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ABSTRACT

GONZATTO JUNIOR, O. A. Frailty model for multiple repairable systems hierarchi-
cally represented in serial/parallel structures under assumption of ARAm imperfect
repairs. 2021. 173 p. Tese (Doutorado em Estatística – Programa Interinstitucional de Pós-
Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2021.

The main objective of this thesis is to extend the methodology used to treat failure time data. In
particular, we wish to propose an appropriate modeling to a context of hierarchically represented
repairable systems, subject to competitive risks and unobserved heterogeneity. To do that, we
took one of the necessary steps, we propose modeling for a single repairable system with a
hierarchical structure under the assumption that the failures follow a non-homogeneous Poisson
process with a power-law intensity function under the frequentist and bayesian framework.
In this context we used a corrective approach to remove bias with order O(n�1), and the
respective exact confidence intervals are proposed. We illustrate the use of both methods with
an early-stage real project related to the traction system of an in-pipe robot. In the sequence,
we introduced a framework to the reliability estimation in systems with serial structure and
failure modes structured in a parallel way, we continued the studies of the robotic unit previously
analyzed. Finally, we propose a statistical model to the reliability estimation of groups of
repairable systems hierarchically represented, under a competing risks framework, with the
consideration of the existence of unobserved heterogeneity that acts individually on the systems
of each group, and also the possibility of imperfect repairs. To illustrate, we consider a database
with the failures of agricultural machines categorized in different groups.

Keywords: Bias correction. Competing risks. Hierarchical systems. Maximum likelihood esti-
mation. Power-law process..





RESUMO

GONZATTO JUNIOR, O. A. Modelo de fragilidade para múltiplos sistemas repa-
ráveis hierarquicamente representados em estruturas série/paralelas sob a supo-
sição de reparos imperfeitos ARAm. 2021. 173 p. Tese (Doutorado em Estatís-
tica – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ciên-
cias Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2021.

O principal objetivo desta tese é estender a metodologia utilizada para tratar dados de tempo de
falha. Particularmente, buscamos propor uma modelagem apropriada a um contexto de sistemas
reparáveis representados hierarquicamente, sujeitos a riscos competitivos e heterogeneidade
não observada. Para isso, demos um passo necessário propondo a modelagem de um único
sistema reparável com uma estrutura hierárquica, pressupondo que as falhas seguem um
processo de Poisson não-homogêneo com uma função de intensidade lei de potência sob
um panorama frequentista e bayesiano. Nesse contexto, nós utilizamos uma abordagem
corretiva para remover o viés de ordem O(n�1), e os respectivos intervalos de confiança exatos
também foram propostos. Nós ilustramos o uso de ambos os métodos em dados vindos de um
projeto real em estágio inicial relacionados ao sistema de tração de uma unidade robótica. Na
sequência, introduzimos um panorama para a estimação da confiabilidade em sistemas seriados
com modos de falha estruturados de forma paralela, nós demos continuidade aos estudos da
unidade robótica previamente analisada. Por fim, nós propusemos um modelo estatístico para
a estimação da confiabilidade de grupos de sistemas reparáveis hierarquicamente representados,
sob a suposição de riscos competitivos e a consideração da existência de heterogeneidade
não observada que atua individualmente nos sistemas dentro de cada grupo, e também a
possibilidade de reparos imperfeitos. Para ilustrar, consideramos um conjunto de dados com o
registro de falhas de máquinas agrícolas categorizadas em diferentes grupos.

Palavras-chave: Correção de Viés. Riscos Competitivos. Sistemas Hierárquicos. Estimação de
Máxima Verossimilhança. Processo Lei de Potência..
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CHAPTER

1
INTRODUCTION

The presence of repeated recurrences of an event of interest often arises in areas such

as manufacturing, software development, medical applications, social sciences, and risk analysis,

among others. Jiang and Liu (2017) exempli�es by saying that, in reliability engineering, when

a complex system such as supercomputers, airplanes or cars is included in a study, several

unexpected failures may be exposed by di�erent defects or weaknesses in the products' design,

manufacturing, operation, maintenance, and management. Models with this feature, as those

exposed by Crowder (2001), are traditionally referred to as competing risks, or equivalently,

a system withp components connected in series. A single component failure results in total

system failure.

Recently, the availability evaluation of repairable systems with multiple failure modes

is at the center of attention due to the broad application in engineering. According to the

competing risks framework, a series system fails by the earliest occurrence of failure modes.

Therefore, in this thesis, we utilized a model for components, whose failures happen due to one

of the series competing failure mechanisms, whereby each of them acts related to the system

independently.

A system can be broken down into several sub-systems, and sub-sub-systems compose

the sub-systems in a hierarchical form until the elements cannot or are not worthy of being

divided. The system's hierarchies can help engineers to better understand the relationships

between components and their importance and functions. According to Lieping and Zhe (2009),

they can further help engineers to determine the role and acceptable damaging degree of each

part of the structure and their in�uences on the whole system under various external forces

and e�ects.

Thus, structuring a problem according to a hierarchy can help to increase accuracy and

facilitate useful analysis of failure factors. Note that the event of interest at the system level is

expected to happen at its earliest occurrence. Therefore, a system can be anticipated to follow
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a competing risks model. As an example given by Liu, Song and Zhang (2018), mechanical

devices (e.g., gear pair and crank train) are always under multiple failure modes (including

fracture, corrosion and wear), which compete with each other so that when one kind of failure

happens, the device is invalid and other failure modes have no chance to occur anymore.

The components under consideration are repaired upon failure but are also preventively

maintained. Thus, the excellent books by Crowder (2001) and Pintilie (2006), among others,

motivate the need for accounting for competing risks in reliability and survival applications

using several examples in industrial statistics and health sciences. More recently, Langseth and

Lindqvist (2006) recorded cumulative service times of a component spanning over 1,600 time

units, then marking each failure with its speci�c causing mode. In this case, the causes were

categorized into two broad groups, each with several speci�ed sub-causes. Tuliet al. (2000)

analyzed repeated shunt failures in infants diagnosed with hydrocephalus, where the failures

are known to occur due to a variety of causes.

The focus in this thesis is placed on failure data from repairable systems. Thus, solid

modeling and analysis of this data provide equipment operators for better maintenance activities.

In the repairable system literature, it is often assumed that failures occur following a Non-

Homogeneous Poisson process (NHPP) with power-law intensity. The resulting process is usually

referred to as the Power-Law Process (PLP). Proposed by Crow (1974), the PLP is convenient

because it is easy to implement, �exible, and the parameters have valuable interpretation, as

exempli�ed by Rigdon and Basu (1989) and Reis, Colosimo and Gilardoni (2019).

In the literature, the PLP has been widely used in modeling software reliability as in

the work of Kyparisis and Singpurwalla (1985), reliability growth in the study of Crow (1982),

repairable systems in Ascher and Feingold (1984), Engelhardt and Bain (1986), Rigdon and

Basu (1989), and others. This assumption, however, implies the hypothesis of a Minimal Repair

(MR) model (RAUSAND, 2003), which may not be the most realistic choice, in this sense, a

class of Imperfect Repair (IR) models brings the possibility of considering a intermediate level

of repair, somewhere between MR and Perfect Repair (PR). This idea is well exposed in works

such as those of (KIJIMA; MORIMURA; SUZUKI, 1988; DOYEN; GAUDOIN, 2004; TOLEDO

et al., 2015).

Doyen and Gaudoin (2004) were responsible for proposing two of the main models

for IR, the Arithmetic Reduction of Age (ARA) and Arithmetic Reduction of Intensity (ARI)

model classes, whose repair e�ciency is quanti�ed by one of the model parameters. In addition,

a constant characterizes the models in terms of the used memory order, which refers to the

maximum number of previous information involved in the model's calculations.

Another common assumption is the absence of any unobserved heterogeneity among

the causes that compete for the failure of the general system. An immediate consequence of

this assumption is the disregard of e�ects that, although not observed, can have e�ects on the

behavior of failure times (WIENKE, 2010). The literature that adequately addresses this issue
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is related to frailty models. A review of these models can be found at (HOUGAARD, 1995;

ANDERSENet al., 1996; WIENKE, 2010). From the perspective of multiplicative frailty, we

introduce a multiplicative factor (a random variable) that in�ates, de�ates or preserves the

failure intensity function.

The text here exposed has as its main objective to propose a hierarchical model for a

repairable system subject to several failure modes (competing risks). Under MR, it is assumed

that each failure mode has a power-law intensity. Hence, we develop a new PLP model with a

MR under competing risks, which generalizes the model presented in Somboonsavatdee and Sen

(2015). Furthermore, we discuss the inferential procedure for the parameters of the proposed

model using the Maximum Likelihood Estimator (MLE), as well as the asymptotic con�dence

intervals based on the MLEs. Since the sample size is usually small, due to the problem of

rare yet adverse failures in industrial scenarios (e.g., in aerospace, nuclear and petrochemical

industries) that causes limited failure data availability, we may obtain biased estimators and

unreliable asymptotic con�dence intervals. To overcome this problem, we suggest a corrective

approach to obtain unbiased estimators for the model parameters. Additionally, we discuss how

to derive exact con�dence intervals (CIs) based on these unbiased estimators.

1.1 Main practical motivation

The challenges in the production of o�shore oil wells have been increasing over time,

either due to the increase in technical di�culties because of the greater complexity of the areas

to be explored, or due to improvements in the rules of the regulatory bodies in order to increase

safety. There are two key pillars that should guide an oil well project: safety and productivity.

Petroleum industry loses billions of dollars yearly due to pro�t loss associated with

production lines obstruction. Current �ow assurance solutions are troublesome and cost hundreds

of millions of dollars annually. Petrobras (abbreviation ofPetróleo Brasileiro S.A.), which is

the Brazil's largest oil and gas producer, has invested in technological innovation projects in

order to minimize these losses and increase oil and gas production. Annelida is one of these

Petrobras' innovation projects, which has been developed in partnership with the main Brazil's

research centers. It regards an in-pipe robot that will be used at a near future to remove

hydrates and para�ns that form in pipelines and can cause problems in oil and gas �ow (see

Figure 1). Several stages of the Annelida project have already been completed and many others

are underway, generating important results for the development and improvement of its bases.

Given the innovative nature of the project, the reliability modeling of the product has been one

of the main objectives of the research centers.
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