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Abstract

Extreme events as large-scale disasters can cause partial or total disruption of basic ser-
vices such as water, energy, communication and transportation. In particular, recovering the
transportation infrastructure is of ultimate importance in post-disaster situations, to enable the
evacuation of victims and the distribution of supplies to affected areas. Road restoration, one of
the main activities in this context, is a complex activity due to its inherent decisions that must
be taken quickly and under uncertainty, such as the allocation of resources and the schedul-
ing/routing of the crews that perform the restoration activities. In this thesis, we address road
restoration by means of the Crew Scheduling and Routing Problem (CSRP), which integrates
scheduling and routing decisions. The problem also involves the design of relief paths to con-
nect a supply depot to demand nodes that become accessible only after the damaged nodes in
these paths are repaired. We start addressing the basic variant of the CSRP, which considers
a single crew available to perform the repair operations and minimizes the accessibility time of
the demand nodes. Then, we extend the problem to consider multiple heterogeneous crews and
uncertainties in the repair times via robust optimization. Also, we introduce the minimization
of the latency of the demand nodes, where the latency of a node is defined as the accessibility
time plus the travel time from the depot to that node. To solve the CSRP and the proposed ex-
tensions, effective solution methods based on Benders decomposition are proposed. We propose
three types of solution approaches: branch-and-Benders-cut algorithms (BBC), metaheuristics
based on simulated annealing and genetic algorithm, and hybrid branch-and-Benders-cut algo-
rithms (HBBC). We develop two BBC algorithms. The first BBC has a master problem with
scheduling decisions while the crew routing and the design of relief paths are considered in the
subproblems. The second BBC considers the crew scheduling and relief path decisions in the
master problem and a subproblem with the routing decisions. The metaheuristics operate on a
subproblem representing the scheduling decisions and call for specialized algorithms to optimize
the crew routing and the relief path decisions as well as to determine the feasibility and cost of
the proposed schedule in the original CSRP. The HBBC combines the metaheuristics with the
BBC algorithm. Computational experiments using instances from the literature are performed
to verify the performance of the solution methods. The experiments show that the solution
approaches developed so far improve the results of other exact and heuristic methods from the
literature for the single crew CSRP. Computational experiments with real-world instances based
on real disaster situations, such as floods and mass movements in the state of Rio de Janeiro
- Brazil, are performed to validate the new proposed multicrew and robust extensions of the
problem and they show that the proposed approaches are able to find good quality solutions for
practical-sized instances.

Keywords: road restoration; network repair; crew scheduling and routing; robust optimiza-
tion; Benders decomposition; branch-and-Benders-cut; hybrid methods; metaheuristics.



Resumo

Eventos extremos como desastres em grande escala podem causar interrupção total ou parcial de
serviços básicos como água, energia, comunicação e transporte. Particularmente, a restauração
da infraestrutura de transporte é de grande importância em situações pós-desastre, para permitir
a evacuação das vítimas e a distribuição de suprimentos para as áreas afetadas. A restauração
de estradas, uma das principais atividades nesse contexto, é uma atividade complexa devido
às decisões inerentes que devem ser tomadas rapidamente e sob incerteza, como a alocação de
recursos e a programação/roteamento das equipes de trabalho que devem executar as atividades
de restauração. Nessa tese, é abordado o problema de programação e roteamento de equipes
de trabalhos (CSRP) na restauração de estradas, o qual integra decisões de programação e
roteamento. O problema considera também a definição de caminhos para conectar um depósito
central com os nós de demanda, os quais tornam-se accessíveis somente após a reparação dos nós
danificados nesses caminhos. Nesse trabalho é abordada inicialmente a variante básica do CSRP,
a qual considera uma única equipe de trabalho disponível para executar as operações de reparo
e a minimização do tempo de acessibilidade. Em seguida, o problema é estendido para consid-
erar múltiplas equipes de trabalho heterogêneas, incertezas no tempo de reparo via otimização
robusta e a minimização do latency, definido como o tempo de accessibilidade mais o tempo de
viagem entre o deposito e os nós de demanda. Para resolver o CSRP e as extensões propostas,
são desenvolvidos métodos de solução baseados em decomposição de Benders. São propostos
três tipos de métodos de solução: algoritmos branch-and-Benders-cut (BBC), metaheurísticas
baseadas em recozimento simulado e algoritmo genético e BBC híbridos (HBBC). São desen-
volvidos dois algoritmos BBC. O primeiro BBC utiliza um problema mestre com decisões de
programação, enquanto o roteamento das equipes de trabalho e a definição dos caminhos entre
o depósito e os nós de demanda são considerados nos subproblemas. O segundo BBC considera
as decisões de programação e a definição de caminhos no problema mestre e um subproblema
com decisões de roteamento. As metaheurísticas operam em um subproblema que representa
as decisões de programação e utilizam algoritmos especializados para otimizar o roteamento e
a definição de caminhos, e assim determinar a viabilidade e o custo da programação no CSRP.
O HBBC combina as metaheurísticas com os algoritmos BBC. Testes computacionais usando
instâncias da literatura são realizados para verificar o desempenho dos métodos de solução. Os
resultados mostram que as abordagens de solução desenvolvidas melhoram as soluções de out-
ros métodos exatos e heurísticos propostos na literatura para o CSRP básico. Experimentos
computacionais com instâncias baseadas nas inundações e movimentos de massas no estado do
Rio de Janeiro - Brasil são realizados para validar as novas versões do problema e mostram que
os métodos de solução desenvolvidos encontram soluções de boa qualidade para instâncias de
tamanho prático.

Palavras-chave: restauração de estradas; restauração de redes; programação e roteamento
de equipes de trabalho; otimização robusta; decomposição de Benders; branch-and-cut; métodos
híbridos; meta-heurísticas.
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Chapter 1

Introduction

Hurricanes, floods, landslides and earthquakes are examples of natural hazards that affect mil-
lions of people every year (EM-DAT, 2019). Specifically, these types of extreme events cause
disruptions in the transportation infrastructure composed of roads, bridges, tunnels, etc., im-
peding access to affected areas. For instance, the 2010 Haiti earthquake generated more than
30 million cubic yards of debris (Booth, 2010) from damaged infrastructure, which includes the
airport, seaport and roads within the country, constraining the access of the victims to relief
aid (Van Wassenhove et al., 2010). Other examples of extreme events that have significantly
affected road networks, thus compromising the accessibility to affected areas, are hurricanes in
the southeastern region of the United States (Rawls and Turnquist, 2010), earthquakes in China
(Hu et al., 2019), and floods and landslides in Rio de Janeiro State in Brazil (Moreno et al.,
2018). Inaccessible affected areas result in a lack of commodities and delays in evacuation, rescue
and medical assistance activities, thus causing victim suffering and loss of life. In an attempt
to provide an effective emergency response in disaster aftermath, it is essential to restate the
accessibility of the affected areas, which is popularly known in humanitarian logistics as road
restoration (Tuzun-Aksu and Ozdamar, 2014).

Road restoration is complex due to its inherent decisions that must be taken quickly and
under uncertainty, such as the allocation of resources (crews, equipment and vehicles) and the
scheduling/routing of the crews that must perform the repair operations. Basically, the alloca-
tion decisions are focused on determining which crews must be used to perform the restoration
of the damaged roads as well as on the selection of the damaged roads that need to be repaired.
We consider that a damaged road can have one or more damaged points (damaged nodes), as
may occur in real cases, especially on long highways. Scheduling decisions are important to
define the sequence in which the damaged nodes in the network should be repaired by the crews,
and involve also the assignment of crews to damaged nodes. The routing decisions determine
the routes to be used by the crews to visit the damaged nodes and then return to the depot
at the end. We are particularly interested in a problem that explicitly considers the complex
interdependence between scheduling and routing decisions, hereafter called the Crew Scheduling
and Routing Problem (CSRP). The objective is to restore the damaged nodes in the network
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as soon as possible, as they are necessary to connect a source node (depot) with demand nodes
where exists some demand of humanitarian assistance. Thus, the CSRP also defines relief paths
to connect the central depot with the demand nodes.

The design of crew routes is challenging because damaged nodes can obstruct the access
to other nodes of the network and they are not traversable unless completely repaired first.
The traversable nodes include those that were not damaged and the repaired ones. Then, the
feasible routes in a specific moment depend on which nodes are damaged at that moment, which
in turn depends on the scheduling decisions. Thus, the routes available for the crews change
dynamically during the restoration according to the schedule. In addition, without considering
routing decisions simultaneously, the damaged nodes that are not accessible at a given moment
might be selected first in the schedule, making the schedule infeasible in practice.

For the mentioned reasons, crew scheduling and routing decisions on road restoration have
been studied from an integrated perspective in recent studies (Maya-Duque et al., 2016; Kim
et al., 2018; Shin et al., 2019). Particularly, the CSRP has been tackled recently via the proposi-
tion of mathematical programming and dynamic programing models (Maya-Duque et al., 2016).
However, such models have proven to be intractable and fail to solve even some small problem
instances. Hence, the authors in this field have devised heuristic methods to solve practical
instances of the CSRP without an optimality guarantee or any information on the quality of
the solutions. Furthermore, the solution methods proposed in literature address the CSRP
considering a single crew available to perform the restoration.

In a practical context, multiple crews associated with various agencies, such as civil defense,
armed forces, and firefighters, may be available to perform the repair operations. The crews
consist of workforce teams equipped with heavy machinery, dozers, excavators, light vehicles,
etc., and they may not have the same equipment. For example, one crew may have dozers and
excavators to remove heavy debris from a blocked road, while another may have only workers
using shovels. Some crews may not have enough resources (machinery, workforce, etc.) to repair
some damaged nodes. Furthermore, a crew with heavy machinery may take more time to reach
the damaged nodes than a crew with only light vehicles, although the former may perform
a faster restoration with the help of heavy machinery. Consequently, the crews differ in the
time required to repair the damaged nodes, in the travel time between nodes, and in the set
of damaged nodes that they can repair. However, the consideration of multiple heterogeneous
crews in the problem has been neglected in the literature because of the complexity involved
in such consideration. In fact, the CSRP with a single crew is already very challenging due to
the scheduling and routing decisions that must be integrated (Maya-Duque et al., 2016). In
the multicrew version of the problem, an additional complexity factor is the synchronization of
the crews at the damaged nodes (Akbari and Salman, 2017a,b) because these nodes cannot be
traversed unless they are completely repaired, and a crew may have to wait at some damaged
nodes, while another crew performs the restoration of such nodes.

The uncertainties inherent to extreme events make the aforementioned decisions even more
challenging. Generally, repair times are unknown in those situations (Çelik et al., 2015) and
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they are critical in road restoration, mainly when the short-term response operations must be
performed as soon as possible. Stochastic programming and robust optimization models can be
devised to handle such uncertainties. In the stochastic programing models, it is assumed that
the probability distribution of the random variables are known or can be well approximated
by a finite set of realizations or scenarios. However, due to the unpredictability of extreme
events, the derivation of such scenarios is particularly difficult. Furthermore, the deterministic
equivalent formulations resulting from using a finite set of scenarios can lead to intractable
models if the number of scenarios considered is large. For the robust optimization models,
on the other hand, it is not necessary to estimate the probability distribution functions or
to use scenarios to approximate such functions. In addition, these models may have similar
computational tractability when compared with the deterministic version (Bertsimas and Sim,
2004; Alem et al., 2018; Munari et al., 2019). No robust model has been developed in the
literature to deal with uncertainties in the CSRP or any variant of the road restoration problem.

One of the most common objective of road restoration problems is the minimization of the
accessibility time, which is defined as the total time that demand nodes remain inaccessible
from the central depot. However, the accessibility time in the CSRP neglect the travel time on
the relief paths. This travel time can significantly impact the actual time at which the demand
nodes are reached from the central depot. Recently, a new objective called “latency” have been
proposed for road restoration problems (Ajam et al., 2019), which is defined as the time at which
demand nodes are reached from the central depot. Thus, latency incorporates accessibility and
travel times simultaneously. Although the latency has been recently proposed for other variant
of road restoration problems, this objective has not yet been considered in the CSRP.

1.1 Objectives

The main objective of this thesis is to develop mathematical formulations and solution methods
for the basic variant of the CSRP as well as for more realistic variants with multiple hetero-
geneous crews, uncertain repair times and latency objective function. In order to achieve this
general objective, the following specific objectives must be attained:

• Study the CSRP with a single crew (SCSRP) and develop effective exact and heuristic
solution approaches based on Benders decomposition to solve it.

• Extend the SCSRP models and solution approaches to consider multiple heterogeneous
crews (MCSRP).

• Extend the MCSRP formulations and solution methods to consider the latency objective
function and uncertain repair times by robust optimization approaches.

• Perform computational experiments and validate the optimization models and solution
methods using benchmark instances from the literature and instances based on a real
disaster event.
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1.2 Methodology

According to the classification proposed by Bertrand and Fransoo (2002) and Morabito and
Pureza (2010), this research can be characterized as normative axiomatic quantitative research.
The research is called axiomatic quantitative because it is oriented to develop models and meth-
ods of idealized problems and is called normative because the primary objective is to develop
mathematical models and methods that represent adequately the problem and support the in-
volved decisions. To achieve the proposed objective, the next steps are followed:

• Problem definition. This thesis focuses on the crew scheduling and routing problem in
road restoration. The idea is to extend the deterministic single crew version of the problem
available in the literature to consider multiple crews and uncertain repair times.

• Literature review. A literature review of studies focused on the CSRP and related road
restoration problems is conducted to properly identify the research gaps.

• Formulation of the mathematical models and solution methods. Based on the gaps found
in the literature review, we propose solution methods as well as new mathematical formu-
lations considering new extension of the problem.

• Computational experiments. The proposed models and solution methods are validated
using benchmark instances from the literature and instances based on a real disaster event.
Computational experiments are conducted to compare the performance of the proposed
solution methods and models.

• Analysis and discussion of results. The results of computational experiments are analyzed
and discussed in order to present useful insights to the practice and theory.

1.3 Contributions

In this thesis, the CSRP and some extensions are addressed using solution methods based on
Benders decomposition. The contributions of this thesis are described as follows:

1. We develop for the first time Branch-and-Benders-cut (BBC) methods to solve the basic
variant of the CSRP. The BBC algorithms exploit the fact that when the scheduling deci-
sions are fixed, the crew routing and relief path decisions can be easily solved. We develop
two BBC algorithms. The first BBC has a master problem with scheduling decisions while
the crew routing and the design of relief paths are considered in the subproblems. The
second BBC considers the crew scheduling and relief path decisions in the master problem
and a subproblem with the routing decisions. The resulting master problem obtained from
the Benders decomposition is solved by a single search tree, exploring the generation of
cuts inside the tree. Due to the discrete subproblems, standard duality theory cannot be
applied to derive cuts. Therefore, different types of feasibility and optimality Benders cuts
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based on particular characteristics of the problem are proposed. A total of 11 variants of
the BBC algorithms were tested using different types of feasibility and optimilaty cuts,
valid inequalities, and warm-start strategies.

2. We develop a graph reduction strategy to speed up the proposed solution methods. The
graph reduction consists of solving the problem over a graph with a reduced number of
nodes, thus deriving lower bounds for the variables of the original problem. It relies on
the elimination of intersection nodes and arcs that are not directly connected to either
damaged or demand nodes.

3. We propose metaheuristics based on genetic algorithm (GA) and simulated annealing (SA)
to solve the basic variant of the CSRP. These metaheuristics operate on a subproblem
representing the scheduling decisions and call for specialized algorithms to optimize the
crew routing and the relief path decisions as well as to determine the feasibility and cost of
the proposed schedule in the original CSRP. The proposed metaheuristics do not explicitly
consider all the possible crew routes and relief paths but only the best ones of a given
scheduling solution, which significantly reduces the space of solutions explored by them.
They use a construction heuristic that is able to find feasible solutions for all the instances
of the problem and five local search operators to diversify the search in the solution space.

4. We propose the first hybrid branch-and-Benders-cut method (HBBC) that combines the
metaheuristics and the BBC to solve the basic variant of the CSRP. We use the meta-
heuristics not only to improve the master problem solutions but to derive Benders cuts
from their neighborhood. Hybridizing Benders decomposition methods with heuristics or
metaheuristics can simultaneously improve both the lower and upper bounds.

5. We introduce the heterogeneous multicrew scheduling and routing problem (MCSRP) for
road restoration and develop for the first time mixed integer programming models to
represent the problem. In addition, we study particular properties of the MCSRP and
derive valid inequalities based on these properties. Three different formulations and their
corresponding valid inequalities were developed for the MCSRP.

6. We introduce the robust multicrew scheduling and routing problem (RCSRP) in road
restoration, which considers uncertain repair times. A compact formulation based on
recursive equations is proposed for the problem. Additionally, we introduce a new objective
called “latency” for the problem, which is based on the time at which a demand node is
reached from the central depot. Therefore, the latency takes into account, for a given
demand node, the time at which the demand node becomes accessible from the depot plus
the travel time on the relief paths.

7. The BBC algorithms, the metaheuristics, and the proposed valid inequalities are adapted
to solve the RCSRP.
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8. We carried out extensive computational experiments with the developed formulations and
solution methods using benchmark instances and instances based on the so-called megadis-
aster of the Serrana Region in Rio de Janeiro, Brazil.

1.4 Organization of the thesis

The remainder of this thesis is organized as follows. Chapter 2 describes the different variants
of the CSRP. Chapter 3 reviews the relevant background literature on road restoration prob-
lems. Chapter 4 presents the first BBC approach for the single crew scheduling and routing
problem. Chapter 5 develops the second BBC method that enhances the approach presented in
Chapter 4. Additionally, Chapter 5 proposes genetic algorithm and simulated annealing meta-
heuristics and an exact hybrid BBC method that effectively combines the metaheuristics with
the BBC. Chapter 6 introduces the heterogeneous multicrew scheduling and routing problem
in road restoration. The main contributions of the chapter include three novel mathematical
formulations and the development of valid inequalities based on some particular properties of
the problem. Chapter 7 introduces the Robust Crew Scheduling and Routing Problem (RC-
SRP) in road restoration, which considers uncertain repair time and a new objective function
based on latency. A mathematical formulation and a Benders decomposition based algorithm
are developed for the RCSRP. Finally, Chapter 8 discusses the conclusion and perspectives of
future researches.
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Chapter 2

Problem description

In this chapter, we describe the Crew Scheduling and Routing Problem (CSRP) in road restora-
tion. First, in Section 2.1 we describe the basic variant of the problem. Then, Section 2.2
presents a extension of the problem considering multiple heterogeneous crews while Section 2.3
describes the robust CSRP considering uncertain repair times and the latency objective function.
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2.1 Single Crew Scheduling and Routing Problem (SCSRP)

After extreme events, some components of the transportation infrastructure such as roads,
bridges, and tunnels can be damaged or blocked interrupting the distribution and/or evacu-
ation operations to some affected cities. Generally, such activities are performed from or to
a central depot that is a supply point previously located to respond to such situations. For
instance, consider the damaged network of Figure 2.1 and assume that there is a single depot
in Teresópolis. Assume also that the highways RJ-148, RJ-130 and RJ-116 are damaged or
blocked. In this case, the distribution/evacuation from the depot to Nova Friburgo city cannot
be performed by road transportation. Thus, we say that the city of Nova Friburgo is inaccessible
from the depot. To make this city accessible, one of the highways (RJ-148, RJ-130, RJ-116)
must be restored or unblocked. The goal is to restore the damaged highways as soon as possible
as they are necessary to make the affected areas accessible from the depot.
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Figure 2.1: Example of a damaged network.
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Formally, the SCSRP can be defined on an undirected and connected graph G = (V, E),
in which V is the set of nodes and E is the set of arcs. There are demand nodes (Vd ⊂ V)
representing the affected cities and damaged nodes (Vr ⊂ V) representing the damaged points
in the network. In the demand nodes i ∈ Vd there is a demand di for humanitarian assistance.
Furthermore, there may be transshipment (intersection) nodes, which represent the intersection
of two or more arcs. Figure 2.2 shows a graph representation of the damaged network of
Figure 2.1. The demand node 5 represents the Nova Friburgo city while the damaged nodes 14,
15, 18 and 19 represent the damaged points in the highways RJ-148, RJ-130 and RJ-116. For
each node i ∈ V, there is a set Ei ⊆ E representing the arcs incident to node i. A damaged node
j ∈ Vr has a repair time δj that represents the time the crew spends to repair the node j. A
travel time τe and a length (distance) `e are defined for each arc e ∈ E .
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Figure 2.2: Example of a graph representing a damaged network.

The goal of the SCSRP is to minimize the time that the demand nodes remain inaccessible
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from the depot, weighted by their corresponding demands. The accessibility of the demand
nodes influences the delivery of commodities and the evacuation of affected people. The SCSRP
considers a single crew available to perform the restoration activities. The problem consists of
determining (i) the optimal crew scheduling to repair the damaged nodes (crew scheduling deci-
sions), (ii) the paths that must be followed by the crew between two successive damaged nodes
in the schedule (crew routing decisions), and (iii) the paths between the depot and the demand
nodes (relief path decisions). Figure 2.3 shows an example of the main decisions considered
in the SCSRP highlighing the crew schedule (red dashed lines), the path followed by the crew
between the damaged nodes 14 and 15 (black arrows) and the path from the depot to demand
node 12 (blue arrows).
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Figure 2.3: Example of the main decisions in the SCSRP.

The scheduling decisions define the sequence in which the damaged nodes in the network
will be repaired by the crew. In Figure 2.3, for example, the first node to be repaired is the
damaged node 14 while the last node in the sequence is the damaged node 19. The routing
decisions determine the paths/routes to be used by the crew to visit and repair the damaged
nodes. In this variant, a path of the crew is usually a sequence of nodes and arcs used by the
crew to travel from one damaged node to another, while a route is a sequence of paths that
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ends at the depot after repairing all the damaged nodes. The damaged nodes must be repaired
the first time they are visited by the crew, incurring in the repair time. In subsequent visits,
the crew can use the already repaired damaged nodes without incurring in repair time. Some
damaged nodes cannot be repaired before the restoration of other damaged nodes. For example,
node 15 of the Figure 2.3 cannot be repaired directly from the depot because any path from
the depot to damaged node 15 uses at least one of the other damaged nodes. Thus, a crew
schedule considering node 15 as the first node to be repaired is infeasible. More than one path
can be available for the crew to travel from one damaged node to the next in the sequence. In
Figure 2.4, three examples of paths from damaged node 17 to damaged node 18 are presented.
Notice we are assuming that the damaged nodes 14, 15 and 16 have been already repaired.
The crew can travel from damaged node 17 to damaged node 18 using paths 17-13-18 (path
1), 17-11-10-16-9-8-15-7-6-19-18 (path 2), 17-11-10-16-9-8-15-7-6-5-4-14-3-2-1-0-13-18 (path 3),
among others. However, path 2 is infeasible because the node 19 is not repaired yet. Hence,
feasible paths between damaged nodes must include only nodes that were not damaged and/or
the repaired ones.
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Figure 2.4: Example of paths of the crew.

The relief path decisions correspond to determine the paths that make the demand nodes
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accessible from the depot. A relief path is a sequence of nodes and arcs used to connect the
depot with a demand node. Figure 2.5 presents an example of two relief paths between the
depot and the demand node 12. A demand node i ∈ Vd is called accessible if there exists a relief
path that connects this node to the depot using only undamaged and/or repaired nodes and that
is not longer than a maximum distance li. The maximum distance li is based on pre-disaster
conditions and has to be greater than or equal to the shortest distance between the depot and
the demand node i. In Figure 2.5, for example, assuming a distance ` = 1 in all the arcs of the
graph, the shortest distance from the depot to demand node 12 is 4. Then, l12 ≥ 4. If l12 = 4,
only relief path 1 (0-13-17-11-12) can be used to connect the depot with demand node 12. In
this case, relief path 2 (0-1-2-3-14-4-5-6-7-15-8-9-16-10-11-12) is infeasible. On the other hand,
if l12 = 15, relief paths 2 can be used to connect the depot with demand node 12. Relief paths
connecting the depot with the demand nodes can require the restoration of damaged nodes.
In Figure 2.5, for example, if relief path 1 is defined for connecting node 12 with the depot,
damaged node 17 must be repaired to make node 12 accessible. On the other hand, if relief path
2 is defined for connecting node 12 with the depot, then damaged nodes 14, 15 and 16 must
be repaired for demand node 12 to become accessible. The time that a demand node i remains
inaccessible depend on the path defined to connect it with the depot. For example, the time
that demand node 12 remains inaccessible from the depot is equal to the restoration time of
node 17 if the relief path 1 is used; or equal to the maximum of the restoration times of damaged
nodes 14, 15 and 16 if relief path 2 is used. Assuming that l12 ≥ 15, relief path 2 is better than
relief path 1 to connect the depot with the demand node 12 because the damaged nodes 14, 15,
16 (used in the relief path 2) are repaired before damaged node 17 (used in the relief path 1).
Notice that some demand nodes can be accessible without the restoration of damaged nodes.
In Figure 2.5, for example, node 1 can be connected with the depot with path 0-1. In this case,
the time that demand node 1 remain inaccessible is null. Notice also that some damaged nodes
might not need to be repaired for connecting the depot with the demand nodes. However, the
SCSRP considers the restoration of all the damaged nodes.

2.2 Heterogeneous Multicrew Scheduling and Routing Problem
(MCSRP)

Different from the SCSRP described in the previous section, in the MCSRP a set K of multiple
heterogeneous crews is available to perform the restoration activities. The crews are initially
located in the central depot and differ in the time required to repair the damaged nodes (δki),
in the travel time on the arcs (τke), and in the set of damaged nodes that each crew can repair.
Basically, the MCSRP consists of determining (i) the paths to connect the depot to the demand
nodes (relief path decisions), (ii) the assignment of crews to the damaged nodes (assignment
decisions), (iii) the schedule of crews to repair the damaged nodes (scheduling decisions), and
(iv) the routes of crews to repair the damaged nodes and return to the depot (routing decisions).
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Figure 2.5: Example of relief paths.

Figure 2.6 illustrates the main decisions attributed to the MCSRP, highlighting the schedule of
two crews (red arrows), the route of a crew (black arrows), and one relief path (green arrows).
The scheduling decision includes the assignment of crews to damaged nodes.

The relief path decision defines the sequence of nodes and arcs used to connect the depot
with the demand nodes to perform the distribution, evacuation and/or rescue operations. A
given relief path connecting the depot with the demand node i is called a relief path 0− i. For
instance, Figure 2.6 shows an example of a relief path 0− 2 (green arrows), which is defined by
the sequence of nodes 0→ 1→ 8→ 2. Multiple paths may be available to reach a given demand
node i. For example, the sequence 0→ 6→ 4→ 5→ 2 is an alternative relief path 0− 2. The
total distance of a relief path 0− i must be less than or equal to a predefined maximum distance
ldi . The damaged nodes used in the relief paths must be repaired by the available crews as soon
as possible to minimize the time that the demand nodes remain inaccessible from the depot
(accessibility time). The accessibility time of demand node i depends on the time at which the
damaged nodes used in relief path 0− i are repaired. In Figure 2.6, for example, demand node
2 becomes accessible after the restoration of damaged node 8.

The assignment decision determines the damaged nodes that need to be repaired, and the

13



Depot
Damaged node
Demand node
Intersection node
Crew schedule
Route of crew 2
(Crew paths 0-7, 7-0)

Relief path 0-2

Figure 2.6: Decisions attributed to the MCSRP.

crew that must perform their restoration. The scheduling decisions define, for each crew, the
repair order of the damaged nodes. Figure 2.6 shows the assignment and scheduling decisions
for two crews (red arrows). Crew 1 is assigned to repair damaged nodes 6 and 8, while crew
2 must perform the restoration of damaged node 7. The schedule for the first crew is defined
by the ordered set of nodes (0, 8, 6, 0). Thus, node 8 is repaired before node 6. Since the
crews must depart and return to the depot, we include node 0 at the beginning and at the end
of each schedule. The assignments and schedules defined for the crews may not need to include
all the damaged nodes. A subset of damaged nodes may be enough to make the demand nodes
accessible. For example, only damaged node 8 needs to be repaired to enable relief path 0− 2.
However, solutions repairing more than the needed damaged nodes are feasible for the problem.

The routing decisions determine the paths/routes to be used by the crews to repair the
damaged nodes and return to the depot. A path associated with a given crew is a sequence
of nodes and arcs used by this crew to travel between two consecutive damaged nodes in its
schedule. A path used by a crew to travel from node i to node j is called crew path i− j. Crew
path 0 − 7 in Figure 2.6 is defined by the sequence of nodes 0 → 6 → 4 → 5 → 7, while crew
path 7 − 0 is defined by the sequence of nodes 7 → 3 → 4 → 6 → 0. More than one path
can be available for a crew to travel from one damaged node to the next in its schedule. For
example, the path defined by nodes 0→ 1→ 8→ 2→ 5→ 7 is an alternative crew path 0− 7.
For a given crew, a route is a sequence of paths that ends at the depot after repairing all the
damaged nodes in its schedule. The route for crew 2 consists of crew paths 0− 7 and 7− 0. The
time spent by the crews to return to the depot after repairing the last damaged node in their
schedules does not affect the accessibility time of the demand nodes. Therefore, any feasible
path composed of repaired damaged nodes and/or undamaged nodes can be used by the crews
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to return to the depot without affecting the accessibility time of the demand nodes. Nodes and
edges can be traversed multiple times by the crews. A damaged node i is repaired when it is
visited for the first time by crew k assigned to its restoration. In this case, crew k incurs in
the repair time δki. The crews can use the already repaired damaged nodes multiple times after
their restoration without incurring extra repair time. Some damaged nodes cannot be accessed
directly from the depot without the restoration of other intermediate damaged nodes. This is
the case for node 7 in Figure 2.6, for example.

It is assumed that the same crew cannot restore more than one damaged node simultaneously.
Similarly, more than one crew cannot repair the same damaged node. Thus, if a crew arrives at
a damaged node while another crew is performing its restoration, then it has to wait until the
damaged node is totally repaired. For example, crew 2 may have to wait to cross damaged node
6, which is repaired by crew 1. In this case, the time at which crew 2 can cross node 6 must be
synchronized with the time at which crew 1 completes the restoration of this node.

Different from the single crew version of the problem, the synchronization of crews in the
MCSRP requires the consideration of both the arrival and waiting times at each damaged node
crossed in the paths of the crews. This increases the difficulty of the problem in terms of
tractability of the MIP model representing the MCSRP with respect to the SCSRP given the
number of additional variables and constraints that must be considered. Nevertheless, neglecting
the synchronization in the MCSRP can significantly deteriorate the solutions to the problem.
For instance, consider the schedules presented in Figure 2.6 and assume that crew 1 completes
the restoration of nodes 8 and 6 after 2 and 4 hours, respectively. Additionally, assume that
the travel time of crew 2 is 1 hour for all arcs. Figure 2.7 shows two possible paths for crew
2 to travel from node 0 to damaged node 7 with and without considering the synchronization
of the crews. Path 1 is defined by nodes 0 → 6 → 4 → 5 → 7, while path 2 is defined by
nodes 0 → 1 → 8 → 2 → 5 → 7. When the synchronization is neglected, we assume that the
damaged nodes visited in paths 1 and 2 can be used without incurring waiting time. In this
case, the best path for arriving at damaged node 7 seems to be path 1, and crew 2 arrives at
node 7 after 4 hours. However, when we consider the synchronization of the crews, crew 2 has
a waiting time of 3 hours using path 1 because damaged node 6 can be crossed only after 4
hours. Then, using path 1 implies crew 2 arrives at node 7 after 7 hours and not after 4 hours
as was wrongly determined when no waiting time was considered. In contrast, path 2 has no
waiting time since damaged node 8 is already repaired when crew 2 arrives. Therefore, ignoring
the synchronization implies neglecting the waiting time, which in turn leads to the selection of
path 1. This strategy delays the restoration of damaged node 7 by 2 hours with respect to the
selection of path 2.

2.3 Robust Crew Scheduling and Routing Problem (RCSRP)

In the RCSRP, we introduce a new latency objective function and consider uncertain repair times
in the problem. We consider a new parameter that represents the travel time te associated to the

15



0->6 6->4 4->5 5->7

0->1 1->8 8->2 2->5 5->7

0->6 Waiting time 6->4 4->5 5->7

0->1 1->8 8->2 2->5 5->7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

No synchronization: Path 1

No synchronization: Path 2

Synchronization: Path 1

Synchronization: Path 2

Time (hours)

Figure 2.7: Example of the impact of the synchronization in the routing decisions.

arcs used in the relief paths. The decisions attributed to the RCSRP are the same considered
for the MCSRP, as illustrated in Figure 2.8(b). As in the MCSRP, the accessibility time Zd

i of
demand node i depends on the time at which the damaged nodes used in relief path 0 − i are
repaired. The latency LTi of a demand node i is defined as the sum of the travel time te of all
the arcs in relief path 0− i and the accessibility time of the demand node i.

(a) Graph G. (b) Decisions attributed to the RCSRP.

Figure 2.8: Graph G and main decisions in the RCSRP.

Multiple relief paths 0 − i may be available to connect the depot with a demand node i.
Consider the damaged network G presented in Figure 2.8(a) and the schedule of the crews
presented in Figure 2.8(b). Let Zr

j be the restoration time of damaged node j, i.e., time at
which damaged node j is repaired and assume te = 3 for arcs 2 and 3 in Figure 2.8(a) and te = 1
for all the other arcs. Table 2.1 shows five possible paths to connect the depot with the demand
node 3 and the corresponding accessibility time and latency of demand node 3 using these paths.
Note that path p1 is infeasible because it uses damaged node 9, which is not repaired by any
crew. Path p2 used damaged node 6 while path p3 uses damaged node 6 and 7. Path p2 is
evidently better than path p3 while path p4 is better than path p5 regarding the accessibility
time and latency of demand node 3. Then, in our example, either p2 or p4 is the optimal relief
path 0− 3.
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Table 2.1: Example of possible relief paths 0− 3.
Relief path 0− 3 Accessibility time Travel time Latency
p1 : 0→ 9→ 3 +∞ t8 + t9 = 2 +∞
p2 : 0→ 6→ 4→ 3 Zd

3 = Zr
6 t7 + t6 + t12 = 3 Zr

6 + 3
p3 : 0→ 6→ 4→ 5→ 7→ 3 Zd

3 = max{Zr
6, Z

r
7} t7 + t6 + t5 + t11 + t10 = 5 max{Zr

6, Z
r
7}+ 5

p4 : 0→ 1→ 8→ 2→ 5→ 4→ 3 Zd
3 = Zr

8 t1 + t2 + t3 + t4 + t5 + t12 = 10 Zr
8 + 10

p5 : 0→ 1→ 8→ 2→ 5→ 7→ 3 Zd
3 = max{Zr

8, Z
r
7} t1 + t2 + t3 + t4 + t11 + t10 = 10 max{Zr

8, Z
r
7}+ 10

* Damaged nodes in bold. The value +∞ indicates that path p1 is infeasible.

In the robust CSRP (RCSRP), the repair time δ̃ki is considered as an uncorrelated uncertain
value modeled as an independent random variable that fall within the symmetric and bounded
range δ̃ki ∈ [δki − δ̂ki, δki + δ̂ki], where δ̂ki is a positive deviation of the random variable from
its corresponding nominal value δki. This uncertainty can significantly affect the latency of
the demand nodes. For instance, consider the example presented in Figure 2.8 and assume
the repair times δ̃kj , travel times τke and route for crew 1 as shown in Figure 2.9. Therefore,
the restoration time of damaged nodes 8 and 6 is calculated as Zr

8 = τ11 + τ12 + δ̃18 and
Zr

6 = Zr
8 + τ12 + τ11 + τ17 + δ̃16, respectively. Since the exact repair times are unknown, consider

the three cases presented in Table 2.1 assuming different values for the repair times δ̃18 and
δ̃16 within the ranges [3, 7] and [2, 6], respectively. The table shows the restoration time of the
damaged nodes 6 and 8 in such cases and the latency for demand node 3 when using either the
path p2 (LT3 = Zr

6 + 3) or p4 (LT3 = Zr
8 + 10) defined in Table 2.1.

0 1 8 1 0 6 0

τk 1=0.5 τk 2=1.5 τk 2=1.5 τk 1=0.5 τk 7=1.0 τk 7=1.0

Route crew 1:
Arc 1 Arc 2 Arc 2 Arc 1 Arc 7 Arc 7

Travel time crew 1:

Repair time crew 1: ~
δk 8∈[3,7]

~
δk 6∈[2, 6]

Case 1:
~
δk 8=3,

~
δk 6=2 ;

Z 8
r=τk 1+τ k 2+

~
δk 8=5 ; Z 6

r=Z8
r+τk 2+ τk 1+ τk 7+

~
δk 6=10 ;

Case 2:
~
δk 8=7,

~
δk 6=2;

Z 8
r=τk 1+τ k 2+

~
δk 8=9 ; Z 6

r=Z8
r+τk 2+ τk 1+ τk 7+

~
δk 6=14 ;

Case 3:
~
δk 8=3,

~
δk 6=6 ;

Z 8
r=τk 1+τ k 2+

~
δk 8=5 ; Z 6

r=Z8
r+τk 2+ τk 1+ τk 7+

~
δk 6=14 ;

Case 4:
~
δk 8=7,

~
δk 6=6 ;

Z 8
r=τk 1+τ k 2+

~
δk 8=9 ; Z 6

r=Z8
r+τk 2+ τk 1+ τk 7+

~
δk 6=18 ;

Case 5:
~
δk 8=5,

~
δk 6=4 ;

Z 8
r=τk 1+τ k 2+

~
δk 8=7 ; Z 6

r=Z8
r+τk 2+ τk 1+ τk 7+

~
δk 6=14 ;

Latency node 3
p2 p4

LT 3=1315

17 19

17 15

21 19

17 17

Z 6
r+3 Z 8

r+10

0 1 8 0 6 0
τ11=0.5 τ12=1.5 τ12=1.5 τ11=0.5 τ17=1.0 τ17=1.0

~
δ18∈[3,7 ]

~
δ16∈[2,6 ]

Arc 1 Arc 2 Arc 2 1 Arc 1 Arc 7 Arc 7

Z 8
r=τk 1+τ k 2+

~
δk 8 Z 6

r=Z8
r+τk 2+ τk 1+ τk 7+

~
δk 6

Figure 2.9: Travel times, repair times and route for crew 1.

Table 2.2: Restoration times Zr
6 and Zr

8 and latency for demand node 3 when considered different
δ̃kj values.

LT3
δ̃j values Zr

j values p2 p4

Case 1: δ̃18 = 3, δ̃16 = 2; Zr
8 = 5, Zr

6 = 10; 13∗ 15
Case 2: δ̃18 = 7, δ̃16 = 6; Zr

8 = 9, Zr
6 = 18; 21 19∗

Case 3: δ̃18 = 5, δ̃16 = 4; Zr
8 = 7, Zr

6 = 14; 17∗ 17∗
* Optimal latency of demand node 3.

Note that the optimal relief path 0− 3 depends on the values attributed to the repair times.
In case 1, the optimal relief path 0− 3 is p2 while that for case 2 the optimal relief path 0− 3 is
p4. In case 3, on the other hand, the selection of either p2 or p4 results in the same latency for
demand node 3. In the RCSRP, the uncertainty in the repair time does not affect the feasibility
of the relief paths, i.e., the relief paths are feasible/infeasible independently of the value assumed
by the repair times of the crews. However, the uncertainty in the repair times can lead to the
selection of suboptimal relief paths. For example, we could select path p2 as the optimal relief
path 0− 3 aiming to have a latency equal to 13 (case 1). However, the realization of the repair
times could be δ̃18 = 7 and δ̃16 = 6 leading to a latency equal to 21 (case 2).
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Chapter 3

Literature review

In this chapter, we review the pertinent literature related to the CSRP. In Section 3.1, we in-
troduce and define the scope of the literature review. In Section 3.2, we review the related
problems considering a single crew. In Section 3.3, we extend the review to related road restora-
tion problems that consider multiple crews. Finally, in Section 3.4, we summarize the review
and highlight the main research gaps.
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3.1 Scope of the literature review

The number of works addressing humanitarian logistics and disaster management has grown in
the last years (Özdamar and Ertem, 2015; Goldschmidt and Kumar, 2016). Disaster operations
in both, pre-disaster and post-disaster phases, have been widely addressed in literature. Evacu-
ation of victims, relief distribution, road restoration, debris clearance and debris collection are
some of the main post-disaster operations tackled by the authors. Road restoration is defined
as the restoration of transportation infrastructure after extreme events, while debris clearance
is a special application of the road restoration that consists of unblocking debris-blocked roads
by pushing the debris to road sides (Çelik, 2016). Road restoration is particularly important to
guarantee good service levels in the evacuation of victims and the distribution of relief aid. In
fact, recent works have planned the distribution of relief supplies considering different scenarios
of road destruction (Rawls and Turnquist, 2010; Noyan, 2012; Ahmadi et al., 2015; Moreno
et al., 2016, 2018). Not surprisingly, scenarios with more damaged roads present lower service
levels and/or higher logistic costs. Furthermore, the damaged roads can make it impossible to
reach all the centers of demand (Liberatore et al., 2014).

Despite the importance of road restoration, recent surveys have pointed out the lack of studies
in this area. In this direction, Altay and Green (2006) and Galindo and Batta (2013) highlighted
a lack of research in problems related to recovery operations such as recovery of lifeline services,
disaster debris cleanup, and restoration of roads. They pointed out the importance of such
decisions to return to the normal functioning of the affected areas. Özdamar and Ertem (2015)
concluded that there is a need for developing solvable models including debris transportation,
road repair, relief delivery and evacuation. They claimed that the existing models were either
oversimplified or too complex and unsolvable. Finally, Çelik (2016) emphasized the lack of
works addressing uncertainties. The authors concluded that the uncertainty on the demand or
resource requirements for restoration/clearance must be properly considered. The surveys show
gaps in the consideration of uncertainties and in the development of solvable realistic models
with integrated decisions for the road restoration problem.

3.2 Variants of the problem considering a single crew

The integration of crew scheduling and routing has been recently studied in the literature under
the assumption of a single crew available to perform the repair operations. Sahin et al. (2016)
developed a model to determine the order and route to visit critical nodes. The roads to be
restored are those in the defined routes. The objective of the model is to minimize the total time
spent to reach all the critical nodes. A construction heuristic based on Dijkstra’s shortest-path
algorithm is proposed to find the visiting order. Then, to improve the solution quality, the
authors applied the 2-opt algorithm. In Berktaş et al. (2016), two mathematical models are
considered with different objectives. The first model is a reformulation of the one proposed by
Sahin et al. (2016). In the second model, the authors define a new objective function that consists
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of minimizing the weighted sum of visiting times using priorities for the critical nodes. Heuristic
algorithms are proposed to obtain solutions quickly. The heuristics determine critical paths
between critical nodes using Dijkstra’s shortest-path algorithm and solve a simple version of the
model by fixing these paths. Similarly, Kasaei and Salman (2016) developed two mathematical
models as well as heuristic methods to find the schedule and route of a crew. The first model
minimizes the total time to restore the connectivity of disconnected components of the network
and the second one maximizes the total components connected in a given time limit. Ajam et al.
(2019) adapted the models proposed by Kasaei and Salman (2016) to minimize the latency of
critical nodes, where the latency of a node is defined as the travel time from the depot to that
node including the repair time of the damaged roads. The authors developed a metaheuristic
based on a combination of GRASP and variable neighborhood search (VNS).

The single crew scheduling and routing problem (SCSRP) integrating crew scheduling and
routing with the definition of relief path has been tackled recently in the literature using exact
methods and heuristics. Maya-Duque et al. (2016) developed a dynamic programming (DP)
algorithm to optimally solve the SCSRP. This approach is based on the gradual addition of
damaged nodes to a schedule that starts in the depot, keeping a list of states with information
about the elapsed time and current location of the crew, the unrepaired damaged nodes, and
the inaccessible demand nodes. However, the DP algorithm was able to solve to optimality
only a few (small) instances of the problem. A mathematical formulation was also developed by
the same authors, but they claimed that a direct implementation of the model in a commercial
solver resulted in an intractable solution method even for small instances. Hence, they did not
report computational results of using the model to solve the problem. Finally, because of the
limitations regarding their exact approaches, the authors developed a metaheuristic based on
GRASP to solve medium and large instances. Due to the heuristic nature of the method and
the lack of lower bounds, the analysis of the quality of the solutions is compromised. Kim et al.
(2018) defined a golden period for the repair operations. Then, they penalized the accessibility
after the golden period at a higher rate. Additionally, they considered the minimization of
the completion time of the repair operations. To solve this problem, the authors developed an
ant colony algorithm. Shin et al. (2019) solved the problem with the same type of algorithm,
considering additional relief goods distribution decisions in the SCSRP and minimizing the time
of the relief distribution.

3.3 Variants of the problem considering multiple crews

Variants of the problem have been addressed in the literature considering multiple crews. Tzeng
et al. (2000) addressed the assignment and schedule of heterogeneous crews within a fuzzy
multi-objective framework. The authors considered three objectives that aim to minimize the
completion time, the work-load difference between any two crews and the maximum work load of
the crews. Feng and Wang (2003) integrated additional routing decisions into the problem, but
considering homogeneous crews. They developed a multi-objective model to maximize the total
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kilometers of roads repaired, maximize the total number of lives saved, and minimize the risk
of the restoration operations. They did not deal with the relief paths decisions. Furthermore,
they did not consider the dynamic changes in the accessibility of the nodes in the network, i.e.,
some nodes cannot be used before the restoration of other nodes. To incorporate the network
dynamics, Yan and Shih (2007) devised a time-space network MIP model. This formulation
considers copies i′ of an original node i to represent the state of this node over the time horizon.
The model minimizes the completion time of the restoration. To find feasible solutions for
the problem, the authors proposed a heuristic algorithm that divides the originally damaged
network into several smaller networks. Each subnetwork was then solved using a commercial
solver. However, even the subproblems remain unsolvable in practical time. Therefore, in
another study (Yan and Shih, 2012), the same authors developed an ant colony system-based
metaheuristic to solve practical instances of the problem.

Yan and Shih (2009) integrated crew scheduling and routing with relief distribution in a
bi-objective model to minimize the completion time of the restoration and the time due to the
relief distribution to all demand nodes. The bi-objective model was reduced to a single objective
via the evaluation of a weighted objective function and then solved by a heuristic analogous to
Yan and Shih (2007). Similarly, Yan et al. (2014) incorporated rescheduling repair decisions into
the problem proposed by Yan and Shih (2007). Basically, they considered that backup repair
crews can be dispatched to support the regular crews when subsequent events after the primary
extreme event cause new damage points over the time horizon. The authors used an ant colony
system-based metaheuristic to solve the problem.

Tang et al. (2009) used the idea of time-space networks to model a stochastic version of
the problem presented in Yan and Shih (2007). They incorporated both stochastic travel and
repair times into the problem using a two-stage stochastic programming model. The first stage
refer to the scheduling and routing decisions, whereas the second stage considers alternative
routing decisions for each scenario. The model aims at minimizing the travel and repair times
plus an expected penalty value. Small instances of the problem were solved by a commercial
optimization solver. Chang and Li (2010) considered uncertainty repair times in two-stage
stochastic programming models to minimize the expected value of the total arrival time at
all damaged points. They also consider that new damaged points can randomly arise in the
planning horizon. The two-stage model is combined with a rolling-horizon modeling technique.
Therefore, the problem is dynamically solved for different periods. In a given period, the first
stage decision is the definition of a scheduling plan in accordance with the current damaged
points. In the second stage, a modified schedule is determined according to the actual repair
times and damaged points. To solve the problem, they proposed a integrated online algorithm
with a sampling-based approximation method.

Pramudita et al. (2012) and Pramudita and Taniguchi (2014) integrated location decisions
with crew scheduling and routing decisions. They considered the problem as a variant of the
undirected capacitated arc routing problem (CARP), in which there exists a set of blocked arcs
that need to be unblocked. Additional constraints were added to the classical CARP to limit
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access to some section of the network as a result of debris-blocked arcs. The objective is to
minimize the cost of collecting the debris in all the damaged arcs. Pramudita and Taniguchi
(2014) studied the same problem by transforming the CARP into the capacitated vehicle routing
problem (CVRP). For the transformation, blocked arcs were associated with two nodes that must
be visited in sequence. Pramudita et al. (2012) and Pramudita and Taniguchi (2014) used the
tabu search metaheuristic to solve the problem.

Özdamar et al. (2014) proposed a multi-objective non-linear recursive model to minimize the
network inaccessibility and to minimize the completion time. In this model, schedule decisions
are generated for a fleet of dozers that perform the task of debris cleanup from blocked arcs. The
authors developed heuristics based on priority selection rules to solve the problem. Tuzun-Aksu
and Ozdamar (2014) and Çelik et al. (2015) defined models to optimally identify the schedule of
blocked (damaged) arcs to be repaired. Tuzun-Aksu and Ozdamar (2014) proposed the schedule
of arcs that need to be repaired by using a heuristic algorithm to divide the damaged network in
smaller ones and attempting to solve more efficiently those simple networks. Çelik et al. (2015)
considered additional decisions of flow of supplies and uncertainty in the debris amount of each
blocked arc and, as a consequence, in the time necessary for clearance or removal operations. To
model those uncertainties, a partially observable Markov decision process model is used. The
authors considered arc capacity and a multi-period context. However, they relaxed this features
and solve the model using an approximation heuristic. They also used specialized heuristic for
partially observable Markov models, such as heuristic pruning (Ross et al., 2008). Xu and Song
(2015) proposed optimizing crew scheduling and routing with relief distribution but focused on
minimizing the time in which relief goods arrive at the demand nodes. The resulting problem
was solved by an ant colony system-based metaheuristic.

Akbari and Salman (2017b) introduced the multi-vehicle synchronized arc routing problem.
The model optimally determines the set of debris-blocked roads that need to be repaired and the
synchronized routes for the crews (vehicles) to clear these roads in the shortest completion time.
They proposed an MIP formulation and a relaxation-based heuristic in which the routes of the
crew might not be synchronized. Additionally, they developed a constructive heuristic to obtain
a feasible solution from the unsynchronized solution and a neighborhood search algorithm to
improve the feasible solutions. Finally, the same problem and its solution method were addressed
in Akbari and Salman (2017a) with a different objective function consisting of maximizing the
network components connected to the depot node.

3.4 Summary of the review and main gaps in literature

Table 3.1 summarizes the main approaches that have been developed to model and solve the
CSRP. Table 3.2 summarizes the main decisions, characteristic and objective functions of the
most related problems considered in the literature.

Regarding solution methods, a few authors rely on commercial solvers to solve small in-
stances of the problem or to solve subproblems within heuristic algorithms. Most studies use
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heuristic/metaheuristic algorithms, such as Tabu search, ant colony, GRASP, and specialized
heuristic depending on particular characteristic of the problem. On the other hand, the liter-
ature on exact methods is still scarce. Exact methods as dynamic programming (Maya-Duque
et al., 2016) and partially observable Markov decision process model (Çelik et al., 2015) were
used in the literature. However, these methods fail to solve even small instances of the problem.
Note that no decomposition-based exact algorithm has been proposed for the CSRP or its vari-
ants. We help to fill this gap by proposing state-of-the-art exact approaches based on Benders
decomposition. We propose two exact branch-and-Benders-cut (BBC) methods and a exact
hybrid BBC (HBBC) method. The HBBC combines a BBC algorithm with genetic algorithm
and simulated annealing metaheuristics developed to solve the problem. The components of the
proposed method are specialized and sharpened to take advantage of the mathematical structure
of the CSRP. For example, the method relies on specialized algorithm to solve the problem and
on particular feasibility and optimality cuts based on particular characteristic of the problem.
As the proposed BBC and HBBC approaches are exact algorithms, the solution quality can be
assessed, which is relevant not only from the theoretical perspective, but also in practice, as it
can help decision-makers to rely on solutions that are known to be optimal or near-optimal. We
show that reasonable solutions are obtained even for very large-scale instances that have never
been tackled before by exact methods.

For variants of the problem addressing multiple crews, we notice that there is a lack of
studies considering heterogeneous crews in road restoration problems. Furthermore, the works
related to homogeneous crews lack taking into account synchronization constraints (Akbari and
Salman, 2017b,a) that are inherent to the problem and/or decisions related to the definition
of the relief paths connecting the source node with the demand nodes. As mentioned before,
it is crucial to address such paths because they define the critically damaged nodes that must
be immediately repaired to perform emergency response. In this thesis, we help to fill this gap
by proposing mathematical formulations and valid inequalities for the CSRP with synchronized
multiple heterogeneous crews.

Regarding the inherent uncertainty of the problem, only three of the reviewed works have
focused on it (Tang et al., 2009; Chang and Li, 2010; Çelik et al., 2015), but without integrating
the decisions attributed to the CSRP. Tang et al. (2009); Chang and Li (2010) and Çelik et al.
(2015) did not consider relief routing or distribution decisions while Chang and Li (2010) and
Çelik et al. (2015) did not consider routing decisions for the crews. Furthermore, none of these
studies consider multiples heterogeneous crews available to perform the repair operations. Thus,
there is a lack of studies considering uncertainty in the CSRP, even though it can strongly affect
the decisions in post-disaster situations (Çelik et al., 2015; Alem et al., 2016). We help to fill
this gap of the literature by considering uncertain repair times via robust optimization. In this
regard, we propose a compact formulation for the problem based on recursive equations and
develop a Benders decomposition based algorithm and a simulated annealing metaheuristic.

The most used objectives in the literature are the minimization of the completion time and
the accessibility of the nodes with central depots. These are also the objectives addressed in
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the most recent works (Maya-Duque et al., 2016; Berktaş et al., 2016; Sahin et al., 2016; Akbari
and Salman, 2017b,a). However, accessibility is addressed in different ways by the authors.
Maya-Duque et al. (2016) minimize the time that the demand nodes remain unconnected from a
central depot. Similarly, Sahin et al. (2016) and Berktaş et al. (2016) minimize the total time to
visit all demand nodes from a supply node. Akbari and Salman (2017a) maximize the network
components connected to the depot node. However, in the CSRP, the accessibility time neglects
the travel time on the relief paths to connect the depot with the demand nodes. We help to
fill this gap by incorporating the latency objective function into the problem, which minimizes
both, the accessibility time and the travel time, simultaneously. The latency objective has been
considered in other variant of road restoration problems (Ajam et al., 2019). However, in this
case, no decision related to the definition of relief paths is integrated with the crew scheduling
and routing and a single crew is considered.
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Chapter 4

Branch-and-Benders-cut algorithm
for the SCSRP in road restoration

This chapter presents a Benders decomposition approach for the single crew scheduling and
routing problem (SCSRP). The proposed algorithm decomposes the SCSRP into a master prob-
lem (MP) with scheduling decisions and subproblems with routing and relief path decisions.
This chapter is organized as follows. Section 4.1 introduces and motivates the development of
the Benders decomposition algorithm for the SCSRP. In Section 4.2, we develop the Benders
decomposition algorithm. Section 4.3 discusses the computational results. Finally, Section 4.4
presents final remarks and areas of future research.

*A paper based on this chapter was published in the European Journal of Operational Research
(EJOR).
(Moreno et al., 2019) Moreno, Alfredo; Munari, Pedro; Alem, Douglas. A branch-and-Benders-
cut algorithm for the Crew Scheduling and Routing Problem in road restoration. European
Journal of Operational Research, v. 275, p. 16-34, 2019. https: // doi. org/ 10. 1016/ j.

ejor. 2018. 11. 004
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4.1 Introduction

Road restoration involves certain decisions that must be taken quickly, such as the selection of
the roads to restore and the scheduling and routing of the crews that will perform the repair
activities. We are particularly interested in a variant studied in Maya-Duque et al. (2016) that
explicitly considers the complex interdependence between scheduling and routing decisions for a
single crew, hereafter called the Single Crew Scheduling and Routing Problem (SCSRP) in road
restoration. We consider that a damaged road can have one or more damaged points (damaged
nodes), as may occur in real cases, especially on long highways. The scheduling decisions define
the sequence in which the damaged nodes in the network will be visited by the crew. The routing
decisions determine the paths/routes to be used by the crew to visit and repair the damaged
nodes. In this variant, a path is usually a sequence of nodes and arcs used by the crew to travel
from one damaged point to another, while a route is a sequence of paths that ends at the depot
after repairing all the damaged nodes. The objective is to restore the damaged nodes in the
network as soon as possible, because they are necessary to define paths connecting a source node
to demand nodes that require humanitarian assistance.

The design of crew routes is challenging because damaged nodes can obstruct access to other
nodes of the network and also damaged roads are not traversable unless they are completely
repaired first. The traversable roads include those that were not damaged and the repaired
ones. Then, the number of paths that are feasible at a specific moment depends on which
nodes are damaged at that moment, which in turn depends on the scheduling decisions. In
addition, without considering routing decisions simultaneously, the damaged nodes that are
not accessible at a given moment might be selected first in the schedule, making the schedule
infeasible in practice. Furthermore, the shortest paths between damaged nodes, if they exist,
change dynamically during the restoration according to the schedule.

The integration of the main decisions that emerge in road restoration has been addressed
by other authors in the literature (Çelik, 2016). Particularly, the SCSRP has been tackled
recently via the proposition of MIP and dynamic programming models (Maya-Duque et al.,
2016). However, such models have proven to be intractable and failed to solve even small
instances. Hence, the authors have devised heuristic methods (Maya-Duque et al., 2016) to
obtain feasible solutions for the instances of the SCSRP. As usual, the main drawback of heuristic
approaches is that they do not provide optimality guarantees or any information on the quality
of the solutions. Furthermore, a heuristic can stagnate in locally sub-optimal solutions.

We develop an exact algorithm based on Benders decomposition for the SCSRP. The al-
gorithm exploits the fact that when the scheduling decisions are fixed, the routing decisions
become a set of shortest-path subproblems. To solve the subproblems, we propose specialized
algorithms based on Dijkstra’s shortest-path algorithm. Hence, we consider a master problem
(MP) with scheduling decisions and subproblems with the remaining routing decisions. The
resulting MP obtained from the Benders decomposition is solved by a single search tree, ex-
ploring the generation of cuts inside the tree. This strategy has been recently referred to as
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Branch-and-Benders-Cut (BBC) (Gendron et al., 2016; Errico et al., 2017) and has been shown
to be more effective than the standard Benders approach, which solves a mixed-integer MP at
each iteration. We are not aware of any other decomposition-based exact algorithm proposed
for the SCSRP or related variants.

Due to the discrete subproblems, standard duality theory cannot be applied to derive cuts;
therefore, we propose different types of lower-bounding functions and combinatorial Benders cuts
(Laporte and Louveaux, 1993) based on particular characteristics of the SCSRP. Combinatorial
Benders cuts avoid infeasible solutions in the MP, while lower-bounding functions set lower
bounds for the feasible solutions in the MP. We empirically compare different BBC approaches
based on combinations of feasibility and optimality cuts. In addition, we add valid inequalities
to the MP, which helps to transfer information from the subproblems that is lost due to the
decomposition. Construction and local search heuristics are also used to provide good initial
solutions for the BBC.

4.2 Solution approach

In this section, we present a mathematical formulation and propose the BBC algorithm. Basi-
cally, this algorithm has three main components: an MIP master problem defined in Subsection
4.2.2, optimality and feasibility cuts defined in Subsection 4.2.3 and separation routines defined
in Subsection 4.2.4. The MP considers only scheduling decisions for the crew, while subproblems
determine the paths between pairs of damaged nodes and between the depot and the demand
nodes. The solutions of a MP are used to generate feasibility and optimality cuts that cut off
solutions corresponding to infeasible schedules. A flowchart showing the interaction between
the main components of the proposed BBC algorithm is presented in Subsection 4.2.5. Addi-
tionally, in Subsection 4.2.6, we derive valid inequalities to have stronger LP relaxations, and
in Subsection 4.2.8, we develop construction and local search heuristics to find good feasible
solutions.

4.2.1 Mathematical modeling

To formulate the SCSRP, we closely follow the mathematical model mentioned in Maya-Duque
et al. (2016). The notation used to describe the model is as follows.

Sets
V Set of nodes.
Vd ⊂ V Set of demand nodes.
Vr ⊂ V Set of damaged nodes.
E Set of arcs.
Ei ⊆ E Set of arcs incident to node i ∈ V.

29



Parameters
di Demand of node i ∈ Vd.
δi Repair time of node i ∈ Vr.
τe Travel time on arc e ∈ E .
`e Length (distance) of arc e ∈ E .
li Maximum distance allowed between the depot and the demand node i ∈ Vd.
M A sufficiently large number.

Decision variables

Xij =
{ 1, if node j ∈ Vr ∪ {0} is repaired immediately after node i ∈ Vr ∪ {0}.

0, otherwise.

Peij =
{1, if arc e ∈ E is used on the path from node i ∈ Vr ∪ {0} to node j ∈ Vr ∪ {0}.

0, otherwise.

Nkij =
{ 1, if node k ∈ V is used on the path from node i ∈ Vr ∪ {0} to node j ∈ Vr ∪ {0}.

0, otherwise.

Yej =
{ 1, if arc e ∈ E is used on the path from supply node 0 to node j ∈ Vd.

0, otherwise.

Vkj =
{1, if node k ∈ V is used on the path from supply node 0 to node j ∈ Vd.

0, otherwise.
Zri Exact time at which the damaged node i ∈ Vr is repaired.
Zdi Exact time at which the demand node i ∈ Vd becomes accessible. If node i is

accessible at time zero, this variable takes value zero.

Note that the variables Xij define the schedule of the crew, i.e., the sequence of damaged
nodes to be repaired. They do not provide the route of the crew, as they are defined for damaged
nodes only. The full route is obtained from variables Peij and Nkij , which determine the arcs
and nodes, respectively, to be visited in a path between each two consecutive damaged nodes
i − j in the schedule of the crew. On the other hand, variables Yej and Vkj define the arcs
and nodes, respectively, to be visited in the paths between the depot and each demand node j.
These two types of variables are not related to the crew.

The model is formulated as follows:

min
∑
i∈Vd

di · Zdi . (4.1)

s.t.
∑

j∈Vr∪{0}
Xij = 1, ∀ i ∈ Vr ∪ {0}, (4.2)

∑
i∈Vr∪{0}

Xij = 1, ∀ j ∈ Vr ∪ {0}, (4.3)

∑
e∈Ei

Peij = Xij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (4.4)

∑
e∈Ej

Peij = Xij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (4.5)
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∑
e∈Ek

Peij = 2Nkij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, k ∈ V \ {i, j}, (4.6)

∑
e∈E0

Yej = 1, ∀ j ∈ Vd, (4.7)

∑
e∈Ej

Yej = 1, ∀ j ∈ Vd, (4.8)

∑
e∈Ek

Yej = 2Vkj , ∀ j ∈ Vd, k ∈ V \ {0, j}, (4.9)

∑
e∈E

Yej · `e ≤ lj , ∀ j ∈ Vd, (4.10)

Zrj ≥ Zri +
∑
e∈E

Peij · τe + δj − (1−Xij) ·M, ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (4.11)

Zrj ≥ Zrk + (Nkij − 1) ·M, ∀ i ∈ Vr ∪ {0}, j ∈ Vr, k ∈ Vr, (4.12)

Zdi ≥ Zrj + (Vji − 1) ·M, ∀ i ∈ Vd, j ∈ Vr, (4.13)

Xij ∈ {0, 1}, ∀ i ∈ Vr ∪ {0}, j ∈ Vr ∪ {0}, (4.14)

Peij , Nkij ∈ {0, 1}, ∀ i ∈ Vr ∪ {0}, j ∈ Vr, k ∈ V, e ∈ E , (4.15)

Yei, Vki ∈ {0, 1}, ∀ i ∈ Vd, k ∈ V, e ∈ E , (4.16)

Zri ≥ 0, ∀ i ∈ Vr ∪ {0}, (4.17)

Zdi ≥ 0, ∀ i ∈ Vd. (4.18)

The objective function (4.1) consists of minimizing the time that the demand nodes remain
inaccessible from the depot, weighted by their corresponding demands. A demand node j ∈ Vd is
called accessible if there exists a path that connects this node to the depot using only undamaged
and/or repaired nodes and that is not longer than a maximum distance lj – see constraints
(4.10). Thus, the accessibility time of a demand node depends on the damaged nodes in its path
from the depot and is computed in constraints (4.13). In Figure 4.4(a), for example, paths 0-6-2
and 0-7-5 can be defined for connecting nodes 2 and 5 with the depot, respectively. Thus, the
times that the demand nodes 2 and 5 remain inaccessible from the depot are equal to the exact
times at which nodes 6 and 7 are repaired, respectively. Constraints (4.2) and (4.3) specify that
each damaged node must be visited once during the schedule of the crew. Constraints (4.4),
(4.5) and (4.6) ensure the flow conservation in the path of the crew between damaged nodes
i and j. If there is a path between damaged nodes i and j (Xij = 1), constraints (4.4) force
the use of an arc incident to node i in the path, while constraints (4.5) force the use of an arc
incident to node j in the path. Furthermore, for each node k in the path from i to j (Nkij = 1),
there is one arc leaving and one arc arriving at node k considered in the path, as imposed by
constraints (4.6). Similarly, constraints (4.7), (4.8) and (4.9) ensure the flow conservation in the
paths from the depot to the demand nodes. Constraints (4.10) prohibit the use of paths with a
distance greater than the maximum distance allowed between the depot and the demand nodes.
Notice that lj considers the distances only, not travel or repair times. Constraints (4.11) define
the exact time at which the damaged nodes are repaired. For a given node j, this is the result of
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adding the time at which the predecessor node i is repaired plus the travel time of the path from
node i to node j plus the time it takes to repair node j. These constraints also act as subtour
elimination constraints and are based on the Miller-Tucker-Zemlin (MTZ) formulation of the
traveling salesman problem (TSP) (Miller et al., 1960), which has a number of constraints that
depends polynomially on the number of nodes. They are different from the subtour elimination
constraints originally used in the model cited by Maya-Duque et al. (2016), which are based on
the Dantzig-Fulkerson-Johnson (DFJ) formulation of the TSP (Dantzig et al., 1954) and lead to
a number of constraints that is exponential in terms of the number of nodes. To keep the model
polynomial-sized, we decided to use the MTZ-based constraints. Constraints (4.12) ensure that
a node k in the path from node i to node j must be repaired before node j; i.e., damaged
unrepaired nodes cannot be used in a path from node i to node j. Constraints (4.13) define
the exact time at which each demand node i become accessible, which is based on the time
when damaged nodes in the path connecting i to the depot are repaired. Finally, constraints
(4.14)-(4.18) impose the domain of the decision variables. It is worth mentioning that variables
Peij and Yej do not need to be defined as binary variables in the computational implementation
because they naturally assume binary values if variables Nkij and Vkj are defined as binaries,
respectively.

4.2.2 Benders decomposition

Benders decomposition is a variable partitioning technique whose goal is to tackle problems
with complicating variables (Benders, 1962; Costa, 2005; Martins de Sá et al., 2013). Usually,
a master problem considering only the complicating variables is solved, then the complicating
variables are temporarily fixed, and one or more subproblems are solved. For the SCSRP, we
identified as complicating variables the Xij variables, which define the schedule of the crew.
When the scheduling decisions (Xij) are fixed, the remaining problem becomes a set of shortest-
path problems, which can be efficiently solved by using specialized algorithms based on the
well-known Dijkstra’s shortest-path algorithm (Dijkstra, 1959). The master problem is defined
as follows:

(MP ) min Θ, (4.19)

s.t. Constraints (4.2), (4.3), (4.14), (4.20)

Rj ≥ Ri + 1− |Vr ∪ {0}| · (1−Xij), ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (4.21)

Θ ≥
∑
i∈Vd

di · θi, (4.22)

Θ, θi, Rj ≥ 0, ∀ i ∈ Vd, j ∈ Vr ∪ {0}. (4.23)

Model (4.19)-(4.23) still lacks the feasibility and optimality cuts to be defined in Subsection
4.2.3. Notice that constraints (4.11), which act also as subtour elimination constraints in model
(4.1)-(4.18), do not remain in the MP (they go to the subproblems because of variables Zrj and
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Peij). Thus, we add the new subtour elimination constraints (4.21) to the MP, together with
the auxiliary variables Rj . Rj defines the position of damaged node j in the schedule of the
crew. Variable θi computes the exact time at which the demand node i ∈ Vd becomes accessible,
and Θ computes the value of the objective function. Initially, the lower bound for the Θ and θi
variables is zero. When a solution is found for the MP, feasibility or optimality cuts are added,
and they are likely to increase the lower bound of the Θ and/or θi variables. We can set a lower
bound for variable Θ directly or by using the θi variables. Constraint (4.22) guarantees that the
addition of optimality cuts setting a lower bound for the variables θi also sets a lower bound for
the variable Θ.

The MP determines a schedule for the crew. The feasibility of this schedule for the original
model (4.1)-(4.18) is verified in subproblem SP1, which obtains a set of shortest paths between
consecutive nodes in the schedule of the crew:

(SP1) min
∑
i∈V r

Zri , (4.24)

s.t. Constraints (4.6), (4.12), (4.15), (4.17), (4.25)∑
e∈Ei

Peij = X̂ij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (4.26)

∑
e∈Ej

Peij = X̂ij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (4.27)

Zrj ≥ Zri +
∑
e∈E

Peij · τe + (X̂ij − 1) ·M + δj , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (4.28)

in which X̂ij is a solution for the MP. For each pair of consecutive nodes i− j with X̂ij = 1 in
the schedule defined by the MP, SP1 determines the shortest path with arcs and nodes defined
by variables Peij and Nkij , respectively. Indeed, for this pair i− j, constraints (4.28) become

Zrj ≥ Zri +
∑
e∈E

Peij · τe + δj

and hence, the objective function becomes a summation of the repair times and travel times on
the traversed arcs.

SP1 may be infeasible if there is no path between two nodes i− j that uses only undamaged
and/or repaired nodes. In such a case, the schedule X̂ij provided by the MP is infeasible in
the original problem (4.1)-(4.18), and feasibility cuts must be added to the MP (see Subsection
4.2.3). Otherwise, the values of the variables Zri are used to calculate the total cost of the
schedule in subproblem SP2, which determines the shortest paths between the depot and the
demand nodes. It can be defined as follows:

(SP2) min
∑
i∈Vd

di · Zdi , (4.29)

s.t. Constraints (4.7), (4.8), (4.9), (4.10), (4.16), (4.18), (4.30)
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Zdi ≥ Ẑrk + (Vki − 1) ·M, ∀ i ∈ Vd, k ∈ Vr, (4.31)

where parameter Ẑrk is obtained from a solution of subproblem SP1. Subproblem SP2 determines
the shortest paths from the depot to each demand node i ∈ Vd with a distance length less than or
equal to the maximum distance li. Each path is composed of arcs and nodes defined by variables
Yej and Vkj , respectively. The exact time at which the demand node i ∈ Vd becomes accessible
is used to generate optimality cuts for the MP, as defined in the next section. From subproblem
SP2, we derive only optimality cuts. If subproblem SP2 is infeasible, then the original problem
(4.1)-(4.18) is also infeasible because there is no path between the depot and some demand node
i with a distance length less than or equal to the maximum distance li (it considers only the
distance of each arc, not the travel times or the repair times).

Therefore, we have decomposed the decisions of the SCSRP into three parts: the MP, which
determines the crew schedule; SP1, which checks whether this schedule is feasible and, if it
is, obtains crew paths between each pair of damaged nodes; and SP2, which determines the
paths between the depot and each demand node and the corresponding objective costs. Note
that we could have defined a single subproblem by gathering subproblems SP1 and SP2 and
hence evaluated both the feasibility and cost of the MP solutions simultaneously. However,
having separate subproblems allows us to design efficient specialized algorithms, as presented in
Subsection 4.2.4.

4.2.3 Combinatorial Benders cuts and lower-bounding functions

Every time an integer solution is found by the BBC algorithm, the separation procedures based
on specialized solution methods for subproblems SP1 and SP2 seek violated feasibility or optimal-
ity cuts, and the corresponding combinatorial Benders cuts (feasibility cuts) or lower-bounding
functions (optimality cuts) are added to the MP. We rely on feasibility and optimality cuts based
on particular characteristics of the problem and on inequalities proposed for related problems
in the literature (Hjorring and Holt, 1999; Laporte et al., 2014). Proposition 1 states feasibility
cuts for the MP.

Proposition 1. Let K = (v0, v1, ..., v(h−1), vh, ..., vp, ..., v|Vr|) be an infeasible schedule for the
crew, where vi is the ith damaged node to be repaired and v0 = 0. Assume that K is obtained by
solving the MP and corresponds to the solution X̂v(i−1)vi = 1, ∀i = 1, ..., |Vr|. For a given index
h > 0, let Sh = {v0, v1, ..., v(h−1), vh}, and assume that K is infeasible because there exists no
path from node v(h−1) to node vh without using at least one damaged node not yet repaired vp,
with p > h. Hence, the following feasibility cuts are violated and can be added to the MP:

∑
i∈Sh\{vh}

∑
j∈Sh\{v0}:

i 6=j

Xij ≤ |Sh| − 2, (4.32)

∑
i∈Sh

∑
j∈Sh:
X̂ij=1

Xij ≤ |Sh| − 2. (4.33)
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Proof. Assume that there is no feasible path from node v(h−1) to node vh. Hence, there is at
least one damaged node vp, with p > h, that must be repaired before node vh (otherwise, vh
cannot be reached). Let S̄h be any permutation of elements of set Sh \ {v0, vh}. Every schedule
containing any partial sequence K̄ = (v0, S̄h, vh) is infeasible because the node vp is not repaired
before node vh. Then, all the schedules that contain any partial sequence K̄ must be avoided.
Every partial sequence K̄ can be represented in the MP by binary variables in the left-hand
side of (4.32), where |Sh| − 1 of them takes a value of 1. Therefore, to avoid any sequence K̄,
it is necessary to restrict the left-hand side of (4.32) to be strictly smaller than |Sh| − 1. The
cut defined in (4.33) is a particular case of cut (4.32) to avoid any schedule with the sequence
K̄ = Sh.

To illustrate Proposition 1, consider the schedule K = {v0, v1, v2, v3, v4, v5} = {0, 3, 1, 2, 4, 5}
that is assumed to be infeasible because there is no path from node 1 to node 2 without using
node 5. Then, vh = v3 = 2 and Sh = S3 = {0, 3, 1, 2}. The possible permutations of set
Sh \ {v0, vh} are S̄1

h = {3, 1} and S̄2
h = {1, 3}. Thus, all the schedules that contain the partial

sequences K̄1 = {0, 3, 1, 2} and K̄2 = {0, 1, 3, 2} must be avoided. The feasibility cut (4.32) is
X03 +X01 +X02 +X13 +X12 +X23 +X21 +X31 +X32 ≤ 2, where sequence K̄1 is represented
by variables X03, X31, and X12 and sequence K̄2 is represented by variables X01, X13, and X12.
Each sequence is represented by three binary variables taking a value of 1, so to avoid the
schedules with the infeasible sequences K̄1 and K̄2, we need to force these variables to sum to
less than 3. The feasibility cut (4.33) considering only the sequence Sh is X03 +X31 +X12 ≤ 2.

Note that the cut defined in (4.32) avoids all schedules with a partial sequence starting at
node v0, ending at node vh, and containing nodes from set Sh \ {v0, vh} (in any order). Thus,
it cuts off every schedule with any partial sequence K̄ = (v0, S̄h, vh). Equation (4.33) is a cut
to avoid every schedule with a partial sequence starting at node v0, ending at node vh, and
containing nodes from set Sh (in the original order), cutting off every schedule with a partial
sequence K̄ = Sh. Only one of them, (4.32) or (4.33), is necessary to cut off the solution
corresponding to K. However, the number of solutions cut off by (4.32) is greater than or equal
to the number of solutions cut off by (4.33).

When a solution of the MP is feasible for the original model (4.1)-(4.18), optimality cuts
must be added to properly set the corresponding cost. Proposition 2 defines optimality cuts for
the variable Θ of the MP.

Proposition 2. Let L = (v0, v1, ...v(h−1), vh) be a feasible partial sequence of damaged nodes
repaired by the crew corresponding to the MP solution X̂v(i−1)vi = 1, ∀i = 1, ..., h, where v0 = 0
and vh is the last node to be repaired to make all the demand nodes in the set Vd accessible. An
optimality cut to be added to the MP is:

Θ ≥ Θ̂ · (
h∑
i=1

Xv(i−1)vi − (h− 1)), (4.34)

where Θ̂ is the total cost computed in subproblem SP2.
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Proof. All the demand nodes become accessible when node vh in the partial sequence L is
repaired, with a corresponding total cost Θ̂. Hence, every schedule containing the sequence L
must have a cost Θ̂. The sequence L is represented by binary variables in the right-hand side of
(4.34) when those h binary variables take value 1. Then, if the partial sequence L is considered
in the schedule, the summation is equal to h, and we have the lower bound Θ̂ for variable Θ
activated in the MP, as Θ ≥ Θ̂ · (h − (h − 1)). Otherwise, if the partial sequence L is not
considered in the schedule, there are p < h variables taking a value of 1 in the right-hand side
of (4.34), and the lower bound Θ̂ cannot be activated in the MP, as we have Θ ≥ Θ̂(p− (h− 1))
with p < h.

Cut (4.34) sets a lower bound for variable Θ only. Proposition 3 defines optimality cuts
based on variables θi, ∀i ∈ Vd.

Proposition 3. Let Lk = (vk0 , vk1 , ..., vk(h−1), v
k
h) be a feasible partial sequence of damaged nodes

repaired by the crew corresponding to the MP solution X̂vk(i−1)v
k
i

= 1, ∀i = 1, . . . , h, where
vk0 = 0 and vkh is the last node repaired to make the demand node k ∈ Vd accessible. Let
P kh = {vk1 , ..., vk(h−1)}. Let P̄ kh be any permutation of elements of set P kh and L̄k = (vk0 , P̄ kh , vkh).
Then, the following optimality multi-cuts can be added to the MP:

θk ≥ θ̃k ·

∑
i∈Pk

h

(X0i +Xi(vk
h

)) +
∑
i∈Pk

h

∑
j∈Pkh :
i 6=j

Xij − |P kh |

 , ∀ k ∈ Vd, (4.35)

θk ≥ θ̂k ·

X0v1 +X(vk
h−1)(vk

h
) +

∑
i∈Pk

h

∑
j∈Pkh :
X̂ij=1

Xij − |P kh |

 , ∀ k ∈ Vd, (4.36)

where θ̂k = Ẑdk , ∀ k ∈ Vd, is computed in subproblem SP2 and θ̃k is a lower bound for variable
θk when any partial sequence L̄k is considered in the schedule. θ̃k can be computed as:

θ̃k =
∑

j∈Pk
h
∪{vk

h
}

δj +
∑

j∈Pk
h
∪{vk

h
}

t∗j , (4.37)

t∗j = min
i∈Pkh∪{v0}:

i 6=j

{tij}, ∀ j ∈ P kh ∪ {vkh}, (4.38)

where δj is the repair time of node j and tij is the cost of the shortest path from node i to node
j considering that all nodes are repaired.

Proof. Cut (4.36) is a particular case of (4.35) to set the cost θ̂k for variables θk corresponding
to the original schedule Lk. For every partial sequence L̄k = (vk0 , P̄ kh , vkh), the demand node k
becomes accessible when node vkh is repaired. For a given L̄k, we do not have the actual cost
for variables θk. Instead, we have a valid lower bound θ̃k. In the calculation of θ̃k, we consider
that in any sequence L̄k, all the nodes of set P kh must be repaired, and then the total repair
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time (∑j∈Pk
h
∪{vk

h
} δj) must be computed. Additionally, the crew must arrive at all the damaged

nodes in the sequence L̄k, and then we compute a lower bound using the minimum travel time
to arrive at each node j ∈ L̄k from any other node i ∈ L̄k (∑j∈Pk

h
∪{vk

h
} t
∗
j ). As a result, θ̃k must

be less than or equal to the actual accessibility time θ̂k.

The optimality cut (4.34) sets a lower bound (actual cost) for the total cost Θ for any schedule
with the partial sequence L. Cut (4.36) is similar to (4.34) but sets a lower bound (actual cost)
for variables θk, ∀k ∈ Vd, which in turn sets a lower bound for the total cost Θ. Only one of
them, either (4.34) or (4.36), is necessary to set the actual total cost for every schedule with
partial sequence L. Cut (4.35) sets a valid (underestimated) lower bound for any schedule with
any partial sequences L̄k, ∀k ∈ Vd, so it sets a lower bound for more solutions in the MP than
cuts (4.34) and (4.36).

4.2.4 Separation procedures

Both subproblems SP1 and SP2 can be efficiently solved via specialized methods based on
Dijkstra’s shortest-path algorithm (Dijkstra, 1959) instead of using the models (4.24)-(4.28)
and (4.29)-(4.31), respectively. A pseudo-code of the method proposed to solve SP1 is outlined
in Algorithm 1. The graph G = (V, E), a schedule K = (v0, v1, ..., vi, ..., v|Vr|), the repair times
δj , ∀j ∈ Vr, and the travel times τe, ∀e ∈ E are used as the input of the algorithm. If SP1 is
feasible for the schedule K, then the output of the algorithm is given by the optimal values for
variables Zri , ∀i ∈ Vr. Otherwise, the algorithm indicates that the subproblem is infeasible.

Algorithm 1 Algorithm for solving SP1.
Input:
Graph G = (V, E);
Scheduling solution K = (v0, v1, ..., vj , ..., v|Vr|);
Parameters δj , ∀j ∈ Vr, and τe, ∀e ∈ E ;
Output:
If SP1 is feasible, return “Feasible SP1” and save optimal values Ẑrj , ∀j ∈ Vr;
If SP1 is infeasible, return “Infeasible SP1”;
1: Ce := τe, ∀e ∈ E ;
2: Ce :=∞, ∀e ∈ Ej , j ∈ Vr;
3: Ẑrj := 0, ∀j ∈ Vr;
4: for j = 1 to |Vr| do
5: Ce := τe + δvj

, ∀e ∈ Evj
;

6: Find the cost C of the shortest path from node vj−1 to vj ;
7: if C < ∞ then
8: Ẑrvj

:= Ẑrvj−1
+ C;

9: Ce := τe, ∀e ∈ Evj
: e /∈

⋃|Vr|

i=j+1
Evi

;

10: Ce :=∞, ∀e ∈ Evj
: e ∈

⋃|Vr|

i=j+1
Evi ;

11: else
12: return “Infeasible SP1”;
13: end if
14: end for
15: return “Feasible SP1”;

Algorithm 1 starts by setting the cost Ce of each arc in the network as ∞ if the arc e is
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incident to a damaged node; otherwise, this cost is set as τe (lines 1 and 2). Then, iteratively
and for each damaged node vj ∈ K \ {v0}, the cost Ce of each arc e ∈ Evj (i.e., incident to vj)
is reset as τe + δvj (line 5), and Dijkstra’s algorithm is used to find the shortest path between
nodes vj−1 and vj (line 6). If a path between nodes vj−1 and vj exists without using a damaged
node (that was not repaired yet), the cost C of the path must be less than ∞, and the value of
variable Zrvj is updated (line 8). The cost Ce of each arc incident to the damaged node vj is also
updated, as this node has been repaired (line 9).

It is important to emphasize that the arcs incident to damaged nodes not yet repaired have
cost ∞. Thus, if an arc incident to node vj is also incident to another damaged node not yet
repaired, then that arc must continue with cost ∞ (line 10). If there is no path between nodes
vj−1 and vj without using a not yet repaired damaged node (i.e. C = ∞), then the algorithm
terminates and returns that SP1 is infeasible (line 12).

Figure 4.1 shows an example of the variation in the cost Ce in Algorithm 1 for a network
with two damaged nodes, crew schedule K = (v0, v1, v2), τe = 1 and δj = 2, for all e ∈ E and
i ∈ Vr. Initially, the cost Ce of each arc incident to damaged nodes v1 and v2 is equal to ∞.
In the first iteration, the cost of each arc incident to node v1 is then reset to Ce = τe + δv1 = 3
and the Dijkstra’s algorithm finds the shortest path between nodes v0 and v1. Once node v1

is repaired, the cost of each arc incident to node v1 is updated to Ce = τe = 1. In the second
iteration, the cost of each arc incident to node v2 becomes Ce = τe + δvj = 3 and Dijkstra’s
algorithm is now used to find the shortest path between nodes v1 and v2. Finally, after all nodes
have been repaired, the cost of each arc becomes Ce = τe = 1.
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Figure 4.1: Example of the variation in arc costs in Algorithm 1.

An iterative solution approach based on solving a sequence of shortest-path problems can be
used for solving subproblem SP2 as well. Recall that the goal of this subproblem is to determine
the time at which affected areas become accessible. A node is accessible if there is a path from
the depot to this node using only undamaged and/or repaired nodes and if the length of this
path is no longer than a maximum distance li. If it is possible to access a demand node i ∈ Vd
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without using only undamaged nodes, then it becomes accessible at time Ẑdi = 0. Otherwise,
let j ∈ Vr be the last damaged node that was repaired before i becomes accessible at exact time
Ẑrj . Then, Ẑdi = Ẑrj . Notice that in subproblem SP2, given any two demand nodes i1, i2, the
shortest path determined from the depot to i1 is independent of the path determined from the
depot to i2. Hence, SP2 can be decomposed into |Vd| independent subproblems.

Algorithm 2 presents the pseudo-code of the proposed approach. The graph G = (V, E), a
schedule K = (v0, v1, ..., vi, ..., v|Vr|), the corresponding values of variables Zri provided by the
SP1, and the parameters `e, ∀e ∈ E ; li, ∀i ∈ Vd; and di, ∀i ∈ Vd are considered the input of
the algorithm. Initially, the cost Ce of each arc in the network is set as `e (line 1), the actual
length (distance) of the arc. Iteratively, for each damaged node vj ∈ K \ {v0}, the algorithm
sets the cost of each arc incident to vj as ∞ (line 4) starting with the last damaged node (v|Vr|)
in the schedule K. Then, for each demand node i ∈ Vd (line 5), Dijkstra’s algorithm is used to
find the shortest path from the depot to this node (line 6). If the cost Ci to reach this demand
node is larger than the maximum allowed distance li (line 7), then the node vj is necessary to
find a path with cost smaller than the maximum distance li, and hence, the time instant Ẑdi
in which the demand node i becomes accessible is set as Ẑrvj (line 8). Note that we update Ẑdi
only if it was not updated in previous iterations; thus, Ẑdi is equal to the largest repair time
of the damaged nodes visited in the path from the depot to node i. Finally, the total cost Θ̂
is computed (line 12). Recall that subproblem SP2 is always feasible if the original problem
(4.1)-(4.18) is feasible.

Algorithm 2 Algorithm for solving the SP2.
Input:
Graph G = (V, E);
Scheduling solution K = (v0, v1, ..., vj , ..., v|Vr|);
Time Ẑri at which damaged node i ∈ Vr is repaired;
Parameters `e, ∀e ∈ E , li, ∀i ∈ Vd and di,∀i ∈ Vd;
Output:
Time Ẑdi at which the demand node i ∈ Vd becomes accessible;
Total cost Θ̂;
1: Ce := `e, ∀e ∈ E ;
2: Ẑdi := 0, ∀i ∈ Vd;
3: for j = |Vr| to 1 do
4: Ce :=∞, ∀e ∈ Evj ;
5: for i = 1 to |Vd| do
6: Find the cost Ci of the shortest path from the depot to the demand node i;
7: if Ci > li and Ẑdi = 0 then
8: Ẑdi := Ẑrvj

;
9: end if

10: end for
11: end for
12: Compute total cost Θ̂ :=

∑
i∈Vd di · Ẑdi ;

Figure 4.2 shows an example of the variation in cost Ce in Algorithm 2 for a network with
two damaged nodes, K = (v0, v1, v2) and `e = 1, ∀e ∈ E . In the first iteration, the cost of
each arc incident to the last damaged node v2 in the schedule is set to Ce =∞, and Dijkstra’s
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algorithm finds the shortest paths between node v0 and each demand node i ∈ Vd. If the cost Ci
of the path between v0 and the demand node i is larger than li, then the node v2 is necessary to
find a path with length smaller than li, and Ẑdi = Ẑrv2 . In the second iteration, the cost of each
arc incident to the damaged node v1 is updated with Ce = ∞, and the shortest paths between
node v0 and demand nodes i ∈ Vd are found again. In this case, if it is not possible to find a
path for a demand node i with a cost Ci less than li, it needs either the node v1 or v2 in the path.
Then, the time of accessibility Ẑdi is equal to Ẑrv1 if this was not updated in the past iteration
with Ẑrv2 .
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Figure 4.2: Example of the variation in arc costs in Algorithm 2.

4.2.5 Branch-and-Benders-cut

In the classical Benders decomposition, the MP and the subproblems are solved iteratively in
an alternating sequence. At each iteration, the MP is solved to optimality by an MIP solver,
and a considerable time may be spent revisiting candidate solutions that have been eliminated
in previous iterations (Rahmaniani et al., 2017). On the other hand, in the BBC algorithm, a
single search tree is built instead, and the cuts are generated inside the tree using separation
routines that seek violated feasibility or optimality cuts (Errico et al., 2017).

Figure 4.3 shows a flowchart of the BBC method focusing on how the separation routines are
used at each node of the branch-and-bound tree. At each node i, we solve the linear relaxation
of the current MP, denoted by LPi. If the LPi is infeasible or the objective value of the LPi
solution (OFi) is higher than or equal to the objective value of the current incumbent solution,
then node i is pruned. Otherwise, integrality constraints are checked, and if the LPi solution
is not integer feasible, then branching is performed. Every time the LPi solution is integer
feasible, we call the separation routines of the subproblem. First, we solve SP1 and, if SP1 is
infeasible, add new feasibility cuts to the MP. If no feasibility cut is obtained, then we solve SP2
to obtain an optimality cut for the MP. If no feasibility or optimality cuts are obtained, then
the LPi solution is feasible for the original problem (4.1)-(4.18) and is set as the new incumbent
solution. Otherwise, the MP has been modified, LPi must be resolved, and the described steps
are applied again. It is worth mentioning that automatized cuts (for example, Gomory’s cuts)
and/or heuristics (for example, the relaxation induced neighborhood search (RINS) heuristic)
available in commercial solvers can be used at each node of the branch-and-bound tree as well,
although they are not included in Figure 4.3.
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Figure 4.3: Flowchart illustrating how the separation routines are used in a given node i of the
BBC method.

4.2.6 Valid inequalities

The proposed BBC method also relies on valid inequalities, which are added to the MP and
help improve the lower bounds provided by its linear relaxation. To define the valid inequalities,
we first determine the shortest path between the depot and each demand node i ∈ Vd. For
each demand node i, we identify the damaged nodes that are used in a shortest path from the
depot to this node. Then, we forbid the use of such damaged nodes in the paths and look for a
new shortest path from the depot to the same node i again. If a damaged node j is forbidden
and a path with distance less than li cannot be found for node i, then we have identified that
the damaged node j is necessary to connect the demand node i with the depot. In such case,
the accessibility time of node i depends on the repair time of node j and hence we obtain the
following valid inequality:

θi ≥ R′j , ∀ i ∈ Vd, j ∈ Qi, (4.39)

in which Qi is the set of damaged nodes that must be used to access the demand node i with a
distance less than li. R′j is defined as a decision variable of the MP and denotes a lower bound
for the exact time at which the node j is repaired in the schedule defined by the variables Xij .
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Hence, we replace constraints (4.21) with:

R′j ≥ R′i + tij + δj −M · (1−Xij), ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (4.40)

where tij is the minimum time to travel from node i to node j when no nodes are damaged,
which is easily computed using Dijkstra’s algorithm.

Let P ⊂ Vr be the subset of damaged nodes that cannot be repaired directly from the depot
because they are not accessible without the restoration of other nodes. Using this set, we can
define the following valid inequality:

∑
j∈P

X0j ≤ 0. (4.41)

It is also possible to identify the demand nodes that need the repair of at least one damaged
node to become accessible. For each demand node, the lower bound for the time instant that it
becomes accessible is the travel time plus the repair time of the first node repaired by the crew
from the depot. Then, the valid inequality is given by:

θi ≥
∑
j∈Vr

(t0j + δj) ·X0j , ∀ i ∈ S, (4.42)

where S is the subset of demand nodes that require the restoration of at least one damaged
node to guarantee they become accessible.

We also propose valid inequalities based on the reduction of the original damaged network
of the problem. Let L ⊆ Vr be a subset of the damaged nodes and F ⊆ Vd be a subset of the
demand nodes in the original graph G. We define GLF as the subgraph obtained from G by
deleting all the damaged nodes that are not in L and transforming all the demand nodes that
do not belong to F into transshipment nodes . For instance, consider the graph G represented
in Figure 4.4(a) with Vr = {6, 7, 8, 9, 10} and Vd = {2, 4, 5}. For L = {6, 9, 10} and F = {2, 5},
the graph GLF is represented in Figure 4.4(b). To obtain GLF , we removed all the damaged
nodes in Vr \L from G and transformed the demand nodes in Vd \F into transshipment nodes.

We can further reduce the number of nodes in GLF by removing transshipment nodes that
are not directly connected to damaged nodes. For each node i removed from GLF , we delete the
arcs adjacent to this node and create new arcs connecting each pair of nodes j and k that were
neighbors of i in GLF , such that j 6= k. The cost cjk of the new arc j−k is set as cjk = cji+ cik.
The resulting graph, denoted by ḠLF , is hereafter called as the LF -reduction of G. Figure 4.4(c)
illustrates the graph ḠLF obtained from the LF -reduction of graph G given in Figure 4.4(a).
After obtaining the subgraph GLF presented in Figure 4.4(b), we obtain ḠLF by deleting node
1 from GLF , as it was not directly connected to any damaged node. Then, we deleted arcs A1,
A2 and A3, as they were adjacent to node 1, and created arcs A5, A6, and A7. Notice that
either arc A4 or A7 is redundant and hence we can delete the one with the largest cost.

From a feasible solution of the SCSRP defined using ḠLF , we can derive valid inequalities
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Figure 4.4: Example of a reduction of a damaged network.

for the original problem, as pointed out in Proposition 4.

Proposition 4. Given L ⊆ Vr and F ⊆ Vd, let KḠLF be an optimal solution of the SCSRP
defined using the LF -reduction ḠLF of the original graph G. Let Θ̂ḠLF be the optimal value and
θ̂Ḡ

LF

i be the value of the variable Zdi in the optimal solution KḠLF , for all i ∈ F . Then, the
following inequalities are valid for the MP of the original SCSRP defined using the graph G:

∑
i∈F : di·θ̂Ḡ

LF

i >0

di · θi ≥ Θ̂ḠLF , (4.43)

Θ ≥ Θ̂ḠLF +
∑

i∈F : di·θ̂Ḡ
LF

i =0

di · θi +
∑

i∈Vd\F

di · θi. (4.44)

Proof. Valid inequality (4.43) is proved by contradiction. Assume that there is a solution KG

of the original SCSRP (i.e., using the original graph G) such that

∑
i∈F : di·θ̂Ḡ

LF

i >0

di · θ̂Gi < Θ̂ḠLF ,

where θ̂Gi is the value of variable Zdi in the solution KG. Since L ⊆ Vr, graph ḠLF have the
same or less damaged nodes than graph G. Hence, a solution for the SCSRP defined using ḠLF

exists with θ̂ḠLFi ≤ θ̂Gi , ∀ i ∈ F . Then,

∑
i∈F : di·θ̂Ḡ

LF

i >0

di · θ̂Ḡ
LF

i ≤
∑

i∈F : di·θ̂Ḡ
LF

i >0

di · θ̂Gi < Θ̂ḠLF ,

which is a contradiction because Θ̂ḠLF is the value of an optimal solution of the SCSRP defined
using ḠLF . Notice that valid inequality (4.43) remains valid if Θ̂ḠLF is a lower bound for the
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value of the optimal solution related to graph ḠLF .
For inequality (4.44), notice that from constraint (4.22) of the MP, we have

Θ ≥
∑
i∈Vd

di ·θi =
∑
i∈F

di ·θi+
∑

i∈Vd\F

di ·θi =
∑

i∈F : di·θ̂G
LF

i >0

di ·θi+
∑

i∈F : di·θ̂G
LF

i =0

di ·θi+
∑

i∈Vd\F

di ·θi.

Then, using valid inequality (4.43), we obtain

Θ ≥
∑
i∈Vd

di · θi ≥ Θ̂GLF +
∑

i∈F : di·θ̂G
LF

i =0

di · θi +
∑

i∈Vd\F

di · θi,

which proves the valid inequality (4.44).

Valid inequalities (4.43) and (4.44) can be useful when the value (or a lower bound for the
value) of the optimal solution of the SCSRP defined using the LF -reduction ḠLF is trivial or
can be easily derived. The separation procedure of these valid inequalities is detailed in the
following subsection.

4.2.7 Graph reduction (GR) strategy

Based on Proposition 4, we propose a Graph Reduction (GR) strategy to obtain the LF -
reduction of a graph G, as outlined in Algorithm 3. Basically, we create subgraphs ḠLF using
a feasible solution of the original SCSRP (i.e., using graph G). This feasible solution can be
quickly obtained using a heuristic, for example (see Section 4.2.8). Then, we determine the
LF -reduction ḠLF , solve the SCSRP defined using this subgraph and check if there are violated
valid inequalities of type (4.43) and (4.44) to be added to the MP of the original SCSRP. The
idea is to generate sufficiently small subgraphs ḠLF , so that the corresponding (reduced) SCSRP
can be quickly solved.

Let L = (v0, . . . , vi, . . . , vh) be a feasible partial sequence of damaged nodes repaired by
the crew, where vi is the ith damaged node repaired by the crew and vh is the last damaged
node repaired in order to make all the demand nodes in the set Vd accessible. For a given
positive integer number n1 ≤ h, we partition the set of nodes in the partial schedule L into P1 =
1+
⌊
h−1
n1

⌋
sets. The sets are labeled from 0 to P1−1, where Lp = {v(1+n1·p), . . . , v(n1+n1·p)} , ∀ p =

0, . . . , P1 − 2, and LP1−1 = {v(1+n1·(P1−1)), . . . , vh}. Similarly, let F = (u0, . . . , ui, . . . , u|Vd|) be
the sequence of demand nodes connected to the depot when the damaged nodes are repaired
according to sequence L, where ui is the ith demand node that becomes accessible. Given a
positive integer number n2 ≤ |Vd|, we create a partition of the nodes in F given by P2 = 1 +⌊
|Vd|−1
n2

⌋
sets. The sets are labeled from 0 to P2−1, where Ff = {u(1+n2·f), . . . , u(n2+n2·f)} ,∀ f =

0, . . . , P2 − 2, and FP2−1 = {v(1+n2·(P2−1)), . . . , v|Vd|}. Then, for each p = 0, . . . , P1 − 1 and
f = 0, . . . , P2 − 1 we use sets Lp and Lf to obtain the LF -reduction ḠLpFf and solve the
corresponding (reduced) SCSRP to generate valid inequalities (4.43) and (4.44).

Notice that we are not using an arbitrary selection of damaged nodes to generate the sub-
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Algorithm 3 Graph reduction strategy to derive valid inequalities (4.43) and (4.44).
Input:
Graph G = (V, E);
Sequences L = (v0, . . . , vi, . . . , vh) and F = (u0, . . . , ui, . . . , u|Vd|);
Positive integer numbers n1 ≤ h and n2 ≤ |Vd|;
Output:
Valid inequalities of type (4.43), (4.44);
1: for p = 0 to P1 − 1 do
2: for f = 0 to P2 − 1 do
3: Generate subgraph ḠLpFf ;
4: Solve the SCSRP defined using subgraph ḠLpFf ;
5: Derive the valid inequalities (4.43), (4.44) from the solution obtained using ḠLpFf ;
6: end for
7: end for
8: Add the valid inequalities (4.43),(4.44) to the MP.

graphs ḠLpFf , but a feasible sequence L. This sequence can be obtained, for example, by using a
heuristic able to quickly define a good sequence of damaged nodes to be repaired. This way, we
group in a same subgraph, the damaged nodes that are likely to be repaired sequentially in the
solution of the original problem (associated with graph G). Also, notice that we do not consider
all the damaged nodes but only those enough to make the demand nodes accessible. Similarly,
we group in a same subgraph, the demand nodes that are likely to require the restoration of
common damaged nodes to become connected to the depot.

4.2.8 Construction and local search heuristics

In this section, we use a construction heuristic and two local search heuristics with the aim of
finding good feasible solutions of the SCSRP. The feasible solutions are used as initial incumbent
solutions in the BBC algorithm.

4.2.8.1 Construction heuristic

The crew scheduling decision can be modeled as a traveling salesman problem (TSP) in which
the cities to be visited are the damaged nodes. A simple construction heuristic for this problem
is a greedy algorithm that makes a locally optimal choice at each iteration in an attempt to find
a global optimum. The proposed method starts at the depot and, at each iteration, inserts at
the end of the schedule a node that is not in the schedule yet and has the minimum travel time
(when no nodes are damaged) to the last inserted node. A node insertion is feasible if this node
can be visited without using a node that was not already repaired. Only feasible insertions can
be selected at each iteration, and as a consequence, it always generates a feasible schedule. The
construction heuristic can also generate feasible random solutions if we insert at the end of the
schedule a randomly selected node and not the one with the minimum travel time to the last
inserted node.
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4.2.8.2 Local search heuristics

We propose two local search operators with the aim of improving a feasible schedule generated by
the construction heuristic. The first local search operator (swap) exchanges the positions of two
damaged nodes in the schedule. The second local search operator is a pairwise exchange (2-opt)
that involves removing two edges and replacing them with two different edges that reconnect
the fragments created. Let Wn

K be the set of all possible solutions (neighbors) obtained by
applying the operator n in the schedule K, where n ∈ {swap, 2-opt}. Let ΘK be the cost of
the schedule K. Let K̂i be the ith element of set Wn

K . The local search heuristic based on the
two operators is outlined in Algorithm 4. We have a feasible schedule as the input and a locally
optimal solution provided by the heuristic as the output. We use subproblems SP1 and SP2 to
evaluate the feasibility (line 10) and cost (line 12) of the schedule created when the operators
are applied. When a solution better than the current one is found, the local search process is
restarted. Furthermore, when a set Wn

K is fully explored, we restart the algorithm from a
random solution (line 28). The algorithm terminates when no improvement is found for the last
randomly generated solution.

4.3 Computational experiments

In this section, we evaluate the performance of the proposed solution approaches using instances
from the literature. All the algorithms were implemented in C++ programming language. The
BBC method was implemented on top of the IBM CPLEX Optimization Solver 12.7 using the
Concert Technology library. We implemented the specialized algorithms to solve subproblems
SP1 and SP2 and the heuristics according to their descriptions in Sections 4.2.4 and 4.2.8. All
cuts and valid inequalities are added to problem using the Callback procedures available in the
Concert Technology library. The experiments were run on a Linux PC with a CPU Intel Core
i7 3.4 GHz and 16.0 GB of memory using a single thread. The stopping criteria was either the
elapsed time exceeding the time limit of 3,600 seconds or the optimality gap being smaller than
10−4. All the remaining parameters of CPLEX were kept at their default values.

4.3.1 Instance description

We carried out computational experiments using two types of theoretical instances: S1, which
is composed of small instances, and S2, which is composed of medium and large instances, as
presented by Maya-Duque et al. (2016). As described by the authors, they generated networks
with different numbers of nodes and arcs based on the instance generator proposed by Klingman
et al. (1974). Table 4.1 shows the characteristics of the set of instances. The type (S1 or S2),
network name (class), number of demand nodes, and the total number of nodes and arcs in
the original network can be seen in columns 1 to 5 of Table 4.1, respectively. For each original
network, one class of instances was generated by varying two parameters, namely, α and β.
Parameter α defines the percentage of damaged arcs in the network. Parameter β specifies the
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Algorithm 4 Local search heuristic using the operator n ∈ {swap, 2-opt}.
Input:
Schedule K = (v0, v1, ..., vj , ..., v|Vr|); Cost ΘK of scheduling K;
Output:
Schedule K∗ = (v∗0 , v∗1 , ..., v∗j , ..., v∗|Vr|);

1: ΘK∗ := ΘK̂i ; K∗ := K;
2: Determine set Wn

K ;
3: improvement_global := 1;
4: while improvement_global = 1 do
5: improvement_global := 0; improvement_local := 1;
6: while improvement_local = 1 do
7: i := 1;
8: improvement_local := 0;
9: while i ≤ |Wn

K | do
10: Evaluate feasibility of schedule K̂i by solving subproblem SP1;
11: if schedule K̂i is feasible then
12: Calculate cost ΘK̂i of schedule K̂i by solving subproblem SP2;
13: if ΘK̂i < ΘK then
14: ΘK := ΘK̂i ; K := K̂i;
15: i := |Wn

K |+ 1;
16: Determine new set Wn

K ;
17: improvement_local := 1;
18: if ΘK̂ < ΘK∗ then
19: ΘK∗ := ΘK̂ ; K∗ := K;
20: improvement_global := 1;
21: end if
22: end if
23: end if
24: i := i+ 1;
25: end while
26: end while
27: if improvement_global = 1 then
28: Find a new random solution K with the construction heuristic;
29: Determine the new set Wn

K ;
30: end if
31: end while

maximum tolerable percentage by which the paths connecting demand nodes to the depot can
increase in relation to the shortest paths in the network when no damaged node exists. For
example, α = 50% indicates that half of the arcs of the original network were damaged, and
β = 50% indicates that the maximum distance li for the paths between the depot and the
demand node i is 1.5 times the length of the shortest path between the depot and the node
i when no damaged node exists. Columns 6 and 7 of Table 4.1 show the values of α and β,
respectively.

For each damaged arc in the original network, one or more damaged nodes are added in the
middle of the arc. Therefore, the total numbers of nodes and arcs in the instance depend on
the parameter α. In the table, original network 1 with 25 nodes and 40 arcs is transformed
into a damaged network with 27 nodes and 42 arcs when α = 5% (the 2 damaged arcs are
converted into 2 damaged nodes) and into a damaged network with 45 nodes and 60 arcs when
α = 50% (20 new damaged nodes). Thus, damaged networks generated from original network
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1 have 27 to 45 nodes and 40 to 60 arcs. Columns 8 and 9 show the total number of nodes and
arcs in the damaged networks. By combining the values of α and β for original network 1, for
example, 20 instances were generated. For original network 16, the values of α = 5%, 25%, 50%
were combined with β = 5%, 10% to form 6 instances, while the values of α = 10%, 30% were
combined with β = 25%, 50% to form 4 instances. For networks 1-15, the number of instances
generated is 20. For networks 16-39, the number of instances generated is 10.

It is worth mentioning that some of the large instances in group S2 are actually much larger
than the practical instances we typically find in real-world situations. Feng and Wang (2003),
for example, considered a real network with 10 damaged points and less than 100 total nodes.
Yan and Shih (2007) and Yan and Shih (2009) also considered real networks with less than
100 nodes but with 24 damaged points. Similarly, Xu and Song (2015) considered a real case
with 36 damaged nodes and not more than 100 total nodes. Pramudita and Taniguchi (2014)
considered a larger real damaged network with 98 damaged points (blocked arcs) and 198 total
nodes. Finally, Akbari and Salman (2017a) considered one of the largest practical cases in the
literature, involving networks with 240 damaged points, 349 nodes and 689 arcs. Note that we
are considering instances with up to 312 damaged nodes, 712 total nodes and 937 total arcs.

Table 4.1: Set of instances.
Network Demand Original network Damaged network Total

Type (class) nodes nodes arcs Values for α (%) Values for β (%) nodes arcs instances
S1 1 19 25 40 5, 10, 25, 30, 50 5, 10, 25, 50 27 to 45 42 to 60 20
S1 2 19 25 37 5, 10, 25, 30, 50 5, 10, 25, 50 26 to 43 38 to 55 20
S1 3 19 25 39 5, 10, 25, 30, 50 5, 10, 25, 50 26 to 44 40 to 58 20
S1 4 24 30 83 5, 10, 25, 30, 50 5, 10, 25, 50 34 to 71 87 to 124 20
S1 5 24 30 89 5, 10, 25, 30, 50 5, 10, 25, 50 34 to 74 93 to 133 20
S1 6 24 30 84 5, 10, 25, 30, 50 5, 10, 25, 50 34 to 72 88 to 126 20
S1 7 28 35 118 5, 10, 25, 30, 50 5, 10, 25, 50 40 to 94 123 to 177 20
S1 8 28 35 115 5, 10, 25, 30, 50 5, 10, 25, 50 40 to 92 120 to 172 20
S1 9 28 35 113 5, 10, 25, 30, 50 5, 10, 25, 50 40 to 91 118 to 169 20
S1 10 15 20 39 5, 10, 25, 30, 50 5, 10, 25, 50 21 to 39 40 to 58 20
S1 11 15 20 37 5, 10, 25, 30, 50 5, 10, 25, 50 21 to 38 38 to 55 20
S1 12 15 20 37 5, 10, 25, 30, 50 5, 10, 25, 50 21 to 38 38 to 55 20
S1 13 35 40 146 5, 10, 25, 30, 50 5, 10, 25, 50 47 to 113 153 to 219 20
S1 14 35 40 143 5, 10, 25, 30, 50 5, 10, 25, 50 47 to 111 150 to 214 20
S1 15 35 40 143 5, 10, 25, 30, 50 5, 10, 25, 50 47 to 111 150 to 214 20
S2 16 50 60 191 5, 25, 50 | 10, 30 05, 10 | 25, 50 69 to 155 200 to 286 6 | 4
S2 17 50 60 197 5, 25, 50 | 10, 30 25, 50 | 05, 10 69 to 158 206 to 295 6 | 4
S2 18 50 60 196 5, 25, 50 | 10, 30 05, 10 | 25, 50 69 to 158 205 to 294 6 | 4
S2 19 70 80 247 5, 25, 50 | 10, 30 25, 50 | 05, 10 92 to 203 259 to 370 6 | 4
S2 20 70 80 245 5, 25, 50 | 10, 30 05, 10 | 25, 50 92 to 202 257 to 367 6 | 4
S2 21 70 80 248 5, 25, 50 | 10, 30 25, 50 | 05, 10 92 to 204 260 to 372 6 | 4
S2 22 90 100 274 5, 25, 50 | 10, 30 05, 10 | 25, 50 113 to 237 287 to 411 6 | 4
S2 23 90 100 271 5, 25, 50 | 10, 30 25, 50 | 05, 10 113 to 235 284 to 406 6 | 4
S2 24 90 100 273 5, 25, 50 | 10, 30 05, 10 | 25, 50 113 to 236 286 to 409 6 | 4
S2 25 125 140 324 5, 25, 50 | 10, 30 25, 50 | 05, 10 156 to 302 340 to 486 6 | 4
S2 26 125 140 323 5, 25, 50 | 10, 30 05, 10 | 25, 50 156 to 301 339 to 484 6 | 4
S2 27 125 140 322 5, 25, 50 | 10, 30 25, 50 | 05, 10 156 to 301 338 to 483 6 | 4
S2 28 140 170 398 5, 25, 50 | 10, 30 05, 10 | 25, 50 189 to 369 417 to 597 6 | 4
S2 29 140 170 399 5, 25, 50 | 10, 30 25, 50 | 05, 10 189 to 369 418 to 598 6 | 4
S2 30 140 170 396 5, 25, 50 | 10, 30 05, 10 | 25, 50 189 to 368 415 to 594 6 | 4
S2 31 200 200 447 5, 25, 50 | 10, 30 25, 50 | 05, 10 222 to 423 469 to 670 6 | 4
S2 32 200 200 449 5, 25, 50 | 10, 30 05, 10 | 25, 50 222 to 424 471 to 673 6 | 4
S2 33 200 200 449 5, 25, 50 | 10, 30 25, 50 | 05, 10 222 to 424 471 to 673 6 | 4
S2 34 300 300 524 5, 25, 50 | 10, 30 05, 10 | 25, 50 326 to 562 550 to 786 6 | 4
S2 35 300 300 525 5, 25, 50 | 10, 30 25, 50 | 05, 10 326 to 562 551 to 787 6 | 4
S2 36 300 300 525 5, 25, 50 | 10, 30 05, 10 | 25, 50 326 to 562 551 to 787 6 | 4
S2 37 400 400 625 5, 25, 50 | 10, 30 25, 50 | 05, 10 431 to 712 656 to 937 6 | 4
S2 38 400 400 625 5, 25, 50 | 10, 30 05, 10 | 25, 50 431 to 712 656 to 937 6 | 4
S2 39 400 400 625 5, 25, 50 | 10, 30 25, 50 | 05, 10 431 to 712 656 to 937 6 | 4

Total 540
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4.3.2 Description of experiments

In this section, we present a description of the computational experiments. Table 4.2 presents
the combination and stopping criteria of eleven proposed solution strategies, in which ET refers
to elapsed time and TL to the total time limit. For instance, H3 is the heuristic strategy that
uses first the construction heuristic, then the local search 2opt, and finally the local search swap,
either with stopping criteria given by time limit or a locally optimal solution found. The first
four solution strategies (H1-H4) use only the construction and local search heuristics presented
in Section 4.2.8. The following five strategies (BBC1-BBC5) are variants of the Branch-and-
Benders-Cut (BBC) algorithm that use different combinations of the cuts presented in Section
4.2.3 and some of the valid inequalities presented in Section 4.2.6. The same separation algo-
rithms are used in all the BBC strategies to identify the feasibility and cost of a scheduling
solution of the MP. Then, we enumerate and add inequalities to the MP according to the type
of cuts used in each BBC strategy. The algorithm BBC6 relies on the best heuristic method to
provide a good feasible initial solution to the best BBC method. The best solution found with
the heuristic is set as the incumbent solution of the MP. In the GR-BBC6 method, the algorithm
BBC6 is combined with the Graph Reduction (GR) strategy presented in Section 4.2.7 to derive
valid inequalities (4.39)-(4.44). BBC6 is used to solve the reduced SCSRP defined using the
subgraphs ḠLpFf , which are generated using solutions provided by the heuristic H3, considering
sets of n1 = 20 damaged nodes and n2 = |Vd| demand nodes (see Algorithm 4). The time limit
to solve the reduced SCSRP is 60 seconds. If the reduced SCSRP for a given subgraph ḠLpFf is
not solved to optimality within this time limit, we reduce this subgraph by removing only the
first five nodes of sets Lp and Ff and then we solve the corresponding reduced SCSRP again.
Finally, the MIP model presented in Section 4.2.1 is used to solve the problem.

Table 4.2: Characteristic of the solution methods.
Solution strategy Combination (stopping criteria)1

H1 Construction heuristic + 2opt (ET > TL or locally optimal).
H2 Construction heuristic + swap (ET > TL or locally optimal).
H3 Construction heuristic + 2opt (ET > 1

2TL or locally optimal) + swap (ET > TL or locally
optimal).

H4 Construction heuristic + swap (ET > 1
2TL or locally optimal) + 2opt (ET > TL or locally

optimal).
BBC1 BBC algorithm with valid inequalities (4.39) - (4.42), feasibility cut (4.33) and optimality

multi-cuts (4.35) and (4.36) (ET > TL or gap = 0).
BBC2 BBC algorithm with valid inequalities (4.39) - (4.42), feasibility cut (4.32) and optimality cut

(4.34) (ET > TL or gap = 0).
BBC3 BBC algorithm with valid inequalities (4.39) - (4.42), feasibility cut (4.32) and optimality

multi-cuts (4.36) (ET > TL or gap = 0).
BBC4 BBC algorithm with valid inequalities (4.39) - (4.42), feasibility cut (4.32) and optimality

multi-cuts (4.35) and (4.36) (ET > TL or gap = 0).
BBC5 BBC algorithm without valid inequalities (4.39) - (4.42), feasibility cut (4.32) and optimality

multi-cuts (4.35) and (4.36) (ET > TL or gap = 0).
BBC6 H3 (ET > 1

6TL or locally optimal) + BBC4 (ET > TL or gap = 0).
GR-BBC6 H3 (ET > 1

6TL or locally optimal) + GR (ET > 1
60TL each subproblem or optimality of the

subproblems) + BBC4 with additional valid inequalities (4.43) - (4.44) (ET > TL or gap = 0).
MIP model Model (4.1)-(4.18) (ET > TL or gap = 0)

1 Let TL be the total time limit and ET be the elapsed time.

The solution methods were evaluated using performance profiles as proposed by Dolan and
Moré (2002). Given a set P of instances and a set F of solution methods, performance profiles
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are based on the cumulative distribution function P (f, q), which indicates the probability of a
strategy f with a log2 performance ratio being within a factor q ∈ R of the best possible ratio.
The function P (f, q) is defined as:

P (f, q) = |{p ∈ P : log2(v(p, f)) ≤ q}|
|P|

, q ≥ 0, (4.45)

with v(p, f) = TCpf
min{TCpf : f ∈ F} , (4.46)

where |P| is the total number of instances and TCpf is the performance measure (objective
function cost, gap or elapsed time) of problem p when solved by method f . Values of P (f, q)
when q = 0 indicate the fraction of instances for which the strategy reached the best solution.
For q > 0, P (f, q) is the fraction of instances for which strategy f obtained solutions with a
quality within a factor of 2q of the best solutions. Values of q when P (f, q) = 1 indicate that
quality of the solutions obtained by strategy f for all instances are within a factor of 2q of the
best solutions.

4.3.3 Computational performance of the proposed approaches

To evaluate the performance of the heuristic approaches, we use the objective value of the
solutions found within a time limit of 3,600 seconds. The heuristic algorithms do not provide
a lower bound for the objective value, so we cannot calculate the optimality gap. On the other
hand, the BBC approaches provide upper- and lower-bound values, so we use the optimality gap
provided by the algorithms within a time limit of 3,600 seconds as well to compare the BBC
approaches. The optimality gap is computed as:

gap = ZU − ZL

ZU
, (4.47)

in which ZU is the upper bound or best integer solution and ZL is the lower bound. The opti-
mality gap is a good indicator of the quality of the methods because it considers simultaneously
the upper and lower bound of the solutions. However, we also compared the upper bounds of
the BBC strategies, and the overall results were similar to those obtained with the optimality
gaps.

Figure 4.5 shows the performance profiles for the heuristic strategies (H1-H4) using the
objective value. The results indicate that the two strategies that combine the local search
heuristics swap and 2opt, H3 and H4, yield a more stable performance than the others. Strategy
H3 (H4) found the smallest objective function cost for 80.18% (74.44%) of the instances, and in
the remaining instances, H3 (H4) provides a solution with cost within a factor of 20.61 ≈ 1.53
(20.78 ≈ 1.72) of the lowest cost found. Due to this behavior, H3 was selected as the best
heuristic strategy.

Figure 4.6 presents the performance profiles for the BBC algorithms (BBC1-BBC5) based
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Figure 4.5: Performance profiles of the heuristic methods based on the objective value.

on the optimality gap. Table 4.3 shows the extreme values of the performance profiles for the
BBC strategies. The performance profiles reveal that the majority of the strategies have similar
results in 90% (P (f, q) = 0.9) of the instances. As expected, strategy BBC5, which does not use
any valid inequalities, presents the worst performance. In most instances, the valid inequalities
improved the lower bound, thus accelerating the convergence of the algorithms. In fact, while
BBC5 found the best gap only for 35.5% of the instances, BBC4 found the best gap for 64.8% of
the instances, which represents a substantial improvement of 82%. Furthermore, for instances
in which the best gap is not achieved, BBC4 provides solutions with a gap within a factor of
23.45 ≈ 11 of the best gap, while for the BBC5 algorithm, the factor is 27.66 ≈ 202.

Table 4.3: Extreme values of the performance profiles for the BBC strategies.
BBC strategy P (f, q)1 q2

BBC1 0.5842 7.6582
BBC2 0.6237 5.7664
BBC3 0.6411 4.0752
BBC4 0.6474 3.4558
BBC5 0.3553 7.6582

1 Values of P (f, q) when q = 0.
2 Values of q when P (f, q) = 1.

By comparing the performance profiles of algorithms BBC1 and BBC4, it is possible to
see that using feasibility cut (4.32) is better than using feasibility cut (4.33). This result was
also expected because equation (4.32) cuts off a larger number of infeasible solutions when it is
used. Using multiple lower bound functions as optimality cuts appears to be more efficient than
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Figure 4.6: Performance profiles of the BBC algorithms based on the optimality gap.

using single cuts, which can be deduced from the comparison among algorithms BBC2, BBC3
and BBC4. Notice that the optimality multi-cut approaches (BBC3 and BBC4) are faster and
more stable than the optimality single-cut approach (BBC2). Finally, from the comparison of
algorithms BBC3 and BBC4, we can conclude that the use of cut (4.35) improves the convergence
of the method. Optimality multi-cut (4.35) helps set a lower bound for a greater number of
solutions than multi-cut (4.36) individually. Therefore, the algorithm BBC4 is selected as the
best strategy, which provides the smallest gap for 64.73% of the instances and, in the remaining
instances, provides solutions with a gap within a factor of 23.45 ≈ 11 of the best gap obtained.

Approach BBC6 combines the best heuristic and BBC strategies, H3 and BBC4, respectively.
GR-BBC6 combines BBC6 with the GR strategy. We build performance profiles based on
the gap provided by the algorithms within the time limit of 3,600 seconds to compare BBC4,
BBC6, GR-BBC6, and the MIP model. As we can see in Figure 4.7, not surprisingly, the
BBC algorithms outperform the MIP model. In fact, the mathematical model found feasible
solutions for only 45.8% of the instances. BBC6 shows a more stable performance than the
BBC4 algorithm. Thus, starting the BBC with an initial solution provided by heuristic H3
improves the performance of the BBC algorithm. By comparing GR-BBC6 and BBC6, we can
infer that the valid inequalities (4.43)−(4.44) derived by the GR strategy are effective to improve
the convergence of the method. GR-BBC6 (BBC6) achieved the best gap in 96.1% (50.78%) of
the instances and, for the instances it was not achieved, the solution gap was within a factor of
24.68 ≈ 25.63(26.12 ≈ 69.55) of the best gap obtained.
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Figure 4.7: Performance profiles of the best BBC strategies and the MIP model based on the
optimality gap.

4.3.4 Performance of the best strategy

Table 4.4 shows the average upper bound, gap and elapsed time of the best strategy proposed
in this chapter for solving the instances of group S1 and S2. For all instances, the GR-BBC6
method provided feasible solutions within 3,600 seconds. The average total elapsed time was
2,361 seconds, and the average time that GR-BBC6 spent to find the best upper bound was
797.3 seconds, 66.24% smaller than the elapsed time. Thus, GR-BBC6 finds feasible solutions
relatively quickly, and most of the elapsed time is consumed to improve the lower-bound val-
ues. The average gap considering all instances was 38.82%. For instances S1, the average gap
was 9.32%, while for instances S2, the average gap was 57.26%. As expected, worse gaps are
obtained for instances with a large number of nodes and arcs. If we consider only practical size
instances (according to most of the real-world cases presented in the literature) we could limit
our experiments to the first 24 class of instances, obtaining an average gap of 18.17%. Therefore,
the GR-BBC6 algorithm is effective to solve practical size instances with good quality solutions.

We also performed additional experiments increasing the time limit of the GR-BBC6 algo-
rithm to 24 hours. We considered the classes of instances 12 and 38, which present the smallest
and the largest optimality gaps according to Table 4.4. The results reveal that the gap is re-
duced from 1.76% to 1.21% (31.25%) in class 12, and from 91.87% to 86.89% (5.42%) in class
38. Thus, our approach can be more effective for longer computational times, although the gap
improvement can be rather negligible from the practical point of view.

Table 4.5 shows the average gap of the GR-BBC6 method according to different values of

53



Table 4.4: Average results of the GR-BBC6 strategy.
Network Avg. upper Avg. gap Avg. elapsed Avg. best1

Type (Class) bound (%) time (sec.) time (sec.)
S1 1 9,744.98 2.36 720.02 0.06
S1 2 34,088.95 5.04 1,039.29 0.05
S1 3 49,862.45 2.47 844.10 427.62
S1 4 18,037.43 8.24 1,440.08 2.51
S1 5 18,484.94 8.76 1,440.36 518.32
S1 6 20,917.01 12.51 1,618.59 260.78
S1 7 36,511.03 6.71 2,177.40 14.25
S1 8 26,048.79 13.94 1,956.36 66.38
S1 9 33,953.25 21.84 1,580.71 21.32
S1 10 48,459.97 2.42 725.84 487.55
S1 11 38,538.07 3.61 798.72 0.09
S1 12 28,036.81 1.76 723.84 6.21
S1 13 23,566.08 9.64 2,139.00 19.63
S1 14 81,031.99 20.28 2,119.10 351.12
S1 15 52,200.77 20.21 2,138.85 8.85
S2 16 38,737.05 18.09 2,074.49 628.29
S2 17 30,448.01 16.56 2,259.61 391.54
S2 18 97,476.41 21.39 2,092.61 569.09
S2 19 65,092.84 33.02 2,160.52 1,186.22
S2 20 71,172.82 38.95 2,550.34 697.30
S2 21 75,602.30 40.20 2,520.80 1,190.12
S2 22 211,486.51 41.05 2,883.30 1,522.30
S2 23 98,827.21 41.49 2,880.07 1,129.43
S2 24 209,434.98 45.56 2,880.88 1,975.86
S2 25 155,240.79 49.76 2,880.24 1,127.12
S2 26 274,847.22 62.94 2,961.89 1,756.10
S2 27 163,429.50 53.77 2,880.10 1,267.61
S2 28 435,199.83 58.23 2,881.21 1,495.73
S2 29 247,954.95 65.94 2,880.62 1,311.75
S2 30 468,494.13 57.76 3,252.19 1,643.45
S2 31 314,909.80 70.55 2,880.80 1,232.92
S2 32 337,827.97 61.12 2,881.92 1,224.98
S2 33 275,998.35 65.94 3,240.33 912.47
S2 34 481,122.55 88.49 3,600.03 1,097.02
S2 35 472,126.95 84.17 3,600.05 1,704.58
S2 36 497,125.76 86.16 3,600.03 1,311.96
S2 37 532,181.82 91.50 3,600.16 988.37
S2 38 697,781.81 91.87 3,600.05 1,433.22
S2 39 553,372.93 89.66 3,600.05 1,112.55

Avg. All 187,830.13 38.82 2,361.66 797.30
Avg. S1 34,632.17 9.32 1,430.82 145.65
Avg. S2 283,578.85 57.26 2,943.43 1,204.58
1 Time that GR-BBC6 spent to find the best upper bound.

α and β. For example, the value 16.65 in bold in the table indicates the average gap for all
instances with α = 10% and β = 5%. Note that the instances become more challenging when
the percentage of damage (α) increases, as expected. In fact, more damaged nodes lead to
(possibly) more crew schedules to be evaluated in the MP, slowing down the convergence of the
method. More nodes in the network also makes the resolution of the subproblems even harder.
The GR-BBC6 strategy found solutions with an average gap of 7.76% for the instances with
α = 5%, and an average gap of 55.55% for instances with α = 50%. Similarly, the difficulty
of the instances decreases (on average) when the maximum tolerable percentage (β) increases.
Higher values of β make it easier for subproblem SP2 to find a feasible path between the depot
and the demand nodes. The average gap for instances with β = 5% is 31.92%, while the average
gap for instances with β = 50% is 29.10%. It is worth mentioning that, in most of the practical
situations, no more than α = 30% of the roads are considered as damaged roads. For instance,
Akbari and Salman (2017a), which addressed one of the largest practical cases in the literature,
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considered 33% of the roads as damaged.

Table 4.5: Average gap for each value of α and β.
α (%)

5 10 25 30 50 Avg.

β (%)

5 8.51 16.65 38.10 39.72 56.64 31.92
10 7.59 16.33 34.11 40.85 53.85 30.55
25 7.58 15.63 35.92 39.44 55.84 30.88
50 7.34 12.32 32.64 37.36 55.83 29.10
Avg. 7.76 15.23 35.19 39.34 55.55 30.61

4.3.5 Comparison with other results from the literature

This section compares the results obtained by the GR-BBC6 strategy with the results of other
approaches available in the literature, namely, the dynamic programming (DP) algorithm and
the iterated greedy-randomized constructive procedure (IGRCP) metaheuristic, both of which
were proposed by Maya-Duque et al. (2016). While the DP approach is also an exact method
analogous to our GR-BBC6 method, the IGCRP is a metaheuristic and hence has no guarantee
of optimality. This metaheuristic is based on the greedy randomized adaptive search procedure
(GRASP) and consists of two phases: the construction of a feasible solution and an improve-
ment in the constructed solution, including multiple runs of the construction phase after the
improvement routine. Our BBC algorithm is the first exact method proposed in literature able
to find a lower bound for all the considered instances. Thus, it is not possible to perform any
comparison of lower bounds using other approaches from the literature. This way, we only com-
pare the solution costs (upper bounds) provided by the BBC with the costs delivered by the
other approaches. We emphasize that the purpose is not to compare the methods, but to verify
the quality of the solutions provided by the GR-BBC6 method. We show the results only for
instances in group S1 (small instances) because the DP strategy proposed in Maya-Duque et al.
(2016) is not able to solve medium and large instances. The IGRCP metaheuristic, on the other
hand, was used to solve S2 instances in Maya-Duque et al. (2016), but we did not have access
to those solutions.

Table 4.6 shows the average upper bound and elapsed time of the three approaches for
instances in group S1. The character “–” indicates that no solution was obtained for one or more
instances of the class. The last column “ratio” shows the ratio of the upper bound of IGRCP
in relation to the upper bound of GR-BBC6. Ratios smaller than 1 indicate that the GR-
BBC6 strategy improves the upper bound found by the IGRCP metaheuristic. The columns “#
optimal” show the number of optimal solutions found by each exact method. The DP algorithm
solved all the instances to optimality for classes of instances corresponding to networks 1, 2
and 10. For the other classes, the DP algorithm did not solve some of the instances within a
time limit of 24 hours, especially those with α = 50. For instances of classes corresponding to
networks 1, 2 and 10, the solutions of the GR-BBC6 method were equal to the solutions of the
DP strategy, indicating that these solutions are optimal, although there is a nonzero gap related
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to the lower bound computed with the GR-BBC6 method.
The BBC is able to prove optimality in (181) 60.33% of the small instances, while the best

exact approach available so far in the literature proved optimality for (160) 53.33% of the small
instances. Furthermore, our BBC algorithm solves to optimality 18.33% of the medium and
large instances, while medium and large instances were not solved with the DP. In terms of
computational times, the DP strategy was slower than the GR-BBC6 strategy for instances in
classes 1, 2 and 10.

Table 4.6: Average result of the solution methods for small instances.
Avg. upper bound # optimal Avg. elapsed time (sec.) Avg. best4

Class IGRCP1 DP2 GR-BBC63 DP GR-BBC6 IGRCP DP GR-BBC6 time (sec.) Ratio
1 9,744.98 9,744.98 9,744.98 20 16 1.09 2,945.31 720.02 0.06 1.000
2 34,088.95 34,092.54 34,088.95 20 16 1.43 8,733.50 1,039.29 0.05 1.000
3 49,987.07 – 49,862.45 17 16 1.60 – 844.10 427.62 0.998
4 18,246.59 – 18,037.43 16 11 7.04 – 1,440.08 2.51 0.989
5 18,151.81 – 18,484.94 12 11 14.10 – 1,440.36 518.32 1.018
6 21,253.39 – 20,917.01 1 11 17.98 – 1,618.59 260.78 0.984
7 36,873.30 – 36,511.03 0 8 11.77 – 2,177.40 14.25 0.990
8 26,382.27 – 26,048.79 0 9 38.37 – 1,956.36 66.38 0.987
9 35,223.52 – 33,953.25 0 11 20.26 – 1,580.71 21.32 0.964
10 48,545.84 48,460.28 48,459.97 20 16 0.91 16,663.44 725.84 487.55 0.998
11 39,212.63 – 38,538.07 17 16 1.59 – 798.72 0.09 0.983
12 28,876.04 – 28,036.81 16 16 0.87 – 723.84 6.21 0.971
13 23,535.63 – 23,566.08 8 8 7.83 – 2,139.00 19.63 1.001
14 87,163.33 – 81,031.99 8 8 91.47 – 2,119.10 351.12 0.930
15 52,085.29 – 52,200.77 5 8 53.51 – 2,138.85 8.85 1.002

Average 35,291.38 – 34,632.17 10.67 12.07 17.99 – 1,430.82 145.65 0.988
1 Metaheuristic based on GRASP proposed in Maya-Duque et al. (2016)
2 Exact dynamic programming algorithm proposed in Maya-Duque et al. (2016)
3 Best BBC strategy (1 hour time limit).
4 Time that GR-BBC6 spent to find the best upper bound.

On average, the solutions provided by the BBC approach GR-BBC6 are better than the
solutions provided by the IGRCP heuristic. Additionally, the BBC6 method provided a lower
bound and an optimality gap for all the solutions within a time limit of 3,600 seconds. Thus,
the BBC can obtain a valid lower bound for all the instances without deteriorate the cost (upper
bound) of the solutions or even at improving the upper bound of the solutions. As expected,
the IGRCP metaheuristic was the fastest method but gave no guarantee of optimality, as it
corresponds to a heuristic method. Note that most of the time spent by the BBC strategy is to
improve the lower bound. In fact, the average time spent by GGR-BBC6 to find the best upper
bound is 145.65 seconds, 10 times smaller than the average elapsed time.

4.4 Final remarks of the chapter

This chapter explored branch-and-Benders-cut (BBC) approaches to solve the crew scheduling
and routing problem (CSRP), in the context of road restoration. As a key contribution, it devel-
oped the first exact solution approach that is able to obtain feasible solutions and lower bounds
for all instances from the literature, including very large-scale instances. The addressed prob-
lem is typically found in post-disaster situations where the damaged network must be repaired
as quickly as possible to promote an effective response. The joint presence of scheduling and
routing decisions explains the complexity of solving such problems, for which commercial solvers
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cannot be efficiently used. Thus, we have devised approaches based on the Benders decomposi-
tion, applied to an MIP formulation that determines a fair and efficient road restoration plan.
We employed feasibility cuts, multiple optimality cuts, and specialized valid inequalities, which
have enhanced the performance of the BBC approaches. The use of simple heuristics to provide
initial incumbent solutions for the master problem was also an important strategy to accelerate
the convergence of the methods. The proposed BBC strategies have improved the results of
exact and heuristic methods proposed so far in the literature. In fact, our best approach has
proven the optimality of 41.67% of the instances, and for 100% of the instances, it obtained
valid lower bounds for the first time. It is worth noting that we have not found any other
computational study that considers so many nodes and arcs for any variant of the SCSRP in
road restoration. The major remaining obstacle, though, is to provide the optimality certificate
for some large-scale instances. In this sense, in the next chapter, we investigate particular prop-
erties and characteristics of the problem to derive new valid inequalities and different ways for
decomposing the MIP formulation. Additionally, we develop hybrid methods combining exact
and metaheuristic strategies to obtain tighter bounds and improved solutions.
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Chapter 5

Metaheuristics and hybrid methods
for the SCSRP

This chapter presents: (i) a branch-and-Benders-cut (BBC) method that enhances the approach
presented in Chapter 4 by using a different variable partitioning scheme and new valid inequali-
ties that strengthen the linear relaxation of the master problem; (ii) genetic algorithm (GA) and
simulated annealing (SA) metaheuristics; and (iii) an exact hybrid BBC (HBBC) method that
effectively combines the first two approaches. This chapter is organized as follows. Section 5.1
motivates the development of the new decomposition-based algorithms and presents the related
works. The new Benders reformulation of the SCSRP is described in Section 5.2. Section 5.3
describes the proposed SA and GA metaheuristics. Section 5.4 presents the HBBC algorithm
that combines the metaheuristics with the BBC algorithm. Finally, the computational results
and conclusions are presented in Sections 5.5 and 5.6, respectively.

*A paper based on this chapter is accepted in Computers & Operations Research (COR).
(Moreno et al., 2020) Moreno, Alfredo; Munari, Pedro; Alem, Douglas. Decomposition-based
algorithms for the crew scheduling and routing problem in road restoration. Computers & Op-
erations Research, 2020. https: // doi. org/ 10. 1016/ j. cor. 2020. 104935
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5.1 Introduction

As described in the previous chapter, the BBC algorithm is a branch-and-cut algorithm in which
the master problem obtained from a Benders decomposition is solved by a single search tree,
and the cuts are generated within the tree using the subproblems as separation routines. This
strategy has yielded satisfactory results in many applications, particularly when used together
with other acceleration strategies to improve the performance of the method (Rahmaniani et al.,
2017). For instance, Taşkin and Cevik (2013) and Gendron et al. (2014) proposed heuristics
to find initial solutions to warm-start the BBC and valid inequalities to improve the lower
bound of the master problem. Additionally, Taşkin and Cevik (2013) applied a local search
algorithm to the master problem solutions during the execution of the BBC. Salazar-González
and Santos-Hernández (2015) also proposed valid inequalities that are added in a BBC scheme
together with Benders cuts and a heuristic approach to find good upper bounds. Furthermore,
the authors transformed the subproblem into a classical max-flow problem instead of using a
linear programming formulation in the separation procedure. Adulyasak et al. (2015) used lifting
inequalities, multiple Pareto-optimal cuts generation, and an exponential-sized set of subtour
elimination constraints (SECs) dynamically added together with the Benders cuts to accelerate
the BBC. Arslan and Karaşan (2016) increased the efficiency of a BBC method by using multiple
Pareto-optimal cuts generation and by using a construction heuristic to derive solutions for the
subproblems. Gendron et al. (2016) devised a BBC method in which integer variables of the
subproblem are relaxed and included in the master problem.

More recently, Shao et al. (2017) adopted a tabu list of solutions in the master problem to
eliminate solutions that would invoke repetitive Benders subproblems. Fischetti et al. (2017)
applied a stabilization procedure at the root node and heuristics along the nodes of the branch-
and-cut tree. Errico et al. (2017) enhanced a BBC by adding SECs and other inequalities
together with the Benders cuts. Additionally, the authors proposed heuristics to generate initial
cuts and solutions. They also applied a local search operator during the BBC to improve the
master problem solutions and to generate multiple cuts from the neighborhood of the current
solution. Li et al. (2018) developed a BBC algorithm involving Pareto-optimal cuts and valid
inequalities to restrict the feasible space of the master problem.

Most of these studies used valid inequalities to improve the lower bound of the master
problem, heuristics to provide a solution to warm-start the algorithm, and strategies to effi-
ciently solve the subproblems derived from the decomposition. Other effective strategies such
as heuristics along the branch-and-cut tree to generate cuts in the neighborhood of the master
problem solutions have been seldom considered in the corresponding literature. We call this
strategy hybrid branch-and-Benders-cut (HBBC). Hybridizing Benders decomposition methods
with heuristics or metaheuristics can simultaneously improve both the lower and upper bounds
(Rei et al., 2009; Raidl, 2015). The upper bound can be enhanced when new best solutions are
found during the evaluation of the neighborhood of the current master problem solution, while
the lower bound can be boosted via the generation of feasibility or optimality cuts from the
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solutions found by the heuristics. Heuristics can also reduce the size of the branch-and-cut tree
by providing good solutions in early stages of the algorithm (Errico et al., 2017) and can be
used as simple stabilization tools to handle the instability of the classical Benders decomposition
(Rahmaniani et al., 2017).

To the best of our knowledge, no HBBC approaches have been proposed for the SCSRP
or any variant of the problem. The use of heuristics or metaheuristics in the nodes of the
branch-and-cut tree and other acceleration strategies proposed in the literature can improve the
performance of the BBC for the CSRP. Thus, in this chapter we speed up a BBC approach
for the SCSRP by using metaheuristics and other advanced acceleration strategies. The main
contributions can be summarized as follows: (1) We develop a BBC method that enhances the
BBC method proposed in the previous chapter using a different variable partitioning scheme
that leads to a stronger relaxed master problem. This scheme keeps in the master problem the
original objective function and the variables related to relief paths and scheduling decisions.
In the previous BBC method, only variables related to scheduling decisions were kept in the
master problem, with no information on the original cost. With a stronger master problem,
the enhanced BBC method requires fewer calls to the subproblem and hence generates fewer
cuts; (ii) We propose new valid inequalities to improve the performance of the BBC algorithm.
These valid inequalities explore the special structure of the master problem and take advantage
of the variables related to relief paths to further strengthen its linear relaxation; (iii) We devise
two new metaheuristics based on a genetic algorithm (GA) and simulated annealing (SA) to
solve the SCSRP. Our metaheuristics have a random search component that explores the space
of scheduling decisions and an optimization component to find the best crew route and relief
paths given a schedule. These are the first GA and SA approaches proposed for the SCSRP. We
show that both metaheuristics outperform the existing GRASP-based metaheuristic developed
to solve the same problem; (iv) We hybridize our BBC approach by embedding metaheuristics
in the branch-and-cut tree that solves the master problem. We use the metaheuristics not only
to improve the master problem solutions but also to derive Benders cuts from the neighborhood
of the solutions.

The efficiency of the developed solution methods are compared using benchmark instances.
As a result of the development of these techniques, the methods managed to obtain feasible
solutions for the 390 benchmark instances, proving optimality for the first time on 30 of them.
Moreover, they significantly improve the best known lower and upper bounds, optimality gaps,
and execution times by 15.21%, 8.15%, 26.17%, and 71.14%, respectively, on average.

5.2 A new Branch-and-Benders-Cut algorithm

The BBC method proposed in the previous chapter considered only the scheduling decisions
(variables Xij) as complicating variables. There were two subproblems, one to check the fea-
sibility of the RMP solutions using only the variables related to crew routing (Zri , Peij and
Nkij); and another to check the cost of the RMP solutions using only the variables related to
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relief paths (Zdi , Yej and Vkj). This decomposition leads to a weak RMP formulation since the
objective function of the original problem, which minimizes the weighted sum of the variables
Zdi , is considered in the second subproblem and no information of the original costs was kept in
the RMP.

In the new BBC algorithm, we rely on a different variable partitioning scheme in which the
variables defining the paths that connect the depot with the demand nodes (Zdi , Yej and Vkj)
are kept in the RMP, in addition to the scheduling decision variables. As a consequence, the
master problem becomes stronger, and the resulting BBC method is likely to require fewer calls
to the subproblem, hence decreasing the number of generated cuts. In the proposed scheme, the
RMP is defined as follows:

(RMP ) min
∑
i∈Vd

di · Zdi , (5.1)

s.t.(4.2), (4.3), (4.7)− (4.10), (4.14), (4.16), (4.18), (5.2)

Zdi ≥ θj + (Vji − 1) ·M, ∀ i ∈ Vd, j ∈ Vr, (5.3)

θj ≥ θi + δj −M · (1−Xij), ∀ i ∈ Vr0 , j ∈ Vr, (5.4)

θj ≥ 0, ∀ j ∈ Vr. (5.5)

Constraints (5.3) define the time at which each demand node i becomes accessible. Con-
straints (5.4) are introduced to set a lower bound for the time at which the damaged nodes are
repaired. These constraints also act as subtour elimination constraints. Constraints (5.5) impose
the domain of the decision variables θj . The value of variable θj is underestimated because the
RMP does not consider the routing decisions of the crew. The full route of the crew consists
of paths connecting the consecutive damaged nodes in the schedule defined by variables Xij .
Since damaged nodes can obstruct the access to other damaged nodes of the network, the paths
available for the crew at a specific moment depend on which nodes are still damaged at that
moment, which, in turn, depends on the scheduling decisions. Thus, the paths available for the
crew change dynamically during the restoration according to the schedule. Without considering
routing decisions in the RMP, the damaged points that are not accessible at a given moment
might be selected first in the schedule, making the schedule infeasible in practice. Therefore,
the RMP lacks feasibility cuts to avoid infeasible schedules and optimality cuts to set the real
values of the variables θj .

To derive feasibility and optimality cuts for the RMP, we solve a subproblem that defines
the route of the crew from a scheduling solution. The subproblem can be stated as follows:

(SP ) min
∑
i∈V r

Zri , (5.6)

s.t. (4.6), (4.12), (4.15), (4.17), (5.7)∑
e∈Ei

Peij = X̂ij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (5.8)
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∑
e∈Ej

Peij = X̂ij , ∀ i ∈ Vr ∪ {0}, j ∈ Vr, (5.9)

Zrj ≥ Zri +
∑
e∈E

Peij · τe + (X̂ij − 1) ·M + δj , ∀ i ∈ Vr ∪ {0}, j ∈ Vr. (5.10)

in which parameter X̂ij is a solution for the RMP. For each pair of consecutive nodes i− j with
X̂ij = 1 in the schedule defined by the RMP, SP determines the shortest path with arcs and
nodes defined by variables Peij and Nkij , respectively. The actual value of the variable θj in
the RMP is given by variable Zrj in the SP. Hence, if subproblem SP is feasible, we need to add
optimality cuts to the RMP to update the cost of variable θj . Otherwise, if subproblem SP is
infeasible, we need to add feasibility cuts to the RMP to cut off infeasible scheduling solutions.
The feasibility and optimality cuts are defined by Propositions 1 (Section 4.2.3) and Proposition
5, respectively. In Proposition 5, K = (v0, v1, ..., v(h−1), vh, ..., vp, ...,v|Vr|) is a given schedule for
the crew, where vi is the ith damaged node to be repaired and v0 = 0. This schedule is obtained
by solving the RMP and corresponds to the solution X̂v(i−1)vi = 1, ∀i = 1, ..., |Vr|.

Proposition 5. Assume that K is a feasible schedule, with values Ẑrvj computed in subproblem
SP, for each j ∈ Vr. Then, the following optimality multicuts are valid inequalities of the RMP:

θvj ≥ Ẑrvj · (
j∑
i=1

Xv(i−1)vi − (j − 1)), ∀ j ∈ Vr, (5.11)

θvl ≥ (Ẑrvj + tvjvl + δvl) · (
j∑
i=1

Xv(i−1)vi − (j − 1)), ∀ j ∈ Vr, l ∈ Vr, l > j, (5.12)

in which tij is the minimum travel time from node i ∈ V to node j ∈ V and δj is the repair time
of damaged node j.

Proof. In cuts (5.11), the term ∑j
i=1Xv(i−1)vi − (j − 1) is equal to 1 if the partial schedule

K ′ = (v0, v1, ..., vj) for a given j is part of the solution of the RMP. Therefore, the cuts become
θvj ≥ Ẑrvj , and thus the lower bound Ẑrvj is activated for variable θvj . If the partial schedule
K ′ is not considered in the solution of the RMP, the term ∑j

i=1Xv(i−1)vi − (j − 1) is smaller
than 1 and the cuts become deactivated. Similarly, in cuts (5.12), if the partial schedule K ′ is
considered in the RMP solution, the lower bound Ẑrvj + tvjvl + δvl is activated for all nodes vl
with l > j. The lower bound Ẑrvj + tvjvl + δvl is valid because it is known that nodes vl need to
be repaired at some moment after node vj and the crew must spend at least tvjvl time units to
reach node vl from node vj and δvl time units to repair it.

Note that cuts (5.11) are sufficient for the variables θvj assuming their actual values Ẑrvj
in the RMP. However, the additional cuts (5.12) can be added to speed up the performance
of the method. To illustrate Proposition 5, consider the schedule K = (v0, v1, v2) = (0, 2, 1)
that is assumed to be feasible. Cuts (5.11) lead to θ2 ≥ Ẑr2 · (X02) and θ1 ≥ Ẑr1 · (X02 + X21).
Additionally, cuts (5.12) result in θ1 ≥ (Ẑr2 + t21 + δ1) · (X02).
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Together with the Benders cuts (4.32), (5.11) and (5.12), we propose the use of subtour
elimination constraints (SECs) based on the Dantzig–Fulkerson–Johnson (DFJ) formulation
(Dantzig et al., 1954). SECs based on DFJ can lead to stronger linear relaxations than those
based on constraints (5.4) of the RMP. They are stated as follows:

∑
i∈S

∑
j∈S̄

Xij +
∑
i∈S̄

∑
j∈S

Xij ≥ 2, ∀ S ⊂ Vr : 2 ≤ |S| ≤ |Vr| − 1, (5.13)

in which S̄ = Vr0 \ S. Because the formulation based on DFJ contains an exponentially large
number of SECs, a typical strategy is to gradually add the constraints to the formulation through
a branch-and-cut scheme (Adulyasak et al., 2015). In practice, relatively few SECs are needed
(Öncan et al., 2009). In our BBC, we add them after solving the LP problem at each node of
the branch-and-cut tree. To detect the violated subtour constraints in a fractional solution X̂,
we solve a series of minimum s − t cut problems in a support graph G∗ = (N∗, E∗), in which
N∗ = Vr0 and E∗ = {(i, j)|X̂ij > 0}. We set the depot as the source node s and the damaged
node i ∈ Vr as the sink node t. A violated subtour constraint is identified every time the
value of the resulting minimum cut is less than 2. Then, we separate the corresponding subtour
constraint in the form of inequalities (5.13). In the implementation, we use the minimum s−t cut
algorithm of the Concorde Callable Library (Applegate et al., 2018). With constraints (5.13),
we do not need constraints (5.4) in the RMP anymore. Nevertheless, we keep constraints (5.4)
because they help to improve the lower bound value of the variables θj ,∀ j ∈ Vr.

5.2.1 Valid inequalities

We derive valid inequalities to strengthen the LP relaxation of the RMP model and improve
the convergence of the branch-and-cut algorithm. Valid inequalities can be of great impor-
tance in Benders-based methods because the decomposition causes the master problem to lose
information of the variables considered in the subproblems.

If some damaged nodes are used in the path from the depot to the demand node j, all these
damaged nodes need to be repaired before the demand node j becomes accessible. Then, the
time at which the demand node j becomes accessible is higher than or equal to the sum of the
repair times of the damaged nodes used in the path plus the minimum travel time to arrive at
these damaged nodes. Based on this, we can define the following valid inequalities:

Zdj ≥
∑
k∈Vr

Vkj · (δk + t∗k), ∀ j ∈ Vd, (5.14)

in which t∗k = min
i∈Vr0 :i 6=k

{tik}, ∀ k ∈ Vr.

The next set of valid inequalities is based on the maximum distance li allowed between the
depot and the demand nodes. If the shortest distance from the depot to a node k plus the
shortest distance from node k to the demand node i is greater than the maximum distance
li, then node k cannot be used in the path from the depot to the demand node i. The valid
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inequalities are defined as follows:

Vki ≤ 0, ∀ i ∈ Vd, k ∈ V : dist0k + distki > li, (5.15)

in which distki is the shortest distance from node k to node i, and it is evaluated using Dijkstra’s
algorithm. In addition, we use all the valid inequalities proposed in Section 4.2.6.

5.3 Metaheuristic algorithms

In this section, we present a genetic algorithm (GA) and a simulated annealing (SA) tailored
for the SCSRP. These metaheuristics operate on a TSP subproblem representing the scheduling
decisions and call for specialized algorithms to optimize the crew routing and the relief path
decisions as well as to determine the feasibility and cost of the proposed schedule in the original
SCSRP. Therefore, the proposed metaheuristics do not explicitly consider all the possible crew
routes and relief paths but only the best crew route and relief paths of a given scheduling solution,
which significantly reduces the space of solutions explored by them. Additionally, they use five
local search operators to diversify the search in the solution space. The way the operators are
applied varies from one metaheuristic to the other, yet in both cases, they act as essential steps
to escape from local optimal solutions. Such operators work by finding a neighbor of a current
solution, and they can thus be seen as low-level heuristics that are selected by a higher-level
algorithm (metaheuristic) that guides the search. This type of strategy has been referred to as
hyper-heuristics (Burke et al., 2003; Drake et al., 2019), and successful applications of hyper-
heuristics based on GA and SA metaheuristics can be found in the literature (Han and Kendall,
2003; Dowsland et al., 2007; Bai et al., 2012). Subsections 5.3.1 and 5.3.2 describe the proposed
GA and SA methods, respectively.

5.3.1 Genetic algorithm

GA is a metaheuristic method based on three basic principles of the biological evolution process:
reproduction, natural selection, and diversity of individuals. GAs have been used together with
exact algorithms in a few applications (Lin et al., 2004; Poojari and Beasley, 2009) and are
widely used in the context of routing problems (Karakatič and Podgorelec, 2015).

Algorithm 5 presents a basic scheme of the genetic algorithm developed in this work. GA
starts with a population composed of a set of initial solutions (individuals) generated with a
construction heuristic. The individuals are evaluated using a fitness function, and they evolve
through a series of iterations (generations) by applying operators of selection of parents (natural
selection), crossover (reproduction), and mutation (diversity of individuals). The procedure is
repeated until it reaches some stopping criterion (e.g., maximum number of iterations or maxi-
mum computational time). The solution representation, construction heuristic, fitness function,
selection, crossover and mutation of individuals are described in the following subsections.
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Algorithm 5 Basic scheme of the GA metaheuristic.
1: Generate initial feasible individuals using the construction heuristic (see Section 5.3.1.3)
2: while stopping criteria are not reached do
3: Evaluate the individuals with the feasibility and optimality check algorithms (see Section 5.3.1.2);
4: Update the best solution;
5: Perform selection (see Section 5.3.1.4) and crossover (see Section 5.3.1.5);
6: Evaluate the individuals with the feasibility and optimality check algorithms (see Section 5.3.1.2);
7: Perform mutation (see Section 5.3.1.6);
8: end while

5.3.1.1 Solution representation

Let K = (v0, v1, . . . , vi, . . . , v|Vr|) be a schedule for the crew, in which vi is the ith damaged
node to be repaired and v0 = 0 is the depot node. To represent the solution corresponding to
schedule K, we use a vector with |Vr| + 2 positions. The first |Vr| + 1 positions indicate the
order of the damaged nodes in the schedule of the crew, whereas the last position indicates the
objective value of the solution in the original problem. Figure 5.1 shows an example of a vector
representing a solution with 5 damaged nodes and an objective value of 100. Infeasible solutions
are represented with an objective value of ∞ in the last position of the vector.

0 4 2 5 1 3 100

Depot Damaged nodes Objective value

2 1 5 4 6 8 9 3 7p1

p2 8 4 1 6 9 2 5 7 3

6 1 8 4 9 2 5 7 3o1

2 1 5 4 6 8 9 3 7p1

p2 8 4 1 6 9 2 5 7 3

2 4 1 5 6 8 9 3 7o2

2 1 5 4 6 8 9 3 7p1

p2 8 4 1 6 9 2 5 7 3

4 6 8 3 9 2 5 7 1o1

2 1 5 4 6 8 9 3 7p1

p2 8 4 1 6 9 2 5 7 3

1 2 5 7 6 8 9 3 4o2

 crossover points

PMX

OX

2 1 5 4 6 8 9 3 7p1

p2 8 4 1 6 9 2 5 7 3

2 4 1 6 9 8 5 3 7o1

2 1 5 4 6 8 9 3 7p1

p2 8 4 1 6 9 2 5 7 3

8 1 5 4 6 2 9 7 3o2 CX

Figure 5.1: Vector representing a solution of the SCSRP problem.

Note that only scheduling decisions are represented in a solution, as depicted in Figure 5.1.
For each fixed scheduling decision, we can optimally define the paths between damaged nodes
and between the depot and the demand nodes using Dijkstra-based algorithms. Thus, the other
decisions of the SCSRP can be straightforwardly derived from a given crew schedule.

5.3.1.2 Evaluation of individuals

A fitness function in GA takes a candidate solution of the problem and returns a value that
represents the quality of the solution. In our GA algorithm, the quality of a given solution is
evaluated based on the cost of the corresponding schedule K in the original SCSRP formula-
tion. To evaluate this cost, we use two algorithms proposed in Section 4.2.4, which we call the
feasibility check algorithm and the optimality check algorithm. The feasibility check algorithm
(Algorithm 1) takes a scheduleK and verifies whether it is feasible or not for the original SCSRP.
If the solution is infeasible, we set a cost equal to ∞ in the last position of the solution vector.
Otherwise, the algorithm returns the exact time at which the damaged nodes in schedule K are
repaired by the crew. Subsequently, we call the optimality check algorithm (Algorithm 2) that
evaluates the exact time at which the demand nodes become accessible and the total cost for
the solution in the original SCSRP.
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5.3.1.3 Initial population

Our initial population is created by using a construction heuristic that generates feasible so-
lutions for the SCSRP. The heuristic consists of generating a feasible solution by sequentially
adding damaged nodes to the schedule in an iterative process. The construction heuristic is
outlined in Algorithm 6. Let K = (v0, v1, . . . , vl) be a partial schedule having the depot node
v0 = 0 and l nodes from set Vr, for a given l > 0. Let FK be the set of the nodes that can be
reached from vl, the last node added to this partial schedule. A node j ∈ Vr can be reached from
vl if there exists a path from vl to j without using a damaged node that has not been repaired
yet, and node j is not in the partial schedule K. In such a case, we say that j is a feasible node.

In the construction heuristic, we initially have K = (v0). At the end of each iteration,
we randomly select a feasible node from the set FK , which is added to the end of the partial
schedule K (line 12 of Algorithm 6). To update the set FK , we need to remove from it the last
node vl added to K (line 3), and then we execute Dijkstra’s algorithm to find paths between
node vl and the nodes in Vr \ FK that are not in the partial schedule yet (line 6). If there is a
path from vl to some node j ∈ Vr \ FK that is not in K, then node j is added to the set FK
(line 8). Finally, when schedule K is completed, the solution is evaluated using the feasibility
and optimality check algorithms (line 14). Notice that only feasible nodes can be selected at
each iteration, and, as a consequence, feasible solutions are always generated.

Algorithm 6 construction heuristic for the SCSRP.
1: Set node 0 as the first node in schedule K, i.e., v0 := 0, K = (v0), FK = {v0};
2: for l = 0 to |Vr| − 1 do
3: Remove node vl from set FK ;
4: for j = 1 to |Vr| do
5: if node j is in Vr \ FK but not in K then
6: Find a path between node vl and node j without using damaged nodes not repaired yet;
7: if a path between node vl and node j exists then
8: Add node j to set FK ;
9: end if

10: end if
11: end for
12: Randomly select a node i ∈ FK and add it to schedule K, i.e., set v(l+1) := i;
13: end for
14: Compute the cost of schedule K using the feasibility and optimality check algorithms;

5.3.1.4 Parent selection

The selection of individuals to evolve from one generation to the next one is based on a tour-
nament with k competitors, a so-called k-tournament, in which k individuals are randomly
compared and the best (the one with the smallest cost) is selected for the reproduction step.
A tournament with multiple competitors may yield good solutions quickly but has a higher
chance of settling at local optima (Karakatič and Podgorelec, 2015). To avoid this issue, the
k-tournament selection can be combined with aggressive mutation strategies. The selected best
individuals can be crossed over by exchanging pieces with others and can either mutate or re-
main unaltered until the next generation. Additionally, we apply an elitist strategy that consists

66



of always passing the best individual of the population from one generation to the next one.

5.3.1.5 Crossover

We implemented three popular crossover operators for permutation representation: partial
mapped crossover (PMX), ordered crossover (OX), and cycle crossover (CX) (Larranaga et al.,
1999; Kumar et al., 2012). When the individuals are selected for reproduction, one of the three
strategies is randomly applied to generate the offspring.

5.3.1.6 Mutation

Mutation is usually used as an operation to prevent the GA from getting stuck on local optimal
solutions (Balin, 2011). In our GA, the individuals are randomly selected for mutation if they
represent feasible solutions. On the other hand, when an individual represents an infeasible
solution, we force its mutation in an attempt to make it feasible. We use five local search
operators as mutation strategies: swap, 2-opt, or-opt-1, or-opt-2, and or-opt-3. When the
individuals are selected for mutation, one of these five strategies is randomly applied to generate
the offspring. The first local search operator is an exchange (swap) of position of two damaged
nodes in the schedule. The second local search operator is a pairwise exchange (2-opt) that
involves removing two edges and replacing them with two different edges that reconnect the
fragments created. The three last local search operators are repositioning operators (or-opt-k)
in which k adjacent nodes are removed from the schedule and reinserted at a different location
in the schedule.

5.3.1.7 Parameters of the GA metaheuristic

In the GA proposed in this work, we have to adjust the following parameters to guarantee a
better performance of the metaheuristic: maximum number of iterations, size of the population,
selection probability, mutation probability, and parameter k for the k-tournament. The values
selected for the parameters are described in Section 5.5.1.

5.3.2 Simulated annealing algorithm

SA is a randomized search method that exploits an analogy with the thermodynamic process of
the cooling of metals, gradually adjusting a parameter called “temperature”. At high temper-
atures, the method searches in a large space of solutions, while at low temperatures, solutions
with worsening objective values are less likely to be accepted. SA has the advantage of usually
being easier to implement and less time consuming than more sophisticated metaheuristics while
still providing good overall results (Galvão et al., 2005), in particular for related problems such
as the TSP (Ohlmann and Thomas, 2007) and the inventory routing problem (Alvarez et al.,
2018). Additionally, as pointed out by Gogna and Tayal (2013) and enforced by our computa-
tional experiments, SA is well suited to problems with a large number of local optima, such as
the SCSRP.
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A basic scheme of the SA implemented in this study is presented in Algorithm 7. The
representation of the solution in our SA is the same as that used in our GA, i.e., a vector
representing the scheduling decisions and the objective value of the solution. SA starts with
a set of multiple initial solutions generated with the construction heuristic (Algorithm 6). At
each iteration, one neighbor of each solution is randomly derived using one of the five local
search operators (swap, 2-opt, or-opt-1, or-opt-2, and or-opt-3) defined in Subsection 5.3.1.6.
The neighbors are evaluated by using the feasibility and optimality check algorithms presented
in Subsection 5.3.1.2. We perform a few inner iterations before updating the temperature value
T (T > 0). At the end of the inner iterations, we update the temperature value, and all the
solutions are replaced by the best solution found.

Algorithm 7 Basic scheme of the SA metaheuristic.
1: Generate multiple initial feasible solutions using the construction heuristic (see Algorithm 6);
2: while stopping criteria is not reached do
3: while inner iterations are not completed do
4: Apply local search operators to derive the neighbors of the solutions (see Section 5.3.1.6);
5: Evaluate the solutions with the feasibility and optimality check algorithms (see Section 5.3.1.2);
6: Check the acceptance criteria and update the solutions (see Section 5.3.2.1);
7: end while
8: Update the best solution;
9: Update temperature;

10: Replace all solutions by the best solution;
11: end while

5.3.2.1 Acceptance criteria

In the inner iterations of the proposed SA algorithm, a solution corresponding to a schedule K
can be replaced by a neighbor solution corresponding to a different schedule K ′ according to
an acceptance criterion probability given by min{1, e∆/T }, where ∆ = zK − zK′ and zK (zK′)
denotes the objective value of schedule K (K ′) in the SCSRP. If zK ≥ zK′ , then min{1, e∆/T } =
1. In this case, as K ′ is better than or equal to K, it is accepted and replaces K. Otherwise,
K ′ can still be accepted to replace K with probability min{1, e∆/T } < 1. If K ′ is infeasible,
then it is not accepted because ∆→ −∞ and min{1, e∆/T } → 0. Note that higher values of T
at the beginning of the method imply higher probabilities of acceptance. On the other hand,
smaller values of T in the last iterations of the SA imply smaller probabilities of accepting worse
solutions.

5.3.2.2 Parameters of the SA metaheuristic

The SA proposed in this study has the following parameters that need to be adjusted by the
user: maximum number of iterations, number of inner iterations per temperature, number of
multiple initial solutions, initial temperature, minimum temperature, and cooling rate. The
values selected for the parameters are described in Section 5.5.1.
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5.4 Hybrid branch-and-Benders-cut algorithm (HBBC)

The hybrid approach combines the BBC algorithm developed in Section 5.2 and the meta-
heuristic algorithms proposed in Section 5.3. More specifically, we call a metaheuristic inside
the branch-and-cut tree to explore the neighborhood of the current incumbent solution. The
solutions found in the neighborhood of the current incumbent are used to add feasibility and
optimality cuts to the RMP. The cuts added from the metaheuristic solutions are as defined in
(4.32), (5.11), (5.12), and although they are not required to guarantee the optimality or feasibil-
ity of the solutions in the RMP, they can accelerate the convergence of the BBC method. The
cuts required to guarantee the feasibility and optimality of the solutions in the RMP are still
generated by solving subproblem SP. Therefore, the HBBC is an exact method.

Figure 5.2 depicts a basic scheme of the HBBC algorithm at each node of the branch-and-cut
tree. At each node i, we solve the linear relaxation of the current RMP, denoted by LPi. If LPi
is infeasible or if the objective value of the LPi solution (OFi) is greater than or equal to the
objective value of the current incumbent solution, then node i is pruned. Otherwise, we solve
the minimum cut problem to identify violated SECs of type (5.13). If necessary, we add the
violated SECs, and LPi is solved again. Otherwise, the integrality constraints are checked, and
if any component of the binary variables is fractional in the solution of LPi, then the branching
is performed. Before performing the branching, we call a metaheuristic at the corresponding
node i with the fractional solution. In this case, the initial metaheuristic solutions (initial
population for GA or initial multistart for SA) are composed of (i) an integer solution obtained
from a rounding heuristic; (ii) the incumbent solution; and (iii) solutions randomly generated.
The rounding heuristic works as follows. Starting in the depot, let i be the last node added
to schedule K, and select the damaged node j with the highest value X̂ij that has not been
included in K so far. Then, include j at the end of K, and repeat the process iteratively until
schedule K is completed.

Every time the LPi solution is integer feasible, we call the subproblem SP to verify the
violation of feasibility or optimality cuts. Since we keep constraints (5.4) in the RMP, there
is no need to verify violated SECs for the integer solutions. If no feasibility or optimality cuts
are obtained, then the LPi solution is feasible for the original problem and the solution is set
as the new incumbent solution. Otherwise, LPi must be resolved, and the previous steps are
applied again. If a feasible integer solution of the SCSRP is found, we call the metaheuristic
to improve this solution and generate additional cuts. In this case, the initial metaheuristic
solutions are composed of the last found integer solution, the incumbent solution, and solutions
randomly generated. If the metaheuristics find a better solution, the current incumbent solution
is updated.

Note that the metaheuristics are called at most once per node to avoid stagnation in infinite
cycles. Since calling a metaheuristic at every node is inefficient because many unnecessary
cuts may be added and perhaps much time spent, we call the metaheuristics only at nodes
with an integer solution and at some predefined nodes with a fractional solution (for example,
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Figure 5.2: Flowchart illustrating how the metaheuristics are combined with the BBC method.

at the first 100 nodes of the tree). Similarly, it could be inefficient to call the separation
procedure to add violated SECs at each node of the tree. Therefore, we call the separation
procedure to detect violated SECs at the same nodes with a fractional solution for which the
metaheuristics are called. The cuts generated by the metaheuristic in a node i with a fractional
solution are immediately added to the LPi subproblem, and the subproblem is solved again.
The cuts generated by the metaheuristic in a node i with an integer solution are added to a
pool of constraints checked later in the tree. Some general-purpose optimization software can
use automated cuts and/or heuristics that are not included in Figure 5.2.

5.5 Computational experiments

In this section, we present experimentation campaigns conducted with the scope of comparing
the performance of the proposed solution methods. All the methods were coded in C++ pro-
gramming language and run on a Linux PC with an Intel Core i7 CPU at 3.4 GHz and 16 GB
of RAM using a single thread. SECs and Benders cuts are added using the Callback classes
available in the Concert Technology Library. The RMP is solved by CPLEX Optimization
Solver 12.7. The SP problem is solved by the specialized Algorithm 1 proposed in Section 4.2.4
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instead of using the CPLEX solver. To avoid running out of memory, we allow CPLEX to store
the branch-and-bound tree in a file. As we use lazy constraints Callback, CPLEX automatically
turns off nonlinear reductions and dual reductions. The stopping criterion on CPLEX was either
the elapsed time exceeding the time limit of 3,600 seconds or the optimality gap being smaller
than 10−4. All the remaining parameters of CPLEX were kept at their default values for most of
the computational experiments. We also conduct a few experiments varying the default value of
some CPLEX parameters, as reported in Section 5.5.3. For the metaheuristics GA and SA, the
stopping criterion was given by either the elapsed time exceeding the time limit of 3,600 seconds
or by performing 500 iterations without improving the best solution. As the metaheuristics
SA and GA presented very similar overall results (as shown in Table 5.2), we performed the
computational experiments of the HBBC method using only SA, which obtained solutions with
a smaller average cost. The time limit of SA inside the nodes of the branch-and-cut tree was set
as 600 seconds in the root node and 60 seconds in the other nodes. The algorithms were tested
using instances generated from original networks with up to 100 nodes, i.e., instances from the
first 24 instances classes presented in Table 4.1 in Section 4.3.1.

5.5.1 Parameter tuning

As in most metaheuristics, the satisfactory performance of both the GA and the SA depends on
the configuration choices for a set of key parameters. To appropriately calibrate such parameters,
we use the ParamILS algorithm (Hutter et al., 2009). It is an automated tuning method that has
shown very good performance in many applications (Montero et al., 2014). ParamILS iteratively
improves the performance of a set of parameter configurations by searching in its neighborhood
for another configuration with better quality. For this purpose, an initial configuration and
discrete ranges for the set of parameters must be provided by the user. We also tested different
strategies for the generation of cuts in the HBBC approach. The parameter tuning was carried
out with 48 instances of different sizes, two from each class. The instances were solved many
times using different random seeds.

Table 5.1 shows the parameters of the metaheuristics GA and SA, the discrete ranges defined
according to preliminary experiments for each parameter and their values in the best configura-
tion found by ParamILS. Note that, for both the metaheuristics, the size of the initial solution
set is relatively small (10 solutions). This behavior was expected since our evaluation of the
solutions (feasibility and optimality check algorithms) is very expensive to be performed over
a large set of solutions at each iteration. The other expected result was the high mutation
probability for the GA. The SCSRP is a degenerate problem (we can find several solutions with
the same cost in the same neighborhood), which causes stagnation in local optimal solutions.
The frequent application of mutation operators was shown to be a good strategy to escape from
local optima. Recall that the mutation probability is defined only for feasible solutions, as the
infeasible solutions are always forced to mutate.

For the HBBC, we varied the frequency of application of the metaheuristics in the branch-
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Table 5.1: Ranges and best configurations for the parameters of the GA, SA and HBBC methods.
Solution Final
method Parameter Tested values value

GA

Size of the population {5, 10, 15, 20, 25} 10
Selection probability {0.90, 0.92, 0.94, 0.96, 0.98} 0.98
Mutation probability {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} 0.5
Parameter k {2, 3, 4, 5} 3

SA

Size of the set of initial solutions {5, 10, 15, 20, 25} 10
Inner iterations per temperature {2, 3, 4, 5} 2
Initial temperature {100, 300, 500, 1000, 1500} 500
Minimum temperature {1E-6, 1E-4, 0.01, 0.1} 1E-6
Cooling rate {0.95, 0.96, 0.97, 0.98, 0.99} 0.99

HBBC

Frequency

(1) Only at root node (600 seconds)1and at
nodes with integer solutions (30 seconds)1.

(4)(2) (1) + every 100 nodes (30 seconds)1.
(3) (1) + at the first 100 nodes (30 seconds)1.
(4) (1) + decreasing frequency2.

Maximum number of solutions {50, 100, 500, 5 · Vr, 10 · Vr, 20 · Vr} 10 · Vr

Type of cuts
(1) Optimality + feasibility cuts.

(2)(2) Only optimality cuts.
(3) Only feasibility cuts.

1 Time limit set for the metaheuristics at the nodes.
2 From node 0 to node 100, we call the metaheuristics at every 10 nodes; from node 100 to node 1000, we call the
metaheuristics at every 100 nodes; and from node 1000 onward, we call the metaheuristics at every 1000 nodes.

and-cut tree and the quantity and type of cuts that are added to the master problem from the
metaheuristic solutions. Table 5.1 also shows the parameters tested for the HBBC method. For
instance, the parameter frequency for the HBBC method defines how often the metaheuristics
are called in the branch-and-cut tree. Four options were evaluated for this parameter: (1)
apply the metaheuristics only at the first three nodes and at nodes with an integer solution; (2)
apply the metaheuristics at the nodes of option (1) and additionally at every 100 nodes with
a fractional solution; (3) apply the metaheuristics at the nodes of option (1) and additionally
at the first 100 nodes with a fractional solution; and (4) apply the metaheuristics at the nodes
of option (1) and at nodes with a fractional solution in a decreasing frequency. The decreasing
frequency consists of calling the metaheuristics at every 10 nodes for nodes 0 to 100; at every 100
nodes for nodes 100 to 1000; and at every 1000 nodes for node 1000 onward. The last strategy
showed the best performance, as we observe that it is more likely to find new best solutions with
the metaheuristics at the first nodes of the tree when the incumbent solution is farther from the
optimal solution than in the last nodes of the tree. Additionally, it is more likely to generate
useful cuts in the first nodes because fewer cuts have been added to the RMP. Regarding the
type of cuts derived from the metaheuristic solutions, it is more useful to add only optimality
cuts in the HBBC, as they have a greater impact on the lower bound than feasibility cuts.
Finally, we limited the number of solutions of the metaheuristics from which we can add cuts to
the RMP since the generation of a large number of cuts can slow down the linear subproblems
at the nodes. The computational experiments presented in the next sections were conducted
using the best configuration found by the ParamILS algorithm. The separation routines for the
SECs at nodes with fractional solutions are called at the same nodes as the metaheuristics.
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5.5.2 Computational performance of the metaheuristic approaches

This section presents the results of the metaheuristics GA and SA. Before running the compu-
tational experiments with all the instances, we solved each one of the 48 instances used in the
parameter tuning 10 times with different random seeds. The objective of this experiment was
to analyze the differences in the quality of the solutions provided by the metaheuristics. The
tests were performed setting a time limit of 3,600 seconds for each run. The average, maximum
and minimum objective values over the ten repetitions for each class are shown in Table 5.2. We
also evaluated the relative difference of the maximum value with respect to the minimum value
(Max−Min

Min ). Note that, on average, the maximum value over the ten repetitions was only 1.57%
and 1.17% higher than the minimum value for metaheuristics GA and SA, respectively. In fact,
for some instances, the result over the ten repetitions was the same, while for the other instances,
the difference of the maximum value in relation to the minimum value was never higher than
8.12% for the GA and 8.28% for SA. Furthermore, such difference was higher than 4% in only
5 out of the 24 instance classes in the metaheuristic GA and in only 1 out of the 24 classes in
the metaheuristic SA. Basically, in the instances with a smaller number of damaged nodes, the
space of solutions to be explored is smaller than in the other instances, and the metaheuristics
are able to find similar near-optimal solutions over the ten repetitions.

Table 5.2: Average results of the SA and GA metaheuristics for the instances used in the
parameter tuning.

GA SA
Avg. Min. Max. Max−Min

Min Avg. time Avg. Min. Max. Max−Min
Min Avg. time

Class cost cost cost (%) (sec.) cost cost cost (%) (sec.)
1 22,675 22,675 22,675 0.00 7.71 22,675 22,675 22,675 0.00 2.04
2 76,367 76,367 76,367 0.00 5.12 76,367 76,367 76,367 0.00 1.44
3 60,645 60,645 60,645 0.00 6.72 60,645 60,645 60,645 0.00 1.99
4 50,479 50,479 50,479 0.00 23.91 50,479 50,479 50,479 0.00 6.94
5 36,944 36,944 36,944 0.00 29.18 36,944 36,944 36,944 0.00 9.12
6 60,841 60,841 60,841 0.00 16.57 60,841 60,841 60,841 0.00 6.35
7 50,416 50,416 50,416 0.00 36.38 50,416 50,416 50,416 0.00 13.82
8 69,196 69,196 69,196 0.00 60.77 69,196 69,196 69,196 0.00 19.62
9 64,564 64,564 64,564 0.00 53.16 64,564 64,564 64,564 0.00 20.57
10 68,605 68,605 68,605 0.00 5.65 68,605 68,605 68,605 0.00 1.52
11 76,268 76,268 76,268 0.00 5.44 76,268 76,268 76,268 0.00 1.48
12 64,619 64,619 64,619 0.00 3.37 64,619 64,619 64,619 0.00 0.95
13 46,179 46,179 46,179 0.00 68.70 46,179 46,179 46,179 0.00 19.37
14 129,183 129,108 129,407 0.23 95.22 129,108 129,108 129,108 0.00 36.43
15 74,357 74,357 74,357 0.00 99.06 74,376 74,357 74,431 0.10 37.77
16 89,097 88,956 89,338 0.43 256.58 89,051 88,956 89,298 0.38 110.53
17 44,169 43,971 44,333 0.82 172.76 44,040 43,878 44,452 1.31 74.38
18 134,518 134,024 135,526 1.12 629.64 134,042 132,332 136,241 2.95 209.90
19 64,070 62,389 66,253 6.19 942.34 61,808 61,057 62,626 2.57 382.37
20 85,896 81,169 87,756 8.12 682.38 76,732 75,390 78,039 3.51 261.72
21 77,520 74,540 79,548 6.72 1,352.30 69,449 68,696 70,790 3.05 529.08
22 246,686 245,172 247,895 1.11 2,129.45 238,805 235,724 244,200 3.60 854.04
23 100,642 97,625 105,440 8.01 2,154.62 95,131 92,772 100,453 8.28 677.67
24 188,774 184,512 193,558 4.90 2,511.13 182,371 180,337 184,546 2.33 1,055.83
Avg. 82,613 81,817 83,384 1.57 472.84 80,946 80,433 81,749 1.17 180.62

Note in Table 5.2 that the average solution cost is slightly smaller when the problem is
solved by SA, which provided solutions with an average objective value 2.02% better than the
solutions of the GA for an execution time of 3,600 seconds. Figure 5.3 shows the improvement
of the average objective function value of the 48 instances solved by the metaheuristics SA and
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GA along 3,600 seconds of execution in relation to the average objective function value of the
initial solutions. As expected, we observed that for both the metaheuristics, the reduction in
the objective function value is faster in the first iterations. For the GA (SA), the average cost
of the initial solutions is 272,302 (291,194), which decreases to 106,813 (109,055) in 600 seconds
and to 82,613 (80,946) in 3,600 seconds. Thus, for the instances solved by the GA (SA), the
average objective function value decreases by 60.77% (62.55%) in the first 600 seconds and by
69.66% (72.20%) in 3,600 seconds. The SA presented a slightly better performance in terms of
the objective function values since the problem typically has many local optimal solutions with
the same objective value in a neighborhood and SA has the ability to avoid becoming trapped
in local optimal solutions. Moreover, the average computational time of SA was 61.8% smaller
than that of the GA. It is worth mentioning that we also ran additional experiments with a
longer time limit (3 hours), but the overall improvement was less than 1% on average.
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Figure 5.3: Average cost of the 48 instances solved by SA and the GA along 3,600 seconds of
execution.

Table 5.3 shows the average results of the metaheuristic SA considering all instances of the
classes presented in the first column. Since we observed a robust behavior over the 10 runs of
our SA in the results reported in Table 5.2, we carried out the experiment reported in Table
5.3 with a single run of this method. We compare the results of our SA with the results of
the GRASP metaheuristic of Maya-Duque et al. (2016), which was the only metaheuristic so
far developed to solve the same variant of the problem addressed in this work. We present the
results of GRASP for classes 1-15 only because we did not have access to the solutions of the
other classes. We also compare the results of our SA with the best variant of the exact BBC
proposed in Chapter 4, referred to as GR-BBC0.

Columns 6 and 7 of Table 5.3 show the relative reduction in the objective value of the
solutions found with the SA with respect to the solutions found with GRASP and GR-BBC0,
respectively. On average, for classes 1-15, the cost of the solutions of the metaheuristic SA
decreases by 1.46% and 0.18% in relation to the cost of the solutions of GRASP and GR-BBC0,
respectively. The improvements with respect to GRASP were up to 7.02% in classes 1-15. In
relation to GR-BBC0, the higher improvement in classes 1-15 was only 2.22% since the solutions
obtained with GR-BBC0 for these instances are close to the optimal solutions. For the other
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classes, the improvements were up to 55%. The improvement for the larger instance classes
comes from the effectiveness of the local search operators that helps SA to escape from local
optimal solutions. The GR-BBC0 approach proposed in Chapter 4 stagnates in local optima for
larger instances of the problem.

Table 5.3: Average results of the metaheuristic SA for the different instance classes (time limit
of 3,600 seconds).

Objective function value GRASP−SA
GRASP

GR-BBC0−SA
GR-BBC0

Class GRASP1GR-BBC01 SA (%) (%)
1 9,745 9,745 9,745 0.00 0.00
2 34,089 34,089 34,089 0.00 0.00
3 49,987 49,862 49,862 0.25 0.00
4 18,247 18,037 18,122 0.68 −0.47
5 18,152 18,485 18,074 0.43 2.22
6 21,253 20,917 20,917 1.58 0.00
7 36,873 36,511 36,511 0.98 0.00
8 26,382 26,049 26,146 0.90 −0.37
9 35,224 33,953 33,903 3.75 0.15
10 48,546 48,460 48,460 0.18 0.00
11 39,213 38,538 38,765 1.14 −0.59
12 28,876 28,037 28,037 2.91 0.00
13 23,536 23,566 23,528 0.03 0.16
14 87,163 81,032 81,042 7.02 −0.01
15 52,085 52,201 51,385 1.34 1.56
16 – 38,737 38,851 – −0.30
17 – 30,448 30,537 – −0.29
18 – 97,476 95,516 – 2.01
19 – 65,093 46,048 – 29.26
20 – 71,173 42,037 – 40.94
21 – 75,602 59,025 – 21.93
22 – 211,487 146,526 – 30.72
23 – 98,827 58,012 – 41.30
24 – 209,435 93,868 – 55.18

Avg. 1-15 35,291 34,632 34,572 1.41 0.18
Avg. 16-24 – 99,809 67,824 – 24.53
Avg. All – 59,073 47,042 – 9.31
The character “–” indicates no available value.

1 GRASP proposed in Maya-Duque et al. (2016) and BBC proposed in Chapter
4.

5.5.3 Computational performance of the exact approaches

In this section, we analyze the performance of our BBC and HBBC methods. Table 5.4 summa-
rizes the different solution strategies that we tested. The first two strategies BBC1 and BBC2
compare the new Benders reformulation of the problem with and without using the valid in-
equalities (VIs) defined in Section 5.2.1. The BBC3 strategy shows the impact of adding the
SECs dynamically together with the Benders cuts. All the HBBC strategies are based on BBC3.
In the HBBC1 strategy, the SA metaheuristic is used in the root node to find good-quality ini-
tial solutions for the problem but without generating feasibility and/or optimality cuts. In the
HBBC2 method, on the other hand, the metaheuristic is additionally called in the nodes with
integer solutions and in some nodes with fractional solutions to improve the incumbent solution
and to generate Benders cuts.

The modification of some default parameters of the solver can positively influence the perfor-
mance of the branch-and-cut method (Baz et al., 2009; Moreno et al., 2016, 2018). Therefore, the
BBC3 and HBBC2 approaches were also tested varying the default configuration of the solver
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CPLEX to solve the RMP, leading to BBC3* and HBBC2*. For both, we changed parameters
that could lead to improvements in the lower bound of the solutions. We modified the emphasis
of the branch-and-cut algorithm to optimality rather than feasibility, setting the CPLEX param-
eter MIPEmphasis = 3. This configuration increases the lower bound faster but possibly with a
poor detection of feasible solutions along the optimization. We also set the selection of nodes
to be processed according to the node with the smallest objective function for the associated
LP relaxation, setting the CPLEX parameter NodeSel = 1. This strategy looks at the nodes
with smaller bounds to improve them first. Finally, we modified the order of separation of the
different types of cuts at nodes with fractional solutions, using method isAfterCutLoop() of the
callback procedures. In the root node, we keep the default settings of CPLEX, while in the
remaining nodes, we call the metaheuristic and add our Benders cuts only after all automatized
cuts of CPLEX have been generated (i.e., if isAfterCutLoop() returns True). This way, we avoid
generating Benders cuts on fractional solutions that may be cut off by subsequent automatized
cuts of CPLEX.

In the last strategy of Table 5.4, GR-HBBC2*, we apply the graph reduction (GR) strategy
described in Section 4.2.7 to speed up the convergence of the solution method. Basically, the idea
of the GR is to solve the problem over different subgraphs with a reduced number of demand and
damaged nodes and derive lower bounds for the variables of the original problem based on the
solution of the reduced subgraphs. The subgraphs are usually generated from an initial feasible
solution of the problem, and the performance of the GR strategy highly depends on this initial
solution. Since we do not have a trivial initial solution for the BBC strategies, we consider the
GR only with the best HBBC approach.

Table 5.4: Characteristics of the solution methods.
Solution method Description

BBC1 New Benders reformulation of the problem.
BBC2 BBC1 + VIs.
BBC3 BBC2 + SECs.
BBC3* BBC3 varying the default configurations of some CPLEX parameters.
HBBC1 BBC3 + SA in the root node.
HBBC2 HBBC1 + SA in nodes with integer solution and in some nodes with fractional solutions.
HBBC2* HBBC2 varying the default configurations of some CPLEX parameters.

GR-HBBC2* HBBC2* + Graph reduction strategy.

Figure 5.4 presents the performance profiles (Dolan and Moré, 2002) for the proposed ap-
proaches. The performance is based on the optimality gap, computed as gap = ZU−ZL

ZU
, in which

ZU is the upper bound or cost of the best integer solution and ZL is the lower bound. The
value P (f, q) (y-axis) when q > 0 (x-axis) indicates the fraction of instances for which a strategy
f provides solutions with a gap within a factor of 2q of the best obtained gap. The value of
P (f, q) when q = 0 represents the fraction of instances for which the strategy f reached the best
gap. For a given instance, the best gap is the lowest gap found considering all the approaches.
Clearly, the hybrid strategies outperform the standalone BBC strategies. Also, we can observe
that the GR strategy significantly improves the performance of the HBBC approaches.

Table 5.5 shows the number of optimal solutions (#opt), the proportion of optimal solutions
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(%opt), the average bounds and gap, and the average elapsed time of the different solution
strategies. For the sake of comparison, the table also shows the results of the best BBC method
developed in Chapter 4, referred to as methods BBC0 and GR-BBC0. BBC0 uses a simple
heuristic to provide an initial solution for the BBC algorithm, while GR-BBC0 additionally
relies on graph reduction. The average results of the exact solution methods for different instance
classes grouped according to the size of the network are presented in the Apendix C.
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Figure 5.4: Performance profiles based on gap for the proposed solution methods.

Table 5.5: Comparison of the exact BBC and HBBC approaches.
Solution Avg. upper Avg. lower Avg. Avg. time Avg. best
method #ins #opt %opt bound bound gap (%) (sec.) time1(sec.)
BBC1 390 169 43.33 113,048 17,427 28.73 2,238.42 2,058.13
BBC2 390 171 43.85 110,763 20,494 25.03 2,201.55 1,889.79
BBC3 390 171 43.85 110,291 20,499 24.99 2,203.59 1,891.82
BBC3* 390 171 43.85 117,355 21,157 24.67 2,215.35 1,910.44
HBBC1 390 201 51.54 42,377 23,625 21.01 1,762.74 59.23
HBBC2 390 215 55.13 42,187 24,089 19.75 1,646.56 92.48
HBBC2* 390 215 55.13 42,158 24,855 18.15 1,651.39 83.35
BBC02 390 186 47.69 53,342 16,042 31.87 1,906.38 450.57

GR-HBBC2* 390 239 61.28 42,118 29,836 10.90 1,473.87 101.07
GR-BBC02 390 209 53.59 49,673 27,521 14.90 1,672.49 350.25
1 Time spent to find the best upper bound.
2 BBC developed in Chapter 4 with (GR-BBC0) and without (BBC0) the GR strategy.

Note that the use of the valid inequalities improves the performance of the solution method,
mainly in relation to the average lower bound and average gap. The average lower bound
increases by 17.60%, from 17,427 in BBC1 to 20,494 in BBC2. The average gap is reduced from
28.73% to 25.03%, a reduction of 12.87%. The average cost of the solutions and the average
computational time are not significantly affected by the addition of the valid inequalities, while
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BBC2 proves optimality for two additional instances with respect to BBC1. BBC2 and BBC3
present a similar performance, with a slight improvement with the use of the SECs in the BBC3
algorithm. Differently from the traditional TSP and VRP problems, in which the SECs have
yielded good results, the changes caused by the SECs in the solutions of the LP problems
to eliminate the subtours do not appear to directly affect the objective function of such LP
problems.

The use of the metaheuristic SA in the root node (HBBC1) to warm-start the BBC algorithm
significantly improves the result of the BBC3 strategy, mainly with respect to the upper bound
and the time spent to find the best solution. The average cost of the solutions is reduced from
110,291 to 42,376, a 61.58% reduction. The average time spent to find the best solution is
32 times smaller in HBBC1, being reduced from 1,891 to 59 seconds, a 96.87% reduction. The
average lower bound and the average gap are also improved by the HBBC1 strategy. The average
lower bound increases by 15.25%, from 20,499 to 23,625, while the average gap is reduced by
15.95%, from 24.99 to 21.01. Furthermore, HBBC1 proves optimality for 30 additional instances
in relation to BBC3. In the HBBC2 algorithm, the use of the SA metaheuristic to derive cuts
and tighten the linear relaxation improves the convergence of the method. The average gap
decreases from 21.01% to 19.75%. Although the reduction in the gap appears insignificant, we
can observe that HBBC2 proves the optimality for 14 additional instances in relation to the
HBBC1 method. In fact, for some instance classes, the reduction in the average gap was up to
26%. Note also that HBBC2 increases the average lower bound of the solutions, while it reduces
the average cost with respect to the solutions obtained with the HBBC1 approach.

Regarding the impact of varying the default configuration of CPLEX in strategies BBC3 and
HBBC2, Table 5.5 shows that BBC3* obtained better lower bounds and gaps but worse upper
bounds on average since the new configuration emphasizes the improvement of the lower bound
rather than having a good-quality solution. For HBBC2*, the negative effect of prioritizing the
lower bound is neutralized by the use of the metaheuristic to improve the upper bound. The
average gap was reduced from 19.75 to 18.15, a reduction of 8%, with respect to HBBC2. The
reduction was up to 21% for some instances. When compared with BBC0, HBBC2* reduces
the average upper bound and gap by 20.97% and 43.05%, respectively, and increases the lower
bound by 54.94%.

Finally, the graph reduction strategy significantly improved the results of the HBBC2* ap-
proach. The GR-HBBC2* obtained the optimal solutions for 61.28% of the instances and reduced
the average gap to 10.9%, a reduction of 39.94% with respect to the HBBC2* strategy. Table 5.6
shows the average results of GR-HBBC2* compared with the results of the GR-BBC0 strategy.
Table 5.6 also presents the ratio of the GR-HBBC2* solutions in relation to the GR-BBC0
solutions evaluated as Value in GR-BBC0−Value in GR-HBBC2*

Value in GR-BBC0 . A ratio higher than zero indicates a
reduction in the value of the GR-HBBC2* method, whereas a ratio smaller than zero indicates
an increase in the value.

Evidently, GR-HBBC2* outperforms GR-BBC0. For example, the average reduction in the
upper bound considering all the instances is 15.21%. For some instances, the reduction is up
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Table 5.6: Comparison of the GR-HBBC2* algorithm with the BBC approach from the litera-
ture.

Solution Instance Avg. upper Avg. lower Avg. Avg. time Avg. best
method classes #ins #opt %opt bound bound gap (%) (sec.) time1(sec.)

1, 2, 3 60 48 80.00 31,232 28,237 3.29 867.81 142.58
4, 5, 6 60 33 55.00 19,146 14,865 9.84 1,499.68 260.53
7, 8, 9 60 28 46.67 32,171 23,223 14.16 1,904.82 33.98

10, 11, 12 60 48 80.00 38,345 35,623 2.60 749.47 164.62
GR-BBC02 13, 14, 15 60 24 40.00 52,266 33,991 16.71 2,132.32 126.54

16, 17, 18 30 12 40.00 55,554 34,985 18.68 2,142.24 529.64
19, 20, 21 30 10 33.33 70,623 18,801 37.39 2,410.55 1,024.54
22, 23, 24 30 6 20.00 173,250 32,110 42.70 2,881.42 1,542.53

All instances 390 209 53.59 49,673 27,521 14.77 1,672.49 350.25
1, 2, 3 60 54 90.00 31,232 30,076 1.02 713.16 0.14
4, 5, 6 60 42 70.00 19,006 15,667 5.27 1,086.71 2.20
7, 8, 9 60 32 53.33 32,145 25,431 9.49 1,744.60 5.51

10, 11, 12 60 49 81.67 38,345 36,122 2.10 737.94 2.88
GR-HBBC2* 13, 14, 15 60 31 51.67 51,963 36,521 12.72 1,746.30 74.48

16, 17, 18 30 13 43.33 54,588 36,713 14.88 2,047.63 301.98
19, 20, 21 30 12 40.00 48,757 19,810 31.94 2,173.21 290.58
22, 23, 24 30 6 20.00 98,812 43,716 33.71 2,881.99 550.99

All instances 390 239 61.28 42,118 29,836 10.90 1,473.87 101.07
1, 2, 3 12.50 12.50 0.00 6.51 −69.11 −17.82 −99.90
4, 5, 6 27.27 27.27 −0.73 5.40 −46.38 −27.54 −99.15
7, 8, 9 14.29 14.29 −0.08 9.51 −33.02 −8.41 −83.77

10, 11, 12 2.08 2.08 0.00 1.40 −19.19 −1.54 −98.25
Ratio 13, 14, 15 29.17 29.17 −0.58 7.44 −23.87 −18.10 −41.14
(%) 16, 17, 18 8.33 8.33 −1.74 4.94 −20.34 −4.42 −42.98

19, 20, 21 20.00 20.00 −30.96 5.37 −14.59 −9.85 −71.64
22, 23, 24 0.00 0.00 −42.97 36.15 −21.05 0.02 −64.28

All instances 14.35 14.35 −15.21 8.41 −26.17 −11.88 −71.14
1 Time spent to find the best upper bound.
2 BBC proposed in Chapter 4 that also uses GR.

to 42.97%. Similarly, the improvement of the lower bound in some instance classes is up to
36.15%. The average gap was reduced by 26.17% with GR-HBBC2*, whereas the time spent
to find the best solution was reduced by 71.14% on average, considering all the instances. To
confirm whether the performances of GR-HBBC2* and GR-BBC0 are statistically different in
terms of the upper bound, lower bound, gap and time, we carried out Friedman statistical tests
(Conover, 1999) for the instance classes presented in Table 5.6. The null hypothesis is that there
is no significant performance difference between GR-BBC0 and GR-HBBC2*. Table 5.7 gives
the corresponding p values for the Friedman tests. Regarding the lower bound, gap and best
time, we observe that the null hypothesis is rejected for every instance class at confidence levels
ranging between 0.000 and 0.045. Therefore, the performances of GR-BBC0 and GR-HBBC2*
are significantly different with respect to the lower bound, gap and best time in each one of the
considered instance classes. For the upper bound and total computational time, although the
differences are not statistically significant for some instance classes, the strategy GR-HBBC2*
obtained always the same or better average results than GR-BBC0*.

5.6 Final remarks of the chapter

In this chapter, we proposed two metaheuristics; a branch-and-Benders-cut (BBC) algorithm;
and a hybrid approach (HBBC), to solve the SCSRP. The metaheuristics are the first genetic
algorithm and simulated annealing proposed for the SCSRP. They are based on the decomposi-
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Table 5.7: The statistic values (p values) of the Friedman test for GR-BBC0 vs GR-HBBC2*.
Instance Upper Lower Time Best
Class bound bound Gap (%) (sec.) time1(sec.)
1, 2, 3 0.366 0.007 0.039 0.606 0.000
4, 5, 6 0.245 0.020 0.005 0.039 0.000
7, 8, 9 0.606 0.001 0.000 0.053 0.001

10, 11, 12 0.121 0.039 0.039 0.606 0.000
13, 14, 15 0.197 0.007 0.007 0.897 0.007
16, 17, 18 0.465 0.045 0.028 0.361 0.005
19, 20, 21 0.028 0.018 0.003 0.197 0.001
22, 23, 24 0.003 0.000 0.000 0.051 0.001
1 Time spent to find the best upper bound.
p values > 0.05 are highlighted in bold.

tion of the problem into smaller subproblems and the use of specialized algorithms to evaluate
the candidate solutions. The BBC is based on an improved Benders reformulation of the prob-
lem and enhances previous approaches by using a different variable partitioning scheme. Valid
inequalities for the problem have been proposed as well. The HBBC is an exact hybrid method
that uses a metaheuristic to obtain good-quality solutions at early stages of the search tree
as well as to improve the performance of solving the master problem by exploring the neigh-
borhood of the incumbent solutions to generate more effective Benders cuts. The results of
extensive computational experiments with 390 benchmark instances showed that both meta-
heuristics outperformed the only metaheuristic available in the literature for the SCSRP. For
the BBC approach, the new variable partitioning scheme and the proposed valid inequalities
were shown to be effective to increase the lower bound of the master problem. The computa-
tional results also provide evidence that the combination of the metaheuristic with the BBC,
resulting in the hybrid algorithm HBBC, significantly reduces the cost of the solutions and the
time spent to find good-quality solutions. The lower bound and gap of the solutions were also
improved with the use of the metaheuristic within the BBC, especially when additional cuts
from the neighborhood of the master problem solutions are generated.

We have observed that, while the BBC presented a solution with a higher cost when vary-
ing the parameters of the solver, the HBBC is able to take advantage of the new parameter
configuration to improve the lower bound, the gap and the cost of the solutions. Basically, the
HBBC counteracts the elevation of the cost in the BBC by exploring the neighborhood of the
master problem solutions. By incorporating the graph reduction technique in the HBBC, we
observed a significant reduction in the average gap, mainly because the graph reduction helps to
increase the lower bound of the solutions. With the GR-HBBC, we effectively reduce the cost,
gap and computational time of most of the instances with respect to the best exact approach
proposed in the literature. In addition to their theoretical relevance, the improvements obtained
with the proposed approaches may also have great value to aid decision making in practice.
The reduction in the cost of the solutions directly impacts the time at which the demand nodes
are accessible from the supply node, thus reducing the time that victims in the affected areas
wait for supplies, evacuation, rescue and medical assistance. In the next chapter, we extend the
CSRP to consider multiple crews, a relevant characteristic in practical settings.
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Chapter 6

The multicrew scheduling and
routing problem in road restoration

This chapter introduces the heterogeneous multicrew scheduling and routing problem in road
restoration. The main contributions of the chapter include three novel mathematical formu-
lations that differ in the way of modeling the scheduling decisions and the synchronization of
the crews, and the development of valid inequalities based on some particular properties of the
problem. This chapter is organized as follows. An introduction and motivation of the problem
is presented in Section 6.1. Section 2.2 describes the MCSRP. Section 6.2 presents the MIP
models, while Section 6.3 defines the properties and valid inequalities. Section 6.4 describes the
instances and discusses the computational results. We close with concluding remarks in Section
6.5.

*A paper based on this chapter is under review in Transportation Research Part B: Method-
ological (TRB).
Moreno, Alfredo; Alem, Douglas; Gendreau, Michel; Munari, Pedro. The heterogeneous multi-
crew scheduling and routing problem in road restoration. Under review in Transportation Re-
search Part B: Methodological (revised version submitted), 2020.
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6.1 Introduction

The multicrew scheduling and routing problem (MCSRP) primarily focuses on the restoration
of the critical subset of damaged nodes that are essential to emergency response operations.
Multiple crews, associated with various agencies, such as civil defense, armed forces, and fire-
fighters, are available to perform the repair operations. The crews must be assigned to repair
the damaged nodes. Additionally, for each crew, the sequence in which the damaged nodes must
be repaired and the route used to reach them and return to the depot must be determined.

The crews consist of workforce teams equipped with heavy machinery, dozers, excavators,
light vehicles, etc., and they may not have the same equipment. For example, one crew may have
dozers and excavators to remove heavy debris from a blocked road, while another may have only
workers using shovels. Some crews may not have enough resources (machinery, workforce, etc.)
to repair some damaged nodes. For instance, during the removal of downed trees and debris after
a flood, there are potential hazards of electrocution from contact with downed power lines or tree
limbs in contact with power lines (OSHA, 2019). Only crews with the appropriate knowledge
and protective equipment against electrical hazards should remove such debris. Furthermore,
a crew with heavy machinery may take more time to reach the damaged nodes than a crew
with only light vehicles, although the former may perform a faster restoration with the help of
heavy machinery. Consequently, the crews differ in the time required to repair the damaged
nodes, in the travel time between nodes, and in the set of damaged nodes that they can repair.
However, the consideration of multiple heterogeneous crews in the problem has been neglected
in the literature because of the complexity involved in such consideration. In fact, as observed
in the previous chapters, the basic variant with a single crew is already very challenging due to
the scheduling and routing decisions that must be integrated. In the multicrew version of the
problem, an additional complexity factor is the synchronization of the crews at the damaged
nodes (Akbari and Salman, 2017a,b) because these nodes cannot be traversed unless they are
completely repaired, and a crew may have to wait at some damaged nodes, while another crew
performs the restoration of such nodes.

The contributions of this chapter are thus fourfold: (1) we define for the first time the
MCSRP for road restoration and develop three mixed integer programming (MIP) models that
differ in the way of modeling the scheduling decisions and the synchronization of the crews;
(2) we study some particular properties of the problem and derive valid inequalities based
on these properties; (3) we carry out computational experiments based on a real case and
randomly generated instances to compare the performance of the proposed formulations and the
effectiveness of the valid inequalities; (4) we apply our proposed approaches to the case of floods
and landslides in Brazil, showing that the proposed approaches can provide useful suggestions
to decision-makers.

82



6.2 Mathematical formulations

In this section, we present three mixed integer programming formulations for the MCSRP and
two families of valid inequalities to strengthen them. The first and second formulations differ in
the way of modeling the scheduling decisions and the synchronization of the crews. The third
formulation eliminates symmetry related to the routing decisions by dropping certain variables
and imposing new types of constraints.

6.2.1 First MCSRP formulation (MCSRP1)

The first MCSRP formulation is based on the three-index vehicle flow formulation of the vehicle
routing problem (VRP) (Irnich et al., 2014) to define the schedule of the crews, while the
synchronization of the crews is controlled with a four-index variable. The mathematical notation
is as follows.

Sets
V All nodes.
Vr ⊂ V Damaged nodes.
Vr

0 = Vr ∪ {0} Damaged nodes including the source node 0 (depot).
Vu ⊂ V Undamaged nodes (Vu = V/Vr).
Vd ⊂ Vu Demand nodes.
E Arcs.
Ei ⊆ E Arcs incident to node i ∈ V.
R = {1, · · · , |Vr|} Positions at which an already repaired damaged node can be

visited in a path between two damaged nodes.
K Available crews.
Ki ⊆ K Crews able to repair the damaged node i ∈ Vr.

Parameters
di Demand of node i ∈ Vd.
δki Repair time of crew k ∈ Ki at node i ∈ Vr.
τke Travel time of crew k ∈ K on arc e ∈ E .
ρkij Shortest travel time of crew k between nodes i ∈ V and j ∈ V without using

damaged nodes.
`e Length of arc e ∈ E .
ldi Maximum distance allowed between node 0 and demand node i ∈ Vd.
M Sufficiently large number.
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Decision variables
Wi Binary variable that assumes the value of 1 if and only if node i ∈ Vr is repaired.
Xkij Binary variable that assumes the value of 1 if and only if crew k ∈ K repairs node

j ∈ Vr
0 immediately after node i ∈ Vr

0 .
Peij Binary variable that assumes the value of 1 if and only if arc e ∈ E is used in the

path from node i ∈ Vr
0 to node j ∈ Vr.

Nu
lij Binary variable that assumes the value of 1 if and only if node l ∈ Vu is used in

the path from node i ∈ Vr
0 to node j ∈ Vr.

Nr
lhij Binary variable that assumes the value of 1 if and only if node l ∈ Vr is the hth

damaged node visited in the path from node i ∈ Vr
0 to node j ∈ Vr.

Yej Binary variable that assumes the value of 1 if and only if arc e ∈ E is used in the
path from node 0 to node j ∈ Vd.

Vlj Binary variable that assumes the value of 1 if and only if node l ∈ V is used in the
path from node 0 to node j ∈ Vd.

T s
lhj Time at which the damaged node l ∈ Vr in the position h ∈ R is visited in the path

to node j ∈ Vr (arrival time).
Tw
lhj Waiting time at the damaged node l ∈ Vr visited in the position h ∈ R in the path

to node j ∈ Vr.
Zr
i Restoration time of damaged node i ∈ Vr

0 .
Zd
i Accessibility time of demand node i ∈ Vd.

The parameter ρkij is computed by solving multiple shortest path problems over a graph in
which the damaged nodes and arcs incident to the damaged nodes have been removed. In some
cases, the removal of the damaged nodes can result in multiple unconnected graph components
in the graph. In these cases, there are no paths between some pair of nodes i− j without using
at least one damaged node, and ρkij is assumed to be a sufficiently large number.

The variables Xkij define the schedule of the crews, while their route is defined by variables
Peij , Nu

lij and Nr
lhij , which determine the arcs and nodes to be visited in a crew path i − j.

Variable Nr
lhij controls the position h of the damaged node l visited in such a path. The

position is used to synchronize the arrival and departure of the crews at the damaged nodes.
Since no synchronization is necessary for the undamaged nodes, the position at which a node
l ∈ Vu is visited by the crews is not relevant. Variables Peij , Nd

lij and Nr
lhij are not defined for

j = 0 since we assume that the crews return to the depot by the same paths by which they
arrived at the last damaged node on their schedule. Finally, variables Yej and Vlj define the
arcs and nodes, respectively, to be visited in relief path 0− j. The MIP model is formulated as
follows.

Objective function. The objective function (6.1) consists of minimizing the weighted sum of
the accessibility time.

min
∑
i∈Vd

di · Zd
i . (6.1)
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Accessibility time evaluation. The accessibility time is defined by constraints (6.2). A demand
node i is accessible if there exists a relief path 0 − i using undamaged and/or repaired nodes.
Thus, the accessibility time Zd

i associated with demand node i ∈ Vd depends on the time Zr
j

when damaged nodes j ∈ Vr in relief path 0− i are repaired.

Zd
i ≥ Zr

j −M · (1− Vji), ∀ i ∈ Vd, j ∈ Vr. (6.2)

Restoration time constraints. Constraints (6.3) define the restoration time when no damaged
nodes are visited in crew path i− j or when there is no waiting time associated with the visited
damaged nodes. In this case, for a given node j repaired by crew k, the restoration time Zr

j is
the sum of three components: the restoration time of the predecessor node i (Zr

i ); the travel
time in the path i − j (∑e∈E τke · Peij); and the repair time of node j (δkj). These constraints
also prevent subtours. Constraints (6.4) define the restoration time when there is waiting time
associated with the damaged nodes visited in a given path i− j. In this case, for a given node j
repaired by crew k, the restoration time Zr

j is the sum of the next components: the time when
the crew departs from the last damaged node l visited in the path (Tw

lhj + T s
lhj); the shortest

travel time from node l to node j without using damaged nodes (∑i∈Vr
0
ρklj · Nr

lhij); and the
repair time of node j (δkj). Constraints (6.4) are activated only for the last occupied position
h, i.e., when there is no node visited in the position h+ 1 (∑i∈Vr

0

∑
l∈Vr N

r
l(h+1)ij = 0).

Zr
j ≥ Zr

i +
∑
e∈E

τke · Peij + δkj −M · (1−Xkij), ∀ i ∈ Vr
0 , j ∈ Vr, k ∈ K, (6.3)

Zr
j ≥

∑
l∈Vr

(Tw
lhj + T s

lhj +
∑
i∈Vr

0

ρklj ·Nr
lhij) + δkj −M · (1−

∑
i∈Vr

0

Xkij +
∑
i∈Vr0

∑
l∈Vr

Nr
l(h+1)ij),

∀ j ∈ Vr, h ∈ R \ {|R|}, k ∈ K. (6.4)

Relief path constraints. For a given relief path 0 − i, constraints (6.5) force the use of
an arc incident to node 0, while constraints (6.6) force the use of an arc incident to node i.
Furthermore, for each node l in the middle of this path (Vli = 1), there must be one arc leaving
and one arc arriving at node l, as imposed by constraints (6.7). Constraints (6.8) prohibit the
use of relief paths whose distance between the depot and demand nodes is greater than the
maximum distance allowed.

∑
e∈E0

Yei = 1, ∀ i ∈ Vd, (6.5)

∑
e∈Ei

Yei = 1, ∀ i ∈ Vd, (6.6)

∑
e∈El

Yei = 2Vli, ∀ j ∈ Vd, l ∈ V \ {0, i}, (6.7)

∑
e∈E

Yei · `e ≤ ldi , ∀ i ∈ Vd. (6.8)

Crew routing constraints. If there is a crew path i − j (∑k∈KXkij = 1), constraints (6.9)
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force the use of an arc incident to node i in this path, while constraints (6.10) force the use
of an arc incident to node j. Given a node l in crew path i − j, constraints (6.11) and (6.12)
ensure that path i−j contains one arc leaving node l and one arc arriving at node l. Constraints
(6.11) are associated with undamaged nodes l ∈ Vu, while constraints (6.12) are associated with
damaged nodes l ∈ Vr.

∑
e∈Ei

Peij =
∑
k∈K

Xkij , ∀ i ∈ Vr
0 , j ∈ Vr, (6.9)

∑
e∈Ej

Peij =
∑
k∈K

Xkij , ∀ i ∈ Vr
0 , j ∈ Vr, (6.10)

∑
e∈El

Peij = 2Nu
lij , ∀ i ∈ Vr

0 , j ∈ Vr, l ∈ Vu : l 6= i, (6.11)

∑
e∈El

Peij = 2
∑
h∈R

Nr
lhij , ∀ i ∈ Vr

0 , j ∈ Vr, l ∈ Vr \ {i, j}. (6.12)

Crew scheduling constraints. If node j is repaired (Wj = 1), constraints (6.13) state that
there will be exactly one crew k ∈ Kj designated to repair this node. Constraints (6.14) represent
the flow conservation. Constraints (6.15) establish that each crew k must perform at most one
schedule.

∑
k∈Kj

∑
i∈Vr

0:
i 6=l

Xkij = Wj , ∀ j ∈ Vr, (6.13)

∑
i∈Vr

0:
i 6=l

Xkil −
∑
j∈Vr

0:
j 6=l

Xklj = 0, ∀ l ∈ Vr
0 , k ∈ K, (6.14)

∑
j∈Vr

Xk0j ≤ 1, ∀ k ∈ K. (6.15)

Assignment constraints. Constraints (6.16) and (6.17) state that node l ∈ Vr must be re-
paired if it is used in either a relief path (∑i∈Vd Vli > 1) or a crew path (∑h∈R

∑
i∈Vr

0

∑
j∈Vr Nr

lhij >

1).

|Vd| ·Wl ≥
∑
i∈Vd

Vli, ∀ l ∈ Vr, (6.16)

|Vr| ·Wl ≥
∑
h∈R

∑
i∈Vr

0

∑
j∈Vr

Nr
lhij , ∀ l ∈ Vr. (6.17)

Synchronization constraints. Constraints (6.18)-(6.23) synchronize the arrival of crew k in
damaged node l visited in crew path i− j. Here, i and j are damaged nodes repaired by crew k,
while l is a damaged node used in path i− j. Thus, when crew k arrives at this node l, it either
waits for node l to be repaired by another crew if this node is still damaged, or it can cross
without waiting if l has already been repaired. Constraints (6.18) guarantee that a damaged
node l cannot be visited more than once in the path to node j. Since all the travel times on
the arcs are nonnegative values, the optimal crew path i− j does not need to consider a node l
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more than once. Constraints (6.19) establish that a given crew cannot visit different damaged
nodes simultaneously, i.e., a position h can be occupied for at most one damaged node l in the
path to node j. Constraints (6.20) ensure that damaged nodes in path i− j must be visited in
consecutive positions. Then, a damaged node cannot be visited in a position h if no damaged
node was already visited in position h−1. Constraints (6.21) evaluate the arrival time of crew k

at the first damaged node l visited in path i− j. Similarly, constraints (6.22) define the arrival
time of crew k at the damaged node l visited in position h > 1 based on the departure time
of node v visited in position h− 1. Finally, constraints (6.23) compute the waiting time of the
crew in damaged node l visited in position h. The waiting time is calculated as the difference
between the restoration time of the damaged node l and the arrival time of crew k at damaged
node l.

∑
h∈R

∑
i∈Vr

0

Nr
lhij ≤ 1, ∀ l ∈ Vr, j ∈ Vr, (6.18)

∑
l∈Vr

∑
i∈Vr

0

Nr
lhij ≤ 1, ∀ h ∈ R, j ∈ Vr, (6.19)

∑
l∈Vr

Nr
lhij ≤

∑
l∈Vr

Nr
l(h−1)ij , ∀ i ∈ V

r
0 , j ∈ Vr, h ∈ R \ {1}, (6.20)

T s
l1j ≥ Zr

i +
∑
k∈K

ρkil ·Xkij −M · (1−Nr
l1ij), ∀ i ∈ Vr

0 , j ∈ Vr, l ∈ Vr, (6.21)

T s
lhj ≥

∑
v∈Vr

(Tw
v(h−1)j + T s

v(h−1)j +
∑
i∈Vr

0

Nr
v(h−1)ij · ρkvl)−M · (2−

∑
i∈Vr

0

(Nr
lhij +Xkij)),

∀ k ∈ K, l ∈ Vr, j ∈ Vr, h ∈ R \ {1}, (6.22)

Tw
lhj ≥ Zr

l − T s
lhj −M · (1−

∑
i∈Vr

0

Nr
lhij), ∀ l ∈ Vr, j ∈ Vr, h ∈ R. (6.23)

Domain of the decision variables. Constraints (6.24)-(6.31) impose the domain of the decision
variables. It is worth mentioning that variables Peij and Yej do not need to be defined as binary
variables in the computational implementation because they naturally assume binary values if
variables Nu

lij , Nr
lhij and Vkj are binaries.

Xkij ,Wj ∈ {0, 1}, ∀ i ∈ Vr
0 , j ∈ Vr

0 , k ∈ K, (6.24)

Nr
lhij ∈ {0, 1}, ∀ i ∈ Vr

0 , j ∈ Vr, l ∈ Vr, h ∈ R, (6.25)

Nu
lij ∈ {0, 1}, ∀ i ∈ Vr

0 , j ∈ Vr, l ∈ Vu, (6.26)

Peij ≥ 0, ∀ i ∈ Vr
0 , j ∈ Vr, e ∈ E , (6.27)

Vli ∈ {0, 1}, ∀ i ∈ Vd, l ∈ V, (6.28)

Yel ≥ 0, ∀ l ∈ Vd, e ∈ E , (6.29)

T s
lhj , T

w
lhj ≥ 0, ∀ l ∈ Vr, j ∈ Vr, h ∈ R, (6.30)

Zr
i , Z

d
j ≥ 0, ∀ i ∈ Vr

0 , j ∈ Vd. (6.31)
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6.2.2 Second MCSRP formulation (MCSRP2)

The second formulation for the MCSRP is based on the two-index vehicle flow formulation of
the VRP to define the crew scheduling, while the synchronization of the crews is controlled with
a new three-index variable. For this formulation, consider the following notation:

Decision variables
W ′ikBinary variable that assumes the value of 1 if and only if node i ∈ Vr is repaired by

crew k.
X ′ij Binary variable that assumes the value of 1 if and only if node j ∈ Vr

0 is repaired
immediately after node i ∈ Vr

0 .
Nlij Binary variable that assumes the value of 1 if and only if node l ∈ V is visited in the

path from node i ∈ Vr
0 to node j ∈ Vr.

Rlhj Binary variable that assumes the value of 1 if and only if node l ∈ Vr is the hth
damaged node visited in the path to node j ∈ Vr.

The two-index variable X ′ij defines the restoration order of the damaged nodes, independent
of the crew that performs this activity. The assignment of the crews to the damaged nodes is
achieved with variable W ′ik. Furthermore, the position of the damaged nodes in the crew paths
is controlled with the new variable Rlhj . The objective function (6.1), the accessibility time
evaluation (6.2), and the relief paths constraints (6.5)-(6.8) are the same as in MCSRP1. The
other group of constraints is modified as follows.

Restoration time and crew routing and scheduling constraints. In constraints (6.32)-(6.38),
we use variables X ′ij and/or W ′kj instead of Xkij and/or Wj . Additionally, in constraints (6.33),
variable Rlhj is used instead of Nr

lhij , and in constraints (6.39), variable Nlij is used instead of
Nr
lhij . Constraints (6.39) control the arcs incident to any node l ∈ V in a given path i−j instead

of constraints (6.11) and (6.12) that are associated with undamaged nodes l ∈ Vu and damaged
nodes l ∈ Vr separately. Furthermore, unlike MCSRP1, the flow conservation constraints (6.34)
are not defined for each crew.

Zr
j ≥ Zr

i +
∑
e∈E

τke · Peij + δkj −M · (2−X ′ij −W ′kj), ∀ i ∈ Vr, j ∈ Vr, k ∈ K, (6.32)

Zr
j ≥

∑
l∈Vr

(Tw
lhj + T s

lhj + ρklj ·Rlhj) + δkj −M · (1−W ′kj +
∑
l∈Vr

R(h+1)lj),

∀ j ∈ Vr, h ∈ R \ {|R|}, k ∈ K, (6.33)∑
i∈Vr

0:
i 6=j

X ′ij =
∑
k∈K

W ′kj , ∀ j ∈ Vr, (6.34)

∑
i∈Vr

0:
i 6=l

X ′il −
∑
j∈Vr

0:
j 6=l

X ′lj = 0, ∀ l ∈ Vr
0 , (6.35)

∑
j∈Vr

X ′0j ≤ |K|, (6.36)
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∑
e∈Ei

Peij = X ′ij , ∀ i ∈ Vr
0 , j ∈ Vr, (6.37)

∑
e∈Ej

Peij = X ′ij , ∀ i ∈ Vr
0 , j ∈ Vr, (6.38)

∑
e∈El

Peij = 2Nlij , ∀ i ∈ Vr
0 , j ∈ Vr, l ∈ V \ {i, j}. (6.39)

Assignment constraints. Constraints (6.40) and (6.41) define which nodes must be repaired.
Additionally, constraints (6.42) are introduced to guarantee that if nodes i and j are considered
in the same schedule (X ′ij = 1), both are repaired by the same crew. Constraints (6.43) force
the consideration of different crews for different schedules. If X0i = 1 and X0j = 1, i and j are
the first nodes of two different schedules. Thus, if crew k repairs node i (W ′ki = 1), a different
crew k′ must repair node j, i.e., ∑k′∈K:

k′ 6=k
Wk′j ≥ 1.

|Vr| ·
∑
k∈Kl

W ′kl ≥
∑
i∈Vr

0

∑
j∈Vr

Nlij , ∀ l ∈ Vr, (6.40)

|Vd| ·
∑
k∈Kl

W ′kl ≥
∑
i∈Vd

Vli, ∀ l ∈ Vr, (6.41)

W ′kj ≥W ′ki +X ′ij − 1, ∀ i ∈ Vr, j ∈ Vr, k ∈ K, (6.42)∑
k′∈K:
k′ 6=k

Wk′j ≥Wki +X0i +X0j − 2, ∀ i ∈ Vr, j ∈ Vr : i 6= j, k ∈ K. (6.43)

Synchronization constraints. The new set of constraints (6.44) is introduced to enforce the
allocation of damaged nodes l considered in path i − j (Nlij = 1) to some position h defined
by variable Rlhj . Constraints (6.45)-(6.47) define the position of a damaged node l in the path
to node j. Constraints (6.48)-(6.50) define the arrival and waiting time of the crews at the
damaged node l visited in the path from node i to node j.

∑
i∈Vr

0

Nlij =
∑
h∈R

Rlhj , ∀ l ∈ Vr, j ∈ Vr, (6.44)

∑
h∈R

Rlhj ≤ 1, ∀ j ∈ Vr, l ∈ Vr, (6.45)

∑
l∈Vr

Rlhj ≤ 1, ∀ j ∈ Vr, h ∈ R, (6.46)

∑
l∈Vr

Rlhj ≤
∑
l∈Vr

R(h−1)lj , ∀ j ∈ Vr, h ∈ R \ {1}, (6.47)

T s
1lj ≥ Zr

i +
∑
k∈K

W ′kj · ρkil − (2−X ′ij −R1lj) ·M, ∀ i ∈ Vr
0 , j ∈ Vr, l ∈ Vr, (6.48)

T s
lhj ≥

∑
p∈Vr

(Tw
(h−1)pj + T s

(h−1)pj +R(h−1)pj · ρkpl)− (2−Rlhj −W ′kj) ·M,

∀ k ∈ K, l ∈ Vr, j ∈ Vr, h ∈ R \ {1}, (6.49)

Tw
lhj ≥ Zr

l − T s
lhj −M · (1−Rlhj), ∀ l ∈ Vr, j ∈ Vr, h ∈ R. (6.50)
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Domain of the decision variables. Constraints (6.51) and (6.53) impose the domain of the
decision variables.

X ′ij ,W
′
kj ∈ {0, 1}, ∀ i ∈ Vr

0 , j ∈ Vr
0 , k ∈ K, (6.51)

Rhij ∈ {0, 1}, ∀ i ∈ Vr, j ∈ Vr, h ∈ R, (6.52)

Nlij ∈ {0, 1}, ∀ i ∈ Vr
0 , j ∈ Vr, l ∈ V. (6.53)

6.2.3 Third MCSRP formulation (MCSRP3)

The third formulation is a modified version of MCSRP2 with the elimination of some variables
related to the routing decisions. Furthermore, some additional constraints are introduced to
prohibit the restoration of the damaged nodes that do not affect the accessibility of the demand
nodes. For instance, consider the schedule (0, 1, 2, 0) for one crew and assume that damaged
node 2 is not considered either in the relief paths or in the crew paths. Then, the restoration
time of node 2 does not affect the accessibility of the demand nodes. In this case, several
solutions considering different crew paths from node 1 to node 2 have the same cost as the
solution considering the schedule (0, 1, 0). We say that such solutions are symmetric and can
be eliminated by prohibiting the restoration of unnecessary damaged nodes. For the MCSRP3,
consider the additional notation as follows.

Decision variables
P ′eij Binary variable that assumes the value of 1 if and only if arc e ∈ E is used either in the

path from node i ∈ Vr
0 to node j ∈ Vr or from node j ∈ Vr to node i ∈ Vr with i < j.

N ′lij Binary variable that assumes the value of 1 if and only if node l ∈ Vr is used either in the
path from node i ∈ Vr

0 to node j ∈ Vr or from node j ∈ Vr to node i ∈ Vr with i < j.

Variables P ′eij and N ′lij are defined only for path i− j, where i < j. The objective function
(6.1), the accessibility time evaluation (6.2), the relief paths constraints (6.5)-(6.8), and the
scheduling constraints (6.34)-(6.36) are the same as in MCSRP2. The other constraints are
posed as follows.

Restoration time constraints. Constraints (6.54) and (6.55) define the restoration time at
the damaged nodes when i < j and i > j, respectively. Constraints (6.33) are also included in
MCSRP3.

Zr
j ≥ Zr

i +
∑
e∈E

τke · P ′eij + δkj − (2−X ′ij −W ′kj) ·M, ∀ k ∈ K, i ∈ Vr
0 , j ∈ Vr : i < j, (6.54)

Zr
j ≥ Zr

i +
∑
e∈E

τke · P ′eji + δkj − (2−X ′ij −W ′kj) ·M, ∀ k ∈ K, i ∈ Vr, j ∈ Vr : i > j. (6.55)

Crew routing constraints. Constraints (6.56)-(6.60) define the paths of the crews for i < j

only.

∑
e∈E0

P ′e0j = X ′0j , ∀ j ∈ Vr, (6.56)
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∑
e∈Ej

P ′e0j = X ′0j , ∀ j ∈ Vr, (6.57)

∑
e∈Ei

P ′eij = X ′ij +X ′ji, ∀ i ∈ Vr, j ∈ Vr : i < j, (6.58)

∑
e∈Ej

P ′eij = X ′ij +X ′ji, ∀ i ∈ Vr, j ∈ Vr : i < j, (6.59)

∑
e∈El

P ′eij = 2N ′lij , ∀ i ∈ Vr
0 , j ∈ Vr, l ∈ V \ {i, j} : i < j. (6.60)

Assignment constraints. Constraints (6.61) replace constraints (6.40) to force the restoration
of nodes used in crew paths i− j with i < j. Constraints (6.62) are introduced to prohibit the
restoration of some unnecessary damaged nodes. Thus, the last damaged node l repaired by
a crew (X ′l0 = 1) must be used either in a relief path (∑i∈Vd Vli > 1) or in a crew path
(∑i∈Vr

0

∑
j∈Vr:
i<j

N ′lij > 1). Constraints (6.41)-(6.43) are also included in MCSRP3.

|Vr| ·
∑
k∈Kl

W ′kl ≥
∑
i∈Vr

0

∑
j∈Vr:
i<j

N ′lij , ∀ l ∈ Vr, (6.61)

∑
k∈Kl

W ′kl ≤
∑
i∈Vd

Vli +
∑
i∈Vr

0

∑
j∈Vr:
i<j

N ′lij −X ′l0 + 1, ∀ l ∈ Vr. (6.62)

Synchronization constraints. Constraints (6.63)-(6.65) enforce the allocation of damaged
nodes l considered in crew path i − j to some position h defined by variable Rlhj . Constraints
(6.45)-(6.50) are also included in MCSRP3.

∑
h∈R

Rlhj ≥ N ′lij +X ′ij − 1, ∀ i ∈ Vr, l ∈ Vr, j ∈ Vr : i < j, (6.63)

∑
h∈R

Rlhi ≥ N ′lij +X ′ji − 1, ∀ i ∈ Vr, l ∈ Vr, j ∈ Vr : i < j, (6.64)

∑
h∈R

∑
j∈Vr

Rlhj =
∑
i∈Vr

0

∑
j∈Vr:i<j

N ′lij , ∀ l ∈ Vr. (6.65)

Domain of the decision variables. Finally, constraints (6.66) and (6.67) impose the domain
of the decision variables introduced in MCSRP3.

N ′lij ∈ {0, 1}, ∀ l ∈ V, i ∈ Vr
0 , j ∈ Vr : i < j, (6.66)

P ′eij ≥ 0, ∀ e ∈ E , i ∈ Vr
0 , j ∈ Vr : i < j. (6.67)

Table 6.1 summarizes the variables and constraints considered in the three MIP models and
shows examples of the number of binary variables and constraints in two arbitrary instances of
different sizes. Note that the numbers of binary variables and constraints are strongly influenced
by the number of damaged nodes |Vr|. Thus, small changes in the number of damaged nodes
can have a significant impact on the size of the problem, and thus, on the difficulty of solving
it. The number of demand nodes |Vd| and crews |K| seem to have a smaller impact on the
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number of variables and constraints when compared with |Vr|. As can be observed in Table
6.1, the main shortcoming of MCSRP1 relies on the high number of binary variables, which is
greatly influenced by the three-index variable Xkij and by the four-index variable Nr

lhij . In an
effort to reduce the number of binary variables, we eliminate one index from these variables to
come out with model MCSRP2. Furthermore, in model MCSRP2, we observe that variables
Nlij and Peij do not need to be defined for all the pairs of damaged nodes i− j. Thus, in model
MCSRP3, we define these variables only for pair of damaged nodes i − j such that i < j. In
addition, we eliminate some symmetric solutions by prohibiting the restoration of unnecessary
damaged nodes in model MCSRP3. In general, the number of variables considered in the models
is reduced from MCSRP1 to MCSRP2 and from MCSRP2 to MCSRP3. Regarding the number
of constraints, from MCSRP2 to MCSRP3, several constraints defined for i > j were eliminated,
but new constraints were also added. In general, a smaller number of constraints in MCSRP3 is
expected compared to both MCSRP2 and MCSRP1. The computational results in Section 6.4.2
show that there is no model unrestrictedly recommended for all situations, e.g., some models
are better to quickly return optimal solutions, whereas others are better to always find feasible
solutions.

Table 6.1: Variables and constraints of the proposed MIP formulations.
MCSRP1 MCSRP2 MCSRP3

Binary variables Wi, Xkij , N
u
lij , N

r
lhij , Vlj W ′ik, X

′
ij , Nlij , Rlhj , Vlj W ′ik, X

′
ij , N

′
lij , Rlhj , Vlj

Continuous variables Peij , Yej , T
s
lhj , T

w
lhj , Z

r
i , Z

d
i Peij , Yej ,

T s
lhj , T

w
lhj , Z

r
i , Z

d
i

P ′eij , Yej , T
s
lhj , T

w
lhj , Z

r
i , Z

d
i

Objective function (6.1) (6.1) (6.1)
Constraints (6.2)-(6.31) (6.2), (6.5)-(6.8),

(6.27)-(6.53)
(6.2), (6.5)-(6.8),

(6.28)-(6.31), (6.33)-(6.36),
(6.41)-(6.43), (6.45)-(6.52),

(6.54)-(6.67)
# of binary variables1 |Vr|+ |Vr||Vd|+ |K||Vr|2+

|Vu||Vr|2+ |R||Vr|3
|Vr||K|+ |Vr||Vd|+

|Vr|2+ |V||Vr|2+ |R||Vr|2
|Vr||K|+ |Vr||Vd|+ |Vr|2+

(|V|/2)(|Vr|2 − |Vr|)+
|R||Vr|2

# of continuous variables1 |Vd|+ |Vr|+ |E||Vd|+
|E||Vr|2+2|R||Vr|2

|Vd|+ |Vr|+ |E||Vd|+
|E||Vr|2+ 2|R||Vr|2

|Vr|+ |Vd|+ |E||Vd|+
(|E|/2)(|Vr|2 − |Vr|)+

2|R||Vr|2

# of constraints1 |K|+ 3|Vr|+ 3|Vd|+ |R||Vr|+
|Vr||K|+ |Vd||Vr|+ |Vd||V|+
|Vr||R||K|+ |Vr|2+ |V||Vr|2+

2|R||Vr|2+ |K||Vr|2+
|K||R||Vr|2+ |Vr|3

3|Vd|+ 4|Vr|+ |Vd||V|+
2|Vr||R|+ |Vd||Vr|+
|Vr||R||K|+ 4|Vr|2+
|V||Vr|2+3|K||Vr|2+

|R||Vr|2+|K||R||Vr|2+|Vr|3

3|Vd|+ 7|Vr|+ |Vd||Vr|+
|Vd||V|+ 2|Vr||R|+
|Vr||R||K|+

(|V|/2)(|Vr|2 − |Vr|)+
|K||R||Vr|2+ 2|Vr|2+

3|K||Vr|2+ |R||Vr|2+ 2|Vr|3

# binary variables (and con-
straints) in an instance with
|Vr| = 1, |Vd| = 15, |K| = 1, |V| = 21

38 (409) 39 (413) 18 (394)

# binary variables (and con-
straints) in an instance with
|Vr| = 29, |Vd| = 28, |K| = 5, |V| = 64

741,762 (261,953) 80,011 (249,217) 52,171 (244,171)

1 We approximate |Vr
0| as |Vr| and |R| − 1 as |R| in the calculation of the number of variables and constraints.
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6.3 Properties and valid inequalities

In this section, we state a few properties of the problem and derive valid inequalities (VIs) based
on them. We divide the VIs into two groups. In Section 6.3.1, we show the VIs related to the
relief path decisions, while in Section 6.3.2, we present the VIs related to the crew scheduling
and routing decisions. The VIs related to the relief path decisions are the same for the three
models, while those related to routing decisions are specific for each model. We detail only the
VIs for MCSRP1 in this section. The VIs related to the routing decisions for the second and
third formulations are presented in Appendix A.

6.3.1 VIs related to the relief path decisions

Multiple relief paths 0 − i may be available to reach a demand node i. Let Pd
i be the set of

possible 0− i relief paths. We call Ep and Vp as the set of arcs and nodes used in path p ∈ Pd
i .

Similarly, Vr
p and Vu

p are the set of damaged and undamaged nodes used in path p ∈ Pd
i . We

define wp as the sum of the length of the arcs used in path p, i.e., wp = ∑
e∈Ep `e. Since a relief

path p connecting the depot with a demand node i must fall within a predefined maximum
distance ldi , p is a feasible path if wp ≤ ldi . We also define θd

pi as the accessibility time of the
demand node i if path p is selected to connect the depot with the demand node i and θr

j as the
restoration time of the damaged node j.

Given two paths p, p′ ∈ Pd
i such that p 6= p′, we say that p dominates p′ if Vr

p ⊆ Vr
p′ and

wp ≤ ldi . In this case, p′ is a dominated path. For special cases where wp ≤ ldi , wp′ ≤ ldi and
Vr
p = Vr

p′ for p 6= p′, we can eliminate one of the paths, either p or p′, from set Pd
i . We define

Sd
i ⊆ Pd

i as the set of nondominated paths from the depot to demand node i. Given that Sd
i

considers only nondominated paths, there are not two different paths using the same damaged
nodes, i.e., Vr

p 6= Vr
p′ ∀p, p′ ∈ Sd

i : p 6= p′. Finally, let Pd∗
i = {p ∈ Sd

i | Vr
p = ∅} be the set of

nondominated paths that do not visit any damaged node. Using the notation above, we state
Propositions 6 and 7 as follows.

Proposition 6. There is at least one optimal solution for MCSRP1 in which the paths used to
connect the depot with the demand nodes are nondominated paths. Such a solution satisfies the
following inequalities.

|Ep∗i |+ |V
u
p∗i
| =

∑
e∈Ep∗

i

Yei +
∑
j∈Vu

p∗
i

Vji,∀ i ∈ Vd, p∗i ∈ Pd∗
i : Pd∗

i 6= ∅, (6.68)

(|E|+ |V|) · (|Vr
p | −

∑
j∈Vr

p

Vji) ≥
∑

e∈E\Ep

Yei +
∑

j∈V\Vp

Vji, ∀ i ∈ Vd, p ∈ Sd
i : Pd∗

i = ∅. (6.69)

Proof. Let p′ ∈ Pd
i be a feasible dominated path and assume that p′ is used to connect the

depot to the demand node i. The accessibility time of node i depends on the restoration time of
the damaged nodes in path p′. Then, θd

p′i = max
j∈Vr

p′
θr
j . Given that p′ is a dominated path, there

is one nondominated path p that dominates p′, i.e., Vr
p ⊆ Vr

p′ and wp ≤ ldi . Thus, p is also a
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feasible path. Furthermore, max
j∈Vr

p

θr
j ≤ max

j∈Vr
p′
θr
j since Vr

p ⊆ Vr
p′ . Consequently, θd

pi ≤ θd
p′i, and we

can select p instead of p′ without deteriorating the accessibility time of demand node i. The
selection of the nondominated paths over dominated paths is imposed with inequalities (6.68)
and (6.69). When there is a path p∗i , this path is the only nondominated path to reach demand
node i and can be fixed in the solution to MCSRP1 by using equations (6.68). If Pd∗

i 6= ∅, the
term ∑

j∈Vr
p
Vji = |Vr

p | indicates that the damaged nodes of nondominated path p have been
selected to reach demand node i, and inequalities (6.69) prohibit the selection of nodes and arcs
that are not in the nondominated path p.

Proposition 7. If Pd∗
i = ∅, the following inequalities can be added to MCSRP1 to set lower

bounds for the accessibility time of the demand nodes:

∑
j∈Ui

Vji ≥ 1,∀ i ∈ Vd : Pd∗
i = ∅, (6.70)

Zd
i ≥ min

k∈K,j∈Ui
(ρ∗k0j + δkj), ∀ i ∈ Vd : Pd∗

i = ∅, (6.71)∑
j∈ni

Vji = |ni|,∀ i ∈ Vd : Pd∗
i = ∅, (6.72)

Zd
i ≥ Zr

j , ∀ j ∈ ni, i ∈ Vd : Pd∗
i = ∅, (6.73)

Zd
i ≥

∑
j∈Vr

min
k∈K,l∈Vr

0:
l 6=j

{ρ∗klj + δkj

|K|

}
· Vji,∀ i ∈ Vd : Pd∗

i = ∅, (6.74)

where ρ∗kij is the shortest time for crew k to travel from node i to node j; Ui = ⋃
p∈Sd

i

Vr
p contains

all the damaged nodes of the nondominated paths; and ni = ⋂
p∈Sd

i

Vr
p contains the damaged nodes

that are used in all the nondominated paths.

Proof. If Pd∗
i = ∅, it is clear that at least one damaged node j of the nondominated paths in Sd

i

must be used in the relief path 0 − i (inequalities (6.70)). In this case, some crew must arrive
and repair such damaged node j. We know that to repair any damaged node j with a given
crew k, the crew must arrive at node j consuming at least some travel time ρ∗k0j and some repair
time δkj . In this way, by selecting the minimum travel time plus the repair time to repair one
of the damaged nodes of the nondominated paths in Sd

i , inequalities (6.71) establish a lower
bound for the accessibility time of demand node i. If a node j exists in all the nondominated
paths in set Sd

i , such node must be necessarily used in the relief paths 0− i (inequalities (6.72)),
and the demand node i does not become accessible before the restoration of such damaged node
j (inequalities (6.73)). Finally, inequalities (6.74) state that all the damaged nodes that must
be used in the paths from the depot to the demand node i should be repaired before node i
becomes accessible. Given that we do not know the crew that will perform the restoration of
each damaged node or the paths used by the crews in advance, we select the shortest repair time
plus the travel time to arrive at the damaged nodes. Since any crew can be used to perform the
restoration, the shortest time is divided by the number of crews.
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6.3.2 VIs related to the routing decisions

The VIs for the routing decisions are similar to those defined for the relief path decisions. We
define Pr

ij as the set of possible i − j crew paths. Let tvkjp be the arrival time of crew k at
damaged node j ∈ Vr

p in path p; twkjp be the waiting time of crew k at the damaged node j ∈ Vr
p

in path p; and tkp be the total travel time of crew k in path p, i.e., tkp = ∑
e∈Ep τke. We define

Pr∗
kij (resp. Fr∗

kij) as the set of paths with the shortest travel time between nodes i and j with
crew k using (resp. not using) damaged nodes, i.e.,

Pr∗
kij = {p ∈ Pr

ij |tkp ≤ tkp′ ,∀p′ ∈ Pr
ij}, ∀ k ∈ K, i ∈ Vr0 , j ∈ Vr,

Fr∗
kij = {p ∈ Pr

ij | Vr
p = ∅ , tkp ≤ tkp′ ,∀p′ ∈ Pr

ij : Vr
p′ = ∅}, ∀ k ∈ K, i ∈ Vr0 , j ∈ Vr.

Given two paths p′, p ∈ Pr
ij : p 6= p′, we say that p dominates p′ for a crew k if Vr

p ⊆ Vr
p′ and

tkp ≤ tkp′ . For cases where Vr
p = Vr

p′ and tkp = tkp′ for p 6= p′, we can eliminate one of the paths,
either p or p′, from set Pr

ij . We define Sr
kij ⊆ Pr

ij as the set of nondominated paths from node
i to node j using crew k. We also define Dp as the set of paths using nodes of set Vr

p that are
not dominated by p. In this way,

Dp = {p′ ∈ Sr
kij |Vr

p ⊆ Vr
p′ , tkp ≥ tkp′}, ∀p ∈ Sr

kij , k ∈ K, i ∈ Vr
0 , j ∈ Vr.

Let p∗kij and f∗kij be the elements of sets Pr∗
kij and Fr∗

kij , respectively. Additionally, we define
hp as the hth damaged node visited in path p, for h = 1, ..., H, where H = |Vr

p |. In this way, Hp

denotes the last damaged node visited in path p. Let ρkij be the shortest travel time required
for crew k to travel from node i to node j without using damaged nodes. Based on this notation,
we state Propositions 8 and 9, which assume that crew k can repair both nodes i and j.

Proposition 8. There is at least one optimal solution for MCSRP1 in which the paths used by
crew k to travel from node i to node j are nondominated paths, where i and j are consecutive
nodes in the schedule of crew k, i.e., Xkij = 1. Such a solution satisfies the following inequalities:

∑
e∈Ef∗

kij

Peij +
∑

l∈Vu
f∗
kij

Nu
lij ≥ (|Ef∗

kij
|+ |Vu

f∗
kij
|) ·Xkij ,∀k ∈ K, i ∈ Vr

0 , j ∈ Vr : Fr∗
kij 6= ∅, tkf∗kij = tkp∗

kij
,

(6.75)

(|E|+ |V|) · (1 + |Vr
p | −Xkij −

∑
h∈R

∑
l∈Vr

p

Nr
lhij) ≥

∑
e∈E\

⋃
p′∈Dp

Ep′

Peij +
∑

l∈V\
⋃

p′∈Dp

Vp′

Nu
lij ,

∀ k ∈ K, i ∈ Vr
0 , j ∈ Vr, p ∈ Sr

kij : (Fr∗
kij = ∅) ∨ (Fr∗

kij 6= ∅, p 6= f∗kij , tkf∗kij > tkp∗
kij

). (6.76)

Proof. We need to prove that given a dominated path p′, we can replace it by a nondominated
path p without increasing the restoration time of damaged node j. According to constraints
(6.3) and (6.4), the restoration time θr

j of node j repaired by a given crew k that uses path p as
crew path i− j is calculated as θr

j = θr
i + tkp+δkj if Vr

p = ∅, and θr
j = max{θr

i + tkp+δkj , t
w
kHpp

+
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tvkHpp + ρkHpj + δkj} if Vr
p 6= ∅. We focus on the case with Vr

p 6= ∅, and the development for the
other case follows similarly. The arrival time tvkhpp at the hth damaged node in path p can be
computed as tvkhpp = tvk(h−1)pp + twk(h−1)pp + ρk(h−1)php . Then, recursively, tvkHpp can be evaluated
as

tvkHpp =
h′=H−1∑
h′=1

twk(h′)pp +
h′=H−1∑
h′=1

ρk(h′)p(h′+1)p + ρki1p + θr
i .

Then,

twkHpp + tvkHpp + ρkHpj = twkHpp +
h′=H−1∑
h′=1

twk(h′)pp +
h′=H−1∑
h′=1

ρk(h′)p(h′+1)p + ρki1p + θr
i + ρkHpj .

Grouping similar terms, we obtain

twkHpp + tvkHpp + ρkHpj =
h′=H∑
h′=1

twk(h′)pp + tkp + θr
i =

∑
l∈Vr

p

twklp + tkp + θr
i ,

in which tkp =
h′=H−1∑
h′=1

ρk(h′)p(h′+1)p + ρki1p + ρkHpj . Therefore, the calculation of θr
j can be

expressed as

θr
j = max{θr

i + tkp + δkj ,
∑
l∈Vr

p

twklp + tkp + θr
i + δkj}. (6.77)

Now, let us consider a path p′ dominated by a nondominated path p. We have tkp ≤ tkp′

according to the definition. Then, θr
i + tkp + δkj ≤ θr

i + tkp′ + δkj . Additionally, since Vr
p ⊆ Vr

p′ ,
the use of path p′ implies waiting for the restoration of the nodes that belong to set Vr

p and
waiting for the restoration of additional damaged nodes that belong to Vr

p′ \ Vr
p . Therefore,∑

l∈Vr
p
twklp + tkp + θr

i + δkj ≤
∑
l∈Vr

p′
twklp′ + tkp′ + θr

i + δkj . Consequently, we can use p instead of
p′ without increasing the restoration time of node j. Inequalities (6.75)-(6.76) are analogous to
inequalities (6.68)-(6.69) to force the selection of a nondominated path over dominated paths. If
Fr∗
kij 6= ∅ and tkp∗kij = tkf∗

kij
, f∗kij is the only nondominated path in set Sr

kij and can be fixed in the
solution to MCSRP1 with equations (6.75) if Xkij = 1. Inequalities (6.76) prevent the selection
of dominated paths over nondominated paths. If path p is a nondominated path and the damaged
nodes of path p are used to travel from node i to node j (∑h∈R

∑
l∈Vr

p
Nr
lhij = |Vr

p |), inequalities
(6.76) prohibit the use of a path dominated by path p if Fr∗

kij = ∅ or if Fr∗
kij 6= ∅, p 6= f∗kij and

tkf∗
kij
> tkp∗

kij
.

Proposition 9. The following inequalities can be added to MCSRP1 to set lower bounds for
the restoration time of the damaged nodes.

Zr
j ≥ (tkp∗

k0j
+ δkj) ·Xk0j +

∑
i∈Vr

((tkp∗
k0i

+ δki + tkp∗
kij

+ δkj) ·Xkij), ∀ k ∈ K, j ∈ Vr, (6.78)

Zr
j ≥ Zr

i + tkp∗
kij

+ δkj −M · (1−Xkij), ∀ k ∈ K, i ∈ Vr
0 , j ∈ Vr. (6.79)
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Proof. Inequalities (6.78) are based on the fact that any damaged node j considered in the
schedule of a given crew k must be reached by it using some path p. Although path p is
unknown, if j is the first node in the schedule of crew k (Xk0j = 1), tkp∗

k0j
can be used as a lower

bound for the travel time in this path. Furthermore, if j is not the first node in the schedule
of crew k, this crew must spend additional time to arrive and repair some node i (tkp∗

k0i
+ δki)

before traveling to node j. Inequalities (6.79) are similar to constraints (6.3) replacing the term∑
e∈E τke · Peij with a lower bound for the travel time between nodes i and j (tkp∗

kij
).

The number of nodes in set R can be redefined for each pair of nodes i and j based on the
number of damaged nodes of the nondominated paths. Thus, instead of R, we can use a set Rij
defined as follows:

Rij = {1, ..., max
p∈Sr

kij
,k∈K
|Vr
p |}.

This redefinition of R can drastically reduce the number of variables depending on the position
h because the use of fewer damaged nodes in the nondominated paths is expected.

6.3.3 Separation algorithms for the VIs

To generate the VIs related to relief path decisions, we need the estimation of sets Ui,Pd∗
i , ni,

and Sd
i . Analogously, to generate the VIs related to routing decisions, we need to estimate sets

Pr∗
kij ,Fr∗

kij , and Sr
kij . Pd∗

i , ni,Pr∗
kij , and Fr∗

kij can be estimated by separation algorithms based
on the shortest path problem (SPP). For instance, Pr∗

kij is found by solving the SPP between
damaged nodes i and j over the original graph G. Additionally, Fr∗

kij is evaluated by solving
the SPP between damaged nodes i and j over a graph G′, in which the damaged nodes and the
arcs incident to them are removed. Similarly, Pd∗

i is determined by solving the SPP between
the depot and demand node i over the same graph G′.

Set ni can be determined by solving one SPP for each damaged node l ∈ Vr. Basically,
to know if a damaged node l is an element of ni, we remove node l and its incident arcs from
graph G, and the SPP between the depot and demand node i is solved. If there is a path from
the depot to demand node i with a cost less than or equal to ldi , node l is not an element of
ni. Otherwise, we insert node l into ni. Set ni can also be found as ni = ⋂

p∈Sd
i

Vr
p if set Sd

i is

available.
The estimation of Ui,Sd

i and Sr
kij is not trivial and may require the development of specialized

algorithms that are not the focus here. Thus, we approximate these sets in such a way to maintain
the inequalities valid, although they might be weaker. For instance, instead of considering all
the nondominated paths in Sr

kij , we consider a subset Ŝr
kij ⊆ Sr

kij with some nondominated
paths. The algorithm used to find subset Ŝr

kij is outlined in Algorithm 8. First, we find the
shortest path p from the depot to demand node i considering the original graph G. Path p is
a nondominated path since it is the path with the smallest tkp. Then, we remove the damaged
nodes Vrp used in path p from graph G, and the SPP is solved again. The new path p′ is a
path that is nondominated by p because it uses different damaged nodes. Furthermore, p′ is the
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shortest path using nodes Vrp′ and dominates other paths using such nodes but at a higher cost.
The process is repeated iteratively until the shortest path algorithm cannot find more paths
that are feasible. A similar idea can be used to find a subset Ŝd

i ⊆ Sd
i .

Algorithm 8 Algorithm to find the set Ŝr
kij .

Input:
Graph G = (V, E); Indices i, j, k; Parameter τke, ∀e ∈ E ;
Output:
Paths p ∈ Ŝr

kij ;
1: Initialization:
2: tkp := 0;
3: while tkp < +∞ do
4: Find the shortest path p from node i to node j;
5: if path p exists then
6: tkp :=

∑
e∈Ep

τke;
7: Save path p in set Ŝr

kij ;
8: Remove nodes in Vrp and the arcs incident to them from graph G;
9: else

10: tkp := +∞;
11: end if
12: end while
13: return set Ŝr

kij ;

Set Ui is simply considered as Ui = Vr, which maintains the validity of the inequalities
involving Ui. Finally, since we do not have the exact set Sr

kij , Rij is approximated as follows:

Rij = {1, ..., max
p∈Pr

ij

|Vr
p |},

where max
p∈Pr

ij

|Vr
p | is equal to the number of nodes in the path with more damaged nodes in Pr

ij .

Such a calculation can be performed with an algorithm to find the elementary longest path (the
one with more damaged nodes) from node i to node j. We use an integer linear programming
model from the literature (Bui et al., 2016) to find such a path.

6.4 Computational results

The goal of this section is twofold: first, to compare the performance of the proposed formulations
and valid inequalities (Section 6.4.2); second, to analyze the solutions of the problem in a
practical case based on a real-world natural disaster (Section 6.4.3). From this analysis, we
illustrate the implication of the multiple crews in the problem and provide managerial insights
that might be useful in practice. All the algorithms were coded in the C++ programming
language and run on a PC with an AMD Opteron 6172 processor with 16.0 GB of RAM and
a single thread. The MIP models were solved by the IBM CPLEX Optimization Solver 12.8.
To avoid running out of memory, we allow CPLEX to store the branch-and-bound tree in a file.
The stopping criterion was either the elapsed time exceeding the time limit of 3,600 seconds or
the optimality gap being smaller than 10−4. All the remaining parameters of CPLEX were kept
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at their default values.

6.4.1 Instance and experiment description

The models were tested using two different sets of instances. The first set (set L) is derived from
the benchmark instances for the SCSRP. We selected the first 12 classes of instances presented
in Section 4.3.1. For each class, we consider 12 instances. The second set of instances (set
CS) is based on a real network affected by a disaster in the State of Rio de Janeiro in Brazil.
This disaster has been studied before in the literature (Alem et al., 2016; Moreno et al., 2016,
2017, 2018) but with a different focus. The authors considered some damaged arcs along the
network for different disaster scenarios, but they did not focus on the restoration of such arcs.
Six main highways and 13 main cities were affected by this disaster. Although the highways may
have been affected in more than one point, we consider some instances assuming one damaged
node in each one of the affected highways. Additionally, we generated instances based on the
original network of the disaster but randomly selected the location of the damaged nodes. In
this respect, we generate instances with 6, 10 and 14 damaged nodes. Further details on the
instance generation are provided in Appendix B.

Repair and travel times for the multiple crews were generated based on the literature (Tail-
lard, 1999). They are stated as τke = α1

kτ
′
e and δkj = α2

kδ
′
j , where α1

k and α2
k are travel and

repair factors randomly generated either in the interval [0.4, 1.0] or in the interval [1.0, 2.0],
while δ′j and τ ′e are the repair and travel times in the SCSRP, respectively. We generate the
velocity factors in such a way that no single crew is much better or worse than the others. We
also consider that the crews with heavier machinery may perform a faster restoration but may
spend more time arriving at the damaged nodes. Thus, the crew with a travel factor generated
in the interval [0.4, 1.0] has a repair factor generated in the interval [1.0, 2.0], and vice versa.
Table 6.2 shows the main characteristics of the proposed instances. The first crew has factors
α1

1 = α2
1 = 1.0. In this way, we keep the travel and repair times of this crew as those used in

the SCSRP. Additionally, the crews have different factors over the classes of instances. There
are 144 instances from the literature and 114 instances based on the real-world case. We run
experiments with 1, 3 and 5 crews, totaling 774 instances.
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Table 6.2: Set of instances.
Instance Travel (repair) factors of the crews1 Demand Damaged Total Total Total
class Crew 1 Crew 2 Crew 3 Crew 4 Crew 5 nodes nodes nodes arcs instances
L1 1.0 (1.0) 0.7 (1.2) 1.5 (0.7) 0.7 (1.3) 1.8 (0.9) 15 1 to 9 21 to 29 40 to 48 12
L2 1.0 (1.0) 0.7 (1.9) 1.7 (0.6) 0.9 (1.7) 1.3 (0.8) 15 1 to 9 21 to 29 38 to 46 12
L3 1.0 (1.0) 0.6 (2.0) 1.1 (0.4) 0.7 (1.6) 1.3 (0.9) 15 1 to 9 21 to 29 38 to 46 12
L4 1.0 (1.0) 0.7 (1.8) 1.6 (0.9) 0.9 (1.4) 1.6 (0.9) 19 2 to 10 27 to 35 42 to 50 12
L5 1.0 (1.0) 0.9 (1.8) 1.1 (0.6) 0.7 (1.8) 1.4 (0.6) 19 1 to 9 26 to 34 38 to 48 12
L6 1.0 (1.0) 0.8 (1.7) 1.8 (0.4) 0.5 (2.0) 1.8 (0.9) 19 1 to 9 26 to 34 40 to 48 12
L7 1.0 (1.0) 0.4 (1.9) 1.7 (0.6) 0.8 (1.6) 1.1 (0.8) 24 4 to 20 34 to 50 87 to 103 12
L8 1.0 (1.0) 0.8 (1.7) 1.4 (0.9) 0.7 (1.1) 1.6 (0.6) 24 4 to 22 34 to 52 93 to 111 12
L9 1.0 (1.0) 0.7 (1.5) 1.7 (0.9) 0.8 (1.9) 1.9 (0.5) 24 4 to 21 34 to 51 88 to 105 12
L10 1.0 (1.0) 0.7 (1.4) 1.4 (0.8) 0.6 (1.1) 1.4 (0.6) 28 5 to 29 40 to 64 123 to 147 12
L11 1.0 (1.0) 0.6 (1.3) 1.3 (0.5) 0.8 (1.1) 1.2 (0.9) 28 5 to 28 40 to 63 120 to 143 12
L12 1.0 (1.0) 0.5 (1.4) 1.6 (0.5) 0.9 (2.0) 1.8 (0.4) 28 5 to 28 40 to 63 118 to 141 12
CS0 1.0 (1.0) 0.7 (1.2) 1.5 (0.7) 0.7 (1.3) 1.8 (0.9) 13 6 66 95 6
CS1 1.0 (1.0) 0.7 (1.2) 1.5 (0.7) 0.7 (1.3) 1.8 (0.9) 13 6 to 14 66 to 74 95 to 103 18
CS2 1.0 (1.0) 0.7 (1.9) 1.7 (0.6) 0.9 (1.7) 1.3 (0.8) 13 6 to 14 66 to 74 95 to 103 18
CS3 1.0 (1.0) 0.6 (2.0) 1.1 (0.4) 0.7 (1.6) 1.3 (0.9) 13 6 to 14 66 to 74 95 to 103 18
CS4 1.0 (1.0) 0.7 (1.8) 1.6 (0.9) 0.9 (1.4) 1.6 (0.9) 20 6 to 14 66 to 74 95 to 103 18
CS5 1.0 (1.0) 0.9 (1.8) 1.1 (0.6) 0.7 (1.8) 1.4 (0.6) 20 6 to 14 66 to 74 95 to 103 18
CS6 1.0 (1.0) 0.8 (1.7) 1.8 (0.4) 0.5 (2.0) 1.8 (0.9) 20 6 to 14 66 to 74 95 to 103 18
Total 258 · 3 = 774
1 Values for α1

k(α2
k). For instances with |K| < 5 consider the first |K| crews.

The computational experiments considering the proposed models and valid inequalities were
conducted in four phases, as presented in Table 6.3. First, we run the three formulations
without including any valid inequality. Second, we run them all but include all the devised valid
inequalities. Third, we run only formulation MCSRP3 with some of the VIs. The objective is
to verify the impact of the different types of VIs on the performance of the formulations. In
this respect, VIs were divided into four groups: (VIs1) VIs to set lower bounds for variables Zd

i

and Vji; (VIs2) VIs to impose and select nondominated relief paths over dominated relief paths;
(VIs3) VIs to set lower bounds for variables Zr

i ; (VIs4) VIs to impose and select nondominated
crew paths over dominated crew paths. Finally, we apply the graph reduction strategy proposed
in Chapter 4 to improve the performance of the MRRP3+VIs approach. The graph reduction
consists of solving the problem over a graph with a reduced number of nodes, thus deriving lower
bounds for the variables of the original problem. It relies on the elimination of intersection nodes
and arcs that are not directly connected to either damaged or demand nodes. The reduced
graph is commonly built by splitting the set of damaged nodes into subsets according to an
initial solution. Since we do not resort to trivial initial solutions, the damaged nodes are labeled
from 1 to |Vr|, and the subsets are built by selecting the nodes in increasing order of the label.
We consider reduced graphs with 4 damaged nodes, which can be easily solved by the proposed
formulations. A description of the graph reduction strategy is presented in 4.2.7.

6.4.2 Computational performance of the mathematical formulations

In this section, we analyze the computational performance of the proposed models and valid
inequalities. First, we compare the three MCSRP formulations (MCSRP1, MCSRP2, MCSRP3)
with and without the VIs. Figure 6.1 presents the performance profiles (Dolan and Moré, 2002)
for the MCSRP models based on the optimality gap for the considered instances. The optimality
gap is computed as gap = ZU−ZL

ZU
, in which ZU is the upper bound or cost of the best integer
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Table 6.3: Solution strategies.
Strategy Description
MCSRP1 First MCSRP formulation.
MCSRP2 Second MCSRP formulation.
MCSRP3 Third MCSRP formulation.

MCSRP1+VIs First MCSRP formulation + all VIs.
MCSRP2+VIs Second MCSRP formulation + all VIs.
MCSRP3+VIs Third MCSRP formulation + all VIs.
MCSRP3+VIs1 Third MCSRP formulation + VIs (6.70)-(6.74).
MCSRP3+VIs2 Third MCSRP formulation + VIs (6.68),(6.69).
MCSRP3+VIs3 Third MCSRP formulation + VIs (A.3),(A.4).
MCSRP3+VIs4 Third MCSRP formulation + VIs (A.5)-(A.8).
MCSRP3+VIs* Third MCSRP formulation + all VIs + graph reduction.

solution and ZL is the lower bound. The value P (f, q) (y-axis) when q > 0 (x-axis) indicates the
fraction of instances for which a strategy f provides solutions with a gap within a factor of 2q

of the best obtained gap. The value of P (f, q) when q = 0 is the fraction of instances for which
the strategy f reached the best gap. For a given instance, the best gap is the lowest gap found
considering all the approaches. For example, the red asterisk (*) in Figure 6.1 indicates that
for 92% of the instances, strategy MCSRP1+VIs provides solutions with gaps within a factor of
20.58 (1.49) of the best gap.
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Figure 6.1: Performance profiles based on gap for the MCSRP formulations.

Note that the VIs significantly improve the computational performance of the three formu-
lations. Without the VIs, models MCSRP1, MCSRP2, and MCSRP3 find the best gap for
54.65%, 54.39%, and 54.52% of the instances, respectively. When the inequalities are included,
the percentage of instances with the best gap increases to 86.69%, 82.04%, and 79.32%, re-
spectively. With the VIs, model MCSRP1 demonstrates good performance in approximately

101



92% of the considered cases, but it presents the worst convergence when all the instances are
considered. MCSRP2+VIs and MCSRP3+VIs showed a more stable convergence, even though
they achieved the best gap for a smaller number of instances when compared to MCSRP1+VIs.
MCSRP3 outperformed MCSRP2, both with and without the VIs.

Table 6.4 shows the number and percentage of instances for which CPLEX found feasible
solutions (#feas, %feas), the number and percentage of instances that CPLEX solved to opti-
mality (#opt, %opt), the average elapsed time in seconds (Avg. time), and the average number
of nodes processed in the branch-and-cut tree (nodes B&C). Tables D.1 and D.2 in D present
additional results of the three models with and without the VIs for instances with different
numbers of crews. For all models, the elapsed time is significantly reduced by the VIs. On aver-
age, for model MCSRP1 (MCSRP2, MCSRP3) the elapsed time is reduced by 51.82% (51.30%,
41.42%) in set L and 52.05% (29.52%, 23.80%) in set CS. The impact of the VIs is more pro-
nounced in the CS instances. For example, the number of instances solved to optimality with
model MCSRP3 in set CS increased 80.87% with the VIs, while in set L, it increased 18.36%.

Table 6.4: Average results of the MCSRP formulations.
Set L (432 instances) Set CS (342 instances)

Solution Avg. time Avg. time Nodes
method #feas %feas #opt %opt (seconds) #feas %feas #opt %opt (seconds) B&C1

MCSRP1 365 84.49 316 73.15 1,065 121 35.38 113 33.04 2,427 24,078
MCSRP2 379 87.73 300 69.44 1,170 126 36.84 113 33.04 2,372 30,950
MCSRP3 381 88.19 305 70.60 1,151 126 36.84 115 33.63 2,362 17,566

MCSRP1+VIs 426 98.61 376 87.04 512 316 92.40 242 70.76 1,194 10,571
MCSRP2+VIs 432 100.00 373 86.34 570 328 95.91 209 61.11 1,590 26,020
MCSRP3+VIs 432 100.00 361 83.56 674 342 100.00 208 60.82 1,718 68,565
1 Values based on the feasible solutions. Values for MCSRP1, MCSRP2, and MCSRP3 are not representative.

In both sets of instances, L and CS, MCSRP1 outperformed MCSRP2 and MCSRP3 re-
garding the number of optimal solutions, but it had difficulty in finding feasible solutions in
more cases. Eliminating some symmetric solutions in the third formulation was effective in
finding feasible solutions for all the considered instances within the time limit, but the num-
ber of solutions that proved optimal was smaller than in MCSRP1+VIs. The effectiveness of
MCSRP3+VIs in finding feasible solutions appeared to be related to the number of nodes that
can be processed in the B&C tree, which is significantly higher when solving MCSRP3+VIs
compared to the other two formulations. For the instances based on the real-world disaster af-
termath (set CS), model MCSRP1+VIs is 30.54% faster than MCSRP3+VIs and solves 14.05%
more instances to optimality, although it fails to find feasible solutions in 7.6% of the cases.
In contrast, MCSRP3+VIs finds feasible solutions for all CS instances. Evidently, there is a
trade-off that can be explored in practical situations according to preferences or necessities of
the decision-maker. On the one hand, MCSRP1+VIs is better at finding optimal solutions for
some instances quickly, while it struggles to find feasible solutions in some other instances. On
the other hand, MCSRP3+VIs always finds feasible solutions (many good-quality ones), but
optimality certificate is slightly compromised. The second model presents a balance between
the first and the third models. Regarding MCSRP1+VIs, MCSRP2+VIs returns more feasible
solutions at the expenses of increased computational times, and fewer solutions proven optimal;
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whereas regarding MCSRP3+VIs, MCSRP2+VIs is faster and provides more optimal solutions,
even though it finds fewer feasible solutions.

Figure 6.2 presents the performance profiles based on the optimality gap to compare how the
different valid inequalities affect the performance of MCSRP3. The impact of the different VIs
in the performance of models MCSRP1 and MCSRP2 is similar. Notice that the performance
profiles did not converge to P (f, q) = 1, indicating that none of the compared strategies could
find feasible solutions for all the considered instances. The VIs with the highest impact on
the gap of the solutions are those used to impose and select nondominated relief paths over
dominated relief paths (VIs2), which found feasible solutions in 98.71% of the cases. The fraction
of instances solved with the best gap increased from approximately 60% to 88% when the
VIs2 were included. The VIs4, whose goal is to impose and select nondominated crew paths
over dominated crew paths, also had a relevant impact on the gap. VIs2 and VIs4 helped to
significantly reduce the number of solutions that needed to be explored by cutting off solutions
with nondominated paths. VIs1 and VIs3 helped to improve the linear relaxation of the problem
by setting lower bounds for the accessibility (Zd

i ) and restoration (Zr
j ) time. VIs1 had a more

pronounced impact than VIs3 because the accessibility time is directly penalized in the objective
function, while the restoration time of a given damaged node i does not directly affect the cost
of the problem if node i is not considered in some relief path.
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Figure 6.2: Performance profiles based on gap for the model MCSRP3 with different type of VIs.

Table 6.5 compares the average results of MCSRP3+VIs and the same strategy applying the
graph reduction strategy (MCSRP3+VIs*). Additional results of the MCSRP3+VIs and MC-
SRP3+VIs* are presented in Tables D.3 and D.4 in D. The graph reduction strategy improved
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the average upper, lower bound and gap of the solutions. The average gap was reduced from
5.75% to 3.45% for L instances and from 9.70% to 4.71% for CS instances. The average elapsed
time was slightly longer when the graph reduction strategy was applied because of the prepos-
sessing step required to reduce and solve the reduced graphs. On average, the instances based
on the real case were harder to solve than the instances from the literature. The average time,
for example, was 719 seconds with the MCSRP3+VIs* strategy for the L instances, while the
average time of the strategy MSCRP3+VIs* for CS instances was 1,810 seconds. Furthermore,
the average gap was smaller in the instances of set L. Moreover, on average, the instances at a
higher number of crews were harder to solve.

Table 6.5: Average results of the MCSRP3+VIs and MCSRP3+VIs* strategies.
Ins- Solution Avg. upper Avg. lower Avg. gap Avg. time
tance method #Crew #Ins #Opt %Opt bound bound (%) (seconds)

Set L

MCSRP3 + VIs
1 144 126 87.50 11,251 9,231 5.42 578.49
3 144 117 81.25 5,562 4,420 5.47 734.53
5 144 118 81.94 4,734 3,725 6.35 710.60

MCSRP3 + VIs*
1 144 126 87.50 11,104 9,810 3.68 633.61
3 144 129 89.58 5,321 4,756 3.11 761.51
5 144 128 88.89 4,390 3,977 3.54 763.07

Set CS

MCSRP3 + VIs
1 114 85 74.56 127,720 115,219 5.26 1,247.62
3 114 63 55.26 80,824 64,543 10.78 1,884.45
5 114 60 52.63 72,640 59,176 13.05 2,024.23

MCSRP3 + VIs*
1 114 86 75.44 126,348 116,578 4.16 1,396.17
3 114 84 73.68 73,970 69,258 4.18 1,950.79
5 114 71 62.28 69,881 63,952 5.79 2,083.51

Finally, Figure 6.3 presents the percentage of CS instances solved to optimality and the
average elapsed times for different values of β. β is the factor by which the distance of a relief
path 0−i can increase in relation to its shortest distance dist0i. Then, ldi = (1+β)·dist0i, and thus
larger β values imply larger maximum distances ldi in the relief paths. As the results indicate,
the larger the β’s, the easier to solve the corresponding instance. In fact, when the constraints
related to the maximum distances are relaxed (β = ∞), all instances are solved to optimality
and the average elapsed time decreases more than 88% in relation to the case with β = 5.
Basically, by allowing larger values for ldi , it is rather straightforward to find non-dominated
relief paths, which increases the effectiveness of the inequalities proposed in Property 1. Also,
with larger ldi values, the non-dominated relief paths tend to use fewer damaged nodes, thus
reducing the number of repaired nodes and, consequently, simplifying the crew scheduling and
routing decisions. In general, MCSRP3 + VIs* is able to return good-quality solutions within
1 hour of time limit for most of the practical instances, which is a reasonable time considering
that the multicrew approach can significantly reduce the accessibility time of the demand nodes,
as shown in the next section.

6.4.3 Practical Relevance: Road restoration in the Megadisaster of Rio de
Janeiro in 2011

We now analyze our case study based on the so-called megadisaster of the Serrana Region in Rio
de Janeiro, Brazil. This event that occurred in 2011 was characterized by heavy rain, floods,
and landslides, compromising water, electricity, and transportation infrastructure systems. It
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Figure 6.3: Proportion of optimal instances and average elapsed times for different values of β.

claimed hundreds of lives and affected thousands of people (Rio de Janeiro, 2011). Figure
6.4 shows the main cities and highways affected by the disaster, according to the Legislative
Assembly of Rio de Janeiro (Rio de Janeiro, 2011). Figure 6.4 reveals that some cities (PE,
TE, AR, TR, SA, SU, SJ) can be connected to the depot without using damaged nodes. For
these cities, the proposed formulations found the optimal relief paths whose accessibility time
was zero. For the other cities (NF, CO, BJ, MA, SS, SM), at least one damaged node have to
be used to define the relief paths.

Affected cities: Nova Friburgo (NV), Cordeiro (CO), Macuco (MA), Bom Jardim (BJ), São Sebastião do Alto (SS), Santa Maria Madalena (SM), 
Petrópolis (PE), Teresópolis (TE), Areal (AR), São José do Vale do Rio Preto (SJ), Três Rios (TR), Sapucaia (SA), Sumidouro (SU).

Figure 6.4: Main cities and highways affected by the disaster.

A total of 342 CS instances were derived from the real case disaster by considering different
number of damaged nodes, crews, and β values, as described in B. The average results of the CS
instances are presented in Table 6.6. This table shows the total cost; the proportion of nodes
repaired (% rep); the proportion of the repaired nodes that are used only in the relief paths (%
rep relief paths), i.e., repaired nodes not used in the middle of crew paths; the proportion of
required crews (% crew used); the proportion of demand nodes that need at least one damaged
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node to become accessible (% demand nodes); the best-case, the worst-case and the average
accessibility time between demand nodes (best, worst, mean); the total accessibility time of the
demand nodes (total); the difference between the worst-case and the best-case accessibility time
(range = worst - best); and the average distance of the relief paths in kilometers.

The average proportion of nodes repaired was 42.85%. Thus, not all damaged nodes must be
repaired to recover the accessibility of the network. Repaired damaged nodes are used in relief
paths and/or crew paths. On average, 87.77% of the repaired damaged nodes were used in the
relief paths only. The other repaired nodes were used in both the crew paths and the relief paths.
As expected, the problem prioritizes the restoration of the damaged nodes in the relief paths.
The proportion of repaired damaged nodes is not significantly affected by the number of crews.
In fact, although the average proportion of repaired damaged nodes increases by 2.13% from
42.33 with 1 crew to 43.23 with 5 crews, for some instances the number of repaired damaged
nodes decreases. This is the case of instance with β = 5 in class CS0, represented by the network
given in Figure 6.4 and with optimal schedule shown in Figure 6.5.

Depot-->RJ116

Depot-->RJ130 RJ130

RJ116

RJ130Depot-->RJ130

Depot-->RJ148 RJ148

Depot-->RJ130 RJ130 RJ130-->RJ150 RJ150 RJ150-->RJ116 RJ116

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 7.2 7.6 8 8.4

Crew 1

Crew 1

Crew 2

Crew 2

Crew 4

Time (hours)

Travel time of the crew 
from node i to node j.

Repair time of the 
crew in node j.

5 crews 
available

3 crews 
available

1 crew 
available

𝑖-->𝑗 𝑗

Figure 6.5: Scheduling of the crews.

Note in Figure 6.5 that with one crew, three damaged nodes (RJ-130, RJ-116, RJ-150) were
repaired to restate the accessibility of the network after 8.15 hours. With three crews, the
total time to restate the accessibility of the network decreased to 4.75 (41.71%) hours. Only
two damaged nodes (RJ-130, RJ-148) were repaired in this case. With five crews, the solution
indicates the restoration of two damaged nodes (RJ-130, RJ-116), and the time to restate the
accessibility of the network was 4.03 hours, a reduction of 15.15% in relation to the case with
3 crews. A trade-off can be observed between increasing the number of crews, which may have
a logistic cost in practice, and reducing the time to restore the accessibility of the demand
nodes. However, at some point, increasing the number of crews may not significantly affect
the accessibility time of the demand nodes. For the instance with β = 5% in class CS0, for
example, no significant improvement was observed when five additional crews with the same
characteristics than the first five crews were considered. Consequently, when the number of
crews increases, more crews can become idle. Note in Table 6.6 that the utilization of the crews
decrease from 100% with one crew to 64.20% with 5 crews.

Insight 1. There is a remarkable trend in avoiding the damaged nodes not only in the relief
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Table 6.6: Average results for different number of crews, damaged nodes, and β values.
Damaged β Total % rep re- % crew % demand Accessibility time (hours)2 Dist. relief
nodes # crew (%) cost % rep lief paths1 used1 nodes Best Worst Mean Total Range paths (km)

6

1

5 151,737 73.81 91.43 100.00 80.00 2.93 17.23 9.97 136.40 14.30 86.54
10 150,029 69.05 91.43 100.00 76.70 2.93 16.53 9.86 134.39 13.60 86.67
25 135,733 64.29 94.29 100.00 72.36 2.87 16.18 7.60 93.95 13.30 91.03
50 49,487 40.48 88.89 100.00 52.80 2.23 7.20 3.65 37.43 4.97 100.92
100 44,736 40.48 88.89 100.00 42.36 2.23 7.20 3.26 25.62 4.97 159.87
∞ 0.00 0.00 NA NA 0.00 0.00 NA NA NA NA 288.31

3

5 88,574 71.43 90.71 90.48 80.00 1.99 7.40 4.66 61.50 5.41 86.07
10 88,279 69.05 87.86 85.71 76.70 1.99 7.29 4.63 59.57 5.31 86.49
25 80,576 66.67 90.00 85.71 72.36 1.92 7.51 4.17 50.24 5.59 90.71
50 35,647 40.48 94.44 77.78 52.80 1.06 3.47 2.26 24.28 2.41 101.37
100 33,146 40.48 94.44 77.78 42.36 1.71 3.52 2.25 17.75 1.81 164.84
∞ 0.00 0.00 NA NA 0.00 0.00 NA NA NA NA 288.31

5

5 83,994 71.43 90.71 68.57 80.00 1.92 6.24 4.15 53.38 4.32 86.09
10 83,715 69.05 90.71 62.86 76.70 1.92 6.24 4.15 51.66 4.32 86.47
25 74,876 66.67 92.86 60.00 72.36 1.92 6.14 3.68 42.90 4.22 90.55
50 35,413 42.86 83.33 53.33 52.80 1.06 3.47 2.21 23.87 2.41 101.24
100 32,748 40.48 94.44 53.33 42.36 1.71 3.47 2.23 17.58 1.77 165.63
∞ 0.00 0.00 NA NA 0.00 0.00 NA NA NA NA 288.31

10

1

5 231,130 63.33 81.49 100.00 89.87 4.51 28.36 15.44 231.52 23.85 87.44
10 226,349 61.67 81.19 100.00 89.87 4.51 28.40 14.53 217.88 23.89 88.66
25 207,713 53.33 82.22 100.00 89.87 3.15 24.21 10.84 157.17 21.06 91.54
50 92,286 38.33 91.67 100.00 67.50 2.77 12.36 6.53 70.65 9.59 104.66
100 82,477 35.00 87.50 100.00 55.32 2.77 11.15 5.52 46.99 8.38 168.40
∞ 16,058 6.67 100.00 100.00 35.45 1.23 1.23 1.23 7.45 0.00 379.33

3

5 125,001 63.33 81.09 100.00 89.87 2.06 11.02 6.34 93.67 8.96 87.58
10 123,009 61.67 80.79 100.00 89.87 2.06 11.02 5.87 87.84 8.96 87.89
25 113,911 55.00 76.11 100.00 89.87 2.06 9.22 4.99 74.59 7.15 91.50
50 58,984 41.67 80.00 83.33 67.50 1.95 6.01 3.49 38.90 4.07 104.53
100 52,608 35.00 84.72 77.78 55.32 1.95 5.70 3.29 27.57 3.75 169.99
∞ 7,152 6.67 100.00 33.33 35.45 0.92 0.92 0.92 3.64 0.00 381.81

5

5 117,847 63.33 81.09 90.00 89.87 2.02 8.78 5.51 81.02 6.76 87.03
10 115,892 61.67 86.35 86.67 89.87 2.01 8.80 5.09 75.45 6.79 87.95
25 105,184 56.67 82.22 83.33 89.87 1.97 7.83 4.33 63.42 5.86 91.28
50 58,061 41.67 75.83 63.33 67.50 1.92 5.07 3.32 37.16 3.15 104.44
100 51,917 35.00 70.83 56.67 55.32 1.92 4.55 3.17 26.33 2.63 175.49
∞ 7,152 6.67 100.00 20.00 35.45 0.92 0.92 0.92 3.64 0.00 369.50

14

1

5 259,270 57.14 81.35 100.00 90.71 3.82 34.96 18.81 281.70 31.14 86.91
10 255,115 55.95 87.37 100.00 90.71 3.82 35.36 17.69 265.60 31.54 88.73
25 227,120 40.48 83.33 100.00 89.87 3.87 25.34 12.25 173.00 21.47 94.79
50 87,220 29.76 86.11 100.00 74.68 2.02 12.49 6.12 76.06 10.46 104.62
100 79,207 27.38 91.67 100.00 64.17 2.02 11.45 5.46 56.55 9.43 144.62
∞ 16,317 4.76 100.00 100.00 35.45 1.24 1.24 1.24 7.55 0.00 417.68

3

5 152,538 59.52 78.41 100.00 90.71 2.39 13.82 8.12 119.36 11.43 87.09
10 146,287 57.14 83.50 100.00 90.71 2.60 14.36 7.80 115.61 11.75 88.03
25 129,439 42.86 86.35 100.00 89.87 1.69 10.92 6.00 87.77 9.23 93.30
50 57,273 30.95 91.67 88.89 74.68 1.52 6.48 3.81 48.86 4.96 105.80
100 51,413 27.38 87.50 83.33 64.17 1.52 6.60 3.49 36.96 5.08 149.84
∞ 7,255 4.76 100.00 33.33 35.45 0.92 0.92 0.92 3.68 0.00 393.31

5

5 137,891 58.33 83.37 90.00 90.71 1.99 12.82 6.95 102.79 10.83 87.11
10 136,825 55.95 82.90 86.67 90.71 1.99 11.69 6.69 99.29 9.71 87.85
25 117,443 45.24 83.97 83.33 89.87 1.64 10.71 5.21 75.74 9.06 93.31
50 56,273 30.95 85.56 63.33 74.68 1.52 5.41 3.59 46.30 3.89 104.35
100 49,479 27.38 95.83 50.00 64.17 1.52 5.57 3.17 33.62 4.05 146.69
∞ 7,255 4.76 100.00 20.00 35.45 0.92 0.92 0.92 3.68 0.00 434.01

Average 1 128,444 42.33 88.75 100.00 66.54 2.88 17.11 8.82 118.82 14.23 148.37
per number 3 75,061 43.00 87.51 83.38 66.54 1.78 7.42 4.30 55.99 5.64 147.69
of crews 5 70,665 43.23 87.06 64.20 66.54 1.70 6.39 3.84 49.29 4.69 149.29

5 149,776 64.63 84.41 93.23 86.86 2.62 15.63 8.89 129.04 13.00 86.87
Average 10 147,278 62.35 85.79 91.32 85.76 2.65 15.52 8.48 123.03 12.87 87.64
per 25 132,444 54.58 85.71 90.26 84.04 2.34 13.12 6.56 90.98 10.77 92.00
β (%) 50 58,961 37.46 86.39 81.11 64.99 1.78 6.88 3.89 44.83 5.10 103.55
values 100 53,081 34.29 88.43 77.65 53.95 1.93 6.58 3.54 32.11 4.65 160.60

∞ 6,799 3.81 100.00 51.11 23.63 1.03 1.03 1.03 4.94 0.00 360.06
Average all 91,390 42.85 87.77 82.53 66.54 2.12 10.31 5.65 74.70 8.19 148.45
1 Values computed considering only the solutions with at least one repaired damaged node.
2 Values computed considering only the demand nodes with accessibility time higher than 0.
NA: Not available.

paths but also in the route of the crews; thus, only a (usually) small number of damaged nodes
end up being repaired to restore the accessibility of the network. Consequently, a further increase
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in the number of crews is not necessarily followed by a relevant reduction in the accessibility
time. In spite of it, if the decision-maker hires more crews, it is likely that some of them will
become idle.

More crews evidently cause a decrease in the accessibility time and, consequently, in the
worst-case accessibility time. However, the impact concerning the average accessibility time
was less pronounced when we have increasingly more crews, especially in networks with fewer
damaged nodes. For example, the average accessibility time with 6 damaged nodes and β = 5%
decreased from 9.97 with 1 crew to 4.66 (53.26%) with three crews, while the reduction in the
average accessibility time from 3 to 5 crews was 10.94%. Additionally, our results reveal that
the multiple crews have a more pronounced effect in reducing the worst-case accessibility time
between the demand nodes. For the instances with 6 damaged nodes and β = 5%, the reduction
in the worst-case accessibility time was 15.68% from three to five crews, while the reduction
in the best-case accessibility time was 3.52%. Figure 6.6 shows the accessibility times of the
instance with β = 5% in class CS0 for different numbers of crews. For this particular case, the
worst-case accessibility was reduced 50.55%, from 8.15 hours with 1 crew to 4.03 hours with 5
crews.
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Figure 6.6: Nodes used in the relief paths to connect the depot with the demand nodes.

Insight 2. Multiple crews help to decrease the accessibility time and to achieve more equitable
accessibility times across the different demand nodes, which is a desirable feature in post-disaster
settings.

Figure 6.6 also illustrates the damaged nodes used in the relief paths to reach the de-
mand nodes. For instance, the relief path to reach MA with one crew is defined by D→RJ-
130→BJ→CO→RJ-116→MA. We did not consider intersection nodes in Figure 6.6. With one
crew, MA was the last demand node to become connected, which occurred after 8.15 hours,
when nodes RJ-116 and RJ-130 were repaired. SSA became connected after RJ-130 and RJ-150
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were repaired while NF, CO, BJ, and SM became connected after RJ-130 was repaired. As
expected, the cities with greater demand, NF and BJ, were some of the first cities to become
accessible after 4.13 hours. However, some cities that have a smaller demand, such as CO and
SM, also became accessible within 4.13 hours.

Insight 3. Cities with greater demand are likely to be the first to become accessible from the
depot. However, some cities with smaller demand can also became quickly accessible when their
corresponding relief paths use the same damaged nodes as the relief paths associated with the
cities with greater demand.

With three crews, SS and MA became connected after RJ-148 was repaired, while NF, CO,
BJ and SM became connected after RJ-130 was repaired. With five crews, SS and MA became
connected after RJ-130 and RJ-116 were repaired, while NF, CO, BJ and SM became connected
after RJ-130 was repaired. In the cases with 3 and 5 crews, only two crews performed the
restoration of two damaged node. However, the repaired damaged nodes changed depending on
the characteristics of the crews. For the considered instance, although two crews were enough
to perform the restoration, the use of crew 4 instead of crew 1 reduced the total time to restate
the accessibility of the network. The relief paths were also affected by the characteristics of the
crews. For instance, relief path 0− SM using RJ-116 is a good relief path only when crew 4 is
available. Particularly, damaged node RJ-116 has a short repair time but it is far away from the
depot. Crew 4, that has shorter travel times than crew 1, can perform a faster restoration of
RJ-116. Consequently, RJ-116 became better than RJ-150 (used in the case with one crew) and
RJ-148 (used in the case with three crews) in the relief path 0−SM . In general, when multiple
crews are available, farther damaged nodes are usually allocated to the crews with shorter travel
times to those nodes, while damaged nodes with longer repair times are allocated to crews that
can perform a faster restoration, thus saving travel and restoration times, respectively. Moreover,
the crews are usually allocated to repair groups of damaged nodes that are geographically close
to each other, which also saves time.

Insight 4. The heterogeneous characteristics of the crews can significantly affect the scheduling
and relief paths decisions of the problem. The allocation of the crews to the damaged nodes
depends on their characteristics, location of the damaged nodes, and repair times.

Interestingly, in Figure 6.6 we can observe that SS and SM required repairing different
damaged nodes to be accessible, even though such cities are geographically close to one another.
The reason for this result is the maximum distance ldi allowed for the relief paths. For SS and
SM, the maximum distances were ldSS = 156.27 and ldSM = 165.41, respectively. The feasible
relief paths 0− SS used one of the damaged nodes RJ-150, RJ-148 or RJ-116, while there was
a relief path 0− SM that did not require the use of those nodes. Such an alternative path was
shorter than ldSM and then feasible to reach SM, but it was higher than ldSS and then infeasible
to reach SS. If ldSS increases to 165, it would be possible to define a path to SS without using
any of damaged nodes RJ-150, RJ-148 or RJ-116.
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Insight 5. The definition of the path to reach the demand nodes from the depot is not trivial
since even nodes that can be geographically near each other could require the restoration of
different nodes to become accessible. The reason for such behavior is mainly the maximum
distance ldi imposed for the relief paths. The decision-maker should select ldi carefully since even
small changes in this parameter for a given demand node i might lead to significantly different
solutions.

Table 6.6 reveals that the maximum distance ldi , which is computed using different β values,
can significantly affect the accessibility time and the number of repaired damaged nodes in
the problem. Evidently, the accessibility time decreases for larger β values, mainly because
more feasible relief paths are available. A straightforward consequence of having more feasible
relief paths is the reduced number of demand nodes that need the restoration of at least one
damaged node to be accessible since the additional relief paths might not require the use of such
damaged nodes. For instance, the average number of demand nodes that require damaged nodes
to become accessible decreases from 86.86% with β = 5 to 23.63% with β = ∞. In contrast,
the average distance of the relief paths increases significantly for larger choices of β. Note, e.g.,
that the average distance increases more than four times, from 86.87 km when β = 5% to 360.06
km when β =∞. Larger values of β imply in the restoration of fewer damaged nodes. In fact,
when the maximum distance constraint is relaxed, no damaged node need to be repaired to
recover the accessibility of the network in some cases. For example, damaged networks with 6
damaged nodes and β = ∞ did not require the restoration of these nodes. A clear example of
this situation is the instances in class CS0 defined by the network in Figure 6.4, in which it is
possible to find relief paths without requiring damaged nodes if β = ∞. However, when the
number of damaged nodes increases, they become necessary to define the relief paths, even in
the cases with β =∞.

Insight 6. In general, shorter maximum distances imply fewer feasible relief paths, which may
increase the accessibility time of the demand nodes and increase the number of repaired damaged
nodes. Longer maximum distances may reduce the accessibility time of the demand nodes and
the number of repaired damaged nodes. However, they can lead to the selection of longer relief
paths, which is undesirable in practical distribution or evacuation operations in post-disaster
situations. Evidently, there is a trade-off between good accessibility times and the quality of the
relief paths in terms of distance.

Finally, Figure 6.7 illustrates the average accessibility time for different number of damaged
nodes and instance classes. On average, the increase in the damaged nodes in a network of
a given class increases the accessibility time of the solutions. However, such behavior can be
different when we compare instances of different classes. For example, the average accessibility
time for the instances of class CS4 with 10 damaged nodes was 6.76, while for the instances
of class CS6 with 14 damaged nodes was 5.85 (13.46% smaller). Therefore, the increase in the
accessibility time depends not only on the number of damaged nodes but also on the location of
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the damaged nodes. In Figure 6.4, for example, it is possible to observe some regions where fewer
damaged nodes disrupting the accessibility could have a higher impact than a higher number of
damaged nodes in regions where there is no demand nodes.
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Figure 6.7: Average accessibility time for different damaged nodes and instance classes.

6.5 Final remarks of the chapter

In this chapter, we proposed three novel mathematical formulations for the multicrew scheduling
and routing problem in road restoration. New valid inequalities were also developed. The first
two formulations are based on the three-index and two-index formulation of the VRP. The third
formulation eliminates a few variables and introduces new constraints to reduce the symmetry
in the solutions of the problem. The valid inequalities are based on the dominance of the
paths between nodes in the damaged network. We performed computational experiments using
instances from the literature and based on a real disaster situation. The three mathematical
formulations showed improvement with the addition of the VIs. The model based on the two-
index VRP formulation showed the best performance for most of the instances. Furthermore,
the elimination of symmetric solutions in the third formulation improved the performance of
the model, especially in finding feasible solutions. The model based on the three-index VRP
formulation provides optimality guarantees for a higher number of instances, but it has difficulty
finding feasible solutions in some cases. The graph reduction strategy for deriving cuts from
networks with fewer nodes also improves the results. Thus, the best approach was able to obtain
good-quality solutions with less than 7% of the average optimality gap for the different instance
classes.

The analysis of the practical case showed that, as expected, the use of more crews to solve
the problem significantly reduces the time required to make the demand nodes accessible. How-
ever, the impact concerning the average accessibility time was less pronounced when we had
increasingly more crews, especially in the networks with fewer damaged nodes. The multiple
crews mainly affect the worst-case accessibility time between the demand nodes, thus providing
more equitable accessibility times. Usually, the farthest damaged nodes were allocated to the
crews that had the shortest travel time, while the damaged nodes with higher repair time were
allocated to crews that can perform a faster restoration. The restoration of damaged nodes in
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the relief paths was prioritized over nodes in the crew paths. A few additional damaged nodes
are repaired only if they are strictly necessary in the path of the crews to reach other damaged
nodes. Furthermore, on average, fewer than 55% of the damaged nodes were required to restore
the accessibility of the network. Such a proportion decreased when paths with higher distances
were allowed to connect the depot with the demand nodes, but it is not significantly affected by
the increase in the number of available crews.

Since the information about the actual situation of the damaged nodes after the extreme
events is limited, and the consequences of the extreme events over the transportation networks
cannot be accurately predicted, in the next chapter we consider the inherent uncertainties present
in the input data.
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Chapter 7

The Robust Crew Scheduling and
Routing Problem

This chapter introduces the Robust Crew Scheduling and Routing Problem (RCSRP) in road
restoration, which incorporates uncertain repair times via robust optimization. Also, the RC-
SRP considers a new objective function based on latency. A mathematical formulation and a
Benders decomposition based algorithm are developed for the problem. This chapter is orga-
nized as follows. Section 7.1 introduces the problem. Section 7.2 presents the novel RCSRP
model. Section 7.3 develops the logic-based Benders decomposition. Section 7.4 discusses the
computational results. Finally, Section 7.5 presents concluding remarks.
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7.1 Introduction

In determining the repair operation decisions, it is important to consider the fact that the
time required to repair the damaged nodes depends on the severity of the impact of the extreme
events. For instance, the time to repair roads blocked by debris depends on the amount of debris,
which may be hard to estimate. In the 2011 floods in the Serrana Region of Rio de Janeiro in
Brazil, for example, different points of six main highways were affected (Rio de Janeiro, 2011),
but no information about the time required to repair such points was available. Generally,
repair times are unknown in those situations (Çelik et al., 2015) and are critical factors that
need to be considered in the road restoration, mainly when the short-term response operations
must be performed as soon as possible. However, since the introduction of the CSRP, authors
have proposed several models and solution methods for the deterministic version of this problem
(Maya-Duque et al., 2016; Kim et al., 2018; Shin et al., 2019), but no model or solution method
has been proposed considering the inherent uncertainty in the repair times.

In this chapter, we introduce the Robust Crew Scheduling and Routing Problem (RCSRP)
in road restoration, in which uncertain repair times belong to a convex set U known as the
uncertainty set in Robust Optimization (RO) terminology. The goal in the RCSRP is to find
the best solution that satisfies every realization of the uncertain parameters that belongs to U .
We consider the budgeted uncertainty set proposed by Bertsimas and Sim (2004), and develop
a compact formulation and a logic-based Benders decomposition for the RCSRP. Logic–based
Benders decomposition (Hooker and Ottosson, 2003) is an extension of the classical Benders
decomposition method, where the generation of the Benders cuts are not necessarily based on
solving the dual linear programs of the subproblems (Tran et al., 2016; Perez et al., 2019).
The master problem obtained from the Benders decomposition is solved by a single search tree,
exploring the generation of cuts inside the tree during the branch–and–bound process. This
strategy has been recently referred to as Branch-and-Check algorithm (B&Ch) (Tran et al.,
2016; Perez et al., 2019). It is important to highlight that the BBC approaches developed in
Chapters 4 and 5 can be also considered as B&Ch algorithms. We also adapt the metaheuristic
algorithms proposed for the SCSRP in Section 5.3 to find feasible solutions for the RCSRP and
use the solutions from the metaheuristic to warm-start the B&Ch approach. Additionally, we
introduce a new objective called “latency” for the problem, which is defined as the time at which
a demand node is reached from the central depot. Therefore, the latency considers, for a given
demand node, the time at which the demand node becomes accessible from the depot plus the
travel time on the relief path connecting the depot with the demand node. Although the latency
has been recently proposed for other variant of road restoration problems (Ajam et al., 2019),
this objective has not yet been considered in the CSRP. We apply our proposed approaches to
the case of floods and landslides in Brazil.
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7.2 Mathematical formulation

We assume that the uncertain repair times for a given crew k belong to a convex set Uk known
as the uncertainty set. The goal in the RCSRP is to find the best solution that satisfies every
realization of the uncertain parameters that belongs to Uk. We consider the budgeted uncertainty
set proposed by Bertsimas and Sim (2004), as this set provide robust counterparts as tractable
as their original deterministic formulations (Bertsimas and Sim, 2003; Alem et al., 2018; Munari
et al., 2019).

Let δ̃ki ∈ [δki− δ̂ki, δki + δ̂ki] be rewritten as δ̃ki = δki + δ̂kiξik, where ξik is a random variable
that assumes values in the interval [−1, 1]. Let Bk ⊆ Vr be the nodes considered in the schedule
of crew k. For a given crew k, we represent the uncertainty set Uk as follows:

Uk(Γ) =
{
δk ∈ R|V

r|
+ |δ̃ki = δki + δ̂kiξik,

∑
i∈Bk

ξik ≤ Γ, 0 ≤ ξik ≤ 1, i ∈ Bk
}
, (7.1)

where the cumulative uncertainty of the random variable is bounded by its budget of uncertainty
Γ. If Γ = 0, then the uncertainties are not taken into account, i.e., no repair time assume its
worst case deviation. On the other hand, larger budgets of uncertainty indicate more repair
times assuming its worst-case deviation and express more conservative/robust solutions.

The structure of the uncertainty set (7.1) allows us to calculate the restoration time of
damaged nodes in a route Bk using recursive equations, similar to the one proposed for the
robust vehicle routing problem (Munari et al., 2019). Let Bk = (v0, v1, · · · , vj , · · · , vn) be the
schedule of crew k, where vj is the jth damaged node repaired by crew k and v0 = 0. We call
crew path v(j−1) − vj the sequence of nodes and arcs used by the crew to travel from v(j−1) to
vj . Let φj = 1, if some damaged node is used in the crew path v(j−1)−vj and φj = 0, otherwise.
Let Zr

vjγ be the restoration time of damaged node vj ∈ Bk when up to γ ≤ Γ repair times reach
their worst case. If φj = 0, Zr

vjγ can be computed by the recursion:

Zr
vjγ =


0, if j = 0;
Zr
v(j−1)γ

+ δkvj + ρkv(j−1)vj , if j ≥ 1, γ = 0;
max{Zr

v(j−1)γ
+ δkvj

+ ρkv(l−1)vl
,

Zr
v(l−1)(γ−1) + δkvj

+ δ̂kvj
+ ρkv(j−1)vj

}, if j ≥ 1, γ ≥ 1;

(7.2)

where ρkv(j−1)vj is the shortest travel time of crew k between nodes v(j−1) and vj without using
damaged nodes. Equations (7.2) define the restoration time when no damaged nodes are visited
in crew path v(j−1) − vj . In this case, for a given node vj repaired by crew k, the restoration
time Zr

vjγ is the sum of three components: the restoration time of the predecessor node v(j−1),
the travel time in the crew path v(j−1)− vj , and the repair time of node j. Regarding the repair
time, the basic idea in recursive equation (7.2) is to check for each damaged node vj if the repair
time δ̃kvj must be one of the γ values assuming the worst case or the γ worst cases must be
considered in the repair times of the damaged nodes repaired before vj .

If φj = 1, at least one damaged node is used in the crew path v(j−1) − vj . Let Lj =
(w1, · · · , wh, · · · , wH) be the set of damaged nodes used by crew k to travel from v(j−1) to vj ,
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where h ≤ H is the position at which node wh is visited in the path to node vj , and H is the
number of damaged nodes visited in the path to node vj . Hence, crew k must travel between
consecutive nodes v(j−1), vj in its schedule using undamaged nodes, nodes repaired by other crew
k′ 6= k or nodes repaired by crew k before v(j−1). Crew k may have to wait for the restoration
of some damaged nodes in set Lj . Therefore, let T s

hvjγ
be the exact time at which the crew

k arrives at damaged node wh in the path to node vj when up to γ repair times reach their
worst-case; and Tw

hvjγ
be the waiting time at the damaged node wh in the path to node vj when

up to γ repair times reach their worst-case. If φj = 1, Zr
vjγ can be computed by the recursion:

Zr
vjγ =


Zr
v(j−1)γ

+ δkvj
+ ρkwHvj

+ Tw
Hvjγ

+ T s
Hvjγ

, if j ≥ 1, γ = 0;
max{Zr

v(j−1)γ
+ δkvj

+ ρkwHvj
+ Tw

Hvjγ
+ T s

Hvjγ
,

Zr
v(j−1)(γ−1) + δkvj + δ̂kvj + ρkwHvj + Tw

Hvj(γ−1) + T s
Hvj(γ−1)}, if j ≥ 1, γ ≥ 1;

(7.3)

where

T s
hvjγ =

{
Tw

(h−1)vjγ
+ T s

(h−1)vjγ
+ ρkw(h−1)wh

, if h ≥ 2, γ ≥ 0;
Zr
v(j−1)γ

+ ρkv(j−1)wh
, if h = 1, γ ≥ 0;

(7.4)

Tw
hvjγ = max{0, Zr

whΓ − T s
hvjγ},∀ h ≥ 1, γ ≥ 0. (7.5)

Equations (7.3) define the restoration time when there is some damaged nodes visited in the
crew path v(j−1) − vj . In this case, for a given node vj repaired by crew k, the restoration time
is the sum of the following components: the time when the crew departs from the last damaged
node wH visited in the path (Tw

Hvjγ
+ T s

Hjγ), the shortest travel time from node wH to node vj
without using damaged nodes, and the repair time of node vj . The arrival time of the crew at
nodes visited in the crew path v(j−1) − vj is computed with equations (7.4) while the waiting
time of the crew in a given damaged node wh visited in the crew path v(j−1) − vj is calculated
with equation (7.5). In this case, the waiting time in a damaged node wh is calculated as the
difference between the restoration time of the damaged node wh and the arrival time of crew k

at damaged node wh.
Based on model MCSRP3 previously proposed for the MCSRP in Chapter 6 and the recur-

sive equations (7.2), (7.3), we propose a mathematical formulation for the RCSRP. The sets,
parameters and variables used in the model are formally defined as follows.

Sets
V All nodes.
Vr ⊂ V Damaged nodes.
Vr

0 = Vr ∪ {0} Damaged nodes including the source node 0 (depot).
Vu ⊂ V Undamaged nodes (Vu = V/Vr).
Vd ⊂ Vu Demand nodes.
E Arcs.
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Ei ⊆ E Arcs incident to node i ∈ V.
R = {1, · · · , |Vr|} Positions at which an already repaired damaged node can be visited

in a path between two damaged nodes.
K Available crews.
Ki ⊆ K Crews able to repair the damaged node i ∈ Vr.

Parameters
di Demand of node i ∈ Vd.
te Travel time associated to the arcs used in the relief paths.
δki Nominal repair time of crew k ∈ Ki at node i ∈ Vr.
δ̂ki Deviation of the repair time of crew k ∈ Ki at node i ∈ Vr from its nominal value.
τke Travel time of crew k ∈ K on arc e ∈ E .
ρkij Shortest travel time of crew k between nodes i ∈ V and j ∈ V without using damaged

nodes.
`e Length of arc e ∈ E .
ldi Maximum distance allowed between node 0 and demand node i ∈ Vd.
M Sufficiently large number.

Decision variables
Qi Binary variable equal to 1 if node i ∈ Vr is repaired.
Wik Binary variable equal to 1 if node i ∈ Vr is repaired by crew k.
Xij Binary variable equal to 1 if node j ∈ Vr

0 is repaired immediately after node i ∈ Vr
0 .

Peij Binary variable equal to 1 if arc e ∈ E is used either in the path from node i ∈ Vr
0 to

node j ∈ Vr or in the path from node j ∈ Vr to node i ∈ Vr with i < j.
Nlij Binary variable equal to 1 if node l ∈ Vr is used either in the path from node i ∈ Vr

0

to node j ∈ Vr or in the path from node j ∈ Vr to node i ∈ Vr with i < j.
Rlhj Binary variable equal to 1 if node l ∈ Vr is the hth damaged node visited in the

path to node j ∈ Vr.
Yej Binary variable equal to 1 if arc e ∈ E is used in the path from node 0 to node j ∈ Vd.
Vlj Binary variable equal to 1 if node l ∈ V is used in the path from node 0 to node j ∈ Vd.
T s
lhjγ Time at which the damaged node l ∈ Vr in the position h ∈ R is visited in the path

to node j ∈ Vr (arrival time) when up to γ repair times reach their worst case.
Tw
lhjγ Waiting time at the damaged node l ∈ Vr visited in the position h ∈ R in the path

to node j ∈ Vr when up to γ repair times reach their worst case.
Zr
iγ Restoration time of damaged node i ∈ Vr

0 when up to γ repair times reach their
worst case.

Zd
i Accessibility time of demand node i ∈ Vd.
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The model for the RCSRP is formulated as follows:

min
∑
i∈Vd

di(Zd
i +

∑
e∈E

teYei), (7.6)

s.t.

Relief paths constraints (7.7)− (7.11),

Linearization of the recursive equations (7.12)− (7.20),

Assignment and scheduling constraints (7.21)− (7.28),

Routing constraints (7.29)− (7.33),

Synchronization constraints (7.34)− (7.39),

Domain of the decision variables (7.40)− (7.49).

The objective function (7.6) minimizes the sum of the latency of the demand nodes weighted
by its demand. The latency for a demand node i is defined as the accessibility time Zd

i plus the
travel time ∑e∈E teYei in the relief path 0 − i. Note that the accessibility time objective, more
common in the CSRP literature, can be obtained by removing the expression ∑e∈E teYei from
the objective function (7.6).

Relief path constraints: Constraints (7.7) define the accessibility time for the demand
nodes. Constraints (7.8)-(7.10) define the relief paths between the depot and the demand nodes.
For a given relief path 0 − i, there is one arc incident to node 0 (constraints (7.8)), one arc
incident to node i (constraint (7.9)) and two arcs incident for each node l in the middle of this
path (constraints (7.10)). Constraints (7.11) prohibit the use of relief paths whose total distance
is greater than the maximum distance allowed.

Zd
i ≥ Zr

jΓ −M(1− Vji), ∀ i ∈ Vd, j ∈ Vr, (7.7)∑
e∈E0

Yei = 1, ∀ i ∈ Vd, (7.8)

∑
e∈Ei

Yei = 1, ∀ i ∈ Vd, (7.9)

∑
e∈El

Yei = 2Vli, ∀ j ∈ Vd, l ∈ V \ {0, i}, (7.10)

∑
e∈E

`eYei ≤ ldi , ∀ i ∈ Vd. (7.11)

Linearization of the recursive equations: Constraints (7.12)-(7.15) define the restora-
tion time for different γ values when no damaged nodes are visited in crew path i− j, or when
there is no waiting time associated with the visited damaged nodes. These constraints also pre-
vent subtours. Constraints (7.12), (7.13) consider the case when the repair time of node j is one
of the γ repair times assuming the worst case, while constraints (7.14), (7.15) consider that the
γ repair times assuming the worst case are considered before node j. Constraints (7.12), (7.14)
are defined for i < j while constraints (7.13), (7.15) are defined for i > j. Similarly, constraints
(7.16), (7.17) define the restoration time for different γ values when there is waiting time asso-
ciated with the damaged nodes visited in a given crew path i− j. Constraints (7.16),(7.17) are
activated only for the last node visited in the crew path i− j, i.e., when there is no node visited
in the position h+ 1 (∑l∈Vr Rl(h+1)j = 0). Constraints (7.18) evaluate the arrival time of crew
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k at the first damaged node l visited in crew path i− j. Similarly, constraints (7.19) define the
arrival time of crew k at the damaged node l visited in position h > 1 based on the departure
time of node v visited in position h− 1. Finally, constraints (7.20) compute the waiting time of
the crew in damaged node l visited in position h.

Zr
jγ ≥ Zr

iγ +
∑
e∈E

τkePeij + δkj −M(2−Xij −Wkj), ∀ k ∈ K, i ∈ Vr
0 , j ∈ Vr : i < j, γ = 0, . . . ,Γ,

(7.12)

Zr
jγ ≥ Zr

iγ +
∑
e∈E

τkePeji + δkj −M(2−Xij −Wkj), ∀ k ∈ K, i ∈ Vr, j ∈ Vr : i > j, γ = 0, . . . ,Γ,

(7.13)

Zr
jγ ≥ Zr

i(γ−1) +
∑
e∈E

τkePeij + δkj + δ̂kj −M(2−Xij −Wkj), ∀ k ∈ K, i ∈ Vr
0 , j ∈ Vr : i < j, γ = 1, . . . ,Γ,

(7.14)

Zr
jγ ≥ Zr

i(γ−1) +
∑
e∈E

τkePeji + δkj + δ̂kj −M(2−Xij −Wkj), ∀ k ∈ K, i ∈ Vr, j ∈ Vr : i > j, γ = 1, . . . ,Γ,

(7.15)

Zr
jγ ≥

∑
l∈Vr

(Tw
lhjγ + T s

lhjγ + ρkljRlhj) + δkj −M(1−Wkj +
∑
l∈Vr

R(h+1)lj),

∀ j ∈ Vr, h ∈ R \ {|R|}, k ∈ K, γ = 0, . . . ,Γ, (7.16)

Zr
jγ ≥

∑
l∈Vr

(Tw
lhj(γ−1) + T s

lhj(γ−1) + ρkljRlhj) + δkj + δ̂kj −M(1−Wkj +
∑
l∈Vr

R(h+1)lj),

∀ j ∈ Vr, h ∈ R \ {|R|}, k ∈ K, γ = 1, . . . ,Γ, (7.17)

T s
1ljγ ≥ Zr

iγ +
∑
k∈K

ρkilWkj −M(2−Xij −R1lj), ∀ i ∈ Vr
0 , j ∈ Vr, l ∈ Vr, γ = 0, . . . ,Γ, (7.18)

T s
lhjγ ≥

∑
p∈Vr

(Tw
(h−1)pjγ + T s

(h−1)pjγ +R(h−1)pjρkpl)−M(2−Rlhj −Wkj),

∀ k ∈ K, l ∈ Vr, j ∈ Vr, h ∈ R \ {1}, γ = 0, . . . ,Γ, (7.19)

Tw
lhjγ ≥ Zr

lΓ − T s
lhjγ −M(1−Rlhj), ∀ l ∈ Vr, j ∈ Vr, h ∈ R, γ = 0, . . . ,Γ. (7.20)

Assignment and scheduling constraints: Constraints (7.21) force the allocation of crews
to damaged nodes that are repaired. Constraints (7.22),(7.23) state that damaged nodes used
either in relief paths or in crew paths must be repaired. Constraints (7.24)-(7.26) define the
schedule for the damaged nodes that must be repaired. Constraints (7.27) guarantee that if
nodes i and j are considered in the same schedule (Xij = 1), both are repaired by the same
crew. Constraints (7.28) force the consideration of different crews for the different schedules.

Ql =
∑
k∈Kl

Wkl, ∀ l ∈ Vr, (7.21)

|Vd|Ql ≥
∑
i∈Vd

Vli, ∀ l ∈ Vr, (7.22)

|Vr|Ql ≥
∑
i∈Vr

0

∑
j∈Vr:
j>i

Nlij , ∀ l ∈ Vr, (7.23)

∑
i∈Vr

0:
i 6=j

Xij = Qj , ∀ j ∈ Vr, (7.24)
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∑
i∈Vr

0:
i 6=l

Xil −
∑
j∈Vr

0:
j 6=l

Xlj = 0, ∀ l ∈ Vr
0 , (7.25)

∑
j∈Vr

X0j ≤ |K|, (7.26)

Wkj ≥Wki +Xij − 1, ∀ i ∈ Vr, j ∈ Vr, k ∈ K, (7.27)∑
k′∈K:
k′ 6=k

Wk′j ≥Wki +X0i +X0j − 2, ∀ i ∈ Vr, j ∈ Vr : i 6= j, k ∈ K. (7.28)

Routing constraints: Constraints (7.29)-(7.33) define the paths of the crews. For a crew
traveling from i ∈ Vr

0 to j ∈ Vr, constraints (7.29),(7.31) force the use of an arc incident to node
i, constraints (7.30),(7.32) force the use of an arc incident to node j, and constraints (7.33) force
the use of two arcs incident to nodes l in the middle of the crew path i− j.

∑
e∈E0

Pe0j = X0j , ∀ j ∈ Vr, (7.29)

∑
e∈Ej

Pe0j = X0j , ∀ j ∈ Vr, (7.30)

∑
e∈Ei

Peij = Xij +Xji, ∀ i ∈ Vr, j ∈ Vr : i < j, (7.31)

∑
e∈Ej

Peij = Xij +Xji, ∀ i ∈ Vr, j ∈ Vr : i < j, (7.32)

∑
e∈El

Peij = 2Nlij , ∀ i ∈ Vr
0 , j ∈ Vr, l ∈ V \ {i, j} : i < j. (7.33)

Synchronization constraints: Constraints (7.34)-(7.39) synchronize the arrival of crew k

in damaged node l visited in crew path i− j. Here, i and j are damaged nodes repaired by crew
k, while l is a damaged node used in path i − j. Thus, when crew k arrives at this node l, it
either waits for node l to be repaired by another crew if this node is still damaged, or it can cross
without waiting if l has been already repaired. A damaged node l cannot be visited more than
once in the path to node j (constraints (7.34)). Also, a given crew cannot visit different damaged
nodes simultaneously (constraints (7.35)), i.e., in the same position h. Constraints (7.36) ensure
that damaged nodes in path i− j must be visited in consecutive positions. Constraints (7.37)-
(7.39) link the allocation of damaged nodes to positions with the definition of the crew paths.
Thus, only damaged nodes considered in the crew path i− j (Nlij = 1) can be allocated to some
position defined by the variable Rlhj .∑

h∈R

Rlhj ≤ 1, ∀ j ∈ Vr, l ∈ Vr, (7.34)

∑
l∈Vr

Rlhj ≤ 1, ∀ j ∈ Vr, h ∈ R, (7.35)

∑
l∈Vr

Rlhj ≤
∑
l∈Vr

R(h−1)lj , ∀ j ∈ Vr, h ∈ R \ {1}, (7.36)

∑
h∈R

Rlhj ≥ Nlij +Xij − 1, ∀ i ∈ Vr, l ∈ Vr, j ∈ Vr : i < j, (7.37)

∑
h∈R

Rlhi ≥ Nlij +Xji − 1, ∀ i ∈ Vr, l ∈ Vr, j ∈ Vr : i < j, (7.38)
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∑
h∈R

∑
j∈Vr

Rlhj =
∑
i∈Vr

0

∑
j∈Vr:j>i

Nlij , ∀ l ∈ Vr. (7.39)

Domain of the decision variables: Constraints (7.40)-(7.49) impose the domain of the
decision variables.

Qj ,Wkj ∈ {0, 1}, ∀ j ∈ Vr, k ∈ K, (7.40)

Xij ∈ {0, 1}, ∀ i ∈ Vr
0 , j ∈ Vr

0 , (7.41)

Rhij ∈ {0, 1}, ∀ i ∈ Vr, j ∈ Vr, h ∈ R, (7.42)

Nlij ∈ {0, 1}, ∀ i ∈ Vr
0 , j ∈ Vr, l ∈ V, (7.43)

Peij ≥ 0, ∀ i ∈ Vr
0 , j ∈ Vr, e ∈ E , (7.44)

Vli ∈ {0, 1}, ∀ i ∈ Vd, l ∈ V, (7.45)

Yel ≥ 0, ∀ l ∈ Vd, e ∈ E , (7.46)

T s
lhjγ , T

w
lhjγ ≥ 0, ∀ l ∈ Vr, j ∈ Vr, h ∈ R, γ = 0, · · · ,Γ, (7.47)

Zr
iγ ≥ 0, ∀ i ∈ Vr

0 , γ = 0, · · · ,Γ, (7.48)

Zd
j ≥ 0, ∀ j ∈ Vd. (7.49)

7.3 Solution approach

In this section, we propose a logic–based Benders decomposition (Hooker and Ottosson, 2003)
approach to solve the RCSRP, in which the master problem (MP) involves assignment, scheduling
and relief path definition decisions and the subproblem (SP) considers relief path definition
decisions and crew routing decisions. Both, MP and SP, include integer variables and therefore
standard duality theory cannot be applied to derive cuts.

The relief path definition decisions are considered in both, MP and SP subproblems. In
the MP, these decisions help to increase the lower bound, and thus improving the performance
of the method. On the other hand, we notice that adding the relief paths variables in the
subproblem does not significantly increase the difficulty of the subproblem while reducing the
number of solutions that need to be “updated” with feasibility or optimility cuts in the MP and
consequently fewer cuts that are needed to guarantee convergence.

The MP obtained from the Benders decomposition is solved by a single search tree, exploring
the generation of cuts inside the tree during the branch–and–bound process. This strategy has
been recently referred to as Branch-and-Benders-Cut (BBC) (Gendron et al., 2016; Errico et al.,
2017) or Branch-and-Check algorithm (B&Ch) (Tran et al., 2016; Perez et al., 2019). Usually,
B&Ch is more common in the context of logic–based Benders decomposition approaches.

7.3.1 Logic-based Benders reformulation (LBBR)

Let θr
jγ be an auxiliary variable that represents the restoration time of damaged node j when

γ repair times assume their worst case value. Let βj(q̄,Γ) be a function that returns the
optimal restoration time of damaged node j ∈ Vr given an assignment-scheduling solution
q̄ = (X̄, W̄ , Q̄) and a budget of uncertainty Γ. Also, let SP be the set of assignment-scheduling
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solutions for which a feasible crew routing decision can be defined. The logic-based Benders
reformulation (LBBR) for the RCSRP is as follows:

(LBBR) min
∑
i∈Vd

di(Zd
i +

∑
e∈E

teYei), (7.50)

s.t.

Relief paths constraints (7.8)− (7.11), (7.51)

Assignment and scheduling constraints (7.21), (7.22), (7.24)− (7.28), (7.52)

Domain of the decision variables (7.40), (7.41), (7.45), (7.46), (7.49), (7.53)

Zd
i ≥ θr

jΓ −M · (1− Vji), ∀ i ∈ Vd, j ∈ Vr; (7.54)

θr
jΓ ≥ βj(q,Γ), ∀ j ∈ Vr; (7.55)

q ∈ SP; (7.56)

θr
jγ ≥ 0, ∀ j ∈ Vr, γ = 0, · · · ,Γ. (7.57)

Constraints (7.54) define the accessibility time for the demand nodes. Constraints (7.55)
updated variable θr

jΓ according to the optimal restoration time of damaged node j. Constraint
(7.56) prohibits infeasible assignment-scheduling solutions for which it is not possible to find
synchronized routes of the crews. Finally, constraints (7.57) define the domain of θr

jγ variables.
Given a solution q̄ and a budget of uncertainty Γ, βj(q̄,Γ) = Z̄r∗

jΓ, where Z̄r∗
jΓ is equal to the

value of variable Zr
iΓ in the optimal solution of the following subproblem (SP).

(SP ) min
∑
i∈Vd

di(Zd
i +

∑
e∈E

teYei), (7.58)

s.t.

Relief paths constraints (7.7)− (7.11), (7.59)

Routing and synchronization constraints (7.33)− (7.36), (7.60)

Domain of the decision variables (7.42)− (7.49), (7.61)

Zr
jγ ≥ Zr

iγ +
∑
e∈E

τkePeij + δkj , ∀ k ∈ K, i ∈ Vr
0 , j ∈ Vr : i < j, X̄ij = 1, W̄kj = 1, γ = 0, . . . ,Γ,

(7.62)

Zr
jγ ≥ Zr

iγ +
∑
e∈E

τkePeji + δkj , ∀ k ∈ K, i ∈ Vr, j ∈ Vr : i > j, X̄ij = 1, W̄kj = 1, γ = 0, . . . ,Γ,

(7.63)

Zr
jγ ≥ Zr

i(γ−1) +
∑
e∈E

τkePeij + δkj + δ̂kj , ∀ k ∈ K, i ∈ Vr
0 , j ∈ Vr : i < j, X̄ij = 1, W̄kj = 1, γ = 1, . . . ,Γ,

(7.64)

Zr
jγ ≥ Zr

i(γ−1) +
∑
e∈E

τkePeji + δkj + δ̂kj , ∀ k ∈ K, i ∈ Vr, j ∈ Vr : i > j, X̄ij = 1, W̄kj = 1, γ = 1, . . . ,Γ,

(7.65)

Zr
jγ ≥

∑
l∈Vr

(Tw
lhjγ + T s

lhjγ + ρkljRlhj) + δkj −M(
∑
l∈Vr

R(h+1)lj),

∀ j ∈ Vr, k ∈ K : W̄kj = 1, h ∈ R \ {|R|}, γ = 0, . . . ,Γ, (7.66)

Zr
jγ ≥

∑
l∈Vr

(Tw
lhj(γ−1) + T s

lhj(γ−1) + ρkljRlhj) + δkj + δ̂kj −M(
∑
l∈Vr

R(h+1)lj),
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∀ j ∈ Vr, k ∈ K : W̄kj = 1, h ∈ R \ {|R|}, γ = 1, . . . ,Γ, (7.67)

T s
1ljγ ≥ Zr

iγ +
∑
k∈K

ρkilW̄kj −M(1−R1lj), ∀ i ∈ Vr
0 , j ∈ Vr : X̄ij = 1, l ∈ Vr, γ = 0, . . . ,Γ,

(7.68)

T s
lhjγ ≥

∑
p∈Vr

(Tw
(h−1)pjγ + T s

(h−1)pjγ +R(h−1)pjρkpl)−M(1−Rlhj),

∀ k ∈ K, j ∈ Vr : W̄kj = 1, l ∈ Vr, h ∈ R \ {1}, γ = 0, . . . ,Γ, (7.69)

Tw
lhjγ ≥ Zr

lΓ − T s
lhjγ −M(1−Rlhj), ∀ l ∈ Vr : Q̄l = 1, j ∈ Vr : Q̄j = 1, h ∈ R, γ = 0, . . . ,Γ,

(7.70)∑
e∈E0

Pe0j = 1, ∀ j ∈ Vr : X̄0j = 1, (7.71)

∑
e∈Ej

Pe0j = 1, ∀ j ∈ Vr : X̄0j = 1, (7.72)

∑
e∈Ei

Peij = 1, ∀ i ∈ Vr, j ∈ Vr : i < j, X̄ij + X̄ji = 1, (7.73)

∑
e∈Ej

Peij = 1, ∀ i ∈ Vr, j ∈ Vr : i < j, X̄ij + X̄ji = 1, (7.74)

∑
h∈R

Rlhj ≥ Nlij , ∀ i ∈ Vr, l ∈ Vr, j ∈ Vr : i < j, X̄ij = 1, (7.75)

∑
h∈R

Rlhi ≥ Nlij , ∀ i ∈ Vr, l ∈ Vr, j ∈ Vr : i < j, X̄ji = 1, (7.76)

∑
h∈R

∑
j∈Vr

Rlhj =
∑
i∈Vr

0

∑
j∈Vr:j>i

Nlij , ∀ l ∈ Vr : Q̄l = 1, (7.77)

∑
j∈Vd

Vlj +
∑
i∈Vr

0

∑
j∈Vr

(Nlij +Njil) +
∑
h∈R

∑
j∈Vr

(Rlhj +Rjhl) +
∑
i∈Vr

0

∑
e∈E

Peil ≤ 0, ∀ l ∈ Vr : Q̄l = 0,

(7.78)∑
l∈V

Nlij +
∑
e∈E

Peij ≤ 0, ∀ i ∈ Vr
0 , j ∈ Vr : X̄ij = 0. (7.79)

Constraints (7.62)-(7.77) are constraints of the original RCSRP with the fixed values (X̄, W̄ , Q̄)
of the assignment-scheduling variables. These constraints apply for the damaged nodes allocated
to some crew, i.e., ∀i, j : X̄ij = 1, ∀k, j : W̄kj = 1,∀j : Q̄j = 1. We add constraints (7.78), (7.79)
to prohibit routing decisions between damaged nodes that are not allocated to any crew, i.e.,
∀i, j : X̄ij = 0,∀k, j : W̄kj = 0, ∀j : Q̄j = 0. This way we avoid the generation of unnecessary
routing and synchronization constraints (7.62)-(7.77) for damaged nodes that are not repaired
by the crews.

7.3.2 Branch-and-check algorithm (B&Ch)

We develop a B&Ch to solve the LBBR model (7.50)-(7.57). Basically, we define a master
problem (MP) by removing constraints (7.55), (7.56) from the original LBBR model and solve
the MP by using a branch-and-bound method. The removed constraints are dynamically checked
in the nodes of the branch-and-bound tree and optimality/feasibility cuts are added to the
MP when these constraints are violated. The proposed Benders optimality/feasibility cuts are
presented in Section 7.3.3.
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Figure 7.1 shows a flowchart of the main steps carried out in B&Ch algorithm at each node
of the branch-and-bound tree. At each node i, we solve the linear relaxation of the current MP,
denoted by LPi. If the LPi is infeasible or the objective value of the LPi solution (OFi) is higher
than or equal to the objective value of the current incumbent solution, then node i is pruned.
Otherwise, integrality constraints are checked, and if the LPi solution is not integer feasible,
then branching is performed. If the LPi solution is integer feasible, we solve the subproblem SP
(7.58)-(7.79) to verify violation of constraints (7.55), (7.56). A constraint of the set of constraints
(7.55) is violated for a given node j if θ̄r∗

jΓ < Z̄r∗
iΓ , where θ̄r∗

jΓ is the value of variable θr
jΓ in the

LPi solution. Constraint (7.56) is violated if the subproblem SP is infeasible. If no constraint is
violated, then the LPi solution is feasible for the original LBBR and is set as the new incumbent
solution. Otherwise, the MP is modified by the addition of Benders cuts, LPi is resolved, and
the described steps are applied again. General-purpose optimization software may additionally
rely on automated cuts and/or heuristics that are not included in Figure 7.1.

Figure 7.1: Flowchart illustrating the main steps of the B&Ch algorithm in a given node i of
the branch-and-bound.

Start at node i
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7.3.3 Logic-based Benders Cuts

Every time an integer solution is found at the nodes of the branch-and-bound tree, the sub-
problem SP is solved and the corresponding feasibility/optimality Benders cuts are added to
the MP. We rely on logic-based Benders cuts based on particular characteristics of the problem.
Proposition 10 state feasibility and optimality cuts for the MP.
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Proposition 10. Let q̄ = (X̄, W̄ , Q̄) be an assignment-scheduling solution for the MP. Let

Θq̄(q) =
∑
i∈Vr

0

∑
j∈Vr

0:
X̄ij=1

(Xij−1)+
∑
k∈K

∑
j∈Vr:
W̄kj=1

(Wkj−1)+
∑
j∈Vr:
Q̄j=1

(Qj−1)−
∑
i∈Vr

0

∑
j∈Vr

0:
X̄ij=0

Xij−
∑
k∈K

∑
j∈Vr:
W̄kj=0

Wkj−
∑
j∈Vr:
Q̄j=0

Qj .

If the assignment-scheduling solution q̄ violates constraints (7.56), a valid feasibility cut for the problem
is

Θq̄(q) ≤ −1. (7.80)

If the assignment-scheduling solution q̄ violates any constraint of the set of constraints (7.55) for a given
node j, a valid optimality cut for the problem is

θr
j ≥ βj(q̄,Γ) + βj(q̄,Γ) ·Θq̄(q). (7.81)

Proof. If we replace the solution q̄ in the expression Θq̄(q), then Θq̄(q) = 0. For any other
solution q̄′ 6= q̄, Θq̄(q) < 0. Therefore, to prohibit the selection of solution q̄ we can add
equation (7.80). Similarly, if q̄ is selected as a solution of the MP, βj(q̄,Γ) + βj(q̄,Γ) ·Θq̄(q) =
βj(q̄,Γ) = Z̄r∗

jΓ, and thus the cost βj(q̄,Γ) is activated as a lower bound for variable θr
jΓ in the

MP. Otherwise, βj(q̄,Γ) + βj(q̄,Γ) ·Θq̄(q) ≤ 0, and the lower bound βj(q̄,Γ) is not activated in
the MP.

7.3.4 Valid inequalities

We adapt the valid inequalities proposed for the MCSRP (Chapter 6) to the RCSRP model
and the LBBR. For the inequalities related to relief path proposed in Propositions 6 and 7 we
redefine dominated path as follows: Given two paths p, p′ ∈ Pd

i such that p 6= p′, we say that p
dominates p′ if Vr

p ⊆ Vr
p′ and wp ≤ wp′ . The equations are the same as presented in Proposition

6 and 7. The inequalities related to routing decisions proposed in Proposition 8 are added to the
RCSRP model, but they are not used in the LBBR since the LBBR does not consider routing
decisions explicitly. On the other hand, inequalities proposed in Proposition 9 are modified and
added to the RCSRP model and to the LBBR as follows:

Zr
jγ ≥ Zr

iγ + ρ∗kij + δkj −M(2−Xij −Wkj), ∀ k ∈ K, i ∈ Vr
0 , j ∈ Vr, γ = 0, . . . ,Γ, (7.82)

Zr
jγ ≥ Zr

i(γ−1) + ρ∗kij + δkj + δ̂kj −M(2−Xij −Wkj), ∀ k ∈ K, i ∈ Vr
0 , j ∈ Vr, γ = 1, . . . ,Γ, (7.83)

Zr
jγ ≥ (ρ∗k0j + δkj) ·Xk0j +

∑
i∈Vr

((ρ∗k0i + δki + ρ∗kij + δkj) ·Xkij), ∀ k ∈ K, j ∈ Vr. (7.84)

Inequalities (7.82)-(7.84) are for the RCSRP model. For the LBBR model, we replace Zr
iγ

with θr
iγ .

7.3.5 Metaheuristic algorithms

The metaheuristic algorithms GA and SA proposed for the SCSRP in Section 5.3 are adapted to
the RCSRP. The main changes consist on the consideration of two new local search operators.
An exchange operator, in which two damaged nodes allocated to different crews are randomly
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selected and exchanged, and an insertion operator that randomly takes a damaged node and
insert it into the schedule of one crew. Another relevant change is that instead of using the
feasibility and optimality check algorithm to verify the feasibility and cost of the schedules,
we resort to the subproblem SP (7.58)-(7.79). In the computational experiment presented in
Section 7.4, we will consider only the SA metaheuristic. The GA metaheuristic was tested to
solve the RCSRP in some preliminary experiments, but its performance was significantly worse
than SA. Remember that GA must check feasibility and optimality twice at each iteration (see
Algorithm 5), while SA need to check feasibility and optimality only once per iteration (see
Algorithm 7). In the RCSRP, the evaluation of the cost and feasibility of the solutions in
the metaheuristics requires to solve the subproblem SP, which is an MIP model and therefore
significantly deteriorates the performance of GA.

7.4 Computational results

In this section, we report the computational performance of the proposed robust approach. Our
specific goals are threefold. The first goal is studying the behavior of the RCSRP via a general-
purpose optimization software. The second goal relies on evaluating the efficiency of the tailored
solution methods in providing good-quality solutions within a plausible running time. The last
goal is investigating the quality of the robust solutions.

All the algorithms were coded in C++ programming language and run on a Linux PC with
an AMD Opteron 6172 processor with 16.0 GB of RAM and a single thread. Benders cuts
are added using the Callback classes available in the Concert Technology Library. The RCSRP
model and the MP and SP subproblems were solved by CPLEX Optimization Solver 12.8. To
avoid running out of memory, we allow CPLEX to store the branch-and-bound tree in a file.
As we use lazy constraints Callback, CPLEX automatically turns off nonlinear reductions and
dual reductions. The stopping criterion on CPLEX was either the elapsed time exceeding the
time limit of 3,600 seconds or the optimality gap being smaller than 10−4. All the remaining
parameters of CPLEX were kept at their default values. For the metaheuristic, the stopping
criterion was either the elapsed time exceeding the time limit of 3,600 seconds or performing
500 iterations without improving the best solution. The algorithms were tested using the CS
instance classes for the MCSRP presented in Section 6.4.1. CS instances are based on the 2011
megadisaster of the Serrana Region in Rio de Janeiro, Brazil. The deviation of the repair times
was assumed as δ̂ki = αδki with α = 0.1, 0.25, 0.5. To test the performance of the model and
solution methods, we consider Γ = 0, 1, 3 for the instances with 6 damaged nodes, Γ = 0, 3, 5 for
the instances with 10 damaged nodes and Γ = 0, 4, 8 for the instances with 14 damaged nodes.
By combining the Γ and α values for the different instances classes, we tested 1,596 instances
in total. Table 7.1 summarizes the solution methods used in the experiments. All strategies use
the valid inequalities proposed for the MCSRP, as described in Section 7.3.4.
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Table 7.1: Solution strategies.
Strategy Description
M-RCSRP MIP model (7.6)-(7.49).
B&Ch LBBR model (7.50)-(7.57) solved by the branch-and-check algorithm.
SA Simulated annealing metaheuristic.

SA-B&Ch Warm-start the B&Ch using a solution from SA.

7.4.1 Computational performance of the solution approaches

In this section, we analyze the performance of the solution approaches for the RCSRP. Table 7.2
shows for each approach the total number of instances (#ins), the number of instances for which
the approach finished with feasible and optimal solutions (#feas, #opt), each one followed by
the corresponding percentage with respect to the total number of instances (%feas, %opt), the
average upper and lower bounds, the average relative gap in percentage, and the average elapsed
time.

Table 7.2: Comparison of the solution approaches.
Solution Avg. upper Avg. lower Avg. Avg. time
method #ins #feas %feas #opt %opt bound bound gap (%) (seconds.)
M-RCSRP 1,596 834 52.26 248 15.54 311,629 197,946 41.08 2,877.16
B&Ch 1,596 1,151 72.12 347 21.75 302,344 200,521 38.21 2,408.73
SA 1,596 1,596 100.00 NA NA 258,562 NA NA 1,277.16
SA-B&Ch 1,596 1,596 100.00 534 33.46 260,429 211,321 20.83 2,160.73

*NA: Not available.

The strategy M-RCSRP found optimal solutions for only 15.54% of the cases (834 instances)
and failed at finding feasible solutions in 47.74% of the cases. The B&Ch algorithm increased
the number of optimal solutions to 1,151 (21.75%) and was not able to provide a feasible solution
in only 27.88% of the cases. The SA was able to find feasible solutions for all tested instances.
Also, on average, the upper bound obtained by SA was 14.48% smaller than in the B&Ch.
Additionally, the SA metaheuristic improves the elapsed time by 46.98%, on average, in relation
to B&Ch. Finally, providing an initial solution with SA to warm-start the B&Ch algorithm
seems to be a good strategy, as SA-B&Ch reduced the upper bound by 13.86%, in relation to
the B&Ch algorithm. Regarding the average elapsed time, SA-B&Ch is faster than B&Ch, but
it has a higher average elapsed time than SA. Finally, regarding the gap and lower bound, the
improvements were 5.38% and 45.48%, respectively, with respect to B&Ch.

Table 7.3 shows the average results of the SA-B&Ch strategy for instances with different
numbers of damaged nodes and different values of Γ and α. Unsurprisingly, the cost of the
solutions increases for higher values of Γ and α. Also, instances with higher Γ and α values are
harder to solve. For example, for instances with α = 0 (deterministic case), the average gap and
elapsed time were 17.74% and 2,077 seconds, respectively. Such values increased to 24.29% and
2,542 seconds in the instances with α = 0.5. Particularly, the performance of the method in the
deterministic case is significantly better than in the cases when considered Γ > 0 and α > 0.

127



Table 7.3: Average results of the SA-B&Ch method.
# damaged Avg. upper Avg. lower Avg. Avg. Time

nodes Γ α #ins #opt %opt bound bound gap (%) (seconds)
0 0.00 84 73 86.90 177,293 174,549 2.55 760.38

0.10 84 67 79.76 182,404 178,005 3.41 892.49
1 0.25 84 58 69.05 192,188 183,525 5.51 1,114.67

6 0.50 84 57 67.86 201,587 191,407 6.05 1,004.27
0.10 84 59 70.24 182,952 177,365 4.05 1,008.87

3 0.25 84 51 60.71 194,539 184,209 6.31 1,191.04
0.50 84 48 57.14 206,148 192,624 7.56 1,213.74

0 0.00 72 26 36.11 241,687 206,807 20.43 2,173.08
0.10 72 18 25.00 249,614 203,136 24.62 2,624.73

3 0.25 72 12 16.67 270,872 220,179 24.71 2,448.89
10 0.50 72 12 16.67 292,145 222,568 29.82 2,898.92

0.10 72 12 16.67 254,934 204,514 25.78 2,900.83
5 0.25 72 12 16.67 273,261 220,048 25.47 2,843.95

0.50 72 11 15.28 292,884 227,089 28.46 2,970.60
0 0.00 72 5 6.94 298,418 226,086 30.24 3,299.60

0.10 72 3 4.17 314,151 222,169 35.28 3,552.85
4 0.25 72 2 2.78 332,746 252,848 30.01 3,576.68

14 0.50 72 2 2.78 370,059 261,091 35.45 3,574.44
0.10 72 2 2.78 318,012 226,490 34.78 3,548.65

7 0.25 72 2 2.78 334,865 231,713 36.80 3,509.43
0.50 72 2 2.78 381,221 257,597 38.43 3,590.70

7.4.2 Robustness analysis

We designed a robustness analysis based on a Monte Carlo simulation to evaluate the quality
of solutions resulting from the robust optimization approach. The simulation was performed by
generating N = 10,000 random uniform realizations for repair times in the half-interval [δki, δki+
δ̂ki] for all i ∈ Vr. Let χαΓ be the solution of the RCSRP for a given budget of uncertainty Γ
and deviation α. For each run (realization) r of the simulation, we fixed the assignment and
scheduling decisions (Qi,Wik, Xij), the routing decisions (Peij , Nlij , Rlhj) and the relief path
decisions (Yej , Vlj) from the solution χαΓ and calculate the latency LTi = Zd

i + ∑
e∈E teYei for

each demand node i ∈ Vd.
Let FO0(χαΓ) be the total cost of the solution χαΓ and LTi0(χαΓ) be the latency of demand

node i in the solution χαΓ. Similarly, let FOr(χαΓ) be the total cost of the run r when fixed
the solution χαΓ and LTir(χαΓ) be the latency of demand node i when fixed the solution χαΓ in
the run r. We call FO0 and LTi0 as the “promise” total cost and latency, while FOr and LTir
are the “actual” total cost and latency. Then, we say that there is a cost violation in a run r of
the simulation if the promise cost is smaller than the actual cost, i.e., FO0 < FOr. Similarly,
we say that there is a latency violation in a run r of the simulation if the promise latency is
smaller than the actual latency, i.e., LTi0 < LTir, for some demand node i ∈ Vd. Based on
these definitions, we propose three performance measures for the quality of the solution χαΓ as
follows:

• Price of robustness (PoR). PoR is defined as FO0(χαΓ)−FO0(χ00)
FO0(χ00) · 100% for a given solution

χαΓ, in which FO0(χ00) represents the cost of the deterministic problem.

• Probability of cost violation (PCV). Given a solution χαΓ, PCV is defined as the fraction
of runs (out of N) for which FO0(χαΓ) < FOr(χαΓ).
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• Probability of latency violation (PLV). Given a solution χαΓ, PLV is defined as the fraction
of runs (out of N) for which LTi0(χαΓ) < LTir(χαΓ), for some demand node i ∈ Vd. We
say that a solution χαΓ is immunized against uncertainty if LTi0 < LTir∀r = 1, ..., N .

We analyze the robustness of the solutions of the instances with 10 damaged nodes, for which
we run additional experiments with α = 0.25 and Γ = 0, 1, 2, 3, 4, 5. The average performance
measures for the considered instances with different values of β and number of crews (k) are
presented in Table 7.4 and Figure 7.2. Recall that β indicates the factor by which the distance
between the depot and the demand nodes can increase with respect to the shortest distance.
Since the instances were not solved to optimality, the price of robustness for some few cases can
decrease for increasing values of Γ.

Table 7.4: Average results of the performance measures.
β values # vehicles

Γ β =5 β =10 β =25 β =50 Avg. k = 1 k = 3 k = 5 Avg.
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 9.37 10.07 9.25 4.95 8.41 7.68 9.44 8.95 8.69

Price of 2 11.74 11.78 11.84 6.23 10.40 10.81 11.11 9.74 10.55
robustness 3 11.97 11.78 11.08 5.93 10.19 11.30 10.21 9.40 10.30

(%) 4 12.17 11.93 11.37 5.91 10.34 11.59 10.33 9.41 10.44
5 12.18 12.03 11.37 5.91 10.37 11.60 10.43 9.41 10.48
0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1 24.90 24.79 21.75 10.54 20.50 20.50 20.40 19.78 20.23

Runs with 2 6.31 3.21 3.19 2.73 3.86 5.29 4.40 0.04 3.24
cost violation 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(%) 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Runs with 1 87.46 81.24 82.71 58.93 77.59 88.91 71.61 59.01 73.18
latency 2 8.58 3.36 3.32 2.75 4.50 5.96 4.42 0.08 1.78
violation 3 0.32 0.49 0.17 0.00 0.25 0.60 0.00 0.00 0.20

(%) 4 0.01 0.05 0.00 0.00 0.02 0.04 0.00 0.00 0.01
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note in Table 7.4 and Figure 7.2 that the deterministic approach (Γ = 0) fails in protecting
against uncertainty for the considered instances. Indeed, solutions with Γ = 0 have cost and
latency violation in 100% of the runs of the simulation. Additionally, the promise latency is
significantly subestimated in relation to the actual latency value of the demand nodes. When
higher values of Γ are considered, the probabilities of cost and latency violation are considerably
reduced.

It is interesting to observe that we may find latency violation in a solution with no cost
violation. For example, for Γ = 3, β = 5 the probability of cost violation is null while the
probability of latency violation is 0.32% (3,200 out of 10,000 runs). In fact, the probability
of latency violation is always higher than the probability of cost violation. The reason of this
behavior is that, in the total cost OFr, the high values of latency for some demand nodes are
covered by some other demand nodes with small latency values.

It seems that the robust solutions strike a good trade-off between decreasing the probability
of cost and latency violation and not being too conservative. Note that the consideration of one
repair time assuming the worst-case value (Γ = 1) reduces significantly (more than 70%) the
probability of cost violation in relation to the deterministic problem (Γ = 0) while that the price
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Figure 7.2: Average results of the performance measures.

130



of the robustness increases less than 11%. However, the impact of increasing the Γ values is less
significant in the latency violation. In some cases, the probability of latency violation decreases
less than 15% from Γ = 0 to Γ = 1. With Γ = 5, the robust solutions seem to be protected
against cost and latency violation and the price of robustness is smaller than 13%.

The probability of cost and latency violation is smaller for higher values of β and when more
vehicles are available to perform the repair operations. For Γ = 1, for example, the probability
of latency violation is 87.47% when β = 5, whereas it decreases to 58.93% when β = 50. Also
for Γ = 1, the probability of latency violation decreases from 88.91% when k = 1 to 59.01%
when k = 3. In the RCSRP, higher values of β and crews imply, on average, in fewer damaged
nodes considered in the schedules of the crews, as discussed in Section 6.4.3, and thus in fewer
uncertain parameters considered in each schedule.

7.5 Final remarks of the chapter

In this chapter, we introduced the robust crew scheduling and routing problem (RCSRP) in road
restoration. We extended the best model developed in Chapter 6 to consider uncertain repair
times via a robust optimization. The resulting robust optimization model is based on recursive
equations that verify for each damaged node in the schedule of the crews, if its repair time
must be considered as one attaining its worst-case value. We also proposed a tailored B&Ch
approach to solve the problem, based on the decomposition of the robust optimization model
into a master problem with assignment, scheduling and relief paths decisions and a subproblem
with relief path decisions. Additionally, we adapted the simulated annealing (SA) metaheuristic
proposed for the single crew version of the problem (Section 5.3) to the RCSRP.

As expected, the difficulty of the problem increases after we incorporate uncertainty into
repair times. The robust optimization model failed at finding even feasible solutions for almost
half of the considered instances. The B&Ch algorithm found feasible solutions for most of the
instances, but the average gap was higher than 35%. On the other hand, the SA was able to
obtain feasible solutions for all the tested instances. Finally, the use of an initial solution from
the SA to warm-start the B&Ch was the strategy that presented the best results, finding feasible
solutions for all the instances and with an average gap of 20%.

The robustness analysis evidenced that the deterministic approach fails in protecting against
uncertainty for the considered instances. In the robust approach, cost and latency violation
measures were defined. The results indicate that the probability of cost and latency violation is
significantly reduced when increasing the budget of uncertainty. The robust solutions strike a
good trade-off between decreasing the probability of cost and latency violation and not increasing
significantly the cost of the solutions. The results also indicate that the probability of cost and
latency violation is smaller for higher values of β and when more vehicles are available to perform
the repair operations.
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Chapter 8

Conclusions

In this thesis we addressed the crew scheduling and routing problem (CSRP) in road restoration.
The problem is typically found in post-disaster situations where the damaged network must be
repaired as quickly as possible to promote an effective short-term response. The joint presence
of scheduling and routing decisions explains the complexity of solving such problem, for which
commercial solvers cannot be efficiently used to straightforwardly solve the available formula-
tions, even for small-scale instances. In Chapters 4 and 5, we proposed solution approaches
based on Benders decomposition for the standard deterministic variant of the problem, which
considers a single crew available to perform the restoration activities. Chapter 4 developed the
first exact BBC solution approach that is able to obtain feasible solutions and lower bounds for
all instances from the literature, including very large-scale instances. We employed feasibility
cuts, multiple optimality cuts, and specialized valid inequalities, which have enhanced the per-
formance of the BBC approach. The graph reduction strategy for deriving cuts from networks
with fewer nodes also improves the performance of the BBC.

In Chapter 5 we proposed two metaheuristics, an enhanced BBC algorithm and a hybrid
approach (HBBC) to solve the CSRP. The metaheuristics are the first genetic algorithm and
simulated annealing proposed for the CSRP. They are based on the decomposition of the prob-
lem into smaller subproblems and the use of specialized algorithms to evaluate the candidate
solutions. The BBC is based on an improved Benders reformulation of the problem and enhances
the decomposition proposed in Chapter 4 by using a different variable partitioning scheme. The
HBBC is an exact hybrid method that uses a metaheuristic to obtain good-quality solutions
at early stages of the search tree as well as to improve the performance of solving the master
problem by exploring the neighborhood of the incumbent solutions to generate more effective
Benders cuts. The results of extensive computational experiments with benchmark instances
provide evidence that the combination of the metaheuristic with the BBC, resulting in the hybrid
algorithm HBBC, significantly reduces the objective value of the solutions and the time spent
to find good-quality solutions. The improvements obtained with the proposed approaches may
have great value to aid decision making in practice. The reduction in the value of the solutions
directly impacts the time at which the demand nodes are accessible from the supply node, thus
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reducing the time that victims in the affected areas wait for supplies, evacuation, rescue and
medical assistance.

In Chapter 6 we introduced a new deterministic variant of the problem that addresses multi-
ple heterogeneous crews available to perform the restoration activities. Three novel mathemat-
ical formulations and new valid inequalities were devised for this new variant of the problem.
The first two formulations are based on the three-index and two-index formulation of the VRP.
The third formulation eliminates a few variables and introduces new constraints to reduce the
symmetry in the solutions of the problem. The valid inequalities are based on the dominance of
the paths between nodes in the damaged network. The three mathematical formulations showed
improvement with the addition of these valid inequalities. From the analysis of a practical case,
we explicitly provide insights for the decision-makers in practice. The results indicate that, as
expected, the use of more crews to solve the problem significantly reduces the time required to
restore the accessible of the network. The multiple crews mainly affect the worst-case accessibil-
ity time between the demand nodes, thus providing more equitable accessibility times. Usually,
the farthest damaged nodes were allocated to the crews that had the shortest travel time, while
the damaged nodes with higher repair time were allocated to crews that can perform a faster
restoration.

Finally, in Chapter 7 we extended the best model developed in Chapter 6 to incorporate
uncertain repair times via robust optimization, based on recursive equations recently proposed
to consider uncertainty in the vehicle routing problem. The difficulty of the problem increases
when we incorporate uncertainty into the repair times. A Benders decomposition-based method
was developed to solve the robust CSRP (RCSRP). The metaheuristic approaches developed
in Chapter 5 for the single crew version of the problem were adapted to the RCSRP and the
SA algorithm performed significantly better than GA in this variant. The proposed approaches
were able to obtain robust feasible solutions for all the considered instances. The robustness
analysis evidenced that the deterministic approach fails in protecting against uncertainty for the
considered instances. On the other hand, the robust solutions strike a good trade-off between
decreasing the probability of cost and latency violation and not increasing significantly the cost
of the solutions.

8.1 Future research

There are several possible future research directions for the continuity of this study, some of
them are described as follows:

• Integrated relief distribution decisions. In the literature, a few authors have con-
sidered the single crew scheduling and routing problem with integrated relief distribution
decisions (Shin et al., 2019). It would be interesting to integrate the relief distribution
decisions in the robust heterogeneous multicrew scheduling and routing problem.

• Multiple depots. In future researches, we can also consider the integration of decisions
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related to the location of multiple depots as well as the allocation of crews to depots.

• Uncertainty in other parameters. Parameters as the travel time and demand could be
particularly difficult to estimate in post-disaster situation, and they can have a significant
impact in the solutions of the problem, particularly if relief distribution decisions are
considered together with road restoration decisions. Hence, an interesting topic of research
is to consider the uncertainty in these parameters of the problem.

• Dynamic approaches. An alternative way to reduce the impact of ignoring the uncer-
tainties in the problem is the development of dynamic approaches that can incorporate
information about the disaster in real time, thus providing solutions to the problem ac-
cording to the most updated information.

• Solution methods. Alternative decomposition and formulations of the problem could
be explored. Particularly, solution methods based on column generation could have a
good performance at solving the addressed variants of the CSRP. The similarity of the
CSRP with the vehicle routing problem could be a starting point to develop this kind of
methods. Also, the properties of path dominance defined for the problem could help in
the development of labeling algorithms.

• Alternative objective functions. Alternative objective functions are a recent trend
of research in the humanitarian logistics field. Social concern objective functions are im-
portant in the post-disaster operation to perform fair, equitable and effective response
operations. These functions could be explored in the CSRP, specially in variants with
integrated relief distribution decisions.

• Practical applications of the proposed models and methods. The application of
the proposed models and solution methods in real disaster situations could definitively be
a good direction of research. The proposed models and methods are a first step to further
develop faster solution approaches and user-friendly decisions-support tools that can help
decision-makers in the aftermath of disasters.
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Appendix A

VIs related to routing decisions for
the second and third MCSRP
formulations

Inequalities (A.1)-(A.4) are the valid inequalities related to routing decisions for MCSRP2.
Inequalities (A.1),(A.2) are equivalent to inequalities (6.75),(6.76) to select non-dominated paths
over dominated paths. Inequalities (A.3), (A.4) are equivalent to inequalities (6.78), (6.79) to
set lower bounds for the variables Zr

j .∑
e∈Ef∗

kij

Peij +
∑

l∈Vu
f∗

kij

Nu
lij ≥ (|Ef∗

kij
|+ |Vu

f∗
kij
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j ≥ Zr

i + tkp∗
kij

+ δkj −M · (2−W ′kj −X ′ij), ∀ k ∈ K, i ∈ Vr
0 , j ∈ Vr. (A.4)

Inequalities (A.3),(A.4) are the same for MCSRP3. Additionally, we can state the following
valid inequalities for this formulation.
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Inequalities (A.5)-(A.6) are defined for i = 0 and are equivalent to inequalities (A.1)-(A.2).
Inequalities (A.7)-(A.8) are defined for i 6= 0 and are equivalent to inequalities (A.1)-(A.2).
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Appendix B

Instance generation from the real
case disaster

The Megadisaster of the Serrana region of Rio de Janeiro affected different cities and caused
traffic blockages due to landslides and flooding in different points of six of the main highways
(Rio de Janeiro, 2011). Initially, we have assumed one damaged node in each of the affected
highways. Since some of the highways were affected in more than one location, we also generate
instances considering a higher number of damaged nodes. The demand in the different cities is
shown in Table B.1. For cities 1-13 the demand is equal to the number of affected people in the
disaster in 2011. There was no reported demand for cities 14-20. Thus, we generate the demand
of the cities 14-20 as a proportion of their total population.

Table B.1: Demand of the affected cities (Rio de Janeiro, 2011).
City Demand

1 Nova Friburgo 6,637
2 Cordeiro 43
3 Macuco 52
4 Bom Jardim 2,669
5 São Sebastião do alto 107
6 Santa Maria Madalena 328
7 Petrópolis 7,214
8 São José do Vale do Rio Preto 395
9 Três Rios 9
10 Areal 737
11 Sapucaia 40
12 Teresópolis 17,029
13 Sumidouro 801
14 Conceição de Macabu 782
15 Casimiro de Abreu 1305
16 Trajano de Moraes 454
17 Cachoeiras de Macacu 2005
18 Duas Barras 406
19 Cantagalo 731
20 Carmo 643

Total 42,387

The damaged network based on the real disaster is shown in Figure B.1. The real distance
of the arcs was calculated via Google Maps®. The travel time for a single crew was computed
based on the distance and assuming a speed of 25 kilometers per hour for the crew. We have not
found information about the repair time of the damaged nodes. This way, for a single crew, we
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have generated the repair time based on the travel time (which is proportional to the distance)
on the highway where the damaged node is located. The idea was to generate higher repair
times for longer highways, in general higher than the travel times. Thus, for a single crew, the
repair time of a damaged node i located in a given arc (highway) e was randomly generated from
the interval [2 · timee , 5 · timee], in which timee is the travel time on arc e. Travel and repair
times for the multiple crews were generated from the values of a single crew, as described in
Section 6.4.1. The maximum distance from the depot to the demand nodes (ldi ) was calculated
as in the literature (Maya-Duque et al., 2016; Moreno et al., 2019), using a parameter β that
indicates the factor by which the distance between the depot and the demand nodes can increase
with respect to the shortest distance. Thus, ldi = (1 + β) · dist0i, in which dist0i is the shortest
distance between the depot and the demand node i. We consider six values for β (0.05, 0.1,
0.25, 0.5, 1, ∞), where ∞ represents a sufficiently large number indicating that the constraint
imposing the maximum distance ldi is relaxed.

Depot 

Demand nodes

Damaged nodes

Transshipment 
nodes

Figure B.1: Damaged network based on the real disaster.

From the damaged network of Figure B.1, we generate seven classes of instances. The
class CS0 has 6 damaged nodes located in the highways originally affected by the disaster in
2011. Furthermore, class CS0 considers the first 13 cities (cities 1-13) as the demand nodes.
Considering the six values for β, a total of 6 instances were generated in class CS0. In class CS1,
we have generated 3 damaged networks considering 6, 10 and 14 damaged nodes. Damaged
networks in a same class share some damaged nodes. Let CS1-|Vr| be the damaged network of
class CS1 with |Vr| damaged nodes. In the damaged network CS1-6, the 6 damaged nodes were
located in 6 randomly selected arcs. Similar to the categorization used in Akbari and Salman
(2017b), we divide the arcs into three groups according to their proximity to the affected areas, as
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high, medium and low-risk arcs. Then, for the location of a given damaged node, the probability
of selecting a high, medium and low-risk arc was set to 0.15, 0.35, and 0.5, respectively. The
damaged network CS1-10 considers the 6 damaged nodes in CS1-6 and 4 additional randomly
located damaged nodes. Similarly, the damaged network CS1-14 considers the 10 damaged
nodes in CS1-10 and 4 additional randomly located damaged nodes. For each one of the three
damaged networks, the six values of β were considered, totaling 18 instances in class CS1. The
same procedure was used to generate classes CS2 and CS3. Classes CS1-CS3 consider the first
13 cities in Table B.1 as the demand nodes. Finally, classes CS4-CS6 are based on the the
same damaged networks of classes CS1-CS3, but considering all the cities presented in Table
B.1 as the demand nodes. Thus, there are 114 instances based on the real-world case. We run
experiments with 1, 3 and 5 crews, totaling 342 CS instances.
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Appendix C

Additional computational results for
the SCSRP

Tables C.1 and C.2 present the average results of the BBC and HBBC solution methods for
different classes of instances grouped according to the size of the network.

Table C.1: Comparison of the exact BBC solution approaches.
Solution Instance Avg. upper Avg. lower Avg. Avg. time Avg. best
method classes #ins #opt %opt bound bound gap (%) (sec.) time1(sec.)
BBC1 1, 2, 3 60 43 71.67 30,502 24,411 8.14 1,139.93 1,044.04

4, 5, 6 60 30 50.00 6,336 10,325 9.40 1,839.95 1,680.40
7, 8, 9 60 24 40.00 19,330 15,950 16.98 2,193.77 2,023.08

10, 11, 12 60 41 68.33 38,539 31,004 7.31 1,236.69 1,174.83
13, 14, 15 60 20 33.33 8,196 19,246 3.06 2,526.45 2,328.36
16, 17, 18 30 8 26.67 297,915 1,768 73.33 2,782.49 2,503.31
19, 20, 21 30 2 6.67 171,547 12,581 63.13 2,959.21 2,765.48
22, 23, 24 30 1 3.33 538,291 26,534 72.45 3,407.97 3,137.27

All 390 169 43.33 113,048 17,427 28.73 2,238.42 2,058.13
BBC2 1, 2, 3 60 43 71.67 32,151 25,295 6.72 1,073.87 1,056.54

4, 5, 6 60 30 50.00 8,627 6,520 7.74 1,813.94 1,573.02
7, 8, 9 60 24 40.00 15,232 7,226 13.91 2,167.96 1,895.85

10, 11, 12 60 43 71.67 38,694 31,977 6.29 1,057.97 1,007.75
13, 14, 15 60 20 33.33 8,196 7,881 2.29 2,472.36 2,194.44
16, 17, 18 30 8 26.67 297,915 32,875 51.86 2,754.94 2,258.25
19, 20, 21 30 2 6.67 171,547 15,830 55.38 2,929.91 2,615.22
22, 23, 24 30 1 3.33 538,291 36,207 66.48 3,374.23 2,987.47

All 390 171 43.85 110,763 20,494 25.03 2201.55 1,889.79
BBC3 1, 2, 3 60 43 71.67 32,151 25,328 6.71 1,080.51 1,003.94

4, 5, 6 60 30 50.00 8,704 6,528 7.76 1,815.49 1,595.92
7, 8, 9 60 24 40.00 15,306 7,222 13.93 2,224.59 2,127.39

10, 11, 12 60 43 71.67 38,694 31,978 6.29 1,059.75 1,020.17
13, 14, 15 60 20 33.33 8,205 7,881 2.29 2,474.54 2,030.34
16, 17, 18 30 8 26.67 295,963 32,881 51.78 2,758.30 2,250.02
19, 20, 21 30 2 6.67 166,133 15,834 55.30 2,926.88 2,606.95
22, 23, 24 30 1 3.33 526,655 36,212 65.85 3,324.88 3,051.20

All 390 171 43.85 110,291 20,499 24.99 2,203.59 1,891.82
BBC3* 1, 2, 3 60 43 71.67 32,151 26,098 5.51 1,153.71 1,135.08

4, 5, 6 60 30 50.00 8,897 7,044 6.50 1,814.71 1,598.69
7, 8, 9 60 24 40.00 15,159 7,646 12.68 2,098.03 1,734.70

10, 11, 12 60 43 71.67 38,694 32,564 5.56 1,101.18 1,052.99
13, 14, 15 60 20 33.33 8,541 8,131 2.20 2,470.04 2,192.38
16, 17, 18 30 8 26.67 357,327 33,251 53.27 2,751.29 2,205.26
19, 20, 21 30 2 6.67 198,129 16,378 54.31 2,928.72 2,624.16
22, 23, 24 30 1 3.33 580,125 36,540 66.57 3,424.34 3,033.84

All 390 171 43.85 117,355 21,157 24.67 2,215.35 1,910.44
1 Time spent to find the best upper bound.
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Table C.2: Comparison of the exact HBBC solution approaches.
Solution Instance Avg. upper Avg. lower Avg. Avg. time Avg. best
method classes #ins #opt %opt bound bound gap (%) (sec.) time1(sec.)
HBBC1 1, 2, 3 60 48 80.00 31,232 25,355 6.06 753.86 0.28

4, 5, 6 60 34 56.67 19,267 11,038 17.12 1,562.06 1.62
7, 8, 9 60 29 48.33 32,326 16,930 23.99 1,872.77 9.09

10, 11, 12 60 47 78.33 38,345 31,782 6.33 815.79 0.63
13, 14, 15 60 21 35.00 52,084 26,009 27.05 2,343.41 24.79
16, 17, 18 30 10 33.33 55,102 32,789 23.20 2,402.79 88.30
19, 20, 21 30 8 26.67 49,574 15,830 43.12 2,644.80 268.34
22, 23, 24 30 4 13.33 99,715 36,271 45.67 3,172.22 340.58

All 390 201 51.54 42,377 23,625 21.01 1,762.74 59.23
HBBC2 1, 2, 3 60 51 85.00 31,232 26,645 4.48 634.24 0.19

4, 5, 6 60 38 63.33 19,038 11,527 15.04 1,331.01 2.42
7, 8, 9 60 30 50.00 32,154 17,132 23.06 1,824.65 7.15

10, 11, 12 60 47 78.33 38,345 32,075 5.96 817.21 0.88
13, 14, 15 60 26 43.33 51,997 26,584 24.81 2,063.03 30.03
16, 17, 18 30 12 40.00 54,637 32,985 22.25 2,174.72 103.51
19, 20, 21 30 8 26.67 49,078 15,942 42.17 2,648.38 356.15
22, 23, 24 30 3 10.00 99,181 36,309 45.60 3,241.94 661.24

All 390 215 55.13 42,187 24,089 19.75 1,646.56 92.48
HBBC2* 1, 2, 3 60 51 85.00 31,232 27,396 3.54 630.57 0.32

4, 5, 6 60 38 63.33 19,006 12,340 12.54 1,333.82 2.57
7, 8, 9 60 30 50.00 32,145 18,209 20.86 1,864.03 13.77

10, 11, 12 60 47 78.33 38,345 32,755 5.23 806.55 1.48
13, 14, 15 60 26 43.33 51,963 27,505 23.57 2,068.16 32.22
16, 17, 18 30 12 40.00 54,637 33,369 20.86 2,172.90 155.64
19, 20, 21 30 8 26.67 48,934 16,482 40.07 2,648.29 327.90
22, 23, 24 30 3 10.00 99,096 36,854 43.56 3,240.62 499.23

All 390 215 55.13 42,158 24,855 18.15 1,651.39 83.35
GR-HBBC2* 1, 2, 3 60 54 90.00 31,232 30,076 1.02 713.16 0.14

4, 5, 6 60 42 70.00 19,006 15,667 5.27 1,086.71 2.20
7, 8, 9 60 32 53.33 32,145 25,431 9.49 1,744.60 5.51

10, 11, 12 60 49 81.67 38,345 36,122 2.10 737.94 2.88
13, 14, 15 60 31 51.67 51,963 36,521 12.72 1,746.30 74.48
16, 17, 18 30 13 43.33 54,588 36,713 14.88 2,047.63 301.98
19, 20, 21 30 12 40.00 48,757 19,810 31.94 2,173.21 290.58
22, 23, 24 30 6 20.00 98,812 43,716 33.71 2,881.99 550.99

All 390 239 61.28 42,118 29,836 10.90 1,473.87 101.07
1 Time spent to find the best upper bound.
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Appendix D

Additional computational results for
the MCSRP

Tables D.1 and D.2 show the average results of the three proposed formulations with and without
the valid inequalities for different numbers of crews. The average upper bound, lower bound,
and gap presented in columns 9 to 11 are computed using all the instances with feasible solutions
and hence they cannot be compared directly for different approaches since some of them do not
return feasible solutions for some instances. On the other hand, the average upper bound, lower
bound and gap presented in columns 6 to 8 are computed using only the results of instances for
which all solution approaches found feasible solutions and hence they can be directly compared.
These values confirm the discussion presented in Section 6.4.2, showing that the VIs help to
improve the average gap, upper bound and lower bound of the solutions.

Tables D.3 and D.4 show the average results of the MCSRP3+VIs and MCSRP3+VIs*
strategies, respectively, for the different classes of instances.
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Table D.1: Average results of the three MCSRP models with and without the VIs for the
instances from the literature.

Common feasible instances1 All feasible instances2
Solution # Avg. time Avg. upper Avg. lower Avg. gap Avg. upper Avg. lower Avg. gap
method Crew %Feas %Opt (seconds) bound bound (%) bound bound (%)

MCSRP1
1 84.72 75.00 994.15 8,510 7,103 3.21 9,091 7,119 4.31
3 84.03 72.22 1,088.66 3,976 3,244 4.07 3,976 3,244 4.07
5 84.72 72.22 1,113.14 4,000 2,903 4.86 3,950 2,872 4.78

MCSRP2
1 88.89 76.39 926.83 8,456 7,905 1.16 10,098 8,026 3.82
3 87.50 65.28 1,275.78 3,953 3,194 3.83 4,387 3,304 5.48
5 86.81 66.67 1,310.07 3,702 2,896 4.76 3,935 2,884 6.49

MCSRP3
1 88.89 77.08 952.37 8,609 7,263 2.45 10,447 7,291 5.33
3 87.50 68.06 1,208.17 4,055 2,904 6.12 4,352 3,015 7.04
5 88.19 66.67 1,293.73 3,920 2,796 5.88 4,129 2,752 8.28

MCSRP1 + VIs
1 100.00 86.11 512.33 8,456 8,455 0.00 11,168 9,164 5.61
3 97.92 86.11 552.49 3,924 3,750 0.75 5,039 4,296 3.76
5 97.92 88.89 473.48 3,597 3,596 0.00 4,187 3,754 3.45

MCSRP2 + VIs
1 100.00 87.50 466.59 8,456 8,456 0.00 11,675 9,209 5.64
3 100.00 86.81 574.45 3,923 3,913 0.05 6,615 4,489 5.87
5 100.00 84.72 669.77 3,598 3,552 0.34 4,616 3,891 5.30

MCSRP3 + VIs
1 100.00 87.50 578.49 8,456 8,453 0.01 11,251 9,231 5.42
3 100.00 81.25 734.53 3,930 3,811 0.50 5,562 4,420 5.47
5 100.00 81.94 710.60 3,626 3,464 0.80 4,734 3,725 6.35

1 Values based on solutions of instances that are feasible in all solution approaches.
2 Values based on all the instances with feasible solutions for a given approach.

Table D.2: Average results of the three MCSRP models with and without the VIs for the
instances based on the real case.

Common feasible instances1 All feasible instances2
Solution # Avg. time Avg. upper Avg. lower Avg. gap Avg. upper Avg. lower Avg. gap
method Crew %Feas %Opt (seconds) bound bound (%) bound bound (%)

MCSRP1
1 42.11 39.47 2,223.74 78,474 75,549 3.14 78,474 75,549 3.14
3 31.58 28.07 2,559.94 35,929 33,902 5.02 35,454 33,482 4.88
5 32.46 31.58 2,496.00 35,560 34,669 1.58 35,560 34,669 1.58

MCSRP2
1 42.11 38.60 2,156.08 78,467 75,944 2.10 78,467 75,944 2.10
3 34.21 28.95 2,534.52 35,929 33,205 6.26 37,113 34,599 5.78
5 34.21 31.58 2,426.17 35,560 34,669 1.58 38,413 37,568 1.50

MCSRP3
1 42.11 38.60 2,156.10 78,467 75,944 2.10 78,467 75,944 2.10
3 33.33 29.82 2,532.74 35,929 34,483 3.24 38,069 36,699 3.07
5 35.09 32.46 2,395.94 35,560 34,669 1.58 37,912 37,088 1.46

MCSRP1 + VIs
1 93.86 68.42 1,264.27 78,467 78,467 0.00 125,474 111,894 5.55
3 93.86 76.32 1,015.12 35,929 35,929 0.00 69,168 65,841 3.87
5 89.47 67.54 1,302.04 35,560 35,560 0.00 65,888 59,970 7.60

MCSRP2 + VIs
1 97.37 71.93 1,225.11 78,467 78,467 0.00 125,612 113,517 5.13
3 94.74 58.77 1,670.53 35,929 35,929 0.00 71,501 63,627 7.36
5 95.61 52.63 1,873.20 35,560 35,560 0.00 68,479 58,362 10.78

MCSRP3 + VIs
1 100.00 74.56 1,247.62 78,467 78,467 0.00 127,720 115,219 5.26
3 100.00 55.26 1,884.45 35,929 35,929 0.00 80,824 64,543 10.78
5 100.00 52.63 2,024.23 35,560 35,560 0.00 72,640 59,176 13.05

1 Values based on solutions of instances that are feasible in all solution approaches.
2 Values based on all the instances with feasible solutions for a given approach.
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Table D.3: Average results of the MCSRP3+VIs strategy for the different instance classes.
Avg. upper Avg. lower Avg. gap Avg. time

Instances #Crew #Ins #Opt %Opt bound bound (%) (seconds)

L1, L2, L3
1 36 36 100.00 14,121 14,118 0.00 180.65
3 36 33 91.67 6,708 6,453 0.69 407.86
5 36 32 88.89 6,114 5,768 1.09 406.77

L4, L5, L6
1 36 36 100.00 11,101 11,095 0.00 298.64
3 36 31 86.11 4,811 4,669 0.99 533.29
5 36 31 86.11 4,371 4,178 1.56 626.29

L7, L8, L9
1 36 27 75.00 6,395 4,789 7.80 902.51
3 36 27 75.00 3,615 2,956 5.62 902.10
5 36 29 80.56 2,751 2,206 6.44 804.15

L10, L11, L12
1 36 27 75.00 13,389 6,920 13.87 932.17
3 36 26 72.22 7,114 3,603 14.58 1,094.88
5 36 26 72.22 5,699 2,747 16.30 1,005.20

CS0
1 6 6 100.00 19,686 19,686 0.00 0.12
2 6 6 100.00 18,995 18,995 0.00 1.83
3 6 6 100.00 18,976 18,975 0.00 1.96

CS1, CS2, CS3
1 54 43 79.63 106,250 101,232 2.94 1,125.37
2 54 29 53.70 69,936 57,229 9.92 2,060.88
3 54 29 53.70 65,193 53,880 11.83 2,051.85

CS4, CS5, CS6
1 54 36 66.67 161,192 139,821 8.16 1,508.48
2 54 28 51.85 98,581 76,918 12.84 1,917.19
3 54 25 46.30 86,049 68,939 15.71 2,221.30

Table D.4: Average results of the MCSRP3+VIs* strategy for the different instance classes.
Avg. upper Avg. lower Avg. gap Avg. time

Instances #Crew #Ins #Opt %Opt bound bound (%) (seconds)

L1, L2, L3
1 36 36 100.00 14,121 14,120 0.00 191.86
3 36 36 100.00 6,684 6,684 0.00 413.08
5 36 36 100.00 6,026 6,025 0.00 406.98

L4, L5, L6
1 36 36 100.00 11,101 11,101 0.00 326.91
3 36 36 100.00 4,811 4,811 0.00 622.01
5 36 36 100.00 4,361 4,361 0.00 639.57

L7, L8, L9
1 36 27 75.00 6,242 5,103 5.50 903.19
3 36 31 86.11 3,464 3,197 2.32 904.10
5 36 30 83.33 2,644 2,315 3.88 888.68

L10, L11, L12
1 36 27 75.00 12,951 8,916 9.24 1,112.49
3 36 26 72.22 6,325 4,334 10.13 1,106.88
5 36 26 72.22 4,530 3,207 10.26 1,117.06

CS0
1 6 6 100.00 19,686 19,686 0.00 0.22
2 6 6 100.00 18,995 18,995 0.00 1.84
3 6 6 100.00 18,976 18,976 0.00 2.41

CS1, CS2, CS3
1 54 43 79.63 106,142 101,807 2.50 1,292.92
2 54 40 74.07 63,816 60,840 3.20 2,078.90
3 54 34 62.96 61,371 57,419 4.69 2,139.12

CS4, CS5, CS6
1 54 37 68.52 158,404 142,114 6.27 1,654.53
2 54 38 70.37 90,233 83,260 5.62 2,039.23
3 54 31 57.41 84,047 75,483 7.53 2,259.14
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