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RESUMO

A crescente necessidade de sistemas que possam identificar uma pessoa com precisão e

rapidez se torna muito evidente nos dias de hoje. Existem algumas aplicações em que a

necessidade de descobrir a identidade das pessoas de forma sigilosa é primordial. Pen-

sando nessas aplicações e na utilização de caracterı́sticas biométricas a face é uma das

caracterı́sticas que melhor se adequa á esse tipo de identificação. Isso pois a tecnologia

atual é capaz de fornecer imagens faciais 2D de alta resolução capturadas por câmeras de

baixo custo a distância e sem a cooperação dos sujeitos. No entanto, em geral, os sis-

temas biométricos baseados no reconhecimento de face 2D têm sua performance afetada

em certos cenários, quando as imagens das faces apresentam variações na pose, iluminação

e expressões faciais. Uma maneira de atenuar esse problema é usar dados faciais em 3D,

mas os scanners 3D atuais são caros e exigem muita cooperação dos sujeitos. O uso de

redes neurais convolucionais profundas é outra forma de mitigar as desvantagens do recon-

hecimento facial 2D tradicional, mas pode ser inviável, devido à necessidade de grandes

conjuntos de dados rotulados para o treinamento das redes e computadores com enorme

capacidade de processamento e armazenamento de dados. Portanto, nesta tese, uma abor-

dagem hı́brida para reconhecimento de faces 3D é apresentada. Essa abordagem, que tem

como foco minimizar a quantidade de dados, o poder computacional e o tempo de pro-

cessamento necessário na fase de treinamento, é baseada em redes neurais convolucionais

rasas e é capaz operar próximo aos métodos do estado da arte e ser capaz de transferir o

aprendizado feito em dados de alta resolução para dados de baixa resolução. Outro as-

pecto importante da abordagem hı́brida proposta é a possibilidade de operar nos modos de

classificação ou extração de caracterı́sticas. Os resultados experimentais obtidos por nossa

abordagem hı́brida utilizando o dataset EURECOM Kinect Face, com dados de profundi-

dade de baixa resolução, mostraram uma taxa de reconhecimento em rank-1 de 90,75 %

no caso mais difı́cil do modo de classificação e 73,26 % no modo de extração de carac-

terı́sticas, sendo o desempenho melhor que outras técnicas utilizando o mesmo protocolo e

conjunto de dados. Assim, concluı́mos que a abordagem hı́brida proposta ajuda a atenuar

as diferenças de resolução e que a utilização de uma entrada construı́da com dados mais

discriminativos, como extratores de caracterı́stica de baixo nı́vel, permite a utilização de

CNN rasas para reconhecimento facial 3D.

Palavras-chave: Biometria, reconhecimento de faces 3D, CNN rasas, 3DLBP, Sigmoid 3DLBP, De-

scriptor Image, Shallow Learned Feature Representation (SLFR).



ABSTRACT

Nowadays, there is an increasing need for systems that can accurately and quickly identify

a person. Traditional identification methods utilize something a person knows or something

a person has. This kind of methods has several drawbacks, being the main one the fact that

it is impossible to detect an impostor who uses genuine credentials to pass as a genuine

person. Besides, in some cases it is necessary to discover the identity of people in a covert

manner. One way to deal with these types of problems is to use biometric identification.

Face is one of the biometric features that best suit the covert identification since the current

technology is able to provide high resolution 2D face images captured by low cost cam-

eras, in a secret way, at a distance and without cooperation from the people being identified.

However, in general, biometric systems based on 2D face recognition perform very poorly

in certain scenarios when the input images present variations in pose, illumination and facial

expressions. One way to mitigate this problem is to use 3D face data, but the current 3D

scanners are expensive and require a lot of cooperation from people. The use of deep con-

volutional neural networks is another way to mitigate the traditional 2D facial recognition

drawbacks, but it can be unfeasible, due to their large training data and huge computa-

tional power requirements. Therefore, in this thesis, we introduce a hybrid approach, based

on Shallow Learned Feature Representation, for 3D face recognition, which is focused on

minimizing the amount of data, the computational power and the processing time required

in the training stage, while being able to operate close to state-of-the-art methods and being

able to transfer the learning made on high-resolution data to low-resolution data. Another

important aspect of the proposed hybrid approach is the possibility to operate in both classi-

fication or feature-extraction modes. Experimental results obtained by our hybrid approach

on EURECOM Kinect Face dataset, a low resolution depth dataset, showed a rank-1 recog-

nition rate of 90.75% on the hardest case of classification mode, and 73.26% on the feature

extraction mode, which are better than the rates obtained by related state-of-the-art methods

with the same protocol and dataset. So, we conclude that the proposed hybrid approach

helps to attenuate the cross-resolution differences and that the utilization of an input built

with more discriminative data, such as low-level hand-crafted features, allows the utilization

of shallow CNN for 3D face recognition.

Keywords: Biometrics, 3D face recognition, Shallow CNN, 3DLBP, Sigmoid 3DLBP, Descriptor Image,

Shallow Learned Feature Representation (SLFR).
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Chapter 1
INTRODUCTION

Nowadays, the necessity for assuring the identity of a person has become one of the most

important features in our everyday life. Traditional methods proposed for people identification

are based on knowledge (such as a password) or possessions (such as a key-card). However,

knowledge can be learned or guessed and possessions can be stolen or lost. Besides, identi-

fication systems based on knowledge and possessions are not able to distinguish between an

impostor person utilizing genuine credentials from a genuine person (Jain; Ross; Prabhakar, 2004).

The several drawbacks of the traditional identification methods have stimulated the research

on biometric identification methods, which are based on biological or behavioral traits of the

individuals. Because biometric identification systems use something that persons are, they are

more difficult to circumvent (Prabhakar; Pankanti; Jain, 2003).

In surveillance systems, the utilization of biometric characteristics can drastically improve

the system performance and, among several other characteristics, face has several advantages

(Nguyen et al., 2018). Face is the biometric feature that best suits the covert identification, since

the current technology is able to provide high resolution 2D face images captured by low cost

cameras, in a secret way, at a distance and without cooperation from the people being identi-

fied (Nguyen et al., 2018). However, in general, biometric systems based on 2D face recognition

that utilizes hand-crafted features perform poorly in unconstrained environments, common in

covert identification scenarios, since the input images present variations in pose, illumination

and facial expressions.

The current state-of-the-art has pushed deep learning approaches as alternatives for solving

complex pattern recognition problems and have reached almost perfect results in many tasks

due to their robustness and great power of abstraction, working with abstract and high-level

features, self-learned from training data (Souza et al., 2017). Among the proposed deep learn-
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ing architectures, Convolutional Neural Networks (CNN) (Krizhevsky; Sutskever; Hinton, 2012)

emerged as one of the most important classes of neural networks able to deal, with great perfor-

mances, with tasks involving the processing and analysis of two-dimensional signals (usually

images). A Convolutional Neural Network consists of several sets of layers containing one or

more planes. The input is made of images centered and normalized. Each small local region

from this serves as an input to a unit in a plane of the next layer. Each of those layers has a

fixed feature detector that is convolved utilizing a local window on the output from the previous

layers. These layers are known as convolutional layers (Krizhevsky; Sutskever; Hinton, 2012)

Regarding 2D face recognition, there are several CNN-based approaches with state-of-the-

art results. In (Parkhi; Vedaldi; Zisserman, 2015) the experiment carried out on the Labeled Faces in

the Wild dataset (Learned-miller et al., 2016) reached 98.91% of rank-1 recognition rate when using

2.6M faces for training, and another experiment carried out on the Youtube Faces Dataset (Wolf;

Hassner; Maoz, 2011) obtained 97.3% of rank-1 recognition rate. In (Qian; Deng; Hu, 2019), the ex-

periments carried out on the IJB-A dataset (Klare et al., 2015) reached 96% of rank-1 recognition

rate and, in the easiest case, 99.9% of rank-1 recognition rate for the Multi-PIE dataset (Gross et

al., 2010). But, when dealing with pose variations bigger than 60 degrees there is a significant

loss in performance, from 99% to 81% of rank-1 recognition rate.

In the previously referred works, it is possible to see that the amount of data utilized for

training is a crucial part of deep approaches. Both works utilized millions of face images for

training, and, for many applications, there may not be enough available data. Other problems

with deep approaches are related to the expensive hardware needed to train the deep neural

networks, which must provide a huge storage capacity and a very high processing power.

In order to utilize 3D models for face recognition there is an initial problem that needs to

be solved. Traditional scanners are expensive and they need a lot of cooperation from people

being identified. This last aspect is an obstacle when the goal is to develop a covert 3D face

recognition systems, since in those cases it is not possible to account for user cooperation.

In the case of building a system for face recognition that does not need too much user co-

operation, the utilization of sensors such as Microsoft Kinect can be a feasible alternative. The

main problem with this kind of sensor is when it must be used outdoor. The 3D depth sen-

sor of the Kinect v1 has two components, an infrared emitter and an infrared camera, which

estimate the depth data by projecting an array and measuring the distortion caused by the re-

flected rays captured by the camera. Because of the utilization of infrared, the data is heavily

affected by sunlight. Another problem is the maximum distance in which the sensor can gen-

erate depth data, even with the Kinect v2 the maximum distance is four meters. Analogous to
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2D face recognition, one possibility to increase the performance of 3D face recognition is to

utilize Convolutional Neural Networks (CNN). Due to the high abstraction level in the higher

CNN layers, it is expected that deep approaches can better generalize data and achieve higher

recognition rates.

In order to utilize CNNs, specially deep ones, for face recognition there is a need for a great

amount of data. Thinking of building a system that utilizes Kinect data can be troublesome

in this context since most of large datasets utilize high-resolution scans. With this in mind, it

would be necessary to train the CNN with high-resolution data and use it on low-resolution

data, this process is known as cross resolution face recognition (Singh et al., 2018).

In this thesis, we propose a new hybrid approach for 3D face recognition. Our approach

utilizes a shallow CNN in conjunction with Descriptor Images (DIs) originated from the depth

data. The idea behind this is that, since the DIs are constructed from low-level feature extractors

it would be possible to build an ensemble of shallow networks that is modular and needs fewer

data and less computational power for training and learning.

We evaluated our approach with two different modes, feature extraction and classification.

The classification mode is focused on learning the identities for the known subjects in the dataset

while the feature extraction mode is focused on learning the relevant features that are portrait

in the dataset. The first mode is more adequate to closed-set scenarios, while the last one for

open-set scenarios.

1.1 Hypothesis

This thesis hypothesizes that it is possible to utilize Descriptor Images (DIs) originated

from the depth data and shallow CNN to do 3D face recognition, while performing close to the

state-of-the-art results obtained by deep CNN-based methods. It is expected that the DIs, which

have some low-level features encoded, will allow to utilize shallower CNNs. Utilizing shallow

networks is important because it can reduce the amount of processing time and computational

power to train the networks and can make feasible the deployment of learning-based biometric

systems based on 3D face recognition.

To deal with the problem of the amount of low-resolution data available to train a CNN

approach, we hypothesize that utilizing data that has some degree of resolution invariance can

help to attenuate this problem since it would be possible to train the CNN with high-resolution

data and utilize low-resolution data for 3D face recognition. We believe that our DI has a great

deal of resolution invariance and, due to this reason, can be helpful for this particular problem.
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1.2 Objectives

The general objective of this thesis is to propose a novel hybrid approach for 3D face recog-

nition that utilizes Descriptor Images (DI), originated from facial cloud points, in conjunction

with shallow convolutional neural networks (CNNs). The idea behind this is that, since the DIs

are constructed from low-level feature extractors it would be possible to use shallow CNNs, al-

lowing us to build an ensemble of shallow networks that are modular and needs fewer data and

less computational power to train the CNN. Our approach can be used for 3D face classification

or 3D face feature extraction.

Some specific objectives of this thesis are:

• Propose a new representation for 3D face data, the Descriptor Image, based on a set of

low-level features, to be used as input for the shallow CNNs;

• Assess the best shallow CNN architecture to be used, in terms of number of convolutional

layers;

• Propose the best ensemble configuration of the shallow CNNs, in order to create more

robust 3D face recognition systems;

• Assess the performance of the two modes of operation for our hybrid approach: feature

extraction mode and classification mode;

• Assess the effectiveness of the cross-resolution transfer learning in the proposed hybrid

approach, based on the shallow CNN when utilizing the proposed Descriptor Images.

1.3 Contribution

This thesis brings the following contributions:

Descriptor Images for 3D face representation: The Descriptor Images (DIs) are a way to

encode low-level 3D features into a 2D representation, and to train shallow CNNs for

3D face recognition. Our contribution is in the methodology to generate this type of

descriptor, we encode each of the information generated by a hand-crafted feature into

different channels, generating 2D projection of the 3D features;
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Shallow CNNs for 3D face recognition: As the proposed Descriptor Images (DIs) encode in-

formation similarly to the early layers of a CNN, the use of DIs as input allows the uti-

lization of shallow networks for 3D face recognition. Shallow CNNs can be trained much

faster than deep CNNs, in much simpler and cheaper hardware, with much less training

data;

Transfer Learning from high to low resolution: The 3D face representation by Descriptor

Images allows the use of high resolution 3D face data to train a shallow CNN, which can

be used later as classifier or as feature extractor for low resolution 3D face recognition,

transferring learning from high resolution to low resolution;

Shallow Learned Feature Representation (SLFR): We have proposed the use of shallow

CNNs with the Descriptor Images for 3D face recognition in two modes: classification

and feature extraction. In the feature extraction mode, we extracted face features from

the pre-trained shallow CNN, that we named Shallow Learned Feature Representation

(SLFR). SLFR allows learning a feature representation based on different types of DIs.

Due to the shallow characteristic, it is possible to fuse different SLFR learned from dif-

ferent DIs and, thus, increase the robustness of the hybrid approach proposed for 3D face

recognition.

1.4 Thesis Organization

In addition to this introductory chapter, this thesis has other six chapters:

Chapter 2: Presents the main concepts of Biometrics addressed in this thesis;

Chapter 3: Presents the theoretical background related to the this thesis;

Chapter 4: Presents the new proposed hybrid approach for 3D face recognition;

Chapter 5: Describes the material and the methodology adopted to assess the proposed ap-

proach;

Chapter 6: Shows the results obtained with the experiments;

Chapter 7: Presents a discussion and the conclusion of this thesis.



Chapter 2
BIOMETRICS

In this chapter it is discussed what is biometric identification, the benefits of Biometrics

over other forms of assuring a person identity, how a biometric system works, and the different

types of biometric characteristics. Prior to discussing what biometric identification is and how it

can make systems more secure, the topic of personal identification is presented. Understanding

such topics is crucial to know the flaws of traditional methods of personal identification and

why it is important to research and build biometric systems.

2.1 Personal Identification

The concept of personal identification is very simple. It is the act of linking a person

with an identity. It can be categorized into two types: verification and identification (Bolle;

Pankanti, 1998). Verification is about refuting or confirming a person’s claimed identity, while

identification is about establishing a person’s identity. When utilizing a set of already known

identities to perform this task it is called a closed identification problem, otherwise, it is called

an open identification problem (Bolle; Pankanti, 1998).

A traditional way of person identification is utilizing some sort of document or knowledge

that the person is supposed to possess or to know (Prabhakar; Pankanti; Jain, 2003). The identifi-

cation based on possession or knowledge can face several problems. A stolen ID Card can lead

to a criminal to be wrongly identified as the true owner of that document and, consequently,

gaining access to private information or place. This shows that this traditional form of per-

sonal identification is not secure, as the holder of an identification document is not necessarily

its owner. Even when combining something the person has (a credit card, for example) with

something the person knows (a password, for example), traditional methods of identification

are fragile and susceptible to failure. With the use of biometric characteristics, it is possible to



2.2 Biometrics Characteristics 21

mitigate problems such as those aforementioned.

2.2 Biometrics Characteristics

Biometrics is the automatic recognition of a person identity based on its physical/physiolo-

gical or behavioral characteristics (Prabhakar; Pankanti; Jain, 2003). Physical and physiological

characteristics refer, respectively, to the person body (e.g. fingerprint, iris, face) or to his/her

living functions (e.g. hand vein, hand and facial thermogram). Behavioral characteristics, on

the other hand, are those traits that can identify a person based on some particular way of doing

some kind of task (e.g. gait, keystroke dynamics, signature, voice). In the Figure 2.1 a few

examples of physical, physiological and behavioral characteristics are shown.

Figure 2.1: Examples of biometrics characteristics: a) ear, b) face, c) facial thermogram, d) hand
thermogram, e) hand vein, f) hand geometry, g) fingerprint, h) iris, i) retina, j) signature, and k)
voice. Adapted from (Maltoni et al., 2009).

It is possible to use any human characteristic for biometric recognition since it satisfies a

few requirements. Maltoni et al. (2009) define them as:

• Universality: Most people need to possess that characteristic;

• Distinctiveness: That characteristic needs to be distinct for distinct persons;

• Permanence: That characteristic should not change over time;

• Collectability: That characteristic must be quantitatively measured;

• Performance: That characteristic must provide high accuracy and robustness while pro-

viding low processing time and low computational costs;



2.2 Biometrics Characteristics 22

• Acceptability: That characteristic must be accepted culturally and socially by the people

to be identified;

• Circumvention: That characteristic must be difficult to circumvent.

Table 2.1 shows a comparison between some biometric characteristics in respect to these

requirements (Jain; Ross; Prabhakar, 2004).

It is important to emphasize that there is no optimal biometric characteristic. When deciding

which biometric trait to utilize, it is essential to take into account the environmental constraints

and the characteristics of the group of people to be identified. Due to its characteristic, face is

one of the best choice in an application that needs to capture the biometric sample in a covert

manner, the same cannot be said for the fingerprint or iris, for instance. This does not mean

that one characteristic is superior to the others, but just that it works best in a specific appli-

cation. Even though security concerns are important, other issues must be taken into account

when choosing a biometric feature, such as the reasonableness of the required resources, the

danger it can cause to users, the acceptance by the target population, privacy and robustness to

fraud. (Maltoni et al., 2009).

Table 2.1: Comparison between biometric characteristics (Jain; Ross; Prabhakar, 2004).

Biometric
Trait

Univer-
sality

Distinc-
tiveness

Perma-
nence

Collec-
tability

Perfor-
mance

Accepta-
bility

Circum-
vention

Face High Low Medium High Low High Low
Fingerprint Medium High High Medium High Medium Medium
Iris High High High Medium High Low High
Hand Geom-
etry

Medium Medium Medium High Medium Medium Medium

Ear Medium Medium High Medium Medium High Medium
Hand Vein Medium Medium Medium Medium Medium Medium High
Odor High High High Low Low Medium High
DNA High High High Low High Low High
Facial Ther-
mogram

High High Low High Medium High High

Retina High High Medium Low High Low High
Signature Low Low Low High Low High Low
Voice Medium Low Low Medium Low High Low
Gait Medium Low Low High Low High Medium
Keystroke Medium Medium Low Medium Low Medium Medium

Analyzing the Table 2.1 one can verify that behavioral characteristics (signature, voice,

gait and keystroke) are more susceptible to fraud than most physical and physiological charac-

teristics. This happens because it is easier to mimic the human behavior than its physical or

physiological traits.
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Another important thing to notice is that face has higher universality than the fingerprint,

higher collectability than iris, and higher acceptability than fingerprint and iris. On the other

hand, face is more susceptible to fraud, has lower performance, permanence, and distinctiveness

than the aforementioned characteristics.

Since it is easy and cheap to capture high-quality face images with the current technology,

face stands out when discretion or little user collaboration is required in a biometric identifica-

tion system.

2.3 Biometric Systems

A pattern recognition system that utilizes a feature vector based on any biometric charac-

teristic to assure an individual identity is a biometric system. A Biometric system will normally

operate in one of two modes: identification or verification (Prabhakar; Pankanti; Jain, 2003).

Verification mode is when the user claims to be a certain person and the system compares

the biometric sample probed with the user’s template stored in the database. In this mode, it

is possible to answer the question “Is this person who she or he claims to be?”. Identification

mode is when given a biometric sample the system searches through all the templates stored in

the database trying to find a match. In this mode, it is possible to answer the question “Who

is this person?”. These two distinct modes are typically used for positive or negative person

recognition, respectively (Prabhakar; Pankanti; Jain, 2003).

Before recognizing an individual, it is necessary to enroll him/her in the gallery. The en-

rollment starts with the subject providing a biometric sample and the system extracting and

compressing that data into a template. It is important to assure that the captured sample has an

acceptable quality, then the system checks for it and, if necessary, asks for another sample. The

template can be stored in a central database or in a type of removable media (e.g. flash drive).

In verification mode, the user provides the biometric sample and claims to be an individual.

The system then recovers the template from the claimed user and compares both samples. If

there is a match, the system validates the individual identity. The method for feature extraction

has to be the same as in the enrollment stage.

In identification mode, the individual only needs to provide his/her biometric data, the

system will be responsible for finding the associated identity. The biometric is processed and

compared with all the templates in the database. The system will indicate an identity that is

most similar to the sample or will indicate that there is no such individual in the database. In
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Figure 2.2, the three stages of a biometric system (enrollment, verification and identification)

are illustrated.

Figure 2.2: Enrollment, verification and identification stages of a biometric system (Prabhakar;
Pankanti; Jain, 2003).

A biometric system can be classified into one of the seven categories defined by Wayman

(2002):

• Cooperative versus Non-cooperative: Does the user wish to be identified?

• Overt versus Covert: Does the user knows that he or she is being identified?

• Habituated versus Non-habituated: Does the user often submits to the identification?

• Attended versus Non-attended: There is a human operator helping the system?

• Standard environment: What is the environment that the system will operate?

• Public versus private: The users are employees (private) or clients (public)?

• Closed versus open: Is the system utilizing a set of already known identities to perform

the task?
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Due to noise, environmental conditions, changes in the person traits, and even how the

user interacts with the sensor, two samples of a biometric characteristic from the same person

will never be the same. Therefore, the system will have a matching score and this score will

determine if the comparison succeeds or fails. To do so, a threshold t must be set to regulate the

system decision. If the score is greater or equal to t then the characteristics belong to the same

individual. Otherwise, they do not.

Due to their nature, biometric systems can present two types of errors (Prabhakar; Pankanti;

Jain, 2003):

• False match: A biometric from two different persons are considered to come from the

same person;

• False non-match: A genuine biometric comparison is taken as an impostor.

In order to work properly, a biometric system must make a trade-off between these two error

rates. If the system designer decides to decrease the FMR (false match rate) then the FNMR

(false non-match rate) will increase. On the other hand, if the designer tries to facilitate the user

login, the FMR will increase. Figure 2.3 shows the correlation between these two error rates.

Figure 2.3: Biometric system error rates: FMR (False Match Rate) and FNMR (False Non-Match
Rate) (Prabhakar; Pankanti; Jain, 2003).

Other error rates are FAR (False Accept Rate) and FRR (False Rejection Rate), they are

analogous to FMR and FNMR. FAR is the rate at which a false subject is accepted as genuine

and FRR is the rate in which a genuine match is categorized as an impostor.

Given both error rates, FAR and FRR, it is possible to calculate the Equal Error Rate (EER),

which is a security level measurement that identifies a threshold when FAR and FRR have the

same value.
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While FMR and FNMR are intrinsic system errors, there are others that can happen due

to conditions that cannot be controlled: the failure to capture (FTC) and fail to enroll (FTE)

(Prabhakar; Pankanti; Jain, 2003).

Since a biometric system has to make a trade-off between two errors rates (FNMR x FMR),

it is not possible to assess its performance with a single number. In order to evaluate this

kind of system, a performance curve is necessary (Martin et al., 1997). The Receiver Operating

Characteristics (ROC) curve is one way to understand the performance of a biometric system. A

ROC curve is a two-dimensional graph where the true positive rate is plotted on the Y-axis, while

the false positive rate is plotted on the X axis (Fawcett, 2006). In a ROC curve for evaluating

biometric system, usually, the Genuine Accept Rate (GAR) is plotted against the False Accept

Rate (FAR) (Jain; Ross; Nandakumar, 2011).

For forensic applications the FNMR is more important than the FMR, because, normally,

this kind of application deals with criminal identification and it is very important not letting

a suspect pass unidentified, even if it is needed to manually select the right identity from a

group of matched subjects. For high-security applications occurs the opposite, a person wrongly

identified cannot gain access to its own system. For civilian applications, a balance between the

two rates is the desired scenario.

Another way to assess the performance of a biometric system is to utilize the Cumulative

Match Characteristic (CMC) Curve. To build a CMC Curve it is necessary to order the matching

score sets from a probe image to know identities in the gallery, with this it is possible to calculate

Figure 2.4: An example of a CMC Curve.
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the probability in which the right subject appears in the first K positions in the ordered matching

score set. The CMC Curve is a visual representation of the top K ranks for a biometric system,

with K ≤ N and N being the number of identities. The CMC Curve is a rank-based metric

whilst the ROC Curve is a aggregate-based metric (Decann; Ross, 2013). Figure 2.4 shows an

example of a CMC Curve.

It is also important to understand the relation between the ROC and CMC Curve. Spite

the CMC Curve not having a threshold the way that the matching is performed can relate to

the FAR and FRR. This relation is given by understanding that for every genuine score search

the value of the imposter score can be considered as a virtual threshold. With this in mind it

is possible to construct a CMC Curve given the impostor and genuine distribution in respect to

a 1 : 1 matcher (Bolle et al., 2005). This means that, if the CMC Curve points towards a good

performance it is reasonable to expect that the ROC Curve will have a similar behavior.



Chapter 3
THEORETICAL BACKGROUND AND RELATED

WORKS

In this chapter, the theoretical background needed for the current research and some related

works are presented.

3.1 Theoretical Background

First, the main concepts of artificial and convolutional neural networks are presented. After,

the transfer learning and cross-resolution concepts are defined. Finally, the 3DLBP hand-crafted

feature is explained in details, since we utilize it to propose a new Descriptor Image (DI) for 3D

face representation and description.

3.1.1 Artificial Neural Networks

Inspired by the human brain, artificial neural networks (ANN) are defined as a collection of

units that are connected together. This connection can be made in different ways, forming dif-

ferent structures, such as the feed-forward networks and the recurrent networks. The properties

of an ANN are defined by its units and topology (Russell, 2010).

Artificial neural networks have attracted interest due to their ability to learn, their distributed

computing and their robustness in handling noisy input data (Russell, 2010). To understand how

to create and utilize an ANN, it is necessary to study its units and how it is possible to propagate

its activation pattern throughout the whole network. Figure 3.1 exhibits the mathematical model

of an ANN unit, referred to as neuron in this context.

To form a neural network, each neuron has to be connected by directed links. The connec-
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Figure 3.1: A mathematical model of a neuron (Russell, 2010).

tion of a neuron i to a neuron j is necessary to propagate the activation of the units. Each input

link has a weight wi, j that controls its degree of influence in the neuron activation. All neurons

have a dummy input a0 that has always the value of 1 and the weight w0, j (Russell, 2010). To

calculate the input value of a neuron j, the following equation is utilized (Russell, 2010):

in j =
n

∑
i=0

wi, jai (3.1)

being in j the input to the activation function of unit j, n the number of input links, wi, j the

weight on the link from unit i to unit j, and ai the output activation of unit i. The activation

function g is used to calculate the output of a neuron (Russell, 2010):

a j = g(in j) = g

(
n

∑
i=0

wi, jai

)
(3.2)

being a j the output from the unit j.

The activation function can be a hard threshold, in which the neuron is known as perceptron,

a logistic function, or a rectified linear unit (ReLU) (Nair; Hinton, 2010).

The ANN learning procedure consists of updating the weights of the network based on its

error rate to minimize loss. Since most of the problems in this scenario are non-linear, it is

necessary to use the gradient descent to find the best values for several weights (Russell, 2010).

Gradient descent deals with the general problem of optimizing a loss function knowing only

its first-order gradient evaluation (Wu; Ward; Bottou, 2018). The equation for calculating the new

value for a weight with gradient descent is:

w j+1 = w j−η j∇ f (w j) (3.3)

with η being the learning rate and f the loss function (Wu; Ward; Bottou, 2018). The learning rate
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is the size of the step that the gradient does in the weight space. A loss function is defined as

the size of the loss when predicting wrongly a result (Russell, 2010).

An ANN can be connected to a feed-forward or recurrent network. A feed-forward network

does not have an internal state, it only has a representation of its current input. This behavior is

due to the characteristic of not feeding its output back to its input (Russell, 2010).

A recurrent ANN feeds its output to its inputs and, with this, it is possible to experience

some sort of dynamic behavior in its activation pattern. This characteristic enables the network

to have some sort of short-term memory (Russell, 2010).

An ANN can be arranged in layers. A layer is a set of units that receives input only from

the previous set of units. It is said hidden when it is between the input and output layers and

cannot be accessed directly from outside the network (Russell, 2010). The quantity of layers in

an ANN defines its depth (Goodfellow; Bengio; Courville, 2016). Figure 3.2 shows a feed-forward

ANN composed of an input layer, a hidden layer and an output layer.

Figure 3.2: Example of a feed-forward network with an input layer, a hidden layer, and an output
layer.

Depending on the number of layers an ANN can be considered deep or shallow. The term

deep-learning, which is utilized as a synonym for Deep Neural Networks, conceives the concept

of an approach for a representation-learning method that combines several layers of represen-

tations. These layers are non-linear modules that transform raw data into high-level abstract

representations (Lecun; Bengio; Hinton, 2015).

In this thesis, the main interest is on Convolutional Neural Newtork, which is a kind of

feed-forward neural network.
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3.1.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is an ANN with one or more convolutional lay-

ers (Skansi, 2018). A convolutional layer passes a logistic regressor (called local receptive field)

with input size n through the whole image (Skansi, 2018). The regressor is moved one compo-

nent at a time but it is possible to increase how much it is moved, this is done utilizing the stride

for the layer (Skansi, 2018).

Considering the input size of the regressor the output will be smaller than the original data

if there is the necessity to put both data at the same size the procedure of padding can be used.

Padding is the process of filling missing data with 0 or 1.

A convolutional layer can receive, as input, 1D data (1D Convolutional Layer), 2D data

(2D Convolutional Layer), 3D data (Spatial Convolutional Layer), 4D or higher dimensional

data (Hyperspatial Convolutional Layer) (Skansi, 2018). It is common to utilize a Rectified

Linear Unit (ReLU) as the activation function for this type of layer. The ReLU function returns

the maximum value between 0 and x (Skansi, 2018).

Aside from convolutional layers, the convolutional neural networks normally utilize feature

maps and pooling. The idea behind feature maps is the generation of smaller but deeper images

from the original data. Taking a 12× 12 grayscale image with a 3× 3 local receptive field,

it will build a 10× 10 output image, but if the image has 3 channels (such as RGB) the idea

behind a feature map is to pass n local receptive fields over each channel. In the aforementioned

example with n = 5 a 10×10 image with 15 channels will be constructed, this can greatly help

the accuracy of the network (Skansi, 2018).

The next step is pooling. Formally, its function is to progressively reduce the spatial size

of the representation in order to reduce the amount of parameters and the computation in the

network. The most common form of pooling is max pooling. Max pooling is done in part to help

over-fitting by providing an abstracted form of the representation. The max-pooling receives the

size of a window as a parameter, the image is divided into a grid utilizing that value. Then, in

the output image, each pixel is the maximum value of each window region in the input image.

Other strategies for pooling are averaging pixels or utilizing the minimum value (Skansi, 2018).

Figure 3.3 shows an example of a Convolutional Neural Network. It is possible to see the

effect of the 3×3 local receptive field and the pooling.

Another important aspect when dealing with neural networks is the possibility to re-utilize

past experiences in new scenarios. This concept is known as transfer learning.
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Figure 3.3: Example of a Convolutional Neural Network with a convolutional layer, pooling, and a
fully connected layer. The output is given by a single neuron at the end (Skansi, 2018).

3.1.3 Transfer Learning

When previous knowledge is utilized to learn new concepts in a more efficient way, this

is known as transfer learning (Yang; Hanneke; Carbonell, 2013). Normally, this is a way to utilize

fewer data in adapting ANNs to new, but related, scenarios (e.g. fine-tuning a CNN from 2D to

3D data).

Initial layers in an ANN trained on images tend to learn low-level features (Lecun; Bengio;

Hinton, 2015), sometimes being similar to Gabor filters (Yosinski et al., 2014). This was observed

with different datasets and different contexts (Yosinski et al., 2014).

The features from the initial stages of an ANN can be defined as general because they are

learned regardless the image dataset and the cost function (Yosinski et al., 2014). This is different

from the last layer. In a classification task, a CNN will output data that is relevant to the specific

scenario in which it is being trained, a softmax in a face recognition system, for instance, will

learn the identities of the dataset, the last layers will output learned features that are relevant

to that specifc task and not for a general task, this is why it is possible to define the last layer

features as specific features (Yosinski et al., 2014).

Transfer learning will be effective under the condition that the features being transferred

are general enough to suit both datasets and tasks. Usually, this approach utilizes the initial n

layers from an ANN trained on a larger amount of data and transfer them, changing the last m

layers, to a more specific, normally with a smaller quantity of data, and retrain. This mimics a

real world scenario in which, with less information, it is possible to master a new subject if you

have some prior knowledge related to it (Yang; Hanneke; Carbonell, 2013).

There are two possible ways to transfer learning, fine-tuning or freezing the weights (Yosinski
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et al., 2014). Fine-tuning is defined when, during the training in a new task with transferred

weights, the errors of the trained are backpropagated. Depending on the size of the new dataset

and the new task this can lead to overfitting (Yosinski et al., 2014). In the freezing weights strategy,

during the training in a new task with the transferred weights, only the specific features are

trained (Yosinski et al., 2014).

3.1.4 Cross-Resolution Recognition

In 2D face recognition scenarios, for instance, it is common that low-resolution probe im-

ages need to be matched with high-resolution gallery images. This type of matching is defined

as cross-resolution face recognition (Singh et al., 2018; Gao et al., 2020).

Cross-resolution recognition can be normally observed in system that utilize probe im-

ages from surveillance footage, since the distance in which the subject’s image is captured and

the quality of the camera can generate important differences in quality and size of the probe

images (Gao et al., 2020). This type of problem can reduce significantly the performance of

biometric identification systems (Singh et al., 2018; Gao et al., 2020).

The approaches that tries to deal with cross-resolution scenarios can be broadly catego-

rized into transformation based techniques and non-transformation based techniques (Singh et

al., 2018). When dealing with transformation based techniques there will be a transformation

function that will be applied to data, in feature or image level, whilst in non-transformation

based techniques the focus is to learn features, or classifiers, that are invariant to resolution

differences (Singh et al., 2018).

Spite most of the works in the literature focus this problem in 2D environments, this phe-

nomenon also happens with 3D data. Several types of devices can capture depth information

and they can vary significantly concerning the quality of data. Table 3.1 shows the accuracy for

several different types of 3D scanners, it is possible to see a big gap in the accuracy comparing

high-resolution with low-resolution scanners. The difference in accuracy leads to holes, and

spikes in the captured data severely impact face recognition systems, for instance.

In the present thesis, an intermediate feature representation is proposed for 3D face recog-

nition. This intermediate representation, named as Descriptor Image (DI), has some level of

resolution invariance. This is discussed in Chapter 6.
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Table 3.1: Comparison between different 3D scanners (Li et al., 2013).

Device Accuracy (mm)
3dMD < 0.2
Minolta ≈ 0.1
Artec Eva ≈ 0.5
3D3 HDI R1 ≈ 0.3
SwissRanger ≈ 10
DAVID SLS ≈ 0.5
Kinect V1 ≈ 1.5−50

3.1.5 3D Local Binary Pattern

Local Binary Pattern (LBP) is a type of visual descriptor used in many applications of

Computer Vision. LBP was first described in 1994 by Ojala, Pietikainen and Harwood (Ojala;

Pietikainen; Harwood, 1994) and, since then, has been considered a powerful feature for texture

classification.

Originally, the LBP operator takes a 3×3 sliding window throughout an image and utilizes

the window region to calculate the operator for its central pixel. To this end, the region is

thresholded with the central pixel value and, then, represented by a binary code. Finally, the

binary code is converted into a decimal number, which is utilized as the label for the central

pixel of the window region.

Ojala, Pietikainen e Maenpaa (2002) proposed an extended version for the LBP operator

that modifies the size and shape of the window (local) region, being possible to select a circular

region with radius R and P neighbor points. In this extended version, when a neighbor point

falls on integer coordinates the intensity value of the pixel on that integer coordinates is utilized,

otherwise, a bi-linear interpolation of the intensity values from the surrounding pixels is used.

The LBP operator only takes into consideration the signal of the comparison between a

region and its kernel and cannot deal with the behavior of depth values. In the LBP, when two

central points on different samples have highest (or lowest) depth values than their neighbors,

they will have the same operator value, even if they are from different subjects (Huang; Wang;

Tan, 2006). This would be common on points belonging to the nose tip of a face subject, for

instance.

To deal with situations like this, Huang, Wang e Tan (2006) proposed the 3D Local Binary

Patterns (3DLBP). This variation of the original operator considers not only the signal of the

difference, but also the absolute depth difference. Huang, Wang e Tan (2006) state that, for face,

more than 93% of all depth differences (DD) with R= 2 are smaller than 7. Due to this property,
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the absolute value of the DD is stored in three binary units (i2i3i4). Therefore, it is possible to

affirm:

|DD|= i2 ·22 + i3 ·21 + i4 ·20 (3.4)

There is also i1, a binary unit defined by:

i1 =

{
1 if DD ≥ 0;

0 if DD < 0.
(3.5)

Those four binary units are separated into four layers and, for each of those layers, four

decimal numbers are obtained: P1,P2,P3,P4. The value of the P1 has the same value as the

original LBP. Figure 3.4 shows the process for the generation of the 3DLBP, given an image.

Figure 3.4: The full process of the 3DLBP proposed by (Huang; Wang; Tan, 2006).The absolute depth
differences are encoded into the three layers (layer 2, 3 and 4) and the signal into the layer 1.
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3.2 Related Works

Over the years, the literature on 3D face recognition has been focusing on methods that

describe surfaces, specifically for capturing geometric properties of the facial geometry (Drira et

al., 2013; Faltemier; Bowyer; Flynn, 2008; Mian; Bennamoun; Owens, 2007; Berretti; Bimbo; Pala, 2010;

Kakadiaris et al., 2007; Spreeuwers, 2011). Even with several advances, most works that have been

done so far utilize high-resolution data captured by costly devices in controlled environments.

Some of the works that utilize Kinect-like devices try to increase the resolution of the data

exploiting the temporal redundancy of frames in a sequence (Bondi et al., 2016; Drosou; Moschonas;

Tzovaras, 2013; Hernandez; Choi; Medioni, 2012). The main problem of those approaches is that, in

general, they are unable to operate in real time.

In (Li; Sun; Chen, 2017), the authors utilize an approach for 3D face recognition that explores

deep representation patterns (DRP) that are sensitive to face location. For this task, first it is

necessary to detect the nose-tip, to crop the face region, and to do pose normalization. In the

next step, it is necessary to generate 2D projection from the 3D model for the generation of

geometry images, in this process three images of the face normal components are estimated and

fed into a pre-trained deep face network to generate deep representation. A location sensitive

sparse representation classifier (LS-SRC) is utilized to measure the similarity of the deep normal

patterns that are associated with each face. In the end, each of the representation goes through

a score-level fusion for final identity decision. This work obtained rank-1 recognition rates of

98.01%, 97.60% and 96.13%, respectively, on the FRGC v2 1, Bosphorus 2, and BU-3DFE 3

datasets.

Only a handful of methods perform face recognition directly from low-resolution data. In

the work proposed by Min et al. (Min et al., 2012) a real-time 3D face identification system

that receives a depth sequence as input is built. Initially, the region of the face is detected

and segmented by utilizing a threshold on the depth values. In the next step, the face images

are cropped and reduced to common resolutions and the matching is obtained by registering a

probe with several intermediate references in the gallery with the EM-ICP (Granger; Pennec, 2002)

algorithm. Mantecón et al. (2014) proposed the Depth Local Quantized Pattern as a modification

of the original LBP operator. This modification introduces a quantification step that allows the

descriptor to distinguish between different patterns. The descriptor was used to train and test

an SVM classifier. In another work, Mantecón et al. (2016) proposed an algorithm for face

1https://www.nist.gov/programs-projects/face-recognition-grand-challenge-frgc
2http://bosphorus.ee.boun.edu.tr/default.aspx
3http://www.cs.binghamton.edu/ lijun/Research/3DFE/3DFE Analysis.html
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recognition based on an image descriptor called bag of dense derivative depth patterns. Dense

spatial derivatives are first computed and quantized in a face-adaptive fashion to encode the

3D local structure. Then, a multi-bag of words creates a compact vector description from the

quantized derivatives.

In (Neto; Marana, 2014) the authors propose a way of doing 3D face recognition utilizing

data extracted from Kinect v1 sensors. Since the Kinect data have a great deal of noise, a pre-

processing step was utilized, aiming to increase the point cloud density and, after that, feature

extraction methods were used and their scores were fused. HAOG (Histogram of Averaged

Oriented Gradients) and 3DLBP descriptors were utilized for classification, after training a

SVM for each characteristic type and observing the results, the score of both decision were

fused, utilizing a weight for each feature decision. The fusion achieved around 97% of rank-1

identification rate in the EURECOM Kinect Face Dataset (Huynh; Min; Dugelay, 2012) 4 and was

competitive with the state-of-the-art methods.

The development of deep architectures that deal with 3D data has had a slower expansion

than the image-based counterpart, mainly because of the data representation problem. While

CNNs were designed to work with 2D images, the wide variety of 3D data (e.g., point-clouds,

triangular meshes, etc.) makes it difficult to work in the same standardized way without making

significant modifications in the whole framework.

An example of a possible way to make use of existing deep architectures for 3D face recog-

nition is the work proposed by Kim et al. (Kim et al., 2017), in which the authors utilized a

pre-trained version of the VGG-Face and fine-tuned it for depth data. To deal with the short-

age of depth data for training, the authors expanded the dataset by generating expressions and

occlusions.

With the necessity of large amounts of data, Gilani et al. (Gilani; Mian, 2018) proposed a

synthetic data generation technique that they used to build a dataset of≈3M scans. The authors

utilized such data to train a deep architecture that follows a VGG-like structure and consists

of 13 convolutional layers, 3 fully connected layers and the final softmax layer. One of the

conclusions reached in their work is that, because of the smooth nature of the face surface, there

is the need for larger kernels for the convolutional filters with respect to the ones commonly

used.

Lee et al. (2016), proposed a face recognition system based on deep learning that utilizes

face images captured with a consumer-level RGB-D camera. For this task, three steps are

performed: depth image recovery, deep learning for feature extraction, and joint classification.

4http://rgb-d.eurecom.fr/
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To alleviate the problem of the limited size of available RGB-D data for deep learning, the deep

network is firstly trained with a standard RGB face dataset and later fine-tuned on depth face

images for transfer learning. The main difference between this work and the aforementioned

ones is that it focuses on low-resolution data instead of high-resolution.

A hybrid solution exploiting both the RGB and depth information was presented in (Jiang;

Zhang; Deng, 2019), in which a CNN is trained, guided by the supervision of an additional loss,

called attribute-aware loss, that attempt to cluster the face images based on attribute information

such as gender or age.

Along these lines, another recent work dealing specifically with low-resolution depth scans

was developed by Mu et al. (2019), in which a lightweight CNN equipped with a multi-scale

feature fusion layer is employed to fill the gap between high- and low-resolution depth scans.

In order to train a Deep Network for face recognition it is necessary a huge amount of

labeled data, namely face of subjects. One way to deal with this problem is to create a set of

artificial faces utilizing 3D face rendering. The main problem with this is the bias between the

2D rendered and real faces. To deal with such problem, in (An; Deng; Hu, 2017) the authors utilize

deep transfer network to reduce the dataset bias. In their work, the authors generate several face

images (with pose, neutral, expressions, and several others) utilizing the 3DMM (Morphable

Models) face model, utilize the Inception-Resnet-V1 as the benchmark model, and optimize the

deep transfer network with a maximum mean discrepancy. Their results are competitive with

the state-of-the-art approaches.

The work proposed in (Yin; Liu, 2018) evaluates multi-task learning (MTL) for face recogni-

tion. For such a complicated task the authors propose a CNN in which classifying the subjects

is the main task and the other problems commonly faced in 2D face recognition (such as pose

and illumination) are secondary tasks. In the next step, the authors propose a dynamical weight

adjustment for each side of the learning task. Finally, a CNN which groups similar poses to ex-

tract pose-specific features is proposed. The paper exhibits results on in-the-wild datasets (such

as LFW) which compete with state-of-the-art results. This particular work does not utilize face

reconstruction, but CNNs.

Looking at the related works it is possible to identify some gaps in which it would be

possible to develop new research topics. More specifically Shallow CNNs, cross-resolution

scenarios (training on high-resolution and testing on low-resolution), and face recognition with

reconstructed 3D data to name a few.



Chapter 4
PROPOSED METHOD

In this thesis, we propose a novel hybrid approach for 3D face recognition that utilizes

descriptor images (DI), also proposed in this thesis, calculated from facial cloud points, in

conjunction with shallow convolutional neural networks (CNNs). The idea behind this is that,

since the proposed DIs are constructed from low-level feature extractors, it would be possible

to use shallow CNNs, allowing us to build an ensemble of shallow networks that are modular

and needs fewer data and less computational power to train the CNNs. Our hybrid approach can

be used in two modes: 3D face classification and 3D face feature extraction. Both modes have

an initial module in which descriptor images are calculated. While the second module of the

classification mode uses shallow CNNs as classifiers to identify the 3D input face, the second

module of the feature extractor module uses shallow CNNs to extract higher-level features from

the 3D input face. Details of the Descriptor Image Generation and of the Classification and

Feature Extraction Modes are presented in Sections 4.1, 4.2 and 4.3, respectively. The whole

code for this proposed method, including the shallow CNNs models, the pre-trained weights,

the pre-processing pipeline, and the DIs generation module is publicly available at github 1.

4.1 Descriptor Image Generation

Depth images obtained from consumer-like cameras (e.g. Kinect Sensor) can be an interest-

ing solution to build systems for 3D face recognition, which operate seamlessly as 2D consumer

cameras. In this case, the main problem is that, normally, this type of devices obtain data with

fewer details of the face compared to those acquired by high-resolution scanners. In this sense,

training from scratch a Deep Convolutional Network (DCNN) on such data is difficult for two

main reasons: (i) depth data in general, and low-resolution depth data in particular, present

1https://github.com/jbcnrlz/biometricprocessing
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more acquisition noise than RGB images; (ii) large volumes of labelled depth faces are difficult

to collect. Besides, for these data, it is not possible to collect samples in the same way as one

would with 2D scanners. Thus, one workaround found in the literature is taking a Deep CNN

architecture pre-trained on RGB data and fine-tuning it with a small set of depth images (Mu et

al., 2019; Parkhi; Vedaldi; Zisserman, 2015).

In this thesis, we propose a different approach, in which we utilize a low-level feature

extractor to generate an intermediate feature representation for 3D data, this representation is

called as Descriptor Image (DI). Our hypothesis is that this type of data allows the use of shallow

networks to do 3D face recognition in two different modes, feature extraction and classification.

We also hypothesize that the proposed DI has some degree of resolution invariance that allows

us to train shallow CNNs in high resolution 3D face data and use it to recognize low resolution

3D faces.

4.1.1 Descriptor Image Generated From 3DLBP

3DLBP descriptor (Huang; Wang; Tan, 2006), described in Section 4.1.1, was adopted in our

work as low-level face features due to its computational efficiency and the fact that it has been

proven to be effective in describing 3D depth images of faces. Another reason we utilized a low-

level hand-crafted feature for the DIs is our belief that generating a representation that encodes

this type of feature would allow us to utilize shallower networks, once this type of feature is the

same type that initial layers of a CNN would encode.

In 3DLBP, the depth differences are encoded as a feature. With the [-7,+7] range, 15 differ-

ent values are to be encoded, which results in a four-bit representation. Each bit is regarded as

a separate channel: the first channel encodes the sign of the difference, that is 0 if the difference

is negative, 1 otherwise; the other three channels encode the absolute value of the difference

transformed in a binary code of 3 bits. Figure 3.4 shows the generation of a 3DLBP descriptor

for a pixel with a 3×3 neighborhood region.

In our approach, differently from the original 3DLBP descriptor (composed by the con-

catenation of the histograms of the four channels), the 3DLBP descriptors of the whole depth

are transformed into an image, in which each one of the four bits of the 3DLBP is regarded

as a separate channel of the final descriptor image (DI). To encode these four bits, we use a

four-channel RBGA image, with the last channel being the alpha channel.

In the generated DI, each channel has a different behavior. The first one encodes the sign

and it describes if the local neighborhood is increasing or decreasing with respect to the central



4.1 Descriptor Image Generation 41

(a) (b) (c) (d)

Figure 4.1: The channels of the DIs generated with the 3DLBP. (a) sign of the difference (b), (c),
and (d) the three bits of the absolute difference value.

point (e.g., a local minimum would be encoded as 255, that is all bits are 1). The last three

channels encode the absolute depth difference between each center point and its neighbors.

Figure 4.1, shows the four channels of a DI obtained from the 3DLBP descriptor of a face. The

difference between each of the channels is a direct consequence of the encoding procedure.

As reported, the first channel encodes the sign of the difference, and changes in the values

appear to occur smoothly. This happens mainly because faces are smooth surfaces and shifts in

values do not occur abruptly. The second channel receives the encoding of the most significant

bit of the absolute depth differences. The value of the difference can only be an integer that

goes from zero to seven; with this in mind, values of this channel are 1 for differences bigger

or equal to four (most significant bit). This does not happen as often on the face because of its

smooth surface, as one can see in Figure 4.2, which shows the distribution of depth differences

in human faces. However, there are some regions in which it is possible to see more abrupt

changes in the difference values, such as the nose and ocular areas. Looking at the last two

channels, we note that they are generally noisier. The reason behind this is that they encode less

significant bits, thus the changes occur more rapidly. The third channel (second bit) changes for

differences of two, while the fourth one (least significant bit) changes for depth differences of

one. This generates high frequency information.

4.1.2 Descriptor Image Generated From Sigmoid 3DLBP

A limitation of the standard 3DLBP descriptor is that, within the [-7,+7] interval, negative

or positive difference values share the same binary code, except for the sign bit. This implies

that some regions of the resulting DI might have the same values on three out of four channels.

One way to account for this is to incorporate a sigmoid function in the computation of the

3DLBP operator. Figure 4.3 shows a sigmoid function, which is defined in equation 4.1.
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Figure 4.2: Distribution of the depth difference in the FRGC dataset. The red vertical lines indicate
the [-5,+5] range. It is clear that the vast majority of the depth differences falls in this range.

f (x) =
1

1+ e−x . (4.1)

Figure 4.3: The S shaped curve of a sigmoid function.

The sigmoid function was formulated in the 19th century to describe population growth and

the course of auto-catalytic chemical reactions (Cramer, 2002). It is a bounded, differentiable,

real function that is defined for all real input values and has a non-negative derivative at each

point and exactly one inflection point (Han; Moraga, 1995).
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Figure 4.4: Different curves of each sigmoid utilized in the encoding of the depth differences. It
is possible to visualize the bins utilized to encode the values, alongside with where each value will
fall. It is possible to observe that the curve for the non stretched sigmoid and with A = 0.777 have
very similar behavior, almost overlapping.

Instead of using four bits for representing values in the [-7,+7] range and truncating the

exceeding values, with the use of a sigmoid function it is possible to map larger intervals to

four bits. To encode the sigmoid values, 8 bins are defined in the interval between 0 and 1.

Then, each f (x) value is mapped to its closest bin, in a histogram-like fashion. Note that,

even though the sign channel is maintained into the four-channel image, f (x) is computed

considering the depth difference along with the sign, so that same values with opposite signs

are put into different bins. This has the advantage of encoding a larger range of variations,

though with a coarser resolution. This also ensures that different maps with respect to the

classic 3DLBP are generated. Spite the fact that Eq. (4.1) encodes the same absolute value in

different bins depending on the sign, it is only effective if most of the values fall in the range

[-4,+4] (see Figure 4.2). In order to encode a broader range of values equation 4.2 was utilized

f (x) =
1

1+ e−A∗ln(2+
√

3)∗x
, (4.2)

in which x is the depth difference value, and A is a scalar value that stretches the sigmoid

function, making it possible to change the range in which the values are encoded. Figure 4.4

shows how the function of equation 4.2 behaves given different stretch values.

4.1.3 Descriptor Image Generation Module

The novel hybrid approach for 3D face recognition proposed in this thesis utilizes 3DLBP-

based descriptor images (DI), calculated from facial cloud points. Figure 4.5 shows a diagram
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of the proposed descriptor image generation module. One can observe that this module is

composed of two main stages: the pre-processing and the 3DLBP feature extraction. First, a

cloud point obtained from the face goes through a pre-processing pipeline in order to improve

the depth data quality and to attenuate differences that are caused by differences in resolution.

The output of the pre-processing stage is a depth image that, by its nature, can be considered a

Descriptor Image. Next, in the depth image generated by the pre-processing is used as input to

the hand-crafted 3DLBP-based feature extraction. The extracted 3DLBP features are, finally,

utilized to build an image representation called Descriptor Image (DI).

Figure 4.5: Block diagram of the descriptor image generation module. A cloud point is utilized as
an input. First, it goes through a pre-processing pipeline to improve data quality and to attenuate
differences that are caused by differences in resolution. The output of the pre-processing is a depth
image that, by its nature, can be considered a Descriptor Image. The next step is the hand-crafted
feature extraction from the pre-processed depth data. The extracted 3DLBP-based feature is then
utilized to build an image representation called Descriptor Image.

In the pre-processing stage, there are four main steps, which are necessary to fill the holes

in the point cloud and to increase the data quality:

Segmentation: Starting with the nosetip the face is centered at the origin and a circle with

radius R is segmented. Figure 4.6 shows how this step works;

Symmetric Filling: The Symmetric Filling technique, proposed by Li et al. (2013), utilizes

the left side of the face to increase point density by including the set of mirrored points

Figure 4.6: Face segmentation process.
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from the right side of the face, and vice-versa. However, not all the mirrored points are

useful because the goal is to fill only in the missing data (occluded regions, for instance).

Likewise in (Li et al., 2013), the strategy to be used in our method is to add the mirrored

point only if there is no neighboring point at that location. During this process, if the

Euclidean distance from a mirrored point to its neighbors in the original point cloud is

greater than a threshold value δ , then that point will be added to the original face data.

Figure 4.7 shows how this step works;

Iterative Closest Point: The Iterative Closest Point (ICP), proposed by Besl e McKay (1992),

is a well known solution for the problem of registration. It tries to find a rigid transfor-

mation that minimizes the least-square distance between two points. Given two 3D point

sets (A and B), ICP performs the following three basic steps:

1. Pair each point of A to the closest point in B;

2. Compute the motion that gives the lowest Mean Squared Error (MSE) between the

points;

3. Apply the motion to the point set A and update the MSE.

The three aforementioned steps are performed until the MSE is lower than a threshold τ .

A complete description of this method can be found in (Besl; Mckay, 1992) and (Chetverikov;

Stepanov; Krsek, 2005);

Generation of Depth Map: In the proposed method, depth maps from cloud points must be

generated. Cloud points will be obtained from the reconstructed 3D face models. In or-

der to generate depth maps from cloud points, a circular region with radius R is cropped

centered at the nose tip. Then, the cropped image goes through the symmetric filling

process. Finally, the resulting face image is fitted to a smooth surface using an approx-

imation method, implemented by an open source code2 written in Matlab. The result of

this process is a 100×100 matrix, as illustrated in Figure 4.5. This pre-processed depth

map is considered a DI. Figure 4.8 shows the input and output of our whole process.

Figure 4.9 compares the results of our pre-processing pipeline in high- and low-resolution

data. It is possible to see that the pipeline helps to attenuate resolution differences, specially

when removing holes and spikes from the low-resolution data.

After the preprocessing steps, the pre-processed depth map is utilized as an input for the

3DLBP-based feature extraction (traditional 3DLBP or sigmoid 3DLBP). Instead of generating

2http://mathworks.com/matlabcentral/fileexchange/8998-surface-fitting-using-gridfit
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Figure 4.7: Symmetric filling process.

Figure 4.8: Input and output for our pre-processing pipeline.

a histogram as the descriptor, the idea is to generate a 2D representation that can be utilized

as input to a CNN. This representation is generated by substituting each central point in a

(a) High-resolution pre-processed
depth map

(b) Low-resolution pre-processed
depth map

Figure 4.9: Comparison between a high-resolution pre-processed depth map (a) and a low-
resolution pre-processed depth map (b). Even though there are visible differences between res-
olution, landmarks of the face are visually perceptible even in the depth map obtained from low-
resolution data.
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neighborhood region with the value of the four components generated by the 3DLBP. Being

more specific, in a region, the central depth value is substituted with the four values generated

by the 3DLBP operator. In this scenario, an image that has only one channel, with the depth

value, will be represented as an RGBA image, with each channel being the value of each layer of

the 3DLBP operator. Figure 4.10 shows a comparison between 3DLBP DI from high- and low-

resolution. In the regions where the red color is more predominant it means that the majority of

regions have the central point depth value smaller than the majority of neighbors, it also means

that the depth difference from the initial points (e.g. the upper left most neighbor) are closer to

1, this means that the value for the first layer, which corresponds to the red channel, are bigger

than the rest. In this scenario, the face region in the DI has a reddish tone. The regions where the

blue color is more predominant normally have the depth different from its initial points closer

to -2, -3, -6, and -7. This means that the red channel will have a smaller value while the blue

channel, corresponding to the second layer from the absolute depth difference, will have bigger

values giving a bluish tone to the image region.

(a) High-resolution 3DLBP DI (b) Low-resolution 3DLBP DI

Figure 4.10: Comparison between a high-resolution 3DLBP DI (a) and a low-resolution 3DLBP DI
(b).

4.2 Classification Mode

In the approach proposed in this thesis for 3D face recognition, 3DLBP-based DIs, com-

puted from low-resolution cloud point data, as described in Section 4.1, are used as input to a

shallow CNN in order to find the identities of individuals. Figure 4.11 shows a diagram that

illustrates the proposed classification mode.

Since the DIs represent a more elaborated version of the original raw depth data, our hy-

pothesis is that face recognition can be made by CNNs with much less layers than those CNNs

necessary to do the same task but using the original raw depth data. Based on this hypothesis,
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Figure 4.11: Block diagram of the classification mode proposed in this thesis, that uses the 3DLBP-
based DI and a shallow CNN.

the neural network architecture designed in this thesis is a very shallow CNN composed only of

three convolutional layers, as illustrated in Fig. 4.12. We have named this CNN as CABNet-C.

In the proposed CABNet-C, the first layer operates with 64 filters, an 8× 8 kernel and a

stride of 4. The next convolutional layer has 192 filters, a kernel of 5× 5 and a stride of 1.

The last convolutional layer has 384 filters and a kernel of 3×3. Between the second and last

convolutional layer, there is a max pooling layer with a kernel of 3× 3 and stride of 2. After

the last max pooling layer, there are two fully connected layers and a softmax at the output for

subject classification. There is also a ReLU activation layer after each convolutional layer.

The input image size is 100× 100× 4, and all of the images are normalized before being

utilized as input. For normalization, each channel is divided by its max value. Since depth data

is generally smoother than 2D data, we utilize larger kernel sizes, as suggested by (Gilani; Mian,

2017). Another reason for utilizing bigger kernels at the beginning of the network is that we

believe that the DIs already encode some meaningful information, allowing the use of networks

that are more shallow than most of the literature utilizes.

In order to train the CABNet-C, we use the FRGC dataset with 200 epochs. For each face,

we apply a 3D rotation in the Y (pitch angle) and X (yaw angle) axis from -30 to 30 degrees.

With this dataset augmentation strategy, the total number of images for training is 48,867.

Figure 4.12: Architecture of the proposed Shallow CNN Classifier (CABNet-C). The network takes
the DIs as input (four channel images in RGBA format).
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Before validating the network, it goes through a fine-tuning process for 100 epochs and the data

utilized for the process is augmented in the same way as the FRGC data.

4.2.1 Score Fusion

To perform 3D face recognition we employed a score fusion between the 3DLBP and the

Sigmoid 3DLBP DIs, in order to investigate whether a coarser encoding of larger depth intervals

(Sigmoid 3DLBP DI) can bring complementary information to the original formulation (3DLBP

DI). The fusion is a weighted sum of the classification scores:

ScoreF = w3DLBP×Score3DLBP +wSIG×ScoreSIG , (4.3)

being ScoreF the final score for a subject, w3DLBP the weight for the 3DLBP approach, Score3DLBP

the original softmax score for the 3DLBP, wSIG the weight for the sigmoid 3DLBP, and ScoreSIG

the softmax score for the original sigmoid. We experimented the fusion of scores with the wSIG

weight values ranging from 0.1 to 0.9 (step = 0.1) and the w3DLBP = 1−wSIG during the training

on the FRGC dataset. The values that yielded the best result were w3DLBP equal to 0.6 and wSIG

equal to 0.4. Figure 4.13 illustrates how the score fusion works.

Figure 4.13: Block diagram that illustrates the score fusion between the 3DLBP and Sigmoid
3DLBP DIs.

4.3 Feature Extraction Mode

Figure 4.14 shows a diagram that illustrates the proposed feature extraction mode. One can

observe that for the feature extraction mode we propose a shallow CNN architecture that is dif-
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ferent from the CABNet-C, we have done this because of the necessity to create a more compact

and robust feature representation. This new shallow CNN is composed of four convolutional

layers and the input can be DIs of 100× 100× 4 or 100× 100× 3. This allows flexibility on

the type of data to be utilized as input to the network. For our hand-crafted DIs, we utilize four

channels, while for the pre-processed depth DIs, we utilize three channels. After each convo-

lutional layer, there is a batch normalization and a ReLU activation function. We have named

this shallow CNN as CABNet-FE. Figure 4.15 shows details of the proposed architecture of the

CABNet-FE.

Figure 4.14: Block diagram of the feature extraction mode proposed in this thesis, that uses the
3DLBP-based DI and a shallow CNN.

To build the face feature we concatenate the outputs from the convolutional layers. Since

the feature maps from each layer have different output sizes, a max pooling layer is utilized to

normalize it. With that in mind, the output from each max pooling is, respectively, 3×3×128,

3×3×256, and 3×3×512. The last convolutional layer does not utilize a max pooling and its

output shape is 3×3×1024.

The reason we utilize feature maps from different parts of the network is that we believe that

Figure 4.15: Architecture of the proposed CABNet-FE.
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there is discriminative information throughout its whole structure. This is a hybrid approach

because we start with a previous hand-crafted feature, instead of the raw data (even the pre-

processed depth map is a type of feature we generate after the pre-processing pipeline).

After the concatenation process, a feature map of 3×3×1920 is obtained. This is fed into

another convolutional layer with the output of 3×3×3840. At the end of the network there are

two fully connected layers, the feature map from the previous convolutional layer is flattened

having the size of 34560. This flattened feature map is fed into the first fully connected layer

reducing the dimensionality to 2048 features. It is desired to create a robust and discriminative

face representation based on the concatenation of several features. As the network architecture

is shallow, this idea becomes viable, since each instance of the network consumes few resources.

4.3.1 Shallow Learned Feature Representation (SLFR)

We have named the features that are learned with the CABNet-FE as Shallow Learned

Feature Representation (SLFR). Whilst the CABNet-C has a feature size of 4096, the SLFR has

a size of 2048, making it more compact. Another aspect that is clearly shown in the Section 6.3.1

is that the SFLR has shown higher levels of resolution invariance.

Figure 4.16: Block diagram that illustrates how the feature concatenation generates the fused 3D
face descriptor.
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4.3.2 Feature Fusion

Instead of using fusion in the score level, as the case with the classification mode, we

have employed in the feature-extraction mode a fusion in the feature level. To this end we

concatenate different SLFR and utilized it as the 3D face descriptor. Figure 4.16 shows how the

feature fusion is carried out.
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MATERIAL AND METHODOLOGY

In order to assess the proposed novel hybrid approach for 3D face recognition that utilizes

descriptor images (DI), originated from facial cloud points, in conjunction with shallow convo-

lutional neural networks (CNNs), we carried out some experiments. In sections 5.1 and 5.2 we

present, respectively, the material and the methodology adopted in the experiments.

5.1 Material

The datasets used in this work are: (i) Face Recognition Grand Challenge v2.0 (FRGC)

dataset (Phillips et al., 2006), (ii) Bosphorus 3D face dataset (Savran et al., 2008), and (iii) EURE-

COM Kinect Face Dataset (Huynh; Min; Dugelay, 2012). The FRGC is used to train our shallow

CNNS from scratch, while tests are conducted on the EURECOM Kinect Face Dataset for

low-resolution data, and on the Bosphorus for high-resolution data. When there is the need for

fine-tuning, the original softmax layer is discarded and a new one is utilized, this is needed since

different datasets have different amounts of subjects and the new softmax layer will have its out-

put with the same size of the number of subjects that the dataset utilized for fine-tuning, while

the original softmax has the same size as the subjects from the FRGC. Another aspect when

fine-tuning is that it has only utilized images that compose the gallery as part of the process.

Details of these three datasets are presented in the following subsections.

5.1.1 FRGC Dataset

The FRGC dataset (Phillips et al., 2006) consists of 50,000 recordings divided into training

and validation partitions. The training partition is designed for training algorithms and the

validation partition is for assessing performance of an approach in a laboratory setting. The
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validation partition consists of data from 4,003 subject sessions. A subject session is the set of

four controlled still images, two uncontrolled still images, and one three-dimensional image.

The controlled images were taken in a studio setting, are full frontal facial images taken under

two lighting conditions and with two facial expressions (smiling and neutral). The uncontrolled

images were taken in varying illumination conditions; e.g., hallways, atriums, or outside. Each

set of uncontrolled images contains two expressions, smiling and neutral. The 3D image was

taken under controlled illumination conditions. The 3D images consist of both a range and

a texture image. The 3D images were acquired by a Minolta Vivid 900/910 series sensor.

Figure 5.1 shows a subject from the FRGC Face Dataset.

Figure 5.1: An example from a subject in the FRGC Dataset (Phillips et al., 2006), the first row are
the RGB images and the second row is our pre-processed depth map obtained from range data.

5.1.2 Bosphorus Dataset

The Bosphorus dataset (Savran et al., 2008) comprises 4,666 high-resolution scans of 105

individuals. There are up to 54 scans per subject, which include expression variations, rotations

and occlusions. The data is acquired utilizing a structured-light system, all subjects were sited

at a distance of 1.5 meters from the digitizer and a 1000W halogen lamp was utilized in a dark

room for illumination, ensuring that the lighting was homogenous.

Regarding the Bosphorus dataset, the rotated and occluded scans were not used in our

experiments to make the comparison with other works more fair. We have utilized a total of

2,902 neutral and expressive scans. Figure 5.2 shows examples of scans of four individuals

from the Bosphorus Face Dataset.
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Figure 5.2: Examples of scans of four individuals from the Bosphorus Face Dataset (Savran et al.,
2008).

5.1.3 EURECOM Dataset

The EURECOM dataset (Huynh; Min; Dugelay, 2012) collects RGB-D images acquired with

a Kinect sensor of 52 subjects, taken in two separate sessions with 7 variations each: neutral,

smile, illumination, paper occlusion, mouth occlusion, eyes occlusion and open mouth. This

dataset is employed for evaluating our hybrid approach with low-resolution data with three

different protocols, as defined in (Huynh; Min; Dugelay, 2012):

(i) Gallery composed of seven variations (neutral, smile, illumination, paper occlusion, mouth

occlusion, eyes occlusion, and open mouth) from Session 1, and Probe composed of seven

variations (neutral, smile, illumination, paper occlusion, mouth occlusion, eyes occlusion
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and open mouth) from Session 2;

(ii) Gallery composed of seven variations (neutral, smile, illumination, paper occlusion, mouth

occlusion, eyes occlusion, and open mouth) from Session 1, and Probe composed of three

variations (neutral, smile, illumination) from Session 2;

(iii) Gallery composed of seven variations (neutral, smile, illumination, paper occlusion, mouth

occlusion, eyes occlusion, and open mouth) from Session 1, and Probe composed of one

variation (neutral) from Session 2.

Figure 5.3 shows a subject from the EURECOM Kinect Face Dataset.

Figure 5.3: A sample from a subject from EURECOM Kinect Face Dataset (Huynh; Min; Dugelay,
2012). In the first row the RGB images are shown and on the second the original depth images.

5.2 Methodology

The methodology of our experiments has three main stages: descriptor image generation,

network training, and person identification.

Initially, our novel hybrid approach receives high-resolution cloud points, then the nose-tip

is utilized as the center for a circle with radius R of 70 mm, the points that fall inside this circle

are segmented and compose the face. High-resolution data does not go through the Symmetric

Filling step since the trade-off between performance and data improvement is not worth in this

case. Lastly, the segmented face is transformed into a depth map, utilizing a grid fit approach

that approximates the points into a grid of size 100× 100. This depth map (that we call pre-

processed depth map) is the first DI that our method generates.

The next step is to utilize the pre-processed depth map in order to obtain a hand-crafted

3DLBP-based feature, since one of our hypothesis is that by utilizing this type of data we are

using the same type of information that the early stages of a Convolutional Neural Network

(CNN) would do, hence being able to utilize CNNs with few layers. In this thesis, we have

proposed two different ways to obtain 3DLBP-based features: (i) by applying the traditional
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3DLBP, as described in subsection 4.1.1, or (ii) by utilizing a sigmoid variation of the 3DLBP,

as described in subsection 4.1.2. The sigmoid modification of the 3DLBP focus on changing

the way that the depth difference is encoded into the operator. Instead of truncating the values

between [−7,+7] we use a sigmoid function in the absolute value of the depth difference. Since

the sigmoid result is a real number in the range [0,1] we divide that interval into 8 bins. The

final value is the bin number (from 0 to 7) that the value falls into and the signal from the depth

difference. In the end, the sigmoid 3DLBP and the traditional 3DLBP are represented as a DI

in the same manner: a four channel (RGBA) image.

For training, we utilize the DIs (3DLBP, sigmoid 3DLBP, or pre-processed depth image)

as input and train the proposed shallow CNNs for 200 epochs. The CNNs are implemented

with PyTorch library (Paszke et al., 2019). We utilize the stochastic gradient descent as optimizer,

with a learning rate of 0.01 and the cross-entropy function loss. The weights that we utilize in

production are the weights of the smaller loss from the 200 epochs.

When assessing the performance of our new proposed hybrid approach the data also need

to go through the descriptor image generation step, the difference, in this case, is that the sym-

metric filling is applied since we used low-resolution data (EURECOM dataset). In this thesis,

we focused on low-resolution data and for this type of data, the symmetric filling must be used,

since it improves the data quality and helps to attenuate the difference caused by resolution

changes.

Finally, the person identification, which is the primary goal of our work, varies depending

on the used mode:

Classification mode: In this mode, the first step is to fine-tune the shallow CNN for 100 epochs

with the gallery images. For the fine-tuning process the original softmax layer is replaced

with a new one, whose output size is the same as the number of classes being identified;

Feature extraction mode: In this mode, the last fully connected layer is utilized as the fea-

tures, the identity of a subject is given by using a 1-NN classifier, with the cosine simi-

larity function. For this end, we calculate the similarity between the current face and all

of the faces in the gallery, the subject identity is taken as the identity associated with the

face with higher similarity among all gallery face images.

For evaluating our method with the state-of-the-art works following the literature, we have

used rank-based metrics, with tables comparing rank-1 recognition rate and CMC Curves.
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EXPERIMENTAL RESULTS

In this chapter, we present results obtained with the experiments carried out in order to as-

sess the proposed hybrid approach for 3D face recognition based on Descriptor Images (DI) and

shallow Convolutional Neural Networks. We start presenting an ablation study which intended

to evaluate how the CNN depth affects the approach’s performance. Then, we show results

regarding the Descriptor Images (DI) and the Shallow Learned Feature Representation (SLFR)

proposed in this thesis for 3D face representation and description.

6.1 Ablation Study

We carried out an ablation study to evaluate the two main components of the proposed

approach for 3D face recognition. In the following, we report an analysis regarding the depth

of the neural network, that is, the number of convolutional layers, and the sigmoidal encoding

for the Descriptor Images.

For evaluating the impact of the neural network depth in the recognition rates, we have

experimented three different network configurations: the first one is a very shallow network

composed of only one convolutional layer; the second one has two convolutional layers and a

max pooling layer; and the third one has three convolutional layers and two max-pooling layers.

In order to assess if the proposed DIs, when originating from low-resolution data, carry

enough information to distinguish between distinct 3D faces, in the first experiment, we trained

the neural networks with EURECOM Kinect Face dataset.

In the experiment, we utilized Stochastic Gradient Descent (SGD) with learning rate of

0.01, and momentum of 0.5. We utilized the Cross Entropy as our loss function. The gallery

data was augmented by rotating the original face depth images from -30 to 30 degrees in the X
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and Y axis.

6.1.1 CNN Depth Analysis

In these experiments, carried out in order to evaluate the impact of the number of convo-

lutional layers on the recognition accuracy, the gallery (training set) was composed of depth

images from Session 1 of the EURECOM Kinect Face dataset, with all variations, as described

in subsection 5.1.3, except the “paper occlusion” one, for a total of 4,035 images. The probe

images (test set) come from the same classes, but of Session 2. We utilize two types of data, the

3DLBP and the pre-processed depth, the latter being used as the baseline reference.

Figure 6.1shows the learning curves for the three CNN configurations with, respectively, 1,

2 and 3 convolutional layers. With these curves it is also possible to compare the 3DLBP-based

DIs with the pre-processed depth map-based DIs.

Figure 6.1: Learning curves on the EURECOM dataset for three CNN configurations, with 1, 2
or 3 convolutional layers, respectively. The curves also compare the 3DLBP-based DIs, and pre-
processed depth map-based DI.

One can observe in Figure 6.1 that the best result was obtained when three convolutional

layers were used. Thus, from now on we will only use this winner CNN architecture for all

subsequent experiments in our work.

One can also observe in Figure 6.1 that the accuracy rates obtained by using 3DLBP-based

DIs are higher and the curves are better behaved than by using the DIs based on the depth maps.
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This result corroborates our hypothesis that the 3DLBP-based DIs contain more discriminative

information than the DIs based on the pre-processed depth maps.

Finally, one can observe that the gap between the CNN architectures with 2 or 3 convolu-

tional layers is rather slight, making it possible to use the CNN with only two convolutional

layers when very low-powered devices must be used, without impacting much on the perfor-

mance.

6.1.2 Sigmoid Encoding Function

In order to evaluate the sigmoid encoding functions, we performed some experiments using

the three protocols for EURECOM Kinect Face dataset (S1 vs. S2, S1 vs. Non-Occluded, S1

vs. Neutral), described in subsection 5.1.3.

Figure 6.2 presents the Cumulative Matching Characteristic (CMC) curves obtained for

the three protocols, for different values of parameter A, which stretches the sigmoid function,

according to Eq. 4.2.

(a) Protocol (i) (b) Protocol (ii) (c) Protocol (iii)

Figure 6.2: CMC curves obtained by utilizing different types of sigmoid encoding. Experiments
were performed using the three protocols defined for the EURECOM dataset: (a) S1 vs. S2; (b) S1
vs. Non-Occluded; (c) S1 vs. Neutral.

Looking at the curves in Figure 4.4, it is possible to see that both these solutions encode

depth differences larger than 4 in the same bin. This points out that such bigger differences are

less informative, while encoding more precisely the smaller ones is beneficial and that we can

use the regular sigmoid function instead of the deformed one without any major differences in

the performance. This makes sense in as much as larger differences are likely to occur in case

of strong noise, holes or occlusions, e.g., hand or glasses occlusions.
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6.1.3 Evaluating Learned Features

In order to assess the importance of the learned features for 3D face recognition using low-

resolution data, we carried out experiments using, again, the three protocols for EURECOM

Kinect Face dataset (S1 vs. S2, S1 vs. Non-Occluded, S1vs. Neutral), but now with shallow

CNN learned features and the DIs as 3D face features. That is, we used the output obtained from

the shallow CNNs and the flattened DIs (3DLBP DI and Sigmoid 3DLBP DI) as feature vectors,

in each experiment. The matching was done by calculating the cosine similarity between the

probe and gallery feature vectors, according to the three protocols. Table 6.1 shows the rank-1

recognition rates obtained with this experiment, which indicate that the use of the shallow CNN

learned features improves in more than 100% the rank-1 recognition rates.

Table 6.1: Rank-1 recognition rate results obtained on EURECOM Kinect Face dataset. Compar-
ing the protocols with the DI and the Learned Features from the DIs.

Method
Protocols

(i) (ii) (iii)
3DLBP (flattened DI) 27.47% 32.21% 32.69%
Sigmoid 3DLBP (flattened DI) 22.25% 27.40% 26.92%
3DLBP (learned features) 59.06% 67.30% 73.07%
Sigmoid 3DLBP (learned features) 58.79% 65.86% 67.30%

6.2 Classification Mode

In this section, we discuss the CABNet-C being utilized with the proposed DIs in the clas-

sification mode, in different resolutions.

Spite the score fusion described in Section 4.2.1 we also assessed the fusion scores from

pre-processed depth map with 3DLBP and Sigmoid 3DLBP DIs. In this case, the best weight

values were 0.3 for the pre-processed depth map, 0.3 for the sigmoid 3DLBP, and 0.4 for the

3DLBP.

6.2.1 Low-Resolution 3D Face Scans

In this section, the results obtained on low-resolution 3D face scans from the EURECOM

Kinect Face dataset are reported. In this experiment, during the fine-tuning process, a new

softmax layer was stacked in place of the original one and re-trained, and the matching was

performed by a 1-NN (Nearest-Neighbor) classifier, using the cosine similarity between the face

features. Results comparing the baseline and state-of-the-art methods are reported in Table 6.2.
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Table 6.2: Rank-1 accuracy rates on EURECOM Kinect Face dataset (best results in bold). The
gallery is from Session 1, while the probe set is composed of: (i) Session 2, (ii) the three variants
without occlusions from Session 2, (iii) neutral scans from Session 2.

Method (i) (ii) (iii)
RGB Data 51.83% 55.71% 60.00%
Pre-processed depth map 79.12% 86.54% 90.38%
Sigmoid 3DLBP 77.8% 89.2% 94.1%
3DLBP 80.9% 90.2% 96.1%
3DLBP + Sigmoid 3DLBP 90.75% 98.0% 96.1%
Pre-processed depth map+ 3DLBP + Sigmoid 3DLBP 71.15% 77.88% 78.84%
VGG (Kim et al., 2017) 13.9% 14.8% 13.5%
Lee et al. (Lee et al., 2016) - 80.8% 78.8%

In Lee et al. (Lee et al., 2016), a pipeline to include the 3D face shape in a deep network is

proposed. It performs depth face image recovery and enhancement, extraction of deep represen-

tation, and joint classification for depth and RGB data. Since our work deals only with depth

data, for a fair comparison, we reported in Table 6.2 only the results for depth data reported

in (Lee et al., 2016).

Since the original work in VGG (Kim et al., 2017) does not deal with low-resolution data

we have utilized the pre-trained weights availble to do 3D face recognition on the EURECOM

dataset, in this way the reported results here are with low-resolution data.

It is possible to see in Table 6.2 that, in the scenario of this experiment, the advantage of

applying the pre-processing pipeline to the original depth map images is more evident, as we

are dealing with low resolution and noisy data. It is also possible to see that there was a small

advantage of the traditional 3DLBP approach over the sigmoid 3DLBP in this case. However,

the score fusion led to a noticeable accuracy improvement. This can be a piece of evidence that,

due to the coarser nature of the depth maps, it is beneficial to exploit balanced information from

both sides. It is worth to note that the benefit of the fusion strategy is more evident in harder

protocols ((i) and (ii)), and only in the protocol (iii) it tied with the 3DLBP approach in rank-1

recognition.

When dealing with low-resolution and complex scenarios, e.g. strong occlusions, the RGB

data does not carry sufficient information for a satisfactory recognition with such a shallow

CNN. Instead, with the proposed pre-processing procedure, using the depth images we obtained

higher accuracy for all the three protocols, demonstrating that using 3D information can be

beneficial. We can then further improve the performance by means of the proposed 3DLBP and

Sigmoid 3DLBP DIs (Descriptor Images).

In the case of low-resolution data, a more balanced score fusion led to more accurate recog-
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(a) Protocol (i) (b) Protocol (ii) (c) Protocol (iii)

Figure 6.3: Results on EURECOM Kinect Face dataset. CMC curves obtained using the Classi-
fication Mode in experiments carried out according the three protocols: (a) Protocol (i): Gallery
from Session 1 vs. probe from Session 2 (7 variants each); (b) Protocol (ii): Gallery from Session 1
vs. probe with the three variants without occlusions from Session 2; and (c) Protocol (iii): Gallery
from Session 1 vs. neutral probes from Session 2. The scales on the vertical axis are different.

nition. This can be a piece of evidence that, due to the coarser nature of the depth maps, it is

beneficial to utilize more information from both sides (3DLBP and Sigmoid 3DLBP). Figure 6.3

shows the CMC Curves obtained in this experiment.

Figure 6.4: Impostor and Genuine distribution curves. This makes clear that there is bigger over-
lap between impostor and genuine distribution when all of the features are fused. For this the
low-resolution images were utilized.

Fusing the pre-processed depth maps with the scores from the other DIs, in the classification

mode, does not improve the recognition rates. This is an evidence that the information, in score

level, for this type of data does not have complementary information. Figure 6.4 shows the

impostor and genuine distribution curves. In this is possible to see that the Sigmoid and 3DLBP
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have similar behaviors, but the Pre-processed depth map is more spread across the genuine

and impostor distributions. When fusing all of the DIs we got an impostor and genuine curves

that have a bigger area of intersection than other features, in this way lowering the systems

recognition performance. This is a piece of evidence that the behaviors are not complementary

and, in this context, should not be score-fused.

6.2.2 High-Resolution 3D Face Scans

In this section, the results obtained on high-resolution 3D face scans from the Bosphorus

database are reported and compared with the state-of-the-art. For this experiment, three proto-

cols were adopted (gallery vs. probe set): (i) Neutral vs. Neutral (N vs. N), (ii) Neutral vs.

Non-Neutral (N vs. NN), and (iii) Neutral vs. All (N vs. A), which includes neutral scans as

well. In all the three cases, the gallery is composed of the first neutral image of each subject.

Figure 6.5 shows the Cumulative Matching Characteristic (CMC) curves obtained using the

3DLBP, the sigmoid 3DLBP encoding and a late fusion of both. It can be observed that, in the

N vs. N scenario (Figure 6.5 (a)), results were very good and encouraging. However, the perfor-

mance radically dropped when the probe set included several types of expressions, as emerges

from the CMC curves in Figure 6.5 (b)-(c). This behavior is most likely caused by the very low

number of images contained in the gallery, which were used to re-train the classification layer.

Considering the very low number of images, we got a reasonable result, but far lower from the

results reported in the current state-of-the art. To verify that the problem can be ascribed to

this lack of data, we included rotated scans in the gallery, for a total of 5,139 gallery images

(Figure 6.5 (c)). Even if rotated scans were characterized by missing parts, as consequence of

self-occlusions, by adding them to the gallery, the results increased substantially. Note that,

even if both sets, the training dataset (FRGC) and the gallery, contain a very limited amount of

expressive scans, we are still able to perform rather accurate classification on them. Finally, this

result also evidences the usefulness of our proposed pre-processing pipeline.

Table 6.3 shows the results of all the protocols with respect to baseline and state-of-the-

art methods. In particular, to demonstrate the effectiveness of the proposed DIs, we compared

results obtained using our shallow CNN trained on the RGB face images, on the original and

on the pre-processed version of the depth map images. We further compared the hand-crafted

features based approach by Li et al. (Li et al., 2015), Deng et al. (Deng et al., 2020), and Cai et

al. (Cai et al., 2019). As a first outcome, results show that the proposed pre-processing technique

is effective in generating enhanced depth images, with a considerable accuracy improvement

above RGB data. Looking at the results for (N+R vs. A), we can observe that the score fusion
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(a) Neutral vs. Neutral (b) Neutral vs. Non-Neutral

(c) Neutral vs. All (d) Neutral+Rotated vs. All

Figure 6.5: Results on Bosphorus dataset. CMC curves obtained using the Classification Mode in
experiments carried out following all protocols. In (a-c), the standard protocols are reported. In
(d), rotated scans and augmented images are added to the gallery in order to compensate the lack
of gallery images.

helped in increasing the recognition rate in a significant way. Nevertheless, both the 3DLBP and

the Sigmoid 3DLBP encoded images had better results with respect to the pre-processed depth.

This indicates that the DIs have some complementary information, allowing both the networks

to learn more effectively than pre-processed depth, and to combine them to further increase the

accuracy.

We also can observe that, as happened in the low-resolution results, the fusion of the three

types of DIs (Pre-proc. Depth, 3DLBP, and Sigmoid) decreases the performance in our ap-

proach. We believe that the reason behind this is the non-complementary nature of the infor-

mation. Figure 6.6 shows the impostor genuine distribution curves. In this case, it is possible

to see that the DIs based on low-level features helps to decrease the intersection between the
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Table 6.3: Rank-1 accuracy rates on Bosphorus dataset (best results in bold). Comparison with
the state-of-the-art using different protocols.

Method N vs. N N vs. NN N vs. A N+R vs. A
RGB data 91.04% 77.5% 80.8% 89.95%
Pre-processed depth map 98.42% 65.40% 60.61% 84.78%
Sigmoid 3DLBP 98.42% 63.89% 67.60% 86.40%
3DLBP 100.0% 65.76% 69.68% 86.30%
3DLBP + Sigmoid 3DLBP 100.0% 69.42% 72.06% 93.54%
Pre-processed depth map + 3DLBP + 3DLBP Sigmoid 91.33% 63.06% 62.85% -
Li et al. (Li et al., 2015) 100.0% - 96.60% -
Cai et al. (Cai et al., 2019) - - 99.75% -
Deng et al. (Deng et al., 2020) 100.0% 97.60% - -

impostor and genuine curves but when fusing the three DIs the intersection area between them

is bigger than the 3DLBP or Sigmoid 3DLBP curves intersection. We did not run the same type

of fusion for the N+R vs. A protocol due to poor performance in other experiments but we keep

the results for the sake of completeness.

Figure 6.6: Impostor and Genuine distribution curves. In the high-resolution case it is possible to
see that the fusion of the three DIs (3DLBP, Sigmoid, and Pre-processed depth map), spite being
less spread than in the low-resolution scenario, still yields worst performance.

Lastly, even though there is a huge difference in the data quality, the proposed method

demonstrated to be effective on both high and low-resolution data, pointing towards a great deal

of resolution invariance.
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6.3 Feature Extraction Mode

In this section, the results of both CABNet-C and CABNet-FE for Feature Extraction mode

are reported. This case is more interesting than the Classification Mode since the shallow CNNs

are trained only with high-resolution images and evaluated on very low-resolution images (there

is no fine-tuning procedure). The protocols utilized here are the same as the ones reported in

section 6.2

Initially, we evaluate the performance with the CABNet-C. This will give us a better un-

derstanding about the resolution invariance properties of our approach. Finally, we show the

results obtained with the CABNet-FE.

6.3.1 Low-Resolution 3D Face Scans

Figure 6.7 shows the CMC curves obtained with the CABNet-C on the EURECOM Kinect

Face dataset, for the same protocols as described in Section 5.1.3.

(a) Protocol (i) (b) Protocol (ii) (c) Protocol (iii)

Figure 6.7: Results on EURECOM Kinect Face dataset. CMC curves obtained utilizing the
CABNet-C. The identity for each subject is defined as the sample with the higher cosine similarity
among probe and gallery.

Initially, one can see that depth-based data (3DLBP, Sigmoid 3DLBP, and pre-processed

depth map) perform better than RGB data. Since the network is only trained with high-resolution

data and does not go through any fine-tuning process, this could indicate a larger transmission

of knowledge through resolution with depth data. In addition, the EURECOM Kinect Face

dataset contains lots of occlusions, which seem to impair the recognition when using RGB im-

agery. The pre-processed depth map and the proposed 3DLBP-based DIs, instead, demonstrated

higher robustness to such nuisances. Looking at the CMC curves, it is possible to see that on

rank-1 the fusion of the three DIs had the better performance in the first two experiments from

the protocol. In the experiment for S1 vs. Neutral, the pre-processed depth outperforms the
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fusion and the 3DLBP-based DIs. However, the fusion of the three DIs outperforms all the

other types of features on rank-5 onwards. Practically, having a better performance in the latter

ranks allows building a system that, given a list of possible identities, produces a higher level

of confidence than the genuine subject as presented there. In any case, results obtained with

our CABNet-C on 3D data are much higher than those obtained using RGB images or those

obtained using the pre-trained deep VGG16 network of (Kim et al., 2017) as shown in Table 6.4.

Table 6.4: EURECOM dataset: Rank-1 results. The gallery is from Session 1, while the probe set
is composed of: (i) Session 2, (ii) the three variants without occlusions from Session 2, (iii) neutral
scans from Session 2. The results here are obtained with the CABNet-C.

Method (i) (ii) (iii)
RGB Data 18.68% 19.71% 23.08%
Pre-processed depth map 59.62% 71.15% 80.76%
Sigmoid 3DLBP 55.49% 59.13% 63.46%
3DLBP 57.41% 65.38% 69.23%
3DLBP + Sigmoid 3DLBP 58.52% 62.98% 59.62%
Pre-processed depth map + 3DLBP + Sigmoid 3DLBP 66.76% 74.52% 75.00%
VGG (Kim et al., 2017) 13.9% 14.8% 13.5%
LED 3D (Mu et al., 2019) 34.34% 38.76% 44.8%

The results showed in Table 6.4 highlight that the resolution differecens matter. Given

that no fine-tuning is performed, the results indicate that the proposed DIs maintain a rather

pronounced resolution invariance. Another important aspect observed in the CMC curves is

that occlusions affect the depth data more than the 3DLBP-based DIs do.

With CABNet-FE, described in Section 4.3 and illustrated in Figure 4.15, we utilize infor-

mation from different layers to build a more compact and robust feature representation for 3D

faces. The results obtained with this shallow CNN are shown in Table 6.5.

Table 6.5: Rank-1 results on EURECOM Kinect Face dataset (best results in bold). The gallery
is from Session 1, while the probe set is composed of: (i) Session 2, (ii) the three variants without
occlusions from Session 2, (iii) neutral scans from Session 2. This results are achieved with the
CABNet-FE.

Method (i) (ii) (iii)
RGB Data 12.91% 13.94% 15.38%
Pre-processed depth map 67.30% 79.36% 82.69%
Sigmoid 3DLBP 58.79% 65.86% 67.30%
3DLBP 59.06% 67.30% 73.07%
3DLBP + Sigmoid 3DLBP 67.58% 75.48% 78.84%
Pre-processed depth map + 3DLBP + Sigmoid 3DLBP 73.26% 83.17% 84.61%
VGG (Kim et al., 2017) 13.9% 14.8% 13.5%
LED 3D (Mu et al., 2019) 34.34% 38.76% 44.8%
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When looking for single features, it is possible to see that the pre-processed depth map

has the better performance. Another important aspect is that the fusion greatly increases the

system performance, in this scenario the fusion is the concatenation of the features and not a

weighted sum of scores, as in the Classification Mode approach. This makes sense, whilst in

the Classification Mode approach the output are probabilities of a face be from distinct subjects,

in the Feature Extraction Mode approach we have features that describe each face. The CMC

curves shown in Figure 6.8 highlights this.

(a) Protocol (i) (b) Protocol (ii) (c) Protocol (iii)

Figure 6.8: Results on EURECOM Kinect Face dataset. CMC curves for the three experiments
with the Feature Extraction Mode approach: (a) Gallery from Session 1 vs. probe from Session 2
(7 variants each), (b) Gallery from Session 1 vs. probe with the three variants without occlusions
from Session 2, and (c) Gallery from Session 1 vs. neutral probes from Session 2. The scales on the
vertical axis are different. These results were obtained with the CABNet-FE.

The fairer comparison of our work on Feature Extraction Mode is with the work of Mu et al.

(2019). This is because both utilize high-resolution data to train a convolutional neural network

and utilizes low-resolution data to validate it. The main difference is that, on its original work

(Mu et al., 2019) utilizes a Kinect v2 dataset, whilst we utilize a Kinect v1 dataset. To be able

to compare both approaches we have run the approach in (Mu et al., 2019) with the EURECOM

dataset (Kinect v1 dataset). The results presented in Table 6.5 show that with 3D models having

a great deal of noise our approach performed better.

Table 6.6 shows the best results obtained with both shallow CNNs architectures proposed

for the Feature Extraction Mode. It is possible to see that, in a cross-resolution scenario, the

CABNet-FE outperforms the CABNet-C. This is a clear evidence of how the features obtained

from throughout the whole architecture plays an important role in cross-resolution 3D face

recognition.
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Table 6.6: Rank-1 results on EURECOM dataset comparing between both shallow CNNs proposed
as feature extractors, using fusion of pre-processed depth map, 3DLBP and Sigmoid 3DLBP.

CNN Architecture (i) (ii) (iii)
CABNet-C 66.76% 74.52% 75.00%
CABNet-FE 73.26% 83.17% 84.61%

6.3.2 High-Resolution 3D Face Scans

Tables 6.7 shows the results obtained with the proposed Feature Extration Mode on a high-

resolution 3D face dataset, the Bosphorus dataset.

Comparing the results from Tables 6.7 and 6.3, it is possible to see that the accuracy values

obtained using the CABNet-C as classifier or feature extractor are quite similar in this case. The

lower accuracy in the N-vs-NN and N-vs-A protocols, differently from the Classification Mode,

can be ascribed to the lack of expressive scans in the training data (FRGC). As said previously,

Kim et al. (Kim et al., 2017), utilized pose variations and synthetic expressions on the fine-tuned

process of the deep VGGFace (Parkhi; Vedaldi; Zisserman, 2015) network, this is to specifically

deal with the lack of expression on the training data. However, obtaining such a larger accuracy

when expressive scans are included in the probe set required collecting a huge amount of data.

In addition, we recall that our input images are of size 100×100, against 224×224 of the VGG.

In any case, our shallow CNN using the DIs demonstrated to be more accurate in the N-Vs-N

scenario, indicating a very promising capability of capturing the relevant identity traits.

As was the case with the Classification Mode, we also can observe that the fusion of the

three types of DIs (Pre-processed depth map, 3DLBP, and Sigmoid 3DLBP) decreases the per-

formance. We did not run the same type of fusion for the N+R vs. A due to poor performance

in other experiments, but we keep the results for the sake of completeness.

Lastly, we show the results obtained with the CABNet-FE on a high-resolution scenario.

Looking at Tables 6.8 we can see that the CABNet-FE, focused on cross-resolution feature

Table 6.7: Rank-1 results on Bosphorus dataset using CABNet-C as a feature extractor. Protocols:
Neutral vs. Neutral, Neutral vs. Non-Neutral, and Neutral vs. All.

Method N vs. N N vs. NN N vs. A N+R vs. A
RGB data 85.82% 71.57% 72.31% 94.03%
Pre-processed depth map 98.42% 63.97% 65.78% 60.60%
Sigmoid 3DLBP 99.21% 58.91% 61.03% 61.92%
3DLBP 100.0% 63.24% 65.16% 67.11%
3DLBP + Sigmoid 3DLBP 100.0% 66.81% 68.55% 70.53%
3DLBP + Sigmoid 3DLBP + Pre-processed depth map 92.13% 62.76 64.29% -
VGG (Kim et al., 2017) 99.2% 95.0% 95.3% -
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Table 6.8: Rank-1 results on Bosphorus dataset using the CABNet-FE as a feature extractor.
Protocols: Neutral vs. Neutral, Neutral vs. Non-Neutral, and Neutral vs. All.

Method N vs. N N vs. NN N vs. A
RGB data 88.06% 64.26% 65.50%
Pre-processed depth data 97.64% 57.96% 60.04%
Sigmoid 3DLBP 95.28% 50.63% 52.98%
3DLBP 98.42% 55.17% 57.44%
3DLBP + Sigmoid 3DLBP 100.0% 60.18% 62.27%
3DLBP + Sigmoid 3DLBP + Pre-processed depth data 92.13% 56.56 58.42%
VGG (Kim et al., 2017) 99.2% 95.0% 95.3%

extraction, underperforms the CABNet-C. This can be explained by the fact that we have created

the CABNet-FE architecture focused on extracting information throughout the layers of the

whole CNN, and in a high-resolution scenario this process can bring redundant information that

impacts the system. Nonetheless, our idea with this approach is focused on cross-resolution

scenarios.

Comparing the results showed in Tables 6.7, 6.8 and 6.9 we can see that the fusion with

the pre-processed depth map does not contribute for increasing the performance. This result

differs from the low-resolution scenario and can mean that the data in pre-processed depth, in

high-resolution scenarios, is not complementary to the 3DLBP-based DIs. This is different for

the fusion of our low-level hand-crafted features (3DLBP and Sigmoid).

Table 6.9: Rank-1 results on Bosphorus dataset comparing both networks being utilized as feature
extractor. The results here are the best for each experiment.

CNN Architecture N vs. N N vs. NN N vs. A
CABNet-C 100.0% 66.81% 68.55%
CABNet-FE 100.0% 60.18% 62.27%



Chapter 7
CONCLUSIONS

In this thesis, we addressed the problem of 3D face recognition. We did so because spite

2D face recognition has achieved state-of-the-art results, there are still some problems that

impact negatively the biometric systems based on face recognition, such as occlusion and pose

variations.

Another important aspect is that the state-of-the-art results obtained by 2D methods are

achieved, in most cases, with Deep CNNs, which brings a scenario where huge computational

power and data are needed.

In a scenario where user interaction is not possible the utilization of traditional 3D scanners

is not feasible. In this aspect, devices like Microsoft Kinect, which works in a similar way as a

standard 2D camera, can be a solution.

The problem with data captured by devices like Kinect is that they are very low-resolution

and most of the approaches in the literature are based on high-resolution data. There is also a

shortage of depth-based data (e.g., 3D models, cloud points) to allow training effectively a Deep

CNN.

With this in mind, we came up with our main hypothesis that using an intermediate feature

representation for depth-based data would allow us to use shallow CNNs for 3D face recogni-

tion. Ideally, this feature representation should have a higher degree of resolution invariance,

allowing us to train on high-resolution and use it on low-resolution scenarios seamlessly. This

cross-resolution characteristic is desired because there is more high-resolution data publicly

available than low-resolution.

Therefore, we proposed a hybrid approach for 3D face recognition, which is focused on

minimizing the amount of data, the computational power and the processing time required in
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the training stage, while being able to operate close to state-of-the-art methods and being able to

transfer the learning made on high-resolution data to low-resolution data. The proposed hybrid

approach also allows us to operate in classification or feature-extraction modes.

Experimental results obtained by our hybrid approach on EURECOM Kinect Face dataset,

a low resolution depth dataset, showed a rank-1 recognition rate of 90.75% with the CABNet-C

on the hardest case of classification mode, and 73.26% on the feature extraction mode with the

SLFR, which are better than the rates obtained by related state-of-the-art methods with the same

protocol and dataset.

Therefore, we concluded that the proposed hybrid approach helps to attenuate the cross-

resolution differences and that the utilization of an input built with more discriminative data,

such as low-level hand-crafted features, allows the utilization of shallow CNN for 3D face

recognition.

7.1 Main Contributions

The original contributions of this thesis are related to: (i) the proposition of new Descriptor

Images (DI) for 3D representation; (ii) the proposition of shallow CNN architetures that togheter

with the proposed DIs allow 3D face classification in closed-set and open-set scenarios; (iii)

the proposition of an approach to transfer learning from high to low resolution 3D face data;

and (iv) the proposition of a shallow learned feature representation to allow learning a feature

representation based on different types of DIs.

7.1.1 Descriptor Images For 3D Representation

The utilization of DIs has been proved as an effective way to represent 3D data and utilize

it to train a CNN. There are some advantages in utilizing this approach. The first one is the

possibility of creating different types of representations from the same subject data and doing

an ensemble of shallow networks. This can be an alternative to the standard data augmentation

approach.

In this thesis, we utilized two types of hand-crafted features to generate the DIs, the 3DLBP

and a variation proposed by us which is the Sigmoid 3DLBP. In both modes the fusion of these

data increased the accuracy rates of the 3D face recognition. This corroborates our ideas of

utilizing the DIs and the feasibility of building an ensemble of shallow networks.
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7.1.2 Shallow CNNs For 3D Face Recognition

The results obtained in the experiments (Sections 6.2 and 6.3) show that it is possible to do

3D face recognition utilizing shallow CNNs. We tailored two different CNNs, CABNet-C and

CABNet-FE, and showed that, even with a small amount of low-resolution 3D face data and a

very simple CNNs architecture, it is possible to obtain results close to the state-of-the-art.

When considering open-set scenarios, the CABNet-FE and the SLFR (Shallow Learned

Feature Representation) showed great potential. Even though our method has limitations,

mainly related to facial expressions, the results obtained highlight the capacity demonstrated

by the learned features for cross-resolution transfer learning. Since the FRGC dataset does not

contain many faces with expressions a way to deal with this limitation would be to utilize faces

from other high-resolution dataset with expressions.

The results obtained with the SLFR have shown that concatening different features im-

proved the 3D face recognition rates. This is an evidence that fusing different types of features

can be a way to overcome some limitations of our approach. Exploring other types of DIs

and assuring that they are more robust to changes in facial expressions can help to build, with

feature-fusion, a more robust 3D face descriptor.

7.1.3 Transfer Learning From High To Low-Resolution

We concluded that the DIs help to attenuate differences caused by the resolution of the 3D

models. This becomes more evident when we look at the results with the feature extraction

mode. In the classification mode, there is a fine-tuning phase which helps the network to adapt

to a more low-resolution domain, this is also the reason for the classifier performing better than

the feature extraction. Looking at the results of the feature extraction mode (Section 6.3) it is

possible to see that, even though the performance is worst, the network performs fairly well,

given the fact that we dont fine-tune our network and the amount of data is smaller than a Deep

approach would use.

When dealing with low-resolution images, in the classification mode, the proposed ap-

proach performs close to the state-of-the-art methods that uses either DCNN or hand-crafted

features. With high-resolution data, the hybrid approach can compete with state-of-the-art meth-

ods, but only on the Neutral vs. Neutral setting; this is mainly because the lack of expressions

on the training data for the FRGC.

Despite this latter limitation, to the best of our knowledge our approach is the first one capa-
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ble of obtaining competitive performance on depth data that span a large variety of resolutions.

In addition to this, we proved our framework can be trained efficiently even with small amount

of data, thus making it a viable solution for applications where training data is limited.

It is also important to note that the hand-crafted feature behind the generation of DIs plays

an important role in the result. Since 3DLBP and Sigmoid 3DLBP describe low-level features

they can act as a way to summarize information to a CNN. Utilizing a hand-crafted feature that

does not describe low-level features will not have the same effect. Taking into consideration

that the face is a smooth surface the utilization of local descriptors makes the DIs more robust

to noise.

Comparing both modes it is possible to conclude that, on scenarios where the number of

subjects is known, the classification approach is more adequate. In these scenarios, there is the

need for a fine-tuning process and this is only possible if the number of subjects is previously

established. However, every time the number of people changes, it is necessary to redo the

fine-tuning process.

7.1.4 Shallow Learned Feature Representation (SLFR)

The feature extraction mode seems more adequate when the conditions are not stable, since

it is trained in one dataset but it can be utilized to recognize DIs generated from other sources,

not necessarily from the same original type of data.

Looking at the results for the feature extraction mode (Section 6.3) there is strong evidence

for higher levels of resolution invariance. The comparison with the deep VGG16 highlights

this; the drop in performance from Bosphorus to EURECOM highlights how much the change

in resolution affects VGG while our method still performed in an acceptable way. Taking into

consideration, the limited amount of data for training points towards a great deal of information

on the DIs and that the shallow CNN can learn discriminative information from them.

In the feature extraction mode, the SLFR works more adequately in the cross-resolution sce-

nario. The better performance in the high-resolution feature extraction mode for the CABNet-C

means that there is some loss of resolution invariance.

From the latter results, we also concluded that our architecture has yet some limitations

when dealing with expressions, this can be explained by the lack of expressions on the training

data. However, the higher performance with respect to other solutions based on deep networks

suggests interesting future perspectives that can pave the way for the development of smaller

but still effective networks for 3D face recognition systems.
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7.2 Future Work

The contributions and results presented in this thesis pointed to the need for further studies.

The following are some suggestions for topics that can be addressed in future work:

• Investigation of other types of DIs;

• Evaluation of the performance of the proposed method on reconstructed face models from

2D images;

• Investigation of other ways for fusing scores and features;

• Evaluation of ways to select more discriminative features from different layers of CABNet-

FE architecture.

7.3 Published Papers

Publications of scientific articles that reflected the level of development of research and

contributions to the literature were made continuously throughout the doctorate. The papers

published to date are presented below:

• CARDIA NETO, João Baptista; MARANA, Aparecido Nilceu; FERRARI, Claudio;

BERETTI, Stefano; DEL BIMBO, Alberto. Deep Learning from 3DLBP Descriptors for

Depth Image Based Face Recognition. In: 2019 International Conference on Biometrics

(ICB). IEEE, 2019. p. 1-7.

• CARDIA NETO, João Baptista; MARANA, Aparecido Nilceu; FERRARI, Claudio;

BERETTI, Stefano; DEL BIMBO, Alberto. Depth-Based Face Recognition by Learning

from 3D-LBP Images. In: 12th Eurographics Workshop on 3D Object Retrieval (3DOR).

2019. p. 55-62.

• CARDIA NETO, João Baptista; MARANA, Aparecido Nilceu. 3D Face Recognition

with Reconstructed Faces from a Collection of 2D Images. In: Iberoamerican Congress

on Pattern Recognition. Springer, Cham, 2018. p. 594-601.

• CARDIA NETO, João Baptista; MARANA, Aparecido Nilceu. Utilizing deep learning

and 3DLBP for 3D face recognition. In: Iberoamerican Congress on Pattern Recognition.

Springer, Cham, 2017. p. 135-142.
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During the doctorate, we have collaborated with other research projects, not related to this

thesis, whose results were published in the following papers:

• TAVARES, Henrique Leal; CARDIA NETO, João Baptista; PAPA, João Paulo; COLOMBO,

Diego; MARANA, Aparecido Nilceu. Tracking and Re-identification of People Using

Soft-Biometrics. In: 2019 XV Workshop de Visão Computacional (WVC). IEEE, 2019.

• TAVARES, Henrique Leal; CARDIA NETO, João Baptista; PAPA, João Paulo; COLOMBO,

Diego; MARANA, Aparecido Nilceu. People Identification Based on Soft Biometrics

Features Obtained from 2D Poses. In: Brazilian Conference on Intelligent Systems. 2020.
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MANTECÓN, T. et al. Depth-based face recognition using local quantized patterns adapted for
range data. In: IEEE Int. Conf. on Image Processing (ICIP), 2014. p. 293–297.



References 81
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