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“Inductive inference is the only process known to us by which essentially new knowledge comes

into the world.”

(Sir Ronald A. Fisher, The Design of Experiments, 1935)

“There is nothing like looking, if you want to find something.”

(J.R.R. Tolkien, The Hobbit, or There and Back Again, 1937)

“Not all those who wander are lost.”

(J.R.R. Tolkien, The Lord of the Rings, 1954)





RESUMO

GARCIA, R. R. O. Regressão lasso robusta para modelos lineares de efeitos mistos com aná-
lise de diagnóstico. 2021. 77 p. Dissertação (Mestrado em Estatística – Programa Interinstituci-
onal de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação, Uni-
versidade de São Paulo, São Carlos – SP, 2021.

Seleção de variáveis é um tópico de elevada importância para o processo de modelagem. A
escolha do melhor conjunto de variáveis explicativas pode ser feita com o intuito de melhorar
uma previsão ou facilitar a interpretação dos resultados. Contudo, os métodos para seleção de
variáveis nem sempre são triviais, principalmente no contexto de modelos lineares de efeitos
mistos. A seleção para esses modelos deve ser feita para os efeitos fixos, que estão relacionados
a uma média global, e para os efeitos aleatórios, relacionados à variância a nível individual nesse
contexto. São dois os tipos de abordagens para a seleção de variáveis em modelos de efeitos
mistos: conjunta ou em dois estágios, havendo na literatura existente o processo de seleção
conjunta via lasso para modelos lineares de efeitos-mistos normais. Outro tópico de elevada
importância, é a análise de diagnóstico e resíduos. Enquanto as análises de resíduos são feitas
para investigar problemas com o modelo ajustado e identificação de observações atípicas, uma
análise de diagnóstico é feita assumindo o modelo como correto, e investigando a robustez das
conclusões a pequenas perturbações dos dados e/ou no modelo. Para lidar com essas observações,
são várias as alternativas. Uma delas, é a utilização de modelos robustos, os quais seriam ditos
robustos a perturbações nos dados. Isto é, modelos que melhor se ajustam a conjuntos de dados
que possuem pontos considerados como sendo outliers e/ou alavanca. Este trabalho tem como
objetivo utilizar o método robusto para seleção de variáveis em modelos lineares de efeitos
mistos e compará-lo com o método normal através de análise de diagnóstico.

Palavras-chave: Modelos mistos, lasso, Modelos robustos, Diagnóstico, Análise de regressão.





ABSTRACT

GARCIA, R. R. O. A robust lasso regression for linear mixed-effects models with diagnostic
analysis. 2021. 77 p. Dissertação (Mestrado em Estatística – Programa Interinstitucional de Pós-
Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos – SP, 2021.

Variable selection has been a topic of great interest for statisticians and researchers alike. The
choice of the best subset of predictors may be carried out with the objective of improving predic-
tion or for easier interpretation of results. However, such methods are not always straightforward,
mainly in the context of linear mixed-effects models. Variable selection for such models must
be carried out for both fixed and random effects, the first being related to the global mean of
data and the second to subject-level variance. There are two possible approaches when selecting
variables for mixed-effects models: joint or two-stage procedures. In existing literature on the
topic of variable selection for linear mixed-effects model, there is a method of joint selection via
lasso for linear mixed-effects models under a normal distribution. Another topic of remarkable
importance, is diagnostics and residual analysis. While residual analyses are carried out to assess
issues with the fitted model and identification of atypical observations, diagnostic analyses are
carried out assuming the model as correct and, assessing its conclusions robustness to small
disturbances in the data and/or the model. There are many possible ways to deal with such
observations. One is using robust models, which are said to be robust to disturbances in the
data. That is, models that are better fit to data sets that possess observations considered to be as
outliers and/or leverage. This work aims to use the robust method for variable selection in linear
mixed-effects model and compare it with the normal method using diagnostic analysis.

Keywords: Mixed models, lasso, Robust models, Diagnostics, Regression analysis.
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CHAPTER

1
INTRODUCTION

Linear Mixed-Effects (LME) models may be used to explain both global and local
changes, that is, if a data set consists of a repeated measures experiment, the researcher would be
able to model both a global mean and subject-level variation. Aside from the interest of modeling
the mean, interest may rely in selecting variables from the set of covariates. For instance, consider
the data set in Bondell, Krishna and Ghosh (2010) which describes the association between the
total nitrate concentration in the atmosphere and a set of measured predictors collected from
2000 to 2004. The data were obtained from fifteen of the Unites States Environmental Protection
Agency (U.S. EPA) Clean Air Status and Trends Network (CASTNet) sites. The referred data
set is unbalanced and consists of repeated measures of pollution from each of those sites and its
characteristics suggest that a linear mixed-effects models may be adequate, where the random
effects arise from the repeated sites measures.

Variable selection has been a topic of interest for statisticians for a long time. It can be
used either as a dimensionality reduction tool or as a method to improve precision for prediction,
as it is supposed that the subset of selected variables represent those with higher impact on
the response (MILLER, 2002). There are two possible ways to tackle the problem of variable
selection in LME models: joint selection and two-stage procedures. Bondell, Krishna and Ghosh
(2010) points out that the usual methods for selecting variables in LME models work under the
assumption that one of the effects is considered observed (for example, the fixed effects) and
the selection is carried out for the other (the random effects, for example). Bondell, Krishna
and Ghosh (2010) proposes an approach of joint variable selection based on the lasso method
(TIBSHIRANI, 1996; JAMES et al., 2013) adapted with weights (ZOU, 2006) and argue that
the joint procedure is preferred because “changing the structure of one set of effects can lead to
different choices of variables”. The adaptive lasso is then used with a constrained expectation-
maximization algorithm for estimation and selection of the parameters of interest. Pan and Shang
(2017) points out that the main difference between one-stage and two-stage procedures is that
the latter is more effective and stable, but an incorrect selection in the first step may lead to
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sub-sequential errors. For an intensive review in variable selection in LME models, refer to
Buscemi and Plaia (2019). Cruz (2020) also presents a thorough review on information criteria
and LME model selection.

Throughout the process of fitting a regression model, the researcher may come across
a few interesting observations that differ from the bulk of the data. According to Seber (2012),
there are two kinds of observation points that should receive attention: those whose residuals
are large and those whose explanatory variable values are far from the rest of the data. The
latter are called leverage points and the former, outliers. Observation points which are both
high-leverage and outliers are candidates to be influential points Seber (2012, Sec. 9.4). There
are a few ways for dealing with such points (SEBER, 2012, Sec. 10.6), but the interest of this
dissertation relies on robust methods such that models produced using these methods are less
sensitive to outlying, leverage and influential observations. Sinha (2004) presents a robustified
method for fitting generalized linear mixed models (GLMM), in which the author uses a function
of the Mahalanobis distance with robust estimates of the location and scale of the explanatory
variable in order to decrease the impact of possible leverage points. As for outliers, Fan, Qin and
Zhu (2014) introduce a modification to the response by adding to it a function of the studentized
residuals.

In the light of variable selection and robustness, Fan, Qin and Zhu (2014) proposes a
robust method for joint variable selection in LME models. The authors, extend the joint method
proposed by Bondell, Krishna and Ghosh (2010), along with the robustified log-likelihood
proposed by Sinha (2004) to deal with leverage and outlier points.

The main objective of this dissertation is to present residual analysis and diagnostic
techniques for lasso regression for Linear Mixed-Effects models. To illustrate that, a comparison
of both fitting procedures proposed by Bondell, Krishna and Ghosh (2010) and Fan, Qin and
Zhu (2014) will be carried out using a combination of residual analysis (NOBRE; SINGER,
2007; SINGER; ROCHA; NOBRE, 2017; SINGER; NOBRE; ROCHA, 2018) and diagnostics
techniques for LME (SINGER; NOBRE; ROCHA, 2018) that will be modified to account
for the lasso method (KIM et al., 2015; RAJARATNAM et al., 2019). It is worth noting that
an expression for the Cook’s distance that assess the lasso for LME models will be defined,
following a modification from the original work, and an extension of Theorem 10.1 from Seber
(2012, Sec. 10.2) is also presented, to account for the lasso regression for LME models.

In order to do that, an exploratory analysis of the said data set is presented, both methods
proposed by Bondell, Krishna and Ghosh (2010) and Fan, Qin and Zhu (2014) are fitted to
the data and, using residual analysis and diagnostics techniques, observations that may not be
properly fitted by the methods will be sought out, such as outliers and leverage points, in order
to determine which of the models better explains the data.

Notice that diagnostics and residual analysis in lasso regression is a relatively recent
topic of research. Considering that, the main contribution of this dissertation is to present the



1.1. Motivation - exploratory analysis 25

adapted diagnostics and residual analysis techniques to be used in the context of using lasso as a
tool for estimating and selecting effects in LME models.

1.1 Motivation - exploratory analysis

In this section, an exploratory analysis of the data set for the total nitrate concentration
and the logarithm of the total nitrate concentration is presented. The data set is unbalanced,
as each of the sites have a different number of observations and consists of one response, ten
observed explanatory variables and six other artificial variables as function of time to account
for effects of time and seasonality, that are presented in Chart 1. Note that the values in Table 1
are for the original values of the response variable and the ones presented in Table 2 refer to the
transformed response. Previous analyses of this data set have used the log transformed data in
order to correct skewness (GHOSH et al., 2010; BONDELL; KRISHNA; GHOSH, 2010).

Chart 1 – Variables

Y LOG(TNO)3, log of total nitrate concentration (µmol/m3) log.nitrate
x1 (SO)4 sulphate concentration (µmol/m3) sulphate
x2 (NH)4 ammonia concentration (µmol/m3) ammonia
x3 (O)3 maximum ozone (ppb, parts per billion) ozone
x4 (T) average temperature (oC) atemp
x5 (T)d average dew point temperature (oC) adptemp
x6 RH relative humidity (%) humidity
x7 SR average solar radiation (W/m2) radiation
x8 WS average wind speed (m/s) windspeed
x9 P total precipitation (mm/month) precipitation
l(t) Time of measurement in months (1, . . . , 60) from 2000 to 2004 time.in.months
s j(t) sin

(
2π jt
12

)
, where j = 1,2,3 s1, s2, s3

c j(t) cos
(

2π jt
12

)
, where j = 1,2,3 c1, c2, c3

Recall that the measurements were made between the years of 2000 and 2004. The sites,
overall, seem to be symmetrical around each individual mean, and they do not seem to be overly
dispersed. Note that observation six (site COW137), in both tables, seems to have the most
different value, as it has the smallest mean in both the original and transformed data set. It is
worth noting that site CDR119 presents the largest variance and standard deviation values.

Along with the summary statistics in Table 1, the graph on the left of Figure 1 also aids
visualizing the response location and dispersion. Note that site COW137 draws attention, as it
has a smaller mean than the other sites, and also smaller dispersion, when compared to the other
sites. There are a few other observations that should be highlighted: ANA115 (observation one),
CDR119 (observation three), DCP114 (observation eight), GAS153 (observation ten), PNF126
(observation twelve), SNH418 (observation 14) and VPI120 (observation fifteen).
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Table 1 – Descriptive statistics for response variable for each site.

Site Mean Median SD Var CV Min Max n

1 ANA115 3,807113 3,442840 1,462255 2,138189 38,408485 2,072776 8,089750 54
2 BEL116 3,147775 3,095050 0,625606 0,391383 19,874555 1,949033 4,488425 55
3 CDR119 1,671963 1,549075 0,742280 0,550979 44,395716 0,613790 3,763450 50
4 CKT136 2,967542 2,988785 0,917651 0,842083 30,922924 1,360867 5,410180 50
5 CND125 2,591234 2,525380 0,707815 0,501002 27,315752 1,379650 4,408120 59
6 COW137 0,922525 0,929091 0,296677 0,088017 32,159237 0,435395 1,757625 58
7 CTH110 2,808046 2,651607 0,887970 0,788491 31,622353 1,375870 5,397100 54
8 DCP114 4,434197 4,352800 1,001717 1,003436 22,590715 2,511325 6,967480 56
9 ESP127 2,208814 2,134960 0,819548 0,671659 37,103540 1,092524 3,925120 59

10 GAS153 2,426614 2,375138 0,530833 0,281784 21,875464 1,367700 3,706600 54
11 MKG113 3,308561 3,182104 0,893070 0,797574 26,992708 1,731775 6,401960 58
12 PNF126 1,932381 1,650075 1,242488 1,543776 64,298280 0,935090 8,382633 57
13 PSU106 3,530280 3,461240 0,929202 0,863416 26,320913 2,106875 6,283100 55
14 SHN418 2,814966 2,767135 0,611062 0,373396 21,707604 1,498850 4,611940 48
15 VPI120 2,666810 2,602520 0,690689 0,477052 25,899453 1,369990 4,960600 59

Total 2,744613 2,648504 1,210237 1,464674 44,094997 0,435395 8,382633 826

Source: Research data.

Table 2 – Descriptive statistics for log transformed response variable for each site - transformed data.

Site Mean Median SD Var CV Min Max n

1 ANA115 0,373612 0,332883 0,335950 0,112863 89,919511 -0,174521 1,187188 54
2 BEL116 0,223849 0,226394 0,199569 0,039828 89,153674 -0,236077 0,598092 55
3 CDR119 -0,483751 -0,465789 0,441139 0,194604 -91,191357 -1,391513 0,421926 50
4 CKT136 0,136019 0,191457 0,318747 0,101600 234,339578 -0,595288 0,784872 50
5 CND125 0,011371 0,022981 0,278285 0,077442 2447,415862 -0,581580 0,580038 59
6 COW137 -1,037164 -0,977304 0,334839 0,112117 -32,284092 -1,734912 -0,339447 58
7 CTH110 0,081804 0,071716 0,309984 0,096090 378,934809 -0,584324 0,782452 54
8 DCP114 0,561370 0,567355 0,223735 0,050057 39,855068 0,017400 1,037844 56
9 ESP127 -0,178053 -0,144962 0,369892 0,136820 -207,742694 -0,814919 0,463987 59

10 GAS153 -0,040538 -0,038372 0,220921 0,048806 -544,974210 -0,590280 0,406705 54
11 MKG113 0,258419 0,254132 0,265895 0,070700 102,892932 -0,354263 0,953194 58
12 PNF126 -0,342578 -0,402589 0,384887 0,148138 -112,350166 -0,970523 1,222752 57
13 PSU106 0,325815 0,338217 0,253869 0,064449 77,918004 -0,158204 0,934453 55
14 SHN418 0,107596 0,114308 0,224980 0,050616 209,096693 -0,498712 0,625239 48
15 VPI120 0,045402 0,053070 0,256233 0,065655 564,363794 -0,588607 0,698117 59

Total 0,000000 0,070585 0,487734 0,237885 - -1,734912 1,222752 826

Source: Research data.

As of Table 2 and the graph on the right of Figure 1, the summary statistics and the
box-plots for the logarithm of the response for each site are presented. The transformed data will
be the one used to fit both the normal and robust selection methods. A word of caution when
analyzing the coefficient of variation (CV) column in Table 2: the mean values of all the sites are
close to zero, which causes the CV values to be larger. Other than that, the values in this table
may be used to better understand the response variable. Site COW137 once again draws attention;
notice that site CDR119 stands out in a sense that it has larger variance, when compared to the



1.1. Motivation - exploratory analysis 27

ANA115

BEL116

CDR119

CKT136

CND125

COW137

CTH110

DCP114

ESP127

GAS153

MKG113

PNF126

PSU106

SHN418

VPI120

2 4 6 8
Nitrate Concentration

S
ite

s

ANA115

BEL116

CDR119

CKT136

CND125

COW137

CTH110

DCP114

ESP127

GAS153

MKG113

PNF126

PSU106

SHN418

VPI120

−1 0 1
Log Nitrate Concentration

S
ite

s
Figure 1 – Box-plot of response variable by subject.

Source: Research data.

other sites. After this first analysis of the response variable, some of the observations suspected
as being outliers are: CDR119, COW137, DCP114 and PNF126. They are only suspected as
being outliers; the residual analysis along with the diagnostics techniques later presented on the
text will provide enough evidence in order to confirm whether or not they are in fact outliers.
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Figure 2 – Site profile plot over time.

Source: Research data.

The graphs in Figure 2 and Figure 3 present another point of view of the data, as they are
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individual profile plots of the response variable over time. Figure 2 provides insights as how each
site is dispersed around the global mean, as a well as the seasonal trend over time. The black dots
represent the overall mean over time; the bars that accompany them are ±2 standard-errors. Once
again, the site COW137 draws attention, as its profile plot is lower than the other sites, further
from the mean and not even in the interval constructed around the sample mean and the sample
standard-deviation. In Figure 3 the same information presented as in the previous graph, but this
time each site is separated, which provides easier visualization of each individual behaviour.

Other sites also draw attention upon analyzing both graphs, CDR119 for having a
decreasing behavior and PNF126 for having two abnormal observations, for example. Site
COW137, however, is the one that is consistently outside the intervals for each time.
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Figure 3 – Site profile plot over time by sites.

Source: Research data.

The data set is also composed of a set of explanatory variables and it is of interest to
investigate the relationship they hold with the response. For example, Figure 4 presents a heat
correlation plot, that aids better understanding the linear relationship between the response and
the explanatory variables. It is expected that those variables with least linear correlation with the
response to be removed from the final model and also those which appear to be linear correlated
in the set of explanatory variables.
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Source: Research data.
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CHAPTER

2
LASSO FOR LME

2.1 Preliminaries

2.1.1 Maximum Likelihood Estimation for LME Models

Suppose that a researcher is analyzing data from a repeated measures experiment, as the
one described in Chapter 1. In order to model the relationship between response and covariates,
suppose a model for Yi (SINGER; NOBRE; ROCHA, 2018), the i-th subject as

Yi = g(Xi,Zi,βββ ,b*
i )+ ei, i = 1, . . . ,m (2.1)

where Yi = (yi1, . . . ,yini)
⊤ (ni × 1) is the vector which includes the observed response vari-

ables for the i-th subject, βββ (p × 1) is the vector of fixed unknown parameters to be esti-
mated, Xi = (xi1, . . . ,xip) (ni × p) is the known full rank design matrix for the fixed effects
and xi j = (xi j1, . . . ,xi jni)

⊤ (ni ×1) is the vector which contains the values of the j-th covariate
( j = 1, . . . , p) for the i-th subject, b*

i (q×1) is a vector of latent variables, known as the random
effects which represent the subject-level behavior of the i-th subject, Zi (ni ×q) is the known
full rank design matrix for the random effects, g is a twice-differentiable function and ei (ni ×1)
is the vector of random errors.

Assume that b*
i ∼ N(000,σ2G) and ei ∼ N(000,σ2Ri) where G(q×q) and Ri(ni ×ni) are

both symmetric positive definite matrices, b*
i and ei are independent random variables. Suppose

that it is reasonable to assume that g is a linear function of the fixed effects βββ and the random
effects b*

i , then Equation 2.1 may be expressed as

Yi = Xiβββ +Zib*
i + ei, i = 1, . . . ,m. (2.2)

The expected value and variance of Yi are

E(Yi) = Xiβββ

Var(Yi) = ΩΩΩi = σ
2
(

ZiGZ⊤
i +Ri

)
.
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Note that the variance ΩΩΩi can be rewritten as a decomposition of the individual profile dispersion
around the response (ZiGZ⊤

i ) and the response dispersion around the individual profiles (Ri).
Both matrices G and Ri are known functions of t1 and t2 unknown parameters respectively, that
is, G = G(θθθ) and Ri = Ri(θθθ). Thus the covariance matrix for the i-th subject ΩΩΩi = ΩΩΩi(θθθ) also
depends in the vector θθθ (t ×1), t = t1 + t2.

A special case of Equation 2.2 is the homoscedastic1 conditional independence model,
where Ri = σ2Ini . This notation shows that the ni observations from the i-th subject are condi-
tionally independent given b*

i .

Equation 2.2 can be rewritten in a stacked notation

Y = Xβββ +Zb*+ e, (2.3)

Y = (Y⊤
1 , . . . ,Y

⊤
m)

⊤ (N×1) is the response vector where N = ∑
m
i=1 ni, X = (X⊤

1 , . . . ,X
⊤
m)

⊤ (N×
p) is the fixed effects design matrix, Z=⊕m

i=1Zi (N×mq) is the random effects design matrix and
⊕ denotes the direct sum of matrices (SEARLE, 2017, Sec. 4.10), b* = (b*⊤

1 , . . . ,b*⊤
m )⊤ (mq×1)

is the random effects vector and e = (e⊤1 , . . . ,e
⊤
m)

⊤ (N×1) is the random errors vector. Using this
notation, b* ∼ N(000,σ2ΓΓΓ(θθθ)), where ΓΓΓ(θθθ) = Im⊗G(θθθ) and ⊗ denotes the direct (or Kronecker)
product of matrices (SEARLE, 2017, Sec. 4.11), e ∼ N(000,σ2R(θθθ)), where R = ⊕m

i=1Ri(θθθ),
with b* and e independents. Thus, Y ∼ N(Xβββ ,ΩΩΩ(θθθ)), where ΩΩΩ(θθθ) = σ2 (ZΓΓΓ(θθθ)Z⊤+R(θθθ)

)
.

In Singer, Nobre and Rocha (2018) there are many different references on the estimation
of linear mixed-effects models such as Equation 2.3; the authors also present different possible
structures for the covariance matrix. In order to begin with the estimation process, assume that
ΓΓΓ(θθθ) and R(θθθ) are known. The aim is to find estimators for the unknown parameters in a way
that they maximize the likelihood function or, equivalently, the log-likelihood function.

The log-likelihood function for the model where Y ∼ N(Xβββ ,ΩΩΩ(θθθ)) is

`(βββ ,θθθ) =−N
2

log2π − 1
2

log |ΩΩΩ(θθθ)|− 1
2
(y−Xβββ )⊤ [ΩΩΩ(θθθ)]−1 (y−Xβββ ) (2.4)

alternatively,

`(βββ ,θθθ) =−1
2

m

∑
i=1

ni log2π − 1
2

m

∑
i=1

log |ΩΩΩi(θθθ)|−
1
2

m

∑
i=1

(yi −Xiβββ )
⊤ [ΩΩΩi(θθθ)]

−1 (yi −Xiβββ ). (2.5)

Maximization of `(βββ ,θθθ) using Equation 2.5 may be carried out differentiating the right
side with respect to βββ and equaling the result to zero so that

β̂ββ (θθθ) =

[
m

∑
i=1

X⊤
i (ΩΩΩi(θθθ))

−1 Xi

]−1[ m

∑
i=1

X⊤
i (ΩΩΩi(θθθ))

−1 Yi

]
, (2.6)

1 Either spellings homoscedastic or homoskedastic (MCCULLOCH, 1985) are frequently used, but the
first spelling was preferred for this work.
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the maximum likelihood estimator (MLE) of βββ (as a function of θθθ ), which is the same as the
weighted least squares estimator. Replacing the previous estimator in Equation 2.5, the profile
log-likelihood function `(β̂ββ ,θθθ) is defined, which may be differentiated with respect to θθθ , equal
to zero and obtain the following system of equations

−1
2

m

∑
i=1

tr
[[

ΩΩΩi(θ̂θθ)
]⊤

Ω̇ΩΩi(θ̂θθ)

]
− 1

2

m

∑
i=1

[
∂Qi(θθθ)

∂θ j

∣∣∣
θθθ=θ̂θθ

]
= 0, (2.7)

j = 1, . . . , t, where

Ω̇ΩΩi(θ̂θθ) =

[
∂ΩΩΩi(θθθ)

∂θθθ

]⊤∣∣∣
θθθ=θ̂θθ

and

Qi(θθθ) = (Yi −Xiβ̂ββ (θθθ))
⊤ [ΩΩΩi(θθθ)]

−1 (Yi −Xiβ̂ββ (θθθ)).

Therefore, the solution for Equation 2.7, θ̂θθ is the MLE of θθθ . Replacing θ̂θθ in Equation 2.6,
leads to the maximum likelihood estimator of βββ . Details on the previous matrices derivatives can
be found in Singer, Nobre and Rocha (2018, Appx. A.5).

According to Diggle (2002), Singer, Nobre and Rocha (2018), the maximum likelihood
method provides unbiased estimators only for the fixed effects; whereas for the random effects
this methodology does not account for the loss in degrees of freedom in the estimation of
the covariance matrix due to the estimation of the fixed effects. The authors suggest that one
should use the restricted maximum likelihood method (PATTERSON; THOMPSON, 1971).
This methodology requires an orthogonal transformation like Y† = UY, such that E(Y†) = 0,
Var(Y†) = UΩΩΩ(θθθ)U⊤ and U⊤X = 000. Although this method is invariant under the choice of

U, one usually chooses U = I−X
(

X⊤ΩΩΩ
−1X

)−1
X⊤ΩΩΩ

−1, the weighted least squares residual
projection matrix. In the case which observations are i.i.d.’s, set ΩΩΩ = I. As U has rank N − p,
then Y† ∼ NN−p(000,UΩΩΩ(θθθ)U⊤). The maximization process under this approach is similar to the
one already presented.

Predictors for the random effects are derived from the joint distribution of the random
effects b* and observations Y

f (y,b*) = f (y|b*) f (b*),

where Y|b*∼N(Xβββ +Zb*,σ2R) and b*∼N(000,σ2ΓΓΓ). Singer, Nobre and Rocha (2018) presents
a few comments on the best linear unbiased estimator for βββ and best linear unbiased predictor
for b*.

In order to solve the systems in Equation 2.6 and Equation 2.7, one must use use
an iterative method such as Newton-Raphson, Fisher’s scoring or EM algorithm. There are
particular cases for the covariance matrix where the researcher can find an explicit solution for
the estimators. Due to the approach presented at Bondell, Krishna and Ghosh (2010), the EM
algorithm will be presented.
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The EM algorithm (DEMPSTER; LAIRD; RUBIN, 1977) was first proposed to deal
with missing data during estimation. However, it can be used to obtain MLEs of the parameters
for models based in longitudinal data. This algorithm relies on the data augmented likelihood
function Yc = (Y⊤,ν⊤)⊤, where Y denotes the vector of observations and ν the vector of
omitted observations (when dealing with missing data) or latent variables (ν = b, when dealing
with random effects) of mixed models. Let s be the vector of sufficient statistics for βββ and θθθ .
Then, the l-th iteration of the algorithm is
E-step: Conditional expected value of the sufficient statistics given the observations and the
updated values of the parameter of the previous iteration

s(l) = E
[
s(Yc)|y,βββ (l−1),θθθ (l−1)

]
M-step: Solve with respect to βββ and θθθ

s(l) = E [s(Yc)|βββ ,θθθ ] .

For the homoscedastic conditional independence model Singer, Nobre and Rocha (2018)
presents the sufficient statistics that are necessary for the E-step, as well as other details pertaining
the EM algorithm for LME models.

2.1.2 Variable selection

According to Hastie, Tibshirani and Friedman (2009), there are two main reasons to
perform a search for the best subset of explanatory variables in a data set:

∙ Prediction accuracy: the least squares estimates (or MLE) has large variance, which can
be reduced by shrinking or setting some coefficients to zero;

∙ Interpretation: one would like to determine which of the explanatory variables has a greater
impact on explaining the response, and a subset of these variables may be better suited
than the whole set of predictors.

There are a few methods for shrinking and variable selection: best subset selection,
forward/backward/stepwise selection, ridge regression and lasso, for example. Miller (2002) and
Hastie, Tibshirani and Friedman (2009) bring an intensive review of these methods.

2.1.2.1 Ridge regression

Before introducing the lasso regression method the ridge regression will be presented, as
it will be useful when constructing the diagnostics measures.
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The main objective of the ridge regression is to shrink the regression coefficients by
imposing a penalty term. Suppose that Var(Y) = ΩΩΩ = diag(ω11, . . . ,ωnn). Then, the ridge re-
gression estimate is obtained by minimizing the penalized sum of squares

β̂ββ
ridge

= argmin
βββ

{
N

∑
i=1

ω
−1
ii
(
yi −β0 − xi jβ j

)2
+λ

p

∑
j=1

β
2
j

}
. (2.8)

The penalty term ∑
p
j=1 β 2

j is called the L2 penalty.

The following is an equivalent way to present the ridge regression minimization problem

β̂ββ
ridge

= argmin
βββ

{
N

∑
i=1

ω
−1
ii
(
yi −β0 − xi jβ j

)2

}
, (2.9)

subject to
p

∑
j=1

β
2
j ≤ t.

As pointed out by Hastie, Tibshirani and Friedman (2009), there is a one-to-one rela-
tionship between λ in Equation 2.8 and t in Equation 2.9. The authors also argue that the ridge
regression estimates are not equivariant under scaling of the inputs, which leads the researcher
to standardize the explanatory variables. Note that the intercept has been left out of the penalty
term. Penalizing the intercept would make the procedure depend on the origin chosen for Y , the
authors emphasize. From now on, assume that the variables in the design matrix X have been
standardized.

Equation 2.8, considering any positive-definite ΩΩΩ, can be rewritten in matrix form as

RSS(λ ) = (Y−Xβββ )⊤ΩΩΩ
−1 (Y−Xβββ )+λβββ

⊤
βββ . (2.10)

Differentiating Equation 2.10 with respect to βββ and setting it to zero,

X⊤
ΩΩΩ

−1Y+X⊤
ΩΩΩ

−1Xβ̂ββ
ridge

+λβ̂ββ
ridge

= 000

X⊤
ΩΩΩ

−1Y+
(

X⊤
ΩΩΩ

−1X+λ I
)

β̂ββ
ridge

= 000

β̂ββ
ridge

=
(

X⊤
ΩΩΩ

−1X+λ I
)−1

X⊤
ΩΩΩ

−1Y (2.11)

Note that even if X⊤ΩΩΩ
−1X was singular, a positive constant is added to its diagonal.

Then, the inverse matrix in Equation 2.11 would still exist.

The variance of the estimator is given by

Var(β̂ββ
ridge

) =
(

X⊤
ΩΩΩ

−1X+λ I
)−1

X⊤
ΩΩΩ

−1X
(

X⊤
ΩΩΩ

−1X+λ I
)−1

. (2.12)

The expression in Equation 2.12 will be useful when constructing the diagnostics measures.

In order to find the best value for λ , cross-validation methods can be used, for example
James et al. (2013, Sec. 3.8.5) .
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2.1.2.2 The lasso

Recall that, for the ridge regression, the solutions are not equivariant under scaling of the
inputs, which leads the researcher to standardize the explanatory variables. A similar rationale
can be made for the lasso estimates. Remember that X is assumed to be standardized, unless told
otherwise.

The lasso (also known as Least Absolute Shrinkage and Selection Operator (LASSO) 2)
regression method (TIBSHIRANI, 1996; JAMES et al., 2013) aims, primarily, for the shrinking
of the estimated parameter. However, due to the nature of the L1 penalty some of the estimated
parameters will the exactly zero. This means that the lasso regression can be used for selection
of predictors. The lasso estimator is given by

β̂ββ
lasso

= argmin
βββ

 m

∑
i=1

ω
−1
ii

(
yi −β0 −

p

∑
j=1

xi jβ j

)2

+λ

p

∑
j=1

|β j|

 , (2.13)

if ΩΩΩ is diagonal, or

RSS(λ ) = (Y−Xβββ )⊤ΩΩΩ
−1 (Y−Xβββ )+λ

p

∑
j=1

|β j|, (2.14)

if ΩΩΩ is any positive-definite matrix. Notice that both equations are simply restricted least squares
estimation, where λ is the regularization (or tuning) parameter that controls the shrinkage. The
best value for λ is obtained by some criteria, for example, one chooses a value for λ such that it
minimizes some sort of cross validation score.

2.2 Reparametrizing the model and likelihood function
Assume that a linear mixed-effects model of the form presented in Equation 2.3 is to be

fitted to a repeated measures data set (longitudinal data, for example). Furthermore, a variable
selection procedure is to be performed in the predictors, both for fixed and random effects.
Under this scope, Bondell, Krishna and Ghosh (2010) recalls that previous methods for selecting
variables assumed that one of the effects was observed, whereas the selection was performed for
the other. For the proposed selection method proposed which performs a selection procedure
for both the fixed and random effects at the same time, Bondell, Krishna and Ghosh (2010)
reparametrizes the LME model via modified Cholesky decomposition, which allows for selection
on the random effects.

Consider the model defined by Equation 2.2 where the error term is assumed to be
distributed as ei ∼ N(000,σ2Ini) (the homoscedastic conditional independence model), the random
effects are distributed as b*

i ∼ N(000,σ2ΓΓΓ) and consider the factorization of the covariance matrix
2 Although there is doubt on whether one should write LASSO or lasso, the author in Tibshirani (1996)

himself makes use of the lowercase version, and that is the version used throughout this text.
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by ΓΓΓ = Dϒϒϒϒϒϒ
⊤D, where D = diag(d1,d2, . . . ,dq) is a diagonal matrix and ϒϒϒ is a q× q matrix,

with 1’s on its diagonal, whose (l,r)-th element is denoted by υlr. This decomposition is unique
and leads to a non-negative definite matrix. Given the reparametrization, Equation 2.2 is rewritten
as

Yi = Xiβββ +ZiDϒϒϒbi + ei, (2.15)

where Yi is assumed mean centered, that is E[Yi] = 000, with the predictors standardized such that
both X⊤

i Xi and Z⊤
i Zi represent correlation matrices, bi = (bi1, . . . ,biq)

⊤ is a q× 1 vector dis-
tributed as N(0,σ2Iq). b*

i ’s covariance matrix is expressed as a function of d = (d1,d2, . . . ,dq)
⊤,

and the q(q − 1)/2 free elements of ϒϒϒ denoted by the vector υυυ = (υlr : l = 1, . . . ,q : r =

l + 1, . . . ,q)⊤. Denote φφφ =
(

βββ
⊤,d⊤,υυυ⊤

)⊤
as the k× 1 vector of unknown parameters to be

estimated, where k = p+q(q+1)/2.

The response variable Yi for the reparametrized model in Equation 2.15, conditioning on
Xi and Zi, is Yi ∼ N(Xiβββ ,ΩΩΩi), where ΩΩΩi = σ2(ZiDϒϒϒϒϒϒ

⊤DZ⊤
i + Ini). Thus, the log-likelihood

function for the model Equation 2.3, dropping constant terms is given by

`(φφφ) =−1
2

log |ΩΩΩ|− 1
2
(y−Xβββ )⊤ΩΩΩ

−1(y−Xβββ ), (2.16)

where ΩΩΩ = Diag(ΩΩΩ1, . . . ,ΩΩΩm) is a block-diagonal matrix with elements ΩΩΩi in the main diagonal,
and y = (y⊤1 , . . . ,y

⊤
m)

⊤, X =
[
X⊤

1 , . . . ,X
⊤
m
]
.

2.2.1 Penalized selection and estimation for the reparametrized model
using the constrained EM algorithm

Treating b as observed and dropping constant terms, the log-likelihood function for the
augmented data is given by

`c(φφφ |y,b) =−N +mq
2

logσ
2 − 1

2σ2

(
||y−ZD̃ϒ̃ϒϒb−Xβββ ||2 +b⊤b

)
(2.17)

where D̃ = Im ⊗D and ϒ̃ϒϒ = Im ⊗ϒϒϒ.

Including a penalty as function of d and βββ to Equation 2.17, it is then possible to decide
whether to include or not predictors involving the parameters by maximizing the conditional
expectation of Equation 2.17 and, equivalently, minimizing the quadratic form ||y−ZD̃ϒ̃ϒϒb−
Xβββ ||2.

Bondell, Krishna and Ghosh (2010) suggests using the adaptive lasso Zou (2006) for
variable selection in the model from Equation 2.15. The adaptive lasso is defined as

β̂ββ = argmin
βββ

{
||y−Xβββ ||2 +λt

p

∑
i=1

w̄ j|β j|

}
, (2.18)

where λt is the regularization parameter, w̄ j are adaptive weights, that may be w̄ j = 1/|β̄ j|
where β̄ j is the generalized least squares estimate for the j-th coefficient. As λt increases, the
coefficients are continuously shrunk to zero and, due to the L1 penalty, some can be exactly zero.
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Thus, given the reparametrized model in Equation 2.15 and the log-likelihood function
for the augmented data in Equation 2.17, the joint criterion for estimation and selection penalized
by the adaptive weights is given by

Qc(φφφ |y,b) = ||y−ZD̃ϒ̃ϒϒb−Xβββ ||2 +λt

(
p

∑
j=1

|β j|
|β̄ j|

+
q

∑
j=1

|d j|
|d̄ j|

)
, (2.19)

where β̄ββ is the generalized least squares estimates for βββ , and d̄ is obtained by decomposing the
covariance matrix estimated via unpenalized restrict maximum likelihood. Rearranging the terms
of Equation 2.19,

Qc(φφφ |y,b) = ||y−Xβββ −ZDiag(ϒ̃ϒϒb)(111q ⊗ Im)d||2 +λt

(
p

∑
j=1

|β j|
|β̄ j|

+
q

∑
j=1

|d j|
|d̄ j|

)
, (2.20)

where 111q is a q×1 vector of 1s. Note that Equation 2.20 is a quadratic form in (βββ⊤,d⊤)⊤.

In order to find the estimates, the EM algorithm will be used. For the E-step, compute
the conditional expectation of Equation 2.20 and next, for the M-step, minimize the conditional
expectation with respect to the parameters of interest. Iterate until convergence.

The conditional distribution of b given φφφ and y using Equation 2.17 is b|y,φφφ ∼N(τττ,σ2V),
with mean and variance given by

τττ
(l) =

(
ϒ̃ϒϒ
⊤(l)

D̃(l)Z⊤ZD̃(l)
ϒ̃ϒϒ
(l)

+ I
)−1(

ZD̃(l)
ϒ̃ϒϒ
(l)
)⊤(

y−Xβββ
(l)
)

V(l) =

(
ϒ̃ϒϒ
⊤(l)

D̃(l)Z⊤ZD̃(l)
ϒ̃ϒϒ
(l)

+ I
)−1

,

respectively. The l indexes the iteration, and l = 0 corresponds to the initial values given by the
restricted maximum likelihood estimates. The updated estimate for σ2 on the l-th iteration is
given by

σ
2(l) =

(
y−Xβββ

(l)
)⊤(

ZD̃(l)
ϒ̃ϒϒ
(l)

ϒ̃ϒϒ
⊤(l)

D̃(l)Z⊤+ IN

)−1(
y−Xβββ

(l)
)
/N.

Let φφφ
(l) be the estimate of φφφ on the l-th iteration. The E-step is obtained by taking the

conditional expectation of Qc(φφφ |y,b),

g(φφφ |φφφ (l)) = E
b|y,φφφ (l)

{
||y−Xβββ −ZDiag(ϒ̃ϒϒb)(111q ⊗ Im)d||2

}
+λt

(
p

∑
j=1

|β j|
|β̄ j|

+
q

∑
j=1

|d j|
|d̄ j|

)
.

(2.21)

As for the M-step, the objective function Equation 2.21 is minimized with respect

to
(

βββ
⊤,d⊤,υυυ⊤

)⊤
. The optimization inside the M-step is made by iterating between υυυ and(

βββ
⊤,d⊤

)⊤
. The iteration with respect to υυυ has closed form (BONDELL; KRISHNA; GHOSH,
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2010, Appendix), whereas the iteration with respect to
(

βββ
⊤,d⊤

)⊤
will be a quadratic program-

ming problem. Upon convergence, the final estimates are defined as φ̂φφ =

(
β̂ββ
⊤
, d̂⊤, υ̂υυ

)⊤
.

In order to find the best tuning parameter λt , the EM algorithm described above is applied
to a grid of fixed possible values for λt . The final value of λt is the one that minimizes a criterion
such as AIC, BIC, GIC (generalized information criteria), generalized cross validation or k-fold
cross validation. Bondell, Krishna and Ghosh (2010) suggests that BIC is used, as it is consistent
for model selection under general conditions (SCHWARZ, 1978; SHAO, 1997). The BIC-type
criterion is given by

BICλt =−2`(φ̂φφ)+ log(N)× (d fλt ), (2.22)

where `(φ̂φφ) is the log-likelihood evaluated at the estimate of φφφ for that specific value of λt . The
degrees of freedom d fλt are defined as the number of non-zero coefficients in φφφ . Given a set of
values for λt , choose λt such that it minimizes the criterion BICλt . Bondell, Krishna and Ghosh
(2010) also presents asymptotic properties for the estimators.

2.3 Robust approach
Consider the case where the joint criterion in Equation 2.19 is used in a data set but

possible outliers and leverage points were identified. Fan, Qin and Zhu (2014) proposes an
extension of the previous method in order to take into account inadequacies in the fitted model.
The authors propose two main changes in the method

∙ Robustified likelihood by a function of the Mahalanobis distance to reduce the impact of
outliers in the covariates;

∙ Adding a function of the studentized residuals to the response to reduce the influence of
outliers in the response.

The robust likelihood used was proposed by Sinha (2004) in the context of GLMM, but
is suited to the purposes of this work.

Thus, suppose that the vector of covariates xi j is an outlier, that is, xi j is a leverage
observation. Then, its impact may be reduced by introducing a weight wi j. The weight wi j is
defined as

wi j = min

1,

[
d0(

xi j −mx
)⊤ S−1

x
(
xi j −mx

)
]δ/2

,

[
b0(

zi j −mz
)⊤ S−1

z
(
zi j −mz

)
]δ/2

 , (2.23)

where δ ≥ 1, d0 is chosen as the 95th percentile of the chi-square distribution with the degrees
of freedom equal to the dimension of xi j, b0 is chosen as the 95th percentile of the chi-square
distribution with the degrees of freedom equal to the dimension of zi j, mx equals to the median
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of xi j, mz equals to the median of zi j, Sx denotes the median absolute deviance of xi j and Sz

denotes the median absolute deviance of zi j. The median absolute deviance (or deviation) (MAD)
for a sample X1, . . . ,Xn from the random variable X is defined as

MAD = median(|Xi − X̃ |),

where X̃ = median(X). To reduce the influence of outliers in the response, the authors propose
to add a quantity vi j to yi j, that is defined as

vi j = sign(ri j)(|ri j|− c)σ11(|ri j|>c), (2.24)

where 11(·) is the indicator function and ri j = (yi j−x⊤i j β̂ββ −z⊤jiDϒϒϒb̂i)/σ̂ is the conditional residual.
This quantity is added to the response and a new variable y*i j = yi j − vi j is created, so that the
studentized residual associated with the modified variable is limited to the interval [−c,c]. The
constant c is similar to a tuning parameter and can be chosen by considering the balance of
robustness and estimation efficiency, according to the authors.

The robustified log-likelihood for the i-th subject is then written as

`R
i (φφφ |yi) = log

∫ ni

∏
j
(σ2)−1/2

{
exp
[
− 1

2σ2

(
y*i j −x⊤i jβββ − z⊤i jDϒϒϒbi

)]}wi j

×

×
(
σ

2)−q/2
exp
{
− 1

2σ2 b⊤
i bi

}
dbi. (2.25)

The robustified log-likelihood for the augmented data yic = (y⊤i ,b⊤
i )

⊤ is

`R
i (φφφ |yic) =−ni +q

2
logσ

2 − 1
2σ2

ni

∑
j=1

{
wi j

(
y*i j −x⊤i jβββ − z⊤i jDϒϒϒbi

)2
+b⊤

i bi

}
, (2.26)

and the complete robustified log-likelihood is

`R(φφφ |yc) =
m

∑
i=1

`R
i (φφφ |yic)

=−N +mq
2

logσ
2 − 1

2σ2

m

∑
i=1

ni

∑
j=1

{
wi j

(
y*i j −x⊤i jβββ − z⊤i jDϒϒϒbi

)2
+b⊤

i bi

}
=−N +mq

2
logσ

2 − 1
2σ2

[(
y*−ZD̃ϒ̃ϒϒb−Xβββ

)⊤
W
(

y*−ZD̃ϒ̃ϒϒb−Xβββ

)
+b⊤b

]
(2.27)

where D̃ and ϒ̃ϒϒ are the same as defined in section 2.2, W= diag(W1, . . . ,Wm), Wi = diag(wi1, . . . ,wini)

and φφφ =
(

βββ
⊤,d⊤,υυυ⊤

)⊤
. The objective function to be minimized via adaptive lasso, that is, the

joint variable selection criteria for the robustified model, is defined as

Qc(φφφ) =−`(φφφ |y,b)+λt

(
p

∑
j=1

|β j|
|β̄ j|

+
q

∑
j=1

|d j|
|d̄ j|

)
. (2.28)
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Once again, the constrained EM algorithm will be used as the one presented at subsec-
tion 2.2.1. For the E-step, the posterior distribution for the random effects must be defined. In
a similar way than for the previous case, b(l)|y,φφφ (l) ∼ N(τττ(l),σ2(l)V(l)), where the mean and
variance are given by

τττ
(l) =

(
ϒ̃ϒϒ
⊤(l)

D̃(l)Z⊤WZD̃(l)
ϒ̃ϒϒ
(l)

+ I
)−1(

ZD̃(l)
ϒ̃ϒϒ
(l)
)⊤

W
(

y*(l)−Xβββ
(l)
)

V(l) =

(
ϒ̃ϒϒ
⊤(l)

D̃(l)Z⊤W(ϕϕϕ(l))ZD̃(l)
ϒ̃ϒϒ
(l)

+ I
)−1

. (2.29)

σ2(l) is the current median absolute deviation estimator for σ2 (ROUSSEEUW; CROUX, 1993).
During the E-step, the corrected response y*i j is updated based on φφφ

(l).

For the M-step, g(φφφ |φφφ (l)) will be minimized, where φφφ
(l) is the updated estimate in the

l-th iteration for φφφ . Upon convergence, the final estimate φ̂φφ is attained. For the choice of the
tuning parameter, λt , proceed as the previous case, in which λt is chosen such that it minimizes
the BIC-type criterion given by

BICλt =−2`(φ̂φφ)+ log(N)× (d fλt ),

where `(φ̂φφ) is the log-likelihood evaluated at the estimate of φφφ for that specific value of λt . The
degrees of freedom d fλt are defined as the number of non-zero coefficients in φφφ .
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CHAPTER

3
RESIDUAL ANALYSIS AND DIAGNOSTICS

FOR LME LASSO

In this Chapter, diagnostic techniques for the ridge regression and lasso method will be
first introduced. In addition, some residual analysis techniques for LME models will also be
presented. Finally, some existing diagnostic techniques for LME models will be modified so that
they can suit the lasso regression context. Throughout this Chapter, yi, xi and zi will be used
to denote the set of rows associated with the i-th subject in Y, X and Z, respectively; and the
subscript (i) denotes deletion of the rows associated with the i-th subject.

3.1 Cook’s Distance for ridge and lasso regression

Consider the linear regression model given by

Y = Xβββ + εεε, (3.1)

where Y(N ×1) is the vector of responses, X(N × p) is the known full-rank design matrix and
εεε(N ×1) is a vector of random variables with expected value 0 and variance ΩΩΩ. If ΩΩΩ is known,
the generalized least squares (GLS) estimator (also known as weighted estimator) β̂ββ

GLS
of βββ is

β̂ββ
GLS

=
(

X⊤
ΩΩΩ

−1X
)−1

X⊤
ΩΩΩ

−1Y. (3.2)

If ΩΩΩ is unknown, a suitable estimate Ω̂ΩΩ may be used instead, for example the one obtained using
one of the methods proposed in Chapter 2. Using this expression, along with Equation 2.11 the
weighted ridge regression estimator (HOLLAND, 1973) of βββ is as it was previously defined

β̂ββ
ridge
φ =

(
X⊤

ΩΩΩ
−1X+φI

)−1
X⊤

ΩΩΩ
−1Y. (3.3)
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One possible criterion to determine the best value of φ is the generalized cross-validation
(GCV) criterion that is defined as

GCV (φ) =
∑

m
i=1 ∑

ni
j=1
(
yi j − ŷi j,φ

)2{
1− tr(Hφ )

}2 , (3.4)

where Hφ = X
(

X⊤ΩΩΩ
−1X+φI

)−1
X⊤ΩΩΩ

−1 is the ridge hat matrix, yi j,φ is the i j-th entry of the

vector of fitted values Yφ = Xβ̂ββ
ridge
φ = Hλ Y and tr(·) is the trace of a matrix.

Given the value of φ that minimizes Equation 3.4, Kim et al. (2015) defines the Cook’s
distance for the ridge regression for the i-th subject as

Cridge
i =

1
p

(
β̂ββ

ridge
φ − β̂ββ

ridge
φ(i)

)⊤
Cov

(
β̂ββ

ridge
φ

)−1(
β̂ββ

ridge
φ − β̂ββ

ridge
φ(i)

)
, (3.5)

where β̂ββ
ridge
φ(i) is the weighted ridge estimator without the observations associated with the i-th

subject, and Cov
(

β̂ββ
ridge
φ

)
is as defined in Equation 2.12, if ΩΩΩ is known. If ΩΩΩ is unknown, its

estimate Ω̂ΩΩ can be a suitable substitute. Kim et al. (2015) shows the expressions for the basic
building blocks for both when a single observation is deleted from the data set (equivalent to
removing the (i j)-th observation for a LME model) and when a set of observations is removed
from the data set (equivalent to removing the observations associated to the i-th subject) for the
case which the hat matrix H is derived from a ridge regression model assuming the observations
are independent and identically distributed. However, due to the presence of the random effects,
that is not the case presented in this dissertation.

So, Equation 3.5 can be rewritten in terms of basic building blocks, such that it accounts
for the random effects and even a general structure for the model error. First, write (SEBER,
2012) (

X⊤
(i)ΩΩΩ

−1
(i) X(i)+φI

)−1
=
[(

X⊤
ΩΩΩ

−1X+φI
)
−X⊤

i ΩΩΩ
−1
i Xi

]−1
. (3.6)

Using the Sherman-Morrison-Woodbury formula (SEBER, 2012, Appx. A.9.3),(
X⊤
(i)ΩΩΩ

−1
(i) X(i)+φI

)−1
= A−1 +A−1X⊤

i ΩΩΩ
−1
i

[
ΩΩΩ

−1
i −ΩΩΩ

−1
i Hφ ,i

]−1
ΩΩΩ

−1
i XiA−1 (3.7)

where Hφ ,i = Xi

(
X⊤ΩΩΩ

−1X+φI
)−1

X⊤
i ΩΩΩ

−1
i and A = X⊤ΩΩΩ

−1X+φI. Then, write

β̂ββ
ridge
φ(i) =

(
X⊤
(i)ΩΩΩ

−1
(i) X(i)+φI

)−1
X⊤
(i)ΩΩΩ

−1
(i) Y(i)

=

{
A−1 +A−1X⊤

i ΩΩΩ
−1
i

[
ΩΩΩ

−1
i −ΩΩΩ

−1
i Hφ ,i

]−1
ΩΩΩ

−1
i XiA−1

}(
X⊤

ΩΩΩ
−1Y−X⊤

i ΩΩΩ
−1
i Yi

)
=
{

A−1 +A−1X⊤
i ΩΩΩ

−1
i
[
Ini −Hφ ,i

]−1
ΩΩΩiΩΩΩ

−1
i XiA−1

}(
X⊤

ΩΩΩ
−1Y−X⊤

i ΩΩΩ
−1
i Yi

)
=
{

A−1 +A−1X⊤
i ΩΩΩ

−1
i
[
Ini −Hφ ,i

]−1 XiA−1
}(

X⊤
ΩΩΩ

−1Y−X⊤
i ΩΩΩ

−1
i Yi

)
= β̂ββ

ridge
φ +A−1X⊤

i ΩΩΩ
−1
i
[
Ini −Hφ ,i

]−1 Xiβ̂ββ
ridge
φ −A−1X⊤

i ΩΩΩ
−1
i Yi−

A−1X⊤
i ΩΩΩ

−1
i
[
Ini −Hφ ,i

]−1 XiA−1X⊤
i ΩΩΩ

−1
i Yi. (3.8)
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The difference β̂ββ
ridge
φ − β̂ββ

ridge
φ(i) is written as

β̂ββ
ridge
φ − β̂ββ

ridge
φ(i) = A−1X⊤

i ΩΩΩ
−1
i Yi +A−1X⊤

i ΩΩΩ
−1
i
[
Ini −Hφ ,i

]−1 Hφ ,iYi−

A−1X⊤
i ΩΩΩ

−1
i
[
Ini −Hφ ,i

]−1 Xiβ̂ββ
ridge
φ

= A−1X⊤
i ΩΩΩ

−1
i

{[
Ini +

(
Ini −Hφ ,i

)−1
]

Hφ ,iYi −
(
Ini −Hφ ,i

)−1 Xiβ̂ββ
ridge
φ

}
= A−1X⊤

i ΩΩΩ
−1
i Bi. (3.9)

Finally, Cook’s Distance may be written as

Cridge
i =

1
p

(
β̂ββ

ridge
φ − β̂ββ

ridge
φ(i)

)⊤
Cov

(
β̂ββ

ridge
φ

)−1(
β̂ββ

ridge
φ − β̂ββ

ridge
φ(i)

)
=

1
pσ2 B⊤

i ΩΩΩ
−1
i XiA−1A

(
X⊤

ΩΩΩ
−1X

)−1
AA−1X⊤

i ΩΩΩ
−1
i Bi

=
1

pσ2 B⊤
i ΩΩΩ

−1
i HiΩΩΩ

−1
i Bi, (3.10)

where Bi =
[
Ini +

(
Ini −Hφ ,i

)−1
]

Hφ ,iYi−
(
Ini −Hφ ,i

)−1 Xiβ̂ββ
ridge
φ and Hi =Xi

(
X⊤ΩΩΩ

−1X
)−1

X⊤
i .

Cook’s Distance for lasso regression associated with the i-th subject is defined as

Classo
i =

1
p

(
β̂ββ

lasso
φ − β̂ββ

lasso
φ(i)

)⊤
Cov

(
β̂ββ

lasso
φ

)−1(
β̂ββ

lasso
φ − β̂ββ

lasso
φ(i)

)
. (3.11)

As there is no analytic expression for the lasso estimate, β̂ββ
lasso
φ is used as an approximate solution

(TIBSHIRANI, 1996) of the form

β̂ββ
lasso
φ =

(
X⊤

ΩΩΩ
−1X+φK−

)−1
X⊤

ΩΩΩ
−1Y. (3.12)

where K = diag(β̂ββ
lasso
1 , . . . , β̂ββ

lasso
p ) is a diagonal matrix, K− is the generalized inverse matrix

of K and φ is the value that minimizes the GCV in Equation 3.4. The covariance of β̂ββ
lasso
φ is

defined as

Cov(β̂ββ
lasso

) = σ
2
(

X⊤
ΩΩΩ

−1X+φK−
)−1

X⊤
ΩΩΩ

−1X
(

X⊤
ΩΩΩ

−1X+φK−
)−1

. (3.13)

Following a similar rationale to the ridge regression case, Cook’s Distance for the lasso regression
is given by

Classo
i =

1
p

(
β̂ββ

lasso
φ − β̂ββ

lasso
φ(i)

)⊤
Cov

(
β̂ββ

lasso
φ

)−1(
β̂ββ

lasso
φ − β̂ββ

lasso
φ(i)

)
=

1
pσ2 B⊤

i ΩΩΩ
−1
i XiA−1A

(
X⊤

ΩΩΩ
−1X

)−1
AA−1X⊤

i ΩΩΩ
−1
i Bi

=
1

pσ2 B⊤
i ΩΩΩ

−1
i HiΩΩΩ

−1
i Bi, (3.14)

where A = X⊤ΩΩΩ
−1X+φK−, Hi = Xi

(
X⊤ΩΩΩ

−1X
)−1

X⊤
i , Bi =

[
Ini +

(
Ini −Hφ ,i

)−1
]

Hφ ,iYi −(
Ini −Hφ ,i

)−1 Xiβ̂ββ
lasso
φ and Hφ ,i = Xi

(
X⊤ΩΩΩ

−1X+φI
)−1

X⊤
i ΩΩΩ

−1
i .
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3.2 Df-Model and Df-lambda

While Cook’s Distance may be used to identify influential subjects on the coefficients
estimates, in the lasso context influential subjects on the model selection procedure may also be
assessed. Next to that, the impact on the regularization parameter λ by removing a subject may
also be quantified. Both these measures are proposed in the work by Rajaratnam et al. (2019).

Df-model is defined as

df-model(i) =
δ (i)−E[δ (i)]√

var[δ (i)]
, (3.15)

where δ (i) = ∑
p
j=1

∣∣∣11(β̂ββ
lasso
φ

)
−11

(
β̂ββ

lasso
φ(i)

)∣∣∣, that is, df-model quantifies the model change
when the set of observations associated with the i-th subject is removed. Rajaratnam et al. (2019)
argues that “df-model is a scaled measure of the number of changes in the selected predictor
variables that occur in the lasso solution when an observation (or a set of observations) is
removed.” m+1 models have to be fitted to calculate the values of δ (i) and the sample mean and
sample variance can be used as estimates of E[δ (i)] and var[δ (i)] , respectively. The cut-offs for
the df-model may be set to ±2.

The next measure to be defined is df-lambda, that measures the change in the optimal
value of the regularization parameter λ in the lasso regression. This influence measure is defined
as

df-lambda(i) =
λ̂ − λ̂ (i)−E[λ̂ − λ̂ (i)]√

var[λ − λ̂ (i)]
, (3.16)

and the authors describe df-lambda as “a scaled measure of the difference between the optimal
value of λ based on the entire data set λ̂ and the value when the i-th subject is removed λ̂ (i).”
The cut-offs for the df-lambda may be set to ±2. Rajaratnam et al. (2019) justifies the cut-offs
values for both measures.

For both df-model and df-lambda measures, the sites were removed one by one the model
refitted to the data.

3.3 Generalized leverage matrices

Nobre and Singer (2011) defines the marginal generalized leverage matrix for the LME
normal model as the derivative of the fitted values with respect to the observed response variable,
that is

L1 =
∂ ŷ

∂y⊤
=

∂Xβ̂ββ

∂y⊤
=

∂X
(

X⊤ΩΩΩ
−1X

)
X⊤ΩΩΩ

−1y

∂y⊤

= X
(

X⊤
ΩΩΩ

−1X
)

X⊤
ΩΩΩ

−1. (3.17)
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Note that Equation 3.17 assumes that β̂ββ has an explicit expression, which is not the case in the
lasso context. For this, the approximation previously used in Equation 3.12 may be of assistance.
Thus,

L1φ =
∂ ŷφ

∂y*⊤
=

∂Xβ̂ββ
lasso
φ

∂y*⊤
=

∂X
(

X⊤ΩΩΩ
−1X+φK−

)−1
X⊤ΩΩΩ

−1y*

∂y*⊤

= X
(

X⊤
ΩΩΩ

−1X+φK−
)−1

X⊤
ΩΩΩ

−1. (3.18)

Consider the vector of conditional fitted values ŷc
φ
= Xβ̂ββ

lasso
φ +ZD̂ϒ̂ϒϒb̂φ = Xβ̂ββ

lasso
φ +

Z*b̂φ , where b̂φ =
[
Z*⊤WZ*+ Imq

]−1 Z*⊤W(y*−Xβ̂ββ
lasso
φ ) = V−1Z*⊤W(y*−Xβ̂ββ

lasso
φ ) as in

Equation 2.29. Then,

ŷc
φ = Xβ̂ββ

lasso
φ +Z*V−1Z*⊤W(y*−Xβ̂ββ

lasso
φ )

= Xβ̂ββ
lasso
φ +Z*V−1Z*⊤Wy*−Z*V−1Z*⊤WXβ̂ββ

lasso
φ

= X
(

X⊤
ΩΩΩ

−1X+φK−
)−1

X⊤
ΩΩΩ

−1y*+Z*V−1Z*⊤Wy*

−Z*V−1Z*⊤WX
(

X⊤
ΩΩΩ

−1X+φK−
)−1

X⊤
ΩΩΩ

−1y*. (3.19)

Differentiating Equation 3.19 with respect to y* leads to

Lφ = L1φ +Z*V−1Z*⊤W−Z*V−1Z*⊤WL1φ

= L1φ +L2W−L2WL1φ (3.20)

= L1φ +L2
(
W−WL1φ

)
. (3.21)

Thus, L1φ is the generalized leverage matrix associated with the fixed effects and L2 is the
generalized leverage matrix associated with the random effects. One may argue that L2φ =

L2
(
W−WL1φ

)
should be used as the generalized leverage matrix for the random effects. Note,

however, that this quantity is a function of L1φ and Nobre and Singer (2011) notes that this
dependence on the fixed effects could mask the leverage associated with the random effects.

The expressions above were differentiated with respect to y* instead of y. That was a
convenience choice, as differentiation with respect to y would lead to derivatives of sign and
indicator functions. And although such derivatives are zero for all the domain points, except in
the discontinuity points, we opted to avoid possible problems.

For both fixed and random effects leverage matrices, tr(Lti/ni) was plotted, in order to
illustrate the leverage measure the i-th subject exerts on the fitted model. As a cut-off for the
fixed, 2p/N (NOBRE; SINGER, 2011), was chosen; as for the random effects, 2q/N.

3.4 Residual analysis
Nobre and Singer (2007) claims that there are three possible types of residuals in LME

models
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1. Marginal residuals: ε̂εε = y−Xβ̂ββ that predicts the marginal errors;

2. Conditional residuals: ê = y−Xβ̂ββ −Zb̂ that predicts the conditional errors;

3. BLUP: Zb̂ that predicts the random effects.

Where β̂ββ is the lasso estimate (either normal or robust) for LME model. Each type of residual
may be used to verify one assumption of the model.

Hilden-Minton (1995) states that a residual is considered to be pure for a specific type of
error, if it only depends on the “the unseen disturbance and known, fixed quantities”, that is, a
function only of the fixed effects, observed matrices and the error that it is supposed to predict.
If a residual does not meet those requirements, it is then called a confounded residual. In each of
the subsections below, it will be shown whether a residual is pure or confounded.

3.4.1 Marginal residuals

The first marginal residual presented is the studentized marginal residual. Nobre and
Singer (2007) suggests that LVi = ||Ini −RiR⊤

i ||2 (LESAFFRE; VERBEKE, 1998) should be
plotted versus subject indices, with Ri = Ω̂ΩΩ

−1/2
i ε̂εε i, where Ω̂ΩΩ

−1/2
i is the estimate of the covariance

matrix of the response variable, to further investigate whether the structure chosen for the
covariance matrix is suited to the i-th subject, that is, the closer this measure is to zero, better
fitted is the chosen structure to i-th subject. Singer, Rocha and Nobre (2017) suggests that V̂ar(ε̂εε i)

should be used in place of Ω̂ΩΩi. Note, however, if V̂ar(ε̂εε i) was to be used, an expression for Var(β̂ββ )

would be necessary and its estimate V̂ar(β̂ββ ), which cannot be derived in the lasso context unless
the approximated form in Equation 3.12 is used. Thus, given φ , the marginal residual is written
as

ε̂εεφ = y*−Xβ̂ββ
lasso
φ

= y*−Hφ y*

=
(
I−Hφ

)
y*

= ΩΩΩQφ y* (3.22)

where Qφ = ΩΩΩ
−1 (I−Hφ

)
and ε̂εεφ variance is given by Var(ε̂εεφ ) = σ2 (I−Hφ

)
ΩΩΩ
(
I−Hφ

)⊤
that can be estimated if σ2 and ΩΩΩ are replaced by suited estimates. Finally,

LViφ = ||Ini −RiφR⊤
iφ ||2, (3.23)

where Riφ =
[
V̂ar(ε̂εεφ )

]−1/2
ε̂εεφ . LViφ can be further standardized by using LV*

iφ =
√

LViφ/ni.

Note that Riφ is the studentized residual associated with the i-th subject. Singer, Nobre
and Rocha (2018) suggests this quantity should be plotted versus intra-units observations to
further investigate for outlying observations.
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Recall that ε̂εεφ is an estimate for εεε , the marginal error. In order to show that ε̂εεφ is a pure
residual, consider the quantity ε̂εεφ − εεε and notice that

ε̂εεφ − εεε = ΩΩΩQφ y*− εεε

=
(
I−Hφ

)
y*− εεε

= y*−Xβ̂ββ
lasso
φ −y*+Xβββ

=−Xβ̂ββ
lasso
φ +Xβββ

=−Hφ y*+Xβββ

which only depends on known quantities and on the fixed effects. Due to the lasso approximation,
it cannot be shown that it depends only on the marginal error, as shown in Hilden-Minton (1995)
for the best linear unbiased estimator of βββ .

3.4.2 Conditional residuals

Nobre and Singer (2007) suggests that ê/σ̂ should be plotted versus the fitted values.
In the case presented in this work, êφ/σ̂ will be plotted versus ŷφ = Xβ̂ββ

lasso
φ +Z*b̂φ , where

êφ = y− ŷφ and σ̂ is a suitable estimate for the standard deviation σ . QQ-plots for checking
normality and homocedasticity of those residuals could also be produced. As the elements of êφ

may have different variances, Nobre and Singer (2007) suggests that the standardization to be

ê*iφ =
êiφ

σ̂
√

q̂ii
, (3.24)

where q̂ii is an estimate of the i-th principal diagonal element of Qφ , under the homoscedastic
conditional independence model assumption. To check for normality, one should be aware
that confounding is present in êφ . Hilden-Minton (1995) suggests that one should use a linear
transformation of the conditional residuals, say Jêφ , such that it has a minimal fraction of

confounding. To find such fraction, first, êφ must be shown to be confounded. It follows,

êφ = y−Xβ̂ββ
lasso
φ −Z*b̂φ

= y−Xβ̂ββ
lasso
φ −Z*V−1Z*⊤W(y*−Xβ̂ββ

lasso
φ )

=
[
IN −Z*V−1Z*⊤W

](
y*−Xβ̂ββ

lasso
φ

)
=
[
IN −Z*V−1Z*⊤W

]
ΩΩΩQφ y*

=
[
IN −Z*Z*⊤

ΩΩΩ
−1
]

ΩΩΩQφ y* (*)

=
[
ΩΩΩ−Z*Z*⊤

]
Qφ y*

=
[
Z*Z*⊤+ IN −Z*Z*⊤

]
Qφ y*

= Qφ y*, (3.25)



50 Chapter 3. Residual analysis and diagnostics for LME LASSO

where (*) is due to the fact that V−1Z*⊤W = Z*⊤ΩΩΩ
−1. Using Equation 3.25,

êφ − e = Qφ y*− e

= Qφ y*−Qφ Xβββ +Qφ Xβββ −Qφ Z*b+Qφ Z*b− e

= Qφ (y*−Xβββ −Z*b)− e+Qφ Z*b+Qφ Xβββ

= Qφ e− e+Qφ Z*b+Qφ Xβββ

=
(
Qφ − IN

)
e+Qφ Z*b+Qφ Xβββ , (3.26)

thus, a confounded residual. Furthermore, note that

êφ = Qφ e+Qφ Z*b+Qφ Xβββ , (3.27)

thus,
Var

[
êφ

]
= σ

2Qφ ΩΩΩQ⊤
φ +σ

2Qφ Z*Z*⊤Q⊤
φ , (3.28)

where u⊤
i is the i-th row of the identity matrix. Note that as the variance related to the confounded

amount increases, compared to the variance related to the pure residual amount, the ability to
check for normality decreases (NOBRE; SINGER, 2007). This motivates the definition of the
fraction of confounding for the i-th conditional residual êiφ as

CF(êiφ ) =
u⊤

i Qφ Z*Z*⊤Q⊤
φ

ui

u⊤
i Qφ ΩΩΩQ⊤

φ
ui

= 1−
u⊤

i Qφ Q⊤
φ

ui

u⊤
i Qφ ΩΩΩQ⊤

φ
ui
. (3.29)

To obtain the minimal fraction of confounding, the quantity

u⊤
i Qφ Q⊤

φ
ui

u⊤
i Qφ ΩΩΩQ⊤

φ
ui

should be maximized. In order to do that, consider the linear transformation Jê such that Jê is
least confounded, that is, the rows of J are those ji such that j⊤i êφ is least confounded. Then, one
should maximize the quantity

ξ =
j⊤Qφ Q⊤

φ
j

j⊤Qφ ΩΩΩQ⊤
φ

j

The maximization problem is solved using the method described in Ghojogh, Karray and
Crowley (2019, Sec. 7).

3.4.3 BLUP

The random effects may also be used to identify outlying observations, as pointed out by
Nobre and Singer (2007) “Z*b̂i reflects the difference between the predicted response for the
ith subject and the population average.” One possible way to make use of the predicted random
effects as a tool for outlying detection, is to plot b̂i versus subject indices. An alternative to this
measure, is the Mahalanobis distance

Mi = b̂⊤
i

[
V̂ar

(
b̂i −bi

)]−1
b̂i, (3.30)
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where b̂i is the posterior mean as in Equation 2.29. This measure can either be plotted versus
subject indices to identify the outlying observations, or as QQ plot based on a χ2

q distribution.

Once again, however, due to the non-linear nature of the lasso solution, an explicit
expression for the variance is impossible to be obtained. On the other hand, given φ , it is possible
to use the approximate solution for the fixed effects in Equation 3.12 to approximate the random
effects by

b̂iφ =
[
Z*⊤

i WiZ*
i + Iq

]−1
Z*⊤

i Wi(y*i −Xiβ̂ββ
lasso
φ )

= V−1
i Z*⊤

i Wi(y*i −Xiβ̂ββ
lasso
φ )

= V−1
i Z*⊤

i Wi
(
Ini −Hiφ

)
y*i , (3.31)

and the variance (LAIRD; WARE, 1982) V̂ar
(
b̂i −bi

)
may be approximated by

V̂ar
(
b̂iφ −bi

)
= σ̂

2
{

Iq −V−1
i Z*⊤

i Wi
(
Ini −Hiφ

)
Ω̂ΩΩi
(
Ini −Hiφ

)⊤WiZ*
i V−1

i

}
. (3.32)

Thus we can define
Miφ = b̂⊤

iφ

[
V̂ar

(
b̂iφ −bi

)]−1
b̂iφ , (3.33)

as the approximated Mahalanobis distance for the random effects.
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CHAPTER

4
APPLICATION TO A REAL DATA SET

The purpose of this chapter is to fit both normal and robust models to the CASTNet data
set and compare their performance using the techniques presented in Chapter 3.

4.1 Approaches

For both the normal and robust approaches, a LME model was fitted to the CASTNet
data set, as follows

yi = Xiβββ +Zib*
i + εεε i i = 1, . . . ,m, (4.1)

where yi denotes the (ni ×1) response vector for the i-th site, that is the log of the total nitrate
concentration for the i-th site, the matrix Xi denotes the (ni × p) design matrix of fixed effects
without the intercept, as presented in Chart 1, the vector βββ denotes the (p×1) vector of unknown
fixed effects that will be estimated, Zi denotes the (q×1) random effects design matrix for the
i-th and its values are the same as the fixed effects including an intercept, that is Zi = [1i Xi],
b*

i denotes the (q×1) vector of random effects, assumed to be distributed as b*
i ∼ Nq(0,σ2G),

and G will be decomposed using the method presented in section 2.2, lastly, the error term
εεε i is a (ni ×1) vector assumed to be distributed as εεε i ∼ N(0,σ2I), that is, the homoscedastic
conditional independence model.

Equation 4.1 presents the model that will be fitted using the approaches presented back in
Chapter 2. Both approaches will be, then, compared using the techniques presented in Chapter 3.
It is worth noting that all the techniques presented already exist either in the context of maximum
likelihood or least squares estimation of LME models, or in the context of normal multiple
regression models, or in the lasso context under multiple regression models. The aim of this work,
is to either extend or combine such techniques in a way that models fitted using the methods
such as the ones proposed by Bondell, Krishna and Ghosh (2010) and Fan, Qin and Zhu (2014)
could be further analyzed.
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4.2 Fitted models

Both the normal and robust approaches were fitted to the data set, and the resulting
estimated fixed effects are presented, along with its standard errors (obtained from Equation 3.13)
and relative change, in Table 3. The relative changes (RC) were calculated as follows

RCi = 100*
β new

i −β
re f
i

β
re f
i

,

where β
re f
i is the value taken as reference (the i-th estimate of the normal fit, for example) and

β new
i is the value that is to be compared (the i-th estimate of the robust fit, for example).

Table 3 – Estimates of the fixed effects and standard errors under normal and robust approaches.

Normal Robust Relative change (%)

sulphate -0,026255 (0,199290) -0,036743 (0,000198) 39,94668
ammonia 0,142092 (0,224992) 0,196646 (0,001206) 38,39344
ozone 0,097812 (0,120888) 0,079932 (0,000271) -18,27997
atemp 0 (0,089332) 0 (0,086880) -
adptemp 0 (0,089904) 0 (0,086885) -
humidity -0,030033 (0,064965) -0,016239 (0,000118) -45,92948
radiation 0 (0,163125) 0 (0,035799) -
windspeed 0 (0,036370) 0 (0,035595) -
precipitation -0,021885 (0,045337) -0,027328 (0,000208) 24,87092
time.in.months -0,002284 (0,003334) -0,001406 (0,000179) -38,44133
s1 0,234566 (0,163718) 0,281805 (0,001661) 20,13889
c1 0,323886 (0,287495) 0,356987 (0,000682) 10,21995
s2 -0,015338 (0,059650) 0 (0,049089) -
c2 0 (0,053244) 0 (0,049536) -
s3 0 (0,050643) 0 (0,048963) -
c3 0 (0,050685) 0 (0,049578) -

Source: Elaborated by the author.

Table 4 presents the estimates for the square root of the diagonal of the estimated random
effects covariance matrix for the normal and robust approaches, respectively, along with relative
change.

Note that in both tables, if a coefficient has an estimate of 0, it means that it was removed
by the lasso procedure. Bold values in both tables indicate that the associated coefficient is either
removed or included, compared to the normal approach.

It is worth noticing that as there are changes between the models fitted by the two
approaches, mainly the inclusion or exclusion or variables, the conclusions from each of the
models are different. For example, variable s2 for the fixed effects is removed in the robust
approach, which means that it does not impact the response under this approach. As for the
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Table 4 – Predictors of the random effects under normal and robust approaches.

Normal Robust Relative change (%)

int 0,256995719 0,30679025 19,375627
sulphate 0,086267984 0 -
ammonia 0,112850831 0 -
ozone 0 0 -
atemp 0 0 -
adptemp 0 0 -
humidity 0 0 -
radiation 0 0,01581101 -
windspeed 0 0 -
precipitation 0 0 -
time.in.months 0,001245839 0 -
s1 0,074284367 0,06792454 -8,561465
c1 0,087790862 0 -
s2 0 0 -
c2 0 0 -
s3 0 0 -
c3 0 0 -

Source: Elaborated by the author.

random effects, removing or including a variable affects the estimate for the covariance matrix,
which impacts mainly the construction of the diagnostic and residual measures that depend on
the covariance matrix.
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Figure 5 – Profile plot of response variable and fitted values over time for normal and robust fits.

Source: Elaborated by the author.
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Profile plots of the observed response and fitted values over time are presented in Figure 5
for both the normal (dashed red line) and robust (dashed green line) approaches. These figures
indicate the behavior of the residuals that will be calculated. For instance, for both approaches,
site CDR119 does not appear to have a proper fit for all observations observations; site COW137
fitted values are far from the observed data; and site DCP114 also seems to have fitted values far
from the observed response.

4.3 A naive residual analysis

To begin with the comparison between the fitted models, the standardized marginal

residuals, Riφ =
[
V̂ar(ε̂εεφ )

]−1/2
ε̂εεφ , will be first analyzed. Figure 6 and Figure 7 present the

scatter-plot for the standardized marginal residuals versus observations indices for both normal
and robust fit, respectively. In both figures, a local smoother (LOWESS) is fitted but only for
exploratory purposes, that is, to highlight possible trends in the residuals.
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Figure 6 – Standardized marginal residuals for the normal method.

Source: Elaborated by the author.

Note – The green line is a local smoother (LOWESS) that aids visualizing possible trends in the residuals.

In Figure 6, the residuals associated with each of the sites seem to be, overall, randomly
dispersed around 0. Sites CDR119, COW137, CTH110, DCP114, GAS153, MKG113, PNF126,
SHN418 draws attention as some values for their marginal residuals seem to be large, which
could indicate outlying observations. However, it is not possible to attest that with only this
analysis. In the next section, the conditional residuals will be used to that end.



4.4. Further investigating the residuals 57

0 10 30 50

−
2

2
4

ANA115

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 30 50

−
2

2
4

BEL116

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 20 30 40 50

−
2

2
4

CDR119

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 20 30 40 50

−
2

2
4

CKT136

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 30 50

−
2

2
4

CND125

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 30 50

−
2

2
4

COW137

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 30 50

−
2

2
4

CTH110

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 30 50

−
2

2
4

DCP114

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 30 50

−
2

2
4

ESP127

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 30 50

−
2

2
4

GAS153

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 30 50

−
2

2
4

MKG113

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 30 50

−
2

2
4

PNF126

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 30 50

−
2

2
4

PSU106

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 20 30 40

−
2

2
4

SHN418

Index

S
td

. M
ar

gi
na

l R
es

id
.

0 10 30 50

−
2

2
4

VPI120

Index

S
td

. M
ar

gi
na

l R
es

id
.

Figure 7 – Standardized marginal residuals for the robust method.

Source: Elaborated by the author.

Note – The green line is a local smoother (LOWESS) that aids visualizing possible trends in the residuals.

Figure 7 present the standardized marginal residuals versus observation indices for the
robust fit. In this case, the residuals, overall, present trends, which could be an indicative of
misspecification of the model. As for possible outlying observations, sites ANA115 and PNF126
are the ones that draws attention. Once again, in the next section, appropriate measures for
detecting misspecification and outlying observations will be used to further analyze sites and
observations.

A more thorough analysis of the residuals should be carried out, in order to assess the
goodness of the fitted models to the data.

4.4 Further investigating the residuals

Using the standardized marginal residual for both models, the standardized Lesaffre-
Verbeke (LV) measure defined in Equation 3.23. Figure 8 presents the graphs for the standardized
LV measure, normal fit on the left and robust fit on the right. As a cutoff point was not defined,
the analysis of this measure is subjective. Recall that this measure indicates whether the chosen
covariance structure is adequate to the individual, or site in this case.

The graph in Figure 8 seems to indicate that the chosen covariance structure for the
normal fit is not appropriate for site CDR119 as it stands out from the other sites. Both graphs
are on the same scale, and overall the robust fit covariance seems to be more adequate, probably
due to the introduction of the weight matrix in the estimation procedure.
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Figure 8 – Lesaffre-Verbekke measure for the normal (left) and robust (right) fit.

Source: Elaborated by the author.
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Figure 9 – Standardized conditional residuals versus conditional fitted for the normal (left) and robust
(right) fits.

Source: Elaborated by the author.

Figure 9 presents the plot of the standardized conditional residuals versus the conditional
fitted values for both normal (left) and robust (right) fits. Note that both graphs do not present
an underlying structure, which could indicate that the model chosen, in both cases, is adequate.
Also, this graph assists on checking for possible outliers.
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Note that the normal approach seems to present more possible outliers than the robust
fit, as there are more observations above and below ±2 lines on the y-axis of the graphs. If
one chooses to be more conservative in the search of outliers and assume cutoffs of ±3, the
robust approach does not present any outliers, whereas the normal fit presents a few outlying
observations.
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Figure 10 – Boxplots for the standardized conditional residuals for the normal (left) and robust (right) fits.

Source: Elaborated by the author.

The boxplots of the standardized conditional residuals by sites in Figure 10 aids to the
search for outlying observations, as it presents the distribution of such residuals in each site, and
which observations are outliers inside each site. And also, using an overall cutoff of, say, ±2 for
both the normal and robust fits, it is possible to identify which sites present outlying observations
in each of the fits.

Before analyzing the QQ-plots for the least confounded residuals, it is worth assessing
whether the transformed residuals are uncorrelated. In order to do that, line plots for the residuals
associated to each of the sites are presented in Figure 11. Notice that, for the normal fit on the left,
some sites present trend in their residuals, and also several of the sites present large residuals. As
for the robust fit, the residuals associated to each of sites overall do not seem to present neither
trend nor large values.

Analyzing trend and outlying values alone do not properly address the fact of whether
the least confounded residuals are in fact uncorrelated. To assess the correlation, the Box-Pierce
test (BOX; PIERCE, 1970) was used, via the Box.test function from the stats R package (R
Core Team, 2021). Table 5 presents the test statistics as well as the associated p-value for each
of the sites least confounded residuals. All of the residuals associated to each of the sites reject
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Figure 11 – Line plot for the least confounded residuals - normal (left) and robust (right).

Source: Elaborated by the author.

Table 5 – Box-Pierce correlation test.

Normal Robust
Site Statistic p-value Statistic p-value

ANA115 36,417 < 10−8 1,683 0,194
BEL116 36,106 < 10−8 3,199 0,074
CDR119 30,031 < 10−7 0,056 0,813
CKT136 27,423 < 10−6 3,669 0,055
CND125 12,154 < 10−3 1,120 0,290
COW137 30,214 < 10−7 0,819 0,365
CTH110 6,335 0,012 0,042 0,838
DCP114 26,408 < 10−6 0,006 0,938
ESP127 30,868 < 10−7 0,094 0,759
GAS153 32,286 < 10−7 6,929 0,008
MKG113 36,500 < 10−8 0,146 0,702
PNF126 33,158 < 10−8 10.788 0,001
PSU106 29,601 < 10−7 0,293 0,588
SHN418 10,156 0,001 0,104 0,747
VPI120 15,831 < 10−4 3,921 0,048

Source: Elaborated by the author.

the null hypothesis of independence at a 5% significance level. As for the robust fit, only two of
the sites (boldfaced) reject the null hypothesis at a 5% significance level.

Although the least confounded residuals of the normal present correlation, QQ-plots
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Figure 12 – QQ-plots LC Res.

Source: Elaborated by the author.

for both the normal and robust approaches will be constructed in order to compare the fitting
procedures. Figure 12 present the QQ-plots for both the normal (left) and robust (right) fits; the
confidence bands were obtained via bootstrap option from the qqplor package (ALMEIDA;
LOY; HOFMANN, 2018), with confidence level of 0,99. These graphs are used to verify the
normality of the conditional errors. This figure suggests that the normal fit residuals are not
normally distributed, whereas the robust fit is normally distributed, according to the QQ-plots.
In this sense, the robust fit could be considered as a far more adequate model to be fitted to the
CASTNet data. Along with the lack of normality of the normal fit, the trends observed in Figure 11
and hypothesis test from Table 5, could be further evidence for either the misspecification of the
covariance structure or that a different error distribution should be used.

One last measure based on the residuals is presented in Figure 13, the EBLUP measure.
Recall that this measure indicates the presence of outlying subjects or, in this case, sites. In order
to make these graphs comparable, the values were standardized, following the standardized LV
measure, that is EBLUP*

i =
√

EBLUPi/ni. Comparing these two graphs, the normal fit seems to
have more outlying sites than the robust fit. However, one can also analyze each fit on its own.

Then, for the normal fit, sites ANA115, COW137 and DCP114 draws attention, as they
have the larger values for the standardized EBLUP measure. As for the robust fit, sites CDR119,
COW137 and DCP114 are the ones that stand above the others.

Notice that throughout the analysis proposed in this Chapter, up to this point, sites
ANA115, CDR119, COW137, DCP114 and PNF126 were recurrent during the search of outlying
observation and sites, misspecification of the covariance structure.
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Figure 13 – EBLUP for normal (left) and robust (right) fits.

Source: Elaborated by the author.

4.5 Diagnostic and influential analysis

This section is dedicated to the diagnostic and influential analysis that the sites have on
the estimation process. The different measures presented throughout this section aim to asses
whether a site affects the selection procedure or the coefficients. Also, it is presented leverage
measures, in order to identify the outliers with respect to the explanatory variables.

The first influence measure presented here is the Df-model, which assess whether an
observation or a set of observations has influence over the model selection procedure. If an
observation, in the case of this work a set of observations as the sites will be assessed, is outside
the cutoffs of ±2, then it is considered influential on the selection procedure.

Figure 14 presents such measure. Notice that for the normal fit (left) none of the sites is
considered to be influential on the selection procedure. As for the robust fit (right), site PSU106
is considered influential on the model selection procedure.

The next measure analyzed is the Df-lambda, which asses whether a site is influential on
the choice of the tuning parameter. Figure 15 presents such measure for both the normal (left)
and robust (right) fits. Neither of the fits present sites above the cutoffs of ±2, indicating that
none of the sites is influential on the choice of the tuning parameter.

Next, the Cook’s distance will be assessed. This measure assess whether a site is influ-
ential on estimation of the parameters. Figure 16 presents this measure for both approaches,
normal on the left and robust on the right. Site SNH418 is highly influential on the normal fit;
site CDR119 also seems to be influential, according to the graph. None of the sites seem to be
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Figure 14 – Df-model for normal (left) and robust (right) fit.

Source: Elaborated by the author.
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Figure 15 – Df-lambda for normal (left) and robust (right) fit.

Source: Elaborated by the author.

influential for the robust fit.

It is worth noting that the Cook’s distance used in this work measures an “average
influence”, in a sense that the fixed effects and random effects are confounded (similar to the
least confounded residuals), which could explain why site SNH418 stands out from the other
sites in the normal fit. It was not possible yet to find the expression for the conditional Cook’s
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Figure 16 – Cook’s distance for normal (left) and robust (right) fit.

Source: Elaborated by the author.

distance (TAN; OUWENS; BERGER, 2001; PINHO; NOBRE; SINGER, 2015), which deals
with this “confounding” effect.

Lastly, a leverage analysis of the sites will be presented. Figure 17 presents the approxi-
mated leverage measure for the fixed effects for the normal (left) and robust (right) fits. For the
normal fit, sites BEL116, CDN125, GAS153, PNF126, PSU106 and SNH418 are high-leverage
points, as they cross the indicated cutoff. As for the robust fit, none of the sites were considered
high-leverage points. This could be an indicative of the aim of the robustness, that in the case of
this work, is to better fit outlying observations. And as leverage points could also be interpreted
as outliers with respect to the explanatory observations, this means that the correction that the
weight matrix used in the robust process is effective, somehow, in order to decrease the effect
that the high-leverage site could have on the estimation of the fixed effects.

Following with the leverage point analysis, Figure 18 presents the leverage measure for
the random effects. Notice that in both fits, all observations could be considered as high-leverage
points, but notice that the main difference between the graphs is that the sites on the robust fit
(right) all have approximately the same value for this leverage measure, whereas for the normal
fit (left) there are a few sites that stand out form the others. Namely, the sites that have the highest
values for this measure are ANA115, DCP114 and PSU106.
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Figure 17 – Approximated generalized leverage values for fixed effects.

Source: Elaborated by the author.
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Figure 18 – Approximated generalized leverage values for random effects.

Source: Elaborated by the author.
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4.6 Removing specific observations to assess their influ-
ence

A few of the sites that were recurrent on the analysis on the previous sections were
chosen to have their influence assessed. The sites chosen were CDR119, COW137, DCP114 and
PNF126.
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Figure 19 – Boxplots for the explanatory variables of specific sites.

Source: Elaborated by the author.

Figure 19 presents boxplots for the explanatory variables of such sites. Recall that the
design matrices for both the fixed and random effects were standardized, as a requirement for the
lasso procedure. As these variables were standardized, it is expected that they are symmetrically
distributed around 0, which is not the case, as some variables are skewed. For example, the
ammonia variable for all sites is displaced from 0. It is worth noticing that most of these variables
have outlying obsrevations, for example, windspeed for site PNF126 has large values for this
specific variables, when compared to the other sites; precipitation for site COW137 also
seems to have large values than other sites.

The four sites above were removed and estimation was carried out without them, each
one at a time. Table 6 and Table 7 present the estimates for the fixed for the model with all sites,
along with estimates for the fits without each of the four sites. The last four columns in these
tables are the percentage relative change of the estimates when compared to the model with all
sites. Bold values indicate whether the associated coefficient was removed or included, compared
to the model with all sites. A similar analysis is carried out for the random effects in Table 8 and
Table 9.

These tables are similar to Table 3 and Table 4, in a sense that a model is taken as a
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reference (full model) and as the observations associated to the sites are removed from the data
set, conclusions drawn from such models differ from those related to the reference model.

For instance, Table 6 presents this analysis under the normal approach. Note that remov-
ing sites 3 and 6 causes a variable to be deleted and a new one to be added, respectively. A
similar situation is seen in Table 7. Removing site 3 causes two variables to be removed from the
model, removing site 6 adds a variable, removing site 8 adds two new variables and removing
site 12 causes a variable to be removed. For Table 8 and Table 7, removing or including variables,
when compared to the model with all the observations, changes the covariance matrix estimates.
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Table 6 – Estimates of fixed effects - Normal.

Full W/o Obs. 3 W/o Obs. 6 W/o Obs. 8 W/o Obs. 12 RC3 RC6 RC8 RC12

sulphate -0,0263 (0,1993) 0 (0,0764) -0,0733 (0,0016) -0,0282 (0,0074) -0,0733 (0,2674) -100 179,0326 7,4272 -100
ammonia 0,1421 (0,2250) 0,1036 (0,0016) 0,2150 (0,0037) 0,1443 (0,0349) 0,2150 (0,0237) -27,0719 51,2999 1,5814 -12,7241
ozone 0,0979 (0,1209) 0,1008 (0,0034) 0,1053 (0,0032) 0,0926 (0,0079) 0,1053 (0,0595) 3,0436 7,6821 -5,3623 -12,3063
atemp 0 (0,0893) 0 (0,0895) 0 (0,0902) 0 (0,0924) 0 (0,3451) 0 0 0 0
adptemp 0 (0,0899) 0 (0,0899) 0 (0,0898) 0 (0,0938) 0 (0,6652) 0 0 0 0
humidity -0,0300 (0,0650) -0,0301 (0,0019) -0,0222 (0,0007) -0,0349 (0,0037) -0,0222 (0,1348) 0,2830 -26,0380 16,3387 16,2321
radiation 0 (0,1631) 0 (0,0893) −0,0165 (0,0005) 0 (0,1970) -0,0165 (2,0496) 0 - 0 0
windspeed 0 (0,0364) 0 (0,0371) 0 (0,0362) 0 (0,0377) 0 (0,0989) 0 0 0 0
precipitation -0,0219 (0,0453) -0,0164 (0,0014) -0,0228 (0,0008) -0,0215 (0,0029) -0,0228 (0,0104) -25,2365 4,3866 -1,5307 0,7539
time.in.months -0,0023 (0,0033) -0,0022 (0,0057) -0,0027 (0,0010) -0,0023 (0,0431) -0,0027 (0,4609) -2,9772 19,3958 2,7583 18,6515
s1 0,2346 (0,1637) 0,2194 (0,0062) 0,2647 (0,0049) 0,2299 (0,0095) 0,2647 (0,1842) -6,4728 12,8582 -2,0024 4,0790
c1 0,3239 (0,2875) 0,3051 (0,0050) 0,3547 (0,0067) 0,3267 (0,0099) 0,3547 (0,2133) -5,7996 9,5166 0,8824 0,3260
s2 -0,0153 (0,0596) -0,0080 (0,0005) -0,0000 (0) -0,0122 (0,0022) -0,0000 (0,0023) -47,4638 -99,9087 -20,3677 17,7272
c2 0 (0,0532) 0 (0,0595) 0 (0,0522) 0 (0,0619) 0 (0,7024) 0 0 0 0
s3 0 (0,0506) 0 (0,0513) 0 (0,0511) 0 (0,0571) 0 (0,4966) 0 0 0 0
c3 0 (0,0507) 0 (0,0518) 0 (0,0517) 0 (0,0535) 0 (0,1153) 0 0 0 0

σ̂2 0,0146 0,0137 0,0146 0,0151 0,0141
λ 0,3000 0,2500 0,3000 0,3000 0,3000
BIC -772,4134 -776,5118 -676,2743 -685,4313 -696,3553

Source: Elaborated by the author.

Note – RCi refers to the percentage relative change in the fixed effect estimates without the i-th subject.
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Table 7 – Estimates of fixed effects - Robust.

Full W/o Obs. 3 W/o Obs. 6 W/o Obs. 8 W/o Obs. 12 RC3 RC6 RC8 RC12

sulphate -0,0367 (0,0002) 0 (0,0556) -0,1350 (0,0057) -0,0655 (0,0003) 0 (0,0569) -100 267,4931 78,3088 -100
ammonia 0,1966 (0,0012) 0,1535 (0,0039) 0,2963 (0,0112) 0,2316 (0,0010) 0,1251 (0,00001) -21,9572 50,6789 17,7995 -36,3613
ozone 0,0799 (0,0003) 0,0797 (0,0024) 0,1168 (0,0054) 0,0976 (0,0004) 0,0750 (0,000007) -0,2414 46,0829 22,1351 -6,2040
atemp 0 (0,0869) 0 (0,0872) 0 (0,0876) 0 (0,0878) 0 (0,0881) 0 0 0 0
adptemp 0 (0,0869) 0 (0,0870) 0 (0,0871) 0 (0,0884) 0 (0,0884) 0 0 0 0
humidity -0,0162 (0,0001) -0,0259 (0,0015) -0,0147 (0,0007) -0,0360 (0,0001) -0,0183 (0,000003) 59,4310 -9,3971 121,5284 12,6978
radiation 0 (0,0358) 0 (0,0530) −0,0691 (0,0032) −0,0684 (0,0003) 0 (0,0527) 0 - - 0
windspeed 0 (0,0356) 0 (0,0357) 0 (0,0356) 0 (0,0355) 0 (0,0632) 0 0 0 0
precipitation -0,0273 (0,0002) 0 (0,0392) -0,0341 (0,0018) -0,0394 (0,0002) -0,007949 (0,000002) -100 24,7036 44,0866 -70,9126
time.in.months -0,0014 (0,0002) -0,0004 (0,0007) -0,0005 (0,0008) -0,0020 (0,0001) -0,000813 (0,000003) -70,9815 -60,7397 41,1095 -42,1764
s1 0,2818 (0,0017) 0,2476 (0,0093) 0,2764 (0,0093) 0,2680 (0,0009) 0,25935 (0,00003) -12,1414 -1,9276 -4,9013 -7,9683
c1 0,3570 (0,0007) 0,3489 (0,0055) 0,3055 (0,0096) 0,2816 (0,0009) 0,34517 (0,00002) -2,2631 -14,4148 -21,1038 -3,3377
s2 0 (0,0491) 0 (0,0542) 0 (0,0510) −0,01387 (0,00004) 0 (0,05461) 0 0 - 0
c2 0 (0,0495) 0 (0,0512) 0 (0,0513) 0 (0,0513) 0 (0,0515) 0 0 0 0
s3 0 (0,0490) 0 (0,0509) 0 (0,0508) 0 (0,0507) 0 (0,0510) 0 0 0 0
c3 0 (0,0496) 0 (0,0512) 0 (0,0514) 0 (0,0514) 0 (0,0514) 0 0 0 0

σ̂2 0,0740 0,0659 0,0427 0,0596 0,0709
λ 0,2000 0,1500 0,2500 0,3000 0,1500
BIC -194,5579 -259,6946 -425,3721 -260,0390 -163,2266

Source: Elaborated by the author.

Note – RCi refers to the percentage relative change in the fixed effect estimates without the i-th subject.
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Table 8 – Predictors of random effects - Normal.

Full W/o Obs. 3 W/o Obs. 6 W/o Obs. 8 W/o Obs. 12 RC3 RC6 RC8 RC12

int 0,2570 0,2535 0,1726 0,2620 0,2779 -1,3387 -32,8512 1,9376 8,1357
sulphate 0,0863 0,0985 0,0603 0,0810 0,0869 14,1651 -30,0551 -6,0543 0,7157
ammonia 0,1128 0,1223 0,0695 0,1056 0,0964 8,3546 -38,3892 -6,4380 -14,5696
ozone 0 0 0 0 0 0 0 0 0
atemp 0 0 0 0 0 0 0 0 0
adptemp 0 0 0 0 0 0 0 0 0
humidity 0 0 0 0 0,0253 0 0 0 -
radiation 0 0 0,0399 0 0 0 - 0 0
windspeed 0 0 0 0 0 0 0 0 0
precipitation 0 0 0 0 0 0 0 0 0
time.in.months 0,0012 0 0,0011 0,0014 0,0016 -100 -8,1556 11,9382 24,4378
s1 0,0743 0,0644 0,0770 0,0694 0,0750 -13,3127 3,6930 -6,5718 0,9816
c1 0,0878 0,0802 0,0773 0,0919 0,0719 -8,6870 -11,9544 4,6342 -18,1373
s2 0 0 0 0 0 0 0 0 0
c2 0 0,0206 0 0 0 - 0 0 0
s3 0 0 0 0 0 0 0 0 0
c3 0 0 0 0 0 0 0 0 0

Source: Elaborated by the author.

Note – RCi refers to the percentage relative change in the fixed effect estimates without the i-th subject.



4.6.
R

em
oving

specific
observations

to
assess

their
influence

71

Table 9 – Predictors of random Effects - Robust.

Full W/o Obs. 3 W/o Obs. 6 W/o Obs. 8 W/o Obs. 12 RC3 RC6 RC8 RC12

int 0,3068 0,3035 0,2173 0,2427 0,3195 -1,0664 -29,1541 -20,9045 4,1415
sulphate 0 0 0 0 0 0 0 0 0
ammonia 0 0 0,0355 0 0,0098 0 - 0 -
ozone 0 0 0 0 0 0 0 0 0
atemp 0 0 0 0 0 0 0 0 0
adptemp 0 0 0 0 0 0 0 0 0
humidity 0 0,0362 0 0 0,0394 - 0 0 -
radiation 0,0158 0 0,0493 0,0174 0,0086 -100 211,9768 10,1384 -45,7003
windspeed 0 0 0 0 0 0 0 0 0
precipitation 0 0 0 0 0 0 0 0 0
time.in.months 0 0 0 0,0015 0 0 0 - 0
s1 0,0679 0 0,0826 0,0760 0 -100 21,6661 11,8624 -100
c1 0 0 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0 0 0
c2 0 0 0 0 0 0 0 0 0
s3 0 0 0 0 0 0 0 0 0
c3 0 0 0 0 0 0 0 0 0

Source: Elaborated by the author.

Note – RCi refers to the percentage relative change in the fixed effect estimates without the i-th subject.
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4.7 Cross-validation
For this section, 10-fold cross-validation (HASTIE; TIBSHIRANI; FRIEDMAN, 2009,

Sec. 7.10) was performed in order to further compare the performance of both the normal and
robust methods. One of the objectives of using cross-validation is to estimate the prediction error
(JAMES et al., 2013, Sec. 5.1). There are a few methods to estimate the prediction error, such as
the validation set approach, the leave-one-out cross-validation and the k-fold cross-validation,
which was the one chosen in this work.

Table 10 presents the mean squared prediction error (MSPE) for the 10-fold cross-
validation procedure. The robust fit has a smaller MSPE value, which indicates that it has a better
predictive power.

Table 10 – Mean squared prediction error for the 10-fold cross-validation.

Normal Robust

MSPE 0,14451 0,12613
Source: Elaborated by the author.

Table 11 presents the cross-validation confidence intervals for the fixed effects coeffi-
cients. Note that if the lower and upper bounds are both zero, the variable was not selected in
none of 10 folds.

Table 11 – Cross-validation confidence intervals for the fixed effects.

Normal Robust
Lower-bound Upper-bound Lower-bound Upper-bound

sulphate -0,1013775723 0,0310857723 -0,175781939 0,0374823395
ammonia 0,0634405756 0,2382048244 0,138282882 0,3376761179
ozone 0,0706260255 0,1261111745 0,032180161 0,1554194393
atemp -0,0004929426 0,0003583426 0 0
adptemp 0 0 0 0
humidity -0,0446989123 -0,0183564877 -0,049551588 -0,0021804124
radiation -0,0098944683 0,0065422683 -0,092826863 0,0306720628
windspeed 0 0 0 0
precipitation -0,0323512921 -0,0104523079 -0,055501999 -0,0030538011
time.in.months -0,0027979241 -0,0017412759 -0,001674195 -0,0009064053
s1 0,1968494773 0,2617469227 0,241606026 0,2803917741
c1 0,2737175754 0,3549400246 0,284181269 0,3723077309
s2 -0,0216213966 0,0025255966 -0,044432795 0,0176667953
c2 0 0 0 0
s3 -0,0042792053 0,0029608053 -0,004136909 0,0030073088
c3 0 0 0 0
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CHAPTER

5
FINAL CONSIDERATIONS

The main objective of this master’s dissertation was to present residual analysis and
diagnostic techniques for the lasso regression for LME models. It arose from the question whether
the normal approach by Bondell, Krishna and Ghosh (2010) and the robust approach by Fan, Qin
and Zhu (2014) were comparable beyond the BIC value, as the normal model is a particular case
of the robust model, assuming vi j = 0 and wi j = 1 for all observations. Although the BIC-type
measure was used to select the best tuning parameter for each of the approaches, it was unclear
whether the normal approach, despite having a smaller BIC value for the final model, was indeed
better fitted to the data than the robust model. Those BIC values, being BICnormal =−772,4134
and BICrobust =−194,5579, can be found in Table 6 for the normal method and in Table 7 for
the robust approach.

Usual diagnostic techniques and residual analysis for LME models were not usable, as
they rely in the closed forms of the estimators for the fixed and random effects, and recall that
lasso estimates do not possess explicit expressions. Thus, it was necessary to adapt such measures
using the recently developed lasso diagnostic measures (KIM et al., 2015; RAJARATNAM et

al., 2019) in order to take into account the caveats of LME regression models. Even though the
lasso diagnostic measures are based on an approximated expression for the coefficients vector, in
this case the fixed effects vector, they provided useful insights to the fitted models.

For example, it was possible to identify observations and sites that were not properly
fitted by the models chosen, either being outliers (that were dealt better by the robust approach) or
misspecification of the covariance structure (neither of the approaches seem to be properly fitted).
It is important noticing that the robust approach produced normally distributed residuals, which
confirms that the initial assumption of normality for the errors was correct for this approach.
Despite the residuals not being normally distributed for the normal approach, the conditional
residuals did not present any underlying structure, which indicates that the LME model chosen
is somewhat well fitted to the data, and perhaps a change in the covariance structure would
probably produce normally distributed conditional residuals.
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Removing some of the sites was important to assess the impact that these sites had on the
estimates, notice from Table 6 to Table 9 that removing specific sites caused some coefficients to
be removed from the final model and also cause changes in the estimates, as it is seen on the
final four columns of these tables.

Notice back on Figure 19 that all four sites had outlying observations for the explanatory
variables. This must have had an impact on the normal fit estimates, and also recall that site
PNF126 is also a high-leverage point for the fixed effects and also presents large values for
adptemp and windspeed. Treating the data, or even removal of such observations through-
out the data set could improve the effectiveness of the normal fit, however, to highlight the
resourcefulness of the robust fit, their original values were kept on the data set.

As future work, studies presented in this dissertation might be extended as simulation
studies, for example, in order to assess the behaviour of the diagnostic measures.

It is also possible to change the underlying distribution for both approaches to check
whether heavy-tailed or even skewed distributions would better fit the data.

The penalized selection algorithm for the normal approach was obtained directly from
the authors of Bondell, Krishna and Ghosh (2010) website 1. The authors also provided the
data set that we used in this work. For the robust approach, the original implementation from
the normal approach was adapted in order to account for the modifications. The residuals and
diagnostics measures were all implemented by the author if this dissertation. The routines could
surely be improved as well, as they usually take 20-40 minutes to fit the models.

All the results were obtained using the software R (R Development Core Team, 2010).

1 <https://blogs.unimelb.edu.au/howard-bondell/>

https://blogs.unimelb.edu.au/howard-bondell/
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