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RESUMO

SCUDILIO, J. . Modelos de Fração de Cura: Métodos Alternativos para Estimar a Propor-
ção de Curados. 2020. 94 p. Tese (Doutorado em Estatística – Programa Interinstitucional
de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação, Universi-
dade de São Paulo, São Carlos – SP, 2020.

Modelos com fração de cura formaram um importante campo de pesquisa na área de análise
de sobrevivência e tem atraído a atenção dos pesquisadores. Na busca de novos modelos de
fração de cura, esse trabalho tem como principal objetivo propor métodos alternativos para
modelar a proporção de curados. Neste contexto apresentamos dois métodos alternativos a
metodologia existente na literatura. O primeiro método tem enfoque em modelos defeituosos,
os quais têm a vantagem de modelar a proporção de cura sem adicionar parâmetros extras no
modelo, em contraste com a maioria dos modelos da literatura. Este método propõem modelos
defeituosos induzidos por fragilidade gama, nessa abordagem mostramos que podemos induzir
novas distribuições defeituosas ao usar o termo de fragilidade gama. Modelos com termos de
fragilidade incorporam uma heterogeneidade não observada entre os indivíduos e a incorporação
dessa heterogeneidade não observada traz vantagens para a estimação dos modelos. O segundo
método proposto utiliza famílias de distribuições para calcular a fração de cura. Nesta abordagem
incluímos um parâmetro na família de distribuição Beta-G e uma nova família de modelos de
fração de cura mais flexível para modelagem de dados com fração de cura é considerada.

Palavras-chave: Análise de sobrevivência, Família de distribuições, Modelos defeituosos, Mo-
delos de fragilidade, Modelos de fração de cura, Modelos de longa duração.





ABSTRACT

SCUDILIO, J. . Cure Rate Models: Alternatives Methods to Estimate the Cure Rate. 2020.
94 p. Tese (Doutorado em Estatística – Programa Interinstitucional de Pós-Graduação em
Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2020.

Cure rate models in survival data studies has formed an important field in the area and has
attracted the attention of researchers. In the search for new models of cure rate, the objective
of this work is to propose alternative methods to model the cure rate. For this two methods
are presented. The first use the methodology of the defective models and the last method use
the concept the distributions family. Then, in the first method propose the defective models
induced by a frailty term. Defective models have the advantage of modeling the proportion of
cured without adding any extra parameters in the model, in contrast to the most models from the
literature. Models with a frailty term incorporate an unobserved heterogeneity among individuals
and this incorporation brings advantages for the estimated model, because it incorporates the
influence of unobserved covariates in a proportional hazard model. It is showed that the new
defective distributions are induced when using the gamma frailty term.

The last method proposed in this work, is to use distribution families to calculate the cure rate.
For this, a parameter ”p” is included in the Beta-G family in order to create a new family of
cure rate models, the new family can be more flexible for modeling cure rate than the standard
mixture models.

Keywords: Cure rate models, Defective models, Family distributions, Frailty models, Long-term
survivors, Survival Analysis.
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CHAPTER

1
INTRODUCTION

In survival analysis studies, a cure rate is common. The cure rate is the proportion of
the observed individuals who, for some reason, are not susceptible to the event of interest. In
different areas, such as in the social area, data sets with this cure rate are observed, like in studies
of the occurrence of divorces, or even in studies of the time until the first child birth, or between
children, in Medicine, in the study of cancer recurrence and others. An alternative approach that
incorporates the existence of cured elements in model is then necessary.

The standard mixture model proposed by Boag (1949) and Berkson and Gage (1952) is
the most commonly parametric model used to model the cure rate. In this model, the survival
function is given by

S(t) = p+(1− p)S0(t), (1.1)

being p ∈ (0,1) and S0(·) is a proper survival function.

Thus, S(t) converges to p when the time increases. The most common choices for
S0(·) are the survival functions of the Weibull, log-logistic and log-normal. Others parametric
approach can be found in Rodrigues et al. (2009) who proposed an unified long-term theory that
generalizes, among others, the standard mixture model and the promotion time model of Chen,
Ibrahim and Sinha (1999).

Defective distributions are another way to model a cure fraction, a concept formalized
by Balka, Desmond and McNicholas (2009). In defective models, the cure proportion p is not
directly estimated, as in the standard mixture model, it was used a distribution that naturally
becomes a cure rate model, when changing the usual domain of its parameters. The integral of
the density function in defective model is not 1, but a value in the range (0,1). Then, the survival
function converges to a value of p ∈ (0,1), leading to a cure fraction. And the distribution is no
longer proper.

The cure rate of the population in defective models is obtained by calculating the limit of
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the survival function using the estimated parameters. In contrast to the usual models of cure rate,
defective models do not need any assumption about the existence of the cure rate previously to
the modeling, since these models have a natural structure of cure rate model. In the literature,
there are two distributions for this purpose: the inverse Gaussian and Gompertz. The Gompertz
model is used to fit breast cancer data (HAYBITTLE, 1959) and a modified version is used to
fit pediatric cancer data (CANTOR; SHUSTER, 1992). The Gompertz model with covariates
was proposed by Gieser et al. (1998). The cure rate model with inverse Gaussian distribution
was proposed in the papers of Balka, Desmond and McNicholas (2009), Balka, Desmond and
McNicholas (2011) and Whitmore (1979), .

A Bayesian approach of the defective Gompertz model and its comparison with the
maximum likelihood estimation were proposed by Rocha, Tomazella and Louzada (2014) and
Santos, Achcar and Martinez (2017). Martinez and Achcar (2017) proposed the generalized
Gompertz models and Borges (2017) used the EM algorithm in the defective generalized
Gompertz regression models. An extension of the Gompertz and inverse Gaussian models using
the Marshall-Olkin family of distributions was proposed by Rocha et al. (2015b), the Marshall-
Olkin Gompertz and Marshall-Olkin Gaussian inverse, respectively. It is shown that these models
can also take defective versions. The Kumaraswamy family is used to extend the Gompertz and
inverse Gaussian distribution, with applications in cancer data studies (ROCHA et al., 2015a). A
new way to generate defective distributions was proposed based on a Marshall-Olkin family new
property (ROCHA et al., 2017). The authors used the extended Weibull class of distributions
combined under the Marshall-Olkin family to generate ten new defective distributions, as
examples. Many other authors have been working with defective distributions, for example,
Martinez and Achcar (2018) proposed the defective Dagun distribution (DDD). Calsavara et al.

(2019c) proposed a defective regression model for survival data modeling with a proportion of
early failures or zero-adjusted. Also, a cure rate defective model for interval-censored event-time
data was proposed by Calsavara et al. (2019b).

In survival analysis, its common for two elements with the same characteristics to
present responses at different times. For example, in medical studies, two patients with the
same characteristics do not have the same medical response at the same time, i.e., there are
biological variables that are not being measured between these individuals that justify this fact.
This heterogeneity exists for many reasons, some of which are said to be unobserved variability,
such as environmental factors, genetic factors or information not collected (LAURIE et al., 1989).
Hougaard (1991) showed that it would be advantageous to consider two sources of heterogeneity:
the observed (covariates) and unobserved.

The frailty model proposed by Vaupel, Manton and Stallard (1979) considers this variabil-
ity in the lifetime. In this model a random effect is included, i.e., is included a random variable
representing the information that cannot or has not been observed. One way to incorporate this
frailty is to introduce into the hazard function, in order to control the heterogeneity of variables.
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The frailty term can be included in a multiplicative or an additive form and, in this work, it was
considered the multiplicative frailty models, which were also considered by many papers.

A review of multiplicative frailty models from the classical point of view was presented
by Hougaard (1995) and Andersen et al. (1993). And a review of these models from a Bayesian
perspective was presented by Sinha and Dey (1997). Vaupel, Manton and Stallard (1979) used
the frailty term in uni-variate data, Clayton (1978) and Oakes (1982) used it in multivariate
models. The extend of frailty models considering a cure fraction was proposed by Hougaard,
Myglegaard and Borch-Johnsen (1994), Jr and Halloran (1996), Price and Manatunga (2001),
Aalen and Gjessing (2001), Yau and Ng (2001), Peng, Taylor and Yu (2007), Yu and Peng (2008),
Calsavara et al. (2017) and Calsavara et al. (2019a).

One of the objectives of this thesis is to present a new and more flexible defective
distribution. This new defective distribution is induced by a frailty term with gamma distribution.
It will be provided the implementation of a frailty term in a defective model and its estimation
process.

Another approach to estimate the cure rate is to use the distribution families. These
families add extra parameters in a baseline distribution in order to increase its modeling capability.
Some family of distributions mentioned are: the Beta-G family distributions (EUGENE; LEE;
FAMOYE, 2002), the exponential-G family distributions (GUPTA; GUPTA; GUPTA, 1998), the
gamma-G family distributions (ZOGRAFOS; BALAKRISHNAN, 2009),the Kumaraswamy-G
family distributions (CORDEIRO; CASTRO, 2011), the generalized Beta-G family distributions
(ALEXANDER et al., 2012), the Beta extended-G family distributions (CORDEIRO; ORTEGA;
SILVA, 2012), the Beta exponential-G family distributions and the Weibull-G family distributions
(ALZAATREH; LEE; FAMOYE, 2013), exponential generalized-G family distributions due to
Cordeiro, Ortega and Cunha (2013), among others. Then, another objective of this work is to
propose a new way to include the parameter p in family distribution, in order to create a new
family of cure rate models, which is here shown that adds more flexibility to modeling than the
standard mixture approach.

Thus, in the search of the new models to estimate the proportion of cured, the main goal
of this thesis is to propose two alternative methods to estimate the cure rate.

1.1 Objective and Overview

The cure rate model is an important area in survival analysis and many methodologies
have been proposed in this model. The defective model is a cure rate model that has the advantage
of not assuming the presence of immune elements.

The main objective of this work is to propose methods to estimate the proportion of
cured using different methodologies, especially the methods that use the defective distribution.
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The specific objectives are listed below:

∙ To propose a defective distribution induced by a gamma frailty term.

∙ To propose a family Beta-pG using a family distribution to include the parameter "p" in
order to create a new family of cure rate models.

The overview of this work is written in independent chapters with each chapter presenting
a new research contribution. The chapters are related in the sense that all chapter talk about the
cure rate models. In the first method, defective models is used; in the last method, the family
distribution is used.

Thereby, thesis is organized as follows: first in Chapter 2, a brief review of the concepts
of survival analysis is presented, as well as the cure rate model and the frailty model in the
literature. Furthermore, in Chapter 3, is presented the defective distributions and the defective
regression models. To finalize this chapter, simulation studies and four applications in real data
set are presented.

In Chapter 4, the defective models with the frailty term are formulated and its properties
are discussed. Simulation studies are presented to analyze the asymptotic properties of maximum
likelihood estimators. To finalize this chapter, three real databases are presented to illustrate the
proposed distribution compared to the standard mixture models. This chapter is based on the
paper of Scudilio et al. (2019).

Chapter 5 proposes the Beta-pG family of distributions, a family of distributions to model
cure rates in survival data. The proposed family is defined and some of its details are discussed.
Moreover, it is presented an approach to introduce covariates in this model and discuss the
estimation procedure by maximum likelihood. Simulation studies are presented to analyze the
asymptotic properties of the maximum likelihood estimators and to compare the proposed model
with the mixture models. To finalize this chapter, we present two applications in real data sets to
illustrate the proposed methodology. Both data sets are related to cancer. Finally, in Chapter 6,
the conclusions of this work and some proposals for future works are discussed.
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CHAPTER

2
BACKGROUND

The objective of this chapter is to present a background about survival analysis and the
principal models of cure rate models. In this brief review, is presented in Section 2.1 concepts
of survival analysis. In Section 2.3, the cure rate models are defined and the special cases
are presented. Section 2.4 presents the frailty models. In the next sections, the estimation by
maximum likelihood for the cure rate models is presented (Section 2.5), as well as the delta
method is used to calculate the variance associated the cure rate parameter (Section 2.6), and the
measures to selection models (Section 2.7). Finally, in Section 2.8 presented the algorithm to
generate the artificial data.

2.1 Survival analysis

In survival analysis studies, the interest is to estimate the time until the event of interest.
For example, in the industry, the time until the equipment fails; in the social area, the time until
the divorce or the birth of the first child; in medicine, the time can be the lifetime of a patient or
the time to cure a disease.

The presence of incomplete observations (or censored observations) is a characteristic
in survival analysis data set. Censored observations can consist of loss of follow-up with the
patient, lack of knowledge about the onset of the disease, death of the patient from another cause,
etc. These are all examples of right censoring; in this work, only right censored was used.

There are three types of right censored observations: censored type I, censored type II
and random censored, which follow:

∙ Type I censoring occurs when the study is followed up until a predetermined time,

∙ Type II censoring consists of finishing the study by obtaining a predetermined number of
censoring,



24 Chapter 2. Background

∙ Random censoring occurs when the patient withdraws from the study without presenting
the event of interest.

In survival analysis each observation is denoted by (ti,δi), being ti the time until fail
or censoring, and δi the censoring indicator. If δi = 1, failure is observed. Then, if δi = 0, the
observation is censored.

Then, considering T a non-negative random variable, being T > 0, with probability
density function f (t), the density function is defined by

f (t) = lim
∆t→0

P(t ≤ T < t +∆t)
∆t

. (2.1)

Then, the probability density function (pd f ) is the limit of the probability of an individual failing
in the time interval [t, t +δ t].

The cumulative density function is given by

F(t) = P(T ≤ t) =
∫ t

0
f (u)du. (2.2)

The survival function is the probability of an individual’s survival to the time t, then

S(t) = P(T > t) =
∫

∞

t
f (u)du = 1−F(t). (2.3)

The function S(t) presents this property:

i. S(t) is a non increasing function,

ii. S(0) = 1;

iii. lim
t→∞

S(t) = 0,

If property [iii] is satisfied, the it is said that S(t) is a proper survival function.

The hazard function is another function that is important in survival analysis. The hazard
function is the instantaneous rate at which events occur for individuals who are surviving at time
t, in other words, what is the chance of an individual to fail at the time t +∆t, with ∆→ 0. The
hazard function is given by

h(t) = lim
∆t→0

P(t ≤ T < t +∆t|T ≥ t)
∆t

.

To finalize, the cumulative hazard function is another interesting function defined as
follows

H(t) =
∫ t

0
h(u)du. (2.4)
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There are useful relations between these functions, as

h(t) =
f (t)
S(t)

=− d
dt

log[S(t)],

H(t) = −log[S(t)],

S(t) = exp[−H(t)].

2.2 Kaplan Meier estimator

The Kaplan-Meier (KM) estimator or product-limit Kaplan is the most important nonpara-
metric estimator in survival analysis, and it is used to estimate the survival function. (KAPLAN;
MEIER, 1958). The KM estimator is defined as

Ŝ(t) = ∏
j:t j<t

(
n j−d j

n j

)
= ∏

j:t j<t

(
1−

d j

n j

)
. (2.5)

where

∙ t(1) < t(2) < .. . < tk, being k the distinct and ordered fail times;

∙ d j is the number of fail in t( j), j = 1, . . . ,k;

∙ n j is the number of individuals at risk in time t( j), which means, individuals who have not
failed or were not censored.

Kaplan and Meier (1958) showed that the KM estimator is the maximum likelihood
estimate for S(t). For that, the KM curve is widely to verify the lack of fit of the proposed
parametric survival model.

2.3 Cure rate model

The long-term models or cure rate models are an important part of survival analysis and
have been widely used in different areas. The unified class of the cure rate model proposed by
Rodrigues et al. (2009) is here briefly described.

The Unified models are a class of cured fraction model that generalizes the mixture
model and the promotion model, among others. The latent variable is proposed to represent the
number of the competitive causes of an event of interest. The cure rate models incorporate the
heterogeneity of two sub populations: the susceptible population and the immune population
(cured) to the event of interest. We define this class as follows.
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Let N be a random variable that represents the number of competitive causes for a
particular event of interest with probability

pn = P[N = n],

where n = 0,1,2, . . .. In this case, N is a latent variable. Let Zv|N = n, v = 1, . . . ,n, independent
and non-negative random variable with a cumulative density function given by F(t) = 1−S(t),
that does not depend of N.

The random variables Zv represent the time until the occurrence of a particular event of
interest for the risk cause v. Let T = min{Z1,Z2, . . . ,Zn} be the time until the event of interest
occurs, in which P(Z0 = ∞) = 1 leads to a proportion p0 of the non-susceptible observations of
the event of interest. The random variable T is a censure or an observable random variable and Zv

are latent variables. The survival function of the random variable T is defined as S(t) = P(T > t).

So, let {an} be a sequence of real numbers in sε [0,1]. Then

A(s) = a0 +a1s+a2s2 + . . . ,

converges and A(s) is defined as a generating function of the sequence {an}. (See proof in Feller
(1968)).

According to Rodrigues et al. (2009), given a proper survival function, S0(t), the survival
function of the random variable T is given by

Spop(t) = A[S0(t)] =
∞

∑
n=0

pn [S0(t)]
n . (2.6)

The cure rate, p, is given by limt→∞ Spop(t) = P(N = 0) = p. Observe that the survival
function Spop(t), defined in (2.6), is not a proper function. The probability density function and
the hazard function are given by

fpop(t) = f0(t)
d
ds

A[S0(t)],

hpop(t) =
fpop(t)
Spop(t)

=
f0(t)
S1(t)

d
dt

A[S0(t)].

The likelihood function is given by

L(γγγ;D) =
n

∏
i=1

[ fpop]
δi [Spop(t)]

(1−δi) =
n

∏
i=1

[
f0(t)

d
ds

A[S0(t)]
]δi
[

∞

∑
n=0

pn [S0(t)]
n

](1−δi)

.

The following distributions can be used as generating functions, A(s): Bernoulli, Bino-
mial, Poisson, Negative Binomial, Geometric, among others. Whereas N follows a Bernoulli
distribution, then A[s] = p+(1− p)s and then is obtained the standard mixture model.

The standard mixture model is given by

S2(t) = p+(1− p)S0(t), (2.7)
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where p represents the proportion of cured population and S0(t) is the baseline survival function.

The promotion model is given when N follows a Poisson distribution with mean θ , then
A[s] = exp(−θ +θs). Thus, the survival function of the promotion model is given by

S3(t) = P(N = 0)+P(Z1 > t, . . . ,ZN > t,N ≥ 1)

= exp(−θ)+∑
∞
k=1 S0(t)k θ k

k! exp(−θ)

= exp(−θF0(t)).

(2.8)

It’s important to emphasize that the survival functions 2.8 is not proper, because S3(∞) =

exp(−θ)> 0.

2.4 Frailty model

The frailty model is a model of random effects for time variables. In this model a random
effect is included, i.e., is included a random variable representing the information that cannot
or has not been observed. One way to incorporate this frailty is to introduce into the hazard
function, in order to control the heterogeneity of variables.

Models with frailty terms incorporate an unobserved heterogeneity among individuals,
which represents advantages for model estimation.

The multiplicative frailty term model is an extension of Cox model (COX, 1972), which
is the most commonly used model to incorporate the term of frailty. In these models, the risk
depends on the unobserved and non-negative random variable V , that includes in a multiplicative
way the basic risk function. Thus, considering the models with a frailty term in a multiplicative
way in the risk function, the frailty models are defined as:

Let F0(t) be the cumulative function distribution, S0(t) a proper or a not proper survival
function, and h0(t) the respective hazard function and considering a nonnegative unobservable
random variable V that denotes the frailty term. Then, the conditional hazard function with a
frailty term is defined by

h(t|V ) =V h0(t). (2.9)

In equation (2.9), V is the frailty term, when V increases, the risk of failure also increases.

A problem in frailty models is the choice of the distribution of the random effect. The
frailty distribution most often applied is the gamma distribution (CLAYTON, 1978), (VAUPEL;
MANTON; STALLARD, 1979), (MISSOV, 2010), (MISSOV, 2013). However, other choices can
be considered, such as the positive stable distribution (HOUGAARD, 1986b), a three-parameter
distribution (PVF) (HOUGAARD, 1986a), the compound Poisson distribution (AALEN, 1992),
the log-normal and inverse Gaussian distributions (TOMAZELLA, 2003), among others.
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If the distribution of the random effect must have expectation 1, then the model will be
identifiable (ELBERS; RIDDER, 1982). In this work, it is assumed that the random variable
V follows a gamma distribution with shape parameter k and inverse scale parameter λ (V ∼
Γ(k,λ )), with E(V ) = k/λ and Var(V ) = k/λ 2, (WIENKE, 2003). Here, it is considered that
E(V ) = k/λ = 1 and Var(V ) = k/λ 2 = θ , where k = λ = θ−1.

Given the frailty model presented in equation (2.9), the conditional cumulative hazard
function and the conditional survival function are define as

H(t|V ) = V H0(t),

S(t|V ) = e−vH0(t) = [S0(t)]v.

And the unconditional survival function is defined as

S(t) = E[S(t|V )] =
∫

∞

0
S(t|v)g(v)dv =

∫
∞

0
e−V H0(t)g(v)dv, (2.10)

where g(v) is the density function of frailty term.

One way to solve the equation 2.10 consists of using the Laplace transform.

Definition 2.4.1. Laplace transform: The Laplace transform of the function f : [0,∞]→ R

L f (s) =
∫

∞

0
e−st f (t)dt, (2.11)

∀s≥ 0 in that the integral 2.11 converges.

Observe that equation (2.10) is similar to equation (2.11). Using the Laplace transform,
the unconditional survival function is obtained, being defined by

S(t) = E[S(t|V )] = E
[
e−H(t|V )

]
= E

[
e−V H0(t)

]
= L [H0(t)] .

It is important to mention that the Laplace transform is very important in the frailty
model.

Using the derivatives of Laplace transform, the unconditional density function f (t) and
risk function h(t) are obtained. They are

f (t) =−h0(t)L ′(H0(t)), (2.12)

h(t) =−h0(t)
L ′(H0(t))
L (H0(t))

. (2.13)

2.5 Maximum Likelihood Estimation
The most common method to estimate the parameters in cure rate models is the maximum

likelihood estimator. It has good property in large samples (asymptotic result) and it is possible
to incorporate the censorship observed of the data set.



2.5. Maximum Likelihood Estimation 29

Assuming that the data are independent, identically distributed and have a density and
survival function denoted by f (.,θθθ) and S(.,θθθ), respectively, where θθθ = (θ1, . . . ,θk)

T is a vector
of parameters. Consider a data set DDD = (ttt,δδδ ), where ttt = (t1, . . . , tn)T are the observed failure
times and δδδ = (δ1, . . . ,δn)

T are the censored failure times, being δi = 1 when the failure is
observed and 0 otherwise.

So, the likelihood function of θθθ is defined by

L(θθθ ,DDD) ∝

n

∏
i=1

f (ti,θθθ)δiS(ti,θθθ)1−δi.

And the corresponding log-likelihood function is

l(θθθ) = logL(θθθ ,DDD) = const +
n

∑
i=1

δilog( f (ti,θθθ))+
n

∑
i=1

(1−δi)S(ti,θθθ).

The value of θθθ that maximizes L(θθθ), or equivalent l(θθθ), is the maximum likelihood
estimator. The estimator is found by solving these equations systems

U(θθθ) =
∂ l(θθθ)

∂θθθ
, (2.14)

U(θθθ) is score function.

Normally, it is necessary to use the numeric methods to solve equation 2.14. In this
thesis, R software optim packages was used, and the ’BFGS’ method was used to maximize the
likelihood function, for details see the R Core Team (2013) package.

Confidence intervals for the parameters are based on the asymptotic normality properties
of the maximum likelihood estimators. If θ̂θθ denotes the maximum likelihood estimators of θθθ

then the distribution of (θ̂θθ −θθθ) can be approximated by a multivariate normal distribution k

with mean equal to zero and co-variance matrix I−1(θ̂), where I(θθθ) is the observed information
matrix, defined by

I(θθθ) =−



∂ 2l(θθθ)
∂θ 2

1

∂ 2l(θθθ)
∂θ1∂θ2

. . . ∂ 2l(θθθ)
∂θ1∂θk

∂ 2l(θθθ)
∂θ2θ1

∂ 2l(θθθ)
∂θ 2

2
. . . ∂ 2l(θθθ)

∂θ1∂θk
...

... . . . ...
∂ 2l(θθθ)
∂θkθ1

∂ 2l(θθθ)
∂θkθ2

. . . ∂ 2l(θθθ)
∂θ 2

k

 .

So, an approximate 100(1−α)% percent confidence interval for θi is

IC(θθθ) = (θ̂i− zα/2

√
Iii, θ̂i + zα/2

√
Iii)

where Iii denote the ith diagonal element of the inverse of I evaluated at θ̂θθ and zα is the 100(1−α)

percentile of the standard normal distribution. In the models proposed in this thesis, the cure rate
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p is calculated as a function of other parameters estimated. Then, to calculate the variance of
p, is necessary to use the delta method with a first order Taylor’s approximation (OEHLERT,
1992). In the next section, this method will be preseted.

2.6 Delta Method
The delta method is an appropriate way to estimate the variance of parameters of non-

linear functions of random variables. This method uses the first step of Taylor approximation to
expands the function of a random variable and then take the variance.

Theorem 1. Consider a sequence of random variables X1,X2, . . . ,Xn independent and identically

distributed (univariate) with finite variance σ2. By Limits Theorem has
√

n(Xn−g(θ)) D−→ N(0,σ2[g′(θ)]2),

where θ and σ2 are finite valued constants and D−→ denotes the convergence in distribution. Then
√

n(g(Xn)θ)
D−→ N(0,σ2).

Proof. See the Papanicolaou (2009)

2.7 Selection Models
To check fit quality of theses models, some measures: AIC (Akaike Information Crite-

rion), BIC (Bayesian Information Criterion) and CAIC (Consistent Akaike Information Criterion).
They are defined as

AIC = 2k−2l(θθθ),

BIC = klog(n)−2l(θθθ),

CAIC = k[log(n)+1]−2l(θθθ),

where k is the number of parameters in the model, n is the sample size and l(θθθ) is log-likelihood
value in the estimated parameters.

These measures provide a way of model selection, when the model that has the better
fit is the one with the lowest AIC or BIC or CAIC. For more details see (AKAIKE, 1974),
(SCHWARZ et al., 1978)

2.8 Artificial Data Generation Algorithm
In this section, the data generation used to verify the properties of the maximum likeli-

hood estimator for the distributions presented in this thesis is described. These properties were
evaluated here by simulation.
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The algorithm described by Rocha et al. (2017) was used in all chapters to simulate the
data.

Then suppose that the occurrence time of an event-of-interest has cumulative distribution
F(t). The main objective is to simulate a random sample with size n containing real times,
censored times, p0 and p1 the value of the cure fraction for each group. The algorithm is
described bellow

Algorithm 1 – Generator of artificial data

1: procedure DATA(ttt;δδδ )
2: Determine the parameter values θθθ , as well the value of the cure fraction for each group

p0 and p1;
3: Generate the covariate X ∼ Bin(n, p = 0.5);
4: for t← 1 to n do
5: if X = 0 then, generate Mi ∼ Bernoulli (1− p0)
6: if Mi = 0 then t ′i = ∞.
7: end if
8: if Mi = 1 then t ′i is the root of F(t) = u, where u∼ uniform(0,1− p0);
9: end if

10: end if
11: if X = 1 then, generate Mi ∼ Bernoulli (1− p1);
12: if Mi = 0 then t ′i = ∞.
13: end if
14: if Mi = 1 then t ′i is the root of F(t) = u, where u∼ uniform(0,1− p1);
15: end if
16: end if
17: end for
18: for t← 1 to length(t ′i) do
19: if t ′i ̸= ∞ then generate u′i ∼Uni f (0,max(t ′i))
20: end if
21: Calculate ti = min(t ′i ,u

′
i).

22: if ti < u′i then δi = 1
23: else δi = 0.
24: end if
25: end for
26: return (ttt,δδδ )
27: end procedure

In simulation, the value of 1000 simulation per sample size was choosed. In each sample,
it is calculated the bias, mean square error, coverage probability and coverage lengths for each
parameter, defined as following

Var(θ̂) =
1
S

S

∑
i=1

(θ̂i−θ)2,

Bias(θ̂) = θ̂ −θ ,

MSE(θ̂) = Var(θ̂)+Bias2(θ̂)
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where θ̂ is the estimator of θi for i = 1,2, . . . ,S.

The coverage probability represents the observed percentage of times that the interval
contains the true value of the parameters. And the coverage length is the difference between the
upper and lower confidence bounds.

2.9 Conclusion
In this chapter, the background about the cure rate model and frailty model were presented.

In the next chapter, the defective distribution and the defective models will be presented.
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CHAPTER

3
DEFECTIVE MODELS

Defective cure rate models, have the advantage of not assuming the presence of immune
elements in the data. These models present a defective distribution as a baseline function and
estimate the proportion of cured without adding extra parameters in a model.

Cure rate models via defective distribution is a recent methodology and it is not frequently
used in statistics. There are few defective distributions in the literature in this chapter, the basic
defective distributions found and the literature are presented: Gompertz distributions and the
inverse Gaussian (Section 3.1).

Additionally, an option to include covariates in defective models (Section 3.2) and their
estimation process (Section 3.3) are presented. Finally, a simulation studies (Section 3.4) and
four real data sets are presented to illustrate the proposed models (Section 3.5).

3.1 Defective Distributions

Definition 3.1.1. Defective distribution: A distribution is called defective if the integral of the
density function results in a value p ∈ (0,1), when the domain of its parameters is changed.

In defective distribution, the cumulative function does not approach 1, but to a value
p ∈ (0,1), and then the survival function approaches (1− p).

The defective model is a model with a defective distribution. These models have the
advantage of being unnecessary to assume the existence of a cure fraction. Once you have a
defective model, it will lead to a cure fraction when the estimation procedure presents a value
out of the usual range of parameters.

The proportion of the immune population is obtained by calculating the limit of the
survival function using the estimated parameters. A disadvantage is that these models may lose
some flexibility by having fewer parameters.
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Figure 1 – Example: the cumulative density function of a defective distribution.

Furthermore, since the cure rate depends on other parameters, its interval estimation, it is
not obtained directly, and needs to be approximated using other techniques, such as the delta
method.

The Gompertz and inverse Gaussian distributions are the only two known common
distributions used in defective models. Both distributions have two positive parameters. When the
shape parameter assumes negative values, the distribution becomes defective. The parameters that
have changed their domain are called defective parameters. In the next section, both distributions
are defined.

3.1.1 Gompertz Defective Distribution

The Gompertz distribution is often used to model survival data in various knowledge
areas (GIESER et al., 1998). The probability density function for the Gompertz distribution is
given by

g0(t) = beate−
b
a (e

at−1),

where a > 0, b > 0 and t > 0. The corresponding survival function is

S0(t) = e−
b
a (e

at−1),

and the hazard function is given by

h0(t) = beat .

When the parameter a assume negative values, we have the defective Gompertz distribu-
tion. And the proportion of immunity in the population is calculated as the limit of the survival
function, when a < 0, given by

lim
t→∞

S0(t) = lim
t→∞

e−
b
a (e

at−1) = e
b
a = p ∈ (0,1).
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Figure 2 – The density probability, the survival and the hazard functions of defective distribution.

Figure 2 presented the density probability function, survival function and hazard function
of the defective Gompertz model using different values for the parameters.

3.1.2 Inverse Gaussian Defective Distribution
Other distribution used to model survival data is the inverse Gaussian distribution. The

inverse Gaussian distribution has probability density function given by

g0(t) =
1√

2bπt3
exp
{
− 1

2bt
(1−at)2

}
,

where a > 0, b > 0 and t > 0. The corresponding survival function is given by

S0(t) = 1−
[

Φ

(
−1+at√

bt

)
+ e2a/b

Φ

(
−1−at√

bt

)]
,

where Φ(·) denotes the cumulative distribution of the standard normal. The hazard function is

h0(t) =
g0(t)
S0(t)

=

1√
2bπt3 exp

{
− 1

2bt (1−at)2
}

1−
[
Φ

(
−1+at√

bt

)
+ e2a/bΦ

(
−1−at√

bt

)] .
The defective inverse Gaussian distribution is the inverse Gaussian distribution that

allows negative values of parameter a. The cure rate is calculated by

lim
t→∞

S0(t) = lim
t→∞

1−
[

Φ

(
−1+at√

bt

)
+ e2a/b

Φ

(
−1−at√

bt

)]
= (1− e2a/b) = p ∈ (0,1).

Figure 3 shows the density probability, and survival and hazard functions of the defective
inverse Gaussian distribution for different values of the parameters.
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Figure 3 – Density probability function, survival function and hazard function of the inverse Gaussian
distribution.

3.2 Defective regression model
The interest relation between the variables is common, i.e., being interested in analyzing

the effect that one or more explanatory variables (covariates) causes in the failure time. In this
section, the defective Gompertz and inverse Gaussian regression models are presented.

3.2.1 Defective Gompertz regression model

Consider xxx⊤ = (1,x1, ...,xp) the covariate information vector and βββ
⊤ = (β0,β1, ...βp) a

vector of regression coefficients. Given the Gompertz survival function S0(t) defined in equation
3.1, the respective Gompertz regression model is

S0(t|xxx) = e−
exxx′′′βββ

a (eat−1), (3.1)

for a > 0 and t > 0.

The density and hazard function is given by

g0(t|xxx) = eat+xxx′′′βββ e−
exxx′′′βββ

a (eat−1),

h0(t|xxx) = eat+xxx′′′βββ .

The model 3.1 was proposed in Parreira et al. (2007). The authors called it the propor-
tional hazard model with time-depend. In this work, a > 0 and the authors were not commented
about when a< 0. When a< 0, we have the defective regression model with cure rate p estimated
by

p = e
exxx′′′βββ

a ∈ (0,1).

3.2.2 Defective inverse Gaussian regression models

Consider xxx⊤ = (1,x1, ...,xp) the covariate information vector and βββ = (β0,β1, ...βp) a
vector of regression coefficients. Given a survival function S0(t) of a inverse Gaussian distribution,
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defined in equation 3.1, the survival function of inverse Gaussian regression model is defined as

S0(t|xxx) = 1−
[

Φ

(
−1+at√

exxx′′′βββ t

)
+ e2a/exxx′′′βββ

Φ

(
−1−at√

exxx′′′βββ t

)]
, (3.2)

where Φ(·) is a cumulative distribution of the standard normal.

The density and hazard function is defined as

g0(t|xxx) =
1√

2exxx′′′βββ πt3
exp
{
− 1

2exxx′′′βββ t
(1−at)2

}
,

h0(t|xxx) =
g0(t)
S0(t)

=

1√
2exxx′′′βββ πt3

exp
{
− 1

2exxx′′′βββ t
(1−at)2

}
1−
[

Φ

(
−1+at√

exxx′′′βββ t

)
+ e2a/exxx′′′βββ

Φ

(
−1−at√

exxx′′′βββ t

)] .
When a < 0 the models defined in equation 3.2 is defective and our cure rate is

p = 1− e2aexxx′′′βββ
. (3.3)

3.3 Inference
In this section, it’s discussed the estimation procedures of the defective Gompertz and

defective inverse Gaussian model. Consider n the sample size and Ti = min(Wi,Ci) the observed
time, where Wi is time failure and Ci the censoring time. Consider δi the failure indicator, δi = 1
if Ti =Wi and δi = 0 otherwise, for i = 1, . . . ,n.

The data is represented as D = (t,δδδ ,XXX), t = (t1, . . . , tn)
⊤, δδδ = (δ1, . . . ,δn)

⊤ and XXX is a
covariate matrix n× p. Suppose the data is independently and identically distributed and comes
from a distribution with density and survival function defined by f (·,θθθ) and S (·,θθθ), where

θθθ =
(

a,βββ⊤
)⊤

is a parameter vector.

The likelihood function of θθθ can be written as

L(θθθ ,D) ∝

n

∏
i=1

f (ti,θθθ)
δi S (ti,θθθ)

(1−δi) .

The corresponding log-likelihood function is

logL(θθθ ,D) = const +
n

∑
i=1

δi log f (ti,θθθ)+
n

∑
i=1

(1−δi) logS (ti,θθθ) .

The log-likelihood for the Gompertz defective model to θθθ is

logL(θθθ,D) = const +
n

∑
i=1

δi log f (ti,θθθ)+
n

∑
i=1

(1−δi) logS(ti,θθθ) (3.4)

= const +
n

∑
i=1

δixxx⊤i βββ +a
n

∑
i=1

δiti−
n

∑
i=1

{
exxx⊤i βββ (eati−1)

a

}
.



38 Chapter 3. Defective models

For inverse Gaussian defective model the log-likelihood is given by

logL(θθθ ,D) = const +
n

∑
i=1

δi log

 1√
2exxx⊤i βββ πt3

i

exp
{
− 1

2exxx⊤i βββ t
(1−ati)

2
}+

n

∑
i=1

(1−δi) log

(
1√

2exxx⊤i βββ πt3
exp
{
− 1

2exxx′′′iiiβββ t
(1−at)2

})
. (3.5)

The maximum likelihood estimates are obtained by maximizing the log-likelihood
function (3.4) and (3.5). The maximization of functions (3.4) and (3.5) are obtained numerically.
There are several routines available for numerical maximization. Here, the optim package of
software R and use the BFGS method for maximization were used, for details see the package
manual optim R Core Team (2013).

Confidence intervals for the parameters are based on the asymptotic normality properties
of the maximum likelihood estimators. If θ̂θθ denote the maximum likelihood estimators of θθθ then
the distribution of θ̂θθ −θθθ is approximated by a p+2-variate normal distribution with mean equal
zero and covariance matrix I−1

(
θ̂θθ

)
, where I (θθθ) is the observed information matrix.

So, an approximate 100(1−α) % percent confidence interval for θi is

IC(θθθ) =
(

θ̂i− zα/2

√
Iii, θ̂i + zα/2

√
Iii
)
,

where Iii denoted the ith diagonal element of the inverse of I evaluated at θ̂θθ and za is the
100(1−a) percentile of the standard normal distribution.

Ahead, simulation studies for the defective regression models are presented.

3.4 Simulation studies
In this section, it was proposed a study with simulated data to check the properties of

the maximum likelihood estimator for the defective Gompertz models and the defective inverse
Gaussian model. In order to check the results of simulation studies, were estimated the bias, the
mean square errors (MSE), the coverage probability of the Wald-type confidence intervals and
the coverage lengths for the parameters θθθ

⊤ = (a,βββ ). The coverage probability represents the
observed percentages of the time in which the interval contains the true value of parameters.

To check the maximum likelihood estimates, six simulations using the algorithm previ-
ously described in Section 2.8 were proposed to generate data from the the Gompertz and inverse
Gaussian distributions. Three scenarios for the defective Gompertz model and three for the de-
fective inverse Gaussian model were presented. The parameters used in the defective Gompertz
distribution were (a,β0,β1) = (−1,0.5,0.5), the cure fractions p0 and p1 are 0.192 and 0.066 in
Scenario I (red lines/squares in the Figure 4). For Scenario II (green lines/circles,Figure 4), the
β0 is decreased to −0.5, then the cure fractions p0 and p1 are 0.545 and 0.368. And in Scenario
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Figure 4 – Mean squared errors, bias, coverage probabilities and coverage length of (â, β̂0, β̂1, p̂0, p̂1)
versus n for the defective Gompertz model. The red, green and blue lines (squares, circles and
triangles) represent scenarios I, II and III, respectively.

III (blue lines/triangles, Figure 4), the a decreases to −2.0, so the cure fractions p0 and p1 are
0.738 and 0.606.

For the defective inverse Gaussian model, the parameters (a,β0,β1) = (−1,0.5, 0.5)
were used, and the cure rate p0 and p1 are 0.703 and 0.521 in Scenario I (red lines/squares in the
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Figure 5 – Mean squared errors, bias, coverage probabilities and coverage length of (â, β̂0, β̂1, p̂0, p̂1)
versus n for the defective inverse Gaussian model. The red, green and blue lines (squares,
circles and triangles) represents the scenario where, respectively.

Figure 5). In Scenario II (green lines/circles,Figure 5), were considered (a,β0,β1) = (−1,1,0.5),
with cure rate p0 and p1 are 0.521 and 0.360. And for the last scenario (blue lines/triangles,
Figure 4), were used (a,β0,β1) = (−1,2,0.5), with cure rate p0 = 0.237 and p1 = 0.151.
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In each scenario, for each parameter the mean square error, the bias, the coverage
probability and range of the confidence interval for different sample sizes were calculated. The
sample sizes were considered n = 100,200, ...,1.500. The delta method was used to estimate
the variance of cure fractions. All calculations were developed in R software. Figures 4 and 5
illustrate the results obtained by the defective gamma-Gompertz and defective gamma-inverse
Gaussian models, respectively.

From these simulations, it is possible to conclude the following: i) the mean square error
decreases and approaches zero as the sample size increases;

ii) the mean square error is smaller for the lowest values of θ ;

iii) the mean square error of the cure fractions is generally lower than for the other
parameters;

iv) all parameters in all cases converge to their actual values that is, the maximum
likelihood estimator of these models is asymptotically not biased;

v) the bias of cure fractions are very small, even in the smallest sample values;

vi) the coverage probabilities are around 0.95 for the parameters a, β0 , β1, p0 and p1;

vii) the ranges of confidence intervals decrease as the sample size increases;

viii) in general, when the amplitude of the interval is smaller than the other, the smaller
the value of θ will be.

In the next section, four applications using the defective regression models showed in
this section are presented.

3.5 Application

In this section, four applications are used to exemplify the defective regression models.
One of these data set is a social study about divorce. The other data sets ate clinical studies
related to cancer occurrence. In all application, used the software R and the function optim to
estimate the parameter of this models. The same data set is utilized in the chapter 4.

Figure 6 presented the cumulative hazard function for these data sets. In colon data,
observe that the cumulative hazard function is constant in initial times, decreases after the time
1000 and in the last times the curve is horizontal, i.e, the hazard is zero. For divorce the data
observed an almost constant curve over time, after time 30 the hazard function starts to decline,
and in the end presents zero hazard. The curve of the colon data set is similar, but not as smooth,
and we have the cumulative hazard function for the breast cancer data set. In the melanoma data
set, the hazard starts increasing, then gets constant and start to decrease. Closer to the large event
times, the hazard starts to increase again and then goes to zero.
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Figure 6 – Estimated cumulative hazard curves for colon, divorce, melanoma and breast cancer data
respectively.

3.5.1 Colon data

This data set is one of the first successful studies of chemotherapy for colon cancer. The
event of interest is the recurrence or death for the individual under the proposed treatment. The
data set has 1858 observations and 938 censures (50.58%) and the covariate used is the existence
of adherence to nearby organs. The data set is available in the R, in the package survival. The
details of this data set can be found in Laurie et al. (1989).

Table 1 – Maximum likelihood estimates, standard error, 95% confidence intervals (CIs), AIC and BIC
criteria according to Gompertz and inverse-Gaussian models for the colon data.

Distribution Parameter Estimate Std. error Lower 95% CI. Upper 95% CI. AIC BIC Log. Veros.
a -2.3183 0.1772 -2.6656 -1.9709 1507.7300 1524.312 750.8650

b0 0.6414 0.0538 0.5359 0.7468
Gompertz b1 0.3151 0.0868 0.1449 0.4852

p0 0.4408 0.0187 0.4042 0.4774
p1 0.3254 0.0322 0.2623 0.3886
a -1.6745 0.1572 -1.9825 -1.3665 1599.102 1615.684 796.5509

b0 1.9865 0.0411 1.906 2.0670
Inv. Gauss b1 0.0536 0.0885 -0.1200 0.2271

p0 0.3683 0.0225 0.3243 0.4123
p1 0.353 0.0294 0.2953 0.4107

Table 1 summarizes the results for Gompertz and inverse Gaussian regression models in
colon data. Observe that both fit, â < 0, so these models are defective and indicate a cure rate.



3.5. Application 43

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Event Times

S
ur

vi
va

l C
ur

ve
s

No
Yes

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Event Times

S
ur

vi
va

l C
ur

ve
s

No=0
Yes=1

Figure 7 – KM curve and estimated curve of the Gompertz (left) and inverse Gaussian (right) models for
the colon cancer data.

The Figure 7 illustrates the survival curve estimated for both models. Observe that the
Gompertz regression model (left graphic) fits better than the inverse Gaussian regression model
(right graphic). The estimated curve of the Gompertz regression model captures reasonably the
Kaplan Meier curve. The Gompertz model presented the smaller AIC and BIC measures.

The proportion of cured were p0 = 0.44, p1 = 0.32 in Gompertz model, i.e, patients who
present adherence in the nearby organs have a smaller cure rate than those patients who do not
present adherence.

3.5.2 Divorce data

This data set was collected in the United States and observed couples, in which the event
of interest is the divorce occurrence. This event may never occur and therefore is high censorship
in this data set. The cured elements are those couples who do not get divorced. There are 3371
observations, of which 2339 are censored (69.38%). The maximum time observed was 73.07
years and the mean time observed was 18.41 years. The covariate indicates whether the couple
has a different ethnicity. For details on this data, see Lillard and Panis (2000).

Table 2 summarizes the results of the maximum likelihood estimates in Gompertz and
inverse Gaussian models for divorce data. Observe that the Gompertz model shows a small
advantage when considering AIC, BIC and log-Likelihood measures than the inverse Gaussian
model, indicating a better fit. And in both cases a < 0, so we have defective models and there is
a proportion of elements cured. In both models the cure rate is smaller in couple with different
ethnicity, i.e, a couple with different ethnicity has a higher divorce rate than a couple with same
ethnicity.
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Table 2 – Maximum likelihood estimates, standard error, 95% confidence intervals (CIs), AIC and BIC
criteria according to Gompertz and inverse-Gaussian models for the divorce data.

Distribution Parameter Estimate Std. error Lower 95% CI. Upper 95% CI. AIC BIC Log. Veros.
a -2.541 0.230 -2.992 -2.091 1507.719 1526.088 750.860
b0 0.588 0.049 0.491 0.685

Gompertz b1 0.257 0.074 0.111 0.403
p0 0.492 0.023 0.447 0.538
p1 0.400 0.032 0.337 0.463
a -3.140 0.204 -3.540 -2.740 1717.153 1735.522 855.577
b0 2.138 0.035 2.069 2.206

Inv.Gauss b1 0.254 0.059 0.138 0.371
p0 0.523 0.017 0.489 0.557
p1 0.437 0.023 0.393 0.481
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Figure 8 – Fitted survival curves of the Gompertz (left graphic) and inverse Gaussian models (right
graphic). the divorce data set

Figure 8 shows the curve fitted survival curves. Note that couples who are not of a
different ethnicity have more time until divorce than couples who are of a different ethnicity.
That is, couples with ethnicity differences are more likely to divorce than couples with the same
ethnicity. The fitted survival curves confirm the poor fit of the proposed models in this data set.
Both model fails to capture the behavior of the Kaplan-Meier curves.

3.5.3 Breast cancer data

This data set was collected at the A.C.Camargo Cancer Center, São Paulo, Brazil. It is
a study of patients with breast cancer. This data contains information about the failure time or
censoring (in months) and three covariates from 78 patients diagnosed with triple-negative breast
cancer and treated with neoadjuvant chemotherapy in the period of 2001 to 2013. The event
of interest is death by breast cancer. The data set has 53 patients that are censored (67.94%).
The three covariates observed was tumor-infiltrating lymphocytes (TIL), the primary tumor site
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(T) and the regional lymph node involvement (N). They are all binary variables. The covariate
TIL assumes value zero when the patient present TIL≤ 10% and is one when TIL> 10%.
The covariate T assume value zero if the tumor characteristic is T0 and is one if the tumor
characteristic is T1, T2 or T3. And the covariate N is zero if the nodule characteristic is N0, and
is one when the nodule characteristic is N1, N2 or N3. These covariate are defined according to
the UICC TNM classifications. This data set has been used for the first time in this paper and it
is available in the Appendix.

Table 3 gives descriptive statistics for each one of the covariates. Notice that the covariate
TIL contains only 58 observations of the 78 patients in study. These 58 observations, 60.3% of
patients present TIL≤ 10%. The covariate T contains 77 information of the 78 patients in the
study and in these 77 patients, 37.5% present the tumor characteristic equal T0. The covariate
N was observed for all patients, in which 27% present nodule characteristic equal N0. Figure 9
displays the plots of the Kaplan-Meier curve in each variable. In this application, one model only
with the covariate N, because is the only one without missing values. For more details about this
data see Scudilio et al. (2019).
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Figure 9 – Kaplan-Meier curves for the variables TIL, N and T.

Table 3 – Descriptive of each variable in the breast cancer data set. The {0,1} values in the columns
stands for the censored and failure times, respectively. The {0,1} value in the lines represents
the covariate categories.

TIL1 0 1 Total N2 0 1 Total T3 0 1 Total
0 20 15 35 0 18 3 21 0 24 5 29

51.3% 78.9% 60.3% 34.0% 12.0% 26.9% 46.2% 20.0% 37.7%
1 19 4 23 1 35 22 57 1 28 20 48

48.7% 21.1% 39.7% 66.0% 88.0% 73.1% 53.8% 80.0% 62.3%
Total 39 19 58 Total 53 25 78 Total 52 25 77

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
1TIL = 0 then TIL≤ 10%, TIL = 1 otherwise. 2N = 0 the nodule characteristic is T0; otherwise is N1,N2 or N3. 3T = 0 the tumor characteristic
is T0; otherwise is T1,T2 or T3

The results of maximum likelihood estimates, standard error, confidence intervals and
some measures for Gompertz and inverse Gaussian models are presented in Table 4. The both
models fit a < 0, so we have defective models.
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Table 4 – Maximum likelihood estimates, standard error, 95% confidence intervals (CIs), AIC and BIC
criteria according to Gompertz and inverse-Gaussian models for the breast cancer data.

Distribution Parameter Estimate Std. error Lower 95% CI. Upper 95% CI. AIC BIC Log. Likelihood
a -1.8166 1.3837 -4.5287 0.8954 45.73517 52.8053 19.86759
b0 -0.5615 0.6415 -1.8189 0.6959

Gompertz b1 1.2015 0.619 -0.0118 2.4148
p0 0.7305 0.1725 0.3924 1.0686
p1 0.352 0.2162 -0.0718 0.7759
a -0.5305 0.7528 -2.0061 0.9451 36.29044 43.36057 15.14522

Inv.Gauss b0 0.6278 0.3842 -0.1252 1.3808
b1 0.8076 0.3738 0.0749 1.5403
p0 0.4324 0.3974 -0.3465 1.2113
p1 0.2232 0.2511 -0.2689 0.7152
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Figure 10 – Estimated survival curves of the Gompertz model (left graphic) and the inverse Gaussian
model (right graphic) in breast cancer data.

The inverse Gaussian model presented smaller AIC, BIC and log-likelihood criteria.
The proportion of cured estimated in the inverse Gaussian defective model are p0 = 0.43 and
p1 = 0.22. In other words, patients classified with N0 nodule have a higher cure rate than those
patients with nodule N1, N2 or N3. Figure 10, it can be observed that both models have a poor
fit, no models capture the Kaplan-Meier curves well.

3.5.4 Melanoma data

This data set collected in the period 1991-1998 is related to a clinical study in which
patients were observed for recurrence after the removal of a malignant melanoma. Melanoma is a
type of cancer that develops in melanocytes, responsible for skin pigmentation. It is a potentially
serious, malignant tumor that may arise in the skin, mucous membranes, eyes and central nervous
system, with a great risk of producing metastases and high mortality rates in the later stages.

There are 417 observed times, of which 232 were censored (55.63%). The covariate is
considered to represent the node category, with four categories (n1 = 82,n2 = 87,n3 = 137,n4 =
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111). For details of this data, see Ibrahim, Chen and Sinha (2001). Kaplan-Meier estimates
(Figure 11) suggest that the cure fraction increases to category nodes.

Table 5 – Maximum likelihood estimates, standard error, 95% confidence intervals (CIs), AIC and BIC
criteria according to Gompertz and inverse-Gaussian models for the melanoma data.

Distribution Parameter Estimate Std. error Lower 95% CI. Upper 95% CI. AIC BIC Log. Veros.

a -0.1176 0.0536 -0.2226 -0.0126 1075.748 1095.913 532.8738
b0 -2.1754 0.1943 -2.5562 -1.7946

Gompertz b12 0.2664 0.216 -0.157 0.6897
b13 0.5263 0.2284 0.0786 0.974
b14 1.0465 0.2146 0.6257 1.4672
p0 0.3808 0.1444 0.0977 0.6638
p1 0.2836 0.1372 0.0146 0.5525
p2 0.1951 0.1247 -0.0494 0.4395
p3 0.064 0.0687 -0.0706 0.1985

a 0.0003 0.0294 -0.0574 0.0579 1034.215 1054.381 512.1077
b0 -1.5007 0.1694 -1.8326 -1.1688

Inv. Gauss b12 0.5321 0.1882 0.1632 0.9011
b13 0.925 0.2132 0.507 1.3429
b14 1.172 0.2145 0.7516 1.5924
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Figure 11 – Estimated survival curves of the Gompertz model (left graphic) and the inverse Gaussian
model (right graphic) in melanoma data.

Table 5 shows the maximum likelihood estimates for the Gompertz and inverse-Gaussian
models in the melanoma data. In the Gomgpertz model a < 0, which indicates defective models,
and there is a cure rate. Observe that, in the inverse Gaussian model, the parameter a > 0 was
very close to zero, indicating a non-cure in this case. Figure 11 illustrates the estimated survival
curves. Observe that none of the presented models have a satisfactory fit. In both case, the curve
estimates capture poorly the KM curve.
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3.6 Conclusions
In this chapter, the concept of defective distributions are introduced and two defective

distributions in the literature are presented, the defective Gompertz models and the defective
inverse-Gaussian models. It is presented an alternative to add covariates to these defective models.
Four applications in real data set were presented to exemplify the defective models presented.

In the applications it becomes clear the need to have more options of defective distribu-
tions in the literature. In Rocha et al. (2015b) and Rocha et al. (2015a) using the distribution
families Kumarasawamy and Marshall-Olkin proposed an extension for the defective inverse
Gaussian and Gompertz models, thus generating new defective distributions. In Martinez and
Achcar (2017) and Martinez and Achcar (2018), the defective generalized Gompertz and the
defective Dagun distribution were proposed. In the next chapter, two new defective distributions
induced by a frailty term with Gamma distribution will be presented: the defective Gamma-
Gompertz and the defective Gaussian Gamma-inverse.
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CHAPTER

4
DEFECTIVE MODELS INDUCED BY A

FRAILTY TERM

The most adequate way of modeling a frailty term in the presence of immunes elements
is using discrete probability distributions. Those distributions allow the value zero for the frailty
of an element that have no risk of fail. However, the goal here is to use the gamma distribution
for the frailty term to induce a new and more flexible defective distribution. In that case, we
won’t have a frailty model anymore, but a defective one. This chapter is organized as follows. In
Section 4.1 the defective models with the frailty term will be formulated and its properties will
be discussed. So two the defective models with the frailty term will be presented, the models
defective gamma-Gompertz 4.1.1 and defective gamma-inverse Gaussian 4.1.2. Section 4.1.3,
one way to include the covariate in defective models with the frailty term will be presented.
Simulation studies are presented to analyze the asymptotic properties of maximum likelihood
estimators, in Section 4.2. Section 4.3, three applications in real data sets to illustrate the proposed
methodology are presented, in which one of them is a newly added data set to the literature,
related to a study about breast cancer in the A C.Camargo Cancer Center, São Paulo, Brazil.
Finally, in Section 4.4 the conclusions of this chapter are presented.

4.1 Defective models induced by frailty term

In this section the defective models using a frailty term are defined. A problem in frailty
models is the choice of the distribution of the random effect. The frailty distribution most often
applied is the gamma distribution Clayton (1978), Vaupel, Manton and Stallard (1979), Missov
(2010) and Missov (2013). However, other choices can be considered, such as the positive
stable distribution (HOUGAARD, 1986b), a three-parameter distribution (PVF) (HOUGAARD,
1986a), the compound Poisson distribution (AALEN, 1992), the log-normal and inverse Gaussian
distributions (TOMAZELLA, 2003), among others.
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If the distribution of the random effect must have expectation 1, then the model to be
identifiable (ELBERS; RIDDER, 1982). In this paper, assume that the random variable V follows
a gamma distribution with shape parameter k and inverse scale parameter, λ (V ∼ Γ(k,λ )),
with E(V ) = k/λ and Var(V ) = k/λ 2 (WIENKE, 2003). Here, E(V ) = k/λ = 1 and Var(V ) =

k/λ 2 = θ are considered, being k = λ = θ−1.

Suppose that F0(t) is the cumulative function distribution, where S0(t) is a proper or a
not proper survival function, h0(t) is the respective hazard function and consider a nonnegative
unobservable random variable V that denote the frailty term. This way, the hazard model with a
frailty term is given by

h(t|V ) =V h0(t).

The conditional survival function is obtained as follows

S(t) = E[S(t|V )] = E
[
e−H(t|V )

]
= E

[
e−V H0(t)

]
= Lg [H0(t)] ,

where Lg[·] denotes the Laplace transform of frailty distribution.

The Laplace transform of the gamma frailty distribution is expressed by

Lg(s) = (1+θs)−1/θ .

The unconditional survival, density and hazard functions in the gamma frailty model are
expressed, respectively

S(t) = [1−θ logS0(t)]
−1/θ ,

f (t) = h0(t) [1−θ logS0(t)]
−1−1/θ ,

h(t) = h0(t){1−θ logS0(t)}−1 ,

where S0(t) is a proper or not proper survival function.

It is worth to mentioning, that in Equation (4.1) if S0(t) is not proper survival function
then S(t) is also not proper. Notice that, when S0(t) is a not proper, the survival function in
(4.1) is positive if, and only if, θ log[S0(t)]< 1. The main result of this chapter is that if S0(t) is
defective then S(t) is also defective, as stated in below.

Theorem 2. If S0(t) is a survival function of a defective distribution and θ log[S0(t)]< 1, then

S(t) = [1−θ logS0(t)]
−1/θ is also a survival function from a defective distribution.

Proof. Suppose the limit of S0(t) is equal to p0 ∈ (0,1). Then

lim
t→∞

S(t) = lim
t→∞

[1−θ logS0(t)]
−1/θ = [1−θ log p0]

−1/θ .
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If p0 ∈ (0,1) then log p0 < 0. Suppose that θ > 0 then

θ log p0 < 0⇔−θ log p0 > 0⇔ 1−θ log p0 > 1⇔ (1−θ log p0)
−1/θ < 1.

Therefore, if θ log[S0(t)]< 1, we have

lim
t→∞

S(t) = [1−θ log p0]
−1/θ ∈ (0,1).

The proof is complete. �

The proof is similar when θ < 0.

When S(t) is a defective distribution, the proportion of immunity in the population is
calculated as the limit of the survival function

p = lim
t→∞

S(t).

When the data has a cure fraction, the defective models with frailty terms can result
in negatively valued estimates of the parameter θ . Figure 12 presents the cure fraction of the
Gompertz distribution (left graphics) and inverse Gaussian distribution (right graphics) for
different values of θ . Note that depending on the cure fraction values, the parameter θ can
assume negative values, violating the main assumption of the frailty models. So the parameter θ

can not be interpret as a frailty term, when it has a defective parameter. This is a question which
is not commented in Kettunen et al. (1991), which considers an estimate of the frailty term even
estimating the defective parameter negative.
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Figure 12 – Graphics of the cure fraction of the Gompertz and inverse Gaussian varying the frailty
parameter θ .

In the next section, the defective Gompertz and the defective Inverse Gaussian models
with a gamma frailty term will be defined.
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4.1.1 Defective gamma-Gompertz model

The defective Gompertz model induced by a frailty term is defined considering that the
lifetime of the individuals have a Gompertz distribution with parameter a < 0, b > 0.

The survival function of the Gompertz distribution with gamma frailty term are defined
as

S(t) = [1−θ logS0(t)]
−1/θ =

{
1+

θb(eat−1)
a

}−1/θ

, (4.1)

where a > 0, b > 0 and θ > 0. When a < 0, it has the defective gamma-Gompertz distribution
and θ ∈ R*.

Its density function is given by

f (t) = h0(t) [1−θ logS0(t)]
−1−1/θ = beat

{
1+

θb(eat−1)
a

}−1−1/θ

.

The hazard function is

h(t) = h0(t) [1−θ logS0(t)]
−1 = beat

{
1+

θb(eat−1)
a

}−1

.

Theorem 3. The gamma-Gompertz distribution is defective when a < 0.

Proof. If

lim
t→∞

S(t) =
{

1−θ lim
t→∞

[log S0(t)]
}−1/θ

=

{
1+θ lim

t→∞

[
b(eat−1)

a

]}−1/θ

=

{
1− bθ

a

}−1/θ

.

Suppose that a < 0 and θ > 0 then −b
a > 0. So,

−θb
a

> 0⇔ 1− θb
a

> 1⇔
{

1− θb
a

} 1
θ

> 1
1
θ ⇔

{
1− θb

a

}− 1
θ

< 1.

Now suppose that a < 0 and θ < 0, then −b
a > 0. So,

−θb
a

< 0⇔ 1− θb
a

< 1⇔
{

1− θb
a

} 1
θ

> 1
1
θ ⇔

{
1− θb

a

}− 1
θ

< 1.

If θ logS0(t)< 1, we have

lim
t→∞

S(t) =
{

1− θb
a

}− 1
θ

∈ (0,1).

The proof is similar to the proof of Theorem 2. �
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Note that to a > 0 , lim
t→∞

S(t) = 0, then the Equation (4.1) is proper and it has the gamma-
Gompertz model. If a < 0, lim

t→∞
S(t) ∈ (0,1) then the Equation (4.1) is not proper and we have

the defective gamma-Gompertz model. Then, when a < 0 we have a cure rate model, with cure
fraction p estimated by

p =

(
1− θb

a

)− 1
θ

.

4.1.2 Defective gamma-inverse Gaussian model

The defective inverse Gaussian model induced by the gamma frailty term is defined
considering that the lifetime of the individuals have inverse Gaussian distribution with parameters
a < 0, b > 0. This model is referred as defective gamma-inverse Gaussian model. The survival
function of the gamma-inverse Gaussian model is given by

S(t) = [1−θ logS0(t)]
−1/θ =

{
1−θ log

{
1−
[
Φ

(
−1+at√

bt

)
+ e

2a
b Φ

(
−1−at√

bt

)]}}−1/θ

,

where a > 0, b > 0 and θ > 0. When a < 0, we have the defective gamma-inverse Gaussian
model and θ ∈ R*.

The density function is given by

f (t) =
1√

2bπt3
exp{− 1

2bt (1−at)2}
1−
[
Φ

(
−1+at√

bt

)
+e2a/bΦ

(
−1−at√

bt

)] {1−θ log
[
1−
[
Φ

(
−1+at√

bt

)
+ e2a/bΦ

(
−1−at√

bt

)]]}−1−1/θ

.

The hazard function is defined as

h(t) =
1√

2bπt3
exp{− 1

2bt (1−at)2}
1−
[
Φ

(
−1+at√

bt

)
+e2a/bΦ

(
−1−at√

bt

)] {1−θ log
[
1−
[
Φ

(
−1+at√

bt

)
+ e2a/bΦ

(
−1−at√

bt

)]]}−1
.

Theorem 4. The gamma-inverse Gaussian distribution is defective when a < 0.

Proof.

lim
t→∞

S(t) =
{

1−θ lim
t→∞

[logS0(t)]
}− 1

θ

=

{
1+θ lim

t→∞

[
log
(

1−
(

Φ

(
−1+at√

bt

)
+ e

2a
b Φ

(
−1−at√

bt

)))]}− 1
θ

=
{

1−
[
θ log

{
1− e

2a
b

}]}− 1
θ

.

Suppose a < 0 and θ > 0, then
(

1− e2a/b
)
∈ (0,1)

log
(

1− e2a/b
)
< 0 ⇔ − log

(
1− e2a/b

)
> 0 ⇔

−θ log
(

1− e2a/b
)
> 0⇔{

1−θ log
(

1− e
2a
b

)}
> 1 ⇔

{
1−θ log

(
1− e

2a
b

)}−1/θ

< 1.
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Now, suppose a < 0 and θ < 0, then

log
(

1− e2a/b
)
< 0 ⇔ − log

(
1− e2a/b

)
> 0⇔{

−θ log
(

1− e
2a
b

)}
< 0 ⇔

{
1−θ log

(
1− e

2a
b

)}
< 1⇔{

1−θ log
(

1− e
2a
b

)}1/θ

> 1 ⇔
{

1−θ log
(

1− e
2a
b

)}−1/θ

< 1.

Therefore, if θ logS0(t)< 1, we have

lim
t→∞

S(t) =
{

1−θ log
(

1− e
2a
b

)}− 1
θ ∈ (0,1).

The proof is complete. �

Note that if a > 0, lim
t→∞

S(t) = 0, then the Equation (4.2) is proper and we have the
gamma-inverse Gaussian frailty model. When a < 0 the Equation (4.2 ) is improper and we have
the defective gamma-inverse Gaussian model. We calculate the cure fraction p for the defective
gamma-inverse Gaussian model as

p =
{

1−θ log
(

1− e
2a
b

)}− 1
θ

.

4.1.3 Defective regression models induced by a frailty term

In this section, a defective model induced by a frailty term with covariate information
is proposed. Consider xxx⊤ = (1,x1, . . . ,xp) a vector of covariates and βββ

⊤ = (β0,β1, . . . ,βp) a
vector of regression coefficients. Given a cumulative function distribution F0(t), with survival
function S0(t) and h0(t) its hazard function, the corresponding conditional hazard function of
the regression model with a frailty term is

h(t|V,xxx) =V h0(t)exxx⊤βββ ,

where V ∼ Γ(θ−1,θ−1).

Then, the survival function of the regression model with a gamma frailty term is given by

S(t|xxx) =
[
1−θexxx⊤βββ logS0(t)

]−1/θ

.

When S0(t) is a defective distribution, we have a defective regression models induced by
a frailty term. Notice that if S0(t) is not proper, the expression above is positive if, and only if,
θexxx⊤βββ logS0(t)< 1.

The density and hazard functions are, respectively

f (t|xxx) = h0(t)exxx⊤βββ

[
1−θexxx⊤βββ logS0(t)

]−1−1/θ
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and
h(t|xxx) = h0(t)exxx⊤βββ

[
1−θexxx⊤βββ logS0(t)

]−1
.

In the next section, the defective regression model to the gamma-Gompertz and gamma-
inverse Gaussian distributions will be introduced.

4.1.3.1 Defective gamma-Gompertz regression model

Here the defective Gompertz model with frailty term including covariate information is
defined. The survival function of the gamma-Gompertz regression model is defined as

S(t|xxx) =
{

1−θexxx⊤βββ logS0(t)
}−1/θ

=

{
1+

θbexxx⊤βββ (eat−1)
a

}−1/θ

,

where a > 0, b > 0 and θ > 0. However, the gamma-Gompertz has an identifiability problem
between the parameters b and eβ0 . To overcome this problem, eβ *0 = beβ0 = elogbeβ0 = elogb+β0

is used, which is the same as setting b = 1. Not, that use this transformation are not losing any
information about the parameter b, as the same information is being considered in eβ *0 . Then, the
survival function of the gamma-Gompertz model is

S(t|xxx) =

{
1+

θexxx⊤βββ (eat−1)
a

}−1/θ

.

The density function of the gamma-Gompertz model induced by a frailty term is given
by

f (t|xxx) = h0(t)exxx⊤βββ

{
1−θexxx⊤βββ log [S0(t)]

}−1−1/θ

= eat+xxx⊤βββ

{
1+

θexxx⊤βββ (eat−1)
a

}−1−1/θ

.

The hazard function of the gamma-Gompertz is given by

h(t|xxx) = h0(t)exxx⊤βββ

[
1−θexxx⊤βββ logS0(t)

]−1
= eat+xxx⊤βββ

{
1+

θexxx⊤βββ (eat−1)
a

}−1

.

If a < 0, we have the defective gamma-Gompertz regression model and θ ∈ R*. The
cure fraction p is

p =

(
1− θexxx⊤βββ

a

)− 1
θ

.

4.1.3.2 Defective gamma-inverse Gaussian regression model

Here, the gamma-inverse Gaussian model with covariate information is defined. The
survival function of the gamma-inverse Gaussian regression model is given by

S(t|xxx) =
[
1−θexxx⊤βββ logS0(t)

]−1/θ

=

{
1−θexxx⊤βββ log

{
1−
[

Φ

(
−1+at√

bt

)
+ e

2a
b Φ

(
−1−at√

bt

)]}}−1/θ

,
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where a > 0, b > 0 and θ > 0.

The density and hazard functions are, respectively

f (t|xxx) =

1√
2bπt3 exp

{
− 1

2bt (1−at)2
}

1−
[
Φ

(
−1+at√

bt

)
+ e2a/bΦ

(
−1−at√

bt

)]exxx⊤βββ

{
1−θexxx⊤βββ log

[
1−
[

Φ

(
−1+at√

bt

)
+ e2a/b

Φ

(
−1−at√

bt

)]]}−1−1/θ

,

and

h(t|xxx) =

1√
2bπt3 exp

{
− 1

2bt (1−at)2
}

1−
[
Φ

(
−1+at√

bt

)
+ e2a/bΦ

(
−1−at√

bt

)]exxx⊤βββ

{
1−θexxx⊤βββ log

[
1−
[

Φ

(
−1+at√

bt

)
+ e2a/b

Φ

(
−1−at√

bt

)]]}−1

.

When a < 0, we have the defective gamma-inverse Gaussian regression model and
θ ∈ R*. In this case the cure fraction p is calculated by

p =
{

1−θexxxβββ log
(

1− e
2a
b

)}− 1
θ

.

In the next section, the inference for the defective gamma-Gompertz and gamma-inverse
Gaussian models will be presented.

4.1.4 Inference

Here, the estimation procedures regards the defective gamma-Gompertz model and the
defective gamma-inverse Gaussian model are discussed.

Consider a sample of size n and the observed time is Ti = min(Wi,Ci) where Wi is the
time failure, Ci the censoring time and let δi the failure indicator, that is, δi = 1 if Ti =Wi and δi =

0 otherwise, for i = 1, . . . ,n. The observed data are represent by D = (ttt,δδδ ,XXX), ttt = (t1, . . . , tn)
⊤,

δδδ = (δ1, . . . ,δn)
⊤ and XXX is a n× p matrix containing the covariates. Suppose that the data is

independently and identically distributed and come from a distribution with density and survival

functions specified by f (·,θθθ) e S (·,θθθ), where θθθ =
(

a,b,βββ⊤
)⊤

denoting a vector of parameters.

The likelihood function of θθθ can be written as

L(θθθ ,D) ∝

n

∏
i=1

f (ti,θθθ)
δi S (ti,θθθ)

(1−δi) .

The corresponding log-likelihood function is

logL(θθθ ,D) = const +
n

∑
i=1

δi log f (ti,θθθ)+
n

∑
i=1

(1−δi) logS (ti,θθθ) .
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For the gamma-Gompertz distribution the log-likelihood function for θθθ is

logL(θθθ,D) = const +
n

∑
i=1

δi log f (ti,θθθ)+
n

∑
i=1

(1−δi) logS(ti,θθθ) (4.2)

= const +
n

∑
i=1

δixxx⊤i βββ +a
n

∑
i=1

δiti−
(

1
θ
+1
) n

∑
i=1

δi log

{
1+

θexxx⊤i βββ (eati−1)
a

}

− 1
θ

n

∑
i=1

(1−δi) log

{
1+

θexxx⊤i βββ (eati−1)
a

}
.

For the gamma-inverse Gaussian distribution the log-likelihood function for θθθ is

logL(θθθ,D) = const +
n

∑
i=1

δi log f (ti,θθθ)+
n

∑
i=1

(1−δi) logS(ti,θθθ) (4.3)

= const +
n

∑
i=1

δi log

 1√
2bπt3

i
exp
{
− 1

2bt (1−ati)
2
}

1−
[
Φ

(
−1+ati√

bti

)
+ e2a/bΦ

(
−1−ati√

bti

)]
+

n

∑
i=1

δixxx⊤i βββ

−
(

1+
1
θ

) n

∑
i=1

δi

{
1−θexxx⊤i βββ log

[
1−
(

Φ

(
−1+ati√

bti

)
+ e

2a
b Φ

(
−1−ati√

bti
)

)]}
− 1

θ

n

∑
i=1

(1−δi) log
{

1−θexxx⊤i βββ log
[

1−
(

Φ

(
−1+ati√

bti

)
+ e

2a
b Φ

(
−1−ati√

bti

))]}
.

The log-likelihood functions (4.2) and (4.3), can be maximized numerically to obtain the
maximum likelihood estimates. There are various routines available for numerical maximization.
Here, the package optim of the R software for the numerical maximization are used (R Core
Team, 2013). And the "BFGS" method is used for maximization, see the manual of the optim
package for more details. Confidence intervals for the parameters were based on asymptotic
normality. If θ̂θθ denotes the maximum likelihood estimator of θθθ then it is well known that the
distribution of θ̂θθ −θθθ can be approximated by a q-variate normal distribution with zero means
and covariance matrix I−1

(
θ̂θθ

)
, where I (θθθ) denotes the observed information matrix. So, an

approximate 100(1−α) percent confidence interval for θi is
(

θ̂i− zα/2
√

Iii, θ̂i + zα/2
√

Iii
)

,

where Iii denotes the ith diagonal element of the inverse of I evaluated at θ̂θθ and za denotes the
100(1−a) percentile of the standard normal random variable.

In the next section, simulation studies were performed to check the asymptotes of the
maximum likelihood estimates.

4.2 Simulation studies

In this section, a study with simulated data is proposed to check the properties of the
maximum likelihood estimator for the proposed models.
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Figure 13 – Mean squared errors, bias, coverage probabilities and covarage length of (â, θ̂ , β̂0, β̂1, p̂0, p̂1)
versus n for the defective gamma-Gompertz model. The red, green and blue lines (squares,
circles and triangles) represents the scenario where θ = 0.75,1,2, respectively.

Using the algorithm describe in Section 2.8, six simulations to check the maximum
likelihood estimates are proposed, with three scenarios for the defective gamma-Gompertz model
and three for the defective gamma-inverse Gaussian model.

The parameters used in the defective gamma-Gompertz distribution were (a,θ ,β0,β1) =
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(−1,θ ,−0.5,1), with θ = 0.75,1,2. Thus, the cure fractions p0 and p1 are 0.6722 and 0.4824
for θ = 0.75, 0.6225 and 0.3775 for θ = 1 and 0.6722 and 0.4824 for θ = 2. The parameters
used in the defective gamma-inverse Gaussian distribution were (a,b,θ ,β0,β1) = (−1,2,θ ,1,1),
also with θ = 0.75,1,2. Thus, the cure fractions p0 and p1 are 0.4147 and 0.1852 for θ = 0.75,
0.4451 and 0.2278 for θ = 1 and 0.5350 and 0.3586 for θ = 2.

In each scenario, for each parameter the mean square error, the bias, the coverage
probability and range of the confidence interval for different sample sizes were calculated. The
sample sizes were considered n = 100,200, ...,1.500. The delta method was used to estimate the
variance of cure fractions. All calculations were developed in R software. Figures 13 and 14
illustrate the results obtained by the defective gamma-Gompertz and defective gamma-inverse
Gaussian models, respectively. The red curves are for the choice of θ = 0.75, the green curves
for θ = 1 and blue curves for θ = 2.

From these simulations we can conclude the following: i) the mean square error decreases
and approaches zero as the sample size increases; ii) the mean square error is smaller for the
lowest values of θ ; iii) the mean square error of the cure fractions is generally lower than for
the other parameters; iv) all parameters in all cases converge to their actual values that is, the
maximum likelihood estimator of these models is asymptotically not biased; v) the bias of cure
fractions are very small, even in the smallest sample values;vi) the coverage probabilities are
around 0.95 for the parameters a, b, θ , β0 , β1, p0 and p1; vii) the ranges of confidence intervals
decrease as the sample size increases; viii) in general, when the amplitude of the interval is
smaller than the other, the smaller the value of θ will be.
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Figure 14 – Mean squared errors, bias, coverage probabilities and covarage length of (â, b̂, θ̂ , β̂0, β̂1, p̂0, p̂1)
versus n for the the defective gamma-inverse Gaussian model. The red, green and blue lines
(squares, circles and triangles) represents the scenario where θ = 0.75,1,2, respectively.
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The next section illustrates the proposed models in four real data sets.

4.3 Application
In this section some applications of the proposed models were discussed. Four real data

sets were used, the same data set presented in Section 3.5. The fit of the defective models induced
by frailty term were compared with the frailty mixture models (PRICE; MANATUNGA, 2001).
We used of the AIC, BIC as comparative measures.

The gamma frailty mixture model proposed by Price and Manatunga (2001) is defined as

S(t|xxx) = p(xxx)+(1− p(xxx))(1−θ log(S0(t)))
1/θ

where θ > 0, S0(t) is the Gompertz distribution or inverse-Gaussian and p(xxx) = exxx⊤i βββ

1+exxx⊤i βββ
.

The plot of the Kaplan-Meier non-parametric estimator curve with the survival curve
of the models proposed were presented. As close to the parametric models gets to the Kaplan-
Meier curve, better the fit is. In all applications the R software was used, with the optimization
procedure given by the function optim. The delta method was used to calculate the standard error
of the cure rates, both in the frailty mixture model and the defective model induced by frailty
term.

4.3.1 Colon cancer

Here colon data set is considered, this data set was presented in Chapter 3. Details of this
data set can be found in Laurie et al. (1989).

Table 6 – Maximum likelihood estimates, standard error (SE), 95% confidence intervals (CIs), AIC and
BIC criteria according to gamma-Gompertz and frailty mixture gamma-Gompertz for the colon
cancer data.

Defective gamma-Gompertz Mixture gamma-Gompertz
Parameter Estimate Std. Error Lower 95% CI Upper 95% CI Estimate Std. Error Lower 95% CI Upper 95% CI
a -4.343 0.667 -5.651 -3.035 90.322 24.848 41.621 139.024
b - - - - 0.544 0.221 0.110 0.978
θ -1.775 0.566 -2.885 -0.666 22.178 6.571 9.300 35.057
β0 0.574 0.051 0.473 0.674 -0.063 0.058 -0.176 0.050
β1 0.147 0.060 0.029 0.265 -0.523 0.150 -0.816 -0.229
p0 0.483 0.016 0.452 0.514 0.484 0.014 0.456 0.512
p1 0.356 0.037 0.285 0.428 0.358 0.033 0.294 0.422
AIC 1498.70 1443.69
BIC 1520.81 1471.33

Table 6 summarizes the results from the defective gamma-Gompertz model and the frailty
mixture gamma-Gompertz model in the colon cancer data. Notice that â < 0 in the defective
gamma-Gompertz, which indicates cure rate, although the parameter θ has not interpretation
as a frailty term. The both models a reasonable fit and presents a quite close estimate for the
proportion of cured. Both models provide cured fraction estimates of p0 = 0.48 and p1 = 0.36.
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Figure 15 – Estimated survival curves of the gamma-Gompertz model and frailty mixture gamma-
Gompertz for the colon data set.

This means that patients that present adherence in the nearby organs have a smaller
estimated cure fraction. The difference in the estimated cure fraction between the two groups is
around 0.12. The AIC and BIC measures to the frailty mixture model is a bit smaller than the
defective model.

4.3.2 Divorce data

The second data set considered is the divorce data set. The Figure 16 illustrates the
estimated survival curves for the gamma-Gompertz model and frailty mixture gamma-Gompertz
model. We can see the both models have a reasonable fit, but the frailty mixture model shows a
better fit with Kaplan-Meier curve. The AIC and BIC measures to the frailty mixture models is a
bit smaller than the defective model.

The Table 7 summarizes the results from the defective gamma-Gompertz and the frailty
mixture gamma-Gompertz models. Note that â < 0 in the defective gamma-Gompertz, which
indicates cure rate. Then the parameter θ has not interpretation as a frailty term.

In both models the cure rate is smaller in couple with different ethnicity, i.e., couples
with different ethnicity have more odds divorce than couple with same ethnicity. The difference
in estimated cure fraction between the two groups is around 0.09.

4.3.3 Breast cancer

This data set was collected at the A.C.Camargo Cancer Center, São Paulo, Brazil. It is a
study of patients with breast cancer.
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Figure 16 – Estimated survival curves of the gamma-Gompertz model and frailty mixture gamma-
Gompertz model with the covariate ethnicity in divorce data.

Table 7 – Maximum likelihood estimates, standard error (SE), 95% confidence intervals (CIs), AIC and
BIC criteria according to gamma-Gompertz and frailty mixture gamma-Gompertz for the divorce
data.

Defective gamma-Gompertzl Mixture gamma-Gompertz

Parameter Estimate SE Lower 95% CI Upper 95% CI Estimate SE Lower 95% CI Upper 95% CI

a -10.1665 1.7252 -13.5478 -6.7852 77.0297 29.3728 19.4601 134.5993
θ -6.1765 1.4057 -8.9317 -3.4214 16.2195 6.9238 2.6491 29.7900
β0 0.4663 0.0487 0.371 0.5617 0.2115 0.0642 0.0858 0.3373
β1 0.0196 0.016 -0.0117 0.0509 -0.3996 0.1201 -0.6351 -0.1642
b - - - - 1.0928 0.3584 0.3903 1.7953
p0 0.5713 0.0132 0.5454 0.5972 0.5527 0.0159 0.5216 0.5838
p1 0.4908 0.0323 0.4275 0.5541 0.4531 0.0294 0.3955 0.5107

AIC 1467.394 1433.061
BIC 1491.886 1463.676

In this application, two models are considered: one model only with the covariate N,
because is the only one without missing values and the model with all three covariates, but
discarding the observations with missing data, totaling 58 observations. The frailty mixture
model is used to compare the defective model just the model only with the covariate N.

Table 8 – Maximum likelihood estimates, standard error (SE), 95% confidence intervals (CIs), AIC and
BIC criteria according to gamma-inverse Gaussian and frailty mixture gamma-inverse Gaussian
for the breast cancer data. with one covariate (N).

Defective gamma-inverse Gaussian Mixture gamma-inverse Gaussian
Parameter Estimate Std. Error Lower 95% CI Upper 95% CI Estimate Std. Error Lower 95% CI Upper 95% CI
a -5.189 2.588 -10.262 -0.117 5.301 0.955 3.429 7.173
b 1.929 0.659 0.637 3.221 4e-04 0.022 -0.044 0.044
θ -0.801 4.180 -8.995 7.393 1.551 0.651 0.276 2.827
β0 3.657 2.596 -1.432 8.746 -1.396 0.715 -2.796 0.005
β1 1.004 0.930 -0.818 2.826 1.940 0.601 0.763 3.118
p0 0.825 0.095 0.638 1.000 0.825 0.094 0.641 1.000
p1 0.538 0.084 0.374 0.703 0.539 0.083 0.377 0.701
AIC 33.908 33.912
BIC 45.692 45.696
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Figure 17 – Estimated survival curves of the gamma-inverse Gaussian model and frailty mixture gamma-
inverse Gaussian model with the covariate N.
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Figure 18 – Estimated survival curves of the gamma-inverse Gaussian model with three covariates. In the
left, the survival curves when TIL=0 and N=1. In the right, the survival curves when TIL=1
and N=1.

Table 8 summarizes the results for the fit of gamma-inverse Gaussian model and the
frailty mixture gamma-inverse Gaussian in the breast cancer data set with covariate N. Note
that â < 0, so we have a defective gamma-inverse Gaussian model. And the frailty term do not
interpretation in this case. The both models have reasonable fit and presents the same estimate for
proportion of cured elements estimated around p0 = 0.82 and p1 = 0.53, for the groups N = 0
and N = 1, respectively.

Figure 17 illustrates the estimated survival curves. The survival time of the N = 0 group
is higher than the N = 1 group and differs by around 0.29. However, we can not distinguish
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it with statistical significance. The fit for both models captures the Kaplan-Meier curve very
well for both groups. The AIC and BIC measures are very closely in both models. And the both
models are appropriate for fit this data with covariate N.

Table 9 shows the maximum likelihood estimates of the gamma-inverse Gaussian model
with all three covariates. Notice that â < 0, so we have a defective model. Table 10 shows
all the estimated cure rates, for each scenario in the covariate set. Notice that if TIL = 1 and
N = T = 0, we have the case when the cure rate is higher, 94.7%. When the opposite happens,
that is, TIL = 0 and N = T = 1, the cure rate is 34,97%. It was not possible to distinguish any
group with statistical significance, mainly because the data set is quite small. Figure 18 present
the Kaplan-Meier curves when the covariates TIL and N are fixed equals to 0 and 1, in the left
panel, and equals to 1 and 1, in the right panel. We can see that, despite for the small data set, the
fitted curves captures reasonably well the respective Kaplan-Meier curves.

Table 9 – Maximum likelihood estimates of the gamma-inverse Gaussian model with three covariates.

Parameter Estimate Std. Error Lower 95% CI Upper 95% CI
a -3.4846 2.941 -9.2489 2.2797
b 1.7830 0.6589 0.4916 3.0744
θ 1.7224 2.8664 -3.8956 7.3404
β0 2.6155 3.272 -3.7976 9.0285
β1 -1.5809 0.9741 -3.4902 0.3284
β2 1.5049 1.1275 -0.7049 3.7148
β3 0.8653 0.9165 -0.9310 2.6616

Table 10 – Estimated cure rates for each configuration of covariates.

Parameter TIL N T Estimate Std. Error Lower 95% CI Upper 95% CI
p000 0 0 0 0.7972 0.1666 0.4707 0.9999
p001 0 0 1 0.6439 0.2132 0.2262 0.9999
p010 0 1 0 0.5136 0.1663 0.1877 0.8396
p011 0 1 1 0.3497 0.1261 0.1026 0.5968
p100 1 0 0 0.9470 0.0620 0.8256 0.9999
p101 1 0 1 0.8853 0.1133 0.6632 0.9999
p110 1 1 0 0.8084 0.1347 0.5443 0.9999
p111 1 1 1 0.6589 0.1784 0.3093 0.9999

4.3.4 Melanoma

Table 11 summarizes the results for gamma-inverse Gaussian model and frailty mixture
gamma-inverse Gaussian model in melanoma data. In the gamma-inverse Gaussian model
a > 0, so the gamma-inverse Gaussian model is a frailty one and θ is interpretable. Notice that
θ̂ = 1.232, which indicates a reasonable degree of unobserved heterogeneity in sample. Figure
19 illustrates the estimated survival curves. It is worth mentioning that the fitted models do not
captures the Kaplan-Meier curve in every group. This is an visual evidence that this models are
not a proper fit for this data set.
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Table 11 – Maximum likelihood estimates, standard error (SE), 95% confidence intervals (CIs), AIC
and BIC criteria according to gamma-inverse Gaussian and frailty mixture gamma-inverse
Gaussian for the melanoma cancer data.

gamma-inverse Gaussian Mixture gamma-inverse Gaussian
Parameter Estimate Std. Error Lower 95% CI Upper 95% CI Estimate Std. Error Lower 95% CI Upper 95% CI
a 4.1518 7.025 -9.6169 17.9205 2.1679 0.6789 0.8373 3.4984
b 3.0189 0.4826 2.073 3.9649 0.0002 0.0071 -0.0138 0.0142
θ 1.2322 0.7733 -0.2834 2.7477 0.9849 0.3273 0.3434 1.6265
β0 -2.3637 1.9947 -6.2733 1.5458 -0.5637 0.1494 -0.8566 -0.2708
β1 0.5006 0.1185 0.2685 0.7328 2.9825 0.3552 2.2863 3.6788
p1 - - - - 0.6038 0.0626 0.4812 0.7264
p2 - - - - 0.4644 0.0678 0.3316 0.5973
p3 - - - - 0.3304 0.0782 0.1772 0.4837
p4 - - - - 0.2193 0.0803 0.0618 0.3767
AIC 319.2274 326.8285
BIC 339.3928 346.9939
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Figure 19 – Estimated survival curves of the gamma-inverse Gaussian model and frailty mixture gamma-
inverse Gaussian for the melanoma data set.

According AIC and BIC criteria show that the gamma-inverse Gaussian model is prefer-
able in relation to the frailty mixture gamma-inverse Gaussian model. Notice that the gamma-
inverse Gaussian model capture much better the curve for category 4. For category 1 curve,
the gamma-inverse Gaussian model capture better the initial times. Then, the gamma-inverse
Gaussian model has a better fit than the frailty mixture model and has advantage of it not being
necessary to assume the existence of a proportion cured.

4.4 Conclusions

In this chapter, two new distributions that can assume defective forms were proposed,
the gamma-Gompertz and the gamma-inverse Gaussian. It is showed that can be induced new
defective distributions when using the gamma frailty term. An approach for the regression version
of these models and the inference by maximum likelihood approach were proposed. Simulation
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studies were presented to verify the asymptotic properties of the maximum likelihood estimator,
which we conclude that the model does not present any relevant problems in terms of estimation.
To illustrate the methodology, the proposed model was fitted to three real data sets. One of them,
the breast cancer data, is a new data set that we are using for the first time. The proposed model
was compared with the frailty mixture model. It was showed that the defective models induced
by a frailty term is a competitive model for modeling the proportion of cured. Moreover, the
defective model has advantage of it not being necessary to assume the existence of a proportion
cured. And it is not necessary limit the range of the parameter in the estimation procedure.

Furthermore, when a > 0, we have the frailty models, gamma-Gompertz and gamma-
inverse Gaussian. When a < 0, we have the defective gamma-Gompertz and the defective
gamma-inverse Gaussian models, induced by the frailty term. We empathizes that we only have
a frailty term in these models when a > 0, different than what is founded in the work of Kettunen
et al. (1991).
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CHAPTER

5
BETA-PG FAMILY

Seeking for more flexible distributions, many authors have been generalizing a baseline
distribution using family of distributions. These families adds extra parameters in a baseline dis-
tribution in order to increase its modeling capability. For more information about this distribution
families see Nadarajah, Rocha et al. (2015).

Using distribution families, in this chapter, is presented another approach to estimating
the cure rate. Here a parameter "p" is added in the Beta-G family in order to create a new family
of cure rate models. This family is a cure model, but it does not use the concept of defective
distribution in its construction. This chapter is organized as follows. In Section 5.1, the Beta-G
family of distribution is presented. In Section 5.2, the Beta-pG family of distribution is defined.
In the next section, 5.3, an approach for the Beta-pG regression model is presented. In Section
5.5, the estimation issues using the maximum likelihood estimator is discussed. In the end, the
methodology is finished by presenting a special case of the Beta-pG, the Beta-pExp, which is
haved when G is taken as the exponential distribution.

5.1 The Beta-G Family of Distributions

The Beta distribution has been proved very useful in many contexts due to its flexibility.
Its density function is defined by

fβ (t) =
1

B(a,b)
ta−1(1− t)b−1,

where B(a,b) =
∫ 1

0 va−1(1− v)b−1dv denotes the Beta function, for t ∈ (0,1), with a > 0 and
b > 0 its shape parameters.

Eugene, Lee and Famoye (2002) proposed a general class of distributions generated
from the Beta distribution. These distributions were motivated to model the failure time of
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a a-out-of-a+ b− 1 system when the failure times of the components are independent and
identically distributed random variables.

The Beta-G family of distributions has its cumulative distribution function (cdf) defined
as

F(t) = IG(t)(a,b), (5.1)

for a > 0, b > 0 and G(·) the cumulative distribution function of the baseline distribution, where

Ix(a,b) =
∫ x

0 va−1(1− v)b−1dv
B(a,b)

,

denotes the incomplete Beta function ratio.

The probability density function (pdf) for these family is defined as

f (t) =
1

B(a,b)
g(t) [G(t)]a−1 [1−G(t)]b−1 ,

where g(·) is the density function of the baseline distribution. The corresponding survival and
hazard functions are, respectively,

S(t) = 1− IG(t)(a,b) and h(t) =
g(t) [G(t)]a−1 [1−G(t)]b−1

B(a,b)[1− IG(t)(a,b)]
.

5.2 The Beta-pG Family of Distributions
The new family is presented by add a parameter p in the Beta-G family. In the mixture

model, the parameter p only acts multiplicatively in the baseline distribution, in such way that the
flexibility of the model totally relies in the flexibility of the baseline distribution. The parameter
p only sets the “new zero” of the curve. Our proposal here is to compose this parameter in the
Beta-G family in order to bring more flexibility than just multiply the baseline survival curve.

The purpose is to include pG(t) in (5.1) instead to use just the function G(t). Then, the
cumulative density function of the Beta-pG family is defined as

F(t) = IpG(t)(a,b) =
∫ pG(t)

0 va−1(1− v)b−1dv
B(a,b)

,

where a > 0, b > 0, p ∈ (0,1), G(·) is the cumulative distribution function of a baseline lifetime
distribution and g(·) is its density function.

In this way, the probability density for this family is

f (t) =
1

B(a,b)
pg(t) [pG(t)]a−1 [1− pG(t)]b−1 .

The corresponding survival and hazard functions are, respectively,

S(t) = 1− IpG(t)(a,b) and h(t) =
pg(t) [pG(t)]a−1 [1− pG(t)]b−1

B(a,b)[1− IpG(t)(a,b)]
.
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The proportion of the immune population is obtained by calculating the limit of survival
function using the estimated parameters. Once that the cure rate depends on other parameters,
the standard error is estimated by the delta method. The cure fraction p* is easily calculated by
the limit of the survival function

p* = lim
t→∞

S(t) = lim
t→∞

[1− IpG(t)(a,b)] = 1− Ip(a,b),

since limt→∞ G(t) = 1.

Some simulations studies and real data application will be used to show that the proposed
family can lead to more adequate fits than the standard mixture model, using the same number
of parameters, but just adding it in different ways. In the next section a regression approach for
this family is proposed.

5.3 The Beta-pG Family of Regression Models

Here, it is briefly discussed the possibility of incorporating covariates into the Beta-pG
model. For illustrative purposes, the parameter p is linked to explanatory variables through
logit-link function, that is,

p(xxx) =
exp{xxx⊤⊤⊤βββ}

1+ exp{xxx⊤⊤⊤βββ}
,

where xxx⊤ = (1,x1, . . . ,xm) and βββ
⊤ = (β1, . . . ,βm) are the set of covariates and their regression

coefficients.

Thus, the cumulative density function of the regression Beta-pG family is

F(t|xxx) = Ip(xxx)G(t)(a,b).

The density function of the regression Beta-pG family is

f (t|xxx) = 1
B(a,b)

p(xxx)g(t) [p(xxx)G(t)]a−1 [1− p(xxx)G(t)]b−1 .

The survival and hazard functions of the Beta-pG regression model are given by

S(t|xxx) = 1− Ip(xxx)G(t)(a,b) and h(t|xxx) = p(xxx)g(t) [p(xxx)G(t)]a−1 [1− p(xxx)G(t)]b−1

B(a,b)[1− Ip(xxx)G(t)(a,b)]
.

The cure fraction is calculated by

p*(xxx) = 1− Ip(xxx)(a,b) = 1− I exp{xxx⊤⊤⊤βββ}
1+exp{xxx⊤⊤⊤βββ}

(a,b).
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5.4 Especial cases

5.4.1 The Beta-pWeibull distribution

A particular case of the Beta-G family of distribution is the Beta-Weibull, which is
obtained by taking G(t) as the cdf of the Weibull distribution. This distribution was studied in
detail by Lee, Famoye and Olumolade (2007) and the pdf, survival and hazard functions are,
respectively,

f (t) =
φλ φ

B(a,b)
tφ−1e−b(λ t)φ

[
1− e−(λ t)φ

]a−1
,

S(t) = 1− I(
1−e−(λ t)φ

)(a,b),
and

h(t) =
φλ φ tφ−1e−b(λ t)φ

(
1− e−λ t

)a−1

B(a,b)
[

1− I(
1−e−(λ t)φ

)(a,b)
] ,

for t > 0, a > 0, b > 0, φ > 0 and λ > 0.

Thus, the Beta-pWeibull distribution has density function given by

f (t) =
φλ

φ

B(a,b)
tφ−1 pe−(λ t)φ

[
p
(

1− e−(λ t)φ
)]a−1 [

1− p
(

1− e−(λ t)φ
)]b−1

,

for t > 0, a > 0, b > 0, φ > 0, λ > 0 and p ∈ (0,1). The corresponding survival is given by

S(t) = 1− I
p
(

1−e−(λ t)φ
)(a,b)

and the hazard function is

h(t) =
φλ

φ tφ−1 pe−(λ t)φ
[

p(1− e−(λ t)φ

)
]a−1 [

1− p(1− e−(λ t)φ

)
]b−1

B(a,b)[1− I
p(1−e−(λ t)φ )

(a,b)]
.

Note that the Beta-pExponential (Beta-pExp) is a special case when φ = 1. Figure 20
shows the pdf, survival and hazard functions of the Beta-pExp distribution for several parameters
choice.

5.4.2 The Beta-pLindley distribution

Another special case of the Beta-G family of distribution is the Beta-Lindley, which is
obtained by taking G(t) as the cdf of the Lindley distribution. The Beta-Lindley was studied in
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Figure 20 – Curves for the probability density (first line), survival function (second line) and hazard (third
line) functions of the Beta-pExp distribution for several parameter choices.

detail by Merovci and Sharma (2014) and the pdf, survival and hazard functions are, respectively,

f (t) =
λ 2(λ +1+λ t)b−1(1+ t)e−λbt

B(a,b)(λ +1)b

(
1− λ +1+λ t

λ +1
e−λ t

)a−1

,

S(t) = 1− I(1− λ+1+λ t
λ+1 e−λ t)(a,b)

h(t) =
λ 2(λ +1+λ t)b−1(1+ t)e−λbt

B(a,b)(λ +1)b
(

1− I(1− λ+1+λ t
λ+1 e−λ t)(a,b)

) (1− λ +1+λ t
λ +1

e−λ t
)a−1

,

for t > 0, a > 0, b > 0 and λ > 0.

Thus, the pdf, survival and hazard functions of the Beta-pLindley distribution are, respec-
tively,
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Figure 21 – Curves for the density (first line), survival (second line) and hazard (third line) functions of
the Beta-pLindley distribution for several parameter choices.

f (t) =
pλ 2(1+ t)e−λ t

B(a,b)(λ +1)

[
p
(

1− λ +1+λ t
λ +1

e−λ t
)]a−1[

1− p
(

1− λ +1+λ t
λ +1

e−λ t
)]b−1

,

S(t) = 1− Ip(1− λ+1+λ t
λ+1 e−λ t)(a,b),

and,

h(t) =
pλ 2(1+ t)e−λ t

B(a,b)(λ +1)
[
1− Ip(1− λ+1+λ t

λ+1 e−λ t)(a,b)
] [p

(
1− λ +1+λ t

λ +1
e−λ t

)]a−1

[
1− p

(
1− λ +1+λ t

λ +1
e−λ t

)]b−1

.

for t > 0, a > 0, b > 0, λ > 0 and p ∈ (0,1).
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5.4.3 The Beta-pGamma distribution

The Beta-pGamma distribution is another case of the Beta-G family, which is obtained
by taking G(t) as the cdf of the Gamma distribution. The Beta-Gamma distribution was studied
in detail by Kong, Carl and Sepanski (2007) and the pdf, survival and hazard functions are,
respectively, given by

f (t) =
φ λ tλ−1e−φ t

B(a,b)Γ(λ )
[G(t)]a−1 [1−G(t)]b−1 , S(t) = 1− IG(t)(a,b),

and,

h(t) =
φ λ tλ−1e−φ t

B(a,b)Γ(λ )
[
1− IG(t)(a,b)

] [G(t)]a−1 [1−G(t)]b−1 ,

where t > 0, a > 0, b > 0, λ > 0, φ > 0 and G(·) is the cdf of the Gamma distribution with
parameters λ and φ .

This way, the pdf, survival and hazard functions of Beta-pGamma distribution are,
respectively,

f (t) =
pφ λ tλ−1e−φ t

B(a,b)Γ(λ )
[pG(t)]a−1 [1− pG(t)]b−1 , S(t) = 1− IpG(t)(a,b),

and

h(t) =
pφ λ tλ−1e−φ t

B(a,b)Γ(λ )
[
1− I(pG(t))(a,b)

] [pG(t)]a−1 [1− pG(t)]b−1 .

Due the several possibilities of choices of the G distribution, the Beta-pG family of
distributions becomes flexible to accommodate several kinds of survival data with a proportion
surviving.

5.5 Inference
In this section, the inferential procedure is described, which is based on the maximum

likelihood approach and the asymptotic large sample theory. Consider Ti a random variable that
denotes the time of the event of interest and Ci the censoring time for the ith individual. For the
ith observation the observed time is ti = min{Ti,Ci} with δi = I(Ti ≤Ci), where δi = 1 if ti is a
failure time and δi = 0 if it is right censored, for i = 1, . . . ,n. The observed data is represented by
D = (t,δδδ ,X), where t = (t1, . . . , tn)

⊤, δδδ = (δ1, . . . ,δn)
⊤ and X = (x1, . . . ,xm)

⊤ is an n×m matrix
containing the covariates. Suppose that the data is independently and identically distributed and
come from a distribution with probability density and survival functions specified by f (·;θθθ) and
S (·;θθθ), respectively, where θθθ = (a,b, p,γγγ)⊤ denotes a vector of parameters and γγγ denotes the
vector of parameters of the baseline distribution. The density and cumulative function of the
baseline distribution are given by g(t;γγγ) and G(t;γγγ), respectively.



76 Chapter 5. Beta-pG family

The likelihood function of parameters θθθ under non informative censoring can be written
as klein2003,

L(θθθ ;D) ∝

n

∏
i=1

f (ti;θθθ)δi S (ti;θθθ)1−δi .

The corresponding log-likelihood function `(θθθ) = logL(θθθ ;D) is

`(θθθ) = const +
n

∑
i=1

δi log f (ti;θθθ)+
n

∑
i=1

(1−δi) logS (ti;θθθ) .

Thus, for the Beta-pG regression model the likelihood function for θθθ is

`(θθθ) = const +
n

∑
i=1

δi

[
log
(

1
B(a,b)

p(xxx)g(ti;γγγ) [p(xxx)G(ti;γγγ)]a−1 [1− p(xxx)G(ti;γγγ)]b−1
)]

+
n

∑
i=1

(1−δi)
[
log
(
1− Ip(xxx)G(ti;γγγ)(a,b)

)]
. (5.2)

The maximum likelihood estimator is the solution of the system

∂`(θθθ)

∂θθθ
= 000,

where θθθ = (a,b, p,γγγ)⊤.

The maximum likelihood estimates (MLEs) of the parameters are obtained by numerically
maximizing the log-likelihood function (5.2). There are many methods available for numerical
maximization. The routine optim in the R software for numerical maximization was used (R
Core Team, 2013).

The asymptotic properties of the MLEs are needed to build confidence intervals and
to test hypotheses about the model parameters. Under certain regularity conditions, θ̂ has an
asymptotic multivariate normal distribution with mean θ and variance and covariance matrix
Σ(θ̂), which is estimated by

Σ̂(θ̂) =

{
− ∂ 2`(θ)

∂θ∂θ
⊤

∣∣∣∣∣
θ=θ̂

}−1

.

Therefore, an approximate 100(1−α)% confidence interval for θi is(
θ̂i− zα/2

√
Σii, θ̂i + zα/2

√
Σii
)

, where Σii denotes the ith diagonal element of the inverse of ΣΣΣ

evaluated at θ̂ , and zα denotes the 100(1−α) percentile of the standard normal random variable.

In the next section, an extensive simulation studies are performed to investigate numeri-
cally the asymptotic properties of the MLEs, as well as the performance of the proposed models
in terms of the AIC in comparison with their own version as a standard mixture model.
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5.6 Simulation Studies

Two simulation experiments were performed. The first one is to assess the performance
of the MLEs of the proposed model parameters, considering different sample sizes. In the second
one, the Beta-pExp and the mixture Beta-Exp distributions are compared in terms of the AIC
criterion and cure fraction point estimation, when the data is generated from the Beta-pExp
distribution. All computations were performed in R (R Core Team, 2013). A random sample of
size n containing true times, censored times and a binary covariate X were generated, which
leads to the cured fraction p0 and p1 for the two levels of X , respectively. For that, consider the
algorithm, describe in Section 2.8, to generate the data.

In the first experiment, the average of mean square error of the MLEs, the bias, the cover-
age probability of 95% confidence intervals and coverage length for each parameter were calcu-
lated. Different sample sizes as n = 100,300, . . . ,2500 were considered. In each scenario (each
combination of parameters values and sample size), 200 random samples were performed.The
scenarios are defined by the following parameter choices (a,b,λ ,β1, p0, p1):

∙ Scenario one: (1,0.5,1,1,0.7071,0.5185);

∙ Scenario two: (1.5,1,1,1,0.6464,0.0.3749);

∙ Scenario three: (1.5,1.5,1,1,0.500,0.2166).

These scenarios show a variety in cure rates values. Figure 22 shows the plots of the
mean square errors, biases, coverage probabilities and coverage lengths of the parameters versus
n for simulated data from proposed model. The red, green and blue lines (square, circle and
triangle) represent the scenarios one, two and three, respectively.

It is worth mentioning that, on average, the mean square errors decreases fast as the
sample size increases and gets reasonably close to zero for n > 500. The biases stays around
zero for all parameters and the empirical coverage probabilities for all parameters are reasonably
close to the nominal level. In all scenarios the coverage lengths decreases as the sample size
increases, as expected.

For comparison of the models, the difference between AICs and BICs of fitted Beta-pExp
mixture models and Beta-pExp was considered. This way, a positive AIC mean difference means
that, on average, the AIC of the fitted Beta-pExp model is smaller than the AIC obtained from
the fitted mixture Beta-pExp model, which shows the advantage of the proposed model.
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Figure 22 – Simulation of the Beta-pExp distribution. The red, green and blue (square, circle and triangle)
represent scenarios one, two and three, respectively.



5.6. Simulation Studies 79

200 400 600 800 1000 1200 1400

0
2

4
6

8

Scenario 1

Sample sizes

M
ea

n 
D

iff
er

en
ce

●

●

●

● ●

●

●

●

●

● ●

●
● ● ●

●

AIC
BIC

200 400 600 800 1000 1200 1400

0
20

40
60

80
10

0
12

0

Scenario 2

Sample sizes

M
ea

n 
D

iff
er

en
ce

● ●
●

●

● ● ● ● ●

●

●
●

●

●

●

●

AIC
BIC

200 400 600 800 1000 1200 1400

0
5

10
15

Scenario 3

Sample sizes

M
ea

n 
D

iff
er

en
ce

●
●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

AIC
BIC

Figure 23 – AIC and BIC mean difference between the mixture Beta-Exp and Beta-pExp distributions.
The left, mid and right panels represents the first, second and third scenarios, respectively.

The second experiment compares in term of AIC and BIC measure the proposed model
with their corresponding mixture model. The data sets are generated from the Beta-pExp dis-
tribution. For a fixed scenario, the mean difference between AICs and BICs obtained of fitted
Beta-pExp and mixture Beta-Exp models was evaluated. Was considered n = 100,200, . . . ,1500
and performed 200 simulations for each configuration. The scenarios are defined by the following
parameter choices (a,b,λ ,β1, p0, p1):

∙ Scenario one: (1,0.5,1,1,0.7071,0.5186);

∙ Scenario two: (0.5,1,1,1,0.6464,0.3749);

∙ Scenario three: (0.5,0.5,1,1,0.500,0.2166).

Figure 23 shows the difference between the AIC and BIC values of the mixture Beta-Exp
and Beta-pExp distributions. This way, if the mean difference is positive, then the Beta-pExp
distributions have a smaller AIC and BIC criteria compared to the mixture Beta-Exp distribution.
It was noticed that, in all scenarios, the AIC and BIC mean difference increases with the sample
size. It starts around 1.5 and finishes with a difference greater than hundred.
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Figure 24 – Cure rate estimates for each group obtained from both models. The left, mid and right panels
represents the first, second and third scenarios, respectively.
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The point estimates of the cure rates were also compared. Figure 24 shows the estimates
of the cured fraction p0 and p1 from the Beta-pExp (blue line with squares) and mixture Beta-Exp
(green line with circles) distributions. The results show that the point estimate is quite precise for
both distributions, but in some cases, the Beta-pExp is clearly more accurate and is least affected
with the changed of the samples size. For example, in the estimation of p0 = 0.519 in the first
scenario and p0 = 0.347 in the third scenario.

5.7 Applications

To illustrate the proposed model, two real cancer datasets were considered. The Beta-pG
and mixture Beta-p models were fitted and compared with survival curve estimates obtained
using the Kaplan-Meier estimator. For each fitted model, the maximum likelihood estimator,
standard error, 95% confidence interval estimates for the parameters and AIC, BIC, and CAIC
values were provided. The delta method was used to estimate the standard error for cure rate
parameter.

The mixture model is obtained by taking the Beta-Exp distribution as S0(t) in (1.1). The
Beta-Exp mixture model is defined as

S(t|xxx) = p(x)+(1− p(x))
(

1− I(
1−e−(λ t)φ

)(a,b)
)

5.7.1 Melanoma data

This data set arises from a melanoma studies from the Eastern Cooperative Oncology
Group. They tested the efficacy of a drug administered for one year to prevent relapse and death
of high risk patients after a curative surgery for melanoma. The data set has 285 patients, of which
98 (34.39%) are censored. The control group has 140 (49.12%) observations, while the group
under treatment has 145 patients. Besides of the observed time and censoring indicator, other
variables were measured at baseline, such as sex, age and treatment. For illustrative purposes,
only the treatment (TRT) is considered as covariate. The control group is represented by 0 and
the group under treatment is denoted by 1. For more information on this data set, please check
Kirkwood et al. (1996).
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Table 12 – Maximum likelihood estimates. standard error (SE). 95% confidence interval and AIC values
obtained by Beta-pExp and Mixture Beta-Exp models fits for the melanoma data set.

Beta-pExp model Mixture Beta-Exp Model

Parameter Estimate SE Lower CI Upper CI Estimate SE Lower CI Upper CI

a 1.062 0.1164 0.8339 1.2901 0.9218 0.0847 0.7557 1.0879
b 2.2769 0.3116 1.6662 2.8876 3.2579 10.3098 -16.949 23.4647
λ 0.764 0.0839 0.5995 0.9285 0.2506 0.8032 -1.3235 1.8248
β0 - - - - -1.1417 0.2016 -1.5368 -0.7466
β1 -0.48 0.1816 -0.8359 -0.1242 0.5409 0.2679 0.0159 1.066
p0 0.2213 0.0349 0.1529 0.2896 0.242 0.037 0.1695 0.3145
p1 0.3549 0.0402 0.2761 0.4336 0.3542 0.0405 0.2747 0.4336

AIC 772.52 780.88
BIC 801.22 816.75

CAIC 805.22 821.75
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Figure 25 – Kaplan–Meier survival estimates curves (black line) stratified by treatment (0: control group;
1: treatment group) and survival function estimates according to different models.

The fit of the Beta-pExp and the mixture Beta-Exp models are compared using the AIC,
BIC and CAIC criterion measures. As a visual assessment, the plot of the fitted models together
with the Kaplan-Meier non-parametric estimator curve were provided (KAPLAN; MEIER,
1958).

Table 12 shows the MLEs of the Beta-pExp and mixture Beta-Exp models for the
melanoma data set. Survival functions estimates are presented in Figure 25. Notice that both
models present quite close estimates for p1, around 0.35, whereas for the parameter p0 there is a
slight difference. According to the AIC, BIC and CAIC criterion, the Beta-pExp model seems to
be the best choice. Additionally, both models indicate a significant effect of treatment (zero is
not included in the 95% confidence interval of parameter β1). However, there is not a significant
difference between the cure rates for the group under treatment and the control group. In the



82 Chapter 5. Beta-pG family

Beta-pExp, p̂0 = 0.22 and in the mixture Beta-Exp, p̂0 = 0.24.

Figure 25 presents the fitted survival curves in the data. Not as clearly, but the same
happens for T RT = 0x’. Therefore, it can be concluded that the Beta-pExp model is more
appropriate for this data than the mixture Beta-Exp. Observe that the survival time of the
treatment group (T RT = 1) is higher than the control group (T RT = 0), and differs by around
7%. And the results suggest a effect of treatment in lifetime, regardless of model, observe that
the interval the β1 does not include 0. And cure rate is estimated in p0 = 0.22 with standard error
0.03 (T RT = 0) and p1 = 0.35 with standard error 0.04 (T RT = 1).

The closer the parametric models gets to the Kaplan-Meier curve, the better the fit is. In
both models the delta method was used to calculate the standard error of the cure rate.

5.7.2 Oncocentro cancer data

This data set was provided by the Fundação Oncocentro de São Paulo (FOSP), which is
responsible for coordinating the Hospital Cancer Registry of the State of São Paulo. The FOSP
is a public institution connected to the State Health Secretariat, which assists in the preparation
and implementation of healthcare policies in the field of Oncology, and serves as an instrument
so that oncology hospitals can prepare their own protocols and improve their care practices
(for more information see Calsavara et al. (2019b)). This data contain information about the
failure time or censoring (in years) from 7166 patients diagnosed with melanoma in the state of
São Paulo, Brazil, between 2000 and 2014, with follow-up conducted until 2018. The event of
interest is death by melanoma cancer and the data set has 5099 patients are censored (71.15%).
Besides of the observed time and censoring indicator, other variables were measured at baseline,

Table 13 – Maximum likelihood estimates. standard error (SE). 95% confidence interval and AIC. BIC.
CAIC values obtained by Beta-pExp and Mixture Beta-Exp models fits for the oncocentro data
set.

Beta-pExp Model Mixture Beta-Exp Model

Estimate SE Lower IC Upper IC Estimate SE Lower IC Upper IC

a 1.007 0.032 0.945 1.069 0.988 0.045 0.900 1.075
b 1.522 0.107 1.311 1.732 0.744 2.576 -4.305 5.793

0.263 0.015 0.234 0.293 0.374 1.316 -2.205 2.953
β0 - - - - -0.545 0.105 -0.751 -0.339
β1 -0.586 0.049 -0.681 -0.491 0.620 0.062 0.499 0.741
p0 0.666 0.011 0.645 0.687 0.667 0.011 0.646 0.689
p1 0.513 0.013 0.487 0.538 0.519 0.014 0.492 0.545

AIC 14885.269 14894.064
BIC 14912.777 14928.450
CAIC 14873.271 22321.096

such as sex, age, surgery and treatment. For illustrative purposes, only the sex is considered as
covariate.
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The main goal was to assess the impact of sex on specific survival. Of the 7166 patients,
3538 patients are male (49.28%) and 3634 patients are female (50.71%). A total of 2067 patients
death by cancer (28.84%), events occurred during follow-up period: 1188 occurred among male
patients (represents 50.68% of male patients) and 879 female patients (represents 31.90% of
female patients). The maximum observation time was approximately 18.54 years.

The results of the fitted Beta-pExp e Mixture Beta-Exp models are showed in Table
13. According to the AIC, BIC and CAIC values, the Beta-pExp model seems to be the better
choice among the models. The results suggest that the sex influences in lifetime and the cure rate
estimated in the models are similar. The cure rate estimated are p0 = 0.66 with standard error
0.01 (female) and p1 = 0.51 with standard error 0.013 (male). Overall, the models reasonably fit
Kaplan–Meier curves.
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Figure 26 – Kaplan–Meier survival estimates curves (black line) stratified by sex covariate and survival
function estimates according to different models.

5.8 Conclusions

In this chapter, a new family of cure rate models was proposed, the Beta-pG family of
distributions. A regression model was proposed to accommodate covariate information in the
family. Some special case the Beta-pG family were considered as, Beta-pWeibull, Beta-pLindley
and Beta-pGamma. It was considered the special case when G comes from an exponential
distribution for the simulation studies. Simulation study to illustrate frequentist properties of
the maximum likelihood estimators of the proposed model parameters, where the mean squared
error appears reasonably close to 0 as sample size increases, for all estimators. As in practice
situations the choice of model is often based on a selection criterion, the performance of the
model in terms of AIC, BIC and CAIC measures was evaluated to compare with the mixture
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model. It was observed that, in average, the proposed model outperfoms the respective mixture
model in terms of criteria measure, when the data is generated from the Beta-pExp distribution.
This new family was showed to be an alternative model to calculate the cure rate. The practical
relevance and applicability of the proposed model is illustrated in a real data set, in which our
model yields a slight better fit than the mixture model. This generalization is expected to attract
wider applications in survival analysis.
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CHAPTER

6
FINAL REMARKS

6.1 Conclusions

An important area of survival analysis is related to cure rate models (or long-term
survival models). Cure rate models basically focus on the proportion of patients who survive
long-term following disease. Additionally, these models focus on the probability of survival
of the uncured patients up to a given point in time. Several extensions of these models have
also been investigated. So the main contribution of this thesis was to approach two alternative
methods to model the cure rate in long-term models.

The first use the methodology of the defective models that has the advantage to modeling
the proportion of cured without adding any extra parameters in the model, in contrast to the
most models from the literature. In Chapter 3, the Gompertz and inverse Gaussian defective
models were presented. Simulation studies were used to check the performance of the maximum
likelihood estimators for these models. In Chapter 4, two new distributions were proposed, the
defective Gamma-Gompertz and the defective Gaussian-inverse gamma. It was show that its
possible to induce new defective distributions when using the gamma frailty term. In addition, a
version to include covariables in these models and their estimation process are presented. The
properties of these models through simulation studies were analyzed and an application was
presented to illustrate the proposed models. The models presented showed to be as efficient as
the standard mixture model to model the survival data with cure rate.

The second method proposed use the concept the distributions family. These families
adds extra parameters in a baseline distribution in order to increase its modeling capability. This
work is proposed to include a parameter ’p’ in the Beta-G family (Chapter 5. Then, the Beta-pG
cure rate models are generated. Some special cases of this family were presented and, in addition,
an approach to introduce covariates in these models was discussed. Simulation studies have
shown that there are no major problems in terms of estimates and that the proposed model is an
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alternative method to estimate the cure rate. Real data were used to illustrate the proposed model
and to compare it with the standard mixture model. It was concluded that this new family of cure
rate models is as flexible as the mixture model for estimating the cure fraction.

Summarizing, this thesis is a work related to the cure rate modeling in survival studies
using different methods to estimate the cure rate. In Chapter 4, two new defective distributions
were shown. And in Chapter 5, a new family distribution was proposed to estimate the cure rate,
and three new cure rate models were presented, but more cure rate models can be generated
using this method.

This thesis is based on two papers previously developed works of the author. One is
already published (SCUDILIO et al., 2019) and the other is submitted.

6.2 Future Works
Here are presented suggestions for posterior works:

∙ To propose a new defective family distribution using two results presented by Rocha
(2016).

∙ To develop another defective distribution induced by a different fragility distribution;

∙ To propose new families of long-term models using another family of distributions, for
example, the Gama-G family;

∙ To present simulation studies from the Bayesian point of view for the models proposed.
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Table 14 – Breast cancer data set collected at the hospital A.C.Camargo Cancer Center.

ID Time Censored TIL N T ID Time Censored TIL N T
1 36.73 1 - 1 1 40 62.50 0 1 1 1
2 162.87 0 - 1 0 41 62.13 0 1 1 1
3 160.07 0 1 0 0 42 27.43 1 0 1 0
4 135.40 0 0 1 - 43 30.17 0 0 1 1
5 125.13 0 0 0 1 44 41.27 1 0 1 1
6 128.80 0 - 0 1 45 29.87 0 1 1 1
7 119.37 0 - 0 0 46 20.37 1 0 1 1
8 72.43 0 1 1 0 47 28.90 1 0 0 1
9 110.60 0 - 0 1 48 20.70 1 0 1 0

10 84.50 0 - 1 1 49 54.53 0 0 1 0
11 20.83 1 0 1 1 50 43.40 0 0 1 1
12 25.93 1 - 1 1 51 44.73 0 - 1 0
13 98.77 0 - 0 1 52 50.40 0 0 1 1
14 90.63 0 0 1 1 53 48.63 0 0 1 0
15 40.47 0 1 1 1 54 11.53 1 1 1 1
16 9.10 1 0 1 1 55 52.43 0 1 1 0
17 9.00 1 0 1 1 56 50.57 0 - 0 0
18 35.47 1 - 1 1 57 49.90 0 1 1 0
19 30.17 0 - 1 1 58 41.90 0 1 1 1
20 100.53 0 0 1 1 59 16.50 1 0 1 1
21 16.27 1 0 1 0 60 42.93 0 0 0 1
22 67.87 0 1 1 1 61 44.77 0 0 0 0
23 11.63 1 - 1 1 62 35.90 0 1 0 0
24 84.00 0 0 1 1 63 38.87 0 1 1 1
25 22.70 1 1 1 0 64 28.03 0 0 1 0
26 78.90 0 0 1 1 65 32.43 0 0 0 1
27 59.93 0 - 1 0 66 26.20 0 0 0 1
28 60.77 1 1 1 1 67 31.03 0 - 1 1
29 24.40 1 0 1 1 68 32.77 0 0 0 0
30 77.13 0 1 0 1 69 30.63 0 1 0 0
31 36.67 1 0 1 0 70 32.00 1 - 1 1
32 17.60 0 - 1 0 71 29.33 0 0 1 0
33 59.33 0 - 1 1 72 28.20 0 0 0 0
34 66.03 0 0 1 0 73 26.37 0 - 0 0
35 63.83 0 1 1 0 74 27.53 0 1 1 1
36 63.50 0 1 0 0 75 18.77 1 1 1 1
37 64.57 0 1 1 1 76 24.43 0 1 1 0
38 20.53 1 0 1 1 77 41.70 1 - 0 1
39 14.77 1 0 0 1 78 47.27 1 0 1 1
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