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Resumo

As técnicas de aprendizado de máquina foram empregadas em praticamente todos os
domínios nos últimos anos. Em muitas aplicações, os algoritmos de aprendizagem terão
que lidar com ambientes dinâmicos, onde precisam fornecer uma resposta em (quase)tempo
real enquanto aderem com restrições tanto de memória quanto de tempo. Nesse cenário,
os comitês de aprendizagem compreendem uma classe de algoritmos de mineração de fluxo
de dados capaz de alcançar um notável desempenho preditivo. Os comitês de aprendiza-
gem são implementados como um conjunto de (vários) classificadores individuais, cujas
predições são agregadas para classificar novas instâncias de entrada. Embora os comitês
de aprendizagem possam ser computacionalmente mais caros, eles são naturalmente mod-
ificáveis para o paralelismo de tarefas. No entanto, o aprendizado incremental e as estru-
turas de dados dinâmicas usadas para capturar o desvio de conceito aumentam as falhas
de cache e podem reduzir o benefício do paralelismo.

Nesta tese, um método capaz de reduzir o tempo de execução e aumentar a eficiên-
cia energética de diversos comitês de aprendizagem do tipo bagging para fluxos de da-
dos é proposto. O método é baseado em um modelo de paralelismo de tarefas capaz de
aproveitar a independência natural dos classificadores internos que compõem os comitês
de aprendizagem da classe bagging. O modelo paralelo é combinado com uma técnica de
mini-batching, a qual pode melhorar a localidade de acesso à memória dos comitês de
aprendizagem.

Speedups de 4X a 5X são alcançados consistentemente com 8 núcleos de processa-
mento, apresentando, inclusive, um Speedup superlinear de 12X em um caso específico.
Demonstra-se que o mini-batching pode diminuir significativamente a distância de reuso
e o número de falhas de cache. Fornece-se dados sobre a relação de compromisso da re-
dução do tempo de execução com a perda no desempenho preditivo, perda que pode variar
de menos de 1% a até 12%. Conclui-se que a perda de desempenho preditivo depende,
principalmente, das características do conjunto de dados e do tamanho do mini-batch uti-
lizado. Apresenta-se evidências de que o uso de mini-batches pequenos (por exemplo, até



50 exemplos) fornece um bom compromisso entre o tempo de execução e o desempenho
preditivo.

Demonstra-se que a eficiência energética pode ser melhorada em utilizando três níveis
de carga de trabalho diferentes. Embora a maior redução no consumo de energia aconteça
com o menor nível de carga de trabalho a contrapartida é um grande atraso no tempo
de resposta, o que pode atrapalhar a ideia de processamento em tempo real. Nos níveis
de cargas de trabalho mais altos, entretanto, o método proposto apresenta melhor de-
sempenho tanto no consumo de energia quanto no atraso no tempo de resposta quando
comparado à versão base.

Avalia-se o método utilizando diversas plataformas de hardware, com um total de
seis plataformas diferentes utilizadas entre todos os frameworks experimentais. Ao mesmo
tempo, utiliza-se de até seis algoritmos diferentes e até cinco conjuntos de dados diferentes
nos frameworks experimentais.

Ao fornecer dados sobre a execução do método proposto em uma gama tão ampla de
configurações, acredita-se que o método proposto é uma solução viável para melhorar o
desempenho de comitês de aprendizagem da classe bagging para fluxos de dados.

Palavras-chave: Aprendizagem de fluxo de dados. Paralelismo de tarefas multicore.
Comitês de aprendizagem. Algoritmos de bagging. Múltiplas plataformas. Consumo de
energia..



Abstract

Machine Learning techniques have been employed in virtually all domains in the past
few years. In many applications, learning algorithms will have to cope with dynamic
environments, under both memory and time constraints, to provide a (near) real-time
answer. In this scenario, Ensemble learning comprises a class of stream mining algorithms
that achieved remarkable predictive performance. Ensembles are implemented as a set of
(several) individual learners whose predictions are aggregated to predict new incoming
instances. Although ensembles can be computationally more expensive, they are nat-
urally amendable for task-parallelism. However, the incremental learning and dynamic
data structures used to capture the concept drift increase the cache misses and hinder the
benefit of parallelism.

In this thesis, we devise a method capable of reducing the execution time and increasing
the energy efficiency of several bagging ensembles for data streams. The method is based
on a task-parallel model capable of leveraging the natural independence of the underlying
learners from this class of ensembles (bagging). The parallel model is combined with a
mini-batching technique that can improve the memory access locality of the ensembles.

We consistently achieve speedups of 4X to 5X with 8 cores, with even a superlinear
speedup of 12X in one case. We demonstrate that mini-batching can significantly decrease
the reuse distance and the number of cache-misses. We provide data regarding the trade-off
regarding the reduction of execution time with a loss in predictive performance (ranging
from less than 1% up to 12%). We conclude that loss in predictive performance depends
on dataset characteristics and the mini-batch size used. We present evidence that using
small mini-batch sizes (e.g., up to 50 examples) provides a good compromise between
execution time and predictive performance.

We demonstrate that energy efficiency can be improved under three different work-
loads. Although the biggest reduction in energy consumption happens in the smallest
workload, it comes at the cost of a big delay in response time, which may hinder the idea
of real-time processing. In the higher workloads, however, the proposed method presents a



better performance in both the energy consumption and the delay in response time when
compared to the baseline version.

We evaluate our method using many hardware platforms, with a total of six differ-
ent hardware platforms used among all experimental frameworks. At the same time, we
use up to six different algorithms and up to five different datasets on the experimental
frameworks.

By providing data about the execution of the proposed method in such a wide range
of setups, we believe that the proposed method is a viable solution for improving the
performance of online bagging ensembles.

Keywords: Data stream learning. Multicore task-parallelism. Ensemble learners. Bagging
algorithms. Multiple platforms. Energy consumption. .
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Chapter 1

Introduction

Nowadays, digital devices are getting, in general, both more affordable and more pow-
erful compared to the beginning of the century. Besides growing in the number of devices,
our digital world is also getting smarter. In today’s world, advertisements are “custom
made”, and platforms recommend content aligned to the user’s taste. Surprisingly or not,
these services only need the user’s history of actions on their systems to provide a better
experience. The moving force behind such power is Machine Learning (ML), which has
become fundamental for many applications in different domains.

Historically, ML algorithms worked with the idea of creating models for static datasets,
also called batch learning, in which the entire dataset is available for the training phase
(GAMA, 2010). This approach showed, in most cases, excellent results when making
predictions on new data from the same source and data distribution.

Recent advances in hardware and software allowed the large scale acquisition of data
(AGGARWAL, 2007). This data is usually depicted as an infinite sequence, generated
continuously, usually at high speed, and is known as data streams (GAMA, 2010; GAMA;
GABER, 2007). Many applications are deployed in these dynamic environments, where
they have to cope with the specific challenges from the dynamic environments. At the same
time, applications have to adhere to constraints such as using small and finite resources,
detecting and reacting to changes in the predicted data, and providing the prediction in
a short interval.

Due to the aforementioned constraints, many of the established solutions designed for
the static setting are no longer effective when deployed in dynamic environments. In this
context, methods that possessed remarkable predictive performance in the static setting
have posed many challenges in achieving the same level of performance after adapting the
algorithm to a dynamic setting.
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Such is the case of the Bootstrap Aggregating (Bagging) proposed by (BREIMAN,
1996) in which many weak learners compose an ensemble. Although the base learners
of an ensemble are individually weak and unstable, they can provide a more reliable
prediction by combining the individual outputs as long as training of weak learners is
performed independently (i.e., with different subsets of a dataset). The trade-off for better
predictive performance is a higher demand of computational resources in the form of
storage space, processing time, and computational power to process all the data. Even
using weak learners, it may be challenging to use ensembles in dynamic environments
since they are more computationally intensive and may violate the time and resource
constraints. In addition, as data streams present transient behavior, prediction models
often need to be incremented to adapt to concept drift observed in data. According to
(GAMA; RODRIGUES, 2009), it is precisely due to the transient nature that keeping
the decision model updated and maintaining a good level of accuracy is the big issue in
learning from data streams.

Although parallelism can be a good strategy for performance improvement, many
algorithms typically require collective communication with high overhead (EKANAYAKE
et al., 2016). The algorithms derived from Bagging are an exception to this. Bagging
ensembles do not depend on collective communication because each weak learner is trained
independently, needing only a synchronization in the form of aggregating the votes from
each learner. This characteristic may allow such ensembles to be parallelized while also
adhering to memory and time constraints. However, ensemble models implement different
data structures and are not amendable for data parallelism (GOMES et al., 2017a). In fact,
task parallelism is the natural way to implement them because such ensembles operate on
dynamic data structures used to model concept drift and non-stationary data behavior. In
this scenario, memory access patterns and cache memory performance become one major
challenge for the parallel implementation in multi-core environments.

1.1 Problem statement

It is easy to notice the need for a method to accelerate more complex ML models and
enable the deployment of models with better predictive performance in dynamic environ-
ments with response time constraints. For many years, improvements in computer tech-
nology have been driven by Moore’s Law (MOORE, 2006). During this period, computer
performance could be improved simply by increasing the “clock cycle” of the processor,
which directly reduces the time required to perform a basic operation. However, clock cy-
cle times are decreasing slowly and appear to be approaching physical limits (FOSTER,
1995). Since we can no longer depend on the increasing clock cycle to process more data
in less time, the alternative to this problem has been to incorporate multiple processors
and perform the computations in parallel. This shift has been going on for a while, which
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translates to newer chips having more physical processor counts.
There are, however, multiple challenges awaiting those that wish to extract the best

performance when operating with more computing units. When analyzing the specific
problem of parallelization of ensemble learning methods, it is possible to note that, sev-
eral papers focused on batch methods (YAN et al., 2009; BASILICO et al., 2011; PANDA
et al., 2009; JAHNKE, 2009; XAVIER; THIRUNAVUKARASU, 2017; LIU, 2014; GHOT-
ING et al., 2011) even though the idea is not new. Such works used MapReduce frame-
works, which are not suitable for applications with requirements of low response times,
even being capable of processing huge amounts of data with high scalability (SENGER et
al., 2016). In the context of multi-core parallelism, there are instances of batch ML (HA-
JEWSKI; OLIVEIRA, 2020; ISLAM et al., 2009; CYGANEK; SOCHA, 2014; VALLE et
al., 2010; HOYOS-IDROBO et al., 2018; NOJIMA; MIHARA; ISHIBUCHI, 2010; WEILL
et al., 2019; HUSSAIN et al., 2012; JIN; AGRAWAL, 2003a). However, a few studies have
already begun to explore data stream methods (HORAK; BERKA; VAJTERSIC, 2013;
MARTINOVIC et al., 2019; QIAN et al., 2016; MARRóN et al., 2017).

Although several parallel ensemble algorithms have been proposed, methods focusing
on their efficient implementation are seldom approached in the literature. In addition,
methods may focus on only one algorithm, which may render their contribution hard
to be reused. In this context, a strategy applicable to a wide array of algorithms and
capable of being used in conjunction with individual optimizations may contribute to the
state-of-the-art.

1.2 Hypothesis
This thesis is based on the following Hypothesis:

❏ H1: Task-parallelism per se is sufficient to improve the performance of bagging
ensembles for data streams.

❏ H2: Memory access patterns are a major bottleneck of parallel implementations.
Improving the access pattern can lead to better computational performance.

❏ H3: It is possible to accelerate the execution time of bagging ensembles for data
streams without significantly impacting (reducing) the predictive performance of the
algorithms.

1.3 Contributions
This thesis investigates ways to improve the performance of bagging ensembles used

in data stream classification. We make the following contributions:
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❏ We design and implement a task-parallelization model for data stream bagging en-
sembles by extending algorithms from a popular ML framework using 2 Java parallel
APIs. We evaluate both APIs on two different platforms, using four algorithms and
four datasets;

❏ We perform an exploratory study of the parallel implementations’ efficiency, in-
vestigate the bottlenecks, and present data showing the major shortcomings of the
initially proposed strategy. In addition, we conclude by showing which API is better
in different situations;

❏ We evaluate a mini-batching technique that groups data instances and rearranges
the order of operations in the bagging ensembles for data streams. This technique
is capable of improving the memory access patterns of the algorithms.

❏ We demonstrated that the parallelization per se does not guarantee good perfor-
mance. However, when augmented by a mini-batching technique capable of improv-
ing both the execution time and the energy efficiency of bagging ensembles.

During this work, we produced the following publications. In (CASSALES et al.,
2019), we published a preliminary study where we experimented with three data-stream
algorithms in a constrained device. This work was important as the ensemble showed a
better predictive performance than the other two algorithms used. However, ensemble
algorithms presented the slowest execution time, pointing to a need for acceleration of
execution. In (CASSALES et al., 2020), we present the parallel mini-batching technique. In
(CASSALES et al., 2021), we extend HPCC work with additional datasets and algorithms
and the theory of data locality. Another article (under evaluation at the time of this
writing) with additional results on how mini-batching improves the energy efficiency of
bagging ensembles was submitted to a scientific journal.

During my Doctorate, I did an international internship, where I worked with high-
quality researchers. I received a grant to stay six months working at the University of
Waikato in New Zealand. In the internship, I worked with the Machine Learning group.
During my internship, the main topic of this thesis was ‘discovered’, and I started working
with it.

A direct collaboration of this thesis was published in (PUHL et al., in press), where
the author implements the distributed architecture, proposed in the ISCC paper, using
MPI. Finally, the present thesis is undergoing the registration of Intelectual Property.

1.4 Document structure
The remaining content of this thesis is organized as follows. A brief review of the main

aspects and definitions regarding data stream classification, in the context of this thesis, is
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presented in Chapter 2. The first part of this chapter is used to define some key concepts
for this thesis, such as what is a data stream, how classification for data streams differ
from batch classification, and what are the constraints that the learner should operate
under in a data stream scenario. In the second part of this chapter, ensemble methods for
data stream classification are presented.

Chapter 3 provides the a brief review of the main aspects and definition regarding Par-
allel Processing applied to Machine Learning, in the context of this thesis. A review of the
standard parallelization process is provided, followed by a summary of the frameworks and
tools available and a discussion on data-locality, a key aspect of efficient implementation.

Chapter 4 presents the related literature, highlighting the main aspects of related
works and the key gaps addressed in this thesis.

Chapter 5 presents a parallel model to data stream bagging ensembles and an ex-
perimental evaluation of such model. We present several assumptions and datasets used
throughout this thesis. We present a methodology for the evaluation as well as the results
analysis. We finish the development of this chapter with the report of an investigation
made to find out the bottlenecks of the implementation. Finally, we conclude with a
summary and closing thoughts of the chapter, pointing to the next developments.

Chapter 6 introduces a technique called mini-batching to data stream bagging ensem-
bles. We show how this technique changes execution times of sequential bagging ensembles.
We present theoretical evidence, based on the data-locality material from section 3.3, that
it is an optimal solution. We also evaluate mini-batching impact on the predictive per-
formance. We conclude with a summary and closing thoughts of the chapter, pointing to
the next developments.

Chapter 7 shows the combination of the parallelization model and the mini-batching
technique. We present experimental evaluation to show the improvements in performance.
We provide real data regarding memory access that sustains the claims made about the
mini-batching technique. We conclude with a summary and closing thoughts of the chap-
ter, pointing to the next developments.

Chapter 8 presents an energy-efficiency study using the combined methods. After a
brief introduction to the energy problem, we present an experimental evaluation to show
that our method is capable of improving the energy efficiency of the algorithms under
several workloads. We conclude with a summary and closing thoughts of the chapter,
pointing to future work possibilities.

Finally, Chapter 9 provides a summary of the contributions of this thesis, reflects on
their implications, and speculates about future research directions that could follow the
work that has been undertaken.
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Chapter 2

Data stream mining

Recent advances in hardware and software allowed the large-scale acquisition of data
(AGGARWAL, 2007). However, data, by itself, provides a minimal competitive advantage
and must be processed in order to extract information that can create value and aid
in decision making. The volume of data generated by applications like social networks
and sensors of wide variety has been growing every year, which increases the demand
for fast and efficient solutions capable of processing it in the shortest interval possible.
Recently, the community has been focusing its efforts to obtain valuable models from
massive amounts of rapidly generated data, giving birth to the area of data stream mining
(GOMES et al., 2017a).

Formally, a data stream 𝑆 is a massive sequence of data elements 𝑥1, 𝑥2, . . . ,𝑥𝑛 that
is, 𝑆 = {𝑥𝑖}𝑛

𝑖=1, which is potentially unbounded (i.e., n → ∞) and arrives at high speeds
(SILVA et al., 2013).

This chapter defines some key concepts and challenges about the data stream classifica-
tion (section 2.1) and, more specifically, the data stream ensemble algorithms (section 2.2)
used in developing this thesis.

2.1 Data stream classification
The objective of classification in data streams is to predict, with high accuracy, the

class of unknown examples that are arriving continuously in the form of a data stream.
Data stream classification is a sequence of examples, where each example is a set of 𝑑

attributes (CHEN; ZOU; TU, 2009). Each attribute can be either numeric or nominal.
Each example is associated with a label, represented by a discrete value that indicates
the class that the example belongs.
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Except that data arrives in the form of a data stream, this definition may seem very
similar to the traditional classification problem. However, data streams differ from tradi-
tional data in many ways, as defined by (BABCOCK et al., 2002):

❏ Data arrives continuously, and usually, in high speed;

❏ The system has no control over the order in which the examples arrive to be pro-
cessed;

❏ It is impossible to store all data examples;

❏ Data streams are possibly infinite. In less extreme cases, they are at least many
times bigger than the physical memory;

❏ Once processed, the example has to be discarded or summarized. Example recovery
is a challenging task;

In addition, data stream classification is usually deployed in environments with a
dynamic nature, where the data distribution is non-stationary and may change over time.
This phenomenon is known as concept drift (TSYMBAL, 2004). According to (GAMA;
RODRIGUES, 2009), the biggest challenge in data stream classification is keeping an up-
to-date model with high accuracy, which requires incremental learning algorithms because
these algorithms consider the concept drift associated with the process. In this case, the
model might need to discard old examples – which may not reflect the present data
distribution – and adapt the decision model to the new data.

Even though concept drift has been extensively researched, most works assume data
distribution is independent, meaning that the label of an example does not depend on
the previous examples of the stream. This dependency is prevalent in data streams com-
ing from data recording devices like video surveillance and sensors. Therefore, temporal
dependence adds yet another challenge to data stream classification (ŽLIOBAITė et al.,
2014).

In summary, data stream poses several challenges for learning algorithms, including,
but not limited to: a massive amount of examples, high arrival speeds, limited labeled
examples, restricted resources (time and memory), novel classes, concept and feature
drifts, a trade-off between accuracy and efficiency, distributed applications, and tempo-
ral dependencies (GOMES et al., 2017a; AGGARWAL, 2007; BARDDAL et al., 2016;
KRAWCZYK et al., 2017a)

2.1.1 Hoeffding Tree

One of the earliest algorithms to deal with these challenges was the Hoeffding Tree
(DOMINGOS; HULTEN, 2000), also known as Very Fast Decision Tree (VFDT). The
Hoeffding Tree (HT) is an incremental tree designed to cope with massive data streams.
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Thus, it can create splits with reasonable confidence in the data distribution while having
very few instances available. This is possible because of the Hoeffding Bound (HB), which
states that with probability 1 − 𝛿, the true mean of the variable is at least within ±𝜖 of
the observed variable average. The authors define 𝜖 as:

𝜖 =
√︃

𝑅2 𝑙𝑛(1/𝛿)
2𝑛 , (1)

where 𝑟 is a real-valued random variable with a range 𝑅 = 𝑟𝑚𝑎𝑥−𝑟𝑚𝑖𝑛 (i.e., the subtraction
of the maximum and minimum values of 𝑟) considering the 𝑛 independent observations
of 𝑟.

One of the shortcomings of the HT derives from the fact that a single tree cannot
accurately model complex learning problems. Even so, (FREUND; SCHAPIRE, 1997)
presented a way to obtain a strong learner capable of modeling complex learning prob-
lems with an (expected) higher predictive performance without resorting to complex and
intricate models. The proposed solution combines several weak learners strategically to
make them function as one big learner (i.e., an ensemble). Even the weakest learners, who
perform slightly better than random guessing, can form an ensemble. The good predictive
performance has lead to an increasing interest in deploying ensemble models in real world
problems involving data stream classification (GOMES et al., 2017a).

2.2 Ensembles for data stream classification
An ensemble combines several weak learners to improve the predictive performance

of the model. When designing an ensemble, one of the main characteristics sought by
researchers is the diversity of the ensemble members, particularly regarding the misclas-
sifications, which means that every member should be as unique as possible (POLIKAR,
2006). When the models of an ensemble are unique, the ensemble is considered diverse,
and its members complement each other. In essence, most models will provide correct
predictions that compensate for the wrong predictions of a minority of models (GOMES
et al., 2017a).

Many works in the literature have used ensembles in data stream learning problems
with different goals, like concept-evolution (e.g., the apparition of novel classes) (MASUD
et al., 2010; MASUD et al., 2011; FARID et al., 2013), recurring classes (AL-KHATEEB
et al., 2012), and anomaly detection (TAN; TING; LIU, 2011), to cite a few.

A popular strategy to create ensembles is Bagging (BREIMAN, 1996). Although Bag-
ging and its variants (e.g., Random Forest) are more than 20 years old, they are popular
today. Bagging effectively reduces error without resorting to intricate models that are
not trivial to train and fine-tune, such as deep neural networks. In contrast to Boost-
ing (FREUND; SCHAPIRE et al., 1996), Bagging does not create dependency among
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the base models, facilitating the parallelization of the method in an online fashion. Be-
sides that, Bagging variants yield higher predictive performance in the streaming setting
than Boosting or other ensemble methods that impose dependencies among its base mod-
els. This phenomenon is present in several empirical experiments (OZA; RUSSELL, 2001;
BIFET et al., 2009; BIFET; HOLMES; PFAHRINGER, 2010; GOMES et al., 2017b), and
can be attributed to the difficulty of effectively modeling the dependencies in a streaming
scenario as noted in (GOMES et al., 2017a).

2.2.1 Bagging ensembles for stream processing

Figure 1 shows an example of a bagging ensemble operating with a data stream. As
the data arrives, the ensemble (big black rectangle) replicates the example and passes
it to each (weak) learner, represented by the squares with gears inside on the left. Each
learner processes the instance and outputs a prediction, portrayed by the colored circles.
Then, the ensemble aggregates the predictions from every member using a heuristic and
outputs the final prediction.

Figure 1 – Example of a Bagging Ensemble organization using majority vote.

Despite other decision tree algorithms (MANAPRAGADA; WEBB; SALEHI, 2018),
the HT algorithm is often chosen as the base model for the online bagging algorithms.
Even though the HT may not present the best predictive performance individually, it does
yield reasonable accuracy without requiring excessive computational resources.

Next, we present a summary description of the original data stream adaptation for a
Bagging algorithm (OzaBag) proposed by Oza and Russell (OZA; RUSSELL, 2001). In
addition, we also present five ensemble algorithms inspired by OzaBag’s idea.
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Online Bagging (OzaBag - OB) (OZA; RUSSELL, 2001) is an incremental adap-
tation of the original Bagging algorithm. The authors demonstrate how to adapt the
process of bootstrapping to a data stream setting. Online Bagging uses a Poisson(𝜆 = 1)
distribution to assign weights to each incoming instance, which simulates the sampling
with replacement from the original training set used on the standard bootstrapping. The
weight received by the instance simulates the number of times it will be ‘repeated’ to
simulate the bootstrapping process. A Poisson distribution with 𝜆 = 1 has a minimal
range of possible values. One issue that may arise is the number of times the instances
will receive weight zero (0), which means the learners will skip them during training. The
chance of this happening is about 37%, which helps to approximate the offline version of
bagging. In an online setting, this may be detrimental to performance (GOMES et al.,
2017a). Therefore, other works (BIFET; HOLMES; PFAHRINGER, 2010; GOMES et al.,
2017b) increase the number of times an instance is used for training by increasing the 𝜆

parameter.

OzaBag Adaptive Size Hoeffding Tree (OBagASHT) (BIFET et al., 2009) com-
bines the OzaBag with Adaptive-Size Hoeffding Trees (ASHT). In an attempt to improve
the diversity of the ensemble, – and, consequently, the predictive performance – the au-
thors sought to enforce the creation of trees with different sizes. The algorithm receives a
parameter indicating the tree’s maximum number of nodes and applies some policies to
prevent the tree from growing bigger than this parameter by deleting some nodes. The
effect is the co-existence of different reset-speed trees in the ensemble. Smaller trees can
adapt faster to the changes in data distribution, while larger trees can provide better
predictive performance on data with little to no changes in distribution. Unfortunately,
in practice, this algorithm did not outperform variants that relied on other mechanisms
for adapting to changes, such as resetting learners periodically or reactively (GOMES et
al., 2017a).

Online Bagging ADWIN (OBADWIN) (BIFET et al., 2009) combines OzaBag
with the ADAptive WINdow (ADWIN) (BIFET; GAVALDà, 2007) change detection al-
gorithm. When this algorithm detects a change in the data distribution, the ensemble
replaces the learner with the lowest predictive performance with a new learner. ADWIN
keeps a variable-length window of recently seen items. The property that the window has
the maximal length is statistically consistent with the hypothesis that there has been no
change in the average value inside the window. Such property implies that the average
over the existing window can be reliably taken as an estimation of the current average
in the stream at any time, except for a very small or very recent change that is still not
statistically visible.

Leveraging Bagging (LBag) (BIFET; HOLMES; PFAHRINGER, 2010) extends
OBADWIN by increasing the 𝜆 parameter of the Poisson distribution to 6, effectively
causing each instance to have a higher weight and be used for training more often. While
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OBADWIN has only one ADWIN detector for the whole ensemble, LBag maintains one
ADWIN detector per model, allowing LBag to reset the models independently. This ap-
proach leverages the predictive performance of OBADWIN by using a higher weight, ac-
celerating the training, and resetting the models individually. The faster training comes at
the cost of bigger models that require more memory and processing time when compared
to OB and OBADWIN. LBag also has a higher processing cost due to having one ADWIN
detector for each model. In (BIFET; HOLMES; PFAHRINGER, 2010), the authors also
attempted to further increase the diversity of LBag by randomizing the ensemble’s output
via random output codes. However, this approach was not very successful compared to
maintaining a deterministic combination of the models’ outputs.

Adaptive Random Forest (ARF) is an adaptation of the original Random Forest
algorithm (BREIMAN, 2001) to the data stream setting. Random Forests (RF) use a
technique called random subsets to increase diversity among the base models further.
Each DT uses a different subset of attributes, allowing faster splits in leaf nodes and
creating more unique learners. ARF uses HTs and simulates resampling the as in LBag
(i.e., Poisson(𝜆 = 6)). The Adaptive part of ARF stems from the change detection and
recovery strategies based on detecting warnings and drifts per tree in the ensemble. After
signaling a warning, the ensemble creates and trains another model (a ‘background tree’)
without affecting the ensemble predictions. If the warning escalates to a drift signal, the
ensemble replaces the associated tree with its background tree. Notice that in the worst
case, the number of tree models in ARF can be at most double the total number of trees
due to the background trees. However, as noted in (GOMES et al., 2017b) the co-existence
of a tree and its background tree is often short-lived.

Streaming Random Patches (SRP) (GOMES; READ; BIFET, 2019) is an en-
semble method specially adapted to data stream classification, which combines random
subspaces and online bagging. SRP is not constrained to a specific base learner as ARF
since its diversity-inducing mechanisms are not built-in the base learner. In other words,
SRP uses global randomization while ARF uses local randomization. The experiments
focusing on Hoeffding trees showed that SRP could produce deeper trees, bringing the
trade-off between increased diversity in the ensemble and computational cost.

2.3 Final considerations
This chapter presented an overview of data stream mining, its main characteristics and

demonstrated how a decision tree algorithm can be adapted to work with data streams.
The Chapter also introduced bagging ensembles by describing the main characteristics of
six algorithms designed to simulate sampling with reposition (i.e., resampling) in a data
stream setting. The next Chapter will provide an overview on parallelism and important
aspects to improve the efficiency of algorithms.
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Chapter 3

Parallel processing

A parallel computer is a set of processors, of varying scale, capable of working co-
operatively to solve important computational problems. Once seen as an exotic subarea
of computing, advances in computer science as a whole have elevated parallel processing
status to a central aspect of the programming enterprise (FOSTER, 1995).

This phenomenon is not, by any means, a surprise, as researchers have been discussing
models and algorithms for a long time (FLYNN, 1972; KARP; RAMACHANDRAN, 1989;
DUNCAN, 1990).

Back in 1972, Flynn has proposed what would be known as the Flynn taxonomy. In
that paper, Flynn examines the physical and logical attributes of computers to provide a
simple classification based on the number of instructions and data that can be computed in
parallel, as shown in Table 1. Later on, Duncan extended Flynn’s taxonomy to incorporate
more modern computer architectures.

Single Instruction Multiple Instruction
Single Data SISD MISD

Multiple Data SIMD MIMD

Table 1 – Classification of parallel architectures proposed by (FLYNN, 1972).

It is a common practice to classify the solutions with regards to these architectures
and in the case of this thesis it is straightforward to classify the solution regarding the in-
structions. We can confidently say that the algorithms proposed in this thesis use Multiple
Instructions (MI). The explanation for this claim derives from the fact that the classifiers’
structures differ among themselves. Such difference happens because each classifier uses a
different subset of the data to perform the training and predicting phases. Using different
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data to train the models results in different structures to both, represent and process, the
models, ultimately leading to different instructions for each model.

On the other hand, the classification of this thesis’ work with regards to the data
flows is more delicate, since the algorithms present both behaviors (single and multiple
data flows) in different parts of the code. When data is arriving through the stream, it
is not modified before replicating it to every classifier. Since each classifier consumes the
same input through the data stream it constitutes in a single data behavior. Contrarily,
the outputs produced by the classifiers before the aggregation step are different among
themselves, which constitutes in a multiple data behavior.

One alternative to classify such problem is to chose the wider case, which leaves us with
a MIMD problem with shared-memory as defined in Duncan’s taxonomy. In fact, Dun-
can defines the MIMD architecture as multiple processors that can execute independent
instruction streams, using local data. He highlights the potential of exploiting the inde-
pendent nature of each processor and the cost-effectiveness compared to single-processor
systems. On the other hand, other problems, such as data access synchronization and
cache coherency, must be solved (DUNCAN, 1990).

The other alternative is to adopt the classification that is predominant in the algorithm
behavior. In this case, the solution proposed in this thesis would be classified as MISD.
During the training step, the only behavior present is the SD. In fact, the MD behavior
is presented only in a brief interval when aggregating the predictions from the classifiers,
which happens at the tail end of the classification step.

3.1 Designing parallel algorithms
Foster, defines four fundamental requirements for parallel software: concurrency, scal-

ability, locality and modularity. Concurrency is defined as the ability of algorithms and
program structures to leverage multiple processors and perform many operations at once.
Scalability is related to having the resilience to increase the processor counts of a soft-
ware. The third fundamental requirement, locality, is the ratio between local and remote
accesses, where local memory accesses should be prioritized. Finally, modularity allows
an easier management of processes and instructions (FOSTER, 1995).

Many models have been proposed to represent the parallel computation, task/channel,
message passing, data parallelism, and shared memory. Each abstraction has its charac-
teristics, but most of them use some form of task abstraction.

A common design methodology for parallel algorithms was defined by Foster. This
methodology uses four stages: partitioning, communication, agglomeration, and mapping.
Partitioning is the decomposition of the problem into small tasks with the goal of recog-
nizing opportunities for parallel execution independently of physical characteristics. The
communication stage defines the data dependency among the tasks created in the previ-
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ous stage, as well as all the structures and policies required for them to operate. In the
agglomeration stage, the task and communication structures are evaluated with respect
to performance requirements and implementation costs. Multiple tasks can be combined
into a larger task in this stage. Finally, the mapping stage assigns each task to a processor
trying to extract the best performance possible. Mapping can be specified statically or
determined at runtime by load-balancing algorithms.

By applying a methodology one can identify common problems in parallel algorithms,
like granularity of the tasks, redundant computation, workload heterogeneity, scalability of
task number and problem size, unbalanced communication, communication concurrency,
among others. It should be noted that some problems may be either created or solved in
the agglomeration and mapping stages (FOSTER, 1995).

Hennesy and Patterson highlight two challenges of parallel processing: the limited
parallelism available in programs, in the sense that the programs have a limited par-
allel portion, and the relatively high cost of communications involved in remote access
(HENNESSY; PATTERSON, 2012).

3.1.1 Task vs Data parallelism

According to Flynn’s taxonomy (FLYNN, 1972), data-parallelism is considered a SIMD
example, while task-parallelism falls into the MIMD category.

Data-parallelism exploits concurrency by applying the same operation to multiple el-
ements of a data structure. Due to each operation on each data element being considered
an independent task, data-parallelism possesses a naturally small granularity where the
concept of locality does not apply. The downside is that programmers usually are re-
quired to provide explicit data distribution operations (FOSTER, 1995). Also, SIMD is
potentially more energy efficient than MIMD (HENNESSY; PATTERSON, 2012).

Task-parallelism is more suited for heterogeneous computing, where different data
structures must be processed with different instructions. Task-parallelism is more straight-
forward to develop, however their potential for improvement in performance is usually
smaller than data-parallel alternatives. In the context of the present thesis only the task-
parallel approach is used.

3.1.2 Shared vs Distributed memory

Another common distinction in parallel programs is related to the memory access.
Even when working only with task-parallel solutions, there is a possibility that they will
use shared or distributed memory.

A distributed-memory MIMD is a model where each processor has direct access to
its own local memory only. The processors are interconnected by communication links,
and exchange data by passing messages through those links. Examples of this model are
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Figure 2 – SMP multiprocessor (HENNESSY; PATTERSON, 2012).

clusters and grids, and has some characteristics like high costs and reliability through
redundancy (HENNESSY; PATTERSON, 2012).

In the shared-memory programming model (SM-MIMD), tasks share a common ad-
dress space, which they read and write asynchronously, while employing mechanisms such
as locks and semaphores to control access to the shared memory. Unfortunately, challenges
like understanding and managing locality become more difficult on most shared-memory
architectures (FOSTER, 1995). Shared memory multiprocessors fall into two classes which
are dependent on the number of processors and influence the memory organization and
interconnect strategy.

(HENNESSY; PATTERSON, 2012) define two classes of multiprocessors: the sym-
metric multiprocessors (SMP) and distributed shared-memory multiprocessors (DSM).
SMPs are also called centralized multiprocessors or uniform memory access (UMA) mul-
tiprocessors. They have a single memory unit that operates with a uniform latency for all
processors. In SMPs any centralized resource in the system can become a bottleneck, with
the usual shared L3 cache unlikely to scale much past eight cores. DSMs are also called
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Figure 3 – DSM multiprocessor (HENNESSY; PATTERSON, 2012).

nonuniform memory access (NUMA) multiprocessors. They have a distributed memory
in order to support the bandwidth demands from more processors. The downside is that
by distributing the memory, it has a higher latency in general. Figures 2 and 3 shows
examples of SMP and DSM multiprocessors, respectively.

3.2 Frameworks and tools
Originally created in 1954 by IBM for scientific and engineering applications, and later

extended multiple times originating many different versions, the FORTRAN language has
been a staple in the programming world (BACKUS, 1978). Given its target applications,
it was expected that FORTRAN would be one of the pioneers in the High Performance
area, which has lead to the creation of version like High Performance Fortran (HPF)
(KENNEDY; KOELBEL; ZIMA, 2007) – a representative of the data-parallel program-
ming model – and Fortran M (FM) – a representative of the task-parallel programming
model (FOSTER, 1995).

Other staples of the HPC field are the C and C++ languages. C was created with the
ability to work with task-parallelism through the famous POSIX threads (BUTENHOF,
1997), which provide minimal functionality and for this reason some consider this approach
the assembly language of parallelism.

Two famous and widely used APIs capable of providing tools to develop parallel pro-
grams are the MPI (FORUM, 1994) and OpenMP (CHANDRA et al., 2001). MPI is the
standard on communication over message passing. It is usually deployed on distributed
memory, however it is possible to use it implements a shared-memory model. OpenMP
is mainly based on simple compiler directives used to guide mostly the parallelization of
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regular loops. Recent expansions provide more mechanisms to improve the control over
the application execution.

Although it was never seen as a high performance language, Java offers tools that allow
the programmer to implement task-parallelism with relatively ease through resources
available on the concurrent package. It offers mechanisms to implement and manage
Threads, going from very simple models, to more complex behaviors.

The Java parallel APIs are based on the Fork-Join abstraction model, which allows the
expression of parallel implementations without prior knowledge on the target system. This
model is composed by three steps: fork, computation and join. First, in the fork step new
threads are created on demand. Then, in the computation step, each thread executes one
or more tasks. Finally, in the join step the parallel threads synchronize and finish before
continuing the sequential region of the program. This fork-compute-join process can be
repeated many times during the execution of a program. Aiming to reduce the overhead
of thread creation/destruction, Fork-Join implementations usually employ thread pools
which support forked tasks management. These pooled threads are not destroyed when
the task finishes but instead release resources and become idle (EKANAYAKE et al.,
2016).

There are two frameworks that implement the Fork-Join thread model in Java. The
framework Executor Service (ES) is available since Java 7. It has methods to track the
progress of a task and manage the task’s termination. The main goal of this framework
is to facilitate thread management through the creation of a Service with a fixed thread
pool size, reserving and reusing these threads. Once a service has been created, tasks can
be invoked by passing Runnables/Callables for it.

The second framework is the Java Fork/Join (FJ), implemented on the ForkJoin-
Pool1 class, also available since Java 7. It is built upon the ExecutorService, and supports
additional abstractions. Among the additions, a built-in work-stealing algorithm, capable
of supporting load-balancing, allows idle threads to steal work from the queues of other
threads in the pool. The Fork/Join framework was designed with problems split in re-
cursive tasks as its target applications. This conceptual decision is, perhaps, the biggest
difference between both frameworks.

In this thesis, we have used, initially, both frameworks. However, as the work pro-
gressed, ExecutorService was deemed a better option.

3.3 Data locality
Many authors consider data locality (also referenced as Memory Locality, sometimes)

a fundamental property and design principle for optimizing the performance of hardware,
software, and algorithms (YUAN et al., 2019; FOSTER, 1995). Locality can be defined
1 <https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html>
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as “the tendency for programs to cluster references to subsets of address space for ex-
tended periods” (DENNING; MARTELL, 2015). Due to the increasing gap in processor
and memory speeds (JACOB; WANG; NG, 2010), locality has played a central role in
optimizing the performance of operating systems over the decades.

Several metrics have been proposed to measure and quantify the locality of data
(YUAN et al., 2019). The notion of reuse distance (RD) is based on direct and un-
ambiguous measurements, do not depend on idealistic assumptions, and are extensions
of observational stochastic (YUAN et al., 2019). Thus, RD can be used to evaluate how
mini-batching improves the performance and resource (i.e., cache) sharing of bagging
ensembles implementations.

From a historical perspective, memory locality has been studied over decades to op-
timize the memory hierarchy, operating systems, software, and algorithms design (DEN-
NING, 1968; DENNING; SLUTZ, 1978; SLUTZ; TRAIGER, 1974) with recent advances
in measurement techniques (IBRAHIM; STROHMAIER, 2010), trace generation (SHEN;
SHAW, 2008), and formal modeling (BALAKRISHNAN; SOLIHIN, 2012; MAEDA et al.,
2017). In a recent work (YUAN et al., 2019), Yuan et al. built upon previous works by
proposing the relational theory of locality (RTL), a theoretical framework that unifies sev-
eral memory locality measures used along five decades of study and research in the field.
RTL provides mathematical background and categorizes the measures in three different
types of locality. The authors showed how such measures relate to each other and whether
and how they can be inter-converted.

Next, we discuss memory locality of a stream processing system operating according to
the algorithms described in the previous section. Each algorithm implements an ensemble
𝐿, composed by a set of learners 𝑙𝑖 ∈ 𝐸. We refer to an individual learner as 𝑙𝑖 (1 ≤ 𝑖 ≤
|𝐸|). A stream 𝑆 is a countably infinite set of data elements 𝑠 ∈ 𝑆. Each stream element
s:〈v, t〉 consists of a relational tuple 𝑣 conforming to some schema, with an application time
value 𝑡𝑖 ∈ 𝑇 . We assume that the time domain 𝑇 is a discrete, linearly ordered, countably
infinite set of time instants 𝑡 ∈ 𝑇 . As the stream is potentially infinite, we assume that 𝑇

is bounded in the past, but not necessarily in the future. Thus, due to memory limitations
and response time constraints, the algorithms need to incrementally process incoming data
elements in a single pass, performing both classification and training as data elements
arrive.

A trace 𝑁 is a sequence of references to data or memory locations denoted by 𝑁 =
𝑚𝑡(1, . . . ,𝑛), where 𝑛 is the trace’s length. A trace can access a set of 𝑚 distinct memory
addresses, while the set of distinct memory addresses is be denoted by 𝑀 = 𝑒1, . . . , 𝑒𝑚,
where 𝑚 is the number of distinct memory addresses in 𝑀 . The model allows abstracting
from any granularity issues so that a data item may be either a variable, a data block,
a page, or an object. For illustration, we can use some trace examples composed of just
three data elements 𝑎, 𝑏, 𝑐, including those repeating them once in the same order (i.e.,
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abc abc), in the opposite order (i.e., abc cba), or repeating them indefinitely (i.e., abc abc
. . . ).

3.3.1 Improving access locality

In essence, access locality is related to measuring the locality for each memory access.
From the five definitions of access locality provided by YUAN et al. (YUAN et al., 2019),
we use only the definition of reuse distance sequence, or reuse distance (RD) for short,
because it suffices to demonstrate that mini-batching can improve ensemble implementa-
tions’ access locality. The equivalence among the definitions is proven in (YUAN et al.,
2019).

The reuse distance (RD) is defined as “the number of distinct data accessed since
the last access to the same datum, including the reused datum” (YUAN et al., 2019).
The reuse distance is ∞ for its first access. For a finite reuse distance, the minimum is
1 (because it includes the reused datum), and the maximum is 𝑚. For example, the RD
sequence is ∞∞∞ 333 for abc abc and ∞∞∞ 135 for abc cba.

Before demonstrating the benefits of mini-batching, it is worth noting that stream pro-
cessing ensembles have two principal operations: the classification (in line 5 of Algorithm
1) and the training (line 12 of Algorithm 1). The former reads a few model variables of
each learner, while the latter is (by far) the dominant operation in terms of computational
cost because it performs both read and write operations to update the learner’s models.
For this reason, our analysis presented here focus on the training operation.

For the sake of illustration, Table 2 presents a simple example with an ensemble
of 𝑚 = 4 learners processing a stream of 𝑛 = 6 data items. Without mini-batching, the
processing of the first data item produces a sequence of 𝑚 occurrences of ∞ reuse distance.
However, for finite reuse distance, the minimum reuse distance is 1 because it includes
the reused datum, and the maximum is 𝑚. Thus, ∞ is shown only for illustration, being
ignored in our analysis hereafter. In this example, for each access 𝑒𝑖 the reuse distance
is equal to the number of ensembles 𝑚. With mini-batching, each ensemble is accessed
exactly once within the mini-batch (with reuse distance 𝑚) and reused 𝑏 − 1 times. One
could easily realize the benefits of mini-batching by simply substituting every ∞ by 1 and
calculating the average reuse distance for the two executions. Next, we demonstrate the
benefits.

For the proofs shown in this section we assume the amount of memory used to imple-
ment the ensemble exceeds the cache memory size (which is quite realistic). Otherwise,
all accesses will hit the cache and the order in which memory positions are accessed does
not influence cache misses.

Theorem 1. The reuse distance of an ensemble of 𝑚 learners processing a 𝑛-length data
stream is 𝒪(𝑛𝑚2).
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Table 2 – Example: A stream of 𝑛 = 6 data items being processed by an ensemble of 𝑚
learners without and with mini-batching.

RD without mini-batching. A semicolon (;) denotes separation between data items.
Access sequence 𝑒1,𝑒2, . . . ,𝑒𝑚;𝑒1,𝑒2, . . . ,𝑒𝑚;𝑒1,𝑒2, . . . ,𝑒𝑚;𝑒1,𝑒2, . . . ,𝑒𝑚;𝑒1,𝑒2, . . . ,𝑒𝑚;𝑒1,𝑒2, . . . ,𝑒𝑚

RD sequence 𝑚,𝑚, · · · ,𝑚;𝑚,𝑚, · · · ,𝑚;𝑚,𝑚, · · · ,𝑚;𝑚,𝑚, · · · ,𝑚;𝑚,𝑚, · · · ,𝑚;𝑚,𝑚, · · · ,𝑚

RD with mini-batching of size 𝑏 = 3. A semicolon (;) separates mini-batches.
Access sequence 𝑒1,𝑒1,𝑒1;𝑒2,𝑒2,𝑒2; · · · ;𝑒𝑚,𝑒𝑚,𝑒𝑚;𝑒1,𝑒1,𝑒1;𝑒2,𝑒2,𝑒2; · · · ;𝑒𝑚,𝑒𝑚,𝑒𝑚

RD sequence m, 1, 1; m, 1, 1; · · · ;m, 1, 1; m, 1, 1; m, 1, 1; · · · ;m, 1, 1

Proof. Consider an ensemble composed of 𝑚 learners and a data stream composed of 𝑛

data elements. Let 𝑒1, 𝑒2, . . . , 𝑒𝑚 be the memory locations accessed during a sequential
execution of the ensemble to process. As the model can express arbitrary granularity, for
simplicity consider that 𝑒𝑖 denotes an access to the data structures of the i-th learner 𝑙𝑖

of the ensemble.
The execution of the training operation (line 5 of Algorithm 1) will produce the access

sequence (𝑒1, 𝑒2, . . . , 𝑒𝑚) for each arriving data instance because it invokes all the learners’
training in this exact order. Thus, the training operation will produce the access sequence
(𝑒1, 𝑒2, . . . , 𝑒𝑚)𝑛 for the access stream. Then, considering finite distances (i.e., substituting
∞ by 𝑚), the reuse distance sequence will be (𝑚)𝑚 for all the arriving data items. Then,
we can sum up the entire sequence to obtain RD as follows:

𝑅𝐷 =
𝑛∑︁

1

𝑚∑︁

1
𝑚 = 𝑛𝑚𝑚 = 𝒪(𝑛𝑚2). (2)

Next, we can estimate the benefit of mini-batching (as described in Algorithm 3) for
reducing the reuse distance.

Theorem 2. Mini-batching can reduce the reuse distance of an ensemble implementation
by a constant factor.

Proof. Consider an ensemble implementation like Algorithm 3, whose computational cost
is dominated by the training phase. With mini-batching, the access sequence will change
from (𝑒1, 𝑒2, . . . , 𝑒𝑚)𝑛 (in Algorithm 1) to (𝑒1

𝑏, 𝑒2
𝑏, . . . , 𝑒𝑚

𝑏)𝑛/𝑏 (in Algorithm 3), where 𝑏

is the mini-batch size. For each mini-batch, the RD sequence is (𝑚, 1𝑏−1)𝑚. Finally, the
RD sequence for the whole stream will be ((𝑚, 1𝑏−1)𝑚)𝑛/𝑏, and the RD can be computed
as:

𝑅𝐷 =
𝑛/𝑏∑︁

1

𝑚∑︁

1
(𝑚 + 𝑏 − 1) = 𝒪(𝑛𝑚

2

𝑏
). (3)

Hence, the mini-batch can reduce the reuse distance by a constant factor of 𝑏, where 𝑏 is
the mini-batch size.
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Although our demonstration assumes sequential processing, the result is also valid
for the parallel execution proposed in Algorithm 3. Notice that the outer loop in line 11
assigns a different ensemble learner for each processing core, while the innermost loop
iterates over the mini-batch data items. Thus, each processing core needs to load only one
learner model in its memory caches to process the entire mini-batch.

Table 3 – Parallel execution of a stream of 𝑛 = 6 data items being processed by an
ensemble of 𝑚 = 4 learners in 3 processors with mini-batch size 𝑏 = 3.

Reuse distance with mini-batching of size 𝑏 = 3

P1 Access seq. 𝑒1,𝑒1,𝑒1,𝑒1,𝑒1,𝑒1 𝑒4,𝑒4,𝑒4,𝑒4,𝑒4,𝑒4,. . .
RD seq. 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, . . .

P2 Access seq. 𝑒2,𝑒2,𝑒2,𝑒2,𝑒2,𝑒2,. . .
RD seq. 4, 1, 1, 1, 1, 1, . . .

P3 Access seq. 𝑒3,𝑒3,𝑒3,𝑒3,𝑒3,𝑒3,. . .
RD seq. m,1, 1, 1, 1, 1, . . .

It is worth noting such results hold regardless of the locality measure used for the
demonstration. As formally demonstrated by YUAN et al. (YUAN et al., 2019), locality
access measures such as address independent (AI) sequence, reuse interval (RI) sequence,
per datum sequence of reuse interval (PD-RI), and per datum reuse distance (PD-RD)
are equivalent to each other, and they can be inter-converted. Using these results, other
measures could be seamlessly used to demonstrate that mini-batching improves access
locality of the implementation of ensembles for stream processing. We chose the measure
reuse distance because of its close relation to cache misses, as the larger the reuse distance,
the higher the cache misses. Cache misses occur when the reuse distance is big enough to
fill the cache memory.

Theorem 3. Mini-batching provides optimal access locality for the implementation of
ensembles.

Proof. The proof is straightforward. With mini-batching, at least one mini-batch (of
length 𝑛) is needed to contain all the stream elements. For each ensemble learner 𝑙𝑖,
the processing of the first data element 𝑒1 in the mini-batch will result in reuse distance
of 𝑚, because the 𝑙𝑖’s data structures are being touched for the very first time. For all the
remaining 𝑏 − 1 data elements of the mini-batch the reuse distance will be 1 as it reuses
the same datum. Thus, every learner produces a reuse distance of 𝑚 + 𝑏 − 1. This is a
lower bound on the reuse distance as no other order can reduce it. For an ensemble of 𝑚

learners, the total reuse distance will be 𝑚 * (𝑚+ 𝑏− 1) = 𝒪(𝑚2) as 𝑏 is a constant. This
is equal to Eq. 3 when the batch size 𝑏 is equal to the stream length 𝑛.

Although using only one single mini-batch to process the entire data stream is useful
for demonstrating that the access locality is optimal, it is not useful in practice. Notice
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that the pure stream processing (as in Algorithm 1) performs both the classification and
training steps for every stream’s incoming data item. Thus, the learner models continu-
ously evolve, and the processing of every data instance can influence the next incoming
data classification. On the other hand, with mini-batching (as proposed in Algorithm 3),
the ensemble training is deferred to the end of each mini-batch. So, setting a mini-batch
size of 1 boils down to pure stream processing. In contrast, mini-batches of the same length
as the entire data stream turns it into a pure batching scheme in which all data instances
are classified using models built during an offline training phase that precedes the entire
stream. In summary, the choice of the mini-batch size raises a trade-off between learn-
ing capabilities (with short mini-batches) and computational performance (with larger
mini-batches).

Yuan et al. (YUAN et al., 2019) demonstrated that several locality measures are
equivalent and may be inter-converted. However, not all measures can be equally usable for
our purpose. We chose the reuse distance because the demonstration that mini-batching
leads to optimal locality becomes straightforward with this measure, but not using the
footprint or miss ratio, for instance.

3.4 Final considerations
This chapter presented an overview of the basic taxonomy of parallel architectures.

Understanding the main characteristics of the architectures and how the components
work together is important to design an efficient algorithm. Also, this chapter presented
an overview of data locality, an important concept regarding the efficiency of algorithms.
In the next Chapter, we explore the related work of the thesis divided into three subareas:
parallel ML, mini-batching and energy efficiency.
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Chapter 4

Related work

Research on the parallelization of machine learning methods dates to the early 90s
(CHAN; STOLFO, 1993), when most papers focused on batch ML methods that require
the whole dataset in the main memory to train the model. In early data mining, the
batch learning approach is applied by processing the whole training data (one or multiple
times) to output the decision models. Then, the decision models can be applied to new
production data. This is usually referred to by batch learning (GAMA, 2012), batch-mode
algorithms (SILVA et al., 2013), static data mining (KRAWCZYK et al., 2017b), among
others in the literature. From now on we will use batch learning to refer to non-stream
learning methods.

Over the years, with the increase in computational power, the focus shifted from single
classifiers (SCHöLKOPF; PLATT; HOFMANN, 2007; WANG, 2016; JOSHI; KARYPIS;
KUMAR, 1998) to ensembles. In the context of ensemble learners, many studies have
been made on MapReduce (MR) frameworks (YAN et al., 2009; BASILICO et al., 2011;
PANDA et al., 2009; JAHNKE, 2009; XAVIER; THIRUNAVUKARASU, 2017; LIU, 2014;
GHOTING et al., 2011), which are not suitable for applications with requirements of
low response times, even being capable of processing huge amounts of data with high
scalability (SENGER et al., 2016). Another investigation approach is the use of GPUs to
process ensembles (LIAO et al., 2013; SAFFARI et al., 2009), however GPUs are better
for data-parallel problems.

Among the works that explored multi-core parallelism, distributed or not, we can
further subdivide it in batch (HAJEWSKI; OLIVEIRA, 2020; ISLAM et al., 2009; CY-
GANEK; SOCHA, 2014; VALLE et al., 2010; HOYOS-IDROBO et al., 2018; NOJIMA;
MIHARA; ISHIBUCHI, 2010; WEILL et al., 2019; HUSSAIN et al., 2012; JIN; AGRAWAL,
2003a) or data stream (HORAK; BERKA; VAJTERSIC, 2013; MARTINOVIC et al.,
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2019; QIAN et al., 2016; MARRóN et al., 2017) methods. The Message Passing Interface
(MPI) standard was used in many works with various ensemble methods, such as: ensemble
of improved and faster Support Vector Machine (SVM) (HAJEWSKI; OLIVEIRA, 2020),
ensemble of Neural Networks (NN) (VALLE et al., 2010), ensemble of fuzzy rule genera-
tion (NOJIMA; MIHARA; ISHIBUCHI, 2010), bagging decision rule ensembles (HORAK;
BERKA; VAJTERSIC, 2013) and regression ensembles (MARTINOVIC et al., 2019). A
miscellaneous of tools and scopes can be found in the remaining literature. (ISLAM et al.,
2009) proposed a multi-classifier ensemble consisting of three classifiers which are pinned
to a thread. (CYGANEK; SOCHA, 2014) implemented multi-classifiers using OpenMP.
An ensemble of SVMs was implemented using joblib (a Python multiprocessing lib) and
scikit-learn by (HOYOS-IDROBO et al., 2018). (WEILL et al., 2019) used TensorFlow to
build a scalable and extensible framework for ensembles parallelization. (JIN; AGRAWAL,
2003a) proposed an efficient Random Forest (RF) implementation that improves mem-
ory access due to better data representation on machines that combine both shared and
distributed memory; it was implemented using FREERIDE (previous work from the au-
thors). (QIAN et al., 2016) parallelizes an ensemble of J48 for grid platforms using Java.
(MARRóN et al., 2017) implemented a low-latency Hoeffding Tree (HT) in C++ and
used it in RFs. In general, the related works mentioned so far differ from this thesis in two
main aspects: they either focus on batch approaches (i.e., they do not focus on stream
processing) or focus on the implementation and performance aspects of ensembles of a
specific type of classifier.

A study the impact of concurrency on memory access pattern and performance of en-
sembles is presented by (HORAK; BERKA; VAJTERSIC, 2013). The authors proposed a
two-stage bagging architecture that combines single-class recognizers with two-class dis-
criminators to improve accuracy and allow parallel processing. They also addressed load
balancing for the parallel classifier construction and used the algorithm SCALLOP as
the base for the experiments to validate the architecture implemented in MPI. (MARTI-
NOVIC et al., 2019) enhanced a dynamic auto-tuning framework in a distributed fashion,
by using two strategies. The authors used a scalable infrastructure capable of leveraging
the parallelism of the underlying platform for ensemble models to speed up the predictive
capabilities, while iteratively gathering production data. Results show that the approach
implemented in MPI is able to learn the application knowledge by exploring a small frac-
tion of the design space. A novel ensemble for data stream classification is proposed by
(QIAN et al., 2016). This solution maps different raw data to multiple grids, where the
first-order geometric center is used to represent and classify data. This method performs
data compression which, in turn, increases the accuracy and computational efficiency. It
was implemented in Java and tested in both multi-core and grid environments. (MARRóN
et al., 2017) propose an implementation of RF-based on vector SIMD instructions and
changes the representation of Binary Hoeffding Trees (HT) to fit into the L1 cache. It was
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implemented in C++ and benchmarked against MOA and StreamDM using two real and
eleven synthetic datasets. It is noteworthy that the authors compare the performance of
a single tree and the ensemble using different hardware architectures.

In reality, these four works are more closely related to this thesis as they approach
the performance of ensembles in the context of data streams. However, they differ in the
following aspects. The solutions presented by (HORAK; BERKA; VAJTERSIC, 2013)
and (MARRóN et al., 2017) focus on specific algorithms, SCALLOP and Binary HT,
respectively. The focus of he solution proposed by (QIAN et al., 2016) is focused on data
compression, while (MARTINOVIC et al., 2019) leverages parallel processing to improve
the parameters of the algorithm.

Table 4 summarizes the literature on parallelization of ML methods with focus on
data streams and ensembles.

Reference Tool Method Algorithm Platform
(YAN et al., 2009) MR Batch Subspace Bagging Hadoop

(HAJEWSKI; OLIVEIRA, 2020) MPI Batch Ensemble SmothSVM Distributed
(BASILICO et al., 2011) MR Batch Ensemble RF Hadoop

(PANDA et al., 2009) MR Batch RF Hadoop
(ISLAM et al., 2009) Pthreads Batch Multi-classifier Multi-core

(3) ensemble
(CYGANEK; SOCHA, 2014) TensorFlow Batch Multi-classifier Multi-core

OpenMP (1-13) ensemble
(HORAK; BERKA; VAJTERSIC, 2013) MPI Stream Bagging of SCALLOP Multi-core

(VALLE et al., 2010) MPI Batch Ensemble NN Distributed
(HOYOS-IDROBO et al., 2018) Sci-kit Batch Ensemble SVM Multi-core

learn joblib
(JAHNKE, 2009) MR Batch Different ensembles Hadoop

(NOJIMA; MIHARA; ISHIBUCHI, 2010) MPI Batch Ensemble Fuzy Distributed
(QIAN et al., 2016) Java Stream Ensemble J48 Distributed
(LIAO et al., 2013) PyCUDA Batch RF GPU

Parakeet
(XAVIER; THIRUNAVUKARASU, 2017) - Batch RF Spark

(SAFFARI et al., 2009) - Stream RF GPU
(WEILL et al., 2019) TensorFlow Batch Ensemble TensorFlow Distributed & GPU

(MARTINOVIC et al., 2019) MPI Stream Ensembles Regression Distributed
(LIU, 2014) MR Batch Adaboost Hadoop

(GHOTING et al., 2011) MR Batch RF Hadoop
(SCHöLKOPF; PLATT; HOFMANN, 2007) MR Batch Single model Multi-core

(HUSSAIN et al., 2012) FPGA Batch Single model FPGA, Multi-core
(WANG, 2016) - Batch Ensemble KNN Multi-core

(BEN-HAIM; TOM-TOV, 2010) MPI Stream Single model Distributed
(CHAN; STOLFO, 1993) - Batch Meta-learners Multi-core
(JIN; AGRAWAL, 2003a) - Batch RF Distributed
(JIN; AGRAWAL, 2003b) - Stream Numerical pruning Sequential Stream

and single model
(JOSHI; KARYPIS; KUMAR, 1998) MPI Batch Single model Distributed

(MARRóN et al., 2017) MPI CPP Stream RF of binary trees Multi-core

Table 4 – Summary of related works in parallelized machine learning methods.

4.1 Mini-batching
Besides parallelization, there are other alternatives to improve the performance of ma-

chine learning applications. One such alternative is to optimize the performance of ma-
chine learning applications using some form of mini-batching. In summary, mini-batching
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consists of processing small chunks containing several data instances to be processed at
once, instead of processing a single instance at a time. Next, we present related studies
that have taken this approach.

Variations of mini-batching have been employed with different goals. For instance,
stream processing systems such as Spark and Flink group data in small batches to im-
prove performance and fault-tolerance (ZAHARIA et al., 2012; CARBONE et al., 2015).
(WANG et al., 2012) proposed a scheduling strategy to find energy-optimal batching pe-
riods for real-time tasks with deadline constraints to execute on heterogeneous sensors.
Comet, proposed by (HE et al., 2010), is a stream processing system that identifies the
optimal sizes of batches of data items to be processed for large-scale data streams. The
proposal is based on a model named Batched Stream Processing (BSP) that focuses on
modeling recurring (batch) computations on incrementally bulk-appended data streams.
Despite some similarities, this work focuses on the reuse of input data and intermediate
results to reduce recomputing and I/O redundancies that cause bandwidth waste. Similar
techniques that group work units into small batches have been used in other application
areas, such as in web search engines (BONACIC et al., 2015; GAIOSO et al., 2019) or
content delivery applications (JAYASUNDARA; GOPALAKRISHNAN, 2013). In sum-
mary, these works use mini-batching for grouping processing units into larger ones that
increase the utilization of resources in multi-core or distributed processing systems.

Another mini-batching approach is widely used in gradient descent-based techniques
for training deep learning and several machine learning methods based on optimization
approaches (GOODFELLOW; BENGIO; COURVILLE, 2016; WITTEN; FRANK, 2002).
Similar mini-batch approaches can be used in many inversion problems. For instance,
(KUKREJA et al., 2020) use mini-batches to propose a new method that combines check-
pointing with error-controlled lossy compression for large-scale high-performance inversion
problems. The method reduces movement, allowing a reduction in run time as well as peak
memory. In general, such methods use mini-batching to achieve a good trade-off between
the amount of information used and computational costs for the optimization process
used for training the learners. This is different from the approach proposed in this thesis,
which focuses on the use of mini-batching for improving data locality.

(ZHANG et al., 2019) proposed two scheduling strategies to reduce both the delay and
energy consumption of executing small batches of Deep Neural Networks (DNN) tasks
on edge nodes such as IoT devices. Although the strategies can be applied to CPUs, the
proposal focuses on executing DNN applications on GPU devices in the edge. Their focus
is to optimize resource utilization in the edge of the network.

A method that optimizes ensembles of Artificial Neural Networks (ANNs) and whose
computational and memory costs are significantly lower than typical solutions is proposed
by (WEN; TRAN; BA, 2020). The improvement is achieved by defining each weight matrix
to be the Hadamard product of a shared weight among all ensemble members and a rank-
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one matrix per member. Their method yields competitive accuracy and uncertainties as
typical ensembles, achieving 3X speedups at test time and 3X less memory for ensembles
of 4 learners. This work focuses only on NN ensembles to classify image datasets.

Table 5 summarizes the literature on mini-batching approaches.

Reference Objective Environment
(ZAHARIA et al., 2012) Fault tolerance Apache Spark

and performance
(CARBONE et al., 2015) Fault tolerance Apache Flink

and performance
(WANG et al., 2012) Energy optimization Real-time tasks on

heterogeneous sensors
(HE et al., 2010) Reduce recomputing Large-scale

and IO redundancies data streams
(BONACIC et al., 2015) Increase resource Web search engines

utilization
(GAIOSO et al., 2019) Increase the utilization Web search engines

of resources
(JAYASUNDARA; GOPALAKRISHNAN, 2013) Increase the utilization Content delivery

of resources applications
(GOODFELLOW; BENGIO; COURVILLE, 2016) Improve data quality Gradient descent

based methods
(WITTEN; FRANK, 2002) Improve data quality Gradient descent

based methods
(KUKREJA et al., 2020) Reduce data movement Large-scale FWI

(ZHANG et al., 2019) Reduce delay and DNNs on the edge
energy consumption

(WEN; TRAN; BA, 2020) Reduce data on ANNs for image
weight matrix classification

Table 5 – Summary of related works that used mini-batches

4.2 Energy efficiency

Energy efficiency is another field of research that is related to this thesis. (MARTIN;
LAVESSON; GRAHN, 2015) emphasizes energy consumption and energy efficiency as
important factors to consider during data mining algorithm analysis and evaluation. The
work extended the CRISP (Cross Industry Standard Process for Data Mining) framework
to include energy consumption analysis, demonstrating how energy consumption and ac-
curacy are affected when varying the parameters of the Very Fast Decision Tree (VFDT)
algorithm. The results indicate that energy consumption can be reduced by up to 92.5%
while maintaining accuracy.

An analyzis of power consumption for both batch and online data stream learning was
made by (AMEZZANE et al., 2019). The authors experimented with three online and
three batch algorithms. Among their conclusions is the finding that the CPU consumes
up to 87% of the total energy. Although evaluating online learners, this work tested only
single model classifiers.

A comparison of the four-way relationship among time efficiency, energy consumption,
predictive performance, and memory costs is presented by (LOPES et al., 2020). The
comparison is made by tuning the hyper-parameters of VFDT, SVFDT, and SVFDT
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with OLBoost. The work demonstrated that the most complex method delivers the best
predictive performance at the expense of worse memory and energy performance.

A modular, scalable, and efficient FPGA-based implementation of kNN for System
on Chip devices is presented by (VIEIRA; DUARTE; NETO, 2019). The solution shows
improvements of 60X in execution time and 50X in energy efficiency.

An energy-efficient approach to real-time prediction with high levels of accuracy called
nmin adaptation is presented by (GARCíA-MARTíN; BIFET; LAVESSON, 2021). This
reduces the energy-consumption of Hoeffding Trees ensembles by adapting the number
of instances required to create a split. This method can reduce energy consumption by
21% on average with a small impact on accuracy. They also presented detailed theoretical
energy models for ensembles of Hoeffding trees and a generic approach to creating energy
models applicable to any class of algorithms.

4.3 How this thesis is different from the literature
We have brought three sub-areas of related work to compare with this thesis, par-

allelization of ensemble algorithms, usage of mini-batching to improve performance of
ML, and energy efficient ML. Although several parallel ensemble algorithms have been
proposed, methods focusing on their efficient implementation are seldom approached in
the related literature. In particular, studies of memory access locality for improving the
performance of ensembles are rarely approached. To date, this is the first work to propose
a strategy for improving memory access locality for parallel implementation of bagging
ensembles on multi-core systems. This thesis employs both measurement techniques and
theoretical foundations proposed in (YUAN et al., 2019) to demonstrate the benefits of
mini-batching for the implementation of ensembles.

Another difference of this thesis compared to previous work is the focus on a class
of ensemble algorithms composed of bagging ensembles executing in the context of data
streams. Furthermore, the strategy proposed in this thesis is orthogonal to any optimiza-
tion and parallel implementation of a specific learning algorithm within the ensemble.
Being orthogonal, the mini-batching approach for ensemble optimization can be combined
with other parallelization/optimization strategies that focus on specific learner algorithms
within the ensemble can be investigated, with potential benefits for each other.

Regarding energy efficiency, the literature that evaluates it is scarce and proposals tend
to work with stand-alone models (instead of ensembles). In addition, few works evaluate
data stream algorithms in a more realistic deployment where data is really transmitted
through the network at parameterizable loads. In summary, this thesis measures the en-
ergy consumption of several bagging ensembles at different levels of load (throughput),
with data being received through the network, to provide a better energy consumption
profile for the online data stream learning context.
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Chapter 5

Parallelization of bagging ensembles
for data streams

Ensembles are a class of ML algorithms that achieve remarkable predictive perfor-
mance at the expense of more computational resources. This characteristic makes ensem-
bles more likely to violate constraints imposed in a data stream setting, such as response
time. However, the natural organization of ensembles offer an opportunity for parallelism,
as each member has to classify and update its model using the same data.

Although the members of the ensemble may be homogeneous in type, ensemble algo-
rithms are not amendable for data parallelism. As stated before, diversity among ensem-
ble members, particularly in regards to misclassification, is a desired trait. It is inevitable
that a diverse ensemble will have members with different structures and organizations,
making the data-parallel model hard to implement without further modifications and
adjustments. On the other hand, task-parallelism can naturally be applied on ensembles
where each member executes independently and does not rely on communication with the
others. Bagging ensembles possess such characteristics, making them great candidates for
implementing parallelism.

Therefore, we seek to improve the performance of bagging ensembles while adhering
to the data stream setting constraints. Next, we present our assumptions to provide a
better definition of the scope of this thesis, including, but not limited to, the evaluation
of the proposal.

To define the scope in a single sentence, we need accurate ensemble methods, capa-
ble of working with data streams, and easy to evaluate. The reasons for implementing
task-parallelism in ensembles are already known. The only requisite left to define is the
evaluation framework. Since we want to implement prototypes of our solution in many dif-
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ferent algorithms to test if our technique can be applied to a whole class of ensembles, we
need several baseline sequential ensemble implementations. Instead of implementing the
algorithms and evaluation from the ground, we have chosen to use the existing framework
Massive Online Analysis (MOA)1 because it allows the reuse of several bagging ensemble
designed for data stream processing. By reusing MOA algorithms, we provide a seamless
and reproducible evaluation of our proposal in a framework that has been used for many
studies in the area (BIFET et al., 2010). Using MOA also allows us to focus on the ef-
ficiency of the implementation instead of the correctness of the baseline, as long as we
keep the baseline predictions intact. The MOA framework is implemented in Java, which
is not a language that focus on implementing either energy-efficient or high-performance
applications. Even so, the work in (PEREIRA et al., 2017) shows that Java is in the top
5 languages (out of 27 tested) that need less energy and time to execute the applications.

5.1 Parallel implementation
We propose and implement a parallel algorithm for bagging ensembles in Algorithm

1. The objective of this implementation goes beyond reducing the execution time, it also
encompasses the evaluation of two Java parallel APIs and the impact of parallelization
on different algorithms.

Algorithm 1 High level parallel algorithm
1: Input: an ensemble 𝐸, 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠, a data stream 𝑆
2: 𝑃 ← 𝐶𝑟𝑒𝑎𝑡𝑒_𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑡ℎ𝑟𝑒𝑎𝑑_𝑝𝑜𝑜𝑙(𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠)
3: 𝑇 ← 𝐶𝑟𝑒𝑎𝑡𝑒_𝑡𝑟𝑎𝑖𝑛𝑒𝑟𝑠_𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐸)
4: for each arriving instance 𝐼 in stream 𝑆 do
5: 𝐸.classify(𝐼)
6: for each trainer 𝑇𝑖 in trainers 𝑇 do
7: 𝑘 ← 𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)
8: 𝑇𝑖.𝑢𝑝𝑑𝑎𝑡𝑒(𝐼, 𝑘)
9: end for

10: for all trainers 𝑇 do in parallel
11: 𝑊_𝑖𝑛𝑠𝑡 ← 𝐼 * 𝑘
12: 𝑇𝑟𝑎𝑖𝑛_𝑜𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑊_𝑖𝑛𝑠𝑡)
13: end for
14: if change detected then
15: 𝑟𝑒𝑠𝑒𝑡_𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟
16: end if
17: end for

In lines 2-3, a thread pool is started, and one Trainer (runnable) is created and asso-
ciated for each learner of the ensemble. For each arriving data instance (lines 4-17), votes
from all the learners are aggregated to provide the predictions (line 5). Then, the Poisson
1 Available at https://github.com/Waikato/moa
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weights are computed, and trainers are updated for training in lines 6-9. The prediction
phase has a low computational cost because the algorithm uses Hoeffding trees (DOMIN-
GOS; HULTEN, 2000), and thus, it is carried out sequentially. On the other hand, training
involves updating statistics on many nodes of the tree, calculating new splits, and detect-
ing data distribution changes in methods that implement concept drift detection (e.g.,
all ensembles except the original OzaBag). As the training phase dominates the compu-
tational cost, parallelism is implemented by simultaneously training many learners (lines
10-13). Finally, lines 14-16 represent the global change detector, present on OBAdwin,
where the ensemble’s worst learner will be replaced with a brand new one.

5.2 Methodology
To better evaluate the efficacy of the solution, we implement it on four bagging en-

semble algorithms from the MOA framework using two Java parallel APIs. The bagging
algorithms are OzaBag, OzaBagAdwin, LeveragingBag and AdaptiveRandomForest. De-
scriptions of the bagging algorithms and Java parallel APIs are provided in section 2.2
and section 3.2, respectively. This way, we can evaluate if the proposal is really applica-
ble to a wide array of algorithms from the bagging ensemble class. In addition, we can
compare the two frameworks and weight their strengths and weaknesses to decide which
one is better for the task.

Regarding the datasets, we tested the implementations on five standard ML benchmark
datasets: Airlines, GMSC, Electricity, Covertype and KDD’99. A brief description of each
dataset is provided in subsection 5.2.1, as they are going to be used throughout this
thesis. The experiments were run multiple times to increase the confidence and all results
presented use the average values.

After analyzing the execution time and speedups, we run a set of auxiliary experi-
ments in an attempt to determine the bottleneck of the solution. In this step, we use
measurements like the node count and the footprint, we investigate heap memory and
garbage collector performance, and we profile the execution with the aid of specialized
tools.

Specific details about the experimental setup and its results are shown in section 5.3.

5.2.1 Datasets

In the course of this thesis, six datasets were used in different combinations accross
the experiments. To keep all dataset information together, we present the six datasets in
here and only specify the names of the datasets used on future experimental evaluations.
Five of the datasets used in this thesis are open access2. We provide a short description
2 Available at https://github.com/hmgomes/AdaptiveRandomForest
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of each dataset as well as a summary of their characteristics in Table 6.

Table 6 – Summary of dataset statistics

Datasets Airlines GMSC Electricity Covertype KDD’99 Kyoto
# Instances 540k 150k 45k 581k 4,800k 725k

# Attributes 7 10 8 54 41 12
# Nominal feat 4 0 1 45 7 0

Normalized No No Yes Yes Yes Yes

❏ The regression dataset from Ikonomovska inspired the Airlines dataset. The task is
to predict whether a given flight will be delayed, given information on the scheduled
departure. Thus, it has two possible classes: delayed or not delayed.

❏ The Electricity dataset was collected from the Australian New South Wales Elec-
tricity Market, where prices are not fixed. These prices are affected by the demand
and supply of the market itself and set every 5 min. The Electricity dataset tries
to identify the price changes (two possible classes: up or down) relative to a mov-
ing average of the last 24h. An essential aspect of this dataset is that it exhibits
temporal dependencies.

❏ The give me some credit (GMSC) dataset is a credit scoring dataset where the
objective is to decide whether a loan should be allowed. This decision is crucial for
banks since erroneous loans lead to the risk of default and unnecessary expenses on
future lawsuits. The dataset contains historical data on borrowers.

❏ The forest covertype dataset represents forest cover type for 30 x 30 m cells obtained
from the US Forest Service Region 2 resource information system (RIS) data. Each
class corresponds to a different cover type. The numeric attributes are all binary.
Moreover, there are seven imbalanced class labels.

❏ The KDD99 is often used for assessing data stream mining algorithms’ accuracy
due to its ephemeral characteristics. It corresponds to a cyber attack detection
problem, (i.e., attack or common access),which is an inherent streaming scenario
since instances are sequentially presented as a time series (GOMES et al., 2017b).

❏ The Kyoto dataset is an IDS dataset created by researchers from the University
of Kyoto. The task is to predict if a flow is an attack of regular traffic. They used
honeypots composed of many devices like servers, printers, and IP cameras, among
others.
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5.3 Experimental evaluation

In the experiments conducted to evaluate the parallelization of the bagging ensembles,
we measure execution time as wall clock, including the prediction and the training phases
of the ensembles. The experiments were made on two different platforms, in a dedicated
environment. The hardware specification for both platforms is available in Table 7.

Table 7 – Hardware specifications

Processor Xeon Silver 4208 i7-2600
Cores/socket 8 4
Threads/core deact. 2

Clock frequency (GHz) 2.1 3.4
L1 cache (core) 32 KB -
L2 cache (core) 1024 KB -

L3 cache (shared) 11264 KB 8192 KB
Memory (GB) 128 16

Memory channels 6 2
Maximum bandwidth 107.3 GiB/s 21 GB/s

For the sequential execution we used the original code with no parallel framework
involved. Whereas, for the parallel executions, we varied the amount of threads in the
range [1-7] while using two values for ensemble size [100, 150]. The chosen ensemble
sizes were based on some related work that demonstrate that the reduction in deviance
asymptotes with more than 100 members in the ensemble (SAFFARI et al., 2009; PANDA
et al., 2009). We still perform experiments with a higher amount of members in order to
stress both the hardware and the software. We have carefully executed the experiments in
an environment without external interference. We executed each parameter configuration
5 times and averaged the results using the latest MOA version3 with the required additions
and modifications for the different strategies. A new MOA package was built and used to
run the experiments.

5.3.1 Results

The results from the experiments are shown in Figures 4, 5, 6, and 7 in the form of line
charts. Where the first and second row display the results for experiments with ensemble
size 100 and 150, respectively. Each column is assigned to one of the datasets, as indicated
above the top row. All charts in the figure have the same Y-axis scale, and each chart has
one series for each ensemble method as shown in the legend.

It is possible to note that the two platforms had a very different outcome regarding
the actual speedup. In the i7-2600 there is usually a plateau when going past 4 threads,
3 Available at: https://github.com/Waikato/moa
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Figure 4 – Speed up results with ForkJoin framework on i7-2600.
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Figure 5 – Speed up results with ExecutorService framework on i7-2600.

while the Xeon 4208 has a very poor performance, presenting negative speedups in some
cases.

The reason for the plateau in the i7 platform is related to hyper threading, which was
designed to share the Logic and Arithmetic Unit (LAU) of a core when the processes spend
a lot of time waiting for I/O operations. This application, however, is computationally
intensive, which decreases the impact (i.e., performance gain) of adding extra threads
with a constant problem size. This result goes hand in hand with Amdhal’s Law, which
states that this gradual loss of efficiency is expected when the input size of a program
remains constant and the amount of parallel threads is increased.

A behavior presented in these results that persists throughout all this thesis is the
smaller scalability of OzaBag (and its variants) algorithm compared to any of the other
algorithms. All the reasons are related to the lower 𝜆 used in the Poisson distribution
for the OzaBag algorithms. This results in a smaller weights for the instances, leading to
simpler, less computationally intensive, models. The opposite is true for the non-OzaBag
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Figure 6 – Speed up results with ForkJoin framework on Xeon 4208.
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Figure 7 – Speed up results with ExecutorService framework on Xeon 4208.

algorithms, they produce bigger models that are computationally more intensive, which
leads to better scalability

Regarding the parallel frameworks, there are slight differences. The most noticeable
is regarding the OzaBag scalability on all datasets except KDD’99. OzaBag presents
a very small scalability when implemented with the ForkJoin framework, on the other
hand, its scalability is more consistent with the ExecutorService. This happens because
the ForkJoin framework has a work-stealing algorithm that adds unnecessary overhead
when the tasks being parallelized have similar workloads. Such is the case of the OzaBag
algorithm, where the variability between the weak learners is smaller than the rest of the
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algorithms thanks to the smaller 𝜆 and the absence of a drift detector. The drift detector
is the reason why OzaBagAdwin benefits from the ForkJoin’s work-stealing, since its drift
detection mechanism resets some trees and creates more variability in the workload of the
tasks.

5.3.2 Node count analysis

The KDD’99 dataset presents peculiar trends, which require additional data to com-
prehend. The initial hypotheses is a relationship with the size of the models created by
each algorithm in this dataset. Therefore, we modified the code to output the size of all
the members in the ensemble (i.e., the total sum of nodes across all models) every ten
thousand (10000) examples. The averages of these readings are shown in Table 8, where
bold numbers represent the highest and italic the lowest value for that specific dataset
(i.e., row).

Dataset OzaBag OzaBagAdwin LBag ARF
Airlines 457193 372750 613744 1278406

Covertype 9313 389 3835 19134
Electrical 2480 615 4361 31488

GMSC 3724 5200 33227 187246
KDD99 19604 1645 1767 2213

Table 8 – Mean sum of tree nodes from the whole ensemble.

Two trends are easily noticeable in Table 8. Firstly, the airlines dataset generates the
biggest node count. The models generated from this dataset grow faster than the other
datasets because of its nominal attributes with many possible values. They cause the tree
to grow in width, since each split on any nominal attribute will create as many child nodes
as the possible values of the attribute. In addition, as pointed in (Gomes et al., 2019),
nominal attributes with a high amount of values will usually present a good information
gain, increasing the probability of a split in such attribute. The second trend is that ARF
has, usually, the biggest node count. This is a result of two combined factors: (𝑖) the higher
𝜆 allows a faster growth thanks to higher resampling (shared trait with LeveragingBag);
(𝑖𝑖) the random subspaces technique reduces the amount of instances needed to achieve
the required confidence in the hoeffding bound to make a split, allowing the model to
make splits after processing fewer examples.

The exception to the second trend happens on the KDD’99 dataset, as the highest
node count is achieved by the OzaBag algorithm. Notice that although having the highest
node count in all the other datasets, ARF has a very small node count with KDD’99. This
is replicated by all algorithms employing a drift detection mechanism. In summary, the
exception occurs because the dataset has a much higher number of instances and there are
a lot of changes in data distribution, causing the drift detectors to trigger model resets very
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often. Since OzaBag has no drift detection its models keep growing indefinitely, leading to
the higher node count. The node count can also explain why the ARF algorithm achieves
its worst scalability on the KDD’99 dataset. Since the models are small and resets are
triggered often, the workload never gets big enough to improve the performance through
parallelism.

5.3.3 Processing time analysis

One of the objectives of this experimental evaluation, was deciding which parallel API
suits our needs the best. Since the speedup is a relative measure, we present the results
using the absolute processing time. The absolute value, may provide a better comparison
between both APIs when using the same configuration on the i7 platform. The charts
containing the processing time are shown in Figures 8, 9, 10, 11, and 12.

Figure 8 – Execution time of both frameworks on i7 with Airlines dataset.

In summary, the execution time does not reduce by a substantial margin after the
fourth thread is added, reinforcing the behavior presented in the speedup. Also, these
charts aid in illustrating the difference in algorithm complexity. Most datasets will have

Figure 9 – Execution time of both frameworks on i7 with CoverType dataset.
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Figure 10 – Execution time of both frameworks on i7 with GMSC dataset.

Figure 11 – Execution time of both frameworks on i7 with Electrical dataset.

Figure 12 – Execution time of both frameworks on i7 with KDD’99 dataset.
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OzaBag with the fastest execution time, followed by OzaBagAdwin and then ARF and
LeveragingBag are interchangeably the slowest algorithms to complete.

It is possible to see that ExecutorService is usually better, or at least even, with
ForkJoin, except on the airlines dataset and the special case of KDD’99 coupled with
OzaBag. This reinforces the relationship between model diversity and the work-load algo-
rithm from ForkJoin, since the airlines is the dataset that produces the models with the
highest node counts and, consequently, diversity.

5.4 Bottleneck investigation
The poor results achieved on the Xeon platform prompted a deeper analysis of the

implementation. One data that could potentially help in explaining some behaviors of
the algorithms and could be collected with relatively ease, was the maximum footprint
of each algorithm. We used the GNU Time4 command to collect this data. We used only
the ensembles with 100 members and allowed the JVM to use 8 GB of memory (i7-2600).
The maximum resident memory for each dataset and algorithm can be seen in Table 9.

Dataset ARF LBag OBAdwin OB
Airlines 6.5GB 7.9GB 5.1GB 6.2GB

Electrical 2.1GB 1.2GB 0.24GB 0.34GB
GMSC 3.4GB 1.6GB 0.52GB 0.53GB

Covertype 2.2GB 3.4GB 5.8GB 3.3GB
KDD99 0.53GB 3.46GB 3.33GB 4.04GB

Table 9 – Maximum memory footprint (GB) for each dataset and algorithm combination
for ensembles w/ 100 members.

Although the memory footprint seems related to processing time in general (e.g.,
airlines has the slowest processing time and the biggest footprint) it did not provide any
insights on why the performance was so poor. Thus, we decided to profile the application
to have a better understanding of what was happening. We used the trial version of the
JProfiler5, a Java professional ‘all-in-one’ profiler. We present a sample of the results using
the algorithm LBag with the dataset GMSC using an ensemble size of 100 in Figures 13,
14, and 15.

In Figure 13 it is possible to see the amount of time used by each method in the code.
The great majority of time is spent in the ForkJoinWorkerThread class, which is where
the training happens. Based on this report, it is clear that training (82.9%) takes much
more time than classifying (10.3%).

In Figure 14 it is possible to see two interfaces of the profiler. In the upper part of
the figure, a detailed thread execution report is shown. Threads are identified by their
4 https://www.gnu.org/software/time/
5 Available at: https://www.ej-technologies.com/products/jprofiler/overview.html
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Figure 13 – A view of the time spent on each subprocess in JProfiler.

Figure 14 – A combined view of a detailed thread report (upper) and the main summary
report (lower) from the JProfiler.
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names on the left and their execution state is shown through colors, where green means
active, yellow means waiting and red means blocked. In the lower part, one can see a
simplified vision of several reports like the memory usage, the Garbage Collector (GC)
activity and the Thread activity. The two red lines going across all reports were introduced
as a delimiter to a specific interval where an unexpected behavior appears. The interval
in question shows a spike in GC activity and memory used while the ForkJoin threads
are all in waiting state. Even out of the aforementioned interval, the thread utilization is
poor, as can be seen by the majority of yellow patches in both, the summarized and the
detailed Thread report. Thread utilization is a clear focus point for improvement in the
future.

Figure 15 – A view of the Garbage Collector activity in JProfiler.

In hopes of explaining the unexpected behavior from the previous report, we rerun the
profile using the same combination of algorithm and dataset, however using a more de-
tailed memory usage collection tool. In Figure 15 a detailed GC report is shown. Although
it does not show a huge spike like the previous image, the more detailed report shows
several spikes, around one minute apart, that also increase in size as the time passes. This
report has prompted a closer look on GC behavior.

A key concept to understand the GC behavior is the Heap memory in Java. In Figure
16 one can visualize the three generations that are used to manage the Heap. The Young
Generation (YG) corresponds to data structures recently allocated, and when this space
fills up a minor GC occurs. Minor GCs The Old (Tenured) Generation (OG) is where
long surviving objects are stored, and when this space fills up a major GC occurs. The
Permanent Generation consists of JVM metadata for the runtime classes and application
methods.
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Figure 16 – Heap memory division in generations (ORACLE, 2021)

The YG is further subdivided in Eden and survivor spaces. Survivor spaces act like
an aging system, where data that survive a minor GC is progressively aged. When they
reach the maximum age of the YG, they get promoted to the OG. All GCs are done with
the mark-and-sweep algorithm, therefore all memory pointers from the specific generation
must be checked. If the maximum Heap parameter is higher than the current Heap, then
the Heap is increased. If more memory is needed and the Heap can not increase, then the
program aborts.

By the behaviors shown in the profiler, it seems that the YG was being stressed, as
data was replicated and then discarded. One alternative was using a Parallel GC, which
would not block all other Threads, however it did not improve the execution.
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5.5 Summary and closing thoughts
The main findings from this Chapter can be summarized as follows.

❏ The ForkJoin API provides additional functionality that improves the performance
of recursive and unbalanced tasks. In the context of ensembles, a smaller diver-
sity among the members of the ensemble translates into a smaller variation of the
workload, which does not benefit from techniques like work-stealing. Even worse,
the additional work required for the work-stealing technique becomes processing
overhead and deteriorates the performance.

❏ The ForkJoin API is a bad option to use with the OzaBag algorithm because Ozabag
generates an ensemble with small diversity among its members. The small diversity
of Ozabag is a consequence of its design, because it employs only the resampling
strategy with 𝜆 = 1 without additional techniques. The small 𝜆 value means that
the weights applied to the instances will possess a small range, leading to a tendency
that the models will develop in a very similar manner.

❏ On the other hand, the AdaptiveRandomForest (ARF) algorithm is, theoretically,
a good option to use the ForkJoin API because the ARF algorithm employs several
mechanisms (e.g., higher 𝜆 value, random subsets of attributes, and individual drift
and warning detectors) with the objective of improving the diversity among the
members of the ensemble. Ultimately, this leads to bigger diversity in the ensemble
members and consequently in the workload. However, the ForkJoin can still be the
worse option even with this algorithm.

❏ The ExecutorService API provides more control to the programmer and does not
have additional functionality. Both characteristics translates into a smaller process-
ing overhead. As opposite to the ForkJoin API, ExecutorService is, theoretically,
better for homogeneous workloads.

❏ Dataset characteristics are important when determining the computational cost,
scalability and model behavior of the algorithms. For example, if a dataset is very
large and contains a lot of changes in data distribution, OzaBag will probably present
the biggest models, with the highest computational cost. The reason for such be-
havior is the absence of any drift detector in OzaBag, which means the models are
always growing without any mechanism to reset them. On the other hand, all algo-
rithms with drift detectors will regularly reset models, which prevents the models
to grow too large.

❏ Datasets that posses nominal attributes with a high number of possible values (e.g.,
Airlines dataset) present a faster growth in the number of nodes of the models. This
happens because each tree creates a leaf node for each possible value in the nominal
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attribute. Since the nodes have to be updated when training, more nodes in the
model translates into a higher computational cost.

❏ With a much bigger instance count, KDD’99 presents atypical behavior when com-
pared to other datasets. Although being the dataset with the most instances, the
generated models present a small number of nodes for the algorithms with drift
detectors. Such behavior happens because drifts are detected often, which triggers
model resets.

❏ Based on the experiments we performed, it is safer to use ExecutorService as the
default option. Even when using algorithms with several diversity enhancing mecha-
nisms (e.g., ARF), there are cases where ExecutorService presented a better perfor-
mance. This result indicates the existence of a diversity threshold in the workload
that makes ForkJoin better. However, the conditions that benefit from the addi-
tional functionalities from ForkJoin are rarely met (i.e., ExecutorService presents
smaller execution time in most cases shown in Figs. 8, 9, 10, 11, and 12.

❏ The four algorithms have different degrees of complexity. In general, LeveragingBag
and AdaptiveRandomForest present the slowest processing time, the biggest mod-
els, and the best scalability. Contrarily, OzaBag and OzaBagADWIN present the
fastest processing time, the smallest models and the worst scalability. The common
characteristic among algorithms in both groups is the 𝜆 value, which shows the
importance of the resampling strategy with regards to model complexity.

❏ Based on the bottleneck study, the parallel implementations suffer from poor ef-
ficiency. One aspect that needs to be improved is the poor thread utilization, as
shown in Fig. 14. Memory usage should also be improved, the memory behavior
shows massive bursts of creation and deletion of objects, which is detrimental to
performance.

Based on these findings, it was clear that a task-parallel solution, independently of
the parallel API used, was not capable of achieving speedups of at least 3x with 8 cores.
Thus, further improvements in efficiency are required.
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Chapter 6

Introducing mini-batching to data
stream ensembles

Although a task-parallel implementation on ensembles looks straightforward, its per-
formance can be severely hindered by poor memory usage as shown in section 5.4. For
instance, high-frequency access to data structures that are larger than cache memory can
raise performance bottlenecks. Also, algorithms that continuously perform memory allo-
cation/release operations to discard old models and create new ones during the learning
and training process may pressure the garbage collection. In fact, a better memory usage
can improve the implementation by itself, even when running the ensemble sequentially.
A different approach, that groups several data instances of a stream in a mini-batch
can help mitigate such problems. Formally, a Mini-batch 𝐵 is a group of 𝑠 data elements
𝑥1, 𝑥2, ...,𝑥𝑠 arriving through a data-stream, that is, 𝐵 = {𝑥𝑖}𝑠

𝑖=1. When the stream is ter-
minated, 𝐵 may be smaller than 𝑠. We propose a mini-batching strategy for data-stream
ensembles, capable of improving the memory locality in Algorithm 2.

In Algorithm 2, it is possible to note that the first command of the main loop (from
line 2 to 23) changes from the classification of the arriving instance (in Alg. 1) to the
append operation that groups arriving instances in the mini-batch (line 3). Then, when
the mini-batch size is equal to the desired size 𝐿𝑚𝑏 passed as argument (line 4), the mini-
batch is computed. The most intuitive manner to compute the mini-batch would be to
iterate through the mini-batch in the outer loop, while the inner loop stays the same
(i.e., iterates over the classifiers of the ensemble). However, iterating the classifiers in the
outer loop (lines 5 and 11 for classification and training, respectively) and the mini-batch
instances in the inner loop (lines 6 and 12 for classification and training, respectively), is
a more efficient alternative. In line 10 the votes from all classifiers are aggregated, and
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Algorithm 2 sequential mini-batching algorithm
1: Input: an ensemble 𝐸, a data stream 𝑆, mini-batch size 𝐿𝑚𝑏

2: for each arriving instance 𝐼 in stream 𝑆 do
3: 𝐵.𝑎𝑝𝑝𝑒𝑛𝑑(𝐼)
4: if 𝐵.𝑠𝑖𝑧𝑒() == 𝐿𝑚𝑏 or 𝑆.ℎ𝑎𝑠_𝑒𝑛𝑑𝑒𝑑() then
5: for each classifier 𝐶𝑖 in ensemble 𝐸 do
6: for each instance 𝐼 in 𝐵 do
7: 𝑣𝑜𝑡𝑒𝑠𝑖.𝑎𝑝𝑝𝑒𝑛𝑑(𝐶𝑖.𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝐼))
8: end for
9: end for

10: 𝐸.𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑣𝑜𝑡𝑒𝑠)
11: for each classifier 𝐶𝑖 in ensemble 𝐸 do
12: for each instance 𝐼 in 𝐵 do
13: 𝑘 ← 𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)
14: 𝑊_𝑖𝑛𝑠𝑡 ← 𝐼 * 𝑘
15: 𝐶𝑖.𝑡𝑟𝑎𝑖𝑛_𝑜𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑊_𝑖𝑛𝑠𝑡)
16: end for
17: if change detected then
18: 𝑟𝑒𝑠𝑒𝑡_𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟
19: end if
20: end for
21: 𝐵.𝑐𝑙𝑒𝑎𝑟()
22: end if
23: end for

the algorithm proceeds to the training phase. Lines 13 to 15 show the basic operations
made for each instance of the mini-batch for each classifier of the ensemble. Line 19 shows
the change detection taking place. In this instance, the position the change detection is
presented refers to all ensembles tested except OzaBag and OzaBagAdwin. OzaBag has
no change detection and OzaBagAdwin performs a global change detection. Finally, the
mini-batch is emptied in line 21 and the process of accumulating instances restart. This
loops repeat until a finishing condition arrives.

In essence, the memory locality of the algorithm is improved by grouping instances
and changing the loop order. This happens because each classifier can process the mini-
batch uninterruptedly. Specifically, it allows the reuse of classifier data structures that
have already been brought to the higher levels of memory hierarchy.

Notice that each prediction model usually is several times larger than a single data
element, and the size of the whole ensemble can be (almost always) several times larger
than the cache memory. Thus, the memory access cost of one model is significantly higher
than the memory access cost of one data element. Without mini-batching, Algorithm
1 reuses each (low memory cost) data element which is processed by all (high memory
cost) models, strengthening the memory bottleneck. Instead, the mini-batching strategy
loads each prediction model only once and reuses it as many times as the mini-batch size
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parameter (𝐿𝑚𝑏).

6.1 Improvement in sequential performance
To demonstrate the improvement in performance caused by a better memory locality,

we performed some experiments using mini-batching with a sequential algorithm. We
performed experiments with ensembles of 100 members, using all six algorithms and four
datasets. The machine used in this experiments was the Xeon 4208. Results are presented
in Figure 17
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Figure 17 – Sequential ‘Speedup’ with mini-batching.

Figure 17 shows one series for each algorithm, and one chart for each dataset. each
chart is scaled from 1 to 3.5. Each chart has two horizontal lines a red one is the line 𝑦 = 1
and the blue one is 𝑦 = 1.25. These lines are to be used as guides that show when an
implementation performed worse than baseline (SB1) or at least 25% better than baseline,
when introducing the mini-batching straetgy. The airlines dataset shows impressive results
for LeveragingBag and OzaBagAdwin. On GMSC and Electricity datasets, algorithms are
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around 25% better, just by adding mini-batching, even without parallelism. Airlines and
Covertype shows more mixed results.

6.2 Reuse distance analysis
To show that mini-batching improves memory locality, we present experimental results

based on the reuse distance measure proposed by (YUAN et al., 2019). Reuse distance
can be efficiently obtained by instrumenting the application and directly relates to cache
performance. In addition, the reuse distance histogram is a compact summary of the
application’s memory locality, since it is related to the miss ratio of the cache. In essence,
the behavior of the frequency of large reuse distance is mirrored by the cache-misses,
which, when decreased, provides a better performance.

To collect the required data, we instrumented the ensemble code to track the order
each classifier of the ensemble was accessed. We also limited the input stream to 𝑛 = 5000
elements, and used an ensemble of 𝑚 = 100 classifiers. To show the impact of the mini-
batch size in the RD, we varied the mini-batch size 𝑏 with [1, 10, 50, 100, 250] values.

As it was explained in section 2.2, the parameter 𝜆 of the Poisson distribution affects
the weight each instance receives in the process called re-sampling. If the algorithm uses
𝜆 = 1, over 30% of the instances will not be used to train the classifiers. This characteristic
can influence the RD positively, since a skipped instance by a classifier means that its
data structures will not be loaded to the cache memory. At this point, we can group
the algorithms in two categories regarding the parameter 𝜆. The first category comprises
the algorithms LBag, ARF, and SRP that use 𝜆 = 6, and the second category includes
OB, OBAdwin, and OBASHT and uses 𝜆 = 1. We reported only the behavior of one
representative for each group (LBag and OB), since the members of each group presented
a very similar behavior.

The results are shown in Figure 18, where the color of each a vertical bar is associated
with the mini-batch size. The X-axis ticks show the RD value interval, while the Y-axis
shows the count of the frequencies of a given interval in log scale. The RD value interval
in the X-axis means that the RD for a given data is in that interval. For example, the
frequencies of RDs valued between 2 and 80 are summed and the resulting frequency
is the value of the vertical bar. We separate the RD frequency 1 and highlight the RD
frequencies higher than 80 because they are these values and intervals are the ones that
change the most when introducing mini-batching..

Both cases shown in the figure present a very similar behavior. When using mini-
batch, the great majority of the RDs are 1, which means that the algorithm reuses the
most recently used data. The remaining RDs are inside the high intervals, as expected
given the amount of data structures (i.e., ensembles).

Notice that the larger the mini-batch size, the less frequent the high RDs are and
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(a) RD histogram for OzaBag.
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(b) RD histogram for LeveragingBag.

Figure 18 – RD histogram from one representant of each group (according to 𝜆)

the higher the frequency of RD=1. For instance, near 83% of the RD for the parallel
implementation falls in the range [91,100]. With mini-batches of size 10 (B10), high RDs’
frequency decreases to near 8.6%. With the largest mini-batch size (n=250), only 0.35% of
the RD falls into the range of [91,100]. Thus, we can conclude from this experiment that
the larger the mini-batch, the fewer cache misses and the better performance. In addition,
the difference between the smaller and bigger mini-batch sizes is negligible compared to
the changes resulting from introducing the mini-batching approach.

6.3 Impact of mini-batching on predictive performance
Mini-batching impacts the behavior of ensembles in two ways. First, it slows down the

training phase. In pure stream processing (without mini-batching), every data instance
is classified and then used to train the model, which implies that every new arriving
instance is classified with the most up-to-date model. On the other hand, when mini-
batch is introduced, all the data instances of the current mini-batch are classified before
the model is trained (as illustrated by Algorithm 2). This method reduces each algorithm’s
opportunities to update the models, leading to slower growth of the trees and keeping
models on a more generic (less accurate) state for longer periods of time given a big
enough mini-batch size.

A second impact of mini-batching on the performance of ensembles is to delay the
detection of changes in data distribution (concept drifts). Unlike the pure stream method
that checks for drift after processing every instance, when using mini-batch the check is
made only after the whole mini-batch is processed. This effectively reduces the number
of times the algorithm will check for drifts, and also group the drift detections together
when more than one occurs inside the same mini-batch. As the consequence, the reaction
time for data distribution changes will be slower, and, thanks to that, the predictive
performance could be potentially lower.
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Next, we present two additional experiments with the goal to understand and provide
empirical data about the downsides of introducing the mini-batching strategy in streaming
ensembles.

6.3.1 Impact of mini-batching on recall and precision

To measure the impact of mini-batching on the predictive performance, we carried out
experiments with several mini-batch sizes (25, 50, 100, 250, 500, 1000, 2000) and measured
the predictive performance using precision, recall, and (when possible) the number of
concept-drifts detected. We used the same instance weights as the sequential version,
ensuring that the only difference is the delay caused by the mini-batching. We used
ensembles with 100 learners. Figure 19 shows the precision and recall measures for each
combination of dataset and algorithm as we increase the mini-batch size.
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Figure 19 – The precision and recall measures for each algorithm grouped by datasets.
The Y-axis shows predictive performance as percentage value. The X-axis
shows the mini-batch size. Solid lines are used for recall, and dashed lines for
precision.

We can observe two distinct behaviors. The increase in the mini-batch size has low
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impact on predictive performance for the datasets Airlines and GMSC. In contrast, a
more significant decrease in predictive performance occurs with Covertype and Electricity.
Results show that the impact on the predictive performance is more influenced by the
dataset characteristics than by the algorithms. Nevertheless, in cases where the mini-
batching strategy impacts the predictive performance, the impact tends to grow as we
increase the mini-batch size.

6.3.2 Impact on change detection

Additional experiments using LBag and OBAdwin were carried out to track the num-
ber of changes detected in each dataset. As a general remark, the number of changes
detected decreases as the mini-batch size increases. Small mini-batches (i.e. less than 50
instances) deviate from this behavior, as the algorithms detect more changes than in the
baseline.

The spike in the number of changes is caused by the lower accuracy, which is related
to the slower pace that the models are trained. The behavior described can be viewed in
Figure 20 and they can help explain some prediction results from Figure 19.
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Figure 20 – Changes detected by algorithms LeveragingBag (LBag) and OzaBagAdwin
(OBA) for each dataset according to the mini-batch size.

Dataset GMSC shows a minimal amount of changes detected, indicating that data
distribution is stable and consistent. The consequence is that the ensemble models are
rarely replaced, as only 20% of the ensemble is replaced over the full length of the 150,000
instances. On the other hand, the electricity dataset presents over 600 changes detected for
the same ensemble size (100) and only 45,312 instances, which means the whole ensemble
could be replaced 6 times. This indicates that electricity dataset has many data distri-
bution changes. Therefore models become obsolete quicker and need to be replaced. This
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behavior explains why GMSC has a very stable predictive performance while electricity
suffers a drop on all algorithms as the mini-batch size increases.

The number of changes detected is similar in airlines and covertype datasets. However,
the airlines dataset has a constant predictive performance while covertype suffers a drop.
One difference between both is that the airlines dataset is a binary class dataset while
the covertype dataset is multiclass. Another difference is that the airlines dataset has two
nominal attributes with many values, which tend to trick the learner into doing splits on
them, as shown in (Gomes et al., 2019). The mini-batch impact in prediction is minimal
in the airlines dataset because the initial prediction is already low. On the other hand,
the covertype dataset’s impact is more noticeable because the original prediction (in the
incremental setting) is better and deteriorates with mini-batches.

Figure 20 shows an increase in changes detected for small batches up to 25 instance.
This behavior happens in the beginning when the models are untrained and thus have
a high error rate, triggering change detections more often. As the stream progresses, the
models grow and become more capable of recognizing the classes, thus improving this
behavior. This is alleviated in the bigger mini-batch sizes because there are a lot fewer
opportunities to trigger change detections.
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6.4 Summary and closing thoughts
The main findings from this Chapter can be summarized as follows.

❏ Mini-batching improves data locality of the ensembles, by reusing the models (bigger
data structure) to process multiple instances. In this process, mini-batching prevents
multiple fetches from the primary memory and uses data already located in the
caches.

❏ Even without the parallelization, mini-batching alone is capable of improving per-
formance by 20% in many cases. These gains are possible thanks to the change in
the order of operations, which prevents the fetching of the models from the primary
memory to process only one data instance.

❏ A better data locality is confirmed by a better Reuse Distance measure. As shown
in the Reuse Distance histogram, with mini-batching the reuse distances with value
1 are the most frequent. However, this instrumentation used an assumption that
the whole classification model could fit in cache memory, which is unlikely but the
best case possible.

❏ Mini-batching can impact the predictive performance. Although algorithm charac-
teristics are important to determine the baseline predictive performance, the be-
havior of the predictive performance follows a trend according to the dataset. In
other words, every tested algorithm behaves the same way when classifying a given
dataset.

❏ It is not clear which dataset characteristics are the most relevant to determine the
intensity of the losses in predictive performance. However, it is clear that, when the
deterioration happens, its intensity increases toghether with the mini-batch size.

In summary, the results presented in this Chapter demonstrate that a mini-batching
strategy is capable of improving the memory locality of ensembles. In addition, the intro-
duction of mini-batching provides a bigger performance gain than the increase of its size.
The downside of the mini-batching strategy is related to the predictive performance. The
mini-batching impact in predictive performance varies, mainly, according to the dataset
and can be as low as less than 1% and as big as more than 10%. In smaller mini-batch
sizes, the impact is almost negligible.
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Chapter 7

Combination of parallelism and
mini-batching for data stream
ensembles

By combining both the mini-batching and the task-parallel strategies, the algorithm
can achieve better performance thanks to the benefits of parallalelism and improved mem-
ory locality. The combination of both techniques provide a “bigger than the sum” result,
since they increase each other’s efficiency. With this, the overall objective of improving
performance of bagging ensembles in a data stream setting and adhering to this setting’s
constraints was achieved. Speedups can reach almost 5X in most algorithms, with an
special case where it reaches 12X.

This chapter describes the algorithm, details the experiments and presents the re-
sults obtained after the implementation of the complete solution on MOA framework and
testing in three different platforms with four datasets.

In Algorithm 3 we present the unified solution, where the algorithm uses the mini-
batching technique in a task-parallel model. The mini-batching is formed in the sequential
portion of the code. After the mini-batch is complete, the algorithm launches the parallel
tasks that will process the mini-batch. Each learner is mapped to a single task that will be
scheduled by the parallel API to run in the number of available physical cores (parameter
passed as argument).

The difference between Alg. 3 and 2 is the addition of the parallel framework, since
the creation of the mini-batch and the order of operations is the same as in Alg.2.

In Algorithm 3, the main loop has almost the same structure as in Alg.2. The algorithm
appends arriving instances in the mini-batch (line 5). Then, the mini-batch is computed
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Algorithm 3 parallel mini-batching algorithm
1: Input: an ensemble 𝐸, 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠, a data stream 𝑆, mini-batch size 𝐿𝑚𝑏

2: 𝑃 ← 𝐶𝑟𝑒𝑎𝑡𝑒_𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑡ℎ𝑟𝑒𝑎𝑑_𝑝𝑜𝑜𝑙(𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠)
3: 𝑇 ← 𝐶𝑟𝑒𝑎𝑡𝑒_𝑡𝑟𝑎𝑖𝑛𝑒𝑟𝑠_𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐸)
4: for each arriving instance 𝐼 in stream 𝑆 do
5: 𝐵.𝑎𝑝𝑝𝑒𝑛𝑑(𝐼)
6: if 𝐵.𝑠𝑖𝑧𝑒() == 𝐿𝑚𝑏 or 𝑆.ℎ𝑎𝑠_𝑒𝑛𝑑𝑒𝑑() then
7: for each trainer 𝑇𝑖 in trainers 𝑇 do in parallel
8: 𝑇𝑖.𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← 𝐵
9: for each instance 𝐼 in 𝑇𝑖.𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 do

10: 𝑣𝑜𝑡𝑒𝑠𝑖.𝑎𝑝𝑝𝑒𝑛𝑑(𝑇𝑖.𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝐼))
11: end for
12: end for
13: 𝐸.𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑣𝑜𝑡𝑒𝑠)
14: for each trainer 𝑇𝑖 in trainers 𝑇 do in parallel
15: for each instance 𝐼 in 𝑇𝑖.𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 do
16: 𝑘 ← 𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)
17: 𝑊_𝑖𝑛𝑠𝑡 ← 𝐼 * 𝑘
18: 𝑇𝑖.𝑡𝑟𝑎𝑖𝑛_𝑜𝑛_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑊_𝑖𝑛𝑠𝑡)
19: end for
20: if change detected then
21: 𝑟𝑒𝑠𝑒𝑡_𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟
22: end if
23: end for
24: 𝐵.𝑐𝑙𝑒𝑎𝑟()
25: end if
26: end for

once its size reaches the desired size 𝐿𝑚𝑏 passed as argument (line 6). The logic for iterating
through mini-batch instances is even more straight forward in this version. Inside each
task the only iteration possible, and needed, is the iteration over the mini-batch instances,
since each learner is mapped to a single task. All tasks run in parallel (lines 7 and 14).
Besides the accumulation of instances to form the mini-batch, the aggregation of votes
also happens in a sequential manner (line 13). The change detector has the same behavior
differences as before. After processing the mini-batch, the algorithm clears the ‘current’
mini-batch to begin accumulating the next one (line 24.

7.1 Experimental evaluation
To evaluate the benefits of parallel mini-batching for data stream bagging ensem-

bles, we implemented the strategy in MOA and tested its performance on several en-
semble algorithms. The datasets are the same as in the previous experiments: Airlines,
GMSC, Electricity and Covertype. We have increased the number of algorithms to six
bagging ensembles, as follows: OzaBag, OzaBagAdwin, OzaBagASHT, LeveragingBag,
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AdaptiveRandomForest, and StreamingRandomPatches. We kept the same ensemble sizes
as in previous experiments are also the same as the next: 100 and 150. Lastly, we used
three different machines to execute the experiments, their specifications are shown in
Table 10.

Table 10 – Hardware specifications

Processor Xeon 4208 E5-2650 AMD 7702
Cores/socket 8 10 64

Clock frequency (GHz) 2.1 2.3 2.0
L1 cache (core) 32 KB 32 KB 32 KB
L2 cache (core) 1024 KB 256 KB 512 KB

L3 cache (shared) 11264 KB 25600 KB 262144 KB
Memory (GB) 128 384 1024

Memory channels 6 4 8
Maximum bandwidth 107.3 GiB/s 51.2 GB/s 204.8 GB/s

We evaluate the performance of three algorithms, with the important note that one of
the three has three different configurations. That leads to five different series in the charts:
a sequential implementation (baseline), a parallel implementation without mini-batching
(B1), the parallel implementation with mini-batches with three different mini-batch sizes:
50, 500, and 2000. The three configurations of the parallel implementation with mini-
batches are called B50, B500 and B2k. All parallel implementations were executed with
8 threads pinned to the processing cores. In spite of using all available cores on the three
platforms, we chose to use the same amount of threads. This decision was made to allow
the comparison of the performances as a way to validate our prototype in regards to
different cache memory characteristics. However, it does not exclude the importance of
a scalability study. In fact, studying the scalability using more cores is an interesting
future work that should be performed to check how our prototype can adapt to bigger
environments.

7.2 Performance analysis
The comparison of the five different versions of the algorithms is presented on Figure

21 using the speedup metric. Speedup was calculated compared to the baseline, and, as
stated above, all parallel executions are run with a threadpool of 8. Further description
on the organization of the charts is provided in the caption.

Results show that pure parallelism (without mini-batching) is erratic, yielding worse
performance than sequential in many configurations. The slower execution time in the
B1 version compared to the baseline reinforces the lack of efficiency when processing
the examples incrementally (i.e., classifying and training a single example for the whole
ensemble at a time), as demonstrated in Chapter 6.
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Figure 21 – Speed up on all platforms. Algorithms are placed on columns, while
datasets are placed in different rows of the grid. Suffix 100 and 150 indi-
cate the size of the ensemble, and are represented with solid and dashed
lines, respectively. First row Y-axis is scaled to 12, every other row is scaled
to 8. Algorithm implementations: (𝑖) Baseline (sequential) (Seq), (𝑖𝑖) Paral-
lel (B1), (𝑖𝑖𝑖) Parallel with mini-batches of 50 instances (B50), (𝑖𝑣) Parallel
with mini-batches of 500 instances (B500), (𝑣) Parallel with mini-batches of
2,000 instances (B2k).

In contrast, performance gains are obtained by combining parallelism with mini-
batching due to better memory access patterns. Most experiments present a big leap
in performance when introducing the parallel mini-batching of 50 instances (B50). How-
ever, with the exception of the airlines dataset and LBag algorithm, the performance gains
decrease as we increase the mini-batch size. The decreasing performance gains behavior
reinforces the results presented on the RD study in section 6.2, where the difference in
RD after the initial implementation of mini-batch does not change by a big margin.

Also, speedups are closely related to the models’ computational complexity, which
varies according to the algorithm and dataset used. Cheaper algorithms (e.g., OzaBag
and OzaBagAdwin) show lower Speedups due to smaller amounts of work per thread. As
a final general note, results indicate that the solution is platform independent, since every
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chart presents a very similar behavior for all platforms and ensemble sizes.
An interesting result arises from the LeveragingBag algorithm when classifying the

airlines dataset. Although an ideal speedup should approach 8, which is the number of
cores used, the chart shows a 12X speedup in this particular combination. This superlinear
speedup indicated a better synergy, however more instrumentation and extra experiments
would be needed to provide a clear cause for such behavior. Since the memory-locality
has been the key improvement to present good results, one logical roadmap is to collect
and study real memory statistics such as cache-misses.

7.3 Cache study
We ended the last section with an interesting superlinear speedup, however, we could

not explain why this has happened. Although the theoretical RD calculations from sec-
tion 6.2 provide a good hint to the performance bootleneck, it can not be used to explain
the superlinear speedup. Since the superlinear speedup happens on only one combination,
we should find out what differences this particular case has in comparison to the others.
A logical way is to collect and study real memory statistics, as opposed to a simplified
theoretical model. To achieve this goal, real cache usage data should be collected dur-
ing runtime. Thus, we re-executed all configurations while collecting cache data with the
Linux Perf tools1. The experiments were performed with ensembles of 100 learners, and
the results are shown in Table 11. We present the two metrics used to evaluate cache
usage:

❏ Cache-references: accounts for data requests missed in the L1 and L2 caches. Whether
they miss the L3 is irrelevant in this case;

❏ Cache-misses: represents the number of memory access that could not be served by
any of the cache levels, therefore having to fetch data from the main memory.

Results confirm the claim that mini-batching improves the memory accesses local-
ity, since they show the reduction a real memory statistic (e.g., cache-reference) when
introducing the mini-batching technique. Although the two measures change according
to dataset and algorithm characteristics, both tend to decrease with mini-batching and
larger batch sizes. For the Electricity and Covertype case, the cache-refer starts to rise
with mini-batches of 2000 instances, suggesting the existence of an optimal mini-batch
size for each case.

The results from LeveragingBag on airlines show a singular behavior, replicated to a
lesser extent by the OBAdwin algorithm. While most combinations present small varia-
tions on cache-misses (i.e., the first column), LBag on airlines reduces the metric by more
1 <https://man7.org/linux/man-pages/man1/perf.1.html>
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Table 11 – Measures of cache use for ensembles with 100 learners (Millions)

Airlines GMSC Electricity Covertype
Algorithm MB size cache-

miss
cache-

refer
cache-
miss

cache-
refer

cache-
miss

cache-
refer

cache-
miss

cache-
refer

ARF 1 40,171 94,910 2,518 11,366 882 4,490 12,652 65,321
ARF 50 41,634 63,303 2,499 4,825 821 2,323 13,325 23,201
ARF 500 42,321 62,185 2,162 4,394 742 2,040 12,315 21,246
ARF 2000 42,522 61,728 2,047 4,369 728 2,293 12,367 21,912
LBag 1 45,337 99,010 2,600 8,962 508 2,870 17,809 104,735
LBag 50 49,425 74,854 1,680 3,746 516 1,706 16,560 47,024
LBag 500 26,659 37,783 1,645 3,497 473 1,457 19,315 45,322
LBag 2000 19,556 26,152 1,546 3,714 463 1,309 21,342 48,600
SRP 1 45,135 110,900 5,543 18,487 2,105 7,520 65,157 172,089
SRP 50 46,647 68,340 5,285 8,682 1,999 3,892 61,763 97,867
SRP 500 45,973 67,255 4,781 7,750 1,952 4,296 60,210 95,699
SRP 2000 45,973 66,395 4,559 7,912 1,863 3,916 60,906 99,117

OBASHT 1 4,779 39,986 531 4,399 225 1,714 5,927 101,370
OBASHT 50 3,918 10,629 399 1,262 171 781 5,286 40,059
OBASHT 500 3,810 9,953 353 1,033 157 717 4,648 36,992
OBASHT 2000 3,579 9,603 334 1,090 155 761 4,302 39,074
OBAdwin 1 26,627 71,987 723 5,770 232 2,037 5,780 108,281
OBAdwin 50 20,338 30,542 439 1,539 183 910 4,687 37,948
OBAdwin 500 15,417 21,888 419 1,357 177 872 5,576 35,341
OBAdwin 2000 11,669 16,414 371 1,427 149 915 6,228 33,759

OB 1 9,423 27,560 981 5,580 221 1,864 11,314 94,976
OB 50 9,810 13,606 635 1,853 180 735 9,683 36,822
OB 500 9,504 12,468 421 1,531 173 738 7,983 32,385
OB 2000 8,965 12,299 353 1,386 155 793 7,141 32,146

than 50%. In addition, the reduction on cache-refer is bigger than in the other combi-
nations, and, as opposed to the ‘default’ behavior of stabilizing, it continues reducing as
we increase the mini-batch size. This combination of factors leads to a much improved
memory locality. It is still hard to point the cause for the better performance, however,
based on the results, the LBag algorithm has a higher reuse of data structures. As stated
before, the scope of this thesis is a generic solution for a whole class of algorithms. Thus
an in-depth study of a single algorithm falls out of the scope.
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7.4 Summary and closing thoughts
The main findings from this Chapter can be summarized as:

❏ We have built upon previous results and presented empirical proof that mini-
batching can greatly improve the memory usage. We reinforce the results from the
Reuse Distance experiments in the previous Chapter with real cache data collected
during runtime by monitoring the cache-refer and cache-miss measures. By analyz-
ing both measures we can conclude that mini-batching is capable of reducing L1
and L2 misses in most cases.

❏ Reinforcing the findings from Chapter 6, the introduction of the mini-batching tech-
nique (the smallest mini-batch size tested) provides the best relative increase in
performance. However, increasing the mini-batch size over 50 instances has dimin-
ishing returns in the performance gains, which can be seen by the plateau behavior
in many charts from Fig. 21 and the smaller reduction in the cache-refer measure
in Table 11.

❏ We performed experiments in three different platforms, with different cache sizes and
memory bandwidth. The similarity in the behavior on all three platforms indicates
that our solution is platform independent.

❏ Reinforcing the findings from Chapter 5, the most complex algorithms (i.e., the
ones using the biggest lambda and employing additional strategies) can grow their
models faster, which means they generate bigger models while training from the
same original data. With bigger models, comes bigger resource consumption in the
sense of data structures size and number of operations performed per instance.
In such cases, the reuse of data already loaded into the faster memories is bigger
and provides even more benefit by using our solution. Ultimately, because of these
characteristics, the most complex algorithms are the most scalable.

❏ In a similar fashion, dataset characteristics that increase model size and complexity
(e.g., the number of possible values from nominal attributes in Airlines dataset)
have a tendency to present the best scalability.

❏ By using a total of six algorithms in our experimental setup we can confidently state
that the proposed method is generic and applicable to a whole class of algorithms
(i.e., bagging ensembles for data streams), since all algorithms presented similar
behavior.

In summary, the results presented in this Chapter demonstrate that implementations
of ensembles based on multi-core parallelism combined with mini-batching yield significant
performance improvements. This is supported by the improvements in speedup and the



78 Chapter 7. Combination of parallelism and mini-batching for data stream ensembles

reduction of cache misses in the L1 and L2 cache. The solution is applicable to a whole
class of algorithms and works on hardware with different characteristics. However, many
aspects of our solution remain to be explored.

For instance, from our experiments we could not provide a one size fits all for the mini-
batch size. Different algorithms and datasets require different mini-batch sizes. Variations
in mini-batch size may produce alterations in predictive performance as well as different
outcomes regarding the computational performance. Thus, an adaptive mini-batch size
could be an interesting addition to the technique. Another factor that could be used on
such adaptive strategy is the energy-efficiency of our solution. In the next Chapter, we
present a study on the energy-efficiency of our solution with the goal of having a better
understanding of the energy consumption behavior.
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Chapter 8

Improving energy-efficiency for data
stream ensembles

In 2018, Information and Communication Technology (ICT) accounted for 3% of the
global energy consumption, expecting to grow nearly 9% per year. This surge of energy
consumption is happening because of the fast emergence of numerous applications and
new ICT devices (GUEGAN; ORGERIE, 2019). The influx of applications and devices
generates a significant demand to transmit, store, and process ever-increasing volumes
of data. This scenario makes energy consumption an issue in virtually all applications,
since both, small devices and data centers, can benefit from a better energy-efficiency.
The benefit for small devices comes in the form of longer battery duration, for example,
while in data centers it translates to a reduction of a big portion of their costs.

Among the most used applications of today, Machine Learning (ML) has been growing
rapidly in the past few years. Historically, ML research focused on extracting the best
predictive performance without giving much care for computational resources usage and
energy consumption. However, the environment created by the new applications brings
new challenges. These challenges invite researchers to develop new strategies capable of
dealing with dynamic environments.

This shift towards data stream learning to address such challenges, has provided new
algorithms like the Hoeffding Tree (HT) that is capable of adhering to requirements such
as single pass processing, response time, and constant memory usage (DOMINGOS; HUL-
TEN, 2000). Nevertheless, little effort has been made to reduce the energy consumption of
such algorithms. In fact, given the sheer volume of data manipulated nowadays, it is clear
that energy efficiency should be a goal in ML research, and it is starting to gain impor-
tance in state-of-art research (GARCíA-MARTíN; BIFET; LAVESSON, 2021). Therefore,
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the proposed method was evaluated regarding energy efficiency in a real data stream sce-
nario. This section describes all the processes and characteristics of the energy-efficiency
experiments. It is divided into four subsections: section 8.1 describes the hardware charac-
teristics, the environment setup, and mentions the datasets and the software frameworks
we have used. The section 8.2 presents the measures used to evaluate our experiments.
Subsection 8.3 shows preliminary results used to calibrate and define a few parameters for
the final experiments. Finally, the main findings regarding energy-efficiency are presented
in section 8.4.

8.1 Environment
In this experiment, the initial focus was on constrained devices such as the Raspberry

Pi 3 Model B. Later on, two more machines were added in order to test the method in a
wider variety of scenarios. The new machines are typical representations of Data center
and commodity hardware, indicating that the method is generic and provides benefits
in many different contexts. Hardware specifications of the aforementioned machines are
shown in Table 12.

Table 12 – Hardware specifications

Processor Xeon 4208 i5-2400 Cortex-A53
Cores/socket 8 4 4

Clock frequency (GHz) 2.1 3.1 1.2
L1 cache (core) 32 KB 128 KB 32 KB
L2 cache (core) 1024 KB 1024 KB 512 KB

L3 cache (shared) 11264 KB 6144 KB -
Memory (GB) 128 4 1

Memory channels 6 2 -
Maximum bandwidth 107.3 GiB/s 21 GB/s -

SensorData Logger

Data Stream
Processor

Data Stream
Generator

Power ReadingStatistics

Energy Consumption

Data Stream

Figure 22 – Logic diagram of the experiment environment.

The experimental environment consists of an isolated network connected through
a dedicated switch. The readings are based on a Yokogawa MW-100, a scalable, high-
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performance data acquisition platform. The sensors collect instant W consumption from
power plugs and make this information accessible through the network. There are three
sensors providing readings from the three machines described in Table 12. Each machine
from Table 12 is an instance of a Data Stream Processor node on Fig. 22. Also, there is a
machine responsible for collecting W consumption data from the sensors. It accomplishes
this task by querying the sensor, appending this information to a file, and sleeping until
the next reading.

Another machine (Data Stream Generator) is responsible for creating a parameteriz-
able load and sending it through sockets to the Data Stream Processors. The operation
summary of the Data Stream Generator is as follows: it reads the whole dataset from the
disk and stores it in memory, then opens a connection with the Data Stream Processor
node and starts sending data asynchronously at a parameterizable rate received as an ar-
gument. The generator sends data until the end of the dataset or until it reaches the time
limit. Upon reaching the termination point, the generator sends a termination message
and stores statistics like the total number of instances sent. The generator produces in-
stances at a rate defined by a parameter called Instances Per Second (IPS). The generator
sends data in five smaller batches at constant intervals (e.g., a rate of 100 IPS will send
20 instances each 200ms to the consumer). Lastly, the Data Logger aggregates data from
every node.

Once again, the technique is implemented in the Massive Online Analysis (MOA)
framework (BIFET et al., 2010), and tested on six bagging ensemble algorithms (described
in section 2.2) with five datasets (described in section ??). We chose MOA1 framework as
it provides several ensemble learners for data stream processing, with the added benefit of
having been used for many studies in the ML area (BIFET et al., 2010). This choice allows
us to assess the efficiency of the mini-batching strategy for several ensemble algorithms.

8.2 Evaluation measures

This subsection defines the five measures used to evaluate the performance of the
technique in the experiments. The measures are: Joules Per Instance (JPI), average Watt
(W) consumption, Instances Per Second (IPS), accuracy, and average Delay to process.

JPI is one of the measures related to energy consumption. However, Before defining
JPI it is necessary to define energy consumption. In the context of computer systems,
energy is delivered as electricity. However, most energy consumption monitors operate by
collecting an instantaneous rate of Power (W) being supplied. Energy, on the other hand,
is expressed in Joules (J). Its value is the product of power (W) and time (t), as shown
in the following equation:

1 Available at https://github.com/Waikato/moa
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𝐽 = 𝑊 × 𝑡

Since the power supply can fluctuate, it is necessary to get frequent readings at small
enough intervals to correctly calculate the consumption. Thus, the total energy consump-
tion can be approximated to:

𝐸 =
𝑛∑︁

𝑖=1
𝑃𝑖 × 𝑡,

where n is the number of samples taken by the monitor.
Typically, energy efficiency is defined as a relation between the computing work done

and the amount of energy spent. Given the amount of varying parameters we have used,
we decided to measure computing work by the number of instances processed within a
time interval. Therefore, we define the JPI measure as:

𝐽𝑃𝐼 = 𝐸

𝑛
,

where 𝑛 is the number of instances processed and 𝐸 is the amount of energy spent. Since
this measure reflects the amount of energy consumed to process each instance, the smaller
this measure is the better the energy efficiency.

The second measure related to energy efficiency is the Average Watt consumption,
defined as the average of all the readings made by the monitor during a given experiment.
Its formula can be defined as:

𝐴𝑊𝐶 =

𝑛∑︀
𝑖=1

𝑊

𝑛
,

where 𝑊 represents each reading and 𝑛 represents the total number of readings.
IPS is a measure related to throughput, defined as the number of instances processed

per second. It is defined as:
𝐼𝑃𝑆 = 𝑛

𝑠
,

where 𝑛 is the number of instances processed and 𝑠 the total time taken in seconds.
The fourth measure used is the average delay, which is the average time to process each

instance from when it arrives through the socket until its training is processed. Average
Delay is used to show the impact caused by the mini-batching approach in the response
time. Is can be defined as:

𝐴𝑣𝑔 𝐷𝑒𝑙𝑎𝑦 =

𝑛∑︀
𝑖=1

𝐼𝐿𝑇

𝑛
,

where 𝐼𝐿𝑇 is the Instance Living Time, calculated as 𝐼𝐿𝑇 = 𝐹𝑃𝑇 − 𝐴𝑇 , where 𝐹𝑃𝑇 is
the Finish Processing Time of the instance and 𝐴𝑇 is the Arrival Time of the instance.
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(a) Using ARF algorithm
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(b) Using SRP algorithm

Figure 23 – Accuracy, energy consumption and throughput according to ensemble size for
each dataset on Raspberry Pi model 3 B.

The last measure to be presented is accuracy, a well known measure that informs the
amount of correct classifications. It is defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑛
,

where 𝑛 is the number of instances processed.

8.3 Preliminary results
Two preliminary experiments were made, the first to find a good ensemble size to

operate with in constrained devices and the second to understand the energy consumption
profile of all hardware configurations.

The goal of the first experiment was to find a good trade-off involving accuracy, energy
consumption, and throughput according to the ensemble size when using a constrained
device. In this experiment, the baseline version of all the algorithms was executed using
all datasets while measuring energy consumption and calculating throughput using the
IPS measure. The results are shown in Figures 23, 24, and 25, where the X-axis shows
the ensemble size and the Y-axis has three different scales as shown in the legend.

It is possible to summarize the behaviors shown in Figs. 23, 24, and 25 with three
trends, all three of them related to the increase of the ensemble size (X-axis). Accuracy
(in red) decreases by a very small margin, remaining almost constant. Throughput (in
blue) decreases and energy consumption (in green) increases. Based on these behaviors,
it is acceptable to use smaller ensembles on constrained devices where energy and com-
putational power are limited resources.

The second experiment’s goal was to determine the energy consumption profile of
each machine. The energy consumption was monitored while varying the resource us-
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(a) Using LBag algorithm

�� �� �� ���

�

��

��

��

��

���

��������

�� �� �� ���

�

��

��

��

��

���

����

�� �� �� ���

�

��

��

��

��

���

�����������

�� �� �� ���

�

��

��

��

��

���

���������

�� �� �� ���

�������� ����

�

��

��

��

��

���

�����

��

���

���

���

���

����

����

����

����

����

���

����

����

����

�����

�����

�����

�����

�����

�����

�����

���

���

����

����

����

����

�����

�����

�����

���

���

���

���

����

����

����

����

����

����

����

�����

�����

�����

�����

�����

�����

��������

���

���

(b) Using OB algorithm

Figure 24 – Accuracy, energy consumption and throughput according to ensemble size for
each dataset on Raspberry Pi model 3 B.
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(a) Using OBASHT algorithm
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(b) Using OBAdwin algorithm

Figure 25 – Accuracy, energy consumption and throughput according to ensemble size for
each dataset on Raspberry Pi model 3 B.

age with the aid of the Stress tool for Linux. The resource usage started from idle and
was increased until the maximum number of cores available on the machine were being
used. After measuring each workload for 180 seconds, the average W consumption was
calculated. The results can be seen in Figure 26, where it is possible to confirm some
expected aspects, like the Raspberry Pi showing a much smaller consumption than the
other machines. We found that our measurements from the Xeon Silver 4208 machine
suffers significant interference from peripherals since it has many features embedded. In
the chip specification, the Thermal Design Power (TDP) is 80, however, the machine is
a server that has two chips with a lot of fans and other auxiliary systems that consume
power. The biggest takeaway from this experiment is that, generally, the closer to 100%
utilization, the better the energy efficiency.
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(a) Xeon Silver 4208
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(b) i5-2400
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(c) Pi 3 model B

Figure 26 – Energy consumption profile for each machine.

8.4 Energy efficiency in streaming ensembles

To better assess the energy consumption behavior of the three machines, a data stream
was simulated under three different levels of load (e.g., receiving instances through the
network with different rates) when applying the six algorithms on five datasets. This
experiment used the setup described in subsection 8.1 and a modified MOA version that
receives instances through sockets instead of reading from an ARFF file.

The bagging ensemble algorithms have different characteristics among themselves,
as explained in Section 2.2, leading to different throughput levels. Also, the machines
used have vastly different processing power, and even the datasets generate models with
varying levels of both memory and CPU requirements. In this scenario, the generator has
to produce different workloads for each case, according to the combination of machine,
algorithm, and dataset in use. The throughput when reading from the file was considered
to be the maximum. Then the three rates (e.g., 90%, 50% and 10%) were applied for each
combination of machine, algorithm and dataset to calibrate the different workloads.

Since this approach resulted in highly variable generator rates, we opted to show the
results using the JPI and delay measures.

In these experiments, we compare three versions, the baseline(Sequential), a parallel
version without mini-batch (B1), and a parallel version with a mini-batch of 500 instances
(B500). Figures 27, 28 and 29 present the results from Raspberry Pi, i5, and Xeon Silver
4208, respectively. In these figures, each line shows charts of a specific dataset and each
column is associated with a specific algorithm (e.g., the first line has all charts from the
experiments with the airlines dataset, whereas the first column has all experiments with
ARF). All charts in the same line have the same scale on both Y-axis. The left Y-axis
displays the JPI’s scale, while the right Y-axis displays the Delay’s scale.

As a general remark, energy efficiency is closely related to model complexity. Which,
as mentioned before, is influenced by the algorithm and dataset. To allow an easier com-
parison between algorithms, all charts in a line have the same scale and were plotted
from experiments with the same dataset. It is possible to see that all three versions of
OzaBag present a better energy efficiency (i.e., smaller JPI) compared to the other three



86 Chapter 8. Improving energy-efficiency for data stream ensembles

��� ��� ���
���

���

���

���

�
��
��
�
�
�

��������������������

��� ��� ���

�������������

��� ��� ���

����������������������

��� ��� ���

�����������

��� ��� ���

����������

��� ��� ���

������

��� ��� ���
����

����

����

����

�
�
�
�

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ���
���

���

���

�
��
�
�
�
��

�
�
�

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ���
���

���

���

���

�
�
�
��
�
�
�
�
��

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ���
����

����

����

�
�
�
��
�
�
��
�
��

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�

��

��

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�������������� ������ �������� ���������������� �������� ����������

Figure 27 – Energy consumption and delay for the Raspberry Pi

algorithms. The better energy efficiency presented by OzaBag variants is caused by their
smaller models that require fewer memory operations and allows a faster traversal of the
trees.

On the other hand, more complex algorithms tend to present a bigger percentage
reduction in the JPI measure from the best non-mini-batch version to the mini-batch
version. This behavior is related to the higher throughput produced by the mini-batch
version, which shortens the execution time. The mini-batching strategy creates more sleep
periods at lower rates while waiting for more instances to reach the mini-batches desired
size. When the rate of incoming instances is several times smaller than the mini-batch size,
it may lead to higher delays. Although mini-batching can improve energy efficiency, the
delay resulting from extended and repeated sleep periods may hinder the idea of real-time
processing.

Another easily noticeable trend is that SRP has the worst energy efficiency (i.e., highest
JPI) across all the experiments, independently of the platform and algorithm used. This
effect occurs because this algorithm tends to create deeper trees in less time than the
other complex algorithms (e.g., ARF and LBag), leading to an increase in computational
complexity as a whole.
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Figure 28 – Energy consumption and delay for the Vostro

In addition to the charts, Tables 15, 14 and 13 present the percentage Δ in JPI between
the best version without mini-batch (i.e., the best case between the orange and blue bars
from the charts) and the mini-batch version. A negative value indicates the mini-batch
version reduced energy consumption by that percentage amount. Cases where mini-batch
consumed more energy have positive values and are in bold.

Based on the data presented in the tables, It is possible to say that using mini-batch
reduces energy consumption in the vast majority of cases. More often than not, mini-
batching presents a more significant reduction in energy consumption at lower incoming
rates. As stated before, the three more complex algorithms (e.g., ARF, LBag, and SRP)
have a slightly more significant percentage reduction than the OzaBag versions. This
behavior happens because their more complex models benefit the most from the improved
memory locality provided by the mini-batching technique.

In summary, our mini-batching proposal has shown improvements in energy consump-
tion across all experiments. While the average delay for the mini-batching algorithm tends
to drop as the rate increases, both sequential and parallel without mini-batch algorithms
tend to present an increase when the rate gets past 50%. The increase in non-mini-batching
versions happens because instead of receiving one instance, the algorithm receives a group
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Figure 29 – Energy consumption and delay for the Xeon

of instances, causing the last instances of the mini-batch to have a longer living time inside
the system.
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Algorithm Rate Airlines GMSC Electricity Covertype Kyoto

Ada
10 -105.89 -31.54 -35.77 -61.53 -20.81
50 -22.12 -7.15 -8.23 -13.83 -3.41
90 -18.75 -4.09 -3.90 -7.92 -2.35

L
10 -63.62 -24.50 -32.12 -82.12 -35.62
50 11.53 -5.21 -6.00 -18.84 -6.16
90 10.56 -2.93 -3.19 -12.65 -3.53

Patches
10 -55.26 -67.94 -64.77 -177.65 -41.81
50 -18.49 -14.95 -12.94 -29.27 -8.70
90 -22.79 -8.48 -7.84 -17.97 -3.30

Adwin
10 -90.51 -13.47 -16.79 -50.12 -12.73
50 -19.98 -2.86 -3.55 -12.42 -2.79
90 -17.63 -1.51 -1.89 -10.64 -1.87

ASHT
10 -46.35 -9.14 -10.63 -50.65 -9.53
50 -14.32 -1.85 -2.19 -11.62 -2.07
90 6.42 -1.72 -1.12 -10.36 -1.52

OzaBag
10 -45.44 -9.10 -10.17 -52.24 -8.77
50 -10.67 -1.86 -2.07 -11.61 -1.88
90 -7.69 -1.66 -1.14 -10.50 -1.30

Table 13 – Percentage difference between the best non-mini-batch version and the mini-
batch version on the Raspberry Pi

Algorithm Rate Airlines GMSC Electricity Covertype Kyoto

Ada
10 -0.29 -0.17 -0.18 -0.27 -0.11
50 0.49 -0.04 -0.04 -0.06 -0.02
90 0.16 -0.02 -0.02 -0.04 -0.02

L
10 0.54 -0.17 -0.18 -0.41 -0.12
50 1.04 -0.04 -0.04 -0.09 -0.02
90 1.48 -0.02 -0.03 -0.05 -0.02

Patches
10 -0.16 -0.30 -0.27 -0.86 -0.13
50 -0.15 -0.06 -0.05 -0.19 -0.03
90 -0.04 -0.03 -0.03 -0.11 -0.00

Adwin
10 -0.35 -0.07 -0.09 -0.19 -0.05
50 0.10 -0.02 -0.02 -0.04 -0.01
90 0.09 -0.01 -0.01 -0.02 -0.01

ASHT
10 -0.19 -0.05 -0.07 -0.16 -0.05
50 -0.08 -0.01 -0.02 -0.04 -0.01
90 -0.11 -0.01 -0.01 -0.02 -0.01

OzaBag
10 -0.02 -0.05 -0.06 -0.14 -0.04
50 0.02 -0.01 -0.01 -0.03 -0.01
90 -0.05 -0.01 -0.01 -0.02 -0.00

Table 14 – Percentage difference between the best non-mini-batch version and the mini-
batch version on the Vostro



90 Chapter 8. Improving energy-efficiency for data stream ensembles

Algorithm Rate Airlines GMSC Electricity Covertype Kyoto

Ada
10 -6.97 -1.78 -3.44 -4.12 -1.70
50 -1.49 -0.38 -0.70 -0.91 -0.33
90 -1.38 -0.22 -0.39 -0.51 -0.23

L
10 -5.20 -1.40 -1.82 -4.81 -1.26
50 -0.96 -0.29 -0.38 -0.91 -0.25
90 -0.85 -0.18 -0.23 -0.52 -0.16

Patches
10 -6.53 -3.58 -6.17 -19.51 -2.54
50 -1.29 -0.68 -1.13 -2.78 -0.50
90 -1.33 -0.39 -0.63 -1.73 -0.27

Adwin
10 -3.54 -0.47 -0.63 -1.75 -0.34
50 -0.78 -0.10 -0.13 -0.36 -0.08
90 -0.72 -0.06 -0.08 -0.21 -0.04

ASHT
10 -1.43 -0.29 -0.53 -1.31 -0.31
50 -0.56 -0.06 -0.11 -0.29 -0.07
90 -1.33 -0.04 -0.07 -0.16 -0.04

OzaBag
10 -0.63 -0.32 -0.41 -1.16 -0.28
50 -0.58 -0.07 -0.09 -0.23 -0.06
90 -0.66 -0.04 -0.06 -0.14 -0.03

Table 15 – Percentage difference between the best non-mini-batch version and the mini-
batch version on the Xeon



91

Chapter 9

Conclusion

Ensemble learning is a fruitful approach to improve the performance of ML models
by combining several single models. Although ensembles are popular for yielding highly
accurate results, many aspects of their efficient implementation remain to be studied. In
this work, we proposed a task-parallel model coupled with the mini-batching technique
for improving online bagging ensembles.

Although bagging ensembles have independent models that provide very natural par-
allelism, this solution alone is insufficient to achieve good results. In Chapter 3, we present
several results where the speedup achieved is small or even nonexistent. Such results reject
our H1 which stated that a task-parallel model could improve execution time.

When coupled with a mini-batching technique capable of improving the memory ac-
cess patterns, it is possible to reduce the execution time and, as a bonus, increase the
energy efficiency of such algorithms. We demonstrated that the performance achieved
by multi-core parallelism could be remarkably improved by applying the mini-batching
technique using theoretical and experimental frameworks. We used different hardware
platforms as often as possible in our experimental frameworks. We believe the wide range
of hardware platforms, algorithms, and datasets used in the experimental frameworks,
as well as the many different scenarios tested and auxiliary results presented (e.g., real
data-stream under different loads, standard benchmarks with different sizes, impact on
predictive performance, impact on change detections, energy-efficiency, etc.), provide suf-
ficient evidence that the proposed method applies to the whole class of bagging ensembles
and can be deployed in many different environments. Thus, we confirm our H2 which
stated that better memory access patterns lead to better computational performance.

We also presented a study regarding the trade-off when adopting the mini-batching
technique. Using mini-batching in data stream bagging ensembles has an impact on their
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predictive performance. However, the intensity of such impacts varies in tandem with
other experiment parameters, with the characteristics from the dataset being the most
critical variable. Nevertheless, small mini-batches (e.g., up to 50 examples) are a safe
bet to improve execution performance by at least 2 to 3 times while losing less than
1% predictive performance. Such results confirm our H3 which stated that it is possible
to accelerate bagging ensembles for data streams without significantly impacting their
predictive performance.

We demonstrated that energy consumption could be improved by the proposed method.
We used different workloads to assess the energy efficiency at various stress levels. Re-
garding the amount of energy economized, the best result happens on low workloads at
the cost of a higher delay in the response time. On the other hand, higher workloads tend
to make the energy consumption levels more similar between the default and the proposed
method, usually presenting a smaller delay in favor of our method.

9.1 Future work
As much as we tried to cover a wide range of variables, there are improvements to

be made on the method and behaviors that could receive further investigation to achieve
complete understanding. We present some of these ideas for future work in this Section.

Temporary data structures management: One of the major contributions of this
thesis is the adoption of the mini-batching technique to improve the memory efficiency of
the bagging ensembles. We mitigated the memory bottleneck created by sequentially load-
ing the classifiers into the higher memory hierarchies to train a single instance. However,
other aspects of memory usage could be improved, such as the management of temporary
objects created during the training step. To achieve this, we need an auxiliary control
system for the temporary structures. Such a system would store the discarded structures
in a collection instead of letting the garbage collector (GC) destroy them. It would also
be in charge of taking an unused structure from the collection and updating with the
new data when requested. If the collection has no discarded structure left (i.e., is empty),
then, and only then, a new structure would be created through the normal JVM means.
Typically, the GC is optimized enough that we do not need to worry about its work. How-
ever, the sheer volume of objects created and freed per second (as shown in Figure 15)
in these algorithms may create the circumstances in which a more fine-grained control is
needed. Using this middleware system for data structure management, we could alleviate
the pressure on GC with the added benefit of less memory fragmentation. In addition, it
could be possible to implement it in a way that such collection of discarded data struc-
tures could be (pre)allocated in contiguous memory, which increases the speed of memory
operations.

Algorithms with efficient data structures: Another possible future work is to
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devise and implement algorithms that use very efficient data structures for the models.
Such data structures should be small enough to “live” in the cache memory during the
whole time. This solution could eliminate the bottleneck of transferring data from the
main memory to the higher hierarchies. The challenge in this case is to ensure the quality
of the information stored using such a small amount of memory.

Parallelization with mini-batching of the classification step: In this thesis, we
approached the problem of how to implement parallelism in the training step of bagging
ensembles efficiently. However, due to time and scope limitations, we could not include
experiments with parallel classification in our evaluation framework. To justify the par-
allelization of the classification step, one would have to change the underlying classifiers
from decision trees to models that consume more resources during classification when they
need to output the predictions. Although not predominant, such methods are commonly
used. The parallelization of classification would also be straightforward because each clas-
sifier is still independent in bagging ensembles. However, the classification step has the
aggregation process, which serves as a natural synchronization for the parallel portion.
Yet, the aggregation provides an opportunity for further optimization in the form of a
Reduce step on the partial results from the terminated prediction tasks. This extra layer
of complexity (i.e., having the prediction tasks and the Reduce task) could provide even
more performance gains, as the final predictions could be computed partially instead of
waiting for all parallel tasks to finish. Nevertheless, one would need to perform experi-
ments with and without the Reduce step during aggregation to claim that such a strategy
provides benefits.

Utilization of optimized classifiers as the ensemble base models: In theory,
one could use an existing optimized method for a specific classifier in conjunction with
our solutions (as mentioned in the Chapter 4). That is, as long as the optimized/improved
classifier is the base model of the bagging ensemble. It would be interesting to implement
one optimization solution coupled with our parallel mini-batching technique and perform
experiments in the same evaluation framework we used. Such experiments would allow
the identification of relationships among methods. For instance, in exceptional cases, one
could find superlinear speedups (as is the case of LeveragingBag classifying the Airlines
dataset). Even more, the possibility of choosing different optimization techniques for the
base models from a repository would be very attractive for exploratory tasks. Although
not as straightforward to implement, one could even combine ensemble optimizations with
our solutions. In essence, this venue for future work is more focused on the combination
of existing techniques.

Adaptive mini-batch size: The mini-batch size is a critical parameter in our so-
lution. However, we could not provide a clear guide on properly tuning it because the
optimization can consider many aspects. For instance, if the goal is the best predictive
performance, a mini-batch of 10 instances might be the best option since the difference
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to the baseline will be minimal. On the other hand, the largest mini-batch size would
achieve the best energy efficiency and the fastest execution time at the expense of latency
and prediction performance. In addition, we can safely say that the ideal mini-batch size
will be different according to variables that can not be controlled, such as the volatility of
the dataset, how often drift occurs, and the dataset composition regarding the attribute
types. Therefore, the mini-batch size tuning is an example of multi-objective optimization
(MOP), where we have to optimize multiple objective functions simultaneously.

Since we are working in the data stream context, we do not know many variables
before runtime, unlike the static context, where we could optimize the mini-batch size by
knowing all variables. This difference increases the difficulty and complexity of finding the
optimal mini-batch size. Given the volatile characteristics of data streams, it is safe to
assume that, even if the goal remains the same, the optimal mini-batch size can change as
the data distribution changes. Therefore, we need to exclude the outdated data to ensure
that the optimal mini-batch size is calculated using only the current data distribution.
One way to implement such behavior is by adopting sliding windows such as the ones used
in ADWIN change detection. Alternatively, we could discard the historical data every time
a change is detected in data distribution.

One of the basic objectives we have when setting the mini-batch size is maintain-
ing the quality of the predictions. Based on the experiments performed for this thesis,
evidence indicates that some data characteristics will have a negligible impact on the
predictive performance when we increase the mini-batch size, whereas data with slightly
different characteristics may show significant degradation in the predictive performance.
Once again, the volatile nature of data streams creates the need to use sliding windows
while monitoring the predictive performance. In this way, if the predictive performance
stays the same over a few windows, it is safe to assume that we can increase the mini-
batch size by some amount without the fear of degrading it. The opposite is also true.
If the predictive performance starts to degrade, then we have to decrease the size of the
mini-batch.

The execution time can also be considered an objective function. In contrary to the
predictive performance objective, we need to increase the mini-batch size to improve the
outcome of this objective function. However, we need to monitor several context data
from our application (e.g., input rate, throughput, and delay to process each instance)
to optimize the mini-batch size regarding the execution time. While monitoring only one
aspect (the prediction quality) of the application was sufficient to correctly estimate the
action to optimize the mini-batch size regarding the predictive performance, For example,
if both the difference between throughput and input rate and the delay to process are
increasing, we have to increase the mini-batch size to process faster and catch up to the
stream. Alternatively, if we have a minimal delay and the throughput matches the input
rate, we can try to reduce the mini-batch size to improve the prediction quality.
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Lastly, the energy consumption could also be an objective function, and its behavior
would be similar to the execution time. The context data of interest, in this case, is the
energy consumption of the current window, and we should increase the mini-batch size
to save energy.

In essence, the adaptive behavior would be based on incremental steps based on heuris-
tics applied to the context data collected in the current window. A more advanced option
would be to give the user an option to choose the objective functions of the adaptive be-
havior. For example, it would allow the user to disable the energy consumption objective
function, so optimizing the mini-batch size would only consider the predictive performance
and execution time. In addition, the user could define weights for each objective function
allowing the creation of a priority list/system in the objective functions. In summary, such
a system would only make sense if deployed over a long time.
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