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RESUMO 

 
As partículas ultrafinas (UFP) emitidas por torres de prilling apresentam potencial de causar 
doenças degenerativas no cérebro quando inaladas. Estas são voláteis e instáveis (como o caso 
de sulfatos e nitratos), o que torna a determinação da sua concentração em massa imprecisa, 
especialmente se o monitoramento contínuo dessa concentração através de sensores é exigido 
pelas agências ambientais, uma vez que o procedimento padrão de calibração dos sensores é 
baseada em amostragens gravimétricas, que, por sua vez, atingiram seu limite de detecção nessa 
faixa granulométrica. Nesse contexto, este trabalho avaliou o desempenho de dois sensores de 
monitoramento contínuo para medição de UFP em uma torre de prilling industrial. Os princípios 
testados foram difusão de carga eletrodinâmico (EDA) e dispersão ótica (OSA), instalados na 
fonte estacionária na qual amostragens gravimétricas foram realizadas. Os dados destes 
sensores foram coletados por quatro estações no norte da Europa, simultaneamente com os 
parâmetros meteorológicos e de processo. Uma metodologia baseada em um experimento 
controlado foi testada na qual as vazões de matérias-primas foram mantidas estáveis enquanto 
a concentração em massa de UFP foi medida também com o impactador de cascata (ELPI) com 
todos os experimentos sendo realizados em uma mesma estacao do ano. Os resultados 
mostraram que o OSA segue as variações do processo e os fatores de calibração obtidos com 
as amostragens gravimétricas variaram 0,5 desvios padrão entre as estações e mudanças de 
produto. O EDA identificou mudanças pontuais de concentração no seu limite de detecção, mas 
os fatores de calibração medidos foram de três desvios-padrão independentemente da estação 
do ano ou produtos. EDA também indicou erroneamente concentrações elevadas de UFP devido 
a injeção de vapor no processo. A contaminação dos sensores por poeira afeta a leitura de ambos 
os sensores, mas somente o OSA indica a necessidade de manutenção. Na modelagem dos 
dados coletados de todo o período foi observado que o EDA não apresenta correlação com o 
processo nem tampouco com os parâmetros meteorológicos (r-quadrado menor que 10%) o que 
pode ser causado por partículas não serem eletricamente carregadas uniformemente e o fato de 
o equipamento apresentar resolução comprovada para partículas maiores que 10µm. O modelo 
obtido pra OSA apresentou r-quadrado de 45% e correlação com os dois grupos de parâmetros 
monitorados, com erro padrão de 0,21 mg/m3, indicando uma potencial aplicação no 
monitoramento de UFP, se os parâmetros meteorológicos forem incluídos no modelo, prática 
já em uso na modelagem de UFP em ar ambiente. Finalmente, os modelos de regressão linear 
criados empregando a metodologia aqui proposta mostraram que os sensores comerciais não 
possuem resolução suficiente em condições controladas para UFP enquanto o modelo gerado 
pelo ELPI apresentou r-quadrado de 94,13% e um erro padrão de 0,02 mg/m3 não sendo 
influenciado pelas condições da chaminé e sendo capaz de detectar variações no processo. Desta 
forma o ELPI apresenta potencial para uso na calibração de sensores comerciais em substituição 
à amostragem gravimétrica, a qual apresenta limitações nessa faixa de diâmetros de partículas. 
O emprego dessa metodologia, portanto, apresenta potencial para assegurar que as torres de 
prilling possam instalar monitoramento contínuo, calibrar os sensores e otimizar o processo 
empregando o ELPI, contribuindo, portanto, para a redução da emissão de material particulado 
fino para o ambiente e reduzindo seu dano potencial. 
 
 
 
Palavras chave: Torre de prilling industrial. Partículas ultrafinas. Scanner por laser ótico. 
Efeito eletrodinâmico. ELPI. 



   
 

 

ABSTRACT 

 
Among the processes that generate emissions of ultrafine particles (UFP), which are known by 
their high potential to cause brain diseases when inhaled, the prilling towers have a significant 
contribution, as those processes use flow rates up to 10 times higher than other dryers. From 
the monitoring perspective, UFP are generally unstable and volatile (as the case of sulfates and 
nitrates) making its mass concentration determination inaccurate, especially if continuous mass 
monitoring is intended to be installed. Also, the environmental agencies have demanded that 
particulate matter from the stacks must be continuously monitored, with the standard procedure 
for calibration being the gravimetric sampling. In this context, this research has evaluated the 
performance of two continuous sensors on measuring UFP mass concentration in an industrial 
fertilizer prilling tower. The sensors tested were electrodynamic diffusion charger (EDA) and 
optical scattering (OSA). The analyzers were installed at same stack where gravimetric 
sampling (GS) was performed to find calibration factors. Data was collected over four seasons 
in Northern Europe, including the particulate matter from the analyzers, meteorological and 
process parameters. A controlled experiment where flows and meteorological parameters were 
kept stable was run to test electrical low-pressure cascade impactor (ELPI) performance 
compared to the other sensors. The results show that OSA follows the process changes and the 
calibration factors obtained from GS varied on 0.5 standard deviations over products and 
seasons. EDA represents better sudden variations up to its operating range, but the calibration 
factors measured were over three standard deviation, independent of seasons and products. 
EDA also presented an artificially high emission due to intermittent steam injection in the 
stream. Dust deposition on the sensors affects the reading on both analyzers but only OSA 
indicates it. While modelling the data collected over the period, it was found that EDA was 
neither correlated with process nor meteorological parameters (r-squared less than 10%) what 
can be caused by particles not being charged evenly or droplets read as particles. The OSA 
concentration model showed r-squared of 45% and strong correlation with meteorological 
parameters and raw material flow rates. The model presented a standard error of 0.21 mg/Nm3. 
OSA has potential to be employed for ultrafine particles monitoring if the influence of particle 
characteristics under industrial operation is considered and meteorological parameters are 
included, as already in practice for ultrafine particles monitoring outdoors. Finally the linear 
regression models built based on the methodology here proposed, showed that the commercial 
sensors did not have enough precision while ELPI analyzer output presented a model with 
adjusted r-squared of 94.13% and a standard error of 0.02 mg/m3 not including any air stream 
parameter and detecting changes in the process that allow optimization of those to reduce the 
UF emission. The ELPI shows potential to be used as calibration device to other in-situ 
continuous dust monitoring when dealing with UFP, once gravimetric sampling has reached its 
detection limit for UFP. By applying the methodology here proposed there is potential to install 
and calibrate continuous sensors at stationary sources emitting UFP with ELPI as well as 
optimizing the process to reduce the concentration of UFP and by doing so, decreasing the 
potential impact of those in the environment and  on the human health. 
 
 

Keywords: Industrial prilling tower; Ultrafine particles; Optical laser scanner; Electrodynamic 

diffusion charger; ELPI; 
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1. INTRODUCTION 

A clean outdoor and indoor air is considered a basic right by WHO (World Health 

Organization) once air pollution is ranked among the top risks for mortality and lost years of 

healthy life, which affects everyone in urban and rural areas and in both developing and 

developed countries (WHO, 2017). 

The human exposure to respirable particulate matter (PM) is correlated with an increase 

in cardiac and respiratory morbidity and mortality (Dhananjayan, et al., 2019). Studies of the 

size and composition of atmospheric PM have demonstrated the usefulness of separating them 

into its fine PM2.5 (PM with diameter less than 2.5µm) and coarse components (PM with 

diameter between 10µm and 2.5µm), especially when evaluating the health impact of PM, as 

worldwide epidemiological studies have shown (Wilson, et al., 2002).  

While airborne PM2.5 is a pollutant that is found in all urban environments and it is 

predominantly generated by traffic and domestic fuel combustion (Martins & Carrilho da 

Graca, 2018), an even smaller fraction of PM has raised attention, the ultrafine particles (UFPs). 

The UFPs have particle sizes in the range of 0.1 – 2.5µm and can also be agglomerates 

of UFPs, nanoparticles or nanoclusters (Fahlman, 2007) which are mainly generated in 

industrial plants (Liou, 2007) and can travel hundreds of kilometers before settling on the 

ground. They not only get to the lungs while breathing, but also to the blood system, what can 

cause degenerative brain diseases, as such Alzheimer, Parkinson and Huntington (Maher, et al., 

2016) (Win-Shwe & Fujimaki, 2011) to such an extent of concern that WHO works on a new 

guideline for concentration of particulate matter with a diameter smaller than 1µm (PM1.0). 

The mineral fertilizer industry, for instance, produced in 2018 around 62 million tons of 

ammonium nitrate/ calcium ammonium nitrate (AN/CAN) over the world (IFA, 2019). When 

producing those fertilizers there is emission of ultrafine particles, (UFP) mainly formed in gas 

phase, no matter which production process is employed. This issue becomes critical when using 

prilling towers (PT) due to the high flow of air employed (order of thousands of m3 per hour). 

Prilling towers are not only used in this segment, but also in food, hygiene, pharmaceutical and 

other chemical industries (Couper, et al., 2012) what means UFP emission an issue in many 

areas around industries. 

The industries face a challenge to comply with the regulations from the environmental 

agencies that demand online monitoring of PM although the commercial available online 

sensors are designed to handle with accuracy up to PM2.5, not smaller than this (as the UFPs 
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are), as extensively discussed by Wilson et al. (2002). Since then, no relevant sensor 

development was achieved for this size range. On the other hand, the agencies have stablished 

standards to calibrate the online sensors with results from gravimetric sampling (GS) (EPA, 

2018), which ones can have, for instance for nitrates sampling, up to 50% losses according to 

Wilson et al. (2002). 

There is clearly a technology and methodology gap between the current standards for 

industrial stationary sources measurement of PM, the continuous monitoring sensors available 

in the market and the certified methodology in use to calculate the emission of PM containing 

mainly UFPs as Hoeflinger & Laminger have pointed out when proposing a PM2.5-0  

alternative methodology for evaluating efficiency of equipment for emission control 

(Hoeflinger & Laminger, 2017). 

2. OBJECTIVES 

2.1. General Objective 

The aim of this work is to investigate which parameters are critical to both  provide 

reliable results  from continuous monitoring and reduce emission of UFP, by optimizing the 

process, and to propose a methodology to calibrate the sensors using an electrical low-pressure 

cascade impactor. 

2.2. Specific Objectives 

• Selecting and testing the performance and challenges faced by two distinct 

commercial continuous PM analyzers, based on the main commercially available techniques, 

in a mineral fertilizer industrial PT over one year, in Northern Europe. 

• Calibrating the sensors installed with several GS measured under different 

product composition and seasons in Northern Europe. 

• Developing a regression model that could correlate both process and 

meteorological parameters to predict the UFP concentration over the four seasons in the 

Northern Europe at an industrial stationary source.  

• Performing a controlled experiment in the industrial plant to find the most 

important controllable parameters impacting on dust emission expressing it in the form of a 

regression model, studying the operating windows to reduce the UFPs concentration at the stack 
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and finding the best measurement technique of dust emission among online analyzers and 

electrical low pressure cascade impactor. 

• Proposing a new methodology to measure and calibrate the online sensors for 

the stationary sources containing mainly UFPs and contribute to the knowledge of UFPs 

continuous monitoring and statistical methods under industrial environment. 

3. BIBLIOGRAPHIC REVIEW 

Here is presented a general bibliographic review related to the study performed. In order 

to help understanding the intersectional areas involved on this matter Figure 1 was prepared to 

show the potential aspects to explore in this research. The approach employed was to consider 

the prilling tower as volume of control and all the potential parameters impacting on UFPs 

generation and emission were mapped as highlighted in light gray. On the other hand, the 

potential options to quantify the UFPs concentration in the stack were analyzed both continuous 

and batch sampling. Each of the aspects is discussed on the next sections. 

3.1. The Process Under Analysis 

The Nitrophosphate process starts with phosphate rock being dissolved in nitric acid 

(called digestion process). Calcium Nitrate (CN) is produced as a byproduct in the process and 

sent to a plant where it is used to produce calcium ammonium nitrate fertilizer (CAN) (Hussain, 

2012).  

After separation of calcium nitrate, the so-called mother liquid is neutralized by addition 

of ammonia. The N/P ratio is corrected by using nitric acid or ammonium nitrate. The resulting 

neutralized liquid is called NP-liquor. The water content in the NP-liquor is thereafter decreased 

by using a shell and tube heat exchanger in combination with cyclone separators working under 

a decreased pressure. Before the NP-liquor is added to the mixer, small adjustments are made 

to the NP-ratio by addition of ammonia (NH3) gas. The next steps of the process are showed in 

Figure 2 where the main equipment are the evaporators, mixer, prilling bucket, prilling tower 

and sieves together with the potential measured parameters (circled in red). Note that liquid, 

solid and gas streams are illustrated using blue, brown and green arrows, respectively. 
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Figure 1 Map of potential aspects to be explored in the research
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The pre-processed raw materials (NP-liquor, ammonia, K-salts/minerals) enter the 

mixer as a three phase (gas, liquid and solid) mixture that needs to be heated and intensively 

agitated to create a homogeneously mixed melt and to prevent solidification. This melt is 

thereafter sent to a rotating prilling bucket that sprays the liquid melt into the prilling tower. 

The rotational speed (rpm) of both mixer and prilling bucket as well as the temperature 

of the mixer are measured. 

The melt is sprayed from the bucket into a prilling tower, to let the melt solidify and 

create uniform spherical particles with a diameter of 2-4 mm. The falling liquid is cooled by 

using ambient air in counter-current flow that is dragged into the PT by using six fans located 

at the outlet stacks at the top of the tower. The primary emission is the dust or fume of 

ammonium nitrate from the PT. The material is of submicron size and, therefore, highly visible 

(Vallero, 2014). The temperature, relative humidity and pressure is measured at the air inlet at 

the bottom of the tower while the temperature, relative humidity and velocity is measured in 

the stack. 

After solidification, the prills must be classified by particle size on the sieves as can be 

seen in Figure 2. This process uses several sieves in series that classify the particles in oversized, 

undersized and the final product. The oversized particles are sent to a crusher and then back to 

the screening while the undersize particles (called off-spec in Figure 2) are sent back to the 

mixer together with dust collected from bag filters of other process equipment. 

The NPK (Nitrogen – Phosphorus and Potassium) fertilizer product is stored or transported after 

being cooled and treated. The flowrate of the product and off-spec are measured. 

The dust emitted from the stack is composed mainly by small particles that are dragged 

up by the upward velocity inside the stack and can be the NPK fertilizer itself or can be in the 

form of ammonium nitrate (NH4NO3) that is produced from a side reaction of the acidic media 

with ammonia, added in the mixer for keeping the pH stable, as can be seen from the chemical 

reaction as Equation 1 shows. 

HNO3 + NH3 →  NH4N → NH4NO3 (s) Eq.1 

Most of the bibliography material related to PT is quite often general, once the specific 

applications are protected from patents. This is the case, for instance, of NPK prilling towers 

so few processes related material is available, and this review tries to cover the subject in the 

best possible way. 
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Figure 2 Process flow diagram of NPK prilling process. 

 
PT are also called spray dryers and they are employed mainly to feeds like solutions, 

pumpable pastes and slurries. Such a material is atomized in a nozzle spray wheel and when in 

contacted with air solidifies and is removed from the bottom of the tower (Couper, et al., 2012). 

The authors point at the two main characteristics of spray drying are the short drying time, the 
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porosity and small, rounded particles of product. Short drying time is an advantage with heat 

sensitive materials. Porosity and small size are desirable when the material subsequently is to 

be dissolved (as foods or detergents) or dispersed (as pigments, inks, etc.). 

The mean residence time of the gas in a spray dryer is the ratio of vessel volume to the 

volumetric flow rate, what leads to huge towers to ensure proper cooling of the droplets sprayed. 

An attempt was made by Yuan et al. (2007) to reduce the height of the PT, where is proposed 

a combined tower with a fluidized bed so that the height of equipment was greatly decreased, 

and it exhibited satisfactory performance in industrial application. Besides being promising, to 

the authors knowledge no further industrial installation was built. 

Atomization is key in spray drying and there are three devices of commercial value that 

can be used which are pressure nozzles, pneumatic nozzles and rotating wheels of various 

designs. To achieve a suitable range of prill sizes for determined feed, parameters as pressure, 

nozzle diameter, flow rate and motive pressure for nozzles can be adjusted. While from the 

design point of view, the geometry and rotation speed of wheels (Couper, et al., 2012).  

Spray dryers are capable of large evaporation rates (5 to 7 t/h) and the spherical sprayed 

particles often are preferable to drum dryer flakes. The completely enclosed operation of spray 

dryers also is an advantage when strong chemicals are handled, as in the NPK fertilizer 

application. 

The patent from Shirley et al. (1996) describes an improvement in prilling whereby 

water is atomized into a PT to promote faster solidification of the prills, resulting in a major 

reduction in air pollution potential in the form of both fume and particulate. Specifically, the 

invention was related to quick-freezing the outside surface of the prills by flash evaporation of 

finely atomized water particles on the surface of the prills or in extremely close proximity to 

the prills to greatly lower the vapor pressure at the prills surface. The potential application could 

be of value for water sensitive materials, in particular ammonium nitrate, urea, potassium nitrate 

and other water-soluble melts, which normally absorb water or go into solution readily at 

ambient conditions in their solid state. This work has emphasized the importance of promoting 

the quick surface cooling on the droplets to reduce emission of UFPs. 

As highlighted in the patent mentioned earlier, the effect of cooling on the generation 

of UFPs is significant, what turns the attention to the media used to promote this effect which 

is ambient air without conditioning. Chen et al. (2019), for example, when studying PM2.5 

compositions is coastal areas, originated from ships (up to 35% contribution at port areas) 

concluded that ships emissions contribution to PM2.5 exhibited an obviously seasonal variation 
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with the highest contribution in fall (6.2%), followed by summer (5.4%), spring (3.6%) and 

winter (1.2%) for the land areas. In general, models for ambient air pollution consider the 

meteorological parameters. Being the UFPs instable with potential change in both size, mass 

and composition in different air conditions, it becomes clear the need to include the seasonal 

factors in the evaluation of UFPs concentration from PT. 

In addition to the ambient air seasonal characteristics, the authors Saleh and Barghi 

(2016) have found that the geometry and design of the air exit configuration had a significant 

impact on the airflow behavior inside the PT. Besides that, the formation of a quiescent zone 

near the showerhead was essential in minimizing droplet breakup due to secondary 

disintegration and fine particle formation. While CFD (Computational Fluid Dynamics) 

modelling the system, the authors were able to obtain the optimum location for the installation 

of showerhead. While these authors have used a pilot PT, the presented project here deals with 

an industrial tower. Anyhow, the explanation of the droplet breakup mechanism can help on 

identifying the source of the PM emitted at stack and provide recommendation on how to 

improve the current design. 

Besides not employing PT, the authors Ji et al. (2017) when studying the influence of 

raw materials (RM) on the characteristics of PM2.5 and measuring it to reduce emissions used 

four different sources of RM on steelworks in their investigation. The results showed that a well 

positive correlation existed between the emission concentration of K (potassium) and Cl 

(Chloride), and their contents in raw materials, what can be also explored in prilling towers 

once under production of different NPK, there are different amounts of K (potassium) source 

needed. 

3.2. Techniques for Continuous PM Concentration Monitoring 

There is very broad and consolidated research regarding PM measurement techniques 

(Sullivan, et al., 2018) (Giechaskiel, et al., 2014) (Liou, 2007) so here the main focus will be 

given to commercial available sensors, especially the ones able to provide continuous or semi 

continuous results due to the objectives stated before, mainly related to potential industrial 

application. 

Instruments that for decades were standard equipment in focus areas as vehicles 

emission for engine test cells, such as smoke meters and opacity meters, have become obsolete 

over a rather short time span, unable to provide the sensitivity required by the new standards 

(Giechaskiel, et al., 2014). In addition, in the fertilizer’s industry, where the best available 
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technique (BAT) mentions emission levels of 5mg/Nm3 for NPK production (COM, 2007) with 

almost 90% of the PM below 1µm, well established principles do not meet the standards 

required. Furthermore, high time resolution measurement (seconds or less) has become a 

necessity to understand particles formation and to develop control and aftertreatment strategies 

(Giechaskiel, et al., 2014). 

The physical and chemical properties of exhaust aerosol continuously change after their 

formation, both along the exhaust system and after emission into the atmosphere. A rather rapid 

change occurs as exhaust exits the tailpipe and abruptly dilutes and cools in the ambient air. 

These changes have created a demand for new instruments that are capable of real time 

measurement and enhanced sensitivity (Giechaskiel, et al., 2014), (Liou, 2007). 

The current research focus is on newly evolving instrumentation, including scattering, 

absorption and instruments based on the electrical detection of exhaust aerosols. Meanwhile 

GS is still the general standard to calibrate those instruments. 

GS is performed by collecting particles onto a filter. The emission rate is then calculated 

by weighing the filter before and after the test. The filter collects all particle size fractions 

(nucleation, accumulation and coarse modes). The collection method also provides an 

operational definition of PM, as the material mass collected on a filter. Conventional filters are 

made of glass fibers and an inter-coating (e.g. Polytetrafluoroethylene PTFE) protects the 

surface from chemical reactions. Filter measurements are affected by vapor adsorption on 

substrates, by evaporative losses during or after sampling and by reactions between collected 

particles as nitrates and sulphates. Filter handling and loss of material from the filter surface 

can also play an important role, particularly for quartz fiber filters. The conditioning of the filter 

in the weighing room can also affect the final result by a few μg. For this reason, filters are 

typically conditioned under controlled relative humidity and temperature conditions. The effect 

of the ambient air pressure is considered with a buoyancy correction. For process with modern 

aftertreatment technologies or emission close to BAT levels, the gravimetric method is reaching 

its detection limits. At the lowest emissions levels, the artifacts and measurement uncertainties 

discussed above can contribute more than 90% of the recorded mass increase (Giechaskiel, et 

al., 2014). The lack of sensitivity of the gravimetric method has been one prime reason for 

looking into alternative detection techniques. 

Table 1 shows one example of a guide where the continuous measurement technology 

available is related to parameters to help the user on selecting the most adequate principle for a 

defined application. The supplier here mentioned PCME (2018) offers three different 
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principles: probe electrification, transmissometry and scattered light. Those principles are 

offered by different suppliers as Sick (2020) and Palas (2020), for example. A set of parameters 

is presented, based on regulations applicable, process and PM characteristics to help end users 

on the selection. 

Even though it looks straight forward, the list presented on Table 1 is not complete as 

(Giechaskiel, et al., 2014) discuss. The authors summarized the main criteria to select the 

equipment to measure PM concentration. These include representativeness (emissions as they 

would be in real world dilution and aging conditions), accuracy (uncertainties include random 

error and systematic error), detection limit, traceability (international standards or basic 

physical constants or properties), robustness (a method continues to function despite the 

existence of faults in its subsystems or component parts), user friendliness and cost (capital and 

maintenance). 

The main principles on which the commercially available instruments are based are 

discussed in the following next. 

3.2.1. Optical detection methods 

The study and applications of optical methods have been enormously simplified and 

extended with the availability of reliable laser sources over a wide range of wavelengths 

(Glatter, 2018) (Giechaskiel, et al., 2014) (Liou, 2007). (Wu & Chu, 2000). 

In optical detection methods, the interaction of aerosol particles with incident light 

serves as basis for real time measurement of particle concentration. Aerosol particles 

illuminated by a beam of light reradiate it in all directions (scattering) and simultaneously 

transform part of it into other forms of energy called absorption and extinction (Babick, 2020) 

(Sullivan, et al., 2018) (Giechaskiel, et al., 2014) (Wu & Chu, 2000). Some of this modified 

light is collected at a receiver, usually placed very close to the transmitter, and often using the 

same optical device as illustrated on Figure 3. The return signal light is then analyzed to derive 

information about the target. Some of the applications areas of light sensing are meteorology, 

atmospheric measurement, chemical species and pollutants, gas detection and space-borne 

measurements as clouds and global wind field (Vaughan, 2002). Optical detection can be used 

to measure PM concentration although the main application is still particle size distribution 

determination (PSD). 
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Table 1 Guide to application parameters for technologies 

 
Source:  adapted from (PCME, 2018)
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Light absorption is mainly used in atmospheric studies related to climate change, due to 

fact of greenhouse pollutants strongly absorbs light. The most common techniques for 

measuring aerosol absorption are the difference method, where absorption is derived from the 

difference between extinction and scattering, the filter based methods that measure the light 

attenuation by PM collected on a filter, and photoacoustic spectroscopy and Laser Induced 

Incandescence, which measure PM concentration via the heat particles gain as they absorb light. 

(Glatter, 2018) (Giechaskiel, et al., 2014). 

 
Figure 3 Optical Scatter Principle and application example. 

Source: Adapted from PCME (2019) 

The Opacity meter measures the fraction of light transmitted through a given exhaust 

volume (path). Light extinction (also referred to as opacity or smoke opacity) by absorption and 

scattering is the difference between incident and transmitted light. Extinction based 

measurements quantify particle concentrations via the Beer–Lambert– Bouguer law, where the 

ratio of transmitted to incident light intensity is an exponential function of the path length and 

the extinction coefficient. Opacity depends on particle size and light wavelength, as well as 

particle shape and composition. This is difficult to estimate theoretically for most particles in 

the real world (Giechaskiel, et al., 2014). 

Two types of opacity meters are common: sampling opacity meters, which sample a 

fraction of the exhaust flow through a measuring chamber and inline opacity meters, which do 

not have a separate measuring chamber, but send a light beam to a microphone detector. In the 

last one, some new features as sampling pumps to have constant flow and heated windows to 

protect the optical components have improved the accuracy of the opacimeters (Glatter, 2018). 
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Light scattering (Figure 3), has seen considerable application in particle size and 

concentration measurement, e.g. for soot in flames, incinerators and cement plants. The light 

scattering pattern and intensity are strongly dependent on the ratio of the particle size to the 

wavelength of incident light. For very small particles compared to the wavelength, particles act 

as dipoles, therefore scattering is symmetrical in the forward and backward directions, and the 

scattering intensity is independent of particle shape. This defines the Rayleigh scattering 

regime. In the case of non-spherical particles, the radius must be replaced by a “characteristic 

length” of the particle. As particle size approaches the wavelength of light the Mie scattering 

regime is entered. The formulas in this regime are rather complex and cannot be calculated in 

closed form. The scattering intensity of particles much larger than the wavelength is 

proportional to the square of the particle size (Wu & Chu, 2000). 

For particles in the size range of some hundred nanometers up to several micrometers 

perfectly fit into the accessible range of a light scattering; this makes a detailed structural 

analysis possible. However, one is confronted with two main difficulties: one must use Lorenz–

Mie theory, and the situation is often complicated by multiple scattering. In these cases, a low-

resolution shape analysis is possible for monodisperse systems. Polydisperse systems can be 

analyzed in terms of size distributions of spheres by using Lorenz–Mie theory. High-quality 

experimental data allow the determination of this value from the measured data during size 

analysis. Multiple scattering contributions can be reduced by contrast matching, or by special 

experimental set-ups like thin, flat cells. May lead to sharp resonant scattering (Glatter, 2018). 

Due to the high scattering power of these large particles one runs into the problem of multiple 

scattering with increasing concentration much earlier, before one can see the influence of 

excluded volume effects. If the particles are larger than several micrometers, then the regime is 

Fraunhofer diffraction, which probes only the silhouette of the particles. The original work of 

Lorenz and Mie related to spherical particles only, but these names are now often used for 

arbitrarily shaped scattered light in this size. This theory describes the propagation of 

electromagnetic radiation in an inhomogeneous dielectric medium and considers that the 

interaction of the electric field with the inhomogeneities becomes more complicated. We can 

no longer assume that the electric field strength is the same everywhere in the probe volume. 

Currently there are at least modern numerical algorithms that allow computation of the 

scattering problem for simple regular particles like spheres and prolate and oblate ellipsoids, 

and cylinders (Glatter, 2018).  
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As discussed, the particle shape is a drawback of light scattering and many approaches 

have been developed for the calculation of light scattering by non-spherical particles and broad 

range of PSD because of the need for precise scattering information in optics, geophysics, 

remote sensing, astrophysics, engineering, medicine, and biology (Glatter, 2018), (Liou, 2007).  

Light scattering can be classified in either static or dynamic. Static light scattering 

occurs in which the angular dependence of the time-averaged scattering intensity is measured 

while in a dynamic light scattering experiment the time-dependence of the scattered light at a 

fixed scattering angle is measured. These time dependent fluctuations correlate with the 

displacement of the scattering centers due to diffusion processes (Brownian motion), or due to 

intra-molecular mobilities.  

In static scattering experiments that are primarily diluted systems, where the scattering 

centers are fixed in a single particle, so the relative distances of the scattering centers are fixed 

in time. Many systems in the size range between 100 nm and several micrometers, like 

emulsions, show a distinct polydispersity in size, and one can hardly find strictly monodisperse 

particles in practical applications. When assuming a certain shape, like spheres for emulsions 

— one is interested in a determination of the size distribution. However, there is a difficulty: of 

combining the Lorenz-Mie theory with multiple scattering (Glatter, 2018). 

The situation is quite different for dynamic light scattering what is a method of studying 

dynamics in a system, in most cases translational diffusion dynamics. The technique is 

primarily used for particle sizing and can be applied in a wide size range, from nanometer up 

to micrometers, but it is a low-resolution technique (Bras & Hammel, 2019). Moreover, Babick 

(2020) points out at when dynamic light scattering is used to quantify the properties of 

individual particles, the sample should be properly diluted to exclude any impact of particle 

concentration. There are several sources of such impacts, which depend on the particulate phase 

(size, shape, and optical and interfacial properties) and instrumentation (wavelength and 

scattering angle). For practical reasons, it is not possible to completely avoid the occurrence of 

these effects (Babick, 2020). 

For practical industrial applications two kinds of instruments exist: light scattering by 

an ensemble of particles as scattering photometers, which measure the scattered light intensity 

at one or more angles and light scattering by single particles represented commonly by the 

Optical Particle Counter (OPC). A special category of the last one is the Condensation Particle 

Counter (CPC), where the particles are grown by condensation to optically detectable sizes. 
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3.2.1.1 Scattering photometer 

Light scattering photometers measure the combined light scattered from all particles 

present in the optical sensing volume typically at angles centered at 901, 451, or less than 301. 

Most commercial light scattering instruments use visible light, e.g., 600 nm. Light scattering 

instruments have sufficient sensitivity to detect particle emissions from for example, relatively 

low emitting vehicles. However, their responses are dominated by large particles and therefore, 

are strongly dependent on particle size distribution. One can calibrate the instrument response 

to particle mass, but this is sensitive to deviations in particle size and composition from that of 

the calibration aerosol. (Bras & Hammel, 2019). 

3.2.1.2 Optical particle counter (OPC) 

OPCs are similar to photometers. The major difference is that the OPC optical sensing 

volume, formed by the intersection of a focused light beam with a narrow particle beam, is 

much smaller so that only one particle is illuminated at a time. The scattered light is detected 

by a photo detector as an electrical pulse. The pulse height depends on particle properties (size, 

refractive index and morphology). A disadvantage of OPCs is that uncertainty in refractive 

index often leads to significant variability in derived size distributions, even for the ideal case 

of homogeneous spherical aerosol particles (Liou, 2007) (Galvão, et al., 2018). 

3.2.1.3 Condensation Particle Counters (CPCs) 

CPCs use light scattering to count particles after they are grown to micron size. The 

three types of CPCs, depending on the method that is used to achieve supersaturation and 

particle growth, utilize either adiabatic expansion of the aerosol–vapor mixture, or conductive 

cooling, or mixing of cool and warm saturated air, but only limited use of this type of CPCs has 

been reported (Giechaskiel, et al., 2014). 

3.2.2. Probe electrification 

The ability of particles to acquire electrical charge provides the opportunity to design 

simple, low cost, sensitive PM sensors. A number of processes can contribute to the charging 

of aerosol particles: static electrification, thermionic emission, photoemission, and charging by 

small ions. The electrical charge acquired by a particle from static electrification is difficult to 

predict thus no instruments are based on this technique. Likewise, there are no thermionic based 

instruments used for exhaust PM emissions (Giechaskiel, et al., 2014).  
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Charging by small ions is a technique that has been used to characterize ambient aerosols 

and vehicle exhaust aerosols. On a Diffusion Charger (DC) the ions, usually from a corona 

discharge, attach to particles and an electrometer registers a current proportional to the number 

of particles times the average charge per particle. Theoretically, the measured current is 

proportional to particle diameter squared in the free molecular regime and proportional to 

particle diameter in the continuum regime. Experimentally, for the size range of interest, which 

lies in the transition regime, an exponent of 1–1.4 to particle mobility diameter is found. 

(Giechaskiel, et al., 2014) This varies with the charging area design and with particle losses at 

and downstream of the charging area. If entering particles are already charged with the same 

polarity as the corona, they can exhibit higher apparent charging efficiency than expected, by 

up to 30%. Aerosol detection based on diffusion charging offers fast response (1 s), very good 

sensitivity, simplicity, repeatability, and a wide dynamic range (Sullivan, et al., 2018). 

Diffusion chargers (DC) have a strong potential to be used alone to measure relative changes 

in particle emissions or in combination with other instruments to provide additional information 

on particle properties, such as the mean diameter when combined with a CPC. This instrument 

combination was designed for ambient ultrafine particle measurement and an applicability to 

other systems like diluted engine exhaust needs further investigation (Giechaskiel, et al., 2014). 

An example of application of electrodynamic diffusion charger (EDA) is showed on 

Figure 4. EDA stably traps charged aerosol particles by balancing the aerosol particle in an 

electric field. This stable trap requires a feedback loop between the potential applied to the 

electrodes and the position of the particle, which is sensitive to changes in mass. The electric 

field strength required to stably trap the particle thus provides an accurate real-time 

measurement of the mass of the particle if the charge state is known. 

The particles studied in the EDA range are typically greater than 10 µm in diameter, and 

the trap can be easily loaded using an ink-jet nozzle to dispense droplets. As the trapping 

capabilities of the EDA do not depend on particle shape, and thus the EDA is not restricted to 

spherical particles as is the traditional optical detection methods. This makes the EDA ideal for 

phase transition experiments, such as salt efflorescence and the freezing of water, because 

crystalline particles are readily trapped (Sullivan, et al., 2018).  
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Figure 4 Example of electrodynamic diffusion charger. Source: 

adapted from (PCME, 2019) 

A case study performed by PCME (2018) provides a comparison of results for 

monitoring the same stack with an EDA instrument and an optical forward scatter installed at 

outlet of a bag filter from an incinerator. The author concluded that both instruments track short-

term variations in dust levels associated with bag cleaning in a similar fashion. Besides that, 

instruments have dissimilar results during plant stop and start up when there are water 

condensation issues. This issue appears to be related to the different effects of water vapor on 

both instruments. 

3.2.3. Electrical low-pressure cascade impactor 

As presented above, all techniques presented to measure PM concentration at the stack 

have their results affected by the particles properties, as the shape for optical measurements and 

the charging properties to electrodynamic DC. Because of this, it was raised the need for 

instruments to be able to provide more information regarding the particle as PSD over time and 

its chemical properties. 

From the commercial available continuous monitoring instruments, it can be seen they 

are based on two principles, OPC already discussed in item 3.2.1 and electrical low-pressure 

impactor (ELPI). 
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Low-pressure impactors (LPI) have been introduced to measure nanosized particles 

(Brachert, et al., 2014). In cascade low-pressure impactors, the pressure is reduced either by 

having a separate pressure-reducing stage or by gradually reducing the pressures by using high 

jet velocities as shown in Figure 5. 

 
Figure 5 Cascade impactor operation principle. Source: adapted 

from Dekati (2011) 

To make LPI measurements in real-time and to improve the sensitivity, Keskinen et al. 

(1992) developed the electrical low-pressure impactor (ELPI) to achieve real-time operation of 

a low-pressure cascade impactor. According to the authors, a multichannel electrometer is 

constructed using low cost monolithic electrometer amplifiers. The zero-check technique is 

applied to achieve a lowest detectable current of 10 × 10-15A. 

In the ELPI, the aerosol is sampled through a unipolar corona charger as presented on 

Figure 6. The charged particles then pass into a low-pressure cascade impactor consisting of 

electrically isolated collection stages (13 impactor stages and one filter stage). As particles 

impact on a specific stage, they produce an electrical current that is recorded in real-time by an 

electrometer. Particles below the lowest cut diameter are collected by a filter stage enclosed in 

an isolated Faraday cage. The ELPI impactor classifies particles according to their aerodynamic 

diameter, from 10µm to 6nm. The concentration measurement is based on calibration of the 

corona discharge for charging efficiency, impactor collection efficiency, and current 

measurement. The charging probability is calibrated against mobility equivalent diameter. 

(Dekati, 2020). 
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Figure 6 ELPI instrument schematic. Source: adapted from 

Dekati (2011). 

To reconcile the mobility-based charging efficiency with the aerodynamic size 

measurement, as well as to determine PM mass, the effective density of the particles needs to 

be known or estimated. ELPI is used quite often for research in engine tests beds and generally, 

the agreement with the PM mass is within 10% for non-diesel fueled vehicles. At low emission 

levels the agreement is not so good due to the filter artifact. With other instruments the 

agreement at low levels (e.g. 0.3 mg/m3) is better than 10–20%. The combination of 

aerodynamic and mobility size data is used to estimate particle effective density and, thereby, 

enable conversion of the impactor data into a real time mass concentration. The agreement with 

gravimetric PM mass can be quite good (within 20%) if the instrument is kept clean and not 

overloaded with high PM concentrations. (Giechaskiel, et al., 2014) 

The calibration of the ELPI is based on the realistic shape of particle collection 

efficiency curves. To ensure that a used impactor is performing in the same aerodynamic range 

allowed for new impactors, one must also satisfy the other, secondary factors of cascade 

impaction aerodynamics, most notably the distance to the collection surface relative to the 

nozzle diameter. Muller et al. (2012) states that the performance of a cascade impactor is 
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difficult to define because it includes the number of the measurement channels per order of 

magnitude in the size axis, the time response, the shape of the kernel functions, and the 

sensitivity of the instrument.  

Arffman et al. (2014) investigated the performance mainly from the perspective of 

distinguishing both modes of bimodal size distributions and determining the lower limit at 

which the relevant information from a size distribution can still be resolved. Results of the 

instruments were consistent by taking into account that soot particles have fractal structure. It 

is important to highlight that the performance of the ELPI has been evaluated using 

monodisperse aerosols. The good agreement between the two measured size distributions 

shows the capability of the ELPI for near real-time particle size measurements. 

Dong et al. (2004)  studied the inversion processing of cascade impactor data to construe 

continuous size distributions within fine particulate matter (PM2.5) is examined for residential 

oil furnace and fireplace appliance emissions. The oil furnace aerosol offers an opportunity to 

apply data inversion to study a bimodal lognormal distribution in which much of the aerosol 

mass is impactor-penetrating nanoparticles (< 30 nm). The fireplace emissions on the other 

hand cover the issue of a chemical size distribution, which is subject to particle loss and 

characterized by a single lognormal, accumulation mode peak. Raw cascade impactor data was 

inverted with the knowledge of individual stage collection efficiencies to create a continuous 

and complete particle size distribution. 

The ELPI present losses of fine particles. Those were calculated by Virtanen et al. 

(2001) considering three different loss mechanisms: diffusion, space charge, and image charge 

deposition. Diffusion losses were determined experimentally in particle size range of 10µm to 

400 nm. The measured values varied from 0.1 to 6% depending on particle size and impactor 

stage. In the measurement range of the instrument, i.e. above 30 nm, the losses were below 2%. 

Image charge losses exceeded the diffusion losses when particle size was larger than 200 nm, 

but the combined loss in this size range was below 0.5%. Space charge losses were determined 

both experimentally and through calculations. The space-charge effect was found to be a 

dominant loss mechanism in ELPI when measured concentrations were high. 

ELPI has being used in the field of droplets formation in wet flue gas cleaning process, 

sometimes coupled with a FTIR as mentioned by Mertens et al. (2014) when studying sulfuric 

acid droplets formation in an amine absorption column or either coupled with the condensation 

particle counter from Palas (2020) in the investigation of sulfuric acid aerosol on a wet flue gas 

scrubber as discussed by Brachert et al. (2014). These authors concluded that the condensation 
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particle counter provides information about the number concentration while with the ELPI also 

the size evaluation is possible. Both measurement methods revealed number concentrations 

above 108 cm3 under well-controlled conditions in a pilot plant and the good conformance of 

the both methods are shown. In case of the ELPI, the overestimation of number concentration 

has been observed as well when measuring very small sizes with the ELPI. Consequently, for 

smaller sulfuric acid concentrations the number concentration can only be measured with the 

CPC as the ELPI have overestimated it by a factor of 2–5 times. 

3.3. Statistical Modeling Applied to Experimental Investigations 

Statistical modeling helps in understanding the variables responses in experimental 

investigations among many engineering related areas. Govaerts et al. (2020) explains that an 

established scientific approach consists of first defining a statistical model. This model aims to 

describe the system of interest using a simple mathematical equation containing one or more 

random terms, which account for experimental and measurement errors or natural variation 

between subjects. Once the model is defined, it is then fitted to a set of process data collected 

according to a given experimental design. Finally, the fitted model is used to answer the 

questions of interest. 

The family of linear models includes simple linear model (LRM), used for example in 

calibration models, single variable polynomial model, multiple regression model, response 

surface model (RSM), analyses of variance (ANOVA) and its related approaches furthermore 

analysis of covariance model. These models share three common characteristics, the response 

Y explained by the model is always assumed to be observed on a quantitative continuous scale, 

the expression of the model equation is a sum of parameters multiplied by the values of some 

predictors of interest in the study and the last term added to the model is an error term e, which 

accounts for some or all of the random components of the process of interest. The word linear 

does not mean that the systematic part of the model has a linear shape. For example, the 

response surface model has a nonlinear shape but is a linear statistical model because it is 

expressed as a linear function: a sum parameter multiplied by transformations of the factors of 

interest (X2 and X1X2 as an example). 

Linear models are mostly used in experimental studies, i.e. studies where data are 

intentionally generated from a given process (analytical, experimental or industrial) in order to 

answer a specific scientific question. Ideally, these data are generated based on an experimental 

design to guarantee that they will contain the information targeted by the study and have a 
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balanced structure. Data used to develop linear models can also come from an observational 

study, where data are not produced for a given purpose, but are rather collected from a process 

or in a certain context. Such data often present a high degree of collinearity between predictors; 

contain very influential observations and outliers that are badly spread in the domain of the 

factors of interest. 

In this context, the linear model family is certainly the most used model because of its 

ease of implementation and versatility. Understanding how to express the random part of the 

process is also of the utmost importance in contexts where one is involved or must be able to 

accurately quantify the uncertainty of measurement systems, as the inclusion of the constant 

term in the LRM to ensure the random effects are taken into account.  

The main statistical indicators used to evaluate the model result are coefficient S 

(standard error in the regression) measured in absolute numbers and complementary to that r-

squared which is the percentage of response variation explained by a linear model. 

The significance of parameters which is given by p-value, based on the hypothesis of at 

least 95%, e.g., of the data set can be explained by the model proposed (p-value ≤0.05 in this 

example), residual (or lack-of-fit) equivalent to the vertical distance between a data point and 

the regression line being employed to evaluate how close is the fit of the linear model to the 

dataset and if their distribution is random (residuals are distributed evenly along positive and 

negative values) what means there is only error left in the model (Sarabia, et al., 2020) 

(Benyounis, 2019). 

The decision to move from a simple linear model to RSM according to Sarabia et al. 

(2020) is due to the fact that the model relating some controllable variables with a response 

either is not available or is very complex, so a collection of mathematical and statistical 

techniques can help analyzing, by an empirical model. 

Usually, the full model consists of insignificant model terms that need to be eliminated, 

such as terms that have p-value greater that the level of significance specified. This elimination 

can be done manually or automatically. The three automatic procedures of evaluating all 

possible selection of variables are forward selection procedure where the procedure begins with 

only the constant term, and the first variable added is the one with the highest simple correlation 

with response Y. If the regression coefficient of this variable is significant it will remain in the 

equation and a new search for the second variable with highest correlation with the response is 

begin, after Y has been adjusted for the effect of the first variable and the significance of the 

regression coefficient of the second variable is then tested. The second method is by backward 
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elimination procedure: in this procedure, full equation is fitted and sequentially eliminates one 

variable each time. The variable with the smallest contribution to the reduction of error is 

eliminated first, and so on. The last procedure is stepwise regression where the possibility of 

eliminating a variable that might be added in earlier stage, as in backward procedure, is 

considered. This procedure has the advantage of assuming different or similar levels of 

significance for inclusion or deletion of variables from the regression equation (Benyounis, 

2019). 

Allegrini and Olivieri (2020) explain that some alternative methodologies have been 

developed to handle nonlinearities, such as polynomial functions and kernel-partial least 

squares. The most powerful and flexible in this regard is the use of artificial neural networks 

(ANN), which have also been applied in multivariate calibration. 

Artificial neural networks are mathematical models inspired in the way the human brain 

is supposed to work. Indeed, the ANN nomenclature reminds biological units such as neurons, 

and biological processes such as neuron activation, interneuron connections, etc. However, in 

the analytical multivariate calibration context, ANNs are useful tools employed to model 

nonlinear relationships between multivariate signals (e.g., spectra) and one or more analyte 

concentrations or sample properties as targets. In this context, they can be viewed as nothing 

else than calibration models with several adjustable parameters, which are able to universally 

fit nonlinear relations between targets and instrumental responses. 

For solid or semisolid materials where the component concentrations may be far from 

the linear range when using NIR (near infrared spectra), or when calibrating for a global sample 

property, such as organoleptic aspects, octane number in gasoline, consumer acceptance of 

industrial or food products, etc., deviations from the linearity in the signal-target relationship 

may be found and ANN are often chosen to address this challenge. Model interpretability 

remains an active research area for the neural network community, once the key operating unit 

of an ANN is the neuron. Independently of its biological meaning, in multivariate calibration 

problems a neuron is a function receiving an input and generating an output through a suitable 

mathematical expression. A typical ANN setup or “architecture” contains three layers of 

neurons: input, hidden and output. The input layer serves to accommodate the variables, either 

real or latent; the variables from the input layer are first linearly combined, and then become 

the input for the hidden layer. The coefficients of the linear combination are adjustable 

parameters called “weights,” one for each input variable. The weighted average value activates 

the nonlinear function of each of the hidden neurons, yielding an output that is transmitted to 
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the output layer. From the modeling standpoint, optimizing a neural network means to find the 

value of the weights resulting in the best input–output modeling from the experimental data.  

Setting the weights based on training data and the desired output is the central problem 

in neural networks implementation. The back-propagation algorithm is the most often used 

method for training, due to its relative simplicity and wide applicability. The goal of back-

propagation is to iteratively change the weights in a manner that minimizes the error, defined 

as the squared difference between nominal and network output values for all training objects. 

Given a set of training samples with known nominal concentration values, back-propagation 

may continue until the error approaches zero. This carries the risk of overfitting the data that is, 

modeling the noise as well as the signal-target relationship. In this sense, the application of 

ANN for calibration against well-defined standards is suitable while when modelling process 

parameters, a good model fit not necessarily will help to understand the relation between 

parameters and the response. 

The result of a web search in science direct (Elsevier, 2020) from 2019 shows that 

methodologies here presented are widely applied, but mainly in experiments in both laboratory 

and pilot scale while few of them deal with industrial final use application, only Saleem et al. 

(2019) when studying levels of disinfection by products in aquatic centers published a work on 

this field. The authors have employed LRM (linear regression model) which was also the choice 

for Mohtashami & Shang (2019) in wastewater painting treatment and Gonzalez-Soto et al. 

(2019) while studying exposure to different sized polystyrene in mussels. 

Response surface methodology (RSM) has been applied by Tonday & Tigga (2019) in 

electrical discharge machinery, Boulila et al. (2019) on manufacturing of gas turbines, 

Kahraman et al. (2019) for grinding wheel, Changra & Bhattacharya (2019) when studying 

pyrolysis of biochar, Heydari et al. (2019) evaluating electrodes nanostructure, Lee et al. (2019) 

and Su et al. (2019) for clean technologies in biodiesel production, Balamurugan et al. (2019) 

for waterjet cutting of abrasives, Parida & Maity (2019) machining parameter for flank wear, 

Ozturk et al. (2019) when grinding flat glass and Singh et al. (2019) for rotary soil tillage 

operation. 

Analyses of variance (ANOVA) was employed by Fernandez-Lopez et al. (2019) for 

heavy metal bio removal while Kavimani et al. (2019) for graphene process production, Ramesh 

et al. (2019) when improving stability of impact dampers and Muaz & Choudhury (2019) for 

milling process and Sivaiah & Chakradhar (2019) for manufacturing process in machining of 

17-4 PH stainless steel. 
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The artificial neural network method was employed by Ghimire et al. (2019) when 

modelling meteorological parameters and Alizadeh &Omrani (2019) for CO2 cutting. 

In research related to PM emission Padoan et al. (2017) employed LRM for road dust 

emissions while Moser et al. (2017) for aerosol emission on post combustion pilot plant have 

applied ANOVA. 

4. GENERAL MATERIALS AND METHODS 

The experimental tests in this project research were performed in a fertilizer unit, which 

produces mainly AN based fertilizers employing a prilling tower. The air is dragged in the PT 

by six fans, each one located at a single stack as schematic showed in Figure 7. 

 
Figure 7 Schematic of airflow in the PT 

The six exhaustion fans had the same capacity and there was no frequency inverter 

installed, so for the entire period they were running at same rotational speed. All the tests were 

performed in the stack number 3. The stacks had the same diameter of 1700mm. 

The test rig was assembled as shown in Figure 8 where (a) shows the continuous PM 

concentration monitoring employing optical scattering (here called OSA) and a second one 

employing electrodynamic DC (called here EDA) mounted at the same height of the stack but 

with angle 0° and 180°, respectively an (b) shows the probe for GS and ELPI. The sampling 

point employed was located on a level 600mm higher than the continuous instruments (OSA 

and EDA) as showed. In this specific situation, the sampling point was connected to the probe 

when performing GS. 
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(a) (b) 

Figure 8 Test rig where (a) shows the stack with 3 sensors installed and 
(b) the detail of the probe for GS 

4.1. Gravimetric Sampling 

Gravimetric sampling was performed according to Environmental Protection Agency 

standard for stationary stacks (EPA, 2018) with some adaptations described below on the stack 

number 3 at PT. The stack had a total height of 25,000mm and diameter of 1,700mm with the 

sampling point located 20,000mm above the top of the PT. The sampling point was located 12 

diameters over the PT top and 3 diameters below the gas stream exits to the atmosphere. 

For the determination of isokinetic stack gas velocity and volumetric flow rate (type S 

pitot tube) the method 2 was employed (EPA, 2016) while for determination of PM emissions 

from stationary sources the method 5 was utilized (EPA, 2019). According to method 5 the 

samples should be dried from 2-3h at 105°C, but to avoid decomposition of ammonium nitrate, 

after the sampling period, the samples were left to cool down at silica gel desiccator for 30 min 

and then taken to the oven at 110 °C for 1 h. 

Table 2 shows the equipment used to perform GS. The scale employed for PM mass 

determination was Mettler Toledo AE100 which range is in conformity with Method 5 from 

EPA (2019). All instruments had valid calibration certificate over the duration of the 

experiments. 

Figure 9 shows a cross section view of the probe position related to the other installed 

instruments. The stack was sampled in 8 points to get isokinetic velocity and temperature 

profiles as the standard reference requires (EPA, 2016), while PM concentration was measured 
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at the center point for the whole study due to the fact the PM here presents a PSD of minimum 

90% below 1µm leading to main mechanism of motion being Brownian motion and therefore 

not dependent of flow in the stack (Mertens, et al., 2014). EDA has a probe lenght of 900mm 

while OSA 710mm.  

Table 2 Manual equipment employed 

 

Figure 9 shows a cross section view of the probe position related to the other installed 

instruments. The stack was sampled in 8 points to get isokinetic velocity and temperature 

profiles as the standard reference requires (EPA, 2016), while PM concentration was measured 

at the center point for the whole study due to the fact the PM here presents a PSD of minimum 

90% below 1µm leading to main mechanism of motion being Brownian motion and therefore 

not dependent of flow in the stack (Mertens, et al., 2014). EDA has a probe lenght of 900mm 

while OSA 710mm.  

Filters were made of fiberglass pads (Figure 10) previously desiccated according to 

Method 5 (EPA, 2019). The probe nozzle employed to get isokinetic sampling had a range 

between 3.5mm to 4.5mm. No sample recovery was needed once the filter was located at the 

inlet of the probe, inside the stack as Figure 9 shows. 

Equipment Model Parameter obtained 

Digital pressure 
indicator 

Druck DPI 
705 

Pressure stack 
70 or 200 mbar, accuracy of ±0.1% 
Vacuum in the pump suction 
-200mbar, accuracy of 0.1% 

Pitot Kimo MP210 Temperature profile at stack 
From -100 to +750°C, accuracy of  ±0.4°C 
Velocity profile at stack 
range from 2 to 100m/s, accuracy of ±0.2 m/s 

Gas meter Ritter Bellows 
BG4 
 

Temperature of gas sampled 
5 to 40°C 
Volume sampled 
40l/h to 6000l/h, accuracy of 2% 
 Compressed air 6 bar  Supplied from the plant 

Digital Scale Mettler 
AE100 

readability range between 0.01 mg and 0.1 mg, 
and capacities up to 320 g 

Nozzle Teflon® Adjust for isokinetic velocity with gas meter 
Diameter of 3.5, 4 and 4.5mm used 

Sampling filter Tube with 
fiber glass 

Desiccated for 24h minimum 
24 to 27g of fiber glass 
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Figure 9 Layout of analyzers and GS probe in the stack 

under study 

 
Figure 10 Fiberglass pad filter employed in the research project. 

The range of main parameters is showed on Table 3 where can be seeing large variations 

due to meteorological conditions in the region where the study was conducted. The ambient air 

employed receives no preconditioning before its use in the process as showed in Figure 7.  

GS was performed minimum 3 times for each production batch to evaluate potential 

variations over time but also twice in the same day to evaluate repeatability and reproducibility 

of the method, under same product batch. 

Filter Pad 
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Table 3 Range of parameters during gravimetric sampling 

Parameter Unit Minimum Maximum Weighted Average 

Temperature °C 2 40 22 

Velocity m/s 16 27 20 

Air mass flow Kg/h 162,000 273,000 206,000 

 

4.2. Manual Data Collection 

For the third part of the research the Testo 440, Druck 705 and Kimo MP 210 were used 

to perform manual measurements. The details about range and accuracy were listed previously 

according to Table 2.The average velocity over the whole diameter of the stack (1700mm) was 

measured at 8 points. These manual measurements were done always at the beginning of the 

each designed experimental run. 

4.3. Continuous Monitoring Equipment  

The continuous PM monitoring was performed by two different instruments, OSA and 

EDA. The choice was made to evaluate distinct principles in this application. 

4.3.1. Optical dust analyzer 

The OSA was selected from PCME Ltd manufacturer (now called ENVEA UK), model 

QAL 181, which utilizes forward-scattering, called ProScatter® featuring patented options for 

enhanced reliability. The optical scatter analyzer from PCME Ltd, model QAL 181. The 

forward-scattered light collected by the concave mirror is then focused onto a quartz rod where 

the light is transmitted towards the light detector positioned within the electronic enclosure 

located outside the stack. The amount of light detected is proportional to the particulate 

concentration and calibration is based on manual isokinetic sampling. Figure 11 shows the 

external part of OSA which one is inserted on the stack. The space between the two cylinders 

is the area where the particles flow and are reached by the laser (PCME, 2019) as showed by 

the red arrow. 

OSA model PCME QAL 181 had a certification range of 0-15mg/Nm3 and measurement 

capability of 0-300mg/Nm3. 
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Figure 11 OSA probe which one goes inside the stack. 

4.3.2. Electrodynamic dust analyzer 

To test the electrification technique the chosen PM analyzer was EDA from PCME Ltd. 

(now called ENVEA UK) prospect, model STACK 980 (Figure 12). 

 
Figure 12 External part of EDA and probe rod 

The instrument measures the current signal created by particles interacting with the 

sensing rod in the stack.  The sensor extracts a specific frequency band of this signal and 

electronically filters out the direct current caused by particle collisions.  The signal may be 
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correlated to dust concentration by comparison to the results of one manual isokinetic sample 

for those types of industrial applications for which the instrument is designed. 

PCME (2018) states the core features of the Electrodynamic® Probe Electrification are 

that the signal generated is unaffected by contamination on the sensor rod, operates on velocity 

range of between 8 m/s and 20 m/s and air temperature range from -20 °C to 50 °C. 

EDA model PCME STACK 980 had a certification range of 0-15mg/Nm3 and 

measurement capability of 0-500mg/Nm3. 

4.3.3. Calibration of online analyzers/ self-quality checks 

The calibration of both PM concentration analyzers is done with a single point 

calibration applying a factor as given by Equation 2 (PCME, 2018). 

Emission � mg
Nm3� = Raw instrument reading × Calibration factor          Eq.2 

To get the calibration factor, the same formula is applied considering the average of the 

instrument reading in the same period of when GS was performed. 

Both analyzers perform self-quality checks to ensure reliability of the outputs. The 

PCME STACK 980 sensor includes automatic functionality checks to provide high quality 

assurance as a probe rod short-circuit check enable the operator to know when the sensing rod 

may be electrically shorted to the stack. 

The PCME QAL 181 performs a span check every 15 min. During this test, it closes the 

reading from the process and reads only the channel. The result, expressed in percentage is 

equivalent to the material accumulated in the channel, not actually PM from the process.  

Cleaning on both sensors were performed once every month or when the span test from 

OSA reached results below 75 %. 

4.3.4. Electrical low-pressure impactor 

The Electrical low-pressure impactor (ELPI) from Dekati was chosen for the work 

performed on Chapter 7, due to the fact it offers a different measuring principle from the two 

online analyzers employed for the continuous monitoring at the stack under study, it is 

extractive and provides a real-time particle spectrometer for measuring airborne PSD and mass 

concentrations. 

In the ELPI, after dehydrating the stream, the particles are charged to a known charge 

level and size classified in 14 size fractions ranging from 6nm to 10µm. All the impactor stages 

are electrically insulated which means that the produced electrical current at each stage is 
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measured and discharged. This current is proportional to the number concentration, and 

consequently proportional to the mass concentration of particles on each stage when using the 

calculated density of the stream (Dekati, 2011). 

The main specifications of the equipment are described in the Table 4. The flow to the 

equipment is fixed at 10 l/min so in order to reach the closest isokinetic setup the nozzle 

employed was 3.5mm. As already discussed by Mertens et al. (2014) the isokinetic sampling 

was not critical under the PSD range studied, but still an attempt was made to fit the closest 

nozzle to get isokinetic sampling with the fixed flow. 

Table 4 ELPI specifications 

Nominal air flow 10 l/min Particle size range 0.006 − 10 μm 

 Ambient humidity 
0−90 % RH, 

non-condensing 
Ambient temperature 10−35 °C 

Sample gas temperature < 60 °C Sampling rate 10 Hz 

Number of channels 

electrically detected + 

pre-separator stage 

14 Pump requirements 25 m3/h at 40 mbar 

Electric power 100−250 V 
 

50−60 Hz, 200 W 

Charger current 1 μA Charger voltage 3.5 kV +/- 0.5 kV 

Each impactor has a unique data sheet with the calibration specifications. For the 

equipment used in this research, the information is detailed in Appendix 10.1. 

The stages were cleaned daily after sampling. The operation procedure is available in 

the Appendix 10.2. It was taken about one hour to clean and reassemble the equipment after a 

day of sampling. 

Leakage test were performed every time the impactor was dissembled for cleaning, e.g. 

daily. The procedure is available in Appendix 10.3. 

Zeroing test was performed before each experimental run. The procedure is available in 

Appendix 10.4. 

The interpolated minute average data from ELPI was recorded and each experiment had 

a duration of 13min (the period where was expected the plant to run stable after each change 

without compromising the productivity levels). 
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4.4. Data Extraction and Handling 

The data needed to be extracted and organized at the same temporal interval from the 

different sources. For instance, the raw data from OSA/EDA/ ELPI  and the plant distributed 

control system (DCS) were logged as interpolated minute average, while manual measurements 

were taken at beginning of the running and meteorological parameters from nearest 

meteorological station located at 1.2km far from the PT, in straight line. The last data set was 

only available on hourly average data (see Table 5). It was chosen to organize all the data in a 

minute-average way to improve the accuracy of the measurements and it was chosen to only 

take specific experimental periods where the process was assumed to be in stable operation 

(standardized production rates from 37 to 57t/h). 

Table 5 Mapping of potential parameters to be included in the analysis 

Type of parameter Parameter description Unit 
 Fertiliser grade text 
 Date text 
 Time text 
Process parameters Off-spec flowrate t/h 
 NP-liquor temperature °C 
 Flowrate of salts t/h 
 Flowrate of NP-liquor m3/h 
 Flowrate of NH3 kg/h 
 Flowrate of product t/h 
 Temperature of salts °C 
 Temperature of mixer °C 
 Mixer rotation rpm 
 Bucket rotation rpm 
 Inlet temperature °C 
Manually sampled parameters Inlet relative humidity % 
 Inlet temperature °C 
 Stack relative humidity % 
 Stack temperature °C 
 Stack velocity m/s 
Meteorological parameters Air pressure hPa  
 Air temperature °C 
 Relative humidity % 
 Precipitation mm 
 Wind speed m/s 
Output of dust analysers ELPI mg/m3 
 OSA u/m3 
 EDA u/m3 
For the statistical analysis of data set it was used Minitab® 19 software and LRM, which 

models the relationship between categorical or continuous predictors and one response, to 

include interaction and polynomial terms, or transform the response if needed. 
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The industrial application investigated was a constraint in terms of which statistical 

approach could be employed due to sudden changes in process parameters to build potential 

experiments, what led to the choice of regression model. 

The results will be presented as chapters, which are manuscripts, submitted for 

publication. Chapter 5 deals with the performance and challenges of continuous monitoring of 

UFPs under industrial application, considering two distinct sensors; while in the Chapter 6 

(manuscript accepted for publishing) models the correlation between the relevant parameters 

impacting the concentration of UFP and the output of the sensors. Finally, in Chapter 7 a 

methodology is proposed and tested, based on a controlled experiment to improve the model 

found in Chapter 6 and test the potential of using a cascade impactor (ELPI) to calibrate the 

commercial online PM sensors. 
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Abstract 
The increased need to accurately measure continuous fine particulate matter (PM) concentration 

at stacks is addressed in this work by evaluating performance of analyzers, electrodynamic 

(EDA) and optical scatter (OSA) in an industrial mineral fertilizer plant. The analyzers were 

installed at same stack where gravimetric sampling (GS) was performed to find calibration 

factors. The results show that OSA follows the process changes to a good extent and the 

calibration factors obtained varied on 0.5 standard deviations over products and seasons. EDA 

represents better sudden variations up to its operating range, but the calibration factors 

measured were over three standard deviation for the same product over different meteorological 

conditions but also under same meteorological and product conditions. EDA also presented an 

artificially high emission every 15 min due to intermittent steam injection in the stream. PM 

deposition on the sensors affects the reading on both analyzers but only OSA indicates it (span 

test result less than 75%). From the parameters here evaluated, OSA is recommended for 

industrial continuous monitoring of fine PM once provides feedback on the sensor condition 

and smaller effect of seasonal conditions and product grades. 

 

Keywords: prilling tower, optical laser scanner, electrodynamic induced signal, continuous 

monitoring, ammonium nitrate 

5.1. INTRODUCTION 

Mineral fertilizer plants usually employ Prilling Towers to get nutrients as Nitrogen, 

Phosphorous and Potassium bound together in the same granule with uniform particle size 

distribution (Yuan, et al., 2007). By 2018 there was a yearly production of ammonium nitrate/ 

calcium ammonium nitrate (AN/CAN) over the world of 62 million tons (IFA, 2019). 

 As mentioned by Brechet &Tulkens (2009), the best available techniques should be the 

best from the Society`s point of view, not only in terms of private interests. In this sense, the 

recognized gravimetric sampling (GS) method provides an instant picture for the particulate 

https://www.usn.no/studier/finn-studier/teknologi-ingeniorfag-og-lysdesign/master-of-science-energy-and-environmental-technology/master-of-science-energy-and-environmental-technology-1
https://www.usn.no/studier/finn-studier/teknologi-ingeniorfag-og-lysdesign/master-of-science-energy-and-environmental-technology/master-of-science-energy-and-environmental-technology-1
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matter (PM) concentration but it is not able to follow the process behavior or instabilities that 

can affect the air quality in the surrounding of the industrial plants. 

The total PM concentration at industrial stacks can be generally measured by several 

different methods as GS (Kalaiarasan, et al., 2018), conventional or diluted GS (England, et al., 

2000), cascade impactor technique (Ehrlich, et al., 2007) (Muller, et al., 2012), optical 

scattering and electrification diffusion charger (Koval, et al., 2018) (Wozniak, et al., 2018) 

(Sullivan, et al., 2018). For each specific application, parameters as stack diameter, estimated 

concentration and particle size distribution, type of gas cleaning equipment, flow conditions as 

temperature, relative humidity and velocity must be analyzed to get the best possible result from 

the analyzer. Even with many commercial analyzers available, no literature was found to the 

author’s knowledge that tackle reliability and operability of such equipment in industrial 

environments. For instance, Ehrlich et al. (2007) sampled many industrial stacks using a manual 

cascade impactor technique, but no correlation was possible to be performed between the results 

with process or environment changes. 

 Lingling et al. (2017) studied a gas-liquid crossflow array system to remove fine 

particles measured concentration with a Welas® digital 2000 (Palas GmbH) device with a series 

of probes sampling isokinetically. The relative errors between the calculated values and the 

actual values were below 5%. Besides applying online measurement, the authors kept PM 

concentration fixed, due to the purpose of their work.  

Sullivan et al (2018) points out limitation of available technologies as the typical 

assumption of particles are spherical, so the transmission bias of all such inlets against no 

spherical particles, which diverge more from the inlet’s centerline than spherical particles do. 

This particle detection event can also trigger the firing of the laser beam. 

With the purpose of reducing the knowledge gap on online industrial monitoring of fine 

PM, this project aims to evaluate the performance and challenges faced by two distinct online 

PM analyzers in a mineral fertilizer industrial Prilling Tower over time, calibrating it with 

several GS measured under different product composition and season in Northern Europe. 

5.2. MATERIAL AND METHODS 

This work was performed at an industrial fertilizer plant, where over 40 different recipes 

of AN/CAN (Nitrogen, P2O5 and K2O) are currently produced, during summer/ fall season. The 

process is based on reaction from phosphate rock and nitric acid and after some separation steps 

the called mother liquor is mixed with potassium chloride and ammonia (also some formulas 
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take small amounts of other nutrients source), generating a melt in high temperature which is 

pumped to a centrifugal bucket with small holes inside the Prilling Tower (Hussain, 2012). As 

showed on Figure 13, the AN/CAN melt falls in the tower and is cooled down by ambient air 

in counter-current flow. The prills go to the bottom of the Prilling Tower and then to the size 

classification process, while the PM is carried over to the top of the Prilling Tower and flow 

through six fans installed each one in a stack. 

 
Figure 13 Industrial Prilling Tower set-up 

5.2.1. Manual Gravimetric Sampling 

The GS was performed at one among 6 stacks at AN/CAN Prilling Tower at the 

same level where the two online PM analyzers were installed as perFigure 14.

 
Figure 14 Layout of analyzers in the stack under study 

The procedure was done according to EPA standards of performance for new stationary 

sources (EPA, 2018). To avoid decomposition of ammonium nitrate, after the sampling period, 



  MANUSCRIPT 1| 

50 
 

the samples were left to cool down at silica gel desiccator for 30 min and then taken to the oven 

at 110 °C for 1 h. 

The stack had a total height of 25,000mm and diameter of 1,700mm with the sampling 

point located 20,000mm above the top of the PT. The sampling point was located 12 diameters 

over the PT top and 3 diameters below the gas stream exits to the atmosphere. 

The stack under analysis was sampled in 8 points to get isokinetic velocity, temperature 

profiles and PM concentration (EPA, 2018). The range of main parameters is showed in Table 

6, where can be seeing large variations due to meteorological conditions in the region where 

the study was conducted once the ambient air employed receives no pre conditioning before its 

use in the process as showed in Figure 29. 

Table 6 Range of parameters during gravimetric sampling 

Parameter Unit Min Max Average 

Temperature °C 2 40 22 

Velocity m/s 16 27 20 

Air mass flow Kg/h 162,000 273,000 206,000 

GS was performed minimum 3 times for each production batch to evaluate potential 

variations over time but also twice in the same day to evaluate repeatability and reproducibility 

of the method. 

5.2.2. Online PM Analyzers 

This section shows the details about the two instruments employed and how they are 

calibrated. 

5.2.3. Electrodynamic PM analyzer 

One of the chosen PM analyzers was electrodynamic PM analyzer (EDA) from PCME 

Ltd. (now called ENVEA UK) prospect, model STACK 980.  

The operating manual from the supplier PCME (PCME, 2018) states the sensor uses 

unique and patented Electrodynamic® Probe with electrification technology. The instrument 

measures the current signature created by particles interacting with the sensing rod in the stack.  

The sensor extracts a specific frequency band of this signal and electronically filters out the DC 

current caused by particle collisions. 

PCME (2018) states the core features of the electrodynamic® probe are that the signal 

generated is unaffected by contamination on the sensor rod (which may cause signal drift issues 
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for other systems), not affected by velocity variations within typical bag filter velocity ranges 

(of between 8 m/s and 20 m/s) and the air temperature range could be from -20 °C to 50 °C. 

5.2.4. Optical PM analyzer 

The second analyzer selected from PCME Ltd manufacturer (now called ENVEA UK) 

prospect was the optical scatter PM analyzer (OSA), model QAL 181. 

According to PCME (2018), the QAL 181 utilizes an improved forward-scatter 

technique ProScatter® featuring patented options for enhanced reliability.  

As particles travel through a beam of light, each particle scatters light in all directions 

with the strongest intensity of light being scattered in a forward direction. The beam of laser 

light then continues through a concave mirror to the beam dump. 

The forward-scattered light collected by the concave mirror is then focused onto a quartz 

rod where the light is transmitted towards the light detector positioned within the electronic 

enclosure located outside the stack. The amount of light detected is proportional to the 

particulate concentration and calibration is also based on one manual isokinetic sampling. 

5.2.5. Calibration of Online Analyzers/ Self-Quality Checks 

The calibration of both PM concentration analyzers is done with a single point 

calibration applying a factor as Equation 3 (PCME, 2018). 

Emission � mg
Nm3� = Raw instrument reading × Calibration factor          Eq.3 

To get the calibration factor, the same formula is applied considering the average of the 

instrument reading in the same period of GS. 

Both analyzers perform self-quality checks to ensure reliability of the outputs. 

The PCME STACK 980 sensor includes automatic functionality checks to provide high 

quality assurance as a probe rod short-circuit check enables the operator to know when the 

sensing rod may be electrically shorted to the stack.  

The PCME QAL 181 performs a span check every 15 min. During this test it closes the 

reading from the process and reads only the channel. The result, expressed in percentage is 

equivalent to the material accumulated in the channel, not actually PM from the process. 

According to the PCME (2018) when span test reaches results below 75 % it is needed to 

perform inspection/ cleaning. 
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5.3. RESULTS AND DISCUSSIONS 

5.3.1. Calibration Campaigns Results 

It was performed 34 GS campaigns during one year, from August 2018 to July 2019 by 

2 operators and under 11 different product grades. A complete design of experiments was not 

possible to be performed due to the challenges of industrial sampling under unstable conditions 

as well as the seasonal product grades, which are defined by demand from the market, according 

to the region and type of nutrients required by the different crops. 

Wilson et al. (2002) highlighted that the measurement of volumetric flow in the stack 

can itself be a source of error up to 30%, due to the human factor. So, to evaluate the human 

factor as a potential source for errors in the gravimetric sampling, it was employed the test for 

equal variances, once the data was normally distributed.  

Figure 15 shows that both operators have performed sampling according to an adequate 

standard once the corresponding standard deviations are mostly in the same range as the blue 

lines are overlapping each other. Besides that, the p-value obtained from the database was 0.988 

what means that the the standard deviation from Operator 1 was 98.8% similar to the one 

obtained from Operator 2.  

 
Figure 15 Effect of human factor evaluated based on the result of 

the test for equal variances, from the GS performed by 2 operators 

considering normal distribution. 
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It is observed although, that the range obtained from Operator 1 is wider than the one 

from Operator 2, indicating that the last one is performing a more systematic work.For this 

analysis, it was excluded four data sets where the plant was operating with an extra source of 

fine dry product dust to the stack during fall. The extra emission was not coming from the 

prilling tower itself but from the dedusting system from the plant. 

In Figure 16 it can be seeing that PM concentrations are higher during summer for all 

products studied and lower in wintertime, what is due to the use of ambient air without 

pretreatment to the prilling tower. In winter time the cold air makes the droplets to solidify 

faster into prills reducing the PM concentration, as Shirley et al. (1996) observed. Ideally, the 

PM monitoring instruments should be able to follow this trend in an extent that calibration 

factors would be the same over seasons what is not observed as per Figure 16. Here the effect 

of seasons in each instrument reading is presented in terms of standard deviation. EDA shows 

up to over 4 standard deviations than OSA among seasons and a consistent trend about 67% 

overestimated emissions from one season to the next (winter to fall) in Northern Europe. OSA 

wider variation identified was about 40%, from fall to winter/summer. 

 
Figure 16 PM concentration as a function of product type over 

different seasons. 
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When sampling different product types it can be expected to have variation between 

calibration factors as presented on Figure 18. For instance, OSA reading is influenced by the 

optical and reflective properties of PM under study (Koval, et al., 2018) (Sullivan, et al., 2018). 

This study proved to consistent with the known phenomena once the standard deviation 

found among products was 0.5 from product 1 to product 10. EDA presented standard variation 

of 3 from product 3 to product 11 what could be due to the particles being charged electrically 

and interacted with the probe in distinct intensities. 

 
Figure 17 Standard deviation of calibration factors for sensors 

OSA/ EDA over different seasons. 

 
Figure 18 Standard deviations for calibration factors from OSA/ 

EDA under different product grades 
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5.3.2. Performance of Instruments Over Time 

After having performed the GS campaigns, the calibration factors from each period were 

applied to the database collected from the online PM analyzers. It can be seen from Figure 19 

that results from the OSA vary from no emission up to over 70 mg/Nm3, giving realistic results, 

during a tested period of over 30 days. The peaks occurring approximately every 8h correspond 

to the start-up of the plant after a cleaning stop performed every working shift. Also, a higher 

emission level was measured in one of the start-ups (hour 504).  

The span test results for the period under study are showed in Figure 20, when between 

cleaning intervals, the test got values lower than 80, so the data collected during this period was 

discarded from the database. 

Unlike the OSA, EDA showed results as per Figure 21 from no emission until above 

5,000 mg/Nm3. These results are not realistic, once no change was identified on process/ 

environment parameters during that time that could lead to higher emission levels. Besides that, 

plumes with such low particle size (90% particles with less than 1 µm measured by electrical 

low-pressure impactor from Dekati) are highly visible during sun light as other authors have 

demonstrated (England, et al., 2013) (Abreu, et al., 2007) (Presotto, et al., 2005). 

 
Figure 19 PM concentration read from OSA over 600h 
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Figure 20 Results from the span check performed by the OSA 

every 15min where 80% is the reference to inspect the instrument.  

The span test for the EDA was also performed automatically and always returned value 

of 100%, with no indication of disturbances or problems in the sensor, but when inspected on 

hour 315, the sensor rod had significant layer of material build-up. Once the rod was cleaned, 

the output results returned to current range of reading (from hour 315 on Figure 21). 

 
Figure 21 PM concentration read from EDA over 600h in fall 
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PCME (2018) states the sampling probe on EDA is not affected by product scaling on 

the surface, so to test this statement, an analysis of the period when both sampling probes were 

dirty (span test for the OSA less than 80%) was performed. 

During inspections and cleaning it was observed that the part of the instruments exposed 

to the process conditions were having layers of material incrusted on their surface as showed 

on Figure 22 and Figure 23. Both analyzers studied presented the same level of material 

accumulated on its surface. Based on this fact, the EDA results from the period the span test on 

the OSA showed values lower than 80% were discarded from the database, due to potential lack 

of reliability. 

 

 
(a) (b) 

Figure 22 (a) Laser sensor from OSA day 1 (span 80%). (b) 

Laser sensor from OSA day 15 (span 71%). 

 
(a) (b) 

Figure 23 (a) Sampling probe from EDA day 1 (self-check 

100%). (b) Sampling probe from EDA day 15 (self-check 100%). 

5.3.3. Saturated Steam Effect on EDA Outputs 

In the period showed on Figure 24, the start-up of the plant generated high PM 

concentration levels for about 30min and both sensors have indicated at. Once the process was 

under stationary regimen again, EDA still presented peaks occurring every 15 min, while on 

the OSA no disturbance was noted on the same period.  



  MANUSCRIPT 1| 

58 
 

 
Figure 24 Online analyzers output during start-up of the plant. 

The origin of the peaks was investigated further in the process upstream the stack. Going 

through the control monitoring system in the plant, it has being identified that the only change 

occurring in the same frequency of the peaks found in Figure 25 was the injection of medium 

pressure saturated steam to the centrifugal bucket, inside the tower, in order to keep it clean, 

every 15 min. Colver (1999) describes the use of electrostatic charging in liquids to detect the 

void fraction of bubbles. Such probes respond to the difference in conductivity of the liquid-

gas phases. The author also highlights the polarization effect, which creates a signal of opposite 

charge, diminishing the current. To confirm this hypothesis the automatic steam injection was 

stopped for about one hour. 

As a result, the trend on Figure 27 shows that the steam injection was the source of 

disturbances for the EDA. Just one manual steam injection was performed at the beginning of 

the test and the emission went up to 70 mg/Nm3 for about 2 min, but then went back to normal 

range with average of 8.5 mg/Nm3 for the rest of the period.  

This observation helps to understand also why the PM concentration peaks found on 

start-ups of the plant were around of 10 times higher in EDA as in OSA (as per Figure 19 and 

Figure 21). The presence of steam from the cleaning and change on the gas media composition 

could have been read as PM concentration from EDA. 
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Figure 25 EDA outputs for reducing the steam injection 

frequency. 

Once the source for the disturbance on the EDA reading was found, in the next 

calibration campaigns the injection of steam was kept as low frequent as possible to avoid 

further interferences on the data analysis and calibration factors obtained. 

5.3.4. Analyzers Responses to Sudden Changes on PM Concentration 

The influence of sudden changes on PM concentration was analyzed for a period of 

140 h during an event occurring in the industrial plant with simultaneous GS. It can be seeing 

from Figure 26 that EDA followed the sudden increase to PM concentration to the level of 

450 mg/Nm3. Although OSA shows sudden increase on the same period, the values measured 

vary only from 2 to 13 mg/Nm3. Considering that GS in the period between hour 60 and 120 

measured 558mg/ Nm3 and in the period 125 to 140 measured 49 mg/ Nm3, it can be observed 

that reading from EDA was more consistent. 

One potential reason for this phenomenon was found to be the range of operation of 

EDA (0-500 mg/Nm3) while OSA has a smaller operation range (0-300 mg/Nm3). Furthermore, 

the area covered by the laser on OSA is much smaller than the probe surface on the EDA and 

therefore could be obstructed easier by sudden high amount of dust. 
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Figure 26 EDA (red squares) and OSA (blue circles) results 

under sudden high changes on PM concentration. 

5.4. CONCLUSIONS 

Evaluating the performance and challenges of continuous fine PM concentration 

measurement in an industrial application it can be concluded that both analyzers can follow 

variations in the process if they are kept clean, what is easier to be diagnosed on OSA since it 

shows the need for cleaning through the span test results. In terms of response, for sudden huge 

changes in PM concentration at the stack the EDA represented better and faster the process 

behavior while the OSA presented normal output what can be due to the difference between the 

reading range of the instruments. A limitation observed on the EDA is that it cannot be applied 

in processes that have constant saturated steam or water presence considering the artificial high 

emission outputs it shows on those situations. In this specific case here studied, a logic system 

could exclude the non-realistic results from this short period of cleaning steam injection once 

there is a defined interval and duration. The build-up of product influences the reading of both 

analyzers, leading to need for cleaning between 15 to 30 days of operation in fall, what can be 

reduced with more efficient clening methods once here only compressed instrument air was 

employed at a flow rate of 60l/s. The calibration factors generated by GS for OSA presented up 
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to 0.5 standard variation over both seasons and products while EDA was much poorer with up 

to 4 standard deviation over seasons and 3 standard deviations among products. These findings 

highlight the challenge of continuous PM concentration monitoring in mineral fertilizer 

industry for compliance purposes, where the standard is GS, being optical scattering the most 

promising technique once it follows the process changes over time, under estable operation and 

provides feedback on the condition of the sensor.
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Abstract 
Ultrafine particles are object of main health concern, but its concentration is challenging to be 

continuous monitored due to presence of semi volatile components under different 

meteorological conditions around industrial processes. This paper shows the development of an 

empirical regression model correlating the ultrafine particles concentration measured by two 

continuous analyzers, electrodynamic (EDA) and optical scatter (OSA) with meteorological 

and process parameters. The analyzers were installed at stack of an industrial plant and data 

was collected over 4 seasons. The results showed that EDA have no correlation with process or 

meteorological parameters (r-squared less than 10%) what can be caused not only by particles 

not being charged evenly on the stream but also the better accuracy for particles over 10µm, as 

previous studies had suggested. The OSA ultrafine particles concentration model showed r-

squared of 45% and strong correlation with meteorological parameters and raw material feed. 

The model presented and standard error of 0.21 mg/Nm3, which is considered adequate for 

industry compliance purposes. OSA shows promising application for ultrafine particles 

monitoring if the influence of particle characteristics under industrial operation is considered 

and meteorological parameters are included, as already in practice for ultrafine particles 

monitoring outdoors.  

Keywords: Continuous dust analyzers; forward scattering; electrodynamic effect; ultrafine 

particles; regression model; mineral fertilizer 

6.1. INTRODUCTION 

The mineral fertilizer industry produced in 2018 around 62 million tons of ammonium 

nitrate/ calcium ammonium nitrate (AN/CAN) over the world (IFA, 2019). When producing 

AN/CAN there is emission of ultrafine particles (UFP) mainly formed in gas phase, no matter 
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which production process is employed but, when using prilling towers (PT) the issue becomes 

critical due to the high air flow needed. If it is taken into account that PT is broadly employed 

in diverse segments as food, hygiene, pharmaceutical and chemical industries among others it 

is clear that UFP emissions can be a a common issue among different industries sectors. UFPs 

have particle sizes in the range of 100 – 2500 nm and can also be agglomerates of UFPs, 

nanoparticles or nanoclusters (Fahlman, 2007). 

Studies of the size and composition of atmospheric particulate matter (PM) have 

demonstrated the usefulness of separating them into its fine and coarse components (Wilson, et 

al., 2002) especially when evaluating the health impact of PM, as worldwide epidemiological 

studies have shown. The human exposure to respirable PM is correlated with an increase in 

cardiac and respiratory morbidity and mortality (Dhananjayan, et al., 2019)  

Combining the transient nature of UFPs with stricter regulations in place from WHO 

(Team, 2006) regarding concentration level of called PM1 (PM with diameter below 1000nm) 

being reviewed and intended to be published in 2020 the need for accurate continuous 

monitoring of these type of PM with existing methods and equipment is urgent to be evaluated 

and validated. 

6.1.1. Mapping of Potential Parameters in Prilling Fertilizers with AN/CAN 

The approach here employed was to identify which meteorological and process 

parameters could potentially influence the UFP emission or the reading of those instruments, 

defining a system which includes inlet and outlet parameters of the prilling tower under study. 

The potential variables were defined based on prilling related literature (Séquier, et al., 

2014), (Hussain, 2012), (Couper, et al., 2012), (Yuan, et al., 2007), (Partridge, et al., 2005), 

(Wong, et al., 2004), (Shirley, et al., 1996)) and listed in Table 7. For instance Shirley et al. 

(1996) have applied quick freezing to prilling of ammonium nitrate, urea, and potassium nitrate 

to improve cooling, reducing the air flow needed while obtaining the same or increased 

production rates while Partridge et al. (2005) studied the effect of liquid dynamic viscosity, 

rotation rate and orifice size in laboratory and pilot scale PT concluding that the increase on the 

rotation rate generates a decrease of primary and secondary droplets. 

Also, Sequier et al. (2014) when prilling molten lipids, have obtained spherical prills 

when adjusting prilling melt temperature and have observed coalescence of liquid droplet 

during their fall, what they assumed was caused by turbulence into the air column.  
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Table 7 Data set employed to build the model 

Type of variable Description of the Variable Unit 
 Date text 
 Time # 
Process Parameters Liquor to PT t/h 

Salts to PT t/h 
Off-spec flow to PT t/h 
NH3 gas to PT kg/h 
Mixer rotation rpm 
Bucket rotation  rpm 
Melt temperature °C 
Liquor temperature °C 

Meteorological Parameters Air temperature °C 
Relative humidity (RH) % 
Precipitation mm/h 
Wind speed m/s 

Output of the Analizers OSA u/m3 
EDA u/m3 

The flow rate of raw materials fed to the PT was collected from the Distributed Control 

System (DCS) and included in Table 7,  which will be the base for building the UFP model. 

These flow rates (salts to PT, liquor to PT, off-spec flow to PT and ammonia gas to PT) change 

over time due to the recipe of fertilizer under production and can affect the emission of UFP. 

6.1.2. Ultrafine Particle Concentration Methods 

There are standard and reliable methods to measure concentration for PM10 and for 

PM2.5 (±10% error for PM2.5) yet not continuous, developed and validated (Wilson, et al., 

2002) but per authors knowledge nothing similar is available for UFP. Studies concerning UFP 

shows a difference between methods (light scattering and personal gravimetric samplers) at a 

factor of 2.23, for instance in an in-mine application (Thakur, 2019). 

Galvão et al. (2018) when studying trends in analytical techniques applied to particulate 

matter characterization highlighted the importance of the knowledge of particles properties, 

sampling even in a controlled environment as the laboratory.  

The measurement of semi volatile UFP, for instance, is discussed by Wilson et al. (2002) 

specially in the case of sulfates and nitrates where the concentration and composition changes 

due to the process but also to the location and season. 

Several industrial plants produce over dozens of different types of fertilizer with 

frequent changeovers between recipes, sometimes a batch production of less than 24 hours. 
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This means that the shape, color, mass, density and composition of nutrients e.g. can also 

change over time what makes continuous monitoring of this UFP challenging. 

The commercially available PM analyzers are based mainly on two principles, 

electrodynamic and optical trap or scatter (Sullivan, et al., 2018). The electrodynamic diffusion 

charger (EDA) traps charged aerosol particles by balancing the aerosol particle in an electric 

field. This stable trap is sensitive to changes in mass. The trapping capabilities of the EDA do 

not depend on particle shape, and thus the EDA should not be restricted to spherical particles 

as is the OSA trap. On the other hand, OSA trap uses a laser beam passing through the flow 

creating an optical trap. OSA can trap smaller particles up to hundreds on nanometers. 

6.1.3. Modelling Techniques for Experimental Data 

Modelling experimental data is widely used as presented inFigure 27, however few 

papers deal with particulate matter. From 6121 research papers from 2010 until 2020, just 8 

were found to be related to stationary sources, from those only one is regarding UFP or PM less 

than 1µm (Elsevier, 2020). These figures show the gap between the stricter regulations by WHO 

and governmental agencies over the recent years and the level of maturity on this research field. 

 
Figure 27 Web search on keywords in Science Direct from 2010 – 2020 

Consistent with the technology scenario described, this paper aims to develop an 

approach to address the challenges found when monitoring continuous UFPs concentration in 

industrial processes, by developing empirical models based on regression, for two distinct 

online analyzers installed at stack of a fertilizer industrial plant, correlating the UFP 

concentration to process and meteorological parameters over four seasons in Europe. Finally, 
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there will be evaluated if the method current in use for UFP ambient monitoring can be applied 

to industrial stationary stacks. 

6.2. MATERIAL AND METHODS 

This work was performed at an industrial fertilizer plant, where more than 40 different 

grades are currently produced. The potential set of candidate variables included both process 

and meteorological parameters. The particle characterization was performed with ELPI+ and 

the concentration at the stack monitored with both optical scatter and electrodynamic trap 

techniques. 

The results from four seasons monitoring was examined employing Minitab 19@. 

6.2.1. Industrial Process Set-up 

The process is based on reaction from phosphate rock and nitric acid and after some 

separation steps the called mother liquor is mixed with potassium chloride and ammonia (also 

some formulas take small amounts of other nutrients source), generating a melt in high 

temperature (over 140°C) which is pumped to a centrifugal bucket with small holes inside the 

PT (Hussain, 2012). As showed in Figure 28, the melt droplets fall in the tower and are cooled 

down by ambient air in counter-current flow. The microspheres go to the bottom of the PT and 

then to the size classification process, while the UFP is carried to the top of the PT by six fans 

connected to their respective stack. The analyzers were installed at the same position where 

gravimetric sampling takes place. 

 
Figure 28 Industrial Prilling Tower (PT) set-up with 6 stacks 
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6.2.2. Equipment Employed to Characterize and Measure Concentration of UFP 

In order to characterize the PM emissions from stack, ELPI®+ (Dekati, 2020) was 

employed, once it can provide online concentration and PSD changes in the continuous process 

and still keep samples in 14 different stages (particle size range from 10µm to 0.01µm) to be 

further analyzed to estimate its composition. The aluminum foils were pre-greased to avoid re-

entrainment for the next stages. 

A design of experiments was performed (second order with middle point) with a grand 

nine tests each with duration of 13min under same product but different meteorological 

conditions to evaluate the PSD of the emissions at stack. The concentrations are expressed in 

mass. 

To collect enough material to chemical characterization a test was performed under 

stable operation until the impactor ELPI+ was full (the pressure drops over the impactor can no 

longer be kept under 35mbar). The aluminum foils from each of the 14 stages was analyzed 

with SEM/EDS (scanning electron microscopy / energy dispersive x-ray spectroscopy) and 

elements as oxygen, nitrogen, carbon, chlorine, silicon and fluorine could be determined. The 

method was also employed to search for the origin of the PM, for instance if the UFP collected 

had the same composition as the product or could originate from reactions in gas phase. 

Two continuous monitoring sensors from PCME (2018) were installed at stack, being 

optical scattering analyzer (OSA) model PCME QAL 181 with certification range of 0-

15mg/Nm3 and measurement capability of 0-300mg/Nm3  and electrodynamic analyzer (EDA) 

model PCME STACK 980 with certification range of 0-15mg/Nm3 and measurement capability 

of 0-500mg/Nm3. The certificate range is the range in which the instrument is approved for 

compliance purposes. 

6.2.3. Dataset Preparation and Regression Techniques  

To develop the model, data from three different sources was collected. The DCS 

(Distributed Control System) from the plant operation, meteorological data from the closest 

meteorological station and finally the output from two continuous dust analyzers (OSA and 

EDA). 

Meteorological data such as temperature, wind speed, relativity humidity (RH) and 

precipitation were collected from the nearest meteorological station (1.2km far from the stack 

monitored in straight line). The results were available in hour average basis. There were 
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employed 6,215 complete hourly data sets, representing 344 days from May 1st, 2018 to April 

10th, 2019.  

For the statistical analysis of data set it was used Minitab® 19 software was used and 

mainly regression, with models the relationship between categorical or continuous predictors 

and one response, to include interaction and polynomial terms, or transform the response if 

needed. 

The industrial application investigated was a constraint in terms of which statistical 

approach could be employed due to sudden changes in process parameters to build potential 

experiments, what led to the choice of regression model. Potential interactions between 

parameters can be lost on this approach but the data set collected over 4 seasons can still provide 

a robust model. 

The main statistical indicators considered here will be coefficient S (standard error in 

the regression) measured in absolute numbers and complementary to that r-squared which is 

the percentage of response variation explained by a linear model. 

The significance of parameters will be given by p-value which one determine the 

significance of the results, based on the hypothesis of at least 95% of the data set can be 

explained by the model proposed (p-value ≤0.05). 

A residual is the vertical distance between a data point and the regression line. They will 

be employed here to analyze how close is the fit of the linear model to the dataset and if their 

distribution is random above and below the zero line what means there is only error left in the 

model and all relevant parameters were included. 

6.3. RESULTS AND DISCUSSIONS 

The results from the particle size and chemical composition of UFP are presented 

followed by the best regression model found for each dataset correlating process and 

meteorological parameters to the concentration measured by OSA and EDA. 

6.3.1. Characterization of PM Under Study 

From the background available on the transient behavior of fine PM, the first task of the 

project was to characterize the aerosol under study. The result is presented in Figure 30. The 

PM has a monodisperse distribution with a median of aerodynamic diameter of 1.23µm from 

nine tests performed. The particles smaller than 1.24µm represent 78% of the mass distribution. 

When taking into account the number of particles, up to 93% of particles are smaller than 

0.75µm leading to classify them as ultrafine particles (Soysal, et al., 2017). 
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Soysal et al. (2017) when discussing the challenges of measuring concentration for fine 

PM highlight that ELPI measures current in real-time but demands the previous knowledge of 

effective density. In this case, the effective density set on ELPI+ was 1.36 g/cm3 for ammonium 

nitrate compounds (Yin, et al., 2015). 

 
Figure 29 Cumulative particle size distribution of mineral fertilizer aerosol in 

each impactor stage (95% confidence interval for the mean). 

Samples of the PM collected over a long test (5h sampling) were taken to SEM/ EDS in 

order to determince their composition, although only stage 1.24µm gave significative results. 

The other stages contained very small amount of sample, even after 5h sampling time, that was 

not possible to determine its concentration. 

Figure 31 (a) shows the foil under study. One of the agglomerates is showed on Figure 

31(b) with 180 times magnification and a further increase to 1500 times magnification is 

presented on Figure 32 which one shows  3 different types of particles, marked as A, B and C. 

There is a region where the main area is covered by gray particle agglomerates (A). In the center 

of the image there are some potential single light-gray particles (B) and next to it some white 

agglomerate (C). 

The chemical composition of the UFPs presented on Table 8 suggests that the main 

component here is ammonium nitrate what is in accordance to the effective density parameter 

inputted in the ELPI+ (area A). Area B has composition that potentially can be ammonium 

fluoride (FNO3) and silicon tetrafluoride (SiF4) in addition to the carbon, what can be originated 

Ultrafine particles (Soysal et al., 2017) 
(Fahlman, 2007) 
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from the grease applied to the foil, to avoid particle re-entrainment, while area C shows the 

white crystal of ammonium chloride aggregated to a ammonium nitrate particle. In this area, 

the shape and color are similar to this crystal’s description from the literature. 

  
                         (a)                                                                             (b) 

Figure 30 (a) Stage 1.24µm aerodynamic diameter support, aluminum foil, substrate and 

UFPs. (b) Magnification of 180 times of one of the UFP agglomerates. 

 
Figure 31 Magnification of 1500 times of UFP agglomerate with particles named as 

A, B and C. 
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Aluminum is excluded from the detected elements on Table 8 due to the aluminum foil 

(substrate). Besides that, no source of Aluminum is used in this plant. Later, the presence of 

Carbon was found to be due to the grease applied on the aluminum foil to ensure attachment of 

particles to the foil surface and avoid re-entrainment. 

Table 8 Chemical composition of particles from stage 1.24µm 
 

A B C 
Oxygen 47% 23% 13% 
Nitrogen 36% 0% 33% 
Carbon 15% 43% 0% 
Chlorine 1% 2% 54% 
Silicon 1% 6% 0% 
Fluorine 0% 26% 0% 

With the knowledge of the product composition under handling in the prilling tower 

having 21% nitrogen, 11% potassium, 6% phosphorous and 4.4% sulfur, no correlation was 

found with UFPs composition what leads to conclude that most part of the emissions come from 

the reactions in gas phase, once no phosphorous neither potassium was found on the chemical 

mapping of the emissions. Also, ammonium nitrate can evaporate, under equilibrium up to 50% 

of its mass, in size ranges from 1 to 2.5µm while ammonium sulphate up to 25% of its mass 

under same conditions (Wilson, et al., 2002), leading to potential large deviations when 

comparing concentration measured using ELPI+ with gravimetric sampling. 

6.3.2. EDA UFP Concentration as a Function of Process and Meteorological Parameters 

When correlating the process and meteorological parameters with the output of EDA, 

the best correlation result obtained was when employing Box-Cox transformation. This 

transformation employs an exponent, lambda, which varies from -5 to 5 and the optimal value 

is the one which results in the best approximation of a normal distribution curve. The optimal 

lambda found was equal to -0.40. The best results for transformed response were S at 0.28 

mg/m3 and r-squared of 9.49%. Table 9 shows the model coefficients found. Parameters as 

liquor and salts flow to PT, mixer rotation, bucket rotation and wind speed are not significant 

by the criteria here applied (significance level of 5%). 

The resulting model can then be written as per Equation 4 including only the significant 

parameters. 
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-EDA(-0.40) = -1.220+ 0.000680 NH3 to PT+ 0.001303 Off-spec flow to PT 

+ 0.000295 Liquor temperature- 0.000123 Melt temperature+  

0.010916 Air temperature+ 0.04463 Precipitation + 0.003288 RH% 

Eq. 4 

Table 9 Terms included in the EDA PM concentration model with significance level  

Term Coefficient P-Value 
Constant -1.220 0.208 
Liquor to PT -0.000248 0.333 
NH3 to PT 0.000680 0.013 
Salts to PT -0.000237 0.480 
Off-spec flow to PT 0.001303 0.044 
Mixer rotation 0.000017 0.728 
Bucket rotation -0.00003 0.975 
Liquor temperature 0.000295 0.004 
Melt temperature -0.000123 0.040 
Air temperature 0.010916 0.000 
Precipitation 0.04463 0.000 
Wind speed 0.00135 0.359 
RH% (relative Humidity) 0.003288 0.000 

The standardized effect of meteorological parameters for EDA PM concentration model 

accounts for most of significance in the model (Figure 33). The reference line for the case when 

all the effects are null was found to be 1.96. The air temperature is by far the most significant 

parameter in the model, followed by RH% and precipitation. 

 
Figure 32 Standardized effect for EDA PM concentration for 

significance level of 5%  
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Only two process parameters have significance over the reference line, being liquor 

temperature and NH3 flow, what is not consistent to behavior found by other authors as Sequier 

et al. (2014), Couper et al. (2012), Yuan et al. (2007), Wong et al. (2004) and Shirley et al. 

(1996). 

Once there is data available for the ambient air from the nearest meteorological station, 

not in the stack itself, it remains the question on if is RH% influencing or not the output of 

EDA. 

The analysis of residuals (Figure 34) shows the difference between predicted values by 

the model and measured results. The residuals are basically dispersed in the range of -1 to +1. 

By employing the calibration factor of 5.45 mg/Nm3 to u/m3 (which is the raw reading of the 

sensor EDA) the concentration variation is between 0 to 20 mg/Nm3, what can indicate that 

some parameter is missing in the analysis. (Lee, et al., 2008). 

 
Figure 33 Residuals for EDA UFP concentration model over time 

Based on the literature studied when building the model, no potential relevant variable 

was left aside that could explain such a poor fit of the model besides what was already 

mentioned for Figure 34 regarding the meteorological parameters monitored from the closest 

station. 

Sullivan et al. (2018) point out that the electric field strength required to stably trap the 

particle provides an accurate real-time measurement if the charge state is known although tests 
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for single particles have being performed only on the range greater than 10 µm in diameter. No 

similar study was found for UFPs by the knowledge of authors. 

 

6.3.3. OSA UFP Concentration as a Function of Meteorological and Process Parameters 

The best regression model for OSA PM concentration was obtained by Box-Cox 

transformation with lambda equal to 0 (natural log) where the standard error found was 0.72 

(equivalent to 0.22 mg/Nm3) and r-squared equal to 45.25% what can be considered promising 

results once in this process under study BAT emission is 5mg/Nm3 (Fertilizers Europe, 2000) 

and the standard error here found is equivalent to only 4.4% over the whole year monitored. 

Also, the inclusion of the constant term in the model ensures that all non-explained 

effects are considered. When not including the constant term in the model the r-squared for the 

same data set would be 96.34%, although not realistic. Once no such model has been found in 

the literature, a comparison was made with authors studying ambient air modelling. Padoan et 

al. (2017) for example, found a r-squared of 74% when modelling road dust emissions with a 

much smaller data set while Xu (2018) found 60 to 80% r-squared using dust aerosol optical 

depth with PM10 results and Sieniutycz & Szwast (2018) with neural networks were able to 

predict PM10 with 75 to 86% r-squared and Denby et al. (2016) found r-squared of 28% when 

modelling PM10 in salt road emissions. 

The coefficients obtained for OSA PM concentration model as a function of both 

process and meteorological parameters, are showed in Table 10. 

P-value for NH3 flow to PT, mixer rotation and precipitation were over 0.05 so they are 

not considered significant by the criteria here applied and the model can be written as per 

Equation 5. 

ln (OSA) = 16.69 + 0.007973 Liquor to PT - 0.015599 Salts to PT 

+ 0.00323 Off-spec flow to PT- 0.01627 Bucket rotation 

+ 0.000591 Liquor temperature+ 0.000762 Melt temperature 

+ 0.08369 Air temperature + 0.00893 Wind speed + 0.007250 RH% 

Eq. 5 

The precipitation can be a contributor factor to RH% which one was significant in the 

emissions model for OSA, but not on its own, probably because of its irregular distribution over 

the area, once the weather station is located 1.2km far from the stack monitored. Besides that, 

the year under analysis presented a dry summer with no precipitation, what can be interpreted 

in the model as a constant parameter. The same applies to NH3 flow to the PT and the mixer 

rotation, once its little variation over time makes them not relevant for the model. 
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Table 10 Model coefficients for OSA PM concentration 

Term Coefficient P-Value 
Constant 16.69 0.000 
Liquor to PT 0.007973 0.000 
NH3 to PT -0.000552 0.441 
Salts to PT -0.015599 0.000 
Off-spec flow to PT 0.00323 0.057 
Mixer rotation 0.000077 0.549 
Bucket rotation -0.01627 0.000 
Liquor temperature 0.000591 0.028 
Melt temperature 0.000762 0.000 
Air temperature 0.08369 0.000 
Precipitation 0.0223 0.275 
Wind speed 0.00893 0.020 
Relative humidity (RH%) 0.007250 0.000 

The transformation used to normalize the dataset when building the model seems to be 

adequate as can be seeing in Figure 35, where the red line is the model and the black triangles 

represent the residual when applying the model to the experimental results, if considered that 

this is an industrial application, not a controlled environment.  

 
Figure 34 Probability plot of OSA model versus data set 

The residuals presented a random distribution (Figure 36) what led to conclude 

the model has included most relevant parameters in the process, in the whole period, 

besides during fall and winter where there is a trend to underestimate PM emissions.  
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Figure 35 Residuals between OSA model and data sets 

The residuals appeared to higher than for EDA (Figure 34) but the magnitude order is 

different once for OSA the correlation to mg/Nm3 is about 0.3 times while for EDA is 5.45 

times.  

Winter is a challenge for the model once during this season there is a trend of 

underpredicting the emissions. This behavior could de due to the gases thermodynamic 

properties. Winter time in northern Europe present often negative temperatures with low RH% 

and lower gas viscosity, leading the gas stream to have particles less agglomerated freely 

moving that could affect the sensor capacity to measure this very small UFPs considering that 

the wavelength of the optical sensor  on OSA is 650nm. 

Figure 37 shows that both process and meteorological parameters are included and 

relevant for the model. The reference line when all effects are null was found to be 1.96.With 

basically same behavior as found for EDA, the air temperature is by far the most significant 

parameter on the model, but here also the raw materials flow to the PT are showed as 

responsible for UFPs concentration showing that the optical sensor was able to measure this 

contribution. 
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Figure 36 Standardized effects of parameters. Level of 

significance 5% 

Gong et al. (2018) states that optical scattering have developed enough to be applied on 

understanding UFP changes in the environment they are inserted and Mitchem & Reida (2008) 

have studied the use of optical sensor to manipulate and characterize single particles in the 

range of 1 to 10µm. 

6.4. CONCLUSIONS 

This project found out that the attempt to employ EDA to build a model correlating 

process and meteorological parameters was not successful, being the best regression model 

found using transformed response with optimal lambda equal to -40 giving a r-squared equal to 

9.49% and standard error of 2 mg/Nm3. The most significant parameters in the EDA model 

were air temperature, RH% and precipitation, all meteorological parameters. The process 

parameters were at least one-degree order smaller than the meteorological ones. 

On the other hand, the model designed employing all potential variables mapped and 

the OSA output presented a standard error of 0.22mg/Nm3 and r-squared of 45.25%, equivalent 

to best models found in literature for ambient air application. The most relevant parameters in 

the OSA concentration model were air temperature, salts flow to PT, RH% and liquor flow to 

PT, respectively. 

Particulate matter in the process studied was classified as UFPs and it was observed that 

its composition differs significantly from the product under handling due to reactions in gas 
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phase producing mainly unstable ammonium nitrate, ammonium chloride, ammonium fluoride 

and silicon tetrafluoride. 

The current official methods employed to evaluate the calibration of continuous PM 

concentration sensors for stationary sources as gravimetric sampling is limited when dealing 

with UFPs. The actual concentration levels can be higher due to the instable compounds present 

so the use of equipment’s with principles such ELPI+ should be adopted in addition to 

gravimetric sampling.
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Abstract 
Among the processes that generate emissions of ultrafine particles (UFP) whose are known by 

their high potential to cause brain diseases when inhaled, the prilling towers have a significant 

contribution, once those processes use flow rates up to 10 times higher than other dryers. From 

the monitoring perspective, UFPs are generally instable and volatile (as the case of sulfates and 

nitrates) making its mass concentration hard to measure, especially if continuous mass 

monitoring is required. With this background, a controlled experiment was performed in an 

industrial fertilizer prilling tower to evaluate a potential methodology for continuous UFP 

monitoring in those environments. The dust emission was measured at stack of the prilling 

tower by two commercial continuous particulate matter instruments (optical scatter and 

electrodynamic diffusion charger) and the electrical low-pressure cascade impactor (ELPI), 

while running a second order design of experiments (DoE) and monitoring both meteorological 

and process parameters. Linear regression models were built for the three measuring techniques 

compared, but once raw material flows and meteorological parameters were kept stable, the 

commercial sensors did not provide accurate results. ELPI analyzer output presented a model 

with adjusted r-squared of 94.13% and a standard error of 0.02 mg/m3. The ELPI shows 

potential to be used as calibration device to other in-situ continuous dust monitoring when 

dealing with UFP if the methodology here proposed is applied. The continuous monitoring can 

be then implemented in the industries and optimization of the parameters performed to reduce 

the emission of UFP to the environment.  

 

Keywords: Design of experiments; ELPI; Ultrafine particles; Industrial fertilizer; Continuous 

monitoring. 
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7.1. INTRODUCTION 

Currently, the high-quality fertilizers are produced by prilling or granulation to get all 

the nutrients bound together granules or prills with high uniformity degree. This industry 

segment produced around 62 million tons of fertilizer based on ammonium nitrate (AN) in 2018 

(IFA, 2019). The particulate matter (PM) emitted by those plants consists mainly of particles in 

the range of 0.1 to 2.5µm, called ultrafine particles (UFP) (Fahlman, 2007). 

In the ambient air UFP can be inhaled, get to the lungs and to the blood system, what 

can cause degenerative brain diseases, as such Alzheimer, Parkinson and Huntington (Maher, 

et al., 2016) (Win-Shwe & Fujimaki, 2011) to such an extent of concern that the World Health 

Organization (WHO) works in a new guideline for concentration of particulate matter with a 

diameter smaller than 1µm (PM1.0). 

In previous research by Krauss & Aguiar (2019) the challenges of continuous 

monitoring of UFP on industrial prilling towers were evaluated and the authors observed that 

the calibration of the sensors employing the usual gravimetric sampling (GS) methodology 

(EPA, 2019) provided inconsistent results over time, due probably to variations associated to 

transient and volatile UFP present at stack. 

Later the authors employed regression models (Chapter 6) to correlate the reading of the 

continuous monitoring sensors to process and meteorological parameters, as employed for 

ambient air studies (Kalaiarasan, et al., 2018) (Dias, et al., 2016) (Li, et al., 2017), (Tchepel, et 

al., 2012), concluding that for optical scattering the raw materials did have some influence on 

the UFP mass concentration as expected but the main parameter impacting was the air 

temperature fed to the tower. On the other hand, the electrodynamic principle had output 

severely affected by relative humidity and presence of droplets in the stream, not qualifying for 

long term continuous monitoring. 

Based on the explained above, the goal of this project was to propose and test a 

methodology under industrial conditions to continuously measure and calibrate the UFP 

concentration employing ELPI associated with commercial continuous monitoring sensors. 

Knowing beforehand that an industrial process is subject to many variations over time 

a design of experiments was employed associated with measuring and monitoring of both 

meteorological and process parameters. At the same time, PM concentration was measured 

using three different techniques, forward optical scattering (OSA), electrodynamic diffusion 

charger (EDA) and electrical low-pressure cascade impactor (ELPI).  
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7.2. MATERIALS AND METHODS 

7.3. Process Description 

A typical process flow diagram of the NPK prilling process is showed in Figure 38, 

where the main equipment are evaporators, mixer, prilling bucket, prilling tower (PT) and 

screening. Here liquid, solid, and gas streams are illustrated using blue, brown, green arrows, 

respectively and measured/adjusted parameters are circled in red. 

 
Figure 37 Process flow diagram of NPK prilling process 

The raw materials (NP-liquor, ammonia, K-salts/minerals) enter the mixer as a three 

phase (gas, liquid, and solid) mixture that needs to be intensively agitated to create a 

homogeneously mixed melt and to prevent solidification. This melt is thereafter sent to a 

rotating prilling bucket that sprays the liquid melt into the PT. Therefore, the melt solidifies 

creating an uniform spherical particles with a diameter of 2-4 mm. The falling droplets are 
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cooled by ambient air in counter-current flow that is dragged by using fans located at the outlet 

stacks at the top of the tower. After solidification, the prills must be separated by particle size 

in the screens. The oversized particles are sent to a crusher and then back to the screening while 

the undersize particles (called off-spec) are sent back to the mixer together with dust collected 

from bag filters of other process equipment (Fertilizers Europe, 2000).  

The particulate matter (PM) emitted from the stack is mainly composed by particles that 

are dragged up by the upward velocity inside the stack (diameter of 1700mm) and are mainly 

ammonium nitrate (NH4NO3) that is produced from a side reaction in gas phase between the 

acidic melt and the ammonia that is added in the mixer. 

7.4. Proposed Methodology 

The methodology proposed here will be tested following the steps described in Figure 

39. For the characterization of PM, in this application the PSD of the UFP will be defined based 

on ELPI measurements while the estimate chemical composition using SEM/EDS (scanning 

electron microscopy energy dispersive x-ray spectroscopy). This step was done previously in 

Chapter 6. 

 
Figure 38 Proposed Methodology to Continuous Measure UFP in PT 
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The mapping of potential process and meteorological variables affecting the generation 

and change of the UFP composition was performed using the concept of volume of control 

generating the list showed on Table 11 where the process parameters were collected from the 

distributed control system of the plant (DCS). The melt cointaining nitrogen and phosphorus is 

here called NP-liquor. 

Table 11 Parameters mapped from the volume of control 

Type of parameter Parameter description Unit Source 
 Date text DCS 
 Time text DCS 

 Off-spec flowrate t/h DCS 
Process parameters NP-liquor temperature °C DCS 
 Flowrate of salts t/h DCS 
 Flowrate of NP-liquor m3/h DCS 
 Flowrate of NH3 kg/h DCS 
 Flowrate of product t/h DCS 
 Temperature of salts °C DCS 
 Temperature of mixer °C DCS 
 Mixer rotation rpm DCS 
 Bucket rotation rpm DCS 
 Inlet temperature °C DCS 
Manually sampled parameters Inlet relative humidity % Testo 440 
 Inlet temperature °C Testo 440 
 Stack relative humidity % Testo 440 
 Stack temperature °C Testo 440 
 Stack velocity m/s Kimo 210 
Meteorological parameters Barometric pressure hPa Druck 705 
 Air temperature °C Meteor. Station 
 Relative humidity % Meteor. Station 
 Precipitation mm Meteor. Station 
 Wind speed m/s Meteor. Station 
Output of dust analyzers ELPI mg/m3 Instrument 
 OSA* mg/m3 Instrument 
 EDA* mg/m3 Instrument 

* The output of the OSA and EDA dust analyzers was used as raw data, without applying any 

calibration factor. 

Parameters as ambient temperature and relative humidity (RH) were manually measured 

using Testo 440 (probe head of 290mm long with diameter of 12mm and measuring range was 

from 0 to 100% RH, ±2% RH accuracy and -20 to +70°C, ±0.5°C accuracy), while velocity 

inside the stack was manually measured  with Kimo 210 (range from 2 to 100m/s, accuracy of 

±0.2 m/s)  and pressure with Druck 705 (range of -200 to 200 mbar, accuracy of ±0.1%) where 

the average velocity over the whole diameter of the stack was measured at 8 points. These 

manual measurements were done at the beginning of each experiment. 
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The PM continuous monitoring instruments employed were OSA model PCME QAL 

181, which one had a certification range of 0-15mg/Nm3 and measurement capability of 0-

300mg/Nm3 and EDA model PCME STACK 980 which had a certification range of 0-

15mg/Nm3 and measurement capability of 0-500mg/Nm3. 

The second order design of experiments was performed using Minitab 19®. The type of 

factorial design chosen was a full factorial design with a low, medium and high value of the 

two adjusted process parameters. One center point and two replicates were chosen to improve 

the statistical significance of the results obtained.  

For the second order design of experiment was needed to define two parameters to be 

adjusted in the process to see the influence of those on the dust emissions while keeping the 

already known effects of raw materials and ambient air temperature as stable as the industrial 

application allowed (as concluded from Chapter 6). The criteria for parameters selection was 

that no deviation in productivity levels or product quality was caused by the experiment, the 

candidate parameter must had a wide enough operability range to see the effect of those changes 

in the process and finally, the parameters needed to be adjusted relatively fast from one run to 

the next. 

Based on the criteria mentioned, from the flow rate parameters available the only 

candidate parameter was the off-spec flowrate while from the remaining list from Table 11 only 

the NP-liquor temperature met the criteria. To adjust the off-spec flowrate and NP-liquor 

temperature, it was defined the operational range (minimum and maximum) of those two 

parameters. Therefore, a check was done in the prescribed operating range for the product under 

analysis and consultation to the operational plant team. 

The standardized values for the adjusted parameters were 5.15 to 7.15 t/h of off-spec 

flowrate and 89 to 91.5°C for the NP-liquor temperature. The middle point was calculated based 

on arithmetic average. 

The resulting design of experiment obtained from Minitab19® is illustrated in Table 12. 

The design was duplicated under same product composition but in different days, both in 

summertime. A period of 13 minutes of data collection was registered once the plant was 

considered operating under each setup of parameters. All the data was recorded in a minute-

weighted average besides meteorological parameters from the near station which ones were 

recorded and made available once an hour. 

The electrical low-pressure impactor (ELPI) plus from Dekati (2020) was used to 

measure the particle size distributions (PSD) and mass concentrations in the size range of 6 nm-
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10µm coupled to a co-polymer particle dryer (DD-600) and nozzle for isokinetic of 10 l/min. 

The sampling point was located 12 diameters over the PT top and 3 diameters below the gas 

stream exits to the atmosphere. 

Table 12 Design of Experiment from Minitab19® 

Standard 
Order 

Run 
order 

Off-spec 
flowrate [t/h] 

NP-liquor 
temperature [°C] 

8 1 7.15 91.5 
4 2 7.15 91.5 
3 3 5.15 91.5 
5 4 5.15 89 
2 5 7.15 89 
1 6 5.15 89 
9 7 6.15 90.25 
6 8 7.15 89 
7 9 5.15 91.5 

The data quality check was performed using Minitab19® employing normality tests, 

outliers test and test for equal variances. Furthermore, the same software was employed to build 

the linear regression models, using transformed response when the resulting model provided a 

better fit (considering standard error and r-squared). 

7.5. RESULTS AND DISCUSSION 

Here the results obtained from the application of the methodology are presented 

and discussed. The steps to evaluate the quality of the data collected are described in 

details to explain which set of variables was included on the model. 

7.5.1. Data Quality Control 

7.5.1.1 Checking for outliers in the parameters set 

Figure 40 shows the variation of the off-spec flow rate over the 18 runs performed. The 

deviation from the setpoint (given by red values) is higher for the high off-spec flowrate setpoint 

of 7.15 t/h compared to the lower setpoint of 5.15 t/h, what indicates that running under lower 

flow of off-spec gives more stability to the operation. To achieve this is needed to apply the 

lean manufacturing concepts to reduce generation of off-spec in the process (Ellis, 2020) so, 

the lower flow rates are feasible.  Besides that, there is a deviation per experiment, due to the 
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operator in-charge as can be seeing among experiments #1 with smaller range while #2 has a 

broader operating range. The same behavior can be seeing from experiments 10 and 11. 

 
Figure 39 Standardized off-spec flowrate per run (9 runs each campaign) 

for the two campaigns performed 
Figure 41 illustrates that the deviation from the set point of the NP-liquor temperature 

(given by red values) for each experiment it is much smaller than the deviation for the off-spec 

flowrate (Figure 40). 

 

Figure 40 Standardized NP-liquor temperature per run (9 runs each 
campaign) for the two campaigns performed 
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All setpoints for the NP-liquor temperature, low/medium/high, were easily reached and 

kept around the setpoint. This indicates that the NP-liquor temperature could potentially be used 

for modelling and optimization of dust emissions if required. 

The outliers test performed for the monitored parameters was performed and besides in 

some of the runs, the mixer temperature and mixer speed presented outliers, it was indeed 

operating conditions of the plant, so these data sets were kept for further modelling.  Also for 

the K-salts temperature and bucket speed, there were points that indicated that the process 

conditions were stable and kept for the duration of the experiment, what means that they were 

a different process condition employed. 

7.5.1.2 Test for normal distribution 

To evaluate normality of the raw material flows, a ratio between each flow to the product 

flow at the boundary of the control volume was calculated and the results showed in Figure 41, 

where the blue data set refers to the K-salts flow rate, the green data set to the NP-liquor flow 

and red data set to the NH3 flow rate. Most part of data fits a normal distribution with an 

exception for the lower flow rate ratios, responsible for about 10% of data set, originated during 

the last two experiments where a product flow scale was calibrated during operation and the 

recorded value on the DCS was based on mass balance not actual weight. 

 
Figure 41 Probability plot for the flowrate ratios of raw materials to the 

final product 
For the flowrate ratio of K-Salts (in blue), the deviation was caused between 

experiments 5 and 9 of experimental set of runs #1 which is the period after calibration of the 

salt silo weighing system. 
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7.5.1.3 Potential use of meteorological station data 

A potential use of data from the nearest meteorological station was evaluated. The 

results for the temperature can be seeing on the test for equal variances showed in Figure 43. 

The air temperature measured at nearest meteorological station is statistically different than the 

one measured at inlet of PT once the standard variation ranges represented by the external boxes 

do not overlap. The standard deviation on the data collected from the  meteorological station 

presented a standard deviation of 1.49°C while from the plant the standard deviation of 1.75°C. 

It is an expected result once the data from the meteorological station is available based on hourly 

averaged data. 

 
Figure 42 Test for equal variances on air temperature considering normal 

distribution with confidence level of 97.5% 
The same tests were performed for relative humidity  and the results are presented in 

Figure 44. The hypothesis here tested was at the RH measured at inlet of PT was statistically 

equivalent to the one measured at the meteorological station but the result showed that they are 

not equivalent. Besides the position of the box shows that they have ranges that overlap each 

other, the median for the meteorological station was 45% while for the inlet of the tower was 

40%. 

When comparing the confidence intervals for it can be seeing that for the meteorological 

station RH the result was 8 to 10 intervals while for the inlet of PT was 7 to 8 intervals. Once 

Stdev: 1.75°C 

Stdev: 1.49°C 
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again, the RH data from the nearest station it is significantly different from the data measured 

at the plant, even being the station just 1.2km away from the PT. In the statistical analysis it is 

shown that the results collected from the station during run #8 of second campaign are outliers 

but they were kept in the database once they were actual results from the nearest station. 

Still on Figure 44 the stack RH is displayed to evaluate if it has the same range variation 

as outside although the results show that the variation inside the stack is smaller than outside 

with confidence intervals from 2.8 to 3.4 intervals. Based on those figures, the first choice 

should be measuring the RH inside the stack to correlate it with the UFP concentration 

measured at stack by the online sensors. If that is not possible so the RH should be measured at 

inlet of the PT. 

 
Figure 43 Test for equal variances on relative humidity with confidence level of 98.3% 

considering normal distribution 

7.5.2. Linear Regression Models Generated 

The linear regression models obtained for the three dust analyzers are therefore based 

on specific 13 minutes operation periods and parameters from the process and manual 

measurements. A summary of the regression models from Minitab® is given in Table 13. The 

r-squared determines how well the regression model fits the database analyzed, while adjusting 

Stdev: 8.92% 

Stdev: 7.31% 

Stdev: 3.12% 
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for the number of predictors in the model relative to the number of observations, being able to 

compare models that have different numbers of predictors.  

From Table 13 the regression models obtained for the OSA/EDA dust analyzers give a 

low value for r-squared and a high standard error. On the other hand, the r-squared obtained 

from the ELPI model was 94.13% and has a standard error of only 0.02 mg/m3. 

Table 13 Summary of quality parameters generated by the regression 
models from ELPI/ OSA/ EDA  

Instrument R-squared (%) Standard error (S) mg/m3 
OSA 10.75  0.61 
EDA 64.58 0.16 
ELPI 94.13 0.02 

7.5.2.1 ELPI PM concentration model 

The LRM built with ELPI data presented a 94.13% of measured data fitted to the model 

and small standard error (0.02 in an average emission in this specific plant of 15mg/Nm3) what 

shows that the equipment was able to measure the UFP emission variation when the process 

parameters have just slightly changed, once the conditions were controlled in terms of season 

and product type. 

From the p-values given in Table 14, it can be seeing that NH3 flow rate, mixer 

temperature, wind speed, air temperature and RH% does not have enough significance on the 

ELPI output, once here the acceptance criteria defined is so that significance level of each 

parameter has to be over 95%, incurring in p-value smaller than 0.05). The air stream 

parameters were not identified as significant in the model what can be due to the sample being 

extracted and dried before analyzing it so the ELPI setup was able to avoid the impact of the 

air stream conditions.  

The significant parameters from this controlled experiment are the off-spec flowrate and 

the temperature of NP-liquor, pointing that the choice of adjustable parameters was adequate. 

Besides that, the flow rate of NP-liquor, temperature and flow of K-salts as well as mixer and 

bucket rotation speed were included in the model due to their significance level. 

This suggests that under controlled situation, small changes to those parameters can 

have strong effect on the mixer temperature. This effect is related to the liquid viscosity change 

as explained by Partridge et al. (2005) and Wong et al. (2004). 
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Table 14 ELPI regression model coefficients and significance 

Term Coefficient P-Value 
Constant -5.94 0.00 
Flowrate Off-spec 0.01 0.00 
Temp. NP-liq. 0.02 0.00 
Flowrate K-Salts -0.02 0.00 
Flowrate NP-liq. 0.01 0.01 
Flowrate NH3 0.01 0.14 
Temp. K-Salts 0.08 0.00 
Temp. Mixer -0.01 0.67 
Bucket speed 0.03 0.00 
Mixer speed -0.01 0.00 
Air Temperature 0.01 0.05 
Wind speed 0.00 0.88 
Relative Humidity -0.06 0.54 

The model equation can be written as Equation 6 below, eliminating the terms with low 

significance level from the Table 14. 

-ELPI(-0.13749) = -5.94 +  0.01* Flowrate Off-spec +  0.02*Temp. NP-liq.  

- 0.02* Flowrate K-Salts +  0.08*Temp. K-Salts + 0.03* Bucket speed  

-  0.01* Mixer speed + 0.01*Flow rate of NP-Liq. 

Eq.6 

Figure 45 shows the normal probability plot where the majority of the data sets follow 

the linear regression model (red straight line). The points with high deviation from the predicted 

values are discussed with data from Figure 46, where the residuals over the sequence of runs is 

presented.  

 
Figure 44 ELPI linear regression model 
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The model has predicted lower emission than the experimental value obtained for 

experiment #4, in both runs. This can be due to parameter standardized temperature of K-salts 

which have reduced from 19°C to 18°C from first run #4 to the second so the model have 

considered this parameter as significant but the spot variation was over the expected range, 

what could be due to calibration problems with the temperature probe or a change performed at 

the salts dryer not monitored in the set of parameters defined. 

Between runs #4 and #5, on the second set, the model has presented a residual twice the 

magnitude order than the other runs, over 0.05mg/m3. While run #4 was affected by the K-salts 

temperature, run #5 was performed with high flow of off-spec and low NP-liquor temperature 

leading to low mixer temperature. At this moment the melt started to solidify inside the mixer. 

While ideally the UFP emission has decreased considerably, at beginning of run #5 the process 

became instable and the emission has increased being followed by a required stop to clean the 

mixer and bucket holes. This confirms that the ranges for the adjustable parameters were 

stretched enough. 

 
Figure 45 Residuals over time for ELPI regression model (18 

experiments data set) 
From these findings there is potential to get the calibration factors from ELPI to the 

continuous sensors, instead using GS, once it has being showed in research from Wilson et al. 

(2002) and Giechaskiel et al. (2014) that the losses due to presence of nitrates and sulfates can 

be up to 45% when applying gravimetric sampling. 
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There is although a remark to be done regarding the use of ELPI for mass concentrations, 

the estimation/ measurement of effective density. In this work, the effective density set to ELPI 

was 1 g/cm3, as default recommendation by the equipment supplier (Dekati, 2020). Extensive 

measurements have found for AN combined with ammonium sulfate the effective density can 

vary from 1.36 to 1.55 g/cm3 depending on the PSD (Yin, et al., 2015). If taken into account 

the conversion from aerodynamic diameter to stokes diameter (as standard from the 

environmental agencies), applying the conversion equation from Allen & Somerscales (1982) 

the difference obtained represents 15 to 20%, meaning that the average aerodynamic diameter 

here measured, when converted to stokes diameter is equal to 1µm, smaller than the figures 

here showed. 

7.5.2.2 Commercial in-situ sensors concentration model 

Previous work presented in Chapter 6 have shown that PM concentration from both 

OSA/EDA are influenced by raw materials flow rates and air stream parameters to a certain 

extent. Once those were kept as stable as possible in this controlled experiment it is expected 

that no strong correlation is found with those parameters in the modelling process. There is 

although a remaining question regarding the stream/ meteorological parameters which ones 

now are measured at the PT air inlet, not employing average hour data from the nearest station, 

as the experiments conducted in Chapter 6. 

The Table 15 shows the level of significance obtained with the best LRM fit for both 

commercial in-situ sensors. Only flowrate of K-Salts and mixer speed were parameters 

considered significant for OSA output what can be attributed to the resolution of the equipment, 

both because it has a very small opening where the particles are in contact with the laser either 

because the laser wavelength has a limitation for particles with diameter smaller than 560nm 

(Babick, 2020), (PCME, 2018). On these runs the PSD measured was from 20 to 40% of 

particles smaller than 600nm in mass distributions. If the distribution is taken in terms of 

number of particles the PSD is equivalent to around 70 up to to 90% particles smaller than 

600nm. 

On the other hand, the model obtained for EDA, had a positive agreement with humidity, 

as Table 15 shows, so potentially humidity or droplets could be affecting the reading of the 

instrument, what has being observed previously on Chapter 6. The humidity had a coefficient 

4.5 times higher than the second most relevant parameter that is the flow rate of NH3 fed to the 

mixer. Both flow rate of NP-liq. and temperature of the mixer were not significant. 
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Table 15 OSA/EDA PM concentration model coefficients 
Term Coefficients P-Value 

 OSA EDA OSA EDA 
Constant -172 16.23 0.08 0.05 
Flowrate Off-spec -0.24 0.04 0.34 0.04 
Temp. NP-liq. 0.01 -0.11 0.96 0.00 
Flowrate K-Salts 0.89 0.21 0.01 0.00 
Flowrate NP-liq. 0.10 0.051 0.81 0.12 
Flowrate NH3 -0.29 0.57 0.72 0.00 
Temp. K-Salts -0.53 0.17 0.34 0.00 
Temp. Mixer -0.11 -0.04 0.74 0.19 
Bucket speed 0.15 -0.29 0.70 0.00 
Mixer speed 0.35 0.05 0.04 0.00 
Air Temperature -0.35 -0.07 0.37 0.02 
Wind speed -0.62 -0.38 0.23 0.00 
Humidity -3.38 2.55 0.69 0.00 

The residuals for OSA model are showed in Figure 47 over the two sets of experiments 

(#1 to #9, both runs) and besides having a low r-squared (10.75%), it can be observed that on 

experiment #5 OSA also presented a low measured UFP concentration, the same behavior 

observed for data from ELPI (Figure 46). In this case, the OSA was able to see the reduction of 

the emission, but once the process was unstable, when running under the same conditions for 

experiment #6, the resulting UFP concentration has increased and the sensor did not follow the 

change. 

 
Figure 46 OSA linear regression model residuals 
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The model obtained with EDA presented a r-squared of 64.58% with a standard error of 

0.16 mg/m3. If it is applied a calibration factor of 6.25 as Krauss & Aguiar (2019) have found, 

this becomes 1mg/Nm3 or 20% of the BAT level of 5mg/Nm3 (Fertilizers Europe, 2000). The 

residuals presented in Figure 48 shows peaks on experiments #1 and #3, which can be due to 

wind speeds of about 4m/s in the first set of experiments while for the second set the wind speed 

was 1.5m/s, with all the others monitored parameters stable. The same behavior is observed on 

run #8, second set of experiments, where the model again underestimates the UFP 

concentration. The only parameter diverging from the first to the second set of experiments was 

the relative humidity. The second run #8 was performed under relative humidity of 67% while 

on the first set of experiments the relative humidity was 43%. 

 
Figure 47 EDA model residuals over the experiments 

From the data collected and analyzed, it appears that the EDA have a higher sensitivity 

to changes in the air stream during the experiments than OSA, what is somehow observed in 

Chapter 6. The model from EDA delivered a better model than OSA when conditions as flow 

rates and season are kept stable, although the effect of the humidity on the sensor output has to 

be studied further if it is intended to install this technique for continuous monitoring once there 

is potential to provide false positive indication of the PM concentration. 
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7.5.3. Application of the model to recommend actions to reduce dust emission 

Based on the data obtained from the controlled experiment, the ELPI output and the 

significant variables found in the model it is possible to evaluate the process to reduce the UFP 

emission. This is illustrated by Figure 49 where both off-spec flowrate and temperature of NP 

liquor are combined to provide areas where different levels of PM concentration are reached. 

The dark blue area represents the operational window to achieve emissions less than 2mg/m3, 

the blue area 2 to 4mg/m3 and the light blue area, 4 to 6mg/m3. It can be seeing that the operating 

range to have medium-low dust emissions (< 6 mg/m3) is broad while the operating range to 

have the low dust emission (< 4 mg/m3) is narrow and can easily start safety problems in the 

form of blockage of the system and further an increase in dust emission. 

The lowest dust emission is obtained when the operating conditions for standardized 

data are low NP-liquor temperature (less than 89°C) and high off-spec flowrate (6.7 to 7.5t/h). 

The reason found is the change on the melt viscosity, affecting the surface tension properties of 

the melt and preventing the generation of the secondary droplets (that are much smaller than 

the prills) as conclude by Partridge et al. (2005) when modelling the break-up of curved liquid 

jets in PT and Wong et al. (2004) when modelling drop size distributions created from spiralling 

liquid jets. 

The combination of these two parameter setpoints although will result in a strong 

reduction of the mixer temperature (off-spec is cooling medium, NP-liquor is heating medium) 

which, as was observed, can easily solidify the melt and obstruct the mixer outlet. Once the 

melt starts to solidify inside the mixer it is observed that the dust emission increases, so this 

combination of setpoints needs to be prevented.  

It is a very narrow area where levels of PM concentration can be kept below 2mg/Nm3 

but from the other hand, it is possible to run in the whole range of temperatures and still reach 

PM concentrations less than 6mg/Nm3 what is close to the best available technique in the AN 

based fertilizer plants (Fertilizers Europe, 2000). Off-spec flow rates should be kept below 

6.2t/h to ensure optimal operation. Besides out of the scope of this work it is known that lower 

levels of reprocessing material are desirable in process that aim to reduce waste according to 

Lean manufacturing principles (Ellis, 2020). 
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Figure 48 ELPI measurement vs off-spec flowrate and NP-liquor 

temperature 
The blue circles inside the main light blue area can potentially be “sweet spots” (most 

optimized operational conditions) although the range is so small that could be hard to keep the 

process under those conditions, especially if considered that conveyor belt scales employed in 

this process do not have enough accuracy to measure between 6.2 to 6.5t/h, as discussed on 

item 7.5.1. 

Once the ELPI model have identified also other significant monitored parameters, it is 

possible to evaluate scenarios to reduce the emissions by adjusting those as showed on Figure 

50. The color-coding follows the same standard as Figure 49. It can be seeing that for the bucket 

speed there are 2 “sweet spots” where emission levels below 2mg/m3 can be reached if the K 

salts temperature is kept on the lowest range (17 to 17.8°C). 

The results from this controlled experiment have a good agreement with the literature 

(Couper, et al., 2012) (Yuan, et al., 2007) once higher rotation speed from the prilling buckets 

can lead to production of micro-spheres and then, instead of falling and cooling down they can 

be dragged by the fans out of the stack. This behavior was also observed in recent simulations 

done by Saleh et al. (2016). It is although, less clear how the salts temperature affect emission. 
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Figure 49 ELPI PM concentration vs K-salts temperature and bucket 

speed 
Higher mixer temperatures have been correlated to increased emissions before, due to 

the melt viscosity as previously discussed but the model here developed have discarded the 

mixer temperature due to the low significance. A potential cause could be that the inlet streams 

to the mixer are taken into the model and the remaining effect of the mixer itself, which one 

does not lose or gain temperature is annulated. 

The last two sets of significant parameters are mixer speed and flowrate of K-salts, being 

the last one dependent on the product type so, there is no physical consistency on optimizing it, 

specially because there was calibration performed to this stream between the runs.  

7.6. CONCLUSION 

The main goal of testing a methodology for continuous monitoring of UFP in the 

industrial fertilizer prilling tower was achieved once following the steps was possible to build 

a transformed linear regression model for ELPI with 94.13% r-squared and a standard error of 

0.02 mg/m3. This accuracy if compared to best available techniques for fertilizer prilling is 

equal to 0.4% (Fertilizers Europe, 2000). In this sense, the ELPI can be used to calculate 

calibration factors for OSA/EDA analyzers to make online UFP monitoring feasible in this 

field. 
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The results obtained can be due to the fact that ELPI analyzer is an extractive technique 

while the OSA/EDA tested were in-situ measurements. Also, ELPI proved to be very accurate 

in measuring both the particle size distribution and dust concentration besides detecting changes 

that are an order of magnitude smaller than that of the OSA/EDA dust analyzers. This feature 

was used to find optimal sets of operational parameters where the emission of PM could be kept 

below 6mg/Nm3. 

It was investigated the possibility of using data from the nearest meteorological station 

in the model, instead of at the air stream inlet, but the test for equal variances proved that this 

is not possible, once neither the ranges not the mean was the same between the data sets. So, it 

is needed to install temperature, velocity and relative humidity measurement devices at the inlet 

of the air stream. 

This study has focused on PM mass concentration for UFP and use of commercial 

sensors, but with ELPI there is opportunity to employ the number concentrations and use the 

results to optimize the process. In this sense, the issue with the determination of a reliable 

effective density is eliminated.
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8. GENERAL CONCLUSIONS AND RECOMMENDATION FOR FUTURE 

WORKS 

This research project aimed to develop a methodology for continuous monitoring of 

ultrafine particles emissions in industrial stacks as its main goal. The methodology was 

proposed, tested and validated for monitoring ultrafine particles in industrial stacks, under the 

range of measurement of ELPI (6nm to 10µm). 

In terms of performance of commercial sensors it can be concluded that both analyzers 

can follow variations in the process if they are kept clean, what is easier to be diagnosed on 

OSA since it shows the need for cleaning through the span test results (span less than 75% here 

employed). In terms of response for sudden huge changes in PM concentration at the stack, the 

EDA represented better and faster the process behavior while the OSA presented normal output 

what can be due to the difference of the reading range of the instruments (0-500 mg/Nm3 for 

EDA and 0-300mg/Nm3 for OSA). 

The build-up of product influences the reading of both analyzers, requiring cleaning 

every 15 days of operation in fall to up to three months on winter. 

The calibration factors generated by GS for OSA presented up to 0.5 standard variation 

over both seasons and products while EDA was much poorer with up to 4 standard deviation 

over seasons and 3 standard deviations among products.  

This project found out that the attempt to employ EDA to build a model correlating 

process and meteorological parameters was not successful, being the best regression model 

giving a r-squared equal to 9.49% and standard error of 2 mg/Nm3. 

On the other hand, the model designed employing all potential variables mapped and 

the OSA output presented a standard error of 0.22mg/Nm3 and r-squared of 45.25%, equivalent 

to best models found in literature for ambient air application, once there is no such a study from 

stationary source, by the knowledge of the authors. The most relevant parameters in the OSA 

concentration model were air temperature, salts flow to PT, RH% and liquor flow to PT, 

respectively. These highlight the challenges of continuous PM concentration monitoring in 

mineral fertilizer industry for compliance purposes, where the standard is GS, being optical 

scattering the most promising technique. 

Particulate matter in the process studied was classified as UFPs (90% of PM below 

diameter of 1µm) and it was observed that its composition differs significantly from the product 
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under handling due to reactions in gas phase producing mainly instable ammonium nitrate, 

ammonium chloride, ammonium fluoride and silicon tetrafluoride. 

The controlled experiment run where season and product type were kept as stable as the 

industrial operation allowed, showed that OSA did not provide a regression model (r-squared 

less than 11%), what shows that the sensor does not have sensitivity to such small variations 

but also is not affected by other sources of noise from the air stream.  On the other hand, EDA 

provided a model with 64.58% r-squared where still stream parameters have the higher 

coefficients as the case of relative humidity that had a coefficient 4.5 times higher than the 

second significant term in the model. 

ELPI was able to follow the process changes with reliability, once the model build had 

a r-squared of 94.13% and standard error of 0.02mg/m3 (equivalent to 0.4% of BAT levels in 

the segment evaluated). The most significant parameters were those selected from the design 

of experiments, off-spec flow rate and temperature of NP liq. but also small changes on the 

bucket and mixer speed, temperature and flow rate of K-salts were included in the model. 

Finally an example of how to optimize the process reducing the UFP emission to the 

environment was presented, from which can be concluded that the plant is able to run in a 

relative wide range of parameters and still reach BAT standards (Fertilizers Europe, 2000). 

All the efforts to reduce air pollution should be prioritized, particularly the UFP, once it 

is proved that they are associated to increased serious health problems. In this context this 

research project contributes to the development of accurate measurements of UFP through 

continuous monitoring, allowing the optimization of the process to reduce the concentration of 

UFP to the environment. Besides that, by applying the methodology it is possible to provide 

reliable information to the environmental agencies, who can drive initiatives to improve the air 

quality. 

Once the build-up of product influences the reading of the in-situ OSA, a potential 

solution to avoid intensive inspection and maintenance can be reached by testing of optical 

forward scattering cross-stack technology. 

A potential application for EDA could be the use as a start-up and shutdown instrument, 

once it is sensitive to sudden high concentrations of PM and it is an affordable instrument while 

optical scattering can be used under operating conditions. 

While ELPI has detected small changes in the process, has measured the concentration 

of UFP and was not influenced by the stream parameters, it is recommended to use it to calculate 

the calibration factors for OSA analyzer. So, accurate online UFP monitoring can become 
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feasible for prilling towers. In this specific case, the calibration factor needs to be found for 

each product type. The model can also be used to design a so-called soft sensor, detecting 

changes in the process affecting emissions with potential use for reporting online PM 

concentration to authorities. 

The suitability of this proposed methodology getting approval by the environmental 

authorities could be reached by testing it simultaneously with gravimetric sampling to define, 

for instance a adjust factor, if that is required. Besides that, the ELPI has a feature that allows 

weighing each stage to calculate the mass concentration, so this data could be compared to the 

results from GS. It is although important to mention that different sources of errors would be 

associated, as the handling of such small sample and the precision of scales. 

Once this study has focused on PM mass concentration for UFP from ELPI, there was 

included a potential error source, the determination of a reliable effective density. This effect 

can be eliminated if the ELPI is used to optimize the process because in this approach, the 

number concentrations could be employed. 
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10. APPENDIX 

10.1. Unique ELPI Data Sheet for Impactor 10270 
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10.2. Operating Procedures for ELPI 

 Weight stage 15 
collection plate before 
assembling impactor 
 
Check oil level and aspect 
in the vacuum pump 

Use Sartorius balance 
Record results 
 
Level must be kept from mid-
point up 
Oil must be transparent with no 
bubbles on it 

 

 Assemble ELPI setup 
with pump and dryer 
according to Manual 

Step by step procedure is 
available on operations manual 
from supplier Dekati Ltd 
Set-up depends on technical 
analysis of sample location and 
dust/ air characteristics 
 

            
 
 

 Perform leakage test on 
ELPI 
 

See SPL 10.3  

 Perform zeroing test on 
ELPI 
 

See SPL 10.4  

 Insert memory stick, got 
to menu 3/3, click control 
then click MOUNTED 
and start SAVING to 
FILE 

Every time you remove memory 
stick and put it back you have to 
click SAVING to FILE 

 
 Switch on charger After zeroing is important to 

remember switch OFF air pump 
and switch ON charger 

 

 Check parameters are ok: 
 
Inlet P~ 1000 mbar 
 
Imp P: 40 mbar 
 
Charger U ~3500 V 

Inlet P is atmospheric pressure 
about 1000mbar 
Imp P from 35 to 45mbar is 
acceptable 
Charger U from 3000V to 4000V 
is acceptable 
Temperature shall be ignored 
once no sensor is installed 

 

 Run the test during 
planned time or until 
equipment is full 

Equipment is full when Imp P 
starts to decrease quickly to 
below 35 mbar, even when 
adjusting the valve of ELPI to 
correct it for 40 mbar. 

 

setup ambient air setup stack 
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10.3. Perform Leakage Test on ELPI 

Adjust the 
pressure 
adjustment 
valve to get a 
reading of 40 
mbar  

Pressure from 38 to 
42 mbar is 
acceptable 

To see if assembling 
works fine in normal 
sampling conditions 

 
Close tightly 
the inlet of the 
charger using 
e.g. the leakage 
check tool 

Leakage tool is kept 
inside of the 
transparent box 
After a while, the 
pressure should 
reach less than 5 
mbar 

No external source of air 
besides leakages 

 
Close the 
pressure 
adjustment 
valve in the 
ELPI®+ unit 
front panel 

Close it completely Over pressurize the 
system to see if it  is 
sealed 

 
Now check that 
the pressure 
reading does 
not increase 
more than 20 
mbar per 
minute. 

If the pressure 
increase is less than 
this the equipment is 
approved. 
 
If pressures increases 
to end of scale (300 
mbar) over the time 
go to step 5. 

Leakage can affect 
reading and damage 
components due to 
erosion 

 

If you fail to get 
the values 
above, check 
that that the 
impactor is 
properly 
positioned in 
its support. 

Generally, leakage is 
at the inlet of 
impactor, on the 
charging part or 
connection to sample 
dryer. 
 
Remove upper 
connection piece to 
perform new leakage 
test 
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10.4. Perform Zeroing Test on ELPI 

z Start ELPI®+ and leave it 
running for at least 20 min 

Check charger is OFF To ensure stable operation and 
successful zeroing 

 Press the Menu button in the 
ELPI®+ display and select Zero 
air ON. 

Start the zero air pump Feed clean air through the 
stages 

 Wait until the current values are 
stable.  

There is always some noise in the 
electrometer readings but there 
should be no drift in the signal 
before the zeroing in started 

 

 Press the Menu button in the 
ELPI®+ display twice to go to 
the Main menu window. 
Choose Control, Choose Start 
Electrometer calibration.  

NOT touch the ELPI®+ during 
the zeroing  
 
 
Zeroing can take few minutes. 

Vibration in the unit can 
affect the zero level 
measurement. 
 

 Check that the zero levels are 
within acceptable limits (+-10 
fA) with Zero air ON.  

The zero levels should always be 
checked from the raw current 
values (view 7/7). 

 

 If zeroing is successful no 
response is given 

Switch zero ai OFF 
Switch charger ON 
Check saving is ON 

 

 If not the alarm in red will say: 
zeroing sequence failed, wait 
5min and try again 
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	ACRONIMS
	RESUMO
	412BAs partículas ultrafinas (UFP) emitidas por torres de prilling apresentam potencial de causar doenças degenerativas no cérebro quando inaladas. Estas são voláteis e instáveis (como o caso de sulfatos e nitratos), o que torna a determinação da sua concentração em massa imprecisa, especialmente se o monitoramento contínuo dessa concentração através de sensores é exigido pelas agências ambientais, uma vez que o procedimento padrão de calibração dos sensores é baseada em amostragens gravimétricas, que, por sua vez, atingiram seu limite de detecção nessa faixa granulométrica. Nesse contexto, este trabalho avaliou o desempenho de dois sensores de monitoramento contínuo para medição de UFP em uma torre de prilling industrial. Os princípios testados foram difusão de carga eletrodinâmico (EDA) e dispersão ótica (OSA), instalados na fonte estacionária na qual amostragens gravimétricas foram realizadas. Os dados destes sensores foram coletados por quatro estações no norte da Europa, simultaneamente com os parâmetros meteorológicos e de processo. Uma metodologia baseada em um experimento controlado foi testada na qual as vazões de matérias-primas foram mantidas estáveis enquanto a concentração em massa de UFP foi medida também com o impactador de cascata (ELPI) com todos os experimentos sendo realizados em uma mesma estacao do ano. Os resultados mostraram que o OSA segue as variações do processo e os fatores de calibração obtidos com as amostragens gravimétricas variaram 0,5 desvios padrão entre as estações e mudanças de produto. O EDA identificou mudanças pontuais de concentração no seu limite de detecção, mas os fatores de calibração medidos foram de três desvios-padrão independentemente da estação do ano ou produtos. EDA também indicou erroneamente concentrações elevadas de UFP devido a injeção de vapor no processo. A contaminação dos sensores por poeira afeta a leitura de ambos os sensores, mas somente o OSA indica a necessidade de manutenção. Na modelagem dos dados coletados de todo o período foi observado que o EDA não apresenta correlação com o processo nem tampouco com os parâmetros meteorológicos (r-quadrado menor que 10%) o que pode ser causado por partículas não serem eletricamente carregadas uniformemente e o fato de o equipamento apresentar resolução comprovada para partículas maiores que 10µm. O modelo obtido pra OSA apresentou r-quadrado de 45% e correlação com os dois grupos de parâmetros monitorados, com erro padrão de 0,21 mg/m3, indicando uma potencial aplicação no monitoramento de UFP, se os parâmetros meteorológicos forem incluídos no modelo, prática já em uso na modelagem de UFP em ar ambiente. Finalmente, os modelos de regressão linear criados empregando a metodologia aqui proposta mostraram que os sensores comerciais não possuem resolução suficiente em condições controladas para UFP enquanto o modelo gerado pelo ELPI apresentou r-quadrado de 94,13% e um erro padrão de 0,02 mg/m3 não sendo influenciado pelas condições da chaminé e sendo capaz de detectar variações no processo. Desta forma o ELPI apresenta potencial para uso na calibração de sensores comerciais em substituição à amostragem gravimétrica, a qual apresenta limitações nessa faixa de diâmetros de partículas. O emprego dessa metodologia, portanto, apresenta potencial para assegurar que as torres de prilling possam instalar monitoramento contínuo, calibrar os sensores e otimizar o processo empregando o ELPI, contribuindo, portanto, para a redução da emissão de material particulado fino para o ambiente e reduzindo seu dano potencial.
	73BPalavras chave: Torre de prilling industrial. Partículas ultrafinas. Scanner por laser ótico. Efeito eletrodinâmico. ELPI.
	ABSTRACT
	413BAmong the processes that generate emissions of ultrafine particles (UFP), which are known by their high potential to cause brain diseases when inhaled, the prilling towers have a significant contribution, as those processes use flow rates up to 10 times higher than other dryers. From the monitoring perspective, UFP are generally unstable and volatile (as the case of sulfates and nitrates) making its mass concentration determination inaccurate, especially if continuous mass monitoring is intended to be installed. Also, the environmental agencies have demanded that particulate matter from the stacks must be continuously monitored, with the standard procedure for calibration being the gravimetric sampling. In this context, this research has evaluated the performance of two continuous sensors on measuring UFP mass concentration in an industrial fertilizer prilling tower. The sensors tested were electrodynamic diffusion charger (EDA) and optical scattering (OSA). The analyzers were installed at same stack where gravimetric sampling (GS) was performed to find calibration factors. Data was collected over four seasons in Northern Europe, including the particulate matter from the analyzers, meteorological and process parameters. A controlled experiment where flows and meteorological parameters were kept stable was run to test electrical low-pressure cascade impactor (ELPI) performance compared to the other sensors. The results show that OSA follows the process changes and the calibration factors obtained from GS varied on 0.5 standard deviations over products and seasons. EDA represents better sudden variations up to its operating range, but the calibration factors measured were over three standard deviation, independent of seasons and products. EDA also presented an artificially high emission due to intermittent steam injection in the stream. Dust deposition on the sensors affects the reading on both analyzers but only OSA indicates it. While modelling the data collected over the period, it was found that EDA was neither correlated with process nor meteorological parameters (r-squared less than 10%) what can be caused by particles not being charged evenly or droplets read as particles. The OSA concentration model showed r-squared of 45% and strong correlation with meteorological parameters and raw material flow rates. The model presented a standard error of 0.21 mg/Nm3. OSA has potential to be employed for ultrafine particles monitoring if the influence of particle characteristics under industrial operation is considered and meteorological parameters are included, as already in practice for ultrafine particles monitoring outdoors. Finally the linear regression models built based on the methodology here proposed, showed that the commercial sensors did not have enough precision while ELPI analyzer output presented a model with adjusted r-squared of 94.13% and a standard error of 0.02 mg/m3 not including any air stream parameter and detecting changes in the process that allow optimization of those to reduce the UF emission. The ELPI shows potential to be used as calibration device to other in-situ continuous dust monitoring when dealing with UFP, once gravimetric sampling has reached its detection limit for UFP. By applying the methodology here proposed there is potential to install and calibrate continuous sensors at stationary sources emitting UFP with ELPI as well as optimizing the process to reduce the concentration of UFP and by doing so, decreasing the potential impact of those in the environment and  on the human health.
	414BKeywords: Industrial prilling tower; Ultrafine particles; Optical laser scanner; Electrodynamic diffusion charger; ELPI;
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	1. INTRODUCTION
	415BA clean outdoor and indoor air is considered a basic right by WHO (World Health Organization) once air pollution is ranked among the top risks for mortality and lost years of healthy life, which affects everyone in urban and rural areas and in both developing and developed countries (WHO, 2017).
	416BThe human exposure to respirable particulate matter (PM) is correlated with an increase in cardiac and respiratory morbidity and mortality (Dhananjayan, et al., 2019). Studies of the size and composition of atmospheric PM have demonstrated the usefulness of separating them into its fine PM2.5 (PM with diameter less than 2.5µm) and coarse components (PM with diameter between 10µm and 2.5µm), especially when evaluating the health impact of PM, as worldwide epidemiological studies have shown (Wilson, et al., 2002). 
	417BWhile airborne PM2.5 is a pollutant that is found in all urban environments and it is predominantly generated by traffic and domestic fuel combustion (Martins & Carrilho da Graca, 2018), an even smaller fraction of PM has raised attention, the ultrafine particles (UFPs).
	418BThe UFPs have particle sizes in the range of 0.1 – 2.5µm and can also be agglomerates of UFPs, nanoparticles or nanoclusters (Fahlman, 2007) which are mainly generated in industrial plants (Liou, 2007) and can travel hundreds of kilometers before settling on the ground. They not only get to the lungs while breathing, but also to the blood system, what can cause degenerative brain diseases, as such Alzheimer, Parkinson and Huntington (Maher, et al., 2016) (Win-Shwe & Fujimaki, 2011) to such an extent of concern that WHO works on a new guideline for concentration of particulate matter with a diameter smaller than 1µm (PM1.0).
	419BThe mineral fertilizer industry, for instance, produced in 2018 around 62 million tons of ammonium nitrate/ calcium ammonium nitrate (AN/CAN) over the world (IFA, 2019). When producing those fertilizers there is emission of ultrafine particles, (UFP) mainly formed in gas phase, no matter which production process is employed. This issue becomes critical when using prilling towers (PT) due to the high flow of air employed (order of thousands of m3 per hour). Prilling towers are not only used in this segment, but also in food, hygiene, pharmaceutical and other chemical industries (Couper, et al., 2012) what means UFP emission an issue in many areas around industries.
	420BThe industries face a challenge to comply with the regulations from the environmental agencies that demand online monitoring of PM although the commercial available online sensors are designed to handle with accuracy up to PM2.5, not smaller than this (as the UFPs are), as extensively discussed by Wilson et al. (2002). Since then, no relevant sensor development was achieved for this size range. On the other hand, the agencies have stablished standards to calibrate the online sensors with results from gravimetric sampling (GS) (EPA, 2018), which ones can have, for instance for nitrates sampling, up to 50% losses according to Wilson et al. (2002).
	74BThere is clearly a technology and methodology gap between the current standards for industrial stationary sources measurement of PM, the continuous monitoring sensors available in the market and the certified methodology in use to calculate the emission of PM containing mainly UFPs as Hoeflinger & Laminger have pointed out when proposing a PM2.5-0  alternative methodology for evaluating efficiency of equipment for emission control (Hoeflinger & Laminger, 2017).
	2. OBJECTIVES
	2.1. General Objective
	2.2. Specific Objectives

	421BThe aim of this work is to investigate which parameters are critical to both  provide reliable results  from continuous monitoring and reduce emission of UFP, by optimizing the process, and to propose a methodology to calibrate the sensors using an electrical low-pressure cascade impactor.
	 75BSelecting and testing the performance and challenges faced by two distinct commercial continuous PM analyzers, based on the main commercially available techniques, in a mineral fertilizer industrial PT over one year, in Northern Europe.
	 76BCalibrating the sensors installed with several GS measured under different product composition and seasons in Northern Europe.
	 77BDeveloping a regression model that could correlate both process and meteorological parameters to predict the UFP concentration over the four seasons in the Northern Europe at an industrial stationary source. 
	 78BPerforming a controlled experiment in the industrial plant to find the most important controllable parameters impacting on dust emission expressing it in the form of a regression model, studying the operating windows to reduce the UFPs concentration at the stack and finding the best measurement technique of dust emission among online analyzers and electrical low pressure cascade impactor.
	 79BProposing a new methodology to measure and calibrate the online sensors for the stationary sources containing mainly UFPs and contribute to the knowledge of UFPs continuous monitoring and statistical methods under industrial environment.
	3. BIBLIOGRAPHIC REVIEW
	3.1. The Process Under Analysis
	3.2. Techniques for Continuous PM Concentration Monitoring
	3.2.1. Optical detection methods
	3.2.1.1 Scattering photometer
	3.2.1.2 Optical particle counter (OPC)
	3.2.1.3 Condensation Particle Counters (CPCs)

	3.2.2. Probe electrification
	3.2.3. Electrical low-pressure cascade impactor

	3.3. Statistical Modeling Applied to Experimental Investigations

	80BHere is presented a general bibliographic review related to the study performed. In order to help understanding the intersectional areas involved on this matter Figure 1 was prepared to show the potential aspects to explore in this research. The approach employed was to consider the prilling tower as volume of control and all the potential parameters impacting on UFPs generation and emission were mapped as highlighted in light gray. On the other hand, the potential options to quantify the UFPs concentration in the stack were analyzed both continuous and batch sampling. Each of the aspects is discussed on the next sections.
	422BThe Nitrophosphate process starts with phosphate rock being dissolved in nitric acid (called digestion process). Calcium Nitrate (CN) is produced as a byproduct in the process and sent to a plant where it is used to produce calcium ammonium nitrate fertilizer (CAN) (Hussain, 2012). 
	423BAfter separation of calcium nitrate, the so-called mother liquid is neutralized by addition of ammonia. The N/P ratio is corrected by using nitric acid or ammonium nitrate. The resulting neutralized liquid is called NP-liquor. The water content in the NP-liquor is thereafter decreased by using a shell and tube heat exchanger in combination with cyclone separators working under a decreased pressure. Before the NP-liquor is added to the mixer, small adjustments are made to the NP-ratio by addition of ammonia (NH3) gas. The next steps of the process are showed in Figure 2 where the main equipment are the evaporators, mixer, prilling bucket, prilling tower and sieves together with the potential measured parameters (circled in red). Note that liquid, solid and gas streams are illustrated using blue, brown and green arrows, respectively.
	424B/
	425BThe pre-processed raw materials (NP-liquor, ammonia, K-salts/minerals) enter the mixer as a three phase (gas, liquid and solid) mixture that needs to be heated and intensively agitated to create a homogeneously mixed melt and to prevent solidification. This melt is thereafter sent to a rotating prilling bucket that sprays the liquid melt into the prilling tower.
	426BThe rotational speed (rpm) of both mixer and prilling bucket as well as the temperature of the mixer are measured.
	427BThe melt is sprayed from the bucket into a prilling tower, to let the melt solidify and create uniform spherical particles with a diameter of 2-4 mm. The falling liquid is cooled by using ambient air in counter-current flow that is dragged into the PT by using six fans located at the outlet stacks at the top of the tower. The primary emission is the dust or fume of ammonium nitrate from the PT. The material is of submicron size and, therefore, highly visible (Vallero, 2014). The temperature, relative humidity and pressure is measured at the air inlet at the bottom of the tower while the temperature, relative humidity and velocity is measured in the stack.
	428BAfter solidification, the prills must be classified by particle size on the sieves as can be seen in Figure 2. This process uses several sieves in series that classify the particles in oversized, undersized and the final product. The oversized particles are sent to a crusher and then back to the screening while the undersize particles (called off-spec in Figure 2) are sent back to the mixer together with dust collected from bag filters of other process equipment.
	429BThe NPK (Nitrogen – Phosphorus and Potassium) fertilizer product is stored or transported after being cooled and treated. The flowrate of the product and off-spec are measured.
	430BThe dust emitted from the stack is composed mainly by small particles that are dragged up by the upward velocity inside the stack and can be the NPK fertilizer itself or can be in the form of ammonium nitrate (NH4NO3) that is produced from a side reaction of the acidic media with ammonia, added in the mixer for keeping the pH stable, as can be seen from the chemical reaction as Equation 1 shows.
	431BMost of the bibliography material related to PT is quite often general, once the specific applications are protected from patents. This is the case, for instance, of NPK prilling towers so few processes related material is available, and this review tries to cover the subject in the best possible way.
	432B/
	433BPT are also called spray dryers and they are employed mainly to feeds like solutions, pumpable pastes and slurries. Such a material is atomized in a nozzle spray wheel and when in contacted with air solidifies and is removed from the bottom of the tower (Couper, et al., 2012). The authors point at the two main characteristics of spray drying are the short drying time, the porosity and small, rounded particles of product. Short drying time is an advantage with heat sensitive materials. Porosity and small size are desirable when the material subsequently is to be dissolved (as foods or detergents) or dispersed (as pigments, inks, etc.).
	434BThe mean residence time of the gas in a spray dryer is the ratio of vessel volume to the volumetric flow rate, what leads to huge towers to ensure proper cooling of the droplets sprayed. An attempt was made by Yuan et al. (2007) to reduce the height of the PT, where is proposed a combined tower with a fluidized bed so that the height of equipment was greatly decreased, and it exhibited satisfactory performance in industrial application. Besides being promising, to the authors knowledge no further industrial installation was built.
	435BAtomization is key in spray drying and there are three devices of commercial value that can be used which are pressure nozzles, pneumatic nozzles and rotating wheels of various designs. To achieve a suitable range of prill sizes for determined feed, parameters as pressure, nozzle diameter, flow rate and motive pressure for nozzles can be adjusted. While from the design point of view, the geometry and rotation speed of wheels (Couper, et al., 2012). 
	436BSpray dryers are capable of large evaporation rates (5 to 7 t/h) and the spherical sprayed particles often are preferable to drum dryer flakes. The completely enclosed operation of spray dryers also is an advantage when strong chemicals are handled, as in the NPK fertilizer application.
	437BThe patent from Shirley et al. (1996) describes an improvement in prilling whereby water is atomized into a PT to promote faster solidification of the prills, resulting in a major reduction in air pollution potential in the form of both fume and particulate. Specifically, the invention was related to quick-freezing the outside surface of the prills by flash evaporation of finely atomized water particles on the surface of the prills or in extremely close proximity to the prills to greatly lower the vapor pressure at the prills surface. The potential application could be of value for water sensitive materials, in particular ammonium nitrate, urea, potassium nitrate and other water-soluble melts, which normally absorb water or go into solution readily at ambient conditions in their solid state. This work has emphasized the importance of promoting the quick surface cooling on the droplets to reduce emission of UFPs.
	438BAs highlighted in the patent mentioned earlier, the effect of cooling on the generation of UFPs is significant, what turns the attention to the media used to promote this effect which is ambient air without conditioning. Chen et al. (2019), for example, when studying PM2.5 compositions is coastal areas, originated from ships (up to 35% contribution at port areas) concluded that ships emissions contribution to PM2.5 exhibited an obviously seasonal variation with the highest contribution in fall (6.2%), followed by summer (5.4%), spring (3.6%) and winter (1.2%) for the land areas. In general, models for ambient air pollution consider the meteorological parameters. Being the UFPs instable with potential change in both size, mass and composition in different air conditions, it becomes clear the need to include the seasonal factors in the evaluation of UFPs concentration from PT.
	439BIn addition to the ambient air seasonal characteristics, the authors Saleh and Barghi (2016) have found that the geometry and design of the air exit configuration had a significant impact on the airflow behavior inside the PT. Besides that, the formation of a quiescent zone near the showerhead was essential in minimizing droplet breakup due to secondary disintegration and fine particle formation. While CFD (Computational Fluid Dynamics) modelling the system, the authors were able to obtain the optimum location for the installation of showerhead. While these authors have used a pilot PT, the presented project here deals with an industrial tower. Anyhow, the explanation of the droplet breakup mechanism can help on identifying the source of the PM emitted at stack and provide recommendation on how to improve the current design.
	440BBesides not employing PT, the authors Ji et al. (2017) when studying the influence of raw materials (RM) on the characteristics of PM2.5 and measuring it to reduce emissions used four different sources of RM on steelworks in their investigation. The results showed that a well positive correlation existed between the emission concentration of K (potassium) and Cl (Chloride), and their contents in raw materials, what can be also explored in prilling towers once under production of different NPK, there are different amounts of K (potassium) source needed.
	441BThere is very broad and consolidated research regarding PM measurement techniques (Sullivan, et al., 2018) (Giechaskiel, et al., 2014) (Liou, 2007) so here the main focus will be given to commercial available sensors, especially the ones able to provide continuous or semi continuous results due to the objectives stated before, mainly related to potential industrial application.
	442BInstruments that for decades were standard equipment in focus areas as vehicles emission for engine test cells, such as smoke meters and opacity meters, have become obsolete over a rather short time span, unable to provide the sensitivity required by the new standards (Giechaskiel, et al., 2014). In addition, in the fertilizer’s industry, where the best available technique (BAT) mentions emission levels of 5mg/Nm3 for NPK production (COM, 2007) with almost 90% of the PM below 1µm, well established principles do not meet the standards required. Furthermore, high time resolution measurement (seconds or less) has become a necessity to understand particles formation and to develop control and aftertreatment strategies (Giechaskiel, et al., 2014).
	443BThe physical and chemical properties of exhaust aerosol continuously change after their formation, both along the exhaust system and after emission into the atmosphere. A rather rapid change occurs as exhaust exits the tailpipe and abruptly dilutes and cools in the ambient air. These changes have created a demand for new instruments that are capable of real time measurement and enhanced sensitivity (Giechaskiel, et al., 2014), (Liou, 2007).
	444BThe current research focus is on newly evolving instrumentation, including scattering, absorption and instruments based on the electrical detection of exhaust aerosols. Meanwhile GS is still the general standard to calibrate those instruments.
	445BGS is performed by collecting particles onto a filter. The emission rate is then calculated by weighing the filter before and after the test. The filter collects all particle size fractions (nucleation, accumulation and coarse modes). The collection method also provides an operational definition of PM, as the material mass collected on a filter. Conventional filters are made of glass fibers and an inter-coating (e.g. Polytetrafluoroethylene PTFE) protects the surface from chemical reactions. Filter measurements are affected by vapor adsorption on substrates, by evaporative losses during or after sampling and by reactions between collected particles as nitrates and sulphates. Filter handling and loss of material from the filter surface can also play an important role, particularly for quartz fiber filters. The conditioning of the filter in the weighing room can also affect the final result by a few μg. For this reason, filters are typically conditioned under controlled relative humidity and temperature conditions. The effect of the ambient air pressure is considered with a buoyancy correction. For process with modern aftertreatment technologies or emission close to BAT levels, the gravimetric method is reaching its detection limits. At the lowest emissions levels, the artifacts and measurement uncertainties discussed above can contribute more than 90% of the recorded mass increase (Giechaskiel, et al., 2014). The lack of sensitivity of the gravimetric method has been one prime reason for looking into alternative detection techniques.
	446BTable 1 shows one example of a guide where the continuous measurement technology available is related to parameters to help the user on selecting the most adequate principle for a defined application. The supplier here mentioned PCME (2018) offers three different principles: probe electrification, transmissometry and scattered light. Those principles are offered by different suppliers as Sick (2020) and Palas (2020), for example. A set of parameters is presented, based on regulations applicable, process and PM characteristics to help end users on the selection.
	447BEven though it looks straight forward, the list presented on Table 1 is not complete as (Giechaskiel, et al., 2014) discuss. The authors summarized the main criteria to select the equipment to measure PM concentration. These include representativeness (emissions as they would be in real world dilution and aging conditions), accuracy (uncertainties include random error and systematic error), detection limit, traceability (international standards or basic physical constants or properties), robustness (a method continues to function despite the existence of faults in its subsystems or component parts), user friendliness and cost (capital and maintenance).
	448BThe main principles on which the commercially available instruments are based are discussed in the following next.
	449BThe study and applications of optical methods have been enormously simplified and extended with the availability of reliable laser sources over a wide range of wavelengths (Glatter, 2018) (Giechaskiel, et al., 2014) (Liou, 2007). (Wu & Chu, 2000).
	450BIn optical detection methods, the interaction of aerosol particles with incident light serves as basis for real time measurement of particle concentration. Aerosol particles illuminated by a beam of light reradiate it in all directions (scattering) and simultaneously transform part of it into other forms of energy called absorption and extinction (Babick, 2020) (Sullivan, et al., 2018) (Giechaskiel, et al., 2014) (Wu & Chu, 2000). Some of this modified light is collected at a receiver, usually placed very close to the transmitter, and often using the same optical device as illustrated on Figure 3. The return signal light is then analyzed to derive information about the target. Some of the applications areas of light sensing are meteorology, atmospheric measurement, chemical species and pollutants, gas detection and space-borne measurements as clouds and global wind field (Vaughan, 2002). Optical detection can be used to measure PM concentration although the main application is still particle size distribution determination (PSD).
	451B/
	3BSource:  adapted from (PCME, 2018)
	452BLight absorption is mainly used in atmospheric studies related to climate change, due to fact of greenhouse pollutants strongly absorbs light. The most common techniques for measuring aerosol absorption are the difference method, where absorption is derived from the difference between extinction and scattering, the filter based methods that measure the light attenuation by PM collected on a filter, and photoacoustic spectroscopy and Laser Induced Incandescence, which measure PM concentration via the heat particles gain as they absorb light. (Glatter, 2018) (Giechaskiel, et al., 2014).
	81B/
	453BThe Opacity meter measures the fraction of light transmitted through a given exhaust volume (path). Light extinction (also referred to as opacity or smoke opacity) by absorption and scattering is the difference between incident and transmitted light. Extinction based measurements quantify particle concentrations via the Beer–Lambert– Bouguer law, where the ratio of transmitted to incident light intensity is an exponential function of the path length and the extinction coefficient. Opacity depends on particle size and light wavelength, as well as particle shape and composition. This is difficult to estimate theoretically for most particles in the real world (Giechaskiel, et al., 2014).
	454BTwo types of opacity meters are common: sampling opacity meters, which sample a fraction of the exhaust flow through a measuring chamber and inline opacity meters, which do not have a separate measuring chamber, but send a light beam to a microphone detector. In the last one, some new features as sampling pumps to have constant flow and heated windows to protect the optical components have improved the accuracy of the opacimeters (Glatter, 2018).
	455BLight scattering (Figure 3), has seen considerable application in particle size and concentration measurement, e.g. for soot in flames, incinerators and cement plants. The light scattering pattern and intensity are strongly dependent on the ratio of the particle size to the wavelength of incident light. For very small particles compared to the wavelength, particles act as dipoles, therefore scattering is symmetrical in the forward and backward directions, and the scattering intensity is independent of particle shape. This defines the Rayleigh scattering regime. In the case of non-spherical particles, the radius must be replaced by a “characteristic length” of the particle. As particle size approaches the wavelength of light the Mie scattering regime is entered. The formulas in this regime are rather complex and cannot be calculated in closed form. The scattering intensity of particles much larger than the wavelength is proportional to the square of the particle size (Wu & Chu, 2000).
	456BFor particles in the size range of some hundred nanometers up to several micrometers perfectly fit into the accessible range of a light scattering; this makes a detailed structural analysis possible. However, one is confronted with two main difficulties: one must use Lorenz–Mie theory, and the situation is often complicated by multiple scattering. In these cases, a low-resolution shape analysis is possible for monodisperse systems. Polydisperse systems can be analyzed in terms of size distributions of spheres by using Lorenz–Mie theory. High-quality experimental data allow the determination of this value from the measured data during size analysis. Multiple scattering contributions can be reduced by contrast matching, or by special experimental set-ups like thin, flat cells. May lead to sharp resonant scattering (Glatter, 2018). Due to the high scattering power of these large particles one runs into the problem of multiple scattering with increasing concentration much earlier, before one can see the influence of excluded volume effects. If the particles are larger than several micrometers, then the regime is Fraunhofer diffraction, which probes only the silhouette of the particles. The original work of Lorenz and Mie related to spherical particles only, but these names are now often used for arbitrarily shaped scattered light in this size. This theory describes the propagation of electromagnetic radiation in an inhomogeneous dielectric medium and considers that the interaction of the electric field with the inhomogeneities becomes more complicated. We can no longer assume that the electric field strength is the same everywhere in the probe volume. Currently there are at least modern numerical algorithms that allow computation of the scattering problem for simple regular particles like spheres and prolate and oblate ellipsoids, and cylinders (Glatter, 2018). 
	457BAs discussed, the particle shape is a drawback of light scattering and many approaches have been developed for the calculation of light scattering by non-spherical particles and broad range of PSD because of the need for precise scattering information in optics, geophysics, remote sensing, astrophysics, engineering, medicine, and biology (Glatter, 2018), (Liou, 2007). 
	82BLight scattering can be classified in either static or dynamic. Static light scattering occurs in which the angular dependence of the time-averaged scattering intensity is measured while in a dynamic light scattering experiment the time-dependence of the scattered light at a fixed scattering angle is measured. These time dependent fluctuations correlate with the displacement of the scattering centers due to diffusion processes (Brownian motion), or due to intra-molecular mobilities. 
	458BIn static scattering experiments that are primarily diluted systems, where the scattering centers are fixed in a single particle, so the relative distances of the scattering centers are fixed in time. Many systems in the size range between 100 nm and several micrometers, like emulsions, show a distinct polydispersity in size, and one can hardly find strictly monodisperse particles in practical applications. When assuming a certain shape, like spheres for emulsions — one is interested in a determination of the size distribution. However, there is a difficulty: of combining the Lorenz-Mie theory with multiple scattering (Glatter, 2018).
	459BThe situation is quite different for dynamic light scattering what is a method of studying dynamics in a system, in most cases translational diffusion dynamics. The technique is primarily used for particle sizing and can be applied in a wide size range, from nanometer up to micrometers, but it is a low-resolution technique (Bras & Hammel, 2019). Moreover, Babick (2020) points out at when dynamic light scattering is used to quantify the properties of individual particles, the sample should be properly diluted to exclude any impact of particle concentration. There are several sources of such impacts, which depend on the particulate phase (size, shape, and optical and interfacial properties) and instrumentation (wavelength and scattering angle). For practical reasons, it is not possible to completely avoid the occurrence of these effects (Babick, 2020).
	460BFor practical industrial applications two kinds of instruments exist: light scattering by an ensemble of particles as scattering photometers, which measure the scattered light intensity at one or more angles and light scattering by single particles represented commonly by the Optical Particle Counter (OPC). A special category of the last one is the Condensation Particle Counter (CPC), where the particles are grown by condensation to optically detectable sizes.
	461BLight scattering photometers measure the combined light scattered from all particles present in the optical sensing volume typically at angles centered at 901, 451, or less than 301. Most commercial light scattering instruments use visible light, e.g., 600 nm. Light scattering instruments have sufficient sensitivity to detect particle emissions from for example, relatively low emitting vehicles. However, their responses are dominated by large particles and therefore, are strongly dependent on particle size distribution. One can calibrate the instrument response to particle mass, but this is sensitive to deviations in particle size and composition from that of the calibration aerosol. (Bras & Hammel, 2019).
	462BOPCs are similar to photometers. The major difference is that the OPC optical sensing volume, formed by the intersection of a focused light beam with a narrow particle beam, is much smaller so that only one particle is illuminated at a time. The scattered light is detected by a photo detector as an electrical pulse. The pulse height depends on particle properties (size, refractive index and morphology). A disadvantage of OPCs is that uncertainty in refractive index often leads to significant variability in derived size distributions, even for the ideal case of homogeneous spherical aerosol particles (Liou, 2007) (Galvão, et al., 2018).
	463BCPCs use light scattering to count particles after they are grown to micron size. The three types of CPCs, depending on the method that is used to achieve supersaturation and particle growth, utilize either adiabatic expansion of the aerosol–vapor mixture, or conductive cooling, or mixing of cool and warm saturated air, but only limited use of this type of CPCs has been reported (Giechaskiel, et al., 2014).
	83BThe ability of particles to acquire electrical charge provides the opportunity to design simple, low cost, sensitive PM sensors. A number of processes can contribute to the charging of aerosol particles: static electrification, thermionic emission, photoemission, and charging by small ions. The electrical charge acquired by a particle from static electrification is difficult to predict thus no instruments are based on this technique. Likewise, there are no thermionic based instruments used for exhaust PM emissions (Giechaskiel, et al., 2014). 
	84BCharging by small ions is a technique that has been used to characterize ambient aerosols and vehicle exhaust aerosols. On a Diffusion Charger (DC) the ions, usually from a corona discharge, attach to particles and an electrometer registers a current proportional to the number of particles times the average charge per particle. Theoretically, the measured current is proportional to particle diameter squared in the free molecular regime and proportional to particle diameter in the continuum regime. Experimentally, for the size range of interest, which lies in the transition regime, an exponent of 1–1.4 to particle mobility diameter is found. (Giechaskiel, et al., 2014) This varies with the charging area design and with particle losses at and downstream of the charging area. If entering particles are already charged with the same polarity as the corona, they can exhibit higher apparent charging efficiency than expected, by up to 30%. Aerosol detection based on diffusion charging offers fast response (1 s), very good sensitivity, simplicity, repeatability, and a wide dynamic range (Sullivan, et al., 2018). Diffusion chargers (DC) have a strong potential to be used alone to measure relative changes in particle emissions or in combination with other instruments to provide additional information on particle properties, such as the mean diameter when combined with a CPC. This instrument combination was designed for ambient ultrafine particle measurement and an applicability to other systems like diluted engine exhaust needs further investigation (Giechaskiel, et al., 2014).
	464BAn example of application of electrodynamic diffusion charger (EDA) is showed on Figure 4. EDA stably traps charged aerosol particles by balancing the aerosol particle in an electric field. This stable trap requires a feedback loop between the potential applied to the electrodes and the position of the particle, which is sensitive to changes in mass. The electric field strength required to stably trap the particle thus provides an accurate real-time measurement of the mass of the particle if the charge state is known.
	465BThe particles studied in the EDA range are typically greater than 10 µm in diameter, and the trap can be easily loaded using an ink-jet nozzle to dispense droplets. As the trapping capabilities of the EDA do not depend on particle shape, and thus the EDA is not restricted to spherical particles as is the traditional optical detection methods. This makes the EDA ideal for phase transition experiments, such as salt efflorescence and the freezing of water, because crystalline particles are readily trapped (Sullivan, et al., 2018). 
	85B/
	466BA case study performed by PCME (2018) provides a comparison of results for monitoring the same stack with an EDA instrument and an optical forward scatter installed at outlet of a bag filter from an incinerator. The author concluded that both instruments track short-term variations in dust levels associated with bag cleaning in a similar fashion. Besides that, instruments have dissimilar results during plant stop and start up when there are water condensation issues. This issue appears to be related to the different effects of water vapor on both instruments.
	467BAs presented above, all techniques presented to measure PM concentration at the stack have their results affected by the particles properties, as the shape for optical measurements and the charging properties to electrodynamic DC. Because of this, it was raised the need for instruments to be able to provide more information regarding the particle as PSD over time and its chemical properties.
	468BFrom the commercial available continuous monitoring instruments, it can be seen they are based on two principles, OPC already discussed in item 3.2.1 and electrical low-pressure impactor (ELPI).
	469BLow-pressure impactors (LPI) have been introduced to measure nanosized particles (Brachert, et al., 2014). In cascade low-pressure impactors, the pressure is reduced either by having a separate pressure-reducing stage or by gradually reducing the pressures by using high jet velocities as shown in Figure 5.
	470B/
	471BTo make LPI measurements in real-time and to improve the sensitivity, Keskinen et al. (1992) developed the electrical low-pressure impactor (ELPI) to achieve real-time operation of a low-pressure cascade impactor. According to the authors, a multichannel electrometer is constructed using low cost monolithic electrometer amplifiers. The zero-check technique is applied to achieve a lowest detectable current of 10 × 10-15A.
	472BIn the ELPI, the aerosol is sampled through a unipolar corona charger as presented on Figure 6. The charged particles then pass into a low-pressure cascade impactor consisting of electrically isolated collection stages (13 impactor stages and one filter stage). As particles impact on a specific stage, they produce an electrical current that is recorded in real-time by an electrometer. Particles below the lowest cut diameter are collected by a filter stage enclosed in an isolated Faraday cage. The ELPI impactor classifies particles according to their aerodynamic diameter, from 10µm to 6nm. The concentration measurement is based on calibration of the corona discharge for charging efficiency, impactor collection efficiency, and current measurement. The charging probability is calibrated against mobility equivalent diameter. (Dekati, 2020).
	473B/
	474BTo reconcile the mobility-based charging efficiency with the aerodynamic size measurement, as well as to determine PM mass, the effective density of the particles needs to be known or estimated. ELPI is used quite often for research in engine tests beds and generally, the agreement with the PM mass is within 10% for non-diesel fueled vehicles. At low emission levels the agreement is not so good due to the filter artifact. With other instruments the agreement at low levels (e.g. 0.3 mg/m3) is better than 10–20%. The combination of aerodynamic and mobility size data is used to estimate particle effective density and, thereby, enable conversion of the impactor data into a real time mass concentration. The agreement with gravimetric PM mass can be quite good (within 20%) if the instrument is kept clean and not overloaded with high PM concentrations. (Giechaskiel, et al., 2014)
	475BThe calibration of the ELPI is based on the realistic shape of particle collection efficiency curves. To ensure that a used impactor is performing in the same aerodynamic range allowed for new impactors, one must also satisfy the other, secondary factors of cascade impaction aerodynamics, most notably the distance to the collection surface relative to the nozzle diameter. Muller et al. (2012) states that the performance of a cascade impactor is difficult to define because it includes the number of the measurement channels per order of magnitude in the size axis, the time response, the shape of the kernel functions, and the sensitivity of the instrument. 
	476BArffman et al. (2014) investigated the performance mainly from the perspective of distinguishing both modes of bimodal size distributions and determining the lower limit at which the relevant information from a size distribution can still be resolved. Results of the instruments were consistent by taking into account that soot particles have fractal structure. It is important to highlight that the performance of the ELPI has been evaluated using monodisperse aerosols. The good agreement between the two measured size distributions shows the capability of the ELPI for near real-time particle size measurements.
	477BDong et al. (2004)  studied the inversion processing of cascade impactor data to construe continuous size distributions within fine particulate matter (PM2.5) is examined for residential oil furnace and fireplace appliance emissions. The oil furnace aerosol offers an opportunity to apply data inversion to study a bimodal lognormal distribution in which much of the aerosol mass is impactor-penetrating nanoparticles (< 30 nm). The fireplace emissions on the other hand cover the issue of a chemical size distribution, which is subject to particle loss and characterized by a single lognormal, accumulation mode peak. Raw cascade impactor data was inverted with the knowledge of individual stage collection efficiencies to create a continuous and complete particle size distribution.
	478BThe ELPI present losses of fine particles. Those were calculated by Virtanen et al. (2001) considering three different loss mechanisms: diffusion, space charge, and image charge deposition. Diffusion losses were determined experimentally in particle size range of 10µm to 400 nm. The measured values varied from 0.1 to 6% depending on particle size and impactor stage. In the measurement range of the instrument, i.e. above 30 nm, the losses were below 2%. Image charge losses exceeded the diffusion losses when particle size was larger than 200 nm, but the combined loss in this size range was below 0.5%. Space charge losses were determined both experimentally and through calculations. The space-charge effect was found to be a dominant loss mechanism in ELPI when measured concentrations were high.
	479BELPI has being used in the field of droplets formation in wet flue gas cleaning process, sometimes coupled with a FTIR as mentioned by Mertens et al. (2014) when studying sulfuric acid droplets formation in an amine absorption column or either coupled with the condensation particle counter from Palas (2020) in the investigation of sulfuric acid aerosol on a wet flue gas scrubber as discussed by Brachert et al. (2014). These authors concluded that the condensation particle counter provides information about the number concentration while with the ELPI also the size evaluation is possible. Both measurement methods revealed number concentrations above 108 cm3 under well-controlled conditions in a pilot plant and the good conformance of the both methods are shown. In case of the ELPI, the overestimation of number concentration has been observed as well when measuring very small sizes with the ELPI. Consequently, for smaller sulfuric acid concentrations the number concentration can only be measured with the CPC as the ELPI have overestimated it by a factor of 2–5 times.
	480BStatistical modeling helps in understanding the variables responses in experimental investigations among many engineering related areas. Govaerts et al. (2020) explains that an established scientific approach consists of first defining a statistical model. This model aims to describe the system of interest using a simple mathematical equation containing one or more random terms, which account for experimental and measurement errors or natural variation between subjects. Once the model is defined, it is then fitted to a set of process data collected according to a given experimental design. Finally, the fitted model is used to answer the questions of interest.
	481BThe family of linear models includes simple linear model (LRM), used for example in calibration models, single variable polynomial model, multiple regression model, response surface model (RSM), analyses of variance (ANOVA) and its related approaches furthermore analysis of covariance model. These models share three common characteristics, the response Y explained by the model is always assumed to be observed on a quantitative continuous scale, the expression of the model equation is a sum of parameters multiplied by the values of some predictors of interest in the study and the last term added to the model is an error term e, which accounts for some or all of the random components of the process of interest. The word linear does not mean that the systematic part of the model has a linear shape. For example, the response surface model has a nonlinear shape but is a linear statistical model because it is expressed as a linear function: a sum parameter multiplied by transformations of the factors of interest (X2 and X1X2 as an example).
	482BLinear models are mostly used in experimental studies, i.e. studies where data are intentionally generated from a given process (analytical, experimental or industrial) in order to answer a specific scientific question. Ideally, these data are generated based on an experimental design to guarantee that they will contain the information targeted by the study and have a balanced structure. Data used to develop linear models can also come from an observational study, where data are not produced for a given purpose, but are rather collected from a process or in a certain context. Such data often present a high degree of collinearity between predictors; contain very influential observations and outliers that are badly spread in the domain of the factors of interest.
	483BIn this context, the linear model family is certainly the most used model because of its ease of implementation and versatility. Understanding how to express the random part of the process is also of the utmost importance in contexts where one is involved or must be able to accurately quantify the uncertainty of measurement systems, as the inclusion of the constant term in the LRM to ensure the random effects are taken into account. 
	484BThe main statistical indicators used to evaluate the model result are coefficient S (standard error in the regression) measured in absolute numbers and complementary to that r-squared which is the percentage of response variation explained by a linear model.
	485BThe significance of parameters which is given by p-value, based on the hypothesis of at least 95%, e.g., of the data set can be explained by the model proposed (p-value ≤0.05 in this example), residual (or lack-of-fit) equivalent to the vertical distance between a data point and the regression line being employed to evaluate how close is the fit of the linear model to the dataset and if their distribution is random (residuals are distributed evenly along positive and negative values) what means there is only error left in the model (Sarabia, et al., 2020) (Benyounis, 2019).
	486BThe decision to move from a simple linear model to RSM according to Sarabia et al. (2020) is due to the fact that the model relating some controllable variables with a response either is not available or is very complex, so a collection of mathematical and statistical techniques can help analyzing, by an empirical model.
	487BUsually, the full model consists of insignificant model terms that need to be eliminated, such as terms that have p-value greater that the level of significance specified. This elimination can be done manually or automatically. The three automatic procedures of evaluating all possible selection of variables are forward selection procedure where the procedure begins with only the constant term, and the first variable added is the one with the highest simple correlation with response Y. If the regression coefficient of this variable is significant it will remain in the equation and a new search for the second variable with highest correlation with the response is begin, after Y has been adjusted for the effect of the first variable and the significance of the regression coefficient of the second variable is then tested. The second method is by backward elimination procedure: in this procedure, full equation is fitted and sequentially eliminates one variable each time. The variable with the smallest contribution to the reduction of error is eliminated first, and so on. The last procedure is stepwise regression where the possibility of eliminating a variable that might be added in earlier stage, as in backward procedure, is considered. This procedure has the advantage of assuming different or similar levels of significance for inclusion or deletion of variables from the regression equation (Benyounis, 2019).
	488BAllegrini and Olivieri (2020) explain that some alternative methodologies have been developed to handle nonlinearities, such as polynomial functions and kernel-partial least squares. The most powerful and flexible in this regard is the use of artificial neural networks (ANN), which have also been applied in multivariate calibration.
	489BArtificial neural networks are mathematical models inspired in the way the human brain is supposed to work. Indeed, the ANN nomenclature reminds biological units such as neurons, and biological processes such as neuron activation, interneuron connections, etc. However, in the analytical multivariate calibration context, ANNs are useful tools employed to model nonlinear relationships between multivariate signals (e.g., spectra) and one or more analyte concentrations or sample properties as targets. In this context, they can be viewed as nothing else than calibration models with several adjustable parameters, which are able to universally fit nonlinear relations between targets and instrumental responses.
	490BFor solid or semisolid materials where the component concentrations may be far from the linear range when using NIR (near infrared spectra), or when calibrating for a global sample property, such as organoleptic aspects, octane number in gasoline, consumer acceptance of industrial or food products, etc., deviations from the linearity in the signal-target relationship may be found and ANN are often chosen to address this challenge. Model interpretability remains an active research area for the neural network community, once the key operating unit of an ANN is the neuron. Independently of its biological meaning, in multivariate calibration problems a neuron is a function receiving an input and generating an output through a suitable mathematical expression. A typical ANN setup or “architecture” contains three layers of neurons: input, hidden and output. The input layer serves to accommodate the variables, either real or latent; the variables from the input layer are first linearly combined, and then become the input for the hidden layer. The coefficients of the linear combination are adjustable parameters called “weights,” one for each input variable. The weighted average value activates the nonlinear function of each of the hidden neurons, yielding an output that is transmitted to the output layer. From the modeling standpoint, optimizing a neural network means to find the value of the weights resulting in the best input–output modeling from the experimental data. 
	491BSetting the weights based on training data and the desired output is the central problem in neural networks implementation. The back-propagation algorithm is the most often used method for training, due to its relative simplicity and wide applicability. The goal of back-propagation is to iteratively change the weights in a manner that minimizes the error, defined as the squared difference between nominal and network output values for all training objects. Given a set of training samples with known nominal concentration values, back-propagation may continue until the error approaches zero. This carries the risk of overfitting the data that is, modeling the noise as well as the signal-target relationship. In this sense, the application of ANN for calibration against well-defined standards is suitable while when modelling process parameters, a good model fit not necessarily will help to understand the relation between parameters and the response.
	492BThe result of a web search in science direct (Elsevier, 2020) from 2019 shows that methodologies here presented are widely applied, but mainly in experiments in both laboratory and pilot scale while few of them deal with industrial final use application, only Saleem et al. (2019) when studying levels of disinfection by products in aquatic centers published a work on this field. The authors have employed LRM (linear regression model) which was also the choice for Mohtashami & Shang (2019) in wastewater painting treatment and Gonzalez-Soto et al. (2019) while studying exposure to different sized polystyrene in mussels.
	493BResponse surface methodology (RSM) has been applied by Tonday & Tigga (2019) in electrical discharge machinery, Boulila et al. (2019) on manufacturing of gas turbines, Kahraman et al. (2019) for grinding wheel, Changra & Bhattacharya (2019) when studying pyrolysis of biochar, Heydari et al. (2019) evaluating electrodes nanostructure, Lee et al. (2019) and Su et al. (2019) for clean technologies in biodiesel production, Balamurugan et al. (2019) for waterjet cutting of abrasives, Parida & Maity (2019) machining parameter for flank wear, Ozturk et al. (2019) when grinding flat glass and Singh et al. (2019) for rotary soil tillage operation.
	494BAnalyses of variance (ANOVA) was employed by Fernandez-Lopez et al. (2019) for heavy metal bio removal while Kavimani et al. (2019) for graphene process production, Ramesh et al. (2019) when improving stability of impact dampers and Muaz & Choudhury (2019) for milling process and Sivaiah & Chakradhar (2019) for manufacturing process in machining of 17-4 PH stainless steel.
	495BThe artificial neural network method was employed by Ghimire et al. (2019) when modelling meteorological parameters and Alizadeh &Omrani (2019) for CO2 cutting.
	496BIn research related to PM emission Padoan et al. (2017) employed LRM for road dust emissions while Moser et al. (2017) for aerosol emission on post combustion pilot plant have applied ANOVA.
	4. GENERAL MATERIALS AND METHODS
	4.1. Gravimetric Sampling
	4.2. Manual Data Collection
	4.3. Continuous Monitoring Equipment
	4.3.1. Optical dust analyzer
	4.3.2. Electrodynamic dust analyzer
	4.3.3. Calibration of online analyzers/ self-quality checks
	4.3.4. Electrical low-pressure impactor

	4.4. Data Extraction and Handling

	86BThe experimental tests in this project research were performed in a fertilizer unit, which produces mainly AN based fertilizers employing a prilling tower. The air is dragged in the PT by six fans, each one located at a single stack as schematic showed in Figure 7.
	87B/
	88BThe six exhaustion fans had the same capacity and there was no frequency inverter installed, so for the entire period they were running at same rotational speed. All the tests were performed in the stack number 3. The stacks had the same diameter of 1700mm.
	89BThe test rig was assembled as shown in Figure 8 where (a) shows the continuous PM concentration monitoring employing optical scattering (here called OSA) and a second one employing electrodynamic DC (called here EDA) mounted at the same height of the stack but with angle 0° and 180°, respectively an (b) shows the probe for GS and ELPI. The sampling point employed was located on a level 600mm higher than the continuous instruments (OSA and EDA) as showed. In this specific situation, the sampling point was connected to the probe when performing GS.
	10B(b)
	9B(a)
	90BGravimetric sampling was performed according to Environmental Protection Agency standard for stationary stacks (EPA, 2018) with some adaptations described below on the stack number 3 at PT. The stack had a total height of 25,000mm and diameter of 1,700mm with the sampling point located 20,000mm above the top of the PT. The sampling point was located 12 diameters over the PT top and 3 diameters below the gas stream exits to the atmosphere.
	91BFor the determination of isokinetic stack gas velocity and volumetric flow rate (type S pitot t
	93BTable 2 Manual equipment employed
	1150BParameter obtained
	1149BModel
	1148BEquipment
	1153BPressure stack
	1152BDruck DPI 705
	1151BDigital pressure indicator
	1154B70 or 200 mbar, accuracy of ±0.1%
	1155BVacuum in the pump suction
	1156B-200mbar, accuracy of 0.1%
	1159BTemperature profile at stack
	1158BKimo MP210
	1157BPitot
	1160BFrom -100 to +750°C, accuracy of  ±0.4°C
	1161BVelocity profile at stack
	1162Brange from 2 to 100m/s, accuracy of ±0.2 m/s
	1164BTemperature of gas sampled
	1163BGas meter
	1165B5 to 40°C
	1166BVolume sampled
	1167B40l/h to 6000l/h, accuracy of 2%
	1170BSupplied from the plant
	1169B6 bar 
	1168BCompressed air
	1173Breadability range between 0.01 mg and 0.1 mg, and capacities up to 320 g
	1172BMettler AE100
	1171BDigital Scale
	1176BAdjust for isokinetic velocity with gas meter
	1175BTeflon®
	1174BNozzle
	1177BDiameter of 3.5, 4 and 4.5mm used
	1180BDesiccated for 24h minimum
	1179BTube with fiber glass
	1178BSampling filter
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	1181B24 to 27g of fiber glass
	4BFigure 9 shows a cross section view of the probe position related to the other installed instruments. The stack was sampled in 8 points to get isokinetic velocity and temperature profiles as the standard reference requires (EPA, 2016), while PM concentration was measured at the center point for the whole study due to the fact the PM here presents a PSD of minimum 90% below 1µm leading to main mechanism of motion being Brownian motion and therefore not dependent of flow in the stack (Mertens, et al., 2014). EDA has a probe lenght of 900mm while OSA 710mm. 
	95BFilters were made of fiberglass pads (Figure 10) previously desiccated according to Method 5 (EPA, 2019). The probe nozzle employed to get isokinetic sampling had a range between 3.5mm to 4.5mm. No sample recovery was needed once the filter was located at the inlet of the probe, inside the stack as Figure 9 shows.
	96B//
	97B
	The range of main parameters is showed on Table 3 where can be seeing large variations due to meteorological conditions in the region where the study was conducted. The ambient air employed receives no preconditioning before its use in the process as showed in Figure 7. 
	98BGS was performed minimum 3 times for each production batch to evaluate potential variations over time but also twice in the same day to evaluate repeatability and reproducibility of the method, under same product batch.
	99BFor the third part of the research the Testo 440, Druck 705 and Kimo MP 210 were used to perform manual measurements. The details about range and accuracy were listed previously according to Table 2.The average velocity over the whole diameter of the stack (1700mm) was measured at 8 points. These manual measurements were done always at the beginning of the each designed experimental run.
	100BThe continuous PM monitoring was performed by two different instruments, OSA and EDA. The choice was made to evaluate distinct principles in this application.
	101BThe OSA was selected from PCME Ltd manufacturer (now called ENVEA UK), model QAL 181, which utilizes forward-scattering, called ProScatter® featuring patented options for enhanced reliability. The optical scatter analyzer from PCME Ltd, model QAL 181. The forward-scattered light collected by the concave mirror is then focused onto a quartz rod where the light is transmitted towards the light detector positioned within the electronic enclosure located outside the stack. The amount of light detected is proportional to the particulate concentration and calibration is based on manual isokinetic sampling. Figure 11 shows the external part of OSA which one is inserted on the stack. The space between the two cylinders is the area where the particles flow and are reached by the laser (PCME, 2019) as showed by the red arrow.
	497BOSA model PCME QAL 181 had a certification range of 0-15mg/Nm3 and measurement capability of 0-300mg/Nm3.
	498B/
	102BTo test the electrification technique the chosen PM analyzer was EDA from PCME Ltd. (now called ENVEA UK) prospect, model STACK 980 (Figure 12).
	499B//
	103B
	104BPCME (2018) states the core features of the Electrodynamic® Probe Electrification are that the signal generated is unaffected by contamination on the sensor rod, operates on velocity range of between 8 m/s and 20 m/s and air temperature range from -20 °C to 50 °C.
	500BEDA model PCME STACK 980 had a certification range of 0-15mg/Nm3 and measurement capability of 0-500mg/Nm3.
	501BThe calibration of both PM concentration analyzers is done with a single point calibration applying a factor as given by Equation 2 (PCME, 2018).
	503BTo get the calibration factor, the same formula is applied considering the average of the instrument reading in the same period of when GS was performed.
	504BBoth analyzers perform self-quality checks to ensure reliability of the outputs. The PCME STACK 980 sensor includes automatic functionality checks to provide high quality assurance as a probe rod short-circuit check enable the operator to know when the sensing rod may be electrically shorted to the stack.
	505BThe PCME QAL 181 performs a span check every 15 min. During this test, it closes the reading from the process and reads only the channel. The result, expressed in percentage is equivalent to the material accumulated in the channel, not actually PM from the process. 
	506BCleaning on both sensors were performed once every month or when the span test from OSA reached results below 75 %.
	Emission mgNm3=Raw instrument reading ×Calibration factor          Eq.2
	507BThe Electrical low-pressure impactor (ELPI) from Dekati was chosen for the work performed on Chapter 7, due to the fact it offers a different measuring principle from the two online analyzers employed for the continuous monitoring at the stack under study, it is extractive and provides a real-time particle spectrometer for measuring airborne PSD and mass concentrations.
	508BIn the ELPI, after dehydrating the stream, the particles are charged to a known charge level and size classified in 14 size fractions ranging from 6nm to 10µm. All the impactor stages are electrically insulated which means that the produced electrical current at each stage is measured and discharged. This current is proportional to the number concentration, and consequently proportional to the mass concentration of particles on each stage when using the calculated density of the stream (Dekati, 2011).
	509BThe main specifications of the equipment are described in the Table 4. The flow to the equipment is fixed at 10 l/min so in order to reach the closest isokinetic setup the nozzle employed was 3.5mm. As already discussed by Mertens et al. (2014) the isokinetic sampling was not critical under the PSD range studied, but still an attempt was made to fit the closest nozzle to get isokinetic sampling with the fixed flow.
	513B0.006 − 10 μm
	512BParticle size range
	511B10 l/min
	510BNominal air flow
	515B0−90 % RH,
	518B10−35 °C
	517BAmbient temperature
	514B Ambient humidity
	516Bnon-condensing
	522B10 Hz
	521BSampling rate
	520B< 60 °C
	519BSample gas temperature
	523BNumber of channels electrically detected + pre-separator stage
	526B25 m3/h at 40 mbar
	525BPump requirements
	524B14
	530B200 W
	529B50−60 Hz,
	528B100−250 V
	527BElectric power
	534B3.5 kV +/- 0.5 kV
	533BCharger voltage
	532B1 μA
	531BCharger current
	535B
	Each impactor has a unique data sheet with the calibration specifications. For the equipment used in this research, the information is detailed in Appendix 10.1.
	536BThe stages were cleaned daily after sampling. The operation procedure is available in the Appendix 10.2. It was taken about one hour to clean and reassemble the equipment after a day of sampling.
	537BLeakage test were performed every time the impactor was dissembled for cleaning, e.g. daily. The procedure is available in Appendix 10.3.
	538BZeroing test was performed before each experimental run. The procedure is available in Appendix 10.4.
	105BThe interpolated minute average data from ELPI was recorded and each experiment had a duration of 13min (the period where was expected the plant to run stable after each change without compromising the productivity levels).
	106BThe data needed to be extracted and organized at the same temporal interval from the different sources. For instance, the raw data from OSA/EDA/ ELPI  and the plant distributed control system (DCS) were logged as interpolated minute average, while manual measurements were taken at beginning of the running and meteorological parameters from nearest meteorological station located at 1.2km far from the PT, in straight line. The last data set was only available on hourly average data (see Table 5). It was chosen to organize all the data in a minute-average way to improve the accuracy of the measurements and it was chosen to only take specific experimental periods where the process was assumed to be in stable operation (standardized production rates from 37 to 57t/h).
	107BTable 5 Mapping of potential parameters to be included in the analysis
	110BUnit
	109BParameter description
	108BType of parameter
	112Btext
	111BFertiliser grade
	114Btext
	113BDate
	116Btext
	115BTime
	119Bt/h
	118BOff-spec flowrate
	117BProcess parameters
	121B°C
	120BNP-liquor temperature
	123Bt/h
	122BFlowrate of salts
	125Bm3/h
	124BFlowrate of NP-liquor
	127Bkg/h
	126BFlowrate of NH3
	129Bt/h
	128BFlowrate of product
	131B°C
	130BTemperature of salts
	133B°C
	132BTemperature of mixer
	135Brpm
	134BMixer rotation
	137Brpm
	136BBucket rotation
	139B°C
	138BInlet temperature
	142B%
	141BInlet relative humidity
	140BManually sampled parameters
	144B°C
	143BInlet temperature
	146B%
	145BStack relative humidity
	148B°C
	147BStack temperature
	150Bm/s
	149BStack velocity
	153BhPa 
	152BAir pressure
	151BMeteorological parameters
	155B°C
	154BAir temperature
	157B%
	156BRelative humidity
	159Bmm
	158BPrecipitation
	161Bm/s
	160BWind speed
	164Bmg/m3
	163BELPI
	162BOutput of dust analysers
	166Bu/m3
	165BOSA
	168Bu/m3
	167BEDA
	539
	BFor the statistical analysis of data set it was used Minitab® 19 software and LRM, which models the relationship between categorical or continuous predictors and one response, to include interaction and polynomial terms, or transform the response if needed.
	540BThe industrial application investigated was a constraint in terms of which statistical approach could be employed due to sudden changes in process parameters to build potential experiments, what led to the choice of regression model.
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	544BAbstract
	545BThe increased need to accurately measure continuous fine particulate matter (PM) concentration at stacks is addressed in this work by evaluating performance of analyzers, electrodynamic (EDA) and optical scatter (OSA) in an industrial mineral fertilizer plant. The analyzers were installed at same stack where gravimetric sampling (GS) was performed to find calibration factors. The results show that OSA follows the process changes to a good extent and the calibration factors obtained varied on 0.5 standard deviations over products and seasons. EDA represents better sudden variations up to its operating range, but the calibration factors measured were over three standard deviation for the same product over different meteorological conditions but also under same meteorological and product conditions. EDA also presented an artificially high emission every 15 min due to intermittent steam injection in the stream. PM deposition on the sensors affects the reading on both analyzers but only OSA indicates it (span test result less than 75%). From the parameters here evaluated, OSA is recommended for industrial continuous monitoring of fine PM once provides feedback on the sensor condition and smaller effect of seasonal conditions and product grades.
	398BThe controlled experiment run where season and product type were kept as stable as the industrial operation allowed, showed that OSA did not provide a regression model (r-squared less than 11%), what shows that the sensor does not have sensitivity to such small variations but also is not affected by other sources of noise from the air stream.  On the other hand, EDA provided a model with 64.58% r-squared where still stream parameters have the higher coefficients as the case of relative humidity that had a coefficient 4.5 times higher than the second significant term in the model.
	546BMineral fertilizer plants usually employ Prilling Towers to get nutrients as Nitrogen, Phosphorous and Potassium bound together in the same granule with uniform particle size distribution (Yuan, et al., 2007). By 2018 there was a yearly production of ammonium nitrate/ calcium ammonium nitrate (AN/CAN) over the world of 62 million tons (IFA, 2019).
	 547BAs mentioned by Brechet &Tulkens (2009), the best available techniques should be the best from the Society`s point of view, not only in terms of private interests. In this sense, the recognized gravimetric sampling (GS) method provides an instant picture for the particulate matter (PM) concentration but it is not able to follow the process behavior or instabilities that can affect the air quality in the surrounding of the industrial plants.
	548BThe total PM concentration at industrial stacks can be generally measured by several different methods as GS (Kalaiarasan, et al., 2018), conventional or diluted GS (England, et al., 2000), cascade impactor technique (Ehrlich, et al., 2007) (Muller, et al., 2012), optical scattering and electrification diffusion charger (Koval, et al., 2018) (Wozniak, et al., 2018) (Sullivan, et al., 2018). For each specific application, parameters as stack diameter, estimated concentration and particle size distribution, type of gas cleaning equipment, flow conditions as temperature, relative humidity and velocity must be analyzed to get the best possible result from the analyzer. Even with many commercial analyzers available, no literature was found to the author’s knowledge that tackle reliability and operability of such equipment in industrial environments. For instance, Ehrlich et al. (2007) sampled many industrial stacks using a manual cascade impactor technique, but no correlation was possible to be performed between the results with process or environment changes.
	 549BLingling et al. (2017) studied a gas-liquid crossflow array system to remove fine particles measured concentration with a Welas® digital 2000 (Palas GmbH) device with a series of probes sampling isokinetically. The relative errors between the calculated values and the actual values were below 5%. Besides applying online measurement, the authors kept PM concentration fixed, due to the purpose of their work. 
	550BSullivan et al (2018) points out limitation of available technologies as the typical assumption of particles are spherical, so the transmission bias of all such inlets against no spherical particles, which diverge more from the inlet’s centerline than spherical particles do. This particle detection event can also trigger the firing of the laser beam.
	551BWith the purpose of reducing the knowledge gap on online industrial monitoring of fine PM, this project aims to evaluate the performance and challenges faced by two distinct online PM analyzers in a mineral fertilizer industrial Prilling Tower over time, calibrating it with several GS measured under different product composition and season in Northern Europe.
	552BThis work was performed at an industrial fertilizer plant, where over 40 different recipes of AN/CAN (Nitrogen, P2O5 and K2O) are currently produced, during summer/ fall season. The process is based on reaction from phosphate rock and nitric acid and after some separation steps the called mother liquor is mixed with potassium chloride and ammonia (also some formulas take small amounts of other nutrients source), generating a melt in high temperature which is pumped to a centrifugal bucket with small holes inside the Prilling Tower (Hussain, 2012). As showed on Figure 13, the AN/CAN melt falls in the tower and is cooled down by ambient air in counter-current flow. The prills go to the bottom of the Prilling Tower and then to the size classification process, while the PM is carried over to the top of the Prilling Tower and flow through six fans installed each one in a stack.
	553B/
	554BThe procedure was done according to EPA standards of performance for new stationary sources (EPA, 2018). To avoid decomposition of ammonium nitrate, after the sampling period, the samples were left to cool down at silica gel desiccator for 30 min and then taken to the oven at 110 °C for 1 h.
	555BThe stack had a total height of 25,000mm and diameter of 1,700mm with the sampling point located 20,000mm above the top of the PT. The sampling point was located 12 diameters over the PT top and 3 diameters below the gas stream exits to the atmosphere.
	556BThe stack under analysis was sampled in 8 points to get isokinetic velocity, temperature profiles and PM concentration (EPA, 2018). The range of main parameters is showed in Table 6, where can be seeing large variations due to meteorological conditions in the region where the study was conducted once the ambient air employed receives no pre conditioning before its use in the process as showed in Figure 29.
	557BGS was performed minimum 3 times for each production batch to evaluate potential variations over time but also twice in the same day to evaluate repeatability and reproducibility of the method.
	558BThis section shows the details about the two instruments employed and how they are calibrated.
	559BOne of the chosen PM analyzers was electrodynamic PM analyzer (EDA) from PCME Ltd. (now called ENVEA UK) prospect, model STACK 980. 
	560BThe operating manual from the supplier PCME (PCME, 2018) states the sensor uses unique and patented Electrodynamic® Probe with electrification technology. The instrument measures the current signature created by particles interacting with the sensing rod in the stack.  The sensor extracts a specific frequency band of this signal and electronically filters out the DC current caused by particle collisions.
	561BPCME (2018) states the core features of the electrodynamic® probe are that the signal generated is unaffected by contamination on the sensor rod (which may cause signal drift issues for other systems), not affected by velocity variations within typical bag filter velocity ranges (of between 8 m/s and 20 m/s) and the air temperature range could be from -20 °C to 50 °C.
	562BThe second analyzer selected from PCME Ltd manufacturer (now called ENVEA UK) prospect was the optical scatter PM analyzer (OSA), model QAL 181.
	563BAccording to PCME (2018), the QAL 181 utilizes an improved forward-scatter technique ProScatter® featuring patented options for enhanced reliability. 
	564BAs particles travel through a beam of light, each particle scatters light in all directions with the strongest intensity of light being scattered in a forward direction. The beam of laser light then continues through a concave mirror to the beam dump.
	565BThe forward-scattered light collected by the concave mirror is then focused onto a quartz rod where the light is transmitted towards the light detector positioned within the electronic enclosure located outside the stack. The amount of light detected is proportional to the particulate concentration and calibration is also based on one manual isokinetic sampling.
	566BThe calibration of both PM concentration analyzers is done with a single point calibration applying a factor as Equation 3 (PCME, 2018).
	568BTo get the calibration factor, the same formula is applied considering the average of the instrument reading in the same period of GS.
	569BBoth analyzers perform self-quality checks to ensure reliability of the outputs.
	570BThe PCME STACK 980 sensor includes automatic functionality checks to provide high quality assurance as a probe rod short-circuit check enables the operator to know when the sensing rod may be electrically shorted to the stack. 
	571BThe PCME QAL 181 performs a span check every 15 min. During this test it closes the reading from the process and reads only the channel. The result, expressed in percentage is equivalent to the material accumulated in the channel, not actually PM from the process. According to the PCME (2018) when span test reaches results below 75 % it is needed to perform inspection/ cleaning.
	572BIt was performed 34 GS campaigns during one year, from August 2018 to July 2019 by 2 operators and under 11 different product grades. A complete design of experiments was not possible to be performed due to the challenges of industrial sampling under unstable conditions as well as the seasonal product grades, which are defined by demand from the market, according to the region and type of nutrients required by the different crops.
	573BWilson et al. (2002) highlighted that the measurement of volumetric flow in the stack can itself be a source of error up to 30%, due to the human factor. So, to evaluate the human factor as a potential source for errors in the gravimetric sampling, it was employed the test for equal variances, once the data was normally distributed. 
	Emission mgNm3=Raw instrument reading ×Calibration factor          Eq.3
	574BFigure 15 shows that both operators have performed sampling according to an adequate standard once the corresponding standard deviations are mostly in the same range as the blue lines are overlapping each other. Besides that, the p-value obtained from the database was 0.988 what means that the the standard deviation from Operator 1 was 98.8% similar to the one obtained from Operator 2. 
	575B/
	576BIt is observed although, that the range obtained from Operator 1 is wider than the one from Operator 2, indicating that the last one is performing a more systematic work.For this analysis, it was excluded four data sets where the plant was operating with an extra source of fine dry product dust to the stack during fall. The extra emission was not coming from the prilling tower itself but from the dedusting system from the plant.
	577BIn Figure 16 it can be seeing that PM concentrations are higher during summer for all products studied and lower in wintertime, what is due to the use of ambient air without pretreatment to the prilling tower. In winter time the cold air makes the droplets to solidify faster into prills reducing the PM concentration, as Shirley et al. (1996) observed. Ideally, the PM monitoring instruments should be able to follow this trend in an extent that calibration factors would be the same over seasons what is not observed as per Figure 16. Here the effect of seasons in each instrument reading is presented in terms of standard deviation. EDA shows up to over 4 standard deviations than OSA among seasons and a consistent trend about 67% overestimated emissions from one season to the next (winter to fall) in Northern Europe. OSA wider variation identified was about 40%, from fall to winter/summer.
	21B/
	578BWhen sampling different product types it can be expected to have variation between calibration factors as presented on Figure 18. For instance, OSA reading is influenced by the optical and reflective properties of PM under study (Koval, et al., 2018) (Sullivan, et al., 2018).
	579BThis study proved to consistent with the known phenomena once the standard deviation found among products was 0.5 from product 1 to product 10. EDA presented standard variation of 3 from product 3 to product 11 what could be due to the particles being charged electrically and interacted with the probe in distinct intensities.
	580B/
	581B/
	582BAfter having performed the GS campaigns, the calibration factors from each period were applied to the database collected from the online PM analyzers. It can be seen from Figure 19 that results from the OSA vary from no emission up to over 70 mg/Nm3, giving realistic results, during a tested period of over 30 days. The peaks occurring approximately every 8h correspond to the start-up of the plant after a cleaning stop performed every working shift. Also, a higher emission level was measured in one of the start-ups (hour 504). 
	583BThe span test results for the period under study are showed in Figure 20, when between cleaning intervals, the test got values lower than 80, so the data collected during this period was discarded from the database.
	584BUnlike the OSA, EDA showed results as per Figure 21 from no emission until above 5,000 mg/Nm3. These results are not realistic, once no change was identified on process/ environment parameters during that time that could lead to higher emission levels. Besides that, plumes with such low particle size (90% particles with less than 1 µm measured by electrical low-pressure impactor from Dekati) are highly visible during sun light as other authors have demonstrated (England, et al., 2013) (Abreu, et al., 2007) (Presotto, et al., 2005).
	585B/
	586B/
	587BThe span test for the EDA was also performed automatically and always returned value of 100%, with no indication of disturbances or problems in the sensor, but when inspected on hour 315, the sensor rod had significant layer of material build-up. Once the rod was cleaned, the output results returned to current range of reading (from hour 315 on Figure 21).
	588B/
	589BPCME (2018) states the sampling probe on EDA is not affected by product scaling on the surface, so to test this statement, an analysis of the period when both sampling probes were dirty (span test for the OSA less than 80%) was performed.
	590BDuring inspections and cleaning it was observed that the part of the instruments exposed to the process conditions were having layers of material incrusted on their surface as showed on Figure 22 and Figure 23. Both analyzers studied presented the same level of material accumulated on its surface. Based on this fact, the EDA results from the period the span test on the OSA showed values lower than 80% were discarded from the database, due to potential lack of reliability.
	29B(b)
	28B(a)
	32B(b)
	31B(a)
	591BIn the period showed on Figure 24, the start-up of the plant generated high PM concentration levels for about 30min and both sensors have indicated at. Once the process was under stationary regimen again, EDA still presented peaks occurring every 15 min, while on the OSA no disturbance was noted on the same period. 
	592B/
	1140BFigure 24 Online analyzers output during start-up of the plant.
	593BThe origin of the peaks was investigated further in the process upstream the stack. Going through the control monitoring system in the plant, it has being identified that the only change occurring in the same frequency of the peaks found in Figure 25 was the injection of medium pressure saturated steam to the centrifugal bucket, inside the tower, in order to keep it clean, every 15 min. Colver (1999) describes the use of electrostatic charging in liquids to detect the void fraction of bubbles. Such probes respond to the difference in conductivity of the liquid-gas phases. The author also highlights the polarization effect, which creates a signal of opposite charge, diminishing the current. To confirm this hypothesis the automatic steam injection was stopped for about one hour.
	594BAs a result, the trend on Figure 27 shows that the steam injection was the source of disturbances for the EDA. Just one manual steam injection was performed at the beginning of the test and the emission went up to 70 mg/Nm3 for about 2 min, but then went back to normal range with average of 8.5 mg/Nm3 for the rest of the period. 
	595BThis observation helps to understand also why the PM concentration peaks found on start-ups of the plant were around of 10 times higher in EDA as in OSA (as per Figure 19 and Figure 21). The presence of steam from the cleaning and change on the gas media composition could have been read as PM concentration from EDA.
	596B/
	597BOnce the source for the disturbance on the EDA reading was found, in the next calibration campaigns the injection of steam was kept as low frequent as possible to avoid further interferences on the data analysis and calibration factors obtained.
	598BThe influence of sudden changes on PM concentration was analyzed for a period of 140 h during an event occurring in the industrial plant with simultaneous GS. It can be seeing from Figure 26 that EDA followed the sudden increase to PM concentration to the level of 450 mg/Nm3. Although OSA shows sudden increase on the same period, the values measured vary only from 2 to 13 mg/Nm3. Considering that GS in the period between hour 60 and 120 measured 558mg/ Nm3 and in the period 125 to 140 measured 49 mg/ Nm3, it can be observed that reading from EDA was more consistent.
	599BOne potential reason for this phenomenon was found to be the range of operation of EDA (0-500 mg/Nm3) while OSA has a smaller operation range (0-300 mg/Nm3). Furthermore, the area covered by the laser on OSA is much smaller than the probe surface on the EDA and therefore could be obstructed easier by sudden high amount of dust.
	1141B/
	600BEvaluating the performance and challenges of continuous fine PM concentration measurement in an industrial application it can be concluded that both analyzers can follow variations in the process if they are kept clean, what is easier to be diagnosed on OSA since it shows the need for cleaning through the span test results. In terms of response, for sudden huge changes in PM concentration at the stack the EDA represented better and faster the process behavior while the OSA presented normal output what can be due to the difference between the reading range of the instruments. A limitation observed on the EDA is that it cannot be applied in processes that have constant saturated steam or water presence considering the artificial high emission outputs it shows on those situations. In this specific case here studied, a logic system could exclude the non-realistic results from this short period of cleaning steam injection once there is a defined interval and duration. The build-up of product influences the reading of both analyzers, leading to need for cleaning between 15 to 30 days of operation in fall, what can be reduced with more efficient clening methods once here only compressed instrument air was employed at a flow rate of 60l/s. The calibration factors generated by GS for OSA presented up to 0.5 standard variation over both seasons and products while EDA was much poorer with up to 4 standard deviation over seasons and 3 standard deviations among products. These findings highlight the challenge of continuous PM concentration monitoring in mineral fertilizer industry for compliance purposes, where the standard is GS, being optical scattering the most promising technique once it follows the process changes over time, under estable operation and provides feedback on the condition of the sensor.
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	170BAbstract
	604BUltrafine particles are object of main health concern, but its concentration is challenging to be continuous monitored due to presence of semi volatile components under different meteorological conditions around industrial processes. This paper shows the development of an empirical regression model correlating the ultrafine particles concentration measured by two continuous analyzers, electrodynamic (EDA) and optical scatter (OSA) with meteorological and process parameters. The analyzers were installed at stack of an industrial plant and data was collected over 4 seasons. The results showed that EDA have no correlation with process or meteorological parameters (r-squared less than 10%) what can be caused not only by particles not being charged evenly on the stream but also the better accuracy for particles over 10µm, as previous studies had suggested. The OSA ultrafine particles concentration model showed r-squared of 45% and strong correlation with meteorological parameters and raw material feed. The model presented and standard error of 0.21 mg/Nm3, which is considered adequate for industry compliance purposes. OSA shows promising application for ultrafine particles monitoring if the influence of particle characteristics under industrial operation is considered and meteorological parameters are included, as already in practice for ultrafine particles monitoring outdoors. 
	605BKeywords: Continuous dust analyzers; forward scattering; electrodynamic effect; ultrafine particles; regression model; mineral fertilizer
	607BStudies of the size and composition of atmospheric particulate matter (PM) have demonstrated the usefulness of separating them into its fine and coarse components (Wilson, et al., 2002) especially when evaluating the health impact of PM, as worldwide epidemiological studies have shown. The human exposure to respirable PM is correlated with an increase in cardiac and respiratory morbidity and mortality (Dhananjayan, et al., 2019) 
	608BCombining the transient nature of UFPs with stricter regulations in place from WHO (Team, 2006) regarding concentration level of called PM1 (PM with diameter below 1000nm) being reviewed and intended to be published in 2020 the need for accurate continuous monitoring of these type of PM with existing methods and equipment is urgent to be evaluated and validated.
	609BThe approach here employed was to identify which meteorological and process parameters could potentially influence the UFP emission or the reading of those instruments, defining a system which includes inlet and outlet parameters of the prilling tower under study.
	610BThe potential variables were defined based on prilling related literature (Séquier, et al., 2014), (Hussain, 2012), (Couper, et al., 2012), (Yuan, et al., 2007), (Partridge, et al., 2005), (Wong, et al., 2004), (Shirley, et al., 1996)) and listed in Table 7. For instance Shirley et al. (1996) have applied quick freezing to prilling of ammonium nitrate, urea, and potassium nitrate to improve cooling, reducing the air flow needed while obtaining the same or increased production rates while Partridge et al. (2005) studied the effect of liquid dynamic viscosity, rotation rate and orifice size in laboratory and pilot scale PT concluding that the increase on the rotation rate generates a decrease of primary and secondary droplets.
	611BAlso, Sequier et al. (2014) when prilling molten lipids, have obtained spherical prills when adjusting prilling melt temperature and have observed coalescence of liquid droplet during their fall, what they assumed was caused by turbulence into the air column. 
	612BTable 7 Data set employed to build the model
	613B
	The flow rate of raw materials fed to the PT was collected from the Distributed Control System (DCS) and included in Table 7,  which will be the base for building the UFP model. These flow rates (salts to PT, liquor to PT, off-spec flow to PT and ammonia gas to PT) change over time due to the recipe of fertilizer under production and can affect the emission of UFP.
	614BThere are standard and reliable methods to measure concentration for PM10 and for PM2.5 (±10% error for PM2.5) yet not continuous, developed and validated (Wilson, et al., 2002) but per authors knowledge nothing similar is available for UFP. Studies concerning UFP shows a difference between methods (light scattering and personal gravimetric samplers) at a factor of 2.23, for instance in an in-mine application (Thakur, 2019).
	615BGalvão et al. (2018) when studying trends in analytical techniques applied to particulate matter characterization highlighted the importance of the knowledge of particles properties, sampling even in a controlled environment as the laboratory. 
	616BThe measurement of semi volatile UFP, for instance, is discussed by Wilson et al. (2002) specially in the case of sulfates and nitrates where the concentration and composition changes due to the process but also to the location and season.
	617BSeveral industrial plants produce over dozens of different types of fertilizer with frequent changeovers between recipes, sometimes a batch production of less than 24 hours. This means that the shape, color, mass, density and composition of nutrients e.g. can also change over time what makes continuous monitoring of this UFP challenging.
	618BThe commercially available PM analyzers are based mainly on two principles, electrodynamic and optical trap or scatter (Sullivan, et al., 2018). The electrodynamic diffusion charger (EDA) traps charged aerosol particles by balancing the aerosol particle in an electric field. This stable trap is sensitive to changes in mass. The trapping capabilities of the EDA do not depend on particle shape, and thus the EDA should not be restricted to spherical particles as is the OSA trap. On the other hand, OSA trap uses a laser beam passing through the flow creating an optical trap. OSA can trap smaller particles up to hundreds on nanometers.
	619BModelling experimental data is widely used as presented inFigure 27, however few papers deal with particulate matter. From 6121 research papers from 2010 until 2020, just 8 were found to be related to stationary sources, from those only one is regarding UFP or PM less than 1µm (Elsevier, 2020). These figures show the gap between the stricter regulations by WHO and governmental agencies over the recent years and the level of maturity on this research field.
	620B/
	621BConsistent with the technology scenario described, this paper aims to develop an approach to address the challenges found when monitoring continuous UFPs concentration in industrial processes, by developing empirical models based on regression, for two distinct online analyzers installed at stack of a fertilizer industrial plant, correlating the UFP concentration to process and meteorological parameters over four seasons in Europe. Finally, there will be evaluated if the method current in use for UFP ambient monitoring can be applied to industrial stationary stacks.
	622BThis work was performed at an industrial fertilizer plant, where more than 40 different grades are currently produced. The potential set of candidate variables included both process and meteorological parameters. The particle characterization was performed with ELPI+ and the concentration at the stack monitored with both optical scatter and electrodynamic trap techniques.
	623BThe results from four seasons monitoring was examined employing Minitab 19@.
	624BThe process is based on reaction from phosphate rock and nitric acid and after some separation steps the called mother liquor is mixed with potassium chloride and ammonia (also some formulas take small amounts of other nutrients source), generating a melt in high temperature (over 140°C) which is pumped to a centrifugal bucket with small holes inside the PT (Hussain, 2012). As showed in Figure 28, the melt droplets fall in the tower and are cooled down by ambient air in counter-current flow. The microspheres go to the bottom of the PT and then to the size classification process, while the UFP is carried to the top of the PT by six fans connected to their respective stack. The analyzers were installed at the same position where gravimetric sampling takes place.
	625B/
	626BIn order to characterize the PM emissions from stack, ELPI®+ (Dekati, 2020) was employed, once it can provide online concentration and PSD changes in the continuous process and still keep samples in 14 different stages (particle size range from 10µm to 0.01µm) to be further analyzed to estimate its composition. The aluminum foils were pre-greased to avoid re-entrainment for the next stages.
	627BA design of experiments was performed (second order with middle point) with a grand nine tests each with duration of 13min under same product but different meteorological conditions to evaluate the PSD of the emissions at stack. The concentrations are expressed in mass.
	628BTo collect enough material to chemical characterization a test was performed under stable operation until the impactor ELPI+ was full (the pressure drops over the impactor can no longer be kept under 35mbar). The aluminum foils from each of the 14 stages was analyzed with SEM/EDS (scanning electron microscopy / energy dispersive x-ray spectroscopy) and elements as oxygen, nitrogen, carbon, chlorine, silicon and fluorine could be determined. The method was also employed to search for the origin of the PM, for instance if the UFP collected had the same composition as the product or could originate from reactions in gas phase.
	629BTwo continuous monitoring sensors from PCME (2018) were installed at stack, being optical scattering analyzer (OSA) model PCME QAL 181 with certification range of 0-15mg/Nm3 and measurement capability of 0-300mg/Nm3  and electrodynamic analyzer (EDA) model PCME STACK 980 with certification range of 0-15mg/Nm3 and measurement capability of 0-500mg/Nm3. The certificate range is the range in which the instrument is approved for compliance purposes.
	630BTo develop the model, data from three different sources was collected. The DCS (Distributed Control System) from the plant operation, meteorological data from the closest meteorological station and finally the output from two continuous dust analyzers (OSA and EDA).
	631BMeteorological data such as temperature, wind speed, relativity humidity (RH) and precipitation were collected from the nearest meteorological station (1.2km far from the stack monitored in straight line). The results were available in hour average basis. There were employed 6,215 complete hourly data sets, representing 344 days from May 1st, 2018 to April 10th, 2019. 
	632BFor the statistical analysis of data set it was used Minitab® 19 software was used and mainly regression, with models the relationship between categorical or continuous predictors and one response, to include interaction and polynomial terms, or transform the response if needed.
	633BThe industrial application investigated was a constraint in terms of which statistical approach could be employed due to sudden changes in process parameters to build potential experiments, what led to the choice of regression model. Potential interactions between parameters can be lost on this approach but the data set collected over 4 seasons can still provide a robust model.
	634BThe main statistical indicators considered here will be coefficient S (standard error in the regression) measured in absolute numbers and complementary to that r-squared which is the percentage of response variation explained by a linear model.
	635BThe significance of parameters will be given by p-value which one determine the significance of the results, based on the hypothesis of at least 95% of the data set can be explained by the model proposed (p-value ≤0.05).
	636BA residual is the vertical distance between a data point and the regression line. They will be employed here to analyze how close is the fit of the linear model to the dataset and if their distribution is random above and below the zero line what means there is only error left in the model and all relevant parameters were included.
	637BThe results from the particle size and chemical composition of UFP are presented followed by the best regression model found for each dataset correlating process and meteorological parameters to the concentration measured by OSA and EDA.
	638BFrom the background available on the transient behavior of fine PM, the first task of the project was to characterize the aerosol under study. The result is presented in Figure 30. The PM has a monodisperse distribution with a median of aerodynamic diameter of 1.23µm from nine tests performed. The particles smaller than 1.24µm represent 78% of the mass distribution. When taking into account the number of particles, up to 93% of particles are smaller than 0.75µm leading to classify them as ultrafine particles (Soysal, et al., 2017).
	640B/
	641BSamples of the PM collected over a long test (5h sampling) were taken to SEM/ EDS in order to determince their composition, although only stage 1.24µm gave significative results. The other stages contained very small amount of sample, even after 5h sampling time, that was not possible to determine its concentration.
	642BFigure 31 (a) shows the foil under study. One of the agglomerates is showed on Figure 31(b) with 180 times magnification and a further increase to 1500 times magnification is presented on Figure 32 which one shows  3 different types of particles, marked as A, B and C. There is a region where the main area is covered by gray particle agglomerates (A). In the center of the image there are some potential single light-gray particles (B) and next to it some white agglomerate (C).
	643BThe chemical composition of the UFPs presented on Table 8 suggests that the main component here is ammonium nitrate what is in accordance to the effective density parameter inputted in the ELPI+ (area A). Area B has composition that potentially can be ammonium fluoride (FNO3) and silicon tetrafluoride (SiF4) in addition to the carbon, what can be originated from the grease applied to the foil, to avoid particle re-entrainment, while area C shows the white crystal of ammonium chloride aggregated to a ammonium nitrate particle. In this area, the shape and color are similar to this crystal’s description from the literature.
	 644B//
	                         645B(a)                                                                             (b)
	646BFigure 30 (a) Stage 1.24µm aerodynamic diameter support, aluminum foil, substrate and UFPs. (b) Magnification of 180 times of one of the UFP agglomerates.
	647B/
	648BAluminum is excluded from the detected elements on Table 8 due to the aluminum foil (substrate). Besides that, no source of Aluminum is used in this plant. Later, the presence of Carbon was found to be due to the grease applied on the aluminum foil to ensure attachment of particles to the foil surface and avoid re-entrainment.
	649BWith the knowledge of the product composition under handling in the prilling tower having 21% nitrogen, 11% potassium, 6% phosphorous and 4.4% sulfur, no correlation was found with UFPs composition what leads to conclude that most part of the emissions come from the reactions in gas phase, once no phosphorous neither potassium was found on the chemical mapping of the emissions. Also, ammonium nitrate can evaporate, under equilibrium up to 50% of its mass, in size ranges from 1 to 2.5µm while ammonium sulphate up to 25% of its mass under same conditions (Wilson, et al., 2002), leading to potential large deviations when comparing concentration measured using ELPI+ with gravimetric sampling.
	171BWhen correlating the process and meteorological parameters with the output of EDA, the best correlation result obtained was when employing Box-Cox transformation. This transformation employs an exponent, lambda, which varies from -5 to 5 and the optimal value is the one which results in the best approximation of a normal distribution curve. The optimal lambda found was equal to -0.40. The best results for transformed response were S at 0.28 mg/m3 and r-squared of 9.49%. Table 9 shows the model coefficients found. Parameters as liquor and salts flow to PT, mixer rotation, bucket rotation and wind speed are not significant by the criteria here applied (significance level of 5%).
	172BThe resulting model can then be written as per Equation 4 including only the significant parameters.
	173BTable 9 Terms included in the EDA PM concentration model with significance level 
	652BP-Value
	651BCoefficient
	650BTerm
	655B0.208
	654B-1.220
	653BConstant
	658B0.333
	657B-0.000248
	656BLiquor to PT
	661B0.013
	660B0.000680
	659BNH3 to PT
	664B0.480
	663B-0.000237
	662BSalts to PT
	667B0.044
	666B0.001303
	665BOff-spec flow to PT
	670B0.728
	669B0.000017
	668BMixer rotation
	673B0.975
	672B-0.00003
	671BBucket rotation
	676B0.004
	675B0.000295
	674BLiquor temperature
	679B0.040
	678B-0.000123
	677BMelt temperature
	682B0.000
	681B0.010916
	680BAir temperature
	685B0.000
	684B0.04463
	683BPrecipitation
	688B0.359
	687B0.00135
	686BWind speed
	691B0.000
	690B0.003288
	689BRH% (relative Humidity)
	692BThe standardized effect of meteorological parameters for EDA PM concentration model accounts for most of significance in the model (Figure 33). The reference line for the case when all the effects are null was found to be 1.96. The air temperature is by far the most significant parameter in the model, followed by RH% and precipitation.
	693B/
	694BOnly two process parameters have significance over the reference line, being liquor temperature and NH3 flow, what is not consistent to behavior found by other authors as Sequier et al. (2014), Couper et al. (2012), Yuan et al. (2007), Wong et al. (2004) and Shirley et al. (1996).
	695BOnce there is data available for the ambient air from the nearest meteorological station, not in the stack itself, it remains the question on if is RH% influencing or not the output of EDA.
	174BThe analysis of residuals (Figure 34) shows the difference between predicted values by the model and measured results. The residuals are basically dispersed in the range of -1 to +1. By employing the calibration factor of 5.45 mg/Nm3 to u/m3 (which is the raw reading of the sensor EDA) the concentration variation is between 0 to 20 mg/Nm3, what can indicate that some parameter is missing in the analysis. (Lee, et al., 2008).
	696B/
	175BBased on the literature studied when building the model, no potential relevant variable was left aside that could explain such a poor fit of the model besides what was already mentioned for Figure 34 regarding the meteorological parameters monitored from the closest station.
	176BSullivan et al. (2018) point out that the electric field strength required to stably trap the particle provides an accurate real-time measurement if the charge state is known although tests for single particles have being performed only on the range greater than 10 µm in diameter. No similar study was found for UFPs by the knowledge of authors.
	697BThe best regression model for OSA PM concentration was obtained by Box-Cox transformation with lambda equal to 0 (natural log) where the standard error found was 0.72 (equivalent to 0.22 mg/Nm3) and r-squared equal to 45.25% what can be considered promising results once in this process under study BAT emission is 5mg/Nm3 (Fertilizers Europe, 2000) and the standard error here found is equivalent to only 4.4% over the whole year monitored.
	698BAlso, the inclusion of the constant term in the model ensures that all non-explained effects are considered. When not including the constant term in the model the r-squared for the same data set would be 96.34%, although not realistic. Once no such model has been found in the literature, a comparison was made with authors studying ambient air modelling. Padoan et al. (2017) for example, found a r-squared of 74% when modelling road dust emissions with a much smaller data set while Xu (2018) found 60 to 80% r-squared using dust aerosol optical depth with PM10 results and Sieniutycz & Szwast (2018) with neural networks were able to predict PM10 with 75 to 86% r-squared and Denby et al. (2016) found r-squared of 28% when modelling PM10 in salt road emissions.
	699BThe coefficients obtained for OSA PM concentration model as a function of both process and meteorological parameters, are showed in Table 10.
	700BP-value for NH3 flow to PT, mixer rotation and precipitation were over 0.05 so they are not considered significant by the criteria here applied and the model can be written as per Equation 5.
	701BThe precipitation can be a contributor factor to RH% which one was significant in the emissions model for OSA, but not on its own, probably because of its irregular distribution over the area, once the weather station is located 1.2km far from the stack monitored. Besides that, the year under analysis presented a dry summer with no precipitation, what can be interpreted in the model as a constant parameter. The same applies to NH3 flow to the PT and the mixer rotation, once its little variation over time makes them not relevant for the model.
	704BP-Value
	703BCoefficient
	702BTerm
	707B0.000
	706B16.69
	705BConstant
	710B0.000
	709B0.007973
	708BLiquor to PT
	713B0.441
	712B-0.000552
	711BNH3 to PT
	716B0.000
	715B-0.015599
	714BSalts to PT
	719B0.057
	718B0.00323
	717BOff-spec flow to PT
	722B0.549
	721B0.000077
	720BMixer rotation
	725B0.000
	724B-0.01627
	723BBucket rotation
	728B0.028
	727B0.000591
	726BLiquor temperature
	731B0.000
	730B0.000762
	729BMelt temperature
	734B0.000
	733B0.08369
	732BAir temperature
	737B0.275
	736B0.0223
	735BPrecipitation
	740B0.020
	739B0.00893
	738BWind speed
	743B0.000
	742B0.007250
	741BRelative humidity (RH%)
	744BThe transformation used to normalize the dataset when building the model seems to be adequate as can be seeing in Figure 35, where the red line is the model and the black triangles represent the residual when applying the model to the experimental results, if considered that this is an industrial application, not a controlled environment. 
	177B/
	45BThe residuals presented a random distribution (Figure 36) what led to conclude the model has included most relevant parameters in the process, in the whole period, besides during fall and winter where there is a trend to underestimate PM emissions. 
	178B/
	179BThe residuals appeared to higher than for EDA (Figure 34) but the magnitude order is different once for OSA the correlation to mg/Nm3 is about 0.3 times while for EDA is 5.45 times. 
	180BWinter is a challenge for the model once during this season there is a trend of underpredicting the emissions. This behavior could de due to the gases thermodynamic properties. Winter time in northern Europe present often negative temperatures with low RH% and lower gas viscosity, leading the gas stream to have particles less agglomerated freely moving that could affect the sensor capacity to measure this very small UFPs considering that the wavelength of the optical sensor  on OSA is 650nm.
	745BFigure 37 shows that both process and meteorological parameters are included and relevant for the model. The reference line when all effects are null was found to be 1.96.With basically same behavior as found for EDA, the air temperature is by far the most significant parameter on the model, but here also the raw materials flow to the PT are showed as responsible for UFPs concentration showing that the optical sensor was able to measure this contribution.
	746B/
	747BGong et al. (2018) states that optical scattering have developed enough to be applied on understanding UFP changes in the environment they are inserted and Mitchem & Reida (2008) have studied the use of optical sensor to manipulate and characterize single particles in the range of 1 to 10µm.
	749BOn the other hand, the model designed employing all potential variables mapped and the OSA output presented a standard error of 0.22mg/Nm3 and r-squared of 45.25%, equivalent to best models found in literature for ambient air application. The most relevant parameters in the OSA concentration model were air temperature, salts flow to PT, RH% and liquor flow to PT, respectively.
	750BParticulate matter in the process studied was classified as UFPs and it was observed that its composition differs significantly from the product under handling due to reactions in gas phase producing mainly unstable ammonium nitrate, ammonium chloride, ammonium fluoride and silicon tetrafluoride.
	751BThe current official methods employed to evaluate the calibration of continuous PM concentration sensors for stationary sources as gravimetric sampling is limited when dealing with UFPs. The actual concentration levels can be higher due to the instable compounds present so the use of equipment’s with principles such ELPI+ should be adopted in addition to gravimetric sampling.
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	1146BAbstract
	752BAmong the processes that generate emissions of ultrafine particles (UFP) whose are known by their high potential to cause brain diseases when inhaled, the prilling towers have a significant contribution, once those processes use flow rates up to 10 times higher than other dryers. From the monitoring perspective, UFPs are generally instable and volatile (as the case of sulfates and nitrates) making its mass concentration hard to measure, especially if continuous mass monitoring is required. With this background, a controlled experiment was performed in an industrial fertilizer prilling tower to evaluate a potential methodology for continuous UFP monitoring in those environments. The dust emission was measured at stack of the prilling tower by two commercial continuous particulate matter instruments (optical scatter and electrodynamic diffusion charger) and the electrical low-pressure cascade impactor (ELPI), while running a second order design of experiments (DoE) and monitoring both meteorological and process parameters. Linear regression models were built for the three measuring techniques compared, but once raw material flows and meteorological parameters were kept stable, the commercial sensors did not provide accurate results. ELPI analyzer output presented a model with adjusted r-squared of 94.13% and a standard error of 0.02 mg/m3. The ELPI shows potential to be used as calibration device to other in-situ continuous dust monitoring when dealing with UFP if the methodology here proposed is applied. The continuous monitoring can be then implemented in the industries and optimization of the parameters performed to reduce the emission of UFP to the environment. 
	1147BKeywords: Design of experiments; ELPI; Ultrafine particles; Industrial fertilizer; Continuous monitoring.
	181BCurrently, the high-quality fertilizers are produced by prilling or granulation to get all the nutrients bound together granules or prills with high uniformity degree. This industry segment produced around 62 million tons of fertilizer based on ammonium nitrate (AN) in 2018 (IFA, 2019). The particulate matter (PM) emitted by those plants consists mainly of particles in the range of 0.1 to 2.5µm, called ultrafine particles (UFP) (Fahlman, 2007).
	182BIn the ambient air UFP can be inhaled, get to the lungs and to the blood system, what can cause degenerative brain diseases, as such Alzheimer, Parkinson and Huntington (Maher, et al., 2016) (Win-Shwe & Fujimaki, 2011) to such an extent of concern that the World Health Organization (WHO) works in a new guideline for concentration of particulate matter with a diameter smaller than 1µm (PM1.0).
	183BIn previous research by Krauss & Aguiar (2019) the challenges of continuous monitoring of UFP on industrial prilling towers were evaluated and the authors observed that the calibration of the sensors employing the usual gravimetric sampling (GS) methodology (EPA, 2019) provided inconsistent results over time, due probably to variations associated to transient and volatile UFP present at stack.
	184BLater the authors employed regression models (Chapter 6) to correlate the reading of the continuous monitoring sensors to process and meteorological parameters, as employed for ambient air studies (Kalaiarasan, et al., 2018) (Dias, et al., 2016) (Li, et al., 2017), (Tchepel, et al., 2012), concluding that for optical scattering the raw materials did have some influence on the UFP mass concentration as expected but the main parameter impacting was the air temperature fed to the tower. On the other hand, the electrodynamic principle had output severely affected by relative humidity and presence of droplets in the stream, not qualifying for long term continuous monitoring.
	185BBased on the explained above, the goal of this project was to propose and test a methodology under industrial conditions to continuously measure and calibrate the UFP concentration employing ELPI associated with commercial continuous monitoring sensors.
	186BKnowing beforehand that an industrial process is subject to many variations over time a design of experiments was employed associated with measuring and monitoring of both meteorological and process parameters. At the same time, PM concentration was measured using three different techniques, forward optical scattering (OSA), electrodynamic diffusion charger (EDA) and electrical low-pressure cascade impactor (ELPI). 
	187BA typical process flow diagram of the NPK prilling process is showed in Figure 38, where the main equipment are evaporators, mixer, prilling bucket, prilling tower (PT) and screening. Here liquid, solid, and gas streams are illustrated using blue, brown, green arrows, respectively and measured/adjusted parameters are circled in red.
	188B/
	189BThe raw materials (NP-liquor, ammonia, K-salts/minerals) enter the mixer as a three phase (gas, liquid, and solid) mixture that needs to be intensively agitated to create a homogeneously mixed melt and to prevent solidification. This melt is thereafter sent to a rotating prilling bucket that sprays the liquid melt into the PT. Therefore, the melt solidifies creating an uniform spherical particles with a diameter of 2-4 mm. The falling droplets are cooled by ambient air in counter-current flow that is dragged by using fans located at the outlet stacks at the top of the tower. After solidification, the prills must be separated by particle size in the screens. The oversized particles are sent to a crusher and then back to the screening while the undersize particles (called off-spec) are sent back to the mixer together with dust collected from bag filters of other process equipment (Fertilizers Europe, 2000). 
	191BThe methodology proposed here will be tested following the steps described in Figure 39. For the characterization of PM, in this application the PSD of the UFP will be defined based on ELPI measurements while the estimate chemical composition using SEM/EDS (scanning electron microscopy energy dispersive x-ray spectroscopy). This step was done previously in Chapter 6.
	192B/
	193BThe mapping of potential process and meteorological variables affecting the generation and change of the UFP composition was performed using the concept of volume of control generating the list showed on Table 11 where the process parameters were collected from the distributed control system of the plant (DCS). The melt cointaining nitrogen and phosphorus is here called NP-liquor.
	194BTable 11 Parameters mapped from the volume of control
	198BSource
	197BUnit
	196BParameter description
	195BType of parameter
	201BDCS
	200Btext
	199BDate
	204BDCS
	203Btext
	202BTime
	207BDCS
	206Bt/h
	205BOff-spec flowrate
	211BDCS
	210B°C
	209BNP-liquor temperature
	208BProcess parameters
	214BDCS
	213Bt/h
	212BFlowrate of salts
	217BDCS
	216Bm3/h
	215BFlowrate of NP-liquor
	220BDCS
	219Bkg/h
	218BFlowrate of NH3
	223BDCS
	222Bt/h
	221BFlowrate of product
	226BDCS
	225B°C
	224BTemperature of salts
	229BDCS
	228B°C
	227BTemperature of mixer
	232BDCS
	231Brpm
	230BMixer rotation
	235BDCS
	234Brpm
	233BBucket rotation
	238BDCS
	237B°C
	236BInlet temperature
	242BTesto 440
	241B%
	240BInlet relative humidity
	239BManually sampled parameters
	245BTesto 440
	244B°C
	243BInlet temperature
	248BTesto 440
	247B%
	246BStack relative humidity
	251BTesto 440
	250B°C
	249BStack temperature
	254BKimo 210
	253Bm/s
	252BStack velocity
	258BDruck 705
	257BhPa
	256BBarometric pressure
	255BMeteorological parameters
	261BMeteor. Station
	260B°C
	259BAir temperature
	264BMeteor. Station
	263B%
	262BRelative humidity
	267BMeteor. Station
	266Bmm
	265BPrecipitation
	270BMeteor. Station
	269Bm/s
	268BWind speed
	274BInstrument
	273Bmg/m3
	272BELPI
	271BOutput of dust analyzers
	277BInstrument
	276Bmg/m3
	275BOSA*
	280BInstrument
	279Bmg/m3
	278BEDA*
	281B* The output of the OSA and EDA dust analyzers was used as raw data, without applying any calibration factor.
	282BParameters as ambient temperature and relative humidity (RH) were manually measured using Testo 440 (probe head of 290mm long with diameter of 12mm and measuring range was from 0 to 100% RH, ±2% RH accuracy and -20 to +70°C, ±0.5°C accuracy), while velocity inside the stack was manually measured  with Kimo 210 (range from 2 to 100m/s, accuracy of ±0.2 m/s)  and pressure with Druck 705 (range of -200 to 200 mbar, accuracy of ±0.1%) where the average velocity over the whole diameter of the stack was measured at 8 points. These manual measurements were done at the beginning of each experiment.
	283BThe PM continuous monitoring instruments employed were OSA model PCME QAL 181, which one had a certification range of 0-15mg/Nm3 and measurement capability of 0-300mg/Nm3 and EDA model PCME STACK 980 which had a certification range of 0-15mg/Nm3 and measurement capability of 0-500mg/Nm3.
	284BThe second order design of experiments was performed using Minitab 19®. The type of factorial design chosen was a full factorial design with a low, medium and high value of the two adjusted process parameters. One center point and two replicates were chosen to improve the statistical significance of the results obtained. 
	285BFor the second order design of experiment was needed to define two parameters to be adjusted in the process to see the influence of those on the dust emissions while keeping the already known effects of raw materials and ambient air temperature as stable as the industrial application allowed (as concluded from Chapter 6). The criteria for parameters selection was that no deviation in productivity levels or product quality was caused by the experiment, the candidate parameter must had a wide enough operability range to see the effect of those changes in the process and finally, the parameters needed to be adjusted relatively fast from one run to the next.
	287BThe standardized values for the adjusted parameters were 5.15 to 7.15 t/h of off-spec flowrate and 89 to 91.5°C for the NP-liquor temperature. The middle point was calculated based on arithmetic average.
	288BThe resulting design of experiment obtained from Minitab19® is illustrated in Table 12. The design was duplicated under same product composition but in different days, both in summertime. A period of 13 minutes of data collection was registered once the plant was considered operating under each setup of parameters. All the data was recorded in a minute-weighted average besides meteorological parameters from the near station which ones were recorded and made available once an hour.
	289BThe electrical low-pressure impactor (ELPI) plus from Dekati (2020) was used to measure the particle size distributions (PSD) and mass concentrations in the size range of 6 nm-10µm coupled to a co-polymer particle dryer (DD-600) and nozzle for isokinetic of 10 l/min. The sampling point was located 12 diameters over the PT top and 3 diameters below the gas stream exits to the atmosphere.
	290BTable 12 Design of Experiment from Minitab19®
	294BNP-liquor temperature [°C]
	293BOff-spec flowrate [t/h]
	292BRun order
	291BStandard Order
	298B91.5
	297B7.15
	296B1
	295B8
	302B91.5
	301B7.15
	300B2
	299B4
	306B91.5
	305B5.15
	304B3
	303B3
	310B89
	309B5.15
	308B4
	307B5
	314B89
	313B7.15
	312B5
	311B2
	318B89
	317B5.15
	316B6
	315B1
	322B90.25
	321B6.15
	320B7
	319B9
	326B89
	325B7.15
	324B8
	323B6
	330B91.5
	329B5.15
	328B9
	327B7
	331BThe data quality check was performed using Minitab19® employing normality tests, outliers test and test for equal variances. Furthermore, the same software was employed to build the linear regression models, using transformed response when the resulting model provided a better fit (considering standard error and r-squared).
	332BHere the results obtained from the application of the methodology are presented and discussed. The steps to evaluate the quality of the data collected are described in details to explain which set of variables was included on the model.
	333BFigure 40 shows the variation of the off-spec flow rate over the 18 runs performed. The deviation from the setpoint (given by red values) is higher for the high off-spec flowrate setpoint of 7.15 t/h compared to the lower setpoint of 5.15 t/h, what indicates that running under lower flow of off-spec gives more stability to the operation. To achieve this is needed to apply the lean manufacturing concepts to reduce generation of off-spec in the process (Ellis, 2020) so, the lower flow rates are feasible.  Besides that, there is a deviation per experiment, due to the operator in-charge as can be seeing among experiments #1 with smaller range while #2 has a broader operating range. The same behavior can be seeing from experiments 10 and 11.
	334B/
	335BFigure 41 illustrates that the deviation from the set point of the NP-liquor temperature (given by red values) for each experiment it is much smaller than the deviation for the off-spec flowrate (Figure 40).
	753B/
	336BAll setpoints for the NP-liquor temperature, low/medium/high, were easily reached and kept around the setpoint. This indicates that the NP-liquor temperature could potentially be used for modelling and optimization of dust emissions if required.
	337BThe outliers test performed for the monitored parameters was performed and besides in some of the runs, the mixer temperature and mixer speed presented outliers, it was indeed operating conditions of the plant, so these data sets were kept for further modelling.  Also for the K-salts temperature and bucket speed, there were points that indicated that the process conditions were stable and kept for the duration of the experiment, what means that they were a different process condition employed.
	338BTo evaluate normality of the raw material flows, a ratio between each flow to the product flow at the boundary of the control volume was calculated and the results showed in Figure 41, where the blue data set refers to the K-salts flow rate, the green data set to the NP-liquor flow and red data set to the NH3 flow rate. Most part of data fits a normal distribution with an exception for the lower flow rate ratios, responsible for about 10% of data set, originated during the last two experiments where a product flow scale was calibrated during operation and the recorded value on the DCS was based on mass balance not actual weight.
	339B/
	340BFor the flowrate ratio of K-Salts (in blue), the deviation was caused between experiments 5 and 9 of experimental set of runs #1 which is the period after calibration of the salt silo weighing system.
	341BA potential use of data from the nearest meteorological station was evaluated. The results for the temperature can be seeing on the test for equal variances showed in Figure 43. The air temperature measured at nearest meteorological station is statistically different than the one measured at inlet of PT once the standard variation ranges represented by the external boxes do not overlap. The standard deviation on the data collected from the  meteorological station presented a standard deviation of 1.49°C while from the plant the standard deviation of 1.75°C. It is an expected result once the data from the meteorological station is available based on hourly averaged data.
	342B/
	343BThe same tests were performed for relative humidity  and the results are presented in Figure 44. The hypothesis here tested was at the RH measured at inlet of PT was statistically equivalent to the one measured at the meteorological station but the result showed that they are not equivalent. Besides the position of the box shows that they have ranges that overlap each other, the median for the meteorological station was 45% while for the inlet of the tower was 40%.
	344BWhen comparing the confidence intervals for it can be seeing that for the meteorological station RH the result was 8 to 10 intervals while for the inlet of PT was 7 to 8 intervals. Once again, the RH data from the nearest station it is significantly different from the data measured at the plant, even being the station just 1.2km away from the PT. In the statistical analysis it is shown that the results collected from the station during run #8 of second campaign are outliers but they were kept in the database once they were actual results from the nearest station.
	345BStill on Figure 44 the stack RH is displayed to evaluate if it has the same range variation as outside although the results show that the variation inside the stack is smaller than outside with confidence intervals from 2.8 to 3.4 intervals. Based on those figures, the first choice should be measuring the RH inside the stack to correlate it with the UFP concentration measured at stack by the online sensors. If that is not possible so the RH should be measured at inlet of the PT.
	754B/
	755BFigure 43 Test for equal variances on relative humidity with confidence level of 98.3% considering normal distribution
	346BThe linear regression models obtained for the three dust analyzers are therefore based on specific 13 minutes operation periods and parameters from the process and manual measurements. A summary of the regression models from Minitab® is given in Table 13. The r-squared determines how well the regression model fits the database analyzed, while adjusting for the number of predictors in the model relative to the number of observations, being able to compare models that have different numbers of predictors. 
	347BFrom Table 13 the regression models obtained for the OSA/EDA dust analyzers give a low value for r-squared and a high standard error. On the other hand, the r-squared obtained from the ELPI model was 94.13% and has a standard error of only 0.02 mg/m3.
	350BStandard error (S) mg/m3
	349BR-squared (%)
	348BInstrument
	353B0.61
	352B10.75 
	351BOSA
	356B0.16
	355B64.58
	354BEDA
	359B0.02
	358B94.13
	357BELPI
	360BThe LRM built with ELPI data presented a 94.13% of measured data fitted to the model and small standard error (0.02 in an average emission in this specific plant of 15mg/Nm3) what shows that the equipment was able to measure the UFP emission variation when the process parameters have just slightly changed, once the conditions were controlled in terms of season and product type.
	361BFrom the p-values given in Table 14, it can be seeing that NH3 flow rate, mixer temperature, wind speed, air temperature and RH% does not have enough significance on the ELPI output, once here the acceptance criteria defined is so that significance level of each parameter has to be over 95%, incurring in p-value smaller than 0.05). The air stream parameters were not identified as significant in the model what can be due to the sample being extracted and dried before analyzing it so the ELPI setup was able to avoid the impact of the air stream conditions. 
	362BThe significant parameters from this controlled experiment are the off-spec flowrate and the temperature of NP-liquor, pointing that the choice of adjustable parameters was adequate. Besides that, the flow rate of NP-liquor, temperature and flow of K-salts as well as mixer and bucket rotation speed were included in the model due to their significance level.
	363BThis suggests that under controlled situation, small changes to those parameters can have strong effect on the mixer temperature. This effect is related to the liquid viscosity change as explained by Partridge et al. (2005) and Wong et al. (2004).
	758BP-Value
	757BCoefficient
	756BTerm
	761B0.00
	760B-5.94
	759BConstant
	764B0.00
	763B0.01
	762BFlowrate Off-spec
	767B0.00
	766B0.02
	765BTemp. NP-liq.
	770B0.00
	769B-0.02
	768BFlowrate K-Salts
	773B0.01
	772B0.01
	771BFlowrate NP-liq.
	776B0.14
	775B0.01
	774BFlowrate NH3
	779B0.00
	778B0.08
	777BTemp. K-Salts
	782B0.67
	781B-0.01
	780BTemp. Mixer
	785B0.00
	784B0.03
	783BBucket speed
	788B0.00
	787B-0.01
	786BMixer speed
	791B0.05
	790B0.01
	789BAir Temperature
	794B0.88
	793B0.00
	792BWind speed
	797B0.54
	796B-0.06
	795BRelative Humidity
	364BThe model equation can be written as Equation 6 below, eliminating the terms with low significance level from the Table 14.
	366BEq.6
	365B-ELPI(-0.13749) = -5.94 +  0.01* Flowrate Off-spec +  0.02*Temp. NP-liq.  - 0.02* Flowrate K-Salts +  0.08*Temp. K-Salts + 0.03* Bucket speed  -  0.01* Mixer speed + 0.01*Flow rate of NP-Liq.
	367BFigure 45 shows the normal probability plot where the majority of the data sets follow the linear regression model (red straight line). The points with high deviation from the predicted values are discussed with data from Figure 46, where the residuals over the sequence of runs is presented. 
	368B/
	369BThe model has predicted lower emission than the experimental value obtained for experiment #4, in both runs. This can be due to parameter standardized temperature of K-salts which have reduced from 19°C to 18°C from first run #4 to the second so the model have considered this parameter as significant but the spot variation was over the expected range, what could be due to calibration problems with the temperature probe or a change performed at the salts dryer not monitored in the set of parameters defined.
	370BBetween runs #4 and #5, on the second set, the model has presented a residual twice the magnitude order than the other runs, over 0.05mg/m3. While run #4 was affected by the K-salts temperature, run #5 was performed with high flow of off-spec and low NP-liquor temperature leading to low mixer temperature. At this moment the melt started to solidify inside the mixer. While ideally the UFP emission has decreased considerably, at beginning of run #5 the process became instable and the emission has increased being followed by a required stop to clean the mixer and bucket holes. This confirms that the ranges for the adjustable parameters were stretched enough.
	371B/
	372BFrom these findings there is potential to get the calibration factors from ELPI to the continuous sensors, instead using GS, once it has being showed in research from Wilson et al. (2002) and Giechaskiel et al. (2014) that the losses due to presence of nitrates and sulfates can be up to 45% when applying gravimetric sampling.
	373BThere is although a remark to be done regarding the use of ELPI for mass concentrations, the estimation/ measurement of effective density. In this work, the effective density set to ELPI was 1 g/cm3, as default recommendation by the equipment supplier (Dekati, 2020). Extensive measurements have found for AN combined with ammonium sulfate the effective density can vary from 1.36 to 1.55 g/cm3 depending on the PSD (Yin, et al., 2015). If taken into account the conversion from aerodynamic diameter to stokes diameter (as standard from the environmental agencies), applying the conversion equation from Allen & Somerscales (1982) the difference obtained represents 15 to 20%, meaning that the average aerodynamic diameter here measured, when converted to stokes diameter is equal to 1µm, smaller than the figures here showed.
	374BPrevious work presented in Chapter 6 have shown that PM concentration from both OSA/EDA are influenced by raw materials flow rates and air stream parameters to a certain extent. Once those were kept as stable as possible in this controlled experiment it is expected that no strong correlation is found with those parameters in the modelling process. There is although a remaining question regarding the stream/ meteorological parameters which ones now are measured at the PT air inlet, not employing average hour data from the nearest station, as the experiments conducted in Chapter 6.
	375BThe Table 15 shows the level of significance obtained with the best LRM fit for both commercial in-situ sensors. Only flowrate of K-Salts and mixer speed were parameters considered significant for OSA output what can be attributed to the resolution of the equipment, both because it has a very small opening where the particles are in contact with the laser either because the laser wavelength has a limitation for particles with diameter smaller than 560nm (Babick, 2020), (PCME, 2018). On these runs the PSD measured was from 20 to 40% of particles smaller than 600nm in mass distributions. If the distribution is taken in terms of number of particles the PSD is equivalent to around 70 up to to 90% particles smaller than 600nm.
	376BOn the other hand, the model obtained for EDA, had a positive agreement with humidity, as Table 15 shows, so potentially humidity or droplets could be affecting the reading of the instrument, what has being observed previously on Chapter 6. The humidity had a coefficient 4.5 times higher than the second most relevant parameter that is the flow rate of NH3 fed to the mixer. Both flow rate of NP-liq. and temperature of the mixer were not significant.
	800BP-Value
	799BCoefficients
	798BTerm
	804BEDA
	803BOSA
	802BEDA
	801BOSA
	809B0.05
	808B0.08
	807B16.23
	806B-172
	805BConstant
	814B0.04
	813B0.34
	812B0.04
	811B-0.24
	810BFlowrate Off-spec
	819B0.00
	818B0.96
	817B-0.11
	816B0.01
	815BTemp. NP-liq.
	824B0.00
	823B0.01
	822B0.21
	821B0.89
	820BFlowrate K-Salts
	829B0.12
	828B0.81
	827B0.051
	826B0.10
	825BFlowrate NP-liq.
	834B0.00
	833B0.72
	832B0.57
	831B-0.29
	830BFlowrate NH3
	839B0.00
	838B0.34
	837B0.17
	836B-0.53
	835BTemp. K-Salts
	844B0.19
	843B0.74
	842B-0.04
	841B-0.11
	840BTemp. Mixer
	849B0.00
	848B0.70
	847B-0.29
	846B0.15
	845BBucket speed
	854B0.00
	853B0.04
	852B0.05
	851B0.35
	850BMixer speed
	859B0.02
	858B0.37
	857B-0.07
	856B-0.35
	855BAir Temperature
	864B0.00
	863B0.23
	862B-0.38
	861B-0.62
	860BWind speed
	869B0.00
	868B0.69
	867B2.55
	866B-3.38
	865BHumidity
	377BThe residuals for OSA model are showed in Figure 47 over the two sets of experiments (#1 to #9, both runs) and besides having a low r-squared (10.75%), it can be observed that on experiment #5 OSA also presented a low measured UFP concentration, the same behavior observed for data from ELPI (Figure 46). In this case, the OSA was able to see the reduction of the emission, but once the process was unstable, when running under the same conditions for experiment #6, the resulting UFP concentration has increased and the sensor did not follow the change.
	378B/
	379BThe model obtained with EDA presented a r-squared of 64.58% with a standard error of 0.16 mg/m3. If it is applied a calibration factor of 6.25 as Krauss & Aguiar (2019) have found, this becomes 1mg/Nm3 or 20% of the BAT level of 5mg/Nm3 (Fertilizers Europe, 2000). The residuals presented in Figure 48 shows peaks on experiments #1 and #3, which can be due to wind speeds of about 4m/s in the first set of experiments while for the second set the wind speed was 1.5m/s, with all the others monitored parameters stable. The same behavior is observed on run #8, second set of experiments, where the model again underestimates the UFP concentration. The only parameter diverging from the first to the second set of experiments was the relative humidity. The second run #8 was performed under relative humidity of 67% while on the first set of experiments the relative humidity was 43%.
	380B/
	381BFrom the data collected and analyzed, it appears that the EDA have a higher sensitivity to changes in the air stream during the experiments than OSA, what is somehow observed in Chapter 6. The model from EDA delivered a better model than OSA when conditions as flow rates and season are kept stable, although the effect of the humidity on the sensor output has to be studied further if it is intended to install this technique for continuous monitoring once there is potential to provide false positive indication of the PM concentration.
	382BBased on the data obtained from the controlled experiment, the ELPI output and the significant variables found in the model it is possible to evaluate the process to reduce the UFP emission. This is illustrated by Figure 49 where both off-spec flowrate and temperature of NP liquor are combined to provide areas where different levels of PM concentration are reached. The dark blue area represents the operational window to achieve emissions less than 2mg/m3, the blue area 2 to 4mg/m3 and the light blue area, 4 to 6mg/m3. It can be seeing that the operating range to have medium-low dust emissions (< 6 mg/m3) is broad while the operating range to have the low dust emission (< 4 mg/m3) is narrow and can easily start safety problems in the form of blockage of the system and further an increase in dust emission.
	383BThe lowest dust emission is obtained when the operating conditions for standardized data are low NP-liquor temperature (less than 89°C) and high off-spec flowrate (6.7 to 7.5t/h). The reason found is the change on the melt viscosity, affecting the surface tension properties of the melt and preventing the generation of the secondary droplets (that are much smaller than the prills) as conclude by Partridge et al. (2005) when modelling the break-up of curved liquid jets in PT and Wong et al. (2004) when modelling drop size distributions created from spiralling liquid jets.
	384BThe combination of these two parameter setpoints although will result in a strong reduction of the mixer temperature (off-spec is cooling medium, NP-liquor is heating medium) which, as was observed, can easily solidify the melt and obstruct the mixer outlet. Once the melt starts to solidify inside the mixer it is observed that the dust emission increases, so this combination of setpoints needs to be prevented. 
	385BIt is a very narrow area where levels of PM concentration can be kept below 2mg/Nm3 but from the other hand, it is possible to run in the whole range of temperatures and still reach PM concentrations less than 6mg/Nm3 what is close to the best available technique in the AN based fertilizer plants (Fertilizers Europe, 2000). Off-spec flow rates should be kept below 6.2t/h to ensure optimal operation. Besides out of the scope of this work it is known that lower levels of reprocessing material are desirable in process that aim to reduce waste according to Lean manufacturing principles (Ellis, 2020).
	386B/
	387BThe blue circles inside the main light blue area can potentially be “sweet spots” (most optimized operational conditions) although the range is so small that could be hard to keep the process under those conditions, especially if considered that conveyor belt scales employed in this process do not have enough accuracy to measure between 6.2 to 6.5t/h, as discussed on item 7.5.1.
	388BOnce the ELPI model have identified also other significant monitored parameters, it is possible to evaluate scenarios to reduce the emissions by adjusting those as showed on Figure 50. The color-coding follows the same standard as Figure 49. It can be seeing that for the bucket speed there are 2 “sweet spots” where emission levels below 2mg/m3 can be reached if the K salts temperature is kept on the lowest range (17 to 17.8°C).
	389BThe results from this controlled experiment have a good agreement with the literature (Couper, et al., 2012) (Yuan, et al., 2007) once higher rotation speed from the prilling buckets can lead to production of micro-spheres and then, instead of falling and cooling down they can be dragged by the fans out of the stack. This behavior was also observed in recent simulations done by Saleh et al. (2016). It is although, less clear how the salts temperature affect emission.
	390B/
	391BHigher mixer temperatures have been correlated to increased emissions before, due to the melt viscosity as previously discussed but the model here developed have discarded the mixer temperature due to the low significance. A potential cause could be that the inlet streams to the mixer are taken into the model and the remaining effect of the mixer itself, which one does not lose or gain temperature is annulated.
	392BThe last two sets of significant parameters are mixer speed and flowrate of K-salts, being the last one dependent on the product type so, there is no physical consistency on optimizing it, specially because there was calibration performed to this stream between the runs. 
	393BThe main goal of testing a methodology for continuous monitoring of UFP in the industrial fertilizer prilling tower was achieved once following the steps was possible to build a transformed linear regression model for ELPI with 94.13% r-squared and a standard error of 0.02 mg/m3. This accuracy if compared to best available techniques for fertilizer prilling is equal to 0.4% (Fertilizers Europe, 2000). In this sense, the ELPI can be used to calculate calibration factors for OSA/EDA analyzers to make online UFP monitoring feasible in this field.
	394BThe results obtained can be due to the fact that ELPI analyzer is an extractive technique while the OSA/EDA tested were in-situ measurements. Also, ELPI proved to be very accurate in measuring both the particle size distribution and dust concentration besides detecting changes that are an order of magnitude smaller than that of the OSA/EDA dust analyzers. This feature was used to find optimal sets of operational parameters where the emission of PM could be kept below 6mg/Nm3.
	395BIt was investigated the possibility of using data from the nearest meteorological station in the model, instead of at the air stream inlet, but the test for equal variances proved that this is not possible, once neither the ranges not the mean was the same between the data sets. So, it is needed to install temperature, velocity and relative humidity measurement devices at the inlet of the air stream.
	396BThis study has focused on PM mass concentration for UFP and use of commercial sensors, but with ELPI there is opportunity to employ the number concentrations and use the results to optimize the process. In this sense, the issue with the determination of a reliable effective density is eliminated.
	8. GENERAL CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORKS
	397BThis research project aimed to develop a methodology for continuous monitoring of ultrafine particles emissions in industrial stacks as its main goal. The methodology was proposed, tested and validated for monitoring ultrafine particles in industrial stacks, under the range of measurement of ELPI (6nm to 10µm).
	870BIn terms of performance of commercial sensors it can be concluded that both analyzers can follow variations in the process if they are kept clean, what is easier to be diagnosed on OSA since it shows the need for cleaning through the span test results (span less than 75% here employed). In terms of response for sudden huge changes in PM concentration at the stack, the EDA represented better and faster the process behavior while the OSA presented normal output what can be due to the difference of the reading range of the instruments (0-500 mg/Nm3 for EDA and 0-300mg/Nm3 for OSA).
	871BThe build-up of product influences the reading of both analyzers, requiring cleaning every 15 days of operation in fall to up to three months on winter.
	872BThe calibration factors generated by GS for OSA presented up to 0.5 standard variation over both seasons and products while EDA was much poorer with up to 4 standard deviation over seasons and 3 standard deviations among products. 
	873BThis project found out that the attempt to employ EDA to build a model correlating process and meteorological parameters was not successful, being the best regression model giving a r-squared equal to 9.49% and standard error of 2 mg/Nm3.
	874BOn the other hand, the model designed employing all potential variables mapped and the OSA output presented a standard error of 0.22mg/Nm3 and r-squared of 45.25%, equivalent to best models found in literature for ambient air application, once there is no such a study from stationary source, by the knowledge of the authors. The most relevant parameters in the OSA concentration model were air temperature, salts flow to PT, RH% and liquor flow to PT, respectively. These highlight the challenges of continuous PM concentration monitoring in mineral fertilizer industry for compliance purposes, where the standard is GS, being optical scattering the most promising technique.
	875BParticulate matter in the process studied was classified as UFPs (90% of PM below diameter of 1µm) and it was observed that its composition differs significantly from the product under handling due to reactions in gas phase producing mainly instable ammonium nitrate, ammonium chloride, ammonium fluoride and silicon tetrafluoride.
	876BOnce the build-up of product influences the reading of the in-situ OSA, a potential solution to avoid intensive inspection and maintenance can be reached by testing of optical forward scattering cross-stack technology.
	877BA potential application for EDA could be the use as a start-up and shutdown instrument, once it is sensitive to sudden high concentrations of PM and it is an affordable instrument while optical scattering can be used under operating conditions.
	878BWhile ELPI has detected small changes in the process, has measured the concentration of UFP and was not influenced by the stream parameters, it is recommended to use it to calculate the calibration factors for OSA analyzer. So, accurate online UFP monitoring can become feasible for prilling towers. In this specific case, the calibration factor needs to be found for each product type. The model can also be used to design a so-called soft sensor, detecting changes in the process affecting emissions with potential use for reporting online PM concentration to authorities.
	879BThe suitability of this proposed methodology getting approval by the environmental authorities could be reached by testing it simultaneously with gravimetric sampling to define, for instance a adjust factor, if that is required. Besides that, the ELPI has a feature that allows weighing each stage to calculate the mass concentration, so this data could be compared to the results from GS. It is although important to mention that different sources of errors would be associated, as the handling of such small sample and the precision of scales.
	880BOnce this study has focused on PM mass concentration for UFP from ELPI, there was included a potential error source, the determination of a reliable effective density. This effect can be eliminated if the ELPI is used to optimize the process because in this approach, the number concentrations could be employed.
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