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Abstract

Multi-target learning is a prediction task where each data example is associated with mul-
tiple target-variables (outputs) simultaneously. One of the challenges in this research field is
related to the high dimensionality of data present in multi-target datasets, and also the high
number of target variables having dependencies among themselves. In such scenarios, it is cru-
cial to extract lower-dimensional representations from the original input-space, such that these
can be provided as input to other multi-target predictors. In this research, we proposed the use of
Auto-Encoders and Restricted Boltzmann Machines as feature extractors in several multi-target
classification datasets publicly available. Results were evaluated considering state-of-the-art
multi-target classification methods and evaluation measures in the literature. The experiments
showed that the neural networks were able to keep the predictive performance even when the
extracted features corresponded to a dimension size equivalent to 10% of the original number
of features and, in some cases, getting better results than the original datasets.

Keywords: Multi-Target Classification, Auto-Encoders, Restricted Boltzmann Machine, Feature-
Extraction, Dimensionality Reduction.
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CHAPTER

1
Introduction

Classification is one of the fundamental tasks in the machine learning field. We can define a
classification problem as: given a dataset with n examples (xi, y j), where xi is the input attribute
vector that describes the example (features) and y j its associated class (target), define a function
that maps xi to its associated class y j, where 1 ≤ i ≤ n and 1 ≤ j ≤ k, being k the number of
possible classes in the dataset.

Traditionally, classification problems have two or more possible classes, where each exam-
ple is classified to only one of these classes. When there are two possible classes in the dataset,
we call it as a binary classification problem, and multi-class when the dataset presents more than
two possible classes. Whenever a classification problem is binary or multi-class, we denominate
it as a Single-Target (ST) problem, since its predictions will produce a single output value.

However, there are more complex classification tasks, where each example can be classified
into multiple classes simultaneously. This task is denominated as Multi-Label Classification
(MLC). In order to label the example to multiple classes, multi-label problems use a vector y
of k binary outputs, where each value corresponds to a class of the dataset. Thus, a multi-label
prediction will produce multiple output variables, so we can define it as a Multi-Target (MT)
problem. In fact, every classification task involving multiple outputs is a MT task.

Although multi-label classification problems have multiple binary targets, there are classifi-
cation problems where each target can have more than two possible values, and these problems
are denominated as Multi-Target Classification (MTC). It is important to point out that MLC
can be viewed as a MTC task, since it has multiple binary targets. But the inverse is not true.
The MT term is considered as a generalization of the MLC task, being the MLC term applied
when the prediction involves binary targets only.

Being a generalization of the MLC task, the fundamental goal of MTC is the same: to
the relationships (dependencies) among features and targets, and to deal with the computa-
tional complexity of such task. If the classes are completely unrelated, it should be enough to

3



4 1 Introduction

create a separate independent model for each class, i.e Single-Target (ST). However, this is
unlikely to occur.

Also, MT methods, most of the times, derive from MLC, adapting a specific learning ap-
proach (e.g. k-nearest neighbors, decision trees, support vector machines) for directly handle
MT data (Jia and Zhang, 2020c), or transforming the MT task into one or more ST tasks that
can be solved with off-the-shelf learning algorithms (Tsoumakas et al., 2009c). Commonly used
approaches can be categorized into those that model single labels, pairs of labels and sets of la-
bels (Yan et al., 2017). Approaches that model single labels include the one-versus-all (also
known as binary relevance) approach, methods based on stacked generalization (Tsoumakas
et al., 2009a) and the classifier chains algorithm (Read et al., 2011).

Moreover, in this research, we used Restricted Boltzmann Machines (RBMs) (Smolensky,
1986) and Auto-Encoders (AEs) (Cottrell et al., 1987) as feature extractors in the above de-
scribed multi-target scenarios. These neural networks were already successfully used as feature
extractors in different high-dimensional applications (Hinton and Salakhutdinov, 2006, Lange
and Riedmiller, 2010, Zabalza et al., 2016).

The rest of this chapter is organized as follows: we discuss the motivation for this research
in Section 1.1, and then we present our hypothesis and objectives in Section 1.2. Finally, in
Section 1.3, we present how this document is organized.

1.1 Motivation

Traditional prediction problems deal with a set of instances that have a single-target value
associated with them. However, several real-life problems include a set of targets: instead of a
single property, one is interested in predicting multiple properties. The multi-target learning is
also known in the literature as multi-output or multivariate learning (Spyromitros-Xioufis et al.,
2012). Applications include the prediction of river water quality parameters from bio-indicator
data (Džeroski et al., 2000), olfaction prediction in molecules (Keller et al., 2017), estimation of
energy performance in residential buildings (Tsanas and Xifara, 2012) and modelling drivers’
behaviour for autonomous vehicles (An et al., 2020).

The multi-label learning has a very similar setting, which can be described as a particular
case of the multi-target problem that only involves binary targets, considered as labels that can
be 1 or 0 for any data instance (Kocev et al., 2013). Applications include protein function
prediction (Cerri et al., 2016), protein sub-cellular localization (Wan et al., 2012) and audio
classification (Briggs et al., 2013).

We also highlight the difficulty to extract compact representations keeping the predictive
power, since multiple targets are predicted using these representations. Therefore, there exists
the need of investigating different architectures of Auto-Encoders (AEs) and Restricted Boltz-
mann Machines (RBMs) and tuning their hyper-parameters for each scenario.
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1.2 Hypothesis and Objectives

The main goal of this research is to take advantage of neural networks to extract features
from the high-dimensional datasets and fed then to the state-of-the-art multi-target classifica-
tion algorithms. For this purpose, were selected three methods, Principal Component Analy-
sis (PCA) (Jolliffe, 2011), Auto-Encoder (AE) (Cottrell et al., 1987) and Restricted Boltzmann
Machine (RBM) (Smolensky, 1986), for feature extraction, in order to compare which one
achieves the best performance in the final classification.

Besides PCA, which is a direct linear algorithm, neural networks were already successfully
used as feature extractors in different applications (Hinton and Salakhutdinov, 2006, Lange
and Riedmiller, 2010, Zabalza et al., 2016, Higgins et al., 2017), but not considered in multi-
target scenarios. In our work, the extracted representations were used to feed the state-of-the-art
methods for multi-target classification. All methods were evaluated with evaluation measures
specifically designed for multi-target scenarios. We also used statistical tests to verify if our
results were statistically significant. A framework is proposed in Chapter 5, where details of
our methods and experiments are presented.

1.3 Document Organization

The remainder of this document is organized as follows. First, we review the dimension-
ality reduction concept to understand how the feature extraction techniques work (Chapter 2).
Then, we present an overview of the neural network architectures that are used in this research
(Chapter 3). Moreover, a literature overview in multi-target classification methods is presented
(Chapter 4). In Chapter 5 we present the framework proposed in this research, while Chapter
6 presents the experiments and discussions. Finally, we present some conclusions and future
research directions (Chapter 7).
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CHAPTER

2
Fundamentals of Dimensionality

Reduction

Many real-world data, such as noise signals, images, or corporation data, typically have
a high dimensionality characteristic. Keeping in mind the goal of dealing with such infor-
mation satisfactorily, it is desirable to reduce data dimensions in many situations. Therefore,
dimensionality reduction is the action of representing high-dimensional data into equivalent
lower-dimensional data (Van Der Maaten et al., 2009).

In a perfect scenario, such reduced representation should have a dimensionality that com-
pares to the intrinsic dimensionality of the information. The notion of dimensionality of data
can be defined as the base number of parameters expected to represent the observed properties
of an original dataset. Dimensionality reduction is vital in numerous areas, since it mitigates
several undesired properties of high-dimensional spaces.

Thus, dimensionality reduction encourages classification, visual representation, and com-
pression of high-dimensional information. Traditionally, such technique is performed utilizing
direct strategies, for example, Principal Component Analysis (PCA). There are situations how-
ever, where these direct strategies can not satisfactorily handle complex nonlinear information.

In the remainder this chapter we introduce the basic concepts of dimensionality reduction,
presenting the differences between feature extraction and feature selection.

2.1 Basic Concepts

As introduced in the beginning of this chapter, dimensionality reduction consists in the task
of transforming some high-dimensional data into an equivalent lower-dimensional representa-
tion, ensuring that compressed data represents the similar information concisely. Methods based
on this principle are typically used in machine learning problems in order to obtain more rep-
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resentative features, easing data visualization, and helping in the classification and regression
tasks (Hinton and Salakhutdinov, 2006).

For further definitions of dimensionality reduction methods, a concept that needs to be com-
prehended is the intrinsic dimensionality. The idea behind this concept is to represent a manifold
of a higher-dimensional dataset that represents a smaller portion of data (Van Der Maaten et al.,
2009).

The dimensionality reduction task can be described as follows: Consider a dataset D con-
taining n instances, with m attributes, constituting the matrix with dimensions d = n ×m. Also,
assume that D has an intrinsic dimension d′ (where d′ < d) representing the points in n that are
in (or near) a manifold with dimension d′, contained inside the d-dimensional space. So, the
dimensionality reduction task consists in the transformation of the dataset D with dimension d

into a dataset D′, with dimension d′. Each attribute of the original dataset is denoted as xi, with
1 ≤ i ≤ m.

An example of dimensionality reduction based on the intrinsic dimension (highlighted in
bold) is presented in Figure 2.1. In this scenario, the intrinsic dimension represents a lower
number of attributes and instances. Recall that in our research the dimensionality reduction
task is focused in just dealing with the number of attributes, and not the number of instances,
since we use neural networks and these algorithms present better performances with a large
number of instances (Hinton and Salakhutdinov, 2006).

x1 x2 x3 . . . xm

3 -1 3 1
-2 4 4 1
1 -2 3 0
0 4 4 1

-1 4 -1 0
5 -2 1 1
1 1 -1 1

-2 -1 -2 0

=⇒

x′1 x′2 x′3
2 5 3
4 3 2

-1 1 0
-2 -2 -1
0 -4 1

Figure 2.1: Example of dimensionality reduction based on the intrinsic dimension (denoted in
bold).

In machine learning, problems usually have a set of input and output variables, where the
objective is to map a function that assimilates these input values to the output values. We can
therefore define a dataset that represents a machine learning problem as D = (X,Y), where X
represents the input variables and Y represents the output variables. We call the input variables
of a machine learning problem as features, and the output variables as targets. Likewise, X
and Y are also called feature and target spaces, respectively. In our research, as we are dealing
with multi-target problems, i.e., problems that have several output variables, we will apply the
concept of dimensionality reduction only into the feature space.

An example of dimensionality reduction applied into the feature space is illustrated in Fig-
ure 2.2. The figure shows two representations obtained from the Iris dataset (Blake and Merz,
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1998), which is originally composed by 5 attributes (being 4 input variables and 1 output vari-
ables). The two representations show a 3-dimensional and 2-dimensional portrayal of the fea-
tures present in the Iris dataset. Besides reducing the number of features, these reduced repre-
sentations provide better data visualization. Therefore, in Sections 2.2 and 2.3 we will present
two well-known dimensionality reduction methods which are focused on reducing the number
of attributes.

(a) 3-dimensional representation (b) 2-dimensional representation

Figure 2.2: Representations of the data obtained after executing feature extraction using the
PCA method on the Iris dataset, which originally contains 4 features.

2.2 Feature Selection

Feature selection is a dimensionality reduction technique used in machine learning and
statistics. Otherwise called variable selection or attribute selection, it can be described as the
way toward choosing a subset of relevant attributes for use in the development of a prediction
model (Guyon and Elisseeff, 2003).

A feature selection algorithm can be viewed as the combination of a search system for
proposing new feature subsets, alongside an evaluation measure which scores the diverse feature
subsets. The basic principle of such technique is to test every possible subset of features finding
the one which limits the error rate in some task.

In Statistics, one of the most well known types of feature selection is step-wise regression,
which is a wrapper system. It works in a greedy fashion, including the best feature (or erases
the most noticeably bad feature) at each iteration. The main issue is choosing when to stop
the process. This is regularly done by optimizing some objective function. Also, more robust
strategies have been investigated, for example, branch and bound and piece-wise system (Zhang,
2016).

In brief, feature selection only removes the most “unnecessary” features, which is not ex-
actly the purpose of this research, since we want to represent all the features present in a dataset
in a reduced dimension. For this reason, a generative model is needed, which creates a new
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representation of the features, instead of removing the less significant ones. In Section 2.3, we
present a generative model, called feature extraction.

2.3 Feature Extraction

As discussed in the beginning of this chapter, modern applications typically involve huge
amounts of data, sometimes redundant, or too large to be processed. At that point, it may be
necessary to transform the original data into a lower-dimensional data, reducing the number
of features. Also described in Section 2.2, selecting a subset of the relevant features is called
feature selection. The highlighted features are likely to contain the significant data from the
dataset, with the goal that a given task can be performed by utilizing the reduced representation
of the data rather than the entire original data.

On the other hand, feature extraction consists in decreasing the number of features required
to represent a larger arrangement of data by generating new features. When handling complex
data, one of the significant problems comes from the number of features, which generally re-
quires a lot of memory and processing time. Additionally, for prediction tasks, it might generate
over-fitting on training instances and predict inadequately to new instances. Feature extraction
is a general term for strategies for building combinations of the attributes to overcome these
problems while yet portraying the information with exactness (Guyon and Elisseeff, 2006).

Generally, a feature extraction technique begins from a starting set of estimated information
and generates derived values (features) proposed to be instructive and non-repetitive, encour-
aging learning and generalization, also providing, sometimes, better human readability (Hinton
and Salakhutdinov, 2006).

In Chapter 3, we will present how neural networks, one of the most well-known techniques
for reducing dimensionality, are used to perform feature extraction by reconstructing the input
data it receives.



CHAPTER

3
Neural Networks for Feature Extraction

As mentioned in the Introduction (Chapter 1), the main objective of this research is to
use Auto-Encoders (AEs) (Cottrell et al., 1987) and Restricted Boltzmann Machines (RBMs)
(Smolensky, 1986) as feature extractors in previously described multi-target classification sce-
narios. These neural networks were already successfully used as feature extractors in differ-
ent applications (Hinton and Salakhutdinov, 2006, Lange and Riedmiller, 2010, Zabalza et al.,
2016).

One of the reasons for using neural networks as feature extractors is the attempt to reach
better results than direct methods. In this research, we compared the results obtained with
extracted features by neural networks with the ones obtained when extracting features using
Principal Component Analysis (PCA).

3.1 Restricted Boltzmann Machine

First presented in the literature as Harmonium (Smolensky, 1986), a Restricted Boltzmann
Machine (RBM) is an energy-based stochastic system to model the probabilistic distribution of
data, generally used into pattern recognition and classification. The RBM is also one of the
most well known techniques in the feature learning field (Hinton and Salakhutdinov, 2006). An
RBM consists of a stochastic neural network, composed by 2 layers (visible and hidden), and
its learning process consists in estimating the weights between the visible and the hidden layers.

Following this definition, the architecture of an RBM is composed by a visible layer x with
n units, and a hidden layer h with m units, interconnected by a weight matrix Wn×m, where Wi j

references the weight between the visible unit xi and the hidden unit h j. Both visible and hidden
layers are binary units, meaning that x ∈ {0, 1}n and h ∈ {0, 1}m.

Equation 3.1 gives the energy function of an RBM, where c and b represent the biases of
the visible and hidden layer respectively. An illustration of a RBM is presented in Figure 3.1

11
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E(x,h) =
m∑

i=1

cixi −

n∑
j=1

b jh j −

m∑
i=1

n∑
j=1

xihiwi j (3.1)

Figure 3.1: Illustration of a Restricted Boltzmann Machine, where ci and b j represent the biases
of the visible and hidden units.

Given the energy function, a RBM computes the probability distribution, also called as
Gibbs distribution, P(x,h), which is obtained by Equation 3.2, where Z represents the sum of
all possible states of the machine, also known as partition function.

P(x,h) =
exp(−E(x,h))

Z
(3.2)

Since a RBM is a bipartite graph, the activations of both visible and hidden units are mutu-
ally independent, thus leading to the following conditional probabilities

P(x|h) =
m∏

i=1

P(xi|h)⇒ P(xi = 1|h) = sigm

 n∑
j=1

wi jh j + ci

 (3.3)

and

P(h|x) =
n∏

j=1

P(h j|x)⇒ P(h j = 1|x) = sigm

 m∑
i=1

wi jx j + b j

 (3.4)

in the forward-phase and in the backward-phase, respectively.

Considering the parameters of a RBM being ρ = (W, c, b), the learning algorithm has the
objective of maximizing the product of probabilities given a training data. However, the repre-
sented scenario is considered to be a naive RBM architecture, due the fact that computing all
states of the system can be intractable.

With that in mind, the learning process can be executed based on the Contrastive Divergence
algorithm (Hinton, 2002). The idea of this training method to initialize the visible units with a
training sample using Equation 3.4 (forward-phase), and then compute the states of the visible
unit using Equation 3.3 (backward-phase, also called as reconstruction). The idea behind this
algorithm is to substitute E by an estimated x̃ obtained by Gibbs sampling, and then start the
sampling by the state which the visible layer is encountered. This process is repeated k times,
always aiming to lowering E, until the system reaches a stable point.
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Assuming E[hx] as the data learned by the system, it can be computed as:

E[hx]model = P(̃h|̃x)̃xT (3.5)

Therefore, Equation 3.6 leads to a learning rule for updating the weight matrix Wm×n, as
follows:

Wt+1 =Wt + η(E[hx]data − E[hx]model)

=Wt + η(P(h|x)xT − P(̃h|̃x)̃xT )
(3.6)

where Wt represents the weight matrix at the moment t and η represents the learning rate. It is
also necessary to update the biases as defined in the following formulas:

ct+1 = ct + η(x − E[x]model)

= ct + η(x − x̃)
(3.7)

and

bt+1 = bt + η(E[x]data − E[x]model)

= bt + η(P(h|x) − P(̃h|̃x))
(3.8)

where ct and bt represent the biases of the visible and hidden units at the moment t.

3.1.1 Deep Belief Network

A Deep Belief Network (DBN) is composed of stacked RBMs trained in a greedy fashion
using the Contrastive Divergence algorithm presented in Section 3.1. This means that each
RBM is trained independently, and each layer does not consider the other during the training
process. Therefore, a DBN with L layers will have L weight matrices Wi, each one from the
RBM at layer i. The hidden units of the RBM at layer i will become the input for the visible
units of the RBM at layer i + 1, and so on.

The approach proposed by Hinton and Salakhutdinov (2006) for training DBNs also consid-
ers a fine-tuning as a final step after the training of each RBM. Such procedure can be performed
by means of a back-propagation or gradient descent algorithm, for instance, in order to adjust
the matrices Wi, 1 ≤ i ≤ L. Figure 3.2 presents an illustration of a Deep Belief Network with
three RBMs.

3.2 Auto-Encoder

Traditionally, a feed-forward neural network is capable of classifying examples by compar-
ing the output generated by the model with the desired output and computing an error. This error
is then used to adjust the weights with the back-propagation and gradient descent algorithms
(Goodfellow et al., 2016). In practice, given a dataset D with n examples, a neural network tries
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Figure 3.2: Illustration of a Deep Belief Network composed by one visible layer and two hidden
layers.

to learn a function f (xi) ≈ yi, where 1 ≤ i ≤ n, being xi the input data, and yi the correct output
(label) for example xi.

An Auto-Encoder (AE), on the other hand, is a neural network architecture that learns to
reconstruct the input data fed to the algorithm in an unsupervised fashion. In other words, the
goal of an Auto-Encoder (AE) is not to classify examples, but to reproduce its own input data
(Cottrell et al., 1987). AEs are capable of achieving this by comparing the output generated
from the model with the original input data, making the network learn to predict its own input
data, i.e, the Auto-Encoder tries to learn f (xi) ≈ xi.

For further definitions in this section, consider x̂i the reconstruction of the example xi. Con-
sider also W the weight matrix between the input layer x and the code layer h(x), and W′ the
weights between the code layer and the output layer x̂. In addition, consider b and c the bi-
ases for the code and output layers, respectively. Figure 3.3 gives an illustrative example of an
Auto-Encoder.

Figure 3.3: Illustration of an Auto-Encoder architecture and the encoding-decoding process.

The learning process of an Auto-Encoder is basically composed by two steps: encoding
and decoding (that’s why it was named Auto-Encoder). The encoding process occurs in the
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activation from the input layer to the code layer, as usually occurs in a traditional feed-forward
neural network. This is given by Equation 3.9, where the data from the input layer is stored in
the code layer after the activation. The equation uses the logistic sigmoid (sigm) function, but
others could be also used for this purpose.

h(x) = sigm(b +Wx) (3.9)

The decoding step consists in reconstructing the input data based on what the neural network
had learned in the code layer. The process to obtain the output is also similar to an usual feed-
forward neural network, given by Equation 3.10.

x̂ = sigm(c +Wh(x)) (3.10)

As previously mentioned in this section, Auto-Encoders (AEs) are capable of reconstructing
the input data by comparing the obtained output with the original example. In order to evaluate
this reconstruction, AEs implement a loss function. Two of the most well known functions
suitable for this purpose (Goodfellow et al., 2016) are the cross-entropy for binary data, and
the squared Euclidean distance for real-valued data. They are given by Equations 3.11 and 3.12
respectively, where k represents the logical units in the input and output layers.

l(x̂) = −
∑

k

(xk log(x̂k) + (1 − xk) log(1 − x̂k)) (3.11)

l(x̂) =
1
2

∑
k

(x̂k − xk)2
(3.12)

After defining the loss function, it is possible to adjust the weights W and W′, in an process
similar to a feed-forward network. Thus, the back-propagation algorithm (Goodfellow et al.,
2016) can be used for such task, where the gradient can be defined as

∇x(t)l(x̂
(t)) = x̂(t) − x(t) (3.13)

where t represents the neural network layer states at moment t.

It is worth pointing out that when the code layer contains less logic units than the input layer,
the Auto-Encoder will naturally learn a compact representation of the input data. Therefore, that
is the way Auto-Encoders are used for feature extraction. Thus, by applying Equation 3.9, the
result will be the compressed representation of the original input data xi.

In the next section, we discuss how deep learning techniques can improve the performance
of Auto-Encoders, likewise occurs in multi-layer perceptron networks.
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3.2.1 Applicability of Deep Learning Techniques in Feature Extraction

The application of deep learning techniques in Auto-Encoders is common. Since AEs are
naturally feed-forward neural networks, the corresponding deep architectures are known as deep
auto-encoders.

One of the benefits of using deep neural networks is the possibility of combining other neural
network techniques and architectures to improve performance. This was proposed by Hinton
and Salakhutdinov (2006), where they pre-trained a deep Auto-Encoder with a DBN, increasing
predictive performance and reducing the computational time. Although LeCun and Ranzato
(2013) showed that the use of techniques such dropout (Hinton et al., 2012) and rectification
(ReLU) (Agarap, 2018) present more competitive results, these researches show the potential
of combining Auto-Encoder and deep learning for feature extraction.

It is worth mentioning, as presented in (LeCun and Ranzato, 2013), that these novel methods
drastically improved the performance of Auto-Encoders on dealing with datasets with a huge
number of features. There are multi-target regression datasets whose use is currently prohibitive
with conventional neural networks, since they have over forty thousand features (Tsoumakas
et al., 2011).

Thus, deep neural networks have the potential to outperform traditional neural network
architectures when dealing with regression datasets. This is why we used some deep varia-
tions in our experiments. Some future research can explore Variational Auto-Encoders (VAEs)
and the effectiveness of Recurrent Neural Networks (RNNs), specially Long-Short Term Mem-
ory (LSTM), on such tasks.

In Chapter 4 we discuss about the multi-target classification paradigm, as well as the clas-
sifiers that will be used in this research, which will be fed by the features extracted by the
Auto-Encoders (AEs) and the Restricted Boltzmann Machines (RBMs).
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4
Multi-Label and Multi-Target

Classification

In machine learning, classification problems can be categorized in four different ways: bi-
nary, multi-class, multi-label and multi-target classification. In order to distinguish them, it is
important to understand other concepts: single and multi-target. In supervised learning, classi-
fiers receive a dataset, where each example has input and output values. The objective of the
classifier is, through the input data, to predict which are the correct output values. We call a
problem as single-target when the example needs to be assimilated with only one output value
(i.e. only one target). In contrast, we call multi-target those problems that have multiple output
values simultaneously predicted.

Figure 4.1: Illustration of the different classification paradigms, where ` is the number of targets
and p is the number of possible values that each target may take. Adapted from (Read et al.,
2014).

Among the four categories of classification problems, we consider the binary and multi-
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class problems as single-target, and the multi-label and multi-target classification problems as
multi-target.

Now that we have differentiated the classification paradigms according to the number of
output variables, there is another factor that also differentiates them: the number of possible
values per target. When a problem consists in predicting between only two output values, we
consider it to be binary. On the other hand, a problem that has multiple possible output values
is considered to be multi-class.

Thus, we can say that the problem of multi-label classification is a problem with multiple
binary targets, and multi-target classification is a problem with multiple targets where each
of these can have multiple values. We illustrate in Figure 4.1 how these four classification
paradigms are categorized.

A multi-target classification problem can be formally described as: given a D dataset with
n examples and their multiple nominal output values, let the matrix X ∈ D consisting of m

input variables be the feature space, and the matrix Y ∈ D with ` output variables be the target
space. For each example d(i) = (x(i), y(i)), let the input space (features) be x(i) and the output
variables (targets) be y(i), being 1 ≤ i ≤ n. The objective is to learn a model h(X) → Y
that assimilates the vector x(i) to the vector y(i) which contains ` instances, where each one can
assume p possible values. This notation will be adopted in the next sections of this chapter,
alongside the definitions summarized in the Table 4.1.

Definition Notation

Number of examples n
Number of features m
Feature space X = {X1, ...,X j, ...,Xm}, 1 ≤ j ≤ m
Feature instance of the ith example x(i) = (x(i)

1 , ..., x
(i)
m ) ∈ X, 1 ≤ i ≤ n

Number of targets `
Number of possible values per target p
Target space Y = {Y1, ...,Yk, ...,Y`}, 1 ≤ k ≤ `
Target instance of the ith example y(i) = (y(i)

1 , ..., y
(i)
` ) ∈ Y, 1 ≤ i ≤ n

Full Multi-Target (MT) dataset D = {(x(1)
1 , y(1)

1 ), ..., (x(n)
m , y(n)

` )}
Single-Target (ST) dataset with the kth target Dk = {(x(1)

1 , y(1)
k ), ..., (x(n)

m , y(n)
k )}

MT instance of the ith example d(i) = (x(i), y(i)) ∈ D
ST instance of the ith example with the kth target d(i)

k = (x(i), y(i)) ∈ Dk

MT classification model h(X)→ Y
ST classification model for the kth target hk(X)→ Yk

MT prediction Z = h(X) ∈ Y
ST prediction for the kth target Zk = hk(X) ∈ Yk

Table 4.1: Notation used to formally describe the multi-target classification methods.

In the next sections, we review the multi-target classification literature and its proximity to
the multi-target classification research field (Section 4.1), as well as the selected multi-target
methods to be used in this research (Sections 4.2, 4.3, 4.4 and 4.5).
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4.1 Drawing parallels between Multi-Label and Multi-Target

Classification

In machine learning, the task of classifying an example consists of, through a vector of input
attributes, which we call features, assimilate the example to an output variable, which we call
target. Consequently, we call the traditional classification as Single-Target (ST), because there
is only one output variable, i.e., only one target. However, there are classification problems
that can be assimilated to several output variables simultaneously. These problems, therefore,
we call as Multi-Target (MT). In Figure 4.1 we represented how the existing classification
paradigms are categorized.

The research fields of multi-label and multi-target are very close. The term multi-
target emerged as a generalization of the term multi-label (Spyromitros-Xioufis et al., 2012,
Tsoumakas et al., 2014a). What differentiates these two is: a) multi-label is the term used
when the targets of the problem are binary, that is, each target can only be assimilated to two
possible values (1 or 0); b) multi-target is the term used when targets can be assimilated to
multiple values.

Thus, we can say that the term multi-label should be used in more specific cases, where the
multiple output variables can only assume binary values, and the multi-target should be used in
more general problems, when we want to explain that the problem has several output variables,
and each output variable can assume multiple values.

There is still no standard established in the multi-target literature, and this term is also
known as multi-output (Zhang et al., 2012), multi-dimensional (Jia and Zhang, 2020b, Read
et al., 2014) or multivariate (Borchani et al., 2015).

The research field of multi-target learning, because it is a multi-label generalization, ben-
efits greatly from multi-label classification researches, where methods can be adapted almost
straightforward to multi-target (Tsoumakas et al., 2014a, Borchani et al., 2015), and when not,
are often used as a baseline for the development of novel methods (Read et al., 2014).

The multi-label and multi-target classification methods are also categorized in the same way:
problem transformation or algorithm adaptation. In Sections 4.1.1 and 4.1.2 we will present
both approaches, and also talk about methods that have not yet been suited to the multi-target
context.

4.1.1 Problem Transformation Methods

Handling multiple target variables at once can be a very complex and computational expen-
sive task. An alternative to deal with these complex problems is to turn them into smaller, less
complex ones. A problem transformation method, as the name implies, consists of transforming
multi-target problems into several single-target problems.

In addition to lowering the computational cost to deal with multi-target problems, the idea
behind problem transformation methods is also related to the fact that these methods transform
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multi-target problems in a way that allows predictive models to be built using traditional single-
target classifiers.

Among the problem transformation methods, there are two methods that are very popular in
multi-label literature, and are used in multi-target problems (Spyromitros-Xioufis et al., 2012).
The first is Class Relevance (CR) (more details in Section 4.2), which is the simplest and most
intuitive method of all, which consists of creating separate predictive models for each target.
The other well-known method is the Classifier Chains (CC) (more details in Section 4.3), which
already takes into account that there may be relationships among the targets, and builds its
predictive model by chaining the predictions of each target in the feature space. Both methods
were used in this research to evaluate our results.

There is also another well-known method in the multi-target literature called Label Power-
set, which was converted by Read et al. (2014) to multi-target under the name of Class Power-
set (CP). This method consists of creating a predictive model for all possible target combina-
tions, i.e., it considers that there are relations among all targets unconditionally. However, this
ends up generating high computational complexity (Cherman et al., 2011). The study published
in (Read et al., 2014) shows that the results of the CP in the multi-target context are compared
to the CC, which ends up not justifying its high computational cost, and for this reason the use
of CP in multi-target is discouraged. Therefore, among the most well-known baseline methods
in the multi-label literature, according to our knowledge, this is the only one that was not used
in our experiments.

Moreover, there exists another approach for multi-target classification that aims to deal di-
rectly with the multi-target problem, without breaking it down into smaller single-target prob-
lems. In Section 4.1.2, we will talk about these methods, which are categorized as algorithm
adaptation.

4.1.2 Algorithm Adaptation Methods

One of the problems with the problem transformation approach is that several separate clas-
sification models are built to solve a multi-target classification problem, which can result in
some relationship among the targets not being taken into account, which can lead to poor pre-
dictive performance. Algorithm adaptation methods rely on the concept of simultaneously pre-
dicting all the targets, considering the relationships among them, and being able to capture all
dependencies and relationships using a single model. Hence, this technique presents several ad-
vantages over the problem transformation methods, since it usually ensures a better predictive
performance.

Multi-target classification methods based on the algorithm adaptation approach, as the name
says, consist of applying traditional classification algorithms (such decision trees, support vector
machines, k-nearest neighbors) specifically for the multi-target domain, so that the prediction is
made through a single model.

At the time we had conducted our experiments, to our knowledge, there were no algorithm
adaptation methods for multi-target classification and, therefore, we do not have any of these
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methods present in our experiments. The closest to an algorithm adaptation of the methods
presented in this research is the Super-Class Classifier (SCC) (more details in Section 4.5),
which uses an algorithm based on Bayesian networks to map the dependency among the targets,
however it is still a problem transformation method.

Recently, an algorithm adaptation method for multi-target classification has been proposed
(Jia and Zhang, 2020c), which consists of using the already known k-Nearest Neighbors to
solve the multi-target problem using only a predictive model. However, as this is a very recent
research, unfortunately we were unable to consider it in our experiments in time.

It is important to mention that, in addition to the multi-target classification, there is also the
multi-target regression research field, which deals with problems that have multiple output vari-
ables that assume continuous values (instead of binary or nominal). In multi-target regression,
there are several implementations of algorithm adaptation methods that showed a predictive
performance superior to the problem transformation ones (Spyromitros-Xioufis et al., 2016,
Tsoumakas et al., 2014b, Jia and Zhang, 2020c).

One of the major problems with algorithm adaptation methods, as mentioned in (Read et al.,
2014), is the fact that applicability depends highly on the type of data that the algorithm or
technique can handle. The authors mention that a great example of this is that there are several
methods and evaluation measures that have not yet been adapted from multi-label classification,
which is a problem that also deals with nominal targets (but can only assume two possible
values), for the context of multi-target classification.

While we are not aware of the existence of any other algorithm adaptation methods for the
multi-target classification context, our experiments were conducted with the problem transfor-
mation methods presented in Sections 4.2, 4.3, 4.4 and 4.5.

4.2 Class Relevance

When dealing with a multi-target classification problem, one of the most straightforward
ways to handle it is to create a separate model for each output variable and make separate pre-
dictions. According to (Last et al., 2011), Class Relevance (CR) defines exactly this approach,
which consists of dividing the multi-target problem into several single-target problems.

This method tackles a multi-target problem by dividing the multi-target dataset D = (X,Y),
where X and Y are the feature and target space respectively, into several single-target datasets
Dk = (X,Yk), being 1 ≤ k ≤ ` and ` the number of targets present in this dataset, where each Dk

represents the kth target assimilated to the feature space X. For each of these Dk single-target
datasets, this method creates ` separate classification models hk : X → Yk using a traditional
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multi-class classifier, as shown in Equation 4.1:

h1 : X1, ...,Xm → Y1

h2 : X1, ...,Xm → Y2

...

h` : X1, ...,Xm → Y`

(4.1)

and then, we can define the predictive model as the combination of all the single-target models
generated separately for each target, as shown in Equation 4.2:

h = (h1, ..., h`) (4.2)

so, the prediction values Z are obtained by applying h on the testing data, as we show on
Equation 4.3:

Z = h(X) (4.3)

As in class relevance each target has a separate model, we can describe the predictions Zk

independently for each target as shown in Equation 4.4:

Z1 = h1(X)⇒ h1 : X→ Y1

Z2 = h2(X)⇒ h2 : X→ Y2

...

Z` = h`(X)⇒ h` : X→ Y`

(4.4)

As we discussed in Section 4.1, class relevance is a problem-transformation method, where
learning the classification model consists of dividing the multi-target problem into several
single-target problems, as illustrated in Figure 4.2. We also illustrate in this figure how is
the learning process in a multi-target problem using this method, where it is possible to see that
the relationship among the targets are completely ignored.

Class relevance is a method inspired by the Binary Relevance (BR), from multi-label litera-
ture. The big difference is that class relevance is designed to handle multiple values per target,
while binary relevance handles only outputs with two possible values. These methods are also
known in literature as Independent Classifiers (IC) (Read et al., 2014), given the characteristic
of the learning in this method. It is considered as the simplest strategy to tackle multi-target
problems. However, it is more effective than it may seem at first sight (Luaces et al., 2012),
since having a multi-target problem does not always mean that there is a necessary relationship
among the targets.

This relationship between CR and BR emphasizes the proximity between the multi-label
and multi-target classification research fields. We will also see this in Section 4.3, where we
present the Classifier Chains (CC), a method also inspired by the multi-label literature.
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Figure 4.2: Illustration of the predictive model built in the Class Relevance (CR) method.
Adapted from (Tsoumakas et al., 2014a).
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4.3 Classifier Chains

One of the fundamental characteristics of Class Relevance (CR) is that its predictive model
disregards any possible relationship among targets, as we discussed in Section 4.2. In contrast,
Classifier Chains (CC) is a method designed to explore the relationships among the targets, and
for that reason, it is a slightly more sophisticated method than CR.

The CC tackles the multi-target classification problem by expanding the feature-space. As
the name says, this is done in a chained way, where the previous predictions become part of the
feature-space throughout the learning. The strategy of CC is to divide the multi-target dataset
D = (X,Y), where X and Y are the feature and target space respectively, into several single-
target Dk datasets, where 1 ≤ k ≤ ` and ` is the number of targets present in this dataset,
similarly as occurs in CR.

However, a major difference when composing these single-target datasets is that, for each Dk

where k > 1, the prediction of the last target is concatenated on the feature space X subsequently.
When chaining the predictions into feature-space for each iteration of k, this method is able to
take into account the relationships among the targets even using separate classification models
for each target. Therefore, ` separate classification models hk : X → Yk are learned using
traditional multi-class classifiers, as shown in Equation 4.5:

h1 : X1, ...,Xm → Y1

h2 : X1, ...,Xm, h1(X)→ Y2

h3 : X1, ...,Xm, h1(X), h2(X)→ Y3

...

h` : X1, ...,Xm, h1(X), ..., h`−1(X)→ Y`

(4.5)

In this way, we can define the predictive model h combining the models generated for each
target, and then, obtain the predictions Z by applying h on the data, similarly as in CR, as shown
in Equations 4.6 and 4.7, respectively:

h : (h1, ..., h`) (4.6)

Z = h(X) (4.7)

Also, we can describe each target prediction Zk as shown in Equation 4.8:

Z1 = h1(X)⇒ h1 : X1, ...,Xm → Y1

Z2 = h2(X)⇒ h2 : X1, ...,Xm, h1(X)→ Y2

Z3 = h3(X)⇒ h3 : X1, ...,Xm, h1(X), h2(X)→ Y3

...

Z` = h`(X)⇒ h` : X1, ...,Xm, h1(X), ..., h`−1(X)→ Y`

(4.8)
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The multi-target implementation of CC is inspired by the CC from multi-label literature
(Sorower, 2010). As in BR, the CC in the multi-label research field is designed for binary
classification, while the multi-target specification can handle multiple nominal values per target.

Also, CC is another problem transformation method, as we described in Section 4.1. It
means that the CC classification strategy consists of dividing the multi-target problem into sev-
eral single-target problems. We also provided in Figure 4.3 a step-by-step of the learning pro-
cess, where it is possible to see how CC tackles a multi-target problem by learning several
single-target models. In this figure, it is also possible to see more clearly how CC is able to take
into account the relationships among the targets in a chained way.

However, not all of the possible relationships are taken into consideration in the CC predic-
tion. In Equation 4.5 and in Figure 4.3 it is possible to observe that, when learning a target Yk

with k < `, the correlation with the next targets are not explored. Thus, the only target that CC
explores all the possible correlations with the others is the last one, Y`.

4.3.1 Ensemble of Classifier Chains

One of the problems that CC has is that not all targets are taken into account when creating
the predictive model. The chained way in which this method builds the classifier makes only
the last target to take into consideration the information present in all the others. Ensemble
of Classifier Chains (ECC) consists of a variant of CC presented by Read et al. (2011), where
several CCs are generated with random chaining orders and random subsets of the original
training data. The idea behind this is to predict each classifier separately, and then count which
target values are most predicted using a voting method. The target values that have the number
of votes greater than a defined threshold will be part of the final classification model.

As the name says, the ECC creates an emsemble with d trained CC classifiers C1, ...,Cd,
where each Cd classifier is trained with chained targets at random. The predictions are counted
for each target, so that the target values that get the most votes will compose the final pre-
diction model. Each prediction model Cd has its predicted values stored in a voting matrix
W = (w1, ...,wk), where w represents a vector containing ` positions, where each w j represents
the classes that each target Yk can have. In this way, each target value that has the number of
votes in Wk higher than a threshold t across all the trained models, is selected to be part of the
final model.

The results presented in other studies (Read et al., 2014, Jia and Zhang, 2020a) show that
ECC, despite being a relatively simple proposal based on CC, proved to be competitive com-
pared to other multi-target classification methods.

In Section 4.4, we present the Class Relevance Stacking (CRS), a problem transformation
method based on CR that also tries to take into account the relationship among all targets into
the predictive model.
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Figure 4.3: Illustration of how the predictive model is built in the Classifier Chains (CC)
method. Adapted from (Tsoumakas et al., 2014a).
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4.4 Class Relevance Stacking

As discussed in Section 4.2, the CR method does not take into account any possible relation-
ship among the targets of a multi-target problem. The CC, in the other hand, takes into account
the possible relationships among targets, however, as shown in Section 4.3, it does not take into
account all possible correlations among the targets. In an attempt to solve this problem, another
approach besides the ECC can be used. According to this study (Tsoumakas et al., 2009b) from
the multi-label literature, it is possible to use the stacking technique to take into account all tar-
gets in the construction of the classification model. Here, we describe how the Class Relevance
Stacking (CRS) method can be applied in a multi-target classification problem.

We saw in the CC that for each target a classification model is created based on the previous
target, i.e., there is a chaining that modifies the feature-space, so that only the last target has
learned all the information among the targets. CRS also modifies the feature-space, but in a
different way: it first composes an intermediate model that has information from all targets, and
uses this to build a final model, which has all the target information. Thus, its predictions take
into account the information of all targets.

We can define how Class Relevance Stacking (CRS) addresses a multi-target problem as
follows: given a multi-target dataset D = (X,Y), where X and Y are the feature and target space
respectively, we can divide D into several single-target datasets Dk = (X,Yk), being 1 ≤ k ≤ `

and ` the number of targets present in this dataset, where each Yk represents the kth target
assimilated to the feature space X. First, each of these Dk single-target datasets will produce `
separate classification models hk : X → Yk using a traditional multi-class classifier, exactly as
occurs in CR, as we show in Equation 4.9:

h1 : X1, ...,Xm → Y1

h2 : X1, ...,Xm → Y2

...

h` : X1, ...,Xm → Y`

(4.9)

The model is built as Equation 4.10:

h : (h1, ..., h`) (4.10)

but, unlikely as occurs in CR, the classification is not performed based on this model h. Indeed,
CRS does the prediction, but it uses this output to generate an intermediate feature-space Y′, as
shown on Equation 4.11:

Y′ = h(X) (4.11)
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and then, it builds the final prediction models using CR with X and Y′ as the feature-space:

h′1 : X1, ...,Xm,Y′1, ...,Y
′
` → Y1

h′2 : X1, ...,Xm,Y′1, ...,Y
′
` → Y2

...

h′` : X1, ...,Xm,Y′1, ...,Y′` → Y`

(4.12)

thus composing the model h′ (Equation 4.13) which will be used to obtain the final predictions
Z (Equation 4.14):

h′ : (h′1, ..., h
′
`) (4.13)

Z = h′(X) (4.14)

We can also describe each target prediction Zk as:

Z1 = h′1(X)⇒ h′1 : X1, ...,Xm,Y′1, ...,Y
′
` → Y1

Z2 = h′2(X)⇒ h′2 : X1, ...,Xm,Y′1, ...,Y
′
` → Y2

. . .

Z` = h′`(X)⇒ h′` : X1, ...,Xm,Y′1, ...,Y
′
` → Y`

(4.15)

This method is based on the Binary Relevance (BR) stacking proposal, presented in
(Tsoumakas et al., 2009b), and was straightforward converted to the multi-target classifica-
tion. Its application is relatively simple, and consists of using the BR twice, once to obtain the
intermediate prediction model (Figure 4.4), and them to make the final predictions (Figure 4.5).
The idea behind this is that this method can extract information from all targets to make the fi-
nal prediction. The experiments carried out in (Tsoumakas et al., 2009b) show that the method
was able to obtain better results than the BR, which is probably due to the fact that there were
relationships among the targets of the data used for evaluation.

However, CRS arbitrarily assumes that there are relationships among all targets, which may
not be true. In Section 4.5, a method will be presented that assesses the possible relationships
among the targets before making the prediction.
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Figure 4.4: Illustration of the first phase of learning at Class Relevance Stacking (CRS),
where Class Relevance (CR) is applied to obtain the intermediate predictions. Adapted from
(Tsoumakas et al., 2014a).
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Figure 4.5: Illustration of how the Class Relevance Stacking (CRS) uses the intermediate pre-
dictions to build the final prediction model. Adapted from (Tsoumakas et al., 2014a).
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4.5 Super-Class Classifier

Regarding the predictive model created through the methods presented in Sections 4.2, 4.3
and 4.4, there are several peculiarities regarding the relationships among the targets. Briefly, we
can summarize:

• Class Relevance (CR) is the simplest approach of all. However, it completely disregards
any relationship among the targets;

• Classifier Chains (CC) already takes into account that there exists relationships among the
targets, but does not consider all possibilities. The Ensemble of Classifier Chains (ECC)
tries to mitigate that in an arbitrary way;

• Class Relevance Stacking (CRS) takes into account that there is relationships among all
the targets, regardless of whether those targets are related or not.

Regarding the methods above, it is possible to state that they all assume in an arbitrary way
the relationships that exist between the output variables. Proposed by Read et al. (2014), Super-
Class Classifier (SCC) is a method for multi-target classification that aims to explore how the
targets are related, defining the dependencies among them, before building the predictive model.

The authors’ motivation to propose the method came when they faced a real-world multi-
target classification problem, and there were no specific methods for this domain that explored
how targets were related, and the existing problem adaptation algorithms from the multi-label
literature that could be easily suited to multi-target, had their predictions in an arbitrary way.

Still according to the authors, they did not want to decide between CR (Independent Clas-
sifiers (IC) as they called at the time) and CP. The reasons were: the CR does not take into
account any relationship among the targets, and the CP has high computational complexity, as
pointed out in Section 4.1.1.

In order to address the possible relationships among the targets, the authors decided to
design a method that was capable of making this evaluation before creating the predictive model.
The idea behind this is to create models for each set of targets that are more related to each other.

For example, let’s assume that we have the following dataset to perform a multi-target clas-
sification: D = (X,Y) with n examples and ` = 3 targets, where each of these targets can
assume p = 3 possible different values, being Y1 ∈ {1, 2, 3}, Y2 ∈ {4, 5, 6} and Y3 ∈ {7, 8, 9}.

We can say that CR would generate the following models:

h1 : X1, ...,Xm → {1, 2, 3}

h2 : X1, ...,Xm → {4, 5, 6}

h3 : X1, ...,Xm → {7, 8, 9}

(4.16)

and CP would generate the following models:

h = X1, ...,Xm → DISTINCT{y(1), ..., y(n)} (4.17)
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It is possible to see in Equations 4.16 and 4.17 that the CR learns p× ` = 9 possible classes,
because for each model there are 3 different possible classes. On the other hand, the CP learns
p` = 27 distinct classes, due to the fact that CP makes the cartesian product in the target space
to obtain all possible target combinations.

Based on the distribution of data in this dataset D, we can say that the probability of an
existent dependence between targets Y1 and Y2 is high (let’s say it is P(Y1|Y2) ≈ 1 and
P(Y2|Y1) ≈ 1), while Y3 is independent of Y1 and Y2 (where P(Y3|Y1,Y2) ≈ 0). Therefore, it
is possible to say that both CR and CP violate the constraints of this relationship.

According to the authors, the ideal model would be defined as:

h1,2 : X1, ...,Xm → DISTINCT{y(1)
1,2, ..., y

(n)
1,2}

h3 : X1, ...,Xm → {7, 8, 9}
(4.18)

where y(n)
1,2 ≡ (y(n)

1 , y(n)
2 ). In this example, therefore, two predictive models were created satisfying

the constraints of the relationship. Basically, this is a super-class classifier. Therefore, the
composite prediction model can be generally defined as:

hθ : (hS 1 , ...,hS |θ|) (4.19)

where S is the super-class space, and θ a partition of classes, defined as:

θ = {S 1, ..., S |θ|} (4.20)

Thus, for the example we described, the partition would be:

θ = {(Y1,Y2),Y3} (4.21)

To obtain the partition θ, it is necessary to map a dependency matrix, that is responsible for
mapping which are the potentially related targets for the prediction. According to the authors,
there exists two types of target dependencies: a) unconditional dependency, where the target
relates to another regardless of what the X values are; b) conditional dependency, where the
relationships among the targets can change according to X.

The authors state, however, that based on the study presented in (Dembszynski et al., 2010),
as much as unconditional and conditional dependencies may be related, it is impossible to guar-
antee that in fact they are, and on top of that, conditional dependency is more relevant when it
comes to classification.

Therefore, to map the dependency matrix, SCC internally uses the CR to obtain the predic-
tive models using the training data. To find the conditional dependencies, for each classification
model obtained by the CR, the prediction is made with the test data and the error is calculated
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as follows:

ε(i) = I(y(i), z(i)) ⇒


ε(i)

1 = I(y(i)
1 , z

(i)
1 )

...

ε(i)
` = I(y(i)

` , z
(i)
` )

(4.22)

where 1 ≤ i ≤ n, and I is the indicator function (which returns if y(i)
k = z(i)

k for the kth target,
similarly as presented in Equation 6.3). Being a and b indexes for two different targets, if εa is
related to εb, then we can say that there is a conditional dependency between the ath and bth
targets.

After obtaining θ based on the conditional dependency among the targets, the SCC should
learn the predictive models as demonstrated in Equation 4.18. If a target Ya is independent of
the others, then a predictive model h(X)→ Ya will be built. In contrast, if there are b targets in
a partition that have conditional dependency, that is, the value of X can influence the prediction
of these targets, then there will be b predictive models h(X) → DISTINCT{Yb}, where Yb

corresponds to the b targets present in this partition.
There is also an optional step during the initial phase of SCC, which aims to improve the cre-

ation of θ. Through an user-defined parameter T , the SCC uses an algorithm based on Bayesian
networks, inspired by Zhang and Zhang (2010), which perform estimates (similarly as in Equa-
tion 4.22) looking for new conditional dependencies between targets. The SCC will execute this
algorithm T times, and at each iteration it mutates θ by inserting the new relationships found
among the targets.

Indeed, as much as this additional step may generate a better θ, it can lead to a high number
of partitions created in θ. If we look carefully at the example presented in Equation 4.18, the
more dependencies there are among the targets, the more SCC’s predictive models approaches
CP. The authors make this clear, the greater T is, the greater the number of dependencies
among targets on θ can be. This can make the computational complexity of the SCC potentially
closer to the CP.

The experiments carried out in (Read et al., 2014) confirm that the higher the T , the closer
the SCC approaches the CR with respect to the time needed to perform the training, as well
as an increase in predictive performance. Also, the results of SCC proved to be competitive
in relation to other problem transformation methods. However, in that study, the results used
for the comparison are only when SCC was configured with T = 1000. Then, in order to
maintain the same basis of comparison, we will use this same parameter to compare the results,
as explained in Section 6.3.

In Chapter 5, we will present an overview of the proposed framework for applying feature
extraction to multi-target datasets, how we did the tests on the selected multi-target classifiers,
and how we planned to evaluate the performance of the classifiers according with the feature
extraction methods we used.
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CHAPTER

5
Feature Extraction for Multi-Target

Classification

As mentioned in the Introduction (Chapter 1), the main goal of this research is to extract
features from high-dimensional multi-target datasets. The datasets with extracted features are
then given as input to state-of-the-art multi-target classification algorithms. We want to see if
the classifiers can obtain better or competitive results with extracted features when compared to
the use of the same datasets with the original features.

We propose a framework which is composed by a two-step process. The first step is re-
sponsible for parse and standardize the dataset, and for the execution of the feature extraction
methods Restricted Boltzmann Machine (RBM), Auto-Encoder (AE), Principal Component
Analysis (PCA), and some of its deep learning variations. The second step executes the multi-
target classification algorithms with all the datasets obtained by the execution of the first step,
and also evaluates the prediction performances obtained by the classifiers. Figure 5.1 presents
an overview of the proposed framework. In Sections 5.1 and 5.2 we present the steps of the
proposed framework in details.

5.1 Parsing Data and Extracting Features

This section discusses in details the first step of the proposed framework. Initially, the
proposed framework parses and standardizes the dataset. Since the feature extraction process is
unsupervised, we remove the targets from the datasets in order to execute the feature extraction
algorithms.

We used three feature extraction algorithms in our experiments: a) Principal Component
Analysis (PCA), which is executed under the scikit-learn library (Pedregosa et al., 2011); b)
Restricted Boltzmann Machines (RBMs), including Deep Belief Networks (DBNs), which is
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Figure 5.1: Framework overview: the framework is composed by a two-step process, where the
first is responsible for the feature extraction and the second is responsible for the evaluation.

also executed under the scikit-learn library; and c) Auto-Encoders (AEs), including also its
deep-learning variations, executed under the Keras library (Chollet et al., 2015).

To evaluate the performances of the classifiers after the feature extraction and, moreover, to
evaluate the overall prediction decay rate after extraction, we tried different number of extracted
features. For each dataset and for each feature extraction method, we extracted 90% of the
features, than 80%, than 70%, until the number of generated features reaches 10% of the original
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number of features.

Each set of newly generated features is concatenated back with the original targets, generat-
ing new (feature extracted) datasets, which were fed to the multi-target classification methods,
as discussed in the following section.

5.1.1 Tuning the neural networks hyper-parameters

Due to the fact that the datasets we selected (Table 6.1) contain nominal features, we used the
one-hot encoding technique (Harris and Harris, 2010), which transforms the nominal features
into a subset of binary features containing the number of the possible values for each feature.
This considerably increased the number of features that were fed to the feature extractors. This
technique is necessary when dealing with nominal features, since we cannot just turn them into
sequential numbers, which would insert a magnitude between these nominal values (e.g. two is
bigger than one, but a nominal value is neither bigger nor smaller than other nominal value).

These datasets also contain numeric features. When using neural networks, it is common
to standardize numeric values in order to help in the convergence process. We standardized the
numeric features individually, using the method presented by Pedregosa et al. (2011), where
each value has the mean value subtracted, and then divided by the standard deviation of the
feature to which it belongs. Also, as we are using the hyperbolic tangent (Nwankpa et al.,
2018) activation function in our output layer, in the reconstruction process our outputs units are
represented with values between -1 and 1.

There are several activation functions that could be used, but since we are dealing with
reconstruction loss functions (measuring the error when reconstructing data), not all activation
functions are applicable. In our preliminary tests, we used the sigmoid logistic and hyperbolic
tangent functions, the ReLU (Agarap, 2018), and the softmax (Kanai et al., 2018) (combining
them with different training algorithms which will be further discussed). The hyperbolic tangent
presented better results when reconstructing data.

In order to train our feature extractors, we used the Adam algorithm (Kingma and Ba, 2014).
In our tests, training our feature extractors with Adam increased considerably the reconstruction
performance, also hugely decreasing our training time over the standard gradient descent. The
Adam parameters used in our experiments are learning rate = 0.001, β1 = 0.9, β2 = 0.999, and
ε = 1e − 07.

During our experiments, we also tried using AMSGrad (Reddi et al., 2019), but it de-
creased considerably our prediction performances, since the algorithm wasn’t able to converge
in datasets with a high number of features. We also tested the dropout technique (Srivastava
et al., 2014) in many ways in our tests, but it did not increase our prediction performances.

Also, some datasets have missing values in both training and testing data. When a missing
value was numeric, we defined it as the mean of the observed feature in the training data. When
the missing value was nominal, we used the statistical mode.

In order to measure the performances of our models, we monitored the loss (Equation 3.12)
using the Mean Squared Error (MSE) for every epoch, and defined δ = 0.001 as a minimum
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change to qualify as an improvement, i.e. an absolute change of less than δ was counted as
no improvement. Our neural networks were trained until the prediction performance stopped
improving for 10 epochs. This allowed us to avoid over-fitting in our models, and we believe it
is due the combination of the standardization and the Adam algorithm.

5.2 Executing State-of-the-Art Multi-Target Classifiers

The second step of the framework consists of executing the multi-target classifiers and eval-
uating their predictive performances. All the multi-target classification methods in our exper-
iments were performed under the Meka library (Read et al., 2016), which contains specific
implementations for multi-label and multi-target classification.

As we are using cross validation, for each fold a dataset was generated with the features
obtained by the previous step. These datasets are separated into training and test data, so we
feed the multi-target classifiers in this way, indicating which are the training and test instances.
We emphasize that the training and test samples are separated from the very beginning of the
process, this means that neither the feature extractor nor the classifier had access to the test
instances during training, and vice versa.

With that said, for each feature extractor and for each percentage of features extracted, 10
folds were generated. We then executed the multi-target classifier with each of these folds, and
stored the evaluation statistics for each fold. At the end of the execution of these 10 folds, we
calculate the mean and standard deviation of all the results obtained.

In Chapter 6 we will describe how we conducted our experiment, what were the evaluation
measures used, as well as the results obtained using the framework that was presented here.



CHAPTER

6
Experiments

In this chapter we present how we conducted all of our experiments. In Section 6.1, we
presented the evaluation measures used, and in Section 6.2 we showed the selected datasets for
the tests. In sequence, in Section 6.3 we evaluate the results of the multi-target classifiers in the
original datasets, i.e., without extracting features, in order to have a baseline for comparison.
In Section 6.4, we present the results obtained by the multi-target classifiers and compare them
with the feature extraction methods we used in this research.

6.1 Evaluation Measures

To capture the notion of partially correct predictions, one strategy is to evaluate the average
differences between the predicted targets and the actual targets for each test example, and then
average differences over all examples in the test set. This strategy is called “example-based”
evaluation. In a similar manner, one could define a “target-based” evaluation where each target
is evaluated first and then averaged over all targets. It is important to note that any target-based
method would fail to directly address the correlations among different targets (Last et al., 2011).

Although different evaluation measures have been proposed to evaluate multi-label clas-
sifiers, this is not true for multi-target scenarios. Many of the evaluation measures commonly
used in Multi-Label Classification (MLC), such as multi-label F-measure (Sorower, 2010), have
not yet been suited for Multi-Target Classification (MTC).

The next sections present the two evaluation measures used in our experiments. They are
proposed for multi-label classification, but can be used to evaluate multi-target methods. To
present the evaluation measures, consider the following notation. Let D be a multi-target dataset
with n examples (xi, yi), with 1 ≤ i ≤ n, being xi a feature vector and yi the vector representing
the targets of example xi. Let f be a classifier and zi = f (xi) the vector with the prediction
obtained by f for example xi.
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6.1.1 Exact Match Ratio

As previously described, the evaluation of MTC algorithms is difficult mostly because MT
predictions may be partially correct. This means that a classifier can correctly predict some of
the targets while missing other targets. Thus, it is not correct to totally penalize a classification
when part of the predictions is correct. However, there is an evaluation measure that does ex-
actly this, i.e., ignores partially correct predictions, considering them as incorrect. In this way,
considering a prediction as totally correct or totally wrong, we can evaluate multi-target clas-
sifiers as if we were using an accuracy used in single-label problems. This evaluation measure
is called Exact Match Ratio (EMR) (Read et al., 2014), also known in literature as example
accuracy (Sorower, 2010). It is shown in Equation 6.1.

EMR =
1
n

n∑
i=1

I(yi = zi) (6.1)

In Equation 6.1, I is the indicator function, and yi and zi are, respectively, the correct and
predicted target vectors for example xi. Ideally, it is expected that EMR = 1, which indicates
a perfect model. The bigger the value of EMR, the better the performance of the classifier.
Clearly, a disadvantage of this measure is that it does not distinguish between complete incorrect
and partially correct predictions.

Recently, a study presented a new evaluation measure for multi-target classification, called
Sub-Exact Match (Jia and Zhang, 2020c), which consists in: for each example, if there is only
one target wrongly classified, the example is also computed as correctly classified. This mea-
sure was presented with the intention of not being so harsh when dealing with partially correct
predictions. Unfortunately, this measure was presented in a very recent research and we were
unable to insert it in our experiments.

6.1.2 Hamming Loss and Hamming Score

Hamming Loss (HL) (Sorower, 2010), also known in the literature as class accuracy (Read
et al., 2014), reports how many times on average, the relevance of an example to a target is
incorrectly predicted. Therefore, it takes into account the prediction error (an incorrect target
is predicted) and the missing error (a relevant target not predicted), normalized over the total
number of targets and the total number of examples. The evaluation measure is given by Equa-
tion 6.2, where k is the number of targets in the dataset, I is the indicator function, yi is the
correct target vector, and zi is the predicted target vector.

HL =
1
kn

n∑
i=1

k∑
j=1

I(yi j , zi j) (6.2)

Ideally, it is expected that HL = 0, which would imply no error. The smaller the value of
HL, the better the performance of the classifier.

The Hamming Score (HS) is the opposite of HL, i.e., it reports how many times on average,
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the relevance of an example to a target is correctly predicted. HS is commonly used in the multi-
target classification literature to present results consistently together with EMR. It is presented
in Equation 6.3.

HS = 1 − HL (6.3)

6.2 Datasets

Table 6.1 presents the characteristics of the datasets used in our experiments. We used three
MTC datasets (Solar Flare, Bridges, Thyroid) and seven MLC datasets (Music, Scene, Yeast,
ENRON, Medical, Slashdot, LLOG).

N d K m

Music 593 6 2 72n
Scene 2407 6 2 294n
Yeast 2417 14 2 103n
ENRON 1702 53 2 1001b
Medical 978 45 2 1449b
Slashdot 3782 22 2 1079b
LLOG 1460 75 2 1004b

Solar Flare 323 3 5 10m
Bridges 107 5 2-6 7m
Thyroid 9172 7 2-5 7n, 20b, 1m

Table 6.1: Characteristics of the MTC and MLC datasets used in our experiments. N: number
of examples; d: number of targets; K: number of values per target; m number of attributes, with
n, b, and m corresponding to numeric, binary, and nominal attributes, respectively. Recall that,
for the multi-label datasets, K = 2.

We included some multi-label datasets given the difficulty in finding well-formatted pub-
lic data for multi-target classification. These datasets are commonly used in the multi-label
literature (Sorower, 2010). Below we describe the domain of each dataset:

• Music: pieces of music are associated with various emotions;

• Scene: image annotation dataset, where images are labeled with scene concepts;

• Yeast: biological dataset where genes are associated with multiple biological functions;

• ENRON: a collection of email messages from the ENRON corpus, categorized into 53
topics, such as company strategy, humor, legal advice;

• Medical: free-text clinical reports labelled with one or more out of 45 disease codes;

• Slashdot: article titles with subject categories that represent the label space;

• LLOG: dataset compiled from the Language Log Forum, which discussed several topics
related to the language and 75 topics;
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• Solar Flare: categorizes types of solar flares, having three target variables corresponding
to types of solar flares seen in a 24-hour period;

• Bridges: prediction of bridge design properties based on certain constraints;

• Thyroid: medical dataset for the prediction of types of thyroid problems given patient
attributes.

6.3 Results Before Feature Extraction

As a baseline to start our experiments, we wanted to see how these multi-target classification
methods perform on the selected datasets using their original features. The results are presented
in Table 6.2.

CR CC ECC CRS SCC

Hamming Score (HS)

Music 0.733 0.709 0.771 0.761 0.712
Scene 0.857 0.853 0.897 0.868 0.845
Yeast 0.741 0.735 0.793 0.789 0.724
ENRON 0.936 0.935 0.942 0.941 0.923
Medical 0.988 0.988 0.989 0.989 0.989
Slashdot 0.952 0.938 0.951 0.923 —
LLOG 0.979 0.980 0.983 0.953 —
Solar Flare 0.905 0.905 0.905 0.905 0.905
Bridges 0.622 0.622 0.590 0.580 0.570
Thyroid 0.986 0.987 0.986 0.986 0.986

Exact Match Ratio (EMR)

Music 0.165 0.169 0.245 0.249 0.186
Scene 0.404 0.523 0.573 0.519 0.522
Yeast 0.068 0.132 0.175 0.117 0.134
ENRON 0.023 0.048 0.069 0.050 0.026
Medical 0.615 0.630 0.640 0.625 0.645
Slashdot 0.239 0.309 0.230 0.247 —
LLOG 0.207 0.214 0.197 0.205 —
Solar Flare 0.785 0.785 0.785 0.785 0.785
Bridges 0.140 0.140 0.116 0.116 0.163
Thyroid 0.914 0.920 0.918 0.916 0.924

Table 6.2: Results without Feature Extraction

To perform the experiments of this research, we selected the following multi-target methods,
using the J48 decision tree induction algorithm as base classifier. They are all implemented in
the MEKA framework (Read et al., 2016), and we used their default hyperparameter values.

• Ensemble of Classifier Chains (ECC): It was executed with the default parameters present
in (Read et al., 2016), where the number of trained classifier-chains in the ensemble is
d = 10, and the threshold is t = 0.67;

• Super-Class Classifier (SCC): It was also executed with the default parameters present
in (Read et al., 2016), where the number of iterations to build the super-class partition is
T = 1000;

• Class Relevance (CR), Classifier Chains (CC), Class Relevance Stacking (CRS): these
methods do not require additional execution parameters.
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As we discussed in Section 6.1, the Hamming Score (HS) is used to measure how many
targets were classified correctly on average. For this reason, methods that evaluate target re-
lationships in an arbitrary way can obtain a better score on it. The Exact Match Ratio (EMR)
calculates how many examples on average had all targets correctly predicted. In other words,
it is more likely that methods that take into account the relationships among all targets will be
highlighted when evaluated by EMR.

Starting with the CR, the simplest approach, which consists in predicting each target of the
problem independently. Thus, it is expected that its best results would be measured by HS. As
mentioned in (Read et al., 2011), as simple as it may be, this method can achieve competitive
results, especially because there are no guarantee that necessarily exist relationships among
targets. We can see that in the Slashdot dataset it got the best result, but very close to the ECC.
This may indicate that most of the targets present in this dataset are unrelated. Another dataset
that the CR had better results was Bridges, next to the CC. This dataset is a specific case.
We can see in Bridges that all multi-target classifiers correctly classified just over half of the
targets, which indicates that perhaps it does not have enough examples, or its features do not
have enough characteristics to build a good multi-target classification model.

The CC, on the other hand, when evaluated through HS, it did not stood out in any dataset,
while remained close to the performance of the CR. It only got a slightly higher score on
Thyroid, but it correctly predicted only 26 targets more than the ECC, the second best, out of
a total of 25683 targets. However, if we look at the EMR, CC surprisingly had better results
than the other methods in the Slashdot and LLOG datasets. This may indicate that there is
some relationships related to the order in which the targets appear in these datasets, since the
CC “accumulates” the information across the targets in a chained way, following the order that
they are presented. Another method that could have satisfactory results in these two datasets
would be the SCC, and we will discuss further in this section why it was not executed in both
of these datasets.

As we discussed at the beginning of this section, and also pointed out by other studies
(Read et al., 2014, Jia and Zhang, 2020c), the ECC was expected to obtain the best results
when evaluated by HS, and the only datasets that did not have better results was Slashdot, by an
insignificant margin, and Bridges, which we justified earlier in this section. ECC also performed
well on EMR for the multi-label datasets Scene, Yeast and ENRON, being slightly behind in
Music and Medical. Based on these results, this method was also expected to excel during the
experiments proposed in this research, and we present this in Section 6.4.

Next, we have the CRS, which was a straightforward adaptation of the multi-label literature
method (Tsoumakas et al., 2009b) for multi-target, often used as a baseline method for compar-
ison. It was expected that, as it is an adaptation of the CR that takes into account all targets, that
this method would obtain better results in EMR rather than HS. Therefore, if we evaluate the
CRS taking into account the HS, we can see that it did not stand out in any dataset, but some
of its results remained relatively close to the ECC, which was not expected. On the other hand,
we can confirm that the CRS obtained better results than the CR when compared by the EMR.
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The only exception, again, was the Bridges dataset, as we justified earlier.
Finally, we evaluate the SCC. As seen in Table 6.2, the Slashdot and LLOG datasets were

not executed in this method. This is due to the fact that both datasets have some unlabeled
targets, and the SCC is not able to deal with this situation, which we did not expect, because
at no time this is mentioned by the study in (Read et al., 2014). However, as mentioned in
Section 6.2, these datasets were selected from the multi-label literature just because of the lack
of existing datasets for multi-target classification, and the SCC is a method that was developed
and tested exclusively for this task, and ultimately, the Slashdot and LLOG datasets were not
used to evaluate the SCC in the study in which it was presented.

Regarding the results of SCC, as discussed in Section 4.5 and mentioned by Read et al.
(2014), SCC is expected to obtain competitive results in EMR more than in HS. This is due
to the fact that the method will create its predictive model based on the dependency among the
targets, which makes it more likely to correctly predict all targets simultaneously. The results
show that this, in fact, happened. In all multi-target datasets, SCC obtained the highest score
when evaluated by EMR, specially in Thyroid.

One of the datasets that we did not went into detail earlier in this section was Solar Flare. As
can be seen in Table 6.2, all methods obtained exactly the same results during the evaluations,
both in HS and in EMR. In addition to the low number of features, Solar Flare is the dataset
with the lowest number of targets, despite being a specific multi-target classification dataset.
For those reasons, it is possible that the data present into this dataset does not characterize it as
a complex problem for multi-target classification methods.

In Section 6.4 we present the results of our research, how the feature extraction methods
were performed and, mainly, how the multi-target classifiers reacted to the features generated
by these extractors.

6.4 Results After Feature Extraction

In this section we present the results obtained after extracting features and executing all
classifiers. We also explain some of the particularities encountered when analysing the data
obtained from the executions. The results are presented in Tables 6.3, 6.4, 6.5, 6.6 and 6.7.

As described in Chapter 5, the goal of the proposed framework is to make use of neural
networks, in our case Auto-Encoders (AEs) and Restricted Boltzmann Machines (RBMs), to
extract features from multi-target datasets. Based on the proposed framework, we list below
the selected methods for extracting features and the parameters used for the first step of the
framework:

• Auto-Encoder (AE): An AE with a hidden layer and an output layer. The number of units
in the hidden layer of the Auto-Encoder is the same number of original features, and the
number of units in the output layer is proportional to the percentage of features extracted;

• Denoising Auto-Encoder (dAE): The configuration of the layers is the same as in AE.
We added a Gaussian noise in the input layer of 20%, with the intention that the neural



6.4 Results After Feature Extraction 45

network obtains a better generalization performance (Vincent et al., 2008), and be able
to achive better reconstruction when the input contains missing data, which is the case of
the Bridges and Thyroid datasets (Section 6.2);

• Deep Auto-Encoder (D-AE): An AE containing three hidden layers and an output layer.
The number of units in the hidden layers corresponds to the average of the number of
original features and the number of features to be extracted. For example, if the number
of original features is 100, and the number of features to extract is 50, the number of units
in the hidden layer will be 75. The output layer has the same configuration as in AE;

• Deep-Denoising Auto-Encoder (D-dAE): Consists of the combination of dAE and D-AE.
The configuration of the layers is the same as that one used in the D-AE, and here we also
add the same noise configuration that is present in the dAE;

• Restricted Boltzmann Machine (RBM): RBMs do not have a hidden layer, so the number
of units in the input layer is equal to the number of original features, and the number of
units in the output layer corresponds to the percentage of features that we want to extract;

• Deep Belief Network (DBN): Composed of two stacked RBMs, forming a neural network
with a hidden layer and an output layer. The hidden layer (which is the output of the first
RBM), has the number of units calculated in the same way as in the hidden layer of the
D-AE, and the output layer is the same as the RBM;

• Principal Component Analysis (PCA): It was executed under the implementation present
in (Pedregosa et al., 2011).

Recall that the hyperparameters used in neural networks are present in Section 5.1. After
extracting the features from the original datasets, we executed the multi-target classifiers. The
selected classifiers as well as their parameters were the same as presented on Section 6.3.

The results obtained in our experiments are presented on Tables 6.3, 6.4, 6.5, 6.6 and 6.7, and
they are organized as follows: each column represents the feature extraction method used, and
each row represents one of the datasets we used. The values present in these tables correspond
to the average obtained for HS and EMR across all the 10 folds from the cross-validation setup
(as presented in Chapter 5), and the values in parentheses correspond to the standard deviations.
In bold, are the feature extraction methods that obtained the best results in each dataset. The last
column represents the results obtained with the original dataset, without extracting features. We
use an asterisk (∗) to highlight when a result of a multi-target classifier with extracted features
was the same or better than that obtained with the original dataset.

Before we start presenting the results, it is important to mention two peculiarities found
during our experiments, which can be seen in Tables 6.3, 6.4, 6.5, 6.6 and 6.7. The first is
that the SCC is not able to deal with unlabeled targets (as discussed in Section 6.3) , which
makes it impossible to execute in the Slashdot and LLOG datasets. The second peculiarity is
related to the PCA, since it is not possible to execute the PCA in datasets where the number of
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features is greater than the number of examples. This meant that the PCA could not have its
results computed for the Medical, Slashdot and LLOG datasets, due to the fact that during the
cross-validation used in our framework (Section 5), these datasets ended up having the number
of examples smaller than than the number of features they have.

We start our discussion with the feature extractions at 10% of the original number of features
present in the datasets. First, it is important to clarify why the Bridges dataset has not been
evaluated. This is due to the fact that this dataset has 7 features, i.e. it is not possible to extract
10% of the features in this dataset. For this reason, later in this section, we will also comment on
the feature extraction at 20%, with emphasis on the features extracted for the Bridges dataset.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.706 (0.021) 0.712 (0.015) 0.702 (0.017) 0.705 (0.014) 0.658 (0.010) 0.656 (0.007) 0.638 (0.017) 0.733
Scene 0.788 (0.011) 0.785 (0.014) 0.795 (0.006) 0.790 (0.008) 0.803 (0.011) 0.791 (0.015) 0.759 (0.007) 0.857
Yeast 0.768 (0.002)* 0.769 (0.002)* 0.769 (0.001)* 0.769 (0.001)* 0.772 (0.003)* 0.768 (0.005)* 0.730 (0.003) 0.741
ENRON 0.924 (0.003) 0.924 (0.001) 0.924 (0.002) 0.926 (0.003) 0.928 (0.004) 0.936 (0.002)* 0.879 (0.002) 0.936
Medical 0.963 (0.003) 0.963 (0.002) 0.963 (0.001) 0.964 (0.002) 0.963 (0.003) 0.971 (0.002) — 0.988
Slashdot 0.945 (0.001) 0.944 (0.000) 0.945 (0.001) 0.944 (0.001) 0.934 (0.003) 0.943 (0.005) — 0.952
LLOG 0.983 (0.001)* 0.982 (0.001)* 0.983 (0.000)* 0.983 (0.000)* 0.983 (0.001)* 0.983 (0.001)* — 0.979
Solar Flare 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.860 (0.014) 0.905
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.001) 0.986

Exact Match Ratio (EMR)

Music 0.149 (0.050) 0.157 (0.030) 0.149 (0.022) 0.163 (0.021) 0.100 (0.023) 0.103 (0.022) 0.080 (0.027) 0.165
Scene 0.236 (0.046) 0.253 (0.016) 0.250 (0.011) 0.244 (0.010) 0.300 (0.018) 0.158 (0.042) 0.226 (0.022) 0.404
Yeast 0.018 (0.002) 0.018 (0.002) 0.018 (0.002) 0.018 (0.002) 0.054 (0.008) 0.046 (0.018) 0.035 (0.009) 0.068
ENRON 0.003 (0.003) 0.003 (0.002) 0.003 (0.002) 0.002 (0.002) 0.026 (0.005)* 0.030 (0.011)* 0.015 (0.005) 0.023
Medical 0.026 (0.009) 0.020 (0.014) 0.030 (0.012) 0.022 (0.013) 0.164 (0.021) 0.171 (0.030) — 0.615
Slashdot 0.002 (0.003) 0.004 (0.004) 0.002 (0.001) 0.003 (0.001) 0.147 (0.012) 0.091 (0.008) — 0.239
LLOG 0.144 (0.006) 0.138 (0.011) 0.144 (0.007) 0.144 (0.009) 0.167 (0.007) 0.161 (0.013) — 0.207
Solar Flare 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.783 (0.024) 0.785
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.914

Table 6.3: Results using CR with 10% of the original features.

In Table 6.3 we present the results obtained through the feature-extraction in the CR. Re-
garding the performance of the AEs, we can see that the dAE variant stood out in the Music
dataset, when we analyzed HS. This was not expected, because as we discussed at the beginning
of this section, dAE was inserted in our experiments in order to obtain better results in datasets
that have missing data, which is not the case with Music. If we compare the standard deviation
of the dAE among the other feature-extraction methods, we can see that it is relatively low, so
this probably should not be related to any outlier, but rather to the characteristics of the data
present in Music.

Still regarding the AEs in CR, we can identify that the variants D-AE and D-dAE, although
they did not stand out among any other method, were the ones that had less variation between
the results obtained across all the 10 folds, which can indicate that the various hidden layers
kept the model more stable. We emphasize that all the variants of AE managed to obtain better
predictions when compared to the original datasets in Yeast, LLOG and Solar Flare. However,
it is possible to observe that the variants of AE did not obtain good results when evaluated by
EMR, with the exception of D-dAE for the Music dataset, again, which reinforces the thesis that
the characteristics of data present in Music favor the features generated through the denoising
variants of AEs.
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Unlike the AEs, both RBM and DBN achieved better results in the CR when evaluated
by EMR. Under this measure, RBM obtained better results in the Scene and Yeast datasets
by a relatively good margin, especially when compared to AEs, and the features generated
through RBM in the ENRON dataset obtained an even better prediction result than the original
dataset. Looking at HS, RBM also stood out, but this time by a smaller margin, and its features
also achieved better results than the original datasets in Yeast, ENRON and LLOG. The DBN
variant obtained better results than the other methods for both HS and EMR in the ENRON
and Medical datasets, and the features obtained in ENRON also brought better results than the
original dataset, in the two evaluation measures.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.687 (0.058) 0.706 (0.012) 0.699 (0.020) 0.706 (0.012) 0.601 (0.011) 0.599 (0.017) 0.612 (0.020) 0.709
Scene 0.785 (0.016) 0.788 (0.010) 0.792 (0.007) 0.787 (0.004) 0.807 (0.005) 0.789 (0.012) 0.753 (0.008) 0.853
Yeast 0.661 (0.017) 0.661 (0.022) 0.673 (0.019) 0.651 (0.021) 0.678 (0.016) 0.677 (0.005) 0.643 (0.008) 0.735
ENRON 0.915 (0.001) 0.915 (0.002) 0.917 (0.002) 0.917 (0.002) 0.926 (0.004) 0.932 (0.002) 0.878 (0.002) 0.935
Medical 0.961 (0.001) 0.962 (0.002) 0.961 (0.002) 0.962 (0.001) 0.962 (0.004) 0.967 (0.003) — 0.988
Slashdot 0.908 (0.001) 0.907 (0.002) 0.907 (0.001) 0.907 (0.001) 0.921 (0.004) 0.920 (0.003) — 0.938
LLOG 0.980 (0.002)* 0.981 (0.001)* 0.981 (0.001)* 0.982 (0.002)* 0.980 (0.003)* 0.978 (0.003) — 0.980
Solar Flare 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.864 (0.008) 0.905
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.001) 0.987

Exact Match Ratio (EMR)

Music 0.212 (0.038)* 0.206 (0.022)* 0.197 (0.030)* 0.209 (0.020)* 0.149 (0.015) 0.144 (0.017) 0.151 (0.028) 0.169
Scene 0.350 (0.042) 0.360 (0.025) 0.366 (0.020) 0.355 (0.014) 0.408 (0.016) 0.357 (0.026) 0.366 (0.023) 0.523
Yeast 0.012 (0.007) 0.018 (0.011) 0.012 (0.006) 0.011 (0.004) 0.059 (0.015) 0.056 (0.005) 0.060 (0.007) 0.132
ENRON 0.013 (0.005) 0.016 (0.003) 0.019 (0.006) 0.014 (0.006) 0.036 (0.008) 0.046 (0.012) 0.035 (0.008) 0.048
Medical 0.046 (0.020) 0.040 (0.013) 0.053 (0.014) 0.053 (0.020) 0.198 (0.031) 0.205 (0.031) — 0.630
Slashdot 0.061 (0.006) 0.059 (0.009) 0.057 (0.003) 0.058 (0.008) 0.192 (0.017) 0.163 (0.011) — 0.309
LLOG 0.124 (0.018) 0.126 (0.014) 0.123 (0.016) 0.133 (0.018) 0.186 (0.020) 0.181 (0.016) — 0.214
Solar Flare 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.791 (0.017)* 0.785
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.920

Table 6.4: Results using CC with 10% of the original features.

In Table 6.4 we present the results obtained through the feature-extraction in CC. Unlike as
happened in CR, in CC all variants of AE generated features that brought a better result than the
original Music dataset. When we look at HS, the features obtained through dAE also brought
better results in Music.

While observing the results for RBM and DBN in the CC, it is possible to verify again that
both methods stood out from the others when evaluated by EMR. The features generated by
RBM in the Scene, Slashdot and LLOG datasets achieved better results than the other methods,
and the DBN features reached better results in the ENRON and Medical datasets.

In general, the HS for the feature extraction methods in CC were similar to those of CR.
However, when evaluating the performances of the CC with EMR, only the features generated
by the variants of the AE brought results superior to those obtained by the original dataset,
which did not occur in the CR. But it is worth noting that the dataset in which the AEs obtained
the best result was Music, and this happened in all the classifiers we tested. Therefore, this may
not indicate that the AE was better, but that the CC obtains better results in HS than in EMR, as
discussed in Section 6.3.

In Table 6.5 we present the results obtained through feature-extraction in ECC. As the ECC
was proposed as an improvement for the CC, where its predictive model takes into account
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.715 (0.022) 0.723 (0.016) 0.717 (0.015) 0.725 (0.018) 0.635 (0.022) 0.597 (0.012) 0.623 (0.026) 0.771
Scene 0.822 (0.015) 0.825 (0.006) 0.832 (0.009) 0.826 (0.008) 0.822 (0.015) 0.776 (0.009) 0.779 (0.006) 0.897
Yeast 0.736 (0.002) 0.735 (0.003) 0.738 (0.003) 0.734 (0.001) 0.734 (0.007) 0.731 (0.007) 0.708 (0.004) 0.793
ENRON 0.933 (0.001) 0.933 (0.001) 0.933 (0.001) 0.933 (0.001) 0.940 (0.002) 0.941 (0.002) 0.892 (0.001) 0.942
Medical 0.972 (0.001) 0.972 (0.000) 0.971 (0.000) 0.971 (0.001) 0.970 (0.004) 0.974 (0.002) — 0.989
Slashdot 0.946 (0.000) 0.946 (0.000) 0.946 (0.000) 0.946 (0.000) 0.941 (0.001) 0.947 (0.003) — 0.951
LLOG 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.983 (0.001)* 0.983 (0.001)* — 0.983
Solar Flare 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.866 (0.007) 0.905
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.001) 0.986

Exact Match Ratio (EMR)

Music 0.192 (0.065) 0.228 (0.024) 0.207 (0.028) 0.218 (0.024) 0.152 (0.020) 0.122 (0.022) 0.124 (0.023) 0.245
Scene 0.339 (0.080) 0.368 (0.017) 0.349 (0.025) 0.338 (0.015) 0.401 (0.027) 0.275 (0.028) 0.338 (0.014) 0.573
Yeast 0.032 (0.006) 0.031 (0.004) 0.032 (0.005) 0.027 (0.004) 0.081 (0.007) 0.086 (0.006) 0.056 (0.007) 0.175
ENRON 0.002 (0.002) 0.003 (0.002) 0.002 (0.002) 0.003 (0.003) 0.034 (0.006) 0.036 (0.011) 0.026 (0.004) 0.069
Medical 0.005 (0.005) 0.004 (0.004) 0.009 (0.009) 0.008 (0.005) 0.191 (0.035) 0.182 (0.029) — 0.640
Slashdot 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.145 (0.008) 0.090 (0.009) — 0.230
LLOG 0.154 (0.005) 0.154 (0.004) 0.154 (0.005) 0.154 (0.005) 0.168 (0.006) 0.158 (0.016) — 0.197
Solar Flare 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.797 (0.012)* 0.785
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.918

Table 6.5: Results using ECC with 10% of the original features.

the relationships among the targets in a better way, this method was expected to obtain better
results than CC when evaluated through EMR. Counter intuitively, just the opposite happened,
the EMR results were lower in ECC than in CC. It was expected that ECC would obtain better
EMR results than the CC, which did not happen.

However, ECC had the best results overall in HS. This classifier obtained the best results
with the features extracted from the AEs, with D-AE obtaining the best results in the Scene
and Yeast datasets, and D-dAE once again obtaining the best result in the Music dataset. On
the other hand, ECC was the classifier in which AEs had the worst results when evaluated by
EMR, with the results being zero (or very close to zero) in the ENRON, Medical and Slashdot
datasets. This can be seen as the reflex of the ECC results in EMR in general.

In ECC, we can again observe that the feature-extraction methods RBM and DBN were
better than the others when evaluated by EMR. In general, the datasets for which RBM and
DBN had the best results in EMR were the same as in CC. However, if we compare the results
of EMR with CC, those obtained in ECC were lower.

In Table 6.6 are the results obtained through the feature-extraction in the CRS. Unlike to
what happened between the CC and the ECC, which are two very related methods that presented
different results regarding the EMR, the results between CR and CRS were as expected. The
results presented in the CRS were, in general, better than those presented by the CR, both when
evaluated by HS and by EMR.

In Table 6.7 we present the results obtained through feature-extraction in SCC. As the SCC
authors mentions (Read et al., 2014), this method tends to have more competitive results in
EMR rather than in HS. And it is possible in this table, that SCC results went as expected.
When analyzing the results for HS, we can say that, in general, all results were lower than those
present in the other classifiers, especially when compared to ECC. However, the EMR results
were the best among all the classifiers that we used in our experiments.

Comparing the results obtained among all the multi-target classifiers, we can say that AEs,
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.711 (0.018) 0.712 (0.015) 0.702 (0.017) 0.705 (0.014) 0.658 (0.010) 0.656 (0.007) 0.638 (0.017) 0.785
Scene 0.789 (0.007) 0.785 (0.014) 0.795 (0.006) 0.790 (0.008) 0.803 (0.011) 0.791 (0.015) 0.759 (0.007) 0.898
Yeast 0.771 (0.005) 0.773 (0.004) 0.771 (0.004) 0.776 (0.003) 0.772 (0.004) 0.769 (0.003) 0.730 (0.003) 0.789
ENRON 0.924 (0.003) 0.924 (0.001) 0.924 (0.002) 0.926 (0.003) 0.928 (0.004) 0.936 (0.002) 0.879 (0.002) 0.941
Medical 0.963 (0.003) 0.963 (0.002) 0.963 (0.001) 0.964 (0.002) 0.963 (0.003) 0.971 (0.002) — 0.989
Slashdot 0.945 (0.001) 0.944 (0.000) 0.945 (0.001) 0.944 (0.001) 0.934 (0.003) 0.943 (0.005) — 0.953
LLOG 0.983 (0.001)* 0.982 (0.001) 0.983 (0.000)* 0.983 (0.000)* 0.983 (0.001)* 0.983 (0.001)* — 0.983
Solar Flare 0.912 (0.004)* 0.912 (0.004)* 0.907 (0.015)* 0.912 (0.004)* 0.910 (0.002)* 0.912 (0.004)* 0.860 (0.014) 0.905
Thyroid 0.958 (0.010) 0.955 (0.012) 0.958 (0.010) 0.942 (0.016) 0.961 (0.001) 0.961 (0.001) 0.959 (0.001) 0.986

Exact Match Ratio (EMR)

Music 0.169 (0.018) 0.157 (0.030) 0.149 (0.022) 0.163 (0.021) 0.100 (0.023) 0.103 (0.022) 0.080 (0.027) 0.249
Scene 0.252 (0.012) 0.253 (0.016) 0.250 (0.011) 0.244 (0.010) 0.300 (0.018) 0.158 (0.042) 0.226 (0.022) 0.519
Yeast 0.081 (0.007) 0.077 (0.011) 0.078 (0.009) 0.081 (0.007) 0.050 (0.009) 0.040 (0.019) 0.035 (0.009) 0.117
ENRON 0.003 (0.003) 0.003 (0.002) 0.003 (0.002) 0.002 (0.002) 0.026 (0.005) 0.030 (0.011) 0.015 (0.005) 0.050
Medical 0.026 (0.009) 0.020 (0.014) 0.030 (0.012) 0.022 (0.013) 0.164 (0.021) 0.171 (0.030) — 0.625
Slashdot 0.002 (0.003) 0.004 (0.004) 0.002 (0.001) 0.003 (0.001) 0.147 (0.012) 0.091 (0.008) — 0.247
LLOG 0.144 (0.006) 0.138 (0.011) 0.144 (0.007) 0.144 (0.009) 0.167 (0.007) 0.161 (0.013) — 0.205
Solar Flare 0.796 (0.006)* 0.796 (0.006)* 0.783 (0.038) 0.796 (0.006)* 0.791 (0.009)* 0.796 (0.006)* 0.783 (0.024) 0.785
Thyroid 0.726 (0.053) 0.708 (0.071) 0.729 (0.054) 0.637 (0.089) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.916

Table 6.6: Results using CRS with 10% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.665 (0.038) 0.681 (0.017) 0.672 (0.017) 0.694 (0.017) 0.623 (0.013) 0.592 (0.016) 0.589 (0.015) 0.712
Scene 0.781 (0.017) 0.786 (0.006) 0.786 (0.011) 0.782 (0.007) 0.803 (0.008) 0.763 (0.010) 0.744 (0.006) 0.845
Yeast 0.680 (0.004) 0.679 (0.004) 0.680 (0.005) 0.679 (0.004) 0.697 (0.008) 0.708 (0.009) 0.652 (0.003) 0.724
ENRON 0.909 (0.002) 0.908 (0.001) 0.909 (0.001) 0.908 (0.002) 0.917 (0.003) 0.920 (0.002) 0.871 (0.002) 0.923
Medical 0.951 (0.001) 0.952 (0.001) 0.951 (0.001) 0.952 (0.002) 0.963 (0.003) 0.965 (0.004) — 0.989
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.904 (0.023) 0.865 (0.008) 0.905
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.001) 0.986

Exact Match Ratio (EMR)

Music 0.164 (0.039) 0.175 (0.017) 0.168 (0.019) 0.201 (0.030)* 0.154 (0.020) 0.126 (0.022) 0.106 (0.018) 0.186
Scene 0.340 (0.047) 0.351 (0.016) 0.352 (0.027) 0.336 (0.019) 0.395 (0.018) 0.297 (0.025) 0.342 (0.015) 0.522
Yeast 0.038 (0.004) 0.039 (0.006) 0.042 (0.008) 0.042 (0.007) 0.083 (0.010) 0.088 (0.004) 0.053 (0.006) 0.134
ENRON 0.012 (0.004) 0.011 (0.004) 0.009 (0.003) 0.008 (0.003) 0.030 (0.005)* 0.044 (0.013)* 0.026 (0.004)* 0.026
Medical 0.067 (0.009) 0.067 (0.018) 0.060 (0.012) 0.069 (0.016) 0.186 (0.028) 0.236 (0.024) — 0.645
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.775 (0.062) 0.794 (0.012)* 0.785
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.924

Table 6.7: Results using SCC with 10% of the original features.

especially their denoising variants, stood out in the Music dataset, for both HS and EMR. AEs
demonstrated competitive performance in relation to RBMs and DBNs when compared to HS.
However, RBMs and DBNs achieved results relatively superior to AE, when compared by EMR,
the only exception being the Music dataset. We can say that the features generated by DBN were
the most successful in EMR.

The PCA, in turn, was used as a baseline method for comparison. It is a statistical method
aimed at dimensionality reduction. Considering that it is the simplest method of our compari-
son, much less sophisticated than neural networks, it presented results above expectations. It is
even possible to see that, in the CC, it was the method that achieved the best classification result
for the Yeast dataset, when evaluated by EMR.

As mentioned earlier in this section, the Bridges dataset could not be evaluated together
with the other datasets when extracting new features at 10%. Therefore, in the next paragraphs
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we will present how these classifiers performed with the features extracted from Bridges.
In Tables 6.8, 6.9, 6.10, 6.11, and 6.12, we present the results obtained for the classifiers

when extracting new features at 20%. We can see that none of the multi-target classifiers in
conjunct with any feature extraction method were able to achieve higher results with the Bridges
datasets. As mentioned in Section 6.3, all multi-target classifiers had difficulty predicting its
classes, which may be due to the fact that this dataset has few examples, or its features do not
have enough characteristics to create a good model for multi-target classification. In the HS
evaluation, it is possible to notice that just over half of its targets were classified correctly. We
can also see that the method for which Bridges had the best results in EMR was PCA, which
can be related to the low number of examples present in this dataset.

When analyzing the results obtained with the new features extracted at 20%, it is possible
to see that the scores obtained by HS and EMR had lowered, when compared to the same
classifiers and feature-extraction methods at 10%. In Section 6.5 we will discuss about it and
make the final considerations about our experiments.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.693 (0.017) 0.699 (0.024) 0.701 (0.013) 0.703 (0.017) 0.660 (0.006) 0.657 (0.010) 0.618 (0.023) 0.733
Scene 0.783 (0.015) 0.786 (0.011) 0.770 (0.010) 0.787 (0.010) 0.817 (0.016) 0.781 (0.010) 0.750 (0.007) 0.857
Yeast 0.768 (0.002)* 0.769 (0.001)* 0.769 (0.002)* 0.768 (0.002)* 0.774 (0.002)* 0.771 (0.006)* 0.728 (0.003) 0.741
ENRON 0.916 (0.002) 0.916 (0.003) 0.916 (0.002) 0.920 (0.003) 0.922 (0.005) 0.933 (0.002) 0.875 (0.003) 0.936
Medical 0.955 (0.002) 0.958 (0.004) 0.955 (0.002) 0.956 (0.003) 0.950 (0.008) 0.969 (0.003) — 0.988
Slashdot 0.940 (0.003) 0.938 (0.003) 0.938 (0.003) 0.939 (0.003) 0.917 (0.008) 0.939 (0.005) — 0.952
LLOG 0.980 (0.001)* 0.980 (0.001)* 0.980 (0.001)* 0.980 (0.001)* 0.982 (0.002)* 0.983 (0.001)* — 0.979
Solar Flare 0.911 (0.008)* 0.911 (0.008)* 0.909 (0.007)* 0.911 (0.008)* 0.909 (0.007)* 0.902 (0.024) 0.864 (0.007) 0.905
Bridges 0.544 (0.027) 0.544 (0.036) 0.529 (0.044) 0.532 (0.064) 0.470 (0.047) 0.560 (0.037) 0.545 (0.019) 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.111 (0.035) 0.140 (0.013) 0.128 (0.024) 0.146 (0.022) 0.104 (0.013) 0.102 (0.021) 0.078 (0.021) 0.165
Scene 0.209 (0.038) 0.235 (0.017) 0.203 (0.016) 0.219 (0.021) 0.304 (0.025) 0.139 (0.035) 0.216 (0.014) 0.404
Yeast 0.017 (0.003) 0.018 (0.001) 0.018 (0.002) 0.018 (0.003) 0.056 (0.003) 0.060 (0.010) 0.027 (0.006) 0.068
ENRON 0.003 (0.002) 0.002 (0.002) 0.003 (0.002) 0.004 (0.004) 0.023 (0.004)* 0.028 (0.008)* 0.008 (0.004) 0.023
Medical 0.031 (0.010) 0.041 (0.010) 0.032 (0.006) 0.034 (0.010) 0.181 (0.021) 0.166 (0.041) — 0.615
Slashdot 0.011 (0.008) 0.014 (0.006) 0.012 (0.005) 0.013 (0.007) 0.145 (0.013) 0.085 (0.014) — 0.239
LLOG 0.121 (0.010) 0.121 (0.015) 0.123 (0.017) 0.122 (0.020) 0.164 (0.013) 0.167 (0.007) — 0.207
Solar Flare 0.794 (0.015)* 0.794 (0.015)* 0.790 (0.015)* 0.794 (0.015)* 0.792 (0.013)* 0.770 (0.068) 0.791 (0.017)* 0.785
Bridges 0.040 (0.018) 0.028 (0.020) 0.028 (0.020) 0.038 (0.021) 0.016 (0.023) 0.035 (0.024) 0.068 (0.022) 0.140
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.914

Table 6.8: Results using CR with 20% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.668 (0.052) 0.698 (0.015) 0.694 (0.013) 0.690 (0.018) 0.603 (0.012) 0.604 (0.013) 0.581 (0.019) 0.709
Scene 0.772 (0.017) 0.784 (0.006) 0.774 (0.009) 0.780 (0.008) 0.810 (0.005) 0.782 (0.010) 0.743 (0.008) 0.853
Yeast 0.653 (0.021) 0.662 (0.023) 0.654 (0.015) 0.658 (0.021) 0.668 (0.013) 0.676 (0.008) 0.646 (0.014) 0.735
ENRON 0.914 (0.001) 0.914 (0.002) 0.914 (0.002) 0.915 (0.001) 0.926 (0.005) 0.930 (0.002) 0.874 (0.002) 0.935
Medical 0.958 (0.001) 0.959 (0.001) 0.958 (0.002) 0.957 (0.002) 0.952 (0.006) 0.968 (0.003) — 0.988
Slashdot 0.905 (0.001) 0.906 (0.001) 0.906 (0.001) 0.905 (0.001) 0.911 (0.008) 0.920 (0.001) — 0.938
LLOG 0.978 (0.001) 0.979 (0.001) 0.979 (0.001) 0.979 (0.001) 0.978 (0.003) 0.978 (0.003) — 0.980
Solar Flare 0.911 (0.008)* 0.911 (0.008)* 0.909 (0.007)* 0.911 (0.008)* 0.911 (0.008)* 0.911 (0.008)* 0.866 (0.004) 0.905
Bridges 0.557 (0.037) 0.570 (0.033) 0.550 (0.045) 0.532 (0.059) 0.506 (0.061) 0.561 (0.035) 0.538 (0.019) 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.987

Exact Match Ratio (EMR)

Music 0.173 (0.025)* 0.194 (0.019)* 0.178 (0.015)* 0.190 (0.018)* 0.151 (0.012) 0.149 (0.014) 0.118 (0.018) 0.169
Scene 0.318 (0.047) 0.349 (0.017) 0.319 (0.021) 0.337 (0.021) 0.410 (0.012) 0.343 (0.022) 0.337 (0.025) 0.523
Yeast 0.013 (0.007) 0.016 (0.010) 0.015 (0.005) 0.015 (0.008) 0.054 (0.005) 0.058 (0.011) 0.059 (0.011) 0.132
ENRON 0.013 (0.003) 0.015 (0.002) 0.014 (0.004) 0.015 (0.004) 0.042 (0.010) 0.040 (0.012) 0.034 (0.011) 0.048
Medical 0.058 (0.008) 0.062 (0.014) 0.059 (0.011) 0.064 (0.007) 0.201 (0.022) 0.200 (0.053) — 0.630
Slashdot 0.061 (0.008) 0.064 (0.010) 0.062 (0.009) 0.057 (0.008) 0.188 (0.018) 0.160 (0.008) — 0.309
LLOG 0.107 (0.014) 0.111 (0.013) 0.112 (0.017) 0.110 (0.010) 0.195 (0.014) 0.185 (0.014) — 0.214
Solar Flare 0.794 (0.015)* 0.794 (0.015)* 0.790 (0.015)* 0.794 (0.015)* 0.794 (0.015)* 0.794 (0.015)* 0.796 (0.010)* 0.785
Bridges 0.051 (0.025) 0.044 (0.016) 0.047 (0.015) 0.035 (0.024) 0.016 (0.021) 0.030 (0.026) 0.063 (0.015) 0.140
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.920

Table 6.9: Results using CC with 20% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.714 (0.016) 0.722 (0.017) 0.715 (0.024) 0.727 (0.015) 0.638 (0.011) 0.596 (0.014) 0.609 (0.018) 0.771
Scene 0.823 (0.015) 0.833 (0.009) 0.825 (0.007) 0.826 (0.007) 0.824 (0.012) 0.776 (0.004) 0.775 (0.007) 0.897
Yeast 0.739 (0.003) 0.736 (0.002) 0.738 (0.003) 0.737 (0.003) 0.739 (0.007) 0.725 (0.006) 0.707 (0.004) 0.793
ENRON 0.932 (0.001) 0.932 (0.001) 0.932 (0.000) 0.932 (0.001) 0.938 (0.004) 0.941 (0.001) 0.892 (0.004) 0.942
Medical 0.971 (0.000) 0.971 (0.000) 0.970 (0.001) 0.971 (0.000) 0.963 (0.007) 0.974 (0.002) — 0.989
Slashdot 0.946 (0.000) 0.946 (0.000) 0.946 (0.000) 0.946 (0.000) 0.933 (0.005) 0.944 (0.005) — 0.951
LLOG 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.001)* 0.983 (0.001)* — 0.983
Solar Flare 0.911 (0.008)* 0.911 (0.008)* 0.909 (0.007)* 0.911 (0.008)* 0.911 (0.008)* 0.911 (0.008)* 0.866 (0.004) 0.905
Bridges 0.516 (0.035) 0.514 (0.053) 0.507 (0.053) 0.477 (0.053) 0.438 (0.027) 0.540 (0.038) 0.522 (0.030) 0.590
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.181 (0.064) 0.214 (0.026) 0.207 (0.035) 0.216 (0.018) 0.158 (0.014) 0.120 (0.018) 0.121 (0.022) 0.245
Scene 0.291 (0.072) 0.333 (0.014) 0.307 (0.019) 0.309 (0.013) 0.404 (0.016) 0.267 (0.016) 0.317 (0.026) 0.573
Yeast 0.030 (0.005) 0.027 (0.005) 0.030 (0.007) 0.031 (0.006) 0.085 (0.006) 0.084 (0.009) 0.050 (0.010) 0.175
ENRON 0.003 (0.002) 0.004 (0.002) 0.004 (0.002) 0.003 (0.003) 0.031 (0.006) 0.034 (0.008) 0.019 (0.009) 0.069
Medical 0.018 (0.004) 0.020 (0.005) 0.016 (0.008) 0.018 (0.005) 0.232 (0.020) 0.173 (0.045) — 0.640
Slashdot 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 0.001 (0.001) 0.152 (0.009) 0.086 (0.004) — 0.230
LLOG 0.154 (0.005) 0.154 (0.005) 0.154 (0.005) 0.154 (0.005) 0.162 (0.011) 0.166 (0.005) — 0.197
Solar Flare 0.796 (0.016)* 0.796 (0.016)* 0.791 (0.013)* 0.796 (0.016)* 0.796 (0.016)* 0.796 (0.016)* 0.796 (0.010)* 0.785
Bridges 0.035 (0.024) 0.030 (0.021) 0.033 (0.019) 0.030 (0.028) 0.021 (0.022) 0.032 (0.028) 0.054 (0.018) 0.116
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.743 (0.002) 0.743 (0.003) 0.918

Table 6.10: Results using ECC with 20% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.696 (0.016) 0.699 (0.024) 0.701 (0.013) 0.703 (0.017) 0.660 (0.006) 0.657 (0.010) 0.618 (0.023) 0.785
Scene 0.786 (0.009) 0.786 (0.011) 0.770 (0.010) 0.787 (0.010) 0.817 (0.016) 0.781 (0.010) 0.750 (0.007) 0.898
Yeast 0.767 (0.003) 0.765 (0.005) 0.764 (0.005) 0.767 (0.004) 0.773 (0.001) 0.773 (0.003) 0.728 (0.003) 0.789
ENRON 0.916 (0.002) 0.916 (0.003) 0.916 (0.002) 0.920 (0.003) 0.922 (0.005) 0.933 (0.002) 0.875 (0.003) 0.941
Medical 0.955 (0.002) 0.958 (0.004) 0.955 (0.002) 0.956 (0.003) 0.950 (0.008) 0.969 (0.003) — 0.989
Slashdot 0.940 (0.003) 0.938 (0.003) 0.938 (0.003) 0.939 (0.003) 0.917 (0.008) 0.939 (0.005) — 0.953
LLOG 0.980 (0.001) 0.980 (0.001) 0.980 (0.001) 0.980 (0.001) 0.982 (0.002) 0.983 (0.001)* — 0.983
Solar Flare 0.910 (0.009)* 0.910 (0.009)* 0.910 (0.009)* 0.910 (0.009)* 0.910 (0.009)* 0.910 (0.009)* 0.864 (0.007) 0.905
Bridges 0.529 (0.052) 0.551 (0.042) 0.516 (0.071) 0.512 (0.097) 0.457 (0.036) 0.565 (0.030) 0.545 (0.019) 0.580
Thyroid 0.938 (0.034) 0.947 (0.022) 0.945 (0.021) 0.948 (0.016) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.121 (0.022) 0.140 (0.013) 0.128 (0.024) 0.146 (0.022) 0.104 (0.013) 0.102 (0.021) 0.078 (0.021) 0.249
Scene 0.219 (0.017) 0.235 (0.017) 0.203 (0.016) 0.219 (0.021) 0.304 (0.025) 0.139 (0.035) 0.216 (0.014) 0.519
Yeast 0.071 (0.008) 0.070 (0.007) 0.070 (0.011) 0.075 (0.009) 0.057 (0.007) 0.056 (0.006) 0.027 (0.006) 0.117
ENRON 0.003 (0.002) 0.002 (0.002) 0.003 (0.002) 0.004 (0.004) 0.023 (0.004) 0.028 (0.008) 0.008 (0.004) 0.050
Medical 0.031 (0.010) 0.041 (0.010) 0.032 (0.006) 0.034 (0.010) 0.181 (0.021) 0.166 (0.041) — 0.625
Slashdot 0.011 (0.008) 0.014 (0.006) 0.012 (0.005) 0.013 (0.007) 0.145 (0.013) 0.085 (0.014) — 0.247
LLOG 0.121 (0.010) 0.121 (0.015) 0.123 (0.017) 0.122 (0.020) 0.164 (0.013) 0.167 (0.007) — 0.205
Solar Flare 0.794 (0.021)* 0.792 (0.021)* 0.794 (0.021)* 0.794 (0.021)* 0.792 (0.020)* 0.794 (0.021)* 0.791 (0.017)* 0.785
Bridges 0.047 (0.028) 0.040 (0.030) 0.044 (0.035) 0.054 (0.030) 0.016 (0.015) 0.054 (0.015) 0.068 (0.022) 0.116
Thyroid 0.673 (0.091) 0.689 (0.084) 0.673 (0.090) 0.673 (0.087) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.916

Table 6.11: Results using CRS with 20% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.673 (0.026) 0.674 (0.019) 0.676 (0.017) 0.685 (0.012) 0.620 (0.014) 0.592 (0.019) 0.581 (0.020) 0.712
Scene 0.773 (0.015) 0.783 (0.008) 0.772 (0.006) 0.774 (0.003) 0.800 (0.009) 0.760 (0.004) 0.737 (0.010) 0.845
Yeast 0.680 (0.003) 0.678 (0.005) 0.681 (0.005) 0.681 (0.007) 0.700 (0.006) 0.701 (0.010) 0.648 (0.004) 0.724
ENRON 0.909 (0.003) 0.909 (0.002) 0.909 (0.002) 0.909 (0.001) 0.919 (0.002) 0.919 (0.003) 0.870 (0.003) 0.923
Medical 0.951 (0.001) 0.952 (0.001) 0.951 (0.001) 0.952 (0.001) 0.956 (0.007) 0.964 (0.005) — 0.989
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.910 (0.008)* 0.911 (0.008)* 0.908 (0.009)* 0.911 (0.008)* 0.910 (0.009)* 0.911 (0.008)* 0.866 (0.004) 0.905
Bridges 0.492 (0.031) 0.462 (0.052) 0.482 (0.042) 0.450 (0.060) 0.406 (0.027) 0.511 (0.037) 0.495 (0.041) 0.570
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.159 (0.029) 0.175 (0.019) 0.161 (0.023) 0.174 (0.019) 0.145 (0.015) 0.124 (0.017) 0.110 (0.020) 0.186
Scene 0.318 (0.041) 0.346 (0.018) 0.315 (0.016) 0.322 (0.008) 0.391 (0.022) 0.292 (0.013) 0.323 (0.027) 0.522
Yeast 0.040 (0.008) 0.036 (0.007) 0.039 (0.006) 0.038 (0.008) 0.086 (0.006) 0.087 (0.009) 0.049 (0.009) 0.134
ENRON 0.012 (0.005) 0.010 (0.005) 0.013 (0.005) 0.013 (0.004) 0.027 (0.005)* 0.037 (0.013)* 0.029 (0.011)* 0.026
Medical 0.066 (0.009) 0.063 (0.011) 0.073 (0.016) 0.068 (0.012) 0.202 (0.015) 0.222 (0.027) — 0.645
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.792 (0.015)* 0.794 (0.015)* 0.785 (0.024)* 0.794 (0.015)* 0.792 (0.017)* 0.794 (0.015)* 0.796 (0.010)* 0.785
Bridges 0.030 (0.015) 0.021 (0.022) 0.030 (0.015) 0.026 (0.032) 0.007 (0.011) 0.016 (0.015) 0.044 (0.020) 0.163
Thyroid 0.743 (0.003) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.924

Table 6.12: Results using SCC with 20% of the original features.
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6.5 Final Considerations

When we started this research, we didn’t know what would be the impact of the extracted
features on the multi-target classifiers. So the methodology adopted was that we extract the
features at different “levels”, based on the number of features contained in the original datasets.
It was thought that the predictive performance would decrease as the number of features de-
creased. For example, when we extracted new features at 90% of the original dataset, we were
expecting to have the performance of the classification around 90% in relation to the original
result. The idea was to use AEs and RBMs so that we could mitigate this. For example, by
extracting new features at 90%, we could achieve a classification performance above 90% of
the result obtained with the original dataset.

However, as we can see in the results above (Tables 6.3, 6.4, 6.5, 6.6 and 6.7), by extracting
new features at 10% of the number of original features in the dataset, it was possible to obtain
even better classification results than the original datasets, in some cases.

Until then, we thought that extracting larger numbers of features would result in even better
classification results. However, when evaluating these results (Tables 6.8, 6.9, 6.10, 6.11 and
6.12), we found out that maybe it would be more difficult for the classifiers to predict the correct
values as the number of features extracted by the AEs increased. In Figures 6.1, 6.2, 6.3 and
6.4 we show this behavior, as the number of features increased in the LLOG, Music, Yeast and
Slashdot datasets.

Based on Figures 6.1, 6.2, 6.3 and 6.4, we also hypothesized that the smaller the space in
which the AEs extract the features, the better the predictive potential of the multi-target classifier
is. Based on the studies (Hinton and Salakhutdinov, 2006, Zabalza et al., 2016), we believe that
AEs have a great potential to acquire the characteristics of the data in its code-layer (as we
discussed in Section 3.2), and these characteristics are distributed in the number of features that
the output will have. Therefore, when we selected the number of features equal to 10% of the
original dataset, these neural networks were able to represent all the characteristics learned from
the dataset in a much smaller space. As the results indicate, the multi-target classifiers were able
to take better advantage of the characteristics present in a smaller number of features than in
larger numbers. On the other hand, we can see that the DBNs were able to better distribute these
characteristics in a larger number of features.

In Figure 6.7 we show how Thyroid reacts with the increase of generated features. We can
observe that regardless of the methodology used to extract features, or even the multi-target
classifier used, the result of the prediction was always the same. This leads us to believe that in
some cases, the feature-extraction depends more on the characteristics of the data in which it is
applied, than on the method used to extract features, or even the multi-target classifier.

In general, we can say that the application of neural networks as feature extractors was
successful, as we can see in the results obtained in Figures 6.1, 6.2, 6.5 and 6.6, and . We saw
that the features extracted by DBN managed to obtain competitive results, and in some cases,
even better than executing the multi-target classifiers in the original datasets. The AEs also
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had shown competitive results when extracted the features at 10%. However, its performance
decreased as the number of generated features increased.

In some cases, as can be seen in Figures 6.3, 6.4 and 6.7, the predictive performance ob-
tained with the features extracted by the neural networks were below the results brought by
the original datasets. However, in Figures 6.3 and 6.4, we can see that even with lower per-
formances, these results were not distant when compared to the predictive performances of the
original datasets. It is worth mentioning that in addition to the predictive performance, there
are the benefits obtained from the reduction of dimensionality, as we discussed in Chapter 2.
Therefore, depending on the domain that these methods would be applied, the loss of predictive
performance may not be so impactful, compared to the problems brought by high dimensional-
ity, since these results were obtained through a portion of the original data.

Finally, in Appendix A we present in details all results that were obtained in our experi-
ments. In Appendix B we also present all graphs that show how the predictive performances
of each multi-target classifier was affected according to the number features extracted for each
dataset that we selected for our experiments.

In Chapter 7 we present the conclusions that we obtained from this research, as well as the
future works.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure 6.1: How the CR classification performance is affected by the number of extracted fea-
tures in the LLOG dataset.
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(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure 6.2: How the CC classification performance is affected by the number of extracted fea-
tures in the Music dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure 6.3: How the CRS classification performance is affected by the number of extracted
features in the Yeast dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure 6.4: How the CR classification performance is affected by the number of extracted fea-
tures in the Slashdot dataset.
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(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure 6.5: How the SCC classification performance is affected by the number of extracted
features in the ENRON dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure 6.6: How the CC classification performance is affected by the number of extracted fea-
tures in the Solar Flare dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure 6.7: How the CR classification performance is affected by the number of extracted fea-
tures in the Thyroid dataset.



CHAPTER

7
Conclusions

This research investigated how neural networks, in particular Auto-Encoders (AEs) and
Restricted Boltzmann Machines (RBMs) together with some of their deep variations, can be
used to extract features from multi-target classification datasets. The objective was to compare
the performances of multi-target classifiers when using the original dataset features with their
performances when using the same datasets with extracted features. The use of such feature ex-
tractors can open new possibilities for the application of state-of-the-art multi-target classifiers.

According to our experiments, we were able to obtain very competitive results using neural
networks, keeping the predictive performance even when the extracted features corresponded
to a dimension size equivalent to 10% of the original number of features. The Deep Belief
Networks (DBNs) were able to obtain better results than the other methods when the evaluation
measure takes into account that all targets of a test instance were classified correctly. DBNs
were also able to maintain predictive performance as the number of features increased. We also
observed that both Auto-Encoders (AEs) and Restricted Boltzmann Machines (RBMs) were
able to obtain competitive results when the evaluation measure took into account how many
targets in average were correctly predicted. The Denoising Auto-Encoders have also improved
predictive performance in some scenarios.

There were several challenges in this research. The first of them was the lack of related
works on feature extraction for multi-target problems, which is a very specific niche of re-
search. When we decided to work on this topic, we also faced the lack of multi-target (or
multi-dimensional, as the literature also says) publicly available information, in addition to the
lack of multi-target datasets. We know that several (if not the majority) real-world problems
are, in some form, multi-target. However, many of the proposed methods, such as (Last et al.,
2011) and (Read et al., 2014), which are great multi-target implementations, use private data in
order to evaluate their proposals.

In the next sections we discuss the contributions we believe this work brings to the multi-
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target learning field. We also present some future research directions.

7.1 Contributions

In a first moment, even if this research does not come up with a new multi-target classifica-
tion method, we believe it still can considerably contribute to the multi-target learning literature.

Currently, to the best of our knowledge, there exist no studies in multi-target learning that
investigate neural networks as feature extractors in such scenarios, even though these techniques
are successfully implemented in other high-dimensional scenarios, as we showed in Chapter 2.

Moreover, it seems we are the first group proposing the investigation of neural networks to
build new input representations to be fed to existing multi-target predictors, which also opens
the possibility of creating new strategies of multi-target learners.

Lastly, the results obtained by the classifiers using the extracted features were very similar,
or were better, than the results obtained when using the original features. Thus, the feature
extractors proved to work well with state-of-the-art multi-target learners. This also opens new
possibilities and insights on how pre-training or preparing multi-dimensional datasets can im-
prove the performances of the prediction algorithms.

7.2 Future work

As mentioned in Section 4.1.2, there are plenty of algorithm adaptation methods for multi-
target regression, and these have shown to be very competitive. Therefore, it seems that this type
of approach can be very promising in multi-target classification. Therefore, we are considering
creating a new deep-learning multi-target classifier based on how well the neural networks had
performed in our experiments. This will certainly be a great contribution to the multi-target
research field.

Recently, several researches have appeared in the field of multi-target classification. In one
of them (Jia and Zhang, 2020c), an algorithm adaptation method for multi-target classification
was presented, which consists of using the k-Nearest Neighbors algorithm to solve the multi-
target problem with a single predictive model. Several public datasets have also been adapted to
be used for multi-target classification (Jia and Zhang, 2020b). As these are very recent studies,
unfortunately we were unable to insert them in our experiments in time. However, we are
considering the possibility of evaluating our experiments using these new datasets as well as the
new algorithm adaptation method.

Currently, only two evaluation measures (Section 6.1) have been brought from the multi-
label literature for the multi-target classification. Despite the study present in (Read et al., 2014)
pointing out that these statistics may not be effective in multi-target classification, we believe
that there is the possibility of bringing the precision and recall measures, and consequently, F-
measure (Sorower, 2010) to evaluate the results obtained in multi-target classification problems.
Also, a new evaluation measure specific for multi-target classification was presented in (Jia and
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Zhang, 2020c), and it could be used to evaluate future experiments.
Another situation mentioned in Section 3.2.1 is that in datasets where the number of features

is very large, extracting features with traditional neural networks as presented in this research
is intractable. However, these really high dimensional datasets are only available for multi-
target regression. Anyway, deep learning in general has the potential to perform better than
traditional neural networks, and therefore, future studies may explore the use of Variational
Auto-Encoders (VAEs), Recurrent Neural Networks (RNNs) and specially Long-Short Term
Memory (LSTM) in these scenarios.
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APPENDIX

A
Detailed results for Multi-Target

Classification using the Extracted
Features

This appendix presents all the results obtained during our final experiments, discussed in
Section 6.4. The data presented here consist of the combination of all the multi-target classifiers
used, the feature extraction methods, and the percentage of features extracted relative to the
number of features present in the original dataset.

The results are organized as follows: each column represents the feature extraction method
used, and each row represents one of the datasets used. The values present in the tables corre-
spond to the mean obtained for HS and EMR across all the 10 folds from the cross-validation
setup (as presented in Chapter 5), and the values in parentheses represent the standard deviation.
In bold, we present the feature extraction methods that obtained the best results in each dataset.
The last column represents the results obtained with the original dataset, without extracting fea-
tures. We use an asterisk (∗) to highlight when a result of a multi-target classifier with extracted
features was the same or better than that obtained with the original dataset.

The rest of this appendix is organized as follows: Section A.1 shows the results obtained
by Class Relevance (CR), Section A.2 shows the results obtained by Classifier Chains (CC),
Section A.3 shows the results obtained by Ensemble of Classifier Chains (ECC), Section A.4
shows the results obtained by Class Relevance Stacking (CRS) and, finally, Section A.5 shows
the results obtained by Super-Class Classifier (SCC). The predictive performances of the multi-
target classifiers were measured with Hamming Score (HS) and Exact Match Ratio (EMR).
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A.1 Class Relevance (CR) Results

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.706 (0.021) 0.712 (0.015) 0.702 (0.017) 0.705 (0.014) 0.658 (0.010) 0.656 (0.007) 0.638 (0.017) 0.733
Scene 0.788 (0.011) 0.785 (0.014) 0.795 (0.006) 0.790 (0.008) 0.803 (0.011) 0.791 (0.015) 0.759 (0.007) 0.857
Yeast 0.768 (0.002)* 0.769 (0.002)* 0.769 (0.001)* 0.769 (0.001)* 0.772 (0.003)* 0.768 (0.005)* 0.730 (0.003) 0.741
ENRON 0.924 (0.003) 0.924 (0.001) 0.924 (0.002) 0.926 (0.003) 0.928 (0.004) 0.936 (0.002)* 0.879 (0.002) 0.936
Medical 0.963 (0.003) 0.963 (0.002) 0.963 (0.001) 0.964 (0.002) 0.963 (0.003) 0.971 (0.002) — 0.988
Slashdot 0.945 (0.001) 0.944 (0.000) 0.945 (0.001) 0.944 (0.001) 0.934 (0.003) 0.943 (0.005) — 0.952
LLOG 0.983 (0.001)* 0.982 (0.001)* 0.983 (0.000)* 0.983 (0.000)* 0.983 (0.001)* 0.983 (0.001)* — 0.979
Solar Flare 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.860 (0.014) 0.905
Bridges — — — — — — — 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.001) 0.986

Exact Match Ratio (EMR)

Music 0.149 (0.050) 0.157 (0.030) 0.149 (0.022) 0.163 (0.021) 0.100 (0.023) 0.103 (0.022) 0.080 (0.027) 0.165
Scene 0.236 (0.046) 0.253 (0.016) 0.250 (0.011) 0.244 (0.010) 0.300 (0.018) 0.158 (0.042) 0.226 (0.022) 0.404
Yeast 0.018 (0.002) 0.018 (0.002) 0.018 (0.002) 0.018 (0.002) 0.054 (0.008) 0.046 (0.018) 0.035 (0.009) 0.068
ENRON 0.003 (0.003) 0.003 (0.002) 0.003 (0.002) 0.002 (0.002) 0.026 (0.005)* 0.030 (0.011)* 0.015 (0.005) 0.023
Medical 0.026 (0.009) 0.020 (0.014) 0.030 (0.012) 0.022 (0.013) 0.164 (0.021) 0.171 (0.030) — 0.615
Slashdot 0.002 (0.003) 0.004 (0.004) 0.002 (0.001) 0.003 (0.001) 0.147 (0.012) 0.091 (0.008) — 0.239
LLOG 0.144 (0.006) 0.138 (0.011) 0.144 (0.007) 0.144 (0.009) 0.167 (0.007) 0.161 (0.013) — 0.207
Solar Flare 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.783 (0.024) 0.785
Bridges — — — — — — — 0.140
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.914

Table A.1: Results using CR with 10% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.693 (0.017) 0.699 (0.024) 0.701 (0.013) 0.703 (0.017) 0.660 (0.006) 0.657 (0.010) 0.618 (0.023) 0.733
Scene 0.783 (0.015) 0.786 (0.011) 0.770 (0.010) 0.787 (0.010) 0.817 (0.016) 0.781 (0.010) 0.750 (0.007) 0.857
Yeast 0.768 (0.002)* 0.769 (0.001)* 0.769 (0.002)* 0.768 (0.002)* 0.774 (0.002)* 0.771 (0.006)* 0.728 (0.003) 0.741
ENRON 0.916 (0.002) 0.916 (0.003) 0.916 (0.002) 0.920 (0.003) 0.922 (0.005) 0.933 (0.002) 0.875 (0.003) 0.936
Medical 0.955 (0.002) 0.958 (0.004) 0.955 (0.002) 0.956 (0.003) 0.950 (0.008) 0.969 (0.003) — 0.988
Slashdot 0.940 (0.003) 0.938 (0.003) 0.938 (0.003) 0.939 (0.003) 0.917 (0.008) 0.939 (0.005) — 0.952
LLOG 0.980 (0.001)* 0.980 (0.001)* 0.980 (0.001)* 0.980 (0.001)* 0.982 (0.002)* 0.983 (0.001)* — 0.979
Solar Flare 0.911 (0.008)* 0.911 (0.008)* 0.909 (0.007)* 0.911 (0.008)* 0.909 (0.007)* 0.902 (0.024) 0.864 (0.007) 0.905
Bridges 0.544 (0.027) 0.544 (0.036) 0.529 (0.044) 0.532 (0.064) 0.470 (0.047) 0.560 (0.037) 0.545 (0.019) 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.111 (0.035) 0.140 (0.013) 0.128 (0.024) 0.146 (0.022) 0.104 (0.013) 0.102 (0.021) 0.078 (0.021) 0.165
Scene 0.209 (0.038) 0.235 (0.017) 0.203 (0.016) 0.219 (0.021) 0.304 (0.025) 0.139 (0.035) 0.216 (0.014) 0.404
Yeast 0.017 (0.003) 0.018 (0.001) 0.018 (0.002) 0.018 (0.003) 0.056 (0.003) 0.060 (0.010) 0.027 (0.006) 0.068
ENRON 0.003 (0.002) 0.002 (0.002) 0.003 (0.002) 0.004 (0.004) 0.023 (0.004)* 0.028 (0.008)* 0.008 (0.004) 0.023
Medical 0.031 (0.010) 0.041 (0.010) 0.032 (0.006) 0.034 (0.010) 0.181 (0.021) 0.166 (0.041) — 0.615
Slashdot 0.011 (0.008) 0.014 (0.006) 0.012 (0.005) 0.013 (0.007) 0.145 (0.013) 0.085 (0.014) — 0.239
LLOG 0.121 (0.010) 0.121 (0.015) 0.123 (0.017) 0.122 (0.020) 0.164 (0.013) 0.167 (0.007) — 0.207
Solar Flare 0.794 (0.015)* 0.794 (0.015)* 0.790 (0.015)* 0.794 (0.015)* 0.792 (0.013)* 0.770 (0.068) 0.791 (0.017)* 0.785
Bridges 0.040 (0.018) 0.028 (0.020) 0.028 (0.020) 0.038 (0.021) 0.016 (0.023) 0.035 (0.024) 0.068 (0.022) 0.140
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.914

Table A.2: Results using CR with 20% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.688 (0.019) 0.690 (0.012) 0.682 (0.016) 0.697 (0.018) 0.661 (0.009) 0.657 (0.011) 0.620 (0.019) 0.733
Scene 0.777 (0.019) 0.785 (0.014) 0.780 (0.009) 0.778 (0.014) 0.806 (0.011) 0.797 (0.019) 0.743 (0.010) 0.857
Yeast 0.768 (0.001)* 0.768 (0.002)* 0.768 (0.001)* 0.769 (0.001)* 0.773 (0.001)* 0.766 (0.006)* 0.726 (0.003) 0.741
ENRON 0.911 (0.002) 0.911 (0.002) 0.911 (0.002) 0.912 (0.003) 0.921 (0.002) 0.933 (0.002) 0.870 (0.003) 0.936
Medical 0.953 (0.001) 0.954 (0.002) 0.951 (0.002) 0.953 (0.002) 0.936 (0.006) 0.965 (0.005) — 0.988
Slashdot 0.935 (0.004) 0.931 (0.005) 0.932 (0.003) 0.932 (0.005) 0.912 (0.013) 0.942 (0.007) — 0.952
LLOG 0.978 (0.001) 0.979 (0.001)* 0.978 (0.001) 0.978 (0.001) 0.980 (0.001)* 0.982 (0.001)* — 0.979
Solar Flare 0.908 (0.009)* 0.910 (0.006)* 0.909 (0.008)* 0.910 (0.006)* 0.909 (0.006)* 0.910 (0.006)* 0.863 (0.010) 0.905
Bridges 0.539 (0.054) 0.549 (0.031) 0.557 (0.030) 0.517 (0.057) 0.446 (0.024) 0.551 (0.028) 0.538 (0.014) 0.622
Thyroid 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.109 (0.041) 0.140 (0.027) 0.109 (0.018) 0.136 (0.025) 0.112 (0.017) 0.102 (0.024) 0.066 (0.017) 0.165
Scene 0.195 (0.040) 0.223 (0.014) 0.209 (0.013) 0.218 (0.019) 0.294 (0.022) 0.145 (0.047) 0.200 (0.024) 0.404
Yeast 0.018 (0.002) 0.017 (0.002) 0.017 (0.003) 0.018 (0.002) 0.057 (0.004) 0.061 (0.010) 0.029 (0.005) 0.068
ENRON 0.001 (0.001) 0.003 (0.002) 0.002 (0.001) 0.002 (0.002) 0.019 (0.005) 0.030 (0.011)* 0.004 (0.002) 0.023
Medical 0.032 (0.009) 0.033 (0.008) 0.029 (0.010) 0.033 (0.007) 0.190 (0.013) 0.156 (0.039) — 0.615
Slashdot 0.018 (0.008) 0.022 (0.006) 0.018 (0.006) 0.020 (0.008) 0.146 (0.012) 0.087 (0.007) — 0.239
LLOG 0.109 (0.010) 0.112 (0.010) 0.108 (0.013) 0.105 (0.011) 0.165 (0.013) 0.150 (0.023) — 0.207
Solar Flare 0.788 (0.024)* 0.794 (0.012)* 0.789 (0.022)* 0.794 (0.012)* 0.792 (0.013)* 0.794 (0.012)* 0.788 (0.026)* 0.785
Bridges 0.054 (0.021) 0.030 (0.024) 0.040 (0.018) 0.033 (0.028) 0.019 (0.018) 0.019 (0.018) 0.044 (0.022) 0.140
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.914

Table A.3: Results using CR with 30% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.676 (0.023) 0.694 (0.015) 0.673 (0.009) 0.686 (0.015) 0.659 (0.014) 0.659 (0.013) 0.617 (0.021) 0.733
Scene 0.772 (0.016) 0.781 (0.012) 0.781 (0.015) 0.786 (0.015) 0.813 (0.016) 0.786 (0.007) 0.741 (0.009) 0.857
Yeast 0.767 (0.001)* 0.768 (0.002)* 0.768 (0.002)* 0.766 (0.003)* 0.773 (0.002)* 0.766 (0.006)* 0.723 (0.003) 0.741
ENRON 0.909 (0.003) 0.908 (0.001) 0.908 (0.002) 0.909 (0.002) 0.921 (0.004) 0.932 (0.003) — 0.936
Medical 0.951 (0.002) 0.953 (0.002) 0.951 (0.002) 0.952 (0.001) 0.962 (0.020) 0.972 (0.000) — 0.988
Slashdot 0.924 (0.004) 0.920 (0.005) 0.920 (0.005) 0.924 (0.004) 0.911 (0.011) 0.942 (0.006) — 0.952
LLOG 0.977 (0.001) 0.977 (0.001) 0.977 (0.001) 0.978 (0.001) 0.979 (0.001)* 0.983 (0.001)* — 0.979
Solar Flare 0.910 (0.008)* 0.910 (0.008)* 0.910 (0.008)* 0.910 (0.008)* 0.910 (0.008)* 0.910 (0.008)* 0.865 (0.007) 0.905
Bridges 0.520 (0.053) 0.528 (0.056) 0.545 (0.053) 0.529 (0.032) 0.444 (0.049) 0.536 (0.032) 0.529 (0.025) 0.622
Thyroid 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.106 (0.039) 0.121 (0.020) 0.108 (0.018) 0.128 (0.023) 0.107 (0.020) 0.103 (0.022) 0.068 (0.015) 0.165
Scene 0.193 (0.032) 0.234 (0.017) 0.204 (0.016) 0.221 (0.016) 0.294 (0.028) 0.140 (0.023) 0.196 (0.019) 0.404
Yeast 0.017 (0.002) 0.018 (0.002) 0.017 (0.002) 0.016 (0.004) 0.058 (0.007) 0.070 (0.011)* 0.026 (0.005) 0.068
ENRON 0.002 (0.002) 0.002 (0.002) 0.002 (0.001) 0.003 (0.002) 0.017 (0.005) 0.025 (0.008)* — 0.023
Medical 0.025 (0.007) 0.030 (0.008) 0.032 (0.007) 0.029 (0.007) 0.206 (0.022) 0.069 (0.077) — 0.615
Slashdot 0.026 (0.009) 0.028 (0.006) 0.034 (0.006) 0.027 (0.007) 0.143 (0.009) 0.097 (0.013) — 0.239
LLOG 0.099 (0.012) 0.096 (0.013) 0.101 (0.011) 0.104 (0.009) 0.165 (0.014) 0.166 (0.007) — 0.207
Solar Flare 0.794 (0.018)* 0.794 (0.018)* 0.794 (0.018)* 0.794 (0.018)* 0.794 (0.018)* 0.794 (0.018)* 0.795 (0.016)* 0.785
Bridges 0.049 (0.022) 0.047 (0.028) 0.051 (0.027) 0.044 (0.024) 0.009 (0.011) 0.037 (0.016) 0.040 (0.026) 0.140
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.914

Table A.4: Results using CR with 40% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.668 (0.016) 0.691 (0.018) 0.680 (0.022) 0.691 (0.024) 0.660 (0.010) 0.664 (0.010) 0.602 (0.024) 0.733
Scene 0.766 (0.019) 0.781 (0.016) 0.777 (0.015) 0.781 (0.009) 0.814 (0.020) 0.801 (0.013) 0.738 (0.007) 0.857
Yeast 0.766 (0.003)* 0.767 (0.002)* 0.765 (0.005)* 0.767 (0.002)* 0.774 (0.001)* 0.767 (0.008)* 0.723 (0.003) 0.741
ENRON 0.908 (0.001) 0.907 (0.002) 0.907 (0.002) 0.907 (0.002) 0.919 (0.003) 0.932 (0.004) — 0.936
Medical 0.951 (0.002) 0.951 (0.001) 0.951 (0.002) 0.952 (0.001) 0.964 (0.014) 0.970 (0.004) — 0.988
Slashdot 0.921 (0.007) 0.920 (0.004) 0.918 (0.008) 0.920 (0.006) 0.911 (0.010) 0.938 (0.003) — 0.952
LLOG 0.975 (0.001) 0.976 (0.001) 0.975 (0.002) 0.976 (0.001) 0.980 (0.002)* 0.983 (0.001)* — 0.979
Solar Flare 0.911 (0.005)* 0.911 (0.005)* 0.911 (0.005)* 0.911 (0.005)* 0.909 (0.007)* 0.911 (0.005)* 0.865 (0.007) 0.905
Bridges 0.555 (0.034) 0.520 (0.037) 0.517 (0.041) 0.518 (0.042) 0.463 (0.034) 0.550 (0.043) 0.519 (0.025) 0.622
Thyroid 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.094 (0.027) 0.124 (0.021) 0.111 (0.022) 0.135 (0.026) 0.106 (0.016) 0.092 (0.028) 0.062 (0.020) 0.165
Scene 0.189 (0.033) 0.219 (0.013) 0.203 (0.017) 0.216 (0.018) 0.294 (0.029) 0.152 (0.023) 0.195 (0.015) 0.404
Yeast 0.017 (0.002) 0.017 (0.002) 0.016 (0.003) 0.018 (0.002) 0.057 (0.004) 0.060 (0.009) 0.025 (0.006) 0.068
ENRON 0.002 (0.001) 0.002 (0.001) 0.002 (0.002) 0.002 (0.001) 0.019 (0.005) 0.035 (0.012)* — 0.023
Medical 0.035 (0.007) 0.030 (0.007) 0.032 (0.010) 0.031 (0.006) 0.206 (0.017) 0.056 (0.067) — 0.615
Slashdot 0.029 (0.007) 0.027 (0.005) 0.027 (0.006) 0.028 (0.007) 0.150 (0.014) 0.115 (0.010) — 0.239
LLOG 0.088 (0.012) 0.093 (0.009) 0.089 (0.013) 0.094 (0.008) 0.164 (0.018) 0.164 (0.013) — 0.207
Solar Flare 0.795 (0.010)* 0.795 (0.010)* 0.795 (0.010)* 0.795 (0.010)* 0.792 (0.013)* 0.795 (0.010)* 0.794 (0.015)* 0.785
Bridges 0.049 (0.022) 0.021 (0.016) 0.042 (0.020) 0.028 (0.018) 0.016 (0.015) 0.030 (0.024) 0.035 (0.019) 0.140
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.914

Table A.5: Results using CR with 50% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.671 (0.022) 0.687 (0.015) 0.679 (0.019) 0.697 (0.013) 0.662 (0.007) 0.679 (0.011) 0.609 (0.012) 0.733
Scene 0.770 (0.014) 0.781 (0.021) 0.777 (0.011) 0.779 (0.016) 0.815 (0.019) 0.803 (0.017) 0.738 (0.008) 0.857
Yeast 0.767 (0.003)* 0.765 (0.004)* 0.765 (0.003)* 0.766 (0.004)* 0.773 (0.003)* 0.769 (0.005)* 0.716 (0.005) 0.741
ENRON 0.907 (0.002) 0.905 (0.002) 0.906 (0.002) 0.906 (0.002) 0.919 (0.004) 0.932 (0.003) — 0.936
Medical 0.951 (0.001) 0.950 (0.001) 0.950 (0.001) 0.951 (0.001) 0.957 (0.016) 0.972 (0.001) — 0.988
Slashdot 0.915 (0.007) 0.914 (0.006) 0.911 (0.005) 0.919 (0.005) 0.903 (0.010) 0.938 (0.003) — 0.952
LLOG 0.975 (0.001) 0.975 (0.001) 0.975 (0.001) 0.975 (0.001) 0.978 (0.002) 0.983 (0.001)* — 0.979
Solar Flare 0.911 (0.004)* 0.911 (0.004)* 0.909 (0.007)* 0.911 (0.004)* 0.909 (0.003)* 0.911 (0.004)* 0.863 (0.010) 0.905
Bridges 0.548 (0.024) 0.539 (0.028) 0.534 (0.045) 0.545 (0.041) 0.481 (0.036) 0.544 (0.041) 0.508 (0.021) 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.096 (0.040) 0.137 (0.024) 0.110 (0.023) 0.147 (0.020) 0.112 (0.015) 0.097 (0.010) 0.069 (0.018) 0.165
Scene 0.194 (0.033) 0.228 (0.016) 0.218 (0.020) 0.221 (0.007) 0.289 (0.026) 0.144 (0.023) 0.193 (0.017) 0.404
Yeast 0.017 (0.003) 0.016 (0.004) 0.016 (0.003) 0.017 (0.002) 0.058 (0.003) 0.063 (0.011) 0.023 (0.006) 0.068
ENRON 0.001 (0.002) 0.002 (0.001) 0.002 (0.002) 0.002 (0.002) 0.016 (0.006) 0.029 (0.009)* — 0.023
Medical 0.032 (0.010) 0.025 (0.010) 0.029 (0.010) 0.033 (0.007) 0.201 (0.021) 0.048 (0.068) — 0.615
Slashdot 0.030 (0.005) 0.030 (0.004) 0.030 (0.004) 0.028 (0.005) 0.136 (0.005) 0.122 (0.009) — 0.239
LLOG 0.090 (0.012) 0.089 (0.007) 0.090 (0.011) 0.087 (0.009) 0.155 (0.018) 0.160 (0.015) — 0.207
Solar Flare 0.795 (0.010)* 0.795 (0.010)* 0.790 (0.015)* 0.795 (0.010)* 0.792 (0.009)* 0.795 (0.010)* 0.786 (0.018)* 0.785
Bridges 0.033 (0.022) 0.033 (0.024) 0.040 (0.024) 0.042 (0.023) 0.019 (0.018) 0.019 (0.023) 0.040 (0.030) 0.140
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.914

Table A.6: Results using CR with 60% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.666 (0.019) 0.683 (0.018) 0.662 (0.017) 0.681 (0.023) 0.663 (0.005) 0.688 (0.008) 0.596 (0.022) 0.733
Scene 0.778 (0.016) 0.785 (0.013) 0.770 (0.014) 0.773 (0.015) 0.809 (0.011) 0.801 (0.020) 0.740 (0.007) 0.857
Yeast 0.764 (0.003)* 0.765 (0.003)* 0.764 (0.004)* 0.766 (0.002)* 0.774 (0.001)* 0.769 (0.004)* 0.715 (0.006) 0.741
ENRON 0.904 (0.002) 0.906 (0.002) 0.907 (0.001) 0.905 (0.002) 0.921 (0.004) 0.933 (0.001) — 0.936
Medical 0.950 (0.002) 0.950 (0.002) 0.950 (0.002) 0.951 (0.001) 0.956 (0.011) 0.970 (0.004) — 0.988
Slashdot 0.906 (0.004) 0.908 (0.004) 0.907 (0.005) 0.914 (0.005) 0.902 (0.012) 0.939 (0.000) — 0.952
LLOG 0.974 (0.001) 0.975 (0.001) 0.974 (0.001) 0.974 (0.001) 0.977 (0.003) 0.983 (0.001)* — 0.979
Solar Flare 0.910 (0.005)* 0.908 (0.005)* 0.910 (0.005)* 0.910 (0.005)* 0.906 (0.012)* 0.910 (0.005)* 0.863 (0.008) 0.905
Bridges 0.557 (0.025) 0.548 (0.020) 0.545 (0.035) 0.560 (0.020) 0.491 (0.035) 0.558 (0.032) 0.482 (0.019) 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.957 (0.010) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.102 (0.036) 0.126 (0.022) 0.092 (0.014) 0.127 (0.026) 0.110 (0.011) 0.094 (0.014) 0.054 (0.015) 0.165
Scene 0.201 (0.032) 0.239 (0.018) 0.207 (0.012) 0.217 (0.015) 0.300 (0.015) 0.160 (0.025) 0.187 (0.016) 0.404
Yeast 0.016 (0.003) 0.016 (0.003) 0.016 (0.002) 0.015 (0.002) 0.058 (0.005) 0.059 (0.010) 0.022 (0.006) 0.068
ENRON 0.002 (0.002) 0.002 (0.002) 0.002 (0.001) 0.001 (0.001) 0.016 (0.004) 0.028 (0.010)* — 0.023
Medical 0.034 (0.006) 0.031 (0.005) 0.030 (0.007) 0.031 (0.008) 0.207 (0.018) 0.058 (0.079) — 0.615
Slashdot 0.029 (0.004) 0.029 (0.003) 0.028 (0.005) 0.034 (0.005) 0.137 (0.008) 0.120 (0.008) — 0.239
LLOG 0.081 (0.013) 0.084 (0.009) 0.081 (0.009) 0.081 (0.011) 0.148 (0.018) 0.161 (0.013) — 0.207
Solar Flare 0.794 (0.008)* 0.788 (0.009)* 0.794 (0.008)* 0.794 (0.008)* 0.783 (0.032) 0.794 (0.008)* 0.788 (0.018)* 0.785
Bridges 0.056 (0.019) 0.040 (0.024) 0.044 (0.013) 0.049 (0.022) 0.026 (0.016) 0.037 (0.016) 0.028 (0.018) 0.140
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.725 (0.056) 0.743 (0.003) 0.743 (0.001) 0.914

Table A.7: Results using CR with 70% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.667 (0.024) 0.687 (0.018) 0.665 (0.016) 0.689 (0.013) 0.661 (0.014) 0.687 (0.007) 0.601 (0.017) 0.733
Scene 0.769 (0.018) 0.785 (0.013) 0.779 (0.020) 0.774 (0.014) 0.820 (0.012) 0.800 (0.027) 0.739 (0.007) 0.857
Yeast 0.762 (0.004)* 0.765 (0.004)* 0.763 (0.003)* 0.763 (0.002)* 0.773 (0.002)* 0.769 (0.007)* 0.714 (0.004) 0.741
ENRON 0.906 (0.002) 0.904 (0.002) 0.906 (0.002) 0.905 (0.002) 0.918 (0.005) 0.933 (0.002) — 0.936
Medical 0.950 (0.002) 0.949 (0.002) 0.950 (0.001) 0.950 (0.002) 0.949 (0.015) 0.970 (0.003) — 0.988
Slashdot 0.907 (0.003) 0.908 (0.005) 0.906 (0.004) 0.911 (0.005) 0.904 (0.013) 0.937 (0.004) — 0.952
LLOG 0.974 (0.001) 0.974 (0.001) 0.974 (0.001) 0.974 (0.001) 0.976 (0.002) 0.983 (0.001)* — 0.979
Solar Flare 0.910 (0.007)* 0.911 (0.006)* 0.910 (0.007)* 0.909 (0.008)* 0.907 (0.008)* 0.911 (0.006)* 0.856 (0.012) 0.905
Bridges 0.539 (0.022) 0.515 (0.037) 0.537 (0.025) 0.516 (0.052) 0.480 (0.031) 0.552 (0.036) 0.492 (0.042) 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.957 (0.010) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.091 (0.030) 0.125 (0.014) 0.094 (0.020) 0.138 (0.018) 0.112 (0.021) 0.080 (0.027) 0.067 (0.014) 0.165
Scene 0.198 (0.032) 0.224 (0.018) 0.210 (0.019) 0.219 (0.020) 0.290 (0.019) 0.143 (0.022) 0.188 (0.016) 0.404
Yeast 0.016 (0.004) 0.016 (0.002) 0.016 (0.003) 0.015 (0.003) 0.058 (0.004) 0.059 (0.010) 0.021 (0.005) 0.068
ENRON 0.002 (0.002) 0.002 (0.002) 0.002 (0.001) 0.002 (0.003) 0.016 (0.006) 0.022 (0.007) — 0.023
Medical 0.030 (0.010) 0.030 (0.007) 0.028 (0.006) 0.030 (0.005) 0.208 (0.019) 0.104 (0.087) — 0.615
Slashdot 0.030 (0.004) 0.029 (0.006) 0.029 (0.004) 0.034 (0.006) 0.136 (0.008) 0.114 (0.016) — 0.239
LLOG 0.083 (0.010) 0.075 (0.005) 0.078 (0.011) 0.081 (0.007) 0.151 (0.018) 0.164 (0.012) — 0.207
Solar Flare 0.792 (0.014)* 0.794 (0.012)* 0.791 (0.017)* 0.790 (0.018)* 0.784 (0.022) 0.795 (0.012)* 0.773 (0.019) 0.785
Bridges 0.021 (0.016) 0.012 (0.016) 0.033 (0.026) 0.033 (0.030) 0.028 (0.014) 0.047 (0.026) 0.042 (0.021) 0.140
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.724 (0.056) 0.743 (0.002) 0.743 (0.002) 0.914

Table A.8: Results using CR with 80% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.656 (0.022) 0.682 (0.025) 0.648 (0.013) 0.699 (0.018) 0.687 (0.005) 0.653 (0.008) 0.590 (0.018) 0.733
Scene 0.768 (0.015) 0.767 (0.021) 0.776 (0.015) 0.775 (0.012) 0.813 (0.013) 0.787 (0.015) 0.735 (0.010) 0.857
Yeast 0.761 (0.005)* 0.764 (0.004)* 0.763 (0.003)* 0.762 (0.003)* 0.772 (0.002)* 0.768 (0.005)* 0.708 (0.009) 0.741
ENRON 0.904 (0.002) 0.904 (0.002) 0.905 (0.003) 0.905 (0.001) 0.919 (0.006) 0.930 (0.004) — 0.936
Medical 0.949 (0.001) 0.949 (0.002) 0.950 (0.001) 0.951 (0.001) 0.942 (0.012) 0.970 (0.003) — 0.988
Slashdot 0.904 (0.004) 0.906 (0.004) 0.901 (0.003) 0.912 (0.007) 0.895 (0.012) 0.939 (0.001) — 0.952
LLOG 0.973 (0.001) 0.974 (0.001) 0.974 (0.001) 0.974 (0.001) 0.976 (0.003) 0.982 (0.002)* — 0.979
Solar Flare 0.910 (0.005)* 0.911 (0.004)* 0.911 (0.004)* 0.911 (0.004)* 0.901 (0.021) 0.911 (0.004)* 0.856 (0.014) 0.905
Bridges 0.532 (0.033) 0.545 (0.023) 0.504 (0.043) 0.516 (0.037) 0.506 (0.027) 0.553 (0.038) 0.499 (0.055) 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.001) 0.986

Exact Match Ratio (EMR)

Music 0.087 (0.023) 0.114 (0.027) 0.098 (0.020) 0.133 (0.034) 0.088 (0.020) 0.114 (0.016) 0.056 (0.014) 0.165
Scene 0.192 (0.027) 0.215 (0.017) 0.208 (0.015) 0.206 (0.011) 0.291 (0.024) 0.130 (0.025) 0.188 (0.022) 0.404
Yeast 0.015 (0.004) 0.016 (0.003) 0.015 (0.003) 0.013 (0.003) 0.057 (0.006) 0.062 (0.008) 0.020 (0.006) 0.068
ENRON 0.001 (0.001) 0.002 (0.003) 0.002 (0.002) 0.001 (0.001) 0.017 (0.004) 0.027 (0.009)* — 0.023
Medical 0.029 (0.006) 0.027 (0.008) 0.029 (0.005) 0.032 (0.006) 0.211 (0.027) 0.111 (0.075) — 0.615
Slashdot 0.028 (0.004) 0.030 (0.005) 0.029 (0.002) 0.030 (0.004) 0.131 (0.005) 0.123 (0.005) — 0.239
LLOG 0.074 (0.008) 0.082 (0.005) 0.077 (0.007) 0.081 (0.010) 0.145 (0.014) 0.160 (0.017) — 0.207
Solar Flare 0.793 (0.007)* 0.795 (0.007)* 0.795 (0.007)* 0.795 (0.007)* 0.768 (0.061) 0.795 (0.007)* 0.772 (0.029) 0.785
Bridges 0.044 (0.028) 0.049 (0.028) 0.035 (0.024) 0.023 (0.028) 0.033 (0.019) 0.047 (0.023) 0.040 (0.031) 0.140
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.914

Table A.9: Results using CR with 90% of the original features.
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A.2 Classifier Chains (CC) Results

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.687 (0.058) 0.706 (0.012) 0.699 (0.020) 0.706 (0.012) 0.601 (0.011) 0.599 (0.017) 0.612 (0.020) 0.709
Scene 0.785 (0.016) 0.788 (0.010) 0.792 (0.007) 0.787 (0.004) 0.807 (0.005) 0.789 (0.012) 0.753 (0.008) 0.853
Yeast 0.661 (0.017) 0.661 (0.022) 0.673 (0.019) 0.651 (0.021) 0.678 (0.016) 0.677 (0.005) 0.643 (0.008) 0.735
ENRON 0.915 (0.001) 0.915 (0.002) 0.917 (0.002) 0.917 (0.002) 0.926 (0.004) 0.932 (0.002) 0.878 (0.002) 0.935
Medical 0.961 (0.001) 0.962 (0.002) 0.961 (0.002) 0.962 (0.001) 0.962 (0.004) 0.967 (0.003) — 0.988
Slashdot 0.908 (0.001) 0.907 (0.002) 0.907 (0.001) 0.907 (0.001) 0.921 (0.004) 0.920 (0.003) — 0.938
LLOG 0.980 (0.002)* 0.981 (0.001)* 0.981 (0.001)* 0.982 (0.002)* 0.980 (0.003)* 0.978 (0.003) — 0.980
Solar Flare 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.864 (0.008) 0.905
Bridges — — — — — — — 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.001) 0.987

Exact Match Ratio (EMR)

Music 0.212 (0.038)* 0.206 (0.022)* 0.197 (0.030)* 0.209 (0.020)* 0.149 (0.015) 0.144 (0.017) 0.151 (0.028) 0.169
Scene 0.350 (0.042) 0.360 (0.025) 0.366 (0.020) 0.355 (0.014) 0.408 (0.016) 0.357 (0.026) 0.366 (0.023) 0.523
Yeast 0.012 (0.007) 0.018 (0.011) 0.012 (0.006) 0.011 (0.004) 0.059 (0.015) 0.056 (0.005) 0.060 (0.007) 0.132
ENRON 0.013 (0.005) 0.016 (0.003) 0.019 (0.006) 0.014 (0.006) 0.036 (0.008) 0.046 (0.012) 0.035 (0.008) 0.048
Medical 0.046 (0.020) 0.040 (0.013) 0.053 (0.014) 0.053 (0.020) 0.198 (0.031) 0.205 (0.031) — 0.630
Slashdot 0.061 (0.006) 0.059 (0.009) 0.057 (0.003) 0.058 (0.008) 0.192 (0.017) 0.163 (0.011) — 0.309
LLOG 0.124 (0.018) 0.126 (0.014) 0.123 (0.016) 0.133 (0.018) 0.186 (0.020) 0.181 (0.016) — 0.214
Solar Flare 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.791 (0.017)* 0.785
Bridges — — — — — — — 0.140
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.920

Table A.10: Results using CC with 10% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.668 (0.052) 0.698 (0.015) 0.694 (0.013) 0.690 (0.018) 0.603 (0.012) 0.604 (0.013) 0.581 (0.019) 0.709
Scene 0.772 (0.017) 0.784 (0.006) 0.774 (0.009) 0.780 (0.008) 0.810 (0.005) 0.782 (0.010) 0.743 (0.008) 0.853
Yeast 0.653 (0.021) 0.662 (0.023) 0.654 (0.015) 0.658 (0.021) 0.668 (0.013) 0.676 (0.008) 0.646 (0.014) 0.735
ENRON 0.914 (0.001) 0.914 (0.002) 0.914 (0.002) 0.915 (0.001) 0.926 (0.005) 0.930 (0.002) 0.874 (0.002) 0.935
Medical 0.958 (0.001) 0.959 (0.001) 0.958 (0.002) 0.957 (0.002) 0.952 (0.006) 0.968 (0.003) — 0.988
Slashdot 0.905 (0.001) 0.906 (0.001) 0.906 (0.001) 0.905 (0.001) 0.911 (0.008) 0.920 (0.001) — 0.938
LLOG 0.978 (0.001) 0.979 (0.001) 0.979 (0.001) 0.979 (0.001) 0.978 (0.003) 0.978 (0.003) — 0.980
Solar Flare 0.911 (0.008)* 0.911 (0.008)* 0.909 (0.007)* 0.911 (0.008)* 0.911 (0.008)* 0.911 (0.008)* 0.866 (0.004) 0.905
Bridges 0.557 (0.037) 0.570 (0.033) 0.550 (0.045) 0.532 (0.059) 0.506 (0.061) 0.561 (0.035) 0.538 (0.019) 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.987

Exact Match Ratio (EMR)

Music 0.173 (0.025)* 0.194 (0.019)* 0.178 (0.015)* 0.190 (0.018)* 0.151 (0.012) 0.149 (0.014) 0.118 (0.018) 0.169
Scene 0.318 (0.047) 0.349 (0.017) 0.319 (0.021) 0.337 (0.021) 0.410 (0.012) 0.343 (0.022) 0.337 (0.025) 0.523
Yeast 0.013 (0.007) 0.016 (0.010) 0.015 (0.005) 0.015 (0.008) 0.054 (0.005) 0.058 (0.011) 0.059 (0.011) 0.132
ENRON 0.013 (0.003) 0.015 (0.002) 0.014 (0.004) 0.015 (0.004) 0.042 (0.010) 0.040 (0.012) 0.034 (0.011) 0.048
Medical 0.058 (0.008) 0.062 (0.014) 0.059 (0.011) 0.064 (0.007) 0.201 (0.022) 0.200 (0.053) — 0.630
Slashdot 0.061 (0.008) 0.064 (0.010) 0.062 (0.009) 0.057 (0.008) 0.188 (0.018) 0.160 (0.008) — 0.309
LLOG 0.107 (0.014) 0.111 (0.013) 0.112 (0.017) 0.110 (0.010) 0.195 (0.014) 0.185 (0.014) — 0.214
Solar Flare 0.794 (0.015)* 0.794 (0.015)* 0.790 (0.015)* 0.794 (0.015)* 0.794 (0.015)* 0.794 (0.015)* 0.796 (0.010)* 0.785
Bridges 0.051 (0.025) 0.044 (0.016) 0.047 (0.015) 0.035 (0.024) 0.016 (0.021) 0.030 (0.026) 0.063 (0.015) 0.140
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.920

Table A.11: Results using CC with 20% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.665 (0.044) 0.694 (0.015) 0.683 (0.024) 0.687 (0.012) 0.605 (0.015) 0.594 (0.013) 0.593 (0.016) 0.709
Scene 0.768 (0.016) 0.781 (0.004) 0.776 (0.009) 0.778 (0.007) 0.805 (0.006) 0.790 (0.014) 0.741 (0.007) 0.853
Yeast 0.665 (0.007) 0.657 (0.016) 0.658 (0.014) 0.656 (0.016) 0.667 (0.014) 0.682 (0.012) 0.647 (0.010) 0.735
ENRON 0.913 (0.002) 0.913 (0.002) 0.912 (0.002) 0.913 (0.001) 0.923 (0.003) 0.930 (0.002) 0.871 (0.003) 0.935
Medical 0.957 (0.002) 0.955 (0.002) 0.955 (0.002) 0.957 (0.001) 0.937 (0.008) 0.964 (0.005) — 0.988
Slashdot 0.905 (0.001) 0.905 (0.001) 0.904 (0.001) 0.905 (0.001) 0.906 (0.010) 0.919 (0.004) — 0.938
LLOG 0.978 (0.001) 0.977 (0.001) 0.977 (0.001) 0.978 (0.001) 0.976 (0.002) 0.978 (0.004) — 0.980
Solar Flare 0.908 (0.009)* 0.910 (0.006)* 0.909 (0.008)* 0.910 (0.006)* 0.910 (0.006)* 0.910 (0.006)* 0.864 (0.007) 0.905
Bridges 0.527 (0.055) 0.537 (0.041) 0.544 (0.029) 0.520 (0.051) 0.441 (0.029) 0.544 (0.046) 0.534 (0.022) 0.622
Thyroid 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.959 (0.000) 0.987

Exact Match Ratio (EMR)

Music 0.167 (0.020) 0.178 (0.028)* 0.170 (0.029)* 0.194 (0.021)* 0.149 (0.021) 0.140 (0.015) 0.116 (0.025) 0.169
Scene 0.304 (0.044) 0.340 (0.013) 0.329 (0.026) 0.335 (0.018) 0.400 (0.017) 0.365 (0.033) 0.330 (0.018) 0.523
Yeast 0.021 (0.005) 0.017 (0.011) 0.016 (0.004) 0.019 (0.006) 0.053 (0.003) 0.064 (0.012) 0.059 (0.004) 0.132
ENRON 0.014 (0.006) 0.015 (0.003) 0.017 (0.006) 0.014 (0.004) 0.029 (0.005) 0.045 (0.013) 0.022 (0.008) 0.048
Medical 0.062 (0.016) 0.054 (0.009) 0.065 (0.013) 0.064 (0.014) 0.207 (0.014) 0.180 (0.050) — 0.630
Slashdot 0.067 (0.008) 0.070 (0.009) 0.065 (0.007) 0.066 (0.006) 0.185 (0.010) 0.162 (0.011) — 0.309
LLOG 0.096 (0.007) 0.091 (0.008) 0.098 (0.014) 0.097 (0.011) 0.195 (0.026) 0.178 (0.024) — 0.214
Solar Flare 0.788 (0.024)* 0.794 (0.012)* 0.789 (0.022)* 0.794 (0.012)* 0.794 (0.012)* 0.794 (0.012)* 0.790 (0.022)* 0.785
Bridges 0.035 (0.024) 0.037 (0.016) 0.049 (0.022) 0.042 (0.025) 0.021 (0.016) 0.026 (0.016) 0.049 (0.020) 0.140
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.920

Table A.12: Results using CC with 30% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.677 (0.035) 0.680 (0.020) 0.672 (0.016) 0.691 (0.013) 0.608 (0.021) 0.597 (0.016) 0.586 (0.026) 0.709
Scene 0.770 (0.016) 0.780 (0.008) 0.775 (0.007) 0.778 (0.005) 0.806 (0.006) 0.788 (0.011) 0.738 (0.007) 0.853
Yeast 0.661 (0.012) 0.658 (0.011) 0.668 (0.012) 0.660 (0.015) 0.678 (0.013) 0.683 (0.007) 0.649 (0.007) 0.735
ENRON 0.913 (0.002) 0.912 (0.002) 0.912 (0.002) 0.912 (0.002) 0.922 (0.003) 0.930 (0.003) — 0.935
Medical 0.955 (0.002) 0.956 (0.002) 0.954 (0.002) 0.956 (0.002) 0.963 (0.017) 0.970 (0.002) — 0.988
Slashdot 0.905 (0.001) 0.904 (0.001) 0.904 (0.001) 0.905 (0.001) 0.909 (0.006) 0.920 (0.003) — 0.938
LLOG 0.977 (0.001) 0.977 (0.001) 0.977 (0.000) 0.977 (0.000) 0.976 (0.002) 0.978 (0.003) — 0.980
Solar Flare 0.910 (0.008)* 0.910 (0.008)* 0.910 (0.008)* 0.909 (0.009)* 0.910 (0.008)* 0.910 (0.008)* 0.865 (0.007) 0.905
Bridges 0.527 (0.058) 0.540 (0.051) 0.549 (0.041) 0.517 (0.032) 0.466 (0.066) 0.540 (0.034) 0.525 (0.042) 0.622
Thyroid 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.957 (0.011) 0.961 (0.001) 0.959 (0.000) 0.987

Exact Match Ratio (EMR)

Music 0.155 (0.040) 0.164 (0.024) 0.162 (0.019) 0.179 (0.015)* 0.150 (0.013) 0.141 (0.011) 0.115 (0.014) 0.169
Scene 0.310 (0.041) 0.340 (0.016) 0.321 (0.018) 0.331 (0.016) 0.400 (0.015) 0.360 (0.028) 0.322 (0.015) 0.523
Yeast 0.022 (0.006) 0.022 (0.009) 0.024 (0.011) 0.025 (0.009) 0.059 (0.010) 0.067 (0.010) 0.056 (0.011) 0.132
ENRON 0.014 (0.003) 0.016 (0.004) 0.013 (0.004) 0.016 (0.006) 0.028 (0.007) 0.038 (0.010) — 0.048
Medical 0.058 (0.013) 0.060 (0.011) 0.063 (0.009) 0.066 (0.013) 0.231 (0.017) 0.092 (0.087) — 0.630
Slashdot 0.071 (0.006) 0.069 (0.005) 0.067 (0.005) 0.070 (0.006) 0.186 (0.007) 0.167 (0.009) — 0.309
LLOG 0.092 (0.013) 0.095 (0.007) 0.089 (0.007) 0.095 (0.009) 0.184 (0.019) 0.191 (0.017) — 0.214
Solar Flare 0.794 (0.018)* 0.794 (0.018)* 0.794 (0.018)* 0.791 (0.024)* 0.794 (0.018)* 0.794 (0.018)* 0.795 (0.016)* 0.785
Bridges 0.058 (0.026) 0.058 (0.024) 0.058 (0.022) 0.044 (0.022) 0.014 (0.011) 0.040 (0.015) 0.047 (0.021) 0.140
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.725 (0.054) 0.743 (0.003) 0.743 (0.003) 0.920

Table A.13: Results using CC with 40% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.658 (0.032) 0.686 (0.013) 0.670 (0.017) 0.694 (0.016) 0.609 (0.024) 0.594 (0.012) 0.571 (0.020) 0.709
Scene 0.762 (0.013) 0.778 (0.007) 0.772 (0.010) 0.774 (0.008) 0.808 (0.008) 0.796 (0.007) 0.737 (0.008) 0.853
Yeast 0.660 (0.009) 0.657 (0.011) 0.655 (0.006) 0.655 (0.008) 0.669 (0.011) 0.675 (0.012) 0.646 (0.007) 0.735
ENRON 0.911 (0.001) 0.912 (0.002) 0.911 (0.001) 0.911 (0.002) 0.923 (0.003) 0.930 (0.003) — 0.935
Medical 0.954 (0.001) 0.954 (0.001) 0.954 (0.002) 0.956 (0.001) 0.965 (0.013) 0.969 (0.004) — 0.988
Slashdot 0.903 (0.001) 0.904 (0.001) 0.905 (0.001) 0.904 (0.001) 0.910 (0.009) 0.921 (0.000) — 0.938
LLOG 0.977 (0.001) 0.976 (0.001) 0.976 (0.000) 0.977 (0.001) 0.977 (0.003) 0.978 (0.003) — 0.980
Solar Flare 0.911 (0.005)* 0.911 (0.005)* 0.911 (0.005)* 0.911 (0.005)* 0.910 (0.006)* 0.911 (0.005)* 0.866 (0.007) 0.905
Bridges 0.549 (0.036) 0.530 (0.042) 0.512 (0.046) 0.524 (0.057) 0.455 (0.041) 0.554 (0.039) 0.517 (0.021) 0.622
Thyroid 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.959 (0.000) 0.987

Exact Match Ratio (EMR)

Music 0.142 (0.037) 0.176 (0.011)* 0.159 (0.026) 0.169 (0.026)* 0.142 (0.010) 0.137 (0.009) 0.093 (0.022) 0.169
Scene 0.295 (0.037) 0.338 (0.011) 0.315 (0.027) 0.324 (0.015) 0.409 (0.014) 0.378 (0.017) 0.317 (0.023) 0.523
Yeast 0.027 (0.011) 0.020 (0.008) 0.022 (0.004) 0.021 (0.008) 0.055 (0.002) 0.059 (0.008) 0.057 (0.011) 0.132
ENRON 0.013 (0.003) 0.013 (0.003) 0.016 (0.004) 0.012 (0.003) 0.035 (0.010) 0.040 (0.013) — 0.048
Medical 0.061 (0.008) 0.062 (0.012) 0.062 (0.012) 0.062 (0.011) 0.239 (0.022) 0.065 (0.080) — 0.630
Slashdot 0.066 (0.009) 0.068 (0.006) 0.073 (0.010) 0.064 (0.007) 0.184 (0.017) 0.179 (0.006) — 0.309
LLOG 0.091 (0.016) 0.089 (0.010) 0.086 (0.010) 0.091 (0.007) 0.186 (0.015) 0.182 (0.019) — 0.214
Solar Flare 0.795 (0.010)* 0.795 (0.010)* 0.795 (0.010)* 0.795 (0.010)* 0.792 (0.013)* 0.795 (0.010)* 0.797 (0.013)* 0.785
Bridges 0.049 (0.027) 0.040 (0.035) 0.040 (0.030) 0.037 (0.019) 0.014 (0.015) 0.037 (0.019) 0.035 (0.019) 0.140
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.920

Table A.14: Results using CC with 50% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.663 (0.028) 0.680 (0.013) 0.674 (0.016) 0.690 (0.014) 0.615 (0.016) 0.609 (0.019) 0.589 (0.022) 0.709
Scene 0.767 (0.015) 0.778 (0.007) 0.777 (0.008) 0.775 (0.008) 0.805 (0.006) 0.794 (0.009) 0.738 (0.009) 0.853
Yeast 0.659 (0.010) 0.655 (0.010) 0.661 (0.009) 0.655 (0.014) 0.674 (0.010) 0.684 (0.013) 0.647 (0.008) 0.735
ENRON 0.911 (0.001) 0.910 (0.002) 0.911 (0.002) 0.912 (0.002) 0.923 (0.005) 0.930 (0.003) — 0.935
Medical 0.954 (0.002) 0.954 (0.002) 0.953 (0.002) 0.954 (0.001) 0.959 (0.012) 0.971 (0.002) — 0.988
Slashdot 0.903 (0.001) 0.903 (0.001) 0.903 (0.001) 0.904 (0.001) 0.904 (0.005) 0.922 (0.001) — 0.938
LLOG 0.976 (0.001) 0.976 (0.001) 0.976 (0.001) 0.976 (0.001) 0.975 (0.002) 0.980 (0.003)* — 0.980
Solar Flare 0.911 (0.004)* 0.911 (0.004)* 0.909 (0.007)* 0.911 (0.004)* 0.911 (0.004)* 0.911 (0.004)* 0.863 (0.010) 0.905
Bridges 0.546 (0.026) 0.551 (0.028) 0.520 (0.053) 0.540 (0.036) 0.472 (0.031) 0.542 (0.038) 0.490 (0.028) 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.987

Exact Match Ratio (EMR)

Music 0.146 (0.036) 0.160 (0.024) 0.154 (0.025) 0.164 (0.016) 0.148 (0.016) 0.140 (0.012) 0.110 (0.021) 0.169
Scene 0.306 (0.043) 0.340 (0.021) 0.336 (0.020) 0.328 (0.015) 0.397 (0.014) 0.372 (0.020) 0.321 (0.026) 0.523
Yeast 0.023 (0.009) 0.023 (0.008) 0.027 (0.012) 0.025 (0.012) 0.059 (0.007) 0.068 (0.012) 0.056 (0.009) 0.132
ENRON 0.013 (0.004) 0.014 (0.004) 0.013 (0.005) 0.014 (0.005) 0.031 (0.007) 0.038 (0.011) — 0.048
Medical 0.055 (0.010) 0.054 (0.012) 0.056 (0.006) 0.061 (0.010) 0.223 (0.022) 0.064 (0.092) — 0.630
Slashdot 0.070 (0.007) 0.069 (0.005) 0.065 (0.009) 0.065 (0.007) 0.173 (0.006) 0.184 (0.008) — 0.309
LLOG 0.088 (0.009) 0.092 (0.012) 0.088 (0.010) 0.081 (0.010) 0.173 (0.014) 0.173 (0.023) — 0.214
Solar Flare 0.795 (0.010)* 0.795 (0.010)* 0.790 (0.015)* 0.795 (0.010)* 0.795 (0.011)* 0.795 (0.010)* 0.788 (0.018)* 0.785
Bridges 0.037 (0.019) 0.040 (0.028) 0.037 (0.028) 0.047 (0.029) 0.021 (0.020) 0.019 (0.023) 0.037 (0.012) 0.140
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.920

Table A.15: Results using CC with 60% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.669 (0.028) 0.678 (0.010) 0.658 (0.017) 0.684 (0.021) 0.607 (0.021) 0.607 (0.010) 0.588 (0.017) 0.709
Scene 0.769 (0.012) 0.780 (0.011) 0.777 (0.007) 0.775 (0.005) 0.805 (0.005) 0.790 (0.010) 0.739 (0.006) 0.853
Yeast 0.659 (0.010) 0.656 (0.010) 0.660 (0.009) 0.661 (0.011) 0.669 (0.011) 0.673 (0.015) 0.643 (0.008) 0.735
ENRON 0.910 (0.001) 0.910 (0.001) 0.911 (0.002) 0.911 (0.001) 0.923 (0.005) 0.931 (0.003) — 0.935
Medical 0.953 (0.001) 0.952 (0.001) 0.953 (0.002) 0.954 (0.002) 0.957 (0.010) 0.970 (0.004) — 0.988
Slashdot 0.903 (0.001) 0.904 (0.001) 0.903 (0.001) 0.904 (0.001) 0.900 (0.012) 0.921 (0.001) — 0.938
LLOG 0.975 (0.000) 0.976 (0.001) 0.975 (0.001) 0.976 (0.000) 0.974 (0.001) 0.979 (0.004) — 0.980
Solar Flare 0.910 (0.005)* 0.908 (0.005)* 0.910 (0.005)* 0.910 (0.005)* 0.910 (0.005)* 0.910 (0.005)* 0.864 (0.008) 0.905
Bridges 0.547 (0.029) 0.548 (0.033) 0.540 (0.040) 0.529 (0.048) 0.494 (0.023) 0.561 (0.030) 0.499 (0.013) 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.957 (0.010) 0.961 (0.000) 0.959 (0.000) 0.987

Exact Match Ratio (EMR)

Music 0.152 (0.029) 0.160 (0.021) 0.136 (0.023) 0.170 (0.033)* 0.146 (0.014) 0.147 (0.016) 0.102 (0.020) 0.169
Scene 0.313 (0.031) 0.343 (0.020) 0.329 (0.017) 0.326 (0.012) 0.394 (0.016) 0.360 (0.023) 0.326 (0.017) 0.523
Yeast 0.030 (0.008) 0.024 (0.008) 0.028 (0.008) 0.031 (0.011) 0.059 (0.007) 0.059 (0.010) 0.052 (0.009) 0.132
ENRON 0.015 (0.004) 0.014 (0.005) 0.012 (0.002) 0.010 (0.003) 0.032 (0.007) 0.048 (0.010)* — 0.048
Medical 0.059 (0.009) 0.052 (0.014) 0.056 (0.012) 0.059 (0.012) 0.234 (0.022) 0.060 (0.081) — 0.630
Slashdot 0.068 (0.008) 0.070 (0.007) 0.068 (0.005) 0.071 (0.007) 0.181 (0.019) 0.179 (0.005) — 0.309
LLOG 0.077 (0.013) 0.085 (0.012) 0.079 (0.009) 0.086 (0.007) 0.166 (0.010) 0.175 (0.013) — 0.214
Solar Flare 0.794 (0.008)* 0.788 (0.009)* 0.794 (0.008)* 0.794 (0.008)* 0.794 (0.008)* 0.794 (0.008)* 0.792 (0.017)* 0.785
Bridges 0.044 (0.019) 0.047 (0.029) 0.040 (0.028) 0.042 (0.025) 0.040 (0.018) 0.044 (0.016) 0.035 (0.019) 0.140
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.725 (0.056) 0.743 (0.003) 0.743 (0.002) 0.920

Table A.16: Results using CC with 70% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.655 (0.026) 0.675 (0.017) 0.662 (0.016) 0.685 (0.014) 0.614 (0.023) 0.601 (0.020) 0.581 (0.016) 0.709
Scene 0.771 (0.015) 0.777 (0.006) 0.776 (0.011) 0.774 (0.005) 0.807 (0.006) 0.789 (0.014) 0.735 (0.008) 0.853
Yeast 0.654 (0.006) 0.650 (0.007) 0.661 (0.007) 0.658 (0.011) 0.677 (0.023) 0.672 (0.010) 0.650 (0.005) 0.735
ENRON 0.911 (0.001) 0.910 (0.001) 0.910 (0.002) 0.911 (0.002) 0.923 (0.004) 0.930 (0.002) — 0.935
Medical 0.952 (0.002) 0.952 (0.001) 0.951 (0.001) 0.954 (0.002) 0.952 (0.013) 0.969 (0.003) — 0.988
Slashdot 0.903 (0.001) 0.903 (0.001) 0.903 (0.001) 0.904 (0.001) 0.904 (0.011) 0.921 (0.001) — 0.938
LLOG 0.975 (0.001) 0.975 (0.001) 0.975 (0.001) 0.975 (0.001) 0.974 (0.002) 0.979 (0.004) — 0.980
Solar Flare 0.910 (0.007)* 0.911 (0.006)* 0.910 (0.007)* 0.910 (0.007)* 0.911 (0.006)* 0.911 (0.006)* 0.864 (0.007) 0.905
Bridges 0.534 (0.018) 0.521 (0.047) 0.523 (0.037) 0.518 (0.074) 0.469 (0.037) 0.559 (0.022) 0.488 (0.071) 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.957 (0.010) 0.961 (0.000) 0.959 (0.000) 0.987

Exact Match Ratio (EMR)

Music 0.141 (0.031) 0.161 (0.017) 0.142 (0.013) 0.180 (0.023)* 0.149 (0.016) 0.134 (0.015) 0.107 (0.019) 0.169
Scene 0.320 (0.043) 0.337 (0.013) 0.329 (0.024) 0.324 (0.016) 0.405 (0.019) 0.355 (0.033) 0.316 (0.021) 0.523
Yeast 0.026 (0.005) 0.023 (0.007) 0.033 (0.011) 0.029 (0.010) 0.067 (0.016) 0.059 (0.011) 0.060 (0.007) 0.132
ENRON 0.013 (0.004) 0.013 (0.004) 0.013 (0.004) 0.012 (0.004) 0.034 (0.005) 0.036 (0.011) — 0.048
Medical 0.064 (0.008) 0.053 (0.008) 0.053 (0.010) 0.056 (0.011) 0.227 (0.023) 0.121 (0.101) — 0.630
Slashdot 0.068 (0.006) 0.067 (0.005) 0.068 (0.004) 0.067 (0.006) 0.175 (0.016) 0.184 (0.005) — 0.309
LLOG 0.080 (0.009) 0.081 (0.012) 0.077 (0.009) 0.083 (0.010) 0.180 (0.017) 0.174 (0.019) — 0.214
Solar Flare 0.792 (0.014)* 0.794 (0.012)* 0.791 (0.017)* 0.791 (0.016)* 0.795 (0.012)* 0.795 (0.012)* 0.788 (0.015)* 0.785
Bridges 0.028 (0.025) 0.033 (0.026) 0.051 (0.020) 0.047 (0.028) 0.030 (0.015) 0.056 (0.019) 0.040 (0.033) 0.140
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.725 (0.056) 0.743 (0.002) 0.743 (0.002) 0.920

Table A.17: Results using CC with 80% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.648 (0.033) 0.686 (0.018) 0.655 (0.012) 0.682 (0.023) 0.638 (0.024) 0.596 (0.012) 0.582 (0.017) 0.709
Scene 0.761 (0.013) 0.773 (0.019) 0.770 (0.006) 0.771 (0.006) 0.800 (0.009) 0.784 (0.012) 0.731 (0.008) 0.853
Yeast 0.658 (0.009) 0.661 (0.009) 0.662 (0.012) 0.654 (0.011) 0.678 (0.012) 0.674 (0.014) 0.644 (0.004) 0.735
ENRON 0.909 (0.001) 0.910 (0.001) 0.910 (0.002) 0.911 (0.001) 0.923 (0.003) 0.931 (0.001) — 0.935
Medical 0.951 (0.002) 0.953 (0.001) 0.952 (0.002) 0.954 (0.002) 0.943 (0.014) 0.968 (0.004) — 0.988
Slashdot 0.903 (0.001) 0.903 (0.001) 0.902 (0.001) 0.903 (0.001) 0.902 (0.009) 0.921 (0.001) — 0.938
LLOG 0.975 (0.001) 0.975 (0.000) 0.975 (0.001) 0.975 (0.000) 0.974 (0.002) 0.978 (0.003) — 0.980
Solar Flare 0.910 (0.005)* 0.911 (0.004)* 0.911 (0.004)* 0.911 (0.004)* 0.911 (0.004)* 0.911 (0.004)* 0.861 (0.009) 0.905
Bridges 0.534 (0.040) 0.535 (0.031) 0.501 (0.045) 0.532 (0.044) 0.499 (0.023) 0.553 (0.041) 0.514 (0.043) 0.622
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.001) 0.987

Exact Match Ratio (EMR)

Music 0.137 (0.030) 0.154 (0.021) 0.139 (0.014) 0.161 (0.024) 0.134 (0.010) 0.144 (0.019) 0.104 (0.013) 0.169
Scene 0.296 (0.034) 0.329 (0.023) 0.319 (0.014) 0.312 (0.010) 0.384 (0.021) 0.346 (0.036) 0.306 (0.022) 0.523
Yeast 0.028 (0.007) 0.027 (0.015) 0.032 (0.009) 0.026 (0.012) 0.063 (0.013) 0.065 (0.012) 0.053 (0.005) 0.132
ENRON 0.013 (0.003) 0.012 (0.004) 0.011 (0.003) 0.013 (0.004) 0.033 (0.007) 0.045 (0.011) — 0.048
Medical 0.058 (0.006) 0.053 (0.009) 0.058 (0.012) 0.057 (0.012) 0.240 (0.026) 0.128 (0.083) — 0.630
Slashdot 0.068 (0.007) 0.068 (0.008) 0.067 (0.006) 0.065 (0.005) 0.170 (0.008) 0.179 (0.006) — 0.309
LLOG 0.083 (0.009) 0.077 (0.009) 0.078 (0.009) 0.082 (0.009) 0.170 (0.012) 0.179 (0.022) — 0.214
Solar Flare 0.793 (0.007)* 0.795 (0.007)* 0.795 (0.007)* 0.795 (0.007)* 0.795 (0.007)* 0.795 (0.007)* 0.783 (0.018) 0.785
Bridges 0.040 (0.024) 0.051 (0.023) 0.035 (0.019) 0.026 (0.028) 0.032 (0.024) 0.042 (0.025) 0.051 (0.033) 0.140
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.920

Table A.18: Results using CC with 90% of the original features.
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A.3 Ensemble of Classifier Chains (ECC) Results

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.715 (0.022) 0.723 (0.016) 0.717 (0.015) 0.725 (0.018) 0.635 (0.022) 0.597 (0.012) 0.623 (0.026) 0.771
Scene 0.822 (0.015) 0.825 (0.006) 0.832 (0.009) 0.826 (0.008) 0.822 (0.015) 0.776 (0.009) 0.779 (0.006) 0.897
Yeast 0.736 (0.002) 0.735 (0.003) 0.738 (0.003) 0.734 (0.001) 0.734 (0.007) 0.731 (0.007) 0.708 (0.004) 0.793
ENRON 0.933 (0.001) 0.933 (0.001) 0.933 (0.001) 0.933 (0.001) 0.940 (0.002) 0.941 (0.002) 0.892 (0.001) 0.942
Medical 0.972 (0.001) 0.972 (0.000) 0.971 (0.000) 0.971 (0.001) 0.970 (0.004) 0.974 (0.002) — 0.989
Slashdot 0.946 (0.000) 0.946 (0.000) 0.946 (0.000) 0.946 (0.000) 0.941 (0.001) 0.947 (0.003) — 0.951
LLOG 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.983 (0.001)* 0.983 (0.001)* — 0.983
Solar Flare 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.866 (0.007) 0.905
Bridges — — — — — — — 0.590
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.001) 0.986

Exact Match Ratio (EMR)

Music 0.192 (0.065) 0.228 (0.024) 0.207 (0.028) 0.218 (0.024) 0.152 (0.020) 0.122 (0.022) 0.124 (0.023) 0.245
Scene 0.339 (0.080) 0.368 (0.017) 0.349 (0.025) 0.338 (0.015) 0.401 (0.027) 0.275 (0.028) 0.338 (0.014) 0.573
Yeast 0.032 (0.006) 0.031 (0.004) 0.032 (0.005) 0.027 (0.004) 0.081 (0.007) 0.086 (0.006) 0.056 (0.007) 0.175
ENRON 0.002 (0.002) 0.003 (0.002) 0.002 (0.002) 0.003 (0.003) 0.034 (0.006) 0.036 (0.011) 0.026 (0.004) 0.069
Medical 0.005 (0.005) 0.004 (0.004) 0.009 (0.009) 0.008 (0.005) 0.191 (0.035) 0.182 (0.029) — 0.640
Slashdot 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.145 (0.008) 0.090 (0.009) — 0.230
LLOG 0.154 (0.005) 0.154 (0.004) 0.154 (0.005) 0.154 (0.005) 0.168 (0.006) 0.158 (0.016) — 0.197
Solar Flare 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.797 (0.012)* 0.785
Bridges — — — — — — — 0.116
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.918

Table A.19: Results using ECC with 10% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.714 (0.016) 0.722 (0.017) 0.715 (0.024) 0.727 (0.015) 0.638 (0.011) 0.596 (0.014) 0.609 (0.018) 0.771
Scene 0.823 (0.015) 0.833 (0.009) 0.825 (0.007) 0.826 (0.007) 0.824 (0.012) 0.776 (0.004) 0.775 (0.007) 0.897
Yeast 0.739 (0.003) 0.736 (0.002) 0.738 (0.003) 0.737 (0.003) 0.739 (0.007) 0.725 (0.006) 0.707 (0.004) 0.793
ENRON 0.932 (0.001) 0.932 (0.001) 0.932 (0.000) 0.932 (0.001) 0.938 (0.004) 0.941 (0.001) 0.892 (0.004) 0.942
Medical 0.971 (0.000) 0.971 (0.000) 0.970 (0.001) 0.971 (0.000) 0.963 (0.007) 0.974 (0.002) — 0.989
Slashdot 0.946 (0.000) 0.946 (0.000) 0.946 (0.000) 0.946 (0.000) 0.933 (0.005) 0.944 (0.005) — 0.951
LLOG 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.001)* 0.983 (0.001)* — 0.983
Solar Flare 0.911 (0.008)* 0.911 (0.008)* 0.909 (0.007)* 0.911 (0.008)* 0.911 (0.008)* 0.911 (0.008)* 0.866 (0.004) 0.905
Bridges 0.516 (0.035) 0.514 (0.053) 0.507 (0.053) 0.477 (0.053) 0.438 (0.027) 0.540 (0.038) 0.522 (0.030) 0.590
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.181 (0.064) 0.214 (0.026) 0.207 (0.035) 0.216 (0.018) 0.158 (0.014) 0.120 (0.018) 0.121 (0.022) 0.245
Scene 0.291 (0.072) 0.333 (0.014) 0.307 (0.019) 0.309 (0.013) 0.404 (0.016) 0.267 (0.016) 0.317 (0.026) 0.573
Yeast 0.030 (0.005) 0.027 (0.005) 0.030 (0.007) 0.031 (0.006) 0.085 (0.006) 0.084 (0.009) 0.050 (0.010) 0.175
ENRON 0.003 (0.002) 0.004 (0.002) 0.004 (0.002) 0.003 (0.003) 0.031 (0.006) 0.034 (0.008) 0.019 (0.009) 0.069
Medical 0.018 (0.004) 0.020 (0.005) 0.016 (0.008) 0.018 (0.005) 0.232 (0.020) 0.173 (0.045) — 0.640
Slashdot 0.000 (0.000) 0.000 (0.001) 0.000 (0.001) 0.001 (0.001) 0.152 (0.009) 0.086 (0.004) — 0.230
LLOG 0.154 (0.005) 0.154 (0.005) 0.154 (0.005) 0.154 (0.005) 0.162 (0.011) 0.166 (0.005) — 0.197
Solar Flare 0.796 (0.016)* 0.796 (0.016)* 0.791 (0.013)* 0.796 (0.016)* 0.796 (0.016)* 0.796 (0.016)* 0.796 (0.010)* 0.785
Bridges 0.035 (0.024) 0.030 (0.021) 0.033 (0.019) 0.030 (0.028) 0.021 (0.022) 0.032 (0.028) 0.054 (0.018) 0.116
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.743 (0.002) 0.743 (0.003) 0.918

Table A.20: Results using ECC with 20% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.719 (0.021) 0.726 (0.010) 0.720 (0.016) 0.721 (0.010) 0.647 (0.019) 0.601 (0.017) 0.610 (0.017) 0.771
Scene 0.817 (0.016) 0.829 (0.011) 0.824 (0.008) 0.831 (0.006) 0.821 (0.017) 0.782 (0.010) 0.769 (0.008) 0.897
Yeast 0.739 (0.003) 0.738 (0.003) 0.739 (0.002) 0.738 (0.002) 0.743 (0.004) 0.729 (0.006) 0.709 (0.004) 0.793
ENRON 0.931 (0.001) 0.931 (0.001) 0.931 (0.001) 0.931 (0.001) 0.938 (0.003) 0.939 (0.003) 0.889 (0.002) 0.942
Medical 0.970 (0.000) 0.970 (0.001) 0.971 (0.000) 0.971 (0.000) 0.955 (0.009) 0.973 (0.003) — 0.989
Slashdot 0.946 (0.000) 0.946 (0.000) 0.946 (0.000) 0.946 (0.000) 0.932 (0.012) 0.944 (0.005) — 0.951
LLOG 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.983 (0.001)* 0.983 (0.001)* — 0.983
Solar Flare 0.910 (0.006)* 0.910 (0.006)* 0.910 (0.006)* 0.910 (0.006)* 0.910 (0.006)* 0.910 (0.006)* 0.865 (0.006) 0.905
Bridges 0.533 (0.058) 0.532 (0.033) 0.540 (0.023) 0.496 (0.058) 0.424 (0.021) 0.540 (0.031) 0.515 (0.025) 0.590
Thyroid 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.957 (0.010) 0.961 (0.001) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.184 (0.064) 0.207 (0.030) 0.208 (0.022) 0.202 (0.030) 0.162 (0.018) 0.130 (0.022) 0.103 (0.018) 0.245
Scene 0.264 (0.072) 0.320 (0.018) 0.295 (0.030) 0.306 (0.013) 0.404 (0.019) 0.269 (0.019) 0.296 (0.025) 0.573
Yeast 0.033 (0.006) 0.031 (0.004) 0.030 (0.004) 0.031 (0.007) 0.087 (0.006) 0.091 (0.007) 0.051 (0.008) 0.175
ENRON 0.003 (0.002) 0.004 (0.003) 0.004 (0.002) 0.002 (0.001) 0.029 (0.006) 0.037 (0.014) 0.015 (0.009) 0.069
Medical 0.014 (0.007) 0.015 (0.006) 0.015 (0.005) 0.015 (0.006) 0.252 (0.012) 0.171 (0.043) — 0.640
Slashdot 0.002 (0.001) 0.002 (0.001) 0.001 (0.000) 0.001 (0.001) 0.160 (0.008) 0.087 (0.008) — 0.230
LLOG 0.153 (0.004) 0.153 (0.004) 0.153 (0.004) 0.153 (0.004) 0.164 (0.004) 0.167 (0.004) — 0.197
Solar Flare 0.794 (0.012)* 0.794 (0.012)* 0.794 (0.012)* 0.794 (0.012)* 0.794 (0.012)* 0.794 (0.012)* 0.795 (0.015)* 0.785
Bridges 0.037 (0.019) 0.037 (0.016) 0.032 (0.028) 0.044 (0.028) 0.021 (0.016) 0.016 (0.015) 0.058 (0.026) 0.116
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.725 (0.056) 0.743 (0.003) 0.743 (0.003) 0.918

Table A.21: Results using ECC with 30% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.706 (0.020) 0.721 (0.006) 0.707 (0.016) 0.728 (0.013) 0.644 (0.016) 0.601 (0.016) 0.612 (0.017) 0.771
Scene 0.821 (0.015) 0.823 (0.006) 0.822 (0.010) 0.832 (0.008) 0.825 (0.012) 0.779 (0.005) 0.772 (0.006) 0.897
Yeast 0.739 (0.003) 0.738 (0.002) 0.738 (0.004) 0.739 (0.004) 0.741 (0.004) 0.731 (0.006) 0.709 (0.003) 0.793
ENRON 0.931 (0.001) 0.932 (0.001) 0.932 (0.001) 0.931 (0.001) 0.938 (0.002) 0.940 (0.001) — 0.942
Medical 0.971 (0.000) 0.970 (0.000) 0.971 (0.000) 0.970 (0.001) 0.973 (0.009) 0.972 (0.001) — 0.989
Slashdot 0.945 (0.001) 0.945 (0.000) 0.945 (0.000) 0.945 (0.001) 0.933 (0.011) 0.941 (0.005) — 0.951
LLOG 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.983 (0.000)* 0.983 (0.001)* — 0.983
Solar Flare 0.910 (0.008)* 0.910 (0.008)* 0.910 (0.008)* 0.910 (0.008)* 0.910 (0.008)* 0.910 (0.008)* 0.865 (0.007) 0.905
Bridges 0.514 (0.051) 0.526 (0.055) 0.538 (0.045) 0.505 (0.038) 0.444 (0.050) 0.521 (0.048) 0.510 (0.046) 0.590
Thyroid 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.944 (0.017) 0.961 (0.001) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.166 (0.058) 0.214 (0.014) 0.172 (0.016) 0.210 (0.021) 0.146 (0.018) 0.123 (0.019) 0.111 (0.016) 0.245
Scene 0.266 (0.070) 0.336 (0.018) 0.302 (0.019) 0.298 (0.012) 0.414 (0.024) 0.276 (0.012) 0.304 (0.018) 0.573
Yeast 0.028 (0.004) 0.030 (0.004) 0.029 (0.006) 0.030 (0.006) 0.087 (0.005) 0.090 (0.014) 0.046 (0.009) 0.175
ENRON 0.003 (0.002) 0.003 (0.002) 0.003 (0.002) 0.003 (0.002) 0.029 (0.005) 0.036 (0.008) — 0.069
Medical 0.013 (0.006) 0.015 (0.003) 0.014 (0.006) 0.015 (0.005) 0.264 (0.015) 0.068 (0.069) — 0.640
Slashdot 0.003 (0.001) 0.002 (0.001) 0.002 (0.001) 0.002 (0.001) 0.169 (0.013) 0.093 (0.010) — 0.230
LLOG 0.153 (0.004) 0.154 (0.004) 0.153 (0.005) 0.153 (0.004) 0.167 (0.007) 0.168 (0.006) — 0.197
Solar Flare 0.794 (0.018)* 0.794 (0.018)* 0.794 (0.018)* 0.794 (0.018)* 0.794 (0.018)* 0.794 (0.018)* 0.795 (0.016)* 0.785
Bridges 0.047 (0.018) 0.042 (0.021) 0.042 (0.023) 0.040 (0.031) 0.012 (0.021) 0.033 (0.022) 0.042 (0.025) 0.116
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.652 (0.091) 0.743 (0.003) 0.743 (0.003) 0.918

Table A.22: Results using ECC with 40% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.710 (0.025) 0.731 (0.024) 0.711 (0.009) 0.736 (0.011) 0.642 (0.020) 0.598 (0.012) 0.613 (0.018) 0.771
Scene 0.815 (0.016) 0.828 (0.007) 0.820 (0.005) 0.832 (0.007) 0.828 (0.014) 0.782 (0.010) 0.769 (0.007) 0.897
Yeast 0.737 (0.003) 0.738 (0.003) 0.740 (0.003) 0.737 (0.003) 0.742 (0.004) 0.725 (0.009) 0.709 (0.003) 0.793
ENRON 0.932 (0.001) 0.931 (0.001) 0.931 (0.001) 0.932 (0.001) 0.938 (0.003) 0.939 (0.002) — 0.942
Medical 0.971 (0.000) 0.970 (0.001) 0.970 (0.001) 0.971 (0.000) 0.972 (0.011) 0.971 (0.002) — 0.989
Slashdot 0.945 (0.000) 0.945 (0.000) 0.945 (0.000) 0.945 (0.000) 0.935 (0.007) 0.940 (0.002) — 0.951
LLOG 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.983 (0.000)* 0.983 (0.001)* — 0.983
Solar Flare 0.910 (0.004)* 0.910 (0.004)* 0.910 (0.004)* 0.910 (0.004)* 0.910 (0.004)* 0.910 (0.004)* 0.865 (0.008) 0.905
Bridges 0.534 (0.042) 0.529 (0.026) 0.518 (0.036) 0.529 (0.032) 0.444 (0.030) 0.533 (0.047) 0.496 (0.032) 0.590
Thyroid 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.947 (0.017) 0.961 (0.001) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.163 (0.062) 0.223 (0.032) 0.174 (0.016) 0.227 (0.018) 0.153 (0.022) 0.126 (0.016) 0.103 (0.015) 0.245
Scene 0.260 (0.066) 0.325 (0.016) 0.289 (0.023) 0.299 (0.016) 0.414 (0.015) 0.268 (0.025) 0.296 (0.021) 0.573
Yeast 0.028 (0.004) 0.029 (0.005) 0.031 (0.007) 0.028 (0.008) 0.088 (0.005) 0.080 (0.010) 0.046 (0.007) 0.175
ENRON 0.004 (0.004) 0.004 (0.003) 0.004 (0.004) 0.004 (0.004) 0.030 (0.003) 0.040 (0.011) — 0.069
Medical 0.014 (0.005) 0.014 (0.007) 0.013 (0.007) 0.016 (0.005) 0.267 (0.016) 0.055 (0.067) — 0.640
Slashdot 0.003 (0.002) 0.003 (0.002) 0.003 (0.002) 0.002 (0.001) 0.171 (0.013) 0.111 (0.011) — 0.230
LLOG 0.153 (0.007) 0.153 (0.006) 0.154 (0.006) 0.153 (0.008) 0.169 (0.009) 0.162 (0.011) — 0.197
Solar Flare 0.795 (0.010)* 0.795 (0.010)* 0.795 (0.010)* 0.795 (0.010)* 0.795 (0.010)* 0.795 (0.010)* 0.795 (0.015)* 0.785
Bridges 0.044 (0.019) 0.040 (0.026) 0.030 (0.028) 0.040 (0.026) 0.005 (0.009) 0.018 (0.014) 0.028 (0.023) 0.116
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.670 (0.091) 0.743 (0.003) 0.743 (0.003) 0.918

Table A.23: Results using ECC with 50% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.722 (0.025) 0.730 (0.013) 0.717 (0.016) 0.729 (0.015) 0.648 (0.019) 0.602 (0.012) 0.623 (0.023) 0.771
Scene 0.816 (0.014) 0.828 (0.010) 0.824 (0.008) 0.835 (0.008) 0.826 (0.008) 0.783 (0.010) 0.769 (0.009) 0.897
Yeast 0.739 (0.003) 0.738 (0.003) 0.741 (0.004) 0.738 (0.004) 0.745 (0.004) 0.730 (0.012) 0.707 (0.003) 0.793
ENRON 0.932 (0.000) 0.931 (0.001) 0.932 (0.000) 0.931 (0.001) 0.937 (0.003) 0.939 (0.001) — 0.942
Medical 0.971 (0.001) 0.970 (0.001) 0.971 (0.000) 0.970 (0.000) 0.973 (0.006) 0.972 (0.001) — 0.989
Slashdot 0.945 (0.000) 0.945 (0.000) 0.945 (0.000) 0.945 (0.000) 0.931 (0.004) 0.940 (0.000) — 0.951
LLOG 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.983 (0.001)* 0.983 (0.001)* — 0.983
Solar Flare 0.910 (0.004)* 0.910 (0.004)* 0.910 (0.004)* 0.910 (0.004)* 0.910 (0.004)* 0.910 (0.004)* 0.864 (0.009) 0.905
Bridges 0.545 (0.014) 0.558 (0.016) 0.548 (0.024) 0.551 (0.049) 0.462 (0.038) 0.520 (0.046) 0.506 (0.033) 0.590
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.951 (0.015) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.186 (0.059) 0.208 (0.020) 0.181 (0.024) 0.214 (0.023) 0.147 (0.019) 0.115 (0.021) 0.108 (0.012) 0.245
Scene 0.271 (0.065) 0.333 (0.017) 0.319 (0.015) 0.318 (0.010) 0.412 (0.021) 0.264 (0.018) 0.288 (0.026) 0.573
Yeast 0.028 (0.004) 0.028 (0.004) 0.030 (0.004) 0.030 (0.006) 0.088 (0.007) 0.081 (0.010) 0.043 (0.008) 0.175
ENRON 0.003 (0.003) 0.005 (0.004) 0.004 (0.002) 0.004 (0.002) 0.030 (0.003) 0.039 (0.010) — 0.069
Medical 0.015 (0.004) 0.016 (0.006) 0.015 (0.003) 0.019 (0.008) 0.279 (0.015) 0.048 (0.061) — 0.640
Slashdot 0.004 (0.001) 0.004 (0.001) 0.004 (0.001) 0.003 (0.001) 0.167 (0.007) 0.122 (0.005) — 0.230
LLOG 0.153 (0.004) 0.153 (0.005) 0.154 (0.004) 0.154 (0.006) 0.166 (0.008) 0.167 (0.005) — 0.197
Solar Flare 0.794 (0.009)* 0.794 (0.009)* 0.794 (0.009)* 0.794 (0.009)* 0.794 (0.009)* 0.794 (0.009)* 0.789 (0.023)* 0.785
Bridges 0.033 (0.021) 0.033 (0.026) 0.037 (0.012) 0.040 (0.028) 0.012 (0.019) 0.012 (0.016) 0.044 (0.029) 0.116
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.690 (0.083) 0.743 (0.002) 0.743 (0.002) 0.918

Table A.24: Results using ECC with 60% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.714 (0.022) 0.728 (0.020) 0.716 (0.015) 0.731 (0.013) 0.651 (0.011) 0.618 (0.015) 0.617 (0.015) 0.771
Scene 0.824 (0.017) 0.834 (0.008) 0.821 (0.007) 0.833 (0.004) 0.822 (0.010) 0.792 (0.012) 0.771 (0.007) 0.897
Yeast 0.738 (0.003) 0.739 (0.003) 0.741 (0.003) 0.738 (0.003) 0.748 (0.006) 0.731 (0.007) 0.707 (0.002) 0.793
ENRON 0.932 (0.001) 0.931 (0.001) 0.931 (0.001) 0.932 (0.001) 0.939 (0.002) 0.940 (0.001) — 0.942
Medical 0.970 (0.000) 0.970 (0.001) 0.971 (0.001) 0.970 (0.001) 0.970 (0.008) 0.971 (0.002) — 0.989
Slashdot 0.945 (0.000) 0.945 (0.000) 0.945 (0.001) 0.945 (0.000) 0.935 (0.007) 0.940 (0.001) — 0.951
LLOG 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.983 (0.001)* 0.983 (0.001)* — 0.983
Solar Flare 0.910 (0.005)* 0.910 (0.005)* 0.910 (0.005)* 0.910 (0.005)* 0.910 (0.005)* 0.910 (0.005)* 0.866 (0.008) 0.905
Bridges 0.543 (0.046) 0.549 (0.014) 0.548 (0.022) 0.540 (0.046) 0.469 (0.022) 0.521 (0.034) 0.503 (0.044) 0.590
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.944 (0.017) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.168 (0.060) 0.216 (0.032) 0.174 (0.015) 0.215 (0.028) 0.165 (0.019) 0.122 (0.022) 0.104 (0.017) 0.245
Scene 0.275 (0.070) 0.330 (0.018) 0.314 (0.019) 0.310 (0.009) 0.407 (0.019) 0.265 (0.024) 0.299 (0.019) 0.573
Yeast 0.028 (0.005) 0.028 (0.004) 0.029 (0.004) 0.030 (0.006) 0.091 (0.007) 0.082 (0.009) 0.041 (0.006) 0.175
ENRON 0.003 (0.002) 0.003 (0.002) 0.004 (0.003) 0.003 (0.002) 0.030 (0.004) 0.044 (0.007) — 0.069
Medical 0.015 (0.003) 0.013 (0.005) 0.015 (0.008) 0.018 (0.005) 0.283 (0.015) 0.046 (0.065) — 0.640
Slashdot 0.003 (0.001) 0.003 (0.002) 0.004 (0.002) 0.004 (0.002) 0.179 (0.015) 0.122 (0.007) — 0.230
LLOG 0.153 (0.006) 0.154 (0.006) 0.153 (0.006) 0.153 (0.005) 0.170 (0.011) 0.165 (0.006) — 0.197
Solar Flare 0.793 (0.009)* 0.793 (0.009)* 0.794 (0.008)* 0.794 (0.008)* 0.794 (0.008)* 0.794 (0.008)* 0.796 (0.015)* 0.785
Bridges 0.037 (0.019) 0.047 (0.018) 0.056 (0.021) 0.058 (0.035) 0.016 (0.015) 0.030 (0.015) 0.033 (0.019) 0.116
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.650 (0.090) 0.743 (0.003) 0.743 (0.002) 0.918

Table A.25: Results using ECC with 70% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.715 (0.020) 0.728 (0.019) 0.719 (0.012) 0.727 (0.021) 0.656 (0.019) 0.623 (0.014) 0.612 (0.017) 0.771
Scene 0.816 (0.016) 0.830 (0.007) 0.828 (0.009) 0.838 (0.007) 0.828 (0.011) 0.783 (0.010) 0.768 (0.011) 0.897
Yeast 0.739 (0.003) 0.738 (0.003) 0.739 (0.003) 0.739 (0.003) 0.743 (0.005) 0.727 (0.008) 0.708 (0.003) 0.793
ENRON 0.932 (0.001) 0.931 (0.001) 0.931 (0.001) 0.931 (0.001) 0.938 (0.003) 0.940 (0.001) — 0.942
Medical 0.970 (0.001) 0.971 (0.001) 0.971 (0.001) 0.970 (0.001) 0.965 (0.011) 0.972 (0.002) — 0.989
Slashdot 0.945 (0.000) 0.945 (0.000) 0.945 (0.000) 0.945 (0.000) 0.933 (0.010) 0.939 (0.003) — 0.951
LLOG 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.983 (0.001)* 0.984 (0.001)* — 0.983
Solar Flare 0.911 (0.006)* 0.911 (0.006)* 0.911 (0.006)* 0.911 (0.007)* 0.911 (0.006)* 0.911 (0.006)* 0.864 (0.009) 0.905
Bridges 0.541 (0.027) 0.527 (0.027) 0.518 (0.040) 0.518 (0.055) 0.458 (0.030) 0.549 (0.040) 0.517 (0.037) 0.590
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.951 (0.015) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.169 (0.059) 0.204 (0.021) 0.176 (0.017) 0.206 (0.012) 0.157 (0.026) 0.127 (0.020) 0.100 (0.016) 0.245
Scene 0.270 (0.069) 0.335 (0.015) 0.330 (0.025) 0.307 (0.012) 0.409 (0.016) 0.268 (0.025) 0.283 (0.028) 0.573
Yeast 0.028 (0.005) 0.029 (0.004) 0.028 (0.003) 0.030 (0.003) 0.086 (0.008) 0.080 (0.007) 0.038 (0.008) 0.175
ENRON 0.004 (0.001) 0.003 (0.002) 0.004 (0.002) 0.004 (0.002) 0.032 (0.005) 0.035 (0.009) — 0.069
Medical 0.012 (0.005) 0.015 (0.005) 0.016 (0.008) 0.012 (0.006) 0.286 (0.018) 0.092 (0.081) — 0.640
Slashdot 0.004 (0.001) 0.004 (0.002) 0.005 (0.002) 0.004 (0.001) 0.173 (0.017) 0.119 (0.011) — 0.230
LLOG 0.153 (0.006) 0.153 (0.006) 0.152 (0.006) 0.152 (0.006) 0.162 (0.013) 0.167 (0.006) — 0.197
Solar Flare 0.795 (0.012)* 0.795 (0.012)* 0.793 (0.013)* 0.794 (0.013)* 0.795 (0.012)* 0.795 (0.012)* 0.791 (0.021)* 0.785
Bridges 0.033 (0.019) 0.037 (0.024) 0.033 (0.028) 0.026 (0.027) 0.028 (0.023) 0.049 (0.019) 0.044 (0.030) 0.116
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.688 (0.083) 0.743 (0.002) 0.743 (0.002) 0.918

Table A.26: Results using ECC with 80% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.706 (0.018) 0.721 (0.015) 0.706 (0.014) 0.720 (0.017) 0.667 (0.014) 0.600 (0.011) 0.617 (0.022) 0.771
Scene 0.809 (0.016) 0.821 (0.009) 0.813 (0.008) 0.835 (0.007) 0.834 (0.010) 0.771 (0.007) 0.765 (0.009) 0.897
Yeast 0.738 (0.002) 0.740 (0.002) 0.739 (0.002) 0.739 (0.004) 0.745 (0.005) 0.729 (0.011) 0.705 (0.003) 0.793
ENRON 0.932 (0.001) 0.931 (0.001) 0.932 (0.000) 0.931 (0.001) 0.940 (0.002) 0.939 (0.001) — 0.942
Medical 0.970 (0.001) 0.970 (0.001) 0.970 (0.001) 0.971 (0.001) 0.960 (0.010) 0.972 (0.002) — 0.989
Slashdot 0.944 (0.000) 0.944 (0.001) 0.944 (0.001) 0.945 (0.000) 0.930 (0.011) 0.940 (0.000) — 0.951
LLOG 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.984 (0.000)* 0.983 (0.001)* 0.984 (0.000)* — 0.983
Solar Flare 0.911 (0.004)* 0.911 (0.004)* 0.911 (0.004)* 0.911 (0.004)* 0.911 (0.004)* 0.911 (0.004)* 0.864 (0.008) 0.905
Bridges 0.554 (0.026) 0.547 (0.028) 0.524 (0.043) 0.551 (0.035) 0.488 (0.034) 0.534 (0.041) 0.513 (0.046) 0.590
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.947 (0.017) 0.961 (0.000) 0.959 (0.001) 0.986

Exact Match Ratio (EMR)

Music 0.163 (0.050) 0.212 (0.017) 0.165 (0.014) 0.207 (0.026) 0.131 (0.027) 0.126 (0.014) 0.104 (0.018) 0.245
Scene 0.274 (0.073) 0.318 (0.008) 0.317 (0.017) 0.292 (0.017) 0.398 (0.017) 0.244 (0.026) 0.280 (0.034) 0.573
Yeast 0.029 (0.004) 0.030 (0.004) 0.030 (0.005) 0.030 (0.004) 0.089 (0.007) 0.081 (0.012) 0.039 (0.008) 0.175
ENRON 0.003 (0.002) 0.002 (0.002) 0.002 (0.002) 0.003 (0.001) 0.031 (0.004) 0.039 (0.013) — 0.069
Medical 0.016 (0.004) 0.014 (0.006) 0.018 (0.005) 0.014 (0.005) 0.280 (0.026) 0.100 (0.068) — 0.640
Slashdot 0.004 (0.002) 0.005 (0.002) 0.004 (0.001) 0.004 (0.001) 0.168 (0.011) 0.122 (0.005) — 0.230
LLOG 0.153 (0.004) 0.154 (0.005) 0.153 (0.005) 0.153 (0.005) 0.159 (0.017) 0.164 (0.005) — 0.197
Solar Flare 0.795 (0.007)* 0.795 (0.007)* 0.795 (0.007)* 0.795 (0.007)* 0.795 (0.007)* 0.795 (0.007)* 0.794 (0.018)* 0.785
Bridges 0.049 (0.024) 0.047 (0.021) 0.058 (0.036) 0.047 (0.018) 0.026 (0.019) 0.033 (0.024) 0.051 (0.031) 0.116
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.670 (0.089) 0.743 (0.003) 0.743 (0.004) 0.918

Table A.27: Results using ECC with 90% of the original features.
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A.4 Class Relevance Stacking (CRS) Results

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.711 (0.018) 0.712 (0.015) 0.702 (0.017) 0.705 (0.014) 0.658 (0.010) 0.656 (0.007) 0.638 (0.017) 0.785
Scene 0.789 (0.007) 0.785 (0.014) 0.795 (0.006) 0.790 (0.008) 0.803 (0.011) 0.791 (0.015) 0.759 (0.007) 0.898
Yeast 0.771 (0.005) 0.773 (0.004) 0.771 (0.004) 0.776 (0.003) 0.772 (0.004) 0.769 (0.003) 0.730 (0.003) 0.789
ENRON 0.924 (0.003) 0.924 (0.001) 0.924 (0.002) 0.926 (0.003) 0.928 (0.004) 0.936 (0.002) 0.879 (0.002) 0.941
Medical 0.963 (0.003) 0.963 (0.002) 0.963 (0.001) 0.964 (0.002) 0.963 (0.003) 0.971 (0.002) — 0.989
Slashdot 0.945 (0.001) 0.944 (0.000) 0.945 (0.001) 0.944 (0.001) 0.934 (0.003) 0.943 (0.005) — 0.953
LLOG 0.983 (0.001)* 0.982 (0.001) 0.983 (0.000)* 0.983 (0.000)* 0.983 (0.001)* 0.983 (0.001)* — 0.983
Solar Flare 0.912 (0.004)* 0.912 (0.004)* 0.907 (0.015)* 0.912 (0.004)* 0.910 (0.002)* 0.912 (0.004)* 0.860 (0.014) 0.905
Bridges — — — — — — — 0.580
Thyroid 0.958 (0.010) 0.955 (0.012) 0.958 (0.010) 0.942 (0.016) 0.961 (0.001) 0.961 (0.001) 0.959 (0.001) 0.986

Exact Match Ratio (EMR)

Music 0.169 (0.018) 0.157 (0.030) 0.149 (0.022) 0.163 (0.021) 0.100 (0.023) 0.103 (0.022) 0.080 (0.027) 0.249
Scene 0.252 (0.012) 0.253 (0.016) 0.250 (0.011) 0.244 (0.010) 0.300 (0.018) 0.158 (0.042) 0.226 (0.022) 0.519
Yeast 0.081 (0.007) 0.077 (0.011) 0.078 (0.009) 0.081 (0.007) 0.050 (0.009) 0.040 (0.019) 0.035 (0.009) 0.117
ENRON 0.003 (0.003) 0.003 (0.002) 0.003 (0.002) 0.002 (0.002) 0.026 (0.005) 0.030 (0.011) 0.015 (0.005) 0.050
Medical 0.026 (0.009) 0.020 (0.014) 0.030 (0.012) 0.022 (0.013) 0.164 (0.021) 0.171 (0.030) — 0.625
Slashdot 0.002 (0.003) 0.004 (0.004) 0.002 (0.001) 0.003 (0.001) 0.147 (0.012) 0.091 (0.008) — 0.247
LLOG 0.144 (0.006) 0.138 (0.011) 0.144 (0.007) 0.144 (0.009) 0.167 (0.007) 0.161 (0.013) — 0.205
Solar Flare 0.796 (0.006)* 0.796 (0.006)* 0.783 (0.038) 0.796 (0.006)* 0.791 (0.009)* 0.796 (0.006)* 0.783 (0.024) 0.785
Bridges — — — — — — — 0.116
Thyroid 0.726 (0.053) 0.708 (0.071) 0.729 (0.054) 0.637 (0.089) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.916

Table A.28: Results using CRS with 10% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.696 (0.016) 0.699 (0.024) 0.701 (0.013) 0.703 (0.017) 0.660 (0.006) 0.657 (0.010) 0.618 (0.023) 0.785
Scene 0.786 (0.009) 0.786 (0.011) 0.770 (0.010) 0.787 (0.010) 0.817 (0.016) 0.781 (0.010) 0.750 (0.007) 0.898
Yeast 0.767 (0.003) 0.765 (0.005) 0.764 (0.005) 0.767 (0.004) 0.773 (0.001) 0.773 (0.003) 0.728 (0.003) 0.789
ENRON 0.916 (0.002) 0.916 (0.003) 0.916 (0.002) 0.920 (0.003) 0.922 (0.005) 0.933 (0.002) 0.875 (0.003) 0.941
Medical 0.955 (0.002) 0.958 (0.004) 0.955 (0.002) 0.956 (0.003) 0.950 (0.008) 0.969 (0.003) — 0.989
Slashdot 0.940 (0.003) 0.938 (0.003) 0.938 (0.003) 0.939 (0.003) 0.917 (0.008) 0.939 (0.005) — 0.953
LLOG 0.980 (0.001) 0.980 (0.001) 0.980 (0.001) 0.980 (0.001) 0.982 (0.002) 0.983 (0.001)* — 0.983
Solar Flare 0.910 (0.009)* 0.910 (0.009)* 0.910 (0.009)* 0.910 (0.009)* 0.910 (0.009)* 0.910 (0.009)* 0.864 (0.007) 0.905
Bridges 0.529 (0.052) 0.551 (0.042) 0.516 (0.071) 0.512 (0.097) 0.457 (0.036) 0.565 (0.030) 0.545 (0.019) 0.580
Thyroid 0.938 (0.034) 0.947 (0.022) 0.945 (0.021) 0.948 (0.016) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.121 (0.022) 0.140 (0.013) 0.128 (0.024) 0.146 (0.022) 0.104 (0.013) 0.102 (0.021) 0.078 (0.021) 0.249
Scene 0.219 (0.017) 0.235 (0.017) 0.203 (0.016) 0.219 (0.021) 0.304 (0.025) 0.139 (0.035) 0.216 (0.014) 0.519
Yeast 0.071 (0.008) 0.070 (0.007) 0.070 (0.011) 0.075 (0.009) 0.057 (0.007) 0.056 (0.006) 0.027 (0.006) 0.117
ENRON 0.003 (0.002) 0.002 (0.002) 0.003 (0.002) 0.004 (0.004) 0.023 (0.004) 0.028 (0.008) 0.008 (0.004) 0.050
Medical 0.031 (0.010) 0.041 (0.010) 0.032 (0.006) 0.034 (0.010) 0.181 (0.021) 0.166 (0.041) — 0.625
Slashdot 0.011 (0.008) 0.014 (0.006) 0.012 (0.005) 0.013 (0.007) 0.145 (0.013) 0.085 (0.014) — 0.247
LLOG 0.121 (0.010) 0.121 (0.015) 0.123 (0.017) 0.122 (0.020) 0.164 (0.013) 0.167 (0.007) — 0.205
Solar Flare 0.794 (0.021)* 0.792 (0.021)* 0.794 (0.021)* 0.794 (0.021)* 0.792 (0.020)* 0.794 (0.021)* 0.791 (0.017)* 0.785
Bridges 0.047 (0.028) 0.040 (0.030) 0.044 (0.035) 0.054 (0.030) 0.016 (0.015) 0.054 (0.015) 0.068 (0.022) 0.116
Thyroid 0.673 (0.091) 0.689 (0.084) 0.673 (0.090) 0.673 (0.087) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.916

Table A.29: Results using CRS with 20% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.688 (0.019) 0.690 (0.012) 0.682 (0.016) 0.697 (0.018) 0.661 (0.009) 0.657 (0.011) 0.620 (0.019) 0.785
Scene 0.783 (0.009) 0.785 (0.014) 0.780 (0.009) 0.778 (0.014) 0.806 (0.011) 0.797 (0.019) 0.743 (0.010) 0.898
Yeast 0.755 (0.004) 0.758 (0.007) 0.752 (0.005) 0.761 (0.005) 0.773 (0.002) 0.766 (0.005) 0.726 (0.003) 0.789
ENRON 0.911 (0.002) 0.911 (0.002) 0.911 (0.002) 0.912 (0.003) 0.921 (0.002) 0.933 (0.002) 0.870 (0.003) 0.941
Medical 0.953 (0.001) 0.954 (0.002) 0.951 (0.002) 0.953 (0.002) 0.936 (0.006) 0.965 (0.005) — 0.989
Slashdot 0.935 (0.004) 0.931 (0.005) 0.932 (0.003) 0.932 (0.005) 0.912 (0.013) 0.942 (0.007) — 0.953
LLOG 0.978 (0.001) 0.979 (0.001) 0.978 (0.001) 0.978 (0.001) 0.980 (0.001) 0.982 (0.001) — 0.983
Solar Flare 0.911 (0.007)* 0.910 (0.006)* 0.911 (0.007)* 0.908 (0.009)* 0.910 (0.006)* 0.911 (0.007)* 0.863 (0.010) 0.905
Bridges 0.533 (0.040) 0.505 (0.027) 0.514 (0.068) 0.515 (0.040) 0.467 (0.031) 0.559 (0.030) 0.538 (0.014) 0.580
Thyroid 0.942 (0.016) 0.948 (0.017) 0.947 (0.029) 0.945 (0.017) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.119 (0.021) 0.140 (0.027) 0.109 (0.018) 0.136 (0.025) 0.112 (0.017) 0.102 (0.024) 0.066 (0.017) 0.249
Scene 0.208 (0.018) 0.223 (0.014) 0.209 (0.013) 0.218 (0.019) 0.294 (0.022) 0.145 (0.047) 0.200 (0.024) 0.519
Yeast 0.061 (0.007) 0.067 (0.007) 0.054 (0.007) 0.070 (0.008) 0.059 (0.005) 0.063 (0.016) 0.029 (0.005) 0.117
ENRON 0.001 (0.001) 0.003 (0.002) 0.002 (0.001) 0.002 (0.002) 0.019 (0.005) 0.030 (0.011) 0.004 (0.002) 0.050
Medical 0.032 (0.009) 0.033 (0.008) 0.029 (0.010) 0.033 (0.007) 0.190 (0.013) 0.156 (0.039) — 0.625
Slashdot 0.018 (0.008) 0.022 (0.006) 0.018 (0.006) 0.020 (0.008) 0.146 (0.012) 0.087 (0.007) — 0.247
LLOG 0.109 (0.010) 0.112 (0.010) 0.108 (0.013) 0.105 (0.011) 0.165 (0.013) 0.150 (0.023) — 0.205
Solar Flare 0.795 (0.013)* 0.793 (0.014)* 0.795 (0.013)* 0.788 (0.023)* 0.792 (0.014)* 0.795 (0.013)* 0.788 (0.026)* 0.785
Bridges 0.040 (0.026) 0.016 (0.015) 0.047 (0.031) 0.026 (0.013) 0.009 (0.015) 0.037 (0.024) 0.044 (0.022) 0.116
Thyroid 0.641 (0.087) 0.677 (0.089) 0.710 (0.074) 0.656 (0.091) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.916

Table A.30: Results using CRS with 30% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.678 (0.022) 0.694 (0.015) 0.673 (0.009) 0.686 (0.015) 0.659 (0.014) 0.659 (0.013) 0.617 (0.021) 0.785
Scene 0.777 (0.009) 0.781 (0.012) 0.781 (0.015) 0.786 (0.015) 0.813 (0.016) 0.786 (0.007) 0.741 (0.009) 0.898
Yeast 0.743 (0.005) 0.753 (0.003) 0.742 (0.004) 0.750 (0.004) 0.773 (0.001) 0.767 (0.006) 0.723 (0.003) 0.789
ENRON 0.909 (0.003) 0.908 (0.001) 0.908 (0.002) 0.909 (0.002) 0.921 (0.004) 0.932 (0.003) — 0.941
Medical 0.951 (0.002) 0.953 (0.002) 0.951 (0.002) 0.952 (0.001) 0.962 (0.020) 0.972 (0.000) — 0.989
Slashdot 0.924 (0.004) 0.920 (0.005) 0.920 (0.005) 0.924 (0.004) 0.911 (0.011) 0.942 (0.006) — 0.953
LLOG 0.977 (0.001) 0.977 (0.001) 0.977 (0.001) 0.978 (0.001) 0.979 (0.001) 0.983 (0.001)* — 0.983
Solar Flare 0.903 (0.024) 0.910 (0.007)* 0.910 (0.007)* 0.904 (0.015) 0.910 (0.007)* 0.910 (0.007)* 0.865 (0.007) 0.905
Bridges 0.502 (0.082) 0.474 (0.055) 0.518 (0.028) 0.518 (0.032) 0.426 (0.022) 0.558 (0.034) 0.529 (0.025) 0.580
Thyroid 0.938 (0.021) 0.948 (0.022) 0.944 (0.021) 0.935 (0.025) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.117 (0.029) 0.121 (0.020) 0.108 (0.018) 0.128 (0.023) 0.107 (0.020) 0.103 (0.022) 0.068 (0.015) 0.249
Scene 0.202 (0.014) 0.234 (0.017) 0.204 (0.016) 0.221 (0.016) 0.294 (0.028) 0.140 (0.023) 0.196 (0.019) 0.519
Yeast 0.052 (0.005) 0.056 (0.006) 0.051 (0.008) 0.058 (0.004) 0.059 (0.004) 0.064 (0.011) 0.026 (0.005) 0.117
ENRON 0.002 (0.002) 0.002 (0.002) 0.002 (0.001) 0.003 (0.002) 0.017 (0.005) 0.025 (0.008) — 0.050
Medical 0.025 (0.007) 0.030 (0.008) 0.032 (0.007) 0.029 (0.007) 0.206 (0.022) 0.069 (0.077) — 0.625
Slashdot 0.026 (0.009) 0.028 (0.006) 0.034 (0.006) 0.027 (0.007) 0.143 (0.009) 0.097 (0.013) — 0.247
LLOG 0.099 (0.012) 0.096 (0.013) 0.101 (0.011) 0.104 (0.009) 0.165 (0.014) 0.166 (0.007) — 0.205
Solar Flare 0.776 (0.056) 0.795 (0.015)* 0.795 (0.015)* 0.781 (0.035) 0.793 (0.015)* 0.795 (0.015)* 0.795 (0.016)* 0.785
Bridges 0.035 (0.036) 0.026 (0.022) 0.047 (0.029) 0.030 (0.015) 0.012 (0.019) 0.042 (0.039) 0.040 (0.026) 0.116
Thyroid 0.645 (0.087) 0.695 (0.084) 0.672 (0.086) 0.638 (0.089) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.916

Table A.31: Results using CRS with 40% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.670 (0.015) 0.691 (0.018) 0.680 (0.022) 0.691 (0.024) 0.660 (0.010) 0.664 (0.010) 0.602 (0.024) 0.785
Scene 0.771 (0.014) 0.781 (0.016) 0.777 (0.015) 0.781 (0.009) 0.814 (0.020) 0.801 (0.013) 0.738 (0.007) 0.898
Yeast 0.742 (0.003) 0.749 (0.007) 0.735 (0.008) 0.746 (0.005) 0.773 (0.002) 0.770 (0.006) 0.723 (0.003) 0.789
ENRON 0.908 (0.001) 0.907 (0.002) 0.907 (0.002) 0.907 (0.002) 0.919 (0.003) 0.932 (0.004) — 0.941
Medical 0.951 (0.002) 0.951 (0.001) 0.951 (0.002) 0.952 (0.001) 0.964 (0.014) 0.970 (0.004) — 0.989
Slashdot 0.921 (0.007) 0.920 (0.004) 0.918 (0.008) 0.920 (0.006) 0.911 (0.010) 0.938 (0.003) — 0.953
LLOG 0.975 (0.001) 0.976 (0.001) 0.975 (0.002) 0.976 (0.001) 0.980 (0.002) 0.983 (0.001)* — 0.983
Solar Flare 0.908 (0.007)* 0.904 (0.021) 0.910 (0.005)* 0.906 (0.014)* 0.910 (0.005)* 0.911 (0.005)* 0.865 (0.007) 0.905
Bridges 0.525 (0.054) 0.501 (0.039) 0.505 (0.035) 0.508 (0.054) 0.492 (0.034) 0.550 (0.027) 0.519 (0.025) 0.580
Thyroid 0.944 (0.030) 0.926 (0.031) 0.942 (0.022) 0.942 (0.022) 0.958 (0.010) 0.961 (0.001) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.098 (0.019) 0.124 (0.021) 0.111 (0.022) 0.135 (0.026) 0.106 (0.016) 0.092 (0.028) 0.062 (0.020) 0.249
Scene 0.200 (0.013) 0.219 (0.013) 0.203 (0.017) 0.216 (0.018) 0.294 (0.029) 0.152 (0.023) 0.195 (0.015) 0.519
Yeast 0.048 (0.007) 0.054 (0.004) 0.045 (0.008) 0.055 (0.006) 0.056 (0.006) 0.061 (0.008) 0.025 (0.006) 0.117
ENRON 0.002 (0.001) 0.002 (0.001) 0.002 (0.002) 0.002 (0.001) 0.019 (0.005) 0.035 (0.012) — 0.050
Medical 0.035 (0.007) 0.030 (0.007) 0.032 (0.010) 0.031 (0.006) 0.206 (0.017) 0.056 (0.067) — 0.625
Slashdot 0.029 (0.007) 0.027 (0.005) 0.027 (0.006) 0.028 (0.007) 0.150 (0.014) 0.115 (0.010) — 0.247
LLOG 0.088 (0.012) 0.093 (0.009) 0.089 (0.013) 0.094 (0.008) 0.164 (0.018) 0.164 (0.013) — 0.205
Solar Flare 0.789 (0.016)* 0.775 (0.059) 0.793 (0.009)* 0.782 (0.041) 0.792 (0.009)* 0.795 (0.008)* 0.794 (0.015)* 0.785
Bridges 0.035 (0.026) 0.018 (0.014) 0.030 (0.024) 0.023 (0.018) 0.019 (0.018) 0.021 (0.016) 0.035 (0.019) 0.116
Thyroid 0.688 (0.082) 0.623 (0.080) 0.660 (0.089) 0.657 (0.092) 0.726 (0.055) 0.743 (0.004) 0.743 (0.003) 0.916

Table A.32: Results using CRS with 50% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.675 (0.016) 0.687 (0.015) 0.679 (0.019) 0.697 (0.013) 0.662 (0.007) 0.679 (0.011) 0.609 (0.012) 0.785
Scene 0.772 (0.011) 0.781 (0.021) 0.777 (0.011) 0.779 (0.016) 0.815 (0.019) 0.803 (0.017) 0.738 (0.008) 0.898
Yeast 0.735 (0.005) 0.743 (0.006) 0.732 (0.006) 0.746 (0.006) 0.773 (0.002) 0.765 (0.008) 0.716 (0.005) 0.789
ENRON 0.907 (0.002) 0.905 (0.002) 0.906 (0.002) 0.906 (0.002) 0.919 (0.004) 0.932 (0.003) — 0.941
Medical 0.951 (0.001) 0.950 (0.001) 0.950 (0.001) 0.951 (0.001) 0.957 (0.016) 0.972 (0.001) — 0.989
Slashdot 0.915 (0.007) 0.914 (0.006) 0.911 (0.005) 0.919 (0.005) 0.903 (0.010) 0.938 (0.003) — 0.953
LLOG 0.975 (0.001) 0.975 (0.001) 0.975 (0.001) 0.975 (0.001) 0.978 (0.002) 0.983 (0.001)* — 0.983
Solar Flare 0.906 (0.020)* 0.911 (0.008)* 0.909 (0.013)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.009)* 0.863 (0.010) 0.905
Bridges 0.495 (0.030) 0.524 (0.027) 0.512 (0.042) 0.520 (0.038) 0.490 (0.024) 0.562 (0.022) 0.508 (0.021) 0.580
Thyroid 0.914 (0.032) 0.948 (0.016) 0.939 (0.027) 0.945 (0.022) 0.961 (0.001) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.104 (0.027) 0.137 (0.024) 0.110 (0.023) 0.147 (0.020) 0.112 (0.015) 0.097 (0.010) 0.069 (0.018) 0.249
Scene 0.202 (0.014) 0.228 (0.016) 0.218 (0.020) 0.221 (0.007) 0.289 (0.026) 0.144 (0.023) 0.193 (0.017) 0.519
Yeast 0.042 (0.008) 0.054 (0.005) 0.041 (0.006) 0.054 (0.004) 0.060 (0.004) 0.068 (0.012) 0.023 (0.006) 0.117
ENRON 0.001 (0.002) 0.002 (0.001) 0.002 (0.002) 0.002 (0.002) 0.016 (0.006) 0.029 (0.009) — 0.050
Medical 0.032 (0.010) 0.025 (0.010) 0.029 (0.010) 0.033 (0.007) 0.201 (0.021) 0.048 (0.068) — 0.625
Slashdot 0.030 (0.005) 0.030 (0.004) 0.030 (0.004) 0.028 (0.005) 0.136 (0.005) 0.122 (0.009) — 0.247
LLOG 0.090 (0.012) 0.089 (0.007) 0.090 (0.011) 0.087 (0.009) 0.155 (0.018) 0.160 (0.015) — 0.205
Solar Flare 0.782 (0.046) 0.794 (0.016)* 0.789 (0.028)* 0.796 (0.017)* 0.796 (0.017)* 0.797 (0.017)* 0.786 (0.018)* 0.785
Bridges 0.028 (0.020) 0.042 (0.020) 0.037 (0.030) 0.037 (0.035) 0.023 (0.021) 0.047 (0.026) 0.040 (0.030) 0.116
Thyroid 0.582 (0.028) 0.678 (0.089) 0.680 (0.091) 0.674 (0.088) 0.743 (0.003) 0.743 (0.003) 0.743 (0.002) 0.916

Table A.33: Results using CRS with 60% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.667 (0.019) 0.683 (0.018) 0.662 (0.017) 0.681 (0.023) 0.663 (0.005) 0.688 (0.008) 0.596 (0.022) 0.785
Scene 0.782 (0.008) 0.785 (0.013) 0.770 (0.014) 0.773 (0.015) 0.809 (0.011) 0.801 (0.020) 0.740 (0.007) 0.898
Yeast 0.726 (0.003) 0.738 (0.005) 0.724 (0.008) 0.739 (0.008) 0.773 (0.001) 0.769 (0.006) 0.715 (0.006) 0.789
ENRON 0.904 (0.002) 0.906 (0.002) 0.907 (0.001) 0.905 (0.002) 0.921 (0.004) 0.933 (0.001) — 0.941
Medical 0.950 (0.002) 0.950 (0.002) 0.950 (0.002) 0.951 (0.001) 0.956 (0.011) 0.970 (0.004) — 0.989
Slashdot 0.906 (0.004) 0.908 (0.004) 0.907 (0.005) 0.914 (0.005) 0.902 (0.012) 0.939 (0.000) — 0.953
LLOG 0.974 (0.001) 0.975 (0.001) 0.974 (0.001) 0.974 (0.001) 0.977 (0.003) 0.983 (0.001)* — 0.983
Solar Flare 0.910 (0.006)* 0.908 (0.007)* 0.907 (0.010)* 0.909 (0.006)* 0.898 (0.026) 0.910 (0.006)* 0.863 (0.008) 0.905
Bridges 0.511 (0.050) 0.525 (0.028) 0.539 (0.033) 0.527 (0.033) 0.487 (0.021) 0.552 (0.045) 0.482 (0.019) 0.580
Thyroid 0.946 (0.018) 0.946 (0.020) 0.925 (0.025) 0.934 (0.033) 0.958 (0.010) 0.961 (0.001) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.109 (0.021) 0.126 (0.022) 0.092 (0.014) 0.127 (0.026) 0.110 (0.011) 0.094 (0.014) 0.054 (0.015) 0.249
Scene 0.211 (0.012) 0.239 (0.018) 0.207 (0.012) 0.217 (0.015) 0.300 (0.015) 0.160 (0.025) 0.187 (0.016) 0.519
Yeast 0.038 (0.006) 0.050 (0.007) 0.039 (0.007) 0.054 (0.010) 0.057 (0.004) 0.068 (0.010) 0.022 (0.006) 0.117
ENRON 0.002 (0.002) 0.002 (0.002) 0.002 (0.001) 0.001 (0.001) 0.016 (0.004) 0.028 (0.010) — 0.050
Medical 0.034 (0.006) 0.031 (0.005) 0.030 (0.007) 0.031 (0.008) 0.207 (0.018) 0.058 (0.079) — 0.625
Slashdot 0.029 (0.004) 0.029 (0.003) 0.028 (0.005) 0.034 (0.005) 0.137 (0.008) 0.120 (0.008) — 0.247
LLOG 0.081 (0.013) 0.084 (0.009) 0.081 (0.009) 0.081 (0.011) 0.148 (0.018) 0.161 (0.013) — 0.205
Solar Flare 0.795 (0.012)* 0.790 (0.015)* 0.788 (0.025)* 0.792 (0.012)* 0.765 (0.067) 0.795 (0.012)* 0.788 (0.018)* 0.785
Bridges 0.028 (0.025) 0.040 (0.033) 0.028 (0.020) 0.021 (0.024) 0.021 (0.016) 0.044 (0.020) 0.028 (0.018) 0.116
Thyroid 0.677 (0.086) 0.678 (0.088) 0.616 (0.072) 0.656 (0.093) 0.724 (0.054) 0.743 (0.004) 0.743 (0.001) 0.916

Table A.34: Results using CRS with 70% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.672 (0.019) 0.687 (0.018) 0.665 (0.016) 0.689 (0.013) 0.661 (0.014) 0.687 (0.007) 0.601 (0.017) 0.785
Scene 0.774 (0.014) 0.785 (0.013) 0.779 (0.020) 0.774 (0.014) 0.820 (0.012) 0.800 (0.027) 0.739 (0.007) 0.898
Yeast 0.725 (0.008) 0.732 (0.005) 0.717 (0.006) 0.739 (0.004) 0.774 (0.002) 0.766 (0.006) 0.714 (0.004) 0.789
ENRON 0.906 (0.002) 0.904 (0.002) 0.906 (0.002) 0.905 (0.002) 0.918 (0.005) 0.933 (0.002) — 0.941
Medical 0.950 (0.002) 0.949 (0.002) 0.950 (0.001) 0.950 (0.002) 0.949 (0.015) 0.970 (0.003) — 0.989
Slashdot 0.907 (0.003) 0.908 (0.005) 0.906 (0.004) 0.911 (0.005) 0.904 (0.013) 0.937 (0.004) — 0.953
LLOG 0.974 (0.001) 0.974 (0.001) 0.974 (0.001) 0.974 (0.001) 0.976 (0.002) 0.983 (0.001)* — 0.983
Solar Flare 0.903 (0.018) 0.899 (0.023) 0.909 (0.007)* 0.892 (0.025) 0.909 (0.011)* 0.912 (0.007)* 0.856 (0.012) 0.905
Bridges 0.517 (0.039) 0.521 (0.045) 0.509 (0.057) 0.495 (0.071) 0.493 (0.023) 0.552 (0.037) 0.492 (0.042) 0.580
Thyroid 0.928 (0.027) 0.923 (0.019) 0.946 (0.021) 0.945 (0.022) 0.958 (0.010) 0.961 (0.001) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.100 (0.020) 0.125 (0.014) 0.094 (0.020) 0.138 (0.018) 0.112 (0.021) 0.080 (0.027) 0.067 (0.014) 0.249
Scene 0.208 (0.013) 0.224 (0.018) 0.210 (0.019) 0.219 (0.020) 0.290 (0.019) 0.143 (0.022) 0.188 (0.016) 0.519
Yeast 0.038 (0.008) 0.048 (0.005) 0.033 (0.005) 0.052 (0.004) 0.058 (0.004) 0.064 (0.010) 0.021 (0.005) 0.117
ENRON 0.002 (0.002) 0.002 (0.002) 0.002 (0.001) 0.002 (0.003) 0.016 (0.006) 0.022 (0.007) — 0.050
Medical 0.030 (0.010) 0.030 (0.007) 0.028 (0.006) 0.030 (0.005) 0.208 (0.019) 0.104 (0.087) — 0.625
Slashdot 0.030 (0.004) 0.029 (0.006) 0.029 (0.004) 0.034 (0.006) 0.136 (0.008) 0.114 (0.016) — 0.247
LLOG 0.083 (0.010) 0.075 (0.005) 0.078 (0.011) 0.081 (0.007) 0.151 (0.018) 0.164 (0.012) — 0.205
Solar Flare 0.774 (0.049) 0.766 (0.055) 0.791 (0.016)* 0.746 (0.067) 0.791 (0.026)* 0.796 (0.017)* 0.773 (0.019) 0.785
Bridges 0.035 (0.032) 0.037 (0.019) 0.037 (0.022) 0.021 (0.030) 0.018 (0.020) 0.030 (0.021) 0.042 (0.021) 0.116
Thyroid 0.628 (0.078) 0.587 (0.046) 0.689 (0.080) 0.676 (0.088) 0.725 (0.055) 0.743 (0.003) 0.743 (0.002) 0.916

Table A.35: Results using CRS with 80% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.660 (0.022) 0.682 (0.025) 0.648 (0.013) 0.699 (0.018) 0.687 (0.005) 0.653 (0.008) 0.590 (0.018) 0.785
Scene 0.770 (0.012) 0.767 (0.021) 0.776 (0.015) 0.775 (0.012) 0.813 (0.013) 0.787 (0.015) 0.735 (0.010) 0.898
Yeast 0.724 (0.006) 0.728 (0.005) 0.720 (0.007) 0.730 (0.004) 0.774 (0.002) 0.772 (0.005) 0.708 (0.009) 0.789
ENRON 0.904 (0.002) 0.904 (0.002) 0.905 (0.003) 0.905 (0.001) 0.919 (0.006) 0.930 (0.004) — 0.941
Medical 0.949 (0.001) 0.949 (0.002) 0.950 (0.001) 0.951 (0.001) 0.942 (0.012) 0.970 (0.003) — 0.989
Slashdot 0.904 (0.004) 0.906 (0.004) 0.901 (0.003) 0.912 (0.007) 0.895 (0.012) 0.939 (0.001) — 0.953
LLOG 0.973 (0.001) 0.974 (0.001) 0.974 (0.001) 0.974 (0.001) 0.976 (0.003) 0.982 (0.002) — 0.983
Solar Flare 0.911 (0.006)* 0.900 (0.027) 0.906 (0.008)* 0.906 (0.013)* 0.907 (0.008)* 0.911 (0.006)* 0.856 (0.014) 0.905
Bridges 0.536 (0.030) 0.472 (0.066) 0.499 (0.039) 0.493 (0.040) 0.462 (0.038) 0.542 (0.030) 0.499 (0.055) 0.580
Thyroid 0.930 (0.022) 0.931 (0.031) 0.909 (0.032) 0.928 (0.015) 0.958 (0.010) 0.961 (0.001) 0.959 (0.001) 0.986

Exact Match Ratio (EMR)

Music 0.094 (0.012) 0.114 (0.027) 0.098 (0.020) 0.133 (0.034) 0.088 (0.020) 0.114 (0.016) 0.056 (0.014) 0.249
Scene 0.199 (0.010) 0.215 (0.017) 0.208 (0.015) 0.206 (0.011) 0.291 (0.024) 0.130 (0.025) 0.188 (0.022) 0.519
Yeast 0.039 (0.006) 0.039 (0.007) 0.039 (0.008) 0.049 (0.008) 0.056 (0.003) 0.058 (0.008) 0.020 (0.006) 0.117
ENRON 0.001 (0.001) 0.002 (0.003) 0.002 (0.002) 0.001 (0.001) 0.017 (0.004) 0.027 (0.009) — 0.050
Medical 0.029 (0.006) 0.027 (0.008) 0.029 (0.005) 0.032 (0.006) 0.211 (0.027) 0.111 (0.075) — 0.625
Slashdot 0.028 (0.004) 0.030 (0.005) 0.029 (0.002) 0.030 (0.004) 0.131 (0.005) 0.123 (0.005) — 0.247
LLOG 0.074 (0.008) 0.082 (0.005) 0.077 (0.007) 0.081 (0.010) 0.145 (0.014) 0.160 (0.017) — 0.205
Solar Flare 0.796 (0.013)* 0.778 (0.044) 0.782 (0.032) 0.786 (0.027)* 0.784 (0.021) 0.796 (0.013)* 0.772 (0.029) 0.785
Bridges 0.026 (0.024) 0.028 (0.025) 0.032 (0.028) 0.021 (0.022) 0.012 (0.012) 0.019 (0.018) 0.040 (0.031) 0.116
Thyroid 0.631 (0.078) 0.655 (0.090) 0.602 (0.054) 0.584 (0.055) 0.726 (0.052) 0.743 (0.003) 0.743 (0.003) 0.916

Table A.36: Results using CRS with 90% of the original features.
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A.5 Super-Class Classifier (SCC) Results

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.665 (0.038) 0.681 (0.017) 0.672 (0.017) 0.694 (0.017) 0.623 (0.013) 0.592 (0.016) 0.589 (0.015) 0.712
Scene 0.781 (0.017) 0.786 (0.006) 0.786 (0.011) 0.782 (0.007) 0.803 (0.008) 0.763 (0.010) 0.744 (0.006) 0.845
Yeast 0.680 (0.004) 0.679 (0.004) 0.680 (0.005) 0.679 (0.004) 0.697 (0.008) 0.708 (0.009) 0.652 (0.003) 0.724
ENRON 0.909 (0.002) 0.908 (0.001) 0.909 (0.001) 0.908 (0.002) 0.917 (0.003) 0.920 (0.002) 0.871 (0.002) 0.923
Medical 0.951 (0.001) 0.952 (0.001) 0.951 (0.001) 0.952 (0.002) 0.963 (0.003) 0.965 (0.004) — 0.989
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.912 (0.008)* 0.904 (0.023) 0.865 (0.008) 0.905
Bridges — — — — — — — 0.570
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.001) 0.986

Exact Match Ratio (EMR)

Music 0.164 (0.039) 0.175 (0.017) 0.168 (0.019) 0.201 (0.030)* 0.154 (0.020) 0.126 (0.022) 0.106 (0.018) 0.186
Scene 0.340 (0.047) 0.351 (0.016) 0.352 (0.027) 0.336 (0.019) 0.395 (0.018) 0.297 (0.025) 0.342 (0.015) 0.522
Yeast 0.038 (0.004) 0.039 (0.006) 0.042 (0.008) 0.042 (0.007) 0.083 (0.010) 0.088 (0.004) 0.053 (0.006) 0.134
ENRON 0.012 (0.004) 0.011 (0.004) 0.009 (0.003) 0.008 (0.003) 0.030 (0.005)* 0.044 (0.013)* 0.026 (0.004)* 0.026
Medical 0.067 (0.009) 0.067 (0.018) 0.060 (0.012) 0.069 (0.016) 0.186 (0.028) 0.236 (0.024) — 0.645
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.796 (0.013)* 0.775 (0.062) 0.794 (0.012)* 0.785
Bridges — — — — — — — 0.163
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.924

Table A.37: Results using SCC with 10% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.673 (0.026) 0.674 (0.019) 0.676 (0.017) 0.685 (0.012) 0.620 (0.014) 0.592 (0.019) 0.581 (0.020) 0.712
Scene 0.773 (0.015) 0.783 (0.008) 0.772 (0.006) 0.774 (0.003) 0.800 (0.009) 0.760 (0.004) 0.737 (0.010) 0.845
Yeast 0.680 (0.003) 0.678 (0.005) 0.681 (0.005) 0.681 (0.007) 0.700 (0.006) 0.701 (0.010) 0.648 (0.004) 0.724
ENRON 0.909 (0.003) 0.909 (0.002) 0.909 (0.002) 0.909 (0.001) 0.919 (0.002) 0.919 (0.003) 0.870 (0.003) 0.923
Medical 0.951 (0.001) 0.952 (0.001) 0.951 (0.001) 0.952 (0.001) 0.956 (0.007) 0.964 (0.005) — 0.989
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.910 (0.008)* 0.911 (0.008)* 0.908 (0.009)* 0.911 (0.008)* 0.910 (0.009)* 0.911 (0.008)* 0.866 (0.004) 0.905
Bridges 0.492 (0.031) 0.462 (0.052) 0.482 (0.042) 0.450 (0.060) 0.406 (0.027) 0.511 (0.037) 0.495 (0.041) 0.570
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.159 (0.029) 0.175 (0.019) 0.161 (0.023) 0.174 (0.019) 0.145 (0.015) 0.124 (0.017) 0.110 (0.020) 0.186
Scene 0.318 (0.041) 0.346 (0.018) 0.315 (0.016) 0.322 (0.008) 0.391 (0.022) 0.292 (0.013) 0.323 (0.027) 0.522
Yeast 0.040 (0.008) 0.036 (0.007) 0.039 (0.006) 0.038 (0.008) 0.086 (0.006) 0.087 (0.009) 0.049 (0.009) 0.134
ENRON 0.012 (0.005) 0.010 (0.005) 0.013 (0.005) 0.013 (0.004) 0.027 (0.005)* 0.037 (0.013)* 0.029 (0.011)* 0.026
Medical 0.066 (0.009) 0.063 (0.011) 0.073 (0.016) 0.068 (0.012) 0.202 (0.015) 0.222 (0.027) — 0.645
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.792 (0.015)* 0.794 (0.015)* 0.785 (0.024)* 0.794 (0.015)* 0.792 (0.017)* 0.794 (0.015)* 0.796 (0.010)* 0.785
Bridges 0.030 (0.015) 0.021 (0.022) 0.030 (0.015) 0.026 (0.032) 0.007 (0.011) 0.016 (0.015) 0.044 (0.020) 0.163
Thyroid 0.743 (0.003) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.003) 0.924

Table A.38: Results using SCC with 20% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.665 (0.030) 0.686 (0.014) 0.669 (0.019) 0.671 (0.023) 0.625 (0.020) 0.599 (0.014) 0.588 (0.018) 0.712
Scene 0.764 (0.016) 0.776 (0.007) 0.768 (0.010) 0.773 (0.007) 0.802 (0.004) 0.762 (0.008) 0.737 (0.009) 0.845
Yeast 0.679 (0.003) 0.677 (0.004) 0.679 (0.003) 0.677 (0.006) 0.700 (0.006) 0.706 (0.007) 0.649 (0.005) 0.724
ENRON 0.909 (0.001) 0.909 (0.001) 0.910 (0.001) 0.908 (0.002) 0.915 (0.003) 0.920 (0.003) 0.868 (0.003) 0.923
Medical 0.951 (0.001) 0.950 (0.001) 0.951 (0.001) 0.951 (0.001) 0.949 (0.007) 0.963 (0.004) — 0.989
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.910 (0.006)* 0.910 (0.006)* 0.910 (0.006)* 0.910 (0.006)* 0.910 (0.006)* 0.910 (0.006)* 0.865 (0.006) 0.905
Bridges 0.498 (0.048) 0.517 (0.027) 0.478 (0.063) 0.479 (0.082) 0.408 (0.021) 0.519 (0.039) 0.488 (0.031) 0.570
Thyroid 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.951 (0.016) 0.961 (0.001) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.159 (0.025) 0.185 (0.021) 0.165 (0.024) 0.162 (0.024) 0.153 (0.019) 0.123 (0.019) 0.118 (0.021) 0.186
Scene 0.293 (0.046) 0.327 (0.016) 0.307 (0.026) 0.314 (0.017) 0.395 (0.014) 0.292 (0.024) 0.320 (0.024) 0.522
Yeast 0.040 (0.005) 0.038 (0.007) 0.039 (0.005) 0.038 (0.003) 0.087 (0.008) 0.088 (0.010) 0.052 (0.005) 0.134
ENRON 0.012 (0.005) 0.014 (0.005) 0.012 (0.005) 0.011 (0.005) 0.027 (0.005)* 0.040 (0.011)* 0.019 (0.010) 0.026
Medical 0.061 (0.009) 0.062 (0.014) 0.067 (0.013) 0.067 (0.024) 0.216 (0.016) 0.214 (0.030) — 0.645
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.794 (0.012)* 0.794 (0.012)* 0.794 (0.012)* 0.794 (0.012)* 0.794 (0.012)* 0.794 (0.012)* 0.795 (0.015)* 0.785
Bridges 0.023 (0.023) 0.023 (0.018) 0.035 (0.032) 0.044 (0.028) 0.026 (0.024) 0.018 (0.014) 0.042 (0.027) 0.163
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.688 (0.085) 0.743 (0.003) 0.743 (0.003) 0.924

Table A.39: Results using SCC with 30% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.652 (0.028) 0.678 (0.022) 0.660 (0.013) 0.680 (0.016) 0.624 (0.015) 0.598 (0.015) 0.578 (0.019) 0.712
Scene 0.765 (0.015) 0.780 (0.009) 0.774 (0.007) 0.774 (0.005) 0.806 (0.006) 0.760 (0.005) 0.733 (0.008) 0.845
Yeast 0.681 (0.003) 0.679 (0.004) 0.677 (0.006) 0.680 (0.006) 0.699 (0.008) 0.706 (0.010) 0.649 (0.003) 0.724
ENRON 0.909 (0.003) 0.909 (0.001) 0.909 (0.002) 0.908 (0.001) 0.914 (0.003) 0.920 (0.002) — 0.923
Medical 0.951 (0.001) 0.951 (0.001) 0.950 (0.001) 0.951 (0.001) 0.967 (0.006) 0.966 (0.006) — 0.989
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.910 (0.008)* 0.909 (0.008)* 0.910 (0.008)* 0.909 (0.009)* 0.910 (0.008)* 0.910 (0.008)* 0.865 (0.007) 0.905
Bridges 0.490 (0.053) 0.467 (0.042) 0.497 (0.044) 0.465 (0.025) 0.407 (0.039) 0.491 (0.055) 0.460 (0.066) 0.570
Thyroid 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.951 (0.016) 0.961 (0.001) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.142 (0.029) 0.172 (0.027) 0.149 (0.018) 0.166 (0.019) 0.145 (0.019) 0.125 (0.016) 0.100 (0.019) 0.186
Scene 0.297 (0.042) 0.337 (0.023) 0.319 (0.018) 0.321 (0.016) 0.404 (0.013) 0.290 (0.012) 0.312 (0.019) 0.522
Yeast 0.041 (0.005) 0.040 (0.004) 0.039 (0.004) 0.038 (0.004) 0.083 (0.007) 0.091 (0.013) 0.050 (0.004) 0.134
ENRON 0.011 (0.004) 0.013 (0.003) 0.012 (0.004) 0.013 (0.002) 0.022 (0.005) 0.034 (0.008)* — 0.026
Medical 0.066 (0.013) 0.060 (0.008) 0.057 (0.016) 0.066 (0.006) 0.217 (0.020) 0.121 (0.099) — 0.645
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.793 (0.019)* 0.793 (0.017)* 0.794 (0.018)* 0.791 (0.024)* 0.794 (0.018)* 0.794 (0.018)* 0.795 (0.016)* 0.785
Bridges 0.047 (0.018) 0.009 (0.011) 0.044 (0.020) 0.042 (0.020) 0.016 (0.015) 0.033 (0.022) 0.047 (0.031) 0.163
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.689 (0.084) 0.743 (0.003) 0.743 (0.003) 0.924

Table A.40: Results using SCC with 40% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.646 (0.030) 0.675 (0.014) 0.653 (0.019) 0.686 (0.018) 0.628 (0.013) 0.600 (0.015) 0.575 (0.020) 0.712
Scene 0.766 (0.014) 0.782 (0.010) 0.769 (0.007) 0.778 (0.006) 0.804 (0.004) 0.764 (0.008) 0.735 (0.005) 0.845
Yeast 0.677 (0.005) 0.677 (0.004) 0.678 (0.005) 0.678 (0.006) 0.699 (0.008) 0.694 (0.012) 0.650 (0.004) 0.724
ENRON 0.909 (0.002) 0.909 (0.002) 0.909 (0.001) 0.909 (0.002) 0.916 (0.004) 0.922 (0.002) — 0.923
Medical 0.950 (0.001) 0.951 (0.001) 0.950 (0.001) 0.951 (0.001) 0.966 (0.009) 0.967 (0.006) — 0.989
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.910 (0.005)* 0.911 (0.005)* 0.911 (0.005)* 0.911 (0.005)* 0.911 (0.005)* 0.894 (0.034) 0.863 (0.009) 0.905
Bridges 0.501 (0.044) 0.495 (0.046) 0.508 (0.052) 0.497 (0.037) 0.434 (0.034) 0.527 (0.037) 0.474 (0.032) 0.570
Thyroid 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.961 (0.001) 0.947 (0.017) 0.961 (0.001) 0.959 (0.000) 0.986

Exact Match Ratio (EMR)

Music 0.139 (0.036) 0.165 (0.025) 0.148 (0.027) 0.180 (0.024) 0.148 (0.029) 0.125 (0.021) 0.110 (0.025) 0.186
Scene 0.300 (0.038) 0.339 (0.023) 0.312 (0.016) 0.331 (0.014) 0.401 (0.012) 0.302 (0.019) 0.317 (0.019) 0.522
Yeast 0.040 (0.007) 0.038 (0.003) 0.037 (0.005) 0.040 (0.005) 0.085 (0.006) 0.084 (0.007) 0.051 (0.006) 0.134
ENRON 0.012 (0.003) 0.012 (0.004) 0.010 (0.003) 0.012 (0.003) 0.026 (0.003)* 0.048 (0.012)* — 0.026
Medical 0.055 (0.005) 0.060 (0.012) 0.056 (0.012) 0.065 (0.012) 0.230 (0.023) 0.093 (0.106) — 0.645
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.793 (0.009)* 0.795 (0.010)* 0.795 (0.010)* 0.795 (0.010)* 0.795 (0.010)* 0.748 (0.094) 0.788 (0.019)* 0.785
Bridges 0.035 (0.026) 0.040 (0.026) 0.047 (0.021) 0.042 (0.023) 0.019 (0.029) 0.026 (0.013) 0.019 (0.025) 0.163
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.670 (0.091) 0.743 (0.003) 0.742 (0.003) 0.924

Table A.41: Results using SCC with 50% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.656 (0.029) 0.686 (0.020) 0.657 (0.018) 0.668 (0.013) 0.638 (0.009) 0.603 (0.012) 0.586 (0.010) 0.712
Scene 0.770 (0.016) 0.778 (0.009) 0.777 (0.006) 0.777 (0.008) 0.805 (0.006) 0.761 (0.006) 0.733 (0.010) 0.845
Yeast 0.677 (0.005) 0.678 (0.004) 0.678 (0.004) 0.677 (0.003) 0.702 (0.006) 0.698 (0.015) 0.647 (0.005) 0.724
ENRON 0.909 (0.001) 0.908 (0.002) 0.909 (0.002) 0.909 (0.001) 0.914 (0.004) 0.920 (0.003) — 0.923
Medical 0.950 (0.001) 0.950 (0.001) 0.950 (0.002) 0.950 (0.001) 0.958 (0.008) 0.967 (0.006) — 0.989
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.911 (0.004)* 0.911 (0.004)* 0.911 (0.004)* 0.910 (0.005)* 0.909 (0.003)* 0.911 (0.004)* 0.859 (0.008) 0.905
Bridges 0.508 (0.029) 0.532 (0.017) 0.509 (0.051) 0.528 (0.032) 0.450 (0.029) 0.506 (0.049) 0.470 (0.046) 0.570
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.951 (0.016) 0.961 (0.000) 0.958 (0.002) 0.986

Exact Match Ratio (EMR)

Music 0.152 (0.033) 0.178 (0.016) 0.159 (0.020) 0.158 (0.021) 0.153 (0.017) 0.118 (0.012) 0.106 (0.019) 0.186
Scene 0.308 (0.041) 0.332 (0.022) 0.327 (0.015) 0.328 (0.020) 0.402 (0.016) 0.292 (0.018) 0.309 (0.026) 0.522
Yeast 0.039 (0.007) 0.040 (0.007) 0.037 (0.003) 0.039 (0.004) 0.089 (0.006) 0.090 (0.012) 0.047 (0.004) 0.134
ENRON 0.011 (0.005) 0.011 (0.004) 0.012 (0.006) 0.010 (0.003) 0.026 (0.004)* 0.044 (0.013)* — 0.026
Medical 0.061 (0.006) 0.066 (0.010) 0.062 (0.015) 0.056 (0.014) 0.218 (0.017) 0.084 (0.095) — 0.645
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.795 (0.010)* 0.795 (0.010)* 0.795 (0.010)* 0.794 (0.011)* 0.792 (0.010)* 0.795 (0.010)* 0.780 (0.020) 0.785
Bridges 0.030 (0.015) 0.032 (0.026) 0.033 (0.026) 0.037 (0.019) 0.014 (0.019) 0.021 (0.020) 0.042 (0.027) 0.163
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.689 (0.084) 0.743 (0.002) 0.736 (0.010) 0.924

Table A.42: Results using SCC with 60% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.651 (0.025) 0.672 (0.020) 0.655 (0.015) 0.683 (0.015) 0.630 (0.016) 0.606 (0.014) 0.576 (0.023) 0.712
Scene 0.769 (0.014) 0.782 (0.003) 0.773 (0.005) 0.773 (0.009) 0.803 (0.005) 0.765 (0.006) 0.731 (0.007) 0.845
Yeast 0.678 (0.003) 0.675 (0.004) 0.680 (0.003) 0.675 (0.005) 0.701 (0.007) 0.698 (0.008) 0.644 (0.006) 0.724
ENRON 0.908 (0.001) 0.908 (0.001) 0.909 (0.001) 0.909 (0.001) 0.914 (0.003) 0.921 (0.002) — 0.923
Medical 0.949 (0.002) 0.950 (0.001) 0.950 (0.001) 0.951 (0.001) 0.957 (0.009) 0.964 (0.008) — 0.989
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.910 (0.005)* 0.908 (0.007)* 0.910 (0.005)* 0.910 (0.005)* 0.910 (0.005)* 0.910 (0.005)* 0.864 (0.009) 0.905
Bridges 0.506 (0.076) 0.495 (0.047) 0.492 (0.041) 0.504 (0.045) 0.455 (0.036) 0.516 (0.051) 0.471 (0.056) 0.570
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.947 (0.017) 0.961 (0.000) 0.948 (0.009) 0.986

Exact Match Ratio (EMR)

Music 0.134 (0.029) 0.174 (0.028) 0.142 (0.020) 0.165 (0.012) 0.149 (0.023) 0.115 (0.025) 0.103 (0.023) 0.186
Scene 0.304 (0.035) 0.340 (0.008) 0.317 (0.014) 0.320 (0.024) 0.400 (0.012) 0.298 (0.012) 0.303 (0.019) 0.522
Yeast 0.044 (0.007) 0.039 (0.004) 0.039 (0.008) 0.038 (0.006) 0.090 (0.008) 0.083 (0.012) 0.047 (0.008) 0.134
ENRON 0.010 (0.004) 0.010 (0.004) 0.010 (0.003) 0.010 (0.004) 0.025 (0.004) 0.046 (0.012)* — 0.026
Medical 0.052 (0.009) 0.058 (0.011) 0.056 (0.008) 0.065 (0.019) 0.226 (0.020) 0.094 (0.093) — 0.645
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.793 (0.009)* 0.789 (0.017)* 0.794 (0.008)* 0.794 (0.008)* 0.794 (0.008)* 0.794 (0.008)* 0.792 (0.018)* 0.785
Bridges 0.037 (0.030) 0.042 (0.029) 0.033 (0.019) 0.049 (0.027) 0.016 (0.021) 0.026 (0.020) 0.030 (0.024) 0.163
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.670 (0.091) 0.743 (0.003) 0.688 (0.048) 0.924

Table A.43: Results using SCC with 70% of the original features.

AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.653 (0.030) 0.664 (0.028) 0.650 (0.015) 0.684 (0.013) 0.636 (0.017) 0.605 (0.022) 0.573 (0.020) 0.712
Scene 0.763 (0.013) 0.780 (0.007) 0.782 (0.009) 0.775 (0.006) 0.805 (0.006) 0.764 (0.006) 0.733 (0.011) 0.845
Yeast 0.679 (0.004) 0.677 (0.005) 0.680 (0.007) 0.678 (0.004) 0.697 (0.006) 0.694 (0.006) 0.648 (0.005) 0.724
ENRON 0.909 (0.002) 0.909 (0.002) 0.909 (0.002) 0.909 (0.002) 0.915 (0.003) 0.918 (0.003) — 0.923
Medical 0.950 (0.001) 0.950 (0.001) 0.950 (0.001) 0.950 (0.001) 0.959 (0.009) 0.966 (0.006) — 0.989
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.911 (0.007)* 0.910 (0.007)* 0.910 (0.007)* 0.911 (0.007)* 0.905 (0.021)* 0.911 (0.006)* 0.861 (0.015) 0.905
Bridges 0.521 (0.032) 0.493 (0.023) 0.491 (0.024) 0.488 (0.054) 0.431 (0.023) 0.520 (0.057) 0.441 (0.058) 0.570
Thyroid 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.961 (0.000) 0.951 (0.015) 0.961 (0.000) 0.936 (0.004) 0.986

Exact Match Ratio (EMR)

Music 0.156 (0.030) 0.158 (0.020) 0.136 (0.024) 0.174 (0.024) 0.152 (0.023) 0.125 (0.027) 0.095 (0.018) 0.186
Scene 0.290 (0.032) 0.336 (0.016) 0.342 (0.021) 0.326 (0.015) 0.400 (0.014) 0.296 (0.012) 0.309 (0.030) 0.522
Yeast 0.039 (0.006) 0.042 (0.010) 0.041 (0.006) 0.040 (0.007) 0.084 (0.007) 0.078 (0.006) 0.049 (0.005) 0.134
ENRON 0.009 (0.004) 0.010 (0.005) 0.011 (0.003) 0.013 (0.006) 0.023 (0.006) 0.034 (0.007)* — 0.026
Medical 0.056 (0.009) 0.055 (0.013) 0.058 (0.009) 0.062 (0.014) 0.231 (0.015) 0.147 (0.113) — 0.645
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.794 (0.013)* 0.793 (0.014)* 0.793 (0.015)* 0.794 (0.013)* 0.776 (0.060) 0.795 (0.012)* 0.786 (0.023)* 0.785
Bridges 0.042 (0.027) 0.026 (0.020) 0.040 (0.028) 0.023 (0.018) 0.014 (0.015) 0.040 (0.028) 0.047 (0.023) 0.163
Thyroid 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.743 (0.002) 0.692 (0.080) 0.743 (0.002) 0.625 (0.024) 0.924

Table A.44: Results using SCC with 80% of the original features.
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AE dAE D-AE D-dAE RBM DBN PCA Original

Hamming Score (HS)

Music 0.636 (0.029) 0.674 (0.021) 0.637 (0.014) 0.670 (0.018) 0.636 (0.020) 0.589 (0.007) 0.577 (0.021) 0.712
Scene 0.765 (0.010) 0.772 (0.006) 0.773 (0.008) 0.772 (0.005) 0.796 (0.011) 0.755 (0.006) 0.730 (0.009) 0.845
Yeast 0.679 (0.003) 0.679 (0.003) 0.677 (0.005) 0.675 (0.004) 0.706 (0.008) 0.699 (0.014) 0.645 (0.004) 0.724
ENRON 0.908 (0.001) 0.909 (0.001) 0.909 (0.001) 0.909 (0.001) 0.914 (0.004) 0.918 (0.002) — 0.923
Medical 0.949 (0.002) 0.950 (0.001) 0.950 (0.001) 0.950 (0.002) 0.952 (0.009) 0.966 (0.004) — 0.989
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.904 (0.014) 0.910 (0.005)* 0.910 (0.006)* 0.910 (0.005)* 0.909 (0.007)* 0.911 (0.004)* 0.859 (0.015) 0.905
Bridges 0.502 (0.037) 0.517 (0.044) 0.485 (0.068) 0.513 (0.046) 0.456 (0.030) 0.527 (0.044) 0.489 (0.034) 0.570
Thyroid 0.961 (0.000) 0.961 (0.001) 0.961 (0.000) 0.961 (0.000) 0.951 (0.016) 0.961 (0.000) 0.934 (0.002) 0.986

Exact Match Ratio (EMR)

Music 0.128 (0.029) 0.156 (0.028) 0.129 (0.018) 0.152 (0.031) 0.137 (0.022) 0.120 (0.013) 0.111 (0.024) 0.186
Scene 0.295 (0.027) 0.315 (0.014) 0.316 (0.019) 0.316 (0.014) 0.383 (0.025) 0.274 (0.018) 0.297 (0.023) 0.522
Yeast 0.041 (0.005) 0.038 (0.005) 0.037 (0.008) 0.038 (0.004) 0.090 (0.007) 0.084 (0.013) 0.044 (0.009) 0.134
ENRON 0.012 (0.005) 0.013 (0.004) 0.010 (0.003) 0.013 (0.004) 0.026 (0.006)* 0.041 (0.008)* — 0.026
Medical 0.050 (0.012) 0.059 (0.007) 0.054 (0.007) 0.057 (0.013) 0.237 (0.022) 0.162 (0.088) — 0.645
Slashdot — — — — — — — —
LLOG — — — — — — — —
Solar Flare 0.780 (0.029) 0.794 (0.007)* 0.793 (0.010)* 0.793 (0.008)* 0.790 (0.016)* 0.795 (0.007)* 0.785 (0.019)* 0.785
Bridges 0.035 (0.028) 0.032 (0.028) 0.040 (0.031) 0.030 (0.018) 0.016 (0.011) 0.030 (0.024) 0.037 (0.032) 0.163
Thyroid 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.743 (0.003) 0.689 (0.084) 0.743 (0.003) 0.610 (0.011) 0.924

Table A.45: Results using SCC with 90% of the original features.



APPENDIX

B
How Multi-Target Classifiers were

Affected by the Number of Features
Generated by the Feature-Extractors

This appendix presents all the results obtained during our final experiments, discussed in
Sections 6.4 and 6.5. The data presented here is used to show how the number of features
generated by the feature extractors selected for this research, influenced the performances of
the multi-target classifiers.

For the graphs presented in this appendix, each line represents a feature extraction method,
with the dashed black line representing the results obtained with the original dataset, i.e, without
feature extraction.

The rest of this appendix is organized as follows: Section A.1 shows the results obtained
by Class Relevance (CR), Section A.2 shows the results obtained by Classifier Chains (CC),
Section A.3 shows the results obtained by Ensemble of Classifier Chains (ECC), Section A.4
shows the results obtained by Class Relevance Stacking (CRS) and, finally, Section A.5 shows
the results obtained by Super-Class Classifier (SCC). The predictive performances of the multi-
target classifiers were measured with Hamming Score (HS) and Exact Match Ratio (EMR).
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B How Multi-Target Classifiers were Affected by the Number of Features Generated by the

Feature-Extractors

B.1 Class Relevance (CR) Results

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.1: How the CR classification performance is affected by the number of extracted
features on Music dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.2: How the CR classification performance is affected by the number of extracted
features on Scene dataset.
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(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.3: How the CR classification performance is affected by the number of extracted
features on Yeast dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.4: How the CR classification performance is affected by the number of extracted
features on ENRON dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.5: How the CR classification performance is affected by the number of extracted
features on MEDICAL dataset.
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B How Multi-Target Classifiers were Affected by the Number of Features Generated by the

Feature-Extractors

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.6: How the CR classification performance is affected by the number of extracted
features on SLASHDOT dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.7: How the CR classification performance is affected by the number of extracted
features on LLOG dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.8: How the CR classification performance is affected by the number of extracted
features on SolarFlare dataset.
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(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.9: How the CR classification performance is affected by the number of extracted
features on Bridges dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.10: How the CR classification performance is affected by the number of extracted
features on Thyroid dataset.
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B How Multi-Target Classifiers were Affected by the Number of Features Generated by the

Feature-Extractors

B.2 Classifier Chains (CC) Results

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.11: How the CC classification performance is affected by the number of extracted
features on Music dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.12: How the CC classification performance is affected by the number of extracted
features on Scene dataset.
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(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.13: How the CC classification performance is affected by the number of extracted
features on Yeast dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.14: How the CC classification performance is affected by the number of extracted
features on ENRON dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.15: How the CC classification performance is affected by the number of extracted
features on MEDICAL dataset.
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B How Multi-Target Classifiers were Affected by the Number of Features Generated by the

Feature-Extractors

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.16: How the CC classification performance is affected by the number of extracted
features on SLASHDOT dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.17: How the CC classification performance is affected by the number of extracted
features on LLOG dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.18: How the CC classification performance is affected by the number of extracted
features on SolarFlare dataset.
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(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.19: How the CC classification performance is affected by the number of extracted
features on Bridges dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.20: How the CC classification performance is affected by the number of extracted
features on Thyroid dataset.
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B How Multi-Target Classifiers were Affected by the Number of Features Generated by the

Feature-Extractors

B.3 Ensemble of Classifier Chains (ECC) Results

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.21: How the ECC classification performance is affected by the number of extracted
features on Music dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.22: How the ECC classification performance is affected by the number of extracted
features on Scene dataset.
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(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.23: How the ECC classification performance is affected by the number of extracted
features on Yeast dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.24: How the ECC classification performance is affected by the number of extracted
features on ENRON dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.25: How the ECC classification performance is affected by the number of extracted
features on MEDICAL dataset.
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B How Multi-Target Classifiers were Affected by the Number of Features Generated by the

Feature-Extractors

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.26: How the ECC classification performance is affected by the number of extracted
features on SLASHDOT dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.27: How the ECC classification performance is affected by the number of extracted
features on LLOG dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.28: How the ECC classification performance is affected by the number of extracted
features on SolarFlare dataset.
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(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.29: How the ECC classification performance is affected by the number of extracted
features on Bridges dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.30: How the ECC classification performance is affected by the number of extracted
features on Thyroid dataset.
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B How Multi-Target Classifiers were Affected by the Number of Features Generated by the

Feature-Extractors

B.4 Class Relevance Stacking (CRS) Results

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.31: How the CRS classification performance is affected by the number of extracted
features on Music dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.32: How the CRS classification performance is affected by the number of extracted
features on Scene dataset.
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(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.33: How the CRS classification performance is affected by the number of extracted
features on Yeast dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.34: How the CRS classification performance is affected by the number of extracted
features on ENRON dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.35: How the CRS classification performance is affected by the number of extracted
features on MEDICAL dataset.
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B How Multi-Target Classifiers were Affected by the Number of Features Generated by the

Feature-Extractors

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.36: How the CRS classification performance is affected by the number of extracted
features on SLASHDOT dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.37: How the CRS classification performance is affected by the number of extracted
features on LLOG dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.38: How the CRS classification performance is affected by the number of extracted
features on SolarFlare dataset.
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(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.39: How the CRS classification performance is affected by the number of extracted
features on Bridges dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.40: How the CRS classification performance is affected by the number of extracted
features on Thyroid dataset.
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B How Multi-Target Classifiers were Affected by the Number of Features Generated by the

Feature-Extractors

B.5 Super-Class Classifier (SCC) Results

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.41: How the SCC classification performance is affected by the number of extracted
features on Music dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.42: How the SCC classification performance is affected by the number of extracted
features on Scene dataset.
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(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.43: How the SCC classification performance is affected by the number of extracted
features on Yeast dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.44: How the SCC classification performance is affected by the number of extracted
features on ENRON dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.45: How the SCC classification performance is affected by the number of extracted
features on MEDICAL dataset.
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B How Multi-Target Classifiers were Affected by the Number of Features Generated by the

Feature-Extractors

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.46: How the SCC classification performance is affected by the number of extracted
features on SolarFlare dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.47: How the SCC classification performance is affected by the number of extracted
features on Bridges dataset.

(a) Hamming Score (HS) (b) Exact Match Ratio (EMR)

Figure B.48: How the SCC classification performance is affected by the number of extracted
features on Thyroid dataset.
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