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Symmetric and Non-Symmetric
Jack Functions

Autor: Felipe de Mattos Chafik Hindi

Orientador: Prof. Dr. Waldeck Schützer

Dissertação apresentada ao Programa de

Pós-Graduação em Matemática da Univer-
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Abstract

The goal of this dissertation is to present the theory of Jack functions1

from the standpoint of algebraic combinatorics. The presentation of symmet-

ric functions is largely centred on the first chapter of MacDonald’s “Sym-

metric Functions and Hall’s Polynomials” [7]. Symmetric and non-symmetric

Jack functions are characterized by Sahi-Knop’s [4] combinatorial formulas.

Moreover, Stanley’s Pieri-type rule [15] for symmetric Jack functions and

Schultzer’s [13] Pieri-type rule for non-symmetric functions are thoroughly

described.

Resumo

O objetivo dessa dissertação é apresentar a teoria de funções simétricas

e de Jack (simétricas ou não), pela perspectiva da combinatória algébrica.

A exposição das funções simétricas revolve extensamente sobre o primeiro

caṕıtulo do livro “Symmetric Functions and Hall’s Polynomials” [7] de Mac-

Donald. Funções de Jack simétricas e não simétricas são caracterizadas con-

forme as fórmulas combinatoriais de Sahi e Knop [4]. Ademais, regras do tipo

Pieri para funções de Jack simétricas, devida a Stanley [15] e não simétricas,

devida a Schultzer [13], são minuciosamente descritas.

1Symmetric and non-symmetric.
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1 Introduction

The study of symmetric polynomials dates from a long time. In 1882,

they were studied by Kostka [5], who was the first to calculate numbers of

semi-standard tableaux for determined shapes and weights, after whom they

are named. In 1901 Schur showed in his doctorate thesis [12] that characters

of irreducible representations of the GL(n) and Sn are given by the family of

symmetric polynomials which was later named after him. Later, Pieri pro-

vided a formula in the context of Schubert Calculus for the linear decomposi-

tion between Schur and complete and elementary2 polynomials. Littlewood,

Richardson (1934) and Robinson (1938) [6, 10] generalized Pieri’s rule for the

product of arbitrary Schur polynomials. More recently, in 2009, Pieri’s for-

mula was generalized for the product of a skew Schur polynomial and complete

(or elementary) polynomials [1].

A parameter α is introduced to algebras of symmetric polynomials by

setting the field of coefficients to be the field of rational polynomials Q(α).

Jack polynomials Jλ(α) are a family of polynomials which are a base (as

a Q(α)-module) for this new polynomial algebra with a parameter. They

are particularly noteworthy for generalizing — up to normalization — known

families of symmetric polynomials for different values of α. Namely: Schur

(for α = 1); conjugate elementary (for α = 0); monomial (for α → ∞) and

the two types of zonal polynomials (for α = 2 and 1
2
).

Jack polynomials were first introduced by Henry Jack in 1970, after

whom they were named, in the context of developing tools to carry out an

integration problem [3]. They were later separately proved by Sekiguchi and

Debiard [14, 2] to be equivalently defined as simultaneous eigenfunctions of

linear operators which were then named after them. MacDonald furthered

the theory of Jack functions, providing, among other results, an inner-product

definition of Jack functions [7]. He also contributed to Stanley’s work [15], who

proved the Pieri rule analogous for Jack functions and introduced skew Jack

2Which are Schur polynomials indexed by single row or single column partitions.
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functions, among other results. In 1996, Sahi and Knop provided a purely

combinatorial definition of Jack polynomials [4].

Non-symmetric analogues of Jack polynomials were introduced by Op-

dam in 1995, defined as the family of simultaneous eigenfunctions of Cherednik

operators [8]. In the following year, two equivalent definitions were provided

by Sahi and Knop in the form of a combinatorial and a recursive formula [4].

The first step towards a Pieri-like rule for non-symmetric polynomials was

proved by Waldeck Schützer [13].

In the study of symmetric polynomials, it is noticeable that the (finite)

specific number of variables of a polynomial algebra is not particularly relevant

for most results concerning them. With the purpose of establishing a more

general approach, the theory of symmetric polynomials is recontextualized in

the framework of dimension-independent objects called symmetric functions,

which can be thought of as polynomial-like objects with countably infinitely

many variables3. Although no longer polynomials, symmetric functions are

defined so as to make sense of sum and multiplication just like polynomials,

effectively defining an algebra. This algebra (and so symmetric functions

themselves) can be projected onto finite dimension polynomial algebras by

zeroing all variables from some point on.

The first chapter is dedicated to an introduction to the theory of sym-

metric functions and unabashedly draws greatly from the first chapter of

MacDonald’s book “Symmetric Functions and Hall Polynomials” [7], how-

beit reformulating some of its arguments. Fundamental results concerning

the six main families of symmetric functions (monomial; elementary; com-

plete; forgotten; power and Schur) are proven, such as how they relate to each

other through transition matrices; the Pieri Rule and, of course, Littlewood-

Richardson-Robinson’s theorem. The established framework of symmetric

functions is maintained throughout the text.

3Despite being defined over infinitely many variables, symmetric functions over a com-

mutative ring with identity A are indeed functions over the domain of almost null sequences

of A.
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The second chapter introduces the algebra of symmetric functions over

the rational polynomial field Q(α) and the families of Jack functions (Jλ(α))

and skew Jack functions (Jλ/µ(α)). Sahi-Knop’s combinatorial formula is

strongly utilized both as a definition of Jack functions and as means to prove

formulas for special cases of both Jack and skew Jack functions. The Pieri-like

rule for Jack functions given by Stanley [15] is also explained and special cases

are presented.

In the last chapter, an algebra of finitely non-symmetric functions is

defined while maintaining the same function framework of the symmetric

case. Similarly to the symmetric case, the algebra of non-symmetric func-

tions (hence non-symmetric functions themselves) can be projected onto fi-

nite dimension polynomial algebras by zeroing all variables from some point

on. Non-symmetric Jack functions are a base for this algebra which become

Jack functions upon symmetrization. Because of this, besides their intrin-

sic importance, non-symmetric Jack functions may facilitate the pursuit of

results regarding their symmetrical counterparts. The main result in this

chapter is Schützer’s theorem, which outlines how to combinatorially linearly

decompose the product between an arbitrary non-symmetric function and a

non-symmetric function indexed by a composition with weight 1. No further

generalization is yet known.

3



2 Symmetric Functions

2.1 Compositions, Partitions and Tableaux

Compositions, partitions and tableaux play fundamental roles in the

theory of symmetric functions. This section is dedicated to a brief clarification

of their properties and the notation adopted throughout the text.

2.1.1 Preliminary Definitions

Compositions are sequences of non-negative integers with finitely many

positive terms and partitions are compositions whose terms are non-increasingly

ordered. They are usually denoted as

λ = (λ1, λ2, λ3, . . . ) or (λm1
1 , λm2

2 , λm3
3 , . . . )

where in the second notation, each λi is necessarily different than its neigh-

bours λi−1 and λi+1, and mi is the multiplicity of each λi. In the case of

partitions, since (positive) λi are disposed in strictly decreasing order, the

multiplicity mj of each λj equals the total amount of λj occurrences in λ.

Let λ be a composition or partition. The length of λ, denoted by `(λ), is the

index of its last positive term. The weight of λ, denoted by |λ| is the sum of

its entries. Equivalently, if λ has weight n, it is also said to be a partition or

composition of n, which is denoted by λ ` n.

Examples:

1. (5, 02, 52, 3) = (5, 0, 0, 5, 5, 3) is a composition with length 6 and weight

18;

2. (5, 43, 2, 0) = (5, 4, 4, 4, 2, 0) is a partition with length 5 and weight 19.

The set of all compositions will be denoted by N∞ and its subsets of

compositions of n by N∞n . The set of all partitions will be denoted by P and

its subsets of partitions of n by Pn.

4



The non-increasing rearrangement of a composition λ is necessarily a

partition and is denoted by λ+. This defines a surjection λ 7→ λ+ from N∞n
onto Pn, hence from N∞ onto P . N∞ and P can also be bijectively related by

N∞ → P
(λ1, λ2, λ3, . . . ) 7→

(∑
i>1

λi,
∑
i>2

λi,
∑
i>3

λi, . . .
)

whose inverse is

P → N∞

(λ1, λ2, λ3, . . . ) 7→ (λ1 − λ2, λ2 − λ3, λ3 − λ4, . . . )

Partitions and compositions are also commonly represented by dia-

grams, defined either by the set

{(i, j) ∈ N2 | 1 6 j 6 λi} in the Anglophone convention or

{(i, j) ∈ N2 | 1 6 i 6 λj} in the Francophone convention.

Diagrams may be pictorially represented as sets of squares displayed

according to their coordinates where the first coordinate (increasing down-

wards in the Anglophone convention and upwards in the Francophone con-

vention) indicates the row and the second coordinate (increasing rightwards

in both conventions) indicates the column of each square. For example, the

composition (4, 2, 2, 0, 3) may also be represented by

in the Anglophone convention, which will be the one adopted throughout the

text.

For most purposes, compositions and their diagrams may be conflated

without ambiguity. For example, a composition µ is said to be contained in

5



another composition λ (denoted by µ ⊆ λ) if the same is true about their

diagrams. When diagrams must be explicitly distinguished, they are denoted

by diag(λ).

Skew diagrams are the set difference between diagrams of compositions

such that one contains the other. That is, ∀µ ⊆ λ,

λ/µ := diag(λ)\diag(µ)

They can also be represented pictorially. For example, (4, 3, 3, 1, 1)/(2, 2, 1, 1)

can be represented by the clear part of the diagram:

The conjugate of a given diagram (be it skew or not) is the diagram

obtained by its reflection along the main diagonal and the conjugate of a parti-

tion λ, denoted by λ′ is the partition for which their diagrams are conjugated.

Since the conjugate diagram of a composition is the diagram of another com-

position if, and only if, they are both partitions, conjugation of compositions

which are not partitions is not defined. The conjugate of a skew diagram

λ/µ is λ′/µ′. Diagrams or partitions equal to their conjugates are said to be

self-conjugated. The conjugate diagram of the example above is:

By looking at a partition’s diagram, it can be directly seen that if

λ′ = (λ′1, λ
′
2, λ
′
3, . . . ) is the conjugate of λ = (λ1, λ2, λ3, . . . ), each λi is given

by λ′i = #{j : λj > i}.

6



A path in a diagram is a sequence of its elements x1, x2, x3, . . . such

that |xk+1− xk| = 1 for each k. A subset of a diagram is said to be connected

if for each pair of its points, it contains a path connecting them. Connected

components of a diagram are its maximal connected subsets. Skew diagrams

are said to be border strips when they are connected and do not contain 2× 2

blocks of points. The border of a partition λ is the maximal border strip

within it whose shape is λ/µ for some partition µ. For example, the border of

(4, 3, 3, 1, 1) is the clear part of

A skew diagram λ/µ is a m-horizontal strip if m = |λ| − |µ| and its

connected components belong to single rows, or equivalently, λi > µi > λi+1

for all i. m-vertical strips are defined similarly to their conjugate counterparts,

but with connected components belonging to single columns instead.

2.1.2 Operations in P

Let
λ = (λ1, λ2, λ3, . . . ) = (1m

λ
1 , 2m

λ
2 , 3m

λ
3 , . . . )+

µ = (µ1, µ2, µ3, . . . ) = (1m
µ
1 , 2m

µ
2 , 3m

µ
3 , . . . )+

be arbitrary partitions.

The following commutative operations are defined on P :

• λ ∪ µ = (λ1, µ1, λ2, µ2, λ3, µ3, . . . )
+ = (1m

λ
1+mµ1 , 2m

λ
2+mµ2 , 3m

λ
3+mµ3 , . . . )+

• λ× µ = (1m1(λ,µ), 2m2(λ,µ), 3m3(λ,µ), . . . )+

being mk(λ, µ) =
∑
i,j>k

(mλ
km

µ
j +mλ

im
µ
k) for each k. This definition is the

same as the partition obtained by the non-decreasing rearrangement of

all numbers given by min
i,j>1
{λi, µj}.

7



The following commutative operations are defined on both N∞ and P :

• λ+ µ = (λ1 + µ1, λ2 + µ2, λ3 + µ3, . . . )

• λ · µ = (λ1µ1, λ2µ2, λ3µ3, . . . )

Example:

(4, 32, 12) + (3, 2, 12) = (7, 5, 4, 2, 1)

(4, 32, 12) ∪ (3, 2, 12) = (4, 33, 2, 14)

(4, 32, 12) · (3, 2, 12) = (12, 6, 3, 1)

(4, 32, 12) × (3, 2, 12) = (33, 23, 114)

These operations are related to each other by the following proposi-

tions:

Proposition 1. For all µ, λ ∈ P,

(λ ∪ µ)′ = λ′ + µ′

(λ× µ)′ = λ′ · µ′

Proof:

(λ ∪ µ)′i = #{j : (λ ∪ µ)j > i}
= #{j : λj > i}+ #{j : µj > i}
= λ′i + µ′i

(λ× µ)′i = #{j : (λ× µ)j > i}
= #{(j, k) : λj, µk > i}
= λ′i · µ′i

�

Proposition 2. For all µ, λ ∈ P,

ν · (λ+ µ) = (ν · λ) + (ν · µ)

ν × (λ ∪ µ) = (ν × λ) ∪ (ν × µ)

8



Proof: The first distributive property is evident from the definitions

and, together with the previous proposition, implies the second, for

ν × (λ ∪ µ) = (ν ′ · (λ′ + µ′))′ = (ν ′ · λ′ + ν ′ · µ′) = (ν × λ) ∪ (ν × µ).

�

It can be concluded that (Pn,+, ·) and (Pn,∪,×) are unitary commu-

tative rings with additive neutral element (0) and respective units (1n) and

(n).

2.1.3 Orderings on P and N∞

Partitions and compositions may be partially or totally ordered in dif-

ferent ways, such as:

• Natural Ordering

λ > µ ⇔
k∑
i=1

λi >
k∑
i=1

µi ∀k > 1

This is a total ordering on Pn for n 6 4 and a partial ordering on Pn for

n > 5, hence also a partial ordering on P and N∞. Since this is the most

commonly used ordering, it will be denoted by > with no subscript.

• Inclusion (I) and Conjugate Inclusion (I ′) orderings

λ >I µ ⇔ λ = µ ∪ ν for some partition ν

λ >I′ µ ⇔ λ′ = µ′ ∪ ν for some partition ν

These are both partial orderings on P .

• Reverse Lexicographical (L) and Conjugate Reverse Lexicographical (L′)
orderings

λ >L µ ⇔

{
λ = µ or

λj > µj for j = min{i : λi 6= µi}

λ >L′ µ ⇔

{
λ = µ or

µj > λj for j = max{i : λi 6= µi}

9



These are total orderings on N∞, hence also on P .

• “Regrouping” Ordering (R)

Let S`,˜̀ denote the set of surjections from {1, 2, . . . , `} to {1, 2, . . . , ˜̀}:

λ >R µ ⇔ ∃g ∈ S`(λ),`(µ) such that
∑

j∈g−1(i)

µj = λi ∀i ∈ {1, 2, . . . , ˜̀}

This means that λ >R µ iff there is a way to rearrange and sum µ

components (without repetition) to form λ. This is a total ordering on

Pn for n 6 3 and a partial ordering for n > 3, hence also a partial

ordering on P and N∞

Observations:

• For every λ, µ ∈ P , if λ >I µ, then µ can be obtained from λ by

removing some rows. Similarly, if λ >I′ µ, then µ can be obtained from

λ by removing some columns. It follows that λ >I µ ⇔ λ′ >I′ µ′.

• If >PA is an ordering on P and Ψ : N∞ → P is a function, the condition

λ >N
∞

A µ ⇔ Ψ(λ) >PA Ψ(µ) , ∀λ, µ ∈ N∞

defines the >N
∞
A ordering on N∞. Moreover, if Ψ is injective and >PA is

a total ordering, then >N
∞
A is a total ordering as well.

Proposition 3. For every λ, µ ∈ N∞,

λ >L µ ⇔ λ′ >L′ µ
′.

Proof: Only one of the directions needs to be proved, as the other

direction is analogous. Suppose λ 6= µ, then

λ >L µ⇒ ∃i such that

{
λj = µj ∀j < i

λi > µi

⇒ ∃i such that

{
λ′j = µ′j ∀j > i

λ′i > µ′i

⇒ µ′ >L′ λ
′

10



�

Proposition 4. For every n ∈ N and every λ, µ ∈ Pn,

λ > µ ⇔ µ′ > λ′

Proof: Only one direction needs to be proved.

λ � µ⇒ ∃i = min

{
k :

k∑
j=1

λj <

k∑
j=1

µj

}
⇒ λi < µi and

∑
j>i

λj >
∑
j>i

µj

⇒
µi∑
j=1

(λ′j − i) 6
λi∑
j=1

(λ′j − i) <
µi∑
j=1

(µ′j − i)

⇒
µi∑
j=1

λ′j <

µi∑
j=1

µ′j

⇒ µ � λ

�

Proposition 5. For all n ∈ N and all λ, µ ∈ Pn:

λ > µ ⇒

{
λ >L µ

λ >L′ µ

Proof: By contradiction,

• (λ > µ ⇒ λ >L µ)

Since >L is a total order on P , and in particular on Pn,

λ �L µ⇒ λ 6= µ and µ >L λ

⇒ ∃i such that

{
µj = λj ∀j < i

µi > λi

⇒ λ � µ

11



• (λ > µ ⇒ λ >L′ µ)

Since >L′ is a total order on P , and in particular on Pn,

λ �L′ µ⇒ λ 6= µ and µ >L′ λ

⇒ ∃i such that

{
µj = λj ∀j > i

λi > µi

⇒
∑
j>i

λj >
∑
j>i

µj

⇒
i−1∑
j=1

λj = n−
∑
j>i

λj < n−
∑
j>i

µj =
i−1∑
j=1

µj

⇒ λ � µ

�

Observations:

• The converse is not generally true. For example,{
(6, 3, 3) >L (5, 5, 1, 1)

(6, 3, 3) >L′ (5, 5, 1, 1)
but (6, 3, 3) � (5, 5, 1, 1)

• The condition that λ and µ have the same weight is only required for the

second part of the proof, meaning that the natural ordering implies the

reverse lexicographical ordering for all partitions, regardless of weight.

Proposition 6. For all n ∈ N and all λ, µ ∈ Pn,

λ >R µ ⇒ λ > µ

Proof: Let λ = (λ1, λ2, λ3, . . . ), µ = (µ1, µ2, µ3, . . . ) and denote

µ(i) = (µ1, . . . , µi−1, µi+1, . . . ).

The inequality λ >R µ means that there exists some surjection

g ∈ S`(µ),`(λ) such that λ =
⋃
i>1

( ∑
j∈g−1(i)

µj

)
. Now since (a + b) > (a, b) for all

a, b > 0,

µ(i)(j) ∪ (λi + λj) > µ(i)(j) ∪ (µi, µj) = µ.

12



Applying this procedure finitely many times reveals that λ > µ.

�

Observation: The converse is not generally true. For example,

(3, 1) > (2, 2), but (3, 1) �R (2, 2).

2.1.4 Special Quantities

Some quantities regarding compositions and diagrams are commonly

used and merit their own definition. For an arbitrary composition λ, the

following compositions and integer quantities are defined:

λ :=
(

max{0, λ1 − 1},max{0, λ2 − 1},max{0, λ3 − 1}, . . .
)

λ∗ :=
(
λ`(λ) − 1, λ1, λ2, . . . , λ`(λ)−1

)
ε(λ) := (−1)|λ|−`(λ) = (−1)|λ|

zλ :=
∏
i>1

λmii mi! where λ = (λm1
1 , λm2

2 , λm3
3 , . . . )

λ! :=
∏
i>1

λi!(
n
λ

)
:= n!

λ!

Example:

(4, 12, 02, 2) (5, 23, 12)

λ (3, 04, 1) (4, 13)

λ∗ (1, 3, 12) (0, 5, 23, 1)

ε(λ) 1 −1

zλ 0 480

λ! 48 960
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Also define, for each element (i, j) ∈ diag(λ),

• Arm-length: aλ(i, j) = λi − j

• Coarm-length: a′λ(i, j) = j − 1

• Leg-length: `λ(i, j) = #{k < i|j 6 λk + 1 6 λi}+ #{k > i|j 6 λk 6 λi}

• Coleg-length: `′λ(i, j) = #{k < i|λk > λi}+ #{k > i|λk > λi}

• Hook-length: hλ(i, j) = aλ(i, j) + `λ(i, j) + 1

• Cohook-length: h′λ(i, j) = a′λ(i, j) + `′λ(i, j) + 1

Example: Let λ = (2, 6, 3, 5, 1, 6, 5) and (i, j) = (4, 3) ∈ diag(λ).

The arm-length aλ(i, j) is numerically equivalent to the number of

squares to the right of (i, j) in diag(λ), indicated by red in the following

diagram. Conversely, the coarm-length a′λ(i, j) is numerically equivalent to

the number of squares to the left of (i, j), indicated by blue in the following

diagram.

(i, j)

aλ(i, j) = 2

a′λ(i, j) = 2

The leg-length `λ(i, j) is numerically equivalent to the number of λ

rows whose rightmost square lies within the red hatched region in the following

diagram. Conversely, the coleg-length `′λ(i, j) is numerically equivalent to the

number of λ rows whose rightmost square lies within the blue hatched region

in the following diagram.
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(i, j)

`λ(i, j) = 3

`′λ(i, j) = 2

Finally, hook and cohook-lengths for this example are given by:

hλ(i, j) = aλ(i, j) + `λ(i, j) + 1 = 6

h′λ(i, j) = a′λ(i, j) + `′λ(i, j) + 1 = 5

As a direct consequence of the definition, when λ is a partition, leg-

lengths and coleg-lengths simplify to

• Leg-length: `λ(i, j) = λ′j − i

• Coleg-length: `′λ(i, j) = i− 1

Example: Let λ = (6, 6, 5, 5, 4, 3, 2) and (i, j) = (4, 3) ∈ diag(λ).

(i, j)

`λ(i, j) = 2

`′λ(i, j) = 3

For an arbitrary composition λ and each (i, j) ∈ diag(λ), we also define

the following polynomials in α:

• ȟλ(i, j)(α) := aλ(i, j)α + `λ(i, j) + 1

• ĥλ(i, j)(α) := aλ(i, j)α + `λ(i, j) + α
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• hλ(i, j)(α) := aλ(i, j)α + `λ(i, j) + α + 1

• ϕλ(α) :=
∏
i>1

λi−1∏
j=0

(jα + 1)

Example: Let λ = (2, 3, 3, 0, 1, 2). The correspondent ĥ(s), h(s) and

ȟ(s) are assigned to each box s ∈ diag(λ) in the diagrams below.

ĥ h ȟ

2α+2 α+1

3α+4 2α+3 α+2

3α+3 2α+2 α+1

α+1

2α+2 α+1

2α+3 α+2

3α+5 2α+4 α+3

3α+4 2α+3 α+2

α+2

2α+3 α+2

α+3 2

2α+5 α+4 3

2α+4 α+3 2

2

α+3 2

For the same composition λ = (2, 3, 3, 0, 1, 2),

ϕλ(α) = (α + 1) ·
(
(2α + 1)(α + 1)

)2 · 1 · 1 · (α + 1) = (2α + 1)2(α + 1)4

2.1.5 Tableaux

Let λ be an arbitrary composition or skew partition. A tableau T of

shape λ, denoted by sh(T ) = λ, is a labelling of boxes in diag(λ) by posi-

tive integers. Its weight, denoted by |T |, is the composition whose each i-th

component is given by the number of T boxes labelled i.

Tableaux whose labelling is non-decreasing along rows and strictly in-

creasing down columns, whose shape and weight are both partitions4 are said

to be semi-standard or column-strict. Row-strict tableaux can be similarly de-

fined switching the non-decreasing and strictly increasing conditions, so they

4Possibly a skew partition in the case of the shape.
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are strictly increasing along rows and non-decreasing down columns. Stan-

dard tableaux are labellings in which numbers 1, 2, . . . , |sh(T )| appear exactly

once and in strictly increasing order over both rows and columns, hence are

simultaneously column and row-strict. Since by definition there is exactly one

occurrence of each of the numbers 1, 2, . . . , |sh(T )|, standard tableaux must

necessarily have weight (1|sh(T )|). When a tableau T does not necessarily sat-

isfy column or row-strict conditions it is often said to be a generalized tableau.

Examples:

•
2 3

1
has shape (3, 1)/(1), weight (13) and is standard;

•
1

2 3
has shape (1, 2), weight (13) and is not standard;

•
1 1

2 3
has shape (2, 2), weight (2, 12) and is semi-standard;

•
1 2

3 3
has shape (2, 2), weight (12, 2) and is not semi-standard.

Notation: Let Tab denote the set of all tableaux. The following

notation will be adopted:

• T̂ab(λ) = {T ∈ Tab : sh(T ) = λ};

• T̂ab(λ, ν) = {T ∈ Tab : sh(T ) = λ and |T | = ν};

• Tab(λ) = {T ∈ Tab : sh(T ) = λ and T is semi-standard};

• Tab(λ, ν) = {T ∈ Tab : sh(T ) = λ, |T | = ν and T is semi-standard}.
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2.2 Algebra of Symmetric Functions

Let A be an arbitrary commutative ring with identity. The symmetric

group Sn bijectively acts over any polynomial ring A[x1, x2, . . . xn] in a natural

fashion: each permutation σ ∈ Sn accordingly rearranging variables x1, . . . , xn

to xσ(1), . . . , xσ(n). That is, for p ∈ A[x1, x2, . . . xn]:

σ · p(x1, x2, . . . , xn) = p(xσ(1), xσ(2), . . . , xσ(n))

Let for α ∈ Nn. Denoting xα = xα1
1 x

α2
2 . . . xαnn and p(x1, x2, . . . , xn) =

∑
α

cαx
α,

the action becomes

p(xσ(1), xσ(2), . . . , xσ(n)) =
∑
α

cαx
α1

σ(1)x
α2

σ(2) · · ·x
αn
σ(n)

=
∑
α

cαx
ασ−1(1)

1 x
ασ−1(2)

2 · · ·x
ασ−1(n)
n

=
∑
α

cαx
σ−1(α)

=
∑
α

cσ(α)x
α (1)

Examples:

1. (1 2)(4 5) · (x4
1x

2
2x4 + x4

2x
2
4x5) = x4

1x
2
2x4 + x4

2x
2
4x5

2. (1 4 5)(2 3) · (x4
1x

2
2x4 + x4

2x
2
4x5) = x4

4x
2
3x5 + x4

3x
2
5x1

Polynomials invariant under this action are called symmetric polyno-

mials and the subset of such polynomials forms the sub-algebra of symmetric

polynomials over A, which will be denoted by ΛA[x1, x2, . . . , xn]. The sub-

module of symmetric polynomials over A which are homogeneous with degree

k (also called k-homogeneous), together with the zero polynomial, will be

denoted by Λk
A[x1, x2, . . . , xn].

Let p(x1, x2, . . . , xn) =
∑
α

cαx
α be the monomial decomposition of a

symmetric polynomial. Because of (1), whenever indices α(1), α(2) ∈ Nn are

such that α+
(1) = α+

(2) = λ for some partition λ, their correspondent coeffi-

cients must be equal to each other, that is cα(1)
= cα(2)

= cλ. It follows that
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p(x1, x2, . . . , xn) can be decomposed in terms of sums of distinct monomials

xα such that α+ = λ for some partition λ.

p(x1, x2, . . . , xn) =
∑
α

cαx
α =

∑
λ

cλ
∑
α+=λ

xα

These sums are symmetric polynomials themselves, appropriately called mono-

mial symmetric polynomials.

Definition 2.2.1 (Monomial Symmetric Polynomials). For all n > 1 and

λ ∈ Pn,

mλ(x) :=
∑
α+=λ
`(α)6n

xα

If λ = (0), m(0) := 1.

Let λ = (λγ11 , λ
γ2
2 , . . . , λ

γ`
` ) ∈ Pn and consider the quotient ring Sn

stab(λ)
,

where stab(λ) = {σ ∈ Sn : σ(λ) = λ} ∼= Sγ1 × Sγ2 × · · · × Sγ` . Note that

two permutations σ′, σ′′ ∈ Sn act alike on λ if, and only if they are within the

same coset, that is, [σ′] = [σ′′] ∈ Sn
stab(λ)

. Hence the action [σ] · λ := σ(λ) for

some σ ∈ [σ] is well-defined. Now for each α ∈ Nn such that α+ = λ there is

exactly one [σ] ∈ Sn
stab(λ)

such that [σ] · λ = α. This fact yields an alternative

expression for monomial symmetric polynomials:

mλ(x) =
∑

[σ]∈ Sn
stab(λ)

x[σ]·λ

And since #stab(λ) = #Sγ1 × Sγ2 × · · · × Sγ` =
∏
i

γi!, it also follows that

mλ(x) =
1∏

i

γi!

∑
σ∈Sn

xσ(λ).

Since every symmetric polynomial in ΛA[x1, x2, . . . , xn] may be decom-

posed in terms of monomial symmetric polynomials, and these are clearly

linearly independent, the family of monomial symmetric polynomials over n

variables {mλ(x1, x2, . . . , xn)}`(λ)6n is an A-base for ΛA[x1, x2, . . . , xn] as an
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A-module. For a similar reason, so is the restriction {mλ(x1, x2, . . . , xn)}`(λ)6n
λ`k

an A-base as an A-module for Λk
A[x1, x2, . . . , xn].

Examples:

1. m(3,1,1)(x1, x2, x3) = x3
1x2x3 + x3

2x1x3 + x3
3x1x2

2. m(2,1)(x1, x2, x3) = x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2

It is often the case that results regarding symmetric polynomials do

not directly depend on their specific number of variables. It is therefore useful

to approach the theory of symmetric polynomials from a perspective which

generalizes these results for polynomial algebras over arbitrarily many finite

variables. To that end, dimension independent mathematical objects which

generalize symmetric polynomials, called symmetric functions, are defined.

In order to construct them, firstly consider the homomorphisms of

A-modules for each n,m ∈ N:

ρm,n : ΛA[x1, x2, . . . , xn] → ΛA[x1, x2, . . . , xm]

mλ(x1, x2, . . . , xn) 7→

{
0 if m < `(λ)

mλ(x1, x2, . . . , xm) if m > `(λ)

and their restriction ρkm,n : Λk
A[x1, x2, . . . , xn]→ Λk

A[x1, x2, . . . , xm].

Observations:

• When m 6 n, ρm,n◦ρn,m = idn, so in particular, ρn,m is a monomorphism

and ρm,n is an epimorphism;

• When l 6 m 6 n, ρl,m ◦ ρm,n = ρl,n and ρn,m ◦ ρm,l = ρn,l.

Now let
∏
m∈N

ΛA[x1, x2, . . . , xm] be the A-algebra of sequences of sym-

metric polynomials in increasing numbers of variables with element-wise sum

and multiplication, that is, if
(
pm
)
m∈N,

(
qm
)
m∈N ∈

∏
m∈N

ΛA[x1, x2, . . . , xm],
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(
pm
)
m∈N +

(
qm
)
m∈N =

(
pm + qm

)
m∈N and

(
pm
)
m∈N ·

(
qm
)
m∈N =

(
pm · qm

)
m∈N.

Since each ρm,n is an A-module homomorphism, so are ρn defined by:

ρn : ΛA[x1, x2, . . . , xn] →
∏
m∈N

ΛA[x1, x2, . . . , xm]

p 7→
(
ρm,n(p)

)
m∈N

Moreover, π′n ◦ ρn = idn where π′n denotes the projection homomorphism

π′n :
(
pm
)
m∈N 7→ pn. In particular, each ρn is a monomorphism.

Proposition 7.
⋃
n∈N

Im(ρn) is an A-sub-algebra of
∏
n∈N

ΛA[x1, x2, . . . , xn].

Proof:

Firstly notice that m 6 n⇒ Im(ρk,m) ⊆ Im(ρk,n), ∀k ∈ N, for:

If m 6 n 6 k, ρk,n ◦ ρn,m = ρk,m, which implies Im(ρk,m) ⊆ Im(ρk,n);

If k 6 n, ρk,n is surjective, so Im(ρk,m) ⊆ Im(ρk,n), ∀m ∈ N.

This in turn implies that Im(ρm) ⊆ Im(ρn) for all m 6 n and therefore⋃
n∈N

Im(ρn) is closed under all algebra operations. Finally, since each Im(ρn)

is itself an A-sub-algebra of
∏
n∈N

ΛA[x1, x2, . . . , xn], so must
⋃
n∈N

Im(ρn) be.

Observation: The A-algebra
⋃
n∈N

Im(ρn) implicitly depends on the

particular order in which variables x1, x2, . . . are introduced by each

ΛA[x1, x2, . . . , xn] in the A-algebra of sequences
∏
n∈N

ΛA[x1, x2, . . . , xn]. For

each sequence of variables X = (xi1 , xi2 , xi3 , . . . ), this dependency can be

made explicit in
⋃
n∈N

Im(ρn) by denoting
( ⋃
n∈N

Im(ρn)
)
X

.

For any set x = {xi : i ∈ N} or list x = (xi)i∈N, denote the set

of sequences obtained by some “rearrangement” of x by seq(x), that is,

seq(x) :=
{

(xb(i))i∈N | b : N→ N is a bijection
}

, and let
seq∼ be the equivalence

relation in
⋃

X∈seq(x)

( ⋃
n∈N

Im(ρn)
)
X

defined by p(X)
seq∼ p′(X ′)⇔ p(X) = p′(X),

for all X,X ′ ∈ seq(x), p(X) ∈
( ⋃
n∈N

Im(ρn)
)
X

and p′(X ′) ∈
( ⋃
n∈N

Im(ρn)
)
X′

.

With this equivalence relation, the algebra of symmetric functions can be

finally defined.
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Definition 2.2.2. Let x = {x1, x2, . . . } be a countably infinite set of variables.

The A-Algebra of Symmetric Functions over x, denoted by ΛA[x], is defined

by the set

ΛA[x] :=

⋃
X∈seq(x)

( ⋃
n∈N

Im(ρn)
)
X

seq∼
with the operations

• a[p1] := [ap1];

• [p1] + [p2] := [p1 + p2];

• [p1][p2] := [p1p2];

defined for all a ∈ A, and p1, p2 ∈
( ⋃
n∈N

Im(ρn)
)
X

for some X ∈ seq(x).

Similarly, the A-Module of Homogeneous Symmetric Functions of De-

gree k is defined by

Λk
A[x] :=

⋃
y∈seq(x)

( ⋃
n∈N

Im(ρkn)
)
y

seq∼

with operations

• a[p1] := [ap1];

• [p1] + [p2] := [p1 + p2];

again defined for all a ∈ A, and p1, p2 ∈
( ⋃
n∈N

Im(ρn)
)
X

for some X ∈ seq(x).

Elements of either ΛA[x] or Λk
A[x] are called symmetric functions.

22



Observations:

• These operations are well-defined since cosets [ap1(X)], [p1(X) + p2(X)]

and [p1(X)p2(X)] do not depend on the choice of X ∈ seq(x);

• For anyX ∈ seq(x), ΛA[x] ∼=
( ⋃
n∈N

Im(ρn)
)
X

and Λk
A[x] ∼=

( ⋃
n∈N

Im(ρkn)
)
X

.

This is the case because by the definition of ΛA[x], f 7→ [f ] is an

A-algebra monomorphism between
( ⋃
n∈N

Im(ρn)
)
X

and ΛA[x]. Since all

[f ] ∈ ΛA[x] contain some f ∈
( ⋃
n∈N

Im(ρn)
)
X

it is also surjective. The

proof for A-modules Λk
A[x] is completely analogous.

The algebra of symmetric functions and the modules of homogeneous

symmetric functions are related by the proposition:

Proposition 8. Let x = {x1, x2, . . . } be a countably infinite set of variables.

Then

ΛA[x] =
⊕
k∈N

Λk
A[x]

as a graded algebra.

Proof: Due to the previous observation, it need only be proved that⋃
n∈N

Im(ρn) =
⊕
k∈N

( ⋃
n∈N

Im(ρkn)
)

as a graded algebra. Firstly, it will be proved

that
⋃
n∈N

Im(ρn) is the direct sum of the A-modules
⋃
n∈N

Im(ρkn) and then that

fg ∈
⋃
n∈N

Im(ρk1+k2
n ) for all k1, k2 ∈ N, f ∈

⋃
n∈N

Im(ρk1n ) and g ∈
⋃
n∈N

Im(ρk2n ).

Any polynomial algebra is the direct sum of modules of homogeneous

polynomials as a graded algebra, so in particular,

ΛA[x1, x2, . . . , xn] =
⊕
k∈N

Λk
A[x1, x2, . . . , xn], ∀n ∈ N.

Moreover, letting f =
J∑
k=0

f (k) be the unique decomposition of a symmetric

polynomial f ∈ ΛA[x1, x2, . . . , xn] in its symmetric homogeneous components,

ρm,n(f) =
J∑
k=0

ρm,n
(
f (k)
)

=
J∑
k=0

ρkm,n
(
f (k)
)
, ∀m ∈ N.
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Therefore

ρn(f) =
J∑
k=0

ρn
(
f (k)
)

=
J∑
k=0

ρkn
(
f (k)
)
.

Finally, since uniqueness of the decomposition is preserved and ρkn
(
f (k)
)

for

all k ∈ N,
⋃
n∈N

Im(ρn) =
⊕
k∈N

( ⋃
n∈N

Im(ρkn)
)

.

Now for arbitrary k1, k2,∈ N, let f ∈
⋃
n∈N

Im(ρk1n ) and g ∈
⋃
n∈N

Im(ρk2n ),

that is, there areN1, N2 ∈ N and fN1 ∈ Λk1
A [x1, x2, . . . , xN1 ], gN2 ∈ Λk2

A [x1, x2, . . . , xN2 ]

such that f = ρk1N (fN) and g = ρk2N (gN). Since m 6 n⇒ Im(ρkm) ⊆ Im(ρkn) for

each k ∈ N, f = ρk1N (fN) and g = ρk2N (gN) for N = max{N1, N2}. Therefore

fg = ρk1n (fN)ρk2n (gN)

=
(
ρk1m,N(fN)

)
m∈N

(
ρk2m,N(gN)

)
m∈N

=
(
ρk1m,N(fN)ρk2m,N(gN)

)
m∈N

=
(
ρm,N(fN)ρm,N(gN)

)
m∈N

=
(
ρm,N(fNgN)

)
m∈N

=
(
ρk1+k2
m,N (fNgN)

)
m∈N

= ρk1+k2
n (fNgN) ∈

⋃
n∈N

Im(ρk1+k2
n ).

�

Symmetric functions can be projected onto symmetric polynomials in

a natural fashion. Let x = {x1, x2, . . . } be a countably infinite set of variables

and s = {xi1 , xi2 , . . . , xin} a subset of x. The projection-like A-homomorphism

πn : ΛA[x] → ΛA[s]

[(fm)m∈N] 7→ fn(xi1 , xi2 , . . . , xin)

is well-defined, for it is independent of the choice of f = (fm)m∈N in [f ].

Moreover, f = ρN(fN) for some N ∈ N and fN ∈ ΛA[x1, x2, . . . , xN ], so

πm(f) = ρm,N(fN),∀m ∈ N and

πm = ρm,n ◦ πn, ∀n 6 m ∈ N.
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Despite not being actually polynomials, symmetric functions are in fact

functions in the sense that they can be evaluated for the appropriate domain.

Namely, the set of almost-null sequences of A, denoted by A∞.

Proposition 9. For each a = (a1, a2, . . . ) ∈ A∞, there is a unique homo-

morphism eva : ΛA[x] → A which maps [p] 7→ πn(p)(a1, a2, . . . , an) for some

n > max{i : ai 6= 0}.

Proof: Firstly, notice that this homomorphism is indeed a well-defined,

since for all n > ` = max{i : ai 6= 0} and all [p] ∈ ΛA[x],

πn([p])(a1, . . . , a`, 0, . . . , 0︸ ︷︷ ︸
n−`

) = ρn,` ◦ π`([p])(a1, . . . , a`) = π`([p])(a1, . . . , a`).

Now eva = ev(a1,a2,...,a`) ◦π`, where ev(a1,a2,...,a`) is the evaluation homo-

morphism

ev(a1,a2,...,a`) : ΛA[x1, x2, . . . , xn] → A

p(x1, x2, . . . , xn) 7→ p(a1, a2, . . . , an),

which uniquely maps p(x1, x2, . . . , xn) onto p(a1, a2, . . . , an). Therefore eva

must also be the unique homomorphism ΛA[x] → A which maps [p] onto

π`(p)(a1, a2, . . . , an).

�

Symmetric functions can also be “partially evaluated” in the sense that

only finitely many variables are replaced by elements of the commutative ring

A. This is done by the evaluation-like homomorphism:

Proposition 10. Let s = {xi1 , xi2 , . . . , xin} be a finite subset of the countably

infinite set of variables x = {x1, x2, . . . }. For each a = (a1, a2, . . . , an) ∈ An,

there is a unique homomorphism eva : ΛA[x]→ ΛA[x\s] which maps

[f ] 7→
[
ρN−n

(
πN(f)(x1, x2, . . . , xN)

∣∣
xij=aj ,∀xij∈s

)]
for all N > in + `, where f = ρ`(f`) for some f` ∈ ΛA[x1, x2, . . . , x`].
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Proof: Without loss of generality, let s = {x1, x2, . . . , xn}. Then eva

is well defined and unique if the map

eva : [f ] 7→
[
ρN−n

(
πN(f)(a1, . . . , an, xn+1, . . . , xN)

)]
does not depend on the choice of N > n+ `.

If f = ρ`(f`), then f` ∈ ΛA[x1, x2, . . . , x`] has a linear decomposition in

terms of monomial polynomials indexed by partitions with length no greater

than `,

f` =
∑
`(λ)6`

cλmλ(x1, x2, . . . , x`).

Then

πN(f)(a1, . . . , an, xn+1, . . . , xN)

=ρN,`(f`)(a1, . . . , an, xn+1, . . . , xN)

=
∑
`(λ)6`

cλmλ(a1, . . . , an, xn+1, . . . , xN)

=
∑
`(λ)6`

cλ
∑
α+=λ

aα1
1 · · · aαnn x

αn+1

n+1 · · ·x
αN
N

=
∑
`(λ)6`

c′λmλ(xn+1, . . . , xN) for some c′λ.

The condition N > n + ` guarantees that mλ(xn+1, . . . , xN) is well-

defined for all λ such that `(λ) 6 `. Furthermore,

ρN−n
(
mλ(xn+1, . . . , xN)

)
=
∑
α+=λ

(
xα1
n+1x

α2
n+2x

α3
n+3 · · ·

)
does not depend onN > n+`, so neither does

[
ρN−n

(
πN(f)(a1, . . . , an, xn+1, . . . , xN)

)]
.

�

Observation: “Evaluation” homomorphisms eva and eva motivate

an intuitive representation of symmetric functions as infinite sums — over

infinitely many variables — of polynomials. These are formal sums which

behave like polynomials in the sense that they follow similar summation and
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multiplication rules, as well as the previously mentioned variable evaluation

rules.

Example: let{
f(x1, x2) = x1x

2
2 + x2

1x2 − 2x1 − 2x2 = m(2,1)(x1, x2)− 2m(1)(x1, x2)

g(x1, x2) = 3x1x2 − x2
1 − x2

2 + 2 = 3m(1,1)(x1, x2)− m(2)(x1, x2) + 2m(0)(x1, x2)

so [f ] = [ρ2

(
f(x1, x2)

)
] and [g] = [ρ2

(
g(x1, x2)

)
] may be written as

[f ] =
∑
i 6=j

x2
ixj − 2

∑
i

xi

[g] = 3
∑
i<j

xixj −
∑
i

x2
i + 2.

With this notation, [f ] + [g] may be expressed by∑
i 6=j

x2
ixj + 3

∑
i<j

xixj −
∑
i

x2
i − 2

∑
i

xi + 2,

and [f ][g] by(∑
i 6=j

x2
ixj − 2

∑
i

xi

)(
3
∑
i<j

xixj −
∑
i

x2
i + 2

)
=3
∑
i 6=j
k<t

x2
ixjxkxt −

∑
i 6=j
k

x2
ixjx

2
k + 2

∑
i 6=j

x2
ixj − 6

∑
i

k<t

xixkxt + 2
∑
i,k

xix
2
k − 4

∑
i

xi

=3
∑
i 6=j,k,t
j<k<t

x2
ixjxkxt − 6

∑
i 6=j,k
j<k

x2
ixjxk − 2

∑
i<j
k 6=i,j

x2
ix

2
jxk + 3

∑
i 6=j 6=k 6=i

x3
ix

2
jxk

+ 4
∑
i 6=j

x2
ixj −

∑
i 6=j

x3
ix

2
j −

∑
i 6=j

x4
ixj + 2

∑
i

x3
i − 4

∑
i

xi.

Similarly, the evaluation of [f ] and [g] for x1 = 2 and x2 = −1 can be
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expressed by

[f ]
∣∣∣
x1=2
x2=−1

=
(∑

i 6=j

x2
ixj

)∣∣∣
x1=2
x2=−1

− 2
(∑

i

xi

)∣∣∣
x1=2
x2=−1

=
(

22(−1) + 2(−1)2 + ((−1)2 + 22)
∑
36i

xi + ((−1) + 2)
∑
36i

x2
i +

∑
36i,j
i 6=j

x2
ixj

)
− 2
(

2 + (−1) +
∑
36i

xi

)
=
∑
36i,j
i 6=j

x2
ixj +

∑
36i

x2
i + 3

∑
36i

xi − 4

[g]
∣∣∣
x1=2
x2=−1

= 3
(∑

i<j

xixj

)∣∣∣
x1=2
x2=−1

−
(∑

i

x2
i

)∣∣∣
x1=2
x2=−1

+ 2

= 3
(

2(−1) + (2 + (−1))
∑
36i

xi +
∑

36i<j

xixj

)
−
(

22 + (−1)2 +
∑
36i

x2
i

)
+ 2

= 3
∑

36i<j

xixj −
∑
36i

x2
i + 3

∑
36i

xi − 9.
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From this point on, a simpler notation shall be adopted.

Notation:

• Unless it must be made explicit, the A-algebra ΛA[x] and A-modules

Λk
A[x] of symmetric functions will be denoted without mention to the

set of variables by ΛA and Λk
A, respectively;

• Similarly, unless it must be made explicit, symmetric functions will be

denoted without brackets nor mention to the set of variables;

• When A = Z the algebra and modules of symmetric functions will be

denoted without mention to the coefficient ring by Λ and Λk, respec-

tively;

• Let a = (a1, a2, . . . , an) ∈ An and f ∈ ΛA, The evaluation eva(f) will be

denoted by f(a1, a2, . . . , an, x1, x2, . . . );

• If x and y are non-intersecting sets of variables, ΛA[x, y] := ΛA[x ∪ y]

and f(x, y) := f(x ∪ y) ∈ ΛA[x ∪ y];

• If x = {x1, x2, . . . } and A is a non-empty subset of positive integer

indices, denote xA = {xi : i ∈ A}, so f(xA) ∈ ΛA[xA].
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2.3 Λ bases

There are six families of symmetric functions, which are indexed by

partitions λ ∈ P , of particular importance:

• Monomial Functions (mλ)

• Elementary Functions (eλ)

• Complete Functions (hλ)

• Forgotten Functions (fλ)

• Power Functions (pλ)

• Schur Functions (sλ)

With the exception of power functions, which are a Q-base for ΛQ as

a Q-module, these functions are Z-bases for Λ as Z-modules.

Furthermore, power functions indexed by partitions with a single row

({p(r)}) are a Q-base for ΛQ as a Q-algebra and elementary and complete

functions ({e(r)} and {h(r)}) are Z-bases for Λ as a Z-algebra.

Another important family of symmetric functions, though not a base

for Λ, are the Skew Schur functions. As their name suggest, Skew Schur func-

tions are indexed by skew diagrams instead of partitions (sλ/µ) and generalize

“regular” Schur functions (sλ = sλ/(0)). In addition to their intrinsic relevance,

they are useful assets for proving results regarding “regular” Schur functions.

Examples of these new functions in terms of monomial functions are

given in the appendix in the form of transition matrices.
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2.3.1 Monomial Functions

Monomial functions are defined from monomial polynomials by

mλ := ρ`(λ)

(
mλ(x1, . . . , x`(λ))

)
(2)

and can also be expressed by the formal sum

mλ =
∑
α+=λ

xα. (3)

Examples:

• m(3,2,1) =
∑

i 6=j 6=k 6=i

x3
ix

2
jxk

• m(2,2,1) =
∑
i<j
k 6=i,j

x2
ix

2
jxk

• m(r) =
∑
i

xri

• m(ar) =
∑

i1<···<ir

xai1 · · · x
a
ir

Proposition 11. Monomial functions are a Z-base for Λ as a Z-module.

Proof: For every f ∈ Λ there is some ` ∈ N and f` ∈ Λ[x1, x2, . . . , x`]

such that f = ρ`(f`). Since f` has a unique linear decomposition in terms of

monomial polynomials f` =
∑

`(λ)6`
cλmλ(x1, x2, . . . , x`),

f = ρ`(f`) =
∑
`(λ)6`

cλρ`
(
mλ(x1, x2, . . . , x`)

)
=
∑
`(λ)6`

cλmλ

so f also has a unique decomposition in terms of monomial functions.

�

Proposition 12. For two sets of variables x = {x1, x2, . . . } and y = {y1, y2, . . . },
monomial functions satisfy the relation

mλ(x, y) =
∑
µ∪ν=λ

mµ(x)mν(y).
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Proof: This is proven by induction on the length of λ.

The statement is trivially true for `(λ) = 0, in which case λ = (0) and

m(0)(x, y) = 1 = m(0)(x)m(0)(y).

Suppose the statement is valid for all partitions with length L. Let

λ′ = (λ1, λ2, . . . , λL) and λ = (λ1, λ2, . . . , λL, λL+1). Denoting x(i) = {x}\{xi}
and y(i) = {y}\{yi},

mλ(x, y) =
∑
i

x
λL+1

i mλ′
(
x(i), y

)
+
∑
i

y
λL+1

i mλ′
(
x, y(i)

)
=
∑

µ∪ν=λ′

∑
i

x
λL+1

i mµ

(
x(i)
)
mν(y) +

∑
µ∪ν=λ′

y
λL+1

i mµ(x),mν

(
y(i)
)

=
∑

µ∪ν=λ′

mµ∪(λL+1)(x)mν(y) +
∑

µ∪ν=λ′

mµ(x)mν∪(λL+1)(y)

=
∑
µ∪ν=λ

mµ(x)mν(y).

�

Corollary: For some partition λ 6= (0) and some positive integer N ,

consider the lists of variables (where now each x
(j)
i denotes a variable belonging

to the list x(j))

x(1) =
(
x

(1)
1 , x

(1)
2 , x

(1)
3 , . . .

)
x(2) =

(
x

(2)
1 , x

(2)
2 , x

(2)
3 , . . .

)
...

...

x(N) =
(
x

(N)
1 , x

(N)
2 , x

(N)
3 , . . .

)
Then

mλ

(
x(1), x(2), . . . , x(N)

)
=

∑
N⋃
i=1

µ(i)=λ

mµ(1)

(
x(1)
)
·mµ(2)

(
x(2)
)
· · ·mµ(N)

(
x(N)

)

Where each µ(i) is a partition and
N⋃
i=1

µ(i) = µ(1) ∪ µ(2) ∪ · · · ∪ µ(N).

Proof: This is proven by induction on N .

By the previous proposition, the statement is true for N = 1.
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Suppose the statement is holds for N and let y =
(
x(1), x(2), . . . , x(N)

)
.

mλ

(
x(1), x(2), . . . , x(N), x(N+1)

)
= mλ

(
y, x(N+1)

)
=
∑
µ∪ν=λ

mµ(y)mν

(
x(N+1)

)
=
∑
µ∪ν=λ

∑
N⋃
i=1

µ(i)=µ

mµ(1)

(
x(1)
)
mµ(2)

(
x(2)
)
· · ·mµ(N)

(
x(N)

)
mν

(
x(N+1)

)

=
∑

N+1⋃
i=1

µ(i)

mµ(1)

(
x(1)
)
mµ(2)

(
x(2)
)
· · ·mµ(N+1)

(
x(N+1)

)
.

�

2.3.2 Elementary Functions

Elementary functions eλ are defined in terms of m(1r) as

er = m(1r)

eλ =
∏
i

eλi ,

and the generating function for (er)r∈N is the formal sum

E(t) :=
∑
r>0

ert
r =

∏
i>1

(1 + xit), (4)

meaning that each er may also be defined as the coefficient of tr in
∏
i>1

(1+xit).

Proposition 13.

a) (eλ)λ∈P is a Z-base for Λ as a Z-module;

b) (er)r∈N is a Z-base for Λ as a Z-algebra.

Proof: Since each eλ is uniquely obtained (apart from order of multi-

plication) from a product of er’s, these statements are equivalent, so only one

needs to be proved.
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So as to prove the first statement, it will be shown that the linear

decomposition of elementary functions in terms of monomial functions

eλ =
∑
µ

cλµmµ

is invertible.

By definition, each elementary function eλi can be expressed by the

formal sum

eλi =
∑

k1<···<kλi

xk1 · · ·xkλi ,

so eλ =
∏
i

eλi itself is given by

∏̀
i=1

( ∑
k
(i)
1 <···<k(i)λi

x
k
(i)
1
x
k
(i)
2
· · ·x

k
(i)
λi

)
=

∑
k
(1)
1 <···<k(1)λ1

· · ·
∑

k
(`)
1 <···<k(`)λ`

(
λi∏
i=1

x
k
(i)
1
x
k
(i)
2
· · ·x

k
(i)
λi

)
.

where ` = `(λ). Therefore each monomial term xα that appears in eλ must

have the form(
x
k
(1)
1
x
k
(1)
2
. . . x

k
(1)
λ1

)(
x
k
(2)
1
x
k
(2)
2
. . . x

k
(2)
λ2

)
. . .
(
x
k
(`)
1
x
k
(`)
2
. . . x

k
(`)
λ`

)
(5)

where k
(i)
j < k

(i)
j+1 for all (i, j) ∈ diag(λ).

Since eλ is symmetric, all xα such that α+ = µ must have the same

coefficient cλµ, thence the number of occurrences of xµ in eλ.

Each product (5) yielding xµ can be univocally associated with a la-

belling with weight µ of the diagram of λ by (i, j) 7→ k
(i)
j . By construction,

these labellings must be strictly increasing along rows, therefore µ 6 λ′. More-

over, for µ = λ′, there is only one possible such labelling, so cλλ′ = 1.

It follows that

eλ =
∑
µ6λ′

cλµmµ = mλ′ +
∑
µ>λ

cλµ′mµ′ . (6)

Let λ ` n and index partitions of n according to the (total) reverse

lexicographical ordering

(1n) = λ(1) <L λ
(2) <L · · · <L λ(P−1) <L λ

(P ) = (n)

34



where P = #Pn. This ordering is generalized by the (partial) natural order-

ing, so λ(i1) < λ(i2) ⇒ λ(i1) <L λ
(i2) ⇒ i1 < i2. Moreover, partition conju-

gation inverts the order, that is, µ < λ ⇔ λ′ < µ′, so for this indexation:(
λ(k)
)′

= λ(P+1−k), ∀k ∈ {1, . . . , P}. With these remarks, (6) implies

eλ(i) = mλ(P+1−i) +
∑
j>i

cλ(i)λ(P+1−j)mλ(P+1−j) .

This new formula omits the fact that cλ(i)λ(P+1−j) = 0 whenever

λ(i) �
(
λ(j)
)′

(in the natural ordering), but highlights the triangular rela-

tion between elementary and monomial functions. With this notation, (6) is

expressed in matrix form like so

eλ(1)

eλ(2)

eλ(3)
...

eλ(p−1)

eλ(p)


=



1 cλ(1)λ(p−1) cλ(1)λ(p−2) . . . cλ(1)λ(1)

1 cλ(2)λ(p−2) . . . cλ(2)λ(1)

1 cλ(3)λ(1)
. . .

...

cλ(p−1)λ(1)

1





mλ(p)

mλ(p−1)

mλ(p−2)

...

mλ(2)

mλ(1)


(7)

Where

cλµ = #{T ∈ T̂ab(λ, µ) : T strictly increasing along rows}. (8)

Elementary and monomial functions indexed by partitions with same

weight are therefore related by an upper-triangular matrix with entries in Z
and with only 1’s in its diagonal. Since 1 is invertible in Z and Z is an integral

domain, the matrix itself is invertible. This shows that every monomial sym-

metric function can be finitely expressed as a linear combination of elementary

functions, and completes the proof.

�
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Proposition 14. For all r ∈ N,

e(1r) =
∑
λ`r

(
r

λ

)
1∏
i γi!

mλ,

where λ = (λγ11 , λ
γ2
2 , . . . ).

Proof: By the same argument in (5), monomial terms that appear in

e(1r) have the form xi1 · · ·xir with no relation between indices. Therefore the

coefficient of each mλ in the monomial decomposition of elementary functions

equals the number of ways xλ can be obtained by multiplying variables in

{x1, x2, . . . }. This is the number of permutations of variables x1, x2, . . . , x`(λ),

where each xi occurs exactly λi times, accounted for repetitions of repeated

terms in λ, which is exactly
(
r
λ

)
1∏
i γi!

.

�

Proposition 15. For all a > b,

e(a,b) =

ba+b
2
c∑

k=0

(
a+ b− 2k

a− k

)
m(2k,1a+b−2k).

Proof: From the definition, e(a,b) = eaeb =
∑

i1<···<ia
i′1<···<i′b

(xi1 · · ·xia)(xi′1 · · ·xi′b),

so monomial terms that appear in e(a,b) are of the form x2
j1
· · ·x2

jk
xj′1 · · ·xj′k′

with j1 < · · · < jk, j
′
1 < · · · < j′k′ and 2k + k′ = a + b. The coefficient

of each of these terms is the total number of products (xi1 · · ·xia)(xi′1 · · ·xi′b)
with i1 < · · · < ia and i′1 < · · · < i′b which yield x2

j1
· · ·x2

jk
xj′1 · · ·xj′k′ . This is

equivalent to the number of sets {i1, . . . , ia} and {i′1, . . . , i′b} such that

{j1, . . . , jk } = {i1, . . . , ia} ∩ {i′1, . . . , i′b}
{j′1, . . . , j′k′} = {i1, . . . , ia} ∪ {i′1, . . . , i′b}\{i1, . . . , ia} ∩ {i′1, . . . , i′b}
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which is
(
a+b−2k
a−k

)
. Finally, since k ranges from 0 to ba+b

2
c,

e(a,b) =

ba+b
2
c∑

k=0

∑
i1<···<ik
j1<···<ja+b−2k

(
a+ b− 2k

a− k

)
x2
i1
· · ·x2

ik
xj1 · · ·xja+b−2k

=

ba+b
2
c∑

k=0

(
a+ b− 2k

a− k

)
m(2k,1a+b−2k).

�

Examples of elementary functions in terms of monomial functions are

given in appendix A.1.

2.3.3 Complete Functions

Complete functions are defined in terms of mλ as

hr :=
∑
λ`r

mλ

hλ :=
∏
i

hλi .

The generating function for (hr)r∈N is the formal sum

H(t) :=
∑
r>0

hrt
r (9)

which can also be expressed as

∑
r>0

hrt
r =

∏
i>1

(∑
k>0

xki t
k

)
=
∏
i>1

(1− xit)−1, (10)

so each hr can alternatively be defined as the coefficient of tr in the generalized

Taylor series expansion of
∏
i>1

(1−xit)−1. Comparing H(t) with E(t), it is clear

that:

H(t)E(−t) = 1 = H(−t)E(t)
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Equivalently:

n∑
r=0

(−1)rerhn−r = 0 ∀n > 0. (11)

Proposition 16.

a) (hλ) is a Z-base for Λ as a Z-module;

b) (hr) is a Z-base for Λ as a Z-algebra.

Proof: As for the case for elementary functions, each hλ is uniquely

obtained (apart from order of multiplication) from a product of hr’s, so these

statements are equivalent, and only one of them needs to be proved.

The first statement is a consequence of (4) and (10), as they imply:

H(−t)E(t) = 1

From which it follows that

er = −
r−1∑
k=0

(−1)r−kekhr−k ∀r > 1. (12)

So er’s are algebraically generated by hr’s. Since hr’s are linearly in-

dependent and (er) is a base for Λ as a Z-algebra, so must (hr) be.

�

Observation: since h1 = e1,

h(1r) = e(1r) =
∑
λ`r

(
r

λ

)
1∏
i γi!

mλ,

where λ = (λγ11 , λ
γ2
2 , . . . ).

Further examples of complete functions in terms of monomial functions

are given in appendix A.2.
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2.3.4 Forgotten Functions

Since both (er) and (hr) are Z-bases for Λ as a Z-algebra, ω as defined

below is an algebra isomorphism

ω : Λ → Λ

er 7→ hr

Note that it is equivalent to define ω as an automorphism of Z-modules

by ω : eλ 7→ hλ, since eλ =
∏
i

eλi and hλ =
∏
i

hλi .

Applying ω and some manipulation to (12), one sees that

r∑
k=0

(−1)khr−k (ek − ω(hk)) = 0 ∀r > 1.

and since (hr)r∈N forms a Z-base for Λ as a Z-algebra, it follows that

ω(hr) = er for all r ∈ N. Therefore ω is an involution in Λ.

Forgotten functions are called so because they are best described by

the involution ω rather than directly. They are defined as

fλ := ω(mλ).

From their definition, forgotten functions are clearly a Z-base for Λ as

a Z-module and ω(fλ) = mλ.

Examples of forgotten functions in terms of monomial functions are

given in appendix A.3.

2.3.5 Power Functions

Power Functions are defined in terms of mλ as

pr := m(r)

pλ :=
∏
i

pλi
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and the generating function for (pr) is the formal sum

P (t) :=
∑
r>0

pr+1t
r,

which can be expressed in terms of generating functions for elementary and

complete functions.

P (t) =
∑
i>1

∑
r>0

xr+1
i tr

=
∑
i>1

xi(1− xit)−1

=
∑
i>1

d

dt
log
(
(1− xit)−1

)
(13)

=
d

dt
log

(∏
i>1

(1− xit)−1

)

=


H ′(t)

H(t)
E ′(−t)
E(−t)

Meaning power sums pr are the coefficients of tr−1 in
H ′(t)

H(t)
or
E ′(−t)
E(−t)

.

Now since P (t)H(t) = H ′(t) and P (t)E(−t) = E ′(−t),

∑
r>0

(
r∑

k=0

pk+1hr−k

)
tr =

∑
r>0

(r + 1)hr+1t
r

∑
r>0

(
r∑

k=0

pk+1(−1)r−ker−k

)
tr =

∑
r>0

(r + 1)(−1)rer+1t
r

Comparing coefficients for each tr:

rhr =
r∑

k=1

pkhr−k (14)

rer =
r∑

k=1

pk(−1)k−1er−k (15)
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Also from (13),

H(t) = exp

(∑
r>0

pr+1

r + 1
tr

)
=
∏
r>1

exp
(pr
r
tr
)

(16)

=
∏
r>1

∞∑
mr=0

(
(prt

r)mr

rmrmr!

)
=
∑
λ

z−1
λ pλt

|λ|

where, recall that for λ = (λm1
1 , λm2

2 , λm3
3 , . . . ), zλ =

∏
r>1

mr!λ
mr
r .

Proposition 17.

a) (pλ) is a Q-base for ΛQ as a Q-module;

b) (pr) is a Q-base for ΛQ as a Q-algebra.

Proof: Since each pλ is uniquely obtained (apart from order of mul-

tiplication) from a product of pr’s, these statements are equivalent. So as to

prove the first statement and demonstrate whence the necessity of altering

which ring Λ should be a module over comes from, a similar approach to that

for elementary functions will be undertaken. It will be shown that the linear

decomposition of power functions in terms of monomial functions

pλ =
∑
µ

Lλµmµ

is triangular and not singular, hence invertible over Q.

Recall that S`,˜̀ (` > ˜̀) denotes the set of surjections from {1, 2, . . . , `}
onto {1, 2, . . . , ˜̀} and for g ∈ S`,˜̀, define

λ(g) =

( ∑
j∈g−1(1)

λj ,
∑

j∈g−1(2)

λj , . . . ,
∑

j∈g−1(˜̀)

λj

)+

.
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Then

pλ =
∏
i

pλi

=
∑
k1,...,k`

xλ1k1x
λ2
k2
· · ·xλ`k`

=
∑
σ∈S`

∑
k16···6k`(λ)

x
λσ(1)
k1

x
λσ(2)
k2
· · ·xλσ(`)k`

=
∑̀
˜̀=1

∑
g∈S`,˜̀

∑
k1<···<k˜̀

x
λ
(g)
1
k1

x
λ
(g)
2
k2
· · ·x

λ
(g)
˜̀

k˜̀

=
∑̀
˜̀=1

∑
g∈S`,˜̀

mλ(g) .

Grouping monomial functions with same index,

pλ =
∑
λ6Rµ

Lλµmµ (17)

where

Lλµ = #{g ∈ S`,`(µ) : µ = λ(g)}. (18)

Now since λ 6R µ⇒ λ 6 µ, equation (17) — similarly to the case for

elementary functions — implies that for every fixed integer n and λ ` n, the

ordered sets of power functions (pλ) and monomial functions (µλ) are related

by a triangular operator. Moreover, (18) implies that for all λ:

Lλλ = #{g ∈ S` : λ(g) = λ} =
∏
i>1

#{j : λj = i}! =
∏
i>1

m
(λ)
i !

where λ =
(
λ
m

(λ)
1

1 , λ
m

(λ)
2

2 , λ
m

(λ)
3

3 , . . .
)
. So

detL =
∏
λ`n

∏
i>1

m
(λ)
i !

Therefore for each n, the matrix L =
[
Lλµ
]
λ,µ`n is invertible in Z

[
1
p1
, 1
p2
, . . . , 1

pk

]
,

where p1, . . . , pk 6 n are the first prime numbers lesser than or equal to n.

Finally, for the whole algebra of symmetric functions, power functions (pλ)

are a Q-base for ΛQ as a Q-module.
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As for what happens when the involution ω is applied to pλ, equations

(14) and (15) yield

r∑
k=1

pk(−1)k−1er−k = rer = rω(hr) =
r∑

k=1

ω(pk)ω(hr−k) =
r∑

k=1

ω(pk)er−k

So ω(pk) = (−1)k−1pk, which implies

ω(pλ) = ε(λ)pλ. (19)

Observation: The monomial decomposition of power functions in-

dexed by partitions pλ can be obtained by repeatedly expanding each product

pλimµ in terms of monomial functions. Let λ = (λ1, λ2, . . . , λ`) and r ∈ N,

then

prmλ =

(∑
i

xri

)( ∑
α+=λ

xα
)

=
∑
i

∑
α+=λ

xα+rεi

=
∑
i

∑
α+=(λ+rεi)

+

xα

= mλ∪(r) +
∑̀
i=1

m(λ1,...,λi−1,λi+r,λi+1,...,λ`)+ .

Or denoting λ = (λγ11 , λ
γ2
2 , . . . , λ

γ`
` ),

prmλ = mλ∪(r) +
∑̀
i=1

γim(λi+r,λ
γ1
1 ,...,λ

γi−1
i ,...,λ

γ`
` )
.

Proposition 18. For every positive integer n and every partition λ = (λ1, λ2, . . . ),

let nλ denote the partition (nλ1, nλ2, . . . ). Then

pλ =
∑
µ

cµmµ ⇒ pnλ =
∑
µ

cµmnµ.
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Proof: This follows directly from the identities

pnλ(x1, x2, . . . ) =

`(λ)∏
i=1

∑
j

xnλij =

`(λ)∏
i=1

∑
j

(xnj )λi = pλ(x
n
1 , x

n
2 , . . . )

mnµ(x1, x2, . . . ) =
∑

α+=nµ

xα =
∑
α+=µ

xnα = mµ(xn1 , x
n
2 , . . . ).

�

This proposition together with the previous observation, facilitates the

computation of the monomial decomposition of power functions.

Examples: For all cases listed below, assume a > b > c > 0.

1. p(ar) =
∑
λ`r

(
r

λ

)
1∏

i

γi!
maλ, where λ = (λγ11 , λ

γ2
2 , · · · );

2. p(a,b) = m(a,b) +m(a+b);

3. p(a,b,c) = m(a,b,c)+m(a+b,c)+m(a+c,b)+m(a,b+c)+ +m(a+b+c) where a 6= b+c;

4. p(a+b,a,b) = m(a+b,a,b) +m(a+2b,a) +m(2a+b,b) + 2m(a+b,a+b) +m(2a+2b).

Further examples of monomial expansions of power functions are listed

in appendix A.4.

2.3.6 Schur and Skew Schur Functions

Skew Schur functions are the first family of functions seen in this sec-

tion which are neither a base for Λ, nor indexed by partitions, but skew par-

titions instead. They do, however, generalize regular Schur functions, which

are, in turn, Z-bases for Λ indexed by partitions.

Unlike previously mentioned bases, there is no most appropriate or

generally preferred way to define Schur functions. The definition chosen in

this text helps illustrate the close connection between Schur and Skew Schur

functions, and strongly relies on the following lemma.
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Lemma 1. Let µ, λ be two partitions, and p, q positive integers such that

max{`(λ), `(µ)} 6 p

max{`(λ′), `(µ′)}6 q

then

det
[
hλi−µj−i+j

]
16i,j6p

= det
[
eλ′i−µ′j−i+j

]
16i,j6q

setting hr = er = 0 for r < 0.

Proof:

Let N = p+ q and consider the N ×N matrices

H = [hi−j]06i,j<N and E =
[
(−1)i−jei−j

]
06i,j<N

.

Since h0 = e0 = 1 and hr = er = 0 for r < 0, H and E are lower

triangular matrices with 1’s in their diagonals, hence their determinants are

both 1. Because of (11), their product yields

HE = EH =

[
i−j∑
k=0

(−1)kekhi−j−k

]
06i,j<N

=
[
e0h0δij

]
06i,j<N

= IN×N

So E and H are each other’s inverses.

In order to proceed, it is indispensable to make use of the following

relation for minors. Let A be a non-singular N × N matrix. Let Jr and Jc

be strictly increasing non-empty subsequences of 1, . . . , N , both of which with

p < N elements, and J ′l and J ′c their respective increasing complementary

sequences, both of which with N − p < N elements. Then the minors AJr,Jc

of A and (A−1)J ′l ,J ′c of A−1 are related by the equation

det (AJr,Jc) = (−1)

p∑
i=1

(
Jr(i)+Jc(i)

)
detA · det

(
(A−1)J ′l ,J ′c

)
(20)

The identity above can be directly applied to the H minor with row

indices (Jr) given by λi + p − i and column indices (Jc) given by µj + p − j,
and the correspondent E complementary minor with row indices (J ′r) given
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by p− 1 + i− λ′i and column indices (J ′c) given by p− 1 + j − µ′j. With these

substitutions, (20) becomes

det
(
Hλi+p−i,µj+p−j

)
= (−1)

p∑
i

(λi+p−i)+
p∑
j

(µj+p−j)
det(H) det

(
Ep−1+i−λ′i,p−1+j−µ′j

)
= (−1)|λ|+|µ| det

(
Ep−1+i−λ′i,p−1+j−µ′j

)
which implies the desired equality, for:

det
[
hλi−µj−i+j

]
16i,j6p

= det
(
Hλi+p−i,µj+p−j

)
=(−1)|λ|+|µ| det

(
Ep−1+i−λ′i,p−1+j−µ′j

)
=(−1)|λ|+|µ| det

[
(−1)λ

′
i−µ′j−i+jeλ′i−µ′j−i+j

]
16i,j6q

=(−1)|λ|+|µ|(−1)(|λ|−
q(q−1)

2 )+(−|µ|+ q(q−1)
2 ) det

[
eλ′i−µ′j−i+j

]
16i,j6q

= det
[
eλ′i−µ′j−i+j

]
16i,j6q

.

�

Corollary: Letting µ = 0 in the previous lemma implies

det
[
hλi−i+j

]
16i,j6p

= det
[
eλ′i−i+j

]
16i,j6q

.

It should be noted that as long as p and q are sufficiently large, that

is, larger than the largest non-zero index of λ, µ and λ′, µ′ respectively, their

actual values are not relevant for the computation of the determinant. This

is so because λi = µj = 0 for i, j > max{`(λ), `(µ)} and λ′i = µ′j = 0 for

i, j > max{`(λ′), `(µ′)}. The resulting bottom-left square corners of both

matrices
[
hλi−µj−i+j

]
and

[
eλ′i−µ′j−i+j

]
are upper triangular with 1’s in their

diagonals, leaving the determinants unchanged.

Proposition 19. Let p > max{`(λ), `(µ)}.

µ * λ⇒ det
[
hλi−µj−i+j

]
16i,j6p

= 0
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Proof: If there exists r such that µr > λr, then:

λi − µj − i+ j < 0, ∀(i, j) ∈ {r, . . . , p} × {1, . . . , r}

Consequentially
[
hλi−µj−i+j

]
16i,j6p

has a (p− r)× r block of zeroes in

its bottom left-hand corner, so its determinant vanishes.

�

For all partitions µ and λ with µ ⊆ λ, “regular” and skew Schur

functions are respectively defined as follows.

Definition 2.3.7. Schur and Skew Schur functions for partitions λ and µ ⊂ λ

are defined as the determinants

sλ := det
[
hλi−i+j

]
= det

[
eλ′i−i+j

]
sλ/µ := det

[
hλi−µj−i+j

]
= det

[
eλ′i−µ′j−i+j

]
It is very clear how skew Schur functions generalize Schur functions

and the notation is not ambiguous for [hλi−0−i+j] = [hλi−i+j], so sλ/0 = sλ.

Another immediate consequence of the definition is

s(1n) = en = m(1n)

s(n) = hn.

Examples:

1. s(2,1)

s(2,1) =

∣∣∣∣∣ h2−1+1 h2−1+2

h1−2+1 h1−2+2

∣∣∣∣∣ =

∣∣∣∣∣ h2 h3

h0 h1

∣∣∣∣∣ = h(2,1) − h3 = 2m(13) +m(2,1)

2. s(3,3,1)/(2,1)

s(3,3,1)/(2,1) =

∣∣∣∣∣∣∣∣
h3−2−1+1 h3−1−1+2 h3−0−1+3

h3−2−2+1 h3−1−2+2 h3−0−2+3

h1−2−3+1 h1−1−3+2 h1−0−3+3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
h1 h3 h5

h0 h2 h4

0 0 h1

∣∣∣∣∣∣∣∣
=s(2,1)h1 = 8m(14) + 4m(2,12) + 2m(22) +m(3,1)
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Since ω(hλi−µj−i+j) = eλi−µj−i+j, another direct consequence of Lemma

1 is the corollary:

Corollary: For all partitions µ ⊂ λ,

ω(sλ/µ) = sλ′/µ′

ω(sλ) = sλ′

Theorem 1. Schur functions of degree n form a base for Λn. Consequentially,

Schur functions form a base for Λ.

Proof: A similar approach to that for proposition 13 will be under-

taken. It will be shown that the linear decomposition of Schur functions in

terms of some other Z-base of Λn is invertible. Consider the Schur function

for arbitrary λ ` n and `(λ) = `,

sλ = det
[
hλi−i+j

]
16i,j6`

=
∑
ν`n

cλνhν .

For each σ ∈ S`, let
(
λ1 − 1 + σ(1), λ2 − 2 + σ(2), . . . , λ` − ` + σ(`)

)
be denoted by λ(σ). Each ν that shows up in the sum is equal to λ(σ)+ for

some σ ∈ S`, and its respective coefficient cλν is obtained by collecting all of

ν occurrences in det [hλi−i+j]16i,j6`, accounting for signs:

cλν =
∑
σ∈S`

λ(σ)+=ν

sgn(σ) (21)

Each index r for which λ(σ)r < λr, or equivalently, σ(r) < r, can be

uniquely associated with the smaller index σ(r) for which σ2(r) > σ(r), and

consequentially, λ(σ)σ(r) > λσ(r). Therefore

λ(σ) > λ, ∀σ ∈ S`/{id`}.

In particular, λ(σ)+ > λ(σ) > λ for all permutations σ ∈ S`/{id`}
because λ(σ)+ is a partition. Therefore σ = id` is the only permutation for

which λ(σ)+ = λ, so cλλ = 1. This means that

sλ = hλ +
∑
ν>λ

cλνhν (22)
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Since λ ` n is arbitrary, one such equation holds for each λ ` n. Let

P = #Pn and once again index partitions in Pn according to the reverse

lexicographical ordering

(1n) = λ(1) <L λ
(2) <L · · · <L λ(P−1) <L λ

(P ) = (n)

Expressing equations (22) in matrix form yields:

sλ(1)

sλ(2)

sλ(3)
...

sλ(p−1)

sλ(p)


=



1 cλ(1)λ(2) cλ(1)λ(3) · · · cλ(1)λ(p−1) cλ(1)λ(p)

1 cλ(2)λ(3) · · · cλ(2)λ(p−1) cλ(1)λ(p)

1 · · · cλ(3)λ(p−1) cλ(3)λ(p)
. . .

...
...

1 cλ(p−1)λ(p)

1





hλ(1)

hλ(2)

hλ(3)
...

hλ(p−1)

hλ(p)


(23)

The matrix which expresses the linear decomposition of Schur functions

in terms of complete functions is upper triangular with 1’s in its diagonal, so

n-homogeneous Schur functions (sλ)λ`n are indeed a Z-base for Λn for any n.

This is equivalent to state that Schur functions are a base for Λ as a module.

�

Schur polynomials are simply the restriction of Schur functions to

finitely many variables in the sense that for every n,

πnsλ(x1, x2, . . . ) = sλ(x1, x2, . . . , xn).

However, this consideration allows for an alternative definition which involves

determinants whose components are variables x1, x2, . . . , xn themselves, in-

stead of symmetric functions.

Firstly, let α ∈ Nn, with n > |α| be an arbitrary composition. Consider

the determinant ratio
det
[
x
αj+n−j
i

]
n×n

det
[
xn−ji

]
n×n

(24)
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Both determinants would have repeated rows and therefore vanish if

xk1 = xk2 for any pair k1 < k2. So for all pairs k1 < k2, (xk1 − xk2) must

be a common factor for both of them. Now the denominator determinant is

actually the Vandermond polynomial, which can be expressed precisely as the

product
∏
i<j

(xi − xj). This means that

det
[
xn−ji

]
=
∏
i<j

(xj − xi)
∣∣∣ det

[
x
αj+n−j
i

]
,

so the expression in (24) is indeed a polynomial on variables x1, x2, . . . , xn. It

is also symmetric because

σ ·

det
[
x
αj+n−j
i

]
det
[
xn−ji

]
 =

det
[
x
αj+n−j
σ(i)

]
det
[
xn−jσ(i)

] =
sgn(σ)

sgn(σ)

det
[
x
αj+n−j
i

]
det
[
xn−ji

] .

With these remarks, the alternate definition for symmetric Schur poly-

nomials can finally be stated.

Theorem 2. Let λ be any partition and n > `(λ). Then

sλ(x1, x2, . . . , xn) =
det
[
x
λj+n−j
i

]
n×n

det
[
xn−ji

]
n×n

(25)

Proof: Schur functions, as were defined, are determinants involving

either complete or elementary functions. Schur polynomials follow the same

definition but with complete and elementary symmetric polynomials instead.

Along this proof, in order to avoid notation cluttering, complete and ele-

mentary symmetric polynomials will be denoted without reference to their

variables, that is, exactly like complete and elementary functions (as in hλ

and eλ). This should cause no confusion as symmetric functions do not ap-

pear in the proof. There will be cases in which some variable xk will be zeroed

(or, equivalently, removed) from a symmetric elementary polynomial. In these

cases, also for simplicity of notation, these polynomials will be denoted by

e
(k)
λ = eλ(x1, . . . , xk−1, 0, xk+1, . . . , xn).

50



Identities (4) and (10) imply that

∑
r>0

xrkt
r = (1− xkt)−1 =

( ∏
i>1

(1− xit)−1
)( ∏

i>1
i 6=k

(1− xit)
)

=

(∑
r>0

hrt
r

)(∑
r>0

(−1)re(k)
r tr

)

=
∑
r>0

(
r∑
q=0

hq(−1)r−qe
(k)
r−q

)
tr

So, for r < n, and considering hj = 0 for j < 0,

xrk =
r∑
q=0

hr−q(−1)qe(k)
q =

n∑
j=1

hr−n+j(−1)n−je
(k)
n−j

When expressed in matrix form, these equalities become[
xαij

]
n×n

=
[
hαi−n+j

]
n×n

[
(−1)n−ie

(j)
n−i

]
n×n

from which determinants can finally be calculated. For αi = n− i, the middle

matrix becomes simply [h−i+j]n×n, and its determinant is already known to

be 1. The resulting identity yields

det
[
xn−ij

]
n×n

= det
[
(−1)n−ie

(j)
n−i

]
n×n

Applying this back to the general case of the determinants of the matrix

identity, and substituting αi = λi + n− i:

det
[
hλi−i+j

]
=

det
[
xλi+n−ij

]
det
[
xn−ij

]
which completes the proof.

�

Corollary: It follows immediately from (25) that

s(λ1,...,λ`−1,λ`)(x1, . . . , x`) =

(∏̀
i=1

xλ`i

)
s(λ1−λ`,...,λ`−1−λ`,0)(x1, . . . , x`).
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Examples:

1. s(3,1,1)(x1, x2, x3)

s(3,1,1)(x1, x2, x3) =

∣∣∣∣∣∣∣∣
x5

1 x2
1 x1

x5
2 x2

2 x2

x5
3 x2

3 x3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x2

1 x1 1

x2
2 x2 1

x2
3 x3 1

∣∣∣∣∣∣∣∣
= x1x2x3(x1 + x2)(x1 + x3)(x2 + x3)

2. s(b,a)(x1, x2)

s(b,a)(x1, x2) =

∣∣∣∣∣ xb+1
1 xa1

xb+1
2 xa2

∣∣∣∣∣∣∣∣∣∣ x1 1

x2 1

∣∣∣∣∣
=

b∑
k=a

xk1x
b+a−k
2

3. s(an)(x1, . . . , xn)

s(an)(x1, . . . , xn) =

∣∣∣xa+n−j
i

∣∣∣∣∣∣xn−ji

∣∣∣ =

( n∏
i=1

xai

)∣∣∣xn−ji

∣∣∣∣∣∣xn−ji

∣∣∣ =
n∏
i=1

xai

4. s(na,(n−1)a,...,a)(x1 . . . , xn)

s(na,(n−1)a,...,a)(x1, . . . , xn) =

∣∣∣x(n−j+1)a+n−j
i

∣∣∣∣∣∣xn−ji

∣∣∣
=

(∏
i

xai

)∣∣∣(xa+1
i )n−j

∣∣∣∣∣∣xn−ji

∣∣∣
=

( n∏
i=1

xai

)∏
i<j

(
xa+1
i − xa+1

j

)
∏
i<j

(xi − xj)

=

( n∏
i=1

xai

)∏
i<j

( a∑
k=0

xki x
a−k
j

)
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Further examples of Schur functions in terms of monomial functions

are given in appendix A.5.

2.4 Relations between Λ bases

2.4.1 Bilinear Form

For every pair of A-bases of ΛA as an A-module indexed by partitions,

u and v, a bilinear form can be defined by

〈uλ, vµ〉 = δλµ. (26)

Coefficients which appear in the expansion of an arbitrary symmetric

function over bases u and v can be expressed in terms of this bilinear form
q =

∑
µ

c(u)
µ uµ ⇒ c

(u)
µ = 〈q, vµ〉

q =
∑
µ

c(v)
µ vµ ⇒ c

(v)
µ = 〈uµ, q〉

(27)

Multiple bilinear forms can be defined through (26), most of which

are not particularly interesting. So as to motivate a specific definition of the

bilinear form, it will first be shown:

Theorem 3. For two countably infinite sets of variables: x = {x1, x2, . . . }
and y = {y1, y2, . . . },

∏
i,j

(1− xiyj)−1 =



∑
λ

z−1
λ pλ(x)pλ(y) (I.)

∑
λ

hλ(x)mλ(y) =
∑
λ

hλ(y)mλ(x) (II.)

∑
λ

sλ(x)sλ(y) (III.)

where λ runs over the set of all partitions P.
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Proof:

Part I. Applying (16) to the set of variables s = {xiyj : i, j > 1},∏
i,j

(1− xiyj)−1 =
∑
λ

z−1
λ pλ(s)

=
∑
λ

z−1
λ

`(λ)∏
k=1

(∑
i,j

(xiyj)
λk

)

=
∑
λ

z−1
λ

`(λ)∏
k=1

(∑
i

xλki

)(∑
j

yλkj

)
=
∑
λ

z−1
λ pλ(x)pλ(y).

Part II. Applying (10) to variables x,

∏
i,j

(1− xiyj)−1 =
∏
j

(∑
r

hr(x)yrj

)
=
∑
α∈N∞

hα(x)yα

=
∑
λ

hλ(x)mλ(y)

Part III. Let η = (n− 1, n− 2, . . . , 0) and consider now finitely many

variables x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

By Part II:

det
[
xn−ji

]
det
[
yn−ji

] n∏
i,j=1

(1− xiyj)−1 =
∑
λ

(
hλ(x) det

[
xn−ji

]
mλ(y) det

[
yn−ji

])

Since hα = hα+ ,∑
λ

(
hλ(x) det

[
xn−ji

]
mλ(y) det

[
yn−ji

])
=
∑
α

∑
σ

(
hα(x) det

[
xn−ji

]
sgn(σ) yα+σ(η)

)
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Substituting β = α + σ(η)∑
α

∑
σ

(
hα(x) det

[
xn−ji

]
sgn(σ) yα+σ(η)

)
=
∑
β

∑
σ

(
hβ−σ(η)(x) det

[
xn−ji

]
sgn(σ) yβ

)
=
∑
β

(
det
[
x
βj+n−j
i

]
yβ
)

=
∑
λ

(
det
[
x
λj+n−j
i

]
det
[
y
λj+n−j
i

])

Finally, dividing by det
[
xn−ji

]
det
[
yn−ji

]
on both sides,∏

i,j

(1− xiyj)−1 =
∑
λ

sλ(x)sλ(y)

�

Lemma 2. Consider two sets of variables x = {x1, x2, . . . } and y = {y1, y2, . . . }.
Let u = {uλ}λ∈P and v = {vλ}λ∈P be orthogonal Λ bases with respect to

〈 , 〉, meaning 〈uλ, vµ〉 = δλµ, ∀µ, λ ∈ P. For every other pair of Λ bases

u′ = {u′λ}λ∈P and v′ = {v′λ}λ∈P , the following conditions are equivalent:

a)
〈
u′λ, v

′
µ

〉
= δλµ, ∀µ, λ ∈ P

b)
∑
λ

u′λ(x)v′µ(y) =
∑
λ

uλ(x)vµ(y)

Proof: Each base element of u′ and v′ can be decomposed in terms

of u or v like so

u′λ =
∑
ρ

aλρuρ and v′µ =
∑
σ

bµσvσ.

Now 〈u′λ, v′µ〉 = δλµ if, and only if

∑
ρ

aλρbµρ =

〈∑
ρ

aλρuρ,
∑
σ

bµσvσ

〉
= δλµ.

Moreover,∑
λ

u′λ(x)v′µ(y) =
∑
λ

∑
ρ,σ

aλρuρ(x)bλσvσ(y) =
∑
ρ,σ

uρ(x)vσ(y)
∑
λ

aλρbλσ,
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so
∑
λ

u′λ(x)v′µ(y) =
∑
λ

uλ(x)vµ(y) if, and only if
∑
λ

aλρbλσ = δρσ. Finally,

∑
ρ

aλρbµρ = δλµ ⇔
∑
λ

aλρbλσ = δρσ

so the conditions are equivalent.

�

This result, together with theorem 3, motivates a particularly conve-

nient specification of the bilinear form. Without ambiguity, the bilinear form

is equivalently defined by either one of the expressions below:

(a) 〈hλ,mµ〉 = δλµ;

(b) 〈pλ, pµ〉 = δλµzλ;

(c) 〈sλ, sµ〉 = δλµ.

Furthermore, from (19) and 〈pλ, pµ〉 = δλµzλ (and the fact that (pλ) is

a Q-base for ΛQ), the involution ω is an isometry for this bilinear form, that

is,

〈ω(u), ω(v)〉 = 〈u, v〉.

Therefore applying the involution ω to (a) yields another equivalent expression

which can be added to the list,

(d) 〈fλ, eµ〉 = δλµ.

2.4.2 Products between Schur Functions

Skew Schur functions’ linear decompositions over “regular” Schur func-

tions

sλ/µ =
∑
ν

〈sλ/µ, sν〉sν
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are closely related to linear decompositions of products between Schur func-

tions themselves

sµsν =
∑
λ

〈sµsν , sλ〉sλ

in the following way:

Theorem 4. For all partitions ν and skew partitions λ/µ,

〈sλ/µ, sν〉 = 〈sµsν , sλ〉 (28)

Proof: Let

sλ/µ =
∑
ν

cλνµsν (29)

be the linear decomposition of sλ/µ in terms of Schur functions and denote

(n− 1, n− 2, . . . , 1, 0) by η. Then:

∑
λ

sλ/µ(x)sλ(y) =
1

det
[
yn−ji

]∑
λ

det
[
hλi−µj−i+j(x)

]
det
[
y
λj+n−j
i

]
=

1

det
[
yn−ji

]∑
λ

∑
σ

sgn(σ)hλ+η−σ(µ+η) det
[
y
λj+n−j
i

]
=

1

det
[
yn−ji

]∑
α

∑
σ

hα(x)sgn(σ) det
[
y
ασ(j)+µj+n−j
i

]
=

1

det
[
yn−ji

]∑
ν

hν(x)mν(y) det
[
y
µj+n−j
i

]
= sµ(y)

∏
i,j

(1− xiyj)−1

=
∑
ν

sν(x)sν(y)sµ(y)

Finally, applying the Schur function linear decomposition of sλ/µ and

comparing coefficients with respect to variables x

sµsν =
∑
λ

cλνµsλ
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Lemma 3. Let x = {x1, x2, . . . } and y = {y1, y2, . . . }. If sµsν =
∑
λ

cλνµsλ,

then

sλ(x, y) =
∑
µ,ν⊂λ

cλνµsν(x)sµ(y).

Proof: Consider another set of variables z = {z1, z2, z3, . . . }.∑
µ

∑
λ

sλ/µ(x)sλ(z)sµ(y) =
∑
µ

sµ(y)sµ(z)
∏
i,k

(1− xizk)−1

=
∏
j,k

(1− yjzk)−1
∏
i,k

(1− xizk)−1

=
∑
λ

sλ(x, y)sλ(z)

Comparing coefficients with respect to variables z:

sλ(x, y) =
∑
µ

sλ/µ(x)sµ(y) =
∑
µ,ν

cλνµsν(x)sµ(y)

The condition µ, ν ⊂ λ naturally arises because cλνµ is otherwise zero.

�

Lemma 4. Let x = {x1, x2, x3, . . . } and y = {y1, y2, y3, . . . }. Then:

sλ/µ(x, y) =
∑
µ⊂ν⊂λ

sλ/ν(x)sν/µ(y)

Proof: The same trick from the previous lemma can be applied.∑
λ

sλ/µ(x, y)sµ(z) = sλ(x, y, z)

=
∑
ν

sλ/ν(x)sν(y, z) (30)

=
∑
ν,µ

sλ/ν(x)sν/µ(y)sµ(z)

The result again follows from coefficient comparison with respect to

variables z.
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Theorem 5.

sλ/µ =
∑

T∈Tab(λ/µ)

x|T | (31)

Proof: The conclusion from the previous lemma can be easily ex-

tended for sets of variables over countably arbitrarily many alphabets

x(i) = (x
(i)
1 , x

(i)
2 , . . . ) as follows.

sλ/µ(x(1), x(2), . . . ) =
∑

(ν(0),...,ν(n))

sν(1)/µ(x(1)) · · · sν(i)/ν(i+1)(x(i)) · · · sλ/ν(n−1)(x(n))

=
∑

(ν(0),...,ν(n))

(
n∏
i=1

sν(i)−ν(i−1)(x(i))

)
(32)

where the sum is done over all partition sequences (ν(0), . . . , ν(n)) such that

µ = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(n−1) ⊂ ν(n) = λ.

By labelling all squares in each section ν(i)/ν(i−1) with i, each sequence

(ν(0), . . . , ν(n)) can be uniquely associated with a tableau of shape sh(T ) = λ/µ

and weight

|T | =
(
|ν(1)/ν(0)|, |ν(2)/ν(1)|, . . . , |ν(n)/ν(n−1)|

)
.

Furthermore, if now each of the arbitrarily many alphabets x(i) consists

of a single word, say xi, then for each sequence (ν(0), . . . , ν(n)),

n∏
i=1

sν(i)/ν(i−1)(x(i)) =
n∏
i=1

x
|ν(i)/ν(i−1)|
i = x|T |

So equation (32) becomes

sλ/µ =
∑

sh(T )=λ/µ

x|T |.
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By grouping all tableaux of same weight, apart from rearrangements,

this equation can be further simplified to

sλ/µ =
∑

T∈Tab(λ/µ)

m|T |+

=
∑
ν

Kλ/µ,νmν (33)

where Kλ/µ,ν = #Tab(λ/µ, ν). Numbers Kλ/µ,ν are named after Carl Kostka,

who first defined them in his early work on symmetric polynomials in 1882

[5]. When µ = 0, (33) simplifies to

sλ =
∑
ν

Kλ,νmν (34)

The maximal weight with respect to the natural ordering a semi-

standard tableau of shape λ = λ/(0) can have is obtained by labelling each

i-th λ row by i. Any more than that, and it wouldn’t be strictly increasing

along columns. Consequentially, Kλ,ν = 0 for all ν > λ and Kλ,λ = 1. It

follows that, for all positive integers n, Kostka number matrices
[
Kλ,ν

]
λ,ν`n

are triangular with 1’s along their diagonals.

Since
[
Kλ,ν

]
λ,ν`n is invertible (in the multiplicative monoid of integer

matrices) for all n > 1, this is an alternative proof that Schur functions are a

Z-base for Λ.

Applying the bilinear form to (33)

〈sλ/µ, hν〉 = 〈sλ, sµhν〉 = Kλ/µ,ν (35)

Specializing ν = (r), hν becomes s(r), and

Kλ/µ,(r) =

{
1 if λ/µ is a horizontal r-strip

0 otherwise

so (35) implies the following theorem, known as Pieri’s Rule after its author

who proved it in 1893.
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Theorem 6. [9]

sλs(r) =
∑

ν/λ r-horizontal strip

sν

sλs(1r) =
∑

ν/λ r-vertical strip

sν

The second statement is a consequence of the involution ω applied to

the first. Recently, a generalized version of the Pieri Rule for skew Schur

functions was proven.

Theorem 7. [1, Theorem 3.2]

sλ/µs(r) =
r∑

k=0

(−1)k
∑

ν/λ (r−k)-horizontal strip
η/µ k-vertical strip

sν/η

sλ/µs(1r) =
r∑

k=0

(−1)k
∑

ν/λ (r−k)-vertical strip
η/µ k-horizontal strip

sν/η

2.4.3 Transition Matrices

Let u = {uλ}λ∈P and v = {vλ}λ∈P be bases for Λ as a module such that

{uλ}λ∈Pk and {vλ}λ∈Pk are also bases for each Λk. The Λ→ Λ operator which

effects the base transformation from u to v is represented by the transition

matrix from u to v, which is denoted by M(u, v).

Transition matrices are block diagonal infinite matrices whose diagonal

blocks are the invertible square matrices of order |Pk| which effect the base

transformation from {vλ}λ∈Pk to {uλ}λ∈Pk for each k. By construction, for

any two given transition matrices, the intersection between the support of

any row of one and the support of any column of the other is either 0 or

|Pk| for some k ∈ N. Therefore multiplication between transition matrices is

well-defined and associativity holds. Since each of their diagonal blocks are

invertible matrices, transition matrices themselves are also invertible.

Up to this point the endeavour of transforming between Λ bases has

been already achieved for:
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• Elementary and monomial functions. According to (7) and (8),

M(m, e) =
[
cλµ
]
λ,µ∈P

where cλµ = #{T ∈ T̂ab(λ, µ) : T strictly increasing along rows}.

• Power and monomial functions. According to (17) and (18),

M(m, p) =
[
Lλµ
]
λ,µ∈P = L

where Lλµ = #{g ∈ S`,`(µ) : µ = λg}.

• Schur and complete functions. According to (23) and (21),

M(s, h) =

[ ∑
σ such that
λ(σ)+=µ

sgn(σ)
]
λ,µ∈P

where λ(σ) =
(
λ1 − 1 + σ(1), λ2 − 2 + σ(2), . . . , λ` − `+ σ(`)

)
.

• Finally, for Schur and monomial functions. According to (33),

M(s,m) =
[
Kλ,µ

]
λ,µ∈P

where Kλ,µ = #Tab(λ, µ).

Because ω(sλ) = sλ′ , the matrix form of the involution operator ω

under the Schur base is given by J =
[
δλµ′
]
λ,µ∈P . Furthermore, like for fi-

nite matrices, M(u, v)M(v, w) = M(u,w) for all bases u, v and w. Finally,

M(u, v) = M (ω(u), ω(v)) for all bases u and v.

This is (more than) enough for all remaining transition matrices to be

calculated in terms of just K, L and J . Denoting A∗ =
(
AT
)−1

= (A−1)
T

and

ε =
[
ελδλµ

]
λ,µ∈P

z =
[
zλδλµ

]
λ,µ∈P ,

the following transition matrix table is obtained.
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m f e h s p

m I K−1JK K−1JK∗ K−1K∗ K−1 L−1

f K−1JK I K−1K∗ K−1JK∗ K−1J L−1ε

e KTJK KTK I KTJK∗ KTJ LT εz−1

h KTK KTJK KTJK∗ I KT LT z−1

s K JK JK∗ K∗ I KL−1

p L εL zεL∗ zL∗ LK−1 I

These relations may also be expressed in the format of a graph where

each of the six bases is a vertex and each oriented edge from base u to v

is labelled by the correspondent transition matrix M(u, v). Edges connecting

bases for whichM(u, v) = M(v, u) should have no orientation. In the following

image, edges connecting bases on opposite sides of the graph have been omitted

for the sake of clarity.

KTKTJ

JK K

LT z−1LT εz−1

LLε

KTK KTK

KTJK∗

K−1JK

s

p

mf

e h
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2.5 Littlewood-Richardson-Robinson Rule

Each product between Schur functions has a linear decomposition in

terms of Schur functions themselves

sµsλ =
∑
ν

cνµλsν . (36)

While it is completely trivial to describe products of two power func-

tions, elementary functions or complete functions as a linear decomposition

of functions on their own bases, the same is not true for the remaining bases.

These products can still be calculated algebraically with the tools developed

thus far, for example, setting M(s, e) =
[
aλµ
]

and M(e, s) =
[
a′λµ
]
,

sλsµ =

(∑
ν

aλνeν

)(∑
η

aµηeη

)
=
∑
ν,η

aλνaµηeν∪η,

and these terms may be regrouped and converted back to Schur basis

sλsµ =
∑
γ

( ∑
ν∪η=γ

aλνaµη

)
eγ =

∑
θ

( ∑
ν∪η=γ

aλνaµηx

)
a′γθsθ.

But this is not a very satisfactory solution because calculating
∑

ν∪η=γ

aλνaµη

can be exceedingly complicated. The goal is to deduce a purely combinatorial

formula for cνµλ. Before stating the theorem itself, it is necessary to provide

some definitions.

For every tableau T , a word w(T ) is the sequence of symbols obtained

by the reading of T from right to left and up to bottom, as in the example

T =

1 1 2 ← 211

2 2 3 3 ← 3322

1 3 4 ← 431

2 4 ← 42

⇒ w(T ) = 211332243142
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If a word w = w(T ) can be obtained from a tableau T ∈ Tab(λ/µ, ν),

it is said to have weight ν, denoted by |w| and to be compatible with λ/µ.

Multiple words can be compatible with the same shape and every word is

always compatible with multiple shapes.

Let w = a1a2 . . . aN be a word in the symbols 1, 2, . . . . The difference

between the number of occurrences of the symbol r and the number of occur-

rences of the symbol r − 1 in the truncated word a1a2 . . . aP is the r-index of

P in w and is denoted by indrP (w):

indrP (w) := #{i 6 P |ai = r} −#{i 6 P |ai = r − 1}.

The r-index of w is defined as the maximal r-index of P in w and is denoted

by indr(w):

indr(w) := max
P
{indrP (w)}.

The word w = a1a2 . . . aN is a lattice permutation if all of its r-indices

are non-positive. That is, for all P and r,

#{j 6 P |aj = r} 6 #{j 6 P |aj = r − 1}.

The subset of Tab(λ/µ, ν) of semi-standard tableaux of shape λ/µ and

weight ν whose words are lattice permutations is denoted by Tab0(λ/µ, ν).

With these definitions in hand, Littlewood-Richardson-Robinson’s The-

orem can be finally stated:

Theorem 8. Littlewood-Richardson-Robinson

〈sµsλ, sν〉 = #Tab0(ν/µ, λ) (37)

Before starting off the proof, it is necessary to lay out some more

definitions.
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Definition 2.5.1. Functions Sa,r, where 1 6 a < r are functions which map

words with positive r-index onto words with lower (but possibly still positive)

r-index. Let P be the position in w at which indr(w) is attained for the first

time. The word Sr−1,r(w) is obtained by replacing the symbol r at position

P by the symbol r − 1. For each 1 6 a < r, the function Sa,r is given by the

composition

Sa,r := Sa,a+1 ◦ Sa+1,a+2 ◦ · · · ◦ Sr−1,r,

which is well-defined so long as indt
(
St,r(w)

)
> 0 for all a < t < r. Un-

less stated otherwise, a will be chosen to be the least integer for which this

composition is well-defined, that is a = max
{
t < r : indt

(
St,r(w)

)
6 0
}

.

Examples:

1. S2,3 ◦ S2,3(133233) = S2,3(133232) = 132232

2. S1,4(114223) = S1,3(113223) = S1,2(112223) = 112213

Observations:

1. Once again let P be the position at which indr(w) is attained for the

first time. The effect of the application of Sr−1,r over w upon t-indices

of w, for t 6 r, is

indtρ
(
Sr−1,r(w)

)
= indtρ(w), ∀ρ, ∀t < r − 1

indr−1
ρ

(
Sr−1,r(w)

)
=

{
indr−1

ρ (w) if ρ < P

indr−1
ρ (w) + 1 if ρ > P

(38)

indrρ
(
Sr−1,r(w)

)
=

{
indrρ(w) if ρ < P

indrρ(w) − 2 if ρ > P
(39)

In particular, indr−1
(
Sr−1,r(w)

)
can increase by 1 with respect to indr−1(w)

and indr
(
Sr−1,r(w)

)
will decrease at least by 1 with respect to indr(w).
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2. As utilized throughout the proof, functions Sa,r will be applied over

words not only with positive r-index, but also non-positive t-indices for

all t < r. Due to the previous observation, this can only be the case if

indt(w) = 0 and indt
(
St,r(w)

)
= 1 for all a < t < r. Furthermore, if a

is chosen as max
{
t < r : indt

(
St,r(w)

)
6 0
}

, the resulting word Sa,r(w)

will also have non-positive t-indices for all t < r.

Definition 2.5.2. Functions Ra,r, where 1 6 a < r are functions which map

labelled diagrams onto labelled diagrams. For any labelled diagram M whose

r-th row is non-empty, Ra,r(M) is obtained by taking the rightmost block of

the r-th row of M and placing it at the right of the rightmost block of the

a-th row of M .

Example:

R1,3

 1 1 2

2

3 3

 =

1 1 2 3

2

3 �

Observations:

1. Just like for functions Sa,r, Rb,a ◦Ra,r = Rb,r for all b < a < r;

2. These functions are weight-invariant, that is |M | = |Ra,r(M)| for all

labelled diagrams M ;

3. The effect of functions Ra,r on the shape of a diagram M is the same as

the effect of Sa,r on the weight of a word w, meaning

|w| = sh(M) ⇒ |Sa,r(w)| = sh
(
Ra,r(M)

)
;

4. The inverse of Ra,r is the function Rr,a which takes the rightmost block

of the a-th row of a labelled diagram and places it at the right of the

rightmost of its r-th row;

Proof of Theorem 37: The proof of the Littlewood-Richardson-

Robinson’s Theorem will follow the following strategy.
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1. Firstly it will be shown that functions Sa,r have the following properties

(a) They are injective;

(b) They preserve shape compatibility, that is, for every word w

w is compatible with λ/µ ⇔ Sa,r(w) is compatible with λ/µ.

(c) If the words w, Sa,r(w) and Sb,r ◦ Sa,r(w) are lattice permutations

with respect to 1, 2, . . . , r − 1, that is

indt(w), indt
(
Sa,r(w)

)
, indt

(
Sb,r ◦ Sa,r(w)

)
6 0, ∀t < r,

then b 6 a.

2. The next step is to devise an algorithm which

(a) Associates each semi-standard tableau T with a pair of tableaux in

Tab0(sh(T ), ν)× Tab(ν, |T |) for some partition ν > |T |;

(b) Through this association, provides a bijection between Tab(λ/µ, π)

and
⋃
ν

Tab0(λ/µ, ν)× Tab(ν, π), implying

#Tab(λ/µ, π) =
∑
ν

#Tab0(λ/µ, ν)〈sν , hπ〉.

3. The final step is to employ the equality above to prove the theorem.

Now that there is a laid out strategy, what is left is to prove the lemmas

in-between.
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Lemma 5. Sa,r is injective.

Proof: In order to prove this, it is enough to show that Sr−1,r is

injective.

Take any word w with a positive r-index and apply Sr−1,r. If a substi-

tution occurs in the P -th position of the word, by (39),

indrρ
(
Sr−1,r(w)

)
=

{
indrρ(w) if ρ < P

indrρ(w)− 2 if ρ > P

If P is not the first position at which a symbol r occurs in w, there must

be some P ′ < P for which indrP ′(w) — and therefore also indrP ′
(
Sr−1,r(w)

)
—

is exactly indrP (w)− 1. Therefore, if indr
(
Sr−1,r(w)

)
> 0, its maximal r-index

must be attained before the position P . Now let Q be the last position at

which indrQ
(
Sr−1,r(w)

)
= indr

(
Sr−1,r(w)

)
. The first r − 1 symbol after Q in

Sr−1,r(w) is precisely the r symbol in the P -th position of w which underwent

replacement by Sr−1,r.

If P is the first position at which a symbol r occurs in w, then no r−1

symbols appear before it and indr(w) = 1. Clearly Sr−1,r(w) has a negative

r-index. In this case, it is easy to see that the first r − 1 symbol in Sr−1,r(w)

is precisely the symbol at position P which underwent replacement by Sr−1,r.

It follows that it is possible to devise an algorithm for computing

S−1
r−1,r(w) as follows: if indr(w) > 0, let Q be the last position at which

indrQ(w) = indr(w) and replace the first r − 1 symbol after Q by r. In case

indr(w) < 0, simply replace the first r − 1 symbol in w by r. Since Sr−1,r is

always reversible, it is injective.

�

Examples:

1. S−1
2,4(124423) = S−1

3,4 ◦ S−1
2,3(124423) = S−1

3,4(134423) = 134424

2. S−1
1,2 ◦ S−1

1,2(21121) = S−1
1,2(22121) = 22122
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Lemma 6. For any skew partition λ/µ,

w is compatible with λ/µ ⇔ Sa,r(w) is compatible with λ/µ.

Proof: It is sufficient to prove the result for Sr−1,r.

Let T1 and T2 be (generalized) tableaux with shape λ/µ for which

w(T2) = Sr−1,r(w(T1)). Then T2 must differ from T1 in exactly one entry.

More specifically, there is a single coordinate (i, j) ∈ λ/µ and an integer P for

which T1(i, j) = r = w(T1)P and T2(i, j) = r − 1 = w(T2)P .

By contradiction, if one of them is a semi-standard tableau whose word

satisfy the lattice permutation, but the other isn’t, there are exactly four

possibilities:

(⇒) (T2 is not semi-standard)

(a) T2(i, j) = r − 1 and T2(i, j − 1) = r

⇒ T1(i, j) = r and T1(i, j − 1) = r

(b) T2(i, j) = r − 1 and T2(i− 1, j) = r − 1

⇒ T1(i, j) = r and T1(i− 1, j) = r − 1

(⇐) (T1 is not semi-standard)

(c) T1(i, j) = r and T1(i, j + 1) = r − 1

⇒ T2(i, j) = r − 1 and T2(i, j + 1) = r − 1

(d) T1(i, j) = r and T1(i+ 1, j) = r

⇒ T2(i, j) = r − 1 and T2(i+ 1, j) = r

Therefore cases (a) and (c) are equivalent to the existence of a labelling

of a semi-standard tableau T for which w(T ) is a lattice permutation with a

horizontal pair of boxes labelled with the same symbol — as in a a —

for which the rightmost of the two is the one for which inda(w(T )) is first

attained. This is contradictory because the leftmost of the two symbols a
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would come after the rightmost in w(T ), and should therefore have higher

a-index.

(b) is the case when there is a labelling of a semi-standard tableau T

for which w(T ) is a lattice permutation with a vertical pair of boxes labelled

as in
a−1

a
, and the downward square is labelled by the first a symbol for

which inda(w(T )) is attained. When this happens, that downward square is

labeled by the leftmost a symbol of a string of, say, s squares labelled by a.

Immediately above this string, there must be a string of s squares labeled by

a− 1. The content of each square to the right of the as string must be greater

than a, and the content of each square to the left of the (a− 1)s string must

be smaller than a− 1. It follows that w(T ) contains a segment of the form

(a− 1)s . . . as

with no a, nor a − 1 symbol in between these strings. Notice, however, that

the a-index of the position of the last a in the segment above is the same as

that of the first element preceding the string of (a − 1)s. This contradicts

the assumption that that square was labelled by the first a symbol for which

inda(w(T )) was attained.

Case (d) is the case when there is a labelling of a semi-standard tableau

T for which w(T ) is a lattice permutation with a vertical pair of squares la-

belled as in
a−1

a
and the downward square is labelled by the last a symbol for

which inda(w) is first attained. Once again, when this happens, that down-

ward square is labelled by the leftmost a symbol of a as string immediately

below a (a− 1)s string. This is the same situation proven impossible in (b).

Lemma 7. Let a, b < r. If indt(w), indt
(
Sa,r(w)

)
, indt

(
Sb,r ◦ Sa,r(w)

)
6 0 for

all t < r, then b 6 a.
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Proof: Recall that a is the least integer t < r for which St,r(w) is well-

defined and b is the least integer t < r for which St,r
(
Sa,r(w)

)
is well-defined,

so that

indt(w) = 0 and indt
(
St,r(w)

)
= 1 ∀a < t < r

indt
(
Sa,r(w)

)
= 0 and indt

(
St,r
(
Sa,r(w)

))
= 1 ∀b < t < r

and inda
(
Sa,r(w)

)
, indb

(
Sb,r
(
Sa,r(w)

))
6 0. According to (38),

inds−1
ρ

(
Ss−1,s(w)

)
=

{
inds−1

ρ (w) if ρ < P

inds−1
ρ (w) + 1 if ρ > P

meaning that for each s, the position of the symbol replacement due to Ss−1,s

cannot occur to the left of the position of the symbol replacement due to

the previous function Ss−2,s−1, and so on. Therefore if each Ss−1,s dictates a

replacement at the position Pr−s in w or Qr−s in Sa,r(w),

P0 6 P1 6 P2 6 · · · 6 Pr−a−1

Q0 6 Q1 6 Q2 6 · · · 6 Qr−b−1.

Since indices indsρ(w) increase and decrease in steps of 1 with respect to

the position ρ, all possible indices from 0 to indsρ(w) are attained at positions

between 1 and ρ. In particular, if P is the first position at which inds(w) is

attained and inds(w) > 0, there is at least one position Q < P — which can

be chosen to be the first — at which indsQ(w) = inds(w) − 1. This implies

that if P is a position in w at which a symbol replacement occurs due to some

function Ss−1,s, then Q < P is the position in Ss−1,s(w) at which a symbol is

replaced by another application of Ss−1,s. Therefore

Q0 < P0 6 Q1 < P1 6 · · ·

Moreover, by the same argument, since indt
(
St,r(w)

)
= 1 for a < t < r,

indt
(
St−1,r(w)

)
= indt

(
St−1,t ◦ St,r(w)

)
= indt

(
St,r(w)

)
− 1 = 0,

and as Sa,t−1 does not affect t-indices, indt
(
Sa,r(w)

)
= 0 for all a < t < r.
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Because of this, for each a < t < r,

indt
(
St,r ◦ Sa,r(w)

)
= indtQt

(
St,r ◦ Sa,r(w)

)
by definition of Qt

= indtPt
(
St+1,r ◦ Sa,r(w)

)
+ 1 because Qt < Pt

= indtPt
(
Sa,r(w)

)
+ 1

= indt
(
Sa,r(w)

)
+ 1 by definition of Pt

= 1

Therefore b = max
{
t < r : indt

(
St,r ◦ Sa,r(w)

)
6 0
}
6 a.

�

The algorithm is devised in the following manner:

Description of the Algorithm

1. For each tableau T in Tab(λ/µ, π), let M1 be the only tableau with

both shape and weight π and w1 = w(T ). The idea is to successively

apply functions Sa,r × Ra,r to (w1,M1) until the resulting pair (w`,M`)

is such that w` is a lattice permutation. Notice that since functions Sa,r

preserve shape compatibility and functions Ra,r preserve weight, w` is

compatible with λ/µ and |M`| = π. Moreover, since |w1| = π = sh(M1),

and the effect of functions Sa,r over weights of words is the same as the

effect of functions Ra,r over shapes of diagrams, |w`| = sh(M`).

2. The first step of the algorithm is to take the least r1 for which indr1(w1) >

0 and apply Sa′,r1 × Ra′,r1 to (w1,M1), where a′ is the largest t < r1 for

which indt
(
St,r1(w)

)
6 0. If indr1

(
Sa′,r1(w1)

)
> 0, apply Sa′′,r1×Ra′′,r1 to

the resulting pair
(
Sa′,r1(w1), Ra′,r1(M1)

)
, where a′′ is the largest t < r1

for which indt
(
St,r1 ◦Sa′,r1(w)

)
6 0. Keep applying functions Sa,r1×Ra,r1

until the resulting word has non-positive r1-index. Call the resulting pair

(w2,M2).
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3. The second step is to take the least r2 for which indr2(w2) > 0 and re-

peat the previous procedure until there are no more positive r2-indices.

Keep repeating this procedure until there are no more positive r-indices,

in which case the resulting word will by construction be a lattice per-

mutation.

4. Finally, since the resulting word w` is compatible with λ/µ, it can

be uniquely associated with the tableau T` ∈ Tab0(λ/ν) for which

w(T`) = w`. The output of the algorithm is the pair (T`,M`).

It is elucidating to view a worked out example of the algorithm.

Example: Let T be the following semi-standard tableau with shape

(8, 8, 5, 3, 2)/(5, 3, 2, 1) and weight |T | = (5, 5, 5)

T =

1 1 2

2 2 3 3 3

1 3 3

1 2

1 2

The first step of the algorithm is to construct the pair (w1,M1), where

w1 = w(T ) and M1 is the only tableau with both shape and weight |T |:

w1 = 211333223312121

M1 =

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

Next, w1’s 2-indices are evaluated and if at least one of them is positive,(
S1,2(w1), R1,2(M1)

)
is calculated for the next step. The procedure repeats

until there are no more positive 2-indices, and then repeats again for 3-indices.

In the following table, each line indicates a step in the algorithm. Per-

tinent r-indices are evaluated and displayed in gray below each r symbol. The

first maximal occurrence of a positive r-index is displayed in red. Each word
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and labelled diagram pair (w,M) is simultaneously operated by an appro-

priate Sa,r × Ra,r pair, indicated by downward arrows along the algorithm’s

steps.

Words Labelled Diagrams

2
1
113332

0
2
1
3312

1
12

1
1

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3
|

S1,2
↓

|
R1,2
↓

1113
1
3
2
3
3
223

2
3
3
12121

1 1 1 1 1 2

2 2 2 2 �

3 3 3 3 3
|

S2,3
↓

|
R2,3
↓

1113
1
3
2
2223

0
3
1
12121

1 1 1 1 1 2

2 2 2 2 3

3 3 3 3 ↑
|

S1,3
↓

|
R1,3
↓

1113
1
22213

−1
3
0
12121

1 1 1 1 1 2 3

2 2 2 2 3

3 3 3 �

|
S1,3
↓

|
R1,3
↓

111222113
−2

3
0
12121

1 1 1 1 1 2 3 3

2 2 2 2 3

3 3 �

Therefore


w′ = S2

1,3 ◦ S2,3 ◦ S1,2 (w1) = 111222113312121

M ′ = R2
1,3 ◦ R2,3 ◦ R1,2(M1) =

1 1 1 1 1 2 3 3

2 2 2 2 3

3 3
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There is a unique tableau T ′ with shape sh(T ′) = sh(T ) = (8, 8, 5, 3, 2)/(5, 3, 2, 1)

whose correspondent word is w(T ′) = w′ = 111222113312121. Hence from this

result the pair of tableaux

(T ′,M ′) =


1 1 1

1 1 2 2 2

1 3 3

1 2

1 2

,

1 1 1 1 1 2 3 3

2 2 2 2 3

3 3


is obtained, concluding the algorithm. Notice that |M ′| = |T | = (53) and

|T ′| = (8, 5, 3) = sh(M ′), so the resulting pair (T ′,M ′) belongs to⋃
ν

Tab0
(
sh(T ), ν

)
× Tab

(
ν, |T |

)
as expected.

Lemma 8. The algorithm is bijective

Proof: It suffices to show that the steps of the algorithm can be re-

versed, effectively constructing a new algorithm which functions as the inverse

of the former.

1. For each pair of tableaux (T,M) ∈
⋃
ν

Tab0
(
λ/µ, ν

)
×Tab

(
ν, π
)
, take the

pair (w′1,M
′
1) =

(
w(T ),M

)
. The idea is to apply functions S−1

a,r×R−1
a,r to

(w′1,M
′
1) in the opposite order of that of the application of Sa,r×Ra,r in

the former algorithm until the resulting tableau on the second coordinate

has shape π.

2. Notice that since M ′
1 = M is semi-standard and sh(M) is a partition,

for any symbol r, there are no r-labeled boxes below the r-th row, nor

t-labeled boxes where t < r to the right of any r-labeled box.

Take the largest symbol r1 for which there are r1-labeled boxes above

the r1-th row in M ′
1, and apply functions S−1

a,r1
×R−1

a,r1
(starting from the

lowest a all the way to the largest a < r1) to the pair (w′1,M
′
1) until the

resulting tableau on the second coordinate has no more r1-labeled boxes

outside the r1-th row. Call the resulting pair (w′2,M
′
2).
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3. The next step is to take the largest symbol r2 for which there are r2-

labeled boxes above the r2-th row in M ′
2 and repeat the same procedure

as before, applying functions S−1
a,r2
× R−1

a,r2
starting from the lowest pos-

sible a all the way to the largest a < r2 to (w′2,M
′
2) until the resulting

tableau on the second coordinate has no more r2-labeled boxes outside

the r2-th row. Call the resulting pair (w′3,M
′
3). Keep repeating these

steps until all boxes are labeled by the symbol corresponding to their

row, meaning the shape of the resulting tableau will be the same as its

weight, π. Call the resulting pair (w′,M ′).

4. Notice that since |w′1| = |T | = sh(M ′
1) and the effect of functions S−1

a,r

over weights of words is the same as the effect of functions R−1
a,r over

shapes of diagrams, the resulting word w′ has weight |w′| = sh(M ′) = π.

Moreover, since w′1 is compatible with λ/µ, so is w′.

The word w′ can therefore be uniquely associated with the tableau

T ′ ∈ Tab(λ/µ, π) for which w(T ′) = w′, concluding the algorithm.

The reversed algorithm can be illustrated by following the steps of the

former algorithm backwards in the previous example.

�

It is already known from (35) that 〈sµsν , sλ〉 = 〈sλ/µ, hν〉 = Kλ/µ,ν and

the previous lemma shows that that

#Tab(λ/µ, π) = #
⋃
ν

Tab0(λ/µ, ν)× Tab(ν, π)

so 〈sλ/µ, hπ〉 =
∑
ν

#Tab0(λ/µ, ν)〈sν , hπ〉.

But since complete functions (hπ) are a base for Λ,

〈sλ/µ, sπ〉 = #Tab0(λ/µ, π)

therefore sλ/µ =
∑
ν

#Tab0(λ/µ, ν)sν , concluding the proof.

�
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3 Jack Functions

The coefficient ring of integers or rational numbers over which “regular”

symmetric functions are defined can be generalized by the introduction of

a parameter α by setting the field of coefficients to be the field of rational

polynomials Q(α). In doing so, a new algebra of symmetric functions ΛQ(α) =

Λ ⊗Z Q(α) is defined. All previously established results pertaining to Z or

Q-bases for Λ remain valid as they become Q(α)-bases for ΛQ(α).

Jack Functions Jλ(α) (or simply Jλ) are a family of symmetric functions

indexed by partitions with coefficients in Q(α) which are a Q(α)-base for

ΛQ(α) as a Q(α)-module. They are very closely related to known families of

symmetric functions, as up to normalization, different specializations of the

parameter α yield Schur (α = 1), conjugate elementary (α = 0), monomial

(α =∞) and both zonal (α = 2 or 1
2
) functions.

Since first introduced by Jack [3], multiple equivalent definitions have

been provided:

1. Simultaneous eigenfunctions of Sekiguchi-Debiard operators [14, 2];

α2
∑
i>1

x2
i

∂2

∂x2
i

+ 2α
∑
i 6=j

x2
i

xi − xj
∂

∂xi

2. Unique functions of the form

Jλ(α) =
∑
µ6λ

vµ(α)mµ

which are orthogonal with respect to the bilinear form

〈pλ, pµ〉α = α`(λ)zλδλµ (40)

3. Functions obtained by Sahi-Knop’s combinatorial formula.
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The latter will be described in detail shortly. Notice that the first

two definitions determine Jack Functions only up to normalization. This is

not a problem as they are defined over the field Q(α), though conventionally

some normalization must be specified. Sahi-Knop’s combinatorial formula is

particularly convenient because, as it will be seen, it automatically generates

normalized functions.

3.1 Combinatorial Formula

Definition 3.1.1. Let T be a (generalized) tableau of shape λ. T is an

admissible tableau if, for all (i, j) ∈ diag(λ):

(a) T (i, j) 6= T (i′, j − 1) for i′ < i (and λi > j > 1)

(b) T (i, j) 6= T (i′, j) for i′ 6= i

(c) T (i, j) 6= T (i′, j + 1) for i′ > i (and λi > j > 1)

Items (a) and (c) are redundant, but help visualize how the labelling

is displayed in admissible tableaux. In the following example, if T (3, 2) = 3,

none of the gray boxes can be labeled 3.

3

The set of admissible tableaux with shape λ and weight µ is denoted

by Tabad(λ, µ) and the set of admissible tableaux with shape λ, by Tabad(λ).

Definition 3.1.2. A point (i, j) of a tableau T is said to be critical if

T (i, j) = T (i, j − 1).
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Example: in the following tableau, critical points are indicated by a

red circle.

1 3 1 1©
3 4 4©
5 5© 2

4 2

For a given labelling T , define the following polynomial in α

Definition 3.1.3. dT (α) :=
∏

s critical

hλ(s)

Recall that the weight of a tableaux T is the composition |T | = ν

defined by νi = #{s ∈ sh(T ) | T (s) = i}.

Although originally defined as simultaneous eigenfunctions of a family

of differential operators, Jack Functions have an alternative, purely combina-

torial definition, proven equivalent to the former by Sahi and Knop.

Definition 3.1.4. [4, Theorem 5.1]

Jλ(α) =
∑

T∈Tabad(λ)

dT (α)x|T | (41)

Throughout the rest of the text, Jack functions will be denoted without

reference to the variable α, as simply Jλ. In the interest of expressing this

result from a symmetric function perspective, terms x|T | can be collected into

monomial functions and all such functions which may happen to be counted

repeatedly for different admissible labellings can be collected again.

If T is an admissible tableau and σ : N→ N is an injection, T ′ = σ ◦T
is also admissible and there exists another injection σ : N → N such that

T = σ ◦ T ′. Since the composition of injective functions is itself injective, this

condition defines the equivalence relation (∼) in the set of admissible tableaux:

T ∼ T ′ ⇔ ∃σ : N→ N injective such that T ′ = σ ◦ T
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Temporarily adopting the notation [T ] = {T ′ | T ′ ∼ T} = {σ ◦ T | σ :

N → N injective} for equivalence classes, it is well-defined to consider [T ]

admissible if, and only if, some (and therefore every) T ∈ [T ] is admissible.

Furthermore, because criticality does not change under relabelling, dT (α) =

dT ′(α) for all T ∼ T ′, hence d[T ](α) := dT (α) for some T ∈ [T ] is also well-

defined.

For each admissible tableau T , there are
∏
i

(|T |i)! different admissible

tableaux T ′ ∼ T such that |T ′| = |T |. However, it is always the case that

|T ′|+ = |T |+ for T ′ ∼ T , so |[T ]| := |T |+ for some T ∈ [T ] is well-defined.

Finally, (41) can be rewritten in terms of monomial functions

Jλ =
∑

[T ] admissible

d[T ](α)

(∏
i

|[T ]|i!

)
m|[T ]|

=
∑
µ6λ

( ∑
T∈Tabad(λ,µ)

dT (α)

)(∏
i

Mµ
i !

)
mµ (42)

where µ =
(
µ
Mµ

1
1 , µ

Mµ
2

2 ,m
Mµ

3
3 , . . .

)
.

This formula might seem somewhat abstract at the moment, but an

example shall help clarify how exceedingly helpful it can be for calculating

Jack Functions.

Example: Formula (42) will be utilized to obtain J(3,2).

In the following table weights µ are listed on the leftmost column

and their correspondent
∏
i

Mµ
i ! terms are calculated on the middle column.

Tableaux equivalence classes are listed according to their respective weights

on the rightmost column. Each tableau’s critical points are indicated with

a red circle, and its correspondent d[T ](α) polynomial is written immediately

below.
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µ
∏
i

Mµ
i ! T ∈ Tabad

(
(3, 2), µ

)
(3, 2) 1 1 1© 1©

2 2©
2 2© 1
1 1©

(2α + 2)(α + 2)

(α + 1)

(2α + 2)

(α + 1)

(3, 12) 2 1 1© 1©
2 3

2 1 1©
1 3

2 3 1
1 1©

(2α + 1)(α + 1) (α + 1) (α + 1)

(22, 1) 2 1 1© 3
2 2©

1 1© 2
2 3

1 1© 2
3 2

1 2 1
2 3

1 3 1
2 2©

3 1 1©
2 2©

3 1 2
1 2

(2α + 2)

(α + 1)

(2α + 2) (2α + 2)
1

(α + 1)

(α + 1)

(α + 1)
1

(2, 13) 6 1 1© 2
3 4

1 2 1
3 4

2 1 1©
3 4

2 1 3
1 4

2 3 1
1 4

2 3 1
4 1

2 3 4
1 1©

(2α + 2) 1 (α + 1) 1 1 1 (α + 1)

(15) 120 1 2 3
4 5

1

Collecting all terms according to (42),

J(3,2) = m(3,2)(1)
(

2(α + 1)2(α + 2) + 2(α + 1)2
)

+

m(3,12)(2)
(

(2α + 1)(α + 1) + (α + 1) + (α + 1)
)

+

m(22,1)(2)
(

2(α + 1)2 + 2(α + 1) + 2(α + 1) + 1 + (α + 1) + (α + 1)2 + 1
)

+

m(2,13)(6)
(

2(α + 1) + 1 + (α + 1) + 1 + 1 + 1 + (α + 1)
)

+

m(15)(120)
(

1
)

= 2(α + 1)2(α + 3)m(3,2) + 2(α + 1)(2α + 3)m(3,12) + 2(3α + 5)(α + 2)m(22,1)+

24(α + 2)m(2,13) + 120m(15)

Observation: Formula (42) implies the coefficient of each mµ of any

Jλ must be a multiple of
∏
i

Mµ
i !.
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3.2 Bilinear Form

Bilinear forms 〈 , 〉α and 〈 , 〉 are very closely related. The involution

ω is still an isometry for 〈 , 〉α, for

〈ω(pλ), ω(pµ)〉α = 〈ε(λ)pλ, ε(µ)pµ〉α
= ε(λ)ε(µ)〈pλ, pµ〉α
= ε(λ)ε(µ)zλα

`(λ)δλµ

= 〈pλ, pµ〉α

Now consider α to be evaluated by some positive integer. Denote

α · (ν1, ν2, . . . ) = (αν1, αν2, . . . ). Then for any partitions λ = (λm1
1 , λm2

2 , . . . )

and µ,

〈pλ, pµ〉α =α`(λ)zλδλµ

=
(
αm1+m2+···)(∏

i>1

λmii mi!

)
δλµ

=

(∏
i>1

(αλi)
mimi!

)
δλ,µ

=zα·λ δα·λ,α·µ

=〈pα·λ, pα·µ〉

Although the bilinear form 〈 , 〉α is originally defined in terms of power

functions, it may also be defined in terms of any Q(α)-base of ΛQ(α), including

Jack functions. Since they are orthogonal with respect to 〈 , 〉α, all that is left

for this bilinear form to be thoroughly characterized in terms of Jack functions

is the following case, given by Stanley.

Theorem 9. [15, Proposition 3.6]

〈Jλ, Jλ〉α =
∏
s∈λ

ĥλ(s)ȟλ(s) (43)

83



Example: For λ = (3, 3, 2, 1), each box s ∈ diag(λ) in both tableaux

below has been assigned its correspondent ĥ(s) and ȟ(s) value. 〈Jλ, Jλ〉α is

given by the product of their entries.

〈Jλ, Jλ〉α =



3α+3 2α+2 α+1

3α+2 2α+1 α

2α+1 α

α


·



2α+4 α+3 2

2α+3 α+2 1

α+2 1

1


=24α3(α + 1)3(α + 2)3(α + 3)(2α + 1)2(2α + 3)(3α + 2)

3.3 Special Cases

Some special cases of coefficients vλµ(α) that appear in the linear de-

composition Jλ =
∑
µ

vλµ(α)mµ for arbitrary λ can be directly calculated.

Likewise, for some special cases of Jack functions, their entire decomposition

can be directly calculated.

3.3.1 Special Cases of Coefficients

Let λ = (λ1, λ2, λ3, . . . , λ`) ` r. It is immediate from Sahi-Knop’s

combinatorial formula that

vλ(1r) = r!

Despite its triviality, this result is nonetheless important because it de-

termines the normalization of functions obtained through said formula. With

a little more work, it can also be calculated

vλ(2,1r−2) =

(
r +

∑
i

λ′2i

)
α + r2 −

∑
i

λ′2i

2
(r − 2)!

=(α− 1)n(λ)(r − 2)! +
r!

2
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where n(λ) =
∑
i>1

(
λ′i
2

)
.

The cases µ = (1r) and µ = (2, 1r−2) are easy to calculate by Sahi-Knop

combinatorial formula, but the more general case where first components of

µ coincide with those of λ, and the remaining ones are 1 was calculated by

Stanley before such formula was known.

Proposition 20. [15, Proposition 7.1] If µ = (λ1, λ2, . . . , λk, 1
λk+1+···+λ`),

vλµ = (λk+1 + · · ·+ λ`)!

( ∏
(i,j)=s∈λ

i6k

ȟλ(s)

)
(44)

Corollary: vλλ =
∏
s∈λ

ȟλ(s)

3.3.2 Special Cases of Jack Functions

Jack functions indexed by single row partitions are given by:

Proposition 21. [15, Proposition 2.2 a]

J(n) =
∑
µ`n

(
n

µ

)
ϕµ(α)mµ (45)

where ϕµ(α) =
∏
i>1

µi−1∏
j=0

(jα + 1).

Jack functions indexed by (2a, 1b) can only have coefficients indexed

by (2a
′
, 1b

′
) with a′ 6 a (and b′ = b + 2a − 2a′). It follows as a corollary of

(44) that

Proposition 22. [15, Proposition 7.2]

J(2a,1b) =
a∑
r=0

a!(2a− 2r + b)!

(a− r)!

( r∏
i=1

(α + a+ b− r + i)

)
m(2r,12a−2r+b)
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Proof: Since

ȟ(2a,1b)(i, 1) = α + a+ b− i+ 1

ȟ(2a,1b)(i, 2) = a− i+ 1
∀i 6 a

and according to (44), if η = (2r, 12a−2r+b),

v(2a,1b)η =(2a− 2r + b)!
∏

(i,j)∈(2a,1b)
i6r

ȟ(2a,1b)(i, j)

=(2a− 2r + b)!

( r∏
i=1

(a− i+ 1)

)( r∏
i=1

(α + a+ b− i+ 1)

)
�

In order to prove the next special case, it is first necessary to establish

the following proposition.

Proposition 23. For any fixed n ∈ N and µ ` n,∑
T∈Tabad((n),µ)

T (1,1)=i

dT (α) =

(
n− 1

µ− εi

)
ϕµ(α) (46)

Proof: All row-shaped tableaux are admissible. Let T be a tableau

such that sh(T ) = (n) and T (1, 1) = i. Either T (1, 2) = i, in which case

(1, 2) is critical, or T (1, 2) 6= i, in which case it is not. Applying Sahi-Knop’s

combinatorial formula,∑
T∈Tabad((n),µ)

T (1,1)=i

dT (α) =

[(
(n− 1)α + 1

)∑
T∈Tabad((n),µ)
T (1,2)=T (1,1)=i

dT (α) +
∑

T∈Tabad((n),µ)
T (1,2)6=T (1,1)=i

dT (α)

]

=(n− 1)α
∑

T∈Tabad((n−1),µ−εi)
T (1,1)=i

dT (α) +
∑

T∈Tabad((n−1),µ−εi)

dT (α)

=

µi∑
k=1

(n− 1)!

(n− k)!
αk−1

∑
T∈Tabad((n−k),µ−kεi)

dT (α) (by induction)

=

(
n

µ

)
µi
n

ϕµ(α)

ϕ(µi)(α)

µi∑
k=1

(µi − 1)!

(µi − k)!
αk−1ϕ(µi−k)(α) (by 45)
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But

µi∑
k=1

(µi − 1)!

(µi − k)!
αk−1ϕ(µi−k)(α) =

µi∑
k=1

( µi−2∏
j=µi−k

α(j+1)

)( µi−k−1∏
j=1

(αj+1)

)
= ϕ(µi)(α)

Plugging this back in the previous equation,

µi∑
k=1

(µi − 1)!

(µi − k)!
αk−1ϕ(µi−k)(α) =

(
n

µ

)
µi
n

ϕµ(α)

ϕ(µi)(α)
ϕ(µi)(α) =

(
n

µ

)
µi
n
ϕµ(α)

�

Hook-shaped Jack functions can be thoroughly described in terms of

monomial functions.

Proposition 24. Let J(1+b,1a) =
∑
µ

v(1+b,1a)µ(α)mµ. Then v(1+b,1a)µ(α) is

given by

a!b!

µ!
ϕµ(α)·



`(µ)−a−1∑
k=0

a+1∑
r=0

αk
(
k + r

r

)(
`(µ)− k − r
a+ 1− r

)
(a+ 1)er+k(µ)

+

`(µ)−a∑
k=1

a∑
r=0

αk
(
k + r

r + 1

)(
`(µ)− k − r

a− r

)
(r + 1)er+k(µ)

+

`(µ)−a∑
k=1

a∑
r=0

αk
(
k + r − 1

r

)(
`(µ) + 2− k − r

a− r

)
m(2,1k+r−1)(µ)


Proof: Let µ be a partition such that µ 6 (b+1, 1a) and ` = `(µ) (so

` > a). Fix I,J ⊂ {1, 2, . . . , `} complementary subsets such that #I = a+ 1

and #J = `− a− 1.
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Then

∑
T∈Tabad((b+1,1a),µ)
T ({1,...,a+1}×{1})=I

dT (α) =
∑
i∈I

( ∑
T∈Tabad((b+1,1a),µ)
T ({1,...,a+1}×{1})=I

T (1,1)=i

dT (α)

)

=
∑
i∈I

(
a!
∑

T∈Tabad((b+1),µ−εI+εi)
T (1,1)=i

dT (α)

)

=a!
∑
i∈I

(
b

µ− εI

)
ϕµ−εI+εi(α)

=a!

(
b

µ− εI

)
ϕµ−εI(α)

∑
i∈I

(µiα + 1)

=
a!b!

µ!
ϕµ(α)

(∏
i∈I

(µi + 1)

)(∏
j∈J

(µjα + 1)

)(∑
i∈I

(µiα + 1)

)

=
a!b!

µ!
ϕµ(α)

( a+1∑
r=0

er(µI)

)( `−a−1∑
k=0

αkek(µJ )

)(
αe1(µI) + (a+ 1)

)
=
a!b!

µ!
ϕµ(α)

( a+1∑
r=0

(
αm(2,1r−1)(µI) + α(r + 1)er+1(µI) + (a+ 1)er(µI)

))
·

( `−a−1∑
k=0

αkek(µJ )

)

Now, summing over all subsets I of {1, . . . , `} such that #I = a+ 1,∑
I⊂{1,...,`}
#I=a+1

er(µJ )ek(µI) =

(
k + r

k

)(
`− k − r
a+ 1− r

)
er+k(µ)

∑
I⊂{1,...,`}
#I=a+1

m(2,1r)(µJ )ek(µI) =

(
k + r

k

)(
`− k − r + 1

a− r

)
m(2,1r+k)(µ).

Applying Sahi-Knop’s formula,

v(1+b,1a)µ(α) =
∑

T∈Tabad((b+1,1a),µ)

dT (α) =
∑

I⊂{1,...,`}
#I=a+1

( ∑
T∈Tabad((b+1,1a),µ)
T ({1,...,a+1}×{1})=I

dT (α)

)
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So finally

v(1+b,1a)µ(α) =
a!b!

µ!
ϕµ(α)

[ a∑
r=0

`−a−1∑
k=0

αk+1

(
r + k

k

)(
`− r − k + 1

`− a− k + 1

)
m(2,1r+k)(µ)

+
a+1∑
r=1

`−a−1∑
k=0

αk+1

(
k + r

k

)(
`− k − r
a+ 1− r

)
rer+k(µ)

+
a+1∑
r=0

`−a−1∑
k=0

αk
(
k + r

k

)(
`− k − r
a+ 1− r

)
(a+ 1)er+k(µ)

]
which is equivalent to the stated formula.

�

3.4 Pieri Rule

Completely analogously to the case of symmetric functions over integer

or rational coefficients, the product of two Jack functions can be linearly

decomposed in terms of Jack functions themselves.

JνJµ =
∑
λ

cλµν(α)Jλ (47)

Since Jack functions are a base for ΛQ(α) as a Q(α)-module, Q(α) is a

field and there are finitely many partitions with any given fixed weight, the

coefficients cνλµ(α) can always be found using tools from linear algebra. Ideally,

these coefficients could be given by a combinatorial rule, much like Littlewood-

Richardon-Robindon’s, without the need for lengthy computations. However,

no such rule is yet known, except for for few special cases.

The analogous Pieri Rule for symmetric functions, that is, the special

case for formula (47) when one of the partitions λ or µ is either a single column

or a single row, was proven by Stanley in 1989. The rule is stated in terms of

the inner product 〈 , 〉α.
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Theorem 10. [15, Theorem 6.1] Let n ∈ N and µ, λ ∈ P. Then 〈JµJ(n), Jλ〉α =

0 unless µ ⊆ λ and λ/µ is a horizontal n-strip, in which case

〈JµJ(n), Jλ〉α =

( ∏
s∈µ

Aµλ/µ(s)
)( ∏

s∈(n)

ĥ(n)(s)
)( ∏

s∈λ

Bλ
λ/µ(s)

)
(48)

where

Aηλ/µ(s) :=

{
ĥη(s) if λ/µ contains a square in the same column as s,

ȟη(s) otherwise

Bη
λ/µ(s) :=

{
ȟη(s) if λ/µ contains a square in the same column as s,

ĥη(s) otherwise

Notice that
∏
s∈(n)

ĥ(n)(s) = αnn!

Applying the inner product to (47), coefficients cλνµ(α) can be isolated

cλνµ(α) =
〈JνJµ, Jλ〉α
〈Jλ, Jλ〉α

and since 〈Jλ, Jλ〉α =
∏
s∈λ

ĥλ(s)ȟλ(s), Stanley’s theorem can be restated so as

to directly calculate these coefficients:

cλµ,(n)(α) =
(
αnn!

)
∏
s∈µ

Aµλ/µ(s)∏
s∈λ

Aλλ/µ(s)
(49)

Examples:

1. J(2,1)J(2)

There are four partitions ν such that (2, 1) ⊆ ν and ν/(2, 1) is a

2-horizontal strip: (4, 1), (3, 2), (3, 12) and (22, 1). Equations (48) and (49)

have pictorial interpretations which we can take advantage of. In the follow-

ing calculations, each box of the tableaux has been assigned its respective

A
(22)

ν/(22)(s) or Aνν/(22)(s) value, which will then be multiplied in order to obtain∏
s∈(22)

A
(22)

ν/(22)(s) and
∏
s∈ν

Aνν/(22)(s) respectively. Boxes in ν which are not in (22)
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have been colour-coded dark blue ( ) and boxes in either (22) or each ν sitting

on the same column of a dark blue box have been colour-coded light blue ( ).

To both dark and light blue boxes, their ĥ(s) value is assigned, whereas to

white boxes their ȟ(s) value is assigned.

c
(4,1)
(2,1)(2) = 2α2

α+2 1

1

3α+2 2α+1 2α α

1

=
(α + 2)

(3α + 2)(2α + 1)

c
(3,2)
(2,1)(2) = 2α2

α+2 α

1

2α+2 2α+1 α

α+1 α

=
(α + 2)α

(2α + 1)(α + 1)2

c
(3,12)
(2,1)(2) = 2α2

2α+1 1

α

3α+2 α+1 α

α+1

α

=
2α(2α + 1)

(3α + 2)(α + 1)2
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c
(22,1)
(2,1)(2) = 2α2

2α+1 α

α

2α+2 α+1

2α+1 α

α

=
α2

(α + 1)2

So finally

J(22)J(2) =
(α + 2)

(3α + 2)(2α + 1)
J(4,1) +

(α + 2)α

(2α + 1)(α + 1)2
J(3,2)+

2α(2α + 1)

(3α + 2)(α + 1)2
J(3,12) +

α2

(α + 1)2
J(22,1)

2. a) J(1m)J(n)

The same method can be utilized to calculate the more general product

J(1m)J(n). There are two partitions ν such that ν/(1m) is a n-horizontal strip:

(n+ 1, 1m−1) and (n, 1m).

c(n+1,1m−1) = (αnn!)

m

...

1

nα+m nα · · · α

...

1

=
m

nα +m
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c(n,1m) = (αnn!)

α+

m−1

...

α

nα+m · · · α

α+

m−1

...

α

=
nα

nα +m

Finally,

J(1m)J(n) =
nαJ(n,1m) +mJ(n+1,1m−1)

nα +m

2. b) J(am)J(n)

More generally, there are 1+min{a, n} partitions ν such that ν/(am) is

a horizontal n-strip, all of the form (a+n−r, am−1, r) with 0 6 r 6 min{a, n}.
Therefore

J(am)J(n) =

min{a,n}∑
r=0

((a+ n− 2r)α +m)
a−r−1∏
k=0

(kα +m)

a∏
k=0

((n− r + k)α +m)

(
a

r

)(
n

r

)
r!αrJ(a+n−r,am−1,r)

3. JλJ(1)

Let λ = (λm1
1 , λm2

2 , λm3
3 , . . . , λm`` ), denote m0 = 0 = λ`+1 and Mk =

k−1∑
i=0

mi. The only ν for which λ ⊆ ν and |ν/λ| = 1 are those obtained by

adding a box to a “corner” of the diagram of λ, that is, in each coordinate

(1 +Mk, 1 + λk) for k ∈ {1, . . . , `+ 1}.

Fix a k and consider ν obtained by adding a box to the (1+Mk, 1+λk)

coordinate of the diagram of λ. Consider the product
∏
s∈λ

Aλν/λ(s). The only
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boxes’ values that must be recalculated upon adhering this box (so as to

obtain
∏
s∈λ

Aνν/λ(s)) are those on the line 1 + Mk and those on the column

1 + λk. Furthermore, the value assigned to the box (1 + Mk, 1 + λk) itself is

necessarily α, so

cνλ,(1) =α

∏
s∈λ

Aλν/λ(s)∏
s∈λ

Aνν/λ(s)

=α

(
λk∏
j=1

Aλν/λ(1 +Mk, j)

)(
Mk∏
i=1

Aλν/λ(i, 1 + λk)

)
(

λk∏
j=1

Aνν/λ(1 +Mk, j)

)
α

(
Mk∏
i=1

Aνν/λ(i, 1 + λk)

)

=

(
λk∏
j=1

ȟλ(1 +Mk, j)

ȟν(1 +Mk, j)

)(
Mk∏
i=1

ĥλ(i, 1 + λk)

ĥν(i, 1 + λk)

)

=

(∏̀
q=k

ȟλ(1 +Mk, λq − 1)

ȟν(1 +Mk, λq+1 + 1)

)(
k−1∏
q=0

ĥλ(Mq+1 − 1, 1 + λk)

ĥν(Mq + 1, 1 + λk)

)

=

(∏̀
q=k

(λk − λq)α +Mq −Mk−1

(λk − λq+1)α +Mq −Mk−1

)(
k−1∏
q=1

(λq − λk)α +Mk−1 −Mq

(λq − λk)α +Mk−1 −Mq−1

)
(50)

3.5 Skew Jack Functions

Similarly to Schur functions, Jack functions can be generalized to a

broader family, now defined over skew diagrams instead of just partitions. Let

µ ⊆ λ. Skew Jack functions Jλ/µ are defined to satisfy the familiar inner

product equation 〈Jλ/µ, Jν〉α = 〈JµJν , Jλ〉α for all Jν . Equivalently,

Jλ/µ =
∑
ν

〈JµJν , Jλ〉α
〈Jν , Jν〉α

Jν (51)

As is the case for Skew Schur functions, the inner product condition
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whereby skew Jack functions are defined implies that the linear decomposi-

tion of skew Jack functions (51) carries the same information as the linear

decomposition of Jack function products (47). In other words, the problem

of decomposing products of Jack functions can be translated to the problem

of decomposing skew Jack functions. The converse is also true and since a

Pieri type formula for Jack functions is known, so can an analogous formula

be derived for skew Jack functions.

Let

Jλ/(n) =
∑
ν

cλ/(n)
ν (α)Jν

Plugging (48) and (43) in (51), it follows that

cλ/(n)
ν (α) = (αnn!)

∏
s∈λ

Bλ
λ/ν(s)∏

s∈ν

Bν
λ/ν(s)

(52)

and each ν must be such that ν ⊆ ν and λ/ν is a n-horizontal strip.

We now explore some special cases of non-symmetric Jack functions

which can be deduced from (52).

Examples:

1. Jλ/(λ1), where λ = (λm1
1 , λm2

2 , λm3
3 , . . . )

There is only one partition ν such that λ/ν is a λ1-horizontal strip:

ν = (λm1−1
1 , λm2

2 , λm3
3 , . . . ). For this case, every block of both diag(ν)

and diag(λ) share a column with a block in diag(λ/ν), so Bλ/ν(s) = ȟ(s).

Hence

cλ/(λ1)
ν = (αλ1λ1!)

∏
s∈λ

ȟλ(s)∏
s∈ν

ȟν(s)
= (αλ1λ1!)

λ1∏
j=1

ȟλ(1, j)

Which implies

Jλ/(λ1) = (αλ1λ1!)

(
λ1∏
j=1

ȟλ(1, j)

)
J(λm1−1

1 ,λ
m2
2 ,λ

m3
3 ,... )
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2. Jλ/(1)

Let λ = (λm1
1 , λm2

2 , λm3
3 , . . . , λm`` ) and once again denote Mk =

k−1∑
i=0

mi.

The only partitions ν ⊆ λ for which |λ/ν| = 1 are those obtained by

removing a box from a “corner” of the diagram of λ, that is, from each

coordinate (Mk, λk). Let ν be the partition for which λ/ν = (Mk, λk).

Repeating a similar procedure to that for calculating (50),

cλ/(1)
ν =α

∏
s∈λ

Bλ
λ/ν(s)∏

s∈ν

Bν
λ/ν(s)

=α

(
λk−1∏
j=1

Bλ
λ/ν(Mk, j)

)
(1)

(
Mk−1∏
i=1

Bλ
λ/ν(i, λk)

)
(
λk−1∏
j=1

Bν
λ/ν(Mk, j)

)(
Mk−1∏
i=1

Bν
λ/ν(i, λk)

)

=α

(
λk−1∏
j=1

ĥλ(Mk, j)

ĥν(Mk, j)

)(
Mk−1∏
i=1

ȟλ(i, λk)

ȟν(i, λk)

)

=α

(
ĥλ(Mk, λk+1 + 1)

ĥν(Mk, λk − 1)

( ∏̀
q=k+1

ĥλ(Mk, λq+1 + 1)

ĥν(Mk, λq)

))
·(

ȟλ(Mk−1, λk)

ȟν(Mk − 1, λk)

( k−1∏
q=1

ȟ(Mq−1 + 1, λk)

ȟν(Mq, λk)

))

But
ĥν(Mk, λk − 1) = α

ȟν(Mk − 1, λk) = 1
and

ĥλ(Mk, λk+1 + 1) = α(λk − λk+1)

ȟλ(Mk−1, λk) = mk

, so

cλ/(1)
ν =α(λk − λk+1)mk ·

( ∏̀
q=k+1

α(λk − λq+1) +Mq −Mk

α(λk − λq) +Mq −Mk

)
(

k−1∏
q=1

α(λq − λk) +Mk −Mq−1

α(λq − λk) +Mk −Mq

)
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4 Non-symmetric Jack Functions

It has been emphasized that the A-algebra of symmetric functions

ΛA is comprised not of symmetric polynomials, but of dimension indepen-

dent objects which generalize the notion of symmetric polynomials. Never-

theless, ΛQ(α) is generated as a Q(α)-algebra by families of symmetric func-

tions indexed by non-negative integers such as er, hr and pr and as such

is isomorphic to a polynomial algebra over infinitely many variables, say,

p = (p0, p1, p2, . . . ).

ΛQ(α)
∼= Q(α)[p0, p1, p2, . . . ] = Q(α)[p]

In the interest of defining an algebra which generalizes all homoge-

neous polynomials over arbitrarily many finite dimensions, a new algebra can

be defined — still drawing from the same framework of symmetric functions

— by tweaking ΛQ(α)’s definition so as to account for finitely many non-

symmetric variables. This can be done by reintroducing independent vari-

ables x = (x1, x2, x3, . . . ) to ΛQ(α) as means to create an algebra isomorphic

to Q(α)[p, x], that is, whose elements can be viewed as polynomials over both

p and x. The goal of the following section is to properly formalize this new

algebra.

4.1 Algebra of Non-Symmetric Functions

The construction of the algebra of non-symmetric functions is similar

to that of symmetric functions, except that in this case, the order of variables

is important, so henceforth x will solely refer to the countable sequence of vari-

ables x = (x1, x2, . . . ) as opposed to the countable set of variables {x1, x2, . . . }.
Let A be an arbitrary commutative ring with identity. For non-negative inte-

gers m,N , with m > N , the following notation will be adopted.
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Notation:

• ΛA[x1, . . . , xN |xN+1, . . . , xm] := A[x1, . . . , xN ]ΛA[xN+1, . . . , xm] denotes

the algebra generated by products of polynomials in A[x1, x2, . . . , xN ]

and ΛA[xN+1, xN+2, . . . , xm], that is, theA-sub-algebra ofA[x1, x2, . . . , xm]

of polynomials which are symmetric on the variables xN+1, xN+2, . . . , xm.

• Λk
A[x1, . . . , xN |xN+1, . . . , xm] :=

⊕
k1+k2=k

Ak1 [x1, . . . , xN ]Λk2
A [xN+1, . . . , xm]

denotes the A-sub-module of Ak[x1, x2, . . . , xm] of k-homogeneous poly-

nomials which are symmetrical on the variables xN+1, xN+2, . . . , xm.

Observations:

• Each p(x1, . . . , xm) ∈ ΛA[x1, . . . , xN |xN+1, . . . , xm] can be uniquely de-

composed as a sum

p(x1, . . . , xm) =
∑
µ

qµ(x1, x2, . . . , xN)mµ(xN+1, xN+2, . . . , xm).

• ΛA[x1, . . . , xN |xN+1, . . . , xm] is the direct sum of its k-homogeneous sub-

modules

ΛA[x1, . . . , xN |xN+1, . . . , xm] =
⊕
k

Λk
A[x1, . . . , xN |xN+1, . . . , xm]

as a graded algebra.

Consider the A-algebra homomorphisms for all n,m > N :

ρN |m,n : ΛA[x1, . . . , xN |xN+1, . . . , xn] → ΛA[x1, . . . , xN |xN+1, . . . , xm]

∑
µ

qµmµ(xN+1, . . . , xn) 7→



∑
µ

qµmµ(xN+1, . . . , xm, 0, . . . , 0)

if n > m∑
µ

qµmµ(xN+1, . . . , xn, xn+1, . . . , xm)

if n < m

and their natural restriction for k-homogeneous polynomial modules

ρkN |m,n : Ak[x1, . . . , xN |xN+1, . . . , xn]→ Ak[x1, . . . , xN |xN+1, . . . , xm].
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Analogously to functions ρm,n, if m 6 n, ρN |m,n ◦ ρN |n,m = idm, so

ρN |n,m is a monomorphism and ρN |m,n is an epimorphism and the same holds

for ρkN |n,m and ρkN |m,n, for each k ∈ N. Also denote, without loss of generality,

ρN |m,n = ρm,n|ΛA[x1,...,xN |xN+1,...,xn] and ρkN |m,n = ρkm,n|ΛkA[x1,...,xN |xN+1,...,xn] for all

m < N . Since for every n > N , functions ρN |m,n are A-algebra homomor-

phisms, so are the functions

ρN |n : ΛA[x1, . . . , xN |xN+1, . . . , xn] →
∏
m∈N

A[x1, . . . , xm]

p 7→
(
ρN |m,n(p)

)
m∈N

where once again,
∏
m∈N

A[x1, . . . , xm] is the A-algebra of sequences of polyno-

mials in increasing numbers of variables with element-wise sum and multipli-

cation. Similarly, for all n > N and k ∈ N, functions

ρkN |n : Λk
A[x1, . . . , xN |xN+1, . . . , xn] →

∏
m∈N

Ak[x1, . . . , xm]

p 7→
(
ρkN |m,n(p)

)
m∈N

are A-module homomorphisms.

Also analogously to functions ρm,n and ρkm,n,

m 6 n ⇒

{
Im(ρN |m) ⊆ Im(ρN |n)

Im(ρkN |m) ⊆ Im(ρkN |n),∀k ∈ N

so for each N ∈ N,
⋃
n∈N

Im(ρN |n) is an A-sub-algebra of
∏
m∈N

A[x1, . . . , xm] and

for every k ∈ N,
⋃
n∈N

Im(ρkN |n) is an A-sub-module of
∏
m∈N

Ak[x1, . . . , xm].

Proposition 25.
⋃

n,N∈N
Im(ρN |n) is an A-sub-algebra of

∏
m∈N

A[x1, . . . , xm]

Proof: Firstly let m′, N ∈ N and n,m > N . Then analogously to

functions ρm,n,

If m 6 n 6 m′, ρN |m′,m = ρN |m′,n ◦ ρN |n,m, which implies Im(ρN |m′,m) ⊆ Im(ρN |m′,n)

If m′ 6 n, ρN |m′,n is surjective, so Im(ρN |m′,m) ⊆ Im(ρN |m′,n) .

99



Hence Im(ρN |m) ⊆ Im(ρN |n) for all N ∈ N and n > m > N . Therefore for

each N ∈ N,
⋃
n∈N

Im(ρN |n) is closed under all algebra operations. Since each

Im(ρN |n) is itself an A-sub-algebra of
∏
m∈N

A[x1, . . . , xm], so must
⋃
n∈N

Im(ρN |n)

be.

Now for all N,M ∈ N, N 6M implies
⋃
n∈N

Im(ρM |n) ⊆
⋃
n∈N

Im(ρN |n) be-

cause ΛA[x1, . . . , xM |xM+1, . . . , xn] ⊆ ΛA[x1, . . . , xN |xN+1, . . . , xn]. Therefore⋃
n,N∈N

Im(ρN |n) is closed under allA-algebra operations. Since each
⋃
n∈N

Im(ρN |n)

is itself an A-sub-algebra of
∏
m∈N

A[x1, . . . , xm], so is
⋃

n,N∈N
Im(ρN |n).

�

Observation: By the same arguments
⋃

n,N∈N
Im(ρkN |n) is an A-sub-

module of
∏
m∈N

Ak[x1, . . . , xm] for every k ∈ N.

Definition 4.1.1. Let x = (x1, x2, . . . ) be a countably infinite set of variables.

Then

Λ̂A[x] :=
⋃

N,n∈N
Im(ρN |n) is the A-algebra of non-symmetric functions and

Λ̂k
A[x] :=

⋃
N,n∈N

Im(ρkN |n) are the k-homogeneous A-modules of non-symmetric

functions over x.

These definitions are related by the following proposition.

Proposition 26. Let x = (x1, x2, . . . ) be a countably infinite set of variables.

Then

Λ̂A[x] =
⊕
k∈N

Λ̂k
A[x]

as a graded algebra.
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Proof: Since ΛA[x1, . . . , xN |xN+1, . . . , xn] =
⊕
k

Λk
A[x1, . . . , xN |xN+1, . . . , xn]

for all N 6 n, each polynomial f ∈ ΛA[x1, . . . , xN |xN+1, . . . , xn] may be

uniquely decomposed in its k-homogeneous components. Let f =
J∑
k=0

f (k)

be such decomposition, where f (k) ∈ Λk
A[x1, . . . , xN |xN+1, . . . , xn] for each k.

Then:

ρN |m,n(f) =
J∑
k=0

ρN |m,n
(
f (k)
)

=
J∑
k=0

ρkN |m,n
(
f (k)
)
, ∀m ∈ N.

Therefore

ρN |n(f) =
J∑
k=0

ρN |n
(
f (k)
)

=
J∑
k=0

ρkN |n
(
f (k)
)
.

is the unique decomposition of f in components of Λ̂k
A[x].

Now for arbitrary k1, k2,∈ N, let f ∈
⋃

n,N∈N
Im(ρk1N |n) and g ∈

⋃
n,N∈N

Im(ρk2N |n),

that is, there are N1, N2,m1,m2 ∈ N and f ′ ∈ Λk1
A [x1, . . . , xN1 |xN1+1, . . . , xm1 ],

g′ ∈ Λk2
A [x1, . . . , xN2 |xN2+1, . . . , xm2 ] such that f = ρk1N1|m1

(f ′) and g = ρk2N2|m2
(g′).

Now since for all k ∈ N,

m 6 n ⇒ Im(ρkN |m,n) ⊆ Im(ρkN |m,n), ∀N ∈ N
M 6 N ⇒ Im(ρkM |m,n) ⊆ Im(ρkN |m,n), ∀n,m ∈ N

take m = max{m1,m2} and N = max{N1, N2}, so that f = ρk1N |m(f ′) and

g = ρk2N |m(g′). Therefore

fg = ρk1N |m(f ′)ρk2N |m(g′)

=
(
ρk1N |m′,m(f ′)

)
m′∈N

(
ρk2N |m,m′(g

′)
)
m′∈N

=
(
ρk1N |m′,m(f ′)ρk2N |m′,m(g′)

)
m′∈N

=
(
ρN |m′,m(f ′)ρN |m′,m(g′)

)
m′∈N

=
(
ρN |m′,m(f ′g′)

)
m′∈N

=
(
ρk1+k2
N |m′,m(f ′g′)

)
m′∈N

= ρk1+k2
n (f ′g′) ∈

⋃
N,n∈N

Im(ρkN |n).

�
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Observations:

• Both the algebra of non-symmetric functions and its sub-modules of k-

homogeneous non-symmetric functions will be denoted without reference

to their variables by Λ̂A and Λ̂k
A, respectively.

• Non-symmetric functions will often be expressed as objects with a non-

symmetric polynomial components (in finitely many variables) and sym-

metric components (in countably infinitely many variables).

The algebra of non-symmetric functions Λ̂A is intimately related to ΛA.

In fact, there is a natural epimorphism

Λ̂A → ΛA

f(x1, x2, x3, . . . ) 7→ f(0, . . . , 0︸ ︷︷ ︸
quantity of

non-symmetric
variables of f

, x1, x2, x3, . . . )

which effects the symmetrization of non-symmetric functions.

Every (non-null) symmetric function has infinitely many inverse images

under this epimorphism and the image of a base for Λ̂Q(α) is necessarily a base

for ΛQ(α). In particular, the appropriately called family of Non-Symmetric

Jack Functions is a base for Λ̂Q(α) — indexed by compositions instead of par-

titions — which becomes the family of Jack functions upon symmetrization.

Non-symmetric Jack polynomials are denoted by Fλ(α) (or simply Fλ) and

can be defined in multiple ways.

• Simultaneous eigenfunction polynomials of Chrednik operators;

ξi := αxi
∂

∂xi
+
∑
k<i

xi
xi − xk

(1− sik) +
∑
k>i

xk
xi − xk

(1− sik) + 1− i

• Family of polynomials orthogonal with respect to the inner product [11];

〈f, g〉α := constant term of f(x)g(x−1)
∏
i 6=j

(1− xix−1
j )

1
α
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• Sahi-Knop’s Combinatorial Formula;

• Sahi-Knop’s Recursive Formula.

The latter two of which are described in the following sections.

4.2 Combinatorial Formula

Sahi-Knop’s combinatorial formula for non-symmetric Jack functions is

very similar to that for Jack functions, with concepts of tableaux admissibility

and critical points being just slightly altered.

Definition 4.2.1. Let T be a (generalized) tableau of shape λ (where now

λ ∈ N∞ instead of P), that is, a labelling T with numbers 1, 2, 3, . . . of

the boxes (i, j) in the Ferrers diagram of λ. Then T is 0-admissible if it

would be admissible upon the juxtaposition of a 0-th column with the numbers

1, 2, 3, . . . in increasing order.

Example:

1 1 2

5 3 5 5

3 4 4

4 2

is 0-admissible because

1 1 1 2

2 5 3 5 5

3 3 4 4

4 4 2

is admis-

sible.

However, albeit admissible,

2

1 1
is not 0-admissible because

1 2

2 1 1
is not admissible.

The set of all 0-admissible tableaux of shape λ and weight µ (where λ

and µ are compositions) is denoted by Tab0-ad(λ, µ) and the set of 0-admissible

tableaux of shape λ is denoted by Tab0-ad(λ).

Definition 4.2.2. A point (i, j) is said to be 0-critical if it is critical for

the diagram formed by the juxtaposition of a 0-th column with the numbers

1, 2, 3, . . . in increasing order.
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Example: 0-critical points are those indicated by a red circle in the di-

agram

1© 1© 2

5 3 5 5©
3© 4 4©
4© 2

because those are the critical points in

1 1© 1© 2

2 5 3 5 5©
3 3© 4 4©
4 4© 2

.

Now for any given labelling T ∈ Tabad(λ), define the polynomial in α.

Definition 4.2.3.

d0
T (α) :=

∏
s 0-critical

hλ(s)

Then for each composition λ ∈ N∞, non-symmetric Jack Functions

may be defined by the following combinatorial formula, proven equivalent to

former definitions by Sahi and Knop.

Theorem 11. [4, Theorem 5.1]

Fλ(α) :=
∑

T∈Tab0-ad(λ)

d0
T (α)x|T | (53)

Non-symmetric Jack Functions will henceforth be denoted without ref-

erence to the variable α, as simply Fλ.

Examples:

1. F(2,1)

Firstly write all 0-admissible types of tableaux which must be con-

sidered5, which are 20 for F(2,1). For following tableaux, i 6= j 6= k 6= i

(i, j, k > 2) and below each tableau is its correspondent dT (α)x|T | term. Once

again, 0-critical points are indicated by a red circle.

5For this example, tableaux are of the same “type” if there is a bijection between them

which acts as the identity for boxes labelled 1 and 2 (since `(2, 1) = 2).
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1© 1©
2©

1© 2

2©
1© 1©
i

i 2

2©
2 2©
i

2(α+ 1)3x2
1x2 2(α+ 1)2x1x

2
2 2(α+ 1)2x2

1xi (α+ 1)x2
2xi (α+ 1)x2

2xi

1© i

2©
2 1

i

i 1

2©
1© 2

i

j i

k

2(α+1)2x1x2xi x1x2xi (α+ 1)x1x2xi 2(α+ 1)x1x2xi xixjxk

i i©
2©

2 i

i

1© i

i

i i©
j

j i

i

(α+ 1)2x2x
2
i x2x

2
i (α+ 1)x1x

2
i (α+ 1)x2

ixj x2
ixj

i 1

j

1© i

j

j i

2©
i 2

j

2 i

j

x1xixj 2(α+ 1)x1xixj (α+ 1)x2xixj x2xixj x2xixj

Summing these terms for all i 6= j 6= k 6= i and i, j, k > 2

F(2,1) =2(α + 1)3x2
1x2 + 2(α + 1)2x1x

2
2 +

(
(α2 + 2α + 2)x2 + (α + 1)x1

)( ∑
i>2

x2
i

)
+
(

2(α + 1)2x2
1 + (2α + 3)(α + 2)x1x2 + 2(α + 1)x2

2

)( ∑
i>2

xi
)

+
(

(2α + 3)x1 + (α + 3)x2

)( ∑
i 6=j
i,j>2

xixj
)

+ (α + 2)

( ∑
i 6=j
i,j>2

x2
ixj

)

+

( ∑
i 6=j 6=k 6=i
i,j,k>2

xixjxk
)
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Now expressing these formal sums in terms of symmetric functions:∑
i>2

xi =m(1)(x3, x4, . . . ) = m1 − x1 − x2∑
i>2

x2
i =m(2)(x3, x4, . . . ) = m2 − x2

1 − x2
2∑

i 6=j
i,j>2

xixj =2m(12)(x3, x4, . . . ) = 2
(
m(12) − (x1 + x2)m(1) + x2

1 + x1x2 + x2
2

)
∑
i 6=j
i,j>2

x2
ixj =m(2,1)(x3, x4, . . . )

=m(2,1) − (x2
1 + x2

2)m1 − (x1 + x2)m2 + (2x3
1 + x2

1x2 + x1x
2
2 + 2x3

2)∑
i 6=j 6=k 6=i
i,j,k>2

xixjxk =6m(13)(x3, x4, . . . )

=6
(
m(13) − (x1 + x2)m(12) + (x2

1 + x1x2 + x2
2)m1 − (x3

1 + x2
1x2 + x1x

2
2 + x3

2)
)

So finally

F(2,1) =2(α + 1)3x2
1x2 + 2(α + 1)2x1x

2
2 +

(
(α2 + 2α + 2)x2 + (α + 1)x1

)
(m2 − x2

1 − x2
2)

+
(

2(α + 1)2x2
1 + (2α + 3)(α + 2)x1x2 + 2(α + 1)x2

2

)
(m1 − x1 − x2)

+ 2
(

(2α + 3)x1 + (α + 3)x2

) (
m(12) − (x1 + x2)m(1) + x2

1 + x1x2 + x2
2

)
+ (α + 2)

(
m(2,1) − (x2

1 + x2
2)m1 − (x1 + x2)m2 + (2x3

1 + x2
1x2 + x1x

2
2 + 2x3

2)
)

+ 6
(
m(13) − (x1 + x2)m(12) + (x2

1 + x1x2 + x2
2)m1 − (x3

1 + x2
1x2 + x1x

2
2 + x3

2)
)

=(α2)
(

(2α + 1)x2
1x2 − x3

2 − 2x3
1

)
+
(

(2α + 1)x1x2 + (2α− 1)x2
1 − x2

2

)
(α)m(1)

+ (x1 + (α + 1)x2)(α)m(2) + (2α)(2x1 + x2)m(12) + (α + 2)m(2,1) + 6m(13)
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2. F(1,2).

Repeat the same procedure. For F(1,2), there are 13 types of tableaux

which must be considered

1©
j i

i

j 1

i

j 2

2

j i

j

2© i

(α+ 2)x1xixj x1xixj x2xixj x2xixj (2α+ 1)x2xixj

1©
2© i

1©
i 2

i

2© 1

2

i 1

i

2© 2©
(2α+ 1)(α+ 2)x1x2xi (α+ 2)x1x2xi (2α+ 1)x1x2xi x1x2xi (2α+ 1)(α+ 1)x2

2xi

1©
2© 2©

j

i i©
j

k i

(2α+ 1)(α+ 2)(α+ 1)x1x
2
2 (α+ 1)x2

ixj xixjxk

Summing these terms for all i 6= j 6= k 6= i and i, j, k > 2

F(1,2) =(2α + 1)(α + 2)(α + 1)x1x
2
2 +

(
2(α + 1)(α + 3)x1x2 + (2α + 1)(α + 1)x2

2

)(∑
i>2

xi

)

+
(

(α + 3)x1 + (2α + 3)x2

)( ∑
i 6=j
i,j>2

xixj
)

+ (α + 1)

( ∑
i 6=j
i,j>2

x2
ixj

)

+

( ∑
i 6=j 6=k 6=i
i,j,k>2

xixjxk
)

=
(
(1− α)x3

1 + (2α + 1)(α + 1)x1x
2
2 − (2α + 1)(x2

1x2 + x3
2)
)

(α)

+ ((2α + 1)(x1x2 + x2
2)− 3x2

1)(α)m(1) + α(α + 2)(x1)m(2)

+ 2α(x1 + 2x2)m(1,1) + 2(x2 − x1)m(1,1) + (α + 2)m(2,1) + 6m(1,1,1)

Observation: Notice that the symmetric parts of both F(2,1) and F(1,2)

are exactly the same, and are equal to

(α + 2)m2,1 + 6m(1,1,1) = J(2,1)

This is no coincidence, but rather an example of the general case given

by the following theorem.
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Theorem 12. [4, Theorem 4.10] If λ ∈ N∞,

Jλ+(x1, x2, x3, . . . ) = Fλ(0, . . . , 0︸ ︷︷ ︸
`(λ)

, x1, x2, x3, . . . )

Sahi-Knop’s combinatorial formula for non-symmetric Jack functions

together with (45) and (46) can be utilized to calculate non-symmetric Jack

functions indexed by a composition with a single row.

Proposition 27.

Fnεk = J(n) +
n∑
j=1

(n− 1)!

(n− j)!
αj−1

(
nαxjk − pj(x1, . . . , xk−1)

)
J(n−j)

Proof: Firstly notice that

• if i < k, admissible T are not 0-admissible

• if i = k, admissible T are 0-admissible and d0
T (α) = (nα + 1)dT (α)

• if i > k, admissible T are 0-admissible and d0
T (α) = dT (α)

So

Fnεk =
∑
i>1

( ∑
T∈Tab0−ad(nεk)

T (k,1)=i

d0
T (α)x|T |

)

= (nα + 1)
∑

T∈Tabad(n)
T (1,1)=k

dT (α)x|T | +
∑
i>k

( ∑
T∈Tabad(n)
T (1,1)=i

dT (α)x|T |

)

=J(n) + nα
n∑
j=1

(n− 1)!

(n− j)!
αj−1xjkJ(n−j) −

∑
i<k

n∑
j=1

(n− 1)!

(n− j)!
αj−1xjiJ(n−j)

=J(n) +
n∑
j=1

(n− 1)!

(n− j)!
αj−1

(
nαxjk − pj(x1, . . . , xk−1)

)
J(n−j)

�
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4.3 Recursion Formula

Let SN be the group of bijections N → N which change finitely many

elements in N, that is, for each φ ∈ SN, the set {i ∈ N : φ(i) 6= i} is finite. For

each n ∈ N, denote σn = (1 2 3 · · · n) ∈ SN and consider the natural action

of SN over Λ̂Q(α)

σnf(x1, x2, . . . , xn, xn+1, . . . ) = f(xn, x1, . . . , xn−1, xn+1, . . . )

Recall that hλ(s) = (aλ(s)+1)α+(`λ(s)+1) and λ∗ = (λL−1, λ1, . . . , λL−1, 0, . . . )

and define the Λ̂Q(α) → Λ̂Q(α) operator

Yλ := hλ(L, 1)xLσL +
∑
i>L

xiσi

Then Sahi-Knop recursion formula states that, for each λ ∈ N∞,

Theorem 13. [4, Theorem 5.1]

Fλ = Yλ (Fλ∗) (54)

Now consider the finite sequence seq(λ) = (λ, λ∗, λ∗∗, . . . , λ∗···∗), where

|λ∗···∗| = 1. Since F(0) = 1, the formula provided by the theorem can be

restated as

Fλ = Yλ ◦ Yλ∗ ◦ Yλ∗∗ ◦ · · · ◦ Yλ∗···∗ (1) .

The recursion formula can be stated as an alternative definition of non-

symmetric Jack functions and also used as means to prove results concerning

them, like the following proposition.

Proposition 28.

F(0M ,1N ) =
N∑
k=0

k!

(
M+N∏

j=M+k+1

(α + j)

)
eN−k(xM+1, . . . , xM+N)ek(xM+N+1, . . . )

(55)
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Proof: This is proven by induction on N , while fixating `
(
0M , 1N

)
=

M +N = L.

For N = 1,

F(0M ,1) =h(0M ,1)xM+1σM+1(1) +
∑

i>M+1

xiσi(1)

=(α +M + 1)xM+1 +
∑
i>L

xi

=0!(α +M + 1)e1(xM+1)e0(xM+2, . . . ) + 1!e0(xM+1)e1(xM+2, . . . )

and the formula holds. Suppose the result is valid for N ,

F(0M−1,1N+1) =h(0M−1,1N+1)(L, 1)xLσL
(
F(0M ,1N )

)
+
∑
i>L

xiσi
(
F(0M ,1N )

)
=(α +M)

N∑
k=0

(
L∏

j=M+k+1

(α + j)

)
k! xLeN−k(xM , . . . , xL−1)ek(xL+1, . . . )+

∑
i>L

N∑
k=0

(
L∏

j=M+k+1

(α + j)

)
k! xieN−k(xM , . . . , xL−1)e

(i)
k (xL, . . . )

where e
(i)
k (xq, xq+1, . . . ) = ek(xq, xq+1, . . . , xi−1, xi+1, . . . ).

Now since ek(xL, xL+1, . . . ) = xLek−1(xL+1, . . . ) + ek(xL+1, . . . ) and∑
i>L

xie
(i)
q (xL+1, . . . ) = (q + 1)eq+1(xL+1, . . . ), F(0M−1,1N+1) is equal to
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(α +M)
N∑
k=0

(
L∏

j=M+k+1

(α + j)

)
k! xLeN−k(xM , . . . , xL−1)ek(xL+1, . . . )+

N∑
k=0

(
L∏

j=M+k+1

(α + j)

)
k! eN−k(xM , . . . , xL−1)

(
kxLek(xL+1, . . . ) + (k + 1)ek+1(xL+1, . . . )

)
=

N∑
k=0

(
L∏

j=M+k+1

(α + j)

)
(α +M + k)k! xLeN−k(xM , . . . , xL−1)ek(xL+1, . . . )+

N∑
k=0

(
L∏

j=M+k+1

(α + j)

)
(k + 1)! eN−k(xM , . . . , xL−1)ek+1(xL+1, . . . )

=

(
L∏

j=M

(α + j)

)
xLeN(xM , . . . , xL−1) + (N + 1)!eN+1(xL+1, . . . )+

N∑
k=1

(
L∏

j=M+k

(α + j)

)
k!
(
eN−k+1(xM , . . . , xL−1) + xLeN−k(xM , . . . , xL−1)

)
ek(xL+1, . . . )+

=
N+1∑
k=0

(
L∏

j=M+k

(α + j)

)
k!eN+1−k(xM , . . . , xL)ek(xL+1, . . . )

�
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Examples:

1. F(1,0,2)

The recursive formula yields F(1,0,2) = Y(1,0,2)

(
F(1,1)

)
, but F(1,1) is given

by (55)

F(1,1) = (a+1)(a+2)x1x2+(a+2)(x1+x2)m(1)(x3, x4, . . . )+2m(1,1)(x3, x4, . . . )

so

F(1,0,2) =h(1,0,2)(3, 1)x3σ3

(
F(1,1)

)
+
∑
i>3

xiσi
(
F(1,1)

)
=(2α + 3)x3

(
(α + 1)(α + 2)x3x1 + (α + 2)(x3 + x1)

(
x2 +m(1)(x4, x5, . . . )

)
+ 2
(
x2m(1)(x4, x5, . . . ) +m(1,1)(x4, x5, . . . )

))
+
∑
i>3

xi

(
(α + 1)(α + 2)xix1 + (α + 2)(xi + x1)

(
x2 +m(1)(x4, x5, . . . )

)
+ 2
(
x2m(1)(x4, x5, . . . ) +m(1,1)(x4, x5, . . . )

))
=(α + 2)(2α + 3)

(
x1x2x3 + (α + 1)x1x

2
3 + x2x

2
3

)
+

(α + 2)
(
x1x2 + 2(α + 2)x1x3 + 4x2x3 + (2α + 3)x2

3

)
m(1)(x4, x5, . . . )+

(α + 2)
(
(α + 1)x1 + x2 + x3

)
m(2)(x4, x5, . . . )+

2
(
(α + 2)x1 + 2x2 + (2α + 5)x3

)
m(12)(x4, x5, . . . )+

(α + 2)m(2,1)(x4, x5, . . . ) + 6m(13)(x4, x5, . . . )

4.4 Pieri Rule

Upon symmetrization, many results concerning non-symmetric Jack

functions extend to symmetric Jack functions. For example, Jack functions

Jλ can be calculated by applying the recursion formula for a non-symmetric Fλ

and symmetrizing the resulting function. Furthermore, if a Pieri or Littlewood-

Richardson-Robinson type rule were known for non-symmetric Jack functions,

it would be similarly extendable for symmetric functions. The extra informa-

tion carried by non-symmetric Jack functions might provide useful strategies
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for proving results regarding “regular” Jack functions. The first step towards

a Pieri rule for the non-symmetric case is due to Waldeck Schützer, but before

it can be stated, some definitions must be provided.

Definition 4.4.1. Let λ = (λ1, λ2, . . . , λ`) and L = {L1, L2, . . . , LJ} a non-

empty subset of {1, 2, . . . , `} with L1 < L2 < · · · < LJ . Furthermore, for

σ ∈ SN, λ ∈ N∞, let σ · λ be the action which permutates λ entries. Then

cL(λ) := εLJ + (L1 L2 · · · LJ)−1 · λ

Example: c{2,4,5}(4, 1, 1, 4, 3, 3)

For illustration purposes, the operation will be performed employing

diagrams. Below, cyan rows ( ) are those whose indices are in L, and εk’s

square is coloured blue ( ).

c{2,4,5}


 = + =

so the resulting composition is (4, 4, 1, 3, 2, 3).

Definition 4.4.2. Let λ = (λ1, λ2, . . . , λ`). A subset L = {L1, L2, . . . , LJ} of

{1, 2, . . . , `} is maximal with respect to λ if

• λL1 6= λi for i < L1;

• λLj 6= λi for Lj−1 < i < Lj;

• λL1 6= λi − 1 for LJ < i.

Example: Let λ = (310, 010, 110, 310, 410, 210). Any subset of {1, 11, 21, 31, 41, 51}
which contains 51 and either 11 or 21 is maximal in λ, however

• {1, 31, 41, 51} is not because λ31 =


λ2

...

λ10
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• {1, 11, 21, 41} is not because λ1 =


λ42 − 1

...

λ50 − 1

Proposition 29. [13, Proposition 3.1.6] Let L be maximal with respect to λ

and cL(λ) = cM(λ). Then M ⊆ L.

Corollary: Given η and λ, cL(λ) = η determines maximal L uniquely.

Let gλkη denote the coefficients of Fη in the linear decomposition of

FεkFλ:

FεkFλ =
∑
η

gλkηFη

Coefficients gλkη’s which appear in this decomposition are entirely determined

by the theorem:

Theorem 14. [13, Proposition 3.1.6] Denote L = {L1, L2, . . . , L`} = {i : ηi 6=
λi}. Coefficients gλkη are nonzero if, and only if, all of the following conditions

are satisfied

1. λ = cL(η);

2. ∃i > k such that either ηi 6= λi or ηi = ηL1 + 1;

3. If ηL1 = η1 = η2 = · · · = ηk, then L1 6 k.
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Examples:

1. η = (am)

For any non-empty subset L = {L1, . . . , LJ} ⊆ {1, . . . ,m}, cL(am) =

(am) + εLJ

• By condition 1 of the theorem, L = {LJ};

• By condition 2 of the theorem, LJ > k;

• By condition 3 of the theorem, LJ 6 k.

therefore for η = (am), λ = (αm) + εk is the only case of non-zero gλkη.

2. η = (am, bn) and k 6 m

For this case, and a non-empty subset L ⊆ {1, . . . ,m + n}, there are 3

possibilities

(a) L ⊆ {1, 2, . . . ,m};

And by the same argument of the previous example, if L ⊆ {1, . . . ,m},
L = {k} and λ = (am, bn) + εk.

(b) L ⊆ {m+ 1,m+ 2, . . . ,m+ n};

Condition 3 of the theorem no longer applies and by a partial ver-

sion of the same argument of the previous example, if

L ⊆ {m+ 1, . . . ,m+ n}, L = {i} for i > m and λ = (am, bn) + εi

(c) L ∩ {1, 2, . . . ,m} 6= ∅ 6= L ∩ {m+ 1,m+ 2, . . . ,m+ n}.

• By condition 1 of the theorem, λ = (ai−1, b, am−i, bj−1, a, bn−j)+

εj for some i ∈ {1, . . . ,m}, j ∈ {m+ 1, . . . ,m+ n}.

• Condition 2 is already satisfied

• By condition 3 of the theorem, i 6 k.

And so the set of compositions λ for which gλkη is non-zero is

{η + εk} ∪ {η + εi : i > m} ∪ {(i j) · η + εj : i 6 k and j > m}
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3. η = (am, bn) and k > m

This is very similar to the previous example, except that now L *
{1, . . . ,m}.

For this case, the set of compositions λ for which gλkη is non-zero is

{η + εi : i > m} ∪ {(i j) · η + εj : k 6 j and j > m}

4. η = (2, 1, 1, 3) and k = 3.

For this and the next example, a more visual approach is taken. The

following conjugations are those λ for which gλkη 6= 0. Cyan rows denote

those indexed by elements in L and dark blue square denotes where a

square was added in cL(η).

·




5. η = (2, 2, 1, 3) and k = 1.

The set of compositions λ for which gλkη is non-zero is

·
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In order to fully characterize these coefficients gλkη, some more defini-

tions must be laid out. Let L = {L1, L2, . . . , LJ} = {i : ηi 6= λi} maximal

with respect to η and let 1 6 k 6 `(η).

Definition 4.4.3.

h∗η(i, j) :=


ĥη(i, j) if i /∈ L

1 if (i, j) = (Lp, ηLp+1 + 1) for p < J

1 if (i, j) = (LJ , ηL1 + 2)

hη(i, j) otherwise

hλ∗(i, j) :=


hλ(i, j) if i /∈ L
−1 if (i, j) = (Lp, λLp−1 + 1) for p > 1

−1 if (i, j) = (L1, ηLJ )

ĥλ(i, j) otherwise

h∗(k)
η (i, j) :=



ĥη(i, j) if i /∈ L or i = k ∈ L
1 if (i, j) = (Lp, ηLp+1 + 1) for p < J

such that k 6= Lp

1 if (i, j) = (LJ , ηL1 + 2) and k 6= LJ

hη(i, j) otherwise

hλ∗(k)(i, j) :=



hλ(i, j) if i /∈ L or i = k ∈ L
−1 if (i, j) = (Lp, λLp−1 + 1) for p > 1

such that k 6= Lp

−1 if (i, j) = (L1, ηLJ ) and k 6= LJ

ĥλ(i, j) otherwise

bηλ(α) :=

(∏
s∈η

h∗η(s)

)(∏
s∈λ

hλ∗(s)

)
(∏

s∈λ

ȟλ(s)ĥλ(s)

) b
(k)
ηλ (α) :=

(∏
s∈η

h∗(k)
η (s)

)(∏
s∈λ

hλ∗(k)(s)

)
(∏

s∈λ

ȟλ(s)ĥλ(s)

)
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And with that, Waldeck’s theorem can finally be stated.

Theorem 15. [13, Theorem 3.3.5]

Let FεkFη =
∑
λ

gλkηFη. If gλkη 6= 0,

gλkη =



(
cλ(k, λk)− cλ(LJ , λLJ )

)
bηλ + (α + k)b

(k)
ηλ if k ∈ L(

cλ(Lp, λLp)− cλ(LJ , λLJ )
)
bηλ if k /∈ L, k < LJ and

Lp < k < Lp+1 for some p

−αbηλ if k < L1

(56)

While these definitions may look cumbersome, they have a very nice

pictorial correspondence, which will be explored in the following examples.

Examples:

1. η = (2, 1, 1, 3), k = 3 and λ = (2, 3, 1, 2)

The set of λ for which gλ3(2,1,1,3) 6= 0 has already been described to be

{(1, 1, 3, 3); (1, 3, 1, 3); (2, 1, 1, 4); (2, 1, 2, 4); (2, 1, 3, 2); (2, 3, 1, 2); (3, 1, 1, 3)}

For λ = (2, 3, 1, 2), L = {2, 4} and it is already maximal with respect

to η. Since L1 < k = 3 < L2, the second case listed in the Theorem must be

applied.

gλkη =
(
cλ(Lp, λLp)− cλ(LJ , λLJ )

)
bηλ

=
(
c(2,3,1,3)(2, 3)− c(2,1,1,3)a(4, 3)

)
( ∏
s∈(2,1,1,3)

h∗(2,1,1,3)(s)

)( ∏
s∈(2,3,1,3)

h(2,3,1,3)
∗ (s)

)
( ∏
s∈(2,3,1,2)

ȟ(2,3,1,2)(s)ĥ(2,3,1,3)(s)

)

(
c(2,3,1,2)(2, 3)− c(2,3,1,2)(4, 2)

)
= (3α− 0)− (2α− 2) = (α + 2)

The next step is to calculate
∏
s∈η

h∗η(s) and
∏
s∈λ

hλ∗(s). And for this, we

introduce what’s been coined a “jeu de flèches”.

118



Draw the diagrams of η and λ and fill their L rows — colour-coded

blue ( ) for η and red ( ) for λ — with their respective correspondent h and

ĥ values, and their remaining rows with their respective correspondent h and

ĥ values, like so

ĥ ĥ

h ↑

ĥ

h h h ↑

h h

ĥ ĥ ĥ ↓

h

ĥ ĥ ↓

The jeu de flèches functions as follows. Project each arrow to the next

L row (in the direction it points to), moving arrows in η (↑) one column to

the right as they cycle down and arrows in λ (↓) one column to the left as

they cycle up. The content of whichever square in L is “hit” by an arrow is

replaced by 1 in η and by -1 in λ.

2α+2 α

α+2 ↑

α

3α+4 2α+4 1 ↑

�

�

�

�

2α+3 α+2

3α+3 −1 α+1 ↓

α+1

2α+1 α+1 ↓
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Finally, the coefficient gλkη can be computed

gλkη = (α+2)



2α+2 α

α+2

α

3α+4 2α+4 1





2α+3 α+2

3α+3 −1 α+1

α+1

2α+1 α+1




α+3 2

2α+4 α+3 2

1

α+2 2





2α+2 α+1

3α+3 2α+2 α+1

α

2α+1 α+1



=
α(α+ 2)2(2α+ 3)(3α+ 4)

16(α+ 1)(α+ 3)2

2. η = (2, 1, 1, 3), k = 3 and λ = (1, 1, 3, 3)

For λ = (1, 1, 3, 3), L = {1, 3}, but the maximal L with respect to η is

{1, 2, 3}. Since k = 3 ∈ L, the first case listed in the theorem must be applied.

Moreover, since k = 3 = LJ ,
(
cλ(k, λk)− cλ(LJ , λLJ )

)
= 0, and so

gλkη = (α + k)b
(k)
ηλ = (α + 3)

( ∏
s∈(2,12,3)

h
∗(k)

(2,12,3)(s)

)( ∏
s∈(12,32)

h
(12,32)
∗(k) (s)

)
( ∏
s∈(12,32)

ĥ(12,32)(s)ĥ(12,32)(s)

)

Repeat the jeu de flèches, but with the following difference with respect

to the previous case. Since k = e ∈ L, the third row must be “shielded” from

any arrows for the evaluation of b
(k)
ηλ .
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2α+3 1 ↑

α+2 ↑

α+1 ↑

3α+3 2α+3 α+1

α+1 ↓

α ↓

3α+3 2α+3 α+1 ↓

3α+4 2α+4 α+2

So the coefficient is

gλkη = (α+3)



2α+3 1

α+2

α+1

3α+3 2α+3 α+1





α+1

α

3α+3 2α+3 α+1

3α+4 2α+4 α+2




2

1

2α+4 α+4 2

2α+3 α+3 1





α+1

α

3α+3 2α+3 α+1

3α+2 2α+2 α



=
3(2α+ 3)(α+ 1)2(α+ 2)2

8(3α+ 2)(α+ 4)α

3. η = (2, 2, 1, 3), k = 1 and λ = (2, 2, 3, 2)

L = {3, 4} is already maximal with respect to η. Since k = 1 < L1 = 3,

the last listed case of the theorem must be applied: gλkη = −αbηλ.
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2α+2 α+1

2α+1 α

α+1 ↑

3α+4 2α+4 1 ↑

�

�

�

�

2α+3 α+3

2α+2 α+2

3α+3 −1 α+2 ↓

2α α ↓

gλkη = −α



2α+2 α+1

2α+1 α

α+1

3α+4 2α+4 1





2α+3 α+3

2α+2 α+2

3α+3 −1 α+2

2α α




α+3 3

α+2 2

2α+4 α+4 3

α+1 1





2α+2 α+2

2α+1 α+1

3α+3 2α+3 α+2

2α α



=
α2(α + 1)(3α + 4)

9(α + 4)(α + 2)

4.5 Future Pursuits

In spite of how well-established the theory of symmetric functions cur-

rently is, there are plenty of open problems and conjectures yet to be resolved.

Most notably for the scope of this text, the Littlewood-Richardson-Robinson

analogue for symmetric and non-symmetric Jack functions.
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Besides its own intrinsic interest, the study of non-symmetric functions

is a promising technique for working out problems concerning symmetric func-

tions. The recursive formula given by Sahi and Knop is an indication of their

potential. Two natural directions in which the current knowledge of non-

symmetric functions could be furthered are the generalizations of Schültzer’s

rule for the cases

(a) FλFnεk

(b) FλFµ where µ is a single-column composition.

Upon symmetrization, both of these cases reduce to the two cases of the Pieri

rule for symmetric Jack functions. We believe these are worthwhile directions

to be pursed.
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A Transition Matrices

Expressing the transition matrix M(u, v) which effects the base change

between v and u is tantamount to expressing v in terms of u. In this ap-

pendix complete; elementary; forgotten; power; Schur and Jack functions are

expressed in terms of monomial functions through transition matrices for 6

|λ| 6 6.

In order to express a transition matrix, a total ordering of partitions

in Pn must be specified, which was for this case the reverse lexicographical

ordering (L), meaning

P2: (2) >L (12)

P3: (3) >L (2, 1) >L (13)

P4: (4) >L (3, 1) >L (22) >L (2, 12) >L (14)

P5: (5) >L (4, 1) >L (3, 2) >L (3, 12) >L (22, 1) >L (2, 13) >L (15)

P6: (6) >L (5, 1) >L (4, 2) >L (4, 12) >L (32) >L (3, 2, 1) >L (3, 13)

>L (23) >L (22, 12) >L (2, 14) >L (16)

So for instance, M4(s,m) =



1 1 1 1 1

0 1 1 2 3

0 0 1 1 2

0 0 0 1 3

0 0 0 0 1


means that



s(4)

s(3,1)

s(22)

s(2,12)

s(14)


=



1 1 1 1 1

0 1 1 2 3

0 0 1 1 2

0 0 0 1 3

0 0 0 0 1





m(4)

m(3,1)

m(22)

m(2,12)

m(14)



6Case |λ| = 1 is trivial: h1 = e1 = f1 = p1 = s1 = J1
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A.1 Complete Functions

M2(h,m) =

[
1 1

1 2

]

M3(h,m) =


1 1 1

1 2 3

1 3 6



M4(h,m) =



1 1 1 1 1

1 2 2 3 4

1 2 3 4 6

1 3 4 7 12

1 4 6 12 24



M5(h,m) =



1 1 1 1 1 1 1

1 2 2 3 3 4 5

1 2 3 4 5 7 10

1 3 4 7 8 13 20

1 3 5 8 11 18 30

1 4 7 13 18 33 60

1 5 10 20 30 60 120



M6(h,m) =



1 1 1 1 1 1 1 1 1 1 1

1 2 2 3 2 3 4 3 4 5 6

1 2 3 4 3 5 7 6 8 11 15

1 3 4 7 4 8 13 9 14 21 30

1 2 3 4 4 6 8 7 10 14 20

1 3 5 8 6 12 19 15 24 38 60

1 4 7 13 8 19 34 24 42 72 120

1 3 6 9 7 15 24 21 33 54 90

1 4 8 14 10 24 42 33 58 102 180

1 5 11 21 14 38 72 54 102 192 360

1 6 15 30 20 60 120 90 180 360 720
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A.2 Elementary Functions

M2(e,m) =

[
0 1

1 2

]

M3(e,m) =


0 0 1

0 1 3

1 3 6



M4(e,m) =



0 0 0 0 1

0 0 0 1 4

0 0 1 2 6

0 1 2 5 12

1 4 6 12 24



M5(e,m) =



0 0 0 0 0 0 1

0 0 0 0 0 1 5

0 0 0 0 1 3 10

0 0 0 1 2 7 20

0 0 1 2 5 12 30

0 1 3 7 12 27 60

1 5 10 20 30 60 120



M6(e,m) =



0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 6

0 0 0 0 0 0 0 0 1 4 15

0 0 0 0 0 0 1 0 2 9 30

0 0 0 0 0 0 0 1 2 6 20

0 0 0 0 0 1 3 3 8 22 60

0 0 0 1 0 3 10 6 18 48 120

0 0 0 0 1 3 6 6 15 36 90

0 0 1 2 2 8 18 15 34 78 180

0 1 4 9 6 22 48 36 78 168 360

1 6 15 30 20 60 120 90 180 360 720
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A.3 Forgotten Functions

M2(f,m) =

[
−1 0

1 1

]

M3(f,m) =


1 0 0

−2 −1 0

1 1 1



M4(f,m) =



−1 0 0 0 0

2 1 0 0 0

1 0 1 0 0

−3 −2 −2 −1 0

1 1 1 1 1



M5(f,m) =



1 0 0 0 0 0 0

−2 −1 0 0 0 0 0

−2 0 −1 0 0 0 0

3 2 1 1 0 0 0

3 1 2 0 1 0 0

−4 −3 −3 −2 −2 −1 0

1 1 1 1 1 1 1



M6(f,m) =



−1 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0

−3 −2 −1 −1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0

−6 −2 −2 0 −4 −1 0 0 0 0 0

4 3 2 2 2 1 1 0 0 0 0

−1 0 −1 0 0 0 0 −1 0 0 0

6 3 4 1 4 2 0 3 1 0 0

−5 −4 −4 −3 −4 −3 −2 −3 −2 −1 0

1 1 1 1 1 1 1 1 1 1 1
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A.4 Power Functions

M2(p,m) =

[
1 0

1 2

]

M3(p,m) =


1 0 0

1 1 0

1 3 6



M4(p,m) =



1 0 0 0 0

1 1 0 0 0

1 0 2 0 0

1 2 2 2 0

1 4 6 12 24



M5(p,m) =



1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 0 1 0 0 0 0

1 2 1 2 0 0 0

1 1 2 0 2 0 0

1 3 4 6 6 6 0

1 5 10 20 30 60 120



M6(p,m) =



1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

1 2 1 2 0 0 0 0 0 0 0

1 0 0 0 2 0 0 0 0 0 0

1 1 1 0 2 1 0 0 0 0 0

1 3 3 6 2 3 6 0 0 0 0

1 0 1 0 0 0 0 1 0 0 0

1 2 3 2 4 4 0 6 4 0 0

1 4 7 12 8 16 24 18 24 24 0

1 6 15 30 20 60 120 90 180 360 720
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A.5 Schur Functions

M2(s,m) =

[
1 1

0 1

]

M3(s,m) =


1 1 1

0 1 2

0 0 1



M4(s,m) =



1 1 1 1 1

0 1 1 2 3

0 0 1 1 2

0 0 0 1 3

0 0 0 0 1



M5(s,m) =



1 1 1 1 1 1 1

0 1 1 2 2 3 4

0 0 1 1 2 3 5

0 0 0 1 1 3 6

0 0 0 0 1 2 5

0 0 0 0 0 1 4

0 0 0 0 0 0 1



M6(s,m) =



1 1 1 1 1 1 1 1 1 1 1

0 1 1 2 1 2 3 2 3 4 5

0 0 1 1 1 2 3 3 4 6 9

0 0 0 1 0 1 3 1 3 6 10

0 0 0 0 1 1 1 1 2 3 5

0 0 0 0 0 1 2 2 4 8 16

0 0 0 0 0 0 1 0 1 4 10

0 0 0 0 0 0 0 1 1 2 5

0 0 0 0 0 0 0 0 1 3 18

0 0 0 0 0 0 0 0 0 1 5

0 0 0 0 0 0 0 0 0 0 1
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A.6 Jack Functions

Matrices with polynomial entries are bigger and less straightforward

to read than with numeric entries. For the purpose of clarity, a table format

is adopted for displaying Jack function transition matrices. Moreover, since

coefficients of mµ of any given Jack function are multiples of
∏
i

Mµ
i ! where

µ =
(
µ
Mµ

1
1 , µ

Mµ
2

2 ,m
Mµ

3
3 , . . .

)
(42), they will be expressed in terms of multiples(∏

i

Mµ
i !
)
mµ of monomial functions instead of mµ.

m(2) 2m(12)

J(2) (α + 1) 1

J(12) 0 1

m(3) m(2,1) 6m(13)

J(3) (2α + 1)(α + 1) 3(α + 1) 1

J(2,1) 0 (α + 2) 1

J(13) 0 0 1

m(4) m(3,1) 2m(22) 2m(2,12) 24m(14)

J(4)

(α + 1)(2α + 1)

(3α + 1)(4α + 1)

4(α + 1)

(2α + 1)
3(α + 1)2 6(α + 1) 1

J(3,1) 0 2(α + 1)2 2(α + 1)
(α + 1)

(3α + 5)
1

J(22) 0 0
(α + 1)

(α + 2)
2(α + 2) 1

J(2,12) 0 0 0 (α + 3) 1

J(14) 0 0 0 0 1
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m(5) m(4,1) m(3,2) 2m(3,12)

J(5)

(α+ 1)(2α+ 1)

(3α+ 1)(4α+ 1)

5(α+ 1)(2α+ 1)

(3α+ 1)

10(α+ 1)2

(2α+ 1)

10(α+ 1)

(2α+ 1)

J(4,1) 0
(α+ 1)(2α+ 1)

(3α+ 2)
3

(α+ 1)

(3α+ 2)
(α+ 1)(8α+ 7)

J(3,2) 0 0 2(α+ 1)2(α+ 2) 2(α+ 1)(α+ 2)

J(3,12) 0 0 0 (α+ 1)(2α+ 3)

J(22,1) 0 0 0 0

J(2,13) 0 0 0 0

J(15) 0 0 0 0

2m(22,1) 6m(2,13) 120m(15)

J(5) 15(α+ 1)2 10(α+ 1) 1

J(4,1) 3(α+ 1)(α+ 4) 3(2α+ 3) 1

J(3,2) (3α+ 5)(α+ 2) 4(α+ 2) 1

J(3,12) 2(2α+ 3) (3α+ 7) 1

J(22,1) (α+ 3)(α+ 2) 2(α+ 3) 1

J(2,13) 0 (α+ 4) 1

J(15) 0 0 1
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m(6) m(5,1) m(4,2) 2m(4,12)

J(6)

(α+ 1)(2α+ 1)

(3α+ 1)(4α+ 1)

(5α+ 1)

6(α+ 1)(2α+ 1)

(3α+ 1)(4α+ 1)

15(α+ 1)2

(2α+ 1)(3α+ 1)

15(α+ 1)

(2α+ 1)(3α+ 1)

J(5,1) 0
2(α+ 1)(2α+ 1)2

(3α+ 1)
8(2α+ 1)2(α+ 1)

3(α+ 1)(2α+ 1)

(5α+ 3)

J(4,2) 0 0 2(α+ 1)3(3α+ 2) 2(α+ 1)2(3α+ 2)

J(4,12) 0 0 0 3(α+ 1)2(2α+ 1)

J(32) 0 0 0 0

J(3,2,1) 0 0 0 0

J(3,13) 0 0 0 0

J(23) 0 0 0 0

J(22,12) 0 0 0 0

J(2,14) 0 0 0 0

J(16) 0 0 0 0

2m(32) m(3,2,1) 6m(3,13) 6m(23)

J(6) 10(α+ 1)2(2α+ 1)2 60(α+ 1)2(2α+ 1) 20(α+ 1)(2α+ 1) 15(α+ 1)3

J(5,1)

6(α+ 1)2

(2α+ 1)

4(α+ 1)

(5α2 + 20α+ 11)

4(α+ 1)

(5α+ 4)
12(α+ 1)2

J(4,2)

2(α+ 1)2

(3α+ 2)

8(α+ 1)2

(α+ 4)

4(α+ 1)

(2α+ 3)

(α+ 1)

(3α2 + 7α+ 10)

J(4,12) 0 18(α+ 1)2 2(α+ 1)(4α+ 5) 6(α+ 1)

J(32)

2(α+ 1)2(α+ 2)

(2α+ 1)

12(α+ 1)2

(α+ 2)

4(α+ 1)

(α+ 2)

4(α+ 1)

(α+ 2)

J(3,2,1) 0 (2α+ 3)(α+ 2)2 (α+ 2)(2α+ 3) (α+ 2)(2α+ 3)

J(3,13) 0 0 2(α+ 1)(α+ 2) 0

J(23) 0 0 0
(α+ 1)

(α+ 2)(α+ 3)

J(22,12) 0 0 0 0

J(2,14) 0 0 0 0

J(16) 0 0 0 0
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4m(22,12) 24m(2,14) 720m(16)

J(6) 45(α+ 1)2 15(α+ 1) 1

J(5,1) 3(α+ 1)(5α+ 13) 2(5α+ 7) 1

J(4,2) (9α2 + 37α+ 34) (7α+ 13) 1

J(4,12) 3(α2 + 8α+ 9) 6(α+ 2) 1

J(32) 3(3α2 + 11α+ 10) 6(α+ 2) 1

J(3,2,1) 3(α2 + 6α+ 8) (4α+ 11) 1

J(3,13) 6(α+ 2) 3(α+ 3) 1

J(23) 3(α+ 3)(α+ 2) 3(α+ 3) 1

J(22,12) (α+ 4)(α+ 3) 2(α+ 4) 1

J(2,14) 0 (α+ 5) 1

J(16) 0 0 1
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