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Resumo

Em ambos, círculo e reta, este trabalho tem como finalidade demonstrar que o problema
de Cauchy para a "boa" equação de Boussinesq é localmente bem posto em uma classe de
funções Gevrey, a qual inclui classes de funções analíticas que podem ser estendidas holo-
morficamente em uma faixa simétrica no plano complexo em torno do eixo-x. Além disso,
informações a respeito da regularidade da solução na variável temporal serão obtidas.





Abstract

In both the line and the circle, we shall to prove that the Cauchy problem for the “good”
Boussinesq equation is locally well-posed in a class of Gevrey functions, which includes a
class of analytic functions that can be extended holomorphically in a symmetric strip of the
complex plane around the x-axis. Additionally, information about the regularity of the solu-
tion in the time variable shall be provided.
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Introduction

In 1834, while on horseback along side a narrow barge channel in Edinburgh, John Scott
Russell observed a smooth wave that propagated along the channel preserving its shape and
speed. Intrigued, the young scientist followed the wave on horseback as it rolled on at about
eight or nine miles an hour, but after a chase of one or two miles he lost it. He challenged the
mathematical community of the day to explain the phenomenon. In the following, we have
his proper words explaining what he saw:

“I was observing the motion of a boat which was rapidly drawn along a narrow channel by
a pair of horses, when the boat suddenly stopped - not so the mass of water in the channel
which it had put in motion; it accumulated round the prow of the vessel in a state of violent
agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well defined heap of water, which
continued its course along the channel apparently without change of form or diminution
of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight
or nine miles an hour, preserving its original figure some thirty feet long and a foot to a
foot and a half in height. Its height gradually diminished, and after a chase of one or two
miles I lost it in the windings of the channel. Such, in the month of August 1834, was my
first chance interview with that singular and beautiful phenomenon which I have called
the Wave of Translation. "

John Scott Russel

Some years of Russel’s life was devoted to replicate the Wave of Translation. A 30-foot
basin was built by him to test different theories. The discovers of these experiments was pre-
sented at a British ScienceAssociationmeeting in Edinburgh, wherewas described thewaves
and the mechanics behind them. Thus began a range of studies and investigations regarding
solitary waves. Throughout the next 30 years, the solitons caught attention of the scientific
community, these waves were extensively studied appearing in the mathematical activity
with application for optics, acoustics, quantum mechanics, oceanography, astrophysics, and
others.

xvii
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In 1872, Joseph Boussinesq proposed the following equation

ut t −uxx −uxxxx + (u2)xx = 0 (1)

to describe the propagation of long waves with small amplitude on the surface of water [8].
It possesses soliton traveling wave solutions

u(x, t ) = 3

2

(
c2 −1

)
sech2

[p
c2 −1

2
(x − ct )

]
,

where u(x, t ) and c are the amplitude and the speed of the wave, respectively, thus providing
for the first time mathematical evidence in favor of John Scott Russell’s observation of the
solitary wave.

In the studies of the Russel’s observations others famous equations appeared. We would
like to mention the famous KdV equation, which was developed in 1895 by Diederik Ko-
rteweg and Gustav de Vries [28], where they expanded Boussinesq’s work. The KdV equa-
tion is given as follows

ut +uxxx +uux = 0.

Just KdV alone has a long and celebrated history. In this work, we are going to focus on
the Boussinesq equation, more precisely in the “good” one. The equation (1) is nowadays
known as “bad” Boussinesq equation. The “badness” of the equation lies in the fact that the
corresponding initial value problem is ill-posed.

The mathematical term well-posed problem (or ill-posed problem) stems from a defini-
tion given by JacquesHadamard. He believed thatmathematical Cauchy problems ofmodels
of physical phenomena should satisfy the following:

1. There is a solution that has the same regularity of the initial data.

2. The solution is unique.

3. The data-to-solution map depends continuously on the initial data.

If an initial value problem satisfies the three items above, then the problem is called well-
posed.

The ill-posedness of (1) can be seen, for example, by seeking small amplitude solutions
of the form

u(x, t ) = εe−i kx−iωt , ω2 = k2 −k4, k ∈R and ε¿ 1, (2)

such that the nonlinear term of (1) is negligible. We observe that even the small amplitude
family of solutions (2) grows exponentially with time for |k| > 1, since the time frequency ω
is imaginary and the wave amplitude is a rate of about ek2t . In other words, the small initial
data u0(x) = εe−i kx immediately evolves to the exponentially large solution, which shows that
the third item of the well-posedness definition fails.
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One way of solving the issue of ill-posedness is to change the sign of the fourth derivative
in (1) from negative to positive resulting in the following equation

∂2
t u −∂2

xu +∂4
xu +∂2

x(u2) = 0, (3)

which has been suggested by Zakharov [38] as amodel of nonlinear vibrations along a string,
and also by Turitsyn [37] for describing electromagnetic waves in nonlinear dielectric mate-
rials. The dispersion relation is now given by ω2 = k2 +k4, implying that ω ∈ R, for all k ∈ R.
Since (3) has results of well-posedness, it is known as the “good” Boussinesq equation. Za-
kharov [38] has shown that both the “bad” and the “good” Boussinesq equations are inte-
grable. Furthermore, the initial value problem of these equations was analyzed via inverse
scattering techniques by Deift, Tomei and Trubowitz [10].

In this work, we consider the initial value problem for the “good” Boussinesq (gB) equa-
tion 

∂2
t u −∂2

xu +∂4
xu +∂2

x(u2) = 0, x ∈R or T, t ∈R,

u(x,0) = u0(x),

∂t u(x,0) = ∂xu1(x),

(4)

and study its local well-posedness for initial data in Gevrey spaces on both the line and the
circle. These include spaces of analytic functions that can be extended holomorphically in
a symmetric strip of the complex plane around the x-axis. There is a reason to consider the
second initial data as a derivative of a square-integrable function, which is regarding to the
Hamiltonian functional related to the equation (for more details see [5] and [29]). Before
stating our results precisely we shall recall a few results about this Cauchy problem.

The localwell-posedness of theCauchy problem for the “good" Boussinesq equation (4) in
Sobolev spaces has a relatively recent history. Bona and Sachs [5] studied the well-posedness
for Boussinesq type equations given by the same expression as in (4), where the nonlinearity
u2 is replaced by a C∞ function f (u). They showed that the Cauchy problem for such equa-
tions is well-posed for initial data u0 ∈ H s+2(R) and u1 ∈ H s+1(R), with s > 1/2, and the solution
u satisfies, for some T > 0,

u ∈C ([0,T ]; H s+2(R))∩C 1([0,T ]; H s(R))∩C 2([0,T ]; H s−2(R)).

They also proved that the solitary wave solutions to these equations are nonlinearly stable
for a range of their phase speeds, which leads to the conclusion that initial data lying close
to a stable solitary wave evolves into a global solution of these equations. These results were
improved by Linares [29], who proved the local well-posedness for the Cauchy problem (4)
with u2 replaced by |u|αu, 0 < α < 4, and with initial data (u0,u1) ∈ H 0(R)× H−1(R). He also
proved that, for small initial data (u0,u1) ∈ H 1(R)× H 0(R), the solution is actually global in
time and is in H 1(R) in space variable. We point out that these results hold true for the
“good" Boussinesq equation.

Farah [12] improved the local well-posedness results above for the “good" Boussinesq
equation by proving that the Cauchy problem (4) is locally well-posedwhen (u0,u1) ∈ H s(R)×
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H s−1(R) and s > −1/4. One of the main ideas in his proof is to define suitable to the linear
part of the equation Bourgain type spaces and using them to derive the appropriate bilinear
estimates. More precisely, for s,b ∈ R he defines the weighted Sobolev spaces Xs,b as the
completion of the Schwartz class in R2 with respect to the norm

‖u‖Xs,b = ‖(1+|τ−γ(ξ)|)b(1+|ξ|)sũ‖L2
τ,ξ

,

where γ(ξ) =
√
ξ2 +ξ4 and ũ denotes the time-space Fourier transform of u. Similar results

were proved by Farah and Scialom [13] in the periodic case.
This type of spaces was first introduced by Bourgain [6] and [7] in the studies of nonlin-

ear dispersive wave problems. The Bourgain spaces turn out to be appropriated spaces to
establish a fixed point argument. In this work, we will mainly use these spaces in order to
prove the well-posedness results.

Let us now define the spaces needed for describing our results. We begin with the spaces
of analytic Gevrey functions that our initial data will belong to. For s ∈R, δ> 0 and σ≥ 1, we
define the spaces

Gσ,δ,s(R) =
{

f ∈ L2(R); ‖ f ‖2
Gσ,δ,s (R)

=
∫

〈ξ〉2s e2δ|ξ|1/σ | f̂ (ξ)|2 dξ<∞
}

, (5)

where 〈ξ〉 =̇
√

1+ξ2. We observe that these spaces satisfy the following

Gσ,δ,s(R) ⊂ H s′(R), for all s′ ∈R. (6)

In addition, if ϕ ∈Gσ,δ,s(R), then ϕ belongs to the Gevrey class Gσ(R). In the case when σ= 1,
we denote Gδ,s(R) ≡ G1,δ,s(R). Thus, if ϕ ∈ Gδ,s(R) then ϕ is analytic on the line and admits a
holomorphic extension ϕ̃ on the strip Sδ

.= {x + i y ; |y | < δ}.

x

y

2δ0

Sδ

Figure 1: Strip around x-axis.

Hence, in this context, we refer to the parameter δ> 0 as the uniform radius of analyticity
of the function ϕ.

For the periodic case, the norm in the space Gσ,δ,s(T) is defined by simply replacing the
integral in (5) with a sum as follows

Gσ,δ,s(T) =
{

f ∈ L2(T); ‖ f ‖2
Gσ,δ,s (T)

=
∑
k∈Z

〈k〉2s e2δ|k|1/σ | f̂ (k)|2 <∞
}

.
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The above remarks remain true in this case and, moreover, one can easily see that ifϕ ∈Gσ(T),
then there exists δ> 0 such that ϕ ∈Gσ,δ,s(T), for all s ∈R.

Next, we introduce the spaces needed for stating our main results precisely. Motivated
by [12], we define the analytic Gevrey version of Bourgain spaces that are appropriate for
the gB equation. For s,b ∈ R, δ > 0 and σ ≥ 1, we denote by Xσ,δ,s,b(R) the completion of the
Schwartz class S (R2) with respect to the norm

‖u‖Xσ,δ,s,b (R) =
(Ï

e2δ|ξ|1/σ 〈|τ|−γ(ξ)〉2b 〈ξ〉2s |û(ξ,τ)|2 dτdξ

) 1
2

, (7)

where γ(ξ) =
√
ξ2 +ξ4. In the periodic case, these spaces are defined as the completion of the

space of the functions defined on T×R which are in the Schwartz class in time variable and
are smooth in space variable, with respect to the norm

‖u‖Xσ,δ,s,b (T) =
(∑

n∈Z

∫
e2δ|n|1/σ 〈|τ|−γ(n)〉2b 〈n〉2s |û(n,τ)|2 dτ

) 1
2

. (8)

We often omit R or T in the notation of these spaces when it is clear by the context which
one is being considered or when the statement holds for both.

Also, for any T ≥ 0, X T
σ,δ,s,b denotes the localized space endowed with the norm

‖u‖X T
σ,δ,s,b

= inf
ũ∈Xσ,δ,s,b

{‖ũ‖Xσ,δ,s,b
; ũ(·, t ) = u(·, t ) for all t ∈ [0,T ]

}
. (9)

Furthermore, a very important property of the Bourgain space Xσ,δ,s,b is that these spaces are
continuously included in the Hadamard space C

(
[0,T ],Gσ,δ,s

)
, for every T > 0.

Now, we are ready to state our first main result that happens in both the real and the
periodic case, which reads as follows.

Theorem 1. Let s > −1/4, δ > 0 and σ ≥ 1. Then, for initial data (u0,u1) ∈ Gσ,δ,s ×Gσ,δ,s−1, there
exist a lifespan

T = T (u0,u1) = c0

(1+‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1 )α
, (10)

where α> 1 and 0 < c0 ≤ 1 are constants that depend only on s, and a unique solution u of the Cauchy
problem for the “good" Boussinesq equation (4) such that u ∈C

(
[0,T ];Gσ,δ,s

)∩X T
σ,δ,s,b . Moreover, the

data-to-solution map is locally Lipschitz.

Our next goal is to study the time regularity of the solution established in Theorem 1,
which is motivated by the works [20], [21] and [22] on time regularity of solutions to KdV
type equationswith analyticGevrey data. Although the local solution to theCauchy problem
with analytic initial data is analytic in the space variable (see Trubowitz [36] for the periodic
case and T. Kato [23], T. Kato and Masuda [24] and K. Kato and Ogawa [25] for the non-
periodic case), it may lose regularity in time. However, for initial data in the Gevrey class
Gσ,δ,s , it is proved in [20] that the solution of the periodic higher dispersion KdV equation is
Gevrey of order mσ, where m is the order of the dispersive term.
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Looking at the linear part of the gB equation, that is, the equation ∂2
t u − ∂2

xu + ∂4
xu and

ignoring the term ∂2
xu, we see that two time derivatives are equal to four space derivatives,

which implies that if the solution is Gevrey of order σ in space variable, then it is going to be
Gevrey of order 2σ in time variable. Our second main result says that the same happens for
the gB equation.

Theorem 2. Let s > −1/4, δ > 0 and σ ≥ 1. If (u0,u1) ∈ Gσ,δ,s ×Gσ,δ,s−1, then the solution u ∈
C

(
[0,T ];Gσ,δ,s

)
given by Theorem 1 belongs to the Gevrey class G2σ in time variable.

The results presented in this thesis was published in 2019, as the reader can see in [2].
Also, other papers was produced in this period concerning other equations, see in [3], [14]
and [15].

This work is organized as follows. In Chapter 1, we introduced some classic spaces and
notation that will be useful in what follows. In Chapter 2, we show a detailed proof of the
bilinear estimates in Bourgain spaces in the real and in the periodic cases, which are the
main results to prove the wel-posedness for gB equation in Sobolev spaces in both R and T.
Chapter 3 is dedicated to present the proof of Theorem 1, while in Chapter 4 the proof of
Theorem 2 is provided.



Chapter

1
Preliminaries

This chapter is dedicated to present important spaces that we shall use in the following
chapters. Also, it is included some classical results and inequalities about these spaces. Some
of the proof are omitted, but the reader can find them in the references that we will cite
throughout the chapter.

1.1 The Sobolev Spaces H s

Natural spaces to measure regularity of the initial data in Cauchy problems are the clas-
sical Sobolev spaces H s , s ∈R, which are defined as

H s(R) =
 f ∈S ′(R);

∥∥ f
∥∥2

H s (R) =
∫
R

(1+ξ2)s | f̂ (ξ)|2 dξ<∞
 ,

in the line, whereS ′(R) denotes the class of tempered distributions and f̂ denotes the Fourier
transform of f , which is given by

f̂ (ξ) =
∫
R

e−i xξ f (x)dx,

if f is an integrable function. We will often use the notation 〈ξ〉 = (1+ξ2)
1
2 , then we can write

‖ f ‖H s = ‖〈ξ〉s f̂ (ξ)‖L2
ξ
. In periodic case, we have

H s(T) =
{

f ∈S ′(T);
∥∥ f

∥∥2
H s (T) =

∑
n∈Z

(1+n2)s | f̂ (n)|2 <∞
}

.

Example 1.1. Let f (x) =χ[−1,1](x). We have that

f̂ (ξ) =
1∫

−1

e−i xξdx =
1∫

−1

[
cos(−xξ)+ i sin(−xξ)

]
dx =−2

sinξ

ξ
.

Thus, f ∈ H s(R) if s < 1
2 .

Example 1.2. Let δ be Dirac Delta distribution centered at the origin. Since δ̂= 2π, we have that δ
belongs to H s for s <−1

2 .

1



2 CHAPTER 1. PRELIMINARIES

Intuitively, a Sobolev space consists of functions with sufficiently many derivatives and
equipped with a norm that measures both the size and regularity of a function.

Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Their impor-
tance comes from the fact that weak solutions of some important partial differential equa-
tions exist in appropriate Sobolev spaces, even when there are no strong solutions in spaces
of continuous functions with the derivatives understood in the classical sense.

From the definition of Sobolev spaces we deduce the following properties, which the
proofs can be found in [30].

Proposition 1.3 (Proposition 3.1, page 46 in [30]).

1. If s < s′, then H s′(R) ⊂ H s(R).

2. H s(R) is a Hilbert space with respect to the inner product 〈·, ·〉s defined as follows

If f , g ∈ H s(R), then
〈

f , g
〉

s =
∫
R

(1+ξ2)
s
2 f̂ (ξ)(1+ξ2)

s
2 ĝ (ξ)dξ .

3. For any s ∈R, the Schwartz space S (R) is dense in H s(R).

4. If s1 ≤ s ≤ s2, with s = θs1 + (1−θ)s2, 0 ≤ θ ≤ 1, then∥∥ f
∥∥

H s ≤
∥∥ f

∥∥θ
H s1

∥∥ f
∥∥1−θ

H s2 .

A really interesting fact is that for positive integer values of s, we can give a description
of H s without using the Fourier transform.

Proposition 1.4 (Theorem 3.1, page 47 in [30]). If k is a positive integer, then H k (R) coincides with
the space of functions f ∈ L2(R) whose derivatives (in the distribution sense) f ( j ) belongs to L2(R) for
every j ≤ k. In this case, the norms

∥∥ f
∥∥

H k and
k∑

j=1

∥∥∥ f ( j )
∥∥∥

L2

are equivalent.

Furthermore, the followingproposition allowsus to relate “weakderivatives”with deriva-
tives in the classical sense.

Proposition 1.5 (Embedding - Theorem 3.2, page 47 in [30]). If s > k+ 1
2 , then H s(R) is continu-

ously embedding in C k∞(R), the space of functions with k continuous derivatives vanishing at infinity.
In other words, if f ∈ H s(R), s > 1

2 +k, then (after a possible modification of f in a set of measure zero)
f ∈C k∞(R) and ∥∥ f

∥∥
C k ≤

∥∥ f
∥∥

H s .

From the point of view of nonlinear analysis the next bilinear estimate is essential.



1.1. THE SOBOLEV SPACES H s 3

Proposition 1.6 (Theorem 3.4, page 47 in [30]). If s > 1
2 , then H s(R) is an algebra with respect to

the product of functions. That is, if f , g ∈ H s(R), then f g ∈ H s(R) with∥∥ f g
∥∥

H s ≤
∥∥ f

∥∥
H s

∥∥g
∥∥

H s .

The next important property of these spaces will be really useful in Chapter 4.

Proposition 1.7 (Sobolev Lemma). For s > 1
2 , we have

‖u‖L∞ ≤C ‖u‖H s ,

for some positive constant depending only on s.

Proof. By using the inverse Fourier transform formula, we have

2π|u(x)| =
∣∣∣∫ e i xξû(ξ)dξ

∣∣∣≤ ∫
|û(ξ)|dξ.

Then, it follows from the Cauchy-Schwarz inequality that

2π|u(x)| ≤
∫

(1+ξ2)−
s
2 (1+ξ2)

s
2 |û(ξ)|dξ≤

(∫
(1+ξ2)−sdξ

) 1
2 ‖u‖H s . (1.1)

Now, we observe that

∫
(1+ξ2)−sdξ= 2

∞∫
0

(1+ξ2)−sdξ≤ 2

∞∫
0

2s(1+ξ)−2sdξ= 2s+1 (1+ξ)−2s+1

−2s +1

∣∣∣∣∞
0
= 2s+1

2s −1
, (1.2)

for all s > 1
2 . Therefore, we conclude from (1.1) the following bound for the L∞-norm

‖u‖L∞ ≤ 1

π(2s −1)
‖u‖H s , (1.3)

which finishes the proof.

We finish this section with an important inequality, which the proof comes from [18].

Lemma 1.8 (Lemma 3.2, page 170 in [18]). Let s ∈R, −1
2 < b′ ≤ 0 ≤ b ≤ b′+1 and 0 < T ≤ 1, then∥∥∥∥∥∥ψT (t )

t∫
0

g (t ′)dt ′
∥∥∥∥∥∥

H b
t

≤C T 1−(b−b′) ∥∥g
∥∥

H b′ , (1.4)

where ψ is a cut-off function in C∞
0 (−2,2) with 0 ≤ψ≤ 1, ψ(t ) = 1 on [−1,1] and ψT (t ) =ψ( t

T

)
.

Proof. To prove (1.4), we write

ψT (t )

t∫
0

g (t ′)dt ′ =ψT (t )
1

2π

t∫
0

∫
e i t ′τĝ (τ)dτdt ′ .
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By using Fubini’s Theorem, we have

ψT (t )

t∫
0

g (t ′)dt ′ =ψT (t )
1

2π

∫
ĝ (τ)

t∫
0

e i t ′τdt ′ dτ=ψT (t )
1

2π

∫
ĝ (τ)

(
e i tτ−1

iτ

)
dτ .

Now, we split the integral in two regions |τ|T ≤ 1 and |τ|T > 1 and obtain

ψT (t )

t∫
0

g (t ′)dt ′ =ψT (t )
1

2π

∫
|τ|T≤1

ĝ (τ)

(
e i tτ−1

iτ

)
dτ+ψT (t )

1

2π

∫
|τ|T>1

ĝ (τ)

(
e i tτ−1

iτ

)
dτ

= (I)+ (II)+ (III),

with

(I) =ψT (t )
1

2π

∞∑
k=1

t k

k !

∫
|τ|T≤1

(iτ)k−1ĝ (τ)dτ,

(II) =−ψT (t )
1

2π

∫
|τ|T>1

ĝ (τ)(iτ)−1dτ,

(III) =ψT (t )
1

2π

∫
|τ|T>1

ĝ (τ)e i tτ(iτ)−1dτ,

where we used the fact

e i tτ−1 =
∞∑

k=1

(i tτ)k

k !
.

The next step is to estimate the H b
t -norm of each term above.

Estimation of (I). If |τ|T ≤ 1, then |τ|k−1 ≤ (T −1)k−1 for all k ≥ 1. Thus, we have

‖(I)‖H b
t
≤

∞∑
k=1

1

k !

∥∥∥∥t kψT (t )
∫

|τ|T≤1

(iτ)k−1ĝ (τ)dτ

∥∥∥∥
H b

t

≤
∞∑

k=1

1

k !
T 1−k

∥∥∥∥t kψT (t )
∫

|τ|T≤1

ĝ (τ)dτ

∥∥∥∥
H b

t

=
∞∑

k=1

T 1−k

k !

∣∣∣∣ ∫
|τ|T≤1

ĝ (τ)dτ

∣∣∣∣∥∥∥t kψT (t )
∥∥∥

H b
t

.

Using Cauchy-Schwarz inequality, we observe that

∣∣∣∣ ∫
|τ|T≤1

ĝ (τ)dτ

∣∣∣∣= ∣∣∣∣ ∫
|τ|T≤1

ĝ (τ)〈τ〉b′ 〈τ〉−b′
dτ

∣∣∣∣≤ ∥∥g
∥∥

H b′

( ∫
|τ|T≤1

〈τ〉−2b′
dτ

) 1
2

,

which implies

‖(I)‖H b
t
≤ ∥∥g

∥∥
H b′

∞∑
k=1

T 1−k

k !

∥∥∥t kψT

∥∥∥
H b

( ∫
|τ|T≤1

〈τ〉−2b′
dτ

) 1
2

.
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For our goal, it is sufficient to prove
∞∑

k=1

T 1−k

k !

∥∥∥t kψT

∥∥∥
H b

( ∫
|τ|T≤1

〈τ〉−2b′
dτ

) 1
2

≤C T 1−(b−b′). (1.5)

We have
∥∥t kψT

∥∥
H b =

∥∥∥〈τ〉b �t kψT (τ)
∥∥∥

L2
with

�t kψT (τ) =
∫

e−i tτt kψT (t )dt =
∫

e−i tτt kψ

(
t

T

)
dt .

By making the change of variables t = Ts, we obtain

�t kψT (τ) =
∫

e−i (Ts)τ(Ts)kψ(s)T ds = T k+1
∫

e−i s(Tτ)skψ(s)ds ,

that is, �t kψT (τ) = T k+1
[

t̂ kψ(Tτ)
]
. Thus,

∥∥∥t kψT

∥∥∥
H b

= T k+1
(∫

〈τ〉2b
∣∣∣t̂ kψ(Tτ)

∣∣∣2
dτ

) 1
2 = T k+1

(∫ 〈
T −1ρ

〉2b
∣∣∣t̂ kψ(ρ)

∣∣∣2
T −1dρ

) 1
2

,

where we made the change of variables ρ = Tτ. Since T −2 ≥ T −1 ≥ 1, we observe that〈
T −1ρ

〉2 = 1+T −2ρ2 ≤ T −2(1+ρ2) = T −2 〈
ρ
〉2 ,

which implies the following

∥∥∥t kψT

∥∥∥
Hb

≤ T k+1T − 1
2

(∫
T −2b 〈

ρ
〉2b

∣∣∣t̂ kψ(ρ)
∣∣∣2

dρ

) 1
2 = T k+ 1

2 T −b
∥∥∥t kψ

∥∥∥
H b

. (1.6)

Using that b ≤ 1+b′ ≤ 1, we obtain∥∥∥t kψ
∥∥∥

H b
≤

∥∥∥t kψ
∥∥∥

H 1
=

∥∥∥t kψ
∥∥∥

L2
+

∥∥∥∥ d

d t
(t kψ)

∥∥∥∥
L2

=
∥∥∥t kψ

∥∥∥
L2
+

∥∥∥kt k−1ψ
∥∥∥

L2
+

∥∥∥t kψ′
∥∥∥

L2
.

Since suppψ⊂ [−2,2], for all t ∈R and k ≥ 1 we have the boundness

|t kψ(t )| ≤ 2k |ψ(t )|, |kt k−1ψ(t )| ≤ 2k−1k|ψ(t )| and |t kψ′(t )| ≤ 2k |ψ′(t )|,

Thus, ∥∥∥t kψ
∥∥∥

H b
≤ k2k (

2
∥∥ψ∥∥

L2 +
∥∥ψ′∥∥

L2

)= k2kC̃ψ,

for all k ≥ 1, which implies from (1.6) that∥∥∥t kψT

∥∥∥
H b

≤ C̃ψT −bT k+ 1
2 k2k .

Then,
∞∑

k=1

T 1−k

k !

∥∥∥t kψ
∥∥∥

H b
≤ C̃ψT 1−bT

1
2

∞∑
k=1

2k

(k −1)!
≤CψT 1−bT

1
2 ,

where we used that ∞∑
k=1

2k

(k −1)!
= 2e2 <∞.
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On the other hand, since b′ ≤ 0 and T −2 ≥ 1, we have( ∫
|τ|T≤1

〈τ〉−2b′
dτ

) 1
2

=
( ∫
|τ|T≤1

(1+τ2)−b′
dτ

) 1
2

≤
( ∫
|τ|T≤1

(2T −2)−b′
dτ

) 1
2

≤ 2− b′
2 T b′

( ∫
|τ|T≤1

1dτ

) 1
2

=Cb′T b′
T − 1

2 .

Therefore,
∞∑

k=1

T 1−k

k !

∥∥∥t kψT

∥∥∥
H b

( ∫
|τ|T≤1

〈τ〉−2b′
dτ

) 1
2

≤CψT 1−bT
1
2 Cb′T b′

T − 1
2 =Cψ,b′T 1−(b−b′),

which concludes that (1.5) goes true and finishes the desired bound for ‖(I)‖H b
t
.

Estimation of (II). We observe that

‖(II)‖H b
t
≤

∥∥∥∥ψT (t )
∫

|τ|T>1

(iτ)−1ĝ (τ)dτ

∥∥∥∥
H b

t

=
∣∣∣∣ ∫
|τ|T>1

(iτ)−1ĝ (τ)dτ

∣∣∣∣∥∥ψT
∥∥

H b . (1.7)

Using Cauchy-Schwarz inequality, we obtain

∣∣∣∣ ∫
|τ|T>1

(iτ)−1ĝ (τ)dτ

∣∣∣∣= ∣∣∣∣ ∫
|τ|T>1

〈τ〉−b′
(iτ)−1 〈τ〉b′

ĝ (τ)dτ

∣∣∣∣≤ ( ∫
|τ|T>1

〈τ〉−2b′ |τ|−2dτ

) 1
2 ∥∥g

∥∥
H b′ ,

with ∫
|τ|T>1

〈τ〉−2b′ |τ|−2dτ= 2

∞∫
T −1

(1+τ2)−b′
τ−2dτ= 2

∞∫
1

(1+T −2s2)−b′
T 2s−2T −1ds

≤ T 2b′+1

∞∫
1

(1+ s2)−b′
s−2ds,

since T −2 ≥ 1 and −b′ ≥ 0. Furthermore,
∞∫

1

(1+ s2)−b′
s−2ds ≤

∞∫
1

(2s2)−b′
s−2ds = 2−b′

∞∫
1

s−2b′−2ds <∞,

since 2b′+2 > 1. Then, ( ∫
|τ|T>1

〈τ〉−2b′ |τ|−2dτ

) 1
2 ∥∥g

∥∥
H b′ ≤Cb′T b′+ 1

2
∥∥g

∥∥
H b′ . (1.8)

On the other hand,
∥∥ψT

∥∥
H b =

∥∥〈τ〉b ψ̂T
∥∥

L2 with

ψ̂T (τ) =
∫

e−i tτψ

(
t

T

)
dt =

∫
e−i sTτψ(s)T ds = T ψ̂(Tτ).
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Thus,

∥∥ψT
∥∥

H b =
(∫

〈τ〉2b T 2|ψ̂(Tτ)|2dτ

) 1
2

= T

(∫ 〈
T −1ρ

〉2b |ψ̂(ρ)|2T −1dρ

) 1
2

≤ T
1
2

(∫ 〈
T −1ρ

〉2b |ψ̂(ρ)|2dρ

) 1
2

≤ T
1
2

(∫
T −2b 〈

ρ
〉2b |ψ̂(ρ)|2dρ

) 1
2

= T
1
2−b

∥∥ψ∥∥
H b , (1.9)

since
〈

T −1ρ
〉2b = (1+T −2ρ2)b ≤ T −2b(1+ρ2)b = T −2b

〈
ρ
〉2b . Joining inequalities (1.7), (1.8) and

(1.9), we conclude that

‖(II)‖H b
t
≤Cb′T b′+ 1

2 T
1
2−b

∥∥ψ∥∥
H b

∥∥g
∥∥

H b′ =Cψ,b,b′T 1−(b−b′) ∥∥g
∥∥

H b′ ,

which finishes the desired estimate for ‖(II)‖H b
t
.

Estimation of (III). We can write (III) = (2π)−1ψT (t )J (t ), where

J (t ) =
∫

|τ|T>1

e i tτ(iτ)−1ĝ (τ)dτ.

Then, we have
‖(III)‖H b

t
= (2π)−1

∥∥∥〈τ〉b �(ψT J )
∥∥∥

L2
=

∥∥∥〈τ〉b ψ̂T ∗ Ĵ (τ)
∥∥∥

L2
. (1.10)

Let us consider the following useful inequality

〈τ〉b ≤C
(〈
τ− y

〉b +|y |b
)

, for all y ∈R. (1.11)

Indeed,
|τ|2 ≤ (|τ− y |+ |y |)2 = |τ− y |2 +2|τ− y ||y |+ |y |2 ≤ 2(|τ− y |2 +|y |2),

since 2|τ− y ||y | ≤ |τ− y |2 +|y |2. Thus, using that b ≥ 0, we obtain

〈τ〉b = (1+|τ|2)
b
2 ≤ (

1+2(|τ− y |2 +|y |2)
) b

2 ≤ 2
b
2 (1+|τ− y |2 +|y |2)

b
2 .

To prove (1.11), it is sufficient to guarantee that the following goes true

(α+β)
b
2 ≤α b

2 +β b
2 , for all α, β≥ 0. (1.12)

If α= 0, then (1.12) is true as an equality. We assume α 6= 0, then (1.12) occurs if, and only if,(
1+ β

α

) b
2 ≤ 1+

(
β

α

) b
2

.

Considering the function f (t ) = 1+ t
b
2 − (1+ t )

b
2 and noticing that f (0) = 0 and

f ′(t ) = b

2

(
t

b
2 −1 − (1+ t )

b
2 −1

)
≥ 0, for all t ≥ 0,

where we used that 0 ≤ b
2 < 1, we have f (t ) ≥ 0 for all t ≥ 0. Therefore, (1.12) is proved and

also (1.11).
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Using (1.11), we obtain

〈τ〉b ψ̂T ∗ Ĵ (τ) =
∫

〈τ〉b Ĵ (τ− y)ψ̂T (y)dy

≤C
∫ [〈

τ− y
〉b Ĵ (τ− y)ψ̂T (y)+ Ĵ (τ− y)|y |bψ̂T (y)

]
dy

=C
[(〈τ〉b Ĵ

)∗ ψ̂T + Ĵ ∗ (|τ|bψ̂T
)]

.

Hence, returning to (1.10) and applying Young inequality, we have

‖(III)‖H b ≤C
(∥∥∥(〈τ〉b Ĵ

)∗ ψ̂T

∥∥∥
L2
+

∥∥∥ Ĵ ∗ (|τ|bψ̂T
)∥∥∥

L2

)
≤C

(∥∥ψT
∥∥

L1

∥∥∥〈τ〉b Ĵ
∥∥∥

L2
+

∥∥∥|τ|bψ̂T

∥∥∥
L1

∥∥ Ĵ
∥∥

L2

)
.

Denoting by χ the characteristic function of the set {τ ∈R; |τ|T > 1}, we have

J (t ) =
∫

e i tτ (
χ(τ)(iτ)−1ĝ (τ)

)
dτ=F−1

t

(
χ(τ)(iτ)−1ĝ (τ)

)
(t ),

where F−1
t denotes the inverse Fourier transform on t variable, which shows that Ĵ (τ) =

χ(τ)(iτ)−1ĝ (τ). Thus,

∥∥∥〈τ〉b Ĵ (τ)
∥∥∥

L2
=

∥∥∥〈τ〉b χ(τ)(iτ)−1ĝ (τ)
∥∥∥

L2
=

( ∫
|τ|T>1

|τ|−2 〈τ〉2b |ĝ (τ)|2dτ

) 1
2

=
( ∫
|τ|T>1

|τ|−2 〈τ〉2(b−b′) 〈τ〉2b′ |ĝ (τ)|2dτ

) 1
2

≤
(

sup
|τ|T>1

|τ|−2 〈τ〉2(b−b′)
) 1

2 ∥∥g
∥∥

H b′ .

It follows from 0 ≤ b −b′ ≤ 1 and T −1 ≥ 1 that

|τ|−2 〈τ〉2(b−b′) = |τ|−2(1+τ2)b−b′ = (|τ|−2(b−b′)−1 +|τ|2(1−(b−b′)−1))b−b′

≤ (
T 2(b−b′)−1 +T −2(1−(b−b′)−1))b−b′

= T 2(1+T −2)b−b′ ≤ 2b−b′
T 2(1−(b−b′)),

for all |τ| > T −1. Hence, we obtain∥∥∥〈τ〉b Ĵ (τ)
∥∥∥

L2
≤Cb,b′T 1−(b−b′) ∥∥g

∥∥
H b′ .

Furthermore, recalling that ψ̂T (t ) = T ψ̂(Tτ), we have

∥∥ψ̂T
∥∥

L1 =
∫

|ψ̂(Tτ)|T dτ=
∫

|ψ̂(s)|ds = ∥∥ψ̂∥∥
L1 .

Therefore, ∥∥ψ̂T
∥∥

L1

∥∥∥〈τ〉b Ĵ (τ)
∥∥∥

L2
≤Cψ,b,b′T 1−(b−b′) ∥∥g

∥∥
H b .

Now, it remains to estimate
∥∥|τ|bψ̂T

∥∥
L1

∥∥ Ĵ
∥∥

L2 . We notice that∥∥∥|τ|bψ̂T

∥∥∥
L1

=
∫

|τ|b |ψ̂(Tτ)|T dτ=
∫

|T −1s|b |ψ̂(s)|ds = T −b
∫

|s|b |ψ̂(s)|ds =Cψ,bT −b ,
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since ψ̂ ∈S and then ∫
|s|b |ψ̂(s)|ds <∞, for all s ∈R.

On the other hand, we recall that Ĵ (τ) =χ(τ)(iτ)−1ĝ (τ), which give us

∥∥ Ĵ
∥∥

L2 =
( ∫
|τ|T>1

|τ|−2|ĝ (τ)|2dτ

) 1
2

=
( ∫
|τ|T>1

|τ|−2 〈τ〉−2b′ 〈τ〉2b′ |ĝ (τ)|2dτ

) 1
2

≤
(

sup
|τ|T>1

|τ|−2 〈τ〉−2b′
) 1

2 ∥∥g
∥∥

H b′ .

Since 0 ≤−b′ < 1 and T −1 ≥ 1, we obtain

|τ|−2 〈τ〉−2b′ = |τ|−2(1+τ2)−b′ = (
τ2(b′)−1 +τ2(1+(b′)−1))−b′

≤ (
T −2(b′)−1 +T −2(1+(b′)−1))−b′

= T 2(1+T −2)−b′ ≤ 2−b′
T 2(1+b′),

for all |τ| > T −1. Therefore,∥∥∥|τ|bψ̂T

∥∥∥
L1

∥∥ Ĵ
∥∥

L2 ≤Cψ,bT −b2− b′
2 T 1+b′ =Cψ,b,b′T 1−(b−b′),

which finishes the desired bound for (III) and, consequently, concludes the proof of the
lemma.

1.2 The Gevrey Spaces Gσ

Let us recall here the definition of the Gevrey classes, which play the role of intermediate
spaces between the space of the C∞ and analytic functions. Given Ω, open set of R, we say
that u ∈ Gσ(Ω), σ≥ 1, if u ∈C∞(Ω) and for every compact subset K of Ω we have

sup
x∈K

|u( j )(x)| ≤C j+1( j !)σ, for all j ∈Z+,

for a constant C depending only on u and K . When σ = 1, we recapture the analytic case,
whereas for σ> 1 we obtain larger spaces, containing functions with compact support.

Example 1.9. For given σ> 1, we define on R the function

ψ(x) =
{

e−x−d
, x > 0,

0, x ≤ 0,
d = 1

σ−1
.

1

R

R

ψ

Figure 2: Example of Gevrey function.

One can prove that ψ is a Gevrey function of order σ on R. Furthermore, for r > 0, the function ϕ
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defined by ϕ(x) =ψ(r + x)ψ(r − x) belongs to the Gevrey class Gσ(R) and is compactly supported on
[−r,r ].

It is interesting to observe that if u ∈ Gσ
0 (R), that is, u ∈ Gσ(R) has compact support, then

its Fourier transform û(ξ) satisfies the estimates

|û(ξ)| ≤Ce−ε|ξ| 1
σ , ξ ∈R, (1.13)

for somepositive constantsC and ε. Actually, the estimate (1.13) characterize theGσ-regularity
of a Fourier transformable function, or distribution. Observe that (1.13) implies∥∥∥∥eδ|ξ|

1
σ û(ξ)

∥∥∥∥2

L2
=

∫
e2δ|ξ| 1

σ |û(ξ)|2dξ<∞,

for sufficiently small δ > 0. This fact motivates the definition of the Gevrey-Bourgain space
Gσ,δ,s , which will be considered in the next section.

For more informations and details about these class of functions, we recommend the read
of the book [33], where the proof of the next properties can be found.

Proposition 1.10 (Proposition 1.4.5, page 21 in [33]). The space Gσ(Ω) is a vector space and a ring,
with respect to the arithmetic product of functions. Moreover, Gσ(Ω) is closed under differentiation.

Just out of curiosity, the topology considered in the class Gσ(R) is a projective limit topol-
ogy, which give us the following convergence: A sequence ϕk ∈ Gσ(R), k = 1,2, . . ., converges
to ϕ ∈ Gσ(R) if, and only if, for any compact K ⊂R there is a constant C > 0 such that

sup
j∈Z+

C− j ( j !)−σ
(

sup
x∈K

|ϕ( j )
k (x)−ϕ( j )(x)|

)
−→ 0, as k → 0.

1.3 The Gevrey-Bourgain Spaces Gσ,δ,s

In this section, we shall provide some basic properties of the Gevrey-Bourgain spaces,
which the definition was given in the introduction and we recall below.

Definition 1.11. For s ∈R, δ> 0 and σ≥ 1, we define the spaces

Gσ,δ,s(R) =
{

f ∈ L2(R); ‖ f ‖2
Gσ,δ,s (R)

=
∫

〈ξ〉2s e2δ|ξ|1/σ | f̂ (ξ)|2 dξ<∞
}

, (1.14)

where 〈ξ〉 =̇ (1+ξ2)1/2. If ϕ ∈ Gσ,δ,s(R), then ϕ belongs to the Gevrey class Gσ(R). In the case when
σ= 1, we denote Gδ,s(R) ≡G1,δ,s(R).

For the periodic case, the norm in the space Gσ,δ,s(T) is defined by simply replacing the integral in
(3.2) with a sum as follows

Gσ,δ,s(T) =
{

f ∈ L2(T); ‖ f ‖2
Gσ,δ,s (T)

=
∑
k∈Z

〈k〉2s e2δ|k|1/σ | f̂ (k)|2 <∞
}

.
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In what follows, we will list some properties of the spaces Gσ,δ,s and, just for convenience,
we will work only with the space in the line. It is important to point out that all results
remains true for the periodic case.

We observe that these spaces satisfy the following embedding

Gσ,δ,s(R) ⊂Gσ,δ′,s′(R), for all s′, s ∈R and 0 < δ′ < δ. (1.15)

In fact, ∥∥ϕ∥∥2
Gσ,δ′,s′ =

∫
e2δ′|ξ|1/σ

(1+ξ2)s′ |ϕ̂(ξ)|2 dξ

=
∫ [

e−2(δ−δ′)|ξ|1/σ
(1+ξ2)s′−s

]
e2δ|ξ|1/σ

(1+ξ2)s |ϕ̂(ξ)|2 dξ

≤Cδ,δ′,s,s′

∫
e2δ|ξ|1/σ

(1+ξ2)s |ϕ̂(ξ)|2 dξ

≤Cδ,δ′,s,s′
∥∥ϕ∥∥2

Gσ,δ,s ,

where we use that e−2(δ−δ′)|ξ|1/σ
(1+ξ2)s′−s is bounded for all 0 < δ′ < δ and s, s′ ∈R.

As a consequence of (1.15), we have the inclusion (6) mentioned in the introduction, that
is, Gσ,δ,s(R) ⊂ H s′(R) for all s′ ∈R. This embedding will be really useful in the following result.

Proposition 1.12. Let s ∈R, δ> 0 and σ≥ 1. If ϕ ∈Gσ,δ,s(R), then there exists a constant C > 0 such
that, for each j ∈Z+, we have

sup
x∈R

∣∣∣ϕ( j )(x)
∣∣∣≤C j+1( j !)σ.

In particular, ϕ ∈ Gσ(R).

Proof. First, let us prove for the case s = 0. If ϕ ∈Gσ,δ,0, using the inverse formula of Fourier
Transform, we obtain

ϕ( j )(x) = d j

d x j

(
1

2π

∫
e i xξϕ̂(ξ)dξ

)
= 1

2π

∫
(iξ) j e i xξϕ̂(ξ)dξ .

Therefore,

|ϕ( j )(x)| ≤ 1

2π

∫
|ξ| j |ϕ̂(ξ)|dξ= 1

2π

∫
|ξ| j e−δ|ξ|1/σ

eδ|ξ|
1/σ |ϕ̂(ξ)|dξ

≤ 1

2π

(∫
|ξ|2 j e−2δ|ξ|1/σ

dξ

) 1
2
(∫

e2δ|ξ|1/σ |ϕ̂(ξ)|2 dξ

) 1
2

= 1

2π

(∫
|ξ|2 j e−2δ|ξ|1/σ

dξ

) 1
2 ∥∥ϕ∥∥

Gσ,δ,0 , (1.16)

where we used Cauchy-Schwarz inequality. We observe that

e
δ
σ |ξ|1/σ =

∞∑
k=0

1

k !

(
δ

σ
|ξ|1/σ

)k

≥ 1

(2 j )!

(
δ

σ
|ξ|1/σ

)2 j

,

which implies

|ξ| 2 j
σ e− δ

σ |ξ|1/σ ≤
(σ
δ

)2 j
(2 j )!, that is, |ξ|2 j eδ|ξ|

1/σ ≤ A2 j (2 j )!σ,
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where A = (
σ
δ

)σ, for all j ∈Z+. Then, we have∫
|ξ|2 j e−2δ|ξ|1/σ

dξ=
∫

|ξ|2 j e−δ|ξ|1/σ
e−δ|ξ|1/σ

dξ≤ A2 j (2 j )!σ
∫

e−δ|ξ|1/σ
dξ . (1.17)

Denoting by A0 = (2π)−1
∥∥ϕ∥∥

Gσ,δ,0 , it follows from (1.16) and (1.17) that

|ϕ( j )(x)| ≤ A0

(∫
|ξ|2 j e−2δ|ξ|1/σ

dξ

) 1
2 ≤ A0 A j (2 j )!

σ
2

(∫
e−δ|ξ|1/σ

dξ

) 1
2

.

Also, as we know
∞∑

j=0

(2 j )!

B j
0 j !2

<∞,

for all B0 > 4, then (2 j )! ≤ B 2 j j !2 for some B > 0, which implies

|ϕ( j )(x)| ≤ A0(AB) j ( j !)σ
(∫

e−δ|ξ|1/σ
dξ

) 1
2

. (1.18)

It just remains to prove that the following integral∫
e−δ|ξ|1/σ

dξ

is finite. In fact, using that e−δ|ξ|1/σ is an even function and making the change of variables
η= δξ1/σ, we obtain

∫
e−δ|ξ|1/σ

dξ= 2

∞∫
0

e−δξ1/σ
dξ= 2σδ−σ

∞∫
0

e−ηησ−1 dη

= 2σδ−σ
∞∫

0

[
e−η/2ησ−1]e−η/2 dη

≤ M

∞∫
0

e−η/2 dη= 2M ,

for some positive constant M , since e−η/2ησ−1 is bounded for all σ≥ 1 and
∞∫

0

e−η/2 dη=−2e−η/2
∣∣∣∞
0
= 2.

Therefore, returning to (1.18), we conclude that there is a constant C > 0 satisfying

|ϕ( j )(x)| ≤C j+1( j !)σ, for all x ∈R,

which proves that ϕ belongs to Gσ.
For the general case s ∈R, since we proved the case s = 0, we have

ϕ ∈Gσ,δ,s(R) ⊂Gσ, δ2 ,0(R) implying that ϕ ∈ Gσ(R),

which finishes the proof.
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One of the most important property of the spaces Gσ,δ,s , as wementioned in the introduc-
tion, is the following statement:

If ϕ ∈G1,δ,s =Gδ,s(R), then ϕ is analytic on the line and can be extended
holomorphically in a symmetric strip of the x-axis.

Actually, as we will see in what follows, we have a characterization of the space Gδ,s in
terms of functions that admits holomorphic extensions. The final steps in this chapter are
devoted to prove this important fact. We begin with a result that give us a motivation to
continue in this direction. All the results below was studied in [26].

Proposition 1.13. If f : (0,∞) →R belongs to L2(0,∞), then f̂ :C→C given by

f̂ (z)
.=

∞∫
0

e−i zx f (x)dx , for all z ∈C,

is holomorphic in the half plane C− = {
z1 + i z2; z1 ∈R and z2 < 0

}
.

Proof. Given z̃ = z̃1 + i z̃2 ∈ C−, we consider δ > 0 such that the closure of the strip S z̃,δ is in-
cluded in C−, where

S z̃,δ =
{

z1 + i z2; z1 ∈R and |z2 − z̃2| < δ
}

.

z1

z2

z̃2 z̃ 2δ

0

S z̃,δ

Figure 3: Strip in the half plan z2 < 0.
Our goal is to prove that f̂ is holomorphic in S z̃,δ.

For all z ∈C, we have

| f̂ (z)| ≤
∞∫

0

∣∣e−i zx f (x)
∣∣dx =

∞∫
0

ez2x | f (x)|dx ,

and by using Cauchy-Schwarz inequality, we obtain

| f̂ (z)| ≤
 ∞∫

0

e2z2x dx

 1
2 ∥∥ f

∥∥
L2(0,∞) . (1.19)

Now, if z ∈ S z̃,δ, then z̃2 −δ< z2 < z̃2 +δ< 0 which implies that

∞∫
0

e2z2x dx ≤
∞∫

0

e2(z̃2+δ)x dx <∞.
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Therefore, returning to (1.19), we concluded that there is a positive constant C such that

| f̂ (z)| ≤C
∥∥ f

∥∥
L2(0,∞) , for all z ∈ S z̃,δ. (1.20)

Since we proved that | f̂ (z)| is bounded in S z̃,δ, it follows from Dominated Convergence
Theorem that ∣∣∣∣∣∂ f̂

∂z
(z)

∣∣∣∣∣=
∣∣∣∣∣∣
∞∫

0

(−i x)e−i zx f (x)dx

∣∣∣∣∣∣≤
∞∫

0

xez2x | f (x)|dx .

Using the same arguments above, we obtain

∣∣∣∣∣∂ f̂

∂z
(z)

∣∣∣∣∣≤
 ∞∫

0

x2e2z2x dx

 1
2 ∥∥ f

∥∥
L2(0,∞) ≤C

∥∥ f
∥∥

L2(0,∞) , for all z ∈ S z̃,δ.

Again, since the derivative of f̂ with respect to z is bounded in S z̃,δ, we can take the derivative
with respect to z under integration to obtain

∂ f̂

∂z
(z) =

∞∫
0

(
∂

∂z
e−i zx

)
f (x)dx = 0, for all z ∈ S z̃,δ,

where we used the fact that e−i zx is a holomorphic function. Therefore, we concluded that f̂

is holomorphic in S z̃,δ, which finishes the proof of the proposition.

Remark. The key ingredient to prove the result above was the fact that
∞∫

0

eαx dx <∞, for all α< 0.

If we put a finite interval (a,b) instead of (0,∞), we have

b∫
a

eβx dx <∞, for all β ∈R.

Therefore, using the same proof, we have the following result

If f ∈ L2(a,b), then f̂ (z)
.=

b∫
a

e−i zx f (x)dx is holomorphic in C.

Before we prove another PaleyWiener Theorem, we need to introduce the Féjer kernel on
R, which we are going to use in the proof. For all λ> 0, the Féjer kernel is defined by

Kλ(x) =λK (λx), (1.21)

where

K (x) = 1

2π

(
sin x/2

x/2

)2

= 1

2π

1∫
−1

(1−|ξ|)e iξx dξ . (1.22)
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The second equality in (1.22) is obtained directly by integration, indeed for all x 6= 0

1∫
−1

(1−|ξ|)e iξx dξ=
1∫

−1

e iξx dξ−
1∫

−1

|ξ|e iξx dξ .

Now, we observe that

1∫
−1

e iξx dξ= e i xξ

i x

∣∣∣∣1

−1
= 1

x

(
e i x −e−i x

i

)
= 2sin x

x

and
1∫

−1

|ξ|e i xξdξ=
1∫

−1

|ξ|cos(ξx)dξ+ i

1∫
−1

|ξ|sin(ξx)dξ= 2

1∫
0

ξcos(ξx)dξ ,

since |ξ|cos(ξx) is an even function and |ξ|sin(ξx) is an odd function. Then,

1∫
−1

(1−|ξ|)e iξx dξ= 2sin x

x
+2

1∫
0

ξcos(ξx)dξ .

Furthermore, using integration by parts, we obtain

1∫
0

ξcos(ξx)dξ= ξsin(ξx)

x

∣∣∣∣1

0
−

1∫
0

sin(ξx)

x
dξ= sin x

x
+ cos(ξx)

x2

∣∣∣∣1

0
= sin x

x
+ 1

x2
(cos x −1).

Thus,
1∫

−1

(1+|ξ|)e iξx dξ= 2sin x

x
−

(
2sin x

x
+ 2

x2
(cos x −1)

)
= 2

x2
(1−cos x).

Now, using the relations

cos(a +b) = cos a cosb − sin a sinb and sin2 a +cos2 a = 1,

which are true for all a,b ∈R, we obtain

1−cos x = 1−cos
(x

2
+ x

2

)
= 1−cos2

(x

2

)
+ sin2

(x

2

)
= 2sin2

(x

2

)
.

Therefore, we concluded that

1∫
−1

(1+|ξ|)e iξx dξ= 2

x2
(1−cos x) = 4

x2
sin2

(x

2

)
,

which proves the second equality in (1.22).
Some important properties of the Féjer Kernel are given in the next lemma, which the

proof can be found in [26].

Lemma 1.14 (page 12 in [26]). The Féjer Kernel Kλ satisfies the following items:
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1.
∫
R

Kλ(x)dx = ∫
R

K (x)dx = 1.

2. K̂λ(ξ) = max
{

1− |ξ|
λ

,0
}
.

3. Let f ∈ L1, then

f = lim
λ→∞

1

2π

λ∫
−λ

K̂λ(ξ) f̂ (ξ)e i xξdξ ,

in the L1(R) norm.

Now we are ready to prove the main result of this section.

Proposition 1.15 (Paley-Wiener - page 174 in [26]). ] Let δ> 0. For f ∈ L2(R), the following two
conditions are equivalent:

(a) The function eδ|ξ| f̂ belongs to L2(R).

(b) f is the restriction to R of a function F holomorphic in the strip

Sδ =
{

z = x + i y ; x ∈R and |y | < δ}
,

and satisfying
sup
|y |<δ

∫
|F (x + i y)|2 dx ≤C ,

for some constant C > 0.

Proof. (a) implies (b). We define

F (x + i y) = F (z) = 1

2π

∫
e i zξ f̂ (ξ)dξ= 1

2π

∫
e i xξe−yξ f̂ (ξ)dξ .

By the inversion formula of Fourier transformwehave F
∣∣
R
= f . Furthermore, F iswell defined

in Sδ, indeed, applying Cauchy-Schwartz inequality and using that eδ|ξ| f̂ ∈ L2(R) we obtain

|F (x + i y)| ≤
∫

e−yξ| f̂ (ξ)|dξ≤
∫

e−(δ−|y |)|ξ|eδ|ξ|| f̂ (ξ)|dξ

≤ ∥∥e−(δ−|y |)|ξ|∥∥
L2
ξ

∥∥eδ|ξ| f̂
∥∥

L2
ξ
=Cy,δ <∞, (1.23)

for all z = x + i y ∈ Sδ, where Cy,δ is a positive constant that depends on y and δ.
About the L2

x-norm of F , by Plancherel’s formula we have∫
|F (x + i y)|2 dx =

∫
|F̂ x(ξ+ i y)|2 dξ=

∫ ∣∣∣e−yξ f̂ (ξ)
∣∣∣2

dξ≤
∫

e2δ|ξ|| f̂ (ξ)|2 dξ ,

for all z = x + i y ∈ Sδ. Then,

sup
|y |<δ

∫
|F (x + i y)|2 dx ≤ ∥∥eδ|ξ| f̂

∥∥
L2 <∞.
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It just remains to prove that F is holomorphic in the strip Sδ, for this we will fix δ1 such
that 0 < δ1 < δ. Returning to (1.23) we have

|F (x + i y)| ≤
∥∥∥e−(δ−|y |)|ξ|

∥∥∥
L2
ξ

∥∥∥eδ|ξ| f̂
∥∥∥

L2
ξ

=Cy,δ.

Now, if |y | < δ1, then

|F (x + i y)| ≤
∥∥∥e−(δ−δ1)|ξ|

∥∥∥
L2
ξ

∥∥∥eδ|ξ| f̂
∥∥∥

L2
ξ

=Cδ1,δ <∞,

whichproves that F is bounded in Sδ1 = {x+i y ; |y | < δ1}.Therefore, it follows fromDominated
Convergence Theorem that we can take the derivative with respect to z under integration to
obtain

∂F̂

∂z
(z) =

∫ (
∂

∂z
e−i zξ

)
f̂ (ξ)dξ= 0, for all z ∈ Sδ1 .

Then, we proved that F is holomorphic in the strip Sδ1 for all 0 < δ1 < δ, which is sufficient to
conclude that F is holomorphic in the hole strip Sδ.

(b) implies (a). We write

fy (x) = F (x + i y), for all x, y ∈R (thus f = f0).

We want to show that
f̂y (ξ) = f̂ (ξ)e−ξy , (1.24)

since then, by Plancherel’s formula we would have∫
| f̂ (ξ)|2e2ξy dξ=

∫ ∣∣∣ f̂ (ξ)e−ξ(−y)
∣∣∣2

dξ=
∫

| f̂−y (ξ)|2 dξ=
∫

| f−y (x)|2dx =
∫

|F (x − i y)|2 dx ≤C ,

for all |y | < δ, which guarantees that eδ|ξ| f̂ ∈ L2. Notice that if we assume (a) then, by the first
part of the proof, we do have f̂y (ξ) = f̂ (ξ)e−ξy .

Thus, our goal is to prove (1.24). For all λ> 0 and z = x + i y ∈ Sδ, we define

Gλ(z) = Kλ∗x F (x + i y) =
∫

F (x −x ′+ i y)Kλ(x ′)dx ′ ,

whereKλ denotes FéjerKernel given by (1.21). ByusingCauchy Schwarz inequality, Plancherel’s
formula and item (2) from Lemma 1.14, we obtain that Gλ satisfies

|Gλ(z)| ≤
∫
R

|F (x −x ′+ i y)||Kλ(x ′)|dx ′

≤
(∫

|F (x −x ′+ i y)|2 dx ′
) 1

2
(∫

|Kλ(x ′)|2 dx ′
) 1

2

≤C

(∫ λ

−λ
|K̂λ(ξ)|2 dξ

) 1
2

≤C (2λ),
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for all z ∈ Sδ, which is sufficient to prove that Gλ is a holomorphic function in the strip Sδ. In-
deed, by using the Dominated Convergence Theoremwe can take the derivative with respect
to z under integration and also using that F is a holomorphic function we obtain

∂Gλ

∂z
(z) =

∫ (
∂

∂z
F (z −x ′)

)
Kλ(x ′)dx ′ = 0, for all z ∈ Sδ.

Furthermore, we notice that the function gλ,y given as follows

gλ,y (x)
.=Gλ(x + i y) = Kλ∗ fy (x)

satisfies
ĝλ,y (ξ) = 2πK̂λ(ξ) f̂y (ξ). (1.25)

Now, it follows fromLemma 1.14 item (2) that ĝλ,y has a compact support included in [−λ,λ],
thus

ĝλ,y (ξ) = ĝλ,0(ξ)e−ξy . (1.26)

Consequently, joining (1.25) and (1.26) we conclude that

f̂y (ξ) = f̂ (ξ)e−ξy .

Since λ> 0 is arbitrary, the above holds for all ξ ∈R and the proof is complete.

1.4 A calculus lemma

This section is devoted to giving a detailed proof of calculus estimates, which is exten-
sively used in the proof of multilinear estimates in Bourgain Spaces.

Before presenting the main result, we would like to introduced the following notation
that will be used from now on. We write

X .Y and X ' Y ,

as a shorthand for X ≤C Y and X =C Y , respectively, for some positive constant C .
Also, an inequality that we use several times is

〈a〉s
. 〈a −b〉|s| 〈b〉s , for all a,b, s ∈R, (1.27)

which is known as Petri inequality. Indeed, since |a|2 ≤ (|a −b| + |b|)2 ≤ 2(|a −b|2 + |b|2), we
have

〈a〉2 = 1+|a|2 ≤ 2(1+|a −b|2 +|b|2) ≤ 2(1+|a −b|2)(1+|b|2) = 2〈a −b〉2 〈b〉2 ,

which implies 〈a〉 . 〈a −b〉〈b〉. Thus, we have

〈a〉s
. 〈a −b〉s 〈b〉s , for all s ≥ 0. (1.28)

Using the same previously calculus, we have

〈b〉 . 〈a −b〉〈a〉 .
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If s < 0, then 〈b〉−s . 〈a −b〉−s 〈a〉−s , which implies

〈a〉s
. 〈a −b〉|s| 〈b〉s , for all s < 0. (1.29)

The proof of (1.27) is finished by joining (1.28) and (1.29).
Now,we are able to prove themain result of this section, which consists of two inequalities

that are used often in this area. For a reference of the following inequalies see, for example,
[4] on page 369.

Lemma 1.16. For p, q > 0, p 6= 1, q 6= 1 and p +q > 1, there exists C > 0 such that∫
1〈

x −α〉p 〈
x −β〉q dx ≤ C〈

α−β〉r , (1.30)

where r = min{p, q, p +q −1}. Moreover, for a0, a1, a2 ∈R and q > 1
2∫

1〈
a0 +a1x +a2x2

〉q dx ≤C . (1.31)

Proof. Without loss of generality, we assume that α≥β. Taking z = α−β
2 ≥ 0 and applying the

change of variables x = y − z +α, we obtain∫
1〈

x −α〉p 〈
x −β〉q dx =

∫
1〈

y − z
〉p 〈

y + z
〉q dy.

To prove (1.30), it is sufficient to prove that

J (z)
.=

∫
1〈

y − z
〉p 〈

y + z
〉q dy ≤ C

〈z〉r , for all z ≥ 0,

since
〈
α−β〉= 〈2z〉 ≤ 2〈z〉 which implies 〈z〉−r ≤ 2−r

〈
α−β〉−r .

First, we observe that J (z) <∞ for all z ≥ 0. In fact, it follows from (1.27) that

〈
y
〉
. 〈z〉〈y − z

〉
and

〈
y
〉
. 〈z〉〈y + z

〉
,

which implies

J (z) .
∫ 〈z〉p+q〈

y
〉p+q dy = 〈z〉p+q

∫
1

(1+ y2)
p+q

2

dy <∞,

since p +q > 1. Next, we split the region of integration into three subregions, which are

A1 =
{

y ∈R; 0 ≤ y ≤ 2z
}

, A2 =
{

y ∈R; −2z ≤ y < 0
}

and A3 =
{

y ∈R; |y | ≥ 2z
}

.

-2z 0 2z

A2 A1A3 A3 R

Figure 4: Integration regions A1, A2, A3.
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Thus, J (z) = J1(z)+ J2(z)+ J3(z), where

Ji (z) =
∫
Ai

1〈
y − z

〉p 〈
y + z

〉q dy, for i = 1,2,3.

If y ∈ A1, then 0 ≤ z ≤ y + z. Thus, 〈z〉 ≤ 〈
y + z

〉
, for all y ∈ A1, which implies

J1(z) ≤ 1

〈z〉q

2z∫
0

1〈
y − z

〉p dy = 1

〈z〉q

z∫
−z

1〈
µ
〉p dµ= 2

〈z〉q

z∫
0

1〈
µ
〉p dµ≤ C

〈z〉q

z∫
0

1

(1+µ)p
dµ,

since (1+µ)2 ≤ 2(1+µ2) = 2
〈
µ
〉2. Using that p 6= 1, we have

z∫
0

1

(1+µ)p
dµ= (1+µ)1−p

1−p

∣∣∣∣z

0
= (1+ z)1−p

1−p
− 1

1−p
.

If 1−p > 0, then
z∫

0

1

(1+µ)p
dµ≤ (1+ z)1−p

1−p
,

implying that
J1(z) .

C

〈z〉q

1

(1+ z)p−1
≤ C

〈z〉q+p−1 ,

since 〈z〉2 = 1+ z2 ≤ (1+ z)2 for all z ≥ 0. On the other side, if 1−p < 0, then

s∫
0

1

(1+µ)p
dµ≤ 1

p −1
,

which implies

J1(z) ≤ C

〈z〉q

(
1

p −1

)
= C

〈z〉q .

Thus, in both cases, we conclude that J1(z) ≤C 〈z〉−r with r = min{p, q, p +q −1}.

Now, in order to estimate J2, we observe that

J2(z) =
0∫

−2z

1〈
y − z

〉p 〈
y + z

〉q dy =
2z∫

0

1〈
y + z

〉p 〈
y − z

〉q dy.

Using the estimate that we proved for J1, we obtain

J2(z) ≤ 1

〈z〉p

2s∫
0

1〈
y − z

〉q dy ≤ C

〈z〉r .

Regarding the proof of the estimate for J3, we have

J3(z) =
∫

|y |≥2z

1〈
y − z

〉p 〈
y + z

〉q dy = 2

+∞∫
2z

1〈
y − z

〉p 〈
y + z

〉q dy ≤ 2

+∞∫
2z

〈 y

2

〉−(p+q)
dy,
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since y ≤ y + (y −2z) = 2(y − z) and y ≤ 2(y + z), for all y ≥ 2z ≥ 0. Then, by making the change
of variables 2u = y , we obtain

+∞∫
2z

〈 y

2

〉−(p+q)
dy = 2

+∞∫
z

〈u〉−(p+q) du '
+∞∫
z

(1+u)−(p+q)du = (1+u)1−(p+q)

1− (p +q)

∣∣∣∣+∞
z

. (1+ z)1−(p+q),

since p +q > 1. Thus,
J3(z) .

1

(1+ z)p+q−1
.

1

〈z〉p+q−1 ≤ 1

〈z〉r ,

which finishes the proof of (1.30).
Next, we turn to the proof of (1.31). We write a0 +a1x +a2x2 = a2p(x), where p(x) = x2 +

a1
a2

x + a0
a2
. We observe that

〈
a2p(x)

〉= (1+a2
2p(x)2)

1
2

{
≤ max{1, |a2|} ·

〈
p(x)

〉
≥ min{1, |a2|} ·

〈
p(x)

〉
.

Then,
〈

a0 +a1x +a2x2
〉 ' 〈

p(x)
〉
. We consider below three cases concerning the polynomial

p(x).

Case 1. p(x) has two different real roots.
Let α and β the roots of p(x). We can write p(x) = (x −α)(x −β). We affirm that〈

x −α〉〈
x −β〉≤C

〈
p(x)

〉
, for all x ∈R. (1.32)

Indeed, we have

〈x −α〉2 〈
x −β〉2 = (1+ (x −α)2)(1+ (x −β)2) = 1+p(x)2 + (x −α)2 + (x −β)2.

Since
lim

x→∞
(x −α)2 + (x −β)2

(x −α)2(x −β)2
= lim

x→∞
1

(x −β)2
+ 1

(x −α)2
= 0,

there exists M > 0 such that

(x −α)2 + (x −β)2

(x −α)2(x −β)2
≤ 1, for all |x| ≥ M .

Then,
〈x −α〉2 〈

x −β〉2 ≤ 1+2p(x)2 ≤ 2
〈

p(x)
〉2 , for all |x| ≥ M . (1.33)

Denoting by δ= |α−β|/2 > 0, we observe that

|x −β| ≤ |x −α|+ |α−β| < 3δ, for all x ∈ (α−δ,α+δ),

which implies

0 < (x −α)2 + (x −β)2 < δ2 + (3δ)2 = 10δ2, for all x ∈ (α−δ,α+δ).

Similarly, we have 0 < (x −α)2 + (x −β)2 < 10δ2 for all x ∈ (β−δ,β+δ). Thus,

〈x −α〉2 〈
x −β〉2 ≤ 1+p(x)2 +10δ2, for all x ∈ (α−δ,α+δ)∪ (x −β, x +β). (1.34)
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By (1.33) and (1.34), it remains to show that (1.32) occurs in

K = [−M , M ]∩ (
(α−δ,α+δ)∪ (β−δ,β+δ)

)c ,

which is a compact subset. Since α ∉ K and β ∉ K , there exists a constant D > 0 such that

sup
x∈K

(x −α)2 + (x −β)2

(x −α)2(x −β)2
≤ D.

Then, 〈
x −α〉2 〈

x −β〉2 ≤ 1+p(x)2 +Dp(x)2 ≤ (1+D)
〈

p(x)
〉2 , for all x ∈ K . (1.35)

Putting together (1.33), (1.34) and (1.35), we conclude the proof of inequality (1.32). Thus, it
follows from (1.32) and (1.30) that∫

1〈
p(x)

〉q dx ≤C q
∫

1〈
x −α〉q 〈

x −β〉q dx ≤ C ′〈
α−β〉r <∞.

Case 2. p(x) has just one real root.
Let α be the real root of p(x). In this case, we can write p(x) = (x −α)2. Then,∫

1〈
p(x)

〉q dx =
∫

1

(1+ (x −α)4)
q
2

dx = 2

∞∫
0

1

(1+ y4)
q
2

dy ≤ 2
3
2 q+1

∞∫
0

1

(1+ y)2q
dy,

where we used that (1+ y)4 = (1+ y)2(1+ y)2 ≤ 22(1+ y2)2 ≤ 23(1+ y4), for all y ∈R. Since q > 1
2 ,

we have ∞∫
0

1

(1+ y)2q
dy = (1+ y)1−2q

1−2q

∣∣∣∣∞
0
= 1

2q −1
<∞.

Therefore, (1.31) holds also in this case.

Case 3. p(x) has not real root.
In this case, we can write p(x) =C + (x −α)2 with C > 0. In fact,

p(x) = x2 +bx + c =
(

x − b

2

)2

+ c − b2

4
,

where c −b2/4 > 0, since ∆= b2 −4c < 0. Thus,∫
1〈

p(x)
〉q dx =

∫
1

(1+ ((x −α)2 +C )2)
q
2

dx

≤
∫

1

(1+ (x −α)4)
q
2

dx

= 2

∞∫
0

1

(1+ y4)
q
2

dy,

since C > 0. As we did in the case 2, we have

2

∞∫
0

1

(1+ y4)
q
2

dy ≤ 2
3
2 q+1

∫ ∞

0

1

(1+ y)2q
dy = 2

3
2 q+1 1

2q −1
.



1.4. A CALCULUS LEMMA 23

Then, ∫
1〈

p(x)
〉q dx <∞,

which finishes the proof of (1.31).





Chapter

2
The problem in H s

We consider the initial value problem for the "good" Boussinesq equation
∂2

t u −∂2
xu +∂4

xu +∂2
x(u2) = 0, x ∈R or T, t ∈R,

u(x,0) = u0(x),

∂t u(x,o) = ∂xu1(x),

(2.1)

with initial data u0 and u1 belonging in a Sobolev Space. Our principal aim here is to show
a detailed proof of the local well-posedness of (2.1) for low regularity data. The main results
presented in this chapter was obtained by Luiz Gustavo Farah in 2009 [12] (real case) and by
Luiz Gustavo Farah andMarcia Scialom in 2010 [13] (periodic case), which are the works that
motivated the results that will be presented in Chapter 3. More precisely, we will prove here
the following theorem.

Theorem 2.1. Let s >−1/4. Then, for every initial data (u0,u1) ∈ H s×H s−1, there exist a lifespan T =
T

(‖u0‖H s ,‖u1‖H s−1

) > 0 and a unique solution u of the Cauchy problem for the “good” Boussinesq
equation (2.1) such that

u ∈C ([0,T ]; H s)∩X T
s,b .

Moreover, given T ′ ∈ (0,T ) there exists R = R(T ′) > 0 such that giving the set

W = {
(ũ0, ũ1) ∈ H s ×H s−1; ‖ũ0 −u0‖H s +‖ũ1 −u1‖H s−1 < R

}
the map solution

S : W −→C ([0,T ]; H s)∩X T
s,b

(ũ0, ũ1) 7−→ ũ

is Lipschitz.

25
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2.1 Real Case

In this section we are considering the real version of the Cauchy problem (2.1), that is, the
variable x belongs to R.

A formal data-to-solution map

Let us get a formal solution to (2.1). We start by taking the Fourier transformwith respect
x in (2.1) to obtain 

∂2
t ûx + (ξ2 +ξ4)ûx +à∂2

x(u2)
x = 0,

ûx(ξ,0) = û0(ξ),

∂t ûx(ξ,0) = �∂xu1(ξ).

Denoting by U (t ) = ûx(ξ, t ) and w(x, t ) = ∂2
x(u2), where ξ ∈R is considered as a parameter, we

have 
U ′′(t )+ (ξ2 +ξ4)U (t )+ ŵ x(ξ, t ) = 0,

U (0) = û0(ξ),

U ′(0) = �∂xu1(ξ).

(2.2)

Next we use the variation parameters method to solve the above harmonic oscillator initial
value problem (IVP) (2.2)with forcing ŵ x . The first step consists in to solve the corresponding
homogeneous equation

U ′′(t )+ (ξ2 +ξ4)U (t ) = 0. (2.3)

A fundamental system of solutions is given by

U1(t ) = e iγ(ξ)t and U2(t ) = e−iγ(ξ)t ,

where iγ(ξ) = i (ξ2 +ξ4)
1
2 is a root of the characteristic polynomial γ2 + (ξ2 +ξ4) associated to

equation (2.3). A particular solution of (2.2) is given by

U (t ) = c1(t )U1(t )+ c2(t )U2(t ).

For that to hold true, it is sufficient to show that c1 and c2 satisfy{
c ′1(t )U1(t )+ c ′2(t )U2(t ) = 0,

c ′1(t )U ′
1(t )+ c ′2(t )U ′

2(t ) =−ŵ x(ξ, t ),

that is, from Cramer’s rule we must have

c ′1(t ) =
det

[
0 U2(t )

−ŵ x(ξ, t ) U ′
2(t )

]
W (U1,U2)(t )

= U2(t )ŵ x(ξ, t )

−2iγ(ξ)
=−e−iγ(ξ)t

2iγ(ξ)
ŵ x(ξ, t )

and

c ′2(t ) =
det

[
U1(t ) 0

U ′
1(t ) −ŵ x(ξ, t )

]
W (U1,U2)(t )

= −U1(t )ŵ x(ξ, t )

−2iγ(ξ)
= e iγ(ξ)t

2iγ(ξ)
ŵ x(ξ, t ),
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where W (U1,U2) denotes the Wronskian of U1 and U2. Hence, we obtain

c1(t ) =C1 −
t∫

0

e−iγ(ξ)t ′

2iγ(ξ)
ŵ x(ξ, t ′)dt ′ and c2(t ) =C2 +

t∫
0

e iγ(ξ)t ′

2iγ(ξ)
ŵ x(ξ, t ′)dt ′ ,

which implies

U (t ) =C1e iγ(ξ)t −
t∫

0

e iγ(ξ)(t−t ′)

2iγ(ξ)
ŵ x(ξ, t ′)dt ′+C2e−iγ(ξ)t +

t∫
0

e−iγ(ξ)(t−t ′)

2iγ(ξ)
ŵ x(ξ, t ′)dt ′ .

Since U (0) = û0(ξ) and U ′(0) = �∂xu1(ξ), we have that the constants C1 and C2 agree with
C1 +C2 = û0(ξ),

C1 −C2 =
�∂xu1(ξ)

iγ(ξ)
,

that is,

C1 = û0(ξ)

2
+

�∂xu1(ξ)

2iγ(ξ)
and C2 = û0(ξ)

2
−

�∂xu1(ξ)

2iγ(ξ)
.

Therefore,

U (t ) = û0(ξ)

(
e iγ(ξ)t +e−iγ(ξ)t

2

)
+�∂xu1(ξ)

(
e iγ(ξ)t −e−iγ(ξ)t

2iγ(ξ)

)
−

t∫
0

(
e iγ(ξ)(t−t ′) −e−iγ(ξ)(t−t ′)

2iγ(ξ)

)
ŵ x(ξ, t ′)dt ′ .

Thus, we consider the operators W1 and W2 defined as follows

W1(t )ϕ(x) = 1

2π

∞∫
−∞

e iξx
(

e iγ(ξ)t +e−iγ(ξ)t

2

)
ϕ̂(ξ)dξ and

W2(t )ϕ(x) = 1

2π

∞∫
−∞

e iξx
(

e iγ(ξ)t −e−iγ(ξ)t

2iγ(ξ)

)
ϕ̂(ξ)dξ,

which give us

áW1(t )ϕ
x

(ξ) =
(

e iγ(ξ)t +e−iγ(ξ)t

2

)
ϕ̂(ξ) and áW2(t )ϕ

x
(ξ) =

(
e iγ(ξ)t −e−iγ(ξ)t

2iγ(ξ)

)
ϕ̂(ξ).

The solution U of (2.2) can be written by

U (t ) =
∧x[

W1(t )u0

]
(ξ)+
∧x[

W2(t )(∂xu1)
]

(ξ)−
t∫

0

∧x[
W2(t − t ′)w(x, t ′)

]
(ξ)dt ′.

Since U (t ) = ûx(ξ, t ), it follows that

u(x, t ) =W1(t )u0(x)+W2(t )∂xu1(x)−
t∫

0

W2(t − t ′)w(x, t ′)dt ′ (2.4)
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is a formal solution of (2.1).
Next, we localize in the time variable by using a cut-off function ψ ∈ C∞

0 (−2,2) with 0 ≤
ψ≤ 1, ψ(t ) = 1 on [−1,1] and for 0 < T < 1 we define ψT (t ) =ψ( t

T

)
.

-2 2-2T 2T

ψT

ψ

R

R

1

Figure 5: Cut off function ψT .

We consider the operator ΦT given by

ΦT u
.=ψ(t )W1(t )u0(x)+ψ(t )W2(t )∂xu1(x)−ψT (t )

t∫
0

W2(t − t ′)∂2
x(u2)(x, t ′)dt ′ . (2.5)

Therefore, in order to find a solution of (2.1), our goal is to use a fixed point argument for the
map ΦT , that is, solve the equation ΦT u = u. A natural question that appears here is: Which
is the best space to solve this problem?

To motivate the solution space, we observe that one of the advantages in dealing with
integral equation (2.5) is thatwe canuse space-time Fourier transform to express themapping
ΦT in the phase space (ξ,τ). More precisely, by the inverse Fourier transform formula we can
write

ŵ x(ξ, t ′) = 1

2π

∫
e iτt ′ŵ(ξ,τ)dτ ,

which give us
t∫

0

W2(t − t ′)w(x, t ′)dt ′ = 1

2π

t∫
0

∫
e i xξ

(
e iγ(ξ)(t−t ′) −e−iγ(ξ)(t−t ′)

2iγ(ξ)

)
ŵ x(ξ, t ′)dξdt ′

= 1

4π2

t∫
0

Ï
e i xξ

(
e iγ(ξ)(t−t ′) −e−iγ(ξ)(t−t ′)

2iγ(ξ)

)
e iτt ′ŵ(ξ,τ)dτdξdt ′ .

Performing the t ′ integration first, that is, using the computation
t∫

0

e i (τ±γ(ξ))t ′ dt ′ =−i

(
e i (τ±γ(ξ))t −1

τ±γ(ξ)

)
,

we have
t∫

0

W2(t − t ′)w(x, t ′)dt ′ =− i

4π2

Ï
e i (xξ+γ(ξ)t )

2iγ(ξ)

(
e i (τ−γ(ξ))t −1

τ−γ(ξ)

)
ŵ(ξ,τ)dξdτ

+ i

4π2

Ï
e i (xξ−γ(ξ)t )

2iγ(ξ)

(
e i (τ+γ(ξ))t −1

τ+γ(ξ)

)
ŵ(ξ,τ)dξdτ .
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The last formula gives us the following decomposition of the map ΦT

ΦT u(x, t ) = 1

2π
ψ(t )

∫
e i xξ

(
e iγ(ξ)t +e−iγ(ξ)t

2

)
û0(ξ)dξ (2.6)

+ 1

2π
ψ(t )

∫
e i xξ

(
e iγ(ξ)t −e−iγ(ξ)t

2iγ(ξ)

) �∂xu1(ξ)dξ (2.7)

− i

4π2
ψT (t )

Ï
e i (xξ+γ(ξ)t )

2iγ(ξ)

(
e i (τ−γ(ξ))t −1

τ−γ(ξ)

)
ŵ(ξ,τ)dξdτ (2.8)

+ i

4π2
ψT (t )

Ï
e i (xξ−γ(ξ)t )

2iγ(ξ)

(
e i (τ+γ(ξ))t −1

τ+γ(ξ)

)
ŵ(ξ,τ)dξdτ , (2.9)

where w = ∂2
x(u2). Now, observing that the space-time Fourier transform of the solution to

the homogeneous IVP associates to (2.1) lives on the curve τ=±γ(ξ), thismotivates the spaces
that we are going to introduce in the following subsection.

The Bourgain Spaces Xs,b(R2)

Having as a strategy to make a detailed study of the nonlinearity by using spaces related
to the real linear problem of the gB equation, we introduce the Bourgain spaces.

Definition 2.2 (Space Xs,b(R2).). Let s,b ∈R, Xs,b = Xs,b(R2) denotes the completion of the Schwartz
class S (R2) with respect to the norm

‖v‖Xs,b =
∫
R

∫
R

〈|τ|−γ(ξ)
〉2b 〈ξ〉2s |v̂(ξ,τ)|2 dτdξ

 1
2

,

where γ(ξ) =
√
ξ2 +ξ4 and 〈ξ〉 =

√
1+ξ2.

Since we are considering local in time well-posedness, we also need the localized Xs,b

spaces defined as follows.

Definition 2.3 (Space X T
s,b(R2).). Let s,b ∈R. For T ≥ 0, X T

s,b = X T
s,b(R2) denotes the space endowed

with the norm
‖u‖X T

s,b
= inf

v∈Xs,b

{‖v‖Xs,b
; v(x, t ) = u(x, t ) on R× [0,T ]

}
.

One of the reasons to deal with the Bourgain spaces lies in the next result, which says that
for b > 1

2 the space Xs,b is embedding in C (R, H s).

Lemma 2.4 (Corollary 2.10 in [35] on page 101). Let b > 1
2 and s ∈ R. Then, the space Xs,b is

included in C (R, H s(R)) and, furthermore, there exists C > 0, depending only on b, such that

sup
t∈R

‖u(·, t )‖H s ≤C ‖u‖Xs,b
, for all u ∈ Xs,b .

Proof. First, we will prove that Xs,b ⊂ L∞(R, H s). Let u ∈ Xs,b , we write u = u1 +u2, where

û1 =χ{τ≤0}û, û2 =χ{τ>0}û
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and χA denotes the characteristic function of the set A. Then, since
∣∣e iγ(ξ)t

∣∣ = 1, we observe
that

‖u1(x, t )‖H s
x
= ∥∥〈ξ〉s û1

x(ξ, t )
∥∥

L2
ξ
=

∥∥∥〈ξ〉s e iγ(ξ)t û1
x(ξ, t )

∥∥∥
L2
ξ

=
∥∥∥F−1

x

(
e iγ(ξ)t û1

x(ξ, t )
)∥∥∥

H s
x

,

for all t ∈R, where F−1
x denotes the inverse Fourier transform with respect to the variable x.

Thus, denoting by Ft the Fourier transform with respect t , we have

‖u1(x, t )‖H s
x
=

∥∥∥F−1
t Ft

(
F−1

x

(
e iγ(ξ)t û1

x(ξ, t )
))∥∥∥

H s
x

= 1

2π

∥∥∥∥∫
e i tτFt

(
F−1

x

(
e iγ(ξ)t û1

x(ξ, t )
))

(τ)dτ

∥∥∥∥
H s

x

= 1

2π

(∫
〈ξ〉2s

∣∣∣∣∫ e i tτFt
(
e iγ(ξ)t û1

x(ξ, t )
)
(τ)dτ

∣∣∣∣2

dξ

) 1
2

≤ 1

2π

(∫ (∫
〈ξ〉s

∣∣Ft
(
e iγ(ξ)t û1

x(ξ, t )
)
(τ)

∣∣dτ)2

dξ

) 1
2

≤ 1

2π

∫ (∫
〈ξ〉2s

∣∣Ft
(
e iγ(ξ)t û1

x(ξ, t )
)
(τ)

∣∣2dξ

) 1
2

dτ,

where we used in the last step the Minkowski’s integral inequality. Therefore,

‖u1(x, t )‖H s
x
≤ 1

2π

∫ ∥∥∥FtF
−1
x

(
e iγ(ξ)t û1

x(ξ, t )
)
(x,τ)

∥∥∥
H s

x

dτ,

for all t ∈R. Using the Cauchy-Schwarz inequality, we obtain

‖u1(x, t )‖H s
x
≤ 1

2π

(∫
〈τ〉−2b dτ

) 1
2
(∫

〈τ〉2b
∥∥∥Ft F

−1
x

(
e iγ(ξ)t û1

x(ξ, t )
)
(x,τ)

∥∥∥2

H s
x

dτ

) 1
2

.

We observe that∥∥∥FtF
−1
x

(
e iγ(ξ)t û1

x(ξ, t )
)
(x,τ)

∥∥∥2

H s
x

=
∫

〈ξ〉2s
∣∣Ft

(
e iγ(ξ)t û1

x(ξ, t )
)
(τ)

∣∣2dξ

=
∫

〈ξ〉2s
∣∣∣∣∫ e−i tτe iγ(ξ)t û1

x(ξ, t )dt

∣∣∣∣2

dξ

=
∫

〈ξ〉2s
∣∣û1(ξ,τ−γ(ξ))

∣∣2dξ.

Thus,

‖u1(x, t )‖H s
x
≤ 1

2π

(∫
〈τ〉−2b dτ

) 1
2
(∫

〈τ〉2b
∫

〈ξ〉2s
∣∣û1(ξ,τ−γ(ξ))

∣∣2dξdτ

) 1
2

,

and recalling that û1 =χ{τ≤0}û, we obtain

‖u1(x, t )‖H s
x
≤ 1

2π

(∫
〈τ〉−2b dτ

) 1
2
(∫

〈ξ〉2s

γ(ξ)∫
−∞

〈τ〉2b
∣∣û(ξ,τ−γ(ξ)

∣∣2dτdξ

) 1
2

= 1

2π

(∫
〈τ〉−2b dτ

) 1
2
(∫ 0∫

−∞
〈ξ〉2s 〈

ρ+γ(ξ)
〉2b ∣∣û(ξ,ρ)

∣∣2dρdξ

) 1
2

,
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by making the change of variables ρ = τ−γ(ξ). On the other hand, similar arguments imply
that

‖u2(x, t )‖H s
x
≤ 1

2π

(∫
〈τ〉−2b dτ

) 1
2
(∫ +∞∫

0

〈ξ〉2s 〈
ρ−γ(ξ)

〉2b ∣∣û(ξ,ρ)
∣∣2dρdξ

) 1
2

,

for all t ∈R. Now, by the fact that b > 1
2 and

∣∣|ρ|−γ(ξ)
∣∣={

|ρ−γ(ξ)|, for ρ ≥ 0,

|ρ+γ(ξ)|, for ρ ≤ 0,

we have

‖u(x, t )‖H s
x
≤C ′

b

[(∫ 0∫
−∞

〈ξ〉2s 〈|ρ|−γ(ξ)
〉2b ∣∣û(ξ,ρ)

∣∣2dρdξ

) 1
2

+
(∫ ∞∫

0

〈ξ〉2s 〈|ρ|−γ(ξ)
〉2b ∣∣û(ξ,ρ)

∣∣2dρdξ

) 1
2
]

≤2C ′
b ‖u(t , x)‖Xs,b

,

for all t ∈R, where C ′
b = (2π)−1

(∫
〈τ〉−2b dτ

) 1
2

. Then, we conclude that

‖u(x, t )‖L∞(R,H s ) ≤Cb ‖u(t , x)‖Xs,b
,

that is, u ∈ L∞(R, H s).
It remains to show continuity to respect the variable t . Let t ∈ R and {tn} ⊂ R a sequence

such that tn → t . As we did above, we have

‖u1(x, t )−u1(x, tn)‖H s
x
=

∥∥∥∥∫
FtF

−1
x

(
e iγ(ξ)t û1

x(ξ, t )
)
(x,τ)

(
e i tτ−e i tnτ

)
dτ

∥∥∥∥
H s

x

. (2.10)

Letting n →∞, two applications of Dominated Convergence Theorem give that the right side
of (2.10) goes to zero. Therefore, u1 ∈ C (R, H s). Furthermore, the same argument applies to
u2, which concludes the proof.

Since we would like to prove that ΦT is a contraction map, we start with the following
basic result to estimate its Xs,b-norm.

Lemma 2.5. Let s ∈R, u0 ∈ H s(R), u1 ∈ H s−1(R) and 0 < T < 1. For f , g ∈ Xs,b we define the bilinear
operator

ΦT ( f , g )
.=ψ(t ) (W1(t )u0(x)+W2(t )∂xu1(x))−ψT (t )

t∫
0

W2(t − t ′)w f ,g (x, t ′)dt ′,

where w f ,g = ∂2
x( f g ). Let −1

2 < b′ ≤ 0 ≤ b ≤ b′+1. Then, there exist a constant C = C (ψ,b,b′) such
that ∥∥ΦT ( f , g )

∥∥
Xs,b

≤C
(‖u0‖H s +‖u1‖H s−1

)+C T 1−(b−b′)
∥∥∥∥F−1

( �w f ,g (ξ,τ)

2iγ(ξ)

)∥∥∥∥
Xs,b′

,

where F−1 denotes the inverse Fourier transform with respect to both variables x and t .
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We split the proof of Lemma 2.5 in the following two lemmas.

Lemma 2.6. Let u0 ∈ H s(R) and u1 ∈ H s−1(R). Then, there exists C > 0 depending only ψ, s and b

such that ∥∥ψ(t ) (W1(t )u0(x)+W2(t )∂xu1(x))
∥∥

Xs,b
≤C

(‖u0‖H s +‖u1‖H s−1

)
.

Proof. Denoting by v(x, t ) =W1(t )u0(x)+W2(t )∂xu1(x) and taking the Fourier transform with
respect space variable, we have

ψ̂v x(ξ, t ) =ψ(t )

∧x[
W1(t )u0

]
(ξ, t )+ψ(t )

∧x[
W2(t )∂xu1

]
(ξ, t )

=ψ(t )

(
e i tγ(ξ) +e−i tγ(ξ)

2

)
û0(ξ)+ψ(t )

(
e i tγ(ξ) −e−i tγ(ξ)

2iγ(ξ)

) �∂xu1(ξ)

= e i tγ(ξ)ψ(t )

(
û0(ξ)

2
+

�∂xu1(ξ)

2iγ(ξ)

)
+e−i tγ(ξ)ψ(t )

(
û0(ξ)

2
−

�∂xu1(ξ)

2iγ(ξ)

)
= e i tγ(ξ)ψ(t )h1(ξ)+e−i tγ(ξ)ψ(t )h2(ξ),

where
h1(ξ) = û0(ξ)

2
+

�∂xu1(ξ)

2iγ(ξ)
and h2(ξ) = û0(ξ)

2
−

�∂xu1(ξ)

2iγ(ξ)
.

Thus,

ψ̂v(ξ,τ) =
∫

e−i tτψ̂v x(ξ, t )dt = h1(ξ)
∫

e−i t (τ−γ(ξ))ψ(t )dt +h2(ξ)
∫

e−i t (τ+γ(ξ))ψ(t )dt ,

which implies that ψ̂v(ξ,τ) = h1(ξ)ψ̂(τ−γ(ξ))+h2(ξ)ψ̂(τ+γ(ξ)). Therefore, we obtain∥∥ψv
∥∥

Xs,b
=

∥∥∥〈|τ|−γ(ξ)
〉b 〈ξ〉s ψ̂v(ξ,τ)

∥∥∥
L2
ξ,τ

≤
∥∥∥〈|τ|−γ(ξ)

〉b 〈ξ〉s h1(ξ)ψ̂(τ−γ(ξ))
∥∥∥

L2
ξ,τ

+
∥∥∥〈|τ|−γ(ξ)

〉b 〈ξ〉s h2(ξ)ψ̂(τ+γ(ξ))
∥∥∥

L2
ξ,τ

≤
∥∥∥〈
τ−γ(ξ)

〉b 〈ξ〉s h1(ξ)ψ̂(τ−γ(ξ))
∥∥∥

L2
ξ,τ

+
∥∥∥〈
τ+γ(ξ)

〉b 〈ξ〉s h2(ξ)ψ̂(τ+γ(ξ))
∥∥∥

L2
ξ,τ

,

since
〈|τ|−γ(ξ)

〉≤ 〈
τ±γ(ξ)

〉
and b ≥ 0. Now, bymaking a change of variables in the τ-integral,

we observe that

∥∥∥〈
τ−γ(ξ)

〉b 〈ξ〉s h1(ξ)ψ̂(τ−γ(ξ))
∥∥∥

L2
ξ,τ

=
(∫

〈ξ〉2s |h1(ξ)|2
∫ 〈

τ−γ(ξ)
〉2b |ψ̂(τ−γ(ξ))|2 dτdξ

) 1
2

=
(∫

〈ξ〉2s |h1(ξ)|2
∫ 〈

ρ
〉2b |ψ̂(ρ)|2 dρdξ

) 1
2

= ∥∥ψ∥∥
H b

∥∥〈ξ〉s h1(ξ)
∥∥

L2
ξ

.

Similarly, ∥∥∥〈
τ+γ(ξ)

〉b 〈ξ〉s h2(ξ)ψ̂(τ+γ(ξ))
∥∥∥

L2
τ,ξ

= ∥∥ψ∥∥
H b

∥∥〈ξ〉s h2(ξ)
∥∥

L2
ξ

.
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On the other hand, we have

∥∥〈ξ〉s h1(ξ)
∥∥

L2
ξ
≤ 1

2

(∥∥〈ξ〉s û0(ξ)
∥∥

L2
ξ
+

∥∥∥〈ξ〉s γ(ξ)−1 �∂xu1(ξ)
∥∥∥

L2
ξ

)
= 1

2

(
‖u0‖H s +∥∥〈ξ〉s γ(ξ)−1ξû1(ξ)

∥∥
L2
ξ

)
,

and, in the same way,

∥∥〈ξ〉s h2(ξ)
∥∥

L2
ξ
≤ 1

2

(∥∥〈ξ〉s û0(ξ)
∥∥

L2
ξ
+

∥∥∥〈ξ〉s γ(ξ)−1 �∂xu1(ξ)
∥∥∥

L2
ξ

)
= 1

2

(
‖u0‖H s +∥∥〈ξ〉s γ(ξ)−1ξû1(ξ)

∥∥
L2
ξ

)
.

Then, we conclude that

∥∥ψv
∥∥

Xs,b
≤ ∥∥ψ∥∥

H b

(
‖u0‖H s +∥∥〈ξ〉s γ(ξ)−1ξû1(ξ)

∥∥
L2
ξ

)
= ∥∥ψ∥∥

H b

(‖u0‖H s +‖u1‖H s−1

)
,

since |ξ|γ(ξ)−1 = |ξ|(ξ2 +ξ4)−
1
2 = (1+ξ2)−

1
2 = 〈ξ〉−1.

The next lemma is concerning the Xs,b-norm of the nonlinear part of ΦT , its proof is a
consequence of Lemma 1.8.

Lemma 2.7. Let s ∈R, −1
2 < b′ ≤ 0 ≤ b ≤ b′+1 and 0 < T ≤ 1, then∥∥∥∥∥∥ψT (t )

t∫
0

W2(t − t ′)w(x, t ′)dt ′
∥∥∥∥∥∥

Xs,b

≤C T 1−(b−b′)
∥∥∥∥F−1

(
ŵ(ξ,τ)

2iγ(ξ)

)∥∥∥∥
Xs,b′

. (2.11)

Proof. To prove (2.11), we recall that the operator W2 is given by

áW2(t )ϕ
x

(ξ) =
(

e iγ(ξ)t −e−iγ(ξ)t

2iγ(ξ)

)
ϕ̂(ξ).

Denoting by U (x, t ) =ψT (t )

t∫
0

W2(t − t ′)w(x, t ′)dt ′, we have

Û
x

(ξ, t ) =ψT (t )

t∫
0

(
e i (t−t ′)γ(ξ) −e−i (t−t ′)γ(ξ)

2iγ(ξ)

)
ŵ x(ξ, t ′)dt ′

= e i tγ(ξ)ψT (t )

t∫
0

h1(ξ, t ′)dt ′−e−i tγ(ξ)ψT (t )
∫ t

0
h2(ξ, t ′)dt ′ ,

where

h1(ξ, t ′) = e−i t ′γ(ξ) ŵ x(ξ, t ′)
2iγ(ξ)

and h2(ξ, t ′) = e i t ′γ(ξ) ŵ x(ξ, t ′)
2iγ(ξ)

.
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We define v1 and v2 by

v̂1
x(ξ, t ) =ψT (t )

t∫
0

h1(ξ, t ′)dt ′ and v̂2
x(ξ, t ) =ψT (t )

t∫
0

h2(ξ, t ′)dt ′ .

Thus, we can write Û
x

(ξ, t ) = e i tγ(ξ) v̂1
x(ξ, t )−e−i tγ(ξ) v̂2

x(ξ, t ), which implies that

Û (ξ,τ) =
∫

e−i tτ Û
x

(ξ, t )dt

=
∫

e−i t (τ−γ(ξ)) v̂1
x(ξ, t )dt −

∫
e−i t (τ+γ(ξ)) v̂2

x(ξ, t )dt

= v̂1(ξ,τ−γ(ξ))− v̂2(ξ,τ+γ(ξ)).

Now, using the definition of Xs,b-norm, we obtain

‖U (x, t )‖Xs,b
=

∥∥∥〈|τ|−γ(ξ)
〉b 〈ξ〉s Û (ξ,τ)

∥∥∥
L2
ξ,τ

≤
∥∥∥〈|τ|−γ(ξ)

〉b 〈ξ〉s v̂1(ξ,τ−γ(ξ))
∥∥∥

L2
ξ,τ

+
∥∥∥〈|τ|−γ(ξ)

〉b 〈ξ〉s v̂2(ξ,τ+γ(ξ))
∥∥∥

L2
ξ,τ

.

Since
〈|τ|−γ(ξ)

〉≤ 〈
τ±γ(ξ)

〉
and b ≥ 0, we have

‖U (x, t )‖Xs,b
≤

∥∥∥〈
τ−γ(ξ)

〉b 〈ξ〉s v̂1(ξ,τ−γ(ξ))
∥∥∥

L2
ξ,τ

+
∥∥∥〈
τ+γ(ξ)

〉b 〈ξ〉s v̂2(ξ,τ+γ(ξ))
∥∥∥

L2
ξ,τ

.

We observe that∥∥∥〈
τ−γ(ξ)

〉b 〈ξ〉s v̂1(ξ,τ−γ(ξ))
∥∥∥

L2
ξ,τ

=
(Ï 〈

τ−γ(ξ)
〉2b 〈ξ〉2s | v̂1(ξ,τ−γ(ξ))|2dξdτ

) 1
2

=
(∫

〈ξ〉2s
∫ 〈

τ−γ(ξ)
〉2b | v̂1(ξ,τ−γ(ξ))|2dτdξ

) 1
2

=
(∫

〈ξ〉2s
∫ 〈

ρ
〉2b | v̂1(ξ,ρ)|2dρdξ

) 1
2

=
(∫

〈ξ〉2s
∥∥ v̂1

x(ξ, t )
∥∥2

H b
t

dξ

) 1
2

,

where we used the change of variables ρ = τ−γ(ξ) in the τ-integral. Similarly,

∥∥∥〈
τ+γ(ξ)

〉b 〈ξ〉s v̂2(ξ,τ+γ(ξ))
∥∥∥

L2
ξ,τ

=
(∫

〈ξ〉2s ‖ v̂2(ξ, t )‖2
H b

t
dξ

) 1
2

.

It follows Lemma 1.8 that

∥∥ v̂1
x(ξ, t )

∥∥
H b

t
=

∥∥∥∥ψT (t )

t∫
0

h1(ξ, t ′)dt ′
∥∥∥∥

H b
t

≤ C̃ T 1−(b−b′) ‖h1(ξ, t )‖H b′
t

and ∥∥ v̂2
x(ξ, t )

∥∥
H b

t
=

∥∥∥∥ψT (t )

t∫
0

h2(ξ, t ′)dt ′
∥∥∥∥

H b
t

≤ C̃ T 1−(b−b′) ‖h2(ξ, t )‖H b′
t

.
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Therefore,

‖U (t , x)‖Xs,b
≤ C̃ T 1−(b−b′)

((∫
〈ξ〉2s ‖h1(ξ, t )‖2

H b′
t

dξ

) 1
2

+
(∫

〈ξ〉2s ‖h2(ξ, t )‖2
H b′

t

dξ

) 1
2
)

= C̃ T 1−(b−b′)
((Ï

〈ξ〉2s 〈τ〉2b′ ∣∣ ĥ1
t
(ξ,τ)

∣∣2dτdξ

) 1
2

+
(Ï

〈ξ〉2s 〈τ〉2b′ ∣∣ ĥ2
t
(ξ,τ)

∣∣2dτdξ

) 1
2
)

,

where

ĥ1
t
(ξ,τ) =

∫
e−i tτh1(ξ, t )dt = 1

2iγ(ξ)

∫
e−i t (τ−γ(ξ)) ŵ x(ξ, t )dt = ŵ (ξ,τ−γ(ξ))

2iγ(ξ)

and
ĥ2

t
(ξ,τ) =

∫
e−i tτh2(ξ, t )dt = 1

2iγ(ξ)

∫
e−i t (τ+γ(ξ)) ŵ x(ξ, t )dt = ŵ (ξ,τ+γ(ξ))

2iγ(ξ)
.

Thus, we obtain

‖U (x, t )‖Xs,b
≤C̃ T 1−(b−b′)

(∫ 〈ξ〉2s

|2iγ(ξ)|2
∫

〈τ〉2b′ ∣∣ ŵ (ξ,τ−γ(ξ))
∣∣2dτdξ

) 1
2

+ C̃ T 1−(b−b′)
(∫ 〈ξ〉2s

|2iγ(ξ)|2
∫

〈τ〉2b′ ∣∣ ŵ (ξ,τ+γ(ξ))
∣∣2dτdξ

) 1
2

.

Bymaking the change of variables ρ = τ−γ(ξ) in the first integral and ρ = τ+γ(ξ) in the second
one, we have

‖U (x, t )‖Xs,b
≤C̃ T 1−(b−b′)

(∫ 〈ξ〉2s

|2iγ(ξ)|2
∫ 〈

ρ+γ(ξ)
〉2b′ ∣∣ ŵ (ξ,ρ)

∣∣2 dρdξ

) 1
2

+ C̃ T 1−(b−b′)
(∫ 〈ξ〉2s

|2iγ(ξ)|2
∫ 〈

ρ−γ(ξ)
〉2b′ ∣∣ ŵ (ξ,ρ)

∣∣2 dρdξ

) 1
2

≤2C T 1−(b−b′)
(Ï

〈ξ〉2s 〈|ρ|−γ(ξ)
〉2b′

∣∣∣∣ ŵ (ξ,ρ)

2iγ(ξ)

∣∣∣∣2

dρdξ

) 1
2

,

where we used that
〈|ρ|−γ(ξ)

〉≤ 〈
ρ±γ(ξ)

〉
and b′ ≤ 0. We conclude that

‖U (x, t )‖Xs,b
≤C T 1−(b−b′)

∥∥∥∥F−1
(

ŵ (ξ,τ)

2iγ(ξ)

)∥∥∥∥
Xs,b′

,

which finishes the proof of (2.11).

At this point, we see that we need the bilinear estimate, which is the key ingredient for
proving that the map ΦT is a contraction.

The Bilinear Estimates

We start by showing an elementary inequality that will be useful in the proof of the bi-
linear estimates.
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Lemma 2.8. There exists c > 0 such that

1

c
≤ sup

x,y≥0

(
1+|x − y |

1+ ∣∣x −√
y2 + y

∣∣
)
≤ c.

Proof. For y ≥ 0, we have y =√
y2 ≤√

y2 + y and(
y + 1

2

)2

= y2 + y + 1

4
≥ y2 + y,

which implies
y ≤

√
y2 + y ≤ y + 1

2
,

for all y ≥ 0. Thus,

1+
∣∣∣x −

√
y2 + y

∣∣∣≥ 1+|x|−
√

y2 + y ≥ 1+x − 1

2
− y = 1

2
+ (x − y)

and
1+

∣∣∣x −
√

y2 + y
∣∣∣≥ 1+

√
y2 + y −x ≥ 1+ (y −x) ≥ 1

2
+ (y −x),

for all x, y ≥ 0. Therefore,

1+
∣∣∣x −

√
y2 + y

∣∣∣≥ 1

2
+|x − y | ≥ 1

2

(
1+|x − y |) ,

implying that
1+|x − y |

1+|x −√
y2 + y |

≤ 2, for all x, y ≥ 0.

On the other hand, we observe that

1+|x − y | ≥ 1+x − y ≥ 1+x −
√

y2 + y ≥ 1

2
+

(
x −

√
y2 + y

)
and

1+|x − y | ≥ 1+ y −x ≥ 1− 1

2
+

√
y2 + y −x = 1

2
+

(√
y2 + y −x

)
.

Therefore,
1+|x − y | ≥ 1

2
+

∣∣∣x −
√

y2 + y
∣∣∣≥ 1

2

(
1+

∣∣∣x −
√

y2 + y
∣∣∣) .

Then, we conclude that
1+|x − y |

1+|x −√
y2 + y |

≥ 1

2
,

which finishes the proof.

Remark 2.1. In view of the previous lemma, we have an equivalent way to compute the
Xs,b -norm, that is,

‖u‖Xs,b
'

∥∥∥〈|τ|−ξ2〉b 〈ξ〉s û(τ,ξ)
∥∥∥

L2
ξ,τ

. (2.12)
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In fact, we just need to use the result given by Lemma 2.8

1

c
≤ 1+||τ|−ξ2|

1+||τ|−γ(ξ)| ≤ c,

and the fact 〈x〉 ' (1+|x|), for all x ∈R.
In the proof of the next theorem, which is called the bilinear estimates, we are going to

use the right side of (2.12) as definition of Xs,b-norm.

Theorem 2.9 (Sobolev Bilinear Estimates [12]). Let s >−1
4 and u, v ∈ Xs,b(R). Then, there exists

C > 0 such that ∥∥∥∥F−1
( |ξ|2ûv(ξ,τ)

2iγ(ξ)

)∥∥∥∥
Xs,−a

≤C ‖u‖Xs,b
‖v‖Xs,b

(2.13)

holds in the following cases:

(i) s ≥ 0, b > 1
2 and 1

4 < a < 1
2 .

(ii) −1
4 < s < 0, b > 1

2 and 1
4 < a < 1

2 such that |s| < a
2 .

Moreover, the constant that appears in (2.13) depends only on a,b and s.

Proof. We begin by noticing that∥∥∥∥F−1
( |ξ|2ûv(ξ,τ)

2iγ(ξ)

)∥∥∥∥
Xs,−a

=
∥∥∥∥∥ 〈ξ〉s |ξ|2〈|τ|−γ(ξ)

〉a 2iγ(ξ)
(2π)−2û ∗ v̂(ξ,τ)

∥∥∥∥∥
L2
ξ,τ

≤
∥∥∥∥∥ 〈ξ〉s |ξ|2〈|τ|−γ(ξ)

〉a 2iγ(ξ)
(2π)−2

Ï
|û(ξ−ξ1,τ−τ1)||v̂(ξ1,τ1)|dξ1dτ1

∥∥∥∥∥
L2
ξ,τ

.

Then, in order to prove (2.13) it is sufficient to show that∥∥∥∥∥ 〈ξ〉s |ξ|2〈|τ|−γ(ξ)
〉a 2iγ(ξ)

Ï
|û(ξ−ξ1,τ−τ1)||v̂(ξ1,τ1)|dξ1dτ1

∥∥∥∥∥
L2
ξ,τ

≤C ‖u‖Xs,b
‖v‖Xs,b

. (2.14)

Let u, v ∈ Xs,b and define

f (ξ,τ) = 〈|τ|−ξ2〉b 〈ξ〉s |û(ξ,τ)| and g (ξ,τ) = 〈|τ|−ξ2〉b 〈ξ〉s |v̂(ξ,τ)|,

which are functions in L2(R2). We affirm that (2.14) is equivalent to the following inequality

|W ( f , g ,ϕ)| ≤C
∥∥ f

∥∥
L2

∥∥g
∥∥

L2

∥∥ϕ∥∥
L2 , for all ϕ ∈ L2(R2), (2.15)

where

W ( f , g ,ϕ) =
∫
R4

|ξ|2
2iγ(ξ)

〈ξ〉s

〈ξ1〉s 〈ξ−ξ1〉s
g (ξ1,τ1) f (ξ−ξ1,τ−τ1)ϕ(ξ,τ)〈|τ|−ξ2

〉a 〈|τ1|−ξ2
1

〉b 〈|τ−τ1|− (ξ−ξ1)2
〉b

dξdτdξ1 dτ1 .

In fact, to prove that (2.14) is equivalent to (2.15), we use a duality argument as follows. We
can write

W ( f , g ,ϕ) = [
h(ξ,τ),ϕ(ξ,τ)

]
,
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where [ , ] denotes the inner product on L2(R2) and

h(ξ,τ) =
∫
R2

|ξ|2
2iγ(ξ)

〈ξ〉s

〈ξ1〉2 〈ξ−ξ1〉s

g (ξ1,τ1) f (ξ−ξ1,τ−τ1)〈|τ|−ξ2
〉a 〈|τ1|−ξ2

1

〉b 〈|τ−τ1|− (ξ−ξ1)2
〉b

dξ1 dτ1

= |ξ|2
2iγ(ξ)

〈ξ〉s〈|τ|−ξ2
〉a

∫
R2

|v̂(ξ1,τ1)||û(ξ−ξ1,τ−τ1)|dξ1 dτ1 .

If (2.14) holds, using Cauchy-Schwarz inequality we obtain

|W ( f , g ,ϕ)| ≤ ‖h(ξ,τ)‖L2

∥∥ϕ∥∥
L2

=
∥∥∥∥∥ 〈ξ〉s |ξ|2〈|τ|−γ(ξ)

〉a 2iγ(ξ)

Ï
|û(ξ−ξ1,τ−τ1)||v̂(ξ1,τ1)|dξ1dτ1

∥∥∥∥∥
L2

∥∥ϕ∥∥
L2

≤C ‖u‖Xs,b
‖v‖Xs,b

∥∥ϕ∥∥
L2

=C
∥∥ f

∥∥
L2

∥∥g
∥∥

L2

∥∥ϕ∥∥
L2 ,

which proves that (2.15) also holds. On the other hand, if (2.15) holds for all ϕ ∈ L2(R2), it
follows from Riesz Representation Theorem that h ∈ L2(R2) and ‖h‖L2 ≤C

∥∥ f
∥∥

L2

∥∥g
∥∥

L2 , which
guarantees that inequality (2.14) also occurs.

Then, we observe that to perform the desired estimate we need to analyse all the possible
cases for the sign of τ, τ1 and τ−τ1. To do this, we split R4 into the following regions

Γ1 = {
(ξ,τ,ξ1,τ1) ∈R4; τ1 < 0, τ−τ1 < 0

}
Γ2 = {

(ξ,τ,ξ1,τ1) ∈R4; τ1 ≥ 0, τ−τ1 < 0, τ≥ 0
}

Γ3 = {
(ξ,τ,ξ1,τ1) ∈R4;τ1 ≥ 0, τ−τ1 < 0, τ< 0

}
Γ4 = {

(ξ,τ,ξ1,τ1) ∈R4; τ1 < 0, τ−τ1 ≥ 0, τ≥ 0
}

Γ5 = {
(ξ,τ,ξ1,τ1) ∈R4; τ1 < 0, τ−τ1 ≥ 0, τ< 0

}
Γ6 = {

(ξ,τ,ξ1,τ1) ∈R4; τ1 ≥ 0, τ−τ1 ≥ 0
}

.

τ1

τ
τ= τ1

Γ3

Γ4 Γ6

Γ2

Γ5

Γ1

Figure 6: Bilinear estimates regions I.

Thus, it is sufficient to prove inequality (2.15) with Z ( f , g ,ϕ) instead of W ( f , g ,ϕ), where

Z ( f , g ,ϕ) =
∫
R4

|ξ|2
2iγ(ξ)

〈ξ〉s

〈ξ1〉s 〈ξ2〉s
g (ξ1,τ1) f (ξ2,τ2)ϕ(ξ,τ)

〈σ〉a 〈σ1〉b 〈σ2〉b
dξdτdξ1 dτ1 ,

with ξ2 = ξ−ξ1, τ2 = τ−τ1 and σ, σ1, σ2 belonging to one of the following cases

(I) σ= τ+ξ2, σ1 = τ1 +ξ2
1, σ2 = τ2 +ξ2

2.

(II) σ= τ−ξ2, σ1 = τ1 −ξ2
1, σ2 = τ2 +ξ2

2.

(III) σ= τ+ξ2, σ1 = τ1 −ξ2
1, σ2 = τ2 +ξ2

2.

(IV) σ= τ−ξ2, σ1 = τ1 +ξ2
1, σ2 = τ2 −ξ2

2.

(V) σ= τ+ξ2, σ1 = τ1 +ξ2
1, σ2 = τ2 −ξ2

2.

(VI) σ= τ−ξ2, σ1 = τ1 −ξ2
1, σ2 = τ2 −ξ2

2.

We observe that the cases

σ= τ+ξ2, σ1 = τ1 −ξ2
1, σ2 = τ2 −ξ2

2 and σ= τ−ξ2, σ1 = τ1 +ξ2
1, σ2 = τ2 +ξ2

2,
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cannot occur, since τ1 < 0, τ−τ1 < 0 implies τ< 0 and τ1 ≥ 0, τ−τ1 ≥ 0 implies τ≥ 0.
Applying the change of variables

(ξ,τ,ξ1,τ1) →−(ξ,τ,ξ1,τ1)

and observing that the L2−norm is preserved under the reflection operation, the cases (IV),
(V) and (VI) can be easily reduced to (III), (II) and (I), respectively. In fact, for example, let us
see how the case (IV) is reduced to (III). We assume that (III) has already been proven, then∣∣∣∣∣∣

∫
R4

|ξ|2
2iγ(ξ)

〈ξ〉s

〈ξ1〉s 〈ξ2〉s
g (ξ1,τ1) f (ξ2,τ2)ϕ(ξ,τ)〈

τ−ξ2
〉a 〈

τ1 +ξ2
1

〉b 〈
τ2 −ξ2

2

〉b
dξdτdξ1 dτ1

∣∣∣∣∣∣=
=

∣∣∣∣∣∣
∫
R4

|ξ|2
2iγ(ξ)

〈ξ〉s

〈ξ1〉s 〈ξ2〉s
g (−ξ1,−τ1) f (ξ1 −ξ,τ1 −τ)ϕ(−ξ,−τ)〈

τ+ξ2
〉a 〈

τ1 −ξ2
1

〉b 〈
τ2 +ξ2

2

〉b
dξdτdξ1 dτ1

∣∣∣∣∣∣
≤C

∥∥ f
∥∥

L2

∥∥g (−ξ1,−τ1)
∥∥

L2
ξ1,τ1

∥∥ϕ(−ξ,−τ)
∥∥

L2
ξ,τ

=C
∥∥ f

∥∥
L2

∥∥g
∥∥

L2

∥∥ϕ∥∥
L2 .

that is, the case (IV) is also proved in this case.
Moreover, in the same way, making the change of variables τ2 = τ−τ1, ξ2 = ξ−ξ1 and then

(ξ,τ,ξ2,τ2) → −(ξ,τ,ξ2,τ2), the case (II) can be reduced to (III). Therefore, we only need to
establish cases (I) and (III).

We first treat the inequality (2.15) with Z ( f , g ,ϕ) in the case (I). In this situation, we will
use the following algebraic relation

− (τ+ξ2)+ (τ1 +ξ2
1)+ (

τ−τ1 + (ξ−ξ1)2)= 2ξ1(ξ1 −ξ). (2.16)

We can write R4 = A∪B , where

A = {
(ξ,τ,ξ1,τ1) ∈R4; |τ−τ1 + (ξ−ξ1)2| ≤ |τ1 +ξ2

1|
}

and

B = {
(ξ,τ,ξ1,τ1) ∈R4; |τ−τ1 + (ξ−ξ1)2| ≥ |τ1 +ξ2

1|
}
.

Considering Z ( f , g ,ϕ) in the case (I) and making the change of variables ξ2 = ξ−ξ1 and τ2 =
τ−τ1, we obtain∫

B

|ξ|2
2iγ(ξ)

〈ξ〉s

〈ξ1〉s 〈ξ2〉s
g (ξ1,τ1) f (ξ2,τ2)ϕ(ξ,τ)〈

τ+ξ2
〉a 〈

τ1 +ξ2
1

〉b 〈τ2 +ξ2〉b
dξdτdξ1 dτ1

=
∫
A

|ξ|2
2iγ(ξ)

〈ξ〉s

〈ξ−ξ2〉s 〈ξ2〉s
g (ξ−ξ2,τ−τ2) f (ξ2,τ2)ϕ(ξ,τ)〈

τ+ξ2
〉a 〈

(τ−τ2)+ (ξ−ξ2)2
〉b 〈τ2 +ξ2〉b

dξdτdξ2 dτ2 .

Thus, by symmetry we can restrict ourselves to the set A. We divide A into three pieces as
following

A1 =
{
(ξ,τ,ξ1,τ1) ∈ A; |ξ1| ≤ 10

}
,

A2 =
{

(ξ,τ,ξ1,τ1) ∈ A; |ξ1| ≥ 10 and |2ξ1 −ξ| ≥ |ξ1|
2

}
,

A3 =
{

(ξ,τ,ξ1,τ1) ∈ A; |ξ1| ≥ 10 and |ξ1 −ξ| ≥ |ξ1|
2

}
.
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We have A = A1 ∪ A2 ∪ A3. Indeed, if (ξ,τ,ξ1,τ1) ∈ A we must have
|ξ1|

2
≤ |2ξ1 −ξ| or

|ξ1|
2

≤ |ξ1 −ξ|,

otherwise we would have

|ξ1| = |ξ1|
2

+ |ξ1|
2

> |2ξ1 −ξ|+ |ξ−ξ1| ≥ |2ξ1 −ξ+ξ−ξ1| = |ξ1|,

which is an absurd.
Next we split A3 into two parts

A3,1 =
{
(ξ,τ,ξ1,τ1) ∈ A3; |τ1 +ξ2

1| ≤ |τ+ξ2|}
A3,2 =

{
(ξ,τ,ξ1,τ1) ∈ A3; |τ+ξ2| ≤ |τ1 +ξ2

1|
}

.

Now, we define the sets R1 and R2 as follows

R1 = A1 ∪ A2 ∪ A3,1 and R2 = A3,2.

In what follows, χR denotes the characteristic function of the set R. Since A = R1 ∪R2, then

|Z ( f , g ,ϕ)| ≤ |R1|+ |R2|,

where

Ri =
∫
R4

|ξ|2
2γ(ξ)

〈ξ〉s

〈ξ1〉s 〈ξ2〉s

χRi (ξ,τ,ξ1,τ1)g (ξ1,τ1) f (ξ2,τ2)ϕ(ξ,τ)

〈σ〉a 〈σ1〉b 〈σ2〉b
dξdτdξ1 dτ1 .

Using Cauchy-Schwarz inequality twice, we have

|R1| ≤
 ∫
R2

|ξ|4 〈ξ〉2s

4γ(ξ)2 〈σ〉2a

 ∫
R2

χR1 g (ξ1,τ1) f (ξ2,τ2)

〈ξ1〉s 〈ξ2〉s 〈σ1〉b 〈σ2〉b
dξ1 dτ1

2

dξdτ


1
2 ∥∥ϕ∥∥

L2

≤
 ∫
R2

|ξ|4 〈ξ〉2s

4γ(ξ)2 〈σ〉2a

 ∫
R2

χR1

〈ξ1〉2s 〈ξ2〉2s 〈σ1〉2b 〈σ2〉2b
dξ1 dτ1



×
 ∫
R2

|g (ξ1,τ1)|2| f (ξ2,τ2)|2 dξ1 dτ1

dξdτ

 1
2 ∥∥ϕ∥∥

L2 .

Now, applying Hölder inequality, we obtain

|R1| ≤
∥∥∥∥∥∥ |ξ|4 〈ξ〉2s

4γ(ξ)2 〈σ〉2a

∫
R2

χR1

〈ξ1〉2s 〈ξ2〉2s 〈σ1〉2b 〈σ2〉2b
dξ1 dτ1

∥∥∥∥∥∥
1
2

L∞
ξ,τ

×
 ∫
R4

|g (ξ1,τ1)|2| f (ξ2,τ2)|2 dξ1 dτ1 dξdτ

 1
2 ∥∥ϕ∥∥

L2

=
∥∥∥∥∥∥ |ξ|4 〈ξ〉2s

4γ(ξ)2 〈σ〉2a

∫
R2

χR1

〈ξ1〉2s 〈ξ2〉2s 〈σ1〉2b 〈σ2〉2b
dξ1 dτ1

∥∥∥∥∥∥
1
2

L∞
ξ,τ

∥∥ f
∥∥

L2

∥∥g
∥∥

L2

∥∥ϕ∥∥
L2 .
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We apply the same steps for R2,

|R2| ≤
 ∫
R2

1

〈ξ1〉2s 〈σ1〉2b

 ∫
R2

|ξ|2 〈ξ〉s f (ξ2,τ2)ϕ(ξ,τ)χR2

2γ(ξ)〈ξ2〉s 〈σ〉a 〈σ2〉b
dξdτ

2

dξ1 dτ1


1
2 ∥∥g

∥∥
L2

≤
 ∫
R2

1

〈ξ1〉2s 〈σ1〉2b

 ∫
R2

|ξ|4
4γ(ξ)2

〈ξ〉2s χR2

〈ξ2〉2s 〈σ〉2a 〈σ2〉2b
dξdτ



×
 ∫
R2

| f (ξ2,τ2)|2|ϕ(ξ,τ)|2 dξdτ

dξ1 dτ1

 1
2 ∥∥g

∥∥
L2

≤
∥∥∥∥∥∥ 1

〈ξ1〉2s 〈σ1〉2b

∫
R2

|ξ|4
4γ(ξ)2

〈ξ〉2s χR2

〈ξ2〉2s 〈σ〉2a 〈σ2〉2b
dξdτ

∥∥∥∥∥∥
L∞
ξ1,τ1

×
 ∫
R4

| f (ξ2,τ2)|2|ϕ(ξ,τ)|2 dξdτdξ1 dτ1

 1
2 ∥∥g

∥∥
L2

=
∥∥∥∥∥∥ 1

〈ξ1〉2s 〈σ1〉2b

∫
R2

|ξ|4
4γ(ξ)2

〈ξ〉2s χR2

〈ξ2〉2s 〈σ〉2a 〈σ2〉2b
dξdτ

∥∥∥∥∥∥
L∞
ξ1,τ1

∥∥ f
∥∥

L2

∥∥g
∥∥

L2

∥∥ϕ∥∥
L2 .

Using that |ξ|4γ(ξ)−2 = |ξ|4 (|ξ|2 +|ξ|4)−1 = (|ξ|−2 +1)−1 ≤ 1 for all ξ ∈R, we conclude that

|Z ( f , g ,ϕ)| ≤
∥∥∥∥∥∥ 〈ξ〉2s

〈σ〉2a

∫
R2

χR1

〈ξ1〉2s 〈ξ2〉2s 〈σ1〉2b 〈σ2〉2b
dξ1 dτ1

∥∥∥∥∥∥
L∞
ξ,τ

∥∥ f
∥∥

L2

∥∥g
∥∥

L2

∥∥ϕ∥∥
L2

+
∥∥∥∥∥∥ 1

〈ξ1〉2s 〈σ1〉2b

∫
R2

〈ξ〉2s χR2

〈ξ2〉2s 〈σ〉2a 〈σ2〉2b
dξdτ

∥∥∥∥∥∥
L∞
ξ1,τ1

∥∥ f
∥∥

L2

∥∥g
∥∥

L2

∥∥ϕ∥∥
L2 .

By applying inequality (1.27), we have the following

〈ξ〉2s

〈ξ1〉2s 〈ξ2〉2s ≤ 〈ξ1〉2|s|

〈ξ1〉2s = 〈ξ1〉β(s) ,

where

β(s) =
{

0, if s ≥ 0

4|s|, if s < 0.

Therefore,∥∥∥∥∥∥ 〈ξ〉2s

〈σ〉2a

∫
R2

χR1

〈ξ1〉2s 〈ξ2〉2s 〈σ1〉2b 〈σ2〉2b
dξ1 dτ1

∥∥∥∥∥∥
L∞
ξ,τ

≤
∥∥∥∥∥∥ 1

〈σ〉2a

∫
R2

χR1 〈ξ1〉β(s)

〈σ1〉2b 〈σ2〉2b
dξ1 dτ1

∥∥∥∥∥∥
L∞
ξ,τ

and ∥∥∥∥∥∥ 1

〈ξ1〉2s 〈σ1〉2b

∫
R2

χR2 〈ξ〉2s

〈ξ2〉2s 〈σ〉2a 〈σ2〉2b
dξdτ

∥∥∥∥∥∥
L∞
ξ1,τ1

≤
∥∥∥∥∥∥〈ξ1〉β(s)

〈σ1〉2b

∫
R2

χR2

〈σ〉2a 〈σ2〉2b
dξdτ

∥∥∥∥∥∥
L∞
ξ1,τ1

.
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It follows from Lemma 1.16, more precisely inequality (1.30), that∫
R2

χR1 〈ξ1〉β(s)〈
τ1 +ξ2

1

〉2b 〈
τ2 +ξ2

2

〉2b
dξ1 dτ1 =

∫
R

χR1 〈ξ1〉β(s)
∫
R

1〈
τ1 − (−ξ2

1)
〉2b 〈

τ1 − (τ+ξ2
2)

〉2b
dτ1 dξ1

.

∫
R

χR1 〈ξ1〉β(s)〈
τ+ξ2

2 +ξ2
1

〉2b
dξ1 ,

since b > 1
2 and min{2b,4b −1} = 2b. Similarly, we have∫

R2

χR2〈
τ+ξ2

〉2a 〈
τ2 +ξ2

2

〉2b
dξdτ .

∫
R

χR2〈
τ1 −ξ2

2 +ξ2
〉2a dξ

where we used that min{2b,2a,2a +2b −1} = 2a and a > 1
4 .

Since τ+ξ2
2 +ξ2

1 = τ+ξ2 −2ξξ1 +2ξ2
1 and τ1 −ξ2

2 +ξ2 = τ1 −ξ2
1 +2ξξ1, it suffices to get bounds

for

J1(ξ,τ) = 1

〈σ〉2a

∫
R

〈ξ1〉β(s)〈
τ+ξ2 −2ξξ1 +2ξ2

1

〉2b
dξ1 on R1 and

J2(ξ1,τ1) = 〈ξ1〉β(s)

〈σ1〉2b

∫
R

1〈
τ1 −ξ2

1 +2ξξ1
〉2a dξ on R2.

In region A1, we have 〈ξ1〉β(s) ≤ 〈10〉β(s) .1. Therefore, for a > 0 and b > 1
2 we obtain

J1(ξ,τ) .
1

〈σ〉2a

∫
|ξ1|≤10

1〈
τ+ξ2 −2ξξ1 +2ξ2

1

〉2b
dξ1 ≤

∫
|ξ1|≤10

1dξ1 .1 on A1,

since
〈
η
〉≥ 1 for all η ∈R. In region A2, by the change of variables

η= τ+ξ2 +2ξ2
1 −2ξξ1, dη= 2|2ξ1 −ξ|dξ1

and the condition |2ξ1 −ξ| ≥ |ξ1|
2 , we have

J1(ξ,τ) = 1

〈σ〉2a

∫
|ξ1|≥10

〈ξ1〉β(s)〈
η
〉2b

dη

2|2ξ1 −ξ|
≤ 1

〈σ〉2a

∫
|ξ1|≥10

〈ξ1〉β(s)〈
η
〉2b |ξ1|

dη on A2.

On the other hand, 〈ξ1〉 = (1+ξ2
1)

1
2 ≤ (2ξ2

1)
1
2 . |ξ1|, which implies that

J1(ξ,τ) .
1

〈σ〉2a

∫ 〈ξ1〉β(s)−1〈
η
〉2b

dη on A2.

We observe that β(s)−1 ≤ 0 for all s >−1
4 , thus

J1(ξ,τ) .
1

〈σ〉2a

∫
1〈
η
〉2b

dη .1 on A2,

since b > 1
2 . Now, by definition of region A3,1 and the relation (2.16), we have

〈ξ1〉2 = 1+|ξ1|2 ≤ 2|ξ1||ξ1| ≤ 4|ξ1||ξ1 −ξ| = 2|σ1 −σ+σ2| ≤ 2(|σ1|+ |σ2|+ |σ3|) ≤ 6|σ|. 〈σ〉 ,
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since |σ1|, |σ2| ≤ |σ| in the region A3,1. For a > 0, we have 〈σ〉−2a . 〈ξ1〉−4a . Therefore, it follows
from Lemma 1.16 (inequality (1.31)) that

J1(ξ,τ) .
∫ 〈ξ1〉β(s)−4a〈

τ+ξ2 +2ξ2
1 +2ξξ1

〉2b
dξ1 .

∫
1〈

τ+ξ2 +2ξ2
1 +2ξξ1

〉2b
dξ1 .1 on A3,1,

since β(s) < 4a.
Next, we are going to estimate J2(ξ1,τ1) on R2. Making the change of variables η = τ1 −

ξ2
1 +2ξξ1 in the region A3,2, we obtain

J2(ξ1,τ1) = 〈ξ1〉β(s)

〈σ1〉2b 2|ξ1|

∫
1〈
η
〉2a dη .

Moreover, in region A3,2 we have |ξ1 −ξ| ≥ |ξ1|
2 and |σ|, |σ2| ≤ |σ1|, which implies that

|ξ1|2 ≤ 2|ξ1||ξ1 −ξ| = |σ1 −σ+σ2| ≤ 3|σ1|. 〈σ1〉 ,

by using relation (2.16). Also, for all (ξ,τ,ξ1,τ1) ∈ A3,2 we have

|η| = |τ1 −ξ2
1 +2ξξ1| = |τ1 − (ξ−ξ1)2 +ξ2| ≤ |τ1 −τ− (ξ−ξ1)2|+ |τ+ξ2| = |σ2|+ |σ1| ≤ 2|σ1|.

Since |ξ1| ≥ 10 in A3,2, we have

J2(ξ1,τ1) .
|ξ1|β(s)−1

〈σ1〉2b

∫
|η|≤2|σ1|

1〈
η
〉2a dη.

Now, we observe that∫
|η|≤2|σ1|

1〈
η
〉2a dη'

∫
|η|≤2|σ1|

1

(1+|η|)2a
dη= 2

2|σ1|∫
0

1

(1+η)2a
= (1+η)1−2a

1−2a

∣∣∣∣2|σ1|

0

= (1+2|σ1|)1−2a

1−2a
− 1

1−2a
≤ 2(1+|σ1|)1−2a

1−2a

. 〈σ1〉1−2a ,

since a < 1
2 . Therefore,

J2(ξ1,τ1) .
|ξ1|β(s)−1

〈σ〉2a+2b−1
≤ 1, on R2,

where we used that β(s)−1 < 0, for all s >−1
4 and 2a +2b −1 > 0 with a > 0 and b > 1

2 .
Now, it remains to estimate |Z ( f , g ,ϕ)| in the conditions of case (III). In what follows, we

will make use of the algebraic relation

− (τ+ξ2)+ (τ1 −ξ2
1)+ (

τ−τ1 + (ξ−ξ1)2)=−2ξ1ξ. (2.17)

First, we split R4 into four sets

B1 =
{
(ξ,τ,ξ1,τ1) ∈R4; |ξ1| ≤ 10

}
,

B2 =
{
(ξ,τ,ξ1,τ1) ∈R4; |ξ1| ≥ 10 and |ξ| ≤ 1

}
,

B3 =
{
(ξ,τ,ξ1,τ1) ∈R4; |ξ1| ≥ 10, |ξ| ≥ 1 and |ξ| ≥ |ξ1|/2

}
,

B4 =
{
(ξ,τ,ξ1,τ1) ∈R4; |ξ1| ≥ 10, |ξ| ≥ 1 and |ξ| ≤ |ξ1|/2

}
.
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Next we separate B4 into three parts, which are

B4,1 =
{
(ξ,τ,ξ1,τ1) ∈ B4; |τ1 −ξ2

1|, |τ−τ1 + (ξ−ξ1)2| ≤ |τ+ξ2|} ,

B4,2 =
{
(ξ,τ,ξ1,τ1) ∈ B4; |τ+ξ2|, |τ−τ1 + (ξ−ξ1)2| ≤ |τ1 −ξ2

1|
}

,

B4,3 =
{
(ξ,τ,ξ1,τ1) ∈ B4; |τ1 −ξ2

1|, |τ+ξ2| ≤ |τ−τ1 + (ξ−ξ1)2|} .

We can now define the sets Si , i = 1,2,3, as follows

S1 = B1 ∪B2 ∪B4,1, S2 = B2 ∪B4,2 and S3 = B4,3.

Similarly to the case (I), using Cauchy-Schwarz and Hölder inequalities and duality argu-
ment, we can write

|Z ( f , g ,ϕ)| ≤ ∥∥ f
∥∥

L2

∥∥g
∥∥

L2

∥∥ϕ∥∥
L2

(
S1 +S2 +S3

)
,

where

S1 =
∥∥∥∥∥∥ 〈ξ〉2s

〈σ〉2a

∫
R2

χS1

〈ξ1〉2s 〈ξ2〉2s 〈σ1〉2b 〈σ2〉2b
dξ1 dτ1

∥∥∥∥∥∥
L∞
ξ,τ

S2 =
∥∥∥∥∥∥ 1

〈ξ1〉2s 〈σ1〉2b

∫
R2

χS2 〈ξ〉2s

〈ξ2〉2s 〈σ〉2a 〈σ2〉2b
dξdτ

∥∥∥∥∥∥
L∞
ξ1,τ1

S3 =
∥∥∥∥∥∥ 1

〈ξ2〉2s 〈σ2〉2b

∫
R2

χS̃3
〈ξ1 +ξ2〉2s

〈ξ1〉2s 〈σ〉2a 〈σ1〉2b
dξ1 dτ1

∥∥∥∥∥∥
L∞
ξ2,τ2

with σ, σ1 and σ2 are given as in case (III) and

S̃3 ⊆
{

(ξ2,τ2,ξ1,τ1) ∈R4;
|ξ1| ≥ 10, |ξ1 +ξ2| ≥ 1, |ξ1 +ξ2| ≤ |ξ1|/2

and |τ1 −ξ2
1|, |τ1 +τ2 + (ξ1 +ξ2)2| ≤ |τ2 +ξ2

2|

}
.

Again, by (1.27), we have

〈ξ〉2s

〈ξ1〉2s 〈ξ2〉2s ≤ 〈ξ1〉β(s) , where β(s) =
{

0, if s ≥ 0

4|s|, if s < 0.

As we did in the case (I), we obtain

S1 .

∥∥∥∥∥∥ 1

〈σ〉2a

∫
R2

〈ξ1〉β(s)χS1

〈σ1〉2b 〈σ2〉2b
dξ1 dτ1

∥∥∥∥∥∥
L∞
ξ,τ

,

S2 .

∥∥∥∥∥∥〈ξ1〉β(s)

〈σ1〉2b

∫
R2

χS2

〈σ〉2a 〈σ2〉2b
dξdτ

∥∥∥∥∥∥
L∞
ξ1,τ1

,

S3 .

∥∥∥∥∥∥ 1

〈σ2〉2b

∫
R2

χS̃3
〈ξ1〉β(s)

〈σ〉2a 〈σ1〉2b
dξ1 dτ1

∥∥∥∥∥∥
L∞
ξ2,τ2

.
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Applying Lemma 1.16, more precisely, inequality (1.30), we obtain∫
R2

〈ξ1〉β(s)

〈σ1〉2b 〈σ2〉2b
dξ1 dτ1 =

∫
R

〈ξ1〉β(s)
∫
R

1〈
τ1 −ξ2

1

〉2b 〈
τ−τ1 + (ξ−ξ1)2

〉2b
dτ1 dξ1

.

∫
R

〈ξ1〉β(s)〈
τ+ξ2 −2ξξ1

〉2b
dξ1 ,

∫
R2

1

〈σ〉2a 〈σ1〉2b
dξdτ=

∫
R

∫
R

1〈
τ+ξ2

〉2a 〈
τ−τ1 + (ξ−ξ1)2

〉2b
dτdξ

.

∫
R

1〈
τ1 −ξ2

1 +2ξξ1
〉2a dξ ,

and ∫
R2

〈ξ1〉β(s)

〈σ1〉2b 〈σ〉2a
dξ1 dτ1 =

∫
R

〈ξ1〉β(s)
∫
R

1〈
τ1 −ξ2

1

〉2b 〈
τ1 +τ2 + (ξ1 +ξ2)2

〉2a
dτ1 dξ1

.

∫
R

〈ξ1〉β(s)〈
τ2 +ξ2

2 +2ξ2
1 +2ξ1ξ2

〉2a dξ1 ,

since min{2b, 4b −1} = 2b and min{2b, 2a, 2b +2a −1} = 2a. Thus, we conclude that

S1 .

∥∥∥∥∥∥ 1

〈σ〉2a

∫
R

〈ξ〉β(s)χS1〈
τ+ξ2 −2ξξ1

〉2b
dξ1

∥∥∥∥∥∥
L∞
τ,ξ

,

S2 .

∥∥∥∥∥∥ 〈ξ〉β(s)

〈σ1〉2b

∫
R

χS2〈
τ1 −ξ2 +2ξξ1

〉2a dξ

∥∥∥∥∥∥
L∞
ξ1,τ1

,

S3 .

∥∥∥∥∥∥ 1

〈σ2〉2b

∫
R

〈ξ〉β(s)χS̃3〈
τ2 +ξ2

2 +2ξ2
1 +2ξ2ξ1

〉2a dξ1

∥∥∥∥∥∥
L∞
ξ2,τ2

.

Therefore, it is sufficient to get bounds for

K1(ξ,τ) = 1

〈σ〉2a

∫
R

〈ξ1〉β(s)〈
τ+ξ2 −2ξξ1

〉2b
dξ1 on S1

K2(ξ1,τ1) = 〈ξ1〉β(s)

〈σ1〉2b

∫
R

1〈
τ1 −ξ2

1 +2ξξ1
〉2a dξ on S2

K3(ξ2,τ2) = 1

〈σ2〉2b

∫
R

〈ξ1〉β(s)〈
τ2 +ξ2

2 +2ξ2
1 +2ξ1ξ2

〉2a dξ1 on S̃3.

In region B1, we have |ξ1| ≤ 10 which implies that 〈ξ1〉β(s) .1. Then,

K1(ξ,τ) .
1

〈σ〉2a

∫
|ξ1|≤10

1〈
τ+ξ2 −2ξξ1

〉2b
dξ1 ≤

∫
|ξ1|≤10

1dξ1 .1 on B1,

since
〈
η
〉≥ 1 for all η ∈R and a,b ≥ 0.
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In region B3, making the change of variables η= τ+ξ2 −2ξξ1 we obtain

K1(ξ,τ) = 1

〈σ〉2a

∫ 〈ξ1〉β(s)

2|ξ|〈η〉2b
dη≤ 1

〈σ〉2a

∫ 〈ξ1〉β(s)−1〈
η
〉2b

dη on B3,

since |ξ1| ≥ 10, which implies 〈ξ1〉 ≤ 2|ξ1|. Using that β(s)−1 < 0 for all s >−1
4 and

〈
η
〉 ≥ 1 for

all η ∈R, we obtain
K1(ξ1,τ1) .

∫
R

1〈
η
〉2b

dη.1 on B3,

since 2b > 1.
Now, by definition of region B4,1 and the algebraic relation (2.17) we have

〈ξ1〉 ≤ 2|ξ1| ≤ 2|ξ||ξ1| = |σ1 +σ2 −σ| ≤ 3|σ|. 〈σ〉 ,

since |ξ1| ≥ 10, |ξ| ≥ 1 and |σ1|, |σ2| ≤ |σ| on B4,1. Therefore, the change of variables η= τ+ξ2 −
2ξξ1 and the condition |ξ| ≥ 1 yield

K1(ξ,τ) .
1

〈σ〉2a

∫ 〈ξ1〉β(s)

2|ξ|〈η〉2b
dη.

〈σ〉β(s)−2a

2|ξ|
∫

1〈
η
〉2b

dη.1,

for all s > −1
4 , b > 1

2 and a ∈ R such that 0 < a < 1
2 , if s ≥ 0 or 2|s| < a < 1

2 , if −1
4 < s < 0, which

finishes the desired bound for K1 on S1.
Next, we estimate K2(ξ1,τ1) on S2. Making the change of variables η = τ1 − ξ2

1 +2ξξ1, we
obtain

K2(ξ1,τ1) = 〈ξ1〉β(s)

〈σ1〉2b

∫
1

2|ξ1|
〈
η
〉2a dη.

We observe that in B2, we have

|η| = |τ1 −ξ2
1 +2ξξ1| ≤ |σ1|+2|ξξ1| ≤ 2(|σ1|+ |ξ1|) and 〈ξ1〉 ≤ 2|ξ1|.

Thus,

K2(ξ1,τ1) .
|ξ1|β(s)−1

〈σ1〉2b

∫
|η|. |σ1|+|ξ1|

1〈
η
〉2a dη.

On the other hand,

∫
|η|. |σ1|+|ξ1|

1〈
η
〉2a dη'

∫
|η|. |σ1|+|ξ1|

1

(1+|η|)2a
dη'

|σ1|+|ξ1|∫
0

1

(1+η)2a
dη,

with
|η1|+|ξ1|∫

0

1

(1+η)2a
dη= (1+η)1−2a

1−2a

∣∣∣∣|σ1|+|ξ1|

0

= (1+|σ1|+ |ξ1|)1−2a

1−2a
− 1

1−2a

.
(
1+|σ1|+ |ξ1|

)1−2a

.
(〈σ1〉+ |ξ1|

)1−2a ,



2.1. REAL CASE 47

since 1−2a > 0. Therefore,

K2(ξ1,τ1) .
|ξ1|β(s)−1

〈σ1〉2b

(〈σ1〉+ |ξ1|
)1−2a ≤ |ξ1|β(s)−1

〈σ1〉2b

(〈σ1〉1−2a +|ξ1|1−2a)
,

where we used the fact
(|x|+ |y |)α ≤ |x|α+|y |α for all 0 ≤α< 1 and for all x, y ∈R. Since

2b +2a −1 > 2a > 0,
〈
η
〉≥ 1, |ξ1| ≥ 10 and β(s)−2a < 0,

we conclude that
K2(ξ1,τ1) .

|ξ1|β(s)−1

〈σ1〉2b+2a−1
+ |ξ1|β(s)−2a

〈σ1〉2b
≤ 1,

for s >−1
4 , b > 1

2 and 0 < a < 1
2 such that β(s) ≤ min{1,2a}.

In the region B4,2, by the algebraic relation (2.17), we have

〈ξ1〉 ' (1+|ξ1|) ≤ 2|ξ1| ≤ 2|ξ1||ξ| = |−σ+σ1 +σ2| ≤ 3|σ1|. 〈σ1〉 ,

since |ξ1| ≥ 10, |ξ| ≥ 1 and |σ|, |σ2| ≤ |σ1| in B2. Moreover, the change of variables η= τ1 −ξ2
1 +

2ξξ1, the restriction in the region B2 and (2.17) give us

|η| ≤ 2|ξξ1|+ |σ1|. 〈σ1〉 .

Therefore,

K2(ξ1,τ1) .
〈ξ1〉β(s)

〈σ1〉2b

∫
|η|. 〈σ1〉

1

|ξ1|
〈
η
〉2a dη.

|ξ1|β(s)−1

〈σ1〉2b

∫
|η|. 〈σ1〉

1〈
η
〉2a dη,

with ∫
|η|. 〈σ1〉

1〈
η
〉2a dη'

〈σ1〉∫
0

1

(1+η)2a
dη= (1+η)1−2a

1−2a

∣∣∣∣〈σ1〉

0
. (1+〈σ1〉)1−2a ≤ 21−2a 〈σ1〉1−2a ,

for all 0 < a < 1
2 . Thus,

K2(ξ1,τ1) .
|ξ1|β(s)−1

〈σ1〉2b+2a−1
.1,

since |ξ1| ≥ 10, 2b+2a−1 > 0 and β(s)−1 < 0 for all s >−1
4 , which concludes the bounds for K2

on S2.
Finally, we estimate K3(ξ2,τ2) on S̃3. By using (2.17), we observe that

〈ξ1〉 ≤ 2|ξ1| ≤ 2|ξξ1| = |−σ+σ1 +σ2| ≤ 3|σ2|. 〈σ2〉 , on S̃3.

Therefore, inequality (1.31) from Lemma 1.16 implies

K3(ξ1,τ1) = 1

〈σ2〉2b

∫ 〈ξ1〉β(s)〈
τ2 +ξ2

2 +2ξ2
1 +2ξ1ξ1

〉2a dξ1

.

∫ 〈ξ1〉β(s)−2b〈
τ2 +ξ2

2 +2ξ2
1 +2ξ1ξ2

〉2a dξ1

≤
∫

1〈
τ2 +ξ2

2 +2ξ2
1 +2ξ1ξ2

〉2a dξ1 <∞,

since β(s)−2b < 0 for all s >−1
4 , which finishes the proof of the bilinear estimates.
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Using Lemma 2.5 and Theorem 2.9 we have the following proposition, which will guar-
antees that ΦT is a contraction in a ball centered at the origin of Xs,b .

Proposition 2.10. Let s > −1
4 and b ∈ (1

2 , 3
4

)
, then for all u0 ∈ H s(R), u1 ∈ H s−1(R) and 0 < T ≤ 1,

there are d > 0 and a constant Cψ,b > 0 such that

‖ΦT u‖Xs,b
≤Cψ,b

(
‖u0‖H s +‖u1‖H s−1 +T d ‖u‖2

Xs,b

)
, for all u ∈ Xs,b , (2.18)

and
‖ΦT u −ΦT v‖Xs,b

≤ T dCψ,b ‖u + v‖Xs,b
‖u − v‖Xs,b

, for all u, v ∈ Xs,b . (2.19)

Also, from inequalities (2.18) and (2.19) is possible to prove theuniqueness of the solution
and also the continuity of the data-to-solutionmapΦT . Since the proof Proposition 2.10 and
the proof of well-posedness in this case is very similar to the one in Gevrey analytic case, we
will do this with detail in the next chapter.

2.2 Periodic Case

In this section we are considering the periodic version of the Cauchy problem (2.1), that
is, the variable x belongs now to T. The problem approach here are very similar to the way
that was showed in the real case, the main change will be in the bilinear estimates, which is
the result that we will present in this section with more details.

By doing precisely the same steps that we did in the previous section, we obtain a formal
solution map to our problem given by

ΦT u
.=ψ(t )W1(t )u0(x)+ψ(t )W2(t )∂xu1(x)−ψT (t )

t∫
0

W2(t − t ′)w(x, t ′)dt ′ , (2.20)

where the operators W1 and W2 are now given by

W1(t )ϕ(x) = 1

2π

∑
n∈Z

e i nx
(

e iγ(n)t +e−iγ(n)t

2

)
ϕ̂(n) and

W2(t )ϕ(x) = 1

2π

∑
n∈Z

e i nx
(

e iγ(n)t −e−iγ(n)t

2iγ(n)

)
ϕ̂(n), γ(n) =

√
n2 +n4,

which are the periodic form of the operators W1 and W2 presented earlier. Again, our prin-
cipal aim is to solve the equation ΦT u = u.
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We consider the following decomposition of the map ΦT

ΦT u(x, t ) = 1

2π
ψ(t )

∑
n∈Z

e i nx
(

e iγ(n)t +e−iγ(n)t

2

)
û0(n) (2.21)

+ 1

2π
ψ(t )

∑
n∈Z

e i nx
(

e iγ(n)t −e−iγ(n)t

2iγ(n)

) �∂xu1(n) (2.22)

− i

4π2
ψT (t )

∑
n∈Z

∫
e i (nx+γ(n)t )

2iγ(n)

(
e i (τ−γ(n))t −1

τ−γ(n)

)
ŵ(n,τ)dτ (2.23)

+ i

4π2
ψT (t )

∑
n∈Z

∫
e i (nx−γ(n)t )

2iγ(n)

(
e i (τ+γ(n))t −1

τ+γ(n)

)
ŵ(n,τ)dτ , (2.24)

which give us amotivation to define the solution spaces, that is, the periodic Bourgain Spaces.

The Bourgain Spaces Xs,b(T×R)

We introduce the following spaces.

Definition 2.11 (Space Xs,b(T×R).). Let X be the space of functions F such that

(i) F :T×R→C.

(ii) F (x, ·) ∈S (R) for each x ∈T.

(iii) F (·, t ) ∈C∞(T) for each t ∈R.

For s,b ∈R, Xs,b = Xs,b(T×R) denotes the completion of X with respect to the norm

‖v‖Xs,b =
∑

n∈Z

∫
R

〈|τ|−γ(n)〉2b 〈n〉2s |v̂(n,τ)|2dτ

 1
2

where γ(n) =
p

n2 +n4 and 〈n〉 = (1+n2)
1
2 .

We will also need the localized Xs,b spaces defined as follows.

Definition 2.12 (Space X T
s,b(T×R).). For T ≥ 0, X T

s,b denotes the space endowed with the norm

‖u‖X T
s,b

= inf
v∈Xs,b

{‖v‖Xs,b
; v(x, t ) = u(x, t ) on T× [0,T ]

}
.

It is important to point out that the continuous embedding

Xs,b(T×R) ,→C (R; H s(T))

remains true as we showed in Lemma 2.4 for the real case.
The following lemma give us an elementary bound for the Xs,b-norm of the map ΦT and

its proof is very similar to the proof of Lemma 2.5.
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Lemma 2.13. Let s > −1
4 , u0 ∈ H s(T), u1 ∈ H s−1(T) and 0 < T < 1. For f , g ∈ Xs,b we define the

bilinear operator

ΦT ( f , g )
.=ψ(t ) (W1(t )u0(x)+W2(t )∂xu1(x))−ψT (t )

t∫
0

W2(t − t ′)w f ,g (x, t ′)d t

where w f ,g = ∂2
x( f g ). Let −1

2 < b′ ≤ 0 ≤ b ≤ b′+1. Then, there exist a constant C = C (ψ,b,b′) such
that ∥∥ΦT ( f , g )

∥∥
Xs,b

≤C (‖u0‖H s +‖u1‖s−1)+C T 1−(b−b′)
∥∥∥∥F−1

( �w f ,g (n,τ)

2iγ(n)

)∥∥∥∥
Xs,b′

.

Now, we are in the crucial part to get the well-posedness for the periodic gB problem,
which is to get bound for ∥∥∥∥F−1

( �w f ,g (n,τ)

2iγ(n)

)∥∥∥∥
Xs,b′

.

The next subsection is devoted to show a detailed proof of the bilinear estimates presented
by L. G. Farah and M. Scialom in [13].

The Bilinear Estimates

We begin by showing some technical results that will be useful later. For a reference of
the following classical result see, for example, Lemma 5.3 in [27] on page 3346.

Lemma 2.14. If q > 1/2, then

sup
(n,τ)∈Z×R

∑
n1∈Z

1

(1+|τ±n1(n −n1)|)q
<∞. (2.25)

Proof. Let α=α(n,τ) and β=β(n,τ) belonging to C the roots of the polynomial

p(n1) = τ±n1(n −n1),

that is, ∑
n1∈Z

1

(1+|τ±n1(n −n1)|)q
=

∑
n1∈Z

1

(1+|(n1 −α)(n1 −β)|)q
.

We write Z= A∪B , where A and B are given as follows

A = {
n1; |n1 −α| ≤ 2 or |n1 −β| ≤ 2

}
and B = {

n1; |n1 −α| > 2 and |n1 −β| > 2
}

.

First, we observe that A is finite. In fact, let x be the real part of α and n1 such that
|n1 −α| ≤ 2, then

|n1 −x| ≤ 2 ⇒ −2+x ≤ n1 ≤ 2+x ⇒ −2+ [x] ≤ n1 < 3+ [x],

where [x] denotes the integer part of x. Therefore, there are only five possibilities for n1 such
that |n1 −α| ≤ 2, which are

[x]±2, [x]±1 and [x].
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This proves that A has exactly 10 elements and, therefore,∑
n1∈A

1

(1+|(n1 −α)(n1 −β)|)q
≤ 10,

for all (n,τ) ∈Z×R.
It just remains to estimate the sum over the set B . If n1 ∈ B , then

|n1 −α| ≤ |n1 −α||n1 −β|
2

and |n1 −β| ≤ |n1 −α||n1 −β|
2

,

which implies
|n1 −α|+ |n1 −β| ≤ |n1 −α||n1 −β|. (2.26)

Using (2.26) we obtain

1

2

(
1+|n1 −α|

)(
1+|n1 −β|

)= 1

2

(
1+|n1 −α|+ |n1 −β|+ |n1 −α||n1 −β|

)
≤ 1

2

(
1+2|n1 −α||n1 −β|

)
≤ 1+|n1 −α||n1 −β|,

that is,
1(

1+|n1 −α||n1 −β|
) ≤ 2(

1+|n1 −α|
)(

1+|n1 −β|
) . (2.27)

By (2.27) and the Cauchy-Schwarz inequality, we have∑
n1∈B

1

(1+|(n1 −α)(n1 −β)|)q
≤ 2q

∑
n1∈B

1(
1+|n1 −α|

)q (
1+|n1 −β|

)q

≤
(∑

n1∈B

1

(1+|n1 −α|)2q

) 1
2
(∑

n1∈B

1

(1+|n1 −β|)2q

) 1
2

≤
(∑

n1∈Z

1

(1+|n1 −α|)2q

) 1
2
(∑

n1∈Z

1

(1+|n1 −β|)2q

) 1
2

≤Cq ,

for all (n,τ) ∈Z×R, since q > 1
2 . This finishes the proof of the lemma.

Lemma 2.15. Let 0 < a < 1/2, α ∈R, β≥ 0,ν> 0 and H = {
h ∈R;h =α±n, n ∈Z and |h| ≤β}

. Then∑
h∈H

1

(ν+|h|)2a
≤ 2

(
2

ν2a
+

β∫
0

1

(ν+x)2a
dx

)
. (2.28)

Proof. Without loss of generality, we assume α= 0. We are going to prove first the case when
β≥ 0 is a integer number, that is, we would like to start by proving the following inequality

β∑
n=−β

1

(ν+n)2a
≤ 2

(
2

ν2a
+

β∫
0

1

(ν+x)2a
dx

)
. (2.29)



52 CHAPTER 2. THE PROBLEM IN H s

We observe that

Aβ
.=

β∑
n=−β

1

(ν+n)2a
= 1

ν2a
+2

β∑
n=1

1

(ν+n)2a
(2.30)

and

Bβ
.= 2

(
2

ν2a
+

β∫
0

1

(ν+x)2a
dx

)
= 2

(
2

ν2a
+ 1

1−2a
(ν+β)1−2a − 1

1−2a
ν1−2a

)
. (2.31)

Let us prove the inequality Aβ ≤ Bβ by induction on β. For β= 0 the desired inequality is
trivial, since A0 = 1

ν2a and B0 = 4
ν2a . For β= 1, since 1−2a > 0, we have

B1 = 4

ν2a
+ 2

1−2a
(ν+1)1−2a − 2

1−2a
ν1−2a ≥ 4

ν2a
+ 2

1−2a
(ν+1)1−2a − 2

1−2a
(ν+1)1−2a = 4

ν2a
,

which implies
A1 = 1

ν2a
+ 2

(ν+1)2a
≤ 3

ν2a
≤ B1.

Next, for some natural number k ≥ 1 we suppose the following

Aβ ≤ Bβ, for all β= 0,1,2, . . . ,k,

and we are going to prove that the same happens for β = k +1. By using the induction hy-
pothesis, we have

Ak+1 = Ak +
2

(ν+k +1)2a
≤ Bk +

2

(ν+k +1)2a
,

with

Bk = 2

(
2

ν2a
+

k∫
0

1

(ν+x)2a
dx

)
= Bk+1 −2

k+1∫
k

1

(ν+x)2a
dx .

Then, we obtain

Ak+1 ≤ Bk+1 +
2

(ν+k +1)2a
−2

k+1∫
k

1

(ν+x)2a
dx = Bk+1 −2

k+1∫
k

[
1

(ν+x)2a
− 1

(ν+k +1)2a

]
dx.

For all x ∈ [k,k +1], we have

1

(ν+x)2a
− 1

(ν+k +1)2a
≥ 0, which implies

k+1∫
k

[
1

(ν+x)2a
− 1

(ν+k +1)2a

]
dx ≥ 0.

Then, we conclude that Ak+1 ≤ Bk+1 and the proof of (2.29) for integer values of β is done.
Now, let β> 0, then

|n| ≤β ⇒ −[β]−1 <−β≤ n ≤β< [β]+1 ⇒ −[β] ≤ n ≤ [β],

where [x] denotes the integer part of a number x. Then, using which we proved previously,∑
h∈H

1

(ν+|h|)2a
=

[β]∑
n=−[β]

1

(ν+n)2a
≤ 2

(
2

ν2a
+

[β]∫
0

1

(ν+x)2a
dx

)
≤ 2

(
2

ν2a
+

β∫
0

1

(ν+x)2a
dx

)
,

since [β] ≤β. This finishes the proof of the lemma.
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Remark 2.2. In view of Lemma 2.8, we have an equivalent way to compute the Xs,b -norm,
that is,

‖u‖Xs,b
'

∥∥∥〈|τ|−n2〉b 〈n〉s û(τ,n)
∥∥∥

l 2
n L2

τ

. (2.32)

In fact, we just need to join the result given by Lemma 2.8
1

c
≤ 1+||τ|−n2|

1+||τ|−γ(n)| ≤ c,

with the fact 〈x〉 ' (1+|x|), for all x ∈R. In the proof of the next theorem we will use the right
side of (2.32) as definition of Xs,b-norm.

Now we are in position to prove the periodic bilinear estimates.

Theorem 2.16 (Sobolev Bilinear Estimates [13]). Let s > −1
4 and u, v ∈ Xs,b(T×R). Then, there

exists C > 0 such that ∥∥∥∥F−1
( |n|2ûv(n,τ)

2iγ(n)

)∥∥∥∥
Xs,−a

≤C ‖u‖Xs,b
‖v‖Xs,b

(2.33)

holds in the following cases:

(i) s ≥ 0, b > 1
2 and 1

4 < a < 1
2 .

(ii) −1
4 < s < 0, b > 1

2 and 1
4 < a < 1

2 such that |s| < a
2 .

Moreover, the constant that appears in (2.33) depends only on a,b and s.

Proof. Let u, v ∈ Xs,b and define

f (n,τ) = 〈|τ|−n2〉b 〈n〉s û(n,τ) and g (n,τ) = 〈|τ|−n2〉b 〈n〉s v̂(n,τ),

which are functions in l 2
nL2

τ. By using duality argument, we observe that (2.33) is equivalent
to the following inequality

|W ( f , g ,ϕ)| ≤C
∥∥ f

∥∥
l 2

n L2
τ

∥∥g
∥∥

l 2
n L2

τ

∥∥ϕ∥∥
l 2

n L2
τ

, for all ϕ ∈ l 2
nL2

τ (2.34)

where

W ( f , g ,ϕ) =
∑

n,n1∈Z

∫
R2

n2

2iγ(n)

〈n〉s

〈n1〉s 〈n −n1〉s

g (n1,τ1) f (n −n1,τ−τ1)ϕ(n,τ)〈|τ|−n2
〉a 〈|τ1|−n2

1

〉b 〈|τ−τ1|− (n −n1)2
〉b

dτdτ1 .

Therefore, to perform the desired estimate we need to analyse all the possible cases for
sign of τ, τ1 and τ−τ1. To do this, we split Z2 ×R2 into the regions

Γ1 = {(n,n1,τ,τ1); τ1 < 0, τ−τ1 < 0} ,

Γ2 = {(n,n1,τ,τ1); τ1 ≥ 0, τ−τ1 < 0, τ≥ 0} ,

Γ3 = {(n,n1,τ,τ1);τ1 ≥ 0, τ−τ1 < 0, τ< 0} ,

Γ4 = {(n,n1,τ,τ1); τ1 < 0, τ−τ1 ≥ 0, τ≥ 0} ,

Γ5 = {(n,n1,τ,τ1); τ1 < 0, τ−τ1 ≥ 0, τ< 0} ,

Γ6 = {(n,n1,τ,τ1); τ1 ≥ 0, τ−τ1 ≥ 0} .

τ1

τ
τ= τ1

Γ3

Γ4 Γ6

Γ2

Γ5

Γ1

Figure 7: Bilinear estimates regions II.



54 CHAPTER 2. THE PROBLEM IN H s

Thus, it is sufficient to prove inequality (2.34) with Z ( f , g ,ϕ) instead of W ( f , g ,ϕ), where

Z ( f , g ,ϕ) =
∑

n,n1∈Z

∫
R2

|n|2
2iγ(n)

〈n〉s

〈n1〉s 〈n2〉s

g (n1,τ1) f (n2,τ2)ϕ(n,τ)

〈σ〉a 〈σ1〉b 〈σ2〉b
dτdτ1 ,

with n2 = n −n1, τ2 = τ−τ1 and σ, σ1, σ2 belonging to one of the following cases

(I) σ= τ+n2, σ1 = τ1 +n2
1, σ2 = τ2 +n2

2.

(II) σ= τ−n2, σ1 = τ1 −n2
1, σ2 = τ2 +n2

2.

(III) σ= τ+n2, σ1 = τ1 −n2
1, σ2 = τ2 +n2

2.

(IV) σ= τ−n2, σ1 = τ1 +n2
1, σ2 = τ2 −n2

2.

(V) σ= τ+n2, σ1 = τ1 +n2
1, σ2 = τ2 −n2

2.

(VI) σ= τ−n2, σ1 = τ1 −n2
1, σ2 = τ2 −n2

2.

We observe that the cases

σ= τ+n2, σ1 = τ1 −n2
1, σ2 = τ2 −n2

2 and σ+τ−n2, σ1 = τ1 +n2
1, σ2 = τ2 +n2

2,

cannot occur, since τ1 < 0, τ−τ1 < 0 implies τ< 0 and τ1 ≥ 0, τ−τ1 ≥ 0 implies τ≥ 0.
Applying the change of variable

(n,n1,τ,τ1) →−(n,n1,τ,τ1)

and observing that the l 2
nL2

τ−norm is preserved under the reflection operation, the cases (III),
(II) and (I) can be easily reduced to (IV), (V) and (VI) respectively. Moreover, in the sameway,
making the change of variables τ2 = τ−τ1, n2 = n−n1 and then (n,n2,τ,τ2) →−(n,n2,τ,τ2) the
case (V) can be reduced to (IV). Therefore, we need only establish cases (IV) and (VI).

We first treat the inequality (2.34) with Z ( f , g ,ϕ) in the case (VI), wewill use the following
algebraic relation

− (τ−n2)+ (τ1 −n2
1)+ (

(τ−τ1)− (n1 −n)2)= 2n1(n −n1) (2.35)

We can write Z2 ×R2 = A∪B , where

A = {
(n,n1,τ,τ1); |(τ−τ1)− (n −n1)2| ≤ |τ1 −n2

1|
}

and

B = {
(n,n1,τ,τ1); |(τ−τ1)− (n −n1)2| ≥ |τ1 −n2

1|
}
.

By symmetry we can restrict ourselves only to the set A. We divide A into three pieces which
are

A1 =
{
(n,n1,τ,τ1) ∈ A; n = 0

}
,

A2 =
{
(n,n1,τ,τ1) ∈ A; n1 = 0 or n1 = n

}
,

A3 =
{
(n,n1,τ,τ1) ∈ A; n 6= 0,n1 6= 0 and n1 6= n

}
.

Next we split A3 into two parts

A3,1 =
{
(n,n1,τ,τ1) ∈ A3; |τ1 −n2

1| ≤ |τ−n2|} and

A3,2 =
{
(n,n1,τ,τ1) ∈ A3; |τ−n2| ≤ |τ1 −n2

1|
}

.
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Now, we define the sets R1 and R2 as follows

R1 = A1 ∪ A2 ∪ A3,1 and R2 = A3,2.

In what follows, χR denotes the characteristic function of the set R. Since A = R1 ∪R2,

|Z ( f , g ,ϕ)| ≤ |R1|+ |R2|,

where

Ri =
∑

n,n1∈Z

∫
R2

n2

2γ(n)

〈n〉s

〈n1〉s 〈n2〉s

χRi (n,τ,n1,τ1)g (n1,τ1) f (n2,τ2)ϕ(n,τ)

〈σ〉a 〈σ1〉b 〈σ2〉b
dτdτ1 .

Using the Cauchy-Schwarz inequality twice, we have

|R1| ≤
[∑

n∈Z

∫
n4 〈n〉2s

4γ(n)2 〈σ〉2a

(∑
n1∈Z

∫
χR1 g (n1,τ1) f (n2,τ2)

〈n1〉s 〈n2〉s 〈σ1〉b 〈σ2〉b
dτ1

)2

dτ

] 1
2 ∥∥ϕ∥∥

l 2
n L2

τ

≤
[∑

n∈Z

∫
n4 〈n〉2s

4γ(n)2 〈σ〉2a

(∑
n1∈Z

∫
χR1

〈n1〉2s 〈n2〉2s 〈σ1〉2b 〈σ2〉2b
dτ1

)

×
(∑

n1∈Z

∫
|g (n1,τ1)|2| f (n2,τ2)|2 dτ1

)
dτ

] 1
2 ∥∥ϕ∥∥

l 2
n L2

τ
.

Now applying Hölder inequality, we obtain

|R1| ≤
∥∥∥∥∥ n4 〈n〉2s

4γ(n)2 〈σ〉2a

∑
n1∈Z

∫
χR1

〈n1〉2s 〈n2〉2s 〈σ1〉2b 〈σ2〉2b
dτ1

∥∥∥∥∥
1
2

l∞n L∞
τ

×
 ∑

n,n1∈Z

∫
R2

|g (n1,τ1)|2| f (n2,τ2)|2 dτ1 dτ

 1
2 ∥∥ϕ∥∥

l 2
n L2

τ

=
∥∥∥∥∥ n4 〈n〉2s

4γ(n)2 〈σ〉2a

∑
n1∈Z

∫
χR1

〈n1〉2s 〈n2〉2s 〈σ1〉2b 〈σ2〉2b
dτ1

∥∥∥∥∥
1
2

l∞n L∞
τ

∥∥ f
∥∥

l 2
n L2

τ

∥∥g
∥∥

l 2
n L2

τ

∥∥ϕ∥∥
l 2

n L2
τ

.
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We apply the same steps for R2,

|R2| ≤
[∑

n1∈Z

∫
1

〈n1〉2s 〈σ1〉2b

(∑
n∈Z

∫
n2 〈ξ〉s f (n2,τ2)ϕ(n,τ)χR2

2γ(n)〈n2〉s 〈σ〉a 〈σ2〉b
dτ

)2

dτ1

] 1
2 ∥∥g

∥∥
l 2

n L2
τ

≤
[∑

n1∈Z

∫
1

〈n1〉2s 〈σ1〉2b

(∑
n∈Z

∫
n4

4γ(n)2

〈n〉2s χR2

〈n2〉2s 〈σ〉2a 〈σ2〉2b
dτ

)

×
(∑

n∈Z

∫
| f (n2,τ2)|2|ϕ(n,τ)|2 dτ

)
dτ1

] 1
2 ∥∥g

∥∥
l 2

n L2
τ

≤
∥∥∥∥∥ 1

〈n1〉2s 〈σ1〉2b

∑
n∈Z

∫
n4

4γ(n)2

〈n〉2s χR2

〈n2〉2s 〈σ〉2a 〈σ2〉2b
dτ

∥∥∥∥∥
l∞n1

L∞
τ1

×
( ∑

n,n1∈Z

∫
R2

| f (n2,τ2)|2|ϕ(n,τ)|2 dτdτ1

) 1
2 ∥∥g

∥∥
l 2

n L2
τ

≤
∥∥∥∥∥ 1

〈n1〉2s 〈σ1〉2b

∑
n∈Z

∫
n4

4γ(n)2

〈n〉2s χR2

〈n2〉2s 〈σ〉2a 〈σ2〉2b
dτ

∥∥∥∥∥
l 2

n1
L∞
τ1

∥∥ f
∥∥

l 2
n L2

τ

∥∥g
∥∥

l 2
n L2

τ

∥∥ϕ∥∥
l 2

n L2
τ

,

which give us

|Z ( f , g ,ϕ)| ≤
∥∥∥∥∥ n4 〈n〉2s

4γ(n)2 〈σ〉2a

∑
n1∈Z

(
1

〈n1〉2s 〈n2〉2s

∫
χR1

〈σ1〉2b 〈σ2〉2b
dτ1

)∥∥∥∥∥
1
2

l∞n L∞
τ

∥∥ f
∥∥

l 2
n L2

τ

∥∥g
∥∥

l 2
n L2

τ

∥∥ϕ∥∥
l 2

n L2
τ

+
∥∥∥∥∥ 1

〈n1〉2s 〈σ1〉2b

∑
n∈Z

(
n4 〈n〉2s

4γ(n)2 〈n2〉2s

∫
χR2

〈σ〉2a 〈σ2〉2b
dτ

)∥∥∥∥∥
l 2

n1
L∞
τ1

∥∥ f
∥∥

l 2
n L2

τ

∥∥g
∥∥

l 2
n L2

τ

∥∥ϕ∥∥
l 2

n L2
τ

.

(2.36)

Since we are considering the case (VI), we have∫
1

〈σ1〉2b 〈σ2〉2b
dτ1 =

∫
1〈

τ1 −n2
1

〉2b 〈
τ2 −n2

2

〉2b
dτ1

=
∫

1〈
τ1 −n2

1

〉2b 〈
τ1 − (τ− (n −n1)2)

〉2b
dτ1 .

Applying Lemma 1.16, more precisely inequality (1.30) with p = q = 2b, α= τ− (n −n1)2 and
β= n2

1, we obtain ∫
1

〈σ1〉2b 〈σ2〉2b
dτ1 .

1〈
τ− (n −n1)2 −n2

1

〉2b
. (2.37)

Similarly, we have ∫
1

〈σ〉2a 〈σ2〉2b
dτ=

∫
1〈

τ−n2
〉2a 〈

τ2 −n2
2

〉2b
dτ

=
∫

1〈
τ−n2

〉2a 〈
τ− (τ1 + (n −n1)2)

〉2b
dτ

with ∫
1

〈σ〉2a 〈σ2〉2b
dτ .

1〈
τ1 + (n −n1)2 −n2

〉2a , (2.38)
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since min{2b,2a,2a +2b −1} = 2a and a > 1
4 .

Returning to (2.36), it follows from (2.37) and (2.38) that it is suffices to get bounds for

J1 = sup
(n,τ)∈Z×R

(
n4

〈σ〉2a γ(n)2

∑
n1∈Z

〈n〉2s 〈n1〉−2s 〈n2〉−2s〈
τ−n2 −2n2

1 +2nn1
〉2b

)
on R1 (2.39)

J2 = sup
(n1,τ1)∈Z×R

(
1

〈σ1〉2b

∑
n∈Z

n4 〈n〉2s 〈n1〉−2s 〈n2〉−2s

γ(n)2
〈
τ1 +n2

1 −2nn1
〉2a

)
on R2. (2.40)

Let us start estimating J1 on R1 = A1 ∪ A2 ∪ A3,1. In region A1, we have

n4

γ(n)2
= n4

n4 +n2
= n2

n2 +1
= 0,

therefore the estimate is trivial. In region A2, we have

〈n〉2s 〈n1〉−2s 〈n2〉−2s = 〈n〉2s 〈n〉−2s = 1,

and, moreover,
n4

γ(n)2
= n2

n2 +1
≤ 1.

Therefore, since a,b > 0, the following happens

sup
(n,τ)∈Z×R

(
n4

〈σ〉2a γ(n)2

∑
n1=0,
or n1=n

〈n〉2s 〈n1〉−2s 〈n2〉−2s〈
τ−n2 −2n2

1 +2nn1
〉2b

)
≤ sup

(n,τ)∈Z×R

(
1

〈σ〉2a

2

〈σ〉2b

)
.1,

which proves that J1 is bounded on A2.
Now, by inequality (1.27), we have

〈n〉2s

〈n1〉2s 〈n2〉2s ≤ 〈n1〉2|s|

〈n1〉2s = 〈n1〉λ(s) , (2.41)

for all n,n1 ∈Z, where

λ(s) =
{

0, if s ≥ 0

4|s|, if s < 0.

Using the algebraic relation (2.35), we obtain

|2n1(n −n1)| = |−σ+σ1 +σ2|.

In the region A3,1 we have |n −n1| ≥ 1 and |σ2| ≤ |σ1| ≤ |σ| which give us

|n1| = |−σ+σ1 +σ2|
2|n −n1|

≤ 3|σ|
2

. |σ|. (2.42)

Therefore, using (2.41) and (2.42), we obtain

〈n〉2s

〈n1〉2s 〈n2〉2s ≤ 〈σ〉λ(s) ,
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on A3,1, since λ(s) ≥ 0. Thus, in the region A3,1 we have

J1 = sup
(n,τ)∈Z∗×R

(
n4

〈σ〉2a γ(n)2

∑
n1 6=0,
n1 6=n

〈n〉2s 〈n1〉−2s 〈n2〉−2s〈
τ−n2 −2n2

1 +2nn1
〉2b

)

≤ sup
(n,τ)∈Z∗×R

(
1

〈σ〉2a−λ(s)

∑
n1 6=0,
n1 6=n

1〈
τ−n2 −2n2

1 +2nn1
〉2b

)

≤ sup
(n,τ)∈Z∗×R

( ∑
n1 6=0,
n1 6=n

1〈
τ−n2 −2n2

1 +2nn1
〉2b

)
, (2.43)

since 2a −λ(s) ≥ 0. Applying the change of variables τ̃= τ−n2

2 and Lemma 2.14 on (2.43), we
obtain

J1 ≤ sup
(n,τ̃)∈Z∗×R

( ∑
n1 6=0,
n1 6=n

1〈
2τ̃−2n2

1 +2nn1
〉2b

)
. sup

(n,τ̃)∈Z∗×R

( ∑
n1 6=0,
n1 6=n

1〈
τ̃−n2

1 +nn1
〉2b

)
.1,

for all (n,n1,τ,τ1) ∈ A3,1, which concludes that J1 is bounded on R1.
Next, we estimate J2 on R2 = A3,2. Once again, by inequality (1.27), we have

〈n〉2s

〈n1〉2s 〈n2〉2s ≤ 〈n1〉2|s|

〈n1〉2s = 〈n1〉λ(s) , (2.44)

for all n,n1 ∈Z, where

λ(s) =
{

0, if s ≥ 0

4|s|, if s < 0.

Using the algebraic relation (2.35), we obtain

|2n1(n −n1)| = |−σ+σ1 +σ2|.

In the region A3,2 we have |n −n1| ≥ 1, |σ2| ≤ |σ1| and |σ| ≤ |σ1| which give us

|n1| = |−σ+σ1 +σ2|
2|n −n1|

≤ 3|σ1|
2

≤ 2|σ1|. (2.45)

Therefore, using (2.44) and (2.45), we obtain

〈n〉2s

〈n1〉2s 〈n2〉2s ≤ 〈σ1〉λ(s) ,

on A3,2, since λ(s) ≥ 0. Thus, since n4/γ(n)2 ≤ 1, for all (n,n1,τ,τ1) ∈ A3,2 we have

J2 = sup
(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b

∑
n 6=0,
n 6=n1

n4 〈n〉2s 〈n1〉−2s 〈n2〉−2s

γ(n)2
〈
τ1 +n2

1 −2nn1
〉2a

)

≤ sup
(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b−λ(s)

∑
n 6=0,
n 6=n1

1(
1+|τ1 +n2

1 −2nn1|
)2a

)

= sup
(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b−λ(s)

1

|2n1|2a

∑
n 6=0,
n 6=n1

1(
1

|2n1| +
∣∣∣τ1+n2

1
2n1

−n
∣∣∣)2a

)
. (2.46)



2.2. PERIODIC CASE 59

In the region A3,2, we observe that∣∣∣∣∣τ1 +n2
1

2n1
−n

∣∣∣∣∣= 1

|2n1|
∣∣τ1 +n2

1 −2n1n
∣∣≤ 1

|2n1|
(|τ1 −n2

1|+ |2n1(n −n1)|)
= 1

|2n1| (|σ1|+ |−σ+σ1 +σ2|) ≤ 2|σ1|
|n1|

,

where we used the algebraic relation (2.35). Applying Lemma 2.15 with

h = τ1 +n2
1

2n1
−n, ν= 1

|2n1|
, α= τ1 +n2

1

2n1
and β= 2|σ1|

|n1|
,

we obtain the following bound in the region A3,2∑
n 6=0,
n 6=n1

1(
1

|2n1| +
∣∣∣τ1+n2

1
2n1

−n
∣∣∣)2a =

∑
h∈H

1

(ν+|h|)2a ≤ 2

(
2|2n1|2a +

2|σ1|/|n1|∫
0

(
1

|2n1|
+x

)−2a

dx

)
.

We observe that
2|σ1|/|n1|∫

0

(
1

|2n1|
+x

)−2a

dx = |2n1|2a

2|σ1|/|n1|∫
0

(1+|2n1|x)−2a dx = |2n1|2a 1

|2n1|

4|σ1|∫
0

(
1+ y

)−2a dy ,

with
4|σ1|∫
0

(
1+ y

)−2a dy = (1+ y)1−2a

1−2a

∣∣∣∣4|σ1|

0
= (1+4|σ1|)1−2a

1−2a
− 1

1−2a
≤ 〈4σ1〉1−2a

1−2a
. 〈σ1〉1−2a ,

since 0 < 2a < 1, which give us

2|σ1|/|n1|∫
0

(
1

|2n1|
+x

)−2a

dx . |2n1|2a−1 〈σ1〉1−2a .

Therefore, ∑
n 6=0,
n 6=n1

1(
1

|2n1| +
∣∣∣τ1+n2

1
2n1

−n
∣∣∣)2a .2|2n1|2a +|2n1|2a−1 〈σ1〉1−2a .

Returning to (2.46), we have

J2 ≤ sup
(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b−λ(s)

1

|2n1|2a

∑
n 6=0,
n 6=n1

1(
1

|2n1| +
∣∣∣τ1+n2

1
2n1

−n
∣∣∣)2a

)

≤ sup
(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b−λ(s)

1

|2n1|2a

(
2|2n1|2a +|2n1|2a−1 〈σ1〉1−2a))

= sup
(n1,τ1)∈Z∗×R

(
2

〈σ1〉2b−λ(s)
+ 1

|2n1| 〈σ1〉2b+2a−1−λ(s)

)
. sup

(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b−λ(s)
+ 1

〈σ1〉2b+2a−1−λ(s)

)
,
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for all (n,n1,τ,τ1) ∈ A3,2. We observe that

2b +2a −1−λ(s) = (2b −1)+ (2a −λ(s)) > 0 and 2b −λ(s) > 0,

since b > 1
2 and 2b > 2a >λ(s). Therefore, in the region A3,2 we conclude that

J2 . sup
(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b−λ(s)
+ 1

〈σ1〉2b+2a−1−λ(s)

)
.1.

Now, we turn to the proof of case (IV). In the following estimates, we will make use of
the algebraic relation

− (τ−n2)+ (τ1 +n2
1)+ (τ−τ1 − (n −n1)2) = 2n1n. (2.47)

Once again, we split Z2 ×R2 into three regions

B1 =
{
(n,n1,τ,τ1) ∈Z2 ×R2; n = 0

}
,

B2 =
{
(n,n1,τ,τ1) ∈Z2 ×R2; n1 = 0 or n1 = n

}
,

B3 =
{
(n,n1,τ,τ1) ∈Z2 ×R2; n 6= 0,n1 6= 0 and n1 6= n

}
.

Next, we also separate B3 into three parts

B3,1 =
{
(n,n1,τ,τ1) ∈ B3; |τ1 +n2

1|, |(τ−τ1)− (n −n1)2| ≤ |τ−n2|} ,

B3,2 =
{
(n,n1,τ,τ1) ∈ B3; |τ−n2|, |(τ−τ1)− (n −n1)2| ≤ |τ1 +n2

1|
}

,

B3,3 =
{
(n,n1,τ,τ1) ∈ B3; |τ1 +n2

1|, |τ−n2| ≤ |(τ−τ1)− (n −n1)2|} .

We define the sets S1, S2 and S3 as follows

S1 = B1 ∪B2 ∪B3,1, S2 = B3,2 and S3 = B3,3.

As we did in the previous case, using Cauchy-Schwarz and Hölder inequalities and duality
argument, we have

|Z ( f , g ,ϕ)| ≤ ∥∥ f
∥∥

l 2
n L2

τ

∥∥g
∥∥

l 2
n L2

τ

∥∥ϕ∥∥
l 2

n L2
τ

(
S1 +S2 +S3

)
,

where

S1 =
∥∥∥∥∥ n4

〈σ〉2a γ(n)2

∑
n1∈Z

∫ 〈n〉2s 〈n1〉−2s 〈n2〉−2s χS1

〈σ1〉2b 〈σ2〉2b
dτ1

∥∥∥∥∥
l∞n L∞

τ

S2 =
∥∥∥∥∥ 1

〈σ1〉2b

∑
n∈Z

∫
n4

γ(n)2

〈n〉2s 〈n1〉−2s 〈n2〉−2s χS2

〈σ〉2a 〈σ2〉2b
dτ

∥∥∥∥∥
l∞n1

L∞
τ1

S3 =
∥∥∥∥∥ 1

〈σ2〉2b

∑
n1∈Z

∫ |n1 +n2|4
γ(n1 +n2)2

〈n1 +n2〉2s 〈n1〉−2s 〈n2〉−2s χS̃3

〈σ〉2a 〈σ1〉2b
dτ1

∥∥∥∥∥
l 2

n2
L∞
τ2

,
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where σ, σ1 and σ2 are given in the condition (IV) and

S̃3 ⊆
{

(n2,n1,τ2,τ1) ∈Z2 ×R2; n1 6= 0, |n1 +n2| 6= 0 and
|τ1 +n2

1|, |(τ1 +τ2)− (n1 +n2)2| ≤ |τ2 −n2
2|

}
.

Since we are considering the case (IV), we have∫
1

〈σ1〉2b 〈σ2〉2b
dτ1 =

∫
1〈

τ1 +n2
1

〉2b 〈
τ2 −n2

2

〉2b
dτ1

=
∫

1〈
τ1 − (−n2

1)
〉2b 〈

τ1 − (τ− (n −n1)2)
〉2b

dτ1 .

Applying Lemma 1.16, more precisely (1.30) with p = q = 2b, α= τ−(n−n1)2 and β=−n2
1, we

obtain ∫
1

〈σ1〉2b 〈σ2〉2b
dτ1 .

1〈
τ− (n −n1)2 +n2

1

〉2b
= 1〈

τ−n2 +2nn1
〉2b

. (2.48)

Similarly, we have∫
1

〈σ〉2a 〈σ2〉2b
dτ=

∫
1〈

τ−n2
〉2a 〈

τ2 −n2
2

〉2b
dτ

=
∫

1〈
τ−n2

〉2a 〈
τ− (τ1 + (n −n1)2)

〉2b
dτ

.
1〈

τ1 + (n −n1)2 −n2
〉2a = 1〈

τ1 +n2
1 −2nn1

〉2a

and ∫
1

〈σ〉2a 〈σ1〉2b
dτ=

∫
1〈

τ1 +τ2 − (n1 +n2)2
〉2a 〈

τ1 +n2
1

〉2b
dτ

=
∫

1〈
τ1 − (−τ2 + (n1 +n2)2)

〉2a 〈
τ1 − (−n1)2)

〉2b
dτ

.
1〈

τ2 − (n1 +n2)2 −n2
1

〉2a = 1〈
τ2 −n2

2 −2n2
1 −2n1n2

〉2a .

Therefore, it suffices to get bounds for

K1 = sup
(n,τ)∈Z×R

(
1

〈σ〉2a

n4

γ(n)2

∑
n1∈Z

〈n〉2s 〈n1〉−2s 〈n2〉−2s〈
τ−n2 +2nn1

〉2b

)
on S1,

K2 = sup
(n1,τ1)∈Z×R

(
1

〈σ1〉2b

∑
n∈Z

n4

γ(n)2

〈n〉2s 〈n1〉−2s 〈n2〉−2s〈
τ1 +n2

1 −2nn1
〉2a

)
on S2,

K3 = sup
(n2,τ2)∈Z×R

(
1

〈σ2〉2b

∑
n1∈Z

(n1 +n2)4

γ(n1 +n2)2

〈n1 +n2〉2s 〈n1〉−2s 〈n2〉−2s〈
τ2 −n2

2 −2n2
1 −2n1n2

〉2a

)
on S̃3.

In the region B1, we have n4

γ(n)2 = 0, therefore the estimate is trivial.
In the region B2, we have

〈n〉2s 〈n1〉−2s 〈n2〉−2s = 〈n〉2s 〈n〉−2s = 1,
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and, moreover,
n4

γ(n)2
= n2

n2 +1
≤ 1.

Therefore, since a,b > 0, the following happens for all (n,n1,τ,τ1) ∈ B2

K1 = sup
(n,τ)∈Z×R

1

〈σ〉2a

n4

γ(n)2

∑
n1=0,
n1=n

〈n〉2s 〈n1〉−2s 〈n2〉−2s〈
τ−n2 +2nn1

〉2b

≤ sup
(n,τ)∈Z×R

(
1

〈σ〉2a

2

〈σ〉2b

)
.1,

which proves that K1 is bounded on B2.
Now, by inequality (1.27), we have

〈n〉2s

〈n1〉2s 〈n2〉2s ≤ 〈n1〉2|s|

〈n1〉2s = 〈n1〉λ(s) , (2.49)

for all n,n1 ∈Z, where

λ(s) =
{

0, if s ≥ 0

4|s|, if s < 0.

Using the algebraic relation (2.47), we obtain

|2n1n| = |−σ+σ1 +σ2|.

In the region B3,1 we have |n| ≥ 1 and |σ1|, |σ2| ≤ |σ| which give us

|n1| = |−σ+σ1 +σ2|
2|n| ≤ 3|σ|

2
. |σ|. (2.50)

Therefore, using (2.49) and (2.50), we obtain

〈n〉2s

〈n1〉2s 〈n2〉2s ≤ 〈σ〉λ(s) ,

on B3,1, since λ(s) ≥ 0. Thus, in the region B3,1 we have

K1 ≤ sup
(n,τ)∈Z∗×R

(
1

〈σ〉2a

∑
n1 6=0,
n1 6=n

〈n〉2s 〈n1〉−2s 〈n2〉−2s〈
τ−n2 +2nn1

〉2b

)

≤ sup
(n,τ)∈Z∗×R

(
1

〈σ〉2a−λ(s)

∑
n1 6=0,
n1 6=n

1〈
τ−n2 +2nn1

〉2b

)

≤ sup
(n,τ)∈Z∗×R

( ∑
n1 6=0,
n1 6=n

1〈
τ−n2 +2nn1

〉2b

)
.1,

since 2a −λ(s) ≥ 0 and 2b > 1, which concludes that K1 is bounded on S1.
Next we estimate K2 on S2 = B3,2. In region B3,2, by the algebraic relation (2.47), we have

|2nn1| = |−σ+σ1 +σ2| ≤ 3|σ1|, that is, |n1| ≤ 3|σ1|
2|n| ≤ 2|σ1|,
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since |n| ≥ 1. Recording inequality (2.49), we obtain

〈n〉2s

〈n1〉2s 〈n2〉2s ≤ 〈n1〉λ(s)
. 〈σ1〉λ(s) .

Thus, since n4/γ(n)2 ≤ 1, we have

K2 = sup
(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b

∑
n 6=0,
n 6=n1

〈n〉2s 〈n1〉−2s 〈n2〉−2s〈
τ1 +n2

1 −2nn1
〉2a

)

≤ sup
(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b−λ(s)

∑
n 6=0,
n 6=n1

1〈
τ1 +n2

1 −2nn1
〉2a

)

= sup
(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b−λ(s)

1

|2n1|2a

∑
n 6=0,
n 6=n1

1(
1

|2n1| +|τ1+n2
1

2n1
−n|

)2a

)
, (2.51)

for all (n,n1,τ,τ1) ∈ B3,2. In the region B3,2, we observe that∣∣∣∣∣τ1 +n2
1

2n1
−n

∣∣∣∣∣= 1

|2n1|
∣∣τ1 +n2

1 −2n1n
∣∣≤ 1

|2n1|
(|τ1 +n2

1|+ |2nn1|
)

= 1

|2n1| (|σ1|+ |−σ+σ1 +σ2|) ≤ 2|σ1|
|n1|

,

where we used the algebraic relation (2.47). Applying Lemma 2.15 with

h = τ1 +n2
1

2n1
−n, ν= 1

|2n1|
, α= τ1 +n2

1

2n1
and β= 2|σ1|

|n1|
,

we obtain the following bound in the region B3,1∑
n 6=0,
n 6=n1

1(
1

|2n1| +
∣∣∣τ1+n2

1
2n1

−n
∣∣∣)2a =

∑
h∈H

1

(ν+|h|)2a ≤ 2

(
2|2n1|2a +

2|σ1|/|n1|∫
0

(
1

|2n1|
+x

)−2a

dx

)
.

We observe that
2|σ1|/|n1|∫

0

(
1

|2n1|
+x

)−2a

dx = |2n1|2a

2|σ1|/|n1|∫
0

(1+|2n1|x)−2a dx = |2n1|2a 1

|2n1|

4|σ1|∫
0

(
1+ y

)−2a dy ,

with
4|σ1|∫
0

(
1+ y

)−2a dy = (1+ y)1−2a

1−2a

∣∣∣∣4|σ1|

0
= (1+4|σ1|)1−2a

1−2a
− 1

1−2a
≤ 〈4σ1〉1−2a

1−2a
. 〈σ1〉1−2a ,

since 2a < 1, which give us

2|σ1|/|n1|∫
0

(
1

|2n1|
+x

)−2a

dx . |2n1|2a−1 〈σ1〉1−2a . (2.52)
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Therefore, ∑
n 6=0,
n 6=n1

1(
1

|2n1| +
∣∣∣τ1+n2

1
2n1

−n
∣∣∣)2a .2|2n1|2a +|2n1|2a−1 〈σ1〉1−2a .

Returning to (2.51), we have

K2 ≤ sup
(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b−λ(s)

1

|2n1|2a

∑
n 6=0,
n 6=n1

1(
1

|2n1| +
∣∣∣τ1+n2

1
2n1

−n
∣∣∣)2a

)

. sup
(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b−λ(s)

1

|2n1|2a

(
2|2n1|2a +|2n1|2a−1 〈σ1〉1−2a))

= sup
(n1,τ1)∈Z∗×R

(
2

〈σ1〉2b−λ(s)
+ 1

|2n1| 〈σ1〉2b+2a−1−λ(s)

)
. sup

(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b−λ(s)
+ 1

〈σ1〉2b+2a−1−λ(s)

)
,

for all (n,n1,τ,τ1) ∈ B3,2. We observe that

2b +2a −1−λ(s) = (2b −1)+ (2a −λ(s)) > 0 and 2b −λ(s) > 0,

since b > 1
2 and 2b > 2a >λ(s). Therefore, in the region B3,2 we conclude that

K2 . sup
(n1,τ1)∈Z∗×R

(
1

〈σ1〉2b−λ(s)
+ 1

〈σ1〉2b+2a−1−λ(s)

)
.1.

Finally, we estimate K3(n2,τ2) on S̃3. It follows from inequality (1.27) that

〈n1 +n2〉2s

〈n1〉2s 〈n2〉2s ≤ 〈n2〉2|s|

〈n2〉2s = 〈n2〉λ(s) ,

where

λ(s) =
{

0, if s ≥ 0

4|s|, if s < 0,

for all n1,n2 ∈Z. Since n1 6= 0 and n1 +n2 6= 0 in the region S̃3, we have

〈n2〉 . |n2| ≤ |n1 +n2|+ |n1| ≤ |n1(n1 +n2)|+ |(n1 +n2)n1| ≤ 2|n1(n1 +n2)|.

Now, using relation (2.47) with n1 +n2 instead of n and τ1 +τ2 instead of τ, we obtain

〈n2〉 ≤ 2|n1(n1 +n2)| = |− (τ1 +τ2 + (n1 +n2)2)+ (τ1 +n2
1)+ (τ2 −n2

2)| ≤ 3|τ2 −n2
2|. 〈σ2〉 ,

for all (n1,n2,τ1,τ2) ∈ S̃3. Therefore, since λ(s) ≥ 0, we have
〈n1 +n2〉2s

〈n1〉2s 〈n2〉2s ≤ 〈n2〉λ(s)
. 〈σ2〉λ(s) .

Thus, since (n1 +n2)4/γ(n1 +n2)2 ≤ 1, we obtain

K3 . sup
(n2,τ2)∈Z×R

(
1

〈σ2〉2b−λ(s)

∑
n1 6=0,

n1 6=−n2

1〈
τ2 −n2

2 −2n2
1 −2n1n2

〉2a

)

≤ sup
(n2,τ2)∈Z×R

( ∑
n1 6=0,

n1 6=−n2

1〈
τ2 −n2

2 −2n2
1 −2n1n2

〉2a

)
,
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for all (n2,n1,τ2,τ1) ∈ S̃3, since 2a−λ(s) ≥ 0. Applying the change of variables (τ̃, ñ2) = (τ2−n2
2

2 ,−n2
)

and Lemma 2.14 for q = 2a, we have

K3

∣∣∣
S̃3

. sup
(n2,τ2)∈Z×R

(∑
n1∈Z

1〈
τ2 −n2

2 −2n2
1 −2n1n2

〉2a

)
= sup

(ñ2,τ̃)∈Z×R

(∑
n1∈Z

1〈
2τ̃−2n2

1 +2n1ñ2
〉2a

)

. sup
(ñ2,τ2)∈Z×R

(∑
n1∈Z

1

〈τ̃−n1(n1 − ñ2)〉2a

)
.1,

for all (n2,n1,τ2,τ1) ∈ S̃3, which concludes that K3 is bounded on S̃3. This finishes the proof
of the theorem.

Therefore, it follows fromLemma2.13 andTheorem2.16 the followingproposition, which
give us ΦT is a contraction in a ball centered at the origin of Xs,b .

Proposition 2.17. Let s > −1
4 and b ∈ (1

2 , 3
4

)
, then for all u0 ∈ H s(T), u1 ∈ H s−1(T) and 0 < T ≤ 1,

there are d > 0 and a constant Cψ,b > 0 such that

‖ΦT u‖Xs,b
≤Cψ,b

(
‖u0‖H s +‖u1‖H s−1 +T d ‖u‖2

Xs,b

)
, for all u ∈ Xs,b , (2.53)

and
‖ΦT u −ΦT v‖Xs,b

≤ T dCψ,b ‖u + v‖Xs,b
‖u − v‖Xs,b

, for all u, v ∈ Xs,b . (2.54)

Once again, it is also possible to show uniqueness of the solution and the continuity of
the data-to-solutionmap ΦT , that is, to show that the periodic Cauchy problem (2.1) is well-
posed for s >−1

4 by using inequalities (2.53) and (2.54). Since the proof Proposition 2.17 and
the proof of well-posedness in this case is very similar to the one in Gevrey analytic case, we
will do this with detail in the next chapter.





Chapter

3
The problem in Gσ,δ,s

In this chapter, we consider the initial value problem for the "good" Boussinesq equation
∂2

t u −∂2
xu +∂4

xu +∂2
x(u2) = 0, x ∈R or T, t ∈R,

u(x,0) = u0(x),

∂t u(x,0) = ∂xu1(x),

(3.1)

now with initial data in analytic Gevrey spaces on the line and the circle.
Let us recall the spaces of analytic Gevrey functions that we shall use. For s ∈R, δ> 0 and

σ≥ 1, we have the spaces

Gσ,δ,s(R) =
{

f ∈ L2(R); ‖ f ‖2
Gσ,δ,s (R)

=
∫

〈ξ〉2s e2δ|ξ|1/σ | f̂ (ξ)|2 dξ<∞
}

, (3.2)

where 〈ξ〉 =̇ (1+ξ2)1/2. For the periodic case, the space Gσ,δ,s(T) is given by

Gσ,δ,s(T) =
{

f ∈ L2(T); ‖ f ‖2
Gσ,δ,s (R)

=
∑
n∈Z

〈n〉2s e2δn1/σ | f̂ (n)|2 <∞
}

. (3.3)

We often omit R or T in the notation of these spaces when it is clear by the context which one
is being considered or when the statement holds for both. If ϕ ∈Gσ,δ,s , then ϕ belongs to the
Gevrey class Gσ (see Proposition 1.12 in Chapter 1.).

In the case when σ = 1, we denote Gδ,s ≡ G1,δ,s . Thus, if ϕ ∈ Gδ,s(R) then ϕ is analytic on
the line and admits a holomorphic extension ϕ̃ on the strip Sδ

.= {x + i y ; |y | < δ}. Hence, in
this context, we refer to the parameter δ> 0 as the radius of analyticity of the function ϕ (see
Proposition 1.15 in Chapter 1.).

By following the same strategy as inChapter 2 , we consider the followingGevrey-Bourgain
spaces:

Definition 3.1. Let s,b ∈ R, δ > 0 and σ ≥ 1. We denote by Xσ,δ,s,b = Xσ,δ,s,b(R2) the completion of
the Schwartz class S (R2) with respect to the norm

‖u‖Xσ,δ,s,b =
(Ï

e2δ|ξ|1/σ 〈|τ|−γ(ξ)〉2b 〈ξ〉2s |û(ξ,τ)|2 dτdξ

) 1
2

,

where γ(ξ) =
√
ξ2 +ξ4 and 〈ξ〉 = (1+ξ2)

1
2 .

67
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Since we are considering local in time well-posedness, we shall need the localized Bour-
gain spaces.

Definition 3.2. For any T ≥ 0, X T
σ,δ,s,b = X T

σ,δ,s,b(R2) denotes the space endowed with the norm

‖u‖X T
σ,δ,s,b

= inf
ũ∈Xσ,δ,s,b

{‖ũ‖Xσ,δ,s,b
; ũ(x, t ) = u(x, t ) on R× [0,T ]

}
.

Let us now give the definitions of the spaces Xσ,δ,s,b and X T
σ,δ,s,b on the circle.

Definition 3.3. Let X be the space of functions v such that

(i) v :T×R→C.

(ii) v(x, ·) ∈S (R) for each x ∈T.

(iii) v(·, t ) ∈C∞(T) for each t ∈R.

For δ> 0, s,b ∈R and σ≥ 1, Xσ,δ,s,b = Xσ,δ,s,b(T×R) denotes the completion of X with respect to the
norm

‖v‖Xσ,δ,s,b =
∑

n∈Z

∫
R

〈|τ|−γ(n)〉2b 〈n〉2s e2δ|n|1/σ |v̂(n,τ)|2dτ

 1
2

where 〈n〉 .=
p

1+k2 and γ(n) =
p

n2 +n4. For T ≥ 0, X T
σ,δ,s,b denotes the space endowed with the

norm
‖u‖X T

σ,δ,s,b
= inf

v∈Xσ,δ,s,b

{‖v‖Xσ,δ,s,b
; v(x, t ) = u(x, t ) on T× [0,T ]

}
.

Our main result in this chapter reads as follows.

Theorem 3.4. Let s > −1/4, δ > 0 and σ ≥ 1. Then, for all initial data (u0,u1) ∈ Gσ,δ,s ×Gσ,δ,s−1,

there exist a lifespan
T = T (u0,u1) = c0

(1+‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1 )α
, (3.4)

where α> 1 and c0 ≤ 1 are positive constants which depend only on s, and a unique solution u of the
Cauchy problem for the “good" Boussinesq equation (3.1) such that

u ∈C
(
[0,T ];Gσ,δ,s)∩X T

σ,δ,s,b .

Moreover, the data-to-soltuion map is locally Lipschitz.

In order to prove Theorem 3.4, we are going to follow the same steps as in Chapter 2.
Thus, recalling the definition of map ΦT

ΦT u
.=ψ(t )W1(t )u0(x)+ψ(t )W2(t )∂xu1(x)−ψT (t )

t∫
0

W2(t − t ′)w(x, t ′)dt ′ , (3.5)

as we did before, the right side of (3.5) is a formal solution of the IVP (3.1). Our goal again
is to solve the equation ΦT u = u, but now in Gevrey-Bourgain spaces. For this we will use a
fixed point argument for the map ΦT .

In what follows, just to fix notation, we will focus in the proof of Theorem 3.4 for the real
case. Since, as the reader will see, all the results have similar proof to the periodic case.



3.1. ESTIMATES IN ANALYTIC GEVREY-BOURGAIN SPACES 69

3.1 Estimates in analytic Gevrey-Bourgain spaces

The following two results show the relevance of the space Xσ,δ,s,b . The first one guarantees
that it is continuously embedded in C

(
[0,T ],Gσ,δ,s

)
, provided b > 1/2, and the second one

gives a bilinear estimate which is needed in the proof of the local well-posedness of (3.1).

Lemma 3.5. Let b > 1
2 , s ∈R, δ> 0 and σ≥ 1. Then, for all T > 0, the inclusion

Xσ,δ,s,b(R2) ,→C
(
[0,T ],Gσ,δ,s(R)

)
is continuous, that is,

sup
t∈[0,T ]

‖u(t )‖Gσ,δ,s ≤C ‖u‖Xσ,δ,s,b
.

Proof. First, we observe that the operator A defined by

Âu
x

(ξ, t ) = eδ|ξ|
1/σ

ûx(ξ, t ) (3.6)

satisfies the relations

‖u‖Gσ,δ,s = ‖Au‖H s and ‖u‖Xσ,δ,s,b
= ‖Au‖Xs,b

,

where Xs,b is the space defined in Definition 2.2. Then, by using Lemma 2.4, we have that u

belongs to C
(
[0,T ];Gσ,δ,s(R)

)
and

‖u(x, t )‖C([0,T ],Gσ,δ,s (R)) = sup
0≤t≤T

(‖u(·, t )‖Gσ,δ,s

)= sup
0≤t≤T

(‖Au(·, t )‖H s
)

= ‖Au(x, t )‖C ([0,T ],H s (R)) ≤Cb‖Au(x, t )‖Xs,b

=Cb‖u(x, t )‖Xσ,δ,s,b ,

which completes the proof of the lemma.

Next, we show an analytic version of the Bilinear Estimates proved in Chapter 2.

Proposition 3.6 (Gevrey Bilinear Estimates). If s >−1
4 and u, v ∈ Xσ,δ,s,b , then there exists a con-

stant C > 0 such that the bilinear estimate∥∥∥∥F−1
( |ξ|2ûv(ξ,τ)

2iγ(ξ)

)∥∥∥∥
Xσ,δ,s,−a

≤C ‖u‖Xσ,δ,s,b
‖v‖Xσ,δ,s,b

holds in the following cases:

(i) s ≥ 0, b > 1
2 and 1

4 < a < 1
2 ;

(ii) −1
4 < s < 0, b > 1

2 , 1
4 < a < 1

2 and |s| < a
2 .

Proof. We consider again the operator A given by (3.6) and observe that∥∥∥∥F−1
( |ξ|2ûv(ξ,τ)

2iγ(ξ)

)∥∥∥∥
Xσ,δ,s,−a

=
∥∥∥∥eδ|ξ|

1/σ 〈ξ〉s 〈|τ|−γ(ξ)
〉−a |ξ|2ûv(ξ,τ)

2iγ(ξ)

∥∥∥∥
L2
ξ,τ
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and ∣∣∣eδ|ξ|1/σ
ûv(ξ,τ)

∣∣∣= (2π)−2
∣∣∣eδ|ξ|1/σ

û ∗ v̂(ξ,τ)
∣∣∣

≤ (2π)−2
Ï

eδ|ξ−ξ1|1/σ |û(ξ−ξ1,τ−τ1)|eδ|ξ1|1/σ |v̂(ξ1,τ1)|dτ1 dξ1

= (2π)−2
∫∫ ∣∣Âu(ξ−ξ1,τ−τ1)

∣∣ ∣∣Âv(ξ1,τ1)
∣∣dξ1 dτ1 ,

since
|ξ|1/σ ≤ (|ξ−η|+ |η|)1/σ ≤ |ξ−η|1/σ+|η|1/σ,

for all σ≥ 1, by using the fact that

(a +b)p ≤ ap +bp , for all a,b ≥ 0 and 0 < p ≤ 1.

Thus, we have∥∥∥∥F−1
( |ξ|2ûv(ξ,τ)

2iγ(ξ)

)∥∥∥∥
Xσ,δ,s,−a

≤
∥∥∥∥∥ 〈ξ〉s |ξ|2〈|τ|−γ(ξ)

〉a 2iγ(ξ)
(2π)−2

∫∫ ∣∣Âu(ξ−ξ1,τ−τ1)
∣∣ ∣∣Âv(ξ1,τ1)

∣∣dξ1 dτ1

∥∥∥∥∥
L2
ξ,τ

Now, by using inequality (2.14) in the proof of Theorem 2.9 (see Theorem 2.16 for the periodic
case), we obtain∥∥∥∥F−1

( |ξ|2ûv(ξ,τ)

2iγ(ξ)

)∥∥∥∥
Xσ,δ,s,−a

≤C ‖Au‖Xs,b
‖Av‖Xs,b

=C‖u‖Xσ,δ,s,b‖v‖Xσ,δ,s,b ,

where the constant C > 0 is the same one as in Theorem 2.9.

Remark. The result above has the same proof for the periodic case just by replacing the
integral in ξ variable by a sum.

The following two results is concerning the estimate of the map ΦT in the space Xσ,δ,s,b .

Lemma 3.7. If s ∈R, b ≥ 0, δ> 0 and σ≥ 1, then there is a constant C > 0 depending only on ψ and
b such that ∥∥ψ(t ) [W1(t )u0(x)+W2(t )∂xu1(x)]

∥∥
Xσ,δ,s,b

≤C
(‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1

)
,

for all u0 ∈Gσ,δ,s(R) and u1 ∈Gσ,δ,s−1(R).

Proof. The proof follows the same steps as the proof of Lemma 2.6. Let us denote

v(x, t ) =W1(t )u0(x)+W2(t )∂xu1(x).

Taking the Fourier transform with respect to x, we get

ψ̂v x(ξ, t ) = e iγ(ξ)tψ(t )h1(ξ)+e−iγ(ξ)tψ(t )h2(ξ),

where
h1(ξ) = û0(ξ)

2
+

�∂xu1(ξ)

2iγ(ξ)
and h2(ξ) = û0(ξ)

2
−

�∂xu1(ξ)

2iγ(ξ)
.
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Thus,
ψ̂v(ξ,τ) = h1(ξ)ψ̂(τ−γ(ξ))+h2(ξ)ψ̂(τ+γ(ξ)).

Since
〈|τ|−γ(ξ)

〉≤ 〈
τ±γ(ξ)

〉
and b ≥ 0, we have

‖ψv‖Xσ,δ,s,b ≤
∥∥∥eδ|ξ|

1/σ 〈ξ〉s 〈|τ|−γ(ξ)
〉b h1(ξ)ψ̂(τ−γ(ξ))

∥∥∥
L2
τ,ξ

+
∥∥∥eδ|ξ|

1/σ 〈ξ〉s 〈|τ|−γ(ξ)
〉b h2(ξ)ψ̂(τ+γ(ξ))

∥∥∥
L2
τ,ξ

≤ ‖ψ‖H b

∥∥∥eδ|ξ|
1/σ 〈ξ〉s h1

∥∥∥
L2
ξ

+‖ψ‖H b

∥∥∥eδ|ξ|
1/σ 〈ξ〉s h2

∥∥∥
L2
ξ

≤ ‖ψ‖H b

(
‖u0‖Gσ,δ,s +

∥∥∥eδ|ξ|
1/σ 〈ξ〉s |ξ|

γ(ξ)
û1

∥∥∥
L2
ξ

)
≤ ‖ψ‖H b

(
‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1

)
,

since |ξ|/γ(ξ) = 〈ξ〉−1 , which proves the desired inequality.

The next result is concerning the Xσ,δ,s,b-norm of the nonlinear part of ΦT , its proof is a
consequence of Lemma 1.8.

Lemma 3.8. If −1
2 < b′ ≤ 0 ≤ b ≤ b′+1 then

∥∥∥∥ψT (t )

t∫
0

W2(t − t ′)w(x, t ′)dt ′
∥∥∥∥

Xσ,δ,s,b

≤C T 1−(b−b′)
∥∥∥∥F−1

(
ŵ(ξ,τ)

2iγ(ξ)

)∥∥∥∥
Xσ,δ,s,b′

,

for some constant C > 0 which depends on ψ,b and b′.

Proof. We define U (x, t ) = ψT (t )
t∫

0
W2(t − t ′)w(x, t ′)dt ′ . Considering the operator A given by

(3.6), we have

ÂU
x

(ξ, t ) = eδ|ξ|
1/σ

Û x(ξ, t ) = eδ|ξ|
1/σ
ψT (t )

t∫
0

Fx

[
W2(t − t ′)w

]
(ξ, t ′)dt ′

=ψT (t )

t∫
0

(
e i (t−t ′)γ(ξ) −e−i (t−t ′)γ(ξ)

2iγ(ξ)

)
eδ|ξ|

1/σ
ŵ x(ξ, t ′)dt ′

=ψT (t )

t∫
0

Fx

[
W2(t − t ′)

(
Aw

)]
(ξ, t ′)dt ′

=Fx

(
ψT (t )

t∫
0

W2(t − t ′)
(

Aw
)
(x, t ′)dt ′

)
(ξ, t ),

where Fx denotes the Fourier transform with respect to x variable. Thus,

‖U‖Xσ,δ,s,b
= ‖AU‖Xs,b

=
∥∥∥∥∥∥ψT (t )

t∫
0

W2(t − t ′)
(

Aw
)
(x, t ′)dt ′

∥∥∥∥∥∥
Xs,b

.
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Using Lemma 1.8, we obtain

‖U‖Xσ,δ,s,b
≤C T 1−(b−b′)

∥∥∥∥∥F−1

(
Âw(ξ,τ)

2iγ(ξ)

)∥∥∥∥∥
Xs,b′

.

Now, we observe that∥∥∥∥∥F−1

(
Âw(ξ,τ)

2iγ(ξ)

)∥∥∥∥∥
Xs,b′

=
∥∥∥∥∥〈ξ〉s 〈|τ|−γ(ξ)

〉b′ Âw(ξ,τ)

2iγ(ξ)

∥∥∥∥∥
L2
ξ,τ

=
∥∥∥∥〈ξ〉s 〈|τ|−γ(ξ)

〉b′
eδ|ξ|

1/σ ŵ(ξ,τ)

2iγ(ξ)

∥∥∥∥
L2
ξ,τ

=
∥∥∥∥F−1

(
ŵ(ξ,τ)

2iγ(ξ)

)∥∥∥∥
Xσ,δ,s,b′

,

which finishes the proof.

Now, we have all the ingredients to prove the well-posedness of the “good” Boussinesq
equation in a Gevrey class of funcitons.

3.2 Proof of the well-posedness

In this section we shall prove the well-posedness.

Existence of a solution. For (u0,u1) ∈Gσ,δ,s ×Gσ,δ,s−1 with s >−1
4 , and for 0 < T ≤ 1 we recall

the definition of the map ΦT

ΦT (u)(x, t ) =ψ(t ) (W1(t )u0 +W2(t )∂xu1)+ψT (t )

t∫
0

W2(t − t ′)∂2
x

(
u2)(t ′)dt ′ .

The final step for the existence proof consists in to show that ΦT is a contraction in

Xσ,δ,s,b(r ) =
{

u ∈ X T
σ,δ,s,b ; ‖u‖Xσ,δ,s,b ≤ r

}
for some r > 0 and 0 < T ≤ 1.

Proposition 3.9. Let σ ≥ 1, δ > 0 and s > −1
4 , then for all u0 ∈ Gσ,δ,s , u1 ∈ Gσ,δ,s−1 and 0 < T ≤ 1,

there are b ∈ (1
2 , 3

4

)
, d > 0 and a constant Cψ,b > 0 such that

‖ΦT u‖Xσ,δ,s,b
≤Cψ,b

(
‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1 +T d ‖u‖2

Xσ,δ,s,b

)
, for all u ∈ Xσ,δ,s,b , (3.7)

and
‖ΦT u −ΦT v‖Xσ,δ,s,b

≤ T dCψ,b ‖u + v‖Xσ,δ,s,b
‖u − v‖Xσ,δ,s,b

, for all u, v ∈ Xσ,δ,s,b . (3.8)

Proof. The first step is to consider a ∈ (1
4 , 1

2

)
satisfying

(i) If s ≥ 0, then d = 1− (b +a) > 0.
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(ii) If −1
4 < s < 0, then d = 1− (b +a) > 0 and |s| < a

2 .

In this conditions, estimate (3.7) follows from Lemmas 3.7 and 3.8 and Proposition 3.6. In
fact, using Lemma 3.7, Lemma 3.8 with b′ =−a and Proposition 3.6, we have

‖ΦT u‖Xσ,δ,s,b
≤ ∥∥ψ(t ) (W1(t )u0(x)+W2(t )∂xu1(x))

∥∥
Xσ,δ,s,b

+
∥∥∥∥ψT (t )

t∫
0

W2(t − t ′)∂2
x(u2)(x, t ′)dt ′

∥∥∥∥
Xσ,δ,s,b

≤ C̃ψ,b

(
‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1 +T d

∥∥∥∥∥F−1

(à∂2
x(u2)(ξ,τ)

2iγ(ξ)

)∥∥∥∥∥
Xσ,δ,s,−a

)

≤Cψ,b

(
‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1 +T d ‖u‖2

Xσ,δ,s,b

)
.

In order to prove estimate (3.8), we observe that

ΦT u −ΦT v =−ψT (t )

t∫
0

W2(t − t ′)w(x, t ′)dt ′,

where w now is given by

w = ∂2
x(u2 − v2) = ∂2

x [(u + v)(u − v)] .

Thus, applying Lemma 3.8 and Proposition 3.6 we obtain (3.8), which completes the proof.

The next proposition shows that our map ΦT is, in fact, a contraction in Xσ,δ,s,b(r ), for
some T = T (u0,u1) and r > 0.

Proposition 3.10. Let σ≥ 1, δ> 0 and s >−1
4 ,. For initial data u0 ∈Gσ,δ,s and u1 ∈Gσ,δ,s−1, there

are b ∈ (1
2 , 3

4

)
and T = T (u0,u1) > 0 such that

ΦT : Xσ,δ,s,b(r ) −→ Xσ,δ,s,b(r )

is a contraction, where Xσ,δ,s,b(r ) is given by

Xσ,δ,s,b(r ) = {
u ∈ Xσ,δ,s,b ; ‖u‖Xσ,δ,s,b

≤ r
}

with r = 2Cψ,b
(‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1

)
,

and Cψ,b is the constant that appears in Proposition 3.9.

Proof. In fact, from Proposition 3.9 it follows that

‖ΦT u‖Xσ,δ,s,b
≤Cψ,b

(
‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1 +T d ‖u‖2

Xσ,δ,s,b

)
≤ r

2
+Cψ,bT d r 2,

for all u ∈ Xσ,δ,s,b(r ). Choosing T = min
{

1,(4Cψ,br )−
1
d

}
, we obtain

‖ΦT u‖Xσ,δ,s,b
≤ r

2
+ r

4
< r,
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for all u ∈ Xσ,δ,s,b(r ). Thus, ΦT maps Xσ,δ,s,b(r ) into Xσ,δ,s,b(r ). Also, it is a contraction, since
for all u and v belonging to Xσ,δ,s,b(r ) we have

‖ΦT u −ΦT v‖Xσ,δ,s,b
≤ T dCψ,b ‖u + v‖Xσ,δ,s,b

‖u − v‖Xσ,δ,s,b

≤ T dCψ,b2r ‖u − v‖Xσ,δ,s,b

≤ 1

2
‖u − v‖Xσ,δ,s,b

,

which finishes the proof.

By Proposition 3.10, we see that for initial data u0 ∈ Gσ,δ,s and u1 ∈ Gσ,δ,s−1, there is a
0 < T ≤ 1 such that ΦT is a contraction on a small ball centered at the origin in Xσ,δ,s,b . Hence
ΦT has a unique fixed point u in a neighborhood of 0 with respect to the norm ‖·‖Xσ,δ,s,b . Since
ψ(t ) = 1 and ψT (t ) = 1, for all |t | ≤ T , it follows that u solves the initial value problem (3.1)
on R× [0,T ]. Finally, thanks to Lemma 3.5, we have proved the existence of a solution to the
Cauchy problem which belongs to the space C

(
[0,T ],Gσ,δ,s(R)

)
.

Uniqueness. From the fixed point argument used above, we have uniqueness of the solu-
tion ofΦT u = u in the set Xσ,δ,s,b(r ). We will use the same argument due to Bekiranov, Ogawa
and Ponce [4] to obtain the uniqueness in the whole space X T

σ,δ,s,b .
Let 0 < T ≤ 1, u ∈ Xσ,δ,s,b be the solution of the equation ΦT u = u and ṽ ∈ X T

σ,δ,s,b be a
solution of the Cauchy problem (3.1) with the same initial data u0 and u1, that is,

ṽ(t , x) =W1(t )u0(x)+W2(t )∂xu1(x)−
t∫

0

W2(t − t ′)∂2
x

(
ṽ2) (x, t ′)dt ′ ,

for all (x, t ) ∈R× [0,T ]. Fixing an extension v ∈ Xσ,δ,s,b of ṽ , we have

v(t , x) =ψ(t ) (W1(t )u0(x)+W2(t )∂xu1(x))−ψT (t )

t∫
0

W2(t − t ′)∂2
x(v2)(x, t ′)dt ′ ,

for all (x, t ) ∈R× [0,T ∗] with 0 < T ∗ ≤ T . Our goal is to show that u = v on R× [0,T ].
We fix

M ≥ max
{‖u‖Xσ,δ,s,b

,‖v‖Xσ,δ,s,b

}
.

For any ε> 0, considering the difference u − v ∈ X T ∗
σ,δ,s,b , there is ω ∈ Xσ,δ,s,b such that

ω(x, t ) = u(x, t )− v(x, t ) =ψT (t )

t∫
0

W2(t − t ′)∂2
x

(
u2 − v2) (x, t ′)dt ′, on R× [0,T ∗],

and
‖ω‖Xσ,δ,s,b

≤ ‖u − v‖X T∗
σ,δ,s,b

+ ε

2
.

We define

ω̃(t ) =ψT (t )

t∫
0

W2(t − t ′)∂2
x

(
ω(u + v)

)
(x, t ′)dt ′.
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We have ω̃= u−v on R×[0,T ∗]. Therefore, from definition of ‖·‖X T∗
σ,δ,s,b

, Lemma 3.8 and Propo-
sition 3.6, it follows that

‖u − v‖X T∗
σ,δ,s,b

≤ ‖ω̃‖Xσ,δ,s,b
≤Cψ,b

(
T ∗)d ‖ω‖Xσ,δ,s,b

‖u + v‖Xσ,δ,s,b
≤ 2MCψ,b

(
T ∗)d ‖ω‖Xσ,δ,s,b

.

Then, choosing T ∗ > 0 such that 2MCψ,b (T ∗)d < 1
2 , we obtain

‖u − v‖X T∗
σ,δ,s,b

≤ 1

2
‖ω‖Xσ,δ,s,b

≤ 1

2
‖u − v‖X T∗

σ,δ,s,b
+ ε

4
,

which implies
‖u − v‖X T∗

σ,δ,s,b
< ε.

Therefore, u = v on R× [0,T ∗]. Now, since the argument does not depend on the initial data,
we can iterate this process a finite number of times to extend the uniqueness result in the
whole existence interval [0,T ].

Map data-solution is locally Lipschitz. The continuous dependence on the initial data of
the solution is given by the following result.

Proposition 3.11. Let s >−1
4 , (u0,u1) ∈Gσ,δ,s ×Gσ,δ,s−1 and T = T (u0,u1) satisfying that there are a

unique solution u ∈C
(
[0,T ],Gσ,δ,s

)∩X T
σ,δ,s,b of (2.1). Then, given T ′ ∈ (0,T ) there exists R = R(T ′) >

0 such that the map solution

S : W −→C
(
[0,T ′],Gσ,δ,s)∩X T ′

σ,δ,s,b

(ũ0, ũ1) 7−→ ũ

is Lipschitz, where W is given by

W =
{

(ũ0, ũ1) ∈Gσ,δ,s ×Gσ,δ,s−1; ‖ũ0 −u0‖Gσ,δ,s +‖ũ1 −u1‖Gσ,δ,s−1 < R
}

.

Proof. First, we observe that for all (ũ0, ũ1) ∈Gσ,δ,s ×Gσ,δ,s−1 there exist T̃ = T̃ (ũ0, ũ1) > 0 and a
unique solution ũ ∈C

(
[0, T̃ ],Gσ,δ,s

)
of (3.1). We affirm that given T ′ ∈ (0,T ), there exists R > 0

satisfying
T ′ < T̃ , for all (ũ0, ũ1) ∈W. (3.9)

In fact, since T̃ = min
{

1,(4Cψ,b r̃ )−
1
d

}
, where r̃ = 2Cψ,b

(‖ũ0‖Gσ,δ,s +‖ũ1‖Gσ,δ,s−1

)
, it is sufficient to

show that

T ′ < (4Cψ,b r̃ )−
1
d =

(
1

8C 2
ψ,b

(‖ũ0‖Gσ,δ,s +‖ũ1‖Gσ,δ,s−1

)) 1
d

,

which occurs if, and only if,

‖ũ0‖Gσ,δ,s +‖ũ1‖Gσ,δ,s−1 < 1

8C 2
ψ,bT ′d . (3.10)
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On the other hand, if (ũ0, ũ1) ∈W then

‖ũ0‖Gσ,δ,s +‖ũ1‖Gσ,δ,s−1 ≤ ‖ũ0 −u0‖Gσ,δ,s +‖ũ1 −u1‖Gσ,δ,s−1 +‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1

< R +‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1 .

Thus, in order to obtain (3.10) it is sufficient to choose R such that

0 < R < 1

8C 2
ψ,b(T ′)d

− (‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1

)
.

This choice of R can be done if the following happens

1

8C 2
ψ,b(T ′)d

− (‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1

)> 0. (3.11)

Since T ′ < T , we have
1

8C 2
ψ,b(T ′)d

> 1

8C 2
ψ,bT d

.

Recalling that T ≤ (4Cψ,br )−
1
d , we obtain

1

8C 2
ψ,b(T ′)d

> 4Cψ,br

8C 2
ψ,b

= r

2Cψ,b
= ‖u0‖Gσ,δ,s +‖u1‖Gσ,δ,s−1 ,

which proves that (3.11) goes true. Therefore, we can choose R = R(T ′) > 0 satisfying (3.9).
Now, if (ũ0, ũ1), (u∗

0 ,u∗
1 ) ∈W with S(ũ0, ũ1) = ũ and S(u∗

0 ,u∗
1 ) = u∗, then∥∥S(ũ0, ũ1)−S(u∗

0 ,u∗
1 )

∥∥
C ([0,T ′],Gσ,δ,s ) =

∥∥ũ −u∗∥∥
C ([0,T ′],Gσ,δ,s ) ≤C

∥∥ũ −u∗∥∥
Xσ,δ,s,b

, (3.12)

where we used Lemma 3.5. Since ũ is a fixed point of ΦT̃ and u∗ is a fixed point of ΦT ∗ , then

ũ(t , x) =ΦT̃ u(t , x) =ψ(t )
[
W1(t )ũ0(x)+W2(t )∂x ũ1(x)

]−ψT̃ (t )

t∫
0

W2(t − t ′)∂2
x(ũ2)(x, t ′)dt ′

and

u∗(t , x) =ΦT ∗u∗(x, t ) =ψ(t )
[
W1(t )u∗

0(x)+W2(t )∂xu∗
1(x)

]−ψT ∗(t )

t∫
0

W2(t − t ′)∂2
x(u∗2)(x, t ′)dt ′.

It follows from (3.9) that ψT̃ =ψT ∗ on [0,T ′], which implies∥∥ũ −u∗∥∥
Xσ,δ,s,b

≤ ∥∥ψ(t )
[
W1(t )(ũ0 −u∗

0 )+W2(t )∂x(ũ1 −u∗
1 )

]∥∥
Xσ,δ,s,b

+
∥∥∥∥∥∥ψT ′(t )

t∫
0

W2(t − t ′)∂2
x(ũ2 −u∗2)(x, t ′)dt ′

∥∥∥∥∥∥
Xσ,δ,s,b

.

By Lemma 3.7, we obtain∥∥ψ(t )
[
W1(t )(ũ0 −u∗

0 )+W2(t )∂x(ũ1 −u∗
1 )

]∥∥
Xσ,δ,s,b

≤Cψ,b
(∥∥ũ0 −u∗

0

∥∥
Gσ,δ,s +

∥∥ũ1 −u∗
1

∥∥
Gσ,δ,s−1

)
.
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Applying Lemma 3.8 and Proposition 3.6, we have∥∥∥∥∥∥ψT ′(t )

t∫
0

W2(t − t ′)∂2
x(ũ2 −u∗2)(x, t ′)dt ′

∥∥∥∥∥∥
Xσ,δ,s,b

≤Cψ,bT ′d ∥∥ũ +u∗∥∥
Xσ,δ,s,b

∥∥ũ −u∗∥∥
Xσ,δ,s,b

≤Cψ,bT ′d (
r̃ + r ∗)∥∥ũ −u∗∥∥

Xσ,δ,s,b
,

since ũ ∈ Xσ,δ,s,b(r̃ ) and u∗ ∈ Xσ,δ,s,b(r ∗) with

r̃ = 2Cψ,b
(‖ũ0‖Gσ,δ,s +‖ũ1‖Gσ,δ,s−1

)
and r ∗ = 2Cψ,b

(‖u∗
0‖Gσ,δ,s +‖u∗

1‖Gσ,δ,s−1

)
,

as we proved on Proposition 3.10. Using that

T ′d ≤ T̃ d ≤ (4Cψ,b r̃ )−1 and T ′d ≤ T ∗d ≤ (4Cψ,br ∗)−1,

we obtain Cψ,bT ′d (r̃ + r ∗) ≤ 1
2 . Therefore, we conclude

∥∥ũ −u∗∥∥
Xσ,δ,s,b

≤Cψ,b
(∥∥ũ0 −u∗

0

∥∥
Gσ,δ,s +

∥∥ũ1 −u∗
1

∥∥
Gσ,δ,s−1

)+ 1

2

∥∥ũ −u∗∥∥
Xσ,δ,s,b

,

which implies ‖ũ −u∗‖Xσ,δ,s,b
≤ 2Cψ,b

(∥∥ũ0 −u∗
0

∥∥
Gσ,δ,s +

∥∥ũ1 −u∗
1

∥∥
Gσ,δ,s−1

)
. Finally, returning in

(3.12), we establish that∥∥S(ũ0, ũ1)−S(u∗
0 ,u∗

1 )
∥∥

C ([0,T ′];Gσ,δ,s ) ≤ 2CCψ,b
(∥∥ũ0 −u∗

0

∥∥
Gσ,δ,s +

∥∥ũ1 −u∗
1

∥∥
Gσ,δ,s−1

)
,

which finishes the proof.

The proof of Theorem3.4, that is, localwell-posednees of (3.1) inGσ,δ,s(R) is now complete.





Chapter

4
Regularity in time variable

In this chapter, we shall prove the following result about regularity in time variable of
the solution to the “good” Boussinesq equation with analytic Gevrey initial data, which was
inspired by the works [19], [20], [21] and [22] for KdV type equations.

Theorem 4.1. Let s > −1
4 , δ > 0 and σ ≥ 1. The solution u(x, t ) ∈ C ([0,T ];Gσ,δ,s) to the Cauchy

problem (3.1) belongs to G2σ(R) in the time variable t , for t near zero.

Once again, we will show the proof of Theorem 4.1 in detailed for the real case. The
periodic case follows analogously.

4.1 Regularity in space variable

The main result that we show in this section is concerning Gevrey regularity in space
variable of the solution to the Cauchy problem (3.1), which is a consequence of the local
well-posedness established in Chapter 3.

First, we observe that the solution obtained in Theorem 3.4 satisfies

u(·, t ) ∈Gδ,s,b ⇒ u(·, t ) ∈ H s , for all s ∈R,

since we have the inclusion (1.15) implying (6). Then, it follows from Proposition 1.5 that u

is C∞ in x variable.
Now, regarding the derivatives on t variable, we already know from [5] that the solution

u to the “good” Boussinesq equation belongs to C 1([0,T ]; H s−1)∩C 2([0,T ]; H s−2) for s > 5
2 , by

using Kato’s technique. In our case, the solution u belongs to

C 1([0,T ];Gσ,δ,(s+ 11
4 )−1)∩C 2([0,T ];Gσ,δ,(s+ 11

4 )−2),

for s >−1
4 , which implies

u ∈C 2([0,T ]; H s), for all s ∈R, (4.1)

once again by using (6). We observe that since u is a solution we have

ut t = uxx −uxxxx − (u2)xx ,

79
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with

uxx ∈C 2([0,T ]; H s−2), for all s ∈R,

uxxxx ∈C 2([0,T ]; H s−4), for all s ∈R,

(u2)xx ∈C 2([0,T ]; H s−2), for all s > 1

2
,

where we used (4.1) and Proposition 1.6. Therefore, we conclude that

ut t ∈C 2([0,T ]; H s−4), for all s > 1

2
. (4.2)

Then, we just concluded that u isC 4 in the time variable. Now, using again that u is a solution,
we have

∂4
t u = ∂2

t (ut t ) = (∂2
t u)xx − (∂2

t u)xxxx − (2u2
t +2uut )xx ,

with

(∂2
t u)xx ∈C 2([0,T ]; H (s−4)−2), for all s ∈R,

(∂2
t u)xxxx ∈C 2([0,T ]; H (s−4)−4), for all s ∈R,

(2u2
t +2uut )xx ∈C 2([0,T ]; H (s−4)−2), for all s −4 > 1

2
,

where we used (4.2) and Proposition 1.6. Therefore, we conclude that

∂4
t u ∈C 2([0,T ]; H s−8), for all s > 1

2
+4. (4.3)

By replicating this argument, we conclude the following

∂2k
t u ∈C 2([0,T ]; H s−4k ), for all s > 1

2
+2k and k ∈ {1,2, . . .}. (4.4)

Therefore, (4.4) allow us to take any time derivatives of the solution u in the classical sense.

Proposition 4.2. Let s > −1
4 , δ > 0, σ ≥ 1 and u ∈ C ([0,T ];Gσ,δ,s) be the solution to the Cauchy

problem (3.1). Then u(·, t ) and ut (·, t ) belong to Gσ for all t ∈ [0,T ], that is, there exists C > 0 such
that ∣∣∂l

xu(x, t )
∣∣≤C l+1(l !)σ and

∣∣∂l
xut (x, t )

∣∣≤C l+1(l !)σ, for all (x, t ) ∈R× [0,T ], (4.5)

and for all l ∈ {0,1,2, . . .}.

Proof. For any t ∈ [0,T ] and l ∈ {0,1,2, . . .} we have∥∥∥∂l
xu(·, t )

∥∥∥2

H s (R)
=

∫
(1+ξ2)s

∣∣∂̂l
xu(ξ, t )

∣∣2 dξ

=
∫

(1+ξ2)s |ξ|2l |û(ξ, t )|2 dξ

=
∫

|ξ|2l e−2δ|ξ| 1
σ (1+ξ2)se2δ|ξ| 1

σ |û(ξ, t )|2 dξ .
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We observe that

e
2δ
σ |ξ| 1

σ =
∞∑

j=0

1

j !

(
2δ

σ
|ξ| 1

σ

) j

≥ 1

(2l )!

(
2δ

σ

)2l

|ξ| 2l
σ ,

for all l ∈ {0,1,2, . . .} and ξ ∈R, which implies |ξ|2l e−2δ|ξ| 1
σ ≤C 2l

δ,σ(2l )!σ. Thus,

∥∥∥∂l
xu(·, t )

∥∥∥2

H s (R)
≤C 2l

δ,σ(2l )!σ
∫

(1+ξ2)se2δ|ξ| 1
σ |û(ξ, t )|2 dξ=C 2l

δ,σ(2l )!σ ‖u(·, t )‖2
Gσ,δ,s .

As we know ∞∑
l=0

(2l )!

B l
0(l !)2

<∞, for all B0 > 4,

then (2l )! ≤ A2l
1 (l !)2 for some A1 > 0. Therefore,∥∥∥∂l

xu(·, t )
∥∥∥

H s (R)
≤C0C l

1(l !)σ, for all t ∈ [0,T ], (4.6)

where C0 = ‖u(x, t )‖C ([0,T ];Gσ,δ,s ) and C1 = Aσ
1 Cδ,σ. Thanks to (4.6) we can prove for s ≥ 0 that

the solution u, in x variable, is Gevrey of order σ. In fact, we split the proof for s ≥ 0 into two
cases.

Case 1. Fix s > 1
2 . By Sobolev Lemma (Proposition 1.7), we have∥∥∥∂l

xu(·, t )
∥∥∥

L∞(R)
≤Cs

∥∥∥∂l
xu(·, t )

∥∥∥
H s (R)

≤CsC0C l
1(l !)σ,

which concludes that ∣∣∂l
xu(x, t )

∣∣≤C2C l
1(l !)σ, for all (x, t ) ∈R× [0,T ], (4.7)

where C2 =CsC0.

Case 2. Fix 0 ≤ s ≤ 1
2 . Applying again Sobolev Lemma (Proposition 1.7) and using the fact

that ‖·‖L2 ≤ ‖·‖H s for all s ≥ 0, we obtain∥∥∥∂l
xu(·, t )

∥∥∥
L∞(R)

≤C
∥∥∥∂l

xu(·, t )
∥∥∥

H 1(R)

'C
(∥∥∥∂l

xu(·, t )
∥∥∥

L2(R)
+

∥∥∥∂l+1
x u(·, t )

∥∥∥
L2(R)

)
≤C

(∥∥∥∂l
xu(·, t )

∥∥∥
H s (R)

+
∥∥∥∂l+1

x u(·, t )
∥∥∥

H s (R)

)
≤CC0C l

1(l !)σ+CC0C l+1
1 (l +1)!σ

=CC0C l
1(l !)σ

[
1+C1(l +1)σ

]
≤CC0C l

1(l !)σ [1+C1(l +1)]σ ,

since σ≥ 1. Thanks to the fact x ≤ ex for all x ≥ 0, we have 1+C1(l +1) ≤ e1+C1 eC1l , which give
us ∥∥∥∂l

xu(·, t )
∥∥∥

L∞(R)
≤ eσ(1+C1)CC0

(
eσC1C1

)l (l !)σ.
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Therefore, ∣∣∂l
xu(·, t )

∣∣≤C3C l
4(l !)σ, for all (x, t ) ∈R× [0,T ], (4.8)

where C3 = eσ(1+C1)CC0 and C4 = eσC1C1.

Finally, for negative values of s we have Case 3.

Case 3. Let −1
4 < s < 0. We notice that for 0 < ε< δ there exists a positive constant B > 0 such

that

∫
e2(δ−ε)|ξ| 1

σ |û(ξ, t )|2 dξ≤ B
∫

e2ε|ξ| 1
σ

(1+ξ2)−s
e2(δ−ε)|ξ| 1

σ |û(ξ, t )|2 dξ= B
∫

e2δ|ξ| 1
σ 〈ξ〉2s |û(ξ, t )|2 dξ ,

It now follows from this inequality that if u ∈C ([0,T ];Gσ,δ,s) where s < 0, then

u ∈C ([0,T ];Gσ,δ−ε,0)

and, therefore, thanks to the second case we can conclude that u satisfies∣∣∂l
xu(·, t )

∣∣≤C5C l
4(l !)σ, for all (x, t ) ∈R× [0,T ], (4.9)

where C5 depends now on δ and ε. By inequalities (4.7), (4.8) and (4.9) we have shown that
for each fixed s >−1

4 there is a constant C > 0 depending on C3, δ, σ and s such that∣∣∂l
xu(·, t )

∣∣≤C l+1(l !)σ, for all (x, t ) ∈R× [0,T ]. (4.10)

It remains to show that the same happens for ut .
Since u is a solution of (3.1), we have

ut t = uxx −uxxxx − (u2)xx ,

which implies

ut (x, t )−ut (x,0) =
t∫

0

ut t (x, t ′)dt ′ =
t∫

0

[
uxx(x, t ′)−uxxxx(x, t ′)− (u2)xx(x, t ′)

]
dt ′ ,

that is,

ut (x, t ) = ∂xu1(x)+
t∫

0

[
uxx(x, t ′)−uxxxx(x, t ′)− (u2)xx(x, t ′)

]
dt ′ .

Thus, for all l ∈ {0,1,2, . . .},

∣∣∂l
xut (x, t )

∣∣≤ ∣∣∂l+1
x u1(x)

∣∣+ t∫
0

[∣∣∂l+2
x u(x, t ′)

∣∣+ ∣∣∂l+4
x u(x, t ′)

∣∣+ ∣∣∂l+2
x (u2)(x, t ′)

∣∣]dt ′

≤ ∣∣∂l+1
x u1(x)

∣∣+T

(
sup

0≤t ′≤T

{∣∣∂l+2
x u(x, t ′)

∣∣+ ∣∣∂l+4
x u(x, t ′)

∣∣+ ∣∣∂l+2
x (u2)(x, t ′)

∣∣})
.
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Using (4.10) and the fact that u1 is Gevrey of order σ, we obtain∣∣∂l+2
x u(x, t ′)

∣∣≤C l+3(l +2)!σ∣∣∂l+4
x u(x, t ′)

∣∣≤C l+5(l +4)!σ∣∣∂l+1
x u1(x, t ′)

∣∣≤C l+2(l +1)!σ,

for all x ∈ R and t ′ ∈ [0,T ]. On the other hand, applying Leibniz Rule and (4.10) again, we
have

∣∣∂l+2
x (u2)(x, t ′)

∣∣≤ l+2∑
j=0

(
l +2

j

)∣∣∂l+2− j
x u(x, t ′)

∣∣∣∣∂ j
xu(x, t ′)

∣∣
≤

l+2∑
j=0

(
l +2

j

)
C l+2− j+1(l +2− j )!σC j+1 j !σ

≤ 2l+2C l+4(l +2)!σ,

since n!m! ≤ (n +m)!, for all n,m ∈Z+. Assuming that C ≥ 1 and remembering that 0 < T ≤ 1,
we obtain ∣∣∂l

xut (x, t )
∣∣≤C l+2(l +1)!σ+C l+3(l +2)!σ+C l+5(l +4)!σ+2l+2C l+4(l +2)!σ

≤ 4(2C )l+5(l +4)!σ

≤ 4(2C )5(2C )l (l +4)4σ(l !)σ.

The fact x ≤ ex , for all x ≥ 0, give us (l +4)4σ ≤ (e4e l )4σ, which implies∣∣∂l
xut (x, t )

∣∣≤ 4(2C )5e16σ(2Ce4σ)l (l !)σ ≤ Al+1(l !)σ,

for all (x, t ) ∈R× [0,T ], where A = max{4(2C )5e16σ,2Ceσ}. Then, the proof of Proposition 4.2 is
complete.

4.2 Bounds for mixed derivatives

We shall follow the strategy adopted in [21]. We start by introducing some notation, for
ε> 0 we consider the sequences

mq
.= c(q !)σ

(q +1)2
(q = 0,1,2 . . .) and Mq

.= ε1−q mq (q = 1,2,3, . . .), (4.11)

where c is chosen (see [1] page 196) such that the following inequality holds

k∑
l=0

(
k

l

)
ml mk−l ≤ mk . (4.12)

Removing the ends points 0 and k in the left-hand side of (4.12), we obtain

k−1∑
l=1

(
k

l

)
Ml Mk−l =

k−1∑
l=1

(
k

l

)
ε1−l mlε

1−(k−l )mk−l ≤ ε2−k mk = εMk . (4.13)
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Next, we observe that for any ε> 0 the sequence Mq satisfies

M j ≤ εM j+1, for all j ≥ 2. (4.14)

In fact,
M j

M j+1
= ε1− j c( j !)σ

( j +1)2

( j +2)2

ε1−( j+1)c( j +1)!σ
= ε ( j +2)2

( j +1)2+σ ≤ ε,

since ( j +2)2( j +1)−2−σ ≤ 1, for all j ≥ 2 and σ≥ 1 (in point of fact, we just need to observe that
the function f (x) = x2+σ− (x +1)2 satisfies f ′(x) ≥ 0, for all x ≥ 3 and f (3) ≥ 11 ≥ 0, therefore
f (x) ≥ 0, for all x ≥ 3).

Also, given C > 1 there exists ε0 > 0 such that for any 0 < ε< ε0, we have

C j+1( j !)σ ≤ M j , for all j ≥ 2. (4.15)

Indeed, (4.15) happens if, and only if,

C j+1( j !)σ ≤ ε1− j c( j !)σ

( j +1)2
⇐⇒ ε j−1 ≤ c

C j+1( j +1)2
⇐⇒ ε≤ c

1
j−1

C
j+1
j−1 ( j +1)

2
j−1

.= a j .

Thus, it is sufficient to choose ε0 > 0 such that ε0 ≤ a j for all j ≥ 2, which is possible, since
a j → 1/C , when j →∞.

For j = 1, it follows from definition of M1 and M2 that

M1 = aεM2, where a
.= 9

4(2!)σ
.

We also define the following constants

M0
.= c

8
and M

.= max

{
4p

3,
8C

c
,

4C 2

c

}
,

where c and C are constants as in (4.11) and (4.5), respectively.
Next, we shall prove our main result of this section.

Lemma 4.3. Let u(x, t ) be the solution to the Cauchy problem (3.1). If u(x, t ) satisfies inequality
(4.5), then there exists ε0 > 0 such that for any 0 < ε< ε0 we have∣∣∂ j

t ∂
l
xu(x, t )

∣∣≤ M 2 j+1Ml+2 j , j , l ∈ {0,1,2, . . .}, (4.16)

for all (x, t ) ∈R× [0,T ], where Mq is defined as in (4.11).

In order to prove Lemma 4.3 we need the following key result.

Lemma 4.4. Given k,n ∈ {0,1,2, . . .}, we have

n∑
p=0

k∑
q=0

(
n

p

)(
k

q

)
Ln−p+2(k−q)Lp+2q ≤

m∑
r=0

(
m

r

)
Lr Lm−r , (4.17)

where {L j } j∈Z+ is any sequence of positive numbers with m = n +2k.
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Proof. For k = n = 0, inequality (4.17) reads L2
0 ≤ L2

0, which is trivially true. Therefore, we
assume that either k ≥ 1 or n ≥ 1.

Changing the order of the summation and making a change of variables, we obtain

n∑
p=0

k∑
q=0

(
n

p

)(
k

q

)
Ln−p+2(k−q)Lp+2q =

k∑
q=0

n∑
p=0

(
n

p

)(
k

q

)
Ln−p+2(k−q)Lp+2q

=
k∑

q=0

n+2q∑
r=2q

(
n

r −2q

)(
k

q

)
Lm−r Lr

=
m∑

r=0

i1(r )∑
q=i0(r )

(
n

r −2q

)(
k

q

)
Lm−r Lr ,

with
i0(r ) = max

{
0,

[r −n

2

]}
and i1(r ) = min

{
k,

[r

2

]}
,

where [x] denotes the integer part of a number x. To complete the proof, we must to show
that

i1(r )∑
q=i0(r )

(
n

r −2q

)(
k

q

)
≤

(
m

r

)
,

which is a consequence of the following result.

Lemma 4.5. For all i0(r ) ≤ θ ≤ i1(r ), we have
θ∑

q=i0(r )

(
n

r −2q

)(
k

q

)
≤

(
m −k +θ

r

)
. (4.18)

In fact, using (4.18) with θ = i1(r ), we obtain

i1(r )∑
q=i0(r )

(
n

r −2q

)(
k

p

)
≤

(
m −k + i1(r )

r

)
.

It suffices to show that (
m −k + i1(r )

r

)
≤

(
m

r

)
. (4.19)

For i1(r ) = k, relation (4.19) holds as an equality. If 0 ≤ i1(r ) < k, then m−k + i1(r ) ≤ m−1 < m,
which shows that (4.19) is true, since(

a′

b

)
≤

(
a

b

)
, for all 0 ≤ a′ ≤ a. (4.20)

Indeed, remembering the elementary property(
a

b

)
=

(
a −1

b −1

)
+

(
a −1

b

)
, for all a,b ∈ {1,2, . . .},

which implies (
a

b

)
≥

(
a −1

b

)
. (4.21)
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By applying (4.21) sufficiently times, we obtain inequality (4.20).
Therefore, inequalities (4.18) and (4.19) finishes the proof of Lemma 4.4.

To the proof of Lemma 4.4 be completely done, it just remains the proof of Lemma 4.5,
which we will do now.

Proof of Lemma 4.5. We shall prove it by induction on θ. For that, we use the following ele-
mentary inequality: If a,b,c ∈Z+, b ≤ a then(

a

b

)
≤

(
a + c

b + c

)
. (4.22)

Using the definition of m and applying (4.22) with a = n, b = r −2i0(r ) and c = i0(r ), we have(
n

r −2i0(r )

)
=

(
m −2k

r −2i0(r )

)
≤

(
m −2k + i0(r )

r − i0(r )

)
. (4.23)

Now, since the following inequality happens(
β

α

)(
λ

γ

)
≤

(
β+λ
α+γ

)
, (4.24)

for α,β,γ,λ ∈Z+ with α≤β and γ≤λ, from (4.23) we get(
n

r −2i0(r )

)(
k

i0(r )

)
≤

(
m −2k + i0(r )

r − i0(r )

)(
k

i0(r )

)
≤

(
m −k + i0(r )

r

)
,

which proves (4.18) for θ = i0(r ).
Next, we assume that (4.18) holds for i0(r ) ≤ θ < i1(r ) and we will prove it for (θ+1). By

using the induction hypotheses, we obtain
θ+1∑

q=i0(r )

(
n

r −2q

)(
k

q

)
=

θ∑
q=i0(r )

(
n

r −2q

)(
k

q

)
+

(
n

r −2(θ+1)

)(
k

θ+1

)
≤

(
m −k +θ

r

)
+

(
n

r −2θ−2

)(
k

θ+1

)
.

It follows from (4.22) with a = n, b = r −2θ−2 and c = θ that(
n

r −2θ−2

)
≤

(
n +θ

r −θ−2

)
.

Thus, using (4.24) and (4.21) we obtain
θ+1∑

q=i0(r )

(
n

r −2q

)(
k

q

)
≤

(
m −k +θ

r

)
+

(
n +θ

r −θ−2

)(
k

θ+1

)

≤
(

m −k +θ
r

)
+

(
n +θ+k

r −1

)

=
(

m −k +θ
r

)
+

(
m −k +θ

r −1

)

=
(

m −k +θ+1

r

)
,

which completes the proof of Lemma 4.5.
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Finally, we finish this section with the proof of Lemma 4.3.

Proof of Lemma 4.3. Wewill prove (4.16) by induction on j . Let j = 0. For l = 0, it follows from
(4.5) that

|u(x, t )| ≤C ≤ M M0, for all (x, t ) ∈R× [0,T ],

since M0 = c
8 and M ≥ 8C

c . Similarly, for l = 1 we have

|∂xu(x, t )| ≤C 2 ≤ M M1, for all (x, t ) ∈R× [0,T ], (4.25)

since M1 = m1 = c
4 and M ≥ 4C 2

c . For l ≥ 2, it follows from (4.5) and (4.15) that there exists ε0 > 0

such that for any 0 < ε< ε0, we have∣∣∂l
xu(x, t )

∣∣≤C l+1(l !)σ ≤ Ml ≤ M Ml , for all (x, t ) ∈R× [0,T ],

since M ≥ 4
p

3 ≥ 1. This complete the proof of (4.16) for j = 0 and l ∈ {0,1,2, . . .}. Also, since
ut has the same estimates that u in (4.5), similarly we prove that (4.16) holds for j = 1 and
l ∈ {0,1,2, . . .}.

Next, we will assume that (4.16) is true for 0 ≤ q ≤ j and l ∈ {0,1,2, . . .} with j ≥ 1 and we
will prove it for j +1 and l ∈ {0,1,2, . . .}. We begin by noticing that∣∣∂ j+1

t ∂l
xu

∣∣= ∣∣∂ j−1
t ∂l

x(∂2
t u)

∣∣≤ ∣∣∂ j−1
t ∂l+2

x u
∣∣+ ∣∣∂ j−1

t ∂l+4
x u

∣∣+ ∣∣∂ j−1
t ∂l+2

x (u2)
∣∣,

since j ≥ 1 and u is a solution of (4).
Using the induction hypotheses and (4.14), we obtain that there is ε0 > 0 such that for all

0 < ε< ε0 ∣∣∂ j−1
t ∂l+2

x u
∣∣≤ M 2( j−1)+1Ml+2+2( j−1) = M 2( j+1)+1M−4Ml+2( j+1)−2

≤ ε2M−4M 2( j+1)+1Ml+2( j+1) ≤
1

3
M 2( j+1)+1Ml+2( j+1), (4.26)

since M ≥ 4
p

3 and and we can assume 0 < ε≤ ε0 ≤ 1. Furthermore, in the same way, we have∣∣∂ j−1
t ∂l+4

x u
∣∣≤ M 2( j−1)+1Ml+4+2( j−1) = M−4M 2( j+1)+1Ml+2( j+1) ≤

1

3
M 2( j+1)+1Ml+2( j+1). (4.27)

About the nonlinear term, applying Leibniz’s rule twice and using the induction hypothe-
ses, we have

∣∣∂ j−1
x ∂l+2

x (u2)
∣∣≤ l+2∑

p=0

(
l +2

p

)∣∣∂ j−1
t

(
∂

l+2−p
x u∂p

x u
)∣∣

≤
l+2∑
p=0

j−1∑
q=0

(
l +2

p

)(
j −1

q

)∣∣∂ j−1−q
t ∂

l+2−p
x u

∣∣∣∣∂q
t ∂

p
x u

∣∣
≤

l+2∑
p=0

j−1∑
q=0

(
l +2

p

)(
j −1

q

)
M 2( j−1−q)+1Ml+2−p+2( j−1−q)M 2q+1Mp+2q

= M 2 j
l+2∑
p=0

j−1∑
q=0

(
l +2

p

)(
j −1

q

)
Ml+2−p+2( j−1−q)Mp+2q .
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It follows from (4.17) with n = l +2, k = j −1 and Lr = Mr that

l+2∑
p=0

j−1∑
q=0

(
l +2

p

)(
j −1

q

)
Ml+2−p+2( j−1−q)Mp+2q ≤

m∑
r=0

(
m

r

)
Mr Mm−r ,

where m = n +2k = l +2 j . Thus, using (4.13) and (4.14), we obtain for all 0 < ε≤ ε0

∣∣∂ j−1
x ∂l+2

x (u2)
∣∣≤ M 2 j

2Mm M0 +
m−1∑
r=1

(
m

r

)
Mr Mm−r


≤ M 2 j (2M0 +ε)Ml+2 j

≤ M 2( j+1)+1M−3(2M0 +ε)ε2Ml+2( j+1),

since l +2 j ≥ 2 for all j ≥ 1 and l ∈ {0,1,2, . . .}. Also, we can assume ε0 ≤ (2M0 +1)−
1
2 ≤ 1, then

(2M0 +ε)ε2 ≤ (2M0 +1)ε2
0 ≤ 1,

which implies that ∣∣∂ j−1
t ∂l+2

x (u2)
∣∣≤ 1

3
M 2( j+1)+1Ml+2( j+1), (4.28)

since M−3 ≤ M−4 ≤ 1
3 .

From (4.26), (4.27) and (4.28) we prove (4.16) for j +1 and l ∈ {0,1,2, . . .}, which finishes the
proof.

4.3 Proof of regularity in time variable

Finally, in this section we prove our last result.

Proof of Theorem 4.1. Our goal is to prove that there exists a constant C > 0 such that∣∣∂ j
t u(x, t )

∣∣≤C j+1( j !)2σ, (4.29)

for all j ∈ {0,1,2, . . .} and for all (x, t ) ∈R× [0,T ].
Applying (4.16) for j ∈ {1,2, . . .} and l = 0, we obtain that there is ε> 0 such that∣∣∂ j

t u(x, t )
∣∣≤ M 2 j+1M2 j

= M M 2 jε1−2 j c(2 j )!σ

(2 j +1)2

≤ Mεc

(
M

ε

)2 j

(2 j )!σ

= L0L j (2 j )!σ,

where L0 = Mεc and L1 = (Mε−1)2. Also, as we know
∞∑

j=0

(2 j )!

A j
0( j !)2

, for all A0 > 4,
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then (2 j )! ≤ A2 j ( j !)2 for some A > 0. Therefore,∣∣∂ j
t u(x, t )

∣∣≤ L0L j Aσ j ( j !)2σ ≤C j+1( j !)2σ, for all (x, t ) ∈R× [0,T ],

where C = max{L0,L Aσ}. This finishes the proof of Theorem 4.1.
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