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“Trust in the Lord with all your heart and lean not on your own understanding;
in all your ways submit to him, and he will make your paths straight.”

Proverbs 3:5-6





ABSTRACT

SHIMIZU, G. Prediction bands using estimated conditional density and an
LDA model with covariates. 2021. 87p. Thesis (Doctorate in Statistics) - Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo; Departamento de
Estatística, Universidade Federal de São Carlos, São Carlos, 2021.

Machine learning methods are divided into two main groups: supervised and unsupervised
methods. In the first part of this work, we develop a method for creating prediction bands
that can be applied to supervised problems. Our approach is based on conformal methods,
which are very appealing because they create prediction bands that control average coverage
assuming solely i.i.d. data. It is also often desirable to control conditional coverage, that
is, coverage for every new testing point. However, without strong assumptions, conditional
coverage is unachievable. Given this limitation, the literature has focused on methods with
asymptotical conditional coverage. In order to obtain this property, these methods require
strong conditions on the dependence between the target variable and the features. We
introduce two conformal methods based on conditional density estimators that do not
depend on this type of assumption to obtain asymptotic conditional coverage: Dist-split
and CD-split. While Dist-split asymptotically obtains optimal intervals, which are easier to
interpret than general regions, CD-split obtains optimal size regions, which are smaller than
intervals. CD-split also obtains local coverage by creating prediction bands locally on a
partition of the features space. This partition is data-driven and scales to high-dimensional
settings. In a wide variety of simulated scenarios, our methods have a better control of
conditional coverage and have smaller length than previously proposed methods.

In the second part, in a context of unsupervised methods, we develop a new version of
the Latent Dirichlet Allocation (LDA) model. The LDA model is a popular method for
creating mixed-membership clusters. Despite having been originally developed for text
analysis, LDA has been used for a wide range of other applications. We propose a new
formulation for the LDA model which incorporates covariates. In this model, a negative
binomial regression is embedded within LDA, enabling straight-forward interpretation of
the regression coefficients and the analysis of the quantity of cluster-specific elements in
each sampling units (instead of the analysis being focused on modeling the proportion of
each cluster, as in Structural Topic Models). We use slice sampling within a Gibbs sampling
algorithm to estimate model parameters. We rely on simulations to show how our algorithm
is able to successfully retrieve the true parameter values. The model is illustrated using
real data sets from three different areas: text-mining of Coronavirus articles, analysis of
grocery shopping baskets, and ecology of tree species on Barro Colorado Island (Panama).
This model allows the identification of mixed-membership clusters in discrete data and
provides inference on the relationship between covariates and the abundance of these
clusters.



Keywords: Machine learning. Text analysis. Latent Dirichlet allocation (LDA). Prediction
bands. Conformal prediction.



RESUMO

SHIMIZU, G. Bandas de predição usando densidade condicional estimada e
um modelo LDA com covariáveis. 2021. 87p. Thesis (Doctorate in
Statistics) - Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo; Departamento de Estatística, Universidade Federal de São Carlos, São Carlos,
2021.

Métodos de machine learning são basicamente divididos em dois grandes grupos: métodos
supervisionados e não supervisionados. Na primeira parte deste trabalho nós desenvolve-
mos um método para criação de bandas de predição que pode ser aplicado em problemas
supervisionados. Nossa abordagem é baseada em métodos conformal, que são interes-
santes porque criam bandas de predição que controlam a cobertura média assumindo
somente dados i.i.d.. Geralmente também é desejável controlar a cobertura condicional,
ou seja, a cobertura para toda nova amostra de teste. Contudo, sem fortes suposições,
a cobertura condicional é inatingível. Dada esta limitação, a literatura tem focado em
métodos com cobertura condicional assintótica. A fim de se obter esta propriedade, estes
métodos requerem fortes suposições sobre a dependência entre a variável resposta e as
características. Nós introduzimos dois métodos conformal baseados em estimadores de
densidade condicionais que não dependem deste tipo de suposição para obter cobertura
condicional assintótica: Dist-split e CD-split. Enquanto Dist-split obtém intervalos ótimos
assintoticamente, que são mais fáceis de interpretar do que regiões de confiança, CD-split
obtém regiões de tamanho ótimo, que são menores do que intervalos. CD-split também
obtém cobertura local pela criação de bandas de predição localmente numa partição do
espaço de características. Esta partição é baseada em dados e permite trabalhar com dados
em alta dimensão. Numa grande variedade de cenários simulados, nossos métodos tem
melhor controle da cobertura condicional e tem menores comprimentos do que métodos
propostos anteriores.

Na segunda parte, num contexto de métodos não supervisionados, estudamos uma nova
versão do modelo de Alocação Latente Dirichlet (LDA). O modelo LDA é um método
popular para criação de mixed-membership clusters. Apesar de ter ficado conhecido
na análise de texto, LDA tem sido usado em uma variedade de outras aplicações. Nós
propomos uma nova formulação para o modelo LDA que incorpora covariáveis. Neste
modelo, uma regressão binomial negativa é embutida dentro do LDA, possibilitando uma
interpretação direta dos coeficientes de regressão e análise da quantidade de elementos
específicos dos clusters em cada unidade amostral (ao invés da análise ser focada em modelar
a proporção de cada cluster, como nos Modelos de Tópicos Estruturados). Nó usamos
slice sampling dentro de um algoritmo de Gibbs sampling para estimar os parâmetros. E
usamos simulações para mostrar como nosso algoritmo é capaz de estimar com sucesso os



verdadeiros parâmetros do modelo. O modelo é ilustrado usando conjuntos de dados reais
de três diferentes áreas: mineração de texto de artigos sobre coronavírus, análise de cestas
de supermercados, e análise de espécies de árvores na Ilha de Barro Colorado (Panama).
Este modelo permite a identificação de mixed-membership clusters em dados discretos e
fornece inferências sobre o relacionamento entre covariáveis e a abundância destes clusters.

Palavras-chave: Aprendizagem de máquina. Análise de texto. Alocação latente de Dirich-
let (LDA). Bandas de predição. Predição conformal.
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1 THESIS OVERVIEW AND PUBLICATIONS

Machine learning methods (FRIEDMAN et al., 2001; JAMES et al., 2013; IZBICKI;
SANTOS, 2018) can be divided into two main areas: supervised methods and unsupervised
methods. In supervised settings, we have a response variable that we want to make
predictions for given set of covariates. In unsupervised settings, we do not have an
observable response variable and we are generally interested in understanding the structure
of the data.

This work is divided into two parts that fall into these two areas. In the first part,
in a context of supervised methods, we present a method for constructing prediction bands
that can be applied to any regression method with the only assumption of i.i.d. data.

In the second part, we present a new formulation of the Latent Dirichlet Allocation
(LDA) model. This unsupervised model is often used to find unknown topics in text
documents. In this new formulation, covariates are incorporated in order to allow an easy
interpretation of the regression coefficients.

The content of this work has appeared previously in the following publications:

• Izbicki, R., Shimizu, G. Y., Stern, R. B. (2020). Flexible distribution-free conditional
predictive bands using density estimators. Proceedings of Machine Learning Research
(AISTATS Track).

• Valle, D., Shimizu, G., Izbicki, R., Maracahipes, L., Silvério, D., Paolucci, L., Jameel,
Y., Brando, P. (2021). The Latent Dirichlet Allocation model with covariates (LDA-
cov): a case study on the effect of fire on species composition in Amazonian forests.
Ecology and Evolution.

• Shimizu, G., Izbicki, R.,Valle, D. (2021). A new LDA formulation with covariates.
Submitted for publication.





Part I
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2 INTRODUCTION

Supervised machine learning methods predict a response variable, Y ∈ Y, based
on features, X ∈ X , using an i.i.d. sample, (X1, Y1), . . . , (Xn, Yn). While most methods
yield point estimates, it is often more informative to present prediction bands, that is, a
subset of Y with plausible values for Y (NETER et al., 1996).

A particular way of constructing prediction bands is through conformal predictions
(VOVK et al., 2005; VOVK et al., 2009). This methodology is appealing because it controls
the marginal coverage of the prediction bands assuming solely i.i.d. data. Specifically, given
a new instance, (Xn+1, Yn+1), a conformal prediction, C(Xn+1), satisfies

P (Yn+1 ∈ C(Xn+1)) ≥ 1− α,

where 0 < 1 − α < 1 is a desired coverage level. Besides marginal validity one might
also wish for stronger guarantees. For instance, conditional validity holds when, for every
xn+1 ∈ X ,

P(Yn+1 ∈ C(Xn+1)|Xn+1 = xn+1) ≥ 1− α.

That is, conditional validity guarantees adequate coverage for each new instance and not
solely on average across instances.

Unfortunately, conditional validity can be obtained only under strong assumptions
about the the distribution of (X, Y ) (VOVK, 2012; LEI; WASSERMAN, 2014; BARBER
et al., 2019). Given this result, effort has been focused on obtaining intermediate conditions.
For instance, many conformal methods control local coverage:

P(Yn+1 ∈ C(Xn+1)|Xn+1 ∈ A) ≥ 1− α,

where A is a subset of X (LEI; WASSERMAN, 2014; BARBER et al., 2019; GUAN, 2019).
These methods are based on computing conformal bands using only training instances
that fall in A. However, to date, these methods do not scale to high-dimensional settings
because it is challenging to create A that is large enough so that many training instances
fall in A, and yet small enough so that

P(Yn+1 ∈ C(Xn+1)|Xn+1 ∈ A) ≈ P(Yn+1 ∈ C(Xn+1)|Xn+1 = xn+1),

that is, local validity is close to conditional validity.

Another alternative to conditional validity is asymptotic conditional coverage (LEI
et al., 2018). Under this property, conditional coverage converges to the specified level
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Table 1 – Properties of Dist-split and CD-split.

Method Marginal
coverage

Asymptotic
conditional coverage

Local
coverage

Prediction bands
are intervals

Can be used
for classification?

Dist-split 3 3 7 3 7
CD-split 3 3 3 7 3

as the sample size increases. That is, there exist random sets, Λn, such that P(Xn+1 ∈
Λn|Λn) = 1− oP(1) and

sup
xn+1∈Λn

∣∣∣P(Yn+1 ∈ C(Xn+1)|Xn+1 = xn+1)− (1− α)
∣∣∣ = oP(1).

In a regression context in which Y = R, Lei et al. (2018) obtains asymptotic conditional
coverage under assumptions such as Y = µ(X) + ε, where ε is independent of X and has
density symmetric around 0. Furthermore, the proposed prediction band converges to the
interval with the smallest interval among the ones with adequate conditional coverage.

Despite the success of these methods, there exists space for improvement. In many
problems the assumption that ε is independent of X and has a density symmetric around
0 is unrealistic. For instance, in heteroscedastic settings (NETER et al., 1996) ε depends
on X. It is also common for ε to have an asymmetric or even multimodal distribution
(FREEMAN; IZBICKI; LEE, 2017). Furthermore, in these general settings, the smallest
region with adequate conditional coverage might not be an interval, which is the outcome
of most current methods.

2.1 Contribution

We propose new methods and show that they obtain asymptotic conditional
coverage without assuming a particular type of dependence between the target and
the features. Specifically, we propose two methods: Dist-split and CD-split. While
Dist-split produces prediction bands that are intervals and easier to interpret, CD-split
yields arbitrary regions, which are generally smaller and appealing for multimodal data.
While Dist-split converges to an oracle interval, CD-split converges to an oracle region.
Furthermore, since CD-split is based on a novel data-driven way of partitioning the
feature space, it also controls local coverage even in high-dimensional settings. Table 1
summarizes the properties of these methods.

The proposed methods also have desirable computational properties. They are
based on fast-to-compute split (inductive)-conformal bands (PAPADOPOULOS, 2008;
VOVK, 2012; LEI et al., 2018) and on novel conditional density estimation methods
that scale to high-dimensional datasets (LUECKMANN et al., 2017; PAPAMAKARIOS;
PAVLAKOU; MURRAY, 2017; IZBICKI; LEE, 2016; IZBICKI; LEE, 2017; DALMASSO
et al., 2019; POSPISIL; LEE, 2019) Both methods are easy to compute and scale to large
sample sizes as long as the conditional density estimator also does.
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Figure 1 – Comparison between CD-split, Dist-split and the reg-split method from
Lei et al. (2018).

In a wide variety of simulation studies, we show that our proposed methods obtain
better conditional coverage and smaller band length than alternatives in the literature. For
example, Figure 1 illustrates CD-split, Dist-split and the reg-split method from Lei
et al. (2018) on the toy example from Lei and Wasserman (2014). The bottom right plot
shows that both CD-split and Dist-split get close to controlling conditional coverage.
Since Dist-split can yield only intervals, CD-split obtains smaller bands in the region
in which Y is bimodal. In this region CD-split yields a collection of intervals around each
of the modes.

This first part of the thesis is organized as follows: Chapter 3 and Chapter 4
introduce, respectively, Dist-splitand CD-split. Experiments are shown in Chapter 5.
All proofs can be found in the Appendix.

Notation. Unless stated otherwise, we study a univariate regression setting such
that Y = R. Data from an i.i.d. sequence is split into two parts, D = {(X1, Y1), . . . , (Xn, Yn)}
and D′ = {(X′1, Y ′1), . . . , (X′n, Y ′n)}. Both datasets have the same size solely to simplify
notation. Also, the new instance, (Xn+1, Yn+1), has the same distribution as the other
sample units. Finally, q(α; {t1, . . . , tm}) is the α empirical quantile of {t1, . . . , tm}.
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3 DIST-SPLIT

The Dist-split method is based on the fact that, if F (y|x) is the conditional
distribution of Yn+1 given Xn+1, then F (Yn+1|Xn+1) has uniform distribution. Therefore, if
F̂ is close to F , then F̂ (Yn+1|Xn+1) approximately uniform, and does not depend on Xn+1.
That is, obtaining marginal coverage for F̂ (Yn+1|Xn+1) is close to obtaining conditional
coverage.

Definition 3.1 (Dist-split prediction band). Let F̂ (y|xn+1) be an estimate based on
D′ of the conditional distribution of Yn+1 given xn+1. The Dist-split prediction band,
C (xn+1), is

C (xn+1) :=
{
y : q(.5α; T (D)) ≤ F̂ (y|xn+1) ≤ q(1− .5α; T (D))

}
=
[
F̂−1 (q(.5α; T (D))|xn+1) ; F̂−1 (q(1− .5α; T (D))|xn+1)

]
where T (D) =

{
F̂ (Yi|Xi), i = 1, . . . , n

}
and F̂−1 is the generalized inverse of a cdf.

Algorithm 1 shows an implementation of Dist-split.

Algorithm 1 Dist-split
Input: Data (Xi, Yi), i = 1, ..., n, miscoverage level α ∈ (0, 1), algorithm B for fitting conditional
cumulative distribution function
Output: Prediction band for xn+1 ∈ Rd

1: Randomly split {1, 2, ..., n} into two subsets D e D′
2: Fit F̂ = B({(Xi, Yi) : i ∈ D′}) // Estimate cumulative distribution function
3: Let T (D) = {F̂ (yi|xi), i ∈ D}
4: Let t1 = q(α/2; T (D)) and t2 = q(1 − α/2; T (D)) // Compute the quantiles of

the set T (D)
5: return

{
y : t2 ≥ F̂ (y|xn+1) ≥ t1

}

Dist-split adequately controls the marginal coverage. Furthermore, it exceeds the
specified 1− α coverage by at most (n+ 1)−1. These results are presented in Theorem 3.2.

Theorem 3.2 (Marginal coverage). Let C(Xn+1) be such as in Definition 3.1. If both
F (y|x) and F̂ (y|x) are continuous for every x ∈ X , then

1− α ≤ P(Yn+1 ∈ C(Xn+1)) ≤ 1− α + 1
n+ 1 .

Under additional assumptions Dist-split also obtains asymptotic conditional
coverage and converges to an optimal oracle band. Two types of assumptions are required.
First, that the conditional density estimator, F̂ is consistent. This assumption is an
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adaptation to density estimators of the consistency assumption for regression estimators in
Lei et al. (2018). Also, we require that F (y|x) is differentiable and F−1(α∗|x) is uniformly
smooth in a neighborhood of .5α and 1− .5α. These assumptions are formalized below.

Assumption 3.3 (Consistency of density estimator). There exist ηn = o(1) and ρn = o(1)
such that

P
(
E
[
sup
y∈Y

(
F̂ (y|X)− F (y|X)

)2 ∣∣∣F̂] ≥ ηn

)
≤ ρn.

Assumption 3.4. For every x ∈ X , F (y|x) is differentiable. Also, if qα = F−1(α), then
there exists M−1 > 0 such that infx

dF (y|x)
dy

≥ M−1 in a neighborhood of q0.5α and of
q1−0.5α.

Given the above assumptions, Dist-split satisfies desirable theoretical properties.
First, it obtains asymptotic conditional coverage. Also, Dist-split converges to the
optimal interval according to the commonly used (PARMIGIANI; INOUE, 2009) loss
function

L((a, b), Yn+1) = α(b− a) + (a− Yn+1)+ + (Yn+1 − b)+,

that is, Dist-split satisfies

C(Xn+1) ≈
[
F−1(.5α|Xn+1);F−1(1− .5α|Xn+1)

]
These results are formalized in Theorem 3.5.

Theorem 3.5. Let Cn(Xn+1) be the prediction band in Definition 3.1 and C∗(Xn+1) be
the optimal prediction interval according to

L((a, b), Yn+1) = α(b− a) + (a− Yn+1)+ + (Yn+1 − b)+.

Under Assumptions 3.3 and 3.4,

λ(Cn(Xn+1)∆C∗(Xn+1)) = oP(1),

where λ is the Lebesgue measure.

Corollary 3.6. Dist-split achieves asymptotic conditional coverage under Assump-
tions 3.3 and 3.4.

Dist-split converges to the same oracle as recently proposed conformal quantile
regression methods (ROMANO; PATTERSON; CANDÈS, 2019; SESIA; CANDÈS, 2019).
However, the experiments in Chapter 5 show that Dist-split usually outperforms these
methods.

If the distribution of Y |x is not symmetric and unimodal, Dist-split may obtain
larger regions than necessary. For example, a union of two intervals better represents a
bimodal distribution than a single interval. The next section introduces CD-split which
obtains prediction bands that are more general than intervals.
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4 CD-SPLIT

The intervals output by Dist-split are wider than necessary when the target
distribution is multimodal, such as in Figure 1. In order to overcome this issue, CD-split
yields prediction bands that approximate {y : f(y|xn+1) > t}, the highest posterior region.

A possible candidate for this approximation is
{
y : f̂(y|xn+1) > t

}
, where f̂ is a

conditional density estimator. However, the value of t that guarantees conditional coverage
varies according to x. Thus, in order to obtain conditional validity, it is necessary to choose
t adaptively. This adaptive choice for t is obtained by making C(xn+1) depend only on
samples close to xn+1, similarly as in Lei and Wasserman (2014), Barber et al. (2019),
Guan (2019).

Definition 4.1 (CD-split prediction band). Let f̂(y|xn+1) be a conditional density
estimate obtained from data D′ and 0 < 1 − α < 1 be a coverage level. Let d be a
distance on the feature space and xc1, . . . ,xcJ ∈ X be centroids chosen so that d(xci ,xcj) > 0.
Consider the partition of the feature space that associates each x ∈ X to the closest xcj,
i.e., A = {Aj : j = 1, . . . , J}, where Aj =

{
x ∈ X : d(x,xcj) < d(x,xck) for every k 6= j

}
.

The CD-split prediction band for Yn+1 is:

C(xn+1) =
{
y : f̂(y|xn+1) ≥ q(α; T (xn+1,D))

}
,

where T (xn+1,D) = {f̂(yi|xi) : xi ∈ A(xn+1)}, and A(xn+1) is the element of A to which
xn+1 belongs to.

Remark 1 (Multivariate responses). Although we focus on univariate targets, CD-split

can be extended to the case in which Y ∈ Rp. As long as an estimate of f(y|x) is available,
the same construction can be applied.

The bands given by CD-split control local coverage in the sense proposed by Lei
and Wasserman (2014).

Definition 4.2 (Local validity; Definition 1 of Lei and Wasserman (2014)). Let A = {Aj :
j ≥ 1} be a partition of X . A prediction band C is locally valid with respect to A if, for
every j and P,

P(Yn+1 ∈ C(Xn+1)|Xn+1 ∈ Aj) ≥ 1− α

Theorem 4.3 (Local and marginal validity). The CD-split band is locally valid with
respect to A. It follows from Lei and Wasserman (2014) that the CD-split band is also
marginally valid.
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Figure 2 – Illustration of the profile distance, which is used in CD-split for partitioning
the feature space.

Although CD-split controls local coverage, its performance drastically depends on
the chosen partition of the feature space. If the partition is not chosen well, local coverage
may be far from conditional coverage. For instance, if the partition is defined according
to the Euclidean distance (LEI; WASSERMAN, 2014; BARBER et al., 2019), then the
method will not scale to high-dimensional feature spaces. In these settings small Euclidean
neighborhoods have few data points and, therefore, large neighborhoods must be taken.
As a result, local coverage is far from conditional coverage. We overcome this drawback by
using a specific data-driven partition. In order to build this metric, we start by defining
the profile of a density, which is illustrated in Figure 2.

Definition 4.4 (Profile of a density). For every x ∈ Rd and t ≥ 0, the profile of f̂(y|x),
gx(t), is

gx(t) :=
∫
{y:f̂(y|x)≥t}

f̂(y|x)dy.

The profile of a density is the cumulative distribution function associated to its
level sets. It is used to define the profile distance in the feature space.

Definition 4.5 (Profile distance). The profile distance1 between xa,xb ∈ X is

d2
g(xa,xb) :=

∫ ∞
0

(gxa(t)− gxb(t))
2 dt,

Contrary to the Euclidean distance, the profile distance is appropriate even for
high-dimensional data. For instance, two points might be far in Euclidean distance and
1 The profile distance is a metric on the quotient space X/ ∼, where ∼ is the equivalence

relation xa ∼ xb ⇐⇒ gxa = gxb a.e.
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still have similar conditional densities. In this case one would like these points to be on the
same partition element. The profile obtains this result by measuring the distance between
instances based on the distance between their conditional densities. By grouping points
with similar conditional densities, the profile distance allows partition elements to be larger
without compromising too much the approximation of local validity to conditional validity.
This property is illustrated in the following examples.

Example 4.6. [Location family] Let h(y) be a density, µ(x) a function, and Y |x ∼ h(y−
µ(x)). In this case, dg(xa,xb) = 0, for every xa,xb ∈ Rd. For instance, if Y |x ∼ N(βtx, σ2),
then all instances have the same profile. Indeed, in this special scenario, if CD-split uses
a unitary partition, then conditional validity is obtained.

Example 4.7. [Irrelevant features] If xS is a subset of the features such that f(y|x) =
f(y|xS), then dg(xa,xb) does not depend on the irrelevant features, Sc. While irrelevant
features do not affect the profile distance, they can have a large impact in the Euclidean
distance in high-dimensional settings.

Also, if all samples that fall into the same partition as xn+1 have the same profile as
xn+1 according to f , then the statistics used in CD-split , T (xn+1,D) are i.i.d. data. Thus,
the quantile used in CD-split will be the α quantile of f(Yn+1|xn+1). This in turn makes
C(xn+1) the smallest prediction band with conditional validity of 1 − α. Theorem 4.8,
below, formalizes this statement.

Theorem 4.8. Assume that all samples that fall into the same partition as xn+1, say
(X1, Y1), . . . , (Xm, Ym), are such that gxi = gxn+1, and that f̂(y|x) = f(y|x) is continuous
as a function of y for every x ∈ X . Let Tm := q(α; T (xn+1,D)) be the cutoff used in
CD-split. For every α ∈ (0, 1)

Tm
m−→∞−−−−→
a.s.

t∗

where t∗ = t∗(xn+1, α) is the cutoff associated to the oracle band, the smallest predictive
region with coverage 1− α.

Given the above reasons, the profile density captures what is needed of a meaningful
neighborhood that contains many samples even in high dimensions. Indeed, consider a
partition of the feature space, A, that has the property that all samples that belong to the
same element of A have the same oracle cutoff t∗. Theorem 4.9 shows that the coarsest
partition that has this property is the one induced by the profile distance.

Theorem 4.9. Assume that f̂(y|x) = f(y|x) is continuous as a function of y for every
x ∈ X . For each sample x ∈ X and miscoverage level α ∈ (0, 1), let t∗(x, α) be the
cutoff of the oracle band for f(y|x) with coverage 1− α. Consider the equivalence relation
xa ∼ xb ⇐⇒ dg(xa,xb) = 0.



36

(i) If xa ∼ xb, then t∗(xa, α) = t∗(xb, α) for every α ∈ (0, 1)

(ii) If ∼′ is any other equivalence relation such that xa ∼′ xb implies that t∗(xa, α) =
t∗(xb, α) for every α ∈ (0, 1), then xa ∼′ xb ⇒ xa ∼ xb.

To conclude we observe that if a conformal method converges to the highest
predictive density set, then it satisfies asymptotic conditional coverage (IZBICKI; SHIMIZU;
STERN, 2021).

Based on the above motivation, we use CD-split with the profile distance. In order
to compute the prediction bands, we need to define the centroids xci . Ideally, the partitions
should be such that: (i) all sample points inside a given element of the partition have
similar profile, and (ii) sample points that belong to different elements of the partition
have profiles that are very different from each other. We accomplish this by choosing the
partitions by applying a k-means++ clustering algorithm (ARTHUR; VASSILVITSKII,
2007) using the profile distance. This is done by applying the standard (Euclidean) k-
means++ algorithm to the data points wi := g̃(xi), where g̃(xi) is a discretization of the
function g(xi), obtained by evaluating g(xi) on a grid of values. The points, wc

1,. . . ,wc
J , are

the centroids of such clusters. Figure 3 illustrates the partitions that are obtained in one
dataset. The profile distance allows samples that are far from each other in the Euclidean
sense to fall into the same element of the partition. This is the key reason why our method
scales to high-dimensional datasets. Algorithm 2 shows pseudo-code for implementing
CD-split.

Algorithm 2 CD-split
Input: Data (xi, Yi), i = 1, ..., n, miscoverage level α ∈ (0, 1), algorithm B for fitting conditional
density function, number of elements of the partition J .
Output: Prediction band for xn+1 ∈ Rd

1: Randomly split {1, 2, ..., n} into two subsets D and D′
2: Fit f̂ = B({(xi, Yi) : i ∈ D′}) // Estimate density function
3: Compute A, the partition of X , by applying k-means++ on the profiles of the samples

in D’
4: Compute gxn+1(t) =

∫
{y:f̂(y|x)≥t} f̂(y|x)dy, for all t > 0 // Profile of the density

(Definition 4.4)
5: Find A(xn+1) ∈ A, the element of A such that xn+1 ∈ A
6: Compute gxi(t) =

∫
{y:f̂(y|x)≥t} f̂(y|x)dy, for all t > 0 and i ∈ D // Profile of the

densities (Definition 4.4)
7: Let T (xn+1,D) = {f̂(yi|xi), i ∈ D : xi ∈ A(xn+1)}
8: Let t = q(α; T (xn+1,D)) // Compute the α- quantile of the set T (xn+1,D)
9: return

{
y : f̂(y|x∗) ≥ t

}
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Figure 3 – Scatter plot of data generated according to Y |x ∼ N(5x, 1+|x|). Colors indicate
partitions that were obtained using the profile of the estimated densities. Note
that points that are far from each other on the x-axis can have similar densities
and belong to the same element of the partition. This allows larger partition
elements while preserving the optimal cutoff (Theorem 4.9).

4.1 Multiclass classification

If the sample space Y is discrete, we use a similar construction to that of Definition
4.1. More precisely, the CD-split prediction band is given by

C(xn+1) =
{
y : P̂(Y = y|xn+1) ≥ q(α; T (xn+1,D))

}
, where

T (xn+1,D) =
{
P̂(Yi = yi|xi), i = 1, . . . , n : xi ∈ A(xn+1)

}
,

A(xn+1) is the element of A to which xn+1 belongs to, and

d2
g(xa,xb) =

∑
y∈Y

(
P̂(Y = y|xa)− P̂(Y = y|xb)

)2
.

Theorems analogous to those presented in the last section hold in the classification setting
as well.

Remark 2. While CD-split controls the coverage of C conditional on the value xn+1,
in a classification setting some methods control class-specific coverage (SADINLE; LEI;
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Predicted Label(s): Coat, Shirt Predicted Label(s): Sandal, Sneaker Predicted Label(s): Trouser, Dress

Predicted Label(s): Trouser Predicted Label(s): Bag Predicted Label(s): Ankle boot

Figure 4 – Prediction bands for some instances of the Fashion-MNIST dataset (XIAO;
RASUL; VOLLGRAF, 2017) with α = 0.01.

WASSERMAN, 2019), defined as

P(Yn+1 ∈ C(Xn+1)|Yn+1 = y) ≥ 1− αy.

The Figure 4 shows an example of the CD-split method in a classification setting
applied to the traditional Fashion-MNIST dataset (XIAO; RASUL; VOLLGRAF, 2017).
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5 EXPERIMENTS

We consider the following settings with d = 20 covariates:

• [Asymmetric] X = (X1, . . . , Xd), with Xi
iid∼ Unif(−5, 5), and Y |x = 5x1 + ε, where

ε ∼ Gamma(1 + 2|x1|, 1 + 2|x1|).

• [Bimodal] X = (X1, . . . , Xd), with Xi
iid∼ Unif(−1.5, 1.5), and Y |x ∼ 0.5N(f(x) −

g(x), σ2(x)) + 0.5N(f(x) + g(x), σ2(x)), with f(x) = (x1 − 1)2(x1 + 1), g(x) = 2I(x1 ≥
−0.5)

√
x1 + 0.5, and σ2(x) = 1/4 + |x1|. This is the example from Lei and Wasserman

(2014) with d− 1 additional irrelevant variables.

• [Heteroscedastic] X = (X1, . . . , Xd), with Xi
iid∼ Unif(−5, 5), and Y |x ∼ N(x1, 1 +

|x1|).

• [Homoscedastic] X = (X1, . . . , Xd), with Xi
iid∼ Unif(−5, 5), and Y |x ∼ N(x1, 1)

We compare the performance of the following methods:

• [Reg-split] The regression-split method (LEI et al., 2018), based on the conformal
score |Yi − r̂(xi)|, where r̂ is an estimate of the regression function.

• [Local Reg-split] The local regression-split method (LEI et al., 2018), based on the
conformal score |Yi−r̂(xi)|

ρ̂(xi)
, where ρ̂ is an estimate of the conditional mean absolute deviation

of (Yi − r(xi))|xi.

• [Quantile-split] The conformal quantile regression method (ROMANO; PATTERSON;
CANDÈS, 2019; SESIA; CANDÈS, 2019), based on conformalized quantile regression.

• [Dist-split] From chapter 3.

• [CD-split] From chapter 4 with d n
100e partitions.

Each experiment is performed with comparable settings. Each experiment uses a
coverage level of 1− α = 90% and is run 5,000 times. Also, random forests (BREIMAN,
2001) are used to estimate all quantities needed in each method, namely: the regression
function in Reg-split, the conditional mean absolute deviation in Local Reg-split, the
conditional quantiles via quantile forests (MEINSHAUSEN, 2006) in Quantile-split, and
the conditional density via FlexCode (IZBICKI; LEE, 2017) in Dist-split and CD-split.
A conditional cumulative distribution estimate, F̂ (y|x) is obtained by integrating the
conditional density estimate: F̂ (y|x) =

∫ y
−∞ f̂(y|x)dy. The tuning parameters of all methods

were set to be the default values of the packages that were used.
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Figure 5 – Performance of each conformal method as a function of the sample size. Left panels
show how much the conditional coverage varies with x; right panels display the
average size of the prediction bands.
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Figure 5 shows the performance of each method as a function of the sample size.
While the left side figures display how well each method controls conditional coverage, the
right side displays the average size of the regions that are obtained. The control of the
conditional coverage is measured through the conditional coverage absolute deviation, that
is, E[|P(Y ∗ ∈ C(X∗)|X∗)− (1− α)|]. Since all of the methods obtain marginal coverage
very close to the nominal 90% level, this information is not displayed in the figure. Figure 5
shows that, in all settings, CD-split is the method which best controls conditional coverage.
Also, in most cases its prediction bands also have the smallest size. Similarly, Dist-split
frequently is the second method with both highest control of conditional coverage and
also smallest prediction bands.

We also apply CD-split to a classification setting. We consider X = (X1, . . . , X20),
with Xi

iid∼ N(0, 1) and Y |X follows the logistic model, P(Y = i|x) ∝ exp {βi · x1}, where
β = (−6,−5,−1.5, 0, 1.5, 5, 6). We compare CD-split to Probability-split, the method
described in Sadinle, Lei and Wasserman (2019, Sec. 4.3), which has the goal of controlling
global coverage. Probability-split is a particular case of CD-split: it corresponds to
applying CD-split with J = 1 partitions. Figure 6 shows the results. CD-split better
controls conditional coverage. On the other hand, its prediction bands are, on average,
larger than those of Probability-split.

Figure 6 – Performance of each conformal method as a function of the sample size. Left panel
shows how much the conditional coverage vary with x; right panel displays the
average size of the prediction bands.
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6 FINAL REMARKS

We introduce Dist-split and CD-split, which obtain asymptotic conditional
coverage and converge to optimal oracle bands, even in high-dimensional feature spaces.
These results do not require assumptions about the dependence between the target
variable and the features. Both methods are based on estimating conditional densities.
While Dist-split necessarily leads to intervals, which are easier to interpret, CD-split
leads to smaller prediction regions. A simulation study shows that both methods yield
smaller prediction bands and better control of conditional coverage than other methods
in the literature under a variety of settings. We also show that CD-split leads to good
results in classification problems.

CD-split is based on a novel data-driven metric on the feature space that is
appropriate for defining neighborhoods for conformal methods, in particular in high-
dimensional settings. It might be possible to use this metric with other conformal methods
to obtain asymptotic conditional coverage.

R code for implementing Dist-split and CD-split is available at https://github.
com/rizbicki/predictionBands.

https://github.com/rizbicki/predictionBands
https://github.com/rizbicki/predictionBands




Part II
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7 INTRODUCTION

Unsupervised machine learning methods allow the analysis of multivariate data
sets in which no response variable is available. This type of analysis is especially useful as
the amount of unstructured information grows (in the form of texts, for example), enabling
the unveiling of latent structure in the data. In particular, the Latent Dirichlet Allocation
(LDA) method is an unsupervised technique that focuses on identifying unobservable
groups. This method is different from traditional unsupervised methods such as hard
clustering, where sampling units can only be classified into a single group. In LDA, soft
clustering is performed, that is, a sample unit can belong to several groups at the same
time.

The LDA model was originally proposed by Pritchard, Stephens and Donnelly (2000)
in the context of population genetics, but it became popular in the context of machine
learning through the work of Blei, Ng and Jordan (2003) on text-mining applications.
In these text-mining applications, the goal is to discover topics that are present in each
document based on the words that appear on these documents. This model has been
applied to several areas of knowledge. For example, Lukins, Kraft and Etzkorn (2010)
used LDA to understand software bug reports. In another application, Lienou, Maitre and
Datcu (2009) applied this model to create annotation of satellite imagery. LDA was also
used by Xing and Girolami (2007) to detect fraudulent calls in the telecommunications
industry based on the patterns found for each customer. Finally, Valle et al. (2014) used
LDA on biodiversity data to describe groups of trees.

Several variations of LDA exist. For instance, Mcauliffe and Blei (2008) introduced
the supervised LDA model where documents are labeled with continuous or discrete
response variables. Wang and Grimson (2008) considered a spatial structure to group
spatially close elements (such as words that are close in the text). Blei and Lafferty (2006)
analyzed the evolution of topics over time through a family of probabilistic time series
models. Albuquerque, Valle and Li (2019) adapted the LDA model for different types
of data (multinomial, binomial and bernoulli) and used a special prior called truncated
stick-breaking (TSB) prior to identify the optimal number of groups.

In many problems, one also has access to additional information about instances that
comes in the form of features (covariates). For example, a company may have socioeconomic
information about its customers, such as age or income, that can help in understanding
customer interactions via chat. In these cases, it can be useful to explore the relationship
between these covariates and the identified groups. Roberts, Stewart and Airoldi (2016)
developed Structural Topic Models (STM), in which covariates were incorporated into
LDA through a Multinomial regression model so that the probability of each topic in a
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given instance is allowed to depend on covariates. The focus on the probability of each
topic, instead of the abundance of each topic, is an important limitation. For example, the
type of scientific article (e.g., a commentary or a review article) can significantly change
the number of words associated with each topic. However, STM’s might fail to identify
this effect if the proportion of the different topics remains the same.

In this work, we propose a new formulation to the LDA model where we use
covariates to explain the number of elements (e.g., number of words) in each group, rather
than the proportion of each group. In a sense, our model is more general than STM’s
because the probabilities of each group can also be derived from it. Another important
advantage of our approach is that the covariate coefficients (i.e., the slope parameters) can
be interpreted more easily through the logarithmic link function of the Negative-Binomial
regression rather than the logistic link function used within the Multinomial regression in
STM’s. The log link function allows a straightforward interpretation of the coefficients in
the sense that a positive (negative) coefficient describes a positive (negative) relationship
between the corresponding covariate and the abundance of each group. On the other hand,
as illustrated in Fig. 7, a positive coefficient in the multinomial logistic link function can
imply a positive or negative relationship between the proportion of the group and the
corresponding covariate.

(a) Negative-binomial log link (b) Multinomial logistic link

Figure 7 – Illustration of the difference between the logarithmic (left panel) and multino-
mial logistic (right panel) link functions considering 3 groups and 1 covariate
(without intercept) with β1 = 0.2, β2 = 0.5 and β3 = 0.0. Notice that, despite
the positive coefficient for group 1, there is a negative relationship in panel (b)
between the covariate and the expected value of y given x.

In chapter 8 we present the proposed Bayesian model and the full conditional
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distributions required for our Gibbs sampler. In chapter 9 we describe the estimation
method and the software used. Then, in chapter 10, we apply our model to simulated data
sets to demonstrate its effectiveness in providing inferences on the parameters of interest.
In chapter 11, we illustrate the versatility of our model by applying it to data sets from
different fields. Chapter 12 compares our model to STMs. We conclude with a discussion
of the advantages / disadvantages of the method and suggestions for future research.
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8 MODEL

Here we introduce the proposed statistical model. Let L denote the total number
of instances, K be the total number of groups/clusters and S be the total number of
categories (states) each element from each instance can belong to. For example, in text
analysis we can have K topics, a vocabulary of S distinct words and L documents. In this
case, the words in each document are the elements. We denote by nl,∗,∗ := ∑

s,k nl,s,k the
total number of elements at instance l, where nl,s,k is a latent variable representing the
total number of elements of category s and cluster k in instance l.

The data that we observe consist of

• yi,l ∈ {1, . . . , S}, the category of the i-th element of instance l, i = 1, . . . , nl,∗,∗ and
l = 1, . . . , L.

• xl: a d-dimension vector with the features (covariates) associated to instance l,
l = 1, . . . , L.

The data yi,l are often summarized as an instance-by-category abundance matrix. More
specifically, each cell in this matrix contains the total number of elements of category s on
instance l, given by wl,s := ∑

i I(yi,l = s), l = 1, . . . , L and s = 1, . . . , S.

In our model, the link between the covariates and the abundance of each cluster in
each instance nl,∗,k = ∑S

s=1 nl,s,k is given by a Negative-Binomial regression:

nl,∗,k | βk, N ∼ NegBinom(λl,k, N)

where βk is a d-dimension vector, N is the overdispersion parameter and λl,k := E[nl,∗,k] =
exp (xTl βk). Notice that nl,∗,k are latent variables (and thus are not observed), and therefore
we need to estimate the coefficients of the regression function at the same time we estimate
nl,∗,k (see details in Section 8.1).

The model also assumes that

(nl,1,k, . . . , nl,S,k) | nl,∗,k,φk ∼ Multinomial(nl,∗,k,φk),

where φk ∈ RS is a vector on a simplex that represents the composition of categories
inside cluster k. We call Φ the matrix with elements φk,s. Furthermore, note that within
the standard LDA model, a parameter of primary interest is θl,k, which is the proportion
of cluster k in instance l. This parameter can be easily retrieved based on the nl,∗,k results
from our model by calculating θl,k = nl,∗,k∑K

c=1 nl,∗,c
. We call Θ the matrix with elements θl,k.

We use the following prior distributions:

N ∼ Unif(0, N0),
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φk | γ ∼ Dirichlet(γ),γ = (γ1, . . . , γS),

and
βk ∼ Nd(0,T),

where T is a diagonal matrix. The hyper parameters N0, γ and T are a priori set by the
modeler.

The joint density function induced by the likelihood function and prior distributions
is given by

p({nl,s,k}, {φk}, {βk}|{wl,s}, {xl}) ∝[
L∏
l=1

K∏
k=1

[
Multinomial([nl,1,k, . . . , nl,S,k] | nl,∗,k,φk)NegBinom(nl,∗,k | exp (xTl βk), N)

]I(wl,s=∑K

k=1 nl,s,k)
]
×

×
[
K∏
k=1

Dirichlet(φk | γ)
] [

K∏
k=1

Nd(βk | 0,T)
]
Unif(N | 0, N0).

8.1 Full Conditional Distributions

We can obtain samples from the posterior distribution by using a Gibbs sampler
(GEMAN; GEMAN, 1984). In order to do that, we first derive the full conditional
distributions for the parameters in our model. First, we derive the conditional distribution
of each φk given all the other quantities:

p(φk | . . . ) ∝
[nl,∗,∗∏
i=1

L∏
l=1

Categorical(yil | φk)I(zil=k)
]
Dirichlet(φk | γ)

∝
[nl,∗,∗∏
i=1

L∏
l=1

φ
I(yil=1,zil=k)
k,1 × · · · × φI(yil=S,zil=k)

k,S

]
φγ1−1
k,1 × · · · × φ

γS−1
k,S

∝ φ
n∗,1,k+γ1−1
k,1 × · · · × φn∗,S,k+γS−1

k,S .

Thus,
φk | · · · ∼ Dirichlet ([n∗,1,k + γ1, . . . , n∗,S,k + γS]) ,

which is straightforward to sample from.

The conditional distribution of βk given all of the other quantities is

p(βk | . . . ) ∝
[
L∏
l=1

NegBinom
(
nl,∗,k | exp (xTl βk), N

)]
Nd(βk | 0, τ 2Id).

Because of lack of conjugacy, we rely on a slice-sampler algorithm (see Appendix E) to
sample from this FCD.

For the parameter N , we obtain

p(N | . . . ) ∝
[
K∏
k=1

L∏
l=1

NegBinom
(
nl,∗,k | exp (xTl βk), N

)]
Unif(N |0, N0).
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Again, we rely on a slice-sampler algorithm to sample from this FCD.

Finally, we obtain the conditional distribution of zi,l (the latent group membership
of the i-th element in the l-th instance):

p(zi,l′ = k | yi,l′ = s′, . . . )

∝
L∏
l=1

K∏
k=1

[Multinomial([nl,1,k, . . . , nl,S,k] | nl,∗,k,φk)NegBinom(nl,∗,k | λl,k, N)]

After integrating φk out and simplifying this expression (a detailed derivation of these
results is provided in Appendix B and C), we obtain:

p(zi,l′ = k | yi,l′ = s′, . . . ) ∝ (nl′,∗,k +N)(n∗,s′,k + γs′)
(nl′,s′,k + 1)(n∗,∗,k +∑

s γs)
(1− pl′,k).

where pl′,k = N
N+λl′,k

. Thus,

zi,l | yi,l = s, · · · ∼ Categorical

 (nl,∗,1+N)(n∗,s,1+γs)
(nl,s,1+1)(n∗,∗,1+

∑
s
γs)

(1− pl,1)∑K

k=1
(nl,∗,k+N)(n∗,s,k+γs)

(nl,s,k+1)(n∗,∗,k+
∑

s
γs)

(1− pl,k)
, . . . ,

(nl,∗,K +N)(n∗,s,K +γs)
(nl,s,K +1)(n∗,∗,K +

∑
s
γs)

(1− pl,K)∑K

k=1
(nl,∗,k+N)(n∗,s,k+γs)

(nl,s,k+1)(n∗,∗,k+
∑

s
γs)

(1− pl,k)

 ,

which is easy to sample from.
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9 ESTIMATION AND SOFTWARE

In order to fit our model, we first need to define K, the number of clusters that
will be used. We do this by using the LDA model proposed by Albuquerque, Valle and Li
(2019). Although this model does not include covariates, it uses a truncated stick-breaking
prior distribution that identifies the optimal number of clusters. We use the following
values for the hyperparameters: N0 = 1000, γ1 = · · · = γS = 0.1 and T is a diagonal
matrix where the diagonal elements are equal to 10.

In our experiments, we use the Gibbs sampler implementation based on the condi-
tional distributions described in Section 8.1 with one exception: the samples from Φ were
generated using the model without covariates described in Albuquerque, Valle and Li (2019).
We took this approach because preliminary results revealed that this model had difficulty
estimating the Φ matrix even in situations where the model without covariates estimated
this matrix well. This problem arises because, differently from a standard regression in
which the response variable is observed, the response variable here is latent and has to be
estimated together with the regression parameters. As a result, a misspecified regression
model can negatively impact the latent response variable, potentially mischaracterizing
the identified clusters. Our simulated data studies reveal that this two-stage estimation
results in good estimates for the parameters of interest.

In each experiment, we assessed convergence by visually evaluating trace-plots of
the generated MCMC chains. Part of our algorithm was developed in R while part of the
code was made in C++ using the Rcpp package (EDDELBUETTEL et al., 2011). An
R package and a tutorial on how to use the model can be found at https://github.com/
gilsonshimizu/ldacov.

https://github.com/gilsonshimizu/ldacov
https://github.com/gilsonshimizu/ldacov
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10 SIMULATED EXPERIMENTS

First, we apply our model to two simulated data sets where all parameters are
known, enabling the assessment of whether the model is estimating the parameters of
interest well.

10.1 Simulation set 1

The first simulated dataset consists of 1000 instances, 100 categories and four
clusters. Four covariates are also used, where each covariate explains only one of the four
clusters, that is, the matrix with the regression slope coefficients is an identity matrix. We
also choose covariate values such that some elements of the Θ are equal to 1 (i.e., some
instances have elements from only one cluster). Similarly, we assume that some categories
are only present in a single cluster. We do this to help model identifiability.

Figure 8 shows a high correlation between the true and estimated elements of Φ
and Θ, indicating that the true parameter values can be recovered from the model when it
is estimated using the strategy described in Chapter 9.

(a) Φ (b) Θ

Figure 8 – Scatter plots of true and estimated values of the parameters Φ and Θ for the
simulated data set 1 using new LDA formulation.

Table 2 shows the posterior means of the regression parameters βk, as well as an
indicator (*) of whether their respective 99% credible intervals did not contain the value 0.
In all cases, the true parameter values are contained in the corresponding credible intervals,
demonstrating that our model estimates well the parameters of interest. We will omit here
and in the other examples, but trace-plots of the log likelihood and model parameters (see
Appendix D) demonstrated the convergence of the algorithm.

Figure 9 shows that the model proposed by Roberts, Stewart and Airoldi (2016)
manages to estimate the Θ matrix well but has difficulty in estimating the Φ matrix.
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Table 2 – Posterior mean for the regression parameters of the simulated dataset 1.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
True Estimated True Estimated True Estimated True Estimated

Intercept 1.592 2.131* 1.872 2.055* 1.755 2.127* 1.860 1.827*

Var 1 1.000 0.787* 0.000 −0.055 0.000 −0.044 0.000 −0.027
Var 2 0.000 0.021 0.000 0.008 1.000 0.883* 0.000 0.072
Var 3 0.000 −0.030 1.000 0.870* 0.000 −0.043 0.000 −0.040
Var 4 0.000 −0.018 0.000 0.018 0.000 0.054 1.000 1.015*

* “Statistically significant” results, defined as parameters for which the 99% credible intervals
did not overlap zero.

(a) Φ (b) Θ

Figure 9 – Scatter plots of true and estimated values of the parameters Φ and Θ for the
simulated data set 1 using STM.

Our method can be used to make predictions for the abundance matrix on the data
samples using the information given by the covariates. Figure 10 shows that the method
leads to high prediction accuracy on a hold-out set with 1000 instances.

10.2 Simulation set 2

The second set of simulated data is similar to the one described previously. However,
instead of using the correct set of covariates, we relied on randomly generated covariates.
As result, these covariates were independent of the number of individuals in each cluster.
The purpose of this data set is to verify whether the model is able to infer when none of
the covariates are relevant.

Figure 11 shows that both Φ and Θ were well estimated.

Table 3 shows the posterior means for the regression parameters. All 99% credible
intervals for β’s contain the value zero, which are the correct values given that the covariates
were independent of the number of elements in each cluster.

Again, the model proposed by Roberts, Stewart and Airoldi (2016) manages to
estimate the Θ matrix well but has difficulties in estimating the Φ matrix (Figure 12).
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Figure 10 – Scatter plot of the predicted abundance matrix versus true abundance matrix
for the simulated data set 1.

(a) Φ (b) Θ

Figure 11 – Scatter plots of true and estimated values of the parameters Φ and Θ for the
simulated data set 2.

Table 3 – Posterior mean for the regression parameters of the simulated dataset 2.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
True Estimated True Estimated True Estimated True Estimated

Var 1 0.000 0.046 0.000 -0.052 0.000 -0.009 0.000 -0.002
Var 2 0.000 0.018 0.000 -0.059 0.000 0.028 0.000 -0.018
Var 3 0.000 0.110 0.000 0.082 0.000 -0.102 0.000 0.012
Var 4 0.000 0.047 0.000 -0.028 0.000 0.020 0.000 0.022
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(a) Φ (b) Θ

Figure 12 – Scatter plots of true and estimated values of the parameters Φ and Θ for the
simulated data set 2 using STM.

Taken together, these results reveal that our model is able to estimate the matrices
Φ and Θ as well as identify the relevant variables to explain the quantities in each cluster.
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11 APPLICATIONS

To demonstrate the model’s effectiveness and flexibility, we applied it to three real
data sets from different areas:

• [Covid Articles] This dataset, available on Kaggle (https://www.kaggle.com/
allen-institute-for-ai/CORD-19-research-challenge), contains 134,000 articles on
Covid-19 and other coronavirus. A sample of size 2,000 was extracted for analysis.
We use a bag-of-words representation of the abstract in which we remove stop words,
numbers and words that appear in less than 6% of abstracts. In this way, we end up
with 211 words as tokens. We use the year in which the paper was published and
keywords of the respective journal as covariates. The following keywords were used:
virology, chemistry, infectious diseases, microbiology, veterinary, vaccine, immunology,
medicine, public health and bioinformatics.

• [Grocery Shopping] This dataset is also available in Kaggle (https://www.kaggle.
com/karthickveerakumar/orders-data) and contains information about 5,000 cus-
tomer purchases of 99 products at a supermarket. A sample of size 2,000 was used.
We use the day of the week of the purchase and the number of days since the last
purchase as covariates.

• [Barro Colorado Island] (HARMS et al., 2001) We evaluated the spatial patterns
in the tree composition of the moist lowland 50-ha forest dynamic plot (FDP) on
the Barro Colorado Island (BCI), Panama. FDP on BCI was established in 1981
and all free-standing woody plants with diameter at breast height (dbh) greater or
equal to 1 cm were measured in 1982-93, 1985, 1990, 1995, 2000, 2005, 2010 and
2015. Annual rainfall averages 2600 mm, with a four-month dry season between
December and April, while mean annual temperature is 27ºC. The total number
of species identified at BCI is 326. For our analysis, we only utilized data from the
last survey (2015) and we divided the FDP into 200 quadrats of size (50 m × 50
m); this was deemed the most appropriate scale to identify the spatial structure in
biodiversity in BCI. We then aggregated the 2015 BCI census data by calculating
the abundance of each species at each of the 200 quadrants. Before analyzing these
data, we removed species that were extremely rare (defined as those species with
less than 10 trees across the entire 50-ha plot). Our criteria resulted in the removal
of 70 (21%) species, representing less than 0.1% of the total number of trees in our
dataset.

https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/karthickveerakumar/orders-data
https://www.kaggle.com/karthickveerakumar/orders-data
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11.1 Covid Articles

The number of monthly articles about coronavirus practically doubled in the first
quarter of 2020 in relation to the monthly average of publications in 2019. Given this
significant increase and relevance of the subject, our goal here is to find and understand
the differences between possible clusters of articles.

In this text-mining application, we follow the literature in referring to topics instead
of clusters. We set the maximum number of topics to 10 and use the TSB prior model
proposed by Albuquerque, Valle and Li (2019) to identify the optimal number of topics.
This analysis identifies that the optimal number of topics was equal to 5 for this dataset.
Tables 4 and 5 present the relevant words for each topic and the estimates of the regression
parameters, respectively.

Topics 2 and 3 are more related to Covid-19 and, as expected, are strongly associated
with diagnostic tests, symptoms, public health and prevention since, at the time this
dataset was retrieved (april/2020), there were still no vaccines or in-depth genetic studies
on Covid-19. Topics 1 and 4 are related to older articles and are focused on types of studies
that had not been conducted for Covid-19 at the time these data were gathered: vaccines,
animal tests, and genetic studies. Topic 5 is focused on other viruses.

Although it is natural that there is a strong relationship between keywords and
topics, we emphasize that the use of these keywords as covariates allowed an easier
interpretation of topics than just analyzing the relevant words of each topic.

11.2 Grocery Shopping

Our goal is to find clusters of grocery shopping baskets while also identifying how
these clusters are associate with day of week and days since last purchase. Although this
type of data is not usually analyzed with LDA, we believe that LDA could be useful in
identifying the main types of shopping baskets that are made and how these purchases are
influenced by covariates.

After running the model without covariates, we obtain an ideal number of clusters
equal to 4. Tables 6 and 7 show the relevant products of each cluster and the estimates of
the regression parameters, respectively.

Below we describe the clusters that were found:

• Cluster 1: This cluster has many products with purchases made on any day of the
week and with varying frequencies. The products are of daily use like breads, cereals,
coffee and also cleaning products.

• Cluster 2: This cluster contains herbs, spices, vegetables, poultry, etc. This type of
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Table 4 – Relevant words in topics of the Covid dataset.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
protein health patients mice influenza
rna public symptoms vaccine viruses

expression china positive responses human
mechanism countries lower levels virus
sequence outbreak acute evaluated assay
replication epidemic age groups strains

target prevention collected animals highly
genes emerging samples group detection
species diseases confirmed induced
host transmission without response

genome spread common immune
mechanisms research respectively increased
molecular future tested antibodies
antiviral information performed significantly
small population severe effects
shown infectious patient higher
revealed use associated caused
function strategies hospital type

furthermore will detected observed
involved current total compared
previously effective clinical effect

cell since syndrome significant
specific care among
thus number diagnosis

evidence sars
review rate

pathogen
available
data
new
risk

purchase might be associated with the preparation of a special meal. This purchase
is usually made on a Saturday.

• Cluster 3: This cluster contains frozen meals and prepared soups.

• Cluster 4: This cluster is very peculiar with baby formulas, beers and wines. This
cluster is reflective of the classic example of basket analysis, where parents go to buy
baby diapers and take the opportunity to buy beer and wine. These purchases are
made less frequently than other clusters and are generally not made on Saturdays.

We note here that a customer can buy more than one basket (cluster) at the same
time, which is a very interesting feature of the LDA models (compared to traditional
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Table 5 – Estimated Regression parameters of the covid dataset.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
Intercept 2.876* 2.078* 1.510* 0.041 −0.256*

Year 2020 −0.658* 0.468* 0.475* −1.044* −3.227*

Virology 0.462* −0.823* −0.168 0.549* 0.835*

Chemistry 0.093 −1.055* −0.688* −3.455* −0.166
Infect disease −0.468* 0.410* 0.910* −0.281 0.814*

Microbiology 0.250* −0.302* −0.175 −0.031 0.525*

Veterinary −0.065 0.169 0.206 0.535* −0.607*

Vaccine 0.054 −0.109 −0.178 1.602* 0.697*

Immunology 0.135 −0.643* −0.312* 0.825* −0.931*

Medicine −0.436* 0.501* 0.507* −0.589* 0.638*

Public Health −0.969* 1.066* 0.137 −0.223 −0.722*

Comput bioinformatic 0.049* 0.586* −3.765* −3.037* −0.749
* “Statistically significant” results, defined as parameters for which the
95% credible intervals did not overlap zero.

Table 6 – Relevant products in clusters of the grocery dataset.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
cereal fresh herbs frozen vegan vegetarian red wines

ice cream ice canned jarred vegetables frozen meals baby food formula
water seltzer sparkling water spices seasonings frozen breakfast beers coolers

candy chocolate fresh vegetables tofu meat alternatives
refrigerated poultry counter frozen pizza

frozen appetizers sides asian foods fresh dips tapenades
tea grains rice dried goods energy granola bars

packaged produce canned meals beans prepared soups salads
laundry oils vinegars

paper goods specialty cheeses
chips pretzels pickled goods olives

coffee dry pasta
frozen meat seafood packaged poultry

bread
cleaning products

lunch meat
spreads
soap

dish detergents
soft drinks

...
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Table 7 – Estimated regression parameters of the grocery dataset.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Intercept 1.864* 0.562* −1.800* −3.386*

Last order >= 6 days 0.219 0.051 −0.070 0.974*

Saturday 0.152 0.376* 0.330 −0.671*

* “Statistically significant” results, defined as parameters for which
the 95% credible intervals did not overlap zero.

Table 8 – Estimated regression parameters of the BCI dataset.

Groups
Covariates 1 2 3 4 5 6 7 8 9 10 11
Intercept 5.474* 5.524* 5.238* 4.926* 4.678* 4.974* 4.746* 4.829* 4.529* 4.541* 4.645*

Elevation 0.107 0.13 −0.337* −0.114 0.296* 0.016 0.008 0.227* 0.054 0.203* 0.009
Slope −0.060 −0.093 −0.239* 0.028 0.125 0.156* 0.274* 0.032 0.143* 0.337* −0.073

Convexity −0.088 −0.03 0.138* 0.094* −0.043 0.086 −0.038 −0.129* 0.101* −0.153* −0.131*

Al −0.091 0.06 0.129 −0.009 −0.118 −0.090 −0.095 −0.129 0.021 −0.187* 0.043
Mn 0.186* −0.027 −0.150* 0.021 −0.047 0.084 0.303* 0.140* −0.137 0.168* −0.245*

Zn −0.094 −0.016 0.013 −0.116 0.232* −0.217* −0.259* −0.206* 0.451* −0.041 0.105
N 0.039 0.005 0.071 0.030 −0.132 −0.145* 0.114 0.000 −0.011 −0.226* −0.029
pH −0.126 0.080 0.009 −0.034 0.194 −0.099 0.022 −0.277* −0.136 −0.002 −0.071

* “Statistically significant” results, defined as parameters for which the 95% credible intervals did not overlap
zero.

cluster analysis) and more realistic for this data set. In a conventional cluster analysis a
customer would be classified into just one cluster.

11.3 Barro Colorado Island

We ran the LDA model without covariates and, from a total of 20 potential groups,
found 11 dominant groups that together comprised approximately 91% of all individuals.
We find relatively strong spatial patterns in the distribution of these groups (13). For
instance, group 10 is clearly restricted to the areas with steep slopes while group 3 has much
higher abundance in flat areas. Interestingly, several of the groups identified here seems to
closely correspond to the BCI habitat classification proposed by Harms et al. (2001). For
example, group 11 seems to match the “old forest, swamp” class while group 10 seems to
match the “Old forest, Streamside”. However, different from this discrete classification of
habitats, we find spatial patterns that reflect substantial mixed membership.

Similar results could have been obtained from the LDA model without covariates.
The novelty of the proposed model is the ability to make formal inference on the effect of
covariates (8). We find that all groups, except for group 2, were strongly associated with
one or more covariates. For example, as expected, groups 10 and 3 were positively and
negatively associated with slope, respectively. The variables that tended to influence a
large number of groups were slope, convexity, magnesium and zinc.
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Figure 13 – Spatial distribution of the groups identified by our model. Each panel displays
the results for a given group. Hotter colors indicate higher abundance. Elevation
is shown with level curves, shown at 5-m intervals.
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12 MODEL COMPARISON USING PROBABILISTIC COHERENCE

Next, we compare the results of our model with the STM model Roberts, Stewart
and Airoldi (2016). In order to do that, we used the textmineR package (JONES, 2019) in
R. In particular, we use probabilistic coherence to compare the estimated Φ matrices for
each method. In the context of text mining, the probabilistic coherence calculates for each
pair of words the measure P (s1|s2)−P (s1), where the word s1 is more likely than the word
s2 in the focus topic. As a result, probabilistic coherence measures how strongly associated
are words s1 and s2. A well delineated topic with a high frequency of these words should
have a high probabilistic coherence. We consider only the 5 most frequent words in the
topics and use the sum of the probabilistic coherence of all topics as a measure of the
quality of the estimated Φ matrix.

Table 9 shows these measures for all datasets analyzed in this work. In all cases, the
proposed model obtained better probabilistic coherence measures than the STM model,
indicating that the topics that are found with our method are more coherent.

Table 9 – Probabilistic coherence for all datasets comparing LDA with covariates and STM. Best values are in
bold.

Dataset
Method Simulation set 1 Simulation set 2 Covid Articles Grocery Shopping BCI

LDA Covariates 1.554 1.550 0.713 0.370 0.021
STM 0.395 0.455 0.592 0.235 0.011
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13 DISCUSSION

We propose a new formulation for the LDA model that allows the incorporation of
covariates. This model differs from other LDA methods because it models how covariates
affects the number of elements of each cluster rather than the proportions of the clusters.
Because these proportions can be derived from the number of elements, our model
generalizes existing LDA models that also incorporate covariates.

The main advantage of our model is that it enables a much more straight-forward
interpretation of the regression coefficients. This is due to the use of the logarithmic link
function on the quantities in each cluster instead of a multinomial logistic function on the
proportions. Furthermore, by more faithfully representing uncertainty, it is possible that
the inference on the regression coefficients is better with our Gibbs sampler algorithm
than when using approximate variational estimation methods.

In our simulated examples, we are able to show that our model estimates well the Φ
and Θ matrices with or without relevant covariates. We also illustrate the model’s ability
to make inferences about regression coefficients through credible intervals. Importantly,
our examples with real data sets demonstrate the flexibility of the model to be applied in
different areas and for different types of data.

The dataset about Covid articles, for example, is a traditional text mining data set.
The use of covariates, together with the main words of each topic, enabled us to determine
how the focus of these articles has changed as the new coronavirus spurs a pandemic across
the world. The data set on supermarket purchases is not commonly analyzed with this
type of model. Nevertheless, our model was able to create clusters and relate them to the
time and day of the week covariates. We believe that this tool is very useful to segment
customers and also to optimize the layout of products within a grocery store. Finally,
when applied to the BCI dataset, our model was able to find clusters with distinct spatial
patterns and at the same time relate these patterns to some of the soil and topography
features.

A disadvantage of our method is the computational cost (especially in large
datasets with many sample units and categories) compared to models using variational
Bayes methods. A possible future work would be to consider a version of this model with
a variational inference approach.
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APPENDIX A – PROOFS FROM PART I

Definition A.1. Whenever F̂ is a cdf, F̂−1 refers to the generalized inverse of F̂ .

Definition A.2. Ubαc and Udαe are the n−1b(nα)c and n−1d(nα)e empirical quantiles of
U1, . . . , Un,

Related to Dist-split

Proof of Theorem 3.2. Let Ui = F̂ (Yi|Xi). Since (Xi, Yi) are i.i.d. continuous random
variables and F̂ is continuous, obtain that Ui are i.i.d. continuous random variables.
Note that by exchangeability, the rank of Un+1 among {U1, U2, . . . , Un+1} is uniformly
distributed over the set {1, 2, . . . , n+ 1}. Using the cumulative distribution of the discrete
uniform and its symmetry property then:

1− α ≤ P
(
Un+1 ∈ [Ub0.5αc;Ud1−0.5αe]

)
= d(n+ 1)(1− α)e

n+ 1 ≤ 1− α + (n+ 1)−1.

The conclusion follows from noticing that

P
(
Un+1 ∈ [Ub0.5αc;Ud1−0.5αe]

)
=P

(
Yn+1 ∈ [F̂−1(Ub0.5αc|Xn+1); F̂−1(Ud1−0.5αe|Xn+1)]

)
=P(Yn+1 ∈ C(Xn+1))

Lemma A.3. Let I1 =
{
i ≤ n : |F̂ (Yi|Xi)− F (Yi|Xi)| < η1/3

n

}
and I2 = {1, . . . , n} − I1.

Under Assumption 3.3, |I2| = oP (n) and |I1| = n+ oP (n).

Proof. Let An =
{
E
[
supy∈Y

(
F̂ (y|X)− F (y|X)

)2 ∣∣∣F̂ ] ≥ ηn

}
and Bn =

{
|F̂ (Y |X)− F (Y |X)| ≥ η1/3

n

}
. Using Markov’s inequality then

P(Bn) = E[I(Bn)] = E[E[I(Bn)|F̂ ]] = E[P(I(Bn)|F̂ )]

= E[P(Bn|F̂ )I(An)] + E[P(Bn|F̂ )I(Acn)]

≤ P(An) + E
[
E[(F̂ (Y |X)− F (Y |X))2|F̂ ]

η
2/3
n

I(Acn)
]

≤ ρn + η1/3
n = o(1)

Note that |I2| ∼ Binomial(n,P(Bn)). Since P(Bn) = o(1), conclude that |I2| = oP (n). That
is, |I1| = n+ oP (n).
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Lemma A.4. Under Assumption 3.3, If Ui = F̂ (Yi|Xi), then for every α ∈ (0, 1),
Ubαc = α + oP (1) = Udαe.

Proof. Let I1 and I2 be such as in lemma A.3. Also, let Ĝ−1
1 , G−1

1 and G−1
0 be, the empirical

quantiles of, respectively, {Ui : i ∈ I1}, {F (Yi|Xi) : i ∈ I1}, and {F (Yi|Xi) : i ≤ n}. By
definition of I1, for every α∗ ∈ [0, 1], Ĝ−1

1 (α∗) = G−1
1 (α∗)+o(1). Also, G−1

0 (α∗) = α∗+oP (1).
Therefore, since

G−1
0

(
|I1|α∗

n

)
≤ G−1

1 (α∗) ≤ G−1
0

(
|I1|α∗ + |I2|

n

)
,

conclude that Ĝ−1
1 (α∗) = α∗ + oP (1). Finally, since

Ĝ−1
1

(
nα− |I2|
|I1|

)
≤ Ubαc ≤ Udαe ≤ Ĝ−1

1

(
nα

|I1|

)
,

Conclude that Ubαc = α + oP (1) = Udαe.

Lemma A.5. Let Ui = F̂ (Yi|Xi). Under Assumptions 3.3 and 3.4,

F̂−1(U[0.5α]|Xn+1) = F−1(0.5α|Xn+1) + oP (1)

F̂−1(U[1−0.5α]|Xn+1) = F−1(1− 0.5α|Xn+1) + oP (1)

Proof. In order to prove the first equality, it is enough to show that F−1(U[0.5α]|Xn+1) =
F−1(0.5α|Xn+1) + oP (1) and that F̂−1(U[0.5α]|Xn+1) = F−1(U[0.5α]|Xn+1) + oP (1). The first
part follows from lemma A.4 and the continuity of F (y|x) (Assumption 3.4). For the second
part, note that, if supy |F̂ (y|x)− F (y|x)| < ηn and using the mean value theorem, then,
for every α∗, |F̂−1(α∗)− F−1(α∗)| ≤ ηn

(
infy dF (y|x)

dy

)−1
. Using this observation, the proof

of the second part follows from Assumption 3.4, and observing that U[0.5α] = 0.5α + oP (1)
(lemma A.4) and P(supy |F̂ (y|x)− F (y|x)| ≥ ηn) = o(1) (Assumption 3.3).

The proof for the 1− .5α quantile is analogous to the one for the .5α quantile.

Proof of theorem 3.5. Solving ∂E[L((a,b),Yn+1)]
∂a

= ∂E[L((a,b),Yn+1)]
∂b

= 0 we have that C∗(Xn+1) =
[F−1(0.5α|Xn+1);F−1(1− 0.5α|Xn+1)]. So the result follows directly from lemma A.5. We
deduce the corollary 3.6 remembering that obtaining marginal coverage for F̂ (Yn+1|Xn+1)
is close to obtaining conditional coverage.

Related to CD-split

Proof theorem 4.3. Let {i1, . . . , inj} = {i : Xi ∈ A(xn+1)}, Ul = f̂(Yil |Xil), for l =
1, . . . , nj, and Unj+1 = f̂(Yn+1|Xn+1). Since (X1, Y1), . . . , (Xnj , Ynj), (Xn+1, Yn+1) are i.i.d.
random variables, obtain that Ui are i.i.d. random variables conditional on the event
Xn+1 ∈ A(xn+1) and on i1, . . . , inj . Therefore,

1− α ≤ P
(
Um+1 ≥ Ubαc|Xn+1 ∈ A(xn+1), i1, . . . , inj

)
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The conclusion follows from the fact that Yn+1 ∈ C(Xn+1) ⇐⇒ Um+1 ≥ Ubαc and because
this holds for every sequence i1, . . . , inj .

Note that if P(Yn+1 ∈ C(Xn+1)|Xn+1 ∈ Aj) ≥ 1− α for every j then by the law of
total probability P(Yn+1 ∈ C(Xn+1)) ≥ 1− α.

Proof of Theorem 4.8. Let Ui := f(Yi|xi), i = 1, . . . ,m, Un+1 := f(Yn+1|xn+1), and W :=
(x1, . . . ,xm,xn+1). If gxi = gxn+1 for every i = 1, . . . ,m, then U1, . . . , Um, Un+1 are i.i.d.
conditional on W . Indeed, for every t ∈ R,

P(Ui ≥ t|W ) = P(f(Yi|xi) ≥ t|xi)

= P(f(Yn+1|xn+1) ≥ t|xn+1)

= P(Un+1 ≥ t|xn+1),

where the next-to-last equality follows from the definition of the profile of the density.

For every K ∈ R, let Q(K) := |{i : f(Yi|xi) ≥ K}|. Because Ui’s are conditionally
independent and identically distributed, then Q(K)|W ∼ Binomial(m,P(f(Y1|x1) ≥ K)).
By the strong law of large numbers, it follows that Q(K)/m m−→∞−−−−→

a.s.
P(f(Y1|x1) ≥ K). In

particular, Q(t∗)/m m−→∞−−−−→
a.s.

1− α. Now, by definition Q(Tm)/m m−→∞−−−−→
a.s.

1− α. Conclude
by contradiction that Tm m−→∞−−−−→

a.s.
t∗.

Proof of Theorem 4.9. Item (i) was already shown as part of the proof of Theorem 4.8. To
show (ii), assume that t∗(xa, α) = t∗(xb, α) for every α ∈ (0, 1). Now, notice that t∗(xa, α)
is such that gxa(t∗(xa, α)) = 1− α. Conclude that gxa(t∗(xa, α)) = gxb(t∗(xb, α)) for every
α ∈ (0, 1). Now, because f̂ is continuous, {t∗(xa, α) : α ∈ (0, 1)} = Im(f̂(·|xa)). Thus,
gxa = gxb , and therefore xa ∼ xb.
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APPENDIX B – FULL CONDITIONAL DISTRIBUTION OF zi,l

For simplicity we consider only 2 communities (K = 2) and suppose that our focus
is on l = l′ and s = s′. It is also assumed that after removing the i-th element we have
[nl′,∗,1, nl′,∗,2], [nl′,1,1, . . . , nl′,S,1] and [nl′,1,2, . . . , nl′,S,2]. We consider λl,k = exp (xTl βk) and
pl,k = N

N+λl,k
. Then integrating out φk we have that

p(zi,l′ = 1 | yi,l′ = s′, . . . )

∝
K∏
k=1

[
NB(nl′,∗,k | λl′,k, N)

∫ ( L∏
l=1

Multinomial([nl,1,k, . . . , nl,S,k] | nl,∗,k,φk)
)

Dirichlet (φk | γ) dφk

]
.

The integral involving φk is available in closed form (see Appendix C). Furthermore,
several elements in the equation above can be eliminated because they are constants. As a result,
we obtain the following expression:

p(zi,l′ = 1 | yi,l′ = s′, . . . )

∝

Γ
(
nl′,∗,1 + 1 +N

)
pNl′,1

(
1− pl′,1

)(nl′,∗,1+1)

Γ(N)
(
nl′,∗,1 + 1

)
! ×

Γ
(
nl′,∗,2 +N

)
pNl′,2

(
1− pl′,2

)(nl′,∗,2)
Γ(N)nl′,∗,2!


×

∏
l 6=l′

nl,∗,1!
nl,1,1! . . . nl,S,1!

( (nl′,∗,1 + 1)!
nl′,1,1! . . . (nl′,s,1 + 1)! . . . nl′,S,1!

)
(n∗,s′,1 + 1 + γs′)

∏
s 6=s′(n∗,s,1 + γs)

Γ(n∗,∗,1 + 1 +
∑
s γs)

×
(∏

l

nl,∗,2!
nl,1,2! . . . nl,S,2!

) ∏
s=1(n∗,s,2 + γs)

Γ(n∗,∗,2 +
∑
s γs)

.

We drop additional terms that are constants to obtain:

p(zi,l′ = 1 | yi,l′ = s′, . . . )

∝

Γ
(
nl′,∗,1 + 1 +N

) (
1− pl′,1

)(nl′,∗,1+1)(
nl′,∗,1 + 1

)
! ×

Γ
(
nl′,∗,2 +N

) (
1− pl′,2

)(nl′,∗,2)
nl′,∗,2!


×
(

(nl′,∗,1 + 1)!
nl′,1,1! . . . (nl′,s,1 + 1)! . . . nl′,S,1!

)
(n∗,s′,1 + 1 + γs′)

Γ(n∗,∗,1 + 1 +
∑
s γs)

×
(

nl′,∗,2!
nl′,1,2! . . . nl′,s′,2! . . . nl′,S,2!

) (
n∗,s′,2 + γs′

)
Γ (n∗,∗,2 +

∑
s γs)

∝ b1a1

where:

a1 =
(

(nl′,∗,1 + 1)!
nl′,1,1! . . . (nl′,s,1 + 1)! . . . nl′,S,1!

)
(n∗,s′,1 + 1 + γs)

Γ(n∗,∗,1 + 1 +
∑
s γs)

×
(

nl′,∗,2!
nl′,1,2! . . . nl′,s′,2! . . . nl′,S,2!

) (
n∗,s′,2 + γs′

)
Γ (n∗,∗,2 +

∑
s γs)

and
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b1 =

Γ
(
nl′,∗,1 + 1 +N

) (
1− pl′,1

)(nl′,∗,1+1)(
nl′,∗,1 + 1

)
! ×

Γ
(
nl′,∗,2 +N

) (
1− pl′,2

)(nl′,∗,2)
nl∗,∗,2!

 .
Similarly, it can be shown that

p(zi,l′ = 2 | yi,l′ = s′, . . . ) ∝ b2a2

where

a2 =
(

nl′,∗,1!
nl′,1,1! . . . nl′,s′,1! . . . nl′,S,1!

) (
n∗,s′,1 + γs′

)
Γ (n∗,∗,1 +

∑
s γs)

×
(

(nl′,∗,2 + 1)!
nl′,1,2! . . . (nl′,s,2 + 1)! . . . nl′,S,2!

)
(n∗,s′,2 + 1 + γs)

Γ(n∗,∗,2 + 1 +
∑
s γs)

and

b2 =

Γ
(
nl′,∗,1 +N

) (
1− pl′,1

)(nl′,∗,1)
nl∗,∗,1! ×

Γ
(
nl′,∗,2 + 1 +N

) (
1− pl′,2

)(nl′∗,2+1)(
nl′,∗,2 + 1

)
!

 .
Because zi,l′ is either equal to 1 or 2, we can divide both sizes by b1a1 + b2a2 and, using

factorial and gamma function rules, we obtain:

p(zi,l′ = 1 | yi,l′ = s′, . . . ) ∝


(nl′,∗,1+1)(n∗,s′,1+γs′)

(nl′,s′,1+1)(n∗,∗,1+
∑

s
γs)

(nl′,∗,1+1)(n∗,s′,1+γs′)
(nl′,s′,1+1)(n∗,∗,1+

∑
s
γs) + (nl′,∗,2+1)(n∗,s′,2+γs′)

(nl′,s′,2+1)(n∗,∗,2+
∑

s
γs)



×


(nl′,∗,1+N)(1−pl′,1)

(nl′,∗,1+1)
(nl′,∗,1+N)(1−pl′,1)

(nl′,∗,1+1) + (nl′,∗,2+N)(1−pl′,2)
(nl′,∗,2+1)


∝

(
nl′,∗,1 +N

) (
n∗,s′,1 + γs′

)(
nl′,s′,1 + 1

)
(n∗,∗,1 +

∑
s γs)

(
1− pl′,1

)
.

And finally we have that

zi,l | yi,l = s, · · · ∼ Cat




(nl,∗,1+N)(n∗,s,1+γs)
(nl,s,1+1)(n∗,∗,1+

∑
s
γs)

(1− pl,1)∑K
k=1

(nl,∗,k+N)(n∗,s,k+γs)
(nl,s,k+1)(n∗,∗,k+

∑
s
γs)

(1− pl,k)
, . . . ,

(nl,∗,K+N)(n∗,s,K+γs)
(nl,s,K+1)(n∗,∗,K+

∑
s
γs)

(1− pl,K)∑K
k=1

(nl,∗,k+N)(n∗,s,k+γs)
(nl,s,k+1)(n∗,∗,k+

∑
s
γs)

(1− pl,k)


 .
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APPENDIX C – MULTINOMIAL INTEGRATION IN φk

To simplify the calculation of the conditional distribution of zi,l we can integrate out φk
as shown below.

K∏
k=1

∫ [ L∏
l=1

Multinomial ([nl,1,k, . . . , nl,S,k] | nl,∗,k,φk)
]

Dirichlet (φk | γ) dφk

∝
K∏
k=1

∫ [ L∏
l=1

nl,∗,k!
nl,1,k! . . . nl,S,k!

φ
nl,1,k
k,1 . . . φ

nl,S,k
k,S

]
φγ1−1
k,1 . . . φγS−1

k,S dφk

∝
K∏
k=1

(
L∏
l=1

nl,∗,k!
nl,1,k! . . . nl,S,k!

)∫
φ
n∗,1,k+γ1−1
k,1 . . . φ

n∗,S,k+γS−1
k,S dφk

∝
K∏
k=1

(
L∏
l=1

nl,∗,k!
nl,1,k! . . . nl,S,k!

) ∏S
s=1 (n∗,s,k + γs)

Γ
(
n∗,∗,k +

∑S
s=1 γs

)
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APPENDIX D – MCMC CONVERGENCE DIAGNOSTICS

Figure 14 shows the convergence diagnosis of the maximum likelihood function for all
analyzed data sets.
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(a) Simulation 1 (b) Simulation 2

(c) Covid (d) Grocery

(e) BCI

Figure 14 – MCMC convergence diagnostics of simulated and real data.
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APPENDIX E – SLICE SAMPLING

Algorithm 3 Slice Sampling (DAMLEN; WAKEFIELD; WALKER, 1999)
1: Choose an initial value x0 for which f(x0) > 0.
2: Sample a value of y uniformly between 0 and f(x0).
3: Draw a horizontal line through the curve at this y position.
4: Sample a point (x, y) from the line inside the curve.
5: Repeat from step 2 using the new value of x.
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