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“It is through science that we prove, but
through intuition that we discover.”

— Henri Poincaré



Abstract

This work is dedicated to study a non-autonomous formulation of the Klein-Gordon-
Zakharov system, which is a coupled system consisting of two non-autonomous evolution
equations, where each one is of second order in time. This model is closely related to the
interaction of waves and it appears frequently in thermoelasticity, mechanics, plasma physics,
and other areas alike.

The present work is divided into two main parts. In a first moment, using the uniform
sectorial operators theory, we will show that our formulation has parabolic structure and then,
making use of the natural energy associated to the system, we will obtain its global well-
posedness. With the global solution in hands, we can define a nonlinear evolution process.
Thus, in order to study the long-time dynamics of solutions, we shall use the abstract evolution
processes theory to prove existence, regularity and upper semicontinuity of pullback attractors.

In the second main moment of this work, we are going to investigate the asymptotic
dynamics of solutions of the non-autonomous Klein-Gordon-Zakharov system when they are
subject to the action of impulses. To do that, we will study the qualitative properties of
evolution processes under conditions of impulses and present sufficient conditions for the
existence of pullback attractors for evolution processes in the impulsive scenario. Finally, we
apply the abstract results in order to ensure the existence of an impulsive pullback attractor for
the impulsive evolution process associated with the non-autonomous Klein-Gordon-Zakharov
system with impulsive action.

Keywords: Klein-Gordon-Zakharov system, Global well-posedness, Pullback attractor, Upper
semicontinuity, Impulses.



Resumo

Este trabalho é dedicado ao estudo de uma formulação não autônoma do sistema de Klein-
Gordon-Zakharov, o qual é um sistema acoplado composto por duas equações de evolução não
autônomas, onde cada uma é de segunda ordem no tempo. Este modelo está intimamente
relacionado a interação de ondas e ele aparece com frequência em termoelasticidade, mecânica,
física de plasma, e outras áreas semelhantes.

O presente trabalho é dividido em duas partes principais. Em um primeiro momento,
usando a teoria de operadores uniformemente setoriais, iremos mostrar que nossa formulação
possui estrutura parabólica e então, fazendo uso da energia natural associada ao sistema,
iremos obter a sua boa postura global. Com a solução global em mãos, podemos definir
um processo de evolução não linear. Assim, a fim de estudar a dinâmica a longo prazo das
soluções, deveremos usar a teoria abstrata dos processos de evolução para provar a existência,
regularidade e semicontinuidade superior dos atratores pullback.

No segundo momento principal deste trabalho, vamos investigar a dinâmica assintótica
das soluções do sistema de Klein-Gordon-Zakharov não autônomo quando elas estão sob ação
de impulsos. Para fazer isto, iremos estudar as propriedades qualitativas de processos de
evolução sob condições de impulsos e apresentar condições suficientes para a existência de
atratores pullback para processos de evolução no cenário impulsivo. Finalmente, aplicaremos
os resultados abstratos para garantir a existência de um atrator pullback impulsivo para o
processo de evolução impulsivo associado ao sistema de Klein-Gordon-Zakharov não autônomo
com ação impulsiva.

Palavras-chave: Sistema de Klein-Gordon-Zakharov, Boa colocação global. Atrator pullback,
Semicontinuidade superior, Impulsos.
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Introduction

The theory and applications of infinite dimensional dynamical systems have called the
attention of many mathematicians over the past decades. Several real world phenomena can
be described using dynamical aspects: the turbulence of fluids, celestial mechanics, climate
changes, economic models, chemical and biological reactions, and so forth.

In particular, one of the main challenges of this area is to understand and predict
the asymptotic behaviour of solutions associated with non-autonomous ordinary and partial
differential equations, because for a large amount of problems it is not possible to obtain an
explicit expression for its solutions (when they exist). In order to overcome this obstacle,
the most notorious attempt is to show the existence of a specific object that attracts all the
trajectories of the dynamical system generated by these solutions. To this object it is given
the name of attractor and the main idea behind this purpose is to reduce the complexity of the
system and study what happens to the solutions inside this object.

The concept of attractor is closely related to some kind of dissipation of energy over the
time, which is one of the main ingredients used to ensure its existence. The investigation of this
theory involves elements of classical analysis and some geometric viewpoint of the qualitative
theory of differential equations.

In this work, we study a non-autonomous version of the well known Klein-Gordon-
Zakharov system, given by the following initial-boundary value problemutt −∆u+ u+ η(−∆)

1
2ut + aε(t)(−∆)

1
2vt = f(u), (x, t) ∈ Ω× (τ,∞),

vtt −∆v + η(−∆)
1
2vt − aε(t)(−∆)

1
2ut = 0, (x, t) ∈ Ω× (τ,∞),

(1)

where η is a positive constant, subject to boundary conditions

u = v = 0, (x, t) ∈ ∂Ω× (τ,∞),

and initial conditions

u(τ, x) = u0(x), ut(τ, x) = u1(x), v(τ, x) = v0(x), vt(τ, x) = v1(x), x ∈ Ω, τ ∈ R,

where Ω is a bounded smooth domain in Rn, n ≥ 3, with the boundary ∂Ω assumed to be

11
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regular enough, η > 0 is constant, aε is a Hölder continuous function and f ∈ C1(R) is a
dissipative nonlinearity.

In the case that aε(t) ≡ a, the system (1) represents the autonomous version of the
Klein-Gordon-Zakharov system. Within the autonomous case, if n = 3 then the Klein-Gordon-
Zakharov system arises to describe the interaction of a Langmuir wave and an ion acoustic
wave in a plasma, see [6, 31, 43] and references therein.

These types of systems have been considered by many researchers in recent years. In what
follows, we recall some related results for these kinds of systems. In [43], the authors considered
the following system (in dimension 2 and 3)utt −∆u+ u+ vu = 0,

vtt − c2
0∆v = ∆(|u|2),

and they proved instability of solutions in the sense that small perturbations of the initial data
can make the perturbed solution blow up in finite time.

In [2], it is considered the following coupled system of wave equations:utt −∆u+
∫ +∞

0
g(s)∆u(t− s)ds+ αv = 0,

vtt −∆v + αu = 0,

where the authors showed the dissipativeness of this system, and, moreover, they proved that
the associated semigroup is not exponentially stable. Later in [37], the authors studied a more
general and abstract version of the previous system presented in [2]. In fact, they obtained
existence of solutions and an optimal energy decay estimate for the following coupled system
of second order abstract evolution equations:utt(t) + A1u(t)−

∫ +∞
0

g(s)Au(t− s)ds+Bv(t) = 0,

vtt(t) + A2v(t) +Bu(t) = 0,

where A,A1 and A2 are positive self-adjoint linear operators in a Hilbert spaceH, B is a positive
self-adjoint bounded linear operator in H, and g is a non-increasing function satisfying some
properties. With this formulation, this system covers the well-known Timoshenko system,
which appears in mechanics and thermoelasticity, and models the transverse vibrations of a
beam.

For a deeper and more detailed discussion about systems consisting of wave equations
and other types of physical models, we refer to [32], [33],[41], [42] and [44].

This work is divided into two main parts. In the first one, the main purpose is to show the
global well-posedness and to study the long-time dynamics of solutions of the evolution system
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(1). In order to do that, we shall use the uniform sectorial operators theory, following Amann
[3] and Henry [35], to show the local and global well-posedness of system (1), and we will use
the abstract evolution processes theory to prove existence, regularity and upper semicontinuity
of pullback attractors.

It is appropriate to observe that, in the literature, it is common to obtain the existence
of pullback attractors by using a decomposition of the nonlinear evolution process to show
that it has the property called pullback asymptotic compactness. This is done by writing this
decomposition as two maps, where one decays to zero and the another one is compact. See [7],
[8], [22], [23] and [25] for more details. However, in this work, it is established the compactness
of the nonlinear process associated with the system (1) in a direct way. See Proposition 2.6.

The regularity of pullback attractors for the system (1) will be obtained using a
combination of energy estimates in fractional power spaces and the so called “bootstrapping
argument”, which is an idea used very often in the theory of elliptic partial differential equations
to increase regularity of solutions. See Theorem 2.8. Finally, after improving the regularity, we
will apply this result to obtain the upper semicontinuity of pullback attractors for the system
(1), which is an important achievement from the stability viewpoint, because this means that
the attractor does not explode when we make a small perturbation in it. See Theorem 2.9.

The results that were mentioned previously are contained in the paper [17], which was
already submitted for publication.

The second main part of this work is concerned with the long-time dynamics of solutions
of the system (1) when they are subject to impulsive effects at variable times. That is, the
problem to be studied now has the form

utt −∆u+ u+ η(−∆)
1
2ut + aε(t)(−∆)

1
2vt = f(u), (x, t) ∈ Ω× (τ,∞),

vtt −∆v + η(−∆)
1
2vt − aε(t)(−∆)

1
2ut = 0, (x, t) ∈ Ω× (τ,∞),

u = v = 0, (x, t) ∈ ∂Ω× (τ,∞),

I : M ⊂ Y0 → Y0.

(2)

Here, the setM , called the impulsive set, is a nonempty closed subset of the phase space Y0, and
it will satisfy some transversality properties in relation with the continuous evolution process
generated by the global solution of the system (1). The function I : M ⊂ Y0 → Y0, called
the impulse function, is assumed to be continuous and will be responsible by the occurrence of
discontinuities in the trajectory when the solution hits M .

The theory of impulsive dynamical systems is used to comprehend the structure of systems
where the continuity of the flow is interrupted by an abrupt change of state. Briefly speaking,
when a dynamical system is subject to impulsive effects, the continuous flow is interrupted
when it hits the impulsive set and then, at the moment of this impact, the continuity of the
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dynamics is broken and the flow will restart its evolution from another point of the phase space.
This process we just described can eventually come to an end, if the flow hits the impulsive set
only a finite number of times, or this process can generate an infinite number of discontinuities
if the flow keeps hitting the impulsive set indefinitely.

The states of several real world problems can change in a gap of time so small that is
expected for this phenomena to happen almost instantaneously. Therefore, it is natural to
think that these abrupt changes may occur in the form of impulses. It makes more sense when
we think in the real applications: optimal control theory in economics, a health treatment
involving the periodic ingestion of medicines and electric systems are some concrete examples
where the action of impulses are observable.

Another example that we may cite is a billiard system where there are balls colliding
to each other. In this system, when the balls are hitting one another, their positions do not
change at the moments of impact, that is, when the impulses happen. But we can see that the
velocities of the balls will gain finite increments. Thus, in this example, the impulses are acting
on the velocity according to the position of the ball.

In particular, the study of systems of coupled wave equations with impulses is motivated
by the fact that, when modeling the interaction between different fluids, discontinuities may
appear naturally in the state variables, which are influenced by several physical aspects, such
as density, viscosity, and molecular cohesion. For instance, the discontinuities in the molecular
cohesion are responsible by the phenomenon of surface tension, which is modeled using jump
conditions in the pressure field. Moreover, the discontinuity in the density variable can change
the shape of air bubbles in the water. A survey on fluids with discontinuity conditions can be
found in [36].

The present work is divided into four chapters and it is organized as follows. The Chapter
1 is dedicated to give a collection of preliminary facts that are useful for the understanding of
the forthcoming chapters of this work. In Section 1.1, we present a brief summary on the theory
of semigroups of bounded linear operators, including basic properties and the main theorems on
generation of semigroups, and we also present results concerning sectorial operators and their
fractional powers. In Section 1.2 we reunite the main concepts and existence results involving
the theory of pullback attractors for nonlinear evolution processes, and we also include a quick
overview of the theory of abstract parabolic problems.

The Chapter 2 is devoted to study the non-autonomous version of the Klein-Gordon-
Zakharov system, given by (1), and it is organized in five parts. In Section 2.1, we present
the conditions and assumptions that will ensure the local and global well-posedness of the
problem (1), which are two topics that are going to be discussed in Section 2.2. The other
three remaining sections of Chapter 2 are dedicated to investigate the long-time dynamics of
solutions of the evolution system (1) using the nonlinear evolution processes framework and
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the theory of pullback attractors. Thus, in Section 2.3, we obtain the existence of the pullback
attractor for the non-autonomous problem (1). Section 2.4 deals with the regularity of the
pullback attractor and, finally, in Section 2.5, we prove the upper semicontinuity of pullback
attractors.

The Chapter 3 is dedicated to present the theory of evolution processes under conditions
of impulses. In Section 3.1, we exhibit the construction of an impulsive evolution process, we
give the conditions at which the existence of an impulsive flow is guaranteed for all time, and
we also define the concepts of invariance, asymptotic compactness and dissipativeness in the
framework of evolution processes with impulses. In Section 3.2, we discuss the continuity of
the function that represents the smallest time for which the trajectory of a point meets the
impulsive set. In Section 3.3, we present qualitative properties concerning the convergence of
the impulsive flow that are crucial to establish the invariance of the impulsive omega-limit set,
which is the main goal of Section 3.4. In Section 3.5, we prove an abstract result on existence of
pullback attractors for evolution processes subject to impulses. Finally, Section 3.6 is devoted
to obtain a result on upper semicontinuity of a family of impulsive pullback attractors.

The Chapter 4 is reserved to study the asymptotic dynamics of the impulsive non-
autonomous problem (2). Our main goal in Section 4.1 is to show that the impulsive problem (2)
possesses an impulsive pullback attractor. To do that, we will construct a compact absorbing
set for the impulsive evolution process associated with this problem, see Theorem 4.1, and then
we will assure the existence of such attractor by applying the abstract existence result presented
in Chapter 3. Finally, in Section 4.2 we study the robustness of the family of impulsive pullback
attractors associated with the impulsive problem (2).



Chapter

1

Preliminaries

This chapter is dedicated to provide a quick look on the main tools that are necessary for
a better comprehension of this work.

1.1 Semigroups of linear operators

The purpose of this section is to give a review on standard facts about semigroups of
bounded linear operators and their infinitesimal generators, with focus in presenting the main
results on generation of C0-semigroups, namely the Hille-Yosida Theorem and the Lumer-
Phillips Theorem, and also some of its consequences. Properties of sectorial operators and
fractional powers of operators are also listed. These notions are used in the modern theory
of differential equations, mostly in evolution problems, to study existence and uniqueness of
solutions, continuous dependence with respect to the initial data, and even the existence of
global attractors. The content related to linear operators and semigroups can be found in
[20], [38] and [45]. Meanwhile, [3], [30] and [35] are good references for sectorial operators and
fractional power spaces.

Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be two normed vector spaces. We denote by L(E,F ) the
space of bounded linear operators T : E → F endowed with the norm

‖T‖L(E,F ) = sup
‖x‖E≤1

‖Tx‖F .

As usual, we write L(E) to denote the space L(E,E).

1.1.1 Semigroups and their generators

Throughout the following definitions, (X, ‖ · ‖X) will be a Banach space over a field K,
with K = R or K = C.

Definition 1.1. A semigroup of bounded linear operators on X, or simply semigroup, is a one

16
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parameter family {T (t) : t ≥ 0} ⊂ L(X) satisfying:

(a) T (0) = I, with I being the identity operator on X;

(b) T (t+ s) = T (t)T (s) for all t, s ≥ 0.

The semigroups of bounded linear operators are classified as follows.

Definition 1.2. A semigroup {T (t) : t ≥ 0} ⊂ L(X) is called:

(a) uniformly continuous, if lim
t↓0
‖T (t)− I‖L(X) = 0;

(b) strongly continuous, if lim
t↓0

T (t)x = x for all x ∈ X and, in this case, we say that the
semigroup is of class C0, or we simply call it a C0-semigroup.

Definition 1.3. For a semigroup {T (t) : t ≥ 0} ⊂ L(X), we define its infinitesimal generator
as the linear operator A : D(A) ⊂ X → X given by

D(A) =

{
x ∈ X : lim

t↓0

T (t)x− x
t

exists
}

and
Ax = lim

t↓0

T (t)x− x
t

, for x ∈ D(A).

Theorem 1.1. [45, Theorem 1.2] A linear operator A : D(A) ⊂ X → X is the infinitesimal
generator of a uniformly continuous semigroup {T (t) : t ≥ 0} ⊂ L(X) if, and only if A is a
bounded linear operator.

The next result says that every bounded linear operator is the infinitesimal generator of
a unique uniformly continuous semigroup.

Theorem 1.2. [45, Theorem 1.3] Let {T (t) : t ≥ 0} and {S(t) : t ≥ 0} be two uniformly
continuous semigroups. If

lim
t↓0

T (t)− I
t

= A = lim
t↓0

S(t)− I
t

,

then T (t) = S(t) for all t ≥ 0.

Every C0-semigroup is exponentially dominated, as it is established in the next result.

Theorem 1.3. [45, Theorem 2.2] Let {T (t) : t ≥ 0} be a C0-semigroup. Then there exist
constants ω ≥ 0 and M ≥ 1 such that

‖T (t)‖L(X) ≤Meωt for all t ≥ 0.

Remark 1.1. In Theorem 1.3, if ω = 0, then the C0-semigroup {T (t) : t ≥ 0} is called uniformly
bounded and, if ω = 1, then {T (t) : t ≥ 0} is called a C0-semigroup of contractions.
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The following result collects some useful facts about C0-semigroups.

Theorem 1.4. [45, Corollary 2.3, Theorem 2.4, Corollary 2.5, Theorem 2.7] Let {T (t) : t ≥ 0}
be a C0-semigroup and let A be its infinitesimal generator.

(i) For all x ∈ X, the map R+ 3 t 7→ T (t)x ∈ X is continuous.

(ii) D(A) is dense in X and A is a closed operator.

(iii) For x ∈ D(A), T (t)x ∈ D(A), the map R+ 3 t 7→ T (t)x ∈ X is continuously
differentiable, and

d

dt
T (t)x = AT (t)x = T (t)Ax, t > 0.

(iv) If D(An) is the domain of An, for n ∈ N, then
∞⋂
n=1

D(An) is dense in X.

1.1.2 The Hille-Yosida and the Lumer-Phillips Theorems

When dealing with applications of the semigroup theory of linear operators to partial
differential equations, one needs to know how to determine conditions that ensure when a given
operator on a Banach space is the generator of a C0-semigroup.

There are two mainly results in this direction. One is the Hille-Yosida Theorem, which
provides necessary and sufficient conditions for a linear operator to be the infinitesimal generator
of a C0-semigroup of contractions, but these conditions can be difficult to verify. The other one
is the Lumer-Phillips Theorem, which gives necessary and sufficient conditions for generation of
C0-semigroups in terms of dissipativity, and this result is quite useful in a Hilbert space setting.

Recall that if A : D(A) ⊂ X → X is a linear operator, not necessarily bounded, then the
resolvent set of A, denoted by ρ(A), is defined by

ρ(A) = {λ ∈ C : (λI − A)−1 : X → X is a bounded linear operator}.

For λ ∈ ρ(A), the operator

R(λ : A) = (λI − A)−1 : X → X

is called resolvent operator.

Theorem 1.5 (Hille-Yosida). [45, Theorem 3.1] A linear operator A : D(A) ⊂ X → X is the
infinitesimal generator of a C0-semigroup of contractions {T (t) : t ≥ 0} in X if and only if the
following conditions hold:

(i) A is closed and D(A) = X;
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(ii) the resolvent set ρ(A) contains R+ and, for all λ > 0,

‖R(λ : A)‖L(X) ≤
1

λ
.

Some consequences of the Hille-Yosida Theorem are given next.

Corollary 1.1. [45, Corollary 3.6] Let A : D(A) ⊂ X → X be the infinitesimal generator of a
C0-semigroup of contractions {T (t) : t ≥ 0} in X. Then

ρ(A) ⊇ {λ ∈ C : Re(λ) > 0}

and, for such λ, it holds
‖R(λ : A)‖L(X) ≤

1

Re(λ)
.

Corollary 1.2. [45, Corollary 3.8] Let A : D(A) ⊂ X → X be a linear operator. The following
statements are equivalent:

(i) A is the infinitesimal generator of a C0-semigroup of contractions {T (t) : t ≥ 0} in X

satisfying
‖T (t)‖L(X) ≤ eωt

for some ω ≥ 0 and for all t ≥ 0;

(ii) A is closed, densely defined, its resolvent set ρ(A) contains (ω,∞) and

‖R(λ : A)‖L(X) ≤
1

λ− ω

for all λ > ω.

Let X∗ be the topological dual space of X, that is, X∗ is the space of all continuous linear
functionals defined in X and taking values in K. The value of f ∈ X∗ in a point x ∈ X will be
denoted by 〈f, x〉. The usual norm on X∗ is defined by

‖f‖X∗ = sup
‖x‖X≤1

|〈f, x〉|.

It is well known that (X∗, ‖ · ‖X∗) is a Banach space (this fact is true even when X is not
complete). For x ∈ X, the duality set F (x) ⊆ X∗ is defined by

F (x) = {f ∈ X∗ : Re(〈f, x〉) = ‖x‖2
X and ‖f‖X∗ = ‖x‖X}.

From the Hahn-Banach Theorem, it follows that F (x) 6= ∅ for all x ∈ X.
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Definition 1.4. A linear operator A : D(A) ⊂ X → X is called dissipative if, for each
x ∈ D(A), there is f ∈ F (x) such that Re (〈f, Ax〉) ≤ 0.

Definition 1.5. If a linear operator A : D(A) ⊂ X → X is such that −A is dissipative, then A
is called accretive. If, additionally, one has R(I + A) = X, then A is called maximal accretive.

A general characterization of dissipativity for linear operators is given next.

Theorem 1.6. [45, Theorem 4.2] A linear operator A : D(A) ⊂ X → X is dissipative if, and
only if

‖(λI − A)x‖X ≥ λ‖x‖X

for all x ∈ D(A) and λ > 0.

Now, with the concept of dissipativity in mind, we are able to present the Lumer-Phillips
Theorem.

Theorem 1.7 (Lumer-Phillips). [45, Theorem 4.3] Let A : D(A) ⊂ X → X be a densely defined
linear operator.

(i) If A is dissipative and there exists λ0 > 0 such that R(λ0I − A) = X, then A is the
infinitesimal generator of a C0-semigroup of contractions in X.

(ii) If A is the infinitesimal generator of a C0-semigroup of contractions in X, then R(λI −
A) = X for all λ > 0, and A is dissipative. Moreover,

Re (〈f, Ax〉) ≤ 0

for all x ∈ D(A) and all f ∈ F (x).

Recall that the adjoint operator A∗ : D(A∗) ⊂ Y ∗ → X∗ of a densely defined unbounded
linear operator A : D(A) ⊂ X → Y is defined in the following way. Its domain is given by

D(A∗) = {f ∈ Y ∗ : there is c0 ≥ 0 such that |〈f, Ax〉| ≤ c0‖x‖X for all x ∈ D(A)},

which is a dense subspace of Y ∗. Now, for f ∈ D(A∗), consider a map h : D(A) → R defined
by

h(x) = 〈f, Ax〉, x ∈ D(A),

and note that
|h(x)| ≤ c0‖x‖X for all x ∈ D(A).



21

Then, by the analytic form of the Hahn-Banach Theorem, there exists a linear map
h̃ : X → R that extends h and satisfy

|h̃(x)| ≤ c0‖x‖X for all x ∈ X.

It follows that h̃ ∈ X∗. Moreover, note that the extension of h is unique, since D(A) is dense
in X. Now, set A∗f = h̃. The unbounded linear operator A∗ : D(A∗) ⊂ Y ∗ → X∗, defined in
this way, is called the adjoint of A.

The fundamental relation between A and A∗ is given by the following rule:

〈f, Ax〉 = 〈A∗f, x〉 for all x ∈ D(A) and all f ∈ D(A∗).

Another important property states that: if A is a bounded linear operator from X into
Y , then A∗ is a bounded operator from Y ∗ into X∗ and it holds that

‖A∗‖L(Y ∗,X∗) = ‖A‖L(X,Y ).

Furthermore, the adjoint A∗ is always a closed operator, that is, the graph G(A∗) is closed in
Y ∗ ×X∗.

Now, the corollary below is a consequence of the Lumer-Phillips Theorem.

Corollary 1.3. [45, Corollary 4.4] Let A : D(A) ⊂ X → X be a densely defined closed linear
operator. If both A and A∗ are dissipative, then A is the infinitesimal generator of a C0-
semigroup of contractions in X.

1.1.3 Sectorial operators and analytic semigroups

For a ∈ R and φ ∈
(
0, π

2

)
, a sector of the complex plane, denoted by Sa,φ, is a subset of

C given by
Sa,φ = {λ ∈ C : φ ≤ | arg(λ− a)| ≤ π, λ 6= a}.

Definition 1.6. A densely defined closed linear operator A : D(A) ⊂ X → X is called a
sectorial operator if there exist constants a ∈ R, φ ∈

(
0, π

2

)
and M > 0 such that the resolvent

set ρ(A) contains the sector Sa,φ and the estimate

‖R(λ : A)‖L(X) ≤
M

|λ− a|

holds for each λ ∈ Sa,φ.

Example 1.1. The following list shows some examples of sectorial operators.
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(a) Every bounded linear operator defined on a Banach space is a sectorial operator.

(b) If A : D(A) ⊂ X → X and B : D(B) ⊂ Y → Y are sectorial operators, where (X, ‖ · ‖X)

and (Y, ‖ · ‖Y ) are Banach spaces, then the operator (A,B) : D(A) ×D(B) ⊂ X × Y →
X × Y , defined by (A,B)(x, y) = (Ax,By), for each (x, y) ∈ D(A) × D(B), is sectorial
in X × Y .

(c) Let A : D(A) ⊂ H → H be a self-adjoint and densely defined linear operator in a Hilbert
space (H, 〈·, ·〉H). If there is c ∈ R such that 〈Ax, x〉H ≥ c‖x‖2

H for all x ∈ D(A), then A
is a sectorial operator in H.

(d) Let Ω be a bounded smooth domain in RN , N ≥ 3, where the boundary ∂Ω is assumed
to be of class C2, X = L2(Ω), and A : D(A) ⊂ X → X is the linear operator defined by
D(A) = H2(Ω) ∩ H1

0 (Ω) and Au = (−∆)u for all u ∈ D(A). Then A is sectorial and
positive definite in X.

(e) The bi-Laplacian operator ∆2 : H4(Ω)∩H2
0 (Ω)→ L2(Ω), where ∂Ω ∈ C4, is sectorial and

positive definite in L2(Ω).

Items (a), (b), (d) and (e) were taken, respectively, from examples 1.3.1, 1.3.2, 1.3.6 and 1.3.7
contained in [28], where the reader can also find details about the proofs. The assertion on item
(c) is proved in [28, Proposition 1.3.3]. Moreover, [30, Chapter 5] also contains the statements
of items (a), (c) and (d).

The following result gives equivalent conditions for sectoriality.

Proposition 1.1. [28, Proposition 1.3.1] Let A : D(A) ⊂ X → X be a densely defined closed
linear operator and, for ω ∈ R, consider the operator Aω = A + ωI. Then the following
conditions are equivalent:

(i) Aω is sectorial in X for some ω ∈ R;

(ii) Aω is sectorial in X for each ω ∈ R;

(iii) there exist k, ω ∈ R such that the resolvent set ρ(Aω) contains the half-plane {λ ∈
C : Re(λ) ≤ k} and, for such λ, it holds the estimate

‖λ(λI − Aω)−1‖L(X) ≤M,

where M is a positive constant.
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Definition 1.7. A C0-semigroup {T (t) : t ≥ 0} in X is called an analytic semigroup if there
exist a sector of the complex plane

S = {z ∈ C : φ1 < arg z < φ2},

with φ1 < 0 < φ2, and a family of bounded linear operators T (z) : X → X, z ∈ S, which
coincides with T (t) for t ∈ [0,∞), such that

(a) the map z 7→ T (z)x is analytic in S for each x ∈ X;

(b) for z ∈ S, T (z)x→ x as z → 0, for all x ∈ X;

(c) T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ S.

In the next result, the notation Re(σ(A)) > a means that Re(λ) > a whenever λ ∈ σ(A).

Theorem 1.8. [35, Theorem 1.3.4] If an operator A : D(A) ⊂ X → X is sectorial, then −A is
the infinitesimal generator of an analytic semigroup {e−At : t ≥ 0}, where

e−At =
1

2πi

∫
Γ

(λ+ A)−1eλtdλ, t ≥ 0,

where Γ is a contour in ρ(−A), with arg λ→ ±θ as |λ| → ∞, for some θ ∈
(
π
2
, π
)
. Furthermore,

{e−At : t ≥ 0} can be extended analytically in a sector {t 6= 0: | arg t| < ε} that contains the
positive real axis and, if Re(σ(A)) > a > 0, then

‖e−At‖L(X) ≤ Ce−at, ‖Ae−At‖L(X) ≤
C

t
e−at, (1.1)

for t > 0 and some positive constant C. Moreover, it holds that

d

dt
e−At = −Ae−At for t > 0.

1.1.4 Fractional powers of operators

Now, let A : D(A) ⊂ X → X be a sectorial operator in X with Re(σ(A)) > 0. The
boundedness in (1.1) allows to define, for α ∈ (0,∞), the fractional powers A−α : X → X,
associated with A, by the following integral formula

A−αv =
1

Γ(α)

∫ ∞
0

tα−1e−Atvdt.

Theorem 1.9. [35, Theorem 1.4.2] For each α ∈ (0,∞), A−α : X → X is a well defined
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bounded linear operator satisfying

A−αA−β = A−(α+β) for α, β ∈ (0,∞).

Furthermore, for 0 < α < 1,

A−α =
sin πα

π

∫ ∞
0

λ−α(λ+ A)−1dλ.

As we can see above, A−α is invertible for each α ∈ (0,∞) and its inverse operator is
denoted by Aα.

Definition 1.8. If A : D(A) ⊂ X → X is a sectorial operator in a Banach space X, then we
define, for each α ∈ [0,∞), Xα = D(Aα1 ) with the graph norm

‖x‖Xα = ‖Aα1x‖X , x ∈ Xα,

where A1 = A + ωI and ω is chosen so that Re(σ(A1)) > 0. We observe that different choices
of ω leads to equivalent norms on Xα, so we will omit the dependence of ω. See [35] for more
details

In the particular case when α = 0, it is a convention to denote A0 = I (identity operator)
and X0 = X.

For the next result, recall that a linear operator A : D(A) ⊂ X → X has compact resolvent
if the operator (λI − A)−1 : X → X is a compact map for each λ ∈ ρ(A).

Proposition 1.2. [28, Proposition 1.3.5] For each α ∈ [0,∞), Xα is a Banach space when
equipped with the norm ‖ · ‖Xα = ‖Aα · ‖X , and Aα : Xα → X is a densely defined and closed
linear operator, satisfying

AαAβ = AβAα = Aα+β,

for any α, β ∈ [0,∞). Furthermore, Xα is a dense subset of Xβ for α ≥ β ≥ 0, and the
following inclusions are dense and continuous:

Xα ⊂ Xβ, α > β ≥ 0,

and, if A has compact resolvent, then they are also compact.

1.2 Evolution processes and pullback attractors

The aim of this section is to collect the definitions and results that together are the basis
of the theory of pullback attractors for nonlinear evolution processes. This content will be
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applied in the forthcoming chapters of this work. For further details, it is worthwhile to consult
the references [23], [25] and [27].

1.2.1 Existence results

Let (Z, d) be a metric space. An evolution process in Z is a two-parameter family
{S(t, τ) : t ≥ τ ∈ R} of maps from Z into itself such that:

(a) S(t, t) = I for all t ∈ R, (I is the identity operator in Z),

(b) S(t, τ) = S(t, s)S(s, τ) for all t ≥ s ≥ τ , and

(c) the map {(t, τ) ∈ R2 : t ≥ τ} × Z 3 (t, τ, x) 7→ S(t, τ)x ∈ Z is continuous.

Remark 1.2. In the particular case when X is a Banach space, an evolution process arises
naturally as a non-autonomous dynamical system associated with a non-autonomous differential
equation. More precisely, if f : R × B ⊂ R × X → X is a suitable function and we have the
global well-posedness of the following Cauchy problemu̇ = f(t, u), t > τ,

u(τ) = u0 ∈ X, τ ∈ R,

then one can define
Sf (t, τ)u0 = u(t, τ, f, u0), for all t ≥ τ,

where u(·, τ, f, u0), t ≥ τ , is the global solution of the above problem. Therefore, {Sf (t, τ) : t ≥
τ ∈ R} is an evolution process in X.

Remark 1.3. In the case when X is a Banach space, if {S(t, τ) : t ≥ τ ∈ R} ⊂ L(X), then we
will refer to this process as a linear evolution process.

Recall that the Hausdorff semidistance between two nonempty subsets A and B of Z is
defined by

dH(A,B) = sup
a∈A

inf
b∈B

d(a, b).

The Hausdorff semidistance measures how far A is from being inside the closure of B. It is
important to emphasize that dH is not a metric, since dH(A,B) = 0 implies only that A ⊆ B.

Definition 1.9. Let {S(t, τ) : t ≥ τ ∈ R} be an evolution process in Z. Given t ∈ R and A,B
subsets of Z, we say that A pullback attracts B at time t if

lim
τ→−∞

dH(S(t, τ)B,A) = 0, (1.2)
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where S(t, τ)B = {S(t, τ)x : x ∈ B} is the image of B under {S(t, τ) : t ≥ τ ∈ R}.
The set A pullback attracts bounded sets at time t, if (1.2) holds for every bounded subset

B of Z.

Moreover, we say that a time-dependent family {A(t) : t ∈ R} of subsets of Z pullback
attracts bounded subsets of Z, if A(t) pullback attracts bounded sets at time t, for each t ∈ R.

Remark 1.4. It is worthwhile to emphasize that the term “pullback” refers to make the initial
time of the evolution process {S(t, τ) : t ≥ τ ∈ R} goes to minus infinity, that is, τ → −∞,
which is not the same thing as going back in time. The evolution will always be forward in
time as t ≥ τ .

Now, we are in position to define the concept of pullback attractor.

Definition 1.10. A family of compact subsets {A(t) : t ∈ R} of Z is a pullback attractor for
the evolution process {S(t, τ) : t ≥ τ ∈ R} if

(i) {A(t) : t ∈ R} is invariant; that is, S(t, τ)A(τ) = A(t) for all t ≥ τ ,

(ii) {A(t) : t ∈ R} pullback attracts bounded subsets of Z, in the sense of Definition 1.9, and

(iii) {A(t) : t ∈ R} is the minimal family of closed sets satisfying property (ii).

The “pullback version” of the ω-limit set in the evolution processes framework can be
stated as follows.

Definition 1.11. Let {S(t, τ) : t ≥ τ ∈ R} be an evolution process in Z. We define the pullback
ω-limit set of a subset B of Z at time t as the set

ω(B, t) =
⋂
σ≤t

⋃
τ≤σ

S(t, τ)B.

Equivalently,

ω(B, t) = {y ∈ Z : there are sequences {τk}k∈N ⊂ (−∞, t] and {xk}k∈N ⊂ B,

with τk
k→∞−−−→ −∞, such that y = lim

k→∞
S(t, τk)xk}.

Next, we define what it means the concept of compactness for evolution processes from
the asymptotic viewpoint in the pullback sense.

Definition 1.12. An evolution process {S(t, τ) : t ≥ τ ∈ R} in Z is said to be pullback
asymptotically compact if, for each t ∈ R, each sequence {τk}k∈N with τk ≤ t for all k ∈ N and
τk

k→∞−−−→ −∞, and each bounded sequence {xk}k∈N ⊂ Z, then the sequence {S(t, τk)xk}k∈N has
a convergent subsequence.
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Definition 1.13. We say that a set B ⊂ Z pullback absorbs bounded sets at time t ∈ R if,
for each bounded subset D of Z, there exists a time T = T (t,D) ≤ t such that S(t, τ)D ⊂ B

for all τ ≤ T . Moreover, we say that a time-dependent family {B(t) : t ∈ R} of subsets of Z
pullback absorbs bounded subsets of Z, if B(t) pullback absorbs bounded sets at time t, for
each t ∈ R.

Remark 1.5. If a set pullback absorbs bounded sets at time t ∈ R, then it pullback attracts
bounded sets at time t ∈ R.

Definition 1.14. We say that an evolution process {S(t, τ) : t ≥ τ ∈ R} in Z is:

(i) pullback strongly bounded if, for each bounded subset B of Z and each t ∈ R, then the
set

⋃
s≤t

γp(B, s) is bounded, where γp(B, t) =
⋃
τ≤t

S(t, τ)B is the pullback orbit of B ⊂ Z

at time t ∈ R.

(ii) pullback strongly bounded dissipative if, for each t ∈ R, then there is a bounded subset
B(t) of Z which pullback absorbs bounded subsets of Z at time s for each s ≤ t; that is,
given a bounded subset D of Z and s ≤ t, there exists τ0(s,D) such that S(s, τ)D ⊂ B(t)

for all τ ≤ τ0(s,D).

The theorem (existence result) below characterizes the class of evolution processes which
have pullback attractors.

Theorem 1.10. [25, Theorem 2.23] If an evolution process {S(t, τ) : t ≥ τ ∈ R} in Z is pullback
strongly bounded dissipative and pullback asymptotically compact, then {S(t, τ) : t ≥ τ ∈ R}
has a pullback attractor {A(t) : t ∈ R}, with the property that

⋃
τ≤t

A(τ) is bounded in Z for each

t ∈ R.

Definition 1.15. A global solution for an evolution process {S(t, τ) : t ≥ τ ∈ R} in Z is a
function ξ : R→ Z such that S(t, τ)ξ(τ) = ξ(t) for all t ≥ τ .

Definition 1.16. A global solution ξ : R→ Z for a process {S(t, τ) : t ≥ τ ∈ R} in Z is said to
be backwards-bounded (respectively, forwards-bounded), or bounded in the past (respectively,
bounded in the future), if there exists s ∈ R such that the set {ξ(t) : t ≤ s} (respectively,
{ξ(t) : t ≥ s}) is a bounded subset of Z.

From the previous definition, it follows that, if a process {S(t, τ) : t ≥ τ ∈ R} has a
pullback attractor {A(t) : t ∈ R} and ξ : R → Z is a backwards-bounded global solution,
then ξ(t) ∈ A(t) for all t ∈ R, because {A(t) : t ∈ R} pullback attracts the bounded subset
{ξ(t) : t ≤ τ}.

It is well-known that if a semigroup has a global attractor, then it is characterized
as the union of all bounded global solutions. In the non-autonomous case, an equivalent
characterization is given by the following result.



28

Theorem 1.11. [25, Theorem 1.17] If an evolution process {S(t, τ) : t ≥ τ ∈ R} has a pullback
attractor {A(t) : t ∈ R} which is bounded in the past, that is, the union

⋃
s≤t

A(s) is bounded for

each t ∈ R, then A(t) is given by

A(t) = {ξ(t) : ξ : R→ Z is a backwards-bounded global solution},

for all t ∈ R.

1.2.2 Continuity of attractors

The principal reason in studying the continuity of attractors lies in the fact that it ensures
the robustness of these objects when the dynamical system is under small perturbations. In
the literature, this part of the theory is usually divided into two main concepts: the upper
semicontinuity and the lower semicontinuity.

Roughly speaking, the upper semicontinuity ensures that the original attractor does not
explode when the perturbation is well behaved, while the lower semicontinuity shows that no
implosion can happen, meaning that the original attractor cannot degenerate or collapse. The
first property is expected to hold simply using some consequences of the existence of attractors,
but the second one requires the development of a more sophisticated part of the theory about
pullback attractors and also structural assumptions on the dynamics inside the attractor. For
this last reason, the problems concerning the lower semicontinuity of pullback attractors will
not be explored in this work.

Definition 1.17. Let {Aλ}λ∈Λ be a family of subsets of Z indexed on a metric space Λ. We
say that the family {Aλ}λ∈Λ is

(a) upper semicontinuous as λ→ λ0 (or at λ0) if lim
λ→λ0

dH(Aλ, Aλ0) = 0;

(b) lower semicontinuous as λ→ λ0 (or at λ0) if lim
λ→λ0

dH(Aλ0 , Aλ) = 0;

(c) continuous as λ→ λ0 (or at λ0) if it is both upper and lower semicontinuous as λ→ λ0.

The following characterization is frequently used in the study of upper and lower
semicontinuities.

Lemma 1.1. [25, Lemma 3.2] Let Λ be a metric space and let {Aλ}λ∈Λ be a family of compact
subsets of Z. Then it holds that

(i) the family {Aλ}λ∈Λ is upper semicontinuous as λ → λ0 if and only if every sequence
xn ∈ Aλn has a convergent subsequence whose limit lies in Aλ0, whenever λn

n→∞−−−→ λ0;
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(ii) the family {Aλ}λ∈Λ is lower semicontinuous as λ→ λ0 if and only if for any point x0 ∈ Aλ0
and any sequence λn

n→∞−−−→ λ0, there exists a sequence xn ∈ Aλn such that xn
n→∞−−−→ x0.

The next result presents sufficient conditions for a family of pullback attractors to be
upper semicontinuous as a small parameter approaches to zero.

Proposition 1.3. [25, Proposition 1.20] For each ε ∈ [0, 1] let {S(ε)(t, τ) : t ≥ τ ∈ R} be an
evolution process in Z. Moreover, assume that:

(i) {S(ε)(t, τ) : t ≥ τ ∈ R} has a pullback attractor {A(ε)(t) : t ∈ R} for all ε ∈ [0, 1];

(ii) given t ∈ R, T ≥ 0 and a bounded set D ⊂ Z,

sup
s∈[0,T ],u0∈D

d(S(ε)(t+ s, t)u0, S(0)(t+ s, t)u0)→ 0 as ε→ 0+;

(iii) there exist δ0 > 0 and t0 ∈ R such that

⋃
ε∈(0,δ0)

⋃
s≤t0

A(ε)(s)

is bounded.

Then, the family {A(ε)(t) : t ∈ R} of pullback attractors is upper semicontinuous as ε → 0+,
that is, for each t ∈ R,

dH(A(ε)(t),A(0)(t))→ 0 as ε→ 0+.

1.2.3 Parabolic structure

The main purpose of this subsection is to briefly introduce the reader to some terminology
and facts about the theory of abstract parabolic problems. Let X be a Banach space and
{B(t) : t ∈ R} be a family of unbounded closed linear operators, where each B(t) has the same
dense subspace D of X as domain.

Consider the singularly non-autonomous abstract linear parabolic problem of the form
du

dt
= −B(t)u, t > τ,

u(τ) = u0 ∈ D.
(1.3)

The term singularly non-autonomous is used to evidence the fact that the unbounded
operator B(t) has explicit dependence with the time. When it comes to the parabolic structure
of the above problem, we assume the following conditions:
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(A1) The family of operators B(t) : D ⊂ X → X is uniformly sectorial in X; that is, B(t) is
closed and densely defined for every t ∈ R, with domain D fixed, and for all T ∈ R there
exists a constant C1 > 0, independent of T , such that

‖(B(t) + λI)−1‖L(X) ≤
C1

|λ|+ 1

for all λ ∈ C with Re(λ) ≥ 0 and for all t ∈ [−T, T ].

(A2) The map R 3 t 7→ B(t) is uniformly Hölder continuous in X; that is, for all T ∈ R there
are constants C2 > 0 and 0 < ε0 ≤ 1, both independent of T , such that

‖[B(t)− B(s)]B−1(τ)‖L(X) ≤ C2|t− s|ε0

for every t, s, τ ∈ [−T, T ].

Denote by B0 the operator B(t0) for some t0 ∈ R fixed. If Xα denotes the domain of Bα0 ,
α > 0, with the graph norm, and X0 = X, then {Xα : α ≥ 0} is the fractional power scale
associated with B0. For more details about fractional powers of operators, see Henry [35].

From (A1), it follows that −B(t) is the generator of an analytic semigroup

{e−τB(t) : τ ≥ 0} ⊂ L(X).

Using this and the fact that 0 ∈ ρ(B(t)), one can obtain a constant C > 0 such that the
following estimates hold:

‖e−τB(t)‖L(X) ≤ C, τ ≥ 0, t ∈ R,

and
‖B(t)e−τB(t)‖L(X) ≤ Cτ−1, τ > 0, t ∈ R.

For a given bounded set I ⊂ R2, it follows from (A2), that there exists a constant
K = K(I) > 0 such that

‖B(t)B−1(τ)‖L(X) ≤ K,

for all (t, τ) ∈ I.
Also, the semigroup {e−τB(t) : τ ≥ 0} satisfies

‖e−τB(t)‖L(Xβ ,Xα) ≤ C(α, β)τβ−α, τ > 0, t ∈ R,

where 0 ≤ β ≤ α < 1 + ε0 (see [50]).

Remark 1.6. If the operator B(t) : D ⊂ X → X of equation (1.3) is uniformly sectorial and
uniformly Hölder continuous, then there exists a linear evolution process {L(t, τ) : t ≥ τ ∈ R}



31

associated with B(t), which is given by

L(t, τ) = e−(t−τ)B(τ) +

∫ t

τ

L(t, s)[B(τ)− B(s)]e−(s−τ)B(τ)ds, t ≥ τ.

Furthermore, the process {L(t, τ) : t ≥ τ ∈ R} satisfies the following condition:

‖L(t, τ)‖L(Xβ ,Xα) ≤ C(α, β)(t− τ)β−α,

where 0 ≤ β ≤ α < 1 + ε0. The reader may consult [26] and [50] for more details.

Now, let us consider the following singularly non-autonomous abstract parabolic problem
du

dt
= −B(t)u+ g(u), t > τ,

u(τ) = u0 ∈ D,
(1.4)

where the operator B(t) : D ⊂ X → X is uniformly sectorial and uniformly Hölder continuous,
and the nonlinearity g satisfies some suitable conditions that will be specified later.

The nonlinear evolution process {S(t, τ) : t ≥ τ ∈ R} associated with B(t) is given by

S(t, τ) = L(t, τ) +

∫ t

τ

L(t, s)g(S(s, τ))ds, t ≥ τ.

Definition 1.18. Let g : Xα → Xβ, α ∈ [β, β + 1), be a continuous function. A continuous
function u : [τ, τ + t0] → Xα is said to be a local solution of the problem (1.4), starting at
u0 ∈ Xα, if the following conditions hold:

(a) u ∈ C([τ, τ + t0], Xα) ∩ C1((τ, τ + t0], Xα);

(b) u(τ) = u0;

(c) u(t) ∈ D(B(t)) for all t ∈ (τ, τ + t0];

(d) u(t) satisfies (1.4) for all t ∈ (τ, τ + t0].

Now we state the following abstract local well-posedness result. The reader may consult
[26] for a more general version that includes the critical growth case.

Theorem 1.12. [22, Theorem 2.3] Assume that the family of operators {B(t) : t ∈ R} is
uniformly sectorial and uniformly Hölder continuous in Xβ. If g : Xα → Xβ, α ∈ [β, β+1), is a
Lipschitz continuous map in bounded subsets of Xα, then given r > 0 there exists a time t0 > 0

such that for all u0 ∈ BXα(0, r) there exists a unique solution of the problem (1.4) starting in
u0 and defined on [τ, τ + t0]. Moreover, such solutions are continuous with respect to the initial
data in BXα(0, r).
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2

A non-autonomous Klein-Gordon-Zakharov
system

In this chapter, we study a non-autonomous version of the well known Klein-Gordon-
Zakharov system. We consider the following initial-boundary value problemutt −∆u+ u+ η(−∆)

1
2ut + aε(t)(−∆)

1
2vt = f(u), (x, t) ∈ Ω× (τ,∞),

vtt −∆v + η(−∆)
1
2vt − aε(t)(−∆)

1
2ut = 0, (x, t) ∈ Ω× (τ,∞),

(2.1)

where η is a positive constant, subject to boundary conditions

u = v = 0, (x, t) ∈ ∂Ω× (τ,∞), (2.2)

and initial conditions

u(τ, x) = u0(x), ut(τ, x) = u1(x), v(τ, x) = v0(x), vt(τ, x) = v1(x), x ∈ Ω, τ ∈ R, (2.3)

where Ω is a bounded smooth domain in Rn with n ≥ 3, and the boundary ∂Ω is assumed to
be regular enough.

All the results of this chapter that have no references are presented in the article [17].

2.1 Setup of the problem and general assumptions

In this section, we present the general conditions to obtain the local and global well-
posedness of the problem (2.1)− (2.3) in some appropriate space which will be specified later.
Assume that the function aε : R → (0,∞) is continuously differentiable in R and satisfies the
following condition:

0 < a0 ≤ aε(t) ≤ a1, (2.4)

32
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for all ε ∈ [0, 1] and t ∈ R, with positive constants a0 and a1, and we also assume that the first
derivative of aε is uniformly bounded in t and ε, that is, there exists a constant b0 > 0 such
that

|a′ε(t)| ≤ b0 for all t ∈ R, ε ∈ [0, 1]. (2.5)

Furthermore, we assume that aε is (β, C)-Hölder continuous, for each ε ∈ [0, 1]; that is,

|aε(t)− aε(s)| ≤ C|t− s|β (2.6)

for all t, s ∈ R and ε ∈ [0, 1]. Concerning the nonlinearity f , we assume that f ∈ C1(R) and it
satisfies the dissipativeness condition

lim sup
|s|→∞

f(s)

s
≤ 0, (2.7)

and also satisfies the subcritical growth condition given by

|f ′(s)| ≤ c(1 + |s|ρ−1), (2.8)

for all s ∈ R, where 1 < ρ < n
n−2

, with n ≥ 3, and c > 0 is a constant.

In order to formulate the non-autonomous problem (2.1)− (2.3) in a nonlinear evolution
process setting, we introduce some notations. Let X = L2(Ω) and denote by A : D(A) ⊂
X → X the negative Laplacian operator, that is, Au = (−∆)u for all u ∈ D(A), where
D(A) = H2(Ω)∩H1

0 (Ω). Thus A is a positive self-adjoint operator in X with compact resolvent
and, therefore, −A generates a compact analytic semigroup on X. Following Henry [35], A is
a sectorial operator in X. Now, denote by Xα, α > 0, the fractional power spaces associated
with the operator A; that is, Xα = D(Aα) endowed with the graph norm. With this notation,
we have X−α = (Xα)′ for all α > 0, see [3].

In this framework, the non-autonomous problem (2.1) − (2.3) can be rewritten as an
ordinary differential equation in the following abstract formWt +A(t)W = F (W ), t > τ,

W (τ) = W0, τ ∈ R,
(2.9)

where W = W (t), for all t ∈ R, and W0 = W (τ) are respectively given by

W =


u

ut

v

vt

 and W0 =


u0

u1

v0

v1

 ,
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and, for each t ∈ R, the unbounded linear operator A(t) : D(A(t)) ⊂ Y → Y is defined by

A(t)


u

v

w

z

=


0 −I 0 0

A+ I ηA
1
2 0 aε(t)A

1
2

0 0 0 −I
0 −aε(t)A

1
2 A ηA

1
2



u

v

w

z

=


−v

(A+ I)u+ ηA
1
2v + aε(t)A

1
2 z

−z
−aε(t)A

1
2v + Aw + ηA

1
2 z

 (2.10)

for each
[
u v w z

]T
in the domain D(A(t)) defined by the space

D(A(t)) = X1 ×X
1
2 ×X1 ×X

1
2 , (2.11)

where
Y = Y0 = X

1
2 ×X ×X

1
2 ×X

is the phase space of the problem (2.1)− (2.3). The nonlinearity F is given by

F (W ) =


0

f e(u)

0

0

 , (2.12)

where f e(u) is the Nemitskĭi operator associated with f(u); that is,

f e(u)(x) = f(u(x)), for all x ∈ Ω.

Now, we observe that the norms

‖(x, y, z, w)‖1 = ‖x‖
X

1
2

+ ‖y‖X + ‖z‖
X

1
2

+ ‖w‖X

and
‖(x, y, z, w)‖2 = (‖x‖2

X
1
2

+ ‖y‖2
X + ‖z‖2

X
1
2

+ ‖w‖2
X)

1
2

are equivalent in Y0. In this way, we shall use the same notation ‖(x, y, z, w)‖Y0 for both norms
and the choice will be as convenient.

2.2 Local and global well-posedness

This section concerns the investigation of the existence of the global solution for (2.9).
We start by obtaining some spectral properties for the unbounded linear operator A(t) given
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in (2.10) and (2.11).

It is not difficult to see that det(A(t)) = A(A+ I), and therefore that 0 ∈ ρ(A(t)), for all
t ∈ R. Moreover, for each t ∈ R, the operator A−1(t) : Y0 → Y0 is defined by

A−1(t)


u

v

w

z

 =


ηA

1
2 (A+ I)−1 (A+ I)−1 aε(t)A

1
2 (A+ I)−1 0

−I 0 0 0

−aε(t)A−
1
2 0 ηA−

1
2 A−1

0 0 −I 0



u

v

w

z

 . (2.13)

Proposition 2.1. For each fixed t ∈ R, the operator A(t) defined in (2.10)− (2.11) is maximal
accretive.

Proof. The proof is analogous to the proof of [8, Proposition 4.3]. We include here only the proof

of accretivity of A(t). Let t ∈ R be fixed and arbitrary, and let x =
[
u v w z

]T
∈ D(A(t)).

At first, we note that 〈v, u〉
X

1
2

=
〈

(A+ I)
1
2v, (A+ I)

1
2u
〉
X
, because from [28, Corollary 1.3.5],

we have D((A+ I)
1
2 ) = D(A

1
2 ). Thus,

〈A(t)x, x〉Y0 = 〈−v, u〉
X

1
2

+ 〈(A+ I)u+ ηA
1
2v + aε(t)A

1
2 z, v〉X + 〈−z, w〉

X
1
2

+ 〈−aε(t)A
1
2v + Aw + ηA

1
2 z, z〉X

=
〈

(A+ I)
1
2u, (A+ I)

1
2v
〉
X
−
〈

(A+ I)
1
2v, (A+ I)

1
2u
〉
X

+ aε(t)
(
〈A

1
2 z, v〉X − 〈v, A

1
2 z〉X

)
+ 〈Aw, z〉X − 〈z, Aw〉X + η‖A

1
4v‖2

X + η‖A
1
4 z‖2

X .

Hence,
Re(〈A(t)x, x〉Y0) = η‖A

1
4v‖2

X + η‖A
1
4 z‖2

X ≥ 0, (2.14)

which proves the accretivity of A(t).

Remark 2.1. By the Lumer-Phillips Theorem, we have −A(t) is the infinitesimal generator
of a C0-semigroup of contractions in Y0, which we denote as {e−τA(t) : τ ≥ 0}, for each t ∈ R.

Proposition 2.2. If Y−1 denotes the extrapolation space of Y0 = X
1
2 ×X ×X 1

2 ×X generated
by the operator A−1(t), then

Y−1 = X ×X−
1
2 ×X ×X−

1
2 .

Proof. Recall that the extrapolation space Y−1 is the completion of the normed space
(Y0, ‖A−1(t) · ‖Y0). Let x =

[
u v w z

]T
∈ X ×X− 1

2 ×X ×X− 1
2 , and note that
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‖A−1(t)x‖Y0 = ‖ηA
1
2 (A+ I)−1u+ (A+ I)−1v + aε(t)A

1
2 (A+ I)−1w‖

X
1
2

+ ‖ − u‖X

+ ‖ − aε(t)A−
1
2u+ ηA−

1
2w + A−1z‖

X
1
2

+ ‖ − w‖X

≤ η‖A
1
2 (A+ I)−1u‖

X
1
2

+ ‖(A+ I)−1v‖
X

1
2

+ a1‖A
1
2 (A+ I)−1w‖

X
1
2

+ (1 + a1)‖u‖X + (1 + η)‖w‖X + ‖z‖
X−

1
2
.

(2.15)

Now, since (A+ I)(A+ I)−1 = I and A is uniformly sectorial, we have

‖A(A+ I)−1‖L(X) ≤ 1 + ‖(A+ I)−1‖L(X) ≤ 1 +M, (2.16)

for some constant M > 0.

Then, we can estimate the first two terms that appears in (2.15) as follows:

η‖A
1
2 (A+ I)−1u‖

X
1
2

= η‖A(A+ I)−1u‖X ≤ η(1 +M)‖u‖X , (2.17)

and

‖(A+ I)−1v‖
X

1
2

= ‖A
1
2 (A+ I)−1AA−1v‖X = ‖A(A+ I)−1A−

1
2v‖X

≤ ‖A(A+ I)−1‖L(X)‖A−
1
2v‖X ≤ (1 +M)‖v‖

X−
1
2
.

(2.18)

Similarly, for the third term in (2.15) we have

a1‖A
1
2 (A+ I)−1w‖

X
1
2
≤ a1(1 +M)‖w‖X . (2.19)

Finally, combining (2.15), (2.17), (2.18) and (2.19) we obtain

‖A−1(t)x‖Y0 ≤ C1

(
‖u‖X + ‖v‖

X−
1
2

+ ‖w‖X + ‖z‖
X−

1
2

)
= C1‖x‖X×X− 1

2×X×X−
1
2
, (2.20)

where C1 is a positive constant.

On the other hand, taking x =
[
u v w z

]T
∈ X ×X− 1

2 ×X ×X− 1
2 , since

‖x‖
X×X−

1
2×X×X−

1
2

= ‖u‖X + ‖v‖
X−

1
2

+ ‖w‖X + ‖z‖
X−

1
2
, (2.21)

note that the term ‖z‖
X−

1
2
can be estimated as follows:

‖z‖
X−

1
2

= ‖A−1z‖
X

1
2

≤ ‖ − aε(t)A−
1
2u+ ηA−

1
2w + A−1z‖

X
1
2

+ ‖aε(t)A−
1
2u‖

X
1
2

+ ‖ηA−
1
2w‖

X
1
2

≤ ‖ − aε(t)A−
1
2u+ ηA−

1
2w + A−1z‖

X
1
2

+ a1‖u‖X + η‖w‖X .

(2.22)
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Now, to deal with the term ‖v‖
X−

1
2
, we use the boundedness

‖A−1(A+ I)‖L(X) ≤ N

to obtain

‖v‖
X−

1
2

= ‖A−
1
2 (A+ I)(A+ I)−1v‖X = ‖A−1(A+ I)A

1
2 (A+ I)−1v‖X

≤ ‖A−1(A+ I)‖L(X)‖A
1
2 (A+ I)−1v‖X

≤ N‖(A+ I)−1v‖
X

1
2

≤ N‖ηA
1
2 (A+ I)−1u+ (A+ I)−1v + aε(t)A

1
2 (A+ I)−1w‖

X
1
2

+N‖ηA
1
2 (A+ I)−1u‖

X
1
2

+N‖aε(t)A
1
2 (A+ I)−1w‖

X
1
2

(2.23)

≤ N‖ηA
1
2 (A+ I)−1u+ (A+ I)−1v + aε(t)A

1
2 (A+ I)−1w‖

X
1
2

+Nη(1 +M)‖u‖X +Na1(1 +M)‖w‖X .

Combining (2.21) with the estimates obtained in (2.22) and (2.23), it follows that

‖x‖
X×X−

1
2×X×X−

1
2
≤ N‖ηA

1
2 (A+ I)−1u+ (A+ I)−1v + aε(t)A

1
2 (A+ I)−1w‖

X
1
2

+ [1 + a1 +Nη(1 +M)]‖u‖X
+ ‖ − aε(t)A−

1
2u+ ηA−

1
2w + A−1z‖

X
1
2

+ [1 + η +Na1(1 +M)]‖w‖X
≤ C2‖A−1(t)x‖Y0 ,

(2.24)

where C2 is a positive constant.

That is, from (2.20) and (2.24), we have shown that there are positive constants C1 and
C2 such that

‖A−1(t)x‖Y0 ≤ C1‖x‖X×X− 1
2×X×X−

1
2

and
‖x‖

X×X−
1
2×X×X−

1
2
≤ C2‖A−1(t)x‖Y0

for all x =
[
u v w z

]T
∈ X ×X− 1

2 ×X ×X− 1
2 , which proves the desired result.

Proposition 2.3. The operator A−1(t) given in (2.13) is a compact map for each t ∈ R.

Proof. Let B ⊂ Y0 be a bounded set and denote Y1 = X1 × X
1
2 × X1 × X

1
2 . Let

x =
[
u v w z

]T
∈ B. Thus, using the boundedness (2.16), we have
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‖A−1(t)x‖Y1
= ‖ηA

1
2 (A+ I)−1u+ (A+ I)−1v + aε(t)A

1
2 (A+ I)−1w‖X1 + ‖ − u‖

X
1
2

+ ‖ − aε(t)A−
1
2u+ ηA−

1
2w + A−1z‖X1 + ‖ − w‖

X
1
2

≤ η‖AA
1
2 (A+ I)−1u‖X + ‖A(A+ I)−1v‖X + a1‖AA

1
2 (A+ I)−1w‖X + ‖u‖

X
1
2

+ a1‖u‖X 1
2

+ η‖w‖
X

1
2

+ ‖z‖X + ‖w‖
X

1
2

≤ η‖A(A+ I)−1‖L(X)‖A
1
2u‖X + ‖A(A+ I)−1‖L(X)‖v‖X

+ a1‖A(A+ I)−1‖L(X)‖A
1
2w‖X + (1 + a1)‖u‖

X
1
2

+ (1 + η)‖w‖
X

1
2

+ ‖z‖X

≤ [η(1 +M) + 1 + a1]‖u‖
X

1
2

+ (1 +M)‖v‖X + [a1(1 +M) + 1 + η]‖w‖
X

1
2

+ ‖z‖X

≤ C
(
‖u‖

X
1
2

+ ‖v‖X + ‖w‖
X

1
2

+ ‖z‖X
)
,

where C is a positive constant, that is,

‖A−1(t)x‖Y1 ≤ C‖x‖Y0 .

Thus, A−1(t)B is bounded in Y1. Using the compact embedding Y1 ↪→ Y0, we conclude
that the operator A−1(t) is compact.

Proposition 2.4. The family of operators {A(t) : t ∈ R}, defined in (2.10)−(2.11), is uniformly
Hölder continuous in Y−1.

Proof. Firstly, note that

A(t)−A(s) = [aε(t)− aε(s)]


0 0 0 0

0 0 0 A
1
2

0 0 0 0

0 −A 1
2 0 0


for all t, s ∈ R. Consequently,

[A(t)−A(s)]A−1(τ) = [aε(t)− aε(s)]


0 0 0 0

0 0 −A 1
2 0

0 0 0 0

A
1
2 0 0 0


for all t, s, τ ∈ R. Now, let T ∈ R be fixed. Given x =

[
u v w z

]T
∈ Y−1, if t, s, τ ∈ [−T, T ],
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then

‖[A(t)−A(s)]A−1(τ)x‖Y−1 = |aε(t)− aε(s)|
∥∥∥∥[0 −A 1

2w 0 A
1
2u
]T∥∥∥∥

Y−1

= |aε(t)− aε(s)|
(
‖ − A

1
2w‖

X−
1
2

+ ‖A
1
2u‖

X−
1
2

)
≤ C|t− s|β(‖u‖X + ‖w‖X)

≤ C|t− s|β
(
‖u‖X + ‖v‖

X−
1
2

+ ‖w‖X + ‖z‖
X−

1
2

)
= C|t− s|β‖x‖Y−1 .

From this we obtain

‖[A(t)−A(s)]A−1(τ)‖L(Y−1) ≤ C|t− s|β

for all t, s, τ ∈ [−T, T ]. Since T ∈ R is arbitrary, this ends the proof of the result.

The next step is to show the analyticity of the semigroup {e−τA(t) : τ ≥ 0}. For that, we
will make use of the following auxiliary result.

Theorem 2.1. [40, Theorem 1.3.3] Let {T (τ) : τ ≥ 0} be a C0-semigroup of contractions in a
Hilbert space H with infinitesimal generator B. Suppose that iR ⊂ ρ(B). Then {T (τ) : τ ≥ 0}
is analytic if, and only if

lim sup
|β|→∞

‖β(iβI − B)−1‖L(H) <∞.

The next lemma shows that iR ⊂ ρ(−A(t)) for all t ∈ R.

Lemma 2.1. The semigroup {e−τA(t) : τ ≥ 0}, generated by −A(t), satisfies

iR ⊂ ρ(−A(t))

for all t ∈ R.

Proof. Arguing by contradiction, suppose that there exists 0 6= β ∈ R such that iβ is in the
spectrum of −A(t) for some t ∈ R. Then iβ must be an eigenvalue of −A(t), since the operator
A−1(t) is compact. Consequently, there exists

U =
[
u v w z

]T
∈ D(A(t)), ‖U‖Y0 = 1,

such that iβU − (−A(t))U = 0 or, equivalently,
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iβu− v = 0,

iβv + Au+ u+ ηA
1
2v + aε(t)A

1
2 z = 0,

iβw − z = 0,

iβz − aε(t)A
1
2v + Aw + ηA

1
2 z = 0.

Now, taking the real part of the inner product of iβU +A(t)U with U in Y0, we have

〈iβU +A(t)U,U〉Y0 = 〈0, U〉Y0 = 0 =⇒ iβ‖U‖2
Y0

+ 〈A(t)U,U〉Y0 = 0

=⇒ Re(〈A(t)U,U〉Y0) = 0

=⇒ η‖A
1
4v‖2

X + η‖A
1
4 z‖2

X = 0

=⇒ ‖A
1
4v‖2

X = ‖A
1
4 z‖2

X = 0

=⇒ v = z = 0.

Consequently, u = w = 0. Therefore, U = 0, which is a contradiction. This proves our
claim.

Now, we are in position to prove that the semigroup generated by −A(t) is analytic.

Theorem 2.2. The semigroup {e−τA(t) : τ ≥ 0}, generated by −A(t), is analytic for each t ∈ R.

Proof. We are going to use Theorem 2.1. Let t ∈ R. In view of Lemma 2.1, it is enough to
prove that there exists a positive constant C such that

|β|‖U‖Y0 ≤ C‖F‖Y0 ,

for all F ∈ Y0 and all β ∈ R, where

U = (iβI +A(t))−1F ∈ D(A(t)).

In fact, denoting U =
[
u v w z

]T
and F =

[
f g h k

]T
, we can write the resolvent

equation
(iβI +A(t))U = F (2.25)

in Y0 in terms of its components, obtaining the following scalar equations

iβu− v = f,

Au+ u+ iβv + ηA
1
2v + aε(t)A

1
2 z = g, (2.26)

iβw − z = h, (2.27)
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−aε(t)A
1
2v + Aw + iβz + ηA

1
2 z = k.

Taking the inner product of (2.25) with U in Y0, we obtain

iβ‖U‖2
Y0

+ 〈A(t)U,U〉Y0 = 〈F,U〉Y0 . (2.28)

By the proof of Proposition 2.1, see (2.14), we get

Re(〈A(t)U,U〉Y0) = η‖A
1
4v‖2

X + η‖A
1
4 z‖2

X ≥ 0.

It follows by the Cauchy-Schwartz inequality that

η‖A
1
4v‖2

X + η‖A
1
4 z‖2

X = |Re(〈A(t)U,U〉Y0)| = |Re(〈F,U〉Y0)| ≤ |〈F,U〉Y0| ≤ ‖F‖Y0‖U‖Y0

and, therefore, we obtain

‖A
1
4v‖2

X ≤
1

η
‖F‖Y0‖U‖Y0 and ‖A

1
4 z‖2

X ≤
1

η
‖F‖Y0‖U‖Y0 . (2.29)

Now, taking the inner product of (2.25) with x1 =
[
A−

1
2v 0 0 0

]T
in Y0, it leads to

〈(iβI +A(t))U, x1〉Y0 = 〈F, x1〉Y0 ⇐⇒ 〈iβu− v, A−
1
2v〉

X
1
2

= 〈f, A−
1
2v〉

X
1
2

⇐⇒ iβ〈A
1
2u, v〉X − 〈A

1
2v, v〉X = 〈A

1
2f, v〉X

⇐⇒ 〈A
1
2u,−iβv〉X − ‖A

1
4v‖2

X = 〈A
1
2f, v〉X

and then, using (2.26), we conclude that

〈A
1
2u,Au+ u+ ηA

1
2v + aε(t)A

1
2 z − g〉X − ‖A

1
4v‖2

X = 〈A
1
2f, v〉X .

Thus, from Cauchy-Schwartz and Young inequalities and (2.29), we obtain

‖A
3
4u‖2

X

= −‖A
1
4u‖2

X − η〈A
3
4u,A

1
4v〉X − aε(t)〈A

3
4u,A

1
4 z〉X + 〈A

1
2u, g〉X + 〈A

1
2f, v〉X + ‖A

1
4v‖2

X

≤ η‖A
3
4u‖X‖A

1
4v‖X + a1‖A

3
4u‖X‖A

1
4 z‖X + ‖A

1
2u‖X‖g‖X + ‖A

1
2f‖X‖v‖X + ‖A

1
4v‖2

X

≤ ε1
2
η2‖A

3
4u‖2

X +
1

2ε1
‖A

1
4v‖2

X +
ε2
2
a2

1‖A
3
4u‖2

X +
1

2ε2
‖A

1
4 z‖2

X +

(
1

η
+ 2

)
‖F‖Y0‖U‖Y0

≤
(ε1

2
η2 +

ε2
2
a2

1

)
‖A

3
4u‖2

X +

(
1

2ηε1
+

1

2ηε2
+

1

η
+ 2

)
‖F‖Y0‖U‖Y0 ,

for all ε1 > 0 and ε2 > 0. Now, it is enough to choose ε1 = 1
2η2

and ε2 = 1
2a21

, and so we get
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‖A
3
4u‖2

X ≤
(

2η +
2(a2

1 + 1)

η
+ 4

)
‖F‖Y0‖U‖Y0 . (2.30)

Next, taking the inner product of (2.25) with x2 =
[
0 0 0 A

1
2w
]T

, we have

〈(iβI +A(t))U, x2〉Y0 = 〈F, x2〉Y0

〈−aε(t)A
1
2v + Aw + iβz + ηA

1
2 z, A

1
2w〉X = 〈k,A

1
2w〉X

that is,

−aε(t)〈A
1
2v, A

1
2w〉X + ‖A

3
4w‖2

X + 〈A
1
2 z,−iβw〉X + η〈A

1
2 z, A

1
2w〉X = 〈k,A

1
2w〉X

and then, using (2.27), we have

‖A
3
4w‖2

X = aε(t)〈A
1
4v,A

3
4w〉X − η〈A

1
4 z, A

3
4w〉X + ‖A

1
4 z‖2

X + 〈A
1
2 z, h〉X + 〈k,A

1
2w〉X .

Using again the Cauchy-Schwartz and Young inequalities, and (2.29), we obtain

‖A
3
4w‖2

X

≤ a1‖A
1
4v‖X‖A

3
4w‖X + η‖A

1
4 z‖X‖A

3
4w‖X + ‖A

1
4 z‖2

X + ‖z‖X‖A
1
2h‖X + ‖k‖X‖A

1
2w‖X

≤ ε3
2
a2

1‖A
3
4w‖2

X +
1

2ε3
‖A

1
4v‖2

X +
ε4
2
η2‖A

3
4w‖2

X +
1

2ε4
‖A

1
4 z‖2

X +

(
1

η
+ 2

)
‖F‖Y0‖U‖Y0

≤
(ε3

2
a2

1 +
ε4
2
η2
)
‖A

3
4w‖2

X +

(
1

2ηε3
+

1

2ηε4
+

1

η
+ 2

)
‖F‖Y0‖U‖Y0 ,

for all ε3 > 0 and ε4 > 0. Choosing ε3 = 1
2a21

and ε4 = 1
2η2

, we get

‖A
3
4w‖2

X ≤
(

2η +
2(a2

1 + 1)

η
+ 4

)
‖F‖Y0‖U‖Y0 . (2.31)

By [28, Corollary 1.3.5], we have D((A+ I)
1
2 ) = D(A

1
2 ), consequently,

〈A
1
2u,A

1
2v〉X = 〈u, v〉

X
1
2

=
〈

(A+ I)
1
2u, (A+ I)

1
2v
〉
X
.

Using this fact and the proof of Proposition 2.1, we obtain

〈A(t)U,U〉Y0 =
〈
A

1
2u,A

1
2v
〉
X
−
〈
A

1
2v,A

1
2u
〉
X

+ aε(t)
(
〈A

1
2 z, v〉X − 〈v, A

1
2 z〉X

)
+ 〈Aw, z〉X − 〈z, Aw〉X + η‖A

1
4v‖2

X + η‖A
1
4 z‖2

X ,
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and, taking the imaginary part, we have

Im(〈A(t)U,U〉Y0) = 2Im(〈A
1
2u,A

1
2v〉X) + 2aε(t)Im(〈A

1
4 z, A

1
4v〉X)

+ 2Im(〈A
3
4w,A

1
4 z〉X)

= 2Im(〈A
3
4u,A

1
4v〉X) + 2aε(t)Im(〈A

1
4 z, A

1
4v〉X)

+ 2Im(〈A
3
4w,A

1
4 z〉X).

With this last equality and taking the imaginary part in (2.28), it follows by the Cauchy-
Schwartz and Young inequalities that

β‖U‖2
Y0

= Im(〈F,U〉Y0)− Im(〈A(t)U,U〉Y0)

≤ ‖F‖Y0‖U‖Y0 + 2‖A
3
4u‖X‖A

1
4v‖X + 2a1‖A

1
4 z‖X‖A

1
4v‖X + 2‖A

3
4w‖X‖A

1
4 z‖X

≤ ‖F‖Y0‖U‖Y0 + ‖A
3
4u‖2

X + (1 + a1)‖A
1
4v‖2

X + ‖A
3
4w‖2

X + (a1 + 1)‖A
1
4 z‖2

X

and, using the estimates obtained in (2.29), (2.30) and (2.31), we get

β‖U‖2
Y0
≤
(

1 + 2

(
2η +

2(a2
1 + 1)

η
+ 4

)
+

2a1 + 2

η

)
‖F‖Y0‖U‖Y0 ,

that is, there exists a positive constant C, independent of β, such that

β‖(iβI +A(t))−1F‖Y0 ≤ C‖F‖Y0

for all F ∈ Y0 and all β ∈ R. Since this holds for β ∈ R arbitrary,

|β|‖(iβI +A(t))−1‖L(Y0) ≤ C, for all β ∈ R,

and, therefore, we conclude that

lim sup
|β|→∞

‖β(iβI +A(t))−1‖L(Y0) <∞.

By Theorem 2.1, the semigroup {e−τA(t) : τ ≥ 0} is analytic.

Next, we present an auxiliary result about the class of nonlinearities that are being
considered in this work.

Lemma 2.2. [21, Lemma 2.4] Let f ∈ C1(R) be a function such that there are constants c > 0

and ρ > 1 such that |f ′(s)| ≤ c(1 + |s|ρ−1) for all s ∈ R. Then

|f(s)− f(t)| ≤ 2ρ−1c|s− t|(1 + |s|ρ−1 + |t|ρ−1)
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for all s, t ∈ R.

Proof. Recall that for a, b, s > 0, one has (a + b)s ≤ 2s max{as, bs} ≤ 2s(as + bs). Now, given
s, t ∈ R, it follows from the Mean Value Theorem that there exists θ ∈ (0, 1) such that

|f(s)− f(t)| = |s− t||f ′(s(1− θ) + tθ)|

≤ c|s− t|(1 + |s(1− θ) + tθ|ρ−1)

≤ 2ρ−1c|s− t|(1 + |s(1− θ)|ρ−1 + |tθ|ρ−1)

≤ 2ρ−1c|s− t|(1 + |s|ρ−1 + |t|ρ−1),

which proves the result.

Remark 2.2. We have the following description of the fractional power scale for the operator
A(t), given as follows

Y0 ↪→ Yα−1 ↪→ Y−1, for all 0 < α < 1,

where

Yα−1 = [Y−1, Y0]α = [X ×X−
1
2 ×X ×X−

1
2 , X

1
2 ×X ×X

1
2 ×X]α

= [X,X
1
2 ]α × [X−

1
2 , X]α × [X,X

1
2 ]α × [X−

1
2 , X]α

= X
α
2 ×X

α−1
2 ×X

α
2 ×X

α−1
2 ,

where [·, ·]α denotes the complex interpolation functor, see [51]. The first equality follows from
Proposition 2.1 (recall that 0 ∈ ρ(A(t))), see [3, Example 4.7.3 (b)] and the others equalities
follow from [24, Proposition 2].

In what follows, Proposition 2.5 below provides sufficient conditions for the nonlinearity
F : Y0 → Yα−1 to be Lipschitz continuous in bounded subsets of Y0.

Proposition 2.5. Assume that 1 < ρ < n+2(1−α)
n−2

, with α ∈ (0, 1). Then the map F : Y0 → Yα−1,
defined in (2.12), is Lipschitz continuous in bounded subsets of Y0.

Proof. Let xi =
[
ui vi wi zi

]T
∈ Y0 for i = 1, 2. Then, from Lemma 2.2, and using Hölder’s

inequality, we have

‖F (x1)− F (x2)‖Yα−1 = ‖f e(u1)− f e(u2)‖
X
α−1
2

≤ c1‖f e(u1)− f e(u2)‖
L

2n
n+2(1−α) (Ω)

= c1

(∫
Ω

|f e(u1)(x)− f e(u2)(x)|
2n

n+2(1−α)dx

)n+2(1−α)
2n

= c1

(∫
Ω

|f(u1(x))− f(u2(x))|
2n

n+2(1−α)dx

)n+2(1−α)
2n
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≤ c2

(∫
Ω

[
|u1(x)− u2(x)|

(
1 + |u1(x)|ρ−1 + |u2(x)|ρ−1

)] 2n
n+2(1−α) dx

)n+2(1−α)
2n

≤ c2

(∫
Ω

|u1(x)− u2(x)|
2n
n−2dx

)n−2
2n
(∫

Ω

|1 + |u1(x)|ρ−1 + |u2(x)|ρ−1|
n

2−αdx

) 2−α
n

≤ c2‖u1 − u2‖
L

2n
n−2 (Ω)

‖1 + |u1|ρ−1 + |u2|ρ−1‖
L

n
2−α (Ω)

≤ c3‖u1 − u2‖
L

2n
n−2 (Ω)

(
1 + ‖u1‖ρ−1

L
n(ρ−1)
2−α (Ω)

+ ‖u2‖ρ−1

L
n(ρ−1)
2−α (Ω)

)
,

where c1 > 0 is the embedding constant of L
2n

n+2(1−α) (Ω) ↪→ X
α−1
2 . Moreover, we have the

embedding H1(Ω) ↪→ Lp(Ω) holds if and only if p ≤ 2n
n−2

. Since ρ < n+2(1−α)
n−2

if and only if
n(ρ−1)

2−α < 2n
n−2

, then we obtain
H1(Ω) ↪→ L

n(ρ−1)
2−α (Ω).

Therefore,

‖F (x1)− F (x2)‖Yα−1 ≤ c4‖u1 − u2‖X 1
2

(
1 + ‖u1‖ρ−1

X
1
2

+ ‖u2‖ρ−1

X
1
2

)
≤ c4‖x1 − x2‖Y0

(
1 + ‖x1‖ρ−1

Y0
+ ‖x2‖ρ−1

Y0

)
,

for some constant c4 > 0, which concludes the proof.

Proposition 2.5 and Theorem 1.12 ensure the local well-posedness of (2.9) in the phase
space Y0, and this allows us to establish the following existence result.

Corollary 2.1. Let 1 < ρ < n+2(1−α)
n−2

, with α ∈ (0, 1), and let f ∈ C1(R) be a function satisfying
(2.7)-(2.8). Assume that conditions (2.4)-(2.6) hold and let F : Y0 → Yα−1 be defined as in
(2.12). Then given r > 0, there exists a time t0 = t0(r) > 0 such that for all W0 ∈ BY0(0, r),
there exists a unique solution W : [τ, τ+t0]→ Y0 of the problem (2.9) starting in W0. Moreover,
such solutions are continuous with respect to the initial data in BY0(0, r).

In order to obtain the global well-posedness of solutions, we give an auxiliary result.

Lemma 2.3. [4, Proposition 4.1] [28, Observation 6.2.1] Let f ∈ C1(R) be a function satisfying
(2.7)-(2.8). The following conditions hold:

(i) There exists a constant c > 0 such that |f(s)| ≤ c(1 + |s|ρ) for all s ∈ R.

(ii) Given δ > 0, there exists a constant Cδ > 0 such that∫
Ω

f(u)udx ≤ Cδ + δ‖u‖2
X and

∫
Ω

∫ u

0

f(s)dsdx ≤ Cδ + δ‖u‖2
X ,

for all u ∈ X.
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(iii) Given r > 0, there exist constants Cr > 0 and C > 0 (which does not depend on r) such
that ∣∣∣∣∫

Ω

f(u)udx

∣∣∣∣ ≤ Cr‖u‖2

X
1
2

and
∣∣∣∣∫

Ω

∫ u

0

f(s)dsdx

∣∣∣∣ ≤ Cr‖u‖2

X
1
2

+ C

for all u ∈ X 1
2 with ‖u‖

X
1
2
≤ r.

Proof. (i) In view of Lemma 2.2, there are constants c > 0 and ρ > 1 such that

|f(s)| − |f(t)| ≤ |f(s)− f(t)| ≤ 2ρ−1c|s− t|(1 + |s|ρ−1 + |t|ρ−1)

for all s, t ∈ R. On the other hand, using the Young inequality ab ≤ εa
p

p
+ 1

εq/p
bq

q
with

ε = 1, a = |s|, b = 1, p = ρ and q = ρ
ρ−1

, we obtain

|s| ≤ |s|
ρ

ρ
+
ρ− 1

ρ
for all s ∈ R.

Hence,

|f(s)| ≤ |f(0)|+ 2ρ−1c|s|(1 + |s|ρ−1) = |f(0)|+ 2ρ−1c(|s|+ |s|ρ)

≤ |f(0)|+ 2ρ−1c

(
|s|ρ

ρ
+
ρ− 1

ρ
+ |s|ρ

)
≤ |f(0)|+ 2ρ−1c(1 + |s|ρ) max

{
ρ− 1

ρ
,
1 + ρ

ρ

}
≤ |f(0)|+ 2ρ−1c(1 + |s|ρ)

(
ρ− 1

ρ
+

1 + ρ

ρ

)
= |f(0)|+ 2ρc(1 + |s|ρ) ≤ (|f(0)|+ 2ρc)(1 + |s|ρ).

Therefore, f satisfies |f(s)| ≤ c̃(1 + |s|ρ) for all s ∈ R and some constant c̃ > 0.

(ii) We shall make use of the dissipativeness condition (2.7). In fact, to deal with the first
assertion, note that, by (2.7), for all δ > 0 given, there exists Rδ > 0 such that, for |s| > Rδ,
one has f(s)

s
≤ δ and, therefore, f(s)s ≤ δs2. Moreover, since the function R 3 s 7→ f(s)s is

bounded on the interval [−Rδ, Rδ], there exists Mδ > 0 such that

f(s)s ≤Mδ + δs2 for all s ∈ R.

Thus, given u ∈ X, we have f(u(x))u(x) ≤ Mδ + δu2(x) for all x ∈ Ω and then, integrating
this inequality on Ω, we obtain ∫

Ω

f(u)udx ≤Mδ|Ω|+ δ‖u‖2
X . (2.32)

Now, let us show the second assertion of this item. For a given δ > 0, let Rδ > 0 be as
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above. Since R 3 s 7→ f(s) is bounded on the interval [−Rδ, Rδ], there exists mδ > 0 such that
|f(s)| ≤ mδ for all s ∈ [−Rδ, Rδ]. At first, we claim that∫ s

0

f(θ)dθ ≤ mδRδ + δs2

for all s ∈ R. In fact, we have some cases to consider. If s ∈ [0, Rδ], then∫ s

0

f(θ)dθ ≤
∫ s

0

|f(θ)|dθ ≤
∫ Rδ

0

|f(θ)|dθ

≤
∫ Rδ

0

mδdθ = mδRδ ≤ mδRδ + δs2.

If s > Rδ, then we have∫ s

0

f(θ)dθ =

∫ Rδ

0

f(θ)dθ +

∫ s

Rδ

f(θ)dθ ≤
∫ Rδ

0

|f(θ)|dθ +

∫ s

Rδ

δθdθ

≤
∫ Rδ

0

mδdθ + δ

(
s2

2
− R2

δ

2

)
≤ mδRδ +

δ

2
s2 < mδRδ + δs2.

If s ∈ [−Rδ, 0], then∫ s

0

f(θ)dθ = −
∫ 0

s

f(θ)dθ ≤
∫ 0

s

|f(θ)|dθ ≤
∫ 0

−Rδ
|f(θ)|dθ

≤
∫ 0

−Rδ
mδdθ = mδRδ ≤ mδRδ + δs2.

Lastly, if s < −Rδ < 0, then∫ s

0

f(θ)dθ = −
∫ 0

s

f(θ)dθ = −
∫ −Rδ
s

f(θ)dθ −
∫ 0

−Rδ
f(θ)dθ

≤ −
∫ −Rδ
s

δθdθ +

∫ 0

−Rδ
|f(θ)|dθ ≤ −δ

(
R2
δ

2
− s2

2

)
+

∫ 0

−Rδ
mδdθ

≤ mδRδ +
δ

2
s2 < mδRδ + δs2.

This ends the proof of our claim.

Hence, given u ∈ X, we have ∫ u

0

f(s)ds ≤ Kδ + δu2
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with Kδ = mδRδ > 0 being a constant and then, integrating this inequality on Ω, we get∫
Ω

∫ u

0

f(s)dsdx ≤ Kδ|Ω|+ δ‖u‖2
X . (2.33)

In conclusion, by (2.32) and (2.33), and taking Cδ = |Ω|max{Mδ, Kδ} > 0, we obtain∫
Ω

f(u)udx ≤ Cδ + δ‖u‖2
X and

∫
Ω

∫ u

0

f(s)dsdx ≤ Cδ + δ‖u‖2
X

for all u ∈ X, which proves the statement of this item.

(iii) Let u ∈ X 1
2 . Using the Hölder’s inequality, the Poincaré inequality ‖u‖2

X ≤ λ−1
1 ‖u‖2

X
1
2
and

also item (i) above, we have

∣∣∣∣∫
Ω

f(u)udx

∣∣∣∣ ≤ ∫
Ω

|f(u)||u|dx ≤
(∫

Ω

|u|2dx
) 1

2
(∫

Ω

|f(u)|2dx
) 1

2

≤ ‖u‖2
X

(∫
Ω

[c(1 + |u|ρ)]2dx
) 1

2

≤ cλ−1
1 ‖u‖2

X
1
2

(∫
Ω

(1 + |u|ρ)2dx

) 1
2

≤ c1‖u‖2

X
1
2

(
|Ω|+

∫
Ω

|u|2ρdx
) 1

2

≤ c2‖u‖2

X
1
2

(
|Ω|

1
2 +

(∫
Ω

|u|2ρdx
) 1

2

)
≤ c3‖u‖2

X
1
2

(
1 + ‖u‖ρL2ρ(Ω)

)
with c3 > 0 being a constant. Thanks to our assumption on the exponent ρ, we have 2ρ < 2n

n−2

and, moreover, since we know that the embedding H1(Ω) ↪→ Lp(Ω) holds if and only if p ≤ 2n
n−2

,
it follows that H1(Ω) ↪→ L2ρ(Ω). Thus, there exists κ > 0 such that ‖u‖L2ρ(Ω) ≤ κ‖u‖

X
1
2
and,

hence, ∣∣∣∣∫
Ω

f(u)udx

∣∣∣∣ ≤ c3‖u‖2

X
1
2

(
1 + κρ‖u‖ρ

X
1
2

)
.

Now, given r > 0, if ‖u‖
X

1
2
≤ r, then we get∣∣∣∣∫

Ω

f(u)udx

∣∣∣∣ ≤ c3(1 + κρrρ)‖u‖2

X
1
2
. (2.34)

In what follows, we show the other inequality. At first, we claim that∣∣∣∣∫ s

0

f(θ)dθ

∣∣∣∣ ≤ c

(
|s|+ 1

ρ+ 1
|s|ρ+1

)
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for all s ∈ R. Indeed, using item (i), if s ≥ 0 then∣∣∣∣∫ s

0

f(θ)dθ

∣∣∣∣ ≤ ∫ s

0

|f(θ)|dθ ≤
∫ s

0

c(1 + |θ|ρ)dθ = c

(
|s|+ 1

ρ+ 1
|s|ρ+1

)
.

If s < 0, then∣∣∣∣∫ s

0

f(θ)dθ

∣∣∣∣ ≤ ∫ 0

s

|f(θ)|dθ ≤
∫ 0

s

c(1 + |θ|ρ)dθ = c

(
−s+

1

ρ+ 1
(−s)ρ+1

)
= c

(
|s|+ 1

ρ+ 1
|s|ρ+1

)
.

Thus, the claim is proved.

Now, let u ∈ X 1
2 . Using the Poincaré inequality ‖u‖2

X ≤ λ−1
1 ‖u‖2

X
1
2
, we obtain

∣∣∣∣∫
Ω

∫ u

0

f(s)dsdx

∣∣∣∣ ≤ ∫
Ω

∣∣∣∣∫ u

0

f(s)ds

∣∣∣∣ dx ≤ ∫
Ω

c

(
|u|+ 1

ρ+ 1
|u|ρ+1

)
dx

≤
∫

Ω

c

(
1

2
+

1

2
|u|2 +

1

ρ+ 1
|u|ρ+1

)
dx

=
c

2
|Ω|+ c

2

∫
Ω

|u|2dx+
c

ρ+ 1

∫
Ω

|u|ρ+1dx

=
c

2
|Ω|+ c

2
‖u‖2

X +
c

ρ+ 1
‖u‖ρ+1

Lρ+1(Ω)

≤ c

2
|Ω|+ cλ−1

1

2
‖u‖2

X
1
2

+
c

ρ+ 1
‖u‖ρ+1

Lρ+1(Ω).

Since 1 < ρ < n
n−2

, with n ≥ 3, we have

2 < ρ+ 1 <
2n− 2

n− 2
<

2n

n− 2
,

which ensures that H1(Ω) ↪→ Lρ+1(Ω). Thus, there exists a constant κ0 > 0 such that

‖u‖Lρ+1(Ω) ≤ κ0‖u‖X 1
2

and, hence, ∣∣∣∣∫
Ω

∫ u

0

f(s)dsdx

∣∣∣∣ ≤ c

2
|Ω|+ cλ−1

1

2
‖u‖2

X
1
2

+
c

ρ+ 1
κρ+1

0 ‖u‖ρ+1

X
1
2

=
c

2
|Ω|+

(
cλ−1

1

2
+
cκρ+1

0

ρ+ 1
‖u‖ρ−1

X
1
2

)
‖u‖2

X
1
2
.
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Now, given r > 0, if ‖u‖
X

1
2
≤ r, then we get

∣∣∣∣∫
Ω

∫ u

0

f(s)dsdx

∣∣∣∣ ≤ c

2
|Ω|+

(
cλ−1

1

2
+
cκρ+1

0 rρ−1

ρ+ 1

)
‖u‖2

X
1
2
. (2.35)

Therefore, we conclude that, for all r > 0 given, and for all u ∈ X
1
2 with ‖u‖

X
1
2
≤ r,

taking

Cr = max

{
c3(1 + κρrρ),

cλ−1
1

2
+
cκρ+1

0 rρ−1

ρ+ 1

}
> 0

and
C =

c

2
|Ω|,

it follows by (2.34) and (2.35) that∣∣∣∣∫
Ω

f(u)udx

∣∣∣∣ ≤ Cr‖u‖2

X
1
2

and
∣∣∣∣∫

Ω

∫ u

0

f(s)dsdx

∣∣∣∣ ≤ Cr‖u‖2

X
1
2

+ C,

which concludes the proof of item (iii). The proof of the result is now complete.

Remark 2.3. According to the proof of [4, Proposition 4.1] if f(0) = 0, then there exists a
constant c > 0 such that |f(s)| ≤ c(|s| + |s|ρ) for all s ∈ R. In addition, given r > 0, there
exists a constant Cr > 0 such that∣∣∣∣∫

Ω

f(u)udx

∣∣∣∣ ≤ Cr‖u‖2

X
1
2

and
∣∣∣∣∫

Ω

∫ u

0

f(s)dsdx

∣∣∣∣ ≤ Cr‖u‖2

X
1
2

for all u ∈ X 1
2 with ‖u‖

X
1
2
≤ r.

Theorem 2.3. [Global Well-Posedness] Let f ∈ C1(R) be a function satisfying (2.7)-(2.8),
assume that conditions (2.4)-(2.6) hold and let F : Y0 → Yα−1 be defined as in (2.12). Then for
any initial data W0 ∈ Y0 the problem (2.9) has a unique global solution W (t) such that

W (t) ∈ C([τ,∞), Y0).

Moreover, such solutions are continuous with respect to the initial data on Y0.

Proof. By Corollary 2.1, the problem (2.1)-(2.3) has a local solution (u(t), ut(t), v(t), vt(t)) in
Y0 defined on some interval [τ, τ + t0]. Consider the original system (2.1). Multiplying the first
equation in (2.1) by ut, and the second by vt, we obtain

1

2

d

dt

∫
Ω

|ut|2dx+
1

2

d

dt

∫
Ω

|∇u|2dx+
1

2

d

dt

∫
Ω

|u|2dx+ η‖(−∆)
1
4ut‖2

X

+ aε(t)〈(−∆)
1
2vt, ut〉X =

d

dt

∫
Ω

∫ u

0

f(s)dsdx,

(2.36)
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and

1

2

d

dt

∫
Ω

|vt|2dx+
1

2

d

dt

∫
Ω

|∇v|2dx+ η‖(−∆)
1
4vt‖2

X − aε(t)〈(−∆)
1
2ut, vt〉X = 0, (2.37)

for all τ < t ≤ τ + t0. Combining (2.36) and (2.37), we get

d

dt
E(t) = −η‖(−∆)

1
4ut‖2

X − η‖(−∆)
1
4vt‖2

X (2.38)

for all τ < t ≤ τ + t0, where

E(t) =
1

2
‖u(t)‖2

X
1
2

+
1

2
‖u(t)‖2

X +
1

2
‖ut(t)‖2

X +
1

2
‖v(t)‖2

X
1
2

+
1

2
‖vt(t)‖2

X

−
∫

Ω

∫ u

0

f(s)dsdx
(2.39)

is the total energy associated with the solution (u(t), ut(t), v(t), vt(t)) of the problem (2.1)-(2.3)
in Y0. The identity (2.38) means that the map t 7→ E(t) is monotone decreasing along solutions.
Moreover, using the property E(t) ≤ E(τ) for all τ ≤ t ≤ τ + t0, we can obtain a priori estimate
of the solution (u(t), ut(t), v(t), vt(t)) in Y0. In fact, given δ > 0, it follows by Lemma 2.3, item
(ii), that there is Cδ > 0 such that∫

Ω

∫ u

0

f(s)dsdx ≤ Cδ + δ‖u‖2
X .

Thus, for all τ < t ≤ τ + t0, we have

‖u‖2

X
1
2

+ ‖ut‖2
X + ‖v‖2

X
1
2

+ ‖vt‖2
X ≤ ‖u‖2

X
1
2

+ ‖u‖2
X + ‖ut‖2

X + ‖v‖2

X
1
2

+ ‖vt‖2
X

= 2E(t) + 2

∫
Ω

∫ u

0

f(s)dsdx ≤ 2E(τ) + 2(δ‖u‖2
X + Cδ)

≤ 2(E(τ) + Cδ) + 2δλ−1
1 ‖u‖2

X
1
2

≤ 2(E(τ) + Cδ) + 2δλ−1
1 (‖u‖2

X
1
2

+ ‖ut‖2
X + ‖v‖2

X
1
2

+ ‖vt‖2
X),

where we have used the Poincaré inequality, and λ1 > 0 denotes the first eigenvalue of the
negative Laplacian operator with homogeneous Dirichlet boundary condition.

Now, choosing δ = λ1
4
, we get

‖u‖2

X
1
2

+ ‖ut‖2
X + ‖v‖2

X
1
2

+ ‖vt‖2
X ≤ 4

(
E(τ) + Cλ1

4

)
,

that is,
‖(u(t), ut(t), v(t), vt(t))‖2

Y0
≤ 4

(
E(τ) + Cλ1

4

)
.

This ensures that the problem (2.1)− (2.3) has a global solution W (t) in Y0, which proves the
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result.

Since the problem (2.1)−(2.3) has a global solutionW (t) in Y0, we can define an evolution
process {S(t, τ) : t ≥ τ ∈ R} in Y0 by

S(t, τ)W0 = W (t), t ≥ τ ∈ R. (2.40)

By [26], we have

S(t, τ)W0 = L(t, τ)W0 + U(t, τ)W0, t ≥ τ ∈ R, (2.41)

where {L(t, τ) : t ≥ τ ∈ R} is the linear evolution process in Y0 associated with the homogeneous
problem Wt +A(t)W = 0, t > τ,

W (τ) = W0, τ ∈ R,
(2.42)

and
U(t, τ)W0 =

∫ t

τ

L(t, s)F (S(s, τ)W0)ds. (2.43)

2.3 Existence of the pullback attractor

In this section, we prove the existence of the pullback attractor of the problem (2.1)-(2.3).
To this end, we need to make a modification on the energy functional. More precisely, for
γ1, γ2 ∈ R+, let us define Lγ1,γ2 : Y0 → R by the map

Lγ1,γ2(φ, ϕ, ψ,Φ) =
1

2
‖φ‖2

X
1
2

+
1

2
‖φ‖2

X +
1

2
‖ϕ‖2

X +
1

2
‖ψ‖2

X
1
2

+
1

2
‖Φ‖2

X

+ γ1〈φ, ϕ〉X + γ2〈ψ,Φ〉X −
∫

Ω

∫ φ

0

f(s)dsdx.
(2.44)

We start by noting that if

γi <
1

2
and

γi
2
λ−1

1 <
1

4
, i = 1, 2,

then
1

4
‖(φ, ϕ, ψ,Φ)‖2

Y0
≤ Lγ1,γ2(φ, ϕ, ψ,Φ) +

∫
Ω

∫ φ

0

f(s)dsdx (2.45)

≤ 3

4
(1 + λ−1

1 )‖(φ, ϕ, ψ,Φ)‖2
Y0
.
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Indeed, using the Cauchy-Schwartz and Young inequalities, we obtain

|γ1〈φ, ϕ〉X + γ2〈ψ,Φ〉X | ≤ γ1‖φ‖X‖ϕ‖X + γ2‖ψ‖X‖Φ‖X

≤ γ1

2
(‖φ‖2

X + ‖ϕ‖2
X) +

γ2

2
(‖ψ‖2

X + ‖Φ‖2
X)

≤ γ1

2
λ−1

1 ‖φ‖2

X
1
2

+
γ1

2
‖ϕ‖2

X +
γ2

2
λ−1

1 ‖ψ‖2

X
1
2

+
γ2

2
‖Φ‖2

X

≤ 1

4
‖(φ, ϕ, ψ,Φ)‖2

Y0
,

which leads to

1

4
‖(φ, ϕ, ψ,Φ)‖2

Y0
≤ 1

2
‖(φ, ϕ, ψ,Φ)‖2

Y0
+ γ1〈φ, ϕ〉X + γ2〈ψ,Φ〉X ≤

3

4
‖(φ, ϕ, ψ,Φ)‖2

Y0
. (2.46)

Consequently,

1

4
‖(φ, ϕ, ψ,Φ)‖2

Y0
≤ Lγ1,γ2(φ, ϕ, ψ,Φ) +

∫
Ω

∫ φ

0

f(s)dsdx ≤ 3

4
‖(φ, ϕ, ψ,Φ)‖2

Y0
+

1

2
‖φ‖2

X .

But since ‖φ‖2
X ≤ λ−1

1 ‖φ‖2

X
1
2
, we have

3

4
‖(φ, ϕ, ψ,Φ)‖2

Y0
+

1

2
‖φ‖2

X ≤
3(1 + λ−1

1 )

4
‖(φ, ϕ, ψ,Φ)‖2

Y0
, (2.47)

and the claim is proved.

Theorem 2.4. There exists R > 0 such that for any bounded subset B ⊂ Y0 one can find
t0(B) > 0 satisfying

‖(u, ut, v, vt)‖2
Y0
≤ R for all t ≥ τ + t0(B).

In particular, the evolution process {S(t, τ) : t ≥ τ ∈ R} defined in (2.40) is pullback strongly
bounded dissipative.

Proof. At first, note that we can differentiate the expression (2.44) along the solution W (t) =

(u(t), ut(t), v(t), vt(t)) and, using (2.38) and (2.39), we get

d

dt
Lγ1,γ2(u, ut, v, vt) =

d

dt
E(t) + γ1〈ut, ut〉X + γ1〈u, utt〉X + γ2〈vt, vt〉X + γ2〈v, vtt〉X

= −η‖A
1
4ut‖2

X − η‖A
1
4vt‖2

X + γ1‖ut‖2
X + γ1〈u,−Au− u− ηA

1
2ut − aε(t)A

1
2vt + f(u)〉X

+ γ2‖vt‖2
X + γ2〈v,−Av − ηA

1
2vt + aε(t)A

1
2ut〉X

= −η‖ut‖2

X
1
4
− η‖vt‖2

X
1
4

+ γ1‖ut‖2
X − γ1(‖u‖2

X
1
2

+ ‖u‖2
X)− γ1η〈A

1
2u, ut〉X

− γ1aε(t)〈A
1
2u, vt〉X + γ1〈u, f(u)〉X + γ2‖vt‖2

X − γ2‖v‖2

X
1
2

− γ2η〈A
1
2v, vt〉X + γ2aε(t)〈A

1
2v, ut〉X .
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Now, if c > 0 is the embedding constant of X
1
4 ↪→ X, then one has

− η‖ · ‖2

X
1
4
≤ −η 1

c2
‖ · ‖2

X . (2.48)

Moreover, by Lemma 2.3, item (ii), for each δ > 0, there exists a constant Cδ > 0 such
that ∫

Ω

f(u)udx ≤ δ‖u‖2
X + Cδ,

which implies
γ1〈u, f(u)〉X ≤ γ1δ‖u‖2

X + γ1Cδ ≤ γ1δλ
−1
1 ‖u‖2

X
1
2

+ γ1Cδ. (2.49)

Thus, using (2.48), (2.49) and the Cauchy-Schwartz and Young inequalities, we have

d

dt
Lγ1,γ2(u, ut, v, vt)

≤ −γ1(1− δλ−1
1 )‖u‖2

X
1
2
−
(
η

1

c2
− γ1

)
‖ut‖2

X − γ2‖v‖2

X
1
2
−
(
η

1

c2
− γ2

)
‖vt‖2

X

+ γ1Cδ + γ1η

(
ε1
2
‖u‖2

X
1
2

+
1

2ε1
‖ut‖2

X

)
+ γ1a1

(
1

2ε2
‖u‖2

X
1
2

+
ε2
2
‖vt‖2

X

)
+ γ2a1

(
1

2ε3
‖v‖2

X
1
2

+
ε3
2
‖ut‖2

X

)
+ γ2η

(
ε4
2
‖v‖2

X
1
2

+
1

2ε4
‖vt‖2

X

)
= −γ1

(
1− δλ−1

1 − η
ε1
2
− a1

1

2ε2

)
‖u‖2

X
1
2
−
(
η

1

c2
− γ1 − γ1η

1

2ε1
− γ2a1

ε3
2

)
‖ut‖2

X

− γ2

(
1− a1

1

2ε3
− η ε4

2

)
‖v‖2

X
1
2
−
(
η

1

c2
− γ2 − γ1a1

ε2
2
− γ2η

1

2ε4

)
‖vt‖2

X + γ1Cδ

for all ε1, ε2, ε3, ε4 > 0. Choosing δ = λ1
8
, ε1 = ε4 = 1

η
and ε2 = ε3 = 2a1, we obtain

d

dt
Lγ1,γ2(u, ut, v, vt) ≤ −

1

8
γ1‖u‖2

X
1
2
−
(
η

1

c2
− γ1

(
1 +

η2

2

)
− γ2a

2
1

)
‖ut‖2

X −
1

4
γ2‖v‖2

X
1
2

−
(
η

1

c2
− γ1a

2
1 − γ2

(
1 +

η2

2

))
‖vt‖2

X + γ1Cλ1
8

.

We may choose γi > 0, i = 1, 2, sufficiently small such that

γi <
η

4c2
min

{
1

a2
1

,

(
1 +

η2

2

)−1
}
, i = 1, 2.

Now, taking

C1 = min

{
1

8
γ1, η

1

c2
− γ1

(
1 +

η2

2

)
− γ2a

2
1,

1

4
γ2, η

1

c2
− γ1a

2
1 − γ2

(
1 +

η2

2

)}
> 0,
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and C2 = γ1Cλ1
8

> 0, we obtain

d

dt
Lγ1,γ2(u, ut, v, vt) ≤ −C1‖(u, ut, v, vt)‖2

Y0
+ C2. (2.50)

Note that C1 and C2 are independent of B.

We claim that there exists K > 0 such that Lγ1,γ2(u, ut, v, vt) ≥ 1
8
‖(u, ut, v, vt)‖2

Y0
−K.

In fact, by Lemma 2.3, item (ii), given δ̃ > 0, there exists a constant Cδ̃ > 0 such that∫
Ω

∫ u

0

f(s)dsdx ≤ δ̃‖u‖2
X + Cδ̃,

which, together with ‖u‖2
X ≤ λ−1

1 ‖u‖2

X
1
2
, implies

Lγ1,γ2(u, ut, v, vt) ≥
1

4
‖(u, ut, v, vt)‖2

Y0
−
∫

Ω

∫ u

0

f(s)dsdx

≥ 1

4
‖(u, ut, v, vt)‖2

Y0
− δ̃λ−1

1 ‖u‖2

X
1
2
− Cδ̃

≥
(

1

4
− δ̃λ−1

1

)
‖(u, ut, v, vt)‖2

Y0
− Cδ̃.

Choosing δ̃ = λ1
8
, we get

Lγ1,γ2(u, ut, v, vt) ≥
1

8
‖(u, ut, v, vt)‖2

Y0
−K, (2.51)

where K = Cλ1
8

> 0, which proves the claim.

Now, define the set

`r = sup{‖(u, ut, v, vt)‖2
Y0

: t ≥ τ, ‖(u(τ), ut(τ), v(τ), vt(τ))‖2
Y0
≤ r}.

Note that `r <∞ for each r > 0. In fact, by the proof of Theorem 2.3, we have

‖W (t)‖2
Y0

= ‖(u(t), ut(t), v(t), vt(t))‖2
Y0
≤ 4

(
E(τ) + Cλ1

4

)
, t ≥ τ,

where

E(τ) =
1

2
‖W (τ)‖2

Y0
+

1

2
‖u(τ)‖2

X −
∫

Ω

∫ u(τ)

0

f(s)dsdx

≤ 1

2
‖W (τ)‖2

Y0
+ λ−1

1 ‖u(τ)‖2

X
1
2

+

∣∣∣∣∣
∫

Ω

∫ u(τ)

0

f(s)dsdx

∣∣∣∣∣
≤
(

1

2
+ λ−1

1

)
‖W (τ)‖2

Y0
+ Cr‖u(τ)‖2

X
1
2

+ C
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≤
(

1

2
+ λ−1

1

)
r + Crr + C.

This shows that `r <∞.

Now, we claim that given a bounded set B ⊂ Y0 there exists t0(B) > 0 such that

‖(u, ut, v, vt)‖2
Y0
≤ max

{
8K, `C2+1

C1

}
for all t ≥ τ + t0(B).

In fact, let B ⊂ Y0 be a bounded set. Let r0 > 0 be such that B ⊂ BY0(0, r0). By (2.45) and
Lemma 2.3, we obtain

Lγ1,γ2(u(τ), ut(τ), v(τ), vt(τ)) ≤ 3

4
(1 + λ−1

1 )r0 + r0Cr0 + C = Tr0 ,

for all (u(τ), ut(τ), v(τ), vt(τ)) ∈ B.

Let (u(τ), ut(τ), v(τ), vt(τ)) ∈ B be arbitrary. If ‖(u, ut, v, vt)‖2
Y0
> C2+1

C1
for all t ≥ τ then

d

dt
Lγ1,γ2(u, ut, v, vt) ≤ −C1‖(u, ut, v, vt)‖2

Y0
+ C2 ≤ −1 for all t ≥ τ,

which implies

Lγ1,γ2(u, ut, v, vt) ≤ Lγ1,γ2(u(τ), ut(τ), v(τ), vt(τ))− (t− τ) for all t ≥ τ.

Thus, Lγ1,γ2(u, ut, v, vt) ≤ 0 for all t ≥ τ + Tr0 . Consequently, using (2.51), we have

‖(u, ut, v, vt)‖2
Y0
≤ 8K for all t ≥ τ + Tr0 .

On the other hand, if there exists tu ≥ τ such that ‖(u(tu), ut(tu), v(tu), vt(tu))‖2
Y0
≤ C2+1

C1

(take the smallest tu with this property) then

‖(u, ut, v, vt)‖2
Y0
≤ `C2+1

C1

for all t ≥ tu.

Set
Bu =

{
w0 ∈ B : there exists tw0

u > τ such that ‖W (tw0
u )w0‖2

Y0
=
C2 + 1

C1

and

‖W (t)w0‖2
Y0
>
C2 + 1

C1

for all τ ≤ t < tw0
u

}
.

We claim that Tu(B) = sup{tw0
u : w0 ∈ Bu} < ∞. In fact, suppose to the contrary that there

exists a sequence {wn0}n∈N ⊂ Bu such that tw
n
0

u →∞ as n→∞. Since ‖W (t)wn0‖2
Y0
≥ C2+1

C1
for
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all τ ≤ t ≤ t
wn0
u , we conclude that

Lγ1,γ2(W (t)wn0 ) ≤ Lγ1,γ2(w
n
0 )− (t− τ) ≤ Tr0 − t+ τ for all τ ≤ t ≤ tw

n
0

u .

This implies that lim
n→∞

Lγ1,γ2(W (tw
n
0

u )wn0 ) = −∞. But, using (2.45), we obtain

1

4
‖W (tw

n
0

u )wn0‖2
Y0
≤ Lγ1,γ2(W (tw

n
0

u )wn0 ) +

∫
Ω

∫ u(t
wn0
u )

0

f(s)dsdx

≤ Lγ1,γ2(W (tw
n
0

u )wn0 ) +

∣∣∣∣∣∣
∫

Ω

∫ u(t
wn0
u )

0

f(s)dsdx

∣∣∣∣∣∣
≤ Lγ1,γ2(W (tw

n
0

u )wn0 ) + CC2+1
C1

‖u(tw
n
0

u )‖2

X
1
2

+ C

≤ Lγ1,γ2(W (tw
n
0

u )wn0 ) + CC2+1
C1

‖W (tw
n
0

u )wn0‖2
Y0

+ C

= Lγ1,γ2(W (tw
n
0

u )wn0 ) + CC2+1
C1

C2 + 1

C1

+ C

which contradicts the fact that lim
n→∞

Lγ1,γ2(W (tw
n
0

u )wn0 ) = −∞.

Taking t0(B) = max{Tu(B), Tr0}, we conclude that

‖(u, ut, v, vt)‖2
Y0
≤ max

{
8K, `C2+1

C1

}
for all t ≥ τ + t0(B).

This shows that, if s ≤ t and B ⊂ Y0 is a bounded set then

S(s, τ)B ⊂ BY0(0, R) for all τ ≤ τ0(s, B),

where τ0(s, B) = s− t0(B) and R = max

{
8K, `C2+1

C1

}
. Therefore, the process given by (2.40)

is pullback strongly bounded dissipative.

Next, we prove that the solutions of problem (2.9) are uniformly exponentially dominated
when the initial data are in bounded subsets of Y0.

Theorem 2.5. Let B ⊂ Y0 be a bounded set. If W : [τ,∞)→ Y0 is the global solution of (2.9)
starting at W0 ∈ B, then there are positive constants σ = σ(B), K1 = K1(B) and K2 = K2(B)

such that
‖W (t)‖2

Y0
≤ K1e

−σ(t−τ) +K2, t ≥ τ.

Proof. Let r > 0 be such that B ⊂ BY0(0, r). We claim that there is Mr > 0 and C > 0 such
that Lγ1,γ2(u, ut, v, vt) ≤Mr‖(u, ut, v, vt)‖2

Y0
+ C for all t ≥ τ . In fact, by (2.45), we have

Lγ1,γ2(u, ut, v, vt) +

∫
Ω

∫ u

0

f(s)dsdx ≤ 3

4
(1 + λ−1

1 )‖(u, ut, v, vt)‖2
Y0
.
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By the proof of Theorem 2.4, the set

`r = sup{‖(u, ut, v, vt)‖2
Y0

: t ≥ τ, ‖(u(τ), ut(τ), v(τ), vt(τ))‖2
Y0
≤ r} <∞.

Now, using Lemma 2.3, condition (iii), there are constants CKr > 0 and C > 0 such that∣∣∣∣∫
Ω

∫ u

0

f(s)dsdx

∣∣∣∣ ≤ C`r‖u‖2

X
1
2

+ C

whenever ‖(u(τ), ut(τ), v(τ), vt(τ))‖2
Y0
≤ r. Hence, if ‖(u(τ), ut(τ), v(τ), vt(τ))‖2

Y0
≤ r, then

Lγ1,γ2(u, ut, v, vt) ≤
3

4
(1 + λ−1

1 )‖(u, ut, v, vt)‖2
Y0
−
∫

Ω

∫ u

0

f(s)dsdx

≤ 3

4
(1 + λ−1

1 )‖(u, ut, v, vt)‖2
Y0

+ C`r‖u‖2

X
1
2

+ C

≤Mr‖(u, ut, v, vt)‖2
Y0

+ C,

where Mr = 3
4
(1 + λ−1

1 ) + C`r > 0, which proves the claim.

Using the proof of Theorem 2.4, it follows by (2.50) that

d

dt
Lγ1,γ2(W (t)) ≤ − C1

Mr

Lγ1,γ2(W (t)) +
CC1

Mr

+ C2, t ≥ τ,

which implies

Lγ1,γ2(W (t)) ≤ Lγ1,γ2(W (τ))e−
C1
Mr

(t−τ) +

(
C2 +

CC1

Mr

)
Mr

C1

, t ≥ τ,

and, using the fact that 1
8
‖W (t)‖2

Y0
−K ≤ Lγ1,γ2(W (t)) (see (2.51)), we conclude that

‖W (t)‖2
Y0
≤ 8Lγ1,γ2(W (τ))e−

C1
Mr

(t−τ) + 8

(
C2
Mr

C1

+ C +K

)
, t ≥ τ.

Since Lγ1,γ2(W (τ)) ≤ KrMr + C, we get

‖W (t)‖2
Y0
≤ 8(KrMr + C)e−

C1
Mr

(t−τ) + 8

(
C2
Mr

C1

+ C +K

)
, t ≥ τ,

and the result follows by taking σ = C1

Mr
, K1 = 8(KrMr+C) and K2 = 8

(
C2

Mr

C1
+ C +K

)
.

Theorem 2.6. Let B ⊂ Y0 be a bounded set and denote by L : [τ,∞)→ Y0 the solution of the
homogeneous problem (2.42) starting inW0 ∈ B. Then there exist positive constants K = K(B)

and ζ such that
‖L(t)‖2

Y0
≤ Ke−ζ(t−τ), t ≥ τ.
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Proof. Denoting by L = (u, ut, v, vt) : [τ,∞) → Y0 the solution of the problem (2.42) starting
in W0 = (u0, u1, v0, v1) ∈ B, we define the map L̃γ1,γ2 : Y0 → R by

L̃γ1,γ2(u, ut, v, vt) =
1

2
‖u‖2

X
1
2

+
1

2
‖u‖2

X +
1

2
‖ut‖2

X +
1

2
‖v‖2

X
1
2

+
1

2
‖vt‖2

X

+ γ1〈u, ut〉X + γ2〈v, vt〉X
(2.52)

with γ1, γ2 ∈ R+.

Then, thanks to the regularity of solutions, established in Corollary 2.1, and using the
Cauchy-Schwartz and Young inequalities, we have

d

dt
L̃γ1,γ2(u, ut, v, vt)

= −η‖ut‖2

X
1
4
− η‖vt‖2

X
1
4

+ γ1‖ut‖2
X − γ1(‖u‖2

X
1
2

+ ‖u‖2
X)− γ1η〈A

1
2u, ut〉X

− γ1aε(t)〈A
1
2u, vt〉X + γ2‖vt‖2

X − γ2‖v‖2

X
1
2
− γ2η〈A

1
2v, vt〉X + γ2aε(t)〈A

1
2v, ut〉X

≤ −η 1

c2
‖ut‖2

X − η
1

c2
‖vt‖2

X + γ1‖ut‖2
X − γ1‖u‖2

X
1
2

+ γ1η

(
ε1
2
‖u‖2

X
1
2

+
1

2ε1
‖ut‖2

X

)
+ γ1a1

(
1

2ε2
‖u‖2

X
1
2

+
ε2
2
‖vt‖2

X

)
+ γ2‖vt‖2

X − γ2‖v‖2

X
1
2

+ γ2a1

(
1

2ε3
‖v‖2

X
1
2

+
ε3
2
‖ut‖2

X

)
+ γ2η

(
ε4
2
‖v‖2

X
1
2

+
1

2ε4
‖vt‖2

X

)
= −γ1

(
1− η ε1

2
− a1

1

2ε2

)
‖u‖2

X
1
2
−
(
η

1

c2
− γ1 − γ1η

1

2ε1
− γ2a1

ε3
2

)
‖ut‖2

X

− γ2

(
1− a1

1

2ε3
− η ε4

2

)
‖v‖2

X
1
2
−
(
η

1

c2
− γ2 − γ1a1

ε2
2
− γ2η

1

2ε4

)
‖vt‖2

X

for all ε1, ε2, ε3, ε4 > 0, where c > 0 is the embedding constant of X
1
4 ↪→ X. Now, it is enough

to choose
ε1 =

1

η
, ε2 = 2a1, ε3 = 2a1, ε4 =

1

η
,

so that we get

d

dt
L̃γ1,γ2(u, ut, v, vt) ≤ −

1

4
γ1‖u‖2

X
1
2
−
(
η

1

c2
− γ1

(
1 +

η2

2

)
− γ2a

2
1

)
‖ut‖2

X −
1

4
γ2‖v‖2

X
1
2

−
(
η

1

c2
− γ1a

2
1 − γ2

(
1 +

η2

2

))
‖vt‖2

X .

Taking γi > 0, i = 1, 2, sufficiently small such that

γi <
η

4c2
min

{
1

a2
1

,

(
1 +

η2

2

)−1
}
, i = 1, 2,
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and then taking

C0 = min

{
1

4
γ1, η

1

c2
− γ1

(
1 +

η2

2

)
− γ2a

2
1,

1

4
γ2, η

1

c2
− γ1a

2
1 − γ2

(
1 +

η2

2

)}
> 0,

we obtain
d

dt
L̃γ1,γ2(u, ut, v, vt) ≤ −C0‖(u, ut, v, vt)‖2

Y0
. (2.53)

Observe that, from (2.45) and (2.52), we have

1

4
‖(u, ut, v, vt)‖2

Y0
≤ L̃γ1,γ2(u, ut, v, vt) ≤

3

4
(1 + λ−1

1 )‖(u, ut, v, vt)‖2
Y0
, (2.54)

and, combining this with (2.53), we get

d

dt
L̃γ1,γ2(L(t)) ≤ −ζL̃γ1,γ2(L(t)), for all t ≥ τ,

where ζ = 4C0

3(1+λ−1
1 )

> 0, which yields

L̃γ1,γ2(L(t)) ≤ L̃γ1,γ2(L(τ))e−ζ(t−τ), for all t ≥ τ.

Finally, it follows from (2.54) that

‖L(t)‖2
Y0
≤ 4L̃γ1,γ2(L(τ))e−ζ(t−τ) ≤ 3(1 + λ−1

1 )‖L(τ)‖2
Y0
e−ζ(t−τ),

for all t ≥ τ , and the result is proved.

Our intention is to apply Theorem 1.10 in order to conclude that the problem (2.1)−(2.3)

has a pullback attractor in the phase space Y0. However, instead of proving that the evolution
process defined in (2.40) is pullback asymptotically compact (see Definition 1.12), in the next
result we will establish, in a direct way, its compactness as a map from the phase space Y0 into
itself.

Proposition 2.6. For each t > τ ∈ R, the evolution process S(t, τ) : Y0 → Y0 given in (2.40)

is a compact map.

Proof. Using the identity (2.38), the energy functional (2.39) and the Cauchy-Schwartz and
Young inequalities, we obtain

1

2

d

dt

(
‖u‖2

X
1
2

+ ‖u‖2
X + ‖ut‖2

X + ‖v‖2

X
1
2

+ ‖vt‖2
X

)
+ η‖ut‖2

X
1
4

+ η‖vt‖2

X
1
4

= 〈f(u), ut〉X ≤ ‖f(u)‖X‖ut‖X ≤ c̃‖f(u)‖X‖ut‖X 1
4
≤ 1

2ε
‖f(u)‖2

X +
ε

2
c̃2‖ut‖2

X
1
4
,

for all ε > 0, where c̃ > 0 is the embedding constant of X
1
4 ↪→ X. Choosing ε = η

c̃2
, we get
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1

2

d

dt

(
‖u‖2

X
1
2

+ ‖u‖2
X + ‖ut‖2

X + ‖v‖2

X
1
2

+ ‖vt‖2
X

)
+
η

2
‖ut‖2

X
1
4

+ η‖vt‖2

X
1
4

≤ c̃2

2η
‖f(u)‖2

X .
(2.55)

Now, knowing that the embedding X
1
2 ↪→ L2ρ(Ω) holds for 1 < ρ ≤ n

n−2
, and using

Lemma 2.3, condition (i), we get

‖f(u)‖2
X ≤

∫
Ω

[c(1 + |u|ρ)]2dx ≤ c1

∫
Ω

(1 + |u|2ρ)dx

= c1|Ω|+ c1‖u‖2ρ
L2ρ(Ω) ≤ c1|Ω|+ c2‖u‖2ρ

X
1
2

≤ c1|Ω|+ c2‖W‖2ρ
Y0
,

(2.56)

where c1, c2 are positive constants and W (t) = (u(t), ut(t), v(t), vt(t)). Thus, combining (2.55)

and (2.56), we obtain

d

dt

(
‖W‖2

Y0
+ ‖u‖2

X

)
+ η‖ut‖2

X
1
4

+ 2η‖vt‖2

X
1
4
≤ c̃2c1|Ω|

η
+
c̃2c2

η
‖W‖2ρ

Y0
.

Integrating the previous inequality from τ to t, we obtain

‖W (t)‖2
Y0

+ ‖u(t)‖2
X + η

∫ t

τ

‖ut(r)‖2

X
1
4
dr + 2η

∫ t

τ

‖vt(r)‖2

X
1
4
dr

≤ c̃2c1|Ω|
η

(t− τ) +
c̃2c2

η

∫ t

τ

‖W (r)‖2ρ
Y0
dr + ‖W (τ)‖2

Y0
+ ‖u(τ)‖2

X

≤ c̃2c1|Ω|
η

(t− τ) +
c̃2c2

η

∫ t

τ

‖W (r)‖2ρ
Y0
dr + (1 + λ−1

1 )‖W (τ)‖2
Y0
,

(2.57)

where we have used the Poincaré Inequality ‖u(τ)‖2
X ≤ λ−1

1 ‖u(τ)‖2

X
1
2
. Also, note that inequality

(2.57) implies ∫ t

τ

‖ut(r)‖2

X
1
4
dr +

∫ t

τ

‖vt(r)‖2

X
1
4
dr

≤ c̃2c1|Ω|
η2

(t− τ) +
c̃2c2

η2

∫ t

τ

‖W (r)‖2ρ
Y0
dr +

1 + λ−1
1

η
‖W (τ)‖2

Y0
.

(2.58)

Now, consider the original system (2.1). By taking the inner product of the first equation
in (2.1) with A

1
2u, and also the inner product of the second equation in (2.1) with A

1
2v, and

noticing the identity
〈utt, A

1
2u〉X =

d

dt
〈ut, A

1
2u〉X − ‖ut‖2

X
1
4
,

we obtain,
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d

dt
〈ut, A

1
2u〉X − ‖ut‖2

X
1
4

+ ‖u‖2

X
3
4

+ ‖u‖2

X
1
4

+
η

2

d

dt
‖u‖2

X
1
2

+ aε(t)〈A
1
2vt, A

1
2u〉X

+
d

dt
〈vt, A

1
2v〉X − ‖vt‖2

X
1
4

+ ‖v‖2

X
3
4

+
η

2

d

dt
‖v‖2

X
1
2
− aε(t)〈A

1
2ut, A

1
2v〉X

= 〈f(u), A
1
2u〉X .

Once again, using the Cauchy-Schwartz and Young inequalities, we have

d

dt

(
〈ut, A

1
2u〉X + 〈vt, A

1
2v〉X

)
+
η

2

d

dt

(
‖u‖2

X
1
2

+ ‖v‖2

X
1
2

)
+ ‖u‖2

X
3
4

+ ‖u‖2

X
1
4

+ ‖v‖2

X
3
4

≤ ‖ut‖2

X
1
4

+ ‖vt‖2

X
1
4

+ a1‖vt‖X 1
4
‖u‖

X
3
4

+ a1‖ut‖X 1
4
‖v‖

X
3
4

+ ‖f(u)‖X‖u‖X 1
2

≤
(

1 +
1

2ε2

)
‖ut‖2

X
1
4

+

(
1 +

1

2ε1

)
‖vt‖2

X
1
4

+
ε1
2
a2

1‖u‖2

X
3
4

+
ε2
2
a2

1‖v‖2

X
3
4

+
1

2
‖f(u)‖2

X +
1

2
‖u‖2

X
1
2
,

for all ε1, ε2 > 0. Choosing ε1 = ε2 = 1
a21
, and using (2.56), we get

d

dt

(
〈ut, A

1
2u〉X + 〈vt, A

1
2v〉X

)
+
η

2

d

dt

(
‖u‖2

X
1
2

+ ‖v‖2

X
1
2

)
+

1

2
‖u‖2

X
3
4

+
1

2
‖v‖2

X
3
4

≤ 2 + a2
1

2
‖ut‖2

X
1
4

+
2 + a2

1

2
‖vt‖2

X
1
4

+
c1|Ω|

2
+
c2

2
‖W‖2ρ

Y0
+

1

2
‖W‖2

Y0
.

Integrating the previous inequality from τ to t, and using (2.58), we obtain

η

2

(
‖u(t)‖2

X
1
2

+ ‖v(t)‖2

X
1
2

)
+

1

2

∫ t

τ

‖u(r)‖2

X
3
4
dr +

1

2

∫ t

τ

‖v(r)‖2

X
3
4
dr

≤ 2 + a2
1

2

(∫ t

τ

‖ut(r)‖2

X
1
4
dr +

∫ t

τ

‖vt(r)‖2

X
1
4
dr

)
+
c1|Ω|

2
(t− τ) +

c2

2

∫ t

τ

‖W (r)‖2ρ
Y0
dr

+
1

2

∫ t

τ

‖W (r)‖2
Y0
dr − 〈ut(t), A

1
2u(t)〉X − 〈vt(t), A

1
2v(t)〉X

+ 〈ut(τ), A
1
2u(τ)〉X + 〈vt(τ), A

1
2v(τ)〉X +

η

2

(
‖u(τ)‖2

X
1
2

+ ‖v(τ)‖2

X
1
2

)
≤ 2 + a2

1

2

(
c̃2c1|Ω|
η2

(t− τ) +
c̃2c2

η2

∫ t

τ

‖W (r)‖2ρ
Y0
dr +

1 + λ−1
1

η
‖W (τ)‖2

Y0

)
+
c1|Ω|

2
(t− τ)

+
c2

2

∫ t

τ

‖W (r)‖2ρ
Y0
dr +

1

2

∫ t

τ

‖W (r)‖2
Y0
dr +

1

2
‖W (t)‖2

Y0
+

1 + η

2
‖W (τ)‖2

Y0
,

which implies∫ t

τ

‖u(r)‖2

X
3
4
dr +

∫ t

τ

‖v(r)‖2

X
3
4
dr

≤ (2 + a2
1)

(
c̃2c1|Ω|
η2

(t− τ) +
c̃2c2

η2

∫ t

τ

‖W (r)‖2ρ
Y0
dr +

1 + λ−1
1

η
‖W (τ)‖2

Y0

) (2.59)
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+ c1|Ω|(t− τ) + c2

∫ t

τ

‖W (r)‖2ρ
Y0
dr +

∫ t

τ

‖W (r)‖2
Y0
dr

+ ‖W (t)‖2
Y0

+ (1 + η)‖W (τ)‖2
Y0
.

On the other hand, taking the inner product of the first equation in (2.1) with A
1
2ut, and

also the inner product of the second equation in (2.1) with A
1
2vt, and using (2.56), we have

1

2

d

dt

(
‖ut‖2

X
1
4

+ ‖u‖2

X
3
4

+ ‖u‖2

X
1
4

+ ‖vt‖2

X
1
4

+ ‖v‖2

X
3
4

)
+ η‖ut‖2

X
1
2

+ η‖vt‖2

X
1
2

= 〈f(u), A
1
2ut〉X ≤ ‖f(u)‖X‖ut‖X 1

2
≤ 1

2η
‖f(u)‖2

X +
η

2
‖ut‖2

X
1
2

≤ c1|Ω|
2η

+
c2

2η
‖W‖2ρ

Y0
+
η

2
‖ut‖2

X
1
2
,

which yields

d

dt

(
‖u‖2

X
3
4

+ ‖u‖2

X
1
4

+ ‖ut‖2

X
1
4

+ ‖v‖2

X
3
4

+ ‖vt‖2

X
1
4

)
≤ c1|Ω|

η
+
c2

η
‖W‖2ρ

Y0
.

Integrating the previous inequality from r to t, for τ < r < t, we have

‖u(t)‖2

X
3
4

+ ‖u(t)‖2

X
1
4

+ ‖ut(t)‖2

X
1
4

+ ‖v(t)‖2

X
3
4

+ ‖vt(t)‖2

X
1
4

≤ c1|Ω|
η

(t− r) +
c2

η

∫ t

r

‖W (s)‖2ρ
Y0
ds+ ‖u(r)‖2

X
3
4

+ ‖u(r)‖2

X
1
4

+ ‖ut(r)‖2

X
1
4

+ ‖v(r)‖2

X
3
4

+ ‖vt(r)‖2

X
1
4
,

consequently,

‖u(t)‖2

X
3
4

+ ‖ut(t)‖2

X
1
4

+ ‖v(t)‖2

X
3
4

+ ‖vt(t)‖2

X
1
4

≤ c1|Ω|
η

(t− r) +
c2

η

∫ t

r

‖W (s)‖2ρ
Y0
ds+ k̃‖W (r)‖2

Y0
+ ‖u(r)‖2

X
3
4

+ ‖ut(r)‖2

X
1
4

+ ‖v(r)‖2

X
3
4

+ ‖vt(r)‖2

X
1
4
,

(2.60)

where we have used the embedding X
1
2 ↪→ X

1
4 , i.e., ‖u(r)‖2

X
1
4
≤ k̃‖u(r)‖2

X
1
2
.

Now, by integrating inequality (2.60), with respect to r, from τ to t, we obtain

(t− τ)
(
‖u(t)‖2

X
3
4

+ ‖ut(t)‖2

X
1
4

+ ‖v(t)‖2

X
3
4

+ ‖vt(t)‖2

X
1
4

)
≤ c1|Ω|

2η
(t− τ)2 +

c2

η

∫ t

τ

∫ t

r

‖W (s)‖2ρ
Y0
dsdr + k̃

∫ t

τ

‖W (r)‖2
Y0
dr

+

∫ t

τ

‖u(r)‖2

X
3
4
dr +

∫ t

τ

‖ut(r)‖2

X
1
4
dr

(2.61)
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+

∫ t

τ

‖v(r)‖2

X
3
4
dr +

∫ t

τ

‖vt(r)‖2

X
1
4
dr.

Combining the inequalities obtained in (2.58), (2.59) and (2.61), we get

‖u(t)‖2

X
3
4

+ ‖ut(t)‖2

X
1
4

+ ‖v(t)‖2

X
3
4

+ ‖vt(t)‖2

X
1
4

≤ c̃2c1|Ω|(3 + a2
1)

η2
+ c1|Ω|+

c1|Ω|
2η

(t− τ) +
c2

η(t− τ)

∫ t

τ

∫ t

r

‖W (s)‖2ρ
Y0
dsdr

+
1

t− τ

(
c̃2c2(3 + a2

1)

η2
+ c2

)∫ t

τ

‖W (r)‖2ρ
Y0
dr +

k̃ + 1

t− τ

∫ t

τ

‖W (r)‖2
Y0
dr

+
1

t− τ
‖W (t)‖2

Y0
+

(1 + λ−1
1 )(3 + a2

1) + η(1 + η)

η(t− τ)
‖W (τ)‖2

Y0
.

(2.62)

Now, if the global solutionW (t) = (u(t), ut(t), v(t), vt(t)) of the problem (2.1)−(2.3) starts
in a bounded subset B of Y0, then ‖W (τ)‖Y0 ≤ M for some positive constant M . Moreover,
remember that from Theorem 2.4 there exist positive constants σ, K1 = K1(B) and K2 such
that

‖W (t)‖2
Y0
≤ K1e

−σ(t−τ) +K2, t ≥ τ.

With this, we can handle with the three integrals that appear on the right hand side of inequality
(2.62). In fact, first note that∫ t

τ

‖W (r)‖2
Y0
dr ≤

∫ t

τ

[K1e
−σ(r−τ) +K2]dr ≤ K1

σ
+K2(t− τ)

and ∫ t

τ

‖W (r)‖2ρ
Y0
dr ≤

∫ t

τ

[K̃1e
−ρσ(r−τ) + K̃2]dr ≤ K̃1

ρσ
+ K̃2(t− τ),

where K̃1, K̃2 are positive constants. For the last integral remaining, note that

∫ t

r

‖W (s)‖2ρ
Y0
ds ≤

∫ t

r

[
˜̃K1e
−ρσ(s−τ) + ˜̃K2

]
ds ≤

˜̃K1

ρσ
e−ρσ(r−τ) + ˜̃K2(t− r),

for positive constants ˜̃K1 and ˜̃K2, and then it follows that

∫ t

τ

∫ t

r

‖W (s)‖2ρ
Y0
dsdr ≤

∫ t

τ

[
˜̃K1

ρσ
e−ρσ(r−τ) + ˜̃K2(t− r)

]
dr ≤

˜̃K1

(ρσ)2
+

˜̃K2

2
(t− τ)2. (2.63)
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Finally, combining all the estimates in (2.62)−(2.63), we conclude that there exist positive
constants k1, k2, k3, k4, k5 such that

‖u(t)‖2

X
3
4

+ ‖ut(t)‖2

X
1
4

+ ‖v(t)‖2

X
3
4

+ ‖vt(t)‖2

X
1
4
≤ k1 + k2(t− τ) +

1

t− τ
[k3e

−k4(t−τ) + k5].

Hence, S(t, τ)B is bounded in X
3
4 ×X 1

4 ×X 3
4 ×X 1

4 . Since X
3
4 ×X 1

4 ×X 3
4 ×X 1

4 ↪→ Y0,
and this embedding is compact, we conclude that S(t, τ) : Y0 → Y0, given in (2.40), is compact
for each t > τ .

Theorem 2.7. [Pullback Attractors] Under the conditions of Theorem 2.3, the problem
(2.1)− (2.3) has a pullback attractor {A(t) : t ∈ R} in Y0 and

⋃
t∈R

A(t) ⊂ Y0

is bounded.

Proof. Theorem 2.4 assures that the evolution process S(t, τ) : Y0 → Y0 given by (2.40)
is pullback strongly bounded dissipative. Additionally, it follows by Proposition 2.6 that
S(t, τ) : Y0 → Y0 is compact, and, consequently, it is pullback asymptotically compact. Now
the result is a simple consequence of Theorem 1.10.

2.4 Regularity of the pullback attractor

The purpose of this section is to show that the regularity of the pullback attractor can be
improved, using energy estimates and progressive increases of regularity.

Theorem 2.8. [Regularity of Pullback Attractors] Assume that n−1
n−2
≤ ρ < n

n−2
. The

pullback attractor {A(t) : t ∈ R} for the problem (2.1)− (2.3), obtained in Theorem 2.7, lies in
a more regular space than Y0. More precisely,

⋃
t∈R

A(t)

is a bounded subset of X1 ×X 1
2 ×X1 ×X 1

2 .

Proof. Let ξ : R → Y0 be a bounded global solution for the system (2.1). Since
⋃
t∈R

A(t) is

bounded in Y0 (see Theorem 2.7), we have {ξ(t) : t ∈ R} is a bounded subset of Y0 by Theorem
1.11. Moreover, ξ(·) = (µ(·), µt(·), ν(·), νt(·)) : R → Y0 is such that ξ(t) ∈ A(t) for all t ∈ R,
and by (2.41),

ξ(t) = L(t, τ)ξ(τ) +

∫ t

τ

L(t, s)F (ξ(s))ds, t ≥ τ.
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Using the decay of L(·, ·), which was established in Theorem 2.6, and letting τ → −∞,
we get

ξ(t) =

∫ t

−∞
L(t, s)F (ξ(s))ds, t ∈ R.

Now, for τ ∈ R fixed, we write W0 = (u0, u1, v0, v1) = ξ(τ) and consider

(u(t), ut(t), v(t), vt(t)) = U(t, τ)W0 =

∫ t

τ

L(t, s)F (S(s, τ)W0)ds,

where U(·, ·) is defined as in (2.43). Note that (u(·), v(·)) solves the systemutt −∆u+ u+ η(−∆)
1
2ut + aε(t)(−∆)

1
2vt = f(u(t, τ ;u0)), (x, t) ∈ Ω× (τ,∞),

vtt −∆v + η(−∆)
1
2vt − aε(t)(−∆)

1
2ut = 0, (x, t) ∈ Ω× (τ,∞),

(2.64)

with
u(τ, x) = 0, v(τ, x) = 0, x ∈ Ω. (2.65)

To estimate the solution of (2.64)− (2.65) for (u0, u1, v0, v1) in a bounded subset B ⊂ Y0,
we again consider the maps

E(t) =
1

2
‖u(t)‖2

X
1
2

+
1

2
‖u(t)‖2

X +
1

2
‖ut(t)‖2

X +
1

2
‖v(t)‖2

X
1
2

+
1

2
‖vt(t)‖2

X −
∫

Ω

∫ u(t)

0

f(s)dsdx,

and

L(t) =
1

2
‖u(t)‖2

X
1
2

+
1

2
‖u(t)‖2

X +
1

2
‖ut(t)‖2

X +
1

2
‖v(t)‖2

X
1
2

+
1

2
‖vt(t)‖2

X

+ γ1〈u(t), ut(t)〉X + γ2〈v(t), vt(t)〉X

with γ1, γ2 ∈ R+. Using (2.64), we can write

d

dt
L(t) =

d

dt

(
E(t) + γ1〈u, ut〉X + γ2〈v, vt〉X +

∫
Ω

∫ u

0

f(s)dsdx

)
= −η‖ut‖2

X
1
4
− η‖vt‖2

X
1
4

+ γ1‖ut‖2
X − γ1(‖u‖2

X
1
2

+ ‖u‖2
X)− γ1η〈A

1
2u, ut〉X

− γ1aε(t)〈A
1
2u, vt〉X + γ1〈u, f(u)〉X + γ2‖vt‖2

X − γ2‖v‖2

X
1
2
− γ2η〈A

1
2v, vt〉X

+ γ2aε(t)〈A
1
2v, ut〉X + 〈f(u), ut〉X .

In the first place, let’s deal with the nonlinearity f . By Lemma 2.3, it follows that for
each δ > 0, there exists a constant Cδ > 0 such that∫

Ω

f(u)udx ≤ δ‖u‖2
X + Cδ.
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Further, once the condition 1 < n−1
n−2
≤ ρ < n

n−2
implies X

1
2 ↪→ L2ρ(Ω), and using again

Lemma 2.3, condition (i), we have

‖f(u)‖X ≤
(∫

Ω

[c(1 + |u|ρ)]2dx
) 1

2

≤ c̃

(
|Ω|+

∫
Ω

|u|2ρdx
) 1

2

≤ ˜̃c
(
|Ω|

1
2 + ‖u‖ρL2ρ(Ω)

)
≤ c‖u‖ρ

X
1
2

+ ˜̃c|Ω|
1
2 ≤ crρ + ˜̃c|Ω|

1
2 = C,

whenever ‖u‖
X

1
2
≤ r.

Hence, using the Poincaré and Young Inequalities, one can obtain

d

dt
L(t) ≤ −η 1

c2
‖ut‖2

X − η
1

c2
‖vt‖2

X + γ1‖ut‖2
X − γ1‖u‖2

X
1
2

+ γ1η

(
ε1
2
‖u‖2

X
1
2

+
1

2ε1
‖ut‖2

X

)
+ γ1a1

(
1

2ε2
‖u‖2

X
1
2

+
ε2
2
‖vt‖2

X

)
+ γ1δλ

−1
1 ‖u‖2

X
1
2

+ γ1Cδ + γ2‖vt‖2
X − γ2‖v‖2

X
1
2

+ γ2a1

(
1

2ε3
‖v‖2

X
1
2

+
ε3
2
‖ut‖2

X

)
+ γ2η

(
ε4
2
‖v‖2

X
1
2

+
1

2ε4
‖vt‖2

X

)
+

1

2ε5
‖f(u)‖2

X +
ε5
2
‖ut‖2

X

≤ −γ1

(
1− δλ−1

1 − η
ε1
2
− a1

1

2ε2

)
‖u‖2

X
1
2
−
(
η

1

c2
− γ1 − γ1η

1

2ε1
− γ2a1

ε3
2
− ε5

2

)
‖ut‖2

X

− γ2

(
1− a1

1

2ε3
− η ε4

2

)
‖v‖2

X
1
2
−
(
η

1

c2
− γ2 − γ1a1

ε2
2
− γ2η

1

2ε4

)
‖vt‖2

X +
1

2ε5
C

2
+ γ1Cδ

for all ε1, ε2, ε3, ε4, ε5 > 0, where c > 0 is the embedding constant of X
1
4 ↪→ X. Choosing

δ =
λ1

8
, ε1 =

1

η
, ε2 = 2a1, ε3 = 2a1, ε4 =

1

η
, ε5 =

η

c2
,

it follows that

d

dt
L(t) ≤ −1

8
γ1‖u‖2

X
1
2
−
(
η

2c2
− γ1

(
1 +

η2

2

)
− γ2a

2
1

)
‖ut‖2

X −
1

4
γ2‖v‖2

X
1
2

−
(
η

2c2
− γ1a

2
1 − γ2

(
1 +

η2

2

))
‖vt‖2

X +
c2

2η
C

2
+ γ1Cλ1

8

.

Now, note that one can take γi > 0, i = 1, 2, sufficiently small such that

γi <
η

8c2
min

{
1

a2
1

,

(
1 +

η2

2

)−1
}
, i = 1, 2.

Setting

C1 = min

{
1

8
γ1,

η

2c2
− γ1

(
1 +

η2

2

)
− γ2a

2
1,

1

4
γ2,

η

2c2
− γ1a

2
1 − γ2

(
1 +

η2

2

)}
> 0
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and C2 = c2

2η
C

2
+ γ1Cλ1

8

> 0, we obtain

d

dt
L(t) ≤ −C1‖(u, ut, v, vt)‖2

Y0
+ C2.

Using (2.46) and (2.47), we get

1

4
‖(u, ut, v, vt)‖2

Y0
≤ L(t) ≤ 3(1 + λ−1

1 )

4
‖(u, ut, v, vt)‖2

Y0
,

and putting C3 = C1

(
3(1+λ−1

1 )

4

)−1

, one has

1

4
‖(u, ut, v, vt)‖2

Y0
≤ L(t) ≤ L(τ)e−C3(t−τ) +

C2

C3

, t ≥ τ.

From this, we obtain

⋃
τ≤s≤t

U(s, τ)B is a bounded subset of Y0.

On the other hand, note that (φ, ϕ) = (ut, vt) solves the systemφtt −∆φ+ φ+ η(−∆)
1
2φt + aε(t)(−∆)

1
2ϕt + a′ε(t)(−∆)

1
2ϕ = f ′(u)φ,

ϕtt −∆ϕ+ η(−∆)
1
2ϕt − aε(t)(−∆)

1
2φt − a′ε(t)(−∆)

1
2φ = 0.

(2.66)

We want to estimate (φ, φt, ϕ, ϕt) in Y0, but our solutions are not regular enough for this
to be done in a direct way. Thus, instead, the process will be done by progressive increases of
regularity. For α > 0, let us consider the fractional power spaces Xα = D(Aα) endowed with
the graph norm, and let X−α = (Xα)′. For

(φ, φt, ϕ, ϕt) ∈ X
1−α
2 ×X−

α
2 ×X

1−α
2 ×X−

α
2 ,

let us define

Lα(t) =
1

2

(
‖φ(t)‖2

X
1−α
2

+ ‖φ(t)‖2

X−
α
2

+ ‖φt(t)‖2

X−
α
2

+ ‖ϕ(t)‖2

X
1−α
2

+ ‖ϕt(t)‖2

X−
α
2

)
+ γ1〈φ(t), φt(t)〉X−α2 + γ2〈ϕ(t), ϕt(t)〉X−α2 ,

with γ1, γ2 ∈ R+. Using (2.66), we obtain

d

dt
Lα(t) = 〈φt, φ〉

X
1−α
2

+ 〈φt, φ〉X−α2 + 〈φtt, φt〉X−α2 + 〈ϕt, ϕ〉
X

1−α
2

+ 〈ϕtt, ϕt〉X−α2

+ γ1〈φt, φt〉X−α2 + γ1〈φ, φtt〉X−α2 + γ2〈ϕt, ϕt〉X−α2 + γ2〈ϕ, ϕtt〉X−α2
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= γ1‖φt‖2

X−
α
2

+ γ2‖ϕt‖2

X−
α
2
− γ1‖φ‖2

X−
α
2
− γ1‖φ‖2

X
1−α
2
− γ2‖ϕ‖2

X
1−α
2
− η‖φt‖2

X
1−2α

4

− η‖ϕt‖2

X
1−2α

4
− ηγ1〈φ,A

1
2φt〉X−α2 − aε(t)γ1〈φ,A

1
2ϕt〉X−α2 − ηγ2〈ϕ,A

1
2ϕt〉X−α2

+ aε(t)γ2〈ϕ,A
1
2φt〉X−α2 − a

′
ε(t)〈A

1
2ϕ, φt〉X−α2 + a′ε(t)〈A

1
2φ, ϕt〉X−α2 − a

′
ε(t)γ1〈φ,A

1
2ϕ〉

X−
α
2

+ a′ε(t)γ2〈ϕ,A
1
2φ〉

X−
α
2

+ γ1〈φ, f ′(u)φ〉
X−

α
2

+ 〈f ′(u)φ, φt〉X−α2 .

Next, we shall estimate the terms that appear on the right hand side of the above
expression, beginning with those in which the nonlinearity f ′ is explicit. To do this, consider

α1 =
(ρ− 1)(n− 2)

2
.

Since n−1
n−2
≤ ρ < n

n−2
, we have 1

2
≤ α1 < 1.

Noticing that
〈f ′(u)φ, φt〉X−α2 ≤ ‖f

′(u)φ‖
X−

α
2
‖φt‖X−α2 (2.67)

and that the embedding X
α
2 = Hα(Ω) ↪→ Lp(Ω) or, equivalently, L

p
p−1 (Ω) ↪→ X−

α
2 , holds

for any 2 ≤ p ≤ 2n
n−2α

, one can obtain an estimate for the term ‖f ′(u)φ‖
X−

α
2
using Hölder’s

Inequality and the growth condition, in the following way:

‖f ′(u)φ‖
X−

α
2
≤ c1‖f ′(u)φ‖

L
2n

n+2α (Ω)
≤ c1‖φ‖L2(Ω)‖f ′(u)‖

L
n
α (Ω)

≤ c1‖φ‖X
(∫

Ω

[c(1 + |u|ρ−1)]
n
αdx

)α
n

≤ c2‖φ‖X
(
|Ω|+

∫
Ω

|u|
(ρ−1)n
α dx

)α
n

≤ c3‖φ‖X
(

1 + ‖u‖ρ−1

L
(ρ−1)n
α (Ω)

)
.

Now, once the embedding H1(Ω) ↪→ L
(ρ−1)n
α (Ω) holds, if and only if α ≥ (ρ−1)(n−2)

2
and

(ρ−1)n
α
≥ 2, that is, (ρ−1)(n−2)

2
≤ α ≤ (ρ−1)n

2
, then for α = α1 we have

‖f ′(u)φ‖
X−

α1
2
≤ c3‖φ‖X

(
1 + ‖u‖ρ−1

L
(ρ−1)n
α1 (Ω)

)
≤ c5‖φ‖X

(
1 + ‖u‖ρ−1

X
1
2

)
≤ c6, (2.68)

since u and φ remain in bounded subsets of X
1
2 and X, respectively. Hence, from Young’s

inequality, and using (2.67) and (2.68), we get

〈f ′(u)φ, φt〉
X−

α1
2
≤ 1

2ε0
‖f ′(u)φ‖2

X−
α1
2

+
ε0
2
‖φt‖2

X−
α1
2

≤ 1

2ε0
c2

6 +
ε0
2
‖φt‖2

X−
α1
2

for all ε0 > 0. With this in mind, it is possible to obtain an estimate for the other term that
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has the nonlinearity f ′, that is,

γ1〈φ, f ′(u)φ〉
X−

α1
2
≤ ε1

2
‖φ‖2

X−
α1
2

+
1

2ε1
γ2

1‖f ′(u)φ‖2

X−
α1
2
≤ ε1

2
‖φ‖2

X−
α1
2

+
1

2ε1
γ2

1c
2
6

for all ε1 > 0.

Next, from Cauchy-Schwartz and Young inequalities, we have

−ηγ1〈φ,A
1
2φt〉

X−
α1
2
≤ ηγ1

ε2
2
‖φ‖2

X
1−α1

2
+ ηγ1

1

2ε2
‖φt‖2

X−
α1
2
,

−aε(t)γ1〈φ,A
1
2ϕt〉

X−
α1
2
≤ a1γ1

ε3
2
‖φ‖2

X
1−α1

2
+ a1γ1

1

2ε3
‖ϕt‖2

X−
α1
2
,

−ηγ2〈ϕ,A
1
2ϕt〉

X−
α1
2
≤ ηγ2

ε4
2
‖ϕ‖2

X
1−α1

2
+ ηγ2

1

2ε4
‖ϕt‖2

X−
α1
2

and
aε(t)γ2〈ϕ,A

1
2φt〉

X−
α1
2
≤ a1γ2

ε5
2
‖ϕ‖2

X
1−α1

2
+ a1γ2

1

2ε5
‖φt‖2

X−
α1
2
,

for all ε2 > 0, ε3 > 0, ε4 > 0 and ε5 > 0.

Since 1
2
≤ α1 < 1, we have the embedding X ↪→ X

1−2α1
4 , that is,

‖ · ‖
X

1−2α1
4
≤ c̃‖ · ‖X

for some constant c̃ > 0. From this, and by condition (2.5), and also using the fact that ϕ
remains in a bounded subset of X, we get

− a′ε(t)〈A
1
2ϕ, φt〉

X−
α1
2
≤ b0‖ϕ‖

X
1−2α1

4
‖φt‖

X
1−2α1

4
≤ b0

1

2ε6
‖ϕ‖2

X
1−2α1

4
+ b0

ε6
2
‖φt‖2

X
1−2α1

4

≤ b0
1

2ε6
c̃2‖ϕ‖2

X + b0
ε6
2
‖φt‖2

X
1−2α1

4
≤ 1

2ε6
b0c7 + b0

ε6
2
‖φt‖2

X
1−2α1

4

for all ε6 > 0,

a′ε(t)〈A
1
2φ, ϕt〉

X−
α1
2
≤ b0

1

2ε7
‖φ‖2

X
1−2α1

4
+ b0

ε7
2
‖ϕt‖2

X
1−2α1

4

≤ b0
1

2ε7
c̃2‖φ‖2

X + b0
ε7
2
‖ϕt‖2

X
1−2α1

4
≤ 1

2ε7
b0c8 + b0

ε7
2
‖ϕt‖2

X
1−2α1

4

for all ε7 > 0,

− a′ε(t)γ1〈φ,A
1
2ϕ〉

X−
α1
2
≤ b0γ1

ε8
2
‖φ‖2

X
1−2α1

4
+ b0γ1

1

2ε8
‖ϕ‖2

X
1−2α1

4

≤ b0γ1ε8c̃
2

2
‖φ‖2

X +
b0γ1c̃

2

2ε8
‖ϕ‖2

X ≤ c9
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and

a′ε(t)γ2〈ϕ,A
1
2φ〉

X−
α1
2
≤ b0γ2

ε9
2
‖ϕ‖2

X
1−2α1

4
+ b0γ2

1

2ε9
‖φ‖2

X
1−2α1

4

≤ b0γ2ε9c̃
2

2
‖ϕ‖2

X +
b0γ2c̃

2

2ε9
‖φ‖2

X ≤ c10

for some constants c9 > 0 and c10 > 0.

Finally, combining all the estimates obtained before, we get

d

dt
Lα1(t) ≤ −

(
γ1 − ηγ1

ε2
2
− a1γ1

ε3
2

)
‖φ‖2

X
1−α1

2

−
(
−γ1 − ηγ1

1

2ε2
− a1γ2

1

2ε5
− ε0

2

)
‖φt‖2

X−
α1
2

−
(
γ2 − ηγ2

ε4
2
− a1γ2

ε5
2

)
‖ϕ‖2

X
1−α1

2

−
(
−γ2 − a1γ1

1

2ε3
− ηγ2

1

2ε4

)
‖ϕt‖2

X−
α1
2

−
(
γ1 −

ε1
2

)
‖φ‖2

X−
α1
2

+
(
b0
ε6
2
− η
)
‖φt‖2

X
1−2α1

4
+
(
b0
ε7
2
− η
)
‖ϕt‖2

X
1−2α1

4

+
1

2ε0
c2

6 +
1

2ε1
γ2

1c
2
6 +

1

2ε6
b0c7 +

1

2ε7
b0c8 + c9 + c10.

Now, by choosing ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0, ε5 > 0, ε6 > 0 and ε7 > 0, respectively,
such that

ε1 = 2γ1, ε2 =
1

2η
, ε3 =

1

2a1

, ε4 =
1

2η
, ε5 =

1

2a1

, ε6 =
η

b0

and ε7 =
3η

2b0

,

we obtain

d

dt
Lα1(t) ≤ −

1

2
γ1‖φ‖2

X
1−α1

2
−
(
−γ1 − η2γ1 − a2

1γ2 −
ε0
2

)
‖φt‖2

X−
α1
2
− 1

2
γ2‖ϕ‖2

X
1−α1

2

−
(
−γ2 − a2

1γ1 − η2γ2

)
‖ϕt‖2

X−
α1
2
− η

2
‖φt‖2

X
1−2α1

4
− η

4
‖ϕt‖2

X
1−2α1

4

+
1

2ε0
c2

6 +
1

4
γ1c

2
6 +

b2
0c7

2η
+
b2

0c8

3η
+ c9 + c10.

(2.69)

As 1−2α1

4
= −α1

2
+ 1

4
> −α1

2
, we have the embedding X

1−2α1
4 ↪→ X−

α1
2 , and so

‖ · ‖
X−

α1
2
≤ ˜̃c‖ · ‖

X
1−2α1

4

for some constant ˜̃c > 0, which implies

− ‖ · ‖2

X
1−2α1

4
≤ − 1

˜̃c2
‖ · ‖2

X−
α1
2
. (2.70)
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Hence, combining (2.69) and (2.70), we get

d

dt
Lα1(t) ≤ −

1

2
γ1‖φ‖2

X
1−α1

2
−
(
η

2˜̃c2
− γ1 − η2γ1 − a2

1γ2 −
ε0
2

)
‖φt‖2

X−
α1
2

− 1

2
γ2‖ϕ‖2

X
1−α1

2
−
(
η

4˜̃c2
− γ2 − a2

1γ1 − η2γ2

)
‖ϕt‖2

X−
α1
2

+
1

2ε0
c2

6 +
1

4
γ1c

2
6 +

b2
0c7

2η
+
b2

0c8

3η
+ c9 + c10.

(2.71)

At last, choosing ε0 > 0 such that ε0 = η

2˜̃c2
, expression (2.71) turns into

d

dt
Lα1(t) ≤ −

1

2
γ1‖φ‖2

X
1−α1

2
−
(
η

4˜̃c2
− (1 + η2)γ1 − a2

1γ2

)
‖φt‖2

X−
α1
2

− 1

2
γ2‖ϕ‖2

X
1−α1

2
−
(
η

4˜̃c2
− a2

1γ1 − (1 + η2)γ2

)
‖ϕt‖2

X−
α1
2

+
˜̃c2

η
c2

6 +
1

4
γ1c

2
6 +

b2
0c7

2η
+
b2

0c8

3η
+ c9 + c10.

Now, taking γi > 0, i = 1, 2, sufficiently small such that

γi < min

{
1

2k̃
,
η

16˜̃c2

1

1 + η2
,
η

16˜̃c2

1

a2
1

}
, i = 1, 2,

where k̃ > 0 is the embedding constant of X
1−α1

2 ↪→ X−
α1
2 and taking

M1 = min

{
1

2
γ1,

η

4˜̃c2
− (1 + η2)γ1 − a2

1γ2,
1

2
γ2,

η

4˜̃c2
− a2

1γ1 − (1 + η2)γ2

}
> 0

and M2 =
˜̃c2

η
c2

6 + 1
4
γ1c

2
6 +

b20c7
2η

+
b20c8
3η

+ c9 + c10 > 0, it follows that

d

dt
Lα1(t) ≤ −M1

(
‖φ‖2

X
1−α1

2
+ ‖φt‖2

X−
α1
2

+ ‖ϕ‖2

X
1−α1

2
+ ‖ϕt‖2

X−
α1
2

)
+M2. (2.72)

Observe that

|γ1〈φ, φt〉
X−

α1
2

+ γ2〈ϕ, ϕt〉
X−

α1
2
| ≤ 1

4

(
‖φ‖2

X
1−α1

2
+ ‖φt‖2

X−
α1
2

+ ‖ϕ‖2

X
1−α1

2
+ ‖ϕt‖2

X−
α1
2

)
.

In this way, using a similar argument as in (2.46) and (2.47), we get

1

4

(
‖φ‖2

X
1−α1

2
+ ‖φt‖2

X−
α1
2

+ ‖ϕ‖2

X
1−α1

2
+ ‖ϕt‖2

X−
α1
2

)
≤ Lα1(t) ≤

3(1 + k̃2)

4

(
‖φ‖2

X
1−α1

2
+ ‖φt‖2

X−
α1
2

+ ‖ϕ‖2

X
1−α1

2
+ ‖ϕt‖2

X−
α1
2

)
.
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This estimate together with (2.72) implies that

‖φ‖2

X
1−α1

2
+ ‖φt‖2

X−
α1
2

+ ‖ϕ‖2

X
1−α1

2
+ ‖ϕt‖2

X−
α1
2
≤ 4Lα1(τ)e−M3(t−τ) +M4,

with positive constants M3 and M4. This assures that (φ, φt, ϕ, ϕt) is bounded in the space
X

1−α1
2 × X−

α1
2 × X

1−α1
2 × X−

α1
2 . But we want to conclude that

⋃
t∈R

A(t) is bounded in

X
2−α1

2 × X
1−α1

2 × X
2−α1

2 × X
1−α1

2 . We already know that ut and vt are bounded in X
1−α1

2 .
Now, to show that u ∈ X

2−α1
2 and it is bounded, it is enough to show that ‖Au‖

X−
α1
2
≤ C1 for

some constant C1 > 0, since

‖Au‖
X−

α1
2

= ‖A
2−α1

2 u‖X = ‖u‖
X

2−α1
2
.

Indeed, note that

‖ − Au‖
X−

α1
2
− ‖u+ ηA

1
2ut + aε(t)A

1
2vt − f(u)‖

X−
α1
2

≤ ‖ − Au− u− ηA
1
2ut − aε(t)A

1
2vt + f(u)‖

X−
α1
2

= ‖utt‖
X−

α1
2

= ‖φt‖
X−

α1
2
≤ k1,

which yields

‖Au‖
X−

α1
2
≤ k1 + ‖u‖

X−
α1
2

+ η‖A
1
2ut‖

X−
α1
2

+ a1‖A
1
2vt‖

X−
α1
2

+ ‖f(u)‖
X−

α1
2
.

Thus, we need to obtain estimates for the terms that are on the right hand side of the
above inequality. Using the embedding L

2n
n+2α1 (Ω) ↪→ X−

α1
2 and Lemma 2.3, condition (i), we

have

‖f(u)‖
X−

α1
2
≤ c1‖f(u)‖

L
2n

n+2α1 (Ω)
≤ c1

(∫
Ω

[c(1 + |u|ρ)]
2n

n+2α1 dx

)n+2α1
2n

≤ c2

(
|Ω|+

∫
Ω

|u|
2nρ

n+2α1 dx

)n+2α1
2n

≤ c3

(
1 + ‖u‖ρ

L
2nρ

(n−2)ρ+2 (Ω)

)
.

Since the embedding H1(Ω) ↪→ Lp(Ω) holds, if and only if p ≤ 2n
n−2

, and

(n− 2)ρ+ 2 > (n− 2)ρ =⇒ 2nρ

(n− 2)ρ+ 2
<

2nρ

(n− 2)ρ
=

2n

n− 2
,

it follows that
H1(Ω) ↪→ L

2nρ
(n−2)ρ+2 (Ω)
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and, therefore,

‖f(u)‖
X−

α1
2
≤ c3

(
1 + ‖u‖ρ

L
2nρ

(n−2)ρ+2 (Ω)

)
≤ c5

(
1 + ‖u‖ρ

X
1
2

)
≤ k2.

For the remaining terms, note that

‖u‖
X−

α1
2
≤ c̃‖u‖

X
1
2
≤ k3,

since X
1
2 ↪→ X−

α1
2 , and, moreover,

η‖A
1
2ut‖

X−
α1
2

= η‖φ‖
X

1−α1
2
≤ k4,

and
a1‖A

1
2vt‖

X−
α1
2

= a1‖ϕ‖
X

1−α1
2
≤ k5.

Therefore, we conclude that

‖Au‖
X−

α1
2
≤ k1 + k2 + k3 + k4 + k5 = C1,

as desired.

Now, to show that v ∈ X
2−α1

2 and it is bounded, the idea is similar, because

‖ − Av‖
X−

α1
2
− ‖ηA

1
2vt − aε(t)A

1
2ut‖

X−
α1
2

≤ ‖ − Av − ηA
1
2vt + aε(t)A

1
2ut‖

X−
α1
2

= ‖vtt‖
X−

α1
2

= ‖ϕt‖
X−

α1
2
≤ k6,

which implies

‖v‖
X

2−α1
2

= ‖Av‖
X−

α1
2
≤ k6 + η‖A

1
2vt‖

X−
α1
2

+ a1‖A
1
2ut‖

X−
α1
2

= k6 + η‖ϕ‖
X

1−α1
2

+ a1‖φ‖
X

1−α1
2
≤ C2,

with C2 > 0 being constant.

From the previous observations and from the fact that

A(t) = {ξ(t) : ξ(t) is a bounded global solution},

we conclude that

⋃
t∈R

A(t) is bounded in X
2−α1

2 ×X
1−α1

2 ×X
2−α1

2 ×X
1−α1

2 . (2.73)
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Now, we turn our attention once again to the term ‖f ′(u)φ‖
X−

α
2
that appears in (2.67).

Note that the embedding X
1−α1

2 = H1−α1(Ω) ↪→ Lp(Ω) holds, if and only if p ≤ 2n
n−2(1−α1)

.
Hence, using (2.73), the Hölder’s inequality and the growth condition (2.8), we have

‖f ′(u)φ‖
X−

α
2
≤ c1‖f ′(u)φ‖

L
2n

n+2α (Ω)
≤ c1‖ut‖

L
2n

n−2(1−α1) (Ω)
‖f ′(u)‖

L
n

1−α1+α (Ω)

≤ c2‖ut‖
X

1−α1
2

(∫
Ω

[c(1 + |u|ρ−1)]
n

1−α1+αdx

) 1−α1+α
n

≤ c3‖ut‖
X

1−α1
2

(
|Ω|+

∫
Ω

|u|
(ρ−1)n
1−α1+αdx

) 1−α1+α
n

≤ c4‖ut‖
X

1−α1
2

(
|Ω|

1−α1+α
n + ‖u‖ρ−1

L
(ρ−1)n
1−α1+α (Ω)

)

≤ c5‖ut‖
X

1−α1
2

(
1 + ‖u‖ρ−1

L
(ρ−1)n
1−α1+α (Ω)

)
.

Now, note that the embedding X
2−α1

2 = H2−α1(Ω) ↪→ L
(ρ−1)n
1−α1+α (Ω) holds, if and only if

(2− α1)− n
2
≥ −1−α1+α

(ρ−1)
and (ρ−1)n

1−α1+α
≥ 2, that is

(ρ− 1)(n− 2)

2
+ ρ(α1 − 1) ≤ α ≤ (ρ− 1)n

2
+ α1 − 1.

If (ρ−1)(n−2)
2

+ρ(α1−1) = α1 +ρ(α1−1) ≥ 0, then using (2.73) and restarting the whole process
from (2.67) with α2 = α1 + ρ(α1 − 1), we will get

⋃
t∈R

A(t) is bounded in X
2−α2

2 ×X
1−α2

2 ×X
2−α2

2 ×X
1−α2

2 .

We continue with this iterative process getting αk+1 = α1 + ρ(αk − 1) for k ≥ 1 while
αk ≥ 0.

There will be an integer k0 ≥ 1 such that αk0 ≥ 0 and αk0+1 < 0. Thus, we obtain

⋃
t∈R

A(t) is bounded in X
2−αk0

2 ×X
1−αk0

2 ×X
2−αk0

2 ×X
1−αk0

2 ,

but we cannot assure the boundedness in X
2−αk0+1

2 ×X
1−αk0+1

2 ×X
2−αk0+1

2 ×X
1−αk0+1

2 because
of the embeddings. Here, we set α = 0 and we restart the whole process from (2.67), with the
obvious adaptations using the boundedness in X

2−αk0
2 × X

1−αk0
2 × X

2−αk0
2 × X

1−αk0
2 , and we

conclude that ⋃
t∈R

A(t) is bounded in X1 ×X
1
2 ×X1 ×X

1
2 ,

and the proof is complete.
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2.5 Upper semicontinuity of pullback attractors

This last section is devoted to study the upper semicontinuity of pullback attractors with
respect to the functional parameter aε. To this end, we will use the regularity result obtained
in the previous section. Let {aε : ε ∈ [0, 1]} be a family of real valued functions of one real
variable satisfying (2.4). For each ε ∈ [0, 1] denote by

{S(ε)(t, τ) : t ≥ τ ∈ R} and {A(ε)(t) : t ∈ R},

respectively, the evolution process and its pullback attractor associated with the problem (2.1)-
(2.3). Moreover, we will assume that

‖aε − a0‖L∞(R) → 0 as ε→ 0+.

Our main goal is to prove that, for each t ∈ R, dH(A(ε)(t),A(0)(t))→ 0 as ε→ 0+.

Theorem 2.9. [Upper Semicontinuity] For each η > 0 and ε ∈ [0, 1], let W (ε)(·) =

S(ε)(·, τ)W0 be the solution of (2.1) in Y0. Assume that ‖aε − a0‖L∞(R) → 0 as ε → 0+. Then,
for each T > 0, W (ε) converges to W (0) in C([0, T ], Y0) as ε → 0+. Moreover, the family of
pullback attractors {A(ε)(t) : t ∈ R} is upper semicontinuous at ε = 0.

Proof. Let W = W (ε) −W (0), where

W (ε) = (u(ε), u
(ε)
t , v

(ε), v
(ε)
t ) and W (0) = (u(0), u

(0)
t , v(0), v

(0)
t ),

with u = u(ε) − u(0) and v = v(ε) − v(0). From this, we haveutt −∆u+ u+ η(−∆)
1
2ut + aε(t)(−∆)

1
2v

(ε)
t − a0(t)(−∆)

1
2v

(0)
t = f(u(ε))− f(u(0)),

vtt −∆v + η(−∆)
1
2vt − aε(t)(−∆)

1
2u

(ε)
t + a0(t)(−∆)

1
2u

(0)
t = 0,

for all t > τ and x ∈ Ω. Taking the inner product of the first equation with ut, and also the
inner product of the second equation with vt, we get

1

2

d

dt

∫
Ω

|ut|2dx+
1

2

d

dt

∫
Ω

|∇u|2dx+
1

2

d

dt

∫
Ω

|u|2dx+ η‖(−∆)
1
4ut‖2

X

+ aε(t)〈(−∆)
1
2v

(ε)
t , u

(ε)
t 〉X − aε(t)〈(−∆)

1
2v

(ε)
t , u

(0)
t 〉X

− a0(t)〈(−∆)
1
2v

(0)
t , u

(ε)
t 〉X + a0(t)〈(−∆)

1
2v

(0)
t , u

(0)
t 〉X

=

∫
Ω

[f(u(ε))− f(u(0))]utdx,
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and

1

2

d

dt

∫
Ω

|vt|2dx+
1

2

d

dt

∫
Ω

|∇v|2dx+ η‖(−∆)
1
4vt‖2

X − aε(t)〈(−∆)
1
2u

(ε)
t , v

(ε)
t 〉X

+ aε(t)〈(−∆)
1
2u

(ε)
t , v

(0)
t 〉X + a0(t)〈(−∆)

1
2u

(0)
t , v

(ε)
t 〉X − a0(t)〈(−∆)

1
2u

(0)
t , v

(0)
t 〉X = 0,

and combining these two last equations, it follows that

d

dt

1

2

(∫
Ω

|∇u|2dx+

∫
Ω

|u|2dx+

∫
Ω

|ut|2dx+

∫
Ω

|∇v|2dx+

∫
Ω

|vt|2dx
)

+ η‖(−∆)
1
4ut‖2

X + η‖(−∆)
1
4vt‖2

X + (a0 − aε)(t)〈(−∆)
1
4v

(ε)
t , (−∆)

1
4u

(0)
t 〉X

+ (aε − a0)(t)〈(−∆)
1
4u

(ε)
t , (−∆)

1
4v

(0)
t 〉X

=

∫
Ω

[f(u(ε))− f(u(0))]utdx.

Now, using the Young’s inequality, we have

d

dt

(
‖u‖2

X
1
2

+ ‖u‖2
X + ‖ut‖2

X + ‖v‖2

X
1
2

+ ‖vt‖2
X

)
= −2η‖A

1
4ut‖2

X − 2η‖A
1
4vt‖2

X + 2(aε − a0)(t)〈A
1
4v

(ε)
t , A

1
4u

(0)
t 〉X

+ 2(a0 − aε)(t)〈A
1
4u

(ε)
t , A

1
4v

(0)
t 〉X + 2

∫
Ω

[f(u(ε))− f(u(0))]utdx

≤ 2|(aε − a0)(t)|
(

1

2
‖v(ε)

t ‖2

X
1
4

+
1

2
‖u(0)

t ‖2

X
1
4

)
+ 2|(aε − a0)(t)|

(
1

2
‖u(ε)

t ‖2

X
1
4

+
1

2
‖v(0)

t ‖2

X
1
4

)
+ 2

∫
Ω

|[f(u(ε))− f(u(0))]ut|dx

≤ ‖aε − a0‖L∞(R)

(
‖u(ε)

t ‖2

X
1
4

+ ‖u(0)
t ‖2

X
1
4

+ ‖v(ε)
t ‖2

X
1
4

+ ‖v(0)
t ‖2

X
1
4

)
+ 2

∫
Ω

|[f(u(ε))− f(u(0))]ut|dx.

(2.74)

On the other hand, from Theorem 2.8, we know that W (ε) and W (0) are bounded in
X1 ×X 1

2 ×X1 ×X 1
2 . In particular, there exists a constant C > 0, independent of ε, such that

‖u(ε)
t ‖X 1

2
, ‖u(0)

t ‖X 1
2
, ‖v(ε)

t ‖X 1
2
, ‖v(0)

t ‖X 1
2
≤ C. (2.75)

Therefore, from (2.74), (2.75), and the embedding X
1
2 ↪→ X

1
4 , we obtain

d

dt

(
‖u‖2

X
1
2

+ ‖u‖2
X + ‖ut‖2

X + ‖v‖2

X
1
2

+ ‖vt‖2
X

)
≤ C ′‖aε − a0‖L∞(R) + 2

∫
Ω

|[f(u(ε))− f(u(0))]ut|dx,
(2.76)
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where C ′ > 0 is independent of ε.

By the Mean Value Theorem, there exists σ ∈ (0, 1) such that

|f(u(ε))− f(u(0))| = |f ′(σu(ε) + (1− σ)u(0))||u(ε) − u(0)| = |f ′(σu(ε) + (1− σ)u(0))||u|,

and so ∫
Ω

|[f(u(ε))− f(u(0))]ut|dx =

∫
Ω

|f ′(σu(ε) + (1− σ)u(0))||u||ut|dx.

As in the proof of Theorem 2.8, the condition 1 < ρ ≤ n
n−2

implies X
1
2 ↪→ L2ρ(Ω). Since

(ρ−1)
2ρ

+ 1
2ρ

+ 1
2

= 1, then Hölder’s inequality gives us∫
Ω

|[f(u(ε))− f(u(0))]ut|dx ≤ ‖f ′(σu(ε) + (1− σ)u(0))‖
L

2ρ
ρ−1 (Ω)

‖u‖L2ρ(Ω)‖ut‖L2(Ω); (2.77)

but note that

‖f ′(σu(ε) + (1− σ)u(0))‖
L

2ρ
ρ−1 (Ω)

≤
(∫

Ω

[c(1 + |σu(ε) + (1− σ)u(0)|ρ−1)]
2ρ
ρ−1dx

) ρ−1
2ρ

≤ c̃

(
|Ω|+

∫
Ω

|σu(ε) + (1− σ)u(0)|2ρdx
) ρ−1

2ρ

≤ ˜̃c
(
|Ω|

ρ−1
2ρ + ‖σu(ε) + (1− σ)u(0)‖ρ−1

L2ρ(Ω)

)
≤ ˜̃̃c

[
1 +

(
‖σu(ε)‖L2ρ(Ω) + ‖(1− σ)u(0)‖L2ρ(Ω)

)ρ−1
]

≤
˜̃̃
c̃
(

1 + ‖u(ε)‖ρ−1

X
1
2

+ ‖u(0)‖ρ−1

X
1
2

)
≤ C0,

(2.78)

where C0 > 0 is independent of ε. Thus, combining (2.77), (2.78) and the Young’s inequality,
we obtain∫

Ω

|[f(u(ε))− f(u(0))]ut|dx ≤ C0‖u‖L2ρ(Ω)‖ut‖L2(Ω) ≤ ĉ‖u‖
X

1
2
‖ut‖X

≤ ĉ

2

(
‖u‖2

X
1
2

+ ‖ut‖2
X

)
≤ ĉ

2

(
‖u‖2

X
1
2

+ ‖u‖2
X + ‖ut‖2

X + ‖v‖2

X
1
2

+ ‖vt‖2
X

)
.

(2.79)

Now, denoting G(t) = ‖u(t)‖2

X
1
2

+ ‖u(t)‖2
X + ‖ut(t)‖2

X + ‖v(t)‖2

X
1
2

+ ‖vt(t)‖2
X , from (2.76)

and (2.79), it follows that

d

dt
G(t) ≤ C ′‖aε − a0‖L∞(R) + ĉG(t) ≤ C‖aε − a0‖L∞(R) + CG(t),

where C = max{C ′, ĉ}. Since this holds for all t > τ , and noticing that G(τ) = 0, we get

G(t)e−C(t−τ) ≤ −‖aε − a0‖L∞(R)e
−C(t−τ) + ‖aε − a0‖L∞(R), t > τ,
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that is,
‖u‖2

X
1
2

+ ‖u‖2
X + ‖ut‖2

X + ‖v‖2

X
1
2

+ ‖vt‖2
X ≤ eC(t−τ)‖aε − a0‖L∞(R) → 0

as ε → 0+ with t, τ in compact subsets of R, and uniformly for W0 in bounded subsets of Y0.
This proves the first part of the result.

In order to show the upper semicontinuity of the family of pullback attractors {A(ε)(t) : t ∈
R} at ε = 0, let δ > 0 be given. Let t ∈ R be fixed but arbitrary and

B ⊃
⋃
s≤t

A(ε)(s)

be a bounded set in Y0, whose existence is guaranteed by Theorem 1.10. Now, let τ ∈ R, τ < t,
be such that

dH(S(0)(t, τ)B,A(0)(t)) <
δ

2
.

Using the convergence obtained in the first part of this proof, there exists ε0 > 0 such
that

sup
uε∈A(ε)(τ)

‖S(ε)(t, τ)uε − S(0)(t, τ)uε‖Y0 <
δ

2

for all ε < ε0. Finally, for ε < ε0, we have

dH(A(ε)(t),A(0)(t))

≤ dH(S(ε)(t, τ)A(ε)(τ), S(0)(t, τ)A(ε)(τ)) + dH(S(0)(t, τ)A(ε)(τ),A(0)(t))

= sup
uε∈A(ε)(τ)

‖S(ε)(t, τ)uε − S(0)(t, τ)uε‖Y0 + dH(S(0)(t, τ)A(ε)(τ),A(0)(t))

<
δ

2
+
δ

2
= δ,

which proves the upper semicontinuity of the family of pullback attractors.



Chapter

3

Impulsive evolution processes

The theory of impulsive differential equations describes the evolution of processes whose
continuous dynamics are interrupted by abrupt changes of state. While a differential equation
describes the period of continuous variation of state, an external condition describes the
discontinuities of the solutions (the impulses). These equations give us an effective tool to
model real problems whose evolution are not continuous.

One of the reasons in the study of the theory of differential equations with impulses
is because they are examples of dynamical systems of infinite dimension, presenting complex
dynamics. The theory of impulsive dynamical systems started by Rozko in the papers [47, 48].
In the framework of autonomous systems, the theory of impulsive dynamical systems has been
studied intensively in [9, 10, 11, 12, 29, 39]. On the other hand, in recent works, the non-
autonomous case started to be explored in [13, 14, 16, 19].

In this chapter, we present the theory of evolution processes under conditions of impulses.
Results on convergence are established in Section 3.3. Section 3.4 deals with the impulsive
pullback ω-limit set. In Section 3.5, we present a result on the existence of an impulsive
pullback attractor. Lastly, in Section 3.6, we study the upper semicontinuity of the impulsive
pullback attractor.

All the results of this chapter that have no references are presented in the article [18].

3.1 Fundamental properties

Let Z be a metric space and {S(t, τ) : t ≥ τ ∈ R} be an evolution process acting in Z.

Definition 3.1. Given D ⊆ Z and an interval J ⊆ [τ,∞), we define

F (D, J, τ) = {x ∈ Z : S(t, τ)x ∈ D for some t ∈ J}.

A point x ∈ Z is called an initial point at fiber τ if F (x, t, τ) = ∅ for all t > τ .

In the next definition, we exhibit the concept of an impulsive evolution process.

80
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Definition 3.2. An impulsive evolution process (Z, S,M, I) consists of an evolution process
{S(t, τ) : t ≥ τ ∈ R} in Z, a nonempty closed subset M ⊂ Z satisfying the property: for each
x ∈M and τ ∈ R, there exists ε = ε(x, τ) > 0 such that

⋃
t∈(0,ε)

F (x, τ, τ − t) ∩M = ∅ and {S(t, τ)x : 0 < t− τ < ε} ∩M = ∅,

and a continuous function I : M → Z, whose role will be specified in a forthcoming definition.
The set M is called an impulsive set, and the function I is called an impulse function.

For x ∈ Z, we also define the auxiliary set

M+(x, τ) = {S(t, τ)x : t > τ} ∩M.

Lemma 3.1. Let (Z, S,M, I) be an impulsive evolution process, τ ∈ R and x ∈ Z. If
M+(x, τ) 6= ∅, then there exists t = t(x, τ) > τ such that S(t, τ)x ∈ M and S(r, τ)x /∈ M

for τ < r < t.

Proof. Since M+(x, τ) 6= ∅, there exists t1 > τ such that S(t1, τ)x ∈ M . Now, suppose to the
contradiction that there exists a sequence {sn}n∈N ⊂ (τ,∞) such that sn

n→∞−−−→ τ and

S(sn, τ)x ∈M for all n ∈ N. (3.1)

Using the continuity of S, we obtain S(sn, τ)x
n→∞−−−→ S(τ, τ)x = x. Since M is closed and

{S(sn, τ)x}n∈N ⊂ M , it follows that x ∈ M . On the other hand, from Definition 3.2, there
exists ε = ε(x, τ) > 0 such that S(s, τ)x /∈M for all s with 0 < s− τ < ε. But this contradicts
(3.1). Hence, the proof is completed.

According to Lemma 3.1, we are able to define, for each fixed fiber τ ∈ R, a function
φ(·, τ) : Z → (0,∞], called the impact time map, given by

φ(x, τ) =

s− τ, if S(s, τ)x ∈M and S(r, τ)x /∈M for τ < r < s,

∞, if S(t, τ)x /∈M for all t > τ,
(3.2)

for each x ∈ Z. When M+(x, τ) 6= ∅, the value s = φ(x, τ) + τ represents the smallest time
for which the trajectory of the point x starting at time τ meets M . In this case, we say that
the point S(φ(x, τ) + τ, τ)x is the impulsive point of x. With this, we can now describe the
trajectory of a point under the action of an impulsive evolution process.

Definition 3.3 (Impulsive trajectory). Given τ ∈ R, the impulsive trajectory of a point x ∈ Z,
starting at time τ , under the action of the impulsive evolution process (Z, S,M, I), is a map
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S̃(·, τ)x defined on some interval J(x,τ) ⊆ [τ,∞), which contains τ , taking values in Z given
inductively by the following rule: if M+(x, τ) = ∅, then φ(x, τ) =∞ and in this case we define

S̃(t, τ)x = S(t, τ)x for all t ≥ τ.

However, if M+(x, τ) 6= ∅, then φ(x0, τ) < ∞. Denoting x = x+
0 , we define S̃(·, τ)x in

[τ, φ(x+
0 , τ) + τ ] by setting

S̃(t, τ)x =

S(t, τ)x+
0 , if τ ≤ t < φ(x+

0 , τ) + τ,

I(S(φ(x+
0 , τ) + τ, τ)x+

0 ), if t = φ(x+
0 , τ) + τ.

Now, let τ1 = φ(x+
0 , τ) + τ , x1 = S(τ1, τ)x+

0 and x+
1 = I(x1). In this case, since τ1 < ∞, this

process can go on, but now starting at the point x+
1 and at time τ1. Thus, if M+(x+

1 , τ1) = ∅,
then φ(x+

1 , τ1) =∞. Consequently, we define

S̃(t, τ)x = S(t, τ1)x+
1 for all t ≥ τ1.

However, if M+(x+
1 , τ1) 6= ∅, then we define S̃(·, τ)x in [τ1, τ1 + φ(x+

1 , τ1)] by setting

S̃(t, τ)x =

S(t, τ1)x+
1 , if τ1 ≤ t < τ1 + φ(x+

1 , τ1),

I(S(τ1 + φ(x+
1 , τ1), τ1)x+

1 ), if t = τ1 + φ(x+
1 , τ1).

As before, let τ2 = τ1 + φ(x+
1 , τ1), x2 = S(τ2, τ1)x+

1 and x+
2 = I(x2). In this last case, since

τ2 <∞, this process can go on, but now starting at the point x+
2 and at time τ2.

Assume now that S̃(·, τ)x is defined on the interval [τn−1, τn], n ≥ 1, where

τ0 = τ, τn = τn−1 + φ(x+
n−1, τn−1), n ≥ 1, and x+

0 = x.

In addition, assume that S̃(τn, τ)x = x+
n = I(xn). If M+(x+

n , τn) = ∅, we define

S̃(t, τ)x = S(t, τn)x+
n

for τn ≤ t < ∞ (note in this case that φ(x+
n , τn) = ∞). However, if M+(x+

n , τn) 6= ∅, then we
set τn+1 = τn+φ(x+

n , τn), x+
n+1 = I(xn+1) = I(S(τn+1, τn)x+

n ) and we define S̃(·, τ)x in [τn, τn+1]

by

S̃(t, τ)x =

S(t, τn)x+
n , if τn ≤ t < τn+1,

x+
n+1, if t = τn+1.

The process described above can either ends after a finite number of steps (when
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M+(x+
n , τn) = ∅ for some n ∈ N ∪ {0}) or it may proceed indefinitely (when M+(x+

n , τn) 6= ∅
for all n ∈ N ∪ {0}) and, in the second possibility, the impulsive trajectory S̃(·, τ)x is defined
on the interval [τ, T (x, τ)), where

T (x, τ) = τ +
∞∑
i=0

φ(x+
i , τi). (3.3)

Note that T (x, τ) can be finite for some x ∈ Z and τ ∈ R. However, since we shall
investigate the asymptotic dynamics of an impulsive evolution process (Z, S,M, I), we will
assume throughout this work that

T (x, τ) =∞ for all x ∈ Z and τ ∈ R. (H0)

Moreover, throughout this work, we shall denote the impulsive evolution process (Z, S,M, I)

simply by {S̃(t, τ) : t ≥ τ ∈ R}.

Remark 3.1. If there exists ξ > 0 such that φ(x, s) ≥ ξ for all x ∈ I(M) and s ∈ R, then
condition (H0) holds. It follows directly from the expression (3.3). The existence of ξ > 0 means
that there is a minimum time at which the evolution process takes to reach the impulsive set
M when it leaves the set I(M). This condition is satisfied, for instance, when I(M) is compact
and I(M) ∩M = ∅.

Remark 3.2. If I(M) ∩M = ∅, then no point x ∈ M belongs to any impulsive trajectory,
except if the trajectory starts at x. This fact is a consequence of the definition of impulsive
trajectories.

Although an impulsive evolution process is not continuous, it satisfies the following
properties which are also valid for continuous evolution processes. A proof of the next lemma
can be found in [19] with the obvious adaptations.

Lemma 3.2. [19, Proposition 2.14] Suppose condition (H0) is satisfied. Then the following
properties hold:

(i) S̃(t, t)x = x for all x ∈ Z and all t ∈ R;

(ii) S̃(t, τ) = S̃(t, s)S̃(s, τ) for all t ≥ s ≥ τ ∈ R.

In the sequel, we present the concepts of invariance, pullback attraction, pullback
asymptotic compactness, and pullback strongly bounded dissipativeness in the context of
impulsive evolution processes.

Definition 3.4. Let {S̃(t, τ) : t ≥ τ ∈ R} be an impulsive evolution process on Z and
B̂ = {B(t) : t ∈ R} be a family of nonempty subsets of Z. We say that B̂ is S̃-invariant
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if
S̃(t, τ)B(τ) = B(t) for all t ≥ τ ∈ R.

Moreover, we say that B̂ is positively (negatively, respectively) S̃-invariant if

S̃(t, τ)B(τ) ⊆ B(t)
(
S̃(t, τ)B(τ) ⊇ B(t), respectively

)
for all t ≥ τ ∈ R.

Definition 3.5. Let {S̃(t, τ) : t ≥ τ ∈ R} be an impulsive evolution process in Z. Given t ∈ R
and A,B nonempty subsets of Z, we say that A pullback S̃-attracts B at time t if

lim
τ→−∞

dH(S̃(t, τ)B,A) = 0. (3.4)

The set A pullback S̃-attracts bounded sets at time t, if (3.4) holds for every bounded subset
B of Z. In addition, a time-dependent family {A(t) : t ∈ R} of subsets of Z pullback S̃-attracts
bounded subsets of Z, if A(t) pullback S̃-attracts bounded sets at time t, for each t ∈ R.

Definition 3.6. An impulsive evolution process {S̃(t, τ) : t ≥ τ ∈ R} in Z is said to be pullback
S̃-asymptotically compact if, for each t ∈ R, each sequence {τk}k∈N with τk ≤ t for all k ∈ N
and τk

k→∞−−−→ −∞, and each bounded sequence {xk}k∈N ⊂ Z, then the sequence {S̃(t, τk)xk}k∈N
has a convergent subsequence.

The next definition is not a generalization of Definition 1.14. We present a new version
of pullback strongly bounded dissipativeness for impulsive evolution processes.

Definition 3.7. An impulsive evolution process {S̃(t, τ) : t ≥ τ ∈ R} in Z is said to be pullback
S̃-strongly bounded dissipative if, for each t ∈ R, then there is a bounded subset B(t) of Z which
pullback S̃-absorbs bounded subsets of Z at time t, that is, there exists ε0 > 0 such that, for
each bounded subset D of Z, one can find a time T = T (t,D) ≤ t such that

S̃(t+ ε, τ)D ⊂ B(t) for all τ ≤ T and ε ∈ [0, ε0].

In this case, the family B̂ = {B(t) : t ∈ R} is called an absorbing set for the impulsive evolution
process {S̃(t, τ) : t ≥ τ ∈ R}. If the absorbing set B̂ = {B(t) : t ∈ R} is compact and there
exists t0 ∈ R such that

⋃
t≤t0 B(t) is bounded in Z, then we say that the impulsive evolution

process {S̃(t, τ) : t ≥ τ ∈ R} is pullback S̃-strongly compact dissipative.

3.2 Continuity of the impact time map φ

As presented in [13, 14, 19], the function φ defined in (3.2) is not continuous in general.
The continuity of φ in Z\M depends on extra conditions on the impulsive setM . In [13, 14], the
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authors studied the continuity of φ using tube conditions. In [19], the authors were inspired by
the work [15] to consider a special condition to study the continuity of φ. This condition, namely
condition (T), was first considered for impulsive autonomous multivalued dynamical systems,
since it is easier to verify in applications than the tube conditions. Here, we also consider
condition (T) in order to obtain qualitative properties of impulsive evolution processes. In
other words, we say that an impulsive evolution process {S̃(t, τ) : t ≥ τ ∈ R} satisfies condition
(T) if 

Given τ ∈ R, t > τ , x ∈M , and a convergent sequence {xn}n∈N in Z such
that S(t, τ)xn

n→∞−−−→ x, there exist a subsequence {xnk}k∈N of {xn}n∈N and

a sequence {αk}k∈N ⊂ R, with t+ αk ≥ τ for all k ∈ N and αk
k→∞−−−→ 0, such

that S(t+ αk, τ)xnk ∈M for all k ∈ N.

(T)

Now, using condition (T), we present sufficient conditions for the impact time map φ to
be continuous on Z \M . This result is not new and the reader can find a more general version
in [19, Proposition 2.33].

Proposition 3.1 (Continuity of the impact time map). Assume that condition (T) holds.
Then, for each τ ∈ R fixed, the impact time map φ(·, τ) : Z → (0,∞], given by (3.2), is
continuous on Z \M .

Proof. Let τ ∈ R be fixed and arbitrary. Now, let x ∈ Z\M and {xn}n∈N ⊂ Z be a
sequence such that xn

n→∞−−−→ x. We may assume without loss of generality that xn 6∈ M

for all n ∈ N, because M is a closed subset of Z. We will split the proof into two steps: the
lower semicontinuity and the upper semicontinuity.

At first, let us prove the lower semicontinuity of φ(·, τ) at x. We may assume that
lim inf
n→∞

φ(xn, τ) = c ∈ [0,∞), because if lim inf
n→∞

φ(xn, τ) = ∞, then there is nothing to prove.
Thus, one can obtain a subsequence of {xn}n∈N, which we still denote by the same, such that
φ(xn, τ)

n→∞−−−→ c. Using the continuity of S, we get

S(φ(xn, τ) + τ, τ)xn
n→∞−−−→ S(c+ τ, τ)x.

Since S(φ(xn, τ) + τ, τ)xn ∈ M , for all n ∈ N, and M is closed in Z, it follows that
S(c+ τ, τ)x ∈M . By the definition of the impact time map, we obtain

τ < φ(x, τ) + τ ≤ c+ τ,

that is, 0 < φ(x, τ) ≤ c, which proves our first claim.

Now, let us prove the upper semicontinuity of φ(·, τ) at x. Indeed, if φ(x, τ) = ∞,
then the result is obvious. Thus, we may assume that φ(x, τ) < ∞. Moreover, let
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c0 = lim sup
n→∞

φ(xn, τ) and consider a subsequence of {xn}n∈N, which we still denote by the

same, such that φ(xn, τ)
n→∞−−−→ c0. Note that φ(x, τ) + τ > τ , S(φ(x, τ) + τ, τ)x ∈ M , and

S(φ(x, τ) + τ, τ)xn
n→∞−−−→ S(φ(x, τ) + τ, τ)x. Using condition (T), there exists a subsequence

{xnk}k∈N of {xn}n∈N and a sequence {αk}k∈N ⊂ R, with αk
k→∞−−−→ 0, such that

φ(x, τ) + τ + αk ≥ τ and S(φ(x, τ) + τ + αk, τ)xnk ∈M for all k ∈ N.

By the definition of the impact time map, we obtain

φ(xnk , τ) ≤ φ(x, τ) + αk, for all k ∈ N.

Hence, as k →∞, it follows that c0 ≤ φ(x, τ), which proves our second claim.

In conclusion, φ(·, τ) is continuous at x /∈M .

3.3 Convergence properties

In this section, we present some convergence properties for an impulsive evolution process
{S̃(t, τ) : t ≥ τ ∈ R}. Theorem 3.1, Theorem 3.2, Lemma 3.3, and Corollary 3.1 are presented
in [19], however, the authors in [19] used the tube conditions to prove them. Here, we use
condition (T), which is more general, to get these results.

Theorem 3.1. Assume that condition (T) holds. Let τ ∈ R, x ∈ Z, {τn}n∈N ⊂ R
and {xn}n∈N ⊂ Z be sequences such that xn

n→∞−−−→ x and τn
n→∞−−−→ τ . If x /∈ M , then

φ(xn, τn)
n→∞−−−→ φ(x, τ).

Proof. This result is a particular case of Theorem 3.4.

Theorem 3.2. Assume that condition (T) holds. Let t, τ ∈ R, x ∈ Z \ M , {xn}n∈N ⊂ Z

and {τn}n∈N ⊂ (−∞, t] be sequences such that xn
n→∞−−−→ x and τn

n→∞−−−→ τ . Then, there exists a
sequence {ηn}n∈N ⊂ R, with t+ηn ≥ τn and ηn

n→∞−−−→ 0, such that S̃(t+ηn, τn)xn
n→∞−−−→ S̃(t, τ)x.

Proof. See Theorem 3.5.

Lemma 3.3. Assume that condition (T) holds. Let t ∈ R and x ∈ Z \ M be given, and
let {αn}n∈N ⊂ R, {βn}n∈N ⊂ R, {xn}n∈N ⊂ Z be sequences such that αn

n→∞−−−→ 0, βn
n→∞−−−→

0, and xn
n→∞−−−→ x, with βn ≤ αn and xn 6∈M for all n ∈ N. Then, S̃(t+ αn, t+ βn)xn

n→∞−−−→ x.

Proof. See Lemma 3.10.

Corollary 3.1. Assume that I(M) ∩M = ∅. Under the assumptions of Theorem 3.2, we can
assume that ηn ≥ 0 for all n ∈ N.
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Proof. See Corollary 3.2.

We end this section with a convergence result which leads with points that belong to the
impulsive set M .

Lemma 3.4. Assume that condition (T) holds and I(M) ∩ M = ∅. Let t ∈ R, x ∈ M ,
{αn}n∈N ⊂ R+, {βn}n∈N ⊂ R+, and {xn}n∈N ⊂ Z be sequences such that αn ≥ βn for all n ∈ N,
αn

n→∞−−−→ 0, βn
n→∞−−−→ 0, and xn

n→∞−−−→ x. Then, there exists a subsequence {φ(xnk , t+ βnk)}k∈N
of {φ(xn, t+ βn)}n∈N such that φ(xnk , t+ βnk)

k→∞−−−→ 0. Moreover,

(i) if αnk − βnk < φ(xnk , t+ βnk) for all k ∈ N, then S̃(t+ αnk , t+ βnk)xnk
k→∞−−−→ x;

(ii) if αnk − βnk ≥ φ(xnk , t+ βnk) for all k ∈ N, then S̃(t+ αnk , t+ βnk)xnk
k→∞−−−→ I(x).

Proof. See Lemma 3.11.

3.4 The impulsive pullback ω-limit set

In this section, we present the generalization of the ω-limit set in the framework of
impulsive evolution processes.

Definition 3.8. Let {S̃(t, τ) : t ≥ τ ∈ R} be an impulsive evolution process in Z. The impulsive
pullback ω-limit set of a subset B of Z at time t ∈ R is defined as the set

ω̃(B, t) =
⋂
σ≤t

⋃
τ≤σ

⋃
ε≥0

S̃(t+ ε, τ)B.

The impulsive pullback ω-limit set can be characterized in the following way.

Lemma 3.5. For each t ∈ R and B ⊂ Z, we have

ω̃(B, t) = {x ∈ Z : there are sequences {τn}n∈N ⊂ (−∞, t], {εn}n∈N ⊆ R+ and {xn}n∈N ⊆ B

such that τn
n→∞−−−→ −∞, εn

n→∞−−−→ 0 and S̃(t+ εn, τn)xn
n→∞−−−→ x}

and ω̃(B, t) is closed in Z.

Lemma 3.6. Let {S̃(t, τ) : t ≥ τ ∈ R} be a pullback S̃-asymptotically compact impulsive
evolution process in Z. Assume that condition (T) holds, I(M)∩M = ∅ and B is a nonempty
bounded subset of Z. Then, for each t ∈ R, the impulsive pullback ω-limit set ω̃(B, t) is
nonempty, compact and pullback S̃-attracts B at time t.

Proof. Let t ∈ R be fixed and arbitrary. Now, let {τk}k∈N ⊂ (−∞, t] be a sequence such that
τk

k→∞−−−→ −∞, and {xk}k∈N ⊂ B. Since {S̃(t, τ) : t ≥ τ ∈ R} is pullback S̃-asymptotically
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compact, the sequence {S̃(t, τk)xk}k∈N admits a convergent subsequence, which converges to
some point x ∈ Z. Hence, x ∈ ω̃(B, t) and ω̃(B, t) is nonempty.

Now, let us show that ω̃(B, t) is compact. Let {zn}n∈N ⊂ ω̃(B, t) be a sequence. For each
n ∈ N, there exist sequences {xnk}k∈N ⊂ B, {τnk }k∈N ⊂ (−∞, t] and {εnk}k∈N ⊂ R+ such that
τnk

k→∞−−−→ −∞, εnk
k→∞−−−→ 0, and

S̃(t+ εnk , τ
n
k )xnk

k→∞−−−→ zn.

For each n ∈ N, there exists a natural number kn ≥ n such that

d(S̃(t+ εnkn , τ
n
kn)xnkn , zn) <

1

n
, n ∈ N. (3.5)

Since {S̃(t, τ) : t ≥ τ ∈ R} is pullback S̃-asymptotically compact, we may assume without loss
of generality that there exists y ∈ Z such that

S̃(t, τnkn)xnkn
n→∞−−−→ y.

By Lemma 3.4, up to a subsequence, there exists z ∈ Z (either z = y or z = I(y)) such that

S̃(t+ εnkn , τ
n
kn)xnkn = S̃(t+ εnkn , t)S̃(t, τnkn)xnkn

n→∞−−−→ z. (3.6)

Note that z ∈ ω̃(B, t). Using (3.5) and (3.6), as n → ∞, we obtain zn
n→∞−−−→ z. Since ω̃(B, t)

is a closed subset of Z, we conclude that ω̃(B, t) is compact.

At last, let us prove that ω̃(B, t) pullback S̃-attracts B at time t. Indeed, suppose to the
contrary that there are ε0 > 0 and sequences τn

n→∞−−−→ −∞ and {xn}n∈N ⊂ B such that

dH(S̃(t, τn)xn, ω̃(B, t)) ≥ ε0, n ∈ N. (3.7)

Since {S̃(t, τ) : t ≥ τ ∈ R} is pullback S̃-asymptotically compact, we may assume without loss
of generality that there exists z ∈ Z such that

S̃(t, τn)xn
n→∞−−−→ z.

But this shows that z ∈ ω̃(B, t), which contradicts (3.7) as n→∞.

Next, we show that the family {ω̃(B, t) \M : t ∈ R} is positively S̃-invariant.

Lemma 3.7. Assume that condition (T) holds and I(M)∩M = ∅. Let B be a nonempty subset
of Z. Then, {ω̃(B, t) \M : t ∈ R} is positively S̃-invariant.

Proof. Let t, τ ∈ R with τ ≤ t. We are going to show that S̃(t, τ)[ω̃(B, τ) \M ] ⊂ ω̃(B, t) \M .
If t = τ , then the result is done. Assume that τ < t. For a given x ∈ ω̃(B, τ) \M , there
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are sequences {xn}n∈N ⊂ B, {εn}n∈N ⊆ R+ and {τn}n∈N ⊂ (−∞, τ ] such that εn
n→∞−−−→ 0,

τn
n→∞−−−→ −∞ and

wn = S̃(τ + εn, τn)xn
n→∞−−−→ x.

Since x /∈ M , it follows by Corollary 3.1 that there exists a sequence {ηn}n∈N ⊂ R+, with
t+ ηn ≥ τ + εn and ηn

n→∞−−−→ 0, such that S̃(t+ ηn, τ + εn)wn
n→∞−−−→ S̃(t, τ)x, that is,

S̃(t+ ηn, τn)xn
n→∞−−−→ S̃(t, τ)x.

Thus, S̃(t, τ)x ∈ ω̃(B, t). Since τ < t and I(M) ∩M = ∅, we have S̃(t, τ)x ∈ ω̃(B, t) \M .
Hence, the result is complete.

In Lemma 3.8, we establish the negative S̃-invariance of the family {ω̃(B, t) \M : t ∈ R}.

Lemma 3.8. Assume that condition (T) holds and I(M)∩M = ∅. Let B be a nonempty subset
of Z. Moreover, assume that the family {ω̃(B, t) : t ∈ R} is compact and pullback S̃-attracts B.
The following properties hold:

(i) if y ∈ ω̃(B, t) ∩M , then I(y) ∈ ω̃(B, t) \M ;

(ii) {ω̃(B, t) \M : t ∈ R} is negatively S̃-invariant.

Proof. (i) Given y ∈ ω̃(B, t) ∩ M , there are sequences {xn}n∈N ⊂ B, {γn}n∈N ⊆ R+ and
{τn}n∈N ⊂ (−∞, t] such that γn

n→∞−−−→ 0, τn
n→∞−−−→ −∞ and

yn = S̃(t+ γn, τn)xn
n→∞−−−→ y.

Since y ∈M , it follows by Lemma 3.4, along some subsequence, that σk = φ(ynk , t+γnk)
k→∞−−−→ 0

and
S̃(t+ γnk + σk, t+ γnk)ynk

k→∞−−−→ I(y).

Hence,
S̃(t+ γnk + σk, τnk)xnk

k→∞−−−→ I(y),

which assures that I(y) ∈ ω̃(B, t). As I(M) ∩M = ∅, we conclude that I(y) ∈ ω̃(B, t) \M .

(ii) Let t, τ ∈ R with τ ≤ t. We are going to show that ω̃(B, t)\M ⊂ S̃(t, τ)[ω̃(B, τ)\M ].
Indeed, given x ∈ ω̃(B, t) \ M , there exist sequences {xn}n∈N ⊂ B, {εn}n∈N ⊆ R+ and
{τn}n∈N ⊂ (−∞, t] such that εn

n→∞−−−→ 0, τn
n→∞−−−→ −∞ and

S̃(t+ εn, τn)xn
n→∞−−−→ x. (3.8)
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Since ω̃(B, τ) pullback S̃-attracts B, we get

dH(S̃(τ, τn)xn, ω̃(B, τ))
n→∞−−−→ 0.

Moreover, by the compactness of ω̃(B, τ), we may assume, up to a subsequence, that there
exists y ∈ ω̃(B, τ) such that

S̃(τ, τn)xn
n→∞−−−→ y.

Case 1: y /∈M . In this case, using Corollary 3.1, we can obtain a sequence {ηn}n∈N ⊆ R+ such
that ηn

n→∞−−−→ 0 and

S̃(t+ ηn, τn)xn = S̃(t+ ηn, τ)S̃(τ, τn)xn
n→∞−−−→ S̃(t, τ)y /∈M. (3.9)

Now, since x /∈M , applying Lemma 3.3 in (3.8) and in (3.9), respectively, we obtain

S̃(t+ εn + ηn, τn)xn = S̃(t+ εn + ηn, t+ εn)S̃(t+ εn, τn)xn
n→∞−−−→ x

and
S̃(t+ ηn + εn, τn)xn = S̃(t+ ηn + εn, t+ ηn)S̃(t+ ηn, τn)xn

n→∞−−−→ S̃(t, τ)y,

which yields x = S̃(t, τ)y ∈ S̃(t, τ)[ω̃(B, τ) \M ].

Case 2: y ∈ M . Let zn = S̃(τ, τn)xn, n ∈ N. In this case, by Lemma 3.4, there exists a
subsequence {φ(znk , τ)}k∈N such that φ(znk , τ)

k→∞−−−→ 0 and

S̃(τ + φ(znk , τ), τ)znk
k→∞−−−→ I(y).

Using Corollary 3.1, we can obtain a sequence {γk}k∈N ⊆ R+ such that γk
k→∞−−−→ 0 and

S̃(t+ γk, τ + φ(znk , τ))S̃(τ + φ(znk , τ), τ)znk
k→∞−−−→ S̃(t, τ)I(y),

that is,
S̃(t+ γk, τnk)xnk

k→∞−−−→ S̃(t, τ)I(y). (3.10)

Now, since x /∈M , applying Lemma 3.3 in (3.8) and in (3.10), respectively, we get

S̃(t+ εnk + γk, τnk)xnk = S̃(t+ εnk + γk, t+ εnk)S̃(t+ εnk , τnk)xnk
k→∞−−−→ x

and

S̃(t+ γk + εnk , τnk)xnk = S̃(t+ γk + εnk , t+ γk)S̃(t+ γk, τnk)xnk
k→∞−−−→ S̃(t, τ)I(y),
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which implies x = S̃(t, τ)I(y). By item (i), I(y) ∈ ω̃(B, τ)\M . Thus, x ∈ S̃(t, τ)[ω̃(B, τ)\M ].

Therefore, ω̃(B, t) \M ⊂ S̃(t, τ)[ω̃(B, τ) \M ] for every t ≥ τ .

3.5 Pullback attractors for impulsive evolution processes

This section concerns sufficient conditions for the existence of pullback attractors in the
context of evolution processes with impulses.

Definition 3.9. A family {Ã(t) : t ∈ R} of subsets of Z is called an impulsive pullback attractor
for the impulsive evolution process {S̃(t, τ) : t ≥ τ ∈ R} if:

(i) {Ã(t) : t ∈ R} is compact;

(ii) {Ã(t) \M : t ∈ R} is S̃-invariant;

(iii) {Ã(t) : t ∈ R} pullback S̃-attracts bounded subsets of Z;

(iv) {Ã(t) : t ∈ R} is the minimal family of closed sets satisfying property (iii).

Condition (iv) of Definition 3.9 says that, if {Ã1(t) : t ∈ R} and {Ã2(t) : t ∈ R} are two
impulsive pullback attractors for the impulsive evolution process {S̃(t, τ) : t ≥ τ ∈ R}, then

Ã1(t) = Ã2(t) for every t ∈ R.

Theorem 3.3. Let {S̃(t, τ) : t ≥ τ ∈ R} be an impulsive evolution process in Z. Assume that
condition (T) holds, I(M) ∩M = ∅ and {S̃(t, τ) : t ≥ τ ∈ R} is pullback S̃-strongly compact
dissipative. Then {S̃(t, τ) : t ≥ τ ∈ R} has an impulsive pullback attractor {Ã(t) : t ∈ R} such
that there exists t0 ∈ R satisfying

⋃
t≤t0 Ã(t) is bounded in Z.

Proof. Since {S̃(t, τ) : t ≥ τ ∈ R} is pullback S̃-strongly compact dissipative, it admits a
compact absorbing set K̂ = {K(t) : t ∈ R} such that

⋃
t≤t0 K(t) is bounded in Z for some

t0 ∈ R. Thus, for each t ∈ R, there exists ε0 > 0 such that, for every bounded set D ⊂ Z, one
can find a time T = T (t,D) ≤ t such that

S̃(t+ ε, τ)D ⊂ K(t) for all τ ≤ T and ε ∈ [0, ε0]. (3.11)

Note, in particular, that {S̃(t, τ) : t ≥ τ ∈ R} is pullback S̃-asymptotically compact.

Now, for each t ∈ R, define

Ã(t) =
⋃
{ω̃(B, t) : B ⊂ Z, B bounded}.
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By Lemmas 3.6, 3.7 and 3.8, the family {Ã(t) : t ∈ R} is nonempty, I-invariant and pullback
S̃-attracts bounded subsets of Z, and the family {Ã(t) \M : t ∈ R} is S̃-invariant.

Let us show that Ã(t) is compact, for each t ∈ R. At first, we claim that ω̃(B, t) ⊂ K(t)

for all bounded set B ⊂ Z and t ∈ R. Indeed, let B ⊂ Z be a bounded set and t ∈ R. Given
x ∈ ω̃(B, t), there are sequences {xn}n∈N ⊂ B, {εn}n∈N ⊆ R+ and {τn}n∈N ⊂ (−∞, t] such that
εn

n→∞−−−→ 0, τn
n→∞−−−→ −∞ and

S̃(t+ εn, τn)xn
n→∞−−−→ x.

According to (3.11), we have S̃(t + εn, τn)xn ∈ K(t) for n sufficiently large and, consequently,
x ∈ K(t). Hence, the claim is proved, and it yields Ã(t) ⊂ K(t) for all t ∈ R. Since K̂ is
compact, it follows that the family {Ã(t) : t ∈ R} is compact.

Since
⋃
t≤t0 Ã(t) ⊂

⋃
t≤t0 K(t), we have

⋃
t≤t0 Ã(t) is bounded in Z.

At last, let Ĉ = {C(t) : t ∈ R} be a family of closed sets that pullback S̃-attracts bounded
subsets of Z. We claim that ω̃(B, t) ⊂ C(t) for all bounded set B ⊂ Z and t ∈ R. Indeed,
since

⋃
t≤t0 Ã(t) is bounded in Z, we obtain

dH(ω̃(B, t) \M,C(t)) = lim
τ→−∞

dH(S̃(t, τ)[ω̃(B, τ) \M ], C(t)) = 0.

Thus, ω̃(B, t) \M ⊂ C(t).

Now, let x ∈ ω̃(B, t) ∩M . Then there are sequences {xn}n∈N ⊂ B, {εn}n∈N ⊆ R+ and
{τn}n∈N ⊂ (−∞, t] such that εn

n→∞−−−→ 0, τn
n→∞−−−→ −∞ and

S̃(t+ εn, τn)xn
n→∞−−−→ x.

Since {S̃(t, τ) : t ≥ τ ∈ R} is pullback S̃-asymptotically compact, we may assume, up to
a subsequence, that

S̃(t, τn)xn
n→∞−−−→ b ∈ ω̃(B, t).

Note that b ∈ C(t), since C(t) pullback S̃-attracts bounded subsets of Z at time t. Now,
according to Lemma 3.4, either

S̃(t+ εn, t)S̃(t, τn)xn
n→∞−−−→ b or S̃(t+ εn, t)S̃(t, τn)xn

n→∞−−−→ I(b).

In the first case, we obtain x = b ∈ C(t). In the second case, using Lemma 3.8, we get
x = I(b) ∈ ω̃(B, t) \M ⊂ C(t). Consequently, ω̃(B, t) ∩M ⊂ C(t).

Thus, we conclude that ω̃(B, t) ⊂ C(t) for all B ⊂ Z bounded and t ∈ R, which implies
Ã(t) ⊂ C(t) for all t ∈ R.

Therefore, it follows that the family {Ã(t) : t ∈ R} is an impulsive pullback attractor for
the impulsive evolution process {S̃(t, τ) : t ≥ τ ∈ R}, and the proof of the result is complete.
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3.6 Upper semicontinuity of impulsive pullback attractors

In this section, we deal with the upper semicontinuity at zero for a family of impulsive
pullback attractors {Ã(ε)(t) : t ∈ R} associated with a family of impulsive evolution processes
{S̃(ε)(t, τ) : t ≥ τ ∈ R}, ε ∈ [0, 1], that is, we will prove that for each t ∈ R we have

lim
ε→0+

dH(Ã(ε)(t), Ã(0)(t)) = 0. (3.12)

In order to achieve our goal, we will make use of the following assumptions:

(A1) for each ε ∈ [0, 1], the impulsive evolution process {S̃(ε)(t, τ) : t ≥ τ ∈ R} admits an
impulsive pullback attractor {Ã(ε)(t) : t ∈ R};

(A2) S(ε)(t, τ)x
ε→0+−−−→ S(0)(t, τ)x uniformly in bounded subsets of {(t, τ) ∈ R2 : t ≥ τ} × Z;

(A3) I(0)(M(0)) is bounded and I(0)(M(0)) ∩M(0) = ∅;

(A4) if εn
n→∞−−−→ 0, then dH(M(εn),M(0)) + dH(M(0),M(εn))

n→∞−−−→ 0;

(A5) if εn
n→∞−−−→ 0, then dH(I(εn)(M(εn)), I(0)(M(0)))

n→∞−−−→ 0;

(A6) there exists ξ > 0 such that φ(0)(I(0)(x), t) ≥ 2ξ for all (x, t) ∈M(0) × R;

(A7) the impulse function I(0) : M(0) → Z is an injective map;

(A8) given x ∈ I(0)(M(0)) and t ∈ R, there exist y ∈ I(0)(M(0)) and τ ≥ 2ξ > 0 such that

S(0)(t, t− τ)y ∈M(0) and S̃(0)(t, t− τ)y = x.

(A9) given τ ∈ R and t > τ , the evolution process S(0)(t, τ) : Z → Z is a compact map.

The family {S̃(ε)(t, τ) : t ≥ τ ∈ R}, ε ∈ [0, 1], satisfies the collective condition (T) if
given τ ∈ R, t > τ , x ∈ M(0), {εn}n∈N ⊂ [0, 1] with εn

n→∞−−−→ 0, and a convergent sequence
{xn}n∈N in Z such that S(εn)(t, τ)xn

n→∞−−−→ x, then there exist a subsequence {xnk}k∈N of
{xn}n∈N and a sequence {αk}k∈N ⊂ R, with t+ αk ≥ τ for all k ∈ N and αk

k→∞−−−→ 0, such that
S(εnk )(t+ αk, τ)xnk ∈M(εnk ) for all k ∈ N.

3.6.1 Some convergence results

This subsection concerns some convergence results for a family of impulsive evolution
processes {S̃(ε)(t, τ) : t ≥ τ ∈ R}, ε ∈ [0, 1].
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Lemma 3.9. [12, Lemma 3.1] Assume condition (A4) holds. If {εn}n∈N ⊂ [0, 1] and
{xn}n∈N ⊂ Z are sequences such that εn

n→∞−−−→ 0, xn ∈ M(εn) for n ∈ N and xn
n→∞−−−→ x,

then x ∈M(0).

Theorem 3.4. Assume that conditions (A2), (A4) and the collective condition (T) hold. Let
τ ∈ R, x ∈ Z, {τn}n∈N ⊂ R and {xn}n∈N ⊂ Z be sequences such that xn

n→∞−−−→ x and τn
n→∞−−−→ τ .

If x /∈M(0), then φ(εn)(xn, τn)
n→∞−−−→ φ(0)(x, τ).

Proof. Suppose, at first, that φ(0)(x, τ) =∞. If there exists a subsequence {φ(εnk )(xnk , τnk)}k∈N
of {φ(εn)(xn, τn)}n∈N such that

φ(εnk )(xnk , τnk)
k→∞−−−→ λ ∈ (0,∞),

then, by condition (A2) and Lemma 3.9,

lim
k→∞

S(εnk )(τnk + φ(εnk )(xnk , τnk), τnk)xnk = S(0)(τ + λ, τ)x ∈M(0),

which yields the contradiction φ(0)(x, τ) ≤ λ. Hence, lim
n→∞

φ(εn)(xn, τn) =∞ = φ(0)(x, τ).

Now, suppose φ(0)(x, τ) < ∞. We claim that {φ(εn)(xn, τn)}n∈N is bounded. Indeed,
suppose there exists a subsequence {φ(εnk )(xnk , τnk)}k∈N of {φ(εn)(xn, τn)}n∈N such that
φ(εnk )(xnk , τnk)

k→∞−−−→∞. Since

S(εnk )(τnk + φ(0)(x, τ), τnk)xnk
k→∞−−−→ S(0)(τ + φ(0)(x, τ), τ)x ∈M(0),

it follows by the collective condition (T), up to a subsequence, that there exists a sequence
αnk

k→∞−−−→ 0, such that τnk + φ(0)(x, τ) + αnk ≥ τnk and S(εnk )(τnk + φ(0)(x, τ) + αnk , τnk)xnk ∈
M(εnk ) for all k ∈ N. Consequently,

φ(εnk )(xnk , τnk) ≤ φ(0)(x, τ) + αnk , k ∈ N,

which is a contradiction as φ(εnk )(xnk , τnk)
k→∞−−−→∞. Hence, {φ(εn)(xn, τn)}n∈N is bounded.

Now, let {φ(εnm )(xnm , τnm)}m∈N be an arbitrary subsequence of {φ(εn)(xn, τn)}n∈N. This
subsequence admits another subsequence, which we denote by the same, which converges to
some λ ∈ (0,∞). We claim that λ = φ(0)(x, τ). In fact, suppose at first that λ < φ(0)(x, τ).
Since {S(εnm )(τnm + φ(εnm )(xnm , τnm), τnm)xnm}m∈N ⊂M(εnm ), condition (A4) holds and

S(εnm )(τnm + φ(εnm )(xnm , τnm), τnm)xnm
m→∞−−−→ S(0)(τ + λ, τ)x,

we have S(0)(τ+λ, τ)x ∈M(0), which yields the contradiction φ(0)(x, τ) ≤ λ < φ(0)(x, τ). Hence,
φ(0)(x, τ) ≤ λ.
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On the other hand, since

S(εnm )(τnm + φ(0)(x, τ), τnm)xnm
m→∞−−−→ S(0)(τ + φ(0)(x, τ), τ)x ∈M(0),

we can use the collective condition (T) again, up to a subsequence, to obtain a sequence
βnm

m→∞−−−→ 0, such that τnm +φ(0)(x, τ)+βnm ≥ τnm and S(εnm )(τnm +φ(0)(x, τ)+βnm , τnm)xnm ∈
M(εnm ) for all m ∈ N. It implies

φ(εnm )(xnm , τnm) ≤ φ(0)(x, τ) + βnm , m ∈ N,

and, as m→∞, we obtain
λ ≤ φ(0)(x, τ).

Therefore, λ = φ(0)(x, τ). This shows that φ(εn)(xn, τn)
n→∞−−−→ φ(0)(x, τ).

Theorem 3.5. Assume that conditions (A2), (A4), (A5), and the collective condition (T)
hold. Let t, τ ∈ R, x ∈ Z \M(0), {xn}n∈N ⊂ Z and {τn}n∈N ⊂ (−∞, t] be sequences such that
xn

n→∞−−−→ x and τn
n→∞−−−→ τ . Then, there exists a sequence {ηn}n∈N ⊂ R, with t + ηn ≥ τn and

ηn
n→∞−−−→ 0, such that S̃(εn)(t+ ηn, τn)xn

n→∞−−−→ S̃(0)(t, τ)x.

Proof. Since x /∈ M(0) and M(0) is a closed subset of Z, we may assume that xn 6∈ M(εn) for
all n ∈ N. By Theorem 3.4, we have φ(εn)(xn, τn)

n→∞−−−→ φ(0)(x, τ). If φ(0)(x, τ) = ∞, then
φ(εn)(xn, τn) > t− τn for n sufficiently large and, therefore,

S̃(εn)(t, τn)xn = S(εn)(t, τn)xn
n→∞−−−→ S(0)(t, τ)x = S̃(0)(t, τ)x,

and the assertion follows by taking ηn = 0 for all n ∈ N.

Now, suppose φ(0)(x, τ) < ∞. In this way, we may assume that φ(εn)(xn, τn) < ∞ for all
n ∈ N. Set τ 1 = φ(0)(x, τ) + τ . We will consider the following cases:

Case 1: τ ≤ t < τ 1.

Given ε ∈ (0, τ 1 − t), there exists n0 ∈ N such that, if n ≥ n0, then

|φ(εn)(xn, τn)− φ(0)(x, τ)| < ε

2
and |τn − τ | <

ε

2

and, therefore,

t < τ 1 − ε = φ(0)(x, τ) + τ − ε < ε

2
+ φ(εn)(xn, τn) +

ε

2
+ τn − ε = φ(εn)(xn, τn) + τn,

which yields
S̃(εn)(t, τn)xn = S(εn)(t, τn)xn

n→∞−−−→ S(0)(t, τ)x = S̃(0)(t, τ)x,
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and the assertion follows by taking once again ηn = 0 for all n ∈ N.

Case 2: t = τ 1.

Note that
S̃(0)(t, τ)x = S̃(0)(τ

1, τ)x = I(0)(S(0)(τ
1, τ)x)

and, using conditions (A2) and (A5),

S̃(εn)(φ(εn)(xn, τn) + τn, τn)xn

= I(εn)(S(εn)(φ(εn)(xn, τn) + τn, τn)xn)
n→∞−−−→ I(0)(S(0)(τ

1, τ)x) = S̃(0)(t, τ)x.

Now, taking ηn = φ(εn)(xn, τn)− φ(0)(x, τ) + τn − τ for all n ∈ N, we have ηn
n→∞−−−→ 0 and

S̃(εn)(t+ ηn, τn)xn = S̃(εn)(φ(εn)(xn, τn) + τn, τn)xn
n→∞−−−→ S̃(0)(t, τ)x,

which proves the assertion.

Case 3: t > τ 1.

Let τ 0 = τ and (τn)0 = τn for n ∈ N. Using the notation of the Definition 3.3, we have

(τn)1 = φ(εn)(xn, (τn)0) + (τn)0
n→∞−−−→ φ(0)(x, τ

0) + τ 0 = τ 1

and, consequently,

(xn)1 = S(εn)((τn)1, (τn)0)xn
n→∞−−−→ S(0)(τ

1, τ 0)x = x1.

Hence, (xn)+
1 = I(εn)((xn)1)

n→∞−−−→ I(0)(x1) = x+
1 .

Proceeding with this argument, we conclude, for every j ≥ 1, that

(τn)j+1 = (τn)j + φ(εn)((xn)+
j , (τn)j)

n→∞−−−→ τ j + φ(0)(x
+
j , τ

j) = τ j+1,

(xn)j+1 = S(εn)((τn)j+1, (τn)j)(xn)+
j

n→∞−−−→ S(0)(τ
j+1, τ j)x+

j = xj+1,

and, finally, (xn)+
j+1 = I(εn)((xn)j+1)

n→∞−−−→ I(0)(xj+1) = x+
j+1.

Since t > τ 1, there exists k = k(x, τ) ∈ N such that

t = τ +
k−1∑
j=0

φ(0)(x
+
j , τ

j) + τ ′ with τ ′ ∈ [0, φ(0)(x
+
k , τ

k)).
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Moreover, S̃(0)(t, τ)x = S(0)(t, τ
k)x+

k . Now, let us define

ηn =
k−1∑
j=0

φ(εn)((xn)+
j , (τn)j)−

k−1∑
j=0

φ(0)(x
+
j , τ

j) + τn − τ, n ∈ N.

Note that ηn
n→∞−−−→ 0. Furthermore, we have τ ′ < φ(εn)((xn)+

k , (τn)k) for n sufficiently large.
Thus,

lim
n→∞

S̃(εn)(t+ ηn, τn)xn

= lim
n→∞

S̃(εn)

(
τn +

k−1∑
j=0

φ(εn)((xn)+
j , (τn)j) + τ ′, τn

)
xn

= lim
n→∞

S(εn)

(
τn +

k−1∑
j=0

φ(εn)((xn)+
j , (τn)j) + τ ′, (τn)k

)
(xn)+

k

= S(0)

(
τ +

k−1∑
j=0

φ(0)(x
+
j , τ

j) + τ ′, τ k

)
x+
k .

Since S̃(0)(t, τ)x = S(0)(t, τ
k)x+

k = S(0)

(
τ +

k−1∑
j=0

φ(0)(x
+
j , τ

j) + τ ′, τ k

)
x+
k , we have

S̃(εn)(t+ ηn, τn)xn
n→∞−−−→ S̃(0)(t, τ)x,

which proves the assertion. The proof of the result is complete.

Lemma 3.10. Assume that conditions (A2), (A4), and the collective condition (T) hold. Let
t ∈ R and x ∈ Z \ M(0) be given, and let {αn}n∈N ⊂ R, {βn}n∈N ⊂ R, {xn}n∈N ⊂ Z be
sequences such that αn

n→∞−−−→ 0, βn
n→∞−−−→ 0, and xn

n→∞−−−→ x, with βn ≤ αn for all n ∈ N. Then,
S̃(εn)(t+ αn, t+ βn)xn

n→∞−−−→ x.

Proof. Since βn ≤ αn for all n ∈ N, αn − βn
n→∞−−−→ 0, and φ(εn)(xn, t + βn)

n→∞−−−→ φ(0)(x, t) (see
Theorem 3.4), there exists n0 ∈ N such that

0 ≤ αn − βn <
φ(0)(x, t)

2
and |φ(εn)(xn, t+ βn)− φ(0)(x, t)| <

φ(0)(x, t)

2

for all n ≥ n0. Consequently, for n ≥ n0, we have

0 ≤ αn − βn <
φ(0)(x, t)

2
< φ(εn)(xn, t+ βn)
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and, therefore,

lim
n→∞

S̃(εn)(t+ αn, t+ βn)xn

= lim
n→∞

S̃(εn)(t+ βn + (αn − βn), t+ βn)xn

= lim
n→∞

S(εn)(t+ βn + (αn − βn), t+ βn)xn

= S(0)(t, t)x = x,

which proves the result.

Corollary 3.2. Under the assumptions of Theorem 3.5, assume that I(0)(M(0)) ∩M(0) = ∅.
Then we also can assume that ηn ≥ 0 for all n ∈ N.

Proof. We already know that, by Theorem 3.5, given t, τ ∈ R, x ∈ Z \M(0), {xn}n∈N ⊂ Z

and {τn}n∈N ⊂ (−∞, t] sequences such that xn
n→∞−−−→ x and τn

n→∞−−−→ τ , we can find a sequence
ηn

n→∞−−−→ 0 such that t+ ηn ≥ τn and

S̃(εn)(t+ ηn, τn)xn
n→∞−−−→ S̃(0)(t, τ)x.

Now, choose the sequences αn = ηn+ |ηn| and βn = ηn for all n ∈ N. Since I(0)(M(0))∩M(0) = ∅,
we have S̃(0)(t, τ)x /∈M(0). By Lemma 3.10,

S̃(εn)(t+ ηn + |ηn|, t+ ηn)S̃(εn)(t+ ηn, τn)xn
n→∞−−−→ S̃(0)(t, τ)x,

that is, S̃(εn)(t+ αn, τn)xn
n→∞−−−→ S̃(0)(t, τ)x with αn = ηn + |ηn| ≥ 0 for all n ∈ N.

We end this section with a convergence result which leads with points that belong to the
impulsive set M .

Lemma 3.11. Assume that conditions (A2), (A5), and the collective condition (T) hold. Also,
assume that I(0)(M(0)) ∩M(0) = ∅. Let t ∈ R, x ∈ M(0), {αn}n∈N ⊂ R+, {βn}n∈N ⊂ R+, and
{xn}n∈N ⊂ Z be sequences such that αn ≥ βn for all n ∈ N, αn

n→∞−−−→ 0, βn
n→∞−−−→ 0, and

xn
n→∞−−−→ x. Then there exists a subsequence {φ(εnk )(xnk , t + βnk)}k∈N of {φ(εn)(xn, t + βn)}n∈N

such that φ(εnk )(xnk , t+ βnk)
k→∞−−−→ 0. Moreover,

(i) if αnk − βnk < φ(εnk )(xnk , t+ βnk) for all k ∈ N, then S̃(εnk )(t+ αnk , t+ βnk)xnk
k→∞−−−→ x;

(ii) if αnk−βnk ≥ φ(εnk )(xnk , t+βnk) for all k ∈ N, then S̃(εnk )(t+αnk , t+βnk)xnk
k→∞−−−→ I(0)(x).

Proof. Note that S(εn) (t+ αn, t+ βn)xn
n→∞−−−→ x ∈M(0). By the collective condition (T), there

exist a subsequence {xnk}k∈N of {xn}n∈N and a sequence γk
k→∞−−−→ 0, such that t + γk + αnk ≥

t+ βnk and
S(εnk ) (t+ γk + αnk , t+ βnk)xnk ∈M(εnk )
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for all k ∈ N. Consequently,

φ(εnk )(xnk , t+ βnk) ≤ γk + αnk − βnk
k→∞−−−→ 0.

Hence, φ(εnk )(xnk , t+ βnk)
k→∞−−−→ 0.

(i) Note that S̃(εnk )(t + τ, t + βnk)xnk = S(εnk )(t + τ, t + βnk)xnk for all τ ∈ [βnk , βnk +

φ(εnk )(xnk , t+ βnk)), k ∈ N. Thus, if αnk − βnk < φ(εnk )(xnk , t+ βnk) for all k ∈ N, then

S̃(εnk )(t+ αnk , t+ βnk)xnk = S(εnk )(t+ αnk , t+ βnk)xnk
k→∞−−−→ S(0)(t, t)x = x.

(ii) Since S(εnk )(t+ βnk + φ(εnk )(xnk , t+ βnk), t+ βnk)xnk ∈M(εnk ) for all k ∈ N, and

S(εnk )(t+ βnk + φ(εnk )(xnk , t+ βnk), t+ βnk)xnk
k→∞−−−→ x,

it follows by the continuity of I(εnk ) that

lim
k→∞

S̃(εnk )(t+ βnk + φ(εnk )(xnk , t+ βnk), t+ βnk)xnk

= lim
k→∞

I(εnk )(S(εnk )(t+ βnk + φ(εnk )(xnk , t+ βnk), t+ βnk)xnk)

= I(0)(x) /∈M(0).

Let wk = S̃(εnk )(t + βnk + φ(εnk )(xnk , t + βnk), t + βnk)xnk , k ∈ N. Thus, if αnk − βnk ≥
φ(εnk )(xnk , t+ βnk) for all k ∈ N, then by Lemma 3.10,

S̃(εnk )(t+ αnk , t+ βnk + φ(εnk )(xnk , t+ βnk))wk
k→∞−−−→ I(0)(x),

that is,
S̃(εnk )(t+ αnk , t+ βnk)xnk

k→∞−−−→ I(0)(x).

Hence, the proof is complete.

3.6.2 Upper semicontinuity

At first place, we need to obtain informations about the impulsive dynamics that happens
inside the attractor {Ã(0)(t) : t ∈ R}. In fact, we prove that all the points that undergo impulse
must enter in the attractor {Ã(0)(t) : t ∈ R}.

Proposition 3.2. Assume that conditions (A1), (A3) and (A8) hold. The inclusion
I(0)(M(0)) ⊂ Ã(0)(t) \M(0) holds for all t ∈ R.

Proof. Let t ∈ R be fixed and arbitrary, and let x ∈ I(0)(M(0)). By condition (A8), there exist



100

τ1 ≥ 2ξ and y1 ∈ I(0)(M(0)) such that

S̃(0)(t, t− τ1)y1 = x.

Since y1 ∈ I(0)(M(0)), we may use condition (A8) again to obtain the existence of τ2 ≥ 2ξ and
y2 ∈ I(0)(M(0)) such that

S̃(0)(t− τ1, t− τ1 − τ2)y2 = y1.

Hence,
S̃(0)(t, t− τ1)S̃(0)(t− τ1, t− τ1 − τ2)y2 = S̃(0)(t, t− τ1)y1 = x,

that is,
S̃(0)(t, t− τ1 − τ2)y2 = x.

Proceeding with this recursive process, we get the existence of sequences {τk}k∈N ⊂ [2ξ,∞)

and {yk}k∈N ⊂ I(0)(M(0)) satisfying

S̃(0)(t, t− sk)yk = x for all k ∈ N,

where sk =
k∑
i=1

τi. Note that {sk}k∈N is increasing because τi ≥ 2ξ for all i ∈ N. Thus,

sk
k→∞−−−→∞. Now, since

d(x, Ã(0)(t)) = d(S̃(0)(t, t− sk)yk, Ã(0)(t))

≤ dH(S̃(0)(t, t− sk)I(0)(M(0)), Ã(0)(t)), k ∈ N,

and I(0)(M(0)) is bounded by condition (A3), it follows that

d(x, Ã(0)(t)) ≤ lim
k→∞

dH(S̃(0)(t, t− sk)I(0)(M(0)), Ã(0)(t)) = 0,

that is, d(x, Ã(0)(t)) = 0. Therefore, x ∈ Ã(0)(t) \M(0) as we have condition (A3).

Proposition 3.3. Assume that conditions (A1), (A3), (A7) and (A8) hold. The inclusion
M(0) ⊂ Ã(0)(t) holds for all t ∈ R. In particular, M(0) is compact in Z.

Proof. Let t ∈ R be fixed and arbitrary, and let x ∈ M(0) be given. By condition (A8), there
exist y ∈ I(0)(M(0)) and τ ≥ 2ξ such that

S(0)(t, t− τ)y = z ∈M(0) and S̃(0)(t, t− τ)y = I(0)(x) ∈ I(0)(M(0)).

Hence,
I(0)(x) = S̃(0)(t, t− τ)y = I(0)(z)



101

and, since I(0) is injective (see condition (A7)), we obtain x = z.

On the other hand, since S(0)(t, t− τ)y = z ∈M(0), we get τ = φ(0)(y, t− τ). Then

x = z = S(0)(t, t− τ)y = lim
s→τ−

S(0)(t, t− s)y = lim
s→τ−

S̃(0)(t, t− s)y.

Let {sk}k∈N ⊂ [0, τ) be a sequence such that sk
k→∞−−−→ τ . Consequently, lim

k→∞
S̃(0)(t, t−sk)y = x.

According to Proposition 3.2, we have

I(0)(M(0)) ⊂ Ã(0)(t− sk)\M(0), for all k ∈ N.

Hence,

S̃(0)(t, t− sk)y ∈ S̃(0)(t, t− sk)[Ã(0)(t− sk)\M(0)] = Ã(0)(t) \M(0), for all k ∈ N,

that is, {S̃(0)(t, t − sk)y}k∈N ⊂ Ã(0)(t). Since S̃(0)(t, t − sk)y
k→∞−−−→ x and Ã(0)(t) is closed, we

obtain x ∈ Ã(0)(t), which proves the result.

Proposition 3.4. Assume that conditions (A1) − (A9) hold. Assume that
⋃

ε∈[0,1]

Ã(ε)(t) is

bounded in Z for each t ∈ R. Then, the set

⋃
ε∈[0,1]

Ã(ε)(t)

is compact, for each t ∈ R.

Proof. Let {xn}n∈N be a sequence in
⋃

ε∈[0,1]

Ã(ε)(t). For each n ∈ N, there exists εn ∈ [0, 1] such

that xn ∈ Ã(εn)(t). We may assume without loss of generality that εn
n→∞−−−→ ε0 ∈ [0, 1].

Suppose xn ∈ M(εn) for every n ∈ N (up to a subsequence). Using the fact that
dH(M(εn),M(ε0))

n→∞−−−→ 0 and M(ε0) is compact by Proposition 3.3, then {xn}n∈N admits a
convergent subsequence.

Now, suppose up to a subsequence that xn /∈M(εn) for every n ∈ N. Then

xn = S̃(εn)(t, t− ξ)bn

for some bn ∈ Ã(εn)(t − ξ) \M(εn), n ∈ N. By hypothesis, there exists a bounded set B0 ⊂ Z

such that
⋃

ε∈[0,1]

Ã(ε)(t) ⊂ B0.

Case 1: φ(εn)(b
n, t− ξ) > ξ, up to a subsequence.

In this case,
xn = S̃(εn)(t, t− ξ)bn = S(εn)(t, t− ξ)bn.
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Since S(0)(t, t− ξ)B0 is relatively compact (see (A9)), condition (A2) holds and

dH(xn, S(0)(t, t− ξ)B0) ≤ dH(xn, S(0)(t, t− ξ)bn) + dH(S(0)(t, t− ξ)bn, S(0)(t, t− ξ)B0),

then {xn}n∈N admits a convergent subsequence.

Case 2: φ(εn)(b
n, t− ξ) ≤ ξ, up to a subsequence.

In this case,

xn = S̃(εn)(t, t− ξ)bn = S(εn)(t, t− ξ + φ(εn)(b
n, t− ξ))(bn)+

1 ,

as we have condition (A6). Note that {φ(εn)(b
n, t − ξ)}n∈N and {(bn)+

1 }n∈N admit convergent
subsequences. Using condition (A2), we conclude that {xn}n∈N admits a convergent
subsequence. Hence, the proof is complete.

Next, we exhibit the upper semicontinuity of a family of impulsive pullback attractors.

Theorem 3.6. Assume that conditions (A1) − (A9) and the collective condition (T) hold.
Assume that

⋃
ε∈[0,1]

⋃
t∈R

Ã(ε)(t) is bounded in Z. The family {Ã(ε)(t) : t ∈ R} of impulsive pullback

attractors is upper semicontinuous at ε = 0, that is,

dH(Ã(ε)(t), Ã(0)(t))
ε→0+−−−→ 0,

for all t ∈ R.

Proof. Suppose, arguing by contradiction, that there exist t ∈ R, δ0 > 0, a sequence
{εn}n∈N ⊂ (0, 1] with εn

n→∞−−−→ 0, and a sequence {xn}n∈N such that

xn ∈ Ã(εn)(t) and d(xn, Ã(0)(t)) ≥ δ0 for all n ∈ N. (3.13)

Suppose xn ∈ M(εn) for every n ∈ N (up to a subsequence). Using the fact that
dH(M(εn),M(0))

n→∞−−−→ 0 and M(0) is compact by Proposition 3.3, then {xn}n∈N admits a
convergent subsequence to some point x0 ∈M(0) ⊂ Ã(0)(t) which contradicts (3.13) as n→∞.

Now, let us assume that xn 6∈ M(εn) for all n ∈ N. Using the invariance of the impulsive
pullback attractor, there exists bn−k ∈ Ã(εn)(−k) \M(εn) such that

xn = S̃(εn)(t,−k)bn−k,

for each natural k such that t+ k ≥ 1. By Proposition 3.4, we may assume that

xn
n→∞−−−→ x0 and bn−k

n→∞−−−→ b−k.



103

Since M(0) ⊂ Ã(0)(t) (Proposition 3.3), we may assume that x0 /∈M(0).

According to the hypothesis, there exists a bounded set C0 ⊂ Z such that {bn−k}n∈N ⊂ C0

and b−k ∈ C0 for all integer k ≥ −t+ 1.

Case 1: b−k /∈M(0) for all natural k ≥ −t+ 1, up to a subsequence.

By Corollary 3.2, there exists a sequence {ηn}n∈N ⊂ R+, with t+ηn ≥ −k and ηn
n→∞−−−→ 0,

such that S̃(εn)(t + ηn,−k)bn−k
n→∞−−−→ S̃(0)(t,−k)b−k. Since x0 /∈ M(0), it follows by Lemma 3.10

that
S̃(εn)(t+ ηn, t)S̃(εn)(t,−k)bn−k

n→∞−−−→ x0.

Hence, x0 = S̃(0)(t,−k)b−k. As n→∞ in (3.13), we obtain

dH(S̃(0)(t,−k)b−k, Ã(0)(t)) ≥ δ0

for all k ≥ −t+ 1. But dH(S̃(0)(t,−k)b−k, Ã(0)(t))
k→∞−−−→ 0, which is a contradiction.

Case 2: b−k ∈M(0) for all natural k ≥ −t+ 1, up to a subsequence.

By Lemma 3.11, we may assume that φ(εn)(b
n
−k,−k)

n→∞−−−→ 0 and

S̃(εn)(φ(εn)(b
n
−k,−k)− k,−k)bn−k

n→∞−−−→ I(0)(b−k) ∈ I(0)(M(0)).

Since k ≥ −t+ 1, we conclude, using Corollary 3.2, that there exists a sequence {ηn}n∈N ⊂ R+,
with ηn

n→∞−−−→ 0, such that t+ ηn > φ(εn)(b
n
−k,−k)− k for k sufficiently large and

S̃(εn)(t+ ηn,−k)bn−k
n→∞−−−→ S̃(0)(t,−k)I(0)(b−k).

Since x0 /∈M(0), it follows by Lemma 3.10 that

S̃(εn)(t+ ηn, t)S̃(εn)(t,−k)bn−k
n→∞−−−→ x0.

Hence, x0 = S̃(0)(t,−k)I(0)(b−k). As n→∞ in (3.13), we obtain

dH(S̃(0)(t,−k)I(0)(b−k), Ã(0)(t)) ≥ δ0

for all k ≥ −t + 1. But, as I(0)(M(0)) is bounded by condition (A3), it follows that
dH(S̃(0)(t,−k)I(0)(b−k), Ã(0)(t))

k→∞−−−→ 0, which is a contradiction.

In conclusion, we obtain that the family {Ã(ε)(t) : t ∈ R} is upper semicontinuous at ε = 0,
and this ends the result.



Chapter

4

Non-autonomous Klein-Gordon-Zakharov
system with impulsive action

This chapter is devoted to the study of the non-autonomous Klein-Gordon-Zakharov
system presented in Chapter 2, given by (2.1) − (2.3), subject to impulsive effects at variable
times. We are interested in the asymptotic dynamics of the solutions of the following impulsive
non-autonomous problem

utt −∆u+ u+ η(−∆)
1
2ut + aε(t)(−∆)

1
2vt = f(u), (x, t) ∈ Ω× (τ,∞),

vtt −∆v + η(−∆)
1
2vt − aε(t)(−∆)

1
2ut = 0, (x, t) ∈ Ω× (τ,∞),

u = v = 0, (x, t) ∈ ∂Ω× (τ,∞),

I : M ⊂ Y0 → Y0,

(4.1)

with initial conditions

u(τ, x) = u0(x), ut(τ, x) = u1(x), v(τ, x) = v0(x), vt(τ, x) = v1(x), x ∈ Ω, τ ∈ R, (4.2)

where, as presented in Chapter 2, η > 0 is constant, Ω is a bounded smooth domain in Rn,
n ≥ 3, with the boundary ∂Ω assumed to be regular enough, the function aε : R → (0,∞)

is continuously differentiable in R and it is (β, C)-Hölder continuous for each ε ∈ [0, 1]

(see conditions (2.4) and (2.6)), and the nonlinearity f ∈ C1(R) satisfies the dissipativeness
condition given by (2.7) and also the subcritical growth condition given by (2.8).

The set M , called the impulsive set, is a nonempty closed subset of the phase space

Y0 = X
1
2 ×X ×X

1
2 ×X,

where X = L2(Ω), which satisfies the conditions presented in Definition 3.2. The impulse
function I : M ⊂ Y0 → Y0 is assumed to be continuous and will be responsible by the occurrence
of impulses at variable times.
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All the results of this chapter are presented in the article [18].

4.1 Existence of the impulsive pullback attractor

We shall assume that the impulsive set M ⊂ Y0 satisfies condition (T) with respect to the
evolution process {S(t, τ) : t ≥ τ ∈ R} given in (2.40), and the impulse function I : M → Y0

satisfies the following conditions:

(H1) I(M) ∩M = ∅;

(H2) there exists µ > 0 such that ‖I(w)‖2
Y0
≤ µ for all w ∈M ;

(H3) there exists ξ > 0 such that φ(w, τ) ≥ 2ξ for all w ∈ I(M) and τ ∈ R.

Let W̃ (t) = S̃(t, τ)W0, t ≥ τ , be the impulsive solution of the impulsive non-autonomous
problem 

Wt +A(t)W = F (W ), t > τ,

W (τ) = W0 ∈ Y0, τ ∈ R,

I : M → Y0,

(4.3)

where {S̃(t, τ) : t ≥ τ ∈ R} is its associated impulsive evolution process.

The method chosen to show the existence of the impulsive pullback attractor is to
construct a family of compact absorbing sets. To achieve this goal, first we need some technical
lemmas. In what follows, we prove that it is possible to obtain some kind of control over the
impulsive trajectories.

Lemma 4.1. Given r ≥ µ, there exists `r > 0 such that ‖S̃(t, τ)W0‖2
Y0
≤ `r for all W0 ∈ Y0

with ‖W0‖2
Y0
≤ r and t ≥ τ ∈ R.

Proof. In fact, let τ ∈ R, W0 ∈ Y0 with ‖W0‖2
Y0
≤ r and t ≥ τ . By the proof of Theorem 2.4,

`r = sup{‖S(t, τ)W0‖2
Y0

: t ≥ τ, ‖W0‖2
Y0
≤ r} <∞.

Since I(M) ⊂ BY0(0, µ) ⊂ BY0(0, r) due to condition (H2), it follows that ‖S̃(t, τ)W0‖2
Y0
≤ `r

for all t ≥ τ .

Lemma 4.2. There exists R ≥ µ such that for any bounded subset B of Y0, one can find
t0(B) ≥ 0 such that

‖S̃(t, τ)W0‖2
Y0
≤ R,

for all W0 ∈ B and t ≥ τ + t0(B).
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Proof. By Theorem 2.4, there exist r0 > 0 (independent of B) and t0 = t0(B) > 0 such that

S(t, τ)B ⊂ BY0(0, r0) for all t ≥ τ + t0(B).

According to Lemma 4.1, taking R = max{`µ, r0}, we obtain

‖S̃(t, τ)W0‖2
Y0
≤ R,

for all W0 ∈ B and t ≥ τ + t0(B).

In the following result, we show that the impulsive process {S̃(t, τ) : t ≥ τ ∈ R} is a map
that takes precompact sets into precompact sets.

Lemma 4.3. If G is a precompact subset of Y0 and t ≥ τ ∈ R satisfies 0 ≤ t − τ < ξ, then
S̃(t, τ)G is precompact in Y0.

Proof. Let τ ∈ R be fixed, and observe that for t = τ , it follows that the set

S̃(τ, τ)G = G

is precompact in Y0. Thus, let us assume that 0 < t− τ < ξ. Note that we may consider only
the case in which we have φ(u, τ) ≤ t − τ for all u ∈ G. In fact, otherwise we could write
G = G1 ∪G2, where

φ(·, τ)|G1 ≤ t− τ and φ(·, τ)|G2 > t− τ

and so, in this last one, we have τ < t < φ(u, τ)+τ for all u ∈ G2, that is, S̃(t, τ)G2 = S(t, τ)G2,
and then the precompactness of S̃(t, τ)G2 follows from the compactness of the evolution process
{S(t, τ) : t ≥ τ ∈ R}, see Proposition 2.6. Thereby, we assume φ(u, τ) ≤ t− τ for all u ∈ G.

Now, define the auxiliary set

B =
⋃
r∈[τ,t]

S(r, τ)G.

Note that B is precompact. In fact, take a sequence {xn}n∈N ⊂ B. Then xn = S(rn, τ)zn for
some rn ∈ [τ, t] and zn ∈ G, for each n ∈ N. Since {zn}n∈N ⊂ G, and G is compact, we can
assume, up to subsequences, that zn

n→∞−−−→ z ∈ G and rn
n→∞−−−→ r ∈ [τ, t]. Hence, by continuity,

we get
xn = S(rn, τ)zn

n→∞−−−→ S(r, τ)z = x

and, therefore, x ∈ B. This shows the claim.

Since I is a continuous map and B∩M is precompact, we may use the previous argument
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to conclude that ⋃
r∈[τ,t]

S(t, r)(I(B ∩M))

is also precompact.

In order to conclude this result, we are going to show that

S̃(t, τ)G ⊆
⋃
r∈[τ,t]

S(t, r)(I(B ∩M)).

Indeed, given u ∈ G and taking into account that φ(u, τ) ≤ t− τ for all u ∈ G, we have

S̃(t, τ)u = S̃(t, φ(u, τ) + τ)u+
1 ,

where
u+

1 = S̃(φ(u, τ) + τ, τ)u = I(S(φ(u, τ) + τ, τ)u) ∈ I(B ∩M).

On the other hand, setting τ1 = φ(u, τ) + τ and using (H3), we obtain

0 ≤ t− τ − φ(u, τ) < t− τ < ξ < φ(u+
1 , τ1),

that is, τ1 ≤ t < φ(u+
1 , τ1) + τ1 and this condition ensures that

S̃(t, τ)u = S̃(t, τ1)u+
1 = S(t, τ1)u+

1 ∈ S(t, τ1)(I(B ∩M)).

Therefore,
S̃(t, τ)G ⊆

⋃
r∈[τ,t]

S(t, r)(I(B ∩M)),

which ensures the precompactness of S̃(t, τ)G in Y0.

Finally, in the next result we will construct a family of compact sets that pullback absorbs
bounded subsets of the phase space.

Theorem 4.1. The impulsive evolution process {S̃(t, s) : t ≥ s ∈ R} is pullback S̃-strongly
compact dissipative.

Proof. Let B0 = {w ∈ Y0 : ‖w‖2
Y0
≤ R}, where R ≥ µ comes from Lemma 4.2, and let τ ∈ (ξ, 2ξ)

be fixed. We claim that the set G(t) = S̃(t, t − τ)B0 is precompact in Y0 for each t ∈ R. In
fact, we can write B0 = C1(t) ∪ C2(t), where

C1(t) = {w ∈ B0 : φ(w, t− τ) > ξ} and C2(t) = {w ∈ B0 : φ(w, t− τ) ≤ ξ}.

Let y ∈ G(t) be given. Then y = S̃(t, t−τ)w for some w ∈ B0. If w ∈ C1(t), then φ(w, t−τ) > ξ,
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that is,

y = S̃(t, t− τ + ξ)S̃(t− τ + ξ, t− τ)w = S̃(t, t− τ + ξ)S(t− τ + ξ, t− τ)w,

that is, y ∈ S̃(t, t− τ + ξ)S(t− τ + ξ, t− τ)C1(t).

Now, if w ∈ C2(t), then φ(w, t− τ) ≤ ξ. We may write

y = S̃(t, t− τ)w = S̃(t, t− τ + φ(w, t− τ))S̃(t− τ + φ(w, t− τ), t− τ)w.

Since z = S̃(t− τ + φ(w, t− τ), t− τ)w ∈ I(M), it follows from (H3) that

φ(z, t− τ + φ(w, t− τ)) ≥ 2ξ > τ > τ − φ(w, t− τ).

Thus, y = S(t, t− τ + φ(w, t− τ))S̃(t− τ + φ(w, t− τ), t− τ)w, consequently,

y ∈ S(t, t− τ + φ(w, t− τ))S̃(t− τ + φ(w, t− τ), t− τ)C2(t).

In this way, we conclude that

G(t) = S̃(t, t− τ + ξ)S(t− τ + ξ, t− τ)C1(t)

⋃
S(t, t− τ + φ(w, t− τ))S̃(t− τ + φ(w, t− τ), t− τ)C2(t).

Since S̃(t− τ + φ(w, t− τ), t− τ)C2(t) is bounded, because of Lemma 4.1, and using the
fact that S(t, s) : Y0 → Y0 is a compact map for each t > s (see Proposition 2.6), it follows that
the set

S(t, t− τ + φ(w, t− τ))S̃(t− τ + φ(w, t− τ), t− τ)C2(t)

is precompact in Y0. Furthermore, since S(t−τ+ξ, t−τ)C1(t) is precompact in Y0 by Proposition
2.6, and 0 < t − (t − τ + ξ) = τ − ξ < ξ, we can apply Lemma 4.3 to guarantee that the set
S̃(t, t − τ + ξ)S(t − τ + ξ, t − τ)C1(t) is precompact in Y0. Hence, G(t) is compact in Y0, for
each t ∈ R, which proves our claim.

Let ε0 > 0 and define K(t) =
⋃

0≤ε≤ε0 S̃(t+ ε, t)G(t) which is compact in Y0.

Now, it remains to prove that the family {K(t) : t ∈ R} pullback S̃-absorbs bounded
subsets of Y0 under the action of {S̃(t, s) : t ≥ s ∈ R}. To this end, let a bounded subset
B of Y0 be given. In Lemma 4.2, we have shown that there exists t0 = t0(B) ≥ 0 such that
‖S̃(t, s)W0‖2

Y0
≤ R for all W0 ∈ B and t− s ≥ t0. Thus,

S̃(t− τ, t− τ − r)B ⊂ B0 for all r ≥ t0.
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Hence,
S̃(t+ ε, t− τ − r)B = S̃(t+ ε, t− τ)S̃(t− τ, t− τ − r)B

⊂ S̃(t+ ε, t− τ)B0 = S̃(t+ ε, t)G(t) ⊂ K(t)

for all r ≥ t0 and 0 ≤ ε ≤ ε0. Therefore,

S̃(t+ ε, s)B ⊂ K(t) whenever t− s > t0 + ξ.

In addition, since (t+ ε)− (t− τ) = τ + ε > 0, and R ≥ µ, it follows by Lemma 4.1 that

‖S̃(t+ ε, t− τ)W0‖2
Y0
≤ `R, for all t ∈ R and all W0 ∈ B0.

Thus, K(t) ⊂ BY0(0, `R) for all t ∈ R. Hence,
⋃
t∈RK(t) ⊂ BY0(0, `R) and the impulsive

evolution process {S̃(t, s) : t ≥ s ∈ R} is pullback S̃-strongly compact dissipative.

By Theorems 4.1 and 3.3, we have the following straightforward result.

Theorem 4.2. The impulsive evolution process {S̃(t, s) : t ≥ s ∈ R} associated with the
impulsive non-autonomous problem (4.3) has an impulsive pullback attractor {Ã(t) : t ∈ R}
such that

⋃
t≤t0 Ã(t) is bounded in Y0 for all t0 ∈ R.

4.2 Upper semicontinuity

The aim of this section is to study the robustness of the family {Ã(ε)(t) : t ∈ R} of
impulsive pullback attractors, associated with the impulsive non-autonomous problem (4.1), as
the parameter ε ∈ [0, 1] approaches zero.

Let us assume that conditions (A1), (A3), (A4), (A5), (A6), (A7) and (A8) from Section
3.6 hold. In addition, we also assume that the collective condition (T) holds.

By Theorem 2.9, condition (A2) is already verified. Moreover, by Proposition 2.6, the
condition (A9) also holds. According to the proof of Theorem 4.1, we can conclude that⋃
t∈R Ã(ε)(t) ⊂

⋃
t∈RK(ε)(t) ⊂ BY0(0, `R), for all ε ∈ [0, 1], with R independent of ε. Thus, we

may assume that
⋃

ε∈[0,1]

⋃
t∈R

Ã(ε)(t) is bounded in Y0.

Under these previous conditions and according to Theorem 3.6, we can state the following
upper semicontinuity result.

Theorem 4.3. The family {Ã(ε)(t) : t ∈ R} of impulsive pullback attractors associated with the
impulsive non-autonomous problem (4.1) is upper semicontinuous at ε = 0.



Bibliography

[1] ADAMS, Robert A.; FOURNIER, John J. F. Sobolev Spaces. 2 ed. Oxford: Academic
Press, 2003. 305 p. (Pure and Applied Mathematics; 140).

[2] ALMEIDA, Ruy G. C.; SANTOS, Mauro L. Lack of exponential decay of a coupled system
of wave equations with memory. Nonlinear Analysis: Real World Applications, v.
12, n. 2, p. 1023-1032, 2011.

[3] AMANN, Herbert. Linear and Quasilinear Parabolic Problems. Volume I: Abstract
Linear Theory. Birkhäuser Verlag, Basel, 1995. 338 p. (Monographs in mathematics; Vol.
89).

[4] ARRIETA, José; CARVALHO, Alexandre N.; HALE, Jack K. A damped hyperbolic
equation with critical exponent. Communications in Partial Differential Equations,

v. 17, n. 5-6, p. 841-866, 1992.

[5] BABIN, Anatolĭi V.; VISHIK, Mark I.Attractors of evolution equations. Amsterdam,
The Netherlands: North-Holland, 1992. 532 p. (Studies in mathematics and its
applications; 25).

[6] BELLAN, Paul M. Fundamentals of Plasma Physics. Cambridge: Cambridge
University Press, 2006. 536 p.

[7] BEZERRA, Flank D. M.; CARBONE, Vera L.; NASCIMENTO, Marcelo J. D.;
SCHIABEL, Karina. Regularity and upper semicontinuity of pullback attractors for a class
of non-autonomous thermoelastic plate systems. Pacific Journal of Mathematics, v.
301, n. 2, p. 395-419, 2019.

[8] BEZERRA, Flank D. M.; CARBONE, Vera L.; NASCIMENTO, Marcelo J. D.;
SCHIABEL, Karina. Pullback attractors for a class of non-autonomous thermoelastic plate
systems. Discrete and Continuous Dynamical Systems - B, v. 23, n. 9, p. 3553-3571,
2018.

[9] BONOTTO, Everaldo M.; FEDERSON, Marcia. Topological conjugation and asymptotic
stability in impulsive semidynamical systems. Journal of Mathematical Analysis and

Applications, v. 326, n. 2, p. 869-881, 2007.

110



111

[10] BONOTTO, Everaldo M. Flows of characteristic 0+ in impulsive semidynamical systems.
Journal of Mathematical Analysis and Applications, v. 332, n. 1, p. 81-96, 2007.

[11] BONOTTO, Everaldo M.; BORTOLAN, Matheus C., CARVALHO, Alexandre N.;
CZAJA, Radoslaw. Global attractors for impulsive dynamical systems - a precompact
approach. Journal of Differential Equations, v. 259, n. 7, p. 2602-2625, 2015.

[12] BONOTTO, Everaldo M.; BORTOLAN, Matheus C.; COLLEGARI, Rodolfo; CZAJA,
Radoslaw. Semicontinuity of attractors for impulsive dynamical systems. Journal of

Differential Equations, v. 261, n. 8, p. 4338-4367, 2016.

[13] BONOTTO, Everaldo M.; BORTOLAN, Matheus C.; CARABALLO, Tomás;
COLLEGARI, Rodolfo. Impulsive non-autonomous dynamical systems and impulsive
cocycle attractors. Mathematical Methods in the Applied Sciences, v. 40, n. 4,
p. 1095-1113, 2017.

[14] BONOTTO, Everaldo M.; BORTOLAN, Matheus C.; CARABALLO, Tomás;
COLLEGARI, Rodolfo. Attractors for impulsive non-autonomous dynamical systems and
their relations. Journal of Differential Equations, v. 262, n. 6, p. 3524-3550, 2017.

[15] BONOTTO, Everaldo M.; KALITA, Piotr. On attractors of generalized semiflows with
impulses. The Journal of Geometric Analysis, v. 30, p. 1412-1449, 2020.

[16] BONOTTO, Everaldo M.; BORTOLAN, Matheus C.; CARABALLO, Tomás;
COLLEGARI, Rodolfo. Upper and lower semicontinuity of impulsive cocycle attractors
for impulsive non-autonomous systems. Journal of Dynamics and Differential

Equations. Accepted.

[17] BONOTTO, Everaldo M.; NASCIMENTO, Marcelo J. D.; SANTIAGO, Eric B. Long-time
behaviour for a non-autonomous Klein-Gordon-Zakharov system. Submitted.

[18] BONOTTO, Everaldo M.; NASCIMENTO, Marcelo J. D.; SANTIAGO, Eric B. Long-time
behaviour for an impulsive non-autonomous Klein-Gordon-Zakharov system. Pre-print.

[19] BORTOLAN, Matheus C.; UZAL, José M. Pullback attractors to impulsive evolution
processes: applications to differential equations and tube conditions. Discrete and

Continuous Dynamical Systems - A, v. 40, n. 5, p. 2791-2826, 2020.

[20] BREZIS, Haim. Functional Analysis, Sobolev Spaces and Partial Differential

Equations. New York: Springer, 2011. 599 p. (Universitext).



112

[21] CARBONE, Vera L.; NASCIMENTO, Marcelo J. D.; SCHIABEL, Karina.; SILVA,
Ricardo P. Pullback attractors for a singularly nonautonomous plate equation. Electronic
Journal of Differential Equations, v. 2011, n. 77, p. 1-13, 2011.

[22] CARABALLO, Tomás; CARVALHO, Alexandre N.; LANGA, José A.; RIVERO, Felipe. A
non-autonomous strongly damped wave equation: Existence and continuity of the pullback
attractor. Nonlinear Analysis, v. 74, n. 6, p. 2272-2283, 2011.

[23] CARABALLO, Tomás; CARVALHO, Alexandre N.; LANGA, José A.; RIVERO, Felipe.
Existence of pullback attractors for pullback asymptotically compact processes.Nonlinear

Analysis, v. 72, n. 3-4, p. 1967-1976, 2010.

[24] CARVALHO, Alexandre N.; CHOLEWA, Jan W. Local well-posedness for strongly
damped wave equations with critical nonlinearities. Bulletin of the Australian

Mathematical Society, v. 66, n. 3, p. 443-463, 2002.

[25] CARVALHO, Alexandre N.; LANGA, José A.; ROBINSON, James C. Attractors for

infinite-dimensional non-autonomous dynamical systems. New York: Springer,
2013. 409 p. (Applied Mathematical Sciences; 182).

[26] CARVALHO, Alexandre N.; NASCIMENTO, Marcelo J. D. Singularly non-autonomous
semilinear parabolic problems with critical exponents. Discrete and Continuous

Dynamical Systems - S, v. 2, n. 3, p. 449-471, 2009.

[27] CHEPYZHOV, Vladimir V.; VISHIK, Mark I. Attractors for Equations of

Mathematical Physics. Providence, Rhode Island: American Mathematical Society,
2002. 363 p. (AMS Colloquium Publications; 49).

[28] CHOLEWA, Jan W.; Dlotko, Tomasz. Global Attractors in Abstract Parabolic

Problems. Cambridge, United Kingdom: Cambridge University Press, 2000. 235 p.
(London Mathematical Society Lecture Note Series; 278).

[29] CIESIELSKI, Krzysztof. On semicontinuity in impulsive dynamical systems. Bulletin of

the Polish Academy of Sciences Mathematics, v. 52, p. 71-80, 2004.

[30] CZAJA, Radoslaw. Differential Equations with Sectorial Operator. Katowice:
Wydawnictwo Uniwersytetu Slaskiego, 2002. 118 p.

[31] DENDY, Richard O. Plasma Dynamics. New York: Oxford University Press, 1990. 176
p. (Oxford science publications).



113

[32] GAN, Zaihui; ZHANG, Jian. Instability of standing waves for Klein-Gordon-Zakharov
equations with different propagation speeds in three space dimensions. Journal of

Mathematical Analysis and Applications, v. 307, n. 1, p. 219-231, 2005.

[33] GAN, Zaihui. Orbital instability of standing waves for the Klein-Gordon-Zakharov system.
Advanced Nonlinear Studies, v. 8, n. 2, p. 413-428, 2008.

[34] HALE, Jack K. Asymptotic Behavior of Dissipative Systems American
Mathematical Society, 1988. 198 p. (Mathematical Surveys and Monographs; 25).

[35] HENRY, Daniel. Geometric Theory of Semilinear Parabolic Equations. Berlin:
Springer, 1981. 348 p. (Lecture Notes in Mathematics; 840).

[36] HONG, Jeong-Mo; KIM, Chang-Hun. Discontinuous Fluids. ACM Transactions on

Graphics, v. 24, n. 3, p. 915-920, 2005.

[37] JIN, Kun-Peng; LIANG, Jin; XIAO, Ti-Jun. Asymptotic behavior for coupled systems
of second order abstract evolution equations with one infinite memory. Journal of

Mathematical Analysis and Applications, v. 475, n. 1, p. 554-575, 2019.

[38] KATO, Tosio. Perturbation Theory for Linear Operators. Reprint of the 1980
Edition. Berlin: Springer, 1995. 619 p. (Classics in Mathematics).

[39] KAUL, Saroop K. On impulsive semidynamical systems. Journal of Mathematical

Analysis and Applications, v. 150, n. 1, p. 120-128, 1990.

[40] LIU, Zhuangyi; ZHENG, Songmu. Semigroups associated with dissipative systems.

Chapman and Hall/CRC, 1999. 206 p. (Research Notes in Mathematics; 398).

[41] MA, Zhiyong; QIN, Yuming. Global Well-posedness and Asymptotic Behavior of

the Solutions to Non-classical Thermo(visco)elastic Models. Singapore: Springer,
2016. 200 p.

[42] MASMOUDI, Nader; NAKANISHI, Kenji. From the Klein-Gordon-Zakharov system to
the nonlinear Schrödinger equation. Journal of Hyperbolic Differential Equations,

v. 2, n. 4, p. 975-1008, 2005.

[43] OHTA, Masahito; TODOROVA, Grozdena. Strong instability of standing waves for the
nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system. SIAM Journal

on Mathematical Analysis, v. 38, n. 6, p. 1912-1931, 2007.

[44] OZAWA, Tohru; TSUTAYA, Kimitoshi; TSUTSUMI, Yoshio. Well-posedness in energy
space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different



114

propagation speeds in three space dimensions. Mathematische Annalen, v. 313, n.
1, p. 127–140, 1999.

[45] PAZY, Amnon. Semigroups of Linear Operators and Applications to Partial

Differential Equations. New York: Springer, 1983. 279 p. (Applied Mathematical
Sciences; 44).

[46] ROBINSON, James C. Infinite-dimensional Dynamical Systems. An introduction
to dissipative parabolic PDEs and the theory of global attractors. Cambridge University
Press, 2001. 461 p. (Cambridge texts in applied mathematics).

[47] ROZKO, V. F. A class of almost periodic motions in pulsed system. Differentsial’nye

Uravneniya, v. 8, p. 2012-2022, 1972.

[48] ROZKO, V. F. Stability in terms of Lyapunov discontinuous dynamic systems.
Differentsial’nye Uravneniya, v. 11, p. 1005-1012, 1975.

[49] SELL, George R.; YOU, Yuncheng. Dynamics of Evolutionary Equations. New York:
Springer, 2002. 670 p. (Applied Mathematical Sciences; 143).
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