)X = 0,

with X =
[
A1 B1 A2 B2 A3 B3

]ᵀ
and

MAB
3 (λ) =

MT0T̃0
m̃ᵀ
t0

m̃t0 NT0

 , (3.31)

where T0 = 3 + t0, T̃0 = 3 + 2t0, F = F (θ) = 1 + eiθ1 + eiθ2 ,

MT0T̃0
=


−T0η F̄ 0 t0

F −3η 0 0

0 0 −3η F̄

t0 0 F −T̃0η

 , (3.32)

m̃t0 =

0 0 0 t0

0 0 0 0

 and NT0 =

−T0η F̄

F −3η

 . (3.33)

Note that MAB
2 (λ) = MT0T0 . Thus, if there exists θ ∈ B such that det(MAB

3 (λ)) = 0,

the representation (3.30) solves the eigenvalue problem (3.7) and so λ ∈ σ(HAB
3 ).

Joint spectral analysis

Therefore, we have the following result (as before, we keep the dependence ofMAB
n (λ) on θ

implicit):
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Proposition 3.2.2. Let λ /∈ σ(HD). Then, for n = 2, 3 and t0 > 0, the real number

λ ∈ σ(HAB
n ) if and only if there exists θ ∈ B such that

det
(
MAB

n (λ)
)

= 0 . (3.34)

Note that det(MAB
n (λ)) = 0 is a polynomial of degree 2n in η(λ), for n = 2, 3. By

Proposition 3.2.2, the spectra σ(HAB
n ) are basically determined if we know the range of

all 2n roots η(λ, θ) of det(MAB
n (λ)). For the case n = 2 we can easily calculate the roots

of (3.34). We use the Laplace’s expansion formula for matrix determinants in MAB
2 (λ),

given by (3.27), to obtain

det(MAB
2 (λ)) = 9T 2

0 η
4(λ)− (9t20 + 6T0F (θ)F̄ (θ))η2(λ) (3.35)

+
(
F (θ)F̄ (θ)

)2
= 0.

Note that we can easily turn the quartic equation (3.35) into a quadratic one (just introduce

δ = η(λ)2 and calculate the two roots for δ). Thus, the four roots are

η±±(λ, θ) = ±

√
G2(t0, θ)±

√
G2(t0, θ)2 − 36T 2

0 (FF̄ )2

18T 2
0

, (3.36)

where G2(t0, θ) = 9t20 + 6T0FF̄ . Here, the subscript ± refers to the outside “ ± ” of the

first square root symbol while the superscript ± refers to the inside one.

For n = 3, applying Laplace’s formula to (3.31), we obtain

det(MAB
3 (λ)) = 27T 2

0 T̃0η
6 − (54T0t

2
0 + 9(T 2

0 + 2T0T̃0)FF̄ )η4 (3.37)

+ (18t20FF̄ + 3(2T0 + T̃0)(FF̄ )2)η2 − (FF̄ )3.

The six roots of det(MAB
3 (λ)) are the following:

η̃±±(λ, θ) = ±

√√√√G3(t0, θ)±
√
G3(t0, θ)2 − 36T0T̃0(FF̄ )2

18T0T̃0

, (3.38)

η̄±(λ, θ) = ±

√
FF̄

3T0

, (3.39)

where G3(t0, θ) = 18t20 + 3(T0 + T̃0)FF̄ .

Remark 3.2.1. To calculate the exact roots (3.38) and (3.39) of det(MAB
3 (λ)) = 0, we

have first replaced, in MAB
3 (λ), the matrices m̃t0 and m̃ᵀ

t0 by zero, to obtain a block matrix

M̃AB
3 (λ), so that

det(M̃AB
3 (λ)) = det(MT0T̃0

) detNT0 .
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Hence, the six roots of det(M̃AB
3 (λ)) = 0 are composed by the four roots of det(MT0T̃0

) = 0

and the two roots of detNT0 = 0. Since the two determinants

det(MAB
3 (λ)) = 0 and det(M̃AB

3 (λ)) = 0 (3.40)

have similar expressions, it was observed that the six roots of the original determinant

should be similar to the roots of det(M̃AB
3 (λ)) = 0. Then, (3.38) was obtained from inspec-

tion and suitable modifications on the roots of detMT0T̃0
; (3.39) are the roots of detNT0 = 0

(the latter resembles the single layer case [23]).

So far, we have considered λ /∈ σ(HD). In this case, we managed to establish a re-

lationship between such λ’s with the spectrum of HAB
n (see Proposition 3.2.2). Now, let

λ ∈ σ(HD), i.e., an eigenvalue of the Dirichlet operator HD. For n = 2, 3, the proof of

next lemma is analogous to the proof Lemma 3.5 of [23] and Lemma 6 of [12].

Lemma 3.2.1. Each λ ∈ σ(HD) is an eigenvalue of infinite multiplicity of HAB
n .

Before we state the spectral characterization theorem of the Bernal-stacked multilayer

graphene Schrödinger operator, let us discuss details of the relation between the roots η(λ)

of det(MAB
n (λ)) = 0 and the discriminant D(λ) of the Hill operator Hper, for n = 2, 3

([23], page 813). As in Chapter 2, this is important to relate the spectrum of Hper to

the spectrum of HAB
n . The proof of the following lemma is analogous to Lemma 2.2.2; we

just consider the monodromy matrix M(λ) of Hill operator Hper instead the monodromy

matrix of the periodic Dirac operator Dper.

Lemma 3.2.2. Let λ /∈ σ(HD) and D(λ) be the discriminant of the Hill operator Hper.

Then for HAB
2 and HAB

3 , we have

η(λ) =
1

2
D(λ). (3.41)

We are ready to characterize the spectra. The following result is proved with the same

arguments presented in the proof of Theorem 2.2.1. Also, see [12], Theorem 7, and [23],

Theorem 3.6.

Theorem 3.2.1. For the Bernal-stacked graphene Schrödinger operators HAB
n , n = 2, 3,

we have:

(i) The singular continuous spectrum of the HAB
n is empty.
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(ii) The dispersion relation of HAB
n consists of two parts:

• the pairs (λ, θ) (λ /∈ σ(HD)) such that

D(λ) = 2η(λ), (3.42)

where η(λ) are the 2n solutions of the equation det(MAB
n (λ)) = 0;

• the collection of flat branches λ ∈ σ(HD), that is, the pairs (λ, θ) for any θ ∈ B.

(iii) Its absolutely continuous spectrum σac(H
AB
n ) coincides, as a set, with σ(Hper), that

is, it has a band-gap structure and

σac(H
AB
n ) = {λ ∈ R : |D(λ)| ≤ 2} . (3.43)

(iv) The pure point spectrum of HAB
n coincides with σ(HD), and each λ ∈ σ(HD) is an

eigenvalue of infinite multiplicity of HAB
n .

(v) The absolutely continuous spectrum of HAB
n has gaps if and only if σ(Hper) has gaps.

For the bilayer graphene operator HAB
2 , the four curves of the dispersion relation (3.42)

reduces to

D(λ) = ±2

√
G2(t0, θ)±

√
G2(t0, θ)2 − 36T 2

0 (FF̄ )2

18T 2
0

,

where G2(t0, θ) = 9t20 + 6T0FF̄ , and to obtain the six curves of the dispersion relation of

the trilayer graphene operator HAB
3 , (3.42) takes the form (recall (3.38) and (3.39))

D(λ) = ±2

√√√√G3(t0, θ)±
√
G3(t0, θ)2 − 36T0T̃0(FF̄ )2

18T0T̃0

and

D(λ) = ±2

√
FF̄

3T0

,

where G3(t0, θ) = 18t20 + 3(T0 + T̃0)FF̄ .
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3.3 Study of Dirac cones

Now we present our main result about Dirac cones (recall Definition 2.3.1) in the disper-

sion relation of the Bernal-stacked multilayer graphene Schrödinger operator (see Theorem

3.2.1(ii)).

Theorem 3.3.1. For the Bernal-stacked bilayer and trilayer graphene Schrödinger opera-

tors HAB
2 and HAB

3 , respectively, and each t0 > 0, we have:

(i) The dispersion relation of HAB
2 presents parabolic touchings at the points ±(2π/3,−2π/3)

in the Brillouin zone, but no Dirac cone (see Figure 3.3).

(ii) The dispersion relation of HAB
3 presents (see Figure 3.4):

• two Dirac cones at the D-points ±(2π/3,−2π/3), and

• two parabolic touchings at the same points ±(2π/3,−2π/3).

Proof. (i) By Theorem 3.2.1(ii), the non-constant part of the dispersion relation for the

AB-stacked bilayer graphene is given by D(λ) = 2η±±(λ, θ), where

η±±(λ, θ) = ±

√
G2 ±

√
G2

2 − 36T 2
0 (FF̄ )2

18T 2
0

, (3.44)

with G2 = G2(t0, θ) = 9t2 + 6T0FF̄ and F = F (θ) = 1 + eiθ1 + eiθ2 . It is easy to show that

Lemma 3.3.1. As functions of θ ∈ B, η±±(λ, θ) satisfies:

(i) max η+
+(λ, θ) = 1 and min η+

+(λ, θ) = t0/(3 + t0), which are attained at (0, 0) and

±(2π/3,−2π, 3), respectively.

(ii) max η−+(λ, θ) = 3/(3 + t0) and min η−+(λ, θ) = 0, which are attained at (0, 0) and

±(2π/3,−2π, 3), respectively.

(iii) max η+
−(λ, θ) = −t0/(3+t0) and min η+

−(λ, θ) = −1, which are attained at ±(2π/3,−2π, 3)

and (0, 0), respectively.

(iv) max η−−(λ, θ) = 0 and min η−−(λ, θ) = −3/(3+t0), which are attained at ±(2π/3,−2π, 3)

and (0, 0), respectively.
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1.5 2.0 2.5

-0.4

-0.2

0.0

0.2

0.4

Figure 3.3: The dispersion relation of the AB-stacked bilayer graphene operator restricted

to Bd and θ1 ∈
[

2π
3
− π

4
, 2π

3
+ π

4

]
, with the parameter t0 = 0.3. There are no Dirac cones,

only quadratic touchings.
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Figure 3.4: The dispersion relation of the AB-stacked trilayer graphene operator restricted

to Bd and θ1 ∈
[

2π
3
− π

4
, 2π

3
+ π

4

]
, with the parameter t0 = 0.3. There is a Dirac cone at

2π/3. Note that there is also a quadratic touching at 2π/3.

Note that the possible Dirac cones in this case depend on the function

F (θ)F̄ (θ) = |F (θ)|2 = 1 + 8 cos

(
θ1 − θ2

2

)
cos

(
θ1

2

)
cos

(
θ2

2

)
.

We have that |F (θ)| = 0 if and only if θ = ±θD, where θD := (2π/3,−2π/3), and since

these points belong to the diagonal

Bd := {θ ∈ B : θ1 = −θ2}

of the Brillouin zone B, it suffices to study η±± restricted to Bd. Note the touching at ±θD
given by Lemma 3.3.1, items (ii) and (iv), where min η−+(λ,±θD) = max η−−(λ,±θD) = 0

(that is, D(λ) vanishes).
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For θ ∈ Bd, F (θ) = 1 + 2 cos(θ1) and then (3.44) takes the form

η±±(λ, θ) = ±

√
G2 ±

√
G2

2 − 36T 2
0F

4

18T 2
0

. (3.45)

Calculating dη±±/dθ, we get

dη±±(λ, θ)

dθ
= ±

G′2 ±
2G2G′2−144T 2

0 F
3F ′

2(G2
2−36T 2

0 F
4)1/2

2(18T 2
0 )1/2(G2 ± (G2

2 − 36T 2
0F

4)1/2)1/2
, (3.46)

where G′2 = 12T0FF
′. Thus, dη+

±/dθ do exist for every θ ∈ Bd and vanish at ±2π/3, since

F (±2π/3) = 0; so the branches η+
± have a quadratic behaviour close to ±2π/3 and do not

present Dirac cones. However, we have an indetermination (i.e., 0/0) for dη−±/dθ in ±2π/3

(otherwise they are well behaved); the behaviour of these functions around ±2π/3 can be

obtained by recalling that, for small x, we have

(1 + x)1/2 ≈ 1 +
x

2
− x2

8
.

Then, for θ close to ±2π/3,

η−±(λ, θ) = ±

√
9t20 + 6T0F 2 −

√
(9t20 + 6T0F 2)2 − 36T 2

0F
4

18T 2
0

= ±

√√√√9t20 + 6T0F 2 − 9t0

(
1 + 4T0

3t20
F 2
)1/2

18T 2
0

≈ ±

√√√√9t20 + 6T0F 2 − 9t0

(
1 + 2T0

3t20
F 2 − 2T 2

0

9t40
F 4
)

18T 2
0

= ±F
2

3t0
.

Thus, η−±(λ, θ) also have quadratic behaviour near ±2π/3. Therefore, the dispersion re-

lation of the AB-stacked bilayer graphene does not present Dirac cones and have two

parabolic touchings at ±θD = ±(2π/3,−2π/3).

(ii) By Theorem 3.2.1(ii), the non-constant part of the dispersion relation for the AB-

stacked trilayer graphene is given by D(λ) = 2η(λ, θ), where η(λ, θ) are the six roots of

detMAB
3 (λ), which are given by (3.38) and (3.39). Analogously to the bilayer graphene

case, it is sufficient to consider θ ∈ Bd. Thus, (3.38) turns to

η̃±±(λ, θ) = ±

√√√√G3 ±
√
G2

3 − 36T0T̃0F 4

18T0T̃0

, (3.47)
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where G3 = G3(t0, θ) = 9t20 + 3(T0 + T̃0)F 2 and F = F (θ) = 1 + 2 cos(θ1), and (3.39) takes

the form

η̄±(λ, θ) = ±|F (θ)|√
3T0

. (3.48)

The proofs that (3.47) does not have Dirac points and have two parabolic touching at ±θD
are analogous to the proof presented for item (i). It remains to show that D(λ) = 2η̄±(λ, θ)

satisfies (2.39) (recall Definition 2.3.1).

Expanding (3.48) in Taylor’s series around ±θ̄, where θ̄ = ±2π/3, we get

η̄±(λ, θ)− η̄±(λ, θ̄) = ±γ̄|θ1 − θ̄|+O(|θ1 − θ̄|2), (3.49)

where γ̄ =
√

1
T0

, since η̄±(λ, θ̄) = 0 and

cos θ1 = −1

2
∓
√

3

2
(θ1 − θ̄) +O((θ1 − θ̄)2).

We have γ̄ 6= 0, since t0 > 0. It remains to analyze D(λ) = D(λ(θ)). Since D′(λ(θ)) 6= 0 in

the spectral bands of σ(HAB
3 ) (see [23], Proposition 3.4), then we can expand D(λ(θ)) in

Taylor’s series around λ(θ̄), to obtain

D(λ(θ))−D(λ(θ̄)) = D′(λ(θ̄))(λ(θ)− λ(θ̄)) +O((λ(θ)− λ(θ̄))2). (3.50)

In particular, when q0 = 0, that is, in the free case, since D(λ(θ)) = 2 cos
√
λ(θ), it follows

that

D′(λ(θ)) = −sin(
√
λ(θ̄))√
λ(θ̄)

.

Combining (3.49) and (3.50), we obtain (2.39), with γ = γ̄/D′(λ(θ̄)). Therefore, the

dispersion relation of the AB-stacked trilayer graphene have two Dirac cones, precisely at

±(2π/3,−2π/3) in the Brillouin zone B, and the proof of the theorem is complete.

3.4 Comparison with physics literature

Our study about the spectrum and the dispersion relation of the AB-stacked bi- and

trilayer graphene is based on a limit model, using periodic quantum graph structures.

The advantage of this method is that the dispersion relation has an explicit analytical

expression.

The obtained results are consistent with the physics literature. For instance, bi- and tri-

layer models have a gapless band component and thus may be characterized as a semimetal.
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The rigorous non-existence of Dirac cones on the dispersion relation for our model of

AB-stacked bilayer graphene and with gapless parabolic bands touching at two points,

illustrated in Figure 3.3, are similar to results obtained

(i) through tight-binding calculations [39, 30, 32],

(ii) by an effective two-dimensional Hamiltonian [31] that acts in a space of two-component

wave functions (à la Dirac equation),

(iii) by using a π-orbital continuum model with nearest-neighbor tunneling [33].

This opens the possibility of chiral particles with a parabolic nonrelativistic energy spec-

trum [34, 32]; a subject to be investigated.

For the trilayer graphene with AB-stacking, the presence of Dirac cones was observed

in [26, 2, 33] through tight-binding calculations; this is compatible with Theorem 4.3.1(ii)

for our graph model and illustrated in Figure 3.4. Another point of agreement with the

physics literature is that, for the trilayer case, the Dirac cones come from just one pair of

curves in the dispersion relation, and they are absent in the other two pairs [33]; it can

be seen as a combination [7] of features of a single graphene sheet with the bilayer one,

exactly what our results reveal (see, e.g., Remark 3.2.1).

For the trilayer graphene, we have found that the existence and location of D-points is

independent of the value of the interlayer interaction parameter t0. It would be interesting

to investigate whether this occurs for, say, tight-binding models, at least for a range of

interaction parameters; we have not found any result in this direction in the literature.

Finally, a natural question is whether other models and/or experiments also provide

Dirac cones for the trilayer case for any interaction intensity between layers.





Chapter 4

AA-stacked multilayer graphene and

graphite

In this chapter we perform a similar study to Chapter 3; we propose a quantum graph

model to represent the AA-stacked multilayer graphene and graphite. We shall notice the

differences with respect to Chapter 3:

• While the quantum graph geometry, that models the AB-stacked bilayer and tri-

layer graphene, was obtained by connecting the type-A points with type-B points of

two different sheets of graphene (see Section 3.1), in the AA-stacking of graphene

layers every type-A point of a graphene sheet is connected to the type-A points of

consecutive sheets of graphene, and similarly for type-B points (see Figure 4.1).

• In the Chapter 3, we explicitly studied the cases with two and three graphene sheets.

It was concluded that for the AB-stacked bilayer graphene, the dispersion relation

of the Schrödinger operator do not have Dirac cones (see Section 3.3), while for the

trilayer case, there are two pairs of Dirac cones in the Brillouin zone. However, by

modeling the AA-stacked multilayer graphene, it was possible to, besides explicitly

study the bilayer and trilayer cases, study the case with n layers of graphene sheets

under some controlled approximation, for any number of layers. Also, the AA-stacked

graphite was modeled by a 3D quantum graph. In all these cases, it was observed

Dirac cones in the dispersion relation of the Schrödinger operator (see Section 4.3).

This chapter is structured as follows. In Section 4.1, we present the construction of

54
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the periodic quantum graphs and the Schrödinger operator that models the AA-stacked

multilayer graphene and graphite. In Section 4.2, we perform the spectral analysis of the

Schrödinger operator. The study of Dirac cones is in Section 4.3 and we finish the chapter

with a comparison of obtained results with the physics literature, in Section 4.4.

4.1 Quantum graphs for finite and infinite numbers

of graphene sheets

We begin introducing the periodic quantum graphs that are herein proposed to represent

the AA-stacked multilayer graphene, for any (finite) number of layers, and the AA-stacked

graphite. The metric graph structure that models the AA-stacked multilayer graphene is

defined as follows. Let {Gk}nk=1 be n sheets of graphene, each one as defined in Section 2.1,

stacked so that a type-A vertex of Gk is located exactly above the corresponding type-A

vertex of Gk−1, 2 ≤ k ≤ n. In this structure of multilayer graphene, denoted by GAA
n ,

is that type-A (type-B) vertices of Gk are linked up (only) with their respective type-A

(type-B) vertices of Gk+1, for k = 1, . . . , n − 1, as shown in Figure 4.1. We assume that

all edges in GAA
n have length 1 for all n. The way how we control the interaction intensity

between (consecutive) graphene sheets is described in Remark 3.1.1, in Section 3.1.

Figure 4.1: The lattice structure of AA-stacked multilayer graphene.

The action of the group Z2 on GAA
n is the same for the AB-stacked multilayer graphene

(see (3.1) in Section 3.1), that is, is the shift

Z2 × GAA
n 3 (p, x) 7→ x+ p1E1 + p2E2, (4.1)
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where E1, E2 are given the lattice vectors, given by (2.1), and x = x1E1 + x2E2 ∈ GAA
n .

As fundamental domain of this action, we choose the set WAA
n shown in Figure 4.2, which

contains two (consecutive) points and three edges of each graphene sheet Gk, and also the

edges that connect consecutive layers (as discussed above).

a11
a12

a13

a21

a23

a22

a32

a33

a31

v11

v21

v31

v12

v22

v32

f12

f11

f21

f22

f31

f32

E2

E1

G1

G2

G3

Figure 4.2: The fundamental domain WAA
n with two vertices and three edges of each graphene sheet

and the connecting edges of consecutive layers.

Now we define the 3D periodic quantum graph that is proposed to model the AA-

stacked graphite, denoted by GAA
g . Let {Gk}k∈Z, where Gk is a graphene sheet, for each

k ∈ Z, each one defined as in Section 2.1, stacked up in the same way that GAA
n is and,

again, we assume that all edges in GAA
g have length 1. The action of the group Z3 on GAA

g

is defined by

Sg : Z3 × GAA
g → GAA

g , Sg(p, x) := x+
3∑
i=1

piEi, (4.2)

where E1 = (3/2,
√

3/2, 0), E2 = (0,
√

3, 0) and E3 := (0, 0, 1) are the lattice vectors; its

fundamental domain WAA
g is similar to WAA

n and is presented in Figure 4.2. It contains

only two vertices {v1, v2} and three edges {a1, a2, a3} of one graphene sheet and four edges

{f1,±, f2,±} that connect this layer to the others. It will be convenient to direct the edges in

bothWAA
n andWAA

g as in Figures 4.2. We label the sheet’s edges by the letter “a” whereas

the edges between two consecutive sheets are labeled by “f”. We denote both quantum

graphs by GAA% , where % = n represents the AA-stacked (n-)multilayer graphene and % = g
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represents the AA-stacked graphite. We recall some notations:

1. E(GAA
% ) denote the set of edges of GAA% ;

2. Ē(GAA
% ) denote the set of graphene sheets edges of GAA% ;

3. Ẽ(GAA
% ) denote the set of edges of GAA% that connect the sheets of graphene;

4. V (GAA% ) the set of vertices of GAA% .

Since GAA
% is supposed to be embedded into the Euclidean space R3, we identify each

edge e ∈ E(GAA
% ) with the segment [0, 1], which identifies the end points of e with 0 and

1. This allows us to define and differentiate functions along the edges. The arc length

metric induces a measure, denoted by dx, which permits to integrate functions on GAA
% . In

particular, we can naturally define the Hilbert space of all square integrable functions on

GAA
% ,

L2(GAA
% ) =

⊕
e∈E(GAA

% )

L2(e).

We denote functions on GAA
% by u = {ue}e∈E(GAA

% ), where ue is a function acting on the

edge e.

To see GAA
% as a periodic quantum graph, it remains to define the Schrödinger operator

acting in L2(GAA
% ). It is defined in an analogous way to Section 3.1 and we repeat here the

procedure. Let q0 : [0, 1] → R be an even continuous function, that is, q0(x) = q0(1 − x)

for all x ∈ [0, 1]. As we have identified the edges of GAA
% with the segment [0, 1], we can

define a potential q = {qe}e∈E(GAA
% ) on GAA

% , where qe = q0, for all e ∈ E(GAA
% ). Note that

due the evenness assumption on q0, the potential q does not depend on the orientations

chosen along the edges; an even potential is a consequence of the fact that we have the

same kind of atoms at the vertices. We have (see Lemma 2.1.1):

Lemma 4.1.1. The potential q above defined is invariant with respect to the symmetry

group of GAA
% , for both % = n, g.

Finally, we define the AA-stacked multilayer graphene and AA-stacked graphite Schrödinger

operator HAA
% , which acts on a function u ∈ dom (HAA

% ) as

HAA
% ue(xe) := (−∆ + q(x))ue(xe) = −d2ue(xe)

dx2
+ qe(xe)ue(xe) (4.3)

for all e ∈ E(GAA
% ). When the context is clear, the subscript “e” will be omitted. The

domain dom (HAA
% ) consists of the functions u on GAA

% such that
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(i) ue ∈ H2(e), for all e ∈ E(GAA
% ), where H2(e) is the usual Sobolev Space in the edge e.

(ii)
∑

e∈E(GAA
% )

‖ue‖2
H2(e) <∞.

(iii) The Neumann vertex conditions (also called Kirchhoff vertex conditions), which re-

quires the continuity of the functions at each vertex v, and the vanishing of the total

flux at v, that is,

ue1(v) = ue2(v), for all e1, e2 ∈ Ev(GAA
% ), (4.4)∑

a∈Ēv(GAA
% )

u′a(v) +
∑

f∈Ẽv(GAA
% )

t0 u
′
f (v) = 0, (4.5)

whereEv(GAA
% ) is the set of edges that contains v (analogous to Ēv(GAA

% ) and Ẽv(GAA
% )),

u′e(v) is the derivate of ue directed from v to the other vertex of e and 0 < t0 < 1 is

an interaction parameter between consecutive layers.

Recall Remark 3.1.1 in Section 3.1 for details about the justification of the parameter

t0 in (4.5). The operator HAA
% is an unbounded self-adjoint operator [22, 20, 4] and, by

the evenness condition on the potential and Lemma 4.1.1, it is invariant with respect to

all symmetries of the graph GAA
% .

4.2 Spectral Analysis

In this section we perform a similar study to Section 4.2; we use Floquet-Bloch theory

[13, 21, 38, 5] to study the spectrum of HAA
% ; we extend results of [23]. We begin with

general remarks, then we specialize to bilayer, trilayer, the general n-layer graphene and,

finally, to graphite.

Let Bn = [−π, π]2 and Bg = [−π, π]3 be the Brillouin zone of GAA
n and GAA

g , respectively.

For each quasimomentum θ ∈ B%, let HAA
% (θ) be the Bloch Hamiltonian acting in L2(WAA

% )

as in (4.3), with (different from HAA
% ) domain dom (HAA

% (θ)) which is the subspace of

functions u that satisfies (i), (ii) and (iii) in dom (HAA
% ) and also the following cyclic

condition (or Floquet condition):

u(x+ pE) = eipθu(x), (4.6)

where pE =
∑i

j=1 pjEj, pθ =
∑i

j=1 pjθj, for all p ∈ Zi and all x ∈ GAA
% , with i = 2 for

% = n and i = 3 for % = g. It is well known that HAA
% (θ) has purely discrete spectrum [22],
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denoted by σ(HAA
% (θ)) = {λ%k(θ)}k≥1. The function θ 7→ {λ%k(θ)} is called the dispersion

relation of HAA
% and it determines its spectrum [13, 21, 38, 5]

σ(HAA
% ) =

⋃
θ∈B%

σ(HAA
% (θ)). (4.7)

The goal now is to determine the spectra of σ(HAA
% (θ)), θ ∈ B%, by solving the eigenvalue

problem

HAA
% (θ)u = λu, λ ∈ R, u ∈ D(HAA

% (θ)). (4.8)

As in Section 3.2, we consider two auxiliary operators. The Dirichlet Schrödinger

operator HD, given (3.8) and satisfying the Dirichlet boundary condition (3.9), that is, a

function u ∈ L2[0, 1] is in domHD if and only if

u(0) = u(1) = 0. (4.9)

The second operator is the Hill operator Hper defined in (3.10). We recall that for the

spectral problem

Hperϕ = λϕ, (4.10)

we consider the monodromy matrix M(λ) of Hper given by (see [5])ϕ(1)

ϕ′(1)

 = M(λ)

ϕ(0)

ϕ′(0)

 ,
where ϕ is any solution of the problem (4.10). For the spectral properties of the Hill

operator Hper and its discriminant D(λ), see Proposition 3.2.1.

Bilayer graphene

Now we consider the AA-stacked bilayer graphene GAA
2 , as described in Section 4.1. Let

us write out the conditions (4.4), (4.5) and (4.6) on the fundamental domain WAA
2 (see

Figure 4.2). As we identify every edge e with the interval [0, 1], it follows that vi1 ∼ 0 and

vi2 ∼ 1, for i = 1, 2. The cyclic Floquet condition (4.6) implies that

uai2(1) = eiθ1uai1(1) and uai3(1) = eiθ2uai1(1), i = 1, 2. (4.11)
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So the continuity condition (4.4) is equivalent to

ua11(0) = ua12(0) = ua13(0) = uf1(0) := A1

ua11(1) = eiθ1ua12(1) = eiθ2ua13(1) = uf2(1) := B1

ua21(0) = ua22(0) = ua23(0) = uf1(1) := A2

ua21(1) = eiθ1ua22(1) = eiθ2ua23(1) = uf2(0) := B2

. (4.12)

Similarly, the zero-flux condition (4.5) turns to

u′a11(0) + u′a12(0) + u′a13(0) + t0u
′
f1

(0) = 0

u′a11(1) + eiθ1u′a12(1) + eiθ2u′a13(1) + t0u
′
f2

(1) = 0

u′a21(0) + u′a22(0) + u′a23(0)− t0u′f1(1) = 0

u′a21(1) + eiθ1u′a22(1) + eiθ2u′a23(1)− t0u′f2(0) = 0

. (4.13)

Let λ /∈ σ(HD) (recall Section 3.2). Then there exists two linearly independent solutions

ϕλ,0, ϕλ,1 of the problem

−d2ϕ(x)

dx2
+ q(x)ϕ(x) = λϕ(x), (4.14)

such that ϕλ,0(0) = 1

ϕλ,0(1) = 0
,

ϕλ,1(0) = 0

ϕλ,1(1) = 1
(4.15)

and

ϕ′λ,1(x) = −ϕ′λ,0(1− x), x ∈ [0, 1]. (4.16)

Since each edge ofWAA
2 is identified with the interval [0, 1], we can define ϕλ,i in each edge

and we will keep the same notation ϕλ,i. Hence, for each λ /∈ σ(HD), we can represent

uai1 = Aiϕλ,0 +Biϕλ,1

uai2 = Aiϕλ,0 + e−iθ1Biϕλ,1

uai3 = Aiϕλ,0 + e−iθ2Biϕλ,1

uf1 = A1ϕλ,0 + A2ϕλ,1

uf2 = B2ϕλ,0 +B1ϕλ,1

i = 1, 2. (4.17)

It is easy to see that the continuity conditions (4.12) as well equation (4.14), are satisfied.
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It remains to verify condition of zero-flux (4.13). By substituting (4.17) into (4.13),

(3 + t0)1ϕ
′
λ,0(0) + F̄ (θ)B1ϕ

′
λ,1(0) + t0A2ϕ

′
λ,1(0) = 0

F (θ)A1ϕ
′
λ,0(1) + (3 + t0)B1ϕ

′
λ,1(1) + t0B2ϕ

′
λ,0(1) = 0

−t0A1ϕ
′
λ,0(1) + (3ϕ′λ,0(0)− t0ϕ′λ,1(1))A2 + F̄ (θ)B2ϕ

′
λ,1(0) = 0

−t0B1ϕ
′
λ,1(0) + F (θ)A2ϕ

′
λ,0(1) + (3ϕ′λ,1(1)− t0ϕ′λ,0(0))B2 = 0

, (4.18)

where F (θ) := 1 + e−iθ1 + e−iθ2 and F̄ (θ) its complex conjugate. By (4.16), we have that

ϕ′λ,0(1) = −ϕ′λ,1(0) and ϕ′λ,0(0) = −ϕ′λ,1(1). Thus the system (4.18) is equivalent to

−(3 + t0)A1ϕ
′
λ,1(1) + F̄ (θ)B1ϕ

′
λ,1(0) + t0A2ϕ

′
λ,1(0) = 0

−F (θ)A1ϕ
′
λ,1(0) + (3 + t0)B1ϕ

′
λ,1(1)− t0B2ϕ

′
λ,1(0) = 0

t0A1ϕ
′
λ,1(0)− (3 + t0)A2ϕ

′
λ,1(1)) + F̄ (θ)B2ϕ

′
λ,1(0) = 0

−t0B1ϕ
′
λ,1(0)− F (θ)A2ϕ

′
λ,1(0) + (3 + t0)B2ϕ

′
λ,1(1)) = 0

. (4.19)

Since ϕ′λ,1(0) 6= 0, the quotient η(λ) := ϕ′λ,1(1)/ϕ′λ,1(0) is well defined. Hence, dividing the

system (4.19) by ϕ′λ,1(0) and multiplying the second and fourth lines by −1, we obtain



−(3 + t0)η(λ)A1 + F̄ (θ)B1 + t0A2 = 0

F (θ)A1 − (3 + t0)η(λ)B1 + t0B2 = 0

t0A1 − (3 + t0)η(λ)A2 + F̄ (θ)B2 = 0

t0B1 + F (θ)A2 − (3 + t0)η(λ)B2 = 0

. (4.20)

The matrix form of the system (4.20) is

MAA
2 (λ, θ)X = 0, (4.21)

where X =
[
A1 B1 A2 B2

]ᵀ
and

MAA
2 (λ, θ) =


−T1η F̄ t0 0

F −T1η 0 t0

t0 0 −T1η F̄

0 t0 F −T1η

 , (4.22)

where T1 = 3 + t0, F = F (θ) and η = η(λ). From now on, we will omit the dependence

of θ in the matrix MAA
2 (λ). Note that det(MAA

2 (λ)) = 0 is a quartic polynomial in η(λ).
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Hence, if there exists a θ ∈ B such that det(MAA
2 (λ)) = 0, that is, η(λ) is one of the four

roots of det(MAA
2 (λ)) = 0, it follows that the representation (4.17) solves the eigenvalue

problem (4.8). Therefore by (4.7) it follows that λ ∈ σ(HAA
2 ).

Trilayer graphene

We now analyze the odd case n = 3; GAA
3 consists of three graphene sheets G1, G2 and G3.

Similarly to the case n = 2, lets us write out the conditions (4.4), (4.5) and (4.6) on the

fundamental domain WAA
3 (see Figure 4.2). Since

uai2(1) = eiθ1uai1(1) and uai3(1) = eiθ2uai1(1), i = 1, 2, 3,

it follows that the continuity condition (4.4) is equivalent to

ua11(0) = ua12(0) = ua13(0) = uf11(0) := A1

ua11(1) = eiθ1ua12(1) = eiθ2ua13(1) = uf12(1) := B1

ua21(0) = ua22(0) = ua23(0) = uf11(1) = uf21(1) := A2

ua21(1) = eiθ1ua22(1) = eiθ2ua23(1) = uf12(0) = uf22(0) := B2

ua31(0) = ua32(0) = ua33(0) = uf21(0) := A3

ua31(1) = eiθ1ua32(1) = eiθ2ua33(1) = uf22(1) := B3

, (4.23)

and the zero-flux condition (4.5) is equivalent to

u′a11(0) + u′a12(0) + u′a13(0) + t0u
′
f11

(0) = 0

u′a11(1) + eiθ1u′a12(1) + eiθ2u′a13(1) + t0u
′
f12

(1) = 0

u′a21(0) + u′a22(0) + u′a23(0)− t0u′f11(1)− t0u′f21(1) = 0

u′a21(1) + eiθ1u′a22(1) + eiθ2u′a23(1)− t0u′f12(0)− t0u′f22(0) = 0

u′a31(0) + u′a32(0) + u′a33(0) + t0u
′
f21

(0) = 0

u′a31(1) + eiθ1u′a32(1) + eiθ2u′a33(1) + t0u
′
f22

(1) = 0

. (4.24)
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Let λ /∈ σ(HD) and let ϕλ,0 and ϕλ,1 be the two linearly independent solutions of the

problem (4.14) that satisfies (4.15) and (4.16). If we write

uai1 = Aiϕλ,0 + βiBλ,1

uai2 = Aiϕλ,0 + e−iθ1Biϕλ,1

uai3 = Aiϕλ,0 + e−iθ2Biϕλ,1

uf11 = A1ϕλ,0 + A2ϕλ,1

uf12 = B2ϕλ,0 +B1ϕλ,1

uf21 = A3ϕλ,0 + A2ϕλ,1

uf22 = B2ϕλ,0 +B3ϕλ,1

i = 1, 2, 3, (4.25)

the continuity condition (4.23), as well as the problem (4.8), are satisfied. It remains to

verify the zero-flux condition (4.24). By substituting (4.25) into (4.24),

(3 + t0)ϕ′0(0)A1 + F̄ϕ′1(0)B1 + t0ϕ
′
1(0)A2 = 0

Fϕ′0(1)A1 + (3 + t0)ϕ′1(1)B1 + t0ϕ
′
0(1)B2 = 0

−t0ϕ′0(1)A1 + (3ϕ′0(0)− 2t0ϕ
′
1(1))A2 + F̄ϕ′1(0)B2 − t0ϕ′0(1)A3 = 0

−t0ϕ′1(0)B1 + Fϕ′0(1)A2 + (3ϕ′1(1)− 2t0ϕ
′
0(0))B2 − t0ϕ′1(0)B3 = 0

t0ϕ
′
1(0)A2 + (3 + t0)ϕ′0(0)A3 + F̄ϕ′1(0)B3 = 0

t0ϕ
′
0(1)B2 + Fϕ′0(1)A3 + (3 + t0)ϕ′1(1)B3 = 0

where F = F (θ) = 1 + eiθ1 + eiθ2 , F̄ its complex conjugate and ϕi = ϕλ,i. Since ϕ′0(1) =

−ϕ′1(0) and ϕ′0(0) = −ϕ′1(1), multiplying the even equations for -1 and dividing the whole

above system by ϕ′1(0) 6= 0, it follows that

−T1ηA1 + F̄B1 + t0A2 = 0

FA1 − T1ηB1 + t0B2 = 0

t0A1 − T2ηA2 + F̄B2 + t0A3 = 0

t0B1 + FA2 − T2ηB2 + t0B3 = 0

t0A2 − T1ηA3 + F̄B3 = 0

t0B2 + FA3 − T1ηB3 = 0

, (4.26)
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where T1 := 3 + t0, T2 := 3 + 2t0 and η = η(λ) = ϕ′λ,1(1)/ϕ′λ,0(0). The matrix form of the

obtained system in this case is

MAA
3 (λ)X = 0,

where X =
[
A1 B1 A2 B2 A3 B3

]ᵀ
and

MAA
3 (λ) =

MAA
T1T2

(m̃AA
t0

)ᵀ

m̃AA
t0

NAA
T1

 , (4.27)

with (denote, for i = 1, 2, Si = T1, T2)

MAA
S1S2

=


−S1η F̄ t0 0

F −S1η 0 t0

t0 0 −S2η F̄

0 t0 F −S2η

 , (4.28)

m̃AA
t0

=

0 0 t0 0

0 0 0 t0

 and NAA
T1

=

−T1η F̄

F −T1η

 . (4.29)

Note that MAA
2 (λ) = MAA

T1T1
. Thus, if there exists θ ∈ B such that det(MAA

3 (λ)) = 0,

the representation (4.25) solves the eigenvalue problem (4.8) and so λ ∈ σ(HAA
3 ).

Multilayer graphene

We now consider n sheets of AA-stacked graphene. Let λ /∈ σ(HD). Similarly to the cases

n = 2, 3, we have performed calculations for larger values of n and, by writing out the

conditions (4.4), (4.5) and (4.6) on the fundamental domain WAA
n ; useful patterns have

arisen, which have allowed us to get an expression for the general case.

Write the functions uaj and ufi,k as linear combinations of ϕλ,0 and ϕλ,1 in such way that

these representations satisfy the vertex conditions (4.4) and (4.5) and solve the eigenvalue

problem in each vertex ofWAA
n . However, we have found that important properties depend

on whether n is even or odd. If n ≥ 4 is even, we have
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MAA
n (λ) =



MAA
T1T2

(mAA
t0

)ᵀ 0 . . . 0 0

mAA
t0

MAA
T2T2

(mAA
t0

)ᵀ . . . 0 0

0 mAA
t0

MAA
T2T2

. . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . MAA
T2T2

(mAA
t0

)ᵀ

0 0 0 . . . mAA
t0

MAA
T2T1


, (4.30)

and if n ≥ 5 is odd, the matrix MAA
n is given by

MAA
n (λ) =



MAA
T1T2

(mAA
t0

)ᵀ 0 . . . 0 0

mAA
t0

MAA
T2T2

(mAA
t0

)ᵀ . . . 0 0

0 mAA
t0

MAA
T2T2

. . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . MAA
T2T2

(m̃AA
t0

)ᵀ

0 0 0 . . . m̃AA
t0

NAA
T1


, (4.31)

where

mAA
t0

=


0 0 t0 0

0 0 0 t0

0 0 0 0

0 0 0 0

 . (4.32)

AA-stacked graphite

Finally, we consider the AA-stacked graphite. Similarly to the other cases, we describe the

conditions (4.4), (4.5) and (4.6) on the set WAA
g (see Figure 4.2). By (4.4) and (4.6),ua1(0) = ua2(0) = ua3(0) = uf1,±(0) := A

ua1(1) = eiθ1ua2(0) = eiθ2ua3(0) = uf2,±(1) := B
(4.33)

and, by the vanishing flux condition (4.5), it follows thatu
′
a1

(0) + u′a2(0) + u′a3(0) + t0u
′
f1,+

(0) + t0u
′
f1,−

(0) = 0

u′a1(1) + eiθ1u′a2(1) + eiθ2u′a3(1) + t0u
′
f2,+

(1) + t0u
′
f2,−

(1) = 0
. (4.34)
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Since, by Floquet condition (4.6),

uf1,±(1) = e±iθ3uf1,±(0) and uf2,±(0) = e∓iθ3uf2,±(1),

we can write out, for λ /∈ σ(HD),

ua1 = Aϕ0 +Bϕ1

ua2 = Aϕ0 + e−iθ1Bϕ1

ua3 = Aϕ0 + e−iθ2Bϕ1

uf1,± = Aϕ0 + e±iθ3Aϕ1

uf2,± = e∓iθ3Bϕ0 +Bϕ1

, (4.35)

where ϕ0 and ϕ1 are the two linearly independent solutions of the eigenvalue problem (4.14)

that satisfies (4.15) and (4.16). Analogously to the calculations in the cases n = 2, 3, by

using the representation (4.35) in the systems (4.33) and (4.34), we obtain the equation

MAA
g (λ)X = 0,

where X =
[
A B

]ᵀ
and

MAA
g (λ) =

−T2η + 2t0 cos θ3 F̄

F −T2η + 2t0 cos θ3

 , (4.36)

with T2 = 3 + 2t0, η = η(λ) and F = F (θ) = 1 + eiθ1 + eiθ2 .

Spectra

For all the above cases, we have got the following result:

Proposition 4.2.1. Let λ /∈ σ(HD) and t0 ∈ (0, 1). Then, for % = n, g, λ ∈ σ(HAA
% ) if

and only if there exists θ ∈ B such that

det(MAA
% (λ)) = 0. (4.37)

Note that det(MAA
n (λ)) = 0 is a polynomial of degree n in η(λ). By Proposition 4.2.1,

the spectra σ(HAA
n ) is basically determined if we know the range of all n roots η(λ, θ) of

det(MAA
n (λ)) = 0. Obviously, it is not a simple task to find the roots of such polynomials.
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However, for the cases n = 2, 3 we can explicitly calculate the roots of (4.37). For n = 2, we

use the Laplace’s formula for matrix determinants in MAA
2 (λ), given by (4.22), to obtain

det(MAA
2 (λ)) = T 4

1 η
4(λ)− 2T 2

1

(
t20 + F (θ)F̄ (θ)

)
η2(λ) (4.38)

+
(
F (θ)F̄ (θ)− t20

)2
= 0.

Note that we can easily turn the quartic equation (4.38) into a quadratic equation in the

variable η2. Thus the four roots are

η±±(λ, θ) = ±

√
F (θ)F̄ (θ) + t20 ± 2

√
t20F (θ)F̄ (θ)

T 2
1

. (4.39)

Here, the subscript ± refers to the corresponding outside symbol of the first square root,

whereas the superscript ± refers to the inside one.

For the case n = 3, applying Laplace’s formula to (4.27), we obtain

det(MAA
3 (λ)) = T 4

1 T
2
2 η

6 −
(
4T 3

1 T2t
2
0 + (T 4

1 + 2T 2
1 T

2
2 )(FF̄ )2

)
η4 (4.40)

+
(
4T1T2t

2
0FF̄ + (T 2

1 + T 2
2 )(FF̄ )2 + T 2

1 (FF̄ − 2t20)2
)
η2

− FF̄
(
FF̄ − 2t20

)2
.

The roots of det(MAA
3 (λ)) = 0 are the following:

η̃±±(λ, θ) = ±

√
G(θ, t0)±

√
G(θ, t0)2 − 4T 2

1 T
2
2 (FF̄ − 2t20)2

2T 2
1 T

2
2

, (4.41)

η̄±(λ, θ) = ±

√
FF̄

T 2
1

, (4.42)

where G(θ, t0) = 4T1T2t
2
0 + (T 2

1 + T 2
2 )FF̄ . Note that the procedure to find the exact roots

(4.41) and (4.42) of det(MAA
3 (λ)) = 0 is the same described in Remark 3.2.1, for the

AB-stacked trilayer graphene case.

It is easier to find the two roots of det(MAA
g (λ)) = 0, which are

ηg
±(λ, θ) =

2t0 cos θ3 ±
√
FF̄

T2

. (4.43)

In order to state the characterization theorem of the spectra of HAA
% , we shall notice

that:

• Lemma 3.2.2 (for Bernal-stacked graphene, see Section 3.2) that relates the functions

η(λ) and the discriminant D(λ) of the Hill operator, still holds for the AA-stacked
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multilayer graphene and for the AA-stacked graphite. Thus, we have the following

relation:

η(λ) =
1

2
D(λ). (4.44)

Hence, we are able to relate the spectra σ(Hper) and σ(HAA
% ) (see Theorem 4.2.1).

• In the AA-stacked multilayer graphene and AA-stacked graphite, it is also true that

a Dirichlet eigenvalue λ ∈ σ(HD) is an infinite multiplicity eigenvalue of HAA
% , that

is, the Lemma 3.2.1 still holds in this case.

We are ready to characterize the spectrum of HAA
% . The proof of the next theorem

follows the same arguments presented in the proof of Theorem 2.2.1, Theorem 7 in [12]

and Theorem 3.6 in [23].

Theorem 4.2.1. For the AA-stacked multilayer graphene and AA-stacked graphite Schrödinger

operator (4.3), we have:

(i) The singular continuous spectrum of the HAA
% is empty.

(ii) The dispersion relation of HAA
% consists of two parts:

• the pairs (λ, θ) (λ /∈ σ(HD)) such that

D(λ) = 2η(λ), (4.45)

where η(λ) are the roots of the equation det(MAA
% (λ)) = 0;

• the collection of flat branches λ ∈ σ(HD), that is, the pairs (λ, θ) for any θ ∈ B%.

(iii) The absolutely continuous spectrum σac(H
AA
% ) coincides, as a set, with σ(Hper), that

is, it has band-gap structure and

σac(H
AA
% ) = {λ ∈ R : |D(λ)| ≤ 2} . (4.46)

(iv) The pure point spectrum σpp(HAA
% ) of HAA

% coincides with σ(HD), and each λ ∈
σ(HD) is an eigenvalue of infinite multiplicity of HAA

% .

(v) The spectrum σ(HAA
% ) has gaps if and only if σ(Hper) has gaps.
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In particular, for the AA-stacked bilayer graphene operator HAA
2 , (4.45) of the disper-

sion relation is

D(λ) = ± 2

3 + t0

√
F (θ)F̄ (θ) + t20 ± 2t0

√
F (θ)F̄ (θ),

and for the AA-stacked trilayer graphene operator HAA
3 , (4.45) takes the form

D(λ) = ± 2√
2T1T2

√
G(θ, t0)±

√
G(θ, t0)2 − 4T 2

1 T
2
2 (FF̄ − 2t20)2,± 2

T1

√
FF̄ .

Similarly, the dispersion relation (4.45) for the AA-stacked graphite is

D(λ) =
2

T2

(
t0 cos θ3 ±

√
F (θ)F̄ (θ)

)
.

4.3 Dirac cones

Now we prove our main result about Dirac cones (see Definition 2.3.1) in the dispersion

relation of the AA-stacked multilayer graphene Schrödinger operator, given by Theorem

4.2.1(ii). Before the theorem, we shall make some remarks.

Remark 4.3.1. 1. In order to check (2.39) for the D-point candidates θD, we use (4.45)

and expand in Taylor’s series D(λ(θ)) around λ(θD) and η(λ, θ) around θD. Theo-

rem 4.3.1 proves that, for n = 2, 3 and for the AA-stacked graphite, every root η(λ, θ)

of det(MAA
% (λ)) = 0 have a (nonzero) linear component ±γ|θ − θD|.

2. For n ≥ 4, we employ approximations by vanishing some selected instances of t0 in

MAA
n (λ); to distinguish such instances we denote them by c; c = 0 corresponds to the

approximation, whereas c = t0 recovers the full model. In Theorem 4.3.1, we show

the existence of the linear component ±γ1|θ − θD| for the approximations of η (i.e.,

c = 0), which estimate the full model up to a correction O(c2). Then we verify that,

independently of t0, the parameter γ1 does not vanish as c→ 0 (and so, by continuity,

it does not vanish for all t0 small enough); therefore, the linear component ±γ|θ−θD|
of η(λ, θ) survives in the full model, at least for small values of t0 > 0.

Theorem 4.3.1. Let n be a positive integer, and recall that HAA
% denotes the AA-stacked

multilayer graphene operator, for % = n, and the AA-stacked graphite operator, for % = g.

Then:

(i) For n = 1, 2, 3, the dispersion relation of HAA
n have Dirac cones in the Brillouin zone.
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(ii) Given n ≥ 4, for t0 > 0 small enough, the dispersion relation HAA
n have Dirac cones

in the respective Brillouin zone.

(iii) The dispersion relation of the graphite operator HAA
g have Dirac cones in the Brillouin

zone Bg.

Proof. (i) Single layer: The case of a single sheet of graphene was discussed in [23] and in

Theorem 2.3.1, with αN = αB = 0. For completeness, and as a warm up to the other cases,

we present here a detailed argument. By (4.45) of Theorem 4.2.1, the dispersion relation

of the graphene is given by D(λ) = 2η±(λ, θ), for λ /∈ σ(HD), where (see [23])

η±(λ, θ) = ±
√
F (θ)F̄ (θ)

3
, (4.47)

with F (θ) = 1 + eiθ1 + eiθ2 . Note that as in Chapter 3, it is suffices to consider θ ∈ Bd :=

{θ ∈ B : θ1 = −θ2}, the diagonal of the Brillouin zone. Hence, F (θ) = 1 + 2 cos(θ1) and

we can rewrite η±(λ, θ) as

η±(λ, θ) = ±|F (θ)|
3

.

Now we expand η±(λ, θ) in Taylor’s series around θD := ±2π/3. Since

cos θ1 = −1

2
∓
√

3

2
(θ1 − θD) +O((θ1 − θD)2),

it follows that

|F (θ)| =
√

3|θ1 − θD|+O(|θ1 − θD|2).

Hence

η±(λ, θ)− η±(λ, θD) = ±γ1,D|θ − θD|+O(|θ1 − θD|2), (4.48)

where γ1,D =
√

3/3.

It remains to analyze D(λ(θ)). Since D′(λ) 6= 0 in the spectral bands of σ(HAA
n ), then

expanding D(λ) in Taylor’s series around λ(θD), we obtain

D(λ(θ))−D(λ(θD))) = D′(λ(θD))(λ(θ)− λ(θD)) +O((λ(θ)− λ(θD))2). (4.49)

Hence, the possible presence of Dirac cones in (2.39) is regulated by the expansion of η±.

In particular, in the free case, i.e., q0 = 0, since D(λ(θ)) = 2 cos
√
λ(θ) (see [12, 23]), then

D′(λ(θD)) = −
sin(
√

(λ(θD)))√
λ(θD)

.
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Therefore, from (4.48) and (4.49), (2.39) follows with γ = γ1,D/D′(λ(θD)).

Bilayer graphene: Now we study the Dirac cones for n = 2 by making explicit the values

of γ in each cone. In this case, in fact for all n ≥ 2, it is enough to work with the right hand

side of (2.39), since the discussion for the left hand side of (2.39) repeats the single layer

case done above in (4.49). First note that by a simple explicit calculations we conclude:

Lemma 4.3.1. Let η±±(λ, θ), given by (4.39). As a function of θ ∈ B, we have the ranges:

img (η+
+(λ, θ)) =

[
t0

3 + t0
, 1

]
, img (η+

−(λ, θ)) =

[
−1,− t0

3 + t0

]
, (4.50)

img (η−+(λ, θ)) =

[
0,

3− t0
3 + t0

]
, img (η−−(λ, θ)) =

[
−3− t0

3 + t0
, 0

]
. (4.51)

Moreover,

(i) max η+
+(λ, θ) = 1 and min η+

+(λ, θ) = t0
3+t0

, attained at (0, 0) and

±(2π/3,−2π/3), respectively.

(ii) max η+
−(λ, θ) = − t0

3+t0
and min η+

−(λ, θ) = −1, attained at ±(2π/3,−2π/3) and (0, 0),

respectively.

(iii) max η−+(λ, θ) = 3−t0
3+t0

and min η−+(λ, θ) = 0, attained at (0, 0) and

±(arccos(±t0−1
2

),− arccos(±t0−1
2

)), respectively.

(iv) max η−−(λ, θ) = 0 and min η−−(λ, θ) = −3−t0
3+t0

, attained at

±(arccos(±t0−1
2

),− arccos(±t0−1
2

)) and (0, 0), respectively.

As in the graphene case, it is suffices to consider θ ∈ Bd. Then we can rewrite η±±(λ, θ)

as

η±±(λ, θ) = ±||F (θ)| ± t0|
3 + t0

. (4.52)

Let θ2,D := ±2π/3 and recall that T1 = 3+t0. Expanding in Taylor’s series η±+(λ, θ) around

θ2,D, we get

η±+(λ, θ) =

∣∣√3|θ − θ2,D| ± t0
∣∣

T1
+O(|θ1 − θ2,D|2),

that is,

η±+(λ, θ)− η±+(λ, θ2,D) = η±+(λ, θ)− t0
T1

= ±γ2,D|θ1 − θ2,D|+O(|θ1 − θ2,D|2),
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with γ2,D =
√

3/T1. Note that limt0→0 γ2,D = γ1,D. Analogously, we get

η±−(λ, θ)− η±−(λ, θ2,D) = η±−(λ, θ) +
t0
T1

= ∓γ2,D|θ − θ2,D|+O(|θ1 − θ2,D|2),

Let θ2,D± := arccos(±t0−1
2

). We now expand η−±(λ, θ) around θ2,D± . Since

F (θ) = ±t0 − (θ1 − θ2,D±)b± +O((θ1 − θ2,D)2),

where b± = 2 sin(θ2,D±), it follows that

|F (θ)| = ±|θ − θ2,D±||b±|+ t0 +O(|θ1 − θ2,D|2).

Then,

η−±(λ, θ)− η−±(λ, θ2,D±) = ±γ2,D± |θ1 − θ2,D±|+O(|θ1 − θ2,D)2|,

with γ2,D± = |b±|/T1. Since θ2,D± → 2π/3 as t0 → 0, it follows that limt0→0 γ2,D± = γ1,D.

The same calculations can be done by taking −θ2,D± . This proves the theorem for n = 2

(see Figure 4.3).
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Figure 4.3: Dispersion relation for AA-stacked bilayer graphene restricted to Bd and θ1 ∈
[−π, π]; the curves are calculated for t0 = 0.3.

Trilayer graphene: Now we study the Dirac cones for n = 3. To do so, we analyze

η̃±± and η̄±, given by (4.41) and (4.42), respectively, and explicit the γ’s of each cone.

Analogously to the case n = 2, Lemma 4.3.1 can be proven for η̃±± with some differences:

• η̃+
+(λ, θ) = η̃−+(λ, θ) =

√
2t20
T1T2

, for θ = ±(2π/3,−2π/3);

• η̃−+(λ, θ) = η̃−−(λ, θ) = 0, for θ = ±
(

arccos(±
√

2t0−1
2

),− arccos(±
√

2t0−1
2

)
)

;

• η̃+
−(λ, θ) = η̃−−(λ, θ) = −

√
2t20
T1T2

, for θ = ±(2π/3,−2π/3).
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As in the case n = 2, let θ ∈ Bd. Since t0 is close to zero, we can suppose that T1 = T2 to

simplify (4.41). Recall that G(θ, t0) = 4T1T2t
2
0 + (T 2

1 + T 2
2 )FF̄ . It follows that

G(θ, t0) = 4T 2
1 t

2
0 + 2T 2

1F (θ)2

and

G2 − 4T 2
1 T

2
2 (FF̄ − 2t20) = 32T 4

1 t
2
0F

2.

Then (4.41) turns to

η̃±±(λ, θ) = ±||F | ±
√

2t0|√
T1T2

. (4.53)

Note that we keep just one “T2” in the denominator for convenience. Now we expand in

Taylor’s series η̃±+(λ, θ) around θ3,D = ±2π/3. Analogously to the case n = 2, it follows

that

η̃±+(λ, θ)− η̃±+(λ, θ3,D) = η̃±+(λ, θ)−

√
2t20
T1T2

= ±γ̃3,D|θ − θ3,D|+O(|θ1 − θ3,D|2),

where γ̃3,D =
√

3/T1T2. Similarly we obtain

η̃±−(λ, θ)− η̃±−(λ, θ3,D) = η̃±−(λ, θ) +

√
2t20
T1T2

= ∓γ̃3,D|θ − θ3,D|+O(|θ1 − θ3,D|2).

Let θ3,D± = arccos(±
√

2t0−1
2

). Then

F (θ) = ±
√

2t0 + b̃±(θ1 − θ3,D±) +O((θ1 − θ3,D±)2),

where b± = 2 sin θ3,D± , which implies

|F (θ)| = ±|b±||θ1 − θ3,D±|+
√

2t0 +O(|θ1 − θ3,D± |2).

Hence, by (4.53), it follows that

η̃−±(λ, θ)− η̃−±(λ, θ3,D±) = ±γ̃3,D±|θ1 − θ3,D±|+O(|θ1 − θ3,D±|2), (4.54)

with γ̃3,D± = |b±|/
√
T1T2 → γ1,D as t0 → 0. It remains to analyze (4.42). For θ ∈ Bd,

we have that η̄(λ, θ) = ±|F (θ)|/T1. However, this case is completely analogous to the

case n = 1, but in this case we obtain γ =
√

3/T1. Therefore, HAA
3 have Dirac cones (see

Figure 4.4) and (i) is proven.

(ii) To study the existence of Dirac cones for HAA
n , for n ≥ 4, we consider suitable

approximations of MAA
n (λ) by block diagonal matrices. We replace mt0 and mᵀ

t0 by zero
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Figure 4.4: Dispersion relation for AA-stacked trilayer graphene restricted to Bd and θ1 ∈
[π, π]; the curves are calculated for t0 = 0.3.

in the matrix MAA
n (λ), for even n, and mt0 ,m

ᵀ
t0 , m̃t0 and m̃ᵀ

t0 by zero, for odd n. In both

cases the resulting matrix M̃AA
n (λ) is a block diagonal matrix with determinant given by

det(M̃AA
n (λ)) = (det(MT1T2))

2 (det(MT2T2))
m , (4.55)

for even n = 2m+ 2, and

det(M̃AA
n (λ)) = det(MT1T2) (det(MT2T2))

m det(NT1), (4.56)

for odd n = 2m+ 1, with m = m(n) ∈ N.

Now we show that, for any n ≥ 3,

det(MAA
n (λ))− det(M̃AA

n (λ)) = O(t20). (4.57)

As already mentioned, we denote the t0 variable in mt0 ,m
ᵀ
t0 , m̃t0 and m̃ᵀ

t0 by c, and by

detc(MAA
n (λ)) the determinant of this representation. Clearly, for c = t0 and c = 0 we

recover the original determinants, that is,

dett0(MAA
n (λ)) = det(MAA

n (λ)) and det0(MAA
n (λ)) = det(M̃AA

n (λ)).

If d
dc

detc(MAA
n (λ)) = 0, for c = 0, then expanding detc(MAA

n (λ)) in Taylor’s series around

c = 0, we get

detc(MAA
n (λ)) = det0(MAA

n (λ)) +
c2

2

d2

dc2
detc(MAA

n (λ)) + . . . ,

that is, (4.57) holds. So, our task is reduced to check that d
dc

detc(MAA
n (λ)) = 0, for c = 0.

Note that for any n ≥ 3, either for even n = 2m+ 2 or odd n = 2m+ 1,MAA
n (λ) contains
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2m pairs of c’s (for instance, for n = 3, 4, m = 1). Hence,

d

dc
detc(MAA

n (λ)) =
4m∑
i=0

δi(c),

where δi(c) is the determinant of the matrix obtained by taking derivative of the column of

MAA
n (λ) that contains the i-th c. Using the Laplace’s formula in δi(0), we obtain matrices

with either a row or a column of zeros. Then δi(0) = 0, for i = 1, . . . , 4m. Therefore,

d
dc

detc(MAA
n (λ)) = 0, for c = 0, and (4.57) follows.

By taking t0 close enough to 0, to analyze the Dirac cones for HAA
n , n ≥ 4, it suffices

to analyze the Dirac cones on the roots of det(M̃AA
n (λ)) = 0, by (4.57). First, recall that

MS1S2 is given by (4.28) and NT1 by (4.29). Hence,

det(MS1S2) = S2
1S

2
2 η

4 − [2S1S2t
2
0 + (S2

1 + S2
2)FF̄ ] η2 + (FF̄ − t20)2 (4.58)

and

det(NT1) = T 2
1 η

2 − FF̄ , (4.59)

with Si = T1, T2, with i = 1, 2, depending on each case. We have proven, in the case n = 2,

that the roots of detMT1T1 = 0 has Dirac cones. In a similar way, we conclude that the

roots of detMT2T2 = 0 has Dirac cones as well. In the case n = 3, we showed that the roots

of detMT1T2 = 0 and detNT1 = 0 have Dirac cones. Since the obtained γ values, which

are equal or a variation of γi,D and γj,D± (by changing T1 by T2), i = 1, 2, 3 and j = 2, 3,

do not vanish as c → 0, then we conclude that the dispersion relation of HAA
n have Dirac

cones in the Brillouin zone and (ii) is proven.

(iii) Finally, we analyze the dispersion relation of AA-stacked graphite operator HAA
g .

Let θ ∈ Bdg := {θ = (θ1, θ2, θ3) ∈ Bg : θ1 = −θ2}. Then (4.43) can be rewritten as

ηg
±(λ, θ) =

2t0 cos θ3 ± |F (θ)|
T2

; (4.60)

recall that F (θ) = 1 + 2 cos θ1 and T2 = 3 + 2t0. Analogously to the single graphene sheet

case, we conclude that

ηg
±(λ, θ)− ηg

±(λ, θg
D) = ±γg|θ − θg

D|+O(|θ − θg
D|

2),

with γg =
√

3/T2 and θg = (±2π/3,∓2π/3, θ3), that is, the dispersion relation of the

graphite operator HAA
g has Dirac cones (see Figure 4.5). This completes the proof of the

theorem.
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Figure 4.5: Dispersion relation for AA-stacked graphite restricted to Bdg and θ1 ∈ [−π, π]

with t0 = 0.3. Three values of θ3 were taken: θ3 = 0, π/2 and π. Any θ3 ∈ (−π, π)

generates a similar curve (in fact, interpolating).

4.4 Conclusions

We have proposed an extension of the single sheet quantum graph graphene model, dis-

cussed in [23], to the AA-stacked multilayer graphene, for any number of layers; a parame-

ter t0 in the zero flux boundary condition controls the intensity of the interaction between

consecutive layers. The case of infinitely many layers, indexed by the integer numbers

along the “z-axis” extends the model to the graphite and is periodic in the z-axis as well.

An advantage of these models is that the dispersion relations are not so complicated to be

found. The spectra of all such Hamiltonian operators are characterized and, in particular,

eigenvalues of infinite multiplicity (the eigenvalues of the Dirichlet Hamiltonian in a single

edge) are also present for all number of sheets.

With respect to Dirac cones, our results qualitatively recover theoretical and experimen-

tal findings for bilayer (see Figure 5 in [39]) and trilayer (see Figure 1(d) in [2]) graphene.

In [28] the authors have concluded that AA-stacked bilayer graphene are similar to single

graphene layer; we have in fact found Dirac cones for any number of AA-stacked layers and

that they keep similarities to the single layer one. Our rigorous results on energy bands

are also compatible with 3- and 4-layer graphene calculations by physicists (see Figure 5

in [33]), through a π-orbital continuum model with nearest-neighbor interactions. It is

worth mentioning that for bilayer and trilayer graphene we have got explicit expressions

for the discriminants of the Hill operators.

For the bulk graphite we have found Dirac cones parametrized by the quasimomen-

tum θ3 ∈ [−π, π], which is supported by experimental findings of Dirac fermions in
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graphite [45] as well. We have indications that the Dirac cones for n-layer graphene can

be approximated by selected θ3 values for the Dirac cones in graphite; however, more

investigations should be performed to prove such kind of assertion.



Chapter 5

Final Conclusions

In this work we employed quantum graph models to study the spectral characterization and

(possible) presence of Dirac cones for materials with hexagonal structure. With respect to

Dirac cones, our results qualitatively recover theoretical and experimental findings in all

the following cases:

Boron Nitride and Dirac Operator: First, we have modelled bidimensional honeycomb

materials with at most two kind of atoms by a relativistic graph model; furthermore, we

have used Robin boundary conditions at vertices, so with two real parameters δN and δB,

one for each vertex of the fundamental domain. All results are qualitatively valid for the

(nonrelativistic) Schrödinger case.

Such Robin parameters recover the usual Neumann conditions by taking δN = δB = 0

and include a more general model of graphene (the same kind of atom at all vertices) by

taking δN = δB = δC . Moreover, a model for the hexagonal boron nitride was proposed

by taking δN 6= δB. We have got that Dirac cones are present if, and only if, we have just

one kind of atom, so generalizing results of [23] for the case of Neumann conditions (for

Schrödinger operators).

For the BN case we have got a positive gap between the valence and conducting band,

which agrees with results from the experimental and theoretical literature. An important

point here is that such gap occurs as soon as δN 6= δB, and quantitative results depend on

specific values of such parameters.

Finally, by taking c → ∞, we have formally recovered the nonrelativistic parameters

from the relativistic ones (at least in case of zero potential).

AB-Stacked Bilayer and Trilayer Graphene: We extend the spectral results of [23],
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which propose a quantum graph model for a single sheet of graphene, to bilayer and tri-

layer Bernal-stacked graphene. We considered the Schrödinger operator with the stardard

Neumann boundary conditions at vertices and modelled the weak interaction between the

layers of graphene with a (small) parameter t0 > 0 in the vanishing total flux condition. It

was possible to obtain exact expressions to the dispersion relation for these materials.

In the bilayer case, it was observed that the dispersion relation is gapless with a

quadratic touching and does not have any Dirac cones. On the other hand, the pres-

ence of Dirac cones was observed in the trilayer case, in the same points which occurs

the quadratic touching of the bilayer graphene. For the trilayer graphene, we have found

that the existence and location of D-points is independent of the value of the interlayer

interaction parameter t0. It would be interesting to investigate whether this occurs for,

say, tight-binding models, at least for a range of interaction parameters; we have not found

any result in this direction in the literature.

AA-Stacked Multilayer Graphene and Graphite: Finally, a similar study to the Bernal-

stacked graphene was performed for the AA-stacked graphene and graphite. As in AB-

stacked graphene, we got exact expressions for the dispersion relation of bilayer and trilayer

graphene and it was possible to prove the existence of Dirac cones in both cases. Approx-

imations were employed to obtain the Dirac cones for multilayer graphene, that is, n ≥ 4.

The case of infinitely many layers, indexed by the integer numbers along the “z-axis” ex-

tends the model to the graphite and is periodic in the z-axis as well. An advantage of these

models is that the dispersion relations are not so complicated to be found.
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