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“A ciência é um processo contínuo. Nunca termina. Não existe uma única e definitiva verdade a

ser alcançada, após a qual todos os cientistas poderão se aposentar.”

(Carl Sagan)





RESUMO

PICCIRILLI, G. P. Modelos de regressão misto para resposta limitada usando distribuições
do tipo Johnson-SB. 2021. 123 p. Dissertação (Mestrado em Estatística – Programa Interinsti-
tucional de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2021.

Neste trabalho novas propriedades, métodos de estimação, análise de resíduos e extensões são
desenvolvidas para modelos de regressão no intervalo (0,1) considerando as distribuições do tipo
Johson SB (JSB). As extensões consideradas são o modelos inflacionados de zeros e uns e os
modelos de regressão mista. Novos modelos mistos para dados longitudinais limitados no inter-
valo (0,1) com base nas distribuições JSB são apresentados. Os estimadores de verossimilhança
penalizada são obtidos maximizando a verossimilhança penalizada e calculados pelo algoritmo
de Rigby e Stasinopoulos (RS). Na abordagem bayesiana, o algoritmo No-U-Turn-Sampler
(NUTS) é usado para simular valores da distribuição a posterior. A análise de resíduos é reali-
zada considerando os resíduos quantílicos. São apresentados estudos de simulação considerando
a robustez a outliers das distribuições e extensões dos modelos para suportar observações 0 e
1. Três conjuntos de dados reais motivam o uso dos novos modelos. O primeiro conjunto de
dados contém a proporção de indivíduos vulneráveis à pobreza dos 645 municípios do estado de
São Paulo no Brasil e não contém nenhuma covariável. O segundo conjunto de dados contém a
proporção de votos obtidos por um partido político em cinco eleições presidenciais brasileiras, a
cada quatro anos, de 1994 a 2010, nos 75 municípios do estado de Sergipe no Brasil. O terceiro
conjunto de dados é proveniente da área de saúde pública dos estados brasileiros. Ele contém as
taxas de mortalidade por câncer brônquico e de pulmão nos 27 estados brasileiros nos últimos 30
anos. O objetivo é identificar se fatores como sexo, idade e Índice de Desenvolvimento Humano
Municipal do estado podem influenciar na taxa de mortalidade. Os modelos de regressão misto
JSB e o modelo misto Beta foram aplicados. Os modelos mistos JSB exibem valores mais baixos
do que o modelo misto Beta para os critérios de comparação de modelos. Os resultados e a
análise residual revelam que os modelos JSB podem ser uma alternativa ao modelo Beta.

Palavras-chave: Distribuição Johson-Sb, Modelos inflacionados, Modelos mistos, Resíduos
quantilicos normalizados, Resposta limitada.





ABSTRACT

PICCIRILLI, G. P. Bounded mixed regression models using Johnson-SB type distributi-
ons. 2021. 123 p. Dissertação (Mestrado em Estatística – Programa Interinstitucional de Pós-
Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos – SP, 2021.

In this work, new properties, estimation methods, residual analysis and extensions are developed
for regression models in the (0,1) interval considering the Johnson-SB type distributions (JSB).
The extensions are zero-and-one inflated models and mixed regression models. New mixed-
effects models for bounded longitudinal data in the interval (0,1) based on the JSB distributions
are presented. The penalized likelihood estimators are obtained by maximizing the penalized
likelihood and are computed by the Rigby and Stasinopoulos (RS) algorithm. From the Bayesian
perspective, the No-U-Turn-Sampler (NUTS) is used to sample from the posterior distribution.
Residual analysis is performed considering randomized quantile residuals. Simulation studies
considering robustness to outliers from the distributions and extensions of the models to support
0 and 1 observations are presented. Three real data sets motivate the use of the new models. The
first dataset contains the proportion of individuals vulnerable to poverty of the 645 municipalities
from São Paulo state in Brazil and with no covariate. The second dataset incorporates the
proportion of votes obtained by a political party in five Brazilian presidential elections, every
four years, from 1994 to 2010, from the 75 municipalities from Sergipe state in Brazil. The
third dataset comes from the public health area in Brazilian states. It contains the mortality rates
from bronchial and lung cancer from the 27 Brazilian states over the last 30 years. The aim is
to identify if factors like sex, age, and the Municipal Human Development Index of the state
can influence the mortality rate. The JSB mixed regression models and the Beta mixed model
were applied. The JSB mixed models display better values than the Beta mixed model for the
model comparison criteria. The results and the residual analysis reveal that the JSB models are
an alternative to the Beta model.

Keywords: Bounded response, Johnson-Sb distribution, Inflated models, Mixed models, Normal-
ized randomized quantile residuals.
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CHAPTER

1
INTRODUCTION

Linear regression models have been the central tool to analyze data that contains a
response variable related to covariates. However, with the limitation of linear regression models,
new alternatives became more appropriate for some cases. For example, the generalized linear
model (GLM) extends the regression models for any distribution from the exponential family,
and it has brought improvement in the regression models research.

The first topic of this work is response variables in the (0,1) interval. The linear regression
model and the GLM are inappropriate to make inferences around these bounded variables. The
response variable in the unit interval is frequent in many real problems. Examples of these
variables are the country’s unemployment proportion, poverty rate, illiteracy rate, and the
percentage of the population using at least basic sanitation service.

The second topic of this work is longitudinal data. Longitudinal data are measures taken
from the same subject over time, and they can be a particular case of multilevel or hierarchical
data with two levels, level one consisting of repeated measures and the level two by individuals
(OLIVEIRA, 2015). Longitudinal data may come from a medical study, that the purpose is to
analyze the blood pressure of different individuals over a certain period. The data will contain
the individuals’ measurements over a given period.

Several regression models for bounded response variables have been proposed in recent
years. Ferrari and Cribari-Neto (2004) suggested a regression model based on the Beta distri-
bution, Lemonte and Bazán (2016), followed Johnson (1949) and presented a broad class of
distribution with bounded support based on the symmetric family of distributions called general-
ized Johnson-Sb distribution. Migliorati, Brisco and Ongaro (2018) also presented regression
models for bounded response variables based on flexible Beta distribution. All these references
are improvements to bounded regression models. For the longitudinal data, a mixed model is a
popular approach because of the flexibility that it offers to analyze clustered and longitudinal
data. Bayes, Bazán and Castro (2017) proposed a quantile parametric mixed model based on
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the Kumarasawamy distribution, Figueroa-Zúñiga, Arellano-Valle and Ferrari (2013) showed
a mixed beta regression under a Bayesian perspective, Verkuilen and Smithson (2012) also
describe a mixed beta regression, but under a classical approach.

The primary condition of mixed models is that some subset of regression parameters vary
randomly from one individual to another, then the individuals in a population have their trajectory.
The most popular mixed model is the linear mixed model (LMM), an extension of the linear
model that assumes normality for the response variable and accommodates random effects. The
response variable from LMM is a linear combination of characteristics from the population shared
with all individuals (fixed effects) and specific influences that are specific to each individual
(random effects). However, sometimes we need to build a model that accommodates correlated
data, and our response is not normally distributed. The use of random effects goes beyond
normality, like the Generalized Linear Mixed Models (GLMM), a class of model that allows
the use of random effects in distribution that belong to the exponential family (SEARLE;
MCCULLOCH, 2001). The LMM and GLMM covariances of random effects have an impact on
the structure of individuals’ variances. It implies that assuming random effects, we capture the
correlation that comes from repeated and clustered data.

This work considers a flexible mechanism for constructing probability distributions in a
unit interval. This new flexible class of distribution in the (0,1) interval is called the GF-quantile
distributions. In order to introduce this new class of distributions, let W be a random variable
with cumulative density function G(w;θ) and probability density function (pdf) g(w;θ) on the
support RW . Let X be other variable continues with cumulative density function (cdf) H(x;ϕ) and
quantile function Q(y;ϕ) = H−1(y;ϕ), 0 < y < 1, where RX = RW and ϕ is a know parameter
from H(x;ϕ) cdf Rodrigues, Bazán and Suzuki (2019).

To obtain the distribution of the GF-quantile class we define the composite probability
distribution function given by:

Gh(y;θ ,ϕ) = G(Q(y;ϕ);θ) =
∫ Q(y;ϕ)

−∞

g(w;θ)dw,y ∈ (0,1), (1.1)

where Gh(y;θ ,ϕ) is the cdf of the continuous random variable Y on the (0,1) interval, with
parameters θ and ϕ . The pdf of the GF-quantile family of distributions in (1.1) can be obtained
by:

gh(y;θ ,ϕ) = g(Q(y;ϕ);θ)q(y;ϕ),y ∈ (0,1), (1.2)

where q(y;ϕ) is defined by q(y;ϕ) = dQ(y;ϕ)
dy .

From that method, we obtain many distributions in the interval (0,1). We need a con-
tinuous baseline distribution and a quantile function of a transformed distribution, where the
support of the two distributions are the same. Rodrigues, Bazán and Suzuki (2019) suggested
other alternatives for H. However, a different choice of H brings particular support for the new
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distribution, and our purpose here is to extend the class of Johnson (JOHNSON, 1949) and
generalized Johnson (LEMONTE; BAZÁN, 2016) distributions to a bounded response.

This work focus on distributions from the GF-quantile class obtained using transformed
distributions with support on the real line. More specifically, a new derivation of GF-quantile
distributions is introduced, which are an extension of Johnson-Sb and generalized JohnsonSb

distributions called the Johnson-SB type (JSB) distributions. Rodrigues, Bazán and Suzuki (2019)
have proposed the regression models for the JSB distributions. However, the authors omitted
many details about the classical estimation, and they have not presented the Bayesian estimation
of the model. This work gives more details about the classical estimation, and the Bayesian
estimation is presented for the model. A new model called the JSB mixed regression model is
developed in this work, and it is not previously presented in the literature.

The work is organized as follows. Chapter 2 presents the JSB class of distributions,
including definition, examples, and some properties. Chapter 3 shows the JSB mixed regression
model for bounded response variables; Chapter 4 presents the estimation method for Bayesian
and classical approaches, including model comparison criteria, and propose residual analysis
considering randomized quantile residuals. Chapter 5 presents a simulation study to evaluate the
robustness of the proposed distributions to outliers and a parameter recovery study to illustrate
the performance of the classical estimates of an extension of the JSB distributions called zero-
and-one inflated distribution. Chapter 6 presents the results of three applications in real datasets.
And Chapter 7 shows final remarks, including some proposals for future extension of the model
presented here.
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CHAPTER

2
JOHNSON-SB TYPE DISTRIBUTIONS

This Chapter presents the GF-quantile distributions, which can be obtained using a
baseline distribution with support in R and cumulative density function (cdf) given by G(θθθ),
with θθθ = (µ,σ ,ν)′, where µ is a location parameter, σ is a scale parameter and ν is a shape
parameter. It is not restricted that the parameters µ,σ and ν are location, scale and shape
parameters respectively. In this work, it is assumed the Logistic distribution with ϕ = (0,1) as
transformed distribution H(ϕ), so the quantile function H−1(ϕ) is given by:

Q(y) = log
(

y
1− y

)
. (2.1)

Because Q transforms the response, it is known as a transformation function, and models
in the form of 1.2 are called transformation models. The following notation f (.) := gh(.) and
F(.) := Gh(.) will be used throughout this work to denote the pdf and cdf of the JSB distribution
class. If the random variable Y belongs to the JSB class of distributions, we write Y ∼ JSB(θθθ)

with θθθ = (µ,σ ,ν)′. From Equation (1.2), the JSB(θθθ) pdf is given by:

f (y;θθθ) = g
(

log
(

y
1− y

)
;θθθ

)
1

y(1− y)
. (2.2)

This new derivation of the GF-quantile distribution is an extension of the Johnson-Sb

and the generalized Johnson-Sb. The following distributions were used as baseline distributions
G(θθθ):

a) Gumbel distribution: θθθ = (µ,σ);

b) Reverse Gumbel distribution: θθθ = (µ,σ);

c) Exponential Gaussian distribution: θθθ = (µ,σ ,ν);

d) Skew normal type I distribution: θθθ = (µ,σ ,ν).
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e) Power exponential distribution: θθθ = (µ,σ ,ν);

The motivation for these distributions is that they are distributions with support on
(−∞,∞) and have already been presented in Rodrigues, Bazán and Suzuki (2019). Also, they
are available at the gamlss.dist package. These distributions are not new and some references
about them are given in this Chapter. Here many unprecedented details and properties about
these distributions will be presented. A comprehensive review of all baseline distributions, which
include the pdf and cdf, can be found in the book Rigby et al. (2019).

2.1 Definition of the Johnson-SB type distributions

Definition 1. Let W be a random variable with support on the RW and cdf defined by G(w;θθθ).
Let X be another random variable following the standard logistic distribution with quantile
function defined by Q(y;ϕ) for 0 < y < 1 and ϕ = (0,1). To obtain the new flexible class of
distribution on the (0,1) interval, called JSB distribution, we define the composite cumulative
density function:

F(y;θθθ ,ϕ) = G(Q(y;ϕ);θθθ), (2.3)

for y ∈ (0,1). The F(y;θθθ ,ϕ) function is the cdf of continuous random variable Y on the (0,1)
interval with parameters θθθ and ϕ = (0,1). The following notation Y ∼ JSB(θθθ) will be used
throughout this work to denote that the random variable Y following a probability distribution
from the JSB class.

2.1.1 Logistic Gumbel

The Gumbel distribution belongs to a group of distribution called Extreme value distri-
butions. The Gumbel, also called the generalized extreme value distribution Type-I, is used to
model the maximum (or the minimum) distribution of some samples from various distributions.
The Gumbel distribution is appropriate for moderately negative skew data.

Let the Gumbel distribution be the baseline distribution with cdf G(y;θθθ), θθθ = (µ,σ)

where µ is the mode and the location parameter, σ is the scaling parameter and support in
(−∞,∞). Assume that the transformed distribution H(ϕ) is the Logistic distribution with quantile
function defined in (2.1), then the logistic Gumbel (LGU) cdf is given by:

F(y; µ,σ) = 1− exp

−exp

 log
(

y
1−y

)
−µ

σ

 , (2.4)
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for 0 < y < 1,−∞ < µ < ∞ and σ > 0, which can be readily inverted to give the quantile
function:

QY (p) = F−1
Y (p) =

exp{µ +σ log(− log(1− p))}
1+ exp{µ +σ log(− log(1− p))}

. (2.5)

The pdf of the logistic Gumbel distribution is given by:

f (y; µ,σ) =
1
σ

exp


 log

(
y

1−y

)
−µ

σ

− exp

 log
(

y
1−y

)
−µ

σ

 1
y(1− y)

. (2.6)

Figures 1 and 2 show the shapes for some values of µ and σ . It is possible to see that
µ is the location parameter. The location of the density curve occurs as the µ values change.
The density curve flattens as the σ values change, and this shows the dispersion effect of the σ

parameter. For the high values of σ (2 and 3) the density is allocated at the extreme points of the
axis y. For low and moderate values of σ (0.5 and 0.7) the density curve is more behaved.

Figure 1 – Logistic Gumbel probability density function for parameter µ = -1.5, 0 and 1.5 and some
choices of parameter σ .

Source: Elaborated by the author.
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Figure 2 – Logistic Gumbel probability density function for parameter σ = 0.5, 0.7 and 1.5 and some
choices of parameter µ .

Source: Elaborated by the author.

2.1.2 Logistic reverse Gumbel

The reverse Gumbel is a special case of the generalized extreme value distribution. If a
random variable T ∼ RG(µ,σ) and another random variable U =−T , then U ∼ GU(−µ,σ).
The reverse Gumbel distribution is appropriate for moderately positive skew data.

Assuming the reverse Gumbel distribution as the baseline distribution with cdf G(y;θθθ),
θθθ = (µ,σ) where µ is the mode and the location parameter, σ is the scaling parameter and
support on (−∞,∞) the logistic reverse Gumbel (LRG) cdf is given by:

F(y; µ,σ) = exp

−exp

−
 log

(
y

1−y

)
−µ

σ

 , (2.7)

for 0 < y < 1,−∞ < µ < ∞, and σ > 0. The quantile function is given by:

QY (p) = F−1
Y (p) =

exp{µ−σ log(− log(p))}
1+ exp{µ−σ log(− log(p))}

. (2.8)

The pdf of the logistic reverse Gumbel distribution is given by

f (y; µ,σ) =
1
σ

exp

−
 log

(
y

1−y

)
−µ

σ

− exp

−
 log

(
y

1−y

)
−µ

σ

 1
y(1− y)

, (2.9)

Figures 3 and 4 show the shapes for some values of µ and σ . The density of the logistic
Gumbel and the logistic Reverse Gumbel are very similar, then it is possible to see the same
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effects of the parameters. The parameter µ controls the distribution curve location, and σ refers
to the dispersion.

Figure 3 – Logistic reverse Gumbel probability density function for parameter µ = -1.5, 0 and 1.5 and
some choices of parameter σ .

Source: Elaborated by the author.

Figure 4 – Logistic reverse Gumbel probability density function for parameter σ = 0.5, 0.7 and 1.5 and
some choices of parameter µ .

Source: Elaborated by the author.

2.1.3 Logistic exponential Gaussian

If two random variables U1 and U2 defined by U1 ∼ N(µ,σ2) and U2 ∼ Exp(ν) with U1

independent of U2, then their sum U =U1 +U2 follows an exponential Gaussian distribution.
The exponential Gaussian does not have a closed form for the cdf, and it is appropriate for
positive skew data (LOVISON; SCHINDLER, 2014).
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Let the exponential Gaussian distribution be the baseline distribution with cdf G(y;θθθ),
θθθ = (µ,σ ,ν) where µ is the mean of the normal component, σ is the standard deviation of the
normal component, ν is the mean of the exponential component and support in (−∞,∞). The
density of the logistic exponential Gaussian (LEG) distribution is given by:

f (y; µ,σ ,ν) =
1
ν

exp

µ− log
(

y
1−y

)
ν

+
σ2

2ν2

Φ

 log
(

y
1−y

)
−µ

σ
− σ

ν

 , (2.10)

for 0 < y < 1, −∞ < µ < ∞, σ > 0 and ν > 0. The logistic exponential Gaussian does not have
a closed form for cdf. The Figures 5, 6, 7, 8, 9 and 10 show the density curve shapes for some
values of µ , σ and ν . The parameter µ controls the location of the density curve as can see in 7
and 9 since the location of the density change as the µ values change. The σ parameter controls
the dispersion as we can see in 5 and 10 because the density curve flattens as the σ values change.
The last parameter ν seems to control the Kurtosis and some degree of Skewness of distribution.
The Kurtosis of the curve density seems low for lower values of ν .

Figure 5 – Logistic exponential Gaussian probability density function for parameter µ = -1.5, 0 and 1.5,v
= 1 and some choices of parameter σ .

Source: Elaborated by the author.
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Figure 6 – Logistic exponential Gaussian probability density function for parameter µ = -1.5, 0 and 1.5,
σ = 0.5 and some choices of parameter ν .

Source: Elaborated by the author.

Figure 7 – Logistic exponential Gaussian probability density function for parameter σ = 0.5, 0.7 and 1.5,
ν = 1 and some choices of parameter µ .

Source: Elaborated by the author.
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Figure 8 – Logistic exponential Gaussian probability density function for parameter σ = 0.5, 0.7 and 1.5,
µ = 0 and some choices of parameter ν .

Source: Elaborated by the author.

Figure 9 – Logistic exponential Gaussian probability density function for parameter ν = 0.5, 0.7 and 2, σ

= 0.5 and some choices of parameter µ .

Source: Elaborated by the author.
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Figure 10 – Logistic exponential Gaussian probability density function for parameter ν = 0.5, 0.7 and 2,
µ = 0 and some choices of parameter σ .

Source: Elaborated by the author.

2.1.4 Logistic skew normal

The skew normal type I distribution is presented by Azzalini (1985). The skew normal
type I distribution includes the normal and the half-normal distributions as particular cases, and
it does not have a closed-form for the cdf.

Assuming the skew normal type I distribution as the baseline distribution with cdf
G(y;θθθ), θθθ = (µ,σ ,ν) where µ is the location parameter, σ is the scaling parameter, ν is the
skewness parameter and support (−∞,∞) then the density of the logistic skew normal (LSN)
distribution is given by:

f (y; µ,σ ,ν) =
2
σ

φ(z)Φ(vz)
1

y(1− y)
, (2.11)

for 0 < y < 1 with z =
(

log
(

y
1−y

)
−µ

)
/σ . The logistic skew normal does not have a closed

form for the cdf. The Figures 11, 12, 13, 14, 15 and 16 show the shapes for some values µ , σ and
ν . The parameter µ controls the location of the density curve as can see in 13 and 15. Clearly
as the µ parameters is changed the the location of the curve on the graph is changed. The σ

controls the dispersion as can see in 11 and 16, since he density curve flattens as the σ values
change. The ν parameter affect the Kurtosis of the curve, however this parameters seems to has
a little impact on the Skewnees as can see in 12 and 14.
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Figure 11 – Logistic skew normal probability density function for parameter µ = -1.5, 0 and 1.5,v = 1 and
some choices of parameter σ .

Source: Elaborated by the author.

Figure 12 – Logistic skew normal probability density function for parameter µ = -1.5, 0 and 1.5, σ = 0.5
and some choices of parameter ν .

Source: Elaborated by the author.
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Figure 13 – Logistic skew normal probability density function for parameter σ = 0.5, 0.7 and 1.5, ν = 1
and some choices of parameter µ .

Source: Elaborated by the author.

Figure 14 – Logistic skew normal probability density function for parameter σ = 0.5, 0.7 and 1.5, µ = 0
and some choices of parameter ν .

Source: Elaborated by the author.
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Figure 15 – Logistic skew normal probability density function for parameter ν = -0.5, 0.5 and 2, σ = 0.5
and some choices of parameter µ .

Source: Elaborated by the author.

Figure 16 – Logistic skew normal probability density function for parameter ν = 0.5, -0.5 and 2, µ = 0
and some choices of parameter σ .

Source: Elaborated by the author.
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2.1.5 Logistic power exponential

The parametrization of the power exponential distribution used here is presented by
Nelson (1991). The power exponential distribution includes the Laplace and normal distribution
as particular cases. The power exponential distribution is suitable for leptokurtic as well as
platykurtic data.

Assuming the power exponential distribution as the baseline distribution with cdf G(y;θθθ),
θθθ = (µ,σ ,ν) where µ is the mean, median, mode, σ is the standard deviation, ν the Kurtosis
and support (−∞,∞) then the logistic power exponential (LPE) density is given by:

f (y; µ,σ ,ν) =
ν exp(−|z|ν)
2cσΓ(1/ν)

1
(1− y)y

, (2.12)

for 0< y< 1,−∞< µ <∞,σ > 0, ν > 0, z=(log
(

y
1−y

)
−µ)/(cσ) and c2 =Γ(1/ν)[Γ(3/ν)−1].

The logistic power exponential does not have a closed form for cdf. The Figures 17, 18, 19, 20,
21 and 22 show the shape of logistic power exponential for some values of µ , σ and ν . Like the
previously distributions, the µ parameter affect the location of the density curve. An important
point showed by the Figures is the symmetry of the density for µ = 0. The parameter ν , like in
the Logistic Skew Normal, impacts the Kurtosis more than the Skewness.

Figure 17 – Logistic power exponential probability density function for parameter µ = -1.5, 0 and 1.5,v =
1 and some choices of parameter σ .

Source: Elaborated by the author.
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Figure 18 – Logistic power exponential probability density function for parameter µ = -1.5, 0 and 1.5, σ

= 0.5 and some choices of parameter ν .

Source: Elaborated by the author.

Figure 19 – Logistic power exponential probability density function for parameter σ = 0.5, 0.7 and 1.5, ν

= 1 and some choices of parameter µ .

Source: Elaborated by the author.
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Figure 20 – Logistic power exponential probability density function for parameter σ = 0.5, 0.7 and 1.5, µ

= 0 and some choices of parameter ν .

Source: Elaborated by the author.

Figure 21 – Logistic power exponential probability density function for parameter ν = 0.5, 0.7 and 2, σ =
0.5 and some choices of parameter µ .

Source: Elaborated by the author.



40 Chapter 2. Johnson-Sb type distributions

Figure 22 – Logistic power exponential probability density function for parameter ν = 0.5, 0.7 and 2, µ =
0 and some choices of parameter σ .

Source: Elaborated by the author.

2.2 Properties

This session give some properties from logistc Gumbel, logistic reverse Gumbel, logistic
exponential gaussian, logistic skew normal and logistic power exponential. These properties are
contributions from this work.

Proposition 1. Let Y be a random variable such that Y ∼ LGU(µ,σ) with support on the (0,1)

interval. Define Z =
log
(

y
1−y

)
−µ

σ
. Then, the random variable Z ∼ Gumbel(µ,σ) with µ = 0 and

σ = 1.

Proof. Consider the transformation Z =
log
(

y
1−y

)
−µ

σ
. Then, the pdf of Z is given by:

fZ(z) = fY

(
exp{zσ +µ}

1+ exp{zσ +µ}

)∣∣∣∣∣∣
∂

(
exp{zσ+µ}

1+exp{zσ+µ}

)
∂ z

∣∣∣∣∣∣
=

1
σ

exp


 log

(
(1+exp(zσ+µ))exp(zσ+µ)

(1+exp(zσ+µ))

)
−µ

σ

− exp

 log
(
(1+exp(zσ+µ))exp(zσ+µ)

(1+exp(zσ+µ))

)
−µ

σ


× 1(

exp{zσ+µ}
1+exp{zσ+µ}

) 1[
1−
(

exp{zσ+µ}
1+exp{zσ+µ}

)] exp{zσ +µ}σ
(1+ exp{zσ +µ})2

= exp
{

zσ +µ−µ

σ
− exp

[
zσ +µ−µ

σ

]}
= exp{z− exp[z]},

(2.13)

which is the corresponding pdf of the Gumbel distribution with µ = 0 and σ = 1.



2.2. Properties 41

Proposition 2. Let Y be a random variable such that Y ∼ LRG(µ,σ) with support on (0,1)

interval. Define Z =
log
(

y
1−y

)
−µ

σ
. Then, the random variable Z ∼ ReverseGumbel(µ,σ) with

µ = 0 and σ = 1.

Proof. Consider the transformation Z =
log
(

y
1−y

)
−µ

σ
. Then the pdf of Z is given by:

fZ(z) = fY

(
exp{zσ +µ}

1+ exp{zσ +µ}

)∣∣∣∣∣∣
∂

(
exp{zσ+µ}

1+exp{zσ+µ}

)
∂ z

∣∣∣∣∣∣
=

1
σ

exp
{
−
(

log(exp(zσ +µ)−µ

σ

)
− exp

[
−
(

log(exp(zσ +µ))−µ

σ

)]}
× 1(

exp{zσ+µ}
1+exp{zσ+µ}

) 1[
1−
(

exp{zσ+µ}
1+exp{zσ+µ}

)] exp{zσ +µ}σ
(1+ exp{zσ +µ})2

= exp
{
−zσ

σ
− exp

[
−zσ

σ

]}
= exp{−z− exp[−z]},

(2.14)

which is the correspondent pdf of the reverse Gumbel distribution with µ = 0 and σ = 1.

Proposition 3. Let Y be a random variable such that Y ∼ LSN(µ,σ ,ν) with support on (0,1)

interval. Define Z =
log
(

y
1−y

)
−µ

σ
. Then, the random variable Z ∼ N(0,1) for ν = 0.

Proof. Consider the transformation Z =
log
(

y
1−y

)
−µ

σ
. Then the pdf of Z is given by:

fZ(z) = fY

(
exp{zσ +µ}

1+ exp{zσ +µ}

)∣∣∣∣∣∣
∂

(
exp{zσ+µ}

1+exp{zσ+µ}

)
∂ z

∣∣∣∣∣∣
=

2
σ

φ

(
uσ +µ−µ

σ

)
Φ

(
ν

(
uσ +µ−µ

σ

))
× 1(

exp{zσ+µ}
1+exp{zσ+µ}

) 1[
1−
(

exp{zσ+µ}
1+exp{zσ+µ}

)] exp{zσ +µ}σ
(1+ exp{zσ +µ})2

= 2φ (z)Φ(νz) = φ(z),

(2.15)

with ν = 0, which is the correspondent pdf of the standard normal distribution.

Proposition 4. Let Y be a random variable such that Y ∼ LPE(µ,σ ,ν) with support on (0,1)

interval. Define Z =
log
(

y
1−y

)
−µ

σ
. Then, the random variable Z ∼ N(0,1) for ν = 2.
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Proof. Consider the transformation Z =
log
(

y
1−y

)
−µ

σ
. Then the pdf of Z is given by:

fZ(z) = fY

(
exp{zσ +µ}

1+ exp{zσ +µ}

)∣∣∣∣∣∣
∂

(
exp{zσ+µ}

1+exp{zσ+µ}

)
∂ z

∣∣∣∣∣∣
=

ν exp
[
−
∣∣ zσ+µ−µ

cσ

∣∣ν]
2cσΓ

(1
v

) 1(
exp{zσ+µ}

1+exp{zσ+µ}

) 1[
1−
(

exp{zσ+µ}
1+exp{uσ+µ}

)] exp{zσ +µ}σ
(1+ exp{zσ +µ})2

=
ν exp

[
−
∣∣ z

c

∣∣2]
2cΓ

(1
v

) =
2exp

[
−
( z

c

)2
]

2c
√

π
=

exp
[
−
( z

2

)2
]

√
2π

,

(2.16)

with ν = 2, which is the correspondent pdf of the Standard Normal.

Proposition 5. Let Y be a random variable such that Y ∼ LGU(µ,σ) with support on (0,1)
interval and median m = QY (p), where p = 0.5. If Y ∼ LGU(µ,σ) with location parameter
µ = log

( m
1−m

)
−σ log(− log(0.5)), then the pdf of the alternative parameterization of the logistic

Gumbel distribution, denoted by Y ∼ LGU(m,σ), is given by:

f (y;m,σ) =

1
σ

exp


 log

(
y

1−y

)
− log

( m
1−m

)
+σ log(− log(0.5))

σ

− exp

 log
(

y
1−y

)
− log

( m
1−m

)
+σ log(− log(0.5))

σ


× 1

y(1− y)
.

(2.17)

Proof. The median of LGU distribution is given by:

m =
exp{µ +σ log(− log(0.5))}

1+ exp{µ +σ log(− log(0.5))}
. (2.18)

Then

µ = log
(

m
1−m

)
−σ log(− log(0.5)). (2.19)

This property is especially relevant since a quantile model can be considered assuming
that Y ∼ LGU(m,σ). So, the contribution from this property is the formulation of a new quantile
model.

Proposition 6. Let Y be a random variable such that Y ∼ LRG(µ,σ) with support on (0,1)
interval and median m = QY (p), where p = 0.5. If Y ∼ LRG(µ,σ) with location parameter
µ = log

( m
1−m

)
+σ log(− log(0.5)), then the pdf of the alternative parameterization of logistic

reverse Gumbel distribution, denoted by Y ∼ LRG(m,σ), is given by:
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f (y;m,σ) =

1
σ

exp

−
 log

(
y

1−y

)
− log

( m
1−m

)
−σ log(− log(0.5))

σ

− exp

−
 log

(
y

1−y

)
− log

( m
1−m

)
−σ log(− log(0.5))

σ


× 1

y(1− y)
.

(2.20)

Proof. The median of LRG is given by:

m =
exp{µ−σ log(− log(0.5))}

1+ exp{µ−σ log(− log(0.5))}
. (2.21)

Then

µ = log
(

m
1−m

)
+σ log(− log(0.5)). (2.22)

Proposition 7. The extension of the JSB distributions to the random variable Z with support on
bounded interval (c,d) have the pdf fZ(z;θθθ) defined by:

fZ(z;θθθ) = fY

(
z− c
d− c

;θθθ

)
= g

(
log
(

z− c
d− z

)
;θθθ

)
1

(z− c)(d− z)
(2.23)

Proof. Consider the transformation Z = Y (d− c)+ c,c,d ∈ R such that Y ∼ JSB(θθθ) and

f (y) = g
(

log
(

y
1− y

)
;θ

)
1

y(1− y)
,

we can obtain the correspondent pdf fZ(z;θθθ) of the random variable Z.

Proposition 8. Let Y be a random variable such that Y ∼ LEG(µ,σ ,ν) with support on (0,1).
An alternative parameterization of LEG with location parameter 0 < m < 1, denoted by Y ∼
LEG(m,σ ,ν) is given by :

f (y;m,σ ,ν) =
1
ν

exp

 log
( m

1−m

)
− log

(
y

1−y

)
ν

+
σ2

2ν2

Φ

 log
(

y
1−y

)
− log

( m
1−m

)
σ

− σ

ν


× 1

y(1− y)
,

(2.24)

for 0 < y < 1, 0 < m < 1, σ > 0 and ν > 0.
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Proof. Considering the reparameterization m = exp(µ)
1+exp(µ) , m ∈ (0,1), we obtain the pdf of LEG

with parameter vector (m,σ ,ν).

The Figure 23 and 24 show the density curve for different values of the location parameter
m. Like the µ parameter, the location of the density change as the m values change.

Figure 23 – Logistic exponential Gaussian probability density function for parameter m = 0.2, 0.5 and 0.8,
σ = 0.5 and some choices of parameter ν .

Source: Elaborated by the author.

Figure 24 – Logistic exponential Gaussian probability density function for parameter ν = 0.5, 0.7 and 2,
µ = 0 and some choices of parameter σ .

Source: Elaborated by the author.
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Proposition 9. Let Y be a random variable such that Y ∼ LSN(µ,σ ,ν) with support on (0,1).
An alternative parameterization of LSN with location parameter 0 < m < 1, denoted by Y ∼
LSN(m,σ ,ν) is given by:

f (y;m,σ ,ν) =
2
σ

φ(z)Φ(vz)
1

y(1− y)
, (2.25)

for 0 < y < 1 with z =
(

log
(

y
1−y

)
− log

(
µ

1−µ

))
/σ , 0 < m < 1, σ > 0 and −∞ < ν < ∞.

Proof. Considering the reparameterization m = exp(µ)
1+exp(µ) , m ∈ (0,1) we obtain the pdf of LSN

with parameter vector (m,σ ,ν).

The Figure 25 and 24 show the density curve for different values of the location parameter
m. The visualization of location density is better for the location parameter m in the (0,1) interval.

Figure 25 – Logistic skew normal probability density function for m = 0.2, 0, 0.8, ν = 1 and some choices
of parameter σ .

Source: Elaborated by the author.
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Figure 26 – Logistic skew normal probability density function for m = 0.2, 0.5, 0.8 σ = 0.5 and some
choices of parameter ν .

Source: Elaborated by the author.

Proposition 10. Let Y be a random variable such that Y ∼ LPE(µ,σ ,ν) with support on
(0,1). An alternative parameterization of LPE with location parameter 0 < m < 1, denoted by
Y ∼ LPE(m,σ ,ν) is given by:

f (y;m,σ ,ν) =
ν exp(−|z|ν)
2cσΓ(1/ν)

1
y(1− y)

, (2.26)

for 0 < y < 1,0 < m < 1,σ > 0, ν > 0, z =
log
(

y
1−y

)
−log( m

1−m)
(cσ) and c2 = Γ(1/ν)[Γ(3/ν)−1].

Proof. Considering the reparameterization m = exp(µ)
1+exp(µ) , m ∈ (0,1) we obtain the pdf of LPE

with parameter vector (m,σ ,ν).

The Figure 27 and 28 show the density curve for different values of the location parameter
m.
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Figure 27 – Logistic power exponential probability density function for m = 0.2, 0.5 and 0.8, ν = 1 and
some choices of parameter σ .

Source: Elaborated by the author.

Figure 28 – Logistic power exponential probability density function for m = 0.2, 0.5 and 0.8, σ = 0.5 and
some choices of parameter ν .

Source: Elaborated by the author.

Proposition 11. If Y ∼ LSN(µ,σ ,ν), then for ν = 0 the distribution Y has logistic normal
distribution (JOHNSON, 1949) as a special case.

Proof. The logistic skew normal distribution includes the logistic normal distribution as a special
case when ν = 0.

f (y; µ,σ) =
1√

2πσ

1
y(1− y)

exp

−1
2

 log
(

y
1−y

)
−µ

σ

2 . (2.27)
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Proposition 12. If Y ∼ LPE(µ,σ ,ν), then for ν = 2 the distribution Y has the logistic normal
distribution as a special case.

Proof. The logistic power exponential includes the logistic normal distribution as a special case
when ν = 2.

f (y; µ,σ) =
1√

2πσ

1
y(1− y)

exp

−1
2

 log
(

y
1−y

)
−µ

σ

2 . (2.28)

Proposition 13. The LSN density is symmetric when µ = 0 and ν = 0 for all values of σ .

Proof. To show that the pdf of Y is symmetric when µ = 0 and for any value of σ it is sufficient
show that f (0.5− y) = f (0.5+ y)

f (y+0.5) =
1√

2πσ
exp

{
−1

2

(
log(y+0.5)− log(0.5− y)

σ

)2
}

1
(y+0.5)

1
(0.5− y)

=
1√

2πσ
exp

{
−1

2

(
− log(y+0.5)+ log(0.5− y)

σ

)2
}

1
(y+0.5)

1
(0.5− y)

= f (0.5− y)

(2.29)

Proposition 14. The LPE density is symmetric when µ = 0 for all values of σ .

Proof. To show that the pdf of Y is symmetric when µ = 0 and for any value of σ it is sufficient
show that f (0.5− y) = f (0.5+ y)

f (y+0.5) =
ν exp

[
−
∣∣∣ log(y+0.5)−log(0.5−y)

cσ

∣∣∣ν]
2σcΓ(1/ν)

1
(y+0.5)(0.5− y)

=
ν exp

[
−
∣∣∣ log(0.5−y)−log(y+0.5)

cσ

∣∣∣ν]
2σcΓ(1/ν)

1
(0.5− y)(y+0.5)

= f (0.5− y)

(2.30)

The Table 1 shows a summary of the properties. All distributions can be extended
to a bounded interval (c,d). The LRG and LGU supports a quantile parameterization. This
parametrization enables a quantile regression model. Only the LSN and LPE are symmetrical for
some parameters.
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Table 1 – A summary of the properties.

LGU LRG LEG LSN LPE
Reversibility X X X X
Quantile parame-
terization X X

Transformation in
location parame-
ter

X X X

Extension to a
bounded interval
(c,d)

X X X X X

Particular cases X X
Symmetry X X

2.3 Mode and Moments

The mode and the moments of the distributions from this chapter do not have a closed
form. The mode and moments of the distributions were computed numerically.

All baseline distributions are unimodal, see Johnson, Kotz and Balakrishnan (1995) for
LGU and LRG, Jr and Kutner (1976) for LEG, Azzalini (1985) for LSN, and Nelson (1991) for
LPE. Only one mode was found for each JSB distribution by the numerical method presented by
Nelder and Mead (1965) available in the stats package R Core Team (2020) with the function
optim.

Definition 2. The mode y0 of the JBS distribution is the solution of the equation

∂ f (y; µ,σ ,ν)

∂y
= 0. (2.31)

Definition 3. If Y ∼ JSB(θθθ), then the moments of Y about zero are given by:

E(Y k) =
∫ 1

0
yk fY (y)dy, (2.32)

that can be written as:

E(Y k) =
∫

∞

−∞

(
exp(x)

1+ exp(x)

)
fX(x)dx. (2.33)

The moments from the JSB distributions do not have a closed form. The expression 2.32
have been computed numerically.

2.3.1 Logistic Gumbel

Table 3 displays that E(Y) evaluated by the Monte Carlo integration. Unfortunately, the
E(Y) does not have an analytical form. It is possible to observe a relation between the parameters



50 Chapter 2. Johnson-Sb type distributions

and the E(Y) by numerical values. For example, the E(Y) increases as µ increases, showing that
the location parameter impacts the E(Y) of the distribution. Despite not having a big impact on
the E(Y), the dispersion parameter correlates with Var(Y). Table 3 shows the E(Y) and Var(Y)
for some parameters, and we can take only simple conclusions from how µ and σ impact on
E(Y) and Var(Y). Table 2 reveals that for small values of σ , like 0.5 and 0.7, the mode of the
LGU is similar to the E(Y).

Table 2 – Mode of the logistic Gumbel calculated by the function optim from the R language for different
values of µ and σ .

µ σ y0 µ σ y0 µ σ y0

-1.5
0.5 0.15273

0
0.5 0.5

1.5
0.5 0.83831

0.7 0.14801 0.7 0.50001 0.7 0.85609
2 0.00006 2 0.00006 2 0.97408

Source: Elaborated by the author.

Table 3 – E(Y) and Var(Y) evaluated by the Monte Carlo integration of the logistic Gumbel distribution
for some choices of µ and σ .

µ =−1.5
σ = 0.5 σ = 0.7 σ = 2

E(Y) 0,1583 0,1576 0,1894
Var(Y) 0,0047 0,0082 0,0470

µ = 0
σ = 0.5 σ = 0.7 σ = 2

E(Y) 0,4392 0,4215 0,3765
Var(Y) 0,0186 0,0304 0,0960

µ = 1.5
σ = 0.5 σ = 0.7 σ = 2

E(Y) 0,7402 0,7135 0,5864
Var(Y) 0,0253 0,0367 0,1140

Source: Elaborated by the author.

2.3.2 Logistic reverse Gumbel

The logistic reverse Gumbel is similar to the logistic Gumbel, and we can see from Table
5 a similar behavior of E(Y) and Var(Y) from the logistic Gumbel distribution concerto to the
parameters. So, to look just at the numerical values from the 5 shows that the location parameter
impacts the E(Y) of the distribution. The E(Y) increases as µ increases, and Var(Y) increases as
σ increases. Table 4 displays that the LRG mode is not similar to the E(Y).
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Table 4 – Mode of the logistic reverse Gumbel calculated by the function optim from the R language for
different values of µ and σ .

µ σ y0 µ σ y0 µ σ y0

-1.5
0.5 0.16168

0
0.5 0.49999

1.5
0.5 0.84726

0.7 0.14391 0.7 0.49999 0.7 0.88519
2 0.02591 2 0.99993 2 0.99993

Source: Elaborated by the author.

Table 5 – E(Y) and Var(Y) evaluated by the Monte Carlo integration of the logistic reverse Gumbel
distribution for some choices of µ and σ .

µ =−1.5
σ = 0.5 σ = 0.7 σ = 2

E(Y) 0.2427 0.2722 0.4256
Var(Y) 0.0156 0.0299 0.1159

µ = 0
σ = 0.5 σ = 0.7 σ = 2

E(Y) 0,5604 0.5772 0.6434
Var(Y) 0.0203 0.0319 0.0911

µ = 1.5
σ = 0.5 σ = 0.7 σ = 2

E(Y) 0,8361 0,8420 0,8575
Var(Y) 0,0091 0,0087 0.0162

Source: Elaborated by the author.

2.3.3 Logistic exponential Gaussian

The logistic exponential Gaussian has one more parameter, and it does not have an
analytical form for E(Y) and Var(Y). To make conclusions from the relation between the E(Y)
and Var(Y) with the parameters is more laborious. Table 7 shows the E(Y ) for tree divergent
values of ν . Like the previously distributions, we can take only simple conclusions. The numerical
values show a impact of µ and ν at E(Y ), that is, the E(Y) increases as both parameters increase.
But, we are not able to delve into this relation just by looking at the numerical values. Table 6
shows the numerical values for the mode. To look at them, we can see that the mode increases as
ν increases. It is an interesting observation since the ν can be seen as a shape parameter.
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Table 6 – Mode of the logistic exponential Gaussian calculated by the function optim from the R language
for different values of µ and σ and ν = 1 .

ν = 0.5
µ σ y0 µ σ y0 µ σ y0

-1.5
0.5 0.20543

0
0.5 0.60477

1.5
0.5 0.89626

0.7 0.18385 0.7 0.63833 0.7 0.92181
2 0.00598 2 0.99 2 0.99

ν = 1
µ σ y0 µ σ y0 µ σ y0

-1.5
0.5 0.22596

0
0.5 0.66601

1.5
0.5 0.93837

0.7 0.20973 0.7 0.74336 0.7 0.97020
2 0.00690 2 0.99993 2 0.99993

ν = 2
µ σ y0 µ σ y0 µ σ y0

-1.5
0.5 0.24602

0
0.5 0.99

1.5
0.5 0.99

0.7 0.23798 0.7 0.99 0.7 0.99
2 0.00806 2 0.99 2 0.99

Source: Elaborated by the author.

Table 7 – E(Y) and Var(Y) evaluated by the Monte Carlo integration of the logistic exponential Gaussian
distribution for some choices of µ , σ and ν .

v = 0.5
µ = -1.5 µ = 0 µ = 1.5

σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2
E(Y) 0.2839 0.2932 0.3547 0.6122 0.6073 0.5758 0.8674 0.8592 0.7762

Var(Y) 0.0202 0.0274 0,0910 0.0193 0.0291 0.0978 0.0015 0.0052 0.0613
v = 1

µ = -1.5 µ = 0 µ = 1.5
σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2

E(Y) 0.3844 0.3895 0.4255 0.6908 0.6848 0.6386 0.9007 0.8937 0.8183
Var(Y) 0.0260 0.0341 0.0955 0.0462 0.0523 0.1055 0.0005 0.0035 0.0516

v = 2
µ = -1.5 µ = 0 µ = 1.5

σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2
E(Y) 0.5344 0.5355 0.5388 0.7843 0.7785 0.7271 0.9266 0.9210 0.8579

Var(Y) 0.0781 0.0824 0.1211 0.0288 0.0349 0.0869 0.0068 0.0093 0.0479
Source: Elaborated by the author.

2.3.4 Logistic skew normal

In the logistic skew normal distribution the ν parameter takes values from −∞ to ∞. So,
it is harder then LEG to describe the numerical values of E(Y). Table 9 shows the E(Y) values
for three different values of ν . The numerical values show a impact of µ in E(Y). However, the
ν has a smaller impact on E(Y) compared to the conclusions from LEG. Table 8 displays that for
low values o σ , like 0.5 and 0.7, the mode is similar to E(Y ).
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Table 8 – Mode of the logistic skew normal calculated by the function optim from the R language for
different values of µ and σ and ν = 1.

ν =−1
µ σ y0 µ σ y0 µ σ y0

-1.5
0.5 0.13269

0
0.5 0.43149

1.5
0.5 0.79286

0.7 0.10735 0.7 0.39597 0.7 0.79085
2 0.00379 2 0.00185 2 0.93041

ν = 0.5
µ σ y0 µ σ y0 µ σ y0

-1.5
0.5 0.18809

0
0.5 0.54831

1.5
0.5 0.86186

0.7 0.17777 0.7 0.57613 0.7 0.88847
2 0.01607 2 0.98444 2 0.99

ν = 1
µ σ y0 µ σ y0 µ σ y0

-1.5
0.5 0.207131

0
0.5 0.56850

1.5
0.5 0.867304

0.7 0.209141 0.7 0.60402 0.7 0.89264
2 0.06958 2 0.98141 2 0.99621

Source: Elaborated by the author.

Table 9 – E(Y) and Var(Y) evaluated by the Monte Carlo integration of the logistic skew normal distribu-
tion for some choices of µ , σ and ν .

v = -1
µ = -1.5 µ = 0 µ = 1.5

σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2
E(Y) 0.1521 0.1448 0.1357 0.4298 0.4082 0.3188 0.7602 0.7343 0.5654

Var(Y) 0.0026 0.0047 0,0270 0.0104 0.0171 0.0656 0.0083 0.0138 0.0800
v = 0.5

µ = -1.5 µ = 0 µ = 1.5
σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2

E(Y) 0.1952 0.2045 0.2849 0.4969 0.4978 0.5000 0.8043 0.7963 0.7164
Var(Y) 0.0056 0.0115 0,0756 0.0154 0.0258 0.0986 0.0076 0.0123 0.0753

v = 1
µ = -1.5 µ = 0 µ = 1.5

σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2
E(Y) 0.2383 0.2642 0.4341 0.5641 0.5875 0.6813 0.8484 0.8583 0.8673

Var(Y) 0.049 0.0110 0,0798 0.0114 0.0185 0.0659 0.0031 0.0079 0.0250
Source: Elaborated by the author.

2.3.5 Logistic power exponential

Table 11 shows a less expressive influence from ν , compared to LEG and LSN, at E(Y ).
However, like other cases, µ and σ are strictly related to E(Y ) and Var(Y ) respectively. The 10
reveals that ν does not have a huge impact on the mode of LPE.
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Table 10 – Mode of the logistic power exponential calculated by the function optim from the R language
for different values of µ and σ and ν = 0.5.

ν = 0.5
µ σ y0 µ σ y0 µ σ y0

-1.5
0.5 0.18243

0
0.5 0.5

1.5
0.5 0.81757

0.7 0.18244 0.7 0.5 0.7 0.81755
2 0.18243 2 0.5 2 0.81757

ν = 1
µ σ y0 µ σ y0 µ σ y0

-1.5
0.5 0.18242

0
0.5 0.5

1.5
0.5 0.81758

0.7 0.18240 0.7 0.5 0.7 0.81759
2 0.00006 2 0.5 2 0.99994

ν = 2
µ σ y0 µ σ y0 µ σ y0

-1.5
0.5 0.15831

0
0.5 0.5

1.5
0.5 0.84168

0.7 0.13497 0.7 0.5 0.7 0.86503
2 0.00429 2 0.5 2 0.99

Source: Elaborated by the author.

Table 11 – E(Y) and Var(Y) evaluated by the Monte Carlo integration of the logistic power exponential
distribution for some choices of µ , σ and ν .

ν = 0.5
µ = -1.5 µ = 0 µ = 1.5

σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2
E(Y) 0.1915 0.1978 0.2402 0.5009 0.5006 0.5004 0.8137 0.8058 0.7609

Var(Y) 0.0058 0.0105 0.0461 0.0099 0.0165 0.0553 0.0014 0.0074 0.0451
ν = 1

µ = -1.5 µ = 0 µ = 1.5
σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2

E(Y) 0.1960 0.2038 0.2667 0.4980 0.4981 0.4984 0.8043 0.7957 0.7306
Var(Y) 0.005 0.0113 0,0640 0.0140 0.0232 0.0813 0.0078 0.0135 0.0659

ν = 2
µ = -1.5 µ = 0 µ = 1.5

σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2 σ = 0.5 σ = 0.7 σ = 2
E(Y) 0.1955 0.2043 0.2847 0.4977 0.4981 0.4992 0.8028 0.7939 0.7132

Var(Y) 0.0054 0.0114 0,0756 0.0153 0.0260 0.0987 0.0084 0.0137 0.0768

Source: Elaborated by the author.

2.4 Kurtosis and Skewness

2.4.1 Logistic Gumbel

Figures 29 and 30 present the behavior of Skewness (third standardized moment) and
Kurtosis (fourth standardized moment) for some values of µ and σ . The Skewness is a measure
of asymmetry. A distribution is called left-skewed if the Skewness is negative. A distribution
is called right-skewed if the Skewness is positive. The line on the value 0 is displayed in the
Figures for better visualization. It is common to compare the kurtosis values with value 3 (the
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kurtosis of the univariate normal distribution). We can see that the logistic Gumbel distribution
accommodates moderate negative and positive skew data. The Kurtosis is negative for many
scenarios, like a platykurtic distribution with thinner tails. The logistic Gumbel distribution
accommodates data with moderately negative Kurtosis data.

Figure 29 – Measure of Kurtosis of the logistic Gumbel distribution in function of dispersion and location
parameter.

Figure 30 – Measure of Skewness of the logistic Gumbel distribution in function of dispersion and location
parameter.

2.4.2 Logistic reverse Gumbel

Figures 31 and 32 present the behavior of Skewness and Kurtosis for some values of µ

and σ . We can see a similar interpretation from the logistic Gumbel. The logistic reverse Gumbel
accommodates moderate negative and positive skew data and with moderately negative Kurtosis
data.
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Figure 31 – Measure of Kurtosis of logistic reverse Gumbel distribution in function of dispersion and
location parameter.

Figure 32 – Measure of Skewness of logistic reverse Gumbel distribution in function of dispersion and
location parameter.

2.4.3 Logistic exponential Gaussian

Figure 33 presents the Kurtosis for the logistic exponential Gaussian. The Kurtosis
is moderately negative for many scenarios, and it increases with a raise in µ . So the logistic
exponential Gaussian has thinner tails but is more flexible than logistic Gumbel and logistic
reverse Gumbel for data with positive Kurtosis, principally because of the third parameter ν .
Figure 34 shows that the logistic exponential Gaussian accommodates positive and negative
skew data.
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Figure 33 – Measure of Kurtosis of the logistic exponential Gaussian distribution in function of dispersion,
location and shape parameter.

(a) Measure of Kurtosis of the logistic exponential
Gaussian distribution for µ = 0.

(b) Measure of Kurtosis of the logistic exponential
Gaussian distribution for σ = 0.7.

(c) Measure of Kurtosis of the logistic exponential
Gaussian distribution for ν = 1.

(d) Measure of Kurtosis of the logistic exponential
Gaussian distribution for ν = 0.

Figure 34 – Measure of Skewness of the logistic exponential Gaussian distribution in function of disper-
sion and location parameter.
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2.4.4 Logistic skew normal type I

Figure 35 present the Kurtosis for the logistic skew normal. The Kurtosis is moderately
negative for many scenarios, and it seems that the logistic skew normal is not flexible for high
Kurtosis data. However, we can see from Figure 36 that for µ = 0 logistic skew normal is
symmetric, so it seems a valuable distribution for moderate symmetric data.

Figure 35 – Measure of Kurtosis of the logistic skew normal distribution in function of dispersion, location
and shape parameter.

(a) Measure of Kurtosis of the logistic skew normal
distribution for µ = 0.

(b) Measure of Kurtosis of the logistic skew normal
distribution for σ = 0.7.

(c) Measure of Kurtosis of the logistic skew normal
distribution for ν = 1.

(d) Measure of Kurtosis of the logistic skew normal
distribution for ν = 0.
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Figure 36 – Measures of Skewness of the logistic skew normal distribution in function of dispersion and
location parameter.

2.4.5 Logistic power exponential

Figure 37 presents the Kurtosis for the LPE distribution. The LPE distribution is the most
indicated for data with a high Kurtosis value (from the considered scenarios and distributions,
it reached the high value), and just a few scenarios display negative Kurtosis. The distribution
presented negative, positive, and close to 0 values of Skewness, so the LPE seems suitable for
both positive and negative skew data.

Jointly with the LEG distribution, the is the most adequate for positive skew data, but it
is also flexible for left skew data.
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Figure 37 – Measures of Kurtosis of the logistic power exponential distribution in function of dispersion,
location and shape parameter.

(a) Measure of Kurtosis of the logistic power expo-
nential distribution for µ = 0.

(b) Measure of Kurtosis of the logistic power expo-
nential distribution for σ = 0.7.

(c) Measure of Kurtosis of the logistic power expo-
nential distribution for ν = 1.

(d) Measure of Kurtosis of the logistic power expo-
nential distribution for ν = 0.

Figure 38 – Measures of Skewness of the logistic power exponential distribution in function of dispersion
and location parameter.



2.4. Kurtosis and Skewness 61

A relevant conclusion about the distributions is: the three-parameter distributions present
incredible flexibility compared to the two parameters. In general, the distributions presented a
positive Skewness for positives values of µ , moderate negative Skewness for µ = 0, and negative
Skewness for negative values of µ . In many scenarios, the LSN, LGU, and LRG distributions,
for example, show low values for the Skewness. These three distributions also presented low
Kurtosis values. But we can highlight the logistic exponential Gaussian and logistic power
exponential distributions for positive skew data and the logistic power exponential distributions
for data with high Kurtosis value.
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CHAPTER

3
THE JSB MIXED REGRESSION MODELS

This chapter presents novel regression models and mixed regression models for bounded
response based on JSB distributions. Mixed models have been proposed for the analysis of
data that are grouped or have some hierarchy. Longitudinal data have two sources of variation,
within-individual, i.e., the variation in the repeated measurements within each individual; and
between-individual, i.e., the variation in the data between different individuals. All distributions
presented in chapter 2 do not have a closed-form for the expected value E(Y ). The goal is to
define a parametric function of covariates to the location, dispersion, and shape parameters of
the distribution.

3.1 The JSB regression models

Let YYY = (Y1, . . . ,Yn) be a vector of independent random variables following one of the
distributions described in chapter 2 with location parameter µi, dispersion parameter σi and shape
parameter νi, and consider xxx1i, xxx2i and xxx3i three p, d and c dimensional vectors, respectively,
containing the explanatory variables. Assuming that the random variables YYY i are mutually
independent with JSB distribution, that is

YYY i ∼ JSB(µi,σi,νi), (3.1)

with

s1(µi) = xxx′1iβββ s2(σi) = xxx′2iγγγ, s3(νi) = xxx′3iδδδ , (3.2)

where βββ = (β0, . . . ,βp−1), γγγ = (γ0, . . . ,γd−1) and δδδ = (δ0, . . . ,δc−1) represents, respectively,
p−, d− and c− dimensional vectors of unknown regression coefficients.
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The link function s1 relates the location parameter with the covariates, since µ ∈ R
the identity function was taken, that is, xxx′1βββ ∈ R. Similarly, s2 is a link relating the dispersion
parameter σi with the covariates, as σi must be strictly positive we decide the log link. Finally,
the link function s3 depends on the distribution chosen, if ν > 0 we adopt logarithmic and for
−∞ < ν < ∞ we adopt identity. All link functions are strictly monotonic and twice differentiable.

3.2 The JSB mixed regression models

Data with repeated measures have more than one observation per individual. This data
brings correlation patterns about individuals. From this, special attention is necessary for the data
analysis. Longitudinal data requires specific statistical methods because the set of observations
on one subject tends to be intercorrelated.(RIZOPOULOS, 2012).

In longitudinal studies, we can explore individuals’ patterns over time, making inferences
about particular individuals. The mixed model has the characteristic to includes random effects
for each individual to incorporate the correlation between repeated measurements. These random
effects represent the individual influence on the repeated measurements, and their magnitude
measures the variability across individuals. (WU, 2009).

The graphical representation of an LMM in Figure 39 shows the longitudinal response
(y) from two individuals (1 and 2), and x represents the time the response was taken. As we can
see in Figure 39, the linear regression model may be suitable to describe each individual. Assume
yi j as the response of individual i, i = 1, . . . ,n at time ti j, j = 1, . . . ,ni, assuming different slopes
and intercepts for each individual, a plausible model for yi j is:

yi j = β̃i0 + β̃i1ti j + εi j, (3.3)

where β̃i0 and β̃i1ti j are subject-specific regression coefficients and εi j ∼N(0,σ2). Since subjects
are sampled randomly from a population of individuals, it is reasonable to assume that the subject-
specific regression coefficients β̃i0 and β̃i1ti j will be sampled randomly from the corresponding
population regression coefficients. It is customary to adopt that the distribution of the regression
coefficients in the population is a bivariate normal distribution with mean vector β = (β0,β1)

′

and covariance matrix D. The model is reformulate as:

yi j = (β0 +bi0)+(β1 +bi1)ti j + εi j. (3.4)

where β̃i0 = β0 + bi0, β̃i1 = β1 + bi1, and the new terms bi0 and bi1 are called random effects,
having a bivariate normal distribution with mean zero and covariance matrix D. The parameters
β0 and β1 are called fixed effects.
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Figure 39 – A graphical representation from the linear mixed model, the black and red lines represent two
hypothetical linear regression of two different individuals.

Source: Elaborated by the author.

The generalization of the above model is known as the linear mixed model and has the
form (LAIRD; WARE, 1982) :

YYY i = Xiβββ +Zibbbi + εεε i. (3.5)

where bbbi ∼ N(0,DDD), εεε i ∼ N(0,σ2Ini), YYY i represents the response variable vector with dimension
ni from subject i. β is a p-dimensional vector of regression coefficients (fixed effects), bbbi is
a q-dimension vector of random effects, XXX i is a ni× p matrix representing the values of the
covariates, and ZZZi is a ni×q design matrix for the random effects. The random effect bi described
how the subject i deviates from the population trend.

The main diagonal elements of matrix DDD represent random effects, bbbi, variances, for q

random effects by subject i the matrix DDD can be represent as a q×q matrix:

DDD =


Var(b1i) cov(b1i,b2i) . . . cov(b1i,bqi)

cov(b1i,b2i) Var(b1i) . . . cov(b2i,bqi)
...

...
...

...
cov(b1i,bqi) cov(b2i,bqi) . . . Var(bqi).

 (3.6)

The DDD matrix can assume different structures. No one correlation structure for DDD was
fixed, so the model does not imply restriction to the correlations. Every parameter from DDD is
estimated freely. For more details about the correlation structure for the DDD matrix, see Singer and
ANDRADE (1986). The inferences about mixed regression require estimates from the unknown
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regression coefficients and estimates from the covariance matrix and the random effects bbbi. The
variances from the DDD matrix tell how the individuals are different. Large variances indicate large
differences in individual profiles.

The new mixed models based on JSB distributions also include random effects for each
individual to incorporate the correlation between repeated measurements. However, now the
focus from the JSB mixed regression models is longitudinal data bounded in the interval (0,1).

Let YYY i = (yi1, . . . ,yini)
′ be a vector of response variables for the sample unit i such that

every component yi j takes values in the (0,1) interval. The JSB mixed regression model is given
by:

Yi j|bbbi ∼ JSB(µi j,σi j,νi j) (3.7)

s1(µi j) = xxx′1i jβββ + zzz′i jbbbi s2(σi j) = xxx′2i jγγγ, s3(νi j) = xxx′3i jδδδ ,

bbbi ∼ Nq(0,DDD),

for j = 1, . . . ,ni and i= 1, . . . ,n where βββ =(β0, . . . ,βp−1), γγγ =(γ0, . . . ,γd−1) and δδδ =(δ0, . . . ,δc−1)

are vectors of regression coefficients (fixed effects), xxx1i j = (x1i j1, . . . ,x1i jp)
′,zzzi j = (zi j1, . . . ,zi jr),

xxx2i j = (x2i j1, . . . ,x2i jq) and xxx3i j = (x3i j1, . . . ,x3i jc) are vectors containing explanatory variables
(overlapping or even identical). We assume that the random effects bbb1, . . . ,bbbn are normally
distributed, bbbi ∼ Nq(0,DDD) for i = 1, . . . ,n where DDD is a positive definite matrix. The link function
s1, s2 and s3 are the same defined for the model 3.1.
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CHAPTER

4
ESTIMATION

This chapter presents the estimation methods under the classical and Bayesian approaches
for JSB mixed regression models. The penalized likelihood estimators are obtained by maximiz-
ing the penalized likelihood estimators and are computed by the Rigby and Stasinopoulos (RS)
algorithm. Under the Bayesian approach, the posterior distribution from the interest parameters
is complex, and the No-U-Turn-Sampler (NUTS) algorithm is employed to simulated values
from the posterior distribution. Some computational issues from the algorithms are covered at
the end of the chapter.

4.1 Classical Estimation

For the mixed regression models, we assume random effects bbb, providing an additional
source of variation. In the model described in (3.7), the response variables Y1, . . . ,Yn are assumed
to be independently distributed with pdf f (yi|ΘΘΘ,bbb) from the JSB class, where Θ = (βββ T ,γγγT ,δδδ T ).
The model marginal likelihood is obtained by integrating out the random effect

L(ΘΘΘ|YYY ) =
n

∏
i=1

∫ ni

∏
j=1

f (yi j|µi j,σi j,v)φp(bbbi|000,DDD)dbbb, (4.1)

where φq is the normal distribution pdf of dimension q. The main obstacle to dealing with the
marginal likelihood is the integral over the random variables. Under the assumption that both the
conditional distribution YYY |bbb and the marginal distribution bbb are normal, the marginal distribution
YYY is normal, so the marginal likelihood has an exact solution. In our case, the conditional is not
normal, although we can approximate the marginal likelihood by some numerical methods, such
as Gauss-Hermite quadrature or Monte Carlo integration. However, these options become less
advantageous as the dimension of the random effect bbbi increases.

The penalized likelihood was chosen instead of marginal likelihood. The penalized
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likelihood estimators are obtained by maximizing the penalized likelihood and must be computed
numerically by the RS algorithm (STASINOPOULOS et al., 2017). The estimators are similar
to those that were presented by Breslow and Clayton (1993) for GLMM. The penalized log-
likelihood function of the model (3.7) is given by:

lp = l(ΘΘΘ)− 1
2

bbb′DDDbbb, (4.2)

where the log-likelihood of L(ΘΘΘ|bbb) is

l(ΘΘΘ) =
n

∑
i=1

ni

∑
j=1

log
[

f (yi j|µi j,τi j,v)
]
,

=
n

∑
i=1

ni

∑
j=1

log
[

g
(

ln
(

yi j

1− yi j

)
|µi j,τi j,v

)
1

yi j(1− yi j)

]
,

=
n

∑
i=1

ni

∑
j=1

log
[

g
(

ln
(

yi j

1− yi j

)
|µi j,τi j,v

)]
− log

(
yi j(1− yi j)

)
,

(4.3)

with bbb being a vector compound of bbbi random effects. The DDD matrix is now a diagonal block ma-
trix with DDD matrix at each of n diagonal positions. We repeat the DDD notation just for convenience.
Let ΩΩΩ = (ΘΘΘT ,bbbT ) the vector of all parameters from 3.7. The score function is given by vector

UUU(ΩΩΩ) =
∂ lp

∂ΩΩΩ
. (4.4)

Additionally, consider the following components of the score function uuu1 = ∂ lp/∂βββ ,
uuu2 = ∂ lp/∂bbb, uuu3 = ∂ lp/∂γγγ and uuu4 = ∂ lp/∂δδδ so we can write (4.4) as:

UUU =


XXX ′1sss1

ZZZ′sss1−DDDbbb

XXX ′2sss2

XXX ′3sss3

 , (4.5)

where sssk = ∂ l(ΘΘΘ)/∂ηηηk is an N−dimensional vector (N =∑
n
i=1 ni) with elements ∂ l(ΘΘΘ)/∂ηkl for

l = 1, . . . ,N and k = 1,2,3 represents the number of linear predictors. The penalized maximum
likelihood estimators β̂ββ , b̂bb, γ̂γγ and δ̂δδ can be obtained by solving the equation system UUU(ΩΩΩ) = 000.

However, the equation system UUU(ΩΩΩ) = 000 does not have an explicit solution demanding a
numerical approximation by an algorithm. (RIGBY; STASINOPOULOS, 2005) revealed that the
RS algorithm, for known components of matrix DDD, gives the maximum penalized log-likelihood
estimates. The RS algorithm have three steps: the outer iteration, the inner iteration and the
modified backfitting. These steps are nested, so the outer iteration repeatedly calls the inner
iteration, which in turn repeatedly calls the modified backfitting algorithm.



4.1. Classical Estimation 69

The outer iteration estimates the parameters separately, first estimating βββ and bbb given the
latest estimates of γ̂γγ and δ̂δδ , then estimating γγγ given β̂ββ , b̂bb and δ̂δδ , and finally estimating δδδ given β̂ββ ,
b̂bb and δ̂δδ .

To fit a particular parameter, βββ for example, the outer step calls the inner step. The inner
step is a local scoring algorithm that fits a weighted least square (WLS) to a modified response
variable and obtains revised estimates of b̂bb

(r)
and β̂ββ

(r)
at the r-th iteration of the step. The inner

step updates the weights, the score function, and the modified response variable at each iteration,
and is equivalent to the Fisher scoring procedure (HASTIE; TIBSHIRANI, 1990). The expected
Fisher information matrix is given by:

AAA = E
(
−

∂ 2lp

∂ΩΩΩ∂ΩΩΩ
′

)
=


AAA11 AAA12 AAA13 AAA14

AAA21 AAA22 AAA23 AAA14

AAA31 AAA32 AAA33 AAA14

AAA41 AAA42 AAA43 AAA44

 , (4.6)

where:

(
AAA11 AAA12

AAA21 AAA22

)
=

(
XXX ′1WWW 11XXX1 XXX ′1WWW 11ZZZ

ZZZ′WWW 11XXX1 ZZZ′WWW 11ZZZ +DDD

)
,AAA33 = (XXX ′2WWW 22XXX2),AAA44 = (XXX ′3WWW 33XXX3),

(4.7)

and WWW kk = E
(
−∂ 2l(ΘΘΘ)/∂ηηηk∂ηηη ′k

)
= diag {E(−∂ 2l(ΘΘΘ)/∂ηlk∂ηlk)} over l = 1, . . . ,N, for k =

1,2,3 is the weight matrix. The other matrices are equal to zero. The RS algorithm does not
use cross derivatives (between the linear predictors) of the log-likelihood for the estimation, so
Wks = 0, for k 6= s.

The fixed and random effects, βββ and bbb, are estimated by the modified backfitting step.
At each iteration m of the modified backfitting step, the algorithm computes update values of
β̂ββ
(r,m)

and b̂bb
(r,m)

. The expressions for β̂ββ , b̂bb, γ̂γγ and δ̂δδ for the RS algorithm are:

β̂ββ
(m+1,r)

= (XXX ′1WWW (r)
11 XXX1)

−1XXX ′1WWW (r)
11 (ηηη

(r)
1 +(WWW−1

11 )
(r)uuu(r)1 −ZZZb̂bb

(m,r)
). (4.8)

b̂bb
(m+1,r)

= (ZZZ′WWW (r)
11 ZZZ +DDD)−1ZZZ′WWW (r)

11 (ηηη
(r)
1 +(WWW−1

11 )
(r)uuu(r)2 −XXX1β̂ββ

(m+1,r)
). (4.9)

γ̂γγ
(m+1,r) = (XXX ′2WWW (r)

22 XXX2)
−1XXX ′2WWW (r)

22 (ηηη
(r)
2 +(WWW−1

22 )
(r)uuu(r)3 ). (4.10)

δ̂δδ
(m+1,r)

= (XXX ′3WWW (r)
33 XXX3)

−1XXX ′3WWW (r)
33 (ηηη

(r)
3 +(WWW−1

33 )
(r)uuu(r)4 ). (4.11)
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We uptade m until the numerical values of β̂ββ and b̂bb do not change.

With convergence from the backfitting part, the algorithm checks the global deviance
(equal to minus twice the current fitted log- likelihood). If it has not converged yet, we update r

and obtain new values of the weights WWW 11, the score vectors uuu1, uuu2 and the modified responses
zzz1, zzz2:

zzz1 = ηηη1 +WWW−1
11 uuu1 and zzz2 = ηηη1 +WWW−1

11 uuu2, (4.12)

and return to the modified backfitting part. We continue updating r until the global deviance
converges. After the convergence of βββ , we get the next parameter, γγγ . The inner and modified
backfitting steps are used now to estimate γ̂γγ with the weight matrix WWW 22, score vector uuu3 and
modified response zzz3.

We continue updating r until the global deviance converge. After the convergence of βββ

we get the next parameter, γγγ . The inner and modified backfitting steps are used now to estimate
γ̂γγ with the weight matrix WWW 22, score vector uuu3 and modified response zzz3. With the convergence
of γγγ the inner and modified backfitting steps are used now to estimate δ̂δδ .

Finally after estimating βββ , γγγ , and δδδ , the global deviance is checked again. With the
convergence of the global deviance, we stop the algorithm and obtain the last values of β̂ββ , b̂bb, γ̂γγ

and δ̂δδ . Otherwise, we continue to update the parameters.

The described process works with known components from the DDD matrix. (RIGBY;
STASINOPOULOS, 2014) suggested maximum likelihood estimators from an internal model
approximated at the end of each m iterations from the backfitting step. The internal mixed model
assumed at m iteration is given by:

eee = ZZZbbb+ εεε; εεε ∼ N(0,Σ), (4.13)

where Σ = σ2
e W−1

11 and eee are the current partial residuals (within backfitting, eee = zzz2−XXX1β̂ββ ). We
can write (4.13) as:

zzz2 = XXX1β̂ββ +ZZZb̂bb+ εεε. (4.14)

Consider (4.14) the linear model with response variable zi for an individual i, Σ the
covariance matrix of errors and VVV i(φ) = ZZZiDDDZZZ′i +ΣΣΣii the marginal variance for individual i with
φ the components of the matrix VVV i. We can obtain the Restricted maximum likelihood (REML)
estimator for DDD from the linear model in 4.14 reached by maximizing the restrict maximum
likelihood (HARVILLE, 1976).

Laird and Ware (1982) uses the Expectation-Maximization (EM) algorithm to obtain the
REML numerical estimates. The EM algorithm is a iterative algorithm for likelihood estimation
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in models with incomplete data (DEMPSTER; LAIRD; RUBIN, 1977). The REML estimator
for D̂DD are described in details in Laird and Ware (1982). With the REML estimates from D̂DD we
back to backfitting part to update β̂ββ and b̂bb.

4.2 Bayesian Estimation
For the specification of the model under a Bayesian approach we need the specification

of complete likelihood

L(ΘΘΘ,bbb|YYY ) =
n

∏
i=1

ni

∏
j=1

[
g
(

ln
(

yi j

1− yi j

)
|µi j,τi j,νi j

)
1

yi j(1− yi j)

]
φp(bbbi|000,DDD), (4.15)

where g(.) is the baseline distribution defined in Chapter 3 and φp is the density of a normal
multivariate with vector of means 0 and covariance matrix DDD and in Bayesian approach we take
the precision parameter, τ = 1/σ .

In the Bayesian context we assume distributions for the parameters, called prior distribu-
tions, that express our uncertainty about the parameters. For the fixed effects model defined in
(3.1) we must assume prior distributions for the parameter vector ΘΘΘ = (βββ ,γγγ,δδδ ). In the mixed
models we assume random effects bbbi ∼ N(000,DDD) and look at matrix DDD as a parameter. Assuming
independence between parameters the joint prior distribution p(ΘΘΘ) is given by:

p(ΘΘΘ) = p(βββ )p(γγγ)p(δδδ ) (4.16)

where p(βββ ), p(γγγ) and p(δδδ ) are the prior density distributions. The normal distribution is fixed for
the parameters β j ∼N(µβ ,σβ ), γ j ∼N(µγ ,σγ), δ j ∼N(µδ ,σδ ). The inverse Wishart distribution
is the prior for the covariance matrices of the random effects DDD ∼ IW (c,RRR). With these all
specification the model can be write under a bayesian approach:

Yi j|β ,γ,δ ∼ JSB(µi j,τi j,νi j)

g1(µi j) = xxx′1i jβββ + zzzi jbbbi

g2(τi j) = xxx2i jγγγ

g3(νi j) = xxx3i jδδδ

bbbi|DDD∼ N(000,DDD)

ΘΘΘ∼ N(000,ΣΣΣ)

DDD∼ IW (c,RRR)

(4.17)

where ΘΘΘ = (βββ ,γγγ,δδδ ) and ΣΣΣ is a diagonal matrices with elements σβ ,σγ ,σδ . Combining the priors
with likelihood function defined in (4.15), the posterior distribution for is given by:

p(ΘΘΘ,DDD|Y ) ∝ L(ΘΘΘ,bbb|YYY )p(βββ )p(γγγ)p(δδδ )p(DDD). (4.18)
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The posterior distribution does not have a closed-form since it is analytically intractable.
The simulation of values direct from it is very laborious or impracticable. An alternative way
is to use simulation methods based on Markov chains called MCMC methods. The MCMC
methods are useful to draw samples from the parameters densities.

The MCMC methods are based on the construction of Markov Chains for posterior
distribution (stationary distribution). The most popular algorithms of the MCMC are Metropolis-
Hastings and Gibbs Sampling. These methods are considered straightforward and efficient.
Although for complex models with many parameters, they may require a long time for conver-
gence. The No-U-Turn-Sampler (NUTS) algorithm developed by Hoffman and Gelman (2014)
is employed in this work.

The method is based on the Hamiltonian dynamics, which describes how objects move
through a system. The dynamic is defined in terms of position x and momentum p of an object
in the function of time t. This object has potential energy U(x) and a Kinetic energy K(p)

associated with the momentum and position. The total energy of the system is called Hamiltonian
H(x, p). The Hamiltonian equations determine how the position x and momentum p change over
time t.

The Hamiltonian Monce Carlo (HMC) transforms the idea of the Hamiltonian dynamic
into a probabilistic context. Specifically, for the Bayesian context which we need to simulate
values of our posterior distribution. Assume that ΨΨΨ = (ΘΘΘ,bbb,DDD) and L(ΨΨΨ|YYY ) are our parameter
vector and log posterior distribution respectively. The HMC introduces an auxiliary momen-
tum variable rrrd for each variable Ψd at vector ΨΨΨ. This momentum variable should be drawn
independently from the standard normal distribution, yielding the joint density given by:

p(ΨΨΨ,rrr) ∝ exp{L(ΨΨΨ|YYY )− (1/2)rrr · rrr}. (4.19)

The Hamiltonian equations define the position and momentum of the object in time
t. In the Bayesian context, we simulate values from our posterior distribution if we solve the
Hamiltonian equations. The Hamiltonian equations can be approximate through the Leapfrog
integrator. The Leapfrog algorithm takes discrete steps of some small-time interval ε and runs L

iterations of the algorithm to find a reasonable approximation of Hamiltonian equations:

rt+ε/2 = rt +(ε/2)∇ΨΨΨU(ΨΨΨt); ΨΨΨ
t+ε = ΨΨΨ

t + εrt+ε/2; rt+ε = rt+ε/2 +(ε/2)∇ΨΨΨU(ΨΨΨt+ε)

(4.20)

where rt and ΨΨΨ
t denote the values of momentum and position variable at time t and ∇ΨΨΨ denotes

the gradient with respect to ΨΨΨ
t given by:

∂U(ΨΨΨ)

∂ΨΨΨ
= ∇ΨΨΨU(ΨΨΨ) =

(
∂L(ΨΨΨ)

∂βββ
,
∂L(ΨΨΨ)

∂γγγ
,
∂L(ΨΨΨ)

∂δδδ
,
∂L(ΨΨΨ)

∂bbb
,
∂L(ΨΨΨ)

∂DDD

)
(4.21)
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To draw a value of posterior at iteration m we started by simulating r from a N(0, III),
run the Leapfrogs equations (4.20) L times, and get the last value for ΨΨΨ. The propose value is
accepted according to a Metropolis acceptance.

The problem with HMC is the decision of parameters L and ε . The performance of the
algorithm has a strong connection with their choice. If the parameter ε is large, the simulation may
be inaccurate and yield low acceptance rates. If it is small, the algorithm will have an unnecessary
computational waste. Concerning the L parameter, if its value is modest, the successive samples
will be closer to each other resulting in undesirable random walk behavior and slow mixing. For
larges values for the L parameter, the trajectory begins to loop back and retrace their steps.

The algorithm NUTS automatically selects an appropriate value for L in each iteration
to avoid this undesirable random walk. Firstly, as the parameter will no longer be fixed, it
is necessary to take the criteria to advise us when the proposed value Ψ̂ΨΨ starts to move back
towards ΨΨΨ and then stop the leapfrog steps (HOFFMAN; GELMAN, 2014). The criterion is
given by: (Ψ̂ΨΨ−ΨΨΨ) · r̂rr, where Ψ̂ΨΨ and r̂rr are the proposed values and ΨΨΨ the initial value of the
iteration. This criterion suggests an algorithm that will continue to runs Leapfrog steps until this
criterion becomes less than 0. However, this approach does not guarantee time reversibility then
it does not guarantee the convergence to the correct distribution. NUTS overcome this problem
by employing a recursive algorithm that preserves reversibility by running the Hamiltonian
simulation both forward and backward in time and introducing a slice variable u to follow slice
sampling. The joint probability of (ΨΨΨ,rrr) and u is given by:

p(ΨΨΨ,rrr,u) ∝ I[u ∈ [0,exp{L(ΨΨΨ)− 1
2

rrr · rrr}]], (4.22)

where I(·) is 1 if the expression in brackets is true and 0 if it is false. The marginal probability of
(ΨΨΨ and rrr) is

p(ΨΨΨ,rrr) ∝ exp{L(ΨΨΨ)− 1
2

rrr · rrr}, (4.23)

which is independent of u.

Sampling directly from (4.22) may not be easy. An alternative is to use the Gibbs
sampling idea, so we sample from the conditional distribution p(u|Ψ,r) and the conditional
distribution for (ΨΨΨ,rrr) given u, which is uniform over the region u≤ {L(ΨΨΨ)− 1

2rrr · rrr}.

The algorithm NUTS used to sample from ΨΨΨ,rrr|u proceeds by: 1. chooses M as the chain
size where m = 1, . . .M; 2. sample from rrr ∼ N(000, III) and initializes ΨΨΨ

m−1, ζ = {(ΨΨΨm−1,rrr)}, j =

0; 3. sample u∼U([0,exp{L(ΨΨΨm−1)− (1/2)rrr · rrr}]); 4. chooses a direction v j (i.e, forwards in
time if v j = 1 and backwards in fictional time if v j = -1); 5. runs the Leapfrog defined in 4.20
with ΨΨΨ

m−1,rrr and ε = v jε to obtain the new values Ψ̂ΨΨ, r̂rr; 6. checks u 6 exp{L(Ψ̂ΨΨ)− (1/2)r̂rr · r̂rr}
and I[L(Ψ̂ΨΨ)− (1/2)r̂rr · r̂rr > logu−1000]; 7. if step 6 is true the algorithm updates ζ = ζ ∪{Ψ̂ΨΨ, r̂rr};
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8. checks the criterion (Ψ̂ΨΨ−ΨΨΨ
m−1) · r̂rr and updates j; 9. if step 8 is true the algorithm sample

ΨΨΨ
m from ζ and update m and back to step 2, otherwise back to the step 3.

We define as ζ a subset of all states (ΨΨΨ,rrr) trace out during a given NUTS iteration
by Leapfrog. Any state in ζ be in the slice define by u and have equal conditional probability
p(Ψ̂ΨΨ, r̂rr|u). The joint distribution of Ψ̂ΨΨ and r̂rr given u,ζ ,ε is uniform on the elements of ζ ,
allowing us to at the end of each NUTS iteration sample ΨΨΨ and rrr from ζ . This process is useful
only for the parameter L. More details about the use of stochastic optimization, specifically the
primal-dual algorithm of Nesterov (2009) to find an optimal value for ε , can be find in Hoffman
and Gelman (2014).

4.3 Computational Issues

We cite the computational questions about the estimation methods for the Bayesian and
classical approaches. All methods are applicable in R software through the gamlss (RIGBY et

al., 2019). (STASINOPOULOS; RIGBY, 2007) (RIGBY; STASINOPOULOS, 2005) package
for the classical approach and rstan (Stan Development Team, 2020) for the Bayesian approach.

The gamlss package grants the fitting of Generalized additive model for location, scale,
and shape (GAMLSS) class of models. In the GAMLSS, the response variable distribution is
relaxed to allow distributions apart from the exponential family. The systematic part of the model
is expanded to modeling the mean (or location) and other parameters as a linear function of
explanatory variables and/or random effects. The package likewise covers the transformation
given in Chapter 2, granting us to adjust the JSB class. The estimation process is made by the RS
algorithm (default of package). The package offers the CG algorithm. However the CG algorithm
requires information about the cross derivatives of the log-likelihood function with respect to
the distribution parameters. The package offers a significant flexibilization to user preferences.
It is possible to adjust the iterations number of the algorithm, define initial values, change the
number of iterations, and define the numerical convergence criteria.

For our particular situation, the mixed models is fitted by the aid of re function which
accomplishes an interface with lme function from the nlme package (PINHEIRO et al., 2020).
The function employs a hybrid algorithm between the Expectation-Maximization (EM) algorithm
and Newton-Raphson (NR) method to maximize the restricted log-likelihood. NR iterations are
more computationally intensive than the EM iterations and can be quite unstable when far from
the optimum and converge quickly close to the optimum. The hybrid algorithm performed a
moderate number of EM iterations, then switching to NR iterations. An example of the code
using the gamlss package to fit a JSB mixed regression model is included in the Appendix B.

In the Bayesian context, Stan provides a flexible probabilistic programming language
for statistical modeling (Stan Development Team, 2020). Stan supports an efficient program to
run the NUTS algorithm. We can employ regression models and mixed models presented here
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using the language. A code for the JSB mixed regression model, specifically the LPE mixed
regression model, using the Stan language is included in Appendix B. The rstan package offers
a significant flexibilization to user preferences, for example, access to the log density, to the
depth of tree explored by the NUTS, and to the number of leapfrog iterations (CARPENTER et

al., 2017). The default convergence diagnostic is the potential scaled reduction statistic R̂, its
value should be closed to 1 when the chains have converged, see Vehtari et al. (2020) more for
details about R̂.

For the priors, a Normal prior distribution centered at zero with standard error equal
to 100 was chosen for the regression coefficient, which is sufficiently noninformative (PAZ;
BALAKRISHNAN; BAZÁN, 2019). The covariance matrix has an associated correlation matrix,
which can be factored into a square root matrix LLLb. A prior was placed on the LLLb matrix following
the Sorensen and Vasishth (2015) approach. The posterior is given by:

p(ΘΘΘ,bbb,DDD|YYY ,xxx) = L(θθθYYY ,xxx)p(βββ )p(γγγ)p(δδδ )p(σσσb)p(LLLb)φb(ZZZbbb) (4.24)

where φb is a normal multivariate with dimension q mean 000 and covariance matrix I. σσσb is a
q− dimensional vector containing the variance of every q random effect. Independents gamma-
inverse priors are selected for every σb. The LLLb matrix prior is a Cholesky LKJ Correlation
distribution with parameter v = 2. The parameter v = 2 implies that the correlation on the off-
diagonal are near zero, reflecting the fact that we have no prior information about the correlation
between random effects.

4.4 Model Comparison Criteria
Model selection is a crucial step to statistical inference. As the main goal of this work is

to introduce alternative models, we will contrast different models. The criteria do not check the
model, but they compare them and explore directions for improvement.

Some criteria are presented, like the Akaike information criterion (AIC) and the Watanabe-
Akaike information criterion (WAIC) (WATANABE; OPPER, 2010). The first for classical
context and the second for Bayesian context. These criteria have an attractive aspect, being
alternative adjustment measures for cross-validation (STONE, 1977).

4.4.1 Classical criteria

Akaike (1981) proposed the use of the Kullback Leibrle (KL) distance as the fundamental
basis for model selection. The KL information between models f and g with parameter θ is
defined for continuous function as the integral:

I( f ,g) =
∫

f (x) log( f (x))dx−
∫

f (x) log(g(x|θ))dx. (4.25)
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We seek a model that minimizes I( f ,g) over g, where f is known, and this represents
a model that loses as little information as possible. The first term on the right of (4.25), the
expectation E f [log( f (x))], is a constant that depends only on the unknown true distribution f ,
so (4.25) can be written as: I( f ,g) =C−E f [log(g(x|θ))]. However, the KL distance can not be
computed without full knowledge of both f and g. So as the true distribution f is unknown in
practical problems, E f [log(g(x|θ))] becomes the quantity of interest. The AIC criterion adapted
the KL distance and gives an estimated expected relative distance between the true and estimated
model (ANDERSON; BURNHAM, 2004). The AIC criterion is given by:

AIC =−2log(L(Θ̂ΘΘ|yyy))+2k. (4.26)

The BIC (SCHWARZ et al., 1978) is closely related to AIC criterion with a diffrent
penalty term. The BIC criterion is given by:

BIC =−2log(L(Θ̂ΘΘ|yyy))+ k log(N), (4.27)

where N is total of observations.

4.4.2 Bayesian criteria

In the Bayesian approach, a recent and important criterion is the WAIC criterion (WATAN-
ABE; OPPER, 2010). This criterion aims to estimate the predictive performance of the model in
a new data set. Let us consider f with parameter θ as the true model and y as a realization of it.
But now consider ỹ as future data, an out-of-sample predictive fit for a new data point ỹl is

In the Bayesian approach, a recent and important criterion is the WAIC criterion (WATAN-
ABE; OPPER, 2010). This criterion aims to estimate the predictive performance of the model in
a new data set. Consider f with parameter θ the true model, y a realization of it and ỹ a future
data. The log predictive density of the new data point ỹl is given by:

logP(ỹl) = logEθ (p(ỹl|θ)) = log
∫

p(ỹl|θ)P(θ)dθ , (4.28)

only here we denote P(ỹl) as the predictive density and P(θ) the posterior function. The notation
P is used just for simplification of the expressions that will be presented here. However, the
future data are themselves unknown, and then we work with the expected log predictive density,
E(logP(ỹl)) =

∫
logP(ỹl) f (ỹl)dỹ. This expression is similar to that find on the right side of

(4.25). To evaluate E(logP(ỹl)) we work with posterior distribution P(θ |yyy) and summarize the
predictive accuracy of the fitted model to data by: (GELMAN; HWANG; VEHTARI, 2014)

log
N

∏
l=1

P(θθθ |yl) =
N

∑
l=1

log
∫

p(yl|θ)P(θ)dθ (4.29)
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To compute (4.29) in practice we use draws from P(θ), the usual posterior simulations,
to calculate the expectation ∑

N
l=1 log

(1
S ∑

S
s=1 p(yl|θ s)

)
, where θ s,s = 1, . . . ,S are the posterior

simulations.

WAIC is a fully Bayesian criterion, starting with the expression in (4.29) and then adding
a correction for overfitting based on the effective number of parameters. This correction (denoted
by pWAIC) uses the variance of individual terms in the log predictive density summed over the n

data points. To calculate pWAIC we compute the posterior variance for each data point yl , that is,
V S

s=1 log p(yl|θ s), where V S
s=1as =

1
S−1 ∑

S
s=1(as− â)2. Summing over all the data points yl (using

the notation defined in 4.18) gives:

pWAIC =
N

∑
l=1

V S
s=1(log p(yl|ΘΘΘs,bbbs)). (4.30)

So the WAIC criterion is given by:

WAIC =−2

(
N

∑
l=1

log

(
1
S

S

∑
s=1

p(yl|ΘΘΘs,bbbs)

)
− pWAIC

)
. (4.31)

where p(y|ΘΘΘ,bbb) is the density of the JSB distribution. The EAIC and EBIC criteria were also
considered (GELMAN; HWANG; VEHTARI, 2014):

EAIC = D̄+2× p

EBIC = D̄+10× log(n),
(4.32)

where

D̄ = S−1
S

∑
s=1

(
−2

N

∑
l=1

log(p(yl|ΘΘΘs,bbbs))

)
. (4.33)

4.5 Residual analysis

The residual analysis in some linear regression models can be straightforward, since
the residuals are normally distributed and can be standardized to have equal variances. Any
discrepancy about this should be taken with caution when validating the model. However, in
non-normal regression models, the residuals are not normally distributed. In the GLM there
are many residuals to check the validity of the model (PAULA, 2004). For our models, the
randomized quantile residuals (DUNN; SMYTH, 1996) was considered. These residuals should
be used to perform diagnostic analysis in complex regression models (PEREIRA, 2019). The
randomized quantile residual is normally distributed if the fit of the model is adequate.
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Let F(y;θθθ) be the cumulative function of Y . If F is continuous, then F(y;θθθ) is uniformly
distributed in the unit interval, and the randomized quantile residual for the observation l is
defined by:

rq,l = Φ
−1{F(yl;ΩΩΩl)}, (4.34)

where Φ is the cumulative distribution function of the standard normal distribution. For a
graphical analysis of the residuals to assess the fit of the proposed model, we check the normality
of the residuals by considering a QQplot. Additionally, we show the envelope graph for the
randomized quantile residuals as proposed by Atkinson (1983) to measure the quality of the
model estimation. The envelope was built following the steps: 1. Simulate distribution values
using model estimates; 2. Fit y simulated versus explanatory variables; 3. Take the randomized
quantile residuals from the model. We repeat these steps 19 times, so we have rlk (l = 1, . . . ,N)
and k = 1, . . . ,19. The next step is to arrange each group of N residuals in ascending order and
take the r(l),0.025 and r(l),0.975 quantiles.
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CHAPTER

5
SIMULATION STUDIES

The first simulation study presents the performance of the proposed distributions in
comparison with the Beta distribution. This simulation presents a study to evaluate the robustness
of JSB distribution to outliers. The second simulation study performed out parameters recovery
to evaluate the performance of the estimation method considered here. Specifically, the second
simulation presents a zero-and-one distribution of the JSB class, and it checks out the performance
of the estimation method for this particular model.

5.1 First Simulation Study

The first simulation presents the robustness to outliers of the distributions from Chapter 2
in comparison with the Beta distribution. That is, the simulation study observe the performance
of the JSB and Beta distributions regarding contaminated data coming from a Beta distribution
with outliers, following (PAZ; BALAKRISHNAN; BAZÁN, 2019). The parameterization of the
Beta distribution employed is (FERRARI; CRIBARI-NETO, 2004):

f (y; µ,φ) =
Γ(φ)

Γ(µφ)Γ((1−µ)φ)
yµφ−1(1− y)(1−µ)φ−1, (5.1)

where µ = E(Y ), the dispersion of the distribution, for fixed µ , decreases as φ increases, Var(y)
= V (µ)

1+φ
.

The scenarios considered are samples from a Beta distribution for three different values
of the mean µ: 0.2, 0.5 and 0.8, two different values of φ , 10, and 20 and three sample sizes,
75,150 and 200. These specific values of µ and σ were choose to get a variety of samples,
that is, samples with low values, E(Y ) = 0.2 and high values E(Y ) = 0.8. The samples were
contaminated by outliers simulated from a uniform distribution with parameters 0.9 and 1. The
proportions of outliers considered were 0.02, 0.05, and 0.1 for each dataset. r = 2%,5%,10%
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were randomly replaced from each sample with outliers from a uniform distribution. Every
scenario were replicated 1000 times.

The models were fitted by the RS algorithm to the contaminated samples. The comparison
criteria AIC and BIC from JSB distributions and Beta distribution for each contaminated sample
were used. The average and the percentage of cases where each distribution displayed the lowest
value of these criteria were determined. The purpose of this analysis is to report if these criteria
are adequate for choosing alternative models in the JSB class in comparison with the Beta
distribution for the Beta contaminated data. Table 12 presents the percentages for Beta, logistic
Gumbel (LGU), logistic reverse Gumbel (LRG), logistic exponential Gaussian (LEG), logistic
skew normal type I (LSN1), logistic power exponential (LPE) for the scenario with µ = 0.2 and
all values of r. Tables 26, 28, 27 and 29 from Appendix A present the scenarios with µ = 0.5,
µ = 0.8.

The percentages of cases where the JSB distribution outperformed the Beta are relevant.
According to Table 12, for µ = 0.2, the Beta distribution did not perform better than the JSB
distributions in any of the scenarios considered. The LEG and LPE distributions displayed the
most significant results with µ = 0.2. The results of other µ values were similar except for
few scenarios. According to Table 3.1.1 of the Supplementary Material, for µ = 0.5, the LEG
distribution presented good performance. Nevertheless, in some scenarios with small sample
sizes, the LRG distribution showed important results, outperforming the LEG in some cases.
Finally, in tables 27 and 29 from Appendix B shows, for µ = 0.8, that the Beta distribution had
the best fit in scenarios with φ = 10 and large sample sizes. But with n = 75 and r = 10, the
LRG distribution presented good results, indicating that the distribution fits small sample sizes
well.

Table 12 – Percentage of cases that each distribution displayed the lowest value of AIC and BIC for
different scenarios with contaminated samples from a Beta distribution with µ = 0.2 (1000
replications of each scenario).

AIC BIC
φ % of outiler n Beta LGU LRG LEG LSN1 LPE Beta LGU LRG LEG LSN1 LPE

10

2
75 0 0 4.7 30.8 0 64.5 0 0 15.2 20.3 0 64.5

150 0 0 0.1 29.3 0 70.6 0 0 0.7 28.7 0 70.6
200 0 0 0 26.9 0 73.1 0 0 0 26.9 0 73.1

5
75 0 0 6.9 36.6 0 56.5 0 0 31.0 31.7 0 55.3

150 0 0 0.1 33.4 0 66.5 0 0 2.9 30.6 0 66.5
200 0 0 0 34.5 0 65.5 0 0 0.6 33.9 0 65.5

10
75 0 0 2.0 56.2 0 41.8 0 0 22.9 36.7 0 40.4

150 0 0 0 54.7 0 45.3 0 0 0.4 54.3 0 45.3
200 0 0 0 58.5 0 41.5 0 0 0 58.5 0 41.5

20

2
75 0 0 8.0 39.4 0 52.6 0 0 15.3 0.6 0 84.1

150 0 0 0.3 42.9 0 56.8 0 0 3.1 6.6 0 90.3
200 0 0 0 38.1 0 61.9 0 0 0 13.5 0 86.5

5
75 0 0 0.4 42.3 0 57.3 0 0 13.9 29.4 0 56.7

150 0 0 0 40.7 0 59.3 0 0 0.5 40.2 0 59.3
200 0 0 0 38.6 0 61.4 0 0 0 13.3 0 86.7

10
75 0 0 0 55.2 0 44.8 0 0 0 55.2 0 44.8

150 0 0 0 55.3 0 44.7 0 0 0 55.3 0 44.7
200 0 0 0 58.1 0 41.9 0 0 0 58.1 0 41.9
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Table 13 – Average of AIC and BIC regarding replicas for different scenarios with contaminated samples
from a Beta distribution with µ = 0.2 (1000 replications of each scenario).

% of AIC BIC
φ outiler n Beta LGU LRG LEG LSN1 LPE Beta LGU LRG LEG LSN1 LPE

10

2
75 -82.39 -40.20 -81.54 -90.94 -82.23 -93.58 -87.03 -44.84 -86.17 -97.89 -89.18 -100.53

150 -156.16 -64.27 -165.81 -189.69 -165.49 -195.03 -150.14 -58.25 -159.79 -180.66 -156.46 -186.00
200 -209.01 -73.57 -219.53 -253.75 -221.54 -261.36 -202.41 -66.97 -212.94 -243.85 -211.64 -251.47

5
75 -49.88 -6.26 -71.77 -75.49 -53.80 -78.11 -54.52 -10.90 -76.41 -82.44 -60.75 -85.07

150 -101.85 -13.51 -147.67 -162.01 -116.62 -166.65 -95.82 -7.49 -141.65 -152.98 -107.58 -157.62
200 -130.89 -12.52 -193.09 -213.35 -151.22 -219.94 -124.29 -5.92 -186.50 -203.45 -141.33 -210.04

10
75 -21.59 14.47 -55.56 -57.09 -26.14 -57.25 -26.23 9.83 -60.20 -64.04 -33.09 -64.21

150 -51.88 20.40 -118.30 -128.05 -67.29 -126.67 -45.86 26.42 -112.28 -119.02 -58.26 -117.64
200 -70.43 28.47 -157.61 -172.07 -91.15 -171.07 -63.84 35.06 -151.01 -162.18 -81.25 -161.17

20

2
75 -100.81 -38.01 -122.68 -127.38 -104.11 -128.14 -105.45 -42.64 -127.32 -134.33 -111.06 -135.09

150 -181.55 -50.59 -245.36 -259.26 -196.76 -261.04 -175.53 -44.57 -239.34 -250.23 -187.73 -252.00
200 -242.47 -38.45 -326.53 -346.68 -263.17 -349.45 -235.88 -31.86 -319.94 -336.78 -253.28 -339.55

5
75 -54.80 1.77 -104.53 -106.26 -60.41 -108.29 -59.43 -2.87 -109.16 -113.21 -67.36 -115.25

150 -107.98 5.03 -211.36 -221.99 -125.46 -225.07 -101.96 11.05 -205.34 -212.96 -116.42 -216.04
200 -137.26 13.15 -276.57 -292.00 -160.78 -296.25 -130.67 19.74 -269.98 -282.11 -150.88 -286.35

10
75 -19.36 25.09 -76.13 -81.71 -23.72 -82.13 -23.99 20.45 -80.76 -88.66 -30.67 -89.08

150 -46.64 41.80 -158.15 -176.28 -61.48 -174.75 -40.62 47.82 -152.12 -167.24 -52.45 -165.72
200 -63.30 57.08 -211.41 -236.05 -83.26 -234.20 -56.70 63.68 -204.82 -226.16 -73.37 -224.30

The conclusion is that the distributions from the JSB class, like the LEG and LPE, have
better performance for samples with outliers in relation to the Beta model, independent of sample
size and dispersion. A different result comes from µ = 0.8, where the Beta distribution shows
better performance for high dispersion. However, with lower values of the dispersion parameter
and a more relevant presence of outliers, the LPE distribution again shows consistent results.
Additionally, Table 13 presents the average of AIC and BIC regarding the replicas. The results
from Table 12 and Table 13 lead to the same conclusions. In summary, the study have shown
that bounded data exist that do not follow the Beta distribution, but it can be accommodated by
some distributions in the JSB class.

5.2 Second Simulation Study

In the second simulation, an extension of the JSB distributions is introduced. A mixed
distribution that is continuous within the interval (0,1) with additional probabilities at either 0
and 1 is presented. It is called the zero-and-one inflated distribution. Only an inflated version of
the LPE distribution, denoted by fY (y|θθθ), is generated due to the fact that the LPE distribution
had the best performance among all other models in the previous simulation study. The zero-and-
one-inflated LPE (ZOILPE) distribution has support in [0,1] and pdf given by:

fW (y|θθθ) =


p0, if y = 0
(1− p0− p1) fY (y|θθθ), if 0 < y < 1
p1, if y = 1

, (5.2)
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for 0≤ y≤ 1, 0 < p0 < 1, 0 < p1 < 1 such that ξ0 = p0/p2, ξ1 = p1/p2 and p2 = 1− p0− p1.
ξ0 > 0 and ξ1 > 0 with

p0 =
ξ0

1+ξ0+ξ1
and p1 =

ξ1
1+ξ0+ξ1

. (5.3)

The default link functions for ξ0 and ξ1 are the log functions. The samples were simulated
using the distribution defined in (5.2). The model is fitted as two separate models, both parts
using the RS algorithm. fY (y|θθθ) is fitted for (0,1) response and the probabilities are obtained by
the multinomial distribution for the zeros, ones, non-zeros, and non-ones. Ospina and Ferrari
(2012) described the procedure with details. The gamlss.inf (ENEA et al., 2019) package fits
these distributions by the RS algorithm (HOSSAIN et al., 2016).

A parameter recovery study was developed to illustrate the performance of the classical
estimates of the ZOILPE models. The goal of this simulation study is to show the behavior of
the estimates based on RMSE and the frequentist mean.

The datasets were simulated according to the ZOILPE model. We did not take any
covariate and, we chose different values for µ = (−1.5,0,1.5), σ = (0.7,2), p0 = (0.2,0.3)
and p1 = (0.2,0.3). The sample sizes are taken as n = 700,800 and 900. Because the ZOILPE
is more complex than the models from the previously simulation, we considered only 100
replicates.

The average and the root mean square error (RMSE) from the estimates of each parameter
were calculated. The results are all presented in Table 14. The RMSE decreases as the sample
size increases. Also, the difference between the mean and the true parameter values is small. We
can conclude that the ZOILPE model presented in 5.2 with the estimation method presented
by (ENEA et al., 2019) and available at gamlss.inf package is a alternative model to fit data
bounded on the (0,1) interval and with exacts values 0 and 1.
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Table 14 – Classical estimates of the parameters in the ZOILPE model and the root mean square error
(RMSE), based on 100 simulated datasets.

Parameter µ σ p0 p1 µ σ p0 p1
True -1.5 0.7 0.2 0.2 -1.5 0.7 0.3 0.3

n = 700
Mean -1.429 0.814 0.203 0.198 -1.442 0.460 0.305 0.298
RMSE 0.081 0.278 0.020 0.020 0.121 0.269 0.029 0.027

n = 800
Mean -1.339 0.720 0.204 0.198 -1.390 0.489 0.304 0.298
RMSE 0.172 0.187 0.019 0.018 0.140 0.236 0.027 0.026

n = 900
Mean -1.443 0.661 0.204 0.198 -1.497 0.506 0.304 0.298
RMSE 0.067 0.137 0.018 0.017 0.103 0.220 0.025 0.024
True 0 0.7 0.2 0.2 0 0.7 0.3 0.3

n = 700
Mean 0.036 0.824 0.203 0.197 0.049 0.372 0.300 0.299
RMSE 0.048 0.285 0.020 0.020 0.051 0.470 0.027 0.026

n = 800
Mean 0.137 0.715 0.204 0.198 -0.323 0.463 0.295 0.306
RMSE 0.147 0.182 0.019 0.018 0.348 0.251 0.020 0.022

n = 900
Mean 0.054 0.661 0.204 0.198 0.015 0.508 0.304 0.298
RMSE 0.065 0.138 0.018 0.017 0.104 0.218 0.025 0.024
True 1.5 0.7 0.2 0.2 1.5 0.7 0.3 0.3

n = 700
Mean 1.526 0.812 0.203 0.197 1.566 0.460 0.305 0.298
RMSE 0.044 0.271 0.020 0.020 0.125 0.269 0.029 0.027

n = 800
Mean 1.648 0.714 0.204 0.198 1.611 0.485 0.304 0.298
RMSE 0.158 0.182 0.019 0.018 0.140 0.241 0.027 0.026

n = 900
Mean 1.547 0.661 0.204 0.198 1.501 0.506 0.304 0.298
RMSE 0.059 0.138 0.018 0.017 0.103 0.220 0.025 0.024
True -1.5 2 0.2 0.2 -1.5 2 0.3 0.3

n = 700
Mean -1.337 2.232 0.203 0.198 -1.398 0.650 0.303 0.296
RMSE 0.194 0.678 0.020 0.020 0.118 1.461 0.029 0.022

n = 800
Mean -1.023 2.056 0.204 0.198 -1.494 3.183 0.296 0.298
RMSE 0.510 0.529 0.019 0.018 0.355 1.834 0.026 0.028

n = 900
Mean -1.328 1.886 0.204 0.198 -1.495 1.446 0.304 0.298
RMSE 0.200 0.395 0.018 0.017 0.294 0.627 0.025 0.024
True 0 2 0.2 0.2 0 2 0.3 0.3

n = 700
Mean 0.104 2.223 0.203 0.197 0.135 1.066 0.301 0.298
RMSE 0.141 0.669 0.020 0.020 0.140 1.339 0.028 0.023

n = 800
Mean 0.323 2.034 0.204 0.198 0.735 1.677 0.298 0.304
RMSE 0.351 0.517 0.019 0.018 0.861 0.591 0.024 0.029

n = 900
Mean 0.142 1.891 0.204 0.198 0.010 1.451 0.304 0.298
RMSE 0.174 0.392 0.018 0.017 0.293 0.622 0.025 0.024
True 1.5 2 0.2 0.2 1.5 2 0.3 0.3

n = 700
Mean 1.591 2.233 0.203 0.197 1.841 0.763 0.294 0.299
RMSE 0.133 0.676 0.020 0.020 0.494 1.413 0.018 0.036

n = 800
Mean 1.904 2.058 0.204 0.198 0.574 1.329 0.295 0.306
RMSE 0.434 0.532 0.019 0.018 0.998 0.708 0.020 0.022

n = 900
Mean 1.628 1.888 0.204 0.198 1.502 1.447 0.304 0.298
RMSE 0.163 0.395 0.018 0.017 0.294 0.627 0.025 0.024
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CHAPTER

6
APPLICATIONS

6.1 Proportion of individuals vulnerable to poverty

The first application illustrated the use of the JSB distributions. The dataset contains
the proportion of individuals vulnerable to poverty from the 645 municipalities of the State of
São Paulo in Brazil (BRAZIL, 2021a). The map of São Paulo state in Figure 40 represents the
proportion of people vulnerable to poverty from each city.

Figure 40 – Map of the São Paulo state, made with rgdal and ggplot2 packages in R language, for the
real proportion of people vulnerable to poverty in each city.

Source: Elaborated by the author.
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An individual is classified as vulnerable to poverty if their per capita household income
is up to BRL 255. The application goal is to fit the JSB distributions and the Beta distribution to
the data. The Kurtosis and Skewness computed for the sample were respectively 5.797 and 1.433.
These values show that the data has a high value of Kurtosis and moderately positive Skewness.
The conclusions from Chapter 2 show that the LGU, LRG, and LSN distributions do not
accurately accommodate high Kurtosis data. On the other hand, the LEG and LPE distributions
fit high Kurtosis and moderately positive data, so to confirm it, the distributions are compared by
the AIC and BIC criteria. This application does not consider any covariate. Six distributions are
fitted to the data, the logistic Gumbel, logistic reverse Gumbel, logistic exponential Gaussian,
logistic skew normal type I, logistic power exponential, and Beta distributions. The RS algorithm
fitted all distributions. The algorithm finds the maximum likelihood estimators for the parameters
of the distributions. Table 15 shows the values of the AIC and BIC criteria. Figure 41 exhibits
the histogram of the data with the density of the estimated distributions superimposed.

Table 15 – Model comparison criteria.

Model AIC BIC
Logistic Gumbel -1210.5 -1201.5
Logistic reverse Gumbel -1368.7 -1359.8
Logistic exponential Gaussian -1437.8 -1424.4
Logistic skew normal type I -1415.4 -1402.0
Logistic power exponential -1429.7 -1416.3
Beta -1380.2 1371.3

Figure 41 – Histogram of the data with the estimated distribution density superimposed.

Source: Elaborated by the author.
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The logistic exponential Gaussian distribution produces the best fitting to the random
variable according to the criteria. It is possible to see from 41 that the JSB distributions presented
long tails and high kurtosis. These characteristics make the JSB more flexible to the data. Another
point is the advantage that distribution with tree parameters concern with distributions with two
parameters.

Table 16 presents the location parameter µ , dispersion parameter σ , the expected value
and variance of the random variable, and the probability that the random variable assumes higher
values than 0.3256 (Brazil mean of proportion individuals vulnerable to poverty).

Table 16 – Maximum Likelihood estimates, E(Y), Var(Y) and P(Y ≥ 0.3256) from Logistc Exponential
Gaussian.

µ σ ν E(Y) Var(Y) P(Y ≥ 0.3256)
-1.7757 0.4201 0.3431 0.2058 0.0083 0.0143

The results from 16 show that the expected value from the cities of São Paulo state for
the proportion of individuals vulnerable to poverty are smaller than Brazil mean of proportion
individuals vulnerable to poverty. Since the calculated µ was low, -1.77, E(Y ) also displayed a
low value because of the relation between the location parameter and E(Y ). The probability of a
city presented a value higher than the Brazil mean is 0.0143. The results show that the São Paulo
cities have a lower index of poverty compared to Brazilian cities.
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6.2 The votes of a brazilian political party
The data contains the proportion of votes obtained by a political party in the Brazilian

presidential elections. The response variable is the proportion of votes get by the Workers Party
(PT in Portuguese) in five presidential elections, every four years, from 1994 to 2010, in the 75
cities of the Sergipe state from Brazil. This data was introduced by Paz, Ehlers and Bazán (2015).
The aim is to identify the time effect at the proportion of votes obtained by the PT. Additionally,
the MHDI (Municipal Human Development Index) was taken as a covariate. The Brazilian
MHDI is comprised of the same three dimensions as the Global HDI – longevity, education, and
income –, but goes beyond them; it adapts the global methodology to the Brazilian context and
the availability of national indicators (BRAZIL, 2021b). The MHDI is divide into categories
presented in (BRAZIL, 2021a): between 0.5 and 0.599: low MHDI1, between 0.6 and 0.699:
medium MHDI2 . The only city with high MHDI was removed from the fitting of the model, but
it stays in the exploratory analysis. Table 17 display the data set for six different cities. Figure 42
shows the map of the Sergipe state. The map represents the proportion of votes every year.

Table 17 – Proportion of votes for six cities from Sergipe state in five presidential election.

Id 1994 1998 2002 2006 2010 MHDI
1 0.23 0.29 0.31 0.49 0.57 0.61
2 0.17 0.19 0.27 0.37 0.37 0.58
3 0.43 0.43 0.52 0.37 0.32 0.77
4 0.10 0.11 0.27 0.43 0.51 0.59
5 0.16 0.15 0.22 0.37 0.37 0.58
6 0.33 0.39 0.46 0.32 0.36 0.65

The Kurtosis and Skewness computed for the sample were respectively 2.014 and 0.13.
These values show that the data has a low value of Kurtosis and almost 0 for Skewness. Because
of the low value from the Kurtosis, we can consider the distributions LGU, LRG, and LSN.
Especially the LSN best accommodates data with low values of Skewness. The distributions are
compared by the AIC, BIC, EAIC, EBIC, and WAIC criteria to confirm this conclusion.

A descriptive analysis, described in Table 18, verifies how the proportion of votes behaves
over time and concerning the covariate MHDI. The data summarized in Table 18 reveals that the
MHDI covariate appears to be relevant because of the difference displayed between the groups.
Figure 43 shows that the proportion of votes increases with time, especially in the low MHDI
group.
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Figure 42 – Map of Sergipe state, make with rgdal and ggplot2, for the proportion of votes over time.

Source: Elaborated by the author.

For modeling, consider yi j: proportion of votes obtained by the Workers Party in the city
i = 1, . . . ,74 at the presidential elections j = 1, ..5. The model proposed is given below:

Yi j ∼ JSB(µi j,τi j,νi j)

Four different models were build. The models 2, 3 and 4 are mixed models. The model 4
has the Time as covariate in the precision parameter besides the random effect.

Model 1:

µi j = β0 +β1× (MHDIi2)+β2× (Timei j)+β3× (MHDIi2)× (Timei j)+bi

s2(τi j) = γ0 s3(νi j) = δ0.
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Table 18 – Summary of the descriptive measures separated by sex group.

MHDI Time Average Standard Deviation Minimum Median Maximum n
High 1 0.43120 0.43120 0.43120 0.43120 1
High 2 0.42720 0.42720 0.42720 0.42720 1
High 3 0.51700 0.51700 0.51700 0.51700 1
High 4 0.37490 0.37490 0.37490 0.37490 1
High 5 0.32220 0.32220 0.32220 0.32220 1
Low 1 0.16801 0.06520 0.05870 0.15720 0.33820 43
Low 2 0.14559 0.05482 0.05150 0.13600 0.27600 43
Low 3 0.26279 0.08682 0.08190 0.26760 0.49740 43
Low 4 0.46673 0.08990 0.30150 0.46670 0.67680 43
Low 5 0.51428 0.06807 0.36880 0.51120 0.67010 43

Medium 1 0.24642 0.05608 0.11760 0.24480 0.35240 31
Medium 2 0.25725 0.08088 0.12730 0.25180 0.39040 31
Medium 3 0.35032 0.08299 0.19810 0.33950 0.48220 31
Medium 4 0.42512 0.07521 0.32100 0.42160 0.59620 31
Medium 5 0.46420 0.07203 0.31080 0.46470 0.66710 31

Figure 43 – The Sergipe city profiles grouped by MHDI classes. The red line represents the average.

Source: Elaborated by the author.

Model 2:
µi j = β0 +β1× (MHDIi2)+β2× (Timei j)+bi

s2(τi j) = γ0 s3(νi j) = δ0.

bi ∼ N(0,σb).

Model 3:

µi j = β0 +β1× (MHDIi2)+β2× (Timei j)+β3× (MHDIi2)× (Timei j)+bi

s2(τi j) = γ0 s3(νi j) = δ0

bi ∼ N(0,σb).
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Model 4:

µi j = β0 +β1× (MHDIi2)+β2× (Timei j)+β3× (MHDIi2)× (Timei j)+bi

s2(τi j) = γ0 + γ1× (Timei j) s3(νi j) = δ0

bi ∼ N(0,σb).

All models are fitted using the RS algorithm within package gamlss and NUTS algorithm
within rstan. Table 19 shows the AIC, BIC, EAIC, EBIC, and WAIC criteria. The LSN model
with covariate in parameter τ (σ = 1/τ in the classical approach) and random intercept presented
the smallest AIC. However, the Beta model 4 pointed to the best fitting since it presented the
smallest BIC, EAIC, EBIC and WAIC. The conclusion from the criteria pointed to the Beta
model as the better choice. But the LSN model 4 is also presented to show that the JSB mixed
regression model can be an alternative even in this kind of situation. The aim is not to compare
the model but to show that the LSN model is an alternative. The Beta estimates and residuals
are presented under the Bayesian approach, while the LSN estimates are presented under the
classical approach.

Table 20 shows the classical and Bayesian estimates, the standard deviation (SD), the
confidence intervals (IC) for classical estimates, and the high posterior density interval (HPD)
for Bayesian estimates. We can conclude from the estimates is that time has a positive impact
on the proportion of votes, revealing an increase in the proportion of votes through the years.
However, the growth trend is bigger in cities with low MHDI than in cities with medium MHDI
since the interaction between MHDI and time was negative. We can see that time was relevant to
consider as a covariate to parameter σ since there is a decrease in AIC. It is important to report
that the estimates from the Beta model and the LSN model are similar.

In summary, the random intercept helped to improve the adjustment of the model to data.
The QQplot of the randomized quantile residuals was checked to see if the distributions are
adequate to the data. The envelope for the randomized quantile residuals is used to verify if the
residuals are consistent with the fitted model. Considering the QQplot in the Figures 44a and
44c, the residuals show normality. Envelopes from 44b and 44d show that models are well fitted
to the data.



92 Chapter 6. Applications

Table 19 – The AIC, BIC, WAIC, EBIC and EAIC criterion for all models fitted under the classical and
Bayesian approach.

Distribution
Model LG LRG LEG LSN1 LPE Beta

1

EAIC -742.8 -699.7 -777.8 -775.6 -781.9 -802.3
EBIC -693.7 -650.6 728.7 -728.5 -734.8 -753.2
WAIC -746.0 -702.3 -783.0 782.7 -788.1 -807.6
AIC -742.9 -704.7 -781.0 -781.1 -787.1 -807.4
BIC -728.3 -685.1 -757.5 -757.6 -764.4 -787.9

2

EAIC -766.78 -763.2 -762.3 -763.6 -757.1 -772.04
EBIC -717.65 -714.1 -713.1 -714.47 -709.9 -722.9
WAIC -731.1 -715.8 -743.0 744.3 -740.8 -757.4
AIC -734.0 -724.2 -753.7 -753.6 -745.6 -759.9
BIC -625.1 -536.5 -624.6 -624.7 -630.3 -667.25

3

EAIC -815.89 -830.9 -830.3 -828.8 -825.68 -846.44
EBIC -768.75 -783.7 -783.14 -781.65 -780.5 -799.31
WAIC -775.0 -783.8 -802.0 -800.9 -802.3 -823.3
AIC -775.9 -792.4 -813.6 -813.7 -802.9 -826.0
BIC -775.0 -784.6 -801.5 -802.0 -802.3 -823.2

4

EAIC -834.29 -836.0 -840.69 840.0 -823.7 -846.9
EBIC -789.15 -790.9 -795.54 -794.9 -780.5 -801.7
WAIC -791.0 -793.7 -817.3 -816.4 -815.8 823.2
AIC -767.7 -796.4 -829.1 -829.5 -817.9 -826.2
BIC -791.0 -793.4 -817.2 -816.6 -816.2 -823.2

Table 20 – Estimates, standard deviation (SD) and confidence intervals (IC) of the LSN model 4. Estimates,
standard deviation (SD) and high posterior density (HPD) of the fixed of the Beta model 4.

Penalized Likelihood estimates (LSN) Bayesian posterior estimates (Beta)
Parameter Estimate SD 95% IC Estimate SD 95% HPD
β0 -2.04 0.63 (-2.11;-198) -1.89 0.06 (-2.01;-1.78)
Time 0.78 0.08 (0.78;0.80) 0.69 0.08 (0.54;0.86)
MHDI2 0.13 0.02 (0.13;0.14) 0.12 0.01 (0.12;0.14)
Time×MHDI2 -0.06 0.01 (-0.06;-0.06) -0.06 0.01 (-0.08;-0.04)
γ0 -0.62 0.10 (-0.64;-0.62) -3.26 0.14 (-3.89;-3.16)
γ1 -0.04 0.01 (-0.04;-0.04) -0.02 0.01 (-0.05;0.02)
δ0 0.0767 1.53 (-0.08;0.23)
σb 0.34 0.26
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Figure 44 – QQplot and envelope of the randomized quantiles residuals of Model 4 with LSN and Beta
distributions.

(a) QQplot for the randomized quantile residuals of
Model 4 with LSN distribution.

(b) Envelope for the randomized quantile residuals
of Model 4 with LSN distribution.

(c) QQplot for the quantile residuals of Model 4 with
Beta distribution.

(d) Envelope for the quantile residuals of Model with
Beta distribution.
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6.3 Mortality rate from bronchial and lung cancer in Brazil
over time

6.3.1 Description of the data

In Brazil, lung cancer is the second most prevalent form of cancer in men and women
(following non-melanoma skin cancer) and the first worldwide since 1985, both in incidence
and mortality. About 85% of diagnosed cases of lung cancer are associated with smoking
tobacco(INSTITUTE, 2021a).

The mortality rate measures the number of deaths associated with a factor or cause
(disease, violence, epidemic) in a population. The rate is the number of deaths per 100,000
people (the total number of a group can vary between studies). The mathematical expression of
mortality rate is (number of deaths/ size of population)×100000. A mortality rate of 5 in a city
of 1,000,000 inhabitants means 50 deaths in this city.

The dataset of our study comes from the public health records of the Brazilian 27 states
(counting the Federal District as a state) (INSTITUTE, 2021b). Specifically, we have the mortality
rate of bronchial and lung cancer from the 27 Brazilian states over the last 30 years. The aim is to
identify factors that could influence the mortality rate from bronchial and lung cancer over time.

Time can be an important factor. In Brazil, the national public health system was created
in 1988, called the Unified Health System (SUS in Portuguese). Different policies have been
implemented through this system by each government. Considering this fact, we divide our
longitudinal analysis into seven government periods (91-94, 95-98, 99-2002, 2003-2006, 2007-
2010, 2011-2014 and 2015-2018), so j = 1,2 . . . ,7, and the response variable is the average
mortality rate for each period.

In this study, following covariates are consider additionally, sex (male or female) as a
factor and four age groups (the original data came with these groups), between 50 and 59 years:
Age1, between 60 and 69 years: Age2, between 70 and 79 years: Age3, and over 80 years Age4.
The MHDI was also used. The Brazilian MHDI is comprised of the same three dimensions as
the Global HDI – longevity, education, and income –, but goes beyond them; it adapts the global
method to the Brazilian context and the availability of national indicators. More specifically,
one dimension of the MHDI was used, the MHDI Longevity (BRAZIL, 2021c), available at
(BRAZIL, 2021b). The MHDI Longevity is more suited to the problem and is classified as a
factor where between 0.6 and 0.699 denotes Medium MHDI1, between 0.7 and 0.799 denotes
High MHDI2, and between 0.8 and 1 is Very High MHDI3 (BRAZIL, 2021a).

Thus, the dataset of this study corresponds to 27 states, and in each state, there are two
groups based on sex and four age groups for seven times intervals. Table 21 displays the dataset
for interval 7 (2015-2018 period). Additionally, Figure 45 displays the mortality rate of every age
group over time, showing to what extent the time interval is important to explain the mortality
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rate in the different age groups.

Table 21 – Bronchial and Lung cancer mortality rate by sex, age and state, Brazil in interval 7 (2015-2018).

Male Female

50-59 60-69 70-79 80- 50-59 60-69 70-79 80-

Acre 26.73 92.27 179.16 249.83 23.11 96.21 132.65 166.18
Alagoas 17.72 48.53 95.48 176.11 16.00 37.79 56.77 73.24
Amapá 21.35 48.70 136.53 259.70 12.44 27.73 56.16 106.55
Amazonas 19.99 76.42 205.12 274.70 13.09 50.50 91.49 135.09
Bahia 14.65 45.95 87.38 131.55 12.35 30.19 39.08 60.98
Ceará 22.26 71.31 155.74 241.11 21.40 55.45 105.41 123.28
Distrito Federal 15.70 66.11 154.84 273.09 12.22 44.79 80.87 134.54
Espírito Santo 22.29 67.34 157.68 215.35 15.81 38.67 61.22 104.35
Goiás 24.43 77.52 181.26 234.52 19.38 48.63 101.87 140.62
Maranhão 14.94 53.77 123.31 151.03 12.21 34.95 61.22 69.03
Mato Grosso 21.28 66.49 131.70 158.34 20.33 36.70 75.32 86.09
Mato Grosso do Sul 27.50 84.38 170.46 248.03 21.72 44.19 77.95 130.20
Minas Gerais 19.96 64.82 127.76 180.92 15.19 36.40 56.96 88.36
Paraná 26.76 83.48 174.08 219.29 20.64 51.33 94.73 122.22
Paraíba 16.62 57.24 108.06 173.41 18.74 38.50 65.58 118.72
Pará 14.77 53.64 115.64 181.91 11.81 31.41 61.38 88.48
Pernambuco 21.75 65.67 119.45 179.30 17.03 39.43 68.28 111.88
Piauí 16.64 63.82 134.48 225.80 14.65 42.11 68.24 106.69
Rio Grande do Norte 22.24 59.01 136.37 178.07 20.58 48.43 67.66 98.69
Rio Grande do Sul 46.58 145.77 300.05 392.74 34.56 72.53 129.14 134.34
Rio de Janeiro 25.56 82.97 170.36 238.41 22.50 48.91 76.28 90.68
Rondônia 16.30 71.20 125.98 212.13 13.17 30.28 86.39 154.17
Roraima 23.51 110.53 253.66 250.00 15.66 56.30 126.90 100.00
Santa Catarina 37.50 130.49 251.31 309.77 28.62 58.52 96.04 109.26
Sergipe 19.46 58.95 114.23 180.76 21.65 31.63 46.28 92.93
São Paulo 25.25 81.35 167.95 237.07 20.73 49.11 76.19 104.66
Tocantins 15.39 60.19 99.07 208.36 18.96 28.53 81.07 122.28

6.3.2 Descriptive analysis

The response variable y is the mortality rate divided by 500 to fit it into the models. The
mortality rate is an bounded response, then we can divide it to fit into our models. Tables 22
shows a summary of the response variable with mean, standard deviation, minimum, median,
maximum and n representing the number of observations per group. Table 22 reveals that the
average of the male response variable is higher than female response variable, but a growth
pattern exists for both sexes. Figure 45 shows that the response variable is higher among older
groups and also has a higher growth rate among older people.
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Figure 45 – The mortality rate plotted for different age groups over time.

Table 22 – Summary of the descriptive measures separated by sex.

Sex Time Average Standard Deviation Minimum Median Maximum n
Male 1 0.15787 0.15330 0.01066 0.09271 0.70142 108
Male 2 0.17638 0.16446 0.01366 0.10814 0.75180 108
Male 3 0.17211 0.15001 0.01606 0.11952 0.70760 108
Male 4 0.19647 0.15542 0.02188 0.14941 0.70774 108
Male 5 0.20547 0.16443 0.01624 0.16587 0.83776 108
Male 6 0.21829 0.16124 0.01726 0.17755 0.75396 108
Male 7 0.23599 0.17162 0.02930 0.20713 0.78548 108

Female 1 0.05313 0.04278 0.00582 0.03668 0.17434 102
Female 2 0.06821 0.05712 0.00636 0.05098 0.27286 107
emale 3 0.07064 0.05477 0.00968 0.05378 0.26206 108

Female 4 0.08110 0.05540 0.01166 0.06971 0.27300 108
Female 5 0.08849 0.05597 0.01586 0.07703 0.22492 108
Female 6 0.10770 0.07576 0.01790 0.09159 0.48618 108
Female 7 0.12627 0.07938 0.02362 0.11307 0.33236 108

For a graphical display of the response variable’s evolution, Figure 46 presents the state
profile over time. In summary, Figure 46 does not show evidence of growth in the overall response
variable. We note that for some states with medium MHDI, the response variable increases for
older groups, although high MHDI states present stagnation.
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Figure 46 – Individual and mean profiles of the response variable for states with medium, high, and very
high MHDI over time, separated by sex. The red line represents the mean.
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The four box-plots presented in Figure 47 depict the groups concerning the response
variable. The top-left box-plot exhibits the men’s response variable at every level of MHDI,
while the top-right box-plot exhibits the men’s response variable at every age level. The left and
right bottom box-plots display the women’s response variable for every level of MHDI and age,
respectively.

Figure 47 – Box-plots of mortality rate for women, first row, and men, second row, separated by MHDI
and age.

(a) Box-plot of response variable for men in states
with medium, high and very high MHDI.

(b) Box-plot of response variable for men in each age
group.

(c) Box-plot of response variable for women in states
with medium, high and very high MHDI.

(d) Box-plot of response variable for women in each
age group.

6.3.3 Model

For modeling, we consider yi j is the mortality rate divided by 500 of state i, i = 1, . . . ,27
in interval j = 1, ..7. The model proposed is given below:

Yi j ∼ JSB(µi j,σi j,νi j)
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The model’s complexity was built in growing order. The first model is the simplest. It
assumes a random intercept, and covariates only for the location parameter. Model 4 considers
some second-order interactions and the time effect on the dispersion parameter. Model 5 considers
a random slope, improving the flexibility and inferences of the model. The models are:

Model 1:

µ̂i j = β̂0 + β̂1×Timei j + β̂2×Femalei + β̂3×Agei2 + β̂4×Agei3+

β̂5×Agei4 + β̂6×HDIi2 + β̂7×HDIi3 +bi

s2(σ̂i j) = γ̂0 s3(ν̂i j) = δ̂0.

bi ∼ N(0, σ̂b).

Model 2:

µ̂i j = β̂0 + β̂1×Timei j + β̂2×Femalei + β̂3×Agei2 + β̂4×Agei3+

β̂5×Agei4 + β̂6×HDIi2 + β̂7×HDIi3 + β̂8×Femalei×Timei j +bi

s2(σ̂i j) = γ̂0 s3(ν̂i j) = δ̂0.

bi ∼ N(0, σ̂b).

Model 3:

µ̂i j = β̂0 + β̂1×Timei j + β̂2×Femalei + β̂3×Agei2 + β̂4×Agei3+

β̂5×Agei4 + β̂6×HDIi2 + β̂7×HDIi3 +bi

s2(σ̂i j) = γ̂0 + γ̂1×Timei j s3(ν̂i j) = δ̂0.

bi ∼ N(0, σ̂b).

Model 4:

µ̂i j = β̂0 + β̂1×Timei j + β̂2×Femalei + β̂3×Agei2 + β̂4×Agei3 + β̂5×Agei4 + β̂6×HDIi2+

β̂7×HDIi3 + β̂8×Femalei×Timei j + β̂9×Agei2×Timei j + β̂10×Agei3×Timei j+

β̂11×Agei4×Timei j + β̂12×HDIi2×Timei j + β̂13×HDIi3×Timei j +bi

s2(σ̂i j) = γ̂0 + γ̂1×Timei j s3(ν̂i j) = δ̂0.

bi ∼ N(0, σ̂b).
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Model 5:

µ̂i j = β̂0 + β̂1×Timei j + β̂2×Femalei + β̂3×Agei2 + β̂4×Agei3 + β̂5×Agei4 + β̂6×HDIi2+

β̂7×HDIi3 + β̂8×Femalei×Timei j + β̂9×Agei2×Timei j + β̂10×Agei3×Timei j+

β̂11×Agei4×Timei j + β̂12×HDIi2×Timei j + β̂13×HDIi3×Timei j +b1i +b2i×Timei j

s2(σ̂i j) = γ̂0 + γ̂1×Timei j s3(ν̂i j) = δ̂0.

bbbi ∼ N(0, D̂DD).

The estimation of parameters was performed according to the classical approach, maxi-
mization of penalized likelihood with the RS algorithm available in the gamlss package of R.
Note that in the classical approach the dispersion parameter, σ = 1/τ , was taken. Model 5, with
logistic exponential Gaussian distribution, presented problem in the estimation, so we removed
it. Under the Bayesian approach, the NUTS algorithms is employed to simulated values from
our posterior distribution and get the posterior mean estimators. The posterior sample size was
4000 , with 1000 as burn-in. These sample sizes bring R statistics close to one for the chains.
Table 23 shows the following model comparison criteria AIC, BIC, WAIC, EBIC and EAIC for
all fitted models.

Model 5 with the logistic power exponential distribution presented the smallest criterion
value, and in all of our models displayed smaller criteria than Beta.

Table 24 shows the classic and Bayesian estimates. Men’s mortality rate is higher than
women’s. Age is significant, revealing an increase in the rate as age increases. The MHDI values
show that the rate is higher for states with higher MHDI. The interactions considered here are all
significant. Mortality is higher among men. However, interaction between sex and time shows
that growth is higher among women. Mortality is also higher in states with higher longevity
indices, and the interaction shows a decrease between states with MHDI high and very high
compared to states with medium MHDI. For the σ coefficients, the effect of time is negative,
showing that the variance decreases with time.

The matrix of correlation (C) and covariances (DDD) for random effects from the classical
approach:

C =

(
1 −0.92
−0.92 1

)
, DDD =

(
0.64 −0.05
−0.05 0.08

)
, (6.1)

and from the Bayesian approach:

C =

(
1 −0.90
−0.90 1

)
, DDD =

(
0.61 −0.04
−0.04 0.08

)
. (6.2)

There is a negative correlation between the factors, so the states that present the highest
values for the intercepts display the lowest values for the slope. States that have higher mortality
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Table 23 – The AIC, BIC, WAIC and EAIC values of all models fitted according to the classical and
Bayesian approaches.

Distribution
Model LGU LRG LEG LSN LPE Beta

1

EAIC -5733.45 -5833.45 -6029.91 -6006.07 -6101.72 -5460.22
EBIC -5680.25 -5780.28 -5978.74 -5954.90 -6050.55 -5407.06
WAIC -5677.30 -5798.70 -6016.0 -5990.30 -6082.80 -5433.0
AIC -5714.30 -5814.94 -6012.79 -5938.89 -6086.08 -5442.11
BIC -5527.64 -5627.71 -5819.99 -5791.55 -5891.64 -5253.62

2

EAIC -5814.61 -5872.59 -6064.21 -6042.84 -6127.30 -5477.98
EBIC -5761.44 -5819.42 6013.04 -5991.67 -6076.14 -5424.82
WAIC -5758.40 -5838.70 - 6047.7 -6024.30 -6106.70 -5447.70
AIC -5794.56 -5853.71 -6046.36 -6022.66 -6109.55 -5458.81
BIC -5602.34 -5660.18 -5848.28 -5824.93 -5909.86 -5264.97

3

EAIC -5858.24 -5879.77 -6083.84 -6078.71 -6140.95 -5481.75
EBIC -5805.08 -5826.61 -6032.67 -6027.54 -6089.79 -5428.58
WAIC -5800.0 -5841.70 -6063.50 -6052.30 -6118.0 -5447.60
AIC -5836.99 -5858.50 -6065.41 -6040.80 -6122.22 -5461.50
BIC -5639.50 -5661.01 -5862.41 -5838.32 -5917.45 -5262.49

4

EAIC -6013.32 -6333.52 -6448.69 -6448.31 -6496.75 -5737.60
EBIC -5960.15 -6280.35 -6397.52 -6397.15 -6445.58 -5684.12
WAIC -5938.20 -6290.01 -6423.8 -6422.60 -6464.70 -5697.0
AIC -5987.01 -6307.38 -6424.70 -6332.25 -6502.09 -5711.29
BIC -5762.71 -6082.48 -6194.12 -6102.75 -6259.20 -5485.23

5

EAIC 6376.77 -6732.55 -6845.47 -6844.97 -6866.40 -6176.80
EBIC -6323.61 -6679.39 -6794.30 -6793.81 -6835.23 -6123.63
WAIC -6268.30 -6658.50 -6797.30 -6796.80 -6821.90 -6107.80
AIC -6312.48 -6681.20 - -6731.59 -6839.93 -6127.82
BIC -5978.97 -6342.44 - -6388.66 -6479.87 -5780.93

rated mostly decline over time, and those with the lowest rates show a growth trend. The random
effects reveal the essential role of time in the mortality rate, since the influence of time is not
significant in Table 24. Random intercepts and slopes are presented in Table 25. In summary,
the results show a pattern of deaths from bronchial and lung cancer in Brazil whereby states
with high mortality already reached the peak, and the ensuing trend is decline in the death rate.
About the states with a medium MHDI, the direction is a slight increase at a steady rate, and the
effect of interaction between time and MHDI is a negative for high and very high MHDI, and a
positive or 0 value for medium MHDI.

6.3.4 Residual Analysis

We computed the randomized quantile residuals for the selected model and determined
the envelope for them following the method proposed in Section Chapter 4. The computed
randomized quantile residuals for the classical approach were -0.004 as mean, -0.675 as the first
quantile, 0.683 as the third quantile, -3.842 as the minimum and 3.001 as the maximum. The
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Table 24 – Classical and Bayesian estimates, standard deviation (SD), p-value and the high posterior
density (HPD) of the model 5 with logistic power exponential distribution.

Penalized Likelihood Estimation NUTS
Parameter Estimate SD p-value Estimate SD 95% HPD
Intercept -2.46 0.06 0 -2.53 0.25 (-8.42; -7.49)

Female -1.24 0.03 0 -1.22 0.04 (-1.17; -1.06)
Time 0.02 0.01 0.15 0.03 0.03 (-0.04; 0.08)
Age2 0.82 0.04 0 0.81 0.05 (0.68; 0.84)
Age3 1.21 0.04 0 1.25 0.06 (1.09; 1.26)
Age4 1.30 0.04 0 1.29 0.06 (1.12; 1.30)

MHDI2 0.95 0.03 0 0.99 0.31 (0.36; 1.46)
MHDI3 1.72 0.06 0 1.78 0.57 (0.60; 2.58)

Female × Time 0.08 0.01 0 0.08 0.01 (0.07; 0.09)
Time × Age2 0.04 0.01 0 0.04 0.01 (0.02; 0.05)
Time × Age3 0.10 0.01 0 0.10 0.01 (0.06; 0.09)
Time × Age4 0.16 0.01 0 0.15 0.01 (0.10; 0.14)

Time ×MHDI2 -0.11 0.01 0 -0.12 0.04 (-0.18; -0.05)
Time ×MHDI3 -0.19 0.01 0 -0.20 0.07 (-0.31; -0.05)

γ0 -0.87 0.06 0 0.88 0.06 (0.98; 1.20)
γ1 -0.06 0.01 0 0.06 0.01 (0.05; 0.10)
δ0 -0.011 0.04 0.80 0.08 0.05 (0.05; 0.26)

computed randomized quantile residuals for the Bayesian model were -0.040 as average, -0.636
as the first quantile, 0.696 as the third quantile, -3.19 as the minimum, and 4.34 as the maximum.

After that, the QQplot of the randomized quantile residuals was checked. The QQplot
can verify normality from the residuals and consequently check if the distribution is adequate for
the data. Considering the QQplots in Figures 48a and 48b, the residuals show normal distribution,
as expected.

Additionally, the envelope of the residuals was displayed. The envelope is often used to
decide if the observed residuals are consistent with the fitted model. The envelopes from Figures
48c and 48d show that the model is well fitted to the data. The QQplot and envelope of model 5
with Beta distribution for the classical approach are displayed. Figures 49a and 49 show that the
distribution is not adequate for the data. The gamlss package offers another tool to residuals
diagnostic. The single worm plot suggested by the package is equivalent to the normal QQplot,
detrended by subtracting the line (intercept 0 and slope 1) (STASINOPOULOS et al., 2017).
Figure 50 display the worm plot for model 5 with the LPE distribution.

The horizontal dotted line of the worm plot represents the expected values of the ordered
residuals. The residuals are represented in the figure by the points. The two elliptic curves in the
figure are the 95% confidence intervals. The worm plot in Figure 50 shows that the points are
closer to the horizontal line and are outside of the two elliptic curves. The conclusions are that
the residual’s distribution is close to a standard normal distribution, and the specification of the
model is correct.
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Table 25 – Posterior summaries for model 5 with logistic power exponential of randoms effects (Mean:
mean, SD: standard deviation, lower CI: lower value of 95% credibility interval, upper CI:
upper value of 95% credibility interval).

Random Intercept Random Slope

States Mean SD lower CI upper CI Mean SD lower CI upper CI
Ceará -1.046 0.187 -1.425 -0.697 0.172 0.027 0.122 0.228
Rio Grande do Norte -0.905 0.195 -1.259 -0.483 0.109 0.028 0.057 0.166
Maranhão -0.824 0.263 -1.347 -0.335 0.087 0.036 0.017 0.159
Paraíba -0.816 0.263 -1.319 -0.29 0.111 0.036 0.038 0.177
Acre -0.652 0.209 -1.035 -0.224 0.129 0.031 0.068 0.191
Pernambuco -0.536 0.185 -0.905 -0.178 0.058 0.025 0.007 0.105
Piauí -0.482 0.259 -0.991 0.023 0.085 0.035 0.016 0.155
Pará -0.416 0.188 -0.775 -0.045 0.002 0.027 -0.052 0.052
Tocantins -0.267 0.283 -0.811 0.293 0.042 0.041 -0.031 0.129
Alagoas -0.142 0.263 -0.687 0.369 -0.019 0.036 -0.091 0.052
Rondônia -0.13 0.196 -0.503 0.259 0.01 0.029 -0.046 0.064
Santa Catarina -0.074 0.509 -1.081 0.857 0.041 0.064 -0.086 0.161
Roraima -0.033 0.214 -0.425 0.404 0.021 0.034 -0.042 0.092
Minas Gerais 0.004 0.19 -0.35 0.394 -0.039 0.028 -0.094 0.013
Bahia 0.014 0.254 -0.455 0.542 -0.066 0.034 -0.132 0.002
Distrito Federal 0.061 0.51 -0.92 1.091 -0.039 0.064 -0.165 0.089
Mato Grosso 0.075 0.194 -0.282 0.476 -0.023 0.027 -0.075 0.033
Goiás 0.206 0.188 -0.158 0.571 -0.006 0.027 -0.059 0.046
Espírito Santo 0.269 0.186 -0.08 0.642 -0.045 0.026 -0.092 0.007
Mato Grosso do Sul 0.302 0.19 -0.067 0.682 -0.023 0.027 -0.076 0.028
Amazonas 0.303 0.198 -0.077 0.696 -0.017 0.03 -0.075 0.038
Sergipe 0.388 0.256 -0.073 0.923 -0.062 0.035 -0.133 0.003
Amapá 0.455 0.197 0.071 0.856 -0.102 0.03 -0.163 -0.048
Sâo Paulo 0.616 0.203 0.231 1.014 -0.078 0.03 -0.136 -0.022
Paraná 0.648 0.184 0.303 1.021 -0.066 0.026 -0.117 -0.018
Rio de Janeiro 0.785 0.202 0.39 1.188 -0.094 0.029 -0.152 -0.037
Rio Grande do Sul 2.186 0.276 1.646 2.732 -0.188 0.04 -0.264 -0.109

Figure 50 – Worm plot of the model 5 with logistic power exponential distribution.
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Figure 48 – QQplot and envelope of the randomized quantile residuals of model 5 with logistic power
exponential distribution for classical and Bayesian approach.

(a) QQplot of the randomized quantile residuals of
model 5 from the classical approach.

(b) QQplot of the randomized quantile residuals of
model 5 from the Bayesian approach.

(c) Envelope of the randomized quantile residuals of
model 5 from the classical approach.

(d) Envelope of the randomized quantile residuals of
model 5 from the Bayesian approach.

6.3.5 Posterior predictive distribution

In Bayesian analysis, after the data y have been observed, we can predict an unknown
observable variable, ỹ. The distribution of ỹ is called the posterior predictive distribution. In prac-
tice, we are most often interested in simulating draws from the posterior predictive distributions.
Since we have a sample from the posterior distribution, it is typically drawn from the predictive
distribution of unobserved or future data ỹ (GELMAN et al., 2013). The application does not
have future or unobserved data, so the posterior predictive distribution was evaluated for the
observed data. For predictive purposes, this method can be uninformative about the model’s
accuracy since it predicts the data used for the fitting. However, for the model checking, it can be
useful.

For each draw s, with s = 1, . . . ,3000 of the posterior distributions of the parameters (Θ,
bbb, DDD) it was draw one value yrep from the logistic power exponential. The resulting vectors of
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Figure 49 – QQplot and envelope of the randomized quantiles residuals of model 5 with Beta distribution
for classical approach.

(a) QQplot of the randomized quantile residuals of
model 5.

(b) Envelope of the randomized quantile residuals of
model 5.

yyyrep with size 3000 characterized the posterior predictive distribution. To obtain a point estimate
of the observed data, we can take the average of each vector yyyrep.

The Figure 51 present the averages of some vectors yrep and the HPD intervals computed
by the package coda. The predict values were separated by states for better visualization. The
conclusion from Figure 51 is that the HPD intervals cover all real values, and the estimates are
similar to the real values.
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Figure 51 – Predict values with HPD intervals in black and real values in blue separately by state, sex and
age.

(a) Predict values with HPD intervals in black and
real values in blue for state of São Paulo sepa-
rately sex and age.

(b) Predict values with HPD interval in black and real
values in blue for state of Paraíba separately sex
and age.

(c) Predict values with HPD interval in black and real
values in blue for state of Maranhão separately
sex and age.

(d) Predict values with HPD interval in black and
real values in blue for state of Espirito Santo sep-
arately sex and age.

(e) Predict values with HPD interval in black and real
values in blue for state of Bahia separately sex
and age.

(f) Predict values with HPD interval in black and real
values in blue for state of Amazonas separately
sex and age.
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CHAPTER

7
FINAL REMARKS

7.1 Final remarks

The JSB class of distributions introduced previously by (RODRIGUES; BAZáN; SUZUKI,
2019) is a class of bounded continuous distributions built through the convolution from a base-
line cumulative density function with support on the real line and the quantiles having of the
standard logistic distribution. In this paper, the focus is distributions of the JSB class. The central
motivation for the new distributions studied here is a new mixed regression model based on JSB
distributions, which has not been proposed in the previous literature, so it is a new alternative for
the mixed regression models using the Beta distribution.

In the classical approach, the RS algorithm, introduced by Rigby and Stasinopoulos
(2005) for the estimation of the GAMLSS class of model, was employed for maximization of
the penalized likelihood. In the Bayesian approach, the NUTS algorithm developed by Hoffman
and Gelman (2014), which can be considered an extension of the HMC, was adopted to simulate
samples from the posterior.

Two simulations have been regarded in this work. The first revealed the behavior of
the distributions presented in this work concerning samples with outliers. The first simulation
concluded that some distributions from JSB class had better performance for samples with outliers
than the Beta model. The second simulation was an extension of JSB class to support zero-and-
one-inflated data (OSPINA; FERRARI, 2012). The simulation showed that JSB distribution
could be a useful alternative to fit such inflated data.

Three applications were presented. Application 1 contemplate social data, where the
proportion of individuals vulnerably to poverty in the municipalities of the state of São Paulo,
Brazil, from 2010 is studied. This application was realized without covariates to regard the
fitting of the JSB distribution in a real dataset. Application 2 studies a dataset that contains
the proportion of votes obtained by a political party in the Brazilian presidential elections. The
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proportion of votes is modeled in the function of time and HDI. We adopt mixed regression
models proposed in this work and the Beta mixed model. We detect that the Beta model seems to
fit better than the distributions from JSB class. In the last application, a real dataset involves the
mortality rate from bronchial and lung cancer in Brazilian states for the last 30 years. The effects
considered in this study were sex, age, and state MHDI. The JSB mixed regression models
presented here displayed lower model comparison criteria values than the Beta mixed model.
The models presented here can be alternatives to the Beta model. As pointed by (CANCHO;
BAZÁN; DEY, 2020), the results of this kind of study have exploratory characteristics and
should be updated as new data become available. This screening can play a relevant role in new
studies of the aspects of interest and support clinical studies to identify predictive biomarkers in
cancer research (PEREZ-GRACIA et al., 2017).

An important thing to signalize is the parametric space of the parameters is the same
as baseline distributions. However, it is possible to change to the (0,1) scale as presented
by Lemonte and Bazán (2016) and Bayes, Bazán and Castro (2017). A paper was submitted
considering the new results obtained from this work. The paper contains the classical approach,
the results from the simulation, and the third application.

7.2 Suggestions and Future work
As future proposals, to extend the models described here to the case of zero-and-one

inflated data is a future work as presented in Hossain et al. (2016). This extension is important
since many real data sets in the (0,1) interval can contain exact values 0 and 1. The residual
analysis using the randomized quantiles residuals is crucial for the fitting of the model. With
this analysis, we can check the distribution adequacy. The models can also support spatial data.
An extension to a spatial model would allow fit spatial data that contains a bounded response
variable. The use of alternative Bayesian estimation procedures is an important factor. Alternative
procedures would allow the reduction of the fitting process or even better estimates.

The next steps are to advance in another paper with results from Chapter 2, extending
the properties and definitions from JSB class. Develop an R package that contains all models
presented here with both classical and Bayesian approaches. An R package is relevant since the
package is an auxiliary tool that helps the fitting of these models.
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APPENDIX

A
TABLES OF RESULTS OF THE SIMULATION

STUDY IN THE CHAPTER 5.

Table 26 – Percentage of cases that each distribution displayed a lower value for AIC and BIC for different
scenarios with contaminated samples from a Beta distribution with µ = 0.5. 1000 replications
of each scenario.

AIC BIC
φ % of outiler n Beta LGU LRG LEG LSN1 LPE Beta LGU LRG LEG LSN1 LPE

10

2
75 5.1 0 24.6 45.2 0 25.1 16.4 0 47.7 15.6 0 20.3

150 4.5 0 2.9 75.3 0 20.8 10.4 0 13.9 57.9 0 17.8
200 0.9 0 1.4 81.4 0 16.3 4.5 0 7 73.3 0 15.2

5
75 0.1 0 28.3 49.6 0 21.7 1.5 0 64.6 14 0 19.9

150 0 0 4.5 80.4 0 15.1 0.1 0 30.1 54.7 0 15.1
200 0 0 2.2 85.9 0 11.9 0 0 14.4 73.7 0 11.9

10
75 0 0 11.1 78.9 0 10 0 0 52.3 38 0 9.7

150 0 0 1 93.6 0 5.4 0 0 15.6 79 0 5.4
200 0 0 0.1 97.6 0 2.3 0 0 5.6 92.1 0 2.3

20

2
75 0 0 24.5 50.8 0 24.7 0 0 36.6 0.8 0 62.6

150 0 0 3.3 80.3 0 16.4 0 0 19.9 18.4 0 61.7
200 0 0 1.6 84.7 0 13.7 0 0 9.4 38.7 0 51.9

5
75 0 0 6 69.4 0 24.6 0 0 38.9 37.3 0 23.8

150 0 0 0.2 84.2 0 15.6 0 0 8.9 75.5 0 15.6
200 0 0 0 84 0 16 0 0 0.8 57.2 0 42

10
75 0 0 0 83.1 0 16.9 0 0 2.0 81.1 0 16.9

150 0 0 0 89.8 0 10.2 0 0 0 89.8 0 10.2
200 0 0 0 92.9 0 7.1 0 0 0 92.9 0 7.1
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Table 27 – Percentage of cases that each distribution displayed a lower value for AIC and BIC for different
scenarios with contaminated samples from a Beta distribution with µ = 0.8. 1000 replications
of each scenario.

AIC BIC
φ % of outiler n Beta LGU LRG LEG LSN1 LPE Beta LGU LRG LEG LSN1 LPE

10

2
75 57.5 0.2 26.5 2.1 0 13.7 67.4 0.3 27.8 0.2 0 4.3

150 69.1 0 15.8 8.4 0 6.7 79.7 0 17.5 0.2 0 2.6
200 71.5 0 13.3 12.0 0 3.3 83.2 0 15.5 0.3 0 1.0

5
75 53.1 0.2 32.4 3.4 0 10.9 61.2 0.2 34.0 0.1 0 4.5

150 64.1 0 22.3 10.1 0 3.5 73.7 0 24.9 0.5 0 0.9
200 67.1 0 15.1 15.6 0 2.2 79.3 0 18.6 1.0 0 1.1

10
75 51.3 0 35.5 3.1 0 10.1 57.4 0 38.0 0.1 0 4.5

150 61.0 0 26.1 10.2 0 2.7 68.9 0 29.7 0.3 0 1.1
200 62.2 0 22.9 13.3 0 1.6 72.1 0 26.9 0.5 0 0.5

20

2
75 44.7 0.1 31.7 13.3 0 10.2 10.0 0 33.5 0.2 0 56.3

150 46.0 0 15.1 34.0 0 4.9 27.9 0 27.3 3.0 0 41.8
200 47.2 0 9.2 41.5 0 2.1 41.5 0 18.5 7.8 0 32.2

5
75 32.7 0 42.4 18.5 0 6.4 39.6 0 55.7 1.8 0 2.9

150 24.4 0 29.5 44.8 0 1.3 37.9 0 49.5 12.0 0 0.6
200 15.3 0 21.6 62.6 0 0.5 24.7 0 45.6 17.3 0 12.4

10
75 13.8 0 57.2 26.0 0 3.0 18.0 0 75.3 5.8 0 0.9

150 8.3 0 41.5 50.0 0 0.2 14.4 0 71.7 13.7 0 0.2
200 5.9 0 33.4 60.6 0 0.1 11.3 0 68.6 20.0 0 0.1

Table 28 – Average of AIC and BIC for different scenarios with contaminated samples from a Beta
distribution with µ = 0.5. 1000 replications of each scenario.

% of AIC BIC
φ outiler n Beta LGU LRG LEG LSN1 LPE Beta LGU LRG LEG LSN1 LPE

10

2
75 -53.20 -9.40 -50.39 -53.26 -44.65 -51.86 -57.83 -14.03 -55.03 -60.22 -51.61 -58.81

150 -106.44 2.27 -105.79 -116.64 -92.30 -112.44 -100.42 8.29 -99.77 -107.61 -83.27 -103.41
200 -142.81 72.60 -141.51 -156.86 -123.99 -151.08 -136.22 79.19 -134.91 -146.97 -114.09 -141.18

5
75 -35.43 22.37 -43.07 -42.97 -22.28 -39.59 -40.07 17.73 -47.71 -49.93 -29.24 -46.55

150 -75.53 49.49 -92.52 -98.70 -53.85 -90.82 -69.51 55.51 -86.50 -89.67 -44.82 -81.79
200 -98.03 81.34 -122.17 -130.86 -68.59 -119.63 -91.43 87.94 -115.58 -120.96 -58.69 -109.74

10
75 -17.40 40.88 -32.44 -32.16 -1.26 -25.15 -22.03 36.24 -37.07 -39.12 -8.21 -32.10

150 -43.95 76.69 -73.30 -79.20 -17.63 -63.91 -37.92 82.71 -67.28 -70.17 -8.60 -54.88
200 -60.02 103.48 -98.70 -107.04 -25.41 -86.63 -53.42 110.08 -92.11 -97.14 -15.52 -76.74

20

2
75 -85.97 -14.39 -93.90 -95.12 -73.24 -92.53 -90.61 -19.03 -98.54 -102.07 -80.19 -99.48

150 -163.95 -1.03 -189.52 -197.23 -140.07 -190.98 -157.93 4.99 -183.50 -188.20 -131.03 -181.95
200 -220.16 158.97 -253.44 -264.60 -188.57 -256.05 -213.56 165.57 -246.84 -254.71 -178.67 -246.15

5
75 -55.22 23.86 -79.17 -79.26 -36.72 -75.85 -59.86 19.23 -83.80 -86.21 -43.67 -82.80

150 -111.77 54.73 -162.39 -169.51 -78.87 -161.56 -105.75 60.75 -156.37 -160.48 -69.84 -152.53
200 -144.42 106.15 -213.44 -224.00 -100.68 -212.69 -137.82 112.75 -206.84 -214.10 -90.78 -202.80

10
75 -27.10 45.40 -57.27 -61.81 -5.89 -55.86 -31.74 40.77 -61.90 -68.76 -12.85 -62.82

150 -62.56 84.35 -121.62 -137.38 -26.52 -123.51 -56.54 90.38 -115.60 -128.35 -17.48 -114.47
200 -84.84 124.85 -163.36 -184.59 -36.79 -165.95 -78.24 131.45 -156.76 -174.69 -26.89 -156.05
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Table 29 – Average of AIC and BIC for different scenarios with contaminated samples from a Beta
distribution with µ = 0.8. 1000 replications of each scenario.

% of AIC BIC
φ outiler n Beta LGU LRG LEG LSN1 LPE Beta LGU LRG LEG LSN1 LPE

10

2
75 -112.55 -84.31 -109.93 -109.16 -104.40 -106.65 -117.19 -88.94 -114.56 -116.11 -111.35 -113.60

150 -236.06 -172.43 -230.75 -234.78 -225.40 -228.68 -230.03 -166.40 -224.73 -225.75 -216.37 -219.65
200 -315.46 -225.39 -308.34 -314.24 -301.08 -305.45 -308.86 -218.79 -301.74 -304.35 -291.18 -295.55

5
75 -112.23 -80.13 -110.30 -108.98 -102.78 -105.65 -116.86 -84.76 -114.94 -115.93 -109.73 -112.60

150 -235.59 -164.36 -231.68 -234.52 -222.54 -226.77 -229.57 -158.34 -225.66 -225.49 -213.51 -217.74
200 -315.30 -205.73 -310.08 -314.33 -297.55 -303.27 -308.71 -199.14 -303.48 -304.43 -287.66 -293.37

10
75 -112.94 -77.18 -111.85 -109.78 -102.04 -105.40 -117.58 -81.81 -116.49 -116.73 -108.99 -112.35

150 -237.67 -159.69 -235.30 -236.67 -222.06 -226.89 -231.65 -153.67 -229.28 -227.64 -213.03 -217.86
200 -318.34 -205.83 -315.21 -317.53 -296.64 -303.54 -311.74 -199.23 -308.62 -307.63 -286.75 -293.64

20

2
75 -149.63 -119.52 -146.67 -146.77 -141.40 -144.65 -154.27 -124.15 -151.31 -153.72 -148.35 -151.60

150 -306.73 -225.75 -302.18 -307.52 -293.34 -300.90 -300.71 -219.73 -296.15 -298.49 -284.31 -291.87
200 -409.47 -240.53 -403.43 -410.98 -391.87 -401.70 -402.88 -233.94 -396.83 -401.09 -381.97 -391.81

5
75 -143.36 -99.26 -143.50 -142.12 -130.79 -137.71 -148.00 -103.89 -148.14 -149.08 -137.74 -144.66

150 -295.38 -190.96 -296.45 -299.11 -274.49 -288.16 -289.36 -184.94 -290.43 -290.08 -265.46 -279.13
200 -392.99 -185.19 -394.96 -398.78 -363.99 -383.36 -386.39 -178.59 -388.36 -388.88 -354.09 -373.46

10
75 -135.44 -80.26 -138.75 -136.39 -118.15 -128.74 -140.08 -84.89 -143.38 -143.34 -125.10 -135.70

150 -281.34 -159.67 -288.03 -288.94 -252.00 -271.75 -275.32 -153.65 -282.00 -279.90 -242.96 -262.72
200 -375.70 -159.36 -384.63 -386.42 -335.62 -363.29 -369.10 -152.76 -378.04 -376.52 -325.73 -353.39
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APPENDIX

B
R CODE FOR FIT THE MIXED REGRESSION

MODEL CONSIDERING JSB
DISTRIBUTIONS

GAMLSS CODE

library(gamlss)

y = read.csv("MortalityData.csv",header = T,sep = ",",dec = ".")
head(y)
y = y[,-1]
y = na.exclude(y, na.action = "exclude", fill = NULL)
y$y = y$y/500
hist(y$y)

#Fiting the model
gen.Family(family = "PE",type = "logit")

m1PE<-gamlss(y~Sex*Time + Age*Time + Time +
Longevity*Time +re(random=~Time|id), sigma.formula = ~
Time,data=y,
family=logitPE, trace=TRUE,method =RS(80))

summary(m1PE)
getSmo(m1PE)
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AIC(m1PE)
BIC(m1PE)

#Getting the quantile residuals
qqnorm(residuals(m1PE),xlim=c(-4,4), ylim = c(-4,5),cex.axis = 2.7,main = "",
cex.lab = 2.7,cex = 2.5)
qqline(residuals(m1PE), lwd = 5)

#Envelope
rq = residuals(m1PE)
B <- 19
n = length(y$y)
e <- matrix(0,n,B)
tr = fitted.values(m1PE)
sr = m1PE$sigma.fv
vr = m1PE$nu.fv
head(y)
for (i in 1:B){

set.seed(123*i)
Sim_Y <- rlogitPE(n,tr,sr,vr)
X = data.frame(cbind(Sim_Y,y))
head(X)
attach(X)
m1PE<-gamlss(Sim_Y~Sex*Time + Age*Time + Time +
Longevity*Time +re(random=~Time|id),
sigma.formula = ~ Time,data=X,family=logitPE, trace=TRUE, method = RS(80))
e[,i] <- sort(residuals(m1PE))

}

e
e1 <- numeric(n)
e2 <- numeric(n)

for (i in 1:n)
{

eo <- sort(e[i,])
e1[i] <- quantile(eo,0.025)
e2[i] <- quantile(eo,0.975)
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}

med <- apply(e,1,median)
td <- rq
faixa <- range(td,e1,e2)

e1g3 <- e1
e2g3 <- e2
tdg3 <- td
par(mar = c(5, 5, 1, 1)) # Set the margin on all sides to 6
qqnorm(td, xlab="Theoretical quantiles", ylab="Quantile residuals",
ylim=faixa, xlim=c(-3,3), pch=16,
cex.axis = 2.7,main = "",cex.lab = 2.7,
cex = 2.5)
par(new=TRUE)
#
qqnorm(e1,axes=F,xlab="",ylab="",type="l",ylim=faixa
, xlim=c(-3,3),lty=1, lwd = 4,main="")
par(new=TRUE)
qqnorm(e2,axes=F,xlab="",ylab="", type="l",ylim=faixa, xlim=c(-3,3),
lty=1, lwd = 4, main="")
par(new=TRUE)
qqnorm(med,axes=F,xlab="",ylab="", type="l",ylim=faixa, xlim=c(-3,3),
lty=1, lwd = 4,main="")

RSTAN CODE

model <- "
functions{
real logisticpowerexponential_lpdf(real y, real mu, real tau, real nu){
return (log(nu) - pow((sqrt(pow((logit(y) - mu)*tau/sqrt(tgamma(1/nu)/
(tgamma(3/nu))),2))),nu) -log(tgamma(1/nu)/(tgamma(3/nu)))/2 + log(tau)
- lgamma(1/nu) - log(y*(1-y)));

}
}
data {
int<lower=0> n; //the number of observations
int<lower=1> m; //number of subjects
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int p; //the number of columns in the model matrix X
int q;
int J; //the number of columns in the block matrix Z
int<lower=1, upper=m> subj[n]; //subject id
real<lower = 0,upper = 1> y[n]; //the response
matrix[n,p] X; //the model matrix
matrix[n, q] W;
matrix[n,J] Z; //the matrix of ramdom effect
}

parameters{
vector[p] beta; //the regression parameters
vector[q] gamma;
vector[1] delta;
vector<lower=0>[J] sigma_b; //subj sd
cholesky_factor_corr[J] L_b;
matrix[J,m] Z_b;
}
transformed parameters {
matrix[J,m] b;
vector[n] mu;
vector[n] sigma;
vector[1] nu;
sigma = exp(W*gamma);
nu = exp(delta);
b=diag_pre_multiply(sigma_b, L_b) * Z_b; //subj random effect
for(i in 1:n){
mu[i] <- (X[i,]*beta + Z[i,]*b[,subj[i]]);
}
}
model{
L_b ~ lkj_corr_cholesky(2.0);
to_vector(Z_b) ~ normal(0,1);
to_vector(beta) ~ normal(0,100);
to_vector(gamma) ~ normal(0,100);
to_vector(delta) ~ normal(0,100);
for(i in 1:n){
target += logisticpowerexponential_lpdf(y[i]| mu[i], sigma[i], nu[1]);
}
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}
generated quantities {
vector[n] log_lik;
for(i in 1:n){
log_lik[i] = logisticpowerexponential_lpdf(y[i]| mu[i], sigma[i], nu[1]);
}
}
"
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