
UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DATA PREPARATION PIPELINE
RECOMMENDATION VIA META-LEARNING

FERNANDO REZENDE ZAGATTI

ORIENTADOR: PROF. DR. DIEGO FURTADO SILVA

São Carlos – SP

Maio/2021

UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DATA PREPARATION PIPELINE
RECOMMENDATION VIA META-LEARNING

FERNANDO REZENDE ZAGATTI

Dissertação apresentada ao Programa de Pós-
Graduação em Ciência da Computação da Univer-
sidade Federal de São Carlos, como parte dos requi-
sitos para a obtenção do tı́tulo de Mestre em Ciência
da Computação, área de concentração: Inteligência
Artificial
Orientador: Prof. Dr. Diego Furtado Silva

São Carlos – SP

Maio/2021

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia
Programa de Pós-Graduação em Ciência da Computação

Folha de Aprovação

Defesa de Dissertação de Mestrado do candidato Fernando Rezende Zagatti, realizada em 26/05/2021.

Comissão Julgadora:

Prof. Dr. Diego Furtado Silva (UFSCar)

Profa. Dra. Marcela Xavier Ribeiro (UFSCar)

Prof. Dr. Ronaldo Cristiano Prati (UFABC)

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Código de Financiamento 001.
O Relatório de Defesa assinado pelos membros da Comissão Julgadora encontra-se arquivado junto ao Programa de
Pós-Graduação em Ciência da Computação.

Dedico este trabalho aos meus pais, irmãos e amigos, além dos meus orientadores

do projeto, pessoas estas que não mediram esforços para que eu chegasse até esta

etapa da minha vida.

AGRADECIMENTOS

Agradeço primeiramente à minha famı́lia, em que todos os momentos foram meu suporte

em qualquer dificuldade encontrada durante meu percurso, me proporcionando abrigo, con-

selhos e sabedoria para que eu pudesse dar o meu melhor em qualquer atividade realizada.

Agradeço também pela criação que me foi dada, a qual permitiu que eu chegasse a ser quem

sou hoje.

Ao orientador deste presente projeto, Prof. Dr. Diego Furtado Silva, que através das suas

vastas experiências e competências, me auxiliou em todas as dúvidas e questionamentos que ap-

resentei. Sem sua assistência e dedicação a fim de transmitir seus conhecimentos para realização

das pesquisas, não seria possı́vel o correto desenvolvimento deste trabalho.

Aos membros da banca examinadora, Profª. Dra. Marcela Xavier Ribeiro e Prof. Dr.

Ronaldo Cristiano Prati, e aos membros suplentes, Profª. Dra. Heloı́sa de Arruda Camargo

e Prof. Dr. Ricardo Marcondes Marcacini, que tão gentilmente aceitaram participar e colab-

orar com este projeto de pesquisa. Suas contribuições serão utilizadas prontamente a fim de

aprimorar as ideias e atingir os resultados esperados.

À empresa B2W Digital, parceira desta pesquisa, que me proporcionou a possibilidade de

trabalhar dentro de um projeto real da empresa em paralelo com a realização do meu projeto

de mestrado. Seu suporte que tornou possı́vel a saı́da de minha cidade natal para realizar meus

estudos e alcançar meus sonhos e objetivos.

Ao Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq), pela bolsa

de estudos e auxı́lio financeiro durante os primeiros meses do meu projeto de mestrado, o que

me possibilitou a dedicação integral ao programa de pós-graduação e a operacionalização do

estudo enquanto o estágio não estava efetivado pela B2W Digital.

Aos professores escolhidos para auxiliar no projeto Apache Marvin-AI em conjunto com

meu orientador, Profª. Dra. Helena de Medeiros Caseli e Prof. Dr. Daniel Lucrédio, que

além de prestar assistências e apoios durante o projeto da empresa, também realizaram diversas

contribuições para o projeto de pesquisa do mestrado. Os três professores citados foram muito

coerentes e não ajudaram apenas nas relações acadêmicas, mas também foram extremamente

compreensı́veis nas relações humanas. Os três são ótimas pessoas e quero levar para a vida toda

como mestres e amigos.

Aos companheiros que entraram no mestrado e no projeto da B2W Digital na mesma época

que eu, Bruno Silva Sette, Lucas Cardoso Silva e Lucas Nildaimon dos Santos Silva, que além

de acrescentarem muito conhecimento durante nossas discussões e trocas de experiências, são

amigos muito próximos que tive o prazer de conhecer. Sem eles, nada disso seria possı́vel.

Ao corpo docente do Instituto de Computação da Universidade Federal de São Carlos pelo

conteúdo que me apresentaram e da forma que me foi apresentado, tenho certeza que cada dia

foi uma experiência de aprendizado única, tanto para mim quanto para os professores e demais

alunos.

Deixo aqui um agradecimento especial a três professores que tive durante minha graduação,

Prof. Dr. Silas Evandro Nachif Fernandes, Prof. Me. Patrick Pedreira Silva e Prof. Me. Renan

Caldeira Menechelli, sem suas cartas de recomendação, nossas conversas e seus incentivos,

tenho certeza que não seria possı́vel chegar até aqui.

Por fim, a todos os amigos e amigas que conheci no Instituto de Computação, agradeço

a todos pelo convı́vio, amizade e apoio. Também, a todos os profissionais e acadêmicos que

contribuem compartilhando seus conhecimentos e experiências, direta ou indiretamente, per-

mitindo a realização desta pesquisa, o meu sincero agradecimento. Tenho certeza que todas as

novas ideias e descobertas serão levadas para toda a vida.

É muito melhor arriscar coisas grandiosas, alcançar triunfos e glórias, mesmo

expondo-se a derrota, do que formar fila com os pobres de espı́rito que nem gozam

muito nem sofrem muito, porque vivem nessa penumbra cinzenta que não conhece

vitória nem derrota.

Theodore Roosevelt

RESUMO

A preparação de dados é uma etapa essencial no pipeline de aprendizado de máquina,

com o objetivo de converter dados volumosos e inconstantes em dados refinados com-

patı́veis com os algoritmos a serem aplicados. No entanto, a preparação de dados de-

manda muito tempo e requer conhecimento especializado. Cada conjunto de dados tem

suas caracterı́sticas particulares, que devem ser levadas em conta, e pode ser interpretado de

maneiras diferentes. Nesse cenário, automatizar a preparação de dados e, por consequência,

diminuir o esforço feito pelos cientistas de dados nesse estágio é um desafio cientı́fico de

grande relevância prática. Apesar de sua relevância, as plataformas de automatização do

aprendizado de máquina (AutoML) atuais desconsideram ou criam pipelines pré-definidos

para a preparação de dados, que não se adaptam às caracterı́sticas do conjunto de dados a

ser tratado. Tentando preencher essa lacuna, apresentamos um sistema de recomendação

baseado em meta-aprendizado para a preparação de dados. Nosso sistema recomenda cinco

pipelines, classificados por relevância. Dessa maneira, é útil para usuários com nı́veis de

experiência variados. Usando a principal recomendação para simular uma escolha total-

mente automática, demonstramos que nossa proposta permite um melhor desempenho de

um sistema AutoML, incapaz de encontrar um modelo de classificação devido aos dados

ruidosos. Além disso, as taxas de precisão do nosso método são semelhantes às alcançadas

por um algoritmo baseado no aprendizado por reforço com o mesmo objetivo, mas é até

duas ordens de magnitude mais rápido. Além disso, demonstramos nosso método em uma

aplicação do mundo real e avaliamos seus benefı́cios e limitações neste cenário.

Palavras-chave: Automatização, Preparação de dados, Meta-aprendizado, Pré-processamento, Apren-

dizado de máquina

ABSTRACT

Data preparation is a essential stage in the machine learning pipeline, aiming to convert

noisy and disordered data into refined data compatible with the algorithms. However, data

preparation is time-consuming and requires specialized knowledge. In this scenario, au-

tomating data preparation and decreasing the effort made by data scientists at this stage is

a scientific challenge of great practical relevance. Each dataset has its particular charac-

teristics and can be interpreted in different ways. Despite its relevance, current automated

machine learning (AutoML) platforms disregard or make simple hardcoded pipelines for

data preparation. Trying to fill this gap, we present a meta-learning-based recommendation

system for data preparation. Our system recommends five pipelines, ranked by their rele-

vance, so it is useful for users with varied experience levels. Using the top recommendation

to simulate an entirely automatic choice of data preparation pipeline, we demonstrate that

our proposal allows a better performance of an AutoML system, unable to find a classi-

fication model due to the noisy data. Besides, our method’s accuracy rates are similar to

those achieved by a reinforcement-learning-based algorithm with the same goal, but it is up

to two orders of magnitude faster. Morevover, we demonstrate our method in a real-world

application and evaluate its benefits and limitations in this scenario.

Keywords: Automated, Data preparation, Meta-learning, Preprocessing, Machine learning

LIST OF FIGURES

1.1 Prototype of an ML pipeline . 17

1.2 Time consumed by each step in the process of creating ML models 18

1.3 AutoML pipeline by TPOT . 19

2.1 Process diagram performed by AutoML . 24

3.1 Approaches to data characterization . 38

3.2 How meta-learning acquires meta-knowledge to select algorithms 40

4.1 Learn2Clean architecture . 44

5.1 Our proposal: a meta-learning-based recommender system to predict best pipelines

for data preparation . 51

5.2 Difference between single (top) and multiple meta-models (bottom) MetaPrep . 53

LIST OF TABLES

2.1 Comparison between conventional ML and AutoML 23

2.2 Hypothetical dataset . 27

2.3 Hypothetical dataset with case deletion . 27

2.4 Hypothetical dataset with mean imputation 28

2.5 Hypothetical dataset with median imputation 28

2.6 Hypothetical dataset with most frequent imputation 28

2.7 Hypothetical dataset with minmax . 30

2.8 Hypothetical dataset with normalizer (l2 norm) 30

2.9 Hypothetical dataset with label encoding . 31

2.10 Possible categories in ML classifications . 34

3.1 Examples of meta-attributes . 39

5.1 Datasets taken from OpenML . 48

5.2 Summarization of meta-examples . 49

6.1 Pipelines used by each tool . 57

6.2 Results of the end-to-end evaluation . 58

6.3 Some meta-attributes of the raw dataset . 59

6.4 Comparison between the raw dataset and the second dataset 60

6.5 Comparison between the raw dataset and the third dataset 60

6.6 Results with Random Forest . 61

GLOSSARY

AD – Approximate Duplicate

AI – Artificial Intelligence

AutoML – Automated Machine Learning

CART – Classification and Regression Trees

CC – Constraint discovery and checking

DS – Decimal Scale normalization

ED – Exact Duplicate

EM – Expectation-Maximization

ETL – Extraction, Transformation, Loading

FN – False Negative

FP – False Positive

HCA – Hierarchical Clustering

ID – Identifier

IQR – Interquartile Range

LASSO – Least Absolute Shrinkage and Selection Operator

LC – Removing Collinear features

LDA – Linear Discriminant Analysis

LOF – Local Outlier Factor

MARS – Multivariate Adaptive Regression Splines

MF – Most Frequent Value

MICE – Multiple Imputation by Chained Equations

ML – Machine Learning

MM – MinMax

MR – Missing Values Ratio

MSE – Mean Squared Error

NB – Naive Bayes

OHE – One-Hot-Encoding

OLS – Ordinary Least Squares Regression

PC – Pattern checking

SMBO – Sequential Model-Based Optimization

SVM – Support Vector Machine

TB – Tree-Based classifier for feature selection

TN – True Negative

TP – True Positive

UFSCar – Federal University of São Carlos

VPN – Virtual Private Network

WR – Wrapper subset evaluator

ZSB – Z-Score-Based method

ZS – Z-Score

iForest – Isolation Forest

kNN – k-Nearest Neighbors

CONTENTS

GLOSSARY

CHAPTER 1 – INTRODUCTION 16

1.1 Contextualization . 16

1.2 Motivation . 20

1.3 Objectives . 21

1.4 Dissertation organization . 21

CHAPTER 2 – AUTOMATED MACHINE LEARNING 23

2.1 Initial considerations . 23

2.2 Data preparation . 25

2.2.1 Data integration . 25

2.2.2 Data cleaning . 26

2.2.3 Data transformation . 29

2.3 Feature engineering . 31

2.4 Algorithm selection and configuration . 32

2.5 Evaluation . 33

2.6 Final remarks . 35

CHAPTER 3 – META-LEARNING 36

3.1 Initial considerations . 36

3.2 Data characterization strategies . 37

3.2.1 Statistical and information-theoretic characterization 37

3.2.2 Model-based characterization . 38

3.2.3 Landmarking . 39

3.3 Meta-learning application . 40

3.4 Final remarks . 41

CHAPTER 4 – RELATED WORK 42

4.1 Researches about data preparation . 42

4.2 Final remarks . 45

CHAPTER 5 – DATA PREPARATION PIPELINE RECOMMENDATION SYSTEM 46

5.1 Methodology . 47

5.1.1 Data preparation techniques . 47

5.1.2 Datasets collection . 48

5.1.3 Meta-targets . 48

5.1.4 Meta-attributes . 49

5.1.5 Meta-models . 50

5.2 Recommendation system . 50

5.2.1 MetaPrep composition . 50

5.2.2 Prediction of a new case . 53

CHAPTER 6 – EXPERIMENTAL EVALUATION 55

6.1 Tests performed on open datasets . 56

6.2 Case study: people analytics . 58

CHAPTER 7 – CONCLUSIONS 62

7.1 Main contributions . 62

7.2 Future work . 63

APPENDICES 64

CHAPTER A –PIPELINES-TARGET 65

CHAPTER B –ALL DATASETS DESCRIPTION 71

CHAPTER C –ALL USED META-ATTRIBUTES 87

REFERENCES 89

Chapter 1
INTRODUCTION

1.1 Contextualization

Making a computer perform simple tasks that do not require the explicit definition of com-

plex calculations is a significant challenge in Computer Science. One example of factors that

make it difficult is common sense, knowledge acquired from experiences and observations of

the world (ROSA, 2011). This idea is the basis of artificial intelligence (AI), which consists

of computational mechanisms that aim to make the computer perceive, reason, and act, estab-

lishing how machines can perform different activities (NORVIG; RUSSELL, 2014). AI can be

exemplified by the detection of Facebook faces1 and the development of autonomous cars2.

From another perspective, machine learning (ML) is a subarea of AI that seeks to develop or

apply algorithms that can learn to solve particular problems by identifying patterns and extract-

ing knowledge automatically, without the need of programming and defining specific routines

(WITTEN et al., 2016). For example, search engines like Google, Yahoo, or Bing use machine

learning to offer more accurate searches and ensure that no unwanted results appear.

ML models require good input data to perform their functions, making acquiring and stor-

ing large datasets a common activity in many companies. Due to the enormous capacity to

generalize problems, several companies apply ML to aid analysis and decision-making based

on data. However, there are several steps during the development process of the ML pipeline3,

as illustrated in Figure 1.1.

1https://www.facebook.com/help/122175507864081
2https://www.nytimes.com/2020/10/26/technology/driverless-cars.html
3A pipeline is the segmentation of the orientations carried out by algorithms so that the processor searches for

its instructions and places them in a queue in memory (DRORI et al., 2018).

1.1 Contextualization 17

Figure 1.1: Prototype of an ML pipeline

Source: Elaborated by the author

Each of these steps plays a fundamental role in the correct development of intelligent mod-

els:

• Data preparation: Performs different preprocessing steps in the raw data, such as clean-

ing missing values and normalizing continuous values.

• Feature engineering: Seeks to aggregate or separate attributes through extensive analysis

to obtain better generalization for learning.

• Model selection: Selection of one or more ML algorithms to execute the learning.

• Algorithm configuration: Configuration of the hyperparameter4 values of the selected

algorithm.

• Evaluation: Analysis of the induced models and choice of the best case.

Currently, within the steps listed above, data preparation (also called data preprocessing) is

the one that requires the longest time, in practice, due to all the possibilities of techniques and

which can be used separately or together for each data source. Thus, this step performs a series

of operations to make the data cleaner and ready for the attribute engineering process. Among

its main methods, we can mention (GARCÍA; LUENGO; HERRERA, 2015):

• Data integration: The integration between data from different sources is necessary to

perform a more in-depth analysis of the data, managing to observe redundancies, depen-

dencies between information, and values that conflict.

• Data cleaning: Seeks to treat inconsistencies and structural problems, such as missing

values and class imbalance.

• Data transformation: Data transformations convert data to new types and allow normal-

ization and standardization for the same numerical system, giving the ML model a greater

capacity for generalization.
4Hyperparameters are parameters whose values are sets before starting the ML processes.

1.1 Contextualization 18

Problems associated with data preparation are common and significant in the ML con-

text since unprepared data can directly interfere with how the learning algorithms will gener-

alize knowledge about the studied phenomenon. Furthermore, according to Pyle (1999), due

to the complex nature of the data received by ML algorithms, many developers spend much

time preparing the information so that their concepts are understood by the machine and, thus,

achieve satisfactory results in training.

As noted in Figure 1.2, an article in Forbes magazine5 showed that about 80% of the time

spent on data science projects is related to data preparation, in which 19% of the time regards

collecting the data and 60% concerns cleaning and organizing them. If the data preparation

steps could be made simpler, the long time consumed by them could be used in the other steps

of the ML pipeline, such as selecting and configuring the algorithms.

Figure 1.2: Time consumed by each step in the process of creating ML models

Source: Forbes

The data quality is a significant concern for ML since poor-quality data can lead to un-

reliable knowledge. Therefore, good ML models depend not only on algorithms but also on

adequate datasets. Besides, as previously noted, data preparation is the most time-consuming

stage of the whole pipeline taking up to 80% of the total development time (CHU et al., 2016;

ZHANG; ZHANG; YANG, 2003). Consequently, developing new approaches for automating data

cleaning and preparation has been of increasing interest to the industry and academia.

ML models need to clean input data to perform their role and conduct predictive model

training. Within the context of ML, automated machine learning (AutoML) has risen to auto-

matically define the techniques that will be used and the hyperparameters of each one, opti-

5https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-
data-science-task-survey-says/#2ea5ca046f63

1.1 Contextualization 19

mizing the performance of the generated models. Several tools were created with this purpose,

including Auto-sklearn6, TPOT7, H2O.ai8. By automating the ML pipeline and reducing the

human effort required to apply it, AutoML makes ML possible even for non-expert users. In

data preparation, AutoML consists of taking raw data and producing a clean dataset for ML

algorithms.

However, AutoML still faces some obstacles, mainly because there is still no platform able

to automate the complete ML pipeline efficiently. Current AutoML platforms perform little or

no data preparation, acting only on the feature engineering and further steps, but do not deal

with data cleaning such as missing values imputation and normalization (LE; FU; MOORE, 2020).

An example of such lack of automated data preparation techniques is the TPOT’s pipeline,

illustrated by Figure 1.3 (OLSON et al., 2016a). It assumes that the input data is ready for applica-

tion, covering only the steps of feature engineering and algorithm configuration and optimiza-

tion. There are no considerable analyzes regarding the data structure and how to deal with the

needed cleaning (OLSON et al., 2016b, 2016a). Other AutoML tools follow the same tendency.

Figure 1.3: AutoML pipeline by TPOT

Source: Olson et al. (2016a)

Another AutoML platform, Auto-sklearn was developed using Bayesian optimization and

applying meta-learning to achieve a faster result in its search space. Auto-sklearn also requires

the input data ready for application. However, unlike TPOT, it performs a default preprocessing

6https://automl.github.io/auto-sklearn/master/
7https://epistasislab.github.io/tpot/
8http://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html

1.2 Motivation 20

by performing imputation, one-hot-encoding, and standardization. However, this single pipeline

may not be the most suitable for all cases (FEURER et al., 2015).

In this scenario, knowledge about past experiences seems to be a good starting point for the

process. By analyzing the characteristics of a dataset, it may be possible to reuse procedures that

have already been successful in other similar datasets. For this purpose, meta-learning emerged

as an approach for learning based on the output of past ML algorithms (BRAZDIL et al., 2008). In

other words, meta-learning looks at the situations of models that have been previously trained

and learns how to make predictions for the new scenario it is analyzing (FACELI et al., 2011).

In general, meta-learning explores the accumulation of performance experiences from mul-

tiple applications of ML algorithms, making it flexible according to the problem studied (MAI-

MON; ROKACH, 2005). Due to the approach uses the characteristics of the data itself or the mod-

els implemented, there are no expensive computational costs in processing (GUERRA; PRUDÊNCIO;

LUDERMIR, 2007).

1.2 Motivation

Several preprocessing techniques are necessary during the development of an ML model,

given that real-world data is, in essence, noisy and heterogeneous. In other words, real-world

data have several inconsistencies that make it difficult to be applied without any preprocessing

to learn the models due to missing data, discrepancies, and improper information (POLYZOTIS et

al., 2017).

In this scenario, some tools aim to perform data cleaning automatically, such as Learn2Clean,

which sought to automate data preparation via reinforcement learning (BERTI-EQUILLE, 2019).

However, none of these tools handle categorical data and, because they are iterative processes,

they end up being time-consuming and computationally expensive.

As previously noticed, it is necessary to perform data compatibility with the ML algorithm,

given that some models cannot handle certain different types of data. For instance, if the al-

gorithm does not accept categorical attributes as input, it is necessary to transform them into

numeric variables through one-hot-encoding9 (OHE). Thus, executing the recommendation and

due transformations based on the characteristics of the data is an interesting and little explored

area of research.
9A technique that consists of transforming each categorical value into a column with binary values, with the

value 1 as present and 0 as absent.

1.3 Objectives 21

Due to its importance, several ML tools implement varied preprocessing operations, such

as label encoding, standardization, class balancing, and data imputation. Therefore, correctly

preprocessing the data is mostly a matter of choice of which operation to use in each case.

The choice for the data preparation process is currently based on the entire manual proce-

dure for its correct construction. In the same way that AutoML seeks to facilitate the develop-

ment of ML models for data scientists, this research aimed to automatize the step with the most

cost of time within the ML pipeline: the data preparation.

1.3 Objectives

The primary objective of this work was to develop and evaluate a method to automatically

perform the data preparation to serve as input to ML algorithms. For this, the use of meta-

learning was explored, a method capable of making recommendations quickly through past

experiments. In addition, the work attempted to make the system flexible, assisting scientists

with little experience and allowing experts to modify the recommendations as needed. The

specific objectives of this work were:

• Check the impact of preprocessing on ML algorithms;

• Evaluate and adjust the proposed approach to be successful in several domains, including

real-world data.

• Optimize the proposed method to have low computational cost, to make it viable for

practical use.

1.4 Dissertation organization

This chapter presents a brief contextualization, motivation, and the general and specific

objectives for the conduct of this study. The next chapters are organized as follows:

• Chapter 2 presents the theoretical foundation concerning AutoML, addressing an overview

of the main concepts related to automation. Initially, basic AutoML concepts are pre-

sented, followed by a more detailed explanation of each step of the pipeline (data prepa-

ration, feature engineering, model selection and configuration, and evaluation). Finally,

the chapter presents some final considerations about AutoML.

1.4 Dissertation organization 22

• Chapter 3 presents the theoretical foundation about meta-learning, addressing the extrac-

tion of characteristics (meta-attributes) and the three forms of the meta-learning present in

the literature. Finally, there is an explanation regarding the application of meta-learning

in recommendation systems.

• Chapter 4 presents the bibliographic review, showing the related works to this dissertation.

• Chapter 5 details the elaboration and composition of our pipeline recommendation system

named MetaPrep. There is the methodology adopted for this research, external supports,

machine configurations used, and an explanation of the proposal, illustrating how the

system works and how it performs the prediction and cleaning for new data.

• Chapter 6 presents and discusses the results obtained from the experimental study and

compares the MetaPrep, our new approach for data preparation, with other tools in the

literature. In addition, there is a case study using real data from B2W Digital, pointing

out possible improvements for the proposed project.

• Chapter 7 concludes the dissertation, presenting the limitations, the main contributions,

and possible future work.

Chapter 2
AUTOMATED MACHINE LEARNING

2.1 Initial considerations

Conventionally, constructing ML pipelines demand a significant human intervention in all

stages, from data preparation until final evaluation (QUANMING et al., 2018). AutoML, in turn,

intends to break this paradigm proposing that the whole process could be done by the computer

without human interference (FEURER et al., 2015). AutoML has the potential to enable data

analysts and scientists to create ML models with great efficiency and productivity, aiming to

guarantee good results without human assistance (HUTTER; KOTTHOFF; VANSCHOREN, 2019).

In this scenario, human labor is fundamental for good ML models since it defines and

configures all the techniques and hyperparameters in all stages. In contrast, AutoML came with

the supposition that the entire process can be executed automatically. Table 2.1, adapted from

Quanming et al. (2018), illustrates the difference between the need for human interventions in

conventional ML and AutoML.

Table 2.1: Comparison between conventional ML and AutoML

Conventional ML AutoML

Data preparation The data and the types of required
cleaning are analyzed.

Automated by the computer

Feature engineering
Specialists analyze the data and perform
the necessary transformations in the
attributes

Model selection The best ML techniques based on domain
knowledge are defined

Algorithm configuration The hyperparameters of the ML tools are
adjusted to achieve better performance

Evaluation Evaluation of the results obtained for the
proposed problems

2.1 Initial considerations 24

AutoML makes ML techniques more accessible to non-specialists interested in ML models

but do not have enough time or resources to learn how to work in detail behind the methods

employed. In addition, AutoML allows expert scientists or practitioners to start development

from a good point. Focusing on this process of automating the entire ML pipeline, AutoML

has the potential to enable analysts and data scientists to create models with efficiency and

productivity, aiming to guarantee good results without human assistance (HUTTER; KOTTHOFF;

VANSCHOREN, 2019).

As reported by the TPOT pipeline (c.f. Figure 1.3), other AutoML tools do not perform

data preparation. Figure 2.1 demonstrates the fundamental operations that AutoML usually

proposes to perform (feature engineering, model selection, and hyperparameterization). The

limited focus on data preparation is noticeable in the current AutoML platforms, considering

that they assume the dataset is already clean. The data preparation stage demands high data

interpretability skills. Each dataset has characteristics that may impact the whole ML pipeline,

which requires a correct choice for the cleaning algorithms to avoid errors. The number of

techniques related to the preprocessing of the data is due to their high variability. Data can be of

the most diverse types (e.g., numerical, categorical, date-time), in different scales, and even with

low quality due to a high quantity of noise and missing values (GARCÍA; LUENGO; HERRERA,

2015). In this scenario, human knowledge of the various techniques is usually necessary to

choose which ones to apply to the data.

Figure 2.1: Process diagram performed by AutoML

Source: Microsoft Azure documentation1

1https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml

2.2 Data preparation 25

2.2 Data preparation

Automating the data preparation process intends to allow developers and data scientists to

reduce the amount of time consumed by this step. As a side effect, they may spend this effort

in other stages, such as configuring the ML algorithm or applying the obtained knowledge.

For this automatization process to occur, it is necessary that the algorithms correctly identify

the characteristics of the input data to be able to deal with it properly. However, because it is

a heavy procedure due to a large amount of data and its respective variations, it is essential

to identify the points that need directional attention (JOHNSON; ANDERSON; SPROULE, 2007;

GARCÍA; LUENGO; HERRERA, 2015).

Guyon et al. (2015) identify some problems when performing data preparation, mentioning

difficulties regarding data distribution (class balancing), the size of the datasets, identification of

missing values, identification of data types (categorical or numeric), among others. Therefore,

it requires an extensive and deep analysis before directing data to ML models.

The data preparation step is mandatory for any ML model. It converts disordered and

dirty data into a new set with refined data compatible with the algorithms to be used (GARCÍA;

LUENGO; HERRERA, 2015). Training models with unprepared data can result in outputs that

offer little knowledge for the proposed problem. In the worst case, the algorithm will present

errors during the execution process, and, consequently, it will not complete all the stages of the

pipeline. A clear example of it is the Support Vector Machine (SVM) algorithm, which does

not support categorical data in its training procedure.

The data preparation techniques used in the literature are commonly separated into three

groups, namely: data integration, cleaning, and transformation (BATISTA, 2003; BERTI-EQUILLE,

2019). The following sections will provide more details about each of these groups.

2.2.1 Data integration

When data comes from several sources for creating a single dataset, they can generate

many redundancies and inconsistencies in the merging process. The inconsistent information

can cause processing delay and produces ML models with low generalization for the problem

(GARCÍA; LUENGO; HERRERA, 2015).

2.2 Data preparation 26

Redundancies lead to a potentially significant increase in the size of the dataset. It reflects

in the total runtime of the ML pipeline and makes it prone to overfit2. Commonly, to avoid

these problems, some operations are used to integrate data from several sources, such as the

unification of the sets, analysis regarding the correlation of attributes, detection of equal values,

and detection of conflicts between data from different sources (GARCÍA; LUENGO; HERRERA,

2015; HAWKINS, 2004).

Due to errors during the integration process, disturbances in some attribute values (e.g.,

the only difference between two examples being the identifier) can produce identical repeated

examples considered distinct during the integration. Instances may also have inconsistencies if

the values of the attributes are outside the range established for an assessed column. However,

these cases become relatively easy to verify because they are information that is usually in the

metadata of the dataset (GARCÍA; LUENGO; HERRERA, 2015).

Tomlin and Welch (1986) claim that there are two main reasons for detecting duplicate

examples: (1) it can be explored to reduce the size of the dataset and the cost of the algorithm

processing; (2) it can be checked to avoid models considered unfeasible due to a large amount

of irrelevant information. Besides, numerous duplicate instances are a sign of inefficiency in

the formulation of the dataset. So, removing them can lead the user to an improved formulation

if possible.

2.2.2 Data cleaning

Data cleaning aims to correct the original dataset, reduce unnecessary details, and fix some

data characteristics. For example, apply imputation techniques to ensure are no missing values

in the dataset allows training ML models that are sensitive or unable to execute with this is-

sue. Among the primary operations of the data cleaning are the treatment of missing data, the

detection of outliers, and class rebalancing (GARCÍA; LUENGO; HERRERA, 2015).

Missing data is a common issue in datasets used in real environments. It happens when

some instances do not have any given value for one or more attributes. It is a problem for

statistical analysis and one of the main difficulties for training ML models. Banks et al. (2011)

confirm that less than 1% of missing data are trivial and 1 to 5% are manageable. However, 5

to 15% of missing data require more attention about the used techniques. Finally, below 15%

can seriously hinder the interpretation of the data set.

2Overfitting occurs when the ML model fits too much the training dataset, which leads to high accuracy for the
training set but does not generalize the learning to novel instances.

2.2 Data preparation 27

Table 2.2 shows a hypothetical data set with five attributes, indicating your sex, age, salary,

bank balance, and whether there are frequent late payments, respectively. The missing values

are represented by the character “?.” This dataset will be used as an example to demonstrate the

data cleaning in the following topics.

Table 2.2: Hypothetical dataset

index sex age salary balance delays
0 Male 32 1400 1450 Y
1 Male 38 0 250 Y
2 Female 24 ? 4500 N
3 Male ? 2500 2700 ?
4 Female 55 5000 32000 N
5 Female ? 3200 24000 N
6 ? 59 2400 8300 Y
7 Female 38 1400 800 Y

Among the most used techniques for dealing with missing data are:

• Case deletion: This technique excludes the instances containing missing values. The

case deletion needs to be carefully applied, as this technique may cause a significant loss

of information. This technique is better applied when missing values happen at random

and small-scale (LITTLE; RUBIN, 2019). Table 2.3 shows how the case deletion would be

applied to the hypothetical dataset, which excluded instances 2, 3, 5, and 6.

Table 2.3: Hypothetical dataset with case deletion

index sex age salary balance delays
0 Male 32 1400 1450 Y
1 Male 38 0 250 Y
4 Female 55 5000 32000 N
7 Female 38 1400 800 Y

• Mean imputation: This technique consists of filling missing values of a particular at-

tribute (characterized by each column of the dataset) with the mean of the known values

of this same attribute (BANKS et al., 2011). In addition to only dealing with numerical data,

this imputation technique can disturb the variation of the data, artificially increasing the

significance of any statistical test. Table 2.4 presents this technique in practice, adding

the mean age and salary to the dataset.

• Median imputation: This technique works similarly to the previous one, filling missing

values of a particular attribute with the general median or the median of all known values.

2.2 Data preparation 28

Table 2.4: Hypothetical dataset with mean imputation

index sex age salary balance delays
0 Male 32 1400 1450 Y
1 Male 38 0 250 Y
2 Female 24 2271,42 4500 N
3 Male 41 2500 2700 ?
4 Female 55 5000 32000 N
5 Female 41 3200 24000 N
6 ? 59 2400 8300 Y
7 Female 38 1400 800 Y

Although it also performs the imputation only on numerical data, this technique is proper

when the distribution of a distinguished attribute is skewed, in other words, when the

numerical distributions are tending to a specific side (BANKS et al., 2011). Table 2.5 shows

the application of median imputation.

Table 2.5: Hypothetical dataset with median imputation

index sex age salary balance delays
0 Male 32 1400 1450 Y
1 Male 38 0 250 Y
2 Female 24 2400 4500 N
3 Male 38 2500 2700 ?
4 Female 55 5000 32000 N
5 Female 38 3200 24000 N
6 ? 59 2400 8300 Y
7 Female 38 1400 800 Y

• Most frequent imputation: This technique will replace all missing values with the most

frequent value in the column. The main advantage of this imputation is the possibility of

being used in numerical and categorical data (BISONG, 2019). As reported in Table 2.6,

the most frequent imputation performs the cleaning of the “age” and “delays” columns.

Table 2.6: Hypothetical dataset with most frequent imputation

index sex age salary balance delays
0 Male 32 1400 1450 Y
1 Male 38 0 250 Y
2 Female 24 1400 4500 N
3 Male 38 2500 2700 Y
4 Female 55 5000 32000 N
5 Female 38 3200 24000 N
6 Female 59 2400 8300 Y
7 Female 38 1400 800 Y

2.2 Data preparation 29

On the data cleaning, it is also possible to deal with outliers, which are abnormal values

present in the original dataset. In other words, outliers are values that significantly vary from the

rest of the set. Outliers can affect the generalization of the algorithm and disturb the statistical

analysis (CUNHA; CARVAJAL, 2009).

Data used in real-world applications are often voluminous and inconstant; that is, the data

have numerous attributes, are collinear, redundant, and have outliers (FRANÇOIS; WERTZ; VER-

LEYSEN, 2011). To deal with these issues, there are techniques for detecting outliers, such as

interquartile range (IQR) (VINUTHA; POORNIMA; SAGAR, 2018), isolation forest (iForest) (LIU;

TING; ZHOU, 2008), and local outlier factor (LOF) (BREUNIG et al., 2000).

Furthermore, many datasets suffer from imbalanced classes, when there is a dispropor-

tionate number of instances in each class (LAURIKKALA, 2001). Some techniques have been

developed in the literature to solve this problem. The two simplest and most applied are:

• Random oversampling: This technique tries to repair the distribution of classes by ran-

domly replicating samples in minority classes, thus being a non-heuristic technique. The

problem with this method is precisely the replication, which can cause overfitting by gen-

erating several duplicated data (BATISTA; PRATI; MONARD, 2004).

• Random undersampling: It is also a non-heuristic technique, but unlike the previous one,

this tries to balance classes by randomly excluding samples from the majority classes

(BATISTA; PRATI; MONARD, 2004).

2.2.3 Data transformation

In general, since many ML algorithms can deal with only certain types of data (for example,

numeric or symbolic values), some datasets need to be transformed to have a compatible format

to be used as input to ML algorithms (FACELI et al., 2011). In this context, the original attributes

may have some significance in the domain in which they were acquired. At the same time, they

may not generate accurate predictive models when applied in ML without some transformations

(GARCÍA; LUENGO; HERRERA, 2015).

ML models usually depend on a good combination of ML algorithms and data cleaning

methods, making it necessary to consider pre-processing techniques for transformation, ensur-

ing results with more assertiveness (SCHOENFELD et al., 2018).

The transformations applied to the data will not remove or generate new attributes from

the original dataset. Instead, they will transform the distribution of the original values into a

2.2 Data preparation 30

new set of values with the desired properties. The hypothetical dataset in Table 2.6, after the

most frequent imputation, will demonstrate the data cleaning in the following topics. Thus, for

structured data, the most common transformations can be grouped into three categories (FACELI

et al., 2011):

• Standardization: This technique aims to rescale the attribute values so that the average

is equal to 0 and the standard deviation is equal to 1. Another standardization alternative

is to rescale the values between a minimum and a maximum value (0 and 1, for exam-

ple) (BISONG, 2019). These techniques are referred to as standard scaler and minmax,

respectively. Table 2.7 shows the standardization using minmax.

Table 2.7: Hypothetical dataset with minmax

index sex age salary balance delays
0 Male 0,22 0,28 0,03 Y
1 Male 0,40 0 0 Y
2 Female 0 0,28 0,13 N
3 Male 0,40 0,50 0,07 Y
4 Female 0,88 1 1 N
5 Female 0,40 0,64 0,74 N
6 Female 1 0,48 0,25 Y
7 Female 0,40 0,28 0,01 Y

• Normalization: This technique consists of rescaling each of the samples in a unitary

norm, considering that the techniques present in normalization commonly use the math-

ematical l1, l2, or maximum norms (BISONG, 2019). Table 2.8 shows the normalization

using the normalizer technique with the default parameters (l2 norm).

Table 2.8: Hypothetical dataset with normalizer (l2 norm)

index sex age salary balance delays
0 Male 0,01 0,69 0,71 Y
1 Male 0,15 0 0,98 Y
2 Female 0 0,29 0,95 N
3 Male 0,01 0,67 0,73 Y
4 Female 0 0,15 0,98 N
5 Female 0 0,13 0,99 N
6 Female 0 0,27 0,96 Y
7 Female 0,02 0,86 0,49 Y

• Symbolic-numeric conversion: Some ML algorithms cannot handle non-numeric data,

such as neural networks and SVM. So, algorithms to convert categorical data to numer-

ical values are necessary. Two of the most famous techniques to convert symbolic into

2.3 Feature engineering 31

numeric data are OHE, which transforms each value of a categorical attribute into a new

column with 1 or 0 according to its pertinence, and label encoding, which transforms each

categorical value into a specific number (FACELI et al., 2011). Symbolic-numeric conver-

sion techniques like OHE and label encoding also have the inverse transform, which con-

verts the data back to the original representation. Table 2.9 shows the symbolic-numeric

conversion using the label encoding technique, transforming each categorical data into a

respective numeric value.

Table 2.9: Hypothetical dataset with label encoding

index sex age salary balance delays
0 1 32 1400 1450 1
1 1 38 0 250 1
2 2 24 1400 4500 2
3 1 38 2500 2700 1
4 2 55 5000 32000 2
5 2 38 3200 24000 2
6 2 59 2400 8300 1
7 2 38 1400 800 1

2.3 Feature engineering

Feature engineering is the act of developing, selecting, and aggregating characteristics for

the dataset, that is, transforming the attribute space to improve the information contained in the

raw data. Such as the data preparation does, the feature engineering process refines the input

data and ensures a better representation for the algorithm (ZÖLLER; HUBER, 2019). This stage

reduces the redundancy of similar data and selects the most relevant information for the ML,

improving the use of algorithms and models through more polished data (HE; ZHAO; CHU, 2019).

This stage of the ML pipeline focuses on attribute analysis and dimensionality of the data.

Likewise, as explained by Ge et al. (2017), data dimensionality is a fundamental topic of ML.

Datasets with many attributes can cause problems to the classifier due to similar, redundant, or

useless data. Therefore, dimensionality reduction through the analysis of the information of the

attributes is necessary to extract knowledge in the process.

The above problem is referred to in the literature as the curse of dimensionality, an expres-

sion inserted by Richard Bellman to represent adding extra dimensions to Euclidean space,

which causes difficulty to ML algorithms due to its large amount of information (KEOGH;

MUEEN, 2017). According to Witten et al. (2016), the dimensionality reduction produces a

2.4 Algorithm selection and configuration 32

compact and easily interpretable representation of the dataset. It makes the data more informa-

tive and leads to more assertive models.

As explained, the initial dataset may not accurately represent the problem due to the lack

of representativeness of the characteristics, besides allowing it to contain a high number of

attributes, leading to the curse of dimensionality. In this way, methods of processing these

attributes are used in feature engineering. Among these methods, we can find:

• Feature construction: Process for generating new attributes based on the characteristics

already existing in the dataset (RAWAT; KHEMCHANDANI, 2017). For instance, it is pos-

sible to infuse domain knowledge to create new features and combine sparse classes to

generate more assertive models.

• Feature selection: This process selects the most relevant attributes in the datasets, al-

lowing better use of ML models. This method can diminish redundancies by removing

low-information features such as identifiers (IDs) or other text descriptions (HE; ZHAO;

CHU, 2019).

• Feature transformation: This process aims to build new sets of attributes by manipu-

lating the original features. The generation using mathematical and statistical operations

can contribute to a better representation of the context of the problem (KATZ; SHIN; SONG,

2016; TRAN; XUE; ZHANG, 2016). This method includes dimensionality reduction, per-

forming the transformation of information through analysis, and generating statistical

attributes (GE et al., 2017).

2.4 Algorithm selection and configuration

There is a diversity of ML algorithms in the literature, which may have different or similar

characteristics. According to the “no free lunch” theorem3 (WOLPERT; MACREADY, 1997), these

algorithms tend to be accurate in specific scenarios while they are insufficient in others.

Choosing the learning algorithm and adjusting hyperparameter values is a routine activity

of ML researchers and practitioners, seeking to guarantee that the performance of the generated

models can generalize the data is also part of this task. In addition, each algorithm has its own

set of hyperparameters, which may or may not be similar, for which different values generally

3”There is no free lunch” represents the idea that it is always necessary to give something to get something in
return.

2.5 Evaluation 33

impact the final results (HOOS, 2011). Traditionally, a specialist is responsible for choosing be-

tween the available algorithms and their respective hyperparameters. However, some techniques

were proposed to aid the specialist to set the hyperparameters, such as:

• Grid Search: According to Zöller and Huber (2019), Grid Search is one of the most basic

techniques used in the literature, which defines a finite search scope for hyperparameters

in the Euclidean space, resulting in a simple sequential search. However, because it is

a sequential method, the scalability is highly influenced by the dimension of the search

space, as the number of combinations grows exponentially with the number of hyperpa-

rameters and the scope size defined by the user.

• Random Search: This technique performs the configuration search randomly. In other

words, the algorithm chooses hyperparameters randomly until a stop criterion, like max-

imum runtime or convergence of the results, is reached. The convergence speed is rel-

atively faster than Grid Search and can avoid local minimums more easily (BERGSTRA;

BENGIO, 2012; LI; TALWALKAR, 2020)

• Sequential Model-Based Optimization (SMBO): This technique iterates through the ad-

justed models and handles them to make choices about what configurations to investigate,

observing the perspective of interpolating the performance between the observed param-

eter configurations and extrapolating to regions never seen in parameter space (HUTTER;

HOOS; LEYTON-BROWN, 2011). As reported by Brochu, Cora and Freitas (2010), a com-

monly used procedure to apply SMBO is using Bayesian optimization.

2.5 Evaluation

After cleaning and transforming the data, choosing the learning algorithm and its configu-

ration, the model is trained and needs to be evaluated. The evaluation is the final step of the ML

pipeline. Different evaluation measures (e.g., accuracy, precision, recall) are used to obtain the

reliability that the trained algorithms can generalize the studied problem. The evaluation can

also be carried out in conjunction with the experts on the data and the application domain, thus

achieving a more in-depth analysis of the results (CAMILO; SILVA, 2009).

According to Zhu et al. (2010), there are four possible categories that instances of classi-

fication algorithms can fall into, namely: true positive (TP), true negative (TN), false positive

(FP), and false negative (FN). Using these classifications allows checking the quality of the

2.5 Evaluation 34

ML models through tests of accuracy, precision, recall, F1-Score, among other techniques. The

following topics describe each category, while Table 2.10 demonstrates how to analyze in sets.

• True positive: The instance belongs to a determined class and was correctly classified by

the model.

• True negative: The instance does not belong to a determined class and was correctly

classified by the model.

• False positive: The instance does not belong to a determined class and was erroneously

classified by the model as belonging to it.

• False negative: The instance belongs to a determined class and was erroneously classified

by the model as not belonging to it

Table 2.10: Possible categories in ML classifications

Categories Positive (Real) Negative (Real) Total

Positive (Predicted) TP FP
TP+FP

(Total number of instances
considered positive)

Negative (Predicted) FN TN
FN+TN

(Total number of instances
considered negative)

Total
TP+FN

(Total number of instances
that are positive)

FP+TN
(Total number of instances

that are negative)

TP+TN+FP+FN
(Total dataset instances)

Accuracy is one of the most used techniques to test the efficiency of models. It is calculated

by the total number of correct answers divided by the total number of samples, illustrated in

Equation 2.1. A counterpoint to the accuracy evaluation is not to observe the existence or

absence of overfitting (ZHU et al., 2010).

Accuracy =
T P+T N

T P+T N +FP+FN
(2.1)

On the other hand, precision and recall serve different purposes than accuracy and are used

together for the F1-Score (ZHU et al., 2010). According to Faceli et al. (2011), precision checks

the proportion of items in which ML returned with the correct classification, so it can be applied

when the FP is more harmful than the FN for the classification of the algorithms. Equation 2.2

shows its calculation.

Precision =
T P

T P+FP
(2.2)

2.6 Final remarks 35

Recall indicates the number of situations in which the model correctly identified TP, going

in the opposite direction to precision, can be better used when FN is more harmful than FP.

Equation 2.3 shows its operation (DERCZYNSKI, 2016).

Recall =
T P

T P+FN
(2.3)

As justified above, for statistical analysis, the F1-Score is a harmonic average between

precision and recall, widely used for unbalanced datasets. F1-Score finds its best value when it

reaches 1, both precision and recall are perfect, and its worst value at 0. Equation 2.4 shows its

traditional formula for calculation (DERCZYNSKI, 2016; FACELI et al., 2011).

F1-Score = 2∗ Precision∗Recall
Precision+Recall

(2.4)

2.6 Final remarks

Each stage of the ML pipeline has its respective specific functions and difficulties, requiring

time for each part of the process. However, data preparation is a more time-consuming stage

for specialists since real situations usually bring dirty data to the work environment, requiring

extensive analysis and verification of the data.

Currently, data preparation is the stage of the AutoML pipeline with the largest lack in

the literature, since the tools assume that the data used is already clean and structured. Nev-

ertheless, ML does not depend solely on the data but on all the techniques employed. Feature

engineering extracts the most expressive characteristics in the dataset, selection and configu-

ration algorithm determines the best tools and hyperparameters to achieve better results, and

evaluation is fundamental to identify great models.

Subsequently, AutoML is a process that aims to automate each stage of the ML, performing

end-to-end automatization that does not need human intervention. Therefore, AutoML is a tool

that makes ML more accessible to people who do not have specific knowledge. However, it

is still a very recent process, and there are several gaps to be explored, such as the need of

significant improvement on automatic data preparation.

Importantly, there is much more content to talk about each AutoML step, but the scope was

limited to highlight data preparation techniques.

Chapter 3
META-LEARNING

3.1 Initial considerations

Meta-learning has differences with conventional ML, mainly on its level of adaptation. Ac-

cording to Jankowski, Duch and Grkabczewski (2011), meta-learning is a strategy to understand

and use these adaptation properties, using an approach directed to “learning to learn.” While,

traditionally, ML algorithms work only with the dataset related to the problem that will be an-

alyzed, meta-learning is based on the accumulation of experience from multiple experimental

applications (called meta-examples), potentially in different contexts and domains (FACELI et al.,

2011).

Meta-examples are used to create a database that will be the basis of all meta-learning,

which is called meta-knowledge. The meta-examples are explored and used to derive two types

of information, stored as the meta-knowledge: (1) the meta-attributes (or meta-features) of each

meta-example; (2) the performance of ML algorithms on each meta-example. So, the new

dataset relates its meta-attributes with the information present in the meta-knowledge, deter-

mining which algorithm and hyperparameters to use (GUERRA; PRUDÊNCIO; LUDERMIR, 2007).

Meta-knowledge shares significant similarities with conventional datasets. While datasets

are separated into attributes and targets, meta-knowledge is separated into meta-attributes and

meta-targets. Meta-attributes are information that is undeclared and not formally expressed in

each dataset. Therefore, it is implicit in each meta-example (we can mention the number of

instances, number of attributes, number of missing values, among other types of data). On

the other hand, the meta-targets are the performances that the meta-examples obtained in past

training, usually with the meta-target being the best experimental result (BRAZDIL et al., 2008).

3.2 Data characterization strategies 37

In this way, meta-learning is an approach that investigates meta-data1 to acquire meta-

knowledge by mapping the characteristics of models trained in previous experiments (BRAZDIL

et al., 2008). Consequently, meta-learning analyzes past results to draw conclusions to support

new examples (FACELI et al., 2011).

According to Brazdil, Soares and Costa (2003), the extraction of characteristics (meta-

attributes) from the datasets must contain relevant information that facilitates the generalization.

Besides, it must be simple and computationally inexpensive. The techniques used for extracting

characteristics are covered in the following topics.

3.2 Data characterization strategies

Meta-learning is an approach that uses information that is not explicit in the datasets, Faceli

et al. (2011) determine that this information, the meta-attributes, is divided into three distinct

classes:

• General meta-attributes: This technique extracts simpler and more descriptive informa-

tion from the datasets, such as the number of classes or instances.

• Statistical meta-attributes: It is a way of extracting statistical information about the data

set, which can be through standard deviation, the correlation between attributes, among

others.

• Information-theoretic meta-attributes: This technique aims to quantify the properties of

the dataset by assigning concrete values to the data, for example, using entropy or mutual

information of attributes.

As can be seen in Figure 3.1, there are three different types of approaches to extract meta-

attributes: (1) obtaining the characteristics from information that is implicit within the dataset

itself; (2) acquiring information according to the structure of the classifiers used; (3) directly

considering performance measures to obtain information (BRAZDIL et al., 2008). The following

sections will provide more details about each approach.

3.2.1 Statistical and information-theoretic characterization

In order to extract the meta-attributes directly from the datasets, this method tries to char-

acterize the data by establishing simple, statistical, and information-theoretic measures. Meta-
1Meta-data is the data that describes the structure of the main dataset, usually implicitly.

3.2 Data characterization strategies 38

Figure 3.1: Approaches to data characterization

Source: Brazdil et al. (2008)

attributes must be defined to describe the main properties of the data set, these being different

information from the attributes of the samples (CASTIELLO; CASTELLANO; FANELLI, 2005). A

good set of meta-attributes in this category must: (1) help in determining performance; (2)

perform the extraction without being complex or expensive (CASTIELLO; FANELLI, 2011).

As can be seen from Table 3.1, adapted from Castiello, Castellano and Fanelli (2005),

the tasks aim to map the meta-attributes in order to characterize the data related to a learning

problem by establishing simple, statistical and theoretical information.

3.2.2 Model-based characterization

For this method, the characterization is based on the properties of the models applied in the

meta-examples (FACELI et al., 2011). Two advantages for this characterization method are: (1) as

the characterization is not limited to the distribution of the data, the dataset can incorporate the

complexity and assist in the performance of the hypothesis; (2) the resulting model can serve

3.2 Data characterization strategies 39

Table 3.1: Examples of meta-attributes

Simple meta-attributes
Number of dataset instances
Number of dataset attributes
Number of nominal attributes
Number of numeric attributes
Number of output values (classes)

Statistical meta-attributes
Standard deviation of attributes
Coefficient of variation
Canonical correlation analysis
Correlation coefficient
Average kurtosis of attributes
Information-theoretic meta-attributes
Entropy of normalized classes
Entropy of normalized attributes
Joint entropy of class and attributes
Mutual information
Signal-to-noise ratio

as a basis for explaining the reasons behind the performance of the ML algorithm (VILALTA;

GIRAUD-CARRIER; BRAZDIL, 2009).

For example, for this model-based characterization method, when using decision trees in

the experimental sets, the model properties are used to describe the information: balance of the

tree, its shape, depth, number of leaf nodes for each attribute, among other possible information

(VILALTA; GIRAUD-CARRIER; BRAZDIL, 2009).

3.2.3 Landmarking

This method characterizes the data through the performance of simple ML algorithms, gen-

erating close meta-attributes when the performance is similar (FRANÇOIS; WERTZ; VERLEYSEN,

2011; VILALTA; GIRAUD-CARRIER; BRAZDIL, 2009). According to Prudêncio, Souto and Lud-

ermir (2011), some meta-attributes can be very time-consuming. In this way, landmarking is a

more economical approach for characterizing meta-examples and providing useful information

for the meta-learning process without great computational costs.

According to Faceli et al. (2011), meta-examples are characterized according to differ-

ent ML algorithms, called landmarkers, generating relatively similar meta-attributes when the

classifier’s performance is related. Commonly, for this method, algorithms compatible with

different types of data are used.

3.3 Meta-learning application 40

In this model of characterization of meta-examples, different evaluation measures for ML

models can be operated as meta-attributes, such as accuracy, precision, F1-score, among others

(FACELI et al., 2011). The description of the evaluation metrics is in Section 2.5.

3.3 Meta-learning application

To summarize, an algorithm recommendation system that uses meta-learning must focus

on obtaining good meta-attributes and defining the ML models used. As shown in Figure 3.2,

with the repository of datasets (or meta-examples repository), both data characterization and

experimental analysis (evaluation) are performed using the desired algorithms. The results are

selected to create meta-knowledge, which will give rise to a recommendation system using

meta-learning (BRAZDIL et al., 2008). For data preparation, the meta-learning will select the

preprocessing methods that best suit the input dataset, seeking the best solutions by looking at

past experiences.

Figure 3.2: How meta-learning acquires meta-knowledge to select algorithms

Source: Mantovani (2018)

With all the experiments completed and the meta-knowledge elaborated, this base is used

to construct meta-models. Meta-models can learn the relationship between the meta-attributes

of the datasets and the desired output. Based on this premise, the meta-model is a great way

to achieve rankings of the most promising configurations in an algorithm or even make direct

performance predictions (VANSCHOREN, 2018). Usually, meta-models use adaptations of k-

nearest neighbors (kNN) for their elaboration, making comparisons of the new entries with the

meta-examples belonging to the meta-knowledge (BRAZDIL et al., 2008).

3.4 Final remarks 41

A critical factor for the correct application of meta-learning is good meta-knowledge with

varied information, increasing the probability of obtaining good results. In this way, meta-

models expect many meta-examples and tests carried out for their elaboration. (VILALTA;

GIRAUD-CARRIER; BRAZDIL, 2009; BRAZDIL; SOARES; COSTA, 2003).

3.4 Final remarks

Meta-learning is a very effective technique to assist in decision-making since each possible

choice of the pipeline has its weight, relevance, and consequence. In this way, the generation

of a set of examples (meta-examples) to use as a basis (meta-knowledge) for judging the best

trajectories is an appropriate path, using a wide range of past experiences to acquire learning.

The benefit of meta-learning is the agility to define the next steps adopted for algorithms due

to meta-knowledge, making decisions more articulated by not checking every possible situation,

going directly into situations closest to the problem analyzed. In the context of data prepara-

tion, the application of meta-learning assists in the selection of pre-processing techniques for

ML, choosing the most appropriate pipeline for the analyzed dataset. Thus, looking for great

solutions without costly architectural searches.

Chapter 4
RELATED WORK

In AutoML context, since each stage of the ML pipeline has its importance and difficulty,

there are still few studies in the literature that propose techniques and methods for automating

data preparation. Even though, as a general trend, projects aimed at AutoML focus on the

selection and configuration of algorithms, and only some studies cover data cleaning. In this

chapter, we bring some related works that aim to perform partial or total data preparation.

4.1 Researches about data preparation

In their research, Rahm and Do (2000) addressed the problems and possible approaches to

data cleansing, one of the operations performs by data preparation. Initially, the main difficul-

ties encountered were verified, citing missing values, discrepancies, duplicates, among others.

Thus, they discussed the importance of the ETL process (extraction, transformation, loading)

and the need for data transformations in an integrated and standardized manner. The research

brought some commercial 2000s data cleaning tools, but these usually dealt with only specific

domains, such as eliminating duplicates or illegal values. The work warns of interoperability

problems in these tools, that is, the difficulty in combining the functionality of different meth-

ods.

The project was precise about the difficulties encountered in cleaning the data and how the

ETL process impacts the final result. As described, the ETL process has three essential steps,

which are: (1) Extraction of the values, to verify instance correspondence and elimination of

duplication; (2) Validation and correction, used to detect problems and replace missing values

or correct incorrect values; (3) Standardization, transforming the data in a standardized interval

or effecting the transformation of texts through stemming or stemming.

4.1 Researches about data preparation 43

Zhang, Zhang and Yang (2003) discussed the entire data preparation process, encompassing

all the operations that are applied, in addition to emphasizing the intention of companies to

perform a good data preparation for for-profit purposes. They show three main points for good

data preparation in real situations, namely: (1) real data is essentially impure; (2) ML and data

mining systems require quality data and; (3) quality data generates good algorithms.

This work is a good indicator on how and where to conduct your research, since although

it does not bring innovations regarding theories or algorithms for data preparation, there was

careful care about the desirable paths and contributions to this area of knowledge that, in the

period in which the article was written, it was an area that was still emerging as something

relevant to the market and academia.

In Krishnan et al. (2016) work for the development of ActiveClean, the study was performed

to solve two tasks related to data preparation: outliers removal and attributes transformation. In

this way, a framework was created based on pointwise gradients applied to filter potentially

noisy data. The developer must initialize ActiveClean with the desired ML model, a featuriza-

tion function, and the database that will be cleaned. This featurization function works mapping

the data into a vector so that the algorithm can analyze it (as OHE for categorical data and bag-

of-words for textual data). In each iteration, the framework suggests a sample of data to clean

based on the valid data values for the desired ML model and the likelihood of it being noisy.

An experimental study by Krishnan et al. (2016) points to promising results, but also some

limitations: (1) For some data or in sets that are already partially cleaned, the framework can

lead to misleading results; (2) It is an iterative process, what can be computationally expensive;

(3) There is the need for specialists since the process is not 100% automatic.

Similar to our project, Bilalli et al. (2016) studied the efficiency of using meta-learning

to automate data preparation. This study experimented with 28 meta-attributes, but only 19

proved to be effective. For the experiments, some pre-processing techniques were selected

including: treatment of missing values, transformation from nominal to binary, normalization,

standardization and discretization.

Despite the good experimental results of Bilalli et al. (2016), attesting to the possibility

of using meta-learning for automatic data preparation, their study was only an experimental

prototype, so no algorithm or framework was developed. Besides, the authors also propose to

rank data preparation and feature engineering techniques, disregarding the dependencies among

them or the groups they belong. Consequently, they may recommend, for instance, more than

one technique for discretization, which demands a closer look of an expert to decide which one

to apply.

4.1 Researches about data preparation 44

With the most complete framework for data preparation, Berti-Equille (2019) developed

Learn2Clean, a tool based on Q-Learning, a reinforcement learning algorithm. This is the most

complete tool for automatic data preprocessing, with operations for data cleaning, such as impu-

tations, outlier detection, inconsistency detection and deduplication. However, like the previous

work, some of the techniques used are not data preparation designed ones and came from the

feature engineering stage. When a new dataset is inserted with the type of task (classification,

regression or clustering) and the type of evaluation, after a series of cleaning steps such as impu-

tations, normalizations and transformations, the result is applied in Q-Learning and the process

is repeated iteratively until the best final solution is found. Figure 4.11 illustrates all of these

steps.

Figure 4.1: Learn2Clean architecture

Source: Berti-Equille (2019)

The preliminary results of Learn2Clean validated the efficiency of reinforcement learning

to automate data preparation, but even with good results, certain problems still remain: (1)

There were only a few tests and none of them performed with real data; (2) Some techniques

belong to feature engineering stage; (3) The platform doesn’t handle categorical data; (4) It’s

an iterative process, so it can take a long time depending on the dataset.

As an extension of the previous work, Berti-Équille and Comignani (2021) developed

CLeanEX to make the techniques used by automated data cleaning explainable. The proposed

framework represents each possible technique as a node in a decision tree. In this way, the tree

1All the acronyms in the illustration can are in the glossary. For more details of the techniques used, access the
work of Berti-Equille (2019).

4.2 Final remarks 45

is composed of branches that produce the cleaning pipelines, which have resources that can be

used and exposed to explain the agent’s decision.

Among the main advantages of CLeanEX, we can mention that the explanations are un-

derstandable for humans with diverse knowledge, and it can be extensible to handle causal

reasoning. The framework can explain part or all of the cleaning pipeline, and it can provide a

set of explanations regardless of the metric used by the ML model.

4.2 Final remarks

Although data preparation is an essential step for any ML algorithm, few studies in the lit-

erature explore data cleaning. Even though, as reported in the related works, some works were

willing to carry out the automatization of this stage, demonstrating the possibility of investiga-

tion in this area. Research efforts on data preparation are still at an early stage in the context of

AutoML, as there are still no consistent methods for automatizing it. The platforms existing in

the literature at the moment, despite achieving good preliminary results, still take a long time to

be executed.

Chapter 5
DATA PREPARATION PIPELINE

RECOMMENDATION SYSTEM

Based on the review of the most related works available in the literature and the main

difficulties that still permeate the data preparation, this project proposes a pipeline recommen-

dation method for automatic data preparation using meta-learning. The developed code is open

source1, and the datasets are freely available.

The research was intended to reduce the time currently spent by ML developers when

preparing data. Real-world data usually require specific techniques for their correct treatment,

which requires significant analysis before entering algorithm configuration.

In this context, our proposal recommends five pipelines for the user, ranked by relevance.

In addition, the developer can use the recommended pipelines and correct them manually to

generate more robustness to the model. Thus, the reduction of time spent in data preparation

can, for example, directly influence the total time spent to define the pipeline. So, the user may

spend more time, for instance, on selecting and configuring the learning algorithm.

The methods used for the research were designed based on resources considered to be state-

of-the-art. The results obtained in this work are better than those obtained without adequate pre-

processing techniques and optimizing the time compared to platforms with similar proposals

such as Learn2Clean.

All the necessary resources for the execution of this research project are available at the

Federal University of São Carlos (UFSCar) - São Carlos campus. In addition, all the assistance

for the correct execution was provided both by the university and the B2W Digital company,

partner of this project.

1https://github.com/fernandozagatti/metaprep

5.1 Methodology 47

UFSCar has a wide network of workstations and rooms granted for the elaboration of the

project, in addition to providing the necessary programs for its proper development, which are

installed and are, in the majority, in the public domain. The institution also guaranteed access

to websites and articles that, for the most part, are paid for, which the entire bibliographic

reference is available in the library and on the Internet through the institution’s contracts with

the repositories of articles and academic works.

B2W Digital, as far as it is concerned, conferred computers for the execution of the research

project, in addition to authorizing access to its Virtual Private Network2 (VPN), guaranteeing

the permission to connect with real data sets of the company, allowing tests with situations that

are regularly faced by companies.

5.1 Methodology

The experiments were performed on a remote server, made available by B2W Digital, with

two processors Intel Xeon E3-12xx v2 (Ivy Bridge), two 16GB RAM memory (32GB RAM in

total), and 50GB internal storage. The methodology to achieve the objective of this project is

described below, in the following phases:

• Selection of data preparation techniques;

• Datasets (meta-examples) collection;

• Meta-knowledge construction (meta-targets and meta-attributes);

• Meta-models elaboration.

5.1.1 Data preparation techniques

The first step in the process was to define the techniques that would be used for data prepa-

ration. Thus, based on the techniques most commonly used in ML models, the following tech-

niques were selected:

• Imputation: Deletion case, mean, median and most frequent;

• Categorical-numerical transformation: One-Hot-Encoding and label encoder;

• Standardization and normalization: Standard Scaler, minmax and normalizer;
2VPN is a private network built on the infrastructure of a public network.

5.1 Methodology 48

• Class balancing: Oversampling and undersampling.

With the appropriate combinations considering all the techniques in these 4 groups, 180 ob-

jective pipelines were defined for data preparation. All pipelines can be viewed in Appendix A.

5.1.2 Datasets collection

The second step was the selection of datasets for the experiments. All datasets were col-

lected from OpenML (FEURER et al., 2019), a collaborative platform that aims to share and

develop ML research, and the list of datasets can be viewed from the identifiers present in Ta-

ble 5.1. The name and description of each dataset, taken from OpenML, can be viewed in

Appendix B.

Table 5.1: Datasets taken from OpenML

Identifiers of selected OpenML datasets
15, 29, 179, 188, 443, 452, 455, 473, 802, 839, 897, 930,
966, 990, 1024, 1037, 1053, 1119, 1205, 41526, 41430,
1351, 1354, 1358, 1364, 1367, 1369, 1373, 1375, 1402,
1403, 1453, 1459, 1460, 1468, 1471, 1475, 1479, 1485,
1486, 1489, 1497, 1502, 1503, 1507, 1510, 1525, 1526,
1547, 1549, 1552, 1553, 1557, 1558, 1560, 1568, 1590,
4534, 4538, 4541, 6332, 23380, 23512, 23517, 40536,

575, 40966, 40979, 40981, 40982, 40996, 40999, 41001,
41002, 41003, 41004, 41005, 41007, 41027, 42638

OpenML has a dataset filtering tool, which allows the search for sets with some features.

To select the necessary datasets for the experiments, the following filter was initially applied:

1 to 10 (1..10) classes. Observing the need for larger datasets, the filtering was changed to: at

least 501 (>500) instances and 1 to 10 (1..10) classes.

The choice of the final datasets took into account some selection criteria such as: to have

structured data and to allow the proper application of the selected techniques. Table 5.2 shows

a summary of some meta-attributes present in the meta-examples.

5.1.3 Meta-targets

As will be explained in Section 5.2.1, some datasets have characteristics that allow us to

prune some pipelines since they would not be useful. By separating datasets into groups, it was

unnecessary to go through all 180 pipelines, only those that make sense for that particular group.

5.1 Methodology 49

Table 5.2: Summarization of meta-examples

Minimum Maximum Mean
Instances 95 1000000 156197,06
Attributes 2 856 58,07
Categorical data 0 61 9,84
Numerical data 0 856 48,22
Classes 2 10 3,60
Instances with missing values 0 7330 448,12
Total missing values on dataset 0 68100 3439,56

For instance, if there are no missing values in our data, there is no reason to apply imputation

techniques over it. Using this information, we selected five subsets of the 180 pipelines to save

time to construct the meta-knowledge.

Then, each meta-example passes through its selected subset of pipelines, and the resulting

cleaned data is used to determine the most effective pipeline. For this, we perform an experiment

using Random Forests and ranking the pipelines by the achieved accuracy. The five top-ranked

pipelines are used to establish the target of the respective meta-example.

5.1.4 Meta-attributes

For the extraction of the meta-attributes, we used Pymfe (ALCOBAçA et al., 2020), a package

for the extraction of meta-features in Python. Pymfe allowed the extraction of 73 statistical

and information theory-based meta-attributes, which can be viewed in Appendix C. Note that

each dataset does not have 73 meta-attributes. It occurs because in many of the meta-attributes,

mainly in statistical meta-attributes, it is necessary to calculate one value per attribute. For

example, kurtosis is calculated from each attribute. To resolve this, after extracting these values,

Pymfe separates them into kurtosis md (median) and kurtosis mean (average).

There was no selection of meta-attributes, extracting all attributes that Pymfe supported; as

future work, it is possible to carry out an analysis of the 73 meta-attributes extracted and select

only those most relevant to the meta-learning process.

For each dataset, all the extracted meta-attributes and the five best pipelines derived from

previous experiments were separated, and a comma-separated values file (csv) containing this

structured data was created with all the information. This csv served as meta-knowledge, which

was used to create the meta-model of the recommendation system.

5.2 Recommendation system 50

5.1.5 Meta-models

Meta-models are ML models that have been previously trained (offline training) in order

to be able to make the appropriate pipeline recommendations based on the experiments per-

formed. We created the meta-models using kNN on the meta-knowledge to identify the most

similar datasets according to their characteristics. Specifically, we used the 1NN algorithm to

avoid interferences of the hyperparameter of the meta-model in our conclusions for this first ex-

periment. Moreover, the 1NN is intuitive, and we do not need to define a strategy to aggregate

the pipelines recommended for more than one meta-example.

The choice of the kNN algorithm is due to the nature of the problem since MetaPrep’s ob-

jective is to recommend the adequate data preparation pipeline according to the datasets already

analyzed, that is, to check which dataset is more similar to the new entry.

In the single-model MetaPrep, all the meta-examples are used in the input dataset for the

meta-model. On the other hand, the multiple-model MetaPrep uses disjoint subsets of the meta-

knowledge, creating separate models. This and other decisions are more clearly explained in

Chapter 5.1.1.

5.2 Recommendation system

In this scenario, we propose an approach to automate the data preparation process using

meta-learning techniques, a system that was called MetaPrep. This proposal consists of pre-

training a meta-model capable of predicting the best pipeline for an unprecedented set of data

using a large set of experiences in the meta-knowledge, as illustrated in Figure 5.1.

MetaPrep recommends the most suitable data preparation techniques based on previously

observed datasets (meta-examples), starting from the training of each dataset in the 180 prede-

fined pipelines, proceeding to extracting meta-attributes and creating meta-knowledge. Then,

MetaPrep applies the kNN to create the meta-models that will make the predictions for new

entries. In addition, the recommendations made by the method can be adjusted manually by

data scientists if they want to.

5.2.1 MetaPrep composition

The recommendation system was developed based on experiments carried out with 80

datasets, also called meta-examples (illustrated as the step 1 in Figure 5.1), and the combi-

5.2 Recommendation system 51

Figure 5.1: Our proposal: a meta-learning-based recommender system to predict best pipelines
for data preparation

5 x1 x2 x3 ... xk

3

...

Meta-attributes

mf1 mf2 mf3 mfk...

New dataset

1
...

A

B

Z

Datasets
(meta-examples)

2 Pipeline application
and model development

Meta-targets

6

7Meta-models Recommended
pipelines

PredictApply to predict
Extract

meta-attributes

Best pipelines
Target

pipelines
(180 defined)

ML Algorithm
(Random
Forest)

...P1 P180

4

A

B

C

...

Z

Meta-knowledge
(meta-attributes | meta-targets)
mf1 mf2 mf3 mfk... target

Return best pipelines
(test accuracy)

Apply kNN

Add to meta-knowledge

Source: Elaborated by the author

nation of 11 data preparation techniques, totaling 180 possible pipelines. Hence, to create the

meta-model for recommending pipelines of data preparation, the system performed two auxil-

iary tasks: (i) characterizing the meta-example; and (ii) training the models to determine the

best data preparation pipeline for each case.

Firstly (from number 2 to 4 in Figure 5.1), the 180 pipelines were applied to each of the

80 meta-examples. After performing all the data preparation techniques specified in a pipeline,

a Random Forest model was trained on the refined dataset and tested using a holdout pro-

cedure. The five pipelines with the best model’s accuracy become the meta-targets for each

meta-example.

Then (from number 3 to 4 in Figure 5.1), we extracted the characteristics of each meta-

example. These characteristics, called meta-attributes, are information that are implicitly pre-

sented in each dataset, such as the number of unique class labels, examples, and attributes, and

statistics from each attribute, such as standard deviation, kurtosis, among others. In total, we

used 73 meta-attributes to describe each meta-example.

From the collection of meta-attributes and meta-targets, the meta-knowledge (illustrated as

the step 4 in Figure 5.1) was created as the basis for the meta-models that are the core of our

pipeline recommendation system for data preparation. The creation of the meta-models was

done through kNN to identify the meta-examples closest to a new entry.

5.2 Recommendation system 52

We observe that this procedure may lead to identical results of several pipelines depend-

ing on each dataset’s characteristics. For instance, if a dataset has no categorical attributes,

all the pipelines that include categorical-numerical transformations have the same outcome

among them and pipelines with the same techniques but this specific transformation. For exam-

ple, the pipelines Standard Scaler ->Oversampling and One-hot-encoding ->Standard Scaler

->Oversampling are equivalent for datasets with no categorical values.

To reduce this issue’s influence, we propose a variation of our method, which includes a

pipeline subset selection step. The advantages of avoiding this kind of replications are twofold:

(i) it reduces the number of classes the meta-model needs to predict without losing relevant

pipelines; and (ii) it avoids the recommendation of a pipeline missing essential techniques. For

instance, if a dataset contains missing values, we use a meta-model that assuredly recommends

an imputation technique. Otherwise, the meta-model may recommend a pipeline that ignores

this issue. Alternatively, if the dataset does not contain missing values, we apply a meta-model

trained to predict pipelines that do not include imputation techniques.

To define the subset of pipelines, we grouped the datasets in five categories, considering the

characteristics of the datasets. Consequently, we create five meta-models. In this new version,

categories are mutually exclusive, then each new entry will use only one of the meta-models.

The characteristics used to separate the datasets are the following:

1. Dataset without categorical data and missing values: no imputation or transformation

is required.

2. Dataset without categorical data but with missing values: imputation of missing values

is necessary, transformation techniques are discarded.

3. Dataset without missing values but with categorical data: only the transformation of

categorical values is necessary, imputation is discarded.

4. Dataset with categorical data and missing values: this case takes both imputation and

transformation, and since there are nulls in the categorical data, the imputation needs to

be compatible.

5. Dataset with categorical data but with missing values only in numeric columns: this

case takes both imputation and transformation, and since there are nulls only in the nu-

merical data, it can be any type of imputation.

Considering these groups, we propose and compare the MetaPrep in two versions: single

and multiple meta-models. Figure 5.2 illustrates these variations. In the single meta-model

5.2 Recommendation system 53

version, when the recommendation system receives a new dataset for automatic preparation,

it is characterized, compared with the meta-knowledge (created using all the meta-examples).

The data preparation pipelines are suggested based on the meta-targets of the most similar meta-

example. The multiple meta-models version works as following. The recommendation system

starts by extracting the meta-features to characterize the new dataset. Then, it checks which

of the five meta-models (developed for each previously mentioned group) fit the new dataset

better. Finally, instead of comparing the new entry with the entire meta-knowledge base, it is

compared only with the same group’s meta-examples.

Figure 5.2: Difference between single (top) and multiple meta-models (bottom) MetaPrep

Recommended
pipelines

Dataset

Meta-
attributes
extractor

Multiple meta-model

Select the
group

Distinct
meta-model

Predict
x1 xkx2 ...

Meta-attributes

Apply

Single
meta-model

Recommended
pipelines

Meta-attributes
extractor

Direct
application Predict

Single meta-model

x1 x2 ... xk

Source: Elaborated by the author

5.2.2 Prediction of a new case

Once a new dataset is presented to the system, it needs to recommend a data preparation to

apply to it. The new input dataset passes through the meta-attributes extraction and is used as

input by the meta-models.

The extraction of meta-attributes has a special parameter called ”transformer”; by default

the algorithm uses ”gray”, where all categorical-type data will be binarized with a model ma-

trix strategy. However, it is possible to use ”None”, where the categorical attributes are not

transformed and are ignored during characterization. Although the default method is more as-

sertive because it can characterize the entire dataset without losing information, a lot of RAM

is consumed in the process. For cases of low available memory, the second method is a viable

alternative.

5.2 Recommendation system 54

After extracting meta-attributes, there is an intermediate step to choose which meta-model

will be used if we apply the multiple meta-models approach. The meta-models then predict

the meta-examples that most resemble this new entry and recommend a list of five pipelines

for this new dataset. We consider that, for an inexperienced user, choosing the top-ranked

recommendation is a proper procedure. We used this assumption to evaluate our proposal.

Chapter 6
EXPERIMENTAL EVALUATION

The two approaches for recommending data preparation pipelines were implemented and

tested in the 80 meta-examples, training each meta-example in each of the 180 pipelines and

taking the five ones with the best accuracy. In this way, the recommendation system has a total

of 400 possible recommendations.

Of the 180 pipelines applied in the experiments, only 79 appeared at least once among the

400 recommendations of the system. In addition, an analysis regarding the techniques used was

performed:

• Among the 400 recommendations, 155 had an imputation technique:

– Imputation case deletion: 59

– Imputation mean: 13

– Imputation median: 18

– Imputation most frequent: 65

• Among the 400 recommendations, 245 had a symbolic-numeric conversion technique:

– Label encoder: 92

– One-hot-encoding: 153

• Among the 400 recommendations, 320 had a standardization or normalization technique:

– Minmax: 123

– Standard scaler: 127

– Normalizer: 70

6.1 Tests performed on open datasets 56

• Among the 400 recommendations, 362 had a class balancing technique:

– Undersampling: 39

– Oversampling: 323

6.1 Tests performed on open datasets

The tests were applied to 4 different datasets, which were extracted from Kaggle1, another

online platform for data scientists to publish datasets and create and explore ML models. The

selected sets were:

• Titanic - Machine Learning from Disaster2

– Dataset with categorical data, numerical data and missing values.

• Tic-Tac-Toe Endgame Data Set3

– Dataset with only categorical data.

• Bike Buyers 10004

– Dataset with categorical and numerical data.

• Cardiovascular Disease dataset5

– Dataset with only numerical data.

To compare the impact of different data preparation pipelines we performed three types

of comparisons: (1) the direct application of datasets in an AutoML platform (in this case,

Auto-sklearn was chosen), (2) the application in Learn2Clean and (3) the application in the two

approaches proposed for our recommendation system.

Our two approaches obtained very similar results. However, as can be seen in Table 6.1, the

multiple meta-models approach led to better recommendations. The approach for recommend-

ing a single meta-model often caused confusion regarding what it should recommend. These

1https://www.kaggle.com/
2https://www.kaggle.com/c/titanic
3https://www.kaggle.com/rsrishav/tictactoe-endgame-data-set
4https://www.kaggle.com/heeraldedhia/bike-buyers
5https://www.kaggle.com/sulianova/cardiovascular-disease-dataset

6.1 Tests performed on open datasets 57

cases could be checked in the tests, in which the single meta-model did not recommend imputa-

tions to the Titanic dataset and recommended unnecessary transformations in the cardiovascular

disaster dataset.

Table 6.1: Pipelines used by each tool

Titanic - Machine Learning from Disaster
Autosklearn Default preprocessor
Learn2Clean Local Outlier Factor
Single
meta-model

Label Encoder ->Standard Scaler ->
Oversampling

Multiple
meta-models

Case deletion ->Label Encoder ->
Standard Scaler ->Oversampling

Tic-Tac-Toe Endgame Data Set
Autosklearn Default preprocessor
Learn2Clean N/A
Single
meta-model

Imputation mean ->One-hot-encoding ->
Standard Scaler ->Oversampling

Multiple
meta-models

Label Encoder ->Normalizer ->
Oversampling

Bike Buyers 1000
Autosklearn Default preprocessor
Learn2Clean Z-score-based method ->Exact duplicate
Single
meta-model

One-hot-encoding ->Standard Scaler ->
Oversampling

Multiple
meta-models

One-hot-encoding ->Standard Scaler ->
Oversampling

Cardiovascular Disease dataset
Auto-sklearn Default preprocessor
Learn2Clean Local Outlier Factor
Single
meta-model

One-hot-encoding ->Standard Scaler ->
Oversampling

Multiple
meta-models Standard Scaler ->Oversampling

Both Auto-sklearn, which uses one default preprocessing (Imputation mean, One-Hot-

Encoding and Standard Scaler), and the Learn2Clean, which uses reinforcement learning, had

difficulty handling some datasets. Auto-sklearn requires a lot of processing to carry out its train-

ing and its default preprocessing may not be ideal, while Learn2Clean cannot handle categorical

data, failing to recommend a pipeline for the dataset with only categorical data (Tic-Tac-Toe).

Table 6.2 brings the accuracy and execution time for each experiment, now evaluating an

end-to-end pipeline: cleaning the data, applying ML and evaluating the resulting model.

6.2 Case study: people analytics 58

Table 6.2: Results of the end-to-end evaluation

Total time Accuracy

Autosklearn

Titanic N/A N/A
Tic-Tac-Toe N/A N/A
Bike Buyers N/A N/A
Cardio N/A N/A

Learn2Clean

Titanic 405s 72,04%
Tic-Tac-Toe N/A N/A
Bike Buyers 359s 68,16%
Cardio >1800s 73,24%

Single
meta-model

Titanic N/A N/A
Tic-Tac-Toe 2.3s 98,06%
Bike Buyers 3.9s 71,72%
Cardio 17.9s 72,87%

Multiple
meta-models

Titanic 7.8s 84,14%
Tic-Tac-Toe 2.3s 98,06%
Bike Buyers 3.9s 71,72%
Cardio 17.9s 72,87%

Auto-sklearn was unable to perform the complete pipeline on any of the datasets, as it

demands a lot of processing by the hardware, causing the kernel to halt. In parallel, Learn2Clean

performs the drop of categorical columns, dealing only with numerical values in its training, and

because of that it was unable to train the Tic-Tac-Toe dataset.

In contrast, the two approaches proposed in this work performed its execution in a short

time, managing to recommend pipelines in seconds. As for the accuracy of the recommen-

dations, the single meta-model had some difficulty, while the multiple meta-models variation

managed to identify the techniques that should be used and those that should be excluded.

The tests demonstrated the efficiency of meta-learning for recommending pipelines, with an

emphasis on the approach using multiple meta-models, being able to recommend the necessary

techniques in a very short time.

6.2 Case study: people analytics

In addition to the evaluation on open datasets, we carried out a case study to verify the

performance of MetaPrep on real data. Through an experimental evaluation on a dataset with

“real-world problems,” it is possible to evaluate the potential limitations of MetaPrep.

6.2 Case study: people analytics 59

For this purpose, B2W Digital, an e-commerce company in Latin America, provided a

dataset that is naturally dirty and could be used for this study. Due to the conditions of confi-

dentiality, the data cannot be made publicly available and will be explained at a high level.

The dataset comprises real data from the company’s employees. The purpose of the dataset

is to predict the reason for leaving the company (e.g., resignation, termination of the contract,

unfair dismissal, just cause). Therefore, it contains some information regarding their perma-

nence and behavior while they were active in the organization. Among some attributes of the

dataset, we can mention identification number, employment status, department, occupation, date

of admission, number of completed courses, and educational level as some examples. Table 6.3

shows some meta-attributes present in this dataset.

Table 6.3: Some meta-attributes of the raw dataset

Meta-feature Value
Number of instances 70043
Number of attributes 45
Attributes with numeric values 29
Attributes with categorical values 16
Instances with missing values 70043
Total missing values 605376

We performed all the experiments using the default parameters of MetaPrep. The initial

tests were performed on raw data, that is, the dataset was applied directly to MetaPrep without

performing any type of analysis in order to verify how the system behaved in situations with

real data.

Initially, MetaPrep could not recommend pipelines for this specific dataset, which led us

to a more in-depth analysis. By observing the dataset and the system’s behavior, we could

conclude that MetaPrep is not prepared to deal with datasets with low-information attributes.

More specifically, attributes that have mostly missing values.

We need to note that Pymfe, the tool used to characterize the data for meta-learning, cannot

deal with missing values. Our system adopts the exclusion of these instances, which can make

the analysis more difficult. Because the dataset used has at least three attributes predominantly

with missing values (approximately 68,000 of the 70,000 are null in each attribute), all instances

would be excluded. Consequently, we would have no ways to proceed with the characterization.

Besides, the dataset has redundant attributes. For example, it has the attributes ”id occupation”

and ”occupation”, equivalent to each other.

6.2 Case study: people analytics 60

Thus, a second test was performed, manually excluding low-information attributes before

applying the dataset in MetaPrep. Firstly, only those attributes that had at least 45% of the

missing values were excluded. Table 6.4 shows some meta-attributes of the resulting dataset

after excluding these columns, being able to visualize the differences between the new dataset

and the raw data, mainly regarding the missing values.

Table 6.4: Comparison between the raw dataset and the second dataset

Meta-feature Before After
Number of instances 70043 70043
Number of attributes 45 36
Attributes with numeric values 29 25
Attributes with categorical values 16 11
Instances with missing values 70043 13996
Total missing values 605376 32090

Even after excluding these attributes, MetaPrep was unable to recommend pipelines. How-

ever, in this case, the limitation occurred due to hardware limitations. Since the default param-

eters of MetaPrep lead to high consumption of RAM and there were many categorical features

to be characterized, the memory overflowed.

For the third and last test, a new dataset was built over the data used in the second experi-

ment. Attributes that are also low-informative or have too many values to discriminate the class

label, such as ids, medical records, and ill-annotated dates, were identified and removed from

the dataset. Table 6.5 summarizes the difference between the meta-attributes of the new dataset

compared to the raw dataset.

Table 6.5: Comparison between the raw dataset and the third dataset

Meta-feature Before After
Number of instances 70043 70043
Number of attributes 45 23
Attributes with numeric values 29 20
Attributes with categorical values 16 3
Instances with missing values 70043 3560
Total missing values 605376 5447

The third experiment obtained good results, managing to recommend the pipelines accord-

ing to the information in the dataset. MetaPrep took a total of 356 seconds to complete the

recommendation, a much higher value if compared to the experiments with open datasets. It

happened mainly due to the volume of data (examples and attributes) in the dataset being higher

than the Kaggle sets. Another possible factor is the high number of categorical attributes, mak-

ing it difficult to process and characterize the data.

6.2 Case study: people analytics 61

Despite having a longer processing time, the MetaPrep, using the method with multiple

meta-models, managed to make a recommendation compatible with the dataset, mainly iden-

tifying the need of cleaning missing values and converting categorical-numeric. The top five

recommended pipelines were, respectively:

1. Imputation most frequent ->One-hot-encoding ->Normalizer ->Oversampling

2. Imputation most frequent ->One-hot-encoding ->Standard Scaler ->Oversampling

3. Imputation most frequent ->One-hot-encoding ->MinMax ->Oversampling

4. Imputation most frequent ->One-hot-encoding ->Oversampling

5. Case deletion ->Label Encoder ->MinMax ->Oversampling

From the datasets used, Random Forest was applied to verify if the algorithm can train the

data and observe its accuracy. Table 6.6 shows the results obtained. It is important to note

that the raw dataset is the data without any changes, while dataset 3 is the set with the manual

exclusion of low information (null and IDs data) and that MetaPrep can be applied.

Table 6.6: Results with Random Forest

Datasets Accuracy
Raw dataset N/A
Dataset 3 N/A
Dataset 3 + Pipeline 1 80,93%
Dataset 3 + Pipeline 2 80,92%
Dataset 3 + Pipeline 3 80,82%
Dataset 3 + Pipeline 4 80,92%
Dataset 3 + Pipeline 5 79,04%

It is possible to observe that the Random Forest algorithm cannot apply the training to the

raw data or the data after the manual exclusion, since both datasets still had inconsistencies such

as missing values and categorical data. In addition, despite the results in the pipeline tests being

similar, we can observe a growing increase in accuracy as the rank goes up to the first position.

Chapter 7
CONCLUSIONS

This work addressed a current and real need to automate the data preparation on AutoML

platforms, which cannot handle naturally noisy data. In this context, the preliminary results

showed the applicability of meta-learning for selecting data preparation techniques, managing

to recommend pipelines in very short times, and having the possibility of being customized by

the developer.

Although the initial results are promising, it is still necessary to conduct a more accurate

analysis regarding the attributes of low-variance. As seen in the case study, many missing values

can hinder the data characterization and not allow the recommendation of the pipelines. Another

point to note is the hardware since some datasets can cause the RAM to overflow. Even though

MetaPrep has the parameter “transformer,” as explained in Section 5.2.2, methods to optimize

the algorithm without activating this configuration are an ideal way.

7.1 Main contributions

We propose MetaPrep, a method to automate the data preparation process using meta-

learning. Our proposal consists of pre-training a meta-model capable of predicting the best

pipelines for a previously unseen dataset using a large set of varied datasets. The main contri-

butions of this work are:

• We present a novel meta-learning-based algorithm to automate the data preparation for

ML. Although we found a similar idea in the literature, our method is the first to recom-

mend the entire data preparation pipeline based on meta-learning. Besides, we imple-

mented our approach to be easily used in other applications and adapted it to work with

many ML platforms with little effort.

7.2 Future work 63

• To the best of our knowledge, the state-of-the-art method to automate data preparation

is the reinforcement learning-based Learn2Clean. Our method achieves accuracy rates

similar to Learn2Clean (BERTI-EQUILLE, 2019), but with a significantly reduced runtime.

• As we recommend a set of five data preparation pipelines, our method is effective for

data scientists with different experience levels. While beginners may use the best-ranked

pipeline as an out-of-the-box recommendation, more experienced researchers or practi-

tioners may use their knowledge to decide one of the five recommendations and make

their modifications.

7.2 Future work

As a future work, it is still possible to execute a more in-depth analysis in relation to the

5 best pipelines chosen by each meta-example, and this choice can be made with other evalua-

tion methods such as F1-Score or ROC Curve, not just accuracy, obtaining pipelines with less

overfitting.

As seen in the case study, a possible extension of MetaPrep is the addition of a module for

automatic verification of attributes with low-information (for example, identifiers and columns

with many empty values), which would be able to make recommendations more easily and

assertively. In addition, extending the analysis to other types of data, such as datetimes, will

allow better use of the data for the data preparation.

Further, it is possible to carry out a study in relation to the 79 pipelines that were used at

least once and the reason why the remaining 101 were not chosen. We also study the possibility

of adding more datasets and more preprocessing techniques, making the meta-models more

complete and accurate. On the other hand, a more costly extension is the analysis for more ML

algorithms, opening the possibility for the system to carry out two queries, recommending the

data preparation pipeline and the algorithm for the user.

Appendices

64

Appendix A
PIPELINES-TARGET

Listed here are all 180 pipelines-target from the combination of the data preparation tech-

niques defined in Section 5.1.1.

1. No preparation

2. Deletion case

3. Mean imputation

4. Median imputation

5. Most frequent imputation

6. Label Encoder

7. One-Hot-Encoding

8. MinMax

9. StandardScaler

10. Normalizer

11. Undersampling

12. Oversampling

13. Deletion case ->Label Encoder

14. Deletion case ->One-Hot-Encoding

15. Mean imputation ->Label Encoder

16. Mean imputation ->One-Hot-Encoding

17. Median imputation ->Label Encoder

18. Median imputation ->One-Hot-Encoding

19. Most frequent imputation ->Label Encoder

20. Most frequent imputation ->One-Hot-Encoding

21. Deletion case ->MinMax

A Pipelines-target 66

22. Deletion case ->StandardScaler

23. Deletion case ->Normalizer

24. Mean imputation ->MinMax

25. Mean imputation ->StandardScaler

26. Mean imputation ->Normalizer

27. Median imputation ->MinMax

28. Median imputation ->StandardScaler

29. Median imputation ->Normalizer

30. Most frequent imputation ->MinMax

31. Most frequent imputation ->StandardScaler

32. Most frequent imputation ->Normalizer

33. Deletion case ->Undersampling

34. Deletion case ->Oversampling

35. Mean imputation ->Undersampling

36. Mean imputation ->Oversampling

37. Median imputation ->Undersampling

38. Median imputation ->Oversampling

39. Most frequent imputation ->Undersampling

40. Most frequent imputation ->Oversampling

41. Label Encoder ->MinMax

42. Label Encoder ->StandardScaler

43. Label Encoder ->Normalizer

44. One-Hot-Encoding ->MinMax

45. One-Hot-Encoding ->StandardScaler

46. One-Hot-Encoding ->Normalizer

47. Label Encoder ->Undersampling

48. Label Encoder ->Oversampling

49. One-Hot-Encoding ->Undersampling

50. One-Hot-Encoding ->Oversampling

51. MinMax ->Undersampling

52. MinMax ->Oversampling

53. StandardScaler ->Undersampling

54. StandardScaler ->Oversampling

55. Normalizer ->Undersampling

56. Normalizer ->Oversampling

A Pipelines-target 67

57. Deletion case ->Label Encoder ->MinMax

58. Deletion case ->Label Encoder ->StandardScaler

59. Deletion case ->Label Encoder ->Normalizer

60. Deletion case ->One-Hot-Encoding ->MinMax

61. Deletion case ->One-Hot-Encoding ->StandardScaler

62. Deletion case ->One-Hot-Encoding ->Normalizer

63. Mean imputation ->Label Encoder ->MinMax

64. Mean imputation ->Label Encoder ->StandardScaler

65. Mean imputation ->Label Encoder ->Normalizer

66. Mean imputation ->One-Hot-Encoding ->MinMax

67. Mean imputation ->One-Hot-Encoding ->StandardScaler

68. Mean imputation ->One-Hot-Encoding ->Normalizer

69. Median imputation ->Label Encoder ->MinMax

70. Median imputation ->Label Encoder ->StandardScaler

71. Median imputation ->Label Encoder ->Normalizer

72. Median imputation ->One-Hot-Encoding ->MinMax

73. Median imputation ->One-Hot-Encoding ->StandardScaler

74. Median imputation ->One-Hot-Encoding ->Normalizer

75. Most frequent imputation ->Label Encoder ->MinMax

76. Most frequent imputation ->Label Encoder ->StandardScaler

77. Most frequent imputation ->Label Encoder ->Normalizer

78. Most frequent imputation ->One-Hot-Encoding ->MinMax

79. Most frequent imputation ->One-Hot-Encoding ->StandardScaler

80. Most frequent imputation ->One-Hot-Encoding ->Normalizer

81. Deletion case ->Label Encoder ->Undersampling

82. Deletion case ->Label Encoder ->Oversampling

83. Deletion case ->One-Hot-Encoding ->Undersampling

84. Deletion case ->One-Hot-Encoding ->Oversampling

85. Mean imputation ->Label Encoder ->Undersampling

86. Mean imputation ->Label Encoder ->Oversampling

87. Mean imputation ->One-Hot-Encoding ->Undersampling

88. Mean imputation ->One-Hot-Encoding ->Oversampling

89. Median imputation ->Label Encoder ->Undersampling

90. Median imputation ->Label Encoder ->Oversampling

91. Median imputation ->One-Hot-Encoding ->Undersampling

A Pipelines-target 68

92. Median imputation ->One-Hot-Encoding ->Oversampling

93. Most frequent imputation ->Label Encoder ->Undersampling

94. Most frequent imputation ->Label Encoder ->Oversampling

95. Most frequent imputation ->One-Hot-Encoding ->Undersampling

96. Most frequent imputation ->One-Hot-Encoding ->Oversampling

97. Deletion case ->MinMax ->Undersampling

98. Deletion case ->MinMax ->Oversampling

99. Deletion case ->StandardScaler ->Undersampling

100. Deletion case ->StandardScaler ->Oversampling

101. Deletion case ->Normalizer ->Undersampling

102. Deletion case ->Normalizer ->Oversampling

103. Mean imputation ->MinMax ->Undersampling

104. Mean imputation ->MinMax ->Oversampling

105. Mean imputation ->StandardScaler ->Undersampling

106. Mean imputation ->StandardScaler ->Oversampling

107. Mean imputation ->Normalizer ->Undersampling

108. Mean imputation ->Normalizer ->Oversampling

109. Median imputation ->MinMax ->Undersampling

110. Median imputation ->MinMax ->Oversampling

111. Median imputation ->StandardScaler ->Undersampling

112. Median imputation ->StandardScaler ->Oversampling

113. Median imputation ->Normalizer ->Undersampling

114. Median imputation ->Normalizer ->Oversampling

115. Most frequent imputation ->MinMax ->Undersampling

116. Most frequent imputation ->MinMax ->Oversampling

117. Most frequent imputation ->StandardScaler ->Undersampling

118. Most frequent imputation ->StandardScaler ->Oversampling

119. Most frequent imputation ->Normalizer ->Undersampling

120. Most frequent imputation ->Normalizer ->Oversampling

121. Label Encoder ->MinMax ->Undersampling

122. Label Encoder ->MinMax ->Oversampling

123. Label Encoder ->StandardScaler ->Undersampling

124. Label Encoder ->StandardScaler ->Oversampling

125. Label Encoder ->Normalizer ->Undersampling

126. Label Encoder ->Normalizer ->Oversampling

A Pipelines-target 69

127. One-Hot-Encoding ->MinMax ->Undersampling

128. One-Hot-Encoding ->MinMax ->Oversampling

129. One-Hot-Encoding ->StandardScaler ->Undersampling

130. One-Hot-Encoding ->StandardScaler ->Oversampling

131. One-Hot-Encoding ->Normalizer ->Undersampling

132. One-Hot-Encoding ->Normalizer ->Oversampling

133. Deletion case ->Label Encoder ->MinMax ->Undersampling

134. Deletion case ->Label Encoder ->MinMax ->Oversampling

135. Deletion case ->Label Encoder ->StandardScaler ->Undersampling

136. Deletion case ->Label Encoder ->StandardScaler ->Oversampling

137. Deletion case ->Label Encoder ->Normalizer ->Undersampling

138. Deletion case ->Label Encoder ->Normalizer ->Oversampling

139. Deletion case ->One-Hot-Encoding ->MinMax ->Undersampling

140. Deletion case ->One-Hot-Encoding ->MinMax ->Oversampling

141. Deletion case ->One-Hot-Encoding ->StandardScaler ->Undersampling

142. Deletion case ->One-Hot-Encoding ->StandardScaler ->Oversampling

143. Deletion case ->One-Hot-Encoding ->Normalizer ->Undersampling

144. Deletion case ->One-Hot-Encoding ->Normalizer ->Oversampling

145. Mean imputation ->Label Encoder ->MinMax ->Undersampling

146. Mean imputation ->Label Encoder ->MinMax ->Oversampling

147. Mean imputation ->Label Encoder ->StandardScaler ->Undersampling

148. Mean imputation ->Label Encoder ->StandardScaler ->Oversampling

149. Mean imputation ->Label Encoder ->Normalizer ->Undersampling

150. Mean imputation ->Label Encoder ->Normalizer ->Oversampling

151. Mean imputation ->One-Hot-Encoding ->MinMax ->Undersampling

152. Mean imputation ->One-Hot-Encoding ->MinMax ->Oversampling

153. Mean imputation ->One-Hot-Encoding ->StandardScaler ->Undersampling

154. Mean imputation ->One-Hot-Encoding ->StandardScaler ->Oversampling

155. Mean imputation ->One-Hot-Encoding ->Normalizer ->Undersampling

156. Mean imputation ->One-Hot-Encoding ->Normalizer ->Oversampling

157. Median imputation ->Label Encoder ->MinMax ->Undersampling

158. Median imputation ->Label Encoder ->MinMax ->Oversampling

159. Median imputation ->Label Encoder ->StandardScaler ->Undersampling

160. Median imputation ->Label Encoder ->StandardScaler ->Oversampling

161. Median imputation ->Label Encoder ->Normalizer ->Undersampling

A Pipelines-target 70

162. Median imputation ->Label Encoder ->Normalizer ->Oversampling

163. Median imputation ->One-Hot-Encoding ->MinMax ->Undersampling

164. Median imputation ->One-Hot-Encoding ->MinMax ->Oversampling

165. Median imputation ->One-Hot-Encoding ->StandardScaler ->Undersampling

166. Median imputation ->One-Hot-Encoding ->StandardScaler ->Oversampling

167. Median imputation ->One-Hot-Encoding ->Normalizer ->Undersampling

168. Median imputation ->One-Hot-Encoding ->Normalizer ->Oversampling

169. Most frequent imputation ->Label Encoder ->MinMax ->Undersampling

170. Most frequent imputation ->Label Encoder ->MinMax ->Oversampling

171. Most frequent imputation ->Label Encoder ->StandardScaler ->Undersampling

172. Most frequent imputation ->Label Encoder ->StandardScaler ->Oversampling

173. Most frequent imputation ->Label Encoder ->Normalizer ->Undersampling

174. Most frequent imputation ->Label Encoder ->Normalizer ->Oversampling

175. Most frequent imputation ->One-Hot-Encoding ->MinMax ->Undersampling

176. Most frequent imputation ->One-Hot-Encoding ->MinMax ->Oversampling

177. Most frequent imputation ->One-Hot-Encoding ->StandardScaler ->Undersampling

178. Most frequent imputation ->One-Hot-Encoding ->StandardScaler ->Oversampling

179. Most frequent imputation ->One-Hot-Encoding ->Normalizer ->Undersampling

180. Most frequent imputation ->One-Hot-Encoding ->Normalizer ->Oversampling

Appendix B
ALL DATASETS DESCRIPTION

Here are all the datasets used by the experiments, reported in Section 5.1.2, well as their

respective descriptions.

ID Dataset name Dataset description

15 breast-w Breast Cancer Wisconsin (Origi-

nal) Data Set. Features are com-

puted from a digitized image of

a fine needle aspirate (FNA) of

a breast mass. They describe

characteristics of the cell nuclei

present in the image. The target

feature records the prognosis (ma-

lignant or benign).

29 credit-approval This dataset is interesting because

there is a good mix of attributes

– continuous, nominal with small

numbers of values, and nominal

with larger numbers of values.

There are also a few missing val-

ues.

B All datasets description 72

179 adult Prediction task is to determine

whether a person makes over 50K

a year. Extraction was done by

Barry Becker from the 1994 Cen-

sus database. A set of reason-

ably clean records was extracted

using the following conditions:

((AAGE>16) && (AGI>100)

&& (AFNLWGT>1)&& (HR-

SWK>0))

188 eucalyptus The objective was to determine

which seedlots in a species are

best for soil conservation in sea-

sonally dry hill country. Determi-

nation is found by measurement

of height, diameter by height, sur-

vival, and other contributing fac-

tors.

443 analcatdata broadway analcatdata A collection of data

sets used in the book ”Analyzing

Categorical Data,” by Jeffrey S.

Simonoff, Springer-Verlag, New

York, 2003. The submission

consists of a zip file contain-

ing two versions of each of 84

data sets, plus this README file.

Each data set is given in comma-

delimited ASCII (.csv) form, and

Microsoft Excel (.xls) form.

B All datasets description 73

452 analcatdata broadwaymult analcatdata A collection of data

sets used in the book ”Analyzing

Categorical Data,” by Jeffrey S.

Simonoff, Springer-Verlag, New

York, 2003. The submission

consists of a zip file contain-

ing two versions of each of 84

data sets, plus this README file.

Each data set is given in comma-

delimited ASCII (.csv) form, and

Microsoft Excel (.xls) form.

455 cars The Committee on Statistical

Graphics of the American Sta-

tistical Association (ASA) invites

you to participate in its Second

(1983) Exposition of Statistical

Graphics Technology. The pur-

poses of the Exposition are (l) to

provide a forum in which users

and providers of statistical graph-

ics technology can exchange in-

formation and ideas and (2) to ex-

pose those members of the ASA

community who are less famil-

iar with statistical graphics to its

capabilities and potential benefits

to them. The Exposition wil1

be held in conjunction with the

Annual Meetings in Toronto, Au-

gust 15-18, 1983 and is tenta-

tively scheduled for the afternoon

of Wednesday, August 17.

B All datasets description 74

473 cjs The effects of the Growth Reg-

ulators Paclobutrazol (PP 333)

and Flurprimidol (EL-500) on the

Number and Length of Internodes

in Terminal Sprouts Formed on

Trimmed Silver Maple Trees.

802 pbcseq Binarized version of the original

data set (see version 1). It con-

verts the numeric target feature to

a two-class nominal target feature

by computing the mean and clas-

sifying all instances with a lower

target value as positive (’P’) and

all others as negative (’N’).

839 kdd el nino-small Binarized version of the original

data set (see version 1). It con-

verts the numeric target feature to

a two-class nominal target feature

by computing the mean and clas-

sifying all instances with a lower

target value as positive (’P’) and

all others as negative (’N’).

897 colleges aaup Binarized version of the original

data set (see version 1). It con-

verts the numeric target feature to

a two-class nominal target feature

by computing the mean and clas-

sifying all instances with a lower

target value as positive (’P’) and

all others as negative (’N’).

B All datasets description 75

930 colleges usnews Binarized version of the original

data set (see version 1). It con-

verts the numeric target feature to

a two-class nominal target feature

by computing the mean and clas-

sifying all instances with a lower

target value as positive (’P’) and

all others as negative (’N’).

966 analcatdata halloffame Binarized version of the original

data set (see version 1). The

multi-class target feature is con-

verted to a two-class nominal tar-

get feature by re-labeling the ma-

jority class as positive (’P’) and

all others as negative (’N’). Origi-

nally converted by Quan Sun.

990 eucalyptus Binarized version of the original

data set (see version 1). The

multi-class target feature is con-

verted to a two-class nominal tar-

get feature by re-labeling the ma-

jority class as positive (’P’) and

all others as negative (’N’). Origi-

nally converted by Quan Sun.

1024 cjs Binarized version of the original

data set (see version 1). The

multi-class target feature is con-

verted to a two-class nominal tar-

get feature by re-labeling the ma-

jority class as positive (’P’) and

all others as negative (’N’). Origi-

nally converted by Quan Sun.

B All datasets description 76

1037 ada prior The task of ADA is to discover

high revenue people from census

data. This is a two-class classi-

fication problem. The raw data

from the census bureau is known

as the Adult database in the UCI

machine-learning repository. The

14 original attributes (features) in-

clude age, workclass, education,

education, marital status, occupa-

tion, native country, etc. It con-

tains continuous, binary and cat-

egorical features. This dataset is

from ”prior knowledge track”, i.e.

has access to the original features

and their identity.

1053 jm1 This is a PROMISE data set

made publicly available in order

to encourage repeatable, verifi-

able, refutable, and/or improvable

predictive models of software en-

gineering.

1119 adult-census Dataset from the

MLRR repository:

http://axon.cs.byu.edu:5000/.

Note: this dataset is identical

to the version stored in UCI,

but only includes the training

data, not the test data. See [adult

(2)](http://openml.org/d/1590)

for the complete data.

1205 BNG(Australian) -

41526 test dataset -

B All datasets description 77

41430 DiabeticMellitus This data was collected from

combine primary and secondary

sources, through questionnaire,

verbal interview and some part of

the hospital’s record department’s

data, from the selected govern-

ment’s hospitals in the Northwest-

ern states of Nigeria.

1351 BNG(anneal,1000,1) -

1354 BNG(anneal,5000,1) -

1358 BNG(anneal,10000,5) -

1364 BNG(anneal.ORIG,5000,5) -

1367 BNG(anneal.ORIG,10000,5) -

1369 BNG(kr-vs-kp,1000,1) -

1373 BNG(kr-vs-kp,5000,5) -

1373 BNG(kr-vs-kp,10000,1) -

1402 BNG(lymph,1000,1) -

1403 BNG(lymph,1000,5) -

1453 PieChart3 pie chart 3

1459 artificial-characters This database has been artificially

generated. It describes the struc-

ture of the capital letters A, C,

D, E, F, G, H, L, P, R, indicated

by a number 1-10, in that order

(A=1,C=2,...). Each letter’s struc-

ture is described by a set of seg-

ments (lines) which resemble the

way an automatic program would

segment an image. The dataset

consists of 600 such descriptions

per letter.

B All datasets description 78

1460 banana An artificial data set where in-

stances belongs to several clusters

with a banana shape. There are

two attributes At1 and At2 corre-

sponding to the x and y axis, re-

spectively. The class label (-1 and

1) represents one of the two ba-

nana shapes in the dataset.

1468 cnae-9 This is a data set containing 1080

documents of free text business

descriptions of Brazilian compa-

nies categorized into a subset of 9

categories.

1471 eeg-eye-state All data is from one continuous

EEG measurement with the Emo-

tiv EEG Neuroheadset. The du-

ration of the measurement was

117 seconds. The eye state

was detected via a camera during

the EEG measurement and added

later manually to the file after an-

alyzing the video frames. ’1’ in-

dicates the eye-closed and ’0’ the

eye-open state. All values are in

chronological order with the first

measured value at the top of the

data.

1475 first-order-theorem-proving The attributes are a mixture of

static and dynamic features de-

rived from theorems to be proved.

See the paper for full details.

B All datasets description 79

1479 hill-valley Each record represents 100 points

on a two-dimensional graph.

When plotted in order (from 1

through 100) as the Y coordinate,

the points will create either a Hill

(a “bump” in the terrain) or a

Valley (a “dip” in the terrain).

1485 madelon MADELON is an artificial

dataset, which was part of the

NIPS 2003 feature selection

challenge. This is a two-class

classification problem with

continuous input variables.

The difficulty is that the prob-

lem is multivariate and highly

non-linear.

1486 nomao Nomao collects data about places

(name, phone, localization...)

from many sources. Deduplica-

tion consists in detecting what

data refer to the same place.

Instances in the dataset compare

2 spots.

B All datasets description 80

1489 phoneme The aim of this dataset is to dis-

tinguish between nasal (class 0)

and oral sounds (class 1). Five

different attributes were chosen to

characterize each vowel: they are

the amplitudes of the five first har-

monics AHi, normalised by the

total energy Ene (integrated on all

the frequencies): AHi/Ene. The

phonemes are transcribed as fol-

lows: sh as in she, dcl as in dark,

iy as the vowel in she, aa as the

vowel in dark, and ao as the first

vowel in water.

1497 wall-robot-navigation The data were collected as the

SCITOS G5 robot navigates

through the room following the

wall in a clockwise direction,

for 4 rounds, using 24 ultra-

sound sensors arranged circularly

around its ’waist’.

1502 skin-segmentation The Skin Segmentation dataset is

constructed over B, G, R color

space. Skin and Nonskin dataset

is generated using skin textures

from face images of diversity of

age, gender, and race people.

1503 spoken-arabic-digit This dataset contains time series

of mel-frequency cepstrum coeffi-

cients (MFCCs) corresponding to

spoken Arabic digits. Includes

data from 44 males and 44 fe-

males native Arabic speakers.

B All datasets description 81

1507 twonorm This is an implementation of Leo

Breiman’s twonorm example[1].

It is a 20 dimensional, 2 class

classification example. Each class

is drawn from a multivariate nor-

mal distribution with unit vari-

ance. Class 1 has mean (a,a,..a)

while Class 2 has mean (-a,-a,..-

a). Where a = 2/sqrt(20). Breiman

reports the theoretical expected

misclassification rate as 2.3%. He

used 300 training examples with

CART and found an error of

22.1%.

1510 wdbc Breast Cancer Wisconsin (Di-

agnostic) Data Set (WDBC).

Features are computed from a

digitized image of a fine needle

aspirate (FNA) of a breast mass.

They describe characteristics of

the cell nuclei present in the im-

age. The target feature records the

prognosis (benign (1) or malig-

nant (2)). [Original data available

here](ftp://ftp.cs.wisc.edu/math-

prog/cpo-dataset/machine-

learn/cancer/)

1525 wall-robot-navigation Wall-Following Robot Navigation

Data Data Set (version with 2 At-

tributes)

1526 wall-robot-navigation Wall-Following Robot Navigation

Data Data Set (version with 4 At-

tributes)

B All datasets description 82

1547 autoUniv-au1-1000 AutoUniv is an advanced data

generator for classifications tasks.

The aim is to reflect the nuances

and heterogeneity of real data.

Data can be generated in .csv,

ARFF or C4.5 formats.

1549 autoUniv-au6-750 AutoUniv is an advanced data

generator for classifications tasks.

The aim is to reflect the nuances

and heterogeneity of real data.

Data can be generated in .csv,

ARFF or C4.5 formats.

1552 autoUniv-au7-1100 AutoUniv is an advanced data

generator for classifications tasks.

The aim is to reflect the nuances

and heterogeneity of real data.

Data can be generated in .csv,

ARFF or C4.5 formats.

1553 autoUniv-au7-700 AutoUniv is an advanced data

generator for classifications tasks.

The aim is to reflect the nuances

and heterogeneity of real data.

Data can be generated in .csv,

ARFF or C4.5 formats.

1557 abalone A 3-class version of abalone

dataset.

1558 bank-marketing Reduced version (10 % of the

examples) of bank-marketing

dataset.

1560 cardiotocography A 3-class version of Cardiotocog-

raphy dataset.

1568 nursery 4-class version of the original

Nursery dataset

B All datasets description 83

1590 adult Prediction task is to determine

whether a person makes over 50K

a year. Extraction was done by

Barry Becker from the 1994 Cen-

sus database. A set of reason-

ably clean records was extracted

using the following conditions:

((AAGE>16) && (AGI>100)

&& (AFNLWGT>1)&& (HR-

SWK>0))

4534 PhishingWebsites In this dataset, we shed light on

the important features that have

proved to be sound and effective

in predicting phishing websites.

In addition, we propose some new

features.

4538 GesturePhaseSegmentationProcessed The dataset is composed by fea-

tures extracted from 7 videos with

people gesticulating, aiming at

studying Gesture Phase Segmen-

tation.

4541 Diabetes130US This data has been prepared to an-

alyze factors related to readmis-

sion as well as other outcomes

pertaining to patients with dia-

betes.

6332 cylinder-bands Cylinder bands UCI dataset - Pro-

cess delays known as cylinder

banding in rotogravure printing

were substantially mitigated using

control rules discovered by deci-

sion tree induction.

B All datasets description 84

23380 cjs The effects of the Growth Reg-

ulators Paclobutrazol (PP 333)

and Flurprimidol (EL-500) on the

Number and Length of Internodes

in Terminal Sprouts Formed on

Trimmed Silver Maple Trees.

23512 higgs Higgs Boson detection data. The

data has been produced using

Monte Carlo simulations. The

first 21 features (columns 2-22)

are kinematic properties mea-

sured by the particle detectors in

the accelerator. The last seven

features are functions of the first

21 features; these are high-level

features derived by physicists to

help discriminate between the two

classes.

23517 numerai28.6 The data is cleaned, regularized

and encrypted global equity data.

The first 21 columns (feature1 -

feature21) are features, and target

is the binary class you’re trying to

predict.

40536 SpeedDating This data was gathered from par-

ticipants in experimental speed

dating events from 2002-2004.

575 kdd coil 4 This data set is from the 1999

Computational Intelligence and

Learning (COIL) competition.

The data contains measurements

of river chemical concentrations

and algae densities.

B All datasets description 85

40966 MiceProtein The data set consists of the

expression levels of 77 pro-

teins/protein modifications that

produced detectable signals in the

nuclear fraction of cortex.

40979 mfeat-pixel One of a set of 6 datasets describ-

ing features of handwritten nu-

merals (0 - 9) extracted from a

collection of Dutch utility maps.

The maps were scanned in 8 bit

grey value at density of 400dpi,

scanned, sharpened, and thresh-

olded. Corresponding patterns in

different datasets correspond to

the same original character. 200

instances per class (for a total of

2,000 instances) have been digi-

tized in binary images.

40981 Australian Australian Credit Approval. This

is the famous Australian Credit

Approval dataset, originating

from the StatLog project. It

concerns credit card applications.

All attribute names and values

have been changed to mean-

ingless symbols to protect the

confidentiality of the data.

40982 steel-plates-fault A dataset of steel plates’ faults,

classified into 7 different types.

The goal was to train machine

learning for automatic pattern

recognition.

B All datasets description 86

40996 Fashion-MNIST Fashion-MNIST is a dataset of

Zalando’s article images, consist-

ing of a training set of 60,000 ex-

amples and a test set of 10,000 ex-

amples.

40999 jungle chess 2pcs endgame elephant elephant This dataset is part of a collection

datasets based on the game ”Jun-

gle Chess” (a.k.a. Dou Shou Qi).

41001 jungle chess 2pcs endgame complete This dataset is part of a collection

datasets based on the game ”Jun-

gle Chess” (a.k.a. Dou Shou Qi).

41002 jungle chess 2pcs endgame rat panther This dataset is part of a collection

datasets based on the game ”Jun-

gle Chess” (a.k.a. Dou Shou Qi).

41003 jungle chess 2pcs endgame rat elephant This dataset is part of a collection

datasets based on the game ”Jun-

gle Chess” (a.k.a. Dou Shou Qi).

41004 jungle chess 2pcs endgame lion elephant This dataset is part of a collection

datasets based on the game ”Jun-

gle Chess” (a.k.a. Dou Shou Qi).

41005 jungle chess 2pcs endgame rat rat This dataset is part of a collection

datasets based on the game ”Jun-

gle Chess” (a.k.a. Dou Shou Qi).

41007 jungle chess 2pcs endgame lion lion This dataset is part of a collection

datasets based on the game ”Jun-

gle Chess” (a.k.a. Dou Shou Qi).

41027 jungle chess 2pcs raw endgame complete This dataset is part of a collection

datasets based on the game ”Jun-

gle Chess” (a.k.a. Dou Shou Qi).

42638 titanic -

Appendix C
ALL USED META-ATTRIBUTES

Here are all the meta-attributes used by the system, reported in Section 5.1.4, well as their

respective descriptions.

rows null - Compute the number of instances that have at least one null value.

total null - Compute the total number of null values in the dataset.

sattr to inst - Compute the ratio between the number of attributes.

cat to num - Compute the ratio between the number of categoric and numeric features.

freq class - Compute the relative frequency of each distinct class.

inst to attr - Compute the ratio between the number of instances and attributes.

nr attr - Compute the total number of attributes.

nr bin - Compute the number of binary attributes.

nr cat - Compute the number of categorical attributes.

nr class - Compute the number of distinct classes.

nr inst - Compute the number of instances (rows) in the dataset.

nr num - Compute the number of numeric features.

num to cat - Compute the number of numerical and categorical features.

attr conc - Compute concentration coef. of each pair of distinct attributes.

attr ent - Compute Shannon’s entropy for each predictive attribute.

class conc - Compute concentration coefficient between each attribute and class.

class ent - Compute target attribute Shannon’s entropy.

eq num attr - Compute the number of attributes equivalent for a predictive task.

joint ent - Compute the joint entropy between each attribute and class.

mut inf - Compute the mutual information between each attribute and target.

ns ratio - Compute the noisiness of attributes.

C All used meta-attributes 88

can cor - Compute canonical correlations of data.

cor - Compute the absolute value of the correlation of distinct dataset column pairs.

cov - Compute the absolute value of the covariance of distinct dataset attribute pairs.

eigenvalues - Compute the eigenvalues of covariance matrix from dataset.

g mean - Compute the geometric mean of each attribute.

gravity - Compute the distance between minority and majority classes center of mass.

h mean - Compute the harmonic mean of each attribute.

iq range - Compute the interquartile range (IQR) of each attribute.

kurtosis - Compute the kurtosis of each attribute.

lh trace - Compute the Lawley-Hotelling trace.

mad - Compute the Median Absolute Deviation (MAD) adjusted by a factor.

max - Compute the maximum value from each attribute.

mean - Compute the mean value of each attribute.

median - Compute the median value from each attribute.

min - Compute the minimum value from each attribute.

nr cor attr - Compute the number of distinct highly correlated pair of attributes.

nr disc - Compute the number of canonical correlation between each attribute and class.

nr norm - Compute the number of attributes normally distributed based in a given method.

nr outliers - Compute the number of attributes with at least one outlier value.

p trace - Compute the Pillai’s trace.

range - Compute the range (max - min) of each attribute. roy root - Compute the Roy’s largest

root.

sd - Compute the standard deviation of each attribute.

sd ratio - Compute a statistical test for homogeneity of covariances.

skewness - Compute the skewness for each attribute.

sparsity - Compute (possibly normalized) sparsity metric for each attribute.

var - Compute the variance of each attribute.

w lambda - Compute the Wilks’ Lambda value.

REFERENCES

ALCOBAçA, E. et al. Mfe: Towards reproducible meta-feature extraction. Journal of Machine
Learning Research, v. 21, n. 111, p. 1–5, 2020. Available at: <http://jmlr.org/papers/v21/19-
348.html>.

BANKS, D. et al. Classification, Clustering, and Data Mining Applications: Proceedings of
the Meeting of the International Federation of Classification Societies (IFCS), Illinois Institute
of Technology, Chicago, 15–18 July 2004. [S.l.]: Springer Science & Business Media, 2011.

BATISTA, G. E.; PRATI, R. C.; MONARD, M. C. A study of the behavior of several methods
for balancing machine learning training data. ACM SIGKDD explorations newsletter, ACM
New York, NY, USA, v. 6, n. 1, p. 20–29, 2004.

BATISTA, G. E. d. A. P. A. Pré-processamento de dados em aprendizado de máquina
supervisionado. Thesis (Doctor in Philosophy) — Universidade de São Paulo, 2003.

BERGSTRA, J.; BENGIO, Y. Random search for hyper-parameter optimization. Journal of
machine learning research, v. 13, n. 2, 2012.

BERTI-EQUILLE, L. Learn2clean: Optimizing the sequence of tasks for web data preparation.
In: ACM. The World Wide Web Conference. [S.l.], 2019. p. 2580–2586.

BERTI-ÉQUILLE, L.; COMIGNANI, U. Explaining automated data cleaning with cleanex. In:
IJCAI-PRICAI 2020 Workshop on Explainable Artificial Intelligence (XAI). [S.l.: s.n.], 2021.

BILALLI, B. et al. Automated data pre-processing via meta-learning. In: SPRINGER.
International Conference on Model and Data Engineering. [S.l.], 2016. p. 194–208.

BISONG, E. Introduction to scikit-learn. In: Building Machine Learning and Deep Learning
Models on Google Cloud Platform. [S.l.]: Springer, 2019. p. 215–229.

BRAZDIL, P. et al. Metalearning: Applications to data mining. [S.l.]: Springer Science &
Business Media, 2008.

BRAZDIL, P. B.; SOARES, C.; COSTA, J. P. D. Ranking learning algorithms: Using ibl
and meta-learning on accuracy and time results. Machine Learning, Springer, v. 50, n. 3, p.
251–277, 2003.

BREUNIG, M. M. et al. Lof: identifying density-based local outliers. In: Proceedings of the
2000 ACM SIGMOD international conference on Management of data. [S.l.: s.n.], 2000. p.
93–104.

References 90

BROCHU, E.; CORA, V. M.; FREITAS, N. de. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
CoRR, abs/1012.2599, 2010. Available at: <http://arxiv.org/abs/1012.2599>.

CAMILO, C. O.; SILVA, J. C. d. Mineração de dados: Conceitos, tarefas, métodos e
ferramentas. Universidade Federal de Goiás (UFC), p. 1–29, 2009.

CASTIELLO, C.; CASTELLANO, G.; FANELLI, A. M. Meta-data: Characterization of input
features for meta-learning. In: SPRINGER. International Conference on Modeling Decisions
for Artificial Intelligence. [S.l.], 2005. p. 457–468.

CASTIELLO, C.; FANELLI, A. M. Computational intelligence for meta-learning: A promising
avenue of research. In: Meta-Learning in Computational Intelligence. [S.l.]: Springer, 2011. p.
157–177.

CHU, X. et al. Data cleaning: Overview and emerging challenges. In: Proceedings of the 2016
international conference on management of data. [S.l.: s.n.], 2016. p. 2201–2206.

CUNHA, S. B. D.; CARVAJAL, S. R. Estatistica Basica-a Arte de Trabalhar com Dados.
[S.l.]: Elsevier Brasil, 2009.

DERCZYNSKI, L. Complementarity, f-score, and nlp evaluation. In: Proceedings of the Tenth
International Conference on Language Resources and Evaluation (LREC’16). [S.l.: s.n.],
2016. p. 261–266.

DRORI, I. et al. Alphad3m: Machine learning pipeline synthesis. In: AutoML Workshop at
ICML. [S.l.: s.n.], 2018.

FACELI, K. et al. Inteligência artificial: uma abordagem de aprendizado de máquina. [S.l.]:
LTC, 2011.

FEURER, M. et al. Efficient and robust automated machine learning. In: Advances in neural
information processing systems. [S.l.: s.n.], 2015. p. 2962–2970.

FEURER, M. et al. Openml-python: an extensible python api for openml. arXiv:1911.02490,
2019.

FRANÇOIS, D.; WERTZ, V.; VERLEYSEN, M. Choosing the metric: a simple model
approach. In: Meta-Learning in Computational Intelligence. [S.l.]: Springer, 2011. p. 97–115.

GARCÍA, S.; LUENGO, J.; HERRERA, F. Data preprocessing in data mining. [S.l.]: Springer,
2015.

GE, Z. et al. Data mining and analytics in the process industry: The role of machine learning.
IEEE Access, IEEE, v. 5, p. 20590–20616, 2017.

GUERRA, S.; PRUDÊNCIO, R.; LUDERMIR, T. Meta-aprendizado de algoritmos de
treinamento para redes multi-layer perceptron. Anais do VI Encontro Nacional de Inteligência
Artificial, p. 1022–1031, 2007.

GUYON, I. et al. Design of the 2015 chalearn automl challenge. In: IEEE. 2015 International
Joint Conference on Neural Networks (IJCNN). [S.l.], 2015. p. 1–8.

References 91

HAWKINS, D. M. The problem of overfitting. Journal of chemical information and computer
sciences, ACS Publications, v. 44, n. 1, p. 1–12, 2004.

HE, X.; ZHAO, K.; CHU, X. AutoML: A Survey of the State-of-the-Art. 2019.

HOOS, H. H. Automated algorithm configuration and parameter tuning. In: Autonomous
search. [S.l.]: Springer, 2011. p. 37–71.

HUTTER, F.; HOOS, H. H.; LEYTON-BROWN, K. Sequential model-based optimization for
general algorithm configuration. In: SPRINGER. International conference on learning and
intelligent optimization. [S.l.], 2011. p. 507–523.

HUTTER, F.; KOTTHOFF, L.; VANSCHOREN, J. Automated Machine Learning-Methods,
Systems, Challenges. [S.l.]: Springer, 2019.

JANKOWSKI, N.; DUCH, W.; GRKABCZEWSKI, K. Meta-learning in computational
intelligence. [S.l.]: Springer, 2011.

JOHNSON, B. A.; ANDERSON, W. M.; SPROULE, W. D. Data preparation for media
browsing. [S.l.]: Google Patents, Jan. 2 2007. US Patent 7,159,174.

KATZ, G.; SHIN, E. C. R.; SONG, D. Explorekit: Automatic feature generation and selection.
In: IEEE. 2016 IEEE 16th International Conference on Data Mining (ICDM). [S.l.], 2016. p.
979–984.

KEOGH, E.; MUEEN, A. Curse of dimensionality. In: . Encyclopedia of Machine
Learning and Data Mining. Boston, MA: Springer US, 2017. p. 314–315. ISBN
978-1-4899-7687-1. Available at: <https://doi.org/10.1007/978-1-4899-7687-1 192>.

KRISHNAN, S. et al. Activeclean: interactive data cleaning for statistical modeling.
Proceedings of the VLDB Endowment, VLDB Endowment, v. 9, n. 12, p. 948–959, 2016.

LAURIKKALA, J. Improving identification of difficult small classes by balancing class
distribution. In: SPRINGER. Conference on Artificial Intelligence in Medicine in Europe.
[S.l.], 2001. p. 63–66.

LE, T. T.; FU, W.; MOORE, J. H. Scaling tree-based automated machine learning to biomedical
big data with a feature set selector. Bioinformatics, Oxford University Press, v. 36, n. 1, p.
250–256, 2020.

LI, L.; TALWALKAR, A. Random search and reproducibility for neural architecture search.
In: PMLR. Uncertainty in Artificial Intelligence. [S.l.], 2020. p. 367–377.

LITTLE, R. J.; RUBIN, D. B. Statistical analysis with missing data. [S.l.]: John Wiley & Sons,
2019.

LIU, F. T.; TING, K. M.; ZHOU, Z.-H. Isolation forest. In: IEEE. 2008 Eighth IEEE
International Conference on Data Mining. [S.l.], 2008. p. 413–422.

MAIMON, O.; ROKACH, L. Data mining and knowledge discovery handbook. Springer,
2005.

References 92

MANTOVANI, R. G. Use of meta-learning for hypeparameter tuning of classification
problems. Thesis (Doctor in Philosophy) — Universidade de São Paulo, 2018. Available at:
<https://doi.org/10.11606/t.55.2018.tde-15102018-092202>.

NORVIG, P.; RUSSELL, S. Inteligência Artificial: Tradução da 3a Edição. [S.l.]: Elsevier
Brasil, 2014.

OLSON, R. S. et al. Evaluation of a tree-based pipeline optimization tool for automating data
science. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016. New
York, NY, USA: ACM, 2016. (GECCO ’16), p. 485–492. ISBN 978-1-4503-4206-3. Available
at: <http://doi.acm.org/10.1145/2908812.2908918>.

OLSON, R. S. et al. Applications of evolutionary computation: 19th european conference,
evoapplications 2016, porto, portugal, march 30 – april 1, 2016, proceedings, part i. In: .
[S.l.]: Springer International Publishing, 2016. chap. Automating Biomedical Data Science
Through Tree-Based Pipeline Optimization, p. 123–137. ISBN 978-3-319-31204-0.

POLYZOTIS, N. et al. Data management challenges in production machine learning. In:
Proceedings of the 2017 ACM International Conference on Management of Data. New York,
NY, USA: Association for Computing Machinery, 2017. (SIGMOD ’17), p. 1723–1726. ISBN
9781450341974. Available at: <https://doi.org/10.1145/3035918.3054782>.

PRUDÊNCIO, R. B.; SOUTO, M. C. D.; LUDERMIR, T. B. Selecting machine learning
algorithms using the ranking meta-learning approach. In: Meta-learning in computational
intelligence. [S.l.]: Springer, 2011. p. 225–243.

PYLE, D. Data preparation for data mining. [S.l.]: morgan kaufmann, 1999.

QUANMING, Y. et al. Taking human out of learning applications: A survey on automated
machine learning. arXiv preprint arXiv:1810.13306, 2018.

RAHM, E.; DO, H. H. Data cleaning: Problems and current approaches. IEEE Data Eng. Bull.,
v. 23, n. 4, p. 3–13, 2000.

RAWAT, T.; KHEMCHANDANI, V. Feature engineering (fe) tools and techniques for
better classification performance. International Journal of Innovations in Engineering and
Technology (IJIET), v. 8, n. 2, 2017.

ROSA, J. L. G. Fundamentos da inteligência artificial. [S.l.]: LTC, 2011.

SCHOENFELD, B. et al. Preprocessor selection for machine learning pipelines. arXiv preprint
arXiv:1810.09942, 2018.

TOMLIN, L.; WELCH, J. S. Finding duplicate rows in a linear programming model.
Operations Research Letters, Elsevier, v. 5, n. 1, p. 7–11, 1986.

TRAN, B.; XUE, B.; ZHANG, M. Genetic programming for feature construction and selection
in classification on high-dimensional data. Memetic Computing, Springer, v. 8, n. 1, p. 3–15,
2016.

VANSCHOREN, J. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.

References 93

VILALTA, R.; GIRAUD-CARRIER, C.; BRAZDIL, P. Meta-learning-concepts and
techniques. In: Data mining and knowledge discovery handbook. [S.l.]: Springer, 2009. p.
717–731.

VINUTHA, H.; POORNIMA, B.; SAGAR, B. Detection of outliers using interquartile range
technique from intrusion dataset. In: Information and Decision Sciences. [S.l.]: Springer, 2018.
p. 511–518.

WITTEN, I. H. et al. Data Mining: Practical machine learning tools and techniques. [S.l.]:
Morgan Kaufmann, 2016.

WOLPERT, D. H.; MACREADY, W. G. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, IEEE, v. 1, n. 1, p. 67–82, 1997.

ZHANG, S.; ZHANG, C.; YANG, Q. Data preparation for data mining. Applied artificial
intelligence, Taylor & Francis, v. 17, n. 5-6, p. 375–381, 2003.

ZHU, W. et al. Sensitivity, specificity, accuracy, associated confidence interval and roc analysis
with practical sas implementations. NESUG proceedings: health care and life sciences,
Baltimore, Maryland, v. 19, p. 67, 2010.

ZÖLLER, M.; HUBER, M. F. Survey on automated machine learning. CoRR, abs/1904.12054,
2019. Available at: <http://arxiv.org/abs/1904.12054>.

