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ABSTRACT

GONZATTO JUNIOR, O. A. Frailty model for multiple repairable systems hierarchi-
cally represented in serial/parallel structures under assumption of ARAm imperfect
repairs. 2021. 173 p. Tese (Doutorado em Estatística – Programa Interinstitucional de Pós-
Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2021.

The main objective of this thesis is to extend the methodology used to treat failure time data. In
particular, we wish to propose an appropriate modeling to a context of hierarchically represented
repairable systems, subject to competitive risks and unobserved heterogeneity. To do that, we
took one of the necessary steps, we propose modeling for a single repairable system with a
hierarchical structure under the assumption that the failures follow a non-homogeneous Poisson
process with a power-law intensity function under the frequentist and bayesian framework.
In this context we used a corrective approach to remove bias with order O(n−1), and the
respective exact confidence intervals are proposed. We illustrate the use of both methods with
an early-stage real project related to the traction system of an in-pipe robot. In the sequence,
we introduced a framework to the reliability estimation in systems with serial structure and
failure modes structured in a parallel way, we continued the studies of the robotic unit previously
analyzed. Finally, we propose a statistical model to the reliability estimation of groups of
repairable systems hierarchically represented, under a competing risks framework, with the
consideration of the existence of unobserved heterogeneity that acts individually on the systems
of each group, and also the possibility of imperfect repairs. To illustrate, we consider a database
with the failures of agricultural machines categorized in different groups.

Keywords: Bias correction. Competing risks. Hierarchical systems. Maximum likelihood esti-
mation. Power-law process..





RESUMO

GONZATTO JUNIOR, O. A. Modelo de fragilidade para múltiplos sistemas repa-
ráveis hierarquicamente representados em estruturas série/paralelas sob a supo-
sição de reparos imperfeitos ARAm. 2021. 173 p. Tese (Doutorado em Estatís-
tica – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ciên-
cias Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

O principal objetivo desta tese é estender a metodologia utilizada para tratar dados de tempo de
falha. Particularmente, buscamos propor uma modelagem apropriada a um contexto de sistemas
reparáveis representados hierarquicamente, sujeitos a riscos competitivos e heterogeneidade
não observada. Para isso, demos um passo necessário propondo a modelagem de um único
sistema reparável com uma estrutura hierárquica, pressupondo que as falhas seguem um
processo de Poisson não-homogêneo com uma função de intensidade lei de potência sob
um panorama frequentista e bayesiano. Nesse contexto, nós utilizamos uma abordagem
corretiva para remover o viés de ordem O(n−1), e os respectivos intervalos de confiança exatos
também foram propostos. Nós ilustramos o uso de ambos os métodos em dados vindos de um
projeto real em estágio inicial relacionados ao sistema de tração de uma unidade robótica. Na
sequência, introduzimos um panorama para a estimação da confiabilidade em sistemas seriados
com modos de falha estruturados de forma paralela, nós demos continuidade aos estudos da
unidade robótica previamente analisada. Por fim, nós propusemos um modelo estatístico para
a estimação da confiabilidade de grupos de sistemas reparáveis hierarquicamente representados,
sob a suposição de riscos competitivos e a consideração da existência de heterogeneidade
não observada que atua individualmente nos sistemas dentro de cada grupo, e também a
possibilidade de reparos imperfeitos. Para ilustrar, consideramos um conjunto de dados com o
registro de falhas de máquinas agrícolas categorizadas em diferentes grupos.

Palavras-chave: Correção de Viés. Riscos Competitivos. Sistemas Hierárquicos. Estimação de
Máxima Verossimilhança. Processo Lei de Potência..
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CHAPTER

1
INTRODUCTION

The presence of repeated recurrences of an event of interest often arises in areas such
as manufacturing, software development, medical applications, social sciences, and risk analysis,
among others. Jiang and Liu (2017) exemplifies by saying that, in reliability engineering, when
a complex system such as supercomputers, airplanes or cars is included in a study, several
unexpected failures may be exposed by different defects or weaknesses in the products’ design,
manufacturing, operation, maintenance, and management. Models with this feature, as those
exposed by Crowder (2001), are traditionally referred to as competing risks, or equivalently,
a system with p components connected in series. A single component failure results in total
system failure.

Recently, the availability evaluation of repairable systems with multiple failure modes
is at the center of attention due to the broad application in engineering. According to the
competing risks framework, a series system fails by the earliest occurrence of failure modes.
Therefore, in this thesis, we utilized a model for components, whose failures happen due to one
of the series competing failure mechanisms, whereby each of them acts related to the system
independently.

A system can be broken down into several sub-systems, and sub-sub-systems compose
the sub-systems in a hierarchical form until the elements cannot or are not worthy of being
divided. The system’s hierarchies can help engineers to better understand the relationships
between components and their importance and functions. According to Lieping and Zhe (2009),
they can further help engineers to determine the role and acceptable damaging degree of each
part of the structure and their influences on the whole system under various external forces
and effects.

Thus, structuring a problem according to a hierarchy can help to increase accuracy and
facilitate useful analysis of failure factors. Note that the event of interest at the system level is
expected to happen at its earliest occurrence. Therefore, a system can be anticipated to follow
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a competing risks model. As an example given by Liu, Song and Zhang (2018), mechanical
devices (e.g., gear pair and crank train) are always under multiple failure modes (including
fracture, corrosion and wear), which compete with each other so that when one kind of failure
happens, the device is invalid and other failure modes have no chance to occur anymore.

The components under consideration are repaired upon failure but are also preventively
maintained. Thus, the excellent books by Crowder (2001) and Pintilie (2006), among others,
motivate the need for accounting for competing risks in reliability and survival applications
using several examples in industrial statistics and health sciences. More recently, Langseth and
Lindqvist (2006) recorded cumulative service times of a component spanning over 1,600 time
units, then marking each failure with its specific causing mode. In this case, the causes were
categorized into two broad groups, each with several specified sub-causes. Tuli et al. (2000)
analyzed repeated shunt failures in infants diagnosed with hydrocephalus, where the failures
are known to occur due to a variety of causes.

The focus in this thesis is placed on failure data from repairable systems. Thus, solid
modeling and analysis of this data provide equipment operators for better maintenance activities.
In the repairable system literature, it is often assumed that failures occur following a Non-
Homogeneous Poisson process (NHPP) with power-law intensity. The resulting process is usually
referred to as the Power-Law Process (PLP). Proposed by Crow (1974), the PLP is convenient
because it is easy to implement, flexible, and the parameters have valuable interpretation, as
exemplified by Rigdon and Basu (1989) and Reis, Colosimo and Gilardoni (2019).

In the literature, the PLP has been widely used in modeling software reliability as in
the work of Kyparisis and Singpurwalla (1985), reliability growth in the study of Crow (1982),
repairable systems in Ascher and Feingold (1984), Engelhardt and Bain (1986), Rigdon and
Basu (1989), and others. This assumption, however, implies the hypothesis of a Minimal Repair
(MR) model (RAUSAND, 2003), which may not be the most realistic choice, in this sense, a
class of Imperfect Repair (IR) models brings the possibility of considering a intermediate level
of repair, somewhere between MR and Perfect Repair (PR). This idea is well exposed in works
such as those of (KIJIMA; MORIMURA; SUZUKI, 1988; DOYEN; GAUDOIN, 2004; TOLEDO
et al., 2015).

Doyen and Gaudoin (2004) were responsible for proposing two of the main models
for IR, the Arithmetic Reduction of Age (ARA) and Arithmetic Reduction of Intensity (ARI)
model classes, whose repair efficiency is quantified by one of the model parameters. In addition,
a constant characterizes the models in terms of the used memory order, which refers to the
maximum number of previous information involved in the model’s calculations.

Another common assumption is the absence of any unobserved heterogeneity among
the causes that compete for the failure of the general system. An immediate consequence of
this assumption is the disregard of effects that, although not observed, can have effects on the
behavior of failure times (WIENKE, 2010). The literature that adequately addresses this issue
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is related to frailty models. A review of these models can be found at (HOUGAARD, 1995;
ANDERSEN et al., 1996; WIENKE, 2010). From the perspective of multiplicative frailty, we
introduce a multiplicative factor (a random variable) that inflates, deflates or preserves the
failure intensity function.

The text here exposed has as its main objective to propose a hierarchical model for a
repairable system subject to several failure modes (competing risks). Under MR, it is assumed
that each failure mode has a power-law intensity. Hence, we develop a new PLP model with a
MR under competing risks, which generalizes the model presented in Somboonsavatdee and Sen
(2015). Furthermore, we discuss the inferential procedure for the parameters of the proposed
model using the Maximum Likelihood Estimator (MLE), as well as the asymptotic confidence
intervals based on the MLEs. Since the sample size is usually small, due to the problem of
rare yet adverse failures in industrial scenarios (e.g., in aerospace, nuclear and petrochemical
industries) that causes limited failure data availability, we may obtain biased estimators and
unreliable asymptotic confidence intervals. To overcome this problem, we suggest a corrective
approach to obtain unbiased estimators for the model parameters. Additionally, we discuss how
to derive exact confidence intervals (CIs) based on these unbiased estimators.

1.1 Main practical motivation

The challenges in the production of offshore oil wells have been increasing over time,
either due to the increase in technical difficulties because of the greater complexity of the areas
to be explored, or due to improvements in the rules of the regulatory bodies in order to increase
safety. There are two key pillars that should guide an oil well project: safety and productivity.

Petroleum industry loses billions of dollars yearly due to profit loss associated with
production lines obstruction. Current flow assurance solutions are troublesome and cost hundreds
of millions of dollars annually. Petrobras (abbreviation of Petróleo Brasileiro S.A.), which is
the Brazil’s largest oil and gas producer, has invested in technological innovation projects in
order to minimize these losses and increase oil and gas production. Annelida is one of these
Petrobras’ innovation projects, which has been developed in partnership with the main Brazil’s
research centers. It regards an in-pipe robot that will be used at a near future to remove
hydrates and paraffins that form in pipelines and can cause problems in oil and gas flow (see
Figure 1). Several stages of the Annelida project have already been completed and many others
are underway, generating important results for the development and improvement of its bases.
Given the innovative nature of the project, the reliability modeling of the product has been one
of the main objectives of the research centers.
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Figure 1 – Hydrates and paraffins are the most common duct obstruction causes.

In reliability engineering, it is well known that the reliability of a product can be assessed
from the systems and subsystems that comprise it. Annelida is composed of several systems
and subsystems each with well-defined objectives. Due to the high degree of criticality, in this
work we consider the traction system of Annelida. In particular, we will study the return and
forward locomotives subsystem (modules 11 and 25, in Figure 2), as well as the pressure vessel
subsystem (modules 1 to 10 and 24, one of which is represented in module 24, in Figure 2).

The locomotive is responsible for conducting the robot inside the pipe, and once hydrate
formation is identified, the robot will work on its safe removal for the oil to flow again. On
the other hand, the pressure vessel set is the basic structural module for all the electrical
and electronic components of Annelida, which contains 11 of these subsystems. The vessels’
purpose is to withstand the forces, pressure and chemical conditions of the environment, safety
containing and isolating the components in their interiors. The module also has the function to
facilitate the heat exchange, allowing for suitable operational temperature of the electronic
components.

A schematic of the studied systems is shown in Figure 2.
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Fig. 2: Annelida’s schematic diagram with the representation of
one of the pressure vessel set (top), the others (modules 01 to
10) are not represented in this schematic, and traction systems
(below).

II. BACKGROUND AND LITERATURE

The repeated occurrence of an event of interest in the same
subject is frequent in many areas, such as manufacturing,
software development, medicine, social sciences, risk analysis,
among others. In reliability engineering, when studying a
complex system, such as supercomputers, cars and airplanes,
multiple defects or vulnerabilities in the product design, man-
ufacture, operation, maintenance and handling can cause a
number of unexpected failures [3]. Failure process models,
in the context of repairable systems, are often described in
terms of competing risks, or equivalently, a system with
many components connected in series, such that the failure
of a single component will result in a whole system failure.
However, recently in engineering, the evaluation of repairable
systems with multiple failure modes has drawn attention due
to their potential applicability [4]–[7].

In a competing risks framework, a system fails due to the
first occurrence of possible failure modes. In this context, we
use a model for any individual component, whose failures
occur due to one of the causal mechanisms and which each
one acts independently on the system.

A system can be thought as the joint union of different
subsystems which, in turn, can also be thought as unions
of other more particular subsystems, to an arbitrary level
of undividing. In a well-defined hierarchical structure, the
functions and relationships between components of a system
can be better understood, highlighting their importance to the
system as a whole. This makes it possible to clearly define
acceptable levels of damage for each part of the structure, and
to delimit its impacts on the system when exposed to different
sources of external variation [8].

In an industrial context, Langseth and Lindqvist [9] recorded
the service times of a component spanning over 1,600 units
of time. Each failure had its respective mode also recorded. In
this case, the causes of failure were categorized into two main
groups, each with its respective subcauses. In health care, for
example, Tuli et al. [10] analyzed repeated shunt failures in
children diagnosed with hydrocephalus; failures in this context
are known to result from a variety of causes.

In complex systems with several hierarchical levels, redun-
dancy can be implemented in any of the hierarchical levels.
Finding the specific optimal configuration of a specific system
is addressed by the reliability allocation problem. At the lowest
level of the hierarchy, a unit can have different failure modes.
Considering the modes separately might be of importance as
either the consequences of the failures might be different or the
maintenance actions that each failure mode triggers might be
different. In general, the failure of any single component can
be considered in a competing risks framework where every
failure mode is competing against the others to make the
component fail in that mode.

A repairable system is defined as a system which, after
failing to perform one or more of its functions satisfactorily,
can be restored to fully satisfactory performance by a method
other than replacement of the entire system. Traditional studies
on repairable systems focus on modeling failure times, using
point process theory as the main tool. In the literature, it is
commonly assumed that failures in a repairable system occur
due to a Non-Homogeneous Poisson Process (NHPP) with the
intensity described by a power law. The resulting method is
generally referred to as the Power Law Process (PLP). The
PLP is convenient in many ways, especially for its flexibility,
easy implementation, and the interpretability of its parameters
[11], [12].

Considering the fault-causing mechanisms known, it is also
important to observe how to repair such failures, including
preventive maintenance. In this context, the books of Crowder
[13], Pintilie [14], among others, illustrate with some examples
the need for considering the setting of competing risks in the
application of reliability techniques (in industrial statistics) or
survival analysis tools (in health sciences).

Under a Bayesian perspective, the inference of a problem
is on the basis of the posterior distribution of the quantity
of interest, which combines the information provided by the
data with the available prior information. The elicitation of
an appropriate prior distribution becomes the main task for
Bayesian statisticians in practice. Subjective priors, which
always depend on the experts’ belief, are not easy to derive in a
limited time period. Therefore, given little prior information,

Figure 2 – Annelida’s schematic diagram with the representation of one of the pressure vessel set
(top), the others (modules 01 to 10) are not represented in this schematic, and traction
systems (below).
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1.2 Overview of the chapters

The text here exposed is linked in two main chapters.

The Chapter 2, theoretically supports the subject covered throughout the text. This is
done by exposing the key concepts about the notion of Systems Repairability (in Section 2.1),
where the definitions of Minimum, Perfect, and IR are exposed; of a Count Process (in Section
2.2), whose particular case, the NHPP, is the process used in this study; and Competing Risks
(in Section 2.3), where the Latent Failure Times approach is that used in this study.

In the Chapter 3, we present a new statistical model to analyze single repairable systems
with a hierarchical structure under the assumption that the repairs are minimal with a PLP
intensity and also in the presence of competing risks. Moreover, we discuss classical inference for
the model parameters through the MLEs and asymptotic confidence intervals and also perform a
simulation study to investigate their properties. We develop improved estimators (bias-corrected
MLEs), as well as exact confidence intervals for the model parameters, whose performances
are again evaluated through a simulation study. We illustrate our proposed methodology using
simulated reliability data of butterfly valves, reliability data based on an in-pipe robot traction
system design information (real project in its early stage), and real reliability data of blowout
preventer systems. Finally, we conclude the chapter with some final remarks and suggestions
for work.

In the Chapter 4 following the previous study (Chapter 3) we describe how complex
engineered systems may be modelled hierarchically by use of Bayesian methods. It is also
assumed that repairs are minimal and each failure mode has a power-law intensity. Some
properties of the new model are discussed. We conduct statistical inference under an objective
Bayesian framework. A simulation study is carried out to investigate the efficiency of the
proposed methods. Finally, our methodology is illustrated by two practical situations currently
addressed in a project under development arising from a partnership between Petrobras and six
research institutes.

In the Chapter 5, taking a step forward, in studies (Chapters 3 and 4), the purpose is
a direct extension of Chapters 3 in the sense of, the extension comprises the representation
of complex systems through a hierarchical structure in series and/or in parallel. For this, we
deduce the general form of the model, the likelihood function. We present the mechanism
for random numbers generating, which allows obtaining point and interval estimates (via
parametric bootstrap) in a more convenient way for reliability curves at any level of the system
hierarchy. We illustrate the application of the model with the sequence of application previously
presented.

In the Chapter 6 we integrate the previous ideas, and extend into the context of
multiple repairable systems with unobserved heterogeneity modeled by a frailty term and also
the possibility of IRs whose initial failure rate is in the form of the power law. We did a
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simulation study to assess the quality of the proposed estimators. To illustrate, we consider a
database with the failures of 38 agricultural machines categorized in five different groups.

In the Chapter 7 we made some comments on the perspective of applying the developed
methodology and also listed some possibilities for extending and deepening the analyzes.

1.3 Products of the thesis
The results of this thesis were organized in four scientific articles. The first one has

already been published on IEEE Access journal, the second is in the process of peer review,
while the third and fourth are being reviewed by the executing team. The following is a list of
elaborated texts, associated with the next chapters.

Louzada, F.; Cuminato, J. A.; Rodriguez, O. M. H.; Tomazella, V. L. D.; Ferreira, P. H.;
Ramos, P. L.; Niaki, S. R. A.; Gonzatto-Junior, O. A.; Perissini, I. C.; Alegría, L. F. A.;
Colombo, D.; Martins, D. E. A.; Santos, H. F. L.. A Repairable System Subjected
to Hierarchical Competing Risks: Modeling and Applications. (This paper was
published in IEEE Access journal, 2019).

Louzada, F.; Cuminato, J. A.; Rodriguez, O. M. H.; Tomazella, V. L. D.; Ferreira, P. H.;
Ramos, P. L.; Milani, E. A; Bochio, G.; Perissini, I. C.; Gonzatto Junior, O. A.; Mota, A. L.;
Alegría, L. F. A.; Colombo, D.; Perondi, E. A.; Wentz A. V.; Silva Júnior, A. L. Barone, D.
A. C.; Santos, H. F. L.; Magalhães M. V. C.. Improved objective Bayesian estimator
for a PLP model hierarchically represented subject to competing risks under
minimal repair regime. (This paper was under review in PlosOne journal).

Louzada, F.; Tomazella, V. L. D.; Bochio, G.; Gonzatto Junior, O. A.; Milani, E.
A.. Confidence estimation by adopting a PLP model hierarchically represented
with series-parallel connections subject to competing risks under minimal repair
regime.. (This paper is under internal review by the authors).

Gonzatto Junior, O. A.; Fernandes, W. R.; Tomazella, V. L. D.; Louzada, F.. Frailty
Model for Multiple Repairable Systems Hierarchically Represented Subject to
Competing Risks.. (This paper is under internal review by the authors).

To illustrate the organization of the chapters in terms of the proposed models, look at
Figure 3. On the left are all the assumptions associated with the more general model, presented
in Chapter 6, described in the central block. On the right are the details with the indication of
the associated chapter.
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Unobserved heterogeneity
(frailty term Z)

Z ∼ Gamma
( 1

a
,

1
a

)
where a > 0

PLP model for first time failure
(h := PLP model)

h(t; b, c) =
(

b

c

)(
t

c

)b−1
where t, b, c > 0

Imperfect repair ARAm model
(virtual system age tARAm)

tARAm = t − (1 − d)
min(m−1,N(t)−1)∑

j=0

dj TN(t)−j where d ∈ [0, 1]

Serial or parallel structure for hierarquical levels
(system reliability base on failure modes reliability)

R(t) =
K∏

k=1

Rk(t) or R(t) = 1 −
K∏

k=1

(1 − Rk(t))

Multiple repairable systems
(general likelihood base on each system)

L(θ) =
G∏

g=1

Lg(θ)

Frailty model for multi-
ple repairable systems
hierarchically repre-

sented in series/parallel
structures subject to

ARAm imperfect repairs

(single system) g = 1
(without frailty term) a→ 0

(minimal repair model) d = 1
(competing risks) Serial

structure
(1th failure-time intensity) PLP model

(framework) Frequentist

(single system) g = 1
(without frailty term) a→ 0

(minimal repair model) d = 1
(competing risks) Serial

structure
(1th failure-time intensity) PLP model

(framework) Bayesian

(single system) g = 1
(without frailty term) a→ 0

(minimal repair model) d = 1
(competing risks) Serial/Paralell

structure
(1th failure-time intensity) PLP model

(framework) Frequentist

(multiple systems) g ≥ 1
(with frailty term) a > 0

(imperfect repair model) 0 ≤ d ≤ 1
(competing risks) Serial/Paralell

structure
(1th failure-time intensity) PLP model

(framework) Frequentist

Chapter 3

We considered a single re-
pairable system represented by
2 hierarchical levels and pro-
posed new bias-corrected fre-
quentist estimators.

Chapter 4

We considered a single re-
pairable system represented by
any hierarchical levels proposed
new bias-corrected bayesian es-
timators.

Chapter 5

We considered a single re-
pairable system represented by
2 hierarchical levels and pro-
posed frequentist estimators.

Chapter 6

We considered any number of
repairable system represented
by 2 hierarchical levels and pro-
posed frequentist estimators.

Figure 3 – General framework relating the proposed models and the thesis chapters.
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CHAPTER

2
BACKGROUND

In this chapter we try to present all the preliminary concepts necessary for the develop-
ment of subsequent studies. The definitions, examples and explanations follow very closely the
bibliographic reference used for the research.

Contents of Chapter
2.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 MR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.2 PR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.3 IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Models for counting processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 HPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 RP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.3 NHPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.4 Statistical trend graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.5 IR Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Competing Risks Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4 Frailty Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.1 Systems
A system can be understood as a collection of sub-systems and/or components organized

in a specific way to perform an activity of interest. A system can be classified as to its repairability,
in this sense, we say that a system can be non-repairable or repairable, the analysis methodology
should take this into account.

According to Ascher and Feingold (1984), a repairable system can be defined as a
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system that, after a failure, can return its activity satisfactorily due to a repair action without
having to replace the system as a whole. The proper methodological approach to dealing,
specifically, with repairable systems avoids a number of misconceptions arising from the use of
a methodology that does not take this into account, which is often done in practice. In this
sense, the text of Ascher and Feingold (1984) is one of the basic references, which is exclusively
dedicated to describing the reliability of repairable systems.

Another background text that addresses the difference between the methodologies used
in repairable and non-repairable systems is the text of Rigdon and Basu (2000). In this context,
we define a repairable system as a system that can be restored after a failure, provided that its
repair is, in some way, compensatory to the user. Examples include automobiles, refrigerators,
televisions, etc. Non-repairable systems, on the other hand, are systems whose failure leads to
system disposal, such as a light bulb, or even a system whose repair cost is close to the cost of
a new equipment, in that sense the discard is more compensatory, as certain cell phone failures.

Systems repairability can be categorized into three repair actions: MR, PR, and IR.
Each carries with it a particular understanding of the behavior of the failures observed in a
given repairable system.

2.1.1 MR

The MR is the most explored repair action in the literature, its assumption is very
common in many models. An MR aims to correct only the component that caused the system
failure, leaving it in the same condition as the system was immediately before the failure, a
condition known in the literature as “As Bad as Old” (ABAO).

A typical example of a repairable system is a car. Normally, the operating time of
cars is expressed in terms of the indicated mileage. Repair actions will not normally result
in extra mileage. Repair time is therefore negligible. Many repairs are performed with simple
adjustments or single component replacements. The assumption of MR is thus often applicable,
therefore, repair actions keep the system in pre-failure condition. According to Kijima (1989),
this assumption is plausible for systems consisting of several components, each having its own
failure mode.

Under the assumption of an MR action, the appropriate mathematical/statistical
methodology, for understanding the behavior of system failures, is the theory of Stochastic
Process (SP), particularly NHPP. As said by Rausand and Hoyland (2004), in such a process,
the probability of failures is independent of the failure history, only the age of the system. The
use of this methodology will be further described in Section 2.2.3.
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2.1.2 PR

A PR is characterized by, after repair action, providing the system with a condition
known in the literature as “As Good As New” (AGAN). According to Kijima (1989), it is
reasonable to assume a PR condition when working with simple systems whose component
replacements represent a substantial increase in system reliability, as to we understand that we
are in a condition equivalent to that of a new system.

The counting process associated with a PR perspective is a MR model (see 2.2.2). The
main reason why RP are considered is because in the modeling of more complicated processes,
there are moments when the system returns to an AGAN state at random. The times observed
in these renewals are incorporated via RP so that it is possible to distinguish long-term behavior
from system failures.

2.1.3 IR

The action of an IR is responsible for providing the system with a condition that is not
sufficiently similar to that of a PR, however, it is better than the immediately preceding the
failure (MR). In practice, the repair actions are not limited to the extremes of an MR or PR, in
most cases the repair reaches an intermediate condition between these two.

According to Kijima, Morimura and Suzuki (1988), in the situation where a system is
composed of few vulnerable components, it is more appropriate to consider that a repair action
takes the system condition to an intermediate level between MR and PR. In this context, repair
actions are directed at maintaining the system as a whole and not directly at the subsystem or
component that caused the failure.

Much research has been done around this problem, Brown and Proschan (1983) has
considered a model where, at each failure time, a PR occurs with probability p, while a MR
occurs with 1− p, both independent of fault history. The notion of virtual age was introduced
by Kijima (1989), which is a positive function of the actual system age and the history of
failure times. This model considers a ρ parameter that represents the degree of repair efficiency,
which has as its particular case the actions of MR and PR.

Subsequently, Doyen and Gaudoin (2004) proposed two classes of IR models: the model
class of “Arithmetic Reduction of Intensity” (ARI) which considers an arbitrary reduction in
system failure rate based on a memory of arbitrary degree; and the model class of ARA which,
in this case, considers a reduction in system age, also taking into account arbitrary memory
degree.

Some of these models will be further discussed in Section 2.2.5.
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2.2 Models for counting processes
Since the modeling of a repairable system admits multiple occurrences of the event

in a same system studied, it is important that we also know how to stochasticly model the
behavior of occurrence counting. In this sense, the Stochastic Process we’re interested in is a
counting process, and that’s what we’ll talk about in the next section.

Stochastic Processes’s theory formally describes numerous behaviors of practical interest,
a theoretically deeper description can be seen, for example, in the work of Ross (1996). For
the subject matter here, a general definition of a Stochastic Process in Time is given in the
Definition 2.2.1.

Definition 2.2.1: Stochastic Process in Time
A Stochastic Process in Time is a collection of random variables, denoted by {X(t), t ∈Θ},
where Θ is the set that indexes (temporally) the process.

PS.: When the Θ set is an enumerable set, the {X(t), t ∈ Θ} process is said to be a Discrete Time Stochastic
Process. On the other hand, when the Θ is a continuous set, the {X(t), t ∈ Θ} process is said to be a Continuous
Time Stochastic Process.

In addition, the process of interest, in the present study, aims to understand counts
resulting from a random behavior, and can be formally represented with the Definition 2.2.2.

Definition 2.2.2: counting process

A Stochastic Process {N(t), t ≥ 0} is said to be a counting process if it satisfies

1. N(t)≥ 0;
2. N(t) is integer;
3. s < t ⇒ N(s)≤ N(t);
4. For any s, t ≥ 0 with s < t, the amount N(t)−N(s) represents the number of

occurrences of the event of interest, observed in the range (s, t];

PS.: It is also possible to represent counting process {N(t), t ≥ 0} as the sequence of times until the event
T1,T2, . . ., or the sequence of times between events S1,S2, . . .. Either of these representations carry the same
information as the others with respect to counting process. The illustration of such observations can be seen in
Figure 4.
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Figure 4 – Representation of the number of events N(t), times to events Ti, and times between events
Si.

In the study of repairable systems, the behavior of the process {N(t), t ≥ 0} provides
numerous indications of the appropriate methodology for addressing the problem. For example,
when N(t) is a nonlinear function of time, the assumption that the times between failures are
independent and identically distributed is not true.

To better understand the behavior of such processes, some concepts must be kept in
mind. The first one is the notion of independent increments, whose idea tells us that, if a
high number of events were observed within a certain time interval, this will not influence the
behavior of future failures. Formally, we consider the Definition 2.2.3.

Definition 2.2.3: Independent Increments

We say that a counting process {N(t), t ≥ 0} has independent increments if, for any
0< t1 < t2 < · · ·< tk, with k = 2,3, . . ., the quantities N(t1)−0,N(t2)−N(t1), . . . ,N(tk)−
N(tk−1) are independent random variables.

Another important concept is stationary increments, which tells us that the distribu-
tion of the number of occurrences in a given interval depends only on the length of the interval,
not its position with respect to its origin. Formally, this can be set with the Definition 2.2.4.

Definition 2.2.4: Stationary Increments

We say that a counting process {N(t), t ≥ 0} has stationary increments if, for any
t,s with 0 ≤ s < t and any constant c > 0, the random quantities N(t)−N(s) and
N(t + c)−N(s+ c) are identically distributed.

PS. 1: We call a counting process as Stationary (or Homogeneous) counting process, if it can be characterized
by Stationary Increments.
PS. 2: We call a counting process as Nonstationary (or Non-Homogeneous) counting process, if it is not
stationary or does not become stationary after a given time.

It is also important to keep in mind what is a regular process. Such a process is
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characterized by the impossibility of observing more than one occurrence at the same time
instant. Formally, we have the Definition 2.2.5.

Definition 2.2.5: Regular Process

A counting process is said to be Regular (or Ordered) if

Pr(N(t + τ)−N(t)≥ 2) = o(τ), for small values of τ,

and where o(τ) is any function such that

lim
τ→0

o(τ)
τ

= 0.

Another very important aspect for studying a counting process is the Process Rate,
that is, the intensity with which events occur. The function that represents this feature is the
Intensity Function, whose formal definition is in Definition 2.2.6.

Definition 2.2.6: Intensity Function

The intensity function of a counting process at time t is given by

λ (t) = lim
τ→0

Pr(N(t + τ)−N(t) = 1 |ℋt−)

τ
, ∀t ≥ 0,

where ℋt− denotes the history set of previous failure times.
In addition, the expected number of occurrences in the interval (0, t] (or the mean
cumulative function).

Λ(t) = E(N(t)) =
∫ t

0
E(λ (s))ds,

The counting processes commonly addressed in the literature are: Homogeneous Poisson
Processes (HPP); Renewal Processes (RP); NHPP and IR Processes. Each will be further
described in the following sections. An illustration of the counting processes associated with
the respective repair models, described above, can be seen in Figure 5.

Repair types

IR
(see 2.1.3)

IR Models
(see 2.2.5)

PR (see 2.1.2)

HPP
(see 2.2.1)

Renewal Process
(see 2.2.2)

MR
(see 2.1.1)

NHPP
(see 2.2.3)

Figure 5 – Repair types and associated count processes.
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2.2.1 HPP

There are some equivalent definitions for this counting process, one widely used is the
Definition 2.2.7.

Definition 2.2.7: HPP
We say that counting process {N(t), t ≥ 0} is a HPP with a rate of λ , to λ > 0 if it
meets the following conditions.

1. N(0) = 0;
2. The process has stationary (see 2.2.4) and independent increments (see 2.2.3);
3. Pr(N(τ) = 1) = λ τ +o(τ);
4. Pr(N(τ)≥ 2) = o(τ)

The definition of a HPP results in some immediate consequences, some of which will
be listed here, others can be found in the texts of Ross (1996), Thompson (1988), and Ascher
and Feingold (1984).

The first of these, is the fact that, in addition to having stationary (see 2.2.4) and
independent (see 2.2.3) increments, the HPP is a regular counting process (see 2.2.5). The
second consequence, is that HPP ROCOF is constant and independent of time, i.e.

λ (t) = λ , for all t ≥ 0.

The third, shows us that the count of occurrences in a interval of the form (τ, t + τ]

has a Poisson distribution, with expected value λ t, that is

Pr(N(t + τ)−N(τ) = n) =
(λτ)n

n!
e−λ t , for all t ≥ 0,τ > 0.

The fourth consequence shows that the average occurrence count in the interval
(τ, t + τ] is

Λ(t + τ)−Λ(τ) = E(N(t + τ)−N(τ)) = λ t,

particularly, E(N(t)) = λ t e Var(N(t)) = λ t;

As a fifth consequence, the times between occurrences S1,S2, . . ., are independent and
identically distributed random variables with exponential distribution of mean 1/λ .

Finally, the sixth consequence listed here, tells us that time up to n-th occurrence,
Tn = ∑

n
i=1 Si has Gamma distribution with parameters vector (n,λ ), whose density is represented

by

fTn(t) =
λ

(n−1)!
(λ t)n−1e−λ t for t ≥ 0.
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2.2.2 RP

The Renewal Theory has its origin in the study of strategies for the replacement of
technical components, but was later developed as a general theory within Stochastic Processes.
This process is used to model equipment renovations or replacements.

In a RP, when a functional component is put into operation at time t = 0 and experiences
a time failure T1, it is replaced by a new equivalent component (or restored to a condition
AGAN). This process is repeated with each new failure recorded. In this context, we understand
that component replacement times are independent and identically distributed, the number of
failures (and thus renewals) in the interval (0, t] is denoted by N(t).

An RP is a counting process with times between occurrences S1,S2, . . ., considered
independent and identically distributed. The observed occurrences are referred to, in this
context, as renewals. The RP is a generalization of HPP, where the distribution of times
between occurrences is exponential with parameter λ .

2.2.3 NHPP

The NHPP is a generalization of HPP in the sense that the failure rate is a function of
time, i.e. failure rate may vary according to specific fault behavior criteria.

Definition 2.2.8: NHPP
A counting process {N(t), t ≥ 0} is a NHPP (or non-stationary) with intensity function
λ (t) to t ≥ 0, if

1. N(0) = 0.

2. {N(t), t ≥ 0} has independent increments (see 2.2.3).

3. Pr(N(t + τ)−N(t)≥ 2) = o(τ), i.e., the system does not observe more than one
failure at a time.

4. Pr(N(t + τ)−N(t) = 1) = λ (t)τ +o(τ).

It is important to note that NHPP does not require stationary increments. This means
that the occurrence of events may be more likely at certain time periods than others, so the
times between occurrences are generally neither independent nor identically distributed. As a
consequence, methodologies that consider independent and identically distributed data do not
apply to an NHPP.

NHPP is usually used to understand possible trends in times between occurrences such
as the improvement or deterioration of a system. In this sense, improving systems intuitively have
decreasing ROCOF functions, while deteriorating systems have increasing ROCOF functions.

Due to the assumption of independent increments, the number of occurrences within a
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specific interval (t1, t2] will be independent of occurrences (and times between occurrences)
prior to time t1. When there is an occurrence in time t1, the ROCOF function conditional on
the occurrence history, λ (t|ℋt), will be, in the next time interval, λ (t) and therefore, regardless
of the observed story ℋt1 (until the time t1). The practical implication of this assumption is
that the history-dependent ROCOF function is the same immediately before and immediately
after the repair performed. The terminology used because of this assumption is called MR; see
Ascher and Feingold (1984).

When components (in operation for a long time) are replaced with new components, an
NHPP is certainly not an appropriate model. For a NHPP model to be realistically suitable, the
commissioned components should behave identically to those as old as them. In this sense, they
should be aged outside the system for the same period of time and under identical conditions.

Considering a system composed of numerous components. Suppose a critical component
fails, which in turn causes the system to fail. If such a component is immediately replaced
by one of the same type (changeover time may be negligible). Since only a small fraction of
the system has been replaced, it seems natural to assume that system reliability after repair
is essentially the same as immediately before the failure. In other words, the assumption of a
minimum repair is a realistic approximation. When an NHPP is used to model a repairable
system, the system is treated as a black box where there is no knowledge of how the system
looks inside.

Considering an NHPP with ROCOF λ (t), and suppose that the failures occur at times
T1,T2, . . .. An illustration of λ (t), in the context where a deteriorating system is monitored,
can be seen in Figure 6.

0 T1 T2 T3 T4 T5

t

λ(
t)

Figure 6 – ROCOF λ (t) for the NHPP.

Similarly to what is identified about HPP, some immediate consequences are also
observed from the definition of an NHPP (exposed in 2.2.8). Some of them tell us that the
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number of occurrences in the interval (0, t] has Poisson distribution, with parameter Λ(t), i.e.,

Pr(N(t) = n) =
[Λ(t)]n

n!
e−Λ(t) para n = 0,1,2, . . . ,

therefore, the mean and variance for the number of occurences in (0, t] is E(N(t)) =Var(N(t)) =

Λ(t).

The cumulative ROCOF Λ(t) is also the mean number of occurrences in the interval
(0, t], and is sometimes also called mean value function of the process. When n is large,
Pr(N(t)≤ n) can be determined by a normal approximation

Pr(N(t)≤ n) = Pr

(
N(t)−Λ(t)√

Λ(t)
≤ n−Λ(t)√

Λ(t)

)
≈ Φ

(
n−Λ(t)√

Λ(t)

)
.

In addition, it follows that the number of occurrences in the interval (s, t], with s < t,
also has Poisson distribution.

Pr(N(t)−N(s) = n) =
[Λ(t)−Λ(s)]n

n!
e−[Λ(t)−λ (s)] for n = 0,1,2, . . .

and the mean number of occurrences in the range (s, t] is

E(N(t)−N(s)) = Λ(t)−Λ(s) =
∫ t

s
λ (u)du.

The probability of non-occurrences in the interval (s, t], with s < t is

Pr(N(t)−N(s) = 0) = exp
{
−
∫ t

s
λ (u)du

}
.

Considering Tn the time to n-th occurrence, for n = 0,1,2, . . . , where T0 = 0. The
distribution of Tn is given by

Pr(Tn > t) = Pr(N(t)≤ n−1) =
n−1

∑
k=1

Λ(t)k

k!
e−Λ(t).

When Λ(t) is large, this probability can be determined using a normal approximation.

Pr(Tn > t) = Pr(N(t)≤ n−1)≈ Φ

(
n−1−Λ(t)√

Λ(t)

)
.

2.2.3.1 Time to first occurrence

Assume that T1 denotes the time of t = 0 until the first failure. The reliability function
of T1 is given by

R1(t) = Pr(T1 > t) = Pr(N(t) = 0) = e−Λ(t) = exp
{
−
∫ t

0
λ (u)du

}
.
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Thus, the failure rate h(t) function of the first time between occurrences is equal to the ROCOF
λ (t) function of the process. However, there is a different meaning between the two expressions.

This result has a disconcerting implication, since the distribution of the first time
between occurrences determines the ROCOF function of the entire process. As stated in
Thompson (1981), under the assumption of an NHPP, if we are able to estimate the failure
rate function for the first time between occurrences, then we will estimate the lifetime ROCOF
function of the phenomenon studied, which is a counterintuitive fact.

2.2.3.2 Time between occurrences

Assume that the process is observed in time t0 (regardless of whether it is a time of
occurrence or any arbitrary point in time). Also assume that Y (t0) denotes the time until the
next occurrence. In this context, the distribution of Y (t0) is determined by

Pr(Y (t0)> t) = Pr(N(t + t0)−N(t0) = 0)

= eΛ(t+t0)−Λ(t0)

= exp
{
−
∫ t+t0

t0
λ (u)du

}

= exp
{
−
∫ t

0
λ (u+ t0)du

}
.

If t0 represents the time, Tn−1, of the occurrence n−1. In this case, Y (t0) denotes the
time between (n−1)-th and n-th failure (that is, n-th time between occurrences Sn = Tn−Tn−1).
The failure rate function (in this case, conditional to Tn−1 = t0) of n-th time between occurrences
Sn is

ht0(t) = λ (t + t0) for t ≥ 0.

The Mean Time Between the (n−1)-th and n-th Failure (MTBFn), at time t0, is given
by

MTBFn = E(Tn) =
∫

∞

0
Pr(Yt0 > t)dt =

∫
∞

0
exp
{
−
∫ t

0
λ (u+ t0)du

}
dt.
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Example 2.2.9: [ Adapted from (RAUSAND; HOYLAND, 2004) ]

Given an NHPP with ROCOF

λ (t) =
(

β

η

)(
t
η

)β−1

,

for β ,η > 0 and t ≥ 0. The mean number of occurrences in the interval (0, t) is given by

Λ(t) = E(N(t)) =
∫ t

0
λ (u)du =

(
t
η

)β

.

The distribution of time to first failure, T1, can be determined by the reliability function.

R1(t) = e−Λ(t) = e−(t/η)β for t ≥ 0,

that is, a Weibull distribution with scale parameter η and form β .
If the process is observed at time t0, the reliability of the time until next failure Y (t0) is
given by

Pr(Y (t0)> t) = exp
{
−
∫ t

0
λ (u+ t0)du

}
= exp

{
−
[(

t0 + t
η

)β

−
(

t0
η

)β
]}

.

If t0 denotes the (n−1)-th time of failure, the time to next failure Y (t0), is the time n-th
time between occurrences Sn and the failure rate function of Sn is

ht0(t) =
(

β

η

)(
t + t0

η

)β−1

,

This is a conditional failure rate, since the occurrence n−1 occurred at time t0 = Tn−1.
The mean time between failures n and n−1 is given by

MTBFn =
∫

∞

0
exp

{
−
[(

t0 + t
η

)β

−
(

t0
η

)β
]}

dt

2.2.3.3 Parametric Likelihood Function in an NHPP

In either of these contexts, choosing a convenient parametric form for λ (t) allows us
to obtain a sufficiently flexible model to the number of failures of a repairable system in the
context of MR, i.e., when only a small proportion of the system’s constituent parts are replaced
at repair.

2.2.3.3.1 Truncation by time

Consider the situation in which the failures of a given repairable system are monitored
until a predetermined time, T . In this context, the representation of the likelihood function for
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the parameter vector, θθθ , considering the observed time failures ttt = (t0, t1, . . . , tn), where tn < T

and t0 = 0, should consider the random behavior of time as well as the number of failures
N(T ). Like this

L(θθθ ; ttt) = f (t1 | t0) f (t2 | t1) · · · f (tn | t1, t2, . . . , tn−1)Pr(N(T ) = n | t1, t2, . . . , tn).

To approximate a term of the form f (ti | t0, . . . , ti−1), where i = 1, . . . ,n, we must keep
in mind that

f (ti | t0, . . . , ti−1) =
d

dti

[
1−R(ti | t0, . . . , ti−1)

]
=

d
dti

[
1−Pr(Ti > ti | t0, . . . , ti−1)

]
=

d
dti

[
1−Pr(Ti > ti | ti−1)

] (
Independent
Increments

)
=

d
dti

[
1−Pr(N(ti)−N(ti−1) = 0)

]
=

d
dti

[
1− e−(Λ(ti)−Λ(ti−1))

]
= λ (ti)e−(Λ(ti)−Λ(ti−1)).

Similarly, for Pr(N(t) = n | t1, t2, . . . , tn), we have

Pr(N(T ) = n | tn) = Pr(N(T )−N(tn) = 0) = e−(Λ(T )−Λ(tn)).

Thus, the likelihood function has the form

L(θθθ ; ttt) = λ (t1)e−(��
�Λ(t1)−��

�* 0
Λ(t0))︸ ︷︷ ︸

f (t1|t0)

λ (t2)e−(��
�Λ(t2)−���Λ(t1))︸ ︷︷ ︸

f (t2|t0,t1)

· · ·λ (tn)e−(��
�Λ(tn)−����Λ(tn−1))︸ ︷︷ ︸

f (tn|t0,...,tn−1)

e−(Λ(T )−���Λ(tn))︸ ︷︷ ︸
Pr(N(T )|t0,...,tn)

=
n

∏
i=1

λ (ti)× e−Λ(T )

and the log likelihood function is given by

`(θθθ ; ttt) =
n

∑
i=1

logλ (ti)−Λ(T ).

2.2.3.3.2 Failure truncation

In this context, the system is supposed to be watched until the n-th failure occurs.
The previous expressions apply normally, replacing the time T with tn. That is, the likelihood
function is given by

L(θθθ ; ttt) =
n

∏
i=1

λ (ti)× e−Λ(tn),
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and the log-likelihood

`(θθθ ; ttt) =
n

∑
i=1

logλ (ti)−Λ(tn).

2.2.3.4 Parametric Models for an NHPP

From a parametric perspective, it is possible to define convenient features to describe
the ROCOF function of an NHPP. In this context, three models will be briefly presented: the
Power Law Model, the Linear Model, and the Log-linear Model. These templates can be written
in general.

λ (t) = γg(t;ν),

where γ is a common multiplier, and g(t;ν) determines the form of the ROCOF function, λ (t).
All models can be parameterized in a number of ways.

2.2.3.4.1 Power Law Model

In this model, the NHPP ROCOF function is defined as

λ (t) =
(

β

η

)(
t
η

)β−1

for t,η ,β > 0.

This NHPP is sometimes referred to as the “Weibull process”. This is because its
ROCOF function has the same analytical expression as the failure rate function of the Weibull
distribution. In addition, the first instance T1 of this process has Weibull distribution with shape
parameter β and scale η . However, it is important to avoid mentioning a “Weibull process”
since, as stated by Ascher and Feingold (1984) this terminology gives the mistaken impression
that the Weibull distribution can be used to model the behavior of times between occurrences
in a repairable system.

A repairable system modeled by an NHPP with power law intensity function can be
interpreted as an enhancing system if 0 < β < 1, and deteriorating if β > 1. In the situation
where β = 1 the model particularizes in an HPP.

2.2.3.4.2 Linear Model

In the linear model, the NHPP ROCOF function is defined by

λ (t) = (β t +1)α for α > 0 and t ≥ 0.

A repairable system modeled by the linear model, as show in Vesely (1991) and Atwood
(1992), is interpreted as deteriorating if β > 0, and improving when β < 0. When β < 0, then
λ (t) will become less than zero at some point. In this sense, the model should be used only at
time intervals where λ (t)> 0.
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2.2.3.4.3 Log-linear Model

The log-linear model was proposed by Cox and Lewis (1966), in this model the NHPP
ROCOF function is defined by

λ (t) = eα+β t for −∞ < α,β < ∞ and t ≥ 0.

A repairable system modeled by a log-linear model is improving if β < 0, and deteriorating
if β > 0. When β = 0 the log-linear model becomes particularized in an HPP with λ (t) = eα .

2.2.4 Statistical trend graphics

Some graphs can help us to see if there is a failure trend behavior. Guthrie (2020)
highlights some of them:

2.2.4.1 Accumulated Failures vs. Age of the System

This graph is constructed in the form of a increasing in time step function, where each
step is a new failure. This graph expresses three main behaviors (Figure 7):

1. Behavior close to linear: In this case we are not able to perceive any specific trend;

2. Behavior close to logarithmic: The concavity downwards exposes that the times
between failure are becoming more and more long, indicating an improvement in the
system;

3. Behavior close to exponential: The concavity upwards exposes that the times between
failure are becoming more and more short, indicating a degradation in the system.

T1 T3 T5 T7 T9 T1 T3T5 T7 T9 T1 T3 T5 T7T9

(1) (2) (3)

t

N
(t

)

Figure 7 – Trend graphics. Accumulated Failures vs. Age of the System

2.2.4.2 Interarrival times vs. Number of failures

This graph is constructed in the form of a scatter or line plot. This graph also expresses
three main behaviors (Figure 8):



48 Chapter 2. Background

1. Constant behavior: In this case we are not able to perceive any specific trend;

2. Increasing behavior: The times between failure are becoming more and more long,
indicating an improvement in the system;

3. Decreasing behavior: The times between failure are becoming more and more short,
indicating a degradation in the system.

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

(1) (2) (3)

N(t)
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i−

T
i−

1

Figure 8 – Trend graphics. Interarrival times vs. Number of failures

2.2.4.3 Reciprocals of the Interarrival times vs. Number of failures

This graph is also constructed in the form of a scatter or line plot and represents an
estimate of the failure rate based only on the waiting time since the last failure. It also expresses
three main behaviors (Figure 9):

1. Constant behavior: We are not able to perceive any specific trend;

2. Decreasing behavior: Indicates a improvement system.

3. Increasing behavior: Indicates an degradation in the system;

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9
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i−
T

i−
1)

Figure 9 – Trend graphics. Reciprocals of the Interarrival times vs. Number of failures
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2.2.4.4 Duane plot

A graph that is also widely used in reliability analysis is the Duane graph. It was
proposed by Duane (1964) and consists of plotting the accumulated MTBF versus failure times
on the log-scale. If the observed result has a behavior close to linear, it is an indication that
the intensity function with the power law form can be applied for the modeling of the failure
process.

In practice to execute Duane’s initial proposal, if the ith failure occurred at time ti, we
plot ti/i vs. ti, on the log-scale. This is justified, therefore, if the process {N(t), t > 0} is governed
by a power law intensity, then the expected value of N(t) takes the form E[N(t) ] = (t/µ)β ,
thus t/E[N(t) ] = µβ t1−β . So, in the log-scale, we will obtain a straight line with slope equal
to 1−β and intercept equal to β log(µ). In summary, a straight line on a duane chart is
equivalent to an NHPP Power Law Model.

Note that the same idea can be applied by plotting the expected cumulative number of
failures vs. time on the log scale.

2.2.5 IR Processes

When we use a renewal process, the repair action is considered perfect, because when
the repair action is complete, we understand that the system is “as good as new”. On the other
hand, when using an NHPP, we assume that the repair action is minimal, which means that
the reliability of the system immediately after the repair is equal to immediately before the
failure, which means that the system is “as bad as old”. Such processes are extreme cases of
repair, and it is reasonable to think that there is a whole gradient of possibilities between these
two extremes. In this sense, some models suggest a situation of normal repair or even IR. This
repair action is between MR and a renewal.

IR models can be categorized into two main groups: the first one concentrates the
effect of repair actions on reducing failure rates, i.e., direct influence on ROCOF function; The
second of them considers the idea of virtual age, where the age of the system is, somehow,
updated by the effect of the repair action. Further details of these models can be found in the
texts of Pham and Wang (1996) and Hokstad (1997), for example.

2.2.5.1 ARI Model

This type of modeling assumes that each repair action results in a reduction in the
ROCOF conditional function, λ (t|ℋt), where ℋt represents system history up to, but not
including, the time t. The degree of reduction can be a fixed amount, a percentage of the
current failure rate value, both proposed by Chan and Shaw (1993), or even a function of the
process history.



50 Chapter 2. Background

Given the failure times ttt = (t1, . . . , tn) and considering ti− and ti+ the times immediately
before and after ti with i = 1, . . . ,n, respectively. The models proposed by Chan and Shaw
(1993) can be expressed by the conditional ROCOF function as follows.

λ (ti+|ℋti+) =

λ (ti−|ℋti−)−δ for a fixed reduction δ ,

λ (ti−|ℋti−)(1−ρ) for a proportional reduction 0 ≤ ρ ≤ 1.

This model expresses that, between two failures, the conditional ROCOF function is
assumed to be parallel to the ROCOF λ1(t) function.

The ρ parameter represents the efficiency of the repair action, note that when ρ = 0,
there is MR (that is, the Chan and Shaw proportional reduction model is particularized in a
NHPP). On the other hand, when ρ = 1, the repair action will make the conditional ROCOF
function equal to zero, which does not represent a renewal process, since times between
occurrences will not be identically distributed except for in which case λ1(t) is a linear function.
The illustration of a possible behavior of λ (t|ℋt) can be seen in Figure 10.

MR1 MR2 MR3 MR4
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Figure 10 – Conditional ROCOF for Chan and Shaw’s proportional reduction model for time failures
T1,T2,T3,T4 and ρ = ρ0.

In another moment, Doyen and Gaudoin (2004) generalized the Chan and Shaw’s model,
proposing a set of models whose proportionality factor, ρ , depend on the process history, ℋt .
In this context, the conditional ROCOF function is given by

λ (ti+|ℋti+) = λ (ti−|ℋti−)−ϕ(i, t1, t2, . . . , ti),

where ϕ(i, t1, t2, . . . , ti) denotes the reduction factor over the conditional ROCOF function due
to the repair action. Between two failures, it is assumed that the conditional ROCOF function
is parallel to the initial ROCOF function λ1(t). These assumptions lead to the conclusion that

λ (t|ℋti+) = λ1(t)−
N(t)

∑
i=1

ϕ(i, t1, t2, . . . , ti).
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If a proportional reduction is assumed after each repair action (as proposed in the Chan
and Shaw’s model), the conditional ROCOF function in the interval (0, t1) will be represented
by λ (t|ℋt) = λ1(t) and, in the interval [t1, t2), will be λ (t|ℋℋ) = λ1(t)− (1−ρ)λ1(t1), if the
process is continued, the resulting expression defines the model named by Doyen and Gaudoin
(2004) as ARI with infinite memory (ARI∞), whose conditional ROCOF function has the form

λ (t|ℋt) = λ1(t)− (1−ρ)
N(t)

∑
i=0

ρ
i
λ1(tN(t)−i).

Another possible approach assumes that the repair action can only reduce a proportion of
the accumulated wear since the previous repair action. In this case, the model is mathematically
formulated by

λ (ti+|ℋti+) = λ (ti−|ℋti−)− (1−ρ) [λ (ti−|ℋti−)−λ (t(i−1)+|ℋt(i−1)+) ],

so, the resulting conditional ROCOF function of this model is

λ (t|ℋt) = λ1(t)− (1−ρ)λ1(tN(t)), (2.1)

which defines the model, called by Doyen and Gaudoin (2004), as the ARI with memory one
(ARI1). Thus, if ρ = 1, the system is “as bad as old” after the repair action, which characterizes
an NHPP as a particular case. On the other hand, if ρ = 0, the conditional ROCOF function is
readjusted by the repair action, but the process is not a renewal process since the time between
occurrences is not identically distributed. An illustration of the intensity function behavior
under this approach can be seen in Figure 11.

The ARI 1 model has a λmin(t) deterministic function that is always smaller than the
conditional ROCOF function so that there is no null probability that the ROCOF function will
be excessively close to λmin(t). This intensity is the minimum wear intensity, or even a lower
upper limit for the conditional ROCOF function, and is given by

λmin(t) = ρ λ1(t).
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Figure 11 – Conditional ROCOF for ARI 1 model for time failures T1,T2,T3,T4 and λ = λ0. In upper
dashed line, the function λ1(t) and in lower dashed line, the function λmin(t).
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The ARI ∞ and ARI 1 models are two extreme cases, in this same context, a model
that considers the last m failure moments can be defined by giving an ARI with memory m

(ARIm) model, whose conditional ROCOF function is given by

λ (t|ℋt) = λ1(t)− (1−ρ)
min(m−1,N(t))

∑
i=0

ρ
i
λ (tN(t)−i|ℋtN(t)−i).

The minimum wear intensity in this context is given by

λmin(t) = ρ
m

λ1(t).

In any model of type ARI , the ρ parameter denotes an efficiency index on the repair
action.

∙ 0 < ρ < 1: The repair action is efficient;

∙ ρ = 1: The repair action is optimal. The conditional ROCOF function is set to zero;

∙ ρ = 0: The repair action has no effect on system wear. In other words, the system after
the repair action is brought to the condition “as bad as old”;

∙ ρ < 0: The repair action is harmful to the system, it may be responsible for causing new
problems.

2.2.5.1.1 Parametric Likelihood Function in ARI Model

Determination of the likelihood function is obtained analogously to the Section 2.2.3.3,
however, the new definition of the intensity function should be considered.

∙ Truncation by time

In this situation, the failures are monitored until the time T . Thus, the representation of
the likelihood function for the parameter vector, θθθ , considering the observed time failures
ttt = (t0, t1, . . . , tn), where tn < T and t0 = 0, must be consider the random behavior of
time failures as well as the number N(T ). Like this

L(θθθ ; ttt) = f (t1 | t0) f (t2 | t1) · · · f (tn | t1, t2, . . . , tn−1,n)Pr(N(T ) = n).
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To approximate a term of the form f (ti | t0, . . . , ti−1), where i = 1, . . . ,n, we must keep
in mind that

f (ti | t0, . . . , ti−1) =
d

dti

[
1−R(ti | t0, . . . , ti−1)

]
=

d
dti

[
1−Pr(Ti > ti | t0, . . . , ti−1)

]
*
=

d
dti

[
1−Pr(Ti > ti | ti−1)

]
=

d
dti

[
1−Pr(N(ti)−N(ti−1) = 0)

]
=

d
dti

[
1− exp

{
−
(

Λ(ti)−Λ(ti−1)
)} ]

**
=

d
dti

[
1− exp

{
−
(

Λ1(ti)−Λ1(ti−1)− (1−ρ)(ti − ti−1)λ1(ti−1)
)} ]

=
[

λ1(ti)− (1−ρ)λ1(ti−1)
]
×

× exp
{
−
(

Λ1(ti)−Λ1(ti−1)− (1−ρ)(ti − ti−1)λ1(ti−1)
)}

,

where the step marked with * uses the assumption of independent increments, and the
step highlighted with ** uses the definition of the intensity function of the ARI 1 model,
show in (2.1).

Similarly, for the term Pr(N(t) = n | t1, t2, . . . , tn), we have

Pr(N(T ) = n | tn) = Pr(N(T )−N(tn) = 0)

= exp
{
−
(

Λ(T )−Λ(tn)
)}

= exp
{
−
(

Λ1(T )−Λ1(tn)− (1−ρ)(T − tn)λ1(tn)
)}

.

Thus, the likelihood function considering the intensity function of a ARI 1 model has the
form

L(θθθ ; ttt) =
n

∏
i=1

[
λ1(ti)− (1−ρ)λ1(ti−1)

]
×

× exp
{
−
(

Λ1(ti)−Λ1(ti−1)− (1−ρ)(ti − ti−1)λ1(ti−1)
)}

×

× exp
{
−
(

Λ1(T )−Λ1(tn)− (1−ρ)(T − tn)λ1(tn)
)}

,

and the log likelihood function is given by

`(θθθ ; ttt) =
n

∑
i=1

[
log
(

λ1(ti)− (1−ρ)λ1(ti−1)
)
+

−Λ1(ti)+Λ1(ti−1)+(1−ρ)(ti − ti−1)λ1(ti−1)
]
+

−Λ1(T )+Λ1(tn)+(1−ρ)(T − tn)λ1(tn),
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∙ Failure truncation

Considering a failure truncation approach, the likelihood function representation for
the parameter vector, θθθ , given the observed failure times ttt = (t0, t1, . . . , tn), with t0 = 0,
should consider the random pattern of failure times, and the number of failures as a
fixed amount. Like this,

L(θθθ ; ttt) = f (t1 | t0) f (t2 | t1) · · · f (tn | t1, t2, . . . , tn−1,n).

The terms f (ti | t0, . . . , ti−1), with i = 1, . . . ,n, are obtained analogously to the situation
built in the context of time truncation. Thus, the likelihood function, considering the
intensity function of the ARI 1 model, in a failure truncation context, is given by

L(θθθ ; ttt) =
n

∏
i=1

[
λ1(ti)− (1−ρ)λ1(ti−1)

]
×

× exp
{
−
(

Λ1(ti)−Λ1(ti−1)− (1−ρ)(ti − ti−1)λ1(ti−1)
)}

,

and the log likelihood function is given by

`(θθθ ; ttt) =
n

∑
i=1

log
[

λ1(ti)− (1−ρ)λ1(ti−1)
]
+

−Λ1(ti)+Λ1(ti−1)− (1−ρ)(ti − ti−1)λ1(ti−1),

2.2.5.2 ARA Model

Another approach to addressing the effect of an IR action is to reduce the system’s
age by a time proportional to the operating time until the immediately preceding repair action.
In this context, the system age is determined based on the concept of virtual age.

The idea behind this model, established by Malik (1979), considers that the conditional
ROCOF function right after the first repair action is given by

λ (t1+|ℋt1+) = λ1(t1 −ν),

where t1 −ν denotes the new age (the virtual age) of the system. At the time of the second
failure, the conditional ROCOF function is given by λ (t2+|ℋt2+) = λ1(t2 − 2ν). At a given
time t, the function is given by λ (t|ℋt) = λ1(t −N(t)ν). It is also possible to consider that ν

is a function of the process history, so

λ (t|ℋt) = λ1

(
t −

N(t)

∑
i=1

ν(i, t1, . . . , ti)

)
,

Some time later, Doyen and Gaudoin (2004) presented the idea of a proportional
reduction in age of the system, based on age immediately before the repair action. Thus, we
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define the ARA with infinite memory model (ARA∞), whose conditional ROCOF function is
given by

λ (t|ℋt) = λ1

(
t − (1−ρ)

N(t)

∑
i=1

ρ
itN(t)−i

)
.

In this model, when ρ = 1, one has that λ (t|ℋt)= λ1(t), that is, the model particularizes
in an NHPP. On the other hand, when ρ = 0, one has to λ (t|ℋt)= λ1(t−tN(t)), which represents
a repair action that leads to a condition of “as good as new”, that is, a PR . Therefore, the
NHPP and the renewal process are particular cases of the ARA ∞ model.

The model introduced by Malik (1979) assumes that the repair action performed at
time ti reduces the last operating time from ti − ti−1 to a proportional amount of that time,
that is, (1−ρ)(ti − ti−1), where 0 ≤ ρ ≤ 1. The conditional ROCOF function associated with
this approach is given by

λ (t|ℋt) = λ1(t − (1−ρ) tN(t)), (2.2)

and the minimum wear intensity is equal to λ1(ρ t). This model is called ARA with memory
one model (ARA1).

MR1 MR2 MR3 MR4

0 T1 T2 T3 T4

t

λ(
t |

 H
 t)

Figure 12 – Conditional ROCOF for ARA 1 model for time failures T1,T2,T3,T4 and ρ = ρ0. In upper
dashed line, the function λ1(t) and in lower dashed line, the function λmin(t).

Similarly to the model ARA m, it is also possible to define the ARA with memory m

(ARAm), in this context, the conditional ROCOF function is given by

λ (t|ℋt) = λ1

(
t − (1−ρ)

min(m−1,N(t))

∑
i=1

ρ
itN(t)−i

)
,

and the minimum wear intensity is of the form

λmin(t) = λ1(ρ
mt).
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2.2.5.2.1 Parametric Likelihood Function in ARA Model

Determination of the likelihood function is obtained analogously to the Section 2.2.3.3,
however, the new definition of the intensity function should be considered.

∙ Truncation by time

Consider the situation in which the failures of a given repairable system are monitored
until a predetermined time T . In this context, the representation of the likelihood function
for the parameter vector, θθθ , considering the observed time failures ttt = (t0, t1, . . . , tn),
where tn < T and t0 = 0, should consider the random behavior of time as well as the
number of failures N(T ). Like this

L(θθθ ; ttt) = f (t1 | t0) f (t2 | t1) · · · f (tn | t1, t2, . . . , tn−1,n)Pr(N(T ) = n).

To approximate a term of the form f (ti | t0, . . . , ti−1), where i = 1, . . . ,n, we must keep
in mind that

f (ti | t0, . . . , ti−1) =
d

dti

[
1−R(ti | t0, . . . , ti−1)

]
=

d
dti

[
1−Pr(Ti > ti | t0, . . . , ti−1)

]
*
=

d
dti

[
1−Pr(Ti > ti | ti−1)

]
=

d
dti

[
1−Pr(N(ti)−N(ti−1) = 0)

]
=

d
dti

[
1− exp

{
−
(

Λ(ti)−Λ(ti−1)
)} ]

**
=

d
dti

[
1− exp

{
−
(

Λ1(ti − (1−ρ) ti−1)−Λ1(ρ ti−1)
)} ]

= λ1(ti − (1−ρ) ti−1)exp
{
−
(

Λ1(ti − (1−ρ) ti−1)−Λ1(ρ ti−1)
)}

,

where the step marked with * uses the assumption of independent increments, and the
step highlighted with ** uses the definition of the intensity function of the ARA 1 model,
show in (2.2).

Similarly, for the term Pr(N(t) = n | t1, t2, . . . , tn), we have

Pr(N(T ) = n | tn) = Pr(N(T )−N(tn) = 0)

= exp
{
−
(

Λ(T )−Λ(tn)
)}

= exp
{
−
(

Λ1(T − (1−ρ) tn)−Λ1(ρ tn)
)}

.
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Thus, the likelihood function considering the intensity function of a ARA 1 model has
the form

L(θθθ ; ttt) =
n

∏
i=1

λ1(ti − (1−ρ) ti−1)exp
{
−
(

Λ1(ti − (1−ρ) ti−1)−Λ1(ρ ti−1)
)}

×

× exp
{
−
(

Λ1(T − (1−ρ) tn)−Λ1(ρ tn)
)}

,

and the log likelihood function is given by

`(θθθ ; ttt) =
n

∑
i=1

[
log
(

λ1(ti − (1−ρ) ti−1)
)
−Λ1(ti − (1−ρ) ti−1)+Λ1(ρ ti−1)

]
+

−Λ1(T − (1−ρ) tn)+Λ1(ρ tn),

∙ Failure truncation

In this context, the system is monitored until a fixed number of failures. Thus, the
likelihood function representation for the parameter vector θθθ , considering the observed
failure times ttt = (t0, t1, . . . , tn), where t0 = 0, should consider the random behavior of
times to failure, however, the number of failures is a fixed amount. Thus,

L(θθθ ; ttt) = f (t1 | t0) f (t2 | t1) · · · f (tn | t1, t2, . . . , tn−1,n).

The approximation of the term f (ti | t0, . . . , ti−1), where i = 1, . . . ,n, is analogous to that
given in the situation of a time truncation. Thus, the likelihood function considering the
intensity function of a ARA 1 model, and a failure truncation context, has the form

L(θθθ ; ttt) =
n

∏
i=1

λ1(ti − (1−ρ) ti−1)exp
{
−
(

Λ1(ti − (1−ρ) ti−1)−Λ1(ρ ti−1)
)}

,

and the log likelihood function is given by

`(θθθ ; ttt) =
n

∑
i=1

[
logλ1(ti − (1−ρ) ti−1)−Λ1(ti − (1−ρ) ti−1)+Λ1(ρ ti−1)

]
,

2.3 Competing Risks Model
Practical situations often admit numerous causes that compete to originate a particular

event under study. Such a context is formalized mathematically and statistically with Competing
Risk Theory.

A common strategy is to assume p failure modes, which at each failure are denoted by
δ (t) = j, for j = 1, . . . , p (we suppress the explicit dependence call δ (t) = δ on failure time
t for brevity). Thus, if n failures are observed in the time interval (0,T ], then we have the
data (t1,δ1), . . . ,(tn,δn), where 0 < t1 < · · ·< tn < T are the system failure times, and the δi’s
indicate the j-th failure mode associated with the i-th failure time, for i = 1, . . . ,n.
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The counting process N j(t) with behavior according to the cause-specific intensity
function

λ j(t;δ ) = lim
τ→0

Pr(δ = j,N j(t + τ)−N j(t) = 1|ℋ jt)

τ
.

Consequently, N(t) = ∑
p
j=1 N j(t), which is the global system failure counting process, can be

seen as a superposition process whose intensity function is given by

λ (t;δ ) =
p

∑
j=1

λ j(t;δ ).

The corresponding cause-specific and overall cumulative intensities are given, respectively, by

Λ j(T ) =
T∫

0

λ j(u;δ ) du and Λ(T ) =
p

∑
j=1

Λ j(T ).

2.4 Frailty Model
A well-known approach with fragility models was introduced by Vaupel, Manton and

Stallard (1979), it is the direct extension of the Cox models introduced by Cox (1972). For a
long time, research in fragility turned to the medical and reliability area, which had unobserved
heterogeneity that could not be explained by Cox’s model. A frailty term in the model can
denote the influence of any ill-specified effect or whose verification could not be carried out, in
other words, it is a latent effect. Commonly, frailty models are presented in multiplicative form,
as a positive value that inflates, deflates or preserves the intensity function that describes the
model (WIENKE, 2010; ANDERSEN et al., 1996; HOUGAARD, 1995).

In the perspective of a study with several repairable systems, although the reliability
of the systems have the same default behavior, there may be unobservable factors that all
systems are subject to, but which influence their respective behaviors individually. So, to
considere this unobserved heterogeneity, we consider a frailty model. This model is defined
by the conditioned versions of the intensity, accumulated intensity and reliability functions,
generically and respectively expressed by

λ (t |z) = zλ (t), Λ(t |z) = zΛ(t) and R(t |z) = e−Λ(t)z,

where z denotes the frailty term, that inflates (when z > 1), deflates (z < 1) or preserves (z = 1)
the failure intensity function.

Commonly, the probability model adopted for the random variable Z, whose realizations
are the frailty terms, is the Gamma model, although this is an arbitrary choice as stated by
Slimacek and Lindqvist (2016). In particular, the parameterization Gamma(1/α,1/α) is used,
whose probability density function is expressed by

f (z) =
(1/α)1/α

Γ(1/α)
z1/α−1e−(1/α)z,
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where E(z) = 1 and Var(z) = α . This avoids the inclusion of an identifiability problem in the
model and also brings the possibility of interpreting unobserved heterogeneity based on the
parameter α (ELBERS; RIDDER, 1982).

Based on this construction, we can find the marginal reliability function for failure times
using the Laplace transform, since the reliability R(t) is expressed by

R(t) =
∫

∞

0
R(t|z) f (z)dz =

∫
∞

0
e−Λ(t)z f (z)dz,

and integrals written in this way have a well-known Laplace transform, given by Q(Λ(t)) =

(1+αΛ(t))−1/α and can be used to solve this problem (WIENKE, 2010). In this sense

λ (t) =
1

Q(Λ(t))
d
dt

[
Q(Λ(t))

]
, Λ(t) =− log Q(Λ(t)) and R(t) = Q(Λ(t)),

and so,

λ (t)=− λ (t)
1+αΛ(t)

, Λ(t)=− log
[(

1+αΛ(t)
)−1/α ] and R(t)= (1+αΛ(t))−1/α ,

The value of α represents the variance of the random variable Z and, therefore, brings
indications of the existence of unobserved effects that could significantly affect the intensity of
failures, making some systems more susceptible to failures than others.
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CHAPTER

3
A REPAIRABLE SYSTEM SUBJECTED TO

HIERARCHICAL COMPETING RISKS:
MODELING AND APPLICATIONS

In this chapter, we propose modeling for a single repairable system with a hierarchical
structure under the assumption that the failures follow a NHPP (see 2.2.3) with a power-law
intensity function (see 2.2.3.4.1). The properties of the new model are discussed in detail. The
parameter estimators are obtained using the maximum likelihood method. A corrective approach
is used to remove bias with order O(n−1), and the respective exact confidence intervals are
proposed. A simulation study is conducted to show that our estimators are bias-free. The
proposed modeling is illustrated via a toy example on a butterfly valve system, an example of
an early-stage real project related to the traction system of an in-pipe robot, and also a real
example on a blowout preventer system.
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3.1 The Proposed Framework
A major challenge when modeling repairable system data is how to consider the effect

of a repair action taken immediately after a failure has occurred. It is usually supposed, for the
sake of simplicity, that the repair actions are instantaneous. However, it is not suitable for many
real systems. Therefore, the most investigated assumptions are either minimal or perfect repair
at failures. In the former, it is assumed that the repair action after a failure restores the system
(i.e., the intensity) to the same state as it was before the failure, e.g., by replacing a failed
minor component (flat tire) of a large composite system (car); while in the latter, the repair
action leaves the system as if it was new, e.g., via replacement of a failed system (an engine
with a broken connecting rod) by a brand new one (WANG; PHAM, 2006). According to the
engineering literature, these repair or maintenance actions are often called ABAO and AGAN,
respectively (Aven (1983), Barlow and Hunter (1960), Aven and Jensen (2000), Finkelstein
(2004), Mazzuchi and Soyer (1996)). However, more complex models suppose that the repair
effect lies between ABAO and AGAN (i.e., the failure intensity is reduced to a level between
ABAO and AGAN). These models are known as IR models, but they are not considered here
(see, e.g., Doyen and Gaudoin (2004)).

3.1.1 MR Model

The repairable system model for the failure data will be implemented according to
NHPP under the assumption of MR. Furthermore, based on the time truncation design, the
likelihood and corresponding log-likelihood function for a collection of failure data up to time
T , are expressed as

L(β ,µ | n, ttt) =
β n

µnβ

(
n

∏
i=1

ti

)β−1

exp

{
−
(

T
µ

)β
}
,

and
`(β ,µ | n, ttt) = n log(β )+(β −1)

n

∑
i=1

log(ti)−
(

T
µ

)β

−nβ log(µ),

respectively, where we assume that for n≥ 1, failures are observed at times t1 < t2 < · · ·< tn < T

(see, e.g., Rigdon and Basu (2000)). The MLE of β and µ, which are both biased, can be
written as

β̂ =
n

∑
n
i=1 log

(
T
ti

) and µ̂ =
T

n1/β̂
. (3.1)
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Since the MLE (3.1) suffer from bias, and inadequate confidence intervals for small
samples, several studies have been performed to overcome these drawbacks. Some further
discussions are given in Section 3.4.

There is always a concern about how to determine the confidence intervals under the
classical inference. For the sake of illustration, Rigdon and Basu (2000) present the confidence
interval for the scale parameter. The results showed that such an interval has no simple
interpretation. Moreover, the authors found that the usual methodologies result in very long
intervals. In turn, in some cases, the pivotal quantity, which is used to derive the aforementioned
classical intervals, does not exist, or it is difficult to be obtained.

Bain (2017) extensively investigated confidence intervals for the scale parameter. The
outcome of their research has shown that due to the non-existence of the pivotal quantity in
the setting of time truncated data, finding confidence intervals for the scale parameter becomes
difficult. Despite the extensive efforts, in most cases, the approaches still have limitations. For
instance, Gaudoin, Yang and Xie (2006) studied the interval estimation for the scale parameter
according to the PLP model. They used the Fisher information matrix to derive asymptotic
confidence intervals, while several constraints have been reported on their results. Wang, Xie
and Zhou (2013) considered a more sophisticated approach to obtain a generalized confidence
interval for the scale parameter under some usual assumptions. Furthermore, Somboonsavatdee
and Sen (2015) have shown methods to obtain the frequentist confidence intervals for the
scale parameter under competing risks.

Oliveira, Colosimo and Gilardoni (2012) suggested reparametrizing the PLP intensity in
terms of β and α , where

α = E(N(T )) =
(

T
µ

)β

.

In this case, the likelihood function is given by

L(β ,α | n, ttt) = β
ne−nβ/β̂

α
ne−α

n

∏
i=1

1
ti

∝ γ

(
β | n+1,

n

β̂

)
γ (α | n+1,1) ,

where γ(x|a,b) = baxa−1e−bx/Γ(a), for x,a,b > 0, is the probability density function of a
gamma distribution with shape parameter a and scale parameter b. It is worth mentioning that
β and α are orthogonal parameters, which play an important role for Bayesian inference (see,
e.g., Cox and Reid (1987)).

3.1.2 Competing Risks

In reliability theory, the most commonly used system configurations are series, parallel,
and series-parallel. Particularly, components in a series system are connected so that the failure
of one of all components results in the system failure. For example, Figure 13 illustrates the
Fault Tree Analysis (FTA) of the system 1, . . . , p. A series system is known as a competing
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risks model because its failure can be classified as one of the p possible risks (or failure modes),
which compete with each other to occur first and cause the system failure. Competing risks can
provide a complete analysis of the probabilistic behavior of failures as many other methodologies
presented in the literature. However, competing risks has an additional feature addressing
not only failure times but also their causes through a pair of observations. Furthermore, the
competing risks model involves the pair of observations (t,δ ), where t > 0 denotes the failure
time, while δ is the indicator of the component that failed.

In order to understand the competing risks framework for investigating repairable
systems, a single system would be to consider successive failures at calendar time 0 < t1 <

.. . < tn < T . Let us suppose that failures happen from an underlying competing risks structure,
meaning that the system fails by the earliest occurrence of one of p exclusive failure modes.
In this case, it is generally possible to observe the failure mode δ (ti) at the failure time ti.
And for the system level, let us denote {N(t), t > 0} the cumulative failure counter. In fact,
if N j(t) represents the counting process corresponding to the j-th failure mode, it is easy to
demonstrate that N(t) = ∑

p
j=1 N j(t). The cause-specific intensity function of this process is

λ j (t;δ (t)) = lim
∆t→0

P(δ (t) = j,N(t +∆t)−N(t) = 1 | N(s),0 ≤ s ≤ t)
∆t

, (3.2)

for j = 1, . . . , p.

According to equation (3.2), the time and the failure mode are stochastically independent
if and only if λ1(t), . . . ,λp(t) are proportional to each other, giving a simple extension of a
similar result from the competing risks literature in failure time modeling of non-repairable
systems.

As pointed out by many works in the literature, complex repairable systems are mostly
considered under the assumption of stochastic independence, which is based on the physically
independent functioning of components (see, e.g., Yusof and Abdullah (2016), Crowder (2001),
Høyland and Rausand (2009) and Wu and Scarf (2017)). It is essential to mention that
the results exposed here is also based on this common assumption of independent risks, or
equivalently, independent failure modes.

3.1.3 Modeling MR under Competing Risks

Let us assume that the system is observed up to time T , and that the adopted model
is reparametrized in terms of β j and

α j = E[N j(T )] =
(

T
µ j

)β j

,

where N j(.) is the j-th cause-specific counting process, for j = 1, . . . , p. This implies that β j

and α j are orthogonal parameters.
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A common strategy is to assume that the components of the repairable system under
investigation can implement different operations, which are subject to different kinds of failure.
Let us consider p failure modes, which at each failure are denoted by δ (t) = j, for j = 1, . . . , p

(in the sequel, we will suppress the explicit dependence of δ on failure time t for brevity). Thus,
if n failures are observed in the time interval (0,T ], then we have the data (t1,δ1), . . . ,(tn,δn),
where 0 < t1 < · · ·< tn < T are the system failure times, and the δi’s indicate the j-th failure
mode associated with the i-th failure time, for i = 1, . . . ,n.

Let us consider again the counting process N j(t) with behavior according to the
cause-specific intensity function

λ j(t;δ ) = lim
∆t→0

P(δ = j,N(t, t +∆t]≥ 1)
∆t

.

Consequently, N(t) = ∑
p
j=1 N j(t), which is the global system failure counting process, can be

seen as a superposition of NHPPs whose intensity function is given by

λ (t;δ ) =
p

∑
j=1

λ j(t;δ ).

The corresponding cause-specific and overall cumulative intensities are given, respectively, by

Λ j(T ) =
T∫

0

λ j(u;δ ) du and Λ(T ) =
p

∑
j=1

Λ j(T ).

Under the assumption that the failures from the j-th cause follow a NHPP with
power-law intensity function, we can write the cause-specific intensities as

λ j(t;δ ) =

(
β j

µ j

)(
t

µ j

)β j−1

,

and
Λ j(T ) =

(
T
µ j

)β j

= E(N j(T )),

for j = 1, . . . , p.

3.2 The Proposed Model – Hierarchical Competing Risks
Model

In this section, we propose to analyze failure data representing events from a single
repairable system studied under the parametric framework of a PLP that is subject to hierarchical
competing risks. It consists of a generalization of the work done by Somboonsavatdee and Sen
(2015) for the cases where there is the presence of secondary failure causes (sub-systems or sub-
trees’ branches), as illustrated in Figure 13. The hierarchical competing risks problem/structure
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can also be represented by a block diagram showing a nested series system, where the sub-
systems (and also the systems) are connected in such a way that the failure of a single
sub-system (or component) results in the corresponding system failure and, consequently, in
the whole system failure (see Figure 14).
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Figure 13 – The general system structure (FTA) considering our proposed hierarchical competing
risks model.

1 2 3

1.1 1.2 2.1 2.2 2.3 3.1 3.2

Figure 14 – Block diagram for a nested series system with 2, 3 and 2 series sub-systems (or compo-
nents) within series systems 1, 2 and 3, respectively.

The hierarchical competing risks model’s data consist of 3-tuples (t,δ ,ψ), where t > 0
denotes the failure time, δ is the indicator of the leading failure cause (system), and ψ is the
indicator of the sub-cause (sub-system).

Then, our proposed model for failure analysis can be formulated as follows. First, we
assume that the failures from a sub-system k of a system j follow an NHPP with intensity
function given by

λ jk(t;δ ,ψ) =

(
β jk

µ jk

)(
t

µ jk

)β jk−1

, (3.3)
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for j = 1, . . . , p, and k = 1, . . . ,n j, with n j being the number of sub-systems for the j-th system;
µ jk > 0 and β jk > 0 are, respectively, the scale and shape parameters.

It follows that

λ (t) =
p

∑
j=1

n j

∑
k=1

λ jk(t;δ ,ψ), (3.4)

is the hazard function at time t. The sub-system-specific cumulative intensity is

Λ jk(T ) =
(

T
µ jk

)β jk

. (3.5)

Here, we assumed that the failure causes related to the sub-systems are independent,
therefore we expect that the failures may occur at different times. Nevertheless, if the failure
of two or more sub-systems happens occasionally at the same time, the sub-system-specific
cumulative intensity for each sub-system can be calculated from (3.5), hence the intensity
function (3.4) can be computed in the presence of multiple failures at the same time.

It is seen from (3.4) that Λ(T ) = ∑
p
j=1 ∑

n j
k=1 Λ jk(T ) is the cumulative hazard function

at time T . Thus, we have that the reliability function is given by

R(T ) = exp{−Λ(T )}= exp

{
−

p

∑
j=1

n j

∑
k=1

Λ jk(T )

}
, (3.6)

while the sub-system-specific reliability function is

R jk(T ) = exp
{
−Λ jk(T )

}
. (3.7)

Then, similarly as in Section 3.1.3, we consider that the sub-system’s lifetime is observed
up to time T and we reparametrize our model in terms of β jk and

α jk = E[N jk(T )] =
(

T
µ jk

)β jk

, (3.8)

where N jk(.) is the j-th system and k-th sub-system-specific counting process.

3.3 Inference
In this section, we describe classical inference for the model that we introduced in

Section 3.2. The MLE and Fisher information matrix, which is used for estimating the asymptotic
variances of the MLE, are presented here.

Given the common (but sometimes unrealistic1) assumption that the failure modes act
independently and are mutually exclusive, the classical inference for the proposed model is
1 As pointed out by Meeker and Escobar (2014), it is possible that the failure of one component

may either degrade or improve the reliability of other components, thus leading to either a positive
or negative correlation between failure times in different system’s components. Moreover, when
this dependence exists, it is usually positive, since short (long) failure times of one mode tend to
go with short (long) failure times of another.
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conducted using the likelihood function, or equivalently, the log-likelihood function, which are
defined, respectively, as follows:

L(φφφ | ttt,δδδ ,ψψψ) =
n

∏
i=1

p

∏
j=1

n j

∏
k=1

[λ jk(ti;δi,ψi)]
I(δi= j,ψi=k) exp

{
−

p

∑
j=1

n j

∑
k=1

Λ jk(T )

}
, (3.9)

and

`(φφφ | ttt,δδδ ,ψψψ) =
n

∑
i=1

p

∑
j=1

n j

∑
k=1

I(δi = j,ψi = k) log
(
λ jk(ti;δi,ψi)

)
−

p

∑
j=1

n j

∑
k=1

Λ jk(T ), (3.10)

where φφφ =
(
β11, . . . ,βpnp,α11, . . . ,αpnp

)
denotes the general parameter vector; λ jk(ti;δi,ψi) and

Λ jk(T ) are given by (3.3) and (3.5), respectively; and I(δi = j,ψi = k) is an indicator function.
Before going further, it is important to mention again that our model is a generalization of
the work by Somboonsavatdee and Sen (2015), which estimates the PLP in the presence of
competing risks. However, our model has an additional hierarchical structure, and thus the
proposed estimators require a comprehensive investigation to be performed.

The MLE can be obtained by maximizing the log-likelihood function (3.10). After some
algebraic manipulation, such estimators can be written as

β̂ jk =
n jk

∑
n
i=1 log

(
T
ti

)
I(δi = j,ψi = k)

, (3.11)

and

α̂ jk = n jk, (3.12)

where n jk denotes the total number of failures due to the subcause k of the major cause j.

Since from (3.8), E(N jk(T )) = α jk, we have that the Fisher information matrix can be
expressed as

I(φφφ) =



Iβββ 1
(φφφ) 0

. . .

0 Iβββ p
(φφφ)

0

0
Iααα1(φφφ) 0

. . .

0 Iααα p(φφφ)


,

where, for each j = 1, . . . , p,
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Iβββ j
(φφφ) =


α j1

β 2
j1

0 0

0 . . . 0

0 0
α jn j

β 2
jn j

 and Iααα j(φφφ) =


1

α j1
0 0

0 . . . 0

0 0
1

α jn j

 .

I(φφφ) is a κ ×κ diagonal matrix, with κ = 2∑
p
j=1 j×n j. The MLE have a closed-form expression

and unique solution, consequently from the Central Limit Theorem, they are asymptotically
normally distributed with a multivariate normal distribution, which can be given by

φ̂φφ ∼ Nκ(φφφ , I−1(φφφ)) as n jk → ∞. (3.13)

3.3.1 Simulation Study

We conducted a simulation study to investigate the consistency and efficiency of the
MLE presented in equations (3.11) and (3.12). To that end, we used two criteria: the Bias and
Mean Square Error (MSE), which are given, respectively, by

Bias(φ̂w) =
1
M

M

∑
m=1

(
φ̂
(m)
w −φw

)
,

and

MSE(φ̂w) =
1
M

M

∑
m=1

(
φ̂
(m)
w −φw

)2
,

for w = 1, . . . ,κ , where M = 50,000 is the number of Monte Carlo replications and

φφφ = (φ1, . . . ,φκ) =
(
β11, . . . ,βpnp,α11, . . . ,αpnp

)
represents the parameter vector. Moreover, φ̂

(m)
w denotes the MLE of φw obtained from sample

m, for m = 1, . . . ,M.

By this approach, it is expected that good estimators have both bias and MSE close to
zero. In turn, reasonable confidence intervals, which are produced here using the asymptotic
normality of the MLE (as given in equation (3.13)), are expected to be short with Coverage
Probabilities (CP) close to the nominal value of 95%. In this work, all computations and
simulations were performed using the R software (R Core Team, 2019).

In what follows, we present the results for the simulation study. Due to space constraints,
the results are reported only for these six scenarios (Table 1). However, similar findings are
obtained for other parameter choices.
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Table 1 – Six different scenarios with different parameter values in order to yield distinct sample sizes.
A single system subject to 2 failure causes each with 3 sub-causes (Scenarios 1, 2 and 3),
or 3 failure causes with 2, 3 and 2 sub-causes, respectively (Scenarios 4, 5 and 6), both
under the assumption that the component system is observed in the fixed time interval
(0,T ], where T = 20.

Cause and
Sub-cause

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

α β α β α β α β α β α β

1.1 3.30 0.80 14.56 1.20 10.92 1.20 8.00 2.00 4.39 0.80 8.00 2.00
1.2 2.23 0.50 10.37 0.90 13.49 1.10 4.97 0.40 8.24 0.80 40.48 1.10
1.3 7.00 1.00 12.00 1.00 12.74 1.20 — — — — — —
2.1 4.00 1.00 4.00 1.00 17.89 1.50 12.07 0.60 9.05 0.60 72.82 1.20
2.2 2.00 1.00 20.00 2.00 21.97 1.80 12.21 0.70 4.67 0.30 40.48 1.10
2.3 2.00 1.10 10.92 1.20 12.07 1.60 8.94 1.50 8.10 1.10 8.94 1.50
3.1 — — — — — — 9.94 0.40 8.94 0.50 80.96 1.10
3.2 — — — — — — 7.69 0.80 7.37 1.30 25.49 1.20

By considering the well-known results regarding NHPPs (RIGDON; BASU, 2000), and
also from the assumption that the failure modes are independent, we can generate the failure
times, for each Monte Carlo replication, according to the following steps.

Data: p

n1, . . . ,np

ααα = (α11, . . . ,α1n1, . . . ,α jn j , . . . ,αp1, . . . ,αpnp)

βββ = (β11, . . . ,β1n1 , . . . ,β jn j , . . . ,βp1, . . . ,βpnp)

Result: {(ttt,δδδ ,ψψψ)}= {(t111,1,1), . . . ,(tni jk , j,k), . . . ,(tnpnp pnp, p,np)}
for j := 1 to p do

for k := 1 to n j do
n jk ∼ Poisson(α jk)

for i := 1 to n jk do
Ui jk ∼ Uniform(0,1)
ti jk = T U

1/β jk
i jk

δi jk = j

ψi jk = k
end

end
end

Algorithm 1: How to generate the failure times.

As shown in Tables 2 and 3, the bias of the MLE varies depending on the α jk parameter
values, i.e., the mean number of failures. If the values of α jk are small, the bias of β̂ jk is
considerably higher than expected, as well as the MSEs. This result is due to the systematic
bias that the MLE of β jk possesses. On the other hand, the maximum likelihood estimates of
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the α jks are close to the true values, which is expected since α̂ jk is an unbiased estimator of
α jk. Note also that while the CP of the nominally 95% confidence intervals (CP95%) for the
β jks seem to be satisfactory (i.e., they are close to 0.95), the CP95% for the α jks are far from
the assumed levels. This difference may occur because we are considering that the asymptotic
normality of the MLE was achieved. However, this may not be true, returning inadequate
confidence intervals. In order to overcome such a problem, in the next section, we will discuss
an improved estimator for β jk, as well as exact confidence intervals for both α jk and β jk.

Table 2 – Bias, MSE and CP95% from the MLE, considering different parameter values (Scenarios 1,
2 and 3) and M = 50,000 simulated samples.

Parameter Scenario 1 Scenario 2 Scenario 3

Bias MSE CP95% Bias MSE CP95% Bias MSE CP95%

α11 0.485 1.642 0.998 −0.015 3.815 0.945 −0.007 3.302 0.908
β11 0.408 2.430 0.955 0.099 0.406 0.955 0.144 0.579 0.955
α12 0.813 1.425 0.997 0.022 3.220 0.936 −0.004 3.663 0.948
β12 0.327 1.349 0.953 0.112 0.409 0.955 0.098 0.394 0.955
α13 0.053 2.611 0.919 0.008 3.450 0.944 −0.003 3.557 0.927
β13 0.214 0.841 0.956 0.102 0.407 0.954 0.115 0.459 0.954
α21 0.325 1.829 0.997 0.325 1.822 0.997 −0.033 4.217 0.932
β21 0.420 1.608 0.955 0.436 1.874 0.955 0.095 0.431 0.954
α22 0.900 1.404 0.998 0.005 4.494 0.946 0.024 4.692 0.942
β22 0.692 3.120 0.953 0.109 0.527 0.952 0.091 0.452 0.950
α23 0.659 1.509 0.997 −0.012 3.284 0.910 −0.022 3.467 0.948
β23 0.625 2.596 0.952 0.138 0.531 0.953 0.165 0.650 0.954

Table 3 – Bias, MSE and CP95% from the MLE, considering different parameter values (Scenarios 4,
5 and 6) and M = 50,000 simulated samples.

Parameter Scenario 4 Scenario 5 Scenario 6

Bias MSE CP95% Bias MSE CP95% Bias MSE CP95%

α11 0.019 2.799 0.894 0.265 1.953 0.993 0.011 2.808 0.893
β11 0.349 1.316 0.955 0.308 1.193 0.956 0.346 1.263 0.954
α12 0.172 2.109 0.904 0.016 2.854 0.909 0.008 6.325 0.953
β12 0.135 0.550 0.955 0.137 0.537 0.955 0.029 0.188 0.952
α21 −0.020 3.480 0.948 −0.004 3.005 0.941 0.058 8.484 0.951
β21 0.061 0.239 0.955 0.095 1.111 0.956 0.017 0.146 0.951
α22 −0.019 3.488 0.910 0.217 2.019 0.996 0.017 6.396 0.950
β22 0.071 0.279 0.956 0.105 0.377 0.954 0.028 0.186 0.951
α23 0.033 2.958 0.942 0.024 2.828 0.900 −0.006 2.980 0.938
β23 0.225 0.863 0.956 0.190 0.868 0.956 0.228 0.879 0.956
α31 −0.014 3.146 0.923 −0.015 2.981 0.939 −0.009 8.978 0.944
β31 0.053 0.205 0.955 0.079 0.432 0.957 0.013 0.126 0.952
α32 0.019 2.747 0.945 0.042 2.683 0.931 −0.005 5.028 0.938
β32 0.153 0.705 0.956 0.262 0.942 0.957 0.052 0.270 0.951
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3.4 Bias Correction and Improved Confidence Intervals
Cox and Snell (1968) showed that, when the sample data are independent (although

not necessarily identically distributed), the bias of φ̂w, for w = 1, . . . ,κ , can be written as

Bias(φ̂w) =
κ

∑
i=1

κ

∑
j=1

κ

∑
l=1

swi(φφφ)s jl(φφφ)
(
hi j,l(φφφ)+0.5hi jl(φφφ)

)
+O(n−2), (3.14)

where si j is the (i, j)-th element of the variance-covariance matrix of φ̂φφ ,

hi jl(φφφ) = E
[

∂ 3 logL(φφφ)
∂φi∂φ j∂φl

]
,

and
hi j,l(φφφ) = E

[
∂ 2 logL(φφφ)

∂φi∂φ j
· ∂ logL(φφφ)

∂φl

]
,

for i, j, l = 1, . . . ,κ .

Cordeiro and Klein (1994) proved that, even when the data are dependent, the bias
expression (3.14) can be rewritten as

Bias(φ̂w) =
κ

∑
i=1

swi(φφφ)
κ

∑
j=1

κ

∑
l=1

s jl(φφφ)
(

h(l)i j (φφφ)−0.5hi jl(φφφ)
)
+O(n−2),

where
h(l)i j (φφφ) =

∂hi j(φφφ)

∂φl
, for i, j, l = 1, . . . ,κ.

Firth (1993) showed that the first-order term is removed from the asymptotic bias
of the MLE by considering the Jeffreys prior (JEFFREYS, 1946) as a penalty function in
the likelihood equation for the exponential family of distributions. The Jeffreys prior can be
obtained as the square root of the determinant of the expected Fisher information matrix I(φφφ).
Thus, it follows from equation (??) that

π
J(φφφ) ∝ |I(φφφ)|1/2

=

∣∣∣∣∣Diag

(
α11

β 2
11
, . . . ,

α1n1

β 2
1n1

, . . . ,
1

αp1
, . . . ,

1
αpnp

)∣∣∣∣∣
1/2

=
p

∏
j=1

n j

∏
k=1

1
β jk

. (3.15)

Note that after some algebraic manipulation, the likelihood function (3.9) can be
rewritten as

L(φφφ | ttt,δδδ ,ψψψ) ∝

p

∏
j=1

n j

∏
k=1

γ(β jk | n jk +1,n jk/β̂ jk)γ(α jk | n jk +1,1).
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The marginal distribution for each parameter is independent of the other parameters.
Moreover, since the marginals follow a gamma distribution, they belong to the exponential
family of distributions. Hence, the approach proposed by Firth (1993) is valid for our hierarchical
competing risks model. The penalized log-likelihood function using the Jeffreys prior (3.15) as
a penalized criterion can be written as

LP(φφφ | ttt,δδδ ,ψψψ) ∝

p

∏
j=1

n j

∏
k=1

γ(β jk | n jk,n jk/β̂ jk)γ(α jk | n jk +1,1),

Then, with some algebraic manipulation, we obtain the Bias-Corrected MLE (CMLE)
given by

β̃ jk =
n jk −1

n jk
β̂ jk, (3.16)

and

α̃ jk = α̂ jk, (3.17)

which are unbiased to O(n−1
jk ). Although the penalized likelihood method introduced by Firth

(1993) only ensures that the first-order term is removed from the asymptotic bias, we have that

E
[
β̃ jk | ttt,δδδ ,ψψψ

]
= β jk,

and

E
[
α̃ jk | ttt,δδδ ,ψψψ

]
= α jk.

Therefore, the obtained CMLE are unbiased for n jk > 1.

As we observed from the simulation results presented in Section 4.4, the asymptotic
confidence intervals are not satisfactory for small samples. Using the improved estimates in the
estimators of the asymptotic variance, which are used to obtain the confidence intervals, will
return the worst results in terms of CPs than obtained with the MLE. On the other hand, by
observing that

LP(α jk | ttt,δδδ ,ψψψ) =
α

n jk
jk e−α jk

n jk!
,

i.e., α jk ∼ Erlang(n jk +1,1), then 2α jk ∼ χ2
2(n jk+1). Therefore, the 100(1− ξ )% confidence

interval for α jk can be calculated as[
1
2

χ
2
2n jk+2;ξ/2 ;

1
2

χ
2
2n jk+2;1−ξ/2

]
, (3.18)

where χ2
a;υ represents the 100υ-th percentile of the chi-square distribution with a degrees of

freedom.
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Furthermore we have that the 100(1−ξ )% confidence interval for β jk. Since

LP(β jk | ttt,δδδ ,ψψψ) = γ

(
β jk

∣∣∣ n jk,
n jk

β̂ jk

)
,

can be obtained directly from the quantile function of the gamma distribution, that is,

[
γQ

(
n jk,

n jk

β̂ jk
;

ξ

2

)
; γQ

(
n jk,

n jk

β̂ jk
; 1− ξ

2

)]
, (3.19)

where γQ (a,b;υ) is the quantile function of the gamma distribution with shape parameter
a and scale parameter b, and 0 ≤ υ ≤ 1. This quantile function is available in most of the
standard statistical softwares. For instance, in R it can be computed by using the qgamma(.)
function. Thus, the exact confidence intervals for the model parameters can be obtained without
the use of intensive computation.

3.4.1 Simulation Study

In this section, we perform a second simulation study with the same general specifications
(i.e., same scenarios, number of Monte Carlo replications and evaluation criteria) of the first
one shown in Section 4.4. However, the main goal now is to assess the performance (i.e., the
consistency and efficiency) of the CMLE for the model parameters presented in equations (3.16)
and (3.17), as well as of the exact confidence intervals given in equations (3.18) and (3.19). It
is worthwhile mentioning that the generated samples are the same as those of Section 4.4, in
order to achieve a fair comparison of the different approaches.

Tables 2, 3, 4 and 5 summarize the results. The CMLE of the β jks are more adequate,
since their bias were successfully removed compared with their corresponding MLE. Moreover,
the CP95% for the α jks using the exact confidence intervals, rather than the asymptotic
confidence intervals, are in general higher and closer to the nominal value (0.95).
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Table 4 – Bias, MSE and CP95% from the CMLE, considering different parameter values (Scenarios 1,
2 and 3) and M = 50,000 simulated samples.

Parameter Scenario 1 Scenario 2 Scenario 3

Bias MSE CP95% Bias MSE CP95% Bias MSE CP95%

α11 0.485 1.642 0.940 −0.015 3.815 0.935 −0.007 3.302 0.954
β11 0.004 1.262 0.950 0.001 0.358 0.951 0.003 0.459 0.949
α12 0.813 1.425 0.960 0.022 3.220 0.911 −0.004 3.663 0.924
β12 0.003 0.691 0.949 0.001 0.337 0.951 0.001 0.344 0.952
α13 0.053 2.611 0.973 0.008 3.450 0.942 −0.003 3.557 0.952
β13 −0.001 0.564 0.950 −0.001 0.347 0.950 0.001 0.396 0.950
α21 0.325 1.829 0.944 0.325 1.822 0.945 −0.033 4.217 0.958
β21 −0.001 0.896 0.950 0.006 1.012 0.950 −0.001 0.392 0.951
α22 0.900 1.404 0.914 0.005 4.494 0.944 0.024 4.692 0.958
β22 0.005 1.568 0.951 −0.003 0.486 0.951 0.000 0.419 0.947
α23 0.659 1.509 0.914 −0.012 3.284 0.944 −0.022 3.467 0.958
β23 −0.007 1.347 0.951 −0.001 0.441 0.949 0.001 0.550 0.949

Table 5 – Bias, MSE and CP95% from the CMLE, considering different parameter values (Scenarios 4,
5 and 6) and M = 50,000 simulated samples.

Parameter Scenario 4 Scenario 5 Scenario 6

Bias MSE CP95% Bias MSE CP95% Bias MSE CP95%

α11 0.019 2.799 0.957 0.265 1.953 0.961 0.011 2.808 0.954
β11 −0.003 0.960 0.950 0.001 0.678 0.950 −0.008 0.939 0.950
α12 0.172 2.109 0.968 0.016 2.854 0.949 0.008 6.325 0.944
β12 0.000 0.314 0.951 0.000 0.380 0.949 0.001 0.181 0.950
α21 −0.020 3.480 0.940 −0.004 3.005 0.937 0.058 8.484 0.949
β21 0.000 0.205 0.951 0.002 0.588 0.950 0.000 0.143 0.950
α22 −0.019 3.488 0.940 0.217 2.019 0.949 0.017 6.396 0.941
β22 0.000 0.236 0.952 −0.002 0.222 0.951 −0.001 0.179 0.950
α23 0.033 2.958 0.942 0.024 2.828 0.952 −0.006 2.980 0.939
β23 −0.001 0.658 0.950 −0.002 0.581 0.950 −0.001 0.658 0.950
α31 −0.014 3.146 0.965 −0.015 2.981 0.940 −0.009 8.978 0.950
β31 0.000 0.163 0.950 0.002 0.271 0.952 −0.001 0.124 0.952
α32 0.019 2.747 0.960 0.042 2.683 0.944 −0.005 5.028 0.955
β32 0.002 0.476 0.950 0.002 0.671 0.951 0.000 0.254 0.949

3.5 Applications

In this section, we illustrate the usefulness of the new methodology considering three
data sets: an artificial data set for a butterfly valve system (Section 4.5), a data set from a
real early-stage project of an in-pipe robot traction system (Section 4.5.2), and a real data set
consisting of failures of a blowout preventer system (Section 3.5.3).
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3.5.1 Butterfly Valve System: A Toy Example

To illustrate the inference process in hierarchical competing risks model, we start with
a toy example based on a butterfly valve system. Butterfly valves are exact, low cost and
a lightweight valve with excellent capability and durability, consisting of fewer parts, which
makes butterfly valves easy to maintain, repair and less structural support for productive use
(YUSOF; ABDULLAH, 2016). They contain a disc, which is positioned in the center that can
be rotated a quarter of a turn through a shaft running. For this reason, this kind of valve is
known as quarter-turn valves (KIMURA et al., 1995). The rotation of the disc determines the
flow passing a pipe, whose maximum occurs when the disc is positioned parallel to the stream
and minimum when perpendicular to it. The relative position between the geometric center of
the disc and the shaft defines if the valve is namely symmetrical, eccentric or double eccentric
(CORBERA; OLAZAGOITIA; LOZANO, 2016).

Butterfly valves include a wide range of applications with excellent isolation, throttling
as well as on-off service and flow regulation (YUSOF; ABDULLAH, 2016). They provide reliable,
long-term performance that satisfies a wide range of industrial applications such as oil and
gas. For instance, the applications involve isolation or regulating of oil and gas equipment, fill
and drain or bypass systems and other similar applications where the principal function for the
control of the flow or pressure can be satisfied whether on or off (SONG et al., 2009).

Figure 15 – Schematic diagram of a butterfly valve.

As shown in Figure 15, the butterfly valve includes a disc valve, placed inside one
configured valve body that rotates about its axis separate from the axis of rotation of the
stems that support the disc valve in position for a turn between opening and closure. A packing
part is located connecting the valve body and the stem to prevent any leakage happening when
the flow passes into the pipe. Furthermore, a ring seal acts as a seal between the metal disc
and body to avoid any leakage when the valve is in the fully closed position.
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1.1 5.1

Figure 16 – FTA of butterfly valve failure.

Because of the critical impact of the butterfly valve in the industry, in this work, the
attention is focused on carrying an FTA to increase the performance of this type of valve. The
main goal is to know the failures and with new maintenance limits or avoid different risks within
the valve performance. Hence, the FTA moves towards higher reliability, higher quality, and
improved safety. As can be seen in Figure 16, we created the FTA based on the Failure Mode
and Effects Analysis (FMEA) available in Bin and Abdullah (YUSOF; ABDULLAH, 2016), with
reviewing primary components of the butterfly valve, which consists of a body, metal, disc, stem,
seat and packing with several failure modes and their causes. It is worthwhile mentioning that
these failures happen due to one of the series competing failure mechanisms, whereby each of
them act related to the system independently. Based on the information provided in the FMEA
by Bin and Abdullah (YUSOF; ABDULLAH, 2016), we were able to generate the data set, as
shown in Table 6, which is representative of a butterfly valve system. Two numbers represent
the failure modes, say 1.1, the first one stands for the system, in our example, system 1, and
the second number stands for the sub-system, in our example, sub-system 1. Furthermore, we
can evaluate the proportion of the PLP for each cause of failure by employing a graphical tool,
which is known as the Duane plot (RIGDON; BASU, 2000). As can be seen in Figure 17, the
values of the sub-systems are close to the line. This means that the obtained data set comes
from a PLP, and our approach can be adequately used.
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Table 6 – Failure data for a butterfly valve.

Failure
Time

Failure
Mode

Failure
Time

Failure
Mode

Failure
Time

Failure
Mode

32.03 1.1 10.38 1.3 46.54 4.1
7.37 1.1 57.37 2.1 33.63 4.1
4.38 1.1 2.68 2.1 25.58 4.1

44.35 1.1 13.24 2.1 20.84 4.1
30.00 1.1 15.45 2.1 39.87 4.1
0.41 1.2 12.42 2.2 22.17 4.1
1.71 1.2 50.39 2.2 4.91 4.1

45.86 1.2 56.48 2.2 57.63 4.1
0.13 1.2 47.89 2.2 26.00 4.2

16.41 1.2 33.93 2.2 31.30 4.2
17.40 1.2 1.52 3.1 51.34 4.2
36.61 1.2 48.39 3.1 8.38 4.2
0.22 1.2 3.55 3.2 44.89 5.1

47.98 1.3 43.97 3.2 35.09 5.1
4.98 1.3 10.46 3.3 48.25 5.1
8.71 1.3 37.14 3.3 11.46 5.1

59.46 1.3 24.93 3.4 9.22 5.1
7.87 1.3 4.68 3.4 48.59 5.1

41.67 1.3 33.72 3.4 35.95 5.1

Table 7 displays the bias-corrected maximum likelihood (CML) estimates, along with
the corresponding 95% exact confidence intervals (CI 95%) for the model parameters. The
results shown in this table suggest that the reliability of the body and stem components improve
over time since the corresponding β̂1ks and β̂3ks are less than one. Moreover, observe that
the reliability of the disk components may decrease over time due to corrosion on the disk
surface (β̂22 = 1.535 > 1), while the reliability of the seat and packing components show an
intermediate behavior since their CML estimates are close to one. Note, however, that almost
all the CI 95% include the one. Therefore, we can not say that the cause-specific intensity
functions of some components increase or decrease over time.
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Figure 17 – Duane plots for the failure modes of a butterfly valve.

Table 7 – CML estimates and CI 95% of parameters β jk and α jk, considering the butterfly valve
failure data.

Parameter Estimate 95% Confidence Interval

Lower Upper

β11 0.631 0.256 1.616
α11 5.000 2.202 11.668
β12 0.297 0.146 0.612
α12 8.000 4.115 15.763
β13 0.682 0.320 1.484
α13 7.000 3.454 14.423
β21 0.498 0.181 1.456
α21 4.000 1.623 10.242
β22 1.535 0.623 3.931
α22 5.000 2.202 11.668
β31 0.257 0.062 1.432
α31 2.000 0.619 7.225
β32 0.319 0.077 1.775
α32 2.000 0.619 7.225
β33 0.449 0.109 2.502
α33 2.000 0.619 7.225
β34 0.499 0.154 1.804
α34 3.000 1.090 8.767
β41 1.046 0.516 2.156
α41 8.000 4.115 15.763
β42 0.831 0.302 2.428
α42 4.000 1.623 10.242
β51 1.133 0.531 2.466
α51 7.000 3.454 14.423
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Table 8 – Estimates of the subsystem-specific and overall intensity functions at different times,
considering the butterfly valve failure data.

Intensity Time (months)

5 15 25 40 55

λ11 0.132 0.088 0.073 0.061 0.054
λ12 0.227 0.105 0.073 0.053 0.042
λ13 0.175 0.124 0.105 0.091 0.082
λ21 0.116 0.067 0.052 0.041 0.035
λ22 0.034 0.061 0.080 0.103 0.122
λ31 0.054 0.024 0.016 0.012 0.009
λ32 0.058 0.027 0.019 0.014 0.011
λ33 0.059 0.032 0.024 0.019 0.016
λ34 0.087 0.050 0.039 0.031 0.026
λ41 0.124 0.131 0.134 0.137 0.139
λ42 0.084 0.070 0.064 0.059 0.056
λ51 0.095 0.110 0.118 0.125 0.131

λ 1.245 0.888 0.797 0.744 0.723

It is essential to point out that such results can provide valuable insights to the
maintenance crew. They also allow us to estimate the intensity function of each system or
sub-system and the hazard function of the overall system. The estimated intensity functions
can be obtained from (3.3), while the overall hazard function can be obtained from (3.4),
with the parameters substituted by their estimates. Table 8 presents the estimated intensity
functions for each sub-system and the estimated hazard function over some fixed failure times.
Observe that the results shown in this table are in agreement with the ones presented in Table
7, that is, for the cases where β̂ jk > 1 the intensity function increases over time, while for
β̂ jk < 1 the intensity function decreases over time. We also see that the overall hazard function
decreases over time, which may be due to the repair and maintenance effects.

In order to provide a better understanding of the effect of fatigue damage on any point
of the butterfly valve components, we then created a fatigue simulation, which is given as
follows. Fatigue design of the butterfly valve is done using design fatigue curves, which are
created based on the relationship between fatigue life and stress or strain. Because in the real
structure of the valve, its components are constantly subjected to the high cycle fatigue stress
and therefore, cracks begin from regions of concentrated stress resulting from this cycle fatigue
and corresponding fatigue safety factor (SURESH, 1998). It is thus essential to determine the
safety factor of fatigue failure, which indicates the ability of damage in the critical area in the
valve components. The safety factor for this valve is determined by evaluating the effects of
the loading history due to the fluid-structure interaction on fatigue life (HASUNUMA et al.,
2019). All computations and simulations required to build Figures 18a and 18b were performed
with coupling CFD (fluids) and FEM (mechanics) models, which were prepared using the
commercial pieces of software FLUENT and ANSYS 2019 R1. Figure 18a shows the safety
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factor of fatigue life associated with any point of the butterfly valve components. As can be
seen, the safety factor values are presented in terms of change between 0 and 15, in which the
lower value identifies the critical damage locations in the component. Analysis over the safety
factor of fatigue life results revealed that fatigue could be expected to initiate near the stems,
due to their role as stress concentration points. It can be observed that the butterfly valve
has several components connected in series. Therefore, a single component failure results in
total system failure. The available fatigue life curve, in cycles, for the estimation of a finite
lifetime of the butterfly valve under 50% to 100% of the fatigue loading history, is presented
in Figure 18b. Analysis of the outcomes shows how the fatigue results change as a function
of the loading at the critical location on the model. For instance, the results from this figure
verified that the minimum value of fatigue life appeared at the maximum fatigue loading of
100%. Therefore, damage starts from the points related to the component with the lowest
fatigue safety factor due to the significant stress concentration. Finally, as a conclusion, a good
comparison was observed between the simulated fatigue damage results and statistical analysis.
However, the present safety factor fatigue simulation indicates some disagreement, which is
possibly related to differences in conditions between this simulation and statistical analysis.

(a) Fatigue safety factors of the butterfly
valve components.

(b) Available fatigue life of the butterfly
valve components.

Figure 18 – Fatigue analysis of the butterfly valve.

3.5.2 In-Pipe Robot Traction System: Example on Early-Stage Inno-
vative Project

In this section, we consider another example based on a real problem we are working on
in a partnership with Petrobras (abbreviation of Petróleo Brasileiro S.A.), which is the Brazil’s
largest oil and gas producer. The problem is related to the traction system of an in-pipe robot
that was developed, though still in its early stage of development, to be used at a future time
to remove hydrates that form in pipelines and can cause problems in oil and gas flow. In this
case, a locomotive is responsible for conducting the robot inside the pipe, and once hydrate
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formation is identified, the robot will work on its safe removal for the oil to flow again. A
schematic of the studied system is shown in Figure 19.

Paws

Structure

Figure 19 – Schematic diagram of an in-pipe robot traction system.

We obtained a suitable data set for this problem using a similar approach as proposed in
the previous section, i.e., based on the limited but available information provided by FMEA and
FTA tools. Due to the criticality of the traction system, we will focus on it instead of the overall
locomotive system. An excerpt from the FMEA devised by the project executing team is shown
in Table 9. On the other hand, the hierarchy of failure modes that compete with each other
to cause a general system failure can be seen in Figure 20. Thus, these two tools supported
the generation of the data set shown in Table 10, whose parameter representativeness tries to
express the degree of severity and occurrence of the FMEA used.

Table 9 – FMEA for the in-pipe robot traction system. S = Severity, O = Occurrence, D = Detection.

General System System Failure Mode S O D

Mechanical
components

Paws

Compromised paw lining adhesive 7 3 3

No arms retraction 9 3 9
Paw slip 9 3 9

Riser deformation 9 3 9
Riser rupture 9 1 9

Rubber coating degradation 7 3 7

Structure Cracking by atomic hydrogen permeation 9 9 9

Stress concentration 9 5 9
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Figure 20 – FTA of in-pipe robot traction system failure.
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Table 10 – Failure data for the in-pipe robot traction system. FT = Failure Time, FM = Failure
Mode.

FT FM FT FM FT FM FT FM FT FM FT FM
36.0 1.1 112.6 1.3 150.2 1.6 119.2 2.1 90.1 2.1 38.3 2.2
53.2 1.1 60.6 1.3 26.1 1.6 31.9 2.1 69.6 2.1 152.2 2.2
87.9 1.1 127.1 1.3 148.3 1.6 58.4 2.1 119.1 2.1 159.4 2.2

150.2 1.1 79.8 1.3 157.2 1.6 78.4 2.1 56.8 2.1 114.6 2.2
26.1 1.1 117.9 1.3 103.8 1.6 5.3 2.1 93.1 2.1 109.5 2.2

148.3 1.1 166.6 1.3 98.0 1.6 77.8 2.1 135.8 2.1 12.8 2.2
157.2 1.1 59.9 1.3 6.6 1.6 150.2 2.1 23.2 2.1 39.0 2.2
103.8 1.1 128.5 1.3 26.8 1.6 70.9 2.1 151.0 2.1 33.9 2.2
98.0 1.1 40.9 1.4 22.4 1.6 93.7 2.1 70.7 2.1 118.8 2.2
6.6 1.1 58.6 1.4 108.6 1.6 111.6 2.1 146.0 2.1 69.4 2.2

26.8 1.1 92.8 1.4 55.2 1.6 95.5 2.1 72.0 2.1 131.9 2.2
40.9 1.2 151.6 1.4 124.0 1.6 43.8 2.1 69.8 2.1 88.2 2.2
58.6 1.2 30.5 1.4 74.7 1.6 144.4 2.1 92.8 2.1 123.7 2.2
92.8 1.2 149.9 1.4 114.2 1.6 121.7 2.1 153.3 2.1 166.7 2.2

151.6 1.2 158.1 1.4 166.4 1.6 139.7 2.1 149.5 2.1 68.8 2.2
30.5 1.2 108.0 1.4 54.6 1.6 28.3 2.1 79.1 2.1 133.2 2.2

149.9 1.2 102.5 1.4 125.4 1.6 129.7 2.1 137.3 2.1 157.8 2.2
158.1 1.2 8.6 1.4 155.3 1.6 82.5 2.1 162.7 2.1 40.1 2.2
108.0 1.2 31.2 1.4 58.1 2.1 143.5 2.1 86.2 2.1 113.1 2.2
102.5 1.2 26.4 1.4 76.1 2.1 118.6 2.1 128.1 2.1 24.7 2.2

8.6 1.2 112.6 1.4 107.6 2.1 138.1 2.1 80.7 2.1 49.7 2.2
31.2 1.2 60.6 1.4 155.5 2.1 104.6 2.1 68.4 2.1 69.8 2.2
26.4 1.2 127.1 1.4 46.6 2.1 101.0 2.1 134.5 2.1 3.1 2.2

112.6 1.2 79.8 1.4 154.2 2.1 139.0 2.1 46.8 2.1 69.1 2.2
60.6 1.2 117.9 1.4 160.5 2.1 8.3 2.1 127.9 2.1 147.7 2.2

127.1 1.2 166.6 1.4 120.6 2.1 92.9 2.1 31.1 2.1 62.1 2.2
79.8 1.2 59.9 1.4 115.9 2.1 130.9 2.1 54.6 2.1 85.6 2.2

117.9 1.2 128.5 1.4 18.1 2.1 125.2 2.1 35.5 2.1 104.7 2.2
40.9 1.3 19.1 1.5 47.4 2.1 93.0 2.1 53.5 2.1 87.5 2.2
58.6 1.3 33.2 1.5 41.9 2.1 149.1 2.1 17.4 2.1 35.6 2.2
92.8 1.3 67.4 1.5 124.4 2.1 86.8 2.1 117.9 2.1 141.0 2.2

151.6 1.3 143.5 1.5 78.1 2.1 54.5 2.1 151.1 2.1 115.8 2.2
30.5 1.3 12.2 1.5 136.3 2.1 20.1 2.1 137.5 2.1 135.8 2.2

149.9 1.3 140.9 1.5 96.1 2.1 26.5 2.1 140.1 2.1 21.5 2.2
158.1 1.3 153.0 1.5 128.8 2.1 66.9 2.1 89.5 2.1 124.6 2.2
108.0 1.3 85.2 1.5 166.9 2.1 99.3 2.1 82.3 2.1 74.0 2.2
102.5 1.3 78.6 1.5 77.4 2.1 120.8 2.1 49.4 2.2 140.0 2.2

8.6 1.3 36.0 1.6 137.3 2.1 81.8 2.1 67.4 2.2 112.4 2.2
31.2 1.3 53.2 1.6 159.2 2.1 156.2 2.1 100.4 2.2 134.0 2.2
26.4 1.3 87.9 1.6 48.6 2.1 63.0 2.1 153.7 2.2 97.2 2.2

Duane plots applied to the data for each failure mode show evidence that a PLP may be
able to adequately describe the behavior of system-associated failure times, since the scattered
points show an approximately linear trend (see Figure 21).
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Figure 21 – Duane plots for the failure modes related to the in-pipe robot traction system.

The CML estimates for the parameters associated with each failure mode, as well
as their respective CI 95%, are presented in Table 11. From these results, there is evidence
that the intensity associated with some failure modes (e.g., Cracking by atomic hydrogen
permeation) increases. On the other hand, there seems to be a decrease in risks associated
with other failure modes (e.g., Compromised paw lining adhesive and Riser rupture), although
their CI 95% contains the one.

Table 11 – CML estimates and CI 95% of model parameters, considering the in-pipe robot traction
system.

Failure Mode Parameter Estimate 95% Confidence Interval

Lower Upper

Compromised paw lining adhesive β11 0.862 0.474 1.586
α11 11.000 6.201 19.682

No arms retraction
β12 1.047 0.648 1.700
α12 17.000 10.668 27.219

Paw slip β13 1.145 0.736 1.789
α13 20.000 12.999 30.888

Riser deformation
β14 1.145 0.736 1.789
α14 20.000 12.999 30.888

Riser rupture β15 0.870 0.448 1.714
α15 9.000 4.795 17.085

Rubber coating degradation β16 1.101 0.716 1.700
α16 21.000 13.787 32.101

Cracking by atomic hydrogen permeation β21 1.390 1.140 1.696
α21 98.000 80.462 119.431

Stress concentration
β22 1.232 0.916 1.659
α22 44.000 32.823 59.068
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The behavior over time of the estimated intensities and reliabilities, for each specific
failure mode, is shown in Figures 22a and 22b, from which we can see that the intensities
associated with the failure modes 2.1 and 2.2 (Structure system) grow significantly more than
others. In addition, the median lifespan of these sub-systems is around five weeks, while the
rest is around seven weeks.

The combination of individual intensities and reliabilities, within their respective hierar-
chies, results in specific functions corresponding to each system. In this context, it is possible
to study such measures by considering a level above in the hierarchy. The results are shown
in Figure 22c, where it can be seen that the intensity of the Paws system grows significantly
much less than the Structure system; however, in the (approximately) twenty initial weeks, its
intensity is lower than the Paws system. This can also be observed from the reliability curve,
where the median lifetime of the Paws system is around one week, while that of the Structure
system is close to three. In addition, the curves become very close from week fifteen.

Finally, the combination of the intensities and reliabilities of all failure modes results in
their respective functions for the general system, as a whole. Thus, there is a growing intensity
associated with it, and a median time of operation close to one week.
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3.5.3 Blowout Preventer System: A Real Example

According Drægebø (2014), BlowOut Preventer (BOP) is a large, specially designed
valve that is used to seal, control and monitor oil and gas wells. This valve mounts on top of
the well during the drilling and completion stages of operation and serves as an essential barrier
against blowouts, that is, the uncontrolled release of crude oil and/or natural gas from a well.

FTA for the BOP system is shown in Figure 23, which was done based on the real data
set downloaded from the RAPID-S53 website (<https://www.rapid4s53.com>). This data
set is available in Table 12. Analogously to Section 4.5, the failure modes are represented by
two numbers, in the order that they appear from left to right in the graphical representation
(again, the first number refers to the system, and the second one stands for the sub-system).
It is worth mentioning that these failures occur due to a competing risks mechanism (in which
we assume that each of them acts independently), and the safety equipment in question (BOP)
is considered to be a repairable system.

First, we can evaluate the proportion of the PLP for each failure cause by using the
Duane plot. As it can be observed from Figure 24, the values of the sub-systems are, in general,
close to the line, which means that this data set comes from a PLP and our methods can be
suitably used.

1 2 3 4

1.1 1.2 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1

Figure 23 – FTA of BOP failure.

https://www.rapid4s53.com
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Table 12 – Failure data for a BOP system.

Failure
Time

Failure
Mode

Failure
Time

Failure
Mode

Failure
Time

Failure
Mode

Failure
Time

Failure
Mode

52 1.1 12 2.1 6 3.1 5,300 4.1
92 1.1 100 2.1 720 3.1 6,192 4.1

5,000 1.1 50 2.2 504 3.1
4,320 1.2 4,320 2.2 1,800 3.1
6,566 1.2 720 2.3 48 3.2

768 2.3 1,450 3.2
3,000 2.3 2,160 3.2
8,200 2.3 14,780 3.2
7,776 2.4 200,000 3.2
8,200 2.4 240 3.3
8,500 2.4 5,640 3.3

Table 13 shows the CML estimates and CI 95% for the model parameters. The results
presented in this table suggest that the reliability of all components improves over time since
the β̂ jks are less than one. Therefore, we can say that the cause-specific intensity functions of
all components decrease over time.
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Figure 24 – Duane plots for the failure modes of a BOP system.
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Table 13 – CML estimates and CI 95% of parameters β jk and α jk, considering the BOP failure data.

Parameter Estimate 95% Confidence Interval

Lower Upper

β11 0.102 0.032 0.368
α11 3.000 1.090 8.767
β12 0.138 0.033 0.768
α12 2.000 0.619 7.225
β21 0.058 0.014 0.322
α21 2.000 0.619 7.225
β22 0.082 0.020 0.459
α22 2.000 0.619 7.225
β23 0.161 0.059 0.472
α23 4.000 1.623 10.242
β24 0.208 0.064 0.753
α24 3.000 1.090 8.767
β31 0.112 0.041 0.328
α31 4.000 1.623 10.242
β32 0.196 0.080 0.502
α32 5.000 2.202 11.668
β33 0.097 0.024 0.541
α33 2.000 0.619 7.225
β41 0.141 0.034 0.784
α41 2.000 0.619 7.225

Table 14 – Estimates of the subsystem-specific and overall intensity functions at different times,
considering the BOP failure data.

Intensity Time (hours)

4 24 72 1000 9000

λ11 0.0254 0.0051 0.0019 0.0002 0.0000
λ12 0.0155 0.0033 0.0013 0.0001 0.0000
λ21 0.0155 0.0029 0.0010 0.0001 0.0000
λ22 0.0169 0.0033 0.0012 0.0001 0.0000
λ23 0.0281 0.0063 0.0025 0.0003 0.0000
λ24 0.0164 0.0040 0.0017 0.0002 0.0000
λ31 0.0333 0.0068 0.0026 0.0002 0.0000
λ32 0.0294 0.0070 0.0029 0.0003 0.0001
λ33 0.0170 0.0034 0.0012 0.0001 0.0000
λ41 0.0153 0.0033 0.0013 0.0001 0.0000

λ 0.2128 0.0451 0.0175 0.0018 0.0003

Table 14 displays the estimated intensity functions for each sub-system and the estimated
hazard function over some fixed failure times. Observe that the results shown in this table are
in agreement with the ones presented in Table 13, that is, the intensity functions decrease over
time. We also see that the overall hazard function decreases over time, which may be due to
the repair and maintenance effects.
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The results presented in Table 13 would also allow us to estimate the reliability function
of each system or sub-system, and the reliability function of the overall system. The estimated
reliability functions can be obtained from (3.7), while the overall reliability function can be
obtained from (3.6), with the parameters substituted by their estimates. Table 15 shows the
estimated reliability functions for each sub-system and the estimated overall reliability function
over some fixed failure times (which are the same times considered in Table 14). Observe that
the overall reliability function, as well as the sub-systems’ reliability functions, decrease over
time, although at different rates.

Table 15 – Estimates of the subsystem-specific and overall reliability functions at different times,
considering the BOP failure data.

Reliability Time (hours)

4 24 72 1000 9000

R11 0.3693 0.3025 0.2626 0.1740 0.1122
R12 0.6378 0.5622 0.5117 0.3817 0.2714
R21 0.3427 0.3049 0.2821 0.2292 0.1878
R22 0.4406 0.3867 0.3534 0.2747 0.2125
R23 0.4979 0.3940 0.3289 0.1826 0.0885
R24 0.7299 0.6330 0.5627 0.3698 0.2076
R31 0.3049 0.2340 0.1934 0.1100 0.0593
R32 0.5494 0.4269 0.3479 0.1705 0.0658
R33 0.4970 0.4352 0.3962 0.3026 0.2277
R41 0.6465 0.5704 0.5193 0.3872 0.2745

R 0.0007 0.0001 0.0000 0.0000 0.0000

3.6 Concluding Remarks

In this chapter, we introduced a new statistical model for repairable systems subject to
hierarchical competing risks under the assumption that the failure modes act independently.
The competing risks approach may be useful in the engineering area, since it may lead to a
better comprehension of the several failure modes of a system. Therefore, design strategies
improve overall system reliability. The hierarchical structure may also be advantageous because
sometimes it may record information about which sub-system of a specific system has resulted
in the total system failure.

We assumed that the repairs are minimal, and the failure intensity follows a PLP model
after a convenient reparametrization. Under a classical framework, we proposed estimators
and confidence intervals for the model parameters, whose performances were investigated
using a simulation study. In short, the simulation results revealed that the CMLE provide
better estimates, mainly for the β jk parameters, than the MLE. Besides, the exact confidence
intervals for the α jk parameters give CPs closer to the nominal value (0.95) than the asymptotic
confidence intervals.
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Finally, the proposed methodology is illustrated through a toy example on a butterfly
valve system, an example of a real early-stage project related to an in-pipe robot traction
system, and also a real example on a BOP system.
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CHAPTER

4
IMPROVED OBJECTIVE BAYESIAN

ESTIMATOR FOR A PLP MODEL
HIERARCHICALLY REPRESENTED

SUBJECT TO COMPETING RISKS UNDER
MR REGIME

In this chapter, we propose a hierarchical statistical model for a single repairable
system subject to several failure modes (competing risks). The chapter describes how complex
engineered systems may be modelled hierarchically by use of Bayesian methods. It is also
assumed that repairs are minimal and each failure mode has a power-law intensity. Our proposed
model generalizes the one presented in Somboonsavatdee and Sen (2015) and continues the
study begun in Louzada et al. (2019). Some properties of the new model are discussed. We
conduct statistical inference under an objective Bayesian framework. A simulation study is
carried out to investigate the efficiency of the proposed methods. Finally, our methodology
is illustrated by two practical situations currently addressed in a project under development
arising from a partnership between Petrobras and six research institutes.
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4.1 Introduction
The repeated occurrence of an event of interest in the same subject is frequent in

many areas, such as manufacturing, software development, medicine, social sciences, risk
analysis, among others. In reliability engineering, when studying a complex system, such as
supercomputers, cars and airplanes, multiple defects or vulnerabilities in the product design,
manufacture, operation, maintenance and handling can cause a number of unexpected failures
(JIANG; LIU, 2017). Failure process models, in the context of repairable systems, are often
described in terms of competing risks, or equivalently, a system with many components
connected in series, such that the failure of a single component will result in a whole system
failure. However, recently in engineering, the evaluation of repairable systems with multiple
failure modes has drawn attention due to their potential applicability (ALMEIDA, 2019;
MULLOR; MULERO; TROTTINI, 2019; SYAMSUNDAR; NAIKAN; WU, 2020; YAN, 2019).

In a competing risks framework, a system fails due to the first occurrence of possible
failure modes. In this context, we use a model for any individual component, whose failures
occur due to one of the causal mechanisms and which each one acts independently on the
system.

A system can be thought as the joint union of different subsystems which, in turn,
can also be thought as unions of other more particular subsystems, to an arbitrary level of
undividing. In a well-defined hierarchical structure, the functions and relationships between
components of a system can be better understood, highlighting their importance to the system
as a whole. This makes it possible to clearly define acceptable levels of damage for each part
of the structure, and to delimit its impacts on the system when exposed to different sources of
external variation (LIEPING; ZHE, 2009).

In an industrial context, Langseth and Lindqvist (2006) recorded the service times of
a component spanning over 1,600 units of time. Each failure had its respective mode also
recorded. In this case, the causes of failure were categorized into two main groups, each with
its respective subcauses. In health care, for example, Tuli et al. (2000) analyzed repeated shunt
failures in children diagnosed with hydrocephalus; failures in this context are known to result
from a variety of causes.

In complex systems with several hierarchical levels, redundancy can be implemented in
any of the hierarchical levels. Finding the specific optimal configuration of a specific system
is addressed by the reliability allocation problem. At the lowest level of the hierarchy, a unit
can have different failure modes. Considering the modes separately might be of importance as
either the consequences of the failures might be different or the maintenance actions that each
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failure mode triggers might be different. In general, the failure of any single component can be
considered in a competing risks framework where every failure mode is competing against the
others to make the component fail in that mode.

A repairable system is defined as a system which, after failing to perform one or more
of its functions satisfactorily, can be restored to fully satisfactory performance by a method
other than replacement of the entire system. Traditional studies on repairable systems focus
on modeling failure times, using point process theory as the main tool. In the literature, it
is commonly assumed that failures in a repairable system occur due to a NHPP with the
intensity described by a power-law. The resulting method is generally referred to as the PLP.
The PLP is convenient in many ways, especially for its flexibility, easy implementation, and the
interpretability of its parameters (ASCHER; FEINGOLD, 1984; RIGDON; BASU, 2000).

Considering the fault-causing mechanisms known, it is also important to observe how
to repair such failures, including preventive maintenance. In this context, the books of Crowder
(2001), Pintilie (2006), among others, illustrate with some examples the need for considering
the setting of competing risks in the application of reliability techniques (in industrial statistics)
or survival analysis tools (in health sciences).

Under a Bayesian perspective, the inference of a problem is on the basis of the posterior
distribution of the quantity of interest, which combines the information provided by the data
with the available prior information. The elicitation of an appropriate prior distribution becomes
the main task for Bayesian statisticians in practice. Subjective priors, which always depend on
the experts’ belief, are not easy to derive in a limited time period. Therefore, given little prior
information, we prefer to use objective (non-informative) priors to make inference.

An important objective prior distribution is the reference prior, introduced by Bernardo
(1979) and later refined by other authors (BERGER; BERNARDO, 1989; BERGER; BERNARDO,
1992a; BERGER; BERNARDO, 1992b; BERGER, 1992). The reference prior is minimally in-
formative in a precise theoretical sense about information. The intent is to make information
from data dominate a prior information, reflecting the vague nature of a prior knowledge. To
obtain such prior, the expected Kullback-Leibler divergence between a prior distribution and
a posterior distribution was maximized. The posterior distribution obtained using this prior
has interesting properties, such as invariance and consistency in marginalization and sample
properties (BERNARDO, 2005). Some recent reference priors were obtained for the Pareto
(FU; XU; TANG, 2012), Poisson-exponential (TOMAZELLA; CANCHO; LOUZADA, 2013),
extended exponential-geometric (RAMOS; MOALA; ACHCAR, 2014), inverse Weibull (KIM;
LEE; KANG, 2014), generalized half-normal (KANG; LEE; LEE, 2014) and Lomax (FERREIRA
et al., 2020) distributions.

This chapter aims to continue the study begun in Louzada et al. (2019), which
generalized model of Somboonsavatdee and Sen (2015). For this, we describe a statistical
model for a repairable system hierarchically represented subject to competing risks under
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MR regime with PLP intensity function. Working under an objective Bayesian framework, we
consider reference and matching priors for the model parameters. The proposed methodology
is applied to two real problems arising from the development of the robotic unit Annelida, as
described previously.

The next sections of the chapter are organized as follows. In Section 4.2, we introduce
the proposed statistical model, which considers, in its basic assumptions, a hierarchically
represented repairable system (with an arbitrary number of hierarchical levels) subject to
competing risks in a MR regime governed by a PLP intensity function. In Section 4.3, under the
perspective of an objective Bayesian inference framework, we derive the Maximum a posteriori
Probability (MAP) estimators for the parameters of the proposed model, correct the biases of
such estimators and expose credibility intervals with closed forms. In Section 4.4, we evaluate
the properties of the estimators through a simulation study. In Section 4.5, we use the proposed
model (and methods) to assess the reliability of two subsystems of the robotic unit (pressure
vessels and traction system) that motivated this research, in the light of currently available
information. Finally, in Section 4.6 we draw some final remarks and suggestions for future
research.

4.2 Model Formulation

In this section, we introduce the proposed statistical modeling for reliability data arising
from a single repairable system subject to both MR and hierarchical competing risks, whose
successive failures are assumed to be governed by a PLP. Our model can be regarded as
a generalization of the Somboonsavatdee and Sen (SOMBOONSAVATDEE; SEN, 2015)’s
model for the cases where there are two or more levels of hierarchy, that is, secondary, tertiary,
quaternary and so on failure causes (or subsystems). The model proposed here is also an
extension of the work by Louzada et al. (LOUZADA et al., 2019). This situation is illustrated
in Figure 25, which depicts a fault tree. The general feature illustrated in this figure includes
the composition of a system by multiple subsystems, and the composition of these subsystems
by further subsystems and components.

In order to model these kinds of systems, we first assume that the failure probabilities
of components in distinct branches of the fault tree are conditionally independent and that
success of the systems requires successful functioning of all components.

Let us suppose a repairable system with p levels of hierarchy. Then, the hierarchical
competing risks model’s data consist of the (p+1)-tuples (t,δ1,δ2, . . . ,δp), where t > 0 denotes
the failure time, δ1 is the indicator of the leading failure cause (system), and δ j is the indicator
of the subcause (subsystem) at hierarchical level j, for j = 2, . . . , p. Let Np(δp) be the counting
process associated with the system failure of type p. To consider the natural hierarchy of this
model, the δ2 indicator, for example, refers to the cause in the second hierarchical level, which
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is nested with a specific cause of the first hierarchical level, represented by δ1. In this sense, we
say that δ1 = 1, . . . ,N1, that is, there are N1 primary causes of system failure. On the other
hand, δ2 = 1, . . . ,N2(δ1), that is, the number of causes N2(δ1) (denoted later simply by N2,
for simplicity) closely depends on the primary cause δ1. This logic extends to the p-th cause,
indicated by δp = 1, . . . ,Np(δ1, . . . ,δp−1).

GENERAL SYSTEM
FAILURE

δ1 = 1, . . . ,N1

System δ1
Failure

· · · · · ·System 1
Failure

...

System N1
Failure

...

δ2 = 1, . . . ,N2(δ1)

Sub-system δ2
Failure

· · · · · ·Sub-system 1
Failure

...

Sub-system N2
Failure

...
...

δp−1 = 1, . . . ,Np−1(δ1, . . . ,δp−2)

Sub-system δp−1
Failure

· · · · · ·Sub-system 1
Failure

...

Sub-system Np−1
Failure

...

δp = 1, . . . ,Np(δ1, . . . ,δp−1)

Sub-
system δp

Failure
· · · · · ·

Sub-
system 1
Failure

Sub-
system Np

Failure

αδ1···δp−11
βδ1···δp−11

αδ1···δp−1δp

βδ1···δp−1δp

αδ1···δp−1Np

βδ1···δp−1Np

Figure 25 – FTA of the general system with hierarchical failure modes (p levels of nesting).

Our proposed model for failure data analysis can be formulated as follows. Let us
assume that the failures from a hierarchical (at level p) subsystem follow a NHPP with the
PLP intensity function given by

λδ1···δp(t) =

(
βδ1···δp

µδ1···δp

)(
t

µδ1···δp

)βδ1···δp−1

,



98 Chapter 4. Improved objective Bayesian estimator

where µδ1···δp > 0 and βδ1···δp > 0 are, respectively, the scale and shape parameters. Or
equivalently, µδ1···δp represents the time for which we expect to observe a single event, and
βδ1···δp is the elasticity of the mean number of events with regard to time (OLIVEIRA;
COLOSIMO; GILARDONI, 2012).

Thus, it follows that the overall intensity function at time t is given by

λ (t) =
N1

∑
δ1=1

· · ·
Np

∑
δp=1

λδ1···δp(t)

=
N1

∑
δ1=1

· · ·
Np

∑
δp=1

(
βδ1···δp

µδ1···δp

)(
t

µδ1···δp

)βδ1···δp−1

, (4.1)

where N j denotes the number of components in the (δ1, . . . ,δ j)-th hierarchical subsystem, for
j = 1, . . . , p.

Let us assume that n ≥ 1 failures have occurred in the time interval (0,T ]. Then, the
hierarchical (at level p) subsystem-specific cumulative intensity up to time T becomes

Λδ1···δp(T ) =

(
T

µδ1···δp

)βδ1···δp

.

From (4.1), it follows that

Λ(T ) =
N1

∑
δ1=1

· · ·
Np

∑
δp=1

Λδ1···δp(T )

is the overall cumulative intensity up to time T . Hence, we have that the overall reliability up
to time T is

R(T ) = exp{−Λ(T )}

= exp

−
N1

∑
δ1=1

· · ·
Np

∑
δp=1

Λδ1···δp(T )


= exp

−
N1

∑
δ1=1

· · ·
Np

∑
δp=1

(
T

µδ1···δp

)βδ1···δp
 ,

while the hierarchical (at level p) subsystem-specific reliability up to time T is given by

Rδ1···δp(T ) = exp
{
−Λδ1···δp(T )

}
= exp

−
(

T
µδ1···δp

)βδ1···δp
 .
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As suggested by Oliveira, Colosimo and Gilardoni (2012), we will reparametrize our
proposed model in terms of βδ1···δp and

αδ1···δp = E[Nδ1···δp(T )] =

(
T

µδ1···δp

)βδ1···δp

,

where Nδ1···δp(T ) is the hierarchical (at level p) subsystem-specific counting process, which
denotes the number of failures before time T . It follows that βδ1···δp and αδ1···δp are orthogonal
parameters.

The orthogonal reparametrization of the PLP model enables us to obtain a likelihood
function whose parameters βδ1···δp and αδ1···δp are independent with desirable properties. In
this case, the hierarchical (at level p) subsystem-specific likelihood function is given by

L(βδ1···δp,αδ1···δp | n, ttt) = cβ
n
δ1···δp

e−nβδ1···δp/β̂δ1···δp

×α
n
δ1···δp

e−αδ1···δp

∝ γ

(
βδ1···δp | n+1,n/β̂δ1···δp

)
× γ

(
αδ1···δp | n+1,1

)
,

where c = ∏
n
i=1 t−1

i and γ(x | a,b) = ba

Γ(a)x
a−1e−bx, for x,a,b > 0, is the probability density

function of a gamma distribution with shape parameter a and scale parameter b. Moreover,
β̂δ1···δp is the (biased) MLE of βδ1···δp , which is given by 1

β̂δ1···δp =
n

∑
n
i=1 log

(
T
ti

) .
For a further discussion on the advantages of having orthogonal parameters, see Cox

and Reid (COX; REID, 1987).

4.3 Bayesian Inference
In this chapter, we investigate the repairable system in the presence of hierarchical

competing risks via objective Bayesian approach. A non-informative prior is used to depict lack
of prior knowledge about the quantity of interest. There are different ways to obtain objective
priors for the parameters of our model. Although the Jeffreys prior is the most commonly used,
this prior may not be adequate in multivariate case (BERNARDO, 2005). Tibshirani (1989)
proposed an alternative method to derive a class of objective priors π (θ1,θ2), where θ1 is the
parameter of interest so that the credible interval for θ1 has a coverage error O

(
n−1) in the

1 It is worth noting that n, ti and ttt should also carry δ1 . . .δp as a subscript (i.e., nδ1...δp , ti;δ1...δp and
tttδ1...δp), but we omit it so as not to clutter the notation.
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frequentist sense, i.e.,

P
[
θ1 ≤ θ

1−ξ

1 (π; ttt) | (θ1,θ2)
]
= 1−ξ −O

(
n−1) , (4.2)

where θ
1−ξ

1 (π; ttt) | (θ1,θ2) denotes the (1−ξ )-th quantile of the posterior distribution of θ1.
The priors that satisfy (4.2) are known as matching priors.

To obtain such priors, Tibshirani (1989) showed that if θ1 and θ2 are orthogonal
parameters in the sense discussed by Cox and Reid (1987), i.e., Iθ1,θ2 (θ1,θ2) = 0, where θ1

is the parameter of interest and θ2 is the orthogonal nuisance parameter, then the matching
priors are all priors of the form

π (θ1,θ2) = g(θ2)
√

Iθ1,θ1 (θ1,θ2), (4.3)

where g(θ2) > 0 is an arbitrary function and Iθ1,θ1 (θ1,θ2) is the θ1 entry of the Fisher
information matrix. Tibshirani (1989) showed that (4.3) is also a matching prior when θ2 is a
vector of nuisance parameters.

Considering the proposed model, and assuming that

δ1 = {1, . . . ,N1} , . . . ,δp =
{

1, . . . ,Np
(
δ1, . . . ,δp−1

)}
,

the elements of the Fisher information matrix can be expressed as

Iβδ1···δp ,βδ1···δp

(
βδ1···δp,αδ1···δp

)
= αδ1···δpβ

−2
δ1···δp

,

Iαδ1···δp ,αδ1···δp

(
βδ1···δp,αδ1···δp

)
= α

−1
δ1···δp

,

Iβδ1···δp ,αδ1···δp

(
βδ1···δp,αδ1···δp

)
= 0,

Iαδ1···δp ,βδ1···δp

(
βδ1···δp,αδ1···δp

)
= 0.

From (4.3), one of the possible solutions is given by

π

(
βδ1···δp,αδ1···δp

)
=

N1

∏
δ1=1

· · ·
Np

∏
δp=1

1
βδ1···δp

√
αδ1···δp

. (4.4)

The prior given above satisfies (4.3) for all βδ1···δp and αδ1···δp selected as interested
parameters. Hence, the obtained prior is a matching prior for all the parameters, which implies
that the credibility interval for any parameter has a coverage error O

(
n−1) in the frequentist

sense.

Another important objective prior is the reference prior introduced by Bernardo (1979)
with further developments by Berger and Bernardo (1992b), Berger (1992). This prior is
defined as the prior that maximizes the expected Kullback-Leibler distance between the
posterior distribution and the prior distribution based on the experimental data. Bernardo
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(2005) proved that the reference prior has desirable properties, such as invariance, consistency
under marginalization and consistent sampling properties. If the parameters of the model are
orthogonal, the following lemma (see Berger et al. (2015)) can be used to easily obtain a
one-at-a-time reference prior to any chosen parameter of interest and any ordering of the
nuisance parameters (hereafter referred to as overall reference prior).

Consider the unknown parameters θθθ = (θ1,θ2) with associated Fisher information
matrix I (θ1,θ2). If I (θ1,θ2) is of the form

I (θ1,θ2) = Diag ( f (θ1)g(θ2) ,h(θ2)w(θ1)) ,

where f , g, h and w are positive functions of θθθ , then the overall reference prior is given by

πR (θ1,θ2) =
√

f (θ1)h(θ2) . (4.5)

Assuming that θθθ ∈ Rk, where k is the number of parameters, the same approach can
be applied to obtain the overall reference prior related to the vector of parameters. Here, we
have that fδ1···δp

(
βδ1···δp

)
= β

−2
δ1···δp

and hδ1···δp

(
βδ1···δp

)
= α

−1
δ1···δp

. Hence, from (4.5), the
overall reference prior is given by

πR

(
βδ1···δp,αδ1···δp

)
=

N1

∏
δ1=1

· · ·
Np

∏
δp=1

1
βδ1···δp

√
αδ1···δp

.

Therefore, the prior (4.4) is an overall reference prior and also a matching prior for all
the parameters. The obtained posterior distribution is given by

πR

(
βδ1···δp ,αδ1···δp | nδ1···δp , ttt

)
∝

N1

∏
δ1=1

· · ·
Np

∏
δp=1

γ

(
βδ1···δp | nδ1···δp,nδ1···δp/β̂δ1···δp

)
γ

(
αδ1···δp | nδ1···δp +

1
2
,1
)
.

Due to the consistent marginalization property of the overall reference prior, the marginal
reference posteriors are given by

πR(βδ1···δp | nδ1···δp , ttt) ∝ γ

(
βδ1···δp | nδ1···δp,nδ1···δp/β̂δ1···δp

)
,

and
πR(αδ1···δp | nδ1···δp , ttt) ∝ γ

(
αδ1···δp | nδ1···δp +

1
2
,1
)
.

From the marginal posterior distribution, we can obtain the Bayes estimator assuming
some rule, such as the posterior mean, median or mode. Here, we assume the posterior mode,
also known as MAP estimator, since this approach leads to an unbiased estimator for βδ1···δp

in the frequentist sense. The MAP estimator for βδ1···δp is given by

β̂
B
δ1···δp

=
nδ1···δp −1

∑
n
i=1 log

(
T
ti

)
I(δ1 · · ·δp)

,
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where I(δ1 · · ·δp) is the indicator function that equals one if the observation ti belongs to the
subsystem δ1 · · ·δp. From the estimator above, we have that E

[
β̂ B

δ1···δp

]
= βδ1···δp , i.e., such a

Bayes estimator is unbiased in the frequentist sense. On the other hand, for αδ1···δp , the MAP
estimator is given by

α̂
B
δ1···δp

= nδ1···δp −
1
2
.

In this case, we have that
E
[
α̂

B
δ1···δp

]
= αδ1···δp −

1
2
.

Hence, such a Bayes estimator for αδ1···δp has a systematic bias of −0.5. Once we have
identified the bias, we can remove it. In this case, we will not have that MAP estimator, but a
Bias-Corrected MAP (BMAP) estimator. Hereafter, we will consider the BMAP estimator for
the model parameters, which will be computed by

β̂
BC
δ1···δp

=
nδ1···δp −1

∑
n
i=1 log

(
T
ti

)
I(δ1 · · ·δp)

,

and
α̂

BC
δ1···δp

= nδ1···δp.

Now, since the marginal posterior distributions have closed-form expressions, we have
that the υ = 100(1−ξ )% credibility intervals for βδ1···δp and αδ1···δp can be obtained directly
from the quantile function of the gamma distribution, that is,

CI(β∘;υ) =

[
γQ

(
n∘,

n∘
β̂∘

;
ξ

2

)
; γQ

(
n∘,

n∘
β̂∘

; 1− ξ

2

)]
and

CI(α∘;υ) =

[
γQ

(
n∘+

1
2
,1;

ξ

2

)
; γQ

(
n∘+

1
2
,1; 1− ξ

2

)]
,

where ∘ denotes the index δ1 · · ·δp and γQ (a,b;υ) is the quantile function of the gamma
distribution with shape parameter a and scale parameter b, and 0 ≤ υ ≤ 1. This quantile
function is available in most of the standard statistical softwares. For example, in R it can
be computed by using the qgamma function. Therefore, the exact confidence intervals for the
model parameters can be obtained without the use of intensive computation.

4.4 Simulation
In this section, we carry out a simulation study to investigate and compare the perfor-

mance of the proposed Bayes estimators. To evaluate the estimators’ behavior, two metrics are
used: the Mean Relative Estimate (MRE) and the Root Mean Squared Error (RMSE), which
are calculated, respectively, by

MRE(θ̂w) =
1
M

M

∑
m=1

θ̂
(m)
w

θw
and RMSE(θ̂w) =

√
1
M

M

∑
m=1

(
θ̂
(m)
w −θw

)2
,
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for w = 1, . . . ,κ, where M = 100,000 is the number of Monte Carlo simulations and θθθ =

(θ1, · · · ,θκ) =
(
β1···1, . . . ,βN1···Np,α1···1, . . . ,αN1···Np

)
denotes the parameter vector. Besides,

θ̂
(m)
w represents the estimate of θw obtained from sample m, for m = 1, . . . ,M.

Through this approach, it is expected that good estimators return MREs close to one
and RMSEs close to zero. On the other hand, the 90% credibility intervals, which are obtained
directly from the 5% and 95% quantiles of the gamma posterior distributions, are expected to
have CP near the nominal value of 90%.

By considering the well-known results regarding NHPPs (RIGDON; BASU, 2000), and
also from the assumption that the failure modes are independent, we can generate the failure
times, for each Monte Carlo replication, according to the steps described in Algorithm 4. All
numerical computations and simulations were done using the R programming language (R Core
Team, 2018). Due to space constraints, the results are reported only for six scenarios. However,
similar findings are obtained for other parameter choices.

Input:
p, T, N1,N2(δ1), . . . ,Np(δ1, . . . ,δp−1), βββ = (β1···1, . . . ,βN1···Np), ααα = (α1···1, . . . ,αN1···Np)

Output:
{(ttt,ψψψ)}= {(ttt1...1,ψψψ1...1), . . . ,(tttN1...Np ,ψψψN1...Np

)}

Procedure:

for δ1 := 1 to N1 do
for δ2 := 1 to N2(δ1) do

...
for δp := 1 to Np(δ1, . . . ,δp−1) do

nδ1,...,δp ∼ Poisson(αδ1,...,δp)

for i := 1 to nδ1,...,δp do

Ui,δ1,...,δp ∼ Uniform(0,1)

ti,δ1,...,δp = T U
1/βδ1 ,...,δp
i,δ1,...,δp

ψi,δ1,...,δp = δ1, . . . ,δp

end
end
...

end
end

Algorithm 2: Generator of random numbers from the proposed model.
In what follows, we present the results for two distinct structures of a single system,
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both under the assumption that the components system is observed in the fixed time interval
(0,T ], where T = 60. The first is a system subject to 3 failure causes each with 2 subcauses;
and the second is a system subject to 2 main causes each one subject to 2 subcauses which, in
turn, are subject to 2 other causes which, in the end, are also subject to 2 causes, in a 4-level
structure. These structures can be seen in Figures 57 and 58, in which the parameters set for
each underlying cause is presented in Table 16.

Table 16 – Scenarios for a single system subject to 3 failure causes each one with 2 subcauses
(Scenarios 1, 2 and 3); and a single system subject to 2 failure causes each one with
2 subcauses which, in turn, have 2 causes of failure and, finally, also 2 other causes of
failure (Scenarios 4, 5 and 6).

System βββ ααα System βββ ααα System βββ ααα

Scenario 1 Scenario 2 Scenario 3

1.1 1.5 22 1.1 2.2 30 1.1 0.20 35
1.2 2.3 18 1.2 0.7 25 1.2 0.50 24
2.1 1.2 20 2.1 1.5 27 2.1 0.90 18
2.2 3.5 25 2.2 0.2 32 2.2 1.00 20
3.1 1.0 21 3.1 1.0 23 3.1 0.80 32
3.2 1.1 23 3.2 1.8 20 3.2 0.05 25

Scenario 4 Scenario 5 Scenario 6

1.1.1.1 1.3 20 1.1.1.1 1.0 20 1.1.1.1 0.10 20
1.1.1.2 1.5 22 1.1.1.2 1.2 25 1.1.1.2 0.10 22
1.1.2.1 2.0 23 1.1.2.1 0.8 26 1.1.2.1 0.50 30
1.1.2.2 1.8 25 1.1.2.2 1.5 23 1.1.2.2 0.30 28
1.2.1.1 1.1 22 1.2.1.1 0.3 18 1.2.1.1 0.90 18
1.2.1.2 2.5 21 1.2.1.2 1.8 17 1.2.1.2 0.80 25
1.2.2.1 1.2 30 1.2.2.1 0.7 23 1.2.2.1 0.05 19
1.2.2.2 1.5 32 1.2.2.2 1.5 22 1.2.2.2 0.40 17
2.1.1.1 1.0 17 2.1.1.1 0.5 20 2.1.1.1 0.20 20
2.1.1.2 1.1 18 2.1.1.2 0.9 17 2.1.1.2 0.01 26
2.1.2.1 1.0 20 2.1.2.1 2.0 28 2.1.2.1 0.30 32
2.1.2.2 2.1 18 2.1.2.2 1.0 22 2.1.2.2 0.70 19
2.2.1.1 1.6 29 2.2.1.1 0.4 19 2.2.1.1 0.40 23
2.2.1.2 1.5 25 2.2.1.2 0.1 23 2.2.1.2 0.90 25
2.2.2.1 2.5 24 2.2.2.1 1.4 20 2.2.2.1 0.10 26
2.2.2.2 3.0 23 2.2.2.2 1.9 18 2.2.2.2 0.20 20

GENERAL SYSTEM
FAILURE

System 2
Failure

System 1
Failure

System 3
Failure

Sub-system
1.1

Sub-system
1.2

Sub-system
2.1

Sub-system
2.2

Sub-system
3.1

Sub-system
3.2

Figure 26 – Simulated failure structure for Scenarios 1, 2 and 3.
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Failure
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Failure
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Failure
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Figure 27 – Simulated failure structure for Scenarios 4, 5 and 6.

As can be seen in Tables 17 and 18, the MREs are very close to one, with no exception,
especially for the BMAP estimator. On the other hand, the observed values of RMSE are, in
general, less than 0.5 for the MAP/BMAP estimator of βββ and less than 5 in the case of ααα .

The CPs are close to the nominal value of 90%, especially in the case of the exact
intervals (CB) when compared to the asymptotic ones (B).

Table 17 – MREs, RMSEs and CPs from the MAP (B) and BMAP (CB) estimators, considering
different parameter values (Scenarios 1, 2 and 3).

Pa
ra

m
et

er Scenario 1 Scenario 2 Scenario 3

Va
lu

e MRE RMSE CP

Va
lu

e MRE RMSE CP

Va
lu

e MRE RMSE CP
B CB B CB B CB B CB B CB B CB B CB B CB B CB

α1.1 22.0 0.977 1.000 4.719 4.693 0.856 0.892 30.0 0.983 1.000 5.505 5.483 0.887 0.899 35.00 0.986 1.000 5.942 5.921 0.871 0.892
β1.1 1.5 1.000 1.000 0.348 0.348 0.885 0.899 2.2 1.000 1.000 0.427 0.427 0.888 0.898 0.20 0.999 0.999 0.035 0.035 0.890 0.899
α1.2 18.0 0.972 1.000 4.276 4.247 0.880 0.900 25.0 0.980 1.000 5.027 5.002 0.886 0.889 24.00 0.979 1.000 4.927 4.902 0.892 0.897
β1.2 2.3 1.000 1.000 0.599 0.599 0.884 0.900 0.7 1.001 1.001 0.151 0.151 0.887 0.900 0.50 1.000 1.000 0.110 0.110 0.886 0.899
α2.1 20.0 0.975 1.000 4.504 4.476 0.873 0.908 27.0 0.981 1.000 5.227 5.203 0.872 0.899 18.00 0.972 1.000 4.276 4.247 0.880 0.900
β2.1 1.2 1.000 1.000 0.294 0.294 0.885 0.898 1.5 1.001 1.001 0.309 0.309 0.888 0.899 0.90 1.000 1.000 0.234 0.234 0.884 0.900
α2.2 25.0 0.980 1.000 5.027 5.002 0.886 0.889 32.0 0.984 1.000 5.683 5.661 0.886 0.908 20.00 0.975 1.000 4.504 4.476 0.873 0.908
β2.2 3.5 1.001 1.001 0.753 0.753 0.887 0.900 0.2 1.000 1.000 0.037 0.037 0.889 0.898 1.00 1.000 1.000 0.245 0.245 0.885 0.898
α3.1 21.0 0.976 1.000 4.616 4.589 0.864 0.900 23.0 0.978 1.000 4.824 4.798 0.889 0.904 32.00 0.984 1.000 5.683 5.661 0.886 0.908
β3.1 1.0 1.000 1.000 0.238 0.238 0.885 0.898 1.0 1.000 1.000 0.226 0.226 0.886 0.899 0.80 1.000 1.000 0.150 0.150 0.889 0.898
α3.2 23.0 0.978 1.000 4.824 4.798 0.889 0.904 20.0 0.975 1.000 4.504 4.476 0.873 0.908 25.00 0.980 1.000 5.027 5.002 0.886 0.889
β3.2 1.1 1.000 1.000 0.248 0.248 0.886 0.899 1.8 1.000 1.000 0.440 0.440 0.885 0.898 0.05 1.001 1.001 0.011 0.011 0.887 0.900

Table 18 – MREs, RMSEs and CPs from the MAP (B) and BMAP (CB) estimators, considering
different parameter values (Scenarios 4, 5 and 6).

Pa
ra

m
et

er Scenario 4 Scenario 5 Scenario 6

Va
lu

e MRE RMSE CP

Va
lu

e MRE RMSE CP

Va
lu

e MRE RMSE CP

B CB B CB B CB B CB B CB B CB B CB B CB B CB

α1.1.1.1 20.0 0.975 1.000 4.504 4.476 0.873 0.908 20.0 0.975 1.000 4.504 4.476 0.873 0.908 20.00 0.975 1.000 4.504 4.476 0.873 0.908
β1.1.1.1 1.3 1.000 1.000 0.318 0.318 0.885 0.898 1.0 1.000 1.000 0.245 0.245 0.885 0.898 0.10 1.000 1.000 0.024 0.024 0.885 0.898
α1.1.1.2 22.0 0.977 1.000 4.719 4.693 0.856 0.892 25.0 0.980 1.000 5.027 5.002 0.886 0.889 22.00 0.977 1.000 4.719 4.693 0.856 0.892
β1.1.1.2 1.5 1.000 1.000 0.348 0.348 0.885 0.899 1.2 1.001 1.001 0.258 0.258 0.887 0.900 0.10 1.000 1.000 0.023 0.023 0.885 0.899
α1.1.2.1 23.0 0.978 1.000 4.824 4.798 0.889 0.904 26.0 0.981 1.000 5.124 5.100 0.879 0.906 30.00 0.983 1.000 5.505 5.483 0.887 0.899
β1.1.2.1 2.0 1.000 1.000 0.451 0.451 0.886 0.899 0.8 1.001 1.001 0.169 0.169 0.887 0.899 0.50 1.000 1.000 0.097 0.097 0.888 0.898
α1.1.2.2 25.0 0.980 1.000 5.027 5.002 0.886 0.889 23.0 0.978 1.000 4.824 4.798 0.889 0.904 28.00 0.982 1.000 5.321 5.297 0.865 0.893
β1.1.2.2 1.8 1.001 1.001 0.387 0.387 0.887 0.900 1.5 1.000 1.000 0.338 0.338 0.886 0.899 0.30 1.000 1.000 0.061 0.061 0.888 0.899
α1.2.1.1 22.0 0.977 1.000 4.719 4.693 0.856 0.892 18.0 0.972 1.000 4.276 4.247 0.880 0.900 18.00 0.972 1.000 4.276 4.247 0.880 0.900
β1.2.1.1 1.1 1.000 1.000 0.255 0.255 0.885 0.899 0.3 1.000 1.000 0.078 0.078 0.884 0.900 0.90 1.000 1.000 0.234 0.234 0.884 0.900
α1.2.1.2 21.0 0.976 1.000 4.616 4.589 0.864 0.900 17.0 0.971 1.000 4.155 4.125 0.890 0.910 25.00 0.980 1.000 5.027 5.002 0.886 0.889
β1.2.1.2 2.5 1.000 1.000 0.596 0.596 0.885 0.898 1.8 1.000 1.000 0.486 0.486 0.882 0.899 0.80 1.001 1.001 0.172 0.172 0.887 0.900
α1.2.2.1 30.0 0.983 1.000 5.505 5.483 0.887 0.899 23.0 0.978 1.000 4.824 4.798 0.889 0.904 19.00 0.974 1.000 4.395 4.367 0.882 0.890
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β1.2.2.1 1.2 1.000 1.000 0.233 0.233 0.888 0.898 0.7 1.000 1.000 0.158 0.158 0.886 0.899 0.05 1.000 1.000 0.013 0.013 0.884 0.899
α1.2.2.2 32.0 0.984 1.000 5.683 5.661 0.886 0.908 22.0 0.977 1.000 4.719 4.693 0.856 0.892 17.00 0.971 1.000 4.155 4.125 0.890 0.910
β1.2.2.2 1.5 1.000 1.000 0.281 0.281 0.889 0.898 1.5 1.000 1.000 0.348 0.348 0.885 0.899 0.40 1.000 1.000 0.108 0.108 0.882 0.899
α2.1.1.1 17.0 0.971 1.000 4.155 4.125 0.890 0.910 20.0 0.975 1.000 4.504 4.476 0.873 0.908 20.00 0.975 1.000 4.504 4.476 0.873 0.908
β2.1.1.1 1.0 1.000 1.000 0.270 0.270 0.882 0.899 0.5 1.000 1.000 0.122 0.122 0.885 0.898 0.20 1.000 1.000 0.049 0.049 0.885 0.898
α2.1.1.2 18.0 0.972 1.000 4.276 4.247 0.880 0.900 17.0 0.971 1.000 4.155 4.125 0.890 0.910 26.00 0.981 1.000 5.124 5.100 0.879 0.906
β2.1.1.2 1.1 1.000 1.000 0.286 0.286 0.884 0.900 0.9 1.000 1.000 0.243 0.243 0.882 0.899 0.01 0.989 0.989 0.002 0.002 0.880 0.903
α2.1.2.1 20.0 0.975 1.000 4.504 4.476 0.873 0.908 28.0 0.982 1.000 5.321 5.297 0.865 0.893 32.00 0.984 1.000 5.683 5.661 0.886 0.908
β2.1.2.1 1.0 1.000 1.000 0.245 0.245 0.885 0.898 2.0 1.000 1.000 0.404 0.404 0.888 0.899 0.30 1.000 1.000 0.056 0.056 0.889 0.898
α2.1.2.2 18.0 0.972 1.000 4.276 4.247 0.880 0.900 22.0 0.977 1.000 4.719 4.693 0.856 0.892 19.00 0.974 1.000 4.395 4.367 0.882 0.890
β2.1.2.2 2.1 1.000 1.000 0.547 0.547 0.884 0.900 1.0 1.000 1.000 0.232 0.232 0.885 0.899 0.70 1.000 1.000 0.177 0.177 0.884 0.899
α2.2.1.1 29.0 0.983 1.000 5.413 5.390 0.893 0.905 19.0 0.974 1.000 4.395 4.367 0.882 0.890 23.00 0.978 1.000 4.824 4.798 0.889 0.904
β2.2.1.1 1.6 1.000 1.000 0.316 0.316 0.888 0.899 0.4 1.000 1.000 0.101 0.101 0.884 0.899 0.40 1.000 1.000 0.090 0.090 0.886 0.899
α2.2.1.2 25.0 0.980 1.000 5.027 5.002 0.886 0.889 23.0 0.978 1.000 4.824 4.798 0.889 0.904 25.00 0.980 1.000 5.027 5.002 0.886 0.889
β2.2.1.2 1.5 1.001 1.001 0.323 0.323 0.887 0.900 0.1 1.000 1.000 0.023 0.023 0.886 0.899 0.90 1.001 1.001 0.194 0.194 0.887 0.900
α2.2.2.1 24.0 0.979 1.000 4.927 4.902 0.892 0.897 20.0 0.975 1.000 4.504 4.476 0.873 0.908 26.00 0.981 1.000 5.124 5.100 0.879 0.906
β2.2.2.1 2.5 1.000 1.000 0.551 0.551 0.886 0.899 1.4 1.000 1.000 0.343 0.343 0.885 0.898 0.10 1.001 1.001 0.021 0.021 0.887 0.899
α2.2.2.2 23.0 0.978 1.000 4.824 4.798 0.889 0.904 18.0 0.972 1.000 4.276 4.247 0.880 0.900 20.00 0.975 1.000 4.504 4.476 0.873 0.908
β2.2.2.2 3.0 1.000 1.000 0.677 0.677 0.886 0.899 1.9 1.000 1.000 0.494 0.494 0.884 0.900 0.20 1.000 1.000 0.049 0.049 0.885 0.898

4.5 Applications

In Louzada et al. (2019), the Annelida’s traction subsystem was used to illustrate
the methodology discussed at the time. With the advance in the development of the robotic
unit, the applications exposed here refine the previous one with the inclusion of more details
about this important subsystem (Section 4.5.2), and also adding the new results obtained in
this chapter to another subsystem as well (pressure vessel subsystem in Section 4.5.1). The
information available so far comes from their respective FMEA (Failure Mode and Effects
Analysis) tables, which were reviewed by the technical team to further deepen the knowledge
they have about their idealizations and tests already carried out.

In both subsystems, the parameters of the model proposed here were associated with
the Severity (S), Occurrence (O) and Detectability (D) indices. Thus, it was possible to take
random realizations (based on Algorithm 4) of the failure times that represent the perspective
provided by the technical team at FMEA, from the perspective of reliability. This approach
ensures the addition of information at this early stage of the project.

The current reliability requirements for both subsystems include, among numerous
other factors, that: (i) with high probability, the system must remain in operation (without any
failure) for at least a minimum number of days; (ii) on the other hand, the median lifetime of
the first failure is expected to be around another number of days. These requirements were
determined by considering the expected number of annual missions, the size of the step taken
by the robotic unit inside the oil pipelines, its respective speed and the estimated time for the
hydrate block to melt. Such estimates also allowed to assess the time needed per mission and,
therefore, the minimum desired lifetime.
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4.5.1 In-Pipe Robot – Pressure Vessel Set

Based on the reliability requirements for the pressure vessel system, we consider that
with high probability (≈ 95%) the first failure should not occur before 68 days. Similarly, the
median of first-failure time should be around 136 days. In this way, we can plot the reliability
curve associated with the proposed model (Figure 28). This curve is a partial reference for the
reliability that we want to achieve at the end of the development of this system, in the light of
the currently proposed modeling. We will see that all the uncertainty involved in this initial
stage of the project exposes us to how far we are from this objective. However, it does allow
for more targeted research routes.
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Figure 28 – Pressure vessel set’s reliability requirements.

The project designed 11 pressure vessels connected by connecting cables, as shown
in Figure 19. Although the whole set of vessels will be exposed to the same environmental
characteristics, their functions have different purposes and importances. However, the individual
evaluation of the vessels will not be considered in this work, so that the same FMEA will
represent, here, all 11 subsystems and the indices used, as well as the FTA, are shown in Table
19.

Table 19 – FTA (with FMEA indices) for the in-pipe robot’s pressure vessel system.
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An illustration of the data set generated can be found in Table 27 of Appendix B.1,
and obtained in full via an individual request for the authors. Due to the approximately linear
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behavior in the Duane plots, for each failure mode (see Figure 52 of Appendix B.2), we have
indications that the theoretical PLP model may be appropriate to model a problem like this.

The parameter estimates (see Table 20) express that, in a practical situation, the Cable
Conductor subsystem would be undergoing a degradation process; there is statistical evidence
of this in some cases (6/11), and in others only indications (5/11). On the other hand, the
same occurs less frequently in the other subsystems.

Table 20 – BMAP estimates and 95% credibility intervals (95% CIs) for the model parameters,
considering the in-pipe robot’s pressure vessel system’s failure data.

95% CI 95% CI 95% CI 95% CI

System α̂αα Lower Upper β̂ββ Lower Upper System α̂αα Lower Upper β̂ββ Lower Upper
1.1.1 47 34.9624 61.9290 1.4684 1.1024 1.9587 1.7.1 47 34.9624 61.9290 1.0539 0.7912 1.4057
1.1.2.1 28 19.0134 39.8761 0.6813 0.4695 0.9913 1.7.2.1 33 23.1305 45.7597 0.5341 0.3792 0.7541
1.1.2.2 29 19.8309 41.0587 0.8647 0.5998 1.2498 1.7.2.2 29 19.8309 41.0587 0.8975 0.6225 1.2971
1.1.2.3 26 17.3882 37.5009 1.0627 0.7219 1.5687 1.7.2.3 35 24.7961 48.0944 0.8997 0.6451 1.2572
1.1.2.4 28 19.0134 39.8761 0.9132 0.6293 1.3286 1.7.2.4 33 23.1305 45.7597 1.0314 0.7322 1.4560
1.1.2.5 39 28.1545 52.7364 1.2672 0.9248 1.7393 1.7.2.5 40 28.9992 53.8917 1.2499 0.9158 1.7086
1.2.1 52 39.2682 67.6235 1.4171 1.0791 1.8633 1.8.1 52 39.2682 67.6235 1.1184 0.8516 1.4705
1.2.2.1 24 15.7775 35.1112 0.5534 0.3700 0.8303 1.8.2.1 29 19.8309 41.0587 0.4055 0.2812 0.5860
1.2.2.2 37 26.4710 50.4197 0.7335 0.5308 1.0154 1.8.2.2 37 26.4710 50.4197 0.8517 0.6164 1.1791
1.2.2.3 36 25.6324 49.2581 0.9266 0.6675 1.2887 1.8.2.3 38 27.3117 51.5791 0.8932 0.6492 1.2312
1.2.2.4 23 14.9781 33.9103 0.5451 0.3613 0.8253 1.8.2.4 30 20.6516 42.2382 0.7565 0.5280 1.0865
1.2.2.5 52 39.2682 67.6235 0.9670 0.7364 1.2715 1.8.2.5 29 19.8309 41.0587 1.0210 0.7082 1.4756
1.3.1 39 28.1545 52.7364 1.2904 0.9418 1.7712 1.9.1 49 36.6805 64.2110 1.3643 1.0304 1.8089
1.3.2.1 15 8.7694 24.1159 1.0601 0.6357 1.7786 1.9.2.1 23 14.9781 33.9103 0.5200 0.3446 0.7873
1.3.2.2 33 23.1305 45.7597 1.1131 0.7901 1.5713 1.9.2.2 37 26.4710 50.4197 0.7737 0.5599 1.0712
1.3.2.3 32 22.3015 44.5886 1.0118 0.7144 1.4362 1.9.2.3 33 23.1305 45.7597 0.7979 0.5664 1.1264
1.3.2.4 33 23.1305 45.7597 0.8795 0.6243 1.2416 1.9.2.4 29 19.8309 41.0587 0.8174 0.5670 1.1813
1.3.2.5 37 26.4710 50.4197 0.9408 0.6808 1.3025 1.9.2.5 47 34.9624 61.9290 0.9518 0.7145 1.2695
1.4.1 33 23.1305 45.7597 1.8210 1.2927 2.5707 1.10.1 55 41.8675 71.0243 1.3868 1.0641 1.8095
1.4.2.1 26 17.3882 37.5009 0.4658 0.3165 0.6876 1.10.2.1 31 21.4751 43.4148 0.6620 0.4648 0.9450
1.4.2.2 26 17.3882 37.5009 0.8439 0.5733 1.2458 1.10.2.2 34 23.9621 46.9282 0.7932 0.5660 1.1140
1.4.2.3 32 22.3015 44.5886 1.1062 0.7811 1.5702 1.10.2.3 38 27.3117 51.5791 0.9273 0.6740 1.2782
1.4.2.4 30 20.6516 42.2382 1.2512 0.8733 1.7969 1.10.2.4 30 20.6516 42.2382 1.0195 0.7116 1.4642
1.4.2.5 39 28.1545 52.7364 1.0461 0.7635 1.4359 1.10.2.5 37 26.4710 50.4197 1.0857 0.7857 1.5031
1.5.1 38 27.3117 51.5791 1.2270 0.8917 1.6912 1.11.1 46 34.1056 60.7857 1.0990 0.8225 1.4705
1.5.2.1 35 24.7961 48.0944 0.7052 0.5057 0.9855 1.11.2.1 27 18.1991 38.6902 0.5680 0.3887 0.8323
1.5.2.2 26 17.3882 37.5009 0.6888 0.4680 1.0169 1.11.2.2 37 26.4710 50.4197 0.8204 0.5937 1.1358
1.5.2.3 30 20.6516 42.2382 0.7637 0.5331 1.0969 1.11.2.3 34 23.9621 46.9282 0.8185 0.5840 1.1495
1.5.2.4 30 20.6516 42.2382 0.9083 0.6340 1.3045 1.11.2.4 38 27.3117 51.5791 0.6382 0.4638 0.8797
1.5.2.5 39 28.1545 52.7364 0.9437 0.6888 1.2954 1.11.2.5 34 23.9621 46.9282 1.0132 0.7229 1.4228
1.6.1 68 53.2453 85.6470 1.2945 1.0202 1.6440
1.6.2.1 35 24.7961 48.0944 1.1473 0.8226 1.6032
1.6.2.2 28 19.0134 39.8761 0.9043 0.6231 1.3157
1.6.2.3 24 15.7775 35.1112 0.9041 0.60045 1.3566
1.6.2.4 30 20.6516 42.2382 0.9267 0.6468 1.3310
1.6.2.5 33 23.1305 45.7597 1.0657 0.7565 1.5045
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Some subsystems did not have an increasing intensity function (which would indicate a
degradation process), however, the failure intensity in the initial times was higher, which results
in the high occurrence of failures in the first moments of activity and, therefore, significantly
reduces the component’s survival time. This occurred more frequently in the Heatpipe and
Carbon Fiber Protection subsystems. This information cannot be perceived directly on the
parameter estimates (Table 20), however, the graphs associated with the first-failure time
reliability and intensity curves, obtained by the adjustment, are shown in Figure 29.

From Figure 29, it is possible to notice that the desired reliability requirements are still
far away. The median first-failure time of a pressure vessel is close to one day (depending on
the randomization of the simulated data), which is still far from the desired 68 days. The result
obtained by the model does not reflect any time observed in practice, however, it describes,
from the perspective of the reliability analysis, all the uncertainty that still surrounds the
development of this system component.

The graph of the observed number of failures versus the number of failures estimated
over time can be used to assess the quality of the model’s fit. In Figure 53 of Appendix B.3,
the plots for each component are presented and, in general, in a practical situation we would
understand that the model was able to describe the observed behavior.
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Figure 29 – First-failure time reliability (in black) and intensity (in red) functions by components,
subsystems and systems, for the in-pipe robotic unit’s pressure vessel set system.

4.5.2 In-Pipe Robot – Traction System

In this section, we return to the situation described in Section ??. We obtained a
suitable data set (an example is given in Table 28 of Appendix B.5) for this problem using a
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similar approach as proposed in the previous section, i.e., based on the limited but available
information provided by the revised FMEA and FTA tools (see Figure 54).

The required reliability for the traction system is graphically exposed in Figure 30 of
Appendix B.4, and claims, with high probability, that the system remains in operation for at
least 102 days, without any failure. Also, the median failure time of the system has to be
approximately 170 days.
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Figure 30 – Traction system’s reliability requirements.

The Duane plots built for each failure mode (see Figure 55 of Appendix B.6) have an
approximately linear behavior, which demonstrates the theoretical suitability that a PLP model
needs for adjustment.

In a practical context, if the failure times came from some missions, the BMAP estimates
of the adjusted model for the traction system (see Table 21) would show that there are evidences
of some components having an increasing failure intensity function (systems 1.3.5.5, 1.3.6.4-5,
1.3.7.4, 1.3.8.4, 1.3.9.4-5, 1.3.10.4-5); for many others, there are some indications; and for
some, evidences of non-deterioration (systems 1.1.1.2-3, 1.1.2.3, 1.1.3.3, 1.2.1, 1.2.5, 1.3.2,
1.3.5.2, 1.3.6.2, 1.3.8.2, 2.1.3.3-5, 2.1.4.3-5, 2.1.5.3-5, 2.3.3.3, 2.3.4.3, 2.3.5.3).

From these results, we identify that the components responsible for the main failure
causes, which represent the biggest obstacles to reaching the reliability requirements, are the
rubber (1.3.5-10.4) and adhesive (1.3.5-10.5) components. In particular, these units express an
evident degradation behavior, which suggests the need for a preventive maintenance regime
dedicated especially to these components, or even the renewal of the design idealized for the
process performed by them. Indeed, the latter is what is currently being carried out, since the
preliminary practical tests of the traction system exposed serious failures associated with the
strength of the adhesive and the rubber to withstand the necessary force for the locomotion.
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Table 21 – BMAP estimates and 95% CIs for the model parameters, considering the in-pipe robot’s
traction system’s failure data.

95% CI 95% CI 95% CI 95% CI

System α̂αα Lower Upper β̂ββ Lower Upper System α̂αα Lower Upper β̂ββ Lower Upper
1.1.1.1 3 0.8449 8.0064 1.8669 0.5775 6.7439 2.1.1 6 2.5044 12.3678 1.2642 0.5567 2.9503
1.1.1.2 12 6.5599 20.3232 0.8939 0.5039 1.5995 2.1.2 8 3.7821 15.0955 1.4402 0.7106 2.9674
1.1.1.3 29 19.8309 41.0587 0.9935 0.6891 1.4359 2.1.3.1 4 1.3502 9.5114 2.5054 0.9102 7.3218
1.1.1.4 43 31.5447 57.3465 1.1332 0.8396 1.5317 2.1.3.2 16 9.5233 25.3625 1.1185 0.6819 1.8448
1.1.1.5 36 25.6324 49.2581 1.1339 0.8169 1.5770 2.1.3.3 28 19.0134 39.8761 0.9348 0.6442 1.3601
1.1.2.1 5 1.9079 10.9600 1.8970 0.7699 4.8570 2.1.3.4 33 23.1305 45.7597 0.8843 0.6278 1.2484
1.1.2.2 25 16.5809 36.3080 1.1912 0.8030 1.7724 2.1.3.5 33 23.1305 45.7597 0.8843 0.6278 1.2484
1.1.2.3 34 23.9621 46.9282 0.9243 0.6595 1.2981 2.1.4.1 4 1.3502 9.5114 2.5054 0.9102 7.3218
1.1.2.4 37 26.4710 50.4197 1.1349 0.8213 1.5712 2.1.4.2 16 9.5233 25.3625 1.1185 0.6819 1.8448
1.1.2.5 42 30.6944 56.1967 1.1370 0.8394 1.5425 2.1.4.3 28 19.0134 39.8761 0.9348 0.6442 1.3601
1.1.3.1 4 1.3502 9.5114 2.3031 0.8367 6.7307 2.1.4.4 33 23.1305 45.7597 0.8843 0.6278 1.2484
1.1.3.2 10 5.1414 17.7394 1.0611 0.5654 2.0142 2.1.4.5 33 23.1305 45.7597 0.8843 0.6278 1.2484
1.1.3.3 38 27.3117 51.5791 0.9610 0.6985 1.3246 2.1.5.1 4 1.3502 9.5114 2.5054 0.9102 7.3218
1.1.3.4 37 26.4710 50.4197 1.1349 0.8213 1.5712 2.1.5.2 16 9.5233 25.3625 1.1185 0.6819 1.8448
1.1.3.5 43 31.5447 57.3465 1.1332 0.8396 1.5317 2.1.5.3 28 19.0134 39.8761 0.9348 0.6442 1.3601
1.1.4 15 8.7694 24.1159 1.0673 0.6401 1.7908 2.1.5.4 33 23.1305 45.7597 0.8843 0.6278 1.2484
1.1.5 8 3.7821 15.0955 1.3721 0.6770 2.8271 2.1.5.5 33 23.1305 45.7597 0.8843 0.6278 1.2484
1.2.1 28 19.0134 39.8761 0.9679 0.6670 1.4083 2.2.1 21 13.3927 31.4952 1.0466 0.6803 1.6164
1.2.2 3 0.8449 8.0064 1.8054 0.5585 6.5216 2.2.2 5 1.9079 10.9600 1.9708 0.7999 5.0459
1.2.3 25 16.5809 36.3080 1.0826 0.7298 1.6109 2.2.3 23 14.9781 33.9103 1.0231 0.6780 1.5490
1.2.4 19 11.8272 29.0600 1.0910 0.6933 1.7242 2.2.4 12 6.5599 20.3232 1.0294 0.5802 1.8418
1.2.5 13 7.2867 21.5973 0.9651 0.5567 1.6858 2.3.1 10 5.1414 17.7394 1.2872 0.6858 2.4435
1.3.1 14 8.0235 22.8611 1.0205 0.6009 1.7452 2.3.2 12 6.5599 20.3232 1.0294 0.5802 1.8418
1.3.2 11 5.8443 19.0378 0.9382 0.5152 1.7254 2.3.3.1 5 1.9079 10.9600 1.9708 0.7999 5.0459
1.3.3 15 8.7694 24.1159 1.0193 0.6112 1.7102 2.3.3.2 16 9.5233 25.3625 1.1185 0.6819 1.8448
1.3.4 7 3.1311 13.7442 1.0916 0.5120 2.3760 2.3.3.3 33 23.1305 45.7597 0.8843 0.6278 1.2484
1.3.5.1 11 5.8443 19.0378 1.1527 0.6329 2.1198 2.3.3.4 40 28.9992 53.8917 1.0097 0.7398 1.3803
1.3.5.2 9 4.4533 16.4262 0.9203 0.4734 1.8133 2.3.3.5 40 28.9992 53.8917 1.0097 0.7398 1.3803
1.3.5.3 31 21.4751 43.4148 1.1724 0.8232 1.6737 2.3.4.1 5 1.9079 10.9600 1.9708 0.7999 5.0459
1.3.5.4 39 28.1545 52.7364 1.3199 0.9633 1.8116 2.3.4.2 16 9.5233 25.3625 1.1185 0.6819 1.8448
1.3.5.5 48 35.8208 63.0707 1.4029 1.0564 1.8656 2.3.4.3 33 23.1305 45.7597 0.8843 0.6278 1.2484
1.3.6.1 6 2.5044 12.3678 1.3407 0.5904 3.1286 2.3.4.4 40 28.9992 53.8917 1.0097 0.7398 1.3803
1.3.6.2 17 10.2847 26.6017 0.9860 0.6103 1.6012 2.3.4.5 40 28.9992 53.8917 1.0097 0.7398 1.3803
1.3.6.3 39 28.1545 52.7364 1.0998 0.8026 1.5095 2.3.5.1 5 1.9079 10.9600 1.9708 0.7999 5.0459
1.3.6.4 55 41.8675 71.0243 1.3636 1.0463 1.7792 2.3.5.2 16 9.5233 25.3625 1.1185 0.6819 1.8448
1.3.6.5 50 37.5417 65.3499 1.3782 1.0438 1.8221 2.3.5.3 33 23.1305 45.7597 0.8843 0.6278 1.2484
1.3.7.1 6 2.5044 12.3678 1.3407 0.5904 3.1286 2.3.5.4 40 28.9992 53.8917 1.0097 0.7398 1.3803
1.3.7.2 16 9.5233 25.3625 1.0194 0.6215 1.6813 2.3.5.5 40 28.9992 53.8917 1.0097 0.7398 1.3803
1.3.7.3 38 27.3117 51.5791 1.0821 0.7865 1.4916
1.3.7.4 51 38.4043 66.4873 1.3946 1.0591 1.8386
1.3.7.5 42 30.6944 56.1967 1.3054 0.9638 1.7710
1.3.8.1 9 4.4533 16.4262 1.2405 0.6382 2.4443
1.3.8.2 17 10.2847 26.6017 0.9860 0.6103 1.6012
1.3.8.3 44 32.3967 58.4945 1.1088 0.8244 1.4935
1.3.8.4 50 37.5417 65.3499 1.3782 1.0438 1.8221
1.3.8.5 41 29.8459 55.0451 1.3312 0.9792 1.8127
1.3.9.1 11 5.8443 19.0378 1.1527 0.6329 2.1198
1.3.9.2 18 11.0528 27.8340 1.0040 0.6300 1.6075
1.3.9.3 37 26.4710 50.4197 1.0857 0.7857 1.5031
1.3.9.4 51 38.4043 66.4873 1.3946 1.0591 1.8386
1.3.9.5 53 40.1334 68.7584 1.4198 1.0840 1.8619
1.3.10.1 4 1.3502 9.5114 2.2272 0.8091 6.5089
1.3.10.2 18 11.0528 27.8340 1.0040 0.6300 1.6075
1.3.10.3 51 38.4043 66.4873 1.1621 0.8825 1.5320
1.3.10.4 48 35.8208 63.0707 1.4029 1.0564 1.8656
1.3.10.5 46 34.1056 60.7857 1.3724 1.0271 1.8363
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The estimated reliability and intensity functions for the first-failure times are shown
in Figure 31. From this figure, it can be seen that the median first-failure time for some
components, such as Spring (1.1.1-3.1) and Copling Rod (1.2.2), is high, with approximately 90
days. Other components, such as rubber (1.1.1-3.4), adhesive (1.1.1-3.5), paw (1.1.1-3.3) and
main hydraulic piston (1.2.1), have a small first-failure median time, around 5 days. However,
at the end of the interaction between all components and subsystems, the median time of the
first-failure is around 0.12543 days for the return locomotive, and 0.21694 days for the forward
locomotive.

The goodness of fit can be seen by the comparison between the observed and estimated
number of failures along the time. These graphs, for each component, can be found in Figure
56 of Appendix B.7.

4.6 Concluding Remarks
In this chapter, we have continued the study started in (LOUZADA et al., 2019),

presenting the model under consideration of an arbitrary number of hierarchical levels and
maintaining the assumptions of competing risks with independent failure modes, in a MR
regime with a reparametrized PLP intensity function. In this context, we have obtained Bayesian
estimators with corrected biases, as well as we have derived exact credibility intervals for the
parameters. The properties of these estimators were evaluated in a simulation study, which
returned good results.

The model structured in the proposed way allowed to highlight analytically and graphi-
cally the reliability associated with the first-failure times of each one of the subsystems (at
any hierarchical level) of two arbitrary systems that illustrate the use of modeling. Namely,
the pressure vessels set and the traction system of the developing system that has served as a
practical motivation for this theoretical development.

As future works, we intend to evaluate the quality of these estimators in a context with
outliers, their behavior (in terms of quality loss) when exposed to data from an IR regime. In
addition, we wish to evaluate the change in reliability based on the increase in redundancy of
some subsystems. We also intend to assume that repairs are either perfect or imperfect, and
model the dependence among the failure modes via shared frailty models.
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Figure 31 – First-failure time reliability (in black) and intensity (in red) functions by components,

subsystems and systems, for the in-pipe robotic unit’s traction system.
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CHAPTER

5
CONFIDENCE ESTIMATION BY ADOPTING

A PLP MODEL HIERARCHICALLY
REPRESENTED WITH SERIES-PARALLEL

CONNECTIONS SUBJECT TO COMPETING
RISKS UNDER MR REGIME

The purpose of this study is a direct extension of the research presented in the Chapter
3. In this sense, we seek to propose a model that allows us to evaluate the failure times
of a single repairable system represented hierarchically, exposed to a competing risks and
MRs framework. The extension comprises the representation of complex systems through a
hierarchical structure in series and/or in parallel. For this, we deduce the general form of the
model, the likelihood function associated with it to obtain reliable estimates for the parameters
that index the model. In addition, we present the mechanism for generating random numbers
based on the presented structure, which allows obtaining point and interval estimates (via
parametric bootstrap) in a more convenient way for reliability curves at any level of the system
hierarchy. We illustrate the application of the model with the sequence of application presented
in the Chapters 3 and 4, which deal with the reliability modeling of a robotic unit still under
development, resulting from a project carried out in partnership between Petrobras and other
Brazilian research centers, of which the ICMC is a part.

Contents of Chapter
5.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



116 Chapter 5. PLP model hierarchically represented with series-parallel connections

5.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5.1 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5.2 Reliability Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 Framework

In complex systems, the reliability of each component has a fraction of the responsibility
for quantifying the reliability of the system, and the structure of how these components and
their upper levels are arranged has an even greater impact. It is not uncommon that there
is a need to add extra components as a redundancy mechanism to ensure a desired level of
reliability, this is a practice studied for a long time, some interesting examples can be seen
in (CANTARELLA, 1983; CHEN, 1997; ZUO, 2008; RUIZ, 2011; NOTASH, 2017; ZHANG
WENPING; XU, 2018).

In the previous models we consider a minimal repair competing risk framework for a
hierarchically represented system, in which failure modes are described by a power-law process,
however, such model does not take into account the possibility of a parallelized structure, which
will be described in this chapter.

5.2 Proposed Model

Our aim is to analyze failure times of a single repairable system subject to competing
hierarchical risks. The idea is to generalize the work of Louzada et al. (2019) considering a
series-parallel structure. That is, the systems and sub-systems are connected in series, but
the components that make up the sub-system may have associations in parallel. In Figure 1
we present an illustration of the idealized structure using the fault tree. We adopt that the
number of systems is p and for a system j there are k j sub-systems. For a given subsystem
jk, the number of components that compose it is r jk. Therefore, if r jk = 1 indicates a single
component, but if r jk > 1 implies that the sub-system has an association in parallel with r jk

components.

We emphasize that the failure of a sub-system that is composed of a single component
results in the failure of the system as a whole. But if the sub-system is composed of several
components connected in parallel, the system as a whole only fails at the moment when that
all components in parallel fail.

The dataset of the hierarchical competitive risk model consists of the 3-tuples (t,δ ,ψ),
where t > 0 denoting the time of failure, δ is the indicator of the main cause of failure (system)
and ψ is the indicator of the sub-cause (sub-system).
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Figure 32 – Ilustração do sistema

The hierarchical competing risks model for series-parallel systems (HCRSPS) is formu-
lated as follows: first, we assume that the failures of all components of a subsystem jk follow a
NHPP with an intensity function given by

λ jk =

(
β jk

µ jk

)(
t

µ jk

)β jk−1

,

for j = 1, . . . , p and k = 1, . . . ,k j, with k j the number of sub-systems for the j-th system,
µ jk > 0 and β jk > 0 are, respectively, the scale and shape parameters.

We assume that the system is observed until time T , and adopting reparametrization
in terms of β jk and

α jk = E(N jk(T )) =
(

T
µ jk

)β jk

,

where N jk is the process of counting the failures of each component of the sub-system jk. This
transformation results in orthogonal β jk and α jk parameters. From this, the intensity function
for sub-systems with a single component is given by

λ jk(t|δ ,ψ) =
β jkα jktβ jk−1

T β jk
,

in the same way as exposed in Louzada et al. (2019). While for sub-systems with r jk components
in parallel, the reliability is

R jk(t|δ ,ψ) =


exp
{
−α jk

( t
T

)β jk
}
, if r jk = 1,

1−
(

1− exp
{
−α jk

( t
T

)β jk
})r jk

, if r jk > 1,
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the accumulated intensity function is given by

Λ jk(t|δ ,ψ) =


α jk

( t
T

)β jk
, if r jk = 1,

− log
[

1−
(

1− exp
(
−α jk

( t
T

)β jk
))r jk

]
, if r jk > 1,

and therefore, the intensity function for sub-systems with r jk componentes in parallel is given
by

λ jk(t|δ ,ψ)=



β jkα jktβ jk−1

T β jk
, if r jk = 1,

r jk

{
1− exp

[
−
( t

T

)β jk
α jk

]}r jk−1
(

β jktβ jk−1
α jk

T β jk

)
exp
[
−α jk

( t
T

)β jk
]

1−
{

1− exp
[
−α jk

( t
T

)β jk
]}r jk

, if r jk > 1,

on the other side, the respective cumulative intensity function calculated at time T are given by

Λ jk(T |δ ,ψ) =

 α jk, if r jk = 1

− log
[

1− (1− exp(−α jk))
r jk
]
, if r jk > 1.

Since the sub-systems are connected in series, the reliability function of system j is
given by

R j(t) =
k j

∏
k=1

R jk(t),

using the same reasoning, we have that the overall system reliability is

R(t) =
p

∏
j=1

R j(t),

with this we can calculate reliability at any level of the hierarchy.

5.3 Inference
In this section we discuss about obtaining maximum likelihood estimators and interval

estimates considering asymptotic properties. In addition, when few failures are observed, we
suggest a bias correction method.

If n failures are observed in the time interval (0,T ], then the dataset is (ti,δi,ψi), with
i = 1, . . . ,n, where 0 < t1 < t2 < .. . < tn < T are the system failure times, δi and ψi indicate
the i-th cause of failure and i-th sub-cause failure, respectively.

In this work, we use the same assumption adopted in Louzada et al. (2019). Meeker and
Escobar (2014) presents a discussion on the correlation of failure time between components.
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Adopting that failure modes act independently and are mutually exclusive, the likelihood
function is given by

L(ηηη |ttt,δδδ ,ψψψ) =
n

∏
i=1

p

∏
j=1

n j

∏
k=1

λ jk(ti|δi,ψi)
I(δi= j,ψi=k) exp

(
−

p

∑
j=1

n j

∑
k=1

Λ jk(T |δ j,ψi)

)
.

For the subsystem that has only one component, the maximum likelihood estimator
(MLE) is obtained of closed-form and is given by

β̂ jk =
n jk

n

∑
i=1

I(δi = j,ψi = k) log
(

T
ti

) and α̂ jk = n jk,

we observe that the expressions obtained are the same as those found in Louzada et al.
(2019). But when the subsystem presents r jk components in parallel, the MLE is not obtained
of closed-form. Parameter estimates are obtained using iterative methods. The log-likelihood
function is given by

`(α jk,β jk|t,δδδ ,ψψψ) = ∑
i∈I*

λ jk(ti|δi,ψi)−Λ jk(T |δ j,ψk),

=
n

∑
i=1

I(δi = j,ψi = k)
{

log(r jk)+(r jk −1) log
[

1− exp
(
−
( ti

T

)β jk
α jk

)]
+(β jk −1) log(t)−β jk log(T )+ log(β jk)+ log(α jk)−α jk

( ti
T

)β jk

− log
{

1−
[

1− exp
(
−α jk

( ti
T

)β jk
)]r jk

}
+ log{1− [1− exp(−α jk)]

r jk},

(5.1)

where I* contains the indexes i = 1, . . . ,n with δi = j and ψi = k.

Let θ̂θθ = (β̂11, α̂11, . . . , β̂pk j , α̂pk j) be the MLE of θθθ = (β11,α11, . . . ,βpk j ,αpk j). Under
some standard regularity conditions, the MLE θ̂θθ is consistent and follows a normal joint
asymptotic distribution with mean θθθ and covariance matrix ΣΣΣ(θ̂θθ). For a large sample size, we
have that ΣΣΣ(θ̂θθ) = III−1(θ̂θθ), where III−1(θ̂θθ) is the inverse expected Fisher information matrix.

For the particular case where all r jk are equal to one, Louzada et al. (2019) obtained
the inverse expected Fisher information matrix closed-form. But when r jk > 1, it is not
possible. However, the observed information matrix, HHH(θ̂θθ), is an approximation of the expected
Fisher information matrix. In addition, it can be easily obtained using computational methods.
Therefore, the asymptotic confidence interval for each θi with (1− γ)100% are given by(

θ̂i − zγ/2

√
h−1

ii (θ̂θθ); θ̂i + zγ/2

√
ĥ−1

ii (θ̂θθ)

)
,

where θ̂i is the MLE of θi, ĥ−1
ii (θ̂θθ) is the ith diagonal element of the inverse observed Fisher

information matrix, and zγ/2 denotes the quantile of the standard normal distribution leaving a
probability to the right tail with γ/2.
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5.4 Simulation Study

To evaluate the performance of the parameters estimators of the proposed model, in
this section we present the results of the Monte Carlo simulation study. For this, we consider
the results described by Rigdon and Basu (2000), which establish that the random variables
T1 < T2 < .. . < Tn are distributed as n-th order statistics with cumulative distribution function
given by

G(y) =


0, y ≥ 0

Λ(t)/Λ(T ), 0 < t ≥ T

1, t > T

This allowed us to establish the scheme for generating random values described by Algorithm 4.

We considered some scenarios, contemplating five values for the parameter
β = {0.5,0.75,1.0,1.25,1.5} and α = {5,10,15,20,25}, in a context with r = {1,2,3,4,5}.
The simulations were programmed using the R software (R Core Team, 2020), considering
B = 5000 Monte Carlo replicas and the criteria used to evaluate the performance of the
estimators were the MRE, RMSE and 95% CP, calculated using the following expressions

MRE(θ̂i) =
1
B

B

∑
j=1

θ̂
( j)
i
θi

, RMSE(θ̂i) =

√√√√ 1
B

B

∑
j=1

(
θ̂
( j)
i −θi

)2
,

and

CP(θ̂i) =
1
B

B

∑
j=1

1
(

θi ∈ (a( j)
i ,b( j)

i )
)

where
a( j)

i = θ̂
( j)
i −1.96×SE(θ̂ ( j)

i )

b( j)
i = θ̂

( j)
i +1.96×SE(θ̂ ( j)

i )

where θi is the i-th component of the vector θθθ = (α,β ) and θ̂i is the corresponding maximum
likelihood estimator. The function 1(·) is the indicator function, which returns the value one, if
its argument is true and returns zero, otherwise. In addition SE(θ̂ ( j)

i ) denotes the standard
error of the estimator θ̂

( j)
i .
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Input:
T, p

kkk = (k1, . . . ,kp)

βββ = (β11, . . . ,βpkp)

ααα = (α11, . . . ,αpkp)

rrr = (r11, . . . ,rpkp)

Output:
{(ttt,ψψψ)}= {(ttt11,ψψψ11), . . . ,(ttt pkp,ψψψ pkp

)} where (ttt jk,ψψψ jk) =

{(t1 jk,ψ1 jk), . . . ,(tn jk jk,ψn jk jk)}

Procedure:

for j := 1 to p do
for k := 1 to k j do

n jk ∼ Poisson(α jk)

for i := 1 to n jk do

Ui jk ∼ Uniform(0,1)

if r jk = 1 then

ti jk = T U
1/β jk
i jk

else

ti jk =

(
− T β jk

α jk
log

{
1−
[

1−exp
(

Ui jk log
(
1−(1−exp(−α jk))

r jk
))]1/r jk

})1/β jk

end
end

end
end

Algorithm 3: Generator of random numbers from the proposed model.

Since the value of α = Λ(T ) denotes the average number of observed failures and,
therefore, more information to be used in the estimation process. In this sense, according to
the criteria used, it is expected to observe that the values of MRE are close to zero, with an
increase of α , while the values of RMSE should approach zero in the case of the estimate of
β and

√
α in the case of the estimate of α (since α ≈ N(T )∼ Poisson(Λ(T ))). On the other

hand, with numerous experimental repetitions (represented by B) using a 95% confidence level,
we expect that the relative frequency of the intervals that cover the true values should be close
to 95%.

The results obtained for the evaluation of the estimators of β and α are shown in
Figures 33 and 34, respectively. It is possible to see the empirical values for the three adopted
criteria (MRE, RMSE and CP, in the lines of matrix plot), while the scenarios are organized in
the columns of matrix plot (for β ), in the horizontal axis (in the case of α) and colors (for r).
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The behavior of both estimators showed the expected behavior. The highlight is the
estimator of β which, in very small sample contexts (α < 10), presents significantly large
values for the MRE (indicating an overestimation of the true value of β ) and also for RMSE
(indicating some degree of uncertainty).
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Figure 33 – Computer simulation results for the β estimator, considering the scenarios β =
{0.5,0.75,1.0,1.25,1.5}, α = {5,10,15,20,25} and r = {1,2,3,4,5}, with 5000 Monte
Carlo replicates.
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Another interesting question to be investigated in the simulation study is how estimators
behave in the hierarchical context. To assess whether we are able to recover reliability measures
over time, we have structured six scenarios of hierarchical systems ordered according to the
increase in complexity. As an example, the first proposed structure (Figure 35a) presents
a general system composed of two systems which, in turn, are composed of one (with 4
components in parallel and β = 1.5) and two subsystems (with 2 and 1 components in parallel
and β = 0.75 and 0.5, respectively). In the second structure (Figure 35b), we kept the previous
configuration and added a subsystem (with 3 components and β = 1.75) to the second system.
The logic was maintained for the other structures until the sixth structure (Figure 35f) totaled
20 components.
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Figure 35 – Scenarios proposed according to the increase in complexity from (a) to (f).
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We compared the estimated reliability in 100 equally spaced time points (ttt* = (t1, . . . , t100),
from 0 to T ) with the actual reliability. We determine the ratio R̂(t)/R(t) in each time t ∈ ttt*

considered and the results obtained for the scenarios exposed above, considering several sce-
narios of α = (5,10, . . . ,50), are shown in Figure 36. In it we can see that the increase in
complexity has the expected effect on the reliability estimation, since occurs the propagation of
errors made in the individual estimates of each component. On the other hand, the increase of
α (and, therefore, the average number of occurrences) causes the estimates to become closer
to reality, as expected.
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Figure 36 – Comparison between the real and estimated reliability according to the increase in both,
the complexity of the system (Figure 35) and the average number of failures until T
(E(N(T )) = α).

5.5 Application
In this section, we continue the studies carried out on a robotic unit already presented in

previous works such that Louzada et al. (2019), the Annelida project. Annelida is an innovation
project whose development is carried out in partnership between Petrobras (a Brazilian oil and
gas company) and six brazilian research institutes. It is a robot built to travel inside oil ducts
in order to remove hydrates and paraffins that prevent the oil and gas flow, causing damage to
the production lines. Among the stages already developed in the project, one of them consisted
of studying the main fatigue mechanisms that could interrupt the operation of the robotic unit.
The purpose of this section is to expose the results from CAE simulation, associating them
with the perspective of statistical reliability.

5.5.1 Numerical simulations

We used numerical simulations to study the fatigue life of some Annelida’s components.
To evaluate this phenomenon, an extreme case was studied: the maximum load (20000N) was
applied to the system, and the life of two different components were evaluated.

During the robot movement, paws act as anchor points, while the hydraulic cylinder
has the role of creating the movement through successive expansion and contraction. This
generates a cyclic load in the paws and other structural components, that makes it susceptible
to fatigue failure. This means that a crack can start in a region of concentrated stress and
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propagate, until a point of mechanical failure (BOARDMAN, 1990). In this case, the frontal
paws (Figure 37a) are particularly problematic, because they face the bigger workload. The
other system studied was a support in the interface between electrical cables (Figure 37b).

(a) (b)
Figure 37 – Annelida’s frontal motion system (a) and; support located between electrical cables and

the robot body (b).

The simulations were performed using the commercial software ANSYS Workbench
14.5 and they proceeded as: (i) a static structural analysis was performed to obtain principal
stress and strain; (ii) a strain-life (ε −N) curve was used to analyze the component life and the
Morrow correlation was also used to compensate for the fact that the load is not completely
reversible.

In the simulations, we also accounted for the variations in material properties. Normally,
mean values are used in evaluations such as this, however (PARK; PARK; KIM, 2008; PARK;
PARK; KIM, 2010) showed that some properties, such as tensile strength and elasticity modulus
are well described by a normal distribution, and their standard deviation can be up to 5% of
the mean value. Therefore, we assumed a distribution of the same type for the parameters
associated with the ε −N curve:

∙ Strength coefficient and Strength exponent;

∙ Ductility coefficient and Ductility exponent;

∙ Cyclic strength component and Cyclic strain hardening exponent;

This leads to different values of life depending on the material properties or a distribution
of possible life time for each component. The material of the paws is AISI 4340 steel, quenched
and tempered - physical properties obtained from (BAUCCIO et al., 1993) and (DURAN;
COSTA; JUNIOR, 2018). While the support is made of the alluminum alloy 7570-T651 -
physical properties obtained from (INCE; GLINKA, 2011).

Figure 38a shows images of the front and back of one paw and the stresses calculated.
The regions highlighted in the figure are the points with the highest stress and also the lower
life. The same results are shown for the support in Figure 38b. In this case, there is a peak
stress in the vicinity of one pinned connection.
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(a) (b)
Figure 38 – Calculated stress in the paws - red squares highlight the points with higher stress

concentration and lower stress life.

5.5.2 Reliability Model

The studied system corresponds to the interaction between the components with greater
exposure to mechanical fatigue. The system hierarchy can be seen in Figure 42. According to
the results of the CAE simulation study, the stress that some systems will be subjected to is
not enough to cause any damage that arouses concern, so their lifetimes are not influenced by
the fatigue mechanism. In this context, in the Figure 42, systems and components in red will
be disregarded in the reliability study exposed here.

The Forward Locomotive, unlike the Return Locomotive, is exposed to a high level
of stress with high concentration on the front legs (Figure 38a), which make up the Claw
System of the robotic unit. The assumption we make here is that this system has two Front
Claws Set acting in parallel and one Back Claw Set (whose low stress suffered was disregarded
in the study), thus, the first configuration of interest is given by ( j = 1,k = 1,r11 = 2). The
Umbilical Cable System has a Load Cell in which a support at the interface between the
electrical cables, Load Cell Suport in the Figure 38b, is also subject to worrying mechanical
stress, its configuration is ( j = 2,k = 1,r21 = 1).
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The results obtained in Section 5.5.1 are given in terms of the “number of cycles
performed by the systems until they reach stress levels that cause a failure”. For convenience,
we use a time scale in days of operation, considering that each cycle occurs in approximately
three seconds. We also consider the occurrence of 30 failures, in this context, the last failure
observed for the “Paw Set” system was approximately 475.99 days while the other was close
to 34695.47, which already indicates a large discrepancy regarding the susceptibility of the
systems to the mechanical stress. The simulated failure times were as follows:

Table 22 – Failure times (in days) obtained from the CAE simulation study, for mechanical fatigue.

Component Failure Times

Paw Set
17.54, 21.7, 49.22, 79.99, 88.54, 92.45, 103.65, 135.14, 139.52, 146.5, 158.89,
175.02, 185.52, 192.4, 199.63, 230.76, 247.24, 267.1, 288.89, 303.99, 310.98,
337.17, 341.32, 368.85, 399.59, 408.14, 412.05, 423.24, 454.63, 475.99

Load Cell
Support

2390.8, 2852.05, 3248.4, 5472.43, 6837.88, 7972.64, 8254.21, 10604.59, 10842.3,
11074.24, 12088.16, 12459.65, 12802.44, 14849.97, 15554.1, 16872.99, 17072.6,
18363.99, 18733.43, 20128.33, 20730.72, 23617.84, 27429.3, 27986.42, 28190.14,
28654.82, 29508.89, 29813.8, 33686.72, 34695.47

When we observe the failure times by component (Figure 40a), we notice the great
discrepancy between the occurrence times for the first thirty simulated failures. While the last
occurrence of the Paw Set occurred at approximately 476 days, the first occurrence of the
Load Cell Support component occurred at approximately 2391 days, which expresses the great
distinction between reliability. In addition, an important assumption in the construction of the
proposed model is that the intensity of failures is governed by a power-law. An indication that
this law is appropriate to adjust the intensity of failures can be captured by Duane’s graphs
(Figure 40b) for each component. A linear behavior, like the one observed, suggests that the
failure behavior is appropriately captured by the model proposed here.
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Figure 40 – (a) Descriptive graph for fatigue failure times for each component and (b) Duane plot

for each component.
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Since, in the context of the CAE simulation, the number of simulated failures was
pre-defined for each component, we are considering failure truncation. In this sense, it is
sufficient that the value T be replaced by t30 in Equation (5.1) and, therefore, once estimated,
α̂ will denote the estimative of the expected number of failures until t30. The Table 23 shows
the estimatives for the model parameters, based on 5000 non-parametric bootstrap replicates.
We opted for the bootstrap approach to more conveniently construct the intervals for the
functions Λ(t) and R(t) for each time t.

Table 23 – Point and interval estimates obtained for the parameters of the model described in the
Section 5.2 applied to the CAE simulated data in the Section 5.5.1.

Bootstrap IC95%

Estimative Std. Error Lower Upper

β11 0.989 0.132 0.781 1.27
α11 30.8 0.379 30.4 31.1

β31 1.08 0.174 0.784 1.48
α31 29.7 1.05 25.6 30.1

The graphs in Figure 41 show the estimate for the expected number of failures
overlapping the observed number of failures (Figures 41 a and c) from which we derive
indications of the quality of the model’s fit. On the other hand, in Figures 41 b and d, the
reliability associated with the next failure time (Tn+1 | tn, . . . , t1) is exposed, and from them,
we can extract the median time until the next occurrence. Particularly, for the system Paw
Set, the estimated median time is close to 10.8 (7.52–14.57), while for the system Load Cell
Support, the estimate is close to 743.27 (459.65–1065.31).
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Figure 41 – Point and interval (IC95%) estimatives for the functions Λ11(t),Λ31(t),R11(t) and R31(t)
and for the median times to the next failure.
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A next step would be to assess how the reliability of the components C11 and C31,
together, make up the reliability of the system associated with “Mechanical Fatigue Failure”
(S0). The result of this interaction is shown in Figure 42. We can see that the high reliability
estimated for the C31 component has little influence on the overall system, so that its reliability
is mostly dependent on the reliability of the C11 component. Thus, considering only the stress
caused by mechanical fatigue, the median system failure time is close to 10.6 (7.6–14.2).

10.67.6 14.2
0.00

0.25

0.50

0.75

1.00

0 10 20 30
t (in days)

R
0(t

)

Forward
Locomotive

Front
Claw Set

10.87.52 14.57
0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
t (in days)

R
11

(t)

Umbilical
Cable

Load
Cell

743.27459.65 1065.31
0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
t (in days)

R
31

(t)

MECHANICAL
FATIGUE
FAILURE

Forward
Locomotive

Front
Claw Set

Paw Set
r11 = 2

Back
Claw Set

Paw Set
r12 = 1

Return
Locomotive

Front
Claw Set

Paw Set
r21 = 1

Back
Claw Set

Paw Set
r22 = 1

Umbilical
Cable

Load
Cell

Support in the
interface between
electrical cables

r31 = 1

GENERAL SYSTEM
FAILURE

System 1
Failure

...

System j
Failure

Sub-system j1
Failure

...

Sub-system jk
Failure

...

Sub-system jkj

Failure

...

System p
Failure

Figure 42 – Reliability results for the failure system associated with stress caused by mechanical
fatigue.

It is also important to note that these results consider the exposure of the robotic unit
to a stress level much higher than the levels it will be exposed to in practice. Such results can
be used to set target levels for the acceptable limits of reliability of the studied systems, so
that in later stages the proposed practical tests can guarantee this confidence index in the
equipment.
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CHAPTER

6
FRAILTY MODEL FOR MULTIPLE

REPAIRABLE SYSTEMS HIERARCHICALLY
REPRESENTED SUBJECT TO COMPETING

RISKS

In this chapter, we propose a statistical model to understand the behavior of failure
times associated with groups of repairable systems hierarchically represented, under a competing
risks framework, with the consideration of the existence of unobserved heterogeneity that acts
individually on the systems of each group, and also the possibility of IRs whose initial failure
rate is in the form of the power-law. To illustrate the use of the proposed model, we consider
a database with the failures of 38 agricultural machines categorized in five different groups.
As an illustration, we understand that the tractor fleet corresponds to the farm’s agricultural
system, so that the need for intervention in this system occurs with the failure of any unit,
individually, in a serial structure, of competing risks. On the other hand, the understanding of
the time in which all the machinery that makes up the fleet will have required some intervention
is obtained by analyzing the results under a parallel structure.
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6.1 Introduction

6.1.1 Practical Motivation

Due to the continuous search for minimizing the use of natural resources and reducing
operating costs today, it is of great interest to organizations to optimize the maintenance of
equipment and machines in operation. The prolonged and effective operation of equipment
to support agricultural operations, such as tractors and implements, is a vital requirement to
achieve cost reduction. One of the factors that directly impacts these operations is the proper
maintenance planning.

Preventive maintenance is a way to keep the system operating at peak performance,
avoiding possible failures during the operation of agricultural tractors, the object of study in
this work. On the other hand, there is also corrective maintenance, which occurs only after the
unexpected failure of the machine, in order to make it productive again, which may cause it to
stop longer.

From an operational point of view, the need to know and control the greatest number
of possible failures that can compromise the execution of the work is imposed and, uniting with
an efficient management of these indicators, it is possible to prolong the operations activity
in maximum performance and without being affected by defects or prolonged shutdowns.
Thus, although preventive maintenance is the most suitable for reducing costs and increasing
productivity, in real cases, there is a very high incidence of corrective measures.

The preventive maintenance model is more efficient when equipped with the prediction
of breakage, informing when the machines will present possible failures. In order to use such a
tool there is a need to perform initial diagnostics, being able to obtain the status of each part
of the machine, when they will fail and how their replacement is programmed before the break.
Therefore, the theme of the project in question will involve the use of reliability models so
that it is possible to investigate and define the necessary action to avoid defects in agricultural
tractors during operation.

The success of harvesting fruits, vegetables and grains depends fundamentally on the
agricultural processes carried out during planting during the ripening period. A good harvest
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is a function of operations involving plant nutrition, weed control and spraying, for example.
Operations such as pruning and clearing, on the other hand, are responsible for maintaining
the orchard. Thus, for the execution of these operations, rural producers make use of tractors,
carrying them out mechanically.

Considering this, it is reasonable that tractors depend on preventive and corrective
maintenance so that they can carry out agricultural activities on an approximately continuous
basis. Therefore, it is necessary that there are specific processes and methodologies of reliability
analysis in view of the useful life of agricultural machines, aiming at preventive maintenance to
guarantee the operation with the least possible number of machine defects.

6.1.2 Statistical Background

We understand a system as a hierarchical group with one or more levels of subsystems
and/or components. With a well-defined structure, the relationship between components,
subsystems and the system in general is highlighted, bringing light to the importance of parts of
the system over the whole. This allows quantifying levels of damage, costs and impacts caused
by external sources of variation (LIEPING; ZHE, 2009). In a classic definition, a so-called
repairable system is a system that, after the occurrence of a failure, that prevents it from
performing one or more functions satisfactorily, can undergo a repair action that restores it,
without the need for its complete replacement (ASCHER; FEINGOLD, 1984; RIGDON; BASU,
2000).

Statistical models to understand the event recurrence process have been used in
numerous industrial problems, such as natural gas regulating and metering stations (BA-
HOOTOROODY et al., 2020), traction systems of trains (NAVAS; SANCHO; CARPIO, 2017),
aero engines (SHARMA; RAI, 2020) and other machine tools (PENG et al., 2018; WANG;
PAN, 2021). In the context of complex repairable systems, it is important to consider the
occurrence of failures in terms of the hierarchical representation given to the system, considering
the multiplicity of failure modes, such as the work (ALMEIDA, 2019; MULLOR; MULERO;
TROTTINI, 2019; SYAMSUNDAR; NAIKAN; WU, 2020; YAN, 2019).

The representation in groups of systems/subsystems/components in series, takes us to a
context of competing risks (WU; SCARF, 2017; TODINOV, 2015; SOMBOONSAVATDEE; SEN,
2015), on the other hand, groups in parallel give us freedom for other types of interpretation.
Once the registration of the subsystem and/or component that caused the failure is commonly
performed, it makes no sense to fail to consider this in the statistical analyzes. Good examples
of this are (LANGSETH; LINDQVIST, 2006) in the industrial context and (TULI et al., 2000)
in the context of child health.

In general, it is assumed that failures are governed by a NHPP with the intensity
described by a power-law, i.e. the PLP, a reasonably flexible model, easy to implement and
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interpretable. This assumption, however, implies the hypothesis of a MR model (RAUSAND,
2003), which may not be the most realistic choice, in this sense, a class of IR models brings
the possibility of considering a intermediate level of repair, somewhere between MR and PR.
This idea is well exposed in works such as those of (KIJIMA; MORIMURA; SUZUKI, 1988;
DOYEN; GAUDOIN, 2004; TOLEDO et al., 2015).

Doyen and Gaudoin (2004) were responsible for proposing two of the main models for
IR, the ARA and ARI model classes, whose repair efficiency is quantified by one of the model
parameters. In addition, a constant characterizes the models in terms of the used memory
order, which refers to the maximum number of previous information involved in the model’s
calculations.

Another common assumption is the absence of any unobserved heterogeneity among
the causes that compete for the failure of the general system. An immediate consequence of
this assumption is the disregard of effects that, although not observed, can have effects on the
behavior of failure times (WIENKE, 2010). The literature that adequately addresses this issue
is related to frailty models. A review of these models can be found at (HOUGAARD, 1995;
ANDERSEN et al., 1996; WIENKE, 2010). From the perspective of multiplicative frailty, we
introduce a multiplicative factor (a random variable) that inflates, deflates or preserves the
failure intensity function.

6.1.3 Overview

The next sections of this chapter are organized as follows: In the Section 6.2 we present
the modeling framework, exposing its notation, assumptions and hierarchical representation.
In the section 6.3 we present the deduction of the likelihood function that summarizes the
proposed model, suggest the maximum likelihood method for estimating the parameters and
obtaining the errors associated with the estimates. In the Section 6.4 we present the method
of generating random values from the model, the criteria used to evaluate the quality of the
estimators and the results obtained in the simulation process. In Section 6.5 we illustrate the
use of the method with the analysis of a real data set regarding the monitoring of the reliability
of a tractor fleet on a farm. Finally, in Section 6.6 we make some final considerations and
suggest some steps to expand this study in terms of modeling.

6.2 Proposed Model
The methodology proposed in this work follows the works already discussed in the

Sections (3, 4 and 5), taking new steps to some studies carried out by Almeida (2019), DAndrea
(2020) and Lindqvist (2006). In the context previously developed, we consider the study of the
reliability of repairable systems, with the function of the Powers Law intensity, hierarchically
represented, under the assumption of competing risks and subject to MRs and arranged in the
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form of a serial and/or parallel hierarchy. The next step is with the consideration of multiple
systems that can share unobservable factors that cause heterogeneity in the behavior of the
occurrence of system failures.

In this case, we aim to analyze the behavior of the failure times of a cluster of repairable
systems that, together, represent a unit that serves some activity of practical interest. In
this context, from the perspective of a context of competitive risks, the failure of each of
these systems represents a necessary intervention on the unit. If we want to understand
probabilistically the time in which the entire fleet will be repaired at least once, we can operate
in a context of systems in parallel, in which case the unit will no longer be serviced (in any
case) only if all units fail to function.

We represent this perspective hierarchically (Figure 43), considering the unit as the
“General System”. The second level of this representation denotes G groups (in any sense of
interest) of systems that exhibit similar failure behaviors or that share other characteristics
of practical interest. The g-th (with g = 1, . . . ,G) group comprises Ug systems, particularly
the (g,u)-th (with u = 1, . . . ,Ug) system presents ng,u corrective interventions, due to the
occurrence of unforeseen failures.

GENERAL SYSTEM
FAILURE

System Group 1
Failure

System 11

...

System 1k1

...

System 1K1

· · · System Group p
Failure

System p1

...

System pkp

...

System pKp

· · · System Group P
Failure

System P1

...

System PkP

...

System PKP

Figure 43 – Illustration of the structure explored in this study.

A dataset that can be used under this structure is denoted as

(ttt,𝒢,𝒰) where
𝒢 = (1, . . . ,g, . . . ,G),

𝒰 = (𝒰1, . . . ,𝒰g, . . . ,𝒰G),

ttt = (ttt1, . . . , tttg, . . . , tttG),
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and yet

𝒰g = (1, . . . ,u, . . . ,Ug),

tttg = (tttg,1, . . . , tttg,u, . . . , tttg,Ug)
where tttg,u = (tg,u,1, . . . , tg,u,i, . . . , tg,u,ng,u).

The 3-tuple (ttt,𝒢,𝒰) denotes, respectively, the set of all recorded failure times (ttt), the
indicators the group to which the system that failed occurred (𝒢) and the identification of the
system that required an intervention on the unit as a whole (𝒰 ).

We assume that the systems of a particular group share the same default behavior
behavior. In this sense, the functions that define its reliability are associated with the g-th group:
λ g(t;θθθ), Λg(t;θθθ) and Rg(t;θθθ), respectively, the failure intensity function, the accumulated
failure intensity (or the mean value function) and the reliability function. The parameter vector
θθθ denotes the parameters that index the model and that characterize the respective behaviors.
The symbols λ , Λ and R try to emphasize the idea of “default behavior”.

6.2.1 The frailty model framework

Even if the systems of a particular group have the same default behavior, there may be
unobservable factors that all systems in that group are subject to, but which influence their
respective behaviors individually. To considere this unobserved heterogeneity, we consider the
model of multiplicative frailty. This model is defined by the conditioned versions of the intensity,
accumulated intensity and reliability functions, generically and respectively expressed by

λ (t|z) = zλ (t) ⇐⇒ Λ(t|z) = zΛ(t) ⇐⇒ R(t|z) = e−Λ(t)z,

where z denotes the frailty term, a multiplicative factor that inflates (when z > 1), deflates
(z < 1) or preserves (z = 1) the failure intensity function.

Commonly, the probability model adopted for the random variable Z, whose realizations
are the frailty terms, is the Gamma model. In particular, the parameterization Gamma(1/α,1/α)

is used, whose probability density function is expressed by

f (z) =
(1/α)1/α

Γ(1/α)
z1/α−1e−(1/α)z,

where E(z) = 1 and Var(z) = α . This avoids the inclusion of an identifiability problem in the
model and also brings the possibility of interpreting unobserved heterogeneity based on the
parameter α (ELBERS; RIDDER, 1982).

Based on this construction, we can find the marginal reliability function for failure times
using the Laplace transform, since the reliability R(t) is expressed by

R(t) =
∫

∞

0
R(t|z) f (z)dz =

∫
∞

0
e−Λ(t)z f (z)dz,
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and integrals written in this way have a well-known Laplace transform, given by Q(Λ(t)) =

(1+αΛ(t))−1/α and can be used to solve this problem (WIENKE, 2010). In this sense

λ (t) =
1

Q(Λ(t))
d
dt

[
Q(Λ(t))

]
Λ(t) =− log Q(Λ(t))

R(t) = Q(Λ(t)),

⇐⇒

λ (t) =− λ (t)
1+αΛ(t)

Λ(t) =− log
[(

1+αΛ(t)
)−1/α ]

R(t) = (1+αΛ(t))−1/α ,

(6.1)

The value of α represents the variance of the random variable Z and, therefore, brings
indications of the existence of unobserved effects that could significantly affect the intensity of
failures, making some systems more susceptible to failures than others.

6.2.2 The IR framework

The choice of the default model involves both, the choice for the general behavior of the
failure intensity function (such as power-law or log-linear models for example) and the possibility
of considering a repair regime, as a minimum, perfect or imperfect (LINDQVIST, 2006). In
this study, we are using a ARAm model of IRs whose initial failure rate is the power-law model.
In this sense

λ (t;θθθ) = h

(
t − (1−ρ)

min{m−1,N(t)−1}
∑
j=0

ρ
j TN(t)− j

)
, (6.2)

where h(t) = (β/η)(t/η)β−1. And also

Λ(t;θθθ) =
∫ t

0
λ (s;θθθ)ds

=
∫ t

0
h

(
t − (1−ρ)

min{m−1,N(t)−1}
∑
j=0

ρ
j TN(t)− j

)
ds (6.3)

= H

(
t − (1−ρ)

min{m−1,N(t)−1}
∑
j=0

ρ
j TN(t)− j

)
−H

(
(1−ρ)

min{m−1,N(t)−1}
∑
j=0

ρ
j TN(t)− j

)

where H(t) = (t/η)β .

Finally, based on Equations in (6.1), (6.2) and (6.3), we have the IR.ARAm.F model
(Frailty Power-Law Model with ARAm for IR) for the functions λ , Λ and R. This model has as
particular cases and/or limit cases, the models shown in Table 24.
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Table 24 – Some cases for proposed intensity function.

α → 0
ρ = 0, m = 1 PR

ρ = 1 MR
0 < ρ < 1 ARAm IR (IR.ARAm)

α > 0
ρ = 0, m = 1 Frailty PR (PR.F)

ρ = 1 Frailty MR (MR.F)
0 < ρ < 1 Frailty ARAm IR (IR.ARAm.F)

With this construction, we established a model for each group with an arbitrary number
of systems, which considers unobserved effects that all of them can share, but which also
individualize them. Another interesting issue to be considered is the issue of truncation, due
to failures or time. If we choose to consider a truncation by time, it is interesting to make a
convenient reparametrization, in terms of a parameter µ as a function of the truncation time
τ, like suggested by Oliveira, Colosimo and Gilardoni (2012). In this sense, some one could
consider

µ = E[N(τ) ] =

(
τ

η

)β

⇐⇒ h(t) = µ

(
β

τ

)(
t
τ

)β−1

.

6.2.3 Reliability for the next failure time

Once the parameters are estimated, we can use this model to describe the future
reliability of the system, considering the history of failures and from the perspective of the
need for any intervention calculating

R(t |ℋ) =
G

∏
g=1

Rg(t |ℋg) =
G

∏
g=1

[
Ug

∏
u=1

Rg,u(t |ℋg,u)

]
. (6.4)

On the other hand, if we want to estimate the reliability from the perspective of the
time in which all units from all groups of the systems will already require some intervention,
we calculate as

R(t |ℋ) = 1−
G

∏
g=1

(
1−Rg(t |ℋg)

)
= 1−

G

∏
g=1

[
Ug

∏
u=1

(
1−Rg,u(t |ℋg,u)

)]
. (6.5)

In this case, both in (6.4) and in (6.5), to determine Rg,u(t) denote the total number
of failures of (g,u)-th system, for simplicity, as n = ng,u and calculate its reliability after the
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last failure as

Rg,u(t |ℋg,u) = Pr(Tn+1 − tn > t |ℋg,u)

= Pr(N(tn, tn + t) = 0 |ℋg,u)

= exp

{
−
∫ tn+t

tn
λg,u(s)ds

}
with tn < s < tn + t < Tn+1

= exp
{
−
(

Λg,u(tn + t)−Λg,u(tn)
)}

.

6.3 Inference
The estimation process adopted in this study is the Maximum Likelihood Method

(PAWITAN, 2013). We consider the information as previously described and, in this sense, the
likelihood function is given by

L(θθθ ; ttt,𝒢,𝒰) =

=
G

∏
g=1

Ug

∏
u=1

[
ng,u

∏
i=1

λg(t*g,u,i) exp
{
−
[

Λg(t*g,u,i)−Λg(t*g,u,i−1)
]} ]

exp
{
−
[

Λg(τ
*
g,u)−Λg(t*g,u,ng,u

)
]}

=
G

∏
g=1

Ug

∏
u=1

[
ng,u

∏
i=1

λ g(t
*
g,u,i)

1+αgΛg(t*g,u,i)
exp
{

log
[(

1+αgΛg(t
*
g,u,i)

)−1/αg
]
− log

[(
1+αgΛg(t

*
g,u,i−1)

)−1/αg
]} ]

×

exp
{

log
[(

1+αgΛg(τ
*
g,u)
)−1/αg

]
− log

[(
1+αgΛg(t

*
g,u,ng,u

)
)−1/αg

]}

=
G

∏
g=1

Ug

∏
u=1

[
ng,u

∏
i=1

(
λ g(t

*
g,u,i)

1+αgΛg(t*g,u,i)

)(
1+αgΛg(t

*
g,u,i−1)

1+αgΛg(t*g,u,i)

)1/αg
](

1+αgΛg(t
*
g,u,nu,g

)

1+αgΛg(τ
*
g,u)

)1/αg

=
G

∏
g=1

Ug

∏
u=1


ng,u

∏
i=1


(

βg

ηg

)(
t*g,u,i
ηg

)βg−1

1+αg

(
t*g,u,i
ηg

)βg




1+αg

( t*g,u,i−1

ηg

)βg

1+αg

(
t*g,u,i
ηg

)βg


1/αg




1+αg

( t*g,u,ng,u

ηg

)βg

1+αg

(
τ*

g,u

ηg

)βg


1/αg

=
G

∏
g=1

Lg(θθθ g; tttg,g,𝒰g).

Note that, once one are able to factor the likelihood function into a product of G

independent factors, we can optimize the parameter vector θθθ g = (ηg,βg,αg,ρg), separately. In
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this sense, the log-likelihood function for a particular group g is expressed by

`g(θθθ g; tttg,g,𝒰g) =
Ug

∑
u=1

ng,u

∑
i=1

{
log(βg)− log(ηg)+(βg −1) log

(t*g,u,i
ηg

)
+

+
1

αg
log

(
1+αg

(t*g,u,i−1

ηg

)βg
)
−
(

1+
1

αg

)
log

(
1+αg

(t*g,u,i
ηg

)βg
)
+

+
1

αg

[
log

(
1+αg

(t*g,u,ng,u

ηg

)βg
)
− log

(
1+αg

(
τ*g,u
ηg

)βg
)]}

.

In both functions, Lg(θθθ g, tttg,g,𝒰g) and `g(θθθ g, tttg,g,𝒰g), where g = 1, . . . ,G, we have

t*g,u,i = tg,u,i − (1−ρg)
min(mg−1; i−2)

∑
j=0

ρ
j

g tg,u,i−1− j ,

t*g,u,i−1 = tg,u,i−1 − (1−ρg)
min(mg−1; i−2)

∑
j=0

ρ
j

g tg,u,i−1− j ,

t*g,u,ng,u
= tg,u,ng,u − (1−ρg)

min(mg−1; i−1)

∑
j=0

ρ
j

g tg,u,ng,u− j ,

τ
*
g,u = τg,u − (1−ρg)

min(mg−1; i−1)

∑
j=0

ρ
j

g tg,u,ng,u− j .

The standard errors of Maximum Likelihood Estimators (MLE) θ̂θθ =(θ̂θθ 1, . . . , θ̂θθ g, . . . , θ̂θθ G),
where θ̂θθ g = (η̂g, β̂g, α̂g, ρ̂g) of the parameters vector θθθ = (θθθ 1, . . . ,θθθ g, . . . ,θθθ G), with θθθ g =

(ηg,βg,αg,ρg), can be obtained based on the asymptotic normality of MLEs. Under standard
conditions of regularity, θ̂θθ has multivariate normal distribution with mean vector θθθ and matrix
of variances and covariance ΣΣΣ(θ̂θθ). Both can be approximated by θ̂θθ and 𝒥 −1(θ̂θθ) (the inverse
of the observed Fisher information matrix).

Using the point estimates θ̂θθ and the respective standard errors SE(θ̂θθ), we determine
interval estimates for each component of θθθ . Considering a confidence of (1− γ)100%, a
confidence interval for θk with the expression(

θ̂k − zγ/2

√
𝒥 −1

kk (θ̂θθ); θ̂k + zγ/2

√
𝒥 −1

kk (θ̂θθ)

)
,

where θ̂k is the MLE of θk, 𝒥 −1
kk (θ̂θθ) is k-th diagonal element of the matrix 𝒥 −1(θ̂θθ) and the

zγ/2 confidence coefficient denotes the standard normal quantile of the right tail which leaves
a probability of γ/2.

In the context of an IR model, it is interesting to select the memory order, mg, which
best fits the data. The selection between models can be made based on the value of the
log-likelihood function applied to θ̂θθ g (TOLEDO et al., 2015).
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6.4 Simulation Study

The evaluation of the previously exposed estimators was carried out based on 1000
Monte Carlo simulations. The generation of data in each iteration followed the process illustrated
in the Algorithm 4.

Input:
m

G

𝒰 =
(
U1, . . . ,UG

)
nnn =

{(
n1,1, . . . ,n1,U1

)
, . . . ,

(
nG,1, . . . ,nG,UG

)}
θθθ =

{
θθθ 1, . . . ,θθθ G

}
={(η1,β1,α1,ρ1), . . . ,(ηG,βG,αG,ρG)

}
Output: {

(ttt;𝒢;𝒰)
}
=
{
(ttt1,1;1;1), . . . ,(tttG,Ug;G;UG)

}
where

(tttg,u;g;u) =
{
(tg,u,1;g;u), . . . ,(tg,u,ng;u;g;u)

}
Procedure:
/* Define FX |t(x; t,θθθ), where θθθ = (η ,β ,α,ρ) */

FX |t := (x; t,θθθ)→ 1− exp
{
−
(

Λ(x+ t;θθθ)−Λ(t;θθθ)
)}

for g := 1 to G do
for u := 1 to Ug do

for i := 1 to ng,u do
ω ∼ Uniform(0,1) // Sample auxiliary variable ω

FX |tg,u,i−1(x; tg,u,i−1,θθθ g)−ω = 0 // Solve for x (tg,u,0 = 0)
tg,u,i = tg,u,i−1 + x // Determine the i-th failure time

end
end

end
Algorithm 4: Generator of random numbers from the proposed model for a specific group.

We consider a combination of values for θθθ g = (ηg,βg,αg,ρg) = (250,1.5,1.5,0.65),
and simulate values in a context that considers three orders of memory (mg = 1,10,20), five
values for the number of failure by system within each group (ng,u = 20,60,100,140,180) and
four values for the number of systems within a group (Ug = 5,10,15,20).

The simulations were programmed using the R software (R Core Team, 2020), consid-
ering B = 1000 Monte Carlo replicas and the criteria used to evaluate the performance of the
estimators were the mean relative estimation (MRE), square root of the mean squared error
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(RMSE) and 90% coverage probability intervals (CP), calculated using the following expressions

MRE(θ̂i) =
1
B

B

∑
j=1

θ̂
( j)
i
θi

, RMSE(θ̂i) =

√√√√ 1
B

B

∑
j=1

(
θ̂
( j)
i −θi

)2
,

and

CP(θ̂i) =
1
B

B

∑
j=1

1
(

θi ∈ (a( j)
i ,b( j)

i )
)

with

a( j)
i = θ̂

( j)
i −1.96×SE(θ̂ ( j)

i ) and b( j)
i = θ̂

( j)
i +1.96×SE(θ̂ ( j)

i ),

where θi is the i-th component of the vector θθθ = (η ,β ,α,ρ) and θ̂i is the corresponding
maximum likelihood estimator. The function 1(·) is the indicator function, which returns the
value one, if its argument is true and returns zero, otherwise. In addition SE(θ̂ ( j)

i ) denotes the
standard error of the estimator θ̂

( j)
i .

We expect that with the increase in the number of failures (ng,u) or the number of
units in each group (Ug) the MRE criterion will be close to one, in the sense that the value
The estimated value tends to approach the true value. Similarly, we expect the RMSE criterion
to approach zero, indicating that the variability inherent in the estimation becomes less. On
the other hand, the CP criterion must be close to the nominal value of 0.9.

The empirical results obtained can be seen in Figure 44. The measures according to
each criterion present the expected behavior, the highlight is the RMSE of the estimator of ηg,
however, this is due to the magnitude of the value set for this parameter (250) compared to
the other values (1.5, 1.5, 0.65) for β ,α and ρ , respectively.

In this sense, the results expose the asymptotic properties already known to MLEs, so
that the model can be used to obtain reliable estimates of the process it is proposed to model.
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Figure 44 – Simulation results for the IR.ARA.F model, considering 1000 Monte Carlo replicas
and the scenarios θθθ g = (ηg,βg,αg,ρg) = (250,1.5,1.5,0.65), mg = {1,10,20}, ng,u =
{20,60,100,140,180} and Ug = {5,10,15,20}.

6.5 Application

To illustrate the use of the proposed model, we considered a dataset with the failures of
a tractor fleet with agricultural machines categorized in five different groups. As an illustration,
we understand that the performance of all machines, together, corresponds to the agricultural
system studied, the farm fleet, so that the need for intervention in this system occurs with the
failure of any unit within any group, individually, in a serial structure, or competing risks. On
the other hand, the understanding of the time when all the machinery will have required some
intervention is obtained by analyzing the results under a parallel structure.

6.5.1 Dataset

The record of maintenance interventions were obtained during the period between 2017
and 2020 on tractors on a farm in the state of São Paulo (Brazil), and the database maintenance
orders are for 38 small agricultural tractors. Orders are divided into classes (checklist, preventive,
tire repair, tractor and corrective suitability) and subclasses (accident, suitability, natural wear,
operational failure, scheduled or preventive maintenance, quality of maintenance and quality of
material), which describes the cause of equipment breakage.

The results of the preliminary evaluation of work orders (Table 25) shown the con-
tribution of the total duration of orders measured in hours and the number of work order
requests.
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Table 25 – Total and average volume of hours and number of database maintenance work orders.

Class Mean duration (hours) Total hours (%) Quantity (%)
Corrective 37.03 58246.78 (89.52) 1573 (60.78)

Adequacy trator 36.47 510.53 (9.05) 14 (36.75)
Tires 8.74 410.60 (0.78) 47 (1.82)

Preventive 6.20 5891.58 (0.63) 951 (0.54)
Check List 5.24 15.72 (0.02) 3 (0.11)

Total 25.14 65075.22 (100.00) 2588 (100.00)

We can notice that there is a prevalence of the total duration of maintenance hours in
the corrective class with a participation of 89.52% and, for the preventive class this value is
approximately 9%. In the maintenance order quantity indicators, it can be noted that there
is a reasonably high issue of preventive service requests, of almost 37%, but still does not
exceed the amount of corrective order issues, with a participation of approximately 61% . The
prevalence of corrective maintenance over preventive maintenance is related to the low level of
operational planning of agricultural fleets, making the tractors return to operation as quickly
as possible.

In this study we will focus on some particular aspects of the problem, in order to
illustrate the methodology previously proposed. In this sense:

∙ we will only consider the corrective maintenance records of the data set;

∙ we will only consider the times when the tractors were in operation until they failed. In
other words, we consider that the repair measures took place instantly;

∙ the agricultural fleet represents the system under study, as a whole;

∙ the groups of machines denote groupings according to some characteristic of practical
interest. Conceptually, the intervention in any group implies the intervention of the
system, which will be counted as a failure associated with that group;

∙ tractors denote the component elements of each group, they compete with each other
to demand an intervention on the fleet. Conceptually, the occurrence of a tractor failure
implies intervention in a group that, in turn, implies system intervention. The failure will
be registered as a result of a specific group and tractor;

∙ tractors within the same group exhibit the same basic behavior, but share intrinsic
characteristics that make them unique within their group.

6.5.2 Reliability model

Given the previous considerations, we made a descriptive outline in terms of reliability
(Figure 45). In the top two lines of we observe the behavior of the failures over time, considering
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each component unit, within each group. In the first line, we have an indication of how the
failures are distributed over the operation time. The failure are more concentrated in groups 3
and 5, this can also be seen in the graphs of the second line, in which the growth in the number
of failures presents a more intense behavior in these groups. On the other hand, groups 2 and 4
show the slowest growth. In the third line, Duane plots are exposed for each unit in each group,
in which one can see an approximately linear behavior, at least for most cases, indicating that
the power-law model is enough to represent the basic behavior for failure intensity.
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Figure 45 – Descriptive graphs for failure times (on the top line of plots) and cumulative failures by
group and unit (middle line). Duane plots by group and unit (bottom line).

Considering the models shown in Table 24, we made a selection among them using the
highest log-likelihood value applied in parameter estimates as criteria. The normalized results
for each group can be seen in Figure 46 and, the models chosen were IR.ARA8.F (GROUP 1),
IR.ARA8.F (GROUP 2), IR.ARA4 (GROUP 3), IR.ARA1.F (GROUP 4), IR.ARA15 (GROUP
5).
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Figure 46 – Normalized likelihood as a criterion for model selection.

According to the estimates for the models (Table 26), we have evidences that there
may be unobserved effects that influence the failure times in the systems of groups 1 and
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3, given that α1 = 0.222(0.108) and α3 = 0.0295(0.0052). On the other hand, with respect
to the repair effect, no one express failure behaviors very close to a minimum repair model,
since ρ << 1.0 for everyone, the group 1 presented an evident intermediate effect of the repair
actions, ρ1 = 0.3215(0.1169). On the other hand, the groups 2 and 4 presented repair effect
close to perfect repair sinse ρ2 ≈ ρ4 ≈ 0.

Table 26 – Estimatives to the frailty imperfect repair models.

90% Interval
Estimative Standard Error Lower Upper

IR
.A

RA
8.

F α1 0.2220 0.1080 0.1236 0.3707
β1 0.8161 0.1442 0.6144 1.0854
η1 121.1883 28.3588 59.4364 176.3932
ρ1 0.3215 0.1169 0.16052 0.4816

IR
.A

RA
1 β2 0.8036 0.0614 0.7039 0.9161

η2 710.8643 0.0025 710.8609 710.8671
ρ2 3.77e-9 6.6912e-10 1.3183e-9 3.9548e-9

IR
.A

RA
1.

F α1 0.0295 0.0052 0.0216 0.0444
β3 0.8507 0.0673 0.7512 0.9712
η3 135.8359 0.0107 135.8193 135.8507
ρ3 1.1371e-9 2.2023e-10 4.0094 1.2028

IR
.A

RA
1 β4 0.8054 0.0629 0.7066 0.9135

η4 394.5440 0.01104 394.5387 394.5517
ρ4 1.5787e-11 1.8339e-12 1.6109e-11 1.6109e-11

IR
.A

RA
10 β5 0.5067 0.0415 0.4426 0.5803

η5 61.5044 0.4130 61.4779 61.5228
ρ5 4.3495e-6 1.3775e-6 1.7039e-6 5.1116e-6

In order to have a perception of the quality of the adjustment, we can observe the
estimated mean value function over the accumulation of failures observed in the systems (upper
line of Figure 47) and also the number of failures estimated by the fitted model and the MCF
obtained by nonparametric method (bottom line of Figure 47). From these results, we have
evidence that the model is quite adherent to the behavior observed in the actual data.
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Figure 47 – Results for estimated mean value function by group over the observed accumulated failures
per unit (on the top line plots). Observed mean number of failures versus estimated
(bottom line).

Although the estimation process is done on the mean value function considering all
units within a group, it is possible to visualize the behavior of the estimated function on each
unit specific history. These results can be seen in the Appendix A.

After adjusting, selecting and validating the models, we use the estimates and the
failure history of the groups to estimate the reliability function that describes the common
behavior of the units in each group. These results are shown in Figure 48 and, from them, we
calculated some measures of practical interest, such as the mean and median next failure time.
The most reliable group is group 2, with an estimated median time close to 568 (403,796)
hours, followed by group 4 with 382 (214,658) hours. On the other hand, the group with the
lowest estimate for the median time is the 5 with only 41 (33,52) hours of operation.
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Figure 48 – Next failure reliability, by group. The thick and solid line denotes the estimated reliability.
Transparent margins are 90% confidence intervals. The vertical lines indicate the median
next failure time with the respective 90% confidence limits.

Although we have estimated a general behavior of the reliability function for the units
in each group, we keep in mind that each unit has its own failure history and that the group’s
reliability carries the effect of each one. Thus, considering the time scale (the data-time recorded
in the data set) of failures occurrence, the results for reliability at each level of the hierarchy
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proposed in Figure 43 calculated based on Equation (6.4) (in the case of Figure 49) and in the
Equation (6.5) (in the case of Figure 50).

From the results shown in Figure 49, we have that the reliability of the general system
(after its last failure) is very close to zero, since the reliability of many units is quite low. The
group with the lowest reliability is group 3, and within this group the most critical units are
units 20, 21, 24 and 25. Group 1 is the second least reliable, with emphasis on the criticality of
units 2, 4, 6 and 8. The third group is 4 with critical units 31, 32 e 33, followed by 2 with
critical units 14, 15 e 18 and the group 5.

On the other hand, the results in Figure 50 show us the reliability associated with the
next failure of all units. In this sense, we understand that the group that will probably take the
longest time for all units to fail is group 1, followed by groups 2, 3, 4 and 5.

Although we have made a more general interpretation of the reliability curves in the
forecast horizon as a whole. In practical contexts, an interpretation in terms of data-time allows
planning and maintenance schedules considering the work schedule of the company for the
fleet. These results provide reliability guides for both the general system and the units that
compose it, and can be updated with each new failure occurrence, generating new estimates
based on the updated failure history.
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Figura 7 – Next failure reliability (thick and solid line), by hierarchical level in a serial structure.
Transparent margins around thick and solid line are 90% confidence intervals. The
transparent gray band (for the units) is the horizon after the last unit failure. The
colored transparent band is the horizon after the last general system failure.

Figure 49 – Next failure reliability (thick and solid line), by hierarchical level in a serial structure.
Transparent margins around thick and solid line are 90% confidence intervals. The
transparent gray band (for the units) is the horizon after the last unit failure. The colored
transparent band is the horizon after the last general system failure.
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Figura 8 – Next failure reliability (thick and solid line), by hierarchical level in a parallel structure.
Transparent margins around thick and solid line are 90% confidence intervals. The
transparent gray band (for the units) is the horizon after the last unit failure. The
colored transparent band is the horizon after the last general system failure.

Figure 50 – Next failure reliability (thick and solid line), by hierarchical level in a parallel structure.
Transparent margins around thick and solid line are 90% confidence intervals. The
transparent gray band (for the units) is the horizon after the last unit failure. The colored
transparent band is the horizon after the last general system failure.
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6.6 Concluding Remarks
In this chapter we continued the studies started in the Sections (3, 4 and 5), taking

new steps to some studies carried out by Almeida (2019), DAndrea (2020) and Lindqvist
(2006). We present a frailty model that considers a hierarchical level for groups of repairable
systems, maintaining the assumptions of competing risks, in an ARAm IR regime with a PLP
intensity function. We deduce the likelihood function and suggest the maximum likelihood
method to obtain the estimators of the model parameters. The properties of these estimators
were evaluated in a simulation study, which returned the expected results.

The proposed model and the analysis carried out as an example express a way of assessing
the next failure time reliability, of a general system hierarchically represented composed by
groups of repairable units, in an analytical and graphical way at any level of the proposed
hierarchy. So that the exposed methodology can be easily applied to the daily life of the industry
as an auxiliary tool for decision making.

The following steps of this modeling can consider any number of hierarchical levels, new
formats for the intensity function associated with the first failure, the extension of the analysis
to the failure modes associated with the units and the modeling of their possible dependence
via shared frailty models.
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CHAPTER

7
CONCLUDING REMARKS AND FURTHER

RESEARCH

In this thesis we introduced some new statistical models for repairable systems. In all of
them, we assumed a framework for hierarchical competing risks under the assumption that the
failure modes act independently. We also assumed that the repairs are minimal (in Chapters
3, 4 and 5) and imperfect (Chapter 6), and the failure intensity follows a PLP model after a
convenient reparametrization. Under a classical (in Chapters 3, 5 and 6) and bayesian (Chapter
4) framework, we proposed some bias-corrected estimators and confidence intervals for the
model parameters (in Chapters 3 and 4). In all the performances were investigated using a
simulation study. When was the case, the simulation results revealed that the bias-corrected
provide better estimates, mainly for the PLP shape parameters, than the usual estimators.
Besides, for the models from Chapters 3 and 4, the exact confidence intervals for parameters
were obtained. In Chapter 6 we present a frailty model that considers a hierarchical level for
groups of repairable systems, maintaining the assumptions of competing risks, in an ARAm IR
regime.

To illustrate the use of the methodologies, we used a series of real problems, especially
from the project that motivated this research. For systems in which there was no practice
data, we used a process to simulate failure times using the information available about the
system and we analyze the first-failure time reliability of a real early-stage project related
to an in-pipe robot traction system, and also a real example on a BOP system (in Chapter
3), two systems (at any hierarchical level), namely, the pressure vessels set and the traction
system (in Chapter 4). To illustrate the proposed methodology in Chapter 5 we consider the
fatigue system of the robotic unit already studied in the previous chapters, in this context, the
data were obtained with the physical simulation of failure times in terms of system fatigue. In
the example where we had pratical data available, the tractor fleet problem (Chapter 6) we
assessing the next failure time reliability. we understand that the tractor fleet corresponds to
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the farm’s agricultural system.

As future works, we intend to evaluate the quality of these estimators in a context
with outliers. In addition, we wish to evaluate the change in reliability based on the increase in
redundancy of some subsystems. We also intend to model the dependence among the failure
modes via shared frailty models, new formats for the first-time intensity function, the extension
of the analysis to also consider repair times in the analysis.
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Figure 51 – Results for estimated mean value function with history of each unit over the observed
accumulated failures per unit.
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B.1 Generated Failure Times for Pressure Vessel Set

Table 27 – Failure data for the in-pipe robot’s pressure vessel set. FT=Failure Time, FM=Failure
Mode.

FM FT
1.1.1 78.52, 100.74, 138.52, 194.66, 64.09, 193.1, 200.4, 153.93, 148.44, 26.76, 65.1, 58.1, 158.41,

103.12, 172.3, 124.86, 163.59, 207.75, 102.32, 173.55, 198.84, 66.53, 152.35, 45.17, 78.89,
103.52, 8.65, 102.78, 188.53, 94.32, 121.96, 143.26, 124.09, 60.43, 181.71, 155.24, 176.31,
40.4, 164.61, 108.46, 180.67, 151.56, 174.46, 134.97, 130.74, 175.51, 13.04

1.1.2.1 16.27, 122.49, 90.11, 14.09, 191.51, 191.4, 9.46, 158.67, 66.3, 84.62, 85.25, 23.98, 138.15,
15.74, 53.33, 164.49, 201.59, 22.02, 61.39, 4.16, 111.98, 49.84, 159.66, 11.92, 42.22, 70.79,
11.77, 44.03

1.1.2.2 28.82, 164.81, 72.37, 60.52, 118.95, 119.45, 20.67, 53.76, 113.59, 125.31, 99.35, 97.85, 104.11,
109.15, 178.57, 169.85, 18.26, 141.45, 185.34, 50.76, 40.48, 2.02, 21.48, 15, 42.2, 161.11,
118.43, 188.24, 109.84

1.1.2.3 115.38, 1.11, 53.59, 50.28, 166.19, 46.88, 146.08, 187.31, 197.2, 11.44, 152.88, 52.02, 16.2,
198.36, 78.8, 87.16, 202.29, 114.98, 200.24, 154.46, 143.86, 208.21, 98.11, 94.6, 129.32, 170.1

1.1.2.4 30.22, 132.67, 188.29, 46.09, 13.85, 136.36, 96.97, 161.73, 198.12, 14.78, 43.93, 88.76, 52.79,
103.9, 41.87, 30.52, 66.86, 181.15, 102.95, 170, 181.73, 140.97, 32.25, 34.91, 19.65, 86.46,
77.34, 200.48

1.1.2.5 133.08, 197.21, 62.95, 87.34, 172.34, 204.86, 201.05, 163.7, 113.79, 17.63, 140.44, 193.08,
25.06, 69.57, 165.09, 61.13, 115.45, 147.17, 37.13, 151.61, 201.06, 176.4, 30.71, 57.76, 159.91,
73.9, 82.38, 192.79, 65.1, 98.3, 116.23, 32.3, 200.72, 163.17, 34.77, 195.92, 88.6, 16.33,
206.43

... ...
1.2.1 207.29, 105.82, 42.52, 29.27, 73.71, 175.95, 94.26, 204.67, 55.48, 117.64, 56.92, 70.96, 172.79,

37.14, 116.57, 33.78, 136.34, 6.3, 206.8, 89.41, 150.24, 84.91, 208.49, 194.31, 207.26, 27.99,
148.08, 123.52, 204.51, 98.75, 157.21, 78.13, 60.31, 60.17, 102.17, 184.89, 124.93, 175.71,
183.51, 117.22, 177.17, 102.7, 170.62, 113.39, 194.03, 90.02, 33.15, 179.91, 193.12, 203.81,
138.56, 164

1.2.2.1 65.93, 19.42, 149.04, 109.42, 37.57, 126.89, 32.29, 187.97, 140.53, 107.55, 63.96, 5.41, 58.81,
83.46, 10.48, 186.61, 0.01, 27.96, 29.92, 77.99, 21.71, 53.86, 100.17, 20.44

... ...
1.11.1 96.64, 200.06, 97.07, 9.99, 20.34, 53.48, 149.82, 31.09, 33.33, 83.16, 111.18, 78.13, 170.53,

123.02, 159.99, 105.51, 195.78, 43.25, 101.43, 104.51, 38.35, 147.37, 30.76, 30.71, 158.36,
89.5, 205.04, 172.05, 38.19, 101.54, 26.03, 202.24, 150.82, 201.92, 175.19, 175.11, 165.33,
38.18, 59.92, 13.45, 135.01, 149.91, 103.11, 127.89, 84.01, 208.04

1.11.2.1 145.91, 41.99, 99.45, 126.07, 3.36, 9.66, 79.96, 32.72, 205.25, 119.29, 78.81, 200.44, 154.69,
66.06, 7.9, 163.97, 81.99, 117.03, 13.31, 0.19, 14.61, 1.61, 165.48, 29.62, 102.84, 195.58, 3.03

1.11.2.2 187.58, 34.93, 4.33, 12.32, 138.12, 149.23, 4.05, 36.81, 142.37, 12.12, 23.88, 3.15, 130.9,
163.25, 108.15, 93.94, 7.35, 195.78, 132.64, 114.92, 129.28, 105.64, 84.55, 93.61, 125.84,
121.58, 112.14, 79.88, 76.43, 138.03, 115.44, 185.25, 65.01, 166.73, 167.5, 8.97, 169.94

1.11.2.3 6.47, 169.29, 6.4, 206.52, 14.37, 167.12, 194.73, 122.92, 98.07, 115.53, 69.74, 10.5, 169.85,
125.84, 70.29, 27.03, 192.16, 197.51, 182.73, 201.5, 134.8, 159.86, 9.32, 52.69, 37.55, 141.41,
134.49, 86.21, 12.66, 39.97, 1.98, 167.49, 79.1, 70.14

1.11.2.4 15.63, 133.32, 24.94, 4.71, 115.3, 42.73, 9.17, 95.82, 158.47, 175.76, 182.61, 26.35, 58.47,
193.1, 14.06, 56.57, 40.83, 31.97, 16.47, 97.55, 122.38, 148.14, 181.85, 149.52, 127.72, 8.69,
3.39, 109.74, 70.07, 90.58, 182.92, 45.04, 194.27, 103.21, 13.6, 1.37, 0.78, 117.43

1.11.2.5 207.1, 176.61, 129.04, 94.96, 144.09, 87.18, 96.44, 179.07, 86.58, 192.25, 61.7, 49.66, 54.34,
192.84, 188.19, 66.2, 97.49, 65.02, 114.36, 82.18, 32.69, 69.36, 40.34, 113.19, 86.85, 45.7,
25.58, 179.42, 42.75, 7.49, 126.47, 55.88, 88.38, 37.73
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Figure 52 – Duane plots for the failure modes related to the in-pipe robot’s pressure vessel system.



168 APPENDIX B. Generated data and Graphs (Chapter 4)

B.3 Number of observed and estimated failures per com-
ponent
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Figure 53 – Number of observed and estimated failures per component, for the in-pipe robot’s pressure
vessel system.
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Figure 54 – FTA (with FMEA indices) for the in-pipe robot’s traction system.
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B.5 Generated Failure Times for Traction System

Table 28 – Failure data for the in-pipe robot’s traction system. FT=Failure Time, FM=Failure Mode.

FM FT
1.1.1.1 176.09, 107.53, 165.17
1.1.1.2 166.4, 86.33, 152.82, 153.65, 71.53, 28.49, 103.93, 189.07, 14.05, 173.56, 14.35, 66.54
1.1.1.3 159.1, 72.54, 143.68, 144.61, 57.91, 19.24, 90.57, 185.37, 8.26, 167.33, 8.47, 53.12, 179.16,

70.77, 130.08, 144.52, 37.15, 93.39, 139.13, 63.04, 86.58, 89.36, 102.25, 111.1, 190.72, 122.86,
56.74, 65.76, 71.29

1.1.1.4 165.76, 85.05, 152.01, 152.85, 70.24, 27.54, 102.7, 188.75, 13.42, 173.02, 13.71, 65.26, 183.36,
83.28, 139.69, 152.76, 48.17, 105.42, 147.91, 75.49, 98.85, 101.54, 113.86, 122.17, 193.36,
133.07, 69.03, 78.25, 83.8, 129.49, 197.76, 99.09, 99.21, 2.67, 158.08, 162.12, 88.86, 77.63,
148.11, 112.3, 91.79, 43.94, 76.51

... ...
1.2.1 157.84, 70.34, 142.12, 143.08, 55.79, 17.95, 88.4, 184.73, 7.52, 166.25, 7.71, 51.04, 178.36,

68.58, 128.3, 142.98, 35.33, 91.23, 137.5, 60.88, 84.4, 87.19, 100.15, 109.08, 190.21, 120.97,
54.63, 63.59

1.2.2 175.06, 105.12, 163.85
1.2.3 162.64, 79.01, 148.09, 148.98, 64.24, 23.33, 96.9, 187.18, 10.72, 170.36, 10.97, 59.33, 181.4,

77.24, 135.16, 148.89, 42.71, 99.67, 143.78, 69.45, 92.97, 95.71, 108.33, 116.92, 192.13
... ...
1.3.1 168.12, 89.84, 154.98, 155.79, 75.06, 31.16, 107.25, 189.92, 15.87, 175.02, 16.19, 70.06,

184.83, 88.09
1.3.2 168.12, 89.84, 154.98, 155.79, 75.06, 31.16, 107.25, 189.92, 15.87, 175.02, 16.19
1.3.3 166.4, 86.33, 152.82, 153.65, 71.53, 28.49, 103.93, 189.07, 14.05, 173.56, 14.35, 66.54, 183.76,

84.57, 140.64
... ...
2.1.1 173.2, 100.84, 161.46, 162.18, 86.35, 40.43
2.1.2 171.47, 96.98, 159.24, 160, 82.36, 37.03, 113.93, 191.58
2.1.3.1 178.54, 113.45, 168.34, 168.97
2.1.3.2 168.12, 89.84, 154.98, 155.79, 75.06, 31.16, 107.25, 189.92, 15.87, 175.02, 16.19, 70.06,

184.83, 88.09, 143.17, 155.71
2.1.3.3 156.28, 67.68, 140.19, 141.17, 53.24, 16.46, 85.74, 183.92, 6.68, 164.91, 6.86, 48.56, 177.36,

65.92, 126.1, 141.07, 33.18, 88.59, 135.48, 58.28, 81.73, 84.53, 97.58, 106.59, 189.58, 118.65,
52.1, 60.97

... ...
2.2.1 164.6, 82.76, 150.54, 151.4, 67.95, 25.9, 100.51, 188.16, 12.35, 172.03, 12.62, 63, 182.63,

80.99, 137.99, 151.32, 46.07, 103.25, 146.37, 73.19, 96.63
2.2.2 177.22, 110.24, 166.63, 167.29, 96.2
... ...
2.3.1 173.2, 100.84, 161.46, 162.18, 86.35, 40.43, 117.5, 192.43, 22.58, 179.32
2.3.2 171.47, 96.98, 159.24, 160, 82.36, 37.03, 113.93, 191.58, 20.05, 177.86, 20.41, 77.36
2.3.3.1 177.22, 110.24, 166.63, 167.29, 96.2
2.3.3.2 168.12, 89.84, 154.98, 155.79, 75.06, 31.16, 107.25, 189.92, 15.87, 175.02, 16.19, 70.06,

184.83, 88.09, 143.17, 155.71
2.3.3.3 151.32, 59.72, 134.11, 135.15, 45.74, 12.41, 77.67, 181.33, 4.56, 160.63, 4.7, 41.29, 174.16,

58, 119.22, 135.05, 27.04, 80.54, 129.11, 50.58, 73.64, 76.44, 89.66, 98.91, 187.54, 111.42,
44.65, 53.17, 58.5, 107.27, 193.51, 73.88, 74.01

... ...
2.3.5.4 160.21, 74.52, 145.06, 145.98, 59.84, 20.45, 92.52, 185.94, 8.97, 168.28, 9.19, 55.01, 179.87,

72.75, 131.66, 145.89, 38.82, 95.33, 140.59, 65, 88.55, 91.32, 104.14, 112.9, 191.16, 124.53,
58.66, 67.73, 73.27, 120.7, 196.16, 88.8, 88.92, 1.4, 151.73, 156.19, 78.37, 67.12, 140.8, 102.5

2.3.5.5 160.21, 74.52, 145.06, 145.98, 59.84, 20.45, 92.52, 185.94, 8.97, 168.28, 9.19, 55.01, 179.87,
72.75, 131.66, 145.89, 38.82, 95.33, 140.59, 65, 88.55, 91.32, 104.14, 112.9, 191.16, 124.53,
58.66, 67.73, 73.27, 120.7, 196.16, 88.8, 88.92, 1.4, 151.73, 156.19, 78.37, 67.12, 140.8, 102.5
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Figure 55 – Duane plots for the failure modes related to the in-pipe robot’s traction system.



172 APPENDIX B. Generated data and Graphs (Chapter 4)

B.7 Number of observed and estimated failures per com-
ponent, for the in-pipe robot’s traction system.
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Figure 56 – Number of observed and estimated failures per component, for the in-pipe robot’s traction
system.
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B.8 Structure of the systems illustrated in scenarios 1 to
6
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Figure 57 – Simulated failure structure for Scenarios 1, 2 and 3.
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Figure 58 – Simulated failure structure for Scenarios 4, 5 and 6.
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