
 
 

 
 

UNIVERSIDADE FEDERAL DE SÃO CARLOS  

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA  

DEPARTAMENTO DE QUÍMICA  

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA 

 

 

 

LASER-INDUCED BREAKDOWN SPECTROSCOPY (LIBS), WAVELENGTH 

DISPERSIVE X-RAY FLUORESCENCE (WDXRF) AND CHEMOMETRICS: 

POSSIBILITIES FOR ANALYTICAL APPLICATIONS IN FOOD ANALYSIS 

 

 

Raimundo Rafael Gamela*  

 

Tese apresentada como parte dos requisitos 

para obtenção do título de DOUTOR EM 

CIÊNCIAS, área de concentração: QUÍMICA 

ANALÍTICA.  

 

 

Orientador: Prof. Dr. Edenir Rodrigues Pereira Filho 

*Bolsista: CNPq/TWAS (process number: 158587/2017-0) 

 

 

 

São Carlos-SP  

2020 



UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia
Programa de Pós-Graduação em Química

Folha de Aprovação

Defesa de Tese de Doutorado do candidato Raimundo Rafael Gamela, realizada em 14/07/2020.

Comissão Julgadora:

Prof. Dr. Edenir Rodrigues Pereira Filho (UFSCar)

Prof. Dr. Waldomiro Borges Neto (UFU)

Profa. Dra. Wanessa Melchert Mattos (ESALQ/USP)

Profa. Dra. Ana Rita de Araujo Nogueira (EMBRAPA)

Profa. Dra. Maria Márcia Pereira Sartori (UNESP)

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Código de Financiamento 001.
O Relatório de Defesa assinado pelos membros da Comissão Julgadora encontra-se arquivado junto ao Programa de
Pós-Graduação em Química.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedico este trabalho aos meus pais Rafael 

Foquiço Raul Gamela e Maria Cerveja Pangaule 

Machau (in memoria). Dedico também a minha 

irmã Albertina Rafael Gamela (in memoria). 



AGRADECIMENTOS 

✓ Agradeço a Deus pelo dom da vida e por todas coisas maravilhosas que tem 

proporcionado na minha vida.  

 
✓ A minha namorada Sandra Romão Chiponde pelo amor, carinho e paciência.  

 
✓ Aos meus irmãos Roberto Paulo Machilico, Elsa Julião, Lúcia Rafael Gamela, 

Celina Rafael Gamela pelo amor, carinho, paciência e apoio durante a minha 

trajetória acadêmica. 

 

✓ Ao Prof. Dr. Edenir Rodrigues Pereira Filho por ter aceite o desafio de me 

orientar, pelos ensinamentos, pela amizade durante esse período. 

 
✓ Aos Prof. Drs. Joaquim Nóbrega e Ana Rita Nogueira, por todos ensinamentos 

ao longo desse percurso. 

 
✓ Aos amigos do GAIA, por toda ajuda, ensinamentos, e risadas que tornaram os 

dias de tristezas em alegrias. 

 
✓ Ao meus grandes amigos Msc. Walace Martins, Dr. Vinicius Câmara Costa, 

Msc. Michelle Dos Santos Cordeiro e Msc. Beatriz Martins Fontoura pelos 

ensinamentos, amizade, conselhos, ajuda e pelas nossas brincadeiras e 

risadas como refúgio da nossa tristeza. 

 
✓ Ao meu amigo Msc. Carlos José Domingos Alface, que sempre acreditou em 

mim, pelos conselhos e amizade incondicional ao longo desses anos. 

 
✓ Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e 

a Academia Mundial de Ciências (TWAS) pela bolsa concedida (processo 

número: 158587/2017-0). 

 

✓ Agradeço as editoras Elsevier, Spring Nature e Royal Society of Chemistry pela 

autorização para utilização dos artigos publicados no corpo da tese no formato 

original. 



✓  O presente trabalho foi realizado com apoio da Coordenação de 

Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de 

Financiamento 001 

 

MUITO OBRIGADO

 

 

 

 

 



vi 
 

 
 

This PhD thesis is based on the following published articles:  

 

“Combining laser-induced breakdown spectroscopy (LIBS) and wavelength 

dispersive X-ray fluorescence (WDXRF) in a data fusion model to predict the 

concentration of K, Mg and P in bean seed samples’’ 

Raimundo R. Gamela, Vinícius C. Costa, Marco A. Sperança and  

Edenir R. Pereira-Filho. Food Research International, 132, 109037, 2020. Doi: 

https://doi.org/10.1016/j.foodres.2020.109037 

 

“Direct determination of Ca, K and Mg in cocoa beans by Laser-induced 

Breakdown Spectroscopy (LIBS): evaluation of three univariate calibration 

strategies for matrix-matching”  

Raimundo Rafael Gamela, Vinicius Câmara Costa, Diego Vitor Babos, Alisson Silva 

Araújo and Edenir Rodrigues Pereira-Filho. Food Analytical Methods, 13, 1017-1026, 

2020. Doi:  https://doi.org/10.1007/s12161-020-01722-6 

 

“Hyperspectral images: a qualitative approach to evaluate the chemical profile 

distribution of Ca, K, Mg, Na and P in edible seeds employing laser-induced 

breakdown spectroscopy’’ 

Raimundo R. Gamela, Marco A. Sperança, Daniel F. Andrade and Edenir R. Pereira-

Filho. Analytical Methods, 11, 5543-5552, 2019. Doi: 10.1039/c9ay01916b 

 

 

 

 

 

 

 

 

 

 



vii 
 

 
 

LIST OF ACRONYNS 

 

AAS – Atomic Absorption spectrometry 

CCD – charge coupled device 

CF – Calibration free 

DoE – Design of experiments 

F AAS – Flame atomic absorption spectrometry 

OF– Optical fiber 

ICP OES – Inductively coupled plasma optical emission spectrometry 

ICP-MS – Inductively coupled plasma mass spectrometry 

KNN – K -nearest neighbor 

LDA – Linear discriminant analysis 

LIBS – Laser-induced breakdown spectroscopy 

MEC – Multienergy calibration 

MLR – Multiple linear regression 

NIR – Near infrared spectroscopy 

OP GSA – One-point gravimetric standard addition 

OP MLC – One-point and multiline calibration 

PCR – Principal component regression 

PLS – Partial least squares 

PLSDA – Partial least squares discriminant analysis 

RSD – Relative standard deviation (%) 

SECV – Standard error of cross validation 

SIMCA – Soft independent modeling of class analogy 



viii 
 

 
 

SRM – Surface response methodology 

SSC – Single sample calibration 

TP CT – Two-point calibration transfer 

WDXRF – Wavelength dispersive X-ray fluorescence 

XRF – X-ray fluorescence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

 
 

LIST OF FIGURES 

 

Figure 1. Basic schematic of LIBS equipment, composed by optical fiber (FO), charge 

coupled device (CCD) and detector ............................................................................ 5 

Figure 2. Number of publications according to the Web of Science Database in the 

last 10 years involving LIBS and food samples ........................................................... 7 

Figure 3. Basic schematic of WDXRF, composed by x-ray tube and detection system

 .................................................................................................................................... 9 

Figure 4. Number of publications according to the Web of Science Database in the 

last 10 years involving WDXRF and food samples .................................................... 10 

Figure 5. Schematic description of the data fusion strategy  

 .................................................................................................................................. 15 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

 
 

RESUMO 

 

ESPECTROSCOPIA DE PLASMA INDUZIDO POR LASER (LIBS) E 

ESPECTROSCOPIA DE FLUORESCÊNCIA DE RAIO-X COM COMPRIMENTO DE 

ONDA DISPERSIVO (WDXRF): POSSIBILIDADES E APLICAÇÕES ANALÍTICAS EM 

ANÁLISE DE ALIMENTOS. Esta tese de doutorado propõe a avaliação das 

possibilidades e aplicações das técnicas de espectroscopia de plasma induzido por 

laser (LIBS) e espectroscopia de fluorescência de raios-x com comprimento de onda 

dispersivo (WDXRF) para determinação de elementos químicos em amostras de 

sementes comestíveis como feijão, abobora, ervilha, lentilha e amêndoa de cacau. 

Essas sementes são importantes na dieta da população brasileira, pois além de fibras 

dietéticas, aminoácidos, vitaminas, compostos fenólicos, contém elementos químicos 

importantes para o organismo humano. A utilização da LIBS e a WDXRF permitem 

análise direta de amostras sem ou com um mínimo preparo de amostra, alta 

frequência analítica, menor consumo de reagentes químicos, o que as torna atrativas 

quando comparada com as técnicas de análise convencional. No entanto, uma das 

desvantagens relacionadas com a técnica LIBS é a sua baixa sensibilidade, altos 

limites de detecção e ausência de materiais de referência para calibração.  Além disso, 

a determinação elementar por análise direta de sólidos usando LIBS e WDXRF 

apresenta desafios devido a efeitos de matriz causados por interferências espectrais, 

características físicas das amostras e o fenômeno de auto-absorção que podem 

comprometer a exatidão e a precisão dos métodos. Dessa forma, diferentes 

estratégias de calibração foram avaliadas para análise direta de amostras sólidas por 

LIBS. Além disso, foi avaliada a possibilidade de uso de imagens hiperespectrais para 

caracterizar o perfil químico da distribuição dos elementos nas sementes. Em todos 

os casos, foram utilizadas ferramentas quimiométricas para tratamento de dados.  
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ABSTRACT 

 

LASER-INDUCED BREAKDOWN SPECTROSCOPY (LIBS) AND WAVELENGTH 

DISPERSIVE X-RAY FLUORESCENCE (WDXRF): POSSIBILITIES AND 

ANALYTICAL APPLICATIONS IN FOOD SAMPLES. This PhD thesis proposes 

evaluation of the possibilities and analytical applications of the laser-induced 

breakdown spectroscopy (LIBS) and wavelength dispersive x-ray fluorescence 

(WDXRF) techniques for the determination of chemical elements in edible seeds as 

bean seeds, pumpkin, pea, lentil, and cocoa bean. These seeds are important for diet 

of the Brazilian population because, besides dietetic fibers, amino acids, vitamins 

phenolic compounds, it contains chemical elements that play different rules in human 

organism. The use of the LIBS and WDXRF allow the direct solid samples without or 

with a minimum sample treatment, high analytical frequency, lower reagent 

consumption, which become attractive when compared with conventional techniques. 

However, the disadvantage of the LIBS is its lower sensitivity, high limit of detection 

and absence of certified reference material for calibration. Moreover, the elemental 

determination by direct solid analysis using LIBS and WDXRF present challenges due 

to matrix effects caused by spectral interferences, physic characteristic of the samples 

and self-absorption phenomena, which can compromise the accuracy of the methods. 

In this sense, different calibration strategies were evaluated for direct solid sample 

analysis by LIBS. Moreover, was evaluated the possibility of the use of hyperspectral 

images to characterize the chemical profile of the distribution of the elements on the 

seeds. In all cases, chemometrics tools were used for data treatment. 
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CHAPTER 1 - INTRODUCTION 
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1.1. Introduction 

 

Brazil is one of the biggest producers of edible seeds worldwide due to 

the existence of fertile soil and favorable climate conditions that allows the normal 

growth of the seeds [1]. Edible seeds have received more attention and their 

consumption brings benefits to human health [1-3]. Among the several types of edible 

seeds, bean seeds and cocoa bean can be highlighted.  

Common bean seed (Phaseolus vulgaris L.) is basic food and is the most 

consumed type of feeding in Brazil [4] and in the underdeveloped countries where the 

poverty and malnutrition are prevalent [5]. These seeds contain dietetic fibers, amino 

acids, vitamins, micro  and macronutrients, which are important to supply the nutritional 

needs in the human metabolism [6-8].  

Brazil is considered one of the largest producers and consumer of bean 

seeds worldwide, with a projection of production around 3 million tons in the 2020/2021 

crop. The main producer states of bean seeds are Paraná, Minas Gerais, São Paulo, 

Goiás and Bahia, that correspond around of 65% of total national production [9]. In 

addition, the main produced species of bean seeds trough genetics improving are P. 

vulgaris L. (black bean, white bean, and kidney bean), V. unguiculata L. walp (cowpea), 

C. cajan L (pigeon pea), and L. purpureus L. sweet (Mangalô) [10]. 

On the other hand, cocoa bean (Theobroma cacao) is a culture 

commonly produced in Brazil, which make this country together with Côte d'Ivoire, 

Ghana, Indonesia, Nigeria, Cameroon, Ecuador and Malaysia the most producer 

worldwide, representing around 90% of the world production [11].Therefore, in Brazil, 

the southern Bahia is responsible for 94% of total production of the country [12].  
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There are three varieties of cocoa bean, namely criollo, forastero and 

trinitário [13]. The forastero group is the most widespread variety, and most prevalent 

in Bahia plantations. From the genetic mutation of the forastero group, a new variety 

called catongo and almeida have emerged. While the trinitário emerged from crossing 

between criollo and forastero, and reproduced asexually (stake rooting, or grafting) 

consisting of clones [14]. Cocoa beans present high levels of bioactive natural 

compounds (methylxanthines and phenolic compounds) and antioxidants that are 

beneficial for human health [3]. Due its chemical composition, cocoa beans have been 

commonly used in the food processing industry to produce different cocoa-based 

products, such as handmade chocolate [15], chocolate bars [16], cocoa powder and 

powdered cocoa drink [17].  

Therefore, the determination of inorganic constituents in this type of 

foodstuff proves to be important to ensure the better quality of food and simultaneously 

for the consumers. In addition, in specific case of cocoa bean, the reported studies in 

the literature are related to the bioactive and antioxidant compounds, and have been 

received more attention, and the information about the elemental composition is still 

scarce.  

Commonly the determination of inorganic constituents in bean seeds and 

cocoa beans have been performed using inductively coupled plasma optical emission 

spectrometry (ICP OES) [7,8,10], inductively coupled plasma mass spectrometry (ICP-

MS) [11,18], flame atomic absorption spectrometry (F AAS) and graphite furnace 

atomic absorption spectrometry (GF AAS) [19, 20]. However, the use of these 

techniques requires a sample preparation step before analysis using various reagents 

and handling of the samples for long period of time, that increases the risk of 
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contamination of the samples, affecting the accuracy of the results [19,20]. Therefore, 

the best way to minimize these drawbacks is, do not perform samples preparation.  

Direct solid analysis is an alternative approach that is well-stablished in 

the last decades in different fields. In this sense, Laser-induced breakdown 

spectroscopy (LIBS) and Wavelength dispersive X-ray spectroscopy (WDXRF) are 

spectroanalytical techniques that allow the direct solid sample analysis of inorganic 

constituents in different matrices with minimal or no sample preparation. Moreover, 

these techniques present multielemental capability, high analytical frequency, and low 

reagents consumption [21-24]. Taking this information in consideration, the variety of 

the application of the LIBS and WDXRF, these techniques were used for the 

determination of inorganic constituents in bean seeds and cocoa beans samples. 

However, the quantitative analysis mainly by LIBS, can be affected by the several 

matrix effects due the complexity of the samples. Therefore, to minimize these 

drawbacks and to obtain accurate results, chemometric tools and different calibration 

strategies, such as univariate and multivariate calibration were used for the data 

treatment that will be discussed in the next section. 

 

1.2. Laser-induced breakdown spectroscopy (LIBS) 

 

Laser-induced breakdown spectroscopy (LIBS) is a spectroanalytical 

technique that employs micro-sampling by laser ablation used to detect signals of 

atomic and molecular emission of the elements present in the micro-plasma during 

and/or immediately after ablation, and is performed for qualitative and quantitative 

measurements of elemental composition [23,25]. In this technique, an intense pulsed 

laser beam is focused on the material for analysis, and this rapid deposition of energy 
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on the object generates high temperature and density plasma, which results in the 

material breaking into atoms and emitting characteristic radiation of constituent 

elements of the sample [23,25,26]. The emitted radiation is analyzed using high 

resolution optical instruments and its intensities are measured usually with fast solid-

state detectors. Together, these devices allow the generation and measurement of a 

wide-range emission spectrum of the phenomenon induced by the laser pulse. The 

LIBS consists of an optical set to direct and focus the laser radiation on the sample 

and to collect the radiation emitted by the plasma; a wavelength selector, such as an 

optical filter or a grid polychromator; a detector, such as a photomultiplier (to monitor 

discrete wavelengths) or a set of sensors in the solid state [23,25,26], as depicted in 

Figure 1. 

 

 

Figure 1. Basic schematic of LIBS instrument, composed by optical fiber (OF), charge 

coupled device (CCD) and detector. 
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In the last decade, LIBS has become one of the most effective 

approaches for monitoring samples to elucidate its elemental composition, since it 

allows the rapid and simultaneous detection of various elements in the mg kg-1 range 

and provides in situ information, analysis and measurement in real time in any 

environment and in any type of material (solid, liquid, gas, aerosols) [23,27]. The LIBS 

technique has been easily used in qualitative analysis, but requires considerable effort 

in quantitative analysis, given the difficulties of calibration. When compared to well-

established spectroanalytical techniques, such as FAAS and ICP OES, the LIBS 

technique is very versatile and presents the following characteristics [23,25-27]: 

(I) allows direct (in situ) and fast analysis;  

(II) sampling mass from 0.1 e 100 µg;  

(III) minimize the sample preparation and it is possible the direct analysis of 

hard materials; 

(IV) applicable for gas, liquid and solid (conductors and non-conductors); 

(V) allows elemental analysis of surfaces and in different depths of the solid 

samples with spatial resolution of few μm;   

(VI) it can be used in unhealthy environments and remote monitoring of 

dangerous samples. 

An interesting feature of the LIBS is the large amount of information 

provided, with spectra containing many peaks related to the elements from the 

ultraviolet to infrared. This type of information is extremely suitable combined with 

chemometric tools, whether for data exploration, classification, or calibration. These 
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strategies will be used in the identification and differentiation of samples and for 

quantitative analysis.  

Several studies were reported in the literature using LIBS for food 

analysis. Figure 2 shows the number of studies published in last 10 years according to 

the Web of Science Database, which reports around 122 studies on the search for 

‘’laser-induced breakdown spectroscopy and food’’. There is an increasing number of 

studies with food samples employing LIBS due to development of technological 

advances, feasibility, and the application of chemometric tools for data treatment. 

 

 

Figure 2. Number of publications according to the Web of Science Database in the 

last 10 years involving LIBS and food samples. 
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1.3. Wavelength dispersive X-ray fluorescence (WDXRF) 

 

X-ray fluorescence spectrometry (XRF) is a non-destructive technique 

and can be considered as an alternative for the determination of chemical elements in 

different samples due its sensitivity, feasibility, simplicity, and the measurements are 

performed sequentially. Moreover, this technique is selective and allows the qualitative 

and quantitative determination (typically from Na to U) employing direct analysis of 

solid and liquid samples [28,29]. Wavelength dispersive X-ray fluorescence (WDXRF) 

is one of the variants of XRF. This technique contains a rhodium tube that emits x-ray 

with enough energy, which is focused at the sample surface to excite the electrons, 

and the x-ray characteristic intensities of each element can be used for the 

determination of the elemental composition in the samples [30-33].  

Figure 3 shows the basic schematic of WDXRF technique composed of 

x-ray tube and detection system. The WDXRF spectrometer is essentially composed 

of a crystal and a single channel that are used for sequential measurements of  various 

wavelength, or by a multi-channel detector that present a set of crystals (act as 

monochromator) and detectors for simultaneous measurements. In the conventional 

spectrometers a crystal with interplanar space known as crystal analyzer, is moved by 

a goniometer, acting as diffraction grade. One of the great advantages related to the 

use of WDXRF instruments is that, the analyzes are performed almost without spectral 

interferences due to the higher resolution provided by crystal/goniometer system 

[28,29]. It allows a wavelength selection with maximum efficiency in the interesting line 

or minimum efficiency in the interfering lines. Moreover, there are filters that permits 

the elimination of interferences between the source characteristic lines and the 
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emission signal of the interesting element, as well as the correct choice of the analyzer 

crystal that permits to separate and select a specific region of x-ray emission [28,29].      

   

 

 

Figure 3. Basic schematic of WDXRF, composed of x-ray tube and detection system. 

 

 The WDXRF technique has good potential for solid sample analysis 

without any dissolution or chemical pre-treatment [30,31]. As non-destructive 

technique, it is possible to reuse the samples in the subsequent analyzes. Therefore, 

make  WDXRF an important tool to reduce time of the analyzes when compared with 

other analytical techniques, such as ICP OES, ICP-MS and AAS, which involve high 

cost of operation. In the literature several studies are reported using WDXRF for 

determination of chemical composition in different samples. Figure 4 shows the 
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publications in the last 10 years employing WDXRF for determination of metal and non-

metals in food samples. This information was obtained according to the Web of 

Science Database and, is possible to note that there are few studies published (around 

11), and the topic search was ‘’wavelength dispersive X-ray fluorescence and food’’.  

 

Figure 4. Number of publications according to the Web of Science Database in the 

last 10 years involving WDXRF and food samples. 
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1.4. Chemometrics and data treatment 

 

Chemometrics is a science and can be defined as a multidisciplinary 

approach used to extract chemical relevant information from data produced in chemical 

experiments [32]. Therefore, with the technological advances, such as computational 

and statistical algorithms, chemometrics tools have become increasingly important for 

modeling the dataset generated in analytical techniques. In the case of the LIBS, the 

data obtained by this technique are complex due to laser-sample, laser-plasma 

interactions, and chemical characteristic of the samples. In this sense, to minimize 

these variations and to avoid the incorrect results, data normalizations have been used 

for this purpose.  

 There are several types of normalizations that can be employed for 

preprocessing the data obtained by LIBS, such as normalization by average of all 

spectra, by Euclidean norm, by sum of all spectra, by highest signal, internal 

standardization, and others [33]. Moreover, the data can be mean-centering when 

entire spectra (full spectral profile) is used, and autoscaled when a specific region 

containing chemical information from an element is selected (variable selection). After 

that, chemometrics tools can be employed. However, for WDXRF these preprocesses 

are not necessary due to well defined peak signals of the elements are recorded and 

is less sensitive to the problems previously described for LIBS. Chemometrics is 

divided in three main areas: (i) design of experiments (DoE) and surface response 

methodology (SRM) [34-38], (ii) classification models (exploratory analysis that is 

unsupervised and supervised pattern recognition) [39] and (iii) multivariate calibration 

[40]. According to the characteristic of the techniques, some instrumental parameters 

mainly in LIBS, such as laser pulse fluence and delay time need to be optimized to 
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obtain optimal conditions of analysis using experimental design. Other chemometrics 

tools have been used to propose classification models using supervised pattern 

recognition with most notably, such as k -nearest neighbor (KNN), soft independent 

modeling of class analogy (SIMCA), linear discriminant analysis (LDA) and partial least 

squares discriminant analysis (PLS DA) [39,40,41].  

Calibration in LIBS is still a challenge and requires considerable efforts 

for quantitative analysis due to several matrix effects. In this sense, multivariate 

calibration can be used for this purpose. Multiple linear regression (MLR) and partial 

least squares (PLS) are some of the main multivariate calibration tools used for 

elemental determination in different samples employing LIBS [42,43]. Therefore, the 

choose of a chemometric tool depends on the goal and the analytical application. 

 

1.5. Calibration strategies for LIBS  

 

The use of LIBS for quantitative analysis present limitations due to 

several matrix effects, such as spectral interference; sample physical characteristics; 

sample chemical composition and self-absorption that affect the accuracy of the results 

[44]. Several approaches have been used to overcome these drawbacks, which 

improve analytical performance of the LIBS. Traditional  univariate calibration, such as 

matrix-matching calibration [45], internal standardization [46,47] and standard addition 

[48] have been successfully used to minimize matrix effects during the elemental 

determination by LIBS. Other calibration strategies including multivariate calibration, 

such as PLS, principal component regression (PCR) and MLR, which are considered 

first-order multivariate calibrations that minimize the lack of selectivity. The 
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mathematical algorithms are used to obtain information to predict the concentration in 

the samples [40,49]. One of the main advantages is that, the models can be modeled 

in the presence of interference  [40,49,50]. However, in some cases, these strategies 

present drawbacks and do not effectively correct or minimize matrix effects.  

Nowadays considerable efforts have been made by different researchers 

in the study of new calibration strategies as alternative to traditional calibration as 

previously described. Calibration free (CF) [51], multienergy calibration (MEC) [52], 

one-point gravimetric standard addition (OP GSA) [53], one-point and multiline 

calibration (OP MLC) [54,55], single sample calibration (SSC) [55,56] and two-point 

calibration transfer (TP CT) [43] were proposed to overcome matrix effects and to 

improve the analytical performance of the LIBS.  

All these strategies present several advantages, and more details will be 

given to OP MLC, SSC and TP CT used in this study. OP MLC is based on a single 

matrix matching, where one sample with known or certified value is used as standard 

[54,55]. In this strategy, the concentration of the analytes in unknown sample is 

calculated through the linear model, built using the emission intensities of unknown 

samples, which are plotted in y-axis and in the signal from the standard plotted in x-

axis (with known or certified value) [54,55]. The concentration is calculated using the 

slope of the linear model, as depicted in equation 1. 

 

𝐶𝑎𝑛𝑎𝑙𝑦𝑡𝑒 = 𝑠𝑙𝑜𝑝𝑒 𝑥 𝐶𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑                                            Equation 1             
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On the other hand, SSC a is simple calibration that uses the correlation 

between the spectral emission intensities and the concentration of the analytes, and 

do not require a calibration curve [55,56]. This strategy also uses one sample as 

standard with known concentration to determine the concentration values of the 

analytes in unknown samples. Other chemical elements present in the plasma from 

the sample can be used to estimate the concentration of the analytes in unknown 

samples, calculated by equation 2 [55,56].  

 

𝐶𝑎𝑛𝑎𝑙𝑦𝑡𝑒 =  

𝐶 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑎𝑛𝑎𝑙𝑦𝑡𝑒× 𝐼𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐼 𝑎𝑛𝑎𝑙𝑦𝑡𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 

∑
𝐶 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑁 ×𝐼𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒
𝑁

𝐼𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑁

𝑁
𝑖=1

                               Equation 2 

where Cstandard analyte and Ianalyte standard are the concentration and intensity of the 

emission line of the analyte in the sample, respectively, used for standard calibration. 

Ianalyte sample is the emission intensity of the analyte in the unknown sample. IN
element sample 

is the emission intensity of the element N in the sample of unknown concentration, and 

CN
standard element and IN element standard are the concentration and the emission intensity of 

the element N, respectively, in the sample used as standard calibration [55,56]. 

For TP CT, a sample with intermediate concentration is choose as 

calibration standard. In this strategy, a spectral set (it can be the same used in other 

calibration strategies previously described) is divided in two parts (2 points), where the 

second set contains the double number spectra of the first one [43,55]. These spectral 

sets are separately summed (normalization mode number 5). In this sense, both 

spectra sets are used to build the linear model, where the x-axis contain the number 

of spectra (both separated sets) and the y-axis is the intensity emission of both points. 
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This process must be performed for the unknown sample and for the sample chosen 

as the standard. Therefore, the combination of the slopes from both linear models 

(slopesample and slopestandard) and the standard concentration (Cstandard) can be used to 

calculate the concentration value in the unknown sample as described by equation 3 

[43,55]. 

𝐶𝑠𝑎𝑚𝑝𝑙𝑒 = 𝐶𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 ×
𝑆𝑙𝑜𝑝𝑒𝑠𝑎𝑚𝑝𝑙𝑒

𝑆𝑙𝑜𝑝𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
                                            Equation 3   

However, other calibration strategies have emerged to arise the 

alternatives to overcome the problems caused by the matrix effect in the elemental 

determination by LIBS. Recently, data fusion was proposed to minimize matrix effects 

in the direct solid analysis [57,58]. This strategy combines information (data) from 

different sources (eg. LIBS and WDXRF/NIR) to produce a single model, as shown in 

Figure 5.  

The spectral data obtained by both techniques need to be separately 

processed before concatenated matrices, so that, the known of chemometric tools is 

required. The use of data fusion present some advantages, such as the 

complementarity from different techniques; improve the predictive capability of the 

models; identify the variation source of errors and more details of the analytical data; 

and reduce the errors of the models when compared with those obtained by the 

individual input sources [57,58].  

In the literature, data fusion has been commonly used to improve the 

classification models in foods, instead identification of botanical origin of honey [59], 

and authentication and quality assessment of food and beverage [60]. However, few 

studies were reported using data fusion for calibration purpose, and therefore, this 
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strategy become important considering the complexity of new matrices, which will need 

efficient strategies to obtain accurate results.  

 

 

 

 

Figure 5. Schematic description of the data fusion strategy  

 
 

1.6. Goals 

 

The main goal of this thesis was to develop analytical strategies that allow 

the use of the LIBS and WDXRF techniques for qualitative and quantitative analysis of 

edible seeds. 

The specific goals were: 

1- Evaluate the possibility of direct solid analysis of K, Mg and P in been 

seed samples employing LIBS and WDXRF (data fusion); 
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2- Evaluate different calibration strategies for determination of Ca, K and 

Mg in cocoa bean using LIBS; 

3- Evaluate the possibility of the use of hyperspectral images to 

characterize the chemical profile distribution in different seeds employing LIBS. 

 

The next sections show three published articles about the studies 

developed in this thesis. The first article is about the use of laser-induced breakdown 

spectroscopy (LIBS), wavelength x-ray fluorescence (WDXRF), and data fusion to 

predict the concentration of K, Mg and P in bean seed samples. In this study, traditional 

univariate, multivariate calibration (MLR) and data fusion strategy were evaluated to 

build regression models to determine the concentration values of K, Mg and P in bean 

seeds. Therefore, data fusion strategy combined with MLR presented the best results, 

where the obtained SECV values were 0.12% for K, 0.019% for Mg and 0.10% for P. 

The good results obtained, make data fusion a reliable alternative with minimum 

sample preparation to minimize matrix effect in bean seeds.  

The second article is related to evaluate three univariate calibration 

strategies for the determination of Ca, Mg and K in cocoa bean using LIBS. Calibration 

strategies as one-point multiline calibration (OP MLC), single sample calibration (SSC) 

and two-point calibration transfer (TP CT) were evaluated for matrix matching. All of 

them use one sample with known concentration as standard. Among these strategies, 

OP MLC and TP CT presented acceptable trueness values, which ranged from 80 to 

120% for most analyzed samples. These strategies showed to efficient and reliable 

alternative to conventional univariate calibration. In all cases for the determination of 

inorganic constituents in food samples, ICP OES was used as reference technique. 
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In third article, LIBS was used to evaluate chemical distribution of major 

elements as Ca, K, Mg, Na and P in edible seeds through hyperspectral images. For 

that, chemometric tools were used for data treatment of the spectra collected on the 

surface and depth of the samples. Thus, using score maps and loadings was possible 

to observe that the distribution profile of the chemical elements from the surface to 

depth of the seeds is inhomogeneous. This behavior can be associated  to the lower 

absorption capability of the nutrients, which is strictly related to the type of soil. 

Moreover, using correlation Pearson graph was possible to make an exploratory 

analysis to evaluate a possible correlation among elements, and associate it with the 

type of fertilizers used. Therefore, some elements, such as Mg and Na, P and Na, S 

and P, S and Zn, are extremely correlated. To confirm the presence of these elements 

in these seeds, ICP OES was used as reference.  
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A B S T R A C T

The present study aims to develop a fast and simple method for the determination of potassium (K), magnesium
(Mg) and phosphor (P) in bean seed samples employing a data fusion strategy in the low-level with laser-induced
breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WDXRF) techniques combined
with direct solid sample analysis. Univariate and multivariate (multiple linear regression, MLR) calibration and
leave-one-out cross validation strategies were evaluated to build the calibration models correlated with re-
ference values obtained by inductively coupled plasma optical emission spectrometry (ICP OES) after micro-
wave-assisted acid digestion. The proposed calibration models for WDXRF and LIBS were tested using 14
samples, where the best results were obtained using the data fusion of both techniques. The standard error of
cross validation (SECV) obtained were: 0.12% for K, 0.019% for Mg and 0.10% for P, and the trueness ranged
between 89 and 124% for K, 82 to 125% for Mg and 73 to 128% for P. These values showed a good accuracy,
precise and robustness of the method and a greater reliability of the results. In addition, the predicted con-
centrations ranged from 0.97 to 1.55% for K, 0.14 to 0.28% for Mg, and 0.27 to 0.82% for P.

1. Introduction

In developing and underdeveloped countries, bean seeds have been
used as an important source of nutrients to reduce the rate of mal-
nutrition and, at the same time, guarantee an adequate food security for
the population (Onwuliri & Obu, 2002). Moreover, bean seeds are rich
in protein, carbohydrate, dietary fiber, and are good source of anti-
oxidants, as well as vitamins and minerals (Rezende, Pacheco, da Silva,
& Ferreira, 2018; Shimelis & Rakshit, 2005). Regarding mineral con-
tent, potassium (K), magnesium (Mg) and phosphor (P) are the most
available elements in this type of food, which play an important role in
the human body (Santos, Santos, Fernandes, Castro, & Korn, 2013).

The scientific literature reports several studies employing different
analytical techniques for the determination of macro and micro-
nutrients in food matrices. The most techniques used for these analyzes
are: flame atomic absorption spectrometry (FAAS) (Amorim et al.,
2017; Gamela, Barrera, Duarte, & Boschetti, 2019; Mir-Marqués,
Cervera, & De La Guardia, 2016) and inductively coupled plasma op-
tical emission spectrometry (ICP OES) (Mir-Marqués et al., 2016; Santos
et al., 2008a, 2008b, 2009).

However, these techniques require a prior step of sample prepara-
tion, such as acid mineralization or dissolution, which represents one of
the main challenges in the elemental analysis, because it is laborious,
intensive, time consuming, and is major source of errors due to analyte
loss and/or sample contamination (Ferreira et al., 2010).

Laser-induced breakdown spectroscopy (LIBS) become an excellent
alternative to overcome the aforementioned drawbacks. LIBS has a laser
that is focused in the sample surface. After that, several phenomena
take place: sample vaporization, analytes ionization and later emission.
The emission signals can be recorded, and an emission spectrum is
generated, and, each analyte is related to several emission lines. Apart
from direct solid sample analysis with minimal or no sample prepara-
tion, this technique brings important features, such as multielemental
capability, high analytical frequency, and low reagents consumption
(Hahn & Omenetto, 2012; Markiewicz-Keszycka et al., 2017; Costa
et al., 2018a). Several studies are reported using LIBS for the determi-
nation of chemical composition in different types of matrices, for ex-
ample, powdered milk and dietary supplements (Augusto, Barsanelli,
Pereira, & Pereira-Filho, 2017), bivalve mollusks (Costa, Amorim,
Babos, & Pereira-Filho, 2019), cassava flour (Costa et al., 2018b),
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medicinal herbs (Andrade, Pereira-Filho, & Konieczynski, 2017), solid
fertilizers (Andrade & Pereira Filho, 2016), and soils (Junior et al.,
2009).

Besides LIBS, wavelength dispersive X-ray fluorescence (WDXRF) is
a non-destructive technique that contain rhodium as x-ray source. The
x-ray with enough energy is generated and focused at the solid sample
surface to excite the electron near the nuclei of the atom. In the specific
case of Mg, for instance, the electron near the nucleus is ejected and an
electron from K level emits energy and replace the electron ejected.

This technique is considered selective and the measurements are
performed sequentially (West et al., 2014). The literature presents
several applications of WDXRF for the determination of macro and
micronutrients in different types of samples, such as bivalve mollusks
(Costa et al., 2019), infant cereals (Perring, Andrey, Basic-Dvorzak, &
Blanc, 2005), milk and dairy products (Pashkova, 2009), human hair
(Santos, Sperança, & Pereira, 2018), and pharmaceutical products
(Balaram, 2016).

Due to specific features of LIBS, some instrumental parameters as
laser pulse fluence and delay time need to be optimized and, in this
sense, chemometric tools become necessary. Factorial design, central
composite, Box-Behnken and Doehlert designs have been frequently
used for the optimization in analytical applications due its several ad-
vantages, such as reduced number of experiments, possibilities to
evaluate interactions among variables, reliable results, optimization of
the experiments in a short period of time, and the selection of optimal
experimental conditions (Bezerra, Santelli, Oliveira, Villar, & Escaleira,
2008; Ferreira et al., 2018).

Univariate models have been commonly used for calibration using
single analytical sources for elemental determination in different ma-
trices. However, a new data fusion strategy has aroused interest in
analytical chemistry field for different purposes (Liu & Brown, 2004;
Whittle, Gillet, & Willett, 2006). This strategy combines multiple
sources of data to produce a single model, and it provides com-
plementarity and improvements of the capability of prediction of the
models when compared with individual input sources (Liu & Brown,
2004; Whittle et al., 2006; Willett, 2013). Furthermore, data fusion
allows to build regression models with better statistical parameters
(predictions with lower error), identify the variation sources and more
detailed information of analytical data (Spiteri et al., 2016). An inter-
esting feature of data fusion is the fact that, the data can be in-
dependently generated from each analytical technique, and then,
combined and used to calculate regression models and predict the
concentrations in the samples (Ballabio et al., 2018; Borras et al., 2015;
Assis et al., 2019).

Different data fusion strategy employing several analytical techni-
ques were already reported in the literature for different purposes as
identification of botanical origin of honey (Ballabio et al., 2018;
Hoehse, Paul, Gornushkin, & Panne, 2012), and authentication and
quality assessment of food and beverage (Borras et al., 2015).

For elemental determination, only one study was found employing
data fusion using LIBS and near infrared spectroscopy (NIR) for the
determination of micro and macronutrients in vegetable samples (De
Oliveira, Fontes, & Pasquini, 2019). In the light of this, the goal of the
present study was to evaluate the possibility of the use of data fusion,
strategy combining information from both LIBS and WDXRF for the
determination of K, Mg and P in bean seed samples. In addition, uni-
variate and multiple linear regression (MLR) calibrations were eval-
uated to calculate regression models.

2. Material and methods

2.1. Instrumentation

The determination of K, Mg and P in bean seed samples was carried
out using a LIBS instrument, J200 model from Applied Spectra
(Freemont, USA) equipped with a Nd:YAG laser (1064 nm) used for

emission data acquisition step. The instrument contains a high effi-
ciency particulate air cleaner (HEPA) to purge the ablated particles and
the movement of the sample is automated with a XYZ stage. It also
contains a 1280 × 1024 complementary metal-oxide semiconductor
(CMOS) color-camera imaging system. The optical fiber bundle is
coupled to a 6-channel charged-coupled device (CCD) spectrometer to
convert the plasma emission light into spectra, with a spectral range of
emission signals between 186 and 1042 nm resulting in 12,288 vari-
ables. The gate width is the time that spectrometer collects the emission
signals, which is 1.05 ms. For the identification of the emission lines of
the elements was used an Aurora Software Package (also from Applied
Spectra). All operational parameters were optimized using factorial
design strategy and were: 2699 Jcm−2 laser pulse fluence and 1.9 µs
delay time. Detailed information about the optimization will be pre-
sented in the next sections.

A commercial wavelength dispersive X-ray fluorescence (WDXRF)
instrument from Thermo Fischer Scientific (Madison, WI, USA)
Perform-X ARL model was used for direct analysis of the samples. This
instrument contains a rhodium X-ray source, which was used for all the
acquisitions with a maximum of 4200 W power. These acquisitions
were possible due to the detectors that register the count per second of
the X-ray emission lines that correspond to each crystal used. These
crystals reflect in different regions of wavelength, varying from 0.124 Å
(0.0124 nm) (LiF220) to 162.662 Å (16.2662 nm) (AX16c). The in-
strument has 5 crystals that can be used in the wavelength dispersion;
and the choice of specific crystal is based on the characteristic wave-
length of the element of interest. Moreover, there are 4 different col-
limators (0.15 mm, 0.40 mm, 1.00 mm and 2.60 mm) and 2 detectors: a
flow proportional counter (FPC) and a scintillation counter (SC). In the
present study, only the electronic transition Kα was considered for all
elements and for each one, depending on its wavelength, different
crystals were employed.

Reference concentration values of K, Mg and P were obtained using
an ICP OES, model iCAP 7000 (Thermo Fisher Scientific, USA). The
plasma conditions and the emission lines used in ICP OES analysis are
described in Table 1S as supplementary material.

2.2. Reagents

High purity deionized water (18 MΩ cm resistivity) produced from a
Milli-Q® Plus (Millipore Corp, Bedford, MA, USA) was used to prepare
all solutions throughout the study. All glassware and polypropylene
vessels were previously decontaminated using detergent and by soaking
in a nitric acid (HNO3) 10% (v v−1) (Synth, Diadema, Brazil) solution
per 24 h and rinsed with ultrapure water before use. The external ca-
libration curves for K, Mg and P were prepared using appropriate di-
lution of stock standard solutions of 1000 mg L−1 (Specsol, São Paulo,
Brazil) with HNO3, previously purified with a distillation system
Distillacid™ BSB-939-IR (Berghof, Eningen, German). In addition, pur-
ified HNO3 and hydrogen peroxide (H2O2) 30% (w w−1) (Synth) were
used for samples mineralization.

2.3. Sampling and sample preparation

A total of 14 samples of dried bean seeds of different species,
namely P. vulgaris (S1-S10), V. unguiculate (S11), V. angularis (S12), V.
radiata (S13), and C. cajan (S14), were acquired at local markets (São
Carlos, São Paulo, Brazil). Therefore, the selected samples for the pre-
sent study represent the most popular species of bean seeds commer-
cialized in Brazil. Also, the use of these different varieties allowed to
evaluate the robustness of the proposed method.

Before analysis by LIBS and WDXRF, the samples were ground using
a mill type Wyllie (model CE-430, CIENLAB, São Paulo, Brazil). This
step aimed to reduce the particle size and to improve the homogeneity
of the analytes in the samples. Furthermore, the samples were pressed
using 60 t in−1 to form pellets (~12 mm diameter) in order to facilitate

R.R. Gamela, et al. Food Research International 132 (2020) 109037

2

29



the analysis of the samples by both instruments (LIBS and WDXRF).

2.4. Determination by ICP OES (reference values acquisition)

Sample masses of 0.350 g was directly weighted in the Teflon®
flasks, and 4.0 mL of HNO3 65% v/v, 2.0 mL of H2O2 30% w/w and
2.0 mL of H2O were added. After that, a microwave radiation system
(Speed four, Berghof, Eningen, BW, Germany) with DAP 60 Teflon®
closed vessels were used for mineralization. The mineralization proce-
dure was performed using the following heating program, performed in
three steps (temperature in °C/ramp in min/hold in min): (i) 170/5/10;
(ii) 200/1/15; (iii) 50/1/10. After the mineralization step, the content
was transferred to volumetric flask and the final volume was completed
to 40 mL. The acid mineralization was used for the determination of K,
Mg and P to obtain reference concentrations for further calculation
calibration models using LIBS and/ or WDXRF. All mineralization
procedure was performed in triplicate (n = 3), and to verify the per-
formance of the procedure, the certified reference material (CRM)
Apple leaves (NIST-1515) was also mineralized.

2.5. Optimization of instrumental conditions of LIBS

For LIBS elemental determination, several laser operating condi-
tions (laser pulse fluence and laser energy) and emission measurement
parameters (delay time and gate width) need to be optimized. Thus,
prior to LIBS analysis of the samples, the instrumental parameters were
evaluated using central composite design with 11 experiments (with 3
replicates in central point). The variables evaluated were: laser pulse
fluence at five level (1448, 1811, 2699, 3511 and 3820) and delay time
at five levels (0.5, 0.7, 1.5, 1.7 and 1.9), as shown in Table 1. The
optimization was performed using a single sample, and approximately
600 spectra were collected at different regions of the pellet surface in
raster mode. In addition, the laser settings used were a scan length of
8 mm, a laser repetition rate of 5.0 Hz, and ablation chamber speed of
1.0 mm s−1.

The central composite design monitored response was the area,
height and signal-to-background ratio (SBR) obtained from the most
intense atomic (I) and ionic (II) emission lines of K I 766.49, Mg II
279.55 and P I 213.62. In order to obtain a simultaneous optimization,
desirability (di) function was calculated, employing equation (1), to
find the best conditions for each response. The di function attributes
values between 0 (undesirable response, lowest SBR, area and height)
and 1 (desirable response, highest SBR, area and height). Thus, overall
desirability (OD) is the geometric mean of all single responses, as can be
seen in equation (2).

= ⎛
⎝

−
−

⎞
⎠

di y L
T L

s

(1)

where L is the lowest acceptable value for the response, T is the target
value, and s is the weight (when equal to 1 = linear desirability
function). In the present study, L values were the lowest SBR, height
and area in the set of experiments for each element and T values were
the highest SBR, height and area for each element. The weight s was 1.

=OD d d dm1 2...m (2)

where m is the number of response variables evaluated simultaneously.

2.6. Data treatment for LIBS

For the data treatment, Microsoft Excel was applied to calculate the
univariate calibration models. MATLAB® 2018a (MathWorks, Natick,
MA, USA) was used to apply homemade routines developed by our
research group for the data processing (Castro & Pereira-Filho, 2016),
and the Aurora software (Applied Spectra) was employed for the
identification of the emission lines obtained by LIBS.

The spectra obtained by LIBS presents high complexity due to the
sample microheterogeneity and signal fluctuation during data acquisi-
tion. In this case, in order to overcome the mentioned possible pro-
blems, normalization of the data is mandatory. In this sense, twelve
(12) normalization modes were assessed: (1) signal average; (2) signal
normalized by individual norm and then averaged; (3) normalized by
area; (4) signal normalization by maximum and then, averaged; (5)
signal sum; (6) signal sum after normalization by individual norm; (7)
signal normalized by area; (8) signal normalization by maximum and
then summed; (9) signal average after normalization by C I 193.09 nm,
(10) signal sum after normalization by C I 193.09 nm; (11) signal
average after normalization by C I 247.85 nm; (12) signal sum after
normalization by C I 247.85 nm (Castro & Pereira-Filho, 2016).

2.7. WDXRF analysis

For quantitative analysis of K, Mg and P using WDRXF, some op-
erational parameters such as spot size, measurement time should be
selected. Moreover, an FPC (flow proportional counter) detector and
spot size of Ø10 mm, and a counting time of 20 s was used. The tube
voltage and current were 30 KV and 40 mA for all determined elements.
The measurements were carried out using the following wavelengths
(Å) selected, which correspond the characteristics transitions for each
element: K (Kα) 3.74, Mg (Kα) 9.89 and P (Kα) 6.1. All analyzes were
performed in triplicate using pellets from different bean seed samples.

However, for WDXRF technique, the calculation of 12 normalization
modes were not necessary, since the elements present well defined peak
signals and is less sensitive to the aforementioned problems that could
occur in LIBS analysis.

3. Results and discussion

3.1. Reference method for LIBS and WDXRF

Bean seed samples were mineralized using microwave-assisted acid
digestion and analyzed by ICP OES for the determination of K, Mg and
P. The obtained concentration values were used as reference method for
LIBS and WDXRF. Therefore, to evaluate the mineralization procedure
CRM of Apple leaves (NIST-1515) was submitted to a microwave acid
mineralization and the obtained concentration of all analytes was
concordant with the certified values (Student t test at 95% of con-
fidence level) showing that the procedure of sample preparation can be
employed as reference method. The obtained concentration values of K,
Mg and P in the samples and CRM are shown in Table 2S in the sup-
plementary material.

Table 1
Matrix of the central composition design with the variables used for the opti-
mization of instrumental conditions employing LIBS, and the overall desir-
ability values (OD) obtained.

Experiments Laser pulse fluence fluence (mJ cm−2) Delay time (µs) OD

Real Coded Real Coded

1 1811 −0.996 0.7 −1.000 0.32
2 3514 1.004 0.7 −1.000 0.42
3 1811 −0.996 1.7 1.000 0.44
4 3514 1.004 1.7 1.000 0.57
5 2699 0.000 1.2 0.000 0.52
6 2699 0.000 1.2 0.000 0.46
7 2699 0.000 1.2 0.000 0.61
8 1448 −1.422 1.2 0.000 0.46
9 3820 1.363 1.2 0.000 0.47
10 2699 0.000 0.5 −1.414 0.37
11 2699 0.000 1.9 1.414 0.58
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3.2. Optimization of instrumental parameters for LIBS

During the analysis by LIBS, the interaction of the laser with sample
is dependent on the matrix, analyte homogeneity, sample and surface.
Furthermore, the properties of the laser induced by plasma, also can be
affected by the laser operational conditions (Costa et al., 2018a; Hahn &
Omenetto, 2012). In this sense, instrumental parameters were opti-
mized using central composite design with 11 experiments. The opti-
mized variables were laser pulse fluence and delay time, used in five
levels coded between −1.422 and 1.422, as shown in Table 1.

Thus, the individual desirability (di) was calculated using area and
height signals, as well as the signal-to-background ratio (SBR) of K I
766.49, Mg II 279.55 and P I 213.62. In this case, each response was
coded from 0 (undesirable response, lowest SBR, area and height) to 1
(desirable response, highest SBR, area and height). Therefore, the in-
dividual desirability was combined into a single response (overall de-
sirability, OD), as depicted in Table 1.

After that, twelve normalization modes were performed, and each
normalization mode was tested by analysis of variance (ANOVA). Thus,
the normalization mode by sum (normalization 5) was chosen because
it presented a better fit of the model. In this case, it was possible to
verify that the regression model did not show lack of fit, i.e., comparing
the Mean of Square of lack of fit (MSlof) and Mean of Square of pure error
(MSpe), the F_calculated (0.41) is lower than F_tabulated (19.16).
However, comparing the Mean of Square of Regression (MSR) and Mean
of Square of Residue (MSRes), the F_calculated (2.9) should be higher
than F_tabulated (5.05). Despite the regression was not significative, this
detail does not affect the predictive capability of the model.

Fig. 1 shows the surface response of the optimized conditions and it
is possible to observe that variable 1 (laser pulse fluence) was not sig-
nificant including their interactions. Thus, this variable can be used in
any condition tested in the experimental domain (from 1448 to
3820 mJ cm−2). On the other hand, variable 2 (delay time) presented
more influence, and high values of OD were obtained when high delay
time is used (1.9 μs). Therefore, the central composite design generated
the OD model described by Equation (3).

= ± + ±OD v0.528 0.09 0.069 0.06 2 (3)

Therefore, the best optimized conditions were found using experi-
ment 11 (see Table 1), with values for delay time in 1.9 µs and fluence
in 2699 mJ cm−2, with 53 mJ for laser pulse energy and 50 µm for spot
size. These optimized conditions were used for further experiments.

3.3. Univariate calibration models for LIBS and WDXRF

After the acquisition of around 500 spectra for each sample by LIBS,
12 normalization modes were calculated, and a routine (libs_par2) was
used to calculate SBR, as well as both the signal area and height for the
region of the emission line of interest specified by the user. The mon-
itored emission lines of the elements were (nm): K I 766.49 and K I
769.89; Mg II 279.55, Mg II 279.79, Mg II 280.27, Mg I 383.83, and Mg
I 518.36; P I 213.62 and P I 253.56. The calibration models were cal-
culated employing univariate calibration and leave-one-out cross vali-
dation due to the limited number of samples.

Thus, for univariate calibration using LIBS, the best results were
chosen considering the lowest standard error of cross validation
(SECV), normalization modes, and their trueness values. In this case, for
each analyte, the following normalization modes were chosen: K I
766.49 nm, signal normalized by individual norm and then averaged
(Normalization 2), Mg I 518.36 nm signal sum after normalization by
maximum (Normalization 8) and P I 213.62 nm, signal sum after nor-
malization by maximum (Normalization 8) and considering the area of
the region. For WDXRF, the univariate calibration and SECV were
calculated, however, this normalization process was not needed due to
the well-defined peak signals of the elements.

Fig. 2 shows the SECV obtained by LIBS and WDXRF using uni-
variate calibration. The SECV obtained by LIBS (see light gray column)
were 0.26% for K, 0.039% for Mg, and 0.14% for P, and the trueness
values ranged from 66 to 150% for K, 41 to 161% for Mg, and 52 to
189% for P. In the other hand, for WDXRF (see gray column), the SECV
were 0.58% for K, 0.021% for Mg and 0.13% for P, the trueness values
ranged from 44 to 163% for K, 83 to 128% for Mg, and 51 to 182% for
P. However, WDXRF technique presents the SECV values slightly lower
than those obtained by LIBS (see Fig. 2)

In general, these univariate calibration models proposed by LIBS

Fig. 1. Response surface of the optimized instrumental conditions for LIBS in function of the overall desirability obtained from central composite design for
determination of K, Mg and P in bean seed samples.
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and WDXRF failed to correctly predict the concentration values in the
samples. This problem can be explained due to the complexity of
sample, spectral interference, physical characteristics and homogeneity
of the analytes, which compromise the determination of metals in these
samples. This is mainly evident due to the high values of errors (SECV).
Thus, other calibration strategy become necessary to improve the pre-
dictive capability of the models.

3.4. Multivariate calibration using LIBS data

Multiple linear regression (MLR) and the data from LIBS was used to
calculate multivariate models. This tool is simple and have been widely
used for calibration in chemometrics. MLR yields models that are
simpler and easier to interpret; and more emission lines could be used
in this multivariate tool (Fragkaki, Farmaki, Thomaidis, & Tsantili-
Kakoulidou, 2012; Olivieri, 2015). However, one of the mathematical
operation steps is a matrix inversion, and this is impossible if the
number of emission lines (columns) is higher than the number of the
samples (rows) or a high correlation exist among variables tool
(Fragkaki et al., 2012; Olivieri, 2015).

In addition, a routine named ‘’regression2′’ proposed by Pereira and
Pereira-Filho (2018) was used to build the regression models and to
calculate the predicted concentration values of the elements, where the
X matrix e.g. for K was composed of 3 columns (b0, area or height from
K I 766.49 nm, and area or height from K I 769.89) and the y vector
represents the reference concentration values obtained by ICP OES. The
same procedure was used to build the calibration models for Mg and P.

For multivariate calibration models calculated for K, Mg and P
employing LIBS and MLR, the SECV obtained values were 0.17% for K,
0.044% for Mg and 0.38% for P (see dark gray column). The trueness
values obtained ranged from 78 to 138% for K, 72 to 162% for Mg and
53 to 221% for P. However, these values were higher if compared with
those obtained by univariate strategy with LIBS and WDXRF, except for
K that presented lower value of SECV (see Fig. 2).

3.5. Multivariate calibration using WDXRF + LIBS data fusion

To improve the predictive capability of the models, data fusion
strategy was tested. This strategy combines multiple sources of data
yielding a new single model with fused data. Fig. 3 shows a pictorial

description that explains how this strategy can be employed for cali-
bration and then predicts the concentration values of the elements in
the samples.

Therefore, for the use of data fusion, it is mandatory that the data
must be from different analytical techniques. Thus, in the present study,
both emission and fluorescence intensities from LIBS and WDXRF
techniques, respectively, were fused to build a new single calibration
model. Data fusion models were built at low-level employing the
strategy leave-one-out cross validation and the samples (14 samples)
previously described. For the low-level data fusion model, the data,
mainly those obtained by LIBS, were separately preprocessed (see
Section 2.5 in data treatment for LIBS and WDXRF).

After that, the emission intensity values (normalization 1: average
of all spectra) of the selected analytical lines from LIBS and the fluor-
escence intensities values from WDXRF were concatenated and auto-
scaled. The new X matrix, for example for K, was composed of 4 col-
umns (b0, Kα from WDXRF, height from K I 766.49 nm, and height
from K I 769.89). In the case of Mg, the X matrix to calculate the ca-
libration model was composed of 14 rows (the samples) and 7 columns
(b0, Kα, and 5 emission from LIBS), see details at Fig. 3.

The SECV calculated employing data fusion strategy are shown in
Fig. 2. The SECV values were 0.12% for K, 0.019% for Mg and 0.10%
for P (see black column), and the trueness ranged between 73 and 124%
for K, 81 to 127% for Mg and 74 to 127% for P. Therefore, an im-
provement was observed for all three determined elements, which
shows that this strategy presented a good capability to predict the
concentration values of K, Mg and P if compared with other calibration
strategies as described above.

3.6. Analytical application

The proposed strategy of calibration employing data fusion (from
WDXRF and LIBS) and MLR was applied for the determination of K, Mg
and P in 14 bean seed samples, and the obtained results are presented in
Table 2. The predicted concentration values obtained by data fusion
model ranged from 0.97 to 1.55% for K, 0.14 to 0.28% for Mg, and 0.27
to 0.82% for P.

According to the results, K, Mg and P were found in high con-
centrations, and the bean seeds can be regarded as nutritional source
for the human consumption. Moreover, these values were compared

Fig. 2. Standard error of cross validation (%) for calibration strategies used for quantitative determination of K, Mg and P in bean seed samples.
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with those obtained by the other analytical techniques reported in the
literature for the determination of elemental composition in bean seeds.
A study reported by Santos et al. (2008a) found the concentration va-
lues, which ranged between: 0.76 to 1.80% for K, 0.15 to 0.18% for Mg,
and 0.31 to 0.48% for P. These values are similar to those obtained in
present study, except for P that presented high concentration values.
Santos et al. (2009), using ultrasound-assisted extraction, determined
the minerals content in bean seeds samples. The authors found the
concentration values, ranging from: 1.17 to 1.56% for K, and 0.10 to
0.16% for Mg. These values are slightly lower compared with those
found in the present study. Shimelis and Rakshit (2005) determined P
and other elements in bean seeds. The concentration values found of P
ranged between 0.015 and 0.017%. These values correspond to 26–45
times lower than the concentrations of P found in the present study.
Other study was performed by Onwuliri and Obu (2002) for the de-
termination of the chemical constituent including K, Mg and P in bean
seeds from Nigeria. These elements present the concentration values
ranging between 1.08 and 2.90% for K, 0.16 to 0.35%, for Mg and 0.25
to 0.44% for P. Potassium presented higher concentration, whereas the
Mg content is similar, and the concentration of P is slightly lower
compared with our study.

Therefore, the difference in the concentration of the chemical
composition in bean seed samples can be related to several factors, such
as soil, weather conditions, and fertilizers used. So, it is important to
determine the chemical composition in this type of edible seed to
guarantee the safety of consumer.

4. Conclusions

The use of LIBS and WDXRF showed to be fast and suitable for the
determination of K, Mg and P in the bean seed samples. These analytical
techniques are considered as non-destructive and allow the direct solid
analysis with minimal or no sample preparation steps, which contribute
to a sustainable environment and green chemistry. Moreover, the use of
data fusion strategy employing LIBS and WDXRF combined with mul-
tivariate calibration (MLR) to build the regression models presented
lower SECV and acceptable trueness (%) values when compared with
those obtained by univariate calibration models for both techniques and
multivariate calibration (MLR) for LIBS.

Thus, it is expected that data fusion strategy and the MLR can be
used in different matrices using other analytical techniques for quan-
titative purposes (improvement of prediction capability of chemical
elements).
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Fig. 3. Pictorial description of the data fusion strategy combining WDXRF and LIBS data.

Table 2
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Trueness (%) ICP OES Proposed method (data
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Trueness (%) ICP OES Proposed method (data
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S2 (P. vulgaris) 1.00 1.08 108 0.16 0.16 100 0.69 0.59 86
S3 (P. vulgaris) 1.12 1.26 113 0.19 0.19 100 0.34 0.34 100
S4 (P. vulgaris) 1.05 1.11 106 0.17 0.21 124 0.54 0.48 89
S5 (P. vulgaris) 1.54 1.55 101 0.19 0.16 84 0.72 0.57 79
S6 (P. vulgaris) 1.13 1.31 116 0.18 0.19 106 0.38 0.47 124
S7 (P. vulgaris) 1.59 1.51 95 0.17 0.16 94 0.80 0.82 103
S8 (P. vulgaris) 1.01 1.12 111 0.15 0.17 113 0.62 0.58 94
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Supplementary material 

 

Table 1S. Plasma conditions and the emission lines used in ICP OES for the 

determination of K, Mg and P in bean seed samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instrumental parameters Operational conditions 

Radio frequency applied power (kW) 1.15 

Integration time for low emission line (s) 15.0 

Integration time for high emission line (s) 5 

Sample introduction flow rate (mL min-1) 1.0 

Pump stabilization time (s) 5 

Argon auxiliary flow rate (L min-1) 0.5 

Argon plasma flow rate (L min-1) 12 

Argon nebulizer flow rate (L min-1) 0.7 

Number of replicates (n) 3 

Elements and wavelengths (nm); View 

modes: only radiala and axialb  

aK I (766,490 nm), bMg II (279,553 

nm) and aP I (178, 20 nm)  
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Table 2S. Obtained concentration values of K, Mg and P in certified reference material 

of CRM Apple leaves (NIST-1515)  

Samples 
Concentration (in %) 

K Mg P 

Certified values 1.61±0.021 0.27±0.012 0.16±0.068 

Digestion procedure 

(Trueness, %) 

1.35±0.32  

(84) 

0.22± 0.014 

 (82) 

0.16±0.086 

 (97) 
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Abstract
This study is dedicated to the direct analysis of Ca, K, and Mg by employing laser-induced breakdown spectroscopy (LIBS).
Three univariate calibration strategies, namely (i) one-point and multi-line calibration (OP MLC), (ii) single-sample calibration
(SSC), and (iii) two-point calibration transfer (TP CT), were evaluated and compared. Only OP MLC and TP CT presented
precise and accurate results, where the trueness values ranged from 80 to 120% for most of the analyzed samples. Moreover, the
standard errors for all determined elements ranged from 0.01 to less than 0.20% of the concentration in the samples. These three
calibration strategies showed that they are efficient and effective for matrix matching to correct matrix effects in complex samples
using only one sample as the standard.

Keywords Cocoa beans . Direct solid analysis . Calibration strategies .Matrix effects . Macronutrients

Introduction

Brazil is listed as the seventh largest producer of cocoa beans
worldwide, with production of approximately 210 million
tons per year, where the southern region of Bahia State corre-
sponds to 94% of the total (International Cocoa Organization-
ICCO 2018; World Cocoa Foundation-WCF 2018). Due to
their composition, cocoa beans are considered raw materials
to produce different products including chocolate, cocoa but-
ter, jams, and others for modern human diets. In addition,
cocoa beans are an important source of bioactive compounds,
antioxidants, and mineral nutrients, representing a special ma-
trix in the food processing industry (Andújar et al. 2012;
Febrianto and Zhu 2019).

In this sense, for nutritional reasons, it is of strategic interest
to determine the mineral content, as Ca, K, and Mg are con-
sidered essential for human health. Commonly, the determi-
nation of essential and toxic elements in cocoa beans and their

derivates has been performed employing different analytical
techniques, such as inductively coupled plasma optical emis-
sion spectrometry (ICP OES) (Villa et al. 2014, 2015; Costa
et al. 2019a) and inductively coupled plasma mass spectrom-
etry (ICP-MS) (Yanus et al. 2014; Dico et al. 2018). However,
aside from the advantages of ICP methods related to high
sensitivity and multielemental capability, one of the main
challenges is related to the sample preparation step, which
contributes to the introduction of major sources of error in
elemental determination.

Laser-induced breakdown spectroscopy (LIBS) is a quali-
tative and quantitative technique and has been used in recent
decades as a reliable alternative for elemental determination in
different matrices (Markiewicz-Keszycka et al. 2017; Costa
et al. 2018, 2019b). In LIBS, the most attractive features are
related to simultaneous, multielemental determination in a
short period of time (< 1 s) and direct solid sample analysis
with minimal or no preparation (Costa et al. 2019b; Machado
et al. 2019). In this way, solid sample analysis contributes to
lower waste generation and obviously contributes to a sustain-
able environment following green chemistry principles
(Bendicho et al. 2012).

However, for quantitative analysis using LIBS, consider-
able efforts are required, mainly due to matrix effects as a
result of the sample complexity, spectral interference, physical
characteristics, self-absorption, and chemical composition,
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which compromise elemental determination (Cremers and
Radziemski 2006; Noll 2012; Takahashi and Thornton 2017;
Lepore et al. 2017).

The scientific literature presents several alternatives to
overcome these limitations as a way to compensate the matrix
effects, employing appropriate calibration strategies and si-
multaneously improving the analytical performance of LIBS.
First-order multivariate calibration, such as partial least
squares regression (PLS), principal component regression
(PCR), and multiple linear regression (MLR), has been used
mainly due to the possibility of calibrating models in the pres-
ence of interferences using entire spectral profiles or variable
selection (Escandar et al. 2007; Olivieri 2015). In addition,
multivariate calibration allows compensating for the lack of
selectivity by employing a mathematical algorithm to extract
information used to predict concentrations in the samples
(Escandar et al. 2007; Olivieri 2015; Zhang et al. 2018).

However, the main problem associated with multivariate
calibration, mainly PLS, is that when the entire spectrum is
used to propose the calibration model, miscorrelations can
occur among the emission lines during analyte determination
(Safi et al. 2018; Sperança et al. 2019).

On the other hand, inMLR calibration, more emission lines
can be used; however, one of the mathematical operation steps
is a matrix inversion, and this is impossible if the number of
emission lines (columns) is higher than the number of the
samples (rows) or a high correlation exists among variables
(Escandar et al. 2007; Olivieri 2015).

Moreover, other univariate calibration strategies, such as
matrix-matching calibration (MMC) (Augusto et al. 2017),
internal standardization (IS) (Gupta et al. 2011), standard ad-
dition (SA) (Wang et al. 2017), multi-energy calibration
(MEC) (Babos et al. 2018; Castro et al. 2019; Andrade et al.
2019), and one-point gravimetric standard addition (OP GSA)
(Babos et al. 2019), have been commonly used and reported as
ways to compensate the matrix effects in LIBS. In MMC, the
calibration standards are matched with the sample matrix,
usually by employing a certified reference material (CRM)
or a set of samples or matching the solid standards by the
addition of concomitants that cause interference. In some
cases, this strategy is not enough to avoid or correct strong
matrix effects (Augusto et al. 2017; Babos et al. 2018).

For IS, it is necessary to choose an adequate internal stan-
dard, which represents a hard task, as the standard must be
subjected to the same plasma treatment process as that of the
analytes in the sample. In addition, this strategy is not able to
overcome some severe matrix effects observed in LIBS
(Gupta et al. 2011; Babos et al. 2018).

In the case of SA, this approach can be considered an effec-
tive alternative to minimize the main limitations in LIBS. This
strategy is based on the addition of a constant amount of sam-
ples in the blank and in all calibration standards, allowing both
standards and samples to be in the same conditions, minimizing

the matrix effects (Wang et al. 2017). Nevertheless, SA presents
some limitations; for example, when there is a lower capability
to identify the spectral interference, a large amount of sample is
required, and when the calibration curve contains few calibra-
tion standards, it must be prepared for each sample (Wang et al.
2017; Babos et al. 2018).

MEC and OP GSA are recent univariate calibration strate-
gies and are compatible with LIBS to efficiently minimize and
correct the complex matrix effects in direct solid sample anal-
ysis. In addition, only 2 calibration standards are required per
sample: S1 (blank plus standard) and S2 (sample plus stan-
dard). Moreover, multiple wavelengths of the elements are
required, which make it easy to identify which emission line
interferes and later eliminate the spectral interferences. In the
case of OPGSA, the data treatment is the same as that used for
MEC, but it is simpler and allows evaluation of the accuracy
for each wavelength (Babos et al. 2019). However, when
MEC and OP GSA are used, some challenges must be con-
sidered, such as the difficulties in choosing an appropriate
blank, the concentration of standards that affect the accuracy,
and the fact that both the blank and standard must be well
homogenized to ensure good precision (Babos et al. 2018,
2019).

Recently, one-point and multi-line calibration (OP MLC)
(Hao et al. 2018), single-sample calibration (SSC) and two-
point calibration transfer (TP CT) (Castro et al. 2019) were
proposed as alternatives to overcome matrix effects in direct
solid analysis by LIBS. For OPMLC, the strategy is based on
a single matrix-matching standard sample and multiple lines
of analyzed elements (Hao et al. 2018). Therefore, the un-
known concentration of the analyte can be determined by
employing only one sample as a standard, i.e., the concentra-
tion of this sample can be certified or known (Hao et al. 2018).

On the other hand, when SSC is used, the concentration of
the analyte is estimated using only one sample (CRM or sam-
ple with reference value) as the calibration standard and sub-
sequently is based on the correlation of the different emission
lines of the analyte and other elements present in this standard
and sample (unknown) with the concentration of all the ele-
ments present in the calibration standard (Yuan et al. 2019).
Additionally, it is necessary that the sample and standard have
similar physicochemical properties, so that the matrix effects
do not interfere with the concentration estimation, in addition
to using only emission lines free of spectral interference (Yuan
et al. 2019).

Another recent univariate calibration strategy is TP CT.
This strategy is simple and considered effective for matrix
matching because it uses a sample as a standard in the absence
of CRM with a similar matrix. The approach is based on the
amount of sample ablated by a laser pulse. Thus, by summing
the emission intensity of different spectral sets, it is possible to
propose linear calibration models and determine the concen-
tration of the analyte in the sample (Castro et al. 2019).
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Therefore, OP MLC, SSC, and TP CT univariate calibra-
tions for quantitative analysis by LIBS are simple because
they do not require the addition of standards for calibration
or complicated calculations. The goal of this study was to
evaluate the use of OP MLC, SSC, and TP CT as strategies
for matrix matching in the determination of Ca, K, and Mg in
cocoa beans using LIBS and direct solid sample analysis.

Material and Methods

Instrumentation

In the present study, a LIBS spectrometer model J200 from
Applied Spectra (Freemont, USA) with a Nd:YAG laser
(1064 nm) equipped with a 6-channel charge-coupled device
(CCD) was used. The spectrometer covers a range from 186 to
1042 nm, resulting in 12,288 variables, and a gate width of
1.05 ms was used in the present study. In addition, a HEPA air
cleaner was used to purge the ablated particles, and the move-
ment of the sample was automated XYZ stage and a 1280 ×
1024 (complementary metal-oxide semiconductor) CMOS
color-camera imaging system. The instrumental conditions
used in this study were as follows: delay time 1.9 μs and
fluence 2699 mJ cm−2, using 53 mJ for the laser pulse energy
and 50 μm for the spot size.

Moreover, an ICPOES system, model iCAP 7000 (Thermo
Fisher Scientific, USA), was employed for determination of
the analytes as a reference method for LIBS. The instrumental
conditions and the emission lines used in the ICP OES deter-
minations are described in Table 1.

Standards, Reagents, and Samples

Analytical-grade reagents and deionized water (Milli-Q sys-
tem, 18.2 MΩ cm, Millipore, Bedford, MA) were used to
prepare all solutions and standards. The glass and quartz

materials were soaked in 10% v v−1 HNO3 solution for 24 h,
washed with deionized water and dried before use. The mul-
tielement solutions used for external calibration were prepared
from 1000 mg L−1 Ca, K and Mg standard solutions (Qhemis,
São Paulo, SP, Brazil) using HNO3 (Synth, Diadema, SP,
Brazil) previously purified by a Distillacid™ BSB-939-IR
subboiling distillation system (Berghof, Eningen, Germany).

A total of ten cocoa bean samples (Theobroma cacao) cod-
ed from S1 to S10 were obtained from Bahia State, which is
considered the main producer in Brazil. The samples were
acquired dried, and a simple maceration (using mortar and
pestle) was necessary to reduce the particle size before
digestion.

In addition, four certified reference materials (CRMs) of
baking chocolate (NIST 2384), whole milk powder (NIST
8435), apples (NIST 1515), and spinach leaves (1570a), all
from the National Institute of Standard and Technology
(Gaithersburg, MD, USA), were used to evaluate the efficien-
cy of the sample preparation method with diluted HNO3.

Microwave-Assisted Digestion (Reference Method)

Approximately 200 mg of cocoa bean was accurately and
directly weighed in perfluoroalkoxy alkane (PFA) vessels,
and 5 mL of HNO3 (3.75 mol L−1) and 1.75 mL of H2O2

30% v v−1 were added. The samples were submitted to the
following heating program (temperature in °C/ramp in min/
hold in min): (i) 180/5/5; (ii) 210/5/10; and (iii) 230/5/10.
Next, the contents were transferred to volumetric flasks, and
the final volume was brought to 25 mL with ultrapure water
before analysis by ICP OES.

Acquisition and Data Treatment for LIBS Analysis

Analysis of all samples by LIBS was performed in triplicate
using optimized instrumental conditions. For the evaluation
and data processing, Microsoft Excel was used to calculate

Table 1 Instrumental conditions
and emission lines used by ICP
OES analysis

Instrumental parameters Operational conditions

Radio frequency applied power (kW) 1.15

Integration time for low emission line (s) 15.0

Integration time for high emission line (s) 5

Sample introduction flow rate (mL min−1) 1.0

Pump stabilization time (s) 5

Argon auxiliary flow rate (L min−1) 0.5

Argon plasma flow rate (L min−1) 12

Argon nebulizer flow rate (L min−1) 0.7

Number of replicates (n) 3

Elements and wavelengths (nm); view modes: only
radial

Ca II (396.847 nm), K I (766.490 nm), and Mg II
(279.553 nm)
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the univariate calibration models. MATLAB® 2018a
(MathWorks, Natick, MA, USA) was used to apply home-
made routines for the data processing, and Aurora software
(Applied spectra) was used for identification of the obtained
emission lines.

The spectra obtained by LIBS present high complexity
due to the sample microheterogeneity and signal fluctuation
during data acquisition. In this case, to overcome some
drawbacks, normalization of the data was necessary.
Accordingly, twelve (12) normalization modes were
assessed: (1) average of all spectra; (2) signal normaliza-
tion by the norm, then, average over all spectra; (3) signal
normalization by the area, then, average over all spectra;
(4) signal normalization by the highest signal, then, aver-
age over all spectra; (5) sum of all spectra; (6) signal
normalization by the norm, then, sum over all spectra;
(7) signal normalization by the area, then, sum over all
spectra; (8) signal normalization by the highest signal,
then, sum over all spectra; (9) signal normalization by C
I 193.09-nm emission line, then, average over all spectra;
(10) signal normalization by C I 193.09-nm emission line,
then, sum over all spectra; (11) signal normalization by C I
247.85-nm emission line, then, average over all spectra;
and (12) signal normalization by C I 247.85-nm emission
line, then, sum over all spectra (Castro and Pereira-Filho
2016).

Univariate Calibration Strategies

Three univariate calibration strategies, OPMLC, SSC, and TP
CT, were evaluated and compared. All strategies used in the
present study need to analyze samples as standards for matrix
matching due to the lack of a certified reference material with
sufficient similarity. In addition, these strategies can correct
matrix effects in cocoa beans that present high quantities of
fats and oils, which can be a challenge for traditional univar-
iate calibrations.

For OP MLC, the general idea is as follows: the unknown
concentration of the analyzed analytes can be determined by
employing only one sample as a standard, i.e., the concentra-
tions of this sample can be certified or known (Hao et al.
2018). In this sense, the emission intensities of multiple lines
of an analyte obtained by standard and unknown sample anal-
ysis are used to build the linear model, as shown in Fig. 1. The
emission intensities by standard (with known concentration,
Cstandard) are plotted on the x-axis, the intensities of unknown
samples are plotted on the y-axis, and the analyte concentra-
tion in unknown samples (Canalyte) can be determined using
the slope of the calculated linear model and Eq. 1 (Hao et al.
2018).

Canalyte ¼ slope� Cstandard ð1Þ

On the other hand, SSC does not require a calibration curve
or linear models, just a correlation between spectral line inten-
sity and concentration. Therefore, the concentration of the
analytes is determined using only one sample (CRM or sam-
ple with reference value) as the calibration standard and sub-
sequent correlation of the different emission lines of the ana-
lyte present in the standard and sample (unknown). Moreover,
other spectral lines of the elements present in the plasma from
the sample are employed in this correlation to estimate the
analyte concentration, which enables good accuracy in the
determinations. However, the number of spectral lines of
analytes present in the sample should be ≤ the number of
spectral lines evaluated for the elements in the standard
(Yuan et al. 2019). The concentration in the unknown sample
is calculated by employing Eq. 2.

Canalyte ¼
Cstandard analyte � I analyte sample

Ianalyte standard

∑
N

i¼1

CN
standard element � INelement sample

INelement standard

ð2Þ

where Cstandard analyte and Ianalyte standard are the concentration
and intensity of the emission line of the analyte in the sample,
respectively, used for standard calibration. Ianalyte sample is the
emission intensity of the analyte in the unknown sample.
INelement sample is the emission intensity of the element N in
the sample of unknown concentration, and CN

standard element

and INelement standard are the concentration and the emission
intensity of the element N, respectively, in the sample used
for standard calibration (Yuan et al. 2019).

For TP CT, with intermediate analyte concentration was
used as standard (known concentration) due to the lack of a
certified reference material. The spectral set (approximately
680) used for this strategy is the same as that used in other

Fig. 1 Linear model for univariate calibration: one-point and multi-line
calibration
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previously described univariate calibration strategies. The
spectral set was divided into two sets (2 points): the first with
200 spectra and the second with the remaining 480 spectra.
The spectral sets were separately summed (normalization
mode number 5). Thus, a linear model is calculated with only
two points for each emission line evaluated, where the x-axis
is the number of spectra (200 or 480) and the y-axis is the
intensity emission of both points. This process was done for
the unknown sample and for the sample chosen as the stan-
dard. The concentration in the unknown sample (Csample) is
calculated by the combination of the slopes from both linear
models (slopesample and slopestandard) and the standard concen-
tration (Cstandard), as described by Eq. 3 (Castro et al. 2019).

Csample ¼ Cstandard �
Slopesample

Slopestandard
ð3Þ

Moreover, to verify the linearity of the calibration curve
calculated from two points, the F test, the ratio of Fexperimental
and Fcalculated, was evaluated, as shown in Fig. 2.

For all strategies, the spectra were collected in triplicate,
and to reduce the microheterogeneity effects and signal

fluctuation during data acquisition, 12 normalization modes
were calculated, except for TP CT. In addition, a routine
(libs_par2) was used to calculate the signal-background ratio
(SBR), as well as both the signal area and height for the region
of the emission line of interest specified by the user. The
following element emission lines were used (nm): Ca II
393.37, Ca II 396.85, Ca I 422.67, and Ca II 431.87; K I
766.49 and 769.89; and Mg II 280.27, Mg II 279.55, Mg II
279.80, and Mg I 285.21.

Thus, for OP MLC and SSC, the best normalizations were
chosen according to the lower relative standard deviation
(RSD) and the acceptable trueness values calculated from
the predicted concentration values by LIBS and the concen-
tration values obtained from the reference method (ICP OES)
after microwave-assisted digestion. In the case of TP CT, the
same approach previously referencedwas used, but only using
normalization 5.

Results and Discussions

Reference Method by ICP OES

The ICP OES technique was used for determination of Ca, K,
and Mg in cocoa bean samples after microwave-assisted acid
digestion as reference method. In order to evaluate the perfor-
mance of microwave-assisted digestion, four certified reference
materials, namely baking chocolate (NIST 2384), whole milk
powder (NIST 8435), apples (NIST 1515), and spinach leaves
(1570a), were also digested using the same heating program
described in the previous section (2.4. Determination by ICP
OES). The obtained concentration values were statistically sim-
ilar to that certified based on Student’s t test at 95% confidence
level. The results of the concentration values in CRM are
shown in Table 2, and the trueness values for all analytes were
in the range of 79 to 108%, demonstrating good accuracy.

Therefore, this sample preparation procedure was efficient
and can be used as a reference method for cocoa bean analysis.

Fig. 2 Linear model for univariate calibration two-point calibration
transfer

Table 2 Concentration values of Ca, K, and Mg obtained in certified reference materials using diluted nitric acid (mean ± standard deviation, n = 3)

Concentration in (mg kg−1)

Elements Baking chocolate Apple leaves Spinach leaves Whole milk powder

Certified
value

Proposed
procedure

Certified
value

Proposed
procedure

Certified
value

Proposed
procedure

Certified
value

Proposed
procedure

Ca 840 ± 74 866 ± 0.2 15,250 ± 100 14,147 ± 126 15,270 ± 410 14,275 ± 52 9220 ± 490 9966 ± 445

K 8650 ± 400 7120 ± 17 16,080 ± 210 12,821 ± 198 29,030 ± 520 23,712 ± 433 13,630 ± 470 10,746 ± 139

Mg 2610 ± 120 2624 ± 101 2710 ± 120 2649 ± 33 * * 814 ± 76 835 ± 3

(*) value not informed
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Evaluation of Univariate Calibration Strategies

The univariate calibration strategies evaluated in the present
study were used as alternatives for traditional univariate
(MMC, IS, and SA), nontraditional (MEC and OP GSA)
and multivariate calibration (PLS, PCR, and MLR). The OP
MLC, SSC, and TP CT strategies are simple to interpret and
do not require standard addition including data treatment,
which is very easy compared with the previously mentioned
strategies. In this sense, OPMLC and SSCwere evaluated and
compared the 12 normalization modes and analytical signals
(see details in “Acquisition and Data Treatment for LIBS”),
and TP CTwith only normalization mode 5, for Ca, K andMg
in all analyzed samples. Next, the best normalization mode for
each element was chosen evaluating the RSD and trueness
values of the elements.

The concentration values obtained using these three uni-
variate calibration strategies are shown in Table 3. For the
determination of Ca, samples #S8 and #S9 were used as stan-
dards, and the trueness values of this element ranged from 79
to 131% for OP MLC, 59 to 102% for SSC, and 80 to 116%
for TP CT, as shown in Fig. 3. For K, samples #S9 and #S10
were used as standards. The trueness values ranged from 83 to
126% for OP MLC, 67 to 126% for SSC, and 94 to 123% for
TP CT. For this element, the trueness values are depicted in
Fig. 4. On the other hand, for the determination of Mg, sam-
ples #S4, #S5, and #S9 were used as standards; the trueness
values ranged from 83 to 115% for OP MLC, 63 to 126% for
SSC, and 82 to 118% for TP CT, and these results are shown
in Fig. 5. In addition, the RSD (%) for Ca in all samples
ranged from 2 to 26 for OP MLC, 3 to 29 for SSC and 2 to
33 for TP CT. For K, the RSD ranged from 3 to 24 for OPM
LC, 5 to 35 for SSC, and 4 to 34 for TP CT. For Mg, the
RSD (%) values ranged from 3 to 23 for OP MLC, 0.1 to 30

for SSC, and 5 to 28 for TP CT. These values showed good
precision and are considerably acceptable for direct solid anal-
ysis by LIBS; more details of normalization modes, emission
lines, signal type, and RSD range obtained in each calibration
strategy are shown in Table 4.

The use of these univariate calibration strategies for matrix
matching in cocoa bean samples presented good trueness
values, except in some cases, where the trueness values were
below 80%, mainly when SSC was used. This is probably
related to the lower correlation of the elements to estimate
the concentration.

However, among all calibration strategies discussed here,
a particularity must be considered mainly when TP CT is
used, i.e., the sample chosen as the standard and the ana-
lyzed samples must present similar physicochemical prop-
erties. Moreover, greater variability of the concentration

Fig. 3 Trueness (%) values obtained for Ca employed three univariate
calibrations

Fig. 4 Trueness (%) values obtained for K employed three univariate
calibrations

Fig. 5 Trueness (%) values obtained for Mg employed three univariate
calibrations
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values between the standard and the samples cannot be
observed. If this consideration is neglected, the accuracy
can be compromised.

In addition, as TP CT uses two points, the F-test was used
to evaluate the linearity of the curve, and the F-test ratio varied
from 3 to 12,771 in all samples, showing good linearity of the
models.

To evaluate the capability of all univariate calibration strat-
egies for the determination of Ca, K, and Mg, the standard
error (SE) was calculated using Eq. 4.

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ yi−byi
� �2

n−1

v

u

u

t

ð4Þ

where yi is the analyte reference concentration, ŷi is the con-
centration predicted by the calibration model, and n is the
number of samples.

Figure 6 shows the SE results for the determined elements
in all calibration strategies. According to the results, it is pos-
sible to note that in all strategies, low errors are observed
compared with the lowest concentration in the samples:
0.052% (Ca), 0.734% (K), and 0.197% (Mg).

Therefore, each calibration strategy presents its own advan-
tages and disadvantages and can be used according to its ne-
cessity, but it depends on several factors; for example, the
intrinsic characteristics of the analyte, variability of the analyte
concentration in the standard and sample, and the homogene-
ity of the sample can affect the accuracy and precision in the
determination of the analytes. For example, in the determina-
tion of Ca, K, and Mg, SSC failed to minimize or correct the
matrix effects in some samples.

In general, we can consider that these strategies are able
to determine Ca, K and Mg in cocoa bean samples once
good trueness and lower errors are obtained. In addition, it
is important to mention that the determined concentration
values of Ca, K, and Mg in cocoa beans showed that are

Table 4 Parameters for univariate calibration

OP MLC SSC TP CT

Element Best
normalization

Signal type RSD
(%
range)

Best
normalization

Signal type RSD
(%
range)

Best
normalization

Signal type Emission
lines (nm)

RSD
(%
range)

Ca 1, 2, 5, and 6 Area/height 2–26 1, 3, 4, 7, and
9

Area/height 3–29 5 Area/height Ca II 393.37, Ca II 396.85,
Ca I 422.67, and Ca II
431.87

2–33

K 1 and 4 Area/height 3–24 1, 2, 3, and 11 Area/height 5–35 Area/height K I 766.49 and K II
769.89

4–34

Mg 1, 2, 4, 6, and
11

Area/height 3–23 1, 2, 4, 7, and
11

Area/height 0.1–30 Height Mg II 280.27, Mg II
279.55, Mg II 279.80,
and Mg I 285.21

5–28

Fig. 6 Standard errors (%) for
each determined element using
the proposed univariate
calibration (OP MLC, SSC, and
TP CT)
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excellent sources of these important macronutrients for the
human diet.

Conclusions

The possibility of using the three univariate calibration strate-
gies (OP MLC, SSC, and TP CT) for matrix matching to
minimize matrix effects in the determination of metals in co-
coa beans by employing LIBS was simple and fast because no
standard addition is required, which simplifies the sample
preparation process. Of the employed strategies, OP MLC
and TP CT presented good results with robustness and preci-
sion when compared with those obtained by SSC. Therefore,
in general, these strategies can be considered effective and
suitable for elemental determination in complex matrices,
which is a challenge in direct solid analysis by LIBS.
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Hyperspectral images: a qualitative approach to
evaluate the chemical profile distribution of Ca, K,
Mg, Na and P in edible seeds employing laser-
induced breakdown spectroscopy†

Raimundo R. Gamela, Marco A. Sperança, Daniel F. Andrade and Edenir R. Pereira-
Filho *

In the present study, laser-induced breakdown spectroscopy (LIBS) combined with chemometric tools was

used to investigate the metal composition in nine seed samples. The samples were directly analyzed, and

a matrix with 9 rows and 9 columns (81 points) and 10 consecutive pulses were analyzed in each point.

A total of 810 emission spectra were collected from 186 to 1042 nm from the surface and bulk of the

sample. The dataset was normalized by Euclidian norm and principal component analysis (PCA) was used

for the initial exploratory investigation. Calcium, Mg, Na, K and P were mainly identified in all samples;

however, the distribution of metals in these samples is not completely homogeneous, i.e., the

composition of the elements change from one layer to another. This fact can be probably related to the

absorption capability of nutrients resulting from different factors such as soil characteristics, physiology

of the plant, water source composition and fertilizers which can influence the distribution of the

elements in different seeds. To confirm the elements observed by LIBS, the samples were digested using

microwave-assisted digestion, and Ca, K, Mg, Na and P were determined by inductively coupled plasma-

optical emission spectrometry (ICP-OES). In addition, some minor nutrients such as S and Zn were also

investigated and the relationships between elements were observed through the Pearson correlation

graph, and some of them, such as Mg and Na, P and Na, S and P, S and Zn, are extremely correlated; it

means that, for example, when the concentration of Mg increases, that of Na also increases.

1. Introduction

Seeds and nuts have been mostly consumed due to the high
concentration values of different nutrients, such as proteins,
unsaturated fatty acids, vitamins and essential chemical
elements, which play an important healthy role in the human
body. In addition, some edible seeds are used in food industry
processes to be converted into other products, such as oils for
human consumption.1–3

Before human consumption, seeds are subject to several
growth stages, which can be affected by different factors, such
as morphological and physiological conditions. These factors
can directly affect the nutritional efficiency caused due to the
low absorption capability of the nutrients present in the soil.4

Therefore, our intention is to chemically characterize, i.e., to
evaluate the chemical prole distribution of Ca, K, Mg, Na and P
in seed samples, and at the same time explain the variations in

the distribution process of these elements in different layers of
seeds. However, this process would not be possible with simple
digestion of the samples and analyte determination by analyt-
ical techniques, such as inductively coupled plasma optical
emission spectrometry (ICP-OES) and ame atomic absorption
spectrometry (FAAS).5–8

Taking these points into consideration, it is important to
combine strategies for rapid and reliable analysis with little or
no sample preparation. Laser-induced breakdown spectroscopy
(LIBS) has been used for the analysis of different matrices due to
its capability to combine direct solid sample chemical inspec-
tion and rapid simultaneous determination of several elements
in few minutes and with high analytical frequency.9–12 In addi-
tion, the combination of LIBS features and chemometric tools
can generate hyperspectral images that can be mathematically
decomposed using principal component analysis (PCA) (score
maps and loadings). The use of hyperspectral images can help
in the interpretation and observation of the chemical distribu-
tion of Ca, K, Mg, Na and P in seed samples simultaneously and
identifying their relationship.13

This strategy has been used by several authors for qualitative
determination and chemical distribution identication of solid
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samples. Sperança et al.14 used LIBS and hyperspectral images
for direct evaluation of the chemical composition prole of
coprolites. The authors correlated the chemical composition
with the nature of the fossil and the environment and with the
taphonomic process. McMillan et al.15 (2014) used LIBS and
hyperspectral images to map the Cu composition of ore
samples. Carvalho et al.13 (2015) investigated the metal
composition of a printed circuit board (PCB) sample from
a mobile phone, combining LIBS, hyperspectral images, and
scanning electron microscopy with energy-dispersive X-ray
spectroscopy (SEM-EDS).

Castro and Pereira-Filho16 developed a study to assess tech-
nological elemental composition of magnets from computer
hard disks. Besides the ICP-OES technique for quantitative
analysis, the authors employed LIBS to obtain hyperspectral
images to verify the chemical composition and certain special
features. Other applications of hyperspectral images were
employed by Carneiro and Poppi17,18 for in situ analysis of
a imiquimod pharmaceutical preparation presented as cream,
and the homogeneity study of ointment dosage forms, respec-
tively. These studies were performed by infrared imaging
spectroscopy.

However, the literature reveals no studies using LIBS for
hyperspectral images in seed samples. Thus, the present study
reports the applicability of LIBS and chemometric tools to
evaluate the chemical prole distribution of Ca, K, Mg, Na and P
on the surface and in the bulk of the samples.

2. Materials and methods
2.1 Instrumentation

In this study, edible seed samples were directly analyzed
employing a LIBS instrument: model J200 from Applied Spectra
(Freemont, USA) with a Nd:YAG laser (1064 nm) used for
emission spectra acquisition. To purge ablated particles, the
equipment is tted with a HEPA air cleaner, and the movement
of the sample is performed by a automated XYZ stage and a 1280
� 1024 CMOS (complementary metal-oxide semiconductor)
color-camera imaging system. For obtaining the emission
spectra, the plasma emission light is conducted through an
optical ber bundle coupled to a 6-channel CCD (charge-
coupled device) spectrometer with a spectral range from 186 to
1042 nm resulting in 12 288 variables, with a gate width of 1.05
ms. For the identication of the emission lines of the elements,
the Aurora Soware Package (Applied Spectra) was used. In
addition, an ICP-OES, model iCAP 7000 (Thermo Fisher Scien-
tic, USA) was employed for the determination of the elements
identied by LIBS analysis. The plasma conditions and the
emission lines used in ICP-OES determination are described in
Table 1.

2.2 LIBS and ICP-OES analysis

Nine seed samples used in the present study were acquired
from a local market in São Carlos city, São Paulo State, Brazil.
The popular and scientic name of the samples is presented in
Table 2.

Before analysis, experimental conditions for LIBS parame-
ters were optimized using a central composite design. Thus, the
optimized instrumental conditions were as follows: 53 mJ laser
pulse energy, 50 mm spot size resulting in a uency of 2699 mJ
cm�2 and 1.9 ms delay time. All edible seed samples were
directly analyzed by LIBS without any sample preparation
procedure. A pattern for analysis was applied from amatrix with
9 rows and 9 columns (9 � 9) for a total of 81 points according
to the pictorial information described in Fig. 1. The distance
between each point was 0.5 mm, an area of 16 mm2 (4 � 4 mm)
was covered, and 10 consecutive laser pulses per point were
used to obtain elemental information along the surface and
bulk of the sample; in each point, a total of 810 pulses were
recorded for each sample.

To conrm the elements observed by LIBS, the samples were
ground using a mill type Wyllie (model CE-430, CIENLAB, São
Paulo, Brazil). Aer that, the samples were mineralized using
a microwave system (Speedwave XPERT, Berghof, Eningen, BW,
Germany). A sample mass of 0.350 g was directly weighed in

Table 1 Operational conditions for determination by ICP-OES

Instrumental parameters Operational conditions

Radio frequency applied
power (kW)

1.15

Integration time for low
emission line (s)

15

Integration time for high
emission line (s)

5

Sample introduction ow
rate (mL min�1)

1.0

Pump stabilization time (s) 5
Argon auxiliary ow rate
(L min�1)

0.5

Argon plasma ow rate
(L min�1)

12

Argon nebulizer ow
rate (L min�1)

0.7

Replicates 3
Elements and
wavelengths (nm); viewing
mode: axiala and radialb

bCa II (396.847), bK I (766.490),
aMg II (279.553), aMn II (257.610),
aNa I (588.593) bP I (178.284)
bS I (180.731) and bZn I (213.857)

Table 2 The scientific and popular name of the seed samples studied

Description Scientic name Commercial name

S1 Dipteryx alata Garbanzo seed
S2 Lupinus albus L. Dried lupine
S3a Lens culinaris Red lentil
S4a Pisum sativum L. Pea seed
S5a Cucurbita moschata Pumpkin seed
S6 Salvia hispanica Chia seed
S7 Linum usitatissimum L. Flaxseed
S8 Myristica fragrans Nutmeg
S9 Dipteryx alata Chestnut baru

a The samples used for hyperspectral images.
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Teon vessels (DAP 60) and 4.0 mL of HNO3 65% v/v, 2.0 mL of
H2O2 30% v/v and 2.0 mL of H2O were added. The samples were
subjected to the following heating program, performed in three
steps (temperature in �C/ramp in min/hold in min): (i) 170/5/10;
(ii) 200/1/15; (iii) 50/1/10. Aer cooling, the samples were
transferred to polyethylene asks and a nal volume of 40 mL
was completed with ultrapure water (18 MU cm resistivity, Milli-
Q® plus, Millipore Corp, Bedford, MA, USA).

Elemental standard solutions (Ca, Cu, K, Mg, Mn, Na P, S
and Zn) containing 1000 mg L�1 (Merck, Darmstadt, Germany)
were properly diluted to prepare the calibration solutions for
determination by ICP-OES (reference method) using high purity
water. The analyses were performed using the ICP-OES tech-
nique, and more details are provided in Table 1.

2.3 Data treatment

All data organization, treatment and calculations were per-
formed in MATLAB 2018a (Mathworks, Natick, MA, USA) and
Pirouette version 4.5 (Infometrix, Bothell, WA, USA). The
dataset from each sample was organized in 81 lines (spectra)
and 12 288 columns (emission lines from 186 to 1042 nm), and
the data were normalized by norm to minimize problems
related to sample surface microheterogeneity and signal uc-
tuation from the laser–matter interaction during the data
acquisition.19

Aer that, principal component analysis (PCA) was per-
formed, which consists of singular value decomposition (SVD)
where Xmatrix is decomposed into two newmatrices, T (scores)
and P (loadings),20 i.e., using T and P it is possible to identify
patterns in the original matrix X that normally contains the
samples in the rows and variables in the columns. This tool is
an unsupervised method that correlates different variables for
the evaluation and characterization of the analytical data,
identifying trends and sample clusters. In addition, PCA offers
possibilities to evaluate the loading information of various
elements in single images making data interpretation easy.20

Therefore, using PCA is possible to correlate the distribution of
the elements in different depth layers of the sample. In this
study, the samples were the spectrum of each analyzed point,
and the variables were the emission lines obtained by LIBS.
Thus, PCA was performed using the normalized data (12 288
variables) for the initial exploratory analysis of each layer pulse,

in this case from 1 to 10. Aer that, the normalized dataset was
mean centered (810 � 12 288 variables). The third script
designated as “libs”13 was used to generate the score maps in
a 4D tensor. In this sense, the scores T, loadings P and the
explained variance for each PC were obtained. Hence, for this
purpose, the number of laser pulses at each point, number of
horizontal points (9), number of vertical points (9) and number
of PC (5) are necessary as inputs in the “libs” script to create the
hyperspectral image. The last script used, the so-called “libs_-
plot” (Sperança et al.14), automatically plots the score maps for
a specic pulse layer. Besides Matlab, all these scripts can be
used in a free program named Octave. The same procedure was
performed for other samples as describe previously.

3. Results and discussion
3.1 Optimization of instrumental parameters

To obtain reliable results employing LIBS, some measurement
parameters such as delay time and uence needed to be opti-
mized to identify the best conditions for analysis. The addi-
tional laser settings used were xed as follows: a scan length of 8
mm, a laser repetition rate of 5.0 Hz, and ablation chamber
speed is xed at 1.0 mm s�1.

For this purpose, central composite design with 11 experi-
ments (3 replicates in central point) was used to obtain both the
highest area, height and signal-to-background ratio (SBR) for
the most intense emission lines monitored (Ca, K, Mg, Na and
P). The variables were evaluated in ve levels coded between
�1.422 to 1.422, and the experimental matrix of the central
composite design is shown in Table 3. Due to instrumental
limitations, the variable uence was studied from 1448 (�1.422)
to 3820 mJ cm�2 (1.363) and around 600 spectra were collected
through a matrix (raster) studied in different regions of the
sample surface. The emission line intensities monitored were
Ca II 393.36, K I 766.49, Mg II 279.55, Na I 589.59 and P I 213.0.

In this case, to achieve simultaneous optimization and to
nd the best conditions for each response, the desirability (di)
function was calculated as a function of the SBR, area and
height of all monitored elements, according to eqn (1). The di
function allows us to attribute values between 0 (undesirable
response, lowest SBR, area and height) and 1 (desirable
response, highest SBR, area and height).

Fig. 1 Pictorial information of the data organization and treatment.
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di ¼
�
y� L

T � L

�s

(1)

where L is the lowest acceptable value for the response, T is the
target value, and s is the weight (when equal to 1 ¼ linear
desirability function). In the present study, L values were the
lowest for the SBR, height and area in the set of experiments for
each element and T values were the highest for SBR, height and
area for each element. The weight s was 1.

Thus, the overall desirability (OD) was combined into
a single response, as can be seen in eqn (2).

OD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1 d2.dm

m
p

(2)

where m is the number of response variables evaluated
simultaneously.

Before the proposition of calibration models, to overcome
some drawbacks of LIBS, normalization of the data is necessary.
In this sense, 12 normalization modes19 were assessed for the
calibration strategy. Aer performing normalization, a chemo-
metric routine (libs_par2) was used to calculate the signal-to-
background ratio (SBR) as well as both the signal area and
height for a specied emission line. Thus, the normalization
mode by sum (normalization 5) was considered suitable and
presented a better t of the model because the ratio between the
Mean of Square of lack of t (MSlof) and Mean of Square of pure
error (MSep), the F calculated (0.41) is lower than F_tabulated
(19.16). However, comparing the Mean of Square of Regression
(MSR) and Mean of Square of Residue (MSRes), the F calculated
(2.9) should be higher than F_tabulated (5.05). Despite the
regression not being good enough, this observation does not
affect the predictive capability of the model.

The surface response of the optimized conditions is shown
in Fig. 2. Moreover, is possible to observe that variable 1 (laser
pulse uence) was not signicant including their interactions,
i.e., any condition tested in the experimental domain can be
used, while the variable 2 (delay time) is more signicant, and
high values of OD are obtained when long delay time was used.
Therefore, the central composite design model generated the
OD calculated from eqn (3).

In this sense, a delay time of 1.9 ms and a uence of 2699 mJ
cm�2, with 53 mJ laser pulse energy and 50 mm spot size were
used for further experiments.

OD ¼ 0.528 � 0.09 + 0.069 � 0.06v2 (3)

v2: delay time.

Table 3 Matrix of the central composition design with the variables
used for the optimization of instrumental conditions employing LIBS,
and the overall desirability values (OD) obtained

Experiments

Fluence
(mJ cm�2) Delay time (ms)

ODReal Coded Real Coded

1 1811 �0.996 0.7 �1.000 0.32
2 3514 1.004 0.7 �1.000 0.42
3 1811 �0.996 1.7 1.000 0.44
4 3514 1.004 1.7 1.000 0.57
5 2699 0.000 1.2 0.000 0.52
6 2699 0.000 1.2 0.000 0.46
7 2699 0.000 1.2 0.000 0.61
8 1448 �1.422 1.2 0.000 0.46
9 3820 1.363 1.2 0.000 0.47
10 2699 0.000 0.5 �1.414 0.37
11 2699 0.000 1.9 1.414 0.58

Fig. 2 Response surface of the optimized instrumental conditions for LIBS as a function of the overall desirability (OD) obtained from the central
composite design for the study of hyperspectral images in seed samples.
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3.2 ICP-OES analysis and the correlation of the elements

In this section, our intention was to use chemometric tools to
evaluate the correlation of the samples. Elements such as Cu,
Mn, S and Zn were not detected by LIBS; in this sense, they were
determined by only ICP-OES and the quantitative data are
shown in Table 4. The concentration level of the elements (in
mg kg�1) ranged between 191–4663 for Ca, 6–19 for Cu, 20–98
for Fe, 3720–13 957 for K, 658–3928 for Mg, 8–217 for Mn, 333–
1989 for Na, 3612–25 986 for P, 1077–4576 for S and 13–79 for
Zn. It is worth noting that Ca, K, Mg, P and S presented the
highest concentration values in all analyzed edible seed
samples.

From the concentration of the elements, the data were
organized as a matrix X (9 � 9) where the columns and rows are
the elements with their concentration values, respectively. The
data acquired by ICP-OES were subjected to an exploratory
analysis using the Pearson correlation coefficient. This corre-
lation (R) shows the linear relationship between the element
concentrations determined by ICP-OES. The higher absolute
value near 1 indicates high dependence between two variables.

Each value obtained for these correlation coefficients is related
to a specic color. Moreover, aer this step, a Pearson correla-
tion graph is generated to explain the possible correlation in the
samples.

Fig. 3 shows the Pearson correlation graph used for the
correlation of the elements in the samples and the red and blue
colors represent high and low correlation of the elements. The
correlation of an element with itself is always equal 1; in this
way, the evaluation of correlation was performed for the
different elements.

For example, P and Mg are highly positively correlated in
these samples, i.e., when the concentration value of P increases,
the concentration value of Mg also increases. In addition, other
elements such as Mg and Na, P and Na, S and P, S and Zn
presented the same behavior of correlation and converge in the
red color region of the Pearson correlation graph (see Fig. 3).
However, Ca, Cu, K and Mn are inversely correlated when the
concentration of other elements increases. For example, when
the P concentration value increases, the concentration value of
Ca, Cu and Mn decreases. This phenomenon can be explained

Table 4 Concentration values of Ca, Cu, K, Mg, Mn, Na, P, S and Zn in seed samples obtained using the ICP-OES technique (mean � standard
deviation, n ¼ 3)

Concentration (mg kg�1)

Samples Ca Cu K Mg Mn Na P S Zn

S1# 1341 � 125 10 � 4 10 440 � 425 1422 � 170 40 � 4 731 � 21 6042 � 314 2130 � 234 35 � 8
S2# 1544 � 65 9 � 1 6589 � 42 1469 � 58 217 � 7 843 � 18 4922 � 126 2630 � 138 45 � 9
S3# 191 � 3 7.0 � 0.3 6696 � 306 658 � 8 8 � 0.3 333 � 14 4046 � 147 1813 � 18 45 � 3
S4# 288 � 20 6.0 � 0.4 7898 � 287 888 � 35 8 � 0.1 448 � 26 4987 � 53 2043 � 44 25 � 2
S5# 300 � 24 12.0 � 0.3 6227 � 281 3928 � 89 50 � 0.3 1989 � 111 25 986 � 658 4321 � 235 62 � 4
S6# 4663 � 132 6.0 � 0.1 10 631 � 341 2792 � 103 46 � 1 1419 � 89 14 587 � 621 4576 � 241 56 � 2
S7# 2435 � 75 16 � 1 7970 � 321 3582 � 110 47 � 1 1815 � 113 14 147 � 513 3286 � 175 68 � 4
S8# 1628 � 144 10.0 � 0.3 3720 � 230 1613 � 72 15 � 1.4 814 � 2 3612 � 153 1077 � 102 13 � 1
S9# 1403 � 71 19.0 � 0.4 13 957 � 218 2694 � 127 131 � 2 1413 � 89 16 093 � 311 4379 � 174 79 � 1

Fig. 3 Pearson correlation graph used for the correlation of the elements in the sample.
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to be due to the type of fertilizers used; it means that if P
fertilizers, Zn fertilizers or a mixture of both was applied to the
culture, it can inuence nutrient concentrations, i.e., no effect,
increase or decrease individual nutrients. Experiments per-
formed by Jiao et al.,21 for example, show that P fertilizers can
enhance the concentration of Mg; however, the addition of Zn
can restrict the absorption of Ca and Cu, reducing the
concentration of these elements. Therefore, this behavior
explains the results as can be seen in Pearson correlation graphs
(see Fig. 3).

3.3 Hyperspectral image interpretation

Complementary to ICP-OES and LIBS measurements, hyper-
spectral image analysis was performed under the optimized
conditions to collect emission spectra of 3 samples, and another
6 samples, which present small dimensions making it difficult
to study hyperspectral images (see Table 2). Fig. 4 shows
a typical spectrum (a) before and (b) aer normalization, which
is composed of thousand emission lines (atomic lines, I and

ionic lines, II). The obtained loading values were used in
combination with quantitative information acquired by ICP-
OES (Table 4) to correlate the concentration values of the
elements and their positions in the sample. Moreover, the score
values were used to build score maps and analyzed together
with the loading values to help better interpret the analyte
prole distribution on the surface and in the bulk of the
samples. The elements identied by LIBS and their emission
lines are presented in Table 5.

All score maps were plotted using all variables (emission) of
PC1 that presented high explained variance of the data. Fig. 5
shows the three score maps of pea seeds in layer pulses 1 (a), 5
(b) and 10 (c), and the loading plots using all variables (emis-
sion lines) studied for PC1 with 39%, 16% and 15% explained
variance are shown in Fig. 1S in the ESI.† Fig. 1S(a)† presents
the loading values of pulse 1, and Ca and K represent positive
loading values related to the red color in the score map region,
whereas in negative values of loadings, elements such as Mg
and Na and some emission lines of Ca are related to the blue
color region. On the other hand, Ca is less intense, with prac-
tically insignicant loadings in this layer.

In pulse 5, the loading values are represented in Fig. 1S(b).†
Potassium, Mg and Na were found in positive loadings. In
addition, fewer emission lines of Ca can be observed in this
region. However, Na is the main element that presents high
intensity and is distributed in themore intense red color region.
For negative loading, only Mg is located in blue color in the
score map region, while Ca presents less intensity and its
loading values are near to zero.

Fig. 4 Raw LIBS emission spectrum (a) and the emission spectrum
normalized by the individual norm (b).

Table 5 Elements observed by LIBS with their emission lines and
relative intensitya

Elements Emission lines (nm) Relative intensityb

Ca II 393.36 37 542
Ca II 396.84 34 742
Ca II 317.93 27 769
Ca II 373.68 27 247
Ca II 315.88 23 620
Ca I 422.67 8052
Ca I 558.87 3812
Ca I 643.90 3167
Ca I 649.38 1616
K I 766.49 3054
K I 769.89 1991
Mg II 280.27 352 473
Mg II 279.55 335 173
Mg I 518.36 321 771
Mg I 517.26 302 600
Mg I 285.21 232 716
Na I 588.99 10 000
Na I 589.59 10 000
P I 213.61 271

a I, Atomic emission line; II, ionic emission line. b Extracted from
TruLIBS™ database soware (Applied Spectra). TruLIBS™ emission
lines were generated using a laser ablation source together with
a highly sensitive UV spectrometer specially optimized to collect LIBS
spectra. The resulting intensities and emission wavelengths are very
accurate for LIBS.14
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The loading plots presented in Fig. 1S(c)† correspond to
pulse 10. In this layer, Na has a positive loading, which is
observed by the red color due its high intensity. Calcium, K and
Mg have negative loadings, and K and Mg are found to be
distributed in blue color, while Ca presents loadings near to
zero.

Fig. 6 shows the comparison of the loadings of pulse 1, 5 and
10. As can be observed in Fig. 6(a and b) there is no correlation
between pulse 1 and pulse 5 and pulse 1 and pulse 10, respec-
tively. However, upon comparing pulse 5 and pulse 10 (Fig. 6(c))
it was possible to note that the loadings of these two layers are
highly correlated (R2 ¼ 0.827). In this sense, we can assume that

Fig. 5 Score maps for the pea seed for pulses 1 (a), 5 (b) and 10 (c).

Fig. 6 Comparison among the loading values of pulses 1 (a), 5 (b) and 10 (c) in pea seed.
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the sample composition of pulse 5 is approximately the same as
the composition in pulse 10.

Fig. 7 shows the score maps of PC1 for the variables studied
in the lentil seed sample with 40%, 9% and 8% explained
variance for pulse 1, 5 and 10, respectively. Fig. 2S† represents
the loading values of pulse 1, 5 and 10. Fig. 2S(a)† presents the
loading values of pulse 1, where Ca, Mg and Na are in the
positive score map (see red color), and the loading value of P is
near to zero. On the other hand, only K presents negative
loading values and is located in the negative score map (see blue
color). Fig. 2S(b)† shows the loadings and the score map for
pulse 5, where Na and K (positive loading) were the predomi-
nant constituents, as observed in red color regions (positive
score). The other element is Mg which presents negative loading
and is related to negative score values (see blue color regions).
Calcium was present in low prevalence in red and blue color
regions (positive and negative loadings).

Fig. 2S(c)† shows the last pulse (pulse 10) and it is possible to
observe that both layers with 5 and 10 pulses present a similar
composition, and it can be conrmed through the correlation
graph of the pulses, as shown in Fig. 8 (R2 ¼ 0.646). An
important piece of information that needs to be mentioned is
related to P. This element was only observed in the rst layer
(pulse 1, positive loading); however, in subsequent layers no
signal was observed.

Fig. 9 shows the score maps obtained for pumpkin seeds for
PC1 with 66%, 18% and 22% explained variance for pulse 1, 5
and 10, respectively. The loading values of pulse 1, 5 and 10 are
shown in Fig. 3S.† In Fig. 3S(a)† it can be observed that Ca, Mg
and Na are located in positive loading, and these are related to
the red color in score maps, while K is present in the negative
score map region (blue color). It is important to point out that
Na and Mg are inversely correlated between pulse 1 and 5, i.e.,
while the signal of Na increases, the signal of Mg decreases from
pulse 1 to pulse 5. In Fig. 3S(b),† only Na is in the positive score
map (see red color), while other elements, such as Ca, Mg and K,
present negative loading, where Mg and K are more related to
the blue color in score maps.

For the last pulse (pulse 10) presented in Fig. 3S(c),† it is
possible to observe K in positive loading values (see red score
maps). Other elements, such as Ca, Mg and Na, were identied
in negative loading, and these elements are related to the blue
color in the score maps. In addition, P was present in the rst
layer of the sample, i.e., it was not observed in other deep layers.

In general, the score map color changed from one pulse to
another, meaning that the distribution of the elements in these
samples is not fully homogeneous. In addition, we can assume
that most of the elements are more distributed on the seed
surface, and as the depth increases, the composition and
distribution of these elements reduce.

Therefore, studies involving the chemical prole of seeds are
important, as they can provide qualitative information and
show how these elements are distributed in the bulk and
surface of the seeds. It is important to highlight that the
chemical elements are dependent on soil characteristics,
morphological and physiological factors, composition and
fertilizers used for planting [4].

Fig. 7 Score maps for lentil seeds for pulses 1 (a), 5 (b) and 10 (c).

Fig. 8 Comparison among the loading values of pulses 5 and 10 in
lentil seeds.
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However, these factors can or cannot affect the nutritional
absorption capability of the seeds, i.e., depending on each
species, the plants absorb and accumulate some chemical
elements effectively and others ineffectively. Therefore, the
lower absorption capability of the nutrients can probably
inuence the chemical distribution of the seeds. The evidence
can be observed through hyperspectral images (score maps),
which show inhomogeneous distribution of the evaluated
elements.

According to qualitative information, it was possible to
evaluate the chemical distribution of Ca, K, Mg, Na and P.
Moreover, other chemical elements such as Cu, Mn, S and Zn
are present; however they were not evaluated using LIBS
because this technique did not present sufficient sensitivity for
this purpose. The presence of these elements was conrmed
using the ICP-OES technique. From this information, edible
seeds are an important source of Ca, K, Mg, Na and P; besides
they contribute to the normal development of plants, and these
elements play important roles in the appropriate functioning of
humans and at the same time guarantee a healthy diet.

4. Conclusions

Chemometric tools were used to evaluate the correlation of
samples using concentration values of elements obtained using
the ICP-OES technique. Many samples were highly correlated
due to the presence of Na, Mg, P, S and Zn. Moreover, we
concluded that high concentration values of some elements can
restrict the absorption of other elements, and it can effectively
inuence the quality of seeds for human diet.

Moreover, the combination of LIBS with chemometric tools
allowed us to obtain qualitative information about the sample
composition which was correlated with that obtained by ICP-
OES.

The use of hyperspectral images through loadings and score
maps provided the elemental distribution on the surface and in
the bulk of the samples. It was possible due to the collected

spectra, where 10 pulses were recorded for each point marked
on the surface of the sample. Thus, from the generated scores
maps the change of color (red or blue) from one layer to the
other was observed, showing the variation of the elements in
these layers.

It is expected that hyperspectral images employing LIBS can
be used for other types of samples to evaluate the chemical
distribution of elements.
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Supplementary material 

 

Figure 1S. Loading values for the pea seed for pulses: 1 (a), 5 (b) and 10 (c)  
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Figure 2S. Loading values for the lentil seed for pulses: 1 (a), 5 (b) and 10 (c) 
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Figure 3S. Loading values for the pumpkin seed for pulses: 1 (a), 5 (b) and 10 (c) 
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Conclusions 

In this thesis it was possible to demonstrate possibilities and analytical 

applications of the use of LIBS and WDXRF for elemental determination in edible 

seeds. These techniques presented several advantages, however, the direct solid 

analysis with less handling of the samples and higher analytical frequency (time for 

data acquisition), mainly in the case of the LIBS, represent the most important feature 

of the proposed methods. In addition, the combination of these techniques with 

chemometrics tools enabled the spectral data treatment, which has become 

increasingly important nowadays.  

New calibration strategy using data fusion from LIBS and WDXRF was 

developed to circumvent matrix effects in the determination of K, Mg and P in bean 

seeds employing LIBS. This strategy was suitable, as it presented lower standard error 

of cross validation (SECV) when compared with those obtained by univariate 

calibration in individual form (LIBS or WDXRF) and multivariate calibration (MLR). 

Moreover, other new univariate calibration strategies, such as OP MLC, SSC and TP 

CT were used for the determination of Ca, K and Mg in cocoa beans. These strategies, 

besides its simplicity, present advantages, i.e., they required only one sample as 

standard with known concentration for calibration. Moreover, acceptable trueness 

values and lower relative standard deviation (RSD) were obtained, showing a better 

capability to minimize the matrix effects in LIBS.  

Other possibility and analytical application for LIBS was related to 

hyperspectral images. Through chemometric tools and LIBS was possible to evaluate 

qualitatively the chemical profile distribution of the elements in the surface and depth 

of the seeds.  Therefore, in all cases, ICP OES was used as a complementary and 

reference technique. 
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