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Resumo

Este trabalho é dedicado ao estudo do fluxo de Yamabe em uma classe de variedades Rieman-

nianas (M,gΦ) não-compactas completas de volume infinito denominadas Φ-variedades. Alguns

exemplos dessa classe de variedades são instatons gravitacionais, produtos entre variedades assin-

toticamente cônicas com variedades fechadas e monopólos magnéticos não-abelianos. Através de

suposições sobre a regularidade sobre a curvatura escalar scal(gΦ), verificamos existência e unici-

dade do fluxo para tempo curto. Além disso, supondo que scal(gΦ) é negativa e limitada tanto su-

periormente longe do zero quanto inferiomente, provamos que os fluxos de Yamabe normalizados

pela curvatura (CYF+ e CYF−) existem para todo o tempo e, mais ainda, convergem para métricas

Riemannianas sobre M de curvatura escalar constante. Este trabalho estende os resultados obtidos

por Serrato-Suárez e Tapie em [SST12].

Para obter estes resultados, provamos: um princı́pio do máximo no contexto de Φ-variedades,

mergulhos compactos entre espaços de funções Hölder contı́nuas, propriedades de aplicação para

o núcleo de calor H, estimativas parabólicas de Schauder e apresentamos uma construção de uma

parametrix para uma famı́lia de equações do calor. Os argumentos apresentados para o estudo do

fluxo de Yamabe global são válidos no contexto mais geral das variedades de geometria limitada.

Contudo, o argumento de convergência, bem como as estimativas parabólicas de Schauder consider-

avelmente mais fortes, são obtidas no contexto de variedades de bordo fibrado munidas de Φ-métricas.

Gostarı́amos ainda de enfatizar que através de tais estimativas parabólicas de Schauder, conseguimos

provar existência em tempo curto do fluxo de Yamabe com um controle preciso do comportamento

assintótico das soluções próximo ao bordo. Tal controle não pode ser obtido usando somente esti-

mativas clássicas válidas para variedades de geometria limitada. Finalmente, notamos ainda o fato

de Φ-variedades terem volume infinito, o que impede o uso da renormalização usual do fluxo, que

garante volume constante em variedades compactas e, eventualmente a convergência do fluxo. Su-

perar esta dificuldade no contexto de variedades não-compactas é uma das principais contribuições

desta tese.

Palavras-chave: Fluxo de Yamabe, variedade de bordo fibrado, núcleo do calor, princı́pio do máximo,

estimativas de Schauder, construção de parametrix.
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Abstract

This work is dedicated to the study of the Yamabe flow on a class of non-compact complete

Riemannian manifolds (M,gΦ) with fibered boundary and Φ-metrics, called Φ-manifolds. Some

examples of this type of manifolds include gravitational instatons, products of an asymptotically

conical manifold with a closed manifold and non-abelian magnetic monopoles. Through assumptions

on the regularity of the scalar curvature scal(gΦ), we prove both existence and uniqueness of the flow

for short-time. Moreover, assuming scal(gΦ) to be negative, bounded and bounded away from zero,

we show that the curvature-normalized flows (CYF+ and CYF−) exist for all time and, further, that

they converge to some Riemannian metric on M with constant scalar curvature. This work extends

the results obtained by Serrato-Súarez and Tapie in [SST12].

In order to obtain these results, we proved: a maximum principle in the setting of Φ-manifolds,

compact embeddings between Hölder spaces, mapping properties for the heat kernel H, Schauder

parabolic estimates and we present a parametrix construction for a family of heat equations. The

arguments presented for the study of the Yamabe flow on long-time hold on the more general setting

of manifolds of bounded geometry. However, the convergence argument, as well as the consider-

ably stronger parabolic Schauder estimates, are worked out specifically in the setup of manifolds

with fibered boundary equipped with Φ-metrics. We also like to emphasize that using these stronger

parabolic Schauder estimates, we are able to prove short-time existence of the Yamabe flow with a

precise control of the asymptotic of solutions up to the boundary. Such a control is not possible using

just the classical estimates on spaces with bounded geometry. Finally, we should also point out that

due to the fact that Φ-manifolds have infinite volume, the usual renormalization of the flow, that in

the compact setting ensured constant volume and eventually convergence of the flow, does not work

here. Overcoming this difficulty in the non-compact setting is one of the main contributions of this

thesis.

Keywords: Yamabe flow, fibered boundary manifold, heat kernel, maximum principle, Schauder

estimates, parametrix construction.
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4.1 Modified Hölder continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Mapping properties of the Heat Kernel on Cα

x4Φ
(M× [0,T ]) . . . . . . . . . . . . . . 73
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Introduction

From its very origin, Riemannian geometry was developed as a way to generalize the theory of

compact surfaces to geometric objects of higher dimensions. Naturally, conformal changes of metrics

gain importance, given the central role they play in the theory of surfaces. More precisely, it was

already known that every compact surface admits a metric of constant Gaussian curvature. This was

a groundbreaking result, since it transformed a topological question into a differential geometric one,

by classifying all the homeomorphism classes of compact surfaces.

However, generalizations to higher dimension manifolds are not straightforward. In fact, for a

Riemannian manifold of dimension m, the Riemann tensor has m2(m2−1)/12 algebraically indepen-

dent components. Therefore, to look for a more direct generalization, it would be reasonable to study

the “less complex” analogue in manifolds, i.e. the scalar curvature. This would lead to the Yamabe

problem, which asks the following question:

“Given a compact Riemannian manifold (M,g) of dimension m ≥ 3, is it possible to find a Rie-

mannian metric on M conformal to g whose scalar curvature is constant?”

This problem was proposed by Hidehiko Yamabe [Yam60], who attempted to solve this problem

in 1960 by using techniques from the theory of Calculus of Variations. Even though his solution was

wrong, his attempt to solve the problem paved the way that led to the solution. In fact, his attempt

was based on how certain geometric objects – scalar curvature, the Laplace-Beltrami operator, the

Riemannian connection operator – transform under the conformal change of metric g̃ = u4/(m−2)g

with u > 0 smooth, which allowed him to conclude that g̃ has constant scalar curvature if and only if

(a∆g + scal(g))u = λu(m+2)/(m−2), for some λ ∈ R. (1)

Yamabe realized that (1) is the Euler-Lagrange equation for the Yamabe energy functional

E (g̃) =

∫
M scal(g̃)dvolg̃(∫
M dvolg̃

)(m−2)/m
,

which means that u is a solution of (1) iff g̃ = u4/(m−2)g is a critical point of E . Rewriting the

expression for E and employing Hölder’s inequality, Yamabe proved that E is bounded from below,

allowing the definition of the Yamabe invariant

Y (M,g) = inf{E (g̃) | g̃ = u4/(m−2)g, u > 0 smooth},

1



2 Introduction

whose analysis was key in the argument provided by Yamabe. Through some modifications and under

the assumption that Y (M,g)≤ 0, Trudinger [Tru68] proved the existence of a conformal metric with

constant scalar curvature. In 1976, Aubin [Aub76] extended the work of Trudinger to other possible

values of the Yamabe invariant for m ≥ 6. Finally, Schoen [Sch84] solved the Yamabe problem for

dimensions between 3 and 6 by the construction of global test functions.

Parallel to this, Hamilton attempted to solve the Yamabe problem in a slightly different manner,

inspired by the work of Eells and Sampson [ES64]. The idea of Hamilton was to find a 1-parameter

family of metrics that evolves along a “curvature-diffusion” equation similar to the heat equation,

which should lead to the a metric on the manifold with constant scalar curvature. The resulting

equation, called the Yamabe flow equation, is an evolution equation conceived by Richard Hamilton

[Ham82] as an approach to deal with the Yamabe problem. The flow equation is a heat-type evolution

equation whose solution is given as a family of Riemannian metrics {g(t)}t∈[0,T ) on a fixed underlying

smooth manifold M such that the initial metric coincides with a fixed metric g over M. More precisely,

such family of metrics is said to be a Yamabe flow on (M,g) if it satisfies

∂tg(t) =−scal(g(t))g(t); g(0) = g. (2)

It is noticeable that (2) states that if such flow exists, then the metric must “shrink” along the flow on

regions with scal(g(t)) > 0, which means that even in simple cases with positive scalar curvature, it

leads to a singularity in finite time due to the collapsing of the volume. For this reason, a normalized

version of this flow is also commonly studied. In a classical setting, for (M,g) a compact smooth

Riemannian manifold, define the average scalar curvature as

ρ(t) =
1

volg(t)(M)

∫
M

scal(g(t))dvol(g(t)), (3)

which then allows to consider the normalized Yamabe flow

∂tg(t) = (ρ(t)− scal(g(t)))g(t), g(0) = g. (4)

Unlike the original Yamabe flow, a solution to the normalized Yamabe flow is a family of Riemannian

metrics on M that preserves the volume of (M,g), keeping the curvature from becoming unbounded.

This is interesting because, once the flow is normalized, the curvature evolves along the flow towards

the normalizing term.

Both flows are well understood in the setting of compact manifolds. Hamilton [Ham82] himself

proved long time existence of the volume normalized flow for any choice of initial metric. Later, Ye

[Ye94] proved convergence of the flow for scalar negative, scalar flat and locally conformal flat scalar

positive metrics. The case of metrics that are not conformally flat has been studied in a series of papers

by Schwetlick and Struwe [SS03] and later by Brendle [Bre05, Bre07]. More recently, Bahuaud and

Vertman [BV14, BV19] showed long-time existence and convergence of the normalized flow in the

setting of edge manifolds.
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In this work, the main concern is the Yamabe problem and, more specifically, the ultimate goal is

to study the Yamabe flow on non-compact complete manifolds. In what follows, questions regarding

both local and global existence, uniqueness and convergence of the Yamabe flow in the context of so-

called Φ-manifolds, which are an example of non-compact manifolds with infinite volume. Note that

in the case of infinite volume, the average scalar curvature (3) is ill-defined and only the unnormalized

Yamabe flow.

The Yamabe flow in the non-compact setting has been studied on asymptotically conical surfaces

by Isenberg, Mazzeo and Sesum [IMS13], who proved locally uniform convergence of a time-rescaled

metric to a complete hyperbolic metric with finite area. The flow has also been utilized by Bing-Long

Chen and Xi-Ping Zhu [CZ02] to establish a gap theorem for non-compact manifolds with nonneg-

ative Ricci curvature under certain decay conditions at infinity. Ma, Cheng and Zhu [MCZ12] have

studied long-time existence of the Yamabe flow, under some Lp conditions on the scalar curvature.

Schulz [Sch20] proved global existence of the Yamabe flow on non-compact manifolds with un-

bounded initial curvature, provided the metric is conformally equivalent to a complete metric with

bounded, non-positive scalar curvature and positive Yamabe invariant. A recent work Ma [Ma21]

establishes global existence of the Yamabe flow on non-compact manifolds that are asymptotically

flat near infinity.

In all of these works, either convergence of the flow is out of reach, since (3) is not defined, or

one focuses only on low-dimension geometric objects. Thus, only the unnormalized Yamabe flow has

been considered. In this thesis, we study a different type of normalization for the Yamabe flow, that

allows to study convergence in the non-compact setting as well. We use the concepts of decreasing

and increasing curvature-normalized flows, denoted by CYF− and CYF+ respectively, as introduced

by Suárez-Serrato and Tapie [SST12] for compact manifolds

∂tg(t) = (sup
M

scal(g(t))− scal(g(t)))g(t), g(0) = g,
(
CYF+

)
,

∂tg(t) = (inf
M

scal(g(t))− scal(g(t)))g(t), g(0) = g,
(
CYF−

)
.

(5)

Our interest in these flows lies on the fact that, unlike the standard normalization via average scalar

curvature, supM scal(g(t)) and infM scal(g(t)) are well-defined regardless of the volume of the man-

ifold. We study such curvature normalized flows in the setting of fibered boundary manifolds, that

generalize the asymptotically flat manifolds considered recently in Ma [Ma21].

Outline of the thesis

Chapter 1 is focused on compiling basic concepts and formulae for the development of the project.

First, we present a couple of important formulae in conformal Riemannian geometry in §1.1. In

§1.2, we introduce the concept of manifold with corners, which is important for the understanding of

polyhomogeneous functions, introduced in §1.3, and of the heat space, which is an extremely useful

concept. Finally, we close the chapter with an intuitive explanation of blow-ups and blow-down maps
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in §1.4.

In Chapter 2, we introduce Φ-manifolds and their geometry-adapted C∞-structure such as Φ-

vector fields and Φ-differential 1-forms. In §2.1, we give an expression for the Φ-volume form, while

in §2.2 the expression of the scalar curvature of a Φ-manifold is presented. After this, we discuss

maximum principles in Φ-manifolds in §2.3; more precisely, we prove stochastic completeness of

Φ-manifolds, which implies the Omori-Yau maximum principle in this setting, and use it to prove the

following theorem:

Theorem 0.1. Let (M,gΦ) be a Φ-manifold and u ∈ C2
Φ
(M× [0,T ]) be a function satisfying the

following inequalities: ∣∣∣∣∂u
∂ t

(p, t)− ∂u
∂ t

(p, t ′)
∣∣∣∣≤C|t− t ′|γ ,

∣∣∣∣∂u
∂ t

(p, t)
∣∣∣∣≤C, (6)

for all (p, t),(p, t ′) ∈M× [0,T ], for some constant C > 0 and some γ > 0. Then the Cauchy problem

(∂t−a∆Φ)u = 0, u|t=0 = 0, (7)

with the factor “a” being a positive and bounded function, admits only the trivial solution u = 0.

Finally, §2.4 discusses the asymptotic expansion of the heat kernel on Φ-manifolds, which can be

properly given as a polyhomogenous function defined on a specific manifold with corners (the heat

space).

Chapter 3 is dedicated to discussing the Yamabe flow on Φ-manifolds. First, we briefly discuss the

transformation of the Yamabe flow into a PDE in terms of the conformal factor. In §3.1, we review the

geometry of fibered boundary manifolds equipped with Φ-metrics in their open interior. We also in-

troduce Hölder spaces Ck,α
Φ

(M), adapted to this geometry. In §3.2 we study mapping properties of the

heat operator with respect to these spaces. Same conclusions follow by classical parabolic Schauder

estimates in §3.8. Nevertheless, §3.2 serves as an alternative derivation by microlocal methods and

as an exercise for the estimates in §4.2 (which do not follow from classical theory). Based on that, in

§3.3 we establish short time existence of the (unnormalized) Yamabe flow (2) within the class of such

Φ-manifolds, see Theorem 3.17 for the precise statement.

Theorem 0.2. Let (M,gΦ) be a Φ-manifold of dimension m≥ 3 such that scal(gΦ) ∈Ck+1,α
Φ

(M), for

some α ∈ (0,1) and any k ∈ N0. Then the Yamabe flow g(t) = u(t)4/(m−2)gΦ with conformal factor

u ∈Ck+2,α
Φ

(M× [0,T ]) solving (3.2), exists for T > 0 sufficiently small.

In §3.5, we turn to the increasing curvature normalized Yamabe flow (CYF+), introduced in (3.4),

whose short-time existence follows from Theorem 0.2 by some time rescaling. The same holds also

for the decreasing curvature normalized Yamabe flow CYF− by a verbatim repetition of the arguments

and hence we only write the proofs for CYF+. In §3.6, we study the evolution of scal(g) along CYF+.

In §3.7 we derive a priori estimates for solutions of the increasing curvature normalized Yamabe flow.
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These a priori estimates allow us to apply the machinery of standard estimates of solutions to parabolic

equations, which we review in §3.8. Subsequently, in §3.9 we conclude the global existence of the

CYF+ on Φ-manifolds.

Theorem 0.3. Let (M,gΦ) be a Φ-manifold of dimension m ≥ 3 with scal(gΦ) ∈Ck,α
Φ

(M) negative,

uniformly bounded away from zero and k≥ 4. Then the increasing curvature normalized Yamabe flow

CYF+ (see Eq. (3.4)) admits a global solution g = u4/(m−2)gΦ for some u ∈Ck,α
Φ

(M×R+).

Finally, in §3.10 we establish convergence for the CYF+ and thus settle the Yamabe problem on

negatively curved Φ-manifolds. Our result, see Theorem 3.32 for the precise statement, reads as

follows:

Theorem 0.4. Let (M,gΦ) be a Φ-manifold of dimension m≥ 3 such that scal(gΦ)∈C4,α
Φ

(M) is neg-

ative and uniformly bounded away from zero. Then, the increasing curvature normalized Yamabe flow

CYF+ converges to a Riemannian metric g∗ conformal to gΦ with constant negative scalar curvature.

In fact, the same arguments apply in the general case of manifolds with bounded geometry, provided

the flow exists at least for short time within the corresponding Hölder space. The Φ-geometry is not

essential in our arguments. One can view our contribution as an extension of Suárez-Serrato and Tapie

[SST12] to a non-compact setting.

In Chapter 4, we study the Yamabe flow under much stronger conditions on the conformal fac-

tor. More precisely, we introduce in §4.1 a more restrictive family of Hölder spaces, which forces

the functions and their Φ-derivatives to be continuous up to the boundary. This property cannot be

inferred from the arguments in Chapter 3. After this, we present in §4.2 some mapping properties

of the heat operator acting as a bounded linear operator on functions satisfying these stronger Hölder

restrictions. It is interesting to note that these mapping properties prove how the heat kernel acts

continuously on functions that are Hölder continuous on manifolds with conic-ends (which are in-

complete manifolds, unlike Φ-manifolds themselves). Using these mapping properties, we construct

a parametrix in §4.3 for a family of heat-type equations, which leads us to the following theorem:

Theorem 0.5. Consider a function a ∈Ck,β
x4Φ

(M× [0,T ]) which is positive, bounded from below away

from zero, for some 0 < α < β < 1. Then both Cauchy problems

(i) (∂t−a∆)u = `;u|t=0 = 0, and (ii) (∂t−a∆)u = 0;u|t=0 = u0 (8)

admit solutions Q` and Eu0, respectively, such that

Q : xγCk,α
x4Φ

(M× [0,T ])→ xγCk+2,α
x4Φ

(M× [0,T ]),

E : xγCk,α
x4Φ

(M)→ xγCk+2,α
x4Φ

(M× [0,T ]),

are both bounded maps, for any γ ∈ R.
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Finally, after completing the parametrix construction, we adapt the contraction argument in the pre-

vious chapter to conclude short-time existence and uniqueness of the Yamabe flow on Φ-manifolds

for conformal factors that are Hölder continuous in manifolds with conic-ends, leading to our last

theorem:

Theorem 0.6. Let (M,gΦ) be a Φ-manifold of dimension m ≥ 3. Assume the scalar curvature

scal(gΦ) to lie in xγCk+1,α
x4Φ

(M) for some α ∈ (0,1), some γ ≥ 0 and some k ∈ N0. Then, there exists

some T > 0 sufficiently small and some function u ∈Ck+2,α
x4Φ

(M× [0,T ]) such that g = u4/(m−2)gΦ is

a solution of the Yamabe flow (2) for time t ∈ [0,T ]. Moreover, this solution is unique.

Initially, we intended to prove long-time existence and convergence of the flow in these more

restrictive Hölder spaces. That would yield a more detailed understanding of the boundary behavior

of the flow. However, we did not manage to carry out certain long-time existence arguments to this

setting. Hence, so far, only short-time existence with continuity up to the boundary has been proven.

We intend to address this in the future.

Generalizations to manifolds of bounded geometry

We highlight that the arguments presented for the study of the long-time existence of the Yamabe

flow (in the weaker Hölder spaces that do not require continuity up to the boundary) can be used in

the more general setting of manifolds of bounded geometry, a broader class of Riemannian manifolds

which contains Φ-manifolds, provided the flow exists at least for short time within the corresponding

Hölder spaces. This happens because the arguments do not rely on any particularities of the Φ-

geometry. However, the same cannot be said of the proof of convergence of the curvature-normalized

Yamabe flow, since one needs to work with the class of weighted Hölder spaces, which can only be

defined once a globally defined boundary defining function is defined. But this is not possible to

do on a generic manifold of bounded geometry, meaning that further assumptions are necessary to

compensate for this.

Manuscripts

This work compiles results from the two following manuscripts. The first one was developed with

Gentile as a part of the Ph.D. projects of each author. This work was supervised by Vertman during

the visit of the author of this thesis to Carl von Ossietzky Universität Oldenburg. The second one was

developed as a part of the Ph.D. of the author and was supervised by both Hartmann and Vertman.

• [CGct]: Bruno Caldeira and Giuseppe Gentile. “Schauder estimates on manifolds with fibered

boundaries”, In: (ongoing project).

• [CHV21]: Bruno Caldeira, Luiz Hartmann and Boris Vertman. “Normalized Yamabe flow on

some complete manifolds with infinite volume”, In: arXiv preprint (2021). URL: arxiv.org/abs/2105.14282.



CHAPTER 1

Preliminaries

The present chapter collects the basic notions of b-Calculus used throughout this work. It is

assumed that the reader is familiar with the main ideas of the theory of smooth manifolds as in

[Lee13], Riemannian geometry as in [O’N83] and basic theory of PDEs as in [Eva10]. A brief

recollection of said topics is given in the Appendix.

The main goal here is then to give a quick introduction of some concepts from the theory of b-

Calculus, such as the notions of blow-ups and polyhomogeneous conormal functions. The references

for this chapter are Melrose’s classical book [Mel93], as well as Grieser [Gri01].

Moreover, the ending of the chapter is dedicated to presenting Φ-manifolds , some of its properties

and some previous results on them which will be used in this work. The main references for this

section are Mazzeo and Melrose [MM98], as well as the recent work of Vertman and Talebi [TV21].

1.1 Conformal Riemannian geometry

In this section, we collect a few formulae from Riemannian geometry which relate geometric

information between two conformally equivalent Riemannian metrics. These results will prove them-

selves useful during our studies of the Yamabe flow in the subsequent sections. In fact, the main

technique for the study of the Yamabe flow is to consider a 1-parameter family of Riemannian met-

rics inside of a conformal class of the initial metric. This is can be justified by the fact that the Yamabe

flow preserves the conformal class of a Riemannian metric.

Definition 1.1. Let M be a smooth m-dimensional manifold and g and g̃ two Riemannian metrics on

M. We say that g and g̃ are conformally equivalent if there is a positive function u ∈C2(M) such that

g̃ = u ·g, that is,

g̃(p)(Xp,Yp) = u(p) ·gp(Xp,Yp), (1.1)

for all p ∈M and X ,Y ∈ V (M). The function u is called the conformal factor.

7



8 Chapter 1. Preliminaries

Throughout this work, we will be exclusively interested in a specific conformal class of Rieman-

nian metrics, which we now define: given a Riemannian metric g on M, with dimM = m ≥ 3 and

η := (m−2)/4, define

[g] :=
{

u1/η ·g
∣∣ u ∈C2(M)

}
. (1.2)

Given this conformal class of metrics, we must understand how both the scalar curvature and the

Laplace-Beltrami operator transform along the flow. This is important for proving the existence of

the flow and for understanding how the scalar curvature evolves as time increases. To do so, consider

the following technical lemma, whose proof can be found in detail in [Sch19, Appendix A.1]:

Lemma 1.2. Let (M,g) be an m-dimensional Riemannian manifold, with m ≥ 2, and let g̃ = u ·g be

a metric on M conformally equivalent to g. Then

scal(g̃) =
scal(g)

u
− (m−1)

(
∆gu
u2 +

(m−6)|∇u|2g
4u3

)
. (1.3)

Now, as a consequence of the previous result, we prove a small collection of some formulae that

will be useful in the following sections.

Proposition 1.3. Let (M,g) be a m-dimensional Riemannian manifold, with m ≥ 3, and let g̃ ∈ [g].

Then

1. scal(g̃) =−u−(1+1/η)

[
m−1

η
∆gu− scal(g)u

]
;

2. ∆g̃ f =
1

u1/η
·∆g f +

2
u1+1/η

·g(∇ f ,∇u).

Proof. Item 1. Let us first prove the first of the two formulae. To do so, remember that the chain rule

of the Laplace operator is the following: given u ∈C2(M) and f ∈C2(R),

∆g f (u) = f ′′(u)|∇u|2g + f ′(u)∆gu.

This can be easily checked by employing the local expression of the Laplace operator. Naturally, this

implies that

∆gu1/η =
1
η

u1/η−1
∆gu+

1
η

(
1
η
−1
)

u1/η−2|∇u|2g. (1.4)

On the other hand, straightforward computations show that the chain rule of the gradient is ∇ f (u) =

f ′(u)∇u, which thus gives us

∇u1/η =
1
η

u1/η−1
∇u =⇒ |∇u1/η |2g =

1
η2 u2/η−2|∇u|2g. (1.5)

Now, note that
1
η

(
1
η
−1
)
=− 1

η2
(m−6)

4
.
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Therefore, this gives us

∆gu1/η

u2/η
+

(m−6)|∇u1/η |2g
4u3/η

=
1

u2/η

(
1
η

u1/η−1
∆gu− 1

η2
(m−6)

4
u1/η−2|∇u|2g

)
+

1
η2

(m−6)
4

u−1/η−2|∇u|2g

=
1
η

u−1/η−1
∆gu,

which finally leads us to the expression

scal(g̃) =−u−(1+1/η)

[
m−1

η
∆gu− scal(g)u

]
. (1.6)

Item 2. Now, note that
√
|det g̃|= um/2η ·

√
|detg|. Thus,

∆g̃ f =
1√
|det g̃|

·∑
j

∂ j

(√
|det g̃| ·∑

i
g̃i j ·∂i f

)

=
1

um/2η ·
√
|detg|∑j

∂ j

(
u(m−2)/2η ·

√
|detg| ·∑

i
gi j ·∂i f

)

=
1

u1/η ·
√
|detg|

·∑
j

∂ j

(√
|detg| ·∑

i
gi j ·∂i f

)

+
2

u1+1/η
·∑

i, j
gi j ·∂ ju ·∂i f

=
1

u1/η
·∆g f +

2
u1+1/η

·g(∇ f ,∇u).

1.2 Manifolds with corners

Now, it is necessary to give an introduction to the notion of “manifolds with corners”, which are

topological spaces whose local smooth structure cannot be properly described locally by neither Rm

or a closed half-space. This concept will prove itself essential along this work, therefore being worth

it of a proper presentation.

Recall that a topological m-dimensional manifold is considered to be a paracompact Hausdorff

space M with the property that for each point p ∈M, there exists an open set Up in M that is home-

omorphic to the unitary open ball Bn in Rn. The algebra of continuous real-valued functions over M

is denoted by C0(M). A subalgebra F ⊆C0(M) is said to be a C∞-subalgebra if for any real-valued

g ∈C∞(Rk), for every k, and any elements f1, ..., fk ∈ F the continuous function g( f1, ..., fk) ∈ F. The

subalgebra is said to be local if it contains each element g ∈C0(M) which has the property that for

every set Uα in some covering of M by open sets, there exist gα ∈ F with g = gα on Uα .
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Definition 1.4. A smooth m-manifold M is a topological n-dimensional manifold with a local C∞

subalgebra C∞(M) ⊆ C0(M) specified via the following property: M has a covering by open sets

{Uα}α∈A for which there are m elements f α
1 , ..., f α

n ∈C∞(M) with Fα = ( f α
1 , ..., f α

n ) restricted to Uα

making it a cooordinate patch and f ∈C∞(M) if and only if for each α ∈ A there exists gα ∈C∞(Bn)

such that f = gα ◦Fα on Uα .

In what follows, every time a manifold is mentioned, it is assumed to be a smooth manifold unless

otherwise is explicitly stated. It is worthy of note that the definition of smooth manifold presented

above is equivalent to the standard definition using smooth charts. A function f : M→ N between

two manifolds is said to be a smooth function if for each function g ∈C∞(N), f ∗g = g◦ f ∈C∞(M).

Such function is said to be a diffeomorphism if is bijective, smooth and its inverse is also a smooth

function.

Manifolds with corners of dimension m must be understood as spaces which are locally described

as small patches from model spaces of the type [0,∞)k ×Rm−k, with 0 ≤ k ≤ m. Naturally, this

clearly includes the notion of manifolds with boundary, once their model space is only the case k = 1.

However, though this notion does paint a clear picture of what a manifold with corner can look like,

this idea is yet not good enough to give the description desired. In what follows, a precise definition

is presented.

Definition 1.5. A smooth manifold with corners M is a topological manifold with boundary endowed

with a subalgebra C∞ of C0(M) satisfying the following property: there is a smooth manifold M̃ and

a map ι : M→ M̃ such that

1. C∞(M) = ι∗C∞(M̃),

2. there is a finite collection ρi ∈C∞(M̃), with i ∈ I, such that

ι(M) = {p ∈ M̃ | ρi(p)≥ 0 ∀i ∈ I}

and whenever ρi(p) = 0 for all i ∈ J ⊂ I, then {ρi}J is a subcollection of independent functions

at each p ∈ M̃ at which they all vanish, that is, for all such p ∈ M̃, there is a family of smooth

functions g1, ...,gm−|J| such that (ρ1, ...,ρ|J|,g1, ...,gm−|J|) restricts to some coordinate chart

near p.

The manifold M̃ is said to be an extension of M. Note that for each ρi in the definition above,

the subset Hi = ρ
−1
i ({0}) is an embedded submanifold of M̃ (and therefore, of M as well), with

dimHi = dimM−1. The submanifolds Hi, for each i ∈ I, are the boundary hypersurfaces of M, and

their collection is denoted by M1(M). Moreover, for every l ∈ Z+, let Ml(M) be the set of boundary

faces of codimension l of M (that is, a face that belongs to exactly l distinct boundary hypersurfaces

of M) and let M (M) be the set of all boundary faces of M regardless of dimension .
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The advantage of having Definition 1.5 is to be able to claim that ∂M is the union of the embedded

submanifolds ρ
−1
i {0} for all i ∈ I. Moreover, from this definition is clear the a function is in C∞(M)

if admits an extension to a smooth function on a extension M̃.

Note that the simplest case of a manifold with corners that is not a manifold with boundary (in the

smooth sense) is the quadrant [0,∞)2, since the origin point doesn’t admit a neighborhood diffeomor-

phic to opens subsets in either R2 or [0,∞)×R. In this example, one has M1([0,∞)2) = {Ox,Oy}, for

Ox and Oy being the x-axis and y-axis respectively, and M2([0,∞)2) = {{0}}.

Definition 1.6. A map f : M1→M2 between manifolds with corners is said to be smooth if f ∗C∞(M2)⊂
C∞(M1). A smooth function is said to be a b-map if, for each H ∈M1(M2) one has either

f ∗ρH = 0 or f ∗ρH = aH ∏
G∈M1(M1)

ρ
e f (G,H)
G with aH ∈C∞(M1) and e(F,G) ∈ Z≥0. (1.7)

If the first case does not occur, the map is called an interior b-map, which is equivalent to demanding

in addition that f (M1−∂M1)⊆M2−∂M2 or that f−1(∂M2)⊆ ∂M1.

Any b-map f : M1→M2 can be reduced to an interior b-map in the sense that there is exactly one

boundary face of the image space, F ∈ M(M2), such that f (M1) ⊂ F and f : M1→ F is an interior

b-map. Hence, one can define the category of manifolds with corners, whose morfisms are exactly

the b-maps.

Associated with manifolds with corners, it is reasonable to consider now certain structures that

are adapted to its smooth structure. First, note that when at the boundary ∂M, the tangent direction

one might take on M are not as many as one could consider on a regular smooth manifold. Therefore,

it makes sense to consider a more restricting class of vector fields on M. Namely, the b-vector fields

Vb(M) are defined as

Vb(M) =
{

X ∈ V (M)
∣∣ X

∣∣
∂M ∈ V (∂M)

}
(1.8)

Hence, in a coordinate patch modelled by [0,∞)k ×Rm−k, it is possible to represent all points as

(x1, ...,xk,y1, ...,ym−k). From this, it follows that, locally,

Vb(M) = spanC∞(M)

{
x1

∂

∂x1
, . . . ,xk

∂

∂xk
,

∂

∂y1
, . . . ,

∂

∂ym−k

}
. (1.9)

Definition 1.7. Let M be a m-dimensional manifold with corners and H ⊂ ∂M one boundary hyper-

surface. A non-negative function ρ ∈C∞(M) is a boundary defining function if dρ is non-vanishing

on H and ρ−1({0}) = H.

Clearly, Definition 1.7 implies that each of the functions ρi in Definition 1.5 are boundary defining

functions for H j = ρ
−1
j ({0}), respectively. Hence, condition 2 in Definition 1.5 means that every

boundary hypersurface of M must admit a smooth boundary defining function and, moreover, this

collection of boundary defining functions forms a family of independent functions on the intersection

of the surfaces they are defining. Furthermore, it is worth noticing that near each H, one has [0,∞)ρ×
H modelling a neighborhood of H in M, implying that one can write points near H as (ρ,z), with ρ

identified as a real number and z ∈ H.
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1.3 Polyhomogeneous conormal functions

Once understood the concept of boundary defining functions, it is now possible to present a class

of functions crucial to this work: the class of polyhomogeneous conormal functions. This is a class

of functions that are not smooth on M, but admit an approximation by a power series in terms of

the boundary defining functions and with controlled singular behavior. This class of functions is

relevant in this work precisely because the heat kernel, which plays a very important role, is not a

smooth function; however, when working with “good coordinates” (see §1.4), it is polyhomogenous

conormal and hence, admits such approximation. This approximations are key to obtain parabolic

Schauder estimates, allowing one to discuss existence of the Yamabe flow.

A set E ⊂ C×N0 is called an index set if it satisfies the following conditions:

1. E is discrete and bounded from below;

2. EN := {(z, p) ∈ C×N0 | Re(z)< N} is finite, for all N;

3. If (z, p) ∈ E, then (z+n, p) ∈ E for every n ∈ N.

A family E = (E1, ...,Ek) of index sets is called an index family.

Definition 1.8. Let M be a manifold with corners, {H1, . . . ,Hk} its family of boundary hypersurfaces

and {ρ1, . . . ,ρk} its respective boundary defining functions. A function f : M→ R is polyhomoge-

neous conormal with index family E if near each boundary hypersurface H j = ρ
−1
j ({0}), one can

approximate f as follows:

f ∼ ∑
(r,n)∈E j

ar,nρ
r
j(logρ j)

n, as ρ j→ 0, (1.10)

where each a j,r,n is polyhomogeneous conormal on H j with index family (E1, . . . ,E j−1,E j+1, . . . ,Ek)

near the intersections H j∩Hl for any l 6= j.

The set of polyhomegeneous conormal functions on M with index family E is denoted by A E
phg(M).

From now on, polyhomogeneous conormal functions will be refered to as simply “phg” for short.

The expression (1.10) means, in more explicit terms, that for every N ∈ N0, by making fN be partial

sums for r < N in (1.10), there exists an uniform constant CN such that on compact subsets we have

| f − fN | ≤CNρ
N
j , as ρ j→ 0. (1.11)

Moreover, this also implies that similar estimates are true for Vb f (which is now approximated by

Vb fN), which means that b-derivatives preserve the estimates.

Remark 1.9. Note that, as a consequence of the Taylor series expansion, every smooth function is

phg with index set {0}×N. It is also worth noticing that, whenever a function f vanishes to infinite

order at some boundary hypersurface H, that is, when | f | ≤ ρn
H for every n as ρH → 0, then it is

convention that f is phg with index set ∅ at said face; the simplest (non-trivial) example for this is

e−1/ρH .
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1.4 Blow-up and blow-down maps

The goal of this work is to give results regarding Φ-manifolds (see Chapter 2), which here will

be interpreted as a family of singular manifolds. To do so, it is necessary to pass from such singular

manifolds to a manifold with corners via resolution of specific submanifolds. This process is called

blow-up and consists of replacing these submanifolds N ⊂M by its interior-pointing unit-size conor-

mal bundle, creating a new manifold [M;N] (which is a manifold with corners) which relates to M

via a blow-down map β : [M;N]→ M. This is done whenever one needs to study a function near

its singular support and the new manifold is a modified version on the original manifold built so that

such function becomes a phg function on the new one.

Before presenting a more formal definition, lets discuss an example given by polar coordinates,

which can be found in [Gri01], to paint a picture. For such, consider M = [0,∞)2, which is a manifold

with corners, and N = {0} a submanifold. Consider then polar coordinates on M, writing

x = r cosθ , y = r sinθ , (1.12)

with r ∈ [0,∞) and θ ∈ [0,π/2]. This means that we are now writing points in M using coordinates

coming from the infinite cylinder [0,∞)× [0,π/2]. Note that the two first pictures in Figure 1.1 are,

0 π/2θ

r

'lf rf

θ

r

lf

rf

−→

y

x

Figure 1.1: Blow-up of [0,∞)2 on {0}

in fact, diffeomorphic (denoted by the symbol “'”) , where the second picture represents exactly the

description given previously, for the submanifold N was replaced by its interior-pointing unit-size

conormal bundle in M (i.e, a quarter of a circle). Then, by writing

Sm−1
+ = {x = (x1, . . . ,xm) ∈ Sm−1 ⊂ Rm | x j ≥ 0 ∀ j}, (1.13)

one has the blow-up of [0,∞)2 along {0} given by [[0,∞)2;{0}] = [0,∞)×S1
+.

There is, however, a more appropriate choice of coordinates to work on the second picture. Note

that, whenever working near its corners, that is lf = {θ = 0} or rf = {θ = π/2}, implies y� x or

x� y respectively. In the first case, represented geometrically by the lower corner in the second
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picture, admits then reasonable coordinates given by

r ≈ x, θ ≈ y
x
, (1.14)

where the notation ≈ means it is an approximation. This is a reasonable choice of coordinates be-

cause, in this scenario, x is “far from zero”, meaning that y vanishes faster then x, keeping θ bounded

and, moreover, providing a good enough approximation of the real coordinate – at least locally. This

coordinates work locally and, in fact, can be used as long as one is “far enough” from the hyper-

surface {x = 0}. Analogously, is only reasonable to consider coordinates r ≈ y and θ ≈ x/y when

working near {y = 0}. These types of coordinates are called projective coordinates and they will

show themselves extremely useful throughout this work.

More generally, the example presented above works exactly the same for higher dimensions, giv-

ing

[Rm
+;{0}] = R+×Sm−1, β (r,ω) = rω. (1.15)

This example is key to understand more general blow-ups, since they are locally modeled by (1.15).

Definition 1.10. Consider a manifold with corners M, with dimM = m and N ⊂M an n-dimensional

p-submanifold (see [Mel96, §1.7]) , which means that locally N can be written as {xn+1 = · · ·= xm =

0}, for (x1, . . . ,xm) local coordinates on M. Under these circumstances, the blow-up of M along N,

denoted by [M;N], such that int([M;N])' int(M−N).
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Φ-manifolds

This section presents the class of manifolds on which this work is based on. The family of Φ-

manifolds is a particular case of a Riemannian manifold whose behavior near its “bad region” (that

is, its singularities) admits a specific expression. However, before understanding what a Φ-manifold

is, one must discuss briefly the idea of manifold with fibered boundaries.

Definition 2.1. A manifold with fibered boundaries is a pair (M,φ), with M being a compact smooth

manifold with boundary ∂M, M is the open interior and φ : ∂M→ Y a fibration with typical fiber Z,

where both Y and Z are closed smooth manifolds.

In order to keep the notation shorter, manifolds with fibered boundaries will be denoted simply as

its smooth manifold whenever the map φ is implicit. Moreover, from this point on, we fix the notation

b := dimY and f := dimZ as the dimensions of the base space and the typical fibers, respectively.

It is worth to take some notes on this definition. Given M a manifold with fibered boundary, let

x be a choice of a global boundary defining function for ∂M (which exists from compactness of M),

that is, x is a non-negative function on M lying in C∞(M), so that ∂M = {x = 0} and dx 6= 0 on ∂M.

Since M is compact, there exists a collar neighborhood U of ∂M in M such that U ' [0,1)× ∂M.

Hence, it is possible to write every point in U as a pair (x,w), with x ∈ [0,1) and w ∈ ∂M. On the

other hand, since ∂M is the total space of a fibration with typical fiber Z and base space Y , there is

an open subset V of Y such that φ−1(V )'V ×Z, allowing every point in ∂M to be written as a pair

(y,z) in such open subset. Therefore, locally over the base (that is, for some open subset of U) if is

possible to write every p ∈ ∂M as the triple p = (x,y,z).

Once understood these considerations on manifolds with fibered boundary, we are now in a good

place to introduce Φ-manifolds.

Definition 2.2. Assume φ in Definition 2.1 to be a Riemannian submersion φ : (∂M,gZ +φ∗gY )→
(Z,gZ). A complete Riemannian metric gΦ on the interior manifold M ⊂ M is said to be a fibered

15



16 Chapter 2. Φ-manifolds

boundary metric if, near the boundary ∂M of M, it can be expressed as follows:

gΦ =
dx2

x4 +
φ∗gY

x2 +gZ +h := gΦ,0 +h, (2.1)

where gY is a Riemannian metric on the base space Y , gZ is a symmetric bilinear form defined on ∂M

which restricts to a Riemannian metric at each fiber Zy and h corresponds to cross-terms and satisfies

|h|gΦ,0 = O(x) as x→ 0.

The Riemannian manifold (M,gΦ) is called a Φ-manifold .

The metric above should be understood in the following manner: the exact part gΦ,0 is constituted

precisely of the three diagonal elements specified (2.1), while the remaining possible elements in gΦ

reside within h with the assumption that |h|gΦ,0 = O(x) when x→ 0, meaning that whenever near the

boundary, its coefficients are of order O(x).

Example 2.3. Consider M =Rm radially compactified to Rm and endowed with its standard Rieman-

nian metric gEuc. In polar coordinates, one writes gEuc = dr2 + r2 dθ 2, where θ ∈ Sm−1. Note that,

although M is compact, M is not and, in fact, its singular region is exactly {r = ∞}. Consider now

a large enough compact K ⊂ M containing the origin. Then, on M−K one can take x = r−1, from

where follows that

gEuc =
dx2

x4 +
dθ 2

x2 ,

where now the singular region lies in {x = 0}. It is worth noticing that, in this example, the fiber is

Z = {pt}. This gives to Rm the structure of a fibered boundary manifold, with base Sm−1 and fiber

{pt}, and it allows us to see (Rm,gEuc) as a Φ-manifold.

Since φ is required to be a Riemannian submersion, the tangent directions on M near ∂M are

spanned by lifts of vector fields {∂x,∂yi,∂z j | i = 1, ...,b, j = 1, ..., f} (which, for simplicity, will be

denoted omitting the pullback notation). Thus, on this basis of TpM, one has the matrix representation

(gΦ) =

 x−4 O(x−2) O(x−1)
O(x−2) O(x−2) O(1)
O(x−1) O(1) O(1)

 ,

where the terms on the diagonal are the exact part of gΦ, while the remaining terms are in h. Similarly

to the case of b-Calculus, when working with Φ-metrics, commonly one chooses to work with a class

of vector fields that are adjusted to the singularities in the metric, called Φ-vector fields. This class is

given by

VΦ(M) =
{

V ∈ V (M)
∣∣∣ V x ∈ x2C∞(M) and

Vp ∈ Tpφ−1(φ(p)) for every p ∈ ∂M

}
.

This is a class of vector fields on M which takes unit size on (M,gΦ) and are given locally as

VΦ(M) = span
{

x2 ∂

∂x
, x

∂

∂yi
,

∂

∂ z j

∣∣∣ i = 1, . . . ,b, j = 1, ..., f
}
. (2.2)
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Unlike the matrix representation of gΦ on the standard basis, the basis provided by Φ-vector fields

makes every entry in the matrix of gΦ be a bounded function. Once one has the class of Φ-vector

fields, one can then consider the class of Φ-forms. In fact, the 1-forms dual to VΦ(M) are

Λ
1
Φ(M) = span

{dx
x2 ,

dyi

x
, dz j

∣∣∣ i = 1, ...,b, j = 1, ..., f
}
. (2.3)

Naturally, higher order Φ-differential forms are results of exterior products of 1-forms. Since VΦ(M)

is a Lie algebra and a C∞(M)-module, it is natural to consider the enveloping algebra Diff∗Φ(M) given

by operators that can be written locally linear combination of elements of VΦ(M). Hence, define the

space of Φ-differential operators of order k, denoted by Diffk
Φ
(M), as the space of linear operators

P : C∞(M)→C∞(M) which can be locally expressed by

P = ∑
|α1|+|α2|+q≤k

Pα1,α2,q(x,y,z)(x
2
∂x)

q(x∂y)
β

∂
α
z ,

where α1 and α2 are multi-indices, ∂y = ∂y1 ...∂yb , ∂z = ∂z1...∂z f and Pα1,α2,q is a smooth function.

From time to time, we will also refer to Diffk
Φ
(M) as V k

Φ
. Finally, it is possible now to define the class

of k-continuously R-valued Φ-differentiable functions

Ck
Φ(M× [0,T ]) :=

{
u ∈C0(M× [0,T ])

∣∣∣∣ (V ◦∂
l2
t )u ∈Cα

Φ
(M× [0,T ]),

for V ∈ Diffl1
Φ
(M), l1 +2l2 ≤ k

}
. (2.4)

It should be pointed out that time-derivatives ∂t are considered as second-order derivatives. In prac-

tical terms, this implies that functions in C1
Φ
(M× [0,T ]) cannot be differentiated in time. This will

show itself useful for the study of heat-type equations as we advance. Moreover, we can define Ck
Φ
(M)

similarly simply by taking spacial derivatives only.

Manifolds of bounded geometry

Before discussing some further objects associated to Φ-geometries, such as its volume form and

scalar curvature, we take the time to discuss briefly a broader class of Riemannian manifolds, which

are the manifolds of bounded geometry. For further discussions on this subject, see [Eld13, Chapter

2].

A complete manifold (M,g) is said to have k-th order bounded geometry if the following condi-

tions are met:

1. the global injectivity radius rinj(M) = infM rinj(p) is positive, that is, there is a positive number

rinj(M) = δ > 0 such that

expp : B(0,δ )⊂ TpM→ B(p,δ )⊂M

is a diffeomorphism, for all p ∈M;
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2. the curvature tensor R and its covariant derivatives up to order k are uniformly bounded opera-

tors (see §A.4).

When no specific order k is given, it is assumed k = ∞ and we simply call it a manifold of bounded

geometry.

Natural examples of manifolds of bounded geometry are compact manifolds and Euclidean spaces.

Moreover, from Appendices A.4 and B, it follows that Φ-manifolds have bounded geometry as well.

This means we can employ properties of this class to our work, including the following proposition.

Proposition 2.4. [Eld13, Proposition 2.5] Let (M,g) be a Riemannian manifold of k ≥ 1 bounded

geometry. For every constant C > 0, there is a δ > 0 sufficiently small such that the normal coordinate

chart ϕp := exp−1
p is defined on B(p,δ )⊂M for each p ∈M and the Euclidean distance dEuc on the

normal coordinates is C-equivalent to the distance dg induced on M by g, that is,

C−1 dg(p1, p2)≤ dEuc(expp(p1),expp(p2))≤C dg(p1, p2), for all p1, p2 ∈ B(p,δ ).

This means that the distance on a manifold of bounded geometry is locally uniformly equivalent to

the Euclidean distance function and, therefore, it allows one to work on this class of manifolds simply

by considering the Euclidean distance function. We make use of this in the following chapters.

2.1 Volume form

It is worth noticing that, due to the singularities in the Riemannian metric gΦ, the volume form on

a Φ-manifold has a singularity as well. In fact, consider the exact part gΦ,0 of gΦ, namely

gΦ,0 =
dx2

x4 +
φ∗gY

x2 +gZ (2.5)

locally near boundary ∂M. Then, it follows that gΦ,0 admits locally the matrix representation

(gΦ,0) =

 x−4

O(x−2)
O(1)

 ,

where the empty spaces in the matrix above represent null entries. Therefore, it follows from this

expression that the volume form for the exact part of the Riemannian metric is then, locally around a

point p = (x,y,z), given by

dvolgΦ,0(p) = x−2−bh0(x,y,z)dxdydz, (2.6)

with h0 a bounded smooth function. Now, since the term h in Definition 2.2 is less singular than the

exact part of gΦ, it follows that the volume form for gΦ is as singular as the volume form for gΦ,0,

meaning that for the purposes of the analysis presented here, is good enough to work directly with

(2.6). Consequently vol(M,gΦ) = ∞, which keeps us from working with the standard definition for

the normalized Yamabe flow (for details, see § 3.5).
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2.2 Scalar curvature

Obtaining knowledge on the scalar curvature of (M,gΦ) is crucial to the development of this work.

Although the scalar curvature does not impact the proof of the short-time existence of the Yamabe

flow, it is important to know its behavior to prove its existence for all time. Hence, we take the time

to obtain some information on the scalar curvature of a Φ-manifold.

Just like the analysis conducted in the previous section, it is once again good enough to study the

scalar curvature on the exact part of the Riemannian metric. In fact, by taking {e1, . . . ,eb} to be an

orthonormal frame on Y and letting .̃ denote the lift of a vector field to M, we know that there is a

family of vector fields {∂z1, . . . ,∂z f } on M such that {x2∂x,xẽ1, . . . ,xẽb,∂z1, . . . ,∂z f } is an orthonormal

frame on M. On this frame, the matrix representation of gΦ takes the following expression:

(gΦ) =

 1
1b

1 f

+

 O(x)1×b O(x)1× f
O(x)b×1 O(x)b× f
O(x) f×1 O(x) f×b

 (2.7)

Hence, the terms out of the exact part gΦ,0 give rise only to higher order terms and, therefore, it will

not have any significant impact in our analysis. From §A.6, the Ricci curvature tensor of the exact

Φ-metric gΦ,0 is given by

(RicΦ,0)ik =


(RicY )i−1 k−1 +(b−1)(gY )i−1 k−1, if 2≤ i,k ≤ b+1
(RicZ)i−(b+1) k−(b+1), if b+2≤ i,k ≤ m
0, otherwise.

(2.8)

Thus, it follows from the definition of the scalar curvature that

scal(gΦ,0) = ∑
i,k
(RicΦ,0)ikgik

Φ,0 = ∑
2≤i,k≤b+1

(RicΦ,0)ikgik
Φ,0 + ∑

b+2≤i,k≤m
(RicΦ,0)ikgik

Φ,0

= ∑
2≤i,k≤b+1

((RicY )i−1 k−1 +(b−1)(gY )i−1 k−1)x2gk−1 i−1
Y

+ ∑
b+2≤i,k≤m

(RicZ)i−(b+1) k−(b+1)g
i−(b+1) k−(b+1)
Z

= x2
∑

2≤i,k≤b+1
(RicY )i−1 k−1gi−1 k−1

Y + x2(b−1) ∑
2≤i,k≤b+1

(gY )i−1 k−1gi−1 k−1
Y

+ ∑
b+2≤i,k≤m

(RicZ)i−(b+1) k−(b+1)g
i−(b+1) k−(b+1)
Z

= x2(scal(gY )+b(b−1))+ scal(gZ).

(2.9)

In the general case, additional O(x) terms (as x→ 0) appear. Far from x = 0, we are working in a

compact manifold and therefore, scalar curvature is simply a smooth bounded function.

2.3 Maximum principles

For our argument on the parametrix construction (in the following section) to be complete, a

maximum principle-type of result is needed in order to say something about uniqueness of solutions

of some heat-type equations.
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From this point on, we assume the Laplace-Beltrami operator ∆Φ on (M,gΦ) to be negatively

defined.

First, note that a Φ-manifold, understood as an open Riemannian manifold, is decomposable as

the union of a compact region K 6=∅ with an open subset U on which the Riemannian metric is given

locally by the expression (2.1). Under this assumption, by considering U ' (1,0)× ∂M, one can

identify K = {p ∈M | x≥ 1}. Now, by performing the change of coordinates r = x−1 on M, one can

rewrite the expression for gΦ as

gΦ = dr2 + r2
φ
∗gY +gZ +h. (2.10)

It is worth noticing that, under this expression, the distance between two points near the boundary

∂M = {p ∈M | r = ∞} is proportional to r. This can be checked by noticing that the distance from

the boundary is given by the term dr2 and, therefore, the distance in this direction is proportional to

the Euclidean distance given in polar coordinates.

From [AMR16, Theorem 2.11], a sufficient condition for stochastic completeness of (M,gΦ) is

that
R

logvolB(p0,R)
/∈ L1(1,+∞), i.e.

∫ +∞

1

R
logvolB(p0,R)

dR =+∞, (2.11)

for some point p0 ∈ M and B(p0,R) an open disc centered at said point and radius R. Since we

can assume, w.l.o.g., to have K = {x ≥ 1}, then naturally we have K = {r ≤ 1}. Consider now the

truncated compact subset Mn = {r≤ n}. This allow us to define a countable family of compact subsets

{Mi}i, for i ∈ N>0, satisfying

M =
⋃

i∈N>0

Mi and Mi ⊂Mi+1 for all i. (2.12)

Since K ⊂M1, it follows from Cantor’s intersection theorem that there exists a point p0 ∈M such that

p0 ∈Mi for all i ∈ N>0, satisfying r(p0) ≤ 1. Since M is a manifold, it is also a regular topological

space and therefore, there is some 0 < ε < 1/2 such that B(p0,ε) ⊂ M1. From this, we have the

following

Claim: B(p0, i)⊂Mi/ε , for any i ∈ N≥2.

Let us prove this by contradiction, that is, assume the existence of a point p ∈ B(p0, i) such that

r(p)> i/ε . Thus, from the expression of gΦ as a function of r and the fact that r(p0)< 1, we have

i
ε
−1 < |r(p)− r(p0)| ≤ dΦ((r(p),y,z),(r(p0),y,z))≤ dΦ(p, p0)

< i,

implying i/2 < 1/2, which does not happen for i ∈ N≥2. Hence, it follows that B(p0, i)⊂Mi/ε .

Hence,
R

logvolB(p0,R)
∼ R

logvolMR
,
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which means that they are the same up to bounded functions, thus the later being integrable if

and only if the first one is integrable. Now, the expression for the Φ-metric implies dvolΦ(p) =

h0r(p)b dr dydz, where h0 is a smooth bounded function. From this, it follows that volMR ∼ Rb+1 ≤
eCR2

, for some positive constant C, as R goes to ∞, meaning that

R
logvolMR

/∈ L1(1,+∞). (2.13)

From this, we conclude that (M,gΦ) is stochastically complete.

According to [AMR16, Theorem 2.8 (i) and (iii)], stochastic completeness and the Omori-Yau

maximum principle are equivalent on Riemannian manifolds, from which it follows that for every

function u ∈C2
Φ
(M) there is a sequence {pk} ∈M satisfying

u(pk)> sup
M

u− 1
k

and ∆Φu(pk)<
1
k
. (2.14)

Analogously, for any function u ∈C2
Φ
(M), there exists a sequence of functions {p′k} in M such that

u(p′k)< inf
M

u+
1
k

and ∆Φu(p′k)>−
1
k
. (2.15)

Before proving the maximum principle, let us recall the Rademacher’s theorem, which gives us a

condition for a function to be differentiable almost everywhere. This result is going to be useful in

the proof of Proposition 2.6, which is key to proving the maximum principle.

Theorem 2.5. (Rademacher’s theorem, [Hei, Theorem 3.1]) Let Ω⊂Rn an open subset and u : Ω→
Rn′ a Lipschitz function. Then u is differentiable almost everywhere.

Proposition 2.6. Consider any u ∈C2
Φ
(M× [0,T ]) satisfying the following inequalities:∣∣∣∣∂u

∂ t
(p, t)− ∂u

∂ t
(p, t ′)

∣∣∣∣≤C|t− t ′|γ ,
∣∣∣∣∂u

∂ t
(p, t)

∣∣∣∣≤C, (2.16)

for some positive constants C,γ > 0. Then

usup(t) := sup
M

u(·, t), uinf(t) := inf
M

u(·, t)

are differentiable almost everywhere in (0,T ) and at those t ∈ (0,T ) we find in the notation of (2.14)

and (2.15)

∂

∂ t
usup(t)≤ lim

ε→0+

(
limsup

k→∞

∂u
∂ t

(pk(t + ε), t + ε)

)
,

∂

∂ t
uinf(t)≥ lim

ε→0+

(
liminf

k→∞

∂u
∂ t

(
p′k(t + ε), t + ε

))
.

(2.17)

Proof. Let ε > 0 and apply (2.14) to u(t + ε). Then, by the Mean Value Theorem

usup(t + ε)≤ u(pk(t + ε), t + ε)+
1
k
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= u(pk(t + ε), t)+ ε · ∂u
∂ t

(pk(t + ε),ξ )+
1
k
,

for some ξ ∈ (t, t + ε). On the other hand, we can write

usup(t + ε) = usup(t)+ ε ·
usup(t + ε)−usup(t)

ε

≥ u(pk(t + ε), t)+ ε ·
usup(t + ε)−usup(t)

ε
.

Combining these two estimates leads, after cancelling u(pk(t + ε), t), to

ε ·
usup(t + ε)−usup(t)

ε
≤ ε · ∂u

∂ t
(pk(t + ε),ξ )+

1
k
.

Taking limsup as k→ ∞ on the right hand side, we obtain

ε ·
usup(t + ε)−usup(t)

ε
≤ ε · limsup

k→∞

∂u
∂ t

(pk(t + ε),ξ ).

Cancelling ε on both sides, we find

usup(t + ε)−usup(t)
ε

≤ limsup
k→∞

∂u
∂ t

(pk(t + ε),ξ )

= limsup
k→∞

(
∂u
∂ t

(pk(t + ε),ξ )− ∂u
∂ t

(pk(t + ε), t + ε)

)
+ limsup

k→∞

∂u
∂ t

(pk(t + ε), t + ε).

(2.18)

We know, from hypothesis, the function u satisfies (2.16). Thus, it follows that

• limsup
k→∞

∣∣∣∣∂u
∂ t

(pk(t + ε),ξ )− ∂u
∂ t

(pk(t + ε), t + ε)

∣∣∣∣≤Cε
γ ,

• limsup
k→∞

∣∣∣∣∂u
∂ t

(pk(t + ε), t + ε)

∣∣∣∣≤C.

(2.19)

Thus the last two summands in (2.18) are bounded uniformly in ε . Repeating the same arguments

with the roles of u(t) replaced by u(t + ε) interchanged, we conclude that usup is locally Lipschitz

and thus, by the theorem of Rademacher, differentiable almost everywhere. This proves the first

statement.

At those t ∈ (0,T ), where usup is differentiable, we conclude from (2.18) and the first line in

(2.19), taking ε → 0

∂

∂ t
usup(t)≤ lim

ε→0

(
limsup

k→∞

∂u
∂ t

(pk(t + ε), t + ε)

)
. (2.20)

This proves the first inequality in (2.17). The second inequality follows from the first, using (2.15),

with u replaced by (−u).
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Theorem 2.7. (Maximum Principle) Let (M,gΦ) be an m-dimensional Φ-manifold and u ∈C2
Φ
(M×

[0,T ]) be a function satisfying the inequalities in (2.16) and the Cauchy problem

(∂t−a∆Φ)u = 0, u|t=0 = 0, (2.21)

where the function a = a(p, t) is positive, bounded and bounded from below away from zero. Then

u = 0.

Proof. Combining the first inequality in Proposition 2.6 and (2.14), it follows that

∂

∂ t
usup(t)≤ lim

ε→0

(
limsup

k→∞

a(pk(t + ε), t + ε)

k

)
≤ 0.

Analogously, combining the second inequality in Proposition 2.6 and (2.15), we get

∂

∂ t
uinf(t)≥ lim

ε→0

(
liminf

k→∞

−a(pk(t + ε), t + ε)

k

)
≥ 0.

This means that the infimum of the function u over M is non-decreasing in time, while the supremum

of the function u over M is non-increasing in time; since u = 0 at time t = 0, follows directly that

u = 0 on M× [0,T ].

From this, we conclude Theorem 0.1. Moreover, a straightforward adaptation of the arguments

shown in [Eva10, pg.329] allows the following modification of the previous maximum principle:

Corollary 2.8. Let (M,gΦ) be an m-dimensional Φ-manifold and c ∈C0(M× [0,T ]) a nonnegative

function. If u ∈C2
Φ
(M× [0,T ]) satisfies the inequalities in (2.16) and the Cauchy problem

(∂t−a∆Φ + c)u = 0, u|t=0 = 0, (2.22)

then u = 0.

Proof. Consider the 1-parameter families of open subsets V+
u (t),V−u (t)⊂M defined as follows:

V+
u (t) := {p ∈M | u(p, t)> 0}, V−u (t) := {p ∈M | u(p, t)< 0}. (2.23)

We want to prove that the function u satisfying (2.22) must be null, which happens if and only if

V+
u (t) =V−u (t) =∅ for all t ∈ [0,T ].

First, assume V+
u (t0) 6= ∅ for some fixed t0 ∈ [0,T ]. Thus, there is some point p0 ∈M such that

u(p0, t0) > 0, which naturally implies usup(t0) > 0. We know that there is a sequence {pk(t0)} ⊂M

satisfying (2.14). Hence, it follows directly that there is some k0 ∈ Z>0 such that u(pk(t0), t0)> 0 for

all k ≥ k0. This allows us to assume, without loss of generality, that {pk(t0)} ⊂ V+
u (t0). Moreover,

since u is continuous, it is known that there is some δ > 0 such that u|B(p0,δ )×(t0−δ ,t0+δ ) > 0, thus

implying V+
u (t) 6= ∅ for all t ∈ (t0− δ , t0 + δ ), while u|t=t0−δ = 0. From this and (2.22), it follows

that

∂

∂ t
u(pk(t0), t0) = (a∆Φu)(pk(t0), t0)− (cu)(pk(t0), t0)≤ (a∆Φu)(pk(t0), t0)
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≤ ‖a‖∞

1
k

k→+∞−−−−→ 0.

Analogously, the same logic can be used for each t ∈ (t0−δ , t0+δ ). Thus, it follows from Proposition

2.6 that
∂

∂ t
usup(t)≤ 0, almost everywhere in (t0−δ , t0 +δ ). (2.24)

On the other hand, we know that usup(t0)≥ u(p0, t0) = c > 0. Hence, (2.24) implies that

usup(t−δ + ε)≥ c, for ε > 0 sufficiently small.

Thus, there is some point p ∈ M such that u(p, t − δ + ε) > C > 0, for any C < c. Therefore, the

continuity of u implies

u(p, t−δ ) = lim
ε→0+

u(p, t−δ + ε)≥C > 0.

However, this contradicts the continuity of u, since u|t=t0−δ = 0. Therefore, we conclude that there

cannot exist any t0 ∈ [0,T ] such that V+
u (t0) 6=∅ and, therefore, u≤ 0.

Now, let us prove that u≥ 0. From (2.23), one can easily see that V+
(−u)(t) =V−u (t) for all t. The

function −u ∈C2
Φ
(M× [0,T ]) also satisfies (2.22) and then, from the arguments given in the previous

case, it follows directly that there is no t ∈ [0,T ] such that V+
(−u)(t) 6=∅, concluding that u cannot be

negative anywhere. Therefore, u = 0, completing the proof.

2.4 Heat kernel

This section presents very useful information for the development of this work, being presented

here in detail.

The goal of this section is to give a complete presentation of the asymptotic expansion of the heat

kernel H near its singularities. This is achieved by building a “modified” version of M2× [0,∞)t

which resolves the singularities of H, expressing them in terms of specific defining functions. This

modified manifold is called heat space and it is denoted as M2
h .

2.4.1 Review of the heat space M2
h

The construction of the heat space is given by 3 iterated blow-ups of M2× [0,∞)t . Such blow-ups

are necessary to understand the asymptotic behavior of the heat kernel near its singular points, which

lie in the diagonal of M at time t = 0 and t = ∞ (for infinite time). This can be done by replacing the

singular regions by new boundary hypersurfaces. We refer to [TV21] for a more detailed discussion

on both the construction of the heat space and the properties of the heat kernel given below.

The first blow-up

Consider first the submanifold S1 = (∂M)2× [0,∞)t of M2× [0,∞)t . Note that, since ∂M is a

p-submanifold of M (see Definition 1.10), then S1 is also a p-submanifold of M2× [0,∞)t and then
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the blow-up of S1 in M2× [0,∞)t is well-defined. By blowing up S1 in M2× [0,∞)t we get

M2
h,1 :=

[
M2× [0,∞)t ;S1

]
,

β1 : M2
h,1→M2× [0,∞)t .

Note that M2
h,1 is now a “new” manifold, built by replacing the codimension 2 submanifold (displayed

below as an edge) of M2× [0,∞)t by a new boundary hypersurface (which is the conormal bundle of

S1 in M2× [0,∞)t). In order to give a proper description of the blow-down map β1, let us first give the

adequate set of projective coordinates to describe this new manifold.

1 . . 2

lf ff rf

tb

x

√
t

x̃

lf = {x̃ = 0} rf = {x = 0}

tb = {t = 0}

Figure 2.1: First blow-up

Following the steps described in [Gri01], one can describe the projective coordinates for M2
h,1 by

considering two regions (which from now on, will be called regimes):

•Regime near the intersection of lf, ff and tb: This regime is represented in the picture above by

“regime 1”. Note that such a regime is identified with the region where x̃� x implying, in particular,

that the function s̃ = x̃−1x is bounded. Therefore, by writing
√

t =: τ , the projective coordinates for

the lower-left corner are (
x,y,z,

x̃
x
, ỹ, z̃,
√

t
)
= (x,y,z, s̃, ỹ, z̃,τ). (2.25)

Hence, on Regime 1 one has ρff = x, ρlf = s̃ and ρtb = τ .

x s̃

τ

Figure 2.2: Regime near the intersection of lf, ff and tb

• Regime near the intersection of rf, ff and tb: This regime is represented in Figure 2.1 by

“regime 2”, being identified with the case x� x̃. If x� x̃ then s = x−1x̃ is a bounded function.
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Hence, defining τ as above, the projective coordinates for the right-hand corner are(√
t,

x
x̃
,y,z, x̃, ỹ, z̃

)
= (τ,s,y,z, x̃, ỹ, z̃). (2.26)

Similarly, on Regime 2 one has ρff = x̃, ρrf = s and ρtb = τ .

x̃s

τ

Figure 2.3: Regime near the intersection of rf, ff and tb

Remark 2.9. The projective coordinates defined above for Regimes 1 and 2 are valid in “larger”

regions. In fact, one can define both s and s̃ as long as one stays away from {x̃ = 0} and {x = 0}
respectively. This information will be useful for computating the parabolic Schauder estimates.

Then, when restricted to the lower-left corner, the blow-down map takes the expression

(β1)
∣∣
1(τ,x,y,z, s̃, ỹ, z̃) = (τ,x,y,z,xs̃, ỹ, z̃)

and is defined similarly on the lower-right corner.

The second blow-up

Now, we move to the second blow-up, which consists of blowing up the fiber diagonal in time.

This means that we want to blow-up the submanifold S2 of M2
h,1 given by{

x̃
x
−1 = 0 and y = ỹ

}
.

Such submanifold can be seen in the picture above as a line on ff given by its intersection with

the plane {x = x̃} and then, much like in the first blow up, the “new” manifold can be pictured by

replacing such path by its conormal bundle on M2
h,1 (see picture below). Hence, our “new” manifold

has a new hypersurface given by fd = {s̃−1 = 0 and y = ỹ} and is now defined

M2
h,2 := [M2

h,1;S2],

β2 : M2
h,1→M2

h,1

and, naturally, one can then consider the iterated blow-down map as the composition β1 ◦β2 : M2
h,2→

(M)2× [0,∞)∞.

Following again the steps as described in [Gri01], is possible to define the projective coordinates

on fd by taking (
τ,x,y,z,

s̃−1
x

,
ỹ− y

x
, z̃− z

)
=:
(

τ,x,y,z,S̃ ′,Ũ ′,Z̃ ′
)

(2.27)
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1 .
3. 4 .

. 2

lf ff fd ff rf

tb

Figure 2.4: Second blow-up

away from x = 0 (which corresponds to “regime 3” in Figure 2.4). Similarly, one can consider the

projective coordinates on ff away from x̃ = 0 (corresponding to “regime 4” in Figure 2.4) as(
τ,

s−1
x̃

,
y− ỹ

x̃
,z− z̃, x̃, ỹ, z̃

)
=:
(
τ,S ′,U ′,Z ′, x̃, ỹ, z̃

)
.

Remark 2.10. Despite the projective coordinates given above for Regimes 3 and 4, one can actually

use only one of the sets above to work on both Regimes, since one can understand that approaching ff

from fd means that ‖(S ′,U ′,Z ′)‖ → ∞ (and similarly for (S̃ ′,Ũ ′,Z̃ ′)). Hence, one can say that

on both Regimes 3 and 4, ρtb = τ and ρfd = x.

ff fd ff

tb

S ′
τ

x

Figure 2.5: Projective coordinates for the second blow-up

The third blow-up

Finally, we move to the third (and last) blow up. This last blow up arises from the singularities of

the heat kernel on the spatial diagonal. Therefore, the heat space constructed replacing diag(M)×{t =
0} by its conormal bundle on M2

h,2. Therefore, is defined the blow up

M2
h :=

[
M2

h,2;(β1 ◦β2)
−1(diag(M)×{t = 0})

]
, β : M2

h → (M)2× [0,∞)t

with β being the iterated blow-down map. Note that the heat space has then one more boundary

hypersurface td, implying that our heat space has the family of boundary hypersurfaces M1(M2
h) =

{lf, rf, tb, ff, fd, td}.
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1 .
3. 4 .

. 2
.5

lf ff fd ff rf

tb td tb

Figure 2.6: Third blow-up

fd

td

tb
τ

x

S

Figure 2.7: Coordinates around the middle regimes

The projective coordinates given then near the intersection of fd and td (which is represented by

“regime 5” in Figure 2.6) are(
τ,x,y,z,

S ′

τ
,
U ′

τ
,
Z ′

τ

)
=: (τ,x,y,z,S ,U ,Z ). (2.28)

with ρfd = x, ρtd = τ and ‖(S ,U ,Z )‖→ ∞ implies leaving the region near the intersection fd∩ td.

Remark 2.11. It is still possible to define the projective coordinates near the intersection tb∩ td away

from fd by taking (x,y,z,(x̃− x)/τ,(ỹ− y)/τ,(z̃− z)/τ,τ).

2.4.2 Asymptotics for the Heat Kernel on M2
h

First, recall that the heat operator H is the inverse of the differential operator (∂t −∆Φ), that is,

(∂t −∆Φ)Hu = u. Since the heat operator is an integral operator, it is known that there is a function

H smooth function on the open interior of the heat space M2
h = [0,∞)×M2, called the heat kernel of

H, such that

Hu(t, p) =
∫

M
H(t, p, p̃)u(p̃)dvolΦ(p̃), (2.29)

for every u. Therefore, understanding H is enough for understanding H.

The point of having a full description of M2
h is that, when endowed with the blow-down map β ,

one can now consider the lift β ∗H of the heat kernel H to M2
h . Since β is a diffeomorphism between

the interiors of the manifolds, β is then just as a change of coordinates on the interior of (M)2× [0,∞)t ;
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thus, once our work is focused on the interior of the manifolds, it is reasonable to consider the lift in

order to do the analysis of the heat kernel.

For every boundary face in M2
h , as displayed in Figure 2.6, let ρ with a subscript denote the

boundary defining function of the face denoted in the subscript.

Theorem 2.12. [TV21, Theorem 7.2] Let (M,gΦ) be an m-dimensional complete manifold with

fibered boundary endowed with a Φ-metric. Denote by H the heat kernel associated to the Friederichs

extension of the Laplacian. The lift β ∗H is a polyhomogeneous conormal distribution on M2
h with

asymptotic behavior described by

β
∗H ∼ ρ

∞
lf ρ

∞
ff ρ

∞
rf ρ

∞
tbρ

0
fdρ
−m
rd G (2.30)

with G0 being a bounded function, meaning that β ∗H is of leading order −m on td, bounded on fd

and vanishes to infinite order on lf, ff, rf and td.

It is worth noting that Theorem 2.12 provides info only on the lower order terms on the asymp-

totics for β ∗H. However, every subsequent term on the asymptotics is less singular then the ones

described.

Asymptotics near the intersection lf∩ ff∩ tb

Recall that the coordinates valid for this region are (τ,x,y,z, s̃, ỹ, z̃), for τ =
√

t and s̃ = x̃/x. One

has

β
∗(x2

∂x) = x2
∂x− xs̃∂s̃, β

∗(x∂y) = x∂y, β
∗
∂z = ∂z, (2.31)

β
∗
∂t =

1
2τ

∂τ . (2.32)

On the other hand, it follows from Theorem 2.12 that the lift of the heat kernel is given by β ∗H =

(xs̃τ)∞G0 with G0 bounded (on it’s lower order term). Hence, since β ∗VΦ above are all in Vb, it

follows that

β
∗(V H) = (xs̃τ)∞G0, (2.33)

with G0 bounded, for any V ∈ {id}∪VΦ∪V 2
Φ

. On the other hand, the lift of the volume form is given

by

β
∗ dvolΦ(x̃, ỹ, z̃) = h0(xs̃, ỹ, z̃)x−1−bs̃−2−b d s̃d ỹd z̃. (2.34)

Asymptotics near the intersection rf∩ ff∩ tb

Near the extreme right corner of M2
h , coordinates are (τ,s,y,z, x̃, ỹ, z̃), for τ =

√
t and s = x/x̃.

Thus, follows that

β
∗(x2

∂x) = x̃s2
∂s, β

∗(x∂y) = x̃s∂y, β
∗
∂z = ∂z, (2.35)
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β
∗
∂t =

1
2τ

∂τ . (2.36)

Similarly to the previous case, Theorem 2.12 implies that β ∗H ∼ (x̃sτ)∞. Hence, because β ∗VΦ lie

in Vb, one has

β
∗(V H) = (x̃sτ)∞G0, (2.37)

with G0 bounded, for any V ∈ {id}∪VΦ∪V 2
Φ

. On the other hand, the lift of the volume form is

β
∗ dvolΦ(x̃, ỹ, z̃) = h0(x̃, ỹ, z̃)x̃−2−b d x̃d ỹd z̃. (2.38)

Asymptotics near ff∩ fd∩ tb

Around the boundary hypersurface, coordinates are
(

τ,x,y,z,S̃
′
,Ũ

′
,Z̃

′
)

, with

S̃
′
=

x̃− x
x2 , Ũ

′
=

ỹ− y
x

, Z̃
′
= z̃− z, τ =

√
t. (2.39)

Hence, Φ-derivatives lift via β as follow:

β
∗(x2

∂x) = x2
∂x− (1+2xS̃

′
)∂

S̃ ′ − xŨ
′
∂
Ũ ′ , (2.40)

β
∗(x∂y) = x∂y−∂

Ũ ′ , β
∗
∂z = ∂z, (2.41)

β
∗
∂t =

1
2τ

∂τ . (2.42)

From Theorem 2.12, one knows that β ∗H = τ∞x0G0, where G0 is a bounded term that vanishes to

infinite order whenever ‖(S̃ ′
,Ũ

′
,Z̃

′
)‖ → ∞; this can be understood as the behavior of the heat

kernel when getting further away from the diagonal of (M)2 (which meas approaching ff in this

regime). Hence, the “worst case scenario” is

β
∗(V H) = τ

∞G0, (2.43)

with G0 still vanishing to infinite order whenever ‖(S̃ ′
,Ũ

′
,Z̃

′
)‖ → ∞, for V ∈ {id}∪VΦ∪V 2

Φ
. On

the other hand, the lift of the volume form is given by

β
∗ dvolΦ(x̃, ỹ, z̃) = 2h0(x+ x2S̃ ′,y+ xŨ

′
,z+ Z̃

′
)(1+ S̃

′
x)−2−b dS̃

′
dŨ

′
dZ̃

′
. (2.44)

Asymptotics near fd∩ td

Near the middle regimes of M2
h , the coordinates are

(
τ,x,y,z,S̃ ,Ũ ,Z̃

)
, with

S̃ =
x̃− x
x2τ

, Ũ =
ỹ− y
xτ

, Z̃ =
z̃− z

τ
, τ =

√
t. (2.45)

Thus, the lift of Φ-derivatives via β near the middle of M2
h are given by

β
∗(x2

∂x) = x2
∂x−

(
1
τ
+2xS̃

)
∂
S̃
− xŨ ∂

Ũ
, (2.46)
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β
∗(x∂y) = x∂y−

1
τ

∂
Ũ
, (2.47)

β
∗
∂z = ∂z−

1
τ

∂
Z̃
, (2.48)

β
∗
∂t =

1
2τ

∂τ −
1

2τ2 S̃ ∂
S̃
− 1

2τ2 Ũ ∂
Ũ
− 1

2τ2 Z̃ ∂
Z̃
. (2.49)

If follows from Theorem 2.12 that, when near the middle regimes in M2
h , β ∗H = τ−mx0G0, with G0

bounded and vanishing to infinite order whenever ‖(S̃ ,Ũ ,Z̃ )‖→ ∞, which reflects the behavior of

the heat kernel when approaching ff. Hence, the “worst case scenario” is

β
∗(V H) = τ

−m−2G0, (2.50)

with G0 vanishing to infinite order whenever ‖(S̃ ,Ũ ,Z̃ )‖ → ∞, for V ∈ {id}∪VΦ ∪V 2
Φ

. For the

volume form, one has now the expression

β
∗ dvolΦ(x̃, ỹ, z̃) = 2h0(x+ x2

τS̃ ,y+ xτŨ ,z+ τZ̃ )(1+ S̃ xτ)−2−b
τ

m dS̃ dŨ dZ̃ . (2.51)
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CHAPTER 3

Yamabe flow on Φ-manifolds

The main goal of this chapter is to study the Yamabe flow in the context of Φ-manifolds. There-

fore, once defined the conformal class of our interest along this work, let us prove that every Rieman-

nian metric evolving along the flow preserves geometry adapted Hölder-continuity, that is, Hölder

spaces defined in terms of Φ-vector fields and the distance function related to gΦ. This is relevant

because it will allow us to use the tools developed in the previous chapter for every metric g(t) along

the flow, for any t > 0.

Yamabe flow for the conformal factor

The Yamabe flow preserves the conformal class of the metric and can be written as a scalar evo-

lution equation for the conformal factor. More precisely, assume m := dimM ≥ 3 and set η :=

(m−2)/4. Writing g(t) = u(t)1/ηg, the scalar curvature of g(t) can be computed by (∆ is the nega-

tive Laplace Beltrami operator of (M,g))

scal(g(t)) =−u(t)−(1+1/η)

[
m−1

η
∆u(t)− scal(g)u(t)

]
. (3.1)

In view of this relation, the Yamabe flow (2) turns into

∂tu(t)(m+2)/(m−2) =
m+2
m−2

(
(m−1)∆u(t)−η scal(g)u(t)

)
⇔ ∂tu(t) = (m−1)u(t)−1/η

∆u(t)−η scal(g)u(t)1−1/η ,

(3.2)

with the initial condition u|t=0 = 1.

Normalized Yamabe flows for the conformal factor

Similar computations as those leading to (3.2) yield the following scalar evolution equation for

the conformal factor under the volume normalized Yamabe flow

∂tu(t)− (m−1)u(t)−1/η
∆u(t) = η

(
ρ(t)u(t)− scal(g)u(t)1−1/η

)
. (3.3)

33
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The curvature normalized flows in (5) are similarly given by

∂tu(t)− (m−1)u(t)−1/η
∆u(t)

= η

(
sup
M

scal(g(t)) ·u(t)− scal(g)u(t)1−1/η

)
,

(
CYF+

)
∂tu(t)− (m−1)u(t)−1/η

∆u(t)

= η

(
inf
M

scal(g(t)) ·u(t)− scal(g)u(t)1−1/η

)
.

(
CYF−

)
(3.4)

3.1 Hölder continuity

In this section, we introduce geometry-adapted Hölder spaces, which form a family of Banach

spaces that provide information about both the regularity of a function and its variation proportionally

to the distance between points, generalizing the concept of Lipschitz continuity. Moreover, we define

these spaces in a way that the natural family of vector fields on (M,gΦ), i.e. Φ-vector fields, gives the

family of differential operators considered for defining regularity of a function.

Definition 3.1. The Hölder space Cα
Φ
(M× [0,T ]), for α ∈ (0,1), is defined as the space of bounded

and continuous functions u ∈C0(M× [0,T ]) which satisfy

[u]α := sup
M2

T

{
|u(p, t)−u(p′, t ′)|

dΦ(p, p′)α + |t− t ′|α/2

}
< ∞, (3.5)

where the supremum is taken over M2
T := MT ×MT , with MT := M× [0,T ]. The distance function

dΦ is induced by the metric gΦ and is equivalently given in local coordinates (x,y,z) in U by the

following local expression:

dΦ((x,y,z),(x′,y′,z′))≈

√(
|x− x′|
(x+ x′)2

)2

+

(
‖y− y′‖
(x+ x′)

)2

+‖z− z′‖2. (3.6)

The Hölder norm of any u ∈Cα
Φ
(M× [0,T ]) is defined by

‖u‖α := ‖u‖∞ +[u]α . (3.7)

The resulting normed vector space Cα
Φ
(M× [0,T ]) is a Banach space.

Note that here we do not require the functions to be continuous up to the boundary. Hölder spaces

with a stronger control on the boundary behavior will be considered in Chapter 4.

Below, we prove a useful result that proves the Hölder norm ‖ · ‖α to be equivalent to a slightly

more restrictive Hölder norm, which considers only spacial and time differences taken within small

local regions.

Lemma 3.2. The following equation defines an equivalent norm on Cα
Φ
(M× [0,T ]) :

‖u‖′α := ‖u‖∞ +[u]′α , [u]′α := sup
M2

T,δ

{
|u(p, t)−u(p′, t ′)|

dΦ(p, p′)α + |t− t ′|α/2

}
, (3.8)
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where M2
T,δ := {(p, t),(p′, t ′) ∈ MT | dΦ(p, p′)α + |t− t ′|α/2 ≤ δ}. More precisely, we have the fol-

lowing relation between the two norms

‖u‖′α ≤ ‖u‖α ≤ (1+2δ
−1)‖u‖′α .

Proof. It is clear from definition that ‖u‖′α ≤ ‖u‖α . To prove the second estimate, simply note for

any u ∈Cα
Φ
(M× [0,T ]) and any (p, t),(p′, t ′) ∈MT with

dΦ(p, p′)α + |t− t ′|α/2 ≥ δ ,

we can estimate the Hölder differences as follows

|u(p, t)−u(p′, t ′)|
dΦ(p, p′)α + |t− t ′|α/2 ≤

|u(p, t)−u(p′, t ′)|
δ

≤ 2δ
−1‖u‖∞.

From this, we can compute

‖u‖α ≤‖u‖∞ +[u]′α + sup
M2

T \M2
T,δ

{
|u(p, t)−u(p′, t ′)|

dΦ(p, p′)α + |t− t ′|α/2

}
≤[u]′α +(1+2δ

−1)‖u‖∞

≤(1+2δ
−1)‖u‖′α ,

completing the proof.

From now on we only use the Hölder norm ‖u‖′α defined in (3.8), which we denote from now on

without the apostrophe. We also define the higher order Hölder spaces for any given k ∈ N by

Ck,α
Φ

(M× [0,T ]) =
{

u ∈Ck
Φ(M× [0,T ])

∣∣∣∣ (V ◦∂
l2
t )u ∈Cα

Φ
(M× [0,T ]),

for V ∈ Diffl1
Φ
(M), l1 +2l2 ≤ k

}
(3.9)

which is a Banach space (cf. [BV14, Proposition 3.1]) with the norm

‖u‖k,α := ‖u‖α + ∑
l1+2l2≤k

∑
V∈V l1

Φ

‖(V ◦∂
l2
t )u‖α . (3.10)

Moreover, we can generalize further the definition above by introducing the weighted Hölder space

xγCk,α
Φ

(M× [0,T ]), which is defined as the space of functions u = xγv with v ∈Ck,α
Φ

(M× [0,T ]) and

endowed with the norm ‖u‖k,α,γ := ‖v‖k,α .

Remark 3.3. Sometimes, we will also use Hölder spaces for functions depending either only on

spacial variables or on time variables, denoted as Ck,α
Φ

(M) and Ck,α
Φ

([0,T ]), with Hölder brackets (for

k = 0)

[u]α = sup
M2

|u(p)−u(p′)|
dΦ(p, p′)α

and [u]α = sup
[0,T ]2

|u(t)−u(t ′)|
|t− t ′|α/2 ,

respectively.
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The next proposition shows that every xγCk,α
Φ

(M× [0,T ]) is closed under multiplication of ele-

ments in Ck,α
Φ

(M× [0,T ]).

Proposition 3.4. Let ϕ ∈Ck+l,α
Φ

(M× [0,T ]). Then the multiplication operator

Mϕ : xγCk,α
Φ

(M× [0,T ])→ xγCk,α
Φ

(M× [0,T ]) (3.11)

acts continuously, for all l ≥ 0 and γ ∈ R.

Proof. Note that the general case follows as a straightforward generalization of the case k = l = 0

simply by employing the product rule for derivatives and using the ideas presented below. Therefore,

computations are made assuming k = l = 0.

Let u = xγv, where v ∈Cα
Φ
(M× [0,T ]). From definition, we know that ‖u‖α,γ = ‖v‖α and thus,

we have the following:

‖Mϕu‖α,γ = ‖x−γ
ϕxγv‖∞ +[x−γ

ϕxγv]α ≤ ‖ϕ‖∞‖v‖∞ +[ϕv]α .

Let us now estimate specifically the second term above. The triangular inequality gives us

[ϕv]α =sup
|ϕu(p, t)−ϕu(p′, t ′)|
d(p, p′)α + |t− t ′|α/2

≤sup
|v(p, t)(ϕ(p, t)−ϕ(p′, t ′))|

d(p, p′)α + |t− t ′|α/2 + sup
|ϕ(p′, t ′)(v(p, t)− v(p′, t ′)|

d(p, p′)α + |t− t ′|α/2

≤‖v‖∞[ϕ]α +‖ϕ‖∞[v]α .

Hence, it follows from the definitions of ‖.‖α and ‖.‖α,γ that

‖Mϕu‖α,γ ≤ ‖ϕ‖α‖u‖α,γ .

Remark 3.5. We point out that the previous result can be altered to functions ϕ ∈ xγCk,α
Φ

(M× [0,T ])

under the assumption that γ ≥ 0. Moreover, the definition of the distance function is irrelevant to the

proof as presented above, which means that this result holds to Hölder spaces defined for different

distance functions.

3.1.1 Conformal transformation by Hölder functions

Since the Yamabe flow preserves the conformal class of the metric, we need to look into the effect

of conformal transformation by Hölder functions. We first define the conformal class of a Φ-metric

gΦ (we tacitly assume m≥ 3)

[gΦ] =
{

u4/(m−2) ·gΦ

∣∣∣ u ∈C2
Φ(M), 0 < inf

M
u≤ sup

M
u <+∞

}
. (3.12)
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First, observe that any representative g of the conformal class [gΦ] is a complete Riemannian met-

ric on M. In fact, the bounds required on u imply the distance function dg to be uniformly equivalent

to the distance function dΦ. This means that a sequence {pk}k ⊂M is a Cauchy sequence in (M,dg)

iff is a Cauchy sequence in (M,dΦ), which is a complete metric space (by the Hopf-Rinow theorem),

from which it follows the conclusion.

On the other hand, a generic element of the conformal class [gΦ] is not necessarily a Φ-metric

in the sense of Definition 2.2, since the conformal factor u4/(m−2) cannot in general be expected to

admit a partial asymptotic expansion as x→ 0. However, if u is bounded away from zero and bounded

from above, then it still has VΦ as the space of “bounded vector fields” and thus the distance functions

defined with respect to any g∈ [gΦ] are equivalent. In fact, bounded vector fields on M are understood

as to ones which satisfy

gΦ(V,W ) = O(1).

It follows directly from the local expressions of gΦ and VΦ that

gΦ(VΦ,VΦ) = O(1) =⇒ u1/η ·gΦ(VΦ,VΦ) = O(1),

since u is assumed to be bounded. On the other hand, one knows that

dg(p, p′) = inf{lengthg(γ) | γ : [0,1]→M, γ(0) = p and γ(1) = p′}.

However, since u is both bounded away from zero (that is, infM u > 0) and ‖u‖∞ < ∞, we get

lengthg(γ) =
∫ t

0
‖γ ′(t)‖g d t =

∫ t

0
u1/2η · ‖γ ′(t)‖Φ d t ∼ lengthΦ(γ).

In that sense g still has the same Φ-geometry as gΦ and we conclude

Proposition 3.6. The Hölder spaces defined in §3.1 do not depend on the choice of a metric g ∈ [gΦ],

if the conformal factor u satisfies infM u > 0 and ‖u‖∞ < ∞.

3.1.2 Embedding between Hölder spaces

In this section, we present a few results regarding embedding between Hölder spaces. They will

prove themselves useful later on.

Proposition 3.7. Let (M,gΦ) be a Φ-manifold and 0 < β < α < 1. Then the inclusion

ι : Ck,α
Φ

(M) ↪→Ck′,β
Φ

(M) (3.13)

is bounded, for all k′ ≤ k.

Proof. Let us consider u ∈Ck,α
Φ

(M). From definition, it follows directly that u ∈Ck
Φ
(M). Thus, it is

left for us to check that [Vu]β < ∞ for all V ∈ V l
Φ

, with l ≤ k′. To do so, let us assume l = 0 for now.

Then

[u]β = sup
|u(p)−u(p′)|

dΦ(p, p′)β
≤ sup

dΦ(p,p′)≤1

|u(p)−u(p′)|
dΦ(p, p′)β

+ sup
dΦ(p,p′)>1

|u(p)−u(p′)|
dΦ(p, p′)β
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=: A+B.

Hence, if A and B are proven finite and, moreover, comparable to ‖u‖k,α , then our first step will be

complete. For estimating the term A, it is enough to note that, since d(p, p′)≤ 1, then

A = sup
dΦ(p,p′)≤1

dΦ(p, p′)α−β |u(p)−u(p′)|
dΦ(p, p′)α

≤ [u]α ≤ ‖u‖k,α .

For the term B, we proceed as follows:

B≤ sup
dΦ(p,p′)>1

|u(p)|+ |u(p′)|
dΦ(p, p′)β

≤ 2‖u‖∞ ≤ 2‖u‖k,α .

Thus, it follows that [u]β ≤C′‖u‖k,α for some constant C′ > 0. For the case 0 < l < k′, it is enough

to see that the argument provided for l = 0 already implies [Vu]β ≤C′‖Vu‖k−l,α , for every V ∈ V l
Φ

.

Hence, this implies ‖u‖k′,β ≤C‖u‖k,α , completing the proof.

It should be noted that the proof above does not depend on the definition of the distance func-

tion dΦ. Therefore, if one considers a Hölder space defined with a different distance function, the

conclusion still holds.

Remark 3.8. First, note that the proof given for Proposition 3.7 can be naturally generalized for

weighted Hölder spaces, that is, ι : xγCk,α
Φ

(M) ↪→ xγCk′,β
Φ

(M). On the other hand, for K a compact

manifold, we point out that classical PDE theory implies that ι : Ck,α(K) ↪→ Ck′,β (K) is a compact

embedding. Hence, if K is a compact submanifold of M away from the boundary ∂M, it follows that

ι : Ck,α
Φ

(K) ↪→Ck′,β
Φ

(K)

is a compact embedding.

Next, we obtain the following compactness result.

Proposition 3.9. Consider any 0 < β < α < 1 and γ > 0. Then the following inclusion is compact

ι : Ck,α
Φ

(M) ↪→ x−γCk,β
Φ

(M). (3.14)

Proof. Let {un}n be a bounded sequence of functions in Ck,α
Φ

(M) and, for any δ > 0, let Mδ be the

compact submanifold given by

Mδ = M \{p ∈M |x(p)< δ}. (3.15)

We know that Ck,α
Φ

(Mδ ) ↪→ Ck,β
Φ

(Mδ ) compactly for any δ > 0. Therefore, {un|Mδ
}n admits a sub-

sequence {un j(δ )|Mδ
} j which converges in Ck,β

Φ
(Mδ ). Now consider a sequence δi := 1/i for i ∈ N.

We define convergent subsequences in Ck,β
Φ

(Mδi) for any i by an iterative procedure: given a conver-

gent subsequence {un j(δi)|Mδi
} j⊂Ck,β

Φ
(Mδi), we choose a convergent subsequence {un j(δi+1)|Mδi+1

} j⊂

Ck,β
Φ

(Mδi+1) from {un j(δi)|Mδi+1
} j. Define the diagonal sequence by

{v j := un j(δ j)} j. (3.16)
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We claim that {v j} j is a Cauchy sequence in x−γCk,β
Φ

(M). In fact

‖v j‖x−γCk,β
Φ

(M\Mδ j
)
= ‖xγv j‖Ck,β

Φ
(M\Mδ j

)
≤C j−γ ,

where C > 0 is an upper bound for the norms of {un}n ⊂Ck,α
Φ

(M). Now, let ε > 0 and choose j0 ∈N
sufficient large such that Cδ

γ

j0 ≤ ε/4. The sequence {v j|Mδ j0
}⊂Ck,β

Φ
(Mδ j0

) converges by construction

and thus converges also in x−γCk,β
Φ

(Mδ j0
). Hence, there exists some N0 ∈ N sufficiently large, such

that for every j, j′ ≥ N0

‖v j− v j′‖x−γCk,β
Φ

(Mδ j0
)
≤ ε/2. (3.17)

Hence for J0 = max{ j0,N0}, we have for any j, j′ ≥ J0

‖v j− vs‖x−γCk,β
Φ

(M)
≤ ‖v j− vs‖x−γCk,β

Φ
(Mδ j0

)
+‖v j− vs‖x−γCk,β

Φ
(M\Mδ j0

)

< ε/2+ ε/2 = ε.

Hence, {v j} is a Cauchy sequence in x−γCk,β
Φ

(M) and by completeness, it admits a convergent subse-

quence. This proves the statement.

3.2 Mapping properties of the Heat operator on Cα
Φ
(M× [0,T ])

In this section, we establish parabolic Schauder estimates using the heat operator oh Φ-manifolds.

This section is not new, but rather an exercise for the estimates in §4.2. To be more precise, the

estimates here are done with respect to the Hölder norms that are equivalent to the usual Hölder

norms defined on any manifold with bounded geometry. The parabolic Schauder estimates here then

follow by classical estimates in §3.8. Nevertheless, it is interesting to see how on arrives at the same

conclusions using microlocal arguments in the Φ-setting.

Consider the homogeneous and inhomogeneous heat equations for some compactly supported

smooth functions v ∈C∞
Φ,0(M× [0,T ]) and u0 ∈C∞

Φ,0(M)

(∂t−∆Φ)uhom = 0, uhom|t=0 = u0,

(∂t−∆Φ)uinhom = v, uinhom|t=0 = 0.
(3.18)

We denote the heat operator corresponding to the unique self-adjoint extension of ∆Φ in L2 by H,

while its Schwartz kernel is denoted by H. Note that such extension is unique, since (M,gΦ) is a

complete Riemannian manifold (see [Str83, Theorem 2.4]). Then the solutions uhom and uinhom are

given by

uhom(p, t) = (Hu0)(p, t) =
∫

M
H(t, p, p̃)u0(p̃)dvolΦ(p̃),

uinhom(p, t) = (H? v)(p, t) =
∫ t

0

∫
M

H(t− t̃, p, p̃)v(p̃, t̃)dvolΦ(p̃)dt̃,
(3.19)
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where dvolΦ denotes the volume form of gΦ.

Before studying the Yamabe flow itself, we must first prove certain mapping properties for the

heat operator acting by convolution in time, that is, the map H? above. To do this, we will use the

information on the heat kernel provided by Theorem 2.12. This will provide to us important tools for

the argument on the short-time existence of the flow.

Theorem 3.10. The heat operator H?, acting by convolution in time, defines, for any k ∈ N0, α ∈
(0,1) and any γ ∈ R, a bounded linear map

H? : xγCk,α
Φ

(M× [0,T ])→ xγ

(
Ck+2,α

Φ
∩
√

t Ck+1,α
Φ

)
(M× [0,T ]). (3.20)

Proof. Both mapping properties can be proven true by going along similar lines. Therefore, only the

proof for the first of the two will be presented here, while we argue in the last paragraph why the

proof first mapping property implies the latter.

We start the proof with the case k = 0, that is,

H? : xγCα
Φ(M× [0,T ])→ xγC2,α

Φ
(M× [0,T ]).

The more general follows directly from the case k = 0 with the additional use of integration by parts

and by the vanishing order of the heat kernel on the boundary ∂M. In fact, the vanishing order of the

heat kernel implies that, for every u ∈ xγCk,α
Φ

(M× [0,T ]), we have

V (H?u) = H? (V u), for all V ∈ V l
Φ with l ≤ k.

Consequently, the case k > 0 follows from the case k = 0. Furthermore, for any u∈ xγCα
Φ
(M× [0,T ]),

there is some function u ∈Cα
Φ
(M× [0,T ]) such that u = xγu. Particularly, it follows that H?u lies in

xγC2,α
Φ

(M× [0,T ]) if and only if x−γH?xγu lies in C2,α
Φ

(M× [0,T ]), which is equivalent to prove that

Hγ := Mx−γ ◦H?◦Mxγ : Cα
Φ(M× [0,T ])→C2,α

Φ
(M× [0,T ]), (3.21)

with Mxγ being the multiplication by xγ operator. Note that

Hγu(t, p) =
∫ t

0

∫
M

x−γH(t− t̃, p, p̃)(xγu)(̃t, p̃)dvolΦ(p̃)d t̃

=
∫ t

0

∫
M

x−γH(t− t̃, p, p̃)x̃γu(̃t, p̃)dvolΦ(p̃)d t̃

=:
∫ t

0

∫
M

Hγ(t− t̃, p, p̃)u(̃t, p̃)dvolΦ(p̃)d t̃,

which means that the operator Hγ has a kernel Hγ . Note that β ∗H and β ∗Hγ have the same asymptotic

behavior on M2
h , from Theorem 2.12, since H vanishes to infinite order on the corners of M2

h and near

the middle of M2
h one has x∼ x̃, implying (x̃/x)γ to be bounded. In addition to this, from the definition

of the Hölder spaces presented previously in (3.9), the statement above is equivalent to prove that the

operator G, given by G =V ◦Hγ with V ∈ {id}∪VΦ∪V 2
Φ

, acts as a bounded operator

G : Cα
Φ(M× [0,T ])→Cα

Φ(M× [0,T ]).
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Hence, given a function u lying in Cα
Φ
(M× [0,T ]) and using Lemma 3.2, the goal is to prove

‖Gu‖α ≤ c‖u‖α (3.22)

for some uniform constant c > 0. The proof is conducted directly by proving the estimate above for

‖Gu‖α . From the definition of the α-norm in (3.7) we find

‖Gu‖α = [Gu]α +‖Gu‖∞.

Furthermore one can see that

[Gu]α ≤ sup
p,p′∈M

p6=p′

|Gu(p, t)−Gu(p′, t)|
dΦ(p, p′)α

+ sup
t,t ′≥0
t 6=t ′

|Gu(p, t)−Gu(p, t ′)|
|t− t ′|α/2 ,

leading to

‖Gu‖α ≤ sup
p,p′∈M

p6=p′

|Gu(p, t)−Gu(p′, t)|
dΦ(p, p′)α

+ sup
t,t ′≥0
t 6=t ′

|Gu(p, t)−Gu(p, t ′)|
|t− t ′|α/2 +‖Gu‖∞.

Therefore, the inequalities aforementioned imply that the estimate (3.22) is satisfied if

|Gu(p, t)−Gu(p′, t)| ≤ c‖u‖αdΦ(p, p′)α , (3.23)

|Gu(p, t)−Gu(p, t ′)| ≤ c‖u‖α |t− t ′|α/2, (3.24)

|Gu(p, t)| ≤ c‖u‖α . (3.25)

We will therefore proceed in three steps:

i) Uniform estimates of Hölder differences in space, whose proof is presented in §3.2.1,

ii) Uniform estimates of Hölder differences in time, whose proof is presented in §3.2.2,

iii) Uniform estimates of the supremum norm, whose proof is presented in §3.2.3.

The same argumentation as in the previous result leads to an equivalent formulation of the state-

ment, that is, one has to prove that the operator

t−1/2Hγ : Cα
Φ(M× [0,T ])→C1,α

Φ
(M× [0,T ])

is bounded. As in the previous theorem one deduces that the above is equivalent to proving that the

operator Gt given by Gtu =V (t−1/2Hγu), for V ∈ {id}∪VΦ, maps

Gt : Cα
Φ(M× [0,T ])→Cα

Φ(M× [0,T ])

is bounded. One has

(Gtu)(p, t) =
∫ t

0

∫
M

V ((t− t̃)−1/2Hγ(t− t̃, p, p̃))u(p̃, t̃)dvolΦ(p̃)d t̃.
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The estimates in §3.2.1, §3.2.2 and §3.2.3 will already cover the case V ∈ {id}∪VΦ. Moreover it

is important to note that we are no longer considering elements in Diff2
Φ(M), which will lead to an

extra τ term. On the other hand, the term (t− t̃)−1/2 inside the integrand lifts to an extra τ−1 in every

region of M2
h . This means that the presence of the term (t− t̃)−1/2 is proportionally compensated by

the absence of elements from Diff2
Φ(M). Therefore if one attempts to get these estimates following

the same argumentation as in the upcoming sections, then the integrals obtained will have the exact

same asymptotics.

3.2.1 Estimates of Hölder differences in space

Consider p, p′ ∈M and write

M+ = {p̃ ∈M | d(p, p̃)≤ 3d(p, p′)} and M− = {p̃ ∈M | d(p, p̃)≥ 3d(p, p′)}.

We shall assume that p = (x,y,z) and p′ = (x′,y′,z′), with x′ > x without loss of generality. The

estimates below will be presented only for the regimes near the middle of the heat space, that is, where

fd meets td. This is reasonable because the heat kernel vanishes to infinite order near the extreme

corners of the heat space, which makes the estimates in said regions to follow straightforwardly.

Now, for u ∈Cα
Φ
(M× [0,T ]), write

Gu(t, p)−Gu(t, p′) =
∫ t

0

∫
M

G(t− t̃, p, p̃)u(p̃, t̃)dvolΦ(p̃)d t̃

−
∫ t

0

∫
M

G(t− t̃, p′, p̃)u(p̃, t̃)dvolΦ(p̃)d t̃

=
∫ t

0

∫
M−

[
G(t− t̃, p, p̃)−G(t− t̃, p′, p̃)

][
u(p̃, t̃)−u(p, t̃)

]
dvolΦ(p̃)d t̃

+
∫ t

0

∫
M+

[
G(t− t̃, p, p̃)−G(t− t̃, p′, p̃)

][
u(p̃, t̃)−u(p, t̃)

]
dvolΦ(p̃)d t̃

+
∫ t

0

∫
M

[
G(t− t̃, p, p̃)−G(t− t̃, p′, p̃)

]
u(p, t̃)dvolΦ(p̃)d t̃

=:I1 + I2 + I3.

Estimates for I1

Before proving the estimates for I1, let us prove quickly the following technical lemma:

Lemma 3.11. Let p′′ be a point in M such that dΦ(p′, p′′)≤ dΦ(p, p′). For every point p̃ in M− one

has
1
3

dΦ(p, p̃)≤ dΦ(p′′, p̃).

Proof. Using triangular inequality, the assumption on p′′ and the fact that p̃ lies in M− one has

dΦ(p, p̃)≤ dΦ(p, p′)+dΦ(p′, p̃)≤ dΦ(p, p′)+dΦ(p′, p′′)+dΦ(p′′, p̃)

≤ dΦ(p, p′)+dΦ(p, p′)+dΦ(p′′, p̃) = 2dΦ(p, p′)+dΦ(p′′, p̃)
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≤ 2
3

dΦ(p, p̃)+dΦ(p′′, p̃).

Now, let us employ the Mean Value Theorem, where we consider pξ = (ξ ,y,z), pη = (x′,η ,z)

and pζ = (x′,y′,ζ ) for some intermediate points ξ ∈ (x,x′), η ∈ (y,y′) and ζ ∈ (z,z′). Note that each

point p′′ ∈ {pξ , pη , pζ} arising from the Mean Value Theorem satisfies either dΦ(p, p′′)≤ dΦ(p, p′)

or dΦ(p′, p′′)≤ dΦ(p, p′), implying that Lemma 3.11 is true for any of them, from where follows that

dΦ(p, p̃)≤ dΦ(p′′, p̃), p′′ ∈ {(ξ ,y,z),(x′,η ,z),(x′,y′,ζ )}, (3.26)

for any p̃ ∈M−. Thus, we get to write

|I1| ≤|x− x′|
∫ t

0

∫
M−

∂ξ |G(t− t̃, pξ , p̃)
[
u(̃t, p̃)−u(̃t, p)

]
|dvolΦ(p̃)d t̃

+‖y− y′‖
∫ t

0

∫
M−

∂η |G(t− t̃, pη , p̃)
[
u(̃t, p̃)−u(̃t, p)

]
|dvolΦ(p̃)d t̃

+‖z− z′‖
∫ t

0

∫
M−

∂ζ |G(t− t̃, pζ , p̃)
[
u(̃t, p̃)−u(̃t, p)

]
|dvolΦ(p̃)d t̃

≤C‖u‖α |x− x′|
∫ t

0

∫
M−

∂ξ G(t− t̃, pξ , p̃)dΦ(pξ , p̃)α dvolΦ(p̃)d t̃

+C‖u‖α‖y− y′‖
∫ t

0

∫
M−

∂ηG(t− t̃, pη , p̃)dΦ(pη , p̃)α dvolΦ(p̃)d t̃

+C‖u‖α‖z− z′‖
∫ t

0

∫
M−

∂ζ G(t− t̃, pζ , p̃)dΦ(pζ , p̃)α dvolΦ(p̃)d t̃

=:I1,1 + I1,2 + I1,3.

Given the similarities for estimating the terms I1,i above, we present only the estimate for I1,1.

Since we estimate in the regime 5 in Figure 2.6, where fd meets td, we use the local projective

coordinates (τ,ξ ,y,z,S ′,U ′,Z ′), introduced in (2.27), where

S ′ =
x̃−ξ

ξ 2 , U ′ =
ỹ− y

ξ
, Z ′ = z̃− z and τ =

√
t− t̃.

Then we compute from Theorem 2.12 and dvolΦ(x̃, ỹ, z̃)∼ x̃−2−b d x̃d ỹd z̃

|I1,1| ≤C
|x− x′|

ξ 2 · ‖u‖α

∫ √t

0

∫
M−

τ
−m−2G0

√
|S ′|2 +‖U ′‖2 +‖Z ′‖2

α

dS ′ dU ′ dZ ′ dτ,

with G0 being bounded and vanishing to infinite order as ‖(S ,U ,Z )‖ → ∞, where (S ,U ,Z ) =

(S ′/τ,U ′/τ,Z ′/τ). Let us define r(S ′,U ′,Z ′) :=
√
|S ′|2 +‖U ′‖2 +‖Z ′‖2. Such a function

r describes the radial distance in polar coordinates around the origin. Performing a change to polar

coordinates, we obtain

|I1,1| ≤ c · |x− x′|
ξ 2 · ‖u‖α

∫ √t

0

∫
M−

τ
−m−2rm−1+αG0 dr d(angle)dτ.
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Now, setting σ = r−1τ =
√
|S |2 +‖U ‖2 +‖Z ‖2−1

, it follows that G0 against any negative power of

σ is bounded. Hence, integrating out the angular variables, followed by another change of coordinates

τ 7→ σ gives

|I1,1| ≤ c · |x− x′|
ξ 2 · ‖u‖α

∫ √t

0

∫
M−

r−2+α dr.

Now, it follows from the definition of r that M− ⊂ {dΦ(p, p′) ≤ cr} for some constant c > 0. Thus

we can estimate even further

|I1,1| ≤ c · |x− x′|
ξ 2 · ‖u‖α

∫
∞

c dΦ(p,p′)
ξ 2

r−2+α dr

= c · |x− x′|
ξ 2 ·dΦ(p, p′)−1+α‖u‖α .

(3.27)

In order to conclude the desired estimate of I1, recall from Lemma 3.2, that we may consider only

dΦ(p, p′)≤ δ 1/α =: ρ , with any positive ρ < 1/4. Then

1− x
x′
≤ 2ρ(x+ x′)≤ 4ρ.

Thus x > (1−4δ )x′. Hence we may estimate

|x− x′|
ξ 2 ≤ |x− x′|

x2 ≤ (1−4ρ)−2 |x− x′|
x′2

≤ 4(1−4ρ)−2 |x− x′|
(x+ x′)2 ≤ 4(1−4ρ)−2dΦ(p, p′).

Thus for δ > 0 sufficiently small, we conclude from (3.27) and the last estimate above

|I1,1| ≤CdΦ(p, p′)α‖u‖α .

Analogously, the remaining terms can be estimated in a similar fashion, which allows us to conclude

the same inequalities for both I1,2 and I1,3 as presented for I1,1, leading to the estimate desired for I1.

Estimates for I2

Similarly to the computations for the I2 term, the first thing to do is to give a better expression for

the integral I1. Let us rewrite I2 as follows:

I2 =
∫ t

0

∫
M+

G(t− t̃, p, p̃)[u(p̃, t̃)−u(p, t̃)]dvolΦ(p̃)d t̃

−
∫ t

0

∫
M+

G(t− t̃, p′, p̃)[u(p̃, t̃)−u(p′, t̃)]dvolΦ(p̃)d t̃

+
∫ t

0

∫
M+

G(t− t̃, p′, p̃)[u(p, t̃)−u(p′, t̃)]dvolΦ(p̃)d t̃

=:I2,1− I2,2 + I2,3.
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Estimates for I2,1 and I2,2 can be obtained along the same lines. Thus, it is enough for us to present

computations only for I2,1 and I2,3. Now, since we are considering M+ as the integration region,

then points on p̃ ∈M+ are satisfying dΦ(p, p̃)≤ 3Φd(p, p′). Moreover, from the triangular inequality

follows

dΦ(p′, p̃)≤ dΦ(p′, p)+dΦ(p, p̃)≤ 4dΦ(p, p′).

Let us first estimate I2,1. Employing the definition of the Hölder norm gives us

|I2,1| ≤ ‖u‖α

∫ t

0

∫
M+
|G(t− t̃, p, p̃)|dΦ(p, p̃)α dvolΦ(p̃)d t̃.

Considering once again coordinates (τ,x,y,z,S ′,U ′,Z ′) introduced in (2.27), one can obtain con-

stants c,C > 0 such that

dΦ(p, p̃)≤ c · r(S ′,U ′,Z ′) := c ·
√
|S ′|2 +‖U ′‖2 +‖Z ′‖2 ≤C ·dΦ(p, p̃)≤ 3C ·dΦ(p, p′).

Performing a change of coordinates gives us

|I2,1| ≤c‖u‖α

∫ √t

0

∫
M+

τ
−m−1G0rα dS ′ dU ′ dZ ′ dτ

=c‖u‖α

∫ √t

0

∫
Sm−1

∫ 3CdΦ(p,p′)

0
τ
−m−1G0rm−1+α dr d(angle)dτ.

Now, let σ := τ/r. Performing yet another change of coordiantes, we get to rewrite the integral and,

consequently, the estimate as follows:

|I2,1| ≤c‖u‖α

∫ √t

0

∫
Sm−1

∫ 3CdΦ(p,p′)

0
σ
−m−1G0r−1+α dr d(angle)dσ

≤C‖u‖αdΦ(p, p′)α .

Estimate for I2,2 are obtainable following along the same lines simply by recalling the inequality

dΦ(p′, p̃)≤ 4dΦ(p, p′).

For the estimate of I2,3, we assume again as before that the heat kernel is supported near fd meeting

td, and thus work with local projective coordinates (τ,x′,y′,z′,S ,U ,Z ) given in (2.28), that is,

S =
x̃− x′

x′2τ
, U =

ỹ− y′

x′τ
, Z =

z̃− z′

τ
and τ =

√
t− t̃.

We will obtain the estimates using integration by parts. To do so, note that one has (as the “worst

case scenario” with V ∈ Diff2
Φ(M)) G = τ−m−2(V1V2G0) with both V1,V2 ∈ {∂S ,∂U ,∂Z } and G0

vanishing to infinite order whenever ‖(S ,U ,Z )‖→ ∞. For the sake of simplicity, we shall assume

V1 = ∂S . On the other hand, one has by triangle inequality

∂M+ = {dΦ(p, p̃) = 3dΦ(p, p′)} ⊆ {2dΦ(p, p′)≤ dΦ(p′, p̃)}. (3.28)

Moreover we can also write for some smooth function h0

β
∗(dvolΦ(p̃)d t̃) = h0

(
x′+ τ x′2S ,y′+ τ x′U ,z′+ τ Z

)
dS dU dZ dτ.
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Since u(p, t̃)−u(p′, t̃) =: δu is independent of p̃, we can integrate by parts

I2,3 =
∫ √t

0
δu
∫

M+
τ
−1(∂S V2H)h0 dS dU dZ dτ

=
∫ √t

0
δu
∫

∂M+
τ
−1(V2H)h0 dU dZ dτ

−
∫ √t

0
δu
∫

M+
τ
−1(V2H)∂S h0 dS dU dZ dτ =: I′2,3− I′′2,3.

For the I′′2,3-term, note that h0 is smooth and therefore ∂S h0 = τ x′2∂x̃h0. This cancels the τ−1 in the

integrand and thus I′′2,3 can be estimated against ‖u‖αdΦ(p, p′)α .

For the I′2,3-term, by (3.28), we can estimate

|I′2,3| ≤‖u‖αdΦ(p, p′)α

∫ √t

0

∫
∂M+

τ
−1(V2H

)
h0 dU dZ dτ

≤1
2
‖u‖α

∫ √t

0

∫
∂M+

τ
−1(V2H

)
dΦ(p′, p̃)αh0 dU dZ dτ.

Estimates for I3

For the estimate of I3, let us first assume without loss of generality x < x′. Moreover, it follows

from Lemma 3.2 that it is enough for us to work under the assumption that

dΦ(p, p′)α + |t− t ′|α/2 < δ ,

for δ sufficiently small. Considering px′ = (x′,y,z) ∈M, write

I3 =
∫ t

0

∫
M

[
G(t− t̃, p, p̃)−G(t− t̃, px′, p̃)

]
u(p, t̃)dvolΦ(p̃)d t̃

+
∫ t

0

∫
M

[
G(t− t̃, px′, p̃)−G(t− t̃, p′, p̃)

]
u(p, t̃)dvolΦ(p̃)d t̃

= I3,1 + I3,2.

Since H is stochastically complete and G =V ◦Hγ , it follows that

I3,2 =
∫ t

0
xγu(p, t̃)x′−γ

(∫
M

[
V H(t− t̃, px′, p̃)−V H(t− t̃, p′, p̃)

]
dvolΦ(p̃)

)
d t̃

=
∫ t

0
(xγu(p, t̃)x′−γ ·0)d t̃

=0.

Therefore, I3 = I3,1. By using the Mean Value Theorem on the x-entry and considering pξ = (ξ ,y,z)

for some ξ ∈ (x,x′), it follows that

I3 = |x− x′|
∫ t

0

∫
M

∂ξ G(t− t̃, pξ , p̃)u(p, t̃)dvolΦ(p̃)d t̃
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Coordinates near td defined in (2.28) give us ∂ξ GdvolΦ(p̃)d t̃ = ξ−2τ−1(V G0)h0 dS dU dZ dτ ,

where h0(p̃) is a smooth function and G0 vanishes to infinite order whenever ‖(S ,U ,Z )‖ → ∞.

Integrating by parts the integral above under the assumption that V = ∂S (without loss of generality),

we obtain

I3 =|x− x′|
∫ t

0

∫
∂M

ξ
−2

τ
−1G0h0(p̃)u(p, t̃)dU dZ dτ

−|x− x′|
∫ t

0

∫
M

ξ
−2

τ
−1G0∂S (h0(p̃) ·u(p, t̃))dS dU dZ dτ

=I3,1− I3,2.

From the vanishing order of the heat kernel near ∂M, it follows that I3,1 = 0. On the other hand, it

follows that ∂S (h0(p̃) ·u(p, t̃)) = u(p, t̃)ξ 2τ∂x̃h0, which implies

|I3| ≤‖u‖′α |x− x′|
∫ t

0

∫
M

G0∂x̃h0 dS dU dZ dτ

≤C‖u‖′α
|x− x′|α

(x+ x′)2α
≤ C‖u‖′αdΦ(p, p′)α .

This completes the proof of (i).

3.2.2 Estimates for Hölder differences in time

Now, assume p = p′ and, without loss of generality, t < t ′. Suppose first that t and t ′ satisfy

2t ′− t > 0 (i.e., t ′ < t ≤ 2t ′). Hence, we can now define the intervals

T− = [0,2t ′− t], T+ = [2t ′− t, t] and T ′+ = [2t ′− t, t ′].

Once again, writing G =V ◦Hγ for V ∈ {id}∪Vφ ∪V 2
φ

, we get

Gu(p, t)−Gu(p, t ′) =|t− t ′|
∫

T−

∫
M

∂θ G(t− t̃, p, p̃)[u(p̃, t̃)−u(p, t̃)]dvolΦ(p̃)d t̃

+
∫

T+

∫
M

G(t− t̃, p, p̃)[u(p̃, t̃)−u(p, t̃)]dvolΦ(p̃)d t̃

−
∫

T ′+

∫
M

G(t ′− t̃, p, p̃)[u(p̃, t̃)−u(p, t̃)]dvolΦ(p̃)d t̃

+
∫ t

0

∫
M

G(t− t̃, p, p̃)u(p, t̃)dvolΦ(p̃)d t̃

−
∫ t ′

0

∫
M

G(t ′− t̃, p, p̃)u(p, t̃)dvolΦ(p̃)d t̃

=:L1 +L2−L3 +L4−L5

First, let us analyse the terms L4 and L5. Since the space-variable is constant at p and (M,gΦ) is

stochastically complete, it follows that

L4−L5 =
∫ t

0
u(p, t̃)d t̃−

∫ t ′

0
u(p, t̃)d t̃ ≤C‖u‖∞|t− t ′|α/2.
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Thus, for us to obtain the estimates, we just need to give estimates for L1,L2 and L3. However,

given the similarities between the terms L2 and L3, presenting the estimates for one of them gives us

the same for the other. In conclusion, we will be presenting the estimates for the terms L1 and L2.

Moreover, like the estimates presented for the spatial differences, computations for each term will be

presented only near the middle regimes of M2
h , given the fact that estimates near any other regime is

straightforward.

Estimate for L1

The projective coordinates near such intersection are (τ,x,y,z,S ,U ,Z ) presented in (2.28).

Hence, from the asymptotics of Hγ near the middle regimes follows that β ∗∂θ G∼ τ−m−4G0, with G0

being polyhomogeneous and vanishing to infinite order when ‖(S ,U ,Z )‖→∞. On the other hand,

we have β ∗(dvolΦ(p̃)d t̃)∼ τm+1 dS dU dZ dτ . Moreover, we already know that

dΦ(p, p̃)≤ cτ

√
|S |2 +‖U ‖2 +‖Z ‖2 =: cτr(S ,U ,Z ) (3.29)

where r is bounded whenever its entries are bounded. Thus, it follows that G0rα is bounded every-

where. On the other hand, note that whenever t̃ ∈ T−, one has |θ − t̃| ≥ |t− t ′|, from where follows

that

|L1| ≤ ‖u‖α |t− t ′|
∫

T−

∫
M

τ
−3G0dΦ(p, p̃)α dS dU dZ dτ

≤ c‖u‖α |t− t ′|
∫

∞

√
t−t ′

∫
M

τ
−3+αxαG0rα dS dU dZ dτ

≤C‖u‖α |t− t ′|α/2.

Estimate for L2

The estimate near this region of M2
h are obtained using the coordinates (τ,x,y,z,S ,U ,Z ) defined

in (2.28). With respect to this coordinates one has β ∗(G) ∼ τ−m−2G0, with G0 being polyhomoge-

neous and vanishing to infinite order whenever one has ‖(S ,U ,Z )‖→ ∞. On the other hand,

β
∗(dvolΦ(p̃)d t̃)∼ τ

m+1h0 dS dU dZ dτ, (3.30)

with h0 a smooth function of p̃. From this and from (3.29) follows that

|L2| ≤ ‖u‖α

∫
T+

∫
M
|τ−1G′0d(p, p̃)α |dσ dη dζ dτ

≤ c‖u‖α

∫
T+

∫
M
|τ−1+αG′0rα |dS dU dZ dτ

≤ c‖u‖α |t− t ′|α/2,

This completes the estimates for time difference with derivatives under the assumption that 2t ′−
t > 0. We will now assume 2t ′− t < 0. Note that, since t > t ′, we get

−3t +2t ′ ≤ 0≤ t−2t ′⇒ t ≤ 2|t− t ′|.
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Furthermore, since t ′ < t we conclude that t ′ ≤ 2|t− t ′| as well. One then has

Gu(p, t)−Gu(p, t ′) =
∫ t

0

∫
M

G(t− t̃, p, p̃)[u(p̃, t̃)−u(p, t̃)]dvolΦ(p̃)d t̃

−
∫ t ′

0

∫
M

G(t ′− t̃, p, p̃)[u(p̃, t̃)−u(p, t̃)]dvolΦ(p̃)d t̃

+
∫ t

0

∫
M
[G(t− t̃, p, p̃)−G(t ′− t̃, p, p̃)]u(p, t̃)dvolΦ(p̃)d t̃.

The first two integrals are estimated applying similar argument as for L2, presented in the previous

case, while the third one can be estimated by the same logic applied to L4.

Remark 3.12. With this estimate, we complete the estimates for time differences with derivatives

under the assumption t ′ < t. However, to obtain the estimates for the case t < t ′, one just need to

interchange the roles of t and t ′.

From there we conclude immediately the statement (ii).

3.2.3 Estimates for the supremum norm

Finally, we will present the computations for the estimates of the supremum norm of Gu. Like

the estimates for difference in both space and time, we will only present explicit computations for

estimates near fd∪ td. Estimates near the corners of M2
h follow directly. For a given point (p, t) ∈

M× [0,T ],

Gu(p, t) =
∫ t

0

∫
M

G(t− t̃, p, p̃)u(p̃, t̃)dvolΦ(p̃)d t̃

=
∫ t

0

∫
M

G(t− t̃, p, p̃)[u(p̃, t̃)−u(p, t̃)]dvolΦ(p̃)d t̃

+
∫ t

0

∫
M

G(t− t̃, p, p̃)u(p, t̃)dvolΦ(p̃)d t̃

= J1 + J2.

Estimate for J1

In this regime we will use the projective coordinates (x,y,z,S ,U ,Z ,τ) defined in (2.28). From

the argument employed for the estimate of L2, one knows that

β
∗(G(t− t̃, p, p̃)dvolΦ(p̃)d t̃)∼ τ

−1G0 dS dU dZ dτ (3.31)

with G0 being polyhomogeneous and vanishing to infinite order whenever ‖(S ,U ,Z )‖→∞. Thus,

by using (3.29) we get

|J1| ≤ ‖u‖α

∫ √t

0

∫
M

τ
−1G0dΦ(p, p̃)α dS dU dZ dτ

=C‖u‖α

∫ √t

0

∫
M

τ
−1+αG0rα dS dU dZ dτ

≤C‖u‖α .
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Estimate for J2

For the estimates for J2 near td, one can follow a very similar argumentation to the one presented

for L5. Hence, making use of integration by parts and of the vanishing property of the polyhomoge-

nous function present on the asymptotics of the heat kernel, one can obtain the desired estimates for

J2.

This completes the proof of the statement for k = 0. For general k, in all of the above integrals

we can first pass k Φ-derivatives to the function u using integration by parts in (S ,U ,Z ) and then

continue as before in case k = 0.

3.3 Short-time existence of the Yamabe flow

Consider a Φ-manifold (M,gΦ) of dimension m ≥ 3 and set η := (m− 2)/4. In this section we

construct a short-time solution to the Yamabe flow equation (3.2) of the conformal factor

∂tu = (m−1)u−1/η
∆Φu−η scal(gΦ)u1−1/η , u|t=0 = 1. (3.32)

We plan to linearize (3.32), which will provide us a slightly different version for us. This means that

the solution for (3.32) will be a translation by a constant of the solution for the linearized equation.

After this, we construct a solution as a fixed point of a contraction in xγCk,α
Φ

(M× [0,T ]), for some

γ ≥ 0 and some short-time T > 0. We assume below that k = 0, since the general case follows the

k = 0 case verbatim. We write u = 1+ v and obtain from (3.32) an equation for v

∂tv = (m−1)∆Φv(1+ v)−1/η −η scal(gΦ)(1+ v)1−1/η ; v|t=0 = 0. (3.33)

Remark 3.13. It is well known that the Binomial series convergence for all a ∈ C and |x| < 1 as

follows:

(1+ x)a =
∞

∑
j=0

a jx j, with a j :=
(

a
j

)
=

a(a−1) · · ·(a− j+1)
j!

. (3.34)

Now, assume v∈ xγC2,α
Φ

(M× [0,T ]), for γ ≥ 0, with ‖v‖2,α,γ ≤ µ for some µ < 1. Then the following

series converge in the Banach space C2,α
Φ

(M× [0,T ])

(1+ v)−1/η =
∞

∑
j=0

a jv j = 1− v
η
+

∞

∑
j=2

a jv j =: 1− v
η
+ v2s(v),

with ‖(1+ v)−1/η‖2,α ≤Cµ and ‖s(v)‖2,α ≤Cµ , for some Cµ > 0, depending only on µ .

Plugging the identity (1+ v)−1/η = 1− v/η + v2s(v) into (3.33) yields after rescaling the time

variable by (m−1) the following flow equation

(∂t−∆Φ)v =−
1
η

v∆Φv+ v2s(v)∆Φv− η

m−1
scal(gΦ)+

1
m−1

scal(gΦ)v

+
1

m−1
scal(gΦ)v2(1−ηs(v)−ηvs(v)).

(3.35)
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We will simplify the right hand side by introducing two non-linear operators, the first one containing

no derivatives of v

F1(v) :=− η

m−1
scal(gΦ)+

1
m−1

scal(gΦ)v

+
1

m−1
scal(gΦ)v2(1−ηs(v)−ηvs(v)).

The second one is in a certain sense quadratic in v and defined by

F2(v) :=− 1
η

v∆Φv+ v2s(v)∆Φv.

In this notation, (3.35) can be written as

(∂t−∆Φ)v = (F1 +F2)v; v|t=0 = 0. (3.36)

Our intention is to prove short-time existence of solution of (3.36) by using the contraction mapping

argument (i.e. the Banach fixed-point theorem). We point out that, even though we work on weighted

Hölder spaces xγCk,α
Φ

(M× [0,T ]), the proof does not rely on the definition of the distance function

chosen on its definition. This means that the proof fits alternative Hölder spaces as well (as we use it

in §4.4).

Theorem 3.14. Consider the Cauchy problem

(∂t−a∆)v = F(v), v|t=0 = 0, (3.37)

where the function a is positive, bounded from below away from zero in Ck,β
Φ

(M× [0,T ]), with β > α .

Suppose F : xγCk+2,α
Φ

(M× [0,T ])→ xγCk,α
Φ

(M× [0,T ]) decomposes as the sum F = F1 +F2 and

that, for µ < 1, there is a constant Cµ > 0 such that

1. F1 : xγCk+2,α
Φ

(M× [0,T ])→ xγCk+1,α
Φ

(M× [0,T ]) satisfies the estimates

‖F1(v)−F1(v′)‖k+1,α,γ ≤Cµ‖v− v′‖k+2,α,γ ,

‖F1(v)‖k+1,α,γ ≤Cµ ;

2. F2 : xγCk+2,α
Φ

(M× [0,T ])→ xγCk,α
Φ

(M× [0,T ]) satisfies the estimates

‖F2(v)−F2(v′)‖k,α,γ ≤Cµ max{‖v‖k+2,α,γ ,‖v′‖k+2,α,γ}‖v− v′‖k+2,α,γ ,

‖F2(v)‖k,α,γ ≤Cµ‖v‖2
k+2,α,γ ,

whenever v,v′ ∈ xγCk+2,α
Φ

(M× [0,T ]) satisfy ‖v‖k+2,α,γ ,‖v′‖k+2,α,γ ≤ µ .

Moreover, suppose that the parametrix Q for the differential operator (∂t−a∆Φ) maps

Q : xγCk,α
Φ

(M× [0,T ])→ xγ

(
Ck+2,α

Φ
∩
√

tCk+1
Φ

)
(M× [0,T ]) (3.38)

continuously. Then there are T ′ > 0 and a unique solution v∗ ∈ xγCk+2,α
Φ

(M× [0,T ′]) of (3.37).
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Proof. The proof for this statement follows from the Banach fixed-point theorem. For µ and T yet to

be specified, define

Zµ,T :=
{

v ∈ xγCk+2,α
Φ

(M× [0,T ]); v|t=0 = 0,‖v‖k,α,γ ≤ µ

}
.

Clearly this is a closed subset in xγCk+2,α
Φ

(M× [0,T ]) and therefore, since we are working on a Banach

space, Zµ,T is a complete metric space. Consider the map Ψ(v) := (Q◦F)(v). From our hypotheses,

it follows that Ψ maps xγCk,α
Φ

(M× [0,T ]) to itself. Therefore, in order to conclude what we desire,

we just need to check that the map Ψ is in fact a contraction when restricted to Zµ,T , therefore having

a unique fixed point v∗ (which is the solution for (3.3)). Now, since Q is a bounded linear map, then

one can write

Ψ(v) = (Q◦F)(v) = (Q◦F1)(v)+(Q◦F2)(v)

=: Ψ1(v)+Ψ2(v).

From this point on, denote ‖ ·‖op as the norm of an operator. For Ψ1, if one assume to have µ < 1 and

T < (2Cµ‖Q‖op)
−1µ , then for every v ∈ Zµ,T one has

‖Ψ1(v)‖k+2,α,γ ≤ ‖Q‖op
√

T‖F1(v)‖k+1,α,γ ≤ ‖Q‖op
√

TCµ‖v‖k+2,α,γ

≤ µ/2.

On the other hand, if we assume µ < min{(2Cµ‖Q‖op)
−1,1} then for every v ∈ Zµ,T follows

‖Ψ2(v)‖k+2,α,γ ≤ ‖Q‖op‖F2(v)‖k,α,γ ≤ ‖Q‖opCµ‖v‖2
k+2,α,γ

≤ µ/2,

from which is possible to conclude that for µ and T small enough one has ‖Ψ(v)‖k+2,α,γ ≤ µ , there-

fore implying that Ψ maps Zµ,T to itself. Moreover, note that in order to prove that Ψ is a contraction

on Zµ,T , is enough to show this for Ψ1 and Ψ2. But

‖Ψ1(v)−Ψ1(v′)‖k+2,α,γ ≤ ‖Q‖op
√

TCµ‖v− v′‖k+2,α,γ

≤ 1
2
‖v− v′‖k+2,α,γ

for both µ and T small enough; furthermore,

‖Ψ2(v)−Ψ2(v′)‖k+2,α,γ ≤ ‖Q‖opCµ max{‖v‖k+2,α,γ ,‖v′‖k+2,α,γ}‖v− v′‖k+2,α,γ

≤ 1
2
‖v− v′‖k+2,α,γ ,

from where follows that Ψ is, in fact, a contraction on Zµ,T , from where we can conclude our proof.

Theorem 3.14 gives us some conditions on the operators F1 and F2 for the contraction argument

to hold. To this end, we prove the following technical lemmas.
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Lemma 3.15. Denote by B the open ball of radius 1 in xγC2,α
Φ

(M× [0,T ]). Then the map F2 : B→
xγCα

Φ
(M× [0,T ]) is bounded. Moreover, for any two functions v,v′ ∈B⊂ xγC2,α

Φ
(M× [0,T ]) satisfying

‖v‖2,α,γ ,‖v′‖2,α,γ ≤ µ < 1,

there exists a constant Cµ > 0 such that

1. ‖F2(v)−F2(v′)‖α ≤Cµ max{‖v‖2,α,γ ,‖v′‖2,α,γ}‖v− v′‖2,α,γ ,

2. ‖F2(v)‖α,γ ≤Cµ‖v‖2
2,α,γ .

Proof. We shall write ∆ = ∆Φ for simplicity of notation. First, let v ∈ B with ‖v‖2,α,γ ≤ µ < 1.

Then, by the definition of xγC2,α
Φ

(M× [0,T ]) and the fact that ∆ ∈ Diff2
Φ(M), it follows that ∆v ∈

xγCα
Φ
(M× [0,T ]). We can thus estimate

‖F2(v)‖α,γ ≤ Cµ

(
‖v∆v‖α,γ +‖v2s(v)∆v‖α,γ

)
≤ Cµ

(
‖v‖α,γ‖∆v‖α,γ +‖v2s(v)‖α,γ‖∆v‖α,γ

)
≤ Cµ‖v‖2

2,α,γ ,

for some Cµ > 0 depending only on µ and possibly changing in each estimation step. This proves the

second item and in particular boundedness of F2 : B→ xγCα
Φ
(M× [0,T ]). For the first item we write

for any v,v′ ∈ B

v2s(v)− (v′)2s(v′) =: (v− v′)O1(v,v′), (3.39)

where O1(v,v′) is a polynomial combination in v and v′. Equation (3.39) implies

F2(v)−F2(v′) =−
1
η

(
∆v(v− v′)+ v′∆(v− v′)

)
+O1(v,v′)

(
(v− v′)∆v+ v′∆(v− v′)

)
,

which then implies

‖F2(v)−F2(v′)‖α,γ ≤Cµ

(
‖∆v‖α,γ‖v− v′‖α,γ +‖v′‖α,γ‖∆(v− v′)‖α,γ

+ ‖∆v‖α,γ‖v− v′‖α,γ +‖v′‖α,γ‖v− v′‖2,α,γ

)
≤Cµ max{‖v‖2,α,γ ,‖v′‖2,α,γ}‖v− v′‖2,α,γ .

Lemma 3.16. Assume that scal(gΦ)∈ xγC1,α
Φ

(M). Denote by B the open ball of radius 1 in xγC2,α
Φ

(M×
[0,T ]). Then F1 maps B into xγC1,α

Φ
(M× [0,T ]). Furthermore, if v,v′ ∈ B with ‖v‖2,α,γ , ‖v′‖2,α,γ ≤

µ < 1, there exists a constant Cµ such that

1. ‖F1(v)−F1(v′)‖1,α,γ ≤Cµ‖v− v′‖2,α,γ ,

2. ‖F1(v)‖1,α,γ ≤Cµ .
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Proof. First, consider v ∈ B ⊂ xγC2,α
Φ

(M× [0,T ]). Since by assumption scal(gΦ) ∈ xγC1,α
Φ

(M), we

find

scal(gΦ)v2(1−ηs(v)−ηvs(v)) ∈C1,α
Φ

(M× [0,T ]).

Now, assume ‖v‖2,α,γ ≤ µ < 1. We can now estimate

‖F1(v)‖1,α,γ ≤Cµ‖scal(gΦ)‖1,α,γ

(
1+‖v‖2,α,γ +‖v2‖2,α,γ

)
≤Cµ ,

for some Cµ > 0 depending only on µ and possibly changing in each estimation step. This completes

the proof for the second item. In particular, F1 indeed maps B into xγC1,α
Φ

(M× [0,T ]). For the first

item we have for any v,v′ ∈ B with ‖v‖2,α,γ ,‖v′‖2,α,γ ≤ µ < 1

‖F1(v)−F1(v′)‖1,α ≤Cµ‖scal(gΦ)‖1,α,γ‖v− v′‖2,α,γ

+Cµ‖scal(gΦ)‖1,α,γ‖v2− (v′)2‖2,α,γ

+Cµ‖scal(gΦ)‖1,α,γ‖v2s(v)− (v′)2s(v′)‖2,α,γ

+Cµ‖scal(gΦ)‖1,α,γ‖v3s(v)− (v′)3s(v′)‖2,α,γ

≤Cµ‖v− v′‖2,α,γ ,

where in the final estimate we use (3.39) and its analogue for v3s(v). This concludes the first item

and, naturally, finishes the proof.

Now, exactly the same argument as in Theorem 3.14 (with a = 1) implies directly, that for

scal(gΦ) ∈ xγC1,α
Φ

(M) with γ ≥ 0, the map H ? ◦(F1 +F2) is a contraction on a closed ball Bµ ⊂
xγC2,α

Φ
(M× [0,T ]) of radius µ > 0, provided µ,T > 0 are sufficiently small. Thus the flow (3.36)

admits a solution v ∈ Bµ as a fixed point of that contraction. Setting u = 1+ v, we obtain a short-

time solution for the Yamabe flow (3.32) and thus to (2). The same argument yields a solution in

Ck+2,α
Φ

(M× [0,T ]) for a general k ∈ N0, provided scal(gΦ) ∈ xγCk+1,α
Φ

(M) for some γ ≥ 0.

Theorem 3.17. Consider a Φ-manifold (M,gΦ) of dimension m≥ 3. Assume scal(gΦ)∈ xγCk+1,α
Φ

(M)

for some α ∈ (0,1), some γ ≥ 0 and any k ∈ N0. Then the Yamabe flow (2) admits a unique solution

g = u4/(m−2)gΦ, where u ∈Ck+2,α
Φ

(M× [0,T ]), for some T > 0 sufficiently small.

This proves Theorem 0.2.

3.4 Uniqueness of solutions

Proposition 3.18. Consider the Yamabe flow equation as in (3.2)

∂tu = (m−1)u−1/η
∆Φu−η scal(gΦ)u1−1/η , u|t=0 = u0, (3.40)

for some positive initial data u0 ∈C2,α
Φ

(M). For such a Cauchy problem, a solution in C2,α
Φ

(M× [0,T ])
which is positive and bounded from below away from zero is unique for any given 0 < T < ∞.
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Proof. Suppose u and v are two solutions in C2,α
Φ

(M× [0,T ]) for (3.40). Consider ω = u− v ∈
C2,α

Φ
(M× [0,T ]). Since u|t=0 = v|t=0 = u0, we find ω|t=0 = 0. Moreover, we infer from (3.40)

u1/η
∂tu− v1/η

∂tv = (m−1)∆Φω−η scal(gΦ)ω.

From the definition of ω , we have

∂tω =u−1/η

(
u1/η

∂tu− v1/η
∂tv+(v1/η −u1/η)∂tv

)
=u−1/η

(
(m−1)∆Φω−η scal(gΦ)ω +(v1/η −u1/η)∂tv

)
=−

(
η scal(gΦ)u−1/η +

∂tv
η

∫ 1

0
(sv+(1− s)u)1/η−1 ds

)
ω

+(m−1)u−1/η
∆Φω,

where the last equality follows from Taylor’s Theorem applied for the function f (s) := (sv+(1−
s)u)1/η . This means that ω is a solution of the equation

∂tω = a∆Φω +bω,

with a ∈C2,α
Φ

(M× [0,T ]) positive and b ∈Cα
Φ
(M× [0,T ]). Since nothing can be said about the sign

of the b-term above, we consider any negative constant c < −‖b‖∞ and apply an integration factor

trick by writing ω ′ = ectω . We obtain an equation for z

∂tω
′ = a∆Φω

′+(b+ c)ω ′,

with ω ′|t=0 = ω|t=0 = 0. Now, since c <−‖b‖∞, we have (b+c)< 0. From Corollary 2.8, it follows

that ω ′ ≡ 0 and, consequently, ω ≡ 0.

3.5 Curvature-normalized Yamabe flow

Consider the increasing curvature normalized Yamabe flow CYF+

∂tg = (scal(g)sup− scal(g))g, where scal(g(t))sup := sup
M

scal(g(t)).

introduced by Suárez-Serrato and Tapie [SST12] to study entropy rigidity on the Yamabe flow in the

compact setting. We are interested in the non-compact setting of a Φ-manifold (M,gΦ), which is why

the usual normalization by (3) does not work and we resort to the CYF+ normalization. We can study

the decreasing curvature normalized Yamabe flow CYF− with scal(g)sup replaced by scal(g)inf along

the same lines.

Short time existence of CYF+ (as well as CYF−) follows by a simple time rescaling. Indeed, let

g(t) = u(t)1/ηgΦ be family of Riemannian metrics satisfying the (unnormalized) Yamabe flow (2)
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with u ∈C2,α
Φ

(M× [0,T ]). Consider the functions

f (t) = exp
(∫ t

0
η scal(g(θ))sup dθ

)
,

F(t) =
∫ t

0
f (θ)1/η dθ − f (0)1/η .

(3.41)

Note that f is positive and F is a primitive for f satisfying F(0) = 0. Moreover, since dF/dt > 0, it

follows that F−1 is well-defined. Thus, we can define a 1-parameter family of Riemannian metrics by

g̃(τ) := ũ(τ)1/ηgΦ, where ũ(τ) := ( f u)(F−1(τ)). (3.42)

One can easily check from u ∈C2,α
Φ

(M× [0,T ]) that ũ ∈C2,α
Φ

(M× [0, T̃ ]) with T̃ = maxF .

Claim: The 1-parameter family of Riemannian metrics {g̃(τ) := ũ(τ)1/ηgΦ}τ defined above sat-

isfies the following normalized Yamabe flow:

∂τ g̃ =
(

scal(g̃)sup− scal(g̃)
)

g̃, g̃(0) = gΦ. (3.43)

In fact, first note that ũ(0) = 1, which already proves the claim on the initial condition. Now, compu-

tations gives us the following:

∂τ g̃(τ) =
1
η

ũ(τ)1/η−1
∂τ ũ(τ)gΦ

=
1
η

ũ(τ)1/η−1
[
(∂t f ·u+ f ·∂tu)(F−1(τ)) · d

dτ
F−1(τ)

]
gΦ

=
1
η

ũ(τ)1/η−1
[(

∂t f
f
−η scal(g)

)
(F−1(τ)) · d

dτ
F−1(τ)

]
( f u)(F−1(τ))gΦ

=
1
η

[(
∂t f

f
−η scal(g)

)
(F−1(τ)) · d

dτ
F−1(τ)

]
ũ(τ)1/ηgΦ.

On the other hand, it follows from the Inverse Function Theorem that dF−1/dτ = f−1/η . Moreover,

log f (t) =
∫ t

0
η scal(g(θ))sup dθ =⇒ ∂t f

f
(t) = η scal(g(t))sup.

Finally, after recalling that the scalar curvature transforms under conformal change as in Proposition

1.3, plugging these identities into the above computations gives us

∂τ g̃(τ) =
(

scal(g̃(τ))sup− scal(g̃(τ))
)

g̃(τ).

It is also possible to invert the process and obtain a solution of the standard Yamabe flow from a

solution to CYF+, proving said relation. This proves the following corollary of Theorem 0.2.

Corollary 3.19. Let (M,gΦ) be a m-dimensional Φ-manifold. Assume scal(gΦ) ∈ xγCk+1,α
Φ

(M) for

some α ∈ (0,1), some γ ≥ 0 and some k ∈N0. Then both CYF+ and CYF− admit a unique short-time

solution g = u4/(m−2)gΦ, where u ∈Ck+2,α
Φ

(M× [0,T ]), for some T > 0 sufficiently small.
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3.5.1 Some differential inequalities for solutions to CYF+

First, we point out that all functions in C2,α
Φ

(M× [0,T ]) satisfy the conditions required in Proposi-

tion 2.6. As a direct consequence, we also obtain differential inequalities for solutions to the increas-

ing curvature normalized Yamabe flow CYF+. These will be central later in the derivation of a priori

estimates.

Proposition 3.20. Let u∈C2,α
Φ

(M× [0,T ]) be a positive (uniformly bounded away from zero) solution

to the increasing curvature normalized Yamabe flow CYF+ in (3.4). Then almost everywhere in (0,T )

∂

∂ t
usup ≤ η sup

M
scal(g(t)) ·usup +η sup

M
|scal(gΦ)| ·u

1−1/η
sup ,

∂

∂ t
uinf ≥ η sup

M
scal(g(t)) ·uinf +η inf

M
|scal(gΦ)| ·u

1−1/η

inf .

(3.44)

Proof. First, let us recall the expression for CYF+ (which is satisfied by u by hypothesis):

∂tu(t) = (m−1)u(t)−1/η
∆u(t)η

(
sup
M

scal(g(t)) ·u(t)− scal(g)u(t)1−1/η

)
We know, from (2.14), that if {pk(t)}k is the Omori-Yau sequence for the supremum of u at time t,

we obtain

∂

∂ t
u
(

pk(t), t
)
≤ (m−1)

k
·u−1/η

(
pk(t), t

)
+η sup

M
scal(g(t)) ·u

(
pk(t), t

)
− η scal(gΦ)

(
pk(t)

)
·u
(

pk(t), t
)1−1/η

≤ (m−1)
k
·u−1/η

(
pk(t), t

)
+η sup

M
scal(g(t)) ·u

(
pk(t), t

)
+ η sup

M
|scal(gΦ)|

(
pk(t)

)
·u
(

pk(t), t
)1−1/η

,

(3.45)

where the second inequality follows from η > 0, since m ≥ 3. Since u is positive and uniformly

bounded away from zero, we conclude

limsup
k→∞

∂u
∂ t

(
pk(t), t

)
≤ η sup

M
scal(g(t)) ·usup(t)

+η sup
M
|scal(gΦ)| ·usup(t)1−1/η .

(3.46)

On the other hand, we know from the first statement of Proposition 2.6 that

∂

∂ t
usup(t)≤ lim

ε→0+

(
limsup

k→∞

∂u
∂ t

(pk(t + ε), t + ε)

)
≤ lim

ε→0+

(
η sup

M
scal(g(t + ε)) ·usup(t + ε)+η sup

M
|scal(gΦ)| ·usup(t + ε)1−1/η

)
.

Finally, since u|t0+ε converges uniformly u|t0 as ε → 0+ at any t0 ∈ [0,T ], it follows that usup(t + ε)

converges to usup(t) as ε→ 0+ and thus, the first statement follows. The second statement follows by

(2.15) along the same lines.
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3.6 Evolution of the scalar curvature along CYF+

Note that the increasing curvature normalized Yamabe flow (5) can be rewritten as (recall scal(g)sup

denotes the supremum of scal(g))

1
η

∂tu =
(

scal(g)sup− scal(g)
)

u. (3.47)

From here we conclude immediately

1
η

∂t(u−1
∆Φu) =− 1

η
u−2

∂tu ·∆Φu+
1
η

u−1
∆Φ(∂tu)

=−u−1(scal(g)sup− scal(g)
)
·∆Φu+u−1

∆Φ

((
scal(g)sup− scal(g)

)
u
)

= u−1
(

scal(g) ·∆Φu−∆Φ

(
scal(g)u

))
.

(3.48)

Moreover, from Lemma 1.3 we obtain

u−1
∆Φ(scal(g)u) =u−1 scal(g)∆Φu+∆Φ scal(g)+2u−1gΦ(∇u,∇scal(g))

=u−1 scal(g)∆Φu+u1/η
∆g scal(g),

where ∆g is the Laplace Beltrami operator of the conformally transformed metric g = u1/η ·gΦ. Com-

bined with (3.48) this gives
1
η

∂t(u−1
∆Φu) =−u1/η

∆g scal(g). (3.49)

On the other hand, from (5) is also straightforward that

∂tu−1/η = u−1/η(scal(g)− scal(g)sup). (3.50)

Finally, combining (3.48) and (3.50) with the transformation formula for the scalar curvature in Propo-

sition 1.3,

scal(g(t)) = scal(u1/ηgΦ) =−u−1/η

[
m−1

η
u−1

∆Φu− scal(gΦ)

]
. (3.51)

provides us the expression

∂t scal(g) = (m−1)∆g scal(g)+ scal(g)(scal(g)− scal(g)sup). (3.52)

Based on (3.52), we can now prove the following:

Lemma 3.21. Suppose scal(gΦ) ∈C4,α
Φ

(M) is negative and bounded away from zero1, that is, there

are constants a1,a2 > 0 such that

−∞ <−a1 ≤ scal(gΦ)≤−a2 < 0. (3.53)

Then along CYF+ with positive solution u∈C4,α
Φ

(M×[0,T ]), supremum of the the scalar scal(g(t))sup =

sup
M

scal(g(t)) is non-increasing.

1In fact, boundedness away from zero for the scalar curvature will only become important in the next section, but we
list it here as a condition for consistency.
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Proof. By Corollary 3.19, CYF+ exists for short time in C4,α
Φ

(M× [0,T ]). From the transformation

rule of the scalar curvature (3.51), it follows that scal(g) ∈C2,α
Φ

(M× [0,T ]). Now, from Proposition

2.6 it follows that scal(g)sup is differentiable in time for almost all t ∈ [0,T ]. Applying the inequality

(2.14) to scal(g) allows us to conclude that ∆g scal(g)sup ≤ 0. Plugging this inequality into (3.52), it

follows that we have, for almost all t ∈ [0,T ],

∂t scal(g(t))sup ≤ scal(g(t))sup(scal(g(t))sup− scal(g(t))sup) = 0. (3.54)

This implies directly that scal(g)sup is non-increasing along CYF+.

Knowing that the supremum of the scalar curvature is non-increasing in time, the next result shows

that the scalar curvature approaches its supremum at an exponential rate.

Lemma 3.22. Suppose scal(gΦ) ∈C4,α
Φ

(M) is negative, bounded away from zero as in Lemma 3.21.

Then along CYF+ with positive solution u ∈C4,α
Φ

(M× [0,T ]), we have the estimate

‖scal(g(t))inf− scal(g(t))sup‖∞ ≤Cescal(gΦ)sup·t ,

with C > 0 a constant independent of T , where scal(g(t))inf := infM scal(g(t)).

Proof. Applying the arguments of §2.3 to scal(g), we conclude from (3.52) by Proposition 2.6, similar

to Corollary 3.20, for almost all t ∈ [0,T ]

∂t scal(g)inf ≥ scal(g)inf(scal(g)inf− scal(g)sup). (3.55)

From here it follows that scal(g)inf is non-decreasing along the CYF+. Combining (3.55) with (3.54),

we find

∂t(scal(g)sup− scal(g)inf)≤−scal(g)inf(scal(g)inf− scal(g)sup)

= scal(g)inf(scal(g)sup− scal(g)inf)

≤ scal(gΦ)sup(scal(g)sup− scal(g)inf).

Integrating both sides of the last inequality gives

(scal(g)sup− scal(g)inf)(t)≤Cescal(gΦ)supt , (3.56)

where C depends only on the initial data. This means that the difference between the supremum and

the infimum of the scalar curvature decreases exponentially along the flow. Consequently, the scalar

curvature approaches scal(g)sup at an exponential rate too, therefore implying the desired outcome.



60 Chapter 3. Yamabe flow on Φ-manifolds

3.7 Uniform estimates along CYF+

We start immediately with the central result of the section. If we assume scal(gΦ) ∈C4,α
Φ

(M), then

the solution u ∈ C4,α
Φ

(M× [0,T ′]) of CYF+ exists by Corollary 3.19 for T ′ > 0 sufficiently small.

Assume u in fact lies in C4,α
Φ

(M× [0,T )), for a maximal time T ≥ T ′. Then even in the maximal time

interval [0,T ) we obtain T -independent a priori estimates.

Theorem 3.23. Assume scal(gΦ) ∈C4,α
Φ

(M) is negative and bounded away from zero as in Lemma

3.22. Let u ∈ C4,α
Φ

(M× [0,T )) be the solution of CYF+ extended to a maximal time interval [0,T ).

Then there exist constants c1,c2 > 0, depending on u(0),sup |scal(gΦ)| and inf |scal(gΦ)|, and inde-

pendent of T , such that

0 < c1 ≤ u(p, t)≤ c2, for all (p, t) ∈M× [0,T ).

Proof. First, we consider the flow for a short time intervall [0,T ′], where u is guaranteed to be positive.

The estimates below will show that u stay positive, bounded away from zero uniformly on [0,T ′]

and thus all of the arguments hold on the maximal intervall [0,T ). By the differential inequalities in

Proposition 3.20 we have (a priori almost everywhere on [0,T ′], however as just explained a posteriori

almost everywhere on the full time interval)

∂

∂ t
uinf ≥ η sup

M
scal(g(t)) ·uinf +η inf

M
|scal(gΦ)| ·u

1−1/η

inf ,

∂

∂ t
usup ≤ η sup

M
scal(g(t)) ·usup +η sup

M
|scal(gΦ)| ·u

1−1/η
sup .

(3.57)

Multipyling both sides of the first intequality by 1
η

u1/η−1
inf , and of the second inequality by 1

η
u1/η−1

sup ,

we obtain

∂

∂ t
u1/η

inf ≥ sup
M

scal(g(t)) ·u1/η

inf + inf
M
|scal(gΦ)|,

∂

∂ t
u1/η

sup ≤ sup
M

scal(g(t)) ·u1/η
sup + sup

M
|scal(gΦ)|.

(3.58)

Write ω1 := u1/η

inf and ω2 := u1/η
sup . We obtain from (3.58)

∂

∂ t
ω1 ≥ inf

M
scal(gΦ) ·ω1 + inf

M
|scal(gΦ)|=: bω1 +a,

∂

∂ t
ω2 ≤ sup

M
scal(gΦ) ·ω2 + sup

M
|scal(gΦ)|=: Bω2 +A,

(3.59)

where in the first inequality we used the fact that by (3.55) scal(g)inf is non-decreasing in time, while

the second inequality from Lemma 3.21, since scal(g)sup is non-increasing in time.

The first inequality is equivalent to (e−btω1)
′ ≥ ae−bt . Hence, integration on both sides over [0, t]

gives the following estimate

ω1(t)≥ ebt
ω1(0)+

a
b
(ebt−1)
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⇐⇒ u1/η

inf (t)≥ u1/η

inf (0)einfM scal(gΦ)·t +
infM |scal(gΦ)|
infM scal(gΦ)

(einfM scal(gΦ)·t−1)

⇐⇒ u1/η

inf (t)≥ u1/η

inf (0)einfM scal(gΦ)·t +
infM |scal(gΦ)|
supM |scal(gΦ)|

(1− einfM scal(gΦ)·t)

Hence, by setting the right-hand side as a function f (t), it follows that u1/η

inf (t)≥ f (t), with

f (t) := c · ed·t + c′(1− ed·t), with c = u1/η

inf (0), c′ =
infM |scal(gΦ)|
supM |scal(gΦ)|

and d = scal(gΦ)inf.

Direct computations show that f ′(t) = (c− c′)d · ed·t 6= 0 for all t, as long as c 6= c′. Hence, if c 6= c′,

it follows that either f ′(t) < 0 or f ′(t) > 0, which means that f (t) is a monotonous function in t.

Therefore,

u1/η

inf (t)≥ f (t)≥min
{

u1/η

inf (0),
infM |scal(gΦ)|
supM |scal(gΦ)|

}
> 0.

This yields a priori positive lower bound for u. On the other hand, if c = c′, then it follows straight-

forwardly that u1/η

inf (0) is a priori lower bound for u1/η

inf (t). Now, let us turn our attention to the second

equation in (3.59). This inequality is equivalent (eBtω2)
′ ≤ Ae−Bt , which after integrating over [0, t]

implies

ω2(t)≤ ω2(0)eBt− A
B
(1− eBt)≤ ω2(0)

A
B
(1− eBt)

⇐⇒ u1/η
sup (t)≤ u1/η

sup (0)+
supM |scal(gΦ)|
infM |scal(gΦ)|

(1− esupM scal(gΦ)·t).

Proceeding along the lines of the estimate for u1/η

inf (t), consider the right-hand side as a function F(t),

where

F(t) :=C+C′(1− eD·t), with C = u1/η
sup (0), C′ =

supM |scal(gΦ)|
infM |scal(gΦ)|

and D = scal(gΦ)sup.

Note that F ′(t) = −C′D · eD·t > 0 for all t, since C′ > 0 and D < 0. This means F(t) increases in t

and, therefore,

u1/η
sup (t)≤ F(t)≤ lim

t→+∞
F(t) = u1/η

sup (0)+
supM |scal(gΦ)|
infM |scal(gΦ)|

<+∞,

concluding the proof.

Proposition 3.24. Assume scal(gΦ) ∈C4,α
Φ

(M) is negative and bounded away from zero as in Lemma

3.22. Let u ∈ C4,α
Φ

(M× [0,T )) be the solution of CYF+ extended to a maximal time interval [0,T ).

Then there exists a constant C > 0, depending on u(0),sup |scal(gΦ)| and inf |scal(gΦ)|, and inde-

pendent of T , such that

‖∂tu‖∞ ≤CesupM scal(gΦ)·t . (3.60)

Proof. The CYF+ flow (5) can be rewritten as (cf. (3.47))

1
η

∂tu =
(
scal(g)sup− scal(g)

)
u. (3.61)
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Then, employing Lemma 3.22 and Theorem 3.23, it follows directly that

‖∂tu‖∞ ≤ |η |‖scal(g)sup− scal(g)‖∞‖u‖∞

≤CesupM scal(gΦ)·t .

3.8 Parabolic Schauder estimates on Φ-manifolds

Consider for any fixed δ > 0 a countable family of points {pi} ∈M, such that the δ -balls Bδ (pi)

around these points (with distance measured with respect to gΦ) cover M. Let δ > 0 be sufficiently

small, such that the δ -balls stay inside local coordinate neighborhoods. Obviously we are interested

only in those pi = (xi,yi,zi)∈U in the collar neighborhood of the boundary ∂M. Writing Bδ (0)∈Rm

for an open ball of radius δ around the origin, we define

Ψi :Bδ (0)× [0,δ 2] =: Qδ → Bδ (pi)× [0,δ 2],

(S ,U ,Z , t) 7→
(

x := xi + x2
i S ,y := yi + xiU ,z := zi +Z , t

)
.

(3.62)

Away from the collar U of the boundary, we may define Ψi as usual local coordinate parametrizations.

Clearly, the choice of Ψi and the notation (S ,U ,Z ) is motivated by the projective coordinates

(2.27). We compute the action of Φ-derivatives under the pullback by the transformation Ψi:

Ψ
∗
i
(
∂xu
)
(S ,U ,Z , t) = ∂S

(
u◦Ψi

)
(S ,U ,Z , t)

= ∂xu(Ψi(S ,U ,Z , t)) ·∂S Ψi(S ,U ,Z , t)

= x2
i ∂xu(Ψi(S ,U ,Z , t)).

From this it follows that

(1+ xiS )2
∂S Ψ

∗
i u(S ,U ,Z , t) = x2

∂xu(Ψi(S ,U ,Z , t))

= Ψ
∗
i
(
x2

∂xu
)
(S ,U ,Z , t).

(3.63)

Analogously, straightforward computations give us

Ψ
∗
i
(
x∂yu

)
(S ,U ,Z , t) = (1+ xiS )∂U Ψ

∗
i u(S ,U ,Z , t),

Ψ
∗
i
(
∂zu
)
(S ,U ,Z , t) = ∂ZΨ

∗
i u(S ,U ,Z , t).

(3.64)

On the other hand, one can see explicitly by an easy computation that

∆Φ|U = x4
∂

2
x + x2

∆B +∆F +(first order derivatives). (3.65)

Hence we obtain for the heat equation

Ψ
∗
i

(
(∂t−∆Φ)u

)
=
(

∂t− ∆̃Φ

)
Ψ
∗
i u, (3.66)

where ∆̃Φ = ∂ 2
S + ∂ 2

U + ∂ 2
Z plus first order derivatives in (S ,U ,Z ), up to coefficients that are

bounded in Qδ , uniformly in i. Moreover we observe the following:



3.8. Parabolic Schauder estimates on Φ-manifolds 63

Lemma 3.25. Consider the classical Hölder space Ck,α(Qδ ) with Hölder norm denoted by ‖·‖k,α,Qδ
.

Then the Hölder norm ‖ · ‖k,α on Ck,α
Φ

(M× [0,δ 2]) defined in terms of (3.8), is equivalent to

sup
i
‖Ψ∗i u‖k,α,Qδ

.

Proof. The statement follows from (3.63), (3.64) and the fact that, taking the local expression of dΦ in

Definition 3.1, we find in the collar U (we denote the transformation (3.62) without the time variable,

again by Ψi)

dΦ

(
Ψi(S ,U ,Z ),Ψi(S

′,U ′,Z ′)
)
∼ ‖
(
S −S ′,U −U ′,Z −Z ′)‖. (3.67)

In fact, let us prove this. First, one must understand why (3.67) is enough. The following explanation

assumes k = 0; the general case can be proven analogously. Note that if u ∈Cα
Φ
(M× [0,δ 2]), we have

|Ψ∗i u(S ,U ,Z , t)−Ψ
∗
i u(S ′,U ′,Z ′, t ′)| ≤ |u(Ψi(S ,U ,Z , t))−u(Ψi(S

′,U ′,Z ′, t))|

+ |u(Ψi(S
′,U ′,Z ′, t))−u(Ψi(S

′,U ′,Z ′, t ′))|.

Estimates for the second of the two terms above follows directly from the fact that u∈Cα
Φ
(M× [0,δ 2]).

On the other hand, the first can by estimate as

|u(Ψi(S ,U ,Z , t))−u(Ψi(S
′,U ′,Z ′, t))| ≤ ‖u‖αdΦ

(
Ψi(S ,U ,Z ),Ψi(S

′,U ′,Z ′)
)α

,

proving our initial claim. Thus, let us know prove (3.67). We have the following:

dΦ

(
Ψi(S ,U ,Z ),Ψi(S

′,U ′,Z ′)
)2

=
|x2

i (S −S ′)|2

x4
i (2+ xi(S +S ′))4

+
‖xi(U −U ′)‖2

x2
i (2+ xi(S +S ′))2

+‖Z −Z ′‖2

= (2+ xi(S +S ′))−4|S −S ′|2

+(2+ xi(S +S ′))−2‖U −U ′‖2

+‖Z −Z ′‖2.

Now, remember that we are working on a δ -neighborhood of the origin and xi is sufficiently small,

implying (2+xi(S +S ′)) to be bounded both from above and below away from zero. From this we

can conclude (3.67). From this it follows that Ψ∗i u ∈Cα(Qδ ). The converse follows analogously.

Now we are ready to convert the a priori estimates in Theorem 3.23 into uniform Hölder regu-

larity on [0,T ], where [0,T ) is the maximal time intervall, where the CYF+ flow solution u exists in

C4,α
Φ

(M× [0,T )). We use the classical Krylov-Safonov estimates, see [KS80] and the exposition in

[Pic19, Theorem 12].
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Proposition 3.26. Assume scal(gΦ) ∈ C4,α
Φ

(M) is negative and bounded away from zero. Let u ∈
C4,α

Φ
(M× [0,T )) to be the solution of CYF+ extended to a maximal time interval [0,T ). Then u ∈

Cα
Φ
(M× [0,T ]) with T -independent Hölder norm.

Proof. Consider the CYF+ flow equation in (3.4)

∂tu(t)− (m−1)u(t)−1/η
∆Φu(t) = η

(
sup
M

scal(g(t)) ·u(t)− scal(gΦ)u(t)1−1/η

)
=: `.

Pulling back under Ψi we obtain with a := (m−1)Ψ∗i u−1/η(
∂t−a · ∆̃Φ

)
Ψ
∗
i u = Ψ

∗
i `. (3.68)

From Theorem 3.23 we infer that Ψ∗i ` and u,u−1 (and hence also a,a−1) are bounded in Qδ , uniformly

in i, since u is bounded from below away from zero. Thus by the Krylov-Safonov estimate, see [KS80]

and cf. [Pic19, Theorem 12], we find for some uniform constant C > 0, depending only on δ ,‖u‖∞

and ‖u−1‖∞

‖Ψ∗i u‖α,Qδ
≤C

(
‖Ψ∗i u‖∞,Qδ

+‖Ψ∗i `‖∞,Qδ

)
≤C

(
‖u‖∞ +‖`‖∞

)
.

Thus Ψ∗i u ∈ Cα(Qδ ). By Lemma 3.25 we conclude u ∈ Cα
Φ
(M× [0,δ 2]). We extend the regularity

statement to the whole time interval [0,T ] (with constants independent of T ) iteratively, by setting

t = δ 2 + t ′ and obtaining by the argument above u ∈Cα
Φ
(M× [δ 2,2δ 2]), and repeating the iteration,

until we reach T .

This first gain in Hölder regularity can now be converted into higher oder regularity by standard

parabolic Schauder estimates, see [Kry96] and the exposition in [Pic19, Theorem 6].

Proposition 3.27. Assume scal(gΦ) ∈ C4,α
Φ

(M) is negative and bounded away from zero. Let u ∈
C4,α

Φ
(M× [0,T )) to be the solution of CYF+ extended to a maximal time interval [0,T ). Then u ∈

C4,α
Φ

(M× [0,T ]) with T -independent Hölder norm.

Proof. Consider (3.68). Standard parabolic Schauder estimates, see [Kry96] and cf. [Pic19, Theorem

6], assert that for any a ∈Ck,α(Qδ ) positive, uniformly bounded from below away from zero, and for

any Ψ∗i u ∈Ck,α(Qδ ), a uniformly bounded solution Ψ∗i u satisfies

‖Ψ∗i u‖k+2,α,Qδ
≤C

(
‖Ψ∗i u‖∞,Qδ

+‖Ψ∗i `‖k,α,Qδ

)
≤C

(
‖u‖∞ +‖`‖k,α

)
. (3.69)

By Lemma 3.26, a = (m− 1)Ψ∗i u−1/η ∈ Cα(Qδ ) and Ψ∗i ` ∈ Cα(Qδ ) uniformly in i. Thus we may

apply (3.69) with k = 0 and conclude that Ψ∗i u ∈ C2,α(Qδ ), uniformly in i. By Lemma 3.25 we

conclude u ∈ C2,α
Φ

(M× [0,δ 2]). As before, we may extend the regularity statement to the whole

time interval [0,T ] (with constants independent of T ) by setting t = δ 2 + t ′, concluding u ∈Cα
Φ
(M×

[δ 2,2δ 2]), and repeating the iteration, until we reach T .
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Since scal(gΦ) ∈ C4,α
Φ

(M), this implies that a ∈ C2,α(Qδ ) and Ψ∗i ` ∈ C2,α(Qδ ) uniformly in i.

Applying now (3.69) with k = 2, we conclude exactly as above u ∈ C4,α
Φ

(M× [0,T ]). In fact, in

case scal(gΦ) ∈Ck,α
Φ

(M), we can iterate the arguments until u ∈Ck+2,α
Φ

(M× [0,T ]). This proves the

statement.

Remark 3.28. The arguments above show that in fact, if scal(gΦ) ∈Ck,α
Φ

(M) with k ≥ 4 is negative

and bounded away from zero, the CYF+ flow solution u∈C2,α
Φ

(M× [0,T ]) on any time interval [0,T ]

is in fact in Ck,α
Φ

(M× [0,T ]).

3.9 Global existence of the CYF+ on Φ-manifolds

We prove global existence of the flow, i.e. u ∈C4,α
Φ

(M× [0,∞)) by a contradiction. Assume the

maximal time T > 0 is finite. In that case we will now restart the flow at t = T , which contradicts

maximality of T . Restarting the flow at t = T means constructing a solution u′ to the (unnormalized)

Yamabe flow equation (3.2) with initial condition u′|t=0 = u|t=T . A rescaling of the time function, as

in §3.5, yields short time existence of the curvature normalized Yamabe flow.

Let us simplify notation by writing u0 = u|t=T and ∆=∆Φ. We linearize (3.2) by setting u′= u0+v

for its solution with initial condition u′|t=0 = u0. We obtain from the second equation in (3.2)(
∂t− (m−1)u−1/η

0 ∆

)
v = F1(v)+F2(v); v|t=0 = 0, (3.70)

where we have abbreviated

F1(v) = Q2(v), F2(v) = (m−1)u−1/η

0 ∆u0− scal(gΦ)u
1−1/η

0 +Q1(v),

The terms Q1(v) include linear combinations of v with coefficients given in terms of u0 and ∆u0. The

terms Q2(v) include quadratic combinations of v and ∆v with coefficients given again in terms of u0

and ∆u0.

Note that by Proposition 3.27, u0 ∈C4,α
Φ

(M). Thus, F1 contains quadratic combinations of v and

∆v, and F2 − linear combinations of v; with coefficients being in both cases elements of C2,α
Φ

(M×
[0,T ′]).

Before we can establish short time existence of v, which we will do by setting up a fixed point as

in §3.3, we note a general result from parabolic Schauder theory.

Proposition 3.29. Consider a ∈ Ck,α
Φ

(M) positive, uniformly bounded away from zero. Then the

inhomogeneous heat equation (∂t − a · ∆Φ)v = `, with v|t=0 = 0 and ` ∈ Ck,α
Φ

(M× [0,T ′]), has a

parametrix Q acting as a bounded linear map

Q : Ck,α
Φ

(M× [0,T ′])→
(
Ck+2,α

Φ
∩ t Ck,α

Φ

)
(M× [0,T ′]). (3.71)



66 Chapter 3. Yamabe flow on Φ-manifolds

Proof. Consider the inhomogeneous heat equation with ` ∈ Ck,α
Φ

(M× [0,T ′]) and initial value v0 ∈
Ck+2,α

Φ
(M) :

(∂t−a ·∆Φ)v = `, v|t=0 = v0.

Then, by reducing the argument to local δ -balls as in §3.8, we can follow the proof of [LSUc68,

Theorem 5.1 on p.320], and conclude for some uniform constant C > 0 existence of a unique solution

v ∈Ck+2,α
Φ

(M× [0,T ′]) with

‖v‖k+2,α ≤C
(
‖`‖k,α +‖v0‖k+2,α

)
.

This proves the first mapping property in (3.71) by setting v0 = 0. For the second mapping property

in (3.71), set ` = 0 and obtain a solution v = Rv0 with the solution operator R acting as a bounded

linear map

R : Ck,α
Φ

(M)→Ck,α
Φ

(M× [0,T ′]).

The solution operator Q of the inhomogeneous problem is then given by

Q`(p, t) =
∫ t

0

(
R`(̃t)

)
(p, t− t̃)dt̃. (3.72)

Indeed, a direct computation shows(
∂t−a ·∆Φ

)
Q`(p, t) = `(p, t)+

∫ t

0

(
∂t−a ·∆Φ

)(
R`(̃t)

)
(p, t− t̃)dt̃

= `(p, t).

This also allow us to conclude the second mapping property. Let us show this for k = 0; the general

case follows analogously. In fact, we have

|Q`(p, t)| ≤ ‖R`‖∞

∫ t

0
d t̃ = t ‖R`‖∞, for all (p, t) ∈M× [0,T ′].

On the other hand, we can estimate the Hölder brackets. Take a pair of points (p, t),(p′, t) ∈ M×
[0,T ′], assuming (without loss of generality) t < t ′. Hence,

|Q`(p, t)−Q`(p′, t ′)| ≤ |Q`(p, t)−Q`(p′, t)|+ |Q`(p′, t)−Q`(p′, t ′)|

=
∣∣∣∫ t

0

((
R`(̃t)

)
(p, t− t̃)−

(
R`(̃t)

)
(p′, t− t̃)

)
d t̃
∣∣∣

+
∣∣∣∫ t ′

t

((
R`(̃t)

)
(p, t− t̃)−

(
R`(̃t)

)
(p′, t ′− t̃)

)
d t̃
∣∣∣

≤ ‖R`‖αdΦ(p, p′)α

∫ t

0
d t̃ +‖R`‖α |t− t ′|α/2

∫ t ′

t
d t̃,

which means ‖Q`‖α ≤Ct. This implies directly the second mapping property in (3.71) and completes

the proof.

We can now conclude with the proof of Theorem 0.3.
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Corollary 3.30. Assume scal(gΦ) ∈ Ck,α
Φ

(M) is negative and bounded away from zero with k ≥ 4.

Then the increasing curvature normalized Yamabe flow CYF+ exists for all times with conformal

factor u ∈Ck,α
Φ

(M× [0,∞)).

Proof. Using Proposition 3.29, we can construct a solution v ∈C2,α
Φ

(M× [0,T ′]) to (3.70) for some

T ′ > 0 sufficiently small, as a fixed point of

Q◦ (F1 +F2) : C2,α
Φ

(M× [0,T ′])→C2,α
Φ

(M× [0,T ′]), (3.73)

in the same way as in §3.3. Rescaling time as in §3.5, we obtain a solution u ∈C2,α
Φ

(M× [0,T + ε])

to CYF+, with ε > 0 sufficiently small. Finally, the arguments of Proposition 3.27, cf. Remark 3.28,

imply that u ∈Ck,α
Φ

(M× [0,T +ε]) with T -independent Hölder norm. This contradicts maximality of

T > 0 and hence the flow exists for all times.

Remark 3.31. We point out that the arguments presented for the up to this point hold on the setting of

manifolds of bounded geometry as well, as long as the flow does exist for short-time with conformal

factor lying in C2,α
Φ

(M× [0,T ]). In fact, the Omori-Yau maximum principle holds for manifolds

of bounded Ricci curvature, which follows from the definition of manifolds of bounded geometry.

Moreover, the Φ-geometry was not used in the proofs given from §3.4.

3.10 Convergence of the CYF+ on Φ-manifolds

This last section presents the convergence of the CYF+. The argument uses a compact embedding

of (weighted) Hölder spaces, where the weight is defined in terms of the boundary defining function

x is extended to a smooth nowhere vanishing function on M.

Theorem 3.32. Let (M,gΦ) be an m-dimensional Φ-manifold, m≥ 3, such that scal(gΦ) ∈C4,α
Φ

(M)

is negative and bounded away from zero. Consider the global solution u ∈C4,α
Φ

(M×R+) of CYF+.

Then the family of metrics {g(t) = u(t)1/ηgΦ}t≥0 converges to a metric g∗ = (u∗)1/ηgΦ with constant

negative scalar curvature.

Proof. By Proposition 3.24, ‖∂tu(t)‖∞ decreases exponentially. From the definition of ∂tu it follows

easily that u(t) ∈ L∞(M) is a Cauchy sequence, as t → +∞, and hence admits a well-defined limit

u∗ ∈ L∞(M). In fact, we have

∂u
∂ t

(t) = lim
ε→0

u(t + ε)−u(t)
ε

⇒‖u(t + ε)−u(t)‖L∞(M) ≤ ε ·CesupM scal(gΦ)·t , as ε → 0.

By Proposition 3.9, u(t) ∈C4,α
Φ

(M) admits a convergent subsequence in x−γC4,β
Φ

(M) for any β < α

and γ > 0. Hence u∗ ∈ x−γC4,β
Φ

(M) with scalar curvature scal∗ ∈ x−γC2,β
Φ

(M) such that for some

divergent sequence {tn}n ∈ R+ going to +∞,

‖scalg(tn)− scal∗ ‖
x−γC2,β

Φ
(M)
→ 0 for n→ ∞, (3.74)
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In particular, scalg(tn) converges pointwise to scal∗. Note that by Lemma 3.21 the supremum supM scalg(t)

is non-increasing and by (3.55) the infimum infM scalg(t) is non-decreasing. Thus supM scalg(t) and

infM scalg(t) are bounded from below and above, respectively, and thus both convergent as t → ∞.

By Lemma 3.22

lim
t→∞

sup
M

scalg(t) = lim
t→∞

inf
M

scalg(t) =: const.

We compute from pointwise convergence of scalg(t) to scal∗ at any p ∈M

scal∗(p) = lim
n→∞

scalg(tn)(p)≤ lim
n→∞

sup
M

scalg(tn)

⇒ sup
M

scal∗ ≤ const.
(3.75)

Similar argument applied to the infimum of scal∗ yields

scal∗(p) = lim
n→∞

scalg(tn)(p)≥ lim
n→∞

inf
M

scalg(tn)

⇒ inf
M

scal∗ ≥ const.
(3.76)

Combining (3.75) and (3.76), proves the statement.

This proves Theorem 0.4.

Remark 3.33. Unlike the arguments for the long-time existence of the Yamabe flow, the proof of

convergence cannot be generalized to manifolds of bounded geometry without further assumptions.

This happens because convergence needs the compact embedding between weighted Hölder spaces,

which cannot be defined without a globally defined boundary defining function.



CHAPTER 4

Alternative Yamabe flow on Φ-manifolds

In Chapter 3, we proved that the curvature-normalized Yamabe flow on Φ- manifolds exists for all

time, is unique and converges to some Riemannian metric within the same conformal class of metrics

with constant scalar curvature, under the assumption that the initial scalar curvature is negative and

bounded away from zero. In order to do this, we worked on a specific class Hölder spaces Ck,α
Φ

,

that requires not only boundedness of the function, but also dictates estimates on the variation of a

function accordingly to the distance between the variables.

But one might wonder: is it possible to achieve similar results on the Yamabe flow under the

assumption that the conformal factor has a “better behavior”? To be more precise, does there exist a

Yamabe flow on Φ-manifolds whose conformal factor is continuous up to the boundary and has an

even more controlled variation? This is the question we address in this chapter.

Once again, we proceed in this chapter similarly as we did in Chapter 3. First, we define a

family of Hölder spaces that describes the type of behavior we aim for. After this, we prove mapping

properties for the heat operator H? (as defined in (3.19)) for said family of Hölder spaces. Later, we

present a construction of a parametrix Q for the inhomogeneous Cauchy problem

(∂t−a ·∆)u = `, u|t=0 = 0, (4.1)

where the factor a satisfies analogous conditions as the ones required in Theorem 3.14. Moreover, we

extend some of the mapping properties from H? to Q. We point out that this construction is based

on Bahuaud and Vertman [BV19]. Finally, we extend the contraction argument presented in Theorem

3.14 and used it to conclude the short-time existence of the Yamabe flow with conformal factor in our

new family of Hölder spaces.

69
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4.1 Modified Hölder continuity

Now, we present a definition of a considerably more restrictive family of Hölder space. To do so,

we introduce a new distance function in terms of local coordinates near the boundary, whose general

idea is demonstrated in the following example.

Example 4.1. Let N = [0,1]×x S1 be a Riemannian cone over S1, that is, consider on N the Rieman-

nian metric given by

gN := dx2 + x2gS1, (4.2)

with gS1 the usual Riemannian metric on S1; moreover, consider π1 and π2 the standard projections

from N to [0,1] and S1 respectively. For two given points p,q∈N, consider γ : [0,1]→N the geodesic

connecting p and q. Thus π1γ is a straight line from π1(p) to π1(q) and π2γ is an arc on S1 from π2(p)

to π2(q).

π1(p)

π1(q)

p

q

Figure 4.1: Distance on a cone

Hence,

length(γ) =
∫ 1

0
‖γ
′
(t)‖gN d t

= |π1(p)−π1(q)|+
π1(p)+π1(q)

2
dS1(π2(p),π2(q)).

From this follows that

dN(p,q)≈ |π1(p)−π1(q)|+(π1(p)+π1(q))dS1(π2(p),π2(q)). (4.3)

Note that the previous example can be easily generalized to cusps. In fact, if one consider N =

[0,1]×xk S1, then the distance function on N is given by the expression

dN(p,q)≈ |πp−π1(q)|+(π1(p)+π1(q))kdS1(π2(p),π2(q)). (4.4)
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Furthermore, the Riemannian metric for the cone can be written in terms of an exact Φ-metric. In

fact, by taking N = [0,1]×x Y and Z = {pt}, the exact Φ-metric is given by

gΦ,0 =
dx2

x4 +
φ∗gY

x2 =
1
x4

(
dx2 + x2

φ
∗gY
)
=

1
x4 gN .

Now, let M be a Φ-manifold. Consider a distance function defined on M near ∂M as follows: for

any two points p = (x,y,z) and p′ = (x′,y′,z′), define d locally by the expression

dx4Φ(p, p′)≈
√
|x− x′|2 +(x+ x′)2‖y− y′‖+(x+ x′)4‖z− z′‖2. (4.5)

The function dx4Φ is clearly positive, null if and only if p = p′, symmetric and, similarly to the

argument presented in Example 4.1, it satisfies the triangular inequality. On the other hand, it should

be pointed out that dx4Φ is not a distance function over ∂M, since it does vanish altogether on the

boundary. However, this is the distance function defined on the interior which captures the type of

behavior we are interested in.

Now, recall that we are considering MT := M× [0,T ]. For α ∈ (0,1), define α-norm as the map

‖ · ‖∗α : C0(M× [0,T ])→ [0,∞) to be

‖u‖∗α = ‖u‖∞ + sup
M2

T

{
|u(p, t)−u(p′, t ′)|

dx4Φ(p, p′)α + |t− t ′|α/2

}
=: ‖u‖∞ +[u]∗α . (4.6)

Thus, define the modified Hölder space

Cα

x4Φ
(M× [0,T ]) := {u ∈C0(M× [0,T ]) | ‖u‖∗α < ∞}.

Once endowed with the norm ‖·‖∗α , as defined in (4.6), this set turns into a Banach space. Analogously

to the standard Hölder spaces, we define the higher-order modified Hölder spaces as

Ck,α
x4Φ

(M× [0,T ]) =
{

u ∈Ck
Φ(M× [0,T ])

∣∣∣∣ (V ◦∂
l2
t )u ∈Cα

x4Φ
(M× [0,T ]),

for V ∈ V l1
Φ
, l1 +2l2 ≤ k

}
(4.7)

From [BV14, Proposition 3.1] follows that Ck,α
x4Φ

(M× [0,T ]) is a Banach space as well, when equipped

with the norm

‖u‖∗k,α = ‖u‖∗α + ∑
l1+2l2≤k

∑
V∈V l1

Φ

‖(V ◦∂
l2
t )u‖∗α .

Note that, from the definition, every function lying in an higher-order Hölder spaces also lies in the

α-Hölder space (case l1 = l2 = 0).

Naturally, once defined the basic Hölder space above, it is now easy to generalize to weighted

Hölder spaces as follows: for γ ∈ R, define

xγCk,α
x4Φ

(M× [0,T ]) := {xγu | u ∈Ck,α
x4Φ

(M× [0,T ])},

‖u‖∗k,α,γ := ‖x−γu‖∗k,α .
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Remark 4.2. Recall that, as pointed out previously, some of our results achieved for the standard

Hölder spaces do not depend on the distance function chosen. In particularl, Proposition 3.4, Propo-

sition 3.6 and Proposition 3.7 are true for the modified Hölder spaces as well. This means that:

1. If we take ϕ ∈Ck+l,α
x4Φ

(M× [0,T ]), with l ≥ 0, then the multiplication map

Mϕ : xγCk,α
x4Φ

(M× [0,T ])→ xγCk,α
x4Φ

(M× [0,T ])

is continuous;

2. If we consider a Riemannian metric g∈ {u1/ηgΦ | 0 < infM u≤ supM u <+∞}, then the Hölder

spaces are preserved under the change of metrics, i.e. Ck,α
g (M) =Ck,α

x4Φ
(M).

3. We have the continuous inclusion Ck,α
x4Φ

(M) ↪→Ck,β
x4Φ

(M), with 0 < β < α < 1.

However, Proposition 3.9 is not true for Ck,α
x4Φ

(M). In fact, to obtain a compact embedding between

two modified Hölder spaces, stronger conditions on the acquired x-weight are necessary. In what

follows, we take the time to discuss this interesting result, in the spirit of curiosity.

Proposition 4.3. Let (M,gΦ) be a Φ-manifold and 0 < β < α < 1. Then the inclusion

ι : Ck,α
x4Φ

(M) ↪→ x−γCk,β
x4Φ

(M) (4.8)

is a compact embedding, for some γ > β .

Proof. Let {un}n be a bounded sequence in Ck,α
x4Φ

(M). We use the same notation as the one employed

in the proof of Proposition 3.9, setting a sequence {v j := un j(δ j)} j in the following manner: for the

truncated compact manifold Mδ1 = {x≥ δ1}, consider the convergent subsequence {uni(δ1)}i obtained

from the compact embedding Ck,α
x4Φ

(Mδ1) ↪→ Ck,β
x4Φ

(Mδ1). Repeat the process to said subsequence to

the truncated manifold Mδ2 . After iterating the process, one obtains the desired sequence {v j} j. This

construction only requires the fact that one has a compact embedding Ck,α
x4Φ

(K) ↪→ Ck,β
x4Φ

(K) for any

compact subset K ⊂M away from the boundary.

Our goal is once again to prove that this sequence is a Cauchy sequence in x−γCk,β
x4Φ

(M). Like in

the case for the standard Hölder spaces, the proof away from the boundary follows naturally from the

compact embeddings for compact subsets away from the boundary. Hence, we only need to prove

that this is a Cauchy sequence near the boundary as well. For this, we need the following

• Claim: The function xγ ∈Cβ

x4Φ
(M) if, and only if, γ ≥ β .

Boundedness of xγ is straightforward, since we assume x to be bounded away from the boundary

and x goes to zero near the boundary. Then, we must check that [xγ ]∗
β
<+∞. First, note that

|xβ − yβ | ≤ |x− y|β , for all β ∈ (0,1).
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In fact, this is equivalent to proving that∣∣∣(x
y

)β

−1
∣∣∣≤ ∣∣∣x

y
−1
∣∣∣β .

Without loss of generality, assume x≥ y. Then, for t := x/y, this is equivalent to showing that

tβ −1≤ (t−1)β , for t ≥ 1.

Set the function f (t) := (t−1)β − (tβ −1). This function is continuously differentiable and we have

f ′(t) = β (t−1)β−1−β tβ−1. Since f (1) = 0, the claim will be proven true if f ′(t)≥ 0 for t ≥ 1. But

f ′(t)≥ 0⇐⇒ β (t−1)β−1 ≥ β tβ−1⇐⇒ (t−1)1−β ≤ t1−β ,

which is true for β ∈ (0,1) and t ≥ 1. Hence, we have xβ ∈Cβ

x4Φ
(M) and, consequently, xγ ∈Cβ

x4Φ
(M).

Moreover, since V xγ = O(xγ) for V ∈ VΦ, we have xγ ∈Ck,β
x4Φ

(M) for all k ∈ N and γ ≥ β .

Now, we prove that the sequence {v j} j is a Cauchy sequence near the boundary as well. Indeed,

from Remark 4.2, item 1., we can conclude

‖v j‖∗x−γCk,β
x4Φ

(M\Mδ j
)
= ‖xγv j‖∗Ck,β

Φ
(M\Mδ j

)
≤C0lγ−β

j ‖v j‖∗k,β

≤Clγ−β

j .

Thus, choose j0 ∈ N sufficient large such that the inequality Clγ−β

j0 ≤ ε/4 checks (which is possi-

ble since γ − β > 0). From this it follows that {v j} is a Cauchy sequence in x−γCk,β
x4Φ

(M) and, by

completeness, admits a convergence subsequence.

4.2 Mapping properties of the Heat Kernel on Cα

x4Φ
(M× [0,T ])

Similarly to the proof of existence of the Yamabe flow for standard Hölder spaces, we now study

mapping properties of the heat operator H? acting on functions in xγCk,α
x4Φ

(M× [0,T ]). Recall that

H?u(t, p) :=
∫ t

0

∫
M

H(t− t̃, p, p̃)u(̃t, p̃)dvolΦ(p̃)d t̃.

Theorem 4.4. Let M be a m-dimensional manifold with fibered boundary equipped with a Φ-metric.

The operator

H? : xγCk,α
x4Φ

(M× [0,T ])→ xγ

(
Ck+2,α

x4Φ
∩
√

t Ck+1,α
x4Φ

∩ tα/2Ck+2
Φ

)
(M× [0,T ]) (4.9)

is bounded, for any α ∈ (0,1) and any γ ∈ R.

Proof. Similarly as in the proof of Theorem 3.10, explicit computations will be presented only for

the first mapping property, that is, we prove that

H? : xγCk,α
x4Φ

(M× [0,T ])→ xγCk+2,α
x4Φ

(M× [0,T ]),
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is a continuous operator. The other two mapping properties can be proven analogously, since the

integrals rising during estimate have the same asymptotic behavior. Moreover, we prove only the case

for k = 0, since the higher order case follows from the case k = 0 plus integration by parts.

Once again, for Hγ := Mx−γ H ?Mxγ and for G = V Hγ , with V ∈ {id}∪VΦ∪V 2
Φ

, we must prove

that

G : Cα

x4Φ
(M× [0,T ])→Cα

x4Φ
(M× [0,T ]).

is a continuous operator. Analogously to the proof of the mapping properties of H?, we will proceed

in three steps:

i) Uniform estimates of Hölder differences in space, whose proof is presented in §4.2.1,

ii) Uniform estimates of Hölder differences in time, whose proof is presented in §4.2.2,

iii) Uniform estimates of the supremum norm, whose proof is presented in §4.2.3.

From this, we conclude the proof of Theorem 4.4.

4.2.1 Estimates of Hölder differences in space

From this point until the end of §4.2.3, we use freely the notation presented in §2.4.

Let p and p′ be points in M and set

M+ =
{

p̃ ∈M
∣∣d(p, p̃)≤ 3d(p, p′)

}
, M− =

{
p̃ ∈M

∣∣d(p, p̃)≥ 3d(p, p′)
}
.

Now, for u function in Cα

x4Φ
(M× [0,T ]) and every V ∈ {id}∪VΦ∪V 2

Φ
, write

Gu(t, p)−Gu(t, p′) =
∫ t

0

∫
M+

[
G(t− t̃, p, p̃)−G(t− t̃, p′, p̃)

][
u(̃t, p̃)−u(̃t, p)

]
dvolΦ(p̃)d t̃

+
∫ t

0

∫
M−

[
G(t− t̃, p, p̃)−G(t− t̃, p′, p̃)

][
u(̃t, p̃)−u(̃t, p)

]
dvolΦ(p̃)d t̃

+
∫ t

0

∫
M

[
G(t− t̃, p, p̃)−G(t− t̃, p′, p̃)

]
u(̃t, p)dvolΦ(p̃)d t̃

=:I1 + I2 + I3.

Again, in order to obtain the desired estimates, it is enough for us to estimate each of the I j-terms

individually. To simplify the notation, we will identify the integration regions M, M+ and M− with

their lifts.

Furthermore, since the heat kernel vanishes to infinite order near the extreme corners of the heat

space, so does the kernel G. This makes estimates near the extreme regimes of M2
h trivial. Thus,

computations for estimates only near the middle regimes of M2
h (i.e. near fd∪ td) are presented here.
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Estimate for I2

Going along the lines of the estimate of the term I1 in §3.2.1, employ the Mean Value Theorem to

write

|I2| ≤C‖u‖∗α |x− x′|
∫ t

0

∫
M−

∂ξ G(t− t̃, pξ , p̃)dΦ(pξ , p̃)α dvolΦ(p̃)d t̃

+C‖u‖∗α‖y− y′‖
∫ t

0

∫
M−

∂ηG(t− t̃, pη , p̃)dΦ(pη , p̃)α dvolΦ(p̃)d t̃

+C‖u‖∗α‖z− z′‖
∫ t

0

∫
M−

∂ζ G(t− t̃, pζ , p̃)dΦ(pζ , p̃)α dvolΦ(p̃)d t̃

=:I2,1 + I2,2 + I2,3,

with pξ = (ξ ,y,z), pη = (x′,η ,z) and pζ = (x′,y′,ζ ). The previous inequalities above are using the

fact that if p′′ ∈M satisfies dx4Φ(p, p′′) ≤ dx4Φ(p, p′), then dx4Φ(p, p̃) ≤ dx4Φ(p′′, p̃) for every point

p̃ ∈M−. The proof of this fact is exactly the same as the one presented for the distance function dΦ.

Given the similarities of the estimates of each term I2,i, we present here only the computations

for the term I2,1. The two remaining terms can be estimate analogously. For I2,1, we will use the

projective coordinates (τ,ξ ,y,z, s̃, ỹ, z̃), with s̃ = x̃/ξ and τ =
√

t− t̃. From the asymptotics of the

heat kernel near fd∪ td, we have

|I′2|=C‖u‖∗α |x− x′|
∫ √t

0

∫
M−

τ
−m−2

ξ
−3−bG0dx4Φ(pξ , p̃))α d s̃d ỹd z̃dτ, (4.10)

with G0 vanishing to infinite order whenever ‖(s̃− 1, ỹ− y, z̃− z)‖ → ∞. On the other hand, ξ ∼ x̃

near the middle regimes, implying (1+ s̃) to be bounded and giving

dx4Φ((ξ ,y,z),(x̃, ỹ, z̃)) =
√
|ξ − x̃|2 +(ξ + x̃)2‖y− ỹ‖2 +(ξ + x̃)4‖z− z̃‖2

=
√

ξ 2(|1− s̃|2 +(1+ s̃)2‖y− ỹ‖2 +ξ 2(1+ s̃)4‖z− z̃‖2)

∼
√

ξ 2(|1− s̃|2 +‖y− ỹ‖2 +ξ 2‖z− z̃‖2)

=: ξ r(s,y− ỹ,z− z̃),

from where follows that there is a constant c such that dx4Φ(pξ , p̃)α) ≤ c(ξ r)α . Such function r

describes the radial distance in polar coordinates around the point (1,y,ξ z). Performing a change of

coordinates in the integral in (4.10), one has

|I′2| ≤ c‖u‖α |x− x′|
∫ √t

0

∫
M−

τ
−m−2

ξ
−m−2+αrm−1+αG0 dr d(angle)dτ.

Now, setting σ = r−1τξ , it follows that the asymptotic behavior of σ−1 is

σ
−1 ∼

√
|S |2 +‖U ‖2 +‖Z ‖2.

This implies that the integral of G0 against any negative power of σ is bounded. Moreover, the

definition of r implies, up to some constant, M− ⊂ {ξ−1dx4Φ(p, p′) ≤ r}. Hence, integration on the
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angular variables followed by another change of coordinates τ 7→ σ gives

|I′2| ≤C‖u‖∗α |x− x′|
∫

∞

ξ dx4Φ
(p,p′)

r−2+α
ξ
−1+α dr

=C‖u‖∗α |x− x′|ξ−1+α(ξ−1dx4Φ(p, p′))−1+α

≤C‖u‖∗αdx4Φ(p, p′)α .

Estimate for I1

Proceeding similarly to the term I2 in §3.2.1, we have

I1 =
∫ t

0

∫
M+

G(t− t̃, p, p̃)[u(p̃, t̃)−u(p, t̃)]dvolΦ(p̃)d t̃

−
∫ t

0

∫
M+

G(t− t̃, p′, p̃)[u(p̃, t̃)−u(p′, t̃)]dvolΦ(p̃)d t̃

+
∫ t

0

∫
M+

G(t− t̃, p′, p̃)[u(p, t̃)−u(p′, t̃)]dvolΦ(p̃)d t̃

=: I1,1− I1,2 + I1,3.

Now, since we’re considering M+ as integration region, then points on p̃ ∈M+ satisfy dx4Φ(p, p̃) ≤
3dx4Φ(p, p′). Recall that triangular inequality implies

dx4Φ(p′, p̃)≤ dx4Φ(p′, p)+dx4Φ(p, p̃)≤ 4dx4Φ(p, p′).

For the coordinates (τ,x,y,z,S ′,U ′,Z ′), with

S ′ =
x̃− x

x2 , U ′ =
ỹ− y

x
, Z ′ = z̃− z and τ =

√
t− t̃,

we have G = τ−m−2G0, with G0 vanishing to infinite order whenever ‖(S ,U ,Z )‖ → ∞. Thus, for

these coordinates we have

|I1,1| ≤ ‖u‖∗α
∫ √t

0

∫
M+

τ
−m−1G0dx4Φ(p, p̃)α dS ′ dU ′ dZ ′ dτ.

Now, note that near the middle regimes of the heat space we have x ∼ x̃. Then, if we consider the

radius function r(S ′,U ′,Z ′) :=
√
|S ′|2 +‖U ′‖2 +‖Z ′‖2, then, near td, we have

dx4Φ((x,y,z),(x̃, ỹ, z̃)) =
√
|x− x̃|2 +(x+ x̃)2‖y− ỹ‖2 +(x+ x̃)4‖z− z̃‖2

∼ x2
√
|S ′|2 +‖U ′‖2 +‖Z ′‖2

=: cx2r(S ′,U ′,Z ′),

meaning that M+ = {r ≤ x−2dx4Φ(p, p′)} up to some constant. Setting σ := τ/r and taking polar

coordinates for (S ′,U ′,Z ′) around (0,0,0) gives the expression

|I1,1| ≤ c‖u‖∗αx2α

∫
I(σ)

∫ x−2dx4Φ
(p,p′)

0
σ
−m−1r−1+αG0 dr dτ.
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Since σ−m−1G0 is bounded (due to the decay properties of G0), the estimate follows. The term I1,2

can be estimated in the exact same way as I1,1, so the computations are not presented here.

For the I1,3-term, proceed by integration by parts. First, take the coordinates (τ,x,y,z,S ,U ,Z )

and note that one has (as the “worst case scenario” for I1,3) G = τ−m−2(V1V2G0), where V1,V2 ∈
{∂S ,∂U ,∂Z }. For the sake of simplicity, we shall assume V1 = ∂S ; the general case is similar, thus

its computations are omitted here. On the other hand, for fixed (τ,U ,Z ) one has M+ = {|S | ≤
r(τ,U ,Z )}. Hence, since

β
∗(dvolΦ(p̃)d t̃) = h0(x+ x2

τS ,y+ xτU ,z+ τZ )τm+1 dS dU dZ dτ,

with h0 a smooth function, and [u(p, t̃)−u(p′, t̃)] =: δu is independent of p̃,

I1,3 =
∫ √t

0
δu
∫

M+
τ
−1(∂S V2G0)hdS dU dZ dτ

=
∫ √t

0
δu
∫

∂M+
τ
−1(V2G0)

∣∣
|S |=rhdS dU dZ dτ

−
∫ √t

0
δu
∫

M+
τ
−1(V2G0)∂S hdS dU dZ dτ

=: I1
1,3− I2

1,3.

For the I2
1,3-term, since h is a smooth function, then ∂S h = x2τh′, which then cancels the τ−1 in

the integrand and then, since the rest of the integrand is bounded, the integral is bounded. When re-

stricted to |S |= r one has ∂M+
= {p̃∈M+ | dx4Φ(p, p̃) = 3dx4Φ(p, p′)} and then, from the triangular

inequality one gets

2dx4Φ(p, p′)≤ dx4Φ(p, p̃)≤ 4dx4Φ(p, p′).

Considering now the coordinates (τ,x,y,z,S ′,U ′,Z ′) (which are valid up to fd∩ td), one has S ′ =

τS , U ′ = τU and Z ′ = τZ , from where one gets

|I1
1,3| ≤ ‖u‖∗α

∫ √t

0

∫
∂M+

τ
−m(V2G0)

∣∣
|S |=rdx4Φ(p, p̃)α dU dZ dτ.

Proceed now exactly like in I1,1 by taking polar coordinates for (U ′,Z ′) around (0,0), with radial

function R, and once again considering σ = τ/R will then give us

|I1
1,3| ≤ ‖u‖∗α

∫
∞

0

∫ 4dx4Φ
(p,p′)

0
R−1+α

σ
−m

√ |S ′|2 +‖U ′‖2 +‖Z ′‖2

‖U ′‖2 +‖Z ′‖2

α

(V2G0)
∣∣
|S |=r dRdτ

≤C‖u‖∗αdx4Φ(p, p′)α .

Estimate for I3

In order to estimate I3, first let us rewrite it in the following way: by considering p = (x,y,z) and

p′ = (x′,y′,z′),

I3 =
∫ t

0

∫
M
[G(t− t̃, p, p̃)−G(t− t̃,(x′,y,z), p̃)]u(̃t, p)dvolΦ(p̃)d t̃
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+
∫ t

0

∫
M
[G(t− t̃,(x′,y,z), p̃)−G(t− t̃,(x′,y′,z), p̃)]u(̃t, p)dvolΦ(p̃)d t̃

+
∫ t

0

∫
M
[G(t− t̃,(x′,y′,z), p̃)−G(t− t̃, p′, p̃)]u(̃t, p)dvolΦ(p̃)d t̃

=:I3,1 + I3,2 + I3,3.

Remember that Φ-manifolds are stochastically complete. Hence, for I3,2 we have

I3,2 =
∫ t

0
xγu(p, t̃)

(∫
M
[X(x−γH)(t− t̃,(x′,y,z), p̃)−X(x−γH)(t− t̃,(x′,y′,z), p̃)]dvolΦ(p̃)

)
d t̃,

which then implies

I3,2 =
∫ t

0
((x′)−γ − (x′)−γ)xγu(p, t̃)d t̃ = 0.

Same argument can be applied to I3,3, which means that I3 = I3,1. Similar to the estimation for the

I2-term, we once more employ the Mean Value Theorem to obtain

I3 = |x− x′|
∫ t

0

∫
M

∂ξ G(t− t̃, pξ , p̃)u(p, t̃)dvolΦ(p̃)d t̃. (4.11)

Recall that

β
∗(∂ξ ) = ∂ξ − [2ξ

−1S +ξ
−2

τ
−1]∂S −ξ

−1U ∂U ,

implying β ∗(∂ξ G)∼ ξ−2τ−1∂S G′0, where G′0 has a similar asymptotic behavior as G0. Since u(p, t̃)

is constant in the spacial variable, integration by parts gives us

∫ t

0

∫
M

ξ
−2

τ
−1

∂S G′0u(p, t− τ
2)hdS dU dZ dτ

=
∫ t

0

∫
∂M

ξ
−2

τ
−1G′0

∣∣
|S |=∞

u(p, t− τ
2)h0 dS dU dZ dτ

−
∫ t

0

∫
M

ξ
−2

τ
−1G′0u(p, t− τ

2)∂S h0 dS dU dZ dτ.

Due to the decay properties of the heat kernel near ∂M, the first of the two integrals above vanishes.

On the other hand, since h is a smooth, then similarly to the I2
1,3-estimation one has ∂S h0 = ξ 2τh′0,

then giving us

∫ t

0

∫
M

ξ
−2

τ
−1

∂S G′0u(p, t− τ
2)h0 dS dU dZ dτ

=−
∫ t

0

∫
M

G′0u(p, t− τ
2)h′0 dS dU dZ dτ.

Then one can now follow the same procedure as presented for the I2
1,3, only keeping in mind that

(unlike for I1,3) the boundary term will once again vanish. Therefore, the estimate follows.

This completes the proof of the estimates for Hölder differences in space.
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4.2.2 Estimations for Hölder differences in time

Let us now give estimates for the Hölder differences only in the time variable. Assume p = p′

and, without loss of generality, t < t ′. Suppose first that t and t ′ satisfy 2t ′− t > 0 (i.e., t ′ < t ≤ 2t ′).

Recall that we can define the intervals

T− = [0,2t ′− t], T+ = [2t ′− t, t] and T ′+ = [2t ′− t, t ′].

Thus, we have

Gu(p, t)−Gu(p, t ′) = |t− t ′|
∫

T−

∫
M

∂θ G
∣∣
(t−t̃,p,p̃)[u(p̃, t̃)−u(p, t̃)]dvolΦ(p̃)d t̃

+
∫

T+

∫
M

G(t− t̃, p, p̃)[u(p̃, t̃)−u(p, t̃)]dvolΦ(p̃)d t̃

−
∫

T ′+

∫
M

G(t ′− t̃, p, p̃)[u(p̃, t̃)−u(p, t̃)]dvolΦ(p̃)d t̃

+
∫ t

0

∫
M

G(t− t̃, p, p̃)u(p, t̃)dvolΦ(p̃)d t̃

−
∫ t ′

0

∫
M

G(t ′− t̃, p, p̃)u(p, t̃)dvolΦ(p̃)d t̃

=: L1 +L2−L3 +L4−L5.

Similarly to the estimates in §3.2.2, we can estimate L4 and L5 straightforwardly, since Φ-manifolds

are stochastically complete, which implies

L4−L5 =
∫ t

0
u(p, t̃)d t̃−

∫ t ′

0
u(p, t̃)d t̃ ≤C‖u‖∞|t− t ′|α/2.

Given the similarities between L2 and L3, it is enough to present computations for just one of them.

Thus, for us to obtain the estimates, we just need to give estimates for L1 and L3. Moreover, since

the heat kernel vanishes to infinite order away from fd∪ td, estimates are straightforward. Hence, we

present only computations near fd∪ td.

Estimates for L1

Consider projective coordinates near such intersection given by (τ,x,y,z,S ,U ,Z ). In this case,

we have β ∗∂θ G ∼ τ−m−4G0, with G0 being polyhomogeneous and vanishing to infinite order when

‖(S ,U ,Z )‖→ ∞, and β ∗(dvolΦ(p̃)d t̃)∼ τm+1 dS dU dZ dτ . Moreover, since x∼ x̃ when near

fd∪ td, we get to write

dx4Φ(p, p̃)≤ cτρfd

√
|S |2 +‖U ‖2 +‖Z ‖2 =: cτxr(S ,U ,Z ), (4.12)

where r is bounded whenever its entries are bounded. Consequently, G0rα is bounded everywhere.

On the other hand, note that whenever t̃ ∈ T−, one has |θ − t̃| ≥ |t− t ′|, from where follows that

|L1| ≤ ‖u‖∗α |t− t ′|
∫

T−

∫
M
|τ−3G0d(p, p̃)α |dS dU dZ dτ
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≤C‖u‖∗α |t− t ′|
∫

∞

√
t−t ′

∫
M
|τ−3+αxαG′0rα |dS dU dZ dτ

≤C‖u‖∗α |t− t ′|α/2.

This completes the estimates for the L1-term.

Estimates for L2

Take the projective coordinates (τ,x,y,z,S ,U ,Z ). It is known that β ∗G ∼ τ−m−2G0, with G0

polyhomogeneous and vanishing to infinite order if ‖(S ,U ,Z )‖→ ∞. On the other hand,

β
∗(dvolΦ(p̃)d t̃)∼ τ

m+1h0 dS dU dZ dτ, (4.13)

with h0 smooth on p̃ = (x+ x2S τ,y+ xU τ,z+ τZ ). From this and from (4.12) follows that

|L2| ≤ ‖u‖∗α
∫

T+

∫
M
|τ−1G0dx4Φ(p, p̃)α |dσ dη dζ dτ

≤C‖u‖∗α
∫

T+

∫
M
|τ−1+αG0rα |dS dU dZ dτ

≤C‖u‖∗α |t− t ′|α/2,

concluding the estimates for the L2-term.

This completes the estimates for time difference with derivatives under the assumption that 2t ′−
t > 0. Computations under the assumption 2t ′− t < 0 follow analogously to estimates for time differ-

ence in §3.2.2.

4.2.3 Estimates for the supremum norm

Computations for the estimates of the supremum norm follow ipsis literis the estimates presented

in §3.2.3. In fact, for a given point (p, t) ∈M× [0,T ], write

Gu(p, t) =
∫ t

0

∫
M

G(t− t̃, p, p̃)u(p̃, t̃)dvolΦ(p̃)d t̃

=
∫ t

0

∫
M

G(t− t̃, p, p̃)[u(p̃, t̃)−u(p, t̃)]dvolΦ(p̃)d t̃

+
∫ t

0

∫
M

G(t− t̃, p, p̃)u(p, t̃)dvolΦ(p̃)d t̃

= J1 + J2.

Once again, estimates away from fd∪ td are straightforward, meaning that we must focus near fd∪ td.

Now, note that the estimates in §3.2.3 uses the inequality dΦ ≤Cτr near the middle regimes, where

r is some radial function and C is some constant. This property is true for dx4Φ as well, meaning that

the argument can be employed here too.

From this, we conclude the estimate for the supremum norm.
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4.3 Parametrix construction for heat-type equations

Now that we have proven some mapping properties for the heat kernel, we are in a good place to

construct a parametrix, i.e., an approximate inverse, for a slightly more general heat-type equation.

This is important for this work because this parametrix provides a way to find solutions for a modified

version of the Yamabe flow, which is our ultimate goal.

Let M be a manifold with fibered boundary equipped with a Φ-metric. We consider an heat-type

operator P that is

P = ∂t−a∆

where ∆ is the self-adjoint extension of the negative Laplace-Beltrami operator on functions and

a : M× [0,T ]→ R. Remember that such extension is unique, given that (M,gΦ) is a complete Rie-

mannian manifold. It is clear that we can not expect a to be as generic as possible. Indeed, for

instance, we need a restrictive enough to preserve parabolicity of the heat operator. On the other

hand, we need a generic enough so the parametrix constructed for P can be used to study the Yamabe

flow.

This analysis will provide a tool to discuss, in an appropriate function space, the short-time solv-

ability of Cauchy problems on M of the form

(∂t−a∆)u = `, u|t=0 = u0. (4.14)

We will approach this problem following the techniques presented in [BV19] and [EM13]. The idea is

to construct an appropriate boundary parametrix, giving us an approximate inverse near the boundary,

and an interior parametrix, which will be obtained via classical parabolic PDE theory on compact

manifolds. A combination of those will lead to an operator that will be used to prove short time

existence of equation (4.14).

Lemma 4.5. Let ϕ,ψ ∈ Cα
Φ
(M) be compactly supported smooth functions so that ψ is supported

away from the boundary. The operator

R0 := MψH?Mϕ : xγCk,α
Φ

(M× [0,T ])→
√

txγ Ck+1,α
Φ

(M× [0,T ])

has operator norm ‖R0‖op converging to 0 as T goes to 0.

Proof. Since ψ is supported away from the boundary of M, hence away from the singularities of H,

the lift of ψHϕ to M2
h is compactly supported away from ff, fd, lf and rf. Using the formulas described

in §2.4.2 one finds that the asymptotics of ψHϕ are given by

β
∗(ψHϕ)∼ τ

−mG0

where G0 is a bounded function vanishing to infinite order as ‖(S ,U ,Z )‖ → ∞. This implies

Theorem 4.4 to hold also for MψH ?Mϕ by straightforward estimates. Hence, the operator norm of
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MψH?Mϕ can be obtained by

‖MψH?Mϕ‖op = sup
‖u‖∗k,α,γ=1

‖MψH? (Mϕu)‖∗k+1,α,γ ≤ sup
‖u‖∗k,α,γ=1

c
√

t‖u‖∗k,α,γ = c
√

t,

which clearly converges to 0 as t goes to 0. Note that this holds in particular for T going to 0.

4.3.1 Boundary parametrix

From now on, let Ur = {x ≤ r} be a fixed collar neighborhood of ∂M. In order to localize our

argument, we need to fix a specific covering of M. Given the family of half-cubes

B(d) = [0,d)× (−d,d)b× (−d,d) f ⊂ R≥0×Rb×R f ,

for every point p ∈ ∂M there exists a coordinate chart Ap around p so that the half-cube B(1) is

diffeomorphic to Ap. Since by assumption the boundary is compact, ∂M can be covered with finitely

many charts {Ai, pi,φi}i=1,...,n where φi : B(1)→ Ai. Clearly, for r sufficiently small, these open sets

will cover the fixed collar neighborhood Ur. Such a covering of ∂M can be extended to a cover of M

by adding an open subset A0 = M \{x≤ r/2}.
We can now proceed with the construction of the boundary parametrix. First of all let us fix a

smooth compactly supported function σ : R≥0 → R so that σ(s) = 1 for s ≤ 1/2 and σ(s) = 0 for

s ≥ 1. Smoothness implies σ to lie in Ck,α(R≥0) for every k ≥ 0. Note that here σ ∈ Ck,α(R≥0)

means that σ is α-Hölder in the classical sense, as well as all its derivatives up to order k. Let

ϕ̃, ψ̃ : R≥0×Rb×R f → R be defined, for any m = 1, ...,n, by

ϕ̃(x,y,z) = σ(x)σ(‖y‖)σ(‖z‖)

ψ̃(x,y,z) = σ

(x
2

)
σ

(
‖y‖
2

)
σ

(
‖z‖
2

)
.

Since σ lies in Ck,α(R≥0) for every k ≥ 0, it follows that ϕ̃, ψ̃ ∈Ck,α(R≥0×Rb×R f ). Furthermore,

note that ψ̃ ≡ 1 on supp(ϕ̃).

For any point p̄ ∈ ∂M there exists a coordinate patch Ai so that p̄ lies in Ai and has coordinate

(0, ȳ, z̄). For any ε ∈ (0,1), one can consider the functions ϕ̄i,p̄, ψ̄i,p̄ : Ai→ R defined by

ϕ̄i,p̄(p) = ϕ̃

( x
ε
,y− ȳ,ε(z− z̄)

)
ψ̄i,p̄(p) = ψ̃

( x
ε
,y− ȳ,ε(z− z̄)

)
,

(4.15)

where the local coordinates used are given as follows:

x = x(φ−1
i (p)),

y = y(φ−1
i (p)) and ȳ = y(φ−1

i (p̄)),

z = z(φ−1
i (p)) and z̄ = z(φ−1

i (p̄)).
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From the definition of ϕ̃ and ψ̃ , it is clear that ψ̄i,p̄ ≡ 1 on supp(ϕ̄i,p̄). Furthermore, it is clear from

the definition that both ϕ̄i,p̄ and ψ̄i,p̄ equal 1 near p̄. Note that the bump-functions ϕ̄i,p̄ and ψ̄i,p̄ are

chosen precisely such that the following estimates hold:

• [ϕ̄i,p̄]
∗
α = sup

M2

|ϕ̄i,p̄(p)− ϕ̄i,p̄(p′)|
dx4Φ(p, p′)α

≤Cε
−α , (4.16)

• if p, p′ ∈ supp ϕ̄i,p̄ then dx4Φ(p, p′)≤Cε
α , (4.17)

with the same statement holding for ψ̄i,p̄ for some uniform constant C > 0. Note also that Φ-

derivatives do not worsen, but even improve the ε-estimate, since they carry extra x-powers, implying

[V ϕ̄i,p̄]
∗
α , [V ψ̄i,p̄]

∗
α ≤Cε

−α+k, for every V ∈ V k
Φ(M). (4.18)

The bump-functions defined above can be extended smoothly to the whole manifold M by letting

them be 0 everywhere outside the support, which is contained in Ai. With abuse of notation we will

call these extensions again ϕ̄ and ψ̄ . We want to construct partitions of unity near the boundary. To

this end, for every i = 1, . . . ,n and for every ε ∈ (0,1), we can consider the set

Ei,ε = Am∩
{

φi(0,εz)
∣∣ z ∈ Zb+ f}.

Due to the diffeomorphism φi : B(1)→ Ai, the set #Ei,ε is finite, hence the set

{ψ̄i,p | i = 1, . . . ,n p ∈ Ei,ε} (4.19)

is also finite for any ε ∈ (0,1). Hence every point q ∈ ∂M is contained in the support of at most a

finite number of the functions in the above set. Further, setting

ϕi,p =
ϕ̄i,p

∑
n
`=1 ∑p̄∈E`,ε

ϕ̄`,p̄
, ψi,p =

ψ̄i,p

∑
n
`=1 ∑ p̄∈E`,ε

ψ̄`,p̄
,

one has that, for every ε ∈ (0,1), the above functions are partitions of unity and the sum

φ =
n

∑
i=1

∑
p∈Ei,ε

ϕi,p (4.20)

is identically one on an open neighborhood of the boundary ∂M. The above functions still satisfy

(4.16) and will allow us to localize problem (4.14) in a neighborhood of a point lying on the boundary

of the manifold M. In §3.2 , parabolic Schauder estimates for the heat operator of the Laplace-

Beltrami operator have been established. The idea is to use those estimates, upon an appropriate

rescaling, to a localized version of problem (4.14). This will be accomplished employing the tech-

nique of frozen coefficients.

Before we proceed, we assume from this point on that the factor a in (4.14) lies in Ck,β
x4Φ

(M× [0,T ])
for some 0 < α < β < 1. Under this assumption, we have

‖a−a(p,0)‖∞,suppψm,p ≤C(T β/2 + ε
β ), (4.21)
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for some uniform constant C > 0. Moreover, additional Φ-derivatives, once again, only add positive

ε-powers, leading to similar estimates as the ones shown in (4.18).

Fix a point p̄ on the boundary ∂M. Note that, by construction, any point q on the boundary, lies on

the support of at most a fixed number of functions in the set (4.19). Hence, without loss of generality,

we can consider p̄ lying in Ei,ε for some i = 1, . . . ,n. Problem (4.14) can be localize, near p̄, as

follows. Let us freeze the factor a(p̄, t) in front of the Laplacian at (p̄,0) and consider, for a given

` ∈ xγCk,α
x4Φ

(M× [0,T ]), the Cauchy problem

P(p̄,0)ūp̄ := (∂t−a(p̄,0)∆)ūp̄,0 = ϕi,p̄`, ūp̄|t=0 = 0. (4.22)

Assuming that a is positive and denoting the solution of the solution operator of (4.22) by Hγ,p̄ (which,

up to rescaling, is the heat operator), a solution to (4.22) is given by:

ū p̄ = Hγ,p̄(ϕm,p̄`) ∈ xγCk+2,α
x4Φ

(M× [0,T ]).

Let us define the function

up̄ = ψi,p̄Hγ,p̄(ϕi,p̄`). (4.23)

Lemma 4.6. Let a ∈Ck,β
x4Φ

(M× [0,T ]), with 0 < α < β < 1, be positive, bounded from below away

from zero. Then the function up̄ defined in (4.23) satisfies

Pu p̄ := (∂t−a∆)up̄ = ϕi,p̄`+R1
i,p̄`+R2

i,p̄`, (4.24)

where

a) R1
i,p̄ : xγCk,α

x4Φ
(M× [0,T ])→ xγCk,α

x4Φ
(M× [0,T ]) is a bounded operator with a uniform constant

such that

‖R1
i,p̄`‖∗k,α,γ ≤C

(
T ε
−α +T α/2

ε
−2α +T α/2

ε
β−α + ε

β−α

)
‖`‖∗k,α,γ .

b) R2
i,p̄ : xγCk,α

x4Φ
(M× [0,T ])→ xγCk,α

x4Φ
(M× [0,T ]) is a bounded operator and its operator norm

goes to 0 as T → 0+ i.e.

lim
T→0+

‖R2
i,p̄‖op = 0.

Proof. In order to avoid the plethora of indices we will suppress all the indices on ϕ,ψ and the error

terms R0 and R1. Computing Pup gives us the following:

Pup =(∂t−a∆)ψHp(ϕ`)

=ψ∂tHp(ϕ`)−a∆(ψHp(ϕ`))

=ψ∂tHp(ϕ`)−aHp(ϕ`)∆ψ−2a〈∇ψ,∇Hp(ϕ`)〉−aψ∆Hp(ϕ`).
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On the other hand, for every function v sufficiently regular we have

[ψ,a∆]v := aψ∆v−a∆(ψv) = aψ∆v−a(v∆ψ +2〈∇ψ,∇v〉+ψ∆v)

=−2a〈∇ψ,∇v〉−av∆ψ.
(4.25)

Consequently, we get to rewrite Pup as

Pup = ψ(∂t−a∆)Hp[ϕ`]+ [ψ,a∆](Hp(ϕ`))

= ψ(∂t−a(p,0))∆)Hp(ϕ`)+ψ((a(p,0)−a)∆)Hp(ϕ`) (4.26)

+[ψ,a∆]Hp(ϕ`)

= ψϕ`+ψ(a(p,0)−a)∆Hp(ϕ`)+ [ψ,a∆]Hp(ϕ`)

=: ψϕ`+R1`+R2`.

Note that the first term in equation (4.26) is obtained from the fact that Hp(ϕ`) is a solution of

the localized Cauchy problem. Moreover, since ψ = 1 on the support of ϕ we can conclude that

ψϕ`= ϕ`.

Let us estimate R1` and R2` for γ = 0 and k = 0. The cases γ ∈ R and k ∈ N can be proven

analogously with minor adjustments.

For the estimate of R1`, let us first note by Theorem 4.4,

∆Hp : Cα

x4Φ
(M× [0,T ])→ tα/2C0(M× [0,T ]). (4.27)

Note that in the estimate of R1`, the suprema in the definition of Hölder norm can be taken over

suppψ ≡ suppψi,p̄. We note then from (4.16)

• [∆Hp(ϕ`)]
∗
α ≤Cε

−α‖`‖∗α ,

• [ψ]∗α ≤Cε
−α .

For the supremum-norm, taken again over suppψ , we find from (4.16) and (4.27):

•‖a(p̄,0)−a‖∞ ≤C(T β/2 + ε
β ),

•‖∆Hp(ϕ`)‖∞ ≤CT α/2‖`‖∞.

From there we conclude

‖R1`‖∗α = ‖ψ‖∞‖a−a(p̄,0)‖∞‖∆Hp(ϕ`)‖∞

+[ψ]∗α‖a−a(p̄,0)‖∞‖∆Hp(ϕ`)‖∞

+‖ψ‖∞[a−a(p̄,0)]∗α‖∆Hp(ϕ`)‖∞

+‖ψ‖∞‖a−a(p̄,0)‖∞[∆Hp(ϕ`)]
∗
α

≤C‖`‖∗α
(
(T β/2 + ε

β )T α/2 +T α/2
ε
−α(T β/2 + ε

β )+T α/2 + ε
−α(T β/2 + ε

β )
)
.
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Altogether, we obtain

‖R1`‖∗α ≤C‖`‖∗α
(

T (α+β )/2
ε
−α +T α/2 +T α/2

ε
β−α + ε

β−α

)
.

Let us now prove the second part of the statement, that is proving R2 to be a bounded operator

with operator norm converging to 0 as T goes to 0. From (4.25), we get to rewrite R2 as

R2`=−2a〈∇ψ,∇Hp(ϕ`)〉−aHp(ϕ`)∆ψ.

Since ψ is constant on a neighborhood of the boundary ∂M, Lemma 4.5 guarantees that the operator

R2 : Ck,α
x4Φ

(M× [0,T ])→Ck,α
x4Φ

(M× [0,T ]) is a bounded operator with operator norm converging to 0

as T goes to 0.

Now, let us prove the case k > 0. First, note that the proof presented of the estimate for R2 does

not rely on the value of k, hence requiring no further explanations. Therefore, we must prove that

‖V R1`‖∗α ≤C‖`‖∗α
(

T (α+β )/2
ε
−α +T α/2 +T α/2

ε
β−α + ε

β−α

)
,

for all V ∈ V l
Φ

, with l ≤ k. Naturally, it is reasonable to decompose V =V1V2V3, where Vj ∈ V
l j

Φ
(M)

and l1 + l2 + l3 = l. Thus, we get

V R1`= ∑
l1+l2+l3≤k

V1ψ ·V2(a(p,0)−a) ·V3∆Hp(ϕ`).

Assume l3 ≤ k−1. Then Vl3∆ ∈ Diffk+1
Φ

(M) and thus, from Theorem 4.4, it follows that

‖V R1`‖∗α ≤C ∑
l1+l2+l3≤k

T α/2‖V1ψ‖∗α‖V2(a(p,0)−a)‖∗α‖`‖∗α ,

which, combined with (4.18) and (4.21) allows us to conclude the estimate for l3 ≤ k− 1. Now,

assume l3 = k, which means Vl3∆ ∈ Diffk+2
Φ

(M). From Theorem 3.10, it follows that Vl3∆Hp(ϕ`) ∈
Cα

x4Φ
(M× [0,T ]) and thus, employing once again (4.16) and (4.21), the estimate follows.

Remark 4.7. We point out that the condition Ck,β
x4Φ

(M× [0,T ]) on the factor a cannot be improved

for this construction of the parametrix – we cannot ask for a to lie in any Hölder space with an

exponent that does not exceed α – because we must be able to choose ε sufficiently small such that

εβ−α < δ/4C, which cannot be true if β ≤ α .

We can now construct a boundary parametrix. Set

QB`=
n

∑
i=1

∑
p∈Ei,ε

ψi,pHp(ϕi,p`). (4.28)

Proposition 4.8. For every δ > 0 one can find ε > 0 and T0 > 0 small enough so that

QB : xγCk,α
x4Φ

(M× [0,T0])→ xγCk+2,α
x4Φ

(M× [0,T0]),
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QB : xγCk,α
x4Φ

(M× [0,T0])→ xγ
√

tCk+1,α
x4Φ

(M× [0,T0])

are bounded operators satisfying, for φ defined as in (4.20),

(∂t−a∆)(QB`) = φ`+R1`+R2`

with ‖R1`‖∗k,α,γ ≤ δ and ‖R2`‖∗k,α,γ converging to 0 as T goes to 0.

Proof. First of all let us note that the sums in (4.28) are finite. Boundedness of QB follows directly

from Theorem 3.10. Indeed, both multiplication operators Mψi,p and Mϕi,p are bounded operators

preserving the regularity (from Proposition 3.4). Thus, we have

QB :xγCk,α
x4Φ

(M× [0,T ])
Mψi,p−−−→ xγCk,α

x4Φ
(M× [0,T ])

Hp−→
Hp−→ xγ

√
tCk+1,α

x4Φ
(M× [0,T ]))

Mϕi,p−−−→ xγ
√

tCk+1,α
x4Φ

(M× [0,T ]).

Following along the same lines one can see that QB is also bounded when taken from xγCk,α
x4Φ

(M×
[0,T ]) to xγCk+2,α

x4Φ
(M× [0,T ]).

Computing explicitly (∂t−a∆)(QB`) and applying Lemma 4.6 one has

(∂t−a∆)(QB`) =
n

∑
i=1

∑
p∈Ei,ε

(∂t−a∆)(ψi,pHp(ϕi,p`))

= φ`+
n

∑
i=1

∑
p∈Ei,ε

R1
i,p`+

n

∑
i=1

∑
p∈Ei,ε

R2
i,p`.

For simplicity let us denote, R j`=
n

∑
i=1

∑
p∈Ei,ε

R j
i,p` for j = 1,2. We will denote all the uniform positive

constants arising from the estimates by C > 0. From Lemma 4.6 follows that

‖R1
i,p`‖∗k,α ≤C

(
T (α+β )/2

ε
−α +T α/2 +T α/2

ε
β−α + ε

β−α

)
‖`‖∗k,α .

Hence we estimate ‖R1
i,p‖op as follows

‖R1
i,p‖op = sup

‖`‖∗k,α=1
‖R1

m,p`‖∗k,α ≤C
(

T (α+β )/2
ε
−α +T α/2 +T α/2

ε
β−α + ε

β−α

)
.

Given any δ > 0, choose both ε > 0 and T > 0 small enough in a way that

T (α+β )/2
ε
−α ,T α/2

ε
β−α ,T α/2,εβ−α < δ/4C,

and x = ε is a smooth hypersurface. In such a way we get ‖R1‖op < δ .

The statement about R2 follows automatically from Lemma 4.6.

Remark 4.9. Choosing ε small enough so that x = ε is a smooth hypersurface will be useful in the

next subsection.
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4.3.2 Construction of the Parametrix

In the previous subsection, through localization, we used mapping properties of H? to construct an

approximate boundary parametrix. In this subsection we will construct first an approximate interior

parametrix and we will conclude with the construction of a right inverse for the Cauchy problem

(4.14).

First of all note that on compact subspaces of M, the construction of a parametrix is a mere

application of classical PDE theory on compact manifolds. With respect to ε as in the previous

section, an ε-neighborhood of ∂M is fixed and the function φ is identically 1 on such a neighborhood.

The idea is to cut off a neighborhood of the boundary from M. Let Yε = {p ∈M | x = x(p) ≥ ε/2};
it is clear that Yε is a manifold with boundary. Denote by Y the double space of Yε , consisting in two

copies of Yε glued together along the boundary, which is a compact manifold without boundary. Note

that the double space construction does not lead to a smooth metric on Y . In order to smooth it up

we consider a smoothing of such a metric so that the metric on Y and the one on M coincide on Y2ε .

Moreover on Y we are working away from the boundary hence the α-Hölder norms are the classical

ones.

We can extend the function (1−φ) to a function, still denoted by (1−φ), on Y by setting it to be

0 on the second copy of Yε . In particular such a function (1− φ) defines a smooth cut off function

over Yε in Y . Similarly, let P denote the uniform parabolic extension of P|Yε
to Y .

It is well known, from classical parabolic PDE theory, that there exists a parametrix QI for the

heat operator P so that the maps

QI : Ck,α(Y × [0,T ])→
(

Ck+2,α ∩
√

tCk+1,α
)
(Y × [0,T ]) (4.29)

is bounded. The idea is to use such a parametrix QI and the boundary parametrix constructed above

to construct a parametrix Q for the Cauchy problem (4.14).

Note that, for a given function û ∈Ck,α(Y × [0,T ]), one has QI û ∈
√

tCk+1,α(Y × [0,T ]). In order

to turn QI û into a function in Ck,α
x4Φ

(M× [0,T ]), let us consider a cut off function Ψ on Y so that Ψ = 1

on supp(1−φ). We can now define the operator

QI := M
Ψ

QIM(1−φ).

As pointed out in Remark 4.2, M
Ψ

and M(1−φ) preserve the regularity and are bounded operators.

Hence, it follows that

QI : xγCk,α
x4Φ

(M× [0,T ])
M(1−φ)−−−−→Ck,α(Y × [0,T ])

QI−→
QI−→
√

tCk+1,α(Y × [0,T ])
M

Ψ−−→
√

tCk+1,α(Yε × [0,T ])

acts continuously. Moreover, since we are working away from the boundary of M, the spaces Ck+1,α(Yε×
[0,T ]) can be identified with the space xγCk+1,α

Φ
(Yε× [0,T ]). We can hence conclude that the operator
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QI mapping

QI : xγCk,α
x4Φ

(M× [0,T ])→ xγ
√

tCk+1,α
x4Φ

(M× [0,T ])

is bounded. It is then clear that a parametrix for the Cauchy problem in (4.14) is given by

Q`= QB`+QI`

with the map

Q : xγCk,α
x4Φ

(M× [0,T ])→ xγ
√

tCk+1,α
x4Φ

(M× [0,T ])

being bounded.

Proposition 4.10. Let a ∈ Ck,β
x4Φ

(M× [0,T ]), with 0 < α < β < 1, be positive, bounded from below

away from zero, and consider the operator P = ∂t −a∆. For T0 > 0 sufficiently small there exists an

operator Q so that the map

Q : xγCk,α
x4Φ

(M× [0,T0])→ xγ

(
Ck+2,α

x4Φ
∩
√

tCk+1,α
x4Φ

)
(M× [0,T0])

is bounded. Moreover, for every function ` in xγCk,α
x4Φ

(M× [0,T ]), Q` is a solution of the inhomoge-

neous Cauchy problem

(∂t−a∆)u = `, u|t=0 = u0. (4.30)

Proof. Let ` be a function in xγCk,α
Φ

(M× [0,T ]). Applying Proposition 4.8 and the construction above,

we get

(∂t−a∆)(Q`) = φ`+R1`+R2`+(1−φ)`+R3`

where R1 and R2 are the ones arising from Proposition 4.8 while R3 is given by

R3`= [ψ,a∆](QI(1−φ)`).

It is clear from the definition that R3 : xγCk,α
x4Φ

(M× [0,T ])→ xγCk,α
x4Φ

(M× [0,T ]). Further, the operator

norm of R3 can be estimated in the same way as we have already estimated R2 in Lemma 4.6. In

particular it follows that both ‖R2‖op and ‖R3‖op converge to 0 as T goes to 0 while ‖R1‖op < δ . We

can now choose T0 small enough so that, denoting by R := R1 +R2 +R3,

‖R‖op ≤ ‖R1‖op +‖R2‖op +‖R3‖op < 1.

It is now clear that id+R is invertible, with inverse obtained via the von Neumann series of R. The

claimed right parametrix of P will then be

Q = Q(id+R)−1.
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Corollary 4.11. Let a∈Ck,β
x4Φ

(M× [0,T ]), with 0 < α < β < 1, be positive, bounded from below away

from zero. For T0 sufficiently small there exists an operator E

E : xγCk+2,α
x4Φ

(M)→ xγCk+2,α
x4Φ

(M× [0,T0])

so that E is bounded and, if u0 is a function in xγCk+2,α
x4Φ

(M), u=Eu0 is a solution of the homogeneous

Cauchy problem

(∂t−a∆)u = 0, u|t=0 = u0. (4.31)

Proof. Since u0 ∈ xγCk+2,α
x4Φ

(M) then a∆u0 lies in xγCk,α
x4Φ

(M× [0,T ]). Using the right inverse for the

inhomogeneous Cauchy problem constructed in Proposition 4.10, set

Eu0 = u0 +Q(a∆u0).

An easy computation shows that Eu0 indeed solves the homogeneous Cauchy problem.

Even though Proposition 4.10 and Corollary 4.11 together do provide solutions for the inhomoge-

neous Cauchy problem we wish to solve, they do this at the cost of possibly shrinking the time inter-

val on which a is defined on. To fix this issue, we now improve upon Proposition 4.10 by employing

Theorem 2.7 (the maximum principle). To be more precise, we need to know that the homogeneous

Cauchy problem

(∂t−a∆)u = 0, u|t=0 = 0

has only the trivial solution u = 0 in xγCk,α
x4Φ

(M× [0,T ]). But this is a consequence of Theorem 2.7,

since the functions in xγCk,α
x4Φ

(M× [0,T ]) satisfy the conditions imposed in Proposition 2.6. Therefore,

we have the following theorem.

Theorem 4.12. Consider a function a ∈Ck,β
x4Φ

(M× [0,T ]), with 0 < α < β < 1, be positive, bounded

from below away from zero. Then the equations

(∂t−a∆)u = `;u|t=0 = 0, (4.32)

(∂t−a∆)u = 0;u|t=0 = u0 (4.33)

have solutions Q` and Eu0, respectively, such that

Q : xγCk,α
x4Φ

(M× [0,T ])→ xγCk+2,α
x4Φ

(M× [0,T ]),

E : xγCk,α
x4Φ

(M)→ xγCk+2,α
x4Φ

(M× [0,T ]),

are bounded maps, for any γ ∈ R.

Proof. First, let us focus on proving the existence of a solution for the first of the two Cauchy prob-

lems above.

From Proposition 4.10, we know that the Cauchy problem above, in fact, does have a solution,

say u ∈ xγCk+2,α
x4Φ

(M× [0,T0]). If T0 ≥ T , clearly there is nothing to do. Thus, let us assume T0 < T .
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Our goal is to prove that u can actually be extended to a solution on the entire interval [0,T ]. Consider

0 < ε < T0 and the Cauchy problem

(∂t−a∆)v1 = 0; v1|t=0 = u|t=T0−ε . (4.34)

Once again, the parametrix construction (Corollary 4.11) ensures the existence of a solution v1 in

xγCk+2,α
x4Φ

(M× [0,T0]). Observe that a simple change of variables given by the translation t 7→ t +

(T0− ε) allows us to define v1 as a function defined on [T0− ε,2T0− ε]. Moreover, consider now the

inhomogeneous Cauchy problem

(∂t−a∆)u1 = `; u1|t=0 = 0. (4.35)

Similarly, we do have a solution u1 in xγCk+2,α
x4Φ

(M× [0,T0]) and, following the same logic on the

previous paragraph, we are allowed to define u1 as a function on [T0− ε,2T0− ε]. Now, note that on

the interval [T0− ε,T0] we have

(∂t−a∆)(u1 + v1) = `; (u1 + v1)|t=T0−ε = u|t=T0−ε , (4.36)

which is a Cauchy problem that (u1+v1)∈ xγCk+2,α
x4Φ

(M× [T0−ε,T0]) satisfies. However, the function

u also satisfies the same Cauchy problem and, therefore, from Theorem 2.7 it follows that u = u1+v1

on [T0− ε,T0]. Hence we can now extend u past T0 by defining

ũ(p, t) =
{

u(p, t), if 0≤ t ≤ T0,
(u1 + v1)(p, t), if T0 < t ≤ 2T0− ε.

If 2T0− ε ≥ T , then we have already an extension of u on the entire desired interval. Otherwise,

repeat the process with ũ until nT0−nε ≥ T (which is possible in a finite number of repetitions since

[0,T ] is compact). Thus we have an extension of u defined on M× [0,T ]. Note that this extension

was obtained employing the parametrix construction, namely the maps Q and E, which are bounded,

from where follows that the extended map Q given by ` 7→ ũ is bounded too, therefore enabling us to

now extend E as well, completing the proof.

This concludes the proof of Theorem 0.5.

4.4 Short-time existence and regularity of solutions

Now that we finished constructing a parametrix in the previous section, we turn our attention

once again to the Yamabe flow. The ultimate goal of this chapter is to discuss whether or not there

exists a Yamabe flow on Φ-manifolds with conformal factor in C2,α
x4Φ

(M× [0,T ]), which is a stronger

assumption than the one imposed in the previous chapter.
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To do this, write once again the flow equation in terms of the conformal factor and linearize it near

the time t = 0 (as in §3.3), obtaining

(∂t−∆Φ)v =−
1
η

v∆Φv+ v2s(v)∆Φv− η

m−1
scal(gΦ)+

1
m−1

scal(gΦ)v

+
1

m−1
scal(gΦ)v2(1−ηs(v)−ηvs(v)),

(4.37)

where u = 1+ v is the linearized expression of the conformal factor near t = 0. Simplifying the

notation on the right hand by taking

F ′1(v) :=− η

m−1
scal(gΦ)+

1
m−1

scal(gΦ)v

+
1

m−1
scal(gΦ)v2(1−ηs(v)−ηvs(v)),

F ′2(v) :=− 1
η

v∆Φv+ v2s(v)∆Φv.

Hence, we once again must look for a function that satisfies

(∂t−∆Φ)v = (F ′1 +F ′2)v, v|t=0 = 0. (4.38)

First, note that the constant function 1 lies in any Ck,β
x4Φ

(M× [0,T ]). Moreover, Proposition 4.10

guarantees that the conditions imposed on the parametrix by Theorem 3.14 are met. Furthermore,

the proof of Theorem 3.14 does not depend on the definition of the Hölder brackets. Consequently,

Theorem 3.14 holds for functions on the modified Hölder spaces xγCk,α
x4Φ

(M× [0,T ]) as well. Thus, we

must only check that each F ′1 and F ′2 satisfy the conditions required. However, the proofs of Lemma

3.15 and Lemma 3.16 are also independent on the definition of the Hölder brackets, which means that

1. Lemma 3.15 holds for F ′2 with the exact same formulation, simply exchanging xγCk,α
Φ

(M×
[0,T ]) by xγCk,α

x4Φ
(M× [0,T ]);

2. Lemma 3.16 holds for F ′1 analogously as in the changes described in (i), with the only difference

that we must require scal(gΦ) ∈ xγCk−1,α
x4Φ

(M).

Therefore, we just proved the following theorem.

Theorem 4.13. Let (M,gΦ) be a Φ-manifold of dimension m ≥ 3. Assume scal(gΦ) ∈ xγCk+1,α
x4Φ

(M)

for some α ∈ (0,1), some γ ≥ 0 and any k ∈ N0. Then the Yamabe flow (2) admits a unique solution

g = u4/(m−2)gΦ, where u ∈Ck+2,α
x4Φ

(M× [0,T ]), for some time T > 0 sufficiently small.

Naturally, this proves Theorem 0.6
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4.4.1 The problem of the global Yamabe flow in Cα

x4Φ
(M× [0,+∞))

The results we obtained for the Yamabe flow for conformal factor in Cα

x4Φ
(M× [0,T ]) as similar

to the ones we got when the conformal factor was a function in Cα
Φ
(M× [0,T ]). However, from this

point on, this is no longer true. In fact, although we managed to show that the Yamabe flow does exist

and is unique for some short-time T when u ∈Cα

x4Φ
(M× [0,T ]), we could not extend the short-time

solution to a global solution of the flow which remains continuous up to the boundary.

First, recall that η = (m− 2)/4. Let u ∈ C2.α
x4Φ

(M× [0,T ]) be the conformal factor such that

g = u1/ηgΦ is the solution of the Yamabe flow. To prove long-time existence of the flow, we could

proceed as in §3.9 and linearize u′ at time T by setting u′ = u0 + v, with u0 = u|t=T , with initial

condition u′|t=0 = u0. We obtain from the second equation in (3.2)(
∂t− (m−1)u−1/η

0 ∆

)
v = F ′1(v)+F ′2(v), v|t=0 = 0, (4.39)

where we have abbreviated

F ′1(v) = Q2(v), F ′2(v) = (m−1)u−1/η

0 ∆u0− scal(gΦ)u
1−1/η

0 +Q1(v),

where Q1(v) are linear combinations of v with coefficients given in terms of u0 and ∆u0 and the terms

in Q2(v) include quadratic combinations of v and ∆v with coefficients in terms of u0 and ∆u0.

For us to be able to use the parametrix construction in §4.3, the function u0 = u|t=T ∈C2,α
x4Φ

(M)

must lie in C2,β
x4Φ

(M) for some α < β < 1, which is generally not true! Moreover, as pointed out

previously in Remark 4.7, this condition cannot be improved in the construction provided in §4.3.
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APPENDIX A

Curvature on Φ-manifolds

This appendix presents explicit computations of the Riemann curvature tensor on an open man-

ifold M endowed with an exact Φ-metric. The general case behaves similarly in terms of its lower

order terms, preserving the overall behavior we are interested in. Before discussing how to proceed,

let us present the concept of warped product of Riemannian manifolds.

Definition A.1. Consider two Riemannian manifolds (N1,gN1) and (N2,gN2) and let ψ ∈C∞(N2) be

a positive function. On the product manifold N1×N2, let π∗ denote the standard projection map from

N1×N2 to each individual manifold. The warped product N1 ×ψ N2 is the product manifold N1×N2

furnished with the Riemannian metric

gψ := (ψ ◦πN2)
2
π
∗
N1

gN1 +π
∗
N2

gN2. (A.1)

N1 is called the fiber, N2 is called the base and the function ψ is called the warping function. Often,

the metric gψ is written omitting the projections π∗, as we do in this present work.

Naturally, product metrics are example of warped metrics, with ψ = 1.

From the previous definition, it is clear that the exact Φ-metric gΦ,0 on M, which is given near the

boundary by the expression

gΦ,0 :=
dx2

x4 +
φ∗gY

x2 +gZ,

is a product metric between a warped metric on (0,1)×Y and a metric on Z. Now, the curvature

tensor R on a generic manifold is defined by the expression

R(X ,Y )Z := ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z, (A.2)

for X ,Y,Z vector fields. In O’Neill’s book on Semi-Riemannian geometry [O’N83], we have the

following

95
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Proposition A.2. [O’N83, pg. 210] Let N1 ×ψ N2 be a warped product manifold. If U,V,W ∈ V (N1)

and X ,Y,W ∈ V (N2) are vector fields, then

1. Rψ(X̃ ,Ỹ )Z̃ = ˜RN2(X ,Y )Z;

2. Rψ(Ṽ , X̃)Ỹ =−Hessψ(X ,Y )
ψ

Ṽ ;

3. Rψ(X̃ ,Ỹ )Ṽ = Rψ(Ṽ ,W̃ )X̃ = 0;

4. Rψ(X̃ ,Ṽ )W̃ =−
gψ(Ṽ ,W̃ )

ψ

˜∇X gradψ;

5. Rψ(Ṽ ,W̃ )Ũ = ˜RN1(V,W )U− gN2(gradψ,gradψ)

ψ2

(
gψ(W̃ ,Ũ)Ṽ −gψ(Ṽ ,Ũ)W̃

)
,

where .̃ represents the lift of a vector field to N1 ×ψ N2.

Since gΦ,0 is a product metric between a warped metric on (0,1)×Y and a metric in Z, and since

Hess1 = grad1 = 0, it follows from the previous proposition that the curvature of Z contributes only

with bounded terms to the curvature of M (since Z is closed). Thus, to understand the curvature of

M, it suffices to study the curvature of (0,1)×x−1 Y . Note that this coincides with the case ∂M = Y ,

which means that φ can be omitted.

Consider M an open manifold endowed with a metric

gΦ,0 =
dx2

x4 +
gY

x2 , (A.3)

where Y is a b-dimensional closed manifold. Considering a local frame {∂x,∂yi−1 | i = 1, ...,b}, we

obtain (locally) a matrix representation

(gΦ,0) =: (gi j) =

(
x−4

x−2((gY )i j)

)
=⇒ (gΦ,0)

−1 =: (gi j) =

(
x4

x2((gY )
i j)

)
.

A.1 Christoffel symbols

It is well known that, locally, the Christoffel symbols are given by

Γ
m
i j =

1
2 ∑

k

(
∂ig jk +∂ jgki−∂kgi j

)
gkm. (A.4)

Naturally, this means Γm
i j = Γm

ji for all i, j.

• Case m = 1: In this case, gk1 6= 0 iff k = 1 and, therefore,

(ΓΦ,0)
1
i j =

1
2
(
∂ig j1 +∂ jg1i−∂xgi j

)
x4.

Then,

(ΓΦ,0)
1
11 =

1
2

∂xx−4 · x4 =−2x−1,
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(ΓΦ,0)
1
1 j =

1
2
(∂xg j1 +∂y j−1g11−∂xg1 j)x4 = 0, for all j ≥ 2,

(ΓΦ,0)
1
i j =

1
2
(∂yi−1g j1 +∂y j−1g1i−∂xgi j) =−

1
2

∂xx−2(gY )i−1 j−1 · x4 = x(gY )i−1 j−1, for all i, j ≥ 2.

• Case m≥ 2: In this case, gkm 6= 0 iff k ≥ 2 and, therefore,

(ΓΦ,0)
m
i j =

1
2 ∑

k≥2

(
∂ig jk +∂ jgki−∂yk−1gi j

)
x2(gY )

k−1 m−1.

Therefore,

(ΓΦ,0)
m
11 =

1
2 ∑

k≥2
(∂xg1k +∂xgk1−∂yk−1x−4)x2gk−1 m−1

Y = 0,

(ΓΦ,0)
m
1 j =

1
2 ∑

k≥2
(∂xx−2(gY ) j−1 k−1 +∂y j−1gk1−∂yk−1g1 j)x2gk−1 m−1

Y =−x−1
δ

m
j ,

(ΓΦ,0)
m
i j =

1
2 ∑

k≥2
x−2(∂yi−1(gY ) j−1 k−1 +∂y j−1(gY )k−1 i−1−∂yk−1(gY )i−1 j−1)x2gk−1 m−1

Y = (ΓY )
m−1
i−1 j−1,

for all i, j ≥ 2.

A.2 Riemann curvature

The Riemann curvature can be expressed, locally, by the expression:

Rs
i jk = ∑

l
Γ

l
jkΓ

s
il−∑

l
Γ

l
ikΓ

s
jl +∂iΓ

s
jk−∂ jΓ

s
ik. (A.5)

• Case s = 1: If we assume s = 1, then

(RΦ,0)
1
i jk = ∑

l
Γ

l
jkΓ

1
il−∑

l
Γ

l
ikΓ

1
jl +∂iΓ

1
jk−∂ jΓ

1
ik.

This means that if k 6= i and k 6= j, then (RΦ,0)
1
i jk = 0. Thus, the interesting cases are either k = i or

k = j.

If k = i, then

(RΦ,0)
1
i ji = ∑

l
Γ

l
jiΓ

1
il−∑

l
Γ

l
iiΓ

1
jl +∂iΓ

1
ji−∂ jΓ

1
ii.

Therefore, if i = 1,

(RΦ,0)
1
111 = Γ

1
11Γ

1
11−Γ

1
11Γ

1
11 +∂xΓ

1
11−∂xΓ

1
11 = 0,

(RΦ,0)
1
1 j1 = Γ

1
j1Γ

1
11−Γ

1
11Γ

1
j1 +∂xΓ

1
j1−∂y j−1Γ

1
11 = 0, for all j ≥ 2.

On the other hand, if i≥ 2,

(RΦ,0)
1
i ji = ∑

l≥2
Γ

l
jiΓ

1
il−∑

l
Γ

l
iiΓ

1
jl +∂yi−1Γ

1
ji−∂ jΓ

1
ii.
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Thus,

(RΦ,0)
1
i1i = ∑

l≥2
(−x−1

δ
l
i )x(gY )i−1 l−1− (−2x−1)x(gY )i−1 i−1−∂xx(gY )i−1 i−1 = 0,

(RΦ,0)
1
i ji = x

(
∑
l≥2

(ΓY )
l−1
j−1 i−1(gY )i−1 l−1−∑

l≥2
(ΓY )

l−1
i−1 i−1(gY ) j−1 l−1

+∂yi−1(gY ) j−1 i−1−∂y j−1(gY )i−1 i−1
)
,

for all j ≥ 2, which completes computations of the case i = k. On the other hand, if we assume j = k,

similar computations give the following outcomes:

(RΦ,0)
1
i11 = R1

1 j j = 0, for all i, j ≥ 2,

(RΦ,0)
1
i j j = x

(
∑
l≥2

(ΓY )
l−1
j−1 j−1(gY )i−1 l−1−∑

l≥2
(ΓY )

l−1
i−1 j−1(gY ) j−1 l−1

+∂yi−1(gY ) j−1 j−1−∂y j−1(gY )i−1 j−1,

for all i≥ 2.

• Case s≥ 2: Unlike the previous case, assuming s≥ 2 does not provide any further information

on (RΦ,0)
s
i jk a priori. Then, to obtain information on these terms, we need to split computations into

several cases. We obtain the following:

(RΦ,0)
s
11k = ∑

l
Γ

l
1kΓ

s
1l−∑

l
Γ

l
1kΓ

s
1l +∂xΓ

s
1k−∂xΓ

s
1k = 0, for all k,

(RΦ,0)
s
1 j1 = ∑

l≥2
(−x−1)δ l

j(−x−1)δ s
l − (−2x−1)(−x−1)δ s

j +∂x(−x−1
δ

s
j ) = 0, for all j ≥ 2,

(RΦ,0)
s
1 jk = ∑

l≥2
(ΓY )

l−1
j−1 k−1(−x−1

δ
s
l )−∑

l≥2
(−x−1

δ
l
k)(ΓY )

s−1
j−1 l−1 = 0, for all j,k ≥ 2,

(RΦ,0)
s
i11 = (−2x−1)(−x−1

δ
s
i )−∑

l≥2
(−x−1

δ
l
i )(−x−1

δ
s
l )−∂x(−x−1

δ
s
i ) = 0, for alli≥ 2,

(RΦ,0)
s
i1k = ∑

l≥2
(−x−1

δ
l
k)(ΓY )

s−1
i−1 l−1−∑

l≥2
(ΓY )

s−1
i−1 k−1(−x−1

δ
s
l ) = 0, for alli,k ≥ 2,

(RΦ,0)
s
i j1 = ∑

l≥2
(−x−1

δ
l
j)(ΓY )

s−1
i−1 l−1−∑

l≥2
(−x−1

δ
l
i )(ΓY )

s−1
j−1 l−1 = 0, for alli, j ≥ 2.

Finally, for i, j,k ≥ 2, we get

(RΦ,0)
s
i jk = x(gY ) j−1 k−1(−x−1

δ
s
i )+ ∑

l≥2
(ΓY )

l−1
j−1 k−1(ΓY )

s−1
i−1 l−1− x(gY )i−1 k−1(−x−1

δ
s
j )

−∑
l≥2

(ΓY )
l−1
i−1 k−1(ΓY )

s−1
j−1 l−1 +∂yi−1(ΓY )

s−1
j−1 k−1−∂y j−1(ΓY )

s−1
i−1 k−1

= (RY )
s−1
i−1 j−1 k−1 +δ

s
j (gY )i−1 k−1−δ

s
i (gY ) j−1 k−1.

Since Y is a closed manifold, it follows that Rs
i jk is bounded.
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A.3 Curvature tensor

From definition, the curvature tensor of (M,gΦ,0) is given by

RΦ,0(X ,Y,Z,W ) := gΦ,0(R(X ,Y )Z,W ),

for any given vector fields X ,Y,Z,W ∈ V (M). Thus, considering the local frame {∂x,∂yi−1 | i =

1, ...,b}, one can write

RΦ,0(∂i,∂ j,∂k,∂s) = gΦ,0(RΦ,0(∂i,∂ j)∂k,∂s) = gΦ,0

(
∑

l
(RΦ,0)

l
i jk∂l,∂s

)
= ∑

l
(RΦ,0)

l
i jkgΦ,0(∂l,∂s) = ∑

l
(RΦ,0)

l
i jkgls =: (RΦ,0)i jks.

Hence, determining each (RΦ,0)i jks is enough to fully determine RΦ,0. However, we have the follow-

ing identities:

R jiks =−Ri jks, Ri jsk =−Ri jks and Rksi j = Ri jks . (A.6)

This means that we need to computate only a few cases. In fact, if we assume i = 1, we obtain

(RΦ,0)1 jks = (RΦ,0)
1
1 jkg1s + ∑

m≥2
(RΦ,0)

m
1 jkgms

As proven above, (RΦ,0)
1
i jk = 0 if k 6= i and k 6= j. Moreover, (RΦ,0)

m
i jk = 0 if m≥ 2 and either i = 1

or j = 1 of k = 1. If k = 1, then (RΦ,0)
1
1 j1 = (RΦ,0)

m
1 j1 = 0 for all j and m≥ 2. On the other hand, if

k = j implies (RΦ,0)
1
1 j j = 0. Hence, (RΦ,0)1 jks = 0. Thus, from (A.6) it follows that

(RΦ,0)i1ks = (RΦ,0)i j1s = (RΦ,0)i jk1 = 0

=⇒ (RΦ,0)i jks = 0, whenever i = 1 or j = 1 or k = 1 or s = 1.

From this, we conclude that the only nontrivial terms (RΦ,0)i jks are the ones with all its indices greater

or equal than 2, in which case

(RΦ,0)i jks = ∑
m≥2

(
(RY )

m−1
i−1 j−1 k−1 +δ

m
j (gY )i−1 k−1−δ

m
i (gY ) j−1 k−1

)
x−2(gY )m−1 s−1

= x−2 ((RY )i−1 j−1 k−1 s−1 +(gY )i−1 k−1(gY ) j−1 s−1− (gY ) j−1 k−1(gY )i−1 s−1
)

= x−2(F1)i jks,

where each (F1)i jks is a smooth function on Y . Similarly to the argument for (RΦ,0)
s
i jks, it follows that

each (F1)i jks is also a bounded function.

A.4 Norm of the curvature tensor

From definition, the norm of the curvature tensor R is locally given by

‖RΦ,0 ‖gΦ,0 :=
√

∑
i, j,k,s

(RΦ,0)i jks(RΦ,0)
i jks, with (RΦ,0)

si jk = ∑
a,b,c

giag jbgkc(RΦ,0)
s
i jk. (A.7)
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From §A.3, we know that (RΦ,0)i jks 6= 0 iff all its indices are strictly greater than 1, in which case

gia,g jb and gkc are nonvanishing iff a,b,c≥ 2 as well. Therefore, if i, j,k,s≥ 2,

(RΦ,0)
si jk = x6

∑
a,b,c≥2

(gY )
i−1 a−1(gY )

j−1 b−1(gY )
k−1 c−1(RΦ,0)

s
i jk = x6(F2)i jks,

where each (F2)i jks is a smooth function on Y . Once again, the fact that Y is a closed manifold implies

that each (F2)i jks is bounded. Therefore,

‖RΦ,0 ‖gΦ,0 =

√
∑

i, j,k,s
(RΦ,0)i jks(RΦ,0)

i jks =

√
∑

i, j,k,s≥2
(RΦ,0)i jks(RΦ,0)

i jks = O(x2).

Furthermore, one can obtain similar estimates to the derivatives of the curvature tensor. In fact,

the derivative of the curvature tensor is given by

∇RΦ,0(X ,Y,Z,W,U) := ∇U RΦ,0(X ,Y,Z,W ) = ∇U gΦ,0(RΦ,0(X ,Y )Z,W )

= gΦ,0(∇U RΦ,0(X ,Y )Z,W )+gΦ,0(RΦ,0(X ,Y )Z,∇UW ).
(A.8)

One can prove, via computations on local frames, that each derivative of the curvature tensor worsens

the singularity by two powers of x, that is, its lowest order term is of the order of x−4. However, when

“raising the indices” as before, one must introduce yet another term from (gΦ,0)
−1, whose lower order

term is of the order of x2. Thus, the increase in the singular term is compensated by the extra term

from (gΦ,0)
−1. Then,

‖∇i RΦ,0 ‖gΦ,0 = O(x2), for all i≥ 1.

A.5 Sectional curvature

Another important information (that proves itself useful in Chapter B) is the sectional curvature

of (M,gΦ,0). From definition,

KΦ,0(X ∧Y ) :=
RΦ,0(X ,Y,X ,Y )

gΦ,0(X ,X)gΦ,0(Y,Y )−gΦ,0(X ,Y )2 , with X ∧Y = span{X ,Y}, (A.9)

where X ,Y ∈ V (M). It follows from the definition that it is enough to determine the sectional curva-

ture on a local frame {∂x,∂yi−1 | i = 1, ...,b}, since any plane on the tangent space can be spanned by

vector fields in such local frame.

For X = ∂x and Y = ∂yi−1 ,

KΦ,0(∂x∧∂yi−1) =
(RΦ,0)1i1i

g11gii−g2
1i
= 0.

On the other hand, for X = ∂yi−1 and Y = ∂y j−1 , we have

KΦ,0(∂yi−1 ∧∂y j−1) =
(RΦ,0)i ji j

giig j j−g2
i j
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= x4

gΦ,0

(
∑
l≥2

(RY )
l−1
i−1 j−1 i−1∂yl−1,∂y j−1

)
(gY )i−1 i−1(gY ) j−1 j−1− (gY )2

i−1 j−1

+ x4

gΦ,0

(
∑
l≥2

(δ l
j(gY )i−1 j−1−δ

l
i (gY ) j−1 i−1)∂yl−1,∂y j−1

)
(gY )i−1 i−1(gY ) j−1 j−1− (gY )2

i−1 j−1

= x2(KY (∂yi−1 ∧∂y j−1)+1).

Therefore, this means the sectional curvature KM is bounded on M.

A.6 Ricci curvature

One of the main ingredients of this work is the study of the scalar curvature and, to do this, it

is necessary to obtain information on the scalar curvature of a Φ-manifold. However, to obtain such

information, one needs to determine the Ricci curvature first.

From definition, the Ricci curvature is localy given by

(RicΦ,0)ik := ∑
l
(RΦ,0)

l
ilk (A.10)

Directly from the computations in §A.2, it follows that

(RicΦ,0)ik = 0, if either i = 1 or k = 1.

On the other hand, for i,k ≥ 2, we get

(RicΦ,0)ik = (RΦ,0)
1
i1k + ∑

l≥2
(RΦ,0)

l
ilk = ∑

l≥2

(
(RY )

l−1
i−1 l−1 k−1 +δ

l
l (gY )i−1 k−1−δ

l
i (gY )l−1 i−1

)
= (RicY )i−1 k−1 + ∑

l≥2

(
(gY )i−1 k−1−δ

l
i (gY )l−1 i−1

)
= (RicY )i−1 k−1 +(b−1)(gY )i−1 k−1.

Similarly to the argument employed for the sectional curvature, one can conclude from this that the

Ricci curvature is bounded as well, since Y is a closed manifold.
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APPENDIX B

Injectivity radius on Φ-manifolds

This appendix discusses the injectivity radius of a Φ-manifold, which is a relevant information to

guarantee that such class of spaces has bounded geometry. First of all, let us present the definition of

injectivity radius.

Definition B.1. Let (M,g) be a Riemannian manifold. Given a point p ∈M and denoting B(p,R) as

an open ball in M centered at p and with radius R, the injectivity radius at p is defined as

rinj(p) := sup{ R > 0 | expp : B(p,R)→M is a diffeomorphism }. (B.1)

Then, the injectivity radius of M is given by

rinj(M) := inf{ rinj(p) | p ∈M }. (B.2)

Therefore, the injectivity radius of a manifold is the biggest R that defines an open covering of M

of normal coordinated charts of uniform radii. Naturally, the first problem to overcome in order to

estimate rinj(M) is to understand when is the exponential map even well-defined at a generic point.

Since Φ-manifolds are a class of complete Riemannian manifolds, this can be easily answered by the

Hopf-Rinow theorem, see [GHL90, Theorem 2.103, pg. 94], which states that a Riemannian manifold

is complete if, and only, if, the exponential map at each point is defined on the entire tangent space at

the same point, that is,

(M,g) is complete⇐⇒ expp : TpM→M, for all p ∈M. (B.3)

Hence, the exponential map at each point is always well-defined for all t ≥ 0, which means where

are now left with the task of estimating the injectivity radius from below. For compact manifolds, it

is a well known fact (proven by Klingenberg) that the injectivity radius is bounded from below away

from zero. Thus, it follows that rinj(Mn)≥ c(n)> 0, with Mn := {x≤ 1/n}. This means we must look
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for estimates of rinj(p) for points near the boundary. On the other hand, from §A.5, it is known that

Φ-manifolds have bounded sectional curvature. Thus, we are allowed to employ the following result

due to Cheeger, Gromov and Taylor:

Theorem B.2. [CGT82, Theorem 4.7] Let (M,g) be a m-dimensional complete, connected Rieman-

nian manifold such that there exist constants λ ,Λ satisfying λ ≤KM ≤Λ, and let p∈M. Furthermore,

let r > 0 and assume r < π/(4
√

Λ) if Λ > 0. Then the injectivity radius at p can be estimated from

below as follows:

rinj(p)≥ r
volB(p,r)

volB(p,r)+V m
λ
(2r)

, (B.4)

where V m
λ
(ρ) denotes the volume of a ball of radius ρ in the m-dimensional model space Mm

λ
with

constant sectional curvature λ .

This means that, in order to provide an estimate to the injectivity radius, one must look for esti-

mates for the volume of an open ball on a Φ-manifold. First, set r := x−1, which implies

gΦ,0 := dr2 + r2
φ
∗gY +gZ.

This means that the distance function on Φ-manifolds to be, locally, equivalent to

dΦ(p, p′)≈ |r− r′|+(r+ r′)dY (y,y′)+dZ(z,z′), (B.5)

where p = (r,y,z) and p′ = (r′,y′,z′). Let p, p0 ∈M and assume

|r− r0|< R/3, (r+ r0)dY (y,y0)< R/3 and dZ(z,z0)< R/3 =⇒ dΦ(p, p0)< R.

By using Fubini’s theorem and the above arguments, one can check that

volB(p0,R)≥
Rm−1

3b6 f
volBY (y0,1)volBZ(z0,1)

b+1
1

(r0 +R/6)b

(
(r0 +R/3)b+1− (r0−R/3)b+1

)
∼ Rm−1 1

(r0 +R/6)b

(
(r0 +R/3)b+1− (r0−R/3)b+1

)
.

Similar arguments can be used to estimate the volume of such ball from above, in which the expression

differs only by scaling to some bounded factor, which means the overall behavior to be the same. This

means that we can estimate the volume of a ball centered at p0 on a Φ-manifold in terms of its distance

between p0 and the boundary. Moreover, note that

lim
r0→+∞

1
(r0 +R/6)b

(
(r0 +R/3)b+1− (r0−R/3)b+1

)
≥ c > 0. (B.6)

Hence, it is possible to estimate such volume from below by a constant. On the other hand, a

quick analysis to the estimate provided in Theorem B.2 reveals that the left-hand side term of the

inequality (that is, rinj(p0)) does not depend on R and, therefore, because of the estimate obtained for

volB(p0,R), it is possible to see that rinj(M)≥ c0 > 0, as we desired.



APPENDIX C

On the distance function of a Φ-manifold

This appendix presents further explanations on the local expression of the distance function dΦ of

a Φ-manifold. This appendix relies on the fact that Φ-manifolds have bounded geometry. Thus, to

fully understand this appendix, see the subsection on manifolds of bounded geometry in Chapter 2.

First, lets us look at the distance function on the Riemannian manifold ((0,+∞),g := x−4 dx2).

For any two given points x,x′ ∈ (0,+∞), we know that the path connecting x and x′ is given by

γ(t) = x+ t(x′− x). Thus,

dg(x,x′) = lenght(γ) =
∫ 1

0
‖γ ′(t)‖g d t = |x− x′|

∫ 1

0

1
(x+ t(x′− x))2 d t

=
1
x
− 1

x′
=
|x− x′|

xx′
.

Now, remember that Φ-manifolds have bounded geometry and, therefore, there is an open covering

of M given by balls B(p,δ ) centered at each p ∈ M and of uniform radii δ such that the distance

function dΦ is uniformly equivalent to the Euclidean distance on normal coordinated charts. Hence,

dΦ(p, p′)≈

√
|x− x′|2

(xx′)2 +
‖y− y′‖2

(x+ x′)2 +‖z− z′‖2. (C.1)

Note that the expression in (C.1) is not the same as in (3.6). However, it is enough for us to prove

that both expressions are equivalent locally, since we use such expressions only restricted to the open

subsets given by the bounded geometry property of (M,gΦ). Given p0 ∈ M, for any two points

p, p′ ∈ B(p0,δ ), one has

p, p′ ∈ B(p0,δ ) =⇒
|x− x′|

xx′
≤ 2δ =⇒ |x− x′| ≤ 2δxx′.

Without loss of generality, assume x≥ x′. Thus,

x− x′ ≤ 2δxx′ =⇒ x≤ (2δx+1)x′.
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Since both x,x′ ≤ 1 and δ can be taken sufficiently small, then

2δx+1≤ 2 =⇒ x≤ 2x′.

Analogously, x′ ≤ 2x. Then, it follows that, in B(p0,δ ), we have x∼ x′, that is

x∼ x′⇐⇒ x
x′
,
x′

x
≤C+∞. (C.2)

Claim 1: If x∼ x′, then
|x− x′|

xx′
≤ K

|x− x′|
(x+ x′)2 , for some constant K > 0.

In fact, from (C.2) it follows that

(x+ x′)2 = (x+ x′)(x+ x′)≤ (x+Cx)(x′+Cx′)≤ K0xx′

=⇒ 1
xx′
≤ K−1

0
1

(x+ x′)2 =⇒ |x− x′|
xx′

≤ K−1
0
|x− x′|
(x+ x′)2 .

On the other hand, we have x+ x′ ≥ 2
√

x
√

x′ and, therefore, (x+ x′)2 ≥ 4xx′, which implies

1
(x+ x′)2 ≤

1
4

1
xx′

=⇒ |x− x′|
(x+ x′)2 ≤

1
4
|x− x′|

xx′
.

Therefore, it follows from this that

dΦ(p, p′)≈

√(
|x− x′|
(x+ x′)2

)2

+

(
‖y− y′‖
(x+ x′)

)2

+‖z− z′‖2

on each B(p0,δ ). Hence, this equivalence holds on each open ball given by the bounded geometry

property of a Φ-manifold.

Remark C.1. It should be noted that the expression in (3.6) not a globally defined distance function

on Φ-manifolds. In fact, the triangular inequality does not hold, in general, for this local expression.

However, the local expression (3.6), is a distance function when restricted to each B(p0,δ ), which

is where we are interested in working with such local expression. In fact, this is a consequence of a

more general fact, which follows:

Claim 2: If d′ ≥ 0 is uniformly equivalent to d, and d is a distance function, then d′ is a distance

function as well.

First, note that d′ ∼ d means that there is a constant C > 0 such that C−1d ≤ d′ ≤ Cd. Thus, it

follows directly from this that d′(p,q) = 0 iff p = q and, moreover, d′(p,q) = d′(q, p), for any p,q.

Furthermore,

d′(p,q)≤Cd(p,q)≤C(d(p,r)+d(r,q))≤CC−1(d′(p,r)+d′(r,q))

= d′(p,r)+d′(r,q),

concluding the proof that d′ is a distance function as well.
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