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RESUMO

BOGONI, M.A. Seleção Bayesiana de variáveis para modelos de mistura de regressão
logística com variáveis latentes Pólya-Gamma . 2022. 99 p. Dissertação (Mestrado em
Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ci-
ências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2022.

Neste trabalho, métodos Bayesianos para estimação e seleção de variáveis em um modelo de
mistura de regressão logística são apresentados. Com o objetivo de simplificar a inferência
Bayesiana e ganhar eficiência computacional, a abordagem de aumento de dados com variáveis
latentes Pólya-Gama é estendida para modelos de mistura de regressão logística. Através dela,
o algoritmo amostrador de Gibbs é aplicado para a estimação do modelo completo, com a
estimação do número de componentes da mistura sendo feita através de critérios Bayesianos de
seleção de modelos. Para a seleção de variáveis, duas distribuições a priori para os coeficientes
de regressão são investigadas, adicionando um segundo conjunto de variáveis latentes para
indicar a presença e ausência das variáveis preditoras em cada componente da mistura. De modo
análogo ao modelo completo, o algoritmo amostrador de Gibbs é aplicado no modelo com a
seleção de variáveis e a conjugação obtida para a distribuição dos coeficientes de regressão, com
a inclusão das variáveis Pólya-Gama, nos permite calcular analiticamente a verossimilhança
marginal e ganhar eficiência computacional no processo de seleção de variáveis. Para analisar a
performance dos métodos, as metodologias apresentadas são aplicadas em dados simulados e
reais.

Palavras-chave: Seleção de variáveis, g-priori, priori spike e slab, Pólya-Gamma-sampling.





ABSTRACT

BOGONI, M.A. Bayesian variable selection for logistic mixture models with Pólya-Gamma
data augmentation. 2022. 99 p. Dissertação (Mestrado em Estatística – Programa Interinstituci-
onal de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação, Uni-
versidade de São Paulo, São Carlos – SP, 2022.

In this work, Bayesian methods for estimating and selecting variables in a mixture of logistic
regressions model are presented. In order to simplify its Bayesian estimation, we extend the data
augmentation approach with Pólya-Gamma random variables to the mixture of logistic regression
models. Through the data augmentation approach, we present a Gibbs sampling algorithm for
estimating the full model, and the number of components in the mixture is identified by Bayesian
model selection criteria. In the model with variable selection, we investigate the performance
of two prior distributions for the regression coefficients, adding a second set of latent variables
to indicate the presence and non-presence of the predictor variables at each component of the
mixture. Analogously to the full model, a Gibbs sampling algorithm is applied to the model with
variable selection and the conjugation obtained for the distribution of the regression coefficients,
through the inclusion of Pólya-Gamma variables, allows us to analytically calculate the marginal
likelihood and gain computational efficiency in the variable selection process. To analyse the
performance, the presented methodologies are applied in simulated and real data.

Keywords: Variable selection, g-prior, spike and slab prior, Pólya-Gamma-sampling.
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CHAPTER

1
INTRODUCTION

Finite mixture models can be applied to model data in many contexts (MELNYKOV;
MAITRA, 2010), however, it is very common to be applied to model heterogeneous data. When
this is the case, we say that the population is made up of K subpopulations and within each
subpopulation i, the random variable Y of interest is modelled by a distribution f (y|θi). The
subpopulations are called components and they are weighted by the proportion πi of observations
that belong to the component i. The mixture model of logistic regressions allows us to model the
relationship between a binary or count outcome Y and a set of predictor variables xᵀ=(x1, · · · ,xp)

when there is presence of heterogeneity in the data, that is, when the outcome Y may be differently
affected by the predictor variables across the population. Some examples are Li (2018), that
used a finite mixture of logistic regression models to analyze the heterogeneity of the merging
behavior of the driver population, and Deng, Chen and Li (2006), that applied a finite mixture of
logistic regression to model the heterogeneity in the binary trait locus (BTL) mapping.

From the frequentist perspective, the estimation of a mixture model is based on the
maximization of the likelihood function, considering a fixed number of components K, through
the iterative algorithm Expectation-Maximization (EM) (DEMPSTER; LAIRD; RUBIN, 1977).
When the number K of components is unknown, model selection criteria such as Akaike Informa-
tion Criterion (AIC) (AKAIKE, 1998) and Bayesian Information Criterion (BIC) (SCHWARZ,
1978) are the most common ways to select the best value of K. One of the challenges in estimat-
ing the model with the EM algorithm is the dependency on the initial values. The EM algorithm
is usually initial values sensitive to and, in some situations, it can also presents slow convergence.
Some examples of frequentist estimation of a mixture of logistic regressions are Deng, Chen and
Li (2006) and Li (2018).

The estimation of the model from the Bayesian perspective, however, can be done
through MCMC algorithms, assigning prior distributions to the parameters. When the number of
components is unknown, model selection criteria can also be applied to choose the best value.
Deviance Information Criterion (DIC) (SPIEGELHALTER et al., 2014) and Extended Bayesian
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Information Criterion (EBIC) (CHEN; CHEN, 2008) criteria, for example, are common choices
for Bayesian estimation of the number of components. For a pre-specified K, MCMC algorithms
are usually used for simulating samples of the joint posterior distribution and estimate parameters
of each component, such as Gibbs sampling (CASELLA; GEORGE, 1992) or Metropolis
Hastings (CHIB; GREENBERG, 1995). Another option for the case with unknown number of
components is the Reversible Jump (RJ) algorithm (GREEN, 1995), that performs estimation
and model selection simultaneously.

A very common issue when dealing with Bayesian logistic models, specifically, is its
intractable likelihood, which prevents us from applying simpler Bayesian algorithm, as Gibbs
sampling, since there is no conjugation. Wan and Griffin (2021) describe some recent approaches
to deal with the intractable likelihood of the logistic model, including Laplace approximation,
Metropolis Hastings based sampler and data augmentation.

The data augmentation technique has been widely employed in binary models. Tüchler
(2012), for example, introduced a two data-augmentation technique into the binary logit regres-
sion model to obtain a normal linear regression model. A new and recent data augmentation
approach to the logistic regression model was proposed by Polson, Scott and Windle (2013),
which introduces latent variables with Pólya-Gamma distribution, leading to a tractable like-
lihood and obtaining a simple and effective method for posterior inference. In this work, we
explore this approach to solve the intractable likelihood of the mixture of logistic regression
models.

Another crucial problem in fitting good regression models is the selection of predictor
variables, especially when the population is made up of K subpopulations. The non-Bayesian
variable selection methods for mixture models include the information criteria such as AIC and
BIC (NAIK; SHI; TSAI, 2007) and methods based on the penalized log-likelihood function.
The methodologies based on information criteria, however, take into account all the 2p possible
models, where p is the number of available predictor variables. And this number gets larger
when considering the number of components in the mixture, inducing a high computational cost.
For penalization methods, Khalili and Chen (2007) provided a penalized likelihood approach
by introducing a new class of penalty functions, which solves the computation limitations of
the information criterion approaches. Later, Städler, Bühlmann and Geer (2010) proposed a
l1-penalization approach with a specific parametrization, which leads to a better computational
performance. Following the same idea, Khalili and Lin (2013) proposed a penalization approach
for high-dimension data by changing the penalization functions proposed by Khalili and Chen
(2007) and Städler, Bühlmann and Geer (2010). More recent works of penalization methods for
variable selection in mixture models can be found on Devijver (2015) and Lloyd-Jones, Nguyen
and McLachlan (2018).

The Bayesian variable selection methods, on the other hand, include prior distribution
to the regression coefficients and latent variables to identify the presence and absence of pre-
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dictors in the fitted model. The most common Bayesian methods are the Stochastic Search
Variable Selection (GEORGE; MCCULLOCH, 1993), with the spike and slab prior, and the
g-prior (ZELLNER, 1986). Both of them have been increasingly applied to variable selection
in traditional regression models and also in mixture models. Chen and Ye (2015) studied the
performance of both methods to select predictors in a mixture of linear regressions through the
Gibbs sampling algorithm. The g-prior was also investigated by Lee, Chen and Wu (2016), that
proposed a Gibbs sampling to variable selection in cases where p > n, where n is the sample size,
or the predictor variables are correlated. Recently, Lee, Feldkircher and Chen (2021) proposed a
RJ algorithm to fit each component as a sparse regression model in a mixture of linear regressions
with spike and slab prior.

The main motivation for this work is the possibility of joining the data augmentation
technique proposed by Polson, Scott and Windle (2013), which solves the problem of the
intractable likelihood in logistic regressions, with the Bayesian variable selection methods using
prior distributions that induce sparsity. Once the data augmentation is extended and applied to
the mixture case, becomes possible to apply the Gibbs sampling algorithm, usually applied for
fitting mixture of linear regression, to estimate a mixture of logistic regression and select relevant
predictors. Such method is straightforward, efficient and easy to implement since the conjugation
obtained for the distribution of the regression coefficients, with the inclusion of Pólya-Gamma
variables, allows us to analytically calculate the marginal likelihood used in the variable selection
process.

In this work, we extend the data augmentation approach presented by Polson, Scott
and Windle (2013) to a mixture of logistic regression models in order to facilitate its Bayesian
estimation. For the Bayesian variable selection, we investigate the performance of two prior
distributions for the regression coefficients: the g-prior and the spike and slab prior with simulated
data. We also analyze the estimation of the full model assuming a traditional normal prior
distribution for the regression coefficients.

This work is organized as follows: in the Chapter 2, mixture models are formally pre-
sented, starting with mixture of distributions, extending to mixture of generalized linear models
and to mixture of logistic regression models. In the Chapter 3, we present the extension of the
Pólya-Gamma data augmentation to the mixture case, discussing its properties and benefits to the
Bayesian inference of the model. The Chapter 4 is intended for the Bayesian estimation method
of the full model and the model with the variable selection included. In the Chapter 5, we present
the simulation results of the full model and variable selection. In the Chapter 6, we apply the
methodologies to select variables in a real data set. Finally, in Chapter 7 we present the final
considerations of this work.
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CHAPTER

2
MIXTURE MODELS

Finite mixture models are known for modeling data that is not well described by a single
unimodal distribution. In other words, it means that there are subpopulations in the data where
the random variable of interest behaves differently. The presence of heterogeneity in the data
leads to the search for models that can accommodate these changes across the subpopulations.

Additionally, mixture models are also used to deal with more complex models. In
the binary and count data cases, for example, mixture models can be used to account for
overdispersion or zero inflation (WANG; PUTERMAN, 1998), typical in these type of data,
and also for clustering when the number and the members of the subpopulations are unknown.
Because of this flexibility, mixture model are increasingly being used in statistical modelling.

There exist an extensive literature about mixture models and its Bayesian inference, in
this chapter the theory is based on Frühwirth-Schnatter (2006), Mclachlan and Peel (2000) and
Frühwirth-Schnatter and Celeux (2018).

2.1 Finite Mixture of Distributions

Suppose that the observed data belongs to a population composed by K subpopulations
with proportions π1, · · · ,πK . Let Y be a random variable of interest and consider the random
sample Y = (Y1, · · · ,Yn) of Y . Each Y j will be heterogeneous in relation to the population and
homogeneous in relation to the subpopulation from which Yj belongs. Due to this heterogeneity, it
is reasonable to affirm that the probability distribution modelling each subpopulation is different.
These distributions are called components of the mixture and, if the components belong to
the same parametric family, their parameters will differ across the subpopulations. However,
they can also belong to different parametric families. Below, mixture model of distributions
is defined. Throughout this chapter the definitions are given considering continuous random
variables, however the discrete case is analogous.
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Definition 2.1.1. A random variable Y , assuming values in Ω ∈ R, follows a finite mixture
distribution if its probability density function is given as

f (y|θθθ ,πππ) =
K

∑
i=1

πi f (y|θθθ i), ∀y ∈Ω (2.1)

where πππ = (π1, · · · ,πK) is the vector of weights (mixing probabilities) of the mixture with

0≤ πi ≤ 1,
K

∑
i=1

πi = 1 and θθθ = (θθθ 1, · · · ,θθθ KKK) represents the parameters vector of all components.

Under the model in Definition 2.1.1, we assume that there are K subpopulations in the
data and each Y in the subpopulation i follows a distribution corresponding to the density f (y|θθθ iii).
Thus the density of the model is written as a convex linear combination of the densities for the K

components.

An example of a mixture of two-normal distributions is shown in Figure 1. The dis-
tribution of the component 1 is the standard normal distribution with parameters µ1 = 0 and
σ1 = 1, and the distribution of the component 2 is a normal distribution with parameters µ2 = 5
and σ2 = 2. The mixing probabilities are π1 = π2 = 0.5, so that the mixture density is given by
f (y|µµµ,σσσ222) = 0.5N(0,1)+0.5N(5,4), where N(·, ·) represents the density function of a normal
distribution, and is represented by the red curve in Figure 1.

Figure 1 – Simulated data set of a mixture of two normal distributions, f (y|µµµ,σσσ222) = 0.5N(0,1) +
0.5N(5,4).

In many applications the variable of interest in the data can depend on other observable
factors, which we call as predictor variables or covariates. Mixture models can also be extended
to those applications and the model’s interpretation remains the same: in each component of the
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mixture there is a regression model to explain the response variables belonging to it as a function
of relevant covariates and regression coefficients, that can differ among components. In the next
section we formalize this class of models considering a more general case of regression models:
the generalized linear models.

2.2 Finite Mixture of Generalized Linear Models
From the generalized linear models theory seen in Mclachlan and Nelder (1989) and

Dobson and Barnett (2008), given the independent variables Y1, · · · ,Yn, their dependency on
covariates x1, · · · ,xn is expressed by

g(E[Yj|x j]) = xᵀj βββ = η j, (2.2)

where βββ
ᵀ = (β0,β1, · · · ,βp) is the unknown parameters vector and g(·) is a monotone and

differentiable function, called link function.

In a case where the population is composed by K subpopulations, the presence of
heterogeneity implies that in each subpopulation there is a distinct generalized linear model. This
means that if Yj belongs to subpopulation i, there is a subpopulation-specific parameter vector βββ i

so that the relation in (2.2) is modified to

g(E[Yj|x j]) = xᵀj βββ i = ηi j, (2.3)

where βββ
ᵀ
i = (βi0,βi1, · · · ,βip) is the vector of regression coefficients in the subpopulation i, for

i = 1, · · · ,K and j = 1, · · · ,n. In these conditions, Y follows a generalized linear mixture model.

Definition 2.2.1. A random variable Y , assuming values in Ω ∈ R, follows a generalized linear
mixture model if its probability density function is given by

f (y|βββ ,θθθ ,πππ) =
K

∑
i=1

πi f (y|βββ i,θθθ i), ∀y ∈Ω (2.4)

where βββ
ᵀ
i = (βi0,βi1, · · · ,βip) is the regression coefficients vector in the component i, πππ =

(π1, · · · ,πK) is the weights vector and each f (·|βββ i,θθθ i), i = 1, · · · ,K, belongs to a parametric
exponential family, with mean

E[Y |x] =
K

∑
i=1

πig−1(xᵀβββ i), (2.5)

where g(·) is the link function and x is the covariates vector.

Figure 2 shows a particular case of the generalized linear mixture model, where the
response variable is normally distributed and the link function is the identity function. The plot
shows the fit of a linear mixture model in the GNP and CO2 Data Set provided by the R package
mixtools (BENAGLIA et al., 2009). This data set provides the gross national product (GNP)
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per capita in 1996 for various countries as well as their per capita estimated carbon dioxide
emission (CO2) for the same year. In this example, looking only at the dispersion of the points we
can clearly see that this data is generated by a mixture of two components. Covariate’s effect is
different in each component, since the values of the regression coefficients are different for each
component, and this change of effects within the subpopulations is exactly what characterizes
the mixture.

Figure 2 – The linear regression mixture model fit in a real data set provided by the R package mixtools.

Mixture of generalized linear models is well known in the literature (GRÜN; LEISCH,
2008), (YANG; MUTHÉN; YANG, 1999) with applications in agriculture (WANG; PUTER-
MAN, 1998), cognitive development (DAUVIER; CHEVALIER; BLAYE, 2012), economy
(KONISHI; NAKAMURA; KIYOKI, 2019), biology (BELL; ZHANG; NIU, 2011) and more.

In the next section we restrict this class of models considering the response as a binary
or count random variable, which characterizes a mixture of logistic models.

2.2.1 Finite Mixture of Logistic Models

Mixture of logistic regressions arise as a particular case of generalized linear mixture
model, when the response variable Y j is either binary or a count and the link function is the logit
function. Following, a formal definition of mixture of logistic regressions is presented.

Definition 2.2.2. A random variable Yj assuming values in Ω = {0,1, · · · ,N} follows a logistic
regression mixture model if its probability density function is given by

f (y j|πππ,θθθ) =
K

∑
i=1

πi

[(
N
y j

)
θ

y j
i j (1−θi j)

N−y j

]
, ∀y j ∈Ω (2.6)
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where πππ = (π1, · · · ,πK) is the weights vector, N is the number of Bernoulli trials and the success
probability θi j is defined as

θi j =
exp(xᵀj βββ i)

1+ exp(xᵀj βββ i)
, (2.7)

where βββ
ᵀ
i = (βi0,βi1, · · · ,βip) is the vector of regression coefficients in the component i for

i = 1, · · · ,K, and xᵀj is the covariates vector associated to y j.

The Definition 2.2.2 says that the population is made up of K subpopulations, whose
success probability varies across them. The most common distribution assigned to the re-
sponse variable in logistic regression models is the Bernoulli distribution. However, in mixture
model framework this choice leads to a generic non-identifiability problem (FRüHWIRTH-
SCHNATTER, 2006; FRüHWIRTH-SCHNATTER; CELEUX, 2018).

Generic non-identifiability implies that the likelihood of the observed data is the same for
any pair (πππ,θθθ) 6= (πππ∗,θθθ ∗) of parameter vectors that are not obtained by permuting each other.
For instance, let Y be a random variable that follows a mixture distribution of K = 2 Binomial
distributions with N = 2 Bernoulli trials with success probabilities θ1, θ2 as in Definition 2.2.2.
We have that

P(Y = 0|π,θθθ) = π(1−θ1)
2 +(1−π)(1−θ2)

2, (2.8)

P(Y = 1|π,θθθ) = 2πθ1(1−θ1)+2(1−π)θ2(1−θ2), (2.9)

P(Y = 2|π,θθθ) = πθ
2
1 +(1−π)θ 2

2 . (2.10)

Because the probabilities in Equations (2.8), (2.9) and (2.10) have to sum one, we
have only two linearly independent equations to identify the three parameters (π,θ1,θ2) of
the model. In this case, there will be parameters vectors (π,θ1,θ2) 6= (π∗,θ ∗1 ,θ

∗
2 ) that satisfy

the Equations (2.8), (2.9) and (2.10) and are not written as a permutation of each other, which
implies non-identifiability.

From this example it is possible to see that the number of Bernoulli trials and the number
of components are directly related to identifiability of this model. According to Teicher (1963), a
necessary and sufficient condition to identifiability in mixture of Binomial distributions is that
N ≥ 2K−1, where N is the number of Bernoulli trials and K is the number of components of
the mixture. For more details and references about mixture of non-normal regression models see
Mclachlan and Peel (2000) and Frühwirth-Schnatter (2006).

2.2.1.1 The Likelihood Function

Considering independence among Y1, · · · ,Yn and the fact that the random sample Y1, · · · ,Yn

is not identically distributed, the likelihood function can be written as

f (y|θθθ ,πππ) =
n

∏
j=1

[
K

∑
i=1

πi f (y j|θi j)

]
. (2.11)
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As seen in Ribeiro, Saraiva and Suzuki (2019), the product-of-sums form in (2.11) is
not analytically tractable from a maximum likelihood estimation point of view. Similarly, in the
Bayesian estimation framework, Dempster, Laird and Rubin (1977) observed that a finite mixture
model can always be written as an incomplete-data problem by introducing latent variables in the
model, favoring the use of the MCMC algorithms. Moreover, from the computational point of
view the likelihood in (2.11) is not feasible for n or K large, since for each observation y j there
is a sum of K elements. Thus, latent variables are introduced in the model so that it is possible
to rewrite the likelihood function in such way that we can facilitate the estimation process and
classify the data into the components.

Let the discrete random variables S1, · · · ,Sn such that P(S j = i) = πi for all j = 1, · · · ,n
and i = 1, · · · ,K. Conditioning in S j = i, Yj has density f (y j|θi j). In other words, S j = i indicates
that the observation y j comes from the component i and that occurs with probability πi. Given
the probability distribution function of each S j,

P(S j = i|πππ) =
K

∏
i=1

π
1S j (i)
i , (2.12)

where 1S j(i) = 1 if S j = i or 0 otherwise, and rewriting the conditional probability distribution
function of Yj as

f (y j|S j = i,θθθ) =
K

∏
i=1

[
f (y j|θi j)

]1S j (i) , (2.13)

where 1S j(i) = 1 if S j = i or 0 otherwise. We rewrite the likelihood function as follows

f (y,S|θθθ ,πππ) =
n

∏
j=1

f (y j,S j|θθθ ,πππ)

=
n

∏
j=1

f (y j|S j = i,θθθ)P(S j = i|πππ)

=
n

∏
j=1

K

∏
i=1

[
f (y j|θi j)πi

]1S j (i)

=
K

∏
i=1

π
ni
i ∏

j:S j=1
f (y j|θ1 j)×·· ·× ∏

j:S j=K
f (y j|θK j), (2.14)

where ni = ∑
n
j=11S j(i) is the size of component i. This likelihood is frequently mentioned as the

augmented likelihood, since it considers the non-observed data.

The likelihood function written as a product-of-product form in (2.14) makes it easier
to identify the posterior distribution and decreases the computational burden in the simulation.
However, for the logistic mixture model case, the likelihood is still not analytically convenient.
To see that, consider Y1, · · · ,Yn a random sample from a mixture of logistic model as in Definition
2.2.2. According to (2.14), the likelihood function is written as
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f (y,S|βββ ,πππ) =
K

∏
i=1

π
ni
i ∏

j:S j=1

[(
N
y j

)
θ

y j
1 j(1−θ1 j)

N−y j

]
×·· ·× ∏

j:S j=K

[(
N
y j

)
θ

y j
K j(1−θK j)

N−y j

]

=

[
K

∏
i=1

π
ni
i

]
∏

j:S j=1

(
N
y j

)
(exp{xᵀj βββ 1})y j

(1+ exp{xᵀj βββ 1})N ×·· · (2.15)

× ∏
j:S j=K

(
N
y j

)
(exp{xᵀj βββ K})y j

(1+ exp{xᵀj βββ K})N ·

The exponential factors in (2.15) represents the likelihood function of each mixture
component. Note that, considering this likelihood, there is no conjugate prior distribution
available for βββ i and it may be hard to sample from its conditional posterior distribution, since it
will not belong to a well-known distribution family. To simplify the sampling process, a data
augmentation strategy is proposed in the next section. When implementing this strategy, we
can rewrite the likelihood in a way that we obtain a well-known conditional posterior for the
regression coefficients, which is a interesting result for the Bayesian estimation since it can be
carried out via Gibbs sampling.
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CHAPTER

3
DATA AUGMENTATION WITH

PÓLYA-GAMMA DISTRIBUTION

In this section, we propose an extension of the data augmentation method introduced by
Polson, Scott and Windle (2013) to a mixture of logistic regressions. As we will see later, this
method has a differential advantage of allowing to rewrite the likelihood in a way that we can
obtain a well-known conditional posterior distribution for regression coefficients and then apply
classical MCMC methods such as the Gibbs Sampling for estimating the model. Moreover the
method is exact, that is, rather than sampling from an approximation of the posterior obtained
from an approximation of the logistic function, we sample from the correct posterior. This
approach is only possible due the main result presented in this section.

3.1 The Pólya-Gamma Distribution
In this section we define the Pólya-Gamma distribution and present some properties.

More details can be seen in Polson, Scott and Windle (2013).

Definition 3.1.1. A random variable X assuming values in Ω = R+ follows a Pólya-Gamma
distribution with parameters b > 0 and c ∈ R, denoted by X ∼ PG(b,c), if

X D
=

1
2π2

∞

∑
m=1

gm

(m−1/2)2 + c2/4π2 , (3.1)

where gm ∼ Gamma(b,1), m = 1,2, · · · , are independent random variables.

In other words, a random variable X has Pólya-Gamma distribution if its distribution
is the same as the distribution of the sum in the left side in (3.1). The family of Pólya-Gamma
distribution can be seen as a class of infinite convolutions of Gamma distributions. A particular
case is when b= 1 and c= 0, where we obtain an infinite convolution of exponential distributions,
known as Pólya distribution and reported by Barndorff-Nielsen, Kent and Sørensen (1982). In



32 Chapter 3. Data Augmentation with Pólya-Gamma Distribution

case b > 0 we obtain an infinite convolution of Gamma distributions, giving rise to the name
Pólya-Gamma distribution.

Before presenting the main result involving Pólya-Gamma distribution, we present an
important object to characterize the Pólya-Gamma distribution, its Laplace transform.

Proposition 3.1.1. Let X be a random variable distributed as the Pólya-Gamma distribution with
parameters b > 0 and c = 0. Its Laplace transform is given by

E [exp(−Xt)] = cosh−b (
√

t/2), (3.2)

for t > 0 and the function cosh(·) denotes the hyperbolic cosine function.

Proof. Let X ∼ PG(b,0). By Definition 3.1.1 we have that

X D
=

1
2π2

∞

∑
m=1

gm

(m−1/2)2 , (3.3)

where gm ∼ Gamma(b,1) for m = 1,2, . . . . Defining cm =
1

2π2(m−1/2)2 and considering that

gm , m = 1,2, . . . are independent we have that

E [exp(−Xt)] = E

[
exp

{
∞

∑
m=1
−cmgmt

}]
= E

[
∞

∏
m=1

exp{−cmgmt}
]
=

∞

∏
m=1

E [exp{−cmgmt}] .(3.4)

which is the product of Laplace transforms of a Gamma distributions.

From the Laplace transform of Gamma distribution and the Weierstrass Factorization
theorem we rewrite (3.4) as

E [exp(−Xt)] =
∞

∏
m=1

E [exp{−cmgmt}] =
∞

∏
m=1

(1+ cmt)−b =
∞

∏
m=1

(
1+

t/2
π2(m−1/2)2

)−b

= cosh−b (
√

t/2).

The derivation of the Laplace transform for the general case where b > 0 and c ∈ R is
analogous. Polson, Scott and Windle (2013) and Windle (2013) provide a probability density
function for PG(b,c) that arises through the exponential tilting of the PG(b,0) density, obtaining

f (x|b,c) =
exp
{
−xc2/2

}
f (x|b,0)∫

∞

0 exp{−xc2/2} f (x|b,0)dx
=

exp
{
−xc2/2

}
f (x|b,0)

E [exp{−Xc2/2}]
, (3.5)

where the expected value is taken with respect to X ∼ PG(b,0) and f (x|b,0) denotes its density
probability function.

Polson, Scott and Windle (2013) also derived some good properties of the Pólya-Gamma
distribution. The most important one is that all finite moments of the Pólya-Gamma random
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variable are available in a closed form, making it possible to calculate the expectation and
variance directly. Next, we will present the main result that will enable to rewrite the likelihood
of the model.

Theorem 3.1.1. Let f (x|b,0) be the probability density function of the Pólya-Gamma distribu-
tion with parameters b > 0 and c = 0. The following identity holds for all a ∈ R

(exp{η})a

(1+ exp{η})b = 2−b exp{kη}
∫

∞

0
exp
{
−xη

2/2
}

f (x|b,0)dx (3.6)

where k = a−b/2 and η ∈ R.

Proof. To see the identity in (3.6), consider a = k+b/2. Replacing a in the left side of the (3.6)
we obtain

(exp{η})a

(1+ exp{η})b =
(exp{η})k+b/2

(1+ exp{η})b =
(exp{η})k(exp{η})b/2

(1+ exp{η})b =
(exp{η})k(

1+ exp{η}
exp{η/2}

)b ·

Note however that,(
1+ exp{η}
exp{η/2}

)b

=

(
exp{η}

exp{η/2}
+

1
exp{η/2}

)b

=(exp{η/2}+ exp{−η/2})b =(2cosh(η/2))b .

Thus,

(exp{η})a

(1+ exp{η})b =
(exp{η})k

(2cosh(η/2))b = 2−b(exp{η})k.cosh−b (η/2).

Applying the Proposition 3.1.1, we conclude that

(exp{η})a

(1+ exp{η})b = 2−b(exp{η})kE
[
exp
{
−Xη

2/2
}]

= 2−b exp{kη}
∫

∞

0
exp
{
−xη

2/2
}

f (x|b,0)dx.

Theorem 3.1.1 provide us a different way to express the likelihood function of a logistic
regression model, which is exactly the left side of Equation (3.6). In this next section we apply
Theorem 3.1.1 in the likelihood of a logistic regression mixture model.

3.2 The Data Augmentation Strategy

In order to rewrite the likelihood function, and thus the conditional posterior distribution,
we will extend and apply the data augmentation strategy presented in Polson, Scott and Windle
(2013) to mixture of logistic regressions.
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Consider Y1, · · · ,Yn a random sample from a mixture of K Binomial distributions with N

Bernoulli trials and success probability θi j for i = 1, · · · ,K and j = 1, · · · ,n . In the regression
context, we assume that for each response variable Yj there is a vector of covariates x j and a
vector of parameters βββ i so that the success probability θi j can be written through the inverse of
the logistic function as

θi j =
exp{xᵀj βββ i}

1+ exp{xᵀj βββ i}
(3.7)

for each component i, i = 1, · · · ,K. Then, we say that each Yj is distributed as a mixture of
logistic regression models whose the likelihood, according to the Section 2.2.1.1, is given by

f (y|S,βββ ,πππ) ∝

[
K

∏
i=1

π
ni
i

]
∏

j:S j=1

(exp{xᵀj βββ 1})y j

(1+ exp{xᵀj βββ 1})N ×·· ·× ∏
j:S j=K

(exp{xᵀj βββ k})y j

(1+ exp{xᵀj βββ K})N (3.8)

where ni is the number of response variables in the component i or, in other words, the size of
the component i, for i = 1, · · · ,K. Then we associate, for each Yj in the component i, an auxiliary
variable Wj that follows a Pólya-Gamma distribution with parameters b j = N and c j = 0 so that
we rewrite the likelihood applying the Theorem 3.1.1 to each product in (3.8) considering b = N,
a = y j and η = xᵀj βββ i for i = 1, · · · ,K and j = 1, · · · ,n.

Considering the Theorem 3.1.1 , for a fixed component i, we have that

f (yi,wi|S,βββ i,πi) ∝ ∏
j:S j=i

[
(exp{xᵀj βββ i})y j

(1+ exp{xᵀj βββ i})N

]
= 2−Nni ∏

j:S j=i

[
exp{(y j−N/2)xᵀj βββ i}exp{−w j(x

ᵀ
j βββ i)

2/2} f (w j|N,0)
]

∝ ∏
j:S j=i

exp{(y j−N/2)xᵀj βββ i}exp{−w j(x
ᵀ
j βββ i)

2/2} f (w j|N,0)

= ∏
j:S j=i

exp{(y j−N/2)xᵀj βββ i−w j(x
ᵀ
j βββ i)

2/2} f (w j|N,0)

= ∏
j:S j=i

exp
{
−

w j

2

(
(xᵀj βββ i)

2−2
(

y j−N/2

w j

)
xᵀj βββ i

)}
f (w j|N,0)

= ∏
j:S j=i

exp

{
−

w j

2

(
y j−N/2

w j
−xᵀj βββ i

)2
}

exp

{
w j

2

(
y j−N/2

w j

)2
}

f (w j|N,0)

= exp
{
−1

2
(zi−Xiβββ i)

ᵀWi (zi−Xiβββ i)

}
exp
{

1
2

zi
ᵀWizi

}
∏

j:S j=i
f (w j|N,0), (3.9)

where zᵀi =
(
(yi1−N/2)

wi1
, · · · , (yini−N/2)

wini

)
, the matrix Xi is the design matrix for the component i

and the matrix Wi is a diagonal matrix containing the Pólya-Gamma random variables associated
to the response variables in the component i. Note that, when applying the Theorem 3.1.1, we did
not integrate out the Pólya-Gamma variables as in (3.6), since the goal is to rewrite the likelihood
as a function of w as well.
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Through Equations (3.8) and (3.9) we rewrite the likelihood of the mixture as

f (y,w|S,βββ ,πππ) ∝

K

∏
i=1

π
ni
i

[
exp
{
−1

2
(zi−Xiβββ i)

ᵀWi(zi−Xiβββ i)

}
× exp

{
1
2

zi
ᵀWizi

}
∏

j:S j=i
f (w j|N,0)

]
. (3.10)

The main consequence is that when joining the likelihood in (3.10) with the Normal
prior of the regression coefficients, there is conjugation, since the second term in (3.10) does
not depend on βββ i. It means that we can apply the classical MCMC algorithm Gibbs Sampling
for sampling from the posterior distribution of the regression coefficients. This conjugation also
allows us to calculate analytically the marginal likelihood which simplifies and make the variable
selection efficient, as we will see later.

The derivation of the Equation (3.9) reveals us one way of updating the Pólya-Gamma
variables at the MCMC iterations. The conditional posterior distribution of Wj, for j = 1, · · · ,n,
can be found using the Equation (3.9) by considering the terms that do not depends on w j as a
constant, obtaining the conditional posterior distribution of Wj as

p(w j|·) ∝ exp{
(
y j−N/2

)
xᵀj βββ i}exp{−w j(x

ᵀ
j βββ i)

2/2} f (w j|N,0)

∝ exp{−w j(x
ᵀ
j βββ i)

2/2} f (w j|N,0), (3.11)

which is proportional to the density of PG(b,c) in Equation (3.5) with c = xᵀj βββ i and b = N. Thus,
we can consider that

Wj|· ∼ PG(N,xᵀj βββ i). (3.12)

The estimation and variable selection for a mixture of logistic regressions is described in
the next section, as well as the choice of prior distributions of the regression coefficients, which
plays an important role to the variable selection.





37

CHAPTER

4
BAYESIAN ESTIMATION AND VARIABLE

SELECTION

Mixture models are sometimes referred as the model where "the number of things you
do not know is one of the things you do not know", since in most applications, as well as the
parameters, the number of components K is unknown. The simplest case is when both number of
components K and the allocation vector S = (S1, · · · ,Sn) is known. In this case, the only concern
is the estimation of the regression coefficients of each component and the weights. This can done
by simply allocating the observations according to S and then applying the Bayesian estimation
for a logistic regression in each component individually.

For the case where the number K of components is known but the allocation vector
S = (S1, · · · ,Sn) is unknown, the estimation process is no longer so straightforward. In this
chapter we describe the Bayesian estimation process of a mixture model of logistic regressions
as well as the Bayesian variable selection approach considered in this work. The Bayesian
estimation process is discussed considering the full model, without selecting variables. The
variable selection will be discussed further, with respect to the prior distributions of the regression
coefficients that will be considered for the selection of the variables.

4.1 Bayesian Estimation of the Full Model
The estimation of a mixture model from the Bayesian point of view requires specification

of the prior distributions to the parameters. The prior distribution usually assigned to the mixing
probabilities is the Dirichlet distribution, that is, we assume

πππ ∼ Dirichlet(α1, · · · ,αK) (4.1)

so that the posterior distribution, according to Appendix A.1, is given by

πππ|S∼ Dirichlet(n1 +α1, · · · ,nK +αK) (4.2)
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where ni is the size of the component i for i = 1, · · · ,K, and α1, · · · ,αk are known parameters.

The posterior distribution for the allocation variables S1, · · · ,Sn is derived through the
Bayes theorem, computing the probability of S j = i given that we observed the event Yj = y j and
the regression coefficients βββ i as

P(S j = i|y j,πππ,βββ i) =
f (y j|πππ,βββ i)P(S j = i|πππ)

∑
K
h=1 f (y j|πππ,βββ h)P(S j = h|πππ)

=
f (y j|πππ,βββ i)πi

∑
K
h=1 f (y j|πππ,βββ h)πh

, (4.3)

for j = 1, · · · ,n and i = 1, · · · ,K.

For the regression coefficients in each component we consider a normal prior distribution
as

βββ i ∼ N(µµµ i,Σi), (4.4)

where µµµ i and Σi are the vector of means and variance-covariance matrix of the regression
coefficients in the component i. The posterior distribution, according to the Appendix A.2, is
also a normal distribution, that is,

βββ i|· ∼ N (mi,Vi) (4.5)

where Vi =
(
Σ
−1
i +Xᵀ

i WiXi
)−1

and mi = V
(
Xᵀ

i Wizi
)
.

Note that the update of the regression coefficients in each component depends on the
update of the Pólya-Gamma latent variables added in the likelihood. This update is done in two
steps, first sampling from Pólya-Gamma distribution and then sampling from the distribution of
the regression coefficients, as in the following scheme

Wj|· ∼ PG(N,xᵀj βββ i), (4.6)

βββ i|· ∼ N (mi,Vi) .

It is important to make it clear that the data augmentation strategy with Pólya-Gamma
distribution is applied only to the sampling process of the regression coefficients of each com-
ponent. So that for sampling from the posterior distributions in (4.6) a Gibbs sampling can be
applied. Details are presented in Section 4.1.1.

The estimation of the number of components for a mixture model can be done either
through model selection criteria or simultaneously with the other parameters, assigning a prior
distribution to K. In this work, the estimation of the number of components will be done through
the model selection criteria presented in the Section 4.1.2.

4.1.1 Gibbs sampling to Estimate the Full Model

In this section we describe the Gibbs sampling algorithm for Bayesian estimation of the
full model. The Gibbs sampling algorithm works by successively sampling the parameters from
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their posterior distribution in (4.2), (4.3) and (4.6) a large enough number of times, obtaining a
posterior sample that will contain all the relevant information about the regression coefficients,
the weights and the allocation variables. For sampling from the Pólya-Gamma distribution,
Polson, Scott and Windle (2013) provides a sampling method that is implemented in the R
package BayesLogit.

The Gibbs sampling applied in this work is described in the following steps,

Step 1: Initialize the weights by sampling from the prior distribution πππ(0)∼Dirichlet(α1, · · · ,αK);

Step 2: Initialize the allocation variables S(0) by sampling from its prior distribution S(0)j ∼
Discrete(πππ(0)) for j = 1, · · · ,n;

Step 3: Initialize each βββ
(0)
i by sampling βββ

(0)
i ∼ N(µµµ i,Σi) for i = 1, · · · ,K;

Step 4: At each iteration l, after allocating each observation according to S(l−1), we update
the Pólya-Gamma latent variables and the regression coefficients of each component i by
sampling

W (l)
j |· ∼ PG(N,xᵀj βββ

(l−1)
i ), (4.7)

βββ
(l)
i |· ∼ N (mi,Vi) ; (4.8)

Step 5: Update the weights πππ(l) and the allocation variables S(l) by sampling from

πππ
(l)|S(l−1) ∼ Dirichlet(n1 +α1, · · · ,nK +αK) (4.9)

and from

P(S(l)j = i|y j,πππ
(l),βββ

(l)
i ) =

f (y j|πππ(l),βββ
(l)
i )π

(l)
i

∑
K
h=1 f (y j|πππ(l),βββ

(l)
h )π

(l)
h

(4.10)

and return to the Step 4.

After obtaining the posterior sample of πππ and each βββ i, the point estimates can be obtained
by taking the mean of the posterior sample, which is the optimal Bayesian estimator with respect
to the quadratic loss function. From the I iterations, we discard the first B iterations as burn-in
period and consider J jumps between two recorded iterations to obtain a non-correlated sample.

So that the final size of each posterior sample is I f inal =
(I−B)

J
. Thus, the point estimates of

π1, · · · ,πK are computed as

π̂i =
1

I f inal

I f inal

∑
h=1

π
(h)
i . (4.11)

The same idea is applied to compute the point estimates of each βββ i. For i = 1, · · · ,K and
t = 1, · · · , p, the point estimate of βit is given by

β̂it =
1

I f inal

I f inal

∑
h=1

β
(h)
it . (4.12)
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From the posterior sample of the allocation variables S1, · · · ,Sn we can compute a point
estimate of the probability that an observation y j belongs to each component and use them
to classification. Let Ni j be the number of times that y j was allocated to the component i for
i = 1, · · · ,K. For each y j, the point estimate of the probability that y j belongs to component i is
given by

P̂(S j = i|·) =
Ni j

I f inal
· (4.13)

After obtaining the point estimates P̂(S j = i|·) for each y j, we use them to randomly classify y j

into the component i.

This summarization only works if we do not observe label switching problem in the
samples or if it was already corrected as we discuss below in Section 4.1.3.

4.1.2 Estimating the Number of Components

The Gibbs sampling algorithm previously presented consider that the number K of
components in the mixture is known. However, this is not a realistic situation. In this work, the
estimation of the number of components in the mixture will be done through Bayesian model
selection criteria, namely Deviance Information Criterion (DIC) proposed by Spiegelhalter et

al. (2014) and Extended Deviance Information Criterion (EBIC) proposed by Chen and Chen
(2008). Both of them are composed by two terms, the first accounts for goodness-of-fit and the
second penalizes the complexity of the model, through its number of parameters.

Let θ̂θθ = (π̂ππ, β̂ββ ) be the Bayesian point estimates of the parameters, Ŝ the predicted
allocation variables and dK the number of parameters of the model. Considering the Deviance
function given by D(θθθ) =−2log( f (y|S,θθθ)), the DIC and EBIC criterion are calculated as

DIC = D(θ̂θθ)+2pD (4.14)

and
EBIC = D̄(θθθ)+dK log(n), (4.15)

where D̄(θθθ) is the average of the Deviance function calculated in the parameters θθθ and S of each
iteration of the final chain and pD is a measure of the effective number of parameters, that can be
estimated from the data by

p̂D = D̄(θθθ)−D(θ̂θθ). (4.16)

For selecting the appropriate model, we fit the mixture model for K ∈ {1,2, · · · ,Kmax}
and compute the criteria previously presented for each one of them. The model chosen is the one
that minimize the criteria.

4.1.3 Label Switching Problem

One of the challenges when dealing with Bayesian estimation of mixture models is
the label switching problem. To understand the root of this problem, consider the incomplete
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likelihood of the model, given by

f (y|πππ,βββ ) =
n

∏
j=1

π1 f (y j|βββ 1)+ · · ·+πK f (y j|βββ K) , (4.17)

where βββ
ᵀ = (βββ 1, · · · ,βββ K) and πππ = (π1, · · · ,πK). For each permutation ρ = (ρ1, · · · ,ρK) of

{1, · · · ,K}, it is possible to obtain new vectors βββ
ᵀ
ρ = (βββ ρ1

, · · · ,βββ ρK
) and πππρ = (πρ1, · · · ,πρK),

obtained by permuting the original vector βββ and πππ through ρρρ , so that the likelihood in (4.17)
written under the permutation in βββ ρ and in πππρ will be the same as under βββ and πππ . To see that,
consider K = 3 and ρ = (1,3,2). In this case, βββ

ᵀ
ρ = (βββ 1,βββ 3,βββ 2) and πππρ = (π1,π3,π2), then

f (y|πππρ ,βββ ρ) =
n

∏
j=1

[
π1 f (y j|βββ 1)+π3 f (y j|βββ 3)+π2 f (y j|βββ 2)

]
=

n

∏
j=1

[
π1 f (y j|βββ 1)+π2 f (y j|βββ 2)+π3 f (y j|βββ 3)

]
(4.18)

= f (y|πππ,βββ ).

Moreover, given the allocation S = (S1, · · · ,Sn) of observations, the complete likelihood is
invariant when permuting the components as well. In the same way, if there is no prior knowledge
about the difference among the components, the prior assigned to the components parameters
will be the same and consequently, the prior distribution will also be invariant when permuting
the label of the components. Hence, the posterior distribution will inherit the invariance of the
likelihood function and prior distribution.

During the MCMC draws, the labels of the components can permute many times over
iterations and due to the invariance discussed above, the final MCMC sample obtained will
not be useful to make inference about the components. This characterizes the label switching
problem. It is worth to note that the label switching problem is also an identifiability problem,
since different vectors of parameters (permutations of βββ and πππ) may leads to the same model.

In order to correct the whole MCMC sample from the label switching problem, an
appropriate permutation must to be applied to each MCMC draw. Many algorithms have been
proposed in the literature to correct label switching. The R package label.switching intro-
duced by Papastamoulis (2016) provides many of them. In this work, the Equivalence Classes
Representatives (ECR) algorithm, originally proposed by Papastamoulis and Iliopoulos (2010),
is applied. The ECR algorithm search for the permutation, for each MCMC iteration, that makes
its prediction of S as close as possible to the prediction of the first iteration excluding the burn in
period and jumps.

4.2 Bayesian Variable Selection
Consider the observations (y j,x j), for j = 1, · · · ,n, from a population where each Yj

follows a mixture of logistic regressions given in Definition 2.2.2, where x j is the vector of
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covariates associated to y j. Fixing the number of components K, let yi and Xi be the vector of
response variables and design matrix for the observations allocated in component i. The variable
selection problem is to select, among the covariates x1, · · · ,xp, a subset {x∗1, · · · ,x∗d} of relevant
covariates to explain the success probability in each component of the mixture.

We start by introducing indicator latent variables γγγ
ᵀ
i = (1,γi1, · · · ,γip) associated to the

parameter vector βββ i in the component i, so that γit = 1 if βit 6= 0, and γit = 0 if βit = 0 for
t = 1, · · · , p. In other words, γit = 1 indicates that the covariate xt is relevant for observations in
component i.

For each component, a natural choice of prior distribution for γit is the Bernoulli distribu-
tion. Considering independence, the prior distribution of the vector γγγ i is given by

p(γγγ i) =
p

∏
t=1

pγit
it (1− pit)

1−γit . (4.19)

The main goal is to obtain the marginal posterior of each γγγ i that will contain all the relevant
information to select the best covariates.

The update of the indicator latent variable of vector γγγ i is done through the posterior
probability of accepting a covariate as relevant. This probability is calculated considering the
marginalized likelihood function, integrating out βββ γi

, that represents the vector of regression
coefficients with γit = 1 or non-zero coefficients (see Appendix A.3). Then, the posterior prob-
ability of accepting a covariate as relevant does not depend on the value of its coefficient. For
each γit we calculate the posterior probability of γit = 1 and γit = 0 as

P(γit = 1|y,S,πππ,w,γγγ i(−t)) ∝ f (yi|Si,wi,πππ,γγγ i)pit (4.20)

and

P(γit = 0|y,S,πππ,w,γγγ i(−t)) ∝ f (yi|Si,wi,πππ,γγγ i)(1− pit), (4.21)

where γγγ
ᵀ
i(−t) = (1,γi1, · · · ,γit−1,γit+1, · · · ,γip). Under this specification, we update only those

regression coefficients βit for which γit = 1 at each MCMC iteration, because βit = 0 by definition
when γit = 0. This method has been widely applied in Bayesian variable selection (GEORGE;
MCCULLOCH, 1997; LEE; CHEN; WU, 2016; CAO; LEE; HUANG, 2020). Figure 3 shows
an example of how we update the regression coefficients at each iteration considering their
indicators. The blue balls represent those regression coefficients that have indicator 1 and thus
are updated. The white balls are those regression coefficients with null indicator and thus they
are set to zero.
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Figure 3 – Updating scheme of the regression coefficients. The coefficients that have indicator equals to 0
are set to be zero in the white balls.

To complete the specification of the variable selection process, it remains to specify the
prior distribution of βββ γi

|γγγ i. This choice also plays an important role in the selection. The prior
distributions considered in this work are discussed in the following sections.

So far, we have not yet discussed the inclusion of each intercept term in the variable
selection, which is usually "excluded" from the model by centralizing the covariates. Here,
without loss of generality, we will treat the intercept term as a regression coefficient of a
covariate x0 that is always presents in the model, and the selection will be done only for the
covariates xt with t = 1, · · · , p.

4.2.1 Spike and Slab Prior

The first variable selection approach considered in this work is the Stochastic Search
Variable Selection (SSVS) method. First introduced by Mitchell and Beauchamp (1988) and fur-
ther improved by George and McCulloch (1993), George_ and McCulloch (1996) and Ishwaran
and Rao (2005), the SSVS method aims to stochastically search for the best set of covariates
through a mixture prior with a spike and slab components. The spike component aims to shrink
those coefficients βit with small effect in the model, and has its mass concentrated at zero. The
slab component, on the other hand, aims to sample plausible values for the coefficients with
significant effect to the model, having its mass spread over a wide range of value.

There are basically two types of spike and slab prior proposed in the literature. The one
presented by George and McCulloch (1993), in which the spike component follows a normal
distribution centred at zero, that is

p(βit |γit) = (1− γit)N(0,τ2
i )+ γitN(0,σ2

i ), (4.22)
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where τ2
i must be small and σ2

i must be large, since when γit = 0 then βit is likely to be close to
zero and if γit = 1, a non-close to zero estimate would be more appropriate to the coefficient βit .
And the one presented by Kuo and Mallick (1998), in which the spike component is a point of
mass at zero, that is,

p(βit |γit) = (1− γit)1(βit = 0)+ γitN(0,σ2
i ), (4.23)

where σ2
i is usually large.

In this work we consider the spike and slab prior with point of mass at zero, given
by Equation (4.23). However, when sampling only the regression coefficients with γit = 1, as
previously commented, and assuming the spike and slab prior distribution in Equation (4.23) for
the regression coefficients, it is equivalent to assuming that

βββ γi
|γγγ i ∼ N(0,σ2

i I), (4.24)

where βββ γi
represents the vector of regression coefficients with γit = 1 and σ2

i is the variance of
the regression coefficients in the component i.

Thus, considering the likelihood in (3.10), the conditional posterior distribution of βββ γi
is

calculated as in Appendix A.2 with Σh = σ2
i I and µµµh = 000, obtaining

p(βββ γi
|·) ∝ exp

{
−1

2

[(
βββ γi
−m

)ᵀ
V−1

(
βββ γi
−m

)]}
(4.25)

∝ Normal (m,V) ,

where Xγi contains only the covariates with γit = 1, V =
((

σ2
i I
)−1

+Xᵀ
γiWiXγi

)−1
and m =

V
(
Xᵀ

γiWizi
)
.

In general, the hyperparameter σ2
i is chosen as a large value in order to obtain a vague

prior. Moreover, it is also common to assign a prior distribution to σ2
i , which is usually the

Gamma or Inverse Gamma distribution. For the spike and slab prior in Equation (4.22), the
choice of the hyperparameters τi and σi is discussed with details in George and McCulloch
(1993).

4.2.2 g-Prior

The last choice of prior distribution for the regression coefficients considered in this
work is the g-prior. First introduced by Zellner (1986), the g-prior for each βββ γi

is given by

βββ γi
|γγγ i ∼ N(0,giσ

2
i
(
Xᵀ

γiXγi

)−1
) (4.26)

where gi is a constant and Xγi is the design matrix containing only those covariates xt in which
γit = 1 for t = 1, · · · , p, that is, the relevant covariates for the model in the component i.

A very common problem when using the Zellner’s g-prior is the singularity of the
matrix (Xᵀ

γiXγi). In models where either the number of observations is lower than the number of
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covariates or the covariates are correlated, the matrix (Xᵀ
γiXγi) is singular. Following Baragatti

and Pommeret (2012), one way to avoid this problem is to add a ridge hyperparameter λ > 0 so
that the matrix (Xᵀ

γiXγi) is replaced by (Xᵀ
γiXγi +λ I), and the prior considered to βββ γi

is given by

βββ γi
|γγγ i ∼ N(0,giσ

2
i
(
Xᵀ

γiXγi +λ I
)−1

). (4.27)

Considering the likelihood given by (3.10) and the g-prior in (4.27), the conditional poste-
rior distribution of βββ γi

is calculated as in Appendix A.2 considering ΣΣΣh =
(

giσ
2
i
(
Xᵀ

γiXγi +λ I
)−1
)

and µµµh = 0, obtaining

p(βββ γi
|·) ∝ exp

{
−1

2

[(
βββ γi
−m

)ᵀ
V−1

(
βββ γi
−m

)]}
(4.28)

∝ Normal (m,V)

where V =

((
giσ

2
i
(
Xᵀ

γiXγi +λ I
)−1
)−1

+Xᵀ
γiWiXγi

)−1

and m = V
(
Xᵀ

γiWizi
)
. To sample from

the posterior in (4.28) the Gibbs sampling algorithm is applied.

The choice of the hyperparameter gi in the g-prior plays an important role in the variable
selection. Liang et al. (2008) provides a review of the choices of gi in Bayesian variable selection.
These choices include gi ∈ {p2,ni,max(ni, p2)}. For the mixture model case, simulations studies
in Lee, Chen and Wu (2016) suggest to take gi = ni when p/n is less than 3 and gi = 100 · p ·K/n

otherwise. In the other hand, Gupta and Ibrahim (2007) suggested taking gi above 100 to ensure
a vague prior. In both works, a Inverse Gamma prior was assign to the hyperparameter σ2

i . The
possible choices to the ridge hyperparameter λ can be found in Baragatti and Pommeret (2012),
that suggests λ = 1/p.

4.2.3 Gibbs sampling to Variable Selection

After rewriting the likelihood as in (3.10) and combining with the priors presented in the
previous sections, a Gibbs sampling can be applied to sample from the posterior distributions
in (4.25) and (4.28). The Gibbs sampling for variable selection follows the same idea of the
algorithm presented in the Section 4.1.1, now including the sampling of the indicator latent
variables γit . The Gibbs sampling algorithm to variable selection is described below.

Step 1: Initialize the weights by sampling from the prior distribution πππ(0)∼Dirichlet(α1, · · · ,αK);

Step 2: Initialize the allocation variables S(0) by sampling from its prior distribution S(0)j ∼
Discrete(πππ(0)) for j = 1, · · · ,n;

Step 3: Initialize the indicator variables γγγ
(0)
i and then each βββ

(0)
γi

by sampling βββ
(0)
γi
∼ N(µµµ i,Σi)

and Pólya-gamma variables Wi for i = 1, · · · ,K;
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Step 4: At each iteration l, after allocating each observation according to S(l−1), for t = 1, · · · , p,
we update the Pólya-Gamma latent variables by sampling

W (l)
j |· ∼ PG(N,xᵀj βββ

(l−1)
γi

); (4.29)

Step 5: Update the indicator variables γit sampling from a Bernoulli distribution with success
probability given by the posterior probability P(γ(l)it = 1|y,S(l−1),πππ(l−1),w(l),γγγ

(l−1)
i(−t) ) of

keeping the covariate xt in the model of component i;

Step 6 Update the regression coefficients with γ
(l)
it = 1 of each component i by sampling

βββ
(l)
γi
|· ∼ N (mi,Vi) ; (4.30)

Step 7: Update the weights πππ(l) and the allocation variables S(l) by sampling from

πππ
(l)|S(l−1) ∼ Dirichlet(n1 +α1, · · · ,nK +αK) (4.31)

and from

P(S(l)j = i|y j,πππ
(l),βββ (l)

γi
) =

f (y j|πππ(l),βββ (l)
γi
)π

(l)
i

∑
K
h=1 f (y j|πππ(l),βββ (l)

γh
)π

(l)
h

, (4.32)

and then return to the Step 4.

After obtaining the posterior sample of the indicator variables γγγ i of each component
i, i = 1, · · · ,K, we select the relevant covariates based on their posterior inclusion probability.
From the I iterations, we discard the first B iterations as burn-in period and consider J jumps
between two recorded iterations to obtain a non-correlated sample. So that the final size of each

posterior sample is I f inal =
(I−B)

J
. The posterior inclusion probability is calculate as

P̂(γit = 1|·) = 1
I f inal

I f inal

∑
l=1

1(γ(l)it = 1), (4.33)

for i = 1, · · · ,K and t = 1, · · · , p. To finally select the important covariates, we adopt the Median
Probability Criterion (BARBIERI; BERGER, 2004), that classifies a covariate as relevant if
P̂(γit = 1|·)≥ 0.5.

Once the important covariates were selected, the point estimates of the regression co-
efficients associated to each selected covariate is calculated as in the Equation (4.12). In the
same way, the point estimates of the weights are calculated as in the Equation (4.11) and the
classification of the observations follows the same idea as in the Equation (4.13). As mentioned
before, this summarization, including the selection of relevant variables, only works if we do not
observe label switching problem in the samples or if it was already corrected.
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CHAPTER

5
SIMULATION STUDY

This section illustrates the performance of the methods for selecting covariates in sim-
ulated data. The Section 5.1 is intended for the simulations of the methodology presented in
Section 4.1 for the full model without variable selection. However, we can discuss the relevance
of each covariate if the zero value is present or not in the associated regression coefficient’s
credibility interval. The second section brings simulation results of the variable selection method-
ology presented in the Section 4.2. The measures considered to assess the performance in each
case are discussed within each section.

5.1 Estimation of the Full Model

In the simulation of the full model, the goal is to assess the estimation of the number
of components, the goodness of fit through the obtained estimates, the classification rate and
convergence. This assessment will be done assuming different scenarios to the generated data, in
order to compare the performance of the methodology in each case.

For every scenario of simulation, we run 30 replications of data. In each replication,
we select the number of components fitting the model for K = 1,2, · · · ,4 and apply the model
selection criteria DIC and EBIC. For assess the goodness of fit, we calculate the bias of the
estimates at each replication. The Highest Posterior Density credibility interval (HPD) is also
considered. In this work, the HPD interval is calculated as the mean of the lower bound and
the upper bound of the HPD intervals obtained at each replication, except for the TCO defined
below.

Following Lee, Chen and Wu (2016), to measure the capacity of classifying observations,
the True Classification of Observations (TCO) rate was computed at each replication as

TCO =
number of correct classification of observations

the number of observations
.
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To verify convergence we analyse the log-likelihood of the model through the Geweke’s
convergence diagnostic (COWLES; CARLIN, 1996).

5.1.1 Scenario 1

In this first scenario, the data of the 30 replications was generated from a mixture of
Binomial distributions with N = 50 Bernoulli trials, K = 3 components and p = 5 covariates,
simulated from a standard normal distribution, with regression coefficients given by

βββ
ᵀ
1 = (1,−1,0,1,0),

βββ
ᵀ
2 = (−1,0,1,0,1) and (5.1)

βββ
ᵀ
3 = (−0.5,0,−0.5,0,−0.5).

The sample size considered was n = 200 and the weights were fixed as πππ = (1/3, 1/3, 1/3). Figure
4 shows how the smoothed histogram of a simulated data looks like under these definitions. In
this figure we see that the components are evident and reasonably separated from each other. For
each replicate we ran 65000 iterations with 5000 of burn-in period and jumps of 10.

Figure 4 – Smoothed histogram for a data simulated in scenario 1.

Figure 5 presents the boxplot of the Geweke’s diagnostic of convergence of the fitted
models with different number of components. The Geweke’s diagnostic indicates convergence
when its value is in the interval (−1.96,1.96). According to this convergence diagnostic we see
that some replications did not show convergence. However, this number is small, for K = 3 only



5.1. Estimation of the Full Model 49

one presents an outlier value. These replications were not considered to summarize the results
that will be presented posteriorly.
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Figure 5 – Scenario 1: Geweke’s convergence diagnostic of the 30 models.

For the estimation of the number of components, Table 1 presents the average of the
criterion DIC and EBIC for each value of K. The criterion EBIC selected the correct model in all
replications, whereas the DIC selected the correct model only in 28% of replications, tending to
select the model with K = 4. However, the models with K = 4 had a π̂4 very close to zero with
few observations allocated to it. Besides that, the estimates of the regression coefficients of the
model with K = 4 components reveal that probably the algorithm created a fourth component
only to allocate possible outliers. Based on these results, we selected the model with K = 3
components.

Table 1 – Scenario 1: Average of criteria to estimate K and their correct estimation percentage.

Criterion K = 1 K = 2 K = 3 K = 4 %
DIC 2727.75 1621.03 -833.83 -3683.03 28

EBIC 2754.53 1678.34 1501.14 1533.72 100

The estimates of the regression coefficients and the weights of the model with K = 3
are shown in Table 2 as well as its Highest Posterior Density credibility interval (HPD). These
estimates are the average of the obtained estimates at each replication. It is possible to see that
the proposed algorithm could estimates well the regression coefficient and the weights. Besides
that, the credibility intervals of the regression coefficients associated to covariates that had no
effect on the response variable contains the zero value, expect for β4 of the component 1.
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Table 2 – Scenario 1: Estimate, true value and credibility interval for the parameters of the full model.

Component 1 Component 2 Component 3

β0
0.78 (1) -0.99 (-1) -0.39 (-0.5)

(0.52,1.04) (-1.11,-0.88) (-0.59,-0.19)

β1
-1.03 (-1) 0.02 (0) -0.01 (0)

(-1.17,-0.89 ) (-0.09,0.14) (-0.13,0.10)

β2
0.01 (0) 1.01 (1) -0.49 (-0.5)

(-0.11,0.14) (0.90,1.13) (-0.60, 0.38)

β3
1.03 (1) 0.00 (0) 0.00 (0)

(0.90,1.17) (-0.11,0.11) (-0.12,0.11)

β4
-0.23 (0) 0.66 (1) -0.62 (-0.5)

(-0.46,-0.01) (0.25,1.09) (-0.80,-0.43)

π
0.33 (0.33) 0.33 (0.33) 0.34 (0.33)
(0.25, 0.40) (0.24, 0.40) (0.27, 0.44)

To better assess the goodness of fit we also analyze the bias of the estimates of the
regression coefficients. Figure 6 shows the boxplot of the biases obtained at each replication. It
is evident that the bias of the estimates are distributed very close to zero.
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Figure 6 – Scenario 1: Bias of the estimates of the model with K = 3 components in each replication.

The ability of the algorithm to cluster and classify observations was also investigated.
The median of the TCO was 74.5% with HPD interval of (10,82)%. It is not so close to 100%
because there is a large intersection between components 2 and 3 and smaller intersection
between components 2 and 1.
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From the results we conclude that the proposed algorithm had a good performance in
both estimating the regression coefficients, weights and classifying observations. Besides that,
only the model selection criterion EBIC identified the correct number of components.

5.1.2 Scenario 2

In this second scenario the goal is to investigate the performance of the algorithm to
estimate a mixture of logistic regression with similar regression coefficients. The data of the 30
replications was generated from a mixture of Binomial distributions with N = 50 Bernoulli trials,
K = 3 components and p = 5 covariates, simulated from a standard normal distribution, with
regression coefficients given by

βββ
ᵀ
1 = (1,−4,0,2,0),

βββ
ᵀ
2 = (−1,−3,0,1,0) and (5.2)

βββ
ᵀ
3 = (−1,4,0,−2,0).

The sample size considered was n = 200 and the weights were fixed as πππ = (0.3,0.4,0.3). Figure
7 shows how the smoothed histogram of a simulated data looks like under these definitions. Note
that the smoothed histogram of the data for each component has a very similar shape. For each
replicate we kept the number of iteration as 65000, with 5000 of burn-in period and jumps of 10.

Figure 7 – Smoothed histogram for a data simulated in scenario 2.

Figure 8 show the Geweke’s diagnostic of convergence of the models for each value
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of K. Again, the chain of few replications did not show convergence, and thus, they were not
considered to the results that will be shown later.
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Figure 8 – Scenario 2: Geweke’s convergence diagnostic of the replications of the models.

In the estimation of the number of components, the EBIC criterion selected the correct
model in 60% of the replications. In remaining replications, the criterion selected the model with
K = 2. The DIC criterion selected the correct model only in 30% of replications, selecting the
model with K = 4 components in 65% of the replications. But the models with K = 4 had a π̂4

very close to zero with few observations allocated to it. And also, the estimates of the regression
coefficients of the model with K = 4 components reveal that probably the algorithm created
a fourth component only to allocated possible outliers. The average of the criterion and their
correct estimation percentage are presented in Table 3. Based on these results, we selected the
model with K = 3.

Table 3 – Scenario 2: Average of criteria to estimate K and their correct estimation percentage.

Criterion K = 1 K = 2 K = 3 K = 4 %
DIC 7510.14 750.16 -12092.27 -19740.86 30

EBIC 7536.92 1296.19 1199.44 1241.84 60

The estimates of the regression coefficients and the weights considering K = 3 are shown
in Table 4. The algorithm had a good performance in estimating the regression coefficients,
except for a few estimates. In this case, some estimates of the regression coefficients associated
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to covariates with no effect in the model was not so close to zero as in the scenario previously
presented. However, their credibility intervals contains zero, expect for β4 of the component 2.

Table 4 – Scenario 2: Estimate, true value and credibility interval for the parameters of the full model.

Component 1 Component 2 Component 3

β0
0.49 (1) -0.99 (-1) -0.98 (-1)

(-0.27,1.25) (-1.16, -0.82) (-1.47,-0.50)

β1
-3.99 (-4) -3.03 (-3) 4.02 (4)

( -5.09, -2.90) (-3.30, -2.76) (3.58,4.47)

β2
-0.01 (0) -0.01 (0) -0.03 (0)

(-0.3,0.29) (-0.14, 0.12) (-0.23, 0.17)

β3
2.12 (2) 0.99 (1) -2.02 (-2)

(1.71,2.53) (0.81,1.18) (-2.28,-1.76)

β4
-0.55 (0) -0.63 (0) 0.00 (0)

(-1.35,0.25) (-0.96,-0.3) (-0.36, 0.36)

π
0.26 (0.3) 0.44 (0.4) 0.29 (0.3)

(0.17, 0.36) (0.34, 0.54) (0.26, 0.36)

The boxplot of the biases associated with fitted models models with K = 3 in Figure 9
shows that the bias is distributed close to zero, indicating a good fitting of the model.
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Figure 9 – Scenario 2: Bias of the estimates of the model with K = 3 components in each replication.

Finally, we analyze the capacity of classifying observations in this scenario. The median
of the TCO was 73.5% with HPD interval of (4,88)%.
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Estimating mixture of similar components can be challenging, since similar components
can make it difficult for the algorithm to identify the components and estimate their parameters.
The results presented reveal that the algorithm had a good performance in this case.

5.1.3 Scenario 3

In this third scenario the goal was to investigate the performance of the algorithm in the
case where p > ni, that is, the number of covariates is greater than the number of observations.
To do this, the data of 30 replications was generated as in the Scenario 1, from a mixture of
K = 3 Binomial distributions with N = 50, increasing the number of covariates to p = 10 in
each component, simulated from a standard normal distribution, with their respective coefficients
given by

βββ
ᵀ
1 = (1,−1,0,1,0,−1,0,1,0,−1),

βββ
ᵀ
2 = (−1,0,1,0,1,0,1,0,1,0) and (5.3)

βββ
ᵀ
3 = (−0.5,0,−0.5,0,−0.5,0,0.5,0,−0.5,0).

The sample size was fixed as n = 30 and the weights fixed as πππ = (0.3,0.3,0.4). In Figure 10
we can see how the estimated densities are very similar and close with the fixed parameters. We
also kept 6500 iterations with 5000 iterations as a burn-in period and jumps of 10.
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Figure 10 – Smoothed histogram for a data simulated in scenario 3.

The Geweke’s convergence diagnostic is shown in Figure 11, where is possible to see
that some replications did not converge, with some outliers for K = 2.



5.1. Estimation of the Full Model 55

●

●

●

●

●

●
●

−1.96

0.00

1.96

4.00

1 2 3 4
 

G
ew

ek
e'

s 
co

nv
er

ge
nc

e 
di

ag
no

st
ic

K

1

2

3

4

Figure 11 – Scenario 3: Geweke’s convergence diagnostic of the replications of the models.

In the estimation of the number of components, the DIC selected the correct model only
in 30.78% of replications, whereas both models with K = 2 and K = 4 were selected 34.61% of
replications. The criterion EBIC selected the model with K = 2 components in all replications.
The results are shown in Table 5. Note that, considering the results of both criteria, the selected
model is the one with K = 2 components.

Table 5 – Scenario 3: Average of criteria to estimate K and their correct estimation percentage.

Criterion K = 1 K = 2 K = 3 K = 4 %
DIC 425.04 -777.03 -971.34 -1173.45 30.78

EBIC 452.44 249.47 294.80 340.20 0

The results of the estimation of the regression coefficients and the weights of the model
with K = 2 components are summarized in Table 6. From the estimates, it seems that the method
could not identify the component 3, merging the components 1 and 3 into one. Besides that,
the credibility interval obtained for the regression coefficients and weights are large. Although
the sample size is small, the main consequence of the large credibility interval is high variance,
which leads to low precision.

Figure 12 shows the boxplot of the obtained biases, which are still distributed close zero.
The bias was calculated considering the true regression coefficients of components 1 and 2.
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Table 6 – Scenario 3: Estimates, true value and credibility interval for the parameters of the full model.

Component 1 Component 2

β0
0.51 (1) 0.12 (-1)

(-4.81, 5.48) (-6.77, 6.75)

β1
-0.90 (-1) -0.23 (0)

(-5.99, 4.45 ) (-7.21, 6.00)

β2
0.43 (0) 0.72 (1)

(-4.85, 5.78) (-6.21, 7.54)

β3
0.14 (1) -0.08 (0)

(-5.21, 6.24) (-6.32, 6.31)

β4
0.29(0) 0.29 (1)

(-5.59, 5.82 ) (-6.08, 6.58)

β5
-0.57 (-1) 0.12 (0)

(-6.45, 4.66 ) (-7.51, 6.81)

β6
0.49 (0) 0.95 (1)

(-5.05, 6.52) ( -5.50, 7.58)

β7
0.69 (1) 0.47 (0)

(-4.31, 5.94 ) (-5.88, 7.62)

β8
-0.22 (0) 0.82 (1)

(-5.97, 5.43) (-5.70, 7.27)

β9
-1.96 (-1) -1.36 (0)

(-6.91, 3.96) (-8.80, 5.21)

π
0.52 (0.3) 0.48 (0.3)

(0.25, 0.80) (0.20, 0.75)
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Figure 12 – Scenario 3: Bias of the estimates of the model with K = 2 components in each replication.
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The classification results also reveal the merging of components 1 and 3 since around
63% of the observations from component 3 was allocated into component 1. The median of the
TCO was 33.33% with HPD interval of (20,60)%.

Through these results we realize that the algorithm did not fit the data so well. The model
selection criteria could not identify the correct model and consequently the correct classification
rate was not so high. Due the small number of observations, the algorithm could not capture
enough information to identify the 3 components and their parameters, resulting in low precision
in the estimates and favoring the model with less components.

5.2 Estimation of the Model with Variable Selection
Following Lee, Chen and Wu (2016), the variable selection performance in each compo-

nent will be measured through the True Positive Rate (TPR) and the False Positive Rate (FPR),
that are calculated as

TPR =
number of correctly selected variables

the number of active variables

and
FPR =

number of incorrectly selected variables
the number of inactive variables

·

Thus, values of TPR close to one and FPR close to zero indicate a good performance
of variable selection. The measures used in the simulation of the full model in the Section 5.1
will also be applied to the simulation with the variable selection. For every method of variable
selection, we run 30 replications of data and for each replication we kept the number of iterations
as 65000 with burn-in period of 5000 iterations and jumps of 10. The relevant covariates will be
selected by applying the Median Probability Criterion to the average of the posterior inclusion
probability obtained in the replications. To select the number of component we fit the model for
K = 1,2, · · · ,4, and apply the model selection criteria DIC and EBIC for selecting the best value
of K. The goal of this simulation is to assess and compare the performance of the two methods
presented in Section 4.2 to select variable in a mixture of logistic regressions.

5.2.1 Scenario 1:

In this first scenario, the data was generated as in Scenario 5.1.1, from a mixture of
K = 3 logistic regression model where the response variable follows a Binomial distribution
with N = 50 Bernoulli trials and p = 5 covariates. Their respective regression coefficients are
given by

βββ
ᵀ
1 = (1,−1,0,1,0),

βββ
ᵀ
2 = (−1,0,1,0,1) and (5.4)

βββ
ᵀ
3 = (−0.5,0,−0.5,0,−0.5).
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The sample size was fixed as n = 200 and the weights fixed as πππ = (1/3, 1/3, 1/3). The
hyperparameters of the prior distributions was chosen as follows. For the g-prior, we set g = ni

as commented in the Section 4.2.2, and σ2
i = 1 for i = 1, · · · ,K. The ridge parameter was fixed

as λ = 1/p. For the spike and slab prior distribution we fixed σ2
i = 100 for i = 1, · · · ,K. A

summary of the hyperparameters of this simulation is shown in Table 7. The prior probability pit

of keeping the covariate xt in the model for every component was fixed as pit = 0.5.

Table 7 – Scenario 1: Summary of the hyperparameters of the prior distributions.

Prior Hyperparameters
Spike and Slab σ2

i = 100
g-prior g = ni, σ2

i = 1, λ = 1/p

The results of the variable selection with each method are discussed in the next subsec-
tions, followed by a final discussion of their performance in this scenario.

5.2.1.1 Spike and Slab prior

After running the 30 replications we assess their convergence through the Geweke’s
convergence diagnostic shown in Figure 13. We observe that, in general, the chains converged,
with some outliers in the models with K = 2.
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Figure 13 – Scenario 1: Geweke’s convergence diagnostic of the replications of the models with the spike
and slab prior.
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In the estimation of the number of components, the criterion DIC selected the correct
model only in 31.25% of replications and the model with K = 4 in 62.5% of replications.
However, the models with K = 4 components had a estimate of π4 very close to zero and did not
select any covariates. By contrast with the DIC, the criterion EBIC selected the correct model in
100% of replications. The results of the criteria is summarized in Table 8. Based on them, we
select the model with K = 3 components.

Table 8 – Scenario 1: Average of criteria to estimate K and their correct estimation percentage obtained
with spike and slab prior.

Criterion K = 1 K = 2 K = 3 K = 4 %
DIC 2716.55 1555.05 -1855.27 -2973.14 31.25

EBIC 2743.26 1688.30 1505.34 1540.51 100

Analysing posterior inclusion probability, that is, P̂(γit = 1) for i = 1, . . . ,K and t =

1, . . . , p, obtained in the replications we observed that the covariate associated to the regression
coefficient β4 of component 2 was excluded of the model in 29% of the replications. Similarly, in
the component 1, the covariate associated to the coefficient β4 was included in the model in 22%
of the replications. Figure 14 presents the boxplots of TPR and FPR obtained in the replications.

Figure 14 – Scenario 1: False and True Positive Rate obtained from the selection with the spike and slab
prior.

The estimates of the regression coefficients associated to the selected covariates are
shown in Table 9. In it we see that the covariates were selected correctly in each component,
with good estimates. The estimate of β4 of component 2 is not so close to the true value because
its posterior inclusion probability was lower than 50% in 29% of the replications, occasioning
its exclusion of the model, as previously commented.
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Table 9 – Scenario 1: Estimates, true value and credibility interval for the parameters of the model with
spike and slab prior.

Component 1 Component 2 Component 3

β0
0.92 (1) -0.99(-1) -0.37 (-0.5)

(0.71,1.12) (-1.10,-0.88) (-0.57,-0.18)

β1
-1.04 (-1) - -

(-1.17,-0.92 )

β2
- 1.01 (1) -0.5 (-0.5)

(0.89,1.13) (-0.6, -0.39)

β3
1.03 (1) - -

(0.90,1.16)

β4
- 0.59 (1) -0.64 (-0.5)

(0.19,1) (-0.81,-0.46)

π
0.32 (0.33) 0.32 (0.33) 0.36 (0.33)
(0.24, 0.39) (0.25, 0.40) (0.28, 0.44)

To confirm the goodness of fit, the boxplot of the biases associated to the fitted models
with K = 3 is shown in Figure 15, where it is possible to see that the bias is distributed close to
zero.
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Figure 15 – Scenario 1: Bias of the estimates of the model with K = 3 components in each replication
with the spike and slab prior.

We finally analyse the performance of the method for classifying observations through
the TCO. The median of the TCO was 75.5% with HPD interval (10,83)%, which is also a good
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rate of correct classification. Note that these results are very similar to the Simulation 5.1.1 of
the full model, as expected.

5.2.1.2 g-Prior

For the simulation with the g-prior, the Geweke’s convergence diagnostic is shown in
Figure 16. Some replications did not converge, however, this number is still small. In the model
with K = 3 components, only one replication did not converge.
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Figure 16 – Scenario 1: Geweke’s convergence diagnostic of the replications of the models with the
g-prior.

In the estimation of the number of components, the DIC criterion selected the correct
model in 26% of the replications and selected the model with K = 4 in the most of replications.
It is worth to point out that in the model with K = 4 components, the fourth component had
only two selected covariates and their respective regression coefficients had estimates close to
zero. Beside that, the estimate of π4 was also close to zero. The EBIC criterion had a great
performance in the model’s selection, choosing the correct model 100% of replications. Table 10
presents the results of each criterion. Based on these results we choose the model with K = 3
components.
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Table 10 – Scenario 1: Average of criteria to estimate K and their correct estimation percentage obtained
with g-prior.

Criterion K = 1 K = 2 K = 3 K = 4 %
DIC 2680.62 1579.72 -738.97 -1759.71 0.26

EBIC 2707.49 1672.46 1504.69 1568.81 100

In the selection of the predictor variables, the g-prior had a good performance. In Figure
17 we see the boxplots of the TPR and FPR obtained in each component. When checking the
posterior inclusion probability of the covariates in the replications, it was observed that the
covariate associated to the regression coefficient β4 of component 2 was excluded of the model
in 17% of replications. In the component 1, the covariate associated to the regression coefficient
β4 was included in the model of some replications. More precisely, it was included in 41% of
the replications.

Figure 17 – Scenario 1: False and True Positive Rate obtained from the selection with the g-prior.

In Table 11 we see the estimates of coefficients for selected covariates of each component
and the weights, with their respective credibility interval. Note that the estimates are close to the
true value of the both regression coefficients and the weights, except for the regression coefficient
β4 in the component 2, that had posterior inclusion probability lower than 50% in 17% of the
replications as previously commented.

The boxplot of the observed biases is shown in Figure 18, which are still distributed
close to zero.
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Table 11 – Scenario 1: Estimates, true value and credibility interval for the parameters of the model with
by g-prior.

Component 1 Component 2 Component 3

β0
0.82 (1) -0.98(-1) -0.39 (-0.5)

(0.59,1.05) (-1.09,-0.86) (-0.60,-0.17)

β1
-1.03 (-1) - -

(-1.17,-0.90 )

β2
- 1.0 (1) -0.49 (-0.5)

(0.88,1.12) (-0.60, -0.38)

β3
1.02 (1) - -

(0.89,1.15)

β4
- 0.41 (1) -0.62 (-0.5)

(0.07,0.74) (-0.82,-0.42)

π
0.32 (0.33) 0.33 (0.33) 0.35 (0.33)
(0.24, 0.40) (0.25, 0.41) (0.27, 0.43)
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Figure 18 – Scenario 1: Bias of the estimates of the model with K = 3 components in each replication
with the g-prior.

The performance of the method in classifying observations with the g-prior was also
analysed. The median of TCO was 75%, which indicates a good performance. Its credibility
interval is given by (9,82)%.

To summarize and compare the results of the variable selection in the scenario 1 with the
different prior distributions, Table 12 presents the average of the TPR and FPR obtained from
the replications of each model with variable selection.
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Table 12 – Scenario 1: Average of TPR and FPR.

Prior
Component 1 Component 2 Component 3

TPR FPR TPR FPR TPR FPR

Spike and Slab 1.0 0.11 0.90 0.0 0.97 0.0
g-prior 1.0 0.21 0.90 0.0 0.95 0.0

Note that, based on the TPR and FPR values, the performance of the two prior distribu-
tions to the variable selection in the scenario 1 was very similar. Both of them presented some
issue in selecting variables in the component 1. However, the prior distributions had a very good
performance to select the correct covariates in all components.

5.2.2 Scenario 2:

This second scenario is generated as the Simulation 5.1.2, with the goal of investigating
the performance of the algorithm to select the variables in the case where the logistic regressions
of the components have similar regression coefficients. The data of the 30 replications was gen-
erated from a mixture of Binomial distributions with N = 50 Bernoulli trials, K = 3 components
and p = 5 covariates, simulated from a standard normal distribution, with regression coefficients
given by

βββ
ᵀ
1 = (1,−4,0,2,0),

βββ
ᵀ
2 = (−1,−3,0,1,0) and (5.5)

βββ
ᵀ
3 = (−1,4,0,−2,0).

The sample size considered was n = 200 and the weights were fixed as π = (0.3,0.4,0.3).
The hyperparameters of the prior distributions were kept as in the previous scenario and are
summarized in Table 13.

Table 13 – Scenario 2: Summary of the hyperparameters of the prior distributions.

Prior Hyperparameters
Spike and Slab σ2

i = 100
g-prior g = ni, σ2

i = 1, λ = 1/p

5.2.2.1 Spike and Slab Prior

After running the 30 replications of data for each method, we assess the convergence
by the the Geweke’s convergence diagnostic. Figure 19 shows the boxplot of the Geweke’s
diagnostic obtained from the replications, where it is possible to see that the most of chains has
converged.
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Figure 19 – Scenario 2: Geweke’s convergence diagnostic of the replications of the models with the spike
and slab prior.

The performance of the model selection criteria to estimate the number of components
are shown in Table 14. The DIC criterion has a percentage of correct estimation of 24%, tending
to select the model with K = 4 component in 71% of replications. The EBIC criterion, on the
other hand, had a percentage of correct estimation of 86%, selecting the model with K = 2 in
14% of replications. Taking into to account the results of both criteria, we selected the model
with K = 3 components.

Table 14 – Scenario 2: Average of criteria to estimate K and their correct estimation percentage obtained
with spike and slab prior.

Criterion K = 1 K = 2 K = 3 K = 4 %
DIC 7491.26 1200.08 -7261.53 -7428.55 24

EBIC 7518.67 1298.34 1189.94 1231.01 86

After the variable selection process, the posterior inclusion probability of the covariates
in the replications revealed that all important covariates of each component were selected in every
replication. However in the component 1, the covariate associated to the regression coefficient
β4 was included in the model in 2 replications. The same happened in the component 2, the
covariate associated to the regression coefficient β4 was included in 43% of the replications. The
boxplots of the TPR and FPR are shown in Figure 20.
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Figure 20 – Scenario 2: False and True Positive Rate obtained from the selection with the spike and slab
prior.

Table 15 shows the estimates of the regression coefficient associated to the selected
covariates and the weights of the mixture. Note that, in general, the method with the spike and
slab prior could select the correct covariates in all components. Some regression coefficients
were overestimated, however, the estimates are still close to the true value.

Table 15 – Scenario 2: Estimates, true value and credibility interval for the parameters in the model with
spike and slab prior.

Component 1 Component 2 Component 3

β0
0.80 (1) -1.00(-1) -0.98 (-1)

(0.33,1.28) (-1.14,-0.87) (-1.20,-0.75)

β1
-4.12 (-4) -3.04 (-3) 4.01 (4)

(-4.68,-3.55 ) (-3.27,-2.82 ) (3.66,4.37 )

β2
- - -

β3
2.10 (2) 0.99 (1) -2.00 (-2)

(1.74,2.46 ) (0.85,1.13) ( -2.23,-1.78)

β4
- - -

π
0.28 (0.3) 0.44 (0.4) 0.29 (0.3)

(0.19, 0.36) (0.34, 0.53) (0.22, 0.35)

The boxplot of the obtained biases in the models in each replication are shown in Figure
21. This distribution is more spread out than of other scenarios presented, but it is still distributed
close to zero.
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Figure 21 – Scenario 2: Bias of the estimates of the model with K = 3 components in each replication
with the spike and slab prior.

Regarding the classification of the observations, the method with the spike and slab prior
had a median of TCO of 81%, with credibility interval given by (7,87)%. This result is very
similar to the one in the Scenario 5.1.2.

5.2.2.2 g-Prior

The Geweke’s convergence diagnostic of the replications with g-prior is shown in Figure
22. The replications that did show convergence were excluded from the results.
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Figure 22 – Scenario 2: Geweke’s convergence diagnostic of the replications with the g-prior.

In the estimation of the number of components, the DIC criterion selected the correct
model in 53% of the replications, while EBIC selected the correct model in 65% of the replica-
tions. A summary of the results of each criterion is shown in Table 16. Based on these results,
both criteria was minimized in the correct model and thus we choose the model with K = 3
components.

Table 16 – Scenario 2: Average of criteria to estimate K and their correct estimation percentage obtained
with g-prior.

Criterion K = 1 K = 2 K = 3 K = 4 %
DIC 7713.38 1335.85 -13831.45 -13296.58 53

EBIC 7740.88 1389.68 1197.73 1222.61 65

Regarding the variable selection, when checking the posterior inclusion probability of the
covariates obtained in each replication we see that, in the component 1, the covariate associated
to the regression coefficient β1 was excluded from the model in 28% of the replications. In the
same way, the covariate associated to the regression coefficient β3 was excluded from the model
in 19% of the replications. The covariate associated to the regression coefficient β2 was included
in the model in 33.33% of the replications. Similarly, the covariate associated to the regression
coefficient β4 in the component 1 was included in the model in 66.67% of the replications.
In the component 2, the covariate x4 was included in the model in 90% of the replications.
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The covariates x2 and x4 of component 3 were included in 9% and 23% of the replications,
respectively. The boxplots of TPR and the FPR are presented in Figure 23.

Figure 23 – Scenario 2: False and True Positive Rate obtained from the selection with the g-prior.

Table 17 shows the estimates of the regression coefficients associated to the relevant
covariates and the estimates of the weights of the mixture. As discussed previously, the variable
selection with the g-prior in this scenario selected some covariates that should not have been
selected. As a consequence, the covariate x4 was mistakenly included in the model of component
1 and 2. Table 17 presents the estimates of the regression coefficient associated to the selected
covariates.

Table 17 – Scenario 2: Estimates, true value and credibility interval for the parameters of the model with
g-prior.

Component 1 Component 2 Component 3

β0
0.57 (1) -0.96 (-1) -0.82 (-1)

( 0.14, 1.01) (-1.09, -0.82) (-1.09, -0.55)

β1
-1.76 (-4) -3.14 (-3) 3.88 (4)

(-2.14, -1.38 ) (-3.34, -2.93) (3.54, 4.23)

β2
- - -

β3
1.01 (2) 1.15 (1) -1.92 (-2)

( 0.66, 1.36) (1.01, 1.29) (-2.14, -1.71)

β4
-0.14 (0) -0.84 (0) -

(-0.76, 0.08) (-1.12 -0.56)

π
0.15 (0.3) 0.55 (0.4) 0.29 (0.3)

(-0.56, 0.28) (0.47, 0.63) (0.22, 0.35)
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In general, the estimates of the regression coefficients are close to the true value, except
the estimate of β1 of component 1. As a consequence, the bias is distributed close to zero as
shown in Figure 24.

−0.05

0.00

0.05

 
K=3

B
ia

s

Figure 24 – Scenario 2: Bias of the estimates of the model with K = 3 components in each replication
with the g-prior.

Finally, to assess the classification rate we analyze the median of TCO obtained from the
replications. The median obtained was 64%, and its HPD interval is given by (4,88)%. Note that
this performance is similar to the one obtained in the Scenario 5.1.2, with no variable selection.

For an overview of the variable selection in this scenario, Table 18 presents the average
of TPR and FPR in the replications of each method.

Table 18 – Scenario 2: Average of TPR and FPR.

Prior
Component 1 Component 2 Component 3

TPR FPR TPR FPR TPR FPR

Spike and Slab 1.0 0.06 1.0 0.25 1.0 0.00
g-prior 0.81 0.36 0.98 0.45 0.97 0.12

In general, the performance of the variable selection methods in a scenario where the
components are very similar was good. The methods could select correctly most of the important
covariates. However, comparing the two methods, we conclude that the variable selection with
the spike and slab prior outperformed the one with the g-prior.
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5.2.3 Scenario 3

In this scenario, the goal is to explore the performance of the variable selection method
when there is a large number of inactive covariates and few active covariates. The data of the
30 replications was generated from a mixture of Binomial distributions with N = 50 Bernoulli
trials, K = 3 components and p = 100 covariates where only 2 of them are non-zero, simulated
from a standard normal distribution. The vectors of regression coefficients are given by

βββ
ᵀ
1 = (1,−1,0,1,0,0, . . . ,0),

βββ
ᵀ
2 = (−1,0,1,0,1,0, . . . ,0) and (5.6)

βββ
ᵀ
3 = (−0.5,0,−0.5,0,−0.5,0, . . . ,0).

The sample size considered was n = 300 and the weights were fixed as πππ = (1/3, 1/3, 1/3). Note
that, with the sample size considered, we may fall in the case where p > n. Table 19 shows the
settings of the hyperparameters for the simulation of this scenario.

Table 19 – Scenario 3: Summary of the hyperparameters of the prior distributions.

Prior Hyperparameters
Spike and Slab σ2

i = 10
g-prior g = ni, σ2

i = 1, λ = 1/p

In the next sections we present the results of the variable selection with each one of prior
distributions considered in this work.

5.2.3.1 Spike and Slab prior

Figure 25 shows the Geweke’s convergence diagnostic of the replications with the spike
and slab prior. It it possible to see that most of replications showed convergence according to
this criterion.
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Figure 25 – Scenario 3: Geweke’s convergence diagnostic of the replications with the spike and slab prior.

In the estimation of the number of components, the DIC criterion selected the correct
model in 36% of the replications, selecting the model with K = 4 components in 43% of the
replications. The same behavior seen in the other scenarios was observed. The model with
K = 4 components had a estimated of π4 very close to zero with few observations allocated to
it. Moreover, no covariate had frequency greater or equal to 50% in the model of component 4,
which means that no covariate was selected. The EBIC, on the other side, selected the model with
K = 2 components 100% of the replications. This similar behavior was observed in Scenario
5.1.3, where n < p. When checking the model with K = 2 components we observed that some
covariates was wrongly selected in the two components, and in both of them, the estimates of the
regression coefficients associated to the selected covariates were close to zero. A summary of
these results are given in Table 20. Based on these results we considered the model with K = 3
components.

Table 20 – Scenario 3: Average of criteria to estimate K and their correct estimation percentage obtained
with spike and slab prior.

Criterion K = 1 K = 2 K = 3 K = 4 %
DIC 4546.856 265.155 -2969.638 -3583.928 36

EBIC 5089.818 3193.564 3841.516 4414.648 0

Through the posterior inclusion probability of the covariates in the replications we see
that, in the component 2, both covariates associated to the regression coefficients β2 and β4 was
excluded from the model in 41.66% of the replications. In same way, the covariates associated
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to the regression coefficients β2 and β4 of the model in component 3 was excluded from the
model in 41.66% and 54.16% of the replications, respectively. In the model of component 1,
the covariates associated to the regression coefficients β2 and β4 was included in the model
12.6% and 16.66% of the replications, respectively. In the model of component 2, the covariates
associated to the regression coefficients β1 and β3 was included in the model 30% and 16.66%
of the replications, respectively. Finally, in the model of component 3, the covariates associated
to the regression coefficients β1 and β3 was included in the model 8.3% and 12.5% of the
replications, respectively. The boxplots of TPR and FPR are shown in Figure 26.

Figure 26 – Scenario 3: False and True Positive Rate obtained from the selection with the spike and slab
prior.

In Table 21, we present the estimates of the regression coefficients of the selected
covariates. The credibility interval of the regression coefficients was obtained through the 2.5%
and 97.5% quantiles of the values obtained in the replications. In Table 21, we observe that all
covariates were selected correctly in each component. However, the variation of TPR previously
discussed affected the estimates of some regression coefficients.



74 Chapter 5. Simulation Study

Table 21 – Scenario 3: Estimates, true value and credibility interval for the parameters of the model with
spike and slab prior.

Component 1 Component 2 Component 3

β0
0.6 (1) -0.7 (-1) -0.43 (-0.5)

( -0.20, 1.05) (-1.10, 0.05) (-0.66, -0.08)

β1
-0.83 (-1) - -

(-1.08, 0.00)

β2
- 0.55 (1) -0.18 (-0.5)

(0.00, 1.09) (-0.55, 0.52)

β3
0.80 (1) - -

( 0.00, 1.63)

β4
- 0.63 (1) -0.21 (-0.5)

(0.00, 1.09) (-0.55, 0.10)

π
0.33 (0.3) 0.32 (0.4) 0.35 (0.3)

(0.25, 0.40) (0.24, 0.41) (0.27, 0.43)

For better assessing the estimates obtained after the selection, we analyse the bias them.
In Figure 27, we see that the bias is distributed close to zero.
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Figure 27 – Scenario 3: Bias of the estimates of the model with K = 3 components in each replication
with the spike and slab prior.

To assess the classification rate we analyze the median of TCO obtained from the repli-
cations. The median obtained was 40%, and its HPD interval is given by (8,80)%.
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5.2.3.2 g-Prior

For the convergence assessment, we analyse the Geweke’s convergence diagnostic of
the replications, shown in Figure 28. The replications that did not show convergence were not
considered in the final results.
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Figure 28 – Scenario 3: Geweke’s convergence diagnostic of the replications with the g-prior.

The estimation of the number of components in the model with g-prior had the same
behavior of the one with the spike slab prior. The DIC criterion selected the correct model in
40% of the replications and the model with K = 4 components in the remaining replications.
However, the model with K = 4 components had a estimated of π4 very close to zero with few
observations allocated to it. Moreover, no covariate was selected in the model of component 4.
The EBIC selected the model with K = 2 components 100% of the replications. Nonetheless,
when checking the results of the selection in the model with K = 2 components we observed
that some covariates was mistakenly selected in the two components and, in both of them, the
estimates of the regression coefficients associated to the selected covariates were close to zero.
Table 22 shows the mean of the criteria in the replications and the percentage of success in
selecting K. Based on all these results we considered the model with K = 3 components.

Through the posterior inclusion probability of the covariates in the replications we see
that the covariate associated to the regression coefficient β1 was mistakenly excluded from the
model of one of the replications. The covariates associated to the regression coefficients β2 and
β4 was included in the model 11.76% of the replications. Some other null covariates were also
wrongly selected in one of replications. In the model of component 2, the covariates associated
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Table 22 – Scenario 3: Average of criteria to estimate K and their correct estimation percentage obtained
with g-prior.

Criterion K = 1 K = 2 K = 3 K = 4 %
DIC 4507.32 1206.74 -3820.58 -8372.72 40

EBIC 5032.27 3148.64 3827.80 4434.36 0

to the regression coefficients β1 and β3 was included in the model 11.76% and 17.64% of the
replications, respectively. Again, some other null covariates were wrongly selected in some
replications. However, this number was small. Finally, in the model of component 3, some null
covariates were wrongly selected as well. Figure 29 presents the boxplots of TPR and FPR
obtained in the replications of the model.

Figure 29 – Scenario 3: False and True Positive Rate obtained from the selection with the g-prior.

In Table 23 we present the estimates of the regression coefficients of the selected covari-
ates. Despite of the variation of FPR, all covariates were selected correctly in each component
with good estimates. At the bottom of this table, the estimates of the weights are presented.
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Table 23 – Scenario 3: Estimates, true value and credibility interval for the parameters of the model with
g-prior.

Component 1 Component 2 Component 3

β0
0.86 (1) -0.9 (-1) -0.46 (-0.5)

( 0.11, 1.06) (-1.09, 0.04) (-0.60, -0.04)

β1
-0.90 (-1) - -
(-1.05, 0)

β2
- 0.85 (1) -0.43 (-0.5)

(0, 1.07) (-0.59, 0.04)

β3
0.94 (1) - -

(0.63, 1.08)

β4
- 0.84 (1) -0.43 (-0.5)

(0.19, 1.12) (-0.57, 0)

π
0.32 (0.3) 0.34 (0.4) 0.33 (0.3)

(0.26, 0.39) (0.28, 0.41) (0.27, 0.40)

Analysing the bias of the estimates, shown in Figure 30, we see that the bias is distributed
very close to zero, which indicates a good fit.
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Figure 30 – Scenario 3: Bias of the estimates of the model with K = 3 components in each replication
with the g-prior.

Regarding the final classification of the observations, the median of the TCO obtained
was 76%, and its HPD interval is given by (9,82)%.
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For an overview of the variable selection in this scenario, Table 24 presents the average
of TPR and FPR in the replications of each method.

Table 24 – Scenario 3: Average of TPR and FPR.

Prior
Component 1 Component 2 Component 3

TPR FPR TPR FPR TPR FPR

Spike and Slab 0.90 0.09 0.72 0.07 0.68 0.07
g-prior 0.98 0.03 1.0 0.04 1.0 0.01

Through Table 24 we observe that, in general, the performance of the variable selection
in both model with spike and slab prior and g-prior was good. But it is evident that in the model
with the g-prior the variable selection was better.

5.3 Estimation of the Model with Binary Response

As commented in Section 2.2.1, mixture model of logistic regressions is not identifiable
when the number of Bernoulli trials is equal to one, that is, when the response variable is
Bernoulli. The identifiability condition for this model was then proposed by Teicher (1963),
in which it says that to ensure identifiability, the condition N ≥ 2K− 1 needs to be satisfied,
where K is the number of components and N the number of Bernoulli trials. A further work by
Follmann and Lambert (1991) provides a sufficient condition to identifiability in a mixture of
logistic regressions with binary response when only the intercept is random, that is, when only
the intercept varies across the components. According to Follmann and Lambert (1991), this
model is identifiable if K =

√
N11 +2−1, where N11 is the maximum number of observations in

the sample that differ, at most, in the value of only one covariate.

These simulations analyse the behavior of estimation and selection methods when the
response variable is binary and check the identifiability condition presented by Follmann and
Lambert (1991).

The data was generated as in Scenario 5.2.1, from a mixture of K = 3 logistic regression
models where the response variable follows a Bernoulli distribution (N = 1) and p = 5 covariates.
First, their respective regression coefficients are given by

βββ
ᵀ
1 = (1,−1,0,1,0),

βββ
ᵀ
2 = (−1,0,1,0,1) and (5.7)

βββ
ᵀ
3 = (−0.5,0,−0.5,0,−0.5).

The sample size was fixed as n = 200 and the weights as πππ = (1/3, 1/3, 1/3). In the variable
selection, we consider only the spike and slab prior distribution to the regression coefficients,
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fixing σ2
i = 10 for i = 1, · · · ,K, which showed better performance when the number of covariates

is small.

According to the Geweke’s convergence diagnostic, most replications showed conver-
gence. Regarding the estimation of the number of components, the EBIC criterion selected the
model with K = 1 component in all replications. The DIC criterion selected the correct model
in 71% of the replications, selecting the model with K = 4 in 14% of the replications and the
models with K = 1,2 in 7% of the replications. The mean of both criteria are shown in Table 25.

Table 25 – Binary model: Average of criteria to estimate K and their correct estimation percentage.

Criterion K = 1 K = 2 K = 3 K = 4 %
DIC 274.83 271.48 233.26 254.38 71

EBIC 306.02 461.56 602.79 728.48 0

When analysing the results of the model with K = 1 component we observed that no
covariate was selected in the model. Consequently, the estimates of all regression coefficients
are close to zero. In the model with K = 3 components, the results shows that only in the
component 1 the covariates were correctly selected. In the components 2 and 3, all covariates had
an average presence of 45% and thus no covariate was selected. Table 26 shows the estimates for
the parameters of the selected covariates of the model with K = 3 components.

Table 26 – Binary model: Estimates, true value and credibility interval for the parameters of the selected
variables.

Component 1 Component 2 Component 3

β0
2.39 (1) -1.8 (-1) -1.07 (-0.5)

(1.11, 3.41) (-3.09, -0.36) (-3.01, 0.29)

β1
-0.82 (-1) - -
(-3.07, 0)

β2
- - -

β3
0.91 (1) - -

(-0.22, 1.80)

β4
- - -

π
0.38 (0.33) 0.33 (0.33) 0.29 (0.33)
(0.09, 0.66) (0.04, 0.61) (0.03, 0.60)

Figure 31 shows the boxplots of TPR and FPR obtained over the replications.
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Figure 31 – Binary model: False and True Positive Rate obtained from the selection with the spike and
slab prior.

The median of the TCO in model with K = 3 component was 36%, with credibility
interval of (32,46)%.

According to these results we conclude that the binary model presents the identifiability
problem. The EBIC criterion tends to select the model with only one component and does not
select any covariate. Moreover, even when the DIC selected the correct model, only the model of
component 1 was meaningful. However, the variables selected for the largest component are in
agreement with the relevant variables in the first component. Here again, we observe the DIC
tendency to choose models with a greater number of components and probably allocate atypical
observations to smaller components.

In order of assessing the selection model performance under identifiability condition
for mixture of Bernoulli models, we run another simulation considering that only the intercept
varies across the components. We generate data from a mixture of K = 3 logistic regressions
with Bernoulli response and p = 5 covariates generated from a standard normal distribution, two
of them being active. The regression coefficients are given by,

βββ
ᵀ
1 = (2,−1,0,1,0),

βββ
ᵀ
2 = (−3,−1,0,1,0) and (5.8)

βββ
ᵀ
3 = (−0.5,−1,0,1,0).

Since we set Kmax = 4, we repeated an observation 25 times in the data set, allowing only the
value of one covariate to differ among them, to have N11 = 25.

Figure 32 shows the boxplot of the Geweke’s convergence diagnostic, in which we see
that, the most of replications showed convergence. To perform the variable selection, we apply
the method with only the spike and slab prior, which showed better results when p is small.
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Figure 32 – Binary model: Geweke convergence diagnostic of the model under identifiability condition.

In the estimation of the number of components of the mixture, the DIC criterion selected
the model with K = 3 components mostly. Nevertheless, the EBIC criterion selected the model
with K = 1 component in all replications, the same behavior of the model under non-identifiability.
When checking the model with K = 1 component, we observed that the covariates were correctly
selected, since the true subset of active variables and their regression coefficients are the same
among the components. However, the estimates of the regression coefficients were close to zero.
The mean and percentage of correct selection of criteria are shown in Table 27.

Table 27 – Binary model: Average of criteria to estimate K and their correct estimation percentage in the
model under the identifiability condition.

Criterion K = 1 K = 2 K = 3 K = 4 %
DIC 249.32 267.29 209.57 220.73 50

EBIC 277.67 455.78 587.84 698.31 0

Below we present the results of the model with K = 3 components. Table 28 shows the
estimates of the regression coefficients of the selected covariates, considering their posterior
inclusion probability in the replications. Through these results we see that the covariates were
correctly selected and the difference among the intercept’s values is captured.
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Table 28 – Binary model: Estimates, true value and credibility interval for the parameters of the model
under the identifiability condition.

Component 1 Component 2 Component 3

β0
1.87 (2) -2.40 (-3) -1.07 (-0.5)

(-1.36, 5.94) (-6.76, 1.48) (-5.51, 4.13)

β1
-1.09 (-1) -0.63 (-1) -1.21 (-1)

(-5.76, 2.14) (-4.80, 2.44) (-6.14, 2.68)

β2
- - -

β3
1.11 (1) 0.67 (1) 1.16 (1)

(-2.39, 5.35) (-2.85, 4.62) (-2.79, 6.08)

β4
- - -

π
0.35 (0.33) 0.34 (0.33) 0.30 (0.33)
(0.05, 0.63) (0.05, 0.62) (0.02, 0.64)

Regarding the variable selection performance, the mean of the TPR in each component
were 0.78, 0.81 and 0.99, respectively. The mean of the FPR obtained in the model of each
component were 0.13, 0.15 and 0.15, respectively. Figure 33 shows the boxplots of the TPR and
FPR obtained in the replications.

Figure 33 – Binary model: False and True Positive Rate obtained from the selection with the spike and
slab prior under the identifiability condition.

Despite the good results presented above, the classification of the observations had not a
good performance in this scenario. The median of the TCO was 38.2% with credibility interval
of (33,46)%.
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Under the identifiability condition proposed by Follmann and Lambert (1991), the
methodology could select the correct covariates and provided good estimates to the regression
coefficients and weights. However, the EBIC still shows the tendency of selecting the model
with the smallest number of components and, consequently, does not identify the difference
among the intercept values. The DIC criterion, in the other hand, were able to identify the correct
number of components and estimate different intercepts. Although these results, the percentage
of correct classification of the observations was low, probably because, except for the intercept’s
values, the components and their memberships are overlapped under the identifiability condition.
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CHAPTER

6
ANALYSING AN EDUCATION DATA SET

In this chapter, we apply the methodologies discussed in this work to select variables in a
real data set. This data was first analysed by Cortez and Silva (2008), where a classification tree
was applied to classify student’s grades and selected relevant covariates. The data set contains
the final grades of n = 395 students of secondary school with ages between 15 and 22 years from
public schools in the Alentejo region of Portugal during the period of 2005-2006. These grades
are provided with respect to the Math and Portuguese exams. In our application we consider
only the grades of the Math exam. The data attributes include age, gender, mother’s and father’s
job, mother’s and father’s education, weekly study time and some other demographic, social and
school related features. Table 29 presents a description of each covariate considered.

The response variable Y is the student’s final grade, which takes integer values from 0
to 20. A student is approved if the final grade is greater or equal 10. The aim is to select the
covariates that affect the final grade. The categorical covariates were dummy-coded so a total
of p = 68 covariates were considered in the selection. Figure 34 shows the bar plot of the final
grades.We observe a inflated number of zeros and also a concentration of grades at 18.
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Table 29 – Description of the covariates.

Covariates Description
sex student’s sex (binary: 1 - female or 0 - male)
age student’s age (numeric: from 15 to 22)
address student’s home address type (binary: 1 - urban or 0 - rural)
famsize family size (binary: 1 - less or equal to 3 or 0 - greater than 3)
Pstatus parent’s cohabitation status (binary: 1 - living together or 0 - apart)
Medu mother’s education (numeric: 0 - none, 1 - primary education (4th grade), 2 – 5th to 9th grade, 3 – secondary education or 4 – higher education)
Fedu father’s education (numeric: 0 - none, 1 - primary education, 2 – 5th to 9th grade, 3 – secondary education or 4 – higher education)
Mjob mother’s job (nominal: "teacher", "health" care related, civil "services", "at_home" or "other")
Fjob father’s job (nominal: "teacher", "health" care related, civil "services", "at_home" or "other")
reason reason to choose this school (nominal: close to "home", school "reputation", "course" preference or "other")
guardian student’s guardian (nominal: "mother", "father" or "other")
traveltime home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour, or 4 - >1 hour)
studytime weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - >10 hours)
failures number of past class failures (numeric: n if 1<=n<3, else 4)
schoolsup extra educational support (binary: 1 - yes or 0 - no)
famsup family educational support (binary: 1 - yes or 0 - no)
paid extra paid classes of Math (binary: 1 - yes or 0 - no)
activities extra-curricular activities (binary: 1-yes or 0-no)
nursery attended nursery school (binary: 1-yes or 0 - no)
higher wants to take higher education (binary: 1 - yes or 0 - no)
internet Internet access at home (binary: 1 - yes or 0 - no)
relationship with a romantic relationship (binary: 1 - yes or 0 - no)
famrel quality of family relationships (numeric: from 1 - very bad to 5 - excellent)
freetime free time after school (numeric: from 1 - very low to 5 - very high)
goout going out with friends (numeric: from 1 - very low to 5 - very high)
Dalc workday alcohol consumption (numeric: from 1 - very low to 5 - very high)
Walc weekend alcohol consumption (numeric: from 1 - very low to 5 - very high)
health current health status (numeric: from 1 - very bad to 5 - very good)
absences number of school absences (numeric: from 0 to 93)
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Figure 34 – Bar plot of the student’s final grades (response variable).

Considering that each Yj assumes values in Ω = {0,1,2, . . . ,20} for j = 1, . . . ,n, a
mixture of Binomial distributions with N = 20 Bernoulli trials is considered to model each Yj.
As in the simulations with synthetic data, we run the model for K = {1,2,3,4} components and
apply the criteria DIC and EBIC to select the model that better fit the data. To perform variable
selection we run the model with both spike and slab prior and g-prior. For the spike and slab
prior, we set σ2

i = 10 for i = 1, . . . ,K. For the g-prior, we set σ2
i = 1 and gi = ni for i = 1, . . . ,K.

The indicator variables associated with the regression coefficients were initialized as zero in both
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cases, which means no covariate in the model initially. To check the convergence, we used the
Geweke’s convergence diagnostic for the log-likelihood.

In Table 30 we see the values of the Geweke’s diagnostic of each model with the spike
and slab prior, which indicates convergence. In the estimation of the number of components, the
EBIC criterion was minimized in the model with K = 2 components. The DIC criterion, in the
other hand, was minimized in the model with K = 4 components. However, when checking the
model with K = 4 components, it was observed that the estimates for π3 and π4 were very close
to zero with a few observations allocated to them. Moreover, the estimates of the regression
coefficients associated with the selected covariates in the components 3 and 4 were close to zero,
and their credibility interval were large with the zero value in. Considering these results and also
taking into account the performance of the DIC criterion in the scenarios with simulated data,
we assumed that the final grade of the students are better modelled by a mixture of two logistic
distributions. Table 31 presents a summary of each criteria to select the number of components.

Table 30 – Geweke’s diagnostic of the models.

Prior K = 1 K = 2 K = 3 K = 4
spike and slab 1.75 -0.68 -0.92 1.49

g-prior -0.32 1.60 1.85 0.93

Table 31 – Values of the criteria to estimate K with spike and slab prior.

Criterion K = 1 K = 2 K = 3 K = 4
DIC 2648.17 -364.66 69.50 -1504.85

EBIC 3156.34 2865.27 3344.75 3783.75

The results of the variable selection with spike and slab prior are summarized in Table 32,
where only the selected covariates in each component are shown with their credibility interval.
The estimates of the weights are presented at the bottom of the table.
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Table 32 – Estimates and credibility interval for the parameters of the model with spike and slab prior.

Component 1 Component 2
Intercept -0.20 ( -1.22, 0.82) -0.68 (-6.76, 5.40)

Gender (F) - 0.80 (-2.62, 4.23)
Famsize - -1.12 (-4.63, 2.40)

Schoolsup 0.43 (0.26, 0.60) -
Paid - -1.05 (-4.53, 2.44)

Higher - -1.01 (-5.53, 3.51)
Relationship - 3.63 (-1.32, 8.59)

Absences -0.01 (-0.02, 0.00) 0.87 (-0.01, 1.75)
Medu_1 - -0.93 ( -5.05, 3.19)

Mjob_health 0.20 (-0.14, 0.53) 1.01 (-3.13, 5.16)
Mjob_services 0.18 (-0.06, 0.42) -

Fjob_health - 0.22 (-4.03, 4.47)
Fjob_teacher 0.31 (-0.09, 0.72) -
Reason_other - 1.69 (-2.99, 6.38)

Reason_reputation - 1.49 (-2.59, 5.56)
Traveltime_2 - -1.07 (-4.87, 2.72)
Traveltime_4 - -0.25 (-4.39, 3.89)
Studytime_3 - 1.21 (-2.85, 5.27)

Famrel_2 - -1.24 (-5.59, 3.10)
Famrel_4 - 1.35 (-2.48, 5.17)
Goout_2 0.10 (-0.11, 0.31) -
Goout_5 - -1.32 (-5.54, 2.89)
Dalc_2 - -1.02 (-4.98, 2.95)
Dalc_5 - -0.03 (-4.50, 4.44)
Walc_4 -0.14 (-0.40, 0.12) -

Health_3 - -0.93 (-4.45, 2.59)
Failures_1 -0.14 (-0.43, 0.15) -2.23 (-7.31, 2.85)
Failures_2 -0.52 (-0.90, -0.13) -0.90 (-5.13, 3.34)
Failures_3 -0.57 (-0.96, -0.18) -0.88 (-5.02, 3.25)

π 0.85 (0.81, 0.89) 0.15 (0.11, 0.19)

In the classification of the observations, 338 observations were allocated to the component
1 and the remaining 57 were allocated to the component 2. Figure 35 shows the bar plot of
response variable allocated in the component 1 and 2. In this figure is possible to see that the
component 2 represents the students with grade equal or close to zero and the few students with
the greatest grade. The component 1, on the other hand, correspond to the students that had a
grade varying from 4 to 18.

According to the selected variables in the component 1, we can conclude that having
extra education support have a positive impact in the grade of the student. More specifically,
there is an increase of 49.18% in the odds of having greater grade in the exam when the student
have extra educational support. The results also shows that when the student’s father works as a
teacher, there is an increase of 35% in the odds of having greater grade.
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Figure 35 – Bar plot of the student’s final grades classified into the components 1 and 2.

Regarding the social life of the student, results show that there is a small increase in
the odds of having greater grade when the student do not go out very often. Moreover, when
the student’s consumption of alcohol in the weekend is high, there is a small decrease in the
odds of having greater grade in the final exam. Another important finding is with respect to the
past performance of the student. According to the selected covariates, past class failures have a
negative impact in the final grade of the students. When the student have 3 past class failures, for
example, there is a decrease of 45.11% in the odds of having greater grade in the final exam.

In the second component, many other covariates were selected, although zero belongs
to the credibility interval for their regression coefficients. However, through the results we
found that the second component was created to distinguish the extreme students, who present
the lowest or greatest grades. The use of a mixture of logistic regression models allowed to
distinguish extreme students and select relevant variables for them in one component and to
model and identify relevant variables for average students in the other component. A single
logistic regression model usually separates extreme observations very well, but is not good in
distinguishing and selecting relevant variables for average observations.

The convergence of the method using g-prior was also observed according to Table 30
Both criteria, DIC and EBIC, selected the model with K = 2 components. The results of the
criteria are shown in Table 33.

Table 33 – Values of the criteria to estimate K with g-prior.

Criterion K = 1 K = 2 K = 3 K = 4
DIC 5445.85 4097.80 4583.03 4868.45

EBIC 3144.75 2893.16 3551.91 4115.08
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The estimates of the regression coefficients associated with the selected covariates are
shown in Table 34, where it is easy to see that the method with g-prior selected a smaller set of
covariates compared to the selection in the model with the spike and slab prior. In this model, the
component 1 correspond to those students that had the smallest grades and also the few greater
grades, summing up to 52 observations allocated to it. Meanwhile the component 2, represents
those students with grade between 4 and 19, summing up to 343 observations allocated to it.

Table 34 – Estimates and credibility interval for the parameters of the model with g-prior.

Component 1 Component 2
Intercept -0.45 ( -1.03 0.14) -0.07 (-0.45, 0.32)

Schoolsup - 0.43 (0.26, 0.60)
Paid -0.72 (-1.70, 0.27) -

Absences 0.92 (0.05, 1.79) -0.01 (-0.02, -0.01)
Mjob_health - 0.29 (0.07, 0.51)

Mjob_services - 0.22 (0.08, 0.36)
Fjob_teacher - 0.37 (0.14, 0.60)
Studytime_3 - 0.19 (0.02, 0.37)

Goout_2 - 0.18 (0.04, 0.31)
Walc_4 - -0.23 (-0.42, -0.05)

Failures_1 - -0.22 (-0.41, -0.03)
Failures_2 - -0.44 (-0.71, -0.17)
Failures_3 - -0.45 (-0.74, -0.17)

π 0.12 (0.09, 0.16) 0.88 (0.84, 0.91)

When comparing the variable selection of both models we observe that they differ from
each other only in the selection done in the component that represents the extreme students. For
average students, the considered prior distributions selected, in general, the same set of relevant
covariates.

For this data set, which shows a large number of covariates, the g-prior seems to be more
efficient in selecting variables.
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CHAPTER

7
CONCLUDING REMARKS

In this work, we developed a Bayesian method for estimating and selecting variables
in a mixture of logistic regressions model. Through the data augmentation technique, using
Pólya-Gamma random variables, it was possible to obtain conjugation for the distribution of the
regression coefficients, simplifying the Bayesian estimation and variable selection of the model.
Only a Gibbs sampling algorithm was necessary instead of other more complex approaches.
To perform variable selection in this model, we investigated the performance of two prior
distributions for the regression coefficients, adding a second set of latent variables to indicate
the presence and absence of the predictor variables at each component of the mixture. Another
benefit of the data augmentation is being able to analytically calculate the marginal likelihood
and gain computational efficiency in the variable selection process.

In the estimation of the full model, without variable selection, the methodology presented
a good performance in the estimation of the parameters. In the model with variable selection,
both method could correctly select the variables, even in a high dimension scenario. When
comparing the two variable selection methods, we see that the spike and slab prior showed a
better performance under scenarios with a small number of covariates, meanwhile, the g-prior,
although using the data in the prior and for estimation, showed a better performance when the
number of covariates is large.

Considering the estimation of the number of components, different selection criteria
select different models. The DIC, in relation to the EBIC, favors models with a greater number of
components and separates atypical observations into small groups. If the number of components
is not too large, the DIC behavior is good in the sense that the fitted model (component) in most
observations is robust to outliers and more precise. The EBIC seems to be good for selecting the
correct number of components when the components are more separated and evident.

Regarding the binary model, the variable selection with spike and slab prior could select
the correct covariates in the model under the identifiability condition presented by Follmann and
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Lambert (1991). Although it depends on the number of repeated observations, this identifiability
condition may be a good option for models where only the intercept varies over the components
and to verify and obtain first impressions of heterogeneity in data set.

For the Student’s data set, the methodology identified two subgroups in the data, one to
represent the average students and another to represent extreme students. For average students
group, both variable selection methods selected the same relevant covariates and the g-prior
seemed to be more efficient in comparison with the spike and slab prior in the group of extreme
students, probably due to the large number of covariates present in the data. This application
also illustrates one of the main advantages of the mixture of regression models, that is fitting
good models for all observations, since it separates observations with different behaviors and
selects specific predictors for each group. While, in this situation, a single logistic model would
probably select only variables for separating the extreme students. The mixture of regression
models allows to identify good relevant covariates also for distinguish average students.

As a future work, one interesting point would be to add a prior distribution to the prior
inclusion probability pit , for i = 1, . . . ,K and t = 1, . . . , p, and estimate it for each covariate in
each component.



93

BIBLIOGRAPHY

AKAIKE, H. Information theory and an extension of the maximum likelihood principle. In:
Selected papers of hirotugu akaike. [S.l.]: Springer, 1998. p. 199–213. Citation on page 19.

BARAGATTI, M.; POMMERET, D. A study of variable selection using g -prior distribution
with ridge parameter. Computational Statistics & Data Analysis, Elsevier B.V., v. 56, n. 6, p.
1920–1934, 2012. Citation on page 45.

BARBIERI, M. M.; BERGER, J. O. Optimal predictive model selection. The Annals of Statis-
tics, Institute of Mathematical Statistics, v. 32, n. 3, p. 870 – 897, 2004. Citation on page
46.

BARNDORFF-NIELSEN, O.; KENT, J.; SøRENSEN, M. Normal variance-mean mixtures and
z distributions. International Statistical Review / Revue Internationale de Statistique, v. 50,
n. 2, p. 145–159, 1982. Citation on page 31.

BELL, L.; ZHANG, J.; NIU, X. Mixture of logistic models and an ensemble approach for protein-
protein interaction extraction. 2011 ACM Conference on Bioinformatics, Computational
Biology and Biomedicine, BCB 2011, p. 371–375, 2011. Citation on page 26.

BENAGLIA, T.; CHAUVEAU, D.; HUNTER, D. R.; YOUNG, D. S. mixtools: An r package for
analyzing mixture models. Journal of Statistical Software, v. 32, n. 6, p. 1–29, 2009. Citation
on page 25.

CAO, X.; LEE, K.; HUANG, Q. Bayesian variable selection in logistic regression with application
to whole-brain functional connectivity analysis for parkinson’s disease. Statistical Methods in
Medical Research, v. 30, p. 826 – 842, 2020. Citation on page 42.

CASELLA, G.; GEORGE, E. Explaning the gibbs sampler. The American Statistician, v. 46,
p. 167–174, 1992. Citation on page 20.

CHEN, B.; YE, K. Componentwise variable selection in finite mixture regression. Statistics and
Its Interface, v. 8, p. 239–254, 2015. Citation on page 21.

CHEN, J.; CHEN, Z. Extended bayesian information critera for model selection with large model
spaces. Biometrika, v. 95, p. 759–771, 2008. Citations on pages 20 and 40.

CHIB, S.; GREENBERG, E. Understanding the metropolis-hastings algorithm. American
Statistician, v. 49, p. 327–335, 1995. Citation on page 20.

CORTEZ, P.; SILVA, A. M. G. Using data mining to predict secondary school student per-
formance. Proceedings of 5th Annual Future Business Technology Conference, Porto,
EUROSIS-ETI, p. 5–12, 2008. Citation on page 85.

COWLES, M. K.; CARLIN, B. P. Markov chain monte carlo convergence diagnostics: A
comparative review. Journal of the American Statistical Association, v. 91, n. 434, p. 883–
904, 1996. Citation on page 48.



94 Bibliography

DAUVIER, B.; CHEVALIER, N.; BLAYE, A. Using finite mixture of GLMs to explore variability
in children’s flexibility in a task-switching paradigm. Cognitive Development, Elsevier Inc.,
v. 27, n. 4, p. 440–454, 2012. Citation on page 26.

DEMPSTER, A. P.; LAIRD, N. M.; RUBIN, D. B. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
v. 39, n. 1, p. 1–22, 1977. Citations on pages 19 and 28.

DENG, W.; CHEN, H.; LI, Z. A logistic regression mixture model for interval mapping of
genetic trait loci affecting binary phenotypes. Genetics, v. 172, n. 2, p. 1349–58, 2006. Citation
on page 19.

DEVIJVER, E. An l1 oracle inequality for the lasso in finite mixture of multivariate gaussian
regression models. ESAIM: Probability and Statistics, v. 19, p. 649–670, 2015. Citation on
page 20.

DOBSON, A. J.; BARNETT, A. G. An introduction to generalized linear models. 3. ed.
London: Chapman & Hall, 2008. Citation on page 25.

FOLLMANN, D.; LAMBERT, D. Identifiability of finite mixture of logistic regression models.
Journal of Statistical Planning and Inference, v. 27, n. 3, p. 375–381, 1991. Citations on
pages 78, 83, and 92.

FRüHWIRTH-SCHNATTER, S. Finite Mixture and Markov Switching Models. 1. ed. New
York: Springer, Series in Statistics, 2006. Citations on pages 23 and 27.

FRüHWIRTH-SCHNATTER, S.; CELEUX, G. Handbook of Mixture Analysis. 1. ed. London:
Chapman & Hall, Handbooks of Modern Statistical Methods, 2018. Citations on pages 23
and 27.

GEORGE, E.; MCCULLOCH, R. Approaches for bayesian variable selection. Statistica Sinica,
v. 7, p. 339–373, 1997. Citation on page 42.

GEORGE, E. I.; MCCULLOCH, R. E. Variable selection via gibbs sampling. Journal of The
American Statistical Association, v. 88, p. 881–889, 1993. Citations on pages 21, 43, and 44.

GEORGE_, E. I.; MCCULLOCH, R. E. Stochastic search variable selection. Markov chain
Monte Carlo in practice, Chapman and Hall, v. 68, p. 203–214, 1996. Citation on page 43.

GREEN, P. J. Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, v. 82, n. 4, p. 711–732, 1995. Citation on page 20.

GRÜN, B.; LEISCH, F. Finite mixtures of generalized linear regression models. In: Recent
advances in linear models and related areas. New York: Springer, 2008. p. 205–230. Citation
on page 26.

GUPTA, M.; IBRAHIM, J. G. Variable selection in regression mixture modeling for the discovery
of gene regulatory networks. Journal of the American Statistical Association, v. 102, n. 479,
p. 867–880, 2007. Citation on page 45.

ISHWARAN, H.; RAO, J. S. Spike and slab variable selection: Frequentist and Bayesian
strategies. The Annals of Statistics, Institute of Mathematical Statistics, v. 33, n. 2, p. 730 –
773, 2005. Citation on page 43.



Bibliography 95

KHALILI, A.; CHEN, J. Variable selection in finite mixture of regression models. Journal of
the American Statistical Association, v. 102, p. 1025–1038, 2007. Citation on page 20.

KHALILI, A.; LIN, S. Regularization in finite mixture of regression models with diverging
number of parameters. Biometrics, v. 69, n. 2, p. 436–446, 2013. Citation on page 20.

KONISHI, R.; NAKAMURA, F.; KIYOKI, Y. Estimating adaptive individual interests and needs
based on online local variational inference for a logistic regression mixture model. International
Electronics Symposium on Knowledge Creation and Intelligent Computing, IES-KCIC
2018 - Proceedings, IEEE, p. 164–169, 2019. Citation on page 26.

KUO, L.; MALLICK, B. Variable selection for regression models. Sankhyā: The Indian
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APPENDIX

A
CONDITIONAL POSTERIOR

DISTRIBUTIONS

A.1 Conditional Posterior Distribution of Weights
Assuming a Dirichlet prior for πππ = (π1, · · · ,πk) we have that

p(πππ|·) ∝ f (y,S,w|βββ ,πππ)p(πππ)

∝

K

∏
i=1

π
ni
i

K

∏
i=1

π
αi−1
i

=
K

∏
i=1

π
ni+αi−1
i

∝ Dirichlet(n1 +α1, · · · ,nk +αk).
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A.2 Conditional Posterior Distribution of Regression Co-
efficients

Assuming a Normal multivariate prior with mean µµµh and variance-covariance matrix ΣΣΣh
for each βββ h we have that,

p(βββ h|·) ∝ f (y,S,w|βββ ,πππ)p(βββ h)

∝ exp
{
−1

2
(zh−Xhβββ h)

ᵀWh(zh−Xhβββ h)

}
exp
{
−1

2
(βββ h−µµµh)

ᵀ
ΣΣΣ
−1
h (βββ h−µµµh)

}
= exp

{
−1

2
[
(βββ h−µµµh)

ᵀ
ΣΣΣ
−1
h (βββ h−µµµh)+(zh−Xhβββ h)

ᵀWh(zh−Xhβββ h)
]}

= exp
{
−1

2
[
βββ
ᵀ
hΣΣΣ
−1
h βββ h−βββ

ᵀ
hΣΣΣ
−1
h µµµh−µµµ

ᵀ
hΣΣΣ
−1
h βββ h +µµµ

ᵀ
hΣΣΣ
−1
h µµµh +(Xhβββ h)

ᵀWh(Xhβββ h)

− (Xhβββ h)
ᵀWhzh− zᵀhWh(Xhβββ h)+ zᵀhWhzh

]}
∝ exp

{
−1

2
[
βββ
ᵀ
h

(
ΣΣΣ
−1
h +Xᵀ

hWhXh
)

βββ h−βββ
ᵀ
h

(
ΣΣΣ
−1
h µµµh +Xᵀ

hWhzh
)
−
(
µµµ
ᵀ
hΣΣΣ
−1
h + zᵀhWhXh

)
βββ h
]}

= exp
{
−1

2
[
βββ
ᵀ
hV−1

βββ h−βββ
ᵀ
hA−Aᵀ

βββ h
]}

= exp
{
−1

2
[
βββ
ᵀ
hV−1

βββ h−βββ
ᵀ
hV−1VA−AᵀV−1Vβββ h

]}
∝ exp

{
−1

2
[
βββ
ᵀ
hV−1

βββ h−βββ
ᵀ
hV−1VA−AᵀV−1Vβββ h +AᵀVᵀV−1VA

]}
= exp

{
−1

2
[(

βββ
ᵀ
h−AᵀV

)
V−1 (βββ h−VA)

]}
= exp

{
−1

2
[
(βββ h−m)ᵀ V−1 (βββ h−m)

]}
∝ Normal (m,V) ,

where V = (ΣΣΣ−1
h +Xᵀ

hWhXh)
−1 and m = V(ΣΣΣ−1

h µµµh +Xᵀ
hWhzh).
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A.3 Marginalized Likelihood Function
Consider the likelihood function given in (3.10). For a fixed component i, the likelihood

function integrating out βββ γi
is calculated following the same steps as in Appendix A.2, obtaining

f (yi|Si,wi,πππ,γγγ i) =
∫

f (yi|Si,wi,πππ,βββ γi
)p(βββ γi

)dβββ γi

∝
1√

(2π)d |ΣΣΣγi |

∫
exp
{
−1

2

[
(zi−Xγiβββ γi

)ᵀWi(zi−Xγiβββ γi
)+(βββ γi

−µµµγi
)ᵀΣΣΣ

−1
γi
(βββ γi
−µµµγi

)
]}

dβββ γi

∝
1√

(2π)d |ΣΣΣγi |
exp
{
−1

2
µµµ
ᵀ
γi

Σ
−1
γi

µµµγi

}∫
exp
{
−1

2

[
βββ
ᵀ
γi

(
ΣΣΣ
−1
γi

+Xᵀ
γiWiXγi

)
βββ γi
−βββ

ᵀ
γi

(
ΣΣΣ
−1
γi

µµµγi
+Xᵀ

γiWizi

)
−

(
µµµ
ᵀ
γi

ΣΣΣ
−1
γi

+ zᵀi WiXγi

)
βββ γi

]}
dβββ γi

=
1√

(2π)d |ΣΣΣγi |
exp
{
−1

2
µµµ
ᵀ
γi

Σ
−1
γi

µµµγi

}∫
exp
{
−1

2
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βββ
ᵀ
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V−1
βββ γi
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ᵀ
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βββ γi
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exp
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µµµ
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γi

Σ
−1
γi
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ᵀ
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]}∫
exp
{
−1

2

[(
βββ
ᵀ
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ᵀ
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,

where d is the number of relevant covariates, with γit = 1, V = (ΣΣΣ−1
γi

+Xᵀ
γiWiXγi)

−1, A =

(ΣΣΣ−1
γi

µµµγi
+Xᵀ

γiWizi) and m = VA.
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