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RESUMO

BERTOLI, W. Uma nova classe de modelos discretos para a análise de dados de contagem
zero-modificados. 2020. 321 p. Tese (Doutorado em Estatística – Programa Interinstitucio-
nal de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2020.

Neste trabalho, uma nova classe de modelos discretos para a análise de contagens zero modifi-
cados foi introduzida. A classe proposta é composta pelas versões hurdle das distribuições de
Poisson-Lindley, Poisson-Shanker e Poisson-Sujatha, que são misturas uniparamétricas de Pois-
son, capazes de acomodar diferentes níveis de sobredispersão. Diferentemente da formulação
tradicional das distribuições zero modificadas, a principal suposição acerca de um modelo hurdle

é que as observações positivas são inteiramente representadas por distribuições zero-truncadas.
No sentido de estender a aplicabilidade dos modelos teóricos, também foi desenvolvida uma
estrutura de regressão com efeitos fixos, na qual tanto a probabilidade de se observar o valor
zero, quanto o número médio de observações positivas por indivíduo, puderam ser modelados na
presença de covariáveis. Além disso, também foi desenvolvida uma estrutura ainda mais flexível,
permitindo a inclusão simultânea de efeitos fixos e aleatórios nos preditores lineares do modelo
hurdle. Na estrutura de efeitos mistos derivada, considerou-se o uso de efeitos aleatórios escalares
para quantificar a heterogeneidade entre as observações de um mesmo indivíduo, que decorre de
agrupamentos ou medidas repetidas. Neste trabalho, todos os procedimentos inferenciais foram
conduzidos sob uma perspectiva totalmente Bayesiana. Diferentes distribuições a priori foram
consideradas (por exemplo, Jeffreys’ e g-prior), e a tarefa de gerar valores pseudo-aleatórios de
uma distribuição a posteriori sem forma fechada foi realizada por um dos três algoritmos a seguir
(dependendo da estrutura de cada modelo): Amostragem por Rejeição, Random-walk Metropolis,
e Metropolis Adaptativo. Estudos intensivos de simulação de Monte Carlo foram realizados
como forma de avaliar o desempenho das metodologias Bayesianas adotadas. A utilidade dos
modelos zero modificados propostos foi ilustrada usando vários conjuntos de dados reais que
apresentavam diferentes estruturas e fontes de variação. Além de estimar os parâmetros, foram
realizadas análises de sensibilidade para identificar pontos influentes e, para avaliar os modelos
ajustados, foram computados os p-valores Bayesianos, os resíduos quantílicos aleatorizados,
entre outras medidas. Por fim, quando comparados com distribuições bem estabelecidas que
são úteis para a análise de dados de contagem, a competitividade dos modelos propostos foi
comprovada em todos os exemplos fornecidos.

Palavras-chave: Dados zero modificados, distribuições de mistura de Poisson, métodos Bayesi-
anos, modelo hurdle com efeitos mistos, sobredispersão.





ABSTRACT

BERTOLI, W. A new class of discrete models for the analysis of zero-modified count data.
2020. 321 p. Tese (Doutorado em Estatística – Programa Interinstitucional de Pós-Graduação em
Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2020.

In this work, a new class of discrete models for the analysis of zero-modified count data has been
introduced. The proposed class is composed of hurdle versions of the Poisson-Lindley, Poisson-
Shanker, and Poisson-Sujatha baseline distributions, which are uniparametric Poisson mixtures
that can accommodate different levels of overdispersion. Unlike the traditional formulation of
zero-modified distributions, the primary assumption under hurdle models is that the positive
observations are entirely represented by zero-truncated distributions. In the sense of extending
the applicability of the theoretical models, it has also been developed a fixed-effects regression
framework, in which the probability of zero-valued observations being generated as well as
the average number of positive observations per individual could be modeled in the presence
of covariates. Besides, an even more flexible structure allowing the inclusion of both fixed
and random-effects in the linear predictors of the hurdle models has also been developed. In
the derived mixed-effects structure, it has been considered the use of scalar random-effects to
quantify the within-subjects heterogeneity arising from clustering or repeated measurements.
In this work, all inferential procedures were conducted under a fully Bayesian perspective.
Different prior distributions have been considered (e.g., Jeffreys’ and g-prior), and the task of
generating pseudo-random values from a posterior distribution without closed-form has been
performed by one out of the three following algorithms (depending on the structure of each
model): Rejection Sampling, Random-walk Metropolis, and Adaptive Metropolis. Intensive
Monte Carlo simulation studies were performed in order to evaluate the performance of the
adopted Bayesian methodologies. The usefulness of the proposed zero-modified models was
illustrated by using several real datasets presenting different structures and sources of variation.
Beyond parameter estimation, it has been performed sensitivity analyses to identify influent
points, and, in order to evaluate the fitted models, it has been computed the Bayesian p-values,
the randomized quantile residuals, among other measures. Finally, when compared with well-
established distributions for the analysis of count data, the competitiveness of the proposed
models has been proved in all provided examples.

Keywords: Bayesian methods, mixed-effects hurdle models, overdispersion, Poisson mixture
distributions, zero-modified data.
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CHAPTER

1
INTRODUCTION

1.1 Background

Most of the classical statistical methods were developed under the strong assumption
that observations from a random variable are independent and identically distributed, usually
drawn from homogeneous populations. However, the primary challenge for modern statisticians
is to handle data structures that violate such assumptions. Particularly, the modeling of count
data deserves special attention (MOLENBERGHS; VERBEKE, 2005) as it may be necessary
to use models that accommodate different sources of variation arising, for example, from an
alteration in the observed frequency of a specific outcome.

The ordinary Poisson distribution is often adopted for the analysis of count data, mainly
due to its simplicity and by having its computational implementation available for most of
the usual statistical packages. However, it is well-known that such a model is not suitable to
describe counts in which the variance-to-mean ratio is not (at least) close to 1. Apart from
data transformation, the most popular approach to circumvent such an issue is the use of
finite mixture models (MCLACHLAN; PEEL, 2004) that can accommodate different levels of
overdispersion (KARLIS; XEKALAKI, 2005). A unified approach for obtaining mixtures of a
Poisson distribution and a model belonging to the exponential family is provided by (BARRETO-
SOUZA; SIMAS, 2016).

The Negative Binomial distribution (that may arise as a Poisson mixture model by
using a Gamma distribution for the continuous part) is undoubtedly the most popular alter-
native to model extra-Poisson variability. Nevertheless, there is extensive literature regarding
other discrete mixed distributions that can accommodate different levels of overdispersion,
for example, the Poisson-Lindley (SANKARAN, 1970), the Poisson-Lognormal (BULMER,
1974), the Poisson-Inverse Gaussian (SHABAN, 1981), the Negative Binomial-Lindley (ZA-
MANI; ISMAIL, 2010), the Poisson-Janardan (SHANKER et al., 2014), the two-parameter
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Poisson-Lindley (SHANKER; MISHRA, 2014), the Poisson-Amarendra (SHANKER, 2016b),
the Poisson-Shanker (SHANKER, 2016c), the Poisson-Sujatha (SHANKER, 2016d), the quasi
Poisson-Lindley (SHANKER; MISHRA, 2016), the Weighted Negative Binomial-Lindley (BAK-
OUCH, 2018), the Poisson-Weighted Lindley (SHANKER; SHUKLA, 2018), the Binomial-
Discrete Lindley (KUŞ et al., 2019), among many others.

Unfortunately, there is a significant drawback regarding such mixture models, which is
the fact that they do not fit well when data presents a modification in the frequency of zeros
(typically underestimate the data dispersion and the frequency of zero-valued observations).
The most common case in practice is the presence of an excessive number of zero-valued
observations along with a nonhomogeneous/skewed distribution of the positive values. In this
way, developing two-part models (zero-inflated/hurdle models) based on the Poisson distribution
became necessary. Prominent works addressing this task are Cohen (1960), Umbach (1981),
Mullahy (1986), Lambert (1992), Zorn (1996), Deb and Trivedi (2002), McDowell (2003), and
Wagh and Kamalja (2018).

Several authors have considered these approaches for the analysis of real data, and here
we point out a few. Gurmu and Trivedi (1996) have sought to deal with the excess of zeros on
data from recreational trips. Bohara and Krieg (1996) have shown that the modeling of migratory
frequency data can be improved by using zero-inflated Poisson models. Ridout, Demétrio and
Hinde (1998) have exploited the apple shoot propagation data, and they have addressed the
modeling task by using several zero-inflated regression models. In the social sciences, Bahn and
Massenburg (2008) have considered the hurdle version of the Poisson model for the number of
homicides in Chicago (State of Illinois, US). An application to private health insurance count
data using ordinary and zero-inflated Poisson regression models was provided by Mouatassim
and Ezzahid (2012). Further applications of these models were considered in quantitative studies
about HIV-risk reduction (HEILBRON; GIBSON, 1990; HU; PAVLICOVA; NUNES, 2011), for
the modeling of some occupational allergic diseases in France (NGATCHOU-WANDJI; PARIS,
2011), for the analysis of DNA sequencing data (BEUF et al., 2012), and the modeling of several
datasets on chromosomal aberrations induced by radiation (OLIVEIRA et al., 2016). A Bayesian
approach for the zero-inflated Poisson distribution was considered by Rodrigues (2003), and by
Ghosh, Mukhopadhyay and Lu (2006) in a regression framework with fixed-effects.

Noticeably, the majority of developed works are focused on the modeling of zero inflation,
but zero-deflated data are also frequently observed in practice. However, still, there are very
few studies addressing this case solely (DIETZ; BÖHNING, 2000; ANGERS; BISWAS, 2003),
even if this situation is often referred to in works handling zero inflation. In this context, a
more comprehensive approach is provided by zero-modified models, which are flexible tools
to handle count data with inflation/deflation at zero when there is no information about the
nature of such a phenomenon. Some of the most relevant works about zero-modified and hurdle
models are cited in the following. Dietz and Böhning (2000) have introduced the zero-modified
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Poisson regression model, and Conceição, Andrade and Louzada (2013) have considered such
a model as an alternative for the analysis of Brazilian leptospirosis notification data. Min and
Agresti (2005) have pointed out the differences between the hurdle and zero-inflated versions
of the Poisson distribution with an interesting comparison based on simulations. The possible
loss due to the specification of a zero-modified Poisson model for the analysis of samples
without zero modification was studied by Conceição, Andrade and Louzada (2014) using the
Kullback-Leibler divergence. A dynamic hurdle model for zero-inflated count data was derived
by Baetschmann and Winkelmann (2017). Besides, the hurdle version of the Power Series
distribution was presented and well discussed by Conceição et al. (2017a), and Conceição et

al. (2017b) have adopted a Bayesian approach for the zero-modified Poisson model to predict
match outcomes of the Spanish La Liga (Season 2012-2013).

Beyond overdispersion and zero modification, it is increasingly common in many areas
of quantitative research the obtaining, for example, of correlated experimental outcomes, such
as clustered data, repeated measures, and longitudinal (panel) data. Clustered data comes from
a subdivision of the target population into disjoint subsets (clusters), which can be composed
either by a single or a collection of individuals (states, municipalities, farms, hospitals, schools,
families, and so on). In some studies involving clusterization, the characteristic of interest is
sequentially measured (repeated measurements) or repeatedly observed over time (longitudinal
data). In these cases, the assumption of independence within clusters and the specification of a
single distribution to describe different subpopulations may lead to erroneous inferences and
misleading sample-based conclusions, mainly if the phenomenon under investigation is exposed
to varying experimental conditions.

A handy model-based approach to address lack of independence within clusters (due to
the intrinsic correlation between measurements) consists of including fixed-effects (under the
availability of covariates) in a flexible regression framework that can also accommodate random-
effects. Mixed-effects models are robust parametric tools, widely used in the last half-century,
mainly because of its versatility to handle correlated data, its flexibility to characterize underlying
populations, and its capability to fit heterogeneous data with variability due to multiple sources.
Usually, clustered non-normal correlated data can be analyzed using a large class of distributions
through generalized linear mixed models (KACHMAN; STROUP, 1994).

Mixed models have great practical appeal in many fields of quantitative research, includ-
ing agriculture, biology, medicine, sociology, and so on. The most popular model in this context
is the linear mixed model, which provides a unifying approach for the analysis of a variety of
correlated data (VERBEKE; MOLENBERGHS, 2000). This model is built under a hierarchical
structure, in which the response variable/random-effects are assumed to be Gaussian. However,
there are plenty of experiments whose primary outcome is non-normal, and a brief search on
the extensive literature handling this case brings us some examples of the analysis of repeated
measures/longitudinal data, in which the response variable is binary (WILLIAMSON et al., 1996;
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LANDERMAN; MUSTILLO; LAND, 2011; GAO; PAN; HABER, 2012; YIN et al., 2014);
is ordinal (JEYASEELAN; ANTONYSAMY; JOHN, 1996; LI; SCHAFER, 2008; BÜRGIN;
RITSCHARD, 2015; RANA; ROY; DAS, 2018); is a proportion (HUNGER; DÖRING; HOLLE,
2012; XU et al., 2013; GALVIS; BANDYOPADHYAY; LACHOS, 2014; BONAT; RIBEIRO JR.;
ZEVIANI, 2015).

Robust approaches for the analysis of correlated count data (specifically under zero
inflation) were proposed by Hall (2000), Min and Agresti (2005), and Alfò and Maruotti (2010).
Particularly, the mixed-effects zero-inflated Poisson model was considered by some authors,
including Yau and Lee (2001), which have considered such a model to evaluate an occupational
injury prevention program, and Wang, Yau and Lee (2002), which have analyzed diagnosis-
related groups with the majority of same-day hospital stays. Besides, Neelon, O’Malley and
Normand (2010) have modeled repeated measures obtained from a study of outpatient psychiatric
service use, Buu et al. (2012) have analyzed longitudinal zero-inflated count data in the substance
abuse field, and Gupta, Szczesniak and Macaluso (2015) have dealt with the excess of zeros
in an experimental study with repeat measurements on the number of problems with female
condom use reported by women at high risk of contracting sexually transmitted diseases. Zero-
inflated longitudinal measures were also analyzed by Zhu, Luo and DeSantis (2017), which have
analyzed data from the largest clinical trial of alcohol dependence performed in the US. While
zero deflation has not been addressed in this context until now, a comprehensive approach for the
zero-modified Poisson and zero-modified Negative Binomial models in a regression framework
with mixed-effects is provided by Neelon, O’Malley and Smith (2016a), with real data examples
available in Neelon, O’Malley and Smith (2016b).

Far beyond motivating the development of this work, the content of this section provides
a complete overview with several arguments supporting the objectives of this project – the
research goals are presented in the following. Overall, the search for new discrete models
that can accommodate different structures (e.g., overdispersion, zero modification, individual
heterogeneity due to repeated measurements) may lead us to obtain potent statistical tools for
analysis of count data.

1.2 Research goals

This doctoral thesis is the final result of a broad research project that was guided by the
primary goal of introducing in the literature a brand new class of discrete models as an alternative
for the analysis of zero-modified count data. In particular, we have worked on proposing a class
of zero-modified distributions (expressed as hurdle models) in which the baseline components
were uniparametric Poisson mixtures, namely, the Poisson-Lindley, the Poisson-Shanker, and the
Poisson-Sujatha distributions.

The second leading goal of this work was twofold. We have focused on extending the
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obtained theoretical zero-modified models to allow the inclusion of covariates in a comprehensive
regression framework with (i) fixed-effects only and then, with (ii) fixed and random-effects
(mixed-effects structure). This thesis comprises case (i) for all models of the proposed class,
while case (ii) was developed only for the zero-modified Poisson-Lindley distribution.

1.3 Organization and content of chapters
A brief description of the chapters that form the core of this thesis is provided in the

following. This work was organized in order to present a cohesive structure. However, as the
chapters are (in general) independent from each other, the interested reader can adopt any reading
order.

Chapter 2 is based on the paper entitled “A Bayesian approach for some zero-modified
Poisson mixture models,” published by Statistical Modelling in 2019 (<https://doi.org/10.1177/
1471082X19841984>). In this work, we have proposed a new class of zero-modified models
based on the hurdle version of Poisson mixture distributions (Poisson-Lindley/Shanker/Sujatha).
As the title suggests, the inferential procedures were conducted under a fully Bayesian perspec-
tive. Besides, three different kinds of simulation studies were performed as a way of evaluating
the behavior of the adopted methodology in some specific situations. The usefulness and compet-
itiveness of the proposed class of models were illustrated using three real datasets.

Chapter 3 is based on the paper entitled “On the zero-modified Poisson-Shanker regres-
sion model and its application to fetal deaths notification data,” published by Computational
Statistics in 2018 (<https://doi.org/10.1007/s00180-017-0788-1>). In this work, we have in-
troduced a new fixed-effects regression model based on the hurdle version of Poisson-Shanker
distribution. All inferential procedures were conducted under a fully Bayesian perspective, and an
intensive simulation study was performed, so we were able to evaluate the empirical properties
of the Bayesian estimators in some specific situations. The proposed regression model was
considered for the analysis of a real dataset on fetal death reported in all cities of Bahia State
(Brazil) in 2014.

Chapter 4 is based on the paper entitled “Bayesian approach for the zero-modified
Poisson-Lindley regression model,” published by Brazilian Journal of Probability and Statistics
in 2019 (<https://doi.org/10.1214/19-BJPS447>). In this work, we have introduced a new
fixed-effects regression model based on the hurdle version of Poisson-Lindley distribution. The
main inferential procedures were conducted under a fully Bayesian perspective. The empirical
properties of the Bayesian estimators were assessed through an intensive simulation study, and
the performance of the maximum likelihood estimators was also evaluated. The usefulness and
competitiveness of the proposed regression model were highlighted using the classical Takeover
Bids dataset.

Chapter 5 is based on the paper entitled “A new regression model for overdispersed
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and zero-modified count data,” firstly submitted for publication in 2019. In this work, we have
introduced a new fixed-effects regression model based on the hurdle version of Poisson-Sujatha
distribution. All inferential procedures were conducted under a fully Bayesian perspective. An
intensive simulation study was performed, so we were able to evaluate the empirical properties
of the Bayesian estimators under the specification of different link functions for the parameter
that overlaps the probability of observing positive values. The proposed regression model
was considered for the analysis of a real dataset on the number of cytogenetic chromosomal
aberrations.

Chapter 6 is based on the paper entitled “A new mixed-effects regression model for the
analysis of zero-modified hierarchical count data,” firstly submitted for publication in 2020.
In this work, we have extended the fixed-effects model proposed in Chapter 4 in order to
provide a more flexible regression framework, including random-effects. Approximate Bayesian
procedures were considered for the task of making inferences from the proposed model. An
intensive simulation study was performed, so we were able to evaluate the empirical properties
of the Bayesian estimators in some specific situations. The usefulness and competitiveness of the
proposed mixed-effects regression model were illustrated using a real dataset on the number of
grooming movements practiced by six rats in a neurophysiologic experiment.

Finally, Chapter 7 is devoted to final comments, overall conclusions, and perspectives.
This chapter is followed by the bibliography and appendix sections.
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CHAPTER

2
A NEW CLASS OF ZERO-MODIFIED

POISSON MIXTURE MODELS

2.1 Introduction

In this chapter, we propose a class of zero-modified Poisson mixture models as an alterna-
tive to model overdispersed count data exhibiting inflation or deflation of zeros. A relevant feature
of this class is that the zero modification can be incorporated using a zero truncation process,
and consequently, the proposed models can be expressed in the hurdle version. This procedure
leads to the fact that the proposed models can be fitted without any previous information about
the zero modification present in a given dataset. A fully Bayesian approach has been considered
for estimation and inference concerns. Three different simulation studies have been conducted to
illustrate the performance of the developed methodology. The usefulness of the proposed class of
models has been assessed by using three real datasets provided by the literature. General model
comparison with some well-known discrete distributions has been presented.

More specifically, we introduce a class containing zero-modified versions of the Poisson-
Lindley, the Poisson-Shanker, and Poisson-Sujatha distributions, which are themselves overdis-
persed. The zero-modified models are naturally more flexible than the baseline distributions since
they take into account inflation/deflation of zeros, besides modeling data with overdispersion that
does not come only from the zero modification in the sample. Also, since the proposed models
can handle different levels of overdispersion, they can be naturally considered more flexible and
robust than the traditional zero-modified Poisson model as they may fit some points that the
latter may not accommodate well.

This chapter is organized as follows. In Section 2.2, we present a class containing the
Poisson-Lindley, the Poisson-Shanker, and the Poisson-Sujatha distributions and some of its
mathematical properties. In Section 2.3, we present the class of zero-modified versions of these
models, demonstrating its flexibility to deal with zero-inflated and zero-deflated data. In Section
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2.4, we present the zero-modified distributions as hurdle models. In Section 2.5, the maximum
likelihood function, the prior, and the posterior distributions are derived, and suitable Bayesian
estimators are obtained for the unknown model parameters. In Section 2.6, three different
simulation studies are presented. In Section 2.7, real applications of the proposed class of models
are presented. Concluding remarks are addressed in Section 2.8.

2.2 Poisson mixture models
We are interested in the cases in which the underlying assumption on the Poisson

distribution (equidispersion) is violated. For this reason, we give space to the issue of modeling
heterogeneous independent Poisson samples, and the Negative Binomial model gives us the
necessary motivation. It is well-known that this distribution may arise when it is believed that
the rate parameter λ ) of a Poisson distribution behaves according to a Gamma random variable
on the parameter space ΛΛΛ = R+. The interpretation of such a specification is straightforward
in the sense that if this law is correctly applied, then modeling independent and heterogeneous
Poisson samples can be done by assuming that the parameter λ varies randomly from place to
place through the Negative Binomial distribution.

A Gamma specification is quite reasonable for the rate parameter (λ ) since its shape flex-
ibility is very useful for the sake of the Negative Binomial model competitiveness. However, this
choice gives rise to a biparametric discrete model that may present tricky problems of estimation
in some cases (AL-KHASAWNEH, 2010). In this way, we may look to other specifications that
provide flexibility when describing parameter λ and that lead, for example, to an uniparametric
distribution as a final product. Nonetheless, it will always be preferable to choose a competitive
model that has the least number of parameters and, when looking to alternatives for the Poisson
distribution, it would be interesting to consider models that have such a characteristic.

Table 1 – Characterization of each element of the class ℱ1.

Model c1 (θ) m1 (x,θ)

ℒ (θ +1)θ−2 x+1

𝒮h
�
θ 2 +1

�
θ−2 x+θ

𝒮u
�
θ 2 +θ +2

�
θ−3 x2 + x+1

Source: Elaborated by the author.

In this section, we seek to present a class of uniparametric models that can be seen as
alternatives to the standard Poisson distribution on the task of modeling counts in the presence
of heterogeneity and that can be competitive with the Negative Binomial distribution. The
class we are interested contains the Lindley (LINDLEY, 1958), the Shanker (SHANKER,
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2015) and the Sujatha (SHANKER, 2016a) uniparametric distributions as being the possible
choices to describe the behavior of the rate parameter (λ ) of the Poisson distribution. Despite
the large gap of time between the release of these models, they share the feature of having
the continuous part of the composition being defined by the mixture of Exponential(θ) and
Gamma(2,θ) distributions, only changing the mixing probabilities for each model. For the
Lindley distribution, the mixing probabilities are θ(1+θ)−1 and (1+θ)−1. For the Shanker
distribution, we have θ 2(θ 2 + 1)−1 and (θ 2 + 1)−1. Finally, for the Sujatha distribution, the
mixture is defined by the weights θ 2(θ 2+θ +2)−1, θ(θ 2+θ +2)−1 and 2(θ 2+θ +2)−1. These
models are considered competitive for modeling real lifetime in biomedical and engineering
contexts and a comprehensive discussion about their mathematical properties such as moments,
hazard function, stochastic orderings and parameter estimation can be found in the papers in
which these models were introduced.

These three models provide flexibility concerning its shape, which is controlled by a
single parameter θ ∈ΘΘΘ = R+. For a unified approach, let ℱ1 = {g(·;θ) : θ ∈ΘΘΘ} be a class of
probability density functions that, for a continuous positive random variable X , has elements of
the form

g(x;θ) =
m1 (x,θ)

c1 (θ)
e−θx, x ∈ R+,

where c1(θ)> 0 is the normalization constant and θ is the shape parameter. Table 1 characterizes
the elements of ℱ1 in terms of the functions c1(θ) and m1(x,θ). Note that we are restricting
ℱ1 to have only three elements. For simplicity, let us consider that ℒ states for the Lindley
distribution, 𝒮h states for the Shanker distribution and 𝒮u states for the Sujatha distribution.
Further details on these models can be found in the aforementioned papers where they were first
introduced.

Table 2 – Characterization of each element of the class ℱ2.

Model c2 (θ) m2 (y,θ)

𝒫ℒ (θ +1)3 θ−2 (θ + y+2)(θ +1)−y

𝒫𝒮h (θ +1)2 �θ 2 +1
�

θ−2 �
θ 2 +θ + y+1

�
(θ +1)−y

𝒫𝒮u (θ +1)3 �θ 2 +θ +2
�

θ−3 �
y2 + y(θ +4)+

�
θ 2 +3θ +4

��
(θ +1)−y

Source: Elaborated by the author.

Now, let ℱ2 = { f (·;θ) : θ ∈ ΘΘΘ} be a class whose elements are Poisson mixture distri-
butions defined from any g(·;θ) ∈ ℱ1. The Poisson-ℱ1 is a class of probabilistic models that
arises when each element of ℱ1 is chosen to describe the rate parameter (λ ) of the Poisson
distribution. In fact, the class of uniparametric models in which the mentioned composition
leads to a closed-form model is finite and here we will work with a class containing three of
them. In this case, a discrete random variable Y is distributed according to an element of ℱ2 if
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the stochastic representation Y |λ ∼ f (y;λ ) and λ ∼ g(λ ;θ) ∈ ℱ1 holds, where f (y;λ ) is the
conditional probability mass function (pmf) of a Poisson variable.

The unconditional distribution of the random variable Y will be denoted by f (y;θ). Let
𝒴s = {s,s+1, . . .} be the set of the integers greater than or equal to s. The definition is completed
by stating that a random variable Y , defined on 𝒴0, will be distributed according to an element of
ℱ2 if its pmf can be derived as

f (y;θ) =
�

ΛΛΛ
f (y;λ )g(λ ;θ) dλ

=
�

ΛΛΛ

λ y e−λ

y!
m1 (λ ,θ)

c1 (θ)
e−θλ dλ

=
1

y!c1 (θ)

�

ΛΛΛ
λ y e−λ (θ+1)m1 (λ ,θ) dλ

=
m2 (y,θ)

c2 (θ)
, y ∈ 𝒴0,

for θ ∈ ΘΘΘ. The fourth equality comes after straightforward algebraic calculations (omitted here)
using the gamma integral. Table 2 characterizes the elements of ℱ2 in terms of the functions
c2 (θ) and m2 (y,θ). Again, for simplicity, consider that 𝒫ℒ states for the Poisson-Lindley
distribution, 𝒫𝒮h states for the Poisson-Shanker distribution and 𝒫𝒮u states for the Poisson-
Sujatha distribution. Also, the Poisson distribution will be denoted by 𝒫 and, when necessary,
the Negative Binomial distribution will be denoted by 𝒩ℬ from now on.

The 𝒫ℒ distribution was introduced by Sankaran (1970) and well discussed by Ghitany
and Al-Mutairi (2009). More recently, the 𝒫𝒮h and the 𝒫𝒮u distributions were introduced and
extensively studied by Shanker (2016c) and Shanker (2016d), respectively. From the results
provided by these authors, one can generalize one of the most important features concerning the
elements of ℱ2. Let Y (r) = Y (Y −1) · · ·(Y − r+1) the r-order factorial of the random variable
Y . If Y is distributed according to an element of ℱ2, then its r-order factorial moment about the
origin is given by

µ ′r =
r!(θ + τ1 + τ2)

θ r (θ + τ3)
, (2.1)

for θ ∈ΘΘΘ. The τi (i = 1,2,3) is a function of parameter θ but only τ1 and τ2 may depend on the
order of the factorial moment. The expressions for each τi depending on the elements of ℱ2 are
presented in Table 3.

Table 3 – Expressions of τ1, τ2 and τ3 for each element of the class ℱ2.

Model τ1 τ2 τ3

𝒫ℒ r 1 1
𝒫𝒮h rθ−1 θ−1 θ−1

𝒫𝒮u r+1 (r+1)(r+2)θ−1 1+2θ−1

Source: Elaborated by the author.
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Using Equation (2.1), one can obtain the moments about origin for each element of ℱ2

accordingly the values τi. Then, in Table 4, we present the mean, the variance, and the index of
dispersion of the 𝒫ℒ, the 𝒫𝒮h and the 𝒫𝒮u distributions. The way these measures are linked
may be useful to evaluate how these models might behave when dealing with heterogeneous
samples.

Table 4 – Some theoretical measures regarding each element of the class ℱ2.

Model Mean (µ) Variance
�
σ2� Index of Dispersion (γ)

𝒫ℒ θ+2
θ(θ+1)

θ 3+4θ 2+6θ+2
θ 2(θ+1)2 1+ θ 2+4θ+2

θ(θ+1)(θ+2)

𝒫𝒮h
θ 2+2

θ(θ 2+1)
θ 5+θ 4+3θ 3+4θ 2+2θ+2

θ 2(θ 2+1)2 1+ θ 4+4θ 2+2
θ(θ 2+1)(θ 2+2)

𝒫𝒮u
θ 2+2θ+6

θ(θ 2+θ+2)
θ 5+4θ 4+14θ 3+28θ 2+24θ+12

θ 2(θ 2+θ+2)2 1+ θ 4+4θ 3+18θ 2+12θ+12
θ(θ 2+θ+2)(θ 2+2θ+6)

Source: Elaborated by the author.

Firstly, it can be proved that µ→∞ as θ → 0. Besides, after some straightforward algebra,
it is possible to notice that the variances can be written as σ2 = µ γ , being the ratios involving
parameter θ always positive. This implies that models 𝒫ℒ, 𝒫𝒮h and 𝒫𝒮u can accommodate
overdispersion, that is, whichever θ ∈ΘΘΘ we have that σ2 > µ . Further, the indexes of dispersion
are clearly greater than 1, also implying overdispersion since γ = σ2µ−1. On the other hand,
we have that γ → 1 (σ2 → µ) as θ → ∞, that is, the elements of ℱ2 have the property of
equidispersion for large values of θ (small values of µ).

2.3 Zero-modified models
We are now interested in modeling a high/low amount of zeros observed beyond that

generated by the original process, which we already supposed to account for overdispersion.
There are some typical situations where zero modification may occur, and we list these cases in
the following.

a) Not all members of the population are affected by the process, which causes inflation of
zeros to occur due to the response of unaffected subjects being zero;

b) When zeros cannot be observed in the population (truncation at zero);

c) The occurrence of unavoidable problems during the sampling process may lead to an
increase/decrease in the probability of a zero observation being selected, hence the zero
inflation/deflation situation;
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d) A combination of (a) and (b) causes a part of the population to be zero-truncated distributed
while the other part is not affected and provides the zero observations.

In this section, we seek to introduce a class of biparametric models that can be seen as
alternatives to model overdispersed count datasets when a high/low amount of zeros is observed
beyond that which would be expected by the elements of ℱ2. Thus, let ℱ3 = { f*(·;θθθ) : θθθ ∈ΘΘΘ*}
be a class of pmfs that, for a discrete random variable Y defined on 𝒴0, has elements of the form

f*(y;θθθ) = (1− p)δy + p f (y;θ) , y ∈ 𝒴0, (2.2)

for θθθ = (θ , p) ∈ ΘΘΘ* = ΘΘΘ×𝒜θ , where 𝒜θ = [0, [1− f (0;θ)]−1], being f (0;θ) the pmf of an
element of ℱ2, evaluated at zero. Further, δy is the indicator function, so that δy = 1 if y = 0 and
δy = 0 otherwise.

Figure 1 – Supremum of set 𝒜θ depending on each element of the class ℱ2.
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Source: Elaborated by the author.

The class ℱ3 can be referred as the class of zero-modified models which have a set of
f (·;θ) as basis distributions. In our case, this set of pmfs is represented by ℱ2. Hence, ℱ2 ⊆ℱ3.
In fact, we have three elements on ℱ3, namely the zero-modified Poisson-Lindley (𝒵ℳ𝒫ℒ)
distribution, the zero-modified Poisson-Shanker (𝒵ℳ𝒫𝒮h) distribution and the zero-modified
Poisson-Sujatha (𝒵ℳ𝒫𝒮u) distribution.

From 𝒜θ , one can notice that model (2.2) is not a mixture distribution typically adopted
to fit zero-inflated datasets, since p (zero modification parameter) can assume values greater
than 1. However, for all values of p ∈ 𝒜θ , Equation (2.2) corresponds to a properly pmf since
f*(y;θθθ)� 0 for all y ∈ 𝒴0 and ∑y∈𝒴0 f*(y;θθθ) = 1 whatever the f (y;θ) ∈ ℱ2. Figure 1 presents
the upper bounds of 𝒜θ accordingly each element of ℱ3 using selected values for parameter θ .
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Note that the higher the value of θ , the higher the value of the upper bound of 𝒜θ . In addition,
it is clear that the upper bounds under the 𝒵ℳ𝒫𝒮u distribution are always lower than those
obtained under the 𝒵ℳ𝒫ℒ and 𝒵ℳ𝒫𝒮h distributions.

If a random variable Y is distributed according to an element of ℱ3, then its mean, its
variance and its index of dispersion are given, respectively, by

µ* = pµ,
�
σ2�* = p

�
σ2 +(1− p)µ2� and γ* = γ +(1− p)µ, (2.3)

where the measures µ , σ2 and γ are presented in Table 4 according to each possible choice in
ℱ2. The term (1− p)µ in γ* represents the overdispersion caused by a modification on the zero
frequency, regarding the elements of ℱ2.

The elements of ℱ3 may be considered as interesting alternatives to the usual zero-
modified Poisson (𝒵ℳ𝒫) model since each element of ℱ2 can accommodate several levels
of overdispersion, an issue that the 𝒫 distribution generally fails to handle. In this context,
the parameter p plays a major role in controlling the frequency of zeros, and it has a natural
interpretation in terms of the proportions of either inflation or deflation at zero. The following
statements describe the effect of parameter p on Equation (2.2).

i) If p = 0 then f*(0;θθθ) = 1, ℱ3 contains only degenerate distributions with all mass at zero;

ii) If p = 1 then f*(0;θθθ) = f (0;θ), the elements of ℱ3 has a proportion of zeros equal than
the elements of ℱ2. In this case, we can also conclude that ℱ3 = ℱ2 since for all y ∈ 𝒴0,
f*(y;θθθ) = f (y;θ);

iii) If p ∈ (0,1) then f*(0;θθθ)> f (0;θ), the elements of ℱ3 has a proportion of zeros greater
than the elements of ℱ2;

iv) If p ∈ (1,supθ∈ΘΘΘ𝒜θ ) then f*(0;θθθ) < f (0;θ), the elements of ℱ3 has a proportion of
zeros lower than the elements of ℱ2;

v) If p = supθ∈ΘΘΘ𝒜θ then f*(0;θθθ) = 0, the Equation (2.2) corresponds to the zero-truncated
version of a particular element of ℱ2, with general pmf given by

f *(y;θ) =
f (y;θ)

1− f (0;θ)
, y ∈ 𝒴1, (2.4)

for θ ∈ ΘΘΘ, f (·;θ) ∈ ℱ2. See Ghitany, Al-Mutairi and Nadarajah (2008), Shanker and
Fesshaye (2016) and Shanker (2017) for further details about the zero-truncated version of
the 𝒫ℒ, the 𝒫𝒮h and the 𝒫𝒮u distributions.

The above statements can be easily checked through the proportion of additional/missing
zeros, defined by

f*(0;θθθ)− f (0;θ) = (1− p)+ p f (0;θ)− f (0;θ) = (1− p) [1− f (0;θ)] .
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Figure 2 – Behavior of each element of the class ℱ3 for different values of θ and p (upper-panels:
θ = 0.70 and lower-panels: θ = 1.50; upper/lower-left-panel: p = 0.70; upper/lower-middle-
panel: p = 1.00 and upper/lower-right-panel: p = 1.15).
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Source: Elaborated by the author.

Follows from the previous expression that (i) and (ii) are straightforward. As for (v),

f*(0;θθθ)− f (0;θ) =
�

1− [1− f (0;θ)]−1
�
[1− f (0;θ)] =− f (0;θ) ,

hence f*(0;θθθ) = 0. Statement (iii) follows from the fact that if p ∈ (0,1) then (1− p)[1−
f (0;θ)] ∈ (0,1) since f is a probability measure. Therefore f*(0;θθθ)> f (0;θ). For statement
(iv), whichever p > 1, (1− p)< 0 and the result follows by the same argument for (iii). Hence,
f*(0;θθθ)< f (0;θ).

The case (iii) may be appropriate in situations (a), (c), and (d) as described at the
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beginning of this section, and the case (iv) may be appropriate in situations (c) and (d). The
index of dispersion γ* can be analyzed in terms of the modification at zero in a given sample
since, from Equation (2.3), one can conclude that γ* = γ in the standard case (ii), γ* > γ in the
zero-inflated case (iii) and γ* < γ in the zero-deflated case (iv).

Table 5 – Value of some theoretical measures regarding each element of the class ℱ3.

Model
Parameters Measures

θ p µ* �
σ2�* γ* y*0

𝒵ℳ𝒫ℒ

0.70 0.70 1.59 5.28 3.32 0
0.70 1.00 2.27 6.00 2.65 0
0.70 1.15 2.61 6.02 2.31 1
1.50 0.70 0.65 1.35 2.06 0
1.50 1.00 0.93 1.66 1.78 0
1.50 1.15 1.07 1.76 1.64 0

𝒵ℳ𝒫𝒮h

0.70 0.70 1.67 5.57 3.33 0
0.70 1.00 2.39 6.25 2.62 0
0.70 1.15 2.75 6.20 2.26 1
1.50 0.70 0.61 1.24 2.04 0
1.50 1.00 0.87 1.55 1.77 0
1.50 1.15 1.00 1.65 1.65 0

𝒵ℳ𝒫𝒮u

0.70 0.70 2.47 9.42 3.81 0
0.70 1.00 3.53 9.72 2.75 1
0.70 1.15 4.06 9.02 2.22 1
1.50 0.70 0.91 2.11 2.31 0
1.50 1.00 1.30 2.50 1.92 0
1.50 1.15 1.50 2.58 1.72 0

Source: Elaborated by the author.

Figure 2 depicts the pmf of each element of ℱ3 for θ = 0.70 and θ = 1.50. To illustrate
the behaviour of each model in terms of the modification at zero, we have considered p = 0.70
(zero-inflated case), p = 1.00 (standard case) and p = 1.15 (zero-deflated case). The case
θ = 0.7 and p = 1.15 (upper-right-panel) differs from the others only by the fact that, under
such configuration, the mode (y*0) of the proposed models is equal to 1. This is expected in
some situations where p � 1 and will never occur in zero-inflated cases. In Table 5, we present
the values of the main theoretical measures (mean, variance, index of dispersion and mode)
associated with the elements of ℱ3 for the fixed set of parameters. One can notice that different
values of p lead to different zero-modified distributions. For example, one can see that the higher
the value of p, the lower the probability of observing zeros under the elements of ℱ3. On the
other hand, we can also note that Figure 2 highlight the similar behavior between the proposed
zero-modified models, which is expected due to the functional form of the elements of ℱ2. This
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is not a problem at all since we are not interested in these models to be competitive with each
other. Also, when dealing with real datasets, all these models can be implemented and estimated
under the same computational complexity, and, according to an appropriate selection criterion,
the best model can be chosen.

2.4 Hurdle models
The class of hurdle models was introduced and discussed by Mullahy (1986). The

relevant feature of such models is the fact that the zero observations are treated separately from
the positive ones. In the central formulation, a binary probability model determines whether a zero
or a non-zero outcome occurs, and hence, an appropriated zero-truncated discrete distribution
is chosen to describe the positive ones (SAFFARI; ADNAN; GREENE, 2012). On the other
hand, this framework can also be considered in the cases where it is observed an incidence of
zero-valued subjects within continuous positive samples.

In this section, we seek to introduce the hurdle version of the elements of ℱ2. Firstly, one
can notice that pmf (2.2) can be written as

f*(y;θθθ) = [1− p+ p f (0;θ)]δy + p f (y;θ)(1−δy)

= (1−ω)δy +ω f *(y;θ) y ∈ 𝒴0, (2.5)

where ω = p[1− f (0;θ)], θθθ * = (θ ,ω) and f *(y;θ) is the zero-truncated version of particular
element of ℱ2 with general pmf given by (2.4). Since p ∈ 𝒜θ then ω ∈ [0,1]. The pmf (2.5) can
be seen as a hurdle version of the elements of ℱ2, where the probability of Y = 0 is (1−ω) and
the probability of Y > 0 is ω ∑y∈𝒴1 f *(y;θ) = ω . It is worthwhile to mention that the hurdle
configuration does not affect the general definition of the class ℱ3.

The elements of ℱ3, expressed through hurdle models, contain its corresponding zero-
truncated versions as one of its components, which differs from the traditional mixture repre-
sentation of zero-inflated distributions. Moreover, this representation can be interpreted as a
superposition of two processes, that is, one that produces positive observations from a zero-
truncated distribution and another that produces only zero-valued observations with probability
(1−ω). Therefore, Equation (2.5) cannot be considered a 2-component mixture model.

By the hurdle representation of zero-modified models, only the positive observations are
required to estimate parameter θ . This fact is well discussed by Conceição et al. (2017a) for the
class of zero-modified Power Series distributions, and we extend this result by asserting that
the zero-truncated version of a particular element of ℱ3 is always a zero-truncated version of
the correspondent element on ℱ2 and they have the same parameter θ . For example, the zero-
truncated version of the 𝒵ℳ𝒫ℒ distribution is equivalent to the zero-truncated Poisson-Lindley
distribution for all θ ∈ ΘΘΘ. This can be easily checked using Equation (2.5) because, since the
probability of Y being positive is ω , if we exclude the value zero from the domain and divide the
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right-hand side of (2.5) by ω , then we get Y ∼ f *(y;θ). On the other hand, such representation
allows us to obtain a closed-form solution for the maximum likelihood estimator (MLE) of
parameter ω , which is given by the proportion of non-zeros in the dataset (see Appendix A,
Section A.1). Also, it is easy to see that equation s(θ ,ω) = ω[1− f (0;θ)]−1 is injective (one-
to-one) into ΘΘΘ× [0,1] and therefore, the invariance principle ensures that parameter p can be
estimated using such an equation.

Under a Bayesian perspective, it will be shown in the next section that, for an appropriate
prior specification, the posterior distribution of ω has known closed-form. Besides, inference
procedures about parameter p are also required since we are often interested in identifying the
kind of zero modification (inflation or deflation) is present in a given count dataset.

2.5 Inference

2.5.1 Maximum likelihood

Let YYY = (Y1, . . . ,Yn) be a random sample of size n taken from any element of ℱ3 and
yyy = (y1, . . . ,yn) its observed values. Considering model (2.5), the likelihood function of vector
θθθ * is given by

ℒ(θθθ *;yyy) = (1−ω)n0 ωn+ ∏n
i=1 [ f (yi;θ)]1−δyi

[1− f (0;θ)]n+
, (2.6)

where n+ = n−n0, being n0 the number of zero-valued observations in the sample and f (·;θ) ∈
ℱ2. Now, the corresponding log-likelihood function is given by

�(θθθ *;yyy) = n log(ω)−n0 log
�

ω
1−ω

�
−n+ log [1− f (0;θ)]+

n

∑
i=1

(1−δyi) log [ f (yi;θ)] .

One can notice that the hurdle configuration leads to orthogonality between parameters
θ and ω . Also, it is easy to see that all terms in the log-likelihood function depending on θ
take into account only the positive values of the sample vector yyy. Denoting by yyy+ the vector of
positive observations from yyy, {y+j , j = 1, . . . ,n+}, the log-likelihood function of parameter θ ,
based on the assumption that y+j comes from the zero-truncated version of a particular element
of ℱ2, is given by

�n
�
θ ;yyy+

�
=−n+ log [1− f (0;θ)]+

n+

∑
j=1

log
�

f
�

y+j ;θ
��

. (2.7)

Indeed �n(θ ;yyy+) = �n+(θ ;yyy), since each y j present in (2.7) is generated by a zero-
truncated distribution. Here, we are extending the fact that estimating the𝒫 parameter θ using the
zero-truncated Poisson (𝒵𝒯 𝒫) distribution results in a loss of efficiency in the inference if there
is no zero modification (DIETZ; BÖHNING, 2000; CONCEIÇÃO; ANDRADE; LOUZADA,
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2014). Denoting by yyy0 the vector of zero observations from yyy, {y0
j , j = 1, . . . ,n0}, the log-

likelihood function of ω is given by

�n
�
ω;yyy0�= �n (ω;yyy) = n log(ω)−n0 log

�
ω

1−ω

�
.

Since our approach relies on the Bayesian inference, the technical details about maximum
likelihood estimation of parameters θ and ω were placed in Appendix A (Section A.1).

2.5.2 Prior distributions

We consider the typical case where no specialized information is available to justify the
choice of an informative prior for the set of unknown model parameters. In other words, we
specify a prior distribution such that, even for moderate sample sizes, the information provided
by the data should dominate the prior information due to the vague nature of the prior knowledge.
This can be done with noninformative priors such as Jeffreys priors (JEFFREYS, 1946). The
Jeffreys and the reference priors are equivalent in 1-dimensional problems (SYVERSVEEN,
1998) and are optimal objective priors (BERGER; BERNARDO; SUN, 2015).

Formally, the Jeffreys prior for the vector θθθ * is defined as πθθθ*(θθθ *) ∝
�

detℐθθθ*(θθθ *),
where ℐθθθ*(θθθ *) stands for the Fisher information matrix of vector θθθ *. However, due to the
orthogonality between θ and ω , one can derive independent priors for the elements of θθθ *. By
considering Equation (A.1), the Jeffreys prior for parameter ω can be expressed as

πω (ω) ∝ ω−1/2 (1−ω)−1/2 , (2.8)

which is the kernel of a Beta density with hyperparameters equal to 1/2. Now, the Jeffreys prior

for parameter θ has the general form πθ (θ) ∝
�
ℐθ (θ), which clearly depends on the selected

element of ℱ3. For example, under the 𝒵ℳ𝒫ℒ distribution, the prior of θ takes the form

πθ (θ) ∝
1√

θ 2 +3θ +1

�
θ 2
�
(θ +1)2 ζ

�
(θ +1)−1 ,1,θ

�
− θ 3 +5θ 2 +8θ +2

θ (θ +2)

�
−

θ 4−θ 3−8θ 2−10θ −2
θ 2 (θ 2 +3θ +1)

�1/2

,

where ζ stands for the Lerch-Phi function defined as ζ (z,a,v) = ∑∞
k=0 zk(k+ v)−a for |z| < 1.

Further details on this function can be found at Bateman and Erdélyi (1953).

One of the most appealing properties of the Jeffreys prior is its invariance under reparam-
eterizations. In this way, let us redefine the pmf (2.5) with θ = eη , η ∈ R. This is particularly
useful since it allows us to work in an unrestricted parametric space. In this case, the Jeffreys

prior for the transformation η = log(θ) can be derived as

πη (η) ∝ πθ (eη) |eη |= eη
�
ℐθ (eη). (2.9)
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2.5.3 Posterior distributions and estimation
A Bayesian approach for model (2.5) can be considered by writing the unnormalized

joint posterior distribution of vector (η ,ω) as

π (η ,ω;yyy) ∝ exp{�n+(η ;yyy)+ �n (ω;yyy)}πη (η) πω (ω) .

From this point of view, inference for the model parameters is wholly based on their
marginal posterior distributions, which can be obtained by integrating the joint posterior distri-
bution. In our case, however, we do not need to worry about the integration issue since η and ω
are orthogonal. Therefore, the marginal posterior distributions take the following form

πη (η ;yyy) ∝ exp{�n+(η ;yyy)}πη (η) and πω (ω;yyy) ∝ exp{�n (ω;yyy)}πω (ω) ,

where
πω (ω;yyy) ∝ ω(n++1/2)−1 (1−ω)(n0+1/2)−1 , (2.10)

which is the kernel of a Beta density with parameters n+ + 1/2 and n0 + 1/2. In this setting, any
suitable Bayesian point estimator for parameter ω can be derived, regardless the elements of ℱ3.
For instance, the Bayesian estimator for ω with respect to quadratic loss is given by

E(ω;yyy) =
2n+ +1
2(n+1)

. (2.11)

Alternatively, one can obtain Bayesian estimators with respect to modular and zero-one

losses for parameter ω . These estimators are obtained by computing, respectively, the conditional
median and mode of the posterior distribution (2.10). Hence,

Md (ω;yyy)≈ 6n+ +1
2(3n+1)

and Mo (ω;yyy) =
2n+−1
2(n−1)

,

for n > n+ . The approximation of the conditional median is due to the results provided by
Kerman (2011). For n+ > 1, the relative error of the approximation is less than 1% and quickly
goes to zero as n0 and n+ increase. Besides, the posterior conditional variance of ω is given by

V(ω;yyy) =

�
2n+ +1

�
(2n0 +1)

4(n+1)2 (n+2)
.

Now, let the normalized marginal posterior distribution of parameter η be denoted by
π*

η(η ;yyy) = B−1 exp{�n+(η ;yyy)}πη (η), B=
�
R exp{�n+(η ;yyy)}πη (η)dη . Notably, whichever the

chosen element of ℱ3, the integral B is analytically intractable over the unbounded convex set
R and therefore, one can verify only numerically if the resulted posterior distribution is proper
(B < ∞). We have considered the Laplace method (SMALL, 2010) for this task and we anticipate
that no problems regarding the properness of π*

η(η ;yyy) were found in the investigated cases.

To address the problem of generating pseudo-random values from π*
η(η ;yyy) and make

inference about parameter θ , we consider a rejection sampling scheme (VON NEUMANN,
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1951; ROBERT; CASELLA, 2013). To implement the algorithm, one has to choose a candidate-
generating distribution ϕη(η), whose values are accepted or rejected accordingly to a prespecified
rule. This rule is based on the choice of a constant c > 1 satisfying π*

η(η ;yyy)< cϕη(η). Then, a
generated value η* from ϕη(η) is accepted as being a drawn from the target density π*

η(η ;yyy)

iff u < π*
η(η*;yyy)[cϕη(η*)]−1, where u is generated from a Uniform distribution defined on the

unit interval.

In the Rejection Sampling algorithm, a candidate η* is accepted with probability c−1,
which means that approximately one value is accepted out of c generated ones. The effi-
ciency of the algorithm is closely related to the value c in the sense that, the lower this value,
the more efficient is the algorithm. Therefore, the method builds an empirical distribution
that will quickly converge to π*

η(η ;yyy) if c is selected as being equal to π*
η(α;yyy)[ϕη(α)]−1

for α = argmaxη∈R{πη(η ;yyy)[ϕη(η)]−1}. Here, we consider ϕη(η) = 𝒩 (η̃ ,ν), where η̃ =

argmaxη∈R πη(η ;yyy) and the tuning parameter ν is chosen in such a way that the acceptance
rate is the highest possible, which indicates that cϕη(η) is a good envelope for the target density
π*

η(η ;yyy).

Algorithm 1 – Rejection Sampling
1: procedure REJSAM(M,ν)
2: Set k← 1 and η̃ ← argmaxη∈R πη (η ;yyy)
3: Set α ← argmaxη∈R{πη (η ;yyy) [ϕη (η)]−1} and c← π*

η (α;yyy) [ϕη (α)]−1

4: while k � M do
5: Set i← 0
6: while i = 0 do
7: Generate ψ ∼𝒩 (η̃ ,ν) and u∼ 𝒰 (0,1)
8: if log(u)< log

�
π*

η (ψ;yyy)
�
− log [ϕη (ψ)]− log(c) then

9: Set η(k)← ψ and i← 1
10: end if
11: end while
12: Set k← k+1
13: end while
14: return {η(k)}M

k=1
15: end procedure

Algorithm 1 can be used to generate pseudo-random values from π*
η(η ;yyy) using a

rejection sampling scheme. To run the algorithm, the requested sample size M, and the tuning
parameter ν must be prespecified. After that, a summary of the marginal posterior distribution
can be obtained. Recall that we are interested in θ = eη . Therefore, the Bayesian estimator for
parameter θ with respect to quadratic loss is given by the posterior conditional mean, which can
be approximated by the Monte Carlo (MC) estimator

E(θ ;yyy) =
1
M

M

∑
j=1

eη( j)
, (2.12)



2.5. Inference 49

and the posterior conditional variance of θ can be estimated by

V(θ ;yyy) =
1
M

M

∑
j=1

�
eη( j)−E(θ ;yyy)

�2
. (2.13)

Finally, the Bayesian estimator for the zero modification parameter (p) with respect to
quadratic loss is given by

E(p;yyy) =
1
M

M

∑
j=1

ω( j)

1− f (0,eη( j)
)
, (2.14)

where ω( j) is a pseudo-random value drawn from the Beta distribution (2.10). The posterior

conditional variance of p can be computed analogously to (2.13).

In the next section, we present the results obtained in three different simulation studies
involving the class of proposed zero-modified models. The application of such models using
real datasets is illustrated in Section 2.7. The Bayesian procedures were conducted by consid-
ering the Jeffreys priors (2.8) and (2.9). To run Algorithm 1, we have kept fixed M = 5,000
and ν = 1.0, which have always provided acceptance rates greater than 95%. In this setting,
the requested computational time to generate 5,000 pseudo-random values from the marginal
posterior distribution of parameter η was always less than 1 minute in a machine equipped with
an Intel R○ CoreTM i7-6500U CPU at 2.50GHz, with 8 GB DDR3 SDRAM. All computations
were performed using the R environment (R Development Core Team, 2017).

2.5.4 Posterior predictive distribution
Under a Bayesian approach, one can obtain the posterior predictive distribution (ppd) as

being the distribution of possible unobserved values conditioned on the observed ones. In our
case, the pmf of any observation y* ∈ 𝒴0 can be obtained as

π (y*;yyy) =
�

R

� 1

0
f*(y*;η ,ω)π (η ,ω;yyy)dω dη

=
ℬe
�
n+−δy* + 3/2,n0 +δy* + 1/2

�

ℬe
�
n+ + 1/2,n0 + 1/2

�
�

R

�
f (y*;η)

1− f (0;η)

�1−δy*

π (η ;yyy)dη ,

where ℬe is the Beta function and f (·;η) ∈ ℱ2. One can notice that the ppd has no closed-form
and therefore, an MC estimator for such quantity can be obtained by using pseudo-random
generated values from π*

η(η ;yyy). Hence,

π̂ (y*;yyy) =
ℬe
�
n+−δy* + 3/2,n0 +δy* + 1/2

�

Mℬe
�
n+ + 1/2,n0 + 1/2

�
M

∑
j=1





f
�

y*;η( j)
�

1− f
�
0;η( j)

�





1−δy*

, (2.15)

from which one can estimate the posterior probability of Y = 0 as

π̂ (0;yyy) =
ℬe
�
n+ + 1/2,n0 + 3/2

�

ℬe
�
n+ + 1/2,n0 + 1/2

� .
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2.6 Simulation studies
The empirical properties of an estimation procedure can be evaluated through Monte

Carlo simulations. We have performed three different simulation studies aiming to validate the
proposed Bayesian approach. The first simulation study was conducted to assess the properties
of the Bayesian estimators of parameters θ , ω , and p. Regarding the Bayesian comparison
criteria (see Appendix A, Section A.2), the second simulation study was developed to estimate
the probability of correct selection of the proposed distributions compared with the standard
𝒵ℳ𝒫 model when the true one is known. Finally, the third simulation study was performed to
evaluate the loss of efficiency when considering only the positive observations in a given sample
to estimate parameter θ , assuming that there is no zero modification. All the results obtained in
each simulation study are available in Appendix A (Section A.3).

Table 6 – Actual parameter values for simulation of zero-modified artificial datasets.

Case Scenario Model θ p ω µ* y*0

Zero Inflation

1
𝒵ℳ𝒫ℒ 0.50 0.20 0.163 0.67 0
𝒵ℳ𝒫𝒮h 0.50 0.20 0.169 0.72 0
𝒵ℳ𝒫𝒮u 0.50 0.20 0.185 1.05 0

2
𝒵ℳ𝒫ℒ 0.50 0.80 0.652 2.67 0
𝒵ℳ𝒫𝒮h 0.50 0.80 0.676 2.88 0
𝒵ℳ𝒫𝒮u 0.50 0.80 0.738 4.22 0

3
𝒵ℳ𝒫ℒ 5.00 0.20 0.038 0.05 0
𝒵ℳ𝒫𝒮h 5.00 0.20 0.034 0.04 0
𝒵ℳ𝒫𝒮u 5.00 0.20 0.041 0.05 0

4
𝒵ℳ𝒫ℒ 5.00 0.80 0.152 0.19 0
𝒵ℳ𝒫𝒮h 5.00 0.80 0.138 0.17 0
𝒵ℳ𝒫𝒮u 5.00 0.80 0.163 0.20 0

Zero Deflation

1
𝒵ℳ𝒫ℒ 2.50 1.40 0.482 0.72 0
𝒵ℳ𝒫𝒮h 2.50 1.40 0.439 0.64 0
𝒵ℳ𝒫𝒮u 2.50 1.40 0.558 0.90 0

2
𝒵ℳ𝒫ℒ 2.50 2.40 0.826 1.23 1
𝒵ℳ𝒫𝒮h 2.50 2.40 0.753 1.09 1
𝒵ℳ𝒫𝒮u 2.50 2.40 0.956 1.54 1

3
𝒵ℳ𝒫ℒ 6.00 1.40 0.225 0.27 0
𝒵ℳ𝒫𝒮h 6.00 1.40 0.205 0.24 0
𝒵ℳ𝒫𝒮u 6.00 1.40 0.238 0.29 0

4
𝒵ℳ𝒫ℒ 6.00 2.40 0.385 0.46 0
𝒵ℳ𝒫𝒮h 6.00 2.40 0.351 0.41 0
𝒵ℳ𝒫𝒮u 6.00 2.40 0.408 0.49 0

Source: Elaborated by the author.

Table 6 presents the values of parameters θ and p that were considered for simulation in
Studies 1 and 2. The respective mean (µ*) and mode (y*0) of the zero-modified models are also
presented. The value of ω in each scenario is obtained as p[1− f (0;θ)]. In order to evaluate
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the behavior of the proposed methodology, we have considered quite different zero-inflated and
zero-deflated situations. For the zero-inflated (zero-deflated) case, the samples were generated
considering that p ∈ (0,1) (p ∈ (1,supθ∈ΘΘΘ𝒜θ )). Hence, the parameters were chosen by taking
into account that zero-inflated (zero-deflated) samples naturally have the proportion of zeros
higher (lower) than expected, and therefore, the variable Y has to be generated with θ close to
zero (not even close to zero). For example, one can notice that the probability of generating
a zero-valued observation is approximately 95% in the third scenario (zero-inflated case) and
varies between 5% and 25% in the second scenario (zero-deflated case).

Algorithm 2 – Sequential-Search

1: procedure SEQSEA(θθθ *)
2: Generate u∼ 𝒰 (0,1)
3: Set y← 0 and k← f*(0;θθθ *)
4: while u > k do
5: Set y← y+1 and k← k+ω f *(y; µ)
6: end while
7: return y
8: end procedure

Algorithm 2 can be used to generate a single value from a discrete random variable
distributed according to any element of ℱ3, considering the hurdle version of the baseline
distributions. The process to generate a random sample consists of running the algorithm as often
as necessary, say n times. The sequential-search is a black-box type of algorithm and works with
any computable probability vector. The main advantage of such a procedure is its simplicity.
On the other hand, sequential-search algorithms may be slow as the while-loop may have to be
repeated very often. More information on this algorithm can be found at Hörmann, Leydold and
Derflinger (2013). For instance, under ℱ3, the expected number of iterations, that is, the expected
number of comparisons in the while condition, is given by ω[1− f (0;θ)]−1µ +1, where µ is
presented in Table 4 according to each possible choice in ℱ2.

2.6.1 Study 1

The first simulation study was performed by generating N = 500 pseudo-random samples
of sizes n = 50,100,200, and 500 of a random variable Y distributed according to an element of
ℱ3, in the hurdle configuration, aiming to assess the properties of the Bayesian estimators (2.11),
(2.12) and (2.14). In this way, we have assigned different values for θ and ω (and consequently
p) accordingly Table 6.

Given N estimates of the model parameters, one can evaluate the performance of the
aforementioned estimators using standard measurements as the bias (B), the variance (Var),
the mean squared error (MSE), and the mean absolute percentage error (MAPE). Assuming
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β = θ ,ω or p, we have computed the following quantities

B
�

β̂
�
=

1
N

N

∑
j=1

�
β̂ j−β

�
, MSE

�
β̂
�
=

1
N

N

∑
j=1

�
β̂ j−β

�2
, and MAPE

�
β̂
�
=

1
N

N

∑
j=1

�����
β̂ j−β

β

����� .

The variance of β̂ was estimated as the difference between the MSE and the square of the
bias. Moreover, we have also estimated the coverage probability (CP) of the Bayesian credible
intervals (BCIs) as follows

CP% (β ) =
100
N

N

∑
j=1

δ j
β ,

where δ j
β assumes 1 if the j-th BCI contains the true value β and 0 otherwise. The BCI can

be obtained by computing the percentiles of the posterior distribution of β . Besides, we have
estimated the below noncoverage probability (BNCP) and the above noncoverage probability
(ANCP) of the BCIs. These measures are computed analogously to the CP. The BNCP and
the ANCP may be useful to highlight asymmetric features since they provide the estimated
probabilities of finding the true value of β on the tails of the generated posterior distributions.

Based on the generated samples, we have summarized the behavior of the posterior

distributions of parameters θ , ω , and p (see Appendix A, Section A.3). From the results obtained
in this first simulation study, we conclude that the parameter estimates become more accurate
since the estimated bias and MSEs decrease with increasing sample size in most cases. As
expected, when zero-inflated samples are generated with θ = 5.00 and p = 0.20 (Scenario 3),
the majority of observations are zero-valued, and hence a little amount of positive observations
remains available to estimate parameter θ accurately. In this case, for small n, our methodology
does not adequately capture the real variability of θ̂ but, with increasing sample sizes, the
biases are converging to more suitable values under these conditions. In this situation, we have
also observed higher MAPE values for parameters θ and p even for large samples. This issue
can lead to an inaccurate estimation process. For example, under the 𝒵ℳ𝒫ℒ model (zero-
inflated case - Scenario 3, Table 48), for n = 200, we have observed a MAPE of approximately
115% for θ . Taking into account that the actual value of this parameter is 5.00, we have
θ̂ = 2.15×5.00 = 10.75, which represents a considerable impact on the final result. In this case,
however, the impact on parameter p can be considered softer, mainly when its actual value is
small. Nevertheless, we have observed that the estimated coverage probabilities of the BCIs
are always close to the nominal value of 95%, although small degrees of asymmetry have been
observed in some cases. Therefore, our first simulation study indicates the feasibility of the
proposed Bayesian approach to the use of any element of ℱ3 in the analysis of overdispersed and
zero-modified real datasets, excepting the cases where a substantial amount of zeros is observed
(e.g., higher than 0.95n out of n values) in samples with very low mean (e.g., lower than 0.05).
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2.6.2 Study 2

The second simulation study was conducted to evaluate the reliability of the Bayesian
comparison criteria, presented in Appendix A (Section A.2), to perform correct model selection
when the true one is known. The idea is to generate N = 500 pseudo-random samples of sizes
n = 50,100,200, and 500 of a random variable Y distributed according to an element of ℱ3, in
the hurdle configuration. Then, the true model is fitted along with the standard 𝒵ℳ𝒫 model,
and the best fit is considered according to the selection criteria presented in Appendix A (Section
A.2). Through this procedure, it was expected the comparison criteria to be able to identify the
mechanism responsible for generating the data. We have considered this procedure for different
specifications of parameters θ and ω accordingly Table 6.

For the purpose of this study, let ξMk be the value of any statistic computed from the
posterior distribution of any parametric vector θθθ given model Mk (k = 1,2, . . . ,K), K finite. In
our case, we have K = 2. Also, ξMk is the value of any comparison criteria under consideration
(deviance information criterion (DIC), expected Akaike information criterion (EAIC), expected
Bayesian information criterion (EBIC), and log-marginal pseudo-likelihood (LMPL)). Without
loss of generality, if the true model is M1, the probability of correct selection based on N Monte
Carlo simulations can be recovered by considering the following expression

p̂CS =
1
N

N

∑
j=1

δ j
ξ ,

where δ j
ξ assumes 1 if in the j-th simulation run, we get |ξM1 |< |ξM2 | and 0 otherwise. Conversely,

(1− p̂CS) denotes the relative number of times that model M2 was selected incorrectly. In each
step of this procedure, model M1 refers to a particular element of ℱ3 and M2 is always the 𝒵ℳ𝒫
model.

From the obtained results, we conclude that when applied in the comparison between
any element of ℱ3 and the standard 𝒵ℳ𝒫 model, the lower the value of θ the better the
performance of the Bayesian selection criteria (see Tables 83-88). As mentioned in the previous
simulation study, the third scenario of the zero-inflated case is quite problematic, and hence,
the comparison criteria have not behaved as expected. In this scenario, the correct selection
probability, for n = 500, was estimated between 34% and 43% when the 𝒵ℳ𝒫ℒ model is the
true one and is not greater than 42% in the case of 𝒵ℳ𝒫𝒮h distribution. Also, when dealing
with zero-deflated samples, it is more likely the criteria to find difficulties when selecting the
actual model since the correct selection probability was always estimated lower than 64.50% on
Scenarios 3 and 4, which consider θ = 6.00. In general, we have observed that model 𝒵ℳ𝒫𝒮u

is correctly selected more often than 𝒵ℳ𝒫ℒ and 𝒵ℳ𝒫𝒮h models. Further, it is worthwhile
to mention that, regardless the sample is zero-inflated/deflated, the LMPL criterion presents
better performance in all scenarios, and therefore, it is highly recommended its use in this type
of comparison mainly when small samples are available.
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2.6.3 Study 3
In Section 2.5, we have pointed out that estimating the 𝒵ℳ𝒫 parameter θ using the

𝒵𝒯 𝒫 distribution results in a loss of efficiency in the inference if there is no zero modification.
From the frequentist point of view, Dietz and Böhning (2000) have derived the asymptotic
variance of the MLE θ̂ for this model, which naturally corresponds to the asymptotic variance of
θ̂ under the 𝒵𝒯 𝒫 distribution. In this context, it is essential to evaluate the loss of efficiency in
the estimation procedure using a hurdle model when no zero modification occurs (p = 1) since,
in this case, the zero-valued observations are discarded to obtain θ̂ . In such a way, the authors
have derived the asymptotic relative efficiency (ARE), and they pointed out that the impact of
misspecification on the parameter estimate becomes negligible when the data are generated
with large mean. Through their derivation, this is the expected result since ARE goes to 1 as θ
increases. Further, they had concluded that the MLE under the 𝒵𝒯 𝒫 distribution is practically
fully efficient when the actual parameter is higher than 8.00.

In our context, if we had considered the frequentist approach, very complicated forms
would be derived for the ARE when the true model is an element of ℱ2. Under a Bayesian
point of view, one cannot obtain analytic expressions for the posterior variance of θ since the
posterior distribution of η does not have closed-form whether the model is zero-modified or
not. However, one can easily overcome this issue by considering the MC estimator (2.13) for
the posterior conditional variance. Therefore, this third simulation study consists of generating
N = 500 pseudo-random samples of sizes n = 50,100,200 and 500 of a random variable Y

distributed according to an element of ℱ2. In this procedure, we have defined a grid varying
in (0,6], containing 1,000 different values for parameter θ . Then, each value is considered to
generate an artificial dataset from any element of ℱ2. In the following, the true model and its
corresponding zero-modified version are fitted, and the Bayesian relative efficiency (BRE) is
computed. Considering estimator (2.12), the BRE can be estimated as

�BRE =
∑M

j=1

�
eη( j)−E(θ ;yyy)

�2

∑M
j=1

�
eη( j)

* −E(θ *;yyy)
�2 ,

being the posterior sum of squares provided by the fit of an element of ℱ2 (numerator) and by
the fit of the respective component on ℱ3 (denominator) – the subscripts * on η , and θ were
placed to make this differentiation clear. The pseudo-random generation of a single value from
any element of ℱ2 can be performed in a very similar way to that presented in Algorithm 2.

From the obtained results, we conclude that the BRE measure has provided an interesting
tool to evaluate the loss of efficiency, which occurs when using elements of ℱ3 to fit data
generated from ℱ2, that is, zero-modified models with p = 1. When such measure is compared
with the true values of θ , it is possible to identify from which values such misspecification
does not significantly impact its estimation. We have observed that the uncertainty on the BRE
estimate is large for small sample sizes (see Figures 34-36). Within a 10% margin, we have
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verified that under the 𝒵ℳ𝒫ℒ model, this procedure is highly efficient for θ < 0.18 when
n = 500 is considered. As for 𝒵ℳ𝒫𝒮h and 𝒵ℳ𝒫𝒮u models, the conclusion remains the same
for θ < 0.21 and θ < 0.31. Further, since µ → ∞ as θ → 0, it can be seen that the full efficiency
is attained for large values of µ , for example, µ > 9.00 under 𝒵ℳ𝒫𝒮u distribution.

2.7 Application to real data
The proposed zero-modified distributions are considered in the analysis of three real

datasets. The goodness-of-fit of these models is compared with those obtained by some distri-
butions provided in the literature. The first dataset was provided by the Department of Youth
and Community Development (DYCD) of New York City (State of New York, US). The records
are from 2011, and the sample contains several demographic information from all jurisdictions
in the city. The variable of our interest is the number of inhabitants of an ethnicity other than
American Indian, Pacific Islander, Hispanic Latino, Asian non-Hispanic, black non-Hispanic,
and white non-Hispanic in each jurisdiction.

The second one comprises a set of companies that were targets of tender offers between
1978-1985 and were taken over within 52 weeks of the initial bid. This dataset is due to Jaggia
and Thosar (1993), and the response variable is the number of takeover bids after the initial
proposal received by the target company.

The last one relates to the Student’s historical data on the number of Haemocytometer

yeast cell counts per square (STUDENT, 1907; GOSSET, 1908), which were obtained in each
of 400 regions of a 20×20 grid on a microscope slide.

Table 7 – Response variables and some descriptive statistics for each dataset.

Dataset Variable n Mean Variance ID(%) CV(%) PZ(%)

1
Number of individuals

236 0.6964 3.2884 479.06 264.18 77.11
of another ethnicity

2
Number

126 1.7381 2.0509 117.99 82.39 7.14
of takeover bids

3
Number of

400 0.6825 0.8137 119.23 132.17 53.25
yeast cells per square

Measures - ID: Index of Dispersion; CV: Coefficient of Variation; PZ: Proportion of Zeros.

Source: Elaborated by the author.

Table 7 presents some descriptive statistics for each response variable. The last column
shows the observed proportion of zeros in each dataset. One can note that more than 75%
of the observations are zero-valued in the first sample, while the second one presents a low
amount of zeros. The third dataset is approximately divided by half into positive and zero-valued
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observations. This feature can also be seen in Table 8, which presents the frequency distribution
of each dataset. The sample mode of Datasets 1 and 3 is zero, and the mode of Dataset 2 is 1.
Further, the initial analysis highlights the presence of overdispersion (see the index of dispersion
and the coefficient of variation). These indications justify the choice of the proposed models to
describe such data.

Table 8 – Frequency distribution of each dataset.

Dataset 0 1 2 3 4 5 � 6 Max.

1 182 20 11 7 4 3 9 17

2 9 63 31 12 6 1 4 10

3 213 128 37 18 3 1 0 5
Source: Elaborated by the author.

The methodology described in Section 2.5 was considered to estimate the proposed
models. For comparison purposes, identical procedures were adopted to fit the 𝒫 , the 𝒫ℒ, the
𝒫𝒮h, the 𝒫𝒮u, the 𝒩ℬ and the 𝒵ℳ𝒫 models. To fit the 𝒫 distribution, we have considered the
Jeffreys prior πθ (θ) ∝ θ−1/2 for parameter θ , which results in a Gamma posterior distribution
with shape ny+ 1/2 and scale n−1, being y the sample mean. Also, we have considered the 𝒩ℬ
distribution parameterized by the positive real-valued parameters µ (mean) and φ (dispersion)
with a numerical approach for computation of the Jeffreys prior through the observed information
matrix.

Table 9 – Posterior estimates of parameter θ and 95% BCIs from the proposed models.

Dataset Model Mean Median Std. Dev.
95% BCI
Lower Upper

1
𝒵ℳ𝒫ℒ 0.7426 0.7345 0.1022 0.5573 0.9456
𝒵ℳ𝒫𝒮h 0.7651 0.7596 0.0975 0.5757 0.9506
𝒵ℳ𝒫𝒮u 1.0170 1.0110 0.1192 0.7983 1.2537

2
𝒵ℳ𝒫ℒ 1.5266 1.5151 0.1781 1.1951 1.8809
𝒵ℳ𝒫𝒮h 1.4704 1.4582 0.1579 1.1951 1.8000
𝒵ℳ𝒫𝒮u 1.9265 1.9136 0.1925 1.5723 2.3052

3
𝒵ℳ𝒫ℒ 2.6774 2.6567 0.3129 2.0889 3.3042
𝒵ℳ𝒫𝒮h 2.4644 2.4467 0.2756 1.9586 3.0210
𝒵ℳ𝒫𝒮u 3.1305 3.1149 0.3134 2.5175 3.7338

Source: Elaborated by the author.

Table 9 presents the mean, the median, the standard deviation and the 95% BCIs obtained
from the posterior distribution of θ through parameter η . Noticeably, the higher the value of θ ,
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Table 10 – Comparison criteria and adequacy of the fitted models.

Model DIC EAIC EBIC LMPL χ2 (p-value) pB

Dataset 1

𝒫 726.57 727.59 731.05 −365.19 260.83 (< 0.001) 0.000

𝒫ℒ 550.31 551.31 554.77 −276.15 64.91 (< 0.001) 0.244

𝒫𝒮h 545.55 546.55 550.01 −273.61 61.96 (< 0.001) 0.236

𝒫𝒮u 553.12 554.10 557.57 −277.48 66.76 (< 0.001) 0.136

𝒩ℬ 469.62 469.25 476.18 −234.70 0.70 (0.705) 0.506

𝒵ℳ𝒫 498.62 500.60 507.53 −250.40 14.58 (0.001) 0.112

𝒵ℳ𝒫ℒ 465.35 467.34 474.27 −232.95 0.98 (0.613) 0.478

𝒵ℳ𝒫𝒮h 465.56 467.55 474.48 −233.04 1.05 (0.592) 0.474

𝒵ℳ𝒫𝒮u 466.96 468.94 475.87 −233.82 1.60 (0.449) 0.452

Dataset 2

𝒫 405.12 406.13 408.97 −202.65 27.39 (< 0.001) 0.662

𝒫ℒ 443.80 444.79 447.62 −221.65 72.11 (< 0.001) 0.762

𝒫𝒮h 442.70 443.69 446.53 −221.09 71.79 (< 0.001) 0.850

𝒫𝒮u 438.74 439.78 442.61 −219.14 68.06 (< 0.001) 0.858

𝒩ℬ 409.40 410.07 415.75 −204.69 30.08 (< 0.001) 0.934

𝒵ℳ𝒫 390.02 392.05 397.72 −195.52 8.12 (0.044) 0.098

𝒵ℳ𝒫ℒ 372.01 374.05 379.72 −186.18 0.39 (0.942) 0.480

𝒵ℳ𝒫𝒮h 371.86 373.89 379.56 −186.10 0.35 (0.950) 0.478

𝒵ℳ𝒫𝒮u 372.54 374.60 380.28 −186.46 0.44 (0.932) 0.446

Dataset 3

𝒫 900.97 901.99 905.98 −450.58 10.11 (0.018) 0.162

𝒫ℒ 907.30 908.27 912.26 −453.52 14.29 (0.003) 0.570

𝒫𝒮h 908.81 909.84 913.83 −454.29 15.74 (0.001) 0.566

𝒫𝒮u 906.88 907.88 911.87 −453.33 14.02 (0.003) 0.594

𝒩ℬ 901.14 901.16 909.14 −450.36 3.30 (0.192) 0.544

𝒵ℳ𝒫 899.20 901.18 909.16 −449.70 5.23 (0.073) 0.404

𝒵ℳ𝒫ℒ 896.86 898.85 906.84 −448.40 2.97 (0.227) 0.492

𝒵ℳ𝒫𝒮h 896.94 898.94 906.93 −448.43 3.04 (0.219) 0.488

𝒵ℳ𝒫𝒮u 896.71 898.74 906.73 −448.33 2.93 (0.231) 0.492

Source: Elaborated by the author.

the lower is the average number of counts under the respective baseline distributions. The
posterior summary of ω is presented in Table 11. Since our main interest remains on the
estimation of the zero modification parameter we present, in Table 12, the posterior summary of
p. Based on the results of the first simulation study and given the sample size of each dataset,
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there are indications that the coverage probability of the BCIs obtained for each parameter is
close to the nominal value of 95%.

Table 10 presents the model selection summary using some measures that were consid-
ered for comparison purposes (see Appendix A, Section A.2). It is noteworthy that the lower
values of DIC, EAIC, and EBIC are provided by the proposed models when fitted to the con-
sidered datasets. The conclusion remains the same when assessing the larger value of LMPL.
The goodness-of-fit was assessed by the chi-square χ2 measure obtained from the observed and
expected frequencies. The associated p-values are also presented. For each dataset, we have
grouped cells with frequencies lower or equal than 5, resulting in (4−κ) df for Datasets 1 and 3
and (5−κ) df for Dataset 2, being κ the number of estimated parameters. For instance, when
considering the zero-modified models we are directly estimating κ = 2 parameters, and therefore,
the df for Datasets 1 and 3 is 2 and the df for Dataset 2 is 3. When analyzing the computed
measures, one can notice that the proposed models adhere better to the considered datasets.
Further, we have computed the Bayesian p-value (pB) measure to evaluate model suitability. One
can notice the unreliability of the 𝒫 distribution to fit Dataset 1. Besides, the fits provided by the
𝒩ℬ and the 𝒵ℳ𝒫 models are highly questionable, mainly on the two first datasets. Notably,
all measures of model fit evaluation have agreed to the same best model.

Table 11 – Posterior estimates of parameter ω and 95% BCIs from the proposed models.

Dataset Mean Median Mode Std. Dev.
95% BCI
Lower Upper

1 0.2300 0.2292 0.2277 0.0273 0.1780 0.2859

2 0.9252 0.9274 0.9320 0.0233 0.8771 0.9663

3 0.4676 0.4675 0.4674 0.0249 0.4207 0.5197
Source: Elaborated by the author.

By the results presented in Table 12, one can notice that exists evidence that the first
dataset is zero-inflated while the second and third ones are zero-deflated. As an indication,
when looking at the 95% BCIs obtained for p, we emphasize the importance of considering
zero-modified models to fit these datasets since, in cases where exists clear evidence of zero
modification, this type of models are highly recommended. In addition, one can use the estimated
values of θ and p to estimate the measures presented in Equation (2.3) and the expected number
of zeros (n0) can be estimated as n f*(0; θ̂ , p̂). The obtained estimates are presented in Table 13.
Through these measures, one can better understand how the proposed models are adhering to the
data since the nature of the observed counts is being well described in terms of its overdispersion
level as well as the frequency and the average number of non-zero observations.

Figure 3 depicts the observed and the estimated expected frequencies for some fitted
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models. For each dataset, we have compared the fits provided by the 𝒵ℳ𝒫ℒ, the 𝒵ℳ𝒫𝒮h and
the 𝒵ℳ𝒫𝒮u models with the 𝒫 , the 𝒩ℬ, and the 𝒵ℳ𝒫 distributions. One can notice that the
estimates for n0 obtained from the 𝒫 distribution are much lower than the real one (Datasets
1 and 2) while those provided by zero-modified models are precisely equal to the true ones
(see Table 13). Notably, the models 𝒩ℬ, 𝒵ℳ𝒫 , and 𝒵ℳ𝒫ℒ have adhered better to Dataset 1
and the models 𝒫 , 𝒵ℳ𝒫 and 𝒵ℳ𝒫𝒮u provided very reliable fits for Dataset 3. However, for
Dataset 2, the 𝒩ℬ and 𝒵ℳ𝒫 models have provided almost the same results, whereas the best
fit was obtained by the 𝒵ℳ𝒫𝒮h model, which also highlights the potentiality of the proposed
models.

Table 12 – Posterior estimates of parameter p and 95% BCIs from the proposed models.

Dataset Model Mean Median Std. Dev.
95% BCI
Lower Upper

1
𝒵ℳ𝒫ℒ 0.3227 0.3204 0.0426 0.2412 0.4061
𝒵ℳ𝒫𝒮h 0.3198 0.3175 0.0429 0.2344 0.3999
𝒵ℳ𝒫𝒮u 0.3101 0.3076 0.0412 0.2291 0.3902

2
𝒵ℳ𝒫ℒ 1.8874 1.8754 0.1496 1.6049 2.1762
𝒵ℳ𝒫𝒮h 1.9244 1.9121 0.1618 1.6244 2.2467
𝒵ℳ𝒫𝒮u 1.8670 1.8571 0.1548 1.5706 2.1602

3
𝒵ℳ𝒫ℒ 1.4367 1.4259 0.1563 1.1693 1.7760
𝒵ℳ𝒫𝒮h 1.4723 1.4636 0.1607 1.1756 1.8041
𝒵ℳ𝒫𝒮u 1.4459 1.4366 0.1580 1.1589 1.7655

Source: Elaborated by the author.

Table 13 – Posterior estimates of extra parameters from the proposed models.

Dataset Model µ̂* �
σ̂2�* γ̂* n̂0

1
𝒵ℳ𝒫ℒ 0.68 2.73 3.99

182𝒵ℳ𝒫𝒮h 0.68 2.69 3.94
𝒵ℳ𝒫𝒮u 0.68 2.60 3.81

2
𝒵ℳ𝒫ℒ 1.73 1.65 0.96

9𝒵ℳ𝒫𝒮h 1.72 1.66 0.96
𝒵ℳ𝒫𝒮u 1.72 1.59 0.92

3
𝒵ℳ𝒫ℒ 0.68 0.84 1.22

213𝒵ℳ𝒫𝒮h 0.68 0.84 1.23
𝒵ℳ𝒫𝒮u 0.68 0.83 1.22

Source: Elaborated by the author.
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In general, we have noticed that the zero-modified models are providing more realistic
approaches for the considered datasets and that the proposed models are competitive with the
𝒩ℬ distribution when dealing with overdispersed samples. This feature can be regarded as one
of the most relevant achievements of the proposed models since they have to deal with non-zero
observations using a single parameter (θ) while the 𝒩ℬ distribution is highly competitive as it
has two parameters (µ,φ) to perform the same task.

Figure 3 – Posterior expected frequencies under the fitted models.

0 1 2 3 4 5 6 7 8 17

Dataset 1

Fr
eq

ue
nc

y

0
50

10
0

15
0

20
0

P
NB
ZMP
ZMPL

0 1 2 3 4 5 6 7 10

Dataset 2

0
20

40
60

80

P
NB
ZMP
ZMPSh

0 1 2 3 4 5

Dataset 3

0
50

10
0

15
0

20
0

25
0

P
NB
ZMP
ZMPSu

Source: Elaborated by the author.

We conclude by pointing out that the use of a discrete distribution that accommodates
a dispersion level beyond that one caused by the zero modification in a given dataset may be
meaningful in the cases where p = 1, with overdispersion that is explained only by the theoretical
model. In this way, there exists evidence that the proposed models adhere better to the three
analyzed datasets and hence, can be considered as suitable options to model zero-inflated or
zero-deflated count data in the presence of overdispersion.

2.8 Concluding remarks
In this capter, we have introduced a class of zero-modified Poisson mixture models as an

alternative to analyze zero-inflated/deflated data in the presence of overdispersion. Through the
hurdle approach, it was possible to write separable likelihood functions for the model parameters,
which facilitates classical and Bayesian procedures. In this setup, a closed-form MLE can be
derived only for parameter ω . Besides, we have shown that parameter θ of each model can
be estimated using just the positive observations in a given sample. Through Monte Carlo
simulations, we have assessed the properties of the Bayesian estimators, and we have obtained
an approximation for the probability of correct selection of the proposed models compared
with the standard 𝒵ℳ𝒫 distribution using the presented comparison criteria. Also, we have
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estimated, via simulation, the loss of efficiency in the estimation of θ when a zero-modified
model is considered in the case where no zero modification occurs (p = 1). The proposed
models were applied in the analysis of three real datasets. The response variables were detected
as overdispersed and zero-modified, which justified the choice of this kind of model. Also,
according to the comparison criteria, the proposed models presented better fits when compared
with several other models provided in the literature. Further, using the Bayesian p-value, we
have verified the suitability of the fits obtained by the proposed zero-modified models. Therefore,
we conclude that the proposed class is an excellent addition to the set of models that can be used
when analyzing overdispersed and zero-modified count data.
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CHAPTER

3
THE ZERO-MODIFIED POISSON-SHANKER

REGRESSION MODEL

3.1 Introduction

In this chapter, we propose the zero-modified Poisson-Shanker (𝒵ℳ𝒫𝒮h) regression
model as an alternative to model overdispersed count data exhibiting inflation or deflation of
zeros in the presence of covariates. The zero modification has been incorporated using the
zero-truncated version of the Poisson-Shanker (𝒫𝒮h) distribution. The 𝒫𝒮h distribution has
been written as a hurdle model using a simple reparameterization of the probability function,
which leads to the fact that the proposed model can be fitted without any previous information
about the zero modification present in a given dataset. Bayesian procedures have been considered
for estimation and inference. A simulation study has been presented to illustrate the performance
of the developed methodology. The usefulness of the proposed model has been evaluated using a
real dataset on fetal deaths notification data in Bahia State, Brazil. A sensitivity study to detect
points which can influence the parameter estimates has been performed using Kullback-Leibler
divergence measure. The randomized quantile residuals have been considered for the model
validation issue. A general comparison of the proposed model with some well-known discrete
distributions has been provided.

This chapter is organized as follows. In Section 3.2, we briefly present the 𝒫𝒮h distribu-
tion and some of its mathematical properties. In Section 3.3, we present the zero-truncated and
introduce the zero-modified version of the 𝒫𝒮h distribution, demonstrating its flexibility to deal
with zero-inflated/deflated data. In Section 3.4, we present the 𝒵ℳ𝒫𝒮h distribution as a hurdle
model. In Section 3.5, we present a regression framework based on the 𝒵ℳ𝒫𝒮h distribution.
In Section 3.6, the maximum likelihood function, the prior and the posterior densities for the
unknown parameters, the method to evaluate the effect of influential points and the randomized
quantile residuals theory are stated for the Bayesian inference procedures. In Section 3.7, a
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simulation study is presented. In Section 3.8, an application of the proposed model is considered
to evaluate its usefulness. Concluding remarks are addressed in Section 3.9.

3.2 The PSh distribution
A random variable λ is said to have a Shanker (𝒮h) distribution if its probability density

function can be written as

g(λ ;θ) =
θ 2

θ 2 +1
(θ +λ )e−θ λ , λ ∈ R+,

for θ ∈ R+.

The 𝒫𝒮h distribution is a probabilistic model that arises when the 𝒮h distribution is
chosen to describe the rate parameter λ of the Poisson (𝒫) distribution. In this case, a random
variable Y is said to have 𝒫𝒮h distribution if it follows the stochastic representation

Y |λ ∼ 𝒫 (λ ) and λ ∼ 𝒮 (θ) .

The unconditional distribution of the random variable Y can be denoted by 𝒫𝒮h(θ). Let
𝒴0 = {0,1, . . .} be the set of nonnegative integers. We completed the definition by stating that a
random variable Y , defined on 𝒴0, will have 𝒫𝒮h distribution if its probability mass function
(pmf) can be written as

f (y;θ) =
θ 2

θ 2 +1

�
θ 2 +θ + y+1

(θ +1)y+2

�
, y ∈ 𝒴0, (3.1)

for θ ∈ R+. Using the gamma integral, the above result can be easily proved by integrating
f (y|λ )g(λ ;θ) with respect to λ over R+, being f (y|λ ) the conditional pmf of a 𝒫 variable.

The cumulative distribution function (cdf) of Y is given by

F(y;θ) = 1−
�

θ 3 +θ 2 +θy+2θ +1

(θ 2 +1)(θ +1)y+2

�
, y ∈ 𝒴0.

From the results provided by Shanker (2016c), we have that the r-th factorial moment
about the origin of the 𝒫𝒮h distribution is given by

µ ′r =
r!
�
θ 2 + r+1

�

θ r (θ 2 +1)
,

which provides the moments about the origin. Thus, the mean and the variance are

µ = µ ′1 =
θ 2 +2

θ(θ 2 +1)
, and σ2 = µ ′2−

�
µ ′1
�2

=
θ 5 +θ 4 +3θ 3 +4θ 2 +2θ +2

θ 2(θ 2 +1)2 . (3.2)

The variance term can be easily written as

σ2 = µ
�

1+
θ 4 +4θ 2 +2

θ (θ 2 +1)(θ 2 +2)

�
= µγ, (3.3)
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being the ratio involving the parameter θ always positive. This implies that the 𝒫𝒮h distribution
is overdispersed, that is, whichever θ ∈ R+ we have that σ2 > µ . Further, the useful index
of dispersion (γ) is clearly greater than 1, also implying overdispersion since γ = σ2µ−1. On
the other hand, we have that γ → 1 (σ2 → µ) as θ → ∞, that is, the 𝒫𝒮h distribution has the
property of equidispersion for large values of θ .

Now, let us reparameterize the pmf (3.1) in terms of the mean (µ). This can be useful
since our interest is to define a regression framework based on the 𝒫𝒮h distribution. Since
θ ∈ R+, we have that

θ =
1

3µ

�
1+

s(µ)
2
− 2

�
3µ2−1

�

s(µ)

�
, (3.4)

where s(µ) = [12µ
�

3(4µ4 +71µ2 +8)+180µ2 +8]1/3. Hence, if we denote θ = h(µ), Equa-
tion (3.1) becomes

f (y; µ) =
h2(µ)

h2(µ)+1

�
h2(µ)+h(µ)+ y+1

[h(µ)+1]y+2

�
, y ∈ 𝒴0,

for µ ∈ R+. To complete the definition of the 𝒫𝒮h regression model we may consider a log-
arithmic link function that relates the mean to a linear predictor by log(µµµ) = xxx�βββ , where
xxx = (1,x1, . . . ,xq) is the vector of covariates and βββ� = (β0,β1, . . . ,βq) is the vector of unknown
parameters, both having length q+1.

3.3 The ZMPSh distribution
Let Y be a random variable defined on 𝒴0. Thus, Y is said to have 𝒵ℳ𝒫𝒮h distribution

if its pmf can be written as

f*(y; µ, p) = (1− p)δy + p f (y; µ), y ∈ 𝒴0, (3.5)

for µ ∈ R+. The parameter p is subject to the condition (called p-condition) given by

0 � p � 1
1− f (0; µ)

, (3.6)

being f (0; µ) the pmf of the 𝒫𝒮h random variable with mean µ , evaluated at zero. Further, δy is
the indicator function, so that δy = 1 if y= 0 and δy = 0 otherwise. Note that (3.5) is not a mixture
distribution typically fitted to zero-inflated data, since parameter p can assume values greater
than 1. However, for all values of p between 0 and the boundary [1− f (0; µ)]−1, the Equation
(3.5) corresponds to a properly pmf since f*(y; µ, p)� 0 for all y ∈ 𝒴0 and ∑y∈𝒴0 f*(y; µ, p) = 1.

Now, the corresponding cdf is given by

F* (y; µ, p) = 1− p
�
h3 (µ)+h2 (µ)+ yh(µ)+2h(µ)+1

�

[h2 (µ)+1] [h(µ)+1]y+2 , y ∈ 𝒴0. (3.7)
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The mean, the variance and the index of dispersion of Y are

µ* = pµ, σ2
* = p

�
σ2 +(1− p)µ2� and γ* = γ +(1− p)µ,

where µ and σ2 are given in Equation (3.2) and γ in Equation (3.3). The 𝒵ℳ𝒫𝒮h distribution
may be considered an interesting alternative to the usual zero-modified Poisson (𝒵ℳ𝒫) model
since the basis distribution of the former can accommodate several levels of overdisperson, issue
that the 𝒫 distribution generally fails in deal with.

Figure 4 depicts the pmf of the 𝒵ℳ𝒫𝒮h distribution (3.5) for µ = 0.50 (implying
0 � p � 2.99), for µ = 1.50 (implying 0 � p � 1.60), for µ = 3.00 (implying 0 � p � 1.24)
and for µ = 5.00 (implying 0 � p � 1.11). Notice that different values of p lead to different
𝒵ℳ𝒫𝒮h distributions, as can also be seen by considering the proportion of additional or missing
zeros, given by

f*(0; µ, p)− f (0; µ) = (1− p)+ p f (0; µ)− f (0; µ) = (1− p)[1− f (0; µ)].

Figure 4 – Behavior of the 𝒵ℳ𝒫𝒮h distribution for different values of µ and p.

(a) µ = 0.50 (b) µ = 1.50

(c) µ = 3.00 (d) µ = 5.00

Source: Elaborated by the author.

One can notice that parameter p controls the frequency of zeros. When p = 0 we
have f*(0; µ, p) = 1. In such case, (3.5) is a degenerate distribution with all mass at zero. For
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all 0 < p < 1 we have (1− p)[1− f (0; µ)] > 0 and therefore, f*(0; µ, p) > f (0; µ). In such
case, (3.5) corresponds to the pmf of the zero-inflated Poisson-Shanker (𝒵ℐ𝒫𝒮h) distribution
which has a proportion of zero greater than the usual 𝒫𝒮h distribution. When p = 1 we have
f*(0; µ, p)− f (0; µ) = 0 and therefore, (3.5) is the pmf of the 𝒫𝒮h distribution. For all 1 < p <

[1− f (0; µ)]−1 we have (1− p)[1− f (0; µ)] < 0 and therefore, f*(0; µ, p) < f (0; µ). In such
case, (3.5) corresponds to the pmf of the zero-deflated Poisson-Shanker (𝒵𝒟𝒫𝒮h) distribution,
which has a proportion of zero smaller than the usual 𝒫𝒮h distribution. Finally, when p =

[1− f (0; µ)]−1 we have f*(0; µ, p)= 0 and therefore, (3.5) is the zero-truncated Poisson-Shanker
(𝒵𝒯 𝒫𝒮h) distribution, with pmf given by

f *(y; µ) =
h2(µ)

h3(µ)+h2(µ)+2h(µ)+1

�
h2(µ)+h(µ)+ y+1

[h(µ)+1]y

�
(1−δy) , y ∈ 𝒴0, (3.8)

for µ ∈ R+.

3.4 Hurdle version of the PSh distribution
The class of hurdle models was introduced by Mullahy (1986). The relevant feature of

such models is that the zero outcomes are treated separately from the positive ones. In the main
formulation, a binary probability model determines whether a zero or a non-zero outcome occurs,
and hence, an appropriated zero-truncated discrete distribution is chosen to describe the positive
values (SAFFARI; ADNAN; GREENE, 2012).

Let us define the hurdle version of the 𝒫𝒮h distribution. Firstly, the pmf (3.5) can be
written as

f*(y; µ, p) = [1− p+ p f (0; µ)]δy + p f (y; µ)(1−δy)

= [1− p(1− f (0; µ))]δy + p f (y; µ)(1−δy) , y ∈ 𝒴0. (3.9)

Now, setting ω = p[1− f (0; µ)], Equation (3.9) becomes

f*(y; µ,ω) = (1−ω)δy +ω f *(y; µ), y ∈ 𝒴0, (3.10)

where f *(y; µ) is the 𝒵𝒯 𝒫𝒮h distribution given by (3.8). Since 0 � p � [1− f (0; µ)]−1 then
0 � p[1− f (0; µ)]� 1. Hence 0 � ω � 1.

The pmf (3.10) can be seen as a hurdle version of the 𝒫𝒮h distribution, where the
probability of Y = 0 is (1−ω) and the probability of Y > 0 is ω . The 𝒵ℳ𝒫𝒮h distribution
parameterized by ω is denoted by 𝒵ℳ𝒫𝒮h(µ,ω).

The 𝒵ℳ𝒫𝒮h distribution expressed as a hurdle version of the 𝒫𝒮h model contains
the 𝒵𝒯 𝒫𝒮h distribution as one of its components, which differs from the traditional mixture
representation of zero-inflated distributions. Moreover, this representation of the 𝒵ℳ𝒫𝒮h

distribution can be interpreted as a superposition of two processes, that is, one that produces
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positive observations from a𝒵𝒯 𝒫𝒮h distribution and another one that produces only zero-valued
observations with probability (1−ω).

The hurdle version of the 𝒫𝒮h distribution can be used to derive the maximum likelihood
estimators for parameters µ and ω . Furthermore, such an approach allows us to use only
the positive observations in a given dataset to estimate the parameter µ assuming that these
observations come from a 𝒵𝒯 𝒫𝒮h distribution, while parameter ω can be estimated as the
proportion of non-zeros in the dataset. The parameter p can be estimated using Equation
p = ω[1− f (0; µ)]−1 (by invariance principle). Indeed, inference procedures about parameter
p are required since we may often be interested in identifying what kind of zero modification
(inflation or deflation) is present in a given dataset.

3.5 The ZMPSh regression model
Let us suppose that we have a collection (Y1, . . . ,Yn) of independent discrete random

variables such that Yi|xxxi,zzzi,βββ ∼𝒵ℳ𝒫𝒮h(µi,ωi) (i = 1, . . . ,n), where βββ = (βββ 1,βββ 2) is the full
vector of fixed-effects. In this case, a regression model for count data based on the 𝒵ℳ𝒫𝒮h

distribution can be derived by rewriting Equation (3.10) as

f*[yi; µ(xxxi),ω(zzzi)] = [1−ω(zzzi)]δyi +ω(zzzi) f *[yi; µ(xxxi)], yi ∈ 𝒴0. (3.11)

To complete the definition of the 𝒵ℳ𝒫𝒮h regression model we should consider that
there are two known link functions, namely g1(µ) and g2(ω), so that µ(xxxi) = g−1

1 (xxx�i βββ 1) and
ω(zzzi) = g−1

2 (zzz�i βββ 2), respectively. The g1(µµµ) = xxx�βββ 1 is a differentiable link function, which
relates the mean (µ) to a linear predictor with vector of parameters βββ�

1 = (β10,β11, . . . ,β1q1) and
vector of covariates xxx�i = (1,xi1, . . . ,xiq1). The g2(ω) is another appropriate link function, which
relates ω to a linear predictor with vector of parameters βββ�

2 = (β20,β21, . . . ,β2q2) and vector of
covariates zzz�i = (1,zi1, . . . ,ziq2). Here, q1 and q2 are the number of covariates used to model µ
and ω , respectively.

An appropriate link function g2(ωωω) = zzz�βββ 2, which relates ω to a linear predictor is given
by

logit(ωi) = log
�

ωi

1−ωi

�
= zzz�i βββ 2, (3.12)

such that 0 < ωi < 1. Further, the probit link function

Φ−1 (ωi) = zzz�i βββ 2, (3.13)

is also appropriate for the desired purpose. Another very useful alternative is the complementary

log-log link function defined as

log [− log(1−ωi)] = zzz�i βββ 2, (3.14)
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which allows for a skewed specification. In addition, a more sophisticated approach considering
power and reversal power link functions was proposed by Bazán et al. (2017) and can be
applied in our context to provide more flexible relationships between the linear predictor and the
parameter ω .

The 𝒵ℳ𝒫𝒮h regression model has q1 +q2 +2 unknown parameters to be estimated,
which correspond to the parameter vectors βββ 1 and βββ 2. The link functions for parameter ω , given
by Equations (3.12), (3.13) and (3.14), exclude two specific cases of the random variable Y ,
namely when Y has a degenerate distribution at zero and when it has a zero-truncated distribution.
It is worthwhile to mention that identifiability problems could occur if the same covariate
was used to model both mean (µ) and the modification parameter (p) if we had considered
a regression model derived from (3.5). From Equation (3.11), we can see f*[yi; µ(xxxi),ω(zzzi)]

as a mixture of a 𝒵𝒯 𝒫𝒮h and a distribution with point mass equals to 1 at zero, with mixing
probabilities ω(zzzi). Unlike traditional approaches, model (3.11) can be fitted to both zero-inflated
and zero-deflated data. Then, P(Yi = 0)= 1−ω(zzzi) and P(Yi = yi)=ω(zzzi) f *[yi; µ(xxxi)], for yi > 0.
This parameterization makes model (3.11) separable into two parts, leading to orthogonality
between the parameters in µ(xxxi) and ω(zzzi). This avoids nonidentifiability problems as well the
use of the EM algorithm, typically used to fit mixture models. Regardless the model framework,
we will adopt a full Bayesian approach for inference concerns. The likelihood function, the prior

and the posterior densities are detailed in the next section.

3.6 Inference
Let YYY = (Y1, . . . ,Yn) be a random sample of size n from the 𝒵ℳ𝒫𝒮h distribution and

yyy = (y1, . . . ,yn) its observed values. For each yi we have associated vectors of covariates xxxi and
zzzi. Considering the model (3.11), the likelihood function for the parameter vectors βββ 1 and βββ 2 is
given by

ℒ(βββ 1,βββ 2;yyy,xxx,zzz) =
n

∏
i=1

[1−ω(zzzi)]
δyi

�
ω(zzzi) f [yi; µ(xxxi)]

1− f [0; µ(xxxi)]

�1−δyi
,

where the link function which relates µ to a linear predictor is g1[µ(xxxi)] = log[µ(xxxi)] = xxx�i βββ 1

and an appropriate link function which relates ω(zzzi) to a linear predictor is g2[ω(zzzi)] = zzz�i βββ 2.
Now, the log-likelihood function is given by

�(βββ 1,βββ 2;yyy,xxx,zzz) =
n

∑
i=1

(1−δyi)

�
log

�
f (yi; exp{xxx�i βββ 1})

1− f (0;exp{xxx�i βββ 1})

�
+ log[g−1

2 (zzz�i βββ 2)]

�
+

n

∑
i=1

δyi log[1−g−1
2 (zzz�i βββ 2)]

=
n

∑
i=1

(1−δyi)

�
log

�
f (yi; exp{xxx�i βββ 1})

1− f (0;exp{xxx�i βββ 1})

��
+

n

∑
i=1

log[g−1
2 (zzz�i βββ 2)]−δyi log

�
g−1

2 (zzz�i βββ 2)

1−g−1
2 (zzz�i βββ 2)

�
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= �1(βββ 1;yyy,xxx)+ �2(βββ 2;yyy,zzz).

One can notice that vectors βββ 1 and βββ 2 are orthogonal and that �1(βββ 1;yyy) depends only
on the positive values of yyy. Denoting by yyy+ the vector of positive observations from yyy, {y+j , j =

1, . . . ,n+} and {xxx+j , j = 1, . . . ,n+} the vector of covariates associated with each y+j , the log-
likelihood function for βββ 1 based on the supposition that y+j comes from a 𝒵𝒯 𝒫𝒮h distribution
is given by

�1(βββ 1;yyy+,xxx+) =
n+

∑
j=1

log




f
�

y+j ; exp{(xxx+j )
�βββ 1}

�

1− f
�

0;exp{(xxx+j )
�βββ 1}

�


 . (3.15)

Since �1(βββ 1;yyy+,xxx+) = �1(βββ 1;yyy,xxx), the setup of a 𝒵ℳ𝒫𝒮h regression model for µ(xxx)
is equivalent to assume that the positive responses of observed vector yyy come from a 𝒵𝒯 𝒫𝒮h

distribution. On the other hand, denoting by yyy0 the vector of zero observations from yyy, {y0
j , j =

1, . . . ,n0} and {zzz0
j , j = 1, . . . ,n0} the vector of covariates associated with each y0

j , the log-
likelihood function for βββ 2 is given by

�2(βββ 2;yyy,zzz) =
n

∑
i=1

log[g−1
2 (zzz�i βββ 2)]−

n0

∑
j=1

log




g−1
2

�
(zzz0

j)
�βββ 2

�

1−g−1
2

�
(zzz0

j)
�βββ 2

�


 . (3.16)

There are no closed-form for the maximum likelihood estimator (MLE) of the parameter
vector βββ = (βββ 1,βββ 2) and therefore, standard optimization algorithms such Newton-Raphson
based methods may be used to obtain numerical estimates in the frequentist approach. By the
maximum likelihood theory, a consistent estimator for the covariance matrix of β̂ββ j ( j = 1,2), is
given by the inverse of E[𝒦 j], being

𝒦1 =−
∂ 2�1(βββ 1;yyy,xxx)

∂βββ 1∂βββ�
1

and 𝒦2 =−
∂ 2�2(βββ 2;yyy,zzz)

∂βββ 2∂βββ�
2

,

the Hessian matrices. In our context, however, the computation of the expected value respect to
YYY is unfeasible, and therefore, the covariance matrices can be approximated only numerically by
evaluating the Hessian matrices at βββ j = β̂ββ j and using available observations.

3.6.1 Prior and Posterior distributions
A general class of prior densities, the so-called information matrix prior, which uses the

Fisher information matrix similarly to a precision matrix for a Normal distribution up to a scalar
variance factor was proposed by Zellner (1986) for application in the standard Gaussian linear
model. This setup is well-known as g-prior method. Such an approach was extended for the class
of generalized linear models by Gupta and Ibrahim (2009) in the context of high dimensional
data. In this method, the information matrix captures the prior covariance between parameters
via Fisher information, which seems an attractive specification since this matrix plays a major
role in the determination of large sample covariance in both Bayesian and frequentist inference.
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We shall consider, for the parameter vectors βββ 1 and βββ 2, two independent multivariate
Normal prior distributions. Let q j = q j +1 ( j = 1,2). Hence,

βββ j ∼𝒩q j

�
βββ p

j ,τ jΣΣΣ
�

βββ p
j

��
,

where ΣΣΣ(βββ p
j ) is equivalent to 𝒦−1

j evaluated at βββ p
j and τ j ∈ R+ is assumed known.

It can be proved that, if the data is discrete, then the use of a proper prior distribution
(multivariate Normal in our case) avoids the posterior density to be improper. The prior vectors
βββ p

1 and βββ p
2 can be chosen arbitrarily if no specialized information is available. The covariance

structure is obtained from the observed information, which means that an additional compu-
tational effort is necessary to compute such matrix. On the other hand, if we choose constant
precision matrices, not depending on βββ 1 and βββ 2, then the information matrix priors will always
be Gaussian priors. As τ1 → ∞ and τ2 → ∞, such priors converge to Jeffreys priors given by
π(βββ 1) ∝ |ΣΣΣ(βββ p

1)|−
1/2 and π(βββ 2) ∝ |ΣΣΣ(βββ p

2)|−
1/2, respectively. These densities can be seen as

particular cases of hyper-g prior density proposed by Bové and Held (2011), where τ1 and τ2

should be estimated with model parameters.

The Bayesian approach for the model (3.11) can be performed by writing the unnormal-
ized joint posterior density of the parameter vectors βββ 1 and βββ 2 as

π(βββ 1,βββ 2;yyy,xxx,zzz) ∝ exp{�1(βββ 1;yyy,xxx)+ �2(βββ 2;yyy,zzz)}π1(βββ 1)π2(βββ 2), (3.17)

and, due to orthogonality between βββ 1 and βββ 2, we have

π(βββ 1;yyy,xxx) ∝ exp{�1(βββ 1;yyy,xxx)}π1(βββ 1) and π(βββ 2;yyy,zzz) ∝ exp{�2(βββ 2;yyy,zzz)}π2(βββ 2), (3.18)

where �1 and �2 are given by (3.15) and (3.16), respectively.

From the Bayesian point of view, inference for the parameters is based on their marginal
posterior densities, which can be obtained by integrating the joint posterior distributions in (3.18).
Clearly, these densities have unknown forms mainly due to the complexity of the respective
likelihood functions. In this case, Bayesian estimates for each element of βββ j can be obtained
by applying the Random-walk Metropolis algorithm, which is an iterative procedure of a broad
class of MCMC methods. Through this procedure, q j chains can be generated for βββ j. In fact,
the dimensionality issue will depend on how much covariates will be taken under consideration
to modeling the parameters of 𝒵ℳ𝒫𝒮 model. Following Zelner’s g-prior approach, we will
consider a multivariate Normal specification for the proposal (candidate-generating) distribution
in the algorithm. This density is used as the main term in the transition kernel when computing
the acceptance probability (α). Thus, for any state k � 0, the MCMC simulations are performed
proposing a candidate ψψψ j for βββ j by generating ψψψ j|βββ *

j ∼𝒩q j[βββ
*
j ,ν jΣΣΣ(βββ *

j)], where βββ *
j = ν jβββ

(k)
j +

(1−ν j)βββ p
j and ν j = τ j(1+ τ j)

−1. Notice that transitions depend on the acceptance of pseudo-
random vectors generated with mean given by the mixture between the actual state of the chain
and the priors specification.
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Algorithm 3 can be used to generate chains for the model parameters using the Random-
walk Metropolis method. To run the algorithm, initial conditions βββ (0)

1 and βββ (0)
2 are needed and

βββ p
1 and βββ p

2 must be specified. The parameters τ1 and τ2 are chosen by monitoring the acceptance
rate of the algorithm. For a specific asymptotic Gaussian environment, it is well-known that the
optimal acceptance rate is 23.40%, but, in our case, we consider rates reaching 40% as reasonable.
This procedure generates a sample of size N + 1 for each parameter. The convergence of the
algorithm can be monitored by the Geweke criterion (GEWEKE, 1992). After convergence,
some generated samples are discarded as burn-in. The procedure to decrease the correlation
between and within generated chains is the usual approach of getting thinned steps. The final
sample is supposed to have a size of M. A summary of the posterior densities can be written
considering the MCMC estimates.

Algorithm 3 – Random-walk Metropolis

1: procedure METHAS(N,βββ (0)
1 ,βββ (0)

2 ,βββ p
1 ,βββ

p
2 ,τ1,τ2)

2: Set k← 0
3: Set ν1 ← τ1 (1+ τ1)

−1 and ν2 ← τ2 (1+ τ2)
−1

4: while k < N do
5: Set βββ *

1 ← ν1βββ (k)
1 +(1−ν1)βββ p

1 and βββ *
2 ← ν2βββ (k)

2 +(1−ν2)βββ p
2

6: Generate ψψψ1 ∼𝒩q1[βββ
*
1,ν1ΣΣΣ(βββ *

1)] and ψψψ2 ∼𝒩q2[βββ
*
2,ν2ΣΣΣ(βββ *

2)]

7: Set α1 ← min{1,exp[�1(ψψψ1;yyy,xxx)− �1(βββ
(k)
1 ;yyy,xxx)]}

8: Set α2 ← min{1,exp[�2(ψψψ2;yyy,zzz)− �2(βββ
(k)
2 ;yyy,zzz)]}

9: Set βββ (k+1)
1 ← βββ *

1 and βββ (k+1)
2 ← βββ *

2
10: Generate u1,u2 ∼ 𝒰 (0,1)
11: if u1 � α1 and u2 � α2 then
12: Set βββ (k+1)

1 ← ψψψ1 and βββ (k+1)
2 ← ψψψ2

13: end if
14: Set k← k+1
15: end while
16: return {βββ (k)}N

k=1
17: end procedure

In Sections 3.7 and 3.8 we present, respectively, the results obtained in the simulation
study and the application of the proposed model to a real dataset. To attain the numerical results,
all computations were performed under the R environment (R Development Core Team, 2017).

3.6.2 Influential points

The computation of divergence measures between posterior distributions is an useful
way to quantify influence. According to Csiszár (1967), the q-divergence measure between two
densities π1 and π2 for a vector of parameters βββ is defined by

dq (π1,π2) =
�

𝒟
π2 (βββ )q

�
π1 (βββ )
π2 (βββ )

�
dβββ ,
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where 𝒟 is the cartesian product defining the domain of βββ and q is a convex function such that
q(1) = 0. Each choice q leads us to different divergence measures. The well-known Kullback-
Leibler (KL) divergence is obtained by letting q(t) = − log(t). A symmetric version of KL
divergence is obtained when q(t) = (t− 1) log(t) and the L1-distance divergence is obtained
when q(t) = |t−1|. See Cho et al. (2009) and Garay et al. (2015) for further details about the
q-divergence.

Let yyy(−i) = (y1, . . . ,yi−1,yi+1, . . . ,yn) be the response vector after removal of the i-th
observation of yyy. Also, let xxx(−i) and zzz(−i) be the vectors of covariates having the same form
of yyy(−i). For ease of notation, let βββ = (βββ 1,βββ 2) be the vector containing all the parameters of
the regression model (3.11). Using the full vector of observations, the posterior density of
the vector βββ can be denoted by π(βββ ;yyy,xxx,zzz), as stated in Equation (3.17). On the other hand,
using the vector without the i-th observation, the posterior density of βββ can be denoted by
π(βββ ;yyy(−i),xxx(−i),zzz(−i)). In this chapter, we will consider the KL divergence between π(βββ ;yyy,xxx,zzz)

and π(βββ ;yyy(−i),xxx(−i),zzz(−i)) to assess the local influence of the observation yi. This measure can
be evaluated as

KL
�
π,π(−i)

�
=
�

𝒟
π (βββ ;yyy,xxx,zzz) log


 π (βββ ;yyy,xxx,zzz)

π
�

βββ ;yyy(−i),xxx(−i),zzz(−i)

�


dβββ , (3.19)

where the region of integration is 𝒟 = Rq1 ×Rq2 . The term involving the logarithm of the ratio
of the two posterior densities can be rewritten as

log


 π (βββ ;yyy,xxx,zzz)

π
�

βββ ;yyy(−i),xxx(−i),zzz(−i)

�


 = log [ f* (yi;xxxi,zzzi,βββ )]−

log
��

𝒟
f* (yi;xxxi,zzzi,βββ )π

�
βββ ;yyy(−i),xxx(−i),zzz(−i)

�
dβββ
�
,

where the integral in the right side corresponds to the conditional predictive ordinate (CPO)
density of the observation yi. The (3.19) can be expressed as

KL
�
π,π(−i)

�
= Eβββ {log [ f* (yi;xxxi,zzzi,βββ )]}− log(CPOi) ,

being the expected value obtained with respect to π(βββ ;yyy,xxx,zzz). Thus, given the set {βββ 1, . . . ,βββ M}
of generated values from the posterior density (3.17), one can estimate the effect of the observa-
tion yi as

�KL
�
π,π(−i)

�
=

1
M

M

∑
k=1

log
�

f*

�
yi;xxxi,zzzi, β̂ββ

(k)
��
− log

�
�CPOi

�
,

where the CPO can be estimated as

�CPOi =




1
M

M

∑
k=1

1

f*

�
yi;xxxi,zzzi, β̂ββ

(k)
�




−1

. (3.20)
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A measure of calibration for the KL divergence was proposed by McCulloch (1989).
Denoted by ρi, this measure is derived from the solution of the equation

KL
�
π,π(−i)

�
= KL [ℬ (0.5) ,ℬ (ρi)]

= − log [4ρi (1−ρi)]

2
, (3.21)

where ℬ(ρi) denotes the Bernoulli distribution with probability of success ρi. This implies
that describing results using the full posterior density instead of that one removing the i-th
observation is equivalent to describe a not observed event as having probability ρi, when the
correct probability is 0.50. Now, solving Equation (3.21) for ρi, we have that

ρi =
1
2

�
1+

�
1− exp{−2KL

�
π,π(−i)

�
}
�
,

which implies that 0.50 � ρi � 1. For ρi ≫ 0.50, it can be considered that the i-th observation is
an influential point, and its removal can provide a more realistic fit of the 𝒵ℳ𝒫𝒮h regression
model.

3.6.3 Residual analysis
The residual analysis is defined by a set of methods used to investigate the suitability of

a regression model. Here, we consider an approach based on the randomized quantile residuals
proposed by Dunn and Smyth (1996), which is a particular case of Cox and Snell crude residuals
(COX; SNELL, 1968), to evaluate the suitability of the 𝒵ℳ𝒫𝒮h regression model for a given
dataset.

Let F*(y; µ, p) be the cdf given by (3.7). Since F* is not continuous, a general definition
of quantile residuals is required. In this way, let us assume ai = limy↑yi F*(y; µ̂i, p̂i) and bi =

F*(yi; µ̂i, p̂i) for the i-th observation of yyy. Hence, the randomized quantile residuals for each yi

can be defined as
ri = Φ−1 (ui) ,

where Φ(·) is the cdf of the standard Normal distribution and ui is a Uniform random variable
defined on (ai,bi]. The main feature of such type of residuals is that the ri are exactly standard
Normal, regardless of the sample variability in µ̂i and p̂i. After model fitting, the normality
assumption can be verified by using graphic techniques (e.g., the Normal QQ-plot) as well as
using some well-known adherence tests.

3.7 Simulation study
In this section we seek to evaluate the performance of the proposed Bayesian approach

by performing a simulation study. The simulation process consists of generating 500 independent
samples of sizes n = 50,100,200,500, and 1,000 of a random variable Y having 𝒵ℳ𝒫𝒮h
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distribution under the regression framework (3.11). For the entirely process, we consider a
n×2 regression matrix XXX in which the first column consists of 1’s and the second consists of
a fixed variable generated from an Uniform distribution on the unit interval. We also consider
ZZZ = XXX . Moreover, we assign different values for the vectors of parameters βββ�

1 = (β10,β11) and
βββ�

2 = (β20,β21) in order to generate both zero-inflated and zero-deflated samples. To relate µ
and ω with the their respective linear predictors, we choose the logarithm link function and the
Equation (3.12), respectively. Each one of these cases are treated separately in the following
subsections.

Algorithm 4 can be used to generate a single pseudo-random realization from the
𝒵ℳ𝒫𝒮h distribution in the regression framework. The process to generate a random sam-
ple consists of running the algorithm as often as necessary, say n times. The sequential-search
is a black-box type of algorithm and works with any computable probability vector. The main
advantage of such a procedure is its simplicity. On the other hand, sequential-search algorithms
may be slow as the while-loop may have to be repeated very often. More information on this
algorithm can be found at Hörmann, Leydold and Derflinger (2013).

Algorithm 4 – Sequential-Search

1: procedure SEQSEA(βββ 1,βββ 2)
2: Generate x,u∼ 𝒰 (0,1)
3: Set µ ← exp{β10 +β11x} and ω ← [1+ exp{−(β20 +β21x)}]−1

4: Set y← 0 and k← (1−ω)
5: while u > k do
6: Set y← y+1 and k← k+ω f (y; µ)
7: end while
8: return y
9: end procedure

Under the 𝒵ℳ𝒫𝒮h distribution, the expected number of iterations (NI), that is, the
expected number of comparisons in the while condition, is given by

µ
NI
= µ*+1 = pµ +1

=
ω (θ +1)2 �θ 2 +2

�

θ (θ 3 +θ 2 +2θ +1)
+1

=
ω [h(µ)+1]2

�
h2(µ)+2

�

h(µ) [h3(µ)+h2(µ)+2h(µ)+1]
+1,

where h(µ) is given by the Equation (3.4).

To apply the Bayesian approach in each case, we consider the Random-walk Metropolis
algorithm for MCMC sampling. A total of N = 50,000 values were generated for each parameter,
considering a burn-in of 20% of the size of the chain. Then, the chains were diagnosed using the
Geweke convergence method, revealing their stationarity. To obtain pseudo-independent samples
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from the posterior distributions given in (3.18), one out every 10 generated values were kept,
resulting in chains of size M = 4,000 for each parameter. We consider the posterior mean as
a Bayesian estimator and evaluate its performance by its bias (B), its variance (Var), its mean
squared error (MSE), and its mean absolute percentage error (MAPE). Also, we compute the
coverage probability (CP) of the Bayesian Credible Intervals (BCIs) obtained for each parameter.
Using the generated samples and assuming φ = β10,β11,β20 or β21, the measures of interest are
given by

B
�
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�
=

1
M

M

∑
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�
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�
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�
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φ̂ j−φ

φ

����� .

The variance of φ̂ can be estimated as the difference between the MSE and the square of
the bias. Moreover, the coverage probability of the BCIs is computed as follows

CP% (φ) =
100
M

M

∑
j=1

δ j (φ) ,

where δ j(φ) assumes 1 if the j-th BCI contains the true value φ and 0 otherwise. In addition,
we estimated the below and the above non-coverage probability of the BCIs, denoted by BNCP
and ANCP, respectively. These measures are computed analogously to the CP. The BNCP and
the ANCP may be useful measures to determine asymmetric features since they provide the
probabilities of finding the true value of the parameter φ on the tails of the generated posterior

density.

The priors were chosen in order to ensure that parameter p provides zero inflation or
zero deflation depending on the case. This was made by applying the prior values on the linear
predictors of µ and ω . Also, the estimation procedures were performed using τ1 = τ2 = 5, which
provided acceptance rates of approximately 40%. Indeed, higher values of τ1 and τ2 provide
lower acceptance rates in the Random-walk Metropolis algorithm, resulting in higher variances
of the Bayesian estimates. However, the point estimates of the parameter vectors βββ 1 and βββ 2

(posterior expected values) were often close to the true values.

We noticed in the simulation study that the parameter estimates become more accurate,
that is, the estimated bias and mean squared errors decrease with increasing sample size. Although
high MAPE values were obtained for some parameters, this does not compromise accuracy
in estimation. For example, in Table 14 (Scenario 2), for n = 1,000, we observed a MAPE of
approximately 22% for β20. Taking into account that the true value of this parameter is -0.5, we
have β̂11 = 1.22× (−0.5) =−0.61, which does not represent such a huge impact on the final
result. Moreover, the estimated coverage probability of the credible intervals (Table 16), although
not reach the 95% expected, also improves as the sample size increases. In Table 15 (Scenario 2),
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Table 14 – Empirical properties of the Bayesian estimators using zero-inflated samples.

n Parameter Bias Var MSE MAPE (%)

Scenario 1

50

β10 −0.0145 0.0595 0.0597 6.3957

β11 0.0066 0.3036 0.3036 87.4904

β20 0.3090 1.1218 1.2173 36.6655

β21 −0.5021 2.7551 3.0073 49.4452

100

β10 −0.0088 0.0441 0.0442 5.5116

β11 0.0022 0.1594 0.1594 64.1307

β20 0.0933 0.3495 0.3582 22.9741

β21 −0.1264 0.9148 0.9308 30.3051

200

β10 −0.0062 0.0148 0.0149 3.2738

β11 0.0043 0.0635 0.0635 41.0374

β20 0.0527 0.1435 0.1463 14.7141

β21 −0.0793 0.3915 0.3978 19.6125

500

β10 −0.0007 0.0051 0.0051 1.8934

β11 −0.0039 0.0204 0.0204 22.5212

β20 0.0168 0.0546 0.0549 9.3431

β21 −0.0135 0.1389 0.1391 11.9998

1,000

β10 0.0014 0.0030 0.0030 1.4645

β11 −0.0043 0.0110 0.0110 17.1100

β20 0.0140 0.0273 0.0275 6.5848

β21 −0.0101 0.0658 0.0659 8.1402

Scenario 2

50

β10 −0.0400 0.2006 0.2022 14.0490

β11 −0.0157 0.9723 0.9726 50.3510

β20 0.0398 0.4241 0.4257 102.0528

β21 −0.3012 1.9653 2.0561 111.7261

100

β10 −0.0133 0.1085 0.1087 10.0876

β11 −0.0529 0.3491 0.3519 31.1519

β20 0.0161 0.2714 0.2716 83.3754

β21 −0.1197 0.9490 0.9633 78.0873

200

β10 −0.0189 0.0373 0.0377 6.1515

β11 −0.0016 0.1422 0.1422 19.9918

β20 0.0106 0.0882 0.0884 47.5292

β21 −0.0604 0.3518 0.3554 47.7006

500

β10 −0.0039 0.0132 0.0133 3.6626

β11 −0.0271 0.0450 0.0457 11.5067

β20 −0.0083 0.0365 0.0365 30.6836

β21 −0.0058 0.1273 0.1274 28.6547

1,000

β10 0.0030 0.0072 0.0072 2.6809

β11 −0.0277 0.0248 0.0256 8.3709

β20 0.0051 0.0189 0.0189 22.0800

β21 −0.0153 0.0645 0.0647 20.6595

Source: Elaborated by the author.
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Table 15 – Empirical properties of the Bayesian estimators using zero-deflated samples.

n Parameter Bias Var MSE MAPE (%)

Scenario 1

50

β10 −0.1875 0.6136 0.6487 60.4564

β11 0.1005 1.9180 1.9281 216.2502

β20 0.0826 0.5250 0.5319 111.3466

β21 −0.0093 2.1304 2.1305 115.2306

100

β10 −0.0758 0.2932 0.2990 41.6854

β11 0.0277 0.7570 0.7578 136.3924

β20 −0.0164 0.2562 0.2565 78.1795

β21 0.1120 0.8945 0.9070 73.7165

200

β10 −0.0554 0.1154 0.1185 27.2801

β11 0.0442 0.3145 0.3164 89.2993

β20 0.0053 0.0979 0.0980 50.0958

β21 0.0340 0.3561 0.3573 47.6602

500

β10 −0.0282 0.0394 0.0401 15.9299

β11 0.0243 0.1017 0.1023 50.7572

β20 0.0016 0.0343 0.0343 29.0094

β21 0.0164 0.1282 0.1284 27.3856

1,000

β10 −0.0139 0.0215 0.0217 11.4679

β11 0.0128 0.0543 0.0545 37.1224

β20 0.0079 0.0201 0.0202 22.6280

β21 −0.0005 0.0695 0.0695 20.6529

Scenario 2

50

β10 −0.4934 2.3634 2.6068 53.6098

β11 0.1431 8.5660 8.5865 403.6466

β20 0.1726 0.5138 0.5436 57.2098

β21 −0.2159 1.6698 1.7164 204.9714

100

β10 −0.2428 0.9398 0.9987 35.0369

β11 0.1028 2.3097 2.3203 228.8899

β20 0.0163 0.2716 0.2719 40.5817

β21 0.0333 0.8099 0.8110 143.6478

200

β10 −0.1359 0.3124 0.3309 21.7213

β11 0.0710 0.9130 0.9181 151.6749

β20 0.0200 0.1089 0.1093 26.0174

β21 −0.0058 0.3208 0.3209 90.7417

500

β10 −0.0522 0.0834 0.0861 11.5717

β11 0.0301 0.2271 0.2280 76.0097

β20 0.0055 0.0364 0.0365 15.2508

β21 0.0052 0.1059 0.1059 51.9439

1,000

β10 −0.0204 0.0473 0.0477 8.5717

β11 0.0076 0.1336 0.1337 57.5964

β20 0.0132 0.0199 0.0201 11.4299

β21 −0.0104 0.0544 0.0545 37.7689

Source: Elaborated by the author.
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Table 16 – Coverage probabilities (%) of the BCIs using zero-inflated samples.

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 1 Scenario 2

50

β10 3.40 92.40 4.20 4.40 90.60 5.00

β11 4.60 93.00 2.40 4.40 91.20 4.40

β20 8.00 90.40 1.60 5.20 92.20 2.60

β21 2.20 91.20 6.60 2.80 92.40 4.80

100

β10 3.40 91.80 4.80 4.40 92.80 2.80

β11 4.40 91.80 3.80 3.00 93.80 3.20

β20 4.80 92.80 2.40 5.00 92.60 2.40

β21 3.40 91.60 5.00 3.80 91.60 4.60

200

β10 3.40 92.80 3.80 3.60 92.40 4.00

β11 3.00 92.60 4.40 2.80 94.20 3.00

β20 3.80 93.40 2.80 3.60 95.00 1.40

β21 2.60 94.40 3.00 2.40 92.20 5.40

500

β10 3.20 93.80 3.00 3.00 93.40 3.60

β11 3.80 92.20 4.00 2.20 93.40 4.40

β20 4.60 91.80 3.60 3.20 93.80 3.00

β21 4.60 91.60 3.80 4.00 92.00 4.00

1,000

β10 3.40 93.80 2.80 3.00 93.40 3.60

β11 2.60 93.80 3.60 2.00 92.80 5.20

β20 3.40 92.00 4.60 3.40 93.20 3.40

β21 2.80 94.40 2.80 3.60 92.00 4.40

Source: Elaborated by the author.

Figure 5 – Posterior estimates of parameter p using zero-inflated samples (n = 1,000).

(a) Scenario 1 (b) Scenario 2

Source: Elaborated by the author.

also for n = 1,000, we observed a MAPE of approximately 58% for β11. Since the true value, in
this case, is 0.5, we have β̂11 = 1.58×0.5 = 0.79, which would also not have much impact on
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the model fit. Therefore, our simulation study indicates the feasibility of the proposed Bayesian
approach to the use of the 𝒵ℳ𝒫𝒮h regression model in the analysis of overdispersed and
zero-modified real datasets.

Table 17 – Coverage probabilities (%) of the BCIs using zero-deflated samples.

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 1 Scenario 2

50

β10 2.60 92.20 5.20 2.60 92.80 4.60

β11 4.20 92.80 3.00 4.60 90.80 4.60

β20 6.20 89.60 4.20 5.80 92.80 1.40

β21 3.20 92.20 4.60 2.40 92.00 5.60

100

β10 3.80 92.40 3.80 3.80 88.60 7.60

β11 4.80 91.60 3.60 6.80 88.60 4.60

β20 2.60 94.00 3.40 3.80 91.80 4.40

β21 4.80 93.00 2.20 4.40 91.40 4.20

200

β10 2.80 93.40 3.80 4.20 90.20 5.60

β11 3.60 93.00 3.40 5.20 90.40 4.40

β20 3.60 92.80 3.60 4.20 91.40 4.40

β21 2.60 93.20 4.20 3.80 92.20 4.00

500

β10 2.80 93.20 4.00 2.60 93.20 4.20

β11 3.80 93.40 2.80 4.80 92.40 2.80

β20 2.40 93.60 4.00 2.80 93.40 3.80

β21 4.20 92.20 3.60 4.80 93.00 2.20

1,000

β10 4.00 91.20 4.80 3.80 91.00 5.20

β11 3.60 93.20 3.20 4.60 91.80 3.60

β20 4.80 91.60 3.60 2.80 94.20 3.00

β21 4.60 91.20 4.20 2.80 94.20 3.00

Source: Elaborated by the author.

3.7.1 Zero-inflated artificial data

For the zero-inflated case, the samples were generated from a 𝒵ℳ𝒫𝒮h distribution
considering that 0 < p < 1. Here, the parameters were chosen by taking into account that zero-
inflated samples have, naturally, proportion of zeros greater than expected and therefore, the
variable Y was generated with mean (µ) not even close to zero. Thus, in the first scenario,
we assign the values βββ�

1 = (3.0,−0.5) and βββ�
2 = (2.0,−2.5) to the parameter vectors and

perform the simulation process. In the following, the values were changed to βββ�
1 = (2.5,1.5)

and βββ�
2 = (−0.5,−1.0) and the procedure was repeated once again. The prior setup for these

scenarios is (βββ p
1)

� = (1.0,0.0) and (βββ p
2)

� = (0.0,1.0). Figure 5 depicts the posterior estimates
obtained for parameter p using zero-inflated samples considering n = 1,000 for each scenario.
The real values are represented by the blue straight lines and the 95% BCIs are represented by
the red dashed lines. The estimated values for each generated observation are represented by the
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filled black dots. In the adopted scenarios, the degree of zero inflation noticeably increases as x

approaches to 1.

3.7.2 Zero-deflated artificial data

For the zero-deflated case, the samples were generated from a 𝒵ℳ𝒫𝒮h distribution
considering that 1 < p < [1− f (0; µ)]−1. Here, the parameters were chosen by taking into
account that zero-deflated samples have, naturally, proportion of zeros smaller than expected
and therefore, the variable Y was generated with mean (µ) close to zero. Thus, in the first
scenario,we assign the values βββ�

1 = (−1.0,0.5) and βββ�
2 = (0.5,1.0) to the parameter vectors and

perform the simulation process. In the following, the values were changed to βββ�
1 = (−2.0,0.5)

and βββ�
2 = (1.0,−0.5) and the procedure was repeated once again. The prior setup for these

scenarios is (βββ p
1)

� = (0.0,−1.0) and (βββ p
2)

� = (2.0,0.0). Figure 6 depicts the posterior estimates
obtained for parameter p using zero-deflated samples considering n = 1,000 for each scenario.
This representation has the same characteristics of Figure 5. Table 17 presents the estimated
coverage probabilities of the BCIs considering the zero-deflated case.

Figure 6 – Posterior estimates of parameter p using zero-deflated samples (n = 1,000).

(a) Scenario 1 (b) Scenario 2

Source: Elaborated by the author.

3.8 Fetal deaths data analysis
The application of the 𝒵ℳ𝒫𝒮h regression model will be considered using a real dataset

of the number of fetal deaths notifications reported in all the cities of Bahia State in the year of
2014 (data extracted from DATASUS repository (DATASUS, 2016)). Fetal death is defined as
the death of a fetus before the expulsion or complete extraction of the mother’s body, regardless
of the gestation period. The death is verified when, after separation, the fetus does not breathe
or present any sign of life, such as heartbeats, umbilical cord pulsations, effective movements,
or voluntary contraction muscles. The main focus is to study the relationship of the mentioned
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counts with the Human Development Index (HDI) assigned for each city. The HDI is a summary
measure of average achievement in key dimensions of human development: a long and healthy
life, being knowledgeable, and have a decent standard of living. The HDI is computed as a
geometric mean of normalized indices for each of these three dimensions.

According to the available information, Bahia State had 417 cities having HDI varying
between 0.486 and 0.759 in 2014. The smaller index was assigned to Itapicuru and the upper
one to the capital of Bahia State, Salvador. Cities having an HDI between 0.50 and 0.79 are
considered as developing, and those ones with an HDI above 0.79 are considered developed.
Excluding Itapirucu, the other 416 cities have an HDI within the range that ranks the developing
cities. Indeed, the HDIs of these cities are comparable to those in some places in Africa and
Central America (CONCEIÇÃO; ANDRADE; LOUZADA, 2013).

Now, let us characterize the number of fetal deaths notifications as the response variable
(Y ). From the observed dataset, there exists clear evidence that Y is overdispersed since the
mean and the standard deviation are 5.47 and 30.62, respectively. The range of Y is 601, and its
coefficient of variation is approximately 560%. The frequency of zeros is 96 (around 23% of
the entire sample), which naively indicates zero inflation. The first and third quartiles of Y are
respectively 1 and 4, showing that the number of notifications is very low for at least 75% of the
cities in Bahia State. Moreover, we observed that only 29 out of 417 cities registered more than
ten notifications over 2014. Figure 7 presents a barplot to illustrate the frequency distribution
of the variable Y . A large amount of zeros in the dataset is a direct consequence of the lack of
notifications of fetal deaths.

Figure 7 – Frequency distribution of the response variable.
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Source: Elaborated by the author.

To fit the 𝒵ℳ𝒫𝒮h regression model with HDI as a covariate, we adopted a similar
procedure to that one used in the previous section. The logarithm link function was considered
to relate µ with the linear predictor β10 +β11HDI. To relate the parameter ω with the linear
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predictor β20 +β21HDI, we choose the link function given by (3.12). In this framework, the
parameters β11 and β21 represent the effect of the HDI on the mean (µ) and the probability of
zeros (1−ω), respectively. We considered the Random-walk Metropolis algorithm, generating a
chain of size N = 50,000 for each parameter whereby the first 10,000 values were discarded as
burn-in. The stationarity of each chain was evaluated with the Geweke criterion for the diagnostic
of convergence. To obtain the pseudo-independent samples, one out every 10 generated values
were kept, resulting in chains of size M = 4,000 for each parameter. For the prior distributions,
we took (βββ p

1)
� = (1.0,0.0), (βββ p

2)
� = (0.0,1.0) and τ1 = τ2 = 5. Acceptance rates in the Random-

walk Metropolis algorithm were at approximately 39%, and similar results were obtained to
those observed in the simulation study, respect to the variability of the parameter estimates. For
comparison purposes, identical procedures were adopted to fit the 𝒫 , the 𝒫𝒮h and the 𝒵ℳ𝒫
regression models using the same dataset.

Table 18 – Posterior parameter estimates and 95% BCIs from 𝒵ℳ𝒫𝒮h fitted model (full dataset).

Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

β10 −10.9117 −10.9148 0.5786 −12.0842 −9.8028
β11 20.1269 20.1224 0.9285 18.3625 22.0067
β20 −5.6071 −5.5846 1.7747 −9.1571 −2.2021
β21 11.5801 11.5178 3.0312 5.8298 17.6172

Source: Elaborated by the author.

Table 18 presents the mean, median, standard deviation obtained from the posterior

distribution generated by the MCMC method for the 𝒵ℳ𝒫𝒮h regression model. The 95% BCIs
were estimated empirically from the generated samples. Given the sample size (n = 417), the
coverage probability is indeed high for the parameters. One can note that the BCIs obtained for
β11 and β21 do not contain the value zero, which constitute the HDI as a relevant covariate to
describe the number of notifications of fetal deaths. We verified that the assumption of normality
for the generated chains is quite reasonable even in the presence of slightly heavy tails on the
estimated marginal posterior densities of the parameters of the 𝒵ℳ𝒫𝒮h regression model. In
addition, there exists evidence of symmetry since posterior mean and median are very close to
each other.

An analysis to verify the existence of influential points is presented in Figure 8. Figure
8a depicts the Kullback-Leibler divergence used to evaluate the effect of each observation on
the parameter estimates. We consider an observation whose distance has a calibration exceeding
0.90 as an influential point. Based on Figure 8b, we observed the existence of two influential
points, 260 and 336, corresponding to the cities Monte Santo and Salvador, respectively. In order
to assess the influence of each observation, the inferential process was repeated considering three
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Figure 8 – Sensitivity analysis for diagnostic of influential points.
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Source: Elaborated by the author.

cases: removing only observation 260, removing only observation 336, and finally removing
both the observations. The posterior summary for each case and variation percentage regarding
the posterior summary obtained from the full dataset is presented in Table 20. After analyzing
the parameter estimates in each case, it can be observed that the removal of observation 260 had
a relative impact on the estimates of β10 and β11, while the removal of observation 336 had a
higher impact on these parameters. As the parameter µ was estimated using only the positive
observations, we have that when more than zero notifications were registered, its expected value
will be smaller than 4.00 on the cities with HDI � 0.600.

Table 19 – Comparison criteria for the fitted models.

Model Full Dataset Without Observation 260
DIC EAIC EBIC LMPL DIC EAIC EBIC LMPL

𝒫 8754.11 3508.61 3516.67 −1809.86 8463.78 3392.44 3400.50 −1747.46
𝒫𝒮h 4825.27 1933.59 1941.66 −968.59 4734.94 1897.36 1905.42 −949.69
𝒵ℳ𝒫 8429.38 3262.43 3278.57 −1699.91 8154.24 3146.39 3162.52 −1630.67
𝒵ℳ𝒫𝒮h 4806.67 1924.61 1940.74 −962.59 4712.00 1886.59 1902.71 −942.89

Model Without Observation 336 Without Observations 260 and 336
DIC EAIC EBIC LMPL DIC EAIC EBIC LMPL

𝒫 6630.75 2658.44 2666.50 −1340.70 6412.46 2571.11 2579.17 −1296.09
𝒫𝒮h 4715.61 1889.51 1897.58 −944.61 4634.80 1857.10 1865.16 −928.02
𝒵ℳ𝒫 6262.54 2459.07 2475.19 −1238.65 6069.23 2378.47 2394.58 −1197.78
𝒵ℳ𝒫𝒮h 4712.26 1886.61 1902.73 −942.02 4627.73 1852.65 1868.76 −924.48

Source: Elaborated by the author.

Table 19 shows the DIC (Deviance Information Criterion), the EAIC (Expected Akaike
Criterion, and the EBIC (Expected Bayesian Information Criterion) that were considered for
comparison purposes. The main details about these measures are provided by Carlin and Louis
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(1997). In addition, we computed the log-marginal pseudo-likelihood (LMPL) given by

LMPL =
n

∑
i=1

log
�
�CPOi

�
,

where �CPOi is the estimate of the conditional predictive ordinate (3.20) for the i-th observation
in the sample. This measure also provides a tool to compare models being that larger values of
LMPL indicate a better fit.

Table 20 – Posterior parameter estimates and 95% BCIs from𝒵ℳ𝒫𝒮h model (without influential points).

Removed
Parameter Mean Median Std. Dev.

95% BCI
Observation Lower Upper

{260}

β10
−11.6423 −11.6500 0.6015 −12.8374 −10.4662
(−6.70%) (−6.74%) (3.96%)

β11
21.2509 21.2665 0.9664

19.3859 23.2099
(5.58%) (5.69%) (4.08%)

β20
−5.8668 −5.8316 1.8242 −9.5516 −2.4080
(−4.63%) (−4.42%) (2.79%)

β21
12.0156 11.9457 3.1186

6.1113 18.3027
(3.76%) (3.72%) (2.88%)

{336}

β10
−9.3870 −9.3763 0.6410 −10.7274 −8.1930
(13.97%) (14.10%) (10.78%)

β11
17.5754 17.5569 1.0365

15.6537 19.7368
(−12.68%) (−12.75%) (11.63%)

β20
−5.5793 −5.5974 1.7784 −9.1765 −2.1177
(0.50%) (−0.23%) (0.21%)

β21
11.5285 11.5529 3.0398

5.6979 17.6675
(−0.45%) (0.30%) (0.28%)

{260,336}

β10
−10.2057 −10.1962 0.6877 −11.5829 −8.8892
(6.47%) (6.58%) (18.86%)

β11
18.8568 18.8472 1.1100

16.7107 21.0679
(−6.31%) (−6.36%) (19.55%)

β20
−5.8109 −5.7760 1.8239 −9.4078 −2.3535
(−3.63%) (−3.43%) (2.77%)

β21
11.9198 11.8592 3.1139

6.0586 18.0467
(2.93%) (2.96%) (2.73%)

Source: Elaborated by the author.

An important measure to be assessed is the probability of fetal deaths non-notification
(p0) for each city. In this context, it is worthwhile to mention that non-notification does not mean
that the event of interest has not occurred in a particular city under investigation throughout the
assessed year, but may indicate the inefficiency of the health system, which eventually does not
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provides an adequate structure for monitoring all pregnant women (prenatal procedures). These
probabilities were estimated and are presented in Figure 9, along with the posterior estimates
for parameter p and the fitted mean, considering the 𝒵ℳ𝒫𝒮h regression model. The presented
estimates were obtained using the full dataset and that one without the influential points (260
and 336).

Figure 9 – Posterior estimates of parameters p0, p, and µ .

(a) Full Dataset (b) Without Observations 260 and 336

(c) Full Dataset (d) Without Observations 260 and 336

(e) Full Dataset (f) Without Observations 260 and 336

Source: Elaborated by the author.

Based on Figures 9a and 9b one can notice that the estimated probabilities of fetal deaths
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non-notification (p0) are always smaller than 0.80. Also, it can be observed that the probability
of non-notified cases of fetal deaths is very low in cities with high HDI. Figures 9c and 9d
ilustrate the fitted average number of notifications per city. Noticeably, the uncertainty about the
estimated mean is higher in the most developed cities. In addition, in Figures 9e and 9f we have
observed that the estimates of p are really close to 1 for higher HDIs, ensuring that for these
values, we can assume that the 𝒫𝒮h model (p = 1) may fit well to such a subset. However, this
result would require dividing the dataset into two subsets, since for most values of HDI, we have
p̂ > 1, which characterizes the sample as having been generated by a zero-deflated distribution
(the 𝒵𝒟𝒫𝒮h in this case). This result highlights the importance of considering zero-modified
models, which can be fitted without any previous information about the zero modification present
in the dataset.

Table 21 presents the Bayesian estimates for the expected number of zeros (n0), computed
as n f*(0; µ̂, p̂), where µ̂ = n−1 ∑n

i=1 µ̂i and p̂ = n−1 ∑n
i=1 p̂i. The estimates for n0, obtained from

the 𝒫 and the 𝒫𝒮h models, are much lower than the real one while those provided by zero-
modified models are very close (or exactly) 96.

Table 21 – Posterior estimates of the expected number of zeros (n0).

Model
Full Without Without Without
Dataset Obs. 260 Obs. 336 Obs. 260 and 336

𝒫 2 2 7 8
𝒫𝒮h 52 52 62 62
𝒵ℳ𝒫 96 95 96 96
𝒵ℳ𝒫𝒮h 96 96 96 96

Source: Elaborated by the author.

Figure 10 – Normal probability plot for the randomized quantile residuals.

(a) Full Dataset (b) Without Observations 260 and 336

Source: Elaborated by the author.
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Analyzing Figure 10 we observed a detachment of some quantile residual values on the
lower tail with respect to the Normal straight line, which is expected when dealing with datasets
with zero modification. This detachment highlights the inability of the model to describe very
high counts. Such a feature can also be seen in Figure 11 when comparing the expected and the
observed frequencies with values higher than 50 notifications.

Figure 11 – Posterior expected frequencies under zero-modified models.
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From the obtained results in this application, we conclude by pointing out that the use
of a discrete distribution that accommodates an overdispersion level beyond that one caused by
the zero modification in the dataset (e.g., 𝒵ℳ𝒫 and 𝒵ℳ𝒫𝒮h models) may be necessary for
the situation we get p = 1 (basis distribution) with data overdispersion explained only by the
regression model.

3.9 Concluding remarks
In this chapter, we have introduced the 𝒵ℳ𝒫𝒮h regression model that is useful to

analyze zero-inflated/deflated data in the presence of overdispersion. Using the hurdle version of
the 𝒫𝒮h distribution, it was possible to write separable likelihood functions for the parameter
vectors, which led us to less complicated Bayesian procedures. In addition, we showed that the
mean of the respective model could be estimated using only the positive observations. A particular
case of q-divergence measure, the Kullback-Leibler divergence, was considered to evaluate local
influence since such a task is very important to characterize the change in the frequency of
zeros correctly. The proposed model was considered for the analysis of fetal death notifications,
considering the HDI as a covariate. The response variable was found overdispersed and zero-
inflated, which justifies the use of a zero-modified model. Model validation was addressed by
using the randomized quantile residuals. From the Bayesian approach adopted to the 𝒵ℳ𝒫𝒮h

regression model, we conclude that the HDI is relevant to describe the mentioned counts. In
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addition, following the DIC, the EAIC, the EBIC, and the LMPL criteria, the proposed model
presented a better fit when compared with the 𝒫 , the 𝒫𝒮h and the 𝒵ℳ𝒫 regression models
and therefore, can be as well considered when analyzing overdispersed and zero-modified real
datasets.
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CHAPTER

4
THE ZERO-MODIFIED POISSON-LINDLEY

REGRESSION MODEL

4.1 Introduction

The primary goal of this chapter is to introduce the zero-modified Poisson-Lindley
(𝒵ℳ𝒫ℒ) regression model as an alternative to model overdispersed count data exhibiting
inflation or deflation of zeros in the presence of covariates. The zero modification is incorporated
by considering that a zero-truncated process produces positive observations, and consequently,
the proposed model can be fitted without any previous information about the zero modification
present in a given dataset. A fully Bayesian approach based on the g-prior method has been con-
sidered for inference concerns. An intensive Monte Carlo simulation study has been conducted to
evaluate the performance of the developed methodology and the maximum likelihood estimators
(MLEs). The proposed model was considered for the analysis of a real dataset on the number of
bids received by 126 US firms between 1978-1985, and the impact of choosing different prior

distributions for the regression coefficients has been studied. A sensitivity analysis to detect
influential points has been performed based on the Kullback-Leibler divergence. The random-
ized quantile residuals were considered for the task of model validation. Besides, a general
comparison with some well-known regression models for discrete data has been presented.

This chapter is organized as follows. In Section 4.2, we briefly present the Poisson-
Lindley (𝒫ℒ) distribution and some of its main statistical properties. In Section 4.3, we introduce
the 𝒵ℳ𝒫ℒ model, demonstrating its flexibility to deal with zero-inflated/deflated data. In
Section 4.4, we present a regression framework based on the hurdle version of the𝒫ℒ distribution.
In Section 4.5, we describe all the Bayesian procedures and methodologies that are considered
for inferential purposes in this chapter. In Section 4.6, we discuss the results of a Monte Carlo
simulation study and in Section 4.7, an application of the proposed model is exhibited. General
comments and concluding remarks are addressed in Section 4.8.
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4.2 The PL distribution
A random variable ψ is said to have Lindley (ℒ) distribution (LINDLEY, 1958) if its

probability density function has the form

f (ψ;θ) =
θ 2

(θ +1)
(ψ +1)e−θψ , ψ ∈ R+,

where θ ∈ R+ is the shape parameter.

The 𝒫ℒ distribution is a probabilistic model that may arise when it is believed that the
rate parameter (ψ) of the Poisson (𝒫) model behaves according to a ℒ random variable into the
subset of positive real numbers R+. In other words, a random variable Y is said to follow the
𝒫ℒ law if the stochastic representation Y |ψ ∼𝒫(ψ) and ψ ∼ℒ(θ) holds for all θ ∈R+. In this
case, the 𝒫ℒ distribution is defined by the equation

P(Y = y;θ) =
θ 2 (θ + y+2)

(θ +1)y+3 , y ∈ 𝒴0, (4.1)

for θ ∈ R+ and 𝒴0 = {0,1, . . .} is the set of nonnegative integers. Using the gamma integral, the
Equation (4.1) can be easily obtained by integrating P(Y = y|ψ) f (ψ;θ) respect to ψ over R+,
in which P(Y = y|ψ) is the conditional probability mass function (pmf) of a 𝒫 random variable.

The unconditional distribution of the random variable Y can be denoted by 𝒫ℒ(θ). The
pmf (4.1) does not involve complicated expressions, and therefore, the probabilities can be easily
computed over 𝒴0 as

P(Y = 0;θ) =
θ 2 (θ +2)

(θ +1)3 .

From the results provided by Sankaran (1970), the mean and the variance of Y are given,
respectively, by

µ =
θ +2

θ(θ +1)
and σ2 =

θ 3 +4θ 2 +6θ +2
θ 2(θ +1)2 , (4.2)

for θ ∈ R+. It can be easily shown that µ ∝ θ−1. Also, the expression of σ2 can be straightfor-
wardly rearranged as

σ2 = µ
�

1+
θ 2 +4θ +2

θ (θ +1)(θ +2)

�
,

where the term inside the brackets correspond to the index of dispersion (ID = σ2µ−1). One
can notice that the ratio involving θ is always positive. This implies that the 𝒫ℒ distribution is
always overdispersed, that is, {θ ∈ R+ : σ2 � µ} = /0. In addition, the index of dispersion is
clearly greater than 1, also implying overdispersion. Conversely, we have that ID→ 1 (σ2 → µ)
as θ → ∞, that is, the 𝒫ℒ distribution has the property of equidispersion for large values of θ .

Another useful measure to characterize a discrete distribution is the zero modification
(ZM) index

ZM = 1+µ−1 log [P(Y = 0)] ,
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which is defined based on the 𝒫 distribution. This measure can be easily interpreted since
ZM > 0 indicates zero inflation, ZM < 0 indicates zero deflation and ZM = 0 indicates no zero
modification. For the 𝒫ℒ distribution, the ZM index is given by

ZM = 1+
θ (θ +1) [2log(θ)+ log(θ +2)−3log(θ +1)]

θ +2
,

for θ ∈ R+. When analysing the ZM index more deeply, we have obtained that ZM→−1 as
θ → ∞ and ZM→ 0 as θ → 0. This implies that, besides the usual case (ZM = 0), the 𝒫ℒ
distribution is suitable to deal with zero deflation, but is not indicated to model zero-inflated
datasets.

Now, let us reparameterize the pmf (4.1) in terms of the mean µ . It can be particularly
useful since our interest is to derive a regression model based on the 𝒫ℒ distribution, in which
the influence of fixed and random effects can be evaluated directly over the mean of the response
variable. Since θ ∈ R+, we have that

θ =−
(µ−1)−

�
(µ−1)2 +8µ

2µ
, (4.3)

and, if we denote θ = h(µ), the pmf (4.1) can be rewritten as

P(Y = y; µ) =
h2 (µ) [h(µ)+ y+2]

[h(µ)+1]y+3 , y ∈ 𝒴0, (4.4)

for µ ∈ R+.

4.3 The ZMPL distribution
In addition to the interest in the case where the equidispersion assumption on the 𝒫

distribution is violated, we may also be interested in the cases where a high/low amount of zeros
is observed beyond that generated by the original process, which we already supposed to account
for overdispersion. There are some typical situations where zero modification may occur, and we
list these cases in the following.

a) Not all members of the population are affected by the process, which causes inflation of
zeros to occur due to the response of unaffected subjects being zero;

b) When zeros cannot be observed in the population (truncation at zero);

c) The occurrence of unavoidable problems during the sampling process may lead to an
increase/decrease in the probability of a zero observation being selected, hence the zero
inflation/deflation situation;

d) A combination of (a) and (b) causes a part of the population to be zero-truncated distributed
while the other part is not affected and provides the zero observations.



94 Chapter 4. The zero-modified Poisson-Lindley regression model

In this section, the 𝒵ℳ𝒫ℒ model is introduced as an alternative to model overdispersed
count datasets when a high/low amount of zeros is observed beyond what would be expected by
the 𝒫ℒ distribution. Thus, let Y be a discrete random variable defined on 𝒴0. It can be stated that
Y is distributed according to a 𝒵ℳ𝒫ℒ distribution if its pmf can be written as

P*(Y = y; µ, p) = (1− p)δy + pP(Y = y; µ) , y ∈ 𝒴0, (4.5)

for µ ∈ R+ and p is the zero modification parameter. Also, δy is an indicator function, so that
δy = 1 if y = 0 and δy = 0 otherwise. For the class of zero-modified models, the parameter p is
subject to the condition (the so-called p-condition) given by

0 � p � P−1(Y > 0; µ) , (4.6)

where P(Y > 0; µ) is the probability of Y being positive under the 𝒫ℒ distribution, given that its
mean is µ . In this case, we have that

P(Y > 0; µ) =
h2 (µ)+3h(µ)+1

[h(µ)+1]3
, (4.7)

for µ ∈ R+.

One can easily notice that model (4.5) is not a mixture distribution typically chosen to
model zero-inflated data, since parameter p can assume values greater than 1. However, for all
values of p between 0 and the boundary P−1(Y > 0; µ), the Equation (4.5) corresponds to a
proper pmf since P*(Y = y; µ, p)� 0 for all y ∈ 𝒴0 and the probabilities sum to 1 over 𝒴0.

The mean and the variance of Y ∼𝒵ℳ𝒫ℒ(µ, p) are given, respectively, by

µ* = pµ and σ2
* = p

�
σ2 +(1− p)µ2� ,

where µ and σ2 are given in Equation (4.2). For the zero-modified case, the index of dispersion
can be expressed as ID* = σ2µ−1 +(1− p)µ . The term (1− p)µ represents the overdispersion
caused by a modification on the zero frequency, regarding the 𝒫ℒ distribution.

The 𝒵ℳ𝒫ℒ distribution may be considered an interesting alternative to the zero-
modified Poisson (𝒵ℳ𝒫) model, since the base distribution of the former can accommodate
several levels of overdisperson, issue that the 𝒫 distribution generally fails to deal with. Figure 12
depicts the behaviour of the 𝒵ℳ𝒫ℒ distribution for different values of p and for µ = 0.25 (im-
plying p ∈ [0,4.98]), for µ = 0.50 (implying p ∈ [0,2.96]), for µ = 0.75 (implying p ∈ [0,2.28])
and for µ = 1.00 (implying p ∈ [0,1.94]). When looking at the pmf plots and the conditions re-
garding the zero modification parameter, one can notice that the behaviour of pmf (4.5) is highly
affected by the value of p, as can also be seen by considering the proportion of additional/missing
zeros

P*(Y = 0; µ, p)−P(Y = 0; µ) = (1− p)+ pP(0; µ)−P(Y = 0; µ)
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= (1− p)P(Y > 0; µ) . (4.8)

The first interpretation one can take from Equation (4.8) is that parameter p plays the
primary role in controlling the frequency of zeros, and therefore, it has a natural interpretation
regarding the proportions of either inflation or deflation at zero. The following statements
describe the effect of parameter p on Equation (4.5).

i) If p = 0 then P*(Y = 0; µ, p) = 1. This implies that Equation (4.5) is the pmf of a degen-
erate distribution with all mass at zero;

ii) If p = 1 then P*(Y = 0; µ, p) = P(Y = 0; µ). This implies that Equation (4.5) is the pmf
(4.7);

iii) If p∈ (0,1) then (1− p)P(Y > 0; µ)> 0. This implies that Equation (4.5) has a proportion
of zeros greater than pmf (4.4), hence zero inflation;

iv) If p ∈ [1,P−1(Y > 0; µ)] then (1− p)P(Y > 0; µ) < 0. This implies that Equation (4.5)
has a proportion of zeros smaller than pmf (4.4), hence zero deflation;

v) If p = P−1(Y > 0; µ) then P*(Y = 0; µ, p) = 0. This implies that Equation (4.5) is the zero-
truncated Poisson-Lindley (𝒵𝒯 𝒫ℒ) distribution (GHITANY; AL-MUTAIRI; NADARA-
JAH, 2008), with pmf given by

P*(Y = y; µ) =
P(Y = y; µ)
P(Y > 0; µ)

(1−δy) , (4.9)

where the numerator is given by (4.4) and the denominator is given by (4.7). One can notice
that the reparameterization of Equation (4.1) in terms of µ does not affect the general
definition of the zero-truncated version of the 𝒫ℒmodel. See Shanker and Fesshaye (2016)
for further details about the 𝒵𝒯 𝒫ℒ distribution.

Given the value of p, one can easily identify the nature of the zero-valued observations
under the phenomenon of interest. In this way, we have that the case (iii) may be appropriate
in situations (a), (c) and (d) as described at the beginning of this section and the case (iv) may
be appropriate in situations (c) and (d). Moreover, the index of dispersion can be investigated
in terms of the modification at zero since ID* = ID in the standard case (ii), ID* > ID in the
zero-inflated case (iii) and ID* < ID in the zero-deflated case (iv).

Now, let us rewritten pmf (4.5) as

P*(Y = y; µ, p) = [1− p+ pP(Y = 0; µ)]δy + pP(Y = y; µ)(1−δy)

= [1− pP(Y > 0; µ)]δy + pP(Y = y; µ)(1−δy) , y ∈ 𝒴0,

for µ ∈ R+. Taking ω = pP(Y > 0; µ), we have that

P*(Y = y; µ,ω) = (1−ω)δy +ω P*(Y = y; µ) , y ∈ 𝒴0, (4.10)
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Figure 12 – Behavior of the 𝒵ℳ𝒫ℒ distribution for different values of µ and p.
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(a) p = 0.30
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(b) p = 0.80
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(c) p = 1.30
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(d) p = 1.80

Source: Elaborated by the author.

where P*(Y = y; µ) is given by Equation (4.9). By condition (4.6), we clearly have that ω ∈ [0,1].

The corresponding cumulative distribution function (cdf) of Y is given by

F*(y; µ,ω) = 1−ω
�

h2 (µ)+(y+3)h(µ)+1
[h2 (µ)+3h(µ)+1] [h(µ)+1]y

�
, y ∈ 𝒴0. (4.11)

Equation (4.10) corresponds to the hurdle version of the 𝒫ℒ distribution. Mullahy (1986)
introduced the class of hurdle models, and the relevant feature of such class is that the zero-
valued observations are treated separately from the positive ones. In the main formulation, a
binary probability model determines whether a zero or a nonzero outcome occurs, and hence,
an appropriated zero-truncated discrete distribution is chosen to describe the positive values
(SAFFARI; ADNAN; GREENE, 2012). In this case, we have that the probability of Y = 0 is
1−ω , and the probability of Y > 0 is ω . The 𝒵ℳ𝒫ℒ distribution parameterized by ω can
be denoted by 𝒵ℳ𝒫ℒ(µ,ω). Such representation can be visualized as a superposition of two
random processes, that is, one that produces positive observations from the 𝒵𝒯 𝒫ℒ distribution
and another one that produces only zero-valued observations with probability 1−ω . Therefore,
model (4.10) cannot be considered a 2-component mixture distribution.
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By the hurdle representation of zero-modified models, only the positive observations are
required to estimate the parameter µ . Conceição et al. (2017a) well discusses this fact for the
class of zero-modified Power Series distributions, and here we extend this result by asserting that
the zero-truncated version of the 𝒵ℳ𝒫ℒ distribution is equivalent to the 𝒵𝒯 𝒫ℒ distribution
and they have the same parameter µ . This can be easily checked using Equation (4.10) because
if we exclude the value zero from 𝒴0 and divide the right-hand side of (4.10) by the probability
of Y being positive (ω), then we will get that Y ∼ 𝒵𝒯 𝒫ℒ(µ). Besides, such a representation
allows us to obtain a closed-form solution for the MLE of parameter ω , which is given by the
proportion of nonzeros in the dataset. Also, it can be easily seen that, for any fixed µ ∈ R+,
the function ω P−1(Y > 0; µ) maps from [0,1] to [0,P−1(Y > 0; µ)] bijectively and therefore,
the invariance principle ensures that parameter p can be estimated using such function. Indeed,
inference procedures about parameter p are required since we are often interested in identifying
the kind of zero modification (inflation or deflation) is present in a given dataset.

4.4 The ZMPL regression model
Let us suppose that we have a collection (Y1, . . . ,Yn) of independent discrete random

variables such that Yi|xxxi,zzzi,βββ ∼𝒵ℳ𝒫ℒ(µi,ωi) (i = 1, . . . ,n). In this case, a regression model
for count data based on the 𝒵ℳ𝒫ℒ distribution can be derived by rewriting Equation (4.10) as

P*(Yi = yi;xxxi,zzzi,βββ ) = (1−ωi)δyi +ωiP*(Yi = yi; µi) , yi ∈ 𝒴0, (4.12)

where xxx�i = (1,xi1, . . . ,xiq1) and zzz�i = (1,zi1, . . . ,ziq2) are related, respectively, to µi and ωi and
can include, for example, dummy variables, cross-level interactions and polynomials. The βββ =

(βββ 1,βββ 2) is the full vector of fixed-effects, being βββ�
1 = (β10, . . . ,β1q1) and βββ�

2 = (β20, . . . ,β2q2).
Here, q1 (q2) denotes the number of covariates considered on the systematic component of a
linear predictor for parameter µ (ω).

The full design matrices of model (4.12) can be written as XXX = (111n,XXXn×q1) and ZZZ =

(111n,ZZZn×q2), where 111n is the intercept column and the submatrices XXXn×q1 and ZZZn×q2 are defined
in such a way that the vector (xi1, . . . ,xiq1) is the i-th row of XXXn×q1 and the vector (zi1, . . . ,ziq2)

is the i-th row of ZZZn×q2 . To complete model definition, one have to specify two monotonic,
invertible and twice differentiable link functions, say g1 and g2, in which µi = g−1

1 (xxx�i βββ 1) and
ωi = g−1

2 (zzz�i βββ 2) are well defined on R+ and (0,1), respectively. For this purpose, one can choose
any suitable mappings g1 and g2 such that g−1

1 : R→R+ and g−1
2 : R→ (0,1). The logarithm link

function, log(µi) = xxx�i βββ 1, is the natural choice for g1. For g2, the most usual choice is the logit

link function,

logit(ωi) = log
�

ωi

1−ωi

�
= zzz�i βββ 2. (4.13)

The probit link function,
Φ−1 (ωi) = zzz�i βββ 2, (4.14)
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is also appropriate for the requested purpose. Another possible choice for g2 is

log [− log(1−ωi)] = zzz�i βββ 2, (4.15)

which corresponds to the complementary log-log link function. Unlike the logit and probit, the
complementary log-log transformation provides an asymmetric specification that can be useful
when the probability of an outcome is very high/low. Further, a more sophisticated approach
considering the power and the reversal power link functions was proposed by Bazán et al. (2017)
and can be applied in our context to provide more flexible relationships between the linear
predictor and parameter ω .

The 𝒵ℳ𝒫ℒ regression model has q1 +q2 +2 unknown parameters to be estimated, the
components of the vectors βββ 1 and βββ 2. The link functions (4.13)-(4.15) for parameter ω exclude
the limit cases (i) and (v). Besides, it is worthwhile to mention that identifiability problems
could occur if the same covariate were used to model both mean (µ) and the zero modification
parameter (p) if we had considered a regression model derived from (4.10). Also, to ensure that
the regression coefficients are identifiable, it is essential the covariates (within linear predictors)
to be linearly independent. Unlike traditional approaches, the proposed model can be fitted
to both zero-inflated/deflated datasets. In this case, given a set of covariates, the probability
of a zero-valued count being observed for the i-th individual is given by 1−ωi. The adopted
parameterization makes model (4.12) separable into two parts due to orthogonality between
parameters in the structural form of µ and ω . It also avoids nonidentifiability problems as well
as the use of the EM algorithm, typically used to fit mixture models. Regardless of the model
framework, in this chapter, we propose a fully Bayesian approach for estimation and inference
procedures. The next section is dedicated to present the details of such an approach.

4.5 Inference
Let Y be a discrete random variable taking values on 𝒴0. Suppose that a random ex-

periment is carried out n times independently and, subject to xxxi and zzzi for each i, a vector
yyy = (y1, . . . ,yn) of observed values from Y is obtained. Considering model formulation (4.12), if
Yi|xxxi,zzzi,βββ ∼𝒵ℳ𝒫ℒ(µi,ωi) holds for all i, then the likelihood function of the vector βββ can be
written as

ℒ(βββ ;yyy,XXX ,ZZZ) =
n

∏
i=1

ωi

�
1−ωi

ωi

�δyi
�

P(Yi = yi; µi)

P(Yi > 0; µi)

�1−δyi

=
n

∏
i=1



g−1

2
�
zzz�i βββ 2

�
�

1−g−1
2
�
zzz�i βββ 2

�

g−1
2
�
zzz�i βββ 2

�
�δyi

�
P
�
Yi = yi;g−1

1
�
xxx�i βββ 1

��

P
�
Yi > 0;g−1

1
�
xxx�i βββ 1

��
�1−δyi



 ,

and the correspondent log-likelihood function is given by

�(βββ ;yyy,XXX ,ZZZ) =
n

∑
i=1

(1−δyi) log

�
P
�
Yi = yi;g−1

1
�
xxx�i βββ 1

��

P
�
Yi > 0;g−1

1
�
xxx�i βββ 1

��
�
+
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n

∑
i=1

�
log

�
g−1

2
�
zzz�i βββ 2

��
−δyi log

�
g−1

2
�
zzz�i βββ 2

�

1−g−1
2
�
zzz�i βββ 2

�
��

= �1 (βββ 1;yyy,XXX)+ �2 (βββ 2;yyy,ZZZ) . (4.16)

For the 𝒵ℳ𝒫ℒ regression model, we will consider the log-linearity of the mean, that is,
g1(µi) = log(µi) = xxx�i βββ 1. The choice of g2 is left open and the notation ωi = g−1

2 (zzz�i βββ 2) will be
used when necessary. From Equation (4.16), one can easily notice that the vectors βββ 1 and βββ 2

are orthogonal and that �1(βββ 1;yyy,XXX) depends only on the positive values on yyy. In this way, the
log-likelihood function of βββ 1 takes the form

�1 (βββ 1;yyy,XXX) = ∑
k∈𝒦1

log
�
h
�
exp

�
xxx�k βββ 1

��
+ yk +2

�
+2 ∑

k∈𝒦1

log
�
h
�
exp

�
xxx�k βββ 1

���
−

∑
k∈𝒦1

log
�
h2 �exp

�
xxx�k βββ 1

��
+3h

�
exp

�
xxx�k βββ 1

��
+1

�
−

∑
k∈𝒦1

yk log
�
h
�
exp

�
xxx�k βββ 1

��
+1

�
, (4.17)

where 𝒦1 = {i : yi > 0,yi ∈ yyy} is the finite set of indexes regarding the positive observations of
yyy. Adopting this setup is equivalent to assuming that each positive element of yyy comes from a
𝒵𝒯 𝒫ℒ distribution. Here, we are extending the fact that estimating the 𝒫 parameter θ using the
zero-truncated Poisson distribution results in a loss of efficiency in the inference if there is no
zero modification (DIETZ; BÖHNING, 2000; CONCEIÇÃO; ANDRADE; LOUZADA, 2014).
Now, the log-likelihood function of βββ 2 can be written as

�2 (βββ 2;yyy,ZZZ) =
n

∑
i=1

log
�
g−1

2
�
zzz�i βββ 2

��
− ∑

k∈𝒦2

log

�
g−1

2
�
zzz�k βββ 2

�

1−g−1
2
�
zzz�k βββ 2

�
�
, (4.18)

where 𝒦2 = {i : yi = 0,yi ∈ yyy} is the finite set of indexes regarding the zero-valued observations
of yyy.

There are no closed-form solutions for the MLEs of βββ 1 and βββ 2, and therefore, nonlinear
optimization algorithms or direct numerical search on the surface of log-likelihoods functions
may be applied in order to obtain point estimates in the classical approach. By the maximum
likelihood theory, a consistent estimator for the covariance matrix of β̂ββ r (r = 1,2), is given by
the inverse of the Fisher information ℐr = EY [𝒥r], where

𝒥1 =−
∂ 2�1 (βββ 1;yyy,XXX)

∂βββ 1∂βββ�
1

and 𝒥2 =−
∂ 2�2 (βββ 2;yyy,ZZZ)

∂βββ 2∂βββ�
2

,

are the observed information matrices. In our context, however, the computation of the expected
value respect to Y is unfeasible and therefore, a numerical approximation for the covariance
matrices can be obtained by evaluating 𝒥 −1

r at βββ r = β̂ββ r and using the observed vector yyy.

4.5.1 Prior distributions
A Bayesian analysis starts by choosing suitable prior distributions for the set of unknown

parameters. The g-prior (ZELLNER, 1986) is a common choice among Bayesian users of the



100 Chapter 4. The zero-modified Poisson-Lindley regression model

multiple linear regression model, mainly due to the fact of providing a closed-form posterior

distribution for the regression coefficients. The g-prior is classified as an objective prior method
which uses the inverse of the Fisher information matrix up to a scalar variance factor (τ ∈R+) to
obtain the prior covariance structure of the multivariate Normal distribution. Such specification
is indeed quite attractive since the Fisher information plays a major role in the determination of
large sample covariance in both Bayesian and classical inference.

The problem of eliciting conjugate priors for generalized linear models (GLMs) was
addressed by Chen and Ibrahim (2003). Their approach can be considered as a generalization
of the original g-prior method, but its application is restricted for the class of GLMs since the
proposed prior does not have closed-form for non-normal exponential families. As an alternative,
Gupta and Ibrahim (2009) have proposed the information matrix prior as a way to assess the
prior correlation structure between the regression coefficients, not including the intercept since
the design matrix is centered in order to ensure that β0 is orthogonal to the other coefficients.
This method uses the Fisher information similarly to a precision matrix whose elements are
shrunken by the factor τ , which is considered fixed (τ � 1). Based on such approach, we will
consider, for the vectors βββ 1 and βββ 2, two multivariate Normal prior distributions of the form

βββ 1 ∼𝒩q1

�
βββ 0

1,τ1ΣΣΣ0
1

�
and βββ 2 ∼𝒩q2

�
βββ 0

2,τ2ΣΣΣ0
2

�
,

where qr = qr +1 and ΣΣΣ0
r refers to 𝒥 −1

r evaluated numerically at βββ 0
r , and τr is assumed known.

The vectors βββ 0
1 and βββ 0

2 can be chosen arbitrarily if no specialized information is available. It is
worthwhile to mention that we are not considering centered design matrices in our approach.
Hence, we are able to include β10 in the proposed g-prior but, in this case, the intercept is
a priori correlated with the other coefficients (β11, . . . ,β1q1). The same applies for β20 and
(β21, . . . ,β2q2).

4.5.2 Posterior distributions and estimation

After prior specifications, the following step in a Bayesian analysis consists in the
obtaining of computable posterior densities for the unknown model parameters. For the 𝒵ℳ𝒫ℒ
regression model (4.12), the unnormalized joint posterior distribution of the vector βββ can be
expressed as

π (βββ ;yyy,XXX ,ZZZ) ∝ exp{�1 (βββ 1;yyy,XXX)+ �2 (βββ 2;yyy,ZZZ)}π1 (βββ 1)π2 (βββ 2) .

However, since βββ 1 and βββ 2 are orthogonal, we have that

π1 (βββ 1;yyy,XXX) ∝ exp{�1 (βββ 1;yyy,XXX)}π1 (βββ 1) (4.19)

and

π2 (βββ 2;yyy,ZZZ) ∝ exp{�2 (βββ 2;yyy,ZZZ)}π2 (βββ 2) , (4.20)
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where �1 and �2 are given by (4.17) and (4.18), respectively. It can be proved that, if the data is
discrete, then the use of a proper prior distribution (multivariate Normal in our case) avoids the
posterior density to be improper.

From the Bayesian point of view, the parametric inference is based on the marginal
posterior distributions, which can be obtained by integrating the joint posterior distributions
given in (4.19). These densities have unknown forms, mainly due to the complexity of the
respective likelihood functions. In this case, Bayesian estimates for each element of βββ r can
be obtained by applying iterative procedures within a broad class of MCMC (Markov Chain
Monte Carlo) methods. Here we will consider the well-known Random-walk Metropolis (RwM)
algorithm. Through this procedure, qr +1 chains can be generated for βββ r. The dimensionality
issue will depend on how much covariates will be taken under consideration to describe the
parameters of the 𝒵ℳ𝒫ℒ model. For the posterior distributions in (4.19), we will consider
multivariate Normal specifications for the proposal (candidate-generating) densities in the
algorithm. These distributions will be used as the main terms in the transition kernels when
computing the acceptance probabilities. Hence, at any state k > 0, the MCMC simulation is
performed by proposing a candidate ψψψr for βββ r as

ψψψr|βββ *
r ∼𝒩qr

�
βββ *

r ,νr𝒮*
r
�
,

where βββ *
r = νrβββ (k−1)

r +(1−νr)βββ 0
r and νr = τr (τr +1)−1. One can notice that transitions de-

pends on the acceptance of pseudo-random vectors generated with mean given by the mixture
between the actual state of the chains and the priors specification, which are shrunked by the
factor 1−νr. In addition, at any state k > 0, the covariance matrix of the candidate vector ψψψr

can be approximated numerically by evaluating 𝒮*
r =ℋ−1

r at βββ r = βββ *
r , where

ℋ1 =−
∂ 2 log [π1 (βββ 1;yyy,XXX)]

∂βββ 1∂βββ�
1

and ℋ2 =−
∂ 2 log [π2 (βββ 2;yyy,ZZZ)]

∂βββ 2∂βββ�
2

.

Algorithm 5 can be used to generate chains for the regression coefficients using the
RwM algorithm. To run the algorithm, initial conditions βββ (0)

1 and βββ (0)
2 are needed. For a specific

asymptotic Gaussian environment, Roberts, Gelman and Gilks (1997) have shown that the
optimal acceptance rate should be around 45% for 1-dimensional problems and asymptotically
approaches to 23.40% in higher-dimensional problems (> 4). Here we are considering accep-
tance rates varying between 23.40% and 40% as quite reasonable since the proposed model
will generally have at least two parameters to be estimated. Indeed, the higher the values of
τ1 and τ2, the smaller the acceptance rates in the RwM algorithm, which results in smaller
variability of the estimates. This procedure generates a sample of size N for each parameter. The
convergence of the chains can be monitored by the Gelman-Rubin (GELMAN; RUBIN, 1992)
and Geweke (GEWEKE, 1992) diagnostics. After convergence, some of the generated samples
can be discarded as burn-in. The procedure to decrease the correlation between and within
generated chains is the usual approach of getting thinned steps. The final sample is supposed to
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have a size of M. A summary of the posterior distributions can be obtained through the MCMC
estimates.

In the next section, we discuss the results of a Monte Carlo simulation study that was
conducted to assess the performance of the proposed Bayesian methodology. In Section 4.7, the
usefulness, and the competitivity of the proposed regression model are illustrated by using a real
dataset. All computations were performed using the R environment (R Development Core Team,
2017).

Algorithm 5 – Random-walk Metropolis

1: procedure RWM(N,βββ (0)
1 ,βββ (0)

2 ,βββ 0
1,βββ

0
2,τ1,τ2)

2: Set k← 1, ν1 ← τ1 (1+ τ1)
−1, and ν2 ← τ2 (1+ τ2)

−1

3: while k � N do
4: Set βββ (k)

1 ← βββ (k−1)
1 and βββ (k)

2 ← βββ (k−1)
2

5: Set βββ *
1 ← ν1βββ (k)

1 +(1−ν1)βββ 0
1 and βββ *

2 ← ν2βββ (k)
2 +(1−ν2)βββ 0

2
6: Generate ψψψ1 ∼𝒩 (βββ *

1,ν1𝒮*
1) and ψψψ2 ∼𝒩 (βββ *

2,ν2𝒮*
2)

7: Set α1 ← log[π1(ψψψ1;yyy,XXX)]− log[π1(βββ
(k)
1 ;yyy,XXX)]

8: Set α2 ← log[π2(ψψψ2;yyy,ZZZ)]− log[π2(βββ
(k)
2 ;yyy,ZZZ)]

9: Generate u1,u2 ∼ 𝒰 (0,1)
10: if log(u1)� α1 and log(u2)� α2 then
11: Set βββ (k)

1 ← ψψψ1 and βββ (k)
2 ← ψψψ2

12: end if
13: Set k← k+1
14: end while
15: return {βββ (k)}N

k=1
16: end procedure

4.6 Simulation study

The primary empirical properties of an estimation procedure can be evaluated through
Monte Carlo simulations. We have performed an intensive simulation study aiming to validate
the proposed Bayesian approach. For comparison purposes, the performance of the MLEs
was also assessed. The simulation process was performed by generating 500 pseudo-random
samples of sizes n = 50,100,200, and 500 of a variable Y following a 𝒵ℳ𝒫ℒ distribution
under the regression framework (4.12). For the whole process, it was considered a n×2 design
matrix XXX = (111n,XXXn×1) in which XXXn×1 is a vector containing n generated values from an Uniform
distribution on the unit interval. Here, we have fixed ZZZ = XXX . Moreover, we have assigned different
values for the vectors βββ�

1 = (β10,β11) and βββ�
2 = (β20,β21) in order to generate both zero-inflated

and zero-deflated samples. We have considered two scenarios for each kind of zero modification
and these cases are treated separately in the following subsections. The logarithm link function
was considered for g1. For g2, we have considered the link function (4.13).



4.6. Simulation study 103

Algorithm 6 can be used to generate a single pseudo-random realization from the𝒵ℳ𝒫ℒ
distribution in the regression framework with covariate 𝒰(0,1) for µ and ω . The extension for
the use of more covariates is straightforward. The process to generate a pseudo-random sample
of size n consists of running the algorithm as often as necessary, say n* times (n* � n). The
sequential-search is a black-box type of algorithm (see Hörmann, Leydold and Derflinger (2013))
and works with any computable probability vector. The main advantage of such a procedure is
its simplicity. On the other hand, sequential-search algorithms may be slow as the while-loop
may have to be repeated very often.

Algorithm 6 – Sequential-Search

1: procedure SEQSEA(βββ 1,βββ 2)
2: Generate x,u∼ 𝒰 (0,1)
3: Set µ ← exp{β10 +β11x} and ω ← [1+ exp{−(β20 +β21x)}]−1

4: Set k← (1−ω) and y← 0
5: while u > k do
6: Set y← y+1 and k← k+ω P*(Y = y; µ)
7: end while
8: return y
9: end procedure

For the 𝒵ℳ𝒫ℒ distribution, the expected number of iterations (NI), that is, the expected
number of comparisons in the while condition, is given by

E(NI) = µ*+1 =
ω [h(µ)+1]2 [h(µ)+2]

h(µ) [h2(µ)+3h(µ)+1]
+1,

where h(µ) is given by Equation (4.3).

To apply the proposed Bayesian approach in each case, we have considered the RwM
algorithm for MCMC sampling. A total of N = 50,000 values were generated for each parameter,
considering a burn-in of 20% of the size of the chain. Using trace plots and Geweke’s diagnostic,
the convergence of the chains was monitored, and their stationarity was revealed. To obtain
pseudo-independent samples from the posterior distributions given in (4.19), one out every 10
generated values were kept, resulting in chains of size M = 4,000 for each parameter. The priors

were chosen to ensure that parameter p provides zero inflation or zero deflation depending on the
case. We classify these priors as being “vague” since the only information we have taken into
account is the kind of zero modification present on the generated sample. We fixed τ1 = τ2 = 5.0,
which has provided acceptance rates ranging between 30 and 35%. The posterior mean was
considered as the Bayesian point estimator, and its performance was assessed by evaluating its
bias (B), its mean squared error (MSE), and its mean absolute percentage error (MAPE). Also,
the coverage probability (CP) of the 95% Bayesian credible intervals (BCIs) was estimated for
each parameter. Using the generated samples and letting γ = β10,β11,β20 or β21, the measures
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of interest were obtained by

B(γ̂) =
1
M

M

∑
j=1

�
γ̂ j− γ

�
, MSE(γ̂) =

1
M

M

∑
j=1

�
γ̂ j− γ

�2 (4.21)

and

MAPE(γ̂) =
1
M

M

∑
j=1

����
γ̂ j− γ

γ

���� . (4.22)

The variance of γ̂ was estimated as the difference between the MSE and the square of
the bias. Moreover, the CP of the BCIs was estimated as follow

CP% (γ) =
100
M

M

∑
j=1

δ j(γ) , (4.23)

where δ j(γ) assumes 1 if the j-th BCI contains the real value γ and 0 otherwise. Also, we have
estimated the below noncoverage probability (BNCP) and the above noncoverage probability
(ANCP) of the BCIs. These measures are computed analogously to CP. The BNCP and ANCP
may be useful to determine asymmetrical features since they provide the probabilities of finding
the real value of parameter γ on the tails of the generated posterior distribution.

For the classical approach, we have considered the Newton-Raphson optimization method
to obtain numerical estimates, since no closed-form solution is available for the MLE of vector
βββ . The estimates were obtained using several initial values to guarantee convergence to the
global maximum. Again, assuming γ = β10,β11,β20 or β21, the bias, the MSE and the MAPE of
γ̂

MLE
were estimated as previously stated in Equations (4.21) and (4.22). Besides, we were also

interested in the computation of the coverage and noncoverage probabilities of the asymptotic
confidence interval (ACI) of γ . The large sample approximation for the 100(1−α)% two-sided
confidence interval of γ is given by

γ̂
MLE

± z(1−α/2)ŜE
�

γ̂
MLE

�
,

where z(1−α/2) is the upper (α/2)-th percentile of the standard Normal distribution. The standard
error (SE) is estimated as the squared root of the variance of γ̂

MLE
. Finally, the CP of the ACIs is

estimated using (4.23) and the noncoverage probabilities were computed analogously.

The computed measures are presented in Tables 22-23 (posterior summaries) and Tables
24-25 (coverage and noncoverage probabilities). We have noticed that, as expected, the parameter
estimates became more accurate with increasing sample sizes since the estimated biases and
mean squared errors have decreased considerably as n increased. In general, the MLEs were
found more biased regarding the posterior expected value. Although high MAPE values were
obtained for some parameters, this does not compromise overall accuracy in estimation. For
example, on Table 22 (Scenario 1), for n = 200, we have obtained a estimated MAPE value of
approximately 55% for β11, the Bayesian approach. Taking into account that the real value of
this parameter is 0.50, we have that the estimates for β11 were ranging mostly between 0.23 and
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0.78, which do not represent such a huge impact on the estimated mean (µ). Moreover, we have
observed that the estimated CPs of the BCIs are converging to the nominal level of 95%, and the
posterior distributions became more symmetric with increasing sample sizes. At this point, one
can see that slightly better results were obtained for the ACIs, but the use of asymptotic results
plays against the classical approach since they are valid only for large n (n→ ∞). Therefore, by
considering the predefined structure, our simulation study has provided several indications about
the suitability of the proposed Bayesian approach to estimate the parameters of the 𝒵ℳ𝒫ℒ
regression model.

Regarding the comparison between the estimation procedures, it is well-known that
the Bayesian approach has advantages when specialized prior information is available for the
phenomenon under investigation. One of the main concerns in this chapter is to provide the
necessary tools for users interested in the application of the proposed model and who have this
kind of information accessible. Nonetheless, our methodology can be applied using “vague” and
noninformative priors. When “vague” priors are considered, Bayesian procedures and MLEs
present similar results as those obtained in this section. On the other hand, when noninformative
priors are selected, it can be theoretically proved that both approaches present equivalent results.
Therefore, a comparison between Bayesian and classical approaches will only show great
Bayesian advantage if the priors are specified by aggregating relevant information about the
parameters to be estimated. Further, with small samples and good prior information, the Bayesian
procedure is indeed more advantageous.

4.6.1 Zero-inflated artificial data

For the zero-inflated case, the samples were generated from the 𝒵ℳ𝒫ℒ distribution by
considering that pi ∈ (0,1) for all i. Here, the regression coefficients were chosen by taking into
account that zero-inflated samples has, naturally, proportion of zeros greater than expected and
therefore, the variable Y was generated with mean (µ) not even close to zero. Then, for the first
scenario we have considered βββ�

1 = (1.5,0.5) and βββ�
2 = (1.0,−1.5) to perform the simulation. In

the following, the procedure was repeated by considering βββ�
1 = (2.5,1.5) and βββ�

2 = (−0.5,−1.0).
For these scenarios, the “vague” prior setup is (βββ 0

1)
� = (1.0,0.0) and (βββ 0

2)
� = (0.0,1.0).

Figure 13 depicts the Bayesian estimates obtained for parameter p using zero-inflated
samples with n = 500 for each scenario. The real values are represented by the straight blue lines
and the 95% BCIs are represented by the red dashed lines. The filled black dots represent the
estimated values for each generated observation.

4.6.2 Zero-deflated artificial data

For the zero-deflated case, the samples were generated from the 𝒵ℳ𝒫ℒ distribution by
considering that pi ∈ [1,P−1(Y > 0; µi)] for all i. Here, the regression coefficients were chosen
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by taking into account that zero-deflated samples has, naturally, proportion of zeros smaller than

Table 22 – Summary of Bayesian and classical estimation using zero-inflated samples.

n Parameter
Bias Variance MSE MAPE (%)

Bayes MLE Bayes MLE Bayes MLE Bayes MLE

Scenario 1

50

β10 −0.0496 −0.0514 0.1201 0.1813 0.1225 0.1839 18.4958 19.0244

β11 0.0327 0.0148 0.5590 0.6374 0.5601 0.6376 119.3572 120.8523

β20 0.1516 0.0879 0.5012 0.7762 0.5242 0.7839 55.3431 55.7580

β21 −0.3017 −0.1640 1.7303 3.3837 1.8213 3.4106 68.5309 70.0988

100

β10 −0.0254 −0.0343 0.0778 0.1357 0.0785 0.1369 14.5455 15.1311

β11 0.0193 0.0240 0.2704 0.3506 0.2708 0.3512 82.2737 83.4865

β20 0.0366 −0.0147 0.2353 0.5232 0.2366 0.5234 38.4661 40.5110

β21 −0.0511 0.0429 0.7113 2.3246 0.7139 2.3265 45.6203 48.1084

200

β10 −0.0229 −0.0304 0.0299 0.0935 0.0305 0.0944 9.1091 9.9292

β11 0.0249 0.0294 0.1182 0.2163 0.1188 0.2172 54.5856 57.8233

β20 0.0342 −0.0059 0.0993 0.4401 0.1004 0.4401 24.9519 27.4913

β21 −0.0494 0.0357 0.2999 2.3711 0.3023 2.3724 29.5489 33.7693

500

β10 −0.0065 −0.0194 0.0098 0.0780 0.0098 0.0784 5.2412 6.0263

β11 0.0013 0.0144 0.0337 0.1350 0.0337 0.1352 29.2489 32.1616

β20 0.0059 −0.0198 0.0335 0.3524 0.0353 0.3527 14.7641 17.4109

β21 −0.0033 0.0577 0.1043 2.0047 0.1043 2.0080 16.8862 20.9636

Scenario 2

50

β10 −0.0559 −0.0763 0.2565 0.3049 0.2596 0.3108 15.0565 15.4028

β11 0.0345 0.0284 1.2664 1.3063 1.2676 1.3071 54.2357 54.2181

β20 0.0140 −0.0185 0.4487 0.9193 0.4489 0.9196 104.6621 108.5400

β21 −0.2539 −0.1335 2.0746 2.9093 2.1391 2.9271 114.3879 114.9491

100

β10 −0.0274 −0.0525 0.1300 0.1613 0.1308 0.1641 11.0662 11.0420

β11 0.0047 0.0321 0.4326 0.4518 0.4326 0.4528 34.5772 34.1142

β20 0.0030 −0.0412 0.2639 0.8869 0.2639 0.8886 81.9453 87.8518

β21 −0.1044 0.0113 0.8780 2.0218 0.8889 2.0220 74.6983 79.8030

200

β10 −0.0332 −0.0526 0.0433 0.3165 0.0445 0.3193 6.7164 7.6425

β11 0.0358 0.0535 0.1627 0.4814 0.1640 0.4843 21.3950 23.3487

β20 −0.0061 −0.0393 0.0955 0.7542 0.0955 0.7557 48.9634 56.3251

β21 −0.0299 0.0217 0.3616 1.5927 0.3625 1.5932 47.6516 53.7506

500

β10 −0.0116 −0.0309 0.0149 0.2812 0.0151 0.2821 3.9067 4.8219

β11 0.0051 0.0225 0.0519 0.3654 0.0520 0.3659 12.1947 13.7427

β20 −0.0035 −0.0573 0.0372 1.4334 0.0372 1.4367 31.1360 40.9934

β21 −0.0051 0.0658 0.1269 2.6745 0.1269 2.6788 28.5447 34.8024

Source: Elaborated by the author.
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Table 23 – Summary of Bayesian and classical estimation using zero-deflated samples.

n Parameter
Bias Variance MSE MAPE (%)

Bayes MLE Bayes MLE Bayes MLE Bayes MLE

Scenario 1

50

β10 −0.1971 −0.1667 0.6135 0.7634 0.6524 0.7912 60.4995 59.4275

β11 0.1060 0.0973 1.9266 2.1244 1.9378 2.1338 216.5709 214.5939

β20 0.0941 0.0674 0.5204 0.6096 0.5292 0.6142 111.2615 110.3212

β21 −0.0105 −0.0356 2.1566 3.1154 2.1567 3.1167 116.0536 115.4830

100

β10 −0.0773 −0.0813 0.2853 0.3727 0.2913 0.3794 41.2579 41.6971

β11 0.0226 0.0476 0.7260 0.8623 0.7265 0.8646 132.8333 133.6173

β20 −0.0188 −0.0356 0.2673 0.4108 0.2676 0.4121 79.8809 81.0349

β21 0.1173 0.1383 0.9410 2.1766 0.9548 2.1957 75.4413 78.0565

200

β10 −0.0564 −0.0695 0.1131 0.3314 0.1163 0.3362 27.0471 29.4275

β11 0.0432 0.0645 0.3103 0.6435 0.3122 0.6476 88.5523 94.8071

β20 0.0058 −0.0218 0.0965 0.3417 0.0966 0.3421 49.6113 54.0982

β21 0.0297 0.0929 0.3488 2.5299 0.3497 2.5386 47.2081 53.7624

500

β10 −0.0284 −0.0433 0.0394 0.1844 0.0402 0.1863 15.8450 17.6385

β11 0.0226 0.0434 0.1000 0.3317 0.1006 0.3336 49.7987 54.7585

β20 0.0026 −0.0195 0.0352 0.2622 0.0352 0.2626 29.4331 33.6326

β21 0.0155 0.0761 0.1299 2.3141 0.1301 2.3199 27.4785 34.1051

Scenario 2

50

β10 −0.5417 −0.3344 2.6364 2.1542 2.9298 2.2660 55.7422 49.1413

β11 0.1932 −0.0237 8.4866 8.4168 8.5239 8.4173 414.1736 397.8847

β20 0.1733 0.1010 0.5235 0.6591 0.5535 0.6693 57.8831 56.3176

β21 −0.2063 −0.1175 1.7803 3.3037 1.8228 3.3176 211.1536 212.7205

100

β10 −0.2281 −0.1943 0.9002 0.9583 0.9522 0.9961 34.3945 33.8649

β11 0.0857 0.0934 2.1968 2.3735 2.2041 2.3822 222.6073 225.7564

β20 0.0325 −0.0097 0.2832 0.4358 0.2842 0.4359 41.4213 41.6895

β21 0.0074 0.0881 0.8323 2.4468 0.8324 2.4546 144.7771 150.7059

200

β10 −0.1305 −0.1385 0.3088 0.9207 0.3258 0.9398 21.3299 22.6907

β11 0.0703 0.0971 0.9024 1.7183 0.9074 1.7277 149.3391 156.1515

β20 0.0219 −0.0181 0.1065 0.4449 0.1069 0.4452 25.6228 28.0340

β21 −0.0049 0.0909 0.3166 3.7195 0.3166 3.7277 90.1610 105.7611

500

β10 −0.0438 −0.0675 0.0839 0.8042 0.0858 0.8087 11.5690 13.2514

β11 0.0073 0.0469 0.2345 1.1821 0.2346 1.1843 76.6633 84.2876

β20 0.0066 −0.0207 0.0373 0.3408 0.0373 0.3412 15.3647 17.9984

β21 0.0010 0.0765 0.1105 3.0407 0.1105 3.0465 52.7069 68.8181

Source: Elaborated by the author.
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Table 24 – Coverage probabilities (%) of the BCIs/ACIs using zero-inflated samples.

n Parameter
BNCP CP ANCP BNCP CP ANCP

Bayes MLE Bayes MLE Bayes MLE Bayes MLE Bayes MLE Bayes MLE

Scenario 1 Scenario 2

50

β10 2.60 1.40 93.40 95.80 4.00 2.80 4.40 2.40 90.20 93.60 5.40 4.00

β11 4.80 2.40 91.40 95.40 3.80 2.20 5.20 4.00 90.60 92.40 4.20 3.60

β20 6.60 2.40 91.00 95.40 2.40 2.20 5.80 2.80 90.80 95.40 3.40 1.80

β21 3.40 2.80 90.80 94.40 5.80 2.80 4.00 3.20 90.20 94.80 5.80 2.00

100

β10 3.00 1.80 91.80 94.40 5.20 3.80 4.80 2.20 91.00 94.20 4.20 3.60

β11 5.60 4.20 90.40 93.20 4.00 2.60 4.60 2.80 92.00 95.60 3.40 1.60

β20 3.20 2.00 94.20 96.00 2.60 2.00 4.00 2.20 92.40 95.60 3.60 2.20

β21 3.80 2.40 92.80 96.60 3.40 1.00 3.00 3.60 92.60 94.80 4.40 1.60

200

β10 3.80 1.60 91.00 94.60 5.20 3.80 3.40 2.40 91.60 94.00 5.00 3.60

β11 6.00 4.40 89.20 91.20 4.80 4.40 4.80 3.00 92.60 94.80 2.60 2.20

β20 4.60 3.00 92.80 94.40 2.60 2.60 3.80 2.40 93.40 95.60 2.80 2.00

β21 3.00 1.80 93.00 95.60 4.00 2.60 3.20 2.80 92.20 94.40 4.60 2.80

500

β10 4.60 3.60 92.20 93.80 3.20 2.60 2.40 1.80 92.60 95.20 5.00 3.00

β11 3.20 2.80 93.00 94.40 3.80 2.80 4.20 3.00 92.40 94.80 3.40 2.20

β20 3.40 2.00 92.00 94.80 4.60 3.20 3.80 3.00 93.20 94.80 3.00 2.20

β21 4.20 4.00 91.80 93.80 4.00 2.20 3.80 2.60 92.20 94.60 4.00 2.80

Source: Elaborated by the author.

Table 25 – Coverage probabilities (%) of the BCIs/ACIs using zero-deflated samples.

n Parameter
BNCP CP ANCP BNCP CP ANCP

Bayes MLE Bayes MLE Bayes MLE Bayes MLE Bayes MLE Bayes MLE

Scenario 1 Scenario 2

50

β10 2.80 1.80 92.40 96.20 4.80 2.00 3.00 2.40 91.80 97.60 5.20 0.00

β11 4.00 2.80 92.80 95.20 3.20 2.00 4.00 1.60 91.80 97.80 4.20 0.60

β20 6.40 1.80 89.60 96.00 4.00 2.20 6.40 2.00 91.40 96.20 2.20 1.80

β21 3.40 1.40 91.40 95.80 5.20 2.80 3.00 1.60 90.40 95.80 6.60 2.60

100

β10 3.40 2.40 92.80 95.60 3.80 2.00 2.80 2.60 91.00 96.60 6.20 0.80

β11 4.00 2.80 92.60 95.00 3.40 2.20 6.20 2.20 90.00 95.40 3.80 2.40

β20 3.20 1.60 92.60 95.00 4.20 3.40 4.60 1.40 91.20 94.80 4.20 3.80

β21 5.60 3.20 92.00 95.60 2.40 1.20 4.00 3.40 91.60 94.00 4.40 2.60

200

β10 2.40 2.00 94.40 96.20 3.20 1.80 4.00 2.60 90.20 94.00 5.80 3.40

β11 3.40 2.20 93.80 95.60 2.80 2.20 5.80 3.40 90.40 95.00 3.80 1.60

β20 3.40 2.00 93.00 94.40 3.60 3.60 4.40 2.60 92.00 94.00 3.60 3.40

β21 2.40 1.80 93.60 95.20 4.00 3.00 3.20 3.00 92.40 93.80 4.40 3.20

500

β10 3.00 2.80 93.80 94.40 3.20 2.80 2.60 2.40 93.40 95.40 4.00 2.20

β11 3.80 3.20 93.40 95.20 2.80 1.60 3.80 3.40 93.20 94.60 3.00 2.00

β20 2.60 1.40 93.20 95.80 4.20 2.80 2.60 1.80 93.20 95.20 4.20 3.00

β21 4.40 2.80 91.80 93.80 3.80 3.40 5.20 3.20 92.00 94.80 2.80 2.00

Source: Elaborated by the author.
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expected and therefore, the variable Y was generated with mean (µ) close to zero. Then, for
the third scenario we have considered βββ�

1 = (−1.0,0.5) and βββ�
2 = (0.5,1.0) to perform the

simulation. In the following, the procedure was repeated by considering βββ�
1 = (−2.0,0.5) and

βββ�
2 = (1.0,−0.5). For these scenarios, the “vague” prior setup is (βββ 0

1)
� = (0.0,−1.0) and

(βββ 0
2)

� = (2.0,0.0). Figure 14 depicts the Bayesian estimates obtained for parameter p using zero-
deflated samples with n = 500 for each scenario. Such representation has the same characteristics
of Figure 13.

Figure 13 – Posterior estimates of parameter p using zero-inflated samples (n = 500).
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Source: Elaborated by the author.

Figure 14 – Posterior estimates of parameter p using zero-deflated samples (n = 500).
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Source: Elaborated by the author.

4.7 Takeover bids data analysis
In this section, the 𝒵ℳ𝒫ℒ regression model is considered for the analysis of a real

dataset obtained from Jaggia and Thosar (1993). The sample consists of 126 US firms that
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were targets of tender offers between 1978-1985 and which were taken over within a period
of 52 weeks. In this study, the response variable is the number of additional bids after the
initial bid received by the target firms. Also, a set of explanatory variables regarding target
management actions and firm-specific characteristics was observed. The authors have analyzed
the data by fitting a Poisson regression model, and they have verified that the white knight is one
of the covariates associated with additional bids. The white knight is a management action of
inviting a friendly third-part to enter the bidding. The authors pointed out that, when inviting a
friendly bidder, the management is indicating that may cede at least some control of the firm,
and therefore, the entry (or potential entry) of at least one additional bidder is expected to spur
the auction process.

Let us characterize the number of bids as the response variable (Y) and the white knight

as a covariate (x). The independent variable x was coded as 0 (no additional bidder) and 1
(additional bidder). From the observed dataset, there exists evidence that Y is overdispersed since
its mean is 1.74, and its variance is 2.05. Also, the range of Y is 10, and its coefficient of variation
is approximately 118%. In this study, 75 out of 126 firms have at least one additional bidder
invited for the process. The average number of bids was 1.18 when no additional bidder was
invited and 2.12 otherwise. The absolute frequency of zeros is 9 (about 7% of the entire sample),
which naively indicates a zero deflation. Such characteristic is evidenced when fitting model
(4.10) using the full dataset. This procedure was performed strictly for descriptive purposes. The
model was fitted using a simpler version of Algorithm 5 since covariate x was not used. From
its posterior summary, we have estimated Equation (4.8) as (1−1.87)P(Y > 0;0.93)×100≈
−43%, suggesting that exist approximately 7 missing zeros, reinforcing our suspect that the
sample is zero-deflated. Moreover, we had noticed that when the sample was observed, 6 firms
had received no further bids when no additional bidder was invited. As would be expected, the
firm which has received the highest number of additional bids (10) had at least one additional
bidder invited.

Table 26 – Posterior parameter estimates and 95% BCIs/HPDIs from 𝒵ℳ𝒫ℒ fitted model.

Parameter Mean Median SD ESS
95% BCI 95% HPDI
Lower Upper Lower Upper

β10 −0.8367 −0.8332 0.2563 2368.97 −1.3684 −0.3446 −1.3620 −0.3391
β11 0.9354 0.9319 0.2972 2293.12 0.3665 1.5421 0.3806 1.5529
β20 2.0608 2.0458 0.4055 2406.81 1.3147 2.9033 1.3266 2.9131
β21 0.8104 0.8140 0.5965 2400.04 −0.3397 1.9806 −0.3064 2.0073

Source: Elaborated by the author.

To fit the𝒵ℳ𝒫ℒ regression model with the white knight as a covariate, we have adopted
a similar procedure to that one used in the previous section. Since x is a dummy variable, we ha-
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Table 27 – Sensitivity analysis to evaluate the effect of different prior specifications.

Priors Parameter Mean µ̂* p̂ n̂0

τ1 = τ2 = 2.0

�
βββ p

1
��

= (0.0,−1.0)
β10 −0.64

1.63 2.15 11
β11 0.56

�
βββ p

2
��

= (2.0,0.0)
β20 2.04

β21 0.57

�
βββ p

1
��

= (4.0,−4.5)
β10 −0.07

1.81 1.83 8
β11 0.09

�
βββ p

2
��

= (4.0,−1.0)
β20 2.25

β21 0.93

�
βββ p

1
��

= (8.5,−9.5)
β10 −1.05

1.75 2.54 9
β11 0.98

�
βββ p

2
��

= (10.0,−7.0)
β20 2.09

β21 1.10

τ1 = τ2 = 5.0

�
βββ p

1
��

= (0.0,−1.0)
β10 −0.84

1.84 2.22 10
β11 0.94

�
βββ p

2
��

= (2.0,0.0)
β20 2.06

β21 0.81

�
βββ p

1
��

= (4.0,−4.5)
β10 −0.58

1.85 2.03 8
β11 0.72

�
βββ p

2
��

= (4.0,−1.0)
β20 2.15

β21 1.10

�
βββ p

1
��

= (8.5,−9.5)
β10 −1.08

1.95 2.47 8
β11 1.18

�
βββ p

2
��

= (10.0,−7.0)
β20 2.09

β21 1.17

τ1 = τ2 = 8.0

�
βββ p

1
��

= (0.0,−1.0)
β10 −0.92

1.93 2.27 9
β11 1.07

�
βββ p

2
��

= (2.0,0.0)
β20 2.06

β21 0.93

�
βββ p

1
��

= (4.0,−4.5)
β10 −0.75

1.92 2.13 8
β11 0.93

�
βββ p

2
��

= (4.0,−1.0)
β20 2.13

β21 1.16

�
βββ p

1
��

= (8.5,−9.5)
β10 −1.08

2.03 2.45 8
β11 1.23

�
βββ p

2
��

= (10.0,−7.0)
β20 2.09

β21 1.19

Source: Elaborated by the author.
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ve fixed 0 (no additional bidder) as the baseline for estimation purposes. The logarithm link
function was considered to relate µi with the linear predictor β10 +β11xi.

To relate parameter ωi with β20 +β21xi, we choose the link function given by (4.13). In
this framework, the parameter β11 represents the indirect effect of the invitation of at least one
additional bidder on the mean (µ*) and parameter β21 indicates the direct effect of such invitation
on the probability of zeros (1−ω). We have considered the RwM algorithm, generating a chain
of size N = 50,000 for each parameter whereby the first 10,000 values were discarded as burn-
in. The stationarity of each chain was checked through the Geweke criterion for diagnosing
convergence. To obtain the pseudo-independent samples, we have kept one out of every 10
generated values, resulting in chains of size M = 4,000 for each parameter.

Table 26 presents the mean, the median and the standard deviation obtained from the
posterior distribution of βββ . To obtain the full descriptive summary we have arbitrarily selected
the priors (βββ 0

1)
� = (0.0,−1.0), (βββ 0

2)
� = (2.0,0.0) and τ1 = τ2 = 5.0. In this framework, the

acceptance rates in the RwM algorithm were at approximately 35%. In addition, we have
calculated the number of effectively pseudo-independent draws (effective sample size - ESS)
from the posterior distribution. The 95% BCIs were estimated empirically from the generated
samples and the 95% highest posterior density intervals (HPDIs) were also computed.

Figure 15 – Sensitivity analysis for diagnostic of influential points.
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Source: Elaborated by the author.

A sensitivity analysis was performed to evaluate the behaviour of the Bayesian estima-
tors under distinct prior specifications. We have established three scenarios where the model
parameters were estimated considering different choices for βββ 0

r and τr (r = 1,2). The results are
displayed on Table 27. The Bayesian estimates for the parameters µ*, p and n0 (expected number
of zeros) are also presented. Here, parameters µ* and p were estimated as functions of the
fitted 𝒵ℳ𝒫ℒ model, that is, µ̂* = n−1 ∑n

i=1 µ̂i p̂i, where p̂i = ω̂iP−1(Y > 0; µ̂i), and naturally,
p̂ = n−1 ∑n

i=1 p̂i. Since βββ 1 and βββ 2 are orthogonal, the results can be directly combined by taking
τ1 ̸= τ2. Obviously, we cannot decide on the prior distributions based on the posterior results,



4.7. Takeover bids data analysis 113

but we can investigate whether the prior specifications are influential. In this way, we have
observed that the estimator of β20 is less sensitive regarding the prior choice, with variance
smaller than 0.005 between estimates. For τ j = 2.0, the estimators of β10 and β11 are more
sensitive, implying higher variability between estimates of parameter p. In addition, when large
values are selected for τr, one can notice that the lower the prior choices for β11 and β21 the
larger the estimates of µ*. Amidst these features, it is worthwhile to mention that, as τr increases,
the prior specification tends to have lower impact on the final fit (µ̂*, p̂, n̂0) and, in general, such
impact can be considered negligible, even for quite distinct priors.

Table 28 – Comparison criteria for the fitted models.

Model Full Dataset Without Observation 36
DIC EAIC EBIC LMPL DIC EAIC EBIC LMPL

𝒫 1011.60 409.04 414.71 −195.53 959.15 388.06 393.72 −185.45
𝒩ℬ 988.68 402.04 405.71 −195.87 943.12 383.81 387.47 −185.97
𝒫ℒ 1104.06 446.03 451.70 −291.00 1075.44 434.58 440.24 −213.58
𝒵ℳ𝒫 941.45 385.37 387.04 −183.65 884.90 362.77 364.42 −172.56
𝒵ℳ𝒫ℒ 920.02 376.81 378.49 −178.43 882.32 361.71 363.37 −171.40

Source: Elaborated by the author.

Table 29 – Posterior parameter estimates and 95% BCIs/HPDIs from 𝒵ℳ𝒫ℒ fitted model (without
influential point).

Parameter Mean Median Std. Dev. ESS 95% BCI 95% HPDI
Lower Upper Lower Upper

β10
−0.8395 −0.8367 0.2549 2597.71 −1.3524 −0.3481 −1.3524 −0.3479
(−0.33%) (−0.42%) (−0.55%) (9.66%)

β11
0.8516 0.8493 0.2979 2394.79

0.2723 1.4447 0.2615 1.4326
(−8.96%) (−8.86%) (0.24%) (4.43%)

β20
2.0622 2.0477 0.4029 2420.74

1.3267 2.8911 1.2674 2.8193
(0.07%) (0.09%) (−0.64%) (0.58%)

β21
0.8002 0.7951 0.5903 2848.08 −0.3396 1.9810 −0.2880 2.0199
(−1.26%) (−2.32%) (−1.04%) (18.67%)

Source: Elaborated by the author.

The analysis to verify the existence of influential points is presented in Figure 15. Figure
15a depicts the Kullback-Leibler (KL) divergence (see Appendix B, Section B.1), that used to
evaluate the effect of each observation on the parameter estimates. Conservatively, we consider
an observation whose distance has a calibration exceeding 0.75 as an influential point. Based
on Figure 15b, we have observed the existence of one influential point (36), corresponding
to the firm with ten additional bids. As a way to access the influence of this observation, the
estimation process was repeated considering the removal of such a firm of the sample. The
posterior summary for this case and the variation percentage regarding the posterior summary
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obtained from the full dataset is presented on Table 29. When analyzing the parameter estimates,
it can be observed that the removal of observation 36 impacts reasonably the model fit, and the
main variation is observed when estimating parameter β11.

Figure 16 – Estimated posterior densities of vectors βββ 1 and βββ 2.
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Source: Elaborated by the author.

For comparison purposes, identical Bayesian procedures were adopted to fit the 𝒫 , the
𝒫ℒ, the Negative Binomial (𝒩ℬ), and the 𝒵ℳ𝒫 regression models. To estimate the fixed
dispersion parameter (φ) of the 𝒩ℬ model, we have considered a noninformative Inverse-
Gamma prior distribution with hyperparameters a = b = 1.0. For each fitted model, we have
estimated the measures presented in Appendix B (Section B.2). The model comparison procedure
is summarized in Table 28. One can notice that the zero-modified models have performed
considerably better with 𝒵ℳ𝒫ℒ outperforming all. These results are highlighting that the
proposed model is highly competitive with well-established models in the literature.

Figure 16 presents the marginal posterior densities of parameters of the 𝒵ℳ𝒫ℒ regres-
sion model. These densities provided the summary displayed on Table 29. The assumption of
normality for the generated chains is quite reasonable even in the presence of slightly heavy tails
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on some of the estimated densities. Besides, there exists evidence of symmetry since posterior

mean and median are very close to each other. For each parameter, the effective sample size
was estimated greater than M/2, which can be considered an indication of good mixing of the
generated chains, without any computational waste.

From the results displayed in Table 29, one can make some inferences and take some
conclusions. Firstly, we have observed that the BCI/HPDI of the parameter β11 does not contain
the value zero, which constitute the white knight as a relevant covariate to describe the average
number of bids. On the other hand, the probability of not receive at least one additional bid is
1− [1+exp{−2.0622}]−1≈ 0.113 if no additional bidder is invited and 1− [1+exp{−(2.0622+
0.8002)}]−1 ≈ 0.054 otherwise. However, as parameter ω is not affected by individual white

knights, one can re-estimate it, not depending on individuals’ covariate. Hence, the fitted𝒵ℳ𝒫ℒ
model can be represented by

µ̂i* =
ω̂ µ̂i

P(Y > 0; µ̂i)
,

where µ̂i = exp{−0.8395+0.8516xi} and ω̂ = 0.9252. Also, since parameter µi was estimated
using only positive observations, if at least one additional bid is being offered, its expected value
will be 1.312 provided that no additional bidder is invited and 1.808 otherwise.

Table 30 – Posterior estimates of extra parameters and goodness-of-fit evaluation.

Model Full Dataset Without Observation 36

µ̂* p̂ n̂0 χ2 µ̂* p̂ n̂0 χ2

𝒫 1.65 1.00 24 26.19 1.58 1.00 26 24.65
(<0.001) (<0.001)

𝒩ℬ 1.67 1.00 25 27.50 1.62 1.00 25 25.75
(<0.001) (<0.001)

𝒫ℒ 1.60 1.00 45 69.67 1.56 1.00 46 70.59
(<0.001) (<0.001)

𝒵ℳ𝒫 1.88 1.41 10 8.75 1.78 1.43 10 4.31
(0.119) (0.366)

𝒵ℳ𝒫ℒ 1.84 2.22 10 0.61 1.77 2.27 9 0.65
(0.986) (0.957)

Source: Elaborated by the author.

Table 30 presents the final posterior summary of the fitted models. One can notice
that the estimates for n0, obtained from the 𝒫 , 𝒩ℬ, and 𝒫ℒ models are much larger than the
real one while those provided by zero-modified models are very close (or exactly equal) to 9.
Through these measures, one can better understand how the fitted models are adhering to the
data since the nature of the observed counts should be well described regarding its frequency
and the average number of nonzero observations. The goodness-of-fit can be evaluated by the χ2

measure obtained from the observed and expected frequencies. To compute such statistics, we
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have grouped cells with frequencies lower or equal than 5, resulting in 5 df (full dataset) and 4 df
(when removing observation 36). One can notice that 𝒵ℳ𝒫 model provides reliable fits, but it
is quite clear that the proposed model adheres much better on the considered datasets (p-values
greater than 0.95).

Figure 17 – Frequency distribution and Half-Normal plot with simulated envelope for the RQRs.
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Source: Elaborated by the author.

Figure 17 depicts additional evidence based on the randomized quantile residuals (RQRs)
for validating the fitted 𝒵ℳ𝒫ℒ regression model (without observation 36). This residual metric
was computed as discussed in Appendix B (Section B.3) using Equation (4.11). One can notice
that the normality assumption of the residuals is easily verified by the behavior of its frequency
distribution (left-panel). Besides, the Half-Normal probability plot indicates that the fit of the
𝒵ℳ𝒫ℒ model was very satisfactory since all estimated residuals are lying within the simulated
envelope (right-panel).

Figure 18 – Posterior expected frequencies under zero-modified models.
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Figure 18 depicts the expected frequencies estimated through predictive 𝒵ℳ𝒫 and
𝒵ℳ𝒫ℒ models, considering the removal of the influential point. The results highlight the better
adherence of the fitted models when observation 36 is discarded in the estimation procedure.
Besides, using the χ2 statistic and the comparison criteria, one can notice that the proposed
model provides a more realistic fit for the considered dataset, and inferences about parameter
p allow us to classify the observed sample as being zero-deflated (p̂ > 1). In other words, we
have that, by the proposed model, it would be expected that more firms would not have received
additional bids after the initial bid.

4.8 Concluding remarks
In this chapter, we have introduced the 𝒵ℳ𝒫ℒ regression model as an alternative for the

analysis of overdispersed datasets exhibiting zero inflation/deflation in the presence of covariates.
By using the hurdle version of the 𝒫ℒ distribution, it was possible to write separable likelihood
functions for the parameter vectors, which led us to less complicated Bayesian procedures
based on the g-prior method. Also, we have shown that the mean of the 𝒵ℳ𝒫ℒ model can be
estimated using only the positive observations.

An intensive Monte Carlo simulation study was performed in order to evaluate the
empirical properties of the Bayesian estimators and MLEs, and the obtained results highlighted
the suitability of the adopted methodology. Due to the “vague” nature of the prior distributions,
similar results were achieved, but the Bayesian approach remains an excellent option since it
does not depend on asymptotic results for inference and has the advantage of incorporating
specific information about parameters when available.

The proposed model was considered for the analysis of a real dataset obtained from an
economic study with legal implications, where the response variable is the number of additional
bids after the initial bid received by 126 US firms. The response variable was identified as being
overdispersed and zero-deflated, which justifies the use of the 𝒵ℳ𝒫ℒ model. A sensitivity
analysis was conducted using the Kullback-Leibler divergence, and one firm was identified as
locally influent. The main inferential conclusion one can take from the fitted model is that the
white knight is statistically relevant to describe the average number of additional bids. Besides,
when looking at the χ2 statistic and the posterior based comparison criteria, we have noticed that
the proposed model had presented a better fit when compared with its competitors. Therefore,
the 𝒵ℳ𝒫ℒ regression model can be considered an excellent addition to the set of models that
can be used when analyzing overdispersed and zero-modified count data.
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CHAPTER

5
THE ZERO-MODIFIED POISSON-SUJATHA

REGRESSION MODEL

5.1 Introduction

Count datasets are traditionally analyzed using the ordinary Poisson (𝒫) distribution.
However, such a model has its applicability limited as it can be somewhat restrictive to handle
specific data structures. In this case, it arises the need for obtaining alternative models that
accommodate, for example, overdispersion and zero modification (inflation/deflation at the
frequency of zeros). In practical terms, these are the most prevalent structures ruling the nature
of discrete phenomena nowadays. Hence, the primary goal of this chapter was to jointly address
these issues by deriving a fixed-effects regression model based on the hurdle version of the
Poisson-Sujatha (𝒫𝒮u) distribution. In this framework, the zero modification is incorporated
by considering that a binary probability model determines which outcomes are zero-valued,
and a zero-truncated process is responsible for generating positive observations. Posterior

inferences for the model parameters were obtained from a fully Bayesian approach based on the
g-prior method. Intensive Monte Carlo simulation studies were performed as a way to assess the
empirical properties of the Bayesian estimators, and the obtained results have been discussed.
The proposed model was considered for the analysis of a real dataset, and its competitiveness
regarding some well-established fixed-effects models for count data was evaluated. A sensitivity
analysis to detect observations that may impact parameter estimates was performed based on
some standard divergence measures. The Bayesian p-value and the randomized quantile residuals
were considered for the task of model validation.

In this chapter, we have extended the works of Shanker (2016d), Bertoli et al. (2018),
and Bertoli et al. (2019a) in the sense of developing a new fixed-effects regression model for
zero-modified count data based on the 𝒫𝒮u distribution. A discrete random variable Y defined
on 𝒴0 = {0,1, . . .} is said to follow a zero-modified Poisson-Sujatha (𝒵ℳ𝒫𝒮u) distribution if
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its probability mass function (pmf) can be written as

P*(Y = y; µ, p) = (1− p)δy + pP(Y = y; µ) , y ∈ 𝒴0,

where p is the zero modification parameter and δy is an indicator function, so that δy = 1 if
y = 0 and δy = 0 otherwise. Also, µ ∈R+ is the expected value of the ordinary 𝒫𝒮u distribution,
whose reparameterized pmf is given by

P(Y = y; µ) =
h3 (µ)

h2 (µ)+h(µ)+2

�
y2 + y [h(µ)+4]+

�
h2 (µ)+3h(µ)+4

�

[h(µ)+1]y+3

�
, y ∈ 𝒴0,

where
h(µ) =

1
3µ

�
(s(µ)−µ +1)− (µ−1)(5µ +1)

s(µ)

�
, (5.1)

with

s(µ) =
�

3µ
�

21µ4 +84µ3 +513µ2 +96µ +15+2µ
�
4µ2 +33µ +3

�
+1

�1/3

,

and µ = (θ 2+2θ +6)[θ(θ 2+θ +2)]−1 for θ ∈R+ (shape parameter). This parameterization is
particularly useful since our primary goal is to derive a regression model, in which the influence
of fixed-effects can be evaluated directly over the mean of a zero-modified response variable.
Unlike zero-inflated models, here parameter p is defined on the interval [0,P−1(Y > 0; µ)],
and so the 𝒵ℳ𝒫𝒮u model is not a mixture distribution since p may assume values greater
than 1. The expected value and variance of Y are given, respectively, by E(Y ) = λ= µ p and
V(Y ) = ς2 = p[σ2 +(1− p)µ2], where σ2 ∈ R+ is the variance of the 𝒫𝒮u distribution (see
Bertoli et al. (2019a), Table 4).

The hurdle version of the 𝒫𝒮u distribution can be obtained by taking ω = pP(Y > 0; µ),
that is,

P*(Y = y; µ,ω) = (1−ω)δy +ω P*(Y = y; µ) , y ∈ 𝒴0, (5.2)

for ω ∈ [0,1] and where P*(Y = y; µ) is the pmf of the zero-truncated Poisson-Sujatha (𝒵𝒯 𝒫𝒮u)

distribution (SHANKER; FESSHAYE, 2016). Noticeably, Equation (5.2) is only a reparameteri-
zation of the standard 𝒵ℳ𝒫𝒮u, and so one can conclude that these models are interchangeable.
For ease of notation and understanding, the acronym 𝒵ℳ𝒫𝒮u will be used when we refer to
the hurdle version of the 𝒫𝒮u distribution.

The corresponding cumulative distribution function (cdf) of Y is given by

F*(y; µ,ω) = 1− ω
P(Y > 0; µ)

�
yh(µ)

�
h2 (µ)+(y+6)h(µ)+2

�

[h2 (µ)+h(µ)+2] [h(µ)+1]y+3 +

h4 (µ)+4h3 (µ)+10h2 (µ)+7h(µ)+2

[h2 (µ)+h(µ)+2] [h(µ)+1]y+3

�
, y ∈ 𝒴0. (5.3)

Comparatively, the proposed model can be considered more flexible than zero-inflated
models as it allows for zero deflation, which is a structure often encountered when handling
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count data. Besides, the proposed model incorporates overdispersion that does not come only
from inflation/deflation of zeros, as one of its parts is dedicated to describing the behavior
of the positive values. In the regression framework that we have developed, discrepant points
(outliers) can be identified, and, through a careful sensitivity analysis, it is possible to quantify
the influence of such observations. However, since the 𝒫𝒮u distribution accounts for different
levels of overdispersion, its zero-modified version is naturally a robust alternative as it may
accommodate discrepant points that would significantly impact the parameter estimates of the
zero-modified Poisson (𝒵ℳ𝒫) model.

This chapter is organized as follows. In Section 5.2, we present the fixed-effects regres-
sion model based on the hurdle version of the 𝒫𝒮u distribution. In Section 5.3, we describe
all the Bayesian methodologies and associated numerical procedures that were considered for
inferential purposes. In Section 5.4, we discuss the results of an intensive simulation study and
in Section 5.5, a real data application using the proposed model is exhibited. General comments
and concluding remarks are addressed in Section 5.6.

5.2 The ZMPSu regression model
Suppose that a random experiment (designed or observational) is conducted with n

subjects. The primary response for such an experiment is described by a discrete random variable
Yi denoting the outcome for the i-th subject (i = 1, . . . ,n). The full response vector is given by
YYY = (Y1, . . . ,Yn), and we assume that the observed vector yyy is obtained conditionally to fixed-
effects, here denoted by βββ = (βββ 1,βββ 2). Assuming that Yi|βββ ∼𝒵ℳ𝒫𝒮u(µi,ωi) holds for all i, a
general fixed-effects regression model for count data based on the 𝒵ℳ𝒫𝒮u distribution can be
derived by rewriting Equation (5.2) as

P*(Yi = yi;βββ ) = (1−ωi)δyi +ωiP*(Yi = yi; µi) , yi ∈ 𝒴0, (5.4)

where µi ≡ µ(xxx1i,βββ 1) and ωi ≡ ω(xxx2i,βββ 2) are parameterized nonlinear functions. In this frame-
work, we have βββ�

k = (βk0, . . . ,βkqk) (k = 1,2) related to xxx�ki = (1,x1
ki, . . . ,

xqk
ki ), where xxxki is a vector of covariates that may include, for example, dummy variables, cross-

level interactions and polynomials. The quantity q1 (q2) denotes the number of covariates
considered on the systematic component of a linear predictor for parameter µi (ωi). The full
regression matrices of model (5.4) can be written as XXXk = (111n,XXXk,n×qk), where 111n is the intercept
column and the submatrix XXXk,n×qk is defined in such a way that its i-th row contains the vector
(x1

ki, . . . ,x
qk
ki ). The overall dimension of XXXk is n× (qk +1).

Now, we have to specify two monotonic, invertible and twice differentiable link functions,
say g1 and g2, in which µi = g−1

1 (xxx�1iβββ 1) and ωi = g−1
2 (xxx�2iβββ 2) are well defined on R+ and (0,1),

respectively. For this purpose, one may choose any suitable mappings g1 and g2 such that
g−1

1 : R→ R+ and g−1
2 : R→ (0,1). The logarithm link function, log(µi) = xxx�1iβββ 1, is the natural
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choice for g1. For g2, the popular choice is the logit link function,

logit(ωi) = log
�

ωi

1−ωi

�
= xxx�2iβββ 2. (5.5)

The probit link function,

Φ−1 (ωi) = xxx�2iβββ 2, (5.6)

is also appropriate for the requested purpose. Another possible choice for g2 is

log [− log(1−ωi)] = xxx�2iβββ 2, (5.7)

which corresponds to the complementary log-log link function. One can notice that these link
functions exclude the limit cases pi = 0 and pi = P−1(Y > 0; µi), since it is not possible to
obtain either ω̂i = 0 or ω̂i = 1. The link function (5.7) is usually preferable when the occurrence
probability of a specific outcome is considerably high/low as it accommodates asymmetric
behaviors on the unit interval, which is not the case for link functions (5.5) and (5.6). Further, a
more sophisticated approach considering power and reversal power link functions was proposed
by Bazán et al. (2017), and can also be used to add even more flexibility when modeling
parameter ωi.

We may refer to the proposed model as a “semi-compatible” regression model. The
term “compatible” alludes for “zero-altered”, which defines the class of models proposed by
Heilbron (1994). Zero-altered models are similar to zero-modified ones, but the compatibility
arises from the fact that the linear predictors of µi and ωi are the same. In our case, specifically, it
is worthwhile to mention that identifiability problems may occur if one considers a fixed-effects
regression model derived directly from (5.2), with parameters µ and p sharing covariates, even
if βββ 2 ̸= βββ 1. Therefore, the adopted structure allows for more flexibility and robustness as µ and
ω may share covariates not necessarily with βββ 2 = βββ 1, and so the only requirement for ensuring
model identifiability is the linear independence between covariates within linear predictors.

Unlike traditional approaches, the proposed model can be used for the analysis of zero-
inflated and zero-deflated datasets. In this case, given a set of covariates, the probability of a
zero-valued count being observed for the i-th subject is given by 1− g−1

2 (xxx�2iβββ 2). Under the
logistic regression model (5.5), β2l (l = 1, . . . ,q2) represents the direct change in the log-odds of
Yi being positive per 1-unit change in xl

2i, holding the other covariates at fixed values. On the
other hand, the same not apply if one adopts the link function (5.7) since eβ2l is not the odds
ratio for the l-th covariate effect and so β2l do not have a straightforward interpretation in terms
of contribution to log-odds. Likewise, it is not possible to interpret the coefficients of the probit

model (5.6) directly, but one can evaluate the marginal effect of β2l by analyzing how much the
conditional probability of Yi being positive is affected when the value of xl

2i is changed. The
exact interpretation of β1l (l = 1, . . . ,q1) is not direct in terms of the mean of the hurdle model
since the positive counts are modeled by a zero-truncated distribution (𝒵𝒯 𝒫𝒮u), and therefore,
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β1l represents the overall effect of xl
1i on the expected value µi when yi > 0, holding the other

covariates at fixed values.

The proposed model has d = dim(βββ ) = q1 +q2 +2 unknown quantities to be estimated.
A fully Bayesian approach will be considered for parameter estimation and associated inference.
The next section is dedicated to present details of such an approach.

5.3 Inference
In this section, we address the problem of estimating and making inferences about the

proposed model under a fully Bayesian perspective. Firstly, we derive the model likelihood
function and then, a suitable set of prior distributions is considered in order to obtain a com-
putationally tractable posterior density for the vector βββ . Beyond the primary distributional
assumption that Yi|βββ ∼𝒵ℳ𝒫𝒮u(µi,ωi) holds for all i, here we also assume that the outcomes
for different subjects are unconditionally independent.

Let Y be a discrete random variable assuming values on 𝒴0. Suppose that a random
experiment is carried out n times independently and, subject to xxxki for each i, a vector yyy =

(y1, . . . ,yn) of observed values from Y is obtained. Considering model formulation (5.4), the
likelihood function of βββ can be written as

ℒ(βββ ;yyy) =
n

∏
i=1

ωi

�
1−ωi

ωi

�δyi
�

P(Yi = yi; µi)

P(Yi > 0; µi)

�1−δyi

=
n

∏
i=1

g−1
2
�
xxx�2iβββ 2

�
�

1−g−1
2
�
xxx�2iβββ 2

�

g−1
2
�
xxx�2iβββ 2

�
�δyi

�
P
�
Yi = yi;g−1

1
�
xxx�1iβββ 1

��

P
�
Yi > 0;g−1

1
�
xxx�1iβββ 1

��
�1−δyi

,

and so the corresponding log-likelihood function is given by

�(βββ ;yyy) =
n

∑
i=1

(1−δyi) log

�
P
�
Yi = yi;g−1

1
�
xxx�1iβββ 1

��

P
�
Yi > 0;g−1

1
�
xxx�1iβββ 1

��
�
+

n

∑
i=1

�
log

�
g−1

2
�
xxx�2iβββ 2

��
−δyi log

�
g−1

2
�
xxx�2iβββ 2

�

1−g−1
2
�
xxx�2iβββ 2

�
��

= �1 (βββ 1;yyy)+ �2 (βββ 2;yyy) . (5.8)

In this work, we will consider a log-linear model for parameter µi, that is, g1(µi) =

log(µi) = xxx�1iβββ 1. The choice of g2 is left open and the notation ωi = g−1
2 (xxx�2iβββ 2) will be used

when necessary. From Equation (5.8), one can easily notice that the vectors βββ 1 and βββ 2 are
orthogonal and that �1 depends only on the positive values of yyy. In this way, the log-likelihood
function of βββ 1 takes the form

�1 (βββ 1;yyy) = ∑
j∈𝒥1

log
�

y2
j + y j

�
h
�

exxx�1 jβββ 1
�
+4

�
+
�
h2
�

exxx�1 jβββ 1
�
+3h

�
exxx�1 jβββ 1

�
+4

��
−
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∑
j∈𝒥1

log
�
h4
�

exxx�1 jβββ 1
�
+4h3

�
exxx�1 jβββ 1

�
+10h2

�
exxx�1 jβββ 1

�
+7h

�
exxx�1 jβββ 1

�
+2

�
+

3 ∑
j∈𝒥1

log
�
h
�

exxx�1 jβββ 1
��
− ∑

j∈𝒥1

y j log
�
h
�

exxx�1 jβββ 1
�
+1

�
, (5.9)

where 𝒥1 = { j : y j > 0,y j ∈ yyy} is the finite set of indexes regarding the positive observations of
yyy. Adopting this setup is equivalent to assuming that each positive element of yyy comes from a
𝒵𝒯 𝒫𝒮u distribution. Here, we are extending the fact that estimating the 𝒫 parameter θ using the
zero-truncated Poisson (𝒵𝒯 𝒫) distribution results in a loss of efficiency in the inference if there
is no zero modification (DIETZ; BÖHNING, 2000; CONCEIÇÃO; ANDRADE; LOUZADA,
2014). Now, the log-likelihood function of βββ 2 can be written as

�2 (βββ 2;yyy) =
n

∑
i=1

log
�
g−1

2
�
xxx�2iβββ 2

��
− ∑

j∈𝒥2

log




g−1
2

�
xxx�2 jβββ 2

�

1−g−1
2

�
xxx�2 jβββ 2

�


 , (5.10)

where 𝒥2 = { j : y j = 0,y j ∈ yyy} is the finite set of indexes regarding the zero-valued observations
of yyy.

5.3.1 Prior distributions

The g-prior (ZELLNER, 1986) is a popular choice among Bayesian users of the multiple
linear regression model, mainly due to the fact of providing a closed-form posterior distribution
for the regression coefficients. The g-prior is classified as an objective prior method which uses
the inverse of the Fisher information matrix up to a scalar variance factor (τ ∈ R+) to obtain
the prior correlation structure of the multivariate Normal distribution. Such specification is
indeed quite attractive since the Fisher information plays a major role in the determination of
large-sample covariance in both Bayesian and classical inference.

The problem of eliciting conjugate priors for GLMs was addressed by Chen and Ibrahim
(2003). Their approach can be considered as a generalization of the original g-prior method,
but its application is restricted for the class of GLMs since the proposed prior does not have
closed-form for non-normal exponential families. As an alternative, Gupta and Ibrahim (2009)
have proposed the information matrix prior as a way to assess the prior correlation structure
between the coefficients, not including the intercept since the regression matrix is centered as to
ensure that β0 is orthogonal to the other coefficients. This method uses the Fisher information
similarly to a precision matrix whose elements are shrunken by the factor τ , which is considered
fixed (τ � 1). However, the authors have pointed out that such class of priors can only be
considered Gaussian priors if the Fisher information matrix does not depend on the vector
βββ ′ = (β1, . . . ,βq). In this way, Bové and Held (2011) had considered a similar approach when
they proposed a class of hyper-g priors for GLMs, where the precision matrix is evaluated at the
prior mode, hence obtaining an information matrix that is βββ ′ free.
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The formal concept behind the information matrix prior is closely related to the unit
information prior (KASS; WASSERMAN, 1995), whose main idea is that the amount of
information provided by a prior distribution must be the same as the amount of information
contained in a single observation. Such an idea can be applied in the previously mentioned
approaches by simply considering that τ is equal the total sample size. Gupta and Ibrahim (2009)
have also considered fixed values for τ (τ � 1). On the other hand, some works, including Hansen
and Yu (2003), Wang and George (2007) and Bové and Held (2011) do consider prior elicitation
and inference procedures for the variance scale factor. Here, we will adopt a methodology
based on the unit information prior idea combined with the “noninformative g-prior” proposed
by Marin and Robert (2007) for binary regression models. Based on such an approach, it is
possible to obtain a quite simple prior distribution for the fixed-effects of the proposed model as
βββ k ∼𝒩qk(000,n(XXX

�
kXXXk)

−1), where qk = qk +1.

It is worthwhile to mention that, in cases where XXXk is rank deficient (n < qk + 1) or
contains collinear covariates, it is highly advisable to compute the generalized inverse of XXX

�
kXXXk

otherwise the prior covariance matrix of βββ k may not be defined.

Analogously to Marin and Robert’s approach, we do not consider centered regression
matrices in the prior specification. Hence, we are able to include β10 in the proposed g-prior but,
in this case, the intercept is a priori correlated with the other coefficients (β11, . . . ,β1q1). The
same applies for β20 and the vector (β21, . . . ,β2q2).

5.3.2 Posterior distributions and estimation

Considering the outlined structure for the 𝒵ℳ𝒫𝒮u regression model, the unnormalized
joint posterior distribution of the unknown vector βββ is given by

π (βββ ;yyy) ∝ exp{�(βββ ;yyy)}π (βββ ) . (5.11)

However, since βββ 1 and βββ 2 are orthogonal, we have that

π1 (βββ 1;yyy) ∝ exp{�1 (βββ 1;yyy)}π1 (βββ 1) and π2 (βββ 2;yyy) ∝ exp{�2 (βββ 2;yyy)}π2 (βββ 2) , (5.12)

where �1 and �2 are given by (5.9) and (5.10), respectively. It can be proved that, if the data is
discrete, then the use of a proper prior distribution (multivariate Normal in our case) avoids the
posterior density to be improper.

From the Bayesian point of view, inferences for the elements of βββ k can be obtained
from their marginal posterior distribution. However, deriving analytical expressions for these
densities is infeasible, mainly due to the complexity of the associated log-likelihood function. In
this case, to make inferences for βββ k, we must resort to a suitable iterative procedure to drawn
pseudo-random samples from their posterior densities. Hence, aiming to generate N values for
βββ k, we will adopt the well-known Random-walk Metropolis (RwM) algorithm (METROPOLIS
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et al., 1953; ROBERTS; GELMAN; GILKS, 1997). For the posterior densities in (5.12), we
consider a multivariate Normal distributions for the proposal (candidate-generating) densities in
the algorithm. These distributions will be used as the main terms in the transition kernels when
computing the acceptance probabilities. Hence, at any state t > 0, the MCMC (Markov Chain
Monte Carlo) simulation are performed by proposing a candidate ψψψk for βββ k as

ψψψk|βββ
(t−1)
k ∼𝒩qk

�
νβββ (t−1)

k ,ν𝒮(t−1)
k

�
,

where ν = τ(τ +1)−1 = n(n+1)−1. One can notice that transitions depend on the acceptance
of pseudo-random vectors generated with mean given by the actual state of the chain, which
is shrunken by the factor ν . Besides, at any state t > 0, the covariance matrix of the candidate
vector ψψψk can be approximated numerically by evaluating 𝒮k =ℋ−1

k at βββ k = νβββ (t−1)
k , where

ℋk =−
∂ 2 log [πk (βββ k;yyy)]

∂βββ k∂βββ�
k

.

The procedure to generate pseudo-random samples from the approximate posterior

distribution of βββ is summarized in Algorithm 7 (see Appendix C, Section C.1). To run it, one
has to specify the size of the chains to be generated (N) and the initial state vectors βββ (0)

1 and
βββ (0)

2 beforehand. For a specific asymptotic Gaussian environment, Roberts, Gelman and Gilks
(1997) have shown that the optimal acceptance rate should be around 45% for 1-dimensional
problems and asymptotically approaches to 23.40% in higher-dimensional problems. Here we
are considering acceptance rates varying between 23.40% and 32% as quite reasonable since the
proposed model will generally have at least four parameters to be estimated. Indeed, the higher
the value of n, the smaller the acceptance rate in the RwM algorithm, which results in smaller
variability of the estimates.

The convergence of the simulated sequences can be monitored by using trace and autocor-
relation plots, as well as the run-length control method with half-width test (HEIDELBERGER;
WELCH, 1983), the Geweke z-score diagnostic (GEWEKE, 1992), and the Brooks-Gelman-
Rubin scale-reduction statistic (BROOKS; GELMAN, 1998). After diagnosing convergence,
some samples can be discarded as burn-in. The strategy to decrease the correlation between and
within generated chains is based on getting thinned steps, and so the final sample is supposed to
have size M≪ N for each parameter. A full descriptive summary of the posterior distribution
(5.11) can be obtained through Monte Carlo (MC) estimators using the sequence {βββ t}M

t=1. We
choose the posterior expected value as the Bayesian point estimator for θθθ , that is,

β̂ββ =
1
M

M

∑
t=1

βββ (t), (5.13)

which is also known as the minimum mean square error estimator.

In the next section, we discuss the results of the Monte Carlo simulation studies that
were performed as a way to assess the performance of the proposed Bayesian methodology. In
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Section 5.5, the usefulness, and the competitiveness of the proposed model are illustrated by
using a real dataset. All computations were performed using the R environment (R Development
Core Team, 2017).

5.3.3 Posterior predictive distribution
In a Bayesian context, the posterior predictive distribution (ppd) is defined as the dis-

tribution of possible future (unobserved) values conditioned on the observed ones. Under the
𝒵ℳ𝒫𝒮u distribution, the pmf of any observation w ∈ 𝒴0 (subject to the vectors xxx�1w and xxx�2w of
covariates) is given by

Pπ(Y = w) =
�

Rd
P*(Y = w; µw,ωw)π (βββ ;yyy) dβββ

=
�

Rq1




P
�

Y = w;exxx�1wβββ 1

�

P
�

Y > 0;exxx�1wβββ 1

�




1−δw

π1 (βββ 1;yyy) dβββ 1 ×

�

Rq2
g−1

2
�
xxx�2wβββ 2

�
�

1−g−1
2
�
xxx�2wβββ 2

�

g−1
2
�
xxx�2wβββ 2

�
�δw

π2 (βββ 2;yyy) dβββ 2,

where δw = 1 if w = 0 and δw = 0 otherwise. Noticeably, the ppd has no closed-form available,
and therefore, an MC estimator for this quantity is given by

P̂π(Y = w) =
1

M2

M

∑
t=1

g−1
2

�
xxx�2wβββ (t)

2

�



1−g−1
2

�
xxx�2wβββ (t)

2

�

g−1
2

�
xxx�2wβββ (t)

2

�




δw
M

∑
t=1

bt (w) , (5.14)

where

bt (w) =





h3
�

exxx�1wβββ (t)
1

�

h4
�

exxx�1wβββ (t)
1

�
+4h3

�
exxx�1wβββ (t)

1

�
+10h2

�
exxx�1wβββ (t)

1

�
+7h

�
exxx�1wβββ (t)

1

�
+2

×

w2 +w
�
h
�

exxx�1wβββ (t)
1

�
+4

�
+
�
h2
�

exxx�1wβββ (t)
1

�
+3h

�
exxx�1wβββ (t)

1

�
+4

�

�
h
�

exxx�1wβββ (t)
1

�
+1

�w





1−δw

.

From Equation (5.14), one can easily estimate, for example, the posterior probability of
Y = 0 (subject to xxx�10 and xxx�20) as

P̂π
�
Y = 0;xxx�10,xxx

�
20
�
=

1
M

M

∑
t=1

g−1
2

�
xxx�20βββ (t)

2

�



1−g−1
2

�
xxx�20βββ (t)

2

�

g−1
2

�
xxx�20βββ (t)

2

�


 .

5.3.4 Influential points
Identifying influential observations is a crucial step in any statistical analysis. Usually, the

presence of influential points impacts the inferential procedures and the subsequent conclusions
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considerably. In this way, this subsection is dedicated to present some case deletion Bayesian
diagnostic measures that can be used to quantify the influence of observations from each subject
in a given dataset.

The computation of divergence measures between posterior distributions is a useful
way to quantify influence. According to Csiszár (1967), the ϕ-divergence measure between two
densities f and g for θθθ ∈ΘΘΘ is defined by

dϕ =
�

ΘΘΘ
g(θθθ)ϕ

�
f (θθθ)
g(θθθ)

�
dθθθ ,

where ϕ is a smooth convex, lower semicontinuous function such that ϕ(1) = 0. Some popular
divergence measures can be obtained by choosing specific functions for ϕ . The well-known
Kullback-Leibler (KL) divergence is obtained by considering ϕ(z) = − log(z). A symmetric
version of the KL divergence, the Jeffrey (J) divergence, can be obtained by specifying ϕ(z) =
(z−1) log(z) and the variational divergence (L1 norm) is obtained when ϕ(z) = 0.50|z−1|. In
addition, the Chi-Square (CS) divergence is obtained by considering ϕ(z) = (z− 1)2 and the
Hellinger (H) distance arises when ϕ(z) = 0.50(

√
z−1)2. We refer to Peng and Dey (1995) for

a detailed study on several types of ϕ-divergence.

Let g(βββ ) = π(βββ ;yyyi) be the joint posterior distribution of βββ based only on the i-th
observation and let f (βββ ) = π(βββ ;yyy j

i ), where yyy−i= (y1, . . . ,yi−1,yi+1, . . . ,yn) is the response
vector without the i-th observation. After some algebra (see Cho et al. (2009) for the KL
divergence case), one can verify that the ϕ-divergence corresponds to

dϕ = Eβββ

�
ϕ

�
E−1

βββ
�
P−1
* (Yi = yi;βββ );yyy

�

P*(Yi = yi;βββ )

�
;yyy

�
,

where E−1
βββ [P−1

* (Yi = yi;βββ );yyy] is the conditional predictive ordinate (CPO) statistic (GEISSER;
EDDY, 1979) for the i-th observation. Here, we are also not able to compute the inner expectation
over βββ analytically and so, an MC estimator for the CPOi is given by

�CPOi =

�
1
M

M

∑
t=1

P−1
*
�

Yi = yi;βββ (t)
��−1

. (5.15)

According to Congdon (2005), the harmonic mean estimator (5.15) is stable when most of
the individual log-likelihood values exceed -10. Using the estimated CPO, one can approximate
the local influence of a particular yi on the joint posterior distribution (5.11) as

d̂ϕ =
1
M

M

∑
t=1

ϕ


 �CPOi

P*
�

Yi = yi;βββ (t)
�


 .

One can notice that, if π(βββ ;yyy−i) = π(βββ ;yyy), then there is no divergence caused by
observation yi. In practice, however, it may not be elementary to define a threshold value for the
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divergence in order to decide about the magnitude of the influence (WEISS, 1996). A measure of
calibration for the KL divergence was proposed by McCulloch (1989). The idea is based on the
typical toy binary example of tossing a coin once and observing its upper face. This experiment
can be described by P(Y = y;ρ) = ρy(1−ρ)1−y, y ∈ {0,1}, where ρ ∈ [0,1] is the probability
of success. Regardless of what success means, if the coin is unbiased, then P(Y = y;ρ) = 0.50.
Thus, the ϕ-divergence between a (possibly) biased and an unbiased coin is given by

dϕ(ρ) =
ϕ (2ρ)+ϕ [2(1−ρ)]

2
,

from which one can conclude that the divergence between two posteriors distributions can be
associated with the biasedness of a coin (PENG; DEY, 1995). By analogy, this implies that
predict unobserved responses using π(βββ ;yyy−i) instead of π(βββ ;yyy) is equivalent to describe an
unobserved event as having probability ρi, when the correct probability is 0.50. Considering
some specific choices for ϕ , in Table 90 (see Appendix C, Section C.2) we present MC estimators
that can be used to compute the local influence of each yi. Besides, we also present the expression
of dϕ(ρ) for each ϕ . For ease of notation, we assume f t

i = P(Yi = yi;βββ (t)).

The function dϕ(ρ) is symmetric about 0.50 and increases as ρ moves away from 0.50.
In addition, infρ∈(0,1) dϕ(ρ) = 0, which is attained at ρ = 0.50 since dϕ(0.50) = ϕ(1) = 0.
Therefore, a general measure of calibration based on the ϕ-divergence can be obtained by
solving

2dϕ(ρ)−ϕ(2ρ)−ϕ[2(1−ρ)] = 0.

An estimator for the calibration measure (ρϕ) associated with each ϕ-divergence type is
also presented in Table 90. Clearly, depending on the form of ϕ , such an equation may not have
a closed-form, which is the case of the J divergence. Besides, one can notice that ρi ∈ [0.50,1]
and so, for ρi ≫ 0.50, the i-th observation may be considered an influential point. For example,
if ρi > 0.80 is considered a significative bias, then yi will be classified as influential if d̂i > 0.223
(dϕ(0.80)≈ 0.223) under the KL divergence or yet if d̂i > 0.051 (dϕ(0.80)≈ 0.051) under the
H divergence.

5.3.5 Model comparison and adequacy

There are several methods for Bayesian model selection that are useful to compare
competing models. The most popular method is the Deviance Information Criterion (DIC),
which was proposed to work simultaneously as a measure of fit and complexity of the model.
The DIC criterion is defined as

DIC = Eβββ[D(βββ )]+ρD = D(βββ )+ρD ,

where D(βββ ) =−2�(βββ ;yyy) is the deviance function and ρD =D(βββ )−D(β̂ββ ) is the effective number
of model parameters, with β̂ββ given by (5.13). A negative value for ρD may suggest that the
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log-likelihood function is non-concave, the prior distribution is misspecified, or the posterior

expected value is not a good estimator for βββ . On the other hand, when ρD ≫ d, then there is an
indication of overfitting with estimate β̂ββ .

Noticeably, we are not able to compute the expectation of D(βββ ) over βββ analytically. In
this case, an MC estimator for such a measure is given by

D̂(βββ ) =− 2
M

M

∑
t=1

�
�

βββ (t);yyy
�
,

and so the DIC can be estimated by �DIC = 2D̂(βββ )−D(β̂ββ ).

The Expected Akaike (EAIC) and the Expected Bayesian (EBIC) information criteria
can also be used when comparing Bayesian models (CARLIN; LOUIS, 2001; BROOKS, 2002).
Using the approximation for the expected value of D(βββ ), these measures can be estimated by

�EAIC = D̂(βββ )+2d and �EBIC = D̂(βββ )+d log(n) .

Another widely used criterion is derived from the CPO statistic, which is based on the
cross-validation criterion to compare models. For the i-th observation, the CPO can be estimated
through Equation (5.15). A summary statistic of the estimated CPO’s is the log-marginal pseudo-
likelihood (LMPL) given by the sum of the logarithms of �CPOi’s. Regarding model comparison,
we have that the lower the values of DIC, EAIC, EBIC, and NLMPL (negative LMPL), the better
the fit.

In addition to comparing, researchers are often interested in verifying the adequacy of
the fitted models. An effective way to evaluate model adequacy is based on the use of measures
derived from the ppd. For instance, if any observation is extremely unlikely relative to the ppd,
the adequacy of the obtained fit might be questionable. A widespread discrepancy measure
between model and data was proposed by Gelman et al. (2004). In our case, we need a slightly
adapted version of such a measure, which is given by

T(yyy,βββ ) =−2
n

∑
i=1

log [P*(Yi = yi;βββ )] .

The Bayesian p-value (posterior predictive p-value), proposed by Rubin (1984), is
defined as

pB = P [T(yyyr,βββ )� T(yyy,βββ ) ;yyy] ,

where yyyr denotes the response vector that might have been observed if the conditions generating
yyy were reproduced. This predictive measure can be empirically estimated as the relative number
of times that T(yyyr, β̂ββ ) exceeds T(yyy, β̂ββ ) out of B simulations. In general, the model fit becomes
suspect if the discrepancy is of practical relevance, and the associated Bayesian p-value is close
either to 0 or 1 (GELMAN et al., 2004). A large (small) value of pB, say greater than 0.95 (lower
than 0.05), indicates model misspecification (lack-of-fit), that is, the observed behavior would be
unlikely to be seen if we replicate the response vector using the fitted model.
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5.3.6 Residual analysis

The residual analysis plays an essential role in the task of validating the results obtained
from a regression model. In general, residual metrics are responsible for indicating departures
from the underlying model assumptions by quantifying the portion of data variability that was
not explained by the fitted model. Assessing the adequacy of a regression model using residual
metrics is a common practice nowadays due to the availability of statistical packages providing
diagnostic tools for well-established models. However, deriving appropriate residuals is not
always an easy task for non-normal models that accommodate overdispersion and mixed-effects.
In this way, we will consider here a popular residual metric proposed by Dunn and Smyth (1996),
the randomized quantile residuals (RQRs), which can be straightforwardly used in our context to
assess the appropriateness of the proposed model when fitted to real data.

For obvious reasons, we focus on the definition of RQRs for discrete random variables. In
this case, the RQR associated to the i-th observation is defined as ri = Φ−1(ui), where Φ denotes
the cdf of the standard Normal distribution and ui is a Uniform random variable defined on (ai,bi],
with ai = limy↑yi F(yi) and bi = F(yi), where F(yi) is the cdf of the current model. In our case,
we may obtain an MC estimator for the RQR as r̂i = Φ−1(ui), with ui ∼ 𝒰(limy↑yi F̂*(yi), F̂*(yi)].
Here, F̂*(yi)≡ F*(yi; µ̂i, ω̂i) is an estimate for the probability of Yi � yi using cdf (5.3), where µ̂i

and ω̂i depend on the fitted model as µ̂i = log(xxx�1iβ̂ββ 1) and ω̂i = g−1
2 (xxx�2iβ̂ββ 2).

The main assumption for this metric is that r̂i ∼ 𝒩 (0,1) must hold, whichever the
variability degree of µ̂i and ω̂i. In this case, after model fitting, one has to evaluate if these
residuals are normally distributed around zero, which can be made through adherence tests and
by using graphical techniques as histograms and Half-Normal probability plots. An excellent
alternative for checking whether RQRs are consistent with the fitted model is the inclusion
of simulated envelopes in their Half-Normal plot. Thus, if a significative subset of estimated
residuals falls outside the envelope bands, then the adequacy of the fitted model must be
questioned, and further investigation on the corresponding observations are necessary. An
algorithm for obtaining simulated envelopes for a Half-Normal plot is provided by Moral, Hinde
and Demétrio (2017).

5.4 Simulation study

The empirical properties of an estimator can be accessed through Monte Carlo simu-
lations. In this way, we have performed an intensive simulation study aiming to validade the
Bayesian approach in some specific situations. The simulation process was carry out by generat-
ing 500 pseudo-random samples of sizes n = 50,100,200, and 500 of a variable Y following a
𝒵ℳ𝒫𝒮u distribution under the regression framework presented in Section 5.2. For the whole
process, it was considered a n×2 regression matrix XXX1 = (111n,XXX1,n×1) in which XXXn×1 is a vector
containing n generated values from a Uniform distribution on the unit interval. Here, we have
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fixed XXX2 = XXX1. Moreover, we have assigned different values for the vectors βββ�
1 = (β10,β11) and

βββ�
2 = (β20,β21) in order to generate both zero-inflated and zero-deflated artificial samples. The

logarithm link function was considered for g1. For g2, we have considered the link functions
(5.5)-(5.7) as a way to evaluate how these different specifications affect the estimation of βββ . Due
to the massive amount of obtained results, here we will only present some of the outputs using
the probit link function. The remaining results were made available in Appendix C (Section C.3).

Table 31 – Actual parameter values for simulation of zero-modified artificial datasets.

Case Scenario Link β10 β11 β20 β21
Range Range
µi pi

Inflation

1

Logit

1.50 3.00 −1.00 −1.00 (4.48;90.02)

(0.12;0.30)

Probit (0.02;0.18)

CLL (0.13;0.34)

2

Logit

1.50 3.00 −1.00 0.50 (4.48;90.02)

(0.30;0.38)

Probit (0.18;0.31)

CLL (0.34;0.45)

3

Logit

1.50 −1.50 −1.00 −1.00 (1.00;4.48)

(0.23;0.30)

Probit (0.04;0.18)

CLL (0.24;0.34)

4

Logit

1.50 −1.50 −1.00 0.50 (1.00;4.48)

(0.30;0.73)

Probit (0.18;0.59)

CLL (0.34;0.88)

Deflation

1

Logit

−1.00 1.00 0.50 0.50 (0.37;1.00)

(1.41;2.30)

Probit (1.62;2.56)

CLL (1.80;2.99)

2

Logit

−1.00 1.00 1.50 −1.00 (0.37;1.00)

(1.20;3.02)

Probit (1.33;3.45)

CLL (1.56;3.66)

3

Logit

−1.00 −1.50 0.50 0.50 (0.08;0.37)

(2.30;9.64)

Probit (2.56;11.09)

CLL (2.99;12.31)

4

Logit

−1.00 −1.50 1.50 −1.00 (0.08;0.37)

(3.02;8.21)

Probit (3.45;9.12)

CLL (3.66;10.65)

CLL: Complementary log-log.

Source: Elaborated by the author.

Algorithm 8 (see Appendix C, Section C.1) can be used to generate a single pseudo-
random realization from the 𝒵ℳ𝒫𝒮u distribution in the regression framework with covariate
𝒰(0,1) for µ and ω . The extension for the use of more covariates is straightforward. The process
to generate a pseudo-random sample of size n consists of running the algorithm as often as
necessary, say n* times (n* � n). The sequential-search is a black-box algorithm and works with
any computable probability vector. The main advantage of such a procedure is its simplicity.
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On the other hand, sequential-search algorithms may be slow as the while-loop may have to be
repeated very often. More details about this algorithm can be found at Hörmann, Leydold and
Derflinger (2013).

Under the 𝒵ℳ𝒫𝒮u distribution, the expected number of iterations (NI), that is, the
expected number of comparisons in the while condition, is given by

E(NI) = λ +1 =
ωµ

�
h2 (µ)+h(µ)+2

�
[h(µ)+1]3

h4 (µ)+4h3 (µ)+10h2 (µ)+7h(µ)+2
+1,

where h(µ) is given by Equation (5.1).

We have considered four scenarios for each kind of zero modification. Table 31 presents
the true parameter values that were considered in our study. For the zero-inflated (zero-deflated)
case, the samples were generated from the 𝒵ℳ𝒫𝒮u distribution by considering that pi ∈ (0,1)
(pi ∈ [1,P−1(Y > 0; µi)]) for all i. Here, the regression coefficients were chosen by taking
into account that zero-inflated (zero-deflated) samples have, naturally, proportion of zeros
greater (lower) than expected under an ordinary count distribution and therefore, the variable
Yi (i = 1, . . . ,n) was generated with mean far from zero (close to zero). Table 31 also presents
the range of parameters µi and pi in each scenario. The bounds were obtained by evaluating
the linear predictors β10 +β11x and β20 +β21x at x = 0 and x = 1 (limit values of the adopted
covariate). Scenarios 1 and 2 of the zero-inflated case were considered to illustrate the behavior
of the Bayesian estimators when (right) long-tailed count data are available.

To apply the proposed Bayesian approach to each scenario, we have considered the RwM
algorithm for MCMC sampling. A total of N = 50,000 values were generated for each parameter,
considering a burn-in period of 20% of the size of the chain. To obtain pseudo-independent
samples from the posterior distributions given in (5.12), one out every 10 generated values were
kept, resulting in chains of size M = 4,000 for each parameter. Using trace plots and Geweke’s
z-score diagnostic, the stationarity of the remaining chains was revealed. When running the
simulations, the acceptance rates were ranging between 23.40 and 32%. The posterior mean
(5.13) was considered as the Bayesian point estimator, and its performance was studied by
assessing its bias (B), its mean squared error (MSE) and its mean absolute percentage error
(MAPE). Besides, the coverage probability (CP) of the 95% highest posterior density intervals
(HPDIs) was also estimated.

Using the generated samples and letting γ = β10,β11,β20 or β21, the MC estimators for
these measures are given by

�Bγ̂ =
1

500

500

∑
j=1

�
γ̂ j− γ

�
, �MSEγ̂ =

1
500

500

∑
j=1

�
γ̂ j− γ

�2
, and �MAPEγ̂ =

1
500

500

∑
j=1

����
γ̂ j− γ

γ

���� .
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Table 32 – Empirical properties of the Bayesian estimators using zero-inflated samples.

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 1

50

β10 −0.013 0.992 1.000 49.716
β11 −1.969 9.844 1.284 81.167
β20 0.020 0.214 1.001 36.875
β21 0.191 0.754 1.025 69.121

100

β10 −0.007 0.415 1.000 32.842
β11 −0.847 3.051 1.144 42.982
β20 0.003 0.148 1.000 30.516
β21 0.063 0.564 1.004 59.161

200

β10 −0.010 0.134 1.000 18.566
β11 −0.405 1.003 1.093 24.666
β20 0.009 0.054 1.001 18.170
β21 0.010 0.266 1.000 40.134

500

β10 −0.005 0.052 1.000 12.110
β11 −0.138 0.236 1.043 12.837
β20 0.001 0.025 1.000 12.704
β21 0.004 0.096 1.000 24.369

Scenario 2

50

β10 −0.213 0.299 1.086 27.133
β11 −0.117 0.586 1.012 19.488
β20 0.052 0.180 1.008 33.672
β21 −0.026 0.497 1.001 108.882

100

β10 −0.131 0.143 1.066 19.972
β11 −0.026 0.292 1.001 14.063
β20 0.003 0.108 1.000 26.370
β21 −0.002 0.311 1.000 89.775

200

β10 −0.056 0.055 1.030 12.321
β11 −0.018 0.121 1.001 9.102
β20 −0.002 0.035 1.000 15.016
β21 0.006 0.114 1.000 54.306

500

β10 −0.030 0.024 1.020 8.184
β11 0.004 0.052 1.000 6.078
β20 0.003 0.016 1.000 10.023
β21 −0.004 0.043 1.000 32.685

Source: Elaborated by the author.
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Table 33 – Empirical properties of the Bayesian estimators using zero-deflated samples.

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 1

50

β10 0.081 0.324 1.010 45.581
β11 −0.164 0.839 1.016 74.955
β20 −0.001 0.156 1.000 62.082
β21 −0.050 0.471 1.003 109.956

100

β10 0.053 0.197 1.007 35.633
β11 −0.075 0.485 1.006 55.800
β20 −0.034 0.092 1.006 47.660
β21 0.030 0.301 1.002 86.294

200

β10 0.012 0.078 1.001 22.714
β11 −0.017 0.231 1.001 38.300
β20 −0.022 0.035 1.007 29.615
β21 0.020 0.123 1.002 55.809

500

β10 0.016 0.040 1.003 15.990
β11 −0.028 0.098 1.004 25.124
β20 0.006 0.016 1.001 19.987
β21 −0.011 0.047 1.001 35.119

Scenario 2

50

β10 0.050 0.266 1.005 41.381
β11 −0.084 0.744 1.005 67.351
β20 −0.072 0.205 1.013 24.018
β21 0.057 0.512 1.003 56.514

100

β10 0.012 0.171 1.000 32.812
β11 −0.022 0.445 1.001 52.762
β20 −0.014 0.138 1.001 19.169
β21 0.002 0.380 1.000 48.545

200

β10 0.010 0.072 1.001 21.244
β11 −0.020 0.214 1.001 37.192
β20 −0.031 0.043 1.012 11.013
β21 0.042 0.136 1.007 29.241

500

β10 0.019 0.028 1.007 13.449
β11 −0.028 0.074 1.005 21.794
β20 0.002 0.026 1.000 8.697
β21 −0.004 0.061 1.000 19.548

Source: Elaborated by the author.
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Table 34 – Coverage probabilities (%) of the HPDIs using zero-inflated samples.

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 1 Scenario 2

50

β10 2.60 94.60 2.80 1.20 93.20 5.60

β11 0.80 73.80 25.40 1.60 93.60 4.80

β20 2.40 97.40 0.20 5.20 93.80 1.00

β21 2.40 97.60 0.00 1.60 95.20 3.20

100

β10 2.00 96.20 1.80 1.20 95.40 3.40

β11 0.40 87.00 12.60 1.20 95.20 3.60

β20 4.20 94.60 1.20 3.40 95.00 1.60

β21 3.00 95.80 1.20 3.00 93.80 3.20

200

β10 4.20 92.40 3.40 1.00 95.20 3.80

β11 0.60 90.00 9.40 1.60 95.60 2.80

β20 3.20 94.80 2.00 2.00 96.40 1.60

β21 3.40 95.40 1.20 1.80 96.60 1.60

500

β10 3.40 95.20 1.40 2.80 93.60 3.60

β11 1.00 92.60 6.40 1.60 95.00 3.40

β20 2.80 95.20 2.00 2.20 96.40 1.40

β21 2.60 95.40 2.00 2.20 95.60 2.20

Source: Elaborated by the author.

Table 35 – Coverage probabilities (%) of the HPDIs using zero-deflated samples.

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 1 Scenario 2

50

β10 4.60 94.80 0.60 3.40 96.20 0.40

β11 0.80 96.80 2.40 1.60 95.80 2.60

β20 1.60 95.80 2.60 0.00 97.00 3.00

β21 1.40 96.00 2.60 1.60 97.80 0.60

100

β10 3.60 95.20 1.20 2.60 96.40 1.00

β11 0.80 96.00 3.20 1.60 96.60 1.80

β20 1.60 95.40 3.00 1.60 94.20 4.20

β21 2.80 94.40 2.80 3.40 94.60 2.00

200

β10 2.60 96.20 1.20 2.80 95.40 1.80

β11 2.20 96.00 1.80 1.60 96.20 2.20

β20 1.80 94.80 3.40 0.80 95.60 3.60

β21 1.80 95.40 2.80 3.40 95.40 1.20

500

β10 4.60 93.60 1.80 4.00 94.80 1.20

β11 2.00 94.40 3.60 1.00 96.60 2.40

β20 1.80 95.40 2.80 3.00 94.00 3.00

β21 3.20 94.60 2.20 2.60 94.20 3.20

Source: Elaborated by the author.
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The variance of γ̂ was estimated as the difference between the MSE and the square of
the bias. Moreover, the CP of the HPDIs was estimated by

�CPγ =
1

500

500

∑
j=1

δ j(γ) ,

where δ j(γ) assumes 1 if the j-th HPDI contains the true value γ and 0 otherwise. Also, we have
estimated the below noncoverage probability (BNCP) and the above noncoverage probability
(ANCP) of the HPDIs. These measures are computed analogously to CP. The BNCP and ANCP
may be useful measures to determine asymmetrical behaviors as they provide the probabilities of
finding the actual value of γ on the tails of its posterior distribution.

Figure 19 – Posterior estimates for parameter p using zero-modified samples (n = 100).
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(a) Scenario 1 (zero inflation)
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Source: Elaborated by the author.

The computed measures are presented in Tables 32 and 33 (posterior estimates) and
Tables 34 and 35 (coverage probabilities). We have noticed in the simulation study that, as
expected, the parameter estimates became more accurate with increasing sample sizes since the
estimated biases and mean squared errors have decreased considerably as n increased. Also,
the squared ratio between the mean squared error and the estimated variance approaches 1 as n

increases. Although high MAPE values were obtained for some parameters (when using small
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sample sizes), this does not compromise the overall accuracy in estimation. For example, on
Table 33 (Scenario 1), for n = 100, we have obtained a estimated MAPE value of approximately
56% for β11. Taking into account that the true value of this parameter is 1.00, we have that the
estimates for β11 were ranging mostly between 0.44 and 1.56, which do not represent such a
significant impact on the estimated mean (µ). When (right) long-tailed count data are available,
the CP of the HPDI for β11 is considerably lower than the adopted nominal level (for small
sample sizes) as its posterior distribution tends to be more asymmetric towards higher values
on the parametric space. However, we have observed that the estimated CP of the HPDIs is
converging to 95% in both zero-modified cases, and the posterior distributions became more
symmetric with increasing sample sizes.

Figure 19 depicts the Bayesian estimates obtained for parameter p using zero-inflated
and zero-deflated artificial samples with n = 100. The true values are represented by the straight
blue lines, and the 95% HPDIs are represented by the red dashed lines. The filled black dots
represent the estimated values for each generated observation. The uncertainty about parameter
p is higher under zero-deflated data when the value of x is close to zero.

Considering the predefined scenarios, we conclude that our simulation study provides
favorable indications about the suitability of the adopted Bayesian methodology to estimate the
parameters of the proposed model. We believe that in a similar procedure with a different set of
actual values, the overall behavior of the estimators should resemble the results that we have
described here. Besides, the adopted methodology would also be reliable if one or more than one
covariates (possibly of other nature) were included in the linear predictors of µi and ωi.

5.5 Chromosomal aberration data analysis

In this section, the 𝒵ℳ𝒫𝒮u regression model is considered for the analysis of a real
dataset obtained from a cytogenetic dosimetry experiment that was first presented by Heimers
et al. (2006). In this study, the response variable is the number of cytogenetic chromosomal
aberrations after the DNA molecule is treated with induced radiation. The dataset was obtained by
irradiating five blood samples from healthy donors with different doses xi (i = 1, . . . ,5) ranging
between 0.1 and 1.0 Gy (gray) with 2.1 MeV (million electron volts) neutrons in a culture time of
72h, considering partial-body exposure-densely ionizing radiation. In the following, ni cells were
examined in each irradiated sample and the number of dicentrics and centric rings aberrations yi j

( j = 1, . . . ,ni) was recorded.

The frequency distribution of the collected data is available in Table 36, along with some
descriptive statistics. From the observed dataset, there exist evidences that the response variable
is slightly overdispersed since y. = 0.131 < s2

. = 0.210 and s2
. /y. = 1.607. Also, the number of

aberrations appears to be heavily zero-inflated, as can be seen in the left-panel of Figure 20. On
the other hand, one can notice that, as the dose of ionizing radiation increases, the number of
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observed zeros decreases, but the distribution becomes more overdispersed since it naturally
increases the number of aberrations.

Table 36 – Descriptive summary of the number of dicentrics and centric rings aberrations.

xi
yi j

ni yi si s2
i /yi0 1 2 3 4 5

0.1 2130 59 9 2 0 0 2200 0.038 0.224 1.316
0.3 1088 84 19 6 3 0 1200 0.127 0.449 1.591
0.5 875 88 30 7 0 0 1000 0.169 0.493 1.438
0.7 679 88 23 8 1 1 800 0.209 0.568 1.545
1.0 480 75 27 13 5 0 600 0.313 0.732 1.712

Source: Elaborated by the author.

Figure 20 – Summary of the number of dicentrics and centric rings aberrations.
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According to Oliveira et al. (2016), when considering higher linear energy transfer
radiations, the incidence of chromosomal aberrations becomes a linear function of the dose
because the more densely ionizing nature of the radiation leads to an “one-track” distribution of
damage. Such an aspect can be seen in the right-panel of Figure 20, which highlights the linear
behavior between the average number of aberrations and the doses. In this way, our assumption
is that Yi j|xi ∼ 𝒵ℳ𝒫𝒮u(µi j,ωi j), where parameters µi j and ωi j are specified as linear dose
models, that is,

log
�
µi j
�
= β10 +β11xi and g2

�
ωi j
�
= β20 +β21xi.

To fit the 𝒵ℳ𝒫𝒮u regression model with dose as the only covariate, we have adopted
the same procedure used in the previous section. The link function (5.6) was chosen to relate ωi j

with the linear predictor β20 +β21xi and so we have the probit hurdle regression model. In this
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Figure 21 – Trace plots and marginal posterior distributions of the 𝒵ℳ𝒫𝒮u model parameters.
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framework, the coefficient β11 represents the effect of the dose of ionizing radiation on the
expected count µi when Yi j > 0, and β21 indicates the effect of the dose on the probability of
aberrations to occur. We have considered the RwM for MCMC sampling, generating a chain of
size N = 50,000 for each parameter whereby the first 10,000 values were discarded as burn-in.
The stationarity of the chains was revealed using the Geweke z-score diagnostic of convergence.
To obtain the pseudo-independent samples from the posterior distributions given in (5.12), we
have considered one value out of every 10 generated ones, resulting in chains of size M = 4,000
for each parameter.

Table 37 presents the posterior parameter estimates and 95% HPDIs from 𝒵ℳ𝒫𝒮u

fitted model. When obtaining the MCMC samples, the acceptance rate in the RwM algorithm was
approximately 32%. Besides, we have computed the number of effectively pseudo-independent
draws, that is, the Effective Sample Size (ESS) for each parameter. Figures 21 depicts the history
of the chains (trace plots) and the marginal posterior distributions of the regression coefficients.
The normality assumption of the generated chains is quite reasonable, even in the presence of
slight tails on the estimated densities. Also, there exists evidence of symmetry since the posterior

means and medians are very close to each other. For each parameter, the ESS was estimated at
approximately half of M, which can be considered an indication of good mixing of the generated
chains, without computational waste.

Table 37 – Posterior parameter estimates and 95% HPDIs from 𝒵ℳ𝒫𝒮u fitted model.

Parameter Mean Median Std. Dev. ESS
95% HPDI
Lower Upper

β10 −1.481 −1.479 0.192 1874.876 −1.868 −1.119
β11 0.935 0.937 0.279 1912.372 0.411 1.497
β20 −1.790 −1.790 0.044 1834.592 −1.873 −1.706
β21 1.062 1.062 0.074 1910.648 0.924 1.211

Source: Elaborated by the author.

A sensitivity analysis to verify the existence of influential points is presented in Figure 22.
We have estimated all divergence measures presented in Table 90 but, since the obtained results
led to the same conclusions, here we are only reporting the KL and H divergences and their
calibration for each observation. Even being very conservative by considering an observation
whose distance has a calibration exceeding 0.65 as an influential point, we do not have found
evidence that any observation has influenced the estimation of any coefficient of the 𝒵ℳ𝒫𝒮u

regression model significantly.

For comparison purposes, identical Bayesian procedures were adopted to fit the 𝒫 ,
the Negative Binomial (𝒩ℬ), the 𝒫𝒮u, the 𝒵ℳ𝒫 and the zero-modified Negative Binomial
(𝒵ℳ𝒩ℬ) regression models. To estimate the fixed dispersion parameter (φ) of 𝒩ℬ and
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𝒵ℳ𝒩ℬ models, we have considered a noninformative Inverse-Gamma prior distribution with
hyperparameters a = b = 1.0. For each fitted model, we have estimated the measures previously
discussed in Subsection 5.3.5. The model comparison procedure is summarized in Table 38. One
can notice that the zero-modified models have performed considerably better with 𝒵ℳ𝒫𝒮u

outperforming all. These results are highlighting that the proposed model is highly competitive
with well-established models in the literature. This feature can be considered one of the most
relevant achievements of the 𝒵ℳ𝒫𝒮u model since it has to deal with the positive observations
using fewer parameters than, for example, the 𝒵ℳ𝒩ℬ model.

Figure 22 – Sensitivity analysis for diagnostic of influential points.
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Source: Elaborated by the author.

In Table 38, we have also reported the Bayesian p-values as a way to evaluate the
adequacy of the fitted models. As expected, the 𝒫 model is unsuitable to describe the considered
dataset, and the fit provided by the 𝒩ℬ regression model is also highly questionable. For the
zero-modified models, there is no indication of overall lack-of-fit, since the posterior values of
pB were estimated close to 0.50. Figure 23 depicts additional evidence based on the RQRs for
validating the fitted 𝒵ℳ𝒫𝒮u regression model. This residual metric was computed as discussed
in Subsection 5.3.6 using Equation (5.3). One can notice that the normality assumption of the
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residuals is easily verified by the behavior of its frequency distribution (left-panel). Also, the
Half-Normal probability plot indicates that the fit of the 𝒵ℳ𝒫𝒮u model was very satisfactory
since all estimated residuals are lying within the simulated envelope (right-panel).

Table 38 – Comparison criteria and adequacy measures for the fitted models.

Model DIC EAIC EBIC NLMPL pB

𝒫 4650.631 4652.624 4665.955 2325.750 1.000
𝒩ℬ 4340.938 4343.915 4363.912 2170.321 0.936
𝒫𝒮u 4436.313 4438.312 4451.643 2218.355 0.578
𝒵ℳ𝒫 4323.300 4327.164 4353.826 2161.734 0.516
𝒵ℳ𝒩ℬ 4321.668 4326.960 4360.288 2160.530 0.598
𝒵ℳ𝒫𝒮u 4320.539 4324.549 4351.212 2160.138 0.554

Source: Elaborated by the author.

Figure 23 – Frequency distribution and Half-Normal plot with simulated envelope for the RQRs.
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From the results displayed in Table 37, one can make some conclusions. Firstly, we
have observed that the HPDIs of parameters β11 and β21 do not contain the value zero, which
constitutes the dose of ionizing radiation as a relevant covariate to describe the average number of
chromosomal aberrations as well the probability of not observing at least one aberration (p0). For
example, the expected number of dicentrics and centric rings in a cell that was exposed to 1.0 Gy
is 0.363, and the probability of such aberrations not to occur is p̂0 = Φ(1.790−0.319) = 0.929.
Therefore, based on the posterior estimates, the components of the fitted 𝒵ℳ𝒫𝒮u model can
be expressed by

µ̂i j = exp{−1.481+0.935xi} and ω̂i j = Φ(−1.790+1.062xi) ,

where xi is the dose of ionizing radiation.
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Figure 24 – Posterior estimates of parameters p0 and p.
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Figure 24 present the Bayesian estimates, by dose, for the probability of not observing
at least one aberration (left-panel) and for parameter p (right-panel). The 95% HPDIs are
represented by the red dashed lines. Noticeably, our inferences about parameter p are confirming
the initial assumption that the analyzed sample has an excessive number of zero-valued dicentrics
and centric rings aberrations.

Table 39 presents a general posterior summary of the models that were fitted to the
chromosomal aberration data. Here, parameter λ as estimated as n−1 ∑5

i=1 ∑ni
j=1 λ̂i j and ς2 was

estimated analogously. One can notice that the expected number of zeros (n̂0) obtained by the 𝒫 ,
the 𝒩ℬ and the 𝒫𝒮u models are slightly lower than the observed n0 while those provided by the
zero-modified models are very close (or exactly equal) to 5252. Through these measures, one can
better understand how the fitted models are adhering to the data since the nature of the observed
counts should be well described regarding its overdispersion level as well as the frequency and
the average number of nonzero observations.

Figure 25 – Posterior expected frequencies and dose-response curve fitted by the zero-modified models.
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The goodness-of-fit of the fitted models can be evaluated by the χ2 statistic, which
is obtained from the observed and expected frequencies. To compute such measure, we have
grouped cells with frequencies lower or equal than 5, resulting in 4 df. The obtained statistics
are also presented in Table 39. Figure 25 depict the positive expected frequencies (left-panel)
and the dose-response curves (right-panel) that were estimated using the zero-modified fitted
models. From the obtained results, one can conclude that despite the reasonable fit provided by
the 𝒵ℳ𝒩ℬ regression model, the proposed model have adhered better on the chromosomal
aberration data and has proved to be an excellent alternative to overlaps all the variability of the
response variable in terms of the dose of ionizing radiation.

Table 39 – Posterior parameter estimates and goodness-of-fit evaluation.

Model Parameter λ̂ ς̂2 n̂0 χ2 p-value

𝒫 β̂10 =−2.97
0.131 0.131 5086 2343.773 < 0.001

β̂11 = 1.95

𝒩ℬ
β̂10 =−3.02

0.133 0.232 5202 20.050 < 0.001β̂11 = 2.07

φ̂ = 0.28

𝒫𝒮u
β̂10 =−2.99

0.132 0.157 5126 266.458 < 0.001
β̂11 = 1.98

𝒵ℳ𝒫

β̂10 =−0.86

0.132 0.199 5251 16.456 0.002
β̂11 = 0.82

β̂20 =−1.79

β̂21 = 1.06

𝒵ℳ𝒩ℬ

β̂10 =−1.33

0.131 0.206 5251 7.255 0.123
β̂11 = 0.88

β̂20 =−1.79

β̂21 = 1.07

φ̂ = 1.51

𝒵ℳ𝒫𝒮u
See

0.132 0.210 5252 5.298 0.258
Table 37

Source: Elaborated by the author.

5.6 Concluding remarks
In this chapter, we have introduced the 𝒵ℳ𝒫𝒮u regression model as an alternative for

the analysis of overdispersed datasets exhibiting zero modification in the presence of covariates.
By considering the hurdle version of the 𝒫𝒮u distribution, it was possible to derive separable
likelihood functions for the parameter vectors, which led us to less complicated Bayesian proce-
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dures, based on the g-prior method. Intensive Monte Carlo simulation studies were performed,
and the obtained results have allowed us to assess the empirical properties of the Bayesian
estimators and then conclude about the suitability of the adopted methodology to the predefined
scenarios.

The proposed model was considered for the analysis of a real dataset on the number of
cytogenetic chromosomal aberrations, considering the dose of ionizing radiation as the covariate
for both model components. The response variable was identified as overdispersed and heavily
zero-inflated, which justified the use of the 𝒵ℳ𝒫𝒮u regression model. A sensitivity analysis
was conducted by using some standard divergence measures, and no locally influent observations
were found. The adequacy of the fitted models was evaluated by using the Bayesian p-value
and the RQRs. The main conclusion one can make from the fitted models is that the dose
is statistically relevant to describe either the probability of occurrence as well as the average
incidence of aberrations. Besides, when looking at the χ2 statistic and the posterior-based
comparison criteria, we have noticed that the proposed model has presented a better fit when
compared to its competitors and therefore, it can be considered an excellent addition to the set of
models that can be used for the analysis of overdispersed and zero-modified count data.
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CHAPTER

6
THE ZERO-MODIFIED POISSON-LINDLEY

REGRESSION MODEL WITH
MIXED-EFFECTS

6.1 Introduction

Count datasets are traditionally analyzed using the ordinary Poisson (𝒫) distribution.
However, such a model has its applicability limited as it can be somewhat restrictive to handle
specific data structures. In this case, it arises the need for obtaining alternative models that
accommodate, for example, (i) zero-modification (inflation or deflation at the frequency of
zeros), (ii) overdispersion, and (iii) individual heterogeneity arising from clustering or repeated
(correlated) measurements made on the same subject. Cases (i)-(ii) and (ii)-(iii) are often treated
together in the statistical literature with several practical applications, but models supporting
all at once are less common. Hence, the primary goal of this chapter was to jointly address
these issues by deriving a mixed-effects regression model based on the hurdle version of the
Poisson-Lindley (𝒫ℒ) distribution. In this framework, the zero-modification is incorporated by
considering that a binary probability model determines which outcomes are zero-valued, and a
zero-truncated process is responsible for generating positive observations. Approximate posterior

inferences for the model parameters were obtained from a fully Bayesian approach based on
the Adaptive Metropolis algorithm. Intensive Monte Carlo simulation studies were performed
as a way to assess the empirical properties of the Bayesian estimators, and the obtained results
have been discussed. The proposed model was considered for the analysis of a real dataset, and
its competitiveness regarding some well-established mixed-effects models for count data was
evaluated. A sensitivity analysis to detect observations that may impact parameter estimates
was performed based on some standard divergence measures. The Bayesian p-value and the
randomized quantile residuals were considered for the task of model validation.
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In this chapter, we have extended the works of Sankaran (1970) and Bertoli et al. (2019b)
in the sense of developing a new mixed-effects regression model for zero-modified count
data based on the 𝒫ℒ distribution. The zero-modified Poisson-Lindley (𝒵ℳ𝒫ℒ, for short)
distribution was firstly introduced by Bertoli et al. (2019a). A discrete random variable Y defined
on 𝒴0 = {0,1, . . .} is said to follow a 𝒵ℳ𝒫ℒ distribution if its probability mass function (pmf)
can be written as

P*(Y = y; µ, p) = (1− p)δy + pP(Y = y; µ) , y ∈ 𝒴0,

where p is the zero modification parameter and δy is an indicator function, so that δy = 1 if y = 0
and δy = 0 otherwise. Also, µ ∈R+ is the expected value of the ordinary 𝒫ℒ distribution, whose
reparameterized pmf is given by

P(Y = y; µ) =
(2µ)y [h(µ)−µ +1]2 [h(µ)+(2y+3)µ +1]

[h(µ)+µ +1]y+3 , y ∈ 𝒴0,

where h(µ) =
�

(µ−1)2 +8µ and µ = (θ + 2)[θ(θ + 1)]−1 for θ ∈ R+ (shape parameter).
This parameterization is particularly useful since our primary goal is to derive a regression model,
in which the influence of fixed and random-effects can be evaluated directly over the mean of a
zero-modified response variable. Unlike zero-inflated models, here parameter p is defined on the
interval [0,P−1(Y > 0; µ)], and so the 𝒵ℳ𝒫ℒ model is not a mixture distribution since p may
assume values greater than 1. The expected value and variance of Y are given, respectively, by
E(Y ) = λ= µ p and V(Y ) = ς2 = p[σ2 +(1− p)µ2], where σ2 ∈ R+ is the variance of the 𝒫ℒ
distribution (see Bertoli et al. (2019a), Table 4).

The hurdle version of the 𝒫ℒ distribution can be obtained by taking ω = pP(Y > 0; µ),
that is,

P*(Y = y; µ,ω) = (1−ω)δy +ω P*(Y = y; µ) , y ∈ 𝒴0, (6.1)

for ω ∈ [0,1] and where P*(Y = y; µ) is the pmf of the zero-truncated Poisson-Lindley (𝒵𝒯 𝒫ℒ)
distribution (GHITANY; AL-MUTAIRI; NADARAJAH, 2008). Noticeably, Equation (6.1) is
only a reparameterization of the standard 𝒵ℳ𝒫ℒ, and so one can conclude that these models
are interchangeable. For ease of notation and understanding, the acronym 𝒵ℳ𝒫ℒ will be used
when we refer to the hurdle version of the 𝒫ℒ distribution.

The corresponding cumulative distribution function (cdf) of Y is given by

F*(y; µ,ω) = 1−ω
�

h2(µ)+2(µy+2µ +1)h(µ)− (2y+1)µ2 +2(y+2)µ +1
(2µ)−y[h(µ)+µ +1]y[h2(µ)+2(2µ +1)h(µ)−µ (µ−4)+1]

�
, y ∈ 𝒴0. (6.2)

Comparatively, the proposed model can be considered more versatile than the 𝒵ℳ𝒫ℒ
model with fixed-effects, since it is designed to accommodate hierarchical data due to repeated
measurements on the same subject. Moreover, it can also be considered more flexible than zero-
inflated mixed models as it allows for zero deflation within clusters, which is a structure often
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encountered when handling count data. Besides, the proposed model incorporates overdispersion
that does not come only from inflation/deflation of zeros, as one of its parts is dedicated
to describing the behavior of the positive values. In the regression framework that we have
developed, discrepant points (outliers) can be identified, and, through a careful sensitivity
analysis, it is possible to quantify the influence of such observations. However, since the 𝒫ℒ
distribution accounts for different levels of overdispersion, its zero-modified version is naturally
a robust alternative as it may accommodate discrepant points that would significantly impact the
parameter estimates of the zero-modified Poisson (𝒵ℳ𝒫) model.

This chapter is organized as follows. In Section 6.2, we present the mixed-effects re-
gression model based on the hurdle version of the 𝒫ℒ distribution. In Section 6.3, we describe
all the Bayesian methodologies and associated numerical procedures that were considered for
inferential purposes. In Section 6.4, we discuss the results of an intensive simulation study and
in Section 6.5, a real data application using the proposed model is exhibited. General comments
and concluding remarks are addressed in Section 6.6.

6.2 The ZMPL mixed-effects regression model
Standard mixed-effects models incorporate two vector-valued random variables (YYY ,bbb)

and is fully described by the joint distribution of these vectors. The basic assumption in this
framework is that the vector yyy = (yyy1, . . . ,yyyn) of correlated responses is subject to unobserved
random-effects bbb = (bbb1, . . . ,bbbn), whose elements can be interpreted as latent vectors encompass-
ing characteristics that cannot be measured or pre-specified for each individual, regardless the
process of data collection.

Suppose that a random experiment (designed or observational) is conducted with n

subjects (clusters) being observed mi times (i = 1, . . . ,n). The primary response for such an
experiment is described by a discrete random variable Yi j denoting the j-th outcome ( j =

1, . . . ,mi) for the i-th subject. The full response vector for each i is given by YYY i = (Yi1, . . . ,Yimi),
and we assume that the observed vector yyyi is obtained conditionally to fixed and random-effects
(designed to account for within-subject correlation), here denoted respectively by βββ = (βββ 1,βββ 2)

and bbbi = (bbb1i,bbb2i). Assuming that Yi j|βββ ,bbbi∼𝒵ℳ𝒫ℒ(µi j,ωi j) holds for all pairs (i, j), a general
mixed-effects regression model for count data based on the 𝒵ℳ𝒫ℒ distribution can be derived
by rewriting Equation (6.1) as

P*
�
Yi j = yi j;βββ ,bbbi

�
=
�
1−ωi j

�
δyi j +ωi jP*�Yi j = yi j; µi j

�
, yi j ∈ 𝒴0, (6.3)

where µi j ≡ µ(xxx1i j,βββ 1,zzz1i j,bbb1i) and ωi j ≡ω(xxx2i j,βββ 2,zzz2i j,bbb2i) are parameterized nonlinear func-
tions. In this framework, we have βββ�

k =(βk0, . . . ,βkqk) (k= 1,2) related to xxx�ki j =(1,x1
ki j, . . . ,x

qk
ki j),

where xxxki j is a vector of covariates that may include, for example, dummy variables, cross-level
interactions and polynomials. The quantity q1 (q2) denotes the number of covariates considered
on the systematic component of a linear predictor for parameter µi j (ωi j). The bbbki = (b1

ki, . . . ,b
rk
ki)
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is a rk-dimensional vector containing the coefficients of an individual residual component after
the fixed-effects have been accounted for, and zzz�ki j = (1,z1

ki j, . . . ,z
rk−1
ki j ) is the vector of variables

associated to the i-th subject-specific random-effect.

While the order of bbbki can be arbitrarily specified, it typically includes only an intercept
when the responses are taken from a collection of clustered individuals, and an intercept and
slope when the responses are taken sequentially over time for each subject. However, in many
practical situations, the most straightforward approach of using a scalar random-effect (random-
intercept) as an attempt to overlaps all the individual heterogeneity often provides accurate results
combined with model parsimony. In this sense, the forthcoming methodological developments
are focused in this particular case, that is, we will consider the univariate setup (bbbki = bki and
zzzki j = 1) henceforth.

The full regression matrices of model (6.3) can be written as

XXX1 =




111m1 : XXX1,m1×q1
...

111mn : XXX1,mn×q1


 and XXX2 =




111m1 : XXX2,m1×q2
...

111mn : XXX2,mn×q2


 ,

where 111mi is the intercept column and the dense submatrix XXXk,mi×qk is defined in such a way
that its i-th row contains the vector (x1

ki j, . . . ,x
qk
ki j). The dimension of XXXk is m× (qk +1), where

m = ∑n
i=1 mi.

Now, we have to specify two monotonic, invertible and twice differentiable link functions,
say g1 and g2, in which µi j = g−1

1 (xxx�1i jβββ 1+b1i) and ωi j = g−1
2 (xxx�2i jβββ 2+b2i) are well defined on

R+ and (0,1), respectively. For this purpose, one may choose any suitable mappings g1 and g2

such that g−1
1 : R→R+ and g−1

2 : R→ (0,1). The logarithm link function, log(µi j) = xxx�1i jβββ 1+b1i,
is the natural choice for g1. For g2, the popular choice is the logit link function,

logit
�
ωi j
�
= log

�
ωi j

1−ωi j

�
= xxx�2i jβββ 2 +b2i. (6.4)

The probit link function,

Φ−1 �ωi j
�
= xxx�2i jβββ 2 +b2i, (6.5)

is also appropriate for the requested purpose. Another possible choice for g2 is

log
�
− log

�
1−ωi j

��
= xxx�2i jβββ 2 +b2i, (6.6)

which corresponds to the complementary log-log link function. The inclusion of a random-
intercept in the linear predictor of ωi is a way to verify if the heterogeneity between subjects
affects the probability of occurrence more than the average number of positive counts.

One can notice that the link functions (6.4)-(6.6) exclude the limit cases pi j = 0 and
pi j = P−1(Y > 0; µi j), since it is not possible to obtain either ω̂i = 0 or ω̂i = 1. The link function
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(6.6) is usually preferable when the occurrence probability of a specific outcome is considerably
high/low as it accommodates asymmetric behaviors on the unit interval, which is not the case
for link functions (6.4) and (6.5). Further, a more sophisticated approach considering power and
reversal power link functions was proposed by Bazán et al. (2017), and can also be used to add
even more flexibility when modeling parameter ωi j.

We may refer to the proposed model as a “semi-compatible” regression model. The
term “compatible” alludes for “zero-altered”, which defines the class of models proposed by
Heilbron (1994) and extended by Min and Agresti (2005) as to accommodate repeated measures.
Zero-altered models are similar to zero-modified ones, but the compatibility arises from the fact
that the linear predictors of µi j and ωi j are the same. In our case, specifically, it is worthwhile
to mention that identifiability problems may occur if one considers a mixed-effects regression
model derived directly from (6.1), with parameters µ and p sharing covariates, even if βββ 2 ̸= βββ 1.
Therefore, the adopted structure allows for more flexibility and robustness as µ and ω may
share covariates not necessarily with βββ 2 = βββ 1, and so the only requirement for ensuring model
identifiability is the linear independence between covariates within linear predictors.

Unlike traditional approaches, the proposed model can be used for the analysis of zero-
inflated and zero-deflated datasets. In this case, given a set of covariates, the probability of a
zero-valued count being observed in the j-th outcome for i-th subject is given by 1−g−1

2 (xxx�2i jβββ 2+

b2i). Under the logistic regression model (6.4), β2l (l = 1, . . . ,q2) represents the direct change
(adjusted by a prediction of b2i) in the log-odds of Yi j being positive per 1-unit change in xl

2i j,
holding the other covariates at fixed values. On the other hand, the same not apply if one adopts
the link function (6.6) since eβ2l is not the odds ratio for the l-th covariate effect and so β2l do
not have a straightforward interpretation in terms of contribution to log-odds. Likewise, it is not
possible to interpret the coefficients of the probit model (6.5) directly, but one can evaluate the
marginal effect of β2l by analyzing how much the conditional probability of Yi j being positive
is affected when the value of xl

2i j is changed. The exact interpretation of β1l (l = 1, . . . ,q1)

is not direct in terms of the mean of the hurdle model since the positive counts are modeled
by a zero-truncated distribution (𝒵𝒯 𝒫ℒ), and therefore, β1l represents the overall effect of
xl

1i j (adjusted by a prediction of b1i) on the expected value µi j when yi j > 0, holding the other
covariates at fixed values.

We complete model specification by choosing an appropriate distribution for the vector
of individual random-effects, bbbi = (b1i,b2i)

�
. The bivariate Normal distribution is the natural

choice in this case, but the bivariate t-Student can be considered as well. Other models as the
penalized Gaussian mixture (KOMÁREK; LESAFFRE, 2008), the Skew-Normal (HOSSEINI;
EIDSVIK; MOHAMMADZADEH, 2011) and the Generalized Log-Gamma (FABIO; PAULA;
CASTRO, 2012) can be used to accommodate different behaviors of random-effects. Accord-
ing to McCulloch and Neuhaus (2011), one may obtain good performance in predicting the
random-effects by assuming that they are Gaussian, even when comparing this choice with other
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distributions. Therefore, here we assume that bbbi ∼ 𝒩2(000,ΣΣΣbbb), where ΣΣΣbbb is a 2× 2 symmetric
unstructured covariance matrix given by

ΣΣΣbbb =

�
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

�
,

where σk ∈R+ is the standard deviation of bki and ρ ∈ [−1,1] is the correlation between b1i and
b2i. We may represent the bivariate distribution of bbbi using a product-Normal parameterization
(COOPER et al., 2007), that is,

b1i ∼𝒩
�
0,σ2

1
�

and b2i|b1i ∼𝒩
�
ρσ2σ−1

1 b1i,(1−ρ2)σ2
2
�
. (6.7)

It can be noticed that, under this formulation, the elements of ΣΣΣbbb appear exclusively in
the (marginal) distribution of bbbi. However, to increase computational stability and efficiency
when estimating mixed-effects models, it is highly advisable to represent the random-effects
using a spherical distribution (BATES, 2011). Therefore, assuming uuui = (u1i,u2i)

�∼𝒩2(000,ℐ2),
the random-intercepts of model (6.3) will be expressed by b1i = u1iσ1 and b2i = σ2(u1iρ +

u2i
�

1−ρ2) from now on.

By definition, ΣΣΣbbb is positive semidefinite, but it becomes natural to restrict the covariance
matrix of bbbi to be strictly positive-definite since degenerate distributions do not have practical
appeal to describe the behavior of random-effects. To ensure that the elements of the main
diagonal of ΣΣΣbbb are strictly positive, we consider the reparameterization σk = eξk , ξk ∈ R, which
also allows for unrestricted estimation. Likewise, for the correlation between the random-
intercepts, we adopt the parameterization

ρ =
1− e−υ

1+ e−υ ,

for υ ∈ R.

Let θθθ = (βββ 1,βββ 2,ξ1,ξ2,υ) be the full vector of model parameters. Hence, the proposed
model has d = dim(θθθ) = q1 + q2 + 5 unknown quantities to be estimated. A fully Bayesian
approach will be considered for parameter estimation and associated inference. The next section
is dedicated to present details of such an approach.

6.2.1 Testing for zero modification

When analyzing count data, one may obtain empirical evidence of zero modification
by computing the expected frequency at zero under any ordinary discrete distribution, and then
checking whether this frequency is notably lower/higher than the observed one. Nonetheless,
whenever formal evidence is required, one may resort to zero-altered models. Although some-
what restrictive for practical applications, such a class of models can be used to test for zero
modification. In our context, if we decide to evaluate if data provide enough evidence favoring
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zero modification regarding the 𝒫 distribution, we may consider the zero-altered Poisson (𝒵𝒜𝒫)
model with random-intercept (NEELON; O’MALLEY; NORMAND, 2010), which is defined by
the linear predictors

log
�
µi j
�
= xxx�i jβββ +bi and log

�
− log

�
1−ωi j

��
= ν + xxx�i jβββ +bi, (6.8)

where bi ∼𝒩 (0,σ2
b ) is a shared random-intercept between the two components. In the 𝒵𝒜𝒫

model, the complementary log-log link function for ωi j arises naturally as the induced transfor-
mation from P(Yi j > 0; µi j) = 1− e−µi j to the linear predictor xxx�i jβββ +bi (see Heilbron (1994) for
the uncorrelated responses case). Therefore, testing for zero modification comes down to testing
ν = 0. If ν < 0 (ν > 0), then there is evidence of zero inflation (zero deflation). Conversely, if
zero is a plausible value for ν , then there is no evidence supporting zero modification, and so a
standard generalized linear model (GLM) suffices for modeling the available data.

Analogously, we may derive a zero-altered version of the 𝒫ℒ (𝒵𝒜𝒫ℒ) distribution by
considering the same structure of model (6.8) but, instead of using the complementary log-log

link function for ωi j, we should induce a transformation g(ωi j) from P(Yi j > 0; µi j) to the linear
predictor xxx�i jβββ +bi, where

P(Yi j > 0; µi j) = 1−
�
h(µi j)−µi j +1

�2 �h(µi j)+3µi j +1
�

�
h(µi j)+µi j +1

�3 .

Unfortunately, the desired transformation does not have a closed-form as we are not able
to isolate log

�
µi j
�

in the expression of P(Yi j > 0; µi j). In this case, it is not possible to obtain
a known link function for parameter ωi j. However, despite such an inconvenience, the 𝒵𝒜𝒫ℒ
model is well-defined this way and can be used to testing for zero modification regarding the
𝒫ℒ distribution, likewise described for the 𝒵𝒜𝒫 model.

6.3 Approximate Bayesian inference and prediction
In this section, we address the problem of estimating and making inferences from the pro-

posed model under a fully Bayesian perspective. Firstly, we derive the model likelihood function
and then, a suitable set of prior distributions is considered in order to obtain a computationally
tractable posterior density for the vector θθθ . Beyond the primary distributional assumption that
Yi j|θθθ ,uuui ≡Yi j|βββ ,bbbi ∼𝒵ℳ𝒫ℒ(µi j,ωi j) holds for all pairs (i, j), here we also assume that (i) the
outcomes for the i-th subject are conditionally independent given the vector of random-intercepts,
and (ii) the outcomes for different subjects are unconditionally independent.

These assumptions are essential for the hierarchical formulation of the proposed model.
Particularly, by (i), one can obtain the conditional distribution of the i-th subject response vector
YYY i as

P*(YYY i = yyyi;θθθ ,uuui) =
mi

∏
j=1

P*
�
Yi j = yi j;θθθ ,uuui

�
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=
mi

∏
j=1

ωi j

�
1−ωi j

ωi j

�δyi j
�

P
�
Yi j = yi j; µi j

�

P
�
Yi j > 0; µi j

�
�1−δyi j

,

where µi j = g−1
1 (xxx�1i jβββ 1 +u1ieξ1) and

ωi j = g−1
2

�
xxx�2i jβββ 2 +u1ieξ2

�
1− e−υ��1+ e−υ�−1

+u2ieξ2

�
1− (1− e−υ)2(1+ e−υ)−2

�
.

For a fixed value of vector uuui, the conditional distribution of YYY i = yyyi can be recognized
as the likelihood function of θθθ , considering that the available data are provided only by the i-th
subject. In this case, the subject-specific log-likelihood function of θθθ is given by

�i (θθθ ;yyyi,uuui) =
mi

∑
j=1

�
1−δyi j

��
log

�
P
�
Yi j = yi j; µi j

��
− log

�
P
�
Yi j > 0; µi j

���
+

mi

∑
j=1

�
log

�
ωi j
�
−δyi j log

�
ωi j

1−ωi j

��

= �1i (βββ 1,ξ1;yyyi,u1i)+ �2i (βββ 2,ξ2,υ ;yyyi,uuui) .

In this work, we will consider a log-linear model for parameter µi j, that is, log(µi j) =

xxx�1i jβββ 1 + u1ieξ1 . From the individual log-likelihood function, one can easily notice that �1i

depends only on the positive-valued elements of yyyi and therefore, it can be expressed as

�1i (βββ 1,ξ1;yyyi,u1i) = ∑
j∈𝒥1

log
�
h
�

exp
�

xxx�1i jβββ 1 +u1ieξ1
��

+ yi j +2
�
+

2 ∑
j∈𝒥1

log
�
h
�

exp
�

xxx�1i jβββ 1 +u1ieξ1
���

−

∑
j∈𝒥1

log
�
h2
�

exp
�

xxx�1i jβββ 1 +u1ieξ1
��

+

3h
�

exp
�

xxx�1i jβββ 1 +u1ieξ1
��

+1
�
−

∑
j∈𝒥1

yi j log
�
h
�

exp
�

xxx�1i jβββ 1 +u1ieξ1
��

+1
�
,

where 𝒥1 = { j : yi j > 0,yi j ∈ yyyi} is the finite set of indexes regarding the positive observations
of yyyi. Adopting this setup is equivalent to assuming that each positive element of yyyi comes from a
𝒵𝒯 𝒫ℒ distribution. Here, we are extending the fact that estimating the 𝒫 parameter θ using the
zero-truncated Poisson (𝒵𝒯 𝒫) distribution results in a loss of efficiency in the inference if there
is no zero modification (DIETZ; BÖHNING, 2000; CONCEIÇÃO; ANDRADE; LOUZADA,
2014).

The choice of g2 is left open and so �2i will be generically expressed by

�2i (βββ 2,ξ2,υ ;yyyi,uuui) =
mi

∑
j=1

log
�
ωi j
�
− ∑

j∈𝒥2

log
�
ωi j
�
+ ∑

j∈𝒥2

log
�
1−ωi j

�
,



6.3. Approximate Bayesian inference and prediction 155

where 𝒥2 = { j : yi j = 0,yi j ∈ yyyi} is a finite set of indexes regarding the zero-valued observations
of yyyi. Due to orthogonality between the vectors of fixed-effects, if we consider ξ1, ξ2 and υ
as nuisance parameters, then it is possible to assess the contribution of each subject to the
log-likelihood functions of βββ 1 and βββ 2.

Now, by integrating out the 2-dimensional spherical random variable uuui, one can obtain
the marginal distribution of YYY i as

P*(YYY i = yyyi;θθθ) =
�

R2
exp{�i (θθθ ;yyyi,uuui)} f (uuui)duuui,

which clearly does not have a closed-form, whichever the distribution adopted for uuui. Since our
assumption is that uuui ∼𝒩2(000,ℐ2), it follows from (ii) that the full likelihood function of θθθ can
be written as

ℒ(θθθ ;yyy) =
1

(2π)n

n

∏
i=1

�

R2
exp{�i (θθθ ;yyyi,uuui)}exp

�
−1

2
uuu�i uuui

�
duuui

=
1

(2π)n

n

∏
i=1

�

R2
exp

�
−
�

1
2

uuu�i uuui− �i (θθθ ;yyyi,uuui)

��
duuui

=
1

(2π)n

n

∏
i=1

�

R2
exp{−ri (uuui;yyyi,θθθ)}duuui,

and so the corresponding log-likelihood function has the form

�(θθθ ;yyy) =−n log(2π)+
n

∑
i=1

log
��

R2
exp{−ri (uuui;yyyi,θθθ)}duuui

�
. (6.9)

A particular case arises if one considers that the linear predictors of µi j and ωi j share the
same random-intercept, that is, b1i = b2i = bi. In this framework, if we specify bi = uiσb, with
ui ∼𝒩 (0,1), then the covariance matrix ΣΣΣbbb reduces to the scalar σb, and so the log-likelihood
function of vector (βββ ,σb) can be expressed as

�(βββ ,σb;yyy) = −n
2

log(2π)+
n

∑
i=1

log
��

R
exp{�i (βββ ,σb;yyyi,ui)}exp

�
−1

2
u2

i

�
dui

�

= −n
2

log(2π)+
n

∑
i=1

log
��

R
exp{−ri (ui;yyyi,βββ ,σb)}dui

�
,

where

�i (θθθ ;yyyi,uuui) = ∑
j∈𝒥1

log
�
P
�

Yi j = yi j; exp
�

xxx�1i jβββ 1 +uiσb

���
−

∑
j∈𝒥1

log
�
P
�

Yi j > 0;exp
�

xxx�1i jβββ 1 +uiσb

���
+

mi

∑
j=1

log
�
g−1

2

�
xxx�2i jβββ 2 +uiσb

��
− ∑

j∈𝒥2

log




g−1
2

�
xxx�2i jβββ 2 +uiσb

�

1−g−1
2

�
xxx�2i jβββ 2 +uiσb

�


 .
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Since the integral over the unbounded convex set R2 in Equation (6.9) is analytically
intractable, successive numerical approximations are required to compute the full log-likelihood
function of the proposed model. For each subject, let this bidimensional integral be denoted by
Ai. Here we will consider the Laplace method (SMALL, 2010) to obtain approximations for Ai,
but several other approaches can be found in Evans and Swartz (2000). Thus, let ũuui = (ũ1i, ũ2i)

be the unique minimum of the nonlinear function ri (the gradient of ri vanishes at ũuui). A crucial
assumption for applying the Laplace method is that the Hessian matrix of ri,

𝒱i =
∂ 2ri (uuui;yyyi,θθθ)

∂uuui∂uuu�i
,

is positive-definite for all uuui ∈ R2. In this case, by performing a multivariate Taylor series
expansion of ri and the exponential function, the Laplace approximation for Ai is given by

AL
i ≈

2π exp{−ri (ũuui;yyyi,θθθ)}�
det 𝒱̃i

,

where 𝒱̃i is the Hessian matrix evaluated at ũuui. Therefore, the full log-likelihood function of θθθ
can be approximated by

�L(θθθ ;yyy)≈−n log(2π)+
n

∑
i=1

log
�
AL

i
�
=−1

2

n

∑
i=1

log(det 𝒱̃i)−
n

∑
i=1

ri (ũuui;yyyi,θθθ) . (6.10)

The Laplace approximation is accurate to 𝒪(n−1) since it takes into account only the
first-order terms of the Taylor series expansion (RULI; SARTORI; VENTURA, 2016). The
application of this method in the univariate case is less cumbersome as it only requires the
evaluation of a unidimensional minimization problem.

6.3.1 Prior distributions

6.3.1.1 Fixed-effects parameters

The g-prior (ZELLNER, 1986) is a popular choice among Bayesian users of the multiple
linear regression model, mainly due to the fact of providing a closed-form posterior distribution
for the regression coefficients. The g-prior is classified as an objective prior method which uses
the inverse of the Fisher information matrix up to a scalar variance factor (τ ∈ R+) to obtain
the prior correlation structure of the multivariate Normal distribution. Such specification is
indeed quite attractive since the Fisher information plays a major role in the determination of
large-sample covariance in both Bayesian and classical inference.

The problem of eliciting conjugate priors for GLMs was addressed by Chen and Ibrahim
(2003). Their approach can be considered as a generalization of the original g-prior method,
but its application is restricted for the class of GLMs since the proposed prior does not have
closed-form for non-normal exponential families. As an alternative, Gupta and Ibrahim (2009)
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have proposed the information matrix prior as a way to assess the prior correlation structure
between the coefficients, not including the intercept since the regression matrix is centered as to
ensure that β0 is orthogonal to the other coefficients. This method uses the Fisher information
similarly to a precision matrix whose elements are shrunken by the factor τ , which is considered
fixed (τ � 1). However, the authors have pointed out that such class of priors can only be
considered Gaussian priors if the Fisher information matrix does not depend on the vector
βββ ′ = (β1, . . . ,βq). In this way, Bové and Held (2011) had considered a similar approach when
they proposed a class of hyper-g priors for GLMs, where the precision matrix is evaluated at the
prior mode, hence obtaining an information matrix that is βββ ′ free.

The formal concept behind the information matrix prior is closely related to the unit
information prior (KASS; WASSERMAN, 1995), whose main idea is that the amount of
information provided by a prior distribution must be the same as the amount of information
contained in a single observation. Such an idea can be applied in the previously mentioned
approaches by simply considering τ = n (total sample size). Gupta and Ibrahim (2009) have also
considered fixed values for τ (τ � 1). On the other hand, some works, including Hansen and Yu
(2003), Wang and George (2007) and Bové and Held (2011) do consider prior elicitation and
inference procedures for the variance scale factor. Here, we will adopt a methodology based on
the unit information prior idea combined with the “noninformative g-prior” proposed by Marin
and Robert (2007) for binary regression models. Based on such an approach, it is possible to
obtain a quite simple prior distribution for the fixed-effects of the proposed model, which is

βββ ∼𝒩q

�
000,mΣΣΣ0

βββ

�
,

where q = q1 + q2 + 2. Unlike Marin and Robert’s approach, we consider standardized re-
gression matrices in the prior specification. We denote the full standardized vector of re-
gression coefficients by βββ * = (βββ *

1,βββ
*
2). In this case, the above prior distribution becomes

βββ * ∼𝒩q(000,m(GGG
�
GGG)−1), in which

GGG =

�
XXX*

1 000m×(q2+1)

000m×(q1+1) XXX*
2

�
,

where XXX
*
k is the standardized version of XXXk. The first column of XXX

*
k is the same as for XXXk. The

remaining entries can be obtained by taking the difference between the element and the column
mean (cl+1

k ) (l = 1, . . . ,qk), divided by the respective standard deviation (sl+1
k ). It is worthwhile

to mention that, in cases where XXX
*
k is rank deficient (m < qk +1) or contains collinear covariates,

it is highly advisable to compute the generalized inverse of GGG
�
GGG otherwise the prior covariance

matrix of βββ * may not be defined.

Such structure for the prior covariance matrix ensures that β *
k0 and (β *

k1, . . . ,β
*
kqk

) are
uncorrelated a priori, with β *

k0 and β *
kl denoting the (fixed) standardized intercepts and slopes,

respectively. In this setup, the original regression coefficients can be expressed as

βkl =
β *

kl

sl+1
k

and βk0 = β *
k0−

qk

∑
l=1

cl+1
k βkl,
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and so we have to redefine the full vector of parameters as θθθ = (βββ *
1,βββ

*
2,ξ1,ξ2,υ), since here we

are also considering reparameterizations for the fixed-effects of the proposed model. Finally,
when fitting the 𝒵𝒜𝒫ℒ regression model, we may consider a noninformative Gaussian prior

distribution for ν with zero mean, that is, ν ∼𝒩 (0,103).

6.3.1.2 Random-effects parameters

The product-Normal parameterization (interrelated univariate Normal distributions)
considered for the vector of random-intercepts (see Section 6.2) makes it possible to assign
any suitable marginal prior distribution for the random-effects parameters, instead of using, for
example, an Inverse-Wishart or Wishart prior distribution for ΣΣΣbbb, which usually yield biased
posterior estimates (particularly if the sample size is small) as it considers common degrees of
freedom for all variance components (BARNARD; MCCULLOCH; MENG, 2000).

Our primary assumption for prior specification here is that the parameters of (6.7) are
mutually independent, and the whole set (of random-effects parameters) is independent from
vector βββ . In this case, we firstly assume a Half-Cauchy prior distribution for σk, σk ∼ℋ𝒞(αk),
whose probability density function (pdf) is given by

π (σk;αk) =
2αk

π
�
σ2

k +α2
k

� , σk ∈ R+,

where αk ∈R+ is a scale parameter. Theℋ𝒞 distribution was cited by Gelman (2006) and Polson
and Scott (2012) as an alternative to the traditionally used Inverse Gamma prior. Here, we set
αk = 25 to epitomize noninformativeness about σk. Hence, the joint prior distribution for the
variances of the random-intercepts can be expressed as

π (σ1,σ2) ∝
2

∏
k=1

1
σ2

k +625
, σk ∈ R+.

From that, one can easily derive the joint distribution for the reparameterization (ξ1,ξ2)

using the Jacobian transformation method. Then,

π (ξ1,ξ2) ∝
2

∏
k=1

eξk

e2ξk +625
, ξk ∈ R.

For correlation parameters, a popular noninformative prior is the Uniform distribution
on (−1,1). Thus, by assuming that ρ ∼ 𝒰(−1,1), the obtained distribution for the reparameteri-
zation υ can be written as

π (υ) =
e−υ

(1+ e−υ)2 , υ ∈ R,

which can be recognized as the pdf of the standard Logistic distribution.
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6.3.2 Posterior distribution and estimation

Considering the outlined structure for the 𝒵ℳ𝒫ℒ regression model with random-
intercepts, the full joint posterior distribution of the unknown vector θθθ is given by

π (θθθ ;yyy) = c−1 exp{�(θθθ ;yyy)}π (θθθ) = c−1 exp{�(θθθ ;yyy)+ log[π (θθθ)]} ,

where � corresponds to the log-likelihood function (6.9),

c =
�

Rd
exp{�(θθθ ;yyy)+ log[π (θθθ)]}dθθθ =

�

Rd
exp{−r (θθθ ;yyy)}dθθθ

is the marginal pmf of the observed vector yyy (normalizing constant) and

π (θθθ) ∝ exp
�
− 1

2m
βββ�
�

ΣΣΣ0
βββ

�−1
βββ
�

e−υ

(1+ e−υ)2

2

∏
k=1

eξk

e2ξk +625

is the kernel of the joint prior distribution of θθθ .

Any method to approximate the posterior distribution π (θθθ ;yyy) will behave well if c ∈
(0,∞). Ignoring cases where c is not finite may lead to misleading inferences and conclusions.
The normalizing constant is clearly greater than zero as the integrand is an exponential function.
On the other hand, the finiteness of c depends either on the properness of π(θθθ) and the behavior
of the log-likelihood function for limiting values on the d-dimensional parametric space of
θθθ . Noticeably, the prior distribution π (θθθ) is proper on Rd , since it is defined by the product
of square-integrable densities. For a given value of θθθ , the function to be integrated when
obtaining the normalizing constant can be approximated by using (6.10) as exp{−rL(θθθ ;yyy)},
where −rL(θθθ ;yyy) = �L(θθθ ;yyy)+ log[π(θθθ)]. In this way, the Laplace approximation for c is given
by

cL ≈ 2π exp{−rL(θ̃θθ ;yyy)}�
det 𝒱̃θθθ

,

where θ̃θθ is the unique minimum of rL and 𝒱̃θθθ is the corresponding Hessian matrix evaluated at
θ̃θθ .

Clearly, if we manage to obtain a finite approximation for the normalizing constant,
then the Hessian matrix of rL is necessarily positive-definite. Thus, one may assume that, if
the positive definiteness of 𝒱θθθ holds when considering a particular response vector yyy, then the
resulting posterior distribution is proper in the sense that it is nonnegative and integrates to 1. In
this case, all Bayesian computations can be made, without loss of information, by considering
the proportionality

π (θθθ ;yyy) ∝ exp{�(θθθ ;yyy)+ log[π (θθθ)]} ,

which can be approximated by

πL(θθθ ;yyy)≈ exp
�
�L(θθθ ;yyy)+ log[π (θθθ)]

�
. (6.11)
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From the Bayesian point of view, inferences for the elements of θθθ can be obtained from
their marginal posterior distribution. However, deriving analytical expressions for these densities
is infeasible, mainly due to the complexity of the associated log-likelihood function. In this
case, to make inferences for θθθ , we must resort to a suitable iterative procedure to drawn pseudo-
random samples from the approximate posterior density (6.11). Hence, aiming to generate
N values for θθθ , we will adopt the Adaptive Metropolis (AM) algorithm proposed by Haario,
Saksman and Tamminen (2001), which is based on the well-known Random-walk Metropolis
(RwM) algorithm (METROPOLIS et al., 1953; ROBERTS; GELMAN; GILKS, 1997). Both
methods consider the multivariate Normal as proposal (candidate-generating) distribution, but in
the AM algorithm, the covariance matrix of the Gaussian proposed values is adapted using all
information so far gathered about the target distribution.

Let the sequence {θθθ k}t−1
k=0 be the history of the chains so far runned, where θθθ 0 is the

initial state vector. At each state t, the scheme to obtain an update of θθθ is based on proposing a
candidate θθθ ′ as

θθθ ′|θθθ t−1 ∼




𝒩d(θθθ t−1,0.102d−1ℐd), for t � 2d

(1−ψ)𝒩d(θθθ t−1,0.102d−1ℐd)+ψ𝒩d(θθθ t−1,2.382d−1ℋt−1), otherwise,

where ψ ∈ (0,1) is a user-defined mixture parameter and ℋt−1 is the empirical covariance
matrix of θθθ ′, that is,

ℋt−1 =
1
t

t−1

∑
j=0

(θθθ j−θθθ t)(θθθ j−θθθ t)
�
,

with θθθ t = t−1 ∑t−1
i=0 θθθ i. The scaling factor applied on ℋt−1 is an effort to make our procedure

resembles the approach of Roberts, Gelman and Gilks (1997), in which the use of a Gaussian
proposal with fixed covariance matrix equal to 2.382d−1ℋ is optimal in a particular high-
dimensional case. Besides, the use of a 2-component mixture to propose candidates after the
initial period (t � 2d) is an alternative to prevent the algorithm of getting stuck in certain regions
of the parametric space, whose representative sequences lead to singular empirical covariance
matrices (ROBERTS; ROSENTHAL, 2009).

At any state t, a move from θθθ t−1 to θθθ ′ is accepted with probability

α
�
θθθ t−1,θθθ ′

�
= min

�
π
�
θθθ ′;yyy

�

π (θθθ t−1;yyy)
,1

�
,

which is the same acceptance scheme used in the RwM algorithm. However, due to the adaptive
nature of the process, the AM algorithm is classified as a non-Markovian method but, as
established by Haario, Saksman and Tamminen (2001), it holds correct ergodic properties. In this
way, even that the acceptance probability is not based on symmetry and reversibility conditions
(θθθ ′ depends on the whole history before t), we may consider this mechanism as suitable to
accepting/rejecting candidates for θθθ when applying the AM algorithm. Regarding the acceptance
rate, we refer to Gelman et al. (1996), who suggest that when this quantity ranges between 15 and
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40%, the obtained chains are most efficient in the sense of better representing a possible sample
collection from the posterior distribution. To the best of our knowledge, achieving acceptance
rates in this range is routine when fitting hierarchical models from a Bayesian point of view.

The procedure to generate pseudo-random samples from the approximate posterior

distribution of θθθ is summarized in Algorithm 9 (see Appendix D, Section D.2). To run it, one has
to specify the size of the chains to be generated (N), the initial state vector (θθθ 0), and the mixture
parameter (ψ) beforehand. The convergence of the simulated sequences can be monitored by
using trace and autocorrelation plots, as well as the run-length control method with half-width
test (HEIDELBERGER; WELCH, 1983), the Geweke z-score diagnostic (GEWEKE, 1992),
and the Brooks-Gelman-Rubin scale-reduction statistic (BROOKS; GELMAN, 1998). After
diagnosing convergence, some samples can be discarded as burn-in. The strategy to decrease
the correlation between and within generated chains is based on getting thinned steps, and so
the final sample is supposed to have size M≪ N. A full descriptive summary of (6.11) can be
obtained through Approximate Monte Carlo (AMC) estimators using the sequence {θθθ t}M

t=1. We
choose the posterior expected value as the Bayesian point estimator for θθθ , that is,

θ̂θθ ≡ θ̂θθ L
(yyy)≈ 1

M

M

∑
t=1

θθθ t , (6.12)

which is also known as the minimum mean square error estimator.

In the next section, we discuss the results of the Monte Carlo simulation studies that
were performed as a way to assess the performance of the proposed Bayesian methodology. In
Section 6.5, the usefulness, and the competitiveness of the proposed model are illustrated by
using a real dataset. All computations were performed using the R environment (R Development
Core Team, 2017).

6.3.3 Random-effects prediction
Beyond parameter estimation, any further inferential procedure based on mixed models

depends on obtaining predictions for the random-effects. The most popular approach to predict
a random-intercept bi is based on minimizing the mean squared error of the predicted value
(MCCULLOCH; SEARLE; NEUHAUS, 2008). In this case, one can easily verify that the
predictor bi that minimizes the overall mean squared error of prediction is given by

bi =

�
R bi exp{�̂i(yyyi,bi)} f (bi)dbi�
R exp{�̂i(yyyi,bi)} f (bi)dbi

,

where �̂i(yyyi,bi) ≡ �i(θ̂θθ ;yyyi,bi) is the estimated subject-specific log-likelihood function, with
θ̂θθ given by (6.12). There are few situations in which it is possible to obtain a closed-form
solution for bi (MCCULLOCH; NEUHAUS, 2011). In our case, the best predicted values for the
random-intercepts of the proposed model can be obtained as

b1i =
a1iσ̂1

ei
and b2i =

σ̂2(a1iρ̂ +a2i
�

1− ρ̂2)

ei
,
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where ei = �P*(YYY i = yyyi)≡ P*(YYY i = yyyi; θ̂θθ) is the estimated marginal distribution of YYY i and

aki =
�

R2
uki�P*(YYY i = yyyi;uuui) f (uuui)duuui

=
1

2π

�

R2
uki exp

�
−
�

u2
1i
2
− �̂1i(yyyi,u1i)+

u2
2i
2
− �̂2i(yyyi,uuui)

��
duuui

=
1

2π

�

R2
uki exp{−r̂i(uuui;yyyi)}duuui.

Unfortunately, we are not able to derive analytic predictors for bi1 and bi2 as the involved
integrals are infeasible. Resorting to the Laplace method, one can approximate aki and ei by

aL
ki ≈

ũki exp{−r̂i(ũuui;yyyi)}�
det 𝒱̃i

and eL
i ≈

exp{−r̂i(ũuui;yyyi)}�
det 𝒱̃i

,

where ũuui = (ũ1i, ũ2i) is the unique minimum of r̂i and 𝒱̃i is the corresponding Hessian matrix
evaluated at ũuui. Therefore, the random-intercepts bi1 and bi2 can be predicted by the approxima-
tions

b
L
1i ≈ ũ1iσ̂1 and b

L
2i ≈ σ̂2(ũ1iρ̂ + ũ2i

�
1− ρ̂2).

6.3.4 Posterior predictive distribution
In a Bayesian context, the posterior predictive distribution (ppd) is defined as the dis-

tribution of possible future (unobserved) values conditioned on the observed ones. Predicting
probabilities for unobserved values within the framework of clustered samples depends on how
these values are treated regarding the available data. We may assume that the out-of-sample
values (i) belong to n1 � n observed subjects, or (ii) belong to n2 unobserved subjects, with
n2 � 1 not necessarily equal to n.

Firstly, we suppose that n1 = 1 in case (i). Thus, the partially observed response vector
of the i-th subject holding out-of-sample data (yyyu

i ) can be expressed as vvvi = (yyyi,yyy
u
i ). In this

particular situation, the ppd is given by

Pπ(YYY i = vvvi;yyy) =
�

Rd
P*(YYY i = vvvi;θθθ)π (θθθ ;yyy)dθθθ = Eθθθ [P*(YYY i = vvvi;θθθ);yyy]

=
1

2π
Eθθθ

��

R2
exp{−ri(uuui;vvvi,θθθ)}duuui;yyy

�
.

Noticeably, the above equation has no closed-form as we are not able to compute the
expectation over θθθ . Using the Laplace method for the inner term of the expectation, one can
obtain an AMC estimator for the ppd as

�PL
π(YYY i = vvvi;yyy)≈ 1

M

M

∑
t=1

exp{−ri (ũuuit ;vvvi,θθθ t)}�
det 𝒱̃it

,

where ũuuit is the unique minimum of ri at state t, and 𝒱̃it is the corresponding Hessian matrix
evaluated at ũuuit . For n1 > 1, the full vector of partially observed responses can be expressed as
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vvv = [(yyy1,yyy
u
1), . . . ,(yyyn1

,yyyu
n1
)] = (vvv1, . . . ,vvvn1). Hence, the corresponding ppd can be written as

Pπ(YYY = vvv;yyy) =
n1

∏
i=1

Pπ(YYY i = vvvi;yyy) =
1

(2π)n1

n1

∏
i=1

Eθθθ

��

R2
exp{−ri(uuui;vvvi,θθθ)}duuui;yyy

�
,

where the first equality holds by the fact that outcomes for different subjects are assumed to be
unconditionally independent. In this case, the AMC estimator for the ppd becomes

�PL
π(YYY = vvv;yyy)≈ 1

Mn1

n1

∏
i=1

M

∑
t=1

exp{−ri (ũuuit ;vvvi,θθθ t)}�
det 𝒱̃it

, (6.13)

which can also be used to estimate the ppd in case (ii), if one consider that vvv contains only
unobserved responses, that is, vvv = (yyyu

1, . . . ,yyy
u
n2
).

Algorithm 10 (see Appendix D, Section D.2) can be used to generate a single realization
(y) from the ppd (in any of the presented cases) using the sequential-search scheme. To run it,
one has to specify the sequence {θθθ t}M

t=1 obtained from Algorithm 9 after getting thinned steps.
The procedure to generate a pseudo-random sample of size m consists of running the algorithm
as often as necessary, say m*� m times. The sequential-search is a black-box algorithm and
works with any computable probability vector. The main advantage of such a method is its great
simplicity. On the other hand, it might be a bit slow when the occurrence probabilities for lower
counts are close to zero, since the while-loop may have to be repeated very often in this case. We
refer to Hörmann, Leydold and Derflinger (2013) for more details about this algorithm.

6.3.5 Influential points
Identifying influential observations is a crucial step in any statistical analysis. Usually, the

presence of influential points impacts the inferential procedures and the subsequent conclusions
considerably. In this way, this subsection is dedicated to present some case deletion Bayesian
diagnostic measures that can be used to quantify the influence of observations from each subject
in a given dataset.

The computation of divergence measures between posterior distributions is a useful
way to quantify influence. According to Csiszár (1967), the ϕ-divergence measure between two
densities f and g for θθθ ∈ΘΘΘ is defined by

dϕ =
�

ΘΘΘ
g(θθθ)ϕ

�
f (θθθ)
g(θθθ)

�
dθθθ ,

where ϕ is a smooth convex, lower semicontinuous function such that ϕ(1) = 0. Some popular
divergence measures can be obtained by choosing specific functions for ϕ . The well-known
Kullback-Leibler (KL) divergence is obtained by considering ϕ(z) =− log(z). Cho et al. (2009)
have considered such type of divergence measure in the context of survival models. A symmetric
version of the KL divergence, the Jeffrey (J) divergence, can be obtained by specifying ϕ(z) =
(z− 1) log(z) and the variational divergence (L1 norm) is obtained when ϕ(z) = 0.50|z− 1|.
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These divergence measures were considered by Garay et al. (2015) for case deletion of influential
points in the context of censored linear regression models with scaled mixtures. In addition,
the Chi-Square (CS) divergence is obtained by considering ϕ(z) = (z−1)2 and the Hellinger
(H) distance arises when ϕ(z) = 0.50(

√
z−1)2. We refer to Peng and Dey (1995) for a detailed

study on several types of ϕ-divergence.

Let g(θθθ) = π(θθθ ;yyyi) be the joint posterior distribution of θθθ based only on the information
provided by the i-th subject and let f (θθθ) = π(θθθ ;yyy j

i ), where yyy j
i = (yi1, . . . ,yi j−1,yi j+1, . . . ,ymi) is

the response vector of the i-th subject without the j-th observation. After some algebra (see Cho
et al. (2009) for the KL divergence case), one can verify that the ϕ-divergence corresponds to

dϕ = Eθθθ

�
ϕ

�
E−1

θθθ
�
P−1
*
�
Yi j = yi j;θθθ ,uuui

�
;yyyi
�

P*
�
Yi j = yi j;θθθ ,uuui

�
�

;yyyi

�
,

where E−1
θθθ [P−1

* (Yi j = yi j;θθθ ,uuui);yyyi] is the conditional predictive ordinate (CPO) statistic
(GEISSER; EDDY, 1979) for the j-th observation of the i-th subject. Here, we are also not able
to compute the inner expectation over θθθ analytically and so, an AMC estimator for the CPOi j is
given by

�CPO
L
i j ≈

�
1
M

M

∑
t=1

P−1
*
�
Yi j = yi j;θθθ t ,uuuL

i
�
�−1

, (6.14)

where uuuL
i is the approximated predicted value of uuui. According to Congdon (2005), the harmonic

mean estimator (6.14) is stable when most of the individual log-likelihood values exceed -10.
Using the estimated CPO, one can approximate the local influence of a particular yi j on the joint
posterior distribution (6.11) as

d̂L
ϕ ≈

1
M

M

∑
t=1

ϕ




�CPO
L
i j

P*
�
Yi j = yi j;θθθ t ,uuuL

i
�


 .

One can notice that, if π(θθθ ;yyy j
i ) = π(θθθ ;yyyi), then there is no divergence caused by ob-

servation yi j. In practice, however, it may not be elementary to define a threshold value for the
divergence in order to decide about the magnitude of the influence (WEISS, 1996). A measure of
calibration for the KL divergence was proposed by McCulloch (1989). The idea is based on the
typical toy binary example of tossing a coin once and observing its upper face. This experiment
can be described by P(Y = y;ζ ) = ζ y(1−ζ )1−y, y ∈ {0,1}, where ζ ∈ [0,1] is the probability
of success. Regardless of what success means, if the coin is unbiased, then P(Y = y;ζ ) = 0.50.
Thus, the ϕ-divergence between a (possibly) biased and an unbiased coin is given by

dϕ(ζ ) =
ϕ (2ζ )+ϕ [2(1−ζ )]

2
,

from which one can conclude that the divergence between two posteriors distributions can be
associated with the biasedness of a coin (PENG; DEY, 1995). By analogy, this implies that
predict unobserved responses using π(θθθ ;yyy j

i ) instead of π(θθθ ;yyyi) is equivalent to describe an
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unobserved event as having probability ζi j, when the correct probability is 0.50. Considering
some specific choices for ϕ , in Table 127 (see Appendix D, Section D.1) we present AMC
estimators that can be used to compute the local influence of each yi j. Besides, we also present
the expression of dϕ(ζ ) for each ϕ . For ease of notation, we assume f t

i j = P(Yi j = yi j;θθθ t ,uuuL
i ).

The function dϕ(ζ ) is symmetric about 0.50 and increases as ζ moves away from 0.50.
In addition, infζ∈(0,1) dϕ(ζ ) = 0, which is attained at ζ = 0.50 since dϕ(0.50) = ϕ(1) = 0.
Therefore, a general measure of calibration based on the ϕ-divergence can be obtained by
solving

2dϕ(ζ )−ϕ(2ζ )−ϕ[2(1−ζ )] = 0.

An estimator for the calibration measure (ζϕ) associated with each ϕ-divergence type is
also presented in Table 127. Clearly, depending on the form of ϕ , such an equation may not have
a closed-form, which is the case of the J divergence. Besides, one can notice that ζi j ∈ [0.50,1]
and so, for ζi j ≫ 0.50, the j-th observation of the i-th subject may be considered an influential
point. For example, if ζi j > 0.80 is considered a significative bias, then yi j will be classified
as influential if d̂i j > 0.223 (dϕ(0.80)≈ 0.223) under the KL divergence or yet if d̂i j > 0.051
(dϕ(0.80)≈ 0.051) under the H divergence.

6.3.6 Model comparison and adequacy
There are several methods for Bayesian model selection that are useful to compare

competing models. The most popular method is the Deviance Information Criterion (DIC),
which was proposed to work simultaneously as a measure of fit and complexity of the model.
The DIC criterion is defined as

DIC = Eθθθ[D(θθθ)]+ρD = D(θθθ)+ρD ,

where D(θθθ) =−2�(θθθ ;yyy) is the deviance function and ρD = D(θθθ)−D(θ̂θθ) is the effective number
of model parameters, with θ̂θθ given by (6.12). A negative value for ρD may suggest that the
log-likelihood function is non-concave, the prior distribution is misspecified, or the posterior

expected value is not a good estimator for θθθ . On the other hand, when ρD ≫ d, then there is an
indication of overfitting with estimate θ̂θθ .

For known reasons, we are not able to compute the expectation of D(θθθ) over θθθ analyt-
ically. Considering the Laplace approximation (6.10) for the log-likelihood function of θθθ , an
AMC estimator for such a measure is given by

�DL
(θθθ)≈− 2

M

M

∑
t=1

�L(θθθ t ;yyy) ,

and so the DIC can be estimated by

�DIC
L≈ 2�DL

(θθθ)−D(θ̂θθ).
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The Expected Akaike (EAIC) and the Expected Bayesian (EBIC) information criteria
can also be used when comparing Bayesian models (CARLIN; LOUIS, 2001; BROOKS, 2002).
Using the approximation for the expected value of D(θθθ), these measures can be estimated by

�EAIC
L≈ �DL

(θθθ)+2d and �EBIC
L≈ �DL

(θθθ)+d log(m) .

Another widely used criterion is derived from the CPO statistic, which is based on the
cross-validation criterion to compare models. For the j-th observation of the i-th subject, the
CPO can be estimated through Equation (6.14). A summary statistic of the estimated CPO’s is
the Log-Marginal Pseudo-Likelihood (LMPL) given by the sum of the logarithms of �CPOi j’s.
Regarding model comparison, we have that the lower the values of DIC, EAIC, EBIC, and
NLMPL (negative LMPL), the better the fit.

The comparison procedure between two competing models can be formulated as a
hypothesis test. In a Bayesian framework, one can quantify the strength of evidence in favor
of one model among its competitors by computing the Bayes Factor. This measure is defined
as the ratio between the marginal likelihood functions of competing models and can be well-
approximated using the CPO statistic when marginalization is unfeasible (GELFAND; DEY,
1994). Any approximation for the Bayes Factor is denominated as Pseudo-Bayes Factor (PBF).
For two competing models, say M0 and M1 (null and alternative hypothesis, respectively), one
can evaluate the relative plausibility of the available data under M1 versus M0 using the Laplace
approximation

�PBF
L≈

∏n
i=1 ∏mi

j=1
�CPO

L
i j(M1)

∏n
i=1 ∏mi

j=1
�CPO

L
i j(M0)

,

which is an adapted AMC estimator for the PBF, designed to fit our case. The interpretation
of this ratio is straightforward. If �PBF > 1, then there is evidence that M1 is more plausible
(more strongly supported by the data) than M0. On the other hand, when �PBF approaches to
zero, then there is strong evidence against M1 in favor of M0. A widely used table with scales for
interpretation of PBF is provided by Kass and Raftery (1995). One of the main features of the
PBF is that, unlike the Bayes Factor, it can be used even when improper prior distributions are
adopted.

In addition to comparing, researchers are often interested in verifying the adequacy
of the fitted models. Congdon (2005) suggests that the CPO can also be used as a metric to
assess model fit. The procedure consists of obtaining the scaled CPOs (dividing each one by the
maximum value) and then check for the existence of values lower than 0.01. If the majority of
SCPOs (scaled CPOs) is above this value, the model fit can be considered adequate. Another
effective way to evaluate model adequacy is based on the use of measures derived from the ppd.
For instance, if any observation is extremely unlikely relative to the ppd, the adequacy of the
obtained fit might be questionable. A widespread discrepancy measure between model and data
was proposed by Gelman et al. (2004). In our case, we need a slightly adapted version of such a
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measure, which is given by

T(yyy,θθθ ,uuu) =−2
n

∑
i=1

mi

∑
j=1

log
�
P*
�
Yi j = yi j;θθθ ,uuui

��
.

The Bayesian p-value (posterior predictive p-value), proposed by Rubin (1984), is
defined as

pB = P [T(yyyr,θθθ ,uuu)� T(yyy,θθθ ,uuu) ;yyy] ,

where yyyr denotes the response vector that might have been observed if the conditions generating
yyy were reproduced. This predictive measure can be empirically estimated as the relative number
of times that T(yyyr, θ̂θθ ,uuuL) exceeds T(yyy, θ̂θθ ,uuuL) out of B simulations, where uuuL is the approximated
predicted value of uuu = (uuu1, . . . ,uuun). Each replica yyyr is a pseudo-random sample from the approx-
imate ppd (6.13), which can be obtained by running Algorithm 10 at least m times. In general,
the model fit becomes suspect if the discrepancy is of practical relevance, and the associated
Bayesian p-value is close either to 0 or 1 (GELMAN et al., 2004). A large (small) value of pB,
say greater than 0.95 (lower than 0.05), indicates model misspecification (lack-of-fit), that is,
the observed behavior would be unlikely to be seen if we replicate the response vector using the
fitted model.

6.3.7 Residual analysis

The residual analysis plays an essential role in the task of validating the results obtained
from a regression model. In general, residual metrics are responsible for indicating departures
from the underlying model assumptions by quantifying the portion of data variability that was
not explained by the fitted model. Assessing the adequacy of a regression model using residual
metrics is a common practice nowadays due to the availability of statistical packages providing
diagnostic tools for well-established models. However, deriving appropriate residuals is not
always an easy task for non-normal models that accommodate overdispersion and mixed-effects.
In this way, we will consider here a popular residual metric proposed by Dunn and Smyth (1996),
the randomized quantile residuals (RQRs), which can be straightforwardly used in our context to
assess the appropriateness of the proposed model when fitted to real data.

For obvious reasons, we focus on the definition of RQRs for discrete random variables,
particularly for clustered data. In this case, the RQR associated to the j-th observation of the
i-th subject is defined as ri j = Φ−1(ui j), where Φ denotes the cdf of the standard Normal
distribution and ui j is a Uniform random variable defined on (ai j,bi j], with ai j = limy↑yi j F(yi j)

and bi j = F(yi j), where F(yi j) is the cdf of the current model. In our case, we may obtain an
AMC estimator for the RQR by approximating ri j as

r̂L
i j ≈Φ−1(ui j),
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with ui j ∼ 𝒰(limy↑yi j F̂*(yi j), F̂*(yi j)]. Here, F̂*(yi j) ≡ F*(yi j; µ̂i j, ω̂i j) is an estimate for the
probability of Yi j � yi j using cdf (6.2), where µ̂i j and ω̂i j depend on the fitted model as

µ̂i j = µ̂L
i j (yyy)≈ log(xxx�1i jβ̂ββ 1 + ũL

1iσ̂1),

and, for a given link function g2,

ω̂i j = ω̂L
i j (yyy)≈ g−1

2

�
xxx�2i jβ̂ββ 2 + σ̂2

�
ũL

1iρ̂ +uL
2i

�
1− ρ̂2

��
.

The main assumption for this metric is that r̂i j ∼ 𝒩 (0,1) must hold, whichever the
variability degree of µ̂i j and ω̂i j. In this case, after model fitting, one has to evaluate if these
residuals are normally distributed around zero, which can be made by applying standard adher-
ence tests and by using graphical techniques as histograms and Half-Normal probability plots.
An excellent alternative for checking whether RQRs are consistent with the fitted model is the
inclusion of simulated envelopes in their Half-Normal plot. Thus, if a significative subset of
estimated residuals falls outside the envelope bands, then the adequacy of the fitted model must
be questioned, and further investigation on the corresponding observations are necessary. An
algorithm for obtaining simulated envelopes for a Half-Normal plot is provided by Moral, Hinde
and Demétrio (2017).

6.4 Simulation study
The empirical properties of an estimator can be accessed through Monte Carlo simu-

lations. In this way, we have performed an intensive simulation study aiming to evaluate the
performance of the proposed Bayesian approach in some specific situations. The simulation
process was carry out by generating 500 pseudo-random samples of sizes n = 25,50, and 100
from the 𝒵ℳ𝒫ℒ distribution under the regression framework presented in Section 6.2, with
µi j = exp{β10 +β11x1i j +b1i} and ωi j = [1+ exp{−(β20 +β21x2i j +b2i)}]−1 (logit link func-
tion). The product-Normal parameterization (6.7) was considered for the random-effects. For
each subject, we have generated the same number of observations (mi = 4) as to simulate clus-
tered data (with individual heterogeneity) in a balanced experiment. Also, we have assumed that
x1i j = x2i j = xi j is a within-subjects fixed covariate (xi j = xi j′ , j ̸= j′), with xi. ∼ 𝒰(0,1).

In order to address both zero-inflated and zero-deflated cases in the simulations, we
have considered six scenarios for each kind of zero modification. Table 40 presents the actual
parameter values that were considered in our study. For the zero-inflated (zero-deflated) case,
the samples were generated from the 𝒵ℳ𝒫ℒ distribution by considering that pi j ∈ (0,1)
(pi j ∈ [1,P−1(Yi j > 0; µi j)]) for all pairs (i, j). Here, the parameters were chosen by taking into
account that zero-inflated (zero-deflated) samples have, naturally, the proportion of zeros greater
(lower) than expected under an ordinary count distribution and, therefore, the artificial datasets
were generated with expected value far from zero (close to zero).



6.4. Simulation study 169

Table 40 – Actual parameter values for simulation of zero-modified artificial datasets.

Case Scenario β10 β11 β20 β21 σ1 σ2 ρ

Inflation

1

1.50 2.50 1.00 −1.50

0.50 1.50
−0.50

2 0.00
3 0.50
4

1.50 0.50
−0.50

5 0.00
6 0.50

Deflation

1

−2.00 −1.00 1.50 −2.00

0.50 1.50
−0.50

2 0.00
3 0.50
4

1.50 0.50
−0.50

5 0.00
6 0.50

Source: Elaborated by the author.

Algorithm 11 (see Appendix D, Section D.2) can be used to generate a pseudo-random
response vector for a single subject (under the proposed regression framework with a sole
covariate) using the inverse transform method. The extension for the use of more covariates
is straightforward. To run it, one has to specify the vector of model parameters to be used in
the Monte Carlo simulations. The procedure to generate a full response vector yyy = (yyy1, . . . ,yyyn)

consists of running the algorithm n times. To apply the inverse transform method for sampling,
we have to obtain the quantile function of the 𝒵ℳ𝒫ℒ distribution, that is, the inverse of cdf
(6.2). However, since a hurdle model is defined by the mixture of a zero-truncated distribution
and a binary probability model, we may use the quantile function of the 𝒵𝒯 𝒫ℒ distribution to
generate positive observations from (6.1), and these values become zero with probability 1−ωi j.
This quantile function was derived by Jodrá (2010) and is given by

Q(u,θ) =

�
−θ 2 +3θ +1

θ
− 1

log(θ +1)
W−1

��
θ 2 +3θ +1

�
log(θ +1)

θ (θ +1)(θ
2+3θ+1)θ−1 (u−1)

��
,

for θ ∈ R+ and u ∈ (0,1). Here, ⌈a⌉ is the ceiling function of a ∈ R, that is, ⌈a⌉= infa∈R{k ∈
Z : k � a} and W−1 denotes the negative branch of the LambertW function (see Corless et al.

(1996) for further details). Since pmf (6.1) is parameterized in terms of the expected value (µ)
of the untruncated 𝒫ℒ distribution, we should express parameter θ as

θ =−
(µ−1)−

�
(µ−1)2 +8µ

2µ
.

To apply the proposed Bayesian methodology to each scenario, we have considered the
AM algorithm to generate pseudo-random samples from the approximate posterior distribution
(6.11). For the proposal distribution, the mixture parameter was chosen as ψ = 0.95. A total



170 Chapter 6. The zero-modified Poisson-Lindley regression model with mixed-effects

of N = 100,000 values were generated for θθθ . After running Algorithm 9, the first 20,000
samples were discarded as the burn-in period, and then one out every 40 generated values
were kept, resulting in sequences of size M = 2,000 for each element of θθθ . Using Geweke’s
z-score diagnostic, the stationarity of the chains was revealed. When running the simulations, the
acceptance rates varied between 15 and 25%.

Since θθθ is a reparameterization of the proposed model, we may obtain pseudo-random
samples of the original parameters by applying the inverse function (respect to those defining the
transformations) on the generated chains. For example, given a sequence {ξ1t}M

t=1 of ξ1, a chain
for σ1 is obtained as {eξ1t}M

t=1. The adopted Bayesian point estimator for the original parameters
is the same as provided by Equation (6.12). The performance of such an estimator was studied
by assessing its bias (B), its mean squared error (MSE), and its mean absolute percentage error
(MAPE). Using samples of the original parameters, one may obtain AMC estimators for these
measures as

�BL
γ̂ ≈

1
500

500

∑
j=1

�
γ̂ j− γ

�
, �MSE

L
γ̂ ≈

1
500

500

∑
j=1

�
γ̂ j− γ

�2 and �MAPE
L
γ̂ ≈

1
500

500

∑
j=1

����
γ̂ j− γ

γ

���� ,

where γ = β10,β11,β20,β21,σ1,σ2 or ρ , and {γ̂ j}500
j=1 is the sequence of posterior means based

on chains of size 2,000. Noticeably, the MAPE cannot be computed for ρ̂ when its actual value is
zero. The variance of γ̂ was estimated as the difference between MSE and the square of the bias.
Besides, the coverage probability (CP) of the 95% highest posterior density intervals (HPDIs)
was estimated by the approximation

�CP
L
γ ≈

1
500

500

∑
j=1

δ j(γ) ,

where δ j(γ) assumes 1 if the j-th HPDI contains the actual value γ and zero otherwise. We
have also estimated the below (BNCP) and above (ANCP) noncoverage probabilities of the
HPDIs. These measures are computed analogously to CP. The BNCP and ANCP may be useful
to determine asymmetrical behaviors as they provide the probabilities of finding the actual value
of γ on the tails of its posterior distribution.

Due to the massive amount of outputs, the obtained results were made available in
Appendix D (Section D.3). We have noticed in our study that the overall accuracy of the
Bayesian estimators improved with increasing sample sizes since the estimated MSEs and
MAPEs have decreased as n increased. However, the square root of the ratio between the MSEs
and variances slowly approached to 1 due to the slight instability of the estimated biases, which
can be explained by the complexity of the proposed model. On the other hand, we have observed
that the estimated CP of the HPDIs was converging to 95% in most cases, but, in some zero-
deflated scenarios, some of the CPs for the random-effects parameters reached 100% when the
actual value of ρ was either -0.50 or zero. Additionally, one can notice that, in the zero-inflated
cases, the approximate posterior densities of β10 and β11 are more asymmetric since the low
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amount of positive observations on the generated samples led to higher uncertainty about the
posterior behavior of these coefficients.

Considering the predefined scenarios, we conclude that our simulation study provides
favorable indications about the suitability of the adopted Bayesian methodology to estimate the
parameters of the proposed model. We believe that in a similar procedure with a different set of
actual values, the overall behavior of the estimators should resemble the results that we have
described here. Besides, the adopted methodology would also be reliable if one or more than one
covariates (possibly of other nature) were included in the linear predictors of µi j and ωi j.

6.5 Real data application
In this section, we present the analysis of a real dataset using the proposed model. For

comparison purposes, we have also fitted mixed-effects models based on the 𝒵ℳ𝒫 and zero-
modified Negative Binomial (𝒵ℳ𝒩ℬ) distributions (parameterized by µ and ω as well). The
ordinary 𝒫 , 𝒫ℒ, and Negative Binomial (𝒩ℬ) models were also considered in our analyses. In
the example, the relationship between effects and parameters were established by a log-linear
structure for µ and a logistic regression model for ω , as described in Section 6.2. From the
general formulation, three distinct approaches were treated in the modeling procedure. Firstly,
we have assumed that µ and ω share the same random-effect (Case 1). The second and third
approaches only differ by the fact that the random-effects were assumed to be uncorrelated (Case
2) and correlated (Case 3).

To fit the models in all cases, we have adopted the same Bayesian procedures detailed
in the previous section. For the dispersion parameter (φ) of the 𝒩ℬ and 𝒵ℳ𝒩ℬ models, we
have assigned a noninformative Inverse Half-Cauchy prior distribution with α = 25, that is,
π(φ) ∝ (625φ 2 +1)−1. Finally, using the Laplace approximations presented in Section 6.3, we
were able to summarize the posterior distributions, to compare and validate the fitted models,
and to make appropriate inferences based on the available data.

Table 41 – Descriptive summary of grooming counting data per rat.

Rat mi yi si s2
i /yi m0

i /mi ymax
i

1 24 4.125 5.519 7.385 0.250 20
2 24 6.667 6.267 5.891 0.250 19
3 24 3.750 3.937 4.133 0.333 13
4 24 6.042 5.775 5.519 0.292 16
5 24 4.458 4.995 5.597 0.417 16
6 24 5.000 4.782 5.574 0.333 14

Overall 144 5.007 5.278 5.563 0.312 20

Source: Elaborated by the author.
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We have considered data from a neurophysiologic experiment realized in the Neuro-
physiology and Neuroethology Experimental Laboratory (Medical School of Ribeirão Preto,
University of São Paulo, Brazil) with six male rats of the War species. This experiment was
designed to analyze the number of grooming movements (grooming counting) of the rats at differ-
ent times after receiving two treatments: saline solution (placebo) and oxytocin. The treatments
were administered in the following order: first, the animal received saline and then, oxytocin.
After the application of each treatment, the grooming countings were measured 12 times every
five minutes, totalizing 24 observations per rat.

The full dataset was made available by Achcar, Coelho-Barros and Martinez (2008)
and is composed by m = 144 observations from a discrete random variable Yi j denoting the
j-th grooming counting registered for the i-th rat (i = 1, . . . ,6). The described experiment is
fully balanced as the number of observation are the same across rats (24). Using this data,
we aimed to analyze if the administration of oxytocin affects the occurrence and persistence
of grooming movements, and also to investigate the behavior of these components over time.
Subject-specific random-effects were considered as an attempt to overlap the variation among
the repeated measures of each rat.

Figure 26 – Descriptive summary (per treatment) of grooming counting data.
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Source: Elaborated by the author.

A descriptive summary of the number of grooming movements is presented in Table 41.
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A preliminary analysis suggests that the response variable is hugely overdispersed (overall and
within-rat), with average grooming counting higher than 3.70 for all rats. However, the average
number of movements was lower when the rats were under the effect of saline solution (2.46).
The overall number of zeros in the sample is m0 = 45. The maximum number of movements
was observed for Rat 1 (ymax

1 = 20), followed by Rat 2, with ymax
1 = 19. Noticeably, Rat 5 was

less responsive to both treatments, once presenting no grooming movements in approximately
42% of the time (m0

5 = 10). In general, all rats have responded with at least one movement in
more than 58% of the time.

Figure 26 presents the frequency distribution of the number of movements per treatment
(upper-panels) and the average grooming counting over time (lower-panels). These illustrations
are indicating that the behavior of the response variable differs considerably between treatments,
and also that the average of grooming movements are not constant over time. Particularly, the
occurrence was higher at around 20-35min and have lowered in the last quarter of each treatment.
Besides, when oxytocin was administered, the average persistence was higher (7.56), but only
Rats 2 and 6 have responded with at least one movement at all times. Such a fact suggests that
exits an individual heterogeneity between the rats, which can also be noticed by analyzing the
variability measures presented in Table 41.

Figure 27 – Posterior descriptive summary for the 𝒫 , 𝒩ℬ, and 𝒫ℒ fitted models.
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The frequency distribution presented in Figure 26 (upper-panels) does not provide much
evidence about the nature of a possible zero modification in the number of grooming movements.
However, since the within-rat averages are relatively far from zero and the indices of dispersion
are greater than 1, it is plausible to believe that there is a portion of zero-valued observations
that exceed what would be expected by an ordinary discrete distribution. Therefore, we have
searched for empirical evidence of zero inflation by fitting the 𝒫 , 𝒩ℬ, and 𝒫ℒ distributions to
the available data. Here, the expected value of these distributions was modeled by the following
log-linear structure

log
�
µi j
�
= β0 +β1x1i j +β2x*2i j +bi,
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where bi ∼ 𝒩 (0,σ2
b ) is a rat-specific random-intercept, x1i j is the administered treatment (0:

saline solution (baseline); 1: oxytocin), and x*2i j ∈ (0,1) is the scaled logarithm of x2i j (SLT),
with x2i j denoting the time (in minutes).

The obtained results are summarized in Figure 27. The estimated frequency distribution
(left-panel) is suggesting that the sample is zero-inflated. Noticeably, the 𝒫 model does not
provide a suitable fit as it cannot handle the overall overdispersion of the response variable.
Under this model, the expected number of zeros is much lower than the real one (45) as
the probability of non-occurrence of grooming movements (p0) was underestimated. Besides,
although accommodating extra-𝒫 variability, the𝒩ℬ and 𝒫ℒ models are also not able to handle
heterogeneity due to zero modification. Notwithstanding, we have also performed a formal test,
as described in Subsection 6.2.1. In this case, the posterior estimate for parameter ν from the
𝒵𝒜𝒫ℒ model was -0.989 (-1.354, -0.632), which indicates the presence of an excessive amount
of zeros regarding what would be expected under the 𝒫ℒ distribution.

Table 42 – Comparison criteria and adequacy measures for the fitted models.

Model Case ρD (d) DIC EAIC EBIC NLMPL
% SCPO

pB> 0.01

𝒵ℳ𝒫
1 6.91 (7) 782.93 790.02 810.81 384.98 89.60 0.000

2 8.12 (8) 785.44 793.32 817.08 383.92 90.30 0.000

3 8.04 (9) 785.62 795.58 822.31 384.18 90.30 0.000

𝒵ℳ𝒩ℬ
1 8.07 (8) 712.87 720.80 744.56 353.67 96.50 0.454

2 9.16 (9) 715.58 724.42 751.14 352.54 96.50 0.474
3 9.25 (10) 715.89 726.64 756.34 352.74 96.50 0.474

𝒵ℳ𝒫ℒ
1 7.19 (7) 712.14 718.96 739.75 353.19 97.20 0.508

2 8.26 (8) 714.76 722.51 746.27 352.11 97.20 0.514

3 8.37 (9) 715.16 724.79 751.52 352.36 96.50 0.530

Source: Elaborated by the author.

As we have noticed, the response variable combines three different aspects: overdisper-
sion, individual heterogeneity, and zero modification. In this case, a natural attempt to better
overlapping all these sources of variation is to consider zero-modified mixed models. Particularly,
for the available dataset, we have fitted an occurrence-persistence model based on the 𝒵ℳ𝒫ℒ
distribution. In this framework, the probability of a grooming movement being practiced by the
i-th rat is given by ωi j and the average persistence of grooming counting is given by µi j. To
describe these parameters, we have considered the following structures

log
�
µi j
�
= β10 +β11x1i j +β12x*2i j +b1i and logit

�
ωi j
�
= β20 +β21x1i j +β22x*2i j +b2i,
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Figure 28 – Trace plots and marginal posterior distributions of parameters of the 𝒵ℳ𝒫ℒ2 model.
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where bbbi = (b1i,b2i)
�

is the vector of rat-specific random-intercepts. We have adopted the product-
Normal parameterization (6.7) for the elements of bbbi, which caracterizes Case 3. From that, Case
1 is obtained by assuming b1i = b2i = bi and Case 2 is obtained by setting ρ = 0. The same
strucutre was adopted to fit occurrence-persistence models based on the 𝒵ℳ𝒫 and 𝒵ℳ𝒩ℬ
distributions.

The comparison procedure between the zero-modified models is presented in Table 42.
One can notice that the 𝒵ℳ𝒫 model has performed poorly in all cases. On the other hand, both
𝒵ℳ𝒩ℬ and 𝒵ℳ𝒫ℒ models have performed quite well, with the latter being slightly better.
In practical terms, we may choose any of these two distributions to represent the available data.
However, we argue that the proposed model is most parsimonious as it has a fewer number of
parameters to handle the positive observations. Besides, when looking at the PBF estimates
presented in Table 43, one may conclude that there is no evidence that the 𝒵ℳ𝒩ℬ model is
more plausible than the 𝒵ℳ𝒫ℒ, especially under Cases 2 and 3. The estimates for the PBF
when M0:𝒵ℳ𝒫 were always much higher than 100, reassuring that this model cannot be
considered for the analysis of the available data.

In Table 42, we have also reported the scaled CPOs and Bayesian p-values for the fitted
models. Noticeably, there is no indication of lack-of-fit for the 𝒵ℳ𝒫ℒ-based models, since
over 96% of the SCPOs were higher than 0.01 and the corresponding posterior values of pB are
close to 0.50. Therefore, based on the presented results, we have chosen the proposed model
under Case 2 (𝒵ℳ𝒫ℒ2) for the subsequent analyses. This choice is also supported by the
fact that, under Case 3, the correlation between b1i and b2i was estimated as approximately
zero, suggesting that there is no significant association between the occurrence and the average
persistence of grooming movements.

Table 43 – Posterior estimates for the Pseudo-Bayes Factor (𝒵ℳ𝒫ℒ and 𝒵ℳ𝒩ℬ-based models).

M1
M0 𝒵ℳ𝒫ℒ 𝒵ℳ𝒩ℬ
Case 1 2 3 1 2 3

𝒵ℳ𝒫ℒ
1 1.000 0.341 0.434 1.617 0.522 0.636
2 2.935 1.000 1.275 4.746 1.532 1.867
3 2.302 0.784 1.000 3.721 1.202 1.464

Source: Elaborated by the author.

Figures 28 depicts the post-burn-in trace plots (history of the chains) and the marginal
posterior distributions of parameters of the 𝒵ℳ𝒫ℒ2 model. The acceptance rate in the AM al-
gorithm was approximately 21%. The normality assumption for the distribution of the regression
coefficients is quite reasonable, even in the presence of slight tails on the estimated densities.
Besides, there exists evidence of symmetry since the posterior means and medians are very close
to each other. All chains have passed in the Heidelberger-Welch stationarity and half-width tests
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with p-values ranging from 0.229 to 0.992. For the Geweke z-score diagnostic, the corresponding
p-values ranged from 0.216 to 0.599, suggesting no significant difference on the posterior means
across regions of the chains.

Table 44 presents the posterior parameter estimates and 95% HPDIs from 𝒵ℳ𝒫ℒ2

fitted model. From the displayed results, one can make some conclusions. Firstly, one can
notice that the HPDI of parameters β11 and β21 do not contain the value zero, which constitutes
the administered treatment as a relevant covariate to describe the probability of a grooming
movement being practiced as well as the average persistence of this movement. Under effect of
oxytocin, the rats had a higher posterior probability of practicing any grooming movement than
when they were under the effect of saline solution: odds ratio (conditional on b2i) of e1.879 ≈ 6.67
(2.37,14.32). In this case, the rats also had a higher average persistence of movements (as
measured on the logarithmic scale by β11). Conversely, the covariate SLT is less predictive as it
only contributed to explaining the decrease of the probability of grooming occurrence over time,
mainly when the rats were under the effect of saline solution. Since σ̂2 > σ̂1, we may conclude
that the heterogeneity between rats affects the probability of occurrence more than the average
persistence of grooming movements.

Table 44 – Posterior parameter estimates and 95% HPDIs from 𝒵ℳ𝒫ℒ2 fitted model.

Component Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Persistence
β10 (Intercept) 1.010 1.022 0.429 0.191 1.801
β11 (Oxytocin) 0.668 0.663 0.198 0.292 1.051
β12 (SLT) 0.507 0.497 0.522 −0.509 1.455

Occurrence
β20 (Intercept) 4.122 4.082 1.208 1.705 6.422
β21 (Oxytocin) 1.897 1.888 0.430 1.110 2.794
β22 (SLT) −5.055 −5.000 1.415 −7.877 −2.370

Variance
σ1 (Rat) 0.177 0.140 0.167 0.000 0.471
σ2 (Rat) 0.339 0.261 0.319 0.000 0.957

Source: Elaborated by the author.

A sensitivity analysis to verify the existence of influential points is presented in Figure 29.
We have estimated all divergence measures presented in Table 127 but, since the obtained results
led to the same conclusions, here we are only reporting the KL divergence and its calibration for
each observation. We have considered that influential points were those whose calibration (ζ )
exceeded 0.80. Based on Figure 29b, one can visualize the existence of a single influential point
(109), corresponding to the first measure (five initial minutes) for Rat 5 after receiving oxytocin
(zero grooming movements). In order to assess the influence of point 109, the 𝒵ℳ𝒫ℒ2 model
was estimated once again, without using such observation. Besides, as we aimed to obtain more
precise estimates, the covariate SLT was no longer considered in the log-linear model for µi j.



178 Chapter 6. The zero-modified Poisson-Lindley regression model with mixed-effects

Figure 29 – Sensitivity analysis for diagnostic of influential points.
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Table 45 – Posterior parameter estimates and 95% HPDIs from fitted 𝒵ℳ𝒫ℒ2 model (without influential
point).

Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

β10 (Intercept)
1.377 1.377 0.197 1.010 1.765
(36.337%) (34.736%) (−54.079%) (428.796%) (−1.999%)

β11 (Oxytocin)
0.704 0.705 0.200 0.313 1.086
(5.389%) (6.335%) (1.010%) (7.192%) (3.330%)

β20 (Intercept)
5.079 5.025 1.329 2.412 7.585
(23.217%) (23.101%) (10.017%) (41.466%) (18.110%)

β21 (Oxytocin)
2.057 2.039 0.444 1.282 2.988
(8.434%) (7.998%) (3.256%) (15.495%) (6.943%)

β22 (SLT)
−6.205 −6.141 1.566 −9.278 −3.314
(22.750%) (22.820%) (10.671%) (17.786%) (39.831%)

σ1 (Rat)
0.179 0.138 0.164 0.000 0.486
(1.130%) (−1.429%) (−1.796%) (0.000%) (3.185%)

σ2 (Rat)
0.317 0.237 0.304 0.000 0.895
(−6.490%) (−9.195%) (−4.702%) (0.000%) (−6.479%)

Source: Elaborated by the author.

The posterior parameter estimates without observation 109 and the respective variation
percentage regarding the previous results (with the full dataset) are presented in Table 45. The
acceptance rate in the AM algorithm was approximately 18% in this case. After performing tests
for diagnosing convergence, the stationarity of the chains was revealed. Overall, the removal
of the influential point was responsible to grew the estimates of β10, β20, and β22 significantly.
However, the interpretability of parameters (and related functions) remains unchanged, being
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just a matter of magnitude. For example, now we may conclude that grooming movements were
e2.057 ≈ 7.82 (2.60,17.02) times more likely to occur when the rats were under the effect of
oxytocin and that the heterogeneity between rats in the probability of occurrence has decreased
around 6.50%.

There are some indications that the fit summarized in Table 45 is adequate since the
corresponding Bayesian p-value is 0.484, and over 97% of the SCPOs were higher than 0.01.
Figure 30 depicts additional evidence based on the RQRs that also supports the 𝒵ℳ𝒫ℒ2 model.
The normality assumption for the residuals can be easily verified by the behavior of its frequency
distribution (left-panel). Also, the Half-Normal probability plot indicates that the fit without the
influential point was very satisfactory since all estimated residuals are lying within the simulated
envelope (right-panel).

Figure 30 – Frequency distribution and Half-Normal plot with simulated envelope for the RQRs.
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Based on the posterior estimates displayed on Table 45, the components of the fitted
𝒵ℳ𝒫ℒ2 model can be expressed by

µ̂i j = exp
�

1.377+0.704x1i j +b1i
�
,

and

ω̂i j =
exp

�
5.079+2.057x1i j−6.205x*2i j +b2i

�

1+ exp
�

5.079+2.057x1i j−6.205x*2i j +b2i

� ,

where b1i≈ 0.179ũ1i and b2i≈ 0.317ũ2i are predictions for the random-intercepts (see Subsection
6.3.3) associated to the i-th rat.

From the fitted model, one may also obtain Bayesian estimates for the zero modification
parameter as p̂i j = ω̂i jP−1(Yi j > 0; µ̂i j) and consequently, for the overall mean as λ̂i j = µ̂i j p̂i j.
Figure 31 present Bayesian estimates, per treatment, for parameters λi j and ωi j. One can notice
that, through the 𝒵ℳ𝒫ℒ2 model, we were able to correctly characterize the probability of
occurrence as well as the average persistence of grooming movements. Moreover, the estimates
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Figure 31 – Posterior estimates (per treatment) of representative parameters λi j and ωi j.
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are not showing great variability between treatments (small caveat for ω̂i j under saline solution),
which indicates that the obtained results are greatly consistent with the observed data.

Figure 32 – Posterior estimates (per treatment) of parameters p0 and p over time.
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Figure 32 highlights the evolution, per treatment, of the average estimated probability
of non-occurrence of grooming movements (upper-panels) and of parameter p (lower-panels).
The point estimates are denoted by the black dots, and the corresponding 95% HPDIs are
represented by the red dashed lines. Noticeably, the occurrence of movements had become less
likely over time, especially when the rats were under the effect of saline solution. These results
are consistent with the behavior of grooming counting, as illustrated in Figure 26. Besides,
although inferences for parameter p confirm that the response variable is majorly zero-inflated
within-rat, the 𝒵ℳ𝒫ℒ2 model was capable of identifying that the persistence of movements
was probably a bit higher than expected in the five initial minutes of both treatments. The
use of zero-modified models is even more justified in situations where the nature of the zero
modification changes over time (or across individuals).

Figure 33 – Posterior expected frequencies (per treatment) under the 𝒵ℳ𝒫ℒ2 fitted model.
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As a final assessment of the suitability of the 𝒵ℳ𝒫ℒ2 fitted model, we present, in
Figure 33, the posterior expected frequencies, per treatment, for the number of grooming
movements practiced by the six rats in a neurophysiologic experiment. One can notice that the
proposed model was able to handle all three sources of variation present in the response variable
parsimoniously, then providing an excellent fit to the available data. The results presented in
this section show that the proposed model is highly flexible to fit zero-modified data with a
hierarchical structure, being also competitive with well-established models in the literature.
In this way, we consider the 𝒵ℳ𝒫ℒ model as a great addition to the class of zero-modified
regression models with mixed-effects structure.

6.6 Concluding remarks
Over the last years, the model-based approach for data analysis was becoming increas-

ingly challenging, with more complex data structures being revealed. Particularly, when handling
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count data, there are structures not supported by some standard distributions, which led many
researchers to cast doubt about the usefulness of such models in some cases. Nowadays, the
most prevalent data structures ruling the nature of discrete phenomena are the overdispersion, the
zero modification, and the individual heterogeneity due to clusterization or existence of repeated
measures. There are many practical situations in which those three characteristics are present in
a count dataset, and still, there are few models supporting all at once.

In this context, we aimed to introduce a robust alternative to handle all these data
structures simultaneously. Our approach was based on proposing an extended mixed-effects
regression model for the analysis of zero-modified hierarchical count data. The proposed model is
based on the hurdle version of the𝒫ℒ distribution, in which the zero modification is characterized
by a binary probability model for the zero-valued observations and a zero-truncated distribution
for the positive ones. One of the main aspects of the 𝒵ℳ𝒫ℒ model under such formulation is
that any estimator for the expected value of the untruncated 𝒫ℒ distribution depends only on
the positive values, which implies that the observed zeros are only responsible for explaining,
interchangeably, the zero probability or the degree of zero modification in a given dataset. In this
chapter, all inferential procedures were conducted under a fully Bayesian approach. We have
considered an adaptation of the g-prior method for the fixed-effects, andℋ𝒞 prior distributions
for the random-effects parameters. The AM algorithm was used for sampling values from the
approximate posterior distribution of model parameters. Intensive Monte Carlo simulation studies
were performed, and the obtained results have allowed us to assess the empirical properties of
the Bayesian estimators and then conclude about the suitability of the adopted methodology to
the predefined scenarios.

The proposed model was considered for the analysis of a real dataset on the number of
grooming movements practiced by six rats in a neurophysiologic experiment. The choice of the
mixed-effects 𝒵ℳ𝒫ℒ regression model is justifiable since the response variable was identified
as overdispersed, zero-inflated, and with individual heterogeneity due to repeated measures
over time. A sensitivity analysis was conducted by using some standard divergence measures,
where a single locally influent point was identified and then removed before further inferential
procedures. The adequacy of the fitted models was evaluated by using the Bayesian p-value, the
SCPOs, and the RQRs.

The main conclusion one can make from the fitted models is that the administered
treatment is statistically relevant to describe either the probability of occurrence as well as
the average persistence of grooming movements. Besides, inferences for the zero-modified
parameter (p) indicate that the distribution of the response variable is majorly zero-inflated over
time, with this conclusion being extended for the observed zeros within-rat. When looking at the
posterior comparison criteria and the PBF estimates, we have noticed that the 𝒵ℳ𝒫ℒ model
with independent random-intercepts has outperformed its competitors. Therefore, based on the
obtained results, we conclude by stating that the proposed model can be considered an excellent
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addition to the class of mixed-effects regression models as it has proven to be flexible and
competitive when it comes to modeling zero-modified count data with a hierarchical structure.
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CHAPTER

7
CONCLUSIONS AND PERSPECTIVES

In this doctoral thesis, we have introduced a new class of discrete models as an alternative
for the analysis of zero-modified count data. The proposed class is composed of hurdle versions of
the Poisson-Lindley, Poisson-Shanker, and Poisson-Sujatha distributions, as presented in Chapter
2. Unlike the traditional formulation of zero-modified models, in the hurdle configuration,
the positive observations are entirely represented by zero-truncated versions of the baseline
distributions. Since the adopted uniparametric Poisson mixtures can accommodate different
levels of overdispersion, the proposed models showed to be natural candidates for modeling zero
inflation/deflation, which are structures that typically induces an additional layer of extra-Poisson
variability on the data.

In the sense of extending the applicability of the theoretical models, we have developed
a fixed-effects regression framework, in which an overdispersed and zero-modified response
variable could also be modeled in the presence of covariates. In order to gain interpretability, the
hurdle models were reparameterized in terms of the expected value of the baseline distributions,
and so, the proposed regression structure can overlap the probability of zero-valued observations
being generated as well as the average number of positive observations per individual. Such
a regression framework was considered to all models of the proposed class, as presented in
Chapters 3-5.

The final contribution of this work was the development of an even more flexible
regression framework, which allowed for the inclusion of both fixed and random-effects in
the linear predictors of the hurdle models. This extension arose naturally from the structure
presented in Chapters 3-5, and its proposition is justifiable as the mixed-effects approach
provides a comprehensive way to handle more complex data structure involving the presence of
individual heterogeneity due to clustering or repeated measurements. Particularly, our approach
was based on the use of scalar random-effects (random-intercepts) to quantify the within-subjects
heterogeneity. Although the proposed mixed-effects framework could be extended to all models
of the proposed class, in this work, we have only applied such a structure to the hurdle version of
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the Poisson-Lindley distribution, as presented in Chapter 6.

All estimation procedures in this work were conducted under a fully Bayesian perspective.
In Chapter 2, we have considered Jeffreys’ priors for both parameters (θ ,ω) of the theoretical
models. From that, it was possible to obtain a known posterior distribution only for parameter
ω . Thus, in order to generate pseudo-random samples from the posterior distribution of θ and
make inferences, we have resorted to a rejection sampling scheme. In Chapters 3-6, we have
considered adaptations of the g-prior method for the fixed-effects of both developed regression
structures. In Chapters 3-4, the variance scale factors were arbitrarily chosen, and in Chapters
5-6, we have considered that the amount of information provided by the g-prior should be the
same as the amount of information contained in a single observation. In all these cases, we
were not able to obtain a closed-form for the posterior distributions, and so we have adopted
the Random-walk Metropolis algorithm with different structures for the proposal density as the
alternative to generate pseudo-random samples from the posterior distribution of the fixed-effects
(Chapters 5-6). Additionally, in Chapter 6, we have considered noninformative priors for the
random-effects parameters, and the Adaptive Metropolis algorithm was used to approximate the
full posterior density of the proposed mixed-effects regression model.

Several Monte Carlo simulation studies were performed in order to assess the empirical
properties of the Bayesian estimators and, thus, evaluate the performance of the proposed
methodologies. We have learned from the obtained results in each chapter that, for both theoretical
and regression models, the overall accuracy of the estimators improved with increasing sample
sizes since the estimated biases, mean squared errors, and mean absolute percentage error have
decreased as the sample sizes increased. Besides, in most of the studied cases, the coverage
of the 95% highest posterior density intervals (or the Bayesian credible intervals, when used)
became closer to the nominal ones as the sample sizes increased. A specific pathological case
involving zero inflation was considered in Chapter 2 to illustrate the instability of the so adopted
methodology to estimate the model parameters in such a case. Additionally, in Chapter 2, we have
also conducted simulation studies aiming to evaluate the reliability of the Bayesian comparison
criteria (DIC, EAIC, EBIC, and LMPL) and to quantify the possible loss of efficiency that may
occur when the proposed models are used for the analysis of datasets without zero modification.

The usefulness of the proposed class of zero-modified models was illustrated by using
real datasets with different structures. In Chapter 2, we have modeled three overdispersed samples
(without covariates), being two of them identified as zero-deflated. In Chapter 3, we have analyzed
zero-inflated data on the notification of fetal deaths registered in the Bahia State (Brazil) in 2014
using the zero-modified Poisson-Shanker regression model. The human development index was
found statistically relevant to describe either the probability of non-notification as well as the
average number of fetal deaths. In Chapter 4, we have enhanced the modeling of the Takeover
Bids dataset (also considered in Chapter 2) by including the white knight (a management action
of inviting a friendly third-part to enter the bidding) as a covariate in the fixed-effects regression
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model. In Chapter 5, a heavily zero-inflated dataset on the number of cytogenetic chromosomal
aberrations was analyzed using a regression framework based on the hurdle version of the
Poisson-Sujatha distribution. The dose of ionizing radiation was considered as the only covariate
to describe both parameters of the theoretical model. Finally, in Chapter 6, we have used the
zero-modified Poisson-Lindley model with a mixed-effects structure to modeling the number
of grooming movements practiced by six rats of the War species after receiving two treatments
(saline solution and oxytocin). In this study, the response variable was identified as overdispersed,
zero-inflated, and with individual heterogeneity due to repeated measures over time. The data
analysis highlighted that the administered treatment was statistically relevant to describe either
the probability of occurrence as well as the average persistence of grooming movements.

Beyond parameter estimation, we have performed sensitivity analyses to identify in-
fluent points. In order to validate the fitted models, we have computed Bayesian p-values, the
randomized quantile residuals, among other measures. The competitiveness of the proposed
models was proven in all examples and, despite having a strong competitor (the zero-modified
Negative Binomial distribution), which frequently provides similar fits, we argue that the hurdle
versions of the Poisson-Lindley/Shanker/Sujatha distributions are most parsimonious as they
have a fewer number of parameters to handle the positive observations. We hence conclude that
the proposed zero-modified models can be considered an excellent addition to the literature of
discrete distributions as they are flexible and competitive when it comes to modeling overdis-
persed and zero-modified count data, even in the presence of individual heterogeneity arising
from clustering or repeated (correlated) measurements.

7.1 Perspectives
Some works that can provide continuity to the current research project are listed in the

following.

∙ Expand the class of zero-modified models by considering other Poisson mixtures as
baseline distributions;

∙ Adopt different prior distributions for the vector of fixed-effects from the proposed
regression models;

∙ Adopt different distributions for the random-intercepts in the proposed mixed-effects
regression model;

∙ Extend the proposed mixed-effects structure to allow the inclusion of bivariate random-
effects (intercepts and slopes);

∙ Develop a flexible and user-friendly R package for the analysis of zero-modified count
data using the models proposed in this thesis.
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APPENDIX

A
SUPPLEMENT FOR CHAPTER 2

A.1 Maximum likelihood estimation
For the proposed models in this paper, there is no closed-form solution for the MLE

of parameter θ . Therefore, standard numerical optimization algorithms such as the Newton-
Raphson, the Bisection, and the Regula-Falsi methods can be used to obtain estimates in the
frequentist approach (BRADIE, 2006). The MLE of ω can be easily obtained as ω̂ = n+n−1 by
solving the score function

U (ω,yyy) =
∂ �n (ω;yyy)

∂ ω
=

n
ω
− n0

ω (1−ω)
.

Using the fact that EY (n0) = n(1−ω), one can easily verify that ω̂ is an unbiased
estimator for ω . Now, the Fisher information of ω is given by

ℐω (ω) =−EY

�
∂ 2 �n (ω;YYY )

∂ ω2

�
= EY

�
n

ω2 +
n0 (2ω−1)

ω2 (1−ω)2

�
=

n
ω (1−ω)

. (A.1)

By the maximum likelihood theory, a consistent estimator for the variance of ω̂ is given
by

�V(ω̂) =
ω̂ (1− ω̂)

n
=

n0n+

n3 .

The Fisher information of parameter θ depends on the selected element of ℱ3. In general,
it can be expressed as

ℐθ (θ) =−EY

�
∂ 2 �n+(θ ;YYY )

∂ θ 2

�
, (A.2)

and therefore, a consistent estimator for the variance of θ̂ can be obtained by the inverse of (A.2)
evaluated at θ̂ . When considering the 𝒵ℳ𝒫ℒ distribution, the estimator for the asymptotic
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variance of θ̂ is given by

�V
�
θ̂
�

=
θ̂ 2 +3θ̂ +1

n+

�
θ̂ 2

�
�
θ̂ +1

�2 ζ
��

θ̂ +1
�−1

,1, θ̂
�
− θ̂ 3 +5θ̂ 2 +8θ̂ +2

θ̂
�
θ̂ +2

�
�
−

θ̂ 4− θ̂ 3−8θ̂ 2−10θ̂ −2
θ̂ 2
�
θ̂ 2 +3θ̂ +1

�
�−1

.

Under the 𝒵ℳ𝒫𝒮h distribution, we have

�V
�
θ̂
�

=
θ̂ 3 + θ̂ 2 +2θ̂ +1

n+

�
−4θ̂ 6 +3θ̂ 5−9θ̂ 3−6θ̂ 2−6θ̂ −2

θ̂ 2
�
θ̂ 3 + θ̂ 2 +2θ̂ +1

� +

θ̂ 2 �2θ̂ +1
�2 �θ̂ +1

�
�

ζ
��

θ̂ +1
�−1

,1, θ̂ 2 + θ̂
�
− θ̂ +1

θ̂
�
θ̂ 2 + θ̂ +1

�
��−1

,

and finally, under the 𝒵ℳ𝒫𝒮u distribution, the variance of θ̂ can be estimated by

�V
�
θ̂
�

=
θ̂ 4 +4θ̂ 3 +10θ̂ 2 +7θ̂ +2

n+

�
θ̂ 3 �2θ̂ +4

�2

�
θ̂ +1

��
θ̂ 2 +4θ̂ +9

�Ψ
�
θ̂
�
−

4θ̂ 8 +15θ̂ 7 +10θ̂ 6−61θ̂ 5−173θ̂ 4−254θ̂ 3−200θ̂ 2−72θ̂ −12
θ̂ 2
�
θ̂ 4 +4θ̂ 3 +10θ̂ 2 +7θ̂ +2

�
�−1

,

where Ψ(θ) is a non-linear and strictly decreasing function which has an extensive and very
complicated expression, also depending on the Lerch-Phi function. For this reason, such a
function is omitted here, but some of its values are presented in Table 46.

Table 46 – Function Ψ(θ) for different values of θ .

θ 0.50 1.00 1.50 3.00 5.00 10.00

Ψ(θ) 2.5179 1.7972 1.5499 1.2945 1.1856 1.0971

Source: Elaborated by the author.

Now, the zero modification parameter can be estimated by the equation

p̂ = s
�
θ̂ , ω̂

�
=

n+

n
�
1− f

�
0; θ̂

�� ,

for f (·;θ) ∈ ℱ2. The variance of p̂ can be estimated using the delta-method. Since θ̂ and ω̂ are
orthogonal, the covariance between them is equal to 0. Hence,

�V(p̂) ≈ �V
�
θ̂
�� ∂

∂θ
s(θ ,ω)

�2

+ �V(ω̂)

�
∂

∂ω
s(θ ,ω)

�2

≈ n+

n2
�
1− f

�
0; θ̂

��2

�
n+

�V
�
θ̂
�

d2�θ̂
�

�
1− f

�
0; θ̂

��2 +

�
n−n+

�

n

�
,
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where d(θ̂) = d
dθ f (0;θ) evaluated at θ̂ . The expression of function d for the 𝒫ℒ, the 𝒫𝒮h and

the 𝒫𝒮u distributions are given, respectively, by

θ̂
�
θ̂ +4

�
�
θ̂ +1

�4 ,
θ̂
�
θ̂ 4 + θ̂ 3 +5θ̂ 2 +3θ̂ +2

�
�
θ̂ 2 +1

�2 �θ̂ +1
�3 and

θ̂ 2 �θ̂ 4 +6θ̂ 3 +25θ̂ 2 +32θ̂ +24
�

�
θ̂ 2 + θ̂ +2

�2 �θ̂ +1
�4 .

A.2 Model comparison and suitability
There are several methods for Bayesian model selection, which are useful to compare

competing models that were fitted on the same dataset. One of the most used criteria is the
deviance information criterion (DIC), which was proposed to work simultaneously as a measure
of fit and complexity of the model. Let YYY = (Y1, . . . ,Yn) a random sample of size n from f (·;θθθ),
θθθ ∈ΘΘΘ, and yyy = (y1, . . . ,yn) its observed values. The DIC criterion is given by

DIC = D̄(θθθ)+ρD = 2D̄(θθθ)−D(θ̃θθ),

where D̄(θθθ) =−2E{log[ f (YYY ;θθθ)]} is the posterior expectation of the deviance. In this case, the
deviance is evaluated at some estimate θ̃θθ for θθθ , being the posterior conditional mean a natural
choice for θ̃θθ . In connection with a measure of model complexity, the criterion considers the
measure ρD = D̄(θθθ)−D(θ̃θθ), which correspond to the effective number of parameters in the
model. One can notice that the computation of D̄(θθθ) is a complex numerical problem. In this
case, a MC estimator for such a measure is given by

D̄ =− 2
M

M

∑
j=1

log
�

f
�

yyy;θθθ ( j)
��

,

and hence, the DIC can be approximated by

�DIC = 2D̄−D(θ̃θθ).

Using the estimate D̄, one can define other criteria that can be considered when com-
paring models. The expected Akaike information criterion (EAIC) and the expected Bayesian
information criterion (EBIC) can be estimated as

�EAIC = D̄+2q and �EBIC = D̄+q log(n) ,

where q is the total number of estimated parameters in the model. See Carlin and Louis (2001),
Spiegelhalter et al. (2002) and Brooks (2002) for further details on these comparison criteria.
Another widely used criterion is derived from the conditional predictive ordinate (CPO) statistic
(GEISSER; EDDY, 1979), which is based on the cross validation criterion to compare models.
For the i-th observation of yyy, the CPOi is given by

CPOi =
�

ΘΘΘ
f (yi;θθθ)π

�
θθθ ;yyy(−i)

�
dθθθ ,
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where yyy(−i) is the sample vector after removal of the i-th observation. In practice, there are
several situations in which the CPOi does not have a closed-form. In this case, a MC estimator
for such a measure is given by

�CPOi =


 1

M

M

∑
k=1

1

f
�

yi;θθθ (k)
�



−1

.

A summary statistic of the CPO measure is the log-marginal pseudo-likelihood (LMPL)
given by the sum of the logarithms of �CPOi’s. In terms of model comparison, we have that the
lower the value of DIC, EAIC, and EBIC, the better the fit. On the other hand, for the latter
criterion, we have that the higher the value of LMPL, the better the fit. Also, one can notice that
for all the presented criteria, the evaluation of the likelihood function is quite important task. In
our case, this function is available in closed-form and is given by (2.6).

Once the best model has been determined, its fit to the data should be evaluated. To
assess model suitability, one can use a discrepancy measure based on the ppd. For instance,
if any observed value is extremely relative to the ppd, the adequacy of the model-fit might be
questionable. By letting yyy as the observed vector, the discrepancy measure between model and
data is computed as a summary statistic given by

T (yyy,θθθ) =−2
n

∑
i=1

log [ f (yi;θθθ)] .

The Bayesian p-value (posterior predictive p-value), proposed by Rubin (1984), is
defined as

pB = P [T (yyys,θθθ)� T (yyy,θθθ) ;Y = y] ,

where yyys denotes the simulated vector from (2.15). This measure is calculated as the number of
times T (yyys,θθθ) exceeds T (yyy,θθθ) out of N simulated drawns. Gelman et al. (2004) states that a
model becomes suspect if the discrepancy is of practical relevance and its p-value is close to
0 or 1. A very large (small) p-value, say greater than 0.95 (lower than 0.05), indicates model
misspecification, that is, the observed behaviour would be unlikely to be seen if we replicate the
data under the true model.

A.3 Results from the simulation studies

This section contains a full report regarding the obtained results in each simulation study
proposed in the paper. The goals and particularities of each study are presented in Section 2.6 of
the manuscript.
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A.3.1 Study 1

A.3.1.1 Zero-inflated artificial data

The following tables illustrate the results obtained in the first simulation study, consider-
ing Scenarios 1-4 of the zero-inflated case as described in Section 2.6 (Table 6)

Table 47 – Empirical properties of the Bayesian estimators using zero-inflated samples (𝒵ℳ𝒫ℒ model,
θ = 0.50).

n Parameter Bias Var MSE MAPE (%)

Scenario 1

50
θ 0.1080 0.0606 0.0723 36.2519
ω 0.0034 0.0029 0.0029 26.2943
p 0.0171 0.0048 0.0051 28.1300

100
θ 0.0455 0.0205 0.0226 20.6406
ω 0.0021 0.0014 0.0014 18.7453
p 0.0083 0.0024 0.0024 19.7549

200
θ 0.0252 0.0095 0.0102 14.1610
ω 0.0006 0.0007 0.0007 12.7316
p 0.0039 0.0011 0.0011 13.5143

500
θ 0.0094 0.0029 0.0030 8.5523
ω −0.0006 0.0003 0.0003 7.8953
p 0.0005 0.0004 0.0004 8.3193

Scenario 2

50
θ 0.0274 0.0088 0.0095 14.8179
ω −0.0033 0.0048 0.0048 8.4442
p 0.0096 0.0088 0.0089 9.1931

100
θ 0.0133 0.0042 0.0044 10.0023
ω 0.0003 0.0021 0.0021 5.5269
p 0.0071 0.0039 0.0040 6.2365

200
θ 0.0074 0.0018 0.0019 6.6842
ω 0.0003 0.0010 0.0010 3.9307
p 0.0041 0.0020 0.0020 4.5188

500
θ 0.0037 0.0006 0.0006 3.9766
ω 0.0001 0.0005 0.0005 2.5635
p 0.0020 0.0008 0.0008 2.7969

Source: Elaborated by the author.
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Table 48 – Empirical properties of the Bayesian estimators using zero-inflated samples (𝒵ℳ𝒫ℒ model,
θ = 5.00).

n Parameter Bias Var MSE MAPE (%)

Scenario 3

50
θ 1.0677 14.8947 16.0346 58.5396
ω 0.0166 0.0006 0.0009 57.7185
p 0.1926 0.1711 0.2082 127.1419

100
θ 2.6378 31.2366 38.1944 86.2703
ω 0.0057 0.0003 0.0004 39.9392
p 0.1759 0.1412 0.1721 121.5846

200
θ 4.4031 67.4253 86.8126 114.9686
ω 0.0017 0.0002 0.0002 27.6028
p 0.1908 0.1510 0.1874 122.8802

500
θ 2.7461 47.9365 55.4774 74.9845
ω 0.0004 0.0001 0.0001 17.2483
p 0.1023 0.0600 0.0705 71.3279

Scenario 4

50
θ 4.0657 57.0500 73.5797 107.4576
ω 0.0032 0.0028 0.0028 27.7432
p 0.6478 1.8494 2.2691 108.3521

100
θ 3.6657 82.2925 95.7300 93.6567
ω 0.0017 0.0014 0.0014 19.7314
p 0.5323 1.7420 2.0254 87.0143

200
θ 1.8732 43.0111 46.5200 53.6183
ω 0.0002 0.0006 0.0006 13.2571
p 0.2692 0.7824 0.8549 50.5409

500
θ 0.5331 2.4133 2.6975 22.9489
ω −0.0007 0.0002 0.0002 8.1805
p 0.0756 0.0573 0.0630 22.5011

Source: Elaborated by the author.
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Table 49 – Posterior estimates of θ , ω , and p - 𝒵ℳ𝒫ℒ model (zero-inflated case with θ = 0.50).

n Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

Scenario 1

50
θ 0.6080 0.6160 0.2462 0.2960 1.1175
ω 0.1664 0.1540 0.0539 0.0805 0.2767
p 0.2171 0.2291 0.0693 0.1014 0.3793

100
θ 0.5455 0.5535 0.1432 0.3366 0.8333
ω 0.1651 0.1527 0.0374 0.1005 0.2421
p 0.2083 0.2203 0.0490 0.1244 0.3130

200
θ 0.5252 0.5332 0.0975 0.3767 0.7103
ω 0.1635 0.1511 0.0265 0.1162 0.2173
p 0.2039 0.2159 0.0332 0.1430 0.2750

500
θ 0.5094 0.5174 0.0539 0.4149 0.6176
ω 0.1624 0.1500 0.0173 0.1315 0.1958
p 0.2005 0.2125 0.0200 0.1612 0.2437

Scenario 2

50
θ 0.5274 0.5354 0.0938 0.3792 0.7111
ω 0.6485 0.6361 0.0693 0.5157 0.7704
p 0.8096 0.8216 0.0938 0.6331 0.9874

100
θ 0.5133 0.5213 0.0648 0.4083 0.6353
ω 0.6522 0.6398 0.0458 0.5576 0.7410
p 0.8071 0.8191 0.0624 0.6822 0.9315

200
θ 0.5074 0.5154 0.0424 0.4323 0.5907
ω 0.6521 0.6397 0.0316 0.5853 0.7161
p 0.8041 0.8161 0.0447 0.7160 0.8919

500
θ 0.5037 0.5117 0.0245 0.4557 0.5551
ω 0.6520 0.6396 0.0224 0.6098 0.6929
p 0.8020 0.8140 0.0283 0.7463 0.8575

Source: Elaborated by the author.
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Table 50 – Posterior estimates of θ , ω , and p - 𝒵ℳ𝒫ℒ model (zero-inflated case with θ = 5.00).

n Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

Scenario 1

50
θ 6.0677 6.0790 3.8594 1.0101 22.0838
ω 0.0545 0.0683 0.0245 0.0122 0.1287
p 0.3926 0.3946 0.4136 0.0449 1.5928

100
θ 7.6378 7.6491 5.5890 1.4136 27.0622
ω 0.0437 0.0575 0.0173 0.0141 0.0899
p 0.3759 0.3779 0.3758 0.0560 1.4323

200
θ 9.4031 9.4144 8.2113 2.0209 31.7021
ω 0.0397 0.0535 0.0141 0.0178 0.0701
p 0.3908 0.3928 0.3886 0.0758 1.3746

500
θ 7.7461 7.7574 6.9236 2.6041 20.7141
ω 0.0384 0.0522 0.0100 0.0235 0.0567
p 0.3023 0.3043 0.2449 0.0990 0.8165

Scenario 2

50
θ 9.0657 9.0770 7.5531 1.9686 30.4054
ω 0.1550 0.1688 0.0529 0.0726 0.2628
p 1.4478 1.4498 1.3599 0.2960 4.9892

100
θ 8.6657 8.6770 9.0715 2.5008 25.5350
ω 0.1536 0.1674 0.0374 0.0912 0.2289
p 1.3323 1.3343 1.3198 0.3829 3.9335

200
θ 6.8732 6.8845 6.5583 2.8888 15.7468
ω 0.1521 0.1659 0.0245 0.1063 0.2045
p 1.0692 1.0712 0.8845 0.4488 2.4440

500
θ 5.5331 5.5444 1.5535 3.3652 8.9952
ω 0.1512 0.1650 0.0141 0.1213 0.1837
p 0.8756 0.8776 0.2394 0.5295 1.4302

Source: Elaborated by the author.
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Table 51 – Coverage probabilities (%) of the BCIs using zero-inflated samples (𝒵ℳ𝒫ℒ model, θ =
0.50).

n Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 1 Scenario 2

50
θ 4.00 93.40 2.60 3.60 93.00 3.40
ω 2.00 94.20 3.80 3.40 94.00 2.60
p 2.40 95.40 2.20 5.00 92.80 2.20

100
θ 1.80 96.00 2.20 3.20 94.40 2.40
ω 2.60 94.00 3.40 3.20 94.80 2.00
p 2.40 94.80 2.80 3.00 95.80 1.20

200
θ 3.00 94.40 2.60 3.40 94.60 2.00
ω 1.20 96.60 2.20 2.20 95.40 2.40
p 2.00 96.40 1.60 2.00 96.00 2.00

500
θ 2.20 95.40 2.40 1.20 96.20 2.60
ω 2.00 95.20 2.80 2.60 95.20 2.20
p 2.80 94.20 3.00 3.00 94.80 2.20

Source: Elaborated by the author.

Table 52 – Coverage probabilities (%) of the BCIs using zero-inflated samples (𝒵ℳ𝒫ℒ model, θ =
5.00).

n Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 3 Scenario 4

50
θ 0.00 91.20 8.80 1.60 93.40 5.00
ω 5.20 94.80 0.00 3.20 92.00 4.80
p 3.20 96.00 0.80 3.00 91.20 5.80

100
θ 0.00 93.20 6.80 5.60 91.00 3.40
ω 3.40 96.60 0.00 2.40 94.00 3.60
p 2.60 94.60 2.80 5.00 92.00 3.00

200
θ 2.40 92.20 5.40 3.20 94.20 2.60
ω 0.80 96.20 3.00 1.20 96.80 2.00
p 3.20 92.00 4.80 3.80 93.60 2.60

500
θ 3.00 93.00 4.00 2.80 95.20 2.00
ω 2.00 95.60 2.40 1.40 96.40 2.20
p 4.00 91.00 5.00 3.20 94.40 2.40

Source: Elaborated by the author.
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Table 53 – Empirical properties of the Bayesian estimators using zero-inflated samples (𝒵ℳ𝒫𝒮h model,
θ = 0.50).

n Parameter Bias Var MSE MAPE (%)

Scenario 1

50
θ 0.0848 0.0402 0.0474 30.9839
ω 0.0039 0.0029 0.0029 25.2611
p 0.0174 0.0045 0.0048 27.0907

100
θ 0.0377 0.0153 0.0167 18.5781
ω 0.0026 0.0015 0.0015 18.2788
p 0.0088 0.0022 0.0023 19.1378

200
θ 0.0214 0.0072 0.0076 12.9463
ω 0.0009 0.0007 0.0007 12.5279
p 0.0043 0.0011 0.0011 13.1377

500
θ 0.0084 0.0024 0.0025 7.9089
ω −0.0003 0.0003 0.0003 7.6647
p 0.0009 0.0004 0.0004 8.0367

Scenario 2

50
θ 0.0226 0.0070 0.0076 13.3959
ω −0.0039 0.0046 0.0046 7.8656
p 0.0090 0.0078 0.0079 8.7908

100
θ 0.0107 0.0034 0.0035 9.2027
ω −0.0003 0.0021 0.0021 5.3950
p 0.0062 0.0035 0.0035 6.0171

200
θ 0.0055 0.0015 0.0015 6.0411
ω −0.0004 0.0010 0.0010 3.7801
p 0.0029 0.0018 0.0018 4.3054

500
θ 0.0029 0.0005 0.0005 3.6587
ω −0.0001 0.0004 0.0004 2.4419
p 0.0015 0.0007 0.0007 2.6882

Source: Elaborated by the author.
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Table 54 – Empirical properties of the Bayesian estimators using zero-inflated samples (𝒵ℳ𝒫𝒮h model,
θ = 5.00).

n Parameter Bias Var MSE MAPE (%)

Scenario 3

50
θ −0.3298 8.3335 8.4422 44.6405
ω 0.0170 0.0005 0.0008 60.0575
p 0.1139 0.1030 0.1160 97.1146

100
θ 1.5402 21.4820 23.8543 69.5817
ω 0.0062 0.0003 0.0003 40.4844
p 0.1272 0.1014 0.1176 104.3386

200
θ 4.1031 61.3412 78.1763 111.2650
ω 0.0017 0.0002 0.0002 29.4944
p 0.1725 0.1358 0.1656 117.6234

500
θ 3.5390 79.4106 91.9354 92.1415
ω 0.0005 0.0001 0.0001 18.2152
p 0.1200 0.0869 0.1013 81.7623

Scenario 4

50
θ 3.6419 48.2332 61.4965 101.3040
ω 0.0046 0.0025 0.0025 28.8019
p 0.5587 1.4186 1.7307 100.0529

100
θ 4.2056 94.2202 111.9070 106.9576
ω 0.0026 0.0012 0.0013 20.3847
p 0.5749 1.8067 2.1373 95.2501

200
θ 2.2536 43.1892 48.2678 62.2680
ω 0.0006 0.0006 0.0006 14.0695
p 0.2952 0.6539 0.7410 54.7191

500
θ 0.6656 3.1470 3.5900 27.0701
ω −0.0002 0.0002 0.0002 8.7723
p 0.0888 0.0688 0.0767 25.0646

Source: Elaborated by the author.
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Table 55 – Posterior estimates of θ , ω , and p - 𝒵ℳ𝒫𝒮h model (zero-inflated case with θ = 0.50).

n Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

Scenario 1

50
θ 0.5848 0.5893 0.2005 0.3045 1.0112
ω 0.1728 0.1633 0.0539 0.0852 0.2846
p 0.2174 0.2080 0.0671 0.1035 0.3750

100
θ 0.5377 0.5422 0.1237 0.3459 0.7907
ω 0.1714 0.1619 0.0387 0.1056 0.2496
p 0.2088 0.1994 0.0469 0.1264 0.3112

200
θ 0.5214 0.5259 0.0849 0.3844 0.6866
ω 0.1698 0.1603 0.0265 0.1215 0.2242
p 0.2043 0.1949 0.0332 0.1445 0.2735

500
θ 0.5084 0.5129 0.0490 0.4210 0.6066
ω 0.1685 0.1590 0.0173 0.1372 0.2025
p 0.2009 0.1915 0.0200 0.1624 0.2431

Scenario 2

50
θ 0.5226 0.5271 0.0837 0.3861 0.6870
ω 0.6717 0.6622 0.0678 0.5401 0.7906
p 0.8090 0.7996 0.0883 0.6405 0.9767

100
θ 0.5107 0.5152 0.0583 0.4139 0.6210
ω 0.6753 0.6658 0.0458 0.5820 0.7623
p 0.8062 0.7968 0.0592 0.6876 0.9235

200
θ 0.5055 0.5100 0.0387 0.4363 0.5813
ω 0.6752 0.6657 0.0316 0.6093 0.7377
p 0.8029 0.7935 0.0424 0.7192 0.8857

500
θ 0.5029 0.5074 0.0224 0.4586 0.5499
ω 0.6754 0.6659 0.0200 0.6339 0.7156
p 0.8015 0.7921 0.0265 0.7486 0.8539

Source: Elaborated by the author.



A.3. Results from the simulation studies 213

Table 56 – Posterior estimates of θ , ω , and p - 𝒵ℳ𝒫𝒮h model (zero-inflated case with θ = 5.00).

n Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

Scenario 1

50
θ 4.6702 4.6747 2.8868 0.8488 16.9624
ω 0.0514 0.0419 0.0224 0.0108 0.1240
p 0.3139 0.3045 0.3209 0.0367 1.2388

100
θ 6.5402 6.5447 4.6349 1.2405 23.4675
ω 0.0406 0.0311 0.0173 0.0125 0.0855
p 0.3272 0.3178 0.3184 0.0487 1.2367

200
θ 9.1031 9.1076 7.8321 1.8537 31.7380
ω 0.0361 0.0266 0.0141 0.0155 0.0654
p 0.3725 0.3631 0.3685 0.0689 1.3261

500
θ 8.5390 8.5435 8.9113 2.5188 25.0256
ω 0.0349 0.0254 0.0100 0.0208 0.0526
p 0.3200 0.3106 0.2948 0.0949 0.9228

Scenario 2

50
θ 8.6419 8.6464 6.9450 1.7958 29.8891
ω 0.1422 0.1327 0.0500 0.0637 0.2470
p 1.3587 1.3493 1.1910 0.2672 4.7205

100
θ 9.2056 9.2101 9.7067 2.4013 28.8794
ω 0.1403 0.1308 0.0346 0.0808 0.2131
p 1.3749 1.3655 1.3441 0.3645 4.2288

200
θ 7.2536 7.2581 6.5718 2.7725 17.9926
ω 0.1382 0.1287 0.0245 0.0944 0.1887
p 1.0952 1.0858 0.8086 0.4298 2.6290

500
θ 5.6656 5.6701 1.7740 3.2407 9.8288
ω 0.1374 0.1279 0.0141 0.1088 0.1688
p 0.8888 0.8794 0.2623 0.5133 1.5163

Source: Elaborated by the author.
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Table 57 – Coverage probabilities (%) of the BCIs using zero-inflated samples (𝒵ℳ𝒫𝒮h model, θ =
0.50).

n Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 1 Scenario 2

50
θ 3.40 94.00 2.60 4.00 92.80 3.20
ω 2.60 94.20 3.20 3.80 92.40 3.80
p 2.40 96.20 1.40 4.20 93.20 2.60

100
θ 3.00 95.00 2.00 3.20 94.40 2.40
ω 2.40 95.00 2.60 3.20 94.60 2.20
p 2.80 94.80 2.40 3.00 95.20 1.80

200
θ 2.80 95.00 2.20 3.00 95.40 1.60
ω 1.60 96.20 2.20 2.20 95.60 2.20
p 2.40 95.80 1.80 2.60 94.80 2.60

500
θ 2.20 95.80 2.00 1.20 96.00 2.80
ω 2.00 95.00 3.00 2.40 95.80 1.80
p 2.60 94.40 3.00 2.80 94.60 2.60

Source: Elaborated by the author.

Table 58 – Coverage probabilities (%) of the BCIs using zero-inflated samples (𝒵ℳ𝒫𝒮h model, θ =
5.00).

n Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 3 Scenario 4

50
θ 0.00 89.40 10.60 0.20 94.40 5.40
ω 4.20 95.80 0.00 3.00 94.40 2.60
p 2.20 96.80 1.00 2.60 91.60 5.80

100
θ 0.00 92.80 7.20 5.80 91.00 3.20
ω 3.40 96.60 0.00 3.60 93.00 3.40
p 0.80 95.00 4.20 5.00 92.00 3.00

200
θ 2.00 92.20 5.80 4.20 93.20 2.60
ω 1.40 94.20 4.40 2.40 94.40 3.20
p 3.80 90.80 5.40 4.00 92.20 3.80

500
θ 4.40 92.00 3.60 2.80 94.80 2.40
ω 2.80 95.20 2.00 2.20 95.80 2.00
p 3.40 92.20 4.40 2.20 95.40 2.40

Source: Elaborated by the author.



A.3. Results from the simulation studies 215

Table 59 – Empirical properties of the Bayesian estimators using zero-inflated samples (𝒵ℳ𝒫𝒮u model,
θ = 0.50).

n Parameter Bias Var MSE MAPE (%)

Scenario 1

50
θ 0.0564 0.0226 0.0258 23.3386
ω 0.0037 0.0032 0.0032 24.2683
p 0.0096 0.0038 0.0039 24.6519

100
θ 0.0253 0.0088 0.0094 14.1633
ω 0.0026 0.0016 0.0016 17.7310
p 0.0054 0.0019 0.0020 17.9916

200
θ 0.0155 0.0042 0.0045 9.9899
ω 0.0014 0.0008 0.0008 11.9265
p 0.0031 0.0009 0.0009 12.0260

500
θ 0.0066 0.0015 0.0016 6.3728
ω −0.0001 0.0003 0.0003 7.5151
p 0.0006 0.0004 0.0004 7.6590

Scenario 2

50
θ 0.0142 0.0042 0.0044 10.4302
ω −0.0065 0.0042 0.0042 6.7847
p −0.0015 0.0051 0.0051 7.0153

100
θ 0.0056 0.0020 0.0020 7.0637
ω −0.0032 0.0019 0.0019 4.7174
p −0.0011 0.0023 0.0023 4.8888

200
θ 0.0034 0.0009 0.0009 4.6752
ω −0.0012 0.0010 0.0010 3.3366
p 0.0001 0.0012 0.0012 3.4981

500
θ 0.0017 0.0003 0.0003 3.0550
ω −0.0008 0.0004 0.0004 2.0563
p −0.0003 0.0005 0.0005 2.1356

Source: Elaborated by the author.
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Table 60 – Empirical properties of the Bayesian estimators using zero-inflated samples (𝒵ℳ𝒫𝒮u model,
θ = 5.00).

n Parameter Bias Var MSE MAPE (%)

Scenario 3

50
θ 0.8989 11.9023 12.7103 51.0886
ω 0.0155 0.0006 0.0009 54.7119
p 0.1682 0.1451 0.1734 116.1277

100
θ 2.3809 26.7883 32.4568 77.7677
ω 0.0053 0.0004 0.0004 38.2572
p 0.1652 0.1345 0.1618 116.7277

200
θ 3.7150 56.7867 70.5876 98.3843
ω 0.0017 0.0002 0.0002 26.4489
p 0.1726 0.1450 0.1748 113.4977

500
θ 2.0941 37.3556 41.7409 59.9110
ω 0.0003 0.0001 0.0001 16.4346
p 0.0863 0.0595 0.0669 63.4104

Scenario 4

50
θ 3.1828 42.1853 52.3154 87.1116
ω 0.0035 0.0029 0.0029 26.2223
p 0.5437 1.4252 1.7207 94.5984

100
θ 2.6997 56.4750 63.7636 72.7466
ω 0.0023 0.0014 0.0015 18.7618
p 0.4311 1.3626 1.5485 74.7180

200
θ 1.4198 24.7754 26.7912 42.6647
ω 0.0008 0.0007 0.0007 12.7431
p 0.2313 0.5806 0.6341 45.0595

500
θ 0.4012 1.5921 1.7531 18.4887
ω −0.0006 0.0003 0.0003 7.8841
p 0.0638 0.0490 0.0531 20.4783

Source: Elaborated by the author.
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Table 61 – Posterior estimates of θ , ω , and p - 𝒵ℳ𝒫𝒮u model (zero-inflated case with θ = 0.50).

n Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

Scenario 1

50
θ 0.5564 0.5568 0.1503 0.3314 0.8744
ω 0.1882 0.1984 0.0566 0.0964 0.3030
p 0.2096 0.2057 0.0616 0.1063 0.3419

100
θ 0.5253 0.5257 0.0938 0.3702 0.7205
ω 0.1871 0.1973 0.0400 0.1185 0.2675
p 0.2054 0.2015 0.0436 0.1294 0.2954

200
θ 0.5155 0.5159 0.0648 0.4049 0.6452
ω 0.1860 0.1962 0.0283 0.1356 0.2421
p 0.2031 0.1992 0.0300 0.1477 0.2653

500
θ 0.5066 0.5070 0.0387 0.4360 0.5845
ω 0.1844 0.1946 0.0173 0.1519 0.2194
p 0.2006 0.1967 0.0200 0.1649 0.2390

Scenario 2

50
θ 0.5142 0.5146 0.0648 0.4044 0.6426
ω 0.7315 0.7417 0.0648 0.6051 0.8410
p 0.7985 0.7946 0.0714 0.6577 0.9247

100
θ 0.5056 0.5060 0.0447 0.4274 0.5928
ω 0.7349 0.7451 0.0436 0.6455 0.8154
p 0.7989 0.7950 0.0480 0.6997 0.8902

200
θ 0.5034 0.5038 0.0300 0.4477 0.5637
ω 0.7369 0.7471 0.0316 0.6743 0.7950
p 0.8001 0.7962 0.0346 0.7306 0.8655

500
θ 0.5017 0.5021 0.0173 0.4660 0.5392
ω 0.7372 0.7474 0.0200 0.6979 0.7747
p 0.7997 0.7958 0.0224 0.7561 0.8417

Source: Elaborated by the author.
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Table 62 – Posterior estimates of θ , ω , and p - 𝒵ℳ𝒫𝒮u model (zero-inflated case with θ = 5.00).

n Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

Scenario 1

50
θ 5.8989 5.9115 3.4500 1.1673 20.6402
ω 0.0564 0.0501 0.0245 0.0131 0.1315
p 0.3682 0.3764 0.3809 0.0433 1.4863

100
θ 7.3809 7.3935 5.1757 1.6252 25.1183
ω 0.0462 0.0399 0.0200 0.0155 0.0934
p 0.3652 0.3734 0.3667 0.0564 1.3757

200
θ 8.7150 8.7276 7.5357 2.2390 27.9090
ω 0.0425 0.0362 0.0141 0.0197 0.0739
p 0.3726 0.3808 0.3808 0.0767 1.2756

500
θ 7.0941 7.1067 6.1119 2.8360 17.3709
ω 0.0412 0.0349 0.0100 0.0257 0.0601
p 0.2863 0.2945 0.2439 0.1010 0.7348

Scenario 2

50
θ 8.1828 8.1954 6.4950 2.1716 25.7631
ω 0.1669 0.1606 0.0539 0.0809 0.2773
p 1.3437 1.3519 1.1938 0.2979 4.4706

100
θ 7.6997 7.7123 7.5150 2.7085 20.7617
ω 0.1657 0.1594 0.0374 0.1010 0.2430
p 1.2311 1.2393 1.1673 0.3875 3.4284

200
θ 6.4198 6.4324 4.9775 3.1480 13.2801
ω 0.1642 0.1579 0.0265 0.1167 0.2180
p 1.0313 1.0395 0.7620 0.4647 2.2119

500
θ 5.4012 5.4138 1.2618 3.5952 8.1502
ω 0.1629 0.1566 0.0173 0.1320 0.1963
p 0.8638 0.8720 0.2214 0.5439 1.3539

Source: Elaborated by the author.
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Table 63 – Coverage probabilities (%) of the BCIs using zero-inflated samples (𝒵ℳ𝒫𝒮u model, θ =
0.50).

n Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 1 Scenario 2

50
θ 3.60 94.00 2.40 4.00 92.80 3.20
ω 3.80 91.80 4.40 4.60 92.20 3.20
p 3.80 93.40 2.80 4.60 92.40 3.00

100
θ 3.20 94.60 2.20 3.40 93.60 3.00
ω 2.40 93.80 3.80 3.00 94.40 2.60
p 2.60 94.40 3.00 2.80 95.00 2.20

200
θ 2.00 95.80 2.20 2.60 95.80 1.60
ω 2.40 95.00 2.60 3.60 94.80 1.60
p 2.80 95.20 2.00 3.20 94.40 2.40

500
θ 2.40 96.00 1.60 1.80 96.40 1.80
ω 2.40 95.60 2.00 2.60 95.20 2.20
p 2.60 95.00 2.40 3.00 95.20 1.80

Source: Elaborated by the author.

Table 64 – Coverage probabilities (%) of the BCIs using zero-inflated samples (𝒵ℳ𝒫𝒮u model, θ =
5.00).

n Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 3 Scenario 4

50
θ 0.00 94.40 5.60 1.60 93.60 4.80
ω 2.40 97.60 0.00 2.20 94.00 3.80
p 2.80 96.00 1.20 2.40 93.00 4.60

100
θ 0.00 94.40 5.60 4.40 92.60 3.00
ω 3.20 96.80 0.00 2.60 94.20 3.20
p 3.20 93.80 3.00 3.80 92.80 3.40

200
θ 2.40 93.00 4.60 3.40 94.20 2.40
ω 1.40 94.80 3.80 1.00 96.60 2.40
p 2.80 93.00 4.20 4.00 92.80 3.20

500
θ 4.00 92.40 3.60 2.60 95.40 2.00
ω 2.00 95.00 3.00 1.80 95.20 3.00
p 3.20 92.00 4.80 3.00 94.40 2.60

Source: Elaborated by the author.
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A.3.1.2 Zero-deflated artificial data

The following tables illustrate the results obtained in the first simulation study, consider-
ing scenarios 1-4 of the zero-deflated case as described in Section 2.6 (Table 6).

Table 65 – Empirical properties of the Bayesian estimators using zero-deflated samples (𝒵ℳ𝒫ℒ model,
θ = 2.50).

n Parameter Bias Var MSE MAPE (%)

Scenario 1

50
θ 0.5872 2.2849 2.6296 38.7108
ω −0.0036 0.0056 0.0056 12.3448
p 0.2543 0.4621 0.5268 33.6599

100
θ 0.2517 0.5681 0.6315 22.0659
ω 0.0009 0.0027 0.0027 8.6409
p 0.1165 0.1219 0.1355 19.5120

200
θ 0.1320 0.2202 0.2376 14.6123
ω 0.0009 0.0012 0.0012 5.7611
p 0.0646 0.0541 0.0583 13.3916

500
θ 0.0615 0.0700 0.0738 8.5006
ω 0.0006 0.0005 0.0005 3.7450
p 0.0305 0.0197 0.0206 8.0638

Scenario 2

50
θ 0.2958 0.6334 0.7209 24.1878
ω −0.0059 0.0033 0.0034 5.5602
p 0.2167 0.3921 0.4391 19.8135

100
θ 0.1347 0.2598 0.2780 15.3883
ω −0.0030 0.0013 0.0013 3.4556
p 0.0979 0.1568 0.1664 12.4787

200
θ 0.0697 0.1086 0.1134 9.9585
ω −0.0020 0.0008 0.0008 2.6564
p 0.0498 0.0706 0.0731 8.4424

500
θ 0.0298 0.0367 0.0376 6.1903
ω −0.0016 0.0003 0.0003 1.7113
p 0.0191 0.0241 0.0245 5.2450

Source: Elaborated by the author.
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Table 66 – Empirical properties of the Bayesian estimators using zero-deflated samples (𝒵ℳ𝒫ℒ model,
θ = 6.00).

n Parameter Bias Var MSE MAPE (%)

Scenario 3

50
θ 5.1449 104.0101 130.4798 110.0221
ω 0.0024 0.0038 0.0038 21.9213
p 1.1601 6.0880 7.4338 108.0458

100
θ 4.0243 124.7600 140.9553 87.1485
ω 0.0022 0.0020 0.0020 15.8825
p 0.8806 5.7641 6.5396 83.5732

200
θ 1.9601 51.2473 55.0892 48.1096
ω 0.0008 0.0009 0.0009 10.9028
p 0.4331 2.3479 2.5355 46.7987

500
θ 0.5535 2.8691 3.1754 20.6722
ω −0.0004 0.0004 0.0004 6.7408
p 0.1217 0.1561 0.1709 21.2245

Scenario 4

50
θ 4.0865 105.3742 122.0737 89.6096
ω 0.0015 0.0051 0.0051 14.7628
p 1.5751 17.0394 19.5203 86.5442

100
θ 1.7836 47.6696 50.8508 46.6722
ω 0.0023 0.0028 0.0028 10.8051
p 0.7057 8.4348 8.9327 46.1133

200
θ 0.8054 6.4923 7.1410 27.1256
ω −0.0001 0.0012 0.0012 7.0980
p 0.3077 0.8990 0.9937 27.0022

500
θ 0.3258 1.2229 1.3290 14.6293
ω −0.0001 0.0005 0.0005 4.5344
p 0.1257 0.1985 0.2143 14.7487

Source: Elaborated by the author.
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Table 67 – Posterior estimates of θ , ω , and p - 𝒵ℳ𝒫ℒ model (zero-deflated case with θ = 2.50).

n Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

Scenario 1

50
θ 3.0872 3.1010 1.5116 1.5622 5.8608
ω 0.4780 0.4798 0.0748 0.3453 0.6123
p 1.6543 1.6465 0.6798 0.8902 3.0310

100
θ 2.7517 2.7655 0.7537 1.7443 4.2541
ω 0.4825 0.4843 0.0520 0.3868 0.5790
p 1.5165 1.5087 0.3491 1.0023 2.2782

200
θ 2.6320 2.6458 0.4693 1.9193 3.5687
ω 0.4826 0.4844 0.0346 0.4141 0.5514
p 1.4646 1.4568 0.2326 1.0988 1.9444

500
θ 2.5615 2.5753 0.2646 2.1044 3.1041
ω 0.4822 0.4840 0.0224 0.4386 0.5259
p 1.4305 1.4227 0.1404 1.1956 1.7090

Scenario 2

50
θ 2.7958 2.8096 0.7959 1.7079 4.4682
ω 0.8198 0.8216 0.0574 0.7067 0.9092
p 2.6167 2.6089 0.6262 1.7507 3.9608

100
θ 2.6347 2.6485 0.5097 1.8749 3.6565
ω 0.8227 0.8245 0.0361 0.7436 0.8898
p 2.4979 2.4901 0.3960 1.8921 3.3185

200
θ 2.5697 2.5835 0.3295 2.0261 3.2393
ω 0.8236 0.8254 0.0283 0.7685 0.8727
p 2.4498 2.4420 0.2657 2.0163 2.9869

500
θ 2.5298 2.5436 0.1916 2.1795 2.9285
ω 0.8241 0.8259 0.0173 0.7897 0.8560
p 2.4191 2.4113 0.1552 2.1396 2.7389

Source: Elaborated by the author.
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Table 68 – Posterior estimates of θ , ω , and p - 𝒵ℳ𝒫ℒ model (zero-deflated case with θ = 6.00).

n Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

Scenario 1

50
θ 11.1449 11.1514 10.1985 2.6134 36.4116
ω 0.2269 0.2156 0.0616 0.1260 0.3481
p 2.5601 2.5554 2.4674 0.5852 8.4908

100
θ 10.0243 10.0308 11.1696 3.2102 27.9620
ω 0.2267 0.2154 0.0447 0.1515 0.3121
p 2.2806 2.2759 2.4009 0.7325 6.3537

200
θ 7.9601 7.9666 7.1587 3.6697 16.9878
ω 0.2253 0.2140 0.0300 0.1707 0.2851
p 1.8331 1.8284 1.5323 0.8456 3.9126

500
θ 6.5535 6.5600 1.6938 4.2039 10.1489
ω 0.2241 0.2128 0.0200 0.1888 0.2614
p 1.5217 1.5170 0.3951 0.9725 2.3654

Scenario 2

50
θ 10.0865 10.0930 10.2652 3.0750 28.8456
ω 0.3863 0.3750 0.0714 0.2605 0.5207
p 3.9751 3.9704 4.1279 1.2230 11.3772

100
θ 7.7836 7.7901 6.9043 3.4684 16.9435
ω 0.3871 0.3758 0.0529 0.2956 0.4830
p 3.1057 3.1010 2.9043 1.3970 6.7629

200
θ 6.8054 6.8119 2.5480 3.9472 11.6039
ω 0.3847 0.3734 0.0346 0.3190 0.4525
p 2.7077 2.7030 0.9482 1.5792 4.6128

500
θ 6.3258 6.3323 1.1058 4.5316 8.7902
ω 0.3848 0.3735 0.0224 0.3427 0.4276
p 2.5257 2.5210 0.4455 1.8143 3.5074

Source: Elaborated by the author.
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Table 69 – Coverage probabilities (%) of the BCIs using zero-deflated samples (𝒵ℳ𝒫ℒ model, θ =
2.50).

n Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 1 Scenario 2

50
θ 4.80 91.80 3.40 3.40 93.40 3.20
ω 3.20 92.40 4.40 3.20 94.00 2.80
p 4.00 92.20 3.80 3.60 93.60 2.80

100
θ 3.20 94.20 2.60 2.60 95.00 2.40
ω 4.00 93.60 2.40 2.00 95.80 2.20
p 3.60 93.60 2.80 3.00 94.40 2.60

200
θ 4.00 93.80 2.20 3.20 95.00 1.80
ω 2.00 95.60 2.40 2.60 94.40 3.00
p 3.60 93.20 3.20 2.80 94.40 2.80

500
θ 3.80 94.00 2.20 2.00 94.80 3.20
ω 1.60 95.80 2.60 1.80 94.80 3.40
p 4.40 93.00 2.60 2.60 94.20 3.20

Source: Elaborated by the author.

Table 70 – Coverage probabilities (%) of the BCIs using zero-deflated samples (𝒵ℳ𝒫ℒ model, θ =
6.00).

n Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 3 Scenario 4

50
θ 4.80 90.60 4.60 3.60 92.40 4.00
ω 3.20 93.40 3.40 3.40 93.00 3.60
p 4.60 91.20 4.20 4.40 91.20 4.40

100
θ 5.60 90.80 3.60 3.20 92.80 4.00
ω 3.40 92.60 4.00 4.60 91.20 4.20
p 5.40 90.60 4.00 3.00 94.00 3.00

200
θ 4.00 93.40 2.60 2.40 93.80 3.80
ω 2.20 94.60 3.20 2.40 94.40 3.20
p 4.80 92.40 2.80 2.60 93.20 4.20

500
θ 3.00 95.20 1.80 2.20 94.60 3.20
ω 4.20 92.40 3.40 2.00 94.80 3.20
p 2.60 94.60 2.80 4.00 92.60 3.40

Source: Elaborated by the author.
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Table 71 – Empirical properties of the Bayesian estimators using zero-deflated samples (𝒵ℳ𝒫𝒮h model,
θ = 2.50).

n Parameter Bias Var MSE MAPE (%)

Scenario 1

50
θ 0.6431 2.6288 3.0424 40.7919
ω −0.0026 0.0052 0.0052 13.0551
p 0.2704 0.5382 0.6113 35.5518

100
θ 0.2778 0.6263 0.7034 22.7574
ω 0.0008 0.0026 0.0026 9.2075
p 0.1246 0.1419 0.1574 20.8770

200
θ 0.1470 0.2489 0.2705 14.9533
ω 0.0003 0.0012 0.0012 6.2788
p 0.0685 0.0649 0.0696 14.4486

500
θ 0.0630 0.0794 0.0833 8.9057
ω 0.0001 0.0005 0.0005 3.9387
p 0.0299 0.0237 0.0246 8.6947

Scenario 2

50
θ 0.3842 1.1667 1.3143 28.1364
ω −0.0061 0.0040 0.0041 6.5609
p 0.2752 0.7434 0.8192 23.9563

100
θ 0.1623 0.3541 0.3805 16.8785
ω −0.0037 0.0018 0.0018 4.5426
p 0.1136 0.2357 0.2486 14.4426

200
θ 0.0774 0.1230 0.1290 10.8767
ω −0.0017 0.0010 0.0010 3.2379
p 0.0557 0.0912 0.0943 9.8702

500
θ 0.0353 0.0398 0.0410 6.3614
ω −0.0012 0.0003 0.0004 1.9701
p 0.0241 0.0301 0.0307 5.7739

Source: Elaborated by the author.
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Table 72 – Empirical properties of the Bayesian estimators using zero-deflated samples (𝒵ℳ𝒫𝒮h model,
θ = 6.00).

n Parameter Bias Var MSE MAPE (%)

Scenario 3

50
θ 5.2632 103.0505 130.7522 114.6161
ω 0.0025 0.0036 0.0036 23.4158
p 1.1039 5.4860 6.7046 107.4200

100
θ 4.7599 160.4740 183.1310 100.7584
ω 0.0019 0.0018 0.0019 16.7770
p 0.9399 6.4959 7.3793 88.7662

200
θ 2.4685 84.6359 90.7293 57.1014
ω 0.0007 0.0009 0.0009 11.4027
p 0.4850 2.9058 3.1411 50.6630

500
θ 0.6439 3.6796 4.0943 22.8275
ω −0.0003 0.0003 0.0003 7.0875
p 0.1288 0.1732 0.1898 22.0107

Scenario 4

50
θ 5.6309 174.5981 206.3046 116.8171
ω 0.0018 0.0049 0.0049 15.8665
p 1.9876 24.0226 27.9730 105.9069

100
θ 2.4184 69.2322 75.0807 58.5291
ω 0.0021 0.0026 0.0026 11.3873
p 0.8590 9.4644 10.2023 53.7601

200
θ 1.1560 13.2861 14.6224 33.6414
ω 0.0004 0.0012 0.0012 7.7537
p 0.4053 1.5395 1.7037 31.2498

500
θ 0.4167 1.7525 1.9261 16.9115
ω 0.0000 0.0005 0.0005 4.8717
p 0.1482 0.2586 0.2806 16.3072

Source: Elaborated by the author.
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Table 73 – Posterior estimates of θ , ω , and p - 𝒵ℳ𝒫𝒮h model (zero-deflated case with θ = 2.50).

n Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

Scenario 1

50
θ 3.1431 3.1551 1.6214 1.5440 6.3161
ω 0.4368 0.4451 0.0721 0.3066 0.5719
p 1.6704 1.6608 0.7336 0.8400 3.2247

100
θ 2.7778 2.7898 0.7914 1.7307 4.4493
ω 0.4402 0.4485 0.0510 0.3457 0.5368
p 1.5246 1.5150 0.3767 0.9612 2.3854

200
θ 2.6470 2.6590 0.4989 1.9081 3.6658
ω 0.4397 0.4480 0.0346 0.3721 0.5084
p 1.4685 1.4589 0.2548 1.0660 2.0069

500
θ 2.5630 2.5750 0.2818 2.0912 3.1394
ω 0.4395 0.4478 0.0224 0.3965 0.4831
p 1.4299 1.4203 0.1539 1.1718 1.7398

Scenario 2

50
θ 2.8842 2.8962 1.0801 1.7100 4.8506
ω 0.7472 0.7555 0.0632 0.6227 0.8536
p 2.6752 2.6656 0.8622 1.6777 4.2827

100
θ 2.6623 2.6743 0.5951 1.8679 3.7900
ω 0.7496 0.7579 0.0424 0.6619 0.8280
p 2.5136 2.5040 0.4855 1.8282 3.4597

200
θ 2.5774 2.5894 0.3507 2.0153 3.2941
ω 0.7515 0.7598 0.0316 0.6900 0.8084
p 2.4557 2.4461 0.3020 1.9673 3.0660

500
θ 2.5353 2.5473 0.1995 2.1727 2.9569
ω 0.7520 0.7603 0.0173 0.7134 0.7887
p 2.4241 2.4145 0.1735 2.1088 2.7865

Source: Elaborated by the author.
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Table 74 – Posterior estimates of θ , ω , and p - 𝒵ℳ𝒫𝒮h model (zero-deflated case with θ = 6.00).

n Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

Scenario 1

50
θ 11.2632 11.2640 10.1514 2.4288 38.3828
ω 0.2072 0.2148 0.0600 0.1107 0.3253
p 2.5039 2.4977 2.3422 0.5412 8.4682

100
θ 10.7599 10.7607 12.6678 3.0569 32.2883
ω 0.2066 0.2142 0.0424 0.1345 0.2896
p 2.3399 2.3337 2.5487 0.6935 6.8301

200
θ 8.4685 8.4693 9.1998 3.5072 19.8132
ω 0.2054 0.2130 0.0300 0.1528 0.2634
p 1.8850 1.8788 1.7046 0.8107 4.2752

500
θ 6.6439 6.6447 1.9182 4.0268 10.8969
ω 0.2043 0.2119 0.0173 0.1703 0.2406
p 1.5288 1.5226 0.4162 0.9415 2.4659

Scenario 2

50
θ 11.6309 11.6317 13.2136 3.0316 36.4990
ω 0.3526 0.3602 0.0700 0.2305 0.4856
p 4.3876 4.3814 4.9013 1.1980 13.4623

100
θ 8.4184 8.4192 8.3206 3.3456 20.1552
ω 0.3529 0.3605 0.0510 0.2637 0.4475
p 3.2590 3.2528 3.0764 1.3496 7.5749

200
θ 7.1560 7.1568 3.6450 3.8282 13.2586
ω 0.3512 0.3588 0.0346 0.2870 0.4181
p 2.8053 2.7991 1.2408 1.5454 5.0653

500
θ 6.4167 6.4175 1.3238 4.3964 9.3340
ω 0.3508 0.3584 0.0224 0.3098 0.3929
p 2.5482 2.5420 0.5085 1.7765 3.6462

Source: Elaborated by the author.
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Table 75 – Coverage probabilities (%) of the BCIs using zero-deflated samples (𝒵ℳ𝒫𝒮h model, θ =
2.50).

n Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 1 Scenario 2

50
θ 3.80 92.60 3.60 4.20 92.60 3.20
ω 4.20 91.60 4.20 3.40 93.00 3.60
p 2.40 94.20 3.40 3.60 93.60 2.80

100
θ 2.60 95.00 2.40 3.60 93.60 2.80
ω 3.20 94.60 2.20 2.80 95.20 2.00
p 2.40 95.40 2.20 3.20 94.00 2.80

200
θ 3.80 93.00 3.20 3.20 94.40 2.40
ω 1.40 96.20 2.40 3.60 94.00 2.40
p 3.20 93.60 3.20 3.00 94.00 3.00

500
θ 3.40 94.60 2.00 2.80 94.40 2.80
ω 1.60 96.20 2.20 2.40 95.20 2.40
p 3.80 93.00 3.20 2.40 94.60 3.00

Source: Elaborated by the author.

Table 76 – Coverage probabilities (%) of the BCIs using zero-deflated samples (𝒵ℳ𝒫𝒮h model, θ =
6.00).

n Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 3 Scenario 4

50
θ 2.60 93.40 4.00 7.20 87.20 5.60
ω 3.20 92.80 4.00 3.40 92.40 4.20
p 3.80 91.40 4.80 6.20 89.20 4.60

100
θ 5.60 91.60 2.80 3.80 92.60 3.60
ω 3.40 93.40 3.20 4.40 92.80 2.80
p 4.80 92.20 3.00 3.60 92.80 3.60

200
θ 3.40 94.00 2.60 4.20 91.60 4.20
ω 3.00 94.20 2.80 3.00 93.80 3.20
p 4.20 93.20 2.60 4.00 91.80 4.20

500
θ 2.20 95.40 2.40 3.00 93.80 3.20
ω 3.40 93.60 3.00 2.60 94.40 3.00
p 2.00 95.80 2.20 2.80 93.20 4.00

Source: Elaborated by the author.
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Table 77 – Empirical properties of the Bayesian estimators using zero-deflated samples (𝒵ℳ𝒫𝒮u model,
θ = 2.50).

n Parameter Bias Var MSE MAPE (%)

Scenario 1

50
θ 0.3166 0.7945 0.8947 24.9405
ω −0.0030 0.0055 0.0055 10.4541
p 0.1658 0.2344 0.2619 25.0004

100
θ 0.1468 0.2801 0.3016 15.7823
ω 0.0007 0.0025 0.0025 7.0281
p 0.0823 0.0836 0.0903 15.5576

200
θ 0.0784 0.1070 0.1131 10.2906
ω 0.0008 0.0011 0.0011 4.8188
p 0.0457 0.0337 0.0358 10.5361

500
θ 0.0392 0.0365 0.0380 6.0358
ω 0.0006 0.0005 0.0005 3.0695
p 0.0229 0.0129 0.0135 6.4015

Scenario 2

50
θ 0.1774 0.3151 0.3466 17.2343
ω −0.0068 0.0009 0.0009 2.4583
p 0.1512 0.2399 0.2627 15.4492

100
θ 0.0781 0.1335 0.1396 11.0977
ω −0.0030 0.0004 0.0004 1.6877
p 0.0675 0.0997 0.1043 9.9036

200
θ 0.0440 0.0520 0.0539 7.0624
ω −0.0014 0.0002 0.0002 1.2590
p 0.0382 0.0405 0.0419 6.4454

500
θ 0.0209 0.0189 0.0193 4.4106
ω −0.0002 0.0001 0.0001 0.7784
p 0.0189 0.0147 0.0150 4.0805

Source: Elaborated by the author.
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Table 78 – Empirical properties of the Bayesian estimators using zero-deflated samples (𝒵ℳ𝒫𝒮u model,
θ = 6.00).

n Parameter Bias Var MSE MAPE (%)

Scenario 3

50
θ 4.4422 88.5931 108.3263 96.1490
ω 0.0026 0.0039 0.0039 21.1509
p 1.0729 5.7678 6.9189 101.9241

100
θ 2.9044 76.8044 85.2397 66.2762
ω 0.0017 0.0020 0.0020 14.8816
p 0.6840 3.8959 4.3638 69.7217

200
θ 1.2096 11.5184 12.9814 34.0224
ω 0.0011 0.0009 0.0009 10.2884
p 0.2959 0.6304 0.7180 36.7814

500
θ 0.4511 2.0118 2.2154 17.3364
ω −0.0001 0.0004 0.0004 6.4957
p 0.1097 0.1329 0.1449 19.4601

Scenario 4

50
θ 3.6216 95.9068 109.0225 79.9508
ω −0.0003 0.0052 0.0052 14.0394
p 1.4694 17.2267 19.3858 82.0812

100
θ 1.4939 48.8965 51.1283 40.4640
ω 0.0017 0.0028 0.0028 10.2507
p 0.6362 10.4698 10.8746 42.5884

200
θ 0.6921 4.7636 5.2426 23.4989
ω 0.0002 0.0012 0.0012 6.7406
p 0.2859 0.7846 0.8663 25.2916

500
θ 0.2740 0.9269 1.0020 12.6203
ω −0.0002 0.0005 0.0005 4.2638
p 0.1139 0.1801 0.1931 13.8640

Source: Elaborated by the author.
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Table 79 – Posterior estimates of θ , ω , and p - 𝒵ℳ𝒫𝒮u model (zero-deflated case with θ = 2.50).

n Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

Scenario 1

50
θ 2.8166 2.8131 0.8913 1.7253 4.5418
ω 0.5546 0.5560 0.0742 0.4198 0.6854
p 1.5658 1.5543 0.4841 0.9405 2.5715

100
θ 2.6468 2.6433 0.5292 1.8972 3.6660
ω 0.5583 0.5597 0.0500 0.4617 0.6527
p 1.4823 1.4708 0.2891 1.0479 2.0817

200
θ 2.5784 2.5749 0.3271 2.0453 3.2381
ω 0.5584 0.5598 0.0332 0.4897 0.6260
p 1.4457 1.4342 0.1836 1.1359 1.8331

500
θ 2.5392 2.5357 0.1910 2.1965 2.9302
ω 0.5582 0.5596 0.0224 0.5145 0.6013
p 1.4229 1.4114 0.1136 1.2232 1.6527

Scenario 2

50
θ 2.6774 2.6739 0.5613 1.8661 3.8085
ω 0.9490 0.9504 0.0300 0.8785 0.9882
p 2.5512 2.5397 0.4898 1.8554 3.5666

100
θ 2.5781 2.5746 0.3654 2.0070 3.2954
ω 0.9529 0.9543 0.0200 0.9054 0.9838
p 2.4675 2.4560 0.3158 1.9772 3.1053

200
θ 2.5440 2.5405 0.2280 2.1346 3.0244
ω 0.9545 0.9559 0.0141 0.9222 0.9782
p 2.4382 2.4267 0.2012 2.0858 2.8626

500
θ 2.5209 2.5174 0.1375 2.2581 2.8118
ω 0.9556 0.9570 0.0100 0.9360 0.9717
p 2.4189 2.4074 0.1212 2.1917 2.6744

Source: Elaborated by the author.
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Table 80 – Posterior estimates of θ , ω , and p - 𝒵ℳ𝒫𝒮u model (zero-deflated case with θ = 6.00).

n Parameter Mean Median Std. Dev.
95% BCI
Lower Upper

Scenario 1

50
θ 10.4422 10.4448 9.4124 2.8623 32.5257
ω 0.2404 0.2512 0.0624 0.1365 0.3635
p 2.4729 2.4853 2.4016 0.5952 8.0047

100
θ 8.9044 8.9070 8.7638 3.4017 22.6765
ω 0.2396 0.2504 0.0447 0.1626 0.3264
p 2.0840 2.0964 1.9738 0.7321 5.4541

200
θ 7.2096 7.2122 3.3939 3.8561 13.6095
ω 0.2389 0.2497 0.0300 0.1829 0.2999
p 1.6959 1.7083 0.7940 0.8501 3.3083

500
θ 6.4511 6.4537 1.4184 4.4318 9.4385
ω 0.2377 0.2485 0.0200 0.2016 0.2757
p 1.5097 1.5221 0.3646 0.9950 2.2739

Scenario 2

50
θ 9.6216 9.6242 9.7932 3.3481 26.1363
ω 0.4074 0.4182 0.0721 0.2795 0.5422
p 3.8694 3.8818 4.1505 1.2454 10.7738

100
θ 7.4939 7.4965 6.9926 3.7456 15.2235
ω 0.4094 0.4202 0.0529 0.3166 0.5058
p 3.0362 3.0486 3.2357 1.4294 6.3587

200
θ 6.6921 6.6947 2.1826 4.2119 10.7335
ω 0.4079 0.4187 0.0346 0.3414 0.4762
p 2.6859 2.6983 0.8858 1.6246 4.4158

500
θ 6.2740 6.2766 0.9628 4.7273 8.3450
ω 0.4076 0.4184 0.0224 0.3651 0.4508
p 2.5139 2.5263 0.4244 1.8472 3.4110

Source: Elaborated by the author.
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Table 81 – Coverage probabilities (%) of the BCIs using zero-deflated samples (𝒵ℳ𝒫𝒮u model, θ =
2.50).

n Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 1 Scenario 2

50
θ 4.00 92.80 3.20 4.00 92.60 3.40
ω 3.40 93.20 3.40 0.00 97.60 2.40
p 3.60 92.80 3.60 3.80 93.20 3.00

100
θ 2.80 95.00 2.20 3.20 93.80 3.00
ω 3.80 94.80 1.40 3.00 94.00 3.00
p 2.60 95.60 1.80 3.20 94.00 2.80

200
θ 3.40 93.40 3.20 3.60 94.00 2.40
ω 1.80 96.80 1.40 2.60 94.80 2.60
p 3.00 93.20 3.80 3.20 94.60 2.20

500
θ 3.80 92.60 3.60 2.20 95.40 2.40
ω 3.20 94.00 2.80 3.40 94.40 2.20
p 3.60 93.20 3.20 2.80 95.00 2.20

Source: Elaborated by the author.

Table 82 – Coverage probabilities (%) of the BCIs using zero-deflated samples (𝒵ℳ𝒫𝒮u model, θ =
6.00).

n Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 3 Scenario 4

50
θ 5.00 90.00 5.00 4.00 92.80 3.20
ω 3.60 92.80 3.60 3.00 93.80 3.20
p 3.80 91.80 4.40 4.80 91.40 3.80

100
θ 4.40 91.60 4.00 2.40 94.20 3.40
ω 3.20 92.80 4.00 3.60 93.20 3.20
p 4.00 91.60 4.40 2.40 93.80 3.80

200
θ 3.60 93.80 2.60 2.80 94.00 3.20
ω 2.80 94.60 2.60 2.20 95.60 2.20
p 3.80 92.40 3.80 3.60 92.80 3.60

500
θ 2.80 95.40 1.80 2.60 95.00 2.40
ω 3.40 93.80 2.80 1.60 94.80 3.60
p 3.00 94.20 2.80 2.00 95.00 3.00

Source: Elaborated by the author.
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A.3.2 Study 2

The following tables illustrate the results obtained in the second simulation study, con-
sidering scenarios 1-4 of zero-inflated and zero-deflated cases as described in Section 2.6 (Table
6).

Table 83 – Posterior estimates of correct selection probability when 𝒵ℳ𝒫ℒ is the true model (zero
inflation).

Scenario n Fitted % DIC % EAIC % EBIC % LMPL

1

50
𝒵ℳ𝒫ℒ 64.20 64.40 64.40 70.60
𝒵ℳ𝒫 35.80 35.60 35.60 29.40

100
𝒵ℳ𝒫ℒ 82.60 82.60 82.60 85.80
𝒵ℳ𝒫 17.40 17.40 17.40 14.20

200
𝒵ℳ𝒫ℒ 94.80 94.80 94.80 95.80
𝒵ℳ𝒫 5.20 5.20 5.20 4.20

500
𝒵ℳ𝒫ℒ 99.80 99.80 99.80 100.00
𝒵ℳ𝒫 0.20 0.20 0.20 0.00

2

50
𝒵ℳ𝒫ℒ 95.80 95.80 95.80 96.20
𝒵ℳ𝒫 4.20 4.20 4.20 3.80

100
𝒵ℳ𝒫ℒ 99.20 99.20 99.20 99.20
𝒵ℳ𝒫 0.80 0.80 0.80 0.80

200
𝒵ℳ𝒫ℒ 100.00 100.00 100.00 100.00
𝒵ℳ𝒫 0.00 0.00 0.00 0.00

500
𝒵ℳ𝒫ℒ 100.00 100.00 100.00 100.00
𝒵ℳ𝒫 0.00 0.00 0.00 0.00

3

50
𝒵ℳ𝒫ℒ 72.00 70.00 70.00 86.20
𝒵ℳ𝒫 28.00 30.00 30.00 13.80

100
𝒵ℳ𝒫ℒ 60.40 54.00 54.00 74.20
𝒵ℳ𝒫 39.60 46.00 46.00 25.80

200
𝒵ℳ𝒫ℒ 50.40 39.80 39.80 57.20
𝒵ℳ𝒫 49.60 60.20 60.20 42.80

500
𝒵ℳ𝒫ℒ 37.40 34.00 34.00 43.00
𝒵ℳ𝒫 62.60 66.00 66.00 57.00

4

50
𝒵ℳ𝒫ℒ 47.00 38.00 38.00 57.40
𝒵ℳ𝒫 53.00 62.00 62.00 42.60

100
𝒵ℳ𝒫ℒ 37.20 33.20 33.20 43.40
𝒵ℳ𝒫 62.80 66.80 66.80 56.60

200
𝒵ℳ𝒫ℒ 42.20 40.80 40.80 49.00
𝒵ℳ𝒫 57.80 59.20 59.20 51.00

500
𝒵ℳ𝒫ℒ 51.80 52.00 52.00 57.00
𝒵ℳ𝒫 48.20 48.00 48.00 43.00

Source: Elaborated by the author.
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Table 84 – Posterior estimates of correct selection probability when 𝒵ℳ𝒫ℒ is the true model (zero
deflation).

Scenario n Fitted % DIC % EAIC % EBIC % LMPL

1

50
𝒵ℳ𝒫ℒ 49.40 49.20 49.20 56.60
𝒵ℳ𝒫 50.60 50.80 50.80 43.40

100
𝒵ℳ𝒫ℒ 62.20 62.00 62.00 65.80
𝒵ℳ𝒫 37.80 38.00 38.00 34.20

200
𝒵ℳ𝒫ℒ 71.60 71.40 71.40 74.00
𝒵ℳ𝒫 28.40 28.40 28.40 26.00

500
𝒵ℳ𝒫ℒ 85.80 86.20 86.20 86.80
𝒵ℳ𝒫 14.20 13.80 13.80 13.20

2

50
𝒵ℳ𝒫ℒ 58.60 58.80 58.80 63.00
𝒵ℳ𝒫 41.40 41.20 41.20 37.00

100
𝒵ℳ𝒫ℒ 68.00 68.00 68.00 70.60
𝒵ℳ𝒫 32.00 32.00 32.00 29.40

200
𝒵ℳ𝒫ℒ 80.20 80.20 80.20 81.80
𝒵ℳ𝒫 19.80 19.80 19.80 18.20

500
𝒵ℳ𝒫ℒ 92.40 92.40 92.40 92.80
𝒵ℳ𝒫 7.60 7.60 7.60 7.20

3

50
𝒵ℳ𝒫ℒ 40.80 33.80 33.80 47.40
𝒵ℳ𝒫 59.20 66.20 66.20 52.60

100
𝒵ℳ𝒫ℒ 34.80 32.00 32.00 39.60
𝒵ℳ𝒫 65.20 68.00 68.00 60.40

200
𝒵ℳ𝒫ℒ 45.20 44.20 44.20 49.80
𝒵ℳ𝒫 54.80 55.80 55.80 50.20

500
𝒵ℳ𝒫ℒ 51.60 52.40 52.40 55.40
𝒵ℳ𝒫 48.40 47.60 47.60 44.60

4

50
𝒵ℳ𝒫ℒ 37.00 33.20 33.20 43.60
𝒵ℳ𝒫 63.00 66.80 66.80 56.40

100
𝒵ℳ𝒫ℒ 40.60 40.00 40.00 45.80
𝒵ℳ𝒫 59.40 60.00 60.00 54.20

200
𝒵ℳ𝒫ℒ 48.20 47.80 47.80 53.00
𝒵ℳ𝒫 51.80 52.20 52.20 47.00

500
𝒵ℳ𝒫ℒ 59.60 59.60 59.60 62.00
𝒵ℳ𝒫 40.40 40.40 40.40 38.00

Source: Elaborated by the author.
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Table 85 – Posterior estimates of correct selection probability when 𝒵ℳ𝒫𝒮h is the true model (zero
inflation).

Scenario n Fitted % DIC % EAIC % EBIC % LMPL

1

50
𝒵ℳ𝒫𝒮h 67.60 67.20 67.20 75.00
𝒵ℳ𝒫 32.40 32.80 32.80 25.00

100
𝒵ℳ𝒫𝒮h 85.00 84.80 84.80 87.60
𝒵ℳ𝒫 15.00 15.20 15.20 12.40

200
𝒵ℳ𝒫𝒮h 94.60 94.60 94.60 95.60
𝒵ℳ𝒫 5.40 5.40 5.40 4.40

500
𝒵ℳ𝒫𝒮h 100.00 100.00 100.00 100.00
𝒵ℳ𝒫 0.00 0.00 0.00 0.00

2

50
𝒵ℳ𝒫𝒮h 94.80 94.80 94.80 96.20
𝒵ℳ𝒫 5.20 5.20 5.20 3.80

100
𝒵ℳ𝒫𝒮h 99.20 99.20 99.20 99.40
𝒵ℳ𝒫 0.80 0.80 0.80 0.60

200
𝒵ℳ𝒫𝒮h 100.00 100.00 100.00 100.00
𝒵ℳ𝒫 0.00 0.00 0.00 0.00

500
𝒵ℳ𝒫𝒮h 100.00 100.00 100.00 100.00
𝒵ℳ𝒫 0.00 0.00 0.00 0.00

3

50
𝒵ℳ𝒫𝒮h 73.60 71.40 71.40 83.00
𝒵ℳ𝒫 26.40 28.60 28.60 17.00

100
𝒵ℳ𝒫𝒮h 61.60 56.20 56.20 75.40
𝒵ℳ𝒫 38.40 43.80 43.80 24.60

200
𝒵ℳ𝒫𝒮h 45.80 40.20 40.20 55.40
𝒵ℳ𝒫 54.20 59.80 59.80 44.60

500
𝒵ℳ𝒫𝒮h 35.00 31.40 31.40 41.60
𝒵ℳ𝒫 65.00 68.60 68.60 58.40

4

50
𝒵ℳ𝒫𝒮h 42.40 36.60 36.60 54.80
𝒵ℳ𝒫 57.60 63.40 63.40 45.20

100
𝒵ℳ𝒫𝒮h 34.00 31.60 31.60 44.80
𝒵ℳ𝒫 66.00 68.40 68.40 55.20

200
𝒵ℳ𝒫𝒮h 37.80 36.80 36.80 45.60
𝒵ℳ𝒫 62.20 63.20 63.20 54.40

500
𝒵ℳ𝒫𝒮h 52.20 52.40 52.40 56.60
𝒵ℳ𝒫 47.80 47.60 47.60 43.40

Source: Elaborated by the author.
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Table 86 – Posterior estimates of correct selection probability when 𝒵ℳ𝒫𝒮h is the true model (zero
deflation).

Scenario n Fitted % DIC % EAIC % EBIC % LMPL

1

50
𝒵ℳ𝒫𝒮h 45.80 45.40 45.40 52.80
𝒵ℳ𝒫 54.20 54.60 54.60 47.20

100
𝒵ℳ𝒫𝒮h 58.80 59.20 59.20 64.00
𝒵ℳ𝒫 41.20 40.80 40.80 36.00

200
𝒵ℳ𝒫𝒮h 71.00 71.00 71.00 73.40
𝒵ℳ𝒫 29.00 29.00 29.00 26.60

500
𝒵ℳ𝒫𝒮h 86.20 86.40 86.40 87.40
𝒵ℳ𝒫 13.80 13.60 13.60 12.60

2

50
𝒵ℳ𝒫𝒮h 55.00 55.00 55.00 60.20
𝒵ℳ𝒫 45.00 45.00 45.00 39.80

100
𝒵ℳ𝒫𝒮h 66.60 66.60 66.60 70.00
𝒵ℳ𝒫 33.40 33.40 33.40 30.00

200
𝒵ℳ𝒫𝒮h 77.20 77.60 77.60 79.20
𝒵ℳ𝒫 22.80 22.40 22.40 20.80

500
𝒵ℳ𝒫𝒮h 90.20 90.00 90.00 91.00
𝒵ℳ𝒫 9.80 10.00 10.00 9.00

3

50
𝒵ℳ𝒫𝒮h 36.40 31.40 31.40 45.60
𝒵ℳ𝒫 63.60 68.60 68.60 54.40

100
𝒵ℳ𝒫𝒮h 33.20 30.80 30.80 40.80
𝒵ℳ𝒫 66.80 69.20 69.20 59.20

200
𝒵ℳ𝒫𝒮h 40.00 39.40 39.40 44.80
𝒵ℳ𝒫 60.00 60.60 60.60 55.20

500
𝒵ℳ𝒫𝒮h 51.20 51.00 51.00 54.00
𝒵ℳ𝒫 48.80 49.00 49.00 46.00

4

50
𝒵ℳ𝒫𝒮h 34.00 29.80 29.80 40.60
𝒵ℳ𝒫 66.00 70.20 70.20 59.40

100
𝒵ℳ𝒫𝒮h 38.00 36.60 36.60 43.60
𝒵ℳ𝒫 62.00 63.40 63.40 56.40

200
𝒵ℳ𝒫𝒮h 46.40 46.60 46.60 49.80
𝒵ℳ𝒫 53.60 53.40 53.40 50.20

500
𝒵ℳ𝒫𝒮h 56.20 57.20 57.20 60.40
𝒵ℳ𝒫 43.80 42.80 42.80 39.60

Source: Elaborated by the author.
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Table 87 – Posterior estimates of correct selection probability when 𝒵ℳ𝒫𝒮u is the true model (zero
inflation).

Scenario n Fitted % DIC % EAIC % EBIC % LMPL

1

50
𝒵ℳ𝒫𝒮u 74.80 74.80 74.80 81.40
𝒵ℳ𝒫 25.20 25.20 25.20 18.60

100
𝒵ℳ𝒫𝒮u 89.40 89.40 89.40 91.80
𝒵ℳ𝒫 10.60 10.60 10.60 8.20

200
𝒵ℳ𝒫𝒮u 98.00 98.00 98.00 98.00
𝒵ℳ𝒫 2.00 2.00 2.00 2.00

500
𝒵ℳ𝒫𝒮u 100.00 100.00 100.00 100.00
𝒵ℳ𝒫 0.00 0.00 0.00 0.00

2

50
𝒵ℳ𝒫𝒮u 96.40 96.40 96.40 97.00
𝒵ℳ𝒫 3.60 3.60 3.60 3.00

100
𝒵ℳ𝒫𝒮u 99.80 99.80 99.80 99.80
𝒵ℳ𝒫 0.20 0.20 0.20 0.20

200
𝒵ℳ𝒫𝒮u 100.00 100.00 100.00 100.00
𝒵ℳ𝒫 0.00 0.00 0.00 0.00

500
𝒵ℳ𝒫𝒮u 100.00 100.00 100.00 100.00
𝒵ℳ𝒫 0.00 0.00 0.00 0.00

3

50
𝒵ℳ𝒫𝒮u 64.20 64.00 64.00 75.80
𝒵ℳ𝒫 35.80 36.00 36.00 24.20

100
𝒵ℳ𝒫𝒮u 48.00 45.60 45.60 61.20
𝒵ℳ𝒫 52.00 54.40 54.40 38.80

200
𝒵ℳ𝒫𝒮u 33.20 30.80 30.80 43.40
𝒵ℳ𝒫 66.80 69.20 69.20 56.60

500
𝒵ℳ𝒫𝒮u 37.40 35.20 35.20 45.60
𝒵ℳ𝒫 62.60 64.80 64.80 54.40

4

50
𝒵ℳ𝒫𝒮u 32.80 28.20 28.20 42.00
𝒵ℳ𝒫 67.20 71.80 71.80 58.00

100
𝒵ℳ𝒫𝒮u 33.40 32.20 32.20 41.00
𝒵ℳ𝒫 66.60 67.80 67.80 59.00

200
𝒵ℳ𝒫𝒮u 44.20 43.00 43.00 48.40
𝒵ℳ𝒫 55.80 57.00 57.00 51.60

500
𝒵ℳ𝒫𝒮u 53.60 53.60 53.60 55.80
𝒵ℳ𝒫 46.40 46.40 46.40 44.20

Source: Elaborated by the author.
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Table 88 – Posterior estimates of correct selection probability when 𝒵ℳ𝒫𝒮u is the true model (zero
deflation).

Scenario n Fitted % DIC % EAIC % EBIC % LMPL

1

50
𝒵ℳ𝒫𝒮u 56.00 56.00 56.00 62.40
𝒵ℳ𝒫 44.00 44.00 44.00 37.60

100
𝒵ℳ𝒫𝒮u 68.60 68.40 68.40 71.40
𝒵ℳ𝒫 31.40 31.60 31.60 28.60

200
𝒵ℳ𝒫𝒮u 77.80 77.80 77.80 79.80
𝒵ℳ𝒫 22.20 22.20 22.20 20.20

500
𝒵ℳ𝒫𝒮u 92.60 92.60 92.60 93.20
𝒵ℳ𝒫 7.40 7.40 7.40 6.80

2

50
𝒵ℳ𝒫𝒮u 63.20 63.60 63.60 67.00
𝒵ℳ𝒫 36.80 36.40 36.40 33.00

100
𝒵ℳ𝒫𝒮u 72.60 72.80 72.80 75.60
𝒵ℳ𝒫 27.40 27.20 27.20 24.40

200
𝒵ℳ𝒫𝒮u 83.40 83.60 83.60 85.40
𝒵ℳ𝒫 16.60 16.40 16.40 14.60

500
𝒵ℳ𝒫𝒮u 96.80 96.80 96.80 96.80
𝒵ℳ𝒫 3.20 3.20 3.20 3.20

3

50
𝒵ℳ𝒫𝒮u 30.20 25.80 25.80 38.40
𝒵ℳ𝒫 69.80 74.20 74.20 61.60

100
𝒵ℳ𝒫𝒮u 36.20 35.20 35.20 40.60
𝒵ℳ𝒫 63.80 64.80 64.80 59.40

200
𝒵ℳ𝒫𝒮u 43.80 44.00 44.00 49.40
𝒵ℳ𝒫 56.20 56.00 56.00 50.60

500
𝒵ℳ𝒫𝒮u 53.20 53.40 53.40 55.60
𝒵ℳ𝒫 46.80 46.60 46.60 44.40

4

50
𝒵ℳ𝒫𝒮u 35.40 33.00 33.00 42.00
𝒵ℳ𝒫 64.60 67.00 67.00 58.00

100
𝒵ℳ𝒫𝒮u 44.20 43.80 43.80 50.80
𝒵ℳ𝒫 55.80 56.20 56.20 49.20

200
𝒵ℳ𝒫𝒮u 51.40 51.40 51.40 54.40
𝒵ℳ𝒫 48.60 48.60 48.60 45.60

500
𝒵ℳ𝒫𝒮u 61.20 61.60 61.60 64.40
𝒵ℳ𝒫 38.80 38.40 38.40 35.60

Source: Elaborated by the author.

A.3.3 Study 3

The following figures illustrate the results obtained in the third simulation study, described
in Subsection 2.6.3. In each figure, the horizontal dashed lines (red) were placed at 90% BRE.
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The vertical dashed lines (blue) were placed at θ = 0.18 in Figure 34, at θ = 0.21 in Figure 35
and at θ = 0.31 in Figure 36.

Figure 34 – BRE of estimated 𝒵ℳ𝒫ℒ distribution when 𝒫ℒ is the true model.
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Source: Elaborated by the author.

Figure 35 – BRE of estimated 𝒵ℳ𝒫𝒮h distribution when 𝒫𝒮h is the true model.
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A.4 Datasets

The three real datasets used in the paper to illustrate the usefulness of the proposed class
of models are provided in Table 89. A brief description of each dataset is presented in Section
2.7 of the manuscript.

Table 89 – Real datasets used in the paper.

Dataset 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
4 4 4 4 5 5 5 6 6 6 6 6 6 7 8 17

Dataset 2

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4
4 5 6 6 7 10

Dataset 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5

Source: Elaborated by the author.
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Figure 36 – BRE of estimated 𝒵ℳ𝒫𝒮u distribution when 𝒫𝒮u is the true model.
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APPENDIX

B
SUPPLEMENT FOR CHAPTER 4

B.1 Influential points
The identification of influential observations is one of the essential steps in any statistical

analysis. Usually, the presence of influential points impacts the inferential procedures and the
subsequent conclusions considerably. In this way, this subsection is dedicated to presenting some
case deletion Bayesian diagnostic measures that can be useful to quantify the influence of each
observation in a given dataset.

The computation of divergence measures between posterior distributions is a very useful
way to quantify influence. According Csiszár (1967), the ϕ-divergence measure between two
densities f and g for θθθ ∈ 𝒟 is defined by

dϕ =
�

𝒟
g(θθθ)ϕ

�
f (θθθ)
g(θθθ)

�
dθθθ , (B.1)

where ϕ is a smooth convex, lower semicontinuous function such that ϕ(1) = 0. Some popular
divergence measures can be obtained by choosing specific functions for ϕ (PENG; DEY, 1995).
We are interested in the well-known Kullback-Leibler divergence that can be obtained by setting
ϕ(t) =− log(t).

Suppose that we are studying a discrete random variable Y whose distribution is indexed
by a parametric vector θθθ ∈ΘΘΘ. Aiming to estimate such vector, we have observed n independent
values of Y , hence obtaining the full observed vector yyy. Now, let yyy(−i) = (y1, . . . ,yi−1,yi+1, . . . ,yn)

be a vector obtained after removal of the i-th observation from yyy. Given a prior distribution π(θθθ),
the full posterior density of θθθ can be expressed as

π (θθθ ;yyy) =
ℒ(θθθ ;yyy)π (θθθ)�

ΘΘΘℒ(θθθ ;yyy)π (θθθ)dθθθ
,

where ℒ stands for the likelihood function of θθθ . Conversely, using the vector without the i-th
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observation, the posterior distribution of θθθ can be written as

π
�

θθθ ;yyy(−i)

�
=

ℒ
�

θθθ ;yyy(−i)

�
π (θθθ)

�
ΘΘΘℒ

�
θθθ ;yyy(−i)

�
π (θθθ)dθθθ

.

Now, taking f (θθθ) = π(θθθ ;yyy(−i)) and g(θθθ) = π(θθθ ;yyy), Equation (B.1) becomes

dϕ = Eθθθ

�
ϕ

�
E−1

θθθ
�
P−1(Yi = yi;θθθ);yyy

�

P(Yi = yi;θθθ)

�
;yyy

�
, (B.2)

where E−1
θθθ [P−1(Yi = yi;θθθ);yyy] is the conditional predictive ordinate (CPO) statistic (GEISSER,

1993) for the i-th observation. Given a sample {θθθ 1, . . . ,θθθ M} from the posterior distribution
π(θθθ ;yyy), a Monte Carlo (MC) estimator for the CPOi is given by

�CPOi =

�
1
M

M

∑
k=1

P−1
�

Yi = yi;θθθ (k)
��−1

, (B.3)

and hence, one can estimate the local influence of a particular observation yi on the posterior

distribution of θθθ as

d̂ϕ =
1
M

M

∑
k=1

ϕ


 �CPOi

P
�

Yi = yi;θθθ (k)
�


 .

From Equation (B.2), one can notice that, if π(θθθ ;yyy(−i)) = π(θθθ ;yyy), then there is no
divergence caused by the observation yi. In practice, however, it may be quite difficult to define a
threshold value for the divergence measure in order to decide about the magnitude of the influence.
A measure of calibration for the Kullback-Leibler divergence was proposed by McCulloch (1989).
The idea is based on the typical toy binary experiment of tossing a coin once and observing its
upper face is observed. This experiment can be described by P(Y = y;ρ) = ρy(1−ρ)1−y, where
ρ ∈ [0,1] is the probability of success. Regardless what success means, if the coin is unbiased,
then P(Y = y;ρ) = 0.50, y ∈ {0,1}. Thus, the ϕ-divergence between a (possibly) biased and an
unbiased coin is given by

dϕ(ρ) =
ϕ (2ρ)+ϕ [2(1−ρ)]

2
,

from which one may conclude that the divergence between two posteriors distributions can be
associated with the biasedness of a coin (PENG; DEY, 1995). By analogy, this implies that
predict unobserved responses through π(θθθ ;yyy(−i)) instead of π(θθθ ;yyy) is equivalent to describe
a not observed event as having probability ρi, when the correct probability is 0.50. For the
Kullback-Leibler divergence, we have

dϕ(ρi) =−
1
2

log [4ρi (1−ρi)] .

The function dϕ(ρ) is symmetric about ρ = 0.50 and increases as ρ moves away from
0.50. Also, infρ∈(0,1) dϕ(ρ) = 0, which is attained at ρ = 0.50 since dϕ(0.50) = ϕ(1) = 0.
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Therefore, a general measure of calibration based on a ϕ-divergence can be obtained by solving
equation 2dϕ(ρ)−ϕ(2ρ)−ϕ[2(1−ρ)] = 0. An MC estimator for the calibration measure (ρ)
associated with the Kullback-Leibler divergence is given by

ρ̂i =
1
2

�
1+

�
1− e−2d̂i

�
,

where the local influence of each yi can be estimated by

d̂i =
1
M

M

∑
k=1

log
�
P
�

Yi = yi;θθθ (k)
��
− log

�
�CPOi

�
.

One can notice that ρi ∈ [0.50,1] and therefore, for ρi ≫ 0.50, the i-th observation can
be considered as an influential point. For example, if ρi � 0.80 is considered a significative bias,
then the i-th observation will be classified as being influential if d̂i > 0.223

�
dϕ(0.80

�
≈ 0.223).

B.2 Model comparison
There are several methods for Bayesian model selection that are useful to compare

competing models fitted to the same dataset. One of the most used criteria is the deviance
information criterion (DIC), which was proposed to work simultaneously as a measure of fit
and complexity of the model. To define such a measure, suppose again that we are studying a
discrete random variable Y whose distribution is indexed by a parametric vector θθθ ∈ ΘΘΘ and let yyy

as a vector of n independent observations obtained from Y . The DIC criterion is given by

DIC = D̄(θθθ)+ρD = 2D̄(θθθ)−D(θ̃θθ),

where D̄(θθθ) = −2E[�(θθθ ;yyy)] is the posterior expectation of the deviance and � is the log-
likelihood function of θθθ . In this case, the deviance is evaluated at some estimate θ̃θθ for θθθ
(e.g., the posterior conditional mean). In connection with a measure of model complexity, the
criterion considers the measure ρD = D̄(θθθ)−D(θ̃θθ), which correspond to the effective number of
parameters in the model. One can notice that the computation of D̄(θθθ) is a complex numerical
problem. In this case, a Monte Carlo estimator for such a measure is given by

D̄ =− 2
M

M

∑
k=1

�
�

θθθ (k);yyy
�
,

and hence, the DIC can be approximated by

�DIC = 2D̄−D(θ̃θθ).

Using the estimate D̄, one can define other measures that can be considered when
comparing models. The expected Akaike information criterion (EAIC) and the expected Bayesian
information criterion (EBIC) can be estimated as

�EAIC = D̄+2q and �EBIC = D̄+q log(n) ,
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where q is the total number of estimated model parameters. See Carlin and Louis (2001) and
Brooks (2002) for further details on these comparison criteria.

Another widely used criterion is derived from the CPO measure, which is based on the
cross-validation criterion to compare models. For the i-th individual, the CPO can be estimated
using Equation (B.3). A summary statistic of the estimated CPO’s is the log-marginal pseudo-
likelihood (LMPL) given by the sum of the logarithms of �CPOi’s. Regarding model comparison,
we have that the lower the value of DIC, EAIC, and EBIC, the better the fit. On the other hand,
for the latter criterion, we have that the larger the LMPL, the better the fit. One can notice that, for
all the presented criteria, the computation of the likelihood function is a crucial step to estimate
such measures.

B.3 Residual analysis

The residual analysis plays an essential role in the task of validating the results obtained
from a regression model. In general, residual metrics are responsible for indicating departures
from the underlying model assumptions by quantifying the portion of data variability that was
not explained by the fitted model. Assessing the adequacy of a regression model using residual
metrics is a common practice nowadays due to the availability of statistical packages providing
diagnostic tools for well-established models. However, deriving appropriate residuals is not
always an easy task for non-normal models that accommodate overdispersion and mixed-effects.
In this way, we will consider here a popular residual metric proposed by Dunn and Smyth (1996),
the RQRs, which can be straightforwardly used in our context to assess the appropriateness of
the proposed model when fitted to real data.

For obvious reasons, we focus on the definition of RQRs for discrete random variables. In
this case, the RQR associated to the i-th observation is defined as ri = Φ−1(ui), where Φ denotes
the cdf of the standard Normal distribution and ui is a Uniform random variable defined on (ai,bi],
with ai = limy↑yi F(yi) and bi = F(yi), where F(yi) is the cdf of the current model. In our case,
we may obtain an MC estimator for the RQR as r̂i = Φ−1(ui), with ui ∼ 𝒰(limy↑yi F̂*(yi), F̂*(yi)].
Here, F̂*(yi)≡ F*(yi; µ̂i, ω̂i) is an estimate for the probability of Yi � yi using cdf (4.11), where
µ̂i and ω̂i depend on the fitted model as µ̂i = log(xxx�1iβ̂ββ 1) and ω̂i = g−1

2 (xxx�2iβ̂ββ 2).

The main assumption for this metric is that r̂i ∼ 𝒩 (0,1) must hold, whichever the
variability degree of µ̂i and ω̂i. In this case, after model fitting, one has to evaluate if these
residuals are normally distributed around zero, which can be made through adherence tests and
by using graphical techniques as histograms and Half-Normal probability plots. An excellent
alternative for checking whether RQRs are consistent with the fitted model is the inclusion
of simulated envelopes in their Half-Normal plot. Thus, if a significative subset of estimated
residuals falls outside the envelope bands, then the adequacy of the fitted model must be
questioned, and further investigation on the corresponding observations are necessary. An
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algorithm for obtaining simulated envelopes for a Half-Normal plot is provided by Moral, Hinde
and Demétrio (2017).
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C
SUPPLEMENT FOR CHAPTER 5

C.1 Algorithms

C.1.1 Random-walk Metropolis

Algorithm 7 – Random-walk Metropolis

1: procedure RWM(N,βββ (0)
1 ,βββ (0)

2 )
2: Set t ← 1 and ν ← n(n+1)−1

3: while t � N do
4: Generate ψψψ1 ∼𝒩q1 [νβββ (t−1)

1 ,ν𝒮(t−1)
1 ] and ψψψ2 ∼𝒩q2 [νβββ (t−1)

2 ,ν𝒮(t−1)
2 ]

5: Set α1 ← exp{π1(ψψψ1;yyy)−π1(βββ
(t−1)
1 ;yyy)}

6: Set α2 ← exp{π2(ψψψ2;yyy)−π2(βββ
(t−1)
2 ;yyy)}

7: Set βββ (t)
1 ← βββ (t−1)

1 and βββ (t)
2 ← βββ (t−1)

2
8: Generate u1,u2 ∼ 𝒰 (0,1)
9: if u1 � min{1,α1} and u2 � min{1,α2} then

10: Set βββ (t)
1 ← ψψψ1 and βββ (t)

2 ← ψψψ2
11: end if
12: Set t ← t +1
13: end while
14: return {βββ t}N

t=1
15: end procedure

C.1.2 Sequential-Search

Algorithm 8 – Sequential-Search
1: procedure SEQSEA(βββ 1,βββ 2)
2: Generate x,u∼ 𝒰 (0,1)
3: Set µ ← exp{β10 +β11x} and ω ← g−1

2 (β20 +β21x)
4: Set k← (1−ω) and y← 0
5: while u > k do
6: Set y← y+1 and k← k+ω P*(Y = y; µ)
7: end while
8: return y
9: end procedure
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C.2 Divergence measures
The acronymous used in Table 90 refers to following divergence measures: Kullback-

Leibler (KL), Jeffrey (J), Variational (L1), Chi-Square (CS), and Hellinger (H).

Table 90 – MC estimators for some ϕ-divergence measures and its calibration.

ϕ d̂ϕ dϕ(ρ) ρ̂ϕ

KLi
1
M

M
∑

t=1
log

�
f t
i
�
− log

�
�CPOi

�
−1

2 log [4ρi (1−ρi)]
1
2

�
1+

�
1− e−2d̂i

�

Ji
1
M

M
∑

t=1

� �CPOi
f t
i
−1

�
log

� �CPOi
f t
i

�
− (1−2ρi)

2 log
�

ρi
1−ρi

�
no closed-form

L1
i

1
2M

M
∑

t=1

����CPOi− f t
i

���
f t
i

1
2 |1−2ρi| 1

2 + d̂i

CSi 1
M

M
∑

t=1

�
�CPOi− f t

i

�2

( f t
i )

2 (1−2ρi)
2 1

2

�
1+

�
d̂i

�

Hi 1
2M

M
∑

t=1

��
�CPOi

f t
i
−1

�2
1− 1√

2

�√ρi +
√

1−ρi
�

1
2 +

��
d̂i−

�
d̂3

i

��
2− d̂i

Source: Elaborated by the author.

C.3 Results from the simulation study

C.3.1 Zero-inflated artificial data
C.3.1.1 Using logit link function
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Table 91 – Empirical properties of the Bayesian estimators using zero-inflated samples (Scenarios 1 and
2).

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 1

50

β10 −0.116 0.336 1.020 29.127
β11 −0.527 1.784 1.088 30.652
β20 0.119 0.329 1.022 45.714
β21 0.116 0.990 1.007 78.781

100

β10 −0.097 0.161 1.031 20.605
β11 −0.138 0.480 1.020 18.120
β20 0.084 0.247 1.014 40.288
β21 0.053 0.774 1.002 70.962

200

β10 −0.033 0.058 1.010 12.471
β11 −0.098 0.193 1.026 11.590
β20 0.012 0.110 1.001 26.005
β21 0.061 0.412 1.004 50.919

500

β10 −0.032 0.022 1.024 7.870
β11 −0.011 0.064 1.001 6.794
β20 0.009 0.049 1.001 17.633
β21 0.023 0.169 1.002 33.136

Scenario 2

50

β10 −0.164 0.180 1.085 21.689
β11 −0.136 0.382 1.025 16.319
β20 0.128 0.328 1.026 45.883
β21 −0.081 0.896 1.004 151.990

100

β10 −0.078 0.094 1.034 15.908
β11 −0.075 0.204 1.014 11.916
β20 0.049 0.217 1.006 36.781
β21 −0.016 0.574 1.000 117.390

200

β10 −0.051 0.044 1.031 11.079
β11 −0.010 0.104 1.000 8.443
β20 0.010 0.101 1.000 25.223
β21 0.013 0.322 1.000 90.972

500

β10 −0.024 0.015 1.019 6.533
β11 −0.005 0.033 1.000 4.778
β20 0.005 0.039 1.000 15.802
β21 0.002 0.104 1.000 52.292

Source: Elaborated by the author.
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Table 92 – Empirical properties of the Bayesian estimators using zero-inflated samples (Scenarios 3 and
4).

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 3

50

β10 −0.338 0.584 1.115 37.493
β11 0.281 1.758 1.023 69.019
β20 0.109 0.388 1.016 49.700
β21 0.186 1.102 1.016 84.008

100

β10 −0.120 0.241 1.032 24.811
β11 −0.036 1.045 1.001 52.507
β20 0.056 0.222 1.007 38.480
β21 0.104 0.681 1.008 67.186

200

β10 −0.071 0.105 1.025 16.547
β11 −0.005 0.526 1.000 38.617
β20 0.006 0.106 1.000 25.932
β21 0.066 0.405 1.005 50.259

500

β10 −0.024 0.039 1.008 10.202
β11 −0.002 0.171 1.000 21.413
β20 0.005 0.051 1.000 17.858
β21 0.043 0.166 1.006 32.488

Scenario 4

50

β10 −0.221 0.386 1.070 31.170
β11 0.138 1.024 1.009 54.128
β20 0.086 0.380 1.010 48.477
β21 −0.063 1.108 1.002 165.519

100

β10 −0.114 0.192 1.035 23.082
β11 0.062 0.584 1.003 41.147
β20 0.068 0.218 1.011 37.185
β21 −0.076 0.700 1.004 133.345

200

β10 −0.052 0.067 1.021 13.693
β11 0.011 0.236 1.000 26.593
β20 0.040 0.080 1.010 22.414
β21 −0.033 0.269 1.002 81.162

500

β10 −0.025 0.028 1.012 8.884
β11 0.022 0.093 1.002 16.306
β20 −0.001 0.042 1.000 16.202
β21 0.010 0.118 1.000 54.116

Source: Elaborated by the author.
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Table 93 – Posterior estimates of model parameters using zero-inflated samples (Scenarios 1 and 2).

n Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 1

50

β10 1.384 1.386 0.568 0.416 2.348
β11 2.473 2.461 1.228 0.736 4.230
β20 −0.881 −0.865 0.561 −2.184 0.395
β21 −0.884 −0.873 0.988 −3.221 1.432

100

β10 1.403 1.403 0.390 0.701 2.105
β11 2.862 2.855 0.679 1.631 4.105
β20 −0.916 −0.907 0.490 −1.932 0.080
β21 −0.947 −0.942 0.878 −2.784 0.878

200

β10 1.467 1.467 0.238 1.031 1.903
β11 2.902 2.897 0.428 2.089 3.721
β20 −0.988 −0.983 0.332 −1.635 −0.346
β21 −0.939 −0.933 0.639 −2.219 0.332

500

β10 1.468 1.468 0.147 1.188 1.748
β11 2.989 2.987 0.253 2.505 3.476
β20 −0.991 −0.988 0.220 −1.414 −0.571
β21 −0.977 −0.975 0.410 −1.758 −0.200

Scenario 2

50

β10 1.336 1.336 0.391 0.588 2.087
β11 2.864 2.858 0.603 1.725 4.011
β20 −0.872 −0.860 0.558 −2.071 0.308
β21 0.419 0.416 0.943 −1.571 2.415

100

β10 1.422 1.422 0.296 0.849 1.997
β11 2.925 2.922 0.445 2.023 3.828
β20 −0.951 −0.943 0.464 −1.880 −0.032
β21 0.484 0.479 0.758 −1.071 2.052

200

β10 1.449 1.449 0.204 1.082 1.814
β11 2.990 2.989 0.322 2.395 3.590
β20 −0.990 −0.986 0.318 −1.582 −0.404
β21 0.513 0.513 0.567 −0.546 1.569

500

β10 1.476 1.476 0.121 1.239 1.714
β11 2.995 2.994 0.181 2.631 3.359
β20 −0.995 −0.993 0.198 −1.380 −0.611
β21 0.502 0.502 0.322 −0.139 1.147

Source: Elaborated by the author.
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Table 94 – Posterior estimates of model parameters using zero-inflated samples (Scenarios 3 and 4).

n Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 3

50

β10 1.162 1.175 0.685 −0.184 2.482
β11 −1.219 −1.208 1.296 −3.982 1.521
β20 −0.891 −0.875 0.613 −2.200 0.382
β21 −0.814 −0.802 1.033 −3.143 1.484

100

β10 1.380 1.386 0.476 0.414 2.335
β11 −1.536 −1.529 1.021 −3.569 0.479
β20 −0.944 −0.933 0.468 −1.960 0.057
β21 −0.896 −0.891 0.819 −2.729 0.928

200

β10 1.429 1.432 0.317 0.846 2.009
β11 −1.505 −1.499 0.725 −2.882 −0.138
β20 −0.994 −0.989 0.325 −1.644 −0.353
β21 −0.934 −0.929 0.633 −2.218 0.335

500

β10 1.476 1.477 0.196 1.108 1.843
β11 −1.502 −1.500 0.413 −2.317 −0.690
β20 −0.995 −0.993 0.225 −1.418 −0.575
β21 −0.957 −0.956 0.406 −1.736 −0.182

Scenario 4

50

β10 1.279 1.287 0.581 0.141 2.402
β11 −1.363 −1.356 1.003 −3.430 0.697
β20 −0.914 −0.901 0.610 −2.122 0.275
β21 0.437 0.434 1.051 −1.570 2.445

100

β10 1.386 1.391 0.424 0.567 2.198
β11 −1.438 −1.437 0.762 −2.947 0.066
β20 −0.932 −0.925 0.462 −1.860 −0.016
β21 0.424 0.421 0.834 −1.137 1.991

200

β10 1.448 1.450 0.253 0.945 1.949
β11 −1.489 −1.487 0.486 −2.502 −0.477
β20 −0.960 −0.957 0.280 −1.549 −0.376
β21 0.467 0.466 0.518 −0.587 1.522

500

β10 1.475 1.476 0.166 1.150 1.799
β11 −1.478 −1.478 0.304 −2.083 −0.873
β20 −1.001 −1.000 0.204 −1.388 −0.616
β21 0.510 0.509 0.343 −0.133 1.155

Source: Elaborated by the author.
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Table 95 – Coverage probabilities (%) of the HPDIs using zero-inflated samples (Scenarios 1 and 2).

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 1 Scenario 2

50

β10 3.00 92.80 4.20 1.00 93.80 5.20

β11 1.00 88.00 11.00 1.80 93.40 4.80

β20 1.80 98.20 0.00 3.60 95.80 0.60

β21 1.60 98.00 0.40 1.00 97.60 1.40

100

β10 2.20 93.60 4.20 1.60 94.00 4.40

β11 1.80 92.60 5.60 1.20 95.20 3.60

β20 1.80 97.20 1.00 4.00 94.40 1.60

β21 2.00 97.20 0.80 2.00 95.00 3.00

200

β10 1.60 93.00 5.40 2.40 92.60 5.00

β11 1.60 93.20 5.20 2.20 94.00 3.80

β20 3.20 95.00 1.80 3.80 94.00 2.20

β21 3.00 95.60 1.40 3.20 93.80 3.00

500

β10 1.20 94.00 4.80 1.00 95.40 3.60

β11 2.60 94.60 2.80 1.40 96.00 2.60

β20 2.40 95.20 2.40 3.20 94.80 2.00

β21 2.60 95.20 2.20 2.40 95.40 2.20

Source: Elaborated by the author.

Table 96 – Coverage probabilities (%) of the HPDIs using zero-inflated samples (Scenarios 3 and 4).

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 3 Scenario 4

50

β10 0.40 95.40 4.20 0.20 96.80 3.00

β11 3.20 96.40 0.40 2.40 97.00 0.60

β20 2.20 97.40 0.40 4.60 94.40 1.00

β21 1.80 97.60 0.60 1.80 94.80 3.40

100

β10 1.40 95.80 2.80 1.20 95.00 3.80

β11 2.20 96.20 1.60 2.60 95.00 2.40

β20 2.40 97.40 0.20 4.20 94.60 1.20

β21 1.80 97.60 0.60 1.80 93.60 4.60

200

β10 2.00 94.40 3.60 1.20 96.60 2.20

β11 3.20 95.00 1.80 1.80 97.00 1.20

β20 2.20 96.20 1.60 3.20 95.80 1.00

β21 2.80 95.60 1.60 2.40 94.40 3.20

500

β10 2.20 94.40 3.40 2.20 95.80 2.00

β11 2.40 94.80 2.80 2.40 95.40 2.20

β20 3.80 94.40 1.80 2.20 95.00 2.80

β21 2.80 95.20 2.00 3.40 94.60 2.00

Source: Elaborated by the author.
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Figure 37 – Posterior estimates of parameter p using zero-inflated samples (Scenarios 1 and 2).
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(h) Scenario 2 (n = 500)

Source: Elaborated by the author.
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Figure 38 – Posterior estimates of parameter p using zero-inflated samples (Scenarios 3 and 4).
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(b) Scenario 4 (n = 50)
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(c) Scenario 3 (n = 100)
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(f) Scenario 4 (n = 200)
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(g) Scenario 3 (n = 500)
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(h) Scenario 4 (n = 500)

Source: Elaborated by the author.
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C.3.1.2 Using probit link function

Table 97 – Empirical properties of the Bayesian estimators using zero-inflated samples (Scenarios 1 and
2).

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 1

50

β10 −0.013 0.992 1.000 49.716
β11 −1.969 9.844 1.284 81.167
β20 0.020 0.214 1.001 36.875
β21 0.191 0.754 1.025 69.121

100

β10 −0.007 0.415 1.000 32.842
β11 −0.847 3.051 1.144 42.982
β20 0.003 0.148 1.000 30.516
β21 0.063 0.564 1.004 59.161

200

β10 −0.010 0.134 1.000 18.566
β11 −0.405 1.003 1.093 24.666
β20 0.009 0.054 1.001 18.170
β21 0.010 0.266 1.000 40.134

500

β10 −0.005 0.052 1.000 12.110
β11 −0.138 0.236 1.043 12.837
β20 0.001 0.025 1.000 12.704
β21 0.004 0.096 1.000 24.369

Scenario 2

50

β10 −0.213 0.299 1.086 27.133
β11 −0.117 0.586 1.012 19.488
β20 0.052 0.180 1.008 33.672
β21 −0.026 0.497 1.001 108.882

100

β10 −0.131 0.143 1.066 19.972
β11 −0.026 0.292 1.001 14.063
β20 0.003 0.108 1.000 26.370
β21 −0.002 0.311 1.000 89.775

200

β10 −0.056 0.055 1.030 12.321
β11 −0.018 0.121 1.001 9.102
β20 −0.002 0.035 1.000 15.016
β21 0.006 0.114 1.000 54.306

500

β10 −0.030 0.024 1.020 8.184
β11 0.004 0.052 1.000 6.078
β20 0.003 0.016 1.000 10.023
β21 −0.004 0.043 1.000 32.685

Source: Elaborated by the author.
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Table 98 – Empirical properties of the Bayesian estimators using zero-inflated samples (Scenarios 3 and
4).

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 3

50

β10 −0.558 1.168 1.167 54.835
β11 0.371 2.334 1.031 81.328
β20 0.064 0.217 1.009 37.291
β21 0.090 0.739 1.006 69.044

100

β10 −0.335 0.687 1.093 41.996
β11 0.157 2.126 1.006 79.353
β20 0.000 0.142 1.000 29.447
β21 0.085 0.498 1.007 54.999

200

β10 −0.131 0.215 1.042 23.877
β11 −0.013 1.186 1.000 57.991
β20 0.008 0.057 1.001 18.644
β21 0.024 0.260 1.001 39.806

500

β10 −0.043 0.078 1.012 14.353
β11 −0.058 0.534 1.003 37.506
β20 0.007 0.022 1.001 11.511
β21 −0.001 0.092 1.000 23.509

Scenario 4

50

β10 −0.300 0.621 1.081 39.539
β11 0.201 1.467 1.014 64.091
β20 0.101 0.173 1.031 33.391
β21 −0.119 0.464 1.016 107.901

100

β10 −0.116 0.306 1.023 28.224
β11 0.066 0.849 1.003 47.504
β20 −0.017 0.099 1.002 24.656
β21 0.045 0.269 1.004 82.445

200

β10 −0.089 0.115 1.036 17.815
β11 0.058 0.372 1.005 32.020
β20 0.001 0.042 1.000 16.520
β21 0.016 0.132 1.001 57.849

500

β10 −0.026 0.041 1.008 10.693
β11 0.001 0.136 1.000 19.688
β20 0.000 0.015 1.000 9.807
β21 0.014 0.042 1.002 33.297

Source: Elaborated by the author.
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Table 99 – Posterior estimates of model parameters using zero-inflated samples (Scenarios 1 and 2).

n Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 1

50

β10 1.487 1.490 0.996 −0.136 3.104
β11 1.031 1.022 2.442 −2.290 4.386
β20 −0.980 −0.964 0.462 −1.971 −0.013
β21 −0.809 −0.784 0.847 −2.737 1.072

100

β10 1.493 1.495 0.644 0.330 2.654
β11 2.153 2.141 1.527 −0.182 4.495
β20 −0.997 −0.988 0.384 −1.754 −0.256
β21 −0.937 −0.926 0.748 −2.419 0.521

200

β10 1.490 1.491 0.367 0.818 2.158
β11 2.595 2.585 0.916 1.128 4.080
β20 −0.991 −0.988 0.233 −1.458 −0.528
β21 −0.990 −0.980 0.516 −2.004 0.015

500

β10 1.495 1.495 0.228 1.078 1.911
β11 2.862 2.857 0.465 2.022 3.707
β20 −0.999 −0.998 0.158 −1.300 −0.701
β21 −0.996 −0.993 0.310 −1.602 −0.392

Scenario 2

50

β10 1.287 1.286 0.504 0.339 2.232
β11 2.883 2.876 0.757 1.478 4.296
β20 −0.948 −0.939 0.421 −1.767 −0.139
β21 0.474 0.470 0.704 −0.863 1.819

100

β10 1.369 1.369 0.355 0.656 2.079
β11 2.974 2.970 0.540 1.887 4.067
β20 −0.997 −0.992 0.328 −1.623 −0.380
β21 0.498 0.495 0.558 −0.536 1.537

200

β10 1.444 1.443 0.227 0.991 1.897
β11 2.982 2.979 0.347 2.265 3.701
β20 −1.002 −1.000 0.188 −1.395 −0.612
β21 0.506 0.505 0.338 −0.186 1.199

500

β10 1.470 1.470 0.152 1.176 1.763
β11 3.004 3.003 0.228 2.568 3.443
β20 −0.997 −0.996 0.124 −1.252 −0.742
β21 0.496 0.496 0.207 0.077 0.917

Source: Elaborated by the author.
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Table 100 – Posterior estimates of model parameters using zero-inflated samples (Scenarios 3 and 4).

n Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 3

50

β10 0.942 0.961 0.926 −1.084 2.925
β11 −1.129 −1.127 1.482 −5.479 3.199
β20 −0.936 −0.922 0.462 −1.922 0.025
β21 −0.910 −0.880 0.855 −2.863 0.986

100

β10 1.165 1.180 0.758 −0.395 2.695
β11 −1.343 −1.338 1.450 −4.798 2.099
β20 −1.000 −0.991 0.377 −1.757 −0.260
β21 −0.915 −0.904 0.701 −2.390 0.539

200

β10 1.369 1.375 0.445 0.502 2.224
β11 −1.513 −1.501 1.089 −3.844 0.809
β20 −0.992 −0.989 0.238 −1.458 −0.532
β21 −0.976 −0.966 0.510 −1.984 0.019

500

β10 1.457 1.459 0.275 0.921 1.986
β11 −1.558 −1.551 0.728 −2.976 −0.152
β20 −0.993 −0.991 0.149 −1.293 −0.694
β21 −1.001 −0.998 0.304 −1.605 −0.399

Scenario 4

50

β10 1.200 1.211 0.729 −0.199 2.576
β11 −1.299 −1.292 1.194 −3.770 1.162
β20 −0.899 −0.891 0.404 −1.710 −0.099
β21 0.381 0.379 0.670 −0.951 1.720

100

β10 1.384 1.390 0.541 0.325 2.433
β11 −1.434 −1.431 0.919 −3.288 0.421
β20 −1.017 −1.013 0.314 −1.644 −0.396
β21 0.545 0.542 0.517 −0.490 1.587

200

β10 1.411 1.414 0.327 0.772 2.041
β11 −1.442 −1.440 0.607 −2.652 −0.232
β20 −0.999 −0.997 0.205 −1.392 −0.610
β21 0.516 0.516 0.363 −0.175 1.208

500

β10 1.474 1.476 0.200 1.069 1.878
β11 −1.499 −1.498 0.369 −2.223 −0.776
β20 −1.000 −0.999 0.122 −1.254 −0.745
β21 0.514 0.513 0.204 0.095 0.933

Source: Elaborated by the author.
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Table 101 – Coverage probabilities (%) of the HPDIs using zero-inflated samples (Scenarios 1 and 2).

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 1 Scenario 2

50

β10 2.60 94.60 2.80 1.20 93.20 5.60

β11 0.80 73.80 25.40 1.60 93.60 4.80

β20 2.40 97.40 0.20 5.20 93.80 1.00

β21 2.40 97.60 0.00 1.60 95.20 3.20

100

β10 2.00 96.20 1.80 1.20 95.40 3.40

β11 0.40 87.00 12.60 1.20 95.20 3.60

β20 4.20 94.60 1.20 3.40 95.00 1.60

β21 3.00 95.80 1.20 3.00 93.80 3.20

200

β10 4.20 92.40 3.40 1.00 95.20 3.80

β11 0.60 90.00 9.40 1.60 95.60 2.80

β20 3.20 94.80 2.00 2.00 96.40 1.60

β21 3.40 95.40 1.20 1.80 96.60 1.60

500

β10 3.40 95.20 1.40 2.80 93.60 3.60

β11 1.00 92.60 6.40 1.60 95.00 3.40

β20 2.80 95.20 2.00 2.20 96.40 1.40

β21 2.60 95.40 2.00 2.20 95.60 2.20

Source: Elaborated by the author.

Table 102 – Coverage probabilities (%) of the HPDIs using zero-inflated samples (Scenarios 3 and 4).

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 3 Scenario 4

50

β10 0.00 98.60 1.40 1.00 96.40 2.60

β11 0.60 99.40 0.00 2.80 96.40 0.80

β20 3.20 96.80 0.00 4.40 94.80 0.80

β21 2.40 97.00 0.60 1.20 94.40 4.40

100

β10 0.40 98.00 1.60 2.60 96.00 1.40

β11 1.00 98.60 0.40 1.00 97.40 1.60

β20 2.60 96.60 0.80 1.60 97.20 1.20

β21 3.80 95.40 0.80 2.00 96.60 1.40

200

β10 0.40 96.60 3.00 1.80 95.60 2.60

β11 1.20 98.00 0.80 2.20 96.20 1.60

β20 3.00 95.00 2.00 2.60 96.20 1.20

β21 3.80 95.80 0.40 1.60 95.40 3.00

500

β10 1.80 96.20 2.00 2.20 96.00 1.80

β11 2.00 95.60 2.40 2.00 95.60 2.40

β20 3.20 94.80 2.00 2.80 95.60 1.60

β21 1.80 96.40 1.80 2.00 96.20 1.80

Source: Elaborated by the author.
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Figure 39 – Posterior estimates of parameter p using zero-inflated samples (Scenarios 1 and 2).
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(b) Scenario 2 (n = 50)
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(e) Scenario 1 (n = 200)
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Source: Elaborated by the author.



C.3. Results from the simulation study 267

Figure 40 – Posterior estimates of parameter p using zero-inflated samples (Scenarios 3 and 4).
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(b) Scenario 4 (n = 50)
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(g) Scenario 3 (n = 500)
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(h) Scenario 4 (n = 500)

Source: Elaborated by the author.
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C.3.1.3 Using complementary log-log link function

Table 103 – Empirical properties of the Bayesian estimators using zero-inflated samples (Scenarios 1 and
2).

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 1

50

β10 −0.145 0.290 1.038 27.436
β11 −0.369 1.254 1.059 26.086
β20 0.028 0.260 1.002 40.885
β21 0.222 0.816 1.032 72.841

100

β10 −0.090 0.132 1.032 19.110
β11 −0.148 0.415 1.028 16.902
β20 0.015 0.183 1.001 35.014
β21 0.122 0.604 1.012 61.264

200

β10 −0.022 0.047 1.005 11.434
β11 −0.107 0.185 1.032 11.402
β20 0.018 0.074 1.002 21.593
β21 0.060 0.296 1.006 42.673

500

β10 −0.011 0.018 1.003 7.083
β11 −0.038 0.061 1.012 6.449
β20 0.005 0.031 1.000 13.982
β21 0.025 0.116 1.003 26.966

Scenario 2

50

β10 −0.116 0.164 1.044 20.395
β11 −0.179 0.375 1.046 15.972
β20 0.098 0.243 1.020 39.207
β21 −0.083 0.657 1.005 127.997

100

β10 −0.060 0.074 1.026 14.508
β11 −0.106 0.192 1.030 11.570
β20 0.039 0.129 1.006 28.591
β21 −0.018 0.357 1.000 96.053

200

β10 −0.052 0.034 1.042 9.499
β11 −0.015 0.082 1.001 7.587
β20 0.022 0.054 1.004 18.028
β21 −0.021 0.154 1.001 61.469

500

β10 −0.017 0.012 1.012 5.755
β11 −0.004 0.028 1.000 4.473
β20 0.006 0.023 1.001 12.253
β21 0.000 0.062 1.000 40.099

Source: Elaborated by the author.
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Table 104 – Empirical properties of the Bayesian estimators using zero-inflated samples (Scenarios 3 and
4).

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 3

50

β10 −0.286 0.547 1.085 36.060
β11 0.242 1.647 1.018 67.210
β20 0.026 0.281 1.001 41.631
β21 0.248 0.961 1.034 78.137

100

β10 −0.108 0.245 1.025 24.112
β11 −0.014 0.921 1.000 49.679
β20 0.010 0.174 1.000 33.560
β21 0.120 0.569 1.013 60.454

200

β10 −0.055 0.083 1.019 14.855
β11 −0.023 0.442 1.001 34.941
β20 0.012 0.072 1.001 21.081
β21 0.036 0.278 1.002 41.432

500

β10 −0.024 0.033 1.008 9.631
β11 −0.024 0.166 1.002 21.483
β20 0.002 0.032 1.000 14.379
β21 0.014 0.110 1.001 26.533

Scenario 4

50

β10 −0.232 0.352 1.087 29.729
β11 0.165 0.972 1.014 52.225
β20 0.048 0.209 1.006 37.053
β21 −0.007 0.550 1.000 117.533

100

β10 −0.116 0.147 1.049 20.012
β11 0.078 0.434 1.007 34.804
β20 0.037 0.125 1.006 28.175
β21 −0.017 0.331 1.000 92.817

200

β10 −0.043 0.066 1.014 13.459
β11 0.017 0.265 1.000 26.876
β20 0.029 0.054 1.008 18.318
β21 −0.031 0.174 1.003 65.728

500

β10 −0.006 0.022 1.001 7.707
β11 −0.015 0.078 1.001 14.695
β20 0.005 0.022 1.001 11.691
β21 −0.012 0.059 1.001 38.117

Source: Elaborated by the author.
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Table 105 – Posterior estimates of model parameters using zero-inflated samples (Scenarios 1 and 2).

n Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 1

50

β10 1.355 1.355 0.519 0.438 2.270
β11 2.631 2.620 1.057 1.022 4.252
β20 −0.972 −0.945 0.510 −2.072 0.088
β21 −0.778 −0.768 0.876 −2.783 1.212

100

β10 1.410 1.411 0.352 0.740 2.079
β11 2.852 2.844 0.627 1.679 4.037
β20 −0.985 −0.969 0.427 −1.837 −0.159
β21 −0.878 −0.877 0.767 −2.449 0.681

200

β10 1.478 1.478 0.216 1.073 1.886
β11 2.893 2.889 0.417 2.131 3.662
β20 −0.982 −0.975 0.271 −1.518 −0.454
β21 −0.940 −0.935 0.541 −2.034 0.147

500

β10 1.489 1.489 0.135 1.226 1.752
β11 2.962 2.961 0.243 2.500 3.423
β20 −0.995 −0.992 0.176 −1.348 −0.648
β21 −0.975 −0.974 0.339 −1.645 −0.307

Scenario 2

50

β10 1.384 1.384 0.388 0.688 2.080
β11 2.821 2.817 0.586 1.763 3.881
β20 −0.902 −0.882 0.484 −1.844 0.004
β21 0.417 0.414 0.806 −1.104 1.944

100

β10 1.440 1.440 0.265 0.917 1.964
β11 2.894 2.892 0.425 2.079 3.714
β20 −0.961 −0.950 0.357 −1.685 −0.253
β21 0.482 0.478 0.597 −0.709 1.674

200

β10 1.448 1.448 0.176 1.109 1.786
β11 2.985 2.983 0.286 2.434 3.537
β20 −0.978 −0.973 0.232 −1.441 −0.523
β21 0.479 0.480 0.392 −0.329 1.286

500

β10 1.483 1.483 0.108 1.263 1.704
β11 2.996 2.995 0.167 2.660 3.333
β20 −0.994 −0.991 0.152 −1.297 −0.694
β21 0.500 0.499 0.248 0.009 0.994

Source: Elaborated by the author.
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Table 106 – Posterior estimates of model parameters using zero-inflated samples (Scenarios 3 and 4).

n Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 3

50

β10 1.214 1.223 0.682 −0.069 2.474
β11 −1.258 −1.248 1.260 −3.918 1.391
β20 −0.974 −0.949 0.530 −2.073 0.081
β21 −0.752 −0.743 0.949 −2.749 1.224

100

β10 1.392 1.398 0.483 0.477 2.293
β11 −1.514 −1.510 0.960 −3.446 0.395
β20 −0.990 −0.974 0.418 −1.845 −0.162
β21 −0.880 −0.878 0.745 −2.450 0.691

200

β10 1.445 1.447 0.283 0.903 1.986
β11 −1.523 −1.518 0.664 −2.827 −0.225
β20 −0.988 −0.981 0.268 −1.530 −0.457
β21 −0.964 −0.959 0.526 −2.069 0.134

500

β10 1.476 1.478 0.180 1.129 1.821
β11 −1.524 −1.522 0.407 −2.307 −0.745
β20 −0.998 −0.995 0.180 −1.350 −0.648
β21 −0.986 −0.985 0.331 −1.659 −0.315

Scenario 4

50

β10 1.268 1.275 0.546 0.231 2.295
β11 −1.335 −1.330 0.972 −3.202 0.524
β20 −0.952 −0.933 0.455 −1.901 −0.037
β21 0.493 0.490 0.742 −1.036 2.025

100

β10 1.384 1.389 0.365 0.624 2.141
β11 −1.422 −1.421 0.654 −2.805 −0.033
β20 −0.963 −0.951 0.352 −1.690 −0.256
β21 0.483 0.480 0.575 −0.706 1.677

200

β10 1.457 1.458 0.254 0.990 1.921
β11 −1.483 −1.482 0.515 −2.415 −0.551
β20 −0.971 −0.967 0.231 −1.433 −0.517
β21 0.469 0.469 0.416 −0.337 1.275

500

β10 1.494 1.494 0.146 1.193 1.792
β11 −1.515 −1.514 0.278 −2.074 −0.957
β20 −0.995 −0.993 0.146 −1.299 −0.694
β21 0.488 0.488 0.242 −0.004 0.983

Source: Elaborated by the author.
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Table 107 – Coverage probabilities (%) of the HPDIs using zero-inflated samples (Scenarios 1 and 2).

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 1 Scenario 2

50

β10 1.60 92.40 6.00 2.00 91.80 6.20

β11 2.00 89.40 8.60 1.80 91.20 7.00

β20 4.60 95.20 0.20 6.40 92.60 1.00

β21 1.80 97.80 0.40 2.20 94.40 3.40

100

β10 1.40 94.60 4.00 2.60 94.60 2.80

β11 0.40 94.00 5.60 0.80 93.40 5.80

β20 4.80 94.80 0.40 3.40 95.00 1.60

β21 3.40 95.40 1.20 1.40 95.00 3.60

200

β10 2.20 94.00 3.80 1.40 94.80 3.80

β11 1.60 93.40 5.00 1.80 94.80 3.40

β20 4.60 94.40 1.00 4.40 94.40 1.20

β21 2.60 96.00 1.40 1.40 95.60 3.00

500

β10 1.80 95.00 3.20 1.00 96.60 2.40

β11 2.00 93.40 4.60 1.40 96.80 1.80

β20 2.80 95.20 2.00 2.20 96.80 1.00

β21 2.80 95.20 2.00 2.20 95.20 2.60

Source: Elaborated by the author.

Table 108 – Coverage probabilities (%) of the HPDIs using zero-inflated samples (Scenarios 3 and 4).

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 3 Scenario 4

50

β10 1.40 93.80 4.80 0.60 95.60 3.80

β11 2.20 97.00 0.80 3.40 95.60 1.00

β20 2.20 96.80 1.00 4.00 95.80 0.20

β21 3.60 96.40 0.00 1.60 96.20 2.20

100

β10 1.40 95.60 3.00 1.20 96.60 2.20

β11 2.60 95.80 1.60 2.00 96.00 2.00

β20 4.20 95.00 0.80 3.60 95.40 1.00

β21 1.80 97.40 0.80 1.00 97.00 2.00

200

β10 2.40 95.20 2.40 1.80 94.00 4.20

β11 1.80 96.20 2.00 3.40 93.40 3.20

β20 2.60 95.80 1.60 2.60 96.20 1.20

β21 2.80 96.20 1.00 2.40 94.60 3.00

500

β10 2.20 94.40 3.40 3.00 94.80 2.20

β11 2.00 95.20 2.80 1.40 95.40 3.20

β20 3.40 94.80 1.80 2.80 96.20 1.00

β21 1.60 96.60 1.80 1.80 95.40 2.80

Source: Elaborated by the author.
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Figure 41 – Posterior estimates of parameter p using zero-inflated samples (Scenarios 1 and 2).
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(b) Scenario 2 (n = 50)
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Source: Elaborated by the author.
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Figure 42 – Posterior estimates of parameter p using zero-inflated samples (Scenarios 3 and 4).
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(b) Scenario 4 (n = 50)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

p̂

(c) Scenario 3 (n = 100)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

p̂

(d) Scenario 4 (n = 100)
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(g) Scenario 3 (n = 500)
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Source: Elaborated by the author.
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C.3.2 Zero-deflated artificial data
C.3.2.1 Using logit link function

Table 109 – Empirical properties of the Bayesian estimators using zero-deflated samples (Scenarios 1 and
2).

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 1

50

β10 0.116 0.342 1.020 46.269
β11 −0.209 0.905 1.025 75.544
β20 −0.071 0.298 1.008 85.289
β21 −0.017 0.904 1.000 148.588

100

β10 0.040 0.221 1.004 36.505
β11 −0.069 0.581 1.004 60.373
β20 −0.010 0.189 1.000 68.498
β21 −0.061 0.566 1.003 118.380

200

β10 0.043 0.093 1.010 25.193
β11 −0.067 0.268 1.008 41.512
β20 −0.016 0.079 1.002 44.834
β21 −0.005 0.277 1.000 85.763

500

β10 −0.004 0.041 1.000 16.515
β11 0.004 0.105 1.000 25.966
β20 0.005 0.035 1.000 30.158
β21 −0.022 0.107 1.002 52.544

Scenario 2

50

β10 0.070 0.329 1.007 44.744
β11 −0.121 0.928 1.008 75.648
β20 −0.188 0.383 1.050 33.581
β21 0.144 0.939 1.011 78.153

100

β10 0.040 0.185 1.004 33.702
β11 −0.075 0.508 1.006 56.059
β20 −0.069 0.251 1.010 27.134
β21 0.028 0.648 1.001 64.126

200

β10 0.004 0.082 1.000 22.578
β11 −0.007 0.269 1.000 41.316
β20 −0.066 0.099 1.023 16.943
β21 0.074 0.297 1.010 43.689

500

β10 0.013 0.038 1.002 15.487
β11 −0.021 0.100 1.002 25.244
β20 −0.022 0.045 1.006 11.579
β21 0.018 0.121 1.001 27.868

Source: Elaborated by the author.
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Table 110 – Empirical properties of the Bayesian estimators using zero-deflated samples (Scenarios 3 and
4).

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 3

50

β10 0.007 0.416 1.000 51.077
β11 0.578 1.484 1.136 63.871
β20 −0.046 0.298 1.004 88.854
β21 −0.032 0.908 1.000 156.233

100

β10 0.004 0.320 1.000 45.682
β11 0.249 1.085 1.030 55.080
β20 −0.039 0.198 1.004 70.640
β21 −0.012 0.563 1.000 120.764

200

β10 0.001 0.155 1.000 31.560
β11 0.142 0.607 1.017 41.578
β20 −0.023 0.080 1.003 45.237
β21 −0.004 0.265 1.000 81.871

500

β10 −0.006 0.064 1.000 20.189
β11 0.077 0.237 1.013 25.468
β20 −0.002 0.033 1.000 28.544
β21 −0.009 0.098 1.000 49.648

Scenario 4

50

β10 −0.009 0.356 1.000 47.455
β11 0.562 1.376 1.139 62.652
β20 −0.126 0.372 1.022 32.045
β21 0.058 1.017 1.002 80.557

100

β10 −0.053 0.294 1.005 42.976
β11 0.366 1.155 1.064 56.965
β20 −0.103 0.239 1.023 26.300
β21 0.113 0.650 1.010 65.186

200

β10 0.012 0.113 1.001 27.492
β11 0.154 0.530 1.023 39.172
β20 −0.059 0.108 1.016 17.372
β21 0.070 0.335 1.007 46.286

500

β10 −0.013 0.052 1.002 17.895
β11 0.086 0.207 1.018 24.165
β20 −0.013 0.045 1.002 11.191
β21 0.017 0.122 1.001 27.718

Source: Elaborated by the author.
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Table 111 – Posterior estimates of model parameters using zero-deflated samples (Scenarios 1 and 2).

n Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 1

50

β10 −0.884 −0.871 0.574 −2.129 0.336
β11 0.791 0.787 0.928 −1.156 2.737
β20 0.429 0.423 0.541 −0.722 1.591
β21 0.483 0.478 0.951 −1.517 2.486

100

β10 −0.960 −0.952 0.469 −1.917 −0.013
β11 0.931 0.928 0.759 −0.590 2.455
β20 0.490 0.485 0.435 −0.399 1.387
β21 0.439 0.437 0.750 −1.119 1.995

200

β10 −0.957 −0.953 0.301 −1.568 −0.351
β11 0.933 0.933 0.513 −0.086 1.956
β20 0.484 0.482 0.280 −0.078 1.051
β21 0.495 0.493 0.526 −0.564 1.554

500

β10 −1.004 −1.003 0.203 −1.408 −0.602
β11 1.004 1.003 0.324 0.376 1.633
β20 0.505 0.503 0.187 0.137 0.874
β21 0.478 0.478 0.327 −0.164 1.121

Scenario 2

50

β10 −0.930 −0.917 0.569 −2.095 0.212
β11 0.879 0.878 0.956 −1.013 2.782
β20 1.312 1.294 0.589 0.063 2.598
β21 −0.856 −0.848 0.958 −2.945 1.212

100

β10 −0.960 −0.953 0.429 −1.852 −0.080
β11 0.925 0.923 0.709 −0.548 2.405
β20 1.431 1.420 0.496 0.445 2.442
β21 −0.972 −0.964 0.804 −2.626 0.673

200

β10 −0.996 −0.993 0.287 −1.564 −0.431
β11 0.993 0.993 0.519 −0.001 1.986
β20 1.434 1.428 0.308 0.800 2.077
β21 −0.926 −0.923 0.540 −2.041 0.189

500

β10 −0.987 −0.986 0.194 −1.359 −0.618
β11 0.979 0.979 0.315 0.372 1.587
β20 1.478 1.475 0.211 1.058 1.902
β21 −0.982 −0.980 0.347 −1.668 −0.300

Source: Elaborated by the author.
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Table 112 – Posterior estimates of model parameters using zero-deflated samples (Scenarios 3 and 4).

n Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 3

50

β10 −0.993 −0.970 0.645 −2.515 0.496
β11 −0.922 −0.910 1.073 −3.654 1.794
β20 0.454 0.447 0.544 −0.698 1.624
β21 0.468 0.463 0.952 −1.546 2.478

100

β10 −0.996 −0.980 0.566 −2.206 0.185
β11 −1.251 −1.244 1.012 −3.489 0.970
β20 0.461 0.457 0.443 −0.427 1.356
β21 0.488 0.486 0.750 −1.067 2.045

200

β10 −0.999 −0.993 0.394 −1.764 −0.242
β11 −1.359 −1.349 0.766 −2.936 0.204
β20 0.477 0.476 0.282 −0.086 1.041
β21 0.496 0.494 0.515 −0.555 1.557

500

β10 −1.006 −1.003 0.252 −1.505 −0.512
β11 −1.423 −1.419 0.480 −2.388 −0.466
β20 0.498 0.497 0.182 0.130 0.868
β21 0.491 0.491 0.312 −0.152 1.134

Scenario 4

50

β10 −1.009 −0.989 0.596 −2.426 0.373
β11 −0.938 −0.921 1.030 −3.628 1.734
β20 1.374 1.355 0.597 0.109 2.667
β21 −0.942 −0.934 1.007 −3.039 1.143

100

β10 −1.053 −1.040 0.539 −2.169 0.040
β11 −1.134 −1.127 1.011 −3.277 1.003
β20 1.397 1.386 0.478 0.412 2.401
β21 −0.887 −0.880 0.798 −2.538 0.761

200

β10 −0.988 −0.982 0.335 −1.682 −0.302
β11 −1.346 −1.335 0.711 −2.861 0.154
β20 1.441 1.436 0.322 0.805 2.084
β21 −0.930 −0.928 0.574 −2.045 0.189

500

β10 −1.013 −1.010 0.227 −1.468 −0.563
β11 −1.414 −1.410 0.447 −2.350 −0.485
β20 1.487 1.484 0.213 1.066 1.912
β21 −0.983 −0.981 0.348 −1.670 −0.299

Source: Elaborated by the author.
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Table 113 – Coverage probabilities (%) of the HPDIs using zero-deflated samples (Scenarios 1 and 2).

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 1 Scenario 2

50

β10 3.40 96.20 0.40 4.40 94.40 1.20

β11 0.80 96.60 2.60 2.20 95.20 2.60

β20 0.40 97.00 2.60 0.20 95.60 4.20

β21 1.40 97.60 1.00 2.40 97.40 0.20

100

β10 3.80 94.60 1.60 2.20 96.80 1.00

β11 1.60 96.40 2.00 1.60 95.60 2.80

β20 1.60 96.00 2.40 0.80 95.20 4.00

β21 1.40 96.20 2.40 2.60 96.00 1.40

200

β10 3.40 96.20 0.40 3.00 95.00 2.00

β11 1.20 96.60 2.20 3.80 93.60 2.60

β20 0.80 96.00 3.20 0.80 96.00 3.20

β21 1.20 97.00 1.80 2.40 96.40 1.20

500

β10 2.20 95.00 2.80 2.60 95.20 2.20

β11 2.40 94.80 2.80 2.00 95.60 2.40

β20 0.80 95.80 3.40 1.40 95.20 3.40

β21 2.40 95.80 1.80 2.80 95.00 2.20

Source: Elaborated by the author.

Table 114 – Coverage probabilities (%) of the HPDIs using zero-deflated samples (Scenarios 3 and 4).

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 3 Scenario 4

50

β10 2.20 97.60 0.20 1.40 98.60 0.00

β11 3.20 96.80 0.00 2.60 97.40 0.00

β20 0.40 97.60 2.00 1.00 96.00 3.00

β21 0.80 97.60 1.60 2.00 96.60 1.40

100

β10 2.40 97.00 0.60 1.20 97.60 1.20

β11 1.80 97.60 0.60 3.40 96.40 0.20

β20 2.00 95.00 3.00 0.80 94.60 4.60

β21 1.60 96.40 2.00 2.80 96.20 1.00

200

β10 3.40 94.40 2.20 3.40 95.80 0.80

β11 4.00 95.20 0.80 2.80 96.20 1.00

β20 2.20 95.60 2.20 2.00 94.80 3.20

β21 1.20 96.80 2.00 3.60 94.40 2.00

500

β10 3.40 94.60 2.00 2.20 94.80 3.00

β11 4.00 94.40 1.60 3.40 95.80 0.80

β20 2.20 94.60 3.20 1.20 95.20 3.60

β21 1.40 96.80 1.80 3.20 95.40 1.40

Source: Elaborated by the author.



282 APPENDIX C. Supplement for Chapter 5

Figure 43 – Posterior estimates of parameter p using zero-deflated samples (Scenarios 1 and 2).
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Source: Elaborated by the author.
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Figure 44 – Posterior estimates of parameter p using zero-deflated samples (Scenarios 3 and 4).
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Source: Elaborated by the author.
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C.3.2.2 Using probit link function

Table 115 – Empirical properties of the Bayesian estimators using zero-deflated samples (Scenarios 1 and
2).

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 1

50

β10 0.081 0.324 1.010 45.581
β11 −0.164 0.839 1.016 74.955
β20 −0.001 0.156 1.000 62.082
β21 −0.050 0.471 1.003 109.956

100

β10 0.053 0.197 1.007 35.633
β11 −0.075 0.485 1.006 55.800
β20 −0.034 0.092 1.006 47.660
β21 0.030 0.301 1.002 86.294

200

β10 0.012 0.078 1.001 22.714
β11 −0.017 0.231 1.001 38.300
β20 −0.022 0.035 1.007 29.615
β21 0.020 0.123 1.002 55.809

500

β10 0.016 0.040 1.003 15.990
β11 −0.028 0.098 1.004 25.124
β20 0.006 0.016 1.001 19.987
β21 −0.011 0.047 1.001 35.119

Scenario 2

50

β10 0.050 0.266 1.005 41.381
β11 −0.084 0.744 1.005 67.351
β20 −0.072 0.205 1.013 24.018
β21 0.057 0.512 1.003 56.514

100

β10 0.012 0.171 1.000 32.812
β11 −0.022 0.445 1.001 52.762
β20 −0.014 0.138 1.001 19.169
β21 0.002 0.380 1.000 48.545

200

β10 0.010 0.072 1.001 21.244
β11 −0.020 0.214 1.001 37.192
β20 −0.031 0.043 1.012 11.013
β21 0.042 0.136 1.007 29.241

500

β10 0.019 0.028 1.007 13.449
β11 −0.028 0.074 1.005 21.794
β20 0.002 0.026 1.000 8.697
β21 −0.004 0.061 1.000 19.548

Source: Elaborated by the author.
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Table 116 – Empirical properties of the Bayesian estimators using zero-deflated samples (Scenarios 3 and
4).

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 3

50

β10 0.018 0.371 1.000 47.775
β11 0.463 1.251 1.099 58.669
β20 −0.019 0.146 1.001 60.599
β21 −0.040 0.446 1.002 104.663

100

β10 −0.003 0.287 1.000 43.011
β11 0.253 0.969 1.035 51.804
β20 −0.020 0.079 1.002 44.592
β21 0.017 0.253 1.001 79.059

200

β10 −0.028 0.125 1.003 27.594
β11 0.159 0.539 1.024 38.997
β20 −0.003 0.035 1.000 29.779
β21 0.006 0.136 1.000 56.819

500

β10 −0.005 0.058 1.000 19.370
β11 0.054 0.223 1.007 25.061
β20 −0.002 0.014 1.000 19.111
β21 −0.006 0.046 1.000 34.241

Scenario 4

50

β10 −0.076 0.372 1.008 48.160
β11 0.624 1.415 1.174 62.839
β20 −0.069 0.215 1.011 25.209
β21 0.034 0.546 1.001 58.479

100

β10 −0.051 0.231 1.006 38.240
β11 0.352 0.930 1.074 51.961
β20 0.013 0.119 1.001 17.847
β21 −0.050 0.320 1.004 44.541

200

β10 0.005 0.111 1.000 25.939
β11 0.133 0.544 1.017 39.311
β20 −0.010 0.059 1.001 12.777
β21 0.001 0.163 1.000 32.126

500

β10 −0.001 0.045 1.000 17.131
β11 0.079 0.185 1.017 23.264
β20 −0.011 0.022 1.003 8.025
β21 0.014 0.054 1.002 18.553

Source: Elaborated by the author.
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Table 117 – Posterior estimates of model parameters using zero-deflated samples (Scenarios 1 and 2).

n Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 1

50

β10 −0.919 −0.906 0.563 −2.094 0.239
β11 0.836 0.832 0.901 −0.993 2.668
β20 0.499 0.495 0.394 −0.267 1.276
β21 0.450 0.446 0.684 −0.905 1.811

100

β10 −0.947 −0.940 0.440 −1.850 −0.054
β11 0.925 0.922 0.693 −0.500 2.357
β20 0.466 0.464 0.302 −0.114 1.047
β21 0.530 0.528 0.548 −0.501 1.560

200

β10 −0.988 −0.985 0.280 −1.567 −0.412
β11 0.983 0.982 0.480 0.025 1.945
β20 0.478 0.477 0.186 0.114 0.844
β21 0.520 0.518 0.350 −0.176 1.214

500

β10 −0.984 −0.983 0.199 −1.362 −0.608
β11 0.972 0.972 0.311 0.385 1.560
β20 0.506 0.506 0.125 0.269 0.744
β21 0.489 0.489 0.217 0.068 0.909

Scenario 2

50

β10 −0.950 −0.938 0.514 −2.034 0.121
β11 0.916 0.914 0.858 −0.855 2.694
β20 1.428 1.410 0.447 0.496 2.388
β21 −0.943 −0.931 0.713 −2.445 0.534

100

β10 −0.988 −0.981 0.413 −1.826 −0.160
β11 0.978 0.976 0.667 −0.406 2.370
β20 1.486 1.477 0.371 0.771 2.218
β21 −0.998 −0.991 0.616 −2.162 0.154

200

β10 −0.990 −0.987 0.268 −1.521 −0.462
β11 0.980 0.981 0.463 0.048 1.915
β20 1.469 1.465 0.205 1.017 1.924
β21 −0.958 −0.956 0.366 −1.726 −0.194

500

β10 −0.981 −0.980 0.167 −1.327 −0.636
β11 0.972 0.972 0.270 0.403 1.540
β20 1.502 1.500 0.163 1.204 1.803
β21 −1.004 −1.003 0.246 −1.475 −0.536

Source: Elaborated by the author.
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Table 118 – Posterior estimates of model parameters using zero-deflated samples (Scenarios 3 and 4).

n Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 3

50

β10 −0.982 −0.960 0.609 −2.438 0.431
β11 −1.037 −1.023 1.018 −3.661 1.571
β20 0.481 0.477 0.381 −0.284 1.248
β21 0.460 0.456 0.666 −0.883 1.816

100

β10 −1.003 −0.989 0.536 −2.138 0.113
β11 −1.247 −1.240 0.951 −3.347 0.841
β20 0.480 0.479 0.281 −0.100 1.063
β21 0.517 0.515 0.503 −0.514 1.551

200

β10 −1.028 −1.022 0.352 −1.750 −0.312
β11 −1.341 −1.332 0.717 −2.829 0.126
β20 0.497 0.496 0.187 0.133 0.863
β21 0.506 0.504 0.368 −0.188 1.203

500

β10 −1.005 −1.002 0.240 −1.475 −0.536
β11 −1.446 −1.443 0.470 −2.354 −0.540
β20 0.498 0.498 0.120 0.261 0.736
β21 0.494 0.494 0.214 0.074 0.913

Scenario 4

50

β10 −1.076 −1.056 0.605 −2.432 0.241
β11 −0.876 −0.862 1.013 −3.440 1.667
β20 1.431 1.414 0.459 0.503 2.389
β21 −0.966 −0.956 0.738 −2.459 0.509

100

β10 −1.051 −1.039 0.478 −2.089 −0.028
β11 −1.147 −1.140 0.898 −3.168 0.856
β20 1.513 1.503 0.345 0.795 2.250
β21 −1.050 −1.043 0.563 −2.218 0.105

200

β10 −0.995 −0.990 0.332 −1.645 −0.353
β11 −1.367 −1.356 0.725 −2.797 0.049
β20 1.490 1.486 0.242 1.034 1.952
β21 −0.999 −0.997 0.404 −1.771 −0.233

500

β10 −1.001 −0.999 0.212 −1.425 −0.581
β11 −1.421 −1.418 0.423 −2.297 −0.552
β20 1.489 1.487 0.150 1.192 1.789
β21 −0.986 −0.984 0.233 −1.456 −0.518

Source: Elaborated by the author.



C.3. Results from the simulation study 289

Table 119 – Coverage probabilities (%) of the HPDIs using zero-deflated samples (Scenarios 1 and 2).

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 1 Scenario 2

50

β10 4.60 94.80 0.60 3.40 96.20 0.40

β11 0.80 96.80 2.40 1.60 95.80 2.60

β20 1.60 95.80 2.60 0.00 97.00 3.00

β21 1.40 96.00 2.60 1.60 97.80 0.60

100

β10 3.60 95.20 1.20 2.60 96.40 1.00

β11 0.80 96.00 3.20 1.60 96.60 1.80

β20 1.60 95.40 3.00 1.60 94.20 4.20

β21 2.80 94.40 2.80 3.40 94.60 2.00

200

β10 2.60 96.20 1.20 2.80 95.40 1.80

β11 2.20 96.00 1.80 1.60 96.20 2.20

β20 1.80 94.80 3.40 0.80 95.60 3.60

β21 1.80 95.40 2.80 3.40 95.40 1.20

500

β10 4.60 93.60 1.80 4.00 94.80 1.20

β11 2.00 94.40 3.60 1.00 96.60 2.40

β20 1.80 95.40 2.80 3.00 94.00 3.00

β21 3.20 94.60 2.20 2.60 94.20 3.20

Source: Elaborated by the author.

Table 120 – Coverage probabilities (%) of the HPDIs using zero-deflated samples (Scenarios 3 and 4).

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 3 Scenario 4

50

β10 1.80 98.00 0.20 1.00 98.00 1.00

β11 1.80 98.00 0.20 3.80 96.20 0.00

β20 1.40 95.60 3.00 0.40 96.00 3.60

β21 1.40 96.00 2.60 3.20 95.60 1.20

100

β10 1.40 98.20 0.40 2.00 97.20 0.80

β11 2.60 97.00 0.40 2.20 97.20 0.60

β20 1.80 96.40 1.80 0.60 97.00 2.40

β21 2.00 95.60 2.40 1.40 96.80 1.80

200

β10 2.60 95.80 1.60 4.00 93.40 2.60

β11 3.20 96.20 0.60 5.60 93.40 1.00

β20 2.40 95.40 2.20 2.00 94.60 3.40

β21 2.40 94.40 3.20 2.60 94.60 2.80

500

β10 2.20 95.60 2.20 3.20 95.60 1.20

β11 4.00 94.00 2.00 2.40 96.80 0.80

β20 3.60 94.80 1.60 1.40 94.40 4.20

β21 2.40 94.40 3.20 2.40 95.60 2.00

Source: Elaborated by the author.
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Figure 45 – Posterior estimates of parameter p using zero-deflated samples (Scenarios 1 and 2).
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C.3. Results from the simulation study 291

Figure 46 – Posterior estimates of parameter p using zero-deflated samples (Scenarios 3 and 4).
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C.3.2.3 Using complementary log-log link function

Table 121 – Empirical properties of the Bayesian estimators using zero-deflated samples (Scenarios 1 and
2).

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 1

50

β10 0.029 0.293 1.001 43.753
β11 −0.053 0.701 1.002 66.609
β20 0.003 0.145 1.000 58.741
β21 0.026 0.453 1.001 104.497

100

β10 0.038 0.173 1.004 33.532
β11 −0.076 0.442 1.007 52.590
β20 0.008 0.084 1.000 45.671
β21 −0.018 0.265 1.001 81.344

200

β10 −0.008 0.083 1.000 23.138
β11 −0.005 0.227 1.000 38.595
β20 −0.015 0.037 1.003 30.755
β21 0.024 0.128 1.002 57.261

500

β10 0.016 0.030 1.004 14.056
β11 −0.024 0.073 1.004 21.857
β20 0.000 0.013 1.000 18.317
β21 0.001 0.038 1.000 31.269

Scenario 2

50

β10 0.051 0.227 1.006 37.842
β11 −0.087 0.653 1.006 63.138
β20 0.018 0.241 1.001 26.949
β21 −0.021 0.604 1.000 62.615

100

β10 0.046 0.148 1.007 30.337
β11 −0.075 0.421 1.007 51.438
β20 −0.003 0.141 1.000 19.373
β21 −0.005 0.344 1.000 45.974

200

β10 0.013 0.065 1.001 20.105
β11 −0.028 0.188 1.002 34.055
β20 0.012 0.051 1.001 11.641
β21 −0.010 0.131 1.000 28.292

500

β10 0.008 0.028 1.001 13.446
β11 −0.013 0.072 1.001 21.606
β20 0.003 0.026 1.000 8.472
β21 −0.012 0.059 1.001 19.093

Source: Elaborated by the author.
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Table 122 – Empirical properties of the Bayesian estimators using zero-deflated samples (Scenarios 3 and
4).

n Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 3

50

β10 0.046 0.333 1.003 45.611
β11 0.370 1.070 1.071 55.202
β20 −0.008 0.149 1.000 59.638
β21 0.000 0.478 1.000 105.774

100

β10 −0.013 0.246 1.000 39.508
β11 0.294 0.834 1.056 48.762
β20 −0.005 0.082 1.000 44.686
β21 −0.009 0.230 1.000 75.884

200

β10 0.007 0.100 1.000 25.257
β11 0.129 0.482 1.018 36.353
β20 −0.006 0.029 1.001 26.834
β21 −0.004 0.111 1.000 53.146

500

β10 −0.002 0.051 1.000 18.389
β11 0.048 0.179 1.006 22.600
β20 0.003 0.014 1.000 19.103
β21 −0.009 0.045 1.001 34.072

Scenario 4

50

β10 −0.038 0.322 1.002 45.114
β11 0.564 1.249 1.159 58.836
β20 −0.024 0.225 1.001 25.803
β21 −0.003 0.524 1.000 58.195

100

β10 0.013 0.228 1.000 38.213
β11 0.188 0.898 1.020 49.778
β20 0.010 0.140 1.000 19.337
β21 −0.042 0.334 1.003 45.964

200

β10 −0.015 0.088 1.001 23.347
β11 0.163 0.449 1.031 35.552
β20 −0.008 0.064 1.000 13.124
β21 0.021 0.169 1.001 32.044

500

β10 0.007 0.041 1.000 16.224
β11 0.031 0.170 1.003 21.934
β20 0.011 0.027 1.002 8.345
β21 −0.013 0.058 1.002 18.718

Source: Elaborated by the author.
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Table 123 – Posterior estimates of model parameters using zero-deflated samples (Scenarios 1 and 2).

n Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 1

50

β10 −0.971 −0.960 0.540 −2.078 0.113
β11 0.947 0.943 0.836 −0.760 2.667
β20 0.503 0.506 0.381 −0.256 1.256
β21 0.526 0.513 0.672 −0.831 1.907

100

β10 −0.962 −0.956 0.414 −1.805 −0.126
β11 0.924 0.922 0.661 −0.418 2.270
β20 0.508 0.511 0.290 −0.051 1.062
β21 0.482 0.478 0.514 −0.499 1.474

200

β10 −1.008 −1.006 0.287 −1.550 −0.470
β11 0.995 0.995 0.476 0.095 1.897
β20 0.485 0.486 0.191 0.139 0.829
β21 0.524 0.522 0.358 −0.132 1.181

500

β10 −0.984 −0.983 0.174 −1.338 −0.633
β11 0.976 0.975 0.270 0.424 1.528
β20 0.500 0.500 0.113 0.277 0.722
β21 0.501 0.500 0.194 0.110 0.892

Scenario 2

50

β10 −0.949 −0.939 0.474 −1.991 0.077
β11 0.913 0.911 0.803 −0.768 2.600
β20 1.518 1.477 0.491 0.488 2.633
β21 −1.021 −0.984 0.777 −2.690 0.579

100

β10 −0.954 −0.948 0.382 −1.750 −0.168
β11 0.925 0.924 0.644 −0.384 2.233
β20 1.497 1.480 0.376 0.756 2.270
β21 −1.005 −0.986 0.586 −2.210 0.168

200

β10 −0.987 −0.985 0.254 −1.496 −0.484
β11 0.972 0.972 0.432 0.090 1.855
β20 1.512 1.505 0.226 1.046 1.991
β21 −1.010 −1.002 0.362 −1.792 −0.242

500

β10 −0.992 −0.991 0.169 −1.325 −0.661
β11 0.987 0.987 0.268 0.447 1.525
β20 1.503 1.500 0.162 1.206 1.804
β21 −1.012 −1.009 0.243 −1.478 −0.552

Source: Elaborated by the author.
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Table 124 – Posterior estimates of model parameters using zero-deflated samples (Scenarios 3 and 4).

n Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 3

50

β10 −0.954 −0.935 0.576 −2.304 0.363
β11 −1.131 −1.117 0.966 −3.610 1.332
β20 0.492 0.496 0.386 −0.264 1.243
β21 0.500 0.489 0.691 −0.845 1.866

100

β10 −1.013 −1.001 0.496 −2.073 0.029
β11 −1.206 −1.200 0.864 −3.170 0.750
β20 0.495 0.498 0.286 −0.063 1.047
β21 0.491 0.488 0.479 −0.488 1.476

200

β10 −0.993 −0.988 0.316 −1.664 −0.333
β11 −1.371 −1.363 0.682 −2.756 0.002
β20 0.494 0.495 0.169 0.149 0.836
β21 0.496 0.494 0.333 −0.155 1.150

500

β10 −1.002 −1.000 0.226 −1.440 −0.568
β11 −1.452 −1.450 0.421 −2.304 −0.602
β20 0.503 0.504 0.120 0.280 0.725
β21 0.491 0.491 0.212 0.101 0.881

Scenario 4

50

β10 −1.038 −1.020 0.566 −2.329 0.224
β11 −0.936 −0.921 0.964 −3.372 1.476
β20 1.476 1.440 0.474 0.477 2.552
β21 −1.003 −0.967 0.724 −2.620 0.549

100

β10 −0.987 −0.977 0.477 −1.984 −0.011
β11 −1.312 −1.303 0.929 −3.247 0.616
β20 1.510 1.493 0.375 0.766 2.287
β21 −1.042 −1.021 0.576 −2.251 0.134

200

β10 −1.015 −1.011 0.296 −1.643 −0.394
β11 −1.337 −1.328 0.650 −2.696 0.008
β20 1.492 1.485 0.253 1.028 1.967
β21 −0.979 −0.971 0.410 −1.757 −0.211

500

β10 −0.993 −0.992 0.203 −1.403 −0.589
β11 −1.469 −1.466 0.411 −2.304 −0.635
β20 1.511 1.508 0.163 1.212 1.813
β21 −1.013 −1.010 0.241 −1.479 −0.551

Source: Elaborated by the author.
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Table 125 – Coverage probabilities (%) of the HPDIs using zero-deflated samples (Scenarios 1 and 2).

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 1 Scenario 2

50

β10 3.40 95.80 0.80 3.40 95.80 0.80

β11 1.20 96.60 2.20 1.00 96.00 3.00

β20 1.60 96.80 1.60 0.00 97.40 2.60

β21 0.80 97.40 1.80 2.00 98.00 0.00

100

β10 3.20 96.20 0.60 3.80 94.60 1.60

β11 1.20 95.80 3.00 1.80 95.80 2.40

β20 2.00 96.80 1.20 0.40 96.80 2.80

β21 2.40 96.00 1.60 2.40 96.80 0.80

200

β10 3.00 93.80 3.20 2.60 95.20 2.20

β11 2.20 95.00 2.80 2.00 96.00 2.00

β20 3.20 93.80 3.00 0.60 96.80 2.60

β21 3.40 94.40 2.20 2.20 97.40 0.40

500

β10 2.20 96.60 1.20 3.40 94.40 2.20

β11 0.80 96.40 2.80 1.80 94.40 3.80

β20 2.20 96.00 1.80 2.40 92.80 4.80

β21 2.20 95.40 2.40 3.00 94.60 2.40

Source: Elaborated by the author.

Table 126 – Coverage probabilities (%) of the HPDIs using zero-deflated samples (Scenarios 3 and 4).

n Parameter BNCP CP ANCP BNCP CP ANCP
Scenario 3 Scenario 4

50

β10 3.20 96.80 0.00 2.20 97.80 0.00

β11 1.00 98.60 0.40 3.80 96.20 0.00

β20 1.00 97.40 1.60 0.00 96.40 3.60

β21 0.80 97.00 2.20 1.80 98.00 0.20

100

β10 2.60 96.60 0.80 3.00 96.20 0.80

β11 2.80 96.80 0.40 4.00 95.40 0.60

β20 2.00 95.80 2.20 0.20 96.80 3.00

β21 1.60 96.40 2.00 1.40 98.20 0.40

200

β10 2.20 96.80 1.00 2.40 96.20 1.40

β11 3.40 95.40 1.20 3.80 95.60 0.60

β20 1.80 95.60 2.60 1.20 94.40 4.40

β21 2.80 95.00 2.20 4.20 94.00 1.80

500

β10 1.60 96.20 2.20 3.00 95.20 1.80

β11 3.00 96.00 1.00 3.00 96.00 1.00

β20 2.40 94.00 3.60 2.80 94.80 2.40

β21 2.20 95.00 2.80 2.00 95.60 2.40

Source: Elaborated by the author.
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Figure 47 – Posterior estimates of parameter p using zero-deflated samples (Scenarios 1 and 2).
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Source: Elaborated by the author.
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Figure 48 – Posterior estimates of parameter p using zero-deflated samples (Scenarios 3 and 4).
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D
SUPPLEMENT FOR CHAPTER 6

D.1 Divergence measures
The acronymous used in Table 127 refers to following divergence measures: Kullback-

Leibler (KL), Jeffrey (J), Variational (L1), Chi-Square (CS), and Hellinger (H).

Table 127 – AMC estimators for some well-known ϕ-divergence measures and its calibration.
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Source: Elaborated by the author.
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D.2 Algorithms

D.2.1 Adaptive Metropolis

Algorithm 9 – Adaptive Metropolis
1: procedure AM(N,θθθ 0,ψ)
2: Set t ← 1
3: while t � N do
4: if t � 2d then
5: Generate θθθ ′ ∼ 𝒩d(θθθ t−1,0.102d−1ℐd)
6: else
7: Set θθθ t ← t−1 ∑t−1

i=0 θθθ i and ℋt−1 ← t−1 ∑t−1
j=0(θθθ j−θθθ t)(θθθ j−θθθ t)

�

8: Generate θθθ ′ ∼ (1−ψ)𝒩d(θθθ t−1,0.102d−1ℐd)+ψ𝒩d(θθθ t−1,2.382d−1ℋt−1)
9: end if

10: Set α ′ ← exp{log[π(θθθ ′;yyy)]− log[π(θθθ t−1;yyy)]} and θθθ t ← θθθ t−1
11: Generate u∼ 𝒰(0,1)
12: if u � min{α ′,1} then
13: Set θθθ t ← θθθ ′

14: end if
15: Set t ← t +1
16: end while
17: return {θθθ t}N

t=1
18: end procedure

D.2.2 Sequential-Search

Algorithm 10 – Sequential-Search
1: procedure SEQSEA(θθθ 1, . . . ,θθθ M)
2: Set y← 0
3: for t ← 1 to M do
4: Set ũuu← argminuuu∈R2 r(uuu,y,θθθ t) and 𝒱̃ ← ∂ 2r

∂uuu∂uuu� (ũuu;y,θθθ t)

5: Set st ← (det 𝒱̃)−1/2 exp{−r(ũuu,y,θθθ t)}
6: end for
7: Set k←M−1 ∑M

t=1 st
8: Generate u∼ 𝒰(0,1)
9: while u > k do

10: Set y← y+1
11: Repeat lines 3-6
12: Set k← k+M−1 ∑M

t=1 st
13: end while
14: return y
15: end procedure

D.2.3 Inverse transform sampling
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Algorithm 11 – Inverse transform sampling

1: procedure ITS(β10,β11,β20,β21,σ1,σ2,ρ)
2: Generate u1i,u2i ∼𝒩 (0,1)
3: Set b1i ← u1iσ1 and b2i ← σ2(u1iρ +u2i

�
1−ρ2)

4: for j← 1 to mi do
5: Generate u∼ 𝒰(0,1)
6: Set µi j ← exp{β10 +β11x1i j +b1i} and ωi j ← g−1

2 (β20 +β21x2i j +b2i)

7: Set θi j ←−(2µi j)
−1[(µi j−1)−

�
(µi j−1)2 +8µi j] and yi j ← Q(u,θi j)

8: Generate z∼ ℬ(1,1−ωi j) (Binomial with size 1 and prob. of success 1−ωi j)
9: if z = 1 then

10: Set yi j ← 0
11: end if
12: end for
13: return (yi1, . . . ,yimi)
14: end procedure

D.3 Results from the simulation study

D.3.1 Zero-inflated artificial data
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Table 128 – Empirical properties of the Bayesian estimators using zero-inflated samples (Scenarios 1 and
2).

n (m) Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 1

25 (100)

β10 0.038 0.119 1.006 18.134

β11 −0.294 0.471 1.107 21.966

β20 −0.506 0.797 1.214 71.284

β21 0.638 2.044 1.118 74.180

σ1 −0.003 0.037 1.000 31.694

σ2 0.054 0.426 1.003 33.356

ρ 0.414 0.265 1.685 86.390

50 (200)

β10 0.092 0.067 1.069 13.825

β11 −0.263 0.238 1.187 15.680

β20 −0.506 0.508 1.420 59.901

β21 0.637 1.211 1.226 60.016

σ1 −0.031 0.021 1.024 23.006

σ2 −0.130 0.164 1.056 21.782

ρ 0.277 0.175 1.332 65.269

100 (400)

β10 0.144 0.047 1.339 11.874

β11 −0.261 0.146 1.370 12.680

β20 −0.503 0.360 1.831 52.528

β21 0.638 0.782 1.444 48.921

σ1 −0.051 0.013 1.119 17.590

σ2 −0.156 0.090 1.172 16.302

ρ 0.173 0.103 1.188 50.726

Scenario 2

25 (100)

β10 0.007 0.133 1.000 18.926

β11 −0.224 0.433 1.063 20.608

β20 −0.462 0.683 1.206 68.074

β21 0.553 1.768 1.099 71.485

σ1 0.055 0.049 1.033 35.431

σ2 0.086 0.386 1.010 32.294

ρ 0.131 0.112 1.087 -

50 (200)

β10 0.048 0.064 1.018 13.579

β11 −0.176 0.203 1.087 14.467

β20 −0.419 0.417 1.315 52.498

β21 0.526 1.083 1.158 55.379

σ1 0.013 0.022 1.004 23.798

σ2 −0.055 0.157 1.010 20.980

ρ 0.116 0.133 1.055 -

100 (400)

β10 0.064 0.033 1.070 9.473

β11 −0.156 0.105 1.140 10.491

β20 −0.425 0.310 1.550 46.167

β21 0.545 0.714 1.308 45.466

σ1 0.001 0.008 1.000 14.707

σ2 −0.123 0.075 1.120 14.731

ρ 0.106 0.093 1.067 -

Source: Elaborated by the author.
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Table 129 – Posterior estimates of model parameters using zero-inflated samples (Scenarios 1 and 2).

n (m) Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 1

25 (100)

β10 1.538 1.545 0.343 0.817 2.249

β11 2.206 2.207 0.620 0.982 3.429

β20 0.494 0.487 0.735 −1.044 2.047

β21 −0.862 −0.849 1.279 −3.564 1.814

σ1 0.497 0.476 0.192 0.111 0.912

σ2 1.554 1.489 0.651 0.492 2.715

ρ −0.086 −0.100 0.306 −0.857 0.724

50 (200)

β10 1.592 1.594 0.243 1.110 2.068

β11 2.237 2.236 0.411 1.421 3.061

β20 0.494 0.488 0.502 −0.520 1.523

β21 −0.863 −0.853 0.897 −2.663 0.920

σ1 0.469 0.464 0.142 0.195 0.744

σ2 1.370 1.347 0.383 0.690 2.088

ρ −0.223 −0.249 0.314 −0.859 0.472

100 (400)

β10 1.644 1.645 0.162 1.319 1.970

β11 2.239 2.238 0.279 1.689 2.789

β20 0.497 0.494 0.328 −0.208 1.208

β21 −0.862 −0.856 0.612 −2.098 0.366

σ1 0.449 0.448 0.101 0.264 0.635

σ2 1.344 1.332 0.256 0.889 1.820

ρ −0.327 −0.345 0.270 −0.835 0.214

Scenario 2

25 (100)

β10 1.507 1.518 0.364 0.742 2.254

β11 2.276 2.279 0.618 0.984 3.568

β20 0.538 0.531 0.686 −1.014 2.115

β21 −0.947 −0.933 1.209 −3.689 1.773

σ1 0.555 0.532 0.214 0.147 0.998

σ2 1.586 1.520 0.616 0.518 2.767

ρ 0.131 0.161 0.308 −0.679 0.860

50 (200)

β10 1.548 1.552 0.248 1.046 2.042

β11 2.324 2.324 0.415 1.480 3.170

β20 0.581 0.574 0.491 −0.474 1.644

β21 −0.974 −0.962 0.898 −2.831 0.856

σ1 0.513 0.506 0.148 0.238 0.795

σ2 1.445 1.419 0.392 0.746 2.189

ρ 0.116 0.130 0.346 −0.549 0.747

100 (400)

β10 1.564 1.566 0.169 1.221 1.905

β11 2.344 2.343 0.285 1.773 2.917

β20 0.575 0.571 0.359 −0.140 1.299

β21 −0.955 −0.949 0.646 −2.207 0.290

σ1 0.501 0.498 0.092 0.320 0.687

σ2 1.377 1.365 0.244 0.917 1.859

ρ 0.106 0.113 0.285 −0.424 0.622

Source: Elaborated by the author.
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Table 130 – Coverage probabilities (%) of the HPDIs using zero-inflated samples (Scenarios 1 and 2).

n (m) Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 1 Scenario 2

25 (100)

β10 3.80 95.00 1.20 2.60 96.00 1.40
β11 0.40 91.20 8.40 1.40 94.60 4.00
β20 0.40 88.00 11.60 0.00 92.20 7.80
β21 9.00 90.60 0.40 5.60 94.00 0.40
σ1 0.40 95.40 4.20 1.80 96.20 2.00
σ2 1.20 89.80 9.00 0.80 93.40 5.80
ρ 8.00 91.80 0.20 4.80 94.60 0.60

50 (200)

β10 7.00 92.00 1.00 5.20 94.00 0.80
β11 0.80 88.80 10.40 0.60 93.80 5.60
β20 0.00 81.80 18.20 0.40 88.60 11.00
β21 10.80 88.80 0.40 8.00 91.60 0.40
σ1 1.20 92.00 6.80 2.80 92.40 4.80
σ2 0.00 90.80 9.20 1.00 93.00 6.00
ρ 8.20 91.80 0.00 9.60 88.00 2.40

100 (400)

β10 14.60 85.40 0.00 7.00 91.80 1.20
β11 0.20 85.20 14.60 0.80 91.20 8.00
β20 0.00 70.00 30.00 0.00 76.80 23.20
β21 18.80 81.20 0.00 16.20 83.60 0.20
σ1 0.80 91.80 7.40 1.40 95.80 2.80
σ2 0.20 87.20 12.60 0.20 90.20 9.60
ρ 6.60 92.40 1.00 9.40 88.80 1.80

Source: Elaborated by the author.
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Table 131 – Empirical properties of the Bayesian estimators using zero-inflated samples (Scenarios 3 and
4).

n (m) Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 3

25 (100)

β10 −0.062 0.151 1.013 20.274

β11 −0.079 0.407 1.008 20.320

β20 −0.272 0.540 1.076 57.662

β21 0.298 1.571 1.030 64.685

σ1 0.056 0.047 1.035 34.731

σ2 0.103 0.384 1.014 31.854

ρ −0.157 0.098 1.155 49.002

50 (200)

β10 −0.017 0.061 1.002 12.960

β11 −0.067 0.188 1.012 13.707

β20 −0.258 0.343 1.113 47.729

β21 0.289 0.907 1.049 50.749

σ1 0.020 0.022 1.009 23.857

σ2 −0.006 0.143 1.000 20.179

ρ −0.069 0.077 1.033 43.322

100 (400)

β10 −0.005 0.028 1.000 8.900

β11 −0.046 0.077 1.014 8.749

β20 −0.250 0.182 1.234 34.261

β21 0.302 0.454 1.119 36.014

σ1 0.007 0.009 1.003 15.238

σ2 −0.073 0.076 1.037 14.617

ρ 0.014 0.050 1.002 36.408

Scenario 4

25 (100)

β10 0.494 0.493 1.409 38.835

β11 −1.245 2.345 1.718 52.835

β20 −0.142 0.231 1.047 38.791

β21 0.191 0.717 1.026 45.051

σ1 −0.237 0.106 1.461 17.933

σ2 0.114 0.088 1.083 41.333

ρ 0.372 0.218 1.655 78.357

50 (200)

β10 0.541 0.432 1.756 37.851

β11 −1.021 1.550 1.748 43.070

β20 −0.118 0.145 1.052 30.322

β21 0.155 0.400 1.032 34.083

σ1 −0.212 0.073 1.609 15.012

σ2 −0.013 0.040 1.002 31.920

ρ 0.284 0.157 1.433 64.260

100 (400)

β10 0.610 0.455 2.341 40.968

β11 −0.959 1.221 2.015 39.224

β20 −0.158 0.080 1.207 23.217

β21 0.194 0.209 1.104 24.330

σ1 −0.218 0.063 2.028 14.847

σ2 −0.089 0.031 1.161 30.329

ρ 0.225 0.112 1.352 54.081

Source: Elaborated by the author.
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Table 132 – Posterior estimates of model parameters using zero-inflated samples (Scenarios 3 and 4).

n (m) Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 3

25 (100)

β10 1.438 1.452 0.384 0.689 2.161

β11 2.421 2.424 0.633 1.150 3.689

β20 0.728 0.719 0.683 −0.817 2.306

β21 −1.202 −1.184 1.218 −3.980 1.521

σ1 0.556 0.533 0.208 0.150 0.996

σ2 1.603 1.536 0.611 0.536 2.781

ρ 0.343 0.408 0.271 −0.455 0.956

50 (200)

β10 1.483 1.489 0.246 0.979 1.975

β11 2.433 2.433 0.429 1.586 3.276

β20 0.742 0.734 0.526 −0.342 1.845

β21 −1.211 −1.195 0.908 −3.136 0.673

σ1 0.520 0.512 0.147 0.242 0.805

σ2 1.494 1.466 0.378 0.796 2.243

ρ 0.431 0.474 0.268 −0.187 0.939

100 (400)

β10 1.495 1.498 0.167 1.155 1.832

β11 2.454 2.454 0.273 1.882 3.025

β20 0.750 0.745 0.346 0.009 1.501

β21 −1.198 −1.189 0.602 −2.495 0.089

σ1 0.507 0.504 0.096 0.324 0.696

σ2 1.427 1.414 0.265 0.961 1.917

ρ 0.514 0.540 0.224 0.064 0.909

Scenario 4

25 (100)

β10 1.994 2.006 0.498 0.864 3.108

β11 1.255 1.261 0.891 −0.775 3.266

β20 0.858 0.846 0.459 −0.155 1.899

β21 −1.309 −1.294 0.825 −3.139 0.484

σ1 1.263 1.229 0.222 0.765 1.828

σ2 0.614 0.570 0.274 0.027 1.283

ρ −0.128 −0.153 0.282 −0.888 0.698

50 (200)

β10 2.041 2.045 0.374 1.233 2.844

β11 1.479 1.481 0.712 0.035 2.918

β20 0.882 0.874 0.362 0.204 1.571

β21 −1.345 −1.335 0.613 −2.538 −0.164

σ1 1.288 1.273 0.168 0.951 1.652

σ2 0.487 0.467 0.200 0.038 0.959

ρ −0.216 −0.249 0.276 −0.905 0.549

100 (400)

β10 2.110 2.111 0.288 1.542 2.678

β11 1.541 1.540 0.548 0.526 2.557

β20 0.842 0.838 0.234 0.384 1.307

β21 −1.306 −1.301 0.414 −2.106 −0.513

σ1 1.282 1.275 0.124 1.049 1.526

σ2 0.411 0.403 0.151 0.049 0.771

ρ −0.275 −0.302 0.247 −0.916 0.409

Source: Elaborated by the author.
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Table 133 – Coverage probabilities (%) of the HPDIs using zero-inflated samples (Scenarios 3 and 4).

n (m) Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 3 Scenario 4

25 (100)

β10 2.00 94.80 3.20 11.00 89.00 0.00
β11 2.00 94.20 3.80 0.20 78.20 21.60
β20 0.20 94.60 5.20 0.00 97.40 2.60
β21 4.40 95.00 0.60 2.00 98.00 0.00
σ1 2.20 95.20 2.60 0.00 87.40 12.60
σ2 1.00 91.40 7.60 0.40 99.60 0.00
ρ 0.40 97.80 1.80 5.00 95.00 0.00

50 (200)

β10 2.20 95.20 2.60 25.80 74.20 0.00
β11 2.00 95.20 2.80 0.00 72.00 28.00
β20 0.40 92.80 6.80 1.00 92.20 6.80
β21 4.80 94.40 0.80 5.60 93.60 0.80
σ1 2.00 93.60 4.40 0.00 75.00 25.00
σ2 0.60 94.80 4.60 1.00 98.80 0.20
ρ 2.60 96.60 0.80 5.00 94.80 0.20

100 (400)

β10 2.00 95.40 2.60 56.40 43.60 0.00
β11 1.40 96.00 2.60 0.00 54.00 46.00
β20 0.20 91.20 8.60 0.60 89.20 10.20
β21 6.00 93.80 0.20 8.60 90.40 1.00
σ1 2.20 95.20 2.60 0.00 56.60 43.40
σ2 1.00 91.60 7.40 0.00 95.00 5.00
ρ 8.40 89.60 2.00 3.40 96.00 0.60

Source: Elaborated by the author.



310 APPENDIX D. Supplement for Chapter 6

Table 134 – Empirical properties of the Bayesian estimators using zero-inflated samples (Scenarios 5 and
6).

n (m) Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 5

25 (100)

β10 0.386 0.422 1.242 34.955

β11 −1.111 2.159 1.528 48.528

β20 −0.007 0.233 1.000 36.819

β21 −0.054 0.743 1.002 44.128

σ1 −0.221 0.099 1.406 17.143

σ2 0.122 0.095 1.088 42.353

ρ 0.043 0.081 1.012 -

50 (200)

β10 0.462 0.360 1.569 33.993

β11 −0.938 1.462 1.585 41.095

β20 −0.040 0.121 1.007 27.343

β21 0.003 0.366 1.000 31.195

σ1 −0.177 0.066 1.383 13.952

σ2 −0.001 0.049 1.000 35.196

ρ 0.050 0.084 1.015 -

100 (400)

β10 0.501 0.334 2.008 34.106

β11 −0.815 0.942 1.839 33.776

β20 −0.065 0.062 1.036 19.671

β21 0.080 0.174 1.019 21.928

σ1 −0.170 0.045 1.653 11.993

σ2 −0.096 0.032 1.187 30.588

ρ 0.063 0.082 1.025 -

Scenario 6

25 (100)

β10 0.284 0.376 1.129 32.825

β11 −0.973 2.016 1.374 46.015

β20 0.052 0.215 1.006 36.386

β21 −0.168 0.698 1.021 44.176

σ1 −0.214 0.095 1.386 16.550

σ2 0.106 0.078 1.080 39.536

ρ −0.321 0.182 1.518 69.562

50 (200)

β10 0.380 0.305 1.380 30.991

β11 −0.822 1.247 1.478 37.626

β20 0.027 0.128 1.003 28.176

β21 −0.094 0.383 1.012 32.757

σ1 −0.159 0.059 1.319 13.304

σ2 0.008 0.045 1.001 33.477

ρ −0.191 0.114 1.212 53.417

100 (400)

β10 0.406 0.245 1.748 28.089

β11 −0.705 0.784 1.651 29.971

β20 0.020 0.053 1.004 17.974

β21 −0.043 0.160 1.006 21.425

σ1 −0.139 0.036 1.454 10.629

σ2 −0.047 0.029 1.040 28.299

ρ −0.063 0.055 1.038 35.809

Source: Elaborated by the author.
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Table 135 – Posterior estimates of model parameters using zero-inflated samples (Scenarios 5 and 6).

n (m) Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 5

25 (100)

β10 1.886 1.898 0.523 0.737 3.006

β11 1.389 1.397 0.961 −0.654 3.421

β20 0.993 0.981 0.482 −0.039 2.048

β21 −1.554 −1.536 0.860 −3.397 0.252

σ1 1.279 1.243 0.224 0.770 1.855

σ2 0.622 0.577 0.283 0.026 1.306

ρ 0.043 0.053 0.282 −0.775 0.834

50 (200)

β10 1.962 1.967 0.382 1.137 2.785

β11 1.562 1.563 0.763 0.083 3.042

β20 0.960 0.951 0.346 0.274 1.659

β21 −1.497 −1.486 0.605 −2.708 −0.300

σ1 1.323 1.307 0.186 0.974 1.699

σ2 0.499 0.478 0.221 0.040 0.984

ρ 0.050 0.058 0.286 −0.710 0.796

100 (400)

β10 2.001 2.002 0.288 1.414 2.582

β11 1.685 1.685 0.528 0.641 2.725

β20 0.935 0.932 0.240 0.472 1.402

β21 −1.420 −1.414 0.409 −2.219 −0.622

σ1 1.330 1.323 0.129 1.089 1.585

σ2 0.404 0.394 0.151 0.036 0.772

ρ 0.063 0.070 0.280 −0.648 0.765

Scenario 6

25 (100)

β10 1.784 1.798 0.544 0.640 2.909

β11 1.527 1.536 1.034 −0.538 3.580

β20 1.052 1.040 0.460 0.032 2.095

β21 −1.668 −1.649 0.818 −3.503 0.135

σ1 1.286 1.251 0.223 0.775 1.874

σ2 0.606 0.562 0.259 0.022 1.274

ρ 0.179 0.218 0.281 −0.658 0.908

50 (200)

β10 1.880 1.885 0.400 1.047 2.704

β11 1.678 1.681 0.756 0.187 3.164

β20 1.027 1.020 0.356 0.338 1.727

β21 −1.594 −1.583 0.612 −2.812 −0.400

σ1 1.341 1.325 0.184 0.985 1.724

σ2 0.508 0.489 0.211 0.054 0.982

ρ 0.309 0.351 0.278 −0.430 0.934

100 (400)

β10 1.906 1.908 0.283 1.314 2.499

β11 1.795 1.797 0.536 0.734 2.853

β20 1.020 1.016 0.229 0.549 1.498

β21 −1.543 −1.536 0.397 −2.365 −0.731

σ1 1.361 1.354 0.131 1.113 1.623

σ2 0.453 0.447 0.165 0.091 0.809

ρ 0.437 0.472 0.225 −0.159 0.961

Source: Elaborated by the author.
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Table 136 – Coverage probabilities (%) of the HPDIs using zero-inflated samples (Scenarios 5 and 6).

n (m) Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 5 Scenario 6

25 (100)

β10 10.60 88.60 0.80 7.60 92.20 0.20
β11 0.00 82.00 18.00 0.20 84.60 15.20
β20 0.60 96.80 2.60 1.60 97.00 1.40
β21 2.00 96.40 1.60 0.60 98.00 1.40
σ1 0.00 88.00 12.00 0.00 89.60 10.40
σ2 1.00 99.00 0.00 0.60 99.40 0.00
ρ 1.60 97.60 0.80 0.00 97.00 3.00

50 (200)

β10 18.80 81.20 0.00 15.40 84.20 0.40
β11 0.00 75.60 24.40 0.60 80.00 19.40
β20 1.20 95.20 3.60 2.20 94.60 3.20
β21 3.00 95.00 2.00 2.40 95.80 1.80
σ1 0.00 81.80 18.20 0.00 84.00 16.00
σ2 0.80 98.40 0.80 1.20 97.80 1.00
ρ 2.60 95.60 1.80 1.20 96.20 2.60

100 (400)

β10 39.60 60.40 0.00 25.20 74.80 0.00
β11 0.00 65.20 34.80 0.00 71.80 28.20
β20 1.00 93.60 5.40 2.20 95.80 2.00
β21 4.40 94.40 1.20 1.80 96.60 1.60
σ1 0.00 70.80 29.20 0.00 79.60 20.40
σ2 0.40 94.80 4.80 1.20 95.20 3.60
ρ 4.80 93.80 1.40 2.40 96.60 1.00

Source: Elaborated by the author.

D.3.2 Zero-deflated artificial data
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Table 137 – Empirical properties of the Bayesian estimators using zero-deflated samples (Scenarios 1 and
2).

n (m) Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 1

25 (100)

β10 −0.023 0.374 1.001 24.126

β11 0.567 1.457 1.133 95.998

β20 −0.067 0.493 1.005 37.208

β21 0.306 1.680 1.029 51.540

σ1 0.336 0.198 1.527 67.758

σ2 −0.070 0.327 1.008 30.726

ρ 0.309 0.132 1.901 64.178

50 (200)

β10 −0.141 0.291 1.036 20.653

β11 0.328 0.966 1.061 77.834

β20 −0.044 0.288 1.003 28.836

β21 0.293 0.895 1.052 38.060

σ1 0.155 0.081 1.192 36.760

σ2 −0.117 0.141 1.052 19.884

ρ 0.306 0.138 1.759 64.877

100 (400)

β10 −0.121 0.204 1.038 16.980

β11 0.164 0.689 1.020 64.828

β20 0.012 0.137 1.000 19.426

β21 0.168 0.446 1.034 26.568

σ1 0.084 0.059 1.066 33.881

σ2 −0.188 0.093 1.268 16.711

ρ 0.254 0.126 1.429 57.939

Scenario 2

25 (100)

β10 0.046 0.346 1.003 23.268

β11 0.583 1.508 1.136 95.943

β20 −0.129 0.557 1.015 38.141

β21 0.300 1.610 1.029 48.802

σ1 0.287 0.156 1.456 57.966

σ2 0.051 0.389 1.003 32.895

ρ −0.133 0.051 1.238 -

50 (200)

β10 −0.070 0.255 1.010 20.229

β11 0.383 0.984 1.084 79.824

β20 −0.033 0.327 1.002 30.002

β21 0.162 0.952 1.014 38.670

σ1 0.117 0.059 1.141 31.768

σ2 −0.051 0.158 1.008 21.056

ρ −0.112 0.059 1.127 -

100 (400)

β10 −0.032 0.164 1.003 16.284

β11 0.151 0.577 1.020 60.887

β20 −0.004 0.153 1.000 20.614

β21 0.139 0.454 1.022 26.508

σ1 0.041 0.042 1.021 28.506

σ2 −0.142 0.084 1.145 15.862

ρ −0.088 0.078 1.054 -

Source: Elaborated by the author.
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Table 138 – Posterior estimates of model parameters using zero-deflated samples (Scenarios 1 and 2).

n (m) Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 1

25 (100)

β10 −2.023 −1.985 0.611 −3.732 −0.404

β11 −0.433 −0.431 1.066 −3.523 2.659

β20 1.433 1.413 0.699 −0.077 2.994

β21 −1.694 −1.669 1.260 −4.348 0.895

σ1 0.836 0.677 0.292 0.002 2.113

σ2 1.430 1.369 0.567 0.395 2.555

ρ −0.191 −0.263 0.191 −0.977 0.787

50 (200)

β10 −2.141 −2.108 0.521 −3.394 −0.946

β11 −0.672 −0.665 0.926 −3.001 1.632

β20 1.456 1.438 0.535 0.389 2.559

β21 −1.707 −1.685 0.899 −3.574 0.112

σ1 0.655 0.574 0.239 0.007 1.522

σ2 1.383 1.359 0.356 0.684 2.129

ρ −0.194 −0.256 0.212 −0.968 0.754

100 (400)

β10 −2.121 −2.098 0.436 −3.031 −1.258

β11 −0.836 −0.828 0.813 −2.547 0.854

β20 1.512 1.500 0.370 0.773 2.269

β21 −1.831 −1.818 0.646 −3.104 −0.573

σ1 0.584 0.538 0.227 0.021 1.251

σ2 1.312 1.301 0.241 0.852 1.795

ρ −0.246 −0.306 0.248 −0.963 0.645

Scenario 2

25 (100)

β10 −1.954 −1.918 0.586 −3.618 −0.375

β11 −0.417 −0.412 1.081 −3.478 2.623

β20 1.371 1.351 0.735 −0.202 2.992

β21 −1.700 −1.676 1.233 −4.496 1.023

σ1 0.787 0.637 0.271 0.002 1.999

σ2 1.551 1.483 0.622 0.476 2.732

ρ −0.133 −0.184 0.182 −0.962 0.833

50 (200)

β10 −2.070 −2.037 0.500 −3.300 −0.897

β11 −0.617 −0.612 0.915 −2.885 1.636

β20 1.467 1.448 0.571 0.355 2.613

β21 −1.838 −1.816 0.962 −3.778 0.054

σ1 0.617 0.539 0.213 0.005 1.444

σ2 1.449 1.422 0.395 0.735 2.209

ρ −0.112 −0.149 0.215 −0.939 0.821

100 (400)

β10 −2.032 −2.009 0.404 −2.909 −1.192

β11 −0.849 −0.844 0.744 −2.481 0.782

β20 1.496 1.484 0.391 0.740 2.269

β21 −1.861 −1.847 0.660 −3.164 −0.578

σ1 0.541 0.495 0.201 0.013 1.179

σ2 1.358 1.346 0.254 0.888 1.847

ρ −0.088 −0.111 0.264 −0.899 0.790

Source: Elaborated by the author.
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Table 139 – Coverage probabilities (%) of the HPDIs using zero-deflated samples (Scenarios 1 and 2).

n (m) Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 1 Scenario 2

25 (100)

β10 1.00 99.00 0.00 1.00 99.00 0.00
β11 1.20 98.80 0.00 1.40 98.60 0.00
β20 0.60 95.80 3.60 0.60 95.20 4.20
β21 4.40 94.80 0.80 2.60 96.40 1.00
σ1 0.00 100.00 0.00 0.00 100.00 0.00
σ2 0.40 89.20 10.40 1.20 89.60 9.20
ρ 0.00 100.00 0.00 0.00 99.80 0.20

50 (200)

β10 1.20 97.80 1.00 1.20 98.00 0.80
β11 2.40 97.60 0.00 3.20 96.80 0.00
β20 1.00 95.60 3.40 3.60 93.60 2.80
β21 4.00 95.40 0.60 4.20 94.00 1.80
σ1 0.00 100.00 0.00 0.00 100.00 0.00
σ2 0.40 92.60 7.00 1.20 92.80 6.00
ρ 0.00 100.00 0.00 0.00 99.60 0.40

100 (400)

β10 0.80 96.80 2.40 1.80 97.20 1.00
β11 3.00 95.80 1.20 2.80 96.40 0.80
β20 1.40 97.00 1.60 1.40 95.60 3.00
β21 5.60 93.20 1.20 5.20 93.60 1.20
σ1 0.20 99.80 0.00 0.20 99.80 0.00
σ2 0.20 85.40 14.40 0.60 89.60 9.80
ρ 0.40 99.20 0.40 0.00 98.00 2.00

Source: Elaborated by the author.
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Table 140 – Empirical properties of the Bayesian estimators using zero-deflated samples (Scenarios 3 and
4).

n (m) Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 3

25 (100)

β10 0.118 0.353 1.020 23.497

β11 0.551 1.451 1.125 96.551

β20 −0.130 0.520 1.017 36.849

β21 0.248 1.649 1.019 50.910

σ1 0.277 0.166 1.363 56.250

σ2 0.112 0.401 1.016 32.773

ρ −0.590 0.386 3.190 118.034

50 (200)

β10 −0.045 0.262 1.004 20.370

β11 0.416 0.984 1.101 78.989

β20 −0.098 0.328 1.015 29.713

β21 0.180 0.910 1.018 37.190

σ1 0.106 0.049 1.140 29.100

σ2 −0.006 0.167 1.000 21.290

ρ −0.526 0.327 2.557 105.197

100 (400)

β10 −0.011 0.151 1.000 15.512

β11 0.234 0.550 1.054 59.962

β20 −0.047 0.164 1.007 21.406

β21 0.128 0.478 1.018 27.661

σ1 0.018 0.032 1.005 26.643

σ2 −0.090 0.078 1.056 15.163

ρ −0.434 0.253 1.976 87.993

Scenario 4

25 (100)

β10 0.200 0.548 1.038 29.315

β11 0.363 1.610 1.044 101.983

β20 0.007 0.276 1.000 27.377

β21 0.073 0.828 1.003 36.264

σ1 −0.420 0.400 1.336 37.421

σ2 0.159 0.113 1.135 46.947

ρ 0.386 0.184 2.291 78.177

50 (200)

β10 0.115 0.345 1.020 23.659

β11 0.112 0.942 1.007 77.399

β20 0.075 0.157 1.018 21.419

β21 −0.049 0.394 1.003 25.241

σ1 −0.454 0.366 1.514 34.741

σ2 0.013 0.045 1.002 32.666

ρ 0.356 0.170 1.970 73.033

100 (400)

β10 0.061 0.229 1.008 19.172

β11 −0.048 0.675 1.002 65.886

β20 0.019 0.065 1.003 13.685

β21 0.028 0.182 1.002 17.079

σ1 −0.367 0.256 1.451 27.746

σ2 −0.066 0.033 1.072 31.055

ρ 0.288 0.142 1.559 62.178

Source: Elaborated by the author.
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Table 141 – Posterior estimates of model parameters using zero-deflated samples (Scenarios 3 and 4).

n (m) Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 3

25 (100)

β10 −1.883 −1.845 0.583 −3.523 −0.327

β11 −0.449 −0.445 1.071 −3.460 2.542

β20 1.370 1.348 0.709 −0.226 3.017

β21 −1.752 −1.724 1.260 −4.592 1.022

σ1 0.777 0.633 0.299 0.002 1.960

σ2 1.612 1.542 0.624 0.515 2.830

ρ −0.090 −0.123 0.195 −0.945 0.855

50 (200)

β10 −2.045 −2.012 0.510 −3.263 −0.888

β11 −0.584 −0.577 0.900 −2.813 1.621

β20 1.402 1.385 0.564 0.298 2.550

β21 −1.820 −1.798 0.937 −3.767 0.076

σ1 0.606 0.531 0.194 0.003 1.414

σ2 1.494 1.466 0.408 0.775 2.268

ρ −0.026 −0.034 0.224 −0.896 0.876

100 (400)

β10 −2.011 −1.988 0.388 −2.878 −1.183

β11 −0.766 −0.759 0.704 −2.343 0.804

β20 1.453 1.442 0.403 0.685 2.241

β21 −1.872 −1.858 0.679 −3.202 −0.566

σ1 0.518 0.475 0.178 0.011 1.129

σ2 1.410 1.397 0.265 0.933 1.907

ρ 0.066 0.085 0.255 −0.816 0.889

Scenario 4

25 (100)

β10 −1.800 −1.749 0.713 −3.515 −0.194

β11 −0.637 −0.639 1.216 −3.747 2.501

β20 1.507 1.488 0.525 0.396 2.655

β21 −1.927 −1.902 0.907 −3.874 −0.034

σ1 1.080 0.948 0.474 0.070 2.388

σ2 0.659 0.614 0.296 0.027 1.370

ρ −0.114 −0.155 0.187 −0.954 0.832

50 (200)

β10 −1.885 −1.841 0.576 −3.188 −0.669

β11 −0.888 −0.883 0.964 −3.228 1.441

β20 1.575 1.562 0.389 0.828 2.344

β21 −2.049 −2.033 0.626 −3.328 −0.798

σ1 1.046 0.995 0.400 0.196 1.973

σ2 0.513 0.494 0.213 0.035 1.008

ρ −0.144 −0.188 0.210 −0.950 0.781

100 (400)

β10 −1.939 −1.906 0.475 −2.926 −1.010

β11 −1.048 −1.041 0.820 −2.770 0.663

β20 1.519 1.512 0.255 1.015 2.032

β21 −1.972 −1.963 0.426 −2.827 −1.132

σ1 1.133 1.111 0.348 0.430 1.856

σ2 0.434 0.428 0.169 0.052 0.807

ρ −0.212 −0.260 0.241 −0.948 0.657

Source: Elaborated by the author.
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Table 142 – Coverage probabilities (%) of the HPDIs using zero-deflated samples (Scenarios 3 and 4).

n (m) Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 3 Scenario 4

25 (100)

β10 2.00 97.80 0.20 4.20 95.80 0.00
β11 0.80 99.20 0.00 1.80 97.80 0.40
β20 1.00 95.60 3.40 0.60 97.40 2.00
β21 4.60 94.60 0.80 2.80 96.20 1.00
σ1 0.00 100.00 0.00 0.00 91.20 8.80
σ2 1.00 92.80 6.20 1.00 99.00 0.00
ρ 0.00 96.80 3.20 0.00 100.00 0.00

50 (200)

β10 1.00 98.60 0.40 3.60 95.80 0.60
β11 1.60 98.20 0.20 1.80 97.60 0.60
β20 0.80 94.40 4.80 2.60 94.80 2.60
β21 4.20 94.60 1.20 2.00 96.40 1.60
σ1 0.00 100.00 0.00 0.00 78.20 21.80
σ2 1.60 94.00 4.40 1.40 98.40 0.20
ρ 0.00 97.20 2.80 0.00 100.00 0.00

100 (400)

β10 2.20 97.40 0.40 5.40 94.20 0.40
β11 3.00 96.60 0.40 1.80 96.80 1.40
β20 1.40 93.20 5.40 2.00 95.40 2.60
β21 5.20 93.20 1.60 2.80 95.20 2.00
σ1 0.40 99.60 0.00 0.00 79.40 20.60
σ2 0.00 91.40 8.60 0.80 95.20 4.00
ρ 0.00 97.00 3.00 2.00 98.00 0.00

Source: Elaborated by the author.
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Table 143 – Empirical properties of the Bayesian estimators using zero-deflated samples (Scenarios 5 and
6).

n (m) Parameter Bias MSE
�

MSE
Var MAPE (%)

Scenario 5

25 (100)

β10 0.269 0.580 1.069 30.479

β11 0.404 1.791 1.049 106.520

β20 −0.009 0.306 1.000 29.361

β21 0.027 0.912 1.000 37.902

σ1 −0.392 0.368 1.311 34.688

σ2 0.164 0.130 1.123 48.473

ρ −0.055 0.039 1.042 -

50 (200)

β10 0.218 0.428 1.060 26.059

β11 0.140 1.131 1.009 85.405

β20 0.019 0.145 1.001 19.917

β21 −0.009 0.400 1.000 24.991

σ1 −0.426 0.353 1.434 33.761

σ2 0.022 0.047 1.005 32.895

ρ −0.048 0.053 1.022 -

100 (400)

β10 0.090 0.215 1.019 18.615

β11 0.035 0.583 1.001 60.230

β20 0.004 0.069 1.000 14.035

β21 0.013 0.188 1.000 17.237

σ1 −0.304 0.204 1.355 24.136

σ2 −0.065 0.033 1.071 30.677

ρ −0.016 0.066 1.002 -

Scenario 6

25 (100)

β10 0.312 0.572 1.098 30.850

β11 0.484 1.673 1.078 104.066

β20 0.000 0.260 1.000 26.636

β21 0.015 0.810 1.000 35.589

σ1 −0.331 0.384 1.182 35.521

σ2 0.138 0.097 1.116 42.243

ρ −0.497 0.287 2.667 99.387

50 (200)

β10 0.228 0.412 1.070 25.865

β11 0.260 1.175 1.030 85.575

β20 −0.007 0.129 1.000 18.664

β21 0.003 0.366 1.000 23.664

σ1 −0.329 0.264 1.302 28.259

σ2 0.015 0.048 1.002 33.470

ρ −0.397 0.212 1.974 81.440

100 (400)

β10 0.124 0.229 1.036 19.004

β11 0.124 0.629 1.012 62.452

β20 0.008 0.070 1.000 14.003

β21 −0.010 0.185 1.000 17.136

σ1 −0.242 0.159 1.258 21.272

σ2 −0.046 0.035 1.032 31.055

ρ −0.303 0.163 1.515 66.123

Source: Elaborated by the author.
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Table 144 – Posterior estimates of model parameters using zero-deflated samples (Scenarios 5 and 6).

n (m) Parameter Mean Median Std. Dev.
95% HPDI
Lower Upper

Scenario 5

25 (100)

β10 −1.731 −1.679 0.713 −3.470 −0.112

β11 −0.596 −0.600 1.276 −3.704 2.521

β20 1.491 1.473 0.553 0.364 2.652

β21 −1.973 −1.949 0.954 −3.931 −0.060

σ1 1.108 0.984 0.463 0.079 2.401

σ2 0.664 0.618 0.321 0.034 1.381

ρ −0.055 −0.075 0.189 −0.928 0.868

50 (200)

β10 −1.782 −1.740 0.617 −3.062 −0.594

β11 −0.860 −0.856 1.054 −3.123 1.401

β20 1.519 1.506 0.381 0.774 2.282

β21 −2.009 −1.993 0.632 −3.288 −0.770

σ1 1.074 1.027 0.414 0.248 1.968

σ2 0.522 0.504 0.216 0.037 1.021

ρ −0.048 −0.061 0.224 −0.897 0.843

100 (400)

β10 −1.910 −1.880 0.454 −2.893 −0.985

β11 −0.965 −0.958 0.763 −2.672 0.727

β20 1.504 1.497 0.263 1.000 2.022

β21 −1.987 −1.979 0.434 −2.843 −1.144

σ1 1.196 1.172 0.333 0.538 1.888

σ2 0.435 0.428 0.170 0.047 0.811

ρ −0.016 −0.019 0.255 −0.838 0.812

Scenario 6

25 (100)

β10 −1.688 −1.640 0.689 −3.408 −0.070

β11 −0.516 −0.516 1.200 −3.596 2.571

β20 1.500 1.482 0.510 0.399 2.638

β21 −1.985 −1.961 0.900 −3.902 −0.112

σ1 1.169 1.050 0.524 0.155 2.436

σ2 0.638 0.593 0.280 0.024 1.342

ρ 0.003 0.005 0.201 −0.892 0.897

50 (200)

β10 −1.772 −1.731 0.600 −3.068 −0.556

β11 −0.740 −0.734 1.052 −3.022 1.523

β20 1.493 1.480 0.359 0.756 2.254

β21 −1.997 −1.982 0.605 −3.263 −0.755

σ1 1.171 1.127 0.394 0.353 2.050

σ2 0.515 0.496 0.218 0.038 1.011

ρ 0.103 0.131 0.233 −0.786 0.920

100 (400)

β10 −1.876 −1.847 0.462 −2.855 −0.955

β11 −0.876 −0.869 0.783 −2.557 0.789

β20 1.508 1.501 0.265 1.001 2.028

β21 −2.010 −2.001 0.430 −2.872 −1.163

σ1 1.258 1.235 0.316 0.636 1.918

σ2 0.454 0.449 0.181 0.064 0.832

ρ 0.197 0.234 0.266 −0.630 0.923

Source: Elaborated by the author.
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Table 145 – Coverage probabilities (%) of the HPDIs using zero-deflated samples (Scenarios 5 and 6).

n (m) Parameter
BNCP CP ANCP BNCP CP ANCP

Scenario 5 Scenario 6

25 (100)

β10 5.40 94.60 0.00 3.80 96.20 0.00
β11 1.80 98.20 0.00 2.80 97.00 0.20
β20 1.60 95.60 2.80 0.60 97.20 2.20
β21 3.20 95.40 1.40 2.20 97.00 0.80
σ1 0.00 92.40 7.60 0.00 90.20 9.80
σ2 1.80 98.20 0.00 1.00 99.00 0.00
ρ 0.00 99.60 0.40 0.00 97.40 2.60

50 (200)

β10 5.80 93.00 1.20 5.20 94.20 0.60
β11 2.40 96.60 1.00 4.00 95.80 0.20
β20 2.60 95.20 2.20 1.40 96.00 2.60
β21 3.60 94.20 2.20 3.00 94.80 2.20
σ1 0.00 77.40 22.60 0.00 84.40 15.60
σ2 1.40 98.60 0.00 1.80 98.20 0.00
ρ 0.00 100.00 0.00 0.00 98.00 2.00

100 (400)

β10 6.20 93.40 0.40 6.00 93.40 0.60
β11 1.60 97.60 0.80 2.80 95.60 1.60
β20 1.60 95.40 3.00 2.00 95.20 2.80
β21 3.00 94.60 2.40 2.60 95.20 2.20
σ1 0.00 84.80 15.20 0.00 87.00 13.00
σ2 1.00 96.20 2.80 1.60 95.20 3.20
ρ 0.80 98.40 0.80 0.00 97.40 2.60

Source: Elaborated by the author.


