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RESUMO 

VANDERLEY-SILVA, Ivan. Avaliação Multicriterial por priorização de áreas visando a 
manutenção da conectividade florestal funcional. Tese (Doutorado em “Planejamento e 
uso dos recursos renováveis”) – Centro de Ciências e Tecnologia para Sustentabilidade, 
Universidade Federal de São Carlos, Sorocaba, 137 f, 2022.  

 

As diferenciações fisionômicas da paisagem são consequências da ocorrência 

e regularidade de perturbações antrópicas e naturais, de sua condição de resistência 

e capacidade de resiliência. Essas propriedades influenciam no funcionamento e na 

possibilidade de conectividade dos fragmentos florestais. Por ser um sistema 

socioecológico, a paisagem está exposta a constantes mudanças e exige gestão 

orientada para descrever seus complexos padrões e processos. Nesse contexto, a 

Avaliação Multicriterial (AMC), por apresentar a função de agregação espacial, é uma 

ferramenta adequada para a tomada de decisão, pois permite comparar, medir, avaliar 

e resolver diferentes critérios e cenários. Este estudo buscou a priorização de áreas, 

por meio da AMC, visando à conectividade florestal funcional em uma paisagem sob 

expansão urbana. A área estudada localiza-se na Reserva da Biosfera do Cinturão 

Verde da cidade de São Paulo, região sob pressão para a conversão de 

remanescentes florestais em uso urbano. Nesse cenário, utilizou-se da revisão da 

literatura, opinião de especialistas e técnicas estatísticas para definir um conjunto de 

critérios que representassem os atributos ambientais. Assim, proximidade aos 

fragmentos florestais, Índice de Resistência da Paisagem, proximidade à rede de 

drenagem, Índice Topográfico de Umidade e declividade são fatores que permitem 

identificar regiões onde há persistência dos fragmentos florestais e maior integridade 

da paisagem. Portanto, controlando a influência dos critérios, o modelo proposto apoia 

a priorização de áreas para conservação florestal, as quais dão suporte à 

conectividade funcional da estrutura florestal da paisagem e oferece suporte para o 

planejamento de programas de restauração florestal ou pagamento por serviços 

ecossistêmicos visando a conectividade funcional. 

 
 

Palavras chaves: Estrutura da Paisagem, Índice de Resistência da Paisagem, 

Conectividade da paisagem, Corredor Ecológico, Expansão Urbana e Conservação 

Florestal. 

 
  



 

 

ABSTRACT 

 

VANDERLEY-SILVA, Ivan. Multicriteria decision analysis for prioritizing areas to 
maintain functional forest connectivity. Tese (Doutorado em “Planejamento e uso dos 
recursos renováveis”) – Centro de Ciências e Tecnologia para Sustentabilidade, 
Universidade Federal de São Carlos, Sorocaba, 137 f, 2022.  

 

The physiognomic differentiations of the landscape are consequences of the 

occurrence and regularity of anthropogenic disturbances, condition of resistance, and 

capacity for resilience. These properties influence the functioning and the possibility of 

connectivity of forest fragments. As a socio-ecological system, the landscape 

constantly changes and requires oriented management to define its standards and 

processes. This way, Multicriteria Evaluation (MCE) is an adequate tool for decision-

making, considering its function of spatial aggregation, which supports the comparison 

and evaluation of criteria and scenarios. Thus, the study prioritized areas aiming for 

functional forest connectivity in a landscape under urban sprawl through the MCE. The 

studied area is located in the Biosphere Reserve of the Green Belt of the city of São 

Paulo, a region under pressure to convert forest remnants into urban use.  The criteria 

represented our landscape environmental attributes and were defined through 

literature review, expert opinion, and various statistical techniques.  Thus, proximity to 

forest fragments, Landscape Resistance Index, proximity to the drainage network, 

Topographic Wetness Index, and slope were the criteria that allow the identification of 

regions with the persistence of forest fragments and greatest landscape integrity. 

Therefore, by controlling the influence of the criteria, the proposed model supports the 

prioritization of areas for forest conservation, which supports the functional connectivity 

of the landscape's forest structure and supports planning forest restoration programs 

or payment for ecosystem services aimed at functional connectivity. 

 

Keywords: Landscape Structure, Landscape Resistance Index, Landscape 

Connectivity, Ecological Corridor, Urban Sprawl, and Forest Conservation. 
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MULTICRITERIA DECISION ANALYSIS FOR PRIORITIZING 
AREAS TO MAINTAIN FUNCTIONAL FOREST CONNECTIVITY 

 

1. INTRODUCTION  

The importance of the native forest remnants and their connection has been 

highlighted in the context of the human pressures on natural environments associated 

with growing urban sprawl and their demand for ecosystem services, such as biodiversity 

and water resources. Recent estimates suggested that native forests occupy 

approximately 30% of the earth's surface and about 40% of these ecosystems are 

represented by tropical forests that still preserve an essential richness of regional flora 

and fauna (Keenan et al., 2015, Dahal et al., 2014). 

Many of these forest remnants are in modified landscapes, whose complex 

composition of natural systems, associated with environmental damage, make them 

strategic for conservation and environmental preservation plans. 

In this context, a significant challenge is understanding the mechanisms used 

by modified environments to maintain or restore the structure and processes that lead to 

forest connectivity. In the literature, several studies point to the importance of landscape 

composition and configuration, measured, and understood through traditional ecological 

metrics (Anhaia et al. 2012, Grise and Biondi, 2012, Su et al., al., 2011, Su et al., 2012, 

Cunha et al. 2014, Moraes, Mello, and Toppa, 2015). 

The landscape metrics are easy to obtain and have been considered a 

possible indicator of biodiversity and environmental responses to maintain functional 

forest connectivity. When combined with environmental variables, they are an instrument 

sensitive to anthropogenic changes and can, for example, identify priority areas for forest 

conservation. Thus, the metrics can signal microclimates and habitats and indirectly 

interpret biodiversity conservation, pointing to adjustable monitoring criteria for changes 

in the landscape. 

The measurement and determination of fluidity in the matrix is another area of 

landscape studies with wide gaps. Denied in the past, meeting the importance of altered 

environments is currently visible and relevant for the dispersion and maintenance of 

viable populations in the face of the expansion of anthropogenic barriers. In the scientific 

literature, the matrix connectivity potential is still a great deal topic. Studies rely on 

instruments based on habitat and movement genetics to determine dispersal capacity in 
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the landscape. When combined with remote sensing and geoprocessing techniques, 

such studies enhance learning about functional forest connectivity. 

Naturally, plans aimed at forest sustainability need to understand patterns of 

human pressure and depend on a theoretical base to assess the effectiveness of actions 

in highly modified environments and indicate which strategies value forest connectivity. 

Concerning the spatialization of these effects, the cumulative human pressure 

maps are efficient because they are strong indicators of the collapse of modern natural 

populations, of the dispersal ability of a species, its invasive potential, biodiversity 

conservation planning, and connectivity in anthropized landscapes (Venter et al., 2016, 

Marull et al. 2015, Hand et al., 2014, Beans et al., 2012, Yackulic et al., 2011, Woolmer 

et al., 2008). 

Given the need to balance social, economic, and ecological interests, 

prioritizing areas represents one effective and economic landscape management 

method. The basis for this support is the interaction and analysis of different information 

plans that point to promising natural areas. 

In this context, the study area, located in the Biosphere Reserve of the Green 

Belt of the city of São Paulo (GRBB-SP), Brazil, is included between the Cabreúva 

Environmental Protection Area (EPA), the Morro Grande Forest Reserve, and the 

Itupararanga EPA, where essential fragments of the Dense Ombrophilous Forest 

remain. The landscape in this region suffers from a historical series of deforestation 

(Nobre et al., 2010), mainly in a diffuse way, in which fragments are suppressed by its 

borders, become smaller and smaller, and compromise connectivity (Leite, 2012). 

According to the authors, this growth occurred mainly through urban sprawl areas and 

the densification of areas occupied. 

For Unesco (2019), the focus of the biosphere reserve is regional 

sustainability. Its objective is to allow the belt to be able, indefinitely, to ensure the 

conservation of biodiversity and the well-being of the population, providing ecosystem 

services and, on the other hand, harmonize the relationship and reduce the pressure of 

the city on its surroundings. 

When faced with different scenarios, criteria, and interests, the ability to 

synthesize knowledge is essential to assist in decision-making. That capability is shown 

in Multicriteria Evaluation methods, which are based on participatory techniques and use 

specialists' different fields of understanding and experience to resolve conflicts and 
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determine choices (Valente et al., 2017; Vettorazzi and Valente, 2016; Malczewski and 

Rinner, 2015). 

Given this scenario, the study prioritized areas aiming for functional forest 

connectivity in a landscape under urban sprawl, through the Multicriteria Evaluation 

(MCE).  

For a better understanding, we structure the document in three chapters, with 

the first entitled "Assessing environmental criteria to support forest connectivity under 

urban sprawl.” This chapter evaluated the environmental criteria for prioritizing areas to 

obtain forest functional connectivity in a landscape subject to urban sprawl, 

understanding how the criteria are associated with the structural forest attributes 

represented by traditional landscape ecology metrics.  

In this context, we diagnose the environmental variables mentioned in the 

literature as necessary for functional connectivity in forest fragments. Then, we opted for 

Canonical Correspondence Analysis (CCA) to direct the correlation between 

environmental variables as a function of landscape metrics. This procedure highlighted 

which variables have a theoretical basis, affect the forest structure, and be criteria for 

functional connectivity. 

In the second chapter, entitled “Landscape resistance index aiming at 

functional forest connectivity,” we developed a landscape resistance index, which allows 

the identification of the integrity of the environments, supporting the evaluation of the 

functional connectivity between forest fragments of landscapes under urban expansion. 

The Landscape Resistance Index (LRI) was developed through the 

environment’s integrity. The method uses ecological and habitat logic to determine the 

resistance to dispersion in the landscape. For this, the energy and water balance, 

represented by the temperature of the land’s surface, the biomass concentration 

determined by the vegetation index (NDVI), and the anthropogenic barriers determined 

by nighttime reflectance were taken as a basis. The modeling was based on the 

Structural Equation, a statistical technique that explains the relationships between 

multiple observable and latent variables, such as landscape resistance. 

In the third chapter, entitled “Functional connectivity supported by forest 

conservation in a landscape of urban sprawl, we sought to define Prioritize areas for 

forest conservation, aiming at functional connectivity in a landscape subject to urban 

expansion. 
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In the latter case, the knowledge acquired in the previous chapters was used 

to determine a set of criteria and, through Weighted Linear Combination, literature 

review, and experts’ opinion, in the Multicriteria Evaluation, to identify priority areas for 

forest conservation aiming at forest connectivity functional facing the different land-

use/land-cover. 
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2. CHAPTER 1 

 
 

ASSESSING ENVIRONMENTAL CRITERIA TO SUPPORT 
FOREST CONNECTIVITY UNDER URBAN SPRAWL 

 
 

ABSTRACT 

Establishing forest connectivity in landscapes under urban sprawl is essential for 
maintaining the ecological processes and ensuring biodiversity conservation. However, 
the major challenge is incorporating the ecological network in land-use/land-cover 
planning. This way, the main objective of the study was the evaluation of environmental 
criteria for prioritizing areas to obtain forest functional connectivity in a landscape under 
urban sprawl. The second objective was to understand how the criteria are associated 
with the structural forest attributes represented by traditional landscape ecology metrics.  
Based on the literature review, we defined the criteria to represent landscape feature 
such as the topographic, conflict, and biotic. The metrics used to characterize the forest 
structure were perimeter, shape index, and distance to the nearest neighbor. They were 
generated to a selected group of forest remnants, which represent the landscape forest 
structure. We assessed how the criteria are associated with the structural forest 
attributes by sampling the criteria and forest fragments maps (i.e., different maps 
representing the metrics-values) through the hexagon network.  The statistical analysis 
used to evaluate these sampled values were The Moran Global (Moran I), Moran Local 
(LISA), and Canonical Correspondence Analysis (CCA). We found that the urban 
expansion process is diffuse, although it does not occur randomly in our landscape. The 
criteria slope, Topographic Wetness Index (TWI), distance from drainage network, 
distance from highways, distance from the low-density urban area, and distance from 
forest patches have characteristics that support this process. Furthermore, our results 
indicated a spatial autocorrelation among metrics and after, among metrics and these 
criteria. This way, through these criteria, we can identify regions where it is possible to 
have the persistence of forest fragments, even though in places under the impact of 
urban sprawl. 
 
Keywords: Biodiversity conservation, Landscape ecology metrics, and Forest structural. 
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2.1 INTRODUCTION 

The urban sprawl has been worldwide discussed in terms of its negative 

consequence as loss of natural habitat, forest fragmentation, and increased gene flow 

barriers, which has influenced the ecological connectivity of different species (Mimet et 

al., 2016; Semper-Pascual et al., 2018; Gavrilidis et al., 2019; Koprowska et al., 2020), 

one of the greatest threats to biodiversity conservation. (Scriven et al., 2019; Madadi et 

al. 2017). 

Some studies showed that these consequences have already affected more 

than 50% of the worldwide landscapes (Watson, 2016; Tucker et al., 2018; Tabor et al., 

2019) and that less than a third of the protected areas are appropriately connected 

(Saura et al., 2017). 

The concern is ultimately motivated by uncertainties about knowing human 

activities can affect the ecosystem services functions (Dupras et al., 2016) and the 

maintenance of ecological processes, species dispersion, and specimen persistence in 

an altered environment (Yabsley et al., 2016). 

Newbold et al. (2015) cited that the maintenance of forest functional 

connectivity is an essential component for biodiversity conservation in landscapes under 

urban sprawl, especially when the ecological network is incorporated into the land-

use/land-cover planning (Huang et al., 2019; Grădinaru et al., 2017).  

The importance of the theme has been highlighted in the literature, based on 

results that showed the connectivity analysis could support the effectiveness of forest 

conservation schemes (Ayram et al., 2016; Matos et al.2019; Almenar et al., 2019). 

When the dispersion is low, the damages in the ecosystem services include 

changes in the carbon production and storage rates (Ziter, Bennet and Gonzalez, 2013), 

less resistance of communities to environmental fluctuations (Isbell et al., 2015), causing 

variation in the population and the aggregated biomass (Balvanera et al., 2014). 

However, an important point related to the connectivity is that the decrease in 

its performance is not always linear to habitat loss and forest fragmentation, or both 

(Thompson et al., 2017; Semper-Pascual et al., 2018). This process is due to the 

presence of main habitats in the landscape dynamics or new paths to the species 

movement (Almenar et al. 2019), which can preserve the ecosystem functioning and 

stability (Wang and Loreau, 2016). Still, in function to the pattern and dispersion capacity 

of individuals (Bergsten and Zetterberg, 2013), who interact, in environments under 

urban sprawl, with the connectivity to support viable communities, which in turn can 

suffer from genetic selection and changes in allele frequency (Edelsparre et al., 2018). 
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According to Perky et al. (2018), the urban sprawl impacts distinct species due 

to their intrinsic resilience ability in different ways. This way, the functional connectivity 

modeling can be skewed if it is only based on one species (Almenar et al., 2019) and 

overestimated if we do not consider the response time to habitat loss and deforestation 

(Semper-Pascual et al., 2018). 

In this context, contemporary models and indices have also been developed 

not only based on species but including environmental criteria, indicators, or parameters. 

An example is models based on the graph theory as the least-cost path analysis (Matos 

et al., 2019; Tarabon et al., 2019; Ribeiro et al. 2020) and circuit theory (Pelletier et al., 

2017; Merrick and Koprowski, 2017; Koen, Bowman, and Ellington, 2019), as well as 

hybrids between least-cost path analysis and circuit theory (Monaco et al., 2020). 

Other studies have been supported their decision based mainly on 

environmental criteria (Valente et al., 2017; Torrella et al., 2018; Balzotti et al., 2020), 

considering their ability to represent the landscape characteristics. Loro et al. (2016) 

mentioned that methods based on environmental criteria could introduce substantial 

variability in the evaluation process.  

Zeller et al. (2012) pointed out that several criteria can support the connectivity 

analysis as relief shape, proximity among forest native remnants, drainage network, and 

urban areas.  

Loro et al. (2016) highlighted the proximity among remnants because it is 

related to the species movement in the landscape, considering that variation in the 

proximities can modify the dispersion resistance of the species. Acevedo et al. (2011) 

suggested a criterion representing a sufficient distance from disturbance sources, 

considering their impact on the functional connectivity. Pays et al. (2012) also indicated 

the relief shape as an essential criterion since some animals prefer specific 

characteristics of the landscape relief.  

Ibanez et al. (2014) emphasized the influence of environmental conditions for 

the connectivity, considering its correlation with landscape structure.  

Conversely, we have the traditional landscape metrics, which have been used 

to evaluate changes in the composition and configuration (i.e., structure) of the 

landscape (McGarigal, 2013).  For decades, the metrics were used to study processes 

such as habitat loss and forest fragmentation (Cheung et al. 2016) and evaluated 

impacts on abiotic and biotic functions (Lausch and Herzog, 2002).  

Based on the landscape metrics, Uezu et al. (2005) studied the importance of 

fragment size and connectivity (structural and functional) on the occurrence and 
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abundance of bird species. The study exemplified the potential of metrics to characterize 

the landscape structure, supporting analysis related to processes and their ability to 

provide information when they are associated with other methods.  

Concerning these abilities, Schindler et al. (2013) and Senzaki and Yamaura 

(2016) cited the metrics as an adequate tool for identifying forest areas with high 

conservation value. In the same way, the representativeness of the forest fragments 

metrics was reported to evaluate the species dispersion and abundance pattern 

(Economo and Keitt, 2010), a species-area relation (Hammus and Von Nümers, 2008), 

the herbivores aggregation in the herd (Borthagaray, Arim, and Marquet, 2012), and the 

plant-pollinator interaction (Van Geert, Van Rossum, and Triest, 2009).  

The major challenge is selecting an adequate metric set, which can be done 

through a literature review (Frank et al., 2013; Lechner et al., 2013). In the case of 

ecological analysis prevails the metrics of area, edge, and connectivity (Cheung et al., 

2016; Senzaki and Yamaura, 2016; Schindler et al., 2015), that reflect the forest 

fragments characteristics in terms of biodiversity (Pereira et al., 2013). 

However, some metrics do not bring sufficient information to relate them to the 

land-use and land-cover (LULC). Moreover, few studies have discussed the reason 

behind their selection and their relationships with the models resulting in metrics 

selection through subjective criteria (Lin et al., 2020). 

The landscape under urban sprawl has characteristics distinct from rural 

landscapes, requiring precise methods, models, and criteria (Tarabon et al., 2020), which 

since factors as topography, slope, and urban policy affect the urban growth pattern 

differently over time (Akin and Erdoğan, 2020). 

In this context, the main objective of the study was the evaluation of 

environmental criteria for prioritizing areas to obtain forest functional connectivity in a 

landscape under urban sprawl. The second objective was to understand how the criteria 

are associated with the structural forest attributes represented by traditional landscape 

ecology metrics. 

2.2 MATERIAL AND METHODS 

2.2.1 Study Area 

The studied landscape (Fig. 1) is in the Green Belt Biosphere Reserve (GBBR) 

city of São Paulo (SP), which is one of the largest cities in South America (IBGE, 2021). 

Its main characteristic is the increasing urban sprawl, resulting in pressure in its 

surrounding area regarding conversion from native forest cover to anthropized use. 

.  
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Fig.1 – Location and land-use/land-cover of the study area in the Green Belt Biosphere 

Reserve of São Paulo City, (GBBR-SP), Brazil.   

The GBBR-SP region is an example of this situation, considering that its 

agricultural production has as leading destination São Paulo city. This way, the urban 

sprawl occurs in areas occupied initially by Atlantic Forest, affecting ecosystem services 

(ES) (González-García et al., 2019; Yuan et al., 2019) as the biodiversity (Newbold et al. 

2015; Tabaron et al., 2020), water quality (Mello et al., 2020; Klink, Aversa, and 

Empinotti, 2019) and the forest connectivity (Almenar et al., 2019).  Lembi et al. (2020) 

pointed out also the loss of matrix permeability as another negative effect of urban 

sprawl. 

Studies have been conducted to minimize these adverse effects (Newbold et 

al. 2015; Ayram et al., 2016; Ribeiro et al. 2020) of the lack of forest connectivity and the 

importance of the GBBR areas. According to Unesco (2019), in these areas, human and 

environmental conflicts should be solved through the efforts of the local and scientific 

communities, aiming at the sustainable use of natural resources.  

Urban-rural transitions characterize the study area; however, 34.9% of its area 

is (165099.25 ha) covered by Atlantic Forest (IBGE, 2012). Some remnants belong to 

the Protected Area as the Cabreúva Environmental Protection Area (EPA) in the North, 

Morro Grande Forest Reserve (FR) in the South, and Itupararanga EPA in the Southwest 
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(Fig. 1). In this scenario, the studied area was significant for biodiversity conservation 

and to design an ecological corridor (MMA, 2019). 

Other remnants are scattered through the matrix composed predominantly of 

pastures (i.e., anthropic fields) and urban areas that occupy 36.3% and 22.4%, 

respectively, of the total study. Furthermore, in the area, there is 3.4% of planted forests 

(Eucalyptus sp), 1.4% of farmlands, 1.0% water, and 0.6% of roads (highways and rural 

roads), as show Fig.1. 

2.2.2 Conceptual Model 

The conceptual framework model (Fig. 2) for our study area in GBBR-SP 

includes the environmental criteria and landscape ecology metrics at fragment level that 

were spatialized in the Geographic Information System (GIS). 

 

Fig. 2. Conceptual Model for the study area in the GBBR-SP, Brazil.  

Environmental criteria were group according to the landscape characteristic as 

follow: 

- Topographic: Slope, Aspect, and Topographic Wetness Index (TWI). 

- Conflicts: Distance from highways (Highway), Distance from a drainage 

network (Drainage), and Distance from the low-density urban area 

(Urban); and  

- Biotics: Normalized Difference of Vegetation Index (NDVI) and Distance 

from forest patches (Patch).  
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In the context of connectivity analysis, the database used to produce criteria 

and its justification will be described in the section below. 

The landscape metrics used to characterize the forest structure were perimeter, 

shape index, and distance to the nearest neighbor (Near). They were generated to a 

selected group of forest remnants, which represent the landscape forest structure.  

We assessed how the criteria are associated with the structural forest attributes 

by sampling the criteria and forest fragments maps (i.e., different maps representing the 

metrics-values) through the hexagon network.  

The statistical analysis used to evaluate these sampled values were The Moran 

Global (Moran I), Moran Local (LISA), Principal Components Analysis (PCA), and 

Canonical Correspondence Analysis (CCA) (Fig. 2). 

2.2.3 Criteria selection  

The criteria were defined through the literature review from 2015 to 2019, using 

Scielo, Scopus, Web of Science, and Google Scholar platforms. We defined a 

combination of search terms with sufficient comprehensiveness to maximize the finding 

of environmental criteria since they represented the integration of forest functional 

connectivity and conservation principles. 

Despite differences in terminology, the most mentioned criteria were related to 

forest cover, topography, water resources, urban area, highways, and soils (Table 1).  

Table 1 – Environmental criteria for connectivity analysis, that were select from literature 

I the period from 2015 to 2019, for the study area in the GBBR-SP, Brazil. 
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Ayram et al., 2016  x   x x x x x x x  

Curiel-Esparza et al., 2015    x x x  x x x x x 

Fernádez and Morales, 2016      x     x  

Lakicev et al., 2014 x x x   x  x     

Mello et al., 2018     x x x x  x   

Rincón, et al., 2019  x    x     x  

Santos et al., 2018     x   x x x x x 

Silva et al., 2017         x x x  

Unda and Etter, 2019  x    x       

Vettorazzi and Valente, 2016        x x  x X 
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The selection of environmental criteria, among the most cited, considered:  the 

study area characteristic; that it is under urban sprawl; the main justification of authors 

to use a criterion; and the criterion representativeness in terms of environmental 

characteristics.  

This way, the selected criteria were slope, aspect, Topographic Wetness Index 

(TWI), distance from highways, drainage network, distance from low-density urban 

areas, Normalized Difference of Vegetation Index (NDVI), and distance from forest 

fragments. As mentioned in the conceptual model section, they were the group in 

topographic, conflicts, and biotics.  

The first three criteria and the drainage network were produced from the Digital 

Elevation Model (DEM) of the study area, which was produced from the Shuttle Radar 

Topography Mission (SRTM) model (https://earthexplorer.usgs.gov/). The 10-m contour 

lines were extracted from the SRTM model (30m-spatial resolution) and interpolated 

(nearest neighbor method) with a 20m-spatial resolution to the new DEM integrates our 

geographic database. In the GIS environment, watershed and slope/aspect plug-ins 

were used to generate these criteria.     

The other criteria were produced from features (i.e., highways, low-density 

urban areas, and forest patches) extracted from the land-use/land-cover map (Fig.1), 

which resulted from a supervised classification (Maximum Likelihood algorithm) of 

CBERS-4 satellite images (20m-spatial resolution). The map presents 90% accuracy, 

according to a field verification (in the 2019 year) based on 140 points randomly stratified 

across the study area. 

This way, we obtained the Euclidian distance from highways, low-density urban 

areas, and forest patches, also calculating the NDVI from the last feature. The low-

density urban areas are small agglomerations or farms characterized by horizontal, 

dispersed, and polycentric growth. Conversely, the highly dense urban areas were 

classified as constraints, considering their low quality for the support he functional 

connectivity, have a compact, vertical and monocentric shape (Ojima, 2007). 

The NDVI index considers the relation between the energy reflected in the red 

and near-infrared wavelengths to represent the vegetation biomass. The index varies 

from -1 to +1, with the last value indicating vegetation denser, moist, and well-developed 

(Melo et al., 2011).  We used NDVI to represent the forest vegetation vigor (Anatoly, 

Peng, and Huemmrich, 2014). 
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The principal component analysis (PCA) explained the organization and 

variability of criteria in the landscape. Thus, it was possible to confirm whether the 

selected criteria were sufficient to explain the forest structure. 

2.2.4 Forest patches metrics  

The metrics used to characterize a selected group of patches representing the 

landscape forest structure were area, perimeter, shape index, and distance to the 

nearest neighbor. According to Pereira et al., 2013; Mello, Toppa, and Cardoso-Leite, 

2016; Palmero-Iniesta et al., 2020 these metrics also support the forest patches 

description in terms of connectivity and conservation. 

Firstly, we divided the forest remnants into size classes, having similar areas 

(ha). The analysis guaranteed the representativeness of different-sized patches in the 

classes, excluding the specific categories composed only by the small patches (smaller 

than 5ha) or the largest (forest fragments bigger than 300ha). 

After the patches selected were identified individuality in a map, used to 

calculate the metrics through the Vector-Based Landscape Analysis Tools Extension (V-

Late) in the GIS environment. 

The metrics values were associated with their respective patches to compose 

maps, representing their perimeters, shapes, and distances to their nearest neighbor. 

2.2.5 Criteria and forest structure evaluation 

We assessed how criteria are associated with the forest patches metric 

(representing the structural forest attributes) based on a hexagon network sampling (Fig. 

3). 
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Fig. 3 – Forest patches and hexagonal network, used to evaluate criteria of the study 

area in the GBBR-SP, Brazil. 

We sampled the maps of criteria and metrics through this network, considering 

hexagons that covered more than 50% of the patch size (Fig. 3.)  As the size of the 

hexagon unit was 2 ha, at least two sample points by patch were obtained. 

These sampled values supported the statistical analyses. Using Moran Global 

(Moran I) (Moran, 1950) and Moran Local (LISA) indexes (Anselin, 1995), we evaluated 

the spatial autocorrelation of the criteria, metrics, and finally, among the criteria and 

metrics.  

 For the two indexes, the significance level considered was p < 0.05, which was 

calibrated for the Euclidean distance from the average point of the sample space. 

 The canonical correspondence analysis (CCA) tested the hypothesis that the 

metrics can indicate the criteria importance rank to the forest functional connectivity, 

revealing these criteria influence under the forest patches.  

The vegan package (R software) supported the canonical correspondence 

analysis after the pre-verification of multicollinearity for values greater than 5 (James et 

al., 2014) and the validation of product with p < 0.05 through permutation and ANOVA 

tests. 

2.3 RESULTS 

The environmental criteria, selected from the literature review (from 2015 to 

2020), considering terms as forest functional connectivity, connectivity and forest 

conservation, and landscape subject to urban sprawl, are listed in Table 2. 

Table 2 – Criteria importance for functional forest connectivity analysis, in the forest 

conservation context, according to literature review. 

 
Feature Criteria Importance 

T
op

og
ra
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Aspect 

Aspect has an effect on the diversity, regeneration, and 
structure of tropical and temperate forests worldwide 
(Wagner et al. 2020, Tiwari et al. 2020, Ou et al., 2020, 
and Hollunder et al. 2021). In the same way, the criterion 
can reveal sensitive places from a topographic 
perspective, that are especially the faces with minor 
moisture retention ability. Faces that should be cover by 
native vegetation, aiming to avoid problems as soil 
erosion (among others). This way, we think in the 
prioritization of these sensitivity regions to obtain forest 
functional connectivity, as a way to the maintenance of 
landscape feature.  
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Feature Criteria Importance 

Slope 

It is the main criterion related to soil erosion, considering 
(Valladares et al., 2012).  
 
Since high slopes reduce human access, the criterion is 
an important physical attribute for forest regeneration. on 
the other hand, sloping land has less water and soil 
retention capacity, which can reduce the forest 
regeneration rate. These reasons could explain why 
elevation has a positive effect on the change rate of the 
forest cover, while the interaction between slope and 
elevation can have a significant negative effect (Li et al., 
2013). 

Regions associated with high levels of slope have been 
indicated as susceptible to erosion processes, the 
criterion is highlighted in the literature related to soil 
erosion  (Haidaraa et al. 2019) 

TWI 

 
Wetlands are important ecosystems as they provide 
habitat for plants and animals and improve water quality 
(Guo et al., 2017). The topographic wetness index (TWI) 
is used to identify the saturated areas and to distinguish 
the reliefs where there are well-drained soils (O’Neil, 
Goodall and Watson, 2018). 
 
For this reason, topography shapes and restricts 
vegetations, causing a number of environmental 
conditions that are favorable to many communities and to 
the ecosystem process. This allows for the detection of 
patterns of species with different resource habitat 
requirements as correlated with attributes such as river 
valleys, mountainous regions and other varied 
topographies (Czarnecka, Rysiak and Chabudzinski, 
2017). 

B
io

tic
 

NDVI 

NDVI is a robust metric for estimating forest cover and its 
development status, as it produces a strong estimate of 
the chlorophyll concentration in the leaf (Nagai et al., 
2010). 
 
The richness of species increases with the vegetation 
structural heterogeneity and biomass. More complex 
stretches provide more resources and opportunities for 
microhabitat segregation (Wood et al., 2013). 
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Feature Criteria Importance 

Distance from 
Forest 
Patches  

The distribution pattern of mature forests, combined with 
the disturbance, and replacement of old forests, can 
influence the dispersion of species, movement and 
processes at the population level and define whether 
species adapt or perish in altered forest ecosystems 
(Ruffell, Clout, and Didhan, 2017). 
  
 Habitat reduction, with subsequent increased edge 
effects, changes the behavior of individuals and habitat 
use patterns, also reducing movement between 
fragments (Ramesh, Kalle and Downs, 2015).  
 
Proximity to nature reserve areas also affects how people 
perceive the importance of forest conservation. As they 
move away from core areas, the opportunities and level 
of anthropic disturbance increase (Deng et al., 2015). 

C
on

fli
ct

s 

Distance from 
the low-
density urban 
area 

In the urban expansion area, there is an increase for work 
and housing, a rapid regional economic development 
(Shiferaw et al., 2019), and a greater pressure on habitats 
and systemic services provided (Yuan et al., 2019). 
 
In particular, forest fragmentation caused by 
waterproofing surfaces threatens species and habitat 
(McDonald; Marcotulio and Guneralp, 2013). These 
threatens effect on the mobility of organisms, being a 
central factor in the ecosystem services provision 
(Mitchell, Bennett, and Gonzalez, 2013). 
The reduction in connectivity affects the regulation of 
ecological flows, which determines the effectiveness of 
preserved natural areas, observed through changes in 
focal species behavior and in the habitats preference 
(Ayram et al. 2019). 

Distance from 
Drainage 
Network  

In Brazil, environmental legislation determines a 
minimum riparian zone along perennial watercourses 
within private properties or public areas (Brasil, 2012). 
 
This riparian vegetation continues offers an opportunity to 
establish an integrated network of forest remnants, which 
can serve as habitat and connectors at the regional or 
local scale, especially when reduced as sources that 
cause environmental degradation (Zimbres et al., 2018). 
 
The riverside areas are dynamic, biologically rich 
ecosystems, with a high content of nutrients, humidity and 
the presence of unique microclimates for species of 
invertebrates (Ramey and Richardson, 2017) terrestrial 
mammals (Zimbres et al., 2018) and birds (Mitchell et al., 
2018). 
 

Distance from 
Highways  

Disturbances caused by highways increase the forest 
patches edge effects, decreasing the fauna species 
presence (Avalos and Bermúdez, 2016). In addition, 
highways contribute to increased landscape 
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Feature Criteria Importance 

fragmentation, as they cut through continuous areas with 
high connectivity and create barriers to movement 
between habitats (Carvalho et al., 2015). 

 

The group represents landscape features relating to their topography and biotic 

components that can support the prioritization of areas to obtain forest function 

connectivity in the forest conservation context. They also have characteristics 

representing conflicts for this objective, threatening the process (Fig. 4).      

 

 

Fig. 4 Environmental criteria set produced for the study area in the GBBR-SP, Brazil. 

Where: (A) Slope – Slope; (B) TWI – Topographic Wetness Index; (C) Aspect – Aspect; 

(D) Drainage - Distance from the drainage network; (E) Urban - Distance from the low-

density urban area; (F) Highway - Distance from the highway; (G) Patch - Distance from 

the forest patches; and (H) NDVI – Normalized Difference Vegetation Index.   

 

According to the slope criterion (Fig. 4 A), approximately 91% of the study area 

showed declivity at most 20%. Nearly 47% of this total presented at most 8% of a 

declivity, and they are concentrated in the South region of the study area (Fig. 4 A).  

The LISA index also appointed this concentration classifying the region by low-

low, indicating the spatial proximity between lowest slope values (Fig. 5 A).   
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In this context, the slope was the criterion associated with the higher value of 

Moran Index (I = 0.457) among the topographic criteria (TWI=0.190 and Aspect = 0.292), 

indicating that its features have a spatial distribution significant positive (I > 0) (Fig. 5 

ABC). 

According to the LISA index results for the criterion, the study area was 

classified in 20% as high-high and 21% as low-low, having significant spatial 

autocorrelation. 

 

 

 
 

Fig. 5 Spatialization of the Moran Global (Moran I) and the Moran Local (LISA) indexes 

for the criteria: (A) Slope – Slope; (B) TWI – Topographic Wetness Index; (C) Aspect – 

Aspect; (D) Drainage - Distance from the drainage network; (E) Urban - Distance from 

the low-density urban area; (F) Highway - Distance from the highway; (G) Patch - 

Distance from the forest patches; and (H) NDVI – Normalized Difference Vegetation 

Index.   

Where: N/S = Not Significant; H-H = High-High; L-L = Low-Low; L-H = Low-High; H-L = 

High-Low. 
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The TWI criterion (Fig. 4B) indicated the South region is also associated with 

high moisture-retention ability, with values varying from 12 to 27, which occupy 16% of 

the study area. 

However, 62,2% of TWI values varied from 5 −12, spread across the study 

area.  Thus, values between 5 – 7, 7 – 9, and 9 – 12 represent 42.8%, 14.3%, and 5.1%, 

respectively. The TWI values greater than 27 totaling less than 1% of the total, occurring 

only in the North (Fig. 4B).  

Reflecting this spatial pattern of most features distributed randomly across the 

landscape, the Moran Index for TWI was 0.190, which was the lowest value obtained 

among the criteria (Fig. 5B). 

  In the same way, LISA did not identify regional grouping (Fig. 5B), except a 

tendency in the Central-North region because of the lowest TWI values. This region was 

classified as low-low (with 15.4% of spatial autocorrelation) (Fig. 5B). However, this 

tendency is not statistically significant, considering the great variability of the criterion 

features. 

The Central-North region was associated with relief Heavily-Undulating (20 – 

45%) and Hilly (> 45%) (Fig. 4AB), having a significantly positive spatial distribution (Fig. 

5C). As mentioned, the LISA index indicated groupings in regions classified as high-high 

because of the high spatial correlations between near features (Fig. 5C). 

The LISA index also showed groupings for the aspect criterion in the Central-

North region classified as high-high (16.2%) and low-low (16.3%) (Fig. 5C), considering 

the predominance of faces oriented to east-west direction (Fig. 4C).   

However, Fig. 4C illustrated these faces spread across the landscape and 

interact with others, resulting in a low value of Moran Index (I=0.292), as we observed 

for TWI. The east-west faces occupied 65.3% of the landscape, and the north-south 

faces 34.7% (Fig. 4C). 

Similarly, the distance from the drainage network showed its watercourses 

spread over the landscape (Fig. 4D), obtaining the Moran index of 0.477. A value that 

was superior to TWI and aspect, which pointed to a positive autocorrelation in the 

spatialization of watercourses.  Although with a low level, having only 18% classified as 

high-high and 23% as low-low (Fig. 5D). 

The maximum distance from the drainage network was 800m, although values 

at the maximum of 200m from watercourses represented 56% of the total area and 

between 200-400m approximately 36% (Fig. 5D).  
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Based on the low-density urban areas and highways, the maximum distances 

obtained were, respectively, 8200 m and 16482 m, mainly in the function of the values 

present in the extremes of North and Southeast (Fig. 4E and Fig. 4F).  

This way, those features presented more influence in the Central-to-South-west 

portion of the landscape, where we observed the great urban areas, which were 

classified as a restriction to functional connectivity because of their low quality. Due to 

these conflict features, the region was classified as low-low (LISA index), showing 

significant spatial autocorrelation of 41.5% for low-density urban areas and 41.4% for 

distance from the highway. 

Consequently, this region has significant positive spatial autocorrelation with 

regions classified as high-high represented 14.0% (low-density urban area) and 16.8% 

(distance from highways) (Fig 5E and Fig 5F). However, the spatial autocorrelation of 

distance from the highway is slightly higher than the distance from low-density urban 

areas, considering their Moran index values of 0.992 and 0.976. 

The urban areas and highways influenced the forest patches spatialization 

through the landscape, which presented 11268 m as the maximum distance among them 

(Fig. 4h).  

That criterion showed a Moran index value of 0.992, reflecting the high and 

positive correlation among the distances from forest patches. Thus, the LISA index 

showed grouping with a high autocorrelation degree (29.2% of spatial correlation) in the 

landscape's central region, classified as high-high (Fig. 5h). 

The high-high class indicates a place associated with a high probability of great 

distance values occurring near other places in the same condition. For the study, in the 

same region, the LISA index indicated the low-low (38.6% of spatial autocorrelation) 

groupings for the distances from low-density urban areas and highways (i.e., the 

concentration of places near to the features of the conflict).  

This way, the spatial autocorrelation analysis indicated that the great distance 

from the forest patches occurred in places occupied by urban areas and highways. 

Finally, Fig. 4g showed the NDVI index, having its highest values associated 

with the largest forest patches.  

Although, its Moran Index was 0.50, indicating that the criterion has a minor 

autocorrelation degree than the criterion distance from the forest patch.  

Fig. 5g illustrated the groupings detected through the LISA analysis classified 

as high-high (23.7% of spatial autocorrelation) and they were in similar regions of the 
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distance from forest patches criterion. However, the spatial autocorrelation of this 

criterion is smaller than the last one. 

Regarding the criteria variability, PCA analysis explained 42.6% of the data 

(Fig. 6). According to the first axis, the slope decreases as the distance from the drainage 

network decrease. Conversely, TWI and Aspect values increased (Fig. 6). 

Fig. 6 showed in the second axis that, as the forest patches are coming toward 

the low-density urban areas and highways, there is a decrease in the distance value 

among forest patches and the NDVI index. 

 

Fig.6. PCA analysis for the criteria variability evaluation for the study area in the GBBR-

SP, Brazil. 

Where: Slope – Slope; TWI – Topographic Wetness Index; Aspect – Aspect; Drainage - 

Distance from the drainage network; Urban - Distance from the low-density urban area; 

Highway - Distance from the highway; Patch - Distance from the forest patches; and 

NDVI – Normalized Difference Vegetation Index.   

 

2.3.1 Forest structure evaluation  

The study area has 57665.75 ha covered by 10428 Atlantic Forest remnants 

with sizes varying from 0.04 ha to 11248.31 ha.                  

According to Table 3, 92.4% of these remnants have less than 5 ha; however, 

they represented only 5.9% of the total native forest area.                
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Otherwise, we observed that 0.2% of the total patches (i.e., 21 patches) 

occupying 50% of the total forest area. Most of these local group belongs to three Protect 

Areas, located inside the study area, i.e., Cabreúva EPA and Morro Grande FR (Fig. 1). 

Despite that, 7.3% of the remaining forests occupy 44.1% of the studied 

landscape and have sizes ranging from 5 ha to 300 ha. As predefined by this study, their 

size classes occupy a similar percentage of native cover (Table 3). 

Table 3.  Distribution of patches by size classes and the forest metrics values (mean and 

standard deviation) applied to forest structure evaluation of the study area in the GBBR-

SP (Brazil). 

Class NP Area Forest patches metrics 

(ha) (%) (%) 
Area (ha) 

Mean (SD) 
Perim (m) 
Mean (SD) 

Near (m) 
Mean (SD) 

Shape 
Mean (SD) 

< 5 92.4 5.9 0.36 (± 0.79) 277.90 (± 299.03) 17.80 (±42.46) 1.15 (± 0.24) 
5 - 30 5.2 11.5 12.32 (±6.37) 2857.48 (±1301.65) 107.67  (± 162.66) 2.05 (±0.60) 

30 - 75 1.3 11.0 47.00 (±13.57) 7814.90 (± 2366.13) 57.57 (± 98.93) 2.85 (±0.65) 
75 - 170 0.6 11.2 105.98 (± 24.89 13933.64 (± 4035.25) 38.88 (±77.14) 3.38 (± 0.82) 
170 - 300 0.3 10.4 244.71 (± 28.74) 26434.43 (± 6538.71) 21.56 (± 35.60) 4.40 (±0.95) 

> 300 0.2 50.0 1436.24 (± 2689.73) 92797.11 (±107803.9) 0.00 (± 0.00) 6.50 (± 2.23) 

Where: NP= number of forest patches; Area - habitat size; Perim – Habitat perimeter; 

Shape - shape index; Near - a distance of the nearest neighbor edge; Mean - mean 

value; and SD - standard deviation value. 

      The remnants belonging to the 5–30 ha class represented 5.2% of the 

total forest patches. The class with 30–75 ha represented 1.3%, followed by 75–170 ha 

representing 0.6%, and the patches with 170–300 ha accounted for 0.3%. Their mean 

patch sizes were, respectively, 12.32 (SD = ±6.37), 47.00 (SD = ±13.57), 105.98 (SD = 

± 24.89), and 244.71 (SD = ±28.74), with the standard deviation values together 

increases the mean size (Table 3). 

Similarly, the Perimeter and Shape metric values (mean and SD) increased as 

the patch sizes were increased (Table 3). The mean metrics values were, respectively, 

2857.48m and 2.05 (5-30 ha), 7814.90m and 2.85 (30-75 ha), 13933.64m and 3.38 (75 

-170 ha), and 26434.43m and 4.40 (170-300 ha). 

Conversely, the value of the Near metric (mean and SD) decreased as the 

mean patch size increased. According to Table 3, the distance among forest patches 

was 107.67m (5-30 ha), 57.57m (30-75 ha), 38.88m (75 -170 ha), and 21.56m (170-300 

ha).  

According to the Moral Index (Fig. 7), the metrics presented significant and 

positive spatial autocorrelation. Although, the spatial autocorrelation of Near (1.000) was 

slightly higher than the Area (0.971), PERIM (0.968), and Shape (0.963).  

Consequently, the LISA index indicated regions with spatial proximity between 

similar characteristics (Fig.7).  
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 In the case of the Near metric (Fig. 7), we can highlight groupings classified as 

low-low in the central portion of the study area. They represented the concentration of 

areas with small distance values from forest patches.  

 We can highlight the small low-low groupings for the other metrics, 

representing the concentration of the smallest patches, characterized by the smaller 

perimeters and regular shapes (Fig. 7b-d). 

 

 

Fig. 7. Moran Index (I) and Local Spatial Autocorrelation (LISA) for Criteria for the study 

area in the GBBR-SP, Brazil.  

Where: (A) Shape - shape index; (B) Perimeter – habitat perimeter; (C) Area - habitat 

size; and (D) Near - distance of the nearest neighbor edge; 

 

2.3.2 Criteria and Forest Structure Analysis  

The patches representing the forest structure of the study area were associated 

with criteria characteristics, as described in Table 4.  

Our landscape presents 91% of the area with at most 20% of the slope, with a 

predominance of regions varying from 6.66%-17% (Slope mean = 11.83%; Fig. 4a). 

However, there are forest patches associated with relief plans (Slope minimum = 

0.002%) as well as Heavily-Undulating (Slope maximum = 36.36%) (Table 4).  

We defined the predominant pattern for the criterion based on its low standard 

deviation value. Table 4 also indicated TWI and NDVI in the same situation.  

This way, regions associated with the forest patches showed TWI varying from 

4.81 to 9.35 (TWI mean = 7.08). Values that integrated this more range frequently of 

moisture-retention ability were observed in the landscape (Fig. 4B). 

Relating the aspect criterion, its mean value indicated a tendency of the 

patches to be placed on the East-West face (Aspect mean = 177.03). Although, the high 
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variation value of standard deviation (SD) (Aspect SD = 70.67) cannot support the 

pattern definition for those regions.  

We mainly consider its spatial pattern of the majority features distributed 

randomly across the landscape, indicated by the Moran Index (I =0.292) and the LISA 

index (Fig. 4 e 5C).  

Otherwise, we can affirm that the part of forest remnants is at mostly 325.75 m 

from the watercourses (Table 4), but 92% of the landscape is less than 400 m from the 

rivers (Drainage mean = 199.27) (Fig.4 D). 

The forest patches also presented a mean distance from the low-density urban 

area and highways of 829.44 m and 1680.86 m (Table 4), respectively. The conflict 

criteria maps (Fig.4 EF) indicated those features spread by the landscape with 71% of 

urban areas and 14% of the road at most 2000 m from the forest remnants.  

 However, these criteria maps presented the highest spatial autocorrelation 

(Moran I Urban =0.976 and Moran Highway I = 0.992) values among the criteria with 

groupings (LISA index) in the Central landscape region, representing the concentration 

of these features. The LISA index also indicated groups far from the central regions 

associated with high distances from the features, explaining these Standard Deviation 

values (Table 4). 

Table 4. Variability of criteria characteristics for the forest patches of the study area in 

the GBBR-SP, Brazil. 

Param 
Slope 
(%) 

TWI Aspect 
Drainage 

(m) 
Urban 

(m) 
Highway 

(m) 
Patch (m) NDVI 

Min. 0.002 3.89 4.80 9.33 39.20 30.01 59.12 0.32 
Max. 72.36 31.89 344.90 734.32 5843.36 13252.03 8542.66 0.69 
Mean  11.83 7.08 177.03 199.27 829.44 1680.86 2440.01 0.58 
SD± 5.17 2.27 70.67 126.48 878.10 1844.85 1671.40 0.03 

Where: Slope - Slope; TWI - Topographic Wetness Index; Aspect - Aspect; Drainage - 

Distance from the Drainage Network; Urban – Distance from the low-density urban area; 

Highway - Distance from the highways; Patch - Distance from the forest patches; NDVI 

- Normalized Difference Vegetation Index; Param - Parameter; SD - Standard deviation 

value. 

According to Table 4, the forest patches (Patch) showed a mean distance of 

2440.01m. As the last two criteria (Urban and Highway), the mean values and standard 

deviation (Patch SD = 1671.40) values reflect the presence of the patches through the 

landscape (Fig. 4g). In the same way, the criterion presented the highest spatial 

autocorrelation values (Moran I = 0.992) among the criteria, supporting the concentration 
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of remnants in the same regions of the landscape. The Near metric (Table 3) indicated 

values varying from 21.56 m to 107.67 m for patches grouped in similar size classes. 

Still, the minimum distance indicated in Table 4 was 59.12 m.  

This way, the criterion reflected the forest patches scattered across the 

landscape, having a mean distance of 2440.01 m, but with some remnants near each 

other (Patch minimum = 59.12m). 

The mean NDVI index of these patches varies from 0.55 to 0.61 (NDVI mean 

= 0.58), which was the minor range of standard deviation values among the criteria 

(Table 4). We obtained these values based on a hexagon network sampling, obtaining 

the NDVI values inside the patches.  

The criterion map presented a Moran index of 0.500, indicating these small 

groupings. However, for the landscape prevailed its main characteristics, that is the low 

spatial autocorrelation (Fig. 4h). 

Concerning the Canonical correspondence analysis (CCA), Fig. 8 illustrates 

that the forest patches metrics explain in 84.10% the criteria order.  

The data variability was explained in 66% by axis 1 and 18.10 by axis 2. 

Through the first, we observed the greatest influence of the metrics Near and Perimeter. 

While in the second, the main ordering variables were Shape and Near. However, the 

Area variability was not significant (Fig. 8).  

The CCA analysis (Fig. 8) also indicated that the forest patches perimeters 

values increase as the highways' distance increases. Conversely, the distance from the 

low-density urban areas decreases, and the distance among forest patches (Near) also 

decreases. Such a thing happens because low-density urban areas are composed of 

small urban agglomerations, which are scattered among the forest fragments. 

In the same way, the aspect, TWI, NDVI, slope, and distance from the drainage 

network showed variation in their values associated with the metrics Shape and 

Perimeter. The criteria values decrease when the metrics decrease. 

Finally, we observed a no-significant relation between the metric Area and the 

criterion distance from the forest patches. 
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Fig. 8 - Canonical Correspondence Analysis (CCA) applied to the criteria according to 

fragment metrics of the study in the GBBR-SP, Brazil. 

Where: Area - Habitat size; Perimeter – Habitat perimeter; Shape - Shape index; Near - 

Distance of the nearest neighbor edge; Slope – Slope; TWI – Topographic Wetness 

Index; Aspect – Aspect; Drainage - Distance from the drainage network; Urban - 

Distance from the low-density urban area; Highway - Distance from the highway; Patch 

- Distance from the forest patches; and NDVI – Normalized Difference Vegetation Index.   

 

2.4 DISCUSSION  

The environmental criteria that were selected through the literature review 

(Tables 1 and 2) represent essential characteristics of landscapes under urban sprawl in 

the context of prioritizing areas to obtain forest functional connectivity (Curiel-Esparza et 

al., 2015; Lakicev et al., 2016; Vettorazzi and Valente, 2016; Santos et al., 2018; Mello 

et al., 2018). 

 The topographic criteria have effects on drainage capacity (Loritz et al., 2019; 

Hojati and Mokarram, 2016), forest composition and structure (Jucker et al., 2018), 

habitat reduction and isolation (Zhang et al., 2018), and, consequently, on species 

patterns and richness (Li et al., 2019, Russo et al. 2016, and Keeley et al. 2016), which 

are necessary conditions for measuring forest connectivity. 

The distance from the drainage network indirectly brings the concept and 

importance of riparian forests in maintaining forest connectivity (La Fuente et al., 2018). 

Considering that their place in the landscape along the river supports the flow among 

forest patches, which is commonly compromised by the expansion of urban 



40 

 

infrastructure, producing barriers in the landscape (McRae et al., 2012), habitat loss 

(Alamgir et al., 2019), and changes in animal movement (Dickie et al., 2019). 

The criteria have different importance for functional connectivity and forest 

conservation, representing a part of the process to obtain the main objective. The 

importance has been highlighted in the literature review (Table 2) (Ayram et al., 2016, 

Fernádez and Morales, 2016, Unda and Etter, 2019; Rincón et al., 2019). 

This way, the criteria selection based on the literature review brings robustness 

to the study, considering that the set was previously evaluated in another research. It 

also eliminates the subjectivity that we bring to the project when experts opinion is 

required, considering the restricted number of people who contribute to the process 

(Silveira et al., 2014, Valente et al., 2017; Mello et al., 2018; Valente et al., 2021). 

The important point is that the criteria selected for the study area in the GBBR-

SP, Brazil, are not spatially correlated and do not have information overlap (Figs. 4 and 

5). Thus, they can support prioritizing areas for functional connectivity. 

Regarding criteria characteristics, we obtained 91% of the study area with at 

most of 20% of slope (Table 4 and Fig. 4A). This characteristic associated with the low 

variation of its standard deviation supports the definition of a spatial pattern for the 

criterion identified by the LISA index (I = 0.457) (Fig. 5A). Kane and John (2018) cited 

that topographical factors can determine land-use decisions by local communities, 

considering if the relief allows easy accessibility, there is an increase in deforestation 

(Bax et al., 2016) and a critical potential for natural regeneration (Molin et al., 2018). 

Adams et al. (2014) complemented that tree growth and forest productivity can 

be affected by slope, TWI, and aspect due to influences on runoff and wind exposure. 

Thus, these factors allow the elaboration of forest connectivity models based on relief, 

as the species have different habitat requirements (Czarnecka et al., 2017). 

Relating to the TWI criterion, we obtained approximately 62.1% of the total area 

varying from 5-12, including soils classified as well-drained (TWI of 4-5), moderately 

drained (TWI of 5-7), and poorly drained soils (TWI of 7-12) (Li et al., 2006).  

Approximately 43% of this total is associated with the moderately drained soils, 

contributing to the classification of these areas as low-low by LISA Index (Fig. 5B), since 

they are showed a scattered distribution through the landscape.  

According to our results, regions associated with the 5-12 TWI range are also 

occupied by forest fragments, characterizing TWI as a heterogeneous criterion with the 

same value of Moran Index (I = 0.190) mentioned by Da Silva et al. (2019). 
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Similarly, the aspect was also defined as a heterogeneous criterion (Table 4) 

because our study area has a topographic divider of water flow and 65.3% of its area 

associated with East-West slopes facing (Fig. 4C). These facings are associated with 

forest patches groups (LISA index, Fig. 5C), the most regular landscape patches placed 

in faces with the lowest aspect values (CCA analysis, Fig. 8). Thus, it can be explained 

by the predominance of anthropic land use on the east landscape face (Victor et al., 

2004). 

Aspect reveals a tendency to coming toward the slope values because they 

came from DEM. However, we cannot establish a statistical and significant pattern 

between them. Adding that the criterion does not present a high spatial correlation, it 

cannot be considered adequate for a model of prioritization areas aiming for functional 

connectivity. The uncertainties justify this in connectivity analysis that the aspect can 

bring to the model. 

According to our results, the aspect is the only environmental criterion not 

adequate for prioritizing forest functional connectivity in a landscape subject to the urban 

sprawl. For another way, the slope and TWI, the distances from forest patches, and 

drainage network criteria are essential to a model of the prioritization of areas subject to 

urban sprawl (Fig. 4 D).  

The slope brings the topographic heterogeneity that influences the edaphic, 

hydrological, and climatic conditions landscape (Yang et al., 2016, Jucker et al., 2018, 

Féret and Asner, 2014, Chadwick and Asner, 2016, He et al., 2017, Lippok et al., 2014). 

TWI evidences microclimates, indicating places with greater nutrient 

availability, better drainage, and a slight increase in soil temperature (Wylie et al., 2019). 

Some studies associated TWI with forest susceptibility to fire (Kim and Lee, 2018), forest 

productivity (Wylie, Woods, and Dech, 2019), species richness (Bourque and Bayat, 

2015), survival rate, and mortality of trees (Bayat et al., 2019) and forest structuring, such 

as canopy height (Ediriweera et al., 2016) and above ground biomass accumulation 

(Muscarella et al., 2020). 

In the same way, the distance from the drainage network corroborated our 

results because the rivers are homogeneously scattered through the study area. 

Spacialization that in turn, resulted in a high spatial autocorrelation of the criterion with 

values upper than the topographic criterion and that supported the cluster structuration 

in two regions (I = 0.477) (Fig. 4 and 5D). The first with the least distances among 

patches and watercourses (LL in LISA) and the second with the highest (HH) distances 

(Fig. 5D). 
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We also can highlight that the criterion results were predominately supported 

by the proximity to watercourses, the most critical region for the main objective. This way, 

an adequate name for the criterion is proximity to the drainage network instead of the 

distances from the drainage network. The name reflects the most important region for 

the criterion and becomes following the literature, wherein have been considering 

riparian forest corridors as the most suitable environment for forest connectivity (La 

Fuente et al., 2018, Zimbres et al., 2018). 

While the watercourses are scattered through the landscape, the main features 

of the distance from the low-density urban area and highways criteria showed 

concentrated, mainly, in its Central-to-South-west portion (Fig 4E and Fig 4F). Due to the 

significant urban areas and roads, the forest patches cluster of these regions presented 

spatial autocorrelation classified as LL (Fig. 5E; I = 0.976 and Fig. 5F; I = 0.992). It is 

noted in Figure 4E that a restricted area was created over consolidated urban 

agglomerations to analyze only the effects of urban sprawl on forest remnants. 

However, the features of criteria (roads and urban) and consequently their 

respectively distance maps showed an effect in the forest fragments spatialization. 

Around 71% of the forest patches are 2000 m from an urban area, and 86% are 2000 m 

from a road. 

Anthropogenic disturbance in the landscape favors generalist species exploring 

environments, such as disturbed habitats (Magioli et al., 2019). Consequently, there is 

an increase in conflict factors, such as running over wildlife (Abra et al., 2021), predation 

of farm animals (McPherson et al., 2016), and lethal animal control (Blackwell et al., 

2016), being essential to define the most beneficial actions of conservation planning and 

implementation (Abra et al., 2021).  

Conflict features showed high spatial correlation (Fig 6), indicating that they can 

compose a unique criterion in future studies. A criterion that brings information related to 

the connectivity, since that urban areas and roads have crossed landscapes subject to 

urban sprawl, which have become one of the greatest threats to biodiversity conservation 

(Scriven et al., 2019; Madadi et al., 2017).  

Kuang et al. (2014) cited that the urban expansion process and the relationship 

with forest fragmentation is an effect of worldwide verification, carried out on the scale of 

megacities, and due to the increase in the population living in urban areas (Angel et al., 

2016). Thus, given that land-use can occur in many different patterns, metrics that 

consider the spatial arrangement of urban infrastructure can explain landscape 

fragmentation (Bar-Massada, Radeloff, and Stewart, 2014; Lin and Fuller, 2013). 
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In the same way, our findings indicated as essential the maintenance of the 

criterion distance from forest patches. We have forest patches supporting the native 

fauna and flora, especially those formed by patches with sizes greater than 300 ha (Table 

4 and Fig. 4H). As we have mentioned, this group is formed by 21 patches, belongs to 

three Protect Areas located inside the study area, and occupies 50% of the total forest 

area. These forest patches are integrated with others, considering that the minor are 

scattered across the landscape (Table 3). 

According to Magioli et al. (2019), the large and continuous habitats support 

populations with more complex trophic structures, acting as a source for biodiversity 

maintenance in modified habitats. Gibson et al. (2011) complemented that these habitats 

are essential refuges for wildlife, assuming their similarity to natural areas (i.e., without 

anthropic actions). 

The Brazilian environmental legislation has encouraged the conservation of 

areas like patches greater than 300 ha. However, it is not enough to minimize the urban 

pressure effect (Romero et al., 2020). In our study areas, it is not only this group that has 

potential for connectivity in the studied landscape. We can include the medium-size 

group, highlighting the importance of the criterion distances from forest patches. 

Considering these close relations among the forest patches, we can suggest for the 

following studies the term proximity to forest remnants as proposed by Mello et al. (2018) 

and Valente et al. (2021).  

Showing different behavior of other criteria, we have the NDVI, which 

represents the forest patches in terms of their status and quality (Fig. 4H), i.e., the 

conditions inside the remnants. Consequently, it is not a criterion that represents the 

conditions of the natural vegetation on the landscape, as our objective requires. 

However, patches-level data are essential to support the decision-makers 

discussion, which guided us to include our second objective.  

For the study area, the patches-level metrics showed coherent resultants, 

considering the proposed classes areas. The largest forest remnants showed great 

values of perimeter and shape than the slightest but minor values of distance among 

their components (Table 3). 

Furthermore, the class areas support evaluating the spatial autocorrelation 

among metrics and after, among metrics and criteria.  

The results were a high Moran index value for metrics (Fig. 7), which supported 

in their correspondence with the criteria since these results reflected that the external 
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influences on the fragments did not occur randomly and that the criteria act on the 

landscape (with 84.1% of explanation in CCA, Fig. 8).          

Different studies have shown the potential of the ecological metrics in the 

definition of areas for conservation, on analysis of sprawl urban and evaluation of the 

landscape structure (Schindler et al., 2013, De Jesus et al., 2015, Otero et al., 2015, 

Romero et al., 2018, and Lelli et al., 2019), corroborating with our results. 

The CCA analysis (Fig. 8) also indicated that the reduction in the distance from 

low-density urban areas was associated with a reduction in the distance among forest 

fragments (NEAR). In comparison, the distance from highways was associated with an 

increase in perimeter and area of the forest patches. 

 According to Pirnat and Hladink (2018), new diffuse urban areas do not subject 

patches to significant changes in their habitat size, which tends to happen regardless of 

population changes (Organization of United Nations Habitat, 2016). Otherwise, the drier 

regions of the landscape, on the flatter terrains, near to the rivers, and facing to the east 

face were associated with our smallest and most regular patches that were isolated and 

presented the lowest NDVI values. Thus, in these landscape regions, the condition 

related to the urban infrastructure and topography were favorable to human occupation, 

as also observed by Torres et al. (2016). 

2.5 CONCLUSION 

This study evaluated environmental criteria for prioritizing forest functional 

connectivity in a landscape subject to urban sprawl.  

Our results indicated that we obtained robust criteria through the literature 

review, decreasing the intrinsic subjectivity commonly associated with their definition in 

the participatory technique context. Criteria set composed by slope, TWI, distance from 

drainage network, distance from highways, distance from a low-density urban area, and 

distance from forest patches. Also, they are not spatially correlated or have information 

overlap. 

In this context, these criteria support the identification of regions where it is 

possible to have the persistence of forest fragments, even though in places under the 

impact of urban sprawl. 

Conversely, we concluded that aspect and NDVI (originally selected) are not 

adequate criteria for our objective. The first showed a heterogeneous behavior through 

the landscape, revealing a tendency toward the slope values because both came from 

Digital Elevator Model.  The second reflects the patches' quality instead of their potential 

for forest connectivity.  
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In this context, we can affirm that the selected criteria reflect the forest structure 

of landscapes under urban sprawl. Furthermore, they support identifying areas near 

watercourses with the greatest moisture retention potential and associated with the deep 

slope. Areas covered by the great forest patches are the most irregular and connected 

of the study area.  

In this sense, places far from the highways reflect areas with more preserved 

forest structure characteristics. However, large and connected forest fragments are close 

to low-density urban environments in areas under diffuse urban sprawl. Areas that are 

also essential for functional connectivity. 

This way, our findings indicated a spatial autocorrelation among metrics and 

after, among metrics and criteria. Also, we obtained that the external influences on the 

fragments did not occur randomly and that the criteria act on the landscape. 

Finally, our results reveal more suitable value ranges for each criterion in the 

environment under urban sprawl to indicate the occurrence of forest fragments, aiming 

for functional forest connectivity. 
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3. CHAPTER 2 
 

LANDSCAPE RESISTANCE INDEX AIMING AT FUNCTIONAL 
FOREST CONNECTIVITY 

 

 

ABSTRACT 

 

The resistance surfaces have been developed from empirical data as gene flow, genetic 
distances, habitat use, and movement paths. Moreover, they are also based on expert 
opinions concerning the ecology of focal species and their ability to cross 
landscapes.Thus, the study was based on the hypothesis that we can identify the forest 
functional connectivity in a landscape, considering its representative land-use/land-cover 
attributes. Furthermore, considering that these attributes can express the disparity in the 
landscape mosaic regarding resistance to forest connectivity. In this context, this study 
aimed to develop a landscape resistance index, which permits identifying the integrity of 
the environments, supporting the evaluation of the functional connectivity between forest 
fragments of landscapes under urban expansion. It was developed through Structural 
Equation Modeling (SEM), supported by the criteria of Land Surface Temperature, 
Nighttime Reflectance, and Inverted Normalized Difference Vegetation Index (NDVI), 
which are called observed variables. The landscape studied in the Green Belt Biosphere 
Reserve of São Paulo has suffered from urban sprawl. It has significant remnants of the 
Atlantic Forest though, which is a biodiversity hotspot. Our results indicated criteria 
variability in the landscape, however, modeled through the SEM, obtaining a significant 
adjustment of the Landscape Resistance Index, with Comparative Fit Index (CFI) of 1.00 
and Root-Mean-Square Error of Approximation (RMSEA) of 0.00. The index reflects the 
resistance levels of the land use/land cover, expressed by the class interval, ranging 
from 0% (1.73) to 100% (493.88), with the highest values associated with the anthropized 
uses and forest isolation. Thus, the index based on environmental attributes reflects the 
structure of functional forest connectivity, supporting the planning design of forest 
corridors across landscapes. 

Keywords: Structural Equation Model; Landscape Structure Analysis; Land use and 
Land cover; and Environmental criteria. 
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3.1 INTRODUCTION  

The land-use/land-cover (LULC) change, caused by the urbanized process, 

has been influenced biodiversity, ecosystem function, and regional climate (Choudhury; 

Das and Das, 2018). Also, they have directly affected the surface temperature, modifying 

the landscape radiative, physiological, and aerodynamic properties that control the 

surface water and energy balances (Rigden and Li, 2017). 

These environmental changes influence the occurrence, behavior, and species 

dispersion. Therefore, knowing the land-use/land-cover's influences on species 

dispersion is essential for conserving the tropical forest. 

Mörtberg et al. (2013) found that the terrestrial surface is the basis for designing 

the species dispersal path, especially when overcoming the matrix resistance. The same 

authors argue that the species consider the landscape as a competitive space control of 

its territory. Thus, Spear and Storfer (2010) defined landscape resistance as a degree of 

facility or impediment to the movement of a specific species. 

According to Rudnick et al. (2012), resistance surfaces have been developed 

from empirical data as gene flow, genetic distances, habitat use, and movement paths. 

Authors as Cushman et al. (2013) add that they are also based on expert opinions 

concerning the ecology of focal species and their ability to cross landscapes, which has 

been the most used method. 

On the other hand, another focus of functional forest connectivity is landscape 

resistance surfaces modeling, aiming to accurately represent landscape features that act 

as conductor barriers to gene flow (Winiarski, Peterman, and MacGarigal, 2020). 

In this sense, we observed a significant number of studies using simulations to 

detail many landscape components that affect the functional connectivity analysis 

because they act on resistance surface, nature, and the relationship between surface 

and gene flow. These include the spatial scale and thematic resolution (Cushman and 

Landguth, 2010), the contrast in landscape resistance (Shirk, Landguth, and Crushman, 

2018), the sampling regimes (Olyer-McCance, Fedy, and Landguth, 2013), and genetic 

imbalance (Zeller et al., 2016). 

Multiple environmental variables, categorical or continuous, have been used 

for resistance surface modeling, such as the effects of elevation, presence of habitat, 

road resistance, LULC, and climatic conditions (Cushman et al. 2013, Gruber and 

Adamack, 2015, Peterman, 2018, Peterman et al., 2019, Row et al., 2017). 

Unfortunately, many inherent analytical issues, including spatial and genetic data, have 
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resulted in poor performance, creating a fundamental challenge for modeling landscape 

strength surfaces (Winiarski, Perterman, and McGarigal, 2020). 

This way, the researchers usually assign values to LULC, considering their 

resistance levels to the flow of matter and energy (Feng et al., 2011), recalling that the 

species' focal movement is random (Liu et al., 2018). The intense subjectivity of this 

method and the lack of a theoretical framework related to the human activity disturbance 

on the landscape (i.e., on the LULC) have been criticized (Zhang et al., 2017). 

Concerning the resistance surface, Belote et al. (2016) mentioned the 

approach based on the connection paths with a high level of integrity, avoiding barriers 

and natural vegetation considered highly modified. The paths are the least human-

modified LULC, linking natural areas as protected areas and forest patches (Theobald 

et al., 2012). 

According to Deng et al. (2018), an essential factor for assessing the 

environment is the heat exchange of water, measured by the land surface temperature 

(LST), which can be retrieved well by the atmospheric correction model from Landsat 8, 

and presents a significant increase with the impermeable surface, as mentioned by Silva; 

Silva and Santos, 2018; Rousta et al., 2018; Niu et al., 2018; Lin et al., 2018; Du et al., 

2016. 

Brose et al. (2012) observed a positive correlation between the surface 

temperature increase and the prey-predator interaction force due to their increased 

speeds, especially in heterothermic individuals. Also, they mentioned adverse effects for 

species persistence in complex food webs (Brose et al., 2012), especially when there 

are asymmetric responses to a temperature between predators and prey (Dell; Pawar 

and Sawage et al., 2013). 

The temperature is vital in establishing the biological organization levels 

standard (Gilbert et al., 2016). The metabolic ecology theory  and empirical data showed 

that the movement of an animal exhibits a multiple dependence between the 

temperature, with consequences for population dynamics and stability (Brown et al., 

2004). 

Therefore, it is essential to know the environmental pattern where the wildlife 

moves because several factors contribute to surface temperature variation, especially in 

urban sprawl areas.  Among them, there are the morphological characteristics, the heat 

absorption, storage, the increased heat convection (Gaur, Eichenbaum, and Simonovic, 

2018), the road orientation, the anthropogenic activities (Santos et al., 2017), the 
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obstruction of wind by high buildings (Zhou and Chen, 2018), the energy balance, and 

the hydrological cycle (Silva; Silva and Santos, 2018). 

Nascimento-Júnior (2017) complemented that urban sprawl can be 

characterized by socio-spatially unequal development and different degrees of 

environmental degradation. Furthermore, they can be revealed by nighttime reflectance 

intensity obtained from the Linescan Operating System (LOS) of the North American 

Defense Meteorological Satellite Program (Huang et al., 2014; Chen et al., 2016; Zhang 

et al., 2017). 

The dichotomous classification between urban and rural space disregards the 

flow of people and scenarios that connect these environments though. Scenarios like the 

urban-rural transition are composed of scattered settlements and sparsely populated 

areas. Others are formed by the areas that have been gradually replaced by the natural 

condition, having less human influence and, consequently, denser natural vegetation 

(Benza et al., 2016).  

Throughout these scenarios, LOS has registered variation in the surface 

temperature from areas under urban sprawl to those covered by native vegetation, 

following the order high-density urban area, low-density urban area, lawn, and the forest. 

Otherwise, the traditional Normalized Difference Vegetation Index (NDVI) showed an 

increase of value in the same sequence of LULC (Guha et al., 2018).  

On the other hand, the soil reflectance in forest areas has shown fewer 

absorption rates than their canopy and, consequently, fewer temperature values than the 

agriculture and pastures (Shen et al., 2018), reducing the temperature (Wei et al., 2018).  

Thus, when the focus is on the forested areas, the NDVI is commonly used to 

identify them, as well as their biomass and potential as a habitat for communities/species 

such as bees (Hoagland; Beier and Lee, 2018), grasshoppers (Shi et al., 2018), birds 

(Bonthoux et al., 2018), and large mammals (Johnson et al., 2018; Ito et al., 2018). These 

studies are supported by the robust correlation between plant biomass and active 

photosynthetic radiation absorption (Grossman et al., 2018; Nandy et al., 2017). 

Pettorelli et al. (2016) highlighted the biodiversity monitoring of the whole 

landscape patches and not only their forested area though. They considered that LULC 

influence in vegetation corridors network regional, allowing the evaluation of the pasture 

use intensity (Gomez-Gimenez et al., 2017), the quantification of farmland abandonment 

(Estel et al., 2015), and the monitoring of potential protected rural areas (Weber, 

Schaepman-Strub, and Ecker, 2018).  
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Thus, the study was based on the hypothesis that we can identify the forest 

functional connectivity in a landscape, considering its representative land-use/land-cover 

attributes. Furthermore, considering that these attributes can express the disparity in the 

landscape mosaic regarding resistance to forest connectivity. 

In this context, this study aimed to develop a landscape resistance index, which 

permits identifying the integrity of the environments, supporting the evaluation of the 

functional connectivity between forest fragments of landscapes under urban sprawl. 

3.2 MATERIAL AND METHODS 

3.2.1 Study Area 

The landscape studied (Fig. 1) is in the Green Belt Biosphere Reserve (GBBR) 

of São Paulo (SP), which is one of the largest cities in South America (IBGE, 2021). Its 

main characteristic is the increasing urban sprawl, resulting in pressure in its surrounding 

area regarding conversion from agriculture to urban use.  

According to the United Nations Educational, Scientific, and Cultural 

Organization (UNESCO, 2019), the Biosphere Reserve is a learning site for 

environmental protection, logistical provision for scientific research, and 

educational/sustainable use of natural resources. Considering the Biosphere Reserve as 

a place of excellence, it should support ways to solve human and environmental conflicts 

through the local and scientific communities (UNESCO, 2019). 

The GBBR was considered of extreme importance for biodiversity conservation 

and to design an ecological corridor (MMA, 2021), considering that Atlantic Forest 

remnants cover 34.9% of its area (165099.25 ha), belonging to Ombrophilous Dense 

Forestry (IBGE, 2012). Some remnants belong to Protected Area, such as the Cabreúva 

Environmental Protection Area (EPA) in the North, Morro Grande Forest Reserve (FR) 

in the South, and Itupararanga EPA in the Southwest (Fig. 1). 

They are the most significant patches of the study area, with more than 300 ha, 

representing half our forest area (Table 1). 

Other remnants are scattered through the matrix composed predominantly of 

vegetation in regeneration, unmanaged pastures (i.e., anthropic fields), and urban areas, 

which occupy 36.3% and 22.4%, respectively, of the total study. Furthermore, in the area, 

there are 3.4% of planted forests (Eucalyptus sp), 1.4% of farmlands, 1.0% water, and 

0.6% of roads (highways and rural roads), as illustrated by the LULC map (Fig.1). 



66 

 

We generated this map (with 90%-accuracy) through the supervised 

classification method (Maximum Likelihood algorithm) of the CBERS 4-orbital images 

(MUX multispectral sensor, 20 m-spatial resolution). 

Table 1. Main characteristics of the forest patches of the studied landscape in the Green 

Belt Biosphere Reserve of São Paulo City (GBBR-SP), Brazil. 

Class NP Area Forest patches metrics 

(ha) (%) (%) 
Area (ha) 

Mean (SD) 
Perim (m) 
Mean (SD) 

Near (m) 
Mean (SD) 

Shape 
Mean (SD) 

< 5 92.4 5.9 0.36 (± 0.79) 277.90 (± 299.03) 17.80 (±42.46) 1.15 (± 0.24) 
5 - 30 5.2 11.5 12.32 (±6.37) 2857.48 (±1301.65) 107.67  (± 162.66) 2.05 (±0.60) 

30 - 75 1.3 11.0 47.00 (±13.57) 7814.90 (± 2366.13) 57.57 (± 98.93) 2.85 (±0.65) 
75 - 170 0.6 11.2 105.98 (± 24.89 13933.64 (± 4035.25) 38.88 (±77.14) 3.38 (± 0.82) 

170 - 300 0.3 10.4 244.71 (± 28.74) 26434.43 (± 6538.71) 21.56 (± 35.60) 4.40 (±0.95) 
> 300 0.2 50.0 1436.24 (± 2689.73) 92797.11 (±107803.9) 0.00 (± 0.00) 6.50 (± 2.23) 

Where: NP= Number of forest patches; Area - Habitat size; Perim – Habitat perimeter; 

Shape - Shape index; Near - Distance of the nearest neighbor edge; Mean - Mean value; 

and SD - Standard deviation value. 

Then, we followed with the digitalization-on screen of anthropized areas, 

including low and high-density urban areas. The first group comprises small urban 

agglomerations and farms characterized by horizontal, dispersed, and polycentric 

growth. 

Conversely, the second group is formed by the significant urban areas. They 

were classified as a constraint, considering their low quality for functional connectivity, 

as they have a compact, vertical, and monocentric shape (Ojima, 2007). 

3.2.2 Conceptual Model  

The Landscape Resistance Index was developed through Structural Equation 

Modeling, based on the maps of Land Surface Temperature (LST), Nighttime 

Reflectance (Night), and Inverted NDVI (NDVIinv). These criteria represented, 

respectively, the physical (water and energy balance), anthropic (barriers effects), and 

biotic (vegetable biomass quality) attributes of the studied landscape. 

The LST map was produced from a thermal infrared band of the Landsat-8, 

using the LULC of the studied area for reference. The Night is a product of the Night and 

Day Bands (NDB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) and, the 

NDVIinv came from the near and infrared band of the CBERS-4. 
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Fig. 1 – Land use/Land cover (LULC) and location of the studied Landscape in the Green 

Belt Biosphere Reserve of São Paulo City (GBBR-SP), Brazil. 

The criteria maps were sampled using a Geographic Information System (7620 

points randomly distributed) to support statistical analysis through Structural Equation 

Modeling (SEM), where criteria were inserted as observed variables. 

This way, modeling these variables, we obtained the Landscape Resistance 

Index, which was our latent variable in the SEM context (Fig. 2). 

 

3.2.3 Structural Equation Modeling (SEM) 

Structural Equation Modeling (SEM) is a multivariate technique used to analyze 

a group of observed variables, following a holistic hypothesis previously established and 

having the ability to represents non-measurable variables, named latent variables or 

constructs (Grace et al., 2010). 

As mentioned, the observed variables were the maps of LST, Night, and 

NDVIinv to indicate the way related with the least resistance in the landscape, based on 

the ecology integrity concept. 

Thus, ecosystem integrity refers to a habitat that has not undergone an 

anthropic change. Nowadays, it is understood as a holistic and structural concept, 
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focusing on natural variations to promote the conservation of native biodiversity 

(Keenleyside, 2012).  

Therefore, the ecological systems that retain their native species and natural 

processes are, hypothetically, the most resistant and resilient to anthropogenic and 

natural stress (Woodley, 2010). 

This way, the Landscape Resistance Index (LRI) constitutes the latent variable 

(dependent variable), which is a theorized and unobserved concept measured indirectly 

by the consistency analysis among multiple observed variables (independent variable). 

These indicators represent the theoretical concept response, including measurement 

error explanation (Hair et al. 2009). 

According to Grace et al. (2010), the SEM also involves multiple regression 

problems using a path diagram. The unidirectional arrow indicates the cause-effect 

relationship between the variables (Fig. 2). 

In general, the steps for building the model were the theoretical basis, model 

elaboration, collection and preparation of variables, estimation, adjustment assessment, 

and discussion (Kaplan, 2008). 

 

Fig.2 - Conceptual model used to obtain the Landscape Resistance Index (LRI) for the 

Green Belt Biosphere Reserve of São Paulo City (GBBR-SP), Brazil. 
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3.2.4 Observed Variables 

The criteria definition to support our index development considered the animal 

movement across the landscape, a complex process involving the local environment's 

characteristics (Hooten et al., 2010). Furthermore, we considered that the barriers to 

animal movement and their preferred habitat as environmental covariables assess 

animal behaviors (Hanks et al., 2015; Wilson et al., 2019). 

This way, the observed variables selected for modeling the Landscape 

Resistance Index were LST, Night, and NDVIinv. 

The satellite images supported the production of the observed variables. LST 

used the thermal infrared, band 10 of the Landsat-8 (TIRS sensor), to determine our 

LULC terrestrial surface temperature. Their spatial resolution of 100 m was resampled 

to 20m, the same as the LULC map. 

The atmospheric band correction followed the available parameters on the 

United States Geological Survey website (USGS, 2019). This way, the later radiance 

value was converted to Kelvin temperature and then to degrees Celsius (ºC), subtracting 

273,15 K (Barsi, Barker, and Schott, 2003). In this sense, the LST map represents the 

areas where the energy and water balance were the most intense of the landscape, 

therefore, the most unfavorable to the gene flow. 

The Night map constituted in the Night and Day Band (NDB) of the Visible 

Infrared Imaging Radiometer Suite (VIIRS), which was provided by the Earth 

Observation Group (EOG) of the National Center for Environmental Information (NCEI). 

In the literature, the Night is considered effective in determining urban areas (Su et al., 

2015; Zhou et al., 2014), in this study, to identify anthropic barriers to gene flow. In the 

same way, its 450 m-spatial resolution was downsized to 20m.  The available images 

were firstly filtered to exclude data affected by diffuse light, lightning, lunar illumination, 

and cloud cover addition though, and border bands were excluded, the so-called 

aggregation zones. 

The NDVI was generated from CBERS-4 satellite images (MUX sensor, 20m- 

spatial resolution). The index is traditionally used to analyze vegetation vigor, considering 

that energy reflected in the red and near-infrared regions is inversely related. The result 

is directly proportional to the green biomass, represented by values closer to +1, 

indicating denser, moist, and well-developed vegetation (Gitelson, Peng, and 

Huemmrich, 2014). 
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In this context, we multiplied NDVI by -1m, using a raster calculator, to obtain 

NDVIinv, considering that values near -1 represent LULC with the most resistance to 

flow gene since they have less vegetable biomass. 

Using a Linear Function, the LST, NDVIinv, and Night maps were normalized 

to a standard scale, ranging from 0 to 255 bytes. After, they were sampled considering 

7620 points randomly distributed through the study area, with a minimum distance of 

100m among them. This sample size corresponds to 20 times the statistical sampling 

required for a 95% confidence interval and 5% error. 

The Structural Equation Model used to obtain the LRI is described in Equation 

1, normalized for 0 to 100% as indicated in Equation 2. 

3.2.5 Landscape Resistance Index (LRI) 

The Structural Equation Model used to obtain the LRI is described in Equation 

1, normalized for 0 to 100% as indicated in Equation 2. 

(Eq. 1) LRI = (((Factor LST*LST) + Error LST) + (Factor NDVIinv*NDVIinv)+ 

Error NDVIinv))+ ((Factor Night*Night)+Error Night))). 

 

(Eq. 2) LRI% =(
100

Max LRI-Min LRI
*(LRI-Max LRI))+100 

 

Where: Factor loading and Error are indicators obtained in the Structural 

Equation Model for each observed variable; Max = Value Maximum; Min = Value 

Minimum. Thus, maximum values occur when all observed variables have a value of 255 

bytes. While minimum values occur when all variables have a value of zero. 
Using the Semplot package (R statistics program), we estimated the factors 

and errors considering data previously tested to correlation and normal distribution. 

The Comparative Fit Index (CFI) calculate the relative fit of the observed model 

by comparing it with a base model (Byrne, 2016). The Root Mean Square Error of 

Approximation (RMSEA) to assess how well the model fits a population and not just a 

sample estimated (Hair et al., 2009), as discussed in the specialized literature (Ullman, 

2006).  

For model adjustment, values greater than 0.90 for CFI and less than 0.10 for 

RMSEA were adopted as parameters proposed by Gama-Rodrigues (2014). In addition, 

the factor loading must be statistically significant. According to Hair et al. (2009), an 
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appropriate value should be greater than 0.50, being ideals greater than 0.70. Also, 

according to the authors, Construct Reliability (CR) is a good convergent validity 

indicator. Values between 0.6 and 0.7 may be acceptable if other indicators are good. 

Nevertheless, for all measures to represent the construct, CR has to be greater than 

0.70.   

3.2.6  Spatialization Index 

The LRI% spatialized in the Geographic Information System (GIS) 

supported different analyses. Firstly, on a continuous scale (%), we evaluated three 

scenarios, which were distribution (i) through our studied area, (ii) without the forest 

patches, and (iii) only inside these forest patches. 

For the first scenario, the studied area was classified as a very low, low, 

medium, high, and very high level of resistance through the Jenk Natural Break method, 

an algorithm that maximizes similarity within classes and the distance between groups 

(Smith, Goodchild, and Longley, 2018). Moreover, we analyzed the overlap between 

resistance and LULC classes. 

 Finally, we analyzed the relation between resistance and functional forest 

connectivity, considering the forest patches as the reference. The map of distance from 

forest fragment centroids was overlayed on the resistance classes map, and a sample 

grid (with 7620 points) of this product supported the statistical analysis. 

In the statistic program, the distance data were log (x+1) transformed and 

applied the Generalized Linear Model (GLM) of binomial regression for each resistance 

class. For this, the presence (1) or absence (0) of the resistance class (dependent 

variable) was considered, depending on the distance from forest fragments centroids 

(independent variable). 

 

3.3 RESULTS 

The environmental attributes maps (in 255 bytes) that supported the LRI 

modeling for the Green Belt Biosphere Reserve (SP, Brazil) are in Fig. 3.  

Predominant values of NDVI and Night were represented by at most 50 bytes, 

which occupied 73% of our studied area on the first map and 93% on the second. The 

medium value on the NDVI map was 34.8 bytes (± 52.8), whereas the Night map was 

12.1 bytes (± 39.8). 
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The LST was the variable with the greatest variability in the landscape, having 

92.1% of our total area associated with values lower than 150 bytes (medium value: 68.8 

and ± 63.7). 

  

 

Fig. 3. Environmental attributes (in 255 bytes) for the study area in the GBBR-SP, Brazil: 

(A) Inverted NDVI, (B) Land Surface Temperature, and (C) Nighttime Reflectance.  
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These attributes, i.e., observed variables in the model context, contributed to a 

significant adjustment of the Landscape Resistance Index (LRI), with CFI of 1.00 and 

RMSEA of 0.00 (Fig. 4A). 

This way, the factor loading obtained for the LST, Night and NDVIinv was 

respectively of 0.56 (error = 0.68), 0.57 (error = 0.68), and 0.80 (error = 0.37). The 

significant adjustment that we obtained on the standardized assessment among these 

factor loadings (calculated by the model) and the sum of the points representing them 

(Fig. 4AB). 

Fig.4 – Landscape Resistance Index for the studied area in the GBBR-SP, Brazil: (A) 

parameters and factor loadings modeled, and (B) model CR, based on the sum of the 

points representing the OV and their factor loadings. 

The Construct Reliability (CR) of the model was 0.68, that is, considered 

adequate, despite presenting a great data variation in the intermediate values (between 

400 and 800 points). 

In this context, the SEM used to obtain the LRI is presented in Equation 3: 

 

(Eq. 3) LRI =(((0.80*NDVIinv)+0.37)+(0.57*NIGHT)+0.68)+ ((0.56*LST)+0.68)))  

Where: Inverted NDVI (NDVIinv), Nighttime Reflectance (Night), Land Surface 

Temperature (LST), and Landscape Resistance Index (LRI).  

The model (Equation 3) resulted in an LRI ranging from 1.73 to 493.88 for our 

study area, justly reflecting the internal disparities of the matrix components in terms of 

resistance to genetic flow. These LRI threshold values are in the Equation 4 to normalize 

LRI from 0-100% (Fig. 5). 

(Eq. 4) LRI% =(
100

492.15
*(LRI-493.88))+100 
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Where: Landscape Resistance Index (LRI) and Landscape Resistance Index normalized 

for percentage (LRI%). 

 

 

Fig. 5 - LRI% spatialized through the studied area (Fig. 5A), without the forest patches 

(Fig. 5B), and only inside these patches (Fig. 5C).. 
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This way, the resistance inside the forest patches is smaller than the matrix, 

although with different levels, as we also observed for the matrix components (urban 

areas, planted forest, farmlands, water, road, and anthropized fields). 

Considering that the urban areas refer to small urban agglomerations (low-

density urban areas) and great urban areas (high-density urban areas), while 

anthropized fields are predominantly composed of vegetation in regeneration and 

unmanaged pastures. 

Evaluating our study area in classes of resistance (Table 2), we obtained 36.3% 

of its total area classified as very low, 31.5% as low, 20.4% as a medium, 8.2% as high, 

and 3.6% as very high. In addition, we found a particular association with the native 

forest, high-density urban areas, and anthropized fields. 

The native forest occupied 76% of the very low class, 23% of the low, and less 

than 2% of other classes. Otherwise, anthropized fields predominated in the low and 

medium classes, representing 55% and 62%. It was also the second use, with 36%, in 

the high class. 

The most resistant land use of our landscape, represented by the high-density 

urban area, prevailed in the very high and high classes, representing 92% and 51% of 

their respective total areas. 

Table 2 also indicated the presence of planted forest in 7% of the very low 

class, in 3% of the low class, but it is associated with or close to the native forest or 

abandoned anthropized fields.    

    

Table 2 – The LULC and resistance classes of the study area, located in GBBR-SP, 

Brazil. 

LULC Class 

Resistance class (%) 

Very 
Low Medium High 

Very 

Low  High 

Anthropized Field 13.8 55.2 61.7 35.7 4.8 
Native Forest 75.9 22.6 1.7 1.3 0.0 
High Density Urban Area 1.6 11.7 26.5 50.7 91.9 
Planted Forest 6.9 2.6 0.6 0.0 0.0 
Farmlands 0.5 2.2 1.9 0.8 0.0 
Others  2.2 5.7 7.6 11.5 3.4 

TOTAL 100 100 100 100 100 
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Regarding the resistance model analysis, aiming at the functional forest 

connectivity, our results indicated coherence between the occurrence of resistance 

classes and the distance of forest fragments from their respective centroids (Fig.6). 

Fig.6 - Binomial regression Generalized Linear Model (GLM) for LRI resistance 

classes, depending on forest patches' distance from their centroids of the studied 

landscape, in the GBBR-SP, Brazil. 

The frequency of high and very high resistance classes increased with the 

distancing from the patch’s centroids (Fig. 6D/E), while the low and medium-class 

frequencies decreased (Fig. 6 B/C). Conversely, very low resistance increased with the 

patch’s centroids' distancing, reflecting the large forest patches in the studied area (Fig. 

6A). Especially for those having more than 300 ha (Table 1), where there is a great 

distance between their centroid and edge, traversing great distances within the forest 

fragments. 

3.4 DISCUSSION  

In the Green Belt Biosphere Reserve of São Paulo, the landscape studied 

supported the modeling of the Landscape Resistance Index (Fig. 4A/B) through the 
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selection criteria. The model evidences a positive correlation between the point sampled 

in the criteria maps and the factorial load convergence of the index.  

Thus, we observed that the NDVIInv had greater significance for the 

composition of the index. Considering its high variability, we can say that the criteria 

influenced differently on LRI with NDVIinv showing the highest factor loading (n) and 

lowest error (error) among the three. While the Night and LST equally contributed to 

represent the latent effect implicit in the concept of landscape resistance and meeting 

the statistical parameters for a Structural Equation Model.  

In turn, the index reflects the resistance levels of the land use/land cover, 

expressed by the class interval, ranging from 0% (1.73) to 100% (493.88), with the 

highest values associated with the anthropized uses and forest isolation (Table 2. Fig. 

6). This way, LRI supports the design of forest corridors through environmental with the 

lowest resistance. Therefore, the model assumes that the greatest resistance is 

correlated with the sum of the criteria’s factor loading (Equations 3 and 4). 

Consequently, the regions with the highest plant biomass, the lowest 

temperature on the Land surface, and the lowest presence of anthropized areas meet 

the conceptual foundations. We obtained these results because our criteria represent 

the landscape attributes with their intrinsical variability, without requiring biologic 

information from species, as proposed by other approaches used to evaluate functional 

connectivity. Thus, through LRI, we decrease the subjectivity, which characterized some 

approaches based on focal species such as birds or mammals. 

For example, Ribeiro et al. (2020), to define functional connectivity in an 

urbanized landscape (in the Atlantic Forest Biome), choose a bird species as a 

reference, using 100 m as the maximum value for dispersal distance. A value that was 

defined according to the literature as proposed by other studies based on graph theory. 

In anthropogenic landscape changes often characterized by habitat loss and reduced 

matrix quality, how the animal movements change in habitat open is not a well-known 

question (Da Silveira et al., 2016). 

Differently, LRI models a continuous univariate surface and brings the 

multivariate characteristics of the studied landscape. Then, our index can be adjusted 

according to the landscape criteria.  

Our results indicated that the index could reflect the resistance levels of the 

land use/land cover. In our study, regions occupied by anthropized uses and having 
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isolated patches show the highest values for LRI. Otherwise, those areas concentering 

the forest patches showed the lowest value (Fig. 5C). 

Thus, NDVI, LST, and Night were modeled to bring the main characteristics, 

considering their variability and importance to functional forest connectivity.  

According to de Castro et al. (2018) and Dong et al. (2018), traditionally, NDVI 

has differentiated land use/land cover (LULC), including agriculture (Remelgado et al., 

2018), pasture (Rickbeil et al., 2018), and forest (Mills et al., 2018). On the other hand, 

the rest and foraging animal behavior require specific environments (Abrahms et al., 

2017) associated with LULC (Brown et al., 2017, Rickbeil et al., 2017, Remelgado et al., 

2018, Remelgao, Wegmann, and Safi, 2019, Remelgado, Safi, and Wegmann, 2020). 

Some studies have shown that animals moving in the landscape respond to 

environmental changes, mainly influenced by vegetation (Remegaldo, Wegamann, and 

Safi, 2019, Da Silveira et al., 2016, Brown et al., 2017), which can identify through the 

vegetation indexes (Pettorelli et al., 2011). Thus, navigation efficiency seems more 

significant when the environment's high spatial correlation directs the animal movement 

(Bailey, Wallis, and Codling, 2018). This way, our result considered that NDVI values 

similar to forest fragments represented regions with less resistance to functional forest 

connectivity, which we call NDVIinv (Fig. 3A and Fig. 5). 

Changes in the environment temperature influence the dynamics and function 

of the natural systems, affecting their ecological communities (Osmond et al., 2017). 

Results like this, in animal acclimatization or plasticity (Luhring and DeLong, 2017), have 

leading to the persistence or stability of the environmental system (Salt et al., 2017) and 

inducing animals to operate in ranges of thermal tolerance limits (Sunday et al., 2014). 

The main result is that the thermal restrictions (Broders et al., 2012) induce animal 

movement near the forest remnants or through shaded environments (Alston et al., 2020, 

McCann et al., 2016) to produce less metabolic heat. 

In the same way, our criteria LST represent the temperature effects on the 

ecological processes (Fig. 3B). According to Delong (2012), temperature influences the 

animal movement across the landscape, and its variation influences the quality of the 

movement (Pawar et al., 2016, Gilbert et al., 2016). 

Robinson et al. (2013) remembered that the species persistence depends on 

the ability of the specimens to tolerate thermal changes in the landscape and on the 

thermal suitability of the habitat, which varies spatially according to the soil cover and 



79 

 

surrounding vegetation (Robinson et al., 2013). Consequently, gradients thermal effects 

define how species select their habitat (Nowakowski et al., 2016). 

Therefore, LST supported identifying the environments with a temperature 

similar to the forest fragment, assuming that these regions show the least resistance to 

functional forest connectivity (Fig. 3B and Fig. 5). 

The variable Night expresses that the environment drives the species 

distribution (Alagador et al., 2012), under the principle that similar species dispersed in 

similar environments have similar integrity (Sawyer, Epps, and Brashares, 2011). The 

species movement is sensitive to the change in the landscapes (Krosby et al., 2015), 

though, causing resistance to the energy flow through the matrix (Marulli and Mallarach, 

2005) or barriers that affect intra behavior species-specific (Berger-Tal and Saltz, 2019).  

Resulting from urban sprawl, the light pollution registered by Night gradually 

invades natural environments, and it generates excellent resistance to photosensitive 

species in habitats close to impact sources (Guetté et al., 2018, Davies and Smyths, 

2018, Gaston and Holt, 2018). In this context, the nighttime reflectance supports the 

identification of modified environments (Levin and Zhang, 2017), considering a positive 

relationship among the anthropized and reflectance levels with resistance to functional 

forest connectivity (Fig. 3C and Fig. 5). 

This way, our criteria represented the landscape attributes such as the LULC 

and indicators of anthropogenic disturbance (Wasserman et al., 2010, Neumann et al., 

2015, Mateo-Sánchez et al., 2015, Krishnamurthy et al., 2016, Milanesi et al., 2017). It 

is essential to remember that, while the landscape resistance is related to a point surface 

value, the connectivity is cumulative to movement across the dispersal surface 

(Cushman, Lewis, and Landguth, 2014, Krishnamurthy et al., 2016). Thus, spatial 

correlations are fundamental to infer the dispersion capacity of species in the 

environment (Bajaru et al., 2020). 

Another positive point of the index is that it reflects the resistance levels of the 

land use/land cover, expressed by the fixed class intervals, with the highest values 

associated with anthropized uses and forest isolation (Equations 3 and 4). There was 

the greatest dispersion of results in environments of moderate resistance, i.e., those in 

transition between forests and urban areas (Fig. 4B).  

The model predictability for our landscape was 88% of resistance, having the 

greatest variability in the matrix (Fig. 5A/B). Thus, even in anthropized areas, the index 

supports the identification of micro-habitats, identified by where the animals move and 
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by a behavioral pattern (Peterman et al., 2014, Reding et al., 2013; Zeller et al., 2012). 

The predictability of resistance for forest fragments, which was 53%, shows this 

characteristic of reflecting heterogeneity inserted in the model through the criteria (Fig. 

5C and Table 2). Hence, using the index, we can identify places where species can 

occupy or move in these environments, conferring characteristics of resilience or 

ecological resistance to the spatialization of landscape resistance (Moraes, et al., 2018, 

Nimmo et al., 2015, Robinson et al., 2013). 

In the same way, when we classified the landscape in classes of the index, we 

obtained the very low resistance environments associated with forest fragments (75.9%) 

while very high resistance regions with urban areas (91.9%). In the intermediate 

environments, there was a transition process from the natural to the urbanized LULC 

due to the increase in resistance, especially for anthropized fields, planted forests, and 

agriculture (Table 2). 

In this sense, the reports that the landscape structure is only one component 

of the many affecting functional connectivities and that individuals can traverse 

inadequate habitats during dispersal corroborate the stratified analysis of the LRI 

(Baguette et al., 2013, Froidevaux et al., 2016, Melin et al., 2016). Thus, the resistance 

of the landscape can vary according to the dispersion capacity of the species (Liu et al., 

2018) and the sensitivity to barriers (Breckheimer et al., 2014). 

This coexistence structure between animals and anthropized environments is 

reported in the literature with carnivores, small mammals, and multispecies (König et al., 

2020, Chapron et al., 2014, Ceia-Hasse et al., 2017, Loveridge et al. 2017, Ducci et al., 

2015, Bajaru et al. 2020). In this perspective of heterogeneity of resistance in the 

landscape, the analysis of the LRI performance showed coherence and the increase of 

forest isolation (Fig. 6). 

In this context, we obtained many environments associated with very low 

resistance due to the representativeness of the greatest forest fragments in our 

landscape (Table 1- 34.9%). As the resistance to movement in these patches is meager, 

we cannot affirm that the functional connectivity promotes the structuring of the local 

community in these regions (Poniatowski et al., 2016, Lindenmayer et al., 2020). 

In the same way, there was an increase in the distance from the forest patches, 

proportional to the occurrence of regions with very high and high resistance (Fig. 6D/E). 

Regions, justly represented by urban areas and highways with low capacity for 

connectivity that performs species filtering, mediated by habitat characteristics, resulting 

in an unequal probability of species occurrence (Salgueiro et al., 2021, Kurz et al., 2014). 
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Thus, the proximity to the forest patches was one of the decisive factors for 

defining the resistance and occurrence of many areas. We can mention those occupied 

by anthropized fields (with different stages of regeneration), planted forests, and 

agriculture that showed low and medium resistance. Chazdon and Uriarte (2016) also 

observed this relation, reporting that places close to forest fragments had a rapid natural 

regeneration. 

According to Dallabrida et al. (2019), the dynamics of the bush-tree component 

is not a spatially homogeneous process, having factors ecological, biotic, and abiotic 

influencing the demographic rates of the regenerative component and which will affect 

biodiversity conservation (Salami et al., 2014, Arroyo-Rodriguez et al., 2017). 

In this approach, in intermediate resistance environments, sensory perception 

plays an essential role for the animal during movement across the landscape (Clarke et 

al., 2013). Recalling that the animals need the acquisition, interpretation, selection, and 

organization of sensory impressions to assign meaning to the surrounding environment, 

based on their respective life history and, for some animals depending on their memory 

(Almeida, Almeida, and Almeida, 2010). 

3.5 CONCLUSION 

The study was developed for landscapes like our studied area, which has 

suffered from urban sprawl, although having a significant remnant of the Atlantic Forest, 

a biodiversity hotspot. Remnants that support ecological processes and species 

dispersion across the environment. 

Our challenge was to identify the paths based on LULC resistance, aiming at 

the forest functional connectivity. Even more, considering landscape attributes instead 

of a species dispersion pattern. Attributes that we could model supported the Landscape 

Resistance Index. In this study, they were modeled through the Structural Equation 

Model, naming observed variables. 

Thus, our observed variables are NDVIinv, Night, and LST, robustly 

determining the landscape resistance, aiming at functional forest connectivity. They have 

different influences on the landscape and, consequently, on the index, resulting in spatial 

heterogeneity associated with the movement across the landscape.  

Hence, LRI supports the definition of fixed limits, reflecting LULC with different 

resistance.  Regions classified as very low resistance were associated with forest 

fragments, very high to urban areas, and intermediate levels having a transition process 

from the natural to the urbanized LULC.  



82 

 

Finally, we can say that our criteria were sensible and efficient to represent the 

landscape characteristics in terms of their respective resistance, allowing the LRI 

production. 

In this context, LRI provides a measure of landscape resistance supporting 

forest connectivity analysis. A measure that we can obtain for various landscapes 

considering their actual structure, independently of the fauna species that they have. So, 

LRI brings the actual landscape physical characteristics for the forest connectivity 

analysis. 

This way, through the index we can plan actions to improve forest connectivity 

and years after quantifying the results.  

Another point is related to the resistance level inside the forest patches. 

According to our results, LRI was sensible to represent the range from the edge to the 

central region of the remnants. 

Lastly, we conclude that the index based on environmental attributes reflects 

the structure of functional forest connectivity and it is a resistance measure for 

landscapes. A measure that can be calculated for various landscapes to plan the design 

of forest corridors and after to evaluate the improve that action on the forest connectivity.   
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4. CHAPTER 3 
 
 

FUNCTIONAL CONNECTIVITY SUPPORTED BY FOREST 
CONSERVATION IN URBAN SPRAWL LANDSCAPE 

 
 

ABSTRACT 

 
The rapid transformation of natural environments is driven by urban sprawl for a 

growing human population, mainly characterized by peri-urbanization that threatens the 
conservation of important ecological species and processes. In this approach, the study's 
main objective was to identify priority areas for forest conservation, aiming at functional 
connectivity in a landscape under to urban sprawl. For this, we used the joint approach 
of Multicriteria Evaluation (MCE), literature review, and expert opinion. Thus, the 
selected criteria were proximity to forest fragments, Landscape Resistance Index (LRI), 
proximity to the drainage network, Topographic Wetness Index (TWI), and slope, 
aggregated through Weighted Linear Combination (WLC). Based on the results, the 
criteria's influence and importance were reflected in the values of 0-255 bytes range and 
associated with their priority levels. In the highest priority areas (37.3% of the landscape), 
values between 188 and 255 bytes were represented in 32% by proximity to forest 
fragments, 27% by the LRI, proximity to the drainage network amounted to 26%, TWI 
(8%), and slope (7%). The model supported our prioritization of areas for functional forest 
connectivity and brought the importance of our criteria set, controlling their respective 
influences. Thus, it can support planning for forest restoration and Payment for 
Ecosystem Services (PES) aimed at functional connectivity maintenance. 

 

Keywords: Multicriteria Evaluation, Land-use/Land-cover, and Environmental 
Attributes. 
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4.1 INTRODUCTION 

The urban sprawl process is a consequence of the growing population and has 

been causing a swift transformation of natural environments (Sekercioglu et al., 2015). 

On the other hand, this process drives peri-urbanization, an expressive characteristic of 

the ecosystem alterations. 

According to Gibbs and Salmon (2015), more than 60% of terrestrial vegetation 

has been deforested or significantly modified through this process. Also, considering this 

urban sprawl tendency, UN (2019) estimated that 70% of the global population (about 

6.3 billion) will be living in urban areas by 2050. 

This way, urbanization transforms the forest landscapes through fragmentation 

and land-use/land-cover conversions, resulting in extensive metropolitan regions (Riad 

et al., 2020, Butsch and Heinkel, 2020, Simon et al., 2014), influencing the structural and 

functional forest connectivity and processes related, as species conservation.  

Structural connectivity is related to the physical continuity among remnants, 

such as distances and corridors (Uezu et al., 2005). The functional considers the 

biological responses of species and estimates how easy it is for the individual to move 

through the landscape units (Goodwin, 2003). Our study considers this last connectivity 

since our present landscape scenario is well-marked by urban sprawl. Scenario 

composed of a non-forested matrix with many small forest patches scattered through the 

landscape and supporting the corridor for species movement (Matos et al., 2019). 

In this scenario, biological processes are affected as individual dispersal, 

habitat colonization, and the structuring of population and metacommunities (Yabsley et 

al., 2016, Thiele et al., 2018, Tumas et al., 2018, Bajaru et al. 2020). Haddad et al. (2015) 

and Salgueiro et al. (2021) also mentioned the species association since they result from 

filtering habitat and landscape, increasingly dispersed and disconnected, making wildlife 

populations isolated in the remaining forest fragments. 

The major challenge in landscapes under the sprawl process is forest 

conservation, defining priority habitats to support functional connectivity, especially when 

patches promote connectivity among Protected Areas (Ehlers-Smith et al., 2019, 

Coetzee, 2017).  

Several studies have used a focal species to define these priority areas, 

thinking in designing the forest corridor (Costanza et al., 2020, Jenning et al., 2020, 

Meurant et al., 2020, Foster et al., 2017). However, urban sprawl has affected distinct 



100 

 

species in different ways due to their intrinsic characteristics and resilience (Chambers 

et al., 2019). 

In this sense, we focused on studies that used a model or simulation to identify 

the landscape characteristics, i.e., criteria, attributes, that influence the forest 

connectivity and support the identification or definition of ecological corridors (Auffret et 

al., 2017).  

According to Vasudev et al. (2015), methods based on environmental criteria 

can introduce substantial variability in the evaluation process. Thus, Zeller et al. (2012) 

mentioned that several criteria support the connectivity analysis as relief shape, proximity 

among forest native remnants, drainage network, and urban areas.  

Criteria representing resistance surfaces are also essential to support the 

functional connectivity since they bring landscape structure characteristics to the model 

(Rudnick et al.,2012; Cushman et al., 2014, Thiele et al., 2018).  

In this way, the riparian zone is the main way of movement across matrixes 

with a greater level of resistance (Villalva et al., 2013; Carvalho et al., 2016). Still, they 

are wetlands and present dynamic characteristics and link the landscape in networks on 

a spatiotemporal scale that responds and adapt to anthropogenic disturbances (Bishop-

Taylor et al., 2018, Allen, Gonzalles, and Parrott, 2020). 

Topographic factors, in turn, play a limiting role in connectivity and dispersion, 

especially in steep terrain, as they make movement difficult even in the presence of 

preserved vegetation (Nali et al., 2020, Rio-Maior, et al., 2019, Hails et al., 2016, Torre 

et al., 2017). On the other hand, topographic heterogeneity harbors more diversified 

microclimates that increase the permeability of the landscape (Gaüzére et al., 2016). In 

this duality, the natural, historical characteristics that prevent the dispersal of species 

can often be more critical for connectivity than recent anthropogenic modification events 

(González-Serna et al., 2018). 

Thus, the prioritization of areas involves criteria set representing characteristics 

that support the connectivity modeling.  

The multicriteria evaluation (MCE) is a method for prioritizing areas already 

established for other areas of knowledge. It is a procedure that groups criteria with spatial 

distribution to obtain a final solution, supporting decision-making (Boroushaki, 2017). 

According to Valente et al. (2021), the differential of MCE is its ability to group criteria, 

considering the relative importance of criteria for the study's purpose. 
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Using distinct methods, MCE was employed for prioritization areas for 

landscape restoration (Li. et al. 2020, Valente et al., 2017, Lopes et al., 2020), 

identification of habitat for connectivity (Shanthala et al., 2016), determination of 

protected areas (Masoodi et al., 2016, Sumida and Valente, 2019) and sustainable urban 

sprawl (Shuaibu and Kara, 2019). These studies use a set of criteria and weights derived 

from expert knowledge in a spatial and participatory context (Wang et al., 2014, 

Malekmohammadi and Rahimi, 2014). 

Esmail and Geneletti (2017) evaluated the use of different MCE methods 

applied to prioritize areas to nature conservation in 20 years (since 1996).  They found 

a total of 86 studies with 24% related to conservation and landscape planning (e.g., 

Ferreti and Pomarico, 2013, Yang et al., 2019), and 21% to forest restoration and 

management (e.g., Valente and Vettorazzi, 2008, Orsi and Geneletti, 2010).  

In these studies, considering the MCE method's ability and the hypothesis that 

we can support forest connectivity based on landscape characteristics, the study's main 

objective was to prioritize areas for forest conservation aiming at functional connectivity 

in a landscape subject to urban sprawl. 

 

4.2 MATERIAL AND METHODS 

4.2.1 Study Area 

The landscape studied (Fig. 1) is in the Green Belt Biosphere Reserve (GBBR) 

of São Paulo (SP), which is one of the largest cities in South America (IBGE, 2021). Its 

main characteristic is the increasing urban sprawl, resulting in pressure in its surrounding 

area regarding conversion from agriculture to urban use.  

According to the United Nations United Nations Educational, Scientific, and 

Cultural Organization (UNESCO, 2019), the Biosphere Reserve is a learning site for 

environmental protection, logistical provision for scientific research, and 

educational/sustainable use of natural resources. Considering the Biosphere Reserve as 

a place of excellence, it should support ways to solve human and environmental conflicts 

through the local and scientific communities (UNESCO, 2019). 

The GBBR was considered of extreme importance for biodiversity conservation 

and to design ecological corridor (MMA, 2021), considering that Atlantic Forest remnants 

cover 34.9% of its area (165099.25 ha) belongs to Ombrophilous Dense Forestry (IBGE, 

2012). Some remnants belong to Protected Area as the Cabreúva Environmental 
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Protection Area (EPA) in the North, Morro Grande Forest Reserve (FR) in the South, and 

Itupararanga EPA in the Southwest (Fig. 1).   

They are the most significant patches of the study area, with more than 300 ha, 

representing half our forest area (Table 1).  

Table 1.  Main characteristics of the forest patches of the studied landscape in the Green 

Belt Biosphere Reserve of São Paulo City (GBBR-SP), Brazil. 

Class NP Area Forest patches metrics 

(ha) (%) (%) 
Area (ha) 

Mean (SD) 
Perim (m) 
Mean (SD) 

Near (m) 
Mean (SD) 

Shape 
Mean (SD) 

< 5 92.4 5.9 0.36 (± 0.79) 277.90 (± 299.03) 17.80 (±42.46) 1.15 (± 0.24) 
5 - 30 5.2 11.5 12.32 (±6.37) 2857.48 (±1301.65) 107.67  (± 162.66) 2.05 (±0.60) 

30 - 75 1.3 11.0 47.00 (±13.57) 7814.90 (± 2366.13) 57.57 (± 98.93) 2.85 (±0.65) 
75 - 170 0.6 11.2 105.98 (± 24.89 13933.64 (± 4035.25) 38.88 (±77.14) 3.38 (± 0.82) 
170 - 300 0.3 10.4 244.71 (± 28.74) 26434.43 (± 6538.71) 21.56 (± 35.60) 4.40 (±0.95) 

> 300 0.2 50.0 1436.24 (± 2689.73) 92797.11 (±107803.9) 0.00 (± 0.00) 6.50 (± 2.23) 

Where: NP= Number of forest patches; Area - Habitat size; Perim – Habitat perimeter; 

Shape - Shape index; Near - Distance of the nearest neighbor edge; Mean - Mean value; 

and SD - Standard deviation value. 

Other remnants are scattered through the matrix composed predominantly of 

vegetation in regeneration or unmanaged pastures (i.e., anthropic fields) and urban 

areas, which occupy 36.3% and 22.4%, respectively, of the total study. Furthermore, in 

the area, there are 3.4% of planted forests (Eucalyptus sp), 1.4% of farmlands, 1.0% 

water, and 0.6% of roads (highways and rural roads), as illustrated by the LULC map 

(Fig.1). 

We generated this map (having 90%-accuracy) through a supervised 

classification method (Maximum Likelihood algorithm) and digitalization of anthropized 

areas on the screen, based on the CBERS 4-orbital images (MUX multispectral sensor, 

20 m-spatial resolution). 

The anthropized areas include the low-density urban areas as well as the high-

density. The first group is formed by small urban agglomerations or farms characterized 

by horizontal, dispersed, and polycentric growth. Thus, they were included in the 

analysis. 

Conversely, the second group is formed by the significant urban areas. They 

were classified as a constraint, considering their low quality for supporting the functional 

connectivity, having a compact, vertical, and monocentric shape (Ojima, 2007).   



103 

 

 

Fig. 1 - Land Use/Land Cover (LULC) and location of the study Landscape in the 

Green Belt Biosphere Reserve of São Paulo City (GBBR-SP), Brazil. 

4.2.2 Conceptual Model 

We generated the map of priority areas functional forest connectivity based on 

the following criteria that represent the landscape attributes: proximity to forest 

fragments, landscape resistance index, proximity to drainage network, topographic 

wetness index, and slope. 

Based on the multicriteria evaluation (MCE) approach, the criteria selection 

considered the literature review and expert´s opinions. The Weighted Linear 

Combination method (WLC) supported their aggregation into a final map, following the 

previous steps of criteria normalization to a common scale (varying from 0-255 bytes) 

and defining their respective importance to our objective. 

We classified the final maps in five classes of priorities for the sensitivity 

analysis and to evaluate the statistic correlation among the areas classified as the 

highest priority for forest connectivity and the location of forest fragments. Thus, criteria 

and priority maps in 255 bytes also supported some statistical analyses through samples 

(6448 points) extracted from them in a Geographic Information System environment.  

The Dot Plot graphics permitted an evaluation of the histogram behavior 

(interval of variation, breaks, average value, etc.) of the maps and their values 
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correlation. And we used cluster analysis to identify the LULC associated with the priority 

levels. 

 

Fig. 2 – Conceptual model used to obtain the map of priority areas for the Green Belt 

Biosphere Reserve of São Paulo City (GBBR-SP), Brazil. 

4.2.3 Criteria selection 

The criteria represent the landscape attributes important for our study and 

fundamental in the decision-making process.  

In our study, firstly, we defined the criteria based on a literature review from 

2015 to 2021 through the platforms Scielo, Scopus, Web of Science, and Google 

Scholar. We defined a combination of search terms with sufficient comprehensiveness 

to maximize the finding of environmental criteria since they represented the integration 

of forest functional connectivity and conservation principles. 

The most mentioned criteria, despite differences in nomenclatures, were 

related to forest cover pattern, topography, water resources, and land-use/land-cover 

(LULC) (Ayram et al., 2016, Curiel-Esparza et al., 2015, Fernández and Morales, 2016, 

Lakicev et al., 2014, Mello et al., 2018, Rincón, et al., 2019, Santos et al., 2018, Silva et 

al., 2017, Unda and Etter, 2019, and Vettorazzi and Valente, 2016).  

After, we submitted these selected criteria to experts’ evaluation in the context 

of the Participatory Technique approach (Pacetti et al., 2020). For this, we invited twelve 

experts to collaborate with the study. They represented Universities, Non-Governmental 

Organizations (NGOs), and managers of forest connectivity projects. According to 
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Camilo et al. (2015), few studies were based on expert opinion to assess the importance 

of conserving fragments and habitats. 

Seven experts agreed to participate in the study. Thus, we shared the criteria 

with them through a google form, containing the project summary with the main objective 

of the research; the location of the study area and its land-use/land-cover map. Experts 

were free to agree with our criteria, delete, or add new criteria. 

This way, we obtained the following criteria set, with the justification for their 

inclusion shown in Table 2: 

 Proximity to forest fragments: extracted from the land-use/land-cover map (Fig.1). 

 Landscape Resistance Index: produced by Vanderley-Silva and Valente (2021b) 

through the Structural Equation Model (SEM), considering the attributes NDVIinv, 

Land Surface Temperature, and Nighttime Reflectance, which reflected the 

functional forest connectivity structure of our landscape. 

 Proximity to the drainage network. 

 Topographic Wetness Index (TWI); and 

 Slope.  

The last three criteria represented the physical and natural history 

characteristics of the landscape studied. These criteria were produced from the Digital 

Elevation Model (DEM) of the study area, which was produced from the Shuttle Radar 

Topography Mission (SRTM) model (https://earthexplorer.usgs.gov/). The 10-m contour 

lines were extracted from the SRTM model (30m-spatial resolution) and interpolated 

(nearest neighbor method) with a 20m-spatial resolution to the DEM integrated our 

geographic database. In the GIS environment, watershed and slope plug-ins were used 

to generate these criteria. 

Table 2 also has the linear function used to criteria normalization to 0-255 bytes, 

respecting their importance to our study, i.e., maintaining a positive correlation between 

environmental attribute suitability and priority for forest functional connectivity. Thus, 

supporting the highest priority location close to forest fragments, drainage networks, 

areas of low resistance, regions with more significant moisture potential, and high slopes 

associated with the highest values (close to 255) on the standard scale. In this study, 

we also generated a constraints map containing water bodies, which are the areas where 

we cannot prioritize.  
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Table 2 – Criteria, defined in the context of Participatory Technique, for identifying priority areas for forest conservation, aiming at forest functional 

connectivity in the study area, located in GBBR-SP, Brazil. 

Criteria 
Justification 

 
Values 

Originals/Standardization 
Criteria maps 

Proximity to Forest 
Fragments 

Several studies emphasize the importance of forest 
fragments functioning as steps to maintain functional 
connectivity (Saura et al., 2013, Villard and Metzger, 
2014, Piquer-Rodriguez, et al., 2015). 
Identifying priority forest patches to maintain connectivity 
and habitat quality enhances the potential for 
conservation as it delays collapse in areas subject to 
constant changes in land use and land cover (Albert et al., 
2017). Because the probability of habitat colonization 
increases in landscapes with a more significant amount of 
forest cover (Scriven et al., 2019), the increase in distance 
between habitats causes a decrease in richness and 
recruitment of forest species or both (Lenoir et al., 2019). 
Therefore, the proximity between habitats would facilitate 
the movement of species (Krosky et al., 2018) and 
functional forest connectivity (Bastian et al., 2015). 
 
 
 

Range 
0 (a) - 3140.1m (b) 
Euclidean Distance   
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Criteria 
Justification 

 
Values 

Originals/Standardization 
Criteria maps 

Landscape 
Resistance Index 

  The land-use/land-cover change due to urban 
expansion has influenced the biodiversity, ecosystem 
function, and regional climate (Choudhury, Das, and Das, 
2018). Also, they have directly affected the surface 
temperature, modifying the landscape radiative, 
physiological, and aerodynamic properties that control the 
surface water and energy balances (Rigden and Li, 
2017). 
According to Mörtberg et al. (2013), the terrestrial surface 
is the basis for designing the species dispersal path, 
especially when overcoming the matrix resistance. The 
species consider the landscape as a competitive space 
control of the coverage.  
Concerning the resistance surface, Belote et al. (2016) 
mentioned the approach based on the connection paths 
with a high level of integrity, avoiding barriers and natural 
vegetation several modified. The paths are the least 
human-modified LULC, linking natural areas as protected 
areas and forest patches (Theobald et al., 2012). 
For methods based on habitat selection, landscape 
resistance is represented as an inverse function of 
environmental suitability. This way, high habitat 
importance is associated with low resistance and vice 
versa (Gao et al., 2017).     

Range 
1.7 (a) - 436.9 (b) 

 

 

 



108 

 

Criteria 
Justification 

 
Values 

Originals/Standardization 
Criteria maps 

Proximity to the 
drainage network  
 

This riparian vegetation continues to offer an opportunity 
to establish an integrated network of forest remnants, 
which can serve habitats and connectors at the regional 
or local scale, especially when reduced sources that 
cause environmental degradation (Zimbres et al., 2018, 
Parsley et al., 2020, Covrrubias, González, and 
Gutiérrez-Rodriguez, 2021). 
Drainage networks often conserve the last forest 
remnants in altered landscapes (González et al., 2017). 
As riparian forests become smaller, disconnected from 
larger forest habitats, and degraded, their functional 
connectivity value is reduced (Fuente et al., 2018). Thus, 
wide corridors are preferred as conservation strategies to 
create connected habitats (Resasco, 2019). 
We also point out that most watercourses are not wide 
enough to serve as complete barriers to animal 
movement (Muñoz-Mendonza et al., 2017). 
In this sense, we consider a natural way for species 
dispersion along with riparian areas. The proximity to 
these environments would increase the forest functional 
connectivity capacity. 
 

Range 
0 (a) - 792.5m (b) 

Euclidean Distance   
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Criteria 
Justification 

 
Values 

Originals/Standardization 
Criteria maps 

Topographic 
Wetness Index 

The vegetation present in wetlands has a high value for 
ecological and genetic connections between populations 
in a fragmented landscape (Zimbres et al., 2018). 
This ecosystem is influenced by surface runoff and 
groundwater discharges. In turn, moist soils present 
greater carbon saturation, promoting greater availability 
of nutrients and increased species richness (Kuglerová et 
al., 2014). 
In this context, the topographic moisture index (ITU) is 
used to identify saturated areas and to distinguish reliefs 
where soils are well-drained (O'Neil, Goodall and Watson, 
2018), a method known to be sensitive to the resolution 
of the Digital Elevation Model (DEM) (Ågren et al., 2014). 
Thus, moisture indices can define patterns in vascular 
plant communities, being helpful to identify areas of 
interest for forest conservation (Echiverri and Macdonald, 
2019). 
This study considered that places with more significant 
moisture potential were more favorable to forest 
functional connectivity. However, large bodies of water 
were considered a restriction for analysis. 

Range 
0 (a) – 30.1 (b) 
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Criteria 
Justification 

 
Values 

Originals/Standardization 
Criteria maps 

Slope 

The slope of the land is an essential factor for human 
occupation, and globally, productive forests are located 
on slopes greater than 22º (Lundbäck et al., 2021). 
This criterion supports forest regeneration(Li et al., 2013) 
because steep slopes reduce human access. The razes 
act as reinforcement and anchorage of the soil in steep 
terrain, restricting the landslide (Kim et al., 2017, Shen et 
al., 2017) and serving as a refuge for forest remnants 
(Nüchel, Bocher, and Svenning, 2019).In this sense, the 
increase in slope was associated with more suitable 
environments for forest conservation. Consequently, they 
become environments with greater capacity to promote 
functional forest connectivity. 
According to Nüchel, Bocher, Svenning (2019), the 
association between slope and forest cover increases as 
population density increases, suggesting that the 
anthropogenic intensity of land use may influence the 
association. 

Range 
0 (a) – 70.2% (b) 
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4.2.4 Criteria importance 

The criteria importance is expressed by the factor weights in the MCE context and 

calculated through the Pairwise Comparison Method, developed by Saaty (1977), in the Analytical 

Hierarchical Process (AHP). 

In this context, we compared the criteria two-by-two, considering the experts’ opinion and 

the continuous 9-point scale with the value one (1) indicates that two criteria are “equally” important 

and the value nine (9) implies that one criterion is “extremely” more important than the other (Saaty, 

2008).  The values integrated a pairwise matrix, where the factor weights (Table 3) were determined 

by normalizing the eigenvector, which is associated with the maximum eigenvalue of the (reciprocal) 

ratio matrix (Vettorazzi and Valente, 2016). 

The matrix consistency is expressed by the consistency rate (CR) and considered adequate 

for values less than 0.10 (Saaty, 1980).  

Table 3 – Factor weight and Consistency Rate (CR) for prioritization of areas for forest conservation 

aiming at forest functional connectivity in the study area in the GRBB-SP, Brazil. 

Criterion Factor weight (fw) 
Proximity to forest fragmentation 35.45 
Landscape Resistance Index (LRI) 32.56 
Proximity to drainage network 14.75 
Topographic Wetness Index (TWI) 9.58 
Slope 7.66 
CR = 0.03 100.00 

           

4.2.5 Criteria aggregation 

The Weighted Linear Combination (WLC) method supported our criteria aggregation into a 

final map. According to Malczewski and Rinner (2015), the method was developed by Voodg (1983) 

and is the most popular of the MCE.  

Through WLC, a criterion is multiplied (pixel by pixel) by its respective weight, and after, it 

is aggregated jointly with others through a sum of the results (eq. 1). 

𝑆 = 𝑓𝑤𝑖. 𝑥𝑖 

Where, S = Adequacy; fwi = factor weight i; and xi = criterion score on factor i (Drobne and Lisec, 

2009). 
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Finally, we evaluated the histogram of the priority areas map to identify homogeneous 

regions, i.e., classes of priority.  We obtained ten classes based on geometric range classification, 

which associated two by two resulted in five priority levels for functional forest connectivity: very low, 

low, moderate, high, and very high. 

The geometric interval is obtained when, for a class, the sum of squares of its components 

is minimized, ensuring that each range has approximately the same number of values and that the 

change between intervals is consistent (ESRI, 2016). 

4.2.6 Decision-making support process validation 

The validation process involved several analyses, beginning with the sensitivity analysis, 

which assessed the criteria importance in the decision-making process, remarking the impact of 

deleting a criterion on the final map. This tool can guide calibration and verification and support 

prioritizing efforts to reduce uncertainty (Pianosi et al., 2016). 

For this, a criterion was eliminated (one at a time); the pairwise matrix reorganized (keeping 

the importance among other criteria); the factor weights recalculated (observing CR), and criteria 

were aggregated in a new map, also reclassified in five classes. 

After, we compared the group of maps (without one criterion) with the final (original criteria) 

in terms of percentage of classes areas. 

In this context, the sensitivity analysis also supported the definition of the adequate criteria 

and final maps for prioritization forest functional connectivity in our study area.  

Previously, the influence of the criteria on the landscape was also evaluated. This procedure 

identifies the factor's dominance order and ensures expert opinion and the ecological logic 

established during modeling. 

The following statistical analyses supported the samples grids of 6448 points extracted from 

original maps (criteria and final in 255 bytes). 

Thus, the Dot Plot graphics were created to identify similar regions across the sampled 

values (Cabanettes and Klopp, 2018). So, using the graphics, we highlighted the occurrences, 

breaks, and inversions among the maps of priority areas and criteria at the same point. 

The third analysis based on the maps categorized assessed the overlap among the highest 

priorities classes (i.n., high and very high) and the forest fragments with at least 5 ha (eq. 2). 
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Eq. 2 Overlap>5ha=
Intersection of high and very high priority classes x Forest fragments area >5ha

Forest fragments area >5ha
 

 The cluster analysis was created to identify the LULC associated with the priority levels. 

However, the LULC map was first sampled (1000 points per class), and the same grid was used to 

new sampled in the priority map (255 bytes).  

In the statistical program, we use the hierarchical grouping method through different 

distance measures (Euclidean, Maximum, Manhattan, Canberra, Minkowski) and grouping (Ward.D, 

Single, Complete, Average, Centroid). From the cophenetic correlation coefficient (R² = 0.95), the 

Canberra distance was chosen as a dissimilarity measure and the average link as a clustering 

measure, according to Eq. 3 and 4. 

Pearson's correlation between the elements of the dissimilarity matrix (matrix of distance 

between LULC, obtained from the original data, that is, map of priority areas) and the elements are 

called the cophenetic correlation coefficient. The cophenetic matrix (of the distance between LULC, 

obtained from the dendrogram). This coefficient can be used to assess the consistency of the 

clustering pattern in hierarchical methods, with values close to 1 indicating better representation 

(Barroso and Arte, 2003). 

Eq. 3 Canberra distance dij= ∑
|xi-yi|

|xi+yi|
n
i=1  ; Eq. 4 Average linkage d(R,Ǫ)= d(Ṝ-Ǭ) 

Where: where Ṝ and Ǭ are respectively the centroids of the R and Ǫ groups and d (R, Ǫ) is the 

distance between them. 

The Canberra distance is very sensitive to slight variations, as it considers the absolute 

difference in the values of the characteristics, divided by their absolute sum (Emran and Ye, 2001). 

4.3 RESULTS 

The priority areas for forest conservation aiming at the forest functional connectivity for our 

study area in the Green Belt Biosphere Reserve (SP, Brazil) are in Fig. 3.  

The map represents the integration of criteria defined through the Participatory Technique 

(PT) when the experts pointed out the proximity to forest fragments as the most important criterion 

to our objective. 

In the same way, the WLC method justly permitted that they bring to the map their respective 

importance defined in the PT context and expressed by the factor weights (fw). In our study, experts 
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classified the landscape resistance index as the second important criterion, followed by the proximity 

to drainage network, topographic wetness index, and slope. 

 

Figure 3 - Priority areas for functional forest conservation functional connectivity, through the WLC, 

at GBBR-SP, Brazil.  

However, they also bring their influence, which in our study follows the same ranking of fw, 

since the map represents the most influence criterion (i.e., proximity to forest fragments) showed a 

high frequency of values near 255 bytes. According to Fig. 4. this criterion has 89,8% of its value 

occurrence between 229.5 and 255 bytes. The second influent criterion showed a concentration of 

value (81%) between 153 and 255 bytes; the third, 88% of its values between 153 and 229.5 bytes; 

and slope with 88% of values at most 76.5 bytes. Otherwise, the topographic wetness index (TWI) 

map was the least influential criterion, having a high frequency (around 76%) of values at between 

25.5 and 51 bytes. 
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Figure 4 – Intervals of priority areas and criteria in the study area at GBBR-SP, Brazil. 

Based on these results, we can say that the criteria influence and importance are reflected 

in the concentration of their values in the 0-255 bytes scale and their association with the priority 

levels.  

The priority map showed 31.9% of the studied area as low priority, 23.2% as low, 20.6% as 

high, 16.7% as very high, and 7.8% as a medium priority (Fig. 3).  

Thus, the areas that firstly require action sum 37.3% and showed the highest values of the 

three criteria most important and influence also with the highest values in the 255 bytes. Otherwise, 

these regions presented major values of slope and TWI represented by the lowest values in the 255 

bytes-scale. 

In these priority areas, 32% is represented by the criterion Proximity to Forest Fragments 

(Native Forest), followed by Landscape Resistance Index (LRI) with 27%, proximity to the drainage 

network (Drainage) denoted 26%, finally, Slope and TWI, with 8% and 7% respectively. 
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An important point related to the proximity maps is that their concentration values (near 255 

bytes) result from their features scattered through our landscape. Their respective fw control this 

influence, resulting in prioritization, according to the experts proposed.  

The sensitivity analysis reflected the adequation of these proximity maps in the process and 

the other criteria and their perspectives fw (Fig. 5). 

Through the analysis, we obtained that the elimination of proximity to forest fragments map 

favored the increment of regions classified as low priority, which occupied 47.3%. When we disregard 

the proximity to the drainage network, we favor the regions of high priority, which occupied 43.1%. 

When we excluded the LRI map, favored regions with a medium priority occupied 41.8% of 

the studied area. Lastly, eliminating the slope and TWI criteria favored the highest priorities regions, 

which represented 49.7% and 56.5% of the landscape, in this scenario. 

Considering the sensitivity analysis results, we maintained the original criteria and fw, which 

support our prioritization of areas shown in Fig. 3. The consistency ratio (CR) obtained with the fw 

proposed was 0.03. 

 

Figure 5. Sensitivity analysis applied to criteria and priority classes in the studied landscape in GBBR-

SP, Brazil. 

Where: Slope – the absence of slope; TWI – the absence of Topographic Wetness Index; Drainage 

– the absence of proximity to the drainage network; LRI – the absence of Landscape Resistance 

Index; NF – the absence of proximity to forest fragments. 
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In the priority map, regions near forest remnants were denoted and received high value (in 

255 bytes scale), especially in regions with the condition of importance (also with the high value) for 

the other criteria. Thus, the fw controlled the criteria influence, resulting in a priority area that reflects 

all criteria. The map identified potential regions to integrate the ecological corridor and related to the 

drainage, forest remnants, low resistance to genic flux, high slope, and humidity. 

Another important point is that the highest priorities classes overlapped in 86.22% with the 

forest remnants greater than 5 ha, with the very high class having 67,8% overlapping and the high 

class 18.42%. 

We obtained these results through the cluster analysis between the priority and LULC 

classes. According to this analysis, there are three groups in our study area. The first was composed 

of native and planted forests, which also showed an association with the anthropized fields. The 

second is formed by agriculture and urban areas of low density and, the last, that bring the urban 

areas of high density (Fig. 6).  

 

Figure 6 - Groups formed by land use and land cover from the map of priority areas for forest 

functional connectivity in the study area at GBBR-SP, Brazil. 

Where: UA_High - High-density urban areas; UA_Low - Low-density urban areas; Agr - Agriculture; 

Field - Anthropised Fields; PF - Planted Forest; NF - Native Forest. 
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4.4 DISCUSSION  

The model developed for the landscapes under urban sprawl supported our prioritization of 

areas for functional forest connectivity and brought the importance of our criteria set, controlling their 

respective influences.  

The criteria represented our landscape attributes, and the factors weights defined through 

the experts and literature review integrated a matrix with an adequate consistency level. The criteria 

definition considers the literature review and, after taking into account the expert’s opinion to attribute 

their weights, is a new approach that decreases uncertainties related to the process because others 

preview studies available the criteria (Vanderley-Silva and Valente, 2021a).  

Our study's consistency levels value reflects that the factors were aleatorily produced, as 

Saaty (1980) proposed through the pairwise comparison method because our value was minor than 

0.10.  The author who developed the method in the AHP context used this value as a reference, and 

they indicated the construction of a new matrix when the value is superior to 0.10, based on the 

criteria ranking importance predefined by experts. 

This way, our factor weights are consistent, reflect the criteria important and control the 

proximities and LRI maps influence. Otherwise, the prioritization scenario could only be in function of 

these three maps, disregarding the importance of slope and TWI, which were essential to enhancing 

the spatialization of priority areas. 

Valente et al. (2021) related the influence of maps composed of features scattered through 

the landscape, such as the forest patches and rivers. When these features are naturally close to each 

other, their distance values receive high importance (eg, values near 255 bytes) and dominate the 

landscape (Fig. 4). This way, the criterion has a strong influence because there are high values in 

any place on its map, i.e., according to the criterion, all landscape is a priority if their influence is not 

controlled. 

In our study, the highest classes did not domain, corresponding to a specific region that 

sums around 37% of our total area (Fig. 3). The high and very high classes permit the planning of 

localized actions, for where we can designate economic resources in the planning stage. The 

economic resources and actions can bring to the study area to command, control instruments (based 

in Brazil legislation), and for voluntary action through Payment for Ecosystem Services (PES) 

(Valente et al., 2021, Bremer et al., 2019, Schirpke et al., 2018, Shepherd et al., 2016). 
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PES is a reality in Brazil, especially in priority regions under the Atlantic Forest domain, 

defined by law (Aza et al., 2021, Richards et al., 2020, Viani et al., 2018). The decision model we 

developed can benefit PES, which nowadays is selecting areas considering the voluntary adhesion 

of rural owners without considering the landscape characteristics important to the PES objective. 

In the case of our regions with the highest priority, they are under the influence of the three 

most relevant criteria, i.e., have the influence of LRI and proximities maps, and still are in regions 

with a low resistance to species dispersion near forest patches, and rivers (Fig. 4). 

In this scenario, we have the priorities areas in the riparian regions that are natural ways for 

different species in nature. The elongated shape of these fragments facilitates their proximity and 

supports their function as a corridor for different species (Issii et al., 2020, Matos et al., 2019).  

Furthermore, the Brazilian legislation considers some buffer of the riparian region as a protected 

region, where it is necessary to maintain the original vegetation. 

Furthermore, these areas are near regions naturally covered by native forest, and we know 

that the amount of habitat is an important predictor of biodiversity (Evju and Sverdrup-Thygeson, 

2016). Several studies pointed the threshold of 30% to 40% of coverage by forest as a relevant value 

for communities’ conservation (Sans, Verón, and Paruelo, 2021, Yin, Leroux and He, 2017, Boesing, 

Nichols, and Metzger, 2017). 

Conversely, plats regions with the low ability of soil saturation showed the lowest priority for 

forest conservation (Fig. 4).  These regions are predominately located distant from the rivers, having 

high landscape resistance, reflecting an environment with a low ability for forest functional 

connectivity.  

They are environment under the strong anthropic influence, where the absence of 

connectivity threatens species conservation (Santos et al., 2019), as it impedes movement, resource 

use, habitat colonization, and maintenance of plant gene flow (Tumas et al., 2018) and animals (Hilty, 

Lidicker, and Merenlender, 2006). Thus, habitats' spatial configuration and degree of isolation are 

important variables, especially in landscapes with few forest fragments (Rybicki and Hanski, 2013, 

Coudrain et al., 2014). 

However, Fig 3. showed a transition between the highest and lowest priorities regions, 

classified as a medium priority, representing the minor percentage of our studied areas (near 10% of 

our studied area). This result is different from several studies that pointed to a tendency to obtain the 

predominance of medium priority associated with WLC since it is a method characterized by 
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averages (Valente et al., 2021, Motlagh, Amrei, and Halimi, 2020, Argyriou et al., 2016, Gülci and 

Akay, 2015).  

Firstly, we control this tendency through the knowledge of criteria weights and influence. 

Using WLC, the major of studies do not bring the criteria influence to the evaluation, and they work 

only with the importance pointed by experts. The consequence is that the WLC tendency 

predominates. However, when we bring this variable, we can control the criteria influence through 

the fw, respecting their ranking of importance, as proposed by Valente et al. (2021). The influence 

evaluation traditionally belongs to another MCE method, the OWA, an evolution of the WLC. 

However, some authors pointed that this variable could improve the WLC application, considering 

that the method is easy to apply and supports robust results. 

Second, we evaluated the histogram tendency of the priority map, observing their clusters 

and break regions that result in the classes following its date tendency. The result is an improvement 

to the traditional breaks that traditionally result in maps classes with the same frequency, without 

significance. 

Moreover, the sensibility analysis checked these results, indicating that the criteria with their 

respective weights adequately prioritize areas. Without the LRI criterion, there was an increment in 

the areas classified as a medium priority (Fig. 5) because it is the third influent criterion that balances 

the presence of the proximity’s maps (the most influent and important criteria) and other criteria (the 

last important and influent). 

Besides, LRI brings an essential theoretical component because it supports understanding 

several random species movements, considered only in an altered way (Thiele et al., 2018). So, LRI 

is a new perspective to landscape planning when the focus is species conservation. 

Conversely, the highest priority areas naturally increased when we eliminated the least 

influent criteria (TWI and slope) (Fig. 5).  

The two criteria show opposite behaviors in terms of spatialization and importance for forest 

connectivity. Even so, they bring robustness to the model because their respective priorities reflect 

sensitivity regions related to soil moisture and relief, indicating regions where uses of high intensity 

are inadequate and regions favorable for forest conservation (Nüchel, Bocher, and Svenning, 2019). 

For this reason, and even together representing only 17% of the criteria importance, sensitivity 

analysis indicated maintain them. 



121 

 

121 

 

The cluster analysis corroborates our results, indicating the same location for the highest 

priority areas and forest remnants. This way, supporting the forest connectivity adequately since the 

urban areas of high density showed no clustered in the same regions. In the sequence, the low-

density urban areas highlight the diffuse process of urban sprawl throughout the territory, represented 

by small farms and urban agglomerations. These anthropic interferences allocated among forest 

remnants can directly interfere with the dispersion or presence of specialist species sensitive to 

anthropic interference, an important factor for territorial planning. 

In addition, we can highlight the agricultural and anthropogenic fields between the native 

forest remnants, both distinguished by the model and fundamental for the maintenance of functional 

forest connectivity (Fig.6) since they develop the connector paper between inadequate LULC for the 

dispersal of species, and the native forest remnants. 

Authors as Thiele et al. (2018) and Oliveira-Junior et al. (2020) related the intensive land 

use with hostile environments and that the agriculture, arable fields, and pastures as an alternative 

for the species dispersion and migration. 

Several studies have highlighted the opportunities related to pasture because they 

permitted species dispersion and migration. Besides that, there are opportunities related to them, as 

restoration with native vegetation, which is an advantage in landscapes urban under sprawl (Marcolin 

et al., 2021, Issii et al., 2020, Erbaugh et al., 2020, Mansourian et al., 2017). 

Despite these actions being society's responsibility, decision-makers and public 

administrators are responsible for ensuring the implementation of public policies for landscape 

conservation and restoration (i.e., maintaining connectivity). That is because it is a challenging 

process, involves private areas, many stakeholders, authorities, and government institutions (Sans, 

Verón, and Paruelo, 2021). 

In this context, we understood that functional connectivity has a dynamic and sustainable 

state, characteristic of shared landscapes, where wildlife and humans coexist under the governance 

of institutions, which must ensure the persistence of species in the long term, provide social 

legitimacy, and establish tolerable levels of risk (Carter and Linnel, 2016, König, et al., 2020). 

This way, our model supports a holistic approach for forest functional connectivity based on 

landscape attributes. It can support the planning by indicating regions for actions based on command, 

control instruments, or the context of the voluntary program. 
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4.5 CONCLUSION  

This paper presented a model based on the MCE method to prioritize areas for forest 

conservation, aiming at functional connectivity in a landscape subject to urban expansion. 

The major challenge was structuring the criteria set, representing landscape under the 

urbanized process, that happened through the literature review followed by Participatory Technique.  

The literature review reduces the uncertainties traditionally associated with this stage 

because we consider criteria previously evaluated in other studies. However, the experts’ opinions 

validate the selection besides supporting the criteria' importance definition. 

We concluded that interaction between authors and experts is a positive point for model 

construction, especially when several variables act on a process. 

In this context, our major conclusion was that the proximity to forest remnants, proximity to 

drainage, LRI, slope, and TWI represents landscapes under urban sprawl, supporting obtaining a 

robust model. 

Sensitivity analysis validated our model, indicating the different priorities for terrestrial 

reality. In this sense, high priority areas for functional connectivity are associated with native or 

planted forests and deserve attention for conservation and management plans for natural resources. 

In contrast, the low priority with urban areas (low or high density) should guide development and 

expansion plans. 

Additionally, areas with moderate priority are linked with anthropized fields and agriculture, 

showing that the model evidences opportunities for forest restoration and Payment for Ecosystem 

Services (PES) aimed at functional connectivity maintenance. 
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5. GENERAL CONCLUSIONS  
 

The study has a landscape under urban sprawl as studied area, located in an important 

economic region of São Paulo state and having Atlantic Forest remnants to support an ecological 

corridor. 

 Troughout the chapters, we describe the importance of selecting environmental criteria for 

maintaining functional connectivity, through forest conservation, for prioritizing spaces in the 

landscape under urban sprawl. 

Our results indicate that we obtained a robust set of criteria through the literature review 

and, added to the opinion of experts, the subjectivity of the selection of criteria was reduced, reflecting 

the forest structure, and demonstrating that in the studied landscape, the external influences on the 

fragments forestry do not occur randomly. Thus, we concluded that the interaction between authors 

and experts is a positive point for model construction, especially when several variables act on a 

process. 

In this context, a set of criteria composed of the slope, Topographic Wetness Index (TWI), 

distance from forest fragments, distance from the drainage network, distance from highway, and 

distance from low and high-density urban areas were analyzed and provided support for the 

identification of regions where the persistence of forest fragments is possible. 

In this sense, the larger and more irregular forest fragments were located near 

watercourses, where higher soil moisture is associated with the deep slopes. At the same time, 

regions far from highways reflected areas with a forest structure with more preserved characteristics. 

Already, large and connected forest fragments are located close to low-density urban environments 

and under a diffuse process of urban sprawl.  

Thus, we developed the Landscape Resistance Index (LRI) based on environmental 

integrity and previously defined concepts. The LRI showed adequate convergence of the observed 

variables NDVIInv, Night, and LST for the formulation of the resistance construct, resulting in spatial 

heterogeneity associated with the different LULC and occurrence of dispersion corridors. 

In addition to fixed limits, the LRI associates low resistance with forest areas and high 

resistance with urban areas. In moderate fixed, we identified that anthropized fields and agricultural 

areas offer varied fluidity capacities compatible with movement through the landscape. 
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Given these findings, we can state that the best designation for the criteria for prioritizing 

areas through forest conservation for functional connectivity is proximity to forest fragments, proximity 

to drainage network, Landscape Resistance Index, Topographic Wetness Index, and slope. 

Lastly, the sensitivity analysis validated the model generated based on MCE methods. The 

analysis indicates the terrestrial reality, in which the most priority areas are associated with native 

and planted forests and deserve attention from forest management and conservation plans. In 

contrast, low priority areas are associated with urban areas and should guide urban expansion plans. 

Already, areas classified as a moderate priority are linked with anthropized fields and agricultural 

areas, showing that the model offers clear opportunities for forest restoration and payment for 

Ecosystem Services (PES) programs to maintain functional connectivity. 

Therefore, we demonstrate how it is possible to obtain a set of criteria that represent the 

landscape and adjustable according to forest structure through Canonical Correspondence Analysis. 

Already, our Structural Equation Model allows us to create an index with a theoretical base and locate 

regions of greater environmental relevance for landscapes under urban sprawl. Finally, the criteria 

selected, grouped, and conducted by the Multicriteria Evaluation method indicate forest fragments 

and other land-cover types favorable to functional connectivity, important for territorial planning. 

 


