
Federal University of São Carlos– UFSCar
Center for Exact Sciences and Technology– CCET

Departamento de Engenharia Elétrica– DEE
Programa de bacharelado em Engenharia Elétrica

Rafael Gomes da Silva

Obstacle detection and avoidance for a
mobile robot

São Carlos
2020

Rafael Gomes da Silva

Obstacle detection and avoidance for a
mobile robot

Report of the project done for my Undergraduate
Thesis, submitted to the Bachelor of Electrical En-
gineering program at the Center for Exact Sciences
and Technology of the Federal University of São
Carlos, as part of the requirements for obtaining a
Bachelor of Electrical Engineering title.

Specialization area: Robotics and Complex Systems

Advisor: Faïz Ben Amar
Co-advisor: Roberto Santos Inoue

São Carlos
2020

Confidentiality Notice

This present document is not confidential. It can be communicated outside in paper
format or distributed in electronic format.

Acknowledgment

I would like to thank all the people involved during the development of this project,
who directly or indirectly helped to acquire new and enriching skills and knowledge.

Special thanks to Mr. Ben Amar, team leader of the SYROCO "Complex Robotic
Systems" group at ISIR, for allowing me to work for his team Syroco team at ISIR during
my research internship, and also special thank to the Doctoral student Mohamed Fnadi
for his time helping me to develop all the stages of this project. Thank all the ISIR
laboratory staff who offered me the means, the structure, and a quality internship in the
intelligent systems area, in which I always wanted to deepen my knowledge. And also
thank you to professor Roberto Santos Inoue who reviewed my work to be presented for
my undergraduate thesis presentation at UFSCar.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior - Brasil (CAPES) - Finance Code 001.

Resumo

Os robôs off-road são veículos complexos usados em diversas aplicações e são capazes
de operar em diversos tipos de terrenos, incluindo terrenos acidentados. Por isso, sua
aplicação vem crescendo cada vez mais nos dias de hoje.

Com a crescente importância do estudo e aplicação de veículos autônomos em áreas
insalubres ou perigosas por razões de segurança aos usuários desses veículos, as pesquisas
sobre esse tipo de veículo aumentaram nos últimos anos. Já foram feitos trabalhos com o
objetivo de propor algoritmos para controladores preditivos não lineares, para melhorar
a estabilidade do veículo, para seguir trajetórias e também para estimar a rigidez das
curvas de contato em tempo real utilizando observadores não-lineares, mas há também
a questão de como proceder se o robô encontrar um obstáculo que possa obstruir seu
caminho enquanto ele estiver rastreando um caminho a ser seguido.

Assim, este trabalho tem como objetivo propor um algoritmo que permita a um robô
móvel de quatro rodas, rápido, off-road e com dupla direção detectar os obstáculos pre-
sentes no terreno em tempo real usando o mapeamento dinâmico do ambiente, permitindo
o desvio de obstáculos seguindo um caminho local criado usando uma curva de Bézier
composta, otimizada com base na curvatura máxima que o robô pode executar.

Para os experimentos foram utilizados diversos sensores de posicionamento e percepção
incluindo um sensor Lidar (Light Detection And Ranging) Velodyne HDL-32E. O trata-
mento da nuvem de pontos fornecida pelo mesmo foi tratada utilizando principalmente a
biblioteca PCL. Por motivos de tempo do estágio, os testes realizados foram feitos princi-
palmente em ambiente virtual considerando diferentes tipos de trajetória a serem seguidas
pelo SPIDO, com obstáculos posicionados no caminho. Os resultados finais obtidos se
mostraram satisfatório com relação ao esperado, concluindo assim a validade do algoritmo
proposto.

Palavras-chave: Nuvem de pontos, Evitamento de obstáculos, Curvas de Bézier, Robôs
off-road

Abstract

Off-road robots are complex vehicles used in a variety of applications and are capable
of operating over rough terrain, and its application has been growing more and more
nowadays.

With the growing importance of the study and application of autonomous vehicles
in rough areas for the users’ safety reasons, researches concerning this kind of vehicle
have increased. Works were already done to propose algorithms for non-linear predictive
controllers, for the improvement of the stability of the vehicle, for path following and
also for a nonlinear observer to estimate the contact cornering stiffness in real-time, but
there is also the question of how to proceed if the robot encounters an obstacle that could
obstruct its path while it is tracking a path.

Thus, this work aims to propose an algorithm that allows a four-wheel, fast off-road,
double-steering mobile robot to detect obstacles from the terrain in real-time using the
dynamic mapping of the environment, and that also allows the robot to avoid obstacles
by following a local path created using a composite Bézier curve, optimized based on the
maximum steering that the robot can perform.

For the experiments, a sensor for position and perception were used, including the Li-
dar (Light Detection And Ranging) Velodyne HDL-32E. The treatment of the point cloud
provided by it was treated using mainly the PCL library. For reasons of internship dura-
tion, the tests performed were done mostly in a virtual environment considering different
types of trajectory to be followed by the SPIDO, with obstacles positioned along the way.
The final results obtained were satisfactory concerning the expected, thus concluding the
validity of the proposed algorithm.

Keywords: Point cloud, Obstacle avoidance, Bézier Curves, Off-road robot

List of Figures

Figure 1.1 – Block diagram of the overall system . 19
Figure 1.2 – Block diagram of the part considered on this project 20
Figure 1.3 – ROS computation graph for the turtle-sim example. Source: [11] 22
Figure 1.4 – Experimental platform with the embedded sensors 23
Figure 1.5 – NUC . 23
Figure 1.6 – Lidar used in this project . 24
Figure 1.7 – View of the Spido on the virtual platforms 26
Figure 2.1 – Block diagram with the details of the Cloud processing stage 30
Figure 2.2 – Voxel grid filter visualization. Source: [18] 33
Figure 2.3 – Diagram illustrating the vehicle limited area of vision 34
Figure 2.4 – Diagram illustrating the clustering method. Source: [20] 35
Figure 2.5 – Illustration of the obstacle detection circles 38
Figure 3.1 – Simulation settings for the obstacle detection part 39
Figure 3.2 – Simulation test for the point cloud from the LIDAR without processing 40
Figure 3.3 – Simulation test for the cloud downsampled with PassThrough and Crop-

Box filters . 40
Figure 3.4 – Simulation test for the cloud after the application of the heightmap

package . 41
Figure 3.5 – Simulation test for the cloud after clustering and obstacle detection

algorithm . 42
Figure 3.6 – Experimental settings for the obstacle detection part 42
Figure 3.7 – Experimental test for the point cloud from the LIDAR without processing 42
Figure 3.8 – Experimental test for the cloud downsampled with PassThrough and

CropBox filters . 43
Figure 3.9 – Experimental test for the cloud after the application of the heightmap

package (in red) . 43

Figure 3.10–Experimental test for the cloud after clustering and obstacle detection
algorithm . 44

Figure 4.1 – Bernstein polynomials of degree 3. Source: [25] 47
Figure 4.2 – Illustration of the importance to choose well the control points of a C1

Bézier curve . 49
Figure 4.3 – Visualization of the steps for the Algorithm 3 53
Figure 4.4 – Optimal Bézier Result . 55
Figure 5.1 – Simulation test for the rectilinear path with a speed of 2m/s and its

tracking error . 58
Figure 5.2 – Simulation test for the rectilinear path with a speed of 6m/s and its

tracking error . 58
Figure 5.3 – Simulation test for the rectilinear path with a speed of 4m/s and its

tracking error . 58
Figure 5.4 – Simulation test for the S-shaped path with a speed of 2m/s and its

tracking error . 59
Figure 5.5 – Simulation test for the S-shaped path with a speed of 4m/s and its

tracking error . 60
Figure 5.6 – Simulation test for the S-shaped path with a speed of 6m/s and its

tracking error . 61
Figure 5.7 – Simulation test for the O-shaped path with a speed of 2m/s and its

tracking error . 62
Figure 5.8 – Simulation test for the O-shaped path with a speed of 4m/s and its

tracking error . 62
Figure 5.9 – Simulation test for two obstacles in a Line path with a speed of 6m/s

and its tracking error . 63
Figure 5.10–Simulation test for three obstacles in a S-shaped path with a speed of

2m/s and its tracking error . 63

Contents

1 INTRODUCTION . 17
1.1 The internship . 17
1.2 Scientific context . 17
1.3 Study issues . 18
1.4 Objectives . 20
1.5 Robot Operating System (ROS) . 20
1.5.1 Nodes . 21
1.5.2 Topics . 21
1.5.3 Packages . 21
1.6 Experimental platform . 22
1.6.1 Embedded computers . 22
1.6.2 Real Time Kinematic GPS (GPS RTK) and Inertial Measurement Unit

(IMU) . 23
1.6.3 LIDAR Velodyne HDL-32E . 24
1.7 Point Cloud Library (PCL) . 25
1.8 Virtual platform . 25
1.8.1 Gazebo . 25
1.8.2 Unified Robot Description Format (URDF) 26
1.8.3 ROS Visualizer (Rviz) . 26
1.9 Contributions . 26

2 3D POINT CLOUD PROCESSING 29
2.1 State of the art of obstacle detection methods 29
2.2 Data acquisition . 30
2.3 Data downsampling . 31
2.3.1 CropBox Filter . 32
2.3.2 PassThrough Filter . 32

2.3.3 Voxel Grid Filter . 33
2.3.4 Heightmap . 34
2.3.5 Limitation of the Vision field . 34
2.3.6 Clustering . 35
2.4 Obstacle detection . 37

3 SIMULATION AND EXPERIMENTAL VALIDATION OF THE
3D POINT CLOUD PROCESSING 39

3.1 Validation in virtual simulation . 39
3.1.1 LIDAR data cloud point . 40
3.1.2 Pass Through and CropBox Filters . 40
3.1.3 Heightmap . 41
3.1.4 Obstacle detection . 41
3.2 Experimental validation . 41
3.2.1 LIDAR data cloud point . 42
3.2.2 Pass Through and CropBox Filters . 43
3.2.3 Heightmap . 43
3.2.4 Obstacle detection . 44
3.3 Conclusion and perspectives . 44

4 SEARCH FOR AVOIDANCE TRAJECTORIES AND OPTI-
MIZATION . 45

4.1 Introduction . 45
4.2 Global and local paths . 46
4.3 Bézier Curve . 46
4.3.1 Parametric Curves . 47
4.3.2 Bernstein polynomials . 47
4.3.3 Construction of a bezier curve . 47
4.4 Bézier curve for local trajectory planning 50
4.4.1 Avoidance path algorithm . 50
4.4.2 Avoidance Path Optimization . 53

5 VALIDATION FOR THE SEARCH FOR AVOIDANCE TRA-
JECTORIES AND OPTIMIZATION 57

5.1 Validation in virtual simulation . 57
5.1.1 Rectilinear path . 57
5.1.2 S-shaped path . 58
5.1.3 O-shaped path . 61
5.1.4 Multiple obstacles . 63
5.1.5 Discussion of results . 64

6 CONCLUSIONS AND PERSPECTIVES 65

Bibliography . 67

17

Chapter 1

Introduction

1.1 The internship

The present project was developed during the research internship that I did as part
of the curriculum of the French university in which I did my double degree program
(ENSTA Paris), from May 13𝑡ℎ 2019 until July 31𝑠𝑡 2019. This internship aims to present
to the students the research and development world by working in a project that involves
initiative, innovation, and inductive reasoning.

I did my research internship at the Institute of Intelligent Systems and Robotics (ISIR),
a joint research unit in the Pierre and Marie Curie University (UPMC) in Paris. In this
context, my work was done within the SYROCO team, which focuses on the development
of design and control methods for mobile robotic and manipulation systems.

1.2 Scientific context

Off-road robots are complex vehicles used in a variety of applications, such as mili-
tary, agricultural, and leisure applications. This type of vehicle is capable of operating
over rough terrain in a variety of weather conditions without a great compromise of its
structure.

The term off-road means that the vehicle must have a structure that allows it to be
able to ride in a location without any urban structure, that means, have a structure that
allows it to drive even in unpaved and difficult to reach places.

Thus, works were already done in the design of non-linear predictive controllers to
ensure the mobile robot to move in a natural environment at high velocity and following
a reference path [1], the improvement of the stability of fast rover moving in a high-speed

18 Chapter 1. Introduction

[2], path following LQR controller with good accuracy for high-speed motion [3] and also
a nonlinear observer designed to estimate the front and rear contact cornering stiffnesses
in real-time [4].

However, besides the question of how to efficiently perform a tracking path, there is
also the question of how to proceed if the robot encounters an obstacle that could obstruct
its path. In this project, a study on the capture of environmental information through
sensors and the use of a little-explored avoidance path generation technique is proposed,
aiming to decide which decisions a robot should make when the path is obstructed by an
obstacle.

Trajectory planning for robots is a broad area of study, and the main objective of this
topic is to provide the robot with a reference to be followed during a given task so that it
can achieve the desired objectives for its purpose. However, the choice of the path to be
followed should be made selectively, as each robot has limitations concerning its degrees
of freedom and constraints of movement due to constructive factors, and if these limits
are not taken into account during the path planning process, it may either inefficiently
follow the suggested path or may even become damaged when attempting to perform an
improper movement.

Therefore, one of the most important characteristics that should characterize a planned
trajectory is that the curve to be used must be smooth and continuous, and it has to have
adequate curvature to the limits of the robot’s steering angles and maximum speed, not
presenting sharp curves to allow the robot to follow it without stopping.

Several works have studied special curves that generate a smooth and continuous
path, such is the case of the study of clothoide curves done in [5], [6] or a variant of the
clothoides done in [7], which generates several possible avoidance paths and selects the
best curve based on optimization criteria. Some works study the use of the potential
field technique to avoid obstacles, as done in [8], [9], and [10]. This technique consists of
considering an imaginary force resulting from the influence of objects that draw the robot
to its ultimate goal (objects that are not considered as obstacles), and objects that repel
the robot (objects considered as obstacles).

This project aims to explore Bézier curves for the generation of real-time avoidance
paths to verify if their use allows a robot to follow a local obstacle avoidance path. This
curve when well parametrized can meet all the requirements mentioned above and can be
useful to the obstacle avoidance path.

1.3 Study issues

Figure 1.1 shows the general block diagram of the main system that makes up the mode
of operation of the off-road robot platform being used. As can be seen, it is composed of
a low level and a high-level subsystem. The low-level part is responsible for receiving the

1.3. Study issues 19

good steering angles and the linear speed that the vehicle must perform, necessary for
the robot to continue following the proposed path. This step will not be the subject of
study in this project since several works have already been done to improve and validate
this stage.

The other, the high-level subsystem, is responsible for performing data processing and
implementing control algorithms that return command law variables to the Spido. This
subsystem has a stage of informing to the robot what is the reference path to be followed
("Reference Path" block), and it will be in this part of the system that the algorithms
developed in this project will be applied. The Figure 1.2 shows more details about this
block.

Figure 1.1 – Block diagram of the overall system

The work will be divided into different steps, including data acquisition, data down-
sampling, and data processing. Initially, it is necessary to capture and process the data
information of a point cloud coming from the LIDAR. This processing stage includes a
re-sampling step that decreases the amount of data to be worked on and increases the
algorithm calculation time.

After reducing the amount of data, it is necessary to separate the captured scene into
different unit elements and to classify which of these elements are considered obstacles
and which are not obstacles to the robot.

After identifying the obstacle, it is necessary to communicate to the command law
control stage that an avoidance path must be generated, the algorithm proposed will
compute an alternative route to avoid the obstacle if there is the possibility to avoid the
obstacle, otherwise, the robot will stop.

20 Chapter 1. Introduction

Figure 1.2 – Block diagram of the part considered on this project

The above process is iterative and performed in real-time, and uses a dynamic update
of the scene to be handled rather than using a static mapping. With static mapping,
there’s a need to know the field of work before and store the data in the local computer,
which can consume more time and more memory. On the other hand, with the dynamic
mapping, the information about the scene is updated at the same rate as the data update
frequency of the LIDAR.

1.4 Objectives

The objective of the present project is to create an algorithm that allows a four-
wheel, fast off-road, double-steering mobile robot to detect obstacles that could block it
from following a global path, and to create a local planned path using Bézier curves, by
analyzing the information obtained through the vehicle’s sensors. In order to do so, this
work will cover the treatment of a 3D point cloud coming from a LIDAR sensor, the
detection of obstacles, and the search and optimization of avoidance paths, always taking
into account constraints and considerations for solving the problem proposed, such as:

∙ Flat ground

∙ Static obstacles

∙ Field opened and clear

∙ Known depth of the obstacles

1.5 Robot Operating System (ROS)

Robot Operating System (ROS) is a tool that structures, standardizes, and manages
the communication in a robotic network system where there is a need to establish commu-
nication among various types of equipment. It is an Open Source tool that operates with

1.5. Robot Operating System (ROS) 21

Linux, using mainly C ++ and Python as the programming language and that communi-
cates between the system units through the TCP/IP protocol. Every robot network that
uses ROS as a communication structure has a master machine that initializes the services
necessary for the system to function properly and so that the machines can communicate
with each other.

In this project, ROS was used to work with the different modules of the off-road mobile
robot such as the LIDAR, GPS, IMU, in order to facilitate communication with different
modules, as well as to enable the processing of data and control the steering angles of the
vehicle to keep it within the desired path.

Furthermore, there are 3 important ROS frameworks to mention: Nodes, Topics,
Packages.

1.5.1 Nodes

Nodes are composed of the active programs and executables used by each machine,
and these nodes can send information to the network to a specific topic (publisher node)
or they can read data that is coming from a specific topic (subscriber node). In this
project, the use of nodes was important, for example, to interface sensors and actuators,
to navigate through and map the terrain, to do the communication between various
mobile robot embedded devices, and also to perform the virtual experimentation of the
algorithms created.

1.5.2 Topics

Topics are responsible for storing the messages circulating through the ROS core
(master) in order to allow them to be read by a subscriber node or changed by a publisher
node. Topics can be understood as global network variables, which can be accessed by all
the connected elements. Using the terminal, you can get different information about the
messages being exchanged on the network through commands such as $rostopic list (that
shows all system topics), $rostopic pub (that sends data to a specific topic) or $rostopic
echo (that visualizes data from a specific topic).

1.5.3 Packages

ROS packages are composed of an arbitrary number of nodes that allows the users to
have a more organized structure and they are used to give the network different modules
with full functionality.

Although the structure of the ROS is complex to understand, it ensures that all
system units will communicate in a consistent and standardized manner to avoid any

22 Chapter 1. Introduction

information and data conflicts. The Figure 1.3 obtained with the rxgraph command
shows a simple example of how communication occurs between the various system nodes
within the default example from ROS named "turtlesim", where the node "/ turtlesim" is
the master node. With this command, it is possible to visualize which nodes are active
and how they interact with each other on the network.

Figure 1.3 – ROS computation graph for the turtle-sim example. Source: [11]

1.6 Experimental platform

The Spido Robot (Figure 1.4) was the experimental platform used during this intern-
ship. It is a four-wheel, fast off-road, double-steering robot, having a total weight of
around 700Kg and that can reach the maximum speed of 12m/s. It is equipped with
embedded computers that treat the data of sensors that provide information about its
localization, its orientation, and that gives information about its surroundings.

The communication between the embedded computers and the sensors is made using
Ethernet cables and the protocol of communication TCP/IP. Nevertheless, it is also pos-
sible to communicate with the NUC unity via SSH protocol, in order to get the processed
data and all the log files generated by the system while running the tests.

1.6.1 Embedded computers

This experimental platform has two embedded computers, that are used to process
the received information and control the robot. One computer (the NUC computer, as
shown in Figure 1.5) is responsible for processing the data and signals acquired from the
sensors of the platform, including the LIDAR sensor and the positioning sensors. It is
in this computer that the algorithms of treatment of the point cloud are stored and it is
also in this computer that the information about the control of the robot is made using
publisher nodes. The other computer is responsible for subscribing to the topics having
the information with the command law that will assure that the platform will follow either
the global path or the local path, by injecting in the robot the right steering angles and
the right linear speed for the Spido.

1.6. Experimental platform 23

Figure 1.4 – Experimental platform with the embedded sensors

Figure 1.5 – NUC

1.6.2 Real Time Kinematic GPS (GPS RTK) and Inertial Mea-
surement Unit (IMU)

GPS RTK is a positioning technique that provides the location coordinates more
accurately when compared to the GPS we use in our daily lives, such as the ones in
our cell phones. The main difference is in the way coordinates are measured: the RTK
GPS has a base receiver that stays static at a known coordinate and sends positioning
correction for the mobile receiver, based on the principle of triangulation. The accuracy
of an RTK GPS is around 2cm, while the accuracy of a conventional GPS ranges from
5m to 10m.

The IMU is an equipment having three main sensors: accelerometer, gyroscope, and
a magnetometer. With the measures obtained with the IMU, it is possible to determine

24 Chapter 1. Introduction

if the experimental platform is moving, rotating, or inclined.
These elements will not be discussed with more details in this report because they do

not represent an important part of my internship and are mainly used by the low-level
part (path tracking) and for setting the control points of the avoidance curve (which will
be discussed in Chapter 4.4)

1.6.3 LIDAR Velodyne HDL-32E

The LIDAR (Light Detection and Ranging), as shown in Figure 1.6, is a sensor used
in order to perceive the environment through the emission, reception, and treatment of
laser beams signals, and it is used in different areas of application such as autonomous
vehicles and robotic vision.

Figure 1.6 – Lidar used in this project

This type of sensor uses time-of-flight (ToF) methodology, that means, each laser
beam of the equipment sends an optical signal modulated by a transmitter until it hits
the scene intended to extract 3D information, and the reflected light is detected by the
paired detector, which determines the flight time and the energy received. By emitting
these light pulses with a certain update rate, LIDAR sensors can create a position (x, y)
and elevation (z) data set, resulting in a high-density point cloud and reproducing the
scanned environment in 3D with a high level of detail.

This project used a LIDAR Velodyne HDL-32E, which has the following technical
characteristics:

∙ 32 lasers;

∙ Update frequency of 10Hz;

∙ ± 2 cm accuracy;

∙ Up to ∼1.39 million points per second;

∙ 360∘ Horizontal field of view;

∙ +10∘ to -30∘ Vertical field of view;

1.7. Point Cloud Library (PCL) 25

1.7 Point Cloud Library (PCL)

The Point Cloud Library (PCL) is an open-source C ++ language software, compatible
with various operating systems (such as Linux and Windows), and contains a series of
small modules that can be used separately to work with a point cloud using algorithms
including filtering, feature estimation, segmentation, etc.

A point cloud is a structured data set made up of a multidimensional point collection
and is commonly used to represent three-dimensional data [12]. That means, a point
cloud is a set of data 𝑃 = {𝑝1, 𝑝2, 𝑝3, ...}, having 𝑝𝑖 = {𝑥𝑖, 𝑦𝑖, 𝑧𝑖, ...} as attributes, which
are used to represent the 3D information of the points. In addition to the XYZ coordinate
position of each point, a point cloud can have additional information such as color and
intensity.

In this work, the PCL was used to process the data coming from the LIDAR sensor,
in order to downsample it and develop the algorithm for the obstacle detection stage.

1.8 Virtual platform

Since the robot that is being used as an object of study in this project is a complex
robot, performing all the first tests directly on the real robot could bring a risk to the
integrity of the vehicle if any major error occurred during the application of the algorithms
developed. Thus, before performing any experimental test it was necessary to validate
in simulation each step, and once validated, the algorithm was applied to the real robot.
The three main elements important for the virtual simulation were the virtual world, the
robot’s file description, and the sensor’s visualization software.

1.8.1 Gazebo

For the simulation tests, the Gazebo virtual environment was used. Gazebo is a widely
used 2D/3D environment simulator that offers the possibility to efficiently simulate various
types of robots in complex environments, and its results are very close to the results
obtained in the real environment, showing, thus, that one of the benefits of its use is
the ease of switching between the real and the simulated world. The simulation in the
Gazebo’s environment takes into account many important aspects of both the robot and
the environment in which it is being simulated. For instance: dynamic and kinematic
modeling, soil type, interactions with the environment (such as collisions). Those are
elements that are relevant for the validation of the project’s simulation.

26 Chapter 1. Introduction

1.8.2 Unified Robot Description Format (URDF)

The model specifications are made based on a file written in a Unified Robot Descrip-
tion Format (URDF) file, which is a file used in a ROS environment that gives an XML
specification that allows the configuration of the parameters that will perform the virtual
representation of a robot. The model description consists of the definition links (which
describes the characteristics of an inertial rigid body) and the set of joints (describes the
kinematics and dynamics of a joint).

1.8.3 ROS Visualizer (Rviz)

Finally, to visualize the information and data obtained through the simulation, the
ROS Visualizer (Rviz) is used. Rviz is a tool used to display various important informa-
tion such as data acquired by simulation robot sensors, ROS status, and URDF model
information of the robot, joint position, and can display data from camera devices, laser,
3D and 2D, including images and point clouds.

Figure 1.7(a) shows the Spido’s model created to be simulated in a Gazebo world,
as well as three spheres placed in the environment to interact with the sensors and the
vehicle itself. Figure 1.7(b) shows the Spido’s model displayed in the Rviz software, and
the points in green are the point cloud detected by the virtual LIDAR present in the
vehicle’s model. As it is possible to see, the Rviz software and the Gazebo world can
interact with each other in the sense that it is possible to visualize with Rviz the changes
happening in the gazebo world.

((a)) View of the Spido on Gazebo ((b)) View of the Spido on Rviz

Figure 1.7 – View of the Spido on the virtual platforms

1.9 Contributions

During the development of this project, my main contributions were made in the high-
level stages of the system, that means, the parts related to the acquisition and treatment

1.9. Contributions 27

of the information obtained from the environment detection sensors since the low-level
part related to the vehicle control had already been developed, tested and validated in
previous works [3].

Thus, I was able to work on the development of a fast and real-time obstacle detection
method, in which it is not necessary to have prior knowledge of the cartographic map
of the environment in which the robot needs to navigate, requiring only that the test
conditions were controlled and were within the presumed restrictions and restrictions. In
this context, the obstacle to be detected is an object that is located in a position that will
interfere with the displacement of the robot in its initially planned global path.

The development of this method was made using the LIDAR sensor point cloud,
treated using messages and filters of the PCL library, and with this processed information
it is possible to plan a local obstacle avoidance path using Bézier cubic curves.

28 Chapter 1. Introduction

29

Chapter 2

3D point cloud processing

2.1 State of the art of obstacle detection methods

Obstacle detection is an important step in the development of an autonomous robot
since it is responsible for recognizing and processing the spatial and physical characteristics
of the environment in which the robot is inserted, and without this step, it is impossible for
the robot to make important decisions to interact with the environment, such as moving
toward a goal point or moving away from objects or people to avoid collisions.

In order to perform such detection, a robot must be equipped with sensors capable of
reading the environment, either through cameras, modulated optical signals, or any other
signals that may somehow add a sensory vision function to the robot.

In addition to being able to acquire information about the surroundings of the envi-
ronment, the robot must also be provided with algorithms for processing this information,
so that it can retain characteristics of interest and make the necessary decisions to achieve
a given goal.

In the case of an autonomous mobile robot, the main need that must be met with a
vision system is to identify obstacles and make decisions about what actions to take. Cur-
rently, in the literature there are several studies related to the acquisition and treatment
of the presence of obstacles for mobile robots, using several algorithms to classify objects
that can be considered as obstacles, such as the convex hull algorithm studied in [13], the
clustering techniques studied in [14] or [13], and also the construction of cost-maps to help
the robot make decisions about where to go based on the knowledge of its surroundings,
as studied in [15] and [16].

In this project, a combination of the cost-map principle of obstacle inflation and cluster
techniques of classification using nearest neighbors were used to explore the filters of the

30 Chapter 2. 3D point cloud processing

Point Cloud Library, in order to create a real-time algorithm capable of processing a
dynamic point cloud data set.

2.2 Data acquisition

The first and most important part of the obstacle detection algorithm is how to acquire
the data to process it and get all the necessary information needed to correctly execute
algorithm. In the Figure 2.1 it is possible to see a block diagram of all the steps necessary
to implement the obstacle detection algorithm.

Figure 2.1 – Block diagram with the details of the Cloud processing stage

The point cloud used to recognize and the position of objects in the scene sends a
message of the type sensor_msgs/PointCloud2 from the LIDAR, which is later converted
to a cloud of the type pcl/PointCloud to be used by PCL. The point cloud and filter
acquisition steps are presented in the cloud pre-processing, which performs the point
cloud preparation and reconstruction, while retaining the relevant feature information.

It is also important to note that all data obtained by LIDAR determines the position
of the captured points with reference to the LIDAR’s position, which can be considered
equivalent to the position of the Spido robot at any given time. However, the operation
of the robot command law algorithm takes into account the coordinates considering the
GPS reference. Therefore, all point cloud data sets received by LIDAR must go through
a reference shifting process so that the coordinates of the point detected by the sensor
can be used in a harmonized manner by the other algorithms of the system shown in
Figure 1.1. For this, the received coordinates are transformed with the aid of a frame

2.3. Data downsampling 31

transformation matrix that considers the current position of the robot and also its current
orientation, performing a translation operation and a rotation operation.

Moreover, during the whole point cloud processing stage, some hypotheses were con-
sidered to allow the algorithm development and to do the data processing in a controlled
and effective way for the proposed problem. The hypotheses considered at this stage of
the work were the following:

∙ Flat ground: It was considered that the terrain on which the test platform would
operate would be flat, without ramps or major irregularities on the test ground.

∙ Static obstacles: The obstacles studied in the development of this project are
static obstacles with definite and invariant position. Thus, their position can be
found using RTK-GPS and Point Cloud XYZ.

∙ Field opened and clear: The vehicle’s operating terrain was considered to be a
broad terrain with no elements that would interfere with data capture or wireless
communication (such as GPS and embedded computers, for example).

∙ Known depth of the obstacles: For all obstacles it is assumed that their depth
is known and deep enough that the obstacle could fit inside a sphere. This way,
the hidden part of obstacle that the LIDAR can not view would not influence the
algorithm’s result.

2.3 Data downsampling

Working with a cloud point data set allows you to build a map rich in details out a
captured three-dimensional scene. However, the amount of points collected is very high
(in the order of millions of points) and because of this the calculation time of each data
set becomes very high if the computer handling the data is not powerful enough, such as is
the case of the embedded computer used in this project. Therefore, to be able to extract
only the essential information from the scene map, the pre-processing and processing steps
must be performed to execute the stage called data downsampling, that is, the process
used to reduce the size of a sample to store only relevant information to the desired
purpose.

Thus, the downsampling process consists in the preparation and reorganization of the
point cloud, removing the nonessential points and reducing the amount of points from
the data-set.

In this project, filters from the PCL library were used to reduce the size of the data
set obtained with the LIDAR while keeping only the characteristic information relevant
for obstacle detection, as it will be shown below.

32 Chapter 2. 3D point cloud processing

2.3.1 CropBox Filter

As described later in the Chapter 2.4, points close to the vehicle are considered as
obstacles by the developed algorithm and this includes the detected points that represent
the body of the Spido. Therefore, the CropBox filter was used considering the dimensions
of the robot as shown in the Code 2.1.

The CropBox filter allows the point cloud filtering, using as reference a 3D box with
defined dimensions. If the "negative" parameter is true, the filter eliminates the points
inside the defined box; If this parameter is false, the filter eliminates the points outside
the box.

Code 2.1 – CropBox filter paramters
<node pkg="nodelet" type="nodelet" name="pcl_manager_crop" args="manager"

output="screen" />

<node pkg="nodelet" type="nodelet" name="cropbox"

args="load pcl/CropBox pcl_manager_crop" output="screen">

<remap from="~input" to="/velodyne_points" />

<remap from="~output" to="/velodyne_points/cropbox" />

<rosparam>

#negative = true: no points in the box

#negative = false: no points outside the box

negative: true

min_x: -1.5

max_x: 1.5

min_y: -1.5

max_y: 1.5

min_z: -3

max_z: 3

</rosparam>

</node>

2.3.2 PassThrough Filter

This filter is used to remove any point cloud having coordinates out of the bound
set in the filter within a certain range in the direction of a given axis. In this case, this
filter was used with the parameters shown in the Code 2.2 to eliminate the points that
represent the ground - since one of the assumptions in the development of this project
is that the soil on which the Spido will move is flat - and points that are slightly higher
than the height of the robot were also eliminated, as these points would not block the
vehicle’s path: the leaves of a tree for example may not be taken into account at the
obstacle searching algorithm as long as they are at a height high enough that Spido can

2.3. Data downsampling 33

pass underneath them.

Code 2.2 – Pass Through filter paramters
<node pkg="nodelet" type="nodelet" name="pcl_manager_ransac" args="manager"

output="screen" />

<node pkg="nodelet" type="nodelet" name="voxel_grid_ransac" args="load

pcl/PassThrough pcl_manager_ransac" output="screen">

<remap from="~input" to="/velodyne_points/cropbox" />

<remap from="~output" to="/velodyne_points/PassThrough" />

<rosparam>

filter_field_name: z

filter_limit_min: -1.3

filter_limit_max: 1.5

</rosparam>

</node>

2.3.3 Voxel Grid Filter

The Voxel grid filter is used to decrease the resolution of the point cloud. This process
is done with the aid of a three-dimensional cubic grid (voxels) over the point cloud, as
shown in Figure 2.2, and the size of each voxel is determined with the filter’s "leaf size"
parameter. With this filter, all points that belong to the same voxel are approximated to
the cube’s centroid. This process helps to create a simplified representation of the model,
and with the appropriate leaf size value it is possible to maintain the most important
cloud characteristics. That is, the smaller the size of the defined voxel, the higher the
resolution (and therefore the cost) to render the necessary scene representation [17]. And
as mentioned, we seek a resolution low enough to have fewer points to process, with a
good representation of the environment.

Figure 2.2 – Voxel grid filter visualization. Source: [18]

34 Chapter 2. 3D point cloud processing

2.3.4 Heightmap

The heightmap [19] is a package that creates a nodelet that subscribes to the 3D data
coming directly from the LIDAR point cloud and returns a 2D point cloud that detects
objects higher than a certain height, publishing two point clouds: the velodyne_obstacles,
which represents the obstacles found, and the velodyne_clear, which represents the points
which are not detected as obstacles. The algorithm of this package also have implemented
on it a stage of Voxel grid filtering to downsample the original point cloud.

Heightmap is a package used in the downsampling stage because with this package
it is possible to take a 3D point cloud, process it and turn it into a simpler 2D point
cloud with a lower resolution and with only important points. In addition to that, the
heightmap package has a filtering step that uses the voxel grid filter mentioned above, to
lower the original point cloud resolution.

In this case, the heightmap package was used to detect all the objects in the field that
were higher than 5cm, to cluster them afterwards by the Euclidean Cluster Extraction
filter and identify which objects could be considered as obstacles to the Spido Robot,
bearing in mind the initial hypothesis of obstacle detection.

2.3.5 Limitation of the Vision field

Another step taken in LIDAR’s point cloud downsampling process was to eliminate
points that were out of a certain viewing angle. Thus, all points with coordinates such
that 𝑥 < 0 were disregarded, since the objects behind the car no longer represent a
blocking element in the process of tracking the desired trajectory. The Figure 2.3 shows
the limitation cited: in green we have the region in which the point cloud is considered,
while in red we have the region in which the point cloud is disregarded.

Figure 2.3 – Diagram illustrating the vehicle limited area of vision

2.3. Data downsampling 35

2.3.6 Clustering

The clustering stage is an important part of this project as its main purpose is to
separate the entire point cloud set into different smaller set of points that form up the
representation of a specific elements, and in this way each of the identified objects is
analyzed individually and separately by the obstacle detection algorithm. To perform the
clustering stage, the Euclidean Cluster Extraction filter from the PCL library was used as
shown in Figure 2.4, having as input the point cloud already treated using the heightmap
package, that means, with the cloud being analyzed in a 2D perspective.

Figure 2.4 – Diagram illustrating the clustering method. Source: [20]

Euclidean Cluster Extraction uses a threshold parameter to the nearest neighbor of
each point of the cloud data set to decide to what cluster a point would belong to. This
search for the nearest neighbor is done using the Kd-tree method.

Kd-tree is a searching technique, and is a solution based on spatial decomposition
and partitioning of the original point cloud into smaller parts to speed up the overall
processing time. With the Kd-tree method, the point cloud space is divided into two
parts from its midpoint and after that, each half is split in two and so on.

The Algorithm 1 shows the steps taken by PCL filter shown in the Code 2.3, to be
clustered the point cloud.

Initially, a Kd-Tree object is created to represent the search method , together with
a Point Indices array that contains the indexes of each detected cluster saved in the
cluster_indices vector.

After this, a EuclideanClusterExtraction object with points of type PointXYZ is cre-
ated. The parameters to the cluster processes are set choosing the tolerance for each
cluster (SetClusterTolerance) and the maximum and minimum number of points inside a
cluster (SetMaxClusterSize, SetMinClusterSize).

36 Chapter 2. 3D point cloud processing

Algorithm 1 Clustering algorithm. Source: [21]
1: 𝑃 ← Point cloud resulting from the Kd-Tree searching method
2: 𝑝𝑖 ← Points of the cloud 𝑃
3: 𝐶 ← Empty list of clusters
4: 𝑄← Queue of points to be checked
5: 𝑑𝑡ℎ ← Cluster size
6:
7: for every 𝑝𝑖 ∈ 𝑃 do
8: - Add 𝑝𝑖 to the current queue 𝑄
9: for every 𝑝𝑖 ∈ 𝑄 do

10: - Search for the set 𝑃 𝑘
𝑖 of point neighbors of 𝑝𝑖 in the threshold 𝑟 < 𝑑𝑡ℎ

- For every neighbor 𝑝𝑘
𝑖 ∈ 𝑃 𝑘

𝑖 , check if the point has already been processed,and
if not add it to 𝑄;

11: end for
12: - When the list of all points in 𝑄 has been processed, add 𝑄 to the list of clusters

𝐶,and reset 𝑄 to an empty list
13: end for

- The algorithm terminates when all points 𝑝𝑖 ∈ 𝑃 have been processed and are now
part of the list of point clusters 𝐶

Finally, the Kd-tree search method is applied to the cloud and the indexes for each
cluster identified are saved to the cluster_indices object.

Code 2.3 – Kd-tree filter
// Creating the KdTree object for the search method of the extraction

pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new

pcl::search::KdTree<pcl::PointXYZ>);

tree->setInputCloud((*cloud_filtered).makeShared());

std::vector<pcl::PointIndices> cluster_indices;

//Cluster point cloud based on the kd-tree algorithm, and returns a vector of

indices

pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;

//kd-tree Library parameters

ec.setClusterTolerance (0.4);

ec.setMinClusterSize (2);

ec.setMaxClusterSize (25000);

ec.setSearchMethod (tree);

ec.setInputCloud ((*cloud_filtered).makeShared());

ec.extract (cluster_indices);

2.4. Obstacle detection 37

2.4 Obstacle detection

The development stage of the obstacle detection algorithm is separated into 3 steps:
Data acquisition, downsampling and finally clustering and obstacle classification.

At the acquisition stage, data from the LIDAR is sent to the NUC embedded computer
via the topic /velodyne_points to be re-sampled by the PCL library filters, and finally,
the reduced point cloud goes through a clustering and sorting algorithm to identify which
objects could be considered as obstacles and which ones are not obstacles. The result of
the obstacle detection algorithm is a vector containing information about the detected
obstacle (position in the map and safety distance), and this information is published to
the network through the /array topic

To perform the obstacle detection part, a technique called "obstacle inflation" was
used to facilitate the development of the avoidance path generation algorithm. In this
technique, for every object detected by the LIDAR, the position of the barycenter of the
point cloud related to this object is obtained. After that, the object is inflated, that is,
its location in space is no longer considered only as the coordinates of its barycenter but
now the obstacle is considered as a circle of radius 𝑟 and centered in the barycenter of
the point cloud of the obstacle.

Thus, the radius 𝑟 is chosen so that the dimensions of the vehicle can be considered
negligible by the avoidance path algorithm, and so that Spido can be considered as a point
in the configuration space. This circle surrounding the object is named in this project
as danger_circle and is defined as being 9𝑚 larger than the circle surrounding all points
of a detected object. The value of 9𝑚 was chosen after doing empirical tests with the
robot. An object is classified as an "obstacle" if the coordinates (𝑥, 𝑦) of the robot are
located within the objects danger_circle. If the (𝑥, 𝑦) of the robot are located outside the
danger_circle, the object is not considered as an obstacle.

In addition to the danger_circle that aids the obstacle detection determine whether
an object is an obstacle or not, the algorithm uses a second circle with a radius smaller
than the danger_circle radius, which is used to aid the avoidance path creation algorithm.
This circle is defined as bezier_circle and has a radius of size 3𝑚 larger than the circle
surrounding all points of an object detected and considered as an obstacle. As for the 9𝑚
value mentioned before, the value of 3𝑚 was chosen after doing empirical tests with the
robot.

The Algorithm 2 shows in more detail all the steps taken to perform the obstacle
detection stage, and the Figure 2.5 illustrates the idea mentioned above.

38 Chapter 2. 3D point cloud processing

Algorithm 2 Obstacle detection algorithm
1: 𝐶𝑘 ← Clusters found with the Algorithm 1
2: 𝑝𝑘

𝑖 ← Points of the cluster clouds 𝐶𝑘

3: array ← Publisher node for the obstacles information
4: min_dist ← Vector to store the distances of 𝑝𝑘

𝑖

5: raio ← Radius of the circle that contains all 𝑝𝑘
𝑖 of a obstacle cloud

6: raio_danger ← Circle that gives a safety distance to detect an obstacle
7:
8: for every 𝐶𝑘 do
9: for all 𝑝𝑘

𝑖 ∈ 𝐶𝑘 do
10: - Find 𝑥_𝑚𝑎𝑥, 𝑥_𝑚𝑖𝑛, 𝑦_𝑚𝑎𝑥, 𝑦_𝑚𝑖𝑛
11: if (𝑥_𝑚𝑎𝑥− 𝑥_𝑚𝑖𝑛)/2 > (𝑦_𝑚𝑎𝑥− 𝑦_𝑚𝑖𝑛)/2 then
12: raio = (𝑥_𝑚𝑎𝑥− 𝑥_𝑚𝑖𝑛)/2
13: else
14: raio = (𝑦_𝑚𝑎𝑥− 𝑦_𝑚𝑖𝑛)/2
15: end if
16: raio = raio + 0.3.raio *The 0.3 is there to increase the radius, to ensure that the

points of the cluster will be inside of it
17: raio_danger = 9 + raio

Loop when obstacle is found
18: if

√
𝑚𝑒𝑑𝑖𝑎_𝑥2 +𝑚𝑒𝑑𝑖𝑎_𝑦2 − 𝑟𝑎𝑖𝑜_𝑑𝑎𝑛𝑔𝑒𝑟 < 0.3 then

19: - array ← flag indicating that an obstacle was found
20: - array ← 𝑚𝑒𝑑𝑖𝑎_𝑥
21: - array ← 𝑚𝑒𝑑𝑖𝑎_𝑦
22: - array ← raio_danger
23: - array ← raio
24: - publish the information of array
25: end if
26: end for
27: end for

Figure 2.5 – Illustration of the obstacle detection circles

39

Chapter 3

Simulation and experimental
validation of the 3D point cloud
processing

3.1 Validation in virtual simulation

This section will present the results obtained from the simulation tests of the obstacle
detection algorithm. The Figure 3.1 shows the settings used to test the algorithm: Three
boxes were placed on the gazebo’s grid distant from each other, and at different distances
from the Spido.

Figure 3.1 – Simulation settings for the obstacle detection part

40 Chapter 3. Simulation and experimental validation of the 3D point cloud processing

3.1.1 LIDAR data cloud point

The Figure 3.2 shows the point cloud captured directly by the LIDAR, without passing
through any data processing stage for the simulation tests.

Figure 3.2 – Simulation test for the point cloud from the LIDAR without processing

In this image it is possible to visualize all the elements of the gazebo’s world: ground,
Spido’s body and spheres placed around the car.

3.1.2 Pass Through and CropBox Filters

The Figure 3.3 shows the point cloud after being downsampled by the PassThrough
and CropBox filters for the simulation tests. The colors in the image represent the distance
of the points compared to the position of the robot.

Figure 3.3 – Simulation test for the cloud downsampled with PassThrough and CropBox
filters

In this image is possible to visualize the filter’s results: After eliminating the ground
points and the Spido body’s points, we can just see a 3D cloud representing only the

3.2. Experimental validation 41

spheres placed on the simulation.

3.1.3 Heightmap

The Figure 3.4 shows the downsampled point cloud that was processed by the heightmap
package for the simulation tests.

Figure 3.4 – Simulation test for the cloud after the application of the heightmap package

In this image it is possible to see that from now on all the 3D point cloud is transformed
into a 2D point cloud, and the only objects detected are the spheres, which are higher
than 5cm from the ground.

3.1.4 Obstacle detection

The Figure 3.5 shows the the final stage of the obstacle detection algorithm for the
simulation tests.

In this image, it is possible to see the obstacle detection algorithm working: If the
Spido is inside one of the danger circles, the object is shown in green, otherwise it is shown
in red. Two spheres are far away from the Spido and thus are shown in green, while there
is one sphere that is close to the Spido and therefore is shown in red.

3.2 Experimental validation

This section will present the results obtained for the experimental test of the obstacle
detection algorithm. Figure 3.6 shows the settings used to test the algorithm: Two boxes
were placed on the test terrain and the pointclouds captured by the Spido were saved
using a remote computer that was communicating with the NUC via ssh protocol.

42 Chapter 3. Simulation and experimental validation of the 3D point cloud processing

Figure 3.5 – Simulation test for the cloud after clustering and obstacle detection algorithm

Figure 3.6 – Experimental settings for the obstacle detection part

3.2.1 LIDAR data cloud point

Figure 3.7 shows the point cloud captured directly by the LIDAR, without passing
through any data processing stage for the experimental tests.

Figure 3.7 – Experimental test for the point cloud from the LIDAR without processing

In this image, it is possible to visualize all the elements of the terrain: Soil, trees, one
of the boxes, and walls of the laboratory.

3.2. Experimental validation 43

3.2.2 Pass Through and CropBox Filters

The Figure 3.8 shows the point cloud after being downsampled by the PassThrough
and CropBox filters for the experimental tests.

Figure 3.8 – Experimental test for the cloud downsampled with PassThrough and Crop-
Box filters

In this stage, we can validate the two filters comparing with Figure 3.8, since here the
soil is no more visible, while it is still possible to see one of the boxes on the field. In the
upper part of the image it shows a part of the soil, because the terrain is not completely
flat and, thus, there is a little elevation compared to the actual position of the Spido.

3.2.3 Heightmap

The Figure 3.9 shows the raw point cloud coming from the LIDAR (in white) and the
downsampled point cloud that was processed by the heightmap package (in red) for the
experimental tests.

Figure 3.9 – Experimental test for the cloud after the application of the heightmap pack-
age (in red)

In this image is possible to see that from now on all the 3D point cloud is transformed
into a 2D point cloud, and the only objects detected are the ones having a height above
5cm from the ground, which means, the boxes and also the walls of the laboratory.

44 Chapter 3. Simulation and experimental validation of the 3D point cloud processing

3.2.4 Obstacle detection

Figure 3.10 shows the final stage of the obstacle detection algorithm for the experi-
mental tests.

Figure 3.10 – Experimental test for the cloud after clustering and obstacle detection al-
gorithm

In this image, it is possible to see the obstacle detection algorithm working: One of the
boxes is far away from the Spido and also the Spido is not inside this box’s danger_circle.
Thus, it is not considered an obstacle and it is shown in the image with the green color. On
the other hand, the other box is closer to the Spido and it is inside the box’s danger_circle.
For this, these boxes are shown in red. The yellow circle represents the circle that will be
used by the algorithm that generates the avoidance path.

3.3 Conclusion and perspectives

Comparing the two sets of results, from simulation tests and experimental tests, it
was possible to validate the algorithm created. One thing that can be explored with more
details in future works is the shape chosen to inflate the object: instead of using a circle, it
might be better to use an ellipse to wrap the objects wider like walls for example. Besides
that, the algorithm showed satisfactory results.

45

Chapter 4

Search for avoidance trajectories and
optimization

4.1 Introduction

Trajectory planning for obstacle avoidance is a crucial element in the studies for au-
tonomous mobile vehicles and the choice of the path to be followed should be made
selectively according to the robot constraints. Usually, the desired curve to be used must
be smooth and continuous, and it has to have adequate curvature to the limits of the
robot’s steering angles and maximum speed, not presenting sharp curves in order to allow
the robot to follow it without stopping. Otherwise, the robot may either inefficiently
follow the suggested path or may even become damaged when attempting to perform an
improper movement.

This project aims to explore Bézier curves for the generation of real-time avoidance
paths and to verify if their use allows a robot to follow a local obstacle avoidance path.
Bézier curves are practical to work since it is easy to define its ending and starting points
for local trajectories, only having the inconvenience of being difficult to choose certain
parameters.

This chapter will present an overview of the definition of this curve, as well as the
algorithm used to generate avoidance paths using this kind of curve.

46 Chapter 4. Search for avoidance trajectories and optimization

4.2 Global and local paths

The global path is the path given to the robot considering the starting position of
the robot and the final destination. It can be seen as a global picture of the path which
the robot has to follow. On the other hand, the local path is a path done by the robot
considering only a small interval inside the global path.

For this work, the global path is set as the main path for the robot to follow, imagining
that the path would be free of any kind of object that could potentially block the way
of the robot. The local path refers to the local avoidance path generated to the robot in
order to avoid an obstacle that is blocking its way.

In order to follow a global and local path, a command algorithm is run in one of
the embedded computers of the platform, and this algorithm ensures that the Spido will
follow the proposed path.

Command algorithm

This part is not included in our work, and it is already synthesized and validated
through advanced numerical simulation under ROS-Gazebo as well as real experiments
using Spido Robot (For more details, see [22]). In general, it uses a Model Predictive
Control (MPC) approach to develop the cost function based on the dynamic model of
the vehicle. This cost function must be minimized taken into account some intrinsic and
physical constraints of the vehicle. These later are steering angles limits and tire pseudo-
slippage (sliding) area bounds that should be fulfilled at each time step. To solve this
problem, [22] used quadratic programming (QP) solvers. The solver used is CVXOPT to
get at each time the optimal and acquired steering angles to ensure path tracking tasks.

4.3 Bézier Curve

Developed by Paul de Casteljau and Pierre Etienne Bézier, Bézier curves are para-
metric curves used in different applications to build smooth continuous curves, and have
their shape defined by a finite number of control points. [23], and are used in different
applications such as in graphic design software and CAD projects. It is an n-order class
of polynomial curves expressed by the linear interpolation between the vertex of a control
polygon, and its construction is based on the use of a parametric curve created by combin-
ing Bernstein polynomials with the Casteljau algorithm, which computes the Bernstein
coefficients of the curve. Furthermore, an n-degree Bézier curve can be simplified by using
a piece-wise cubic Bézier curves, as will be shown.

4.3. Bézier Curve 47

4.3.1 Parametric Curves

Parametric Curves are a very convenient way of describing the path of a particle in the
space because for each instant of time 𝑡 considered, we have the respective coordinates 𝑥
and 𝑦 that describe the position of a point P, that means, the 𝑡 parameter is within the
interval [0, 1] and (𝑥(𝑡), 𝑦(𝑡)) gives us the position of the point at 𝑡, which, in this case,
moves in the 𝑅2 plane. We call then 𝛾(𝑡) the curve that describes the trajectory done by
point P.

For this project, the concept of parametric curves was used to generate Bézier curves
for the deviation path that should be performed by the robot, and it was also used to
work with the development optimization algorithm for the Bézier curve parameters.

4.3.2 Bernstein polynomials

Bernstein polynomials of degree n are defined as shown in the equation (1):

𝐵𝑖,𝑡(𝑡) =
(︃
𝑛

𝑖

)︃
𝑡𝑖(1− 𝑡)𝑛−𝑖𝑃𝑖, 𝑖 = 0, 1, ..., 𝑛, 𝑡 ∈ [0, 1] (1)

For a given n-degree Bernstein polynomial, there are n+1 polynomials that make up a
base for the space of polynomials of degree less than or equal to n. Bernstein polynomials
are a good form of interpolation compared to other existing forms because its linear
combination results in a smoother interpolating curve and also offers a more uniform
approximation [24].

Figure 4.1 shows an example of the Bernstein polynomials of degree 3.

Figure 4.1 – Bernstein polynomials of degree 3. Source: [25]

4.3.3 Construction of a bezier curve

Bézier curves are polynomial parametric curves in the plane or space and are defined
according to the equation (2), where the Pi are called control points, and the curve is

48 Chapter 4. Search for avoidance trajectories and optimization

defined from the base formed by the Bernstein polynomials (1)

𝐵(𝑡) =
𝑛∑︁

𝑖=0
𝑃𝑖𝐵𝑖,𝑛(𝑡), 𝑡 ∈ [0, 1] (2)

Among the properties of this family of parametric curves, we can highlight 3 that are
considered important for the development of this work, namely:

1. The curve approximates a given polygonal curve, called the control polygon.
2. The curve tangents the first and last segments of the control polygon to the first

and last vertices of the polygon.
3. The curve is contained within the convex hull of the control polygon.

In the equation (2), the 𝑃𝑖 vertices can be seen as weights for each degree of the
Bernstein polynomial, and the curve 𝐵(𝑡) resultant can be seen as a weighted combination
of the control points of the curve as a function of the 𝑡 parameter.

Cubic Bézier curve:
The cubic Bézier curves is a case of the Bézier curves made up of Bernstein polynomials

of degree 3 and, thus, 4 control points. This is a special case for this family of curves
for it can be combined in order to represent and generalize Bézier curves of an order
superior to 3. Due to this special characteristic, this is the curve that will be used in this
project to generate the avoidance path. Besides that, the four control points of the cubic
Bézier allows the determination of the start and end direction of the curve, which is highly
important to assure the continuity of the reference path at the joint points connecting the
global reference path and the local reference path. The equation (4) shows the general
form of the Cubic Bézier curve (𝑃 (𝑡)), knowing that each vertex of the control polygon
is a weight for the Bernstein polynomial of order 3 (𝐵(𝑡)) from equation (3).

𝐵0,3(𝑡) = (1− 𝑡)3

𝐵1,3(𝑡) = 3𝑡(1− 𝑡)2

𝐵2,3(𝑡) = 3𝑡2(1− 𝑡)

𝐵3,3(𝑡) = 𝑡3

(3)

𝑃 (𝑡) = (1− 𝑡)3𝑃0 + 3𝑡(1− 𝑡)2𝑃1 + 3𝑡2(1− 𝑡)𝑃2 + 𝑡3𝑃3 (4)

Looking at equation (4) and the Figure 4.1, it is possible to verify that the 𝑃 (𝑡) curve
is a combination of the control point 𝑃0, 𝑃1, 𝑃2 and 𝑃3, and that as 𝑡 goes from 0 to 1, the
degree of influence of each control point in the 𝐵(𝑡) curve starts to change, that means, at
the beginning 𝑃0 has more influence into the shape of 𝐵(𝑡), then 𝑃1, then 𝑃2 and finally 𝑃3.

Composite Bézier curve

4.3. Bézier Curve 49

As stated previously, an n-order Bézier curve can be simplified by using multiple cubic
Bézier curves. Bearing this in mind, an important concept needed to know for this work
was the concept of continuity for curves. In order to assure a smooth and continuous
curve, it has to present a certain degree of continuity.
∙ 𝐶0 continuity: Two lines connect with each other using a common point, which

means, there is no jump between the two lines.
∙ 𝐶1 continuity: The direction of the tangent vector connecting the two curves is

the same.
∙ 𝐶2 continuity: The curvature connecting two curves are the same

Usually, the ending and starting points of a Bézier curve is easy to do, since the
position of these points is defined based on the need of the application. In this case, the
ending and starting point for a Bézier curve is defined as the moment when the Spido
detects an object and the ending point is a point where the Spido is no closer to the object
considered as an obstacle before.

However, the choice of the control points can be difficult to do, since the control points
are responsible to ensure that a Bézier curve will be continuous. The Figure 4.2(a) shows
a cubic Bézier where the control points were chosen in a way that the resulting curve was
a C1 curve, whereas the Figure 4.2(b) shows a cubic Bézier where the control points were
chosen in a way that the resulting curve is continuous, but not C1.

((a)) Good control points for a C1 Cubic Bézier
curve

((b)) Bad control points for a C1 Cubic Bézier
curve

Figure 4.2 – Illustration of the importance to choose well the control points of a C1 Bézier
curve

50 Chapter 4. Search for avoidance trajectories and optimization

4.4 Bézier curve for local trajectory planning

In the stage of the search for avoidance trajectories and optimization, the aim is to
use a composite Bézier curve to generate a local path to avoid obstacles while taking
into account some important constraints to ensure that the avoidance path created is an
ideal path to follow. For this, two cubic Bézier curves connected by a common point
will be used. The first curve is relative to avoiding obstacles: once the Spido detects an
obstacle, it will follow this first curve to distance itself from the obstacle in order to avoid
hitting it. The second curve is relative to the return of Spido to the initially set global
trajectory. However, an important and difficult issue to adjust when using composite
Bézier curves is the choice of good control points for each curve. As seen earlier, given
a Bézier curve composed of several cubic Bézier curves, the choice of their control points
will be responsible for determining whether the connection between the curves will have
a good continuity or not. Therefore, in a second moment, an algorithm was developed to
optimize the choice of the control points for the two cubic Bézier curves for the avoiding
curve. Thus, the steps taken to use a Bézier curve for local trajectory planning takes into
account four major important criteria:

1. Minimum curvature: The new path has to have the less curvature as possible,
to avoid giving to the Spido robot a path where it would have to turn in a sharp
angle.

2. Closer to the reference path: It is important to avoid an obstacle, but it is also
important to ensure that the Spido will not be taken far away from the original
path.

3. No obstacle: Last and most important, the new path generated has to give the
Spido the possibility of navigating without hitting any obstacles.

4. Longitudinal velocity 𝑉𝑥 constant: In this work the longitudinal dynamics are
neglected

Below it will be presented in more detail the algorithm developed to construct an
avoidance curve for the robot, as well as the algorithm used to find the optimal curve for
a given obstacle, bearing those four main criteria in mind.

4.4.1 Avoidance path algorithm

The injection of the desired path into the command algorithm is done using a ".txt"
file in which each line has three columns of information, being the second and the third
one the values of 𝑥 and 𝑦 respectively that gives the Spido the coordinates to be followed
through the experiment. The first column gives information about the angle of orientation
𝜓 of the robot, and it is used in the control part.

The Algorithm 3 proposed to create the avoiding path was done based on the infor-
mation of this ".txt" file, and at the end of the algorithm a new ".txt" file is generated

4.4. Bézier curve for local trajectory planning 51

and the reference path to the robot is changed in case an obstacle is detected, as shown
previously in the Figure 1.2.

Algorithm 3 Avoidance path algorithm
1: ref ← reference path
2: index ← line index (of ref) from the control algorithm
3: 𝑃 ← Point with coordinates (𝑥, 𝑦)
4: obstacle_circle ← circle containing the obstacle
5: danger_circle ← safety circle for the obstacle detection
6: bezier_circle ← circle used to create the bezier curves
7: flag_new_path ← 1
8: 𝑘 ← 0

Find initial and final point for the avoidance path
9: if flag_new_path = 1 then

10: flag_new_path ← 0
11: 𝑘 ← index
12: 𝑃0 ← 𝑃𝑘

13: for each 𝑃𝑘 ∈ ref do
14: if 𝑃𝑘 is inside the danger_circle then
15: k ++
16: end if
17: end for
18: 𝑗 ← k
19: 𝑃7 ← 𝑃𝑗

Find the middle point for the avoidance path
20: - bezier_circle ← obstacle_circle + 3
21: - 𝑟 ← line connecting 𝑃0 and 𝑃7
22: - 𝑠← line perpendicular to the line r, passing by the barycenter of the obstacle
23: - Find 𝑃3 in 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡{𝑃𝑑𝑖, 𝑃𝑀}, with 𝑑𝑖 = {1, 2}
24: - Find the intersection of the line 𝑠 with the bezier circle, returning 𝑃𝑑1 and 𝑃𝑑2
25: - Find the coordinate 𝑃𝑀 ∈ ref, the closest to the intersection of 𝑟 with 𝑠

Find Auxiliary points
26: - Find the line 𝑡1 parallel to 𝑟, passing by 𝑃3
27: 𝑃3𝑎𝑢𝑥 ← projection of 𝑃7 on the line 𝑡1
28: 𝑃4𝑎𝑢𝑥 ← projection of 𝑃0 on the line 𝑡1

Find Control Points
29: 𝑃1, 𝑃2 ← run the Algorithm 4 for the first Bézier curve
30: 𝑃5, 𝑃6 ← run the Algorithm 4 for the second Bézier curve
31: end if
32: Generate the Bézier curve
33: Create a new reference path changing the path between 𝑃0 and 𝑃7 by the Bézier curve

created

The avoidance path is created by using two cubic Bézier curves:

∙ First Bézier curve
This first curve will be used to leave the global path and start the local avoidance

52 Chapter 4. Search for avoidance trajectories and optimization

path. In this case, we name its control points as 𝑃0, 𝑃1, 𝑃2 and 𝑃3 and they are
defined as follows:

– The point 𝑃0 is defined as the point (𝑥, 𝑦) where the robot detected the obstacle

– The points 𝑃1 and 𝑃2 will be found with an optimization algorithm, as it will
be described below.

– The point 𝑃3 is located within the global path, with the distance 𝑑(𝑃3, 𝑃0) =
𝑑(𝑃3, 𝑃7).

∙ Second Bézier curve
The second curve will be used to leave the local avoidance path and go back to the
global path. In this case, we name its control points as 𝑃4, 𝑃5, 𝑃6 and 𝑃7 and they
will be defined as follows:

– The point 𝑃4 is located at the same position as the point 𝑃3.

– The points 𝑃5 and 𝑃6 will be found with an optimization algorithm, as it will
be described below.

– The point 𝑃7 is located within the global path in a position outside the dan-
ger_circle.

Thus, this algorithm receives a message from a topic called /array from the obstacle
detection stage, and in this topic, there is a flag that indicates whether an obstacle was
detected or not. If an obstacle was detected and the Spido’s position passes the safety
circle area, the index value of the ".txt" file is saved in a variable and that position is taken
as the starting point of the Algorithm 3. Once the algorithm starts, it finds the next index
point that gives a point outside the safety circle area and applies some geometric steps
to find the middle point that will connect the two Cubic Bézier curves. After finding the
fix points, that means, the starting point, the ending point, and the middle point, the
control points are determined using the Algorithm 4. The Figure 4.3 illustrates the main
steps are done by the avoidance path algorithm in an S-shaped path: First, the starting
and ending points of the local path are found (𝑃0 and 𝑃7); then the intersection between
the global path and the line perpendicular to the line crossing the starting and ending
points is found; After it, the two possibilities for middle control point for the avoidance
path are found, and the one closer to the reference path is chosen (𝑃3 and, consequently,
𝑃4); Finally, the control points of the cubic Bézier curves are computed and the local path
to avoid the obstacle is generated (𝑃1 and 𝑃2 for the first curve, 𝑃5 and 𝑃6 for the second
curve).

Among the 3 criteria cited at the beginning of this section, it is possible to verify
that the "minimum curvature" criterion is met through the control points optimization
algorithm, while the "closer to the reference path" criterion is met through the choice of

4.4. Bézier curve for local trajectory planning 53

Figure 4.3 – Visualization of the steps for the Algorithm 3

the middle point. Finally, the "no obstacle" criterion is met by choosing the starting and
ending points outside the safety circle.

4.4.2 Avoidance Path Optimization

As seen previously, the main challenge in using Bézier curves for the avoidance path
generation stands on the choice of the unknown control points, since it is due the posi-
tioning of these points that it is possible to ensure that the generated path will present
the continuity restrictions desired so that Spido can track it with stability.

To solve this problem, it is proposed the Algorithm 4 based on the principle of the
choice of the clothoide tentacles used in [7], which generates several Bézier curves by
combining the parameters 𝑃1 and 𝑃2, 𝑃5 and 𝑃6, and chooses the curve that has the
lowest possible curvature, having as a restriction parameter the maximum curvature that
can be performed by the robot, which takes into account its construction factors and
hence its steering angles. In this case, the maximum curvature that can be performed by
the Spido robot is 0.246𝑚−1.

54 Chapter 4. Search for avoidance trajectories and optimization

Algorithm 4 Control points optimization
1: 𝑃0𝑎𝑢𝑥 , 𝑃0, 𝑃3𝑎𝑢𝑥 , 𝑃3 ← variables from the Algorithm 3
2: 𝑃4𝑎𝑢𝑥

, 𝑃4, 𝑃7𝑎𝑢𝑥
, 𝑃7 ← variables from the Algorithm 3

Find first Bézier tangents
3: Find the line 𝑞 connecting 𝑃0𝑎𝑢𝑥

and 𝑃0
4: Find the line 𝑞𝑝𝑒𝑟 perpendicular to the line 𝑟, passing by the point 𝑃3
5: 𝑃𝑒𝑛𝑑1 ← intersection point of 𝑞 with 𝑞𝑝𝑒𝑟

6:
7: Find the line 𝑟 connecting 𝑃3𝑎𝑢𝑥

and 𝑃3
8: Find the line 𝑟𝑝𝑒𝑟 perpendicular to the line 𝑠, passing by the point 𝑃0
9: 𝑃𝑒𝑛𝑑2 ← intersection point of 𝑟 with 𝑟𝑝𝑒𝑟

Find second Bézier tangents
10:
11: Find the line 𝑠 connecting 𝑃7𝑎𝑢𝑥

and 𝑃7
12: Find the line 𝑠𝑝𝑒𝑟 perpendicular to the line 𝑠, passing by the point 𝑃4
13: 𝑃𝑒𝑛𝑑3 ← intersection point of 𝑠 with 𝑠𝑝𝑒𝑟

14:
15: step ← 10
16: 𝑡1 ← 0

Finding 𝑃1 and 𝑃2
17: for i < step do
18: Vary 𝑃1 through the vector 𝑃0, 𝑃𝑒𝑛𝑑1, with 𝑑𝑖𝑠𝑡(𝑃0, 𝑃1) = 𝑡1
19: for j < step do
20: - Vary 𝑃2 through the vector 𝑃3, 𝑃𝑒𝑛𝑑2, with 𝑑𝑖𝑠𝑡(𝑃3, 𝑃2) = 𝑡2
21: - Compute the maximum curvature for the bézier curve using 𝑃0, 𝑃1, 𝑃2 and 𝑃3
22: if maximum curvature < 0.246 then
23: - bezier_candidates ← 𝑃0, 𝑃1, 𝑃2, 𝑃3 and curvature value
24: end if
25: 𝑡2 ← 𝑡2 + 1/step
26: end for
27: 𝑡1 ← 𝑡1 + 1/step
28: 𝑡2 ← 0
29: end for
30: 𝑃1, 𝑃2 ← values from bezier_candidates the set of parameters having the minimum curvature

value
Finding 𝑃5 and 𝑃6

31: 𝑃5 ← Point in the vector 𝑃2, 𝑃3, with 𝑑𝑖𝑠𝑡(𝑃4, 𝑃5) = 𝑑𝑖𝑠𝑡(𝑃3, 𝑃2)
32: 𝑡3 ← 0
33: for k < step do
34: - Vary 𝑃6 through the vector 𝑃7, 𝑃𝑒𝑛𝑑3, with 𝑑𝑖𝑠𝑡(𝑃7, 𝑃3) = 𝑡3
35: - Compute the maximum curvature for the bézier curve using 𝑃4, 𝑃5, 𝑃6 and 𝑃7
36: if maximum curvature < 0.246 then
37: - bezier_candidates ← 𝑃4, 𝑃5, 𝑃6, 𝑃7 and curvature value
38: end if
39: 𝑡3 ← 𝑡3 + 1/step
40: end for
41: 𝑃5, 𝑃6 ← values from bezier_candidates the set of parameters having the minimum curvature

value
42:
43: Return 𝑃1, 𝑃2, 𝑃5 and 𝑃6

Figure 4.4 shows the results of the optimization algorithm applied to just one cubic
Bézier curve. In the image, it is possible to see that the red curve, chosen as the optimal
curve by the algorithm, has a smooth curvature and also meets all the desired continuity
criteria presented previously.

4.4. Bézier curve for local trajectory planning 55

Figure 4.4 – Optimal Bézier Result

56 Chapter 4. Search for avoidance trajectories and optimization

57

Chapter 5

Validation for the search for
avoidance trajectories and
optimization

5.1 Validation in virtual simulation

To validate the algorithm through virtual simulation, several tests were done consid-
ering different path tracking shapes, different obstacle positions, different speeds for the
vehicle and also multiple objects.

For the experimental test part it was necessary to update some hardware of the test
platform and also to adapt the simulation algorithm code to the appropriate parameters
considering the actual sensors, and readjust the referential points to the rotation matrix.
Unfortunately, due to technical issues during this system upgrade stage, we were unable
to perform the desired experimental tests as there was not enough time to do so.

5.1.1 Rectilinear path

The figures 5.1, 5.2 and 5.3 below show, respectively, the results for the simulation
tests in a rectilinear path, and the tracking error of those tests.

58 Chapter 5. Validation for the search for avoidance trajectories and optimization

Figure 5.1 – Simulation test for the rectilinear path with a speed of 2m/s and its tracking
error

Figure 5.2 – Simulation test for the rectilinear path with a speed of 6m/s and its tracking
error

Figure 5.3 – Simulation test for the rectilinear path with a speed of 4m/s and its tracking
error

5.1.2 S-shaped path

The figures 5.4, 5.5 and 5.6 below show, respectively, the results for the simulation
tests in a S-shaped path, and the tracking error of those tests.

5.1. Validation in virtual simulation 59

Figure 5.4 – Simulation test for the S-shaped path with a speed of 2m/s and its tracking
error

60 Chapter 5. Validation for the search for avoidance trajectories and optimization

Figure 5.5 – Simulation test for the S-shaped path with a speed of 4m/s and its tracking
error

5.1. Validation in virtual simulation 61

Figure 5.6 – Simulation test for the S-shaped path with a speed of 6m/s and its tracking
error

5.1.3 O-shaped path

The figures 5.7 and 5.8 below show, respectively, the results for the simulation tests
in a O-shaped path, and the tracking error of those tests.

62 Chapter 5. Validation for the search for avoidance trajectories and optimization

Figure 5.7 – Simulation test for the O-shaped path with a speed of 2m/s and its tracking
error

Figure 5.8 – Simulation test for the O-shaped path with a speed of 4m/s and its tracking
error

5.1. Validation in virtual simulation 63

5.1.4 Multiple obstacles

The figures 5.9 and 5.10 below show, respectively, the results for the simulation test
for two obstacles in a line path and the simulation test for three obstacles in a S-shaped
path as well as the tracking error of those tests.

Figure 5.9 – Simulation test for two obstacles in a Line path with a speed of 6m/s and
its tracking error

Figure 5.10 – Simulation test for three obstacles in a S-shaped path with a speed of 2m/s
and its tracking error

64 Chapter 5. Validation for the search for avoidance trajectories and optimization

5.1.5 Discussion of results

Analyzing the results obtained for the simulation part it is possible to verify that the
obtained results show that the algorithm developed to avoid obstacles using two Bézier
cubic curves demonstrates to be efficient for the required task. In the images above we
see that the robot has successfully avoided one, two and even three obstacles. However,
due to the simplifying hypothesis considered, in the cases of multiple obstacles the objects
should be positioned at a distance so that they are not within the security circle of the
other object detected by the robot.

65

Chapter 6

Conclusions and perspectives

Analyzing the results obtained in both virtual and experimental analyzes, it is verified
that the obstacle detection algorithm and the avoidance path generation algorithm showed
good results and achieved the expected objective for the conditions and restrictions pro-
posed at the beginning of this work. However, to make result of this project to more
useful in real-life problems, it is still necessary to make improvements in its functionality
and structure to further generalize the operating restriction statements. For instance, we
plan to control the longitudinal dynamics of the robot to improve the accuracy of the
path tracking algorithms, to ensure the stability and safety of the vehicle, especially in
major turnings where the curvature is minimal.

One of the first considerations made before starting the algorithms of this project
was the consideration that the whole work ground is flat, without any ramps or major
irregularities on the test ground. However, analyzing the Figure 3.8, It can be seen that
even little ground slopes could interfere with the designed detection algorithm. Therefore,
another point to be improved would be to include terrain slope conditions in the proposed
algorithm.

Also, the algorithm proposed in this project considers only static objects with fixed
and invariant positions. However, it is known that in more real situations, we rarely
find only static objects in an environment. In this sense, the developed algorithm can be
improved in future works, so that it can perform the detection of dynamic obstacles as
well.

In addition to it, as mentioned before, several works have already been developed
focusing on the detection and identification of obstacles and also in the techniques to
generate avoidance trajectories. All these works have positive and negative points related
to the use of their methods. Thus, to verify which technique is most appropriate for a

66 Chapter 6. Conclusions and perspectives

given task it is necessary to make a comparison between the various possibilities available
to be used for a given problem. In future works, it would be important to compare the
proposed method in this project with other proposed methods, to verify which methods
present better efficiency in general, to verify the quality of the proposed algorithm.

67

Bibliography

[1] Mohamed Krid, Faiz Benamar, and Roland Lenain. “A new explicit dynamic path
tracking controller using generalized predictive control”. In: International Journal
of Control, Automation and Systems 15.1 (2017), pp. 303–314.

[2] Mohamed Krid and Faiz Benamar. “Design and control of an active anti-roll system
for a fast rover”. In: 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2011, pp. 274–279.

[3] M Fnadi et al. “Path Tracking Control for a Double Steering Off-Road Mobile
Robot”. In: ROMANSY 22–Robot Design, Dynamics and Control. Springer, 2019,
pp. 441–449.

[4] M. Fnadi, F. Plumet, and F. Benamar. “Nonlinear Tire Cornering Stiffness Observer
for a Double Steering Off-Road Mobile Robot”. In: 2019 International Conference
on Robotics and Automation (ICRA). 2019, pp. 7529–7534. doi: <10.1109/ICRA.
2019.8794047>.

[5] Marcus Lundberg. “Path planning for autonomous vehicles using clothoid based
smoothing of A* generated paths and optimal control”. MA thesis. KTH, Numerical
Analysis, NA, 2017.

[6] Suhyeon Gim. “Flexible and Smooth Trajectory Generation based on Parametric
Clothoids for Nonholonomic Car-like Vehicles”. PhD thesis. Clermont Auvergne,
2017.

[7] Chebly Alia et al. “Local trajectory planning and tracking of autonomous vehicles,
using clothoid tentacles method”. In: 2015 IEEE intelligent vehicles symposium
(IV). IEEE. 2015, pp. 674–679.

[8] J. Guldner et al. “Tracking gradients of artificial potential fields with non-holonomic
mobile robots”. In: Proceedings of 1995 American Control Conference - ACC’95.
Vol. 4. 1995, 2803–2804 vol.4. doi: <10.1109/ACC.1995.532361>.

https://doi.org/10.1109/ICRA.2019.8794047
https://doi.org/10.1109/ICRA.2019.8794047
https://doi.org/10.1109/ACC.1995.532361

68 BIBLIOGRAPHY

[9] N. Noto et al. “Steering assisting system for obstacle avoidance based on person-
alized potential field”. In: 2012 15th International IEEE Conference on Intelligent
Transportation Systems. 2012, pp. 1702–1707. doi: <10.1109/ITSC.2012.6338628>.

[10] D. Bodhale, N. Afzulpurkar, and N. T. Thanh. “Path planning for a mobile robot
in a dynamic environment”. In: 2008 IEEE International Conference on Robotics
and Biomimetics. 2009, pp. 2115–2120. doi: <10.1109/ROBIO.2009.4913329>.

[11] Rodrigo Ventura. Understanding ROS Topics. Available at <http : // library . isr .
ist.utl.pt/ docs/ roswiki/ ROS(2f)Tutorials(2f)UnderstandingTopics.html>. url:
<http://library.isr.ist.utl.pt/docs/roswiki/ROS(2f)Tutorials(2f)UnderstandingTopics.
html>.

[12] Jeff Delmerico. PCL Tutorial: The Point Cloud Library By Example. 2013. url:
<http://www.jeffdelmerico.com/wp-content/uploads/2014/03/pcl_tutorial.pdf>.

[13] D. Ghorpade, A. D. Thakare, and S. Doiphode. “Obstacle Detection and Avoidance
Algorithm for Autonomous Mobile Robot using 2D LiDAR”. In: 2017 International
Conference on Computing, Communication, Control and Automation (ICCUBEA).
2017, pp. 1–6. doi: <10.1109/ICCUBEA.2017.8463846>.

[14] A. N. Catapang and M. Ramos. “Obstacle detection using a 2D LIDAR system for
an Autonomous Vehicle”. In: 2016 6th IEEE International Conference on Control
System, Computing and Engineering (ICCSCE). 2016, pp. 441–445. doi: <10.1109/
ICCSCE.2016.7893614>.

[15] M. A. S. Teixeira et al. “A pose prediction approach to mobile objects in 2D
costmaps”. In: 2017 Latin American Robotics Symposium (LARS) and 2017 Brazil-
ian Symposium on Robotics (SBR). 2017, pp. 1–6. doi: <10.1109/SBR- LARS-
R.2017.8215314>.

[16] J. Seok et al. “Diverse multi-path planning with a path-set costmap”. In: 2011 11th
International Conference on Control, Automation and Systems. 2011, pp. 694–699.

[17] Gustavo Nunes Wagner. “Visualização Interativa de Modelos Massivos de Engen-
haria na Indústria de Petróleo com o Algoritmo de Voxels Distantes”. PhD thesis.
PUC-Rio, 2007.

[18] Zhe Wang, Hong Liu, and Tao Xu. “Real-Time Plane Segmentation and Obstacle
Detection of 3D Point Clouds for Indoor Scenes”. In: vol. 7584. Oct. 2012. doi:
<10.1007/978-3-642-33868-7_3>.

[19] Jack O’Quin, David Claridge, and Michael Quinlan. velodyne_Height_map. Avail-
able at <http:// wiki.ros.org/ velodyne_height_map>. url: <http://wiki.ros.org/
velodyne_height_map>.

https://doi.org/10.1109/ITSC.2012.6338628
https://doi.org/10.1109/ROBIO.2009.4913329
http://library.isr.ist.utl.pt/docs/roswiki/ROS(2f)Tutorials(2f)UnderstandingTopics.html
http://library.isr.ist.utl.pt/docs/roswiki/ROS(2f)Tutorials(2f)UnderstandingTopics.html
http://library.isr.ist.utl.pt/docs/roswiki/ROS(2f)Tutorials(2f)UnderstandingTopics.html
http://library.isr.ist.utl.pt/docs/roswiki/ROS(2f)Tutorials(2f)UnderstandingTopics.html
http://www.jeffdelmerico.com/wp-content/uploads/2014/03/pcl_tutorial.pdf
https://doi.org/10.1109/ICCUBEA.2017.8463846
https://doi.org/10.1109/ICCSCE.2016.7893614
https://doi.org/10.1109/ICCSCE.2016.7893614
https://doi.org/10.1109/SBR-LARS-R.2017.8215314
https://doi.org/10.1109/SBR-LARS-R.2017.8215314
https://doi.org/10.1007/978-3-642-33868-7_3
http://wiki.ros.org/velodyne_height_map
http://wiki.ros.org/velodyne_height_map
http://wiki.ros.org/velodyne_height_map

BIBLIOGRAPHY 69

[20] Classification Using Nearest Neighbors. Available at <https : // www.mathworks .
com/ help/ stats/ classification- using- nearest - neighbors .html>. url: <https ://
www.mathworks.com/help/stats/classification-using-nearest-neighbors.html>.

[21] Radu Bogdan Rusu. “Semantic 3D object maps for everyday manipulation in human
living environments”. In: KI-Künstliche Intelligenz 24.4 (2010), pp. 345–348.

[22] M Fnadi, F Plumet, and F Ben Amar. “Model Predictive Control based Dynamic
Path Tracking of a Four-Wheel Steering Mobile Robot. In : IROS 2019”. In:

[23] Yves Bertot, Frédérique Guilhot, and Assia Mahboubi. “A formal study of Bernstein
coefficients and polynomials”. In: Mathematical Structures in Computer Science 21.4
(2011), pp. 731–761.

[24] Heloisa B Medeiros and M Lucia Menezes. “Aproximaçao de funçoes: polinômios de
Bernstein”. In: ().

[25] Kenneth I Joy. “Bernstein polynomials”. In: On-Line Geometric Modeling Notes 13
(2000).

https://www.mathworks.com/help/stats/classification-using-nearest-neighbors.html
https://www.mathworks.com/help/stats/classification-using-nearest-neighbors.html
https://www.mathworks.com/help/stats/classification-using-nearest-neighbors.html
https://www.mathworks.com/help/stats/classification-using-nearest-neighbors.html

	Title page
	List of Figures
	Contents
	Introduction
	The internship
	Scientific context
	Study issues
	Objectives
	Robot Operating System (ROS)
	Nodes
	Topics
	Packages

	Experimental platform
	Embedded computers
	Real Time Kinematic GPS (GPS RTK) and Inertial Measurement Unit (IMU)
	LIDAR Velodyne HDL-32E

	Point Cloud Library (PCL)
	Virtual platform
	Gazebo
	Unified Robot Description Format (URDF)
	ROS Visualizer (Rviz)

	Contributions

	3D point cloud processing
	State of the art of obstacle detection methods
	Data acquisition
	Data downsampling
	CropBox Filter
	PassThrough Filter
	Voxel Grid Filter
	Heightmap
	Limitation of the Vision field
	Clustering

	Obstacle detection

	Simulation and experimental validation of the 3D point cloud processing
	Validation in virtual simulation
	LIDAR data cloud point
	Pass Through and CropBox Filters
	Heightmap
	Obstacle detection

	Experimental validation
	LIDAR data cloud point
	Pass Through and CropBox Filters
	Heightmap
	Obstacle detection

	Conclusion and perspectives

	Search for avoidance trajectories and optimization
	Introduction
	Global and local paths
	Bézier Curve
	Parametric Curves
	Bernstein polynomials
	Construction of a bezier curve

	Bézier curve for local trajectory planning
	Avoidance path algorithm
	Avoidance Path Optimization

	Validation for the search for avoidance trajectories and optimization
	Validation in virtual simulation
	Rectilinear path
	S-shaped path
	O-shaped path
	Multiple obstacles
	Discussion of results

	Conclusions and perspectives
	Bibliography

