
UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

ARCHITECTURAL REDESIGN AND
EVALUATION OF AN OPEN SOURCE MLOPS

PLATFORM: A CASE STUDY OF APACHE
MARVIN-AI

LUCAS CARDOSO SILVA

ORIENTADOR: PROF. DR. DIEGO FURTADO SILVA

São Carlos – SP

Junho/2021

UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

ARCHITECTURAL REDESIGN AND
EVALUATION OF AN OPEN SOURCE MLOPS

PLATFORM: A CASE STUDY OF APACHE
MARVIN-AI

LUCAS CARDOSO SILVA

Dissertação apresentada ao Programa de Pós-
Graduação em Ciência da Computação da Univer-
sidade Federal de São Carlos, como parte dos requi-
sitos para a obtenção do título de Mestre em Ciência
da Computação, área de concentração: Engenharia
de Software
Orientador: Prof. Dr. Diego Furtado Silva

São Carlos – SP

Junho/2021

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia
Programa de Pós-Graduação em Ciência da Computação

Folha de Aprovação

Defesa de Dissertação de Mestrado do candidato Lucas Cardoso Silva, realizada em 01/07/2021.

Comissão Julgadora:

Prof. Dr. Diego Furtado Silva (UFSCar)

Prof. Dr. Valter Vieira de Camargo (UFSCar)

Profa. Dra. Elisa Yumi Nakagawa (USP)

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Código de Financiamento 001.
O Relatório de Defesa assinado pelos membros da Comissão Julgadora encontra-se arquivado junto ao Programa de
Pós-Graduação em Ciência da Computação.

Aos meus pais.

AGRADECIMENTOS

Agradeço primeiramente a minha família, que em todos os momentos me ajudou a superar

as dificuldades durante meu percurso, me proporcionando abrigo, conselhos e sabedoria para

que eu pudesse dar o meu melhor.

Ao meu orientador, Prof. Dr. Diego Furtado Silva, e ao Prof. Dr. Daniel Lucrédio, que

através de suas vastas experiências e competências, me auxiliaram em todas as dúvidas e ques-

tionamentos que apresentei. Sem a assistência e dedicação que tiveram para transmitir seus

conhecimentos na realização da pesquisa, não seria possível o correto desenvolvimento deste

trabalho.

Aos membros da banca examinadora, Profa. Dra. Elisa Yumi Nakagawa e Prof. Dr. Val-

ter Vieira de Camargo, que gentilmente aceitaram participar e colaborar com este projeto de

pesquisa. Suas contribuições serão utilizadas prontamente a fim de aprimorar as ideias e atingir

os resultados esperados.

À empresa B2W Digital, parceira desta pesquisa, que me proporcionou a possibilidade de

trabalhar dentro de um projeto real em paralelo com a realização do meu projeto de mestrado.

À Profª. Dra. Helena de Medeiros Caseli, coordenadora do projeto Marvin em parceria

com a B2W Digital, que além de prestar assistência e apoio durante o projeto, também realizou

diversas contribuições para a minha pesquisa.

Aos companheiros que entraram no mestrado e no projeto da B2W Digital na mesma época

que eu: Bruno Silva Sette, Fernando Rezende Zagatti e Lucas Nildaimon dos Santos Silva.

Amigos que acrescentaram muito conhecimento durante nossas discussões e trocas de exper-

iências. Sem eles, nada disso seria possível.

Ao corpo docente do Departamento de Computação da Universidade Federal de São Car-

los pelo alto nível de ensino e condução das atividades. Tenho certeza que cada dia foi uma

experiência de aprendizado única.

Por fim, a todos os amigos e amigas que conheci no Departamento de Computação pelo

convívio, amizade e apoio. Também, a todos os profissionais e acadêmicos que contribuem

compartilhando seus conhecimentos e experiências, direta ou indiretamente, permitindo a real-

ização desta pesquisa, o meu sincero agradecimento.

Were it not for the leaping and twinkling of the soul, man would rot away in his

greatest passion, idleness.

C.G. Jung

RESUMO

Aprendizado de máquina é um termo vinculado à ciência de dados, uma área multidis-

ciplinar que engloba conhecimentos da ciência da computação, matemática e experiência

em um domínio. Dada esta natureza multidisciplinar, uma grande variedade de desafios

se apresenta para seus praticantes, visto que uma vasta gama de habilidades é necessária

para treinar modelos e colocá-los em produção. Parte desses desafios pode ser resolvida

com a ajuda de ferramentas e plataformas de aprendizado de máquina. Nesse contexto, a

plataforma de aprendizado de máquina de código aberto Apache Marvin-AI oferece uma

maneira padronizada de desenvolver e colocar modelos de aprendizado de máquina em pro-

dução. Embora o Apache Marvin-AI tenha muito a oferecer para iniciantes e cientistas de

dados que não possuem as habilidades de engenharia de software para lidar com os prob-

lemas mencionados anteriormente, faltam recursos desejados por usuários mais avançados.

Para resolver este problema, foi realizada a evolução e avaliação arquitetural do Marvin-

AI. O processo foi guiado por uma versão simplificada do ATAM (Architecture Tradeoff

Analysis Method), que foi adaptada para funcionar em um ambiente de desenvolvimento

distribuído de código aberto. O resultado do processo foi avaliado de quatro formas distin-

tas: (i) análise estática de código-fonte; (ii) feedback das partes interessadas; (iii) a análise

de taxonomia para avaliar a maturidade das soluções desenvolvidas; e (iv) uma avaliação

das novas features de monitoramento. No geral, o processo de concepção, implementação e

avaliação da nova arquitetura foi considerado bem-sucedido por todas as quatro avaliações

independentes, e as lições aprendidas constituem importantes contribuições deste trabalho.

Keywords: Avaliação arquitetural, MLOps, ATAM

ABSTRACT

Machine learning is a term linked to data science, a multidisciplinary area that encom-

passes knowledge of computer science, mathematics, and domain experience. Given this

multidisciplinary nature, a wide variety of challenges are presented to its practitioners, as

a wide range of skills is required to train models and put them into production. Part of

these challenges can be solved with the help of machine learning tools and platforms. In

this context, the Apache Marvin-AI is an open-source machine learning platform that offers

a standardized way to develop and put machine learning models into production. While

Apache Marvin-AI has a lot to offer for novices and data scientists who do not have the

software engineering skills to deal with the aforementioned issues, it lacks features desired

by more advanced users. To solve this problem, an architectural evolution and evaluation

was carried out. The process was guided by a simplified version of ATAM (Architecture

Tradeoff Analysis Method), adapted to work on a distributed open-source development en-

vironment. The results of this process were analyzed in four different ways: (i) source code

static analysis; (ii) feedback from stakeholders; (iii) taxonomy analysis to assess the ma-

turity of the developed solutions; and (iv) an assessment of the new monitoring features.

Overall, the process of designing, implementing, and evaluating the new architecture was

deemed successful by all four independent evaluations, and the lessons learned are impor-

tant contributions from this work.

Keywords: Architecture evaluation, MLOps, ATAM

LIST OF FIGURES

3.1 DASFE design pattern (APACHE, 2021b) . 22

3.2 Resource usage (CPU, RAM and disk I/O) for the code in Listing 3.4. 36

3.3 Example CPU and response time for a stress test of online tasks simulating 50

simultaneous requests. 37

3.4 Example CPU and response time for a stress test of online tasks. 38

3.5 Disk input (left) and RAM (right) usage for the solution to the Microsoft mal-

ware dataset. The values are cumulative over time. 38

3.6 Marvin new architecture . 40

LIST OF TABLES

4.1 Quality Attributes evaluated in each scenario 50

4.2 Scenario 1 results . 50

4.3 Scenario 2 results . 51

4.4 Scenario 3 results . 52

4.5 Scenario 4 results . 52

4.6 Scenario 5 results . 53

4.7 MNIST dataset solutions metrics (* import and super class omitted) 57

4.8 MRPC dataset solutions metrics (* import and super class omitted) 58

4.9 A qualitative analysis of Marvin-AI’s old and new architectures in terms of the

key features described by Lwakatare et al. (2019) 60

4.10 Datasets used in the evaluation. These can be found in kaggle.com 61

4.11 Resource usage for the batch tasks. * Automatically interrupted by the tool. **

Manually interrupted during training after 10 minutes. 62

4.12 Resource usage for the online tasks . 63

GLOSSARY

ATAM – Architecture Tradeoff Analysis Method

CI/CD – Continuous Integration and Continuous Delivery

DAG – Directed Acyclic Graph

DASFE – Data Acquisition, Selection, Feedback and Evaluation

LLOC – Logical Lines of Code

MLOps – Machine Learning Operations

ML – Machine Learning

MLaaS – Machine learning as a service

RFC – Request for Comments

SEI – Software Engineering Institute

TFX – Tensorflow Extended

CONTENTS

GLOSSARY

CHAPTER 1 – INTRODUCTION 13

CHAPTER 2 – BACKGROUND AND RELATED WORK 16

2.1 Review description . 16

2.2 Quality Attributes . 19

CHAPTER 3 – METHODOLOGY 22

3.1 The old architecture . 22

3.2 The new architecture . 26

3.2.1 Containerization of Marvin-AI’s solutions 26

3.2.2 Integration with Tensorflow Extended 28

3.2.3 Support for an easy configuration of Apache Airflow 32

3.2.4 CLI Improvements . 33

3.2.5 Benchmark suite . 33

3.3 The architectural evolution process - a simplified version of ATAM 39

3.3.1 Process start and mission . 41

3.3.2 Old and new architecture - first improvement on the original sketch . . 42

3.3.3 Quality attributes and scenarios - a synchronous meeting that did not go

as planned . 43

3.3.4 First version of the scenarios - the RFC approach 45

3.3.5 Second attempt with RFC - simpler scenarios and a video 46

CHAPTER 4 – EVALUATION 48

4.1 ATAM Evaluation . 48

4.2 Static code analysis . 54

4.2.1 First solution - MNIST . 55

4.2.2 Second solution - MRPC . 58

4.2.3 Discussion . 58

4.3 Taxonomy analysis . 59

4.4 Benchmark suite evaluation . 61

CHAPTER 5 – FINAL CONSIDERATIONS 64

5.1 Threats to validity . 64

5.2 Lessons learned . 65

Acknowledgment . 67

REFERENCES 68

Chapter 1
INTRODUCTION

Machine learning is a term linked to data science, a multidisciplinary subject that encom-

passes knowledge from computer science, mathematics and experience in a domain (FINZER,

2013). Given this multidisciplinary nature, a wide variety of challenges is presented. Part of

these challenges can be addressed with the help of machine learning tools and platforms such as

Tensorflow1, Scikit-learn2 and Pytorch3. They normally incorporate the latest advancements in

terms of algorithms for machine learning tasks, allowing non-computer scientists to build ML

solutions. However, there are many challenges that fall outside the scope of these tools, such

as:

• Dynamism of real problems: frequently, machine learning models present a good per-

formance in the training examples, but are not able to generalize well when applied in

real problems due to the constant reorganization of the data (SCULLEY et al., 2015).

• Reproducibility and scalability: most of the problems found in large institutions are

concerned with scalability issues due to the large flow of information that they have to

deal with every day, making it difficult to reproduce the algorithms (SCULLEY et al., 2015;

LIN; RYABOY, 2013).

• Complexity: the majority of problems presented by companies are complex and increas-

ingly difficult since they encompass several areas that use different types of techniques

(LIN; RYABOY, 2013; SCULLEY et al., 2015).
1https://tensorflow.org
2https://scikit-learn.org/
3https://pytorch.org/

1 Introduction 14

• Loss of efficiency: Over time, machine learning models end up losing efficiency due

to data versatility, demanding constant supervision (SCULLEY et al., 2015; GHANTA et al.,

2019).

These are not machine learning problems, but they represent important issues that sur-

round a machine learning project. They represent things that must be dealt with when the ma-

chine learning solution is put into a production environment. In this scenario, through certain

practices, Machine Learning Operations (MLOps) emerged for stipulating favorable habits and

environments for machine learning tools, bringing quick benefits for businesses and offering

reliability during production.

MLOps is a term derived from DevOps (the combination of “development” and “opera-

tions”), which has the goal of assisting in a better coordination between software development

and operation. The focus of the DevOps movement is to make development teams more aware

of the main issues of software operation, such as deployment, logging, monitoring, and incident

handling, treating these tasks as “first-class” citizens from the point of view of requirements

(BASS; WEBER; ZHU, 2015). Similarly, MLOps gives data scientists more responsibility regard-

ing the integration of their solutions into a production environment.

In this context, the machine learning platform Apache Marvin-AI4 offers a standardized

way to develop and bring ML models into production. Most of Marvin-AI’s design decisions

aim at smoothing the learning curve of the MLOps process. Although Apache Marvin-AI has a

lot to offer to beginners and data scientists who do not have the software engineering skills to

deal with the previously mentioned problems, it lacks features desired by more advanced users.

Advanced functionalities such as reliable batch scheduling, cluster execution management and

metadata persistence were lacking proper support at the platform.

Aiming to solve these problems, an architectural evolution effort was carried out. The evo-

lution was partly guided by ATAM (Architecture Tradeoff Analysis Method), a well-known

method for architecture evaluation (KAZMAN; KLEIN; CLEMENTS, 2000). But because Marvin-

AI is currently incubated at the Apache Software Foundation, there were some limitations im-

posed by the open-source development model. Therefore we had to simplify ATAM to make it

work mainly through Apache Marvin-AI’s developers mailing list, with some occasional syn-

chronous meetings and open source techniques such as RFCs.

The process led to six main design decisions that were incorporated into a new architecture

for Marvin-AI:
4https://marvin.apache.org/

1 Introduction 15

• Containerization of Marvin-AI’s solutions to allow for better support for logging, moni-

toring, scaling and crash recovery;

• Conversion of some of Marvin-AI’s code into a daemon5 structure to allow remote devel-

opment;

• Integration with Tensorflow Extended (TFX), a powerful open source MLOps platform

that incorporates some of Marvin-AI’s missing features (cluster execution, metadata per-

sistence, anomaly checking, among others);

• Support for an easy configuration of Apache Airflow to perform batch scheduling tasks;

• Improvement on CLI capabilities in terms of code generation; and

• The development of a benchmark suite for monitoring ML solutions.

The details behind these improvements, together with the lessons we learned from conduct-

ing an architectural evolution in an open source environment using a simplified ATAM, are the

main contributions of this research. We also present the results of four evaluations that demon-

strate the superiority of the new architecture, thus confirming that, from the perspective of the

desired output, the simplified ATAM was successful.

In the remainder of this essay, we first discuss related work (Chapter 2), focusing on the

main findings related to MLOps and the main quality attributes expected from a platform such as

Marvin-AI. Next we describe Marvin-AI’s original and redesigned architecture and the method

(simplified ATAM) used in this process (Chapter 3). We also present four evaluations (chapter

4) using the developers’ feedback, static source code metrics, a taxonomy evaluation to assess

the maturity level that can be achieved by Marvin-AI’s solution and an evaluation with Marvin-

AI’s new monitoring features. The results demonstrate that the new architecture fulfills the

needed quality attributes and point out some limitations. We conclude the essay (Chapter 5) by

discussing how this research led to more robust capabilities desired by more advanced users,

without sacrificing Marvin AI’s mission of being helpful to those users without much experience

in MLOps. We also discuss future directions for the next Marvin-AI releases

5A daemon is a computer program that executes as a background process instead of being attached to a user
interface.

Chapter 2
BACKGROUND AND RELATED WORK

2.1 Review description

The literature review was made following the next directives:

• Classic related MLOps papers, as Sculley et al. (2015). These papers are cited by a large

amount of other related work.

• Papers from MLOps related conferences, as USENIX OPML.

• Papers that presents MLOps platforms, methods or techniques. For reach the max amount

of related papers, we to achieve as many related papers as possible, systematize the review

using snowballing.

• Grey literature high quality work, as there are not many MLOps work in academic litera-

ture.

Changing the architecture of a software system without the support of a robust method such

as ATAM can lead to problems. Behnamghader et al. (2017) identified that architectural degra-

dation is commonly caused by ad-hoc changes made during software development. Based on

two empirical studies with open source software from the Apache Software Foundation, the

researchers concluded that: (i) some intracomponent architectural changes may subtly hinder

the architecture, because they are small and difficult to evaluate; and (ii) drastic architectural

changes may occur even close to releases, when stability should be a priority, thus contributing

to architectural degradation. Alenezi and Khellah (2015) also investigated architectural degra-

dation at package level, using an instability metric (MARTIN, 2002) to help identify the issues.

After evaluating two open source projects, they observed a tendency of instability increase over

time.

2.1 Review description 17

A solid methodology can also help to produce a good architectural analysis and documen-

tation, which can be beneficial for an open source project such as Apache Marvin-AI. Kazman

et al. (2016) present an analysis where the researchers developed an architecture document for

a very large open source project. Making the documentation available in the Internet produced

two interesting effects: (i) more users started to join the community; and (ii) casual committers

started to become more involved in core development, as the knowledge became less central-

ized. The study concludes that improvements on architecture documentation has a key role

at internal graduation of new developers, adoption rate and knowledge decentralization. We

expect to obtain similar benefits in Apache Marvin-AI.

Barbacci et al. (2003) report the application of the ATAM method in a avionics system de-

veloped by Rockwell Collins in Cedar Rapids, Iowa U.S., for the U.S. Army Special Operations

helicopters called CAAS. This was a new system at the time, replacing third part proprietary and

closed source systems, that was designed to be extensible and provide a common look-and-feel

across similar systems of its kind. Phase one of the evaluation was conducted with 12 stakehold-

ers, an above the average mark as mentioned at the technical report, with: (i) five of then being

architects and engineers from the contractor, (ii) two members of the organization that had the

task to implement the Special Operations Aviation systems changes; and five members of the

160th Special Operations Aviation Regiment, representing the user community. In this phase,

six scenarios were analyzed. Phase two was conducted with 15 stakeholders, with member

from user community, governmental agency and contractor workers. In this phase they added

9 scenarios to the evaluation, for a total of 15. Overall, the analysis was considered successful,

as the main quality attributes were evaluated and the architecture has succeeded in fulfilling

them. The partitioning of the architecture components was the main point of discussion as this

design decision influences the maintainability and extensibility of the software. The evaluation

concluded that the architecture was robust regarding the ability to add third-party functionalities

and to support new hardware. The evaluation has also raised concerns about requirements that

were out of scope and declared as being too hard to implement in the architecture. These issues

were brought to the program office and handled by other means.

In the machine learning area, there are not many academic research papers related to soft-

ware architecture. However, there are many studies and discussions regarding important con-

cerns and known issues that represent architectural quality attributes. These go beyond algo-

rithm performance. As stated by Flaounas (2017), although it may seem that putting a model

into production consumes only 10% of the effort, practice has shown that it might consume up

to 90% if proper provisions are not taken.

2.1 Review description 18

Nguyen et al. (2019) presented a survey to describe the machine learning and deep learning

frameworks and libraries that tended to be used in the state-of-the-practice. The study compiled

various open source frameworks and libraries, developed by academia or industry, that use

special paradigms such as map-reduce. An analysis of positive and negative points and a review

of the tools was performed (NGUYEN et al., 2019). In the end, the article discusses, among other

things, the trend of using Python as the main language for data analysis and the hegemony

of large corporations in developing open source frameworks and libraries for deep learning

(NGUYEN et al., 2019).

Lim et al. (2019) specify an operational lifecycle scheme for machine learning projects in

the manufacturing industry to increase productivity. According to the authors, using machine

learning in production means more than just training and running models. Their proposed

MLOps lifecycle, which is called CruX, deals with large volumes of raw data, data cleaning

and data labeling, which cannot be easily carried out in a single server (LIM et al., 2019). At the

same time, the use of off-premise services is not adequate due to confidentiality. Their scheme

fulfills these requirements through edge computing, which allows MLOps tasks be carried out

without compromising the production.

Sridhar et al. (2018) discuss model governance, which is an important requirement for Ma-

chine Learning in production. Model governance involves proper management and documenta-

tion of the entire pipeline to help solving problems such as: knowing the provenience/lineage of

an algorithm (knowing precisely which combination of events, data, algorithms, versions and

platforms led to a particular result); reproducibility (the ability to recreate a previous result); au-

diting and conformance (to fulfill regulations); reuse (avoiding rework); scale and heterogene-

ity (governance must work in real environments, with large amounts of data and with different

technologies/languages); multiple uses of metadata (different people might use governance with

different goals).

Governance was also considered as a major requirement for continuous validation for data

analytics systems by Staples, Zhu and Grundy (2016). In this paper, the authors discuss the

concept of continuous usage validation, which is particularly difficult for systems that employ

Machine Learning, since models are normally treated as “black-box” components, difficult to

be inspected. Knowing exactly who created the model, where the data came from, how was the

training carried out, among other details, is crucial for this task. Having to deal with secrecy

and ethics also requires good model governance.

Lwakatare et al. (2019) present an empirical investigation of a set of software engineering

challenges for Machine Learning systems, according to different areas: data collection, model

2.2 Quality Attributes 19

creation, training, evaluation and deployment. The challenges are also categorized according

to the level of maturity in Machine Learning inside the company. In this study, the authors

identified five maturity levels, the first representing those companies that are just starting to

try Machine Learning, and the last representing companies where Machine Learning is well

established, to the point of being completely autonomous (the system monitors and controls

itself). In each level, the challenges are different. For example, hidden feedback loops and

undeclared model consumers are known challenges, but are not an issue for companies in the

first level. Only in the fourth level, when multiple ML models are used together, one serving as

input to another, these issues start to appear.

In a similar study, Serban et al. (2020) identified a set of 29 engineering practices important

for machine learning, some of these being related to MLOps. The authors categorized these

practices into 6 classes: Data, Training, Coding, Deployment, Team and Governance. The

authors have also mapped which of these practices produce the different effects, identifying

possible actions to be made by teams based on their needs. For example, teams that need agility

should focus on increasing the adoption of practices that can lead to this effect.

Both of these studies (LWAKATARE et al., 2019; SERBAN et al., 2020) highlight the fact that

different companies, teams and users have different needs. This is also an important motivation

of this work, which is to make Marvin more flexible to support a wider range of user needs.

2.2 Quality Attributes

We surveyed the literature in search for MLOps requirements, both from academia and in-

dustry. The goal was to establish a set of architectural quality attributes for an MLOps platform,

as required by ATAM (KAZMAN; KLEIN; CLEMENTS, 2000). Some of the identified requirements

refer to more abstract quality properties, such as “Usability” and “Robustness”, while others

have a more functional meaning, such as “Monitoring” and “Batch execution”. But because all

of them have impact on the architecture, in this work we are going to call them quality attributes.

Next we present the results of this survey.

Usability. As Finzer (2013) points out, the knowledge set of data scientists is diverse, and

many of them do not have the necessary software engineering skills to easily navigate into the

hassles of software development, deployment and operation. A good MLOps platform should

make life easier for these professionals, by hiding as many technical details as possible and

allowing data scientists to focus on models and exploring the data (HERMANN; BALSO, 2017).

2.2 Quality Attributes 20

CI/CD support. The platform’s architecture must be able to execute all components of the

pipeline, generate artifacts and update the production version in a automated manner, similarly

to the continuous integration and delivery practices in DevOps. Testing data dependencies

and models with different metrics and from different perspectives in each pipeline execution

is crucial to establish a fully independent pipeline, not relying on human interference to check

data quality or algorithm configuration (SCULLEY et al., 2015; LWAKATARE et al., 2019).

Robustness. The platform should deal with adverse conditions, such as sudden growth

of requests, abnormal data formatting and partial failure. Ideally, such unexpected conditions

should not interfere in availability and stability (BAYLOR et al., 2017; SCULLEY et al., 2015; LIN;

RYABOY, 2013).

High availability. A machine learning solution has to be available the majority of the

time. When performing a version rollback or updating the artifacts in production, the MLOps

platform must do it in a transparent way, without any interruption (BAYLOR et al., 2017; ??).

Standardization. Standards help to reduce the memory burden of a software developer,

by making things similar across different scenarios. In MLOps, standards should be followed

through the entire pipeline: components should communicate using a generic interface, com-

mon to all tasks. This allows developers to make their own components to replace ones that are

not suitable to certain tasks (BAYLOR et al., 2017; SCULLEY et al., 2015). Standards also facili-

tate model governance, by making it easier to inspect and understand the different models and

artifacts.

Component reuse. All of the produced ML components must be made independent and

standardized enough to be used in other pipelines, as needed. Unregistered dependencies should

be eliminated, and a pipeline should not interfere in the performance of another (SCULLEY et al.,

2015; LIN; RYABOY, 2013).

High performance. Some ML tasks such as data processing and hyperparameter optimiza-

tion are very hardware consuming. To reduce the time spent, the pipeline has to be optimized.

Executing parallel tasks whenever possible is a good way to make better use of existing hard-

ware (ZHOU et al., 2019).

Prototype to deployment. A good MLOps platform should offer some way for the data

scientist to easily run their experiments and prototypes at scale, avoiding the prototype smell

described by Sculley et al. (2015), and help in the deployment of their solution. This helps the

data scientists to keep their solutions inside the standardized environment all the time, avoiding

many ML and software engineering problems (FINZER, 2013).

2.2 Quality Attributes 21

Monitoring. An MLOps end-to-end pipeline has to be monitored in each of its steps. For

computational resources, monitoring is important to detect systems overloading, an indicative

that performance is been affected by hardware boundaries (SILVA et al., 2020; ANDREWS et al.,

2015; PROMETHEUS, 2021). Monitoring model metrics in production environment helps to de-

tect staleness and detachment between model predictions and the real world. Data monitoring

is important to detect anomalies in the dataset distribution and schema during the pipeline exe-

cution (SCULLEY et al., 2015).

Extensibility. An MLOps platform should allow its components to be modified or replaced

by new ones created through an API. Extensibility is fundamental in ML because of the large

variety of tasks, algorithms, techniques and raw data formats (BAYLOR et al., 2017).

Batch execution. When training models, some tasks can take a lot of time and computa-

tional resources, like: hyperparameter tuning, neural architecture search and data wrangling.

These tasks rely on the platform’s ability to support batch executions, allowing task tracking,

proper debugging and testing (HERMANN; BALSO, 2017; BAYLOR et al., 2017).

This is not a complete list, as different platforms may introduce specific quality attributes.

Also, some of these may be more important than others, depending on the platform’s goal.

This is why a prioritization, such as the one prescribed in ATAM (KAZMAN; KLEIN; CLEMENTS,

2000), is recommended.

Chapter 3
METHODOLOGY

Apache Marvin-AI is a standardized framework for developing and deploying machine

learning solutions. It was designed to be simple enough for data scientists without much tech-

nical background in MLOps. Next we describe the old architecture, and how it fulfilled some

of the quality attributes described in the previous section.

3.1 The old architecture

First, it is important to stress that Marvin-AI is not a replacement for other tools, such as

Apache Spark1, Spark MLlib2 and Tensorflow Keras3. It was designed to make their usage

easier, by introducing a design pattern and standardized components that make it easier to move

an ML solution into the production environment.

Figure 3.1: DASFE design pattern (APACHE, 2021b)

1https://spark.apache.org/
2https://spark.apache.org/mllib/
3https://keras.io/

3.1 The old architecture 23

DASFE (Data Acquisition, Selection, Feedback and Evaluation) is Marvin-AI’s design pat-

tern for the development of machine learning as a service (MLaaS) applications. It provides

a framework for a distributed pipeline based on components that can perform actions in batch

or online. As shows Figure 3.1, the components that run in batch are: Data Acquisitor and

Cleaner, Training Preparator, Trainer and Evaluator. They perform all the common steps in

an ML pipeline: initial data acquisition and cleaning, data transformation, training and model

evaluation (??APACHE, 2021b).

Each batch job produces an intermediate artifact for communication with subsequent com-

ponents. The Trainer component, for example, must load the transformed dataset produced by

the Training Preparator component and persist the trained model for future use.

The online components are: Prediction Preparator, Predictor and Feedback. The Prediction

Preparator receives new data for making predictions through an endpoint. This component is

responsible for carrying out the necessary transformations for preparing the input for the model

trained in the batch steps. After the Prediction Preparator executes, the Predictor component

runs, returning the model’s prediction through the API provided by Apache Marvin-AI. The

feedback action is optional and may allow the user to send feedback data through a specific

endpoint, aiming at a possible interpretation and model re-training.

Marvin-AI does not require DASFE to be used from the beginning. The developer can start

prototyping and experimenting in a standard Jupyter Notebook4, without having to worry about

DASFE tasks or a deployment-ready code structure. When the developer is happy with the

results and wants to move the code to production, the developer must mark the code to identify

which parts of it correspond to each DASFE component. Marvin-AI provides specific tags, in

a custom Jupyter plugin, for this marking. Because DASFE represents a typical ML pipeline,

its components should be easily identifiable in most prototypes. Communication between tasks

must also be standardized in this step: the developer must refactor the code that persists data to

produce the intermediate artifacts required by each DASFE task.

Once the code is fully tagged and the communication between the tasks is standardized, the

code is exported to a class structure that is prepared to be deployed as a gRPC server5. Each

task will be wrapped as a gRPC service, so that it can be executed independently through gRPC

calls.

Another important feature of Apache Marvin-AI is the Engine Executor. The task of the

Engine Executor is to connect as a client to the gRPC servers and initiate a series of HTTP

4https://jupyter.org/
5https://grpc.io/

3.1 The old architecture 24

endpoints to allow the management of the actions. Batch actions can be executed to generate

new artifacts, reload the artifacts used in their execution and perform a health check routine.

Online actions can also perform health checks and reload artifacts used in their execution. In

addition, the “prediction” endpoint performs the Prediction Preparator and Predictor actions

sequentially, receiving new data as input and returning the model prediction. The “feedback”

endpoint receives the client’s message and returns a receipt verification message (??).

Before the Engine Executor and gRPC servers initialization, the developer must execute

the dryrun command, which is part of Marvin’s CLI, to perform all actions, some integration

tests between the steps of the pipeline and produce the initial artifacts. These initial artifacts

are loaded by the actions when the gRPC servers initializes. When receiving a message for the

execution of any action, the Engine Executor generates a protocol number. This number must

be informed whenever a message is sent for some action to reload (APACHE, 2021b).

Apache Marvin-AI also has a CLI command for the creation of a basic code structure. This

structure, referred as engine, contains a skeleton of DASFE’s actions classes, configuration

files and unit testing structure. When creating the engine, a GIT repository is initialized at

the engine’s root directory for code versioning. Other features include commands for data

synchronization and the use of TDD (Test Driven Development) (??).

The deployment of a Marvin engine can happen in multiple ways, depending on the user’s

needs, since each action is an independent microservice whose interface with external applica-

tions and services occurs through the Engine Executor. The Trainer action, for example, may

require the use of a GPU for training the model. In this case, the Trainer action gRPC server

can be initialized on a environment that contains the necessary hardware resources. Similarly,

the Training Preparator action typically presents high memory consumption, therefore it must

run on a machine or container that has enough of this resource (SILVA et al., 2020).

In this old architecture, Apache Marvin-AI has proven to be a powerful tool. The DASFE

design pattern is simple enough to shorten the learning curve for a data scientist who wants to

put his machine learning models into production. In particular, the following quality attributes

were adequately supported by Marvin-AI:

• Usability - Marvin-AI was designed to be easy to use, based on the premise that most

data scientists are familiar with Jupyter notebooks. DASFE is also a simple pattern,

requiring little effort to adapt a typical pipeline to its components. The CLI has only

a few commands and there is a simple web interface for running the tasks.

3.1 The old architecture 25

• CI/CD support - Marvin-AI’s engine executor is able to execute pipeline components,

reload artifacts and perform health checks. All these tasks are executed asynchronously

and the produced artifacts can be stored remotely in Amazon S3, Azure or HDFS. Marvin-

AI also allows users to perform unit and integration tests between the pipeline stages

trough its CLI. For tests that need a complex environment, such as A/B tests, manual

configuration is required from the user.

• Standardization - the DASFE design pattern is easy to learn and keeps the engine code

standardized. During engine project generation, all the basic configuration files needed

for development are generated, in an organized and human-readable format.

• Prototype to deployment - Marvin-AI has a customized Jupyter Notebook extension that

allows the developer to add markups to the code and export it into DASFE classes, making

it production-ready. The developer also has several CLI tools to test and deploy this code.

The other identified quality attributes, however, were lacking proper support by the tool:

• Robustness: Marvin-AI has support for storing artifacts in external services such as HDFS

and Amazon S3, therefore providing good support for data storage and retrieval. Also,

Marvin-AI’s solutions are exposed as a set of GRPC services and an HTTP server, which

can be replicated to support high demand peaks. However, this had to be done by hand,

externally;

• High availability: proper support for failure recovery was not addressed by Marvin-AI.

While the Engine Executor had a simple health check mechanism, automatic service

restart or more complete resource monitoring was not present and had to be configured

by hand;

• Monitoring: the logging present in Marvin-AI was not enough to allow proper informa-

tion necessary for debugging and operation;

• Component reuse: Marvin-AI exposes its tasks as GRPC services and HTTP endpoints,

therefore it is possible to reuse them in other pipelines. But using other components as

part of a Marvin-AI solution requires some adaptation in the code;

• High performance: Marvin-AI’s solutions can make use of parallel execution, but the

developer has to implement these features by hand. The DASFE design pattern doesn’t

allow multiple classes for the same action. When training multiple models, for example,

the developer has to combine them into a single instance of the Trainer component.

3.2 The new architecture 26

This analysis was not performed in an exhaustive or systematic way, but it indicated that

better support for these quality attributes was needed. It also indicated that an architectural

evolution had to be carried out, as these are not simple features that can be simply added in new

releases. We will discuss the architectural changes in the next subsection.

3.2 The new architecture

When designing the new architecture, the development team decided to reuse as many

existing technologies as possible. This led to six main design decisions, as described next.

3.2.1 Containerization of Marvin-AI’s solutions

The first architectural decision was to replace Python’s Virtualenv6 with Docker7 contain-

ers, since the container isolates the dependencies not only from the Python language libraries

but also from the operating system. The use of containers allows the deployment strategy to be

less dependent on the bare hardware environment. Containers also make it easier to perform

logging, monitoring, scaling and crash recovery, which were identified as important architec-

tural quality attributes for an MLOps platform. Finally, the adoption of Docker containers also

facilitates the execution of algorithms and prototyping solutions remotely and in a distributed

way through pipeline orchestration at container level. This is useful, as most of the big data

tasks have hardware requirements that are rarely met by data scientists’ workstations (SCULLEY

et al., 2015), making working in managed cloud environments a common scenario.

Containerization was achieved by changing Marvin-AI’s code generation templates to pro-

duce the configuration files required by Docker. But to make the remote development scenario

possible, another change had to be implemented as well. Marvin-AI’s command line interface

(CLI) had some of its code moved into a daemon process. This was necessary because the

container must maintain some background process while waiting for instructions from a remote

client.

The daemon was implemented using gRPC protocol, to maintain consistency with Marvin’s

online and batch actions, which have not been modified in the new architecture. Each function

performed by the daemon is implemented in the protocol, including: (1) integration and unit

tests; (2) gRPC servers setup for actions passed by parameter; (3) iterative development note-

6https://pypi.org/project/virtualenv/
7https://www.docker.com/

3.2 The new architecture 27

book setup. The specification of the task to be performed and its parameters are sent via gRPC

from the CLI to the daemon through the service port.

The connection is insecure, but Marvin-AI’s CLI has tools to protect it by connecting to the

daemon port through an SSH8 tunnel. The SSH connection is authenticated through a pair of

public and private keys generated by Marvin-AI’s CLI when creating the engine. By doing so

we guarantee that the insecure port isn’t exposed by the firewall, but only the container’s SSH

port and the Jupyter Notebook port that has its own authentication implemented by default.

In addition to the components of the daemon and DASFE actions communication, some

tooling implementations are present in the daemon code. In addition to the serializers, which

have not changed, there is also a wrapper for the standardized use of the Tensorflow Extended

(TFX)9 framework, which is another design decision, described later in this essay.

The serving strategy in the new architecture is similar to the previous one. The Engine

Executor component connects itself to the gRPC actions servers, the main difference being

that, as it is using Docker containers by default, it is easier to deploy the Marvin actions and

the Engine Executor composing a microservice architecture in a cluster management system

like Kubernetes10. Resource monitoring and logging are also easier as they can benefit from

Docker’s tools (SILVA et al., 2020; DOCKER, 2021).

The introduction of Docker containers introduced better support for the following quality

attributes:

• Robustness: containerization facilitates the recovery from unexpected crashes, as con-

tainers can be easily replaced and supports fast failure recognition, as the container stops

when the main process dies.

• High availability: a containerized solution can be more easily replicated during demand

spikes and the load can be balanced between the replicas, making the solution available

even under high demand conditions.

• High performance: the remote development, allowed at the containerized daemon, can

provide access to better hardware, including GPUs, essential to neural networks paral-

lelism.
8Secure Shell (SSH) is a secure network protocol to perform encrypted connections in a insecure network. A

SSH Tunnel allows the user’s system to link a remote system port into a local port trough the SSH port.
9https://www.tensorflow.org/tfx/

10https://kubernetes.io/

3.2 The new architecture 28

• Prototype to deployment: the changes allow the developer to use the prototyping tools,

such as notebooks, in a containerized environment, thus guaranteeing that this same en-

vironment will be used in the deployment.

3.2.2 Integration with Tensorflow Extended

Another change implemented in the new architecture was the incorporation of a wrapper

for TFX - TensorFlow eXtended. TFX is a TensorFlow-based general-purpose machine learn-

ing platform implemented at Google to facilitate the process of putting models in production,

bringing benefits in terms of standardization, robustness, monitoring, among others (BAYLOR et

al., 2017). There are two different ways to use TFX, in terms of how the code is written and

executed: interactive execution and DAG orchestration. If the developer opts for interactive

execution, there is not much difficulty, as it is done in a Jupyter notebook or Colab (TFX, 2021).

This does not take full advantage of TFX’s serving capabilities, but it might be adequate for

scenarios where offline execution is all that is needed.

For more demanding scenarios, with batch and online actions being executed constantly and

under high demand, TFX has the option to create a directed acyclic graph (DAG) for a more

complex component pipeline, including persistence settings for metadata and parameters. The

DAG can be executed in a pipeline orchestrator (such as Kubeflow Pipelines - KFP11 or Apache

Airflow12) (TFX, 2021). But properly setting up such orchestration requires considerable effort

and a specific knowledge that isn’t often part of the data scientist’s skill set.

This is a problem that Marvin-AI already solved, for a simpler case. In Marvin-AI, the code

is written in a Jupyter notebook, but is deployed as separate components according to DASFE.

Each component has its own endpoints for remote execution, making them ready to use by

applications or end users. Compared to TFX, orchestration is simple and fixed. Components

have to be executed all at once, or one by one, using a simple web interface. But in the end, the

Marvin-AI approach hides the complexities of orchestration behind a simple notebook and web

interface.

By including an interface between TFX and Marvin-AI, opting for the standardization of

the pipeline along the lines of DASFE over the extensibility of TFX, we can abstract a good part

of the verbosity of the configuration required to build an Airflow or KFP production pipeline

DAG in TFX. The result is the combination of TFX’s benefits with Marvin-AI’s simplicity.

11https://www.kubeflow.org/
12https://airflow.apache.org/

3.2 The new architecture 29

The proposed class for the interface between the two frameworks is MarvinTfxContext,

whose structure its entirely based on TFX’s InteractiveContext class. MarvinTfxContext

class runs TFX components in a directory and records the executions metadata in the Machine

Learning MetaData library (MLMD)13. In this case, there is not much difference between the

proposed class and the InteractiveContext offered by default in the TFX library.

The usage is exemplified in Listing 3.1. TFX’s “gen” components are used nor-

mally (lines 2-3 and 4-6), as in standalone TFX. But the remaining code is embedded into

MarvinTfxContext (line 1), so that the developer has less configuration to do. The class con-

structor’s default definition, without passing any parameter, is enough to persist the metadata in

a SQLite14 database file and use a directory to persist the artifacts, both inside Marvin-AI’s data

folder. The developer can use different configurations to define, for example, another database

manager to perform metadata persistence.

Listing 3.1: MarvinTfxContext Usage

1 context = MarvinTfxContext ()

2 example_gen = CsvExampleGen(input=external_input(_data_root))

3 context.run(example_gen)

4 statistics_gen = StatisticsGen(

5 examples=example_gen.outputs[’examples ’])

6 context.run(statistics_gen)

When running the solution interactively, persistence will be done in a temporary directory.

However, when executing the solution orchestrated by Marvin-AI, a root directory is generated

with a unique identifier that persists these artifacts. The metadata, in the interactive way, is

also persisted in a SQLite database on a temporary directory, while in the orchestrated solution

we will have a standard configuration for the database (SQLite persisted in Marvin’s standard

directory structure), but it may be configured according to the developer’s needs using another

database management systems (DBMS) or file paths.

The developer can export the code in the DASFE standard to an Apache Airflow DAG,

containing the steps: Acquisitor, Training Preparator, Trainer and Evaluator. The DAG code is

made available to the developer, who can modify it or use it as it was generated. Orchestra-

tion with Marvin-AI also has the benefit of allowing code outside the TFX components to be

executed between steps in the pipeline.

13https://github.com/google/ml-metadata
14SQLite is a small, fast, self-contained, high-reliability, full-featured SQL database engine implementation

(SQLITE. . . ,).

3.2 The new architecture 30

As represented in Listing 3.2, the TFX implementation at Marvin-AI also features a class for

accessing TFX artifacts directly from the metadata store, that can be defined passing an instance

of MarvinTfxContext (line 1). The access to the persistent artifacts is represented at lines 3

and 4, when the methods get_examples() and get_schema() are called. The TfxArtifacts

instance is returning the examples and schema persisted in other actions. This allows the uni-

fication of the interactive and orchestration modes, since in the latter the variables are reset

after each action, as they are executed in functions within different class scopes. The other

lines follow the default flow of Marvin TFX integration, as with the definition of TFX pipeline

components and the context instance executing them.

Listing 3.2: TfxArtifacts class usage

1 artifacts = TfxArtifacts(context)

2 transform = Transform(

3 examples=artifacts.get_examples (),

4 schema=artifacts.get_schema (),

5 module_file=os.path.abspath(_taxi_transform_module_file))

6 context.run(transform)

TFX has a Docker image that is used by orchestrators to run their components indepen-

dently, offering standardized input and output (TFX, 2021; BAYLOR et al., 2017). Although this

pattern is similar to the one used by the Marvin-AI daemon, since it can run each action inde-

pendently passing them through a parameter through a gRPC call, the way in which each image

acts is different.

That said, we can produce a new daemon image based on the TFX image base con-

taining the dependencies to both. While TFX has its own execution mode for Docker,

which consists of sending a component to the image using gRPC with standardized in-

put and output, we use the execution method provided in InteractiveContext (the

in_process_component_launcher function), which executes the components as an internal

process of the system, making the container not limited to a TFX component and adapting to

Marvin-AI’s actions (TFX, 2021).

Another possibility for the user is to build an Apache Beam15 DAG within Marvin’s actions.

In the solution illustrated in Listing 3.3, we can see it applying the same workflow as standalone

TFX (lines 1-10). At line 12, a list with the components is defined and, in the line 16, a method

from the context named run_beam_dag() is called to build an Apache Beam DAG and run it.

15Apache Beam is an unified software model for defining both batch and streaming data-parallel processing
pipelines (APACHE, 2021a)

3.2 The new architecture 31

As the ExampleValidator (line 1) and Transform (line 7) components can be executed in

parallel, this strategy is applied to the Beam DAG (TFX, 2021).

Listing 3.3: Beam DAG in MarvinTfxContext usage

1 example_validator = ExampleValidator(

2 statistics=statistics_gen.outputs[’statistics ’],

3 schema=schema_gen.outputs[’schema ’])

4

5 _taxi_transform_module_file = ’taxi_transform.py’

6

7 transform = Transform(

8 examples=example_gen.outputs[’examples ’],

9 schema=schema_gen.outputs[’schema ’],

10 module_file=os.path.abspath(_taxi_transform_module_file))

11

12 pipeline = [

13 example_validator ,

14 transform

15]

16 context.run_beam_dag(pipeline)

As mentioned in the previous section, serving with Docker allows for easier deployment,

cluster management, monitoring and logging. When the TFX wrapper is being used, a new

option is now available. As Tensorflow has its own serving API, the models can be deployed

using this serving component instead of Marvin-AI’s Engine Executor. When using TFX on

Marvin-AI, the user has a different workflow than the default one. The solution ends in the

model evaluation because Tensorflow Serving does not require any user code in its setup.

In summary, the Marvin-AI/TFX integration has the potential to enhance the support for

the following quality attributes:

• Robustness: the serving component of Tensorflow is designed for production environ-

ments. The component provides an easy way to serve Tensorflow models, being flexible

and extensible for different solutions and data.

• High availabilty: the serving component can be easily configured and replicated trough

containers. The load can be distributed to several containers, using Kubernetes or another

load balancer solution.

3.2 The new architecture 32

• Monitoring: TFX has the MLMD component that deals with metadata gathering and

persistence. Trough this, Marvin-AI has a much more complete solution to this process

than the standard one keeping track of all experiments execution steps.

• Component reuse: as TFX has a more standardized way to define pipeline components,

using Tensorflow’s toolkit to process data, train, evaluate models and gRPC16 protocol

for comunication between components, component reuse is better achieved with this in-

tegration.

• High performance: Tensorflow has several parallelism strategies implemented and TFX

allows its use at maximum. In addition, Apache Beam allows even data acquisition tasks

to execute in multiple workers.

• Standardization: this quality attribute has improved in two aspects: (i) TFX’s component

pattern defines a general pipeline structure for the developer to follow; and (ii) the DASFE

pattern is still supported, even in conjunction with TFX code pattern.

3.2.3 Support for an easy configuration of Apache Airflow

Apache Airflow is a tool to build and monitor workflows in a simplified and extensible way,

allowing the generation of dynamic DAGs and extension of its workflow components, known

as operators.

To facilitate the adoption of Airflow in Marvin-AI, a new CLI feature was incorporated. The

objective of this feature is to make the access to the engine executor easier through Airflow’s

bash operator. The CLI command is able to start batch and online actions, perform health

checks and assert that some action has finished its execution. All these functionalities can be

easily performed in bash operator.

The DAG code generated by Marvin-AI is available to the user to make adaptations such as

more complex tasks for data acquisition or some customized artifact management, but it is also

ready to be used as it is.

The improved orchestration in this new architecture can provide better support for the fol-

lowing quality attributes:

• Usability: Apache Airflow has a web user interface that improves the visualization of

batch pipeline steps and allows easy scheduling.

16https://grpc.io/

3.2 The new architecture 33

• Batch execution: Airflow allows the scheduling of batch actions. Before, users had to

white their own scripts to do it.

• Monitoring: the new integration allows users to easily detect failures in batch pipeline

steps through the web interface and to configure e-mail alerts and other logical structures

that improves monitoring.

• CI/CD support: the changes allow the developer to setup an easy way to schedule complex

CI/CD pipelines, maintaining independent tasks to be executed in sequence, as long as

the structure of a DAG is respected.

3.2.4 CLI Improvements

From the old architecture to the new one, the component that showed more visible improve-

ments was Marvin-AI’s CLI (Command-Line Interface). Commands to generate templates were

vastly used to improve the deployment versatility, generating Kubernetes configuration files, or

enabling the Apache Airflow integration, that relies mostly on CLI.

With this said, we can evaluate that the CLI improvements have benefited the following

quality attributes:

• Usability: this quality attribute improved in general because the CLI has more tested code

being generated now, thus the developer has to write less code to adapt the solutions to

specific infrastructure configurations.

• Robustness: as the infrastructure code is generated by the CLI, the errors that may occur

in a manual configuration process are no longer a concern. The files can be audited and

versioned, occasional problems can be easily solved by changes on configuration files,

instead of performing manual and undocumented changes on a large number of servers.

3.2.5 Benchmark suite

This section is a summarized version of a paper published at the 2020 IEEE International

Conference on Machine Learning and Applications (IEEE ICMLA 2020) (SILVA et al., 2020).

Monitoring is an important quality attribute for machine learning, not only for aspects re-

lated to algorithm performance, but also resource consumption and execution aspects, such as

task completion time, CPU and GPU usage, memory usage, disk input/output and network traf-

fic (SILVA et al., 2020). There are already many tools available for monitoring these aspects

3.2 The new architecture 34

directly in the operating system, therefore there is no need to develop an alternative tool or li-

brary. But because Marvin-AI is supposed to help less experienced users, there should be easier

ways to do it, and this was the focus of this architectural change. The approach is based on the

following elements:

• Docker containers are used to run the application. As described in Section 3.2.1, con-

tainers facilitate different MLOps tasks, such as deployment and version control. It also

encapsulates an application into a well-defined environment, making it easier to monitor

resource usage from an external point of view. There are many tools for working with

container monitoring, but in this work docker stats was adopted, as it is one of the easier

ways to gather the necessary resource information from a container;

• A simple API was developed to allow the developer to easily mark points-of-interest

(POI) inside Marvin-AI tasks. These POI will appear together with the final data, so that it

becomes easy to establish a relation between the observed resources and the actual code.

This allows to easily separate resource usage for each task and monitor task progress

through specific points in time;

• Matplotlib is used to display the resource usage data graphically. It is a Python-based

visualization tool that can display 2D graphics;

• Tools such as Apache JMeter can be used to conduct stress tests with the online tasks.

JMeter can be configured to flood a server with continuous requests from multiple si-

multaneous threads, simulating high-demand scenarios. By combining a particular POI

from Marvin-AI with the beginning and end of JMeter tests, it is possible to know exactly

when these requests start and finish, making it easier to see the server’s response to the

simulated period of high demand.

In order to use the approach, the developer must configure the necessary tools and include

API calls in specific parts of the code. Configuring the necessary tools is as simple as installing

them and correctly establishing the code dependencies with a few commands. The API usage

is illustrated in Listing 3.4.

Listing 3.4: Batch actions annotated with different points of interest (POI)

1 poi_marker = POIMarker(’times_batch ’)

2 time.sleep (10)

3 poi_marker.add_poi(’a’)

4 run_preprocess ()

3.2 The new architecture 35

5 poi_marker.add_poi(’b’)

6 time.sleep (5)

7 poi_marker.add_poi(’c’)

8 run_training ()

9 poi_marker.add_poi(’d’)

First (line 1), a poi_marker variable is initialized to serve as a marker for adding points of

interest (POI). Next, four POIs are added. POIs “a” (line 3) and “b” (line 5) mark the beginning

and end of the preprocessing step. POIs “c” (line 7) and “d” (line 9) mark the beginning and end

of the training step. Among these lines, a forced delay is introduced (lines 2 and 6) to guarantee

that the monitoring API is capturing the resource utilization values for each task separately, as

there is normally an interval of time for data collection. It also gives some time for the garbage

collection to run, if it is the case. These forced delays are optional, but are recommended to

make the visualization clearer, specially when the tasks run in a short period of time.

To monitor the execution, the developer must use the benchmark command in Marvin-AI

CLI, that provides batch results in form of matplotlib’s graphs. To use the benchmark suite in

a online manner, the developer must use the command http-server at Marvin-AI CLI with

the flag --benchmark. This will initiate a background process monitoring the execution of

engine-executor’s API.

Now we show an example of the approach being used to monitor how an ML solution

consumes the resources of a computer. The following examples are from a solution based on

algorithm SVC (C-Support Vector Classification) for a dataset from kaggle17. Figure 3.2 shows

an example for the resource usage data throughout time for the code of Listing 3.4.

It is possible to see that the execution took a little over 90 seconds, including the prepro-

cessing and training tasks, and the forced delays. The four POIs (“a”, “b”, “c” and “d”) are

clearly visible, as well as the forced delays (before “a” and between “b” and “c”). This graphic

shows that both tasks (preprocessing and training) are using a single core, as only 100% CPU

usage is being registered (top left). Memory usage (top right) is more intense during prepro-

cessing (8% peak) and smaller, but constant, during training (6%). It is also visible that disk I/O

happens only during preprocessing (bottom left/right, between “a” and “c”), as the amount of

data read/write does not increase during training (bottom left/right, between “c” and “d”). As

expected, there is more disk input than output in these tasks, as shown by the vertical axis. It is

also possible to see that there was some disk output during a forced delay (between “b” and “c”

in the bottom right), probably due to buffered disk operation.

17www.kaggle.com/c/santander-customer-transaction-prediction

3.2 The new architecture 36

Figure 3.2: Resource usage (CPU, RAM and disk I/O) for the code in Listing 3.4.

The example of Listing 3.4 consists of batch actions. These are executed once every now

and then, for preprocessing or training, for example. To monitor online tasks, it is necessary to

consider a different setup.

Normally, an online task is part of another application, and must respond to requests through

a REST or gRPC endpoint. Therefore, there is a server where these endpoints are being served,

and a client, where these endpoints are being consumed. Also, online tasks should normally

be quick to respond and support a certain amount of simultaneous requests without delays or

failures. The exact amount of simultaneous requests depends on each business scenario. For

example, a small company’s ML solution being used only by upper management will probably

have only a few simultaneous requests in the most busy moments, while a large company’s ML

solution being used by customers during holiday shopping may have peaks of thousands or tens

of thousands requests arriving simultaneously.

Marvin-AI can also be used to monitor these tasks in both sides and considering these

different scenarios. In conjunction with a stress test tool, such as Apache JMeter, Marvin-AI

can help to visualize resource consumption in these conditions. First, the endpoint server must

be configured to mark POIs using the API as shown before. At least two special endpoints are

needed, one for the beginning and one for the end of the stress tests. In each endpoint, nothing

is done except for adding a POI marker for these events.

Next the developer must configure the stress test tool (JMeter, for example) to simulate the

desired scenario. For example, it may be configured to start 100 threads simultaneously sending

3.2 The new architecture 37

100 requests in sequence. It should also be configured to send a single request for each special

endpoint mentioned before, before and after the tests. This allows the resource utilization to be

better visualized. Ideally, this tool should be executed in a different machine than the server. It

would be even better if many machines are used as clients, to avoid bottlenecks in the client and

simulate more clients.

Figure 3.3 shows the results of a stress test with a client computer simulating 50 threads,

each one sending 1000 requests in sequence to a server computer. This test took around 150

seconds to complete. The left side shows CPU usage in the server during this time, which

operates mostly between 200 and 250% to respond to the requests. It is possible to see the POIs

“stress_init” and “stress_end” delimitating the exact moments when the test begins and ends.

The right side of Figure 3.3 shows the response times being observed in the client during this

time. In this case, it is possible to see that most requests are being returned in a very short time,

practically indistinguishable from 0 in the graph. JMeter also reports the number of errors,

which in this case was 0%. These results are an indication that this particular server is being

able to respond to this amount of requests properly, and should behave well in production under

these conditions.

Figure 3.3: Example CPU and response time for a stress test of online tasks simulating 50 simulta-
neous requests.

In contrast, Figure 3.4 shows the results of a stress test simulating 1000 threads, each one

sending 1000 requests in sequence. This test took almost 4000 seconds to complete. The left

side shows CPU usage in the server during this time, which operates mostly between 100 and

250% to respond to the requests, but has sometimes reduced to 0%, which indicates that the

server stopped working in several occasions. The right side of Figure 3.4 shows the response

times being observed in the client during this time. In this case, it is possible to see that there

are some requests that are taking too long to return, with some peaks reporting more than 10

seconds to respond and others taking more than 40 seconds. Also, there are too many requests

that are close to the first horizontal line of the graph (the red line), which marks a 6-second

response, normally unacceptable for a good quality service. JMeter also reports the number

3.2 The new architecture 38

of errors (requests without a response), which in this case was 5,36%. These results are an

indication that this server is not being able to respond to this amount of requests properly.

Figure 3.4: Example CPU and response time for a stress test of online tasks.

As another example of how this information could be used, Figure 3.5 shows the disk input

and RAM usage for a solution using a label encoder18 for the Microsoft malware dataset19.

This execution was interrupted during preprocessing (POI “b” does not appear in the graphs).

Disk input was high, but this is expected because it is a large dataset. The problem was the lack

of memory, as the algorithm used constantly more memory over time, until it reaches close to

100% and the process is interrupted. In this case, either more memory is necessary or a different

algorithm must be implemented for the preprocessing task.

Figure 3.5: Disk input (left) and RAM (right) usage for the solution to the Microsoft malware
dataset. The values are cumulative over time.

The integration of this benchmark suite has provided better support for the following quality

attributes:

• Usability: monitoring these resources in Marvin-AI is considerably easier than using

the tools by themselves, as all that is needed is a simple configuration and some CLI

commands.
18scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
19www.kaggle.com/c/microsoft-malware-prediction/overview

3.3 The architectural evolution process - a simplified version of ATAM 39

• Robustness: with Marvin-AI’s new features it is easier to correctly provision the neces-

sary resources so that the ML solution does not run out of CPU or memory in normal and

critical conditions.

• Prototype to deployment: putting a solution in production requires choosing the right

hardware, and this new feature allows this task to be conducted with more confidence on

what is needed.

• Monitoring: this is the main benefit of this new Marvin-AI feature, which allows different

resources to be monitored.

3.3 The architectural evolution process - a simplified version
of ATAM

The list of architectural changes described in the previous section was not conceived in a

single meeting or over a short period of time. Instead, it was incrementally constructed after

many discussions and following a systematic process that involved different stakeholders. This

section describes this process and details how all the changes were designed.

When the last stable version of Apache Marvin-AI platform was released, still in the old

architecture, there were already some discussions about architectural changes. An architectural

sketch (Figure 3.6) was defined in an ad-hoc way. It focused on introducing Docker containers

into the engines. The sketch showed how the communication would work between the CLI and

the Marvin-AI container, the shared volumes and the usage of Docker SDK20 to maintain the

containers. Other possibilities for interacting with the engines, such as REPL21, were being

envisioned too.

While there was an overall consensus about how Docker containers would bring benefits

such as a greater language and technology independence and facilitated deployment, the devel-

opers were not fully aware of all details and implications of this new architecture. For example,

how would other Marvin-AI’s important features be affected, such as its mission of being easy

to use by data scientists without deployment and operation experience? What other unforeseen

benefits would be achieved by this new version? For this reason, before development began, a

proposition was made to the Apache Marvin-AI community.

20https://docker-py.readthedocs.io/en/stable/
21https://replit.com/

3.3 The architectural evolution process - a simplified version of ATAM 40

Figure 3.6: Marvin new architecture

The proposition was to use the Architecture Tradeoff Analysis Method (ATAM) (KAZ-

MAN; KLEIN; CLEMENTS, 2000), a well-known method, to evaluate the proposed architectural

changes before implementation began. It was expected that a more systematic process could

help the developers to better identify the impact of the architectural changes over Marvin-AI’s

main mission and obtain more details of what was needed to implement the changes as effec-

tively as possible. We also wanted to avoid architectural degradation caused by ad-hoc changes

(BEHNAMGHADER et al., 2017; ALENEZI; KHELLAH, 2015).

ATAM is a method to evaluate software architectures (either implemented or idealized) by

assessing some quality attributes. The method exposes the risks and tradeoffs that potentially

limit the organization to achieve their business goals. In order to do that, it depends on the par-

ticipation of all the important stakeholders in the process (KAZMAN; KLEIN; CLEMENTS, 2000).

The process starts with a presentation of the method and the software architecture to the

stakeholders. The business drivers, the requirements from the corporation that will serve as a

baseline for the architecture quality attributes, are also elicited with the participants (KAZMAN;

KLEIN; CLEMENTS, 2000). Therefore, to begin, we needed one thing: to get all stakeholders

together in a room and start the process. But because Apache Marvin-AI is an open source

project, this was not simple.

As any other software incubated by the Apache Software Foundation (ASF), the process

for general development discussions regarding Apache Marvin-AI is primarily driven by the

3.3 The architectural evolution process - a simplified version of ATAM 41

developers’ mailing list22 in conjunction with other tools, such as an issue tracker23. In general,

to make a decision, a community member must start a new thread on the mailing list. Other

members must present arguments and discuss the subject, following the terms stated by the code

of conduct for the open source project and, at the end, conduct a poll if necessary.

A poll is formulated when there seems to be a consensus around a binary choice. Each

member of the community that is participating in the discussion sends the message +1 to agree

and -1 to disagree with the original proposal, being able to present a justification during the act.

Everyone has the same vote importance in the development mailing list, but every project has

a Project Management Committee (PMC) that is composed by leading members of the project.

The PMC has its own mailing list for voting the more important issues, such as new releases

and including other members in the committee.

As it can be seen, the entire process is asynchronous, with each member contributing to the

project during free time. Also, it is difficult to identify all stakeholders, as the community does

not enforce strict roles within the project. Although the PMC seems to be a strong candidate

for these discussions, ideas could come from any member, as enforced by the egalitarian voting

discussed before.

For these reasons, we introduced the first two simplifications to ATAM:

• First, because it is difficult to identify all stakeholders with potential to contribute, all

members of the developers’ list could participate in the process. Marvin-AI’s community

is not very big, so we did not expect problems such as long and unfocused discussions;

and

• Because there are contributors from different countries, it would be challenging to arrange

a synchronous meeting where everyone would be available. Therefore, all communica-

tions should be asynchronous, whenever possible.

With these two simplifications we started the process.

3.3.1 Process start and mission

In this stage, in our simplified version of ATAM, we elaborated a series of e-mails, sent to

the developers’ list between 07/07/2020 and 08/15/2020, to start the process: first we explained

22dev@marvin.apache.org
23https://issues.apache.org/jira/projects/MARVIN/issues

3.3 The architectural evolution process - a simplified version of ATAM 42

how the evaluation would occur, how long it would take, and what was expected from each

participant. This e-mail was only informative and required no action from the stakeholders.

Next we had to define the organization’s business drivers (KAZMAN; KLEIN; CLEMENTS,

2000). But because Marvin-AI is not supported by any particular organization, it does not

have clear business requirements. Instead, we started a discussion to establish what is Apache

Marvin-AI’s mission. Although this was more or less clear in the website, it was important

to write it down so that everyone would agree on it. After some discussion, the agreed state-

ment came to be the following: The Apache Marvin-AI platform aims to offer a practical and

standardized solution to help its users to perform data exploration, model development and

application lifecycle management for artificial intelligence tasks, aiming to offer: scalability,

language agnosticism and a standardized pipeline.

3.3.2 Old and new architecture - first improvement on the original sketch

Next, to make sure that everyone was fully aware of how the architecture was before, and

how it would change, we started a second series of e-mails, from 08/15/2020 to 08/26/2020. We

felt that Marvin-AI’s developers already had a good understanding about the old architecture,

but we developed some diagrams to formalize it anyway. We used UML class and component

diagrams and shared them with the participants. There were not many responses in this regard,

thus confirming that the developers already had a good understanding.

For the new architecture, we already had the sketch from Figure 3.6, which described some

of the proposed changes. We shared it again with the participants and asked them if there

was any doubts of what was being proposed. Again, there were not many responses, and we

considered that everyone had a good understanding regarding this proposal.

At this point, the discussion raised an important issue that was not being considered before.

Because the new architecture would adopt Docker containers, it would be possible to quickly

start and stop instances of the engines (which contain the ML prototypes/solutions being de-

veloped), but also of the Marvin-AI tooling itself. This would allow deploying a Marvin-AI

development environment in a container, facilitating configuration and even allowing remote

development. However, for this to work, there had to be some way to keep the container in-

stance running. Differently from the engines and the executor, which have GRPC servers and

an HTTP server running, the Marvin-AI tools are simple CLI commands that respond to user

interaction on a terminal. This is not enough to maintain the container running. The developers

then came to the conclusion that the new architecture should use a Marvin-AI active compo-

nent running in background (a daemon process) instead of marvin-common-lib. This would

3.3 The architectural evolution process - a simplified version of ATAM 43

allow the user to interact with Marvin-AI tooling and perform the same tasks as before, but in

a container. The new containerization approach would also make it easier to monitor hardware

resources.

These discussions were all made by e-mail, and resulted in the changes described in Sec-

tions 3.2.1 and 3.2.5. At this point, we were ready to move to the next stages of ATAM.

3.3.3 Quality attributes and scenarios - a synchronous meeting that did
not go as planned

According to ATAM, the next step was to generate a quality attribute utility tree. This step

has the purpose of compiling system utility, such as availability or performance, in terms of

detailed quality attributes, and organizing them in the form of a tree. In the next stages, the

tree is updated with scenarios that are used to assess the utility represented in the structure and

define priorities for each node. Each scenario would represent a typical use case, with enough

details to allow assessing how the architecture would respond. In the original ATAM, these

steps are also supposed to be performed in a synchronous meeting, and had to be adapted here.

We were afraid that a list of desired quality attributes would not spontaneously arise from

scratch. Therefore, we decided to start this process with a literature review, which led to the

identification of the main quality attributes described in Section 2.2. We then shared this initial

list via e-mail with the developers to obtain feedback on what was considered important to

Marvin-AI.

There was a lack of response from the developers. Some expressed that they were having

a hard time understanding these complex subjects in e-mail messages, as this short text style

was not enough to fully grasp all the necessary details. They suggested that it would be better

to do a video chat for this and the subsequent steps. Although we were attempting to keep all

communications asynchronous, we happily agreed, because it was a suggestion made by the

developers themselves and an opportunity to improve the discussions.

We then invited all interested developers for an online meeting. Following the suggested

ATAM steps for this stage, this online meeting had the purpose of reviewing the quality at-

tributes list and coming up with a set of scenarios for future evaluation. We prepared a set of

presentation slides to conduct the meeting.

Six developers attended the meeting. We started by presenting the list of quality attributes.

Although there was not much discussion regarding them, the developers agreed on their rele-

vance. But after that, the meeting did not go as planned. Instead of discussing and prioritizing

3.3 The architectural evolution process - a simplified version of ATAM 44

scenarios, the developers moved back to a previous step: formalizing the new architecture. Al-

though we thought to have already settled upon the new architecture, the developers decided to

use this opportunity to plan more changes for the future.

We did not want to interrupt the creativity of the developers, therefore we followed the dis-

cussions. Some of the developers cited TFX and Apache Beam as open source tools that could

be incorporated in Apache Marvin-AI to fulfill some of the requirements that Marvin-AI had

not yet implemented. TFX has native metadata gathering, rollback executions, infrastructure

checking and standardized environment (TFX, 2021). Apache Beam defines a domain specific

language (DSL) to deal with data preparation at scale (APACHE, 2021a). The decision was that

the next steps had to take into account the integration of other tools, whenever possible, to make

them easier to use and thus honoring Marvin-AI’s mission of making MLOps more accessible.

After this discussion, three new changes were incorporated in the new architecture: (1) the

implementation of TFX wrappers, to provide a ease-to-use solution to certain kinds of tasks;

(2) the usage of Apache Airflow to schedule a pipeline with DASFE actions; and (3) improve-

ments on CLI. Together with Docker containerization, which was already planned before this

whole process (Figure 3.6), and the first improvements (Section 3.3.2), we ended up with the

consolidated set of changes described in Section 3.2 for the new architecture.

At this point, from the two goals for this first meeting (consolidating the list of quality

attributes and identifying scenarios), only the first was being achieved. The second goal was not

being achieved, and worse, we moved back to a previous step: formalizing the new architecture.

But before the meeting ended, we still wanted to plan the next steps and define scenarios for

future evaluation, following ATAM. The developers then suggested that we simplified this stage

to use a document format known as a “Request For Comments” (RFC). The RFC format has

been used in the Internet Engineering Task Force (IETF) organization for the construction of

the patterns for Internet protocols such as audio codecs24 and also in open source projects such

as Tensorflow (TENSORFLOW, 2021), to discuss the implementation of critical features. This

would be performed asynchronously. Because the RFC format allows the inclusion of more

details than in e-mails, we thought this would avoid the understanding problems mentioned

before.
24https://www.rfc-editor.org/rfc/rfc6716.txt

3.3 The architectural evolution process - a simplified version of ATAM 45

3.3.4 First version of the scenarios - the RFC approach

In the ATAM method, there is a stage to brainstorm and prioritize scenarios (KAZMAN;

KLEIN; CLEMENTS, 2000). The scenarios are composed by tree main parts: (i) stimulus is the

interaction with the system made by another system, a user or itself; (ii) environment is what

goes on with the system when the stimulus is made, including events such as status changes

and interactions between architecture components (KAZMAN; KLEIN; CLEMENTS, 2000); and

(iii) response expected by the architecture components, given a stimulus and contextualized

in a environment. Computational resources or other related metrics are also used to evaluate

the responses about certain quality attributes. The ATAM scenario framework also includes

some other features to made a risk and trade-off analysis of each architecture decisions that the

scenario interacts with. The decisions can be classified as risk/non-risk/sensitivity points/trade-

off points (KAZMAN; KLEIN; CLEMENTS, 2000).

As discussed before, these scenarios were supposed to be defined during our last online

meeting, but this was moved to an asynchronous moment, via an RFC document. At this point,

we were already involved in many discussions within the Apache Marvin-AI community. Be-

sides the emails in the developers’ list, there were other, unrelated meetings, that involved some

of the project’s stakeholders. Therefore, we were able to define different scenarios based on all

the discussions that took place until this moment. In the end, we still managed to collect the

viewpoints of different stakeholders, but again we deviated from ATAM, because instead of us-

ing a single focused meeting to identify and prioritize scenarios, we compiled this information

from previous meetings.

Each scenario purposely defines critical contextual information, such as the user’s knowl-

edge level, infrastructure configuration and use of third-party tools. This is important because

different quality attributes may be evaluated differently depending on the context. For example,

the most important quality attribute to a beginner can be standardization, because it eases the

learning curve, but an advanced user can get more value from an extensible solution.

This resulted in three scenarios being included in the RFC, summarized as follows:

• The first scenario describes the basic usage of Marvin-AI’s TFX integration, when a data

scientist writes his code to develop a model using the TFX framework inside Marvin-AI,

performs a basic integration test and finish with a model ready to deploy. As Marvin-AI

is designed in his new architecture to provide a prototype environment close to the ideal

performance, we considered that the interactive development inside notebooks is a non-

risk. A trade-off point between the this type of development and the pipeline orchestration

3.3 The architectural evolution process - a simplified version of ATAM 46

was highlighted as more complex pipelines must be robustly orchestrated. Interpretability

is lost at the expense of performance and continuous training.

• The context of the second scenario is the remote development with Marvin-AI. The

developer can operate Marvin-AI through its daemon process running inside a container.

The DASFE design pattern provides programming support for TFX framework, Marvin-

AI standalone solution or a mixed version of both. The usage of Marvin’s actions allows

the developer to insert code outside the TFX components in the pipeline. This is viewed as

a non-risk, because it allows a better integration of TFX with external solutions. A trade-

off point was detected in allowing remote development outside a fully managed platform,

as it requires extra configuration skills generally not possessed by data scientists (FINZER,

2013). On the other hand, this type of tool gives the user more autonomy in relation to

the computational cost of the algorithms used.

• The third scenario describes the Airflow DAG generation, highlighting the fact that this

generation allows the developer to easily extend the DAG, thus being considered a non-

risk. A sensitivity point found was the insecurity about scheduling the pipeline compo-

nents without a precise prevision of how much time it takes to run them.

We formalized the new architecture, the quality attributes and the scenarios into an RFC

document. We followed the Tensorflow RFC model, but adapted it to work with ATAM scenar-

ios. Our RFC was composed by: (i) motivations and context to the implementation; (ii) quality

atributes regarding the scenario; (iii) all the architecture changes and interactions intended; (iv)

the scenarios descriptions in the ATAM model.

The RFC was sent to the development mailing list. We asked a feedback about the proposed

scenarios, new possible scenarios, trade-off points, risks and non-risks, sensitivity points and

new related quality attributes. Although we asked several times, we did not had any answer

after a couple of weeks.

3.3.5 Second attempt with RFC - simpler scenarios and a video

At this point in time, the evaluation was not complete yet, but the developers had already

implemented most of the proposed changes as a separate branch in Marvin-AI’s repository.

Even though this is not recommended by ATAM, the dynamic, fast-paced nature of this project

led to this result. Nevertheless, the changes were still on a separated branch, unapproved, and

we proceeded with the evaluation of the new architecture, even though it was not going exactly

as planned by ATAM.

3.3 The architectural evolution process - a simplified version of ATAM 47

Because there was no feedback from the first RFC attempt, we tried to make things sim-

pler. We removed the details (priorities, risk, non-risk, sensitivity points and trade-off points)

from each scenario and refined them a little more. We ended up with five different simplified

scenarios, all of them with the same priority:

• A data scientist with no knowledge of how to deploy an ML solution wants to use Marvin

to experiment, test, find a good model. At the end, the data scientist wants to put the

solution into production;

• A developer or data scientist wants to use Apache Marvin-AI, but does not have a good

machine available locally or does not want to use her own machine to develop;

• A team with experience in deployment, who already knows how to put machine learning

solutions in production, wants to use Marvin to facilitate the process of deployment and

continuous delivery;

• The team already has some components ready and wants to replace some components of

the Marvin pipeline, or modify its structure/pipeline to integrate Marvin and other tools;

• The team uses different tools, languages and technologies for different stages of the

pipeline, but wants to avoid unwanted complexity using Marvin-AI.

To help developers to better understand the proposed changes and better associate each sce-

nario with the quality attributes, we produced a video presentation that describes how the new

version of Marvin-AI would be used. The fact that the new version was already mostly imple-

mented helped to produce a video that delivered a full “hands-on” experience, thus facilitating

the evaluation.

We then sent the RFC again, the video and a questionnaire that asked the developers to

evaluate each of these five new scenarios in terms of the identified quality attributes. Each

question targeted a specific quality attribute, to diagnose if the new architecture is better or

worse in regards to that attribute. Each question had two parts: the first part was a multiple-

choice question following a Likert scale. The second part asked the developer to justify her

answer.

This simplified approach was better received, and we had five responses from this evalua-

tion. This is not a large number, but considering that the Marvin-AI community is small and

the respondents were all Marvin-AI experts, we considered this as a success. The results of this

evaluation, together with other forms of evaluation, are presented later in this essay.

Chapter 4
EVALUATION

The developers and PMC members that were present at this meeting agreed that the changes

that resulted from this process were very positive and moved Marvin-AI to the right direction,

which is to reuse what is already available in other tools without sacrificing Marvin-AI’s mis-

sion. But further steps should be taken to modernize Marvin-AI’s architecture even more. Some

community members had the idea of elaborating a new RFC describing a solution that would

add even more flexibility to the pipeline, making DASFE pattern not mandatory, make it possi-

ble to run Marvin-AI engines and tooling on top of Kubernetes1 and to allow more modularized

container components.

Marvin-AI’s new architecture was evaluated from 4 different perspectives. The first one

was the feedback given by Marvin-AI developers in the ATAM evaluation, as described in the

end of the previous chapter. It analyzes how the new architecture has improved considering

the quality attributes explored in Section 2.2. The second evaluation was a code analysis, to

gather quantitative evidence of quality attributes related to code quality: (i) usability; (ii) proto-

type to deployment and; (iii) component reuse. The third one uses the taxonomy proposed by

Lwakatare et al. (2019) to evaluate the maturity that Marvin-AI’s new architecture can bring to

its use cases, when compared with the previous one, also bringing more evidence to confront

the developers’ opinions. And the fourth one evaluates Marvin-AI’s new resource monitoring

features.

4.1 ATAM Evaluation

The simplified ATAM process produced the following artifacts:

1https://kubernetes.io

4.1 ATAM Evaluation 49

• The initial architectural sketch;

• A set of quality attributes validated and prioritized by the Apache Marvin-AI community;

• New architecture and third-party tools integration;

• The produced RFC, video and questionnaire that contain Marvin-AI’s mission, architec-

tural descriptions, quality attributes and scenarios;

• Mailing list logs containing discussions regarding the initial architectural sketch and fur-

ther proposed changes, the mission definition, the discussions following the simplified

ATAM process being followed and other discussions; and

• A paper and this dissertation that summarize the entire research, present the main results

and contributions to the academic community. By the time this dissertation was being

written, the paper had not been published yet.

Following the final ATAM step, which is to package the results (KAZMAN; KLEIN;

CLEMENTS, 2000), all these artifacts are available in the project’s official Github repository2,

and official mailing lists/issue tracking system.

At the end of the process, another online meeting was scheduled with some stakeholders

to discuss Apache Marvin-AI’s future. This time, we chose this format instead of e-mail dis-

cussions, as we thought it would be more productive, and although not many developers were

present, some fruitful discussions were made.

As described in Section 3.3, we sent an RFC document and a video describing the new

architecture. The document contained five scenarios to be evaluated by the developers. Each

scenario had some questions to be answered in terms of how the new architecture influences the

quality attributes.

Each question had different answers, but they all followed the same pattern: how much bet-

ter or worse is the new architecture, in regards to a particular quality attribute? We normalized

the results to: (i) much better; (ii) slightly better; (iii) no difference; (iv) worse and; (v) much

worse.

Not every quality attribute was evaluated for all scenarios, since in some cases it makes no

sense. For example, in the first scenario, component reuse is not an issue, therefore it was not

evaluated. But by combining the five scenarios, we managed to evaluate all quality attributes,

as shows Table 4.1.
2https://github.com/apache/incubator-marvin

4.1 ATAM Evaluation 50

Scenarios
Quality attribute 1 2 3 4 5

Usability X
CI/CD Support X

Robustness X
High availability X
Standardization X X

Component reuse X
High performance X

Prototype to deployment X X
Monitoring X

Extensibility X X
Batch execution X

Table 4.1: Quality Attributes evaluated in each scenario

Quality attribute Evaluation #

CI/CD support
Much better 4

Slightly better 1

Standardization
Much better 3

Slightly better 1
No difference 1

Robustness Much better 5

High performance
Much better 4

Slightly better 1

High availability
Much better 3

Slightly better 2

Table 4.2: Scenario 1 results

In the end, 5 developers answered these questions. According to ATAM (KAZMAN; KLEIN;

CLEMENTS, 2000), this number is adequate, as they are all Marvin-AI experts. Next we present

their responses.

The first scenario was: “A data scientist with no knowledge of how to deploy an ML solu-

tion wants to use Marvin to experiment, test, find a good model. At the end, he wants to put

the solution into production”. Table 4.2 summarizes the results, which evaluated five quality

attributes: CI/CD support, standardization, robustness, high performance and high availability.

All developers think that Marvin-AI’s new architecture has a better support to CI/CD work-

flows, disagreeing only in terms of how much better it is. The primary justifications was that it

now has better integration with large-scale scheduling systems and TFX.

The majority of the developers also thinks that Apache Marvin-AI is more standardized

now, due to the generation of standardized DAGs and deployment. One developer considered

4.1 ATAM Evaluation 51

Quality attribute Evaluation #

Usability
Much better 4

Slightly better 1

Prototype to deployment
Much better 2

Slightly better 3

Table 4.3: Scenario 2 results

that the standardization remains the same, because with the new features that Marvin-AI has

now, there is space for more abstractions and support for even easier commands.

Regarding robustness, all developers agreed that the new architecture is much more robust

now, given the integration with Kubernetes and TFX.

The last two questions of this scenario are related with the high performance and high

availability quality attributes. All developers agreed that Marvin-AI is more capable to deliver

higher performance in this new architecture, although one of them considered it only a minor

improvement. The justifications mention the better integration with Kubernetes and Tensorflow,

both high-end industry solutions prepared for high performance.

Regarding high availability, three developers considered that the new features greatly im-

proved this quality attribute, while two of them defended that it was only a slight improvement.

The justification given was that it is simpler to deploy Marvin-AI on Kubernetes, since several

steps of the process were removed with the containerization of the engine and deployment files

generation.

Scenario 2 was: “A developer or data scientist wants to use Apache Marvin-AI, but doesn’t

have a good machine available locally or doesn’t want to use his own machine to develop”. As

shows Table 4.3, two quality attributes were evaluated: usability and prototype to deployment.

Regarding the usability quality attribute, all developers agreed that the new version of the

architecture has improved. The main justification is that the CLI can abstract the process of a

remote environment, which is a time costly task to do manually.

Another quality attribute related to remote development is the easy migration from a pro-

totype solution to deployment. All the developers agreed that the new features closes the gap

between the two environments, although the majority of them defended that it is only a slight

improvement. The major justifications are that, while the solutions do work, to fully address

the problem, a better integration with conventional CI/CD tools is needed.

Scenario 3 focuses on the workflow of a team with experience in deployment, who already

knows how to put machine learning solutions in production, and wants to use Marvin-AI only to

4.1 ATAM Evaluation 52

Quality attribute Evaluation #

Standardization
Much better 3

Slightly better 1
No difference 1

Monitoring
Much better 4

No difference 1

Batch execution
Much better 2

Slightly better 3

Table 4.4: Scenario 3 results

Quality attribute Evaluation #

Extensibility/Prototype to development
Much better 1

Slightly easier 4

Table 4.5: Scenario 4 results

facilitate the process of deployment and continuous delivery. Tables 4.4 summarizes the results,

which evaluated three quality attributes: standardization, monitoring and batch execution.

The majority of the participants responded that Marvin-AI’s new architecture is more stan-

dardized regarding the end-to-end ML workflow, except for one of them, who responded that

both architectures have the same support for this attribute. The main justification for the im-

provement was that Marvin’s new architecture has new features and a large scale deployment

option in its tooling now.

The second quality attribute in this scenario is monitoring. The majority of the developers

agreed that Marvin-AI’s new architecture has improved significantly regarding this attribute

because of the Airflow and TFX integration, adding more monitoring capabilities and process

visualization features, like metadata gathering and a web visual interface. One of the developers

was not comfortable enough with presenting an opinion here and chose “no difference”.

The last quality attribute considered in scenario 3 is batch execution. All developers agreed

that the new architecture is better at executing batch tasks and monitoring them. Apache Airflow

integration was mentioned as the responsible for the improvement. Some of them argued that,

although the changes are positive, it would be better to integrate with something more abstract

than Airflow, citing Elyra3 as an example.

Scenario 4 was: “The team already has some components ready and wants to replace some

components of the Marvin pipeline, or modify its structure/pipeline to integrate Marvin and

other tools”. As shows Table 4.5, two quality attributes were evaluated: extensibility and pro-

totype to deployment. They were evaluated together in this scenario.

3https://github.com/elyra-ai/elyra

4.1 ATAM Evaluation 53

Quality attribute Evaluation #

Extensibility
Much better 1

Slightly better 4

Component reuse
Much better 2

Slightly better 2
No difference 1

Table 4.6: Scenario 5 results

Four developers considered that the new architecture had a slight improvement over the

old one, and one said that this improvement was major. The main justification is that, while

the features mean a lot for Tensorflow users, Marvin-AI still has some problems regarding

dependency management, that were not addressed yet.

Scenario 5 was: “The team uses different tools, languages and technologies for different

stages of the pipeline, but wants to avoid unwanted complexity using Marvin-AI”. As presented

in Table 4.6, in this scenario two quality attributes were evaluated: extensibility and component

reuse.

Regarding extensibility, all developers agreed that Marvin/AI has improved in the new ar-

chitecture, differing only in terms of intensity. The major feedback points were the new Tensor-

flow integration and that the new architecture is more extensible than the other, although some

of them pointed out that the lack of documentation did not allow Marvin-AI to achieve its full

potential in this quality requirement.

For the component reuse quality requirement, the majority of developers considered that

Marvin/AI has improved, but one of them didn’t agree that the new architecture has any dif-

ference in this context. The major feedback points are that while the new features, such as

DAG generator and other new CLI commands, facilitate the reuse of pipeline components, the

structure seems the same.

Overall, based on the feedback, the evaluation confirmed that the new architecture have

improved in terms of all quality attributes. It also elicited some possibilities for further im-

provement:

• There is space for more abstractions and support for even easier commands;

• It takes too much time to deploy Marvin-AI on Kubernetes;

• A better integration with conventional CI/CD tools is needed;

4.2 Static code analysis 54

• It would be better to integrate Marvin-AI with something more abstract than Airflow, such

as Elyra; and

• Marvin-AI still has some problems regarding dependency management and lack of docu-

mentation.

4.2 Static code analysis

We wanted to confront the results from the previous section with some objective measure-

ments, to either confirm or contest the subjective opinions from the developers. Although these

developers are the experts in Marvin-AI development, an objective confirmation would serve as

additional evidence towards the effectiveness of our architectural evolution.

We decided to evaluate Marvin-AI’s new architecture by building 2 solutions that are com-

monly used in industrial and academic environments and by performing static source code anal-

ysis. For this analysis, we focused only on the Marvin-AI/TFX integration, because this is the

only new feature that would present differences in terms of source code.

The evaluation consisted in the following procedure: we developed the same ML solution

in three versions: Marvin-AI’s original architecture, Marvin-AI’s new architecture (with TFX

integration) and a standalone TFX environment.

Next we collected some static source code metrics:

Number of logical lines of code (LLOC). The number of logical lines of code. Every

logical line of code contains only one statement. The more the LLOC count, the more effort it

is necessary to create and maintain the source code.

Halstead Metrics. The Hastead metrics aim to identify measurable properties and identify

relationships. These are the properties statically calculated in the source code: (i) the number

of distinct operators (n1); the number of distinct operands (n2); the total number of operators

(N1); the total number of operands (N2) (COLEMAN et al., 1994).

Using these properties, these relationships were explored:

• Difficulty: D = n1
2 ∗

N2
n2

(larger values indicate more difficulty in developing the code)

• Volume: V = Nlog2n (where N = N1 +N2 and n = n1 +n2)

• Effort: E = D∗V (larger values indicate that more effort is needed to write the code)

4.2 Static code analysis 55

These metrics were collected with the help of radon4, a freely available source code analy-

sis tool for Python code and Jupyter notebooks. We only analyzed those pieces of code that are

actually edited by the developer in the Jupyter notebooks. Generated code, such as the different

files generated by Marvin-AI to organize the engines’ components, was not accounted for, as it

is not visible to the developer.

These are not definitive or very reliable metrics, but they can give some indication on the

maintainability and simplicity of the code, specially when analyzed in conjunction with other

metrics. In our case, we are using these metrics to confront the results from a different eval-

uation, therefore we expect them to either reinforce or contradict the subjective perception of

Marvin-AI developers.

Regarding the quality attributes, the major objective is to reduce the trade-off between the

robustness of a solution, as the qualitative analysis shows that TFX has the ability to build

pipelines that has more quality regarding this attribute than the pure Apache Marvin-AI, and

usability, which is one of Marvin-AI’s strong aspects.

4.2.1 First solution - MNIST

Regarding the first solution to be used in this analysis, Li et al. (2014) describe an ap-

plication of image classification that uses a customized framework for Convolutional Neural

Networks (CNN). CNNs have been tested among a variety of datasets for image classification

tasks, some are: MNIST, CIFAR-10 and NORB database (LI et al., 2014).

The MNIST dataset provides a relatively simple image classification task. It is composed

by a set of handwritten digit images in conjunction with each image class (digits from 0 to 9)

(Deng, 2012). Although the task may be simple, and can be solved by a variety of algorithms, this

dataset provides a concept proof about a common industry problem, putting image classification

models into production.

In this type of task, it is necessary to encode the image to transform it in a format that fits

as model input. This has a high computational cost, as this operation has to be executed both

in a batch model training scenario and at run time when serving the model predictions trough a

REST API, which could potentially generate a massive overhead during model serving.

The Apache Marvin-AI community has made available an example5 showing how to de-

velop an image classification example using CNN to recognize handwritten digits trained by

4https://pypi.org/project/radon/
5https://github.com/apache/incubator-marvin/tree/develop/public-engines/mnist-keras-engine

4.2 Static code analysis 56

MNIST. This was the first version used for the source code analysis. In this example, the im-

plementation includes code for all of DASFE’s batch actions: (i) Acquisitor and Cleaner, which

has the code to use the Keras6 MNIST load function and persist the dataset using a simple

variable attribution; (ii) Training Preparator, which has the code to reshape the images in an ad-

equate form to serve as input to the algorithm, and persist the final dataset; (iii) Trainer, which

uses Keras to compose a CNN defining the layers, activation function, optimization method,

among others, persisting the model in the end; and (iv) Metrics Evaluator, which extracts the

metrics from the CNN training and persists them.

The Prediction Preparator online action, in this scenario, is responsible for acquiring the

image from the server and making the transformations required for using it as model input. It

is a common industry practice to use another service to handle image uploading, in compliance

with the principles of a microservice architecture. Finally, the Predictor online action uses the

input transformed by the Prediction Preparator action and returns the predicted image class (0

to 9 digits).

For the second version used for the source code analysis, we adapted the previous solution

to use Marvin-AI’s new integration with TFX. This introduced some particularities in the com-

position of the steps. TFX has a bigger variety of components to compose a production ML

pipeline, easier to integrate in a CI/CD environment. In Marvin-AI’s wrapper it is expected that

a given DASFE action assumes a set of TFX components each.

The first TFX component used, on the Acquisitor and Cleaner DASFE action, is

ImportExampleGen. It reads a file in the TFRecord7 file that contains a transformed MNIST

dataset, shuffles it and splits in training and test samples, as it is a good practice in machine

learning.

The next set, defined in Training Preparator DASFE action, began with StatisticsGen,

that uses only the output of ImportExampleGen as parameter to generate statistics for data

visualization and example validation. These statistics are a parameter for the SchemaGen com-

ponent, which generates a schema and can infer the shape’s features and data types. Another

such component is ExampleValidator. It uses the statistics and the schema to evaluate anoma-

lies automatically on the dataset, using some heuristics. The last component defined in Training

Preparator action is Transform. It uses the examples, schema and a function defined by the

user called, by default, preprocessing_fn. The transformation applied in the MNIST dataset

is a simple scaling, using the Tensorflow Transform library.

6https://keras.io/
7A custom file format defined by the Tensorflow libraries to support data persistence in a optimized JSON

based structure.

4.2 Static code analysis 57

The next to execute is the Trainer component, the only component in Trainer DASFE action.

Besides the default format, TFX allows users to choose a variety of model formats, including:

Tensorflow Lite, which aims at smartphones and IoT devices, and Tensorflow JS, which pro-

vides embedded use on Javascript interpreters. The Trainer component is standardized, as the

training algorithm is written by the developer in a separate file. The component defines the ex-

amples, transformation model, schema and other training arguments as parameters (TFX, 2021).

As more than one Trainer component can be used to train models in different formats and

objectives, components Evaluator and Pusher work in a similar way, as both can be present

more than once in the pipeline, in the Metrics Evaluator DASFE action, with different con-

figuration and parameters. The Evaluator component makes sure that, in a CD pipeline, the

delivered model is always superior to the previous one. This task is called “model blessing”

and must run on every model produced inside TFX before being deployed into the production

environment. The last component of a typical TFX pipeline is the Pusher. It simply verifies if

the given model is blessed and persists it in a user-defined file system location.

The third version of this solution is very similar to the second one in terms of code struc-

ture, the only difference is that the pipeline is orchestrated by TFX native tools. Some additional

code and configurations are required.

Table 4.7 shows the metrics from the three versions of the MNIST solution. In terms of

logical lines of code, the pure Marvin-AI version is the simpler, with around half as less code

than the other versions. This is expected, as TFX introduces more components into the solution,

thus requiring more code. In Marvin-AI + TFX, even more lines of code are needed, because

each component of a Marvin engine must read the metadata from the previous component in

order to follow DASFE, which is not required in pure TFX.

Solution LLOC Difficulty Effort
Pure Marvin-AI* 65 1.1 10.37
Pure TFX 119 1.5 13.99
Marvin-AI + TFX 129 1.0 11.60

Table 4.7: MNIST dataset solutions metrics (* import and super class omitted)

Although the LLOC analysis seems to suggest otherwise, the difficulty and effort metrics

show that the new Marvin-AI architecture with TFX is simpler to program and requires less

effort than the pure TFX version. It is even less difficult (but requires more effort) to program

than a pure Marvin-AI solution, which in theory is the simpler one. This is explained by the

fact that Marvin-AI hides some of TFX’s configuration code.

4.2 Static code analysis 58

4.2.2 Second solution - MRPC

This model is generated by executing transfer learning (GOODFELLOW; BENGIO; COURVILLE,

2016) from a pre-trained BERT (DEVLIN et al., 2019) model in a semantic textual similarity anal-

ysis task using the Microsoft Research Paraphrase Corpus (MRPC) dataset. The first version,

with pure Marvin-AI, uses the fast.ai framework8 to do this task. The code is very high level

and simple since the library contains all the tokenizers, training functions and metric generators.

With the second version, the solution only significantly differs from the previous one

(MNIST) on the Transform and Trainer components, because here the developer must define

new code. In this dataset, for containing expressions in natural language, the data has to be

tokenized. In the training stage, the developer defines a module file containing the layers for the

tokenized input, a code that downloads BERT’s pre-trained network from TensorflowHub and

adds it as a layer onto a new network and the output layer to classify if the two expressions that

are part of the input have similarity between them.

The third version is identical to the second one, except for Marvin-AI’s built-in libraries

and the orchestration code that uses TFX’s native libraries to configure the pipeline orchestra-

tion.

Table 4.8 shows the metrics for the three versions of the MRPC solution. The results are

consistent with the ones from Table 4.7: again, the pure Marvin-AI solution is the simplest. The

difficulty and effort metrics were calculated as 0 for pure Marvin-AI because the code has no

operators nor operands, only attributions, which are not considered as operators by radon. The

new Marvin-AI architecture, with the TFX wrapper, requires more lines of code, but is easier

to program and takes less effort than a pure TFX solution.

Solution LLOC Difficulty Effort
Pure Marvin-AI* 60 0 0
Pure TFX 130 2.9 115,39
Marvin-AI + TFX 133 2.38 104.78

Table 4.8: MRPC dataset solutions metrics (* import and super class omitted)

4.2.3 Discussion

In summary, in both datasets that had code evaluated, the Marvin-AI solutions, with and

without TFX, are easier to program and take less effort, according to the metrics. These results

indicate that the Marvin-AI integration with TFX managed to bring the benefits of TFX without
8https://www.fast.ai/

4.3 Taxonomy analysis 59

sacrificing Marvin-AI’s mission of being easy to program. This result confirms the subjective

perception of the developers in the previous evaluation, which stated that the new architecture

is still easy to use, when compared to the old one, and it brings benefits in terms of robustness,

performance, reuse and other quality attributes that came from the TFX integration.

This static code analysis can provide a quantitative basis to analyze if the trade-off between

robustness and usability mentioned before has been reduced with the integration of Apache

Marvin-AI and TFX. The metrics for both datasets (MNIST and MRPC) indicate that the pure

Marvin-AI solutions take less effort and have less difficulty involved in the coding process. The

Pure TFX solutions are in the other extreme, as the metrics indicate that they take more effort

and have more difficulty involved in the development. In the middle are the Marvin-AI + TFX

solutions, which presented better metrics than the Pure TFX solutions but not as good as the

ones in Pure Marvin-AI solutions. The only metric that is higher in Marvin-AI + TFX solutions

is the LLOC count. The reason is the code repetition needed in each step of the DASFE pipeline

because the actions do not share the same variable scope. But since this is repeated code, it does

not require additional effort to be created and maintained, as confirmed with the other metrics.

All these examples and the scripts to calculate the metrics are available at Apache Marvin-

AI’s GitHub repository. Both versions of MNIST dataset examples and MRPC dataset example

with BERT are also included.

4.3 Taxonomy analysis

As discussed in Chapter 2, Lwakatare et al. (2019) researched different use case scenarios

and identified five evolution stages of the use of ML components in a software project.

• The first stage is experimentation and prototyping, when the project is in the design phase,

the project method of data acquisition is not adapted to ML but the sampled data prepared

by specialists provide useful insights for decision making;

• Stage 2 defines the usage of ML components on non-critical deployments, when an ML

pipeline is taking form but the lack of monitoring and data verification makes pipelines

obscure, with considerable discrepancies between training metrics and production perfor-

mance;

• Stage 3 describes critical deployments, which have a stable end-to-end pipeline that sim-

plifies the exploration and comparison of ML models and configuration versions without

affecting the end user;

4.3 Taxonomy analysis 60

• Stage 4 is achieved when the outcomes of one or more ML models are used as input to

the subsequent ones. It can be efficient to user experience and reduce computational costs

of the solutions, although entanglements can difficult maintenance; and

• Stage 5 achieves the maximum point of maturity, when independent pipelines with au-

tomatic testing are created. The need for human interference is minimal with tasks that

would previously need this, like data annotation and monitoring. This maturity level relies

strongly on quality assurance of models and data.

We performed a qualitative analysis on which of these important key features can be

achieved with the help of Marvin-AI, both in the old and new architectures. The results are

shown in Table 4.9.

Maturity Key feature Old New

Stage 1
Feature exploration X X

Simple data acquisition X X
Basic model metrics X X

Stage 2
ML data setup X X

Primitive data pipelines X X

Stage 3
End-to-end ML pipelines X
Business-centric metrics X X
Experiments metadata X

Stage 4 Sliced analysis X

Stage 5
Quality assurance X

Automatic annotation
Pipeline independence

Table 4.9: A qualitative analysis of Marvin-AI’s old and new architectures in terms of the key
features described by Lwakatare et al. (2019)

As we can see in Table 4.9, the old architecture of Apache Marvin-AI was already allowing

the development of non-critical deployments. Some important features such as monitoring and

a full CI/CD support described in Section 2.2 were needed to support critical deployments

efficiently.

Marvin-AI has improved in terms of monitoring and prototype to deployment quality re-

quirements with its new architecture. Thanks to Docker containerization and TFX integration,

Marvin-AI’s pipeline is now closer to produce solutions at the stage 4 of the taxonomy, with

some stage 5 features like quality assurance of models and data, with fail safe solutions to when

the minimal baseline is not being achieved. Although critical deployments were executed in

Marvin-AI before, now it is easier to setup a complete environment that detects data anomalies

and inconsistencies and pipeline visualization.

4.4 Benchmark suite evaluation 61

It is important to stress that these key features are not guaranteed by the mere adoption

of Marvin-AI, but that they are made possible, or easier to achieve, with Marvin-AI. Also, the

analysis demonstrated that the architectural evolution pushed Marvin-AI towards a more mature

stage, as was also perceived by developers in our previous evaluations.

4.4 Benchmark suite evaluation

To evaluate Marvin-AI’s new monitoring features, we performed some tests. We used two

computers. For the server, we used a computer running 8 GB of RAM, Dual core Intel Core i3-

5005U CPU, 7200 RPM HDD and a Realtek RTL810xE PCI Express Fast Ethernet controller.

For the client, we ran Apache JMeter on a computer running 4 GB of RAM, Dual core Intel

Core i3-5005U CPU, 7200 RPM HDD and a Realtek RTL810xE PCI Express Fast Ethernet

controller. The two computers were connected in a LAN network using a Fast Ethernet network

connection supported by a D-link router, model DIR-615.

We selected 9 datasets for the tests. We tried to select datasets with different features and

sizes, to check how useful our approach is in diagnosing problems when using them. Table 4.10

shows the datasets used in this evaluation and the tool/algorithm that was implemented.

Dataset Data type
of

training
samples

of test
samples

of
attributes Observations Tool/ Algorithm

Dog Breed Images 10222 10357 N/A 120 classes Keras / CNN
Invasive Species Images 2295 1531 N/A Binary classification Keras / CNN
Plant Seedlings Images 4750 794 N/A 12 classes Keras / CNN

Taxi Fare Attribute-value 55423856 9914 7 Regression
scikit-learn /

Random forest
regressor

Santander Value Attribute-value 4459 49342 4991 Regression
scikit-learn /

Random forest
regressor

House Prices Attribute-value 1460 1459 79 Regression scikit-learn /
LassoCV

Santander Customer Attribute-value 200000 200000 200 Binary classification scikit-learn /
SVM

Don’t Overfit II Attribute-value 250 19750 300 Binary classification scikit-learn /
SVM

Microsoft Malware Attribute-value 8921483 7853253 82 Binary classification xgboost / xgboost

Table 4.10: Datasets used in the evaluation. These can be found in kaggle.com

Table 4.11 shows the main results for the batch tasks. Two solutions were automatically

interrupted (Microsoft Malware and Taxi Fare) due to the lack of RAM. The data shows that

the maximum amount of RAM used was almost 78% for both cases. The amount of CPU used

was around 100%, indicating that the chosen tool/algorithm was not making use of multiple

processing cores. For these cases, additional RAM may solve the problem, as well as another

algorithm to split processing in multiple cores.

4.4 Benchmark suite evaluation 62

Dataset Task time (secs) Max CPU Max RAM Max Disk I/O
Microsoft Malware 1082* 101% 77.7% 3.46GB / 0B

Taxi Fare 127* 98% 77.4% 2.93GB / 4.1KB
Dog Breed 600** 404% 27% 437MB / 12.3KB

Plant Seedlings 600** 397% 24% 1.79GB / 12.3KB
Invasive Species 592 390% 22% 2.79GB / 3KB
Santander Value 130 396% 7% 150,000KB / 8KB

Santander Customer 100 100% 7.5% 140,000KB / 12KB
Don’t Overfit II 17 15% 0.8% 60,000KB / 15KB

House Prices 15 30% 0.8% 80,000KB / 5KB

Table 4.11: Resource usage for the batch tasks. * Automatically interrupted by the tool. ** Manu-
ally interrupted during training after 10 minutes.

Two solutions were manually interrupted after 10 minutes (Dog Breed and Plant Seedlings),

as they were taking an excessive amount of time, and the estimated time for completion was

several hours. For these cases, all four cores were being used at maximum capacity, as the data

for maximum CPU usage shows values close to 400%. We can conclude that to reduce this

time, additional CPUs or a GPU would be effective.

For the other solutions, the time varied from a few seconds (House Prices) to almost 10

minutes (Invasive Species). These times may be acceptable, but if less time is desired, additional

processing power would probably reduce the time for those solutions with reported CPU values

close to 400% (Invasive Species and Santander Value), as these represent the maximum allowed

in this hardware. And for the solution where CPU was 100%, a different algorithm, which

makes use of multiple cores, could reduce the task time.

Disk input was higher in the larger datasets, as expected, and only a small amount of disk

output was noticed. For the larger datasets, a faster disk would probably help to reduce the time.

In all solutions, there was no network traffic.

Table 4.12 shows the main results for the online tasks. Only the solutions for which the

batch tasks were completed are shown, as there were no trained models for the others. Sce-

narios with 50 and 350 simultaneous threads were simulated. Each thread was configured to

submit 1000 requests. For all scenarios with 50 threads there were no errors (requests without

a response). The average response times were also adequate, except for the “Invasive Species”

dataset, but this is expected, as this task involved processing an image in real time. Since CPU

was getting close to the maximum (400%) maybe additional processing could reduce this time.

With 350 threads, all solutions had some percentage of errors, which indicate that this

particular server is not able to support this amount of simultaneous requests. Again, the solution

for “Invasive Species” had more errors. The maximum amounts of CPU and RAM data confirm

these observations. However, in all tests, resources did not appear to reach a critical limit,

therefore there are probably other limitations to this environment that is causing the errors.

4.4 Benchmark suite evaluation 63

of threads Dataset % Errors Ave. resp. time Max CPU Max RAM Max Network I/O
Invasive Species 0% 1592 352% 17.1% 30MB / 30MB
Santander Value 0% 141 246% 2.7% 93.5MB / 28.4MB

50 Santander Customer 0% 147 255% 2.7% 93.6MB / 28.4MB
Don’t Overfit II 0% 115 232% 2.7% 83.5MB / 28.4MB

House Prices 0% 79 288% 2.7% 82MB / 29MB
Invasive Species 4.18% 9716 352% 17.1% 238MB / 196MB
Santander Value 1.02% 1102 254% 2.7% 691MB / 199MB

350 Santander Customer 1.06% 1156 288% 2.7% 692MB / 199MB
Don’t Overfit II 1.47% 899 261% 2.7% 612MB / 199MB

House Prices 1.87% 876 239% 2.7% 600MB / 205MB

Table 4.12: Resource usage for the online tasks

Finally, the amount of network traffic observed is proportional to the number of threads,

what indicates that there is no additional network traffic other than the request/response data.

These values may help to estimate cloud costs. These solutions use REST endpoints. If the

costs are two high, smaller payload frameworks, such as gRPC, could be an alternative.

Chapter 5
FINAL CONSIDERATIONS

This essay describes the evolution of Apache Marvin-AI’s architecture. In the end, the

process of designing, implementing and evaluating Apache Marvin-AI’s new architecture was

successful, as it has been observed to be better than the previous one in all four independent

evaluations performed. Some future improvements for Marvin-AI’s architecture were also iden-

tified, such as more quality assurance techniques and more independent pipeline components.

Although the new architecture partially solves many of this problems, there are still many points

where manual interference is needed. There is also an absence of monitoring and debug fea-

tures. Another point fairly mentioned at the feedback is the lack of updated documentation.

The quality attributes are also an indirect contribution of this process, as MLOps is a new

concept and has several differences compared to traditional software development. This set of

quality attributes can serve as useful guidelines to develop platforms and individual solutions

that follow good development practices.

Another contribution of this work was the process we attempted to follow. Through slightly

more than 8 months of research and development, from the first e-mail on 07/07/2020 until

03/18/2021 with the last architecture meeting, we departed from a completely ad-hoc process

and managed to employ a simplified version of ATAM to systematically promote an architec-

tural evolution based on quality attributes and more controlled discussions. This process also

helped developers to think about the proposed changes and their impact, in a more controlled

and predictable way.

5.1 Threats to validity

In this section we summarize some identified threats to the validity of our research:

5.2 Lessons learned 65

TV01. ATAM is traditionally a physical meeting with different stakeholders that are invited

to participate at all discussions at high level architecture specifications. Remote encounters and

asynchronous discussions are not part of the main practices of ATAM.

TV02. We had to perform some serious simplifications to make ATAM work in Apache

Marvin-AI’s scenario. We did not compile a tree of rich scenarios with proper details and

prioritization, nor promoted engaging discussions.

TV03. In the ATAM evaluation, only a few developers participated, and the results are not

statistically relevant.

TV04. As the researcher is also a developer in the evaluated open source project, the

qualitative analysis may be biased.

We tried to mitigate these threats as follows:

TV01. The virtual environment was required to develop the method at an open source

environment. The steps, outcomes and expected discussions were made successfully even with

the limitations and the architectural discussions were raised awareness at the problems and

challenges.

TV02. Although the process was simplified, we managed to keep ATAM’s essence, which

is to use quality attributes, scenarios for the discussions and the involvement of different stake-

holders.

TV03. Although we had a little amount of answers, it complied with ATAM’s directive (at

least five participants).

VT04. The major point of this research was to identify issues with the Apache Marvin-AI

platform. As the processes involved other people and stakeholders with a diverse set of skills,

the effects of this validity threat were minimized.

5.2 Lessons learned

Some important lessons were learned in this process:

• The adopted systematic process allowed the developers to identify more details about

some desired changes that were not being perceived before, such as the need for a daemon

to make containerization work with Marvin-AI tooling and remote development.

5.2 Lessons learned 66

• Overall, we perceived that the Marvin-AI architectural evaluation has raised awareness

about the importance of the architectural documentation and the participation of the com-

munity in the development work. This was also a benefit reported by others (BARBACCI

et al., 2003; KAZMAN et al., 2016) in similar studies;

• Another example of a benefit of the process was the perception that Marvin-AI should

prioritize usability over other attributes, because this was established as Marvin-AI’s mis-

sion. This trade-off analysis was made during the discussions we made along the process;

• Similarly to what was reported by Barbacci et al. (2003), the scenarios were evaluated

by Marvin-AI developers and users. Our group was aware of all design decisions re-

garding the architecture and contributed to them. The architectural design decisions were

validated with the community;

• Although an official risk analysis step was excluded from our process, the discussions

raised by the developers’ feedback may have covered the need of this specific part of the

scenario. The feedback also lead to the discovery of new issues with the architectural

proposal and future improvements. These benefits were also observed by Barbacci et al.

(2003);

• Instead of a few continuous and focused sessions of discussions and brainstorming, we

relied on asynchronous communication, via e-mail, because this is how development at

Marvin-AI worked. However, some synchronous meetings were necessary;

• We tried to fit as much information as possible into e-mail messages, to make communi-

cation shorter and try to get as many people participating as possible. But in some cases,

we had to use other media, as it was becoming very difficult for developers to under-

stand everything. An RFC document and video explanation helped to overcome these

problems, but some had to be explained via synchronous meetings;

• Although we managed to obtain good feedback from e-mail discussions, we acknowledge

that some activities are unfeasible because they require a lot of interaction and dynamism,

a trivial feature in a face-to-face meeting, but difficult to organize, or even time consum-

ing, in this form of communication;

• Defining and prioritizing scenarios was a very difficult task. We tried to organize a syn-

chronous meeting for this purpose, but it did not go as planned, much because developers

were eager to discuss more practical things instead of hypothetical scenarios. We ended

up having to define them later, asynchronously, by inferring things from previous meet-

ings and other discussions with project members.

5.2 Acknowledgment 67

• ATAM requires at least five participants in the discussions, and we managed to fulfill this

requirement. However, not all members were the same in all meetings. We felt that a

better involvement from the same members over the entire process would be better, but

this was very difficult, because Marvin-AI is maintained by volunteers and we had no

way to enforce one’s participation in this process.

We believe these lessons can be of great value to others interested in conducting further

research regarding ATAM in an open source project. We believe future work should address

some limitations we encountered. First, a better way to get more people involved, from start

to finish, is necessary. Another issue that needs to be better examined is an asynchronous and

distributed way to define and prioritize scenarios. We faced some resistance to get developers

to work on hypothetical thinking, even in an online meeting, as they were more committed with

getting more things being implemented. This might also be true for the identification of the

quality attributes. This was not a problem in our case, as we managed to identify them in the

literature and get confirmation from developers. But in other scenarios similar barriers might

be found.

Another contribution, which was not intended at first, is that this alternative to the indoor

ATAM meetings is ideal for the scenario that has begun in 2020, with the Sars-CoV-2 pandemic.

The simplified ATAM version can be executed in a social distancing situation with members in

different geographic locations.

Acknowledgment

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior - Brasil (CAPES) - Finance Code 001. We also thank B2W Digital, a partner

company of this project, which financed and provided computational resources and data to make

possible the study, through the extension activity #23112.000186/2020-97, Federal University

of São Carlos.

REFERENCES

ALENEZI, M.; KHELLAH, F. Evolution impact on architecture stability in open-source
projects. International Journal of Cloud Applications and Computing (IJCAC), IGI Global,
2015.

ANDREWS, P. et al. Productionizing machine learning pipelines at scale. In: Proceedings of
the 32nd International Conference on Machine Learning, Lille, France. [S.l.: s.n.], 2015.

APACHE. Apache Beam Documentation. Apache Software Foundation, 2021. Accessed on
2021.09.17. Available at: <https://beam.apache.org/documentation/>.

APACHE. Marvin-AI Documentation. MARVIN, 2021. Accessed on 2021.09.17. Available at:
<https://marvin.apache.org/marvin-platform-book/SUMMARY/>.

BARBACCI, M. et al. Using the Architecture Tradeoff Analysis Method (ATAM) to Evaluate
the Software Architecture for a Product Line of Avionics Systems: A Case Study. [S.l.], 2003.

BASS, L.; WEBER, I.; ZHU, L. DevOps: A software architect’s perspective. [S.l.]:
Addison-Wesley Professional, 2015.

BAYLOR, D. et al. Tfx: A tensorflow-based production-scale machine learning platform. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. [S.l.: s.n.], 2017.

BEHNAMGHADER, P. et al. A large-scale study of architectural evolution in open-source
software systems. Empirical Software Engineering, Springer, 2017.

COLEMAN, D. et al. Using metrics to evaluate software system maintainability. IEEE
Computer Society Press, 1994.

Deng, L. The mnist database of handwritten digit images for machine learning research [best
of the web]. IEEE Signal Processing Magazine, 2012.

DEVLIN, J. et al. Bert: Pre-training of deep bidirectional transformers for language
understanding. In: Conference of the North American Chapter of the Association for
Computational Linguistics. [S.l.: s.n.], 2019.

DOCKER. Docker Documentation. Docker Inc., 2021. Accessed on 2021.09.17. Available at:
<https://docs.docker.com/>.

FINZER, W. The data science education dilemma. Technology Innovations in Statistics
Education, 2013.

References 69

FLAOUNAS, I. N. Beyond the technical challenges for deploying machine learning solutions
in a software company. CoRR, 2017.

GHANTA, S. et al. {MPP}: Model performance predictor. In: 2019 {USENIX} Conference on
Operational Machine Learning (OpML 19). [S.l.: s.n.], 2019. Accessed on 2021.09.17.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press, 2016.
Http://www.deeplearningbook.org.

HERMANN, J.; BALSO, M. D. Meet Michelangelo: Uber’s Machine Learning
Platform. Uber Technologies Inc., 2017. Accessed on 2021.09.17. Available at:
<https://eng.uber.com/michelangelo-machine-learning-platform>.

KAZMAN, R. et al. Evaluating the effects of architectural documentation: A case study of a
large scale open source project. IEEE Transactions on Software Engineering, 2016.

KAZMAN, R.; KLEIN, M.; CLEMENTS, P. ATAM: Method for Architecture Evaluation.
[S.l.], 2000.

LI, Q. et al. Medical image classification with convolutional neural network. In: IEEE. 2014
13th international conference on control automation robotics & vision (ICARCV). [S.l.], 2014.

LIM, J. et al. Mlop lifecycle scheme for vision-based inspection process in manufacturing. In:
2019 USENIX Conference on Operational Machine Learning (OpML 19). [S.l.]: USENIX
Association, 2019. Accessed on 2021.09.17.

LIN, J.; RYABOY, D. Scaling big data mining infrastructure: the twitter experience. Acm
SIGKDD Explorations Newsletter, ACM, 2013.

LWAKATARE, L. E. et al. A taxonomy of software engineering challenges for machine
learning systems: An empirical investigation. In: Agile Processes in Software Engineering and
Extreme Programming. [S.l.]: Springer International Publishing, 2019.

MARTIN, R. C. Agile software development: principles, patterns, and practices. [S.l.]:
Prentice Hall, 2002.

NGUYEN, G. et al. Machine learning and deep learning frameworks and libraries for
large-scale data mining: a survey. Artificial Intelligence Review, Springer, 2019.

PROMETHEUS. From metrics to insight: Power your metrics and alerting with a
leading open-source monitoring solution. 2021. Available at (accessed jun 2021):
https://prometheus.io/.

SCULLEY, D. et al. Hidden technical debt in machine learning systems. In: Advances in
neural information processing systems. [S.l.: s.n.], 2015.

SERBAN, A. et al. Adoption and effects of software engineering best practices in machine
learning. Proceedings of the 14th ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2020.

SILVA, L. C. et al. Benchmarking machine learning solutions in production. In: 2020 19th
IEEE International Conference on Machine Learning and Applications (ICMLA). [S.l.: s.n.],
2020.

References 70

SQLITE Documentation. SQLite Community. Accessed on 2021.09.17. Available at:
<https://www.sqlite.org/docs.html>.

SRIDHAR, V. et al. Model governance: Reducing the anarchy of production ML. In: 2018
USENIX Annual Technical Conference (USENIX ATC 18). [S.l.]: USENIX Association, 2018.

Staples, M.; Zhu, L.; Grundy, J. Continuous validation for data analytics systems. In: 2016
IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C).
[S.l.: s.n.], 2016.

TENSORFLOW. Tensorflow RFC process. Alphabet Inc., 2021. Accessed on 2021.09.17.
Available at: <https://www.tensorflow.org/community/contribute/rfc_process>.

TFX. Tensorflow Extended Documentation. Alphabet Inc., 2021. Accessed on 2021.09.17.
Available at: <https://www.tensorflow.org/tfx/api_overview>.

ZHOU, J. et al. Katib: A distributed general automl platform on kubernetes. In: 2019
{USENIX} Conference on Operational Machine Learning (OpML 19). [S.l.: s.n.], 2019.

