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RESUMO

A automatização do aprendizado de máquina (AutoML) tem como objetivo encontrar o

melhor pipeline de aprendizado de máquina (ML) em um espaço de pesquisa complexo e

de grande dimensionalidade, avaliando várias configurações de algoritmos. O treinamento

de vários algoritmos de ML custa tempo e, como as ferramentas de AutoML geralmente

obedecem a uma restrição de tempo, a exploração do espaço de pesquisa pode encontrar re-

sultados abaixo do ideal. Neste trabalho, exploramos a aplicação de técnicas de aprendizado

de currículo para superar essa limitação. A aprendizagem curricular e a aprendizagem anti-

curricular são estratégias para ordenar exemplos durante o treinamento do modelo com base

em sua dificuldade. Estes mostraram melhorar o desempenho de modelos e acelerar o pro-

cesso de treinamento em investigações empíricas anteriores usando modelos baseados em

otimização. Aplicamos e comparamos estratégias de currículo em dois otimizadores de um

sistema AutoML para melhorar a exploração do espaço de pesquisa e encontrar pipelines

de aprendizado de máquina de bom desempenho com eficiência. Os resultados indicam

que o AutoML pode se beneficiar de uma estratégia curricular. Na maioria dos cenários

avaliados, as estratégias de currículo levaram o algoritmo AutoML a melhores resultados

de classificação.

Palavras-chave: AutoML, Aprendizagem curricular, Aprendizagem de máquina



ABSTRACT

AutoML has the goal to find the best Machine Learning (ML) pipeline in a complex and

high dimensional search space by evaluating multiple algorithm configurations. Training

multiple ML algorithms is time costly, and as AutoML tools usually obey a time constraint,

the exploration of the search space may find sub-optimal results. In this work, we explore

the application of curriculum learning techniques to overcome this limitation. Curriculum

learning and anti-curriculum learning are strategies for ordering examples during model

training based on their difficulty. These have shown to improve model performance and ac-

celerate the training process on previous empirical investigations using optimization-based

models. We apply and compare curriculum strategies on two optimizers of an AutoML sys-

tem to accelerate the search space exploration and find good performing machine learning

pipelines with efficiency. The results indicate that AutoML can benefit from a curriculum

strategy. In most of the evaluated scenarios, the curriculum strategies led the AutoML algo-

rithm to better classification results.

Keywords: AutoML, Curriculum learning, Machine learning
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Chapter 1
INTRODUCTION

Due to its relevance for modern society, Machine learning (ML) is receiving increasing

attention in both industry and academia. Applications of ML range from specific domains

to varied problems, such as automatic speech recognition (YU; DENG, 2014), self-driving cars

(BADUE et al., 2020), computer vision (SZELISKI, 2010), and natural language processing tasks

(HIRSCHBERG; MANNING, 2015). Therefore, ML is employed from applications in smartphones

to modern industrial processes.

Figure 1.1 illustrates a prototypical ML pipeline. A regular pipeline for building a ML

model comprises five stages:

1. The input data is prepared (data preparation) through transformation and cleaning tech-

niques.

2. Features can be selected or generated from data (feature engineering).

3. One or more algorithms are selected (algorithm selection).

4. The hyperparameters of the selected algorithms are configured (algorithm configuration).

5. The algorithm is trained and the resultant model is evaluated (evaluation).

Defining a ML pipeline and its components is an iterative process. For example, the evalua-

tion stage results may lead to changes in all or specific previous stages of the pipeline to achieve

better performance. Therefore, defining a ML pipeline takes substantial human expertise and

usually requires several model training to find the right combination of components and hyper-

parameters for each dataset (YANG et al., 2020). In general, only trained experts with specialized

data preprocessing knowledge, domain-driven meaningful feature engineering skills, and ex-
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Feature engineering Algorithm selection and configuration Training and evaluationData preparation

Figure 1.1: Prototypical ML pipeline

pertise in fine-tuned models could build an efficient ML pipeline leading to excellent predictive

power.

Given the nonexistence of a single algorithm capable of achieving excellent performance in

any application, researchers continuously propose a plethora of new methods or modifications

of existing algorithms for specific tasks. With such an increase in algorithms and problem

variability, the ML process becomes even more complex, expensive, and dependent on high

human expertise and skills.

Motivated by industry needs and ML issues in general, Automated Machine Learning (HUT-

TER; KOTTHOFF; VANSCHOREN, 2019) (AutoML) has appeared in recent years as a sub-area of

ML. The goal of AutoML is to lessen the need for human interference in the ML process and

make it increasingly accessible for non-expert users and less costly for the industry. Current

AutoML approaches are competitive with humans in some scenarios.

In the automated construction of ML pipelines, the choice between different preprocessing

and ML algorithms is modeled as a categorical hyperparameter, a problem known as Combined

Algorithm Selection and Hyperparameter Optimization (CASH). Most AutoML approaches

rely on robust hyperparameter optimization and algorithm selection techniques to search through

a complex, conditional, and high dimensional search space (HUTTER; KOTTHOFF; VANSCHOREN,

2019), making it costly for AutoML to solve.

According to Parmentier et al. (2019), one of the reasons why AutoML is so time-consuming

is due to the time taken by training the ML algorithm. Training ML algorithms on small datasets
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takes at least a few seconds and up to days for bigger datasets, which is increasingly common

with big data.

Inspired by the way that humans learn, Curriculum Learning (CL) adapts the concept of

curriculum 1 to ML algorithms. In human education, teachers rely heavily on a highly orga-

nized curriculum, starting from easy concepts and gradually presenting more complex ones.

CL proposes to train ML algorithms by presenting first a small subset of easier data and grad-

ually increasing both the subset size and the difficulty of data within it (ELMAN, 1993; BENGIO

et al., 2009). Previous studies show that CL can improve model performance on target tasks

and accelerate the training process (WANG; CHEN; ZHU, 2020). Despite being counter-intuitive,

anti-curriculum learning (AntiCL), that is, training a ML model from the hardest to the easiest

data, can be as good or better than CL in some scenarios (KOCMI; BOJAR, 2017; ZHANG et al.,

2019).

Hence, in this work, we propose and compare different CL strategies applied to CASH

solvers of an AutoML system to conduct a more efficient search space exploration and find

good performing machine-learned models with efficiency.

Unlike previous work by Guo et al. (2020), which utilizes CL strategies to speed up neural

architecture search (NAS), our focus is on AutoML for “traditional” ML. That is, ML pipelines

that do not include deep neural networks.

In general, the results show that our approach shows improvements over the baseline, Auto-

sklearn, on most of the selected datasets.

1.1 Hypothesis and objectives

This research hypothesizes that the application of CL strategies on CASH solvers of an Au-

toML system can improve the search space exploration, and consequently find better performing

machine-learned models with efficiency.

The main objective of this research is to apply and evaluate CL strategies on a CASH

solver for an AutoML system. The general approach for applying CL consists of two main

components: (i) a difficulty measurer for estimating the difficulty of each example in the training

set, and (ii) a training scheduler that decides the pace and the sequence of data subsets to be

presented through the training process (WANG; CHEN; ZHU, 2020).

1Taba (1962) defines a curriculum as a plan for learning. In ML, the term generally refers to adequately ordering
information by difficulty.
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As for difficulty measurers, we used three instance hardness (SMITH; MARTINEZ; GIRAUD-

CARRIER, 2014) methods, which estimate instances that are hard to classify correctly. We adapt

the Successive Halving and Hyperband optimization techniques present in the Auto-Sklearn

system (FEURER; HUTTER, 2018) to sample data subsets based on a curriculum for the training

scheduler. Finally, we compare the performance of our Curriculum Learning-based AutoML

system, which we dub CurL-AutoML, with the original Auto-sklearn system, on twelve datasets

built for classification tasks, utilizing the AutoML Benchmark framework presented by Gijsbers

et al. (2019).

1.2 Contributions

The main contributions of this work are:

• The CurL-AutoML, a new approach for incorporating Curriculum Learning in an Au-

toML tool.

• A comparison of CL and AntiCL strategies in the context of Machine Learning Automa-

tion.

• A comparison of distance-based (kDN) and probabilistic (GMM) difficulty measurers for

curriculum design.



Chapter 2
THEORETICAL FOUNDATION

In this chapter, we present the theoretical background involving this research. Specifically,

we present techniques to automate parts of the ML pipeline and the basic concepts of Curricu-

lum Learn.

2.1 Automated Machine Learning

AutoML is the process of automating any step of the ML pipeline. It emerged from reducing

the necessary expertise to apply machine learning, making it more accessible for non-experts.

AutoML can be seen as an effort to democratize ML. It makes state-of-the-art ML approaches

accessible to domain scientists interested in applying them but who have superficial knowledge

about the technologies behind it (HUTTER; KOTTHOFF; VANSCHOREN, 2019). AutoML tech-

niques are usually found in three steps of the traditional ML pipeline: data preparation, feature

engineering, and algorithm selection and configuration.

2.1.1 Data preparation

Data preparation is one of the most important steps in the ML pipeline. However, most of

the approaches to automate it in the current AutoML tools are simple and not very efficient.

The main solutions only include general purpose techniques such as missing data imputation

and data normalization, usually hard-coded and not generated based on any metric during opti-

mization (ZÖLLER; HUBER, 2019).
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Feature engineering Algorithm selection and configuration Training and evaluation

Controller:

Data preparation

Figure 2.1: Prototypical AutoML pipeline.

2.1.2 Feature engineering

The automation of feature engineering encompasses feature selection and feature genera-

tion, two distinct processes that can be employed together in AutoML. Feature selection consists

of finding a subset of the original feature set, which is the smallest and most representative con-

sidering the original data set. The probability distribution of the reduced data is as close to the

original one as possible. Since the number of features that can be acquired through this process

is unlimited and one of the goals of AutoML is to automatically solve the problem without

considering any previous knowledge about the domain, feature generation is the hardest to au-

tomate (ZÖLLER; HUBER, 2019). Based on the initial data set, operations such as discretization,

normalization, or simple combinations of features (such as the sum of continuous attributes),

can be applied to generate new features.

2.1.3 Algorithm selection and configuration

The algorithm selection and configuration is arguably the most investigated ML pipeline’s

steps in AutoML. It is easy to understand its motivations, considering that different ML algo-

rithms have numerous potential configurations, each one with its hyperparameters to be tuned.

The choice of which one to use becomes a challenging problem, mainly for non-expert users.

To understand how optimization methods are applied in AutoML tools, the main techniques

proposed for this task are described in the following sections.
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2.1.3.1 Simple search

The simple search refers to a group of simple techniques that do not consider any assump-

tions about the search space. Therefore, each setting in the search space is evaluated individu-

ally. Figure 2.2 illustrates the two most commonly used Simple Search techniques, Grid Search

and Random Search.

• Grid Search: One of the most simple and widely used HPO techniques. In Grid Search,

the user needs to define a finite search scope for each hyperparameter in the Euclidean

space (LECUN et al., 1998). Then, the algorithm performs a simple sequential search in

space. However, it suffers from low scalability since the size of the search space highly

influences grid Search.

• Random Search: An alternative to Grid Search is Random Search (ANDERSON, 1953). As

the name suggests, hyperparameters are selected randomly until a stop criterion is met,

for example, search time. The main advantage of this technique is that it helps to avoid

local minimums (BERGSTRA; BENGIO, 2012)
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Figure 2.2: Examples of the search space explored by Grid Search (left) and Random Search
(right).

2.1.3.2 Sequential Model-based Algorithm Configuration

The Sequential Model-based Algorithm Configuration (SMAC) (HUTTER; HOOS; LEYTON-

BROWN, 2011) algorithm is a Sequential Model-Based Optimization (SMBO) (HUTTER; HOOS;

LEYTON-BROWN, 2011) framework, that is, an stochastic optimization framework that can ex-

plicitly work with both categorical and continuous hyperparameters. It can also exploit condi-

tional spaces such as when a hyperparameter may only be relevant if one or more hyperparam-

eter assumes a certain value (KOTTHOFF et al., 2019).

A common approach to apply SMBO is by Bayesian optimization (BROCHU; CORA; FRE-

ITAS, 2010). Bayesian optimization iteratively fits a surrogate model to observations of the
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target function. Then, it uses an acquisition function to determine the next candidate points

based on the predictive distribution of the surrogate model. With the increase in the number of

observations, the surrogate model’s predictive distribution improves. Consequently, the algo-

rithm has a better assumption of which regions in the parameter space are worth exploring and

which are not. SMAC is a popular tree-based approach for the surrogate model.

2.1.3.3 Successive Halving

Successive Halving (SH) (JAMIESON; TALWALKAR, 2016) is a bandit-based strategy, applied

for multi-fidelity algorithm selection that tries to find the best algorithm given a finite set of

algorithms and taking into account the low-fidelity approximations of their performance.

Thus, for a given initial budget (e.g number of iterations or data subset), SH queries all

available algorithms for that budget removing the worst-performing half, doubling the budget,

and iterating this process until only a single algorithm is left.

Figure 2.3: Illustration of successive halving for eight algorithms/configurations (HUTTER; KOT-
THOFF; VANSCHOREN, 2019).

The primary concern involving SH is the budget-vs-number of configurations trade-off.

When assuming a total budget, the user has to decide whether to try many configurations, assign

a small budget to each, or try only a few and assign them a larger budget. Small budgets can

result in terminating good configurations precipitately, while large budgets can result in a waste

of resources by running poor configurations extensively (HUTTER; KOTTHOFF; VANSCHOREN,

2019).
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2.1.3.4 HyperBand

The HyperBand (HB) algorithm (LI et al., 2018) is an extension of SH that aims to solve the

budget-vs-number of configurations trade-off. For this purpose, HB first divides the total budget

into several combinations of the number of configurations and a minimum resource associated

with each configuration. Then, it calls SH as a subroutine on each set of random configurations.

A higher number of configurations corresponds to a smaller minimum resource, implying a

more aggressive early-stopping.

Succinctly, HyperBand removes the need to manually select a number of configurations

for a fixed budget, and it can exploit situations in which adaptive allocation works well while

protecting itself in situations where more conservative allocations are required (LI et al., 2018)

The success of HyperBand is attributed to its strong anytime performance (yield good con-

figurations with a small budget), robustness, scalability, and flexibility. Yet, it lacks strong final

performance, finding the best configurations in a large space, due to being a random search-

based method.

2.1.3.5 Bayesian Optimization and HyperBand (BOHB)

A more recent approach denominated BOHB (FALKNER; KLEIN; HUTTER, 2018) combines

Bayesian optimization and Hyperband to overcome some of HB’s issues. BOHB applies HB

to decide how many configurations to evaluate with which budget. However, it replaces the

random selection of configurations at the beginning of each HB iteration with a model-based

search (FALKNER; KLEIN; HUTTER, 2018).

BOHB intends to achieve the best of both methods: strong anytime performance (using low

fidelities in HyperBand) and strong final performance (replacing HyperBand’s random search

by Bayesian optimization). Moreover, BOHB can use parallel resources effectively and deals

with problem domains ranging from a few to many dozen hyperparameters.

2.2 AutoML as a Combined Algorithm Selection and Hyper-
parameter Optimization problem

The Combined Algorithm Selection and Hyperparameter Optimization (CASH) problem,

that is, simultaneously selecting an algorithm and tuning its hyperparameters to optimize one

or more objectives, was first introduced by Thornton et al. (2013).
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Hutter, Kotthoff and Vanschoren (2019) define the CASH problem as follows:

Let A = {A(1), ...,A(R)} be a set of ML algorithms, and let the hyperparameters of each

algorithm A( j) have domain Λ( j). Also, let D(i)
train = {(x1,y1), ...,(xn,yn)} be a training set that

is split into K cross-validation folds {D(1)
valid, ...,D

(K)
valid} and {D(1)

train, ...,D
(K)
train} such thatD(1)

train =

Dtrain \ D(i)
valid for i = 1, ...,K. At last, let L(A( j)

λ
,D(i)

train,D
(i)
valid) denote the loss which algorithm

A( j) achieves on D(i)
valid when trained on D(i)

train with hyperparameters λ . Hence, the CASH

problem is to find the joint algorithm and hyperparameter setting that minimizes this loss:

A∗ λ ∗ ∈ argmin
A( j)∈A,λ∈Λ( j)

1
K

K

∑
i=1
L(A( j)

λ
,D(i)

train,D
(i)
valid) . (2.1)

Solving CASH for AutoML is time consuming. One way to cope with this problem is

through meta-learning, that is, using knowledge previously obtained, such as the performance

of learning algorithms across datasets, in order to start the search in a region near the best so-

lution. Also, another alternative is multi-fidelity optimization methods (FERNáNDEZ-GODINO et

al., 2019). These methods, such as Successive Halving, speed up optimization by means of low-

fidelity approximations of the actual loss function which needs to be minimized. Successive

Halving uses adaptive resource allocation and early-stopping, that is, terminating the evaluation

of probably bad performing configurations early. Although useful, this early-stopping produces

sub-optimal results. This means that a configuration that would yield the best final results may

be discarded in favor of others that had a better initial performance on a low-fidelity approxi-

mation but ended up yielding worse final results.

In the next section, we describe Auto-sklearn, an AutoML tool that leverages the benefits

from both meta-learning and multi-fidelity optimization.

2.3 Auto-sklearn

Based on the python machine learning package Scikit-learn (PEDREGOSA et al., 2011), Auto-

sklearn (FEURER; HUTTER, 2018) is a popular AutoML tool that utilizes the SMAC optimizer as

the CASH solver for automatically building classification and regression pipelines.

A configuration algorithm, such as SMAC, has a fundamental mechanism called intensi-

fication. This intensification mechanism controls how many evaluations to perform with each

configuration and decides when a configuration becomes the new current best-known configu-

ration. (HUTTER; HOOS; LEYTON-BROWN, 2011).



2.4 Curriculum Learning 25

One of the capabilities of Auto-sklearn is to use SH as the intensification mechanism for the

SMAC optimizer, this combines Bayesian optimization with SH (BOSH), resulting in an adap-

tation of the BOHB algorithm (FALKNER; KLEIN; HUTTER, 2018). Similar to BOHB, BOSH is a

combination of Bayesian optimization and multi-fidelity optimization, resulting in a robust and

efficient hyperparameter optimization algorithm, but instead of HyperBand it uses Successive

Halving.

BOHB original implementation uses a Parzen Estimator as the surrogate model for Bayesian

optimization, while the Auto-sklearn implementation of BOHB uses a Random Forest as the

surrogate model.

Auto-sklearn1 comprises 16 classifiers, 12 regressors, 15 feature preprocessing techniques,

and 12 data preparation methods of the scikit-learn library. By default, Auto-sklearn uses meta-

learning to warm-start2 Bayesian optimization, automatically taking into account past perfor-

mance on similar data sets to suggest initial pipeline configurations. This meta-learning is

fueled by an extensive evaluation of different pipelines on 204 distinct data sets.

Auto-sklearn pipeline begins with an hardcoded data preparation step which includes meth-

ods such as imputation and categorical encoding. Subsequently, there is a feature engineering

step. Next, an ML algorithm is selected and has its hyperparameters optimized by the Sequen-

tial Model-based Algorithm Configuration (SMAC) (HUTTER; HOOS; LEYTON-BROWN, 2011)

algorithm.

Furthermore, Auto-sklearn applies ensemble learning to make the final result more robust

against overfitting. During the optimization process, the tool stores the models evaluated in

the search space. Then, it applies ensemble selection (CARUANA et al., 2004), a model post-

processing method that starts from an empty ensemble and, following a greedy approach, itera-

tively adds the model that maximizes ensemble validation performance, constructing an ensem-

ble of the previously trained models.

2.4 Curriculum Learning

Curriculum Learning (CL) consists of training models from the easiest to the hardest data.

Its benefits may include: faster model training convergence and better generalization capacity.

In contrast, anti-curriculum learning (AntiCL), consists in training a ML model from the hardest

to the easiest data.
1In this paper, we consider the version 0.12.1 of Auto-sklearn.
2Start the optimization algorithm in a region of the search space which is potentially close to the optimum.
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For applying a CL strategy, we need to define two components: (i) the difficulty measurer,

to generate our curriculum by estimating the difficulty of each training example; and (ii) the

training scheduler, to control the pace and sequence of data presented to a model during training.

Wang, Chen and Zhu (2020) categorize CL frameworks considering these two components.

A predefined CL has both the difficulty measurer and the training scheduler totally designed

by human prior knowledge with no data-driven models or algorithms involved. In contrast, an

automatic CL has at least one of the components involving an algorithm.

For a predefined CL, there are different approaches to a difficulty measurer, such as sentence

length in NLP tasks (PLATANIOS et al., 2019; SPITKOVSKY; ALSHAWI; JURAFSKY, 2010; TAY et

al., 2019), or the number of objects in images in the task of semantic segmentation (Wei et

al., 2017). A predefined training scheduler can be discrete or continuous, and is usually task

agnostic (WANG; CHEN; ZHU, 2020). A discrete training scheduler adjusts the training data after

every fixed number of epochs or convergence on the current data subset. In contrast, continuous

schedulers adjust the training data subset at every epoch.

Wang, Chen and Zhu (2020) summarize four of the major strategies for automatic CL:

• Transfer Teacher: A pre-trained model acts as the teacher and measures the difficulty of

training examples according to its performance on them, which is later used for training

a student algorithm.

• Self-Paced Learning (SPL): The student algorithm also acts as a teacher, measuring the

difficulty of training examples according to its losses on them.

• Reinforcement Learning Teacher: A reinforcement learning (RL) model act as the teacher

to perform dynamic data selection according to the feedback from the student.

• Other Automatic CL: Methods that include various automatic CL strategies except the

above.
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In this section, some of the related works available in the literature are briefly described.

Several AutoML systems were developed, such as Auto-Weka (THORNTON et al., 2013),

TPOT (OLSON et al., 2016), Hyperopt-sklearn (KOMER; BERGSTRA; ELIASMITH, 2014), ATM

(Swearingen et al., 2017), and Auto-Stacker (CHEN et al., 2018), and Recipe (SÁ et al., 2017). How-

ever, the AutoML problem is still time-consuming. Therefore, different approaches need to be

proposed to efficiently tackle this complex search space and find good performing ML pipelines.

Some previous approaches aim to speed up AutoML through methods such as meta-learning and

multi-fidelity optimization (FEURER et al., 2015; Parmentier et al., 2019).

Auto-sklearn achieved a boost in search for the best ML pipeline by warm-starting the

Bayesian optimization procedure via meta-learning (FEURER et al., 2015). Recently, its authors

introduced a new version of the system, dubbed Auto-sklearn 2.0 (FEURER et al., 2020). The

previous version used meta-features to select a set of previously-seen datasets similar to the

new dataset to be tackled and then started with configurations found to perform well. Auto-

sklearn 2.0 utilizes a portfolio of machine learning pipelines that cover as many diverse datasets

as possible and minimizes the risk of failure when facing a new task.

TPOT-SH (Parmentier et al., 2019) presents a different version of TPOT, an AutoML sys-

tem based on Evolutionary Algorithms (EA). EAs are typically slow to converge, which makes

TPOT incapable of scaling to large datasets. Therefore, the authors introduced TPOT-SH in-

spired by the concept of Successive Halving used in Multi-Armed Bandit problems (LATTI-

MORE; SZEPESVÁRI, 2020). This solution allows TPOT to explore the search space faster and

have much better performance on larger datasets. Similarly, Curriculum Learning may help Au-

toML explore a search space by speeding-up faster the training process of candidate algorithms

configurations.
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Curriculum Learning was first proposed by Bengio et al. (2009), where the authors con-

ducted an empirical investigation on the use and effects of CL for supervised visual and lan-

guage tasks. The difficulty of examples was determined by the loss value1 of a pre-trained

model. Similarly, our work approaches the estimation of the difficulty of each example relying

on pre-trained models.

Since its proposal, CL has been investigated on a plenty of ML applications, such as rein-

forcement learning (FLORENSA et al., 2017; NARVEKAR et al., 2020), natural language processing

(PLATANIOS et al., 2019; XU et al., 2020), healthcare prediction (EL-BOURI et al., 2020), computer

vision (GUO et al., 2018; PENTINA; SHARMANSKA; LAMPERT, 2015; Wang et al., 2019).

However, to the best of our knowledge, Guo et al. (2020) is the only previous work that

investigates the use of CL on AutoML domains, more specifically NAS. Neural architecture

search methods aim to search for an optimal architecture in a predefined search space that

is often extremely large. Due to the limitation of computational resources, searching in the

entire space of architectures is unfeasible. The affordable approach is to sample a very small

proportion of the architectures from the search space. It causes NAS models to become hard to

train, and they often find sub-optimal architectures. Trying to attack this problem, Guo et al.

(2020) proposed a curriculum search method that starts from a small search space and gradually

incorporates the learned knowledge to guide the search in a large space. Extensive experiments

on CIFAR-10 and ImageNet demonstrated significant improvements in the search efficiency

and architecture performance over previous NAS methods.

In contrast to the previously described work, in this work, we focus on applying CL strate-

gies on AutoML for ML pipelines that do not include deep neural networks. The previous

empirical investigations on CL have shown improvements in multiple ML domains. Multi-

fidelity optimization and meta-learning have been helpful to speed up AutoML procedures. In

our work, we investigated CL strategies on AutoML tasks while still leveraging the benefits

of multi-fidelity optimization and meta-learning by adapting the SH procedure utilized by the

CASH solvers implemented in Auto-sklearn.

1The loss value indicates how bad the model’s prediction was on a single example. A perfect prediction has a
loss value of zero, while worse predictions will have greater loss values.
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Since a predefined CL requires human intervention and it is opposite to the primary goal of

AutoML, we chose to follow the automatic CL strategy. More specifically, we adopt a Transfer

Teacher strategy, following the general principle illustrated in Figure 4.1.

Training
dataset

Difficult
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Pretrain Training
Scheduler

Model
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Figure 4.1: General Transfer Teacher curriculum design.

As automatic difficulty measurers, we utilized instance hardness (IH) methods to assign

a score of difficulty to each data example. Hardness ordering, that is, the use of IH methods

to order examples by difficulty for supervised classification problems, was first introduced by

(SMITH; MARTINEZ, 2016). A hardness ordering uses instance hardness to order the instances in

a data set based on their likelihood of being misclassified.

We use the k-Disagreeing Neighbors and an ensemble-based approach to estimate IH and

generate a curriculum by hardness ordering, and also present a probabilistic-based method for

doing so:

• k-Disagreeing Neighbors (kDN): kDN measures the local overlap between an instance

and its nearest neighbors. In this method, an instance is considered hard to classify when

there is an overlap of different classes in its region of competence. The kDN of an instance

is the percentage of the k nearest neighbors (using Euclidean distance) of that instance

with a different target class value (SMITH; MARTINEZ; GIRAUD-CARRIER, 2014).
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• Gaussian Mixture Model (GMM): In this work, we investigated the use of GMM as an

estimator of IH. A GMM is a parametric function of probability density represented as a

weighted sum of the densities of Gaussian components (REYNOLDS, 2009). The central

idea of these probabilistic models is that all data points are generated from a mixture of a

finite number of Gaussian distributions with unknown parameters. Our approach consists

of fitting a GMM to a dataset, then, for every instance, we extract the probabilities of

belonging to one the N Gaussian distributions, where N is the number of target classes.

Thus, the IH will be defined according to the probability of an instance not being gen-

erated by a Gaussian distribution. Considering that the number of Gaussians is defined

according to the number of target classes, the instances that are in the decision boundaries

between Gaussians will be deemed to have a greater degree of difficulty than those closer

to a Gaussian’s centroid.

• An ensemble of algorithms: We considered an ensemble of different learning algo-

rithms for estimating IH. The ensemble is composed of a Support Vector Machine (SVM)

(VAPNIK, 2013), a Random Forest (RF) (BREIMAN, 2001) and a Multi-Layer Perceptron

(HORNIK; STINCHCOMBE; WHITE, 1989). In our approach, we fit the ensemble to a dataset

and extract prediction scores for every instance. We assume the scores to be inversely

proportional to IH, that is, instances with higher scores are easily assigned to the correct

target class, therefore they have a lower IH value. Instances with lower prediction scores

will be harder to classify and thus have a higher IH value.

After generating a curriculum by hardness ordering, it is necessary only a training scheduler

to apply CL. In Auto-sklearn, when using the BOSH (or BOHB) optimizer, subsets of training

data can be taken as a budget. By default, these subsets are randomly sampled from the training

data. We adapted this sampling strategy to select subsamples of data according to a curriculum

strategy, such as CL or AntiCL. Therefore, in our approach, CurL-AutoML, the SH procedure

used in both BOSH and BOHB algorithms acts as a predefined training scheduler for Auto-

sklearn.

For the CL approach, the relatively easiest examples are sampled first, then SH evaluates

algorithms configurations on it, discarding the worst-performing half. In the next iterations,

SH will progressively sample harder data and repeat the process, until the budget reaches its

limit and one configuration is left. In the AntiCL approach, in turn, the process starts form the

hardest examples and goes on decreasing the difficult of the instances until the end. In contrast

to the general transfer teacher curriculum design in Figure 4.1, our training scheduler does not
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samples at each training epoch, but at each SH iteration. Moreover, it does not only involves

the training of a single algorithm, but multiple algorithm configurations.

Figure 4.2 illustrates the design of our proposal. First the selected dataset is utilized to pre-

train a difficulty measurer model, which then is used to assign a difficulty score to each instance

in the dataset. Next, we select one curriculum learning strategy, which could be the traditional

curriculum (easy instances to hard instances) or the anti-curriculum (hard instances to easy in-

stances). Then, we choose between BOSH or BOHB as the CASH solver to be utilized and start

the AutoML optimization process. During optimization, the Successive Halving procedure used

in both CASH solvers acts as the training scheduler using the previously sorted data to train and

evaluate multiple algorithms configurations. Finally, the best ML pipeline constructed during

optimization is outputted.
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Figure 4.2: Curriculum learning-based AutoML design.
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EXPERIMENTAL EVALUATION

In this chapter, we describe our experiments with the proposed CurL-AutoML. Moreover,

we present and discuss the results obtained in our evaluation.

All experiments were performed on a computer with 12 cores Intel Xeon E3 - 12xx v2 (Ivy

Bridge), which operated at 2.4 GHz, and operational memory of 64 GB. Code for all experi-

ments is in the GitHub repository at https://github.com/odahviing-dov/CurL-AutoML.

5.1 Experimental Setup

In total, we selected twelve datasets for experimentation from the Open ML repository.

Table 5.1 presents the datasets. MiniBooNE, Jasmine, Amazon, Australian, Blood transfu-

sion, and Christine, are datasets that represent binary classification problems, while Covertype,

Helena, Fashion-MNIST, CNAE-9, Connect-4, and Dilbert, represent multi-class classification

problems.

First, we generated two different curriculums for each dataset, one by applying kDN and

another via GMM. We noted that the proposed difficulty measurer via an ensemble of algorithms

was taking over 12 hours long to produce a result during experimentation. Since our goal in

this research is to achieve better time and performance efficiency for AutoML, we consider

that taking hours to generate a curriculum is an unfeasible trade-off. Hence, we decided to not

proceed with using the proposed ensemble of algorithms as a difficulty measurer.

The execution of the experiments was carried out through the AutoML benchmark frame-

work introduced by (GIJSBERS et al., 2019). We used this framework to run and evaluate the

performance of our proposed CurL-AutoML, using the BOSH and the BOHB optimizer (with

CL and AntiCL strategies) on the selected datasets. We performed the same experiments for
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Table 5.1: Selected OpenML datasets.

Dataset Instances Features Classes Class balance OpenML ID
Covertype 581,012 55 7 Imbalanced 1596
Helena 65,196 28 100 Imbalanced 41169
MiniBooNE 130,064 51 2 Imbalanced 41150
Blood transfusion 748 5 2 Imbalanced 1464
Amazon 32,769 10 2 Imbalanced 4135
Connect-4 67,557 43 3 Imbalanced 40668
Australian 690 15 2 Balanced 40981
Fashion-MNIST 70,000 785 10 Balanced 40996
Jasmine 2,984 145 2 Balanced 41143
Christine 5418 1637 2 Balanced 41142
CNAE-9 1080 857 9 Balanced 1468
Dilbert 10,000 2001 5 Balanced 41163

Auto-sklearn and compared the results with those achieved by CurL-AutoML. The benchmark-

ing framework supports a broad range of measures. In this work, we chose log loss for both

binary classification and multi-class classification problems. The measures are estimated with

five-fold cross-validation.

Since CurL-AutoML is an adaption of Auto-sklearn, both AutoML tools were used with

the same search spaces. We fixed the number of 12 processing units, 64GB memory, and a run

time of 1 hour per cross-validation fold as hyperparameters that specified available resources.

5.2 Results and Discussion

In this section, we describe the results we obtained in our experimentation. All curricu-

lum approaches were executed by our proposed CurL-AutoML using both BOSH and BOHB

optimizers, while the standard Auto-sklearn carried out the “No curriculum” approach.

The total time for generating a curriculum via kDN and GMM for each dataset is presented

in Table 5.2. In general, both kDN and GMM difficulty measurers could generate a curriculum

in a feasible time, but kDN had the lowest average time.

Table 5.3 illustrates a subsample of the generated curriculum for the MiniBooNE dataset.

The index column corresponds to the index of each instance in the dataset default order. The

score column indicates the difficulty assigned to an instance, and it ranges from zero (easier

instances) to one (harder instances). In this example, the easiest instance is on index seven

(0.02), and the hardest one is on index four (0.74). By keeping the index and the score of each
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Table 5.2: Time in seconds for generating a curriculum via kDN or GMM, for each dataset.

Dataset Difficulty measurer Time in seconds

Covertype
kDN 400
GMM 129

Helena
kDN 4
GMM 504

MiniBooNE
kDN 20
GMM 110

Jasmine
kDN 0.20
GMM 0.26

Amazon
kDN 1.2
GMM 0.56

Australian
kDN 0.04
GMM 0.04

Fashion-MNIST
kDN 49
GMM 1308

Blood transfusion
kDN 0.01
GMM 0.07

Christine
kDN 1.7
GMM 8.9

CNAE-9
kDN 0.06
GMM 4

Connect-4
kDN 5.9
GMM 4.9

Dilbert
kDN 3
GMM 60

instance in the dataset, we can select instances for model training following an order: easiest to

hardest for typical CL, or the inverse for AntiCL.

Table 5.3: Sample of the generated curriculum for the MiniBooNE dataset.

Index Score
0 0.06
1 0.12
2 0.32
3 0.18
4 0.74
5 0.4
6 0.14
7 0.02
8 0.32
9 0.12
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The results for the Covertype dataset using the BOSH optimizer for all curriculum strategies

(CurL-AutoML) and No curriculum (Auto-sklearn) can be found in Table 5.4. All results were

estimated via log loss using five-fold cross-validation.

Table 5.4: Log loss scores for the multi-class classification task on the Covertype dataset for each
cross-validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.30850 0.20547 0.27961 0.26476 0.22762
AntiCL-kDN 0.26832 0.21157 0.20431 0.15877 0.22368
AntiCL-GMM 0.27007 0.21157 0.27268 0.19952 0.29724
CL-kDN 0.19271 0.19166 0.28512 0.26678 0.27009
CL-GMM 0.29360 0.21157 0.27670 0.26678 0.17950

For this multi-class classification dataset, curriculum strategies achieved better results than

No curriculum on all folds. CL was the best in folds one, two, and five. AntiCL has the ad-

vantage in folds three and four. Curriculums generated via kDN outperformed those by GMM,

yielding better scores in four of the five folds. It demonstrated an improvement when apply-

ing curriculum-based strategies. The average scores for each approach on all five folds are

illustrated in Figure 5.1.
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Figure 5.1: Average (and standard deviation) of log loss scores for the Covertype dataset using
BOSH.

The AntiCL with kDN as the difficulty measurer achieved the best average score (0.2133).

Table 5.5 presents the number of final models that each approach obtained for each cross-

validation fold. In average, all curriculum approaches obtained a model count similar to a

No curriculum approach, as illustrated in Figure 5.2.
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Table 5.5: Number of models for the multi-class classification task on the Covertype dataset for
each cross-validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 3 2 3 3 3
AntiCL-kDN 2 1 3 2 3
AntiCL-GMM 3 1 3 3 2
CL-kDN 4 2 2 2 2
CL-GMM 2 1 3 2 4
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Figure 5.2: Average (and standard deviation) number of models for the Covertype dataset using
BOSH.

Table 5.6: Log loss scores for the multi-class classification task on the Covertype dataset for each
cross-validation fold using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.3085 0.2115 0.2296 0.2203 0.2156
AntiCL-kDN 0.3085 0.2115 0.2464 0.1010 0.3124
AntiCL-GMM 0.2657 0.2777 0.2448 0.2667 0.1811
CL-kDN 0.3058 0.2115 0.1486 0.2667 0.2943
CL-GMM 0.2413 0.2115 0.2011 0.2461 0.2292

The results for the Covertype dataset using the BOHB optimizer for all curriculum strategies

can be found in Table 5.6. In this case, the use of curriculum strategies exhibited improvements

over No curriculum in four out of five folds. CL-GMM achieved the best score in fold 1.

All approaches had similar scores in fold 2, with exception to AntiCL-GMM, which had the

lowest score in this case. CL-kDN achieved the best score in fold 3, followed by CL-GMM. In

fold 4, AntiCL-kDN achieved the best score across folds (0.1010). AntiCL-GMM was the best
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approach in fold 5. Again, the results demonstrated an improvement when applying curriculum-

based strategies, specially in fold 4, however the best results still vary between these methods.

The average score using BOHB for each approach on all five folds are illustrated in Figure 5.3.
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Figure 5.3: Average (and standard deviation) of log loss scores for the Covertype dataset using
BOHB.

The CL with GMM as a difficulty measurer has the best average score (0.2260). Table

5.7 presents the number of final models that each approach obtained for each cross-validation

fold. In average, all curriculum approaches obtained a model count similar to a No curriculum

approach, as illustrated in Figure 5.4.

Table 5.7: Number of models for the multi-class classification task on the Covertype dataset for
each cross-validation fold using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 2 1 2 3 2
AntiCL-kDN 2 1 3 2 1
AntiCL-GMM 3 2 3 2 1
CL-kDN 3 1 3 2 2
CL-GMM 3 1 3 2 3

Table 5.8 displays the results for the Helena dataset with the BOSH optimizer. Mostly,

curriculum strategies achieved better scores by slight differences. Again, curriculums generated

via kDN outperformed those by generated GMM. In this case, the No curriculum approach had

better performance in one of the folds. Figure 5.5 presents the average log loss score for each

approach. Overall, the CL-kDN approach achieved the best average score (2.5532).
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Figure 5.4: Average (and standard deviation) number of models for the Covertype dataset using
BOHB.

Table 5.8: Log loss scores for the multi-class classification task on the Helena dataset for each
cross-validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 2.5618 2.5504 2.5847 2.5506 2.5469
AntiCL-kDN 2.5615 2.5541 2.5852 2.5453 2.5350
AntiCL-GMM 2.5627 2.5563 2.5886 2.5506 2.5440
CL-kDN 2.5496 2.5585 2.5731 2.5514 2.5335
CL-GMM 2.5622 2.5621 2.5881 2.5455 2.5347
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Figure 5.5: Average (and standard deviation) of log loss scores for the Helena dataset using BOSH.
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The model count obtained on each cross-validation fold using BOSH is presented in Table

5.9. All approaches have similar model counts, although Figure 5.6 illustrates that CL-GMM

had less model count variability among folds.

Table 5.9: Model count for the Helena dataset on each cross-validation fold using BOSH.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 7 7 6 5 5
AntiCL-kDN 7 7 6 7 6
AntiCL-GMM 5 6 6 5 6
CL-kDN 6 8 7 6 6
CL-GMM 6 6 6 6 6
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Figure 5.6: Average (and standard deviation) number of models for the Helena dataset using
BOSH.

Table 5.10: Log loss scores for the multi-class classification task on the Helena dataset for each
cross-validation fold using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 2.5666 2.5590 2.5879 2.5506 2.5460
AntiCL-kDN 2.5614 2.5594 2.5887 2.5507 2.5365
AntiCL-GMM 2.5572 2.5516 2.5725 2.5509 2.5377
CL-kDN 2.5560 2.5586 2.5887 2.5497 2.5433
CL-GMM 2.5627 2.5563 2.5887 2.5624 2.5460

The results for the Helena dataset using the BOHB optimizer are presented in Table 5.10.

In this case, curriculum strategies also exhibited minor improvements on all folds. The CL

and AntiCL approaches using curriculums generated via kDN had the best performances, with
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AntiCL-kDN achieving the best scores in folds two, three, and five, while CL-kDN was the best

in the remaining folds (one and four). Figure 5.7 presents the average log loss score for each

approach. Overall, the AntiCL-kDN approach achieved the best average score (2.5540).
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Figure 5.7: Average (and standard deviation) of log loss scores for the Helena dataset using BOHB.

The model count obtained on each cross-validation fold using BOHB is presented in Table

5.11. All approaches have similar model counts, Figure 5.8 shows that AntiCL-GMM had the

highest average model count among folds.

Table 5.11: Model count for the Helena dataset on each cross-validation fold using BOHB.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 5 6 7 5 5
AntiCL-kDN 7 6 5 6 7
AntiCL-GMM 8 6 7 6 7
CL-kDN 5 7 5 6 6
CL-GMM 5 8 5 4 5

Table 5.12: Log loss scores for the binary classification task on the MiniBooNE dataset for each
cross-validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.1405 0.5977 0.2699 0.1300 0.1753
AntiCL-kDN 0.1436 0.1388 0.1365 0.1302 0.1473
AntiCL-GMM 0.3341 0.1353 0.2713 0.1324 0.5357
CL-kDN 0.1399 0.1320 0.1370 0.1323 0.1269
CL-GMM 0.1400 0.1340 0.1340 0.1340 0.1277

The results for the MiniBooNE dataset using BOSH are presented in Table 5.12. In this

binary classification task, the CL approaches outperformed the AntiCL and No curriculum ap-
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Figure 5.8: Average (and standard deviation) number of models for the Helena dataset using
BOHB.

proaches. As seen in Figure 5.9, both CL-kDN and CL-GMM had very similar average scores.

However, the CL-kDN approach achieved the best average score (0.1336).
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Figure 5.9: Average (and standard deviation) of log loss scores for the MiniBooNE dataset using
BOSH.

Table 5.13 shows the model count for the MiniBooNE dataset. The AntiCL-GMM approach

on fold 2 obtained the highest model count (16). However, AntiCL-GMM also has the lowest

model count across folds (2), in fold 1. Figure 5.10 illustrates the average model count for

each approach. The CL-kDN has an average model count of 10 and the lowest variability.
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Since a curriculum strategy can enable faster model training, we suppose that the curriculum

approaches may lead AutoML to a more efficient exploration of the search space by speeding

up the evaluation of configurations. Consequently, we expect to observe two primary outcomes:

(i) a higher number of evaluated models; and (ii) a more accurate result.

Table 5.13: Model count for the MiniBooNE dataset for each cross-validation fold using BOSH.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 9 7 5 9 13
AntiCL-kDN 13 10 14 11 11
AntiCL-GMM 2 16 4 12 7
CL-kDN 10 10 11 9 11
CL-GMM 13 9 13 12 11
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Figure 5.10: Average (and standard deviation) number of models for the MiniBooNE dataset using
BOSH.

Table 5.14: Log loss scores for the binary classification task on the MiniBooNE dataset for each
cross-validation fold using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.1454 0.1376 0.1370 0.1341 0.1296
AntiCL-kDN 0.4836 0.1359 0.1369 0.1325 0.1306
AntiCL-GMM 0.1501 0.1540 0.1435 0.1345 0.1369
CL-kDN 0.6127 0.5161 0.4537 0.1365 0.1284
CL-GMM 0.1457 0.1370 0.1388 0.1397 0.1242

Table 5.14 shows the results for the MiniBooNE dataset using the BOHB optimizer. For

this dataset, the AntiCL-kDN was the best approach in most folds. It slightly surpassed the
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No curriculum baseline in folds two, three, and four. None of the curriculum approaches could

surpass the No curriculum baseline approach in fold 1. Notably, the kDN-based approaches

achieved significantly worse results in this fold, demonstrating that kDN faced some difficulties

in this case. The CL-GMM had the best score across folds in fold five. However, Figure5.11

illustrates that the No curriculum average score was not surpassed in this case.
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Figure 5.11: Average (and standard deviation) of log loss scores for the MiniBooNE dataset using
BOHB.

The average model count achieved by each approach using the BOHB optimizer is dis-

played in Figure 5.12. The No curriculum, AntiCL-GMM, and CL-GMM had a similar aver-

age model count (10), while CL-kDN achieved the lowest average model count, followed by

AntiCL-kDN. As illustrated in Figure 5.11 the CL-kDN approach also had the highest average

log loss score.

Table 5.15: Log loss scores for the binary classification task on the Jasmine dataset for each cross-
validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.3963 0.3982 0.3320 0.4115 0.4632
AntiCL-kDN 0.4070 0.3790 0.3295 0.3929 0.4439
AntiCL-GMM 0.3913 0.3827 0.3578 0.4179 0.4324
CL-kDN 0.3973 0.3935 0.3323 0.4145 0.4333
CL-GMM 0.4014 0.3917 0.3497 0.3944 0.4216

Finally, Table 5.15 contains the log loss scores for the Jasmine dataset obtained using

BOSH.
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Figure 5.12: Average (and standard deviation) number of models for the MiniBooNE dataset using
BOHB.

Table 5.16: Model count for the Jasmine dataset for each cross-validation fold using BOSH.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 11 10 7 11 12
AntiCL-kDN 6 15 10 8 12
AntiCL-GMM 10 14 8 8 13
CL-kDN 15 11 11 7 11
CL-GMM 15 9 11 7 12

The AntiCL-kDN approach was the best in folds two, three, and four, while CL-GMM

scored better in fold 5. The average scores for each approach on all five folds are displayed in

Figure 5.13. In this case, the best average score was achieved by the AntiCL-kDN approach

(0.390519), followed by both CL approaches. In general, all curriculum approaches had better

average scores than a No curriculum approach.

The model count for this dataset is presented in Table 5.16. On average, all approaches

obtained the same model count (10), with the exception to CL-kDN (11), as illustrated in Figure

5.14.

Table 5.17 presents the log loss scores for the Jasmine dataset using the BOHB optimizer.

In this experiment, the AntiCL-GMM and CL-kDN approaches achieved the best scores in fol

2 and fold 3, respectively. Yet, the No curriculum baseline was not surpassed by any of the

curriculum approaches in the remaining three folds. The No curriculum baseline had the best

average score, as exhibited in Figure 5.15.
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Figure 5.13: Average (and standard deviation) number of log loss scores for the Jasmine dataset
using BOSH.
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Figure 5.14: Average (and standard deviation) number of models for the Jasmine dataset using
BOSH.

Table 5.18 displays the model count obtained by each approach using BOHB as the opti-

mizer. Again, the average model count is similar among the approaches, as displayed in Figure

5.16.

The results for the Amazon employee access dataset using BOSH are presented in Table

5.19. For this dataset, curriculum approaches achieved improvements in four folds. AntiCL-

kDN was the best in folds one and four, while AntiCL-GMM and CL-kDN achieved the best

scores in fold two and five, respectively. However, none of the approaches could surpass the
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Table 5.17: Log loss scores for the binary classification task on the Jasmine dataset for each cross-
validation fold using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.3995 0.3755 0.3748 0.3968 0.4255
AntiCL-kDN 0.4005 0.3871 0.4425 0.4622 0.4374
AntiCL-GMM 0.4895 0.3702 0.3452 0.4605 0.4284
CL-kDN 0.4002 0.3847 0.3377 0.4000 0.4868
CL-GMM 0.4464 0.3911 0.4787 0.4143 0.5320
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Figure 5.15: Average (and standard deviation) number of log loss scores for the Jasmine dataset
using BOHB.

Table 5.18: Model count for the Jasmine dataset for each cross-validation fold using BOHB.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 11 10 7 11 12
AntiCL-kDN 6 15 10 8 12
AntiCL-GMM 10 14 8 8 13
CL-kDN 15 11 11 7 11
CL-GMM 15 9 11 7 12

Table 5.19: Log loss scores for the binary classification task on the Amazon employee access dataset
for each cross-validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.1603 0.1598 0.1563 0.1700 0.1511
AntiCL-kDN 0.1500 0.1567 0.1763 0.1578 0.1560
AntiCL-GMM 0.2671 0.1554 0.1718 0.1589 0.1752
CL-kDN 0.1512 0.1653 0.1586 0.1819 0.1484
CL-GMM 0.1721 0.1582 0.1679 0.1609 0.1532
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Figure 5.16: Average (and standard deviation) number of models for the Jasmine dataset using
BOHB.

baseline result in fold three. Figure 5.17 demonstrates that, in average, most of the CL and

AntiCL approaches achieved worse results than the baseline. Although, the AntiCL-kDN had

an average score (0.1594) slightly better than the baseline (0.1595). Furthermore, Table 5.20

shows the model count obtained by the approaches on each cross-validation fold. In average,

the AntiCL-kDN has the lowest average model count among approaches, as displayed in Figure

5.18
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Figure 5.17: Average (and standard deviation) number of log loss scores for the Amazon employee
access dataset using BOSH.
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Table 5.20: Model count for the Amazon employee access dataset for each cross-validation fold
using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 9 12 11 10 15
AntiCL-kDN 11 8 8 9 11
AntiCL-GMM 13 11 15 10 8
CL-kDN 14 9 16 13 12
CL-GMM 12 13 10 8 7
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Figure 5.18: Average (and standard deviation) number of models for the Amazon employee access
dataset using BOSH.

The results for the Amazon employee access dataset using BOHB are presented in Table

5.21. This time, the CL approach could not surpass the No curriculum baseline in most folds.

However, the CL-kDN exhibited improvements over the baseline in folds one and three. More-

over, as shown in Figure 5.19, CL-kDN achieved the best average score. The model count

obtained by each approach is displayed in Table 5.22. As displayed in Figure 5.20, the CL-kDN

has a higher average model count than the No curriculum baseline, while AntiCL-GMM has the

lowest among approaches.

Table 5.23 shows the results for the Australian dataset with the BOSH optimizer. Again,

curriculum strategies exhibited improvements in most folds. CL-GMM achieved the best scores

in folds one and two, while AntiCL-kDN and CL-kDN were better in folds four and five, re-

spectively. While none of the approaches were able to surpass the baseline in fold three, Figure

5.21 demonstrates that, on average, all curriculum strategies showed improvement over the No

curriculum baseline, and CL-kDN achieved the best average score. The model count obtained
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Table 5.21: Log loss scores for the binary classification task on the Amazon employee access dataset
for each cross-validation fold using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.2024 0.1531 0.1770 0.1569 0.1450
AntiCL-kDN 0.1746 0.1671 0.1611 0.1573 0.1577
AntiCL-GMM 0.2988 0.2645 0.1645 0.1617 0.1505
CL-kDN 0.1553 0.1564 0.1603 0.1582 0.1597
CL-GMM 0.2561 0.1933 0.1699 0.1656 0.1536
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Figure 5.19: Average (and standard deviation) number of log loss scores for the Amazon employee
access dataset using BOHB.

Table 5.22: Model count for the Amazon employee access dataset for each cross-validation fold
using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 15 11 11 8 6
AntiCL-kDN 15 14 17 14 9
AntiCL-GMM 15 14 7 13 14
CL-kDN 13 14 8 11 9
CL-GMM 10 13 12 11 15

Table 5.23: Log loss scores for the binary classification task on the Australian dataset for each
cross-validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.2930 0.7719 0.3977 0.3458 0.4145
AntiCL-kDN 0.4918 0.3973 0.4028 0.3440 0.5180
AntiCL-GMM 0.3401 0.3724 0.4836 0.3882 0.4497
CL-kDN 0.4105 0.3657 0.4150 0.4055 0.3685
CL-GMM 0.2825 0.3525 0.4574 0.4213 0.5676
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Figure 5.20: Average (and standard deviation) number of models for the Amazon employee access
dataset using BOHB.

on each cross-validation fold is presented in Table 5.24. In average, the No curriculum baseline

obtained the highest model count, followed by CL-GMM and CL-kDN, as shown in Figure

5.22.
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Figure 5.21: Average (and standard deviation) number of log loss scores for the Australian dataset
using BOSH.

The results for the Australian dataset using BOHB are displayed in Table 5.25. In this

experiment, curriculum strategies showed improvement in most folds, with exception to fold

one. AntiCL-kDN achieved the best scores in folds three and five, while CL-GMM and AntiCL-
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Table 5.24: Model count for the Australian dataset for each cross-validation fold using BOSH.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 19 12 21 18 16
AntiCL-kDN 16 17 14 11 10
AntiCL-GMM 11 10 10 17 18
CL-kDN 16 15 10 14 17
CL-GMM 20 17 14 10 15
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Figure 5.22: Average (and standard deviation) number of models for the Australian dataset using
BOSH.

GMM were the best in folds two and four, respectively. Overall, the AntiCL-kDN had the best

average score, as shown in Figure 5.23, it surpasses the other curriculum strategies and the

baseline. Table 5.26 presents the model count obtained by each approach. Figure 5.24 shows

that, in average, the approaches obtained similar model count values, yet AntiCL-GMM has the

lowest average model count.

Table 5.25: Log loss scores for the binary classification task on the Australian dataset for each
cross-validation fold using BOHB.

.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.3148 0.4918 0.5515 0.6686 0.5367
AntiCL-kDN 0.3863 0.3762 0.3965 0.4171 0.4519
AntiCL-GMM 0.5653 0.4579 0.4413 0.3568 0.6820
CL-kDN 0.3684 0.3872 0.4000 0.3944 1.0419
CL-GMM 0.3842 0.3690 0.5164 0.3790 0.5604

The results for the Fashion-MNIST dataset using BOSH are presented in Table 5.27. Cur-

riculum strategies show improvements in most folds, with the exception of fold three. CL-GMM
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Figure 5.23: Average (and standard deviation) number of log loss scores for the Australian dataset
using BOHB.

Table 5.26: Model count for the Australian dataset for each cross-validation fold using BOHB.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 19 13 7 18 14
AntiCL-kDN 15 10 19 10 15
AntiCL-GMM 16 9 9 11 10
CL-kDN 15 14 17 12 15
CL-GMM 17 14 10 10 22
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Figure 5.24: Average (and standard deviation) number of models for the Australian dataset using
BOHB.
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Table 5.27: Log loss scores for the multi-class classification task on the Fashion-MNIST dataset for
each cross-validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.2797 0.2739 0.2716 0.2681 0.2625
AntiCL-kDN 0.2758 0.2677 0.2725 0.2703 0.2616
AntiCL-GMM 0.2742 0.2672 0.2761 0.2682 0.2664
CL-kDN 0.2826 0.2669 0.2771 0.2698 0.2640
CL-GMM 0.2739 0.2696 0.2735 0.2641 0.2679

obtained the best scores in folds one and four, while CL-kDN and AntiCL-kDN were better than

the baseline in folds two and five, respectively. Figure 5.25 illustrates that, in average, only the

CL-kDN approach could not surpass the No curriculum baseline, and AntiCL-kDN achieved

the best score. Table 5.28 presents the model count obtained by the approaches on each cross-

validation fold. Once again, all approaches had very similar model count values, also illustrated

in Figure 5.26.
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Figure 5.25: Average (and standard deviation) number of log loss scores for the Fashion-MNIST
dataset using BOSH.

Table 5.28: Model count for the Fashion-MNIST dataset for each cross-validation fold using
BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 5 4 4 5 5
AntiCL-kDN 5 4 4 5 5
AntiCL-GMM 7 7 3 5 4
CL-kDN 4 5 5 6 5
CL-GMM 4 6 5 5 5
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Figure 5.26: Average (and standard deviation) number of models for the Fashion-MNIST dataset
using BOSH.

Table 5.29 presents the results for the Fashion-MNIST dataset using the BOHB optimizer.

This time, none of the curriculum strategies were able to surpass the baseline in folds one

and two. Yet, AntiCL-GMM demonstrated improvements in fold four and five. CL-kDN also

exhibited a better score in fold three. In average, AntiCL-kDN and AntiCL-GMM showed

minor improvements over the baseline, as illustrated in Figure 5.27. The model count obtained

by each approach is presented in Table 5.30. As displayed in Figure 5.28, the average model

count is similar to all approaches.

Table 5.29: Log loss scores for the multi-class classification task on the Fashion-MNIST dataset for
each cross-validation fold using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.2704 0.2659 0.2741 0.2706 0.2708
AntiCL-kDN 0.2744 0.2711 0.2700 0.2702 0.2641
AntiCL-GMM 0.2784 0.2716 0.2719 0.2674 0.2581
CL-kDN 0.2752 0.2716 0.2694 0.2680 0.2678
CL-GMM 0.2736 0.2736 0.2810 0.2682 0.2672

Table 5.31 displays the results for the Blood transfusion dataset. Once again, curriculum

strategies exhibited improvements over the baseline. AntiCL-kDN was the best approach in

fold one, while CL-kDN and AntiCL-GMM achieved the best scores in folds three and four,

respectively. Yet, the baseline could not be surpassed by any approach in folds two and five.

Moreover, Figure 5.29 illustrates that, in average, none of the approaches were better than the
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Figure 5.27: Average (and standard deviation) number of log loss scores for the Fashion-MNIST
dataset using BOHB.

Table 5.30: Model count for the Fashion-MNIST dataset for each cross-validation fold using
BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 5 6 5 5 4
AntiCL-kDN 5 5 5 5 4
AntiCL-GMM 6 4 5 5 5
CL-kDN 6 4 5 6 4
CL-GMM 5 5 4 4 5

baseline in this case. Table 5.32 shows the model count for each approach. The average model

count across cross-validation folds is illustrated in Figure 5.30.

Table 5.31: Log loss scores for the binary classification task on the Blood transfusion dataset for
each cross-validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.5993 0.4902 0.5349 0.6931 0.4426
AntiCL-kDN 0.4827 0.7352 0.5373 0.5376 0.6571
AntiCL-GMM 0.5558 0.6335 0.5463 0.4968 0.5485
CL-kDN 0.5498 0.4961 0.5407 0.5824 0.6810
CL-GMM 0.6381 0.6673 0.5192 0.6821 0.4963

The results for the Blood transfusion dataset using the BOHB optimizer are presented in

Table 5.33. In this experiment, AntiCL-GMM achieved the best scores in folds one and four.

The CL-kDN approach was the best in fold two, while AntiCL-kDN had the best result in fold

three. None of the approaches were able to surpass the baseline in fold five. Figure 5.31 shows

that, in average, the best approach was AntiCL-GMM. The CL-GMM and CL-kDN approaches
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Figure 5.28: Average (and standard deviation) number of models for the Fashion-MNIST dataset
using BOHB.
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Figure 5.29: Average (and standard deviation) number of log loss scores for the Blood transfusion
dataset using BOSH.

also achieved better average results than the baseline. Table 5.34 presents the model count

results for this experiment. In average, the AntiCL-kDN obtained the highest model count

among approaches, as illustrated in Figure 5.32.

Table 5.35 shows the results for the Christine dataset using the BOSH optimizer. In this

case, only the AntiCL-GMM was able to achieve better results than the baseline in folds three,

four, and five. The baseline was not surpassed in folds one and three. Although, Figure 5.33
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Table 5.32: Model count for the Blood transfusion dataset for each cross-validation fold using
BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 11 17 18 2 15
AntiCL-kDN 7 5 16 9 7
AntiCL-GMM 9 7 17 20 4
CL-kDN 14 17 24 24 4
CL-GMM 5 8 21 5 22
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Figure 5.30: Average (and standard deviation) number of models for the Blood transfusion dataset
using BOSH.

Table 5.33: Log loss scores for the binary classification task on the Blood transfusion dataset for
each cross-validation fold using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.5613 0.4919 0.6009 0.6287 0.5316
AntiCL-kDN 0.5670 0.4643 0.5237 0.6262 0.6812
AntiCL-GMM 0.5090 0.5167 0.5379 0.4874 0.5371
CL-kDN 0.5825 0.4331 0.5955 0.5967 0.5442
CL-GMM 0.5712 0.4447 0.5535 0.5552 0.5422

illustrates that, in average, both AntiCL-GMM and AntiCL-kDN achieved better scores than the

baseline. The model count that each approach obtained is displayed in Table 5.36. The model

count is, in average, similar among the approaches, as can be observed in Figure 5.34.

Table 5.37 shows the results for the Christine dataset using BOHB. In this experiment, the

baseline was not surpassed only in fold three. CL-kDN exhibited superior results in folds four

and five, while AntiCL-GMM and CL-GMM achieved the best results in folds one and two,
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Figure 5.31: Average (and standard deviation) number of log loss scores for the Blood transfusion
dataset using BOHB.

Table 5.34: Model count for the Blood transfusion dataset for each cross-validation fold using
BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 13 17 13 5 9
AntiCL-kDN 8 16 24 5 31
AntiCL-GMM 16 14 11 16 13
CL-kDN 19 10 11 14 16
CL-GMM 16 2 15 6 4

Table 5.35: Log loss scores for the binary classification task on the Christine dataset for each
cross-validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.5162 0.5191 0.5094 0.5228 0.6147
AntiCL-kDN 0.5287 0.5152 0.5546 0.5209 0.5485
AntiCL-GMM 0.5372 0.4923 0.5423 0.5201 0.5424
CL-kDN 0.6442 0.5757 0.5537 0.5666 0.5899
CL-GMM 0.5179 0.5042 0.5461 0.5338 0.6663

Table 5.36: Model count for the Christine dataset for each cross-validation fold using BOSH.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 13 16 10 9 11
AntiCL-kDN 18 12 11 12 10
AntiCL-GMM 14 11 14 16 16
CL-kDN 9 12 10 8 11
CL-GMM 13 12 16 12 7
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Figure 5.32: Average (and standard deviation) number of models for the Blood transfusion dataset
using BOHB.
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Figure 5.33: Average (and standard deviation) number of log loss scores for the Christine dataset
using BOSH.

respectively. This three approaches were, in average, better than the baseline, as displayed in

Figure 5.35. The best average result was obtained by the AntiCL-GMM approach. Table 5.38

displays the model count that each approach obtained on each cross-validation fold. Figure 5.36

illustrates that the average model count is again similar among approaches.

The results from the experiment on the CNAE-9 dataset, using BOSH, are presented in Ta-

ble 5.39. Curriculum strategies show improvements in three folds. CL-GMM achieved achieved

the best results in fold one and four, while AntiCL-GMM had the best score in fold two. The No



5.2 Results and Discussion 61

No curriculum AntiCL-kDN CL-kDN AntiCL-GMM CL-GMM
Approach

0

2

4

6

8

10

12

14

16

M
od

el
 c

ou
nt

Figure 5.34: Average (and standard deviation) number of models for the Christine dataset using
BOSH.

Table 5.37: Log loss scores for the binary classification task on the Christine dataset for each
cross-validation fold using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.5232 0.5659 0.5044 0.5437 0.5654
AntiCL-kDN 0.5193 0.5527 0.5219 0.5388 0.5593
AntiCL-GMM 0.5014 0.5142 0.5180 0.5354 0.5359
CL-kDN 0.5396 0.5158 0.5485 0.5160 0.5321
CL-GMM 0.6406 0.5101 0.5821 0.5516 0.5329

Table 5.38: Model count for the Christine dataset for each cross-validation fold using BOHB.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 13 17 11 10 12
AntiCL-kDN 10 10 10 10 14
AntiCL-GMM 14 11 10 12 14
CL-kDN 12 15 12 11 16
CL-GMM 9 14 12 12 12

curriculum baseline was not surpassed by any approach in fold three. Furthermore, Figure 5.37

illustrates that, in average, none of the approaches results surpassed the baseline. Table 5.40

presents the model count for each approach. Figure 5.38 shows that the average model count

for the AntiCL-GMM was the highest, followed directly by CL-GMM. The other approaches

had similar average model count values.

Table 5.41 presents the results for the CNAE-9 dataset using BOHB. In this case, the

AntiCL-GMM and CL-kDN presented improvements over the baseline in folds two and five,
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Figure 5.35: Average (and standard deviation) number of log loss scores for the Christine dataset
using BOHB.
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Figure 5.36: Average (and standard deviation) number of models for the Christine dataset using
BOHB.

respectively. Yet, Figure 5.39 shows that none of the curriculum strategies surpassed the base-

line average results. Table 5.42 displays the model count obtained for this dataset. Figure 5.40

illustrates the average model count for each approach.

The results for the Connect-4 dataset are displayed in Table 5.43. In this experiment, cur-

riculum strategies were able to surpass the baseline results in all folds. The AntiCL-GMM

approach had the best score in fold one. AntiCL-kDN surpassed all other approaches in folds

two, three and four, while CL-GMM was the best in fold five. The average results displayed
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Table 5.39: Log loss scores for the multi-class classification task on the CNAE-9 dataset for each
cross-validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.1228 0.2657 0.1255 0.1849 0.1641
AntiCL-kDN 0.1046 0.2854 0.1351 0.2287 0.1741
AntiCL-GMM 0.1116 0.2836 0.1436 0.1897 0.2042
CL-kDN 0.1467 0.2918 0.2188 0.1964 0.1941
CL-GMM 0.0857 0.3518 0.1994 0.1494 0.1786
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Figure 5.37: Average (and standard deviation) number of log loss scores for the CNAE-9 dataset
using BOSH.

Table 5.40: Model count for the CNAE-9 dataset for each cross-validation fold using BOSH.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 5 6 5 4 7
AntiCL-kDN 7 5 6 6 4
AntiCL-GMM 7 6 7 8 4
CL-kDN 7 5 6 3 4
CL-GMM 6 7 5 4 8

Table 5.41: Log loss scores for the multi-class classification task on the CNAE-9 dataset for each
cross-validation fold using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.0737 0.2953 0.1343 0.1402 0.1345
AntiCL-kDN 0.0837 0.3144 0.1794 0.1513 0.1760
AntiCL-GMM 0.0904 0.2923 0.1688 0.1608 0.1497
CL-kDN 0.0754 0.2962 0.1395 0.1735 0.1022
CL-GMM 0.0795 0.3316 0.2010 0.2018 0.1404
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Figure 5.38: Average (and standard deviation) number of models for the CNAE-9 dataset using
BOSH.

Table 5.42: Model count for the CNAE-9 dataset for each cross-validation fold using BOHB.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 4 6 5 5 3
AntiCL-kDN 6 6 4 6 5
AntiCL-GMM 6 4 4 5 4
CL-kDN 6 5 8 7 3
CL-GMM 7 6 6 6 6

in Figure 5.41 show that all proposed curriculum strategies surpassed the baseline. Table 5.44

presents the model count obtained by each approach. As shown in Figure 5.42, in average, the

AntiCL-GMM approach had the most models, while AntiCL-kDN had the least.

Table 5.43: Log loss scores for the multi-class classification task on the Connect-4 dataset for each
cross-validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.3811 0.3662 0.3681 0.3675 0.3578
AntiCL-kDN 0.3678 0.3599 0.3317 0.3788 0.3728
AntiCL-GMM 0.3562 0.3619 0.3314 0.3649 0.3479
CL-kDN 0.3602 0.3632 0.3384 0.3579 0.3671
CL-GMM 0.3503 0.3669 0.3400 0.3859 0.3588

Table 5.45 presents the results for the Connect-4 dataset using BOHB. The baseline result

was not surpassed. Yet, curriculum strategies exhibited improvements in every other fold. The

CL-GMM approach achieved the best scores in folds two and four, while AntiCL-kDN and
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Figure 5.39: Average (and standard deviation) number of log loss scores for the CNAE-9 dataset
using BOHB.
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Figure 5.40: Average (and standard deviation) number of models for the CNAE-9 dataset using
BOHB.

Table 5.44: Model count for the Connect-4 dataset for each cross-validation fold using BOSH.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 3 4 2 3 5
AntiCL-kDN 2 4 6 2 2
AntiCL-GMM 6 4 5 6 6
CL-kDN 4 4 5 6 4
CL-GMM 5 4 3 3 6
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Figure 5.41: Average (and standard deviation) number of log loss scores for the Connect-4 dataset
using BOSH.
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Figure 5.42: Average (and standard deviation) number of models for the Connect-4 dataset using
BOSH.

CL-kDN had the best scores, respectively, in folds one and five. Figure 5.43 illustrates that,

in average, most curriculum strategies surpassed the baseline results, with the exception of

AntiCL-GMM. The model count obtained by each approach on each cross-validation fold is

displayed in Table 5.46. The average model count is similar among the approaches, as can be

observed in Figure 5.44.

Table 5.47 displays the results for the Dilbert dataset using BOSH. The use of curriculum

strategies showed improvements in four folds. The CL-GMM approach had the best scores
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Table 5.45: Log loss scores for the multi-class classification task on the Connect-4 dataset for each
cross-validation fold using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.3726 0.3697 0.3283 0.3740 0.3733
AntiCL-kDN 0.3520 0.3642 0.3323 0.3809 0.3642
AntiCL-GMM 0.3561 0.3800 0.3685 0.3483 0.3644
CL-kDN 0.3683 0.3692 0.3287 0.3644 0.3513
CL-GMM 0.3746 0.3571 0.3379 0.3584 0.3740
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Figure 5.43: Average (and standard deviation) number of log loss scores for the Connect-4 dataset
using BOHB.

Table 5.46: Model count for the Connect-4 dataset for each cross-validation fold using BOHB.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 4 6 6 6 3
AntiCL-kDN 5 3 6 4 3
AntiCL-GMM 6 2 4 7 4
CL-kDN 3 7 6 4 4
CL-GMM 2 5 5 4 3

in folds two and four, while AntiCL-kDN and AntiCL-GMM surpassed the baseline results,

respectively, in folds three and five. None of the approaches could surpass the baseline in fold

one. However, the average results displayed in Figure 5.45, show that, all approaches achieved

slightly better average results than the baseline. Table 5.48 presents the model count obtained

in this case. In average, the model count among approaches is quite similar, as demonstrated in

Figure 5.46.
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Figure 5.44: Average (and standard deviation) number of models for the Connect-4 dataset using
BOHB.

Table 5.47: Log loss scores for the multi-class classification task on the Dilbert dataset for each
cross-validation fold using BOSH.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.0390 0.0297 0.0476 0.0231 0.0480
AntiCL-kDN 0.0445 0.0226 0.0471 0.0239 0.0436
AntiCL-GMM 0.0510 0.0262 0.0498 0.0222 0.0371
CL-kDN 0.0414 0.0232 0.0547 0.0202 0.0391
CL-GMM 0.0423 0.0198 0.0564 0.0197 0.0430

Table 5.48: Model count for the Dilbert dataset for each cross-validation fold using BOSH.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 2 3 5 4 6
AntiCL-kDN 4 3 3 3 5
AntiCL-GMM 5 7 4 3 5
CL-kDN 3 5 4 5 4
CL-GMM 4 4 5 3 4

Table 5.49 shows the results for the Dilbert dataset using BOHB. The CL-GMM approach

achieved the best scores in fold two and five, while AntiCL-GMM and CL-kDN had the best

results, respectively, in folds one and three. None of the approaches were able to surpass the

No curriculum baseline in fold four. Although, as Figure 5.47 illustrates, all approaches had

better average results than the baseline, and CL-GMM was the best approach. Table 5.50 shows

the model count for this experiment. Once again, the average model count seems similar to all

approaches, as shown in Figure 5.48.
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Figure 5.45: Average (and standard deviation) number of log loss scores for the Dilbert dataset
using BOSH.
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Figure 5.46: Average (and standard deviation) number of models for the Dilbert dataset using
BOSH.

Finally, Tables 5.51 and 5.52 presents the average log loss scores and standard deviation

on every selected dataset for each curriculum approach and optimizer. While using the BOSH

optimizer (Table 5.51), curriculum approaches achieved minor improvements over the No cur-

riculum baseline on ten of the twelve selected datasets, the AntiCL and CL approaches with

a curriculum generated via kDN achieved improvements in seven datasets, while those gener-

ated via GMM were better in the remaining three. The AntiCL-kDN is the approach with the

most number of improvements when using BOSH, followed by CL-kDN. The baseline was not
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Table 5.49: Log loss scores for the multi-class classification task on the Dilbert dataset for each
cross-validation fold using BOHB.

.
Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 0.0524 0.0257 0.0570 0.0196 0.0444
AntiCL-kDN 0.0522 0.0291 0.0527 0.0198 0.0453
AntiCL-GMM 0.0414 0.0248 0.0488 0.0214 0.0438
CL-kDN 0.0563 0.0268 0.0442 0.0208 0.0505
CL-GMM 0.0505 0.0231 0.0452 0.0212 0.0346
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Figure 5.47: Average (and standard deviation) number of log loss scores for the Dilbert dataset
using BOHB.

Table 5.50: Model count for the Dilbert dataset for each cross-validation fold using BOHB.
.

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
No Curriculum 4 5 3 3 6
AntiCL-kDN 5 3 4 6 6
AntiCL-GMM 4 5 3 4 5
CL-kDN 3 5 4 7 8
CL-GMM 4 4 4 4 4

surpassed on the Blood transfusion (binary classification) dataset, and the CNAE-9 (multiclass

classification) dataset.

For the BOHB optimizer(Table 5.52), curriculum approaches showed improvements on

nine of the twelve selected datasets. The AntiCL and CL approaches based on GMM surpassed

the baseline average score on six datasets, while the kDN based approaches achieved improve-

ments in three datasets. None of the curriculum approaches achieved better results than the No

curriculum baseline on the MiniBooNE (binary classification), Jasmine (binary classification),
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Figure 5.48: Average (and standard deviation) number of models for the Dilbert dataset using
BOHB.

and CNAE-9 (multiclass classification) datasets. When using BOHB, the AntiCL-GMM was

the most successful approach, achieving the best results on four datasets.

Table 5.51: Average log loss scores and standard deviation on all selected datasets for every cur-
riculum strategy using BOSH.

Dataset No CL AntiCL-kDN AntiCL-GMM CL-kDN CL-GMM
Covertype 0.2572 (0.04) 0.2133 (0.03) 0.2502 (0.04) 0.2413 (0.04) 0.2456 (0.04)

Helena 2.5589 (0.01) 2.5563 (0.01) 2.5605 (0.01) 2.5532 (0.01) 2.5585 (0.02)
MiniBooNE 0.2627 (0.19) 0.1393 (0.006) 0.2818 (0.16) 0.1337 (0.005) 0.1340 (0.004)

Jasmine 0.4003 (0.04) 0.3905 (0.04) 0.3965 (0.02) 0.3942 (0.04) 0.3918 (0.02)
Amazon 0.1595 (0.06) 0.1594 (0.09) 0.1857 (0.04) 0.1611 (0.01) 0.1624 (0.007)

Australian 0.4446 (0.18) 0.4308 (0.07) 0.4068 (0.05) 0.3930 (0.02) 0.4163 (0.1)
Fashion-MNIST 0.2711 (0.006) 0.2696 (0.005) 0.2704 (0.004) 0.2721 (0.007) 0.2698 (0.004)

Blood transfusion 0.5520 (0.09) 0.5900 (0.1) 0.5562 (0.04) 0.5700 (0.06) 0.6006 (0.08)
Christine 0.5364 (0.04) 0.5336 (0.01) 0.5269 (0.02) 0.5860 (0.03) 0.5537 (0.06)
CNAE-9 0.1726 (0.05) 0.1856 (0.07) 0.1866 (0.06) 0.2095 (0.05) 0.1930 (0.09)

Connect-4 0.3681 (0.08) 0.3622 (0.01) 0.3524 (0.01) 0.3574 (0.01) 0.3604 (0.01)
Dilbert 0.0375 (0.01) 0.0364 (0.01) 0.0373 (0.01) 0.0357 (0.01) 0.0363 (0.01)
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Table 5.52: Average log loss scores and standard deviation on all selected datasets for every cur-
riculum strategy using BOHB.

Dataset No CL AntiCL-kDN AntiCL-GMM CL-kDN CL-GMM
Covertype 0.2371 (0.04) 0.2360 (0.08) 0.2472 (0.03) 0.2454 (0.06) 0.2260 (0.01)

Helena 2.5621 (0.01) 2.5594 (0.01) 2.5540 (0.01) 2.5593 (0.01) 2.5633 (0.01)
MiniBooNE 0.1368 (0.005) 0.2040 (0.15) 0.1438 (0.008) 0.3695 (0.22) 0.1371 (0.007)

Jasmine 0.3945 (0.02) 0.4260 (0.03) 0.4188 (0.06) 0.4019 (0.05) 0.4526 (0.05)
Amazon 0.1669 (0.02) 0.1635 (0.007) 0.2080 (0.06) 0.1580 (0.002) 0.1877 (0.04)

Australian 0.5127 (0.1) 0.4056 (0.02) 0.5007 (0.1) 0.5184 (0.29) 0.4418 (0.08)
Fashion-MNIST 0.2704 (0.002) 0.2699 (0.003) 0.2695 (0.007) 0.2704 (0.003) 0.2721 (0.005)

Blood transfusion 0.5629 (0.05) 0.5725 (0.08) 0.5176 (0.02) 0.5504 (0.06) 0.5334 (0.05)
Christine 0.5405 (0.02) 0.5384 (0.01) 0.5210 (0.01) 0.5304 (0.01) 0.5635 (0.05)
CNAE-9 0.1556 (0.08) 0.1810 (0.08) 0.1724 (0.07) 0.1574 (0.08) 0.1908 (0.09)

Connect-4 0.3636 (0.01) 0.3587 (0.01) 0.3635 (0.01) 0.3564 (0.01) 0.3604 (0.01)
Dilbert 0.0398 (0.01) 0.0398 (0.01) 0.0361 (0.01) 0.0397 (0.01) 0.0334 (0.01)



Chapter 6
FINAL REMARKS

We proposed and compared different CL strategies on the CASH solvers of an AutoML sys-

tem to improve the search space exploration and find good performing machine-learned models.

Our proposal, CurL-AutoML, has the design of an automatic CL framework. More specifically,

we adopted a Teacher Transfer strategy, using instance hardness methods as our automatic dif-

ficulty measurers, and adapted the SH procedure implemented in BOSH and BOHB, the CASH

solvers for the AutoML system Auto-sklearn, to act as our predefined training scheduler during

the AutoML optimization.

The experiments show that using a curriculum strategy on CASH solvers can guide AutoML

to better results in most evaluated scenarios. When analyzing the results, a clear relationship

between the model count and the final performance of an approach does not seem to exist.

Overall, in our experiments, the AntiCL and CL approaches based on kDN were better when

using BOSH as the optimizer, while those based on GMM were better with BOHB. The most

successful approaches utilized the anti-curriculum strategy. We assume that by evaluating con-

figuration first on the most difficult data, the SH procedure can select more robust algorithm

configurations, which otherwise would be discarded.

In some cases, the AntiCL approaches achieved worse results, indicating that they may

not be adequate to be used in specific scenarios. Moreover, the approaches based on kDN were

better when using BOSH, while those based on GMM had the advantage when utilizing BOHB.

For this reason, we intend to study the relations between difficult measurers and the data space

to understand this phenomenon better and propose techniques to avoid these pitfalls.

Since the curriculum generation time for each dataset was not much costly, it is feasible to

add a pre-training step in the AutoML pipeline to benefit from a CL strategy.
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6.1 Future work

Even after our broad experimental evaluation, there still a need to investigate the effects

of CL strategies for AutoML in a broader range of datasets and ML tasks. Using a Transfer

Teacher strategy, we use a teacher algorithm, such as kDN or GMM, with its hyperparameters

configurations to estimate example difficulty. Thus, future work may investigate the effects of

the proposed difficulty measurers hyperparameters on the final generated curriculum.

Besides, we intend to investigate the mechanisms that make one approach achieve better

results than the others in each case. Depending on the results of this exploration, we may

propose a technique to automatically select or ensemble different strategies.

Moreover, there is still room for improvement regarding the proposed training schedulers,

concerning its pace (halving factor) and budget size.
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