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The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.

Stephen Hawking



RESUMO

Nos últimos anos, um grande número de pesquisadores tem direcionado seus esforços e

interesses para estudos in vivo dos mecanismos celulares e moleculares na microcirculação

de vários tecidos e em várias condições inflamatórias. O principal objetivo desses estu-

dos é desenvolver estratégias terapêuticas mais eficazes para o tratamento de doenças in-

flamatórias e autoimunes. A análise do recrutamento leucocitário é um passo importante

para entender as interações entre os leucócitos e as células endoteliais na microcirculação

de animais vivos. Realizado preferencialmente através da técnica de microscopia intrav-

ital (MI), esse procedimento geralmente requer a análise visual de um especialista, que é

propensa à intra- e inter-variabilidade do observador, além de ser uma atividade tediosa e

demorada. Tal problema reivindica, portanto, um método automatizado para a detecção e

rastreamento dessas células. Para tanto, este trabalho visa o estudo e o desenvolvimento de

técnicas computacionais para a detecção e rastreamento de leucócitos em imagens de MI.

Para isso, propusemos um arcabouço de desenvolvimento computacional automático que,

após uma etapa de pré-processamento, combina os resultados da detecção quadro-a-quadro

do vídeo (processamento espacial – 2D) com os resultados de uma análise tridimensional

(processamento espaço-temporal – 3D=2D+t) feita em imagens volumétricas formadas pelo

empilhamento de todos os quadros do vídeo. Neste caso, enquanto o processamento 2D visa

a detecção dos leucócitos sem se preocupar com a tarefa de rastreamento, o processamento

2D+t tem o objetivo de auxiliar na análise da dinâmica celular (rastreamento). Nós testa-

mos três abordagens diferentes para o processamento espacial, denominadas MTM-PCA,

MTM-DCNN e DCNN. Nossos resultados foram obtidos por meio de avaliações qualita-

tivas e quantitativas realizadas em seis diferentes vídeos de MI, em que as células detec-

tadas foram comparadas com as marcações manuais de um especialista. Esses resultados

mostraram que a combinação das duas etapas de processamento foi capaz de minimizar a

maioria dos problemas envolvidos na detecção e rastreamento celular em imagens de MI,

como a oclusão e a discriminação adequada das trajetórias das células.

Palavras-chave: Detecção de células, rastreamento de células, microscopia intravital, análise espaço-

temporal, recrutamento leucocitário.





ABSTRACT

Over the last few years, many researchers have directed their efforts and interests toward

in vivo studies of the cellular and molecular mechanisms in the microcirculation of many

tissues under different inflammatory conditions. These studies’ main goal is to develop

more effective therapeutic strategies for the treatment of inflammatory and autoimmune

diseases. Leukocyte recruitment analysis is a crucial step to understand the interactions be-

tween leukocytes and endothelial cells in the microcirculation of living animals. Performed

preferably by the intravital video microscopy (IVM) technique, this procedure usually re-

quires an expert to perform visual analysis, which is prone to the inter- and intra-observer

variability, besides being a tedious and time-consuming task. This problem claims, there-

fore, an automated method to detect and track these cells. To this end, this work aims to

study and develop computational techniques for the detection and tracking of leukocytes in

IVM images. We proposed an automatic computational pipeline where, after a preprocess-

ing stage, we combined the results of frame-basis detection (2D – spatial processing) with

those from three-dimensional analysis (3D=2D+t – spatiotemporal processing) of volumet-

ric images formed by stacking all the video frames. While the 2D processing focuses on

leukocytes detection without worrying about their tracking, 2D+t processing was intended

to assist in the dynamic analysis of cell movement (tracking). We tested three different

detection approaches for the spatial processing, named as MTM-PCA, MTM-DCNN, and

DCNN. Our results were obtained by qualitative and quantitative evaluations performed

over six different IVM videos, where the detected cells were compared with the manual

annotations of an expert. They showed the combination of these both processing stages

minimized most of the problems involved in IVM cell detection and tracking, such as cell

occlusion and the proper discrimination of cell trajectories.

Keywords: Cell detection, cell tracking, intravital video microscopy, spatiotemporal analysis, leukocyte

recruitment.
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Chapter 1
INTRODUCTION

This chapter suits as an introduction to the following chapters, where we present the prob-

lem investigated and all the motivation behind the proposed work. We also illustrate the

pipeline of a typical digital image processing framework for those who are not familiar

with computer science techniques and the pipeline overview developed in this research.

Finally, we highlight our primary goals and research contributions.

1.1 Context and motivation

In the middle of 1843, W. Addison (ADDISON, 1843) reported the discovery of the mi-

crocirculation involvement in the inflammatory insult by the leukocyte-endothelial interactions.

An effective immune response to an inflamed tissue is critically dependent on the leukocytes

ability to migrate from blood flow to sites of infection in the tissue. This process is mediated

by a sequence of different interactions between the leukocytes and endothelial cells that lines

blood vessels, and it is commonly called leukocyte recruitment.

Although there is a diverse number of in vitro experimental systems for the probing of

morphology and molecular functions of immunological cells, the most effective scenario (if

not the only one) for measuring these attributes is through in vivo techniques. Intravital video

microscopy (IVM) (ELLINGER; HIRT, 1929, 1930) has become, therefore, an essential tool

for studying in vivo systems mostly because it allows cellular traffic observation in lymphoid

organs and peripheral tissues of the immune system (KILARSKI et al., 2013). Even in different

inflammatory conditions, this imaging technique makes easier the comprehension of mecha-

nisms related to immunologic diseases and, consequently, allows the design of new drugs and

therapeutic strategies to fight inflammation (PINHO et al., 2011; ACTON; WETHMAR; LEY,

2002), which can be associated with several diseases, such as multiple sclerosis, atherosclero-
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sis, rheumatoid arthritis, ischemia-reperfusion injury, and cancer (NOBIS et al., 2018; GAVINS,

2012). Also, the use of imaging methodologies has facilitated the research associated with the

neurovascular regulation, which studies how cells of the immune system communicate with

neurons and vice-versa. Understanding neurovascular coupling is fundamental for the patho-

genesis elucidation of numerous neurological conditions (TAKANO et al., 2006).

To understand the underlying mechanisms of leukocyte recruitment, scientists usually eval-

uate and count the number of rolling and adhered leukocytes present in the microcirculation of

living small animals (SANTOS et al., 2008). Semiautomatic techniques for tracking migrating

cells (LACKIE; CHAABANE; CROCKET, 1987) in video frames are being used successfully

for in vitro experiments. In these cases, the most common methods are the centroids’ trackers

(DIVIETRO et al., 2001; GHOSH; WEBB, 1994), which use the intensity of the center of mass

of a cell to track its position in a sequence of images, and the correlation trackers (SCHüTZ;

SCHINDLER; SCHMIDT, 1997; KUSUMI; SAKO; YAMAMOTO, 1993), which correlate one

or more images of a particular cell with the next video frames to determine the cell location in

the sequence of images.

However, unlike in vitro analyses, where the conditions of image acquisition can be con-

trolled, in the in vivo analyses, the task of cell counting is still commonly performed by vi-

sual observation of the IVM. Besides being tedious and time-consuming, this manual task is

error-prone and may introduce technician-related bias to the statistical results. Also, the region

analyzed by the experts corresponds to a small section, in which only a few cells are considered

– those crossing an imaginary line inside the microvessels.

Accordingly, the development of automatic techniques for in vivo experimental analysis is

a critical task that arouses interest in clinical and research studies. However, although the ad-

vantages of IVM are of great importance to scientists and biologists, some inherent constraints

must be considered: a) high variety of imaging protocols; b) images with low signal-to-noise

ratio – SNR; c) photobleaching effect (ANDRESEN et al., 2012); d) cell occlusions and clutter;

and e) image motion blur and motion artifacts, due primarily to respiratory and cardiac move-

ment of the tested animal (ACTON; RAY, 2004; RAY; ACTON, 2004). Among the various

problems cited, motion artifact is the most difficult to eliminate and may affect the success of

automatic processing techniques in the in vivo studies. While this problem can be minimized

by applying video stabilization techniques, the movement degrading the images can be quite

complex, including horizontal and vertical components, depending on the anatomical region

analyzed. For extreme cases, the employment of image restoration techniques is a required

step. The most apparent problem resulting from animal motion is the momentary loss of leuko-

cytes spatial position, which may cause failures in tracking these cells (ACTON; WETHMAR;
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LEY, 2002) and, consequently, generate false statistics of their dynamic information.

Due to the constraints mentioned above, the algorithms used in the in vitro analyses, gener-

ally, are not robust enough for in vivo IVM applications. The gray-level intensity of centroids

used in centroids’ trackers, for example, is an attribute significantly affected by the presence of

noise or the photobleaching effect. Besides suffering from the same problems, simple correla-

tion trackers are also unable to track deformable targets and deal with cell occlusion success-

fully.

Therefore, although the frame-basis detection and tracking of leukocytes in IVM can be

successfully performed in stabilized videos and good contrast images, the problem of animal

movement and cell-changing appearance discussed previously can significantly degrade cell

tracking. Thus, to prevent information losses, this work involves the use of several techniques

as a preprocessing stage and follows an approach that aims to combine the results of frame-

basis detection (2D processing) and three-dimensional segmentation (3D=2D+t) of the volume

created by stacking all video frames. Thereby, while 2D processing can detect cells precisely,

the 2D+t processing (or spatiotemporal analysis) can help both the study of cell dynamics and

the elimination of ambiguities due to overlapping cells (occlusion problem).

Given this scenario, we hope that we contribute to a better analysis of leukocyte recruit-

ment, providing more precise statistics about the cell analyses and, consequently, helping in the

development of biological studies.

1.2 Objectives

The primary objective of this work was to research and develop an automatic computational

pipeline to aid in the detection and tracking of leukocytes in IVM applied to in vivo experiments

of different animal organs. The development of the system was based on image processing and

computer vision techniques, and it combined spatial information from the frame-basis analy-

sis (2D processing), and temporal information from the analysis of the 3D image created by

stacking all video frames (2D+t processing).

To accomplish that, we created specific tasks that were defined as secondary objectives:

• Select a subset of consecutive frames from IVM experiments of different animal organs

to be used in the development and test of the methods;

• Manually annotate leukocytes in the video frames selected;

• Perform the integration of preprocessing techniques;
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• Test and evaluate the robustness of the preprocessing techniques;

• Develop and quantitatively evaluate techniques for leukocytes detection – 2D processing;

• Develop and quantitatively evaluate techniques for tubular-like structures detection in

2D+t processing;

• Analyze the combination of 2D and 2D+t processing outcomes;

• Test and evaluate the robustness of the proposed method in IVM study images;

• Automatically compute statistical measures for the leukocyte recruitment.

1.3 Pipeline overview

The main components of a machine vision system generally follow a standard sequential

processing scheme. It starts by defining the problem domain and goal, as given in Section 1.1.

The next step is responsible for acquiring the data that will be used in the processing scheme.

All the steps adopted in our IVM data acquisition are detailed in Chapter 2. The following

processes in the standard scheme involve the use of specialized computational techniques that

can vary for each application but usually have the same goal in all problem domains. They are

the preprocessing, processing, and post-processing stages.

The goal of the preprocessing stage is to improve the quality of the acquired data for the

next stages. Conventional techniques employed during this stage include noise reduction, con-

trast improvement, and brightness correction. Next, the processing stage can include the most

variable combination of methods according to the problem domain. Among the popular al-

gorithms for this stage, we have those responsible for image segmentation, object detection,

feature extraction, and classification. All these techniques have, however, one primary objec-

tive: to extract data information. Finally, some works may still have an additional step named

post-processing. It aims to improve the information acquired in the previous stage with final

adjustments. As a consequence of this processing scheme, we have the results for our problem

domain.

Based on this standard scheme, in this work, we designed an automatic computational

pipeline to solve the difficulties encountered in the biological analyses of in vivo studies. It

combines both 2D and 2D+t information to detect and track leukocytes in IVM images. These

images were acquired from different image acquisition protocols and animal organs. A pipeline

overview of our approach is illustrated in Figure 1.1.
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Figure 1.1: Pipeline overview of this thesis proposal.

Since the quality of input images inevitably influences the detection and tracking processes,

we start our approach by applying some preprocessing techniques developed explicitly for the

IVM application. This stage begins with the detection and removal of video frames strongly

affected by motion blur. In the literature review, this issue is hardly reported since this problem

is mostly observed in the images from the animal’s central nervous system (CNS), where the

mechanical stabilization is a delicate issue.

After frames removal, our framework reduces the potential noise present in the images and

standardize the level of pixel intensities between all video frames to decrease the photobleaching

effect over time. Only after that, we performed a registration process and got a final stabilized

video. Once we have all video frames registered, a vessel segmentation procedure is employed

to delimit the region in which the next techniques will operate.

Following the preprocessing stage, we split our processing step into spatial (2D) and spa-

tiotemporal (2D+t) modules, i.e., into the detection and tracking approaches. In spatial process-

ing, video frames were individually analyzed as two-dimensional images. On the other hand, in

spatiotemporal processing, video frames were stacked to form a volumetric image (3D=2D+t)

and facilitate the analysis of cell dynamics.

At this point, the detection algorithm used in spatial processing has its resulting points

interpreted as candidates to cell centroids. When multiplied by a circular Gaussian kernel,

all the candidate points look like blob structures in two-dimensional images and like tubular

structures (representing the cell trajectories) in the image volume created. As a consequence,

we have reduced our tracking stage to a detection of tubular-like structures problem in three-

dimensional images, that is a well-studied problem. This approach ensures that the tracking

algorithm can act in the same way for different detection techniques, which is a fundamental

premise since detection methods in the literature are generally designed for particular cell types.



36 1 Introduction

Local detections of 2D processing are combined with the trajectory information in a connec-

tion algorithm in the cases where trajectory gaps appear, or occlusions occur. This combination

procedure results in a framework less susceptible to inherent problems from the image acqui-

sition, such as the ambiguities arising from the overlapping of cells and the discontinuities of

their movement caused by motion artifacts or by the removal of blurred frames. Additionally, it

creates global improvement of cell tracking in dynamic scenes.

1.4 Contributions

The scientific contributions of this thesis consist of several open-source algorithms1 and

other punctual developed activities based on the secondary objectives of Section 1.2.

For instance, we created an IVM dataset composed of images from different animal organs

and imaging protocols. All these images were frame-by-frame manually annotated for training

and test purposes.

We created a preprocessing pipeline developed explicitly for the IVM application, in which

we detected and removed extremely blurred frames from the videos, reduced the image noise,

standardized the contrast of the images over the videos, performed video stabilization, and

segmented structures of interest to further analysis.

We implemented and tested different algorithms for leukocyte detection, followed by spe-

cialized techniques of IVM data augmentation. As a part of our pipeline, we also developed

a novel tracking method based on the spatiotemporal strategy. To combine these approaches,

we created a new algorithm responsible for linking the cell trajectories in our tridimensional

images.

Finally, we demonstrated the robustness of our methods by applying them in IVM study

images in order to obtain statistical measures from the leukocyte recruitment.

The above contributions resulted directly in the following publications:

• Gregório da Silva, B. C.; Tam, R.; Ferrari, R. J. "Detecting cells in intravital video mi-

croscopy using a deep convolutional neural network." Submitted to: IEEE Transactions

on Medical Imaging in April 2020.

• Gregório da Silva, B. C.; Ferrari, R. J. "Exploring deep convolutional neural networks as

feature extractors for cell detection." Accepted in the 20th International Conference on

Computational Science and its Applications (ICCSA 2020) in July 2020.
1���������������������������������
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• Gregório da Silva, B. C.; Carvalho-Tavares, J.; Ferrari, R. J. "Detecting and tracking

leukocytes in intravital video microscopy using a Hessian-based spatiotemporal approach."

Multidimensional Systems and Signal Processing 30(2), 815-839 (2019).

• Gregório da Silva, B. C., Carvalho-Tavares, J., and Ferrari, R. J. "Automated technique for

in vivo analysis of leukocyte recruitment of mice brain microcirculation", in Proceedigns

of XII Workshop de Visão Computacional (WVC), Campo Grande, MS, Brazil, 2016

(Best Paper Award - 1st Place).

While other indirectly publications were also published:

• Freire, P. G. L.; Gregório da Silva, B. C.; Pinto, C. H. V.; Moreira, C.; Ferrari, R. J. "Mid-

sagittal plane detection in magnetic resonance images using phase congruency, Hessian

matrix and symmetry information: a comparative study", in Proceedings of 18th Interna-

tional Conference on Computational Science and its Applications (ICCSA), Melbourne,

VIC, Australia, 245-260, 2018.

• Elisa de Souza, K., Gregório da Silva, B. C., Carvalho-Tavares, J., and Ferrari, R. J., "De-

tection of leukocytes in intravital microscopy video images using the phase congruency

technique". Revista de Informática Teórica e Aplicada 23(2), 33-55 (2016).

1.5 Thesis outline

This work is composed of eight chapters beyond this one. We decided to split our entire

methodology into four different chapters to avoid a very long chapter. The content in each of

them is as follows:

• Chapter 2: All the information needed to contextualize the reader in the IVM imaging

technique, its possible applications, and a dataset description.

• Chapter 3: Theoretical background information and a literature review with the descrip-

tion of the principal published works related to cell tracking using IVM.

• Chapter 4: Description of the preprocessing techniques applied to the IVM images.

• Chapter 5: Description of all methods used for the 2D processing – detection.

• Chapter 6: Details of the techniques used in the 2D+t processing stage – tracking.

• Chapter 7: The results and discussions for each developed stage.
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• Chapter 8: Conclusions drawn from the results and future investigations.

• Appendix A: Details of the Hessian-based local feature detector.



Chapter 2
TECHNICAL BACKGROUND

This chapter presents essential information regarding the IVM technique and its applica-

tions in the context of this research work. The following sections are split into a description

of the fluorescence microscopes, the inherent challenges of IVM imaging, its applicability,

and the details of our IVM dataset.

2.1 Initial considerations

As new imaging techniques for cultured cells have been emerging in the last two decades,

cell biology studies have been growing fast. However, although cell culture is a very flexible

handling system for genetic studies, in vitro models do not always accurately reconstitute the

tissue environment of animals under several physiological conditions (WEIGERT et al., 2010).

For instance, cell culture tests performed on glass or plastic surfaces (the most common ones)

suffer from the loss of three-dimensional cellular organization, which is a crucial cellular pro-

cess in many cases (CUKIERMAN et al., 2001). Moreover, even in three-dimensional in vitro

models, which are also widely used today, there may be a lack of essential components in the an-

alyzed environment, such as signaling molecules1 and other types of cells (XU; BOUDREAU;

BISSELL, 2009; GHAJAR; BISSELL, 2008; CUKIERMAN et al., 2001). Therefore, to reach

the same analytical abilities as in vitro models, numerous efforts are being guided on new

imaging technologies and, consequently, on the study of cellular events in organs of living an-

imals. Among the imaging techniques for in vivo studies, IVM has stood out since it allows

cellular traffic observation in lymphoid organs and peripheral tissues of the immune system

(KILARSKI et al., 2013; WEIGERT; PORAT-SHLIOM; PARENTE AMORNPHIMOLTHAM,

2013; WEIGERT et al., 2010).

1Signaling molecules of cellular origin may belong to several families of biochemical substances and serve as
messengers between two cells that are not distant from each other.
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Figure 2.1: Examples of images resulting from studies in different organs of mice.

As visual examples, Figure 2.1 shows the most common animal organs observed through

IVM. Even in different inflammatory conditions, this imaging technique helps in the compre-

hension of mechanisms related to immunologic diseases, and that is the reason why IVM images

are being employed in this research work.

2.2 Intravital microscopy

The improvement of new technologies in fluorescent microscopes and proteins applied to

the analyses of living cells resulted in a massive volume of information concerning almost every

possible cellular process, which caused a significant advance in the knowledge encompassed by

cellular biology (MASEDUNSKAS et al., 2012). Among the recently developed microscopy

techniques, intravital microscopy emerges as a sophisticated research tool that allows the ob-

servation of in vivo microcirculation in organs of anesthetized or conscious animals, as well as

the analysis of complex biological interactions and potential mechanisms of diseases (PITTET;

WEISSLEDER, 2011).

Given the peculiarities of IVM in providing spatial and temporal responses under condi-

tions close to those found in a natural environment, this imaging technique can reproduce cel-
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lular interactions more realistically than in vitro systems. A reasonable justification for that lies

in the fact that cells under analysis have their behavior influenced by several factors, includ-

ing cytokine gradients, interactions with other cellular and extracellular components, anatomic

compartmentalization, and blood flow forces (PITTET; WEISSLEDER, 2011).

The IVM technique is based on fluorescence microscopy, i.e., on the contrast generated by

the excitation of the energy levels of a molecule through a component generally referred to as

fluorophore or fluorochrome. The excitation is produced by illuminating the sample with a light

source, such as a mercury lamp or a laser, which provides photons with wavelengths ranging

from ultraviolet (UV) to infrared (IR).

In a fluorescence microscope, the wavelength of illumination is defined by the use of a

filter (excitation filter – located after the light source) that limits the transmission of light to

a narrow range of wavelengths. After passing through the excitation filter, the light reaches a

dichroic mirror (beams separator) and is reflected down through the objective lens, and onto the

sample. Molecules from inside the sample absorb the primary excitation and re-emit a longer

wavelength light (lower energy). The objective lens collects the emitted fluorescent light and

forwards it through the dichroic mirror. Any unwanted excitation light is blocked by a third

filter (emission filter or barrier filter). Thus, only emitted lights from fluorescent molecules

of the sample are observed and recorded. Figure 2.2 illustrates the fluorescence microscope

schematic.

Figure 2.2: Basic scheme of a fluorescence microscope (BLACHNICKI, 2008).

There are two primary modalities of light excitation: linear and non-linear. The former is

used in conventional instruments, such as fluorescence and confocal microscopes, and is based
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Table 2.1: Brief comparison between different imaging techniques used for IVM (AMORNPHI-
MOLTHAM; MASEDUNSKAS; WEIGERT, 2011).

Imaging technique Advantages Limitations

Single photon microscopy

High temporal resolution Tissue penetration (50 - 60µm)

High spatial resolution Phototoxicity photobleaching

Off-focus emission

Multiphoton microscopy

(MPM)

Deep tissue penetration (hundreds of microns) Temporal resolution

No off-focus emission

Reduced phototoxicity and photobleaching

Second and third harmonic

generation (SHG and THG)

Imaging of endogenous molecules (collagen, myosin, lipids) Temporal resolution

No off-focus emission Tissue penetration

Reduced phototoxicity and photobleaching

Coherent anti-Stokes Raman

scattering (CARS)

Imaging of endogenous molecules (lipids, myelin) Temporal resolution

Reduced phototoxicity and photobleaching Tissue penetration

Fluorescent lifetime imaging

microscopy (FLIM)

Deep tissue penetration (same as MPM) Temporal resolution

Metabolic information on tissue microenvironment

Optical frequency domain

imaging (OFDI)

Deep tissue penetration (more than 1 mm) Lower spatial resolution than MPM

Fast acquisition of the data

Reduced phototoxicity and photobleaching

No need for exogenous labeling

on the fact that the emission intensity is linear regarding the intensity of the excitation light.

The latter relies on more complex and non-linear interactions between the incidence light and

the sample, in which they both absorb or scatter and recombine two or more photons (AMORN-

PHIMOLTHAM; MASEDUNSKAS; WEIGERT, 2011). The several and unique properties of

non-linear processes led to the development of multiple imaging modalities that have been ex-

tensively explored to produce images in high resolution of living organisms. The most used

modalities for IVM can be observed in the Table 2.1.

2.3 Inherent constraints of IVM

Unlike the in vitro analyses, in which the conditions of image acquisition can be better

controlled, the development of automatic methods for in vivo studies using IVM presents many

difficult challenges for researchers due to factors that directly affect the image quality. Some of

these challenges are detailed as follows.
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2.3.1 Different experimental procedures

The feasibility of studying leukocyte recruitment in different animals and distinct organs re-

sults in images with diverse visual aspects that pose a challenging problem to computational ap-

proaches. Figure 2.1 illustrates examples of images obtained from various mice organs. When

dealing with the same animal and the same organ, in vivo experiments can significantly differ

by the way they are conducted. It means that the animal conditions before a surgery or the

anesthetics used in that particular medical procedure can create an entirely different protocol

of image acquisition. The same can be said about multiple experimental procedures performed

by the experts, which involves the use of specific fluorescent dyes, as well as many mechanical

instruments, microscopes from different brands, lenses, and other components that can modify

the pictorial aspect of output images.

As an example of the complexity in designing an imaging acquisition protocol, we can cite

experiments in the animal’s CNS, which is one of the most challenging locations to observe

leukocyte recruitment due to the presence of a continuous network of closed junctions and the

lack of fenestra (SANTOS et al., 2008, 2005). This structure constitutes the blood-brain barrier

and limits the exchange between soluble substances (hormones, cytokines, and immunoglob-

ulins) and blood. Moreover, the cerebral microcirculation is partially different from the other

vascular beds since vessels of the pia mater may have a diameter between 20-120 µm, there

is an extensive capillary network involved, and the velocity of the blood flow is higher than

in other tissues, like the liver. The blood flow also has a typical characteristic in the cerebral

microcirculation: capillaries have an intermittent flow, and the arteries and veins of small and

medium caliber have an oscillating stream, i.e., the blood can flow in one direction and then in

another direction in the same blood vessel segment (ROSENBLUM; ZWEIFACH, 1963). Stud-

ies in the CNS have been made by inducing the Experimental Autoimmune Encephalomyelitis

(EAE) model, which is one of the most commonly used models for the comprehension of in-

flammatory demyelinating diseases, such as multiple sclerosis (MS) (CONSTANTINESCU et

al., 2011). However, CNS images are rarely reported in works for automated cell detection and

tracking, which hinders our comparison in the next chapters with conventional methods in the

literature.

2.3.2 Image motion blur

Movements caused by peristaltic motion or by the animal’s breath and heartbeat can result

in a combination of vertical and horizontal displacements of the organ under analysis. This

combination of movements has as its main consequence the momentary loss of microscope
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focus, which even using focal auto-adjustment is unable to correct for its focal plane in time,

creating blurred and tremulous images. Figure 2.3 illustrates four examples of good and poor

quality frames extracted from two IVM videos. The leftmost images (Figures 2.3(a) and 2.3(c))

represent frames without motion artifacts, i.e., those considered suitable frames, while the right-

most ones (Figures 2.3(b) and 2.3(d)) show examples of blurred and tremulous images, or poor

quality frames, which make the analysis much more difficult.

(a) (b)

(c) (d)

Figure 2.3: Examples of good and poor (affected by motion blur) quality frames from two videos
used in this work. (a)–(b) frames of good and poor quality from a mouse brain experiment, and
(c)-(d) frames of good and poor quality from a mouse spinal cord experiment. Some images were
contrast enhanced for better visualization. Leukocytes can be identified as bright circular objects.

In order to reduce the animal movement, the experts first need to perform particular surgical

procedures and adequately place the exposed organs. However, the inclusion of mechanical

components for sample stabilization can be a harmful task in procedures performed in the spinal

cord or brain of animals, for example, since they can provoke undesirable cellular effects. As a

consequence, we have a sequence of images containing motion artifacts that can interfere with

structures of interest, complicating the characterization of structural changes, and causing the

generation of false statistics in the quantification of image targets, like the loss of one or more

cells in the detection and tracking processes.
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Also, fluorescent microscopes have their resolution in the focal plane defined by the diffrac-

tion pattern produced by spherical waves exiting the rear circular aperture and converging in the

focal point. Due to the wavelength of fluorescent bead illuminating the circular aperture, this

pattern has a bright region in the center, commonly called Airy disk (BORN; WOLF, 1970),

and a series of concentric bright rings around the center, forming the Airy pattern (DAVIDSON,

2019; TRANTHAM; REECE, 2015). For being an inherent point spread function (PSF) that

also affects the z-axis, its appearance in microscope images is most noticed when the sample is

out of focus. An example of the Airy pattern in our images can be seen in Figure 2.4.

Figure 2.4: Example of Airy disk pattern in a real IVM image.

2.3.3 Photobleaching effect

The phenomenon of photobleaching occurs when the fluorophore permanently loses its abil-

ity to fluoresce due to chemical damage induced by photons and covalent modifications. The av-

erage number of excitation or emission cycles happening in a particular fluorophore previously

to the photobleaching effect is dependent on the molecular structure and the local environment.

Some fluorophores degrade rapidly after emitting only a few photons, while others (more ro-

bust) can suffer thousands or millions of cycles before the effect begins. As a consequence,

there is a gradual loss of image contrast, as can be seen in Figure 2.5, for example.

Figure 2.5: Photobleaching effect observed in a sequence of equally spaced images (12 seconds)
(PROLONG, 2015).

Photobleaching effect can be reduced by limiting the fluorophores exposure time under the

light source (animal exposure time) or by decreasing the applied excitation energy. However,

these approaches may also restrict the sample observation period and reduce the measurable

fluorescence signal.
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2.3.4 Cell occlusion and clutter

Whereas the microcirculatory structures are three-dimensional, the IVM imaging also suf-

fers from the spatial location of image targets. As the fluorescent-labeled cells move away from

or approach the microscope focal plane, they experience a considerable loss of contrast. The

same can be said of those cells in a complex environment consisting of many other cells or un-

der biological structures, such as the animal muscles. A high density of cells can cause clutter

or complete occlusion of targets in the analysis, impairing cell tracking, for example. Herein,

gaps in cell trajectories over time (mostly caused by low frame rates or fast movements of cells)

can also be treated as cell occlusion, since both are considered tracking losses by the algorithms.

Figure 2.6(a) shows an image example from a mouse spinal cord in which the clutter problem is

visible, while Figure 2.6(b) presents an image from the cremaster muscle, in which the diagonal

structures (muscles) may cause a loss of contrast in the cells.

(a) (b)

Figure 2.6: Example of two frames where the problem of clutter and occlusion can be seen. (a)
video frame from the spinal cord, and (b) video frame from the cremaster muscle of mice.

2.3.5 Cell traffic

Cell dynamics is also an obstacle to be considered when in vivo studies are performed.

The cells entering and leaving the microscope field of view (FOV) happen continuously and

can disrupt automatic tracking. A cell disappearance in a tracking process must be adequately

investigated to determine if an occlusion occurred or if the cell left the FOV. The same happens

with the rising of cells during video recording, which can characterize the arrival of a new cell

in the microscope FOV or just the return of a particular cell already under analysis after an

occlusion. Figure 2.7 shows an example of cells moving along the vessel in the blood flow

direction.
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Figure 2.7: Example of cells entering and leaving the microscope field of view.

2.3.6 Ground truth

For the sake of training and quantitative validation of an automated method for the detection

and tracking of cells in IVM images, it is essential to compare its results with those obtained

from a visual analysis of one or more experts (researchers or laboratory technicians). The mea-

sures of inter- and intra-observers variability are also of great importance to define a confidence

interval and to better interpret the developed method. However, as stated in Chapter 1, the task

of manually annotate cells in hours of videos is time-consuming and prone to errors.

Although IVM imaging of different organs has distinct properties, the problems listed above

must be considered in the development of algorithms for the detection and tracking of cells,

regardless of the organ or tissue under analysis.

2.4 Leukocyte recruitment

In the mid-19th century, a rudimentary form of IVM, although being performed simplisti-

cally and mostly in transparent surface tissues, already revealed that blood flow occurred within

microvessels (LEEUWENHOEK; HOOLE, 1800) and the movement of leukocytes could ac-

tively overflow into injured tissues (DUTROCHET, 1824; WAGNER, 1839). However, it was

only in 1843 that the researcher W. Addison (ADDISON, 1843) finally reported the discov-

ery of microcirculation involvement in the inflammatory insult through leukocyte-endothelium

interactions.

Classically described as "swelling, redness, hot and painful", the inflammation is created in

a particular portion of the body as a reaction to an injury or an infection (GAVINS; CHATTER-

JEE, 2004). The efficient formation of an immune response to the inflamed tissue is critically

dependent on the ability of leukocytes to migrate from blood towards the inflammatory locus.

This process is mediated by a sequence of interactions from different adhesion molecules over
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leukocytes and endothelial cells of blood vessels. Among these cascade of events involved in

leukocyte recruitment, we can include the initial contact of these cells with the vascular en-

dothelium, the rolling process (weak and firm adhesion over endothelium), the chemotaxis, and

the migration of cells from blood flow to the target tissue of inflammation (HYNES; LANDER,

1992).

The interactions originate with the moving leukocyte touching the vascular endothelium.

Next, the leukocyte starts rolling along the vessel wall, which causes a substantial reduction of

its velocity. This process is mediated by adhesion molecules from the selectins family and their

respective binder carbohydrates or by α4-integrins (LUSTER; ALON, 2005). After the initial

tethering of leukocytes by these molecules, the rolling process begins. The interaction of inte-

grins with immunoglobulins causes a reduction of rolling velocity and stabilizes the leukocyte-

endothelium interaction, resulting in the capture and firm adhesion of the cell to the vascular

endothelium (STEEBER; CAMPBELL, 1998). Finally, this process leads to diapedesis (migra-

tion or transmigration of leukocytes to tissue). Figure 2.8 briefly illustrates the stages involving

the described leukocyte recruitment.

Figure 2.8: Leukocyte recruitment mechanism.

Through IVM, it is possible to study the movement of leukocytes in the microcircula-

tion and, consequently, the effector functions that encompass the leukocyte’s ability to engulf

(phagocyte), eliminate, and digest several pathogens. We can say, therefore, that leukocyte re-

cruitment plays a vital role in the immune response and, since it is visible through IVM analyses,

this imaging technique has become an essential tool in multiple areas, such as neurobiology, im-

munology, tumor biology (MASEDUNSKAS et al., 2012), and for the pharmaceutical industry,

with the study of new drugs, by identifying and validating their effectiveness (or failure).
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2.5 IVM dataset

Intravital microscopy experiments require great effort regarding animal preparation and

data acquisition. In general, they are conducted in a short period to avoid external interferences

affecting the results, like the heat from the microscope light source.

To train and test our computational pipeline, we used six videos (IDs: B1, B2, SC, C1, C2,

and ME) of IVM studies with 705 frames in total. They were obtained from distinct imaging

acquisition protocols and applied in four different animal organs: brain, spinal cord, cremaster

muscle, and mesentery of mice. Another 32 image frames (IDs: OTi) were used in this work.

These isolated images were included for a better evaluation of our deep learning model since

they impose an additional challenge by presenting a considerable amount of cells per image

compared to the others, as can be seen in Figures 2.9(d, e, and f). Examples of frames from

each one of the videos can also be observed in Figure 2.9.

(a) Video: B1 (b) Video: B2 (c) Video: SC

(d) Selected frame: OT1 (e) Selected frame: OT2 (f) Selected frame: OT3

(g) Video: C1 (h) Video: C2 (i) Video: ME

Figure 2.9: Examples of frames from videos of different mice organs.

As illustrated in Figure 2.9, the images present particular visual aspects considering the
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Table 2.2: Description of the IVM dataset used in this work. B1 and B2: videos from the mice
brain; SC: video from the mice spinal cord; OT: other selected frames from CNS; C1 and C2:
videos from cremaster muscle; ME: video from the mesentery.

Matrix Spatial resol. Sample Avg cells # frames # annotated
Category ID size (px) (pixels/µm) rate (fps) Color size (px) analyzed leukocytes

CNS

B1 692×520 0.66 16 No 7×7 220 5827
B2 460×344 0.66 16 No 7×7 401 8048
SC 692×520 0.98 16 No 5×5 21 1570
OT varying varying - No 14×14 32 2725

Subtotal: 674 18170
Cremaster C1 1392×1040 n/a 15 Yes 25×25 21 390
muscle C2 1392×1040 n/a 15 Yes 5×5 21 1603

Subtotal: 42 1993
Mesentery ME 720×480 n/a 30 Yes 11×11 21 291

Subtotal: 21 291

Total: 737 20454

organ in analysis. Experiments in the CNS (IDs: B1, B2, SC, and OT), for example, show

leukocytes appearing as bright blob-like structures in a dark background, with cells varying their

scales along the vessel in a cluttered environment. As another example, the colored images from

the cremaster muscle present the striping diagonal shades in the microscopy images. Together

with the mesentery images, they show leukocytes in different contrasts, with dark boundaries

or even with a transparent appearance.

In all six videos, the leukocyte centroids were frame-by-frame manually annotated by an

expert in the form (x,y, t), where (x,y) is the coordinate point in the spatial domain, and t is

the corresponding frame number. The cells in the remaining 32 images (OT) were manually

annotated using bounding boxes in the form (x1,y1,x2,y2), where (x1,y1) is the top-left point,

and (x2,y2) is the down-right point of the box enclosing the cell. Depending on the algorithm

output, we either extracted the central points of bounding boxes for the evaluation or created

bounding boxes in the video annotations using the average cell radius to define the box sizes.

All information necessary to describe our dataset are presented in Table 2.2.

Although some of these videos have a relatively small number of frames analyzed, the total

number of manually annotated leukocytes is quite large (see values in Table 2.2), providing

enough data for a proper quantitative evaluation of automated methods.

As the execution of animal procedures for image acquisition is outside the scope of this

thesis, we refer the interested reader to the works of our collaborators Prof. Dr. Juliana Carvalho
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Tavares2 (SANTOS et al., 2008, 2005) and Prof. Dr. Mônica Lopes-Ferreira3 (SANTOS et al.,

2017) for further details.

2.6 Final considerations

Throughout this chapter, we presented the essential and necessary information to support

the adoption of the IVM technique in the context of this research work, such as physical and

chemical details of image formation, the inherent technical constraints, and what is reasonable

to investigate in similar approaches. We also described the IVM dataset used over this thesis. In

the next chapter, we will discuss in more detail the main techniques proposed in the literature

related to the detection and tracking of cells in IVM images.

2Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
3Special Laboratory of Applied Toxinology (Center of Toxins Immune-Response and Cell Signaling), Butantan

Institute, São Paulo, Brazil.
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Chapter 3
THEORETICAL BACKGROUND

There are numerous techniques for object tracking nowadays. They include methods for

single or multiple object tracking and a vast number of different kinds of input images.

In this sense, this chapter starts describing and categorizing the main approaches used in

various object tracking problems. Then, we briefly describe some cell tracking algorithms to

show the diversity of methods in the literature. However, as these works do not necessarily

use IVM images as input, they can move away from our work. Therefore, at the end of

this chapter, we present a section detailing the studies mostly related to ours, i.e., those

specifically developed to detect and track leukocytes in IVM studies.

3.1 Multiple object tracking – MOT

Multiple object tracking (MOT) has become an essential task in computer vision applica-

tions due to its academic and commercial potentials. MOT aims at locating multiple objects

of interest, inferring their trajectories, and maintaining their identities given an input video or

sequence of images. Among the objects of interest or targets, we can mention a variety of stud-

ies involving the tracking of vehicles (LOCHNER; TRICK, 2014; ZENG; MA, 2002; BETKE;

HARITAOGLU; DAVIS, 2000), pedestrians (JIANG; HUYNH, 2018; XU; LIU, 2015; JIANG

et al., 2010), sports players (LIU et al., 2013; XING et al., 2011), animals (RODRIGUEZ et

al., 2017; ITSKOVITS et al., 2017; FUKUNAGA et al., 2015), cells (TüRETKEN et al., 2017;

MASKA et al., 2014; LI et al., 2008), etc. These studies are essential for numerous applications,

such as:

• Medical image processing: as mentioned in the previous chapters, labeling multiple cells

in videos require laborious manual work. In that case, MOT helps to get more precise

results and save a considerable amount of time and labeling costs.
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• Visual surveillance: to identify abnormal behaviors in surveillance videos, the automatic

analyses of objects in a scene can be performed. These analyses need to locate and track

peculiar targets, investigating their suspicious actions and trajectories, for example.

• Augmented reality: the employment of MOT techniques can improve, for instance, the

user experience in situations like video conferences or visualization of 3D virtual objects.

• Human-computer interface: useful in the extraction of visual information related to facial

expression, eye tracking, gesture, and others, making the task more natural and intelligent.

• Sports expertise: the tracking of players on the court or sporting objects in the scene

can produce important statistical and strategical information about a game or a team in a

league. Big companies are adopting this application due to its immense practical return.

• Robotics: the real-time analysis of tracked objects, for instance, is very useful to guide a

robot in collision-free locomotion through crowded and dynamic environments.

All these applications, among others, have aroused significant interest in the MOT research

area. However, compared with single object tracking (SOT), which primarily focuses on de-

signing sophisticated appearance and motion models, MOT additionally requires maintaining

the identities among multiple objects (LUO; ZHAO; KIM, 2014). It is also regarded as a natural

extension of SOT, sharing some tracking challenges like object scale changes, rotation, transla-

tion, illumination variations, camera distortion, and information loss because of the projection

from 3D to 2D. Despite these traditional challenges, some critical issues make MOT a more

complicated task. They are strengthened by crowded environments, especially because many

applications need to track targets with similar appearance while facing object singular pose

variation, shape deformation, frequent occlusions, initialization and termination of tracks, the

small size of objects (BETKE et al., 2007), interaction among multiple targets, and dynamic,

cluttered backgrounds (LUO; ZHAO; KIM, 2014; FAN et al., 2016). In order to solve one or

more of these issues, several algorithms have been proposed. The primary methods for doing

so, involve either building a detector or exploiting the tendency for objects to look the same

over time, and to move coherently. The majority of these methods can be categorized by their

high-level strategies according to the following aspects, as described in Figure 3.1.

Tracking strategy There are two general strategies to track objects in a video or a sequence

of images. In the first, named herein as tracking by detection (TBD), objects are identified in

each frame by a robust model describing them and linked into trajectories based on their similar

features. In the second, tracking by matching (TBM), objects in the previous frame are already
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Figure 3.1: Multiple object tracking categorization.

known, and then a model describing how they move is created. In other words, objects in the

last frame could serve as a template if we have a motion and domain models to link them in the

current frame. TBD is often used when the number of objects varies over the video analysis,

i.e., when new objects appear or disappear in the scene. However, in most cases, the object

detection procedure is not the focus of TBD methods since they use pre-trained object detectors

for specific kinds of targets (FELZENSZWALB et al., 2010; SUN; BEBIS; MILLER, 2006).

Although TBD initialization is automatic, its performance highly depends on object detection.

TBM, on the other hand, requires manual identification of a fixed number of targets in the

first frame, but it does not rely on object detectors to provide object observation (ZHANG;

MAATEN, 2014, 2013; HU et al., 2012).

Processing mode Regarding the way methods process the data, MOT algorithms can be

categorized into online (sequential tracking) and offline (non-sequential tracking). The online

tracking methods use object observations only from previous frames to estimate the current

object state, i.e., the image sequence is handled in a stepwise way, which is very useful in real-

time applications. Offline tracking methods (QIN; SHELTON, 2012; YANG; NEVATIA, 2012),

on the other hand, use information from both the past and future frames to conduct the object

state estimation, which facilitates a globally optimal solution but can have a delay in outputting

the final results.

Mathematical methodology Another conventional way to categorize MOT algorithms is

related to the scientific methodology adopted. In this case, MOT can be classified into proba-

bilistic and deterministic tracking approaches. Methods that use a probabilistic framework to

solve the tracking problem are classified as probabilistic tracking methods. They are based on

Bayesian theory and use this formulation to estimate all the object trajectories in the video. Ap-

proaches based on deterministic optimization framework (or data association) cast the tracking

task as an optimization problem, in which the observation of targets from all the frames, or part
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of them, are associated with the trajectories based on their affinities.

Besides being a handy way to categorize tracking methods, the categories above put algo-

rithms into big groups, and sometimes they are not capable of describing all the main approaches

and their characteristics. The following section presents in more detail the primary components

of different MOT methods.

3.2 MOT taxonomy

As suggested by Luo et al. (LUO; ZHAO; KIM, 2014) and Fan et al. (FAN et al., 2016),

MOT methods can be divided into two primary components, the observation model and the

dynamic model. The former measures the similarity of objects observation between the video

frames, and the latter finds the object matchings based on the similarity measurements. The

taxonomy of MOT methods is illustrated in Figure 3.2. All components of the MOT methods

are described in the following subsections.

Figure 3.2: Multiple object tracking taxonomy, adapted from Luo’s work (LUO; ZHAO; KIM,
2014).

3.2.1 Observation model

The observation model is related to the object’s property, like appearance, location, and

velocity. It is generally based on feature extraction to identify the objects in the sequence of

images accurately. In other words, an observation model includes modeling of appearance,

motion, interaction, exclusion, and occlusion of the objects in the scene.

3.2.1.1 Appearance model

Different from SOT, where sophisticated models are built for a single object, appearance in

MOT is not the primary focus of the algorithms because multiple objects in real applications

can hardly be discriminated only by this information (LUO; ZHAO; KIM, 2014). The model

describes the objects according to several features. The most common ones used for both SOT

and MOT are listed in Table 3.1.
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Some applications involve simple object observations, and many times a single feature is

sufficient to perform tracking (ZHAO; GONG; MEDIONI, 2012; KRATZ; NISHINO, 2010).

However, a multi-feature model is preferred in most cases since a combination of cues could

improve the robustness of the method. Meantime, to formulate a multi-feature based appear-

ance model is necessary to use a fusion strategy. Luo et al. 2014 (LUO; ZHAO; KIM, 2014)

summarized multi-feature based appearance models into five kinds of fusion strategies:

• Boosting: this strategy usually selects a portion of features from a feature pool sequen-

tially via a Boosting based algorithm. For example, for the color histogram, HOG and

covariance matrix descriptors, AdaBoost, RealBoost, and a HybridBoost algorithm are

respectively employed to choose the most representative features to discriminate pairs of

trajectory segments of the same object from those of different objects (FENG et al., 2015;

WU et al., 2012; HUANG; WU; NEVATIA, 2008).

• Concatenation: different kinds of features can be concatenated for computation. In

(BRENDEL; AMER; TODOROVIC, 2011), color, HOG, and optical flow are concate-

nated for appearance modeling.

• Summation: this strategy takes affinity values from different features and balances them

with weight coefficients (MITZEL et al., 2010; LIU; LIN; ACTON, 2012).

• Product: different from the strategy above, values are multiplied to produce the integrated

affinity (YANG et al., 2009; BERCLAZ; FLEURET; FUA, 2006). Note that the indepen-

dence assumption is usually considered when applying this strategy.

• Cascading: this is a cascade manner of using various types of visual representation to

either narrow the search space (GAVRILA; MUNDER, 2007) or model the appearance in

a coarse-to-fine manner (IZADINIA et al., 2012).

Other options for the multi-features approach are related to feature selection or dimensionality

reduction, such as principal component analysis (PCA) and its variations, for example.

3.2.1.2 Motion model

The motion model focuses on describing how objects move and, in addition to SOT meth-

ods, they are essential to MOT approaches because they might reduce the search space when

predicting the object’s position in future video frames. Popular motion models employed in

MOT approaches can be divided into two groups: linear motion model and non-linear motion

model.
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• Linear motion model: in this model, it is assumed the velocity of objects is linear and con-

stant, i.e., the object’s speed in the next frame is the same as in the current one (COLLINS,

2012; ANDRIYENKO; SCHINDLER, 2011).

• Non-linear motion model: when targets move freely, the linear motion model cannot deal

with motion prediction properly. In these cases, the non-linear motion model is used to

produce more accurate results. This model can be used to distinguish targets with similar

appearance in data association frameworks (DICLE; CAMPS; SZNAIER, 2013; YANG;

NEVATIA, 2012), and to analyze the effects of unexpected camera motion (YOON et al.,

2015).

3.2.1.3 Interaction model

Interaction models consider the motion influence between the objects. In a crowded sce-

nario, objects can suffer from the force of others and environmental factors. Popularly, inter-

action models are divided into social force models and crowd motion pattern models. In the

first, the objects are evaluated by their own forces, which considers the destination and velocity

of objects will not change, and by group force, in which the attraction, repulsion, and coher-

ence between the individuals are also considered (QIN; SHELTON, 2012; YAMAGUCHI et

al., 2011; CHOI; SAVARESE, 2010). In the second, an over-crowded scenario is generally as-

sumed. Indeed, when the density of objects is considerably high, targets are usually quite small,

and the motion pattern from the crowd could be considered (ZHAO; GONG; MEDIONI, 2012;

KRATZ; NISHINO, 2010).

In cell tracking, the blood flow primarily drives the cells movement. However, due to the

three-dimensional characteristic of vessels and the attraction force caused by the leukocyte-

endothelial interactions, it is difficult to measure the influence of leukocytes or erythrocytes on

other cells.

3.2.1.4 Exclusion model

Exclusion models usually work as a constraint when objects collision occurs in MOT. To

solve this problem, Milan et al. (MILAN; SCHINDLER; ROTH, 2013) considered two con-

straints: detection-level exclusion and trajectory-level exclusion. The former considers that two

different detection responses in the same video frame cannot be assigned to the same trajectory

hypothesis, while the latter accounts for the case where two different trajectories cannot occupy

the same detection response. Another practical solution is the analysis of spatial-temporal rela-

tionships to interpret the collision (CHEN et al., 2016; KUMAR; VLEESCHOUWER, 2013).
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3.2.1.5 Occlusion model

As already stated in Chapter 2, occlusion is a problematic issue in tracking applications.

Some works developed different strategies to handle this problem. One popular approach is

the assumption that at least a part of the object is visible when an occlusion occurs. Thus, the

whole object position is inferred by using the information provided by the visible parts (HU et

al., 2012; IZADINIA et al., 2012). Another strategy is based on the buffering of observations

when occlusion happens, remembering the states of objects before occlusion. Thus, at the end of

the occlusion, the states are recovered according to the stored observations and states (MITZEL

et al., 2010). Other works handle occlusion by creating hypotheses and testing them between

the objects observation (TANG; ANDRILUKA; SCHIELE, 2014; TANG et al., 2013).

3.2.2 Dynamic model

A dynamic model is closely related to the way observations are analyzed over time, i.e.,

the idea of inferring data association, target states, or both, acting as a tracking strategy. As the

name indicates, it takes into account the object’s dynamic by linking the targets correctly using

their previous observations. There are two main approaches to do so: probabilistic inference-

based and data association (or deterministic optimization-based), depending on the type of

linking strategy.

3.2.2.1 Probabilistic inference

Probabilistic-based approaches often use targets’ observations to estimate a probabilistic

distribution. By using their states, such as size, position, and velocity, for example, they can

create a tracking algorithm that works with only the current information, i.e., past and present

observations to estimate the next states. This characteristic makes it a good option for online

applications. Over the years, several algorithms started to arise in MOT applications, such as

Kalman filter (RODRIGUEZ et al., 2011; BERCLAZ et al., 2011), Extended Kalman filter

(MITZEL; LEIBE, 2011), Particle filter (HU et al., 2012), Bayesian framework (YOON et al.,

2015), and Probability Hypothesis Density (PHD) filter (FENG et al., 2015).

3.2.2.2 Data association

Data association based approaches firstly select the observations (usually the detection can-

didates) in some frames and then search for similarities between them. This process is generally

imposed as a deterministic optimization problem since a global optimum solution is searched
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using carefully designed cost functions. These kinds of algorithms can be divided into local

and global optimization frameworks, depending on the number of frames the method applies to

solve the association problem. The most famous approaches in the literature are those related

to Bipartite Graph Matching (SHU et al., 2012), Dynamic Programming (CHOI; SAVARESE,

2012), Network Flows (WALIA; KAPOOR, 2016; XI et al., 2015), Conditional Random Field

(MILAN; SCHINDLER; ROTH, 2013) and Maximum-Weight Independent Set (BRENDEL;

AMER; TODOROVIC, 2011). Although data association models outperform the probabilistic

inference ones by their capacity to analyze multiple frames, especially in the occlusion occur-

rences, they suffer from the consumption of time and space, which restrict their applications in

online tracking scenarios.

3.3 Cell tracking

In simple image sequences, where cells present high contrast and the movement is absent

or imperceptible, the detection and tracking tasks are facilitated. Usually, a mere global thresh-

old technique can separate the cells from the background when controlled studies like that are

conducted. These image sequences are generally associated with in vitro experiments, where

the analysis is performed in cell cultures. However, thresholding algorithms mostly fail in the

presence of visual issues, such as photobleaching effect, severe image noise, poor contrast, or

the appearance of undesirable objects. In this case, a more sophisticated technique is required.

Some of the most traditional detection techniques are (1) template matching (KACHOUIE et

al., 2006; GONZALEZ; WOODS, 1992), in which predetermined cell intensity profiles are fit-

ted to the images, but may fail if cells appearance change over time or are different between

themselves in the case of MOT; (2) watershed transformation (ZHOU et al., 2009; WäHLBY

et al., 2004), where the images are divided into sub-regions according to a topographic relief,

but is not robust to noise and may cause over-segmentation; and (3) deformable models (PAD-

FIELD et al., 2009), also defined as parametric contours (snakes) and level-set functions, where,

starting from a rough initial segmentation, they try to minimize an energy functional, but may

fail in the presence of nearby cells.

A conventional approach to solving the data association problem or the tracking itself is

based on the most straightforward analysis of spatial positions of the cells from frame to frame.

Generally speaking, it tries to link each cell centroid in a current frame to the spatially nearest

centroid in the next frame. However, this tracking approach may easily drift when images suf-

fer from clutter, or the frame rate is considerably low with cells moving fast. As a result, new

methods started to be used in order to overcome these problems. They extend the characteristic
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of "nearest" by including new features, such as intensity similarity, morphology, volume, orien-

tation, among others, and consequently help to reduce the chances of ambiguity. An example of

a similar approach is the use of these features with the well-known mean-shift method (CHEN

et al., 2009; DEBEIR et al., 2005), which is an iterative method for locating the maxima of a

probability density function of the data.

Many of the cited approaches for cell detection can also be extended to the idea of online

tracking. For instance, centroid trackers (GHOSH; WEBB, 1994; DIVIETRO et al., 2001), TM

trackers, and deformable model trackers, basically apply their detection step in one frame and

then use this information to initialize the detection in the next frame. However, when the ideal

conditions to perform these steps are not satisfied, more sophisticated approaches are needed.

Among others, we can cite those using gradient-vector flow (RAY; ACTON, 2004; ZIMMER et

al., 2002), estimative of cell dynamics (SHEN et al., 2006; DEBEIR et al., 2004), probabilistic

schemes (LI et al., 2008; CUI; ACTON; LIN, 2006), and others (XIE; KHAN; SHAH, 2009;

DUFOUR et al., 2005).

Current cell tracking approaches using fluorescent microscopy as a standard imaging tech-

nique mostly participate in cell tracking challenges (CTC) (SOLÓRZANO et al., 2014) or-

ganized to attract the interest of researchers to this relevant research theme. Although these

challenges1 have quite different image datasets from ours, we suggest reading the surveys (UL-

MAN et al., 2017; MASKA et al., 2014; MEIJERING; DZYUBACHYK; SMAL, 2012; LI et

al., 2013) for a much more complete discussion and comparison among the participants’ algo-

rithms. As stated in the previous section, these methods are formulated either as a two-step

process or using a model-based representation of cell appearances and shapes (TüRETKEN et

al., 2017; MASKA et al., 2014; LI et al., 2008).

3.4 Related work

In this section, we present a literature review of the approaches directly related to IVM ap-

plications since this kind of imaging presents particular challenges when compared with other

cell tracking solutions. We can mention, for example, the animal’s movement under the micro-

scope, the multiple protocols on image acquisition, and the blood flow constraints as complex

aspects to be considered.

Sato et al. (SATO et al., 1997) (submitted in 1994), for instance, proposed an automated

system for the extraction and measurement of the velocities of adhered leukocytes in blood ves-

1http://www.celltrackingchallenge.net/
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Figure 3.3: Stages of the method proposed by Sato et al. in (SATO et al., 1997).

sel walls (plasma layer) of rats’ mesentery. Their method is based on the information of lines

projection in a spatiotemporal framework. For that, the plasma layer was segmented, and its

axes used as spatial axes in the two-dimensional spatiotemporal images. From these created

images, the leukocyte movements were defined as visible traces (curved lines) in the axes. The

problem of crossing traces in the spatiotemporal images was formulated as a combinatorial op-

timization problem and solved by using a Hopfield-based net (HOPFIELD, 1982). A pipeline

of this work can be seen in Figure 3.3. As a result, it was presented a chart constructed from

the different parameter values of the algorithm, where the values of true-positives (TPs) and

false-positives (FPs) were mostly higher than 70% and lower than 5%, respectively. A correla-

tion coefficient value was also calculated between the leukocyte velocities found manually and

automatically by the method, resulting in a value of 0.929. Even exploring only the cells located

at the vessel borders, Sato’s work was able to assess the leukocyte movements separately in the

plasma layer, which can be useful in the analysis of cell migration.

In 1995, Sato et al. published a paper (SATO et al., 1995) that aimed to improve some

limitations of their previous work (SATO et al., 1997). For that, the authors created more

elaborated filters and analyzed 2D+t spatiotemporal images, in which the axes were parallel and

vertical to the vessels. With this new approach, it was possible to extend the leukocyte analysis

to the center of vessels and not only to the plasma layer regions. Gabor filters were used in

this work to detect and segment moving objects. After applying the filters, they used region

growing algorithms to improve the identification of each leukocyte trace. The steps followed by

Sato et al. are summarized in Figure 3.4. In addition to the images used in the previous work,
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Figure 3.4: Stages of the method proposed by Sato et al. in (SATO et al., 1995).

the authors also incorporated images from human retina and fluorescent angiography. However,

the results presented were only visual (qualitative).

Tang et al. (TANG et al., 2002), for instance, conducted experiments in 100 videos of

intravital microscopy using well-settled techniques for in vitro analyses: the correlation tracker,

the centroids tracker, and the snakes-based tracker. They assessed these methods by using the

average number of frames tracked (44.1 frames for correlation tracker, 9.7 for centroids tracker,

and 80 for snakes) and the root mean square error (RMSE) calculated in micrometers (25 µm

for correlation tracker, 43.3 µm for centroids tracker, and 2.8 µm for snakes) over the distance

between the detected cell and its correspondent position in the manual annotation. The authors

found that snakes-based tracker overperformed the other methods when applying the approach

in real IVM images.

The same techniques used by Tang et al. (TANG et al., 2002) were also applied by Goobic

et al. (GOOBIC et al., 2001) in videos from in vivo analyses with TNF-α2 treatment performed

in the cremaster muscle of rats. The authors also used super-centroid and super-correlation

trackers, which are modifications of the traditional ones. Their results, summarized in Table

3.2, include the average percentage value of frames tracked and the average RMSE value for

each one of the five evaluated techniques.

The idea of adaptive template matching (ATM), already addressed in the super-centroid

2Tumor Necrosis Factor α: treatment of venules that is capable of increasing the inflammatory response and
slowing down the rolling cells.
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Table 3.2: Results obtained by Goobic et al. (GOOBIC et al., 2001).

Technique Average of frames tracked (%) Average RMSE (µm)

Centroid tracker 39.01 6.22
Correlation tracker 71.11 3.41
Super-centroid tracker 61.23 4.87
Super-correlation tracker 90.41 1.94
Active contours 100.00 0.33

and super-correlation methods by Goobic et al. (GOOBIC et al., 2001), was coarsely applied

by Acton et al. (ACTON; WETHMAR; LEY, 2002) in the task of tracking leukocytes in IVM

studies performed in the cremaster muscle of rats. For that, they worked on experiments with

and without TNF-α treatment. In addition to the adaptive templates, the proposed approach in-

volved frames registration using edges information, noise reduction by morphological filtering,

and the application of the Kalman filter algorithm to handle occlusion. Firstly, they drew a win-

dow around the manually selected point for the creation of an initial template. Templates in the

next frames (adapted) were then updated according to their predecessors. The results obtained

can be seen in Table 3.3.

Table 3.3: Results obtained by Acton et al. (ACTON; WETHMAR; LEY, 2002).

Evaluation measure With TNF-ααα Without TNF-ααα

Average rolling velocity (µm/s) 5.6±0.4 20.3±0.4
Deviation of average velocity (%) 6.9 5.6
Mean absolute difference between the centroids (µm) 1.2 4
RMSE velocity (%) 12 8

According to Acton, these results were better than those from the centroids tracker. Al-

though the proposed method recognized possible morphological changes that leukocytes may

have during an IVM experiment, it did not handle the manual initialization (undesirable task)

and the proper template update in the cases where occlusion occurred.

Ray et al. (RAY; ACTON; LEY, 2002) used active contours for the detection and tracking

of leukocytes. The energy functional of the model was formulated to incorporate the cells shape

and scale constraints, while for the external energy, they chose the generalized gradient vector

flow (GGVF) field (XU; PRINCE, 1998b, 1998a). The results obtained were compared with

manual annotations and with the results of centroid and correlation trackers. The average RMSE

values related to the detected leukocytes and those manually annotated for the images with and

without TNF-α treatment were, respectively, 0.5 µm and 4.6 µm, with standard deviations of

0.2 µm and 6.2 µm. The average percentage of frames tracked reached 99.9±0.3% in treated
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images and 74.4±33.4% in the untreated ones. Regarding the method drawbacks, we can cite

the high computational cost, the instabilities in the initialization of boundary control points, the

manual initialization limited to a margin of error from 3 to 4 pixels in leukocyte centroid, and,

finally, the inability of the method to handle appearing and leaving cells in the microscope FOV.

Ray et al. (RAY; ACTON, 2004) also compared the gradient vector flow (GVF) and motion

gradient vector flow (MGVF) techniques. The latter was proposed in replacement of GVF, that

proved inadequate when leukocyte displacements (frame-by-frame) exceed the value of a cell

radius. Tests were performed for both approaches using four different temporal resolutions that

simulated the variation of cell displacements. Table 3.4 shows the results found by the authors.

Table 3.4: Results obtained by Ray et al. (RAY; ACTON, 2004).

Average RMSE value (µµµm)

Field 30 fps 15 fps 10 fps 7,5 fps

GVF 2.5 2.7 4.3 6.0
MGVF 1.6 1.5 1.8 3.9

After evaluating the results of Table 3.4, it was verified that MGVF outperformed GVF

mainly in the cases where the cell displacement was higher than its radius size. However, it is

necessary to know in advance the direction of blood flow to apply this technique.

Dong et al. (DONG; RAY; ACTON, 2005) chose an active contours model for the au-

tomated detection of leukocytes. The proposed model used the B-spline (MENET; MARC;

MEDIONI, 1990) technique as a continuous parametric representation, and a function named

gradient inverse coefficient of variation (GICOV) as a restriction to the energy functional, which

assigns a score to each estimated contour. The GICOV measure can be interpreted as the ratio

of the mean and the standard deviation of directional image derivatives over an entire closed

contour fitted to a leukocyte boundary. Initially, to coarsely identify the leukocytes, an ellipse

matching algorithm was used. Next, a B-spline snake was evolved to refine the estimated leuko-

cyte boundaries, followed by a thresholding technique applied in the final GICOV scores. As a

result, the method presented an accuracy of 78.6%, with an FP rate of 13.1% on the leukocytes

detection. By using the same methodology, Sahoo et al. (SAHOO; RAY; ACTON, 2006) pro-

posed to detect leukocytes by adopting a standard teardrop shape. The results were analyzed

qualitatively and indicated a better model agreement.

In 2004, Mukherjee et al. (MUKHERJEE; RAY; ACTON, 2004) proposed the detection

and segmentation of leukocytes using image-level sets. The idea was to minimize an energy

functional that quantifies the quality of a given curve delineating a cell. Cell tracking was

cast as a maximization problem using the similarity measure between level sets in consecutive
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frames. As results, the average number of frames with cells tracked by both the proposed and

correlation methods were 90% and 73%, respectively, as well as the average values of 5.45 µm

and 11.47 µm for the RMSE between the centroids’ positions found by both techniques and the

manual annotation.

Cui et al. (CUI; ACTON; LIN, 2006) used the Monte Carlo (MC) technique for the track-

ing of a single rolling leukocyte in IVM studies of the cremaster muscle of rats. The approach

started with the alignment of frames by using the TM technique, where the employed template

was obtained from the first video frame. The initial position of the leukocyte centroid was man-

ually defined in the first three video frames since the method performs the movement prediction

using two antecedent frames. Sample points around the centroid, weighted according to the cell

local intensity, were then generated from this prediction. Next, the points are arranged to form

radial lines around the centroid, allowing the use of a one-dimensional operator for edge detec-

tor in each segment of line created. Finally, the position of the leukocyte centroid in the next

frame is defined as the sample with the highest weighted value. The results were compared with

the centroid, correlation, and active contours-based (using GVF) trackers. When working with

99 microscopy videos, the proposed technique achieved an average RMSE value of 0.47 µm,

with an average of 82.77% of frames tracked3, a number of videos with the last frame tracked4

being equal to 57, and 53 videos in which the cell was tracked in all the frames5. Although this

approach requires initial manual annotations, the method was less sensitive to the presence of

the blood vessel wall, and to additive Gaussian and salt-and-pepper noises when compared to

active contours.

Ray (RAY, 2010) used a grid of points to start his detection procedure by analyzing the

directional image gradient. He then applied a curve fitting as a concave cost minimization

problem, followed by a calculation of the GICOV score and a simple mean shift clustering al-

gorithm. His method demonstrated to better deal with outliers when compared with his previous

techniques. One significant point to emphasize is that Ray’s work concern only to the detection

of cells and not to the tracking of them.

Liu et al. (LIU; LIN; ACTON, 2012) introduced a target motion prediction model based on

a Bayesian approach to predict cell positions. This prediction was made by griding an ellipsoid

around the target cell and generating weighted samples using their distances and visual fea-

tures. Unlike the Monte Carlo tracker (CUI; ACTON; LIN, 2006), where samples are randomly
3Percentage of frames tracked: the number of frames that a cell is tracked divided by the number of frames in

the video.
4Last frame tracked: if the last frame in the video sequence is tracked, the authors regard the sequence as “last

frame tracked”.
5All frames tracked: if all the frames in the video sequence were tracked, the authors considered the sequence

as one with “100% frames tracked”.



68 3 Theoretical background

created, in this grid-based Bayesian (GBA) approach, samples are generated in a predicted posi-

tion. Their results in a single cell tracking process revealed that the proposed approach is much

faster than snake (RAY; ACTON; LEY, 2002) and MC (CUI; ACTON; LIN, 2006) trackers and,

at the same time, is significantly more accurate and more robust, as illustrated by the resulting

values in Table 3.5. The authors performed their experiments in 98 videos of IVM, each of

which consisting of 91 frames. For these videos, they tested a registration framework based on

the TM technique and showed the results for both cases, with and without registration.

Table 3.5: Results obtained by Liu et al. (LIU; LIN; ACTON, 2012) in experiments using a single
cell.

Videos registered Videos non-registered

Evaluation measure Snake MC GBA Snake MC GBA

Frames tracked (%) 71.7 82.7 96.4 70 55.5 93.6
Videos with all frames tracked 44 57 82 41 32 75
Average RMSE (pixels) 1.84 1.64 1.33 1.9 2.26 1.37

Although their method partially handled occlusions via analysis of the past frames, all cells

in the first frame must be manually annotated before executing the algorithm. Another limitation

of their method is that if a new cell appears in the FOV, it will not be considered in the analysis.

In 2013, Huang et al. (HUANG et al., 2013) proposed a method to analyze the dynamic

behavior of single lymphocytes by combining shape features, cell deformation, and intracellular

motion. For that, they segmented and tracked cell boundaries by using active contour models

(LI; ACTON, 2007). However, in their work, the dynamic analysis was performed using only

a single cell at a time, which might be a problem if a high number of cells with different

trajectories is considered in the analysis.

3.4.1 The use of artificial neural networks

Because the aforementioned techniques heavily rely on data representations and make

strong assumptions of cell features, they are conditioned to a specific scenario and can not be

applied to multiple types of cells or imaging modalities (LECUN; BENGIO; HINTON, 2015).

Artificial neural networks (ANN), on the other hand, have the ability to learn task-specific fea-

ture representations from raw data and are generally superior to handcrafted features.

Egmont-Petersen et al. (EGMONT-PETERSEN et al., 2000) adopted ANN to detect and

track leukocytes in IVM studies of the mesentery of mice and rats. In this work, the authors

compared the application of an ANN using two training datasets collected from real and syn-
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thetic images of cells. A stochastic model created the synthetic images to mimic the intensity

distribution of the leukocytes, as illustrated in Figure 3.5.

Figure 3.5: Model developed in (EGMONT-PETERSEN et al., 2000) to fashion the intensity dis-
tribution of the leukocytes and create synthetic images for training the ANN.

A classification process indicated whether an image region of 13×13 pixels belonged to a

cell or not. The average of the areas under receiver operating characteristic (ROC) curves using

the proposed method was 0.9 for the synthetic images and 0.71 for the real ones. However, the

authors needed to create a training dataset for the ANNs, and the cell tracking procedure was

not handled in their work.

Eden et al. (EDEN et al., 2005) also resorted to the use of ANNs for the detection and

tracking of leukocytes in IVM. The proposed cell detection approach started using a motion de-

tection algorithm based on the subtraction of the image background. After this rough detection,

they selected only the cells inside the vessel region and used an ANN for the cells classification

(as a target or a non-target), which have afterward their points analyzed by a clustering strategy.

To overcome the problem of cell occlusion in the video images, the authors used a method pro-

posed by Chetverikov et al. (CHETVERIKOV; VERESTÓI, 1999; CHETVERIKOV, 2001).

With these techniques, it was possible to achieve the detection and tracking of leukocytes in 9

colored videos of rats’ mesentery. In addition to an analysis of vessel segmentation, the work

resulted in a correlation coefficient measure of 0.85 (BALDI; BRUNAK, 2001) when applied

in the training dataset for the detection of leukocytes, and in a value of compatibility over 97%

between manual and computer extracted statistics in the average velocity of cells found in each

video frame. The algorithm was also compared with another method of motion correspondence

(IPAN, (VERESTÓY; CHETVERIKOV, 1998)) and tested with the approach of virtual flow

enabled and disabled (accuracies of 88% and 94%, respectively).

The use of these shallow ANN architectures, however, may not represent complex features,

resulting in a low level of generalization and weak learning of data representations. On the other

hand, deep neural networks (DNN) have demonstrated a remarkable ability to learn abstract

feature representations hierarchically while requiring less human interventions and expertise

(CRUZ-ROA et al., 2013; XIE et al., 2018; GOODFELLOW; BENGIO; COURVILLE, 2016).

Among different architectures of DNNs, the convolutional neural networks (CNN) are the most
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popular ones in numerous tasks of image analysis (GREENSPAN; GINNEKEN; SUMMERS,

2016; LECUN; BENGIO; HINTON, 2015; LECUN et al., 1998).

Although not dealing with IVM images directly, Akram et al. (AKRAM et al., 2017) pro-

posed a joint cell detection and tracking method based on a CNN for cell candidate bounding

boxes and another CNN for cell segmentation masks. The network structure in (AKRAM et

al., 2017) has a similar shape as U-Net (RONNEBERGER; FISCHER; BROX, 2015) but with

fewer layers and a fewer number of feature maps. Ronneberger et al. (FALK et al., 2019;

RONNEBERGER; FISCHER; BROX, 2015), inspired by (LONG; SHELHAMER; DARRELL,

2015), proposed a network named U-Net that can be trained end-to-end for the detection and

segmentation of cells in microscopy images. The U-Net uses a fully convolutional neural net-

work (FCN) and incorporates high-resolution features from contracting layers to the upsampled

output, allowing the network to propagate context information. Between their main contribu-

tions, Ronneberger et al. introduced the use of elastic deformations for data augmentation in

microscopy imaging, which is useful to simulate local spatial variations in the images.

Software packages like Aivia6, FindMyCells7 (SULEYMANOVA et al., 2018), and Cell-

Profiler8 also use deep learning models, but they often require a training process from scratch

or a related dataset. Except for U-Net, all these models rely on basic geometric and inten-

sity transformations for data augmentation. FindMyCells, for example, is based on DetectNet

(TAO; BARKER; SARATHY, 2016) augmentation method, which applies image crop, shift,

scale, flip, rotation, and desaturation techniques, while CellProfiler utilizes part of the U-Net

approach, with image rotations, shifts, and drop-out layers. We refer the interested reader to

more comprehensive surveys (XIE et al., 2018; XING et al., 2018) for further details about gen-

eral cell detection, classification, segmentation, and tracking using deep learning in microscopy

images.

3.4.2 Our previous works

In our previous works, we proposed several methods for leukocytes detection in IVM. We

started with the work (FREIRE et al., 2012), where we tested the Hough transform technique

(ATIQUZZAMAN, 1999; HIERKEGAARD, 1992) to identify circular-like structures in 15

images of mice brain. This work compared the Hough transform application using three differ-

ent strategies: (1) after the application of Sobel filter and Canny edge detector (GONZALEZ;

WOODS, 1992), (2) after the application of Laplace filter and Canny edge detector, and (3) in

6�������������������������������������
7��������������������������
8������������������������
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the raw intensity values. The resulting accuracy values for the three strategies were 16.31%,

30.32%, and 84.2% on average, respectively, showing a better performance of the Hough trans-

form in the raw images.

In (PINTO et al., 2015), we applied blind deconvolutional techniques for image deblurring

and tested two methods for leukocytes detection, the conventional TM, and a technique based

on the local phase symmetry (LPS). The results reached F1-score values of 0.72 and 0.80 for the

TM and LPS techniques, respectively, considering 15 images extracted from the mice’s brain

after deblurring.

In the works (ELISA DE SOUZA et al., 2015, 2016), we used second-order momentum

matrices obtained by using the phase congruency technique to detect leukocytes also in the

brain images of mice. The best result achieved for this technique was a F1-score value of 0.79.

Still using images from IVM studies in the brain of mice, we proposed an approach based

on the local analysis of eigenvalues obtained from Hessian matrices (GREGÓRIO DA SILVA;

CARVALHO-TAVARES; FERRARI, 2015, 2016, 2019). Firstly, we applied a method for

leukocytes detection using a frame-based approach, where blob-like structures were enhanced

and detected by Frangi’s algorithm (FRANGI et al., 1998). Next, we used a modified version

of the same algorithm to enhance 3D tubular-like structures representing our cell trajectories

directly in spatiotemporal images (GREGÓRIO DA SILVA; CARVALHO-TAVARES; FER-

RARI, 2019). This work was not only able to detect leukocytes but also track them over the

video frames. Regarding the main results, our methods achieved F1-score values of 0.84 and

0.88 for the 2D and 3D approaches, respectively.

Despite promising results, our previous approaches were developed to enhance and detect

circular-like cells in IVM images from the CNS of mice. Therefore, these methods mostly

fail when either the cells have distinct appearances or came from different image acquisition

protocols. For this reason, we tested different methods invariant to such cell changes in this

work. A better discussion about our findings is made in Chapter 7.

3.4.3 Comparative summary

A comparative summary of the works directly related to IVM applications analyzed in this

subsection is presented in Table 3.6. This summary table considers the capability of methods in

(1) detecting and tracking single or multiple cells, (2) performing cell detection, (3) performing

cell tracking, and (4) handling cell occlusions. Also, it shows the organs used in each study.
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3.5 Final considerations

In this chapter, we presented a theoretical background for the understanding of the main

strategies addressed in multiple object tracking, as well as the explanation of some particular

techniques to detect and track cells in microscopy image sequences.

Based on our review of state of the art for IVM automated algorithms, we did not find any

related study using IVM images from the CNS (animal’s brain or spinal cord) beyond ours or

from more than one organ, which could add numerous challenges to the algorithms. Also, the

2D+t spatiotemporal idea was only explored by Sato et al. (SATO et al., 1995) for the tracking

of leukocytes in IVM studies. However, their work limited the results to a visual inspection and

used a technique with a high computational cost for the detection. Finally, many studies are

concerned with the processing of only one cell at a time, while others do not handle occlusion,

which is a significant issue in real scenarios.

In this sense, we believe the use of multiple image features and a combination of 2D and

2D+t processing can significantly improve the current results for the multiple cell tracking ap-

proach. In the next chapter, we start to describe our methodology in this research work.
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Chapter 4
PREPROCESSING

This chapter details all the techniques employed in our preprocessing pipeline to improve

the quality of data to the next processes. It also describes the metrics used to evaluate the

preprocessing outputs visually and quantitatively.

4.1 Preprocessing pipeline

The preprocessing stage is the first step of our automatic computational pipeline. It is com-

posed of particular techniques that intend to solve the main inherent problems related to the

IVM image acquisition and, consequently, improve the quality of the data for the next stages.

It follows a logical sequence of image corrections that include the application of conventional

techniques for blurred frames removal, noise reduction, contrast improvement, video stabiliza-

tion, and vessel segmentation. The sequence of techniques is illustrated in Figure 4.1.

Figure 4.1: Steps of our preprocessing stage.

Except for the techniques used to remove blurred frames and to stabilize the videos, all the

remaining parameters were visually adjusted. The following sections describe all these essential

steps to achieve a better cell detection and tracking.

4.2 Blurred frames removal

In the first stage, all frames strongly affected by the animal movement were detected and

removed by a technique previously developed for this purpose (FERRARI et al., 2015). Al-
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though image restoration techniques can be used to recover the motion-blurred frames, in this

work, we have only extracted them for further analysis.

The method proposed by our research group (FERRARI et al., 2015) uses directional statis-

tics of local energy maps obtained from the convolution of each video frame with a bank of

log-Gabor filters specially designed to detect motion blur. The bank of filters was built using

three scales and six orientations. The maximum response of the filters for each spatial image

position (at a particular orientation along with different scales) was used to generate an angular

distribution of the responses. From this distribution, a set of directional statistics was extracted

and analyzed for deciding whether the motion in the image was excessive or not. The work

hypothesizes that the motion blurring introduces local changes in the image texture, inserting a

large number of directional information in the spectral bands that are neither high nor low, and

this can be measured using directional statistics of the filters’ responses. However, it is critical

to notice that the removal of blurred frames from our videos was only possible because the

video sample rates were sufficiently high to guarantee that, i.e., even after removing degraded

images, the continuity of the cell movement is preserved and do not affect the tracking process.

4.3 Noise reduction

In the next stage, we applied the bilateral filter technique (TOMASI; MANDUCHI, 1998)

to reduce noise without introducing noticeable blurring in the images and to improve the signal-

to-noise ratio of the video frames. This technique replaces the value of each image pixel, I(xxx),

by the weighted average of its neighbors inside a neighborhood defined as Ω. Generally, the

weights are defined using a Gaussian distribution (as in the case of this work) and are depen-

dent not only on the Euclidean distance of pixels but also on radiometric differences, such as

range differences, depth distance, and others. In addition to the systematic scanning of pixels,

this technique preserves image edges and allows the adjustment of weights according to the

neighborhood. The filtered image IBF(xxx) is defined as:

IBF(xxx) =
1

Wp
∑

xxxi∈Ω
I(xxxi)Gσs(�xxx−xxxi�)Gσr(|I(xxx)− I(xxxi)|), (4.1)

where I(xxx) is the pixel intensity, and xxx represents the pixel coordinates in the neighbors Ω being

considered. Gσs corresponds to a Gaussian kernel (spatial) with a standard deviation σs that

smooths the differences in the pixel coordinates, and Gσr a Gaussian kernel (range) with a

standard deviation σr that decreases the influence of pixels xxxi when their intensity values differ

from I(xxx). Wp is a normalization factor which ensures that the sum of the pixel weights equals
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one, i.e.,

Wp = ∑
xxxi∈Ω

Gσs(�xxx−xxxi�)Gσr(|I(xxx)− I(xxxi)|). (4.2)

The filter parameters were experimentally adjusted to provide the best trade-off between

noise reduction and low blurring effect. Consequently, the diameter of filter neighborhood and

the range and spatial parameters of Gaussian kernels were set to d = 9, σr = 10 and σs = 10,

respectively.

4.4 Contrast standardization

To diminish the photobleaching effect (ANDRESEN et al., 2012) and, consequently, to

improve our frame-to-frame image registration method (described in the next subsection), the

histogram matching technique proposed by Nyúl et al. (NYÚL; UDUPA; ZHANG, 2000) was

applied to each pair of consecutive frames in the videos. The idea behind this approach is the

pixel intensity standardization of the video frames by using the image histograms.

Given a pair of images, Ir and Is, with their corresponding intensity ranges [r1,r2] and

[s1,s2], the algorithm estimates two sets of l reference points defined as {qr,k | 1 ≤ k ≤ l} for

the histogram of the reference image Ir, and {qs,k | 1 ≤ k ≤ l} for the histogram of image Is.

Next, the algorithm applies a sequence of linear mappings in the intervals between the reference

points {qs,k} and {qr,k}, i.e., mappings from [qs,k,qs,k+1] to [qr,k,qr,k+1], for all k = 1, . . . , l −1,

and also from [s1,qs,1] to [r1,qr,1], and from [qs,l,s2] to [qr,l,r2]. In practice, these reference

points are defined as the histogram percentiles according to the number of points chosen. For

example, for l = 3, they would be the quartiles of the histograms.

In this work, the parameter l was experimentally set to 7, and the first frame of all pairs of

consecutive frames was used as the reference image for the histogram matching.

4.5 Video stabilization

The video stabilization or temporal image registration framework developed in this work

to correct for small specimen movements is comprised of four modules: metric, optimizer,

interpolator, and transformation. The method, as shown in Figure 4.2, consists of finding a

transformation T (xxx|ppp) to correct the misalignment between consecutive pairs of frames in the

video. The set of parameters ppp of the transformation T is obtained iteratively by mapping all

pixels from the moving frame M(xxx) =F(xxx, t+1) to their corresponding pixels in the fixed frame
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F(xxx) so that the similarity metric S(ppp|F,M,T ) is minimized.

Figure 4.2: Temporal image registration framework developed to stabilize video motion due to
small animal movements.

This framework uses a multiresolution approach in which the levels of a Gaussian pyra-

mid represent images with different resolutions, as illustrated in Figure 4.2. The estimation

procedure for the parameters ppp starts using the lowest resolution images in the top level of the

pyramids, and the estimated values at this level are used as a first start to the algorithm on

the next lower level (higher resolution images). This procedure is repeated until the pyramid

bases (full resolution images) are reached. Each step illustrated in Figure 4.2 is described in the

following subsections.

4.5.1 Metric

The metric chosen in this work was the mutual information (MI) (PLUIM; MAINTZ;

VIERGEVER, 2003), which measures the statistical dependency between two data sets (fixed

and moving images) by taking into account the amount of information that one random variable

has over another. MI is defined in terms of entropy in the following way (PLUIM; MAINTZ;

VIERGEVER, 2003):

S(ppp|F,M,T ) = MI (F,T ) (4.3)

= H (F)+H (M|T )−H (F,M|T ) ,

where H (·) is the entropy of a random variable (in this case, images F or M), which can be

calculated from the marginal probability (normalized intensity histogram), P(·), of the images

as:

H (F) =− ∑
f∈F

P( f ) logP( f ) , (4.4)
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H (M|T ) =− ∑
m∈M

P(m|T ) logP(m|T ) . (4.5)

In Equation (4.4) and (4.5), f and m represent, respectively, pixel intensities in the images F and

M. The joint entropy of images F and M, which is the last term in Equation (4.3), is calculated

from their joint probability distribution (joint normalized intensity histogram), P( f ,m|T ), as:

H (F,M|T ) =− ∑
f∈F,m∈M

P( f ,m|T ) logP( f ,m|T ) . (4.6)

4.5.2 Optimizer

An optimizer based on the gradient descent method (KLEIN; PLUIM; STARING, 2009)

was used to search for the best set of parameters ppp that minimizes the similarity function S

between images F and M. As a consequence of the multiresolution approach, the algorithm

processing time is reduced, and the method’s stability is improved since the coarser details from

the top levels of the pyramids increase the chances of the gradient descent method to converge

to a global minimum, providing, therefore, the estimation of a proper set of parameters in each

iteration.

The choice of using the gradient descent algorithm as an optimizer in our registration frame-

work was made because it is a low computational complexity technique, which is an important

feature when processing vast amounts of data. Also, as mentioned previously, the optimization

of the parameters is performed using a multiresolution framework, which increases the conver-

gence speed and minimizes the chances of the gradient descent algorithm getting trapped in a

local minimum.

4.5.3 Interpolator

Similarly to the optimizer, a linear interpolator was used in our image registration frame-

work because of its low computational complexity concerning the number of image pixels. This

module is necessary because the mapping of points from one image into another is performed

in the physical coordinate system. Therefore, an interpolator method is required to put these

points back in their corresponding places in the image pixel grid.

4.5.4 Transformation

Mathematically, geometrical transformations represent mappings of points from a space X

of one view (moving image) to a space Y of a second view (fixed image). As indicated in Figure
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4.2, our proposed framework uses two types of geometrical transformations to correct for unde-

sirable frames misalignment caused by the animal movements. First, an affine transformation

T , representing a linear combination of rotations, translations, scaling and shearing operations

was applied to each position xxx of the moving image (herein, a point in X is represented by the

column vector xxx) to produces a transformed point xxx� given the set of transformation parameters

ppp,

xxx� = T (xxx|ppp). (4.7)

This transformation results in a coarse alignment between the moving and fixed images.

After this affine registration, the deformable transformation technique proposed by Thirion

(THIRION, 1998) was applied to the moving image to refine the previously computed align-

ment. A deformable transformation consists of finding a mapping of an image M(yyy) to an image

F(xxx) using a deformation field u(xxx) (AVANTS; TUSTISON; SONG, 2009). The deformation is

defined in the physical image space and provides the positional difference between two given

images. In this way, if a feature defined in F(xxx) has its equivalent in M(yyy), the deformation field

u in xxx is computed as

u(xxx) = yyy−xxx, (4.8)

and, therefore, it can be applied to deform an image M into an image F by

Mde f ormed = M(xxx+u(xxx)). (4.9)

The idea of the deformable transformation technique (THIRION, 1998) to compute the

deformation field is that a regular grid of forces deforms an image by pushing the contours to

the normal direction of each grid point. The orientation and magnitude of the displacement

vectors are derived from the instantaneous optical flow equation (HORN; SCHUNCK, 1981).

In this case, the conservation of gray level intensity of the moving points is assumed to be

constant, i.e., I(xxx(t), t) = const, with xxx(t) representing the coordinates of the point at time t.

In our case, two consecutive pairs of frames (the fixed frame denoted by F(xxx) and the

moving frame M(xxx)) are compared to allow the computation of a displacement vector u(xxx)

that let M(xxx) closer to F(xxx). Then, giving that F(xxx) and M(xxx) are separated by one time unit,
∂ I/∂ t = M(xxx)−F(xxx) and u(xxx) = dxxx/dt is the instantaneous velocity of F(xxx) to M(xxx), thus

u(xxx) ·∇F(xxx) =−(M(xxx)−F(xxx)) . (4.10)

In this case, u(xxx) is considered the velocity because the images are two consecutive frames,

i.e., u(xxx) is the displacement during the time interval between the two image frames (THIRION,
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1998). It is well known in optical flow literature that Equation (4.10) is not sufficient to define

the velocity u(xxx) locally and, in this case, it is usually determined using some form of regular-

ization. For registration, the projection of the vector on the direction of the intensity gradient is

used as:

u(xxx) =−(M(xxx)−F(xxx))∇F(xxx)
�∇F�2+(M(xxx)−F(xxx))2/K

, (4.11)

where K > 0 is a normalization factor that accounts for the units imbalance between intensities

and gradients. This factor is computed as the mean squared value of the pixel spacings. The

addition of K makes the force computation to be invariant to pixel scaling in the images. In

order to provide a level of symmetry in the force calculation, a variation of the Equation (4.11)

was used. In this case, the gradient of the deformed moving image is also involved, so that

u(xxx) =−2 · (M(xxx)−F(xxx))(∇F(xxx)+∇M(xxx))
�∇F+∇M�2+(M(xxx)−F(xxx))2/K

. (4.12)

An elastic-like behavior, smoothing the deformation field with a Gaussian filter between

iterations, was included in the implemented algorithm to make it more natural.

4.6 Vessel segmentation

Another essential step in our preprocessing stage is the segmentation of the region where

the leukocytes’ events are occurring. With this segmented region, we can reduce the algorithm

processing time and the number of false-positives (cells wrongly detected). The vessel region

in the images was extracted by assessing the temporal variance of each pixel, as proposed in

(SATO et al., 1997). The rationale, in this case, is that the gray level of each pixel in a vessel

region, where blood cells are flowing continuously, will vary significantly within frames while

the gray level in other regions will be almost constant, i.e., the gray level variance tends to be

large in the vessel region and small in other regions. However, we observed that the Sato’s

approach alone was not sufficient to segment the venule’s region correctly since his technique

also responds to motion in thinner capillaries in the IVM images. Therefore, we added other

steps to Sato’s approach to overcome this problem.

After the computation of temporal variance for the video, we blurred the resulting image

with a Gaussian kernel. Next, we created a binary image using a global thresholding technique

defined empirically for each video, and then we applied a morphological opening operation with

a circular structuring element. All the parameters were visually defined according to the image

contrast and the thickness of small vessels in the image so that to discard thinner structures
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that are not useful for the detection and tracking processes. As a final step, we selected the

larger region in the image as the one to be processed, i.e., the blood vessel region in which the

leukocyte recruitment will be analyzed. In the cases of colored images, we transformed the

video frames into the HSV color representation and used only channel V for the process as it

presents a better response to vessel regions. The resulting image is used for further analysis to

reduce the number of false-positive cells automatically detected in the videos.

The outputs for each step of the vessel segmentation process can be seen in Figure 4.3.
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Figure 4.3: The outputs for each vessel segmentation step of our proposed approach. Each line
of the figure corresponds to an IVM video used. Each column of the figure shows a particular
processing step, such as, from left to right: 1st) the variance image, 2nd) blurred image, 3rd)
binary image, 4th) morphological opening output, and 5th) the final mask obtained by selecting
the larger binarized region of the image.



4.7 Methods of evaluation 83

4.7 Methods of evaluation

Since the results of leukocytes detection and tracking are directly affected by the video

stabilization process applied in our preprocessing stage, we evaluated the registration pipeline

visually and quantitatively using the following methods.

4.7.1 Line projection

The line projection technique allows visual analysis of the whole video. This technique

creates a two-dimensional image by stacking all the central lines of video frames, i.e., each row

of the image created corresponds to the central line profile extracted from each frame over the

entire video. As a result, we have an image of size w×n f , where w is the frame width, and n f

is the total number of frames in the video. In this sense, when analyzing the intensity profiles

stacked, we can observe how aligned (or misaligned) the edges of image objects are.

4.7.2 Peak signal-to-noise ratio – PSNR

We can define the PSNR term as the ratio between the maximum possible power of a sig-

nal and the power of corrupting noise that affects the fidelity of its representation in the video

frames. It is vulnerable to the distortions caused by the pixels misalignment, like the spatial

changes, rotation, and resizing (KORHONEN; JUNYONG, 2012). The PSNR measure is cal-

culated as:

PSNR = 20log10

�
MAXI

RMSE

�
, (4.13)

RMSE =

�
1

mn

m

∑
1

n

∑
1
� It+1(x,y)− It(x,y) �2, (4.14)

where MAXI represents the maximum signal value existing in the image I, and It(x,y) represents

the image pixel at moment t and position (x,y). The number of rows and columns are given,

respectively, as m and n. In this work, the PSNR measure was calculated for the residual images

resulted from the subtraction of consecutive pairs of frames. In this case, if the residue is low,

then the PSNR value will be high, indicating a proper alignment between the pair of frames.

Otherwise, if the residue is high, meaning a high level of misalignment, then the PSNR value

will be low.
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4.8 Final considerations

In this chapter, we described the main problems that may affect the quality of IVM images

and provided details of the techniques developed and used to correct them. These techniques,

which includes blurred frame detection, noise reduction, contrast standardization, video stabi-

lization, and vessel segmentation, were used as the first stage of our automatic computational

pipeline. We also presented the methods used for quantitative assessment of some of these

techniques.



Chapter 5
DETECTION – 2D PROCESSING

This chapter presents the three approaches used in our 2D processing stage for leukocytes

detection as well as the metrics used for their evaluation. The application of different meth-

ods for cell detection in this work shows not only the variability of approaches existing in

the literature but also the reliability of our proposed pipeline by allowing the use of any

detection technique as a plug-in style. We named our developed approaches as MTM-PCA,

MTM-DCNN, and DCNN. The basic concepts of each one of them are, respectively, the ap-

plication of multiple template matching technique in hand-crafted feature images after the

application of principal component analysis, the application of multiple template matching

technique in the outputs of pre-trained convolutional neural network layers, and the use of

a deep convolutional neural network after a fine-tuning process.

5.1 MTM-PCA: Multiple Template Matching with Principal
Component Analysis

Our first detection approach named multiple template matching with principal component

analysis (MTM-PCA) was developed to be a simple and straightforward method that uses a set

of hand-crafted image features. Figure 5.1 illustrates a flowchart of the framework utilized for

this approach.

The processing starts with the computation of image features for all video frames, resulting

in a set of videos, each one obtained for a particular feature. To reduce the number of feature di-

mensions, we extracted the first frame of each feature-video and used this data as an input to the

PCA technique. With the PCA eigenvectors calculated, we then project the remaining frames

into the new PCA basis. A set of ROIs containing leukocytes of fairly different appearance is

then manually extracted from the first video frames, creating a vector of leukocyte-templates
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Figure 5.1: Pipeline of the first approach for leukocytes detection.

that will be used later in a multiple template matching technique (MTM). Each module of Figure

5.1 is detailed in the following subsections.

5.1.1 Features

To better contribute to the detection process, we chose image features that could address

different aspects of the cells. In addition to the original gray-level intensity, we selected features

related to the object contour, texture, geometry, scale, and intensity variations. The methods

employed to obtain these features are described as follows.

Gray level intensity The gray-level intensity of the pixels was used as the original feature

in the next processing steps. In the cases of colored images (IRGB), they were converted to a

grayscale representation (Igray) using the following transformation:

Igray(xxx) = 0.299× IR(xxx)+0.587× IG(xxx)+0.114× IB(xxx). (5.1)

This image transformation is known as luma or luminance (POYNTON, 1997). It is commonly

used in standard color TV and video systems and is related to signal brightness.

Edges The image feature based on the edges was created using the Sobel operator (SOBEL,

1990). This edge operator is typically used to find the approximate absolute gradient magnitude

at each point in a grayscale image. It consists of a pair of 3×3 convolution kernels, as illustrated

in Figure 5.2, designed to respond maximally to edges running vertically and horizontally, i.e.,



5.1 MTM-PCA: Multiple Template Matching with Principal Component Analysis 87

(a) Qy (b) Qx

Figure 5.2: Examples of the kernels used in Sobel operator technique to enhance image edges.

to generate vertical (Qy) and horizontal (Qx) derivatives.

The final image is produced by combining the two derivatives to find the absolute magnitude

of the gradient at each point, which is given by:

Q =
�

Q2
x +Q2

y . (5.2)

Texture In this work, image texture features were obtained using the gray level co-occurrence

matrix (GLCM) algorithm. This technique can be defined as "a tabulation of how often dif-

ferent combinations of pixel brightness values (gray-levels) occur in an image" (CONNERS;

TRIVEDI; HARLOW, 1984; CONNERS; HARLOW, 1980; HARALICK, 1979; HARALICK;

SHANMUGAM; DINSTEIN, 1973). The algorithm’s idea is to create a matrix containing the

frequency of gray-level intensity variations between a reference pixel and its neighbors. In our

case, the texture feature images were all obtained using a one-pixel offset, i.e., the GLCM al-

gorithm considers the relationship between two pixels at a time (a reference pixel and one of

its immediate neighbors). Also, in this work, the gray-level co-occurrence matrices were first

computed considering the pixel relationships in four different spatial directions (0, 45, 90, and

135 degrees) and then averaged to create a final matrix from which the texture features were

obtained.

After transforming the GLCM matrix into a symmetric and normalized form, we can ana-

lyze it using different measures that summarize the local texture information into a single value.

The metrics used in this work to characterize image texture information were chosen over sev-

eral other metrics by visual analysis. They are described below, where g(i, j) is the element in

cell (i, j) of the normalized GLCM.

• Difference moment:

∑
i

∑
j

g(i, j)
1+(i− j)2 ; (5.3)

• Inertia (or contrast):

∑
i

∑
j
(i− j)2g(i, j); (5.4)
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• Haralick’s correlation:
∑i ∑ j(i j)g(i, j)−µ2

t

σ2
t

. (5.5)

Above, µt and σt are the mean and standard deviation of the row (or column, due to symmetry)

sums.

Blobness We can easily incorporate the cell shape information as a feature by treating the

problem of leukocyte detection as a Hessian eigenvalue analysis (see Appendix A). In this way,

prior information can be used as a consistency check to discard structures present in the dataset

with a different polarity than the one sought. Isotropic structures, for instance, are associated

with eigenvalues having a similar non-zero magnitude. Accordingly, we shall look for struc-

tures whose λ1 and λ2 are both, simultaneously, high and negative. By considering this, a blob-

ness measure function Bσ (λλλ ) (FRANGI et al., 1998; GREGÓRIO DA SILVA; CARVALHO-

TAVARES; FERRARI, 2015), defined as

Bσ (λλλ ) =





�
1− exp

�
− R2

A
2α2

���
1− exp

�
− S2

2c2

��
, if λ1 < 0 and λ2 < 0,

0, otherwise,
(5.6)

was created by using the ratio and magnitude strength of the eigenvalues and used to en-

hance blob-like structures representing the leukocytes in the images. In Equation (5.6), RA =

|λ1|/|λ2| helps to distinguish between plate-like and line-like patterns. Besides, the measure

S =
�

λ 2
1 +λ 2

2 helps to reduce the influence of noisy background pixels in the blobness mea-

sure function since they present low eigenvalues and, therefore, will result in a low value of the

second term in Equation (5.6). Parameters α and c can be adjusted to control the sensitivity of

the filter components and, in this work, they were set, respectively, to 0.5 and one-tenth of the

maximum value of the Laplacian of the image, as suggested in (DZYUBAK; RITMAN, 2011).

The σ footer in Bσ indicates that the blobness measure is computed on a smoothed version of

the image and, therefore, it is representative of the variations of image intensity at the spatial

scale σ . The function was evaluated at a range of spatial scales (σ ), varying between 1 and

8. This range was based on the size of the observed leukocytes in the images. The maximum

response at every pixel was taken as

B(λλλ ) = max
σ∈[σmin,σmax]

Bσ (λλλ ). (5.7)

As a result, we have an image sequence containing all possible blob-like structures en-

hanced by the algorithm. As mentioned previously, because the leukocytes may be positioned

above and below the microscope focal plane, their apparent size and, especially their contrast,



5.1 MTM-PCA: Multiple Template Matching with Principal Component Analysis 89

can significantly change in the images. For this reason, the multiscale blob enhancement will

produce real-valued responses at our feature video images.

5.1.2 Principal component analysis – PCA

To use only the relevant information provided by the computed video features, we tested

our approach using a popular method in machine learning for dimensionality reduction, the

principal component analysis (PCA) (GONZALEZ; WOODS, 1992).

The goal of the PCA method is to seek the most accurate data representation in a lower-

dimensional space by using the variance of the data. Thus, PCA can be thought of as finding

a new orthogonal basis by rotating the old axes until the directions of maximum variance are

found. It is composed of u principal components that are orthogonal, uncorrelated, and represent

the direction of the maximum variance of the data. By choosing a number for u lower than the

original dimensionality (k), we are reducing the data to u dimensions. This process for two-

dimensional data is illustrated in Figure 5.3.

(a) (b) (c)

Figure 5.3: Processes performed by PCA technique. (a) Original data distribution for features 1
and 2, (b) principal components found by the PCA algorithm, and (c) data projection.

The first principal component of the PCA space is the one representing the maximum vari-

ance of the data, the second component is perpendicular to the direction of the first one and has

the second largest variance, and so on. They are calculated as the eigenvectors of the covariance

matrix of the data.

Below are the steps for calculating PCA in three-dimensional data, but the same idea applies

to any number of dimensions.

1. Assemble a data matrix: the first step is to assemble all data points into a matrix where

each row represents one normalized feature-frame of our approach, and each column

corresponds to one data point in the three-dimensional space or the corresponding pixels
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in the feature-frames.

Φ =




x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn


 (5.8)

2. Calculate mean: next, we calculate the mean (µx, µy, µz) of all data points as:

µx =
1
n

n

∑
i=1

xi, µy =
1
n

n

∑
i=1

yi, and µz =
1
n

n

∑
i=1

zi (5.9)

3. Subtract mean from the data matrix: a new matrix W is created by subtracting the mean

values from every data point of Φ:

W =




(x1 −µx) (x2 −µx) . . . (xn −µx)

(y1 −µy) (y2 −µy) . . . (yn −µy)

(z1 −µz) (z2 −µz) . . . (zn −µz)


 (5.10)

4. Calculate the covariance matrix: the covariance matrix captures the data spread infor-

mation. The diagonal elements of a covariance matrix are the variances along the x, y,

and z-axes. The off-diagonal elements represent the covariance between two dimensions

(x and y, y and z, z and x). The covariance matrix C is calculated using the following

product:

C =WW T (5.11)

5. Calculate the eigenvectors and eigenvalues of the covariance matrix: the principal com-

ponents are the eigenvectors of the covariance matrix. The first principal component

is the eigenvector corresponding to the largest eigenvalue; the second component is the

eigenvector corresponding to the second largest eigenvalue and so on and so forth.

One approach to select the number of principal components (u, with 1 ≤ u ≤ k) is usually

looking at the "percentage of retained variance" for different values of u.

More generally, let λ1,λ2, . . . ,λk be the eigenvalues of C (sorted in decreasing order) so

that λ j is the eigenvalue corresponding to the eigenvector e j. Then, if we keep u principal

components, the percentage of retained variance is given by:

U =
∑u

j=1 λ j

∑k
j=1 λ j

. (5.12)

In the case of images, one common heuristic is to choose u to retain 99% of the variance,

or if we are willing to incur some additional information, values in the 90-98% range are also
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sometimes used. In this work, we chose u to retain 95% of the variance, so we pick the smallest

value of u that satisfies

U ≥ 0.95, (5.13)

which is a much more easily interpretable description than saying that we are retaining two or

more components.

After selecting the subset of eigenvectors, we project the remaining data to the new basis,

i.e., all the frames of our feature-videos are projected so that the MTM technique can correctly

use them.

5.1.3 Multiple template matching – MTM

To perform our cell detection step and consequently test our proposed framework, we used

the template matching technique (KHOSRAVI; SCHAFER, 1996; LEWIS, 1995; GONZALEZ;

WOODS, 1992) with multiple templates. The normalized cross-correlation (NCC) based TM

is an algorithm of pattern recognition field that performs the detection of similar objects in an

image I(x,y), taking as input the image itself and a template (sub-image) T (x,y) to be detected.

The TM algorithm used in this work has the NCC coefficient as its similarity measure, computed

as:

ρ(x,y) =
∑
r

∑
s

�
T (r,s)−T

�
·
�
I (x+ r,y+ s)− IT

�

�
∑
r

∑
s

�
T (r,s)−T

�2 ·∑
r

∑
s

�
I (x+ r,y+ s)− IT

�2
, (5.14)

where T is the average value of pixel intensities in T (x,y), IT is the average value of I in the

coincident region with the current position of T , and the sums are only realized over the common

coordinates of I(x,y) and T (x,y), delimited by the variables r and s of the summations.

The coefficient of correlation ρ indicates the level of similarity between the template T and

the current image region. Its scale varies in the range of [−1,1] and is, therefore, normalized

by the amplitudes of T and I, wherein ρ = 1 means the total correlation between T and the

sub-region of I, ρ = 0 means that there is no correlation, and ρ =−1 means inverse correlation.

As already stated at the beginning of this section, our approach used a set of leukocyte-

templates as input for the MTM algorithm. As a result, we have image maps with the coefficient

values corresponding to the similarity of our selected templates with the video frames. In the

cases where the number of templates is higher than one, we sum the final maps found to have

only one output for the algorithm.
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5.1.4 Post-processing

As a result of the MTM algorithm, we have a sequence of image maps where we shall find

the leukocyte positions after analyzing their local maxima responses. Because some feature im-

ages did not enhance all the cells as we needed, we applied an adaptive thresholding technique

in the final MTM maps to also capture the low responses corresponding to cells. The adaptive

thresholding technique has the form:

IR(xxx) =





1, if I(xxx)> Γ (xxx),

0, otherwise,
(5.15)

where the local thresholding function Γ (xxx) is calculated as a weighted sum (cross-correlation

with a Gaussian window) of a b×b neighborhood of position xxx in the image plus a constant c.

The default standard deviation of the Gaussian window is defined by the specified neighborhood

size b. In this approach, we set b by considering the radius of the largest manually selected

template and the constant c as 10% of the image gray-level intensity, i.e., if the image pixel

values are varying in the range [0, 255], then c equals to 25.5.

As a consequence of the image binarization by the adaptive thresholding technique, we have

a set of detected regions corresponding to our cell candidates. For each region, we computed

the centroid coordinate to be used as a detection result, which is compared with the manual

annotations to create an evaluation measure. However, to reduce the number of false positives

in this approach, two additional steps were included as a post-processing stage.

Firstly, the mask image (segmented vessel) calculated in the preprocessing stage was ap-

plied to all video frames, allowing the analysis of the detected cells only inside the region of

interest. Finally, we performed a circularity analysis for each remaining candidate cell in the

MTM resulting maps.

The circularity analysis was employed to review the cell candidates and, consequently,

decrease the number of wrong detections. These wrong detections mostly correspond to the

MTM map regions that have a non-circular shape, which is mainly observed when two cells are

very close to each other, or there is a remaining motion blur in the images.

To perform the analysis, we extracted the local maximum of each binarized region in the

resulting MTM map and analyzed four radial lines centered at this point. We then extracted the

intensity profiles of these lines (of size κ = 2× �b/2�+1) and accumulated them, as illustrated

in Figure 5.4.

Since the resulting MTM maps present the most reliable candidate cells as blob-like struc-
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Figure 5.4: Example of the post-processing step for circularity analysis.

tures, we can compare the distribution of the accumulated line profiles with Gaussian kernels of

different standard deviation values (σ ). The bank of Gaussian kernels was created by varying

the σ value according to κ and a sigma step. The initial sigma value is defined as:

σmin = 0.3× ((κ −1)×0.5−1)+0.8, (5.16)

with the sigma step as:

Δσ = 0.25× r
Nk

, (5.17)

where r = (κ−1)/2, and Nk = 6 is the number of kernels used. The comparison between the ac-

cumulated distribution and the Gaussian kernels is computed by using the Pearson’s correlation

coefficient:

ϒσ (�,ω) =
∑i(�i − �)(ωi −ω)�

∑i(�i − �)2 ∑i(ωi −ω)2
, (5.18)

where � and ω are the accumulated line profiles and the kernel distributions, respectively. The

� and ω are the averages of � and ω .

The score value used to select the final centroids is then calculated as the highest correlation

coefficient found for each accumulated distribution weighted by the central pixel value, that is:

Z =

�
max

σ∈[σmin,σmax]
ϒσ (�,ω)

�
× �c, (5.19)

where σmin and σmax are the minimum and maximum sigma values of the kernels used in the

comparison, and �c is the value of the centered pixel of distribution � (the center point or local

maximum). This final score varies in the range [-1,1] and, consequently, the higher it is, the
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higher the chance its central point belongs to a cell.

5.2 MTM-DCNN: Multiple Template Matching with Deep
Convolutional Neural Networks

Although conventional machine learning techniques have presented great results as in our

first detection approach, they still rely on domain/business knowledge, demanding high exper-

tise to create handcrafted features capable of describing the object of interest.

In the last few years the use of artificial neural networks or, more specifically, the CNNs

have attracted considerable attention because of its ability to learn data representations auto-

matically while dealing with raw data. The use of shallow CNN models, however, may not

represent complex features, resulting in a low level of generalization and weak learning of data

representations.

In order to have a CNN model with a high level of generalization and without incurring in

the overfitting problem, a high number of images with labeled objects is required for training it

properly. As this condition is not always satisfied, other options should be considered.

It is well-known that the first layers of deep CNNs (DCNN) trained on natural images learn

more general features that can be similar to the ones obtained via convolution of the input

data with Gabor filters and color blobs (YOSINSKI et al., 2014). This important statement

suggests we can use the output of these layers as feature extractors in a process called transfer

learning. Transfer learning is a popular approach in deep learning where a network developed

for a specific task may have its weights from early layers used as a feature extractor or as

a starting point for training a new model and adapted in response to a new problem. This

procedure can exploit the generalization of a previously well-trained architecture in another

model setting (YOSINSKI et al., 2014).

In this detection approach (MTM-DCNN), we explore the transfer learning strategy by

using different DCNN models trained on the ImageNet dataset (RUSSAKOVSKY et al., 2015)

as feature extractors. For that, we used the output of their first convolutional layers in our

problem, i.e., in a task entirely different from the original. These output maps are then selected

and used as input for the MTM technique. Figure 5.5 illustrates the pipeline of this approach.

Microscopy frame images generally have a large matrix size, which can limit the process-

ing of a CNN model or make it take a long time to train and predict. It is not reasonable to

directly resize the image frames into smaller ones (e.g., 256×256 or 512×512 pixels) as the
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Figure 5.5: Pipeline of the second approach for leukocytes detection.

massive information contained in this kind of image is quite significant for cellular morphology

characterization, for example. One common approach to handle large images in deep models

is to separate the image into a set of smaller patches. However, it is quite cumbersome to de-

sign an effective and efficient patch stitching method. In this approach, therefore, we decided

to rescale our input images into the fixed range of 1400×1000 pixels since our largest images

have a matrix size of 1392×1040 pixels.

With all the images preprocessed and rescaled, we started our detection pipeline by extract-

ing the first frame of each video and passing it forward into the DCNN model until the selected

layer. In this approach, each selected layer was chosen by visual inspection of its output feature

images. Since our image frames present relevant information in small regions, we decided to

analyze only the first convolutional layers of each DCNN.

As a consequence of transfer learning, not all output images present relevant characteristics

that could help in a detection process. For this reason, we performed a feature image selection

capable of separating only the best set of features to be used next. To accomplish that, we

extracted a small ROI previously selected and used it as a template for the template matching

technique. We then get the corresponding output maps for each feature image and applied

a thresholding technique on each one of then. In this case, the threshold value was set to 0.9,

which results in a map of detection candidates with a high probability of being indeed cells. The

accuracy of each resulting map was evaluated following the metrics described in Section 5.4,

but to choose the best set of features, we sorted and normalized the evaluation results (so that the

sum of all elements is one) in order to select only those top features whose accumulated value

(or retained score) was higher than 0.1. Figure 5.6 illustrates the process of feature selection.

After the first passage through our pipeline, illustrated by the green dashed arrows in Figure

5.6, we have our best set of image features from the DCNN layer and can now apply our
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Figure 5.6: Steps of feature selection for the second detection approach.

approach to all the video frames. The blue arrows in Figure 5.6 show the remaining steps

in our pipeline. They are similar to the previous steps, except that we now know what the best

feature set is and can finally apply the MTM algorithm to identify the cell candidates. At this

step, we also include the original frame image into the vector of selected features.

As in the previous detection approach, we used a set of leukocyte-templates as input for the

MTM algorithm. As a result, we have intensity maps with the highest coefficient values indi-

cating the spatial locations in the video frames with high similarity with our selected templates.

In the cases where the number of templates is higher than one, a fusion step is employed by

summing and normalizing all the MTM output maps.

Finally, instead of applying the post-processing strategy in the resulting MTM maps as

before, we got our cell candidates by setting different threshold values in a simple thresholding

technique since our new feature extraction method showed more robust to enhance the cells in

our video frames. These values were defined in the range of [0.7, 0.95], with a step of 0.5.

5.3 DCNN: Deep Convolutional Neural Network

As stated before, one typical deep architecture for target detection and classification is the

convolutional neural network, which generates hierarchical data representations given images

and targets annotations (LECUN; KAVUKCUOGLU; FARABET, 2010). However, a consider-

able amount of data is still required in order to train a CNN model from the ground up without

overfitting. Among other strategies to reduce overfitting, data augmentation approaches are of-

ten used to overcome this problem by artificially inflating the training dataset under the assump-

tion that more information can be extracted from them through augmentations (SHORTEN;
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KHOSHGOFTAAR, 2019). There is a vast number of techniques to augment images in recent

literature, although many works in object detection only apply basic geometric and intensity

operations to the images. Although significant, the generation of augmented images by trans-

formations such as rotation, shift, scale, and flip, might be highly correlated and insufficient to

provide a robust method that works well for the variability found in IVM data, for example.

Moreover, augmenting data with only basic image transformations could cause overfitting on

the minority object class since the biases present in this class are more prevalent post-sampling

with these simple techniques (SHORTEN; KHOSHGOFTAAR, 2019).

Already cited in the previous section, the transfer learning technique is another exciting

paradigm to prevent overfitting, as also stated by Yosinski et al.:

"Initializing a network with transferred features from almost any number of lay-

ers, even from distant tasks, can produce a boost to the generalization that lingers

even after fine-tuning to the target dataset and proved to be better than using ran-

dom initialization features" (YOSINSKI et al., 2014).

When combining the power of CNNs with data augmentation and transfer learning approaches,

one can accelerate the training step and improve the performance of a new model (YOSINSKI

et al., 2014). Therefore, our third detection approach explores an adaptation of the RetinaNet

(LIN et al., 2017b) model to detect leukocytes in IVM images, where we analyzed the use of

different backbones, feature pyramid levels, image input scales, and the impact of not using

frames from the same video in the training and test datasets.

To accomplish that, we have designed a suite of augmentation techniques for detecting

leukocyte recruitment in IVM data and applied the transfer learning approach by fine-tuning

the weights of ResNet (HE et al., 2016a) backbones pre-trained with the ImageNet dataset

(RUSSAKOVSKY et al., 2015). This strategy not just enables training without overfitting, but

also boosts generalization performance.

5.3.1 Model architecture

RetinaNet (LIN et al., 2017b) is a FCN created by the Facebook AI Research group1 that

uses a feature pyramid network (FPN) (LIN et al., 2017a) coupled on top of a CNN as its

backbone and attaches two subnets for each feature pyramid level, one for classification, and

one for regression of anchor boxes to ground-truth object boxes, see Figure 5.7.

1������������������������
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Figure 5.7: RetinaNet architecture (adapted from (LIN et al., 2017b)).

This model is a one-stage detector that uses a dynamically scaled cross-entropy loss for

class balance and has demonstrated significant results in small object detection compared to

other common methods in the literature. Its design highlights an efficient use of anchor boxes

and a feature pyramid that is responsible for the computation of convolutional feature maps.

In this detection approach, we tested the base model ResNet (HE et al., 2016a) pre-trained

on ImageNet1k (RUSSAKOVSKY et al., 2015) with different depths (50, 101, and 152) to per-

form transfer learning. All parameters and convolutional (conv) layers were initialized as in

(LIN et al., 2017b) when not specified. Unlike (LIN et al., 2017a), we added the feature activa-

tion output from ResNet residual stage conv2 (HE et al., 2016a) to the FPN on top of our back-

bone. This minor modification improves small object detection by pairing a higher-resolution

pyramid level. Connections between the base model and the FPN are made by combining the

low-resolution, semantically strong features of ResNet with high-resolution, semantically weak

features of FPN via a top-down pathway and skip connections (LIN et al., 2017a). This pro-

cess results in a feature pyramid with all levels having rich semantic information and a model

that can be used to predict objects at several scales from a single input image scale without

increasing the predicting time.

To cover cells of different shapes and sizes, a set of anchors (REN et al., 2017) was assigned

to ground-truth boxes in the training process. These anchors are predefined reference boxes tiled

across the image that allow the network to evaluate all object predictions at once, eliminating

the need to scan the image with a sliding window that computes a separate prediction at every

potential position. They are defined to capture the scale and aspect ratio of our targets in the

training dataset, and, as a consequence, we have the network predicting the probabilities and

refinements corresponding to the tiled anchors instead of directly predicting bounding boxes.

In our ablation experiments, we tested anchors with different aspect ratios and sizes at

each pyramid level. Assuming nsc is the number of anchor scales, we added anchors of sizes
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{20,21/nsc , . . . ,2(nsc−1)/nsc} to the original set of nar aspect ratios. Thus, the number of anchors at

each spatial position was A = nar ×nsc. To improve speed and accuracy in the training process,

we only decode the 300 top-scoring predictions per FPN level, after thresholding the confidence

score at 0.05 and the intersection over union (defined later) at 0.5. We then merged the top

predictions from all FPN levels by applying a non-maximum suppression (NMS) algorithm

with a threshold of 0.5.

The cell/non-cell classification and bounding box regression were defined by the two sub-

nets linked at each feature pyramid level. Both subnets start with four 3×3 conv layers, each

with 256 filters and each followed by ReLU activations. The difference between them is at the

end of their design and in the fact that they do not share parameter values. While the classifica-

tion subnet terminates in a 3×3 conv layer with KA filters (here, K = 1 is the number of object

classes) followed by a sigmoid activation, the regression subnet terminates in a 3×3 conv layer

with 4A linear outputs representing the relative offset between the anchor and the ground-truth

box. Also, the loss for box regression is calculated by the standard smooth L1 loss (GIRSHICK,

2015), while the focal loss is used at the output of the classification subnet. The focal loss was

introduced in (LIN et al., 2017b) to address the class imbalance during training in one-stage

detectors. It is defined as following:

FL(pt) =−α (1− pt)
γ log(pt) , (5.20)

where α ∈ [0,1] is a weighting factor and pt is

pt =





p, if y = 1,

1− p, otherwise.
(5.21)

In the above, y ∈ {±1} specifies the ground-truth class, and γ ≥ 0 is the adjustable pa-

rameter for the modulating factor (1− pt)
γ . This modulating factor aims to decrease the loss

contribution from easy examples and extends the range in which an example receives a low

loss, focusing the training step on a sparse set of hard examples. In our case, this is a significant

addition since our images have lots of easy negatives that could impair the learning process.

For training the model in our dataset, we used the Adam stochastic optimization (KINGMA;

BA, 2015) over 2 GPUs2 with the number of images per batch being set according to the avail-

able memory size. In RetinaNet, the training loss is the sum of the losses from both subnets.

2NVIDIA GeForce GTX 1080 Ti (11GB).
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5.3.2 Data augmentation

Because manually annotating cells is a tedious and time-consuming task, the annotated

datasets available are generally small and require an extensive data augmentation for training

a DNN model consistently. The augmentation process inflates the training data and empowers

the model to learn invariance to such transformations without the need of having them in the

source dataset. Reproducing these transformations efficiently is essential when working with

microscopy images from different studies since the cells can change their shape and appearance,

and the imaging modality is entirely dependent on the biological experiments. Accordingly, we

have designed a suite of augmentation techniques that enables our network to learn without

overfitting and could represent most of our image variations during IVM experiments. All these

techniques were combined and applied on the fly (online data augmentation) to save memory.

They are described bellow.

5.3.2.1 Photometric distortions

Photometric distortions, similar to those used in the original Caffe implementation of single

shot multibox detector (SSD3), were applied to our images in order to simulate the color and

contrast variations found in microscopy imaging.

We started by converting the input images to the RGB color scheme and then applying

random transformations in brightness and contrast. Next, we converted the images to the HSV

color scheme and applied random transformations in hue and saturation. Finally, we returned

the images to the RGB scheme and randomly swapped their channels. All these transforma-

tions had their parameters randomly varying between defined upper and lower values, and were

applied in a random but logic sequence with a probability of 50% to occur.

5.3.2.2 Motion kernels

We simulated the sample motion and light diffraction patterns by convolving kernels created

from different PSF to our images. As the input image scale may vary between a defined and

restricted range, small kernels can actively modify smaller images, but the outcome in the bigger

ones are not always noticeable. On the other hand, big kernels can significantly change the

bigger images and cause extreme and undesirable changes in the smaller ones. To deal with this

problem while keeping the use of random values for better generalizability, we set the kernel

sizes in the range of 0% and 1% of minimal image size. As a consequence of our input images

3������������������������������������������
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with different scales, we had kernels varying between the sizes {0, 3, 5, 7, 9}, in which zero

means that we did not apply the convolution to the image.

Movements caused by peristaltic motion or by the animal’s breath and heartbeat can result

in a combination of vertical and horizontal displacements of the organ under analysis. This

combination of movements is frequent in IVM experiments and has as its main consequence

the momentary loss of microscope focus. Even using the focal auto-adjustment option, the mi-

croscope is unable to correct for its focal plane in time, creating blurred and tremulous images.

Therefore, besides the Gaussian kernels for scale invariance, we created kernels with line and

curved patterns, which were randomly rotated to encompass different directions of movement.

Some of these kernels can be visualized in Figure 5.8.

(a) Gaussian kernel. (b) Line kernel. (c) Curve line kernel.

Figure 5.8: Examples of motion kernels.

To simulated the Airy disk pattern present in fluorescent microscopy images (see Chapter

2), we randomly created different sized kernels with the Airy PSF, as the one illustrated in

Figure 5.9.

Figure 5.9: Example of an Airy disk kernel.

The Airy PSF is defined in terms of the Bessel function (McClarren, 2018) of the first kind,

J1, as follows:

f (r) = A




2J1

�
πr

R/Rz

�

πr
R/Rz




2

, (5.22)

where A = 1 is the amplitude of the Airy function, r is the radial distance from the function

maximum (r =
�

(x− x0)
2 +(y− y0)

2), R is the radius of Airy disk defined as one third of the

kernel size, and Rz ≈ 1.22. The point (x0,y0) in Equation (5.22) is the coordinate position of
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the maximum of the Airy disk or the central point of the created kernel, and the constant Rz is

defined according to the first dark ring in the diffraction pattern (MERCHANT et al., 2005).

5.3.2.3 Geometric transformations

In addition to the previous techniques, we applied basic geometric transformations to the

images such as uniform scaling, horizontal/vertical flips, rotation, and shift. The level of each

transformation was randomly defined in a fixed range of small values to avoid extrapolations of

image distortions. The uniform scaling in our case works as "zoom-in" and "zoom-out" oper-

ations, creating more small and large training examples and improving the model performance

for small object detection.

Deformable transformations were also used in this approach to make our model robust to

such variations. As in the U-Net (FALK et al., 2019) approach, we applied smooth elastic

deformations (SIMARD; STEINKRAUS; PLATT, 2003) using displacement vectors (on a 1×1

grid) sampled from Gaussian distributions with standard deviation values varying randomly

in the range [4, 7], and a scaling factor that controls the intensity of the deformation varying

in the range [1, 200]. We then proceeded to the per-pixel displacements by using the spline

interpolation of order one. Empirical and visual analyses were used to define all parameter

ranges. Figure 5.10 illustrates an example of an image with its deformable grid when the values

for the standard deviation and scaling factors are maximum in terms of severe deformation.

(a) Original image. (b) Severe deformation.

Figure 5.10: Example of a severe deformation in an image from the ME video.

5.3.3 Cyclical learning rate

The most common practice in training DNNs is to set the model learning rate to a constant

value and decrease it by an order of magnitude once the accuracy has plateaued. However,

instead of defining schedules that monotonically decrease the LR values, we applied a cyclical

learning rate (CLR) strategy to be used in our model after the setting of hyperparameters. In

practice, this procedure prevents the exhaustive search for a reasonable initial value, which

would require many experiments, and the uncertainty that lowering the LR will make our model

descend into areas of low loss.
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Initially proposed by Leslie Smith in (SMITH, 2017), the CLR schedule varies between a

lower and an upper bound (base_lr and max_lr). These periodic changes in LR values help to

avoid saddle points or local minima, which, consequently, accelerate the training process. To

derive the optimal bounds for CLR initialization, we let the model run for a few epochs while

the LR increased linearly from a minimum value of 1e−10 to a maximum value of 1e+1 that

we deem fit to observe all three zones limited by vertical lines of the plot in Figure 5.11.
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Figure 5.11: Analysis of the LR optimal range for cyclical learning rate.

According to the plot, when the LR is too low, the loss function does not improve the

model any further. When entering the zone between 10e-6 (base_lr) and 10e-4 (max_lr), one

can observe the optimal range for the LR since we are looking for those values associated with

the steepest drop in the loss. Increasing the LR further will provoke an increase in the loss as

the parameter updates, causing the loss to "bounce around" and even diverge from the minima.

After finding the initial LR range, we set the upper bound to follow an exponential decay, giving

us a more fine-tuned control in the rate of decline in max_lr.

5.4 Evaluation methods and metrics

The results of our detection stage were assessed by applying two different approaches. They

were defined based on the spatial coordinates of 1) leukocytes’ centroids for all the detection

approaches, and 2) bounding boxes’ points for the evaluation of our DCNN model.

In the first case, we compared the spatial coordinates of the leukocytes’ centroids that were

manually identified and annotated by an expert (ground truth) with those automatically detected.

For the outputs of our DCNN model, we calculated the spatial points centered at each bounding

box. In this sense, we defined the detection as true when the distance between a manually
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annotated centroid and an automatically detect one is less or equal than k pixels. This distance

value k was estimated according to the average radius of the observed cells. It means that in the

first two detection approaches, we only have the information about the template images selected,

so the value k was set to k = max(template_size)/2. On the other hand, the algorithm knows all the

cell sizes in the last detection approach, so the value k was set to k = avg_cell_size/2, according to

the values in Table 2.2.

Accordingly, we defined the true positives (TPs) as the accumulated amount of leukocyte

positions that were correctly detected by the algorithms, the false positives (FPs) as the accumu-

lated amount of leukocytes automatically detected without correspondence to those manually

annotated, and the false negatives (FNs) as the accumulated amount of leukocytes that the algo-

rithms could not identify.

The measures of precision (P), recall (R) and Fω -score (GOUTTE; GAUSSIER, 2005) were

then used to evaluate the overall performance of our approaches. These measures are based on

the accumulated TP, FP, and FN numbers over the sequence of video frames. They are defined

as follows:

P =
T P

(T P+FP)
, (5.23)

R =
T P

(T P+FN)
, (5.24)

F =
1

ψ 1
P +(1−ψ) 1

R

=
�
1+ω2� · P ·R

ω2P+R
. (5.25)

The precision of the system depicts the level of effective success among all detections

(TP+FP), while the recall measure represents the proportion of what was correctly detected

among the real positive instances (TP+FN). The Fω -score can be considered a compensation

measure between the precision and recall evaluations through a weighted harmonic mean. It

measures the effectiveness of the results by assigning ω times more significance to the recall

rate than to the precision rate. The most widely used measure, F1, involves the same weighting

for both rates, i.e., ψ = 0.5 and, consequently, ω = 1. Other two commonly used measures for

Fω are the F2 and F0.5, which gives more control to the recall and precision rates, respectively.

For all these measures, the closer they are to the maximum value 1, the better the effectiveness

of the detection system.

Based on the above definitions, we can also measure the counting and localization accu-

racies of our centroids by applying the following metrics. (1) The mean (µc) and standard
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deviation (σc) of the counting error. Particularly, given N testing images, we have

µc =
1
N

N

∑
i=1

ĉi, and σc =
1
N

�
N

∑
i=1

(ĉi −µc)
2, (5.26)

where ĉi represents the absolute difference between the total number of predicted cells and the

manual annotations for the ith image. (2) The mean (µd) and standard deviation (σd) of the

prediction distance error. For N testing images, we have

µd =
1
N

N

∑
i=1

d̂i, and σd =
1
N

�
N

∑
i=1

�
d̂i −µd

�2
, (5.27)

where d̂i refers to the average Euclidean distance between manually annotated centroid and the

corresponding matched TP prediction for the ith image.

However, to evaluate the performance of our DCNN model regarding its original output, we

computed the agreement between the predicted bounding boxes and the manual annotations. A

conventional metric, called intersection over union (IoU), was used to measure how much our

predicted boxes overlap with the ground truth. Its formulation is as follows:

IoU =
area of overlap
area of union

. (5.28)

In this case, we applied IoU thresholds of 0.25 and 0.5 to classify a prediction. The choice

for shallow IoU threshold values was based on the considerable influence of small objects when

their dimensions are compared, which means that even tiny differences between the objects’

bounding boxes can significantly decrease the IoU responses. This problem is potentially in-

creased in microscopy images since the cell boundaries are sometimes misdefined because of

the poor image contrast or microscope defocus.

Accordingly, TP values were defined as the predicted boxes which had an IoU value higher

than the IoU threshold for some manual annotation; FP values as the predicted boxes with no

correspondence to any manual annotation; and the FN values as those manual annotations that

the model could not predict. The average precision (AP) metric was also used to measure the

accuracy of our DCNN model. AP computes the average precision value for recall values over 0

to 1 after sorting the predictions by their confidence scores. It can also be calculated by finding

the area under the precision-recall curve. Note that, although these metrics result in values

ranging from 0 to 1, in this work, we sometimes used them as percentage values in order to

facilitate their comparison with other methods in the literature.
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5.5 Final considerations

In this chapter, we described the 2D processing stage of our automatic computational

pipeline. It is comprised of three different detection approaches (MTM-PCA, MTM-DCNN,

and DCNN) that were developed exclusively for our IVM data. We also detailed the methods

and metrics used to evaluate the performance of our approaches. In the next chapter, we present

the subsequent stage in our computational pipeline, which is composed of the 2D+t processing

or tracking procedure.



Chapter 6
TRACKING – 2D+T PROCESSING

This chapter presents all the methodology used to perform the cell tracking in the automatic

computational pipeline proposed. We detail all the techniques applied to the spatiotempo-

ral images as well as the final statistical measures extracted for the leukocyte recruitment

analysis.

6.1 Pipeline overview

With all candidates to cell centroids detected by our detection approaches, we can start

the 2D+t processing stage by identifying the cell trajectories in the spatiotemporal images.

Our initial steps, however, comprise some adjustments in the output points and images of 2D

processing.

Firstly, we downsampled the output images and the corresponding centroid points by a

scale factor of �kavg/5� in both x and y dimensions, where kavg is the average cell size in the

video. This is a crucial step to avoid wrong statistical measures in the final analyses caused by

the high displacements of large cells. In other words, the displacement of a cell between two

consecutive frames is highly dependent on its size and video sampling rate, which could affect

our spatiotemporal analysis. Therefore, in order to correctly identify the cell trajectories in our

algorithms, we made the displacements of large cells seem more continuous over the videos.

The scale factor was defined so that only the points from images with the average cell size larger

than 10 pixels were modified.

Next, we computed the convolution between the images containing the centroids and a

Gaussian kernel of size 4×4 pixels and sigma values equal to 9. This operation transformed the

final centroid points in the images into blob-like structures of the same size so that to facilitate

the subsequent analyses, as detailed in the next sections.
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After all these adjustments, we created a spatiotemporal image by stacking all frames from

the previous step. Consequently, we have a volumetric image containing the cell candidates as

tubular-like structures representing our cell trajectories, as illustrated in the next section. The

task of tracking was then changed to a three-dimensional detection problem, where the objects

of interest have tubular shapes. Figure 6.1 shows all the steps of the 2D+t processing applied

in our computational pipeline and the following subsections describe how the whole process is

executed in order to ensure a good performance of the method.

2D+t processing SkeletonizationEnhancement of
tubular structures

Tracklet
separation

Chain
code 3D

2D processing
information

Re�nement and proces-
sing combination

Video
with cells
tracked

Skeleton
modeling

Frames
stacking

Volume
2D+t

Image adjustments

Figure 6.1: Steps of our 2D+t processing stage or tracking.

6.2 Enhancement of tubular-like structures

In our spatiotemporal images (volumes 2D+t), we have bright tubular-like structures corre-

sponding to tracings of the leukocyte trajectories (or paths). Given that, we can use the object

shape information provided by the local Hessian matrices (see Appendix A) to build a func-

tion that enhances the leukocyte trajectories. Figure 6.2 presents the local pattern of a bright

tubular-like structure in three-dimensional images through eigenvectors representation.

Figure 6.2: Characteristics of a tubular-like structure in a three-dimensional image with a dark
background. The eigenvector corresponding to the eigenvalue with the smallest magnitude gives
the longitudinal direction of the structure.
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In the 2D+t processing case, the desired eigenvalues (λλλ = [λ1,λ2,λ3]) for enhancing the

leukocyte paths at a specific point xxx0 must have the following relations of values: |λ1| ≈ 0,

|λ1| � |λ2| and λ2 ≈ λ3, where λ2 and λ3 are negatives and have high magnitude values, ac-

cording to Table A.1. Thus, the maximum response at every voxel is taken as

V (λλλ ) = max
σ∈[σmin,σmax]

Vσ (λλλ ), (6.1)

where the vesselness1 measure function Vσ (λλλ ), is defined as

Vσ (λλλ ) =





0, if λ2 > 0 or λ3 > 0,
�

1− exp
�
− R2

A
2α2

��
× exp

�
− R2

B
2β 2

�
×
�

1− exp
�
− S2

N
2c2

��
, otherwise.

(6.2)

In Equation (6.2), which provides the relationships between the local Hessian eigenvalues ac-

cordingly with the object shape desired, RA = |λ2|/|λ3| helps to distinguish between the plate- and

line-like patterns, and RB = |λ1|/
√

|λ2λ3| accounts for the deviation from the blob-like structure,

but it cannot distinguish between plate- and line-like patterns. In order to reduce the effect of

noisy voxels in the image background, the component SN =
�

λ 2
1 +λ 2

2 +λ 2
3 (Frobenius norm)

was used. For this measure, the response is low when no structure is present in that image po-

sition as the local Hessian eigenvalues are small for the lack of contrast (FRANGI et al., 1998).

Component sensitivities can be regulated by the parameters α , β and c, which were defined,

respectively, as 0.5, 0.5, and one-tenth of the maximum image Laplacian value, as suggested

by Dzyubak and Ritman (DZYUBAK; RITMAN, 2011). Since the analysis is now performed

over our generated spatiotemporal image, we defined a small range of scales to be analyzed by

the vesselness function. A range from 1 to 3 for the σ values was used to cover the leukocyte

paths from the volumetric image created.

As a result of this step, we have a volume containing all tubular structures enhanced by the

algorithm, which produces real-valued responses close to 1 if the local structure is similar to a

tube. An example of an initial spatiotemporal image and the corresponding 3D enhancement

by the Hessian algorithm can be seen in Figure 6.3. As detailed in the next sections, a set of

techniques was developed to improve the detection responses and to isolate the structures of

interest, thus allowing their combination to refine cell detection and tracking.

1Although the name vesselness makes little sense in this study, we decided to use the same name as proposed
by Frangi et al. (FRANGI et al., 1998) to define the measure responsible to enhance the leukocyte trajectories.
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(a) (b)

Figure 6.3: Sub-output images of our framework applied to B2 video. (a) Initial spatiotemporal
image, and (b) 3D Hessian enhancement output for the same input video.

6.3 Skeletonization

In 3D Euclidean space, the skeleton of a geometric object is the locus of the centers of all

inscribed maximal spheres of the object where these spheres touch the boundary at more than

one point (LEE; KASHYAP; CHU, 1994). It can be considered a simplistic characterization of

an object, used to reduce the search space of feature points in a geometric model. In this work,

we use a skeletonization technique to obtain continuity in the cell trajectories of the created

tubular-like structures.

One of the most used approaches to creating a skeleton of an object is performing thin-

ning techniques. The main characteristic of this approach is the repeated deletion of points in

the object boundary, respecting the topological (preserving the number of connected objects,

cavities, and holes of the object’s original shape (MORGENTHALER, 1980)) and geometrical

(condition that is used to ensure the desired width and location of the skeleton) restrictions until

it reaches a small set of connected points. The technique of symmetric erosion has been widely

used to obtain the central lines of objects and, consequently, ensure its connectivity. Figure 6.4

illustrates an example of the skeletonization process applied to a circular object.
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Figure 6.4: Image of a circular object containing the iteration steps of the erosion (PALÁGYI,
2015).

There are two main approaches to performing the thinning: a) kernel-based filters, and b)

decision trees. Kernel-based filters rely on the application of a structuring element to an image

and, usually, can be extended to dimensions larger than 3D (JONKER, 2000). Methods based

on decision trees are restricted to 2D and 3D spaces, but, if adequately projected, they can be

potentially faster than morphological filters, finding more points to be deleted in each iteration.

As an initial step of the skeletonization process in this work, the real-valued spatiotemporal

images were binarized by using a global thresholding technique (OTSU, 1979). Then, the

skeletonization method proposed by (LEE; KASHYAP; CHU, 1994) was slightly modified and

used to detect the central region of the tubular-like structures. It is based on a parallel thinning

approach that uses an octree data structure to determine the connectivity between voxels more

efficiently. Tests in the image voxels are performed for the objects erosion until no more change

occurs in the objects. Thus, a voxel was deleted if:

1. It was a surface voxel;

2. It was not the end of a line;

3. Its deletion would not change the Euler characteristic (MORGENTHALER, 1980), i.e.,

if no holes are created when deleting the voxel;

4. Its deletion did not change the number of connected objects.

The algorithm, which uses a 26-neighborhood connectivity for the object, guarantees no change

in the object connectedness and no creation of holes or cavities. Consequently, the connectivity

considered herein uses three consecutive frames, which means that 3×3×3 cubic voxels are
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(a) (b)

Figure 6.5: Skeletonization output from the B2 video. (a) binary output image, and (b) skeleton
output image.

being analyzed for the neighborhood. The resulting output is a binary volume that contains

only the skeleton of tubular-like structures enhanced. An example can be seen in Figure 6.5.

6.4 Skeleton modeling

After the skeletonization step, the skeleton tracklets2 are separated into individual paths and

post-processed to eliminate spurious elements, which are undesired skeleton branches created

due to noisy boundaries, small holes, and cavities mainly from the remaining motion artifacts.

This post-processing step is necessary to better perform the dynamic cell analysis in the final

process.

The chain code technique (FREEMAN, 1961) was used to model each tracklet found after

skeletonization. Besides being very efficient, this technique can preserve object information

and allows considerable data reduction. Also, chain codes are the standard input format for

many shape analysis and pattern recognition algorithms (BOSE, 2000). However, before using

the chain code algorithm to model our tracklets, bifurcation points in the skeleton image must

be determined and separated for the definition of path directions accurately.

2Tracklets are defined herein as the parts of cell trajectories in the spatiotemporal images, i.e., the fragments of
the track.
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6.4.1 Tracklets separation

The primary goal of tracklet separation is to isolate each leukocyte track (or fragments of

it) in the spatiotemporal image by identifying their initial and final route positions. This step is

mandatory since many tracks end up connecting to each other due to their proximity after the

binarization and thinning processes or because of residual movements are still present in the

video, even after the stabilization process.

Moreover, the residual movement in the videos or the sudden leap of some cells can cause

the appearance of horizontal traces (small branches) in the skeleton, referred here as spurious

elements. The most straightforward and widely used approach to eliminate these elements is by

thresholding the size of the extracted tracklet so that to remove the small parts found in junction

points, such as the one highlighted in red in Figure 6.6(a). However, since spatiotemporal

images are built from moving cells, these fragments may belong to a track of another cell,

as exemplified in blue in Figure 6.6(b). In this case, thresholding the cell track to remove

small fragments will probably be inadequate. For this reason, the connection between points

belonging to the same cell trajectory is a task to be performed next.

(a) (b)

Figure 6.6: Examples of cell track fragments. A tracklet with a bifurcation is not necessarily a
spurious element (see (a)), it may contain part of another track that intersects it at some point (see
(b)).

Junction points must be identified and eliminated in order to separate the connected track-

lets. They are defined herein as voxels in which the number of connected points in a 26-

neighborhood is higher than two. Consequently, the procedure for track separation segregates

all tracklets with bifurcation points and creates isolated line segments.

The algorithm starts by searching for junctions or isolated points in the skeleton image, and

then it creates a cumulative matrix (CM) of zeros of the same size as the input image. Next,

for each identified junction point, the corresponding cell position in the CM is iteratively incre-
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Figure 6.7: Steps of the tracklets separation algorithm applied to two examples of connected paths.
(a) Originally connected paths, (b) 1st, (c) 2nd, (d) 3rd, and (e) 4th iterations of the algorithm, in
which local maxima are identified as red voxels (darker cubes in the black-and-white version), and
(f) neighbors removal for tracklets separation. Dashed cubes are not considered in the algorithm
after the first iteration.

mented by using the following weight value configuration: 2 for the 6 face-neighbors connected

to the junction voxel, and 1 for the other 20 (12 edge- and 8 point-neighbors) remaining con-

nected neighbors3. The algorithm is then repeated three more times over the voxels included in

the CM. In the last iteration, the central region of each set of junction points will have higher

values. Finally, local maxima are determined in each region, and their neighborhood ( 3×3×3

cubic voxel) is eliminated, resulting in track separations.

Figure 6.7 illustrates two examples of connected tracklets and the corresponding iterations

of the algorithm for tracklets separation. In the first column, Figure 6.7(a), each example simu-

lates the connection between two different trajectories. Figures 6.7(b-e), show all four iterations

of the algorithm in the CM approach. As a final step, Figure 6.7(f), local maxima are identified

and eliminated along with their neighbors. This procedure discards the same number of voxels

as the number of initial junction points found in the first example. However, in the second ex-

ample, all neighbors of the single junction point are eliminated, preventing wrong connections

in the following steps. The processes described earlier can be better understood by following

the Algorithm 6.1.

As the tracks have no more junction points, the identification of the tracklets can be initiated

3Each voxel xxx has three types of neighbors among its 26 closest neighbors; 6 face-, 12 edge-, and 8 point-
neighbors, that share a face, an edge, and a point with xxx, respectively.



6.4 Skeleton modeling 115

Algorithm 6.1 Tracklets separation algorithm for the spatiotemporal images.
Input: skeleton image of leukocyte tracks I(xxx)

1: C ← I � copy of input image
2: M ← {} � initializes cumulative matrix with zeros
3: i ← 1
4: while i ≤ Niterations do
5: for each voxel xxx ∈ ob ject do
6: if C(xxx)≥ i then
7: if Nneighbors = 0 or Nneighbors > 2 then
8: M(xxx)← M(xxx)+CALCWEIGHT(xxx)
9: end if

10: end if
11: end for
12: C ← M
13: i ← i+1
14: end while
15: I ← LOCALMAXIMUM(M)
16: VOXELSREMOVAL(I)
Output: images I(xxx) with tracklets separated

by the chain code technique, which is described in the next subsection.

6.4.2 Chain code 3D

The chain code 3D technique proposed by Bose (BOSE, 2000) was adapted and used in

this work to create structures describing the tracks of leukocytes simply and efficiently. Its

development is based on Freeman’s work (FREEMAN, 1961), who introduced the technique in

the literature. In his work, the set of neighbor voxels (26-neighborhood connectivity) of a point

P is denoted by N(P) and can be seen in Figure 6.8.

Figure 6.8: The 26-neighborhood of point P.
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Thus, if P has the coordinates (i, j,k), then

N(P) = {(x,y, t) : 0 < [(i− x)2 +( j− y)2 +(k− t)2]
1
2 ≤

√
3}, (6.3)

and x,y, t ∈ Z, where Z is the set of integers.

For each point P(x,y, t) in a three-dimensional image, the algorithm uses the codes pre-

sented in Table 6.1, in which the coordinates represent the directions from point P.

Table 6.1: Algorithm codes and its respective directions.

Code Direction

0 (x+1,y, t)
1 (x+1,y−1, t)
2 (x,y−1, t)
3 (x−1,y−1, t)
4 (x−1,y, t)
5 (x−1,y+1, t)
6 (x,y+1, t)
7 (x+1,y+1, t)
8 (x,y, t −1)
9 (x,y, t +1)
10 (x+1,y, t −1)
11 (x+1,y−1, t −1)
12 (x,y−1, t −1)

Code Direction

13 (x−1,y−1, t −1)
14 (x−1,y, t −1)
15 (x−1,y+1, t −1)
16 (x+1,y+1, t −1)
17 (x,y+1, t −1)
18 (x+1,y, t +1)
19 (x+1,y−1, t +1)
20 (x,y−1, t +1)
21 (x−1,y−1, t +1)
22 (x−1,y, t +1)
23 (x−1,y+1, t +1)
24 (x,y+1, t +1)
25 (x+1,y+1, t +1)

However, the algorithm was modified to consider only positive time directions (t or t +1),

i.e., only the set of directions {0,1,2,3,4,5,6,7,9,18,19,20,21,22,23,24,25}, as can be seen

in Figure 6.9. The reason for this modification is based on the fact that displacements in t − 1

directions would imply on back in time since the algorithm always initializes from the highest

points of a track (first points on time).

Figure 6.9: Directions considered in the chain code algorithm adapted.

According to the algorithm proposed by Bose, the order of search for these directions is as

follows:
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4,3,2,1,0,7,6,5,

9,22,21,20,19,18,25,24,23.

In the case of the spatiotemporal images, we have a set of tracklets with initial and final points.

For the definition of such points, named endpoints, we search for the voxels whose number of

26-connected neighbors is equal to 1. The algorithm begins with each endpoint found, following

the temporal order of the image (t, t + 1, t + 2, . . .). Hence, starting from an endpoint (initial

point), the cell trajectory is encoded until a new endpoint (final point) is found along the path.

Finally, the coding process stops and saves the tracklet chain code. This procedure is performed

until all the endpoints found are defined as initial or final points, ensuring that all tracklets

(already separated in the previous step) are checked.

By representing the leukocyte trajectories via chain code, the leukocyte tracking, and the

computation of quantitative measures were facilitated. To compute the traveled distance of a

cell in a spatiotemporal image, for instance, we need to know only the spatial image resolution

and add all the cell displacements over time (axis t), according to the information provided in

Figure 6.10.

(a) (b) (c)

Figure 6.10: Examples of displacement vectors for the calculation of the traveled distance of cells.
(a) Vertical displacement indicates that the cell is at rest; (b) horizontal displacement indicates that
the cell has traveled the distance of 1x1x1x or 1y1y1y; and (c) diagonal displacement indicates that the cell
has traveled the distance of

�
x2 + y2

�
x2 + y2

�
x2 + y2.

In other words, the traveled distance of a cell is defined as:

Dist = NhxRx +NhyRy +Nd

�
R2

x +R2
y , (6.4)

where the measures Rx, Ry and Nhx , Nhy and Nd represent, respectively, the resolutions (µm)

in spatial axes x and y, and the number of cell displacements in the corresponding x, y, and

diagonal directions.
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6.5 Refinement and processing combination

During this step, all tracklets detected and separated in previous stages are processed to

create continuous and coherent leukocyte trajectories. Results from the 2D processing stage

are used to help to decide on how the isolated tracklets should be connected to form the final

leukocyte trajectories. The following subsection describes the algorithm developed to refine the

leukocyte tracking.

6.5.1 Track linking

The algorithm for track linking, or tracklets connection, first locates the final position (aend)

of the ith tracklet in the spatiotemporal image. Then, it searches for the initial position of other

tracklets situated inside a 3D right circular cone-shaped region, as illustrated in Figure 6.11(b).

The searching region is defined by the height h, the angular aperture θ , and the directional vector
�Ai of the cone, which points to the temporal axis direction (�t) and is parallel to the centerline of

the cone, i.e., the dashed line defined by the vertex and the center position of the cone’s base.
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Figure 6.11: Steps followed in the track linking algorithm. (a) Initial tracklets; (b) searching
for initial points inside the cone spatial region and definition of directional vectors; (c) angular
comparison between the directional vectors of the candidates; (d) searching for detected points in
2D processing; and (e) connected segments.

The directional vector �Ai is determined by the vector addition of n vectors (green vectors

in Figure 6.11(b)) formed from each previous position (aend−n, ..., aend−2, aend−1) and the final

position (aend) of the tracklet. The same is done for each jth track fragment inside the cone-

shaped region to create directional vector �B j, but now starting from the initial point (bbegin) and

adding the next positions of its voxels (bbegin+1, bbegin+2, ..., bbegin+n). Accordingly, we have:

�Ai =�ai(end−n,end−n+1) + . . .+�ai(end−2,end−1) +�ai(end−1,end) , (6.5)

�B j =�b j(begin,begin+1) +
�b j(begin+1,begin+2) + . . .+�b j(begin+n−1,begin+n) . (6.6)

In this study, the value n was set to 20 or the total number of voxels of the tracklet if it had
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less than 20 voxels in its composition. The angle between directional vectors �Ai and �B j is then

computed as

αi, j = arccos
�Ai · �B j

� �Ai � · � �B j �
. (6.7)

In this case, a connection between the ith and jth tracklets will be only considered when the

angle αi, j does not exceed 25◦. The smaller the angle, the higher the chance these two tracklets

will be connected.

In addition to the angular difference αi, j, the spatial positions of detected leukocytes from

the 2D processing stage were also taken into account by the proposed algorithm. It was imple-

mented to mitigate the effect of residual motion artifacts, which appear in the spatiotemporal

image as false track fragments. For that, the spatial position (x,y, t) of each voxel in the straight-

line connecting aendi and bbegin j (created by using the Bresenham (JOY, 1999) algorithm) was

compared with the same position in the corresponding output frame of the 2D processing stage.

In this case, the number of mutual points, confirmed by the assessment of a circular region of

2-pixel radius around the corresponding (x,y) position in the 2D resulting image, was recorded

(nLeukocytes2D(i, j)) along the entire time evolution (t) for each ith- jth tracklet connection can-

didate, and compared with the total number of points in the connection line (nPoints2D+t(i, j))

as

C1(i, j) =
nLeukocytes2D(i, j)

nPoints2D+t(i, j)
. (6.8)

Since the number of leukocytes detected during the 2D processing stage is always less than or

equal to the number of points in the connection line, then the C1 measure will remain in the

[0,1] range.

To determine to which jth tracklet the endpoint aiend should be connected to, a weighting

function ranging from zero to unity was devised as

C(i, j;β ) = βC1(i, j)+(1−β )C2(i, j), (6.9)

where C2(i, j) = cos(αi, j) and 0 ≤ β ≤ 1. In this study, the parameter β was set to 0.5. In this

case, a C(i, j;β ) value close to one means a high probability of a proper connection to happen.

After that, each candidate to the connection was stored in a vector of candidates containing its

respective initial and final points, followed by its C(i, j;β ) value. After evaluating and storing

all possible candidates, we search for the best connections in the vector created. Therefore, the

segment with the highest C(i, j;β ) value will be the one selected for connection on each case.

The cone-shaped search region was gradually modified to allow the algorithm to correctly

reach and connect tracklets that were far apart from each other. In this case, the parameters (h,θ )
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of the cone shape were iteratively changed. The first parameter h varied from 5 to 30 voxels

in steps of 5, while the second, θ , varied from 90◦ to 15◦ in steps of −15◦. This procedure

decreases the lateral region of the search and increases the extension that the algorithm can

reach along the iterations. Figure 6.12 shows this parameter variation graphically and makes it

clear that when considering only one value for each parameter in the cone initialization (dashed

line in the figure), it would cover a vast and probably unnecessary image region, causing a large

number of wrong connections.

Figure 6.12: Iterations of the algorithm to create the cone-shaped regions

In summary, the algorithm for track linking follows the steps below to identify a fragment

to be connected. These steps can also be observed in the illustrations of Figure 6.11.

1. Select the final point aend of a tracklet i;

2. Compute the directional vector �Ai using the 20 previous voxels of the tracklet;

3. Parameters of the cone are adjusted according to the iteration number and vector direction

computed in the previous step;

4. For each initial point b jbegin , check whether it lies within the cone spatial region;

5. In an affirmative case, compute the directional vector �B j and the angular difference αi j;

6. If the angular difference αi j between the analyzed vectors was less or equal than 25◦, then

compute C(i, j;β ) measure and store the connection information in a vector of candidates;
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7. After all candidates were stored, start a search for the best ones, i.e., select those whose

C value was higher than the others;

8. A connection is then performed by creating a line (using the Bresenham (JOY, 1999)

technique) linking the final and initial points of the selected candidates.

As a consequence of this process, we have our cell trajectories correctly connected, and a final

step needs to be applied before the extraction of cell statistical measures. This step consists

of upsampling the images and trajectory points back to their original sizes. Accordingly, we

applied a bilinear interpolation process with the same scale factor used for image downsampling

in our first step. After that, the leukocyte recruitment analysis was finally performed.

6.6 Tracking evaluation

Similarly to the 2D processing evaluation, we assessed our 2D+t approach by comparing

the automatic tracking with the leukocytes’ manual annotations. The only difference in this

process is that the cell annotations are now labeled. Thereby, for each track detected by the

proposed approach, an initial coordinate in the ground truth is searched within a radius value

of r voxels in the same frame number, where r = �kavg/2�, i.e., the cells average radius for each

video. However, if a valid annotation is found, then the analysis continues to other frames by

searching for the positions belonging to the same labeled cell. Final measures of precision,

recall, and F1-score are also computed for this tracking evaluation.

6.7 Final considerations

We detailed in this chapter all the methodology used in our 2D+t processing stage. Although

our cell tracking strategy has been interpreted as a detection of three-dimensional structures,

many other techniques were employed to guarantee its robustness and reliability. All these

techniques played an essential role in the proposed automatic computational pipeline, and the

results of their application can be seen in the next chapter.
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Chapter 7
RESULTS AND DISCUSSIONS

This chapter presents the results and discussions about several experiments projected and

conducted to prove the primary concept of this research. The results, analyses, and dis-

cussions presented here follow the progress of the proposed pipeline, starting with the pre-

processing stage, then presenting the results of detection approaches, and finally, showing

the tracking strategy outcomes and its ability to handle occlusion and trajectory gaps in the

spatiotemporal images.

7.1 Preprocessing evaluation

The evaluation of our preprocessing stage started by assessing the algorithm developed to

remove frames with excessive motion blur. It is worth noting that only two (B1 and SC) of the

six videos were processed at this stage as the other videos do not present significant motion to

justify the removal of frames.

Figure 7.1 shows four examples of frames removed from videos B1 and SC. When compar-

ing them with the images in Section 2.5, we can observe a reasonable amount of motion artifacts

caused by the animal movement and microscope defocus. As these frames can severely ham-

per the subsequent registration, detection, and tracking procedures, we removed them from the

videos before further analysis.

The stabilization process on the remaining video frames was analyzed as a final step of

our preprocessing stage. In this sense, we evaluated our registration framework through the

visual analysis of line projections, as described in Subsection 4.5. The results obtained for this

technique are illustrated in Figure 7.2. Video ME is not present in this analysis because it did

not exhibit significant motion for a visual inspection.
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Figure 7.1: Examples of frames removed from the original videos in the first step of our pipeline.
Images in the first row were removed from video B1, while images in the second row were removed
from video SC.

By comparing the video projections in Figure 7.2, we can notice a sawtooth pattern in the

leftmost images. This visual pattern indicates a notable misalignment between video frames

before preprocessing. On the other hand, in the rightmost images, this pattern is significantly

softened, showing the presence of more continuous lines and, consequently, better alignment

between video frames after the frames registration process.

A quantitative evaluation of the video frames registration was also performed in this work.

For that, we calculated the PSNR measure for the residual images resulted from the subtraction

module of consecutive pairs of video frames. Besides being a measure to evaluate the denoising

process, we can also check the alignment between consecutive frames when applying it in

residual images. However, the resulting values must not be analyzed alone since we expect that

the residual images also depict the movement of the cells over the videos. It means that the

average of PSNR values can vary for videos in which cells are mostly stationary and for videos

with a cluttered environment, where the movement of cells can create responses in the residual

images and consequently decrease the PSNR values. The results for this metric can be seen in

Table 7.1 and Figure 7.3.

In this analysis, we did not evaluate the video from the mesentery since mechanical devices

can easily stabilize this organ, and consequently, motion blur may not be an issue. We realized

that videos from the CNS, for instance, are those more challenging to stabilize, as confirmed

by the resulting measures, where the values of variance remained high or higher than before

registration techniques. It makes sense considering the nature of the organs, which are located

in critical regions of the animal, and the mechanical stabilization is laborious. Consequently,

the more significant is the apparent motion, the more out-of-focus the images are.

As stated before, another point to be considered in the analysis is the leukocytes movement.
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Figure 7.2: Output images from line projection technique. First and second columns show the
projections before and after the registration process, respectively.
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Figure 7.3: PSNR values computed for all the residual images resulting from the subtraction mod-
ule of consecutive pairs of video frames.
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Table 7.1: PSNR values for the IVM videos assessed in this research.

Video Average (dB) Variance (dB)

B1
Original 34.56 12.79
Stabilized 38.46 3.54

B2
Original 32.51 0.85
Stabilized 32.46 0.93

SC
Original 21.21 1.09
Stabilized 26.84 4.74

C1
Original 31.57 8.68
Stabilized 36.14 0.33

C2
Original 28.36 4.94
Stabilized 32.91 0.49

In clutter environments, if cells are moving fast, the residual image will present high responses,

decreasing the PSNR value. We separated two cases to exemplify these problems in the video

from the animal’s spinal cord. They are shown in Figure 7.4.
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Figure 7.4: Examples of images with low PSNR values.

In the first case, the residual image from frames number 62 and 63 is formed only by the

leukocytes movement. Thus, since this organ presents a high number of flowing cells, the PSNR

value was low. Also, the process of frames removal contributed to a low PSNR in this case, in

which three middle frames were eliminated because of their poor quality.

In the other example of Figure 7.4, corresponding to the frames number 163 and 164, we can

notice the consequence of a defocused image in the performance of our approach. The residual

image, in this case, is mainly composed of the difference in contrast between two consecutive

video frames.
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7.2 Detection evaluation

In this section, we present the results obtained for the three approaches used in the 2D

processing stage. All these approaches include the method evaluation in different scenarios, as

can be observed in the next subsections.

7.2.1 Results for the MTM-PCA

We evaluated our first approach in four different scenarios. They involve the employment

of single or multiple features, PCA applied to frames or templates, and the use of single or

multiple templates in the template matching technique. In all the experiments, we used the

precision, recall, and F1-score measures to compute the overall method performance. With

these measures, we could generate the so-called precision-recall curves as well as calculate the

area under them, the AUCPR. Each point in the curves corresponds to an operation point of

the applied approach that was computed by setting a threshold value for the circularity score Z

in the 2D post-processing stage (see Subsection 5.1.4). We varied this threshold in the range

[0,0.99] and compared the results with the cells manually annotated to obtain the curve points

in the following experiments.

7.2.1.1 Experiment 1: simple MTM

In the first experiment, we investigated different numbers of templates for the MTM al-

gorithm applied over only one feature, the raw pixel or gray-level intensity. In this case, we

did not use the PCA technique for dimensionality reduction. The evaluation was performed for

one, two, and three manually selected templates as input for the MTM algorithm. The precision-

recall curves can be seen in Figure 7.5. Together with the generated graphs of each video, we

can also see the AUCPR values calculated for each scenario.

By observing the graphs in Figure 7.5 and their corresponding AUCPR values, we notice a

slight improvement when using more than one template in the MTM algorithm, except for the

SC video. The results seem to be consistent as the method is susceptible to small changes in the

target object, i.e., the more templates to search, the more chances we have to find the targets.

We concluded the same when consulting the values in Table 7.2, which shows the best F1-score

value found for each curve computed in Figure 7.5. Boldfaced values in the table indicate the

best results for each video.

Another important observation is the fact that videos from the CNS presented better re-
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Figure 7.5: Precision-recall curves obtained for the first experiment using all videos in our dataset.
For each video, we tested the use of one, two, and three different templates selection.
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Table 7.2: Results for the leukocyte detection in experiment 1 according to the best F111-score values
found. The #tmp column indicates the number of templates used.

Counting

Video #tmp TP FP FN P R F111

B1 1 4217 1191 1610 0.78 0.72 0.75
2 4234 1197 1593 0.78 0.73 0.75
3 4476 1001 1351 0.82 0.77 0.79

B2 1 5581 2377 2467 0.70 0.69 0.70
2 5447 2172 2601 0.71 0.68 0.70
3 5724 3840 2324 0.60 0.71 0.65

SC 1 1215 223 355 0.84 0.77 0.81
2 1174 233 396 0.83 0.75 0.79
3 1212 255 358 0.83 0.77 0.80

C1 1 254 203 136 0.56 0.65 0.60
2 249 149 141 0.63 0.64 0.63
3 235 214 155 0.52 0.60 0.56

C2 1 891 669 712 0.57 0.56 0.56
2 777 533 826 0.59 0.49 0.53
3 904 529 699 0.63 0.56 0.60

ME 1 110 74 181 0.60 0.38 0.46
2 186 74 105 0.72 0.64 0.68
3 162 33 129 0.83 0.56 0.67

sponses when compared with others. Although they usually suffer more with inherent imaging

problems, these videos have well-defined cells, which can help an appearance-based detection

algorithm to achieve better results.

7.2.1.2 Experiment 2: all feature-frames PCA

For the second experiment, we computed all image features described in the Subsection

5.1.1 for each video in our dataset. Next, we extracted the first frame of each feature-video to

build the input matrix of the PCA algorithm. After setting the threshold value for the retained

variance as 0.95 for the PCA, we projected the remaining data (frames from the feature-videos)

into the new PCA bases. With all feature-videos on the new bases, we manually selected the

same template images from the last experiment to be used in the MTM algorithm and compared

the results with our manual annotations.

The first video frames already projected into the PCA basis are illustrated in Figure 7.6.

They are arranged according to the PCA eigendecomposition, i.e., the first image (in the natural

reading order) corresponds to the first principal component, the second image corresponds to

the second principal component, and so on. From a visual inspection of the feature-images in
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Figure 7.6, we can observe that frames from the CNS group presented a good cell contrast for

most of the projected images. However, this observation can not be stated for the other image

groups, and consequently, their subsequent detection processes will be harmed.
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Figure 7.6: First video frames extracted from the feature-videos (already projected into the PCA
bases). They are ordered according to the PCA eigendecomposition.

Precision-recall curves were also generated (see Figure 7.7) for this experiment by using

one, two, and three template images in each video. According to the graphs in Figure 7.7 and

the values in Table 7.3, only the SC video had a better performance if compared with the first

experiment. It can be explained if we analyze the template images extracted from this video.

Figure 7.8(a) shows the templates selected in the first experiment for SC video (intensity

feature only) and the templates selected for the four PCA components considered in experiment

two. In this case, Figure 7.8(b) presents cells with better contrast and less noise when compared

to Figure 7.8(a), which probably caused the increase in the number of correct detections.

7.2.1.3 Experiment 3: selected feature-frames PCA

As most results of the second experiment were far from the application of a simple TM

technique as in the first experiment, we suspected that some features could not be so useful as
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Figure 7.7: Precision-recall curves calculated in the second experiment for all videos in the dataset.
For each video, we tested the use of one, two, and three different templates selection.
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Table 7.3: Resulting values for the leukocyte detection in experiment 2 according to the best F111-
score values found. The features listed below are as follows: I: intensity, H: Hessian, E: edges, A:
inertia, K: Haralick’s correlation, and D: Difference Moment. The #tmp and #PC columns indicate
the number of templates and the number of principal components used, respectively.

Features PCA Counting

Video I H E A K D #PC Ret.var. #tmp TP FP FN P R F111

B1 × × × × × × 2 0.9828 1 2809 1535 3018 0.65 0.48 0.55
2 3167 816 2660 0.80 0.54 0.65
3 3490 674 2337 0.84 0.60 0.70

B2 × × × × × × 3 0.9673 1 3996 2948 4052 0.58 0.50 0.53
2 4511 3849 3537 0.54 0.56 0.55
3 5696 4344 2352 0.57 0.71 0.63

SC × × × × × × 4 0.9754 1 1362 259 208 0.84 0.87 0.85
2 1271 186 299 0.87 0.81 0.84
3 1242 199 328 0.86 0.79 0.82

C1 × × × × × × 3 0.9701 1 176 120 214 0.59 0.45 0.51
2 151 92 239 0.62 0.39 0.48
3 245 455 145 0.35 0.63 0.45

C2 × × × × × × 3 0.9939 1 596 1600 1007 0.27 0.37 0.31
2 558 784 1045 0.42 0.35 0.38
3 589 819 1014 0.42 0.37 0.39

ME × × × × × × 4 0.9944 1 55 65 236 0.46 0.19 0.27
2 97 112 194 0.46 0.33 0.39
3 122 109 169 0.53 0.42 0.47

(a) (b)

Figure 7.8: Templates manually selected for the (a) first and (b) second experiments with SC video.
Images in (a) are from the intensity feature, and images in (b) are from the PCA features.
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Table 7.4: Resulting values for the leukocyte detection in experiment 3 according to the best F111-
score values found. The features listed below correspond to I: intensity, H: Hessian, E: edges, A:
inertia, K: Haralick’s correlation, and D: Difference Moment. The #tmp and #PC columns indicate
the number of templates and the number of principal components used, respectively.

Features PCA Counting

Video I H E A K D #PC Ret.var. #tmp TP FP FN P R F111

B1 × × × 2 0.9733 1 4582 772 1245 0.86 0.79 0.82
2 4601 776 1226 0.86 0.79 0.82
3 4687 628 1140 0.88 0.80 0.84

B2 × × 2 1.0 1 3089 2792 4959 0.53 0.38 0.44
2 3639 2676 4409 0.58 0.45 0.51
3 5774 2837 2274 0.67 0.72 0.69

SC × × 2 1.0 1 1176 169 394 0.87 0.75 0.81
2 1165 203 405 0.85 0.74 0.79
3 1081 263 489 0.80 0.69 0.74

C1 × × × × × × 3 0.9701 1 176 120 214 0.59 0.45 0.51
2 151 92 239 0.62 0.39 0.48
3 245 455 145 0.35 0.63 0.45

C2 × × × × 2 0.9923 1 826 594 777 0.58 0.52 0.55
2 888 331 715 0.73 0.55 0.63
3 979 325 624 0.75 0.61 0.67

ME × × × 2 0.9966 1 106 52 185 0.67 0.36 0.47
2 173 40 118 0.81 0.59 0.69
3 152 17 139 0.90 0.52 0.66

they should be. For this reason, we decided to select only those features that are contributing

to the cell detection. The idea behind this approach is trying to determine what type of feature

is better with a particular kind of image (or organ). In this sense, we performed the feature

selection using the forward-searching method (CHANDRASHEKAR; SAHIN, 2014), which is

based on a wrapper selection strategy.

The results for this embedding approach are shown in the graphs of Figure 7.9 and the

values of Table 7.4. The same earlier studies were performed in this experiment, but now

we used only the image features specified in Table 7.4 to build the input matrix of the PCA

algorithm.

By checking the AUCPR values in Figure 7.9, we noticed an improvement in some resulting

measures, which confirms the hypothesis that some features are not contributing to the overall

performance of the algorithm. Indeed, if we compare the retained variance values and the

number of principal components considered in each video, we observe that even with fewer

features and fewer PCA components, the algorithm was able to retain more significant data

information.
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Figure 7.9: Precision-recall curves calculated in the third experiment for all videos in the dataset.
For each video, we tested one, two, and three different templates.
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7.2.1.4 Experiment 4: feature-templates PCA

To test the behavior of the PCA technique considering only the image template information,

we performed our last experiment for the MTM-PCA approach by first selecting the template

images and then applying the PCA technique on them. In other words, after selecting and

extracting the templates from the first frame of each feature-video, we built the input matrix for

the PCA algorithm using the template images.

However, as can be seen in Table 7.5, we used only one template for each video to perform

the tests. The reason for that is related to the template images, which have different sizes. This

characteristic does not allow the creation of an input matrix for PCA without a proper correction

on the size of templates.

Table 7.5: Resulting values for the leukocyte detection in experiment 4 according to the best F111-
score values found. The features listed below are as follows: I: intensity, H: Hessian, E: edges, A:
inertia, K: Haralick’s correlation, and D: Difference Moment. The #tmp and #PC columns indicate
the number of templates and the number of principal components used, respectively.

Features PCA Counting

Video I H E A K D #PC Ret.var. #tmp TP FP FN P R F111

B1 × × × × × × 2 0.9638 1 3602 460 2225 0.89 0.62 0.73
× × × 1 0.9818 1 4547 990 1280 0.82 0.78 0.80

B2 × × × × × × 2 0.9595 1 5213 3029 2835 0.63 0.65 0.64
× × 2 1.0 1 4864 1485 3184 0.77 0.60 0.68

SC × × × × × × 2 0.9668 1 1275 198 295 0.87 0.81 0.84
× × 2 1.0 1 1257 173 313 0.88 0.80 0.84

C1 × × × × × × 2 0.9770 1 286 141 104 0.67 0.73 0.70
× × × × × × 2 0.9770 1 286 141 104 0.67 0.73 0.70

C2 × × × × × × 2 0.9814 1 724 468 879 0.61 0.45 0.52
× × × × 2 0.9950 1 950 329 653 0.74 0.59 0.66

ME × × × × × × 3 0.9740 1 71 77 220 0.48 0.24 0.32
× × × 2 0.9714 1 167 124 124 0.57 0.57 0.57

The resulting measures for all image features and those previously selected in the third

experiment are shown in the graphs of Figure 7.10 and Table 7.5. These results demonstrated

a good performance even when only the template images were used for the PCA algorithm.

However, they did not overcome the results from other experiments, except for video C1. As

can be observed in the graphs of Figure 7.10, the algorithm becomes very sensitive to changes

in the input matrix, i.e., a significant difference is observed in the curves using all features or

only a part of them. Probably, this effect was caused by the few information provided by the

small image templates employed. This fact also explains why video C1 had a good performance

compared to the other experiments, whereas its image matrix size is quite big and its cells are
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zoomed in the images, causing the selection of 63×63 templates while in the other videos we

have template sizes varying around the average of 19 pixels.

7.2.1.5 MTM-PCA overall analysis

To facilitate the overall analysis of our first detection approach, we created a summary ta-

ble containing the best results obtained for each video in all experiments described previously.

Table 7.6 shows these results considering the F1-score and AUCPR measures. The values high-

lighted in the table correspond to the best results for each video, and experiment 4 was divided

into tests performed for all features (A) and for the ones previously selected (B).

Table 7.6: Results from all the experiments performed for our first detection approach using the
IVM dataset. The best results are highlighted in bold face.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 (A) Exp. 4 (B)

Video AUCPR F111 AUCPR F111 AUCPR F111 AUCPR F111 AUCPR F111

B1 0.73 0.79 0.68 0.70 0.80 0.84 0.69 0.73 0.73 0.80
B2 0.68 0.70 0.54 0.63 0.65 0.69 0.60 0.64 0.64 0.68
SC 0.80 0.81 0.89 0.85 0.83 0.81 0.87 0.84 0.86 0.84
C1 0.65 0.63 0.51 0.51 0.51 0.51 0.75 0.70 0.75 0.70
C2 0.63 0.60 0.34 0.39 0.71 0.67 0.50 0.52 0.69 0.66
ME 0.64 0.68 0.43 0.47 0.69 0.69 0.28 0.32 0.56 0.57

In the videos B1, C2, and ME, for instance, we observed a considerable difference in the

experiment results, which indicates that some of the features may be causing a decrease in the

resulting metrics. Videos B2 and SC, however, presented results very similar over the exper-

iments, indicating that the contribution of each feature is, at least, feasible for this detection

approach. Regarding C1 video, we hypothesize that the image background in the features com-

puted is profoundly influencing (in a negative sense) the PCA eigendecomposition. This as-

sumption is highlighted by the fact that C1 was the only video in experiment 3 that used more

than two principal components to retain the necessary variance, and used all the features even

after applying the feature selection strategy. Thus, by working with only its image templates in

the PCA algorithm of experiment 4, we could achieve better results.

Therefore, in conclusion to this overall analysis, we presume that the extraction and selec-

tion of essential feature images still require a more thorough investigation to improve the results

obtained so far using IVM images from different organs.



138 7 Results and discussions

����������������������������

�
�
�
�
��
��
�

�

���

���

���

���

�

������

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��������������������������������������

��������������������������������

����������������������������

�
�
�
�
��
��
�

�

���

���

���

���

�

������

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��������������������������������������

��������������������������������

����������������������������

�
�
�
�
��
��
�

�

���

���

���

���

�

������

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��������������������������������������

��������������������������������

����������������������������

�
�
�
�
��
��
�

�

���

���

���

���

�

������

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��������������������������������������

��������������������������������

����������������������������

�
�
�
�
��
��
�

�

���

���

���

���

�

������

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��������������������������������������

��������������������������������

����������������������������

�
�
�
�
��
��
�

�

���

���

���

���

�

������

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��������������������������������������

�������������������������� �����

Figure 7.10: Precision-recall curves calculated in experiment 4 for all videos in the dataset. For
each video, we tested only one template and the two strategies for feature selection used in experi-
ments 2 and 3.
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7.2.2 Results for the MTM-DCNN

The second approach for leukocytes detection was quantitatively evaluated for different

pre-trained DCNN models using all the videos from our dataset. A list with the names of all

these models and their respective references can be found in Table 7.7.

In Figure 7.11, we can see the resulting F1-score values for all the videos and models pro-

cessed. For each one of them, we plotted the best values found in our experiments, considering

the set of threshold values tested. Each model exhibits three different bars, colored according

to the number of templates used in our experiments with the MTM algorithm.

The plots in Figure 7.11 show the use of selected convolutional layers in CNNs positively

contribute as generic feature extractors, even coming from models trained for a completely

different task. It is also worth noticing that the use of multiple templates can help to recognize

targets that are slightly different, as stated in the results of our first detection approach.

Although some models did not contribute to the MTM technique in most cases, such as the

ResNet50V2, ResNet101V2, ResNet152V2, InceptionV3, and InceptionResNetV2, the major-

ity of them achieved reasonable values if compared with the results from the previous approach,

which also shows the potential of this detection strategy.

Table 7.7 shows the best set of values found in Figure 7.11 for a better quantitative com-

parison of the methods. Indeed, when compared with the most common application of MTM,

i.e., using only the raw pixel or gray-level information (see Subsection 7.2.1.1), this approach

presented a considerable improvement (up to 14%). Videos C1 and C2, however, still exhibited

low F1-score values (0.66 and 0.60, respectively), which is justifiable since they have the most

challenging visual aspects, with a cluttered background and cell sizes in the order of 5 pixels.

Examples of output frames for each processed video are shown in Figure 7.12. Each TP

point found is illustrated by the green circles in the images, with its respective manual centroid

annotation indicated as a cross. The blue circles represent the FP points, while the red squares

are the FN ones.

From the images in Figure 7.12, we observe that FN points are often the cells very close

to each other or the ones whose appearance is quite different from the rest of them. The FP

points, however, mostly correspond to bright regions in the images or to the erythrocytes, which

are smaller cells that appear as bright blurred points in non-consecutive frames and are not part

of the manual annotations. Even so, the final results for this detection approach were quite

promising and indicated that pre-trained DCNN models could also be a good option for generic

feature extraction in IVM.
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Figure 7.11: Output values for each video and DCNN model tested. The colored bar indicates the
number of templates used in the MTM algorithm.
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B1 B2

SC

C2

ME

C1

Figure 7.12: Examples of MTM-DCNN outputs for each video in the dataset. Green circles repre-
sent the TP points, blue circles the FP points, and red squares the FN points.
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Table 7.7: Best F111-score values found for each video and DCNN model.

DCNN model B1 B2 SC C1 C2 ME

Xception (CHOLLET, 2017) 0.78 0.74 0.78 0.64 0.41 0.67
VGG16 (SIMONYAN; ZISSERMAN, 2015) 0.81 0.76 0.81 0.63 0.60 0.82
VGG19 (SIMONYAN; ZISSERMAN, 2015) 0.83 0.76 0.81 0.66 0.59 0.81
ResNet50 (HE et al., 2016a) 0.79 0.78 0.82 0.63 0.58 0.69
ResNet101 (HE et al., 2016a) 0.81 0.77 0.80 0.59 0.58 0.69
ResNet152 (HE et al., 2016a) 0.79 0.75 0.82 0.59 0.56 0.68
ResNet50V2 (HE et al., 2016b) 0.78 0.73 0.76 0.60 0.43 0.65
ResNet101V2 (HE et al., 2016b) 0.78 0.72 0.73 0.62 0.42 0.53
ResNet152V2 (HE et al., 2016b) 0.78 0.72 0.73 0.57 0.41 0.49
InceptionV3 (SZEGEDY et al., 2016) 0.77 0.79 0.74 0.50 0.52 0.58
InceptionResNetV2 (SZEGEDY et al., 2017) 0.76 0.79 0.71 0.44 0.49 0.66
DenseNet121 (HUANG et al., 2017) 0.81 0.81 0.81 0.61 0.55 0.76
DenseNet169 (HUANG et al., 2017) 0.80 0.79 0.81 0.59 0.57 0.77
DenseNet201 (HUANG et al., 2017) 0.81 0.76 0.81 0.61 0.60 0.73
NASNetLarge (ZOPH et al., 2018) 0.81 0.73 0.79 0.60 0.48 0.74

7.2.3 Results for the DCNN

In this subsection, we present the results for our third detection approach, where a modified

version of the RetinaNet model was used to detect the leukocytes in the IVM images since this

architecture has demonstrated significant results in small object detection compared to other

common methods in the literature. We start, however, by showing the results of the model

hyperparameters setting and the influence of the data augmentation strategy in our dataset.

Quantitative measures are then presented using four different experiments varying the im-

ages used in training to check the robustness of the model with and without data augmenta-

tion. All the output measures presented for these four experiments were obtained from a cross-

validation procedure with five stratified folds. For each fold, we retrained the model from its

initial state and then analyzed the statistical measures for thresholds IoU0.25 and IoU0.5.

The remaining values for NMS and score thresholds were evaluated using the grid search

algorithm in the validation datasets with the maximum number of detections per image fixed in

500 objects. Therefore, each outcome presented in the following experiments was assessed in

the corresponding test dataset using the best set of hyperparameters found while examining in

the validation dataset after model training. The partitions of training, validation and test datasets

were created differently for each fold in a stratified way.

After these experiments, we compared our model with other methods by taking the cen-

troids of our detected bounding boxes and analyzing their counting and location precisions. A
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better description of each analysis is presented as follows.

7.2.3.1 Hyperparameters setting

In order to find the best set of hyperparameters, we performed some experiments using

20% of all video frames in our dataset randomly for testing, and from the remaining images,

we used 80% for training and 20% for validation. All these experiments were evaluated with

no data augmentation in 200 epochs. In the first 100 epochs, we trained only the layers after the

pre-trained backbone model with a learning rate (LR) set to 1e−5. For the rest of the epochs,

we unfroze all model layers and set the LR to 1e−6 for fine-tuning. An option of reducing the

LR by a factor of 0.1 was also applied if the training loss has stopped improving at least a value

of 0.0001 in two epochs.

For the first experiment, we set the input image scale (defined by the smaller image dimen-

sion) to 700 pixels and analyzed the anchors’ using different feature pyramid levels on top of

ResNet-50. In the Table 7.8, we omitted the results for the number of pyramid levels lower than

three or higher than four due to their insignificant values or minor improvements. We tested

four sets of anchor scales in the scheme
�

20,21/nsc , . . . ,2(nsc−1)/nsc
�

and two sets of anchor as-

pect ratios, defined as {1:1} and {1:2, 1:1, 2;1}. Observing Table 7.8, we noticed that using

four pyramid levels, four anchor scales, and 1 or 3 aspect ratios yield the best results. Thus,

to choose between 1 or 3 aspect ratios, we analyzed the average value between the metrics AP

and F1 and, based on the largest value found, we selected the last option (4-4-3) for our next

analyses.

Table 7.8: First experiment varying anchor parameters (number of scales nscnscnsc and aspect ratios narnarnar)
and the number of feature pyramid levels, a) 3, and b) 4.

(a) Three pyramid levels.

nscnscnsc narnarnar AP F111

1 1 69.08 80.39
1 3 71.82 81.95
2 1 80.68 86.85
2 3 80.65 86.79
3 1 80.92 86.82
3 3 81.02 86.56
4 1 80.16 86.05
4 3 81.28 86.73

(b) Four pyramid levels.

nscnscnsc narnarnar AP F111

1 1 70.25 80.98
1 3 70.37 81.27
2 1 80.05 86.76
2 3 79.18 85.92
3 1 81.14 87.05
3 3 80.55 86.61
4 1 81.48 87.08
4 3 81.52 87.06

Following the previous experiments, we also investigated the performance of RetinaNet in

our dataset by varying the base model and the input image scale. For this experiment, we tested

50, 101, and 152 ResNet depths with previous set FPN constructed on top. The image scales
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for training and testing were varied between 400 and 1000 pixels in steps of 200. In addition

to the network depths and input image scale analyses, we computed the inference time1 (in

milliseconds) for each model and analyzed the influence of using mask images (see Section

4.6) in the test set.

As stated in Table 7.9, the higher the input image scale, the better its results. This prop-

erty was expected since our targets are small and respond better for high-resolution images.

Nonetheless, the improvement caused by depth changes was insignificant when comparing

models with the same image scales. In this case, one important characteristic to emphasize

is the inference time, which increases according to the depth size. This problem, however, is

not observed when using the mask images. In this case, the values of time had a minimum or no

increase. Following the same idea of the previous analysis, we selected those parameters with

the highest average value between the metrics AP and F1 (ResNet101-1000).

Table 7.9: Second experiment varying ResNet depths and input image scales. Inference time (in
milliseconds) was also evaluated for each model with and without the use of image masks in the
test dataset.

no mask mask
depth scale AP F111 time AP F111 time

50 400 72.91 80.59 82 74.75 82.02 89
50 600 78.15 84.24 116 79.45 85.44 116
50 800 80.62 85.48 164 81.03 86.14 164
50 1000 83.99 87.33 219 83.93 87.75 219

101 400 73.85 81.36 89 75.83 83.00 96
101 600 78.62 84.82 130 79.90 85.97 137
101 800 80.51 85.71 185 81.05 86.38 192
101 1000 84.37 87.94 247 84.45 88.42 253
152 400 73.53 81.63 103 75.61 83.15 103
152 600 77.42 83.82 151 78.77 85.19 151
152 800 81.70 85.90 219 82.16 86.84 219
152 1000 84.62 87.91 288 84.52 88.27 288

7.2.3.2 Influence of data augmentation

To analyze the outcomes of our model, we used the best set of hyperparameters found in

the experiments of the previous subsection. We started by investigating the influence of data

augmentation in the training step by plotting the loss curves of the model with and without data

augmentation. As stated before, the number of epochs for training without data augmentation

was set to 100 when the backbone layers are frozen and more 100 epochs for the fine-tuning

1Runtimes are measured on 2 × NVIDIA GeForce GTX 1080 Ti GPUs with 11GB each.
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process with all layers unfrozen. The same strategy was used for training the model with data

augmentation but using 350 and 100 epochs, respectively.

In Figure 7.13, we can observe that after a few epochs, the model being trained without

data augmentation (blue and orange curves) started to overfit. On the other hand, when our

augmentation methods are being applied (green and red curves), we can see a consistent learning

pattern.
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Figure 7.13: Loss curves for the model training with and without data augmentation.

Besides preventing overfitting, the use of data augmentation makes the model invariant to

the transformations applied. In Figure 7.14, we verify this premise by providing an image from

outside our dataset to the model. This image has cells with different visual aspects that were not

seen before by the model. Nevertheless, our model trained with data augmentation was capable

to accurately identify many cells in the image, as illustrated in Figure 7.14(c), while mostly

failed when augmentation techniques were not applied, see Figure 7.14(b).

(a) Original image. (b) No data augmentation. (c) All data augmentation.

Figure 7.14: Analysis of data augmentation influence in an outside image. (a) Original frame
image, (b) model inference without data augmentation, and (c) model inference with data augmen-
tation.

With these qualitative results, we showed that our suite of augmentation techniques not only

helps to prevent overfitting but also makes the model invariant to cell variabilities by correctly

detecting objects visually different from those used in training. The next subsections show that

this kind of cell variability invariance is also valid for the images in our dataset.
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Table 7.10: Summary of the statistical measures for all the experiments with and without data
augmentation.

Data
Exp. augm. IoU Precision Recall F111-score AP

1
No

0.25 90.77 ±1.01 94.23 ±1.99 92.46 ±1.20 93.54 ±2.07
0.50 86.97 ±1.34 93.13 ±2.66 89.92 ±1.23 91.97 ±2.87

Yes
0.25 93.62 ±0.96 95.43 ±2.09 94.50 ±0.90 94.99 ±2.15
0.50 90.76 ±2.78 93.29 ±2.50 91.99 ±2.30 92.38 ±2.66

2
No

0.25 72.84 ±5.62 79.16 ±5.26 75.63 ±2.88 73.97 ±4.95
0.50 64.65 ±4.42 71.64 ±5.02 67.78 ±2.69 62.59 ±5.06

Yes
0.25 84.14 ±4.25 82.04 ±4.59 82.93 ±2.01 79.79 ±4.58
0.50 72.17 ±6.36 70.15 ±6.33 71.00 ±5.33 60.99 ±9.02

3
No

0.25 89.57 ±1.07 94.20 ±1.53 91.82 ±0.61 93.34 ±1.57
0.50 87.21 ±1.98 92.60 ±1.35 89.81 ±1.15 91.32 ±1.46

Yes
0.25 92.87 ±0.89 95.36 ±1.11 94.09 ±0.73 94.84 ±1.15
0.50 91.66 ±2.23 93.06 ±2.17 92.36 ±2.14 92.16 ±2.39

4
No

0.25 73.14 ±5.51 79.58 ±6.35 75.91 ±2.48 74.09 ±5.58
0.50 63.84 ±4.25 72.26 ±6.70 67.48 ±1.83 62.07 ±6.29

Yes
0.25 83.35 ±5.63 84.02 ±6.67 83.39 ±3.03 81.62 ±6.19
0.50 72.46 ±2.43 71.17 ±8.23 71.59 ±4.00 62.20 ±10.1

7.2.3.3 Experiment 1: CNS stratified

In our first experiment for this detection approach, we decided to use only images from

the mice CNS since they have the most similar cell appearance between then, even in different

videos and acquisition protocols. As can be seen in the boxplots of Figure 7.15 and Table 7.10,

all statistical measures of the first experiment exhibited excellent values. For instance, the mean

and median values of all metrics with data augmentation stayed above 90, and the interquartile

ranges were all higher than 88, indicating the outstanding performance of the model when using

the CNS images.

Despite overfitting data, the model with no data augmentation showed slightly lower values

for the same metrics, which indicates that augmentation techniques may be important to cover

objects’ diversity.

As expected, the results for IoU0.25 were better than those for IoU0.5 since our targets are

small cells, and minor bounding boxes disagreements created low values for the IoU metric.

Indeed, the values for all the metrics had an average improvement of 2.39% when analyzing

IoU0.25 against IoU0.5 for both models.
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(a) No data augmentation.
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(b) All data augmentation.

Figure 7.15: Statistical measures extracted from experiment 1 with the proposed model with and
without data augmentation.

7.2.3.4 Experiment 2: CNS unseen split

For the second experiment, we investigated the influence of images from the same video

for training and testing in a small dataset as ours. As the frames of a single video are quite

similar to each other, they can bias the model results when used in the training and test datasets,

especially when the total number of images is small. To analyze the impact this kind of bias

can generate in our model, we separate the three videos (B1, B2, and SC) from the CNS subset,

together with 80% of images from group OT, for the train_val dataset. As a consequence, only

20% of the images from group OT were put in the test dataset, implying that none of the images

used for training and validation belong to the same video used for testing as in the previous

experiment.

When analyzing the new outcomes, we observed the same pattern between the IoU thresh-

olds of the first experiment. However, in this case, the disparity of values was higher, presenting

an average improvement of 11.19% in the metrics. This difference is mainly caused by the ac-

curacy of bounding box regression and by the lack of images in the test dataset, which could

not represent our analysis so well and also cause the slight increase in the recall and AP values

when comparing the model with and without data augmentation. Indeed, when observing the

boxplot of Figure 7.16(b), we can see an outlier in the metrics AP and F1-score, meaning that a

particular fold in our test dataset is increasing our metrics, or there are images in the other folds

that could be decreasing them. When comparing the results for both IoU thresholds in these

cases, we can presume that some of the test images present a high number of small cells, which

were not present in the outlier fold. A better discussion about these images can be found in the

next experiment.
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(a) No data augmentation.
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(b) All data augmentation.

Figure 7.16: Statistical measures extracted from experiment 2 with the proposed model with and
without data augmentation.

Despite all this, the average results for IoU0.25 still kept high metric values (above 79 and

72, with and without data augmentation, respectively), even not using images from the same

video in both train_val and test datasets, showing us an exemplary performance of the model.

7.2.3.5 Experiment 3: All stratified

In our third experiment, we used all available data to check our model behavior when im-

ages from different organs and protocols are used. For this challenging setup, we applied the

same cross-validation process as the first experiment with five stratified folds, but now using all

types of images. Again, the values for the metrics were higher for IoU0.25, with an improve-

ment of 1.99% on average. Also, the small standard deviations in Table 7.10 and Figure 7.17

indicated a high level of confidence in the presented values.

Although mean and median values were all above 91 for both IoU thresholds in the model

with data augmentation, we can see in Figure 7.17(b) that an outlier fold is present in each metric

of the IoU0.50 analysis. After careful investigation of the images inside this fold, we noticed that

a particular image is decreasing considerably our metrics and also causing problems in other

experiments, as stated in the previous subsection. Indeed, this image represents a significant

challenge for the model. Its cluttered environment, together with its large amount of cells,

complicates even visual analysis by experts, as can be seen in Figure 7.18(a).

The blue squares in Figure 7.18(b) represent the manual annotations, while red and green

squares are the FPs and TPs of the model with data augmentation, respectively. At first sight,

we can see several cells without a manual annotation or identified as FPs when they are surely

authentic cells. The reason for that is related to the lack of target resolution, which makes visual
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(a) No data augmentation.
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(b) All data augmentation.

Figure 7.17: Statistical measures extracted from experiment 3 with the proposed model with and
without data augmentation.

(a) Original image. (b) Output image.

Figure 7.18: Example of a challenge image for both manual annotation and algorithm detection.
(a) Original image. (b) Output image from the outlier fold of experiment 3 with data augmentation.

analysis quite tricky and sometimes very subjective. Thus, the combination of poor annotation

and small objects eventually affects our statistical measures.

Nevertheless, even with all these difficulties, our model responded satisfactorily for images

from different organs and acquisition protocols, which are known to be barriers to conventional

techniques in machine learning.

7.2.3.6 Experiment 4: All unseen split

In order to make the same analysis of experiment 2 (subsection 7.2.3.4), but now using all

available images, we divided our datasets in a way that images from the same video are not

simultaneously allocated to train_val and test sets. To perform that, we added the images from

groups C1, C2, and ME to the train_val dataset of each fold in the cross-validation procedure.

As expected, the results were considerably low compared to the previous experiment because
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of distinct image features appended to train_val datasets. Nevertheless, the values obtained for

the IoU0.25 threshold were all outstanding, with their average values above the baseline of 81

and 73 for the models with and without data augmentation, respectively.
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(a) No data augmentation.
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(b) All data augmentation.

Figure 7.19: Statistical measures extracted from experiment 4 with the proposed model with and
without data augmentation.

7.2.4 Detection overall analysis

In order to perform an overall analysis of our detection approaches and also compare them

with other conventional methods for cell detection, we selected the best method configurations

presented in the previous sections. Accordingly, for the first approaches based on the MTM

technique (MTM-PCA and MTM-DCNN), we used the experiments highlighted in the Tables

7.6 and 7.7, respectively, while for our last detection approach (DCNN), we selected the results

of our models with data augmentation from experiment 3, where the images from all organs

were used. Furthermore, we extracted the locations of both predicted and manually annotated

centroids for each microscopy video.

It is worth noting that the results presented in Subsections 7.2.1 and 7.2.2 were evaluated us-

ing a value for k (maximum radius to consider a TP point) different from the DCNN evaluation.

Thus, we changed our value from k = max(template_size)/2 to k = avg_cell_size/2 for a fair compari-

son in this overall analysis. Therefore, some of the results may differ from those presented in

previous sections.

One standard method analyzed in our comparison identifies blob-like structures in images

based on the analysis of eigenvectors obtained from local Hessian matrices (GREGÓRIO DA

SILVA; CARVALHO-TAVARES; FERRARI, 2015). Despite producing consistent results for

objects with good contrast, this technique is limited to the object shape. As stated before, an-
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other commonly used technique in object detection is the template matching (TM) (BRUNELLI,

2009). It is a well-known and straightforward technique, but its main drawback is the need to

pre-select a template image as in our MTM-based approaches. Open-source tools such as Icy2

and Ilastik (BERG et al., 2019) (using the plugin: Cell Density Counting) were also compared

with our methods. Ilastik, however, is limited to cell density estimation without presenting their

locations in the images.

7.2.4.1 Detection in the central nervous system

Despite the simple cell appearance in the CNS images, a cluttered background with small

cells overlapping with each other can make the detection difficult by conventional techniques.

The Hessian method, for instance, exhibited reasonable results for this group of images since

the cells have a well-defined shape in most video frames. The same can be said about TM-

based techniques that achieved values higher than 0.7 for the F1-score metric. Although its

good results, the MTM-DCNN method did not respond so well as other methods for videos B1

and SC. The reason behind this outcome could be related to the transfer learning process of

the models tested. As the models were pre-trained in the ImageNet dataset, whose targets are

natural objects considerably bigger than our cells, the convolutional layers may give preference

for bigger objects or zoomed cells as in video B2.

None of these methods, for instance, outperformed the detection results of the DCNN ap-

proach, as can be seen in Table 7.11. The RetinaNet model in our DCNN approach demon-

strated excellent accuracy with extremely high values of F1-score, and low mean and standard

deviation values for both counting and distance errors. Only the Hessian and MTM-DCNN

techniques applied to the SC video achieved a slightly better result for the centroid distance and

counting errors, respectively.

When analyzing the cell counting task for the best approach (DCNN), we observe a high

agreement between the number of cells manually annotated and predicted by our model, even

for videos with a vast number of cells like SC. These results are shown in the scatter plots

of Figures 7.20(a, b, and c) for all the three videos from CNS. Each point in the scatter plots

represents an image in the corresponding video. We also illustrated the results of our best model

in an example image from each video in Figures 7.20(d, e, and f).

2��������������������������������
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Table 7.11: Comparative cell detection results for the videos from the CNS group. The values µcµcµc,
and σcσcσc represent the mean and standard deviation of the counting error; and µdµdµd , and σdσdσd represent
the mean and standard deviation of centroid distance errors, respectively.

Video Method TP FP FN P R F111 µc ±σcµc ±σcµc ±σc µd ±σdµd ±σdµd ±σd

B1

Ilastik - - - - - - 2.99±1.95 -
Icy 3281 2769 2546 0.54 0.56 0.55 2.32±2.00 0.49±0.25
TM 4109 1299 1718 0.76 0.71 0.73 2.78±2.17 0.45±0.24
Hessian 4709 1189 1118 0.80 0.81 0.80 2.26±1.88 0.41±0.24
MTM-PCA 4514 801 1337 0.85 0.77 0.81 2.87±1.90 0.41±0.23
MTM-DCNN 4188 1033 1639 0.80 0.72 0.76 2.98±2.11 0.47±0.24
DCNN 5316 561 511 0.90 0.91 0.91 0.97±0.98 0.41±0.23

B2

Ilastik - - - - - - 3.17±2.06 -
Icy 5505 2034 2534 0.73 0.68 0.71 2.67±1.85 0.34±0.24
TM 5599 2359 2449 0.70 0.70 0.70 2.15±1.62 0.23±0.19
Hessian 6711 2325 1337 0.74 0.83 0.79 2.77±2.14 0.28±0.23
MTM-PCA 5599 2359 2449 0.70 0.70 0.70 2.15±1.62 0.23±0.19
MTM-DCNN 5959 884 2089 0.87 0.74 0.80 3.14±1.96 0.23±0.18
DCNN 7992 306 56 0.96 0.99 0.98 0.75±0.87 0.15±0.18

SC

Ilastik - - - - - - 26.19±4.34 -
Icy 1321 457 249 0.74 0.84 0.79 9.90±3.99 0.48±0.27
TM 1117 321 453 0.78 0.71 0.74 6.86±3.98 0.53±0.26
Hessian 1262 670 308 0.65 0.80 0.72 17.24±9.04 0.45±0.27
MTM-PCA 1276 345 294 0.79 0.81 0.80 5.76±6.30 0.51±0.26
MTM-DCNN 1115 493 455 0.69 0.71 0.70 4.76±5.48 0.61±0.25
DCNN 1468 222 102 0.87 0.94 0.90 5.71±3.38 0.46±0.27

7.2.4.2 Detection in the cremaster muscle

Although coming from the same animal organ, the two videos from cremaster muscle

present distinct challenges. While C1 video shows the cells on a larger scale, C2 exhibits a

considerable amount of cells on a lower scale flowing in a vessel. All these features must be

considered in addition to cell overlapping and shadow artifacts in the images.

However, even with these challenging characteristics and the small number of video frames

to train our model, the DCNN approach achieved the best results when compared with the other

methods, as can be visualized in Table 7.12. It is worth noting that our training process in the

DCNN approach did not present overfitting since we applied extensive data augmentation (the

plots can be seen online3).

Another critical information to consider in Table 7.12 is the high number of counting errors

in video C2 by the other methods. It means that identify the correct number of cells in these

3����������������������������������������������������������
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(a) Cell counting: B1.
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(b) Cell counting: B2.
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(c) Cell counting: SC.

(d) Output: B1. (e) Output: B2. (f) Output: SC.

Figure 7.20: In Figures (a), (b), and (c), we can see a comparison between the number of cells man-
ually annotated and detected by the DCNN approach for videos B1, B2, and SC, respectively. Each
point in the scatter plots represents a different image frame. In Figures (d), (e), and (f), we show
an example of output frame from each one of the videos B1, B2, and SC, respectively. Blue squares
in the images represent manually annotated leukocytes, while green and red squares represent the
TPs and FPs, respectively. Note that image frames were cropped for better visualization.

particular frames can be a tough task. Indeed, this is the case where our DCNN approach

mostly fails because of the large number of small cells, as can be seen in the scatter plot of

Figure 7.21(b) and in the example image of Figure 7.21(d). For the video C1, however, we had

a proper correlation in the number of cells, with only a small fraction of FPs, as illustrated by

the red square in the image of Figure 7.21(c).

7.2.4.3 Detection in the mesentery

Cell detection in our mice mesentery images has also proved to be a challenging task given

the cell’s appearance and their deformed shapes. The Hessian, TM, and MTM-PCA methods,

for instance, mostly fail to detect these cells because of their shape-changing. The MTM-DCNN

method, however, presented a significant result, probably because cells in the ME video have a

large size on average, which could help the feature image extraction by the convolutional layers

of the pre-trained models. But, it is not surprising that our supervised approach outperformed

the unsupervised methods in this dataset, as indicated in Table 7.13.

In this video analysis, our DCNN approach exhibited an outstanding performance, resulting

in only 4 FNs, 13 FPs, and, consequently, an F1-score value much higher than the other methods.
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Table 7.12: Comparative cell detection results for the videos from cremaster muscle group. The
values µcµcµc, and σcσcσc represent the mean and standard deviation of the counting error; and µdµdµd , and σdσdσd
represent the mean and standard deviation of centroid distance errors, respectively.

Video Method TP FP FN P R F111 µc ±σcµc ±σcµc ±σc µd ±σdµd ±σdµd ±σd

C1

Ilastik - - - - - - 38.48±1.82 -
Icy 208 173 182 0.55 0.53 0.54 2.05±1.84 0.27±0.15
TM 250 207 140 0.55 0.64 0.59 4.71±4.59 0.32±0.18
Hessian 229 148 161 0.61 0.59 0.60 3.86±4.18 0.26±0.16
MTM-PCA 298 129 113 0.70 0.73 0.71 3.43±4.08 0.30±0.17
MTM-DCNN 232 65 158 0.78 0.59 0.68 5.19±2.22 0.30±0.15
DCNN 381 70 9 0.84 0.98 0.91 3.00±1.98 0.26±0.15

C2

Ilastik - - - - - - 75.86±6.14 -
Icy 938 873 665 0.52 0.59 0.55 10.29±6.04 0.47±0.27
TM 830 730 773 0.53 0.52 0.52 11.76±10.37 0.49±0.27
Hessian 1283 1294 320 0.50 0.80 0.61 46.38±17.19 0.48±0.27
MTM-PCA 930 374 1252 0.71 0.43 0.53 41.81±10.00 0.48±0.27
MTM-DCNN 964 552 639 0.64 0.60 0.62 4.81±3.82 0.52±0.26
DCNN 1420 293 183 0.83 0.89 0.86 5.81±5.47 0.46±0.28

Table 7.13: Comparative cell detection results for the mice mesentery video. The values µcµcµc, and
σcσcσc represent the mean and standard deviation of the counting error; and µdµdµd , and σdσdσd represent the
mean and standard deviation of centroid distance errors, respectively.

Video Method TP FP FN P R F111 µc ±σcµc ±σcµc ±σc µd ±σdµd ±σdµd ±σd

ME

Ilastik - - - - - - 70.43±1.37 -
Icy 95 689 196 0.12 0.33 0.18 23.48±2.13 0.45±0.18
TM 110 74 181 0.60 0.38 0.46 5.10±2.04 0.38±0.19
Hessian 199 116 92 0.63 0.68 0.66 2.67±1.64 0.43±0.21
MTM-PCA 172 41 119 0.81 0.59 0.68 3.71±2.29 0.38±0.21
MTM-DCNN 219 29 72 0.88 0.75 0.81 2.24±1.48 0.45±0.21
DCNN 287 13 4 0.96 0.99 0.97 0.52±0.66 0.46±0.28

The scatter plot and an example image from the application of DCNN approach are also shown

for the ME video in Figures 7.22(a) and 7.22(b), respectively.

7.3 Tracking evaluation

To test and evaluate the performance of our 2D+t approach, we used the best results from the

detection stage as input, similarly to the overall detection analysis (see Subsection 7.2.4). Also,

our tracking approach was evaluated using two tracklets separation strategies; one using the

cumulative matrix (CM), and the other deleting only the junction points (JP) and their neighbors.

The next subsections show the maximum F1-score values obtained for the tracking approach in
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(a) Cell counting: C1.
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(b) Cell counting: C2.

(c) Output: C1. (d) Output: C2.

Figure 7.21: In Figures (a) and (b), we can see a comparison between the number of cells manually
annotated and detected by the DCNN approach for videos C1 and C2, respectively. Each point in
the scatter plots represents a different image frame. In Figures (c) and (d), we show an example
of output frame from each one of the videos C1 and C2, respectively. Blue squares in the images
represent manually annotated leukocytes, while green and red squares represent the TPs and FPs,
respectively. Note that image frames were cropped for better visualization.

each data group.

7.3.1 Tracking in the central nervous system

In Table 7.14 we can observe the results obtained for the best configuration of each detection

approach in the CNS group. The separation strategies highlighted in boldface indicate the best

technique chosen according to the counting measures. Although the CM strategy was slightly

better for the CNS group, the results exhibited minimum or zero improvement when compared

with the JP strategy. Only in some videos, the change was noticeable. Video B1 for the MTM-

PCA approach, for instance, had good improvement (from 0.70 to 0.77 for the F1-score value)

with the use of CM. After a meticulous investigation on this particular case, we noticed the CM

strategy helped the tracking method to not shift when cells were very close to each other or

when the remaining motion artifacts were still present in the images.

Besides all that, our tracking framework showed excellent performance, mainly with the

DCNN approach. It achieved F1-score values of 0.80, 0.96, and 0.68 for the videos B1, B2,

and SC, respectively. The low value for SC video, however, showed us the difficulty in tracking

small cells moving fast during a short period (21 video frames), as can be seen in Figure 7.23(c).
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(a) Cell counting: ME. (b) Output: ME.

Figure 7.22: In the scatter plot in (a), we can see a comparison between the number of cells man-
ually annotated and detected by the DCNN approach for the video ME. Each point in the plot
represents a different image frame. In (b), we show an example of output frame from the video
ME. Blue squares in the image represent manually annotated leukocytes, while green and red
squares represent the TPs and FPs, respectively. Note that image frames were cropped for better
visualization.

(a) B1 (b) B2

(c) SC

Figure 7.23: Comparison between the outputs of 2D+t processing stage and manual annotations
for videos (a) B1, (b) B2, and (c) SC. Green points indicate TP, blue points indicate FP, and red
points the FN.

Leukocytes trajectories were plotted in Figure 7.23 for a visual comparison between the

outputs of the DCNN detection approach and the manual annotations. In these plots, the vertical
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Table 7.14: Best F111-score values obtained for our tracking algorithm using the JP and CM tracklets
separation strategies. The input images were obtained from our best detection results for the CNS
group.

Detection Separation Counting

Video approach strategy TP FP FN P R F111

B1

MTM-PCA
JP 3704 1047 2123 0.78 0.64 0.70
CM 4052 663 1775 0.86 0.70 0.77

MTM-DCNN
JP 4783 2094 3265 0.70 0.59 0.64
CM 3301 1017 2526 0.76 0.57 0.65

DCNN
JP 4315 640 1512 0.87 0.74 0.80
CM 4297 689 1530 0.86 0.74 0.79

B2

MTM-PCA
JP 4783 2094 3265 0.70 0.59 0.64
CM 4783 2094 3265 0.70 0.59 0.64

MTM-DCNN
JP 5052 1328 2996 0.79 0.63 0.70
CM 5052 1328 2996 0.79 0.63 0.70

DCNN
JP 7577 237 471 0.97 0.94 0.96
CM 7579 236 469 0.97 0.94 0.96

SC

MTM-PCA
JP 897 343 673 0.72 0.57 0.64
CM 895 338 675 0.73 0.57 0.64

MTM-DCNN
JP 785 359 785 0.69 0.50 0.58
CM 785 358 785 0.69 0.50 0.58

DCNN
JP 926 228 644 0.80 0.59 0.68
CM 914 230 656 0.80 0.58 0.67

axis represents the time (t) while x- and y-axes correspond to the leukocyte spatial positions in

video frames. Leukocyte centroids correctly detected (TP) by the DCNN approach form the

green lines, while false alarms (FP) and missing detections (FN) form the blue and red lines,

respectively, in the images of Figure 7.23.

Visual assessment of the images shows some small blue segments (FP) within the green

paths (TP), as illustrated in Figure 7.23(a). The points in these segments provide continuity to

the trajectories, despite not being manually annotated as leukocyte centroids within the search

region in the video frames. When checking the frames in which these points should be located,

we noticed that some residual movements were still present, and this was probably the reason

why the experts did not annotate them or made wrong annotations. We isolated a particular

case of a sequence of frames where the number of FP points was relatively high to prove that

it corresponds to a video frame where the manual tracking of some cells is lost or considerably

displaced due to animal movement. It can be seen in Figure 7.24.
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Figure 7.24: Example of a sequence of three consecutive frames from video B1 on the first line,
in which a particular region was zoomed and displayed in the second and third lines. Blue circles
in the images represent the output cell positions of our algorithm, while red squares show the FP
points and white circumferences the FN points. Cells pointed by a white arrow corresponds to the
connection segments.

The first line of Figure 7.24 shows three consecutive frames extracted from video B1. Frame

number 155 in the first line illustrates an example of an image with motion residues. By com-

paring these frames with the corresponding outputs of our approach in the third line of Figure

7.24, we noticed that the number of FP points, represented as red squares, increased from 1

to 4 when the residual motion occurred in a particular zoomed region and then decreased to

zero after the movement ceased. The same trend is observed for the numbers of FN points,

or white circumferences, which increased from 1 to 4 and then decreased to 1 again. In this

case, however, the FN changed because the annotations (done on the frame-by-frame basis)

presented significant displacements caused by the remaining motion in frame number 155. This

annotation issue directly affected 3 of 4 FP points and also created three additional FN points

in a small image region. Despite the problems mentioned above, our algorithm was capable of

rightly connecting some trajectory segments in those frame regions. These segment points are

indicated by a white arrow in the images of the third line. It is also worth noting that all of them

belong to the case where the motion artifacts disturbed the results.

Thereby, we argue that the trajectory connections by the proposed technique allow predict-

ing cell movements even when the expert was not capable of annotating the proper location

of leukocyte centroids in some individual frames or when the residual motion artifacts are still
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present in the video frames. In this case, a large number of FP points could be considered as

TP, while the number of FN points could decrease, which would further increase the statistical

measures of the proposed approach.

7.3.2 Tracking in the cremaster muscle

In the evaluation performed for videos C1 and C2, results comparing the separation strate-

gies presented an insignificant difference, as can be observed in Table 7.15. This characteristic

is justified by the absence of motion artifacts in the video frames and, consequently, less spuri-

ous elements in the skeleton images.

Table 7.15: Best F111-score values obtained for our tracking algorithm using the JP and CM tracklets
separation strategies. The input images were obtained from our best detection results for the
cremaster group.

Detection Separation Counting

Video approach strategy TP FP FN P R F111

C1

MTM-PCA
JP 155 54 235 0.74 0.40 0.52
CM 155 54 235 0.74 0.40 0.52

MTM-DCNN
JP 123 30 267 0.80 0.32 0.45
CM 123 30 267 0.80 0.32 0.45

DCNN
JP 267 28 123 0.91 0.68 0.78
CM 267 28 123 0.91 0.68 0.78

C2

MTM-PCA
JP 773 206 830 0.79 0.48 0.60
CM 773 206 830 0.79 0.48 0.60

MTM-DCNN
JP 836 365 767 0.70 0.52 0.60
CM 836 359 767 0.70 0.52 0.60

DCNN
JP 1198 217 405 0.85 0.75 0.79
CM 1190 222 413 0.84 0.74 0.79

The resulting F1-score values for both videos were all lower than 0.8, mainly because they

presented a large number of FN points compared to the total number of cell annotations. In the

case of video C1, we noticed the algorithm lost tracking the cells when they were moving fast,

even after applying our downsampling approach to reduce this kind of problem. In the video

C2, we had most cell tracks lost due to a low detection result. Indeed, it was very challenging

for our 2D processing stage to detect all these small cells, achieving an average F1-score value

of only 0.67, considering our three detection approaches.

A comparative image between our tracking output and the manual annotations can be seen

in Figure 7.25 for both videos from the cremaster group. Again, green points in this figure
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represent the TP values, while blue and red points indicate the FP and FN, respectively.

(a) C1

(b) C2

Figure 7.25: Comparison between the outputs of 2D+t processing stage and manual annotations
for videos (a) C1 and (b) C2. Green points indicate TP, blue points indicate FP, and red points the
FN.

7.3.3 Tracking in the mesentery

When analyzing the performance of our 2D+t process in the mesentery video, we also did

not observe a significant difference in the separation strategies, as can be seen in the values of

Table 7.16. As the cremaster images, this is explained by the absence of motion artifacts.

Although the tracking results were very promising, reaching an F1-score value of 0.87 for

the DCNN approach, we noticed that three particular trackings caused the most number of FN

points. By visual analysis of Figure 7.26, we can observe two mostly lost trackings in the central

region of the frames, and a third one on the left side. Following a meticulous examination, we

found that these cells were very close to each other in the downsampled images, which caused

an undesirable effect in the Hessian algorithm to identify tubular-like structures. For these
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Table 7.16: Best F111-score values obtained for our tracking algorithm using the JP and CM tech-
niques to separate the skeleton images.

Detection Separation Counting

Video approach strategy TP FP FN P R F111

ME

MTM-PCA
JP 151 13 140 0.92 0.52 0.66
CM 151 13 140 0.92 0.52 0.66

MTM-DCNN
JP 205 5 86 0.98 0.70 0.82
CM 205 5 86 0.98 0.70 0.82

DCNN
JP 230 9 61 0.96 0.79 0.87
CM 230 6 61 0.97 0.79 0.87

particular cases, therefore, it is necessary a more careful study in the parameters setting of our

2D+t processes.

Figure 7.26: Comparison between the outputs of 2D+t processing stage and manual annotations
for video ME. Green points indicate TP, blue points indicate FP, and red points the FN.

7.4 Occlusion and trajectory gap

As discussed earlier, IVM may present cases of cell occlusions and trajectory gaps over

the recorded videos. In our tracking approach, these cases are treated in a relatively simple

manner applying the tracklet linking strategy, which uses a cone searching region to track and

link cell trajectories in a spatiotemporal image. To demonstrate the ability of our proposed

method to handle cell occlusions and trajectory gaps, we selected an example, as illustrated in

Figure 7.27(a), extracted from a sequence of frames from a real IVM. In this frame sequence,

one cell remains stationary (cell number 1 pointed by a red arrow in the image) while another

(cell number 2 indicated by a green arrow) is heading in its direction from right to left. As can

be seen in the frames number 13 and 14, a sudden jump in the cell number 2, possibly caused by

low frame rate, resulted in a trajectory gap and, at the same time, illustrates a situation of partial

occlusion between two cells. Both cases are treated equally by our proposed method since they

are likely to cause a tracking loss.

Manual frame-by-frame annotations of the same cells shown in Figure 7.27(a) are presented
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in Figure 7.27(b). Other images in Figure 7.27 show the sequence of results from all processing

stages: 7.27(c) output of our detection approach; 7.27(d) output of the 2D processing stage

with centroids blurred; 7.27(e) output of 3D Hessian-based processing used to enhance tubular-

like structures; 7.27(f) output of the binarization step applied to the enhanced image; 7.27(g)

skeletonization output; 7.27(h) tracklets separation using CM; and 7.27(i) track linking output,

where each cell trajectory is represented by a different label (colored in red and green). By

analyzing the output images, we can conclude that our tracking approach performed adequately

and identified the proper cell trajectories, even facing cell occlusion or trajectory gap.

(a) Sequence of frames extract from a real IVM

(b) Ground truth (c) Detection output (d) 2D+t preprocessing (e) 3D Hessian output

(f) Binarization output (g) Skeletonization output (h) Separation output (i) Connection output

Figure 7.27: Example of 2D+t processing results of a real sequence of frames with a cell occlu-
sion. (a) A sequence of frames of a particular IVM region. From left to right, frame numbers:
1, 4, 13, 14, 17, and 45. Arrows numbered as 1 (red) and 2 (green) indicate the movement of two
different cells in the extracted region. (b) Cells’ centroids manually annotated. (c) Output im-
ages from DCNN detection approach. (d) 2D+t preprocessing. (e) Hessian, (f) binarization, (g)
skeletonization, (h) tracklets separation, and (i) track linking outputs.

7.5 Final statistical measures

With the proposed 2D+t processing or tracking approach, we were able to compute the

statistical measures for the leukocyte recruitment in IVM images. Indeed, measures such as
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distance, velocity, and the number of leukocytes were easily computed for each video used in

this study. We summarized these measures in Table 7.17 for our best tracking performances in

the last section, indicated by the boldfaced numbers in Tables 7.14, 7.15, and 7.16.

Table 7.17: Extracted measures obtained from our best tracking results in each video of our
dataset.

Measure B1 B2 SC C1 C2 ME
Number of adhered leukocytes 57 25 65 10 40 11
Number of rolling leukocytes 13 16 18 9 63 4
Average velocity (µm/s) 5.31 5.26 10.60 43.04 14.70 14.43
Average traveled distance (µm) 6.31 22.25 3.77 32.53 10.72 8.92

As we do not have the spatial resolution of videos C1, C2, and ME, their measures for cell

velocity and traveled distance were acquired using a spatial resolution of 1 pixel/µm.

In order to provide a visual representation of the cell types on each video processed, we

plotted our tracking points in Figure 7.28. Adhered cells were plotted using the blue color

while the green points represent the rolling cells. The red points scattered across the images

correspond to flashing cells, i.e., detections that appear for less than three frames in the videos.

Although these flashing cells were considered in the calculation of countings metrics, we did

not consider them in the final statistical measures since they do not contribute to an accurate

cell recruitment analysis.

As illustrated in Figure 7.28(a), flashing cells mostly appear when the images still have a

significant amount of motion artifacts, which is proved by the proximity of their centroids with

the proper trackings.

7.6 Final considerations

In this chapter, we presented all the results of this research work. They showed that, despite

the inherent problems of IVM, the automated processes for video stabilization, detection, and

tracking are capable of assisting the expert in real circumstances. The video stabilization out-

comes were evaluated and suggested that the methods used in frames registration can correct

most of the motion artifacts arisen from the breathing and heartbeats of the animal, providing

images with better quality for the following processes. Moreover, the detection approaches

showed that even using different methods, we achieved excellent results. From our experiments

on the leukocyte detection, we concluded that DCNN pre-trained models could, indeed, per-

form very well with the transfer learning and data augmentation strategies. Finally, the 2D+t

processing stage proved its potential in correctly identifying and tracking cell trajectories in
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(a) B1 (b) B2

(c) SC (d) C1

(e) C2 (f) ME

Figure 7.28: Tracking outputs for each IVM video according to the cell types. Blue segments
indicate the adhered leukocytes, while green segments represent the rolling leukocytes. Red points
scattered across the images are the flashing cells. The videos are illustrated as follows: (a) B1, (b)
B2, (c) SC, (d) C1, (e) C2, and (f) ME.

spatiotemporal images, even when the cell paths were not ideal. In the next chapter, we present

a complete discussion about these results, describing what can still be investigated, and some

options for future works.



Chapter 8
CONCLUSIONS

This chapter synthesizes the conclusions from the literature review and the main results

obtained from our automatic computational pipeline applied to real IVM images in different

experiments. Besides, it also indicates further investigations that can be derived from our

studies.

8.1 Overview and future investigations

The primary objective of this research was to develop an automatic computational pipeline

to aid in the detection and tracking of leukocytes in IVM applied to in vivo experiments of differ-

ent animal organs. The primary motivation behind this work was the growing demand for more

precise measures associated with cell motility since they are essential for quantitative analysis

and the understanding of biological mechanisms of many inflammatory diseases. Automatic or

semi-automatic techniques, like the ones proposed herein, can provide greater flexibility and

reliability to the image analysis tasks given the existing limitations in the purely visual work

by the experts. Therefore, a computational system could drastically reduce the number of false

statistics related to cell behavior and counting.

Besides all that, we noticed that only a few works in the literature perform tracking in IVM

images despite the existence of several kinds of research related to object detection and tracking,

as stated in Chapter 3. Also, none of the related studies for in vivo analysis in the literature is

applied to images from different organs or even from the animal’s CNS. This fact is extremely

relevant since the problems found during the CNS analysis, like the animal’s stabilization by

mechanical devices, for instance, are very specifics and restrictive.

In this sense, we proposed the development of a framework based on image processing and

computer vision techniques that combines spatial information from a frame-by-frame detection
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(2D processing), and temporal information from the processing of volumetric images created

by stacking all video frames (2D+t processing). The results of this research were obtained

from qualitative and quantitative evaluations performed over six different IVM videos, where

the location of automatically detected cells were compared with the manual annotations of an

expert. Our results demonstrated that the combination of these two processing stages minimizes

most of the problems involved in the detection and tracking of cells, such as cell occlusion and

the proper discrimination of cell trajectories. Moreover, by using this framework as a design

pattern, we can opt for the use of different techniques in each processing stage, which makes

the code more generic and modularized.

Inherent difficulties from the IVM imaging technique, like the involuntary movement of the

animal, were partially overcome through the use of different preprocessing methods specifically

developed for this application. In extreme cases involving video frames with excessive motion

blur, the images were examined and removed from the videos. However, the analysis and

restoration of such images were out of the scope of this research but must be considered in a

future study since they were responsible for most of our problems with cell tracking.

For the 2D processing stage, we performed several experiments using different detection

approaches. We started with the development of a multiple template matching algorithm to

search for cells in handcrafted image features, in which different strategies for feature extraction

and templates combination were tested. After determining that some of our image features

did not contribute to the detection process, we moved our effort to the automatic extraction

of features by using the outputs of first convolutional layers from pre-trained DCNN models.

Besides its impressive results, this transfer learning process presented some limitations, mainly

when the cells are small objects compared to the whole image. Later, we developed a suite

of data augmentation techniques and applied a DCNN model for cell detection using transfer

learning and fine-tuning strategies.

After performing several experiments using different backbone networks, pyramid levels,

model hyperparameters, and data augmentation techniques, we achieved excellent results. The

use of transfer learning also allowed us to train the model using a much fewer number of epochs

compared to other standard neural networks trained from scratch. On the other hand, our suite

of data augmentation techniques not only helped to prevent overfitting but also made the model

invariant to natural cell variabilities. Our results demonstrated the effectiveness and generality

of the DCNN approach by achieving excellent values for standard metrics like AP and F1-score,

and low error rates for cell counting and centroid distances.

However, one must consider some particular properties to decide which detection method
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to use, such as computational costs, parameter settings, and algorithm limitations. Our methods

using the MTM technique, for instance, are more dependent on cell appearances but require few

cell annotations and few parameters adjustment. On the other hand, DCNN approaches require

a considerable amount of cell annotations while spending too much time on the training phase,

but are more accurate and faster predicting the target positions.

As future investigations that can be derived from our cell detection studies, we can include

tests with other available backbone networks and trained weights from different datasets. We

can also consider the use of temporal information from the videos and the extension of our

network to 3D studies. Finally, we can mention the possibility of using trained models to make

new cell annotations on unseen images and then retrain them to improve our results even more.

After transforming the results from our leukocyte detection approaches into volumetric im-

ages, we started our spatiotemporal approach based on the enhancement of tubular-like struc-

tures for the tracking of leukocytes. The main advantage of this approach compared to other

methods is the simplicity in dealing with object motions and multiple cells while handling

occlusion and trajectory gaps in dynamic scenes. Although the results for this stage heavily

depend on the previous processing and the manual annotations, we could prove the usability

of our proposed tracking approach in real IVM images. Future works for this processing stage

include using different techniques for tubular-like objects detection, skeletonization, and the

analysis of cell trajectories individually for better movement predictions, especially when cells

are moving fast.

Finally, the proposed automatic computational pipeline showed very promising results while

using images from different experiments and animals’ organs, especially for leukocytes detec-

tion, which achieved an average value of 0.92 for the F1-score metric when our DCNN approach

was used. Besides, our framework searches for leukocytes in the entire region of interest (mi-

crovessels) and not only in a vessel section, improving the cell counting and, consequently, the

biological studies with more precise statistics.
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Appendix A
HESSIAN-BASED LOCAL FEATURE DETECTOR

Initially proposed by Koller et al. (1995) and further developed and improved by Lorenz et

al. (1997), Sato et al. (1998), and Frangi et al. (1998), the Hessian-based local feature detec-

tor has demonstrated a great potential in the extraction of object shape information in medical

images. However, most works using this technique in the literature focus on the enhancement

(or segmentation) of tubular-like structures for blood vessel extraction (either 2D or 3D) in an-

giography images (EBRAHIMDOOST et al., 2011; ÖKSüZ; ÜNAY; KADIPAŞAOĞLU, 2012;

JIMENEZ-CARRETERO et al., 2013; DUFOUR et al., 2013).

Since microscopy images are two-dimensional projections of three-dimensional structures

(microvessels and cells), leukocytes may be positioned above and below the microscope focal

plane and, therefore, their size appearance may be distorted, showing cells in a different range

of scales. For this reason, this proposed method was developed based on the analysis of local

structures in a multiscale framework (DZYUBAK; RITMAN, 2011). The initial idea of the ap-

proach is to generate a family of smoothed images I(xxx;σ), computed by convolving the original

image I0(xxx) with Gaussian kernels G(xxx;σ) of different standard deviation (σ ) values, as

I(xxx;σ) = I0(xxx)∗G(xxx;σ), (A.1)

where xxx is a vector of dimension k which represents the image spatial position and

G(xxx;σ) =
1

(
√

2πσ)k
e−

�xxx�2

2σ2 . (A.2)

In this case, σ represents the scale of analysis. In this sense, we use a strategy to properly select

the local scale parameter and build the Hessian matrix. This strategy is based on the response
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function R(xxx;σ), computed as

R(xxx;σ) =
∂ h+m+...+nI(xxx;σ)

∂xh
1∂xm

2 . . .∂xn
k

, (A.3)

where h, m and n are the orders of partial derivatives, and xi ∈ xxx, i = 1, 2, . . . , k. Due to the

commutative properties of convolution, the order of operations in Equation (A.1) and (A.3) can

be changed, so that Equation (A.3) can be rewritten as:

R(xxx;σ) = I0(xxx;σ)∗ ∂ h+m+...+nG(xxx;σ)

∂xh
1∂xm

2 . . .∂xn
k

. (A.4)

Then, the local scale is defined as the value of σ (over a range of values) corresponding to

the maximum of function R(xxx;σ) for each pixel, which indicates the proper Gaussian scale

probe (Gaussian observation kernel) with the width value corresponding to object feature size.

Because of the amplitude of Gaussian derivative operators in (A.4) tends to decrease with in-

creasing scale (because increasing scale, the response is increasingly smoothed), the so-called

γ-parameterized normalized derivatives (LINDEBERG, 1998) were used in this work. They

differ from the partial derivatives by the introduction of a normalizing factor σ (h+m+...+n)γ , so

that
∂ h+m+...+n

∂uh
1∂vm

2 . . .∂wn
k
= σ (h+m+...+n)γ ∂ h+m+...+n

∂xh
1∂xm

2 . . .∂xn
k
. (A.5)

Thus, the increase of smoothing is compensated and, as a consequence, the accuracy of the

proper scale selection (performed automatically) is improved. We set γ = 1.25, which was a

value experimentally determined to work well on a variety of intensity structure profiles (MA-

JER, 2001).

In addition to the scale parameter setting, it is possible to specify the geometry information

of local image structures by analyzing their intensity variations. For that, we used a set of

second-order partial derivatives applied to the images (smoothed by Gaussian kernels). One

of the most well-known partial derivative combinations in the literature is called the Hessian

matrix, which is commonly adopted for the analysis of local image features. Therefore, based

on the intensity responses of the γ-parameterized normalized derivative filters, a local measure

of image structure is devised from the analysis of Hessian matrix eigenvalues of image intensity.

For a given scale σ , the Hessian matrix Hσ (I;xxx) of an image I is a square and symmetric
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matrix composed of second-order partial derivatives,

Hσ (I;xxx) =




Iσx2
1

Iσx1x2 · · · Iσx1xk

Iσx2x1 Iσx2
2

· · · Iσx2xk
...

... . . . ...

Iσxkx1 Iσxkx2 · · · Iσx2
k



, (A.6)

where

Iσx2
i
= I0(xxx)∗

�
σ2γ ∂ 2

∂x2
i

G(xxx;σ)

�
, (A.7)

Iσxix j = Iσx jxi = I0(xxx)∗
�

σ2γ ∂ 2

∂xix j
G(xxx;σ)

�
. (A.8)

The goal of the eigenvalue analysis is to extract the main directions of the local image struc-

tures decomposition. In this case, λσ ,k is the eigenvalue corresponding to the k-th normalized

eigenvector ûuuσ ,k of Hessian matrix Hσ at scale σ . From eigenvector definition:

Hσ ûuuσ ,k = λσ ,kûuuσ ,k, (A.9)

and, then

ûuuT
σ ,kHσ ûuuσ ,k = λσ ,k. (A.10)

The eigenvalue decomposition extracts the orthonormal directions of the Hessian matrix in the

neighborhood of an image point. The mutual magnitude of the Hessian eigenvalues is an indi-

cator of the underlying object shape. Under the assumption that eigenvalues are sorted in order

of increasing absolute value (|λ1|≤ |λ2|≤ . . .≤ |λk|), the relations that must hold between the

Hessian matrix eigenvalues for the detection of different structures are summarized in Table

A.1.

Table A.1: Local structure patterns based on the analysis of the Hessian matrix eigenval-
ues (H=high, L=low, N=noisy, usually small, +/- indicate the sign of the eigenvalue), assuming
|λ1|≤ |λ2|≤ |λ3||λ1|≤ |λ2|≤ |λ3||λ1|≤ |λ2|≤ |λ3| (FRANGI et al., 1998).

2D 3D Local structure patternλ1λ1λ1 λ2λ2λ2 λ1λ1λ1 λ2λ2λ2 λ3λ3λ3
N N N N N noisy, no preferred direction

L L H− plate-like structure (bright)
L L H+ plate-like structure (dark)

L H− L H− H− tubular structure (bright)
L H+ L H+ H+ tubular structure (dark)
H− H− H− H− H− blob-like structure (bright)
H+ H+ H+ H+ H+ blob-like structure (dark)
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