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“Talis vita, finis ita.”
IMITATIONE CHRISTI






Em ambos, circulo e reta, este trabalho tem como finalidade demonstrar que o problema
de Cauchy para a "boa" equagdo de Boussinesq é localmente bem posto em uma classe de
fungdes Gevrey, a qual inclui classes de funcées analiticas que podem ser estendidas holo-
morficamente em uma faixa simétrica no plano complexo em torno do eixo-x. Além disso,

informacdes a respeito da regularidade da solugdo na varidvel temporal serdo obtidas.






Abstract

In both the line and the circle, we shall to prove that the Cauchy problem for the “good”
Boussinesq equation is locally well-posed in a class of Gevrey functions, which includes a
class of analytic functions that can be extended holomorphically in a symmetric strip of the
complex plane around the x-axis. Additionally, information about the regularity of the solu-
tion in the time variable shall be provided.
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Introduction

In 1834, while on horseback along side a narrow barge channel in Edinburgh, John Scott
Russell observed a smooth wave that propagated along the channel preserving its shape and
speed. Intrigued, the young scientist followed the wave on horseback as it rolled on at about
eight or nine miles an hour, but after a chase of one or two miles he lost it. He challenged the
mathematical community of the day to explain the phenomenon. In the following, we have

his proper words explaining what he saw:

“Iwas observing the motion of a boat which was rapidly drawn along a narrow channel by
a pair of horses, when the boat suddenly stopped - not so the mass of water in the channel
which it had put in motion; it accumulated round the prow of the vessel in a state of violent
agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the
form of a large solitary elevation, a rounded, smooth and well defined heap of water, which
continued its course along the channel apparently without change of form or diminution
of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight
or nine miles an hour, preserving its original figure some thirty feet long and a foot to a
foot and a half in height. Its height gradually diminished, and after a chase of one or two
miles I lost it in the windings of the channel. Such, in the month of August 1834, was my
first chance interview with that singular and beautiful phenomenon which I have called
the Wave of Translation. "

John Scott Russel

Some years of Russel’s life was devoted to replicate the Wave of Translation. A 30-foot
basin was built by him to test different theories. The discovers of these experiments was pre-
sented at a British Science Association meeting in Edinburgh, where was described the waves
and the mechanics behind them. Thus began a range of studies and investigations regarding
solitary waves. Throughout the next 30 years, the solitons caught attention of the scientific
community, these waves were extensively studied appearing in the mathematical activity
with application for optics, acoustics, quantum mechanics, oceanography, astrophysics, and
others.

Xvii
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In 1872, Joseph Boussinesq proposed the following equation
Ure — Uxx — Uxxxx T (uz)xx =0 (1)

to describe the propagation of long waves with small amplitude on the surface of water [8].
It possesses soliton traveling wave solutions

2

ux, 1) = g (c* —1)sech? (x—ct |,

where u(x, t) and c are the amplitude and the speed of the wave, respectively, thus providing
for the first time mathematical evidence in favor of John Scott Russell’s observation of the
solitary wave.

In the studies of the Russel’s observations others famous equations appeared. We would
like to mention the famous KdV equation, which was developed in 1895 by Diederik Ko-
rteweg and Gustav de Vries [28], where they expanded Boussinesq’s work. The KdV equa-
tion is given as follows

Ut + uxx_x + uu_x = O.

Just KdV alone has a long and celebrated history. In this work, we are going to focus on
the Boussinesq equation, more precisely in the “good” one. The equation (1) is nowadays
known as “bad” Boussinesq equation. The “badness” of the equation lies in the fact that the
corresponding initial value problem is ill-posed.

The mathematical term well-posed problem (or ill-posed problem) stems from a defini-
tion given by Jacques Hadamard. He believed that mathematical Cauchy problems of models

of physical phenomena should satisfy the following:
1. There is a solution that has the same regularity of the initial data.
2. The solution is unique.
3. The data-to-solution map depends continuously on the initial data.

If an initial value problem satisfies the three items above, then the problem is called well-
posed.

The ill-posedness of (1) can be seen, for example, by seeking small amplitude solutions
of the form

u(x, ) =ee” FTI0L )2 — k2 _k* keRand e < 1, )

such that the nonlinear term of (1) is negligible. We observe that even the small amplitude
tamily of solutions (2) grows exponentially with time for |k| > 1, since the time frequency w
is imaginary and the wave amplitude is a rate of about ¢¥’!. In other words, the small initial
ikx

data uy(x) = ee”"** immediately evolves to the exponentially large solution, which shows that

the third item of the well-posedness definition fails.
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One way of solving the issue of ill-posedness is to change the sign of the fourth derivative

in (1) from negative to positive resulting in the following equation
02u—0%u+0tu+0i(u) =0, 3)

which has been suggested by Zakharov [38] as a model of nonlinear vibrations along a string,
and also by Turitsyn [37] for describing electromagnetic waves in nonlinear dielectric mate-
rials. The dispersion relation is now given by w? = k? + k*, implying that w € R, for all k € R.
Since (3) has results of well-posedness, it is known as the “good” Boussinesq equation. Za-
kharov [38] has shown that both the “bad” and the “good” Boussinesq equations are inte-
grable. Furthermore, the initial value problem of these equations was analyzed via inverse
scattering techniques by Deift, Tomei and Trubowitz [10].

In this work, we consider the initial value problem for the “good” Boussinesq (gB) equa-

tion
02u—02u+0iu+02(w?) =0, xeRorT, reR,

u(x,0) = (), (4)

0;u(x,0) = 0xu1 (%),
and study its local well-posedness for initial data in Gevrey spaces on both the line and the
circle. These include spaces of analytic functions that can be extended holomorphically in
a symmetric strip of the complex plane around the x-axis. There is a reason to consider the
second initial data as a derivative of a square-integrable function, which is regarding to the
Hamiltonian functional related to the equation (for more details see [5] and [29]). Before
stating our results precisely we shall recall a few results about this Cauchy problem.

The local well-posedness of the Cauchy problem for the “good" Boussinesq equation (4) in
Sobolev spaces has a relatively recent history. Bona and Sachs [5] studied the well-posedness
for Boussinesq type equations given by the same expression as in (4), where the nonlinearity
u? is replaced by a C* function f(u). They showed that the Cauchy problem for such equa-
tions is well-posed for initial data up € H $*2(R) and u; € H*1(R), with s > 1/2, and the solution
u satisfies, for some T >0,

ue C([0, T); HS2(R) n CL([0, T); HS(R)) n C([0, T1; HS"2(R)).

They also proved that the solitary wave solutions to these equations are nonlinearly stable
for a range of their phase speeds, which leads to the conclusion that initial data lying close
to a stable solitary wave evolves into a global solution of these equations. These results were
improved by Linares [29], who proved the local well-posedness for the Cauchy problem (4)
with u? replaced by |u|®u, 0 < a < 4, and with initial data (ug, u1) € H'®) x H"}(R). He also
proved that, for small initial data (uo, u1) € H'(R) x H(R), the solution is actually global in
time and is in H'(R) in space variable. We point out that these results hold true for the
“good" Boussinesq equation.

Farah [12] improved the local well-posedness results above for the “good" Boussinesq
equation by proving that the Cauchy problem (4) is locally well-posed when (1, u;) € H*(R) x
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H*'(R) and s > —1/4. One of the main ideas in his proof is to define suitable to the linear
part of the equation Bourgain type spaces and using them to derive the appropriate bilinear
estimates. More precisely, for s,b € R he defines the weighted Sobolev spaces X;j as the
completion of the Schwartz class in R* with respect to the norm

lullx,, =10 +IT=y@D A +1ED*al 2,

where y(¢) = V&2 +&* and @ denotes the time-space Fourier transform of u. Similar results
were proved by Farah and Scialom [13] in the periodic case.

This type of spaces was first introduced by Bourgain [6] and [7] in the studies of nonlin-
ear dispersive wave problems. The Bourgain spaces turn out to be appropriated spaces to
establish a fixed point argument. In this work, we will mainly use these spaces in order to
prove the well-posedness results.

Let us now define the spaces needed for describing our results. We begin with the spaces
of analytic Gevrey functions that our initial data will belong to. For seR, 6 >0and 0 =1, we
define the spaces

GU,(S,S(R) — {fe LZ(R); ”f”éo,&S(R) :f<§>25 326|€|1/U|f(€)|2 df <OO}, (5)
where (£) = 1/1+¢2. We observe that these spaces satisfy the following
GOS[R) < HY (R), forall s’ eR. (6)

In addition, if ¢ € GZ%*(R), then ¢ belongs to the Gevrey class G’ (R). In the case when o =1,
we denote G*(R) = G*(R). Thus, if ¢ € G$(R) then ¢ is analytic on the line and admits a
holomorphic extension @ on the strip S5 = {x+iy; |yl < 6}.

Figure 1: Strip around x-axis.

Hence, in this context, we refer to the parameter § > 0 as the uniform radius of analyticity
of the function ¢.

For the periodic case, the norm in the space G%°(T) is defined by simply replacing the
integral in (5) with a sum as follows

G7O(T) = {f € LW 1 fWpaqry = ) 0% 1 P < oo}.

kez
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The above remarks remain true in this case and, moreover, one can easily see that if ¢ € G?(T),
then there exists § > 0 such that ¢ € G?93(T), for all s € R.

Next, we introduce the spaces needed for stating our main results precisely. Motivated
by [12], we define the analytic Gevrey version of Bourgain spaces that are appropriate for
the gB equation. For s,b€R, § >0 and o = 1, we denote by X, 5 5(R) the completion of the
Schwartz class #(R?) with respect to the norm

lullx, 5@ = ( f f 2 (| —y @) &% e, 1) R dr dé | (7)

where y (&) = /{2 + &%, In the periodic case, these spaces are defined as the completion of the
space of the functions defined on T x R which are in the Schwartz class in time variable and

are smooth in space variable, with respect to the norm

2
2l X, 5,5 5(m = (Z f 2 (7] — ()2 <n)2slﬁ(n,r)|2dr) . (8)

nez

We often omit R or T in the notation of these spaces when it is clear by the context which
one is being considered or when the statement holds for both.
Also, forany T=0, X ., denotes the localized space endowed with the norm

lullyr = inf {jal i, £) = u(, 1 forall re0,T]}. 9)

Xo.,8,5,b )
UEXg,5,5,b o

Furthermore, a very important property of the Bourgain space X, s 5, is that these spaces are
continuously included in the Hadamard space C ([0, T1,G°%), for every T > 0.
Now, we are ready to state our first main result that happens in both the real and the

periodic case, which reads as follows.

Theorem 1. Let s > —1/4, § > 0 and o = 1. Then, for initial data (ug, u;) € G7%5 x GZ%571, there

exist a lifespan
Co

T= T(uo, ul) = »
A+ lluoll goss + w1 ll gos,s-1)*

(10)

where & > 1 and 0 < ¢y < 1 are constants that depend only on s, and a unique solution u of the Cauchy

problem for the “good” Boussinesq equation (4) such that u e C([0, T1; G7*$)n X T

5.5.5.b" Moreover, the

data-to-solution map is locally Lipschitz.

Our next goal is to study the time regularity of the solution established in Theorem 1,
which is motivated by the works [20], [21] and [22] on time regularity of solutions to KdV
type equations with analytic Gevrey data. Although the local solution to the Cauchy problem
with analytic initial data is analytic in the space variable (see Trubowitz [36] for the periodic
case and T. Kato [23], T. Kato and Masuda [24] and K. Kato and Ogawa [25] for the non-
periodic case), it may lose regularity in time. However, for initial data in the Gevrey class
G?%$, it is proved in [20] that the solution of the periodic higher dispersion KdV equation is
Gevrey of order mo, where m is the order of the dispersive term.
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Looking at the linear part of the gB equation, that is, the equation 07u — d%u + dtu and
ignoring the term 92 u, we see that two time derivatives are equal to four space derivatives,
which implies that if the solution is Gevrey of order o in space variable, then it is going to be
Gevrey of order 20 in time variable. Our second main result says that the same happens for
the gB equation.

Theorem 2. Let s> —-1/4, 6 >0and o = 1. If (up, 1) € G x G9O5=1 then the solution u €

C([0, T1; G*%%) given by Theorem 1 belongs to the Gevrey class G*° in time variable.

The results presented in this thesis was published in 2019, as the reader can see in [2].
Also, other papers was produced in this period concerning other equations, see in [3], [14]
and [15].

This work is organized as follows. In Chapter 1, we introduced some classic spaces and
notation that will be useful in what follows. In Chapter 2, we show a detailed proof of the
bilinear estimates in Bourgain spaces in the real and in the periodic cases, which are the
main results to prove the wel-posedness for gB equation in Sobolev spaces in both R and T.
Chapter 3 is dedicated to present the proof of Theorem 1, while in Chapter 4 the proof of
Theorem 2 is provided.



CHAPTER

Preliminaries

This chapter is dedicated to present important spaces that we shall use in the following
chapters. Also, itis included some classical results and inequalities about these spaces. Some
of the proof are omitted, but the reader can find them in the references that we will cite
throughout the chapter.

1.1 The Sobolev Spaces H®

Natural spaces to measure regularity of the initial data in Cauchy problems are the clas-
sical Sobolev spaces H*, s € R, which are defined as

H'®) = {fe S ®; | i = f (L+&D° 1 FOPde <oo},

R

in the line, where .’ (R) denotes the class of tempered distributions and f denotes the Fourier
transform of f, which is given by

f©= f e "™ fx)dx,

R

if f is an integrable function. We will often use the notation (¢) = (1+¢ 2)%, then we can write
1 es = 114E)° F(&) IIL? In periodic case, we have

HS(T) = {f e S (T); ||f||§m) =Y a+nmHIfm* < oo}.
ne”zZ
Example 1.1. Let f(x) = x[-1,1)(x). We have that

1 1 _
f(g):fe‘ixfdx:f[cos(—x€)+isin(—x€)]dx:—2%.
1 |

Thus, f € HSR) if s< 1.

Example 1.2. Let & be Dirac Delta distribution centered at the origin. Since & = 27, we have that &
belongs to H® for s < —3.
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Intuitively, a Sobolev space consists of functions with sufficiently many derivatives and
equipped with a norm that measures both the size and regularity of a function.

Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Their impor-
tance comes from the fact that weak solutions of some important partial differential equa-
tions exist in appropriate Sobolev spaces, even when there are no strong solutions in spaces
of continuous functions with the derivatives understood in the classical sense.

From the definition of Sobolev spaces we deduce the following properties, which the
proofs can be found in [30].

Proposition 1.3 (Proposition 3.1, page 46 in [30]).
1. If s< s, then H* (R) € H'(R).

2. H*(R) is a Hilbert space with respect to the inner product (-,-) defined as follows

If f,ge H'R), then (f,g>s=f(1+€2)5f(€)(1+62)§§(6)d€-
R

3. For any s € R, the Schwartz space & (R) is dense in H*(R).

4. If sy ss< sy, withs=0s1+(1-0)s2, 00 <1, then
1-6

0
1 s = 0 s 1 e

A really interesting fact is that for positive integer values of s, we can give a description
of H*® without using the Fourier transform.

Proposition 1.4 (Theorem 3.1, page 47 in [30]). If k is a positive integer, then H k(R) coincides with
the space of functions f € L?(R) whose derivatives (in the distribution sense) fV) belongs to L(R) for
every j < k. In this case, the norms

12

k
| £l e and Z “f(j)
=1

are equivalent.

Furthermore, the following proposition allows us to relate “weak derivatives” with deriva-
tives in the classical sense.

Proposition 1.5 (Embedding - Theorem 3.2, page 47 in [30]). If s > k+ %, then H'(R) is continu-
ously embedding in CX (R), the space of functions with k continuous derivatives vanishing at infinity.
In other words, if f € H*(R), s> 1 +k, then (after a possible modification of f in a set of measure zero)
feCk®) and

[l =170 e

From the point of view of nonlinear analysis the next bilinear estimate is essential.
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Proposition 1.6 (Theorem 3.4, page 47 in [30]). If s > L, then H*(R) is an algebra with respect to
the product of functions. That is, if f,g € H*(R), then fg e H*(R) with

1780 e =171 N8

Hs Hs*

The next important property of these spaces will be really useful in Chapter 4.

Proposition 1.7 (Sobolev Lemma). For s> %, we have
lullzo < Cllull gs,

for some positive constant depending only on s.

Proof. By using the inverse Fourier transform formula, we have

27| u(x)| = ( f e"xfa(é)dé\ < f |7(&)|dé.

Then, it follows from the Cauchy-Schwarz inequality that

; 1
2rlucl = [ +¢ha s @ Haglde = ( [0+ e7de) e (L1)

Now, we observe that

T ¥ ~25+1 |00 s+1
[arersag=2 [arersac=a [2avpBa=an | -2~ )
J J -2s+1 |3 2s-1
for all s> 1. Therefore, we conclude from (1.1) the following bound for the L*-norm
Il zoo < 2Cs—1) ll2ell s, (1.3)
which finishes the proof. O

We finish this section with an important inequality, which the proof comes from [18].

Lemma 1.8 (Lemma 3.2, page 170 in [18]). Let se R, —% <b'<0<b<sb +1and0< T <1, then

<cT " g| ., (1.4)

b
Hl

t
w(t)fg(t’)dt’
0

where v is a cut-off function in C°(=2,2) with 0<y <1, w(H) =1on [-1,1] and w1 (1) =y (£).

Proof. To prove (1.4), we write

t t
1 o
u/T(t)fg(r’)dr’:wT(t)Effe’”g(r)drdt’.
0 0
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By using Fubini’s Theorem, we have

iT

t t .
1 N " , 1 N 1T _
U/T(l‘)fg(t')dt'=U/T(l‘)§fg(f)fe” dt dr=wT(t)§fg(ﬂ(e )dr-
0 0

Now, we split the integral in two regions |7|T <1 and |7|T > 1 and obtain

(t)f () dt' = yr(— f A()(em_l)d Fyr(— f A(r)(em )dr
vr § =V 27T g iT THYr 27T & iT
0

I7|1T<1 7| T>1
=D+ D+ JID,
with
D= (l‘)i 3 t—k f Gn) lgm)dr
SVT 2m = k! & ’
=l T=1
1 e
D = -yt~ f g (i) ~dr,
[T T>1
1 = TIT (2 \—
(III)=WT(I)E f gMe 1) T,
[T|T>1

where we used the fact

o (it7)k
T _ 7 _
e l—kz_l b

The next step is to estimate the H’-norm of each term above.

Estimation of (). If |7|T <1, then |7]¥~! < (T~1H)*~! for all k= 1. Thus, we have

00 1 ~
”(D”Hﬁ’SZE t*yr () f (i) 1gmdr )
k=17 TIT<1 i
sZETl—’C tfy (1) f gmdr|
k=1"" I7IT<1 Hy
[e.@]
Tl—k R
:Z / g(r)dr H tku/T(t)’ .
k! Ht
k=1 71 T<1

Using Cauchy-Schwarz inequality, we observe that

1

fg(r)dr‘z‘ f g @by dr SIlgIIHu( f <r>‘2”'dr),

IT|T<1 IT|T<1 [T|T=<1

which implies
1

0 Tl—k , 3
100 < gl D - Htk”’T‘Hb( f (12 dr).

k=1 7| T<1
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For our goal, it is sufficient to prove

2, -k 3
Z k! HtkWT‘Hb( f <T>_2b,dr) =cr (1.5

k=1 7| T<1

We have || tfy 7| = H(T)b;"’w\T(r) 0L2 with

t/ktﬁ(r):fe_i”tkwT(t)dt:fe_i”tkw(%)dt.

By making the change of variables ¢ = T's, we obtain

thy (1) = f e T (Ts)ky () Tds = TFH! f eI sky (s)ds,

that is, thyr(r) = T**!

t/kT/J(TT)] . Thus,

1 1
=Tk U (r)Zb‘t/’“T//(TT)‘ZdT)Z = 7k (f<T‘1p>2b)tkw(p)\2 T‘ldp)z,

|¢“v1]
where we made the change of variables p = Tt. Since T~2 > T~! > 1, we observe that
(T =1+ T 2p2 < T2(1+p?) = T"%(p)?,

which implies the following

24 (1.6)

R T e 1o

Using that b <1+ b’ <1, we obtain

k-1
L + Hkt v

k k _ |l £k kot
[#vl=levl = v el

d k _ |l +k
o], =
Since suppy < [-2,2], for all € R and k =1 we have the boundness

iy =28 @), kT ly @l =2 kiy (]l and 1y (91 = 25y (n),

Thus,

|5, = K25 @I ]+ 19/ 2) = k25
for all k = 1, which implies from (1.6) that

< C, TP T* k2,

k
|¢“v+]

Hb

Then,

where we used that
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On the other hand, since b’ <0 and T72 =1, we have

1 1 1
(f (T)_Zb,dr) :( f (1+12)_b,dr) S( f (2T_2)_b,dr)

17| T<1 IT|T<1 [T T<1
1

/ ! 2 !
52‘%#’( f ldr) —Cy TV T2,
IT|T<1

Therefore,

o0 1

Tk _op 2 bl | —(b-b'
P HtkwT‘Hb( f ()20 dr) < Cy TP TECy TV 173 = Gy 700,
k=1 7| T<1

which concludes that (1.5) goes true and finishes the desired bound for |(D) || HY -

Estimation of (II). We observe that

1D < vl - (1.7)

wr (D) f (1) 'g(r)dr = ‘ f (i1)"'g()dr
7IT>1 AT S|
Using Cauchy-Schwarz inequality, we obtain

1
f(ir)_lg(r)dr‘:' f <r>‘b'(ir)‘1<r>b'§(r)dr‘s( f <r>‘2”'lrl‘2df)2||g||Hb'»
7| T>1 [T T>1 [T T>1

with

o0 o0
f @2 2dr=2 | a+H Y1 %dr = 2[(1 + T2y Y r2g2 14,
~1 1

|T|T>1 T
o0

< TZb/“f(l + 597V 52,
1

since T72>1 and —b' = 0. Furthermore,
o0 [o.@] (o.0]
f(l + sz)_b,s_zds < f(Zsz)_b’s_zds =27V f sV 245 < 00,
1 1 1

since 2b’' +2 > 1. Then,

1
@7 e 2dr) gl = CoT gl (18)
7| T>1

On the other hand, ||y 7| ;» = [¢T)? @ 1| ;2 with

V(1) :fe_i”u/(%)dt:fe_iSTTu/(s)Tds: TH(T7).
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Thus,

1 1
2 2
el =( [ @ r2rorar) = 1{ [ (7)" worTap)

1
2

IA

1
T%U<T‘lp>2blu7(p)lzdp) = T%(fT_2b<p>2bW(p)lzdp)

e e (1.9)

since (T71p)?" = 1+ T=2p%)b < T72b(1 + p2)P = 772 (p)*" . Joining inequalities (1.7), (1.8) and
(1.9), we conclude that

1Dy < Co T 2727 [yl Nl v = Cont T N8l o

which finishes the desired estimate for || (ID|| HY
Estimation of (III). We can write (II) = (27) "'y (1) J (1), where
J(t) = f e (it) ' g(r)dr.
[7|T>1

Then, we have

1A = o~ (@ @ , = @ w7 T@) - (1.10)
Let us consider the following useful inequality
(‘L’)bSC(<T—y>b+|y|b), for all y € R. (1.11)
Indeed,
T < (7= yl+1yD?* =17 =y + 217 = yllyl+|y* s 207 - yI* + 1y,
since 2|7 — yllyl < |t — y|* + |y|*>. Thus, using that b >0, we obtain
b 2,2 2 2013 ~ o2 2 2,2
M7 =QQ+ITP2 < (1+2(t-yI°+1y19))2 <22A+IT—yI* +1y19)2.
To prove (1.11), it is sufficient to guarantee that the following goes true
(a+ﬁ)gsa§+ﬁg, for all a, = 0. (1.12)

If @ =0, then (1.12) is true as an equality. We assume a # 0, then (1.12) occurs if, and only if,

(1+2) <14 (2

2

S

a

Considering the function f(#) =1+ 7 —(1+0% and noticing that f(0) =0 and
£(1) = 159 (rl%—l a4+ t)g_l) >0, forall £>0,

where we used that 0 < g <1, we have f(#) = 0 for all £ = 0. Therefore, (1.12) is proved and
also (1.11).
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Using (1.11), we obtain
) g7+ (@) :f<r>b7(r—y)@(y)dy
= Cf (=) Ta-pwr ) +Ta -y wr)| dy
=C|(@"7)+ 7+ T+ (7).
Hence, returning to (1.10) and applying Young inequality, we have

ot 7 )] )
e’ ‘)ITIb@T“Ll ”THLZ)

1A < (| (@2 T) + 71
SC(”‘VTHLI "7

‘|

Denoting by y the characteristic function of the set {r € R; |7|T > 1}, we have
J(n) = f (YD TEM)dr =F (D TEM) (1),

where Z; ! denotes the inverse Fourier transform on ¢ variable, which shows that J(r) =
¥ (i1)"1g(1). Thus,

1

2
LZ:( f |r|‘2<r>2b|§(r)|2dr)

|[TIT>1

|7 , = @ x@an g

1

1
’ N 2 _ 7 2
= f 17|72 (7)2b=0) (1y2b |g(T)|2dT) S( sup |7| 2 (r)2b b)) ||g||Hh/.
[T T>1
[7|T>1

It follows from 0<b—-b'<1and T~ =1 that
17172 (1) 201 = |7 72(1 4+ 72)bY = (|T|—2(b—b’)—1 " |T|2(1—(b—b’)‘1))b—b’
< (TZ(b—b’)’l N T—Z(l—(b—b’)’l))b—b’

= T2(1+ T 2PV < pb-V p20-(b-b)
for all |7] > T~!. Hence, we obtain
H @7 0L2 <Cppy TP | g o -
Furthermore, recalling that ¢ 1 () = Ty/(T1), we have

731, = [1croirds = [1ids= 7],

Therefore,

@PJm| . < Cy.bp == ||g||Hb

77,

Now, it remains to estimate |[|71°@7| ;1 | 7] - We notice that

12

w72, = [1rt@crnirds = [ir-steoias= 177 [1sPiids =1,
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since ¥ € . and then
f |s|b|1/7(s)|ds <oo, forall seR.

On the other hand, we recall that J(1) = y(7)(it) "' §(z), which give us

1 1

~ 2 , , 5

||f||L2=( f Irl‘zlg(r)lzdr) :( f 7172 (1) 2 (02 g (0 Pdr
|T|T>1 7| T>1

1

2

s( sup |T|_2<T>_2b,) g g -
|[T|T>1

Since 0 < -b' <1 and T~! =1, we obtain

-1 I\~ _}
171722 = 72+ 1?7 = (rz(b/) + 720+ )) b

< (T—Z(b’)’l + T—2(1+(b’)*1))—b’
— Tz(l + T—Z)—b, < 2—1’}, T2(1+bl)
for all |7| > T~!. Therefore,

170, = Cwbe_bz_%, T = Cw,b,ble_(b_bl),

b —
itz

1
which finishes the desired bound for (IIl) and, consequently, concludes the proof of the
lemma. O

1.2 The Gevrey Spaces G°

Let us recall here the definition of the Gevrey classes, which play the role of intermediate
spaces between the space of the C* and analytic functions. Given Q, open set of R, we say
that ue G?(Q), 0 2 1, if u € C*(Q) and for every compact subset K of Q we have

sup |u' (x)| < C/*L(j)°, forall jez,,
xeK

for a constant C depending only on u and K. When o = 1, we recapture the analytic case,
whereas for o > 1 we obtain larger spaces, containing functions with compact support.

Example 1.9. For given o > 1, we define on R the function

e, x>0, 1 Ty
v(x) = d=——-:.
0, x=0, o-1 W

Figure 2: Example of Gevrey function.

One can prove that v is a Gevrey function of order o on R. Furthermore, for r > 0, the function ¢
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defined by ¢(x) = y(r + x)y (r — x) belongs to the Gevrey class G° (R) and is compactly supported on
(=11l

It is interesting to observe that if u € GJ (R), that is, u € G” (R) has compact support, then

its Fourier transform #(¢) satisfies the estimates
1
1T(&)| < Ce 417, EeR, (1.13)

for some positive constants C and €. Actually, the estimate (1.13) characterize the G?-regularity
of a Fourier transformable function, or distribution. Observe that (1.13) implies

1 1
7 gl = f 217 | 3(6)[2dé < oo,

2
12

for sufficiently small 6 > 0. This fact motivates the definition of the Gevrey-Bourgain space
G793, which will be considered in the next section.
For more informations and details about these class of functions, we recommend the read

of the book [33], where the proof of the next properties can be found.

Proposition 1.10 (Proposition 1.4.5, page 21 in [33]). The space G° () is a vector space and a ring,
with respect to the arithmetic product of functions. Moreover, G° () is closed under differentiation.

Just out of curiosity, the topology considered in the class G’ (R) is a projective limit topol-
ogy, which give us the following convergence: A sequence ¢, € G°(R), k =1,2,..., converges
to ¢ € G (R) if, and only if, for any compact K c R there is a constant C > 0 such that

sup €/ (j)7(suple’ (0 - pP)I) —0, as k—o0.
JEZ 4 xeK

1.3 The Gevrey-Bourgain Spaces G

In this section, we shall provide some basic properties of the Gevrey-Bourgain spaces,

which the definition was given in the introduction and we recall below.

Definition 1.11. For se R, § >0 and o = 1, we define the spaces
GTP®) = {f € LAR); 11 f o5y = f (@2 2 FOP dé < oo}, (1.14)

where (&) = (1+&2)Y2. If p € G7O5(R), then ¢ belongs to the Gevrey class G° (R). In the case when
o =1, we denote G>*([R) = GYO5(R).

For the periodic case, the norm in the space G*%%(T) is defined by simply replacing the integral in
(3.2) with a sum as follows

G7O(T) = {f & L2 1 f Wy = 2, 0% 1P < oo}.

kez
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In what follows, we will list some properties of the spaces G”%* and, just for convenience,
we will work only with the space in the line. It is important to point out that all results
remains true for the periodic case.

We observe that these spaces satisfy the following embedding

GO9S (R) < GO R), forall s',se Rand 0< &’ < 4. (1.15)
In fact,
lelGras = f 2RI (1481 1p()1? g
- f 72070 (14 25| 21 (14 21O P g
< Csns f 21" (14 £2)%1(&) 2 de
< Co.51,5,5 |9l G

where we use that e=20-9¢1"" (1 4 £2)5'=5 is bounded for all 0 < 8’ <& and s, s’ € R.
As a consequence of (1.15), we have the inclusion (6) mentioned in the introduction, that
is, G7%(R) ¢ H¥ (R) for all s’ € R. This embedding will be really useful in the following result.

Proposition 1.12. Let seR, 6§ >0ando=1. Ifp € G7935(R), then there exists a constant C > 0 such
that, for each j € Z.., we have

sup (p(j)(x)‘ < CI*L(jn°.

XeR

In particular, ¢ € G° (R).

Proof. First, let us prove for the case s = 0. If ¢ € G”%?, using the inverse formula of Fourier

Transform, we obtain
. dl (1 e 1 N
PP =—— (5 f e P () ds‘) = f (&) e @) dé.
Therefore,

. 1 . 1 . l/o c|llo
6)) e — Jo=0181M7 L8181 ~
lp (x)|52nf|f| lp()dg 2ﬂf|f| e e lp(S)1dS
1 2 2
< — (f |€|2je—26|§|llg dé’) (f 626|f|1/0|¢(5)|2 dé)

1
1 . o 2
- L ( [1geie-2met df)z @l grso, (1.16)

where we used Cauchy-Schwarz inequality. We observe that

k'\o —elo ’

ealEIM?

(o]

k=0

which implies

2 o (02 LS _ oj
E| 7 e 51 5(5) ), thatis, [£%e€" < A2 2,
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where A= (%), for all j € Z,. Then, we have

f 1E12T e 20117 g = f |£12T e 0117 gm0 g < 421 (2 )10 f e Ok g (1.17)

Denoting by Ay = 271) 7! ||| o0, it follows from (1.16) and (1.17) that

3 1
001 = a0 [16276206 ag)” < apaicejpit ([ e ac)

Also, as we know
2j)!

. J 2
]:0 BOJ!

< 00,

for all By > 4, then (2)! < B%/ j!? for some B >0, which implies

1
2

I (x)| < Ag(AB)! (j1)° ( f e OKI? df) (1.18)

It just remains to prove that the following integral

fe—(slfllm dé

is finite. In fact, using that =% " is an even function and making the change of variables

n=056&Y7, we obtain

fe—ﬁlfl”" dé = 2[ e 08" q¢ = 205_"fe_’717"_1dn
0 0

o0
— 20.6—Uf [e—n/zno—l] e—n/2 dTl
0
o0
< Mfe_”/zdn =2M,
0
for some positive constant M, since e 72n°~1 is bounded for all o =1 and
o0
fe‘"lz dn=-2¢7"? Zo =2.
0

Therefore, returning to (1.18), we conclude that there is a constant C > 0 satisfying
1V (x)| < CIHL(j1°, for all xR,

which proves that ¢ belongs to G.

For the general case s € R, since we proved the case s =0, we have
@€ GOOS(R) c G 2O(R) implying that ¢ € G°(R),

which finishes the proof. O
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One of the most important property of the spaces G°¢, as we mentioned in the introduc-

tion, is the following statement:

If p € G195 = GPS(R), then ¢ is analytic on the line and can be extended
holomorphically in a symmetric strip of the x-axis.

Actually, as we will see in what follows, we have a characterization of the space G in
terms of functions that admits holomorphic extensions. The final steps in this chapter are
devoted to prove this important fact. We begin with a result that give us a motivation to

continue in this direction. All the results below was studied in [26].

Proposition 1.13. If f: (0,00) — R belongs to L%(0,00), then f: C — C given by
fo) = f e F 0 dx, forall z€C,
0

is holomorphic in the half plane C~ = {z, + izp; z1 €R and z, < 0}.

Proof. Given zZ = z; + iz, € C~, we consider 6§ > 0 such that the closure of the strip S;s is in-

cluded in C~, where

Szs={z1+iz2; z1 €R and |z — 25| < 6}. 7 Z }26

Figure 3: Strip in the half plan z, < 0.

Our goal is to prove that f is holomorphic in S .
For all ze C, we have

7)< f |74 ()| dx = f 2% F ()] dx,
0 0

and by using Cauchy-Schwarz inequality, we obtain

oo 2
|f(z)| < (f eZZZde) ||f||L2(0,OO) . (1.19)

0

Now, if z€ Sz 5, then 2, — 6 < 2, < Z, + 6 <0 which implies that

[e,0] [e.0]
f e??2*dx < f 222 +0)X 4y < o0,
0 0
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Therefore, returning to (1.19), we concluded that there is a positive constant C such that
1f (@)1= C|| ]| ;20,00 forall z€ Sz 5. (1.20)

Since we proved that If(z)l is bounded in Sz, it follows from Dominated Convergence
Theorem that

o0

sfxezlef(x)ldx.

0

a—f(z)‘ = f (—ix)e”* f(x)dx
0z J

Using the same arguments above, we obtain

o0
< (f xzezzzxdx) ||f||L2(0)OO) <C ||f||L2(O,oo)’ forall z€ Sz 5.
0

of

oz (2)

Again, since the derivative of fwith respect to z is bounded in Sz 5, we can take the derivative

with respect to z under integration to obtain

i(z) = f (i_e_izx) f(x)dx=0, forall z€ Sz,
z ) 0z

where we used the fact that e~/?* is a holomorphic function. Therefore, we concluded that f

is holomorphic in S; 5, which finishes the proof of the proposition. O

Remark. The key ingredient to prove the result above was the fact that

(e .e]

fe“xdx < oo, forall a <0.
0

If we put a finite interval (a, b) instead of (0,00), we have

b
feﬁxdx<oo, for all BeR.

a

Therefore, using the same proof, we have the following result

b
If f € L%(a,b), then f(z) = f e”"** f(x)dx is holomorphic in C.

a

Before we prove another Paley Wiener Theorem, we need to introduce the Féjer kernel on
R, which we are going to use in the proof. For all A >0, the Féjer kernel is defined by

Ky (x) =AK(Ax), (1.21)
where )
1 (sinx/2)? 1 ;
= — = — — l{x
K(x) Zn( /2 ) anl(l [ENe>rdéE. (1.22)



1.3. THE GEVREY-BOURGAIN SPACES G° 15

The second equality in (1.22) is obtained directly by integration, indeed for all x #0
1 1 1
Ja-inetrag= [ eitrac- [1geiac.
-1 -1 -1

Now, we observe that

1

! ix¢
feifxdgz ¢ =
-1

et —e7H¥ 2sinx
ix

1
X

-1 i X

and
1 1 1 1
[ 1eteag = [igicostexde+ i [ ieisinxde =2 [ ¢costexde,
-1 -1 -1 0
since |é| cos(éx) is an even function and |¢|sin(éx) is an odd function. Then,

2sinx

1 1
f(l—lfl)e’fxde: +2f€cos(6x)d€.
-1 0

X

Furthermore, using integration by parts, we obtain

1

1 . .
_[ sin(éx) dé = sinx N cos(éx)

X X x2

1 ginx 1
= +—2(cosx—1).
0 X X

1 .
frECOS(éx) d¢ = &Lx(fx)

0

Thus,

0

X X

1
f(1+|é|)e"'f’“dé:
-1

2sinx 2sinx 2 2
- +—2(cosx—1) :—z(l—cosx).
X X

Now, using the relations

cos(a+b) =cosacosb—sinasinb and sin®a+ cos®

a=1,
which are true for all a, b € R, we obtain

l1-cosx= l—cos(g +g) = l—cosz(g) +sin2(§) :Zsinz(g).

Therefore, we concluded that

1
; 2 4 X
¢ — _ 2
f(1+|§|)el Ydé = ;(l—cosx) =7 sin (5),
1

which proves the second equality in (1.22).
Some important properties of the Féjer Kernel are given in the next lemma, which the

proof can be found in [26].

Lemma 1.14 (page 12 in [26]). The Féjer Kernel K, satisfies the following items:
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1. [Kj(x)dx=[K(x)dx=1.
R R

2. I/(j(cf) = max{l - %,0}.
3. Let fe L, then
)
1 N .
_ 1 L ix¢
£=lim o~ [ R@F e dc,
“2
in the LY (R) norm.

Now we are ready to prove the main result of this section.

Proposition 1.15 (Paley-Wiener - page 174 in [26]). ] Let § > 0. For f € L*(R), the following two
conditions are equivalent:

(a) The function %! f belongs to L?(R).

(b) f is the restriction to R of a function F holomorphic in the strip
Ss={z=x+iy; xeRand|y| <6},

and satisfying

sup | |F(x+ iy)lzdx <C,
lyl<d

for some constant C > 0.

Proof. | (a) implies (b). |We define

I N 1 [ N
Y _ izé — ix¢ ,—y¢
F(x+iy)=F(z2) —zﬂfe f&dg —ane e f(O)d¢.

By the inversion formula of Fourier transform we have F | g = [+ Furthermore, F is well defined
in S5, indeed, applying Cauchy-Schwartz inequality and using that e®'*! f € L2(R) we obtain

|F(x+iy)|sfe—yﬂf(fndfsfe‘(5"y')"f'e5'5'|f(5)ld<f

< [[e~6-DK

L§ ” eal’flf||L§ = Cyﬁ <00, (123)

for all z=x+iye€ S5, where C) s is a positive constant that depends on y and 4.
About the L2-norm of F, by Plancherel’s formula we have

~ ~ 2 —~
f |F(x+iy)|*dx = f IF*E+iy)Pdé= f (e‘ﬁf(cf)] dé < f 6| F(O)12 de,
forall z=x+iyeSs. Then,

sup | IF(x+iy)|*dx < ”e(st?”LZ < 0.
lyl<b
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It just remains to prove that F is holomorphic in the strip Ss, for this we will fix §; such
that 0 <0 < 6. Returning to (1.23) we have

IF(x+iy)| < H e=@=Iybie]| |l ol 7

=Cys.
¥,
L§ L§
Now, if |y| < §;, then

e-0-0nkl]| |l oIl 7

IFlx+iy)| < H

12 12
¢ ¢

which proves that F isbounded in S5, = {x+iy; |y| <0:}. Therefore, it follows from Dominated
Convergence Theorem that we can take the derivative with respect to z under integration to

obtain

a—l_:(z) = f (i_e_iz‘r) f&dé=0, forall z€ Ss,.
0z 0z

Then, we proved that F is holomorphic in the strip Ss, for all 0 < §; <, which is sufficient to

conclude that F is holomorphic in the hole strip Ss.

(b) implies (a). | We write

fy@)=F(x+iy), forallx,yeR (thus f = fp).

We want to show that
HO=Fe?, (1.24)

since then, by Plancherel’s formula we would have

f FOReXrde = f |[F@e [ as = f T Pde = f oy (DPdx = f Fl—ipfdx=C,

for all |y| <4, which guarantees that %%l fe [2. Notice that if we assume (a) then, by the first
part of the proof, we do have fy(f )= f(é Ye Y.
Thus, our goal is to prove (1.24). For all 1 >0 and z=x+iy € S5, we define

Gr(z2) =Ky *x F(x+1iy) :fF(x—x'+iy)K;L(x')dx',

where K denotes Féjer Kernel given by (1.21). By using Cauchy Schwarz inequality, Plancherel’s
formula and item (2) from Lemma 1.14, we obtain that G, satisfies

|G)L(Z)|Sf|F(X—x’+iy)||K/1(x/)|dX,
R

2 2
§(f|F(x—x'+iy)|2dx’) (fug(x’nzdx’)

A 2
sCU_AIKA(é)IZdé)

< C(2M),
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for all z € S5, which is sufficient to prove that G, is a holomorphic function in the strip Ss. In-
deed, by using the Dominated Convergence Theorem we can take the derivative with respect

to Z under integration and also using that F is a holomorphic function we obtain

a@(z) Zf(i_F(z—x’))K,l(x’) dx' =0, forall z€ Ss.
0z 0z

Furthermore, we notice that the function g, , given as follows
g/l,y(x) = G/l(x-f- ly) =K) * fy(x)

satisfies
§1y(&) = 21K (€) fy (&) (1.25)

Now, it follows from Lemma 1.14 item (2) that g , has a compact supportincluded in [-4,1],
thus

giy(©) = gro@e . (1.26)
Consequently, joining (1.25) and (1.26) we conclude that
f©=F@e.

Since A > 0 is arbitrary, the above holds for all ¢ € R and the proof is complete. O

1.4 A calculus lemma

This section is devoted to giving a detailed proof of calculus estimates, which is exten-
sively used in the proof of multilinear estimates in Bourgain Spaces.
Before presenting the main result, we would like to introduced the following notation

that will be used from now on. We write
X<Y and X=Y,

as a shorthand for X < CY and X = CY, respectively, for some positive constant C.

Also, an inequality that we use several times is
(@° < (a-b)b)°, forall a,b,seR, (1.27)

which is known as Petri inequality. Indeed, since |al*> < (la— bl + |b)? < 2(la— b|* + |D|?), we
have
(@?=1+al’> <20 +la-bP+bl®>) <2 +|a-b>) 1 +|b|*) =2(a—b)? (b)?,

which implies (a) < (a— b) (b). Thus, we have
(a)* <(a—Db)*(b)*, forall s=0. (1.28)
Using the same previously calculus, we have

(b) s <a—Db){a).
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If s <0, then (b)™° < (a—b)"*(a)~*, which implies
(@) < {a-b*'(by*, forall s<0. (1.29)

The proof of (1.27) is finished by joining (1.28) and (1.29).
Now, we are able to prove the main result of this section, which consists of two inequalities
that are used often in this area. For a reference of the following inequalies see, for example,

[4] on page 369.

Lemma 1.16. For p,g>0, p#1, q# 1 and p+ q > 1, there exists C > 0 such that

1 C
dx<s ——, (1.30)
f<x—a>p<x—ﬁ>”’ (a-p)"
where r = min{p, q, p + q — 1}. Moreover, for ag, a1, a, R and q > 3
f ! dx=C (1.31)
{ap+ayx+axx?)? ' .
Proof. Without loss of generality, we assume that @ > . Taking z = “T_ﬁ >0 and applying the

change of variables x = y — z+ a, we obtain

f ! dx—f ! dy
(x—a)? (x-p)* (y=2)’(y+2)*
To prove (1.30), it is sufficient to prove that

;f 1 dy< C
oo T @

forall z=0,

J(2)

since {a — ) = (2z) < 2(z) which implies (z) " <27 (a - ).
First, we observe that J(z) < oo for all z = 0. In fact, it follows from (1.27) that

(y) s(@(y-2) and (y)<(2(y+z),

which implies
Ja< [, <>”+qf Lo _dy<
)< | ——=dy=«(z _ 00,
(nyr™ (1+y2)7

since p + g > 1. Next, we split the region of integration into three subregions, which are

Al ={yeR0=<y=<2z}, Ay={yeR; -2z<y<0} and A3={yeR;|yl=2z}.

-2z 0 2z
As Ap Ay As R

Figure 4: Integration regions Aj, Az, As.
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Thus, J(z) = J1(2) + J2(2) + J3(z), where

Ji(2)

dy, for i =1,2,3.

1
=1<y—z>”<y+z>q

If ye A;, then0<z<y+z. Thus, (z) < (y+2z), for all y € A;, which implies

2z z z z
1 1 1 1 2 1 C 1
< dy = du= f du< f d ’
@) (Z)qof(y—z)p y <z>Q_fZ P @) =) wear
since (1+ u)? <2(1+p?) = 2(,u>2. Using that p # 1, we have

_ st

Z z
1 A+z)l-P 1
du =
1+ p)P 1-p
0

0 l1-p 1-p

If1-p>0,then

Z
1 1+2z)P
du < ,
(1+p)P 1-p
0

implying that

J1(z2) ¢ ! — < ¢ —,
()1 (1 +2z)P~1 ~ (gya+p-1

since (z)? = 1+ z? < (1 + 2)? for all z= 0. On the other side, if 1 — p <0, then

N
1 1
f du< ,
, 1+ wp p-1

which implies

N(2) =

C ( 1 ) e
@7\p-1) (7
Thus, in both cases, we conclude that J;(z) < C(z)~" with r =min{p,q,p+qg—1}.

Now, in order to estimate J», we observe that

0 2z
1 1
Jz(z)=f dy:f dy.
S oo T G-

Using the estimate that we proved for J;, we obtain

2s
Jo(2) < ! f ! dy < Cr.
(Z)po (y-z)1 (2)

Regarding the proof of the estimate for /3, we have

+00
1 1 y\~(p+q)
J3(2) = f dy=2f dySZf = dy,
(y=2) (y+2)7 S (y=2) (y+2)1 <2>

lyl=2z
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since y<y+(y—22)=2(y—2) and y<2(y+2), for all y=2z=0. Then, by making the change

of variables 2u = y, we obtain

+00 +oo oo
—(p+q) 1+ )1 (pta) roo
f<X> dy:zf (=P dy = f(1+u)_(”+q)du:L (L4
’ 1-(p+q) |,
2z z "
since p+¢g > 1. Thus,
1 1

S g * Pl =g

which finishes the proof of (1.30).
Next, we turn to the proof of (1.31). We write ag + a; x + a;x*> = a;p(x), where p(x) = x* +

%x + Z—g We observe that

<max{l,|a}- (p(x))

(ap(x)) = (1+a§p(x)2)%{ i
>min{l,|axl} - (p(x)).

Then, (ap+ a;x+ azx*) = (p(x)). We consider below three cases concerning the polynomial
p(x).
Case 1. p(x) has two different real roots.
Let a and B the roots of p(x). We can write p(x) = (x — a)(x — f). We affirm that
(x—a){(x-p)=<C(px)), forall xeR. (1.32)
Indeed, we have

(x-a)(x-B) =1+ x-)A+x—- P2 =1+px)?+x—a)?+(x- P>

Since
x—a)?+x-p> 1 1

o (- @R— PR (- (-

there exists M > 0 such that

’

(x—a)® + (x— B)?
(x—a)2(x— )2 <1, forall |x|= M.

Then,
(x—a)?(x—B) <1+2p)?<2(px))°, forall |x|= M. (1.33)

Denoting by 6 = |a — 1/2 > 0, we observe that
lx—Bl<|x—al+|a—p| <35, forall xe(a—05,a+0),
which implies
0<(x—a)?+(x—-P)?<8%+(36)%*=106% forall xe(a—5,a+0).
Similarly, we have 0 < (x— @) + (x — )* <106 for all x€ (86, 8+ 6). Thus,

(x— a)2<x—ﬁ>2 <1+px)?+106% forallxe(a-58,a+8)u(x—pB,x+p). (1.34)
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By (1.33) and (1.34), it remains to show that (1.32) occurs in
K=[-M,MIn((@-8,a+8)u(B-6,B+6)°,

which is a compact subset. Since a ¢ K and f ¢ K, there exists a constant D > 0 such that

R G arepr

Then,
(x—a)*(x- )Y <1+px)?+Dpwx)><1+D){px)°, forall xeK. (1.35)

Putting together (1.33), (1.34) and (1.35), we conclude the proof of inequality (1.32). Thus, it
follows from (1.32) and (1.30) that

1 1 (o}
dx=<ci f dx =< - <
f<p(x)>”’ (x=a)?(x=p)" " (a-p)

Q.

Case 2. p(x) has just one real root.
Let a be the real root of p(x). In this case, we can write p(x) = (x — @)?. Then,

o0 o0

1 1 1 3 1
d :f—d :2f—d 52§q+1f dy,
f<p(x)>°’ Tl dramant (1+yH? g @+

0 0

where we used that (1+y)* = (1+y)?(1+y)? =2*(1 + y*)? <231 + y*), for all y € R. Since ¢ > 3,

we have
[o.@]

1

Atz
o 2q-1

T
f—zdy_
J Wy 1-2q

Therefore, (1.31) holds also in this case.

< 0o0.

Case 3. p(x) has not real root.

In this case, we can write p(x) = C + (x — @)? with C > 0. In fact,

2
2
- b —|x== -,
p(x)=x“+bx+c (x 2) +c

where ¢ —b?/4 >0, since A = b> —4c < 0. Thus,

f%dx:f ! qu
{p(x)) 1+ ((x—a)?2+C)2)2

1
s
1+x-a)h?
T
L
5 L+yH2

since C > 0. As we did in the case 2, we have

o0

2f—1 dyszgq“foo L gyt L
J (L+yh? o (1+y)2a 2g-1
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Then,

which finishes the proof of (1.31).

[ e

dx < oo,

23






CHAPTER

The problem in H*

We consider the initial value problem for the "good" Boussinesq equation

2u—02u+diu+0%(u?)=0, xeRorT,reR,
u(x,0) = up(x), (2.1)
atu(xy 0) :axul(x),

with initial data up and u; belonging in a Sobolev Space. Our principal aim here is to show
a detailed proof of the local well-posedness of (2.1) for low regularity data. The main results
presented in this chapter was obtained by Luiz Gustavo Farah in 2009 [12] (real case) and by
Luiz Gustavo Farah and Marcia Scialom in 2010 [13] (periodic case), which are the works that
motivated the results that will be presented in Chapter 3. More precisely, we will prove here
the following theorem.

Theorem 2.1. Let s> —1/4. Then, for every initial data (uo, uy) € H* x HS™1, there exist a lifespan T =

T( ol s, Nlua |l HH) > 0 and a unique solution u of the Cauchy problem for the “good” Boussinesq
equation (2.1) such that

ue C([0, T HY) N X,

Moreover, given T € (0, T) there exists R = R(T') > 0 such that giving the set
W = {(flp, 1) € H* x H*™Y; || dig — uo | s + Il 1y — r |l pys—1 < R}
the map solution

S:W— C(0,T; H)n X/,

(Thg, W) — U

is Lipschitz.

25
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2.1 Real Case

In this section we are considering the real version of the Cauchy problem (2.1), that is, the
variable x belongs to R.

A formal data-to-solution map

Let us get a formal solution to (2.1). We start by taking the Fourier transform with respect
x in (2.1) to obtain
62 77X 2 4y 77X T\zx —
[0+ (5 + DU+ 05 (u?) =0,
u*(&,0) =up($),
0,0 (£,0) = 0141 (§).

Denoting by U(t) = *(¢, 1) and w(x, t) = ai(uz), where ¢ € R is considered as a parameter, we

have
U" (1) + &+ EHU @) + ¥, 1) =0,

U(0) = i s), (2.2)
U'(0) = 05141 (©).
Next we use the variation parameters method to solve the above harmonic oscillator initial
value problem (IVP) (2.2) with forcing w™*. The first step consists in to solve the corresponding
homogeneous equation
U0+ E+&Hum =o. (2.3)

A fundamental system of solutions is given by
Ui (1) = 7Ot and Us(t) = e—i}'(é’)t,

where iy(é) = i(&2 + &4)2 is a root of the characteristic polynomial y? + (é2 + é*) associated to
equation (2.3). A particular solution of (2.2) is given by

Ur) = a1 (0)Ur (1) + c2 () U (7).
For that to hold true, it is sufficient to show that ¢; and c; satisfy

cy(OUL(8) + ¢y (DU (1) =0,
c1 (DU () + ey (DU, (1) = = (¢, 1),

that is, from Cramer’s rule we must have

det 0 wm]
e
&, UL ~x —iy(©1
i) = P JBOTRD e
W (U, Us)(1) -2iy(S) 2iy(¢)
and
Ui (1) 0
i) —w*C0| —uywa*¢n _ e

— W, 1),

/
1) = =
c2(1) W (U, Un) (1) —2iy(é) 2iy(&)
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where W (U;, U>) denotes the Wronskian of U; and Us,. Hence, we obtain

t

e i1 q iy
Cl(f)zcl—f - w*¢&, f)dt’  an Cz(t)=C2+f -
2 2
4 iy() 4 iy()

t
w &, fHdt,

which implies

t

U = cle"”'f”—f
0

ro, ,
~x / / —iy(€)t e—zy({)(t—t) ~ X / /
wr (&, )dt + Cre + —21')/({) wr (&, )dr'.

YO =1
2iy(¢)

Since U(0) = 7iy(¢) and U’(0) = 8, u; (€), we have that the constants C; and C» agree with

C1+Co=1y(9),

01 (€)
Ci—-Cy= ,
T iy©
that is, . —
C = o (&) + ax.ul () and C,= (<) _ ax.ul (f)
2 2iy(&) 2 2iy(&)
Therefore,
YO L o=yt plY©Q) _ =iy - eIy =1) _ p=iy@© -1
_ 3 - *E, e
U uo(é)( )+ xul(f)( T ) Of( Ty @& ) dt
Thus, we consider the operators W; and W, defined as follows
T YO 4 iyt
Wi(De(x) = L f e"(x(e e )¢(€)d€ and
271_ 2
1 [ . (e gmiv@r
w4 [ [
2 (1) p(x) Zn_f e 207 @) P)d¢
which give us
I elY@t 4 o=iv(Ory . elY©1t _ o=iy(@ry
Wi () = ( 3 )<P(€) and W (e (&)= ( 2i7©) )(,0(5)-

The solution U of (2.2) can be written by

X

X t

©+ |Wan@cun)| (6)—[ | Walt = ywix, )] ©)dr.

0

X

U= |Wiug

Since U(t) = u*(&, 1), it follows that

t
u(x, 1) = Wi (0 ug(x) + Wo(£)0 1 (x) —fwz(t— Hw(x, t)dt (2.4)
0
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is a formal solution of (2.1).

Next, we localize in the time variable by using a cut-off function y € Cy°(=2,2) with 0 =<

v=<1,y(®=1on[-1,1] and for 0 < T <1 we define y1(1) =y (£).

R

1

2 2T 2T 2 R

Figure 5: Cut off function 7.

We consider the operator @7 given by

t
<I>Tu£u/(t)wl(r)uo(x)+w(r)Wz(t)axu1(x)—wT(t)fwz(t— t"0%(u?) (x, tdt .
0

(2.5)

Therefore, in order to find a solution of (2.1), our goal is to use a fixed point argument for the

map Pr, that is, solve the equation ®7u = u. A natural question that appears here is: Which

is the best space to solve this problem?

To motivate the solution space, we observe that one of the advantages in dealing with

integral equation (2.5) is that we can use space-time Fourier transform to express the mapping

@7 in the phase space (£, 7). More precisely, by the inverse Fourier transform formula we can

write
1 -
wrE ) = —fe”‘ W& )dr,
27

which give us
t

- 1 | oIY@U=1) _ iy @t
sz(t— Nw(x, t)dt' = z—ffe’xf (&, f)dédr
V4
0

2.
. iy (S)
t . ; : & !/
1 e [€7OUD _griy@U-DN ,
=— ,7T)drd¢de .
[ ]| enana

0
Performing the ¢ integration first, that is, using the computation

t .
+y(E)t

fei(TiY(f))t’dt/:_i(el(T () —1)’
T+y(E)

we have

2iy(q) T=7()

i el (=Y [ piT+y(E)t _ | ~
+4n2ff 2iy(&) ( T+7© )W(f,r)dcfdr.

- il el EEHOD (iY@ _
fWg(t—t')w(x, t')dt':—4n2 ff ( )ﬁ/(f,‘[)dfd‘[
0
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The last formula gives us the following decomposition of the map ®r

1 . eiY(f)t_Fe_iY({)t L
®ru(x,t) = Ew(t)fe’x‘r( 5 )uo(f)df (2.6)
1 ixé (eiy(é)t - e—iY(f)t) .
by [ e T CATIGE 2.7)
j IRV (QiT=y @) _ 1\
—HU/T(I)ff 2y @) ( S )w(f,r)dédr (2.8)
; =YD [ Iy _ 1\
+4—n2meff TTrs ( —E )w(cf,r)dédr, (29)

where w = 8%(u?). Now, observing that the space-time Fourier transform of the solution to
the homogeneous IVP associates to (2.1) lives on the curve 7 = +y(¢), this motivates the spaces

that we are going to introduce in the following subsection.

The Bourgain Spaces X; ,(R?)

Having as a strategy to make a detailed study of the nonlinearity by using spaces related

to the real linear problem of the gB equation, we introduce the Bourgain spaces.

Definition 2.2 (Space X, ;,([R?).). Let s,b€ R, X, = X; ,(R?) denotes the completion of the Schwartz
class & (R?) with respect to the norm

1
2

1vlx,, = ( f f (1 -y @Y22 &% 10, D drde |
R R

where y(&) = /& + & and (&) = \/1+ &2

Since we are considering local in time well-posedness, we also need the localized Xj
spaces defined as follows.

Definition 2.3 (Space X[, (R?).). Let s,beR. For T =0, X!, = X[, (R?) denotes the space endowed
with the norm

= inf ; 1) = T Rx [0, T]t.
luall . Ug)l{ﬂ{lll/llxs,b v(x, ) =u(x, 1) on Rx[0,T1}

One of the reasons to deal with the Bourgain spaces lies in the next result, which says that
for b > 3 the space X; is embedding in C(R, HY).

Lemma 2.4 (Corollary 2.10 in [35] on page 101). Let b > 1 and s € R. Then, the space X is
included in C(R, H*(R)) and, furthermore, there exists C > 0, depending only on b, such that

sup luC, Ollgs = Cllullx,,
teR

forall ue X;p.

Proof. First, we will prove that X, ¢ L°(R, H®). Let u € X, ;, we write u = u; + up, where

—

U = Ypr<oi U, Uz = Yir>0i 1
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and y 4 denotes the characteristic function of the set A. Then, since |e/”©)!| = 1, we observe
that

2= |Z eI n)

lur (x, Ol g = [[<€)° T (€, t)||L2 H(@s YOt g,

M
s
H;

for all r e R, where ! denotes the inverse Fourier transform with respect to the variable x.

Thus, denoting by .%; the Fourier transform with respect ¢, we have

luy (x, Ol s = Hgflgt(ggl(eiy(é)tfﬁx(f, t)))‘

Hy

= U e T (F T (O I E D)) (T)dT

_ ([ e ’

Ik dé)

<1 f ( f ©° | Z (O T 1 (r)|dr) df)
27

1
ng(f<£>2s|gt lY(f)tAx(é L‘))(‘[)| df) dr,

where we used in the last step the Minkowski’s integral inequality. Therefore,

HS

1 1 ()
21 (x, Ol s < gf Hgtgxl(ew(f)tulx(f, t))(x,

dr,
H;

for all £ € R. Using the Cauchy-Schwarz inequality, we obtain

21 (x, )l s < —( f (1) Zbdr) ( f @2 |77 (O T & ), dr)%.
We observe that
|77 (e f % |F, (e T (€, ) ()] de
:f<«5>23 fe"'”e”“”mx(f, t)dt2d€

_ f © @ &7 -y©)] de.
ThU.S, 1 ;
1 2 ’
[ (x, t)IIH)%SE(fm_Zde) (fm%f<€>2S|m({’r_y(€))|2dfdr) ’

and recalling that 7y = y{;<¢ I, we obtain

Y(©&)

e t)IIHs<—( [ @ Zbdr) ( [ f (020 |, T — (@) drdé)

:in(fm_%dr)z(ff<€>23(p+y(€)>2b|ﬁ(€,p)|2dpd<f)§»
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by making the change of variables p = 7 —y(¢). On the other hand, similar arguments imply
that

1 +00 1
1 2 2
iz (x, Dl g < o ( f <r>‘2bdr) ( f f & (p—y@©)*" |ae, p)*dede|
0
for all # € R. Now, by the fact that b >} and

|p_’}/(6)|y for pZO,

ol—7(©)| =
el =v(®)| {Ip+Y(€)I, for p =0,

we have

lu(x, Ol s <Cj,

0 1 0 1
( f f &% (1ol -y©)Y" |, p)|2dpd«f) + ( f f ¥ lpl-y©Y" |ae, p)|2dpd<f) ]
—00 0

<2Cp llu(t,x)lx,,,

1
for all ¢t € R, where Cl’g =@2n)! ( f (Ty~2b dr) 2. Then, we conclude that

lee(x, Oll oo, 1r5) < Cp llult, )l x>

that is, u € L*(R, H®).
It remains to show continuity to respect the variable ¢. Let t € R and {¢,} R a sequence
such that r,, — t. As we did above, we have

121 (x, ) = wy (x, £) | s = ” f F. 7 (eI E, 0) (x,7) (e"” - e”nf) dr

(2.10)
Hy
Letting n — oo, two applications of Dominated Convergence Theorem give that the right side
of (2.10) goes to zero. Therefore, u; € C(R, H). Furthermore, the same argument applies to

up, which concludes the proof. O

Since we would like to prove that ®r is a contraction map, we start with the following

basic result to estimate its X; ,-norm.

Lemma 2.5. Let s€R, ug€ H(R), u; € HS'(R) and 0 < T < 1. For f, g € X, we define the bilinear
operator

t
D7 (f,8) = (1) Wi(t)up(x) + Wa(£)dxuy (X)) —WT(t)fWZ(t— twyg(x, t)dr,
0

where wy,g = 0%(fg). Let =3 <b' <0=<b=<b'+1. Then, there exist a constant C = C(y, b, b') such
that
|or(f, @llx,, < Clluolls + il gs) + CT' -2

)

Z-1 (@(6, 7) )
Xs,h’

2iy(¢)

where F~1 denotes the inverse Fourier transform with respect to both variables x and t.
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We split the proof of Lemma 2.5 in the following two lemmas.

Lemma 2.6. Let uy € H¥(R) and u; € HS"Y(R). Then, there exists C > 0 depending only v, s and b
such that
lw () W1 (D) o (x) + Wa(D)0xur (1) | ., < C (luaoll s + eaall pys-1).

Proof. Denoting by v(x, t) = W1 () ug(x) + Wa()0,uy (x) and taking the Fourier transform with

respect space variable, we have

X

X

€0+ y( |Wadm | €0

TN =y [ Wiuo

eilY© 4 omity@ QI 1©) _ pmity@®y
=1//(t)( > ) uo(f)"“//(t)( 27 @) )axul(f)
_ oitr®y(p | 0G| x| iny W) 0 ()
e )( 2 " 2i© YO T T 200
= Oy () h @) + e Oy (D hy (),
where o S
_up(§)  0xui(8) _ up(<) 3 0xu1(¢)
h () = 5t 2@ and h(¢) = 5 2 ©
Thus,

YU, T) = f STV E ndt =y (€) f e YDy () dt + hy(é) f e 1Dy (nydr,

which implies that ¢ v(&,7) = hi (O)P (T —y () + ha (O (T +y(E)). Therefore, we obtain

s —

lvvlx,, ==
{,T

< (Il -

A

{,r

=<

since (|7] —y(&)) = (7 +y(&)) and b = 0. Now, by making a change of variables in the 7-integral,

s,T

we observe that

1

:( f O I ©F f (=Y 17 -y drdé)

= ( f & @O f ()" 1T (PP dpdf)
=l 1€ Mm@ 2.

Similarly,

P Gl



2.1. REAL CASE 33

On the other hand, we have

[@ m@], = (|| GROIGI RS [GRIGRCRTIG

2)
Ly

N —= N =

(n ol s + ||<E>Sy(€)‘1€fti(€)||Lg),

and, in the same way,

0 ha® 3 = 5 (160 B2 + | 070 T ©

2)
L

N = DN =

(n uoll s + ||<5>SY(€)_1fft\1(€)||L§).

Then, we conclude that

lwvllx,, < lvil (uuouHs + @O Em© ||L%)

= vl s (ol s + Ntaa ll pgs),
since [Ely(©7 = €€ +¢H T =1+ T = O O

The next lemma is concerning the X;,-norm of the nonlinear part of ®r, its proof is a

consequence of Lemma 1.8.

Lemma 2.7. Let seR, -3 <b'<0<b<b'+1and 0< T <1, then

g_l(zf/(f,r))

<cri--1
2iy(S)

(2.11)

XS,b,

t
WT(t)fWZ(t— Hw(x, tHdt
0

Xsb
Proof. To prove (2.11), we recall that the operator W, is given by

iY@t _ o=iy(Q)t
2iy(s)

AGIAGE ( )@(é).

t
Denoting by U(x, t) = w1 (1) f W, (t—thw(x, t')dt', we have
0

el (=17 _ p=i(t=t)y(©)
2iy(S)

t
ﬁﬁaw=wﬂnf( )wﬁaﬂdf
0

t
. r . t
:e”ﬂQWTUX[hﬂatqdﬂ_eﬂW@WW(njjhﬂatqdﬂ,
0
0

where . .
e YO e wrE,
&) and Iy 1) = &)

2iy (&) 2iy($)

hl (67 t,) =




34 CHAPTER 2. THE PROBLEM IN H*®

We define v, and v, by
(39 :wT(t)fhl(f, thdt' and TR0 :wT(t)fhz(é, hdr'.
0 0

Thus, we can write U " (¢, 1) = el YO 5%(&, 1) — e YO 5% (¢, 1), which implies that
ﬁ(é,r):fe—"”ﬁx(é, ndt
_ f e TV Frx e pdp— f e T O 53¢ dy
=01, 7-7() — 1208, T +Y(E).
Now, using the definition of X, ;-norm, we obtain

UG Bl = [(rl-7©) @ T,

{T
< [<r1-v@)’ @ % o+ Jom-r@) o
E,T
Since (|7|-y(&)) < (r £ y(&)) and b =0, we have
10U, Dllx,, < [(T-7©)"©* 7 ) o
5,1

We observe that

[(-v©)©* 7 , = f f (1—y@) &% Ti €T —Y(é))lzdédr)z

= f (&% f <r—y(é)>2”m(f,r—y(é))ﬁdrdff

- f ©? f (p>2b|771(€,9)|2dpd€)2

= f &> 7%, 0|3 P dcf)

where we used the change of variables p = 7 —y(¢{) in the 7-integral. Similarly,

“(T +y(©)) ) B

( [ o i1meor, ds‘)

It follows Lemma 1.8 that

wr®) f mE | < CT Y e o)
HI

b
Ht

|57 0l g =|

and

t
172° @ 0| o = me f ho(E, 1) dr’ ” < CT O |y (&, D)l -
0 Hy '



2.1. REAL CASE 35

Therefore,
3 3
||U(t,x)||xs,bséTl‘“’"’”(( f ©F & 017, dé) +( f ©* 26, D117 dvf) )

1 1
:éTl‘(b_bl)((ff <5>25<r>2b’|7z\1t(§,r)|2drd5) +( ff <<f>2~‘<r>2b'Iﬁét(é,rﬂzdrdf) )

where

1
2iy(¢S)

wE,T-y©)
2iy(6)

Et(f,r):fe‘”’hl(é, ndr = fe‘”("“‘f”wx(é, nde =

and

—~t » 1 » . W (ET+Y(©)
hy (&, :f My & DdE = ——— f MO, pdt = —2———
2 (¢,7) e 2(&, 1) 2y @ e w-(s,1) 207 @)

Thus, we obtain

1Ux, D)l , <CT =00

b —

( ©*

2P f <r>2b'|’u7(é,r—y(£))|2drd6)

2s %
+CT1—<b—b’>( lzjiﬁ f (T>2b’|/u7(€,r+y(f))|2drd€) .

By making the change of variables p = 7—y(¢) in the first integral and p = 7+y(¢) in the second
one, we have

s : 2s , 3
U, Olx,, SCTI_(b_b)(fpﬁﬁf@”“»% |’u7(€,p)|2dpd€)

28 , %
+Cri-0-0)| sziﬁ [o-r0)" | ol doat]

—(h—} / A(é)p) 2
<20 b)([f 25 /1 1 2p | W
&= (lpl-y©®) 207 @
where we used that (|p|—y(&)) < (p £y()) and b’ <0. We conclude that

U, Dy . < TG0 9‘1(—w(5’T))
U, 0l x 2i7©

s,b —

1
2
)

dp dé)

Xs,b’ ’
which finishes the proof of (2.11). O

At this point, we see that we need the bilinear estimate, which is the key ingredient for

proving that the map @7 is a contraction.

The Bilinear Estimates

We start by showing an elementary inequality that will be useful in the proof of the bi-

linear estimates.
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Lemma 2.8. There exists ¢ > 0 such that

1+|x-yl

1
~—<su <c.
c x,y£0(1+|x—\/y2+y|)

Proof. For y =0, we have y=+/y?><+/y?>+y and

2

(y+— =y2+y+1>y2+y
2 4 ’

1
yS\/y2+ySy+§,

which implies

for all y=0. Thus,

1+‘x—\/y2+y‘21+|x|—\/y2+y21+x—%—y:%+(x—y)
1+‘x_\/m'21+\/ﬁ—x21+(y—x)2%+(y—x),

for all x, y = 0. Therefore,
1 1
1+’x—\/y2+y’25+|x—y|25(1+|x—y|),

1+|x—yl

1+x—Vy?>+yl

On the other hand, we observe that

1
1+|x—y|21+x—y21+x—\/y2+y25+(x—\/y2+y

1+|x—y|21+y—x21—%+\/y2+y—x:%+(\/y2+y—x).
1+|x—y|2%+‘x—\/y2+y)2%(1+‘x—\/y2+y’).

Then, we conclude that

and

implying that

<2, forall x,y=0.

and

Therefore,

1+[x-yl

1+x—Vy*+yl

which finishes the proof. O

1
=,
2

Remark 2.1. In view of the previous lemma, we have an equivalent way to compute the
X p -norm, that is,

lullx,, = [(Ir1-82)" @ 2,

i (2.12)
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In fact, we just need to use the result given by Lemma 2.8

L+lIT=¢% _
L+lzl=y@©I

1
—_ S ,
c
and the fact (x) = (1+|x]|), for all xeR.
In the proof of the next theorem, which is called the bilinear estimates, we are going to

use the right side of (2.12) as definition of X j,-norm.

Theorem 2.9 (Sobolev Bilinear Estimates [12]). Letf s > —;11 and u,v € X5 p(R). Then, there exists
C > 0 such that .
“9_1 (Iélzuv(s‘,r))
2iy (&)

= Cllulx,, Ivix,, (2.13)
XS,—LZ
holds in the following cases:
(i) s=0,b>%and t<a<i.
(ii) —3<$<0,b>3and ; <a<3 such that |s| < §.

Moreover, the constant that appears in (2.13) depends only on a, b and s.

Proof. We begin by noticing that

275 S|£12
" g_l(m gw(&r)) B 3 P P,
2y Mx,_, | r1=7y@)"2iy©) 2
©&°1¢ _gf ~ ~
< (2m) 1G(S —¢1, 7 —T)IV(S1, T1)Idg1dT
(1= y@©)"2iy(©) S
Then, in order to prove (2.13) it is sufficient to show that
(&° & f ~ ~
-&,T— ,T1)ldéd <C . 2.14
‘<|T|—Y(f)>a2i)/(5) |u( —¢1, T — 1)V, 71)1dS1dTy p lullx,, Ivix,, (2.14)

Let u,ve X, and define
FEn=011-@%a¢n and g@ 1 =(I1-)&%19¢ 1)1,

which are functions in L?(R?). We affirm that (2.14) is equivalent to the following inequality

W8I <C|flllgllzlelz foralgpel*®?), (2.15)
where
55 ©?* g, T)fE-&,T-T)PE,T)
W(f, g, )=f - 5 5 dédrdé;dr;.
b R4 207(8) (61" (6 =¢0) <|T|_52>a<|T1|—5%>b<|T—T1|—(5—51)2>b Y

In fact, to prove that (2.14) is equivalent to (2.15), we use a duality argument as follows. We

can write
W(f,g @) =[hE&D),9&1)],
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where [, ] denotes the inner product on L?([®R?) and

2 s _ _
h((f,r):f !‘tl 2<"t> s f(fl»Tl)f(‘i §1,T—T1) dg, dry
4 2iY@) €% = ¢ (Jr1 - &) (In - ) (It =111 - (€ = €1)?)

17 33 fA A
= ) —¢éL1—11ldé 1 dT).
2i7(5)<|T|—52>aR2 [, t)UE —&,1—11)|dE dTy
If (2.14) holds, using Cauchy-Schwarz inequality we obtain
|W(f)g)(p)|5”h(€)‘[)”[,2 ||(,0||L2
(&° €17 ff _ R

= T, |G = &1, T =TIV, T1)IdS1dT )
(Il -7(©)“2i(©) LT TllEG IdGdn o],

< Cllullx, 1vlx,, [|o] 2
=ClIFlz gl 2ol e

which proves that (2.15) also holds. On the other hand, if (2.15) holds for all ¢ € L*(R?), it
follows from Riesz Representation Theorem that h € L*(®*) and ||hll;2 < C| f| 2 || | 2, which
guarantees that inequality (2.14) also occurs.

Then, we observe that to perform the desired estimate we need to analyse all the possible

cases for the sign of 7, 7; and 7 — 7. To do this, we split R* into the following regions
T

T=1)
= {¢71,6,1)eR,11<0,7-71 <0}

I, = {¢71,6,1)eR,1,20,7-71<0, 720}

Iy = {¢71,6,1)eRY7,20,7-7;<0,7<0} T
r, = {¢1,6,1)eR11<0,7-7,20, 720}

Is = {(¢71,é,1)eR, 711<0,7-7;20, 7<0}

Ie = {¢&71,6,1)eR, 1120, 77120}

Figure 6: Bilinear estimates regions I.

Thus, it is sufficient to prove inequality (2.15) with Z(f, g, ¢) instead of W(f, g,¢), where

€2 () g1, f (2 1)9E, 1)
2iy(©) €12 (o) (o) (o)?

Z(f,g,(p)=f dédrdé;dry,

R4

with {, =¢—-¢, 72 =7 -1 and 0, 01, 02 belonging to one of the following cases

(D) o=1+&,01=11+¢&3, 02 =12+ &5. (IV) 0=1-¢%,01=11+¢&f, 02 =12-&5.
) o=1-¢&%,01=11-¢&5,02=T2+&. (V) o=1+&, 01=11+&,0,=12-&5.
() o=1+&, 01=T1-&, 02 =T2+&5. (VI) o=1-¢8%,01=11-¢5,02=12—&5.

We observe that the cases

2 2 2 2 2 2
0=1+¢,01=11-¢1,02=72-¢ and o0=71-¢%,01=71+{], 02 =T2+5,
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cannot occur, since 71 <0, 7 —7; <0 implies <0 and 7, 20, 7 —7; =2 0 implies 7 = 0.
Applying the change of variables

(é‘)‘[)gly Tl) - _(6; Tygl)‘[l)

and observing that the L*—norm is preserved under the reflection operation, the cases (IV),
(V) and (VI) can be easily reduced to (III), (I) and (I), respectively. In fact, for example, let us
see how the case (IV) is reduced to (III). We assume that (III) has already been proven, then

2 s 7]
f <] (3 81, T1)f (&2, 129, T) dédrdé; dr;

2iy(©) (61)°(62)° (7 - &2) (71 + g§>b<12 _ 5§>b

R4

dédrd¢; dr,

:f 1° 6 gl=¢1,-1)f1-¢T1-DP(={,-1)
20y €762 (r4+&2) (1, -2 (1o + 2P

R4
<Clfllplg-tn-mle lo-&-nl;

=C|\fll 2 lgl ol

that is, the case (IV) is also proved in this case.

Moreover, in the same way, making the change of variables 7o =7 -7, {2 =¢—¢; and then
€,7,82,72) = —({,7,¢2,72), the case (II) can be reduced to (II). Therefore, we only need to
establish cases (I) and (III).

We first treat the inequality (2.15) with Z(f, g,¢) in the case (I). In this situation, we will
use the following algebraic relation

—@+EN+ @ +ED+ (T—T1+ (E = ED?) =281(E - 0). (2.16)
We can write R* = Au B, where
A={¢ 1, eRY [T-11+ - &P <t + &5} and
B={¢1,&, 1) eRY 111+ (€ - &P = |11 + E3L}

Considering Z(f, g,¢) in the case (I) and making the change of variables ¢, =¢ —¢; and 7, =
T —1T1, we obtain
f 57 (©° 81T f (2, 1209, 7)
207(&) €0° 2" (1 +2) (11 + ) (1 + E)P
_f 145 (&° g —&,1-T12) (&2, 12)P(,T)
)20y € -8 () (T+E((T-12)+ (- 52)2>b (T2 + )P

d¢édrd¢, dr,
B

dédrdéodr,.
A
Thus, by symmetry we can restrict ourselves to the set A. We divide A into three pieces as

following

Al = {(g)r)élrrl) € Ar |€1| = ]-0})

A= {(‘f”"f”ﬂ € A; 1611210 and (26, —¢| 2 '62—“}

s {“'T'fl'm € A; 1611210 and [§ ~¢| = "’;—'}
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We have A= A; U Ay U As. Indeed, if (¢,7,¢1,71) € A we must have

l";—lls 1261 ¢l or léz—lls 1&1 =<1,

otherwise we would have

|51|:|€71|+%>|251—§|+|5—51|2|251—5+5—51|=|51|,

which is an absurd.

Next we split A3 into two parts
Agy =1{(,7,61,71) € Ag; |11 + & < [T+ &%}
Azp ={(€,7,61,71) € Ag; T +&% <m0y + &7}
Now, we define the sets Ry and R» as follows
Ri=AUAUAs; and R, = Asp.
In what follows, yr denotes the characteristic function of the set R. Since A= R; UR,, then
|Z(f, 8 P < %1 +|R2],

where

_ €2 (&S xr (& 1,E1,11)8E1,T1) f(E2,T2)PE,T)
J 2y (&) (€1)%(E2)° ()Y (o1)P (op)?

d¢drdédr;.

i

Using Cauchy-Schwarz inequality twice, we have
1
p

A Il .-

r f € (62 folg(fl,mf(éz,rz)
4y ©%¢oy?? | ] &) (€ (o) (o)t

L R2 R2

f|é|4<<f>23 f xR, ae, drt
4y©2(0)2 0 | J ()2 ()% (1) ()%

| k2 Ry

2
dé¢; drl) dédr

IA

x (f|g(51,T1)|2|f(52,T2)|2d51dTl)dde
RZ

Il
Now, applying Holder inequality, we obtain
1
HEGS xR, ’
e i dé, dr
U @2 ] ot e 0 o srdn
LOO
L <,
2
<| [lg@urolifE it ddndear| ol
R4
2
€14 (6)* f AR,
= dé;d .
Q@) ) (G ()P 0 (o) aanf e lelz ol
LOO

(54
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We apply the same steps for %,

1

2 2
1 IE124E)° f (&2, TP, T xR,
|R,| < f dédr | dé& dr )
L @Fen? | ) 2r0 @ 0 o)’ van) el
[ 4 2s
- f 21 19 i 2(5) XR, dédr
(a2l | J 4y ©? (£2)%5 (0)24(0p)2b
| R2 R2
x ( f |f(<fz,rz)|2|¢(6,r)|2dédr) dérdry| | gl
IR2
1 4 2s
= 25, - 2D a 2 25& 2XR2 5 dedr
0> oD ) 4y(6)? (£2)*5 ()% (a2) N
% 1T
x ( f |f(€z,r2)|2|¢(€,r)|2dédrdéldn) lgl -
[R4
1 &4 & xr,
= dédT 2 2 2.
€07 @) ) 4 (€)% (00 () . 171 Deloz ol
1Tl

Using that £y (&)72 = €]* (1€ + |<f|4)_1 =(1&]7%2+ 1! <1 for all ¢ € R, we conclude that

(&% AR
Z(f,g.9)] < f dé, dr el ol
& <U>2aR2 <£1>23<62>23<01>2b<02>2b ¢1dry ”f”L ”g”L ”‘/’”L
L
1 f <€>257(R2
+ dédr .
<51>23<01>2bR2 (E2)25(0)2% (0rp)?P N ”f”Lz ”g“]‘z ”(p”Lz
By applying inequality (1.27), we have the following
2s 2|s|
O U ey,
(VMR (P (30,
where
0, if s=0
ps)= { 4|s|, if s<O.
Therefore,
(& f xR 1 X, (E1)PO
dé;dr < dé;dr
@7 ) e B oy 4T @7 ) (o g 419N
R2 L R2 e,
and
1 2s B(s)
2s be 2iCR2 <§> 2b = Cu be ZXRZ 2bd‘fdr
&= (o) Ea 2y (o) (02) . (o1 4 (0){o2) .

§1711 §1,71

41
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It follows from Lemma 1.16, more precisely inequality (1.30), that

XRI <€1>ﬁ(3) () 1
dfldﬁ:f)(m (51)“[ dr,d&,
R[ (11 +2) (1, +&2)?7 J ) (11~ Y (1~ a+ &))"
xR, €1)PE

< | ————-déy,
S (regzeety?

since b> £ and min{2b,4b — 1} = 2b. Similarly, we have

XRy XR;
dédr 5[ dé
R[ (T+8)* (z2+E3)* I (ri-g+e)™
where we used that min{2b,2a,2a+2b—-1} =2a and a > }1.

Since T+&5+ & =7 +¢E2—28E1 +2¢7 and 71 — &5 + &% = 11 — £ +28&3, it suffices to get bounds

for

1 f (&1)P)
@) (r+e2-2¢8; +282)%"

B(s) 1
J2(&1,71) = Ko f on Ry.

d
01)?? ) (11— 288 ) :

J1¢,7) = dé; on Ry and

In region A;, we have (¢1)P% < (10)’® <1. Therefore, for a >0 and b > 1 we obtain

fl(f,T)S

1
f Zbdfls f 1dé; <1 on A;,

1
2a
(O il (T+E 266 +280) 1€1<10

since (n) = 1 for all n € R. In region A,, by the change of variables

N =T+ 4285288, dn =228, —¢&ldé

and the condition |2¢; - &| = '%', we have

]1(6)‘[) =

= @R dy 1 / M 4 on 4,

<U>2a|¢”1|210 <77>2b 21261 =¢1 <U>2a|51|210 <77>2b|51|

On the other hand, (&1) = (1 + f%)% < (25%)% <é11, which implies that

€Pet
16,7 5 @) dn on A,.
We observe that f(s) -1 <0 for all s> —i, thus
1 1 dn <
]1(5,T)5wfw nsl on A

since b > % Now, by definition of region A3 and the relation (2.16), we have

E?P=1+(E117 < 21811181 < 4lE 1€ &l = 2|01 — 0 + 02| < 2(lo1| + 02| +|03]) <6lo| < (o),
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since |o1],102| < |o| in the region Az ;. For a >0, we have ()24 < (¢ 1) ~*4. Therefore, it follows
from Lemma 1.16 (inequality (1.31)) that

(&)PL)—4a

(T+&+288 4288,

1
nens eAlE | ST on s

(T+&+288 4288,
since f(s) <4a.
Next, we are going to estimate J»(¢1,71) on R,. Making the change of variables n =7, -

& +2¢E€ in the region Az, we obtain
(EnPY 1
Jo(&1,71) = f dn.
ST anaie )

Moreover, in region Az, we have |{; —¢| = ";—1' and |o|,|o2| < |01, which implies that

16117 < 2|E111E1 — ¢l =101 — 0 + 02 < 3|0y < (o1),
by using relation (2.16). Also, for all (¢,7,¢1,71) € A3 we have
Il =171 - &+ 288 =111 - E—ED* +E <11 —T— €= &P+ T+ & = 02| + o1 | < 2|01

Since [£1]1=10 in A3, we have

B(s)-1
J2(&1,71) S o1l f ! dn.

(o) Inl<2lon | ()™
Now, we observe that
_dn= / L dn=2 Zf” RO il
Inl=2lol < >2“ Inl=2]o1] a+ |17|)2“ 0 a +17)2“ 1=2a 1o
_(@+2l03p'2 120 +]ogh'
1-2a 1-2a 1-2a
SR G
since a < 3. Therefore,
J2(&1,71) S L3l <1, on Ry,

<O.>Za+2b—l

where we used that f(s) —1<0, forall s>—1 and 2a+2b—1>0with a>0and b> 3.
Now, it remains to estimate | Z(f, g, ¢)| in the conditions of case (III). In what follows, we

will make use of the algebraic relation
— @+ + @1 =D+ (T-T1 + (E = &) = —26¢. (2.17)
First, we split R* into four sets
Bl = {(5)‘[751)‘[1) € R4) |61| = ]-0})
By ={(& 1,6, €RY; (&= 10 and €] < 1},
Bs ={(¢,7,61,71) €R% 1611210, €1 =1 and [¢]= 161172},
By ={(¢7.¢1,m) €RY 1611210, 1§12 1 and £ <1¢11/2}.



44 CHAPTER 2. THE PROBLEM IN H*®

Next we separate B, into three parts, which are

By1 ={(¢1,61,T) €By; IT1 - &), T—T1 + €= EDP < [T+ &7},

By ={(£,7,&1,7) €By; [T+ &, [t -1+ €= EDP < |11 - &1},

Byz={(1,61,71) €By; IT1 = &), [T+ E < v -1+ € = &)1}
We can now define the sets S;, i = 1,2,3, as follows

Si=B;UByU B4,1, S, =ByU B4y2 and S3 = B4y3.

Similarly to the case (I), using Cauchy-Schwarz and Holder inequalities and duality argu-
ment, we can write

Z(f.8 1= 1]z 8l 0]l 2 (1 + F2 + ),

where
<€>25f XS
A = d¢,d
U@ ) @0 P o0 e sdn .
13
1 xs, (6%
Sy = f dé¢dr
B R R R RS
" L
1 Xs, (&1 +E)*
F = dé;dr
B R A O e S
52.72

with 0, 01 and o are given as in case (III) and

SSC{@Z e pert  GIZI0IE+EIZ LG+l < (612 }
= » 12,61, 01 ’ .

and |11 — &3, 171 + T2 + (€1 + E2)?| < T2 + &)

Again, by (1.27), we have

<€>2S B(s) 0, ifs=0
— < , wh =
(EN*S(E)*S € where - (s 4|s|, ifs<0.
As we did in the case (I), we obtain
1 <fl>ﬁ(s))(81
A< dé, d ,
' | (oy2a | (o) (02)?? frdm
R LC;?T
<6l>ﬁ($‘)f XSZ
H < dédr ,
22 o0 ) o ®
R2 oo
<171
_ B(s)
1 X3, (3
F < dé,dr
w2 ) @ on® srn .

$9,To
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Applying Lemma 1.16, more precisely, inequality (1.30), we obtain

€)Pe 1
—dél dTl :f<€1>'6(5)f dTldEI
f (01)%7 (a2)? J J (11 =) (1-m + € - 2)

[RZ
B(s)
5[ 3V ey,
J (T+e-288)
1 1
—dgdrsz drde
R[(U)Z“(GD% . (r+€2>2a<r—71+(€—€1)2>2b
1
< _de,
) (n-&+2e8)
and
&P !
—p o, d1dny =f(51>ﬁ(s)f ; dr1de
[é[ (01)% (0)? J (11 =) (11 1o+ (€1 +E2)2)°
B(s)
5[ 3 déy,

J (T4 342824281 6)%

since min{2b, 4b -1} = 2b and min{2b, 2a, 2b+2a -1} = 2a. Thus, we conclude that

1 ,3(3)
‘%’S Zaf <€>2 A5 2b
<0'> R <‘L’+f —2651> L;’}
B(s)
S < & be xS, _de ’
(o1) 2 (11—E&2+2&&) .
1 (&P ys
'%S“ be 2 2X53 2a
(02) R <T2+62+2£1+2€2£1> Lo
2,72
Therefore, it is sufficient to get bounds for
1 B(s)
Ki(6,7) = Zaf ) 55461 on §;
@) (v 28
ﬁ(S) 1
Ky (&y,11) = K3 be > 5-d¢ on S,
(o1) 2 (Tl—€1+2£€1>
(1P d&, on S

K3($2,72) = f
seete (02>2bR (To+&2 4282 4 28,&,)°

In region B;, we have [¢;]| < 10 which implies that (¢ PS) <1, Then,

1 1
Ki($,1) s —7 f
1 0 ) (ree2-2)

[$11=1

zbdfli f 1dé1 <1 on By,
1$11<10

since (n) =1 forallpeRand a,b=0.

45
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In region B3, making the change of variables n = 7 + {2 — 2&&; we obtain

TS B St
<0>2a 2|5| <T]>2b <O->2a <1]>2b

Kl (6; T) = dn on B3)
since |£;| = 10, which implies ({;) < 2|¢;|. Using that f(s)—1 <0 for all s> —i and (n) =1 for

all n e R, we obtain
1
Kl(fbﬁ)ﬁf s;dn<l on B,
(m)

R

since 2b > 1.
Now, by definition of region Bs,; and the algebraic relation (2.17) we have

1) =2[¢11=2[¢lI¢11 =101 +02—0| =3|o| < (o),

since [{1]1 =10, [{| = 1 and |o1], |o2] < |o| on By, . Therefore, the change of variables n =1 +&2 -
2¢¢1 and the condition [£] = 1 yield

B(s) B(s)-2a 1
K€D < Sy [,

~ (o)2a 2|5|<17>2b T~ (n)

forall s>-1,b>3and acRsuchthat0<a<3, if s=0o0r2[s|<a<gy, if -1 <s<0, which
finishes the desired bound for K; on S;.
Next, we estimate K»(¢1,71) on S;. Making the change of variables n =7, — cf"f +2&&E1, we

obtain

(&HPY 1
Ky (&y,71) = f dn.
Zer (01)?P 2|61|(n>2a 7

We observe that in B,, we have
Inl =171 —5§+2€§1| <lo1l+2[¢611=2(loq[+161)  and  (&p) <2[&y].

Thus,

1 1P f 1
K1, 1) S ——— dn.
2(61,71) (o2 ez n

nl Slol+1é1l

On the other hand,

1 1
dn = f ——dn= d
" R

Il Slol+1¢l [l Slol+1¢1l

with

Im11+181] lo1]+1&1]

_ (1+n)1—261
A+m2a 1~ T 1-2a

0
(o] + & e 1
1-2a 1-2a
1-2
< +logl+1&1)

<((on) +1&,1)" 7%,
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since 1-2a > 0. Therefore,

B(s)-1 B(s)-1
<1 - 1$1]

1-2a 1-2a 1-2a
Kz(ﬁ»ﬁ)iw((m)ﬂfﬂ) _W(Wﬂ +1&E177Y),

where we used the fact (x| +[yl)* < |x|%+]y|* for all 0 < @ < 1 and for all x, y € R. Since
2b+2a-1>2a>0, (n)=1, |&;1=10 and B(s) —2a<0,

we conclude that
&P~ |&1|P—2a

K2(€17T1)5 >2b =1,

(O.l>2b+2u—l (0.1

for s> —i, b> % and 0<a< % such that §(s) < min{1,2a}.

In the region By, by the algebraic relation (2.17), we have
€ =Q+161D)=2(E11 =2[61lll =1 -0 +01+02| <3|o1] < (01),

since |[£1] =10, |{| =1 and |o|, |o2| < |o1| in B,. Moreover, the change of variables n = 7, —5% +
2¢¢y, the restriction in the region B, and (2.17) give us

Inl <2(8&11+ o1l S (o).

Therefore,
(&P 1 &1 PO~ 1
o o
GOy 1K GO e M
with
(o1) _ (o1)
1 1 (1+mn)t-2a"! _ _ _
f —zdn= mdn= I?ﬁ S(L+{o)! 2 <2724 gyl 22,
Inl <o) <17> 0 7 0
forall0< a< 3. Thus,
|&11PO-1

K>(&1,711) SW <1,

since |£1] =10, 2b+2a—-1>0and B(s)—1<0 forall s> —}1, which concludes the bounds for K»
on S,.

Finally, we estimate K3(2,72) on S3. By using (2.17), we observe that
(1) <2161 <2188 =1 -0 +01 + 02l <302l < (02), on Ss.

Therefore, inequality (1.31) from Lemma 1.16 implies
P
K3(&1,71) = f
ST g2 (T2 +E+28 42868
f (yPe-zb
(ro+&+28+2608)

1
< d ’
f<T2+£§+2€%+261€2>2a fr<e

since f(s) —2b < 0 for all s > -7, which finishes the proof of the bilinear estimates. O

d¢y

<

~

d¢y
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Using Lemma 2.5 and Theorem 2.9 we have the following proposition, which will guar-
antees that @7 is a contraction in a ball centered at the origin of X .

Proposition 2.10. Let s > —; and b e (3,3), then for all uge H'R), uy € H* '(R) and 0< T <1,

there are d > 0 and a constant Cy, j, > 0 such that

lorulx,, < Cyp (|| uoll s + N | oot + T u||§(s‘b), for all ue Xqp, (2.18)

and

d
|1®ru—@rvlx,, < TCypllu+vlx, lu-vix,,,

forall u,ve Xp. (2.19)

Also, from inequalities (2.18) and (2.19) is possible to prove the uniqueness of the solution
and also the continuity of the data-to-solution map ®r. Since the proof Proposition 2.10 and
the proof of well-posedness in this case is very similar to the one in Gevrey analytic case, we

will do this with detail in the next chapter.

2.2 Periodic Case

In this section we are considering the periodic version of the Cauchy problem (2.1), that
is, the variable x belongs now to T. The problem approach here are very similar to the way
that was showed in the real case, the main change will be in the bilinear estimates, which is
the result that we will present in this section with more details.

By doing precisely the same steps that we did in the previous section, we obtain a formal
solution map to our problem given by

t
Oru =)Wy (8 uo(x) +w () Wa (1)1 (X) —wT(r)sz(t— Hw(x, r)dt, (2.20)
0

where the operators W; and W, are now given by

1 . eiy(n)t + e—iy(n)t R
Wi (D) (x) = Z—ée’”x( 5 )(p(n) and
1 . eiy(n)t _ e—iy(n)t
W t - mnx A~ , — 2+ 4’
L (D) Znn;e ( T )(p(n) ym =Vn2+n

which are the periodic form of the operators Wy and W, presented earlier. Again, our prin-

cipal aim is to solve the equation ®7u = u.
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We consider the following decomposition of the map ®r

DOru(x, 1) = %U/(t) nZEZ: U (eiY(”)t —+—2e_iY(n)t) o o)
+%W(t) é pinx (eiy(”)zfi;(e’;)iﬂn)t) o o)
_#wm) %f ei(z’l;;:;’;)” (ei(:_ﬂ:();)_ 1) Bn,7) dz (2.23)
+#wm) ; f ef;:;?” (ei(:(;)();)_ 1) D(n,7)dr, (2.24)

which give us a motivation to define the solution spaces, that is, the periodic Bourgain Spaces.

The Bourgain Spaces X, (T x R)
We introduce the following spaces.
Definition 2.11 (Space X, (T x R).). Let & be the space of functions F such that
(i) F:TxR—C.
(ii) F(x,-) € L (R) for each x€ T.
(iii) F(-,t) € C*°(T) for each t € R.
For s,beR, X, = X;,»(T x R) denotes the completion of Z with respect to the norm

3
lvlix,, = (Z[(ITI —y()Y?? (ny?*|0(n, 1) 12T
R

nez

where y(n) = VnZ+ n® and (n) = (1 + n?)2.
We will also need the localized X spaces defined as follows.

Definition 2.12 (Space XsTb(T xR).). For T=0, XsTb denotes the space endowed with the norm
lullyr, = végl(ﬁb{IIVleS,b; v(x, 1) =u(x, 1) on Tx[0,T1}.
It is important to point out that the continuous embedding
X p(T xR) — C(R; H*(T))

remains true as we showed in Lemma 2.4 for the real case.
The following lemma give us an elementary bound for the X, ;-norm of the map ®r and
its proof is very similar to the proof of Lemma 2.5.
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Lemma 2.13. Let s > —i, up € HY(T), uy € HS ' (M) and 0 < T < 1. For f,g € X, we define the

bilinear operator
D7 (f,g) =y (1) (Wi () up(x) + Wa(£)0x 1y (x)) _T,UT(t)fWZ(t— wyg(x, t)dt
0

where wg g =0%(fg). Let -1 <b' <0< b= b +1. Then, there exist a constant C = C(y,b,b') such
that

b L [(Wre(n,T)
|@r(f, @k, < Clluollas + lulls—p) + CT -0 | l(fg—)

2iy(n)

XS,bI

Now, we are in the crucial part to get the well-posedness for the periodic gB problem,

which is to get bound for
-1 m(”’f))
Hg ( 2iy(n)

X p!
The next subsection is devoted to show a detailed proof of the bilinear estimates presented
by L. G. Farah and M. Scialom in [13].

The Bilinear Estimates

We begin by showing some technical results that will be useful later. For a reference of

the following classical result see, for example, Lemma 5.3 in [27] on page 3346.

Lemma 2.14. If g > 1/2, then

1
su <oo. 2.25
(nr)egxu@ nZEZ (I+lrxni(n-m)N9 @.2)

Proof. Let a = a(n,7) and B = B(n, 1) belonging to C the roots of the polynomial
p(n) =1+ ni(n—ny),

that is,

Z"(1+Ir+nl(n ny)9 Z (1+|(n1—a)(n1—ﬁ)|)”’

nez nmez

We write Z= Au B, where A and B are given as follows
A={ny;Im—al<2 or Imy—pl<2} and B={ny;Ini—al>2 and |n; -l >2}.

First, we observe that A is finite. In fact, let x be the real part of a and n; such that
|n; —al <2, then

N —x|<2 = -2+x<n;<2+x=> -2+[x]<n; <3+[x],

where [x] denotes the integer part of x. Therefore, there are only five possibilities for n; such
that |n; — a| <2, which are
[x]+2, [x]+1 and [x].
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This proves that A has exactly 10 elements and, therefore,

)

1
<
Z A+l(m-a)(m-PN7

neA

for all (n,7) e ZxR.
It just remains to estimate the sum over the set B. If n; € B, then

n1 —al < Im—allm-pl 4 ny— Bl < |11 —alln — Bl
2 2
which implies
Iny —al+|ny— Bl <|ny—alln; — Bl. (2.26)
Using (2.26) we obtain
1 1
5(1+In1—al)(1+|n1—ﬁl)—5(1+|n1—a|+|n1—ﬁ|+|n1—alln1—ﬁl)
1
55(1+2|n1—a||n1—,6|)
<1+In—alln - pl,
that is, . )
< . 2.27
(+im—alm =) = (L= Im—al) (15 1m —B) (2.27)
By (2.27) and the Cauchy-Schwarz inequality, we have
2 1 2"
=t L+ 1(n —a)(m - ﬁ)l)q =1+ —al)?(1+1n - pl)7
1
2 2
<
(n; (1+1n - al)”’) ( « (L+1m - ﬁl)”)
2
<
n;(lﬂm aI)Zq) ( (1+|n1—ﬁ|)2‘7)
SCq,
for all (n,7) € Z xR, since g > % This finishes the proof of the lemma. O

Lemma 2.15. Let0<a<1/2, a€R, f=0v>0and H={heR;h=a+n, n€ Zand |h| < B}. Then

p
1 2 1
’;—(V s z(—vm " f — dx). (2.28)
0

Proof. Without loss of generality, we assume a = 0. We are going to prove first the case when

p = 0is a integer number, that is, we would like to start by proving the following inequality

B
1 2 1
Y =< 2(% " - dx). (2.29)
nz_ﬁ(v+n) v . (v+x)



52 CHAPTER 2. THE PROBLEM IN H*®

We observe that

4 p
Aﬁ = nZ (v+ n)Za = Zl v+ n)ga (2.30)
and
— i 1 1-2a _ 1 1-2a
Bﬁ 2(1/2“ f(v+x)2“d ) 2(V2a+ 1—2a(v+'6) —I—ZaV . (2_3])

Let us prove the mequahty Ag < Bg by induction on . For =0 the desired inequality is

trivial, since Ag = -z and By = -3;. For =1, since 1 —2a >0, we have

4 2 4 2 2 4
Bi=—+—— v+ = _yl2a5 4= (20— (yypla- —
1= it 1oVt 1-2a via T 1oVt =24V %Y y2a
which implies
1 2
A= —+ <—<B8h.
1 VZa (V+1)2“ V2a 1

Next, for some natural number k =1 we suppose the following
Ap<Bg, forall =0,1,2,...,k,

and we are going to prove that the same happens for f = k+ 1. By using the induction hy-
pothesis, we have

Ajp1 = Ap + < Bi+

v+ k+1)2a v+ k+1)2e’
with
k+1

1 1
By =2|—+ dx|=Byy1 -2 dx
k (vza (v + x)2a ) G f (v +x)2a
0 k

Then, we obtain

9 k+1 ] k+1
A <B4 +——mmm——-2 ———dx=Bp;1 -2
k+1 k+1 (V+k+l)2“ f (v+x)2“ k+1 f
k k

For all x € [k, k+ 1], we have

1 1
- d
(v +x)24 (v+k+1ﬂu]x

k+1

1 1
>0, which implies f
k

(V+x)24  (v+k+1)2a

1 1

— dx=0.
v+ (wrk+n2a|”

Then, we conclude that A, < Bg+1 and the proof of (2.29) for integer values of 8 is done.
Now, let > 0, then
Inl<p = —-[pl-1<-P=n=p<[pl+1 = —[fl=n=|[p],
where [x] denotes the integer part of a number x. Then, using which we proved previously,

18]

(] B
1 1 2 1 2 1
— = —<2| o+ | ———dx|=2|—>- :
Z"(V+|h|)2“ n:Z v+ = (v2“+0f(w/+x)2“dx)< (v2“+0f(1/+x)2“dx)

heH =Bl

since [B] < B. This finishes the proof of the lemma. O
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Remark 2.2. In view of Lemma 2.8, we have an equivalent way to compute the X;; -norm,
that is,

b, (s
lullx,, = (7= n2)" ) @z, m)
In fact, we just need to join the result given by Lemma 2.8
1 1+|7]—-n?
< <

c  l+|ltl-yn)|

(2.32)

L2

—_ )

with the fact (x) = (1 +|xI), for all x € R. In the proof of the next theorem we will use the right
side of (2.32) as definition of X, ,-norm.

Now we are in position to prove the periodic bilinear estimates.

Theorem 2.16 (Sobolev Bilinear Estimates [13]). Let s > —% and u,v € X p(T xR). Then, there

exists C > 0 such that )
1 (Inlcav(n,1)
gl =
H ( 2iy(n) )

<Cllulix,, Ivlx,, (2.33)
XS,—Ll

holds in the following cases:
(i) s=20,b>3and }<a<j.
(ii) =3 <s<0,b>3and + <a<2 such that |s| < £.
Moreover, the constant that appears in (2.33) depends only on a,b and s.
Proof. Let u,v € X, and define
fn,7)=(It|- n2>b (m*u(n,t) and gn,1)=(|7|- n2>b (n)’v(n,1),

which are functions in [2L2. By using duality argument, we observe that (2.33) is equivalent
to the following inequality

where
(n)® gm, 1) f(n—n,7-11)0(n,7)
W(f.8¢)= f 5 drdr;.
n;Z 2y (m) (m)* n=n0* (17) - n2)* (71| - n2)" (|t — 711 - (n— m)2)"

Therefore, to perform the desired estimate we need to analyse all the possible cases for
sign of 7, 7; and 7 — ;. To do this, we split Z? x R? into the regions

T

I'={nn,7,71); 711 <0, 7—71 <0},

Iy
I, ={(n,ny,7,71); 7120, 7-7, <0, 7=0},
I3={(n,n,7,711);711=20,7-7; <0, 7<0},
Iy={n,n,7,71); 711 <0, 7-7, =0, 7=0}, I's

FSZ{(nvnl)T)Tl); T1 <O} T—T 207 T<O})

I's ={(n,n1,7,71); 7120, T—71 = 0}.

Figure 7: Bilinear estimates regions II.
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Thus, it is sufficient to prove inequality (2.34) with Z(f, g, ¢) instead of W(f, g,¢), where

|n|? (m*  glm,11)f(ne,12)0n, 1)
2iy(n) (n)*(n2)* (o) (o) (0,)?

Z(f.g @)= ) drdr;,

n,nlesz

with np =n—-mny, 72 =7 -1, and o, 0}, 02 belonging to one of the following cases

q)) 0:T+n2,01:Tl+rzf,agzrg+n§. (IV) Uzr—nz,al:Tl+n%,02:12—n§.
(II) J:T—nz,al:Tl—nf,agzrﬂ-ng. V) 0:T+n2,01:Tl+nf,02:12—n§.
() o=1+n? 01=T1—n3, 02 =T+ 5. (VI) o=1-n? 01=171—-n%, 02 =1, — 5.

We observe that the cases
o=T+n% Ulzrl—nf, azzrg—ng and o+1-n% 0y :T1+n%, 02:12+n§,

cannot occur, since 71 <0, T—7; <0 implies <0 and 7, 20, T —7; =2 0 implies 7 = 0.

Applying the change of variable
(n,n1,7,71) — =(n,n1,7,71)

and observing that the /2 L% —norm is preserved under the reflection operation, the cases (I1I),
(D) and (I) can be easily reduced to (IV), (V) and (VI) respectively. Moreover, in the same way,
making the change of variables 7, = 7 -7, n; = n—n; and then (n, n,7,72) — —(n, n2,7,72) the
case (V) can be reduced to (IV). Therefore, we need only establish cases (IV) and (VI).

We first treat the inequality (2.34) with Z(f, g, ¢) in the case (VI), we will use the following

algebraic relation
—(T-n+ @ -nd)+ (t-11)—(n1 - n)z) =2n;(n—ny) (2.35)
We can write Z? x R?> = Au B, where

A={(n,n,7,11); IT-11) - (n—m)*| <71, —nfl} and

B={(n,n,7,71); |0 —71) — (n—ny)?| = |11 - nfl}.

By symmetry we can restrict ourselves only to the set A. We divide A into three pieces which

are

Ay ={(n,ny,1,71) € A; n=0},
A ={(n,m,7,71) € A; mp =0 or n; =n},

As={(n,m,7,T1) € A, n#0,n #0 and m # n}.
Next we split A3 into two parts

2 2
Az ={(n,m,7,11) € A3; IT1 —njl <lt-n°|} and

2 2
Aso ={(n,m,7,71) € As; [T —n”| < |11 - nil}.
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Now, we define the sets R; and R as follows
Ri=AUAUAs; and R, = Asp.
In what follows, yr denotes the characteristic function of the set R. Since A= R; UR,,
|1Z(f, &) < %1 +|ZRo|,
where

R; =

n, I’llEZ

n* (ny*  xr(n,7,n1,71)8(N1,71) f (N2, 72) (1, 7)
drdr;.

| 2y(n) (n1)*(ny)* (Y (01)P (0,)P

Using the Cauchy-Schwarz inequality twice, we have

1
2 13
n*(n)y% YR, &(m,71) f(n2,72)
Rl < d d
|%1] Z[4Y(n)2 <O.>2a (meZ 13 T ”(p”l,%L%

| 7 (n1)*(n2)$ (o 1)P (o)
< dr
;f 4y(n)%(0)*" (Z <n1>23<n2>25<ol>2b<og>2b )

1
(Z[Ig(m,n)l |f (n2,72)] dTI)dT] ||<P||12L2
n ez

Now applying Holder inequality, we obtain

|21 <

n <n>28 f
dr;
4y(n)2 (o)%a Z (n1)? <n2>25 <01>2b (02)?P

nez

1

2

loll 2.2

X

Y. [Igtmeitifin et dride

rL,nlEZ[R2

n <n>25 f
dr;
4*y(n)2 4y(n)2 (0)2@ ,;Z <n1>23<n2>25 <01>2b (02)%P oo o0

£z lglee lelee-

55
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We apply the same steps for %,

n2 (&) f(ny, 12)P(n, T) xR ?
% f f e
221 % | ) TRE <ol>2b ( e 27/(n) @yt

nez

Z/(I’l >28<0.1>2b

nez

1
(Zflf(nz,rg)l lp(n,1)] dr)drl

nez

1
2

l&llizz

IA

f (ny?S yp, &
4y(n)? (ny)?s ()24 (0)?b

nez

lglliz 2

Z f (Y% yp, .
()% <al>2b =) 4y(W)? (ny)%S(0)?%(0,)?b

Zf (n)** g,
<n1>25<01>2b 4y(n)? (ny)2s (0)2% (0)?b

nez

I L

Z flf(nz,rz)l [p(n,7)| drdh) &l 2.2

n n1€Z

1£ 122 81l 22 ol 22
I, L%

which give us

1
2

n4 <n>25 1 XRI )
Z Sy =" . 4., 9, d
eI 4Y(n)2<a>2“,;ez(<m>25<nz>2~*f oo | I s Vel 1
1 n4<n>23 xR, )
d .
<n1>23<01>2b;(4Y(n)2<nz)zsf (02 (g)%b i 2 poo 101 N8l Nelie
np—T]

(2.36)

Since we are considering the case (VI), we have

1 1
———Fdr1; :[ dr,
f (1) (02)?P (11 =122 (1, - n2)?

1
= dT1
f (11 -2 (1, - @ = (n-n?2))*’

Applying Lemma 1.16, more precisely inequality (1.30) with p = g =2b, a =7 — (n— n;)* and

f S S M ! . (2.37)

002 0?  (r(nm)2— 2y

B = n?, we obtain

Similarly, we have

1 1
——dr f dr
f (@)% (a2)?P (1—n2Y’* (15— n2)*"

1
= dr
f (T-n2Y* (1= (11 + (n—nP?))?’

f — b e ! , (2.38)

(0)2% (a2t~ (T1+(n—ny)% - n2>2“

with
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1
Z.
Returning to (2.36), it follows from (2.37) and (2.38) that it is suffices to get bounds for

since min{2b,2a,2a+2b—-1}=2a and a >

4 2s -2s -2
Ji= sup ( N m) ) Zb) on Ry (2.39)
(nnezxr\(O) YN 75 (v — n2 - 2n% +2nn; )
1 n4 <n>25 <7’l >—28 <7’l >—28
Jo= sup ( — v ) on R (2.40)
(mrezxR\ (01" 727 y(n)? (11 + n® —2nny)

Let us start estimating J; on Ry = Aj U Ay U A3z ;. In region A;, we have

n* n* n?

¥ (n)? Tt i+l

therefore the estimate is trivial. In region A,, we have
(> (m) ™ () > = (my* () > =1,

and, moreover,

n* n

- <
Y2 n2+1"

2

Therefore, since a, b > 0, the following happens

n* (m)?S (ny) 25 (np) ™% ) ( 1 2 )
- r < <1,
Db (<a>2“y(n)2 2 nmyeni (024 (gy2b |

2b
(n,71)eZxR 11 =0, (T—n2—2n"f+2nn1>
ornj=n

which proves that J; is bounded on A,.
Now, by inequality (1.27), we have

(n)y?s - (ny)?s!
(n)?5(np)?s = (ng)?*

= (m)*, (2.41)

for all n,n; € Z, where

0, if s=0
Als) =
4]s|, if s<DO.

Using the algebraic relation (2.35), we obtain
2nmy(n—ny)|=|-o0+01+02|.

In the region A3 ; we have |[n—mn;| =1 and |o2| < |o;| < |o| which give us

|—o+01+0y 3lo|
< <

< . 242
2|ln—m| 2 slol ( )

|nil =

Therefore, using (2.41) and (2.42), we obtain

<n>28

o s =
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on Az, since A(s) = 0. Thus, in the region Az ; we have

nt (n)?S(ny) =25 (np) =2 )
Ji= sup

2
(nnez* xR \(0) =Y (M)? =3 (1 — 2 — 2122 +2nm )27
n#n

1 1
= sup <0.>2u—/1(s) Z )

2b
(n,T)eZ* xR 1, #0, <T—n2—2nf+2nn1>
m#n

< sup Z ! ), (2.43)

2b
(nnez* xR\ 3720 (T — n? —2n2 +2nny )
ni#n

since 2a— A(s) = 0. Applying the change of variables 7 = % and Lemma 2.14 on (2.43), we

o | it S

N ~ 2b N ~ 2b |~
(nDez* xR\ y 20, (2T —2n% +2nny) (nez*xR\ 20, (T —n? + nny)
ni#n ni#n

obtain

for all (n,ny,7,71) € As,1, which concludes that J; is bounded on R;.
Next, we estimate J on R, = A3 . Once again, by inequality (1.27), we have

(ny%s - (np)2H!
(n)?5(np)?s = (my)?*

0, ifs=0
Als) =
4|s|, if s<DO.

= (n*, (2.44)

for all n,ny € Z, where

Using the algebraic relation (2.35), we obtain
2nmy(n—n))|=|-o0+01+03|.

In the region A3, we have |[n—n;| =1, |o2| <|o1| and |o| < |o| which give us

|—0+01+0,] - 3loq]

= < <2 . .
|ny| ] 5 = lo] (2.45)
Therefore, using (2.44) and (2.45), we obtain
2s
T o,

(n1)%%(ny)?s

on Az, since A(s) = 0. Thus, since n*/y(n)? <1, for all (n, ny,7,71) € Az » we have

1 n () (1) 72 (np) ™% )
Jo= sup

2
(m,rez* xR \{o1)2P nzo, Y(W2(t1+n?-2nm )™
n#ny

1 1
= sup 1>2b—/’l(s) Z )2(1)

(1, 1)€Z* xR \ (O 770, (L+171+nf—-2nn,|
n#np

1 1 1
= . 2.46
sup <01>2b—/1(s) 121, |24 ; ‘)Za) ( )

(n1,T1)€Z* xR P ( 1 T1+n]
n#ny \12n]

2m
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In the region As,, we observe that

T+ 13

2111

where we used the algebraic relation (2.35). Applying Lemma 2.15 with

12y

1 2
= |Tl+n1—2n1n|s
1271
(lo1l+|-o+01+02)) <
12n,|

2loq|

[n|

)

(It = nfl+ 121 (n— ny)l)

2 2
T1+n 1 T1+n 2|lo
_ 1 1 —-n, — L a= 1 1 and ﬂ — M,
2m 12| 2m [n|
we obtain the following bound in the region As»
2|o1|/1m| oa
1 1 2a
Z =) ———— =<2(212m[**+ +x|  dx].
170, ( 1 T+nf n ) e (VE1hD 12n|
n#n \12m| 2m
We observe that
2oy |/1ml —2a 2oy |/l 1 4o |
+x|  dx=2m > 1+12n11%0) 2%dx = |12n1 *¢ f 1+y)%“dy,
2] ) |27 | (1+12n1]x) 127 2] (1+y) y
0 0
with
vl i L+ p)l-2aMo1l (1 4 410124 1 (4gp)1 2
f (1+y) dy=—"5—| = < <o),
1-2a | 1-2a 1-2a 1-2a
0
since 0 < 2a < 1, which give us
2lo1|/1m| —2a
+x dx <12n )4 o)t 24,
12n|
Therefore,
1
> 5o <202m P 2 PO ()12,
1770, ( T1+n% _ U
n#n; \12n1] 2m
Returning to (2.46), we have
1 1 1
J2 = sup )
(m,rezs xR\ (01)?P7AS) [2my |2 ,;’ ( n ‘)2“
n#n; 2m

< sup
(n,71)€Z* xR

= sup
(n1,711)eZ* xR

~

< sup
(ny,71)€Z* xR

1

<0.1>2b—/1(3) |2nl |2a
2

(21272 + |2y |27 <ol>1—2“))

1

1

1

>2b—/1(3) +

(o1 (o

1>2b+2a—1—/1(s)

)

+
<0.1>2b—/1(s) |21, <0.1>2b+2a—1—/1(s))
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for all (n,n;,7,71) € A3 2. We observe that
2b+2a-1-A(s)=2b-1)+2a-A(s)) >0 and 2b—-A(s) >0,

since b > % and 2b >2a > A(s). Therefore, in the region A3, we conclude that

1 1
+ <O.1>2b+2a—l—/l(s)

IERS sup
(n1,71)€Z* xR (0-1>2b—]t(5)

Now, we turn to the proof of case (IV). In the following estimates, we will make use of

the algebraic relation
—T-n)+ @+ )+ (11— (n—ny)?) =2 n. (2.47)
Once again, we split Z* x R? into three regions

B = {(Tl, n,T,T1) € 7% x IRZ; n= ()},
B, = {(n, n,T,T1) € 7% xR?%; n;=0or n = n},

B3 ={(n,n,7,71) €Z* xR% n#0,n; #0 and n # n}.
Next, we also separate B; into three parts

2 2 2
B3y ={(n,m,7,71) € Bg; |11 + nil,| (Tt —71) — (n—m)?| <[t — n°|},

2 2 2
B3 ={(n,m,7,71) € Bg; [T —n°|,|(t - 7)) — (n—n)?| < |11 + nil},

B3z ={(n,n,7,71) € Bg; 1y + nfl, It - n®| < (T —11) — (n— m)?l}.
We define the sets S;, S, and S3 as follows
S1=BiuUByU Bgyl, Sy = Bgyz and S3 = Bgys.

As we did in the previous case, using Cauchy-Schwarz and Holder inequalities and duality

argument, we have

Z(f gl = fllee 8l 2ol ze (A +52+ ),

where
7 f<n>25<n1> 25 (np) "2 s, dr,
(0)2“ (Vl)2 ey (01)%0(02)?P oo 00
= Zf n* (M (n) () ys, &
<al>2b w=) v (0)2(02)?P -
P 1 Z |ny + nyl* (ﬂl+n2)23<n1)_23<n2)_237(§3 dr
o0 2t yim+no)? ()24 (01)?" i .

2
12,1



2.2. PERIODIC CASE 61

where 0, 01 and o are given in the condition (IV) and

5. ] enuTTy) €Z?xR?% ny #£0, |ny +ny| #0 and
3 —] .
71+ 12, 1(T1 + T2) — (m1 + n2)?| < |12 — 13|

Since we are considering the case (IV), we have

S S E—
(@) a?h (Tl+nf>2b<rg—n§>2b 1

1
f (11 - (=n2)Y?? (11 - (1 = (n—n)?))?"

dT] .

Applying Lemma 1.16, more precisely (1.30) with p = g =2b, a = 7—(n—n;)* and f = —n?, we

f S ! _ ! (2.48)

71 S = .
(0120 (0rp)?P 7—(n—np)?+n? 2b T-n2+2nm 2b
1

Similarly, we have

obtain

1 1
——dr :f dr
f(U)Z“ (02)%P (1- n2>za (12—n§>2b

:f 2a 1 2b dr
(1-n2)"(1-(11+(n-m)?))

1 1
<

T+ (n-n)2 - n2)>* - (11+n? —2nn1>2“

and

1 1
——dr= f dr
f (@)% (0 1)?P (11 + 72— (1 +12)2)° (11 + n2)?
1
:f 2a 2b dz
(11— (=724 (M + 12)?))"" (11— (-n1)?))
1 1

< = .
(12— (m + np)? - n%>2a (t2—n3—-2n? —2n1n2>2“

Therefore, it suffices to get bounds for

1 nt (M) (1)~ (np)™2*
Ki= sup o 5 5 on S,
(n,1)eZxR (o) ’)/(I”l) nez (T—n2+2nn1>
1 I’l4 n 2s n -2s n =25
K=  sup ( sz 2() (ny) <2>2a) on S,
(m,mezxr\(01)* 1727 YW (11 4+ n? —2nm)
1 (1 +n)* (g + np)?s (my) ™25 (np) ~2¢ ~
Ks= sup T 3 57 n Ss.
(ny,1)eZxR\(02)* =5 Y (M + 12)° (1, — n2 —2n2 —2nymy)
In the region B;, we have Y(”—:)Z =0, therefore the estimate is trivial.

In the region B,, we have

(M (1) 2 () ™% = (my* S (my > =1,
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and, moreover,

n* n?

——=—— <1
y(m)?2 n?+1
Therefore, since a, b > 0, the following happens for all (n,n,7,7;) € B>

4

1 n Z<n>23<n1>‘23<n2>‘23

sup
(nnezxr (0)2?Y(N)?* = (t—-n?+ 2nn1>2b
ni=n

K=

1 2
< sup (——) <1,
(n,7)eZxR (0)24 (0'>2b
which proves that K; is bounded on B;.

Now, by inequality (1.27), we have

(ny?s (np)2!s!
<

< = ()M 2.49
S = 2.49)

for all n,n; € Z, where

0, ifs=0
A(s) =
4|s|, if s<0O.

Using the algebraic relation (2.47), we obtain
2mn|=|-0c+01+02|.

In the region B3 ; we have |n| =1 and |o1],|02| < |o| which give us

|—o+01+0y 3lo]
< <
2|n| 2

ol. (2.50)

|nil =

Therefore, using (2.49) and (2.50), we obtain

<n>28

(n1)%S (np)?*

on Bs, since A(s) = 0. Thus, in the region B;; we have

< (@',

2s -2s -2s
K< sup 1 (M= (ny) == (ny) )

2 2
(n,nez* xR\ {T) am#o, (r—n2+2nn1> b
nm#n

1 1
= sup Y2410 Z )

2
(n,1)ez* xR\ {0 n1#£0, (r—n2+2nn1> b

nm#n
< ! )<1
< sup sl
(nDez*xR\ 720 (1 —n? + 2nn1>2b

nm#n
since 2a— A(s) =0 and 2b > 1, which concludes that Kj is bounded on S;.

Next we estimate K, on Sy = B3 ». In region Bs 5, by the algebraic relation (2.47), we have

3lo1l

2|n|

2nni|=|—0+01+032| <3lo;], thatis, |[n;| < <2lo1l,
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since |n| = 1. Recording inequality (2.49), we obtain

<n>25

yewerymecrE LU VRERCI U
1 2

Thus, since n*/y(n)? < 1, we have

2s =28 =28
K=  sup 1 (M= (1)~ (ny) )

2
(n1,71)€Z* xR <Ul>2b n#0, <T1 +nf—2nn1> a
n#ny

1 1
< sup — Z )
(n1,71)€Z* xR (0'1>2b Als) n#£0, <‘L'1 + Tl% - 2nn1>2a
n#n;

1 1 1 )
= sup , (2.51)
(mrez < (01?7 2y |2 ,;’ (_1 + |”+”f _n|)2a

[2m|

n#n; 2m

for all (n,n;,7,71) € B3 2. In the region Bs;, we observe that

2
T1+n 1 1
L_n|= |T1+ni-2nn|< (Ity + né| + 2nn,)
2m 121 |27 |
2|oq]
= (loil+|-oc+01+02]) < ,
12n,| |1 |

where we used the algebraic relation (2.47). Applying Lemma 2.15 with

T1+Vl% 1 T1+I’l%
2111

)

2l
= y = and f= u,
|2ﬂ1| 21’11 |Vl1|

we obtain the following bound in the region B3 ;

X X Zowfiml o
> - —s2(2|2n1|2“+ f ( +x) dx).

2 2
n#0, (|2_1| Tl;_n%—n) ‘ heH v+ R 2m|
n#ny n nm

We observe that

2|lo1|/Im|

—2a 2lo1|/1m| ) 40|
_ -2a
+x dx =12n)%¢ f (1+12n11x)"2%dx = |21y 1?4 f 1+ dy,
23] ) J |2n1|0( y) Ty
with
4lo|
f (14+7) 2 dy = L+ 2l asdlot 1 o' ()12
1-2a |, 1-2a 1-2a~ 1-2a ~ Y
0

since 2a < 1, which give us

2|o1]/Im|

—2a
el x) dx <|2m |4 o)l 2e. (2.52)
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Therefore,
- <212m P +12m P (o) 172
n#0, (L M -n 2
n#n \12n1] 2m
Returning to (2.51), we have
K> = sup ! ! Z ! )
(m, ez xR \(01)?0~A) 12 24 S (; T4k )2“
n#m \12m| 2m
S ez <al>21b—Ms> |2n11|2“ (212 2m 2 <Ul>1_2a))
~ 2 1
" ez (@220 2] <al>2b+2“—1—m>)
< sup ! + ! ),
ez xR \(o)2PA) T (g )2b+2a-1-A()

for all (n,n;,7,7;) € B3 2. We observe that
2b+2a-1-A(s)=2b-1)+2a—-A(s)) >0 and 2b—-A(s) >0,
since b > % and 2b > 2a > A(s). Therefore, in the region B3, we conclude that

1 1
<1

K> < + <lI.
<01>2b—/1(s) <0.1>2b+20—1—7t(s)

sup
(n1,71)€Z* xR

Finally, we estimate K3(n,72) on S3. It follows from inequality (1.27) that

(n1+n2)% ()2l

— A(s)
) = g
where
0, ifs=0
A(s) =
4|s|, if s<O,

for all ny, ny € Z. Since ny #0 and n; + ny # 0 in the region S3, we have
(n) slngl < |ny+npl+|nl < [ni(m + n2)l+ [(n1 + n2)m| < 2[ny (my + n2)|.
Now, using relation (2.47) with n; + n; instead of n and 7, + 7, instead of 7, we obtain
(n2) < 2lmy(my + na)l = | = (71 + Ta + (1 + 12)*) + (71 + 1) + (12— n3)| < 3|72 - 15| < (02,

for all (n1,n2,71,72) € S3. Therefore, since A(s) =0, we have

(my + np)?s

W < <n2>/1(s) S <02>MS)-
1 2

Thus, since (n; + ny)*/y(ny + nz)? < 1, we obtain

1 1
K3<  sup (— E )
S Z 2
(n2,12)€Z xR \ (0r2) 2P~ M) mzo, {(T2—n5—2n%—-2n1ny) “
m#—ny

1
< sup ( Za),
(n2,72)€ZxR\ 5 20, (Tg—ng—an—annﬁ
m#—ng
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forall (np, n1,72,71) € S3, since 2a—A(s) = 0. Applying the change of variables (7, i) = (12;n§ ,—N2)

and Lemma 2.14 for g = 2a, we have

1

1
Ki|. £ sup 5. |= su 3a
S8 (ny,12)€ZxR nmez <T2— ng—an—2n1n2> (12, T)€ZXR \ €7 (2?—2n§+2n1ﬁ2>

1
< sup = ——-| <L
(fi2,1)€ZxR \ ey (T — M1 (m — 712))

for all (np, ny,72,71) € S3, which concludes that K3 is bounded on S3. This finishes the proof
of the theorem. n

Therefore, it follows from Lemma 2.13 and Theorem 2.16 the following proposition, which

give us @7 is a contraction in a ball centered at the origin of Xj .

Proposition 2.17. Let s> —1 and b e (3,3), then for all ug € HY(T), uy € H"Y(T) and 0< T <1,

there are d > 0 and a constant Cy, j, > 0 such that

I©72lx,, < Cy,p (Iuol s + sl pgss + T Nul ), for all ue X, (2.53)

and

I®ru-@rvlly,, < Tde,b lu+vix,, lu-vlx,,, forall u,ve X (2.54)

Once again, it is also possible to show uniqueness of the solution and the continuity of
the data-to-solution map @1, that is, to show that the periodic Cauchy problem (2.1) is well-
posed for s > —1 by using inequalities (2.53) and (2.54). Since the proof Proposition 2.17 and
the proof of well-posedness in this case is very similar to the one in Gevrey analytic case, we
will do this with detail in the next chapter.






CHAPTER

The problem in G+

In this chapter, we consider the initial value problem for the "good" Boussinesq equation

u—02u+0iu+05(w?)=0, xeRorT,reR,
u(x,0) = ug(x), 3.1)
al’u(x) 0) = axul (X),

now with initial data in analytic Gevrey spaces on the line and the circle.
Let us recall the spaces of analytic Gevrey functions that we shall use. For se R, § >0 and

o =1, we have the spaces
GU"S’S(R) — {fe LZ(R); ”f”ZGo,«S,s(R) - f <€>2s 626|€|1/0|f(6)|2 df < oo}, (3.2)

where (£) = (1 +¢2)!/2. For the periodic case, the space G”%%(T) is given by

G7O3(T) = {f € L2 1 f 1005y = Z (my?s 2™ | F(m)? < 00}- (3.3)

nez

We often omit R or T in the notation of these spaces when it is clear by the context which one
is being considered or when the statement holds for both. If ¢ € G935, then ¢ belongs to the
Gevrey class G? (see Proposition 1.12 in Chapter 1.).

In the case when o = 1, we denote G* = G, Thus, if ¢ € GO(R) then ¢ is analytic on
the line and admits a holomorphic extension ¢ on the strip S5 = {x + iy; |yl <d}. Hence, in
this context, we refer to the parameter 6 > 0 as the radius of analyticity of the function ¢ (see
Proposition 1.15 in Chapter 1.).

By following the same strategy as in Chapter 2, we consider the following Gevrey-Bourgain
spaces:

Definition 3.1. Let s,beR, § >0 and o = 1. We denote by Xy 5.5 = Xo.6,5,5(R?) the completion of
the Schwartz class & (R?) with respect to the norm

1

el x, 6.0 = Uf 2 (7| —y @ & e, 1) R dT dé|

where y(&) = /E + & and (&) = (1+ &)z

67
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Since we are considering local in time well-posedness, we shall need the localized Bour-

gain spaces.

Definition 3.2. Forany T=0, X!, ., =X | (R?) denotes the space endowed with the norm
lulxr = inf A{lldllx,,,,; @(x, 1) =ulx, 1) on Rx[0,T]}.
0,6,5,b ueXss5,5,b e

Let us now give the definitions of the spaces X, 5 5, and XUT 5.5 ON1 the circle.
Definition 3.3. Let & be the space of functions v such that
(i) v:TxR—C.
(ii) v(x,") € #R) for each x € T.
(iii) v(-,t) € C*°(T) for each t e R.

For5>0,s,beRand 021, X;5,5p = Xo,5,5(T x R) denotes the completion of & with respect to the
norm

2
lvlix, s, = (Z[(lrl —y(m)?? (my? 20 |5, 1) 2dt

nEZR

where (n) = V1+k? and y(n) = vVn?+n* For T =0, Xg 55b denotes the space endowed with the
norm

u = inf v sv(x, ) =ulx,t) on Tx[0,T]}.
| ”XUT,a,s,b uexm,s,b{” IIXUY&SJ] (x, 1) (x,1) [ ]}

Our main result in this chapter reads as follows.

Theorem 3.4. Let s> —1/4, 6 >0 and o = 1. Then, for all initial data (uo, uy) € Go0S x GIOs—1

there exist a lifespan
o

(1 + ” Up ” GO:0,s + ” 1231 ”Ga,é,s—l)a ’
where a > 1 and ¢y < 1 are positive constants which depend only on s, and a unique solution u of the

T= T(u(), ul) = (34)

Cauchy problem for the “good” Boussinesq equation (3.1) such that
ueC(l0, TG )N XL, )
Moreover, the data-to-soltuion map is locally Lipschitz.

In order to prove Theorem 3.4, we are going to follow the same steps as in Chapter 2.
Thus, recalling the definition of map ®r

t
Oru =Y )Wy (8 ug(x) +w (1) Wa (1)t (X) —WT(Z‘)f Wo(t - Hw(x, t)dr', (3.5)
0

as we did before, the right side of (3.5) is a formal solution of the IVP (3.1). Our goal again
is to solve the equation ®ru = u, but now in Gevrey-Bourgain spaces. For this we will use a
fixed point argument for the map ®7.

In what follows, just to fix notation, we will focus in the proof of Theorem 3.4 for the real
case. Since, as the reader will see, all the results have similar proof to the periodic case.
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3.1 Estimates in analytic Gevrey-Bourgain spaces

The following two results show the relevance of the space X, 5 5,5. The first one guarantees
that it is continuously embedded in C ([0, T1, G"%¥), provided b > 1/2, and the second one
gives a bilinear estimate which is needed in the proof of the local well-posedness of (3.1).

Lemma 3.5. Let b > %, SER,6>0and o = 1. Then, for all T >0, the inclusion
X,5,50®) = (10,71, G7*®)

is continuous, that is,

sup lu(Dllgoss<Cllulx,;,,-
tel0,T]

Proof. First, we observe that the operator A defined by
A&, n =" 7, n (3.6)
satisfies the relations

lullgoss = NAulgs and lullx, , ., = I Aulx,,,

where X j, is the space defined in Definition 2.2. Then, by using Lemma 2.4, we have that u
belongs to C([0, T1; G"%*(R)) and
luCx, Dllcgo,11,6o0:m) = SUp_(1ul, Dligoss) = sup (IAut, )lips)
0<t<T 0<t<T
= lAu(x, Ollcqo,m,Hs®) < Cpll Aulx, Dl x,,

= Cpllulx, Olix, s,
which completes the proof of the lemma. O
Next, we show an analytic version of the Bilinear Estimates proved in Chapter 2.

Proposition 3.6 (Gevrey Bilinear Estimates). If s > —i and u,v € X, 5 5 b, then there exists a con-
stant C > 0 such that the bilinear estimate

“g_1(|5|2ﬁ/(€,r))

<C
2i7©) lullx,

XU,E,S,—a

8,5,b v ||X¢7,§,s,b

holds in the following cases:
(i) s=20,b>3and ;<a<3i;
) _1 11 1
(i) —3<5<0,b>3, ;<a<jzand|s|<%.
Proof. We consider again the operator A given by (3.6) and observe that

Hg_l (|§|2ﬁ7;(5,r))
2iy(6)

a |§|2ﬁ7}(6"[)

6|£|1/0’ s _ _
e & Itl=y©&) 207 ®

2
Xo.6,5-a LE,T
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and
Pl uv(é, T)‘ = (2m) 2 ’e‘jl’f'“g ux* v, T)‘
< (2m)2 ff M e — gy, - )1 P (5, 7 dry dEy
:(2n>—2ff|@(é—£1,r—n)||@(51,rl)|dfldn,
since

1E1M7 < (1E=n1+ )7 <1E -V + 11V,

for all o = 1, by using the fact that
(a+b)’ <a?+b”, foralla,b=0and 0< p<1.

Thus, we have

“g_l (Iélzfﬁz(&,r))
2iy(S)

(&) 1¢12
{ITl=y©&)*2iy(©&)

(2ﬂ)_2ff|@(5—51i—1’1)| |Av(&, T1)|dér dry

X5.6,5,-a ‘ 2
&

Now, by using inequality (2.14) in the proof of Theorem 2.9 (see Theorem 2.16 for the periodic
case), we obtain

Hg,;_l (|§|2ﬁ7;(£,r))
2iy(6)

< CllAullx,, 1AVl x,, = Cllullx, ; ., 1V x, 5.0
Xa,é,s,—a

where the constant C > 0 is the same one as in Theorem 2.9. ]

Remark. The result above has the same proof for the periodic case just by replacing the
integral in ¢ variable by a sum.

The following two results is concerning the estimate of the map @1 in the space Xs 5,5,

Lemma 3.7. If seR, b=0, 6 >0 and o = 1, then there is a constant C > 0 depending only on ¢ and
b such that

(0 W (Duo(x) + Wa (i | ., < Cllluoll goos + 41 lgoos),
for all ug e GO%5(R) and uy € G5~ (R).
Proof. The proof follows the same steps as the proof of Lemma 2.6. Let us denote
v(x, 1) = Wi () ug(x) + Wa(£)0xu (x).
Taking the Fourier transform with respect to x, we get
P n ="y +e M Y (©),

where - -
_wp(§) | 0xur(S) _Up(S)  0xun(S)
m@)=—=+ 207 © and  h2(§)=— 2 @®
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Thus,
Y&, 1) =h P —yE) + ha (O (T +7y(E).

Since (|7|-y(&)) < (r +y({)) and b =0, we have

1ol 00, <[ € @ (Il - y@) @@ - y©)

L2
T

+ [ @ (Il - 7©) @ + (@)

£

L2,
1/o0
() by

<yl |24 @ by

et lyll o
S

e s 16—
< 1 el + © 5 Lg)

< llwll o (II Uollgoos + lln ”Ga,é,s—l)’

L

since |&]/y(&) = (¢)~!, which proves the desired inequality. O

The next result is concerning the X, 5 5 ,-norm of the nonlinear part of ®r, its proof is a
consequence of Lemma 1.8.

Lemma3.8. [f -1 <V <0<b=<D +1 then

/
<CcT!-?-D
XU,5,s,b

)

Xa,é,s,b’

t
HwT(t)sz(t— w(x, t')dt’
0

-1 ( w(,1) )
2iy(S)

for some constant C > 0 which depends on y,band b'.

t

Proof. We define U(x, 1) = wr (1) [ Wa(t — t)w(x,t)dt’. Considering the operator A given by
0

(3.6), we have

t
AT & 1) =2 T%E 0 = 2y (r) f F,
0

Wa(t— t’)w] & ¢)dt

t . ’ . ’

i t=1Yy(©) _ p=ili=1y(©) P

= T(f)f( : )e T e, ¢hd!
v ) 2iy(S)

t
:wr(t)f% Wz(t—t’)(Aw)](é, tdr'
0

t
=9x(u/T(t)sz(t— ) (Aw)(x, t’)dt’)(& 1,
0
where Z, denotes the Fourier transform with respect to x variable. Thus,

1Ulx, ,., = |1 AUllx,, =

t
wT(t)fWZ(t— " (Aw)(x, t") dt’
0

Xs,b
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Using Lemma 1.8, we obtain

i) | o1 [ AW, T)
< CcT-0-1) 1 .
1Ulx,;s,,<C F —21'}/(5) .
s,b!
Now, we observe that
L (AwE, ) y Aw(E,T)
or—1 — s _
_ s _ b 6|€|1/0' ﬂ)(f,‘[)
& {ltl-y@©) e 2@ "
— g—l(a)(é’r))
21’)/(6) Xo.5,5.0'
which finishes the proof. O

Now, we have all the ingredients to prove the well-posedness of the “good” Boussinesq
equation in a Gevrey class of funcitons.

3.2 Proof of the well-posedness

In this section we shall prove the well-posedness.

Existence of a solution. For (up, 1) € G795 x G795~ with s > —i, and for 0 < T <1 we recall

the definition of the map @7

t
D7 (1) (x, 1) = w(t) (Wi (£) ug + Wa ()0 1y) +wT(t)fW2(t— t")0%(u?) (£ de'.
0

The final step for the existence proof consists in to show that @7 is a contraction in

T
Xosspr)={ue X2y i lullx,,,, <7}
forsomer>0and 0< T <1.

Proposition 3.9. Let 0 2 1, 6 > 0 and s > -1, then for all ug € G, u1 € G795 Land 0< T <1,

there are b€ (3,3), d > 0 and a constant Cy, j, > 0 such that

a 2
”q)Tu”Xg'&syh = Cu/,h (” uOHGU,&s + lluy ”Ga,é,s—l +T7 u”Xu,S,s,b) ’ fOT" all ue X0,6,s,br (37)

and

d
[Pru—-Prvlx,, ., =T Cypllu+tvix,,,, lu-vlx,

P forall u,ve X5, (3.8)

,6,8,b?

Proof. The first step is to consider a € (1, 3) satisfying

(i) If s=0,thend=1-(b+a)>0.
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(i) If -1 <s<0,thend=1-(b+a)>0and |s| < .

In this conditions, estimate (3.7) follows from Lemmas 3.7 and 3.8 and Proposition 3.6. In
fact, using Lemma 3.7, Lemma 3.8 with b’ = —a and Proposition 3.6, we have

Irulx,,,, < [|¥(©O Wi(Ouo(x) + Wa(0)dxu ()|, +
o Xa,é,s,b

t
v (1) f Wa (1 — 11045 (u?) (x, t)dt’
0

|

= Cw,b( ll o ”Gaﬁ,s + g ”GU,(S,S—I + T4
Xa,é,s,—a

1 P&, 1)
2iy(S)

d 2
< Cw,b( lttoll goss + Nt ll ot + T Nully, )

In order to prove estimate (3.8), we observe that

t
dru—drv= —wT(t)f Wo(t—tHw(x, t)dt,
0

where w now is given by
w = 0%(u* - v?) = 02 [(u+ v)(u— ).

Thus, applying Lemma 3.8 and Proposition 3.6 we obtain (3.8), which completes the proof.
O

The next proposition shows that our map @7 is, in fact, a contraction in X; s ,(r), for

some T = T(ug,u;) and r > 0.

Proposition 3.10. Let 0 = 1, 6 >0 and s> —3,. For initial data ug € G*%° and uy € G771, there
are be (3,3) and T = T(ug, u1) > 0 such that

21
Or: Xa,(S,s,b(r) — a,6,s,b(r)
is a contraction, where Xy 5,5, (r) is given by
Xo5,50(r) ={u€ X550 lullx,, ,<r} with r=2Cyp(Iuollgoos+ Il goss),
and Cy, j, is the constant that appears in Proposition 3.9.

Proof. In fact, from Proposition 3.9 it follows that

dy, 2 r )
197Ul 5, = Cyb (Nt Gos + Nt Ngoasos + TNl , )= 5+ Cyp TP,
. . _1 .
forall ue X4 5,55(r). Choosing T = mln{l, (4Cy pr) }, we obtain

r r
”®Tu||XU,5,s,h = E + Z < r,
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for all u € X;5,5,(r). Thus, ®r maps X, 5,5, (r) into Xy 5,55(r). Also, it is a contraction, since
for all u and v belonging to X, 5,5 (r) we have

d
”(I)Tu_q)TU”XU,(j,SYb = T Cl//,b ” u+ v”Xo,ﬁ,s,b ” u-— U“Xmﬁ,s,b

d
<T Cl//,bzr ”u_ U”Xa,é,s,b

ssllu-vlx, 5.,

2
which finishes the proof. O

By Proposition 3.10, we see that for initial data u, € G and u; € G951 there is a
0 < T =1 such that @7 is a contraction on a small ball centered at the origin in X, s, ,. Hence

@7 has a unique fixed point v in a neighborhood of 0 with respect to the norm |- || Since

XU,E,s,b'
w(t) =1and yr(#) =1, for all |t] < T, it follows that u solves the initial value problem (3.1)
on R x [0, T]. Finally, thanks to Lemma 3.5, we have proved the existence of a solution to the

Cauchy problem which belongs to the space C([0, T1,G*S(R)).

Uniqueness. From the fixed point argument used above, we have uniqueness of the solu-
tion of ®7u = u in the set X, 5,5 (). We will use the same argument due to Bekiranov, Ogawa
and Ponce [4] to obtain the uniqueness in the whole space X' .

Let 0< T <1, ue X;55p be the solution of the equation ®ru = u and 7 € XUT5 sp bea

solution of the Cauchy problem (3.1) with the same initial data uy and u;, that is,
t
(t, x) = Wi () ug(x) + Wa ()05 11 (%) —fWg(t— t0% () (x, ) dt',
0
for all (x, ) e R x [0, T]. Fixing an extension v € X; 5 5, of 7, we have

t
v(t, x) = w(t) (Wi (D ug(x) + Wa (D)0, uy (X)) — w7 (£) f Wa(t - t)0% () (x, t) dt,
0

forall (x,1) eRx [0, T*] with 0 < T* < T. Our goal is to show that u=v on Rx [0, T].
We fix

Mzmax{llulx,, ,,Ivix,,.,}-

For any ¢ > 0, considering the difference u—ve X'

o5 thereis w € X, 5 5 p such that

t
w(x, 1) = ulx, ) - v(x, 1) = wT(t)fWZ(t— tY0% (u* - v?) (x, £)d¢, on Rx [0, T*],
0

and

&
lwll <lu-vlyr +=.
Xa,é,s,b Xa,é,s,b 2

We define

t
(1) :wT(t)fWZ(t—t’)ai(w(m ) (x, £)dt'.
0
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We have @ = u—v on Rx [0, T*]. Therefore, from definition of |-|| ,7+ , Lemma 3.8 and Propo-
0,0,s,b
sition 3.6, it follows that

~ d d
” u- vlng;Sb = ||w||XJ,6,s,b = Cw:b (T*) ||w||XU,6,s,b ” u+ v”XU,é',s,b = ZMCWyb (T*) ||w”XU,6,s,b :
Then, choosing T* > 0 such that 2MCy, ;, (T*)% < %, we obtain

1 1 £
lu-viyr- <=lowl <-lu-vlyr~ +-
Xa,é,s,b 2 Xg'ﬁ's'b 2 Xu,é,s,b 4 ’

which implies

lu—vl,r+ <e.
Xa,é,s,h

Therefore, u = v on R x [0, T*]. Now, since the argument does not depend on the initial data,
we can iterate this process a finite number of times to extend the uniqueness result in the

whole existence interval [0, T].

Map data-solution is locally Lipschitz. The continuous dependence on the initial data of

the solution is given by the following result.

Proposition 3.11. Let s> —1, (1o, u1) € GZ% x G2~V and T = T (uy, wy) satisfying that there are a
unique solution u e C ([0, T1, G°°) ngé . Of (2.1). Then, given T’ € (0, T) there exists R= R(T") >
0 such that the map solution

$:w—c(10,7,6°>)n x5 ,

(o, thh) — T
is Lipschitz, where W is given by
W ={(dio, 1) € G7%* x G775 g — ol o+ 11 = 1 I g < R}

Proof. First, we observe that for all (i, i) € G2 x G795~ there exist T = T'(ii, #1;) > 0 and a
unique solution i € C ([0, T1, G7%%) of (3.1). We affirm that given T’ € (0, T), there exists R > 0
satisfying

T' < T, forall (i, it;) € W. (3.9)

In fact, since T = min{l, (4Cy,p F)_% }, where 7 = 2Cyp ( ol gos.s + Il Ta ||Go,6,s—1), it is sufficient to
show that

1 d

1
T' < (4Cy pF)"d = _ _
' 8C§/,b( ol Goo.s + 11l Go.g.5-1 )

)

which occurs if, and only if,

(3.10)

{ a0||Ga,5,s + |7 "Go,ﬁ,s—l < W
u/r
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On the other hand, if (i, it;) € W then

I l:z()”Ga,é,s + I U ||Ga,5,s—1 < Uy — u0||G0,5,s + || Uy — up ||G0,6,s—1 + | u0||G0,5,s + uy ||Ga,6,s—1

<R+ ” Ug ||Ga,5,s + ” uy ”Go,é,s—l .
Thus, in order to obtain (3.10) it is sufficient to choose R such that

O<R - ( ” Ug ”Ga,ﬁ,s + ” ur ”Go,&,s—l )

< _—
8C;, (T
This choice of R can be done if the following happens

1
8CZ (Thd (luoll goss + Izl gos,s1) > 0. (3.11)
v,b

Since T' < T, we have
1 1

> .
2 d 2 d
8C2 (T~ 8C2 T

Recalling that T < (4Cy, pr)” 4, we obtain

1 >4Cy/,br_ r
8C;, (T4~ 8C, ,  2Cyp

= [luo ”Goﬁ,s + luq ”GU,L‘F,H )

which proves that (3.11) goes true. Therefore, we can choose R = R(T") > 0 satisfying (3.9).
Now, if (#y, @11), (1, uy) € W with S(il, #4;) = @i and S(ug,uy) = u*, then

|1SCto, ) = SCug, uD) | 0,11, ooy = 8= 1" {| 0,71, Grsy = CllE =1 HXJ,&SJ, ’ (3.12)

where we used Lemma 3.5. Since i is a fixed point of ®; and u* is a fixed point of @7+, then
t
(t,x) = gput, x) =y () [W1 (0o (x) + Wa(t)dx iy (x)] —wf(t)f Wa(t— £)0%(a%) (x, t')dr’
0
and
t
u(t,x) = O u'(x, 1) = w(t) [Wi (D ug(x) + Wa(£)0xuy(x)] -y (t)sz(l‘— 1105 (u*?) (x, £)dt'.
0
It follows from (3.9) that w; = w1+ on [0, T'], which implies

la-ul,,., = lv® M@ -ug) + Wadx@m —udl|y,, ,

+

t
yi(t) f Wa (1 — )05 (@ — u*?) (x, £')d1'
0

X0,6,5,b

By Lemma 3.7, we obtain

lv () [Wa () (Gio — ug) + Wa(0)Ox (@ — up)] ||, < Cyp (|| 0= g || goos + | 81 = 47 | go.5-1) -

,0,8,b
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Applying Lemma 3.8 and Proposition 3.6, we have

~ *
a—u”|
0,0,s,b | Xa,é,s,h

t
wT/(t)fWZ(t— )05 (@ — u*?) (x, t)d?' < CypT'?|a+u*|
0 X0.,6,5b

1d (= * ~ *
< Coa (7o) - u[ ...,
since @i € Xy 5,5, (F) and u* € X, 5,5 p(r*) with
F=2Cyp (ol goos + 1l goos1) and 1™ =2Cyp (Ilugllgoss + Ui llgosst),
as we proved on Proposition 3.10. Using that
T<T9<@4Cyp» ™" and T9<T*<@Cy,r")7",
we obtain Cy, , T"4 (7 + r*) < 1. Therefore, we conclude
la=uly,,0 < Con (80—l gras + 1 =1 [ grsss) +5 a1
u—-u Xo6.50 w,b U — Uy [edy U —uy Goo,s-1 2 u—u Xos.5p’

which implies |G- u*llx,; , < 2Cy (| o —ug| goss + || 11 — ] | gos.5-1). Finally, returning in
(3.12), we establish that

1S (o, 1) — S(ug, uy) ”C([O,T’];G"v‘s’s) < 2CCy,p (|[io = g || goos + |12 = 13 || goo.1)

which finishes the proof. O

The proof of Theorem 3.4, that is, local well-posednees of (3.1) in G°%$(R) is now complete.






CHAPTER

Regularity in time variable

In this chapter, we shall prove the following result about regularity in time variable of
the solution to the “good” Boussinesq equation with analytic Gevrey initial data, which was
inspired by the works [19], [20], [21] and [22] for KdV type equations.

Theorem 4.1. Let s > —%, 8§ >0and o = 1. The solution u(x,t) € C([0, T]; G°%%) to the Cauchy
problem (3.1) belongs to G*° (R) in the time variable t, for t near zero.

Once again, we will show the proof of Theorem 4.1 in detailed for the real case. The

periodic case follows analogously.

4.1 Regularity in space variable

The main result that we show in this section is concerning Gevrey regularity in space
variable of the solution to the Cauchy problem (3.1), which is a consequence of the local
well-posedness established in Chapter 3.

First, we observe that the solution obtained in Theorem 3.4 satisfies

u, ) eG> = (¢, neHS, forall seR,

since we have the inclusion (1.15) implying (6). Then, it follows from Proposition 1.5 that u
is C* in x variable.

Now, regarding the derivatives on ¢ variable, we already know from [5] that the solution
u to the “good” Boussinesq equation belongs to C*((0, T1; H"!) n C?([0, T]; H*~?) for s > 3, by
using Kato’s technique. In our case, the solution u belongs to

Cl((0, T}; G726+ D=1 n C2 ([0, T); G705+ )72),

for s > — i, which implies
ue C*([0,T]; HY), forall seRR, (4.1)

once again by using (6). We observe that since u is a solution we have

_ 2
U = Ugyx — Uxxxx — (U7) xx,

79
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with

Uee € C2([0, T]; HS2), forall seR,
Uxxxx € C*([0, T1; HS™%), forall seR,

1
(u?) xx € C?([0, T); H*™2), for all s> >
where we used (4.1) and Proposition 1.6. Therefore, we conclude that
1
u; € C*([0,T); H%), forall s> > (4.2)

Then, we just concluded that u is C* in the time variable. Now, using again that u is a solution,
we have

6%“ = a%(”tt) = (6% U)xx— (6% W) xxxx = (2u§ +2Uly) xx,

with

(0%1) xx € C*([0, TI; H™Y7%), for all seR,
(0%14) xxxx € C2([0, T;; H™P74), forall seR,

(Zuf +2uUly) o € C?([0, T); HS™72), forall s—4 > %,
where we used (4.2) and Proposition 1.6. Therefore, we conclude that
0tue C([0, T); H*™®), forall s> % +4. (4.3)
By replicating this argument, we conclude the following
0%y e C?([0, T1; HS*K), for all s> % +2k and k€ {1,2,...}. (4.4)

Therefore, (4.4) allow us to take any time derivatives of the solution u in the classical sense.

Proposition 4.2. Let s > —}1, 6>0,0=1and ue C(0,T];G%%% be the solution to the Cauchy
problem (3.1). Then u(-,t) and u, (-, t) belong to G for all t € [0, T], that is, there exists C > 0 such
that

|0Lu(x, 0] = CTYT  and |0Lu(x, )| = CI 1YY, forall (x,n) eRx[0,T],  (45)

and for all 1 €{0,1,2,...}.

Proof. For any t€[0,T] and [ €{0,1,2,...} we have

2 —
dhut,, = f 1+ &S |oku, n]’ d¢
:f(1+€2)s|€|”|ﬁ(€, 1> dé

= f €12 20817 (1 4 £2)5 2007 e, p2 it
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We observe that

25 = 5\
o217 Zi(—m) (211),(2—) Bk

j=0 J!

1
for all 1€10,1,2,...} and ¢ € R, which implies [¢[*/e=20¢17 < CglU(ZI)!“. Thus,

2
o] . _Célg(zl)"’f(néz)s 2807 | e, 12 dg = C2L @D ule, D1, .

As we know
@n!

Bl(?

gk

<oo, forall By>4,
]

then (21)! = A2/(1)? for some A, > 0. Therefore,

Il
o

) o
xu(.,t)"Hs(R)sCOCI(l!) , forall te [0, T], (4.6)

where Cy = llu(x, Dl ¢, 17,6065y and Cy = A7 Cs . Thanks to (4.6) we can prove for s = 0 that
the solution u, in x variable, is Gevrey of order o. In fact, we split the proof for s > 0 into two
cases.

Case 1. Fixs> % By Sobolev Lemma (Proposition 1.7), we have

u(-,t H <C
X ( ) LOO([R) S

w0, = CGCH’,
which concludes that
|6§Cu(x, 1| < C,CL(1n?, forall (x,1) e Rx [0, T], (4.7)

where C2 = CSC().

Case 2. Fix 0 <s< 3. Applying again Sobolev Lemma (Proposition 1.7) and using the fact
that ||l ;2 < ||l ys for all s =0, we obtain

u-,tH u-,t‘
wu(, 0 o®) Lu(, 1) H®
:C( u(,t u(,t )
S ul )LZ(R) ( )LZ(R)
5C( u-,t‘ + al“u-,t) )
cul )HS(R) v u( )HS(R)

< CCyCHIN? + CCoCIH (1 +1)10
= CCoCl Y [1+C1(1+1)7]
<CCCHIN 1+ Cr (1 +1)17,

since ¢ = 1. Thanks to the fact x < e* for all x>0, we have 1+ C;(I+1) < e!*1eC1! which give

us

2UC 1) ”LOO(R) < "Gy (701 Cy) (1)
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Therefore,
|0Lu(, 0| = CsCLY?, forall (x,5) eRx [0, T], (4.8)

where C3 = € CCy and C,y = €71 C;.
Finally, for negative values of s we have Case 3.

Case 3. Let—1 < s<0. We notice that for 0 < £ < § there exists a positive constant B > 0 such
that

1
2¢elé|o

1
2(6—¢)|¢|T |~ 2 -
fe a6 0P dE<B | s

1 1
O, 0P d¢ = B f 17 |ae, nidg,

It now follows from this inequality that if u € C([0, T; G?9%) where s <0, then
ue C([0, T); G709
and, therefore, thanks to the second case we can conclude that u satisfies
|oLut, 0] = CsCL?, forall (x,1) eRx [0, T], (4.9)

where C5; depends now on § and €. By inequalities (4.7), (4.8) and (4.9) we have shown that

for each fixed s > —;11 there is a constant C > 0 depending on C3, §, o and s such that
|oLuc, n] <1y, forall (x,1) eRx [0, T]. (4.10)

It remains to show that the same happens for u,.

Since u is a solution of (3.1), we have
_ 2
Urt = Uxx — Uxxxx — (U ) xx

which implies

t

t
us(x, t)—uz(x,O)zfutt(x, t’)dt’=f[uxx(x, 1) = U (X, ) — (U%) x (x, £)] dE,
0 0

that is,

t
ug(x, 1) = 0xuq(x) +f [uxx(x; 1) = Uxxx (X, 1) — (uz)xx(x; t,)] dr’.
0

Thus, for all I € {0,1,2,...},

t

0L 1, (x, )] < |05 ug (20) +f
0

< 0%y ()| + T( sup {|6§C+2u(x, )| + |05 ulx, )| + |05 (1) (x, t’)|}).
0=<t'sT

|05 2u(x, )| + |05 ulx, )| + |02 (1) (x, t’)|] dr’
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Using (4.10) and the fact that u; is Gevrey of order o, we obtain

|05 2u(x, )| < CP3 U+ 2)1°
|0t ux, )| < CHP L+ 4)1°

|05 uy (x, )| < €21+ 1)1°,

for all x e R and ¢’ € [0, T]. On the other hand, applying Leibniz Rule and (4.10) again, we

have
= I+2 j '
|0i+2(u2)(x,t')|52( J )|ai+2_’u(x, ][0y utx, ]
j=0
1+2 142
=) +-)Cl”—f“uu—j)!"cf“j!"
j=0

< 2[+2cl+4(l +2)!0',

since n!m! < (n+ m)!, for all n,m e Z,. Assuming that C =1 and remembering that 0< T <1,
we obtain
|0Lus(x, )] = C*2U+ 1)1 + C3 (U +2)19 + CMP (1 +4)17 + 21424 1+ 2)1°
<420)"*U+4)1°
<4(2C)°20) I +1* (1)°.

The fact x < e*, for all x >0, give us (I +4)*” < (e*e!)*?, which implies
0L u(x, )] = 420)%e'%? 2Ce* ) (1) < AT (17,

for all (x, 1) e R x [0, T], where A = max{4(2C)°e'%?,2Ce”}. Then, the proof of Proposition 4.2 is

complete. O

4.2 Bounds for mixed derivatives

We shall follow the strategy adopted in [21]. We start by introducing some notation, for

€ >0 we consider the sequences

m, = C(C]!)U (g=0,1,2..) and M, =e'"9m (g=1,23,..), (411)
q (q+1)2 q q

where c is chosen (see [1] page 196) such that the following inequality holds

5 (k
Z mpmp—_; < mg. (412)
1=0 !

Removing the ends points 0 and k in the left-hand side of (4.12), we obtain

k-1

5o

=1

k-1
k
(l)el_lmlal_(k_l)mk_l <& Fmyp = eMq. (4.13)
=1
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Next, we observe that for any € > 0 the sequence M, satisfies
Mj<eMjyy, forall j=2. (4.14)
In fact,

Mj _elTeh? G202 (+2)
Mjs (j+D? el-Utbe(+1)19  “(j+ 120~

)

since (j+2)?(j+1)7#79 <1, for all j =2 and o > 1 (in point of fact, we just need to observe that
the function f(x) = x>*9 — (x + 1)? satisfies f'(x) = 0, for all x =3 and f(3) = 11 = 0, therefore
f(x)=0, for all x = 3).

Also, given C > 1 there exists £ > 0 such that for any 0 < € < &, we have

CI(jn? = M;, forall j=2. (4.15)

Indeed, (4.15) happens if, and only if,

.
c(jh? i1 c ci T

(+1)2 = ¢ _—Cf+1(j+1)2 = &=—5

]+1 N —
Ci1 1(]+1)J I

(jH7 <el”

Zdj.

Thus, it is sufficient to choose &9 > 0 such that ¢y < a; for all j = 2, which is possible, since
aj— 1/C, when j — oo.
For j =1, it follows from definition of M; and M, that

M, = aeM,, where a = .
42he

We also define the following constants

8C 4C?
Moig and M =max {\/_——},
c

where ¢ and C are constants as in (4.11) and (4.5), respectively.

Next, we shall prove our main result of this section.

Lemma 4.3. Let u(x,t) be the solution to the Cauchy problem (3.1). If u(x,t) satisfies inequality
(4.5), then there exists €y > 0 such that for any 0 < € < g9 we have

|0/0Lutx, )| < MY My, j,1€10,1,2,.., (4.16)
forall (x,t) eRx [0, T], where My is defined as in (4.11).
In order to prove Lemma 4.3 we need the following key result.

Lemma 4.4. Given k,n€{0,1,2,...}, we have
= (m
ZZ ( )( ) n-— p+2(k—q)Lp+2q = Z ( )Ler—r, (4~17)
p=0 =0 r=o \ "

where {L} jez, is any sequence of positive numbers with m = n+ 2k.
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Proof. For k = n = 0, inequality (4.17) reads L3 < L3, which is trivially true. Therefore, we
assume that either k=1 or n=>1.

Changing the order of the summation and making a change of variables, we obtain

n k
n\lk n\lk
Z q Ln—p+2(k—q)Lp+2q = q Ln—p+2(k—q)Lp+2q

p=0g=0\P p

R
Ry

io(r) :max{o, [r;_n]} and i;(r) :min{k, [g]},

n

q

Il

N

||Mw ||Mw

(=) (=)

~ I <

i o
g NS
S st 8 22 7

i1

Il
i
=~
I\
Q

r

—

q=ip
with

where [x] denotes the integer part of a number x. To complete the proof, we must to show

that ‘
= )
Parn r-2q\q r

which is a consequence of the following result.
Lemma 4.5. For all ig(r) <0 < i1(r), we have

$ )

q=io(r)

In fact, using (4.18) with 6 = i;(r), we obtain

f‘j( n )(k)<(m—k+i1(r))
e B r-2ql\p| "~ r '

(m—k+i1(r))s(m). (4.19)

r r

It suffices to show that

For i, (r) = k, relation (4.19) holds as an equality. If 0< i;(r) < k, then m—k+i;(r)sm—-1<m,
which shows that (4.19) is true, since

!/
(‘;) < (Z) forall 0<d’ <a. (4.20)

Indeed, remembering the elementary property

a a—1 a—1
(b)_(b—l)+( b ), forall a,be{l1,2,...},

i)

which implies
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By applying (4.21) sufficiently times, we obtain inequality (4.20).
Therefore, inequalities (4.18) and (4.19) finishes the proof of Lemma 4.4. [

To the proof of Lemma 4.4 be completely done, it just remains the proof of Lemma 4.5,

which we will do now.

Proof of Lemma 4.5. We shall prove it by induction on 8. For that, we use the following ele-
mentary inequality: If a,b,c€ Z,, b < a then

al |a+c
o)<[e9) .
Using the definition of m and applying (4.22) with a=n, b=r -2iy(r) and ¢ = iy(r), we have
( n ) _ ( m—.2k ) - (m—Zk.+ zo(r)). (4.23)
r—2ip(r) r—2ip(r) r—io(r)

Now, since the following inequality happens

olb)=(es) s
ally] \a+y

for a,B,y,A € Z, with @ < f and y < A, from (4.23) we get

n k - m-—2k+iy(r) k - m—k+iy(r)
r=2ig(r)\io(r)| ~\ r—iop(r) NG r ’

which proves (4.18) for 0 = iy(r).
Next, we assume that (4.18) holds for iy(r) < 6 < i;(r) and we will prove it for (8 +1). By
using the induction hypotheses, we obtain

Sl 2 Ll o o)

It follows from (4.22) with a=n, b=r—20 -2 and ¢ =0 that

n - n+06
r—20-2] \r-6-2)

Thus, using (4.24) and (4.21) we obtain

0+1
n k m-—k+0 n+0 k
E < +
r—2q q r r—-0-2/160+1

q=io(r)

IA
+

m-—k+0 n+0+k
r r—1

= +
r r—1

m—k+0 m—k+6)

3 m—-k+0+1
= . ,

which completes the proof of Lemma 4.5. O



4.2. BOUNDS FOR MIXED DERIVATIVES 87

Finally, we finish this section with the proof of Lemma 4.3.

Proof of Lemma 4.3. We will prove (4.16) by induction on j. Let j = 0. For [ = 0, it follows from
(4.5) that
lu(x,t)|<C<MM,, forall (x,t)eRx[0,T],

since My = g and M = %. Similarly, for [ = 1 we have
10, u(x, )| < C?>< MM, forall (x,r)eRx [0, T], (4.25)

since My =m; = fand M = 4—52. For [ = 2, it follows from (4.5) and (4.15) that there exists g > 0

such that for any 0 < € < &, we have
|0k utx, )| < C*1 Y7 < My < MM;, for all (x,) eRx [0, T),

since M = v/3 = 1. This complete the proof of (4.16) for j =0 and [ € {0,1,2,...}. Also, since
u; has the same estimates that u in (4.5), similarly we prove that (4.16) holds for j =1 and
1€{0,1,2,...}.

Next, we will assume that (4.16) is true for 0 < g < j and [ € {0,1,2,...} with j =1 and we

will prove it for j+1and [ €1{0,1,2,...}. We begin by noticing that
07" 0k u| = |0] ' 0L@%w)| < |0] "l u| + |0l ok u| + 6] 0k 2w,

since j =1 and u is a solution of (4).
Using the induction hypotheses and (4.14), we obtain that there is £y > 0 such that for all

O<e<egg
|0{_16i+2u| < M2(j_1)+1Ml+2+2(j—1) — MZ(j+l)+1M_4Ml+2(j+1)—2
<M MPUTD M ey = %Mz(j+l)+lMl+2(j+l), (4.26)
since M = v/3 and and we can assume 0 < ¢ < ¢ < 1. Furthermore, in the same way, we have
|0{_10i+4u| < MZ(j—1)+1Ml+4+2(j_1) — M_4M2(j+l)+lMl+2(j+1) < %MZUH)HMHZ(]'H)- (4.27)

About the nonlinear term, applying Leibniz’s rule twice and using the induction hypothe-

ses, we have

1+2
. L+2) i1 Al+2-
|04 0l ()| < ( )'04 H(0 P uoku)|
p=o\ P
1+2 j-1
T+2)\[j—1) 4j-1- -
D0 (Y
p=0 g=0 P q
1+2 j-1 142\[i—1
< ( )(J )MZ(]_l_q)+1Ml+2—p+2(j—1—67)M2q+1MP+2‘7
p=0 g=0 P q
1+2 j-1
21\ — [1+2)(j-1
- M Misa—p+a(j-1-q)Mp+2g-
p=0g=0 P q
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It follows from (4.17) with n=1+2, k= j—1 and L, = M, that

1+2 j-1 . m

I+2)[j-1 m
Z Ml+2—p+2(j—1—q)Mp+2q = Z M Mp—r,
p:o q:O p q r=0 r

where m=n+2k=1+2j. Thus, using (4.13) and (4.14), we obtain for all 0 < € < ¢

m-—1
-_ . m
|a§C 16i+2(u2)| < MZJ (ZMmMO + Z ( . )MrMmr)

r=1
< M*/ (2 My + €) My,

< MPUFDH A3 2 Mg + 8)82M1+2(j+1),
since [+2j=2forall j>=1and [€{0,1,2,...}. Also, we can assume €y < (2M, + 1)‘% <1, then
@My +e)e* < @My +1ei <1,

which implies that
i1 1 ,
|0/ 0t 2 (u?)| < §M2(f+”+1Ml+2( +1)) (4.28)

since M 3<M*< %

From (4.26), (4.27) and (4.28) we prove (4.16) for j+1and [ €{0,1,2,...}, which finishes the
proof. O

4.3 Proof of regularity in time variable

Finally, in this section we prove our last result.

Proof of Theorem 4.1. Our goal is to prove that there exists a constant C > 0 such that
|07 u(x, ] < C7*1(jn%, (4.29)

forall j€{0,1,2,...} and for all (x, ) e R x [0, T].
Applying (4.16) for j € {1,2,...} and [ = 0, we obtain that there is € > 0 such that

|6{u(x, 1| < MY M,;
a1 C@DY
(2] +1)2
M\
sMsc(—) ene
€
=LoL/(2))°,

where Ly = Mec and L; = (Me™1)?. Also, as we know

00 o
Z (.2])' , forall Ay >4,
=0 AJ(H?
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then (2j)! < A%/(j!)? for some A > 0. Therefore,
|07 u(x, 0| < LoL) A7 (j)%7 < CI*1(jH2°, for all (x,1) R x [0, T,

where C = max{Ly, LA?}. This finishes the proof of Theorem 4.1.
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