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RESUMO

O câncer no esôfago é uma doença de difícil detecção nos estágios iniciais, especialmente

na presença do esôfago de Barrett. O desenvolvimento de sistemas automáticos de avalia-

ção de tal doença podem ser muito úteis, auxiliando os especialistas na detecção da região

cancerígena. Com o forte crescimento das técnicas de aprendizado de máquina e, visando

melhorar a eficácia do diagnóstico médico, seu uso caracteriza um cenário forte a ser ex-

plorado para o diagnóstico precoce do adenocarcinoma de esôfago. O esôfago de Barrett

como antecessor do adenocarcinoma pode ser explicado por alguns fatores de risco, como

obesidade, tabagismo e diagnóstico médico tardío. Este projeto visa o desenvolvimento de

novas técnicas de visão computacional e aprendizado de máquina para o auxílio do diagnós-

tico automático de câncer esofageal baseado na avaliação de dois tipos de características:

(i) extraídas a mão (handcrafted features), calculadas com base no conhecimento humano

usando técnicas de processamento de imagens e (ii) extraídas por aprendizado em pro-

fundidade (deeply-learnable features), calculadas exclusivamente com base em técnicas de

aprendizado em profundidade. Pela extensa aplicação de protocolos globais e locais para os

modelos propostos neste trabalho, a descrição de imagens acometidas por câncer e esôfago

de Barrett foram generalizadas e profundamente avaliadas utilizando, por exemplo, clas-

sificadores como Support Vector Machines, ResNet-50 e a combinação de descrições por

handcrafted e deeply-learnable features. Ainda, observou-se o comportamento da definição

automática dos pontos de interesse dentro das técnicas avaliadas, algo de suma importância

nos dias atuais para garantir transparência e confiabilidade as decisões tomadas por técnicas

computacionais. Assim, este projeto contribui com ambas as aŕeas computaonal e médica,

introduzindo novos classificadores, abordagens e interpretação do processo de generaliza-

ção das classes, além de propor formas precisas e rápidas de definir câncer, entregando

resultados importantes e de caráter inovador no que permeia a acurada identificação de cân-

cer em amostras acometidas por Barrett, com valores que aproximam-se de taxas de 95%

de correta identificação, e dispostos em uma coletânea de trabalhos científicos elaborados

pelo autor durante o período de pesquisa e submetidos/publicados até a presente data.

Palavras-chave: Aprendizado de Máquina, Esôfago de Barrett, Aprendizado em profundidade, Hand-

crafted features, Deeply-learnable features, Redes Neurais Convolucionais, Interpretabilidade



ABSTRACT

Esophageal adenocarcinoma is an illness that is usually hard to detect at the early stages

in the presence of Barrett’s esohagus. The development of automatic evaluation systems of

such illness may be very useful, thus assisting the experts in the neoplastic region detection.

With the strong growth of machine learning techniques aiming to improve the effectivess of

medical diagnosis, the use of such approaches characterizes a strong scenario to be explored

for the early diagnosis of esophageal adenocarcinoma. Barrett’s esophagus as a predeces-

sor of adenocarcinoma can be explained by some risk factors, such as obesity, smoking,

and late medical diagnosis. This project proposes the development of new computer vi-

sion and machine learning techniques to assist the automatic diagnosis of the esophageal

adenocarcinioma based on the evaluation of two kind of features: (i) handcrafted features,

calculated by means of human knowledge using some image processing technique and; (ii)

deeply-learnable features, calculated exclusively based on deep learning techniques. From

the extensive application of global and local protocols for the models proposed in this work,

the description of cancer-affected images and Barrett’s esophagus-affected samples were

generalized and deeply evaluated using, for example, classifiers such as Support Vector Ma-

chines, ResNet-50 and the combination of descriptions by handcrafted and deeply-learnable

features. Also, the behavior of the automatic definition of key-points within the evaluated

techniques was observed, something of a paramount importance nowadays to guarantee

transparency and reliability in the decisions made by computational techniques. Thus, this

project contributes to both the computational and medical fields, introducing new classifiers,

approaches and interpretation of the class generalization process, in addition to proposing

fast and precise manners to define cancer, delivering important and novel results concerning

the accurate identification of cancer in samples affected by Barrett’s esophagus, showing

values around 95% of correct identification rates and arranged in a collection of scientific

works developed by the author during the research period and submitted/published to date.

Keywords: Machine Learning, Barrett’s esophagus, Deep learning, Handcrafted features, Deeply-learnable

features, Convolutional Neural Networks, Interpretability.
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Chapter 1
INTRODUCTION

This section introduces the main problem we aim to solve in this thesis, the detection of

early cancerous tissues in Barrett’s esophagus-diagnosed patients. After defining such a context,

we display this thesis’ objetives, hypothesis, and finally, its organization.

1.1 Context Defintion

Usually, the trivial “solution" related to the machine learning (ML) workflow process

comprises four mains steps: (i) data processing, (ii) feature extraction, (iii) feature selec-

tion/transformation, and (iv) pattern recognition. Considering the evolution of the aftermen-

tioned steps in the last decades allied to a new set of techniques based on deep learning (DL)

strategies, that provide an approach that mimics the brain-behavior while processing visual

information (where the extraction of different kinds of information is performed on distinct

layers), the expectation of ML expansions can be considered for the following years. In the last

decades, the application of ML techniques in a wide range of areas has grown exponentially,

even more, the ones regarding decision-making tasks. Such tasks become of extreme interest

in environments that involve large amounts of data, such as laboratory diagnosis, image, and

video processing, and data mining, just to cite a few. ML techniques have been largely applied

to several research areas, such as remote sensing, signal processing, speech recognition, and

medicine, and others. This latter research area has benefited by the constant advances related

to computer vision and artificial intelligence since more effective and efficient prognosis have

helped physicians to provide a faster and more accurate diagnosis.

A field that has been receiving increased attention is the early detection of cancer cells,

given the incidence of cancer-related diseases has significantly grown in recent years. Among

the most prominent diseases, we can mention lung, breast, and skin cancer. Another type that
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has shown increased incidence and requires attention concerns esophageal and stomach cancer,

which can be detected through endoscopy. However, only experienced professionals are able to

operate the examination and subsequently detect cancerous cells.

The condition in which columnar cells replace squamous cells in the esophagus mucosa

is known as “Barrett’s esophagus" (BE). This condition is recognized as a complication of

gastrointestinal reflux, and in some extreme cases, may progress and evolve into esophageal

adenocarcinoma (EAC) [Hopkins 2008, Dent 2011]. The early detection of neoplasia based

on computer-aided techniques can help gastroenterologists with systems capable of visualizing

and alerting about possible dysplasia in the esophagus [van der Sommen et al. 2016]. Some

algorithms have been proposed for the detection of abnormal cancers, tumors or patterns in the

esophagus region, but the automatic dysplasia detection can only be performed using endosco-

pic images of high quality and resolution, which are previously subjected to preprocessing te-

chniques [Dent 2011]. The use of dysplastic regions represented by endoscopic imaging should

be described based on texture or color criteria concerning classification purposes [Dent 2011].

From works that evaluated cancerous conditions in BE-diagnosed samples, the description

based on handcrafted features that employs, for instance, object detection techniques as Speed-

Up Robust Features (SURF) [Bay et al. 2008] and de description based on deeply-learnable fe-

atures obtained from deep learning models [Mendel et al. 2017] highlight the current emphasis

on computer-aided diagnostics, in a wide application to improve the automatic identification of

early esophageal adenocarcinima.To cite a few, recent works proposed by Souza Jr.et al. [Souza

Jr. et al. 2018, Souza Jr. et al. 2019, Souza Jr. et al. 2017, Souza Jr. et al. 2018, Souza Jr. et

al. 2017] and Mendel [Mendel et al. 2017] can be highlighted, which exemplify the use of inju-

red region description of the esophagus using artificial intelligence techniques for classification

purposes. Concerning the works proposed by Souza Jr. et al. [Souza Jr. et al. 2018,Souza Jr. et

al. 2019, Souza Jr. et al. 2017, Souza Jr. et al. 2018, Souza Jr. et al. 2017], the authors deeply

studied the use of image representation techniques to describe and classify the adenocarcinoma

in Barrett’s esophagus regions. For such works the use of feature extraction techniques such

as SURF and Scale-Invariant Feature Transform (SIFT) [Lowe 2004], and classifiers such as

Support Vector Machines (SVM), Optimum-Path Forest (OPF) [Papa, Falcão e Suzuki 2009]

were considered in order to provide the class prediction of both injured regions. Mendel et

al. [Mendel et al. 2017] introduced the use of deep learning techniques for the classification of

expert annotated images of the esophagus presenting adenocarcinoma and Barrett’s esophagus,

where Convolutional Neural Network (CNN) was adapted to the set of images by a learning

transfer approach in a leave-one-patient-out cross-validation (LOPO-CV) protocol, and tren-

ding several works to come in which the esophagus regions would be descriped by deep learning
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models, methods and architectures to cope the task of early esophageal cancer detection.

One of the major constraints regarding the use of ML for prognosis-assisted systems stands

on the cancerous region definition. This step can differ among specialists during the manual

delineation of Barrett’s esophagus and adenocarcinoma, making such task not straightforward.

Considering that the human knowledge may be used for the ML techniques to produce computa-

tional knowledge, the correct delineation provided by the computer may be threatened because

of this high intra-observer variability. In addition, it is important to understand and provide ro-

bust ways of adenocarcinoma definition in BE-diagnosed images, given the bottleneck related

to it. Moreover, when dealing with deep learning approaches for CAD systems, it is important

not only to observe how high are the classification rates but how human-interpretative they are.

It is well-known that deep learning techniques can achieve promising results for a wide range of

classification fields, including the medical one. However, dealing with diagnosis, and especially

with cancer diagnosis, it is important to show up which areas belonging to the learning process

are discriminative for the deep learning architecture. Furthermore, lightening up the learning

process attached to the deep learning model generalization provides important insights about

discriminative regions that may not be observed by the experts, increasing even more the lear-

ning process related to the cancerous definition, making it a human-and-computational hybrid

learninig.

1.2 Research Hypotheses

The present work’s main hypothesis is: The definition of early adenocarcinoma in tissues

already ill with BE is a hard task to be accomplished, presenting high inter-observer va-

riability. Due to that, the manual delineation of esophageal cancer lacks precision and

demands time from experts, still presenting high human-dependent results. With the

advances of ML in the medical diagnosis assistance, we believe that the combination of

deeply-learnable features, obtained from deep learning models, and handcrafted features,

computed based on experts’ insights about the cancerous tissues, may not only enhance

the correct identification of esophageal cancer but will also carry interpretable informa-

tion regarding the proper cancer observation, once in our perspective, such representati-

ons present complementary information for the context description. Then, from this main

hypothesis, two generic ones can be translated to the sub-areas of description we aim to evalu-

ate, the handcrafted features description and the deeply-learnable features description. Hence,

from our main hypothesis, two specific ones are proposed:
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• The application of handcrafted features present relevant information in the spatial descrip-

tion of cancerous tissues. Due to that, we believe that handcrafted features’ description

aggregates the experts’ insights of the regional impact in the correct definition of ade-

nocarcinoma in BE images. Also, considering the non-linear nature we believe belongs

to the distinction of cancerous and non-cancerous tissues, handcrafted features based on

techniques to highlight such a non-linearity behavior may benefit the description we aim

to propose.

• The cancer description based on deeply-learnable features presents a powerful tool for

enhancing the correct identification of early-esophageal cancer, considering the high ge-

neralization that deep models propose. Therefore, we believe that deeply-learnable featu-

res, computed from deep models we aim to employ, can bring relevant information that,

in proper ways of interpretation, can assist the correct classification of cancerous samples

in BE-diagnosed patients. Such a description may encode crucial information in a glo-

bal representation that possibly enhances the correct classification of cancerous tissues in

BE samples, and hence, we aim to employ such a description to benefit the methods we

propose.

To fulfill such assumptions, this thesis aims at answering the following question: which stra-

tegies could one adopt towards enhancing early adenocarcinoma detection in Barrett’s esopha-

gus diagnosed images? Two approaches are proposed to accomplish such task, based on the

aforementioned hypothesis: (i) the application of handcrafted features techniques, based on

the knowledge provided by the expert physicians, and (ii) the application of deep learning te-

chniques based on fully-automated defined models for such problem, without the use of any

human annotation. In addition, it is imperative to define the best association among description

and classification techniques, aiming to improve the early detection of esophageal cancer, for

assessing our main hypothesis.

Once our objective is the evaluation of handcrafted features, deeply-learnable features, and

proper ways of modeling such descriptions for improving correct and interpretable ways of

detecting esophageal cancer in BE images, Figure 1.1 illustrates the pipeline adopted for deve-

loping this entire research.

1.3 Thesis’ Organization

This research study is composed of a collection of works published/submitted by authors

during the study period. The works presented in the next sections aim towards the description



1.3 Thesis’ Organization 28

SURF/SIFT/A-KAZE/ 

Texture/ ...

hf1

hf1

.

.

.

hfn

dlf1

.

.

.

dlfm

handcrafted

features

+

deeply learnable

features

Dimensionality

Reduction

Annotated image handcrafted features

Sub-images

CNN
Classifier

?

Input representation Convolutional

layer
Pooling

layer

deeply-

learnable

features

CNN

Figure 1.1: Research’s overview: the upper part of the pipeline represents the work developed
to evaluate the handcrafted feature’s application, in Chapters 3 to 7, while the bottom flow is
related to the evaluation of deep learning methods to cope with the description, generalization, and
interpretation of BE and adenocarcinoma context, detailed in Chapters 8 to 11. Finally, the entire
pipeline describes the combination of achievements obtained since the beginning of the research,
illustrating the work conducted in Chapter 12.

and classification of adenocarcinoma and BE tissues based on two approaches: the associa-

tion of several handcrafted features and classifiers and the association of several deep learning

techniques. Besides the presented in the following, the author published: (i) Computer-aided

diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma [Ebigbo et

al. 2019], in which a computer-aided diagnosis method was proposed using deep learning as an

instrument to improve endoscopic assessment of BE and early oesophageal adenocarcinoma;

(ii) Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesopha-

gus [Ebigbo et al. 2020], in which a computer-aided diagnosis method was proposed using

deep learning as an instrument to improve endoscopic assessment of BE and early esophageal

adenocarcinoma in endoscopic video recordings, and (iii) Semi-Supervised Segmentation ba-

sed on Error-Correcting Supervision [Mendel et al. 2020], that proposed a method to bridge the

gap between supervised and unsupervised learning by the application of Generative Adversa-

rial Networks (GAN) concepts [Goodfellow et al. 2014] with deep models for enhancing the

semantic segmentation.

Hence, considering this thesis’ content, Chapter 2 presents a meticulous referential back-

ground, based on a survey, regarding the use of machine learning techniques to assist the evalu-

ation and prognosis of EAC in endoscopic images. The paper presented in Chapter 3 evaluates

the problem of EAC and BE differentiation based on SURF features and SVM classifier. The

OPF classifier and SIFT description are introduced for the very first time into the BE and EAC

context evaluation in the paper presented in Chapter 4, in a (BoVW) approach, while Chapter 5
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introduces to the BE and adenocarcinoma context an evaluation based on color co-occurrence

matrices. The work validates three approaches of classification based on patches, patients, and

images in two datasets (MICCAI 2015 and Augsburg) using the color-and-texture descriptors

and OPF, SVM, and Bayesian classifiers.

A continuation of the work presented in Chapter 4 is provided in Chapter 6. The work

introduces the unsupervised OPF classifier for learning visual dictionaries in the context of BE

and adenocarcinoma automatic diagnosis, validated over MICCAI 2015 and Augsburg data-

sets. Finally, Chapter 7 presents an application of handcrafted features standalone evaluation

employing infinite Restricted Boltzmann Machines (iRBM) for Barret’s Esophagus lesions

detection.

Evaluating the deeply-learnable features techniques from Chapter 8 on, a further evalua-

tion of GAN concepts [Goodfellow et al. 2014] was performed in the paper for increasing the

amount of samples to be classified employing deep models. Chapter 9 presents the introduction

of meta-heuristically fine-tuned Generative Adversarial Networks to the context of Barrett’s

esophagus identification and investigates its feasibility to generate high-quality synthetic ima-

ges from the esophagus for further assisting the identification of the disease. To provide a

quantitative interpretation of CNN learning, Chapter 10 presents a method to interpret such

learning based on Explainable Artificial Intelligence (XAI) techniques and compare it with

the human knowledge provided by the ground truth’s annotation of cancerous samples in BE

endoscopic images. Further XAI investigation was conducted in Chapter 11, evaluating the im-

pact of the ResNet-50 deep-convolutional design for Barrett’s esophagus and adenocarcinoma

classification by proposing a two-step learning technique.

To combine all the achievements obtained in the evaluation of handcrafted features and

deeply-learnable features from previous chapters, Chapter 12 propose a novel method, named

DeepCraftFuse that encodes spatial and global information provided by the aforementioned

descriptions. To close this thesis, Chapter 13 provides the conclusions, as well as contributions

of this work.

To close this thesis, Chapter 13 provides the conclusions, as well as contributions of this

work.



Chapter 2
A SURVEY ON BARRETT’S ESPHAGUS ANALYSIS

USING MACHINE LEARNING

This chapter introduces Barrett’s esophagus and adenocarcinoma context by means of the

paper published in Computers in Biology and Medicine journal [Souza Jr. et al. 2018]. The

scope of the work is to compile some works published at some well-established databases,

such as Science Direct, IEEEXplore, PubMed, Plos One, Multidisciplinary Digital Publishing

Institute (MDPI), Association for Computing Machinery (ACM), Springer, and Hindawi

Publishing Corporation. Each selected work has been analyzed to present its objective, metho-

dology, and results.

2.1 Introduction

The adenocarcinoma appearance in BE diagnosed patients has increased significantly in

western populations. This is mainly explained by obesity, a known risk factor [Lagergren e

Lagergren 2010,Dent 2011,Lepage, Rachet e Jooste 2008]. As such, the expectation of this di-

sease to rise in the next years must be considered. The bad prognosis for patients suffering from

esophageal adenocarcinoma is related to its late diagnosis. However, when detected at the early

stages, the dysplastic tissue can be treated with very successful rates of handling the disease,

such as 5% of morbidity and 0% of mortality. Additionally, 93% of patients featured a com-

plete remission of the disease after 10 years treatment [Dent 2011, Sharma et al. 2016, Phoa et

al. 2016]. Developments in interventional therapies, such as endoscopic resection and ablation

techniques (radiofrequency ablation, cryoablation) are promising methods for the management

of BE, with the potential of reducing the cancer risk in dysplasia diagnosed patients. However,

there are limitations of the currently accepted methods for monitoring and evaluating the dise-
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ase state of BE patients, with the benefit from early diagnosis and additional tools to improve

the detection of dysplasia [Shaheen et al. 2009, Johnston et al. 2005, Overholt, Panjehpour e

Halberg 2003].

Several endoscopic technologies for image enhancement, such as chromoendoscopy, elec-

tronic image enhancement, optical coherence tomography, and confocal laser endomicroscopy

have been developed for BE evaluation, enabling endoscopists to conduct a more accurate as-

sessment of the dysplasia with an in vivo characterization of esophageal histology [Sharma et al.

2015]. This ability could result in improvements concerning the detection of BE (screening), de-

tection of dysplasia based on BE surveillance, characterizing abnormalities within BE (selecting

lesions and delineating margins during endoscopic therapy), and detection of recurrent neopla-

sia in patients who have received endoscopic treatment (post-treatment surveillance) [Sharma

et al. 2015].

BE is often misdiagnosed during endoscopy because of: (1) inability to differentiate colum-

nar mucosa of the proximal stomach (cardia) from metaplastic epithelium in the distal esopha-

gus; or (2) lack of goblet cells in biopsies obtained from columnar lined epithelium in the

esophagus. Since dysplasia/BE areas are sometimes not readily perceived with standard white-

light endoscopy, the Seattle biopsy protocol is usually recommended, where biopsies are taken

for every 1 cm of the BE’s mucosa. However, this protocol may be susceptible to sampling

errors because only a small part of the entire BE mucosa is usually considered for sampling

purposes, especially in patients with extensive disease area [Sharma et al. 2015]. Besides, the

biopsy protocol can be costly and time-consuming, and thus prone to errors. Consequently, the

risk of missed dysplasia or cancer diagnosis rises significantly [Abrams et al. 2009]. Other stu-

dies have also considered the classification of different esophagus’ lesion types based on color

and texture information of the injured tissue area as well [van der Sommen et al. 2014].

Machine learning techniques have benefited from significant improvements in image analy-

sis and artificial intelligence fields. However, related to the automated analysis of BE, we ob-

served one recent work only that attempted to compile relevant articles [Ghatwary, Ahmed e Ye

2017]. This work is a very brief survey to discuss advances in BE Computer-assisted diagno-

sis (CAD) systems in three endoscopy modalities used for esophageal examination: (i) white

light endoscopy (WLE), (ii) high-definition white light endoscopy (HD-WLE), and (iii) nar-

row band imaging (NBI). Focusing on detection methods lately developed for BE detection,

the survey is composed of eight papers about automatic detection and evaluation of the BE,

compared by its endoscopy modality, number of images and evaluated classifiers applied to the

problem, validation method and results. The authors state the challenges for this detection and
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mention some directions for future research.

Our work aims at reviewing and investigating the feasibility and usage of machine learning

techniques in the context of BE evaluation, dysplasia description, and treatment, thus provi-

ding more details to the previous brief survey. Next sections present the methodology used to

evaluate the compiled articles, as well as some medical background related to the disease.

2.2 Theoretical Background

2.2.1 Barrett’s Esophagus

The replacement of squamous cells by columnar cells in the esophagus’ mucosa is known

as BE. This process is recognized as a complication of gastroesophageal reflux disease, and in

some critical stage, it can progress and evolve into esophageal cancer. Figure 5.1 illustrates the

human esophagus region [Dent 2011, Sharma et al. 2016, Hopkins 2008].

Esophagus

Stomach

Figure 2.1: Esophagus’ location in the human body.

Squamous cells (similar cells to skin or mouth ones) compose the mucosa of the normal

esophagus. The normal color of the squamous mucosal surface looks like whitish-pink, while

the gastric mucosa goes sharply from salmon-pink to red [Dent 2011,Sharma et al. 2016]. A de-

marcation line called squamocolumnar junction or “Z-line"defines the normal esophagogastric

junction (Figure 2.2), where the squamous mucosa of the esophagus and the columnar mucosa

of the stomach meet [Hopkins 2008]. BE’s mucosa may extend upward in a continuous pattern,

making the entire circumference of the distal esophagus covered by columnar mucosa. A diffe-

rence is stablished among patients with more than 3 cm of BE (“long-segment BE") and those

who feature the so-called “short-segment BE", with refers to BE that figures less than 3 cm, as

depicted in Figure 6.4.
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Figure 2.2: Squamo-columnar junction and its respective esophagus endoscopic image.
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Figure 2.3: Endoscopic views from: (a) BE’s short-segment and (b) BE’s long-segment.

2.2.2 Machine Learning

Machine learning techniques have been paramount in the last decades mainly due to their

capability in handling problems non-linearly by nature. Given a dataset composed of samples,

the traditional pipeline used for so many years considers partitioning the data into training and

testing sets. The former is used to learn the model (i.e., statistics of the data) meanwhile the

testing set is used to assess the efficiency of the method.

Depending on the amount of knowledge we have about the training set, machine learning

techniques can be categorized into three main groups: (i) supervised, (ii) semi-supervised, and

(iii) unsupervised approaches. Supervised techniques usually achieve the best results since

they make use of an entirely labeled training set, thus having more information to cope with.

Semi-supervised learning approaches make use of both labeled and unlabeled data since only

a fraction of the training data is labeled. Different approaches such as active learning-based or

reinforcement learning can be referred to as well. In a nutshell, these approaches employ the

user knowledge into the learning process, which can thus refine the results and correct possible

errors.
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Unsupervised learning or clustering stands for the group of techniques that have no infor-

mation about the training data, which means they must group the data using some heuristic

that can get together (i.e., same cluster) samples that share some information. To evaluate such

techniques, we usually make use of measures that take into account the compactness and se-

parability of clusters in the feature space, i.e., it is highly desirable to have well-separated and

compact clusters at the end of the clustering process. Figure 9.1 depicts a standard pipeline used

in applications that use machine learning for solving problems.

Training 
images

Dataset

Testing images

Feature 
Extraction

Feature 
Extraction

Classifier Output class

Figure 2.4: Standard pipeline used in machine learning-driven applications.

2.3 Surveyed Works

In this section, we present the works considered for further study and discussion. The

next subsections describe in more in-depth details the works selected by their primary classifier

employed.

2.3.1 Paper Selection

To select works within the scope addressed in this systematic review, a search in Science

Direct, IEEEXplore, PubMed, Plos One, Multidisciplinary Digital Publishing Institute, Associ-

ation for Computing Machinery, Springer, and Hindawi Publishing Corporation databases was

carried out. To this end, only two keywords were considered for searching purposes: (i) “Bar-

rett’s esophagus" and (ii) “Barrett’s esophagus machine learning". The main idea is to provide a

fair selection of works and to cover a total of 35 recent works published as follows: before 2011

(5 works), between 2011 and 2014 (6 works), and early 2015-2017 (24 works). Also, the search

returned a number of papers not related to machine learning-assisted BE analysis. Therefore,

the outcoming of this survey does not consider them all.
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2.3.2 Machine Learning Analysis of Barrett’s Esophagus

Machine learning is a branch of computational intelligence dedicated to the development

of algorithms that enable a computer program to improve its performance based on learned

information. The intense research in this field has motivated a number of works that aimed

at using machine learning-oriented techniques to aid BE recognition and distinction between

adenocarcinoma and healthy tissue.

In this survey, the works are divided according to the classifiers they have employed to cope

with BE identification. Considering the number of works that used SVM and neural networks,

we decided to have a dedicated section for each them. Additionally, a section presenting the

comparison of two or more classifiers is also considered, followed by a description of other

techniques applied to BE identification, such as k-nearest neighbors (k-NN), k-statistics, and

decision trees, among others.

2.3.2.1 Support Vector Machines-based Barrett’s Esophagus Recognition

Li and Meng [Li e Meng 2009] presented a new texture-based protocol for ulcer regions

using capsule endoscopy (CE) discrimination in endoscopic images. A novel approach based

on curvelets and Local Binary Patterns (LBP) was proposed for texture extraction aiming to

distinguish ulcer and normal regions. These new features are sensitive to illumination chan-

ges, multidirectional features, and feature invariance. Experiments were conducted using two

different classifiers on a 4-fold cross-validation procedure: (i) a Multilayer Perceptron Neural

Network (MLP) and (ii) Support Vector Machines. The database used for the experiments is

private and composed of 100 images from 5 different patients. Regarding the images, 1,800

patches of normal images and 1,800 patches of ulcer-diagnosed images were extracted.The

authors concluded the proposed textural features were suitable to identify ulcerous regions in

CE images, once detection rates of the proposed features with the MLP were 92.37% of accu-

racy, 91.46% of specificity, and 93.28% of sensitivity.

Rodriguez-Diaz and Singh [Rodriguez-Diaz e Singh 2016] proposed a computer-based ap-

proach that employs the NICE criterion for diagnostic purposes, as well as it provides an on-the-

fly interpretation of the histology of the polyps represented by near-focus narrow-band imaging

(NF-NBI) images. The NICE criterion considers three main characteristics when learning the

information that may be useful to deal with BE identification: color, vasculature, and surface

pattern. The color information was used to encode the tone of neoplastic regions compared to

non-neoplastic polyps, which appears to be brown-colored. Regarding the vessels, the authors
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performed an automatic segmentation of the inter-crypt space and compared its color to the

remaining tissue of the polyp to distinguish brown vessels from lighter structures around them.

Finally, the authors employed the discrete wavelet transform to describe the local spatial distri-

bution of gray levels (green and blue channels) and then characterize the neoplastic and non-

neoplastic regions. Individual features were used as inputs for SVM in a leave-one-out cross

validation (LOO-CV) protocol. A total of 26 patients and 56 images (16 non-neoplastic and

40 neoplastic polyps) were considered for the database composition. The classification results

achieved 86% of sensitivity and specificity.

Nancarrow et al. [Nancarrow et al. 2011] performed a comparative study to define con-

vincing differences between BE and EAC in biopsies from selected patients using SVM clas-

sification. A database composed of 54 biopsy specimens from 54 different patients were used

for validation purposes, and certified by a pathologist (23 annotated as presenting EAC). The

results concluded that BE-affected regions figure a tissue containing an enhanced glycoprotein

synthesis mechanism designed to provide mucosal defenses. Such mechanism resists to gastro-

esophageal reflux, while EAC exhibits the enhanced extracellular remodeling effects expected

in an aggressive form of cancer. Also, evidence of reduced expression of genes associated with

mucosal and xenobiotic defenses was also perceived. The authors observed eleven genes that

are also represented in at least three other profiling studies used to discriminate among squa-

mous epithelium, BE, and EAC, within the two largest cohorts using an SVM-based LOO-CV

analysis. The proposed method was considered able to distinguish squamous epithelium and

BE reasonably, and it also evidenced that more detailed investigations into profiling changes

between BE and EAC are desired. The work mentioned above achieved the following results:

sensitivity and specificity higher than 88% concerning the task of discriminating BE from squa-

mous samples, as well as a sensitivity of around 73% when distinguishing EAC (cancer) from

BE or squamous (non-cancer).

Veronese et al. [Veronese et al. 2013] proposed a computer-assisted approach to distin-

guish gastric metaplasia (GM), intestinal metaplasia (IM), and neoplasia based on the use

of appearance features in confocal laser endomicroscopy images. The database was com-

posed of CLE images obtained from consecutive 29 BE patients undergoing surveillance. In a

nutshell, features are extracted based on the division of the image in sub-regions for the further

application of LBP for a multiscale evaluation. The evaluation of the method was performed by

the comparison of the automatic results with the histological gold standard using SVM-based

classifiers. The proposed method identified IM, GM, and neoplasia in confocal images with

accuracy close to the human observer. The validation protocol adopted was the LOO-CV, and

the overall sensitivity results were: 96% for GM, 95% for IM and 100% for NPL.
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Using the technology of High Definition (HD) endoscopy, Muldoon et al. [Muldoon et al.

2010] developed a CAD system to help physicians with faster prognosis and decrease the di-

agnosis miss rate in the context of early-stage cancer detection. The work compared several

techniques for texture-oriented feature extraction, including Gabor, co-occurrence matrix fea-

tures, and LBP. For a better image description, an efficient combination of color and texture

features were proposed. A pre-processing step designed for endoscopy images was also consi-

dered to improve the classification accuracy. Later on, Principal Component Analysis was used

to reduce the number of features for the further usage of SVM. The experimental results were

validated by a gastroenterologist and showed a classification accuracy up to 96.48%, in 129

sites calculated in a database composed of 16 HMRE images.

Van der Sommen et al. [van der Sommen et al. 2013] presented an approach based on HD

endoscopic images for the automatic esophagus irregularity identification. They employed the

concept of tile-based image processing, so that the system was able to identify early cancer

and also locate it in endoscopic images. The identification process was based on the following

steps: (i) pre-processing, (ii) feature extraction with dimensionality reduction, and further (iii)

classification. The performance detection was evaluated in RGB, HSI, and YCbCr color spaces

using the Color Histogram and Gabor features in a database of HD endoscopic images obtai-

ned from 66 patients. Other well-known texture features were also considered for comparison

purposes. Concerning the classification step, an SVM configured with different parameters and

kernel functions were applied. The proposed approach achieved a classification accuracy of

95.9% considering tiles of tumorous and normal tissue of 50 × 50 pixels, with area under the

curve (AUC) of 99%.

Van der Sommen et al. [van der Sommen et al. 2014] proposed a novel algorithm that cal-

culates local texture and color features based on the original and Gabor-filtered images for the

automatic detection of early cancer in high-definition endoscopic images. Appropriate filters

based on spectral characteristics of the cancerous regions were designed, and post-processing

techniques were further applied to annotate the injured regions and the features were extracted

and classified by a trained SVM classifier. For seven evaluated patients, the experiments com-

pared 32 annotations performed by the algorithm with the corresponding annotations made by a

gastroenterologist expert using a LOO-CV protocol. From 38 lesions highlighted independently

by the gastroenterologist, 36 of those lesions with a recall of 95% and precision of 75% were

correctly detected by the system.

Hassan and Haque [Hassan e Haque 2015] proposed a real-time and computationally ef-

ficient bleeding detection technique using wireless capsule endoscopy (WCE) technology.
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The technique was based on the observation of characteristic patterns present in the frequency

spectrum of WCE frames. After these patterns have been defined, the authors developed a

texture-based feature descriptor that operates on the Normalized Gray Level Co-occurrence

Matrix (NGLCM) in the magnitude spectrum of the images. This descriptor was called Diffe-

rence Average. The proposed algorithm was validated using a WCE database; the SVM training

set was composed of 600 bleeding and 600 non-bleeding frames. Additionally, 860 bleeding

and 860 non-bleeding images were chosen from the remaining images to compose the test set.

The accuracy, sensitivity, and specificity values achieved were 99.19%, 99.41%, and 98.95%,

respectively. The proposed method requires a low computational cost, thus making it suitable

for real-time implementations.

Souza Jr. et al. [Souza Jr. et al. 2017] conducted a study to test the feasibility of adenocar-

cinoma classification in endoscopic images. The 2016 Endovis Challenge database [MICCAI

2015: 18th International Conference 2015] was used for the further extraction of SURF [Bay

et al. 2008], which were employed together with SVM using the LOPO-CV protocol for trai-

ning and testing purposes. Two classes composed the problem: non-cancerous- and cancerous-

annotated images. Two approaches for feature extraction and classification were carried out:

using the full images and using the expert-annotated regions of the adenocarcinoma. The re-

sults for the “full images approach” were 77% of sensitivity and 82% of specificity. For the

“regions approach”, the results were 90% of sensitivity and 95% of specificity.

Zhang et al. [Zhang et al. 2016] conducted a study using endoscopic ultrasonography

(EUS) to calculate textural features in a spectral analysis of pixels to provide a quantifica-

tion of early esophageal carcinoma tissue. A database composed of 1,210 EUS examination

samples was used from 66 patients with early esophageal cancer and 91 without cancer. The

textural features of the EUS images were represented as a graph, in which the pixels are the

nodes and the similarity between the gray-level or local features of the images are the edges.

The similarity were provided by a high-order graph matching of the texture features. Finally, a

10-fold cross-validation approach was considered, and an SVM classifier was applied to calcu-

late the optimal prediction of the esophageal carcinoma samples represented in the graph. As

the primary results, the authors obtained 93% of accuracy in the prediction of early esophageal

carcinoma, normal and leiomyoma tissues. Considering only the early esophageal carcinoma

prediction, the average results of accuracy, sensitivity, specificity and negative prediction were

89.4%, 94%, 95%, and 97%, respectively.

Klomp [Klomp et al. 2017] explored the feasibility in the use of computer vision techniques

to correctly predict the presence of dysplastic tissue in VLE images. Three new features based
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on the classic Haralick features were proposed, and the SVM classifier was applied in a dataset

composed of 30 dysplastic BE images and 30 non-dysplastic BE images. Using a 10-fold cross-

validation protocol, the authors obtained an area under the Receiver Operating Characteristic

(ROC) curve as of 0.95 compared to the 0.81 achieved by the clinical prediction model.

2.3.2.2 Neural Network-based Barrett’s Esophagus Recognition

Seguí et al. [Seguí et al. 2016] introduced a system for small intestine motility identification

based on Deep CNN to avoid the time-consuming step of specifying features for each motility

event. This study aimed to help physicians with the diagnosis performed by the WCE video

screening. Concerning the network training, 100,000 annotated WCE samples were used, and

the remaining 10,000 samples were employed for testing purposes. The experimental results

evidenced the robustness of the new features over others designed using state-of-the-art hand-

crafted approaches. In particular, the proposed approach obtained a mean accuracy of 96% for

six intestinal motility events. Such result allowed the proposed approach to outperform other

classifiers trained with classic handcrafted features (a 14% relative performance increase was

observed).

Mendel et al. [Mendel et al. 2017] carried out a work in which deep learning was applied in

specialist-annotated images containing adenocarcinoma and BE’s disease. A dataset provided

by the 2016 Endovis Challenge [MICCAI 2015: 18th International Conference 2015] was used

for the experimental step, and it comprises 100 annotated endoscopic images (50 presenting

BE and 50 presenting adenocarcinoma) from 39 patients (17 not presenting adenocarcinoma

and 22 presenting adenocarcinoma). The convolutional neural network was adapted to the set

of images by a transfer learning approach in a LOPO-CV. With positive results of sensitivity

and specificity (94% and 88% respectively), the study demonstrated that it is possible to extend

its results to the BE’s esophageal segmentation domain itself using deep learning to reach the

region affected by adenocarcinoma specifically.

To cope with the problem of time-consuming and cost-inefficient manually ground-truth

definition, Georgakopoulos et al. [Georgakopoulos et al. 2016] proposed a weakly-supervised

learning technique based on CNN that uses only image-level semantic annotations for the trai-

ning process, instead of using annotations at the pixel’s level. The performance of the proposed

method was evaluated in the context of CAD system of inflammatory gastrointestinal lesions

represented in WCE videos. The results showed the proposed method could be more accu-

rate than the conventional supervised learning with an accuracy of around 90% obtained in a

previous proposed data set proposed by [Koulaouzidis e Iakovidis 2015].
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Chan et al. [Chan et al. 2016] used an e-nose, a device that utilizes chemical-to-electrical

interfaces, to measure the volatile organic compounds (VOC) profiles of disease states. When

paired with a machine learning platform, an e-nose can be trained as a canine to serve as a tool

for noninvasive diagnostic testing. Such approach was used to perform a cross-sectional study

evaluating the breath VOCs of a cohort of 112 patients (66 with BE and 56 without BE) with a

history of dysplastic BE to differentiate the differences in BE by dysplasia grade. These VOC

profiles were introduced into an artificial neural network in a supervised step to identify data

classifiers to discriminate differences in subjects stratified by the presence or absence of BE

by biopsies. Optimal models were validated using a leave-some-out cross-validation (LSO-

CV) approach to generate performance characteristics of BE detection in a CNN classification.

The sensitivity and specificity was 82% and 80%, respectively, the accuracy was 81%, and the

AUC was 79%. The task of analysis and interpretation of WCE records is complex and require

sophisticated CAD systems to assist physicians in the video screening and further diagnosis.

Because most of the capsule endoscopy CAD systems share a standard design, each time a new

clinical application of WCE appears, a new CAD system has to be structured from scratch.

Yoshida et al. [Yoshida et al. 2017] performed a study to evaluate the classification accu-

racy of gastric biopsy specimens using the e-Pathologist image software. A dataset composed

of 3062 gastric-biopsy specimen slides were used, being each one evaluated by at least two

experts to provide the diagnosis. Finally, the comparison was performed between the experts

and the e-Pathologist classification results. A cross-validation protocol was used together with

a neural network, which achieved a recognition rate as of 55.6% over a three-class problem:

(i) positive for carcinoma, (ii) caution for adenoma, and (iii) negative for a neoplastic lesion.

An additional experiment was carried out in a two-class problem: (i) negative for neoplastic

regions, and (ii) positive for neoplastic areas. In this analysis, the sensitivity, specificity, and

negative predictive value were 89.5%, 50.7%, and 90.6%, respectively, showing a promising

direction for the automated classification of injured regions of the intestine.

Hong et al. [Hong, Park e Park 2017] developed a CAD system to classify endomicroscopy

images between gastric metaplasia, intestinal metaplasia, and neoplasia (these last two are sub-

classes of BE). A database provided by ISBI 2016 challenge and composed of 155 gastric me-

taplasia instances, 26 intestinal metaplasia instances and 55 neoplastic samples was considered

for experimental purposes together with Convolutional Neural Networks in a cross-validation

protocol. The training data were distorted for augmentation purposes as well, providing an

accuracy as of 80.77%, thus suggesting that CNN might be useful to this kind of problem.
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2.3.2.3 Comparison among Classifiers for Barrett’s Esophagus Recognition

Rajan et al. [Rajan et al. 2010] performed a comparison experiment using several classifi-

ers, such as SVM, k-NN, and Boosting on images from different endoscopy modalities (WLE,

NBI, Chromoendoscopy). The datasets (125 WLE images, 122 NBI images, and 150 Chromo-

endoscopy images) have been classified between four categories: Normal Squamous, Gastric

Mucosa, BE, and High-grade dysplasia (adenocarcinoma). The classification step was perfor-

med using features (i.g., color and texture) obtained from the injured regions of the endoscopic

images in a cross-validation protocol. The accuracy ranged from 36.36% up to 89.17% accor-

ding to the endoscopy modality images and classifier applied.

Considering the use of vibrational spectroscopy for the diagnosis and staging of cancer,

Sattlecker et al. [Sattlecker, Stone e Bessant 2014] conducted a study aiming to corroborate

the many promising benefits in the current histopathology methods used in the context of BE

identification. To correlate complex multivariate spectral and the disease level, the authors

applied machine learning methods, such as SVM, linear discriminant analysis (LDA), artificial

neural networks (ANN), and Random Forests to recognize spectral patterns. The validation

protocols adopted were LOO-CV, bootstrapping, and independent testing. A detailed review of

related works was conducted, and the average recognition rates of the surveyed studies were

around 90% of sensitivity and specificity, although the majority of the studies used less than 40

samples. The authors concluded that more studies need to be carried out in case we decide to

put in practice the combination of spectroscopy and machine learning.

Kandemir et al. [Kandemir et al. 2014] performed a study for the diagnosis of BE presented

in hematoxylin-eosin stained histopathological biopsies using multiple instance learning (MIL)

and Support Vector Machines. Regarding the experiments, the database comprised 214 tissue

cores (165 presenting cancer and 69 showing healthy condition) from 97 patients. Rectangular

patches of the tissue cores were extracted, and a feature vector was calculated based on a large

set of cell- and patch-level features (color features, texture features, and object features such

as minimum, maximum, and standard deviation of the cells) for each patch. The tissue core

as considered a bag (a group of instances with a unique group-level ground-truth label), while

each patch was considered an instance. After many MIL approaches, the authors realized that

a graph-based MIL algorithm (mi-Graph [Zhou, Sun e Li 2009]) obtained the best performance

explained by its inherent suitability to bags with instances that presents spatial correlation. For

patch-level diagnosis, the result was around 82% of accuracy and 89% of AUC using Bayesian

logistic regression in the distinction of BE and cancer region patches.

Considering the WCE as a promising technology for gastrointestinal disease examination
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in a non-invasive way, Yu et al. [Yu et al. 2015] studied the classification problem of the di-

gestive organs for WCE images aiming to save the time of doctors in the image review task.

Based on a previous study using CNN, a database composed of 25 real WCE recording samples

(approximately 1 million of WCE images) was considered for experimental purposes, and with

results nearly to 95% of accuracy. The authors also tried to improve the results by the proposi-

tion of a WCE classification system built as a hybrid CNN with an extreme learning machine

(ELM). In the new approach, the CNN was designed as a data-driven feature extractor, and the

cascaded ELM was designed as a strong classifier instead of the conventionally use of a deep

CNN fully-connected classifier. The results showed a performance of around 97% concerning

the WCE organ classification accuracy.

Swager et al. [Swager et al. 2017] conducted a study to identify VLE features from neo-

plasia areas regarding BE identification, as well as the authors aimed to develop an approach to

predict VLE scores. The work used a VLE image database composed of 52 endoscopic resec-

tion specimens from 29 BE patients, which were assigned positive and negative to neoplasia.

Features potentially significant for the prediction of early BE neoplasia were identified over

twenty-five VLE-histology images. In a learning phase, twenty VLE images presenting or not

BE neoplasia were scored by two experts blinded to histology. A prediction score was develo-

ped by the use multivariable logistic regression analysis, being validated by scoring forty VLE

images (50% neoplastic) using the area under ROC curve analysis. The work identified three

main VLE features that can be used to assist BE neoplasia identification: (i) lack of layering, (ii)

higher surface than subsurface signal, and (iii) presence of dilated glands/ducts. The sensitivity

and specificity values obtained were 83% and 71%, respectively, showing promising accuracy.

Another study conducted by Souza Jr. et al. [Souza Jr. et al. 2017] introduced the

OPF [Papa, Falcão e Suzuki 2009, Papa et al. 2012] classifier in the adenocarcinoma and BE

classification using endoscopic images. The work considered describing endoscopic images

(database provided by [MICCAI 2015: 18th International Conference 2015]) using feature ex-

tractors based on key point information, such as the SURF and SIFT [Lowe 2004], for further

designing a bag-of-visual-words that were used as input to both OPF and SVM classifiers in

a cross-validation protocol. The OPF classification outperformed the well-known SVM, pre-

senting better results for both feature extractors, with values lying on 73.2% (SURF) - 73.5%

(SIFT) for sensitivity, 78.2% (SURF) - 80.6% (SIFT) for specificity, and 73.8% (SURF) - 73.2%

(SIFT) for the accuracy.

Pu et al. [Pu et al. 2017] performed a study to extract cost-efficient biomarkers more effi-

cient than the ones currently available, aiming to provide high sensitivity and specificity in the
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task of esophageal squamous cell carcinoma (ESCC) diagnosis. The proposed biomarker to be

evaluated was the DNA methylation, and 100 samples of ESSC DNA methylation from “The

Cancer Genome Atlas"were analyzed along with a particular dataset of 12 samples of the same

kind. Candidate CpG sites and their adjacent regions were defined and compared with adjacent

normal tissue regions using several machine learning techniques such as Random Forest, SVM,

CNN, Logistic Regression, Naive Bayes, LDA and Flexible Discriminant Analysis in a 5-fold

cross-validation protocol. The sensitivity, specificity, and area under the curve results of the

diagnostic model based on the combination of five genomic regions were 75%, 88%, and 85%,

respectively.

Serpa-Andrade et al. [Serpa-Andrade et al. 2015] proposed a method in which the esopha-

gitis (a condition of chronic BE stage) was described using Fourier Transform on the Z-line

signature (esophageal irregularities) for classification purposes. The proposed descriptors were

based on statical features and textural information. A database comprising 10 samples of he-

althy tissue and 16 samples of ill tissue was used, and a cross-validation protocol applied for

classification purposes based on k-NN and Random Forests. The best average results obtained

were around 81% of precision, 86% of sensitivity, and 72% of specificity.

2.3.2.4 Additional Works

In this section, we present works that make use of classification techniques other than SVM

and neural networks. Zopf et al. [Zopf et al. 2009] proposed a study using NBI endoscopy ima-

ges for the automatic detection of BE using a nearest neighbor classifier. The model extracted

features from a proper database of images presenting 326 regions of interest (ROIs) annotated

by experts, and classified between three classes: epithelium, cardiac mucosa, and BE. The fe-

atures applied to the classification were the co-occurrence matrices, summation and difference

of histogram, statistical geometric, and Gabor Filters, leading to a high-dimension vector redu-

ced later. The evaluation has been made measuring the performance of each feature and also

by combining them all, using the LOO-CV protocol and the Euclidean distance as similarity

metric with the following results: accuracy between 85% and 92%. The best BE classification

accuracy was around 74%.

In 2016, the BE’s International NBI Group (BING) [Sharma et al. 2016] performed a

study with the goal of developing a simple and reliable approach to recognize dysplasia as well

as EAC in individuals affected by Barrett’s esophagus. The research group analyzed 60 NBI

images containing nondysplastic BE, high-grade dysplasia, and esophageal adenocarcinoma to

find out vascular and mucosal patterns visible by NBI to be used as features and then creating
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the BING criteria. Further, patients that were under supervision or endoscopic treatment for BE

were recruited at four institutions in the United States and Europe, performing histologic biopsy

analysis and composing a high-quality NBI image database. Experts reviewed 50 NBI images

to validate the proposed approach and then evaluated 120 additional NBI images (without pre-

vious review) to assess its prediction accuracy. The proposed method identified patients with

dysplasia with 85% of overall efficiency.

Pech et al. [Pech et al. 2008] designed a study to evaluate the potential of endomicros-

copy for predicting histology in vivo in patients presenting early stage of squamous cells in the

esophagus. Twenty-one patients suspected to early squamous cell cancer and recommended

for endoscopic therapy were included in this study, being their mucosal areas examined using

confocal imaging and resulting in 43 lesion images. Each scanned lesion image was stored and

in vivo diagnosis was performed during routine endoscopy. Biopsy specimens were extracted

from every lesion. The confocal images were reviewed by two personnel blinded to the histo-

logy endoscopists. The overall accuracy using the k-statistics was 95%, and the sensitivity and

specificity were 100% and 87%, respectively. Intraobserver agreement was close to perfection

(kappa = 0.95), meanwhile the interobserver agreement was very relevant (kappa = 0.79).

Rosenfeld et al. [Rosenfeld et al. 2014] aimed at studying how data mining can be applied

to assist the diagnosis of high-risk lesion patients affected by BE in HD videos. As the pati-

ent information is open to interpretation, the authors demonstrated that composite rules learned

from many experts can be more accurate than that of a single expert. Such fact can be explained

because even expert physicians can interpret endoscopy images differently, thus potentially ma-

king it relevant to aggregate multiple opinions for the precise interpretation of the endoscopic

image. Also, the authors demonstrated that decision trees could learn simple rules to assist the

dysplasia diagnosis. The authors employed two decision models in a dataset composed of 47

HD endoscopic videos of the esophagus (23 dysplastic and 24 non-dysplastic): one considering

the expert decisions about dysplasia and no-dysplasia, and another without the expert decisi-

ons. The overall accuracies concerned the aforementioned models were around 79% (with the

experts’ decision) and 77% (without the experts’ decision).

Li et al. [Li et al. 2015] proposed a new learning method based on the multiple instance

paradigm to recognize tumor invasion of gastric cancer using computed tomography (CT) ima-

ging. The authors extracted bag-level- and instance-level features for processing and classifica-

tion purposes using a database composed of 26 patient exams. Since there might be ambiguity

when assigning labels to some selected patches in instance-level features, the authors proposed

an improved Citation k-nearest neighborhood (Citation-kNN) that achieved recognition rates
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of around 76.92%.

Curvers and Bergman [Curvers e Bergman 2016] carried out a study with patients under-

going BE neoplastic or with a suspect of such disease. Microscopic images of the esophagus

were obtained from regions with neoplasia suspicious and from other locations randomly sam-

pled for further biopsy analysis. The database images were further identified as neoplastic or

non-neoplastic by two experts (blinded for histology results) with experience in high-resolution

microendoscopic (HRME) image representation of BE. A tool for the visual interpretation

of HRME images was designed for the reviewers to classify each image of the dataset. Also,

three endoscopists with HRME experience annotated the entire image set using the developed

tool. As a result, an analysis of the HRME images was performed based on the relevant image

features selected for the classification step. A sequential and automatic image classification ap-

proach was developed and trained in a separate learning set. The results of this learning phase

were validated in a selected set of images. The experimental results concerning sensitivity and

specificity for neoplasia were around 81% and 76%, respectively, presenting a fair interobserver

agreement. The results of the quantitative image classification algorithm achieved were: sensi-

tivity of 84% and specificity of 85% for the learning set, and sensitivity of 88% and specificity

of 85% for the validation data. These results corroborate that quantitative analysis of HRME

images can provide an accurate classification of neoplastic and non-neoplastic BE tissue, which

can be compared to the precision showed in the assessment of experienced endoscopists.

Wang et al. [Wang et al. 2016] developed an approach for the automatic detection and quan-

tification of subsquamous glandular structures (SGSs) in volumetric laser endomicroscopy

(VLE) data sets using automated image processing for the radiofrequency ablation (RFA) in

the decrease of the BE extension. There were considered import information of SGSs right be-

fore RFA treatment, such as the average number, size, depth, and eccentricity per cross-section,

and their correlations with the reduction of maximum BE length at follow-up after RFA were

evaluated. After the analysis of nine VLE volumetric datasets from seven patients, there were

found strong correlations between the SGS characteristics immediately before RFA, and the

change of maximum BE length at follow-up after RFA. The SGS depth and eccentricity charac-

teristics were the most significant for the RFA outcome.

Swager et al. [Swager et al. 2017] investigated the effectiveness of a computer-assisted tool

to identify early BE neoplasia in sixty ex vivo VLE image using VLE features and machine lear-

ning methods for classification purpose. The database comprises sixty BE patients (30 nondys-

plastic BE - NDBE- and 30 high-grade dysplasia/early adenocarcinoma images). VLE features

from a clinical VLE prediction score for BE neoplasia were used to feed the proposed approach,
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and novel clinically-inspired algorithm features were developed based on signal intensity sta-

tistics and grayscale correlations. The comparison was performed with generic image analysis

methods for neoplasia detection. For classification purpose, several machine learning methods

were evaluated, such as SVM, adaBoost, and kNN, allied to an LOO-CV protocol. Three no-

vel clinically-inspired algorithm features were developed as a result of the work, presenting an

area under the receiver operating characteristic curve of 95%. Corresponding sensitivity and

specificity were 90% and 93%, respectively.

Boschetto et al. [Boschetto, Gambaretto e Grisan 2016] presented a CAD system to au-

tomate classification of normal and metaplastic endoscopic NBI images. Eight features were

extracted from regions defined as clusters of superpixels, which are based on the superpixels of

each region: three features are calculated as mean intensities of each color channel, three other

features stand for mean intensities of the red-channel with the application of three different

morphological filters (top-hat, entropy and range filters), and the last two features are related to

the contrast and homogeneity of the superpixels. The classification step was performed using

Random Forests in a 10-fold cross-validation approach on a dataset with 116 NBI samples.

Following the feature extraction step, the samples were split into training (70% of the instan-

ces) and testing (30% of the instances) sets, and the overall accuracy, sensitivity and specificity

results were 83.9%, 79.2%, and 87.3%, respectively.

2.4 Discussions and Conclusions

In the last years, the amount of people with BE has increased considerably, mostly in the

western countries, turning it in a world’s health problem up to date. The use of artificial intel-

ligence and machine learning techniques showed promising results, thus becoming a major aid

to cope with BE pattern prognosis.

As it can be noticed in this survey, the application of machine learning has risen in the last

years, with high use of SVM, CNN, and other methods for the detection and classification of

adenocarcinoma or abnormalities in the esophagus region. In light of that, research in this area

becomes very relevant and important for the early, fast, and standardized detection of BE and

adenocarcinoma.

In this work, we presented a review concerning BE detection and monitoring using recent

studies, being its main contribution to consider very recent works dating from 2011 to 2017

mostly, with the application of machine learning and computer vision for the description and

classification between BE and adenocarcinoma. Additionally, the very recent studies for the
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detection, treatment, and evaluation of the BE are reviewed in this survey, and Table 2.1 presents

a summarization of them all. Currently, based on the works considered in this survey, we

can conclude the BE problem assisted by machine learning techniques is not mature yet, and

there is a need for even more research to provide solid methods to distinguish the BE and

adenocarcinoma regions in endoscopy images and videos.

We have observed the vast majority of works that use machine learning and computer vision

for any BE purpose are brand new (between 2015 and 2017), thus highlighting new directions

in which the prognosis and treatment of BE will benefit from the technologies to help experts in

this task. Also, the definition of a pattern in the BE identification is very important, considering

the massive human evaluation of this problem in practice today. We believe the computer lear-

ning and classification may help to define markers and identifiers for the best BE description,

helping the accurate and fast definition of the injured region in endoscopy images or even in

endoscopy videos in a real-time definition way.

The primary challenges related to computer-assisted BE identification are mainly associa-

ted with the lack of data since most of the datasets figure a few dozens of patients only. Another

problem is related to the absence of public datasets to cope with BE identification, which could

foster the research towards more effective approaches to detect early-stage illness from endos-

copic images.

Another bottleneck concerns unbalanced data, which may bias the machine learning tech-

nique towards the majority class. Data augmentation appears to be an exciting solution together

with transfer learning approaches. Also, we believe that combining handcrafted with automatic

learned features may be a useful idea, mainly in the context of medical-drive data where the

lack of images is of great concern.
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Table 2.1: Summarization of the works considered in this survey.

Reference Classifier Database Validation

Protocol

Evaluation Method Results

[Li e Meng 2009] SVM 100 en-

doscopic

images from

5 patients

4-folder

cross-

validation

Presented a study for the applica-

tion of a new texture extraction

scheme in ulcer regions for capsule

endoscopy discrimination in endos-

copic images.

Detection rate of the proposed fe-

atures with the MLP was 92.37%,

91.46%, and 93.28% in terms of

accuracy, specificity and sensitivity,

respectively.

[Rodriguez-Diaz e

Singh 2016]

SVM 16 non-

neoplastic

and 40 neo-

plastic NBI

images from

26 patients

LOO-CV Conducted a study aiming to ex-

plore the feasibility in developing a

diagnostic computer algorithm ba-

sed on the NICE criterion for a real-

time interpretation of polyp histo-

logy from near-focus NBI images.

The classification based on color re-

sulted in a sensitivity of 86% and

specificity of 86% with a high-

confidence rate of 77.%

[Nancarrow et al.

2011]

SVM 54 images

from 54 pa-

tients (23

presenting

EAC)

LOO-CV Performed a comparative study

to define convincing differences

between BE and EAC using SVM

classification.

The results were: sensitivity and

specificity higher than 0.88 for dis-

criminating BE from squamous,

and the sensitivity for determining

EAC (cancer) from BE or squa-

mous (non-cancer) was 0.73.

[Veronese et al.

2013]

SVM CLE ima-

ges from 29

consecutive

BE patients

undergoing

surveillance

LOO-CV Presented a computer-based

method for the automatic classifica-

tion of gastric metaplasia, intestinal

metaplasia, and neoplasia on the

basis of appearance features of

confocal images.

The sensitivity overall results were:

96% of gastric metaplasia, 95% of

intestinal metaplasia, and 100% of

neoplasia.
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[Muldoon et al.

2010]

SVM 129 sites from

a database of

16 HMRE

images

cross-

validation

Developed a CAD system to help

physicians with faster identification

of early cancer using color and tex-

ture features extracted from HD en-

doscopy images.

In an SVM-classification appro-

ach, the results reached were up to

96.48%.

[van der Sommen et

al. 2013]

SVM HD endos-

copic images

from 66

patients

10-fold cross-

validation

Proposed an algorithm based on HD

endoscopic images for the automa-

tic esophagus irregularity identifi-

cation and location using color his-

tograms, Gabor features, and SVM-

based classification.

The proposed system achieved a

classification accuracy of 95.9%

with AUC value as of 99%.

[van der Sommen et

al. 2014]

SVM 32 HD endo-

socopic ima-

ges from 7 pa-

tients

LOO-CV Presented a novel algorithm that

computes local color and texture fe-

atures based on the original and on

the Gabor-filtered image for the au-

tomatic detection of early cance-

rous tissue in high defintion endos-

copic images.

From 38 lesions, the system de-

tected correctly 36 of those lesions

with a recall of 0.95 and a precision

of 0.75.

[Hassan e Haque

2015]

SVM 120,000 WCE

frames for

the training

set and 1720

WCE frames

for the test set

cross-

validation

Proposed a real-time bleeding de-

tection technique based on the ob-

servation of characteristic patterns

that appear in the frequency spec-

trum of the WCE.

The accuracy, sensitivity, and speci-

ficity values achieved were 99.19%,

99.41% and 98.95%, respectively.
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[Seguí et al. 2016] CNN 100,000 WCE

images for

training the

network and

10,000 for

testing

cross-

validation

Introduced a system for small in-

testine motility characterization ba-

sed on Deep Convolutional Neural

Networks.

The proposed approach obtained

a mean classification accuracy of

96% for six intestinal motility

events.

[Mendel et al. 2017] CNN Database

provided by

[MICCAI

2015: 18th

International

Conference

2015]

LOPO-CV Carried out a work in which deep

learning was applied in specialist

annotated images containing ade-

nocarcinoma and BE’s disease.

The sensitivity and specificity va-

lues of 94% and 88% respectively.

[Souza Jr. et al.

2017]

SVM Database

provided by

[MICCAI

2015: 18th

International

Conference

2015]

LOPO-CV Tested the feasibility of adenocar-

cima classification in endoscopic

images using SURF features and

SVM classifier.

The mean results for the “full image

approach” were 77% of sensitivity

and 82% of specificity. For the

“region-based” approach, the re-

sults were 89.6% of sensitivity and

95.1% of specificity.
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[Zhang et al. 2016] SVM 1,210 EUS

images from

157 patients

(66 with early

cancer and 91

without)

10-fold cross-

validation

A study was conducted using en-

doscopic ultrasonography (EUS) to

calculate textural features in a spec-

tral analysis of pixels to provide a

quantification of early esophageal

carcinoma tissue.

In the first classification appro-

ach, the overall concordance rate

was 55.6% with kappa coeficient

of 28%. The early esophageal

carcinoma average prediction re-

sults of accuracy, sensitivity, speci-

ficity, and negative prediction were

89.4%, 94%, 95%, and 97%.

[Klomp et al. 2017] SVM 30 VLE non-

dysplastic

images and

30 VLE

dysplastic

images

10-fold cross-

validation

Tested the feasibility in the use of

computer vision techniques correc-

tly predict the presence of dysplas-

tic tissue in VLE BE images.

Considering the novel proposed

descriptors, the area under ROC

curve result was 95%, compared to

the 81% of the clinical predicition

model.

[Georgakopoulos et

al. 2016]

CNN Database

proposed

in [Koula-

ouzidis e

Iakovidis

2015]

Patches evalu-

ation (normal

or abnormal)

Proposed a weakly-supervised lear-

ning method based on CNNs that

uses only image-level semantic an-

notations in the training process for

ground truth calculation.

The results achieved by the authors

showed the proposed method can be

more effective than the conventio-

nal supervised learning with an ac-

curacy of around 90%.

[Chan et al. 2016] CNN 66 VOCs

of patients

presenting BE

and 56 VOCs

of patients

without BE

LSOCV Used an e-nose to perform a cross-

sectional study evaluating the bre-

ath VOCs of a cohort of 112 pa-

tients with a history of dysplastic

BE to differentiate the differences

in BE by dysplasia grade.

The sensitivity result was 82%, the

specificity result value was 80%,

the accuracy was 81%, and the

AUC was 79%.
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[Yoshida et al. 2017] ANN 3062 gastric-

biopsy speci-

men slides

cross-

validation

Using textural features, were per-

formed a study aiming to evaluate

the classification accuracy of gas-

tric biopsy spicimens using the e-

Pathologist image software and ex-

pert annotations, in two different

comparison approaches.

In the first classification approach,

the overall concordance rate was

55.6% with kappa coeficient of

28%. In the second approach, the

sensitivity, specificity, and negative

predictive vale were 89.5%, 50.7%,

and 90.6%, respectively.

[Hong, Park e Park

2017]

CNN 155 gastric

metaplasia

instances, 26

instestinal

metaplasia

instances and

55 neoplastic

instances

cross-

validation

Developed a CAD system to

classify endomicroscopy images

between gastric metaplasia, intesti-

nal metaplasia and neoplasia (these

last two are sub-classes of BE)

using a public database with 262

samples.

The accuracy result obtained was

80.77%, suggesting that CNN could

become a good classifier for the

task of BE tissue distinction.

[Rajan et al. 2010] SVM,

k-NN,

Boosting

1/2

125 WLE

images, 122

NBI images,

and 150 Chro-

moendoscopy

images

cross-

validation

Performed experiments using se-

veral classifiers (SVM, k-NN, Bo-

osting) in images from different

endoscopy modalities (WLE, NBI,

and Chromoendoscopy).

The accuracy for detecting BE pre-

sented a range of variation from

36.36% up to 89.17% according to

the endoscopy modality and classi-

fier.

[Sattlecker, Stone e

Bessant 2014]

SVM,

LDA,

ANN, and

RF

- LOO-CV, Bo-

ostraping and

independent

testing

Conducted a study aiming to coho-

borate the many promising benefits

over the currently used histopatho-

logy methods.

If the combination of spectroscopy

and machine learning is mapped

into clinical practice, more studies

need to be carried out to support the

reproducibility.
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[Kandemir et al.

2014]

MIL and

SVM

214 tissue

cores (165

presenting

cancer and

69 showing

healthy con-

dition) from

97 patients

cross-

validation

Performed a study for the diagnosis

of BE’s cancer from hematoxylin-

eosin stained histopathological bi-

opsy images using multiple ins-

tance learning and SVM classifiers.

For patch-level diagnosis, the result

was around 82% of accuracy and

0.89 of AUC using Bayesian logis-

tic regression.

[Yu et al. 2015] CNN and

SVM

25 real WCE

recording

samples (ap-

proximately

1 million of

WCE images)

CNN-features

compared to

SVM-features

Studied the classification problem

of the digestive organs for WCE

images.

The results showed performance of

around 97.25% concerning the clas-

sification accuracy.

[Swager et al. 2017] SVM, ada-

Boost, and

k-NN

52 endosco-

pic resection

specimens

from 29

patients

LOO-CV Investigated the feasibility of a

computer algorithm to identify

early BE neoplasia in VLE images

using VLE features and machine le-

arning methods.

AUC of 0.95, and sensitivity and

specificity were 90% and 93%, res-

pectively.

[Souza Jr. et al.

2017]

SVM and

OPF

Database

provided

by [MICCAI

2015: 18th

International

Conference

2015]

cross-

validation

Introduced the OPF classifier in the

context of adenocarcinoma and BE

classification using SURF and SIFT

features combined with a bag-of-

visual-words approach for the fea-

ture vectors calculation.

The OPF outperformed the SVM,

presenting better results for both fe-

ature extractors, with values lying

on 73.2% (SURF) - 73.5% (SIFT)

for sensitivity, 78.2% (SURF) -

80.6% (SIFT) for specificity, and

73.8% (SURF) - 73.2% (SIFT) for

the accuracy.
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[Pu et al. 2017] logistic

regression,

SVM,

CNN,

LDA, Naive

Bayes and

flexible dis-

criminant

analysis

100 samples

of ESSC

DNA methy-

lation and

a particular

dataset of 12

samples of

the same kind

5-fold cross-

validation

Performed a study to extract more

cost-efficient biomarkers (using

DNA methylation) than the ones

available until now, aiming to pro-

vide high sensitivity and specificity

in the ESCC diagnosis.

In the SVM classification appro-

ach, the best average accuracy re-

sult were reached, with value of

0.82%.

[Serpa-Andrade et

al. 2015]

k-NN and

Random

Forests

10 endosco-

pic images

of healthy

tissue and 16

images of ill

tissue

cross-

validation

proposed a method in which the

esophagitis (a condition of cronic

BE stage) was described using Fou-

rier Transform on the Z-line signa-

ture for classification purposes.

The very best average results obtai-

ned were 81% of precision, 86% of

sensitivity and 72% of specificity.

[Zopf et al. 2009] euclidean

distance

326 ROIs an-

notated by ex-

perts

LOO-CV Proposed a study using NBI endos-

copy images for automatic detec-

tion by classification systems with

gastroscopy.

Accuracy in the range of 85% and

92% for the feature combination

(BE accuracy as of 74%).

[Sharma et al. 2016] NBI classi-

fication cri-

teria

50 NBI ima-

ges plus 120

additional

NBI images

Comparison

between

BING criteria

and expert’s

annotations

Aimed to develop and validate a

narrow-band imaging classification

system for the identification of dys-

plasia and cancer in patients with

BE.

The criteria identified patients with

dysplasia with 85% of overall ac-

curacy, 80% of sensitivity, 88% of

specificity, 81% of positive predic-

tive value, and 88% of negative pre-

dictive value.
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[Pech et al. 2008] k-statistics 43 lesion ima-

ges

confocal

image review

(2 experts)

Performed a study to assess the po-

tential of endomicroscopy for pre-

dicting histology in patients with

early squamous cell cancer in the

esophagus.

The results were: accuracy value as

of 95%, and the sensitivity and spe-

cificity as of 100% and 87%, res-

pectively.

[Rosenfeld et al.

2014]

Decision

Trees

47 HD endos-

copic videos

(23 dysplastic

and 23 non-

dysplastic)

– Studied how data mining can be ap-

plied to aid the diagnosis of patients

with high-risk lesions within BE.

The overall accuracies concerned

the aforementioned models were

around 79% (with the experts’ deci-

sion) and 77% (without the experts’

decision).

[Li et al. 2015] Citation-k-

NN

26 patients LOO-CV Proposed a novel multiple instance

learning method for the identifica-

tion of tumor invasion of gastric

cancer with dual-energy computed

tomography imaging.

The experimental evaluation was

performed using leave-one-out

cross validation, obtaining an

accuracy of 76.92%.

[Curvers e Bergman

2016]

Automated

image clas-

sification

– independent

set of images

Carried out a study with patients

undergoing BE neoplastic or sur-

veillance underwent standard gas-

troscopy.

The results of the quantitative

image classification algorithm

showed a sensitivity of 84% and

specificity of 85% in the learning

set, and a sensitivity of 88% and

specificity of 85% in the validation

data.

[Wang et al. 2016] Automatic

image

analysis

9 VLE vo-

lumetric

datasets from

7 patients

– Developed an algorithm that can

automatically detect and quantify

subsquamous glandular structures

in VLE data and RFA in the decre-

ase of the BE extension.

The subsquamous glandular struc-

tures depth and eccentricity charac-

teristics were the most significant

for the RFA outcome.
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[Swager et al. 2017] VLE featu-

res compa-

rison

30 non-

dysplastic

VLW images

and 30 high-

grade dys-

plasia/ early-

adenocarcinoma

VLE images

cross-

validation

Conducted a study aiming to iden-

tify VLE features of BE neoplasia

and to develop a VLE prediction

score.

The sensitivity and specificity va-

lues obtained were 83% and 71%,

respectively, showing promising re-

sults.

[Boschetto, Gamba-

retto e Grisan 2016]

Random

Forests

116 NBI ima-

ges

10-fold cross-

validation

Presented a CAD system to auto-

mate the classification of normal

and metaplastic endoscopic NBI

images. Eight features were extrac-

ted from regions defined as clusters

of superpixels.

The overall accuracy, sensitivity -

and specificity result values were

83.9%, 79.2% and 87.3%, respec-

tively.

[Ghatwary, Ahmed e

Ye 2017]

– – – Presented a brief survey to discuss

advances in the development of BE

CAD systems WLE, HD-WLE, and

NBI endoscopy modalities.

Eight works were listed based on

number of images, classifier, vali-

dation method, and results.
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2.5 Chapter’s Considerations

After publishing this manuscript in 2018, several new works and approaches have been

proposed to date. Aiming to keep the coverage of this survey, Table 2.1 has been updated since

then with related ML works applied to BE and adenocarcinoma context evaluation.

Hence, below, the extra works from 2018 to 2021 can be observed, considering the same se-

arching metrics of Table 2.1. As one can observe, a rising perspective regarding the results was

achieved through the new studies, encouraging the introduction of new methods and techniques

to evaluate such an important problem.

So far, 15 new works were conducted and listed in the table below, among the evaluation of

images and videos of endoscopic examinations of cancerous tissues and BE. It is mandatory to

highlight the increase in approaches that apply deep learning techniques, illustrating how im-

portant such an application is for solving current medical problems, with promising correctness

rates.

From this survey, that guided the entire study we propose, techniques of description based

on handcrafted features, extracted using the experts’ knowledge, and based on deeply-learnable

features, based only on deep learning techniques, were employed in the evaluation of cancer

and BE distinction context in the next Chapters to come.
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Table 2.2: Summarization of the works from 2018 to 2021.

Reference Classifier Database Validation

Protocol

Evaluation Method Results

[Souza Jr. et al.

2018]

OPF, SVM

and naive-

bayes

174 en-

doscopic

images from

2 datasets.

20-fold cross-

validation and

LOPO-CV.

Presented a study for the extrac-

tion of color-coocurrence matrices

as BE and cancerous tissue features

further classified using OPF, SVM

and bayesian-classifier.

Accuracy, sensitivity and specificty

and f1-score rates of 76.6%, 72.6%,

76.6%, and 74.8% respectively.

[Passos et al. 2019] iRBM,

OPF, SVM

and naive-

bayes

100 endos-

copic images

from 39

patients.

20-fold cross-

validation.

In this study, the authors employed

the inifite Restricted Boltzmann

Machine, based on metaheuristics,

to describe and classify BE and can-

cer, also employing the OPF, SVM

and bayesian classifiers for compa-

rison purposes.

Accuracy, sensitivity, and specificty

rates of 79.0%, 82.0%, and 76.0%

respectively.

[Souza Jr. et al.

2019]

OPF, SVM

and naive-

bayes

174 en-

doscopic

images from

2 datasets.

20-fold cross-

validation.

In this study, the authors conducted

the evaluation of BE and adenocar-

cinoma by calculating its features

based on an unsupervised version of

OPF, standarizing the dimension of

the output features to be classified

using OPF, SVM and bayesian clas-

sifiers.

Accuracy, sensitivity, and specificty

rates of 67.3%, 77.3%, and 76.6%,

respectively.
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[Souza Jr. et al.

2020]

LeNet-5

and Alex-

Net

174 en-

doscopic

images from

2 datasets.

20-fold cross-

validation.

In this study, artificial samples of

BE and adenocarcinoma were pro-

vided using generative adversarial

networks, building new datasets

along with original samples to as-

sess the impact the amount of sam-

ples could present in classifying

cancerous tissues.

Accuracy, sensitivity, and specificty

rates of 85.0%, 88.0%, and 82.0%,

respectively.

[Souza Jr. et al.

2021]

LeNet-5

and Alex-

Net

174 en-

doscopic

images from

2 datasets.

20-fold cross-

validation.

Artificial samples of BE and ade-

nocarcinoma were generated using

optimazation techniques based on

metaheuristics and generative ad-

versarial networks, building new

datasets along with original sam-

ples to assess the impact the artifi-

cial samples could present in clas-

sifying cancerous tissues.

Accuracy, sensitivity, and specificty

rates of 93.4%, 90.3%, and 94.1%,

respectively.

[Souza Jr. et al.

2021]

AlexNet,

ResNet-50,

Squeeze-

Net, and

VGG-16

174 en-

doscopic

images from

2 datasets.

20-fold cross-

validation and

LOPO-CV.

The learning process related to trai-

ning and testing deep models for

BE and adenocarcinoma was asses-

sed by employing explainable artifi-

cial intelligence methods, in a back-

propagation-fashion, into the defi-

ned models, to compare the regions

of interest from deep-architectures

and experts.

Accuracy, sensitivity, specificty and

correlation rates of 81.6%, 89.9%,

72.5%, and 72.0%, respectively.
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[Ebigbo et al. 2019] ResNet-101 229 en-

doscopic

samples from

2 datasets.

LOPO-CV. A system that provides the classi-

fication of BE and cancerous sam-

ples was proposed, using the gene-

ralization of a deep version of Res-

Net model, the ResNet-101 archi-

tecture.

Sensitivity, specificity and DICE

values of 97.0%, 88.0%, and

72.0%, respectively.

[Ebigbo et al. 2020] ResNet-

backbone

and

DeepLab-

v3+ archi-

tecture

Proprietary

dataset co-

posed of 129

endoscopic

images.

LOPO-CV. A real-time deep learning AI sys-

tem was developed, capturing ran-

dom images from the real-time ca-

mera livestream and providing a

global classification and a segmen-

tation of BE and early oesophageal

adenocarcinoma.

Accuracy of 89.9%.

[Ghatwary,

Zolgharni e Ye

2019]

VGG-16 100 endos-

copic images

from 39

patients.

5-fold and

LOPO-CV.

This study aimed to evaluate the

performance of different deep lear-

ning methods to automatically iden-

tify adenocarcinoma from high-

definition white light endoscopy

images.

F1-score, sensitivity, and specificty

rates of 94.0%, 96.0%, and 92.0%,

respectively.

[Ghatwary, Ye e

Zolgharni 2019]

DenseNet 1,100 endos-

copic images

from 2 public

datasets.

20-fold cross-

validation and

LPOP-CV.

The proposed system is based on

combining Gabor handcrafted fea-

tures with the CNN features.

Recall, precision, and mean average

precision rates of 95.0%, 91.0%,

and 84.0%, respectively.
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[van der Putten et al.

2020]

U-Net

based

architecture

Proprietary

dataset com-

posed of

494,355

endoscopic

images.

5-fold cross-

validation.

The authors have employed a novel

U-Net-based semi-supervised lear-

ning algorithm to pre-train instan-

ces of BE and adenocarcinoma do-

main,in a hybrid transfer learning

strategy.

Patient level accuracy, sensitivity,

and specificity rates close to 90%.

[Hou et al. 2021] ResNet-

based

models

100 endos-

copic images

from 39

patients.

10-fold cross-

validation and

LOPO-CV.

It was proposed an end-to-end neu-

ral network architecture with an at-

tentive hierarchical aggregation and

a self-distillation mechanisms to

address the classification of ade-

nocarcinoma in BE-diagnosed sam-

ples.

Area under curve, F1-score, sensiti-

vity, and specificty rates of 96.3%,

92.5%, 91.2%, and 94.0%, respec-

tively.

[Gehrung et al.

2021]

AlexNet,

DenseNet,

Incep-

tionV3,

ResNet-

18 and

VGG-16

4,662 slides

from 2,331

patients.

cross-

validation

and LOPO-

CV.

It was proposed We have presented

a triage-driven approach that analy-

zes samples of the Cytosponge-

TFF3 test using deep learning for

the detection of BE tissue.

Area under curve, snsitivity, and

specificty rates of 88.0%, 73.5%,

and 93.1%, respectively.

[Dickson 2019] Deep

learning-

based

models

1,704 endos-

copic images

from 669 pati-

ents.

cross-

validation.

It was developed a piloty video-

based CAD system for BE neopla-

sia that allows endoscopic detection

on video-footage.

Accuracy, sensitivity, and specificty

rates of 89.0%, 93.0%, and 83.0%,

respectively.
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[Pan et al. 2021] Fully con-

volutional

networks

443 endos-

copic images

from 187

patients.

cross-

validation.

The authors proposed to develop a

fully automated deep learning sys-

tem for the accurate segmentation

and identification of BE in endos-

copic examinations.

Intersection over Union and Dice

coeficients of 0.81%, and 0.90%,

respectively.



Chapter 3
BARRETT’S ESOPHAGUS ANALYSIS

USING SURF FEATURES

The first proposed attempt of adenocarcinoma and Barrett’s esophagus distinction is pre-

sented in this chapter and presented in the conference “Bildverarbeitung für die Medizin

2017" [Souza Jr. et al. 2017]. Considering the endoscopic image representation based on the

Speed-Up Robust Features (SURF), the classification of cancerous and non-cancerous regions

was provided using the Support Vector Machines classifier in two different image-approaches.

3.1 Introduction

In the last decades, the incidence of adenocarcinoma in patients with Barrett’s esophagus

has increased significantly in Western populations. The dismal prognosis of the disease can be

largely improved through early identification and surgical treatment of high-grade dysplasia and

non-metastatic stages of cancer [Dent 2011, Sharma et al. 2016, Phoa et al. 2016]. Therefore,

strong emphasis is being placed on the computer assisted diagnosis of endoscopy images. Some

studies have already been carried out to classify lesions of the esophagus, based on conspicuous

color and textural anomalies [van der Sommen et al. 2016]. Benefitting from substantial impro-

vements in the field of image analysis and artificial intelligence, methods like SURF [Bay et al.

2008] and Deep Learning [Mendel et al. 2017] are increasingly applied. The aim of the current

study was to investigate the feasibility of a SVM to classify dysplastic and cancerous lesions in

Barrett’s esophagus based on SURF descriptors.
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3.2 Materials and Methods

This section demonstrates the steps to develop a computerized system for the detection,

delineation and characterization of endoscopic images obtained from individuals with clinically

manifest tissue abnormalities in the esophagus. Based on a given set of endoscopic photographs

(benchmark database). SURF descriptors are utilized for the training and validation of an SVM

classifier.

3.2.1 Image Database

The set of images used as benchmark database was provided at the MICCAI 2015 Endo-

Vis Challenge [MICCAI 2015: 18th International Conference 2015]. It is composed of 100

endoscopic pictures of the lower esophagus, captured from 39 individuals, 17 of them being

diagnosed with early stage Barrett’s, and 22 displaying signs of esophageal adenocarcinoma.

From each proband several endoscopic images were available, ranging from one to a maximum

of eight. The database contained a total of 50 images displaying cancerous tissue areas (C2

labeled images), plus 50 images showing dysplasia without signs of cancer (C0 labeled ima-

ges). Suspicious lesions observed in the C2 images had been delineated individually by five

endoscopy experts. Some of the expert’s demarcations in identical images exhibited substantial

regional deviations. Therefore all delineated (masked) areas were combined to employ a gold

standard for definitive states of adenocarcinoma.

3.2.2 SURF

The SURF algorithm [Bay et al. 2008] operates on integral images to detect dominant

structures and their spatial orientation. To ensure scale and spatial invariance the SURF seeks

for maxima of the determinant of Hessian, demarcating specific key-points in the image [Bay et

al. 2008], which are further explored in their local neighborhood. These sub-regions are evenly

split into square patches while their wavelet responses in horizontal and vertical directions ge-

nerate the elements of a high-dimensional feature vector of size 64.

3.2.3 Interest Points

Interest point (IP) acquisition was performed with the SURF algorithm provided in MA-

TLAB using the OpenCV interface support package. The assessment of suitable IPs was based

on two approaches. The first approach simulated "real life situations"lacking detailed informa-
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tion about tissue abnormalities. This analysis worked on the original full images. Two attributes

were defined for the SVM training process: Class 0 images (C0, non-cancerous but with pos-

sible signs of early dysplasia), and class 2 images (C2, exhibiting cancerous tissue regions).

The second approach was based on designated spatial annotations provided by five endoscopy

experts, denoted as regions S1 to S5. In order to define a secure gold standard despite conside-

rably dissenting delineations (Fig. 3.1), the area of intersection from all demarcated regions in

the same image was denoted as class 2 area (C2, "cancerous"). Tissue linings which had been

inconsistently marked as cancerous or as non-cancerous were labelled as class 1 (C1, "fuzzy

regions"). Epithelium diagnosed by all experts in unison as negative was labelled as class 0

(C0, "non-cancerous"), cf. Equations 1-3.

Cancer : C2 =
⋂

i=1,...,5

Si (3.1)

Fuzzy : C1 =
⋃

i=1,...,5

Si\C2 (3.2)

Non-cancer : C0 = 1− (C2
⋃

C1) (3.3)

Figure 3.1: Five different experts annotation from four different cancer images.

Full Image Approach: Each image j, ( j = 1, ...,100) is mapped to an average vector #»r ( j)∈
IR64 composed of nIP (nIP = number of IP in image j) individual SURF feature vectors

#»

f ( j,k)∈
IR64;k = 1, ..,nIP (Fig. 3.2, top):

#»r ( j) =
1

nIP
.

nIP

∑
k=1

#»

f ( j,k) (3.4)

Masked Image Approach: The process applied to full images is similarly applied to the

segmented areas labelled with class codes C0, C1, C2, respectively. Each region is compressed

to a mean feature vector, normalized by the number of selected SURF interest points nIP(i) of
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the corresponding region. Consequently, each image j ( j = 1, ...,50) belonging to the cancer

subset is mapped to three feature vectors #»r (i, j),(i = 0,1,2) (Fig. 3.2, bottom):

#»r ( j, i) =
1

nIP(i)
.

nIP(i)

∑
k=1

#»

f ( j,k, i), i = 0, ...,2 (3.5)

Database 

feat1 

feat2 

. 

. 

. 

feat64 

feat1 

feat2 

. 

. 

. 

featnd 

Full Images 

Average Feature 

Vector 

Feature 

Dimension 

Reduction 

feat1 

feat2 

. 

. 

. 

feat64 

feat1 

feat2 

. 

. 

. 

feat64 

feat1 

feat2 

. 

. 

. 

feat64 

Masked Regions 

Average 

Feature 

Vectors 

Figure 3.2: Mapping full images and masked areas to feature vectors.

3.2.4 Classification

A SVM classifier was selected to discriminate between C0 and C2 type epithelium. The

classification steps were performed in two different ways. In the first approach, SVM training

as well as testing was performed using averaged features obtained from the full images. In

the second approach, SVM training and test runs worked on average feature vectors of masked

image regions. In both cases the conventional LOPO-CV was applied.

3.3 Results

According to the number of patients in the database, 39 computations were performed for

each approach. The results are shown in Tab. 3.1. It should be clear that leaving out a certain

patient from the training set implies that all available images from this patient are removed from

the training set.
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Figure 3.3: SVM hyperplanes separating classes C0 and C2 in a fictitious three-dimensional feature
space. Points displayed in Figs (a), (b) and (c) indicate average feature vectors extracted from
masked C0 and C2 regions, (d) and (e) refer to mean SURF features assessed from full images.
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In order to comprehend the results summarized in Tab. 3.1, we consider a feature space

spanned by only three variables. Let two features reflect specific properties of the masked non-

cancerous regions (C0), and a single feature being indicative for masked cancerous regions (C2).

Presuming adequate separability of C0 and C2 points (cf. Fig. 3.3a, b) the SVM hyperplane

might be positioned as shown in Fig. 3.3c. A high predictive accuracy of the classifier is

expected if the test data are also supplied from masked image regions. SURF feature vectors

calculated from full images will of course be located in other regions of the feature space (cf.

Fig. 3.3d, e), resulting in an essentially different SVM hyperplane. Moreover, test vectors

scatter considerably due to non-distinctive features contained in the full images. Note that

hyperplanes generated from masked regions will definitely not cope with test features obtained

from full images, and vice versa. The considerations given above are confirmed and documented

in Tab. 3.1. Sensitivity and specificity mean value lies above 75% for full image classification,

and exceed 90% for masked image classification.

TrainingSets TestSets Sensitivity Specificity
Full Images Full Images 0.78 (σ = 0.37) 0.82 (σ = 0.33)

Masked Regions
C0, C1, C2

Masked Regions
C0, C1, C2

0.90 (σ = 0.17) 0.95 (σ = 0.18)

Masked Regions
C0, C1, C2

Masked Regions
C2

0.91 (σ = 0.24) 0

Masked Regions
C0, C1, C2

Masked Regions
C0

0 0.95 (σ = 0.18)

Table 3.1: Classification results (mean and standard deviation) referring to full images and masked
regions.
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3.4 Discussion and Conclusions

The presented CAD system is a promising approach to evaluate various types and stages

of epithelial lesions in patients suffering from Barrett’s esophagus. The method uses SURF to

exploit hidden structural patterns embedded in endoscopy images. This technique was applied

to full images as well as to masked image regions which provide a gold standard for the identi-

fication of malignant lesions, proposing progress in the application area of the use of machine

learning employed in the medical problems solution. Both approaches require a reference data-

base comprising endoscopy images from patients with non-cancerous (C0) and cancerous (C2)

linings in the esophagus. In order to develop a classifier with high predictive accuracy, an SVM

was trained with a sufficiently large subset of the original endoscopy images. The CAD per-

formance can be improved if the SURF and SVM algorithms operate on delineated (masked)

tissue regions. The geometric boundaries separating malignant parts of the mucosa from early

dysplastic stages must be provided by clinical experts. Note that the SVM classifier should be

trained, validated and tested based on instances from the same set, i.e. either utilizing features

from the full image set or from the set of masked regions, respectively. The masked tissue re-

gions were used in order to improve the ’blind’ results, once the masked images can be used as

a tool in a future totally validated and implemented systems, for the experts help in the lesion

area defintion.

The diagnostic accuracy of the designed system expressed by sensitivity and specificity va-

lues is high. As expected, the results of the first approach (full images) are somewhat lower than

those of the second approach (masked) with 0.78 and 0.82 versus 0.90 and 0.95 for sensitivity

and specificity, respectively. It might be argued that using masked regions as test instances is

a means to “fake"the SVM performance, because the delineation of malignant tissue regions

anticipates the actual SVM classification. However, testing the final SVM with masked area

features is twofold legitimate: 1st in order to validate the ultimate classifier on a higher level (as

compared with simple LOPO-CV), and 2nd to rate attempts of a yet unexperienced clinician (or

even an experienced one) to circumscribe a cancerous tissue area. Motivated by the convincing

results of the present study, a further analysis will focus on the fusion of textural features [Palm

2004] and SURF features.

3.5 Chapter’s Considerations

The human knowledge concerning cancerous regions within BE, translated into some di-

gital description, presents the trivial observation of how to define, based on interpretation, the
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correct injured area. It is imperative to understand if such visual observation presents the same

impact in the computational representation of such a context.

Some image processing techniques may be employed to represent human insights, the first

way of observing cancer. In this study, the use of SURF to describe experts’ knowledge regar-

ding the definition of cancerous tissues has shown promising results and important significance

for progressing the study of defining optimal techniques in the automatic detection of cancer

BE-diagnosed patients.

First, the regions described by SURF technique provide high-aggregated information from

the maxima’s seeking performed using Hessian’s determinant. This point is corroborated by

Table 3.1 and highlights that cancerous samples represented by the experts’ delineations could

deliver the best results of SURF description and SVM classification.

Then, in another approach conducted by this study, when SURF features were calculated

from positive-to-cancer images, a misunderstanding led to the composition of the final descrip-

tor, combining information from cancerous regions (experts’ annotations) and non-cancerous

regions, the remaining parts of the same image. It is important to point out that SUFT auto-

matically detects its key points, and from this manuscript, both cancerous and only-BE regions

present a strong impact to elect key points. Hence, the classification of such descriptors be-

comes a hard task, considering the inter-combination of features from both classes we aim to

differentiate, as Figure 3.3 illustrates.

Finally, not only could we observe a satisfactory performance of SURF for describing the

regions, but also interesting achievements in the use of SVM for classifying samples from both

BE and adenocarcinoma classes (Figure 3.3). Again, the human knowledge inserted into com-

putation methods can somehow enhance the correct-and-automatic definition of cancer, but its

spatial requirements in the automatic key-point definition may present some constraints to be

deeply evaluated for further works of the same context. To reinforce the achievements of this

work, the next Chapter evaluated more object detector techniques and classifiers, aiming to cor-

roborate the importance of experts’ insights in the correct definition of adenocarcinoma in BE

patients.



Chapter 4
BARRETT’S ESOPHAGUS IDENTIFICATION USING

OPTIMUM-PATH FOREST

This chapter presents the introduction of the OPF classifier to Barrett’s esophagus and ade-

nocarcinoma context evaluation published in the 30th Conference on Graphics, Patterns and

Images (SIBGRAPI’17) [Souza Jr. et al. 2017]. Considering the very first use of the OPF clas-

sifier for such context, the SVM was also used to evaluate visual-word-based features calculated

using the SURF and SIFT techniques in an HD-endoscopic database of the low esophagus.

4.1 Introduction

The incidence of adenocarcinoma in patients affected by BE has increased significantly

in western populations, explained mainly by the obesity, a well-known risk factor [Lagergren

e Lagergren 2010, Dent 2011, Lepage, Rachet e Jooste 2008]. As such, the expectation of

this disease to rise up in the next years must be considered. Additionally, the bad prognosis

for patients that have esophageal adenocarcinoma is related to its late diagnosis. However,

the prognosis of the disease can be largely improved through early identification and surgical

treatment, thus achieving very successful rates of handling the disease with 93% of the patients

having complete remission after 10 years [Dent 2011, Sharma et al. 2016, Phoa et al. 2016].

Developments in interventional therapies, such as photodynamic therapy, cryotherapy and

radio-frequency ablation, showed promising results concerning the treatment of Barrett’s esopha-

gus. However, most of such methods are not able to describe properly the disease’s level [Shaheen

et al. 2009, Johnston et al. 2005,Overholt, Panjehpour e Halberg 2003]. Once the identification

of the BE is needed for the further evaluation of its region of interest by any computer or phy-

sician, some studies have focused on the definition of the area affected by the disease using the
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tissue properties in order to define a pattern to be followed.

Sonmmen et al. [van der Sommen et al. 2014] presented a novel algorithm that computes

local color and texture features based on the original and on the Gabor-filtered image for the

automatic detection of early cancerous tissue in high defintion endoscopic images. Appropriate

filters based on spectral characteristics of the cancerous regions were designed, and the extrac-

ted features are classified by a trained SVM classifier after which additional post-processing

techniques are applied in order to annotate the image region containing early cancer. For seven

evaluated patients, the experiments compared thirty two annotations made by the algorithm with

the corresponding delineations made by an gastroenterologist expert. From 38 lesions indicated

independently by the gastroenterologist, the system detected correctly thirty six of those lesions

with a recall of 0.95 and a precision of 0.75.

Souza Jr. et al. [Souza Jr. et al. 2017] conducted a study to test the feasibility of ade-

nocarcima classification in endoscopic images. A database composed of 100 expert annotated

endoscopic images were used for the SURF features extraction, and the SVM classification

using the leave-one patient out protocol for training and test. Two classes composed the pro-

blem: C0, from the non-cancerous annotated images, and C2, from the cancerous annotated

images. Two approaches for feature extraction and classification were carried out: using the

full images and using the expert annotated regions of the adenocarcinoma. The achieved mean

results for the full images approach were 0.77 sensitivity and 0.82 specificity. For the regions

approach, the results were 0.896 sensivity and 0.951 specificity.

Considering the growth of studies in whitch BE and adenocarcinoma evaluation is per-

formed by means of machine learning techniques, the main contribution of this paper is the

application of the OPF classifier for this problem, providing a novel BE and adenocarcinoma

assessment and classification, and making possible the comparison between this approach and

others already proposed. Once the BE and adenocarcinoma evaluation using CAD systems

and computational techniques shows a brand new research area with not too much studies car-

ried out, this work presents an important contribution for the endoscopic image processing and

computational evaluation of this context.

Papa et al. [Papa et al. 2008] carried out a study for the laryngeal cancer detection using

the OPF and SVM classifiers applied to three different public database. the classifiers were

evaluated in terms of accuracy and execution time. Using sixteen-sized feature descriptors, a

novel supervised classification approach was applied for the problem, once this classifier does

not takes account a possible separability of the classes to perform its training and classification

phases. The OPF creates an optimum path forest rooted by the prototypes, where the decision
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boundaries are obtained by the influence zones of the most representative samples of the training

set (prototypes). The samples that fall in the influence region of a prototype will be classified

with its label. OPF is three or four times faster than SVM, and in this case, OPF was much

faster than SVM, considering that parameters optimization was applied for this last classifier.

The OPF classifier outperformed SVM in two databases with respect to the accuracy rates and

were faster in all experiments realized. The execution time of a classifier must be considered

for this kind of application, due to the large amount of exams that need to be performed in the

hospitals and clinics.

4.2 Barrett’s Esophagus

The condition in which columnar cells replace the usual squamous cell in the mucosa of

the esophagus is known as Barrett’s esophagus. This condition is recognized as a complication

of gastroesophageal reflux disease, and in some critical stage, it can progress and evolve into

esophageal cancer [Hopkins 2008, Sharma et al. 2016, Dent 2011].

Squamous cells similar to those of the skin or mouth compose the mucosa of the normal

esophagus. The normal squamous mucosal surface appears whitish-pink in color, while the

gastric mucosa appearance goes sharply from salmon pink to red, composed of columnar cells

[Sharma et al. 2016, Dent 2011]. A demarcation line, the squamocolumnar (SC) junction or

"Z-line", represents the normal esophagogastric junction where the squamous mucosa of the

esophagus and columnar mucosa of the stomach meet [Hopkins 2008]. Barrett’s mucosa may

extend upward in a continuous pattern in which the entire circumference of the distal esophagus

is covered by columnar mucosa. A distinction is drawn among patients with more than 3 cm

of Barrett’s esophagus ("long-segment Barrett’s esophagus") and those with less than 3 cm

of Barrett’s esophagus ("short-segment Barrett’s esophagus" [Hopkins 2008]. The esophageal

mucosa of patients with suspected BE is carefully examined for the presence of any visible

lesions, which are then characterized by the Paris classification [Fujishiro et al. 2006]. Three

Targeted biopsies are obtained from the areas of visible lesions.

Multiple endoscopic image enhancement technologies, such as chromoendoscopy, electro-

nic image enhancement (narrow band imaging, flexible spectral imaging color enhancement, i-

Scan), confocal laser endomicroscopy, and optical coherence tomography, have been developed

for BE use, which may enable endoscopists to conduct a more accurate endoscopic assessment

of the diplasia with in vivo characterization of esophageal histology. This ability could result in

improvements in detection of BE (screening), detection of dysplasia based on BE surveillance,
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characterizing abnormalities within BE (selecting lesions and delineating margins during endos-

copic therapy), and detection of recurrent neoplasia in patients who have received endoscopic

therapy (post-treatment surveillance) [Sharma et al. 2015].

BE is often misdiagnosed during endoscopy and this can be attributed to 1 of 2 reasons: (1)

inability to differentiate columnar mucosa of the proximal stomach (cardia) from metaplastic

epithelium in the distal esophagus or (2) lack of goblet cells in biopsies obtained from columnar

lined epithelium in the esophagus. Areas of dysplasia or early cancer in BE are sometimes not

visible with standard white-light endoscopy. Hence, the Seattle biopsy protocol is recommen-

ded in which 4-quadrant biopsies are taken every 1 cm of the Barrett’s mucosa. However, this

biopsy protocol is prone to sampling error because only a small fraction of the entire BE mucosa

is sampled (especially in patients with extensive disease) [Sharma et al. 2015]. In addition, the

biopsy protocol can be costly and time-consuming (because of the number of biopsies submit-

ted to pathology) making endoscopists usually do not follow it for extensive biopsies, and when

it is not followed, there is a significant rise in the risk of missed dysplasia or cancer [Abrams

et al. 2009].

4.3 Optimum-Path Forest

In this section, we explain the OPF working mechanism. Although we have different ver-

sions in the literature, we considered the first proposed one [Papa, Falcão e Suzuki 2009, Papa

et al. 2012]. Roughly speaking, the OPF classifier models the problem of pattern recognition

as a graph partition in a given feature space. The nodes are represented by the feature vectors

and the edges connect all pairs of them, defining a full connectedness graph. The partition of

the graph is performed through a competition process among some key samples (prototypes),

which offer optimum paths to the remaining nodes of the graph. Each prototype sample defi-

nes its own optimum-path tree (OPT), and the collection of all OPTs defines an optimum-path

forest, which gives the name to the classifier.

Let Z = Z1 ∪Z2 be a dataset labeled with a function λ , in which Z1 and Z2 stand for

the training and test sets, respectively, such that Z1 is used to train a given classifier and Z2

is used to assess its accuracy. Let S ⊆ Z1 a set of prototype samples. Essentially, the OPF

classifier creates a discrete optimal partition of the feature space such that any sample s ∈ Z2

can be classified according to this partition.

The OPF algorithm may be used with any smooth path-cost function which can group sam-

ples with similar properties [Falcão, Stolfi e Lotufo 2004]. Papa et al. [Papa, Falcão e Suzuki
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2009, Papa et al. 2012] employed the path-cost function fmax, which is computed as follows:

fmax(〈s〉) =

{

0 if s ∈S ,

+∞ otherwise

fmax(π · 〈s, t〉) = max{ fmax(π),d(s, t)}, (4.1)

in which d(s, t) denotes the distance between samples s and t, and a path π is defined as a

sequence of adjacent samples. As such, we have that fmax(π) computes the maximum distance

among adjacent samples in π , when π is not a trivial path.

The OPF algorithm assigns one optimum path P∗(s) from S to every sample s ∈ Z1,

forming an optimum path forest P (a function with no cycles that assigns to each s ∈ Z1\S
its predecessor P(s) in P∗(s) or a marker nil when s ∈S . Let R(s) ∈S be the root of P∗(s)

that can be reached from P(s). The OPF algorithm computes for each s ∈Z1, the cost C(s) of

P∗(s), the label L(s) = λ (R(s)), and the predecessor P(s).

4.3.1 Training

In the training phase, the OPF algorithm aims to find the set S ∗, that is the optimum set of

prototypes, by minimizing the classification errors for every s ∈Z1 through the exploitation of

the theoretical relation between minimum-spanning tree (MST) and optimum-path tree (OPT)

for fmax [Allène et al. 2010]. The training essentially consists in finding S ∗ from Z1 and an

OPF classifier rooted at S ∗.

By computing an MST, we obtain a connected acyclic graph whose nodes are all samples of

Z1 and the arcs are undirected and weighted by the distances d between adjacent samples. The

spanning tree is optimum in the sense that the sum of its arc weights is minimum as compared to

any other spanning tree in the complete graph. In the MST, every pair of samples is connected

by a single path which is optimum according to fmax. That is, the minimum-spanning tree

contains one optimum-path tree for any selected root node.

The optimum prototypes are the closest elements of the MST with different labels in Z1

(i.e., elements that fall in the frontier of the classes). After finding prototypes, we run the

competition process in order to build the optimum-path forest.

4.3.2 Testing

For any sample t ∈ Z2, we consider all arcs connecting t with samples s ∈ Z1, as though

t were part of the training graph. Considering all possible paths from S ∗ to t, we find the
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optimum path P∗(t) from S ∗ and label t with the class λ (R(t)) of its most strongly connected

prototype R(t) ∈S ∗. This path can be identified incrementally by evaluating the optimum cost

C(t) as

C(t) = min{max{C(s),d(s, t)}}, ∀s ∈Z1. (4.2)

Let the node s∗ ∈Z1 be the one that satisfies Equation 4.2 (i.e., the predecessor P(t) in the

optimum path P∗(t)). Given that L(s∗) = λ (R(t)), the classification simply assigns L(s∗) as the

class of t. An error occurs when L(s∗) 6= λ (t).

4.4 Materials and Methods

This section demonstrates the steps to develop a computerized system for the detection, de-

lineation and characterization of endoscopic images obtained from individuals with clinically

manifest tissue abnormalities in the esophagus. Based on a given set of endoscopic photo-

graphs (benchmark database), SURF and SIFT descriptors are utilized for a Bag of Visual

Words (BoVW) construction of descriptors used in the training and validation of SVM and

OPF classifiers.

4.4.1 Image Database

The set of images used as benchmark database was provided at the MICCAI 2015 Endo-

Vis Challenge [MICCAI 2015: 18th International Conference 2015]. It is composed of 100

endoscopic pictures of the lower esophagus, captured from 39 individuals, 17 of them being

diagnosed with early stage Barrett’s, and 22 displaying signs of esophageal adenocarcinoma.

From each proband several endoscopic images were available, ranging from one to a maximum

of eight. The database contained a total of 50 images displaying cancerous tissue areas (C2

labeled images), plus 50 images showing dysplasia without signs of cancer (C0 labeled ima-

ges). Suspicious lesions observed in the C2 images had been delineated individually by five

endoscopy experts. Some of the expert’s demarcations in identical images exhibited substantial

regional deviations.

4.4.2 SURF

The SURF algorithm [Bay et al. 2008] operates on integral images to detect dominant

structures and their spatial orientation. To ensure scale and spatial invariance the SURF seeks

for maxima of the determinant of Hessian, demarcating specific key-points in the image [Bay et
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al. 2008], which are further explored in their local neighborhood. These sub-regions are evenly

split into square patches while their wavelet responses in horizontal and vertical directions ge-

nerate the elements of a high-dimensional feature vector of size 64.

4.4.3 SIFT

The SIFT algorithm [Lowe 2004] operates on image local regions aiming to calculate fe-

atures that are invariant to image scaling and rotation, and partially invariant to change in il-

lumination and 3D camera viewpoint. First, the algorithm seeks for the scale-space extrema

detection, evaluating all the image scales and regions using difference-of-Gaussian function to

provide the potential image regions that are invariant to scale and orientation. The keypoint

localization is performed based on the candidate regions previously defined and measures of

its stability. The final steps of SIFT algorithm are related to the orientation definition of the

keypoints by the calculation of the gradient directions, and the keypoint descriptor calculation

based on gradients measurement at the selected scale in the region around the keypoint [Lowe

2004]. These local descriptors are transformed into a global high-dimensional feature vector of

size 128 that allows invariability for significant levels of local shape distortion and change in

illumination.

4.4.4 Interest Points

Interest point (IP) acquisition was performed with the SURF and SIFT algorithms using the

OpenCV support package. The assessment of suitable IPs was based on two major approaches,

one using SURF features and other using SIFT features. Both approaches simulated "real life

situations"lacking detailed information about tissue abnormalities. The analysis worked on the

original full images. Two attributes were defined for the SVM and OPF training process: Class

0 images (C0, non-cancerous but with possible signs of early dysplasia), and class 2 images

(C2, exhibiting cancerous tissue regions).

Figure 4.1: Five different experts annotation from four different cancer images.
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4.4.5 Bag of Visual Words

BoVW constitutes a robust representation approach in which each image is treated as a

collection of regions. For this representation, the only information cared about is the appearance

of each region [4]. The objective when visual dictionary is created is to learn, from a training

set of examples, the generative model that selects the k more representative regions for a given

problem. These regions create a k-dimensional Hilbert space H , in which each region is now

represented by a visual word [Afonso et al. 2012]. For that, the original input image regions

are mapped from the original space φ to a Hilbert space H represented by the calculated visual

words. Therefore, BoVW uses the IPs from a set of reference images in order to generate a

visual dictionary that is employed in the training and testing phases.

The reference descriptors for this work were extracted by using the SURF and SIFT methods,

explained in the previous subsections. It is important to register that the number of IPs varies

for each image and just a few of the total are selected to generate the visual dictionary. The

IPs selections, for this work, is performed using Random selection and K-means. Once the

visual dictionary is generated, a feature vector is created for each image by computing the fre-

quency of each visual word in the image, and the feature vectors of all the images have the same

dimension [Afonso et al. 2012].

In other words, at the end of the feature vector construction phase, will be obtained six

different descriptors for both methods, SURF and SIFT: one of 100 words calculated with and

one of 100 calculated using Random selection, one of 500 words calculated with K-means and

one of 500 words calculated with Random selection, and finally, one of 1000 words calculated

with K-menns and one of 1000 words calculated using Random selection. Thereby, twelve cases

will compose the experimentation of this work. The IPs and BoVW descriptors acquisition are

illustrated in Figure 4.2.

4.4.6 Classification

Two different classifiers were selected to perform experiments aiming to discriminate between

C0 and C2 type epithelium: SVM and OPF. So for each classification case, the steps were com-

posed by the use of the BoVW descriptors, selecting a percentage of instances for training and

other for testing, in a cross validation protocol. All the 100, 500 and 1000 word descriptors,

from SURF and SIFT IPs, were used in separated experiments.
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Figure 4.2: BoVW Descriptors calculations based on SURF and SIFT IPs features.

4.5 Results

The results of both approaches are shown in Tables 4.1 and 4.2. The data were generated

from 20 computations performed for each experiment approach, using randomly selected trai-

ning and test candidates. For each experiment, considering a BoVW descriptor and a classifier,

were considered for the training and test sets: 80% and 20% of instances respectively. Black

values mean the Wilcoxon positive correlation between the best accuracy value and the other

accuracy values for each dictionary size (Wilcoxon comparisons performed for accuracy values

from the same feature extraction approach).

For the OPF classification approach using SURF features, sensitivity and specificity values

lied about 0.71 and 0.75 in the K-means BoVW descriptor and 0.67 and 0.71 in the Random

selection BoVW descriptor. For SIFT features, sensitivity and specificity values lied above

0.72 and 0.78 using K-means words, and 0.66 and 0.0.69 in the random selection descriptor

approach.

For the SVM RBF classification approach using SURF features, sensitivity and specificity

values lied about 0.64 and 0.68 in the K-means BoVW descriptor and 0.63 and 0.66 in the

Random selection BoVW descriptor. For SIFT features, sensitivity and specificity values lied

above 0.65 and 0.68 using K-means words, and 0.65 and 0.68 in the random selection descriptor

approach.

For the SVM Linear classification approach using SURF features, sensitivity and specificity
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Table 4.1: Sensitivity (SE), Specificity (SP) and Accuracy (AC) results using SURF Features and
100, 500 and 1000 words

Dictionary 100 500 1000
SE SP AC SE SP AC SE SP AC

K-means
OPF 0.698 0.711 0.700 0.732 0.7823 0.738 0.714 0.777 0.7361
RBF 0.644 0.704 0.636 0.657 0.692 0.648 0.639 0.665 0.626

Linear 0.614 0.672 0.620 0.582 0.593 0.586 0.608 0.627 0.628

Random
OPF 0.688 0.739 0.697 0.692 0.718 0.702 0.664 0.695 0.661
RBF 0.615 0.656 0.610 0.651 0.678 0.634 0.629 0.657 0.621

Linear 0.548 0.590 0.517 0.591 0.631 0.576 0.586 0.627 0.565

values lied about 0.61 and 0.64 in the K-means BoVW descriptor and 0.0.58 and 0.0.62 in

the Random selection BoVW descriptor. For SIFT features, sensitivity and specificity values

lied above 0.0.57 and 0.56 using K-means words, and 0.54 and 0.56 in the random selection

descriptor approach.

Table 4.2: Sensitivity (SE), Specificity (SP) and Accuracy (AC) results using SIFT Features and
100, 500 and 1000 words

Dictionary 100 500 1000
SE SP AC SE SP AC SE SP AC

K-means
OPF 0.705 0.773 0.683 0.735 0.806 0.723 0.727 0.761 0.714
RBF 0.645 0.658 0.641 0.672 0.706 0.655 0.642 0.686 0.641

Linear 0.552 0.572 0.552 0.577 0.631 0.568 0.583 0.617 0.673

Random
OPF 0.644 0.663 0.664 0.673 0.713 0.707 0.642 0.662 0.712
RBF 0.651 0.672 0.621 0.666 0.694 0.656 0.649 0.678 0.637

Linear 0.545 0.566 0.532 0.548 0.572 0.545 0.544 0.553 0.527

4.6 Conclusion

The presented CAD system is a promising approach to evaluate various types and stages

of dysplasia in patients suffering from Barrett’s esophagus. The method uses SURF and SIFT

to exploit hidden structural patterns in endoscopy images. This technique was applied to full

images annotated by five experts, providing a gold standard for the identification of malignant

lesions, proposing progress in the application area of the use of machine learning employed in

the medical problems solution. The approach require a reference database comprising endos-

copy images from patients with non-cancerous (C0) and cancerous (C2) linings in the esopha-

gus. In order to develop classifiers with high predictive accuracy, SVM and OPF were trained
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with a sufficiently large subset of the original endoscopy images, and the results of both were

compared. The CAD performance showed better results using the OPF classifier for both SURF

and SIFT features. The geometric boundaries separating malignant parts of the mucosa from

early dysplastic stages must be provided by clinical experts.

Analysing the achieved sensitivity, specificity and accuracy results, can be concluded that

the OPF classifier operating on the BoVW approach can provide more efficient results, impro-

ving the results achieved using the SVM classifier for this problem. The experiments can be

extended using the annotated adenocarcinoma regions made by experts on the images for the

BoVW dictionary calculation. This approach can present some other vision of the problem, in

which the features generalizing power can be tested.

4.7 Chapter’s Considerations

The introduction of new object detector techniques and classifiers was the main contribution

this paper aimed to deliver. In addition to SURF features evaluated in Chapter 3, such a study

introduced a new technique based on the evaluation of maxima through the space-scale called

SIFT, combined not only with SVM but also with OPF classifier.

Considering from Chapter 3 that human knowledge might be strongly correlated to the

correct classification of cancerous tissues, in this study, a BoVW technique was employed to

describe the features as region representations of key points using unsupervised methods of clas-

sification. Then, from all the possible features during the training step, the most representative

ones are selected, here called prototypes, to describe the feature positioning behavior. Further,

a feature vector is calculated for each sample based on its relative position to the most discrimi-

native features, the key points. This way, the number of representative features for each image

could be standardized, also ensuring that spatial localization will impact the feature selection.

From the results, we could observe improvements in the evaluation of full images, as previ-

ously cited, aggregates the problem of cancerous and non-cancerous regions at the same image.

SURF method was also evaluated using OPF classifier, and so far, such description technique

and such classifier, combined, showed up to be the best design in the correct classification

of cancerous tissue in BE full-images. This highlights the powerful maxima seeking SURF

performs, but the scale operation performed by SIFT deserves attention, providing a high-

dimensional feature vector that could perform really close to the ones obtained using SURF

descriptors. Probably, due to this high-dimensional nature (double of SURF descriptor size),

more information could be represented, but not being specifically discriminative for such a
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context evaluation when combined with K-means or Random BoVWs. Finally, OPF classifier

shows important generalization for BE context, probably due to its graph representation of fe-

atures and classes that allied to unsupervised feature representation of BoVW, could strongly

organize the classes compared to SVM and Bayes classifiers assessed during the experimental

step.

Moreover, there are many object detection techniques to be evaluated, as SIFT was in this

manuscript. However, classifiers or descriptors must be evaluated and their clear relation to the

experts’ delineation of cancer in BE-diagnosed samples. Hence, to progress with such a task,

in the next Chapters, we started to evaluate not only new description techniques but also the

relation of key-point position and experts’ insights of cancer and non-cancer, to establish a clear

meaning for the automatic information definition in the classification process our classifiers

perform.



Chapter 5
BARRETT’S ESOPHAGUS ANALYSIS USING

COLOR CO-OCCURRENCE MATRICES

The idea developed in Chapter 5 is related to the application of color co-occurrence matrices

to the evaluation and more specific distinction between adenocarcinoma and Barrett’s esophagus

tissues. It was used for evaluation two different endoscopic databases of the lower esophagus

in three approaches of image preprocessing. This work was published in the 31st Conference

on Graphics, Patterns, and Images [Souza Jr. et al. 2018].

5.1 Introduction

The incidence of BE and Barrett’s adenocarcinoma in the west of the globe have risen sig-

nificantly in the past decade. Because of their close association with the metabolic syndrome,

this trend is expected to continue rising in the next years [Lagergren e Lagergren 2010, Dent

2011, Lepage, Rachet e Jooste 2008]. The early diagnosis of EAC is critical for the diseases’

remission and justifies the necessity of efficient surveillance, detection and characterization.

However, the detection of dysplastic regions and their characterization of abnormalities within

BE-diagnosed patients can be challenging, especially for endoscopists presenting lack of expe-

rience for the evaluation. Even considering the dangerousness of the disease, when detected at

the early stages, the injured tissue can be treated with very high rates of remission (93% after

10 years of treatment) [Dent 2011, Sharma et al. 2016, Phoa et al. 2016].

The computer-aided analysis of BE may be one powerful instrument and has been subject

of intensive research in the past years [Souza Jr. et al. 2018]. Up to now, mainly handcrafted

features of endoscopic images based on texture and color were extracted and classified subse-

quently. For instance, Van der Sommen [van der Sommen et al. 2016] designed a system for the
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automatic extraction of features for detecting and delineating early neoplastic tissue regions in

patients diagnosed with BE, followed by some other relevant studies in the same field [Hassan e

Haque 2015,Souza Jr. et al. 2017,Mendel et al. 2017] that aimed to assess the feasibility of ade-

nocarcinoma classification in endoscopic images of BE diagnosed patients. Souza et al. [Souza

Jr. et al. 2017] also conducted a study introducing two approaches to distinguish between BE

and adenocarcinoma: (i) the Optimum-Path Forest (OPF) [Papa, Falcão e Suzuki 2009, Papa

et al. 2012] classifier; and (ii) the use of Bag-of-Visual-Words [Csurka et al. 2004, Peng et

al. 2016] using points-of-interest extracted from endoscopic images using Speed-Up Robust

Features [Bay et al. 2008] and Scale Invariant Feature Transform [Lowe 2004] techniques for

the feature vector calculation [Souza Jr. et al. 2017].

There are, in addition, some image processing techniques that can describe the image in

different ways, providing feature vectors based on color or texture of the injured region. One of

these techniques is the Co-occurrence Matrix (CM), which usually employs gray-scale images

to encode texture information. However, there are some new approaches considering the influ-

ence of both color and texture for the CM calculation that can provide different descriptions for

the BE and adenocarcinoma context [Palm 2004].

Considering the growth of studies in which BE and adenocarcinoma evaluation is performed

by means of machine learning and image processing techniques, the main contribution of this

paper is the evaluation of Color Co-occurrence Matrices for the description of the dysplastic

tissue in BE diagnosed patients. Such assessment provides a novel BE and adenocarcinoma

identification approach in which color and texture information can be combined to improve the

classification results. Some previous works already evaluated the impact of color and texture

information independently for the BE and adenocarcinoma description [van der Sommen et al.

2016, Almond e Barr 2012, Souza Jr. et al. 2017], showing promising results. However, the use

of both phenomena in a single descriptor has been poorly studied in this context.

The remainder of this paper is organized as follows: Section II presents a brief background

about color and texture combination using Co-occurrence Matrices. Section III discusses the

methodology employed in this work, and Section IV presents the experimental results. Finally,

Section V states discussions and future works.
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5.2 Theoretical Background

5.2.1 Color and texture combination

The “parallel concept" [Palm 2004] for color and texture analysis considers both pheno-

mena for data description separated. While color is measured globally by means of histogram

calculation, the texture is characterized by the relationship of the intensities of neighboring

pixels ignoring their color. The processing of both information, i.e., color and texture, is perfor-

med independently, being combined subsequently to compose a final feature vector (Figure 5.1,

(a)). The parallel approach can present advantages; however, the view on texture as a structure

purely based on intensity is simplified.

The “sequential concept" [Palm 2004] uses color analysis as a first means, in which the

pattern is composed of segmented color primitives obtained by clustering the color histogram.

Some previous works showed how useful the sequential approach could be for some tasks,

such as industrial quality control and defect detection in granite images [Hauta-Kasari et al.

1999,Song, Kittler e Petrou 1996]. However, the concept of colored texture primitives may not

provide generalization support (Figure 5.1, (b)).

In the “integrative concept" [Palm 2004], the information dependency between both color

and texture is taken into account for feature extraction purposes. There are two strategies for the

integrative color-texture combination: single- and multi-channel (Figure 5.1, (c)). The single-

channel method analyses the gray-scale texture on each color channel separately, providing

a subtle use for color information restricting the intensity pattern to the wavelength interval

associated with that color channel [Palm 2004]. The single channel approach is suitable for

methods based on the gray-scale domain. These concepts have been proposed for well-known

textural feature description, such as Wavelet-based [van de Wouwer et al. 1999], Gabor filters

[Jain e Healey 1998, Palm e Lehmann 2002, Paschos 2001] and Markov Random Fields [Suen

e Healey 1999], showing very promising results through the years.

5.2.2 Gray-scale and Single-Channel Co-occurrence Matrices

Co-occurrence Matrices (CM) are defined as the relationship between the values of a

central pixel p and its neighboring η(p) [Haralick, Shanmugam e Dinstein 1973]. Given a

gray-scale image I, a pixel p contains two information: its value I(p) ∈ [0,255] and its position

p = (m,n), such that m,n ∈ N.

Let ηp be the neighborhood of p such that p∗ ∈ ηp when d(p, p∗) ≤ D, in which d(p, p∗)
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Figure 5.1: Color and texture concepts: (a) parallel concept for color texture analysis; (b) se-
quential concept for color texture analysis and (c) integrative single-channel color texture analysis
(adapted from [Palm 2004]).

stands for the polar distance between p and p⋆. Let Cd be a co-occurrence matrix defined over

distance d such that each element is computed as follows:

Cd
i, j = P(I(p) = i∧ I(p∗) = j), (5.1)
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such that p∗ ∈ηp. In other words, Cd
i, j encodes the probability P of transition between brightness

values from i to j. Additionally, it is well known that one must compute one co-occurrence

matrix for each orientation angle.

Since Cd is symmetric for each orientation angle according to d, Palm [Palm 2004] pro-

posed to combine the different co-occurrence matrices into a single one that encodes distinct

orientation angles. Also, eight Haralick features [Haralick, Shanmugam e Dinstein 1973] were

extracted (homogeneity, contrast, correlation, variance, inverse difference moment, entropy,

correlation I, correlation II) and distributed over the four feature groups proposed by Gotlieb

and Kreyszig [Gotlieb e Kreyszig 1990].

Such approach allows the use of large values for D, which is basically the radius of a discrete

circle. Computing CMs for four different angles and constant radius D, one can obtain 8× 4

rotationally-dependent features. In order to be rotationally independent, we compute the mean

and variance of each Haralick feature, thus ending up with an 8×2 dimensional gray-scale CM

feature (GCF) space.

The Single-Channel Co-occurrence Matrices (SCMs) [Palm 2004] stand for the successi-

vely use of gray-scale CMs in each k color channel separately (for RGB system, k = 1,2,3).

Such matrices are computed using the very same Equation 5.1, but applied to each color chan-

nel. Thus, the corresponding rotational invariant single-channel Co-occurrence features (SCFs)

consist of K feature vectors SCFk presenting analogous behavior of GCF according to k. There-

fore, the evaluation becomes a k-dimensional problem, once each k color-channel will provide

a different descriptor to be analyzed. The advantage comes with the possibility of evaluation of

each color channel independently, analyzing its impact on the texture information composition

in a combined color and intensity texture information. The information profit by analyzing in-

tensity independent color textures is quite high, being a brand new way of evaluation for color-

and texture-based problems.

5.3 Methodology

In this section, we describe the datasets, pre-processing and feature extraction procedures,

classification techniques and approaches employed in this work.
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5.3.1 Datasets

5.3.1.1 MICCAI Dataset

The experiments were conducted using the dataset of BE-and adenocarcinoma-diagnosed

patients provided at the “MICCAI 2015 EndoVis Challenge"1. Such dataset is composed of

100 endoscopic images of the lower esophagus from 39 individuals, in which 22 present BE

and 17 present early-stage adenocarcinoma. For each patient, a different number of samples

was available (ranging from one to eight), with a total of 50 samples showing BE and cancerous

tissue areas and 50 images showing only BE without cancer. The injured tissue in cancerous

images has been delineated by five different endoscopy experts. Figure 5.2 shows some samples

and their respective delineation performed by the experts.

Figure 5.2: Four MICCAI database samples with their respective delineations provided by five
different experts.

5.3.1.2 Augsburg Dataset

A dataset provided by the Augsburg Klinikum, Medizinische Klinik III, was also used for

the experiments. Such dataset is composed of 76 endoscopic images (esophagus) obtained from

different patients with adenocarcinoma (34 samples) and BE (42 samples). The images were

annotated (manual segmentation of the adenocarcinoma’s and Barrett’s areas) by an expert from

the Augsburg Klinikum. The ground-truth diagnosis was validated by biopsy process. Some

Augsburg dataset samples can be observed in Figure 5.3.

5.3.2 Pre-processing

Concerning the pre-processing step, the images were split into patches to be used in diffe-

rent approaches for classification purposes. Considering that databases present different image

resolutions, the patch size was chosen in order to cover the entire image without overlapping.

1https://endovissub-barrett.grand-challenge.org/
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Figure 5.3: Four Augsburg database samples with their respective delineations provided by the
expert.

Regarding the MICCAI database, each image was split into 48 patches of 200× 200 pixels,

resulting in 4,800 non-overlapped patches for the whole database. The Augsburg database

images were split into 20 patches per image, with sizes of 270× 270 and resulting in 1,520

non-overlapped patches.

Additionally, it is important to notice that for the patch labeling process, the experts’ anno-

tations were considered for both datasets. Concerning the MICCAI database, the intersection

area of the five experts’ delineations was considered the correct adenocarcinoma region inclu-

ding the fuzzy delineation area (area of confusion among the delineations). Concerning patches

that cross this region, the numbers of cancerous and non-cancerous pixels were compared, being

the final label defined by the majority of pixels inside the patch. With respect to the Augsburg

data, we used the only delineated area available. Notice that an analogous procedure for labeling

patches was employed as well.

5.3.3 Feature Extraction

In order to consider a color-and-texture evaluation protocol for the automatic identification

of BE and adenocarcinoma, the integrative single-channel co-occurrence matrix was applied.

For each color channel, SCMs and Haralick features were computed and further used for lear-

ning purposes. Notice that the same set of features were extracted from the gray-scale images,

which were obtained using the mean pixel values of each channel.

The experimental protocol was composed of three distinct evaluations: (i) first, we conside-

red color and texture information from each channel separately, (ii) then the same set of features

(i.e., from each channel) were concatenated to produce a single feature vector, and (iii) the co-

lor and texture extraction techniques used previously were also considered for the gray-scale

images.

Since each color channel and gray-scale feature vector consist of 16 elements, the compo-

site descriptors (RGB) comprise 48 features (i.e., 3× 16). Further, the Principal Component
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Analysis (PCA) was applied to reduce the number of features to a 16-dimensional space using

the Single Value Decomposition and the covariance matrix approach for the largest eigenvalues

definition, thus ending up with the same single-channel descriptor dimension. For all approa-

ches, the SCMs were calculated with three different radii (i.e., 1, 5 and 10) to assess the impact

on their representation concerning the classification results.

5.3.4 Classification

After the feature extraction using the integrative single-channel co-occurrence matrices, the

descriptors from the databases were used as input to the following supervised learning techni-

ques:

• OPF: supervised classifier with complete graph proposed by Papa et al. [Papa, Falcão e

Suzuki 2009, Papa et al. 2012];

• SVM-RBF: Support Vector Machines with Radial Basis Function kernel and parameters

optimized by cross-validation [Chang e Lin 2011];

• Bayes: standard Bayesian classifier.

Regarding the OPF and SVM-RBF classifiers, we used the open-source libraries LibOPF [Papa

e Falcão] and LibSVM [Chang e Lin 2011], respectively. With respect to the Bayesian classifier,

we employed our own implementation.

5.3.5 Approaches

This work employs three different approaches for the database pre-processing and classi-

fication: patch-based, patient patch-based, and image-based approach. Regarding the patch-

based approach, 80% of all patches were randomly selected for training, while 20% of the

remaining ones were used for testing purposes, being such partitioning process employed for

20 runs for both databases. Therefore, the patch-based classification step was conducted to dis-

criminate between patches from BE and adenocarcinoma classes without taking into account

information about the patients. Concerning MICCAI dataset, 3,840 patches were randomly

selected for the training step and 960 patches were used for the testing set. With respect to the

Augsburg database, the training set was composed of 1,216 random patches, and the test set

was composed of the 304 remaining patches.
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Concerning the patient patch-based approach, the patient information was used for the patch

selection protocol. The available number of patches for this approach was the same available

for the previous one (patch-based approach), but the difference here was related to the protocol

applied to the definition of training and testing sets. In this experiment, we used the well-known

“leave-one-patient-out cross-validation" (LOPO-CV), i.e., n− 1 patients are used for training

and the remaining one is used to evaluate the model, where n stands for the number of patients.

This procedure is repeated until all patients have been evaluated.

Finally, the last experiment, i.e., image-based approach, uses the same 20-fold cross-validation

protocol applied to the first approach (i.e., patch-based) with 80% for training and 20% for tes-

ting purposes. However, the descriptors were now extracted from the full images. Notice that

the same protocol was applied to the Augsburg database. Figure 6.4 illustrates the approaches

mentioned above.

5.4 Experiments

In this section, we present the experiments used to evaluate the three proposed approaches.

The discrimination between positive and negative samples to adenocarcinoma was performed

using OPF, SVM-RBF and Bayesian classifier (hereinafter called “Bayes"). The results are

presented and discussed for each approach and database. All experiments were conducted on

an 8Gb-memory computer equipped with an Intel® Core i5 - 2.30 GHz processor. Additionally,

we employed our implementation of the SCM approach in C++ language.

In this work, we adopted the following sensitivity (S), specificity (P), accuracy (A), and F1

Score (F1) measures:

S =
T P

T P+FN
∗100, (5.2)

P =
T N

T N +FP
∗100, (5.3)

A =
T P+T N

T P+T N +FP+FN
∗100, (5.4)

and

F1 =
2 ·S ·P
S+P

, (5.5)

where T P and T N stand for the true positives and true negatives, respectively, and FN and FP

denote the false negatives and false positives, respectively.
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Figure 5.4: Approaches used in the experiments: (1) patch-based, (2) patient patch-based, and (3)
image-based approach.

Table 5.1 presents the average results regarding sensitivity, specificity, accuracy, and F1

score concerning the patch-based approach. Since we considered different values for the radius

used in SCM technique, column “Radius" contains the values that lead to the best results. With

respect to the Augsburg database, the best results were obtained using the OPF classifier in the

blue channel, with sensitivity, specificity, accuracy and F1 values of 66.6%, 75.6%, 70.2%,

and 70.8%, respectively. Concerning the SVM-RBF classifier, the best results were obtained on

the red channel, with values of 58.6% of sensitivity, 87.5% of specificity, 81.4% of accuracy,

and 70.2% of F1 score. The Bayesian classifier provided the best results in the red channel

features as well, with values of 58.1% for sensitivity, 83.5% of specificity, 75.3% of accuracy,
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and 68.5% of F1.

Since the F1 score presents a trade-off response between the sensitivity and specificity

values, the values in bold stand for the best approaches with respect to such measure. The

accuracy can be very dependent on the sensitivity/specificity values when we have a unbalanced

database. We observed that specificity always influenced considerably the accuracy values, once

the number of samples positive to cancer was usually lower when compared to the negative

examples.

Concerning the MICCAI database, OPF classifier provided the best results in the blue chan-

nel once again, with values of sensitivity, specificity, accuracy, and F1 equal to 72.6%, 77.2%,

76.6%, and 74.8%, respectively. The SVM-RBF classifier showed the best results in the blue

channel as well, with values of 63.9%, 76.7%, 70.1%, and 69.7% for sensitivity, specificity,

accuracy, and F1 score, respectively. The Bayes classifier obtained the best results in the PCA-

RGB features, with sensitivity, specificity, accuracy, and F1 values of 58.3%, 80.3%, 75.6%,

and 67.6%, respectively.

Table 5.2 presents the average results of sensitivity, specificity, and accuracy concerning the

patient patch-based approach. Regarding the Augsburg database, the best results considering

the F1 values were obtained using the OPF classifier in the blue channel, with sensitivity, speci-

ficity, accuracy and F1 values of 63.0%, 77.4%, 73.5%, and 69.5%, respectively. With respect

to the SVM-RBF classifier, the best results were obtained in the green channel, with values of

63.6% for sensitivity, 74.4% for specificity, 70.9% for accuracy, and 68.6% for F1. The Bayes

classifier provided reasonable results in the green channel as well, with values of 65.8% for

sensitivity, 70.5% for specificity, 69.1% for accuracy, and 68.1% for the F1 score.

Regarding MICCAI dataset, the OPF classifier provided the best results in the blue channel,

with values of sensitivity, specificity, accuracy and F1 Score equal to 71.6%, 72.9%, 72.3%,

and 72.2%, respectively. The SVM-RBF classifier obtained the best results using the PCA-RGB

features, with values of 61.9%, 79.5%, 75.4%, and 69.6% of sensitivity, specificity, accuracy

and F1, respectively. The Bayes classifier with the PCA-RGB features provided the best results

as well, with values of sensitivity, specificity, accuracy and F1 of 60.1%, 82.4%, 78.6%, and

69.1%, respectively.

Table 5.3 presents the average results of sensitivity, specificity, accuracy and F1 score con-

cerning the classification in the image-based protocol. Concerning the Augsburg dataset, the

best results were obtained using the OPF classifier in the red channel, with sensitivity, speci-

ficity, accuracy and F1 values of 63.5%, 66.2%, 64.5%, and 64.82%, respectively. Using the

SVM-RBF classifier, the best results were obtained using the PCA-RGB features, with values
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of 37.7% for sensitivity, 83.4% for specificity, 66.9% for accuracy and 51.93% for the F1 score.

The Bayes classifier obtained its best results with the PCA-RGB features as well, with values

of 55.5% for sensitivity, 77.6% for specificity, 62.7% for accuracy, and 64.72% for F1.

With respect to the MICCAI database, OPF classifier obtained the best results in the red

channel, with values of sensitivity, specificity, accuracy and F1 equal to 60.7%, 70.8%, 68.4%,

and 65.36%, respectively. The SVM-RBF classifier achieved the best results using the PCA-

RGB features, with values of 49.5%, 78.2%, 71.1%, and 60.62% for sensitivity, specificity,

accuracy and F1 values, respectively. The Bayes classifier obtained the best results in the red

channel, with values of sensitivity, specificity, accuracy and F1 equal to 61.7%, 73.5%, 67.0%,

and 67.1%, respectively.

Table 5.1: Mean values concerning the patch-based approach.

OPF SVM-RBF Bayes
Database Channel S P A F1 Radius S P A F1 Radius S P A F1 Radius

Augsburg

gray 53.7 87.5 80.2 66.6 10 59.9 82.7 77.2 69.5 10 55.5 75.7 70.9 64.4 5
red 54.4 82.7 77.3 65.7 10 58.6 87.5 81.4 70.2 10 58.1 83.5 75.3 68.5 10

green 43.4 93.5 87.8 59.3 5 47.4 90.8 87.2 62.3 10 39.5 89.7 86.8 54.9 10
blue 66.6 75.6 72.0 70.8 5 60.2 77.8 71.0 67.9 10 53.5 80.2 75.3 64.2 10

PCA-RGB 57.7 83.2 73.3 68.1 5 55.7 82.3 76.7 66.4 10 56.8 81.4 76.8 66.9 10

MICCAI

gray 64.3 85.5 83.4 73.4 10 66.7 79.5 79.1 68.8 5 47.8 78.4 73.4 59.4 10
red 51.2 90.4 87.5 65.4 10 47.9 91.1 86.9 62.8 10 54.7 85.3 80.0 66.7 10

green 49.7 90.4 82.7 65.3 5 51.4 90.8 89.1 65.6 10 41.5 87.3 81.5 56.3 5
blue 72.6 77.2 76.6 74.8 10 63.9 76.7 70.1 69.7 10 50.0 86.7 81.3 63.4 10

PCA-RGB 65.1 82.1 77.5 72.6 10 57.5 80.4 73.2 67.0 10 58.3 80.3 75.6 67.6 10

Table 5.2: Mean values concerning the patient patch-based.

OPF SVM-RBF Bayes
Database Channel S P A F1 Radius S P A F1 Radius S P A F1 Radius

Augsburg

gray 52.3 71.0 59.4 60.2 10 54.0 78.2 72.2 63.9 5 50.5 73.4 64.9 59.8 10
red 52.6 67.4 68.3 59.1 10 56.1 70.9 64.7 62.6 10 54.8 63.9 60.1 59.0 10

green 70.2 67.2 68.1 68.7 10 63.6 74.4 70.9 68.6 10 65.8 70.5 69.1 68.1 5
blue 63.0 77.4 73.5 69.5 10 59.7 78.7 72.9 67.9 10 52.0 77.6 70.4 62.3 10

PCA-RGB 56.2 83.4 76.3 67.2 10 61.4 72.3 66.8 66.4 10 55.2 76.8 68.3 64.2 10

MICCAI

gray 54.3 82.8 73.6 65.6 10 60.9 76.7 67.8 67.9 10 47.0 74.1 63.2 57.5 5
red 55.3 81.0 64.6 65.7 5 50.2 81.9 62.6 62.2 5 55.1 71.7 60.8 62.3 5

green 50.9 84.5 71.1 63.5 10 50.0 85.2 73.9 63.0 5 49.9 81.4 69.5 61.9 10
blue 71.6 72.9 72.3 72.2 10 63.8 75.5 69.1 69.1 10 59.6 77.2 69.1 67.3 10

PCA-RGB 71.1 71.7 71.5 71.4 10 61.9 79.5 75.4 69.6 10 60.1 82.4 78.6 69.1 5

5.5 Discussion and Conclusions

In this paper, we dealt with the problem of computer-assisted Barrett’s esophagus and

esophageal adenocarcinoma evaluation using endoscopy images. BE stands for an illness that
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Table 5.3: Mean result values concerning the image-based approach.

OPF SVM-RBF Bayes
Database Channel S P A F1 Radius S P A F1 Radius S P A F1 Radius

Augsburg

gray 55.5 60.1 57.5 57.7 10 33.7 84.5 63.8 48.2 5 30.7 64.5 51.3 41.6 5
red 63.5 66.2 64.5 64.8 10 29.7 89.5 67.6 44.6 10 57.1 55.6 56.3 56.3 5

green 52.8 64.2 59.0 57.9 10 30.3 85.5 64.7 44.7 10 46.8 71.8 59.9 56.7 5
blue 44.9 69.7 58.8 54.6 10 33.9 85.9 65.6 48.6 10 50.3 53.6 50.1 51.9 5

PCA-RGB 52.0 64.2 57.8 57.5 10 37.7 83.4 66.9 51.9 10 55.5 77.6 62.7 64.7 5

MICCAI

gray 59.7 52.7 55.5 56.0 10 50.3 55.4 50.7 52.7 10 47.5 64.8 56.3 54.8 5
red 60.7 70.8 68.4 65.4 10 38.9 86.6 79.2 53.7 10 61.7 73.5 67.0 67.1 10

green 54.9 69.7 64.8 61.4 10 37.8 83.9 73.2 52.1 10 44.4 84.6 72.3 58.2 10
blue 57.8 63.1 59.6 60.3 10 35.8 86.5 76.4 50.6 5 55.5 60.4 58.4 57.9 10

PCA-RGB 60.0 66.3 65.2 63.0 10 49.5 78.2 71.1 60.6 10 54.9 79.4 72.5 64.9 5

is visually confused with adenocarcinoma, requiring more precise ways for its early detection

and prevention.

We observed that only a very few works attempted at coping with the problem of automatic

BE identification using image processing and machine learning techniques to date. In this

work, we fostered the research towards such area and introduced the use of single channel

Color Co-occurrence Matrices in the feature extraction step for automatic BE recognition, as

well as we showed how each RGB channel could perform compared to the gray-scale image

evaluation. The experimental results were considered over two databases: (i) MICCAI 2015

and (ii) Augsburg. For both scenarios, we evaluated three different approaches and supervised

learning techniques for classification purposes.

As one can observe in the previous section, each approach presents a particular and inte-

resting result that deserves attention. Considering the patch-based approach (Table 5.1), the

results over Augsburg data highlighted that cancerous patches are harder to be identified than

non-cancerous ones, thus explaining low values of sensitivity and higher values of specificity.

However, the use of blue-channel SCMs associated with the OPF classifier provided the higher

sensitivity and F1 values. With respect to MICCAI database, the results presented a similar

behavior to those obtained over Augsburg ones. The blue-channel SCMs combined with the

OPF classifier achieved the higher F1 scores when compared to the other classifiers, thus sug-

gesting it can be a strong learning technique for color-and-texture feature classification. For

both databases, the number of non-cancer patches was considerably higher than the cancerous

ones, thus explaining the higher specificity values. Although SVM-RBF and Bayes obtained

satisfactory results, they were outperformed by OPF.

Concerning the patient patch-based approach (Table 5.2), the best results over Augsburg

data were obtained with the OPF classifier and blue channel SCMs. The MICCAI dataset results

showed a better performance, with the best values achieved by OPF and blue-channel SCMs as
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well. Both SVM-RBF and Bayes classifiers were outperformed by OPF. Once again, SVM-RBF

provided better sensitivity values in some experiments, but not the overall best results.

Since the image-based approach (Table 5.3) makes use of descriptors obtained from the

entire image, the tendency is to achieve the worst results due to the presence of both cancerous

and non-cancerous regions in the very same image labeled as cancer. Surprisingly, the results

presented satisfactory classification rates for both databases. Concerning the Augsburg and

MICCAI databases, the best results were achieved with the OPF classifier and red-channel

SCMs. The SVM-RBF showed the worst performance in this approach, with low sensitivity

but high specificity values. The image-based approach demonstrates the generalization strength

of the SCMs over the entire images. Even with different regions in cancer-labeled images, the

obtained feature vector can provide good generalization for the classification step.

Considering all approaches, it is relevant to point out that the results using color-channel

features outperformed the gray-scale ones in all experiments, thus corroborating the importance

of the color-texture analysis. The blue channel results obtained for the patch and patient-based

approaches suggest that, for local evaluation, the blue channel present a more accurate and

robust way of description, while the red channel may provide a better global evaluation of

the BE and adenocarcinoma problem, according to the global results provided by the image-

based approach. The blue results corroborate the ones obtained by Ilgner et al. [Ilgner et al.

2003] in which laryngoscopy images presenting or not diseased tissue were classified using

colored-texture descriptors, being blue the color channel that provided the best classification

rate (81.4%). PCA-RGB features showed a very well performance, achieving the best results

between the channels for some classifiers and approaches. With respect to the SCMs, feature

vectors calculated with large distances (i.e., higher values of D) showed better results when

compared to short distance ones (in this case, D = 5 or D = 10 always presented better results

than the ones obtained using D = 1). Such premise is also relevant, reinforcing the importance

of the neighboring information during the CMs calculation, suggesting that higher values of D

may provide better generalization abilities for classification purposes. The experiments pointed

out that SCMs are suitable to handle BE automatic identification, and there must be a trade-off

between the sensitivity and specificity values to compose a cohesive diagnosis result for the BE

and adenocarcinoma distinction.

Concerning the previous results obtained for the BE and adenocarcinoma classification in

the literature, this one, in particular, proposes a new protocol of image evaluation, in which

the images are split into patches, so the labeling problem is changed. It is well-known that

once we work with full images, cancerous and non-cancerous regions receive the same label,
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but when the problem is extended to the patches, the labeling problem becomes less critical.

With the patches labeling, even with images that present BE and adenocarcinoma, the misclas-

sification of regions do not exist, once each patch will be labeled according to the previous

annotation provided by the experts. Regarding the classification results, handling with patches

may improve the results because of this accurate labeling definition that does not happen in the

full-image approach. The comparison with previous works can be performed with the third ap-

proach (image-based approach) for the MICCAI 2015 database. Souza Jr. et al. conducted two

different works with a similar image-based evaluation in such database, but using SURF [Souza

Jr. et al. 2017] and SIFT [Souza Jr. et al. 2017] descriptors associated to a large number

of classifiers. The accuracy, sensitivity and specificity results obtained in this work could not

outperform the ones using SURF and SIFT features for the full-images approach. However,

this work provides two very important contributions: (i) the introduction of the single-channel

co-occurrence matrices technique for the BE and adenocarcinoma description and (ii) the eva-

luation based on patch-based approaches in which very promising results could be provided,

suggesting that the proposed descriptor, associated with a local representation of the problem,

can become a strong resource for the BE and adenocarcinoma context evaluation.

In regard to future works, we aim at considering four major new tasks: (i) the multi-channel

implementation of co-occurrence matrices [Palm 2004] instead of the single-channel approach

used in this work; (ii) the reduction of the feature vector dimensionality using feature selection

techniques, and (iii) the use of the methodology used in this work as an end-to-end approach to

aid physicians during the diagnosis process and; (iv) a scale-evaluation of the BE and adeno-

carcinoma context using the proposed color co-occurrence matrice descriptor for many levels

of image scale, providing descriptors based on a scale-space approach.

5.6 Chapter’s Considerations

The evaluation of cancerous tissues in BE samples based on color and texture shows a first

logical way of conducting such a task, and has been performed with remarkable results [van der

Sommen et al. 2016, Almond e Barr 2012] for a long time. However, until the proposal of this

study, experiments combining both color and texture information in one encoding technique

had never been conducted in the evaluation of cancer-and-BE diseases. Then, to cope with

such a task, we proposed the use of color-cooccurrence matrices [Palm 2004] as a new way of

describing and differentiating BE and adenocarcinoma in endoscopic samples.

In the conducted experiments, coocurrence-descriptors based on each RGB channel were
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calculated to be used in the classification task. With that, we could observe the impact of each

color channel in the description of cancerous tissues and its relation to texture representation.

Besides, we also aimed to assess a new feature vector composed of the combination of indivi-

dual features of each RGB color channel, trying to enhance the correct classification of cancer

once again.

Regarding the key points’ spatial condition, as attested in previous Chapters, here we con-

ducted experiments over full-images and patch-based images. Patches mean a small part of

full-images in which less misunderstanding about the tissue condition could happen once the

label of each patch is defined from experts’ annotation, and so, the features can be better defined

for each class to be further classified. Hence, three classification approaches were proposed in

this work, based on patches, patients, and full-images. As such, the color-cooccurrence descrip-

tion could be deeply evaluated in all three possible scenarios.

As expected, patch-based approaches could achieve better results, considering the smaller

misunderstandind and misrepresentation of cancerous tissues. For the descriptor itself, we ob-

served that the BLUE channel provided the best description, delivering the best overall results

(as shown by [Ilgner et al. 2003]). Moreover, the description based on color and texture has

shown promising results but could not outperform the ones obtained using object detector te-

chniques. The OPF classifier showed once again a high generalization capability, as the best

classifier so far.

Moreover, a new validation dataset was introduced for the first time in this manuscript, en-

suring the generalization potential of the proposed technique, the Augsburg dataset, composed

of 76 samples of different patients showing BE and BE and adenocarcinoma. For continuing our

main study, more ways of describing handcrafted features would be proposed in more sophisti-

cated ways of correlating its natures and spatial meanings.



Chapter 6
LEARNING VISUAL REPRESENTATIONS WITH

OPTIMUM-PATH FOREST AND ITS APPLICATIONS

TO BARRETT’S ESOPHAGUS AND

ADENOCARCINOMA DIAGNOSIS

Chapter 6 is continuity of the work started in Chapter 4. Here the introduction of the unsu-

pervised Optimum-Path Forest classifier for learning visual dictionaries in the context of auto-

matic Barrett’s esophagus and adenocarcinoma diagnosis was proposed. One can observe, the

behavior of BE and adenocarcinoma features based on bag-of-visual-words representation was

evaluated. The work was published in the Neural Computing and Applications journal [Souza

Jr. et al. 2019].

6.1 Introduction

Pattern classification has been paramount in the last decades, mainly due to the increasing

number of applications that require some intelligent-decision-making mechanism. The standard

pipeline adopted for so many years follows a robust but straightforward workflow: (i) feature

extraction, (ii) model learning, and (iii) classification outcomes. The former step can be per-

formed using handcrafted features or information learned through deep learning approaches. In

this latter case, one may not know what kind of information the model is learning, since the set

of outcome values that minimizes some loss function is the one employed in the model learning

step. Handcrafted features require a more knowledgeable personnel, which is usually in charge

of selecting and extracting features that matter when performing pattern classification.
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Describing images using their most important information, the so-called “points of inte-

rest"(PoIs) or key points, has been an active area of interest by many researchers worldwide.

Notable approaches have been proposed in the literature to compute those points, which so-

mehow aim at capturing subtle information that is less variant to geometric transformations

such as rotation, and translation, among others. Scale-Invariant Feature Transform [Lowe

2004], Speeded-Up-Robust-Features [Bay et al. 2008], and Accelerated-KAZE features (A-

KAZE) [Alcantarilla, Nuevo e Bartoli 2013] are some examples.

However, the main problem related to the mentioned approaches concern the final feature

vector. Since the number of PoIs may vary from one image to another, the feature vectors used

to represent the images shall have different dimensions. To overcome this issue, an additional

step called “quantization" is required (some works refer to this step as the “codebook genera-

tion" [Fei-Fei e Perona 2005]). In a nutshell, given a training set composed of PoIs extracted

from all training images, we can build a “bag"(i.e., a visual dictionary) with the most represen-

tative PoIs (from now on called “visual words"). Further, for each training image and each of

its PoIs, we can find the “closest" visual word in the bag and build up a histogram that stores the

number of times a visual word is nearest to each PoI from the training images. Therefore, the

final feature vector of each training image will be that histogram with a dimensionality that cor-

responds to the number of visual words (i.e., the size of the dictionary or bag). Essentially, that

is the main reason such approaches are usually referred to as “bag-of-visual-words" [Csurka et

al. 2004].

Bag-of-visual-words have been widely used in the literature for a number of different pur-

poses, such as video-based action recognition [Peng et al. 2016], retinal health diagnosis [Koh

et al. 2018], and perivascular spaces categorization in brain data [González-Castro et al. 2016],

among others. Nonetheless, one still has two problems to face regarding the BoVW approach:

(i) how to find out the most representative visual words, and (ii) how to establish a proper bag

size, i.e., the number of visual words. Notice that both issues are pretty much crucial since they

are in charge of the feature vector composition and dimensionality.

To cope with the first issue, i.e., finding out the most representative visual words, two ap-

proaches are commonly used: (i) random sampling and (ii) clustering. The former randomly

selects a given number of visual words to compose the bag. On the other hand, clustering-based

approaches make use of some unsupervised learning algorithm (usually k-means) to group the

visual words, and the most representative ones (i.e., centroids) are elected to compose the dic-

tionary [Afonso et al. 2012]. However, randomly choosing visual words does not lead to good

results, and the usage of certain unsupervised learning algorithms turns out to be a problem
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since most of them require the number of clusters (i.e., the bag size) beforehand.

Therefore, clustering techniques that do not require a priori information about the data are

usually preferred. Among several techniques that have been proposed in the literature, one is

gaining attention daily due to its effectiveness and efficiency in different research areas. The

OPF is a framework for the design of pattern classifiers based on graph partition. In short, OPF-

based classifiers work on a reward-competition process, in which previously selected samples

called “prototypes" try to conquer other samples by offering them optimum-path costs. Once a

sample is conquered by another one, it receives its label and a “mark"(i.e., a predecessor map)

that reveals its conqueror. The Optimum-Path Forest framework comprises supervised [Papa,

Falcão e Suzuki 2009, Papa et al. 2012, Papa, Fernandes e Falcão 2017], unsupervised [Rocha,

Cappabianco e Falcão 2009], and semi-supervised [Amorim et al. 2016] versions that have

been widely employed in a number of applications, from remote sensing [Pisani et al. 2014,

Nakamura et al. 2014] to human intestinal parasites identification [Suzuki et al. 2013], just to

cite a few.

One particular strength of unsupervised OPF concerns the fact it does not require the num-

ber of clusters beforehand, i.e., it finds clusters on-the-fly. Such feature is quite interesting in

the context of BoVW generation since we skip the problem of choosing suitable bag sizes. As

far as we are concerned, only two works attempted at using OPF in the context of BoVW: (i)

Papa and Rocha [Papa e Rocha 2011] evaluated the supervised OPF for image categorization

using visual words, and further (ii) Afonso et al. [Afonso et al. 2012] studied the impact of

using unsupervised OPF for learning proper visual dictionaries.

We are particularly interested in the application of such technique for the recognition of

Barrett’s esophagus (BE), which happens to be a side effect of some reflux diseases. BE com-

prises a very severe and growing disease in the last decades, and since BE is often not identified

properly at the early stages, it may evolve to a more aggressive version, and even to cancer.

However, the early diagnosis of dysplastic tissue in BE diagnosed patients may provide very

high rates of remission after the treatment [Dent 2011, Sharma et al. 2016, Phoa et al. 2016].

There are several endoscopic techniques for the BE diagnosis and detection, such as chromoen-

doscopy and narrow-band imaging, but the human screening for the injured region definition is

still often misclassified by endoscopists, once the region does not present enough goblet cells in

biopsy or the experts refuse to use the recommended procedure for extensive biopsies [Sharma

et al. 2015]. Moreover, computer-assisted diagnosis may bring precision and accuracy to the

BE screening and evaluation, once this task can be very influenced by the human factor [Souza

Jr. et al. 2017, Souza Jr. et al. 2018, Souza Jr. et al. 2017]. To the best of our knowledge,
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only one very recent work coped with BE identification using OPF. Souza et al. [Souza Jr. et

al. 2017] introduced the supervised OPF for Barrett’s esophagus automatic identification using

features based on BoVW. The authors considered both random- and k-means-based sampling

strategies to build the visual dictionaries and then used OPF for classification purposes.

Some works that dealt with endoscopic image analysis can be referred to as well, but that is

still an emerging area of research [Souza Jr. et al. 2018]. Seibel et al. [Seibel et al. 2008] deve-

loped a low-cost but high-performance technology to assist the diagnosis of BE and esophageal

cancer. However, their primary contributions rely on hardware advances rather than software

ones. The work presented by van der Sommen [van der Sommen et al. 2016] aimed at using

machine learning techniques to detect early neoplasia in Barrett’s esophagus, and Swager et

al. [Swager et al. 2016] addressed the very same context mentioned above but using volumetric

laser endoscopy images.

Klomp et al. [Klomp et al. 2017] proposed new features for computer-aided Barrett’s

esophagus identification, and Hassan and Haque [Hassan e Haque 2015] used endoscopy vi-

deos obtained from wireless capsules to assess gastrointestinal hemorrhages. Later on, Seguí

et al. [Seguí et al. 2016] used the same source of images (i.e., wireless capsules) together

with Deep Convolutional Neural Networks for intestine motility characterization. Mendel et

al. [Mendel et al. 2017] started the study of deep learning application to the BE and adenocar-

cinoma evaluation problem.

The major problems around the computer-assisted systems developed for the BE and ade-

nocarcinoma evaluation are related to the type of technique to provide a correct description of

the injured areas and which classification techniques should be designed for the problem. These

problems are related to all proposed works, and considering the high potential in this research

area, new ways to describe the injured areas (that are very similar), and the evaluation of diffe-

rent classifiers can deliver important and substantial improvements to the precision and correct

differentiation of both.

As one can observe, Barrett’s esophagus automatic identification using machine learning

techniques presents a growing interest in the last years. Therefore, there is plenty of room for

new works that employ techniques that were not considered in such a context. In this work, we

extended and outperformed the approach proposed by Souza et al. [Souza Jr. et al. 2017] by

learning proper visual dictionaries using unsupervised OPF, as well as we introduced a variant

of supervised OPF (OPFknn) proposed by Papa et al. [Papa, Fernandes e Falcão 2017] in the

context of BE identification. The OPF was never applied to such problem in the visual learning

step, and this could deliver, besides the novelty in the feature vector calculation, a new way to
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evaluate the key points provided by the feature extraction techniques. Last but not least, we

introduce the A-KAZE feature extraction technique for the calculation of the key points, for

comparison with SURF and SIFT, previously adopted for the BE and adenocarcinoma differen-

tiation context [Souza Jr. et al. 2018]. The results presented in this paper are close to some

state-of-the-art recognition rates [Mendel et al. 2017], and it features recent advances to BE au-

tomatic identification by means of machine learning and computer vision.Therefore, the main

contributions of this paper are five-fold:

• to extend and outperform the recent results obtained by Souza et al. [Souza Jr. et al.

2017] in which the evaluation of BE and adenocarcinoma context were performed using:

(i) SURF and SIFT techniques for key points calculation, (ii) k-means and random tech-

niques for the bag-of-visual-words calculation, and (iii) OPF and SVM classifiers for the

classification task;

• to introduce OPFknn [Papa, Fernandes e Falcão 2017] for BE and adenocarcinoma auto-

matic diagnosis, considering that Souza et al. [Souza Jr. et al. 2017] employed only the

complete graph version of OPF classifier for the classification task;

• to introduce A-KAZE features for the aforementioned context, once such technique has

been largely applied in the literature for image description and retrieving;

• to extend the work by Afonso et al. [Afonso et al. 2012] with a more robust evaluation of

the unsupervised OPF for learning visual dictionaries;

• to introduce a new representation of feature extraction techniques (such as SURF and

SIFT) based on their most representative words in the feature space using the OPF clus-

tering technique.

The remainder of this paper is organized as follows. Sections 6.2 to 9.3 present a theoreti-

cal background of unsupervised OPF and the methodology adopted in this work, respectively.

Section 9.4 discusses the experiments, and Section 9.5 states conclusions and future works.

6.2 Unsupervised Learning with Optimum-Path Forest

In this section, we briefly present the theoretical background related to unsupervised OPF,

which is used to learn proper visual dictionaries.

Let D = {x1,x2, . . . ,xm} be an unlabeled dataset such that xi ∈ℜn stands for a feature vector

extracted from some sample (i.e., images in our case) related to the problem to be addressed.
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Additionally, let G = (D ,Ak) be a graph derived from that dataset, which means D denotes the

set of graph nodes (i.e., vertices) and Ak stands for a k-nearest neighbors adjacency relation.

In a nutshell, the OPF working mechanism is based on a reward-competition problem,

where some samples called “prototypes" employ a competitive process among themselves to

conquer the other samples from the dataset D . Such competition ends up partitioning D into

optimum-path trees (OPTs), which are rooted at each prototype node. It is worth mentioning

that a sample that belongs to a given OPT is more “strongly connected" to the root and samples

of that tree than to any other in the forest (i.e., a collection of all trees in the graph).

At a glance, the whole process can be summarized in the following steps:

1. To establish a proper neighborhood size and build up Ak (i.e., to find out “suitable" k

values);

2. To elect the prototypes and Learning Visual Representations with Optimum-Path Forest

and its Applications to Barrett’s esophagus and Adenocarcinoma Diagnosis

3. To start the competition process.

Concerning step 1), a number of different approaches to cope with the task could be con-

sidered. Rocha et al. [Rocha, Cappabianco e Falcão 2009] proposed to compute the best value

of k (i.e., the neighborhood size), say that k∗, as the one that minimizes the normalized graph

cut, which is a measure that considers both the dissimilarity between clusters as well as the

similarity within the groups of samples [Shi e Malik 2000].

Soon after computing k∗, the next move concerns finding the prototypes (i.e., step 2), also

known as the “roots of the trees". Such essential samples are in charge of ruling the competition

process that ends up partitioning the graph into OPTs (i.e., clusters). Those samples will be

used as the visual words to compose the final dictionary, as further discussed.

The supervised OPF proposed by Papa et al. [Papa, Falcão e Suzuki 2009] elects the pro-

totypes as the nearest samples from different classes, which can be accomplished by computing

a Minimum Spanning Tree (MST) over the training graph. Then, the samples from different

classes that are connected in the MST are marked as prototypes. However, unsupervised OPF

does not make use of labeled datasets, which motivated Rocha et al. [Rocha, Cappabianco e

Falcão 2009] to elect the prototypes as the samples that are located at the center of the clus-

ters. Such samples can be computed by assigning a density score ρ(xi) for each dataset sample

xi ∈ D . That score is computed using a probability density function (pdf) given by a Gaussian
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distribution considered in the neighborhood of each sample as follows:

ρ(xi) =
1√

2πσ2k
∑

∀x j∈Ak(xi)

exp

(−d(xi,x j)

2σ2

)

, (6.1)

where i 6= j and σ = dmax/3. In this case, dmax stands for the maximum arc-weight in G. Using

such formulation, ρ(xi) considers all adjacent nodes for the probability computation purposes

since a Gaussian function covers 99.7% of the samples within d(xi,x j) ∈ [0,3σ ].

After computing Equation 6.1 for all nodes, the competition process among samples can

take place. Each density value will be used to populate a priority queue, where the idea of

the unsupervised OPF algorithm is to end up maximizing the cost of each sample, and thus

partitioning the graph.

The definition of “cost" is based on paths on graphs, i.e., a sequence of adjacent samples

with no cycles. Let πxi
be a path with terminus at sample xi and starting from some root R(xi),

where R stands for the set of prototype samples. Additionally, let πxi
= 〈xi〉 be a trivial path

(i.e., a path composed of a single sample) and πxi
· 〈xi,x j〉 the concatenation of πxi

and the arc

(xi,x j) such that i 6= j.

The OPF algorithm assigns to each path πxi
a value f (πxi

) given by a connectivity function

f : X →ℜ. In this context, a path πxi
is considered optimum if f (πxi

) ≥ f (τxi
) for any other

path τxi
. Such sort of functions are known as “smooth functions", and they figure important

constraints that ensure the theoretic correctness of the OPF algorithm [Falcão, Stolfi e Lotufo

2004].

Among different path-cost functions that have been proposed in the literature, unsupervised

OPF employs the following formulation for ∀xi,x j ∈D such that i 6= j:

f (〈xi〉) =

{

ρ(xi) if xi ∈R

ρ(xi)−δ otherwise,
(6.2)

and

f (πxi
· 〈xi,x j〉) = min{ f (πxi

),ρ(x j)}, (6.3)

where δ = min∀(xi,x j)∈Ak|ρ(t) 6=ρ(s) |ρ(t)−ρ(s)|. In a nutshell, δ stands for the smallest quantity

required to avoid plateaus in the regions nearby the prototypes (i.e., areas with the highest

density).

Among all possible paths πxi
from the maxima of the pdf, the method assigns to sample

xi a final path whose minimum density value along it is maximum. Such final path value is
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represented by a cost map C , as follows:

C (xi) = max
∀πx j
∈(D ,Ak),i 6= j

{ f (πx j
· 〈x j,xi〉)}. (6.4)

The OPF algorithm maximizes the connectivity map C (xi), ∀xi ∈ D , by computing an

optimum-path forest over the dataset. Such forest is encoded as a predecessor map P with no

cycles that assigns to each sample xi /∈R its predecessor P(xi) in the optimum path from R,

or a marker nil when xi ∈R.

Figures 6.1 to 6.3 depict a toy example concerning the unsupervised OPF working mecha-

nism. Figures 6.1a and 6.1b illustrate an unlabeled dataset and its 3-nearest neighbors graph,

respectively (we assume k = 3 to explain step 1). For the sake of visualization purposes, we as-

signed the same color to each graph node and the arcs corresponding to its 3-nearest neighbors.
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Figure 6.1: Toy example: (a) unlabeled dataset and its (b) 3-nearest neighbors graph.
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Notice the arcs are also weighted by the distance (e.g., Euclidean distance) among their

corresponding nodes. One can observe that some arcs and their weights are double-colored,

which means their corresponding nodes share the very same 3-neighborhood.

Figure 6.2 illustrates the density computation step to further elect the prototypes (i.e., step

2). Therefore, given the arc-weights depicted in Figure 6.1b, we can use Equation 6.1 to com-

pute ρ(xi), ∀xi ∈D . Notice the density values are computed over the adjacency relation enco-

ded by Ak. One can realize that the samples located at the center of the clusters tend to be the

ones with the highest value of ρ since they are connected by smaller arc-weights.
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Figure 6.2: Computing the densities of each graph node according to its 3-neighborhood. The
values under/over the nodes stand for their density values computed using Equation 6.1.

The density values are then stored in a priority queue (i.e., a max-heap) that pops out the

sample xi with the highest ρ(xi). Concerning the toy example depicted in Figure 6.2, the first

sample to come out of the queue is either ‘H’ or ‘A’ since both have the highest densities.

Suppose ‘H’ has been added first to the queue. Since it has no predecessor, it is added to the set

R and assigned f (H) = ρ(H) = 0.66 according to Equation 6.2.

Further, the competition process (i.e., step 3) takes place. In short, sample ‘H’ evaluates its

neighbors ‘I’, ‘J’, and ‘K’ to offer better costs to them (i.e., costs that are greater than the ones

they have already). Therefore, one has f (H·〈H,I〉) = \min{0.66,0.63} = 0.63, f (H·〈H,J〉) =
\min{0.66,0.65}= 0.65, and f (H·〈H,K〉) = \min{0.66,0.65}= 0.65. Since the costs offered

by ‘H’ are greater or equal than the costs of its neighbors, they are conquered by sample ‘H’.

Such process is encoded by the aforementioned predecessor map P , i.e., after this first move

of sample ‘H’, one has that P(I) = H, P(J) = H, and P(K) = H.

The next sample to start the competition process is sample ‘A’, and the very same process
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mentioned earlier is repeated until all samples have played in the competition process. The re-

sulting optimum-path forest is depicted in Figure 6.3. Notice one can obtain a different number

of clusters based on the value of kmax. In this toy example, we obtained two clusters, which are

labeled with the same color of its prototype/root of the tree (i.e., the dashed nodes ‘A’ and ‘H’).
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Figure 6.3: Resulting optimum-path forest with two clusters and prototypes highlighted.

The unsupervised OPF algorithm finds the number of the clusters on-the-fly, which means

there is no need to have such information beforehand. The only parameter that needs to be set

is the kmax, which constraints the search for suitable neighborhood sizes. One can observe that

the knowledge required to set kmax is considerably lower than the one needed to set the number

of clusters used by k-means, for instance. Such skill makes OPF pretty much attractive to the

application addressed in this paper, as discussed in the next section.

6.3 Barrett’s Esophagus

The BE disease is known as the replacement of squamous cells by columnar cells in the

esophagus. This process is a result of a complication of gastroesophageal reflux disease, being

able to progress into esophageal cancer [Dent 2011, Sharma et al. 2016].

The incidence of BE and esophageal adenocarcinoma in the western population of the world

has risen significantly in the past decade. Their close association with the metabolic syndrome

suggest growth in the next years [Lagergren e Lagergren 2010, Dent 2011, Lepage, Rachet e

Jooste 2008]. The early diagnosis of Esophageal adenocarcinoma in BE diagnosed patients is

critical for remission and justifies the necessity of robust surveillance, detection, and characteri-

zation. However, the detection of dysplastic tissues and their characterization of abnormalities
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within BE-diagnosed patients can be challenging, especially for manual evaluation made by

endoscopists. Even considering the dangerousness of the disease, when detected at the early

stages, the disease can be treated with very high rates of remission (93% after 10 years) [Dent

2011, Sharma et al. 2016, Phoa et al. 2016].

The esophagus mucosa is composed of squamous cells (similar to the skin or mouth cells),

with a whitish-pink color surface, while the gastric mucosa goes sharply from salmon-pink

to red [Dent 2011, Sharma et al. 2016]. The point in which the stomach and the stomach

meet is called squamocolumnar junction or “Z-line". BE’s mucosa may extend upward in a

continuous pattern, changing the Z-line position [Dent 2011, Sharma et al. 2016, Phoa et al.

2016]. Figure 6.4 shows the two cases in which patients can present long-segment of BE and

short-segment of BE in a Z-line variation.
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Figure 6.4: BE’s short-segment (a) and BE’s long-segment (b), with their respective endoscopic
views (extracted from [Souza Jr. et al. 2018]).

6.4 Methodology and Proposed Approach

In this section, we present the proposed approach and the methodology adopted to cope with

the problem of Barrett’s esophagus automatic identification using bag-of-visual-words. First,

the proposed method is defined, followed by the datasets used for the experiments, adopted

classifiers and experimental delineation.
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6.4.1 Proposed Method

As mentioned earlier, one of the leading contributions of this work is to evaluate the ro-

bustness of the OPF clustering for learning visual dictionaries. To fulfill that purpose, we

considered three distinct feature descriptors based on key point extraction from images: (i)

SIFT, (ii) SURF, and (iii) A-KAZE. Although any other approaches could be used, we opted

to employ these mainly because they are well known and widely considered in the literature of

bag-of-visual-words for both image classification and retrieval, but any other techniques could

be applied considering the generalization of the learning visual dictionaries.

For the inicial step of the proposed model, given a set of training images, it is needed to

build a bag of key points extracted from them. In hands of a feature extraction technique for

the description of an image (being SURF, SIFT or A-KAZE, in this specific case), the model

aims to provide the most discriminative key points in the feature dimension based on the entire

feature domain. Therefore, taking into account the key points of the entire dataset, a clustering

algorithm can be used to group the key points into clusters that share similar properties for cho-

osing the “best key point" from each cluster and use it as the representative of that group. Such

samples will compose the final bag-of-visual-words. The main contribution of this work is the

calculation of such most representative key points from clusters (as we use to call “prototypes")

by using the OPF clustering technique. After obtaining the bag-of-visual-words, the last step

of the model is known as “quantization" and computes the new representation for both training

and testing images. For each image, it is computed the frequency of each visual word from the

bag in the given image by finding the most similar visual word to each key point based on a

distance metric. The outcome of that process is a histogram (feature vector) where each bin has

the number of key points that are similar to its corresponding visual word. Notice that the repre-

sentation of both training and testing images are computed based on the same bag. Finally, in

hands of the feature vectors, each image of the evaluated dataset shows the exact same number

of features for its description, but with the calculation based on the entire feature space domain.

The training and testing may be conducted as the final step of the model.

In this work, we propose to cluster the dataset of key points using the OPF technique pre-

sented in the previous section and then use the prototypes to compose the bag-of-visual-words.

As aforementioned, the prototypes are located in the regions of highest densities, which means

they are pretty much suitable to describe the clusters. Another decisive point about OPF con-

cerning other optimization-based clustering techniques relates the fact of not being attracted to

local optima, such as k-means or k-medoids, for instance, which are widely used for learning

dictionaries due to their simplicity and low computational cost.
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As mentioned earlier, OPF finds the clusters on-the-fly, i.e., the clustering process is dy-

namic, and the forest configuration can change until the last sample finishes the conquering

process. Instead of varying the size of the dictionary, one can change the value of kmax and

then may find the different number of clusters. The cluster calculation comprises one of the

most important steps of the proposed method. The prototype computation is performed in an

unsupervised process, turning the calculation of the feature vectors based only on the key points

themselves, and providing a high generalization for this task. The problem of a different number

of key points for each image can be solved using this bag-of-visual-words approach, proposing

a consistent way of regular description for images evaluated by feature extraction techniques.

Figure 6.5 depicts the pipeline adopted in this work.

Since the images are colored, a gray-scale normalization is applied to the images so that the

key points can be extracted. Later, such PoIs are then mapped onto a feature space for clustering

purposes. An example of the outcome of the clustering process is depicted at the bottom of

Figure 6.5. Each color stands for a different group and the dashed nodes represent the prototypes

selected by OPF to be part of the visual dictionary. As aforementioned, a histogram is built

upon the training PoIs and the visual words for the further design of the final set of handcrafted

features. For the selected visual words, an evaluation of their appearance is performed in the

PoIs of each dataset image aiming to calculate the final cumulative histogram that represents

each feature vector, with dimension depending on the number of visual words generated in the

clustering calculation of the bag.

6.4.2 Datasets

An in-depth analysis concerning the robustness of the proposed approach is provided th-

rough two datasets. The first dataset comprises a set of images from a benchmark dataset

provided at the “MICCAI 2015 EndoVis Challenge"1 was considered, hereinafter called “MIC-

CAI 2015" dataset, which aimed at differentiating Barrett’s esophagus from cancerous images.

Such dataset is composed of 100 endoscopic pictures of the lower esophagus captured from

39 individuals, 22 of them being diagnosed with early-stage Barrett’s, and 17 showing signs

of esophageal adenocarcinoma. Each patient has several endoscopic images available, ranging

from one to a maximum of eight. The database comprises a total of 50 images displaying can-

cerous tissue areas as well as 50 images showing dysplasia without signs of cancer. Suspicious

lesions observed in the cancerous images had been delineated individually by five endoscopy

experts.

1https://endovissub-barrett.grand-challenge.org/home/
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Figure 6.5: Pipeline adopted in this work for Barrett’s esophagus identification.

Additionally, a dataset provided by the Augsburg Klinikum, Medizinische Klinik III was

also used for the experiments. Such dataset is composed of 76 endoscopic images (esopha-

gus) captured from different patients with adenocarcinoma (34 samples) and BE (42 samples).

The images were annotated (manual segmentation of the adenocarcinoma’s and Barrett’s area,

respectively) by an expert from the Augsburg Klinikum, and the diagnosis was provided using
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biopsy. Since we are dealing with a classification problem, the annotations provided by the

experts were not considered in our work.

Figure 6.6 depicts some examples of the MICCAI 2015 dataset positive for cancer (i.e.,

negative for BE) and their respective delineations performed by five experts. However, we are

not working with the delineation information since we compute the PoIs for the whole image.

One could use the information about the delineated regions to extract PoIs from that areas

only, which could guarantee that pure adenocarcinoma PoIs are computed, but the problem still

concerns the fact that delineations are not available to all real-world images.

Figure 6.6: Some examples of images positive for cancer and their respective delineations (MIC-
CAI 2015 dataset).

Figure 6.7 displays some images positive for cancer from Augsburg dataset. In this case,

we have only one delineation per image. Once again, such information is not used in this work

since we are interested mostly in the differentiation of Barrett’s esophagus and adenocarcinoma

rather than its segmentation.

6.4.3 Adopted Classifiers

We considered different supervised pattern recognition techniques to assess the robustness

of unsupervised OPF for learning visual dictionaries:

• OPFcpl: supervised OPF with complete graph proposed by Papa et al. [Papa, Falcão e

Suzuki 2009, Papa et al. 2012];

• OPFknn: supervised OPF with k-nn graph proposed by Papa et al. [Papa, Fernandes e

Falcão 2017];
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Figure 6.7: Some examples of images positive for cancer and their respective delineations (Augs-
burg dataset).

• SVM-RBF: Support Vector Machines with Radial Basis Function kernel and parameters

optimized by cross-validation [Chang e Lin 2011];

• SVM-Linear: Support Vector Machines with Linear kernel and parameters optimized by

cross-validation [Chang e Lin 2011];

• Bayes: standard Bayesian classifier.

Regarding the OPF-based classifiers, we used the LibOPF [Papa e Falcão], which is an open-

source library that implements both the supervised as well as the unsupervised versions of

the OPF used in this work. With respect to the Bayesian classifier, we employed our own

implementation.

6.4.4 Experimental Delineation

To compose the set of experiments, we considered three different sizes for the dictionaries:

100, 500, and 1,000. The main idea is to evaluate the robustness of the techniques used in

this work under different scenarios. As we shall discuss later, the usage of dictionaries with

500 visual words seemed to achieve better results, as stated in a previous work [Souza Jr. et

al. 2017], which motivated us to set kmax = 500 for this one. However, this not implies in

constraining OPF to find exactly 500 clusters, just to limit the size of the neighborhood of each

sample to be 500. Regarding OPFknn, its parameter k is fine-tuned within the range [1,500], and

the value that maximized the accuracy over the training set was used.

Regarding the experimental validation, it was considered a cross-validation approach with

20 runs and using 70% of the dataset for training purposes, as well as the remaining 30%



6.5 Experimental Results 114

for classification. Moreover, the experimental results were assessed using a statistical analysis

using the Wilcoxon signed-rank test with confidence as of 5% [Wilcoxon 1945]. All experi-

ments were conducted on an 8GB-memory computer equipped with an Intel Core i5 - 2.30 GHz

processor. Additionally, we employed the OpenCV [OpenCV 2015] implementation for feature

extraction using SIFT, SURF, and A-KAZE.

6.5 Experimental Results

In this section, we present the experiments used to evaluate the proposed approach. Five

supervised classifiers were considered to discriminate between samples positive and negative

to adenocarcinoma: OPFcpl , OPFknn, SVM-RBF, SVM-Linear, and Bayesian classifier (herei-

nafter called Bayes). For all the classifiers adopted for such evaluation, there was no need for

setting any parameter, as long as they were used in the default set. The same experimental

protocol was applied to all techniques using cross-validation, i.e., three distinct feature repre-

sentations were considered (SURF, SIFT, and A-KAZE, with the metric threshold of all sets is

default), and with different bag sizes (i.e., 100, 500 and 1,000 visual words). The results are

presented and discussed considering each dataset individually.

A statistical evaluation using the signed-rank Wilcoxon test [Wilcoxon 1945] was used for

comparison purposes as follows:

1. For each dictionary generation approach (i.e., clustering by k-means, random or unsuper-

vised OPF), it was verified the classification results and the best ones were highlighted in

bold. Statistically similar results were highlighted in bold.

2. For each feature extractor (i.e., A-KAZE, SIFT, and SURF), the best statistical results

were underlined.

3. Additionally, the best results among all configurations were marked with a ‘⋆’ symbol.

This very same procedure was adopted to both datasets.

In this work, we used the following accuracy rate:

A =
T P+T N

T P+T N +FP+FN
·100, (6.5)

where T P and T N stand for the true positives and true negatives, respectively, and FN and FP

denote the false negatives and false positives, respectively. In a nutshell, the above equation
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computes the ratio between the number of correct classifications (i.e., T P+T N) and the size of

the dataset (i.e., all correct and wrong classifications).

6.5.1 MICCAI 2015 Dataset

Tables 6.1, 6.2, and 6.3 present the results related to A-KAZE, SURF, and SIFT descriptors,

respectively, concerning MICCAI 2015 dataset. Regarding the A-KAZE results presented in

Table 6.1, one can draw the following conclusions: (i) OPFcpl obtained the best results for

all dictionary generation techniques, and (ii) OPF clustering achieved the best results (77.6% of

recognition rate with 1,000 visual words) for BE recognition among all configurations, although

being statistically similar to k-means with OPFcpl with 500 and 1,000 visual words as well.

Table 6.1: Mean accuracy results using A-KAZE features with 100, 500, and 1,000 visual words.

Dictionary 100 500 1000

k-means
OPFcpl 73.6% ⋆76.3% ⋆77.2%
OPFknn 59.2% 61.7% 68.1%

SVM-RBF 60.7% 65.9% 66.1%
SVM-Linear 58.5% 63.0% 67.4%

Bayes 56.8% 60.0% 60.9%

Random
OPFcpl 59.5% 63.9% 70.3%
OPFknn 58.3% 61.7% 62.3%

SVM-RBF 62.1% 65.6% 63.7%
SVM-Linear 55.3% 59.0% 59.1%

Bayes 55.5% 62.2% 61.1%

OPF clustering
OPFcpl 72.2% 73.1% ⋆77.6%
OPFknn 62.3% 60.1% 66.2%

SVM-RBF 61.9% 65.1% 70.9%
SVM-Linear 55.8% 60.5% 66.8%

Bayes 55.8% 58.0% 61.3%

The average number of PoIs used for training and test sets concerning A-KAZE feature

extractor were 16,024 and 6,868, respectively, taking an average computational load of 4.05

minutes. A training set composed of around 16,000 visual words is enough to support the sizes

of the dictionaries we used to build the feature vector of each image, i.e., 100, 500, 1,000.

Larger dictionaries may not be interesting since there will be numerous small-sized clusters,

which means less spatial information about the visual words is captured.

Table 6.2 presents the results concerning the SURF feature extractor. Once again, OPFcpl

achieved the best classification results regarding all dictionary generation approaches, and OPF

clustering allowed the best results among all, i.e., it could learn better dictionaries for image
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representation. In this context, a dictionary of size 500 computed by k-means also achieved

the best recognition rates according to the statistical test. The average number of PoIs used for

training and test sets concerning SURF feature extractor were 14,411 and 6,189, respectively,

taking an average computational load of 13.77 minutes.

Table 6.2: Mean accuracy results using SURF Features and 100, 500, and 1,000 visual words.

Dictionary 100 500 1000

k-means
OPFcpl 70.0% 74.8% 73.6%
OPFknn 64.1% 66.0% 65.1%

SVM-RBF 63.6% 64.8% 62.6%
SVM-Linear 62.0% 58.6% 62.8%

Bayes 56.4% 56.9% 57.4%

Random
OPFcpl 69.7% 70.2% 66.1%
OPFknn 58.0% 58.4% 61.8%

SVM-RBF 61.0% 63.4% 62.1%
SVM-Linear 51.7% 57.6% 56.5%

Bayes 50.5% 53.5% 56.9%

OPF clustering
OPFcpl 69.4% ⋆78.4% ⋆77.1%
OPFknn 63.6% 69.6% 71.6%

SVM-RBF 67.5% 71.8% 70.9%
SVM-Linear 65.1% 66.9% 66.7%

Bayes 53.3% 56.8% 57.1%

One can observe that SVM did not obtain proper recognition rates in both situations, i.e.,

A-KAZE and SURF feature extractors. One possible reason concerns the number of training

samples, which is usually lower than the number of features. Therefore, SVM will map samples

to a lower-dimensionality feature space instead of a higher one, thus neglecting the assumption

of linearity in higher-dimensionality spaces.

Table 6.3 presents the results considering the SIFT feature extractor. Once again, OPFcpl

achieved the best results so far, with OPFknn and SVM-RBF being statistically similar for k-

means with 1,000 words and a random generation of dictionaries with 1,000 words. However,

the best global results were achieved using OPF clustering with OPFcpl with 500 and 1,000

visual words, outperforming by far the other results with SIFT feature extractor. The average

number of PoIs used for training and test sets concerning SIFT feature extractor were 28,137

and 12,059, respectively, taking an average computational load of 5.95 minutes.

Last but not least, the best results among all three feature extractors (i.e., the ones marked

with ‘⋆’) were obtained using OPF clustering for dictionary generation and OPFcpl for classi-

fication with 500 and 1,000 visual words considering SURF and SIFT, and the same pair (i.e.,
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Table 6.3: Mean accuracy results using SIFT Features and 100, 500, and 1,000 visual words.

Dictionary 100 500 1000

k-means
OPFcpl 68.3% 72.3% 71.4%
OPFknn 67.0% 71.8% 72.1%

SVM-RBF 67.3% 71.4% 71.9%
SVM-Linear 55.2% 56.8% 67.3%

Bayes 53.5% 60.0% 60.7%

Random
OPFcpl 66.4% 70.7% 71.2%
OPFknn 58.1% 63.9% 66.1%

SVM-RBF 62.1% 65.6% 63.7%
SVM-Linear 53.2% 54.5% 52.7%

Bayes 50.2% 53.0% 54.4%

OPF clustering
OPFcpl 71.2% ⋆77.7% ⋆78.9%
OPFknn 63.9% 71.3% 75.7%

SVM-RBF 68.0% 70.2% 69.7%
SVM-Linear 61.3% 64.7% 64.4%

Bayes 50.2% 53.0% 54.4%

OPF clustering and OPFcpl) regarding A-KAZE with 1,000 visual words, and finally k-means

and OPFcpl with 500 words. Notice the best absolute result was obtained using OPF clustering

for visual words generation and OPFcpl for classification purposes with SIFT-based features

(i.e., 78.9%).

6.5.2 Augsburg Dataset

Tables 6.4, 6.5, and 6.6 present the results related to A-KAZE, SURF, and SIFT descriptors,

respectively, concerning Augsburg dataset. Starting with the A-KAZE feature extractor, one can

observe the best results were mostly obtained by both OPFcpl and OPFknn. The best global re-

sults were achieved by OPF clustering, Random and k-means, but the most accurate one (i.e.,

absolute results) was OPF clustering for visual dictionary generation and OPFcpl for classifica-

tion purposes with accuracy of 72.6%. Such result is slightly less accurate than the same feature

extractor considering MICCAI 2015 dataset since Augsburg dataset is more challenging due to

different levels of adenocarcinoma. The average number of PoIs used for training and test sets

concerning A-KAZE feature extractor were 40,064 and 17,170, respectively, taking an average

computational load of 4.18 minutes.

Table 6.5 presents the results concerning the SURF feature extractor. Once again, OPF-

based classifiers obtained the best results in most of the scenarios, being OPF clustering and

k-means the best approaches for visual dictionary generation. The best absolute classification
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Table 6.4: Mean accuracy results using A-KAZE Features and 100, 500, and 1,000 visual words.

Dictionary 100 500 1000

k-means
OPFcpl 60.7% ⋆69.4% 65.6%
OPFknn 61.9% 66.1% ⋆70.1%

SVM-RBF 60.4% 63.5% 63.1%
SVM-Linear 55.1% 60.4% 62.1%

Bayes 56.9% 60.1% 61.3%

Random
OPFcpl 59.4% 68.4% ⋆69.9%
OPFknn 59.9% 61.4% 62.4%

SVM-RBF 57.9% 62.2% 63.2%
SVM-Linear 55.3% 58.8% 58.9%

Bayes 56.5% 57.1% 61.0%

OPF clustering
OPFcpl 68.4% ⋆68.7% ⋆72.6%
OPFknn 67.4% ⋆69.3% ⋆70.3%

SVM-RBF 59.4% 63.0% ⋆69.8%
SVM-Linear 57.7% 57.3% 62.7%

Bayes 62.4% 60.7% 63.1%

results were obtained by OPFcpl and Bayes with accuracies nearly to 68%. The average number

of PoIs used for training and test sets concerning SURF feature extractor were 14,251 and

6,108, respectively, taking an average computational load of 9.23 minutes.

Table 6.5: Mean accuracy results using SURF Features and 100, 500, and 1,000 words.

Dictionary 100 500 1000

k-means
OPFcpl 66.3% ⋆67.9% 61.5%
OPFknn 62.8% 63.2% 65.4%

SVM-RBF 57.1% 61.1% 62.9%
SVM-Linear 56.7% 57.1% 59.4%

Bayes 60.8% 59.9% 61.1%

Random
OPFcpl 60.0% 62.2% 63.5%
OPFknn 54.2% 58.1% 60.8%

SVM-RBF 61.3% 61.9% 62.0%
SVM-Linear 57.1% 55.4% 56.4%

Bayes 51.9% 59.0% 59.1%

OPF clustering
OPFcpl 59.2% 62.1% 66.1%
OPFknn 61.1% 63.9% 64.5%

SVM-RBF 58.5% 62.0% 65.4%
SVM-Linear 53.5% 60.8% 64.6%

Bayes 59.8% 67.0% ⋆67.9%

The Augsburg dataset figured out as being more challenging than MICCAI 2015 dataset
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due to the considerably low results achieved (Table 6.2). SVM-RBF presented better results

with higher-dimensionality bags (i.e., 65.4% with 1,000 words with OPF clustering), and the

same behavior can be observed regarding SVM-Linear.

Table 6.6 presents the results considering the SIFT feature extractor. In this case, OPF-

based classifiers and SVM-RBF figured as the most accurate techniques and OPF clustering as

the best one for visual dictionary generation (absolute results). A comparison against A-KAZE

and SURF showed these to be quite more accurate than SIFT, an opposite situation that occurred

over MICCAI 2015 dataset, where SIFT achieved the best recognition rates. Additionally, the

average number of PoIs used for training and test sets concerning SIFT feature extractor were

89,514 and 38,363, respectively, taking an average computational load of 8.71 minutes.

Table 6.6: Mean accuracy results using SIFT Features and 100, 500, and 1,000 visual words.

Dictionary 100 500 1000

k-means
OPFcpl 60.3% 60.5% 59.3%
OPFknn 58.9% 60.6% 62.0%

SVM-RBF 60.8% 61.8% 59.8%
SVM-Linear 55.5% 57.1% 59.9%

Bayes 53.1% 54.8% 58.7%

Random
OPFcpl 59.2% 60.5% 61.6%
OPFknn 57.0% 58.4% 60.5%

SVM-RBF 57.8% 62.6% 62.1%
SVM-Linear 54.4% 55.6% 61.5%

Bayes 51.9% 57.0% 59.0%

OPF clustering
OPFcpl 60.4% 62.8% 62.1%
OPFknn 58.1% 61.6% 63.9%

SVM-RBF 57.0% 60.5% 62.1%
SVM-Linear 58.8% 58.9% 58.7%

Bayes 61.1% 62.2% 61.8%

6.5.3 Discussion

In this section, we aim at providing a more in-depth discussion about the experiments,

as well as insightful conclusions regarding the usage of bag-of-visual words in the context of

computer-aided differentiation between Barrett’s esophagus and adenocarcinoma. Table 6.7

presents a summary with the best results obtained in the previous two sections concerning the

number of visual words and feature extractor. Concerning both datasets, OPFcpl figured as the

more accurate classification technique, meanwhile OPF clustering appears as the best dictionary

generation approach.
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Table 6.7: Summarization of the results.

Dataset Accuracy Feature Extractor #visual words
MICCAI 2015 78.9% SIFT 1,000

Augsburg 72.6% A-KAZE 1,000

The results support the primary contributions stated previously, which are related to the ro-

bustness of OPF-based classifiers for both supervised and unsupervised learning in the context

of automatic adenocarcinoma identification. Additionally, the number of visual words stron-

gly affects the results, but we believe a trade-off between the size of the dictionary and the

information it carries on shall be established beforehand.

Table 6.8 summarizes the mean sensitivity and specificity results of both datasets with the

best configuration of the number of visual words, dictionary generation approach, feature ex-

tractor, and classification technique mentioned above. Sensitivity stands for the classification

rate considering adenocarcinoma identification, i.e., those positive to Barrett’s esophagus and

to adenocarcinoma, and specificity denotes the accuracy regarding those negative to adenocar-

cinoma, i.e., positive only to BE. Considering such sensitivity and specificity results, some con-

clusions can be drawn: (i) for the MICCAI 2015 dataset, the sensitivity results presented higher

values than the specificity ones, suggesting a very good generalization in the positive adenocar-

cinoma identification. Even with lower results, the specificity still showed a convincing value,

and the misclassification can be justified by two factors: the fuzzy region (region in which the

experts disagree in the annotation) and lack of enough key points in the non-cancerous regions

during the feature vector calculation. For the Augsburg results of sensitivity and specificity, a

better trade-off between the correct classification of positive and non-positive adenocarcinoma

samples could be found, but still with lower results when compared to the MICCAI 2015 dataset

ones. The Augsburg dataset presents images with different behavior and acquisition technology

when compared to the MICCAI 2015 ones, thus justifying the worse results.

Table 6.8: Mean sensitivity (i.e., positive to BE) and specificity (i.e., negative to BE) results.

Dataset Sensitivity Specificity
MICCAI 2015 81.7% 76.4%

Augsburg 70.9% 74.9%

To provide more insightful comments and to better understand the working mechanism of

visual words in the context of computer-assisted BE identification, we performed some addi-
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tional experiments with cancerous images that were classified either as cancer or as Barrett’s

esophagus since we have their delineated regions. In a nutshell, the main idea is to compute the

percentage of PoIs located inside those regions with respect to the remaining ones (i..e, those

located outside cancerous areas). This information allows us to compare whether the number of

PoIs placed inside the delineated regions are enough or not to provide accurate classifications.

Table 6.9 presents the mean percentage of PoIs located inside the cancerous area for the

whole dataset, as well as the average percentage of PoI inside the cancerous area concerning

the misclassified images (i.e., cancerous images that were classified as BE). Since we conducted

a cross-validation approach with 20 runs, the average percentages concerning the misclassified

images (i.e., Cancer→BE) were computed to each run, for the further computation of the ave-

rage value of all. Additionally, since MICCAI 2015 dataset comprises delineations from five

experts, we took the intersection of them all as the final delineated area to compute the percen-

tage of PoIs into account.

One can observe that the percentage of PoIs inside the cancerous images were more sig-

nificant than the values obtained from the misclassified images. Such assumption is pretty

interesting since we can conclude that the number of PoIs inside the delineated regions are es-

sential to achieve accurate results and to avoid misclassifications. The only exception stands for

the Augsburg dataset with A-KAZE features, where the number of PoIs were slightly higher for

the misclassified images. Note that the percentage of PoIs inside the cancer region is in general

higher for the Augsburg databaset than for the MICCAI 2015 dataset. This can be explained

because the Augsburg images use the near-focal imaging technique, in which the suspicious

region is displayed larger.

Table 6.9: Percentage of PoIs inside the delineated (cancerous) ares.

Dataset Feature Cancer Cancer→BE
Extractor PoI % PoI %

MICCAI 2015 A-KAZE 30.34% 21.69%
MICCAI 2015 SURF 25.58% 23.05%
MICCAI 2015 SIFT 30.73% 23.04%

Augsburg A-KAZE 53.77% 55.70%
Augsburg SURF 42.97% 39.54%
Augsburg SIFT 48.34% 44.06%

For visualization purposes, Figures 6.8 to 6.9 depict some cancer patients that were mis-

classified as BE from both datasets. The PoIs showed in Figure 6.8 were calculated using SIFT

and belong to the MICCAI 2015 dataset, and their percentage of incidence is 21.72%, which is
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slightly lower considering the average percentage presented in Table 6.9 (23,04%).

(a) (b)

(c)

Figure 6.8: Misclassified image (patient 31) from MICCAI 2015 dataset: (a) gray-scale, (b) PoIs
(SIFT), and (c) RGB version with delineations.

One can observe a considerable amount of PoIs located at the left-middle portion of Fi-

gure 6.8b, mainly due to some air bubbles and foam. Problems with light (upper part of the

image) also contribute to placing PoIs outside the delineated area.

The PoIs showed in Figure 6.9 were calculated using A-KAZE on an image from the Augs-

burg dataset. Their percentage of incidence is 7.5%, which is quite low considering the average

percentage presented in Table 6.9 (53.77%). In this case, the main reason for placing PoIs

outside the delineated area concerns illumination problems (brighter areas).
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(a) (b)

(c)

Figure 6.9: Misclassified image (patient 39) from Augsburg dataset: (a) gray-scale, (b) PoIs (A-
KAZE), and (c) RGB version with delineation.

6.6 Conclusions and Future Works

In this paper, we dealt with the problem of computer-assisted Barrett’s esophagus identifi-

cation by means of bag-of-visual-words calculated using the OPF clustering technique. Such

technique showed promising results, outperforming the previous handcrafted feature results in

the same context. This suggests the generalization relevance of such technique, which can im-

prove previous results in the same field not only for the BE context but for other in which the

image representation configures the context to be evaluated. BE stands for an illness that is

likely to be confused with adenocarcinoma, and its early detection and prevention is of great

concern.
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We observed that only a very few works attempted at coping with the problem of automa-

tic BE identification using computer vision and machine learning techniques to date. In this

work, we fostered the research towards such area by introducing a supervised variant of the

Optimum-Path Forest classifier for automatic BE recognition, as well as we showed how to

build proper visual dictionaries using unsupervised OPF learning, outperforming the results ob-

tained in some recent works in which the same database and protocol were applied [Souza Jr. et

al. 2017, Souza Jr. et al. 2017]. Considering some previous works [Souza Jr. et al. 2017, Souza

Jr. et al. 2018, Souza Jr. et al. 2017], the use of handcrafted features were based on the SURF

and SIFT PoIs, but without the use of the OPF clustering as a way of dimensional reduction

of the problem. Moreover, considering the improvements of the results, the use of the OPF

clustering provides a new and promising way of BE and adenocarcinoma problem evaluation

based on extracted key points. The presented results showed the relevance of such technique

addressed to the BE and adenocarcinoma evaluation and description, contributing to the context

literature and influencing the evaluation and description of other tissue diseases. Comparing the

proposed method with others already published, we can ensure that with the use of the OPF for

the BoVW step, improvements could be achieved considering the higher results obtained. Also,

such technique provides advantages in the dimension reduction of the feature vector calcula-

tion, once even with a different number of key points per image, a standard method of feature

calculation is established. Again, the OPF clustering may provide flexibility and time saving

for such task.

The experimental results were considered over two datasets: (i) MICCAI 2015, and (ii)

Augsburg. For both scenarios, we evaluated five classification techniques and three unsupervi-

sed learning approaches to build the visual dictionaries. Also, we considered dictionaries with

three distinct sizes and even three different feature extractors.

The experiments pointed out that bag-of-visual-words techniques are suitable to handle BE

automatic identification, and there must be a trade-off between the number of visual words

and the amount of information they can encode (i.e., size of the clusters). Additionally, both

supervised and unsupervised OPF-based classifiers achieved the most accurate results, thus

supporting the main contributions of this paper.

In the following, a bullet list of trends based on the achieved results is presented:

• the OPF classifier presented the highest results of accuracy in all experiments, and may be

highly recommended considering the high generalization that provided for such a context,

even for different description scenarios;
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• the representation of BE and adenocarcinoma by means of image description techniques

may provide encouraging results, and with less computation processing cost as needed in

more sophisticated techniques;

• the A-KAZE features showed the very best results for BE and adenocarcinoma descrip-

tion in the Augsburg dataset evaluation, suggesting to be a very important technique for

the description of such diseases;

• the use of handcrafted features still has potential to evaluated for BE and adenocarcinoma

problem, considering the several number of techniques, such as fisher vectors and sparse

coding;

• the use of OPF clustering improved the current results and can be applied to a large

number of cases of image description of the BE and adenocarcinoma regions;

• the way of improving the selection of key points in each region (cancerous and non-

cancerous) still shows potential considering the influence of the number of key points in

each region for the correct classification result.

Regarding future works, we aim at considering deep learning and post-processing tech-

niques after the construction of the bags, such as feature selection (i.e., visual word selection).

Additionally, this post-processing can be performed using the large number of machine learning

techniques, such as SVM, OPF or even Convolution Neural Networks, providing intermediate

learning for the dictionaries calculation. More techniques for image description are also consi-

dered to be evaluated using the bag-of-visual-words provided by the OPF clustering.

6.7 Chapter’s Considerations

In a direct continuation of the work proposed in Chapters 3, 4, and 5, a new object detector

technique was introduced in this Chapter, along with a brand new evaluation of feature location

after calculating the key-points.

Here, AKAZE features, an object detection and description method that operates in a non-

linear scale space are employed. Not like the previous methods such as SIFT or SURF, that

find features in the Gaussian scale space, not respecting the natural boundaries of objects and

may smooth details and noise from the original image, AKAZE, using a nonlinear diffusion,

detects and describes features in nonlinear scale-spaces, keeping up important details and re-

moving noise through the scale-spaces. Finally, AKAZE employs a mathematical process cal-
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led Fast Explicit Diffusion to increase the nonlinear space scale computation. As a result, a

high-dimensional description of size 61 is obtained for each key-point the technique detects.

The evaluation protocols were again based on full-images, and the definition of features

based on object detection techniques (SURF, SIFT, and AKAZE) and BoVW representation.

This time, the introduction of unsupervised-OPF for calculating the most representative featu-

res, or prototypes, for further feature vector computation was a strong contribution of this study.

The unsupervised-OPF build the optimum trees concerning a maximum number of neighbors,

defining the samples that best represent each one, further called the prototypes to be compared

of all the features in the computation of the feature vector of each input sample. As in the

previous Chapters, this one conducted experiments over a 20-fold cross-validation design, with

80% of samples randomly selected for training and the remaining 20% for testing. Also, BoVW

with bigger sizes was proposed to evaluate the impact of the number of features in the correct

detection of cancerous tissues.

Remarkable results could be achieved after the experimental step. First, the best results

could be achieved with the biggest visual word size, suggesting that the representation of more

features gives the classifier more information to describe the tissues we aim to differentiate.

SIFT and AKAZE techniques, in combination with unsupervised-OPF BoVW, presented the

best classification results for MICCAI and Augsburg datasets, respectively. Such a result high-

lights the powerful space-scale representation SIFT and AKAZE perform, extremely represen-

tative in properly describing early cancerous and BE tissues. Finally, the spatial position of

the defined features was clearly evaluated, and the highest accuracies were always related to a

higher amount of features automatically detected inside the experts’ annotation area. Due to

that, this manuscript suggests a relation between experts’ and computational description for the

correct and positive definition of adenocarcinoma in BE samples.

Next, some extensions of this work would be evaluated, based on brand new ways of optimi-

zing the feature selection and positioning during the description of cancerous and noncancerous

tissues. Also, more classifiers should be evaluated based on the optimization we want to con-

duct. Finally, after extensively evaluating handcrafted feature representations, deep learning

techniques shall be employed in the identification of early cancer in BE context.



Chapter 7
BARRETT’S ESOPHAGUS ANALYSIS USING

INFINITY RESTRICTED BOLTZMANN MACHINES

This chapter presents the paper entitled Barrett’s Esophagus Analysis Using Infinity Res-

tricted Boltzmann Machines, published at Journal of Visual Communication and Image Repre-

sentation [Passos et al. 2019] as an extension from the idea presented in [Passos e Papa 2017]

applied to medical issues.

7.1 Introduction

The incidence of adenocarcinoma in patients with (BE) faced a major increase in western

populations in the last 10 years, explained by risk factors such as obesity and smoking [Lager-

gren e Lagergren 2010,Dent 2011, Lepage, Rachet e Jooste 2008], and an expectation to rise in

the next years. The bad prognosis of patients suffering from esophageal adenocarcinoma is re-

lated to its late diagnosis. Despite the dangerousness of the disease, when detected at the early

stages the dysplastic tissue can be treated achieving very high rates of the disease remission

(93% after 10 years, still presenting 5% of morbidity and 0% of mortality) [Dent 2011, Sharma

et al. 2016,Phoa et al. 2016]. Endoscopic resection (mucosal resection and submucosal dissec-

tion) and ablation techniques (radiofrequency ablation and cryoablation) appear to be promising

methods developed for the management of BE, with the potential to reduce the adenocarcinoma

risk in patients with dysplasia. However, limitations in the current methods for monitoring and

evaluating the BE level highlighted the necessity to the design of additional tools to improve

the detection of dysplasia [Shaheen et al. 2009, Johnston et al. 2005, Overholt, Panjehpour e

Halberg 2003].

Many efforts were considered in the last years regarding machine learning and computer-
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aided diagnosis. Van der Sommen [van der Sommen et al. 2016], for instance, designed a

system capable of automatically extract features for detecting and delineating early neoplastic

lesions in Barrett’s esophagus. Other works [Souza Jr. et al. 2017,Hassan e Haque 2015] aimed

to use features extracted from endoscopic images for the classification of Barrett’s esophagus

and adenocarcinoma. Furthermore, Mendel et al. [Mendel et al. 2017] proposed a deep learning

approach based on Convolutional Neural Networks in the context of BE analysis. Recently,

Souza et al. [Souza Jr. et al. 2017] conducted a study in which two approaches were introduced

to distinguish between BE and adenocarcinoma: (i) the OPF [Papa, Falcão e Suzuki 2009,Papa

et al. 2012] classifier; and (ii) the use of BoVW [Csurka et al. 2004, Peng et al. 2016] using

PoIs extracted from endoscopic images using SURF [Bay et al. 2008] and SIFT [Lowe 2004]

techniques [Souza Jr. et al. 2018] for the feature vector extraction.

Restricted Boltzmann Machines (RBMs) are nondeterministic neural networks composed

of two layers of neurons, i.e., visible and hidden, whose main idea is to produce a probabilistic

representation of a given input data in the hidden layer, such that the network is capable of

reconstructing the data in the visible layer [Larochelle et al. 2012, Schmidhuber 2015]. The

process is conducted using the minimization of the system’s energy, analogous to the Maxwell-

Boltzmann distribution law of thermodynamics. RBMs have been highlighted in the scientific

community over the last years, as well as some variants concerning deep learning models, e.g.,

Deep Belief Networks (DBNs) [Hinton, Osindero e Teh 2006] and Deep Boltzmann Machi-

nes (DBMs) [Salakhutdinov e Hinton 2012], due to their outstanding results in a number of

domains, such as human motion [Taylor, Hinton e Roweis 2006], classification [Larochelle et

al. 2012], spam [Silva et al. 2016], anomaly detection [Fiore et al. 2013], and collaborative

filtering [Salakhutdinov, Mnih e Hinton 2007], just to cite a few.

However, one of the main concerns related to RBMs is associated with the number of hid-

den units, which is application-dependent and has a great impact on the final results. Montufar

and Ay [Montufar e Ay 2011] showed that an RBM with 2m−1− 1 hidden units is a univer-

sal approximator, where m stands for the number of visible (input) units. Moreover, such a

large scale representation may not be efficient in practice, which motivated researchers to study

models that can automatically increase their capacity during learning.

Cotê and Larochelle [Côté e Larochelle 2016] proposed an extension of the RBM that

does not require specifying the number of hidden units, and it can increase its capacity (i.e.,

number of hidden units) during training, hereinafter called infinite RBM (iRBM). The learning

achieved by adding new units in the hidden layer, where each one is trained gradually from left

to right. Effectively, the number of hidden units increases automatically to a capacity that is
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similar to the universal approximator (i.e., when the number of hidden units tends to infinite),

though being much smaller. Such model is possible due to the following assumptions: (i) that

a finite number of hidden units has non-zero weights and biases, and (ii) the parametrization of

the per-unit energy penalty (β ) ensures the infinite sums during probability computation will

converge. Since the role of this energy penalty is only to ensure the iRBM is properly defined,

the penalty imposed in the energy function can be compensated by the learned parameters (i.e.,

weight decay). Therefore, we can remove one hyper-parameter from the project with the cost

of introduction of a less sensible one, i.e., the number of hidden units is removed and an extra

parameter is introduced in the model.

Despite the advantage that iRBM brought by removing the need to properly select the num-

ber of hidden neurons, it also came up with a shortcoming related to the slow convergence.

Peng et al. [Peng, Gao e Li 2018] attribute the problem to the initial correlation that is given by

the ordering effect present in the iRBM, and proposed a solution by adding a probability of flip-

ping the position of some neurons in the hidden layer while training, avoiding the dependency

among each other. Additionally, they also proposed a mechanism to use the iRBM not only

for binary image reconstruction but also for discriminative tasks, employing a “one-hot"vector

representation of the sample’s label together with the feature vector while training the model

for further classification of the test set.

Regardless dropping out the hidden units that are usually required beforehand, iRBM still

demands the selection of the remaining hyper-parameters, such as the learning rate, the weight

decay, and the β hyper-parameter, which despite less sensitive than the number of hidden units,

still requires a proper fine-tuning. To deal with this problem, Passos et al. [Passos e Papa

2017] proposed to employ meta-heuristic optimization techniques to fine-tune the aforementi-

oned hyper-parameters regarding binary image reconstruction since it has provided suitable re-

sults [Papa et al. 2015,Papa et al. 2015,Papa, Scheirer e Cox 2016,Rosa et al. 2016,Rosa et al.

2015, Rodrigues, Yang e Papa 2016]. However, as far as we know, such techniques were never

used to fine-tune iRBMs regarding classification tasks. In this paper, we propose to find suitable

hyper-parameters concerning the discriminative iRBM model using eight meta-heuristic techni-

ques: Particle Swarm Optimization (PSO) [Rodrigues et al. 2015], Bat Algorithm (BA) [Yang e

Gandomi 2012], Cuckoo Search (CS) [Yang e Deb 2010], Brain Storm Optimization [Shi 2011],

Firefly Algorithm (FA) [Yang 2010], and the Harmony Search (HS) [Geem 2009]. Although

one can use any other optimization technique, we opted to use these mainly because they are

well recognized in the literature, and they do not require computing derivatives as usually de-

manded by standard optimization techniques.
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In this paper, we also introduce the infinity Restricted Boltzmann Machines in the context

of automatic classification of Barrett’s esophagus using information extracted with SURF and

SIFT techniques in the “MICCAI 2015 Endovis Challenge"dataset. The experiments performed

a comparison of the aforementioned meta-heuristic optimization techniques regarding iRBM

meta-parameter fine-tuning to the task of Barrett’s esophagus classification. Additionally, we

also considered both linear and Radial Basis Function SVMfor comparison purposes.

Therefore, the main contributions of this paper are fourfold: (i) to introduce iRBM in the

context of Barrett’s esophagus recognition, (ii) to promote the scientific literature concerning

iRBMs, (iii) to foster the scientific literature concerning Barrett’s esophagus, and (iv) to deal

with the problem of iRBM hyper-parameter optimization concerning discriminative tasks. The

remainder of this paper is organized as follows. Sections 7.2 and 7.3 present theoretical back-

ground and the proposed fine-tuning process, respectively. Section 7.4 discusses the methodo-

logy and Section 7.5 presents the experimental results. Finally, Section 7.6 states conclusions

and future works.

7.2 Theoretical Background

In this section, we briefly explain the theoretical background related to the discriminative

Infinity Restricted Boltzmann Machines and the dinamic training strategy.

7.2.1 Discriminative Infinity Restricted Boltzmann Machines

Larochelle and Bengio introduced a discriminative version of the RBM [Larochelle e Ben-

gio 2008] to the task of classification, and Peng et al. [Peng, Gao e Li 2018] adapted the idea

to the iRBM domain. In order to couple the labels in the formulation, the energy function is

redefined as follows:
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where d is the bias of the label vector, ey =
(

1y=1
)C

i=1 stands for the so-called “one-hot"representation

of label y ∈ {1,2, . . . ,C}, and uy j is the element from matrix U connecting the jth hidden unit

to ey.

The distribution over y given the energy function (Eq. 7.1) is given by:
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having P(vi = 1|h,z) defined exactly the same as in Equation 7.2. Figure 7.1 depicts the Discri-

minative iRBM.

Figure 7.1: Discriminative iRBM. Both visible (v) and label (ey) layers are employed for training
the model. A new hidden unit hz+1 is introduced in the model for learning purposes.

7.2.2 Dynamic Training Strategy

Despite the advantages achieved using iRBM, such as the absence of a hyper-parameter to

be fine-tuned, i.e., the number of units in the hidden layer, it presents a shortcoming related

to a slow convergence while training the network. The explanation concerns the time required

by the filters to diverge from each other given an initial correlation imposed by the ordering

effect intrinsic to iRBMs, where each newly added hidden unit suffers from the influence of the

previously added ones, learning the features jointly and not by itself.

To cope with the issue, Peng et al. [Peng, Gao e Li 2018] proposed to use the approximated

gradient descent algorithm together with the dynamic training strategy, which assumes that

changing the order of the hidden units at each gradient descent step and jointly training iRBMs

with all possible orders it is possible to alleviate the bias inherited from the ordering effect.

The model employs a variable Qt , which controls the proportion of units regrouped at step t.

Additionaly, õ stands for the vector of indexes to be permuted given a probability distribution.
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The process is illustrated in Figure 7.2.

Figure 7.2: Dynamic training strategy proposed by Peng et al. [Peng, Gao e Li 2018], where Qt

Hidden units are permuted at time step t accordingly to the indexes defined in õ.

7.3 Infinity RBM Fine-Tuning as an Optimization Problem

The proposed approach requires the optimization of three hyper-parameters of the iRBM:

(i) the learning rate η , (ii) the weight decay λ regularization parameter, and (iii) the β para-

meter. Notice the ADAGRAD stochastic gradient technique [Duchi, Hazan e Singer 2011] is

employed as the learning rate. In this case, we have a per-dimension learning rate method,

i.e., ηηη ∈ℜn, with ε = 10−6 [Côté e Larochelle 2016]. In a nutshell, meta-parameters η and β

can be interpreted as an n-sized vector, where n stands for the current number of hidden units.

This latter parameter stands for a small number to avoid numerical instabilities. Cotê and Laro-

chelle [Côté e Larochelle 2016] claim that one can throw away the parameter n, thus replacing

the RBM model by the iRBM one. However, βββ is still a hyper-parameter to be optimized.

Notice the regularization parameter βββ is way less sensitive than the number of hidden units n.

Figure 7.3 depicts the proposed approach to optimize the iRBM model, where the idea is

to initialize all decision variables at random, and then the optimization algorithm takes place.

In this work, we used the following ranges concerning the parameters: ηηη ∈ [0,0001,0,5], βββ ∈
[0,01,1,5] and λ ∈ [0,00001,0,01].

In order to fulfill the requirements of any optimization technique, one shall design a fitness

function to guide the search into for best solutions. In this paper, we used the average accuracy

of the training set considering the task of classification as the fitness function. Furthermore, we

present the mean results obtained over 20 runs to provide a statistical comparison.

In short, the optimization technique selects the set of hyper-parameters that maximizes

the classification accuracy over the training set considering a set of features extracted from
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Figure 7.3: Proposed approach to model the iRBM fine-tuning problem as an optimization task.

endoscopic images using BoVW over SIFT and SURF features as an input to the model. After

learning the hyper-parameters, one can proceed to the classification step concerning the testing

samples. Regarding this work, the following approaches are conducted: (i) the set of meta-

parameters that best fits the model is selected using the validation set over a reduced number

of 150 epochs for convergence purposes, and (ii) afterwards, the selected set of best meta-

parameters are used to train the network using 1,500 epochs and to perform the classification

over the test set.

7.4 Methodology

In this section, we present the methodology employed to evaluate the optimization techni-

ques, the dataset, and the experimental setup.

7.4.1 Optimization Techniques

This work employs six metaheuristic techniques to the task of iRBM fine-tuning, i.e., PSO,

BA, CS, BSO, HS, and FA, presented in Section 7.1.

Table 7.1 presents the parameters used for each aforementioned optimization technique,

where five agents (initial solutions) were used for all optimization techniques during 10 iterati-

ons for convergence purposes. Notice these parameters were set empirically. In regard to PSO,

w stands for the inertia weight, and c1 and c2 control the step size towards the best local and

global solutions, respectively. With respect to BA, fmin and fmax bound the minimum and ma-

ximum frequency values, and A and r denote the loudness and pulse rate values, respectively.

Regarding BSO, pgen defines a probability whether a new solution will be generated by one

or two other individuals, k stands for the number of clusters composed of similar ideas, and
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poneCluster and ptwoCluster stand for the probability of creating a new solution based on only one

or two clusters, respectively. Parameters ϕ and τ are used to avoid the technique getting trapped

from local optima. FA uses µ and γ , which stand for a random perturbation and the light absorp-

tion coefficient, respectively. Variable ς denotes the attractiveness of each firefly. Furthermore,

Harmony Memory Considering Rate (HMRC) and Pitch Adjusting Rate (PAR) are used by HS

for responsible creating new solutions based on previous experience of the music player and

applying some disruption to the created solution in order to avoid local optima, respectively.

Finally, CS uses Γ to compute the Lévy distribution, ζ for the switching probability (i.e., the

probability of replacing the worst nests by new ones), and s for the step size.

Table 7.1: Parameter configuration for each optimization technique.

Technique Parameters

BA r = 0.5, A = 1.5
fmin = 0, fmax = 100
ϕ = 0.9, τ = 0.9

BSO pgen = 0.4, k = 2
poneCluster = 0.8, ptwoCluster = 0.5

CS Γ = 1.5, ζ = 0.25, s = 0.8
FA γ = 1, ς = 1, µ = 0.2
HS HMCR = 0.7, ρ = 10, PAR = 0.7

PSO c1 = 1.7, c2 = 1.7, w = 0.7

7.4.2 Datasets

The information (i.e., features) were extracted from a dataset of images from Barrett’s

esophagus and adenocarcinoma called “MICCAI 2015", which was provided at the “MICCAI

2015 EndoVis Challenge"1. Such dataset is composed of 100 endoscopic images of the lower

esophagus from 39 individuals, 22 presenting esophageal adenocarcinoma and 17 diagnosed

with early-stage Barrett’s esophagus. For each patient, several endoscopic images were made

available, ranging from one to eight. A total of 50 images showing cancerous tissue areas and

50 images showing dysplasia without cancer compose the dataset. The injured tissue observed

in the cancerous images have been delineated by five different endoscopy experts. Figure 7.4

shows some dataset samples and their respective delineation performed by the experts.

1https://endovissub-barrett.grand-challenge.org/
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Figure 7.4: Some samples from the Barrett’s Endovis 2015 Challenge [Souza Jr. et al. 2017].

7.4.3 Experimental Setup

This work employs a cross-validation procedure with 20 runs to provide a statistical analysis

using the Wilcoxon signed-rank test with a significance of 0.05 [Wilcoxon 1945]. Regarding

the task of meta-parameter optimization, we conducted the experiments over 150 epochs to

find the meta-parameters that lead to the best classification accuracies regarding the validation

set. Finally, the network was trained once again over 1,500 epochs using the best parameters

found by each meta-heuristic technique to classify the testing set. The learning procedure was

conducted using Persistent Contrastive Divergence (PCD) [Tieleman 2008] using three Gibbs

sampling steps with mini-batches of size 5.

Finally, the codes used to reproduce the experiments are available on GitHub2,3. The ex-

periments were conducted using an Ubuntu 16.04 Linux machine with 8Gb of RAM running

an Intel Core™i5−2410M with a frequency of 2.30 GHz and a GPU GeForce® GT540M with

2GB. The source-codes run on top of Matlab and C for the iRBM and optimization approaches,

respectively.

7.5 Experiments

This section describes the experiments as follows: Section 7.5.1 presents the image fea-

ture extraction using points-of-interest together with a Bag-of-Visual-Words schema, and Sec-

tion 7.5.2 discusses the optimization steps as well as the time consumption regarding the role

optimization process. Sections 7.5.3 and 7.5.4 present the procedures adopted while training

and testing the model, respectively.

2iRBM: https://github.com/Boltzxuann/RP-iRBM
3LibOPT [Papa et al. 2017]: https://github.com/jppbsi/LibOPT
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7.5.1 Feature Extraction

The points-of-interest were calculated using the Speed-Up Robust Features and the Scale-

Invariant Feature Transform techniques, and then the feature vectors were calculated using Bag-

of-Visual-Words. The SURF technique ensures scale and spatial invariance, seeking for maxima

of the determinant of the Hessian matrix, demarcating specific key points which are explored in

their local neighborhood resulting in a feature vector of size 64. The SIFT algorithm operates

on image regions calculating features that are invariant to scaling and rotation. It seeks for the

scale-space extrema detection evaluating the image scales (difference-of-Gaussian function)

providing feature vectors of size 128. Finally, the BoVW technique uses points-of-interest

from a set of reference images to generate a visual dictionary that is employed in the training

and testing phases. For this work, we considered dictionaries with two different sizes: 500

and 1,000 [Souza Jr. et al. 2017]. In order to compose such dictionaries, two well-known

techniques were considered: (i) k-means and (ii) random selection. Figure 7.5 illustrates the

feature vector calculation for the experiments.
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Figure 7.5: Descriptor calculation for the experiments using SURF, SIFT and BoWV techniques
(adapted from [Souza Jr. et al. 2017]).

7.5.2 Optimization

Six meta-heuristic optimization techniques, i.e., BA, BSO, CS, FA, HS, and the PSO, were

employed in this work to fine-tune the iRBM meta-parameters: learning rate η , weight decay λ ,

and the beta β . All techniques were initialized with five agents and executed during 10 iterations

over 150 epochs. Additionally, we started the model using random variables and executed the

iRBM for 15 runs over 150 epochs, hereinafter called Random Search (RS) for comparison
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purposes.

Figures 7.6 and 7.7 present the results obtained while fine-tuning the model over the va-

lidation sets regarding 500 and 1,000 visual words, respectively. The most accurate iterations

were selected for each technique for visualization purposes. Notice that iteration zero stands

for the average of the five initial agents for the optimization techniques, as well as the first five

runs for RS.
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Figure 7.6: Classification accuracies over the validation set during the meta-parameter optimiza-
tion process concerning 500 visual words for SIFT (a) and SURF (b).

Despite the oscillatory behavior, one can notice that FA obtained the highest results for

both SIFT and SURF techniques over 500 visual words, reaching 75% of accuracy during a

few iterations (Figure 7.6). It also reached the best results at the end of the optimization steps,

which reflects the best values obtained over the testing set.
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Figure 7.7: Classification accuracies over the validation set during the meta-parameter optimiza-
tion process concerning 1,000 visual words for SIFT (a) and SURF (b).

Regarding 1,000 visual words, Figure 7.7 depicts a behavior similar to Figure 7.6, with

considerable oscillation and FA obtaining the best results, which once again reflects on the
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results of the test set, presented in Table 7.5. The Harmony Search and the Bat Algorithm behave

similarly to FA, also achieving 75% over a few iterations. Additionally, the random search also

obtained results statistically similar to the ones found by FA, which can be explained by the

short number of agents and iterations employed for the optimization convergence, i.e., 5 and

10, respectively. Furthermore, the random search presents an even more oscillatory behavior,

as shown in Figure 7.7(b).

Tables 7.2 and 7.3 present the average execution time regarding 20 executions concerning

500 and 1,000 visual words, respectively. Clearly, HS and RS obtained the lowest execution

time for both configurations. Since HS (and also RS) updates a single agent for each iteration

and the remaining techniques update all the agents for each iteration, it is expected that HS

to be faster. In a nutshell, for the configuration employed in this work with 5 agents over 10

iterations, HS and RS evaluate the fitness function 15 times, while the others evaluate 5 times

(initialize each agent) and then update each one for 10 times, ending up in 55 executions. Notice

CS also presents a small execution time, due to the solutions discarded without evaluation (eggs

abandoned by the host bird).

BA BSO CS FA HS PSO RS

k-means
SIFT 49.55 50.08 22.81 45.12 14.28 49.92 14.29
SURF 49.96 51.01 23.42 46.38 14.17 50.44 14.50

Random
SIFT 44.93 51.97 24.05 45.29 14.45 51.19 14.99
SURF 48.74 52.33 25.08 45.31 14.37 50.48 15.27

Table 7.2: Mean computational load (in minutes) of each technique applied to the BE and adeno-
carcinoma problem using 500 visual words for the feature vector calculation.

BA BSO CS FA HS PSO RS

k-means
SIFT 50.45 53.27 23.84 47.17 14.10 48.76 14.34
SURF 49.75 52.15 23.20 45.45 14.29 50.12 14.45

Random
SIFT 49.94 50.98 23.27 46.92 14.25 48.63 14.45
SURF 49.99 51.64 24.12 45.15 14.29 50.73 14.38

Table 7.3: Mean computational load (in minutes) of each technique applied to the BE and adeno-
carcinoma problem using 1000 visual words for the feature vector calculation.

7.5.3 Training

The experiments presented in this section employ the best meta-parameters obtained in

Section 7.5.2 for each meta-heuristic optimization technique, i.e., the combination of learning

rate, weight decay, and β that provided the best accuracies over the validation set during 150

epochs. The iRBM was trained once again, however using 1,500 epochs.
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Figure 7.8 depicts the learning steps concerning SIFT and SURF features over the 500-sized

dictionary. Despite the oscillatory behavior, which probably can be attributed to the dynamic

training strategy [Peng, Gao e Li 2018] described in Section 7.2.2, one can notice that FA,

BSO, and BA interchanged the highest results regarding Figure 7.8(a), while the random search

obtained the less accurate results. Concerning SURF, FA also presented the best results, as

depicted in Figure 7.8(b). Furthermore, FA appears more inclined to a slight growth behavior

than the others techniques, regardless the oscillations.
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Figure 7.8: Classification accuracies during the training convergence process concerning a dictio-
nary composed of 500 visual words for SIFT (a) and SURF (b).

A similar behavior is observed in Figure 7.9, which concerns SIFT and SURF with a dicti-

onary of size 1,000. However, FA interchanges the top results with BA, HS, PSO and even the

random search. In spite of such exchange, FA seems to stand for the best optimization technique

overall.
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Figure 7.9: Classification accuracies during the training convergence process concerning a dictio-
nary composed of 1,000 visual words for SIFT (a) and SURF (b).
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7.5.4 Classification Step

The experiments conducted in this section are divided according to the feature extraction

technique and visual dictionary sizes. Tables 7.4 and 7.5 present the mean accuracy and the

standard deviation concerning the classification over the test set during 1,500 training epochs

using 500 and 1,000 visual words, respectively. The training employs the combination of meta-

parameters that provided the best accuracies over the validation set during the fine-tuning step,

presented in Section 7.5.2. Additionally, results are compared against two versions of Sup-

port Vector Machines with RBF and linear kernels, as well as the well-known Bayes classifier.

Moreover, the experiments were executed for 20 runs for statistical analysis using Wilcoxon

signed-rank test [Wilcoxon 1945] with 0.05 of significance, being the most accurate results in

bold.

SIFT SURF
k-means Random k-means Random

iRBM-BA 63.50±10.6184 55.65±6.1846 61.60±7.0183 57.40±9.1311
iRBM-BSO 64.85±9.3770 51.85±2.9924 62.70±8.5032 54.65±3.2247
iRBM-CS 61.40±8.6628 57.45±7.7751 60.97±4.3011 55.90±3.7381
iRBM-FA 66.15±11.5023 49.95±2.0504 66.35±4.7022 58.80±4.1389
iRBM-HS 59.95±6.2954 55.75±8.1319 65.35±6.4570 56.00±5.2749

iRBM-PSO 65.55±6.5370 52.50±1.5003 64.80±6.0156 51.20±2.7254
iRBM-RS 58.45±5.0028 56.90±3.7025 60.20±6.45883 59.15±7.5520
SVM-RBF 65.50±9.8467 65.60±10.4255 64.80±8.2496 63.40±11.2731

SVM-Linear 56.80±4.5527 54.50±6.8608 58.60±6.5392 57.60±4.4458
Bayes 59.98±3.449 53.00±3.5192 56.86±3.1080 53.52±4.6362

Table 7.4: Best accuracy values for the “MICCAI 2015 Endovis Challenge"Dataset using 500 visual
words.

Regarding Table 7.4, one can notice that iRBM fine-tuning with FA outperformed all the

other techniques, obtaining the most accurate classification results. Additionally, iRBM opti-

mized with all meta-heuristic techniques, except CS and the random search, achieved similar

results concerning the Wilcoxon test, as well as SVM-RBF. Such results may lead to two as-

sumptions: (i) meta-heuristic optimization techniques are suitable for fine-tuning iRBM meta-

parameters concerning classification tasks, as well as for reconstruction tasks [Passos e Papa

2017], since the results obtained using such techniques outperformed the ones obtained with a

random initialization of the weights, and (ii) iRBM is appropriate for classification tasks since it

outperformed the results obtained by some well-established classifiers, such as SVM and Bayes.

Concerning the results presented in Table 7.5, the most accurate results were obtained by
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SIFT SURF
k-means Random k-means Random

iRBM-BA 60.81±7.4686 60.01±7.2947 65.38±7.6846 60.04±7.4913
iRBM-BSO 58.40±8.8101 60.61±6.7935 60.41±8.6898 58.79±7.5418
iRBM-CS 59.57±10.4727 59.43±9.2710 62.09±7.9337 58.71±8.9159
iRBM-FA 66.01±9.6896 62.21±6.3956 67.00±8.1187 60.4±9.2183
iRBM-HS 61.32±6.7106 61.08±11.1132 65.38±6.4580 59.46±7.1040

iRBM-PSO 62.84±6.8391 60.60±8.0681 59.80±7.8694 58.10±10.0872
iRBM-RS 65.10±6.0221 63.79±6.1503 66.30 ±9.3325 61.71±6.2307
SVM-RBF 64.10±8.0761 63.70±7.0523 62.60±7.2304 62.10±6.3215

SVM-Linear 67.30±9.8649 52.70±3.5027 62.80±4.9553 56.50±4.0050
Bayes 60.70±3.7278 54.37±3.0303 57.43±4.2186 56.86±6.2625

Table 7.5: Best accuracy values for the “MICCAI 2015 Endovis Challenge"Dataset using 1,000
visual words.

SVM-Linear and once again the iRBM fine-tuned using the FA technique, which suggests the

idea that FA is the most effective meta-heuristic optimization technique with respect to classifi-

cation tasks using iRBM. Furthermore, similar results were obtained by SVM-RBF, as well as

the iRBM using the HS, BA, and the RS as parameters fine-tuning. The explanation for finding

competitive accuracies concerning a random initialization of the meta-parameters may be due

to the short number of agents and iterations employed for meta-heuristic optimization techni-

ques. Moreover, one can notice that the configuration using k-means obtained the best results

regarding both SIFT and SURF, as well as in with both 500 and 1,000 words, which suggests

that dictionaries composed by employing k-means generate better features.

Considering the very best results obtained for all the techniques, i.e., iRBM, SVM-RBF,

SVM-Linear, and Bayes, Tables 7.6 and 7.7 present the sensitivity (SE) and the specificity (SP)

results concerning the configuration over 500 and 1,000 words, respectively. Notice the best

values are in bold.

Accuracy Sensitivity Specificity
iRBM-FA 66.35% 0.644 0.687
SVM-RBF 65.60% 0.612 0.706

SVM-Linear 58.60% 0.582 0.593
Bayes 59.98% 0.593 0.605

Table 7.6: Mean SE and SP values for the selected best results obtained using dictionaries of 500
words.

One can observe that iRBM obtained the best Sensitivity for both configurations, which
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Accuracy Sensitivity Specificity
iRBM-FA 67.00% 0.655 0.692
SVM-RBF 64.10% 0.632 0.686

SVM-Linear 67.30% 0.583 0.767
Bayes 60.70% 0.581 0.638

Table 7.7: Mean SE and SP values for the selected best results obtained using dictionaries of 1,000
words.

indicates a higher rate of true positives correctly identified. Such outcome is particularly in-

teresting for medical issues, since a correct identification of some illness, specially in early

stages, may prevent the progress of the disease. Additionally, it can be also observed that using

either configurations, i.e., dictionaries of 500 and 1,000 words, does not impact in the final

classification accuracy since both scenarios achieved similar results.

7.6 Conclusions and Future works

This work dealt with the problem of automatic Barrett’s esophagus identification using

infinity Restricted Boltzmann Machines for classification purposes. The approach employs

SURF and SIFT techniques to extract the points-of-interest, which are used to build structural

patterns in endoscopy images in association with a BoVW. Such descriptors were calculated

over a set of images previously annotated by five experts, making the identification of malignant

lesions available for classification. Additionally, experiments were conducted over two different

dictionary configurations, i.e., 500 and 1,000 words.

From the experiments, we can conclude that: (i) infinity Restricted Boltzmann Machines

are convenient for Barrett’s esophagus identification task, since it outperformed SVM-Linear

and SVM-RBF, as well as the Bayes classifier in one of the configurations, and achieved similar

results concerning the other; (ii) meta-heuristic optimization techniques are suitable for iRBM

meta-parameter optimization, since they outperformed a random search over an equal number of

executions; (iii) the identification of Barrett’s esophagus is not a trivial task, once all techniques

obtained results under 70% of accuracy.

Based on the last assumption, we can also conclude that Barrett’s esophagus identification

requires more study and RBM-based approaches may offer an interesting direction in such

context, once they are the base blocks for deeper architectures, i.e., Deep Belief Networks and

Deep Boltzmann Machines, which are able of extracting deeper characteristics and correlations

from data.
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Considering future works, we intend to investigate the identification of Barrett’s esophagus

using RBM-based deeper architectures, as well as other deep learning techniques. Furthermore,

we aim to consider the suitability of deeper versions of the iRBM.

7.7 Chapter’s Considerations

As a final attempt in the evaluation of handcrafted features for BE and adenocarcinoma

identification, in this manuscript we attended to employ iRBM, a nondeterministic neural networks

composed of two layers of neurons, i.e., visible and hidden, to produce probabilistic represen-

tations in the hidden layer and further reconstruction of data in the visible layer. Plus, iRBM

does not require specifying the number of hidden units, making its capacity flexible during

training. An extra consideration about iRBM is related to properly selecting its training hyper-

parameters, such as learning rate, weight decay, among others, to ensure fast and precise con-

vergence. To cope with such a task, the iRBM hyper-parameter optimization was performed by

the application of metaheuristic techniques, such as Cuckoo Search and Particle Swarm Opti-

mization.

Therefore, the experimental delineation was based on selecting features from SURF and

SIFT key-points, optimizing the iRBM hyper-parameters by employing metaheuristic techni-

ques during the training phase, and finally, classifying BE and adenocarcinoma samples based

on a model with the best hyper-parameters already calculated. We believe that this ablation pro-

cess of defining the optimal set of hyper-parameters may enhance the generalization performed

by iRBM.

Just like in Chapters 4 and 6, the feature vector calculation was based on a BoVW-k-means

approach that selects the most representative ones, the prototypes, for further computing the

descriptor for each dataset sample. In this manuscript, SURF and SIFT key-points were se-

lected for the feature extraction task. For the hyper-parameter optimization task, we employed

the following metaheuristic techniques: Particle Swarm Optimization, Bat Algorithm, Cuckoo

Search, Brain Storm Optmization, Firefly Algorithm, and Harmony Search.

In a close observation of the results presented in tables 7.6 and 7.7, the hyper-parameter op-

timization process could enhance the iRBM performance compared to other classifiers. Howe-

ver, compared to previous results, we could not outperform the ones presented in previous Chap-

ters. In conclusion, we observed that considering how difficult the definition of early cancer is

in BE samples, the iRBM classifier could not converge properly, providing a generalization that

even presenting an optimized hyper-parameter configuration, could not avoid the visual-biased
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design this context presents.

By finishing the evaluation of iRBM with nonempirical parameters, still based on object

detector techniques of description, we covered a fair amount of description techniques, classi-

fiers, and experimental delineations for the human representation of early cancer and BE, and

in other words, the handcrafted features. Very satisfactory outcomes could be achieved so far,

highlighting that the human knowledge, in quantitative and qualitative ways, presents essen-

tial influence in the correct representation and further classification of BE and adenocarcinoma

using computational resources. From this Chapter on, we explored the use of deep learning te-

chniques for understanding the computational focus in such identification, aiming at comparing

its representation with what we achieved until this point in our research.



Chapter 8
ASSISTING BARRETT’S ESOPHAGUS

IDENTIFICATION USING ENDOSCOPIC DATA

AUGMENTATION BASED ON GENERATIVE

ADVERSARIAL NETWORKS

This work introduces Generative Adversarial Networks to generate high-quality endoscopic

images, thereby identifying Barrett’s esophagus and adenocarcinoma more precisely, in a way

to solve the lack of available data drawback. Further, Convolution Neural Networks are used

for feature extraction and classification purposes. Such study was published at “Computers in

Biology and Medicine"journal [Souza Jr. et al. 2020].

8.1 Introduction

Barrett’s esophagus (BE) is a condition that changes the mucosal cells of the lower part

of the esophagus considerably. Risk factors, such as obesity, contribute to rising the number

of patients, mainly in western populations [Lagergren e Lagergren 2010, Dent 2011, Lepage,

Rachet e Jooste 2008]. The remission of the disease is directly related to early diagnosis, thus

delivering the treatment with reduced rates of morbidity and mortality, as well as a complete

remission after 10 years of treatment [Dent 2011, Sharma et al. 2016, Phoa et al. 2016].

Techniques widely used in clinics, such as optical coherence tomography, confocal laser

endomicroscopy, and chromoendoscopy, have been employed to BE and adenocarcinoma scre-

ening, turning the manual evaluation more accurate by characterizing esophageal histology th-

rough in vivo experiments [Sharma et al. 2015]. However, BE can often be misdiagnosed du-
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ring endoscopy due to the inability to distinguish the columnar mucosa of the proximal stomach

from the metaplastic epithelium in the distal esophagus. Usually, it is recommended to employ

the Seattle biopsy protocol to handle lesions (i.e., dysplastic tissue) presented in white light

endoscopy examination. Even though the protocol recommends the extraction of four biopsies

sampled at every 1 cm, such a procedure is still susceptible to failures since those samples may

not be large enough for a proper evaluation, ending up in erroneous diagnoses [Abrams et al.

2009, van der Sommen et al. 2014, Sharma et al. 2015].

Despite the developments in interventional therapies for handling adenocarcinoma and Bar-

rett’s esophagus, e.g., endoscopic resection and ablation techniques, which present a high po-

tential for reducing the cancer risk in dysplasia-diagnosed patients, their limitations must be

handled with methods for monitoring and evaluating the state of the disease, thus improving

dysplasia detection [Shaheen et al. 2009, Johnston et al. 2005, Overholt, Panjehpour e Hal-

berg 2003]. Computer-aided analysis of Barrett’s esophagus and adenocarcinoma figures as a

powerful tool that has been subjected to intensive research in the past years [Souza Jr. et al.

2018]. Works have been conducted to evaluate the use of handcrafted features of endoscopic

images based on texture and color, while others evaluate the well-known Convolutional Neural

Networks (CNN) to identify the disease automatically. Recent works proposed by Souza Jr. et

al. [Souza Jr. et al. 2018,Souza Jr. et al. 2019,Souza Jr. et al. 2017,Souza Jr. et al. 2018,Souza

Jr. et al. 2017], Mendel et al. [Mendel et al. 2017], and Passos et al. [Passos et al. 2019] are

some examples that make use of artificial intelligence techniques for classification purposes.

The works proposed by Souza Jr. et al. [Souza Jr. et al. 2018, Souza Jr. et al. 2019, Souza

Jr. et al. 2017, Souza Jr. et al. 2018, Souza Jr. et al. 2017] and Passos et al. [Passos et al. 2019]

studied the use of image representation techniques to describe and classify adenocarcinoma and

Barrett’s esophagus regions. For such works, the use of feature extraction techniques, such as

Speeded-up Robust Features (SURF) [Bay et al. 2008] and Scale-Invariant Feature Transform

(SIFT) [Lowe 2004], as well as classifiers, such as Support Vector Machines (SVMs), Optimum

Path-Forest (OPF) [Papa, Falcão e Suzuki 2009, Papa et al. 2012], and the infinite Restricted

Boltzmann Machine (iRBM) [Peng, Gao e Li 2018], were considered to provide the class pre-

diction of the injured regions. Mendel et al. [Mendel et al. 2017, Ebigbo et al. 2020, Ebigbo

et al. 2019] introduced the use of deep learning techniques to classify expert-annotated images

of the esophagus presenting adenocarcinoma and Barrett’s esophagus. A Convolutional Neu-

ral Network, together with transfer learning, was applied in a leave-one-patient-out protocol.

Recently, some new deep learning approaches were also considered for the automatic classifi-

cation and identification of neoplasia regions in endoscopic images [de Groof et al. 2020, van

der Putten et al. 2020].
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The most common drawbacks related to computer-assisted BE and adenocarcinoma identi-

fication are related to the absence of data mostly, once most of the datasets figure only a limited

number of patients. Another obstacle concerns the lack of public datasets, which limits the de-

velopment of more effective methods to detect early-stage illness in medical images. Recently,

the data acquisition bottleneck has been coped with data augmentation (DA) methods, which

figure as an interesting option to increase the amount of data. The application of data augmen-

tation can be justified for several reasons. The first one concerns oversampling the minority

class when trying to learn from imbalanced datasets. Such a scenario is challenging since the

classifier tends to be biased toward the majority class. The other reason is to avoid the use of the

original dataset for privacy reasons. Datasets, especially from the medical field, may provide

personal legal information that can pose risks when misused [Tanaka e Aranha 2019].

Among the methods for data augmentation, Generative Adversarial Networks (GANs) [Go-

odfellow et al. 2014] have presented significant improvements in image generation, mainly for

medical imaging [Han et al. 2019]. The primary idea related to GANs is to train a genera-

tor and a discriminator simultaneously. While the former employ inputs from easy-to-sample

random sources (e.g., noise) for artificial image generating, the latter determines whether the

samples belong to a real or an artificial image based on a learning process. The main goal

of GANs is to generate artificial images confident enough to confuse the discriminator, which

sends back an output gradient to the generator during the training process to improve the quality

of the synthetic images. Concerning the GANs original formulation proposed by Goodfellow et

al. [Goodfellow et al. 2014], the final discriminator’s output is the probability of a set of images

to belong or not to the original dataset, and hypothetically, the convergence is given when the

generator and the discriminator reach the Nash-equilibrium. The use of GANs-based synthetic

images for medical imaging presents a definite trend to be followed, thus handling several pro-

blems, such as lack of data or fragmented samples that compose the dataset. Some examples

include using GANs to identify brain tumors in magnetic resonance images [Han et al. 2020],

skin lesion detection [Frid-Adar et al. 2018], and segmentation of lung nodules in computed

tomography images [Jin et al. 2018].

Currently, a wide range of works has proposed to using GANs for many purposes, such as a

new approach called SaliencyGAN that is composed of concatenated GANs with partially sha-

red parameters [Wang et al. 2020]; the generation of high-quality and precise medical data using

an invariant deformation model based on the deformation-invariant CycleGAN (DicycleGAN)

architecture and the spatial transformation network [Wang et al. 2019]; and the reconstruction

of compressed sensing magnetic resonance images and fast magnetic resonance images by the

application of Deep De-Aliasing GANs [Yang et al. 2018,Yu et al. 2017]. These recent investi-



8.2 Generative Adversarial Networks 148

gations show up how interesting and trending the use of GANs may be for an extensive amount

of different research fields. Some interesting works addressed the use of GANs to provide addi-

tional data and represent new and not trivial expected scenarios due to their large applicability.

The work proposed by Han et al. [Han et al. 2019] concerns CNNs trained on synthetic samples

of magnetic resonance images of the brain. The main goal was to propose a two-step-based

GAN method for generating, separately, samples with and without tumors, for further classi-

fication purposes. Finally, Sandfort et al. [Sandfort et al. 2019] proposed a study in which a

CycleGAN was employed in the generation of non-contrast-computed tomography samples for

further data augmentation and segmentation using a pre-trained U-Net.

This work aims at investigating the feasibility of using Generative Adversarial Networks

to generate synthetic images from the esophagus and further assist the identification of Bar-

rett’s esophagus and adenocarcinoma. Therefore, the main contributions of this work are the

following:

• to introduce Generative Adversarial Networks to augment data from endoscopic images

aiming at distinguishing between Barrett’s esophagus from adenocarcinoma;

• to assess how the amount of synthetic data added to the original datasets in the data

augmentation process can affect BE and adenocarcinoma identification;

• to evaluate whether it is more effective to generate synthetic patches or the whole image.

It is also critical to define that the generation of full images presents a high computational

cost, while the patch generation requires less computational power due to the lower output

resolution. Even making sense generating both outputs, it is reasonable to assess which

one fits better the final evaluation considering such experimental design’s pros and cons.

The remainder of this work is presented as follows. Section 8.2 presents a theoretical back-

ground concerning the Generative Adversarial Networks and the variant used in this work, while

Section 8.3 describes the methodology and the proposed method. Finally, Sections 8.4 and 8.5

state the experiments and conclusions, respectively.

8.2 Generative Adversarial Networks

Goodfellow et al. [Goodfellow et al. 2014] introduced the concept of GANs, which is a

framework composed of two networks, i.e., a generator G and a discriminator D, that contest

with each other to generate data with the same (or similar) statistics (i.e., data distribution) as
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the training set. The generator attempts to learn, from random inputs, how to generate data to

fool the discriminator in a game-like approach. The learning procedure aims at minimizing the

following loss function:

min
G

max
D

L (D,G) = Ex[logD(x)]+Ez[log(1−D(G(z)))], (8.1)

where Ex stands for the expected value over all real data instances, and Ez corresponds to the

expected value over all random inputs to the generator. In other words, the latter term defines

the expected value over all fake instances generated by G. Last but not least, D(x) and D(G(z))

are the probabilities given by the discriminator that instance x is real and that the fake instance

z generated by G is also real, respectively. While the goal of the generator is to minimize its

loss, the discriminator tries to maximize it. In other words, the Nash-equilibrium is reached

during training, in which neither the discriminator nor the generator can improve their utilities

unilaterally. Figure 8.1 depicts the overall mechanism concerning the Generative Adversarial

Networks.

Training set

Random input

Generator

Fake image

Real image

Discriminator
D(x)

x

z D(z)

D(G(z))

Figure 8.1: Overall mechanism of standard Generative Adversarial Networks. Based on the trai-
ning set and a random input (noise, for instance), the generator network keeps producing synthetic
samples to be evaluated by the discriminator network. In the end, the main goal is to provide sam-
ples as similar as possible to the training set, so that the discriminator will not be able to classify
them correctly as “fake".

Concerning the medical applications, GANs can be of great interest due to their capabili-

ties in generating synthetic data. The work proposed by Shin et al. [Shin et al. 2018] showed

improvements in brain tumor identification when augmented data was introduced. The study

conducted by Karras et al. [Karras et al. 2017] presented promising results in the implementa-

tion of a progressive growing of GANs to generate realistic mammography images with reso-

lution up to 1,280×1,024 pixels. Realistic-looking retinal images were also synthesized using

GANs by Zhao et al. [Zhao et al. 2018] based on a small dataset and a style transfer. Finally,
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the work conducted by Middel et al. [Middel, Palm e Erdt 2019] proposed a method in which

GANs were trained to generate realistic medical images obtained from the National Institutes

of Health repository.

Among the number of GANs variants, the Deep Convolutional GANs (DCGAN) was pro-

posed by Radford et al. [Radford, Metz e Chintala 2015] and motivated by scaling up GANs

using of CNN models. The core of the DCGAN approach comes by adopting and modifying

three changes to CNN architectures. First, the DCGAN generator and discriminator use all

convolutional nets, replacing the deterministic spatial pooling functions with stridden convo-

lutions, which allow the network to learn its own down or upsampling steps [Springenberg

et al. 2015, Radford, Metz e Chintala 2015]. Second, by eliminating fully-connected layers

from the top and applying global average pooling instead, it was found that the model stability

could be increased, but at the cost of convergence speed. Therefore, a middle ground of direc-

tly connecting the highest convolutional features to the input and output of both generator and

discriminator was applied and presented satisfactory results. Besides, the first DCGAN layer,

which takes a uniform distribution as input, is reshaped into a 4-dimensional tensor to be used

as a convolution-stack start point. The last convolutional layer of the discriminator is flattened

and feeds a single sigmoid function to provide the output.

The third change concerns avoiding the application of batch normalization in the generator’s

output and discriminator’s input layers. The batch normalization helps to deal with training

problems related to poor initialization and gradient flow. However, directly applying batch

normalization to all layers results in oscillatory behavior and model instability [Ioffe e Szegedy

2015,Radford, Metz e Chintala 2015]. Finally, the Rectified Linear Unit (ReLU) activation was

applied in the generator layers, except its output, and within the discriminator, the leaky rectified

activation showed to perform very well, especially for higher resolution modeling. Figure 8.2

illustrates the generator’s pipeline based on noisy input.

Despite the advantages mentioned above, we considered using DCGAN based on succes-

sful cases observed in recent medical imaging augmentation works. Diaz et al. [Diaz-Pinto

et al. 2019], for instance, employed DCGAN for retinal image synthesis, providing an in-

depth analysis of the qualitative results and quantitative evaluation of the structural properties

of synthetic and real images. Further, Doman et al. [Doman, Konishi e Mekada 2020] proposed

using DCGAN to synthesize lesion images from metastatic liver cancer. The authors stated that

the method provides a significant improvement in terms of detection rating, raising from 65% to

95%. Meanwhile, Alyafi et al [Alyafi, Diaz e Marti 2020] proposed a similar work employing

DCGAN to generate realistic breast mass X-ray mammographies. Finally, Anicet and Luna [Za-
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Figure 8.2: DCGAN’s generator: a 100-dimensional uniform distribution z is projected to a small
spatial extent convolutional representation with many feature maps. Four fractionally-stridden
convolutions convert the high-level representation into a 64×64 image output. As one can observe,
no fully connected or pooling layers are applied to the architecture. The discriminator is defined
in an analogous fashion [Radford, Metz e Chintala 2015].

nini e Colombini 2020] introduced DCGAN to generate Parkinson’s disease electromyography

signals. The work introduced different frequencies and amplitudes to simulate the patient’s

tremor patterns. DCGAN presents several convolutional layers, no fully connected layers, and

batch normalization applied to every layer of the generator (except the last one), thus turning

the learning process more stable and scalable to a wide range of applications. Such an approach

is able to deal better with the drawback related to time-consuming, computational power and

output quality, and easy achieving convergence during the training and synthetic sample gene-

ration process [Cao et al. 2018, Radford, Metz e Chintala 2015]. The listed advances led us to

employ DCGAN to BE and adenocarcinoma evaluation using GAN-based data augmentation.

While DCGAN presents the advantage of being suitable to a wide range of applications,

other GAN architecutes offer different features in their concepts, such as: (i) Conditional GAN

(CGAN) that adds a constraint model variable to guide the data generation process, making

the convergence to a specific target faster; (ii) Wasser GAN (WGAN) that adds the weight

pruning during the data synthesis, making the training process more stable, (iii) Wasser GAN

with Gradient Penalty (WGAN-GP) that replaces the WGAN pruning by gradient penalties,

eliminating the necessity of generator and discriminator balancing during the training min-max

game, (iv) CycleGAN that introduces to the training a cycle loss and a self-constraint, provi-

ding the ability of generating random samples based on two different distributions, (v) Laplacian

GAN (LAPGAN) that employs Laplacian Pyramids with upsampling, Gaussian Pyramids with

downsampling and a training process based on a cascade convolutional fashion, resulting in

a step-by-step independent training that learns residuals, and finally, (vi) Self-attention GAN
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(SAGAN) that introduces the self-attention and spectral normalization to the training process,

turning the networks more stable and faster. Even having such particularities, these architec-

tures also present disadvantages such as slow convergence (WGAN-GP), inappropriate weight

pruning (WGAN), more requirements for the data, such as tags or delineations (CGAN), not

flexible resolution of output samples (CycleGAN), and necessity of being trained under super-

vision (LAPGAN). Finally, DCGAN still showed more application benefits due to its simplicity,

stability, and large scalability.

8.3 Methodology and Proposed Method

This section presents the proposed approach and the methodology adopted to cope with

Barrett’s esophagus data augmentation and identification using DCGAN and CNN.

8.3.1 Proposed Method

As mentioned earlier, one of the leading contributions of this work is to cope with the small

number of samples and to evaluate the robustness of data-augmented databases concerning BE

and adenocarcinoma using different CNN architectures. To fulfill that purpose, we considered

the DCGAN architecture for the data augmentation due to its simple implementation and high

generalization, as well as two CNN architectures, i.e., LeNet-5 and AlexNet. Such architectures

were considered due to their extensive usage in the literature, but any other model could also be

used. Another certain point concerning the CNN architectures used in this work relates to the

fact that LeNet-5 and AlexNet do not present a massive number of convolutional layers, thus

turning the learning process faster.

For a comprehensive understanding of the deep networks’ generalization capabilities, dif-

ferent batch-size evaluation experiments are proposed to investigate a reasonable model for

the automatic diagnosis of BE and adenocarcinoma. Moreover, it is imperative to assess how

different CNN architectures can deal with the problem addressed here and whether they can

outperform handcrafted feature extraction approaches or not (Section 8.5). Figure 9.1 depicts

the pipeline proposed in this work.

8.3.2 Datasets

Two High-definition white-light endoscopic datasets were used for an in-depth analysis

concerning the robustness of the proposed approach. The first dataset is composed of images
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Figure 8.3: Pipeline adopted in the work. The first step is related to the synthetic sample generation
using DCGAN, followed by the definition of the augmented data sets for further classification using
different CNN architectures.

from a benchmark dataset provided at the “MICCAI 2016 EndoVis Challenge"1, from now on

called “MICCAI 2015" which was published aiming at encouraging researchers to conduct

studies for differentiating Barrett’s esophagus from cancerous images. Such dataset comprises

100 lower esophagus endoscopic images captured from 39 individuals, 22 being diagnosed with

Barrett’s esophagus, and 17 showing early-stage signs of esophageal adenocarcinoma. Each pa-

tient figures different endoscopic images, ranging from one to a maximum of eight. The dataset

presents, in total, 50 images displaying cancerous tissue areas as well as 50 images showing

only Barrett’s esophagus. Five different experts have individually delineated suspicious regions

observed in the cancerous images. Figure 9.2 depicts some instances positive to adenocarci-

noma from MICCAI 2015 dataset and their five respective annotated delineations.

Figure 8.4: Some images from MICCAI 2015 dataset positive to adenocarcinoma and their respec-
tive delineations.

The second dataset was provided by the University Hospital Augsburg, Medizinische Klinik

1https://endovissub-barrett.grand-challenge.org/home/
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III, Germany. The dataset is composed of 76 endoscopic images captured from different patients

with BE (42 samples) and early adenocarcinoma (34 samples). One expert manually annotated

the cancerous images with the final diagnosis provided by biopsy. Figure 9.3 displays some

images from the Augsburg dataset labeled as positive to adenocarcinoma.

Figure 8.5: Some images from Augsburg dataset positive to adenocarcinoma and their respective
delineation.

8.3.3 Experimental Delineation

In this section, we present the methodology used to conduct the data augmentation and

classification steps.

8.3.3.1 Data Augmentation

To cope with the data augmentation step, two different batch sizes were evaluated, i.e., 16

and 32 samples. The reason for testing batches of size 16 concerns checking how the batch size

influences the output results since the number of input samples for the image-based approach

was not that significant for both datasets. The remaining DCGAN parameters were kept as the

standard ones, i.e., a learning rate of 0.0001, β1 = 0.5, β2 = 0.999, and feature map sizes for

the inner-networks2.

The experiments were conducted over 12,000 epochs, generating 525 and 64 synthetic sam-

ples at every 2,000 iterations, for patch-based and full-images-based approaches, respectively.

The output sample amount was related to computational limitations. We employed two diffe-

rent strategies to sample the output (i.e., synthetic) images: (i) the best batch (total amount of

output samples at a certain iteration) during learning (i.e., the one at the smallest error), and (ii)

the five best batches. These approaches are hereinafter called “very-best" and “5-best" respec-

tively. The experimental results were assessed through a statistical analysis using the Wilcoxon

2The learning rate, β1, and β2 are parameters of the Adam optimizer [Kingma e Ba 2015] used in this work.
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signed-rank test with confidence of 5% [Wilcoxon 1945].

For the sake of comparison purposes, data augmentation using rotation, zooming, and hori-

zontal mirroring were applied to original datasets using random parameters (e.g., rotation angle

and degree of zooming)3. Synthetic data were generated at the same proportion as GANs, so

the comparison against them is the fairest possible. Last but not least, the experiments were

conducted on a 96GB-memory computer equipped with an NVIDIA TitanX Graphics Card of

12 GB.

8.3.3.2 Data Classification

We employed two different strategies for the pipeline depicted in Figure 9.1: a patch- and

image-based approaches. Regarding the pre-processing step, the images were split into patches

whose sizes were chosen based on the work by Mendel et al. [Mendel et al. 2017]. The idea

is to cover the entire image with a sliding window of 200× 200 pixels and overlapping of

50 pixels in both horizontal and vertical directions. Concerning the image-based approach,

the pre-processing step considered resizing the images to feed the data augmentation and the

classification networks. Images from MICCAI 2015 dataset ended up with a resolution of

512×370 pixels, while the images from the Augsburg dataset figured a resolution of 512×410

pixels.

Additionally, it is worth noting that the experts’ annotations were admitted for the patch

labeling process. Regarding the MICCAI 2015 database, the intersection among the five de-

lineations was assigned to the valid adenocarcinoma region. If a patch crosses the boundary

between positive and negative regions, the number of cancerous and non-cancerous pixels was

taken into account, and that patch is classified with the same label of the majority pixels within

it. With respect to the Augsburg dataset, the single delineated area available was considered,

and the same procedure for labeling patches mentioned earlier was conducted.

Regarding the patch-based approach, the entire set of patches was first considered for the

data augmentation process. Further, a new augmented dataset was built to perform the clas-

sification experiments. Accordingly, 80% of all patches were randomly selected for training

purposes, and the remaining 20% were used for the testing phase. Such a partitioning process

was conducted for 20 runs for more robust evaluation. The image-based experiment was con-

ducted similarly to the first one (i.e., patch-based), where the data augmentation procedure took

place first. Further, a 20-fold cross-validation protocol with 80% for training and 20% for tes-

3The images to be mirrored were chosen at random. Apart from the number of images generated artificially,
one-third accounts for rotation, one-third for mirroring, and the remaining stands for zoomed images.
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ting purposes was performed to evaluate the experiments’ effectiveness. Besides, the very same

protocol was applied to both MICCAI 2015 and Augsburg datasets.

For classification purposes, we employed two CNN architectures pre-trained over the Ima-

genet dataset: LeNet-5 and AlexNet. The CNN batch sizes matched with the DCGAN ones, and

12,000 epochs were used for learning purposes. The feature map from the last layer of each

CNN (i.e., fully-connected) was reduced using the Principal Component Analysis for further

classification using naive Bayes, Optimum-Path Forest [Papa e Falcão] and Support Vector Ma-

chines [Chang e Lin 2011]. Besides, we also considered the softmax layer on top of each CNN

for comparison purposes. Last but not least, we compared the performance of all models with

and without the augmented data, and no hyperparameter fine-tuning was employed concerning

the deep networks since their default setting was employed. We used batches of size 16 for

training purposes since they showed the best option so far.

8.4 Experimental Results

This section presents the experiments used to evaluate the proposed method. Considering

the synthetic image selection, three different techniques were applied, i.e., the Fréschet Incep-

tion Distance (FID) [Heusel et al. 2017], the Structural Similarity Index (SSIM) [Zhou et al.

2004] and the Mean Squared Error (MSE) [Davies, Twining e Taylor 2008]. FID measure uses

an Inception network pre-trained with the Imagenet dataset to calculate how similar are the ori-

ginal and synthetic distributions using the Fréschet distance. The lower the result, the closer

the distributions, corresponding to good visual synthetic images. The SSIM metric is based on

three local comparisons: luminance, contrast, and structure. The result is a measure from within

the interval [−1,1], being 1 a very similar synthetic image. Finally, the MSE measures the dif-

ference between the pixels of two images using the squared error. The most similar synthetic

images should provide a result close to 0.

Let B = {B1,B2, . . . ,Bm} be the set of batches generated during the augmentation step,

and I = {I1, I2, . . . , In} be the set of training images. For each synthetic image S j ∈ Bi,

j = 1,2, . . . , |Bi|, we computed its closest training sample, i.e.,:

FBi
(S j,I ) = argmin

k

G(S j,Ik), (8.2)

where G(·) stands for any similarity measure, i.e., SSIM and MSE in the manuscript. The final

similarity value concerning batch Bi is computed as follows:
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S(Bi) =
1
|Bi|

|Bi|
∑
j=1

FBi
(S j,I ). (8.3)

Regarding the classification step, we used the standard recognition rate, i.e., the ratio between

the number of correct classifications and the number of dataset samples.

Additionally, a statistical evaluation using the signed-rank Wilcoxon test [Wilcoxon 1945]

was considered for comparison purposes as follows:

1. For the data augmentation step, two different amounts of samples were added to the

original datasets to assess the impact of new synthetic data on the classification result.

We have two distinct approaches: (i) very-best, which means the best batch of samples,

i.e., the samples with the highest similarity considering Equation 8.3 were added to the

original dataset4; and (ii) 5-best, which means that the final five best batches were added

to the original dataset.

2. The best results (including the ones statistically similar) concerning the classification task

were highlighted in bold.

3. The best overall recognition rate is highlighted with a ⋆ symbol.

8.4.1 MICCAI 2015 Dataset

In this section, we discuss the results concerning MICCAI 2015 dataset considering the

augmentation and classification experiments.

8.4.1.1 Data Augmentation

The data augmentation step is evaluated qualitatively and quantitatively. The qualitative

approach is based on visual insights, with the algorithm capable of generating samples realistic

enough to fool a non-expert at first glance for both image and patch-based approaches. Default

hyperparameters led to suitable results, as one can observe in Figures 8.6 and 8.7, which il-

lustrate a comparison between original and synthetic samples to corroborate the quality of the

synthetic images generated by DCGAN considering Barrett’s esophagus and adenocarcinoma

context.
4Notice that FID measure encodes the notion of a batch of samples, thus it has not been used the formulation

provided by Equation 8.3.
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Figure 8.6: MICCAI 2015 dataset experiment using full images: original (top) and synthetic (bot-
tom) images.

Figure 8.7: MICCAI 2015 dataset experiment using patches: original (top) and synthetic (bottom)
images.

Table 8.1 presents the quantitative evaluation using FID and the similarity values consi-

dering SSIM and MSE measures using Equation 8.3, in which SSSIM and SMSE stand for the

similarity values using Equation 8.3 considering SSIM and MSE measures. Looking carefully,

one can observe that, for all measures, the best results were obtained using the patch-based

approach. The same statement holds for both classes of interest, i.e., Barrett’s esophagus and

adenocarcinoma. Working with patches allows us considerably larger datasets, which strongly

influences the GANs training step.

8.4.1.2 Classification

Table 8.2 presents the results related to MICCAI 2015 dataset. Regarding the patch-based

approach, one can draw the following conclusions: (i) the augmented dataset presented the

highest accuracy results for both batch sizes compared to the original dataset classification; (ii)

LeNet-5 classifier showed the best classification performance with a batch size of 16 (90.04%

of recognition rate with the 5-best approach for data augmentation) for BE recognition among

all configurations, although being statistically similar to LeNet-5 considering the very-best ap-
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Table 8.1: Quantitative experiments concerning MICCAI 2015 dataset for the very-best and 5-best
approaches.

Barrett’s esophagus Adenocarcinoma
very-best 5-best very-best 5-best

Patches
FID 134.49 177.75 174.3 201.5
SSSIM 0.85 0.80 0.77 0.73
SMSE 199.43 243.02 244.1 265.4

Images
FID 215.14 257.43 266.6 294.5
SSSIM 0.77 0.71 0.74 0.69
SMSE 346.42 399.42 357.7 417.3

Table 8.2: Accuracy results considering MICCAI 2015 dataset.

very-best 5-best
Original Dataset

(no data augmentation)

+ rotation
translation
mirroring

Batch Size LeNet-5 AlexNet LeNet-5 AlexNet LeNet-5 AlexNet LeNet-5 AlexNet

Patches
16 0.88 ± 0.04 0.83 ± 0.03 ⋆ 0.90 ± 0.03 0.87 ± 0.02

0.81 ± 0.03 0.82 ± 0.03 0.83 ± 0.04 0.83 ± 0.05
32 0.86 ± 0.04 0.84 ± 0.04 0.85 ± 0.03 0.86 ± 0.06

Images
16 0.82 ± 0.07 0.82 ± 0.05 0.85 ± 0.06 0.82 ± 0.05

0.76 ± 0.03 0.82 ± 0.02 0.79 ± 0.06 0.83 ± 0.05
32 0.81 ± 0.09 0.80 ± 0.08 0.83 ± 0.07 0.80 ± 0.07

proach for both batch sizes (16 and 32), and; (iii) LeNet-5 provided the highest accuracy in

comparison AlexNet classification over the same configuration.

Regarding the image-based approach results presented in Table 8.2, a similar outcome could

be observed: (i) the augmented dataset presented the highest accuracy results for both batch si-

zes when compared to the original ones; (ii) LeNet-5 classifier showed the best classification

result (0.8503% of recognition rate for the 5-best approach with batch size of 16) for BE recog-

nition among all configurations, although being statistically similar to the same configuration

and classifier, but with a different batch size (32); and (iii) LeNet-5 outperformed AlexNet

accuracy results in almost all experiments. Clearly, one can observe that data augmentation

with a patch-based approach outperformed others to a large extent considering the two neural

architectures.

8.4.2 Augsburg Dataset

In this section, we discuss the results concerning the Augsburg dataset considering the

augmentation and classification experiments.
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8.4.2.1 Data Augmentation

In this section, the evaluation of the data augmentation step is performed. Once again,

we considered both qualitative and quantitative insights, being the latter based on the same

measures used for MICCAI 2015 dataset. Figures 8.8 and 8.9 provide synthetic samples for both

patch-based and full image approaches concerning the Augsburg dataset, depicting the visual

quality of generated images compared to the original samples. It was possible to generate, for

both images and patches, realistic samples to non-expert concerns.

Figure 8.8: Augsburg dataset experiment using full images: original (top) and synthetic (bottom)
images.

Figure 8.9: Augsburg dataset experiment using patches: original (top) and synthetic (bottom)
images.

Table 8.3 presents the quantitative evaluation. Once again, the SSIM measure presented

the highest similarity result for both very-best and 5-best approaches for data augmentation,

similar to the one obtained for MICCAI 2015. Taking into account the results presented in

Table 8.1, one can observe that the Augsburg dataset poses a more challenging task due to

the average performance below the one obtained over MICCAI 2015 dataset. The Augsburg

dataset figures images that are usually found in clinics and hospitals, where the specular lights

contribute considerably to make the task worse.
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Table 8.3: Quantitative experiments concerning Augsburg dataset for the very-best and 5-best
approaches.

Barrett’s esophagus Adenocarcinoma
very-best 5-best very-best 5-best

Patches
FID 210.15 284.86 300.5 384.9
SSSIM 0.80 0.73 0.72 0.68
SMSE 419.25 453.62 444.2 467.8

Images
FID 300.04 329.47 341.1 376.3
SSSIM 0.70 0.65 0.67 0.63
SMSE 549.33 581.24 559.8 609.5

Table 8.4: Accuracy results considering Augsburg dataset.

very-best 5-best
Original Dataset

(no data augmentation)

+ rotation
translation
mirroring

Batch Size LeNet-5 AlexNet LeNet-5 AlexNet LeNet-5 AlexNet LeNet-5 AlexNet

Patches
16 0.85 ± 0.01 0.83 ± 0.02 ⋆0.88 ± 0.05 0.86 ± 0.04

0.73 ± 0.04 0.73 ± 0.05 0.75 ± 0.06 0.83 ± 0.04
32 0.82 ± 0.03 0.81 ± 0.03 0.87 ± 0.04 0.84 ± 0.05

Images
16 0.81 ± 0.06 0.80 ± 0.05 0.83 ± 0.03 0.80 ± 0.05

0.70 ± 0.05 0.72 ± 0.01 0.72 ± 0.07 0.76 ± 0.05
32 0.77 ± 0.08 0.74 ± 0.07 0.80 ± 0.08 0.77 ± 0.09

8.4.2.2 Classification

Table 8.4 presents the results related to the Augsburg dataset classification task. Analo-

gously to MICCAI 2015, the Augsburg results regarding the patch-based approach were as

follows: (i) the augmented dataset presented the highest accuracy results for both batch sizes

when compared to the original dataset; (ii) LeNet-5 classifier also showed the best classifica-

tion result (88.24% of recognition rate in the 5-best approach for data augmentation); and (iii)

LeNet-5 outperformed the AlexNet classification performance on almost every experiment.

The same behavior could be observed in the image-based approach results: (i) the augmen-

ted dataset presented the highest accuracy results for both batch sizes compared to the original

ones; (ii) LeNet-5 classifier presented the best classification result among all the experimen-

tal design for such datasets (83.32% of recognition rate for the 5-best approach), without any

statistical similarity to the other experimental sets.

8.5 Discussions and Conclusions

In this paper, we dealt with computer-assisted Barrett’s esophagus and adenocarcinoma

identification by means of data augmentation and through deeply learnable features computed
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using LeNet-5 and AlexNet networks. Such methods showed promising results, outperforming

the previous handcrafted feature results, and suggesting inspiring progress with the application

of deep learning techniques for such context. It also shows the relevance of generalization in

deep learning techniques, which can improve previous results in the same field not only for

the BE context but for others in which the image representation configures the context to be

evaluated.

We observed that only a very few works attempted at coping with the problem of automatic

BE and adenocarcinoma identification using computer vision and machine learning techniques

to date, and even more, we could not observe any previous study proposing the data augmen-

tation and validation of such a task for BE and adenocarcinoma problem. In this work, we

fostered the research toward such tasks by introducing a deep learning data augmentation of

BE and adenocarcinoma samples using a variant of Generative Adversarial Networks, and we

showed both qualitative and quantitative evaluations of such tasks, outperforming the results

obtained in some recent classification works with similar database and protocol [Souza Jr. et al.

2018, Souza Jr. et al. 2019, Souza Jr. et al. 2017, Souza Jr. et al. 2018, Souza Jr. et al. 2017].

Table 8.5 presents a more detailed comparison of the current results against a fair selection

of recent state-of-the-art works in which similar protocol or dataset was employed, including

the statistical evaluation among them all (bold values mean statistical similarity). Table 8.6

also presents a comparison among the proposed works and some recent state-of-the-art studies

focused on the application of different datasets, protocol, and evaluation tasks.

Table 8.5: Comparison against state-of-the-art works with the application of similar evaluation
protocols.

Dataset Method Approach Accuracy

MICCAI 2015

Souza Jr. et al. [Souza Jr. et al. 2017]

Images

0.74 ± 0.02
Souza Jr. et al. [Souza Jr. et al. 2019] 0.79 ± 0.04
Souza Jr. et al. [Souza Jr. et al. 2018] 0.79 ± 0.06
Passos et al. [Passos et al. 2019] 0.67 ± 0.10
Proposed Method 0.85 ± 0.06
Souza Jr. et al. [Souza Jr. et al. 2018]

Patches
0.88 ± 0.11

Proposed Method 0.90 ± 0.03

Augsburg

Souza Jr. et al. [Souza Jr. et al. 2019]
Images

0.73 ± 0.05
Souza Jr. et al. [Souza Jr. et al. 2018] 0.68 ± 0.07
Proposed Method 0.83 ± 0.03
Souza Jr. et al. [Souza Jr. et al. 2018]

Patches
0.86 ± 0.12

Proposed Method 0.88 ± 0.05

DCGAN architecture has been recently applied for several data augmentation tasks ( [Kim

et al. 2019, Du et al. 2019, Doman, Konishi e Mekada 2020, Alyafi, Diaz e Marti 2020]). Con-

sidering how difficult is the task of differentiating BE and early-cancerous samples, DCGAN

was selected as the approach to aid the automatic classification of BE and adenocarcinoma,
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Table 8.6: Comparison against recent state-of-the-art works with the application of different pro-
tocols or datasets.

Data type Dataset Method Approach Protocol Evaluation Result
HD White-light

endoscopy
Private van der Sommen et al. [van der Sommen et al. 2016]

Selected Region of
Interest

Leave-one-out
cross validation

Sensitivity
specificity

0.86
0.87

Volumetric
laser endomicroscopy

Private Swager et al. [Swager et al. 2017]
Selected Region of

Interest
Leave-one-out
cross validation

Area under curve 0.95

White-light
endoscopy

Private van Riel et al. [van Riel et al. 2018]
Selected Region of

Interest
Leave-one-out
cross validation

Area under curve 0.92

White-light
endoscopy

Private de Groof et al. [de Groof et al. 2020]
Resized
images

4-fold
cross validation

Accuracy,
sensitivity
specificity

segmentation score

0.88
0.93
0.83
0.92

White-light
endoscopy and
Narrow-band

imaging

Private Struyvenberg et al. [Struyvenberg et al. 2020] Zoomed images
4-fold

cross validation

Accuracy,
sensitivity
specificity

0.84
0.88
0.78

providing promising results. Data augmentation posed as an up-and-coming tool for the impro-

vement of BE and adenocarcinoma identification. Concerning the synthetic image evaluation,

SSIM seemed to perform satisfactorily in the generated medical image field, following some

state-of-the-art works [Middel, Palm e Erdt 2019, Brock, Donahue e Simonyan 2018]. The

proposed approach can handle numerous bottlenecks related to the lack of data, or even rights

related to medical datasets, increasing data flexibility for a wide range of medical field evalu-

ations based on images. Images with good quality could be generated for both MICCAI and

Augsburg datasets. However, the results suggested that the Augsburg dataset posed a higher

challenge during synthetic image generation, which can be explained by the fewer samples

available for such a dataset.

After data augmentation, the classification is performed to validate the artificial samples and

how the amount of data influences the accuracy result. Concerning the MICCAI 2015 dataset,

all the augmented dataset results were considerably better using the LeNet-5 architecture for

both patch- and image-based approaches. When the 5-best batches were added, results close

to 90% of accuracy could be achieved. The same behavior was achieved for the image-based

approach, in which LeNet-5, with the 5-best methodology for data augmentation, provided the

very best classification results. As a conclusion for MICCAI 2015 augmented data, the volume

of data showed to be an essential parameter in the accuracy result. The more samples the

dataset presented, the best the result obtained for both patch- and image-based approaches. The

smallest batch sizes also presented better results for all patch- and image-based experiments,

suggesting improvements when smaller batch sizes are applied.

For the Augsburg dataset, the results presented similar behavior to the previous ones. Lower

classification results were obtained for all experimental designs. However, such an outcome is

an expected result, once the Augsburg samples seem harder to be generalized by the model.
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[Souza Jr. et al. 2018,Souza Jr. et al. 2019,Souza Jr. et al. 2017,Souza Jr. et al. 2018,Souza Jr.

et al. 2017]. Despite the generalization difficulty, the results could outperform the ones obtained

by previous works [Souza Jr. et al. 2018, Souza Jr. et al. 2019, Souza Jr. et al. 2017, Souza Jr.

et al. 2018], highlighting not only the importance of the data augmentation but also the CNN

generalization ability for BE and adenocarcinoma context. For such an experimental dataset,

LeNet-5 also presented the best result and with no statistical similarity to any original dataset.

Considering the higher accuracy results obtained with the patch-based approach for all the

datasets and experimental delineations, besides the higher amount of samples available for the

GANs synthetic generation, such results may be justified by the following arguments:

• first, we have many more patches than full images for training.

• second, patch-based classification is “fuzzier" than the whole image approach, which can

be classified into positive or negative to cancer using its full content. Concerning the

patches, they are labeled as cancerous only when at least 70% of the pixels are positive to

that. Such an approach is less conservative than using the entire image.

• patches consider local information only. On the other hand, using the full-image content

may turn the learning process prone to errors during the approximation of the distribution

of the pixels that belong to healthy and cancerous regions.

Furthermore, the comparison between GANs and transformation-based data augmentation

approaches shows that the former was able to generate synthetic images better, despite that both

methodologies had outperformed the experiments over the original datasets. Finally, as a bullet

list of trends based on the achieved results, we shall list:

• Data augmentation presented very relevant and high-quality synthetic samples, evaluated

qualitatively and quantitatively, based on visual insights and GANs evaluation techniques,

such as FID, SSIM, and MSE, with SSIM presenting the best data augmentation results;

• The augmentation of BE and adenocarcinoma datasets through artificial sample addition

provided encouraging results, suggesting how relevant the amount of data is in the evalu-

ation context;

• The endoscopic image description using CNN outperformed the previous results using the

handcrafted features. Although the use and generalization of CNN is still based on black-

boxes, the generalization ability of such features represent an essential step to improve

the classification accuracy considering BE and adenocarcinoma;
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• LeNet-5 provided the best classification results for the majority of experimental settings;

• The addition of the 5-best approach for data augmentation presented the best results for

all delineation sets. Despite some statistical similarity, the more the data present in the

dataset, the higher the generalization obtained.

A further analysis was performed to confirm the impact of adding new synthetic samples in

the classification rates using GANs. For the sake of clarity, we considered only the best results

concerning the pair CNN architecture and protocol (Tables 8.2 and 8.4). From the synthetic

dataset, we randomly added 25%, 50%, and 75% of the samples to the original training set. Ta-

ble 8.7 presents additional experiments concerning different percentages for data augmentation.

One can observe that the more synthetic samples are added for learning purposes, the higher

the model’s accuracy. Such finding reinforces the impact of high-quality data on the model’s

generalization when dealing with endoscopic imagery.

Table 8.7: Evaluating different percentages of synthetic samples for the augmented set.

Dataset Approach
Best
CNN

+25% +50% +75%
Full synthetic

dataset

MICCAI 15
Patches LeNet-5 0.84±0.04 0.85±0.05 0.87±0.04 000...999000±±±000...000333
Images LeNet-5 0.78±0.09 0.80±0.09 0.82±0.07 000...888555±±±000...000555

Augsburg
Patches LeNet-5 0.83±0.03 0.84±0.05 0.86±0.06 000...888888±±±000...000555
Images LeNet-5 0.75±0.06 0.77±0.07 0.80±0.05 000...888333±±±000...000333

Despite the promising results, some drawbacks of such a study may be highlighted: the

high computational cost related to the synthetic image generation can affect the DCGAN’s out-

put resolution, demanding even more powerful processing and graphical units for the generation

of high-resolution images. To deal with such a problem, more powerful systems may be em-

ployed for the experimental task, or upsampling techniques can also help after the generation

of small samples when the high-resolution is necessary for the context, and there is not enough

computational power.

Regarding future work, we aim to consider different GANs variants for the data augmenta-

tion task and to compare the results with different GANs architectures, aiming to define which

architecture fits better to aid the differentiation between BE and adenocarcinoma. Additionally,

more CNN classifiers shall be applied for comparison purposes, considering deeper and more

sophisticated networks. Finally, the hyperparameter optimization concerning GANs may be

considered as well, thus avoiding the empirical factor of selecting such parameters.
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8.6 Chapter’s Considerations

After the evaluation of handcrafted features, based on several image description methods,

the human knowledge could be computationally described and employed in the identification

of cancerous tissues in BE images. From this Chapter on, the application of deep learning

techniques to cope with the description and evaluation of early cancer in BE samples was in-

vestigated, aiming to compare its results with previously obtained ones. According to state-of-

the-art works, such as the ones conducted by Mendel et al. [Mendel et al. 2017] and Ebigbo et

al. [Ebigbo et al. 2020], the classification of cancerous tissues from esophageal regions can be

successfully performed using deep learning techniques, so our job would be to enhance such

promising results and propose enhancements to increase the classification accuracy of such a

context. Moreover, it would be extremely interesting to propose designs in which the interpre-

tation of deep learning results could be assessed.

In this first attempt, we employed the classification of early cancer using basic CNN models,

AlexNet and LeNet-5. The extra contribution would be increasing the amount of samples for

training and testing by creating artificial samples based on GANs. GANs are, in principle, deep

architectures that, based on learning the process of generating artificial data from input samples,

create new and very convincing images. After such a task, we created new experimental designs

in which artificial and original samples composed the datasets that fed CNN models. As a

result, we would be able to evaluate the generalization capability of AlexNet and LeNet-5 and

the impact of the amount of data in the correct representation of neoplasia in BE-tissue. Several

state-of-the-art works conducted the data augmentation task by introducing zooming, rotated,

or translated samples to the training process, however, we assume GAN outputs can be more

trustworthy in comparison to such trivial techniques of augmentation. To select the best samples

of the extended datasets, we employed techniques such as MSE, FID, and SSIM, quantitatively

comparing artificial and original samples.

From the obtained, our results highlight that the CNN models we selected present high po-

tential for describing and detecting cancer in the esophagus, outperforming several of the results

from previous Chapters. However, it is imperative to present that such a generalization ability

is highly sensitive to the amount of available data. In general, as esophagus’ examinations, per-

sonal data relates to legal information, making its acquisition a hard task to accomplish. Due to

that, datasets are most of the time private and very reduced. Hence, with GAN, a more robust

way of promoting a data augmentation was introduced into BE context, showing to be a promi-

sing way of generating data to cope with its lack issues, still outperforming other methods such

as zooming, rotating, and mirroring.
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Finally, the first attempt of representing BE and adenocarcinoma samples using deep le-

arning techniques have shown very interesting results, pushing us to continue its evaluation,

described in the next Chapters. For it, more CNN architectures will be proposed and new te-

chniques of describing, filtering, and organizing such architectures. Also, the understanding of

the CNN-learning process will be deeply explored, to be further compared to experts’ learning

process during early-cancer surveillance, focusing on enhancing the correct detection of cancer

in BE patients.



Chapter 9
FINE-TUNING GENERATIVE ADVERSARIAL

NETWORKS USING METAHEURISTICS: A CASE

STUDY ON BARRETT’S ESOPHAGUS

IDENTIFICATION

The further evaluation of GAN for BE and adenocarcinoma evaluation based on GAN-

finetuned parameters for data augmentation and classification purposed was accepted, presen-

ted and published on the conference “Bildverarbeitung für die Medizin 2021" [Souza Jr. et

al. 2021]. Considering the parameter impact in the synthetic image generation, several meta-

heuristics techniques were adopted in order to provide the best data-augmentation parameters

for further classification purposes.

9.1 Introduction

Barrett’s esophagus (BE) is a dangerous condition in which the mucosal cells of the lower

part of the esophagus changes due to chronic gastrointestinal reflux, and may progress into

esophageal adenocarcinoma [Lagergren e Lagergren 2010, Dent 2011, Lepage, Rachet e Jooste

2008]. Computer-aided analysis of Barrett’s esophagus and adenocarcinoma figures an extre-

mely important tool that has been subjected to intensive research in the past years [Souza Jr. et

al. 2018], by the evaluation of: (i) handcrafted features of endoscopic images based on texture

and color, and (ii) application of Convolutional Neural Networks (CNN) to identify the disease

automatically. Recent works proposed by Souza Jr. et al. [Souza Jr. et al. 2018, Souza Jr. et al.

2019, Souza Jr. et al. 2017, Souza Jr. et al. 2018, Souza Jr. et al. 2017], Mendel et al. [Mendel

et al. 2017], and Passos et al. [Passos et al. 2019] are some examples that make use of artificial
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intelligence techniques for classification purposes.

A usual drawback related to computer-assisted BE and adenocarcinoma identification is the

absence of data, limiting the development and validation of more effective methods to detect

early-stage illness in medical samples. Recently, the data acquisition bottleneck has been coped

with data augmentation (DA) methods, and among them, Generative Adversarial Networks

(GAN) [Goodfellow et al. 2014] have presented significant improvements in image generation,

mainly for medical imaging [Han et al. 2019]. The primary idea related to GAN is to train a

generator and a discriminator simultaneously, aiming to generate convincing and high-quality

synthetic images.

One of the main hindrances regarding GANs, as well as most of the modern deep learning

approaches, concerns a proper selection of the architecture hyperparameters since they pose a

significant influence in the model’s final output. Several works addressed the problem through

metaheuristic approaches to fine-tuning deep learning models’ hyperparameter. In this context,

Passos and Papa [Passos e Papa 2019] introduced such methods to appropriately optimizing

Deep Boltzmann Machines [Salakhutdinov e Hinton 2012] hyperparameters.

Metaheuristic Optimization techniques refer to stochastic nature-inspired methods that mi-

mic some natural behavior observed in groups of animals, social conduct, or physical events,

among others, to solve complex problems. The paradigm obtained notorious popularity due

to positive results in a wide variety of applications. Moreover, it does not require computing

derivatives, is independent of the function landscape, and can obtain a sub-optimal solution for

complex problems within a reasonably reduced computational burden.

Even though some works considered fine-tuning GAN-based hybrid models through me-

taheuristic approaches [Huo, Tang e Zhang 2019], as far as we know, no work proposed me-

taheuristic approaches to optimized GANs hyperparameter itself. Therefore, the main contribu-

tions of this work are three-fold:

• to introduce metaheuristic optimization algorithms in the context of GANs hyperparame-

ter optimization;

• to investigate the feasibility of using GAN parameter optimization to generate high-

quality synthetic images from the esophagus for further assisting the identification of

Barrett’s esophagus and adenocarcinoma; and

• to evaluate whether it makes sense to perform such parameter optimization of image

generation for further data augmentation and classification purposes.
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The remainder of this paper is presented as follows. Section 9.2 introduces the problem

of GAN hyperparameter fine-tuning as an optimization problem. Further, Sections 9.3 and 9.4

describe the methodology and the experiments, respectively. Finally, Section 9.5 states the

conclusions and future work.

9.2 Generative Adversarial Networks Hyperparameter Fine-
Tuning as an Optimization Problem

As with most of the machine learning techniques, the training procedure of GANs de-

mands the user an appropriate selection of the network hyperparameters, which poses a far

from straightforward task due to the context-dependence and the sensitivity related to the se-

lected values. To cope with such an issue, this work proposes employing nature-inspired

metaheuristic optimization techniques to fine-tune the set of five main hyperparameters θ =

{η ,β1,ngf,ndf,batch size} considering a pre-defined range, described as follows: (i) the lear-

ning rate η ∈ [0.0001,0.001], (ii) the Adam optimizer decay control β1 ∈ [0.002,0.5], (iii) the

ngf∈ [1,128], which is related to the depth of feature maps carried through the generator, (iv) the

ndf∈ [1,32], representing the depth of the feature maps propagated through the discriminator,

and (iv) the batch size∈ [1,128].

The main idea behind metaheuristic optimization techniques consists of stochastically ini-

tializing a set of random solutions, and iteratively evolving towards the solution whose decision

variables best fit a target objective, i.e., minimizing the quadratic difference between generator

and discriminator losses.

The pipeline employed to perform GAN hyperparameter fine-tuning is depicted in Fig. 9.1.

In a nutshell, the optimization technique selects the set of hyperparameters that minimize the

loss function over the training set, considering a dataset composed of endoscopy images as well

as random inputs used in the synthetic images generation process.

9.2.1 Optimization Techniques

This section briefly introduces the metaheuristic techniques employed in this paper. Notice

that each technique’s parameters were selected empirically based on the suggestion of their

authors.

• BSA [Civicioglu 2013, Passos, Rodrigues e Papa 2019]: Backtracking Search Optimi-

zation is an evolutionary algorithm that combines stored memories with crossover and
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Figure 9.1: Proposed approach to encode the decision variables of each optimization agent.

mutation operations to generate new individuals.

• BSO [Shi 2011]: Brain Storm Optimization is a swarm-based optimization technique

inspired by the creative human brainstorming process.

• FA [Yang 2010]: Firefly Algorithm tries to mimic the fireflies’ behavior while searching

for mating partners and preys.

• FPA [Yang, Karamanoglu e He 2014, Rodrigues et al. 2020]: Flower Pollination Al-

gorithm is a swarm-based optimization method that mimics the pollination process of

flowering plants.

• HS [Geem 2009]: Harmony Search models the problem of function minimization inspired

on the way musicians create their songs.

• JADE [Zhang e Sanderson 2009]: a differential evolution-based algorithm that imple-

ments the “DE/current-to-p-best"mutation strategy.

9.3 Methodology

This section briefly describes the datasets employed in this work, as well as the setup em-

ployed during the experiments.
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9.3.1 Datasets

Two white-light endoscopic datasets were used for an in-depth analysis concerning the ro-

bustness of the proposed approach. The first one, provided at the “MICCAI 2015 EndoVis

Challenge"1, and called “MICCAI" comprises 100 lower esophagus endoscopic images captu-

red from 39 individuals, 22 of them being diagnosed with Barrett’s, and 17 showing early-stage

signs of esophageal adenocarcinoma. Five different experts have individually delineated suspi-

cious regions observed in the cancerous images.

The second dataset used for the experiments was provided by the Augsburg Klinikum,

Medizinische Klinik III. Such a dataset is composed of 76 endoscopic images captured from

different patients with BE (42 samples) and early adenocarcinoma (34 samples). The cancerous

images were manually annotated by one expert from the Augsburg Klinikum. The annotations

provided by the experts, for both datasets, were considered for the patch label definition.

Fig. 9.2 depicts some examples of the MICCAI dataset’s positive samples (i.e., presenting

adenocarcinoma) and their five respective annotated delineations. Fig. 9.3 displays some posi-

tive images from the Augsburg dataset. In this case, we have only one delineation per image.

Figure 9.2: MICCAI 2015 positive samples and their respective delineations.

9.3.2 Experimental Setup

Regarding the pre-processing step, the images were split into patches [Mendel et al. 2017].

The idea is to cover the entire image with a sliding window of 200×200 pixels and overlapping

of 50 pixels in horizontal and vertical directions. The label of each patch was based on the

provided expert annotations of full-images.

1https://endovissub-barrett.grand-challenge.org/home/
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Figure 9.3: Augsburg positive samples and their respective delineations.

For reaching the best parameters for each dataset and class, the meta-heuristic techniques

were run for 40 epochs. For the data augmentation evaluation, experiments were conducted

over 12,000 epochs, generating 525 synthetic samples at every 2,000 iteration, for each sample

class (AD and BE) using the best parameters obtained in the meta-heuristic experimental design.

The output sample amount was related to computational limitations. We employed two different

strategies to sample the output (i.e., synthetic) images: (i) the best batch (total amount of output

samples at a certain iteration) during learning (i.e., the one at the smallest error), and (ii) the five

best batches. These approaches are called “last" and “5-last" respectively. The experimental

results were assessed through a statistical analysis using the Wilcoxon signed-rank test with

confidence of 5% [Wilcoxon 1945].

The entire set of original patches was first considered for the data augmentation process.

Further, a new augmented dataset was built after the optimized generation of synthetic sam-

ples to perform the classification experiments. Accordingly, 80% of the dataset was randomly

selected for training purposes, and the remaining 20% was used for the testing phase. Such

a partitioning was conducted over 20 runs for more robust evaluation. For the classification

step, we employed two CNN architectures pre-trained with the Imagenet dataset: LeNet-5 and

AlexNet. The CNNs and DCGAN experiments were run, each, for 12,000 epochs.

9.4 Experimental Results

This section presents the experimental results for the DCGAN hyperparameters finetuning

and the further classification concerning the data augmentation performed with the best meta-

heuristic achieved results.
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9.4.1 Optimization Results

The meta-heuristic results for the DCGAN hyperparameters finetuning can be observed in

Table 9.1. As one can observe, the best results for MICCAI dataset (the values closest to 0)

were obtained using BSA and FA, for AD and BE diagnosed patches, respectively, with values

of 0.0033± 0.0048 and 0.0010± 0.0024. Regarding the Augsburg meta-heuristic finetuning,

the best results were achieved, respectively, for AD and BE, using FA and BSA, with values of

0.0025±0.0047 and 0.0011±0.0022. Output samples after the synthetic generation of patches

using the best parameter results can be observed in Figure 9.4.

Table 9.1: Loss value and time consumption considering MICCAI and Augsburg datasets.

Dataset Diagnosis Metric BSA BSO FA FPA JADE RANDOM

MICCAI

AD
Loss 000...000000333333±±±000...000000444888 000...000000555666±±±000...000111000222 000...000000444666±±±000...000000777999 000...000000333777±±±000...000000666666 000...000000555777±±±000...000111222111 000...000333111000±±±000...000000777999

Time (h) 2.9238±0.5914 2.7872±1.1002 3.7210±1.1564 3.7254±1.6175 3.4264±1.2135 1.0706±0.4704

BE
Loss 000...000000444555±±±000...000111111888 000...000000222999±±±000...000000666888 000...000000111000±±±000...000000222444 000...000000111111±±±000...000000222444 000...000000111888±±±000...000000222888 000...000000333444±±±000...000111111333

Time (h) 13.6447±3.0530 15.1997±5.5386 16.1333±6.9553 14.6826±5.5267 10.8849±2.7443 4.8940±1.3502

Augsburg

AD
Loss 000...000000444999±±±000...000111333222 000...000000777444±±±000...000111000999 000...000000222555±±±000...000000444777 000...000111444000±±±000...000333000777 000...000000555333±±±000...000111444666 000...000111222999±±±000...000333999999

Time (h) 2.8345±1.4249 2.5835±1.3703 2.1745±1.1661 4.0850±2.8337 2.4363±0.7424 0.6976±0.2499

BE
Loss 000...000000111111±±±000...000000222222 000...000000444555±±±000...000000888777 000...000000333666±±±000...000111000222 000...000000555777±±±000...000111333666 000...000111000555±±±000...000333111666 000...000000555111±±±000...000111111999

Time (h) 8.6632±4.3097 8.7128±5.8866 8.7699±1.8434 9.9796±4.6522 9.3854±7.3977 2.6029±0.7025

Additionally, Fig. 9.5 depicts the convergence average and standard deviation concerning

each technique. Notice that even though obtained minimal values of loss, it presents high values

of standard deviation.

9.4.2 Classification Results

Regarding the classification performed after the data augmentation step, one can observe

the results in Table 9.2. We highlight that for MICCAI dataset, the best classification rates

(a) MICCAI (b) Augsburg

Figure 9.4: MICCAI (a) and inhouse (b) dataset experiments using patches: original (top) and
synthetic (bottom) images.
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Figure 9.5: Average optimization convergence considering Augsburg dataset over (a) AD and (b)
BE, and MICCAI dataset over (c) AD and (d) BE.

Table 9.2: Accuracy results considering MICCAI and Augsburg datasets.

Standard last 5-last
No augmentation augmentation GAN-augmentation GAN-augmentation

Dataset
AD

Parameters
BE

Parameters
LeNet-5 AlexNet LeNet-5 AlexNet LeNet-5 AlexNet LeNet-5 AlexNet

MICCAI BSA FA 0.81 ± 0.03 0.82 ± 0.03 0.83 ± 0.04 0.83 ± 0.05 0.89 ± 0.07 0.88 ± 0.07 ⋆ 0.93 ± 0.04 0.91 ± 0.03

Augsburg FA BSA 0.73 ± 0.04 0.73 ± 0.05 0.75 ± 0.06 0.83 ± 0.04 0.88 ± 0.09 0.87 ± 0.08 0.90 ± 0.11 0.86 ± 0.06

were obtained using BSA and FA data augmentation for AD and BE patches, respectively,

with a value of 0.9311± 0.0043 using LeNet-5 architecture and “5-last"augmentation proto-

col. Regarding the Augsburg classification after performing the data augmentation, the best

results were achieved, respectively, for AD and BE, using FA and BSA parameters, with an

accuracy value of 0.8972±0.1145 also using LeNet-5 and “5-last"augmentation protocol. The

wilcoxon statistical test showed up that MICCAI classification results for both LeNet-5 and

AlexNet architectures presented statistical similarity, and the same was not obtained with the

remaining experimental results. The augmented dataset results using DCGAN finetuned para-

meter samples outperformed the ones obtained without data augmentation and the ones using

augmentation based on rotation, mirroring, and zooming processes.
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9.5 Discussion and Conclusions

In this paper, we mainly dealt with computer-assisted Barrett’s esophagus and adenocarci-

noma identification by means of DCGAN-finetuned data augmentation and through deeply lear-

nable features computed using LeNet-5 and AlexNet networks. The DCGAN hyper-parameter

finetuning showed promising classification results after the data augmentation step, outperfor-

ming the classification rates of original datasets and datasets augmented with rotated, mirrored,

and zoomed samples. These results inspire progress with the application of deep learning tech-

niques for such a context. Related to the search for the best GAN-hyperparameters, we obser-

ved that FA and BSA showed the best results for both datasets, suggesting the best performance

for BE and adenocarcinoma context concerning the generation of high-quality and trustworthy

samples for classification purposes. Along with the introduction of data augmentation based on

DCGAN-finetuned hyperparameters, we fostered in this work the validation of DCGAN-image

quality by means of classification rates. As one can observe, the final accuracy value presents

improvements compared to the previous proposed works, suggesting the high importance of

enough data in the training and validation of models for BE and adenocarcinoma context evalu-

ation. In addition, it is highlighted not only the importance of the data augmentation but also the

CNN generalization ability to deal with BE and adenocarcinoma distinction problem. Statisti-

cally similar, both LeNet-5 and AlexNet presented the higher accuracy results, outperforming

the literature results, and also the remaining experimental delineations. Furthermore, as future

work, we propose the evaluation of DCGAN-finetuned hyperparameters in the generation of

full-image samples, aiming to reinforce the impact of the best hyperparameters selection in the

synthetic image generation quality.

9.6 Chapter’s Considerations

In a direct continuation of the study proposed in Chapter 8, this work aimed at promoting an

optimal GAN configuration for generating artificial samples to compose new datasets, further

classified using CNN architectures. As long as metaheuristics were assessed in Chapter 7, here,

we employed the same metaheuristics (in addition to JADE technique) to promote the optimal

GAN hyper-parameters in the artificial set generation.

For this Chapter, the spatial information was deeply assessed and described using a patch-

based protocol for optimal data generation, augmentation, and further classification. By con-

ducting experiments based on patches, as performed in Chapter 5, the sample labeling relies on

the majority of pixels from the same class, i.e., more cancerous or not cancerous pixels inside
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the patch. Even for deeply-learnable features, it is imperative to understand if the localization

of such descriptors correlates with experts’ understanding of what defines a cancerous tissue,

guiding the interpretation of the problem by ensuring that humans and computers describe the

tissues with the same meaning or not.

Once again, this work’s results highlight the importance of data, spatial information pro-

perly described, and fine-tuning deep architectures in the correct classification of cancerous

samples regarding BE context. The best benchmark configuration was conducted over the aug-

mented dataset, using fine-tuned GAN model for both MICCAI and Augsburg datasets. In

comparison to baseline data generation (without fine-tuning using metaheuristics), we reali-

zed that such an optimization using metaheuristics could significantly increase the fidelity of

artificial samples in quantitative and qualitative ways.

Finally, for further experiments, we aimed at focusing on the interpretation of what deep

learning models represent in the description step of training. From the results until this point,

we already know the importance of deep models and spatial information for the correct clas-

sification of cancer. However, can we establish a similar line in the learning process of CNN

architectures and experts? The next Chapters aim to answer such a question, while new experi-

mental designs and deep classifiers are also introduced.



Chapter 10
CONVOLUTIONAL NEURAL NETWORKS FOR THE

EVALUATION OF CANCER IN BARRETT’S

ESOPHAGUS: EXPLAINABLE AI TO LIGHTEN UP

THE BLACK-BOX

To propose a quantitative interpretation of the CNN black-box nature, the study published

at “Computers in Biology and Medicine" [Souza Jr. et al. 2021] coped with such a task by

applying several Explainable AI techniques to highlight discriminative cancerous regions in BE

diagnosed images. In addition, five different CNN architectures were employed to generate ML

models to be interpreted and compared to cancerous regions’ manual segmentation.

10.1 Introduction

Barrett’s esophagus (BE) is a condition in which the lower part of the esophagus’ mucosal

cells change considerably, progressing to esophageal cancer (adenocarcinoma) in severe cases.

Some risk factors may increase the number of BE-diagnosed patients, mainly in western popu-

lations [Lagergren e Lagergren 2010,Dent 2011,Lepage, Rachet e Jooste 2008]. The remission

of esophageal cancer is directly related to early diagnosis, thus delivering the treatment with

reduced morbidity and mortality rates, leading to complete remission after 10 years of treat-

ment [Dent 2011, Sharma et al. 2016, Phoa et al. 2016].

Optical coherence tomography, confocal laser endomicroscopy, and chromoendoscopy have

been employed to BE and adenocarcinoma screening, enabling a more accurate manual evalu-

ation of the esophageal histology through in vivo experiments [Sharma et al. 2015]. However,
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BE may be misdiagnosed during endoscopy due to the inability to distinguish the columnar

mucosa of the proximal stomach from the metaplastic epithelium in the distal esophagus. The

Seattle biopsy protocol is highly recommended for BE lesion evaluation (i.e., dysplastic tissue),

suggesting the extraction of four biopsies sampled at every 1 cm. Unfortunately, such a pro-

cedure is still susceptible to failures since the evaluated samples may not be large enough for

proper screening [Sharma et al. 2015, Abrams et al. 2009, van der Sommen et al. 2014].

The limitations related to interventional therapies (e.g., endoscopic resection and ablation

techniques, which present a high potential for reducing the cancer risk in dysplasia-diagnosed

patients) must be handled with monitoring methods and improved dysplasia state detection

[Shaheen et al. 2009, Johnston et al. 2005, Overholt, Panjehpour e Halberg 2003]. Computer-

aided analysis of early cancerous tissue figures as an essential tool for intensive research in

the past years. The prediction of peritoneal metastasis in gastric cancer patients [Mirniahari-

kandehei et al. 2021] and the automated diagnosis of breast cancer in mammograms using a

Convolutional Neural Network (CNN) [Tsochatzidis et al. 2021] are a few examples of recent

works that make use of machine learning techniques in the context of medical imaging. The

identification of early cancer in Barrett’s esophagus has also been a subject of concern in the

recent years [Souza Jr. et al. 2018]. Recently conducted works evaluated the use of handcrafted

features of endoscopic images based on texture and color [Souza Jr. et al. 2018]. In contrast,

others assessed the well-known CNN to identify the disease automatically. Recent works pro-

posed by Souza Jr. et al. [Souza Jr. et al. 2018,Souza Jr. et al. 2019,Souza Jr. et al. 2017,Souza

Jr. et al. 2018, Souza Jr. et al. 2017, Souza Jr. et al. 2020, Souza Jr. et al. 2021], Mendel et

al. [Mendel et al. 2017], Ebigbo et al. [Ebigbo et al. 2020, Ebigbo et al. 2019], de Groof et

al. [de Groof et al. 2020], van der Putten [van der Putten et al. 2020], Ma et al. [Ma et al. 2020],

Ellis et al. [Ellis et al. 2020] and Passos et al. [Passos et al. 2019] are some examples that make

use of artificial intelligence (AI) techniques for automatic diagnosis.

The works conducted by Souza Jr. et al. [Souza Jr. et al. 2018, Souza Jr. et al. 2019, Souza

Jr. et al. 2017, Souza Jr. et al. 2018, Souza Jr. et al. 2017, Souza Jr. et al. 2020, Souza Jr. et al.

2021], and Passos et al. [Passos et al. 2019] assessed the use of image representation techniques

to describe and classify adenocarcinoma and Barrett’s esophagus regions. For such, the use

Speeded-up Robust Features (SURF) [Bay et al. 2008] and Scale-Invariant Feature Transform

(SIFT) [Lowe 2004], combined to Support Vector Machines (SVMs), Optimum Path-Forest

(OPF) [Papa, Falcão e Suzuki 2009, Papa et al. 2012], and the infinite Restricted Boltzmann

Machine (iRBM) [Peng, Gao e Li 2018], were considered to provide the injured region pre-

diction. Mendel et al. [Mendel et al. 2017] and Ebigbo et al. [Ebigbo et al. 2020, Ebigbo et

al. 2019] introduced for the first time the use of deep learning techniques to classify expert-
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annotated esophagus samples presenting adenocarcinoma and Barrett’s esophagus, in a real-

time analysis employing a ResNet-based DeepLabV3+ approach with transfer learning, while

Souza et al. [Souza Jr. et al. 2020, Souza Jr. et al. 2021] extended such a work by introducing

the use of Generative Adversarial Networks to the evaluation of early adenocarcinoma detection

in Barrett’s esophagus context. In the study proposed by de Groof et al. [de Groof et al. 2020],

a hybrid ResNet-UNet architecture was proposed for a real-time detection of early neoplasia in

BE-diagnosed patients, while the works proposed by van der Putten et al. [van der Putten et al.

2020, van der Putten et al. 2020] aimed at (i) achieving the same detection based on the com-

bination of features (principal tissue-of-interest dimension encoded with the majority of useful

information, such as constrast and homogeneity) and conventional machine learning techniques

applied to in-vivo volumetric laser endomicroscopy samples, and (ii) detecting and localizating

esophagus’ cancerous regions employing a multi-stage domain-specific pre-training technique

to white-light endoscopy samples. Deep learning approaches applied to the evaluation and au-

tomatic identification of neoplasia regions in endoscopic images continue to figure an important

research field.

Artificial intelligence and machine learning (ML), in general, have demonstrated remarka-

ble performances in many tasks, especially in the medical image computing field. However, the

translation of research AI-systems into clinical practice depends not only on the performance

of a system but also on the transparency of the decision for the physician.

Regarding the early-cancer detection in BE, the transparency is related not only to intellec-

tual curiosity but also to risks and responsibilities intrinsic to the prediction output [Xie, Gao e

Chen 2019, Cassel e Jameton 1981]. Unfortunately, the black-box nature of the deep learning

techniques is still unresolved, not completely describable and presents a not trivial interpreta-

tion, leading to poorly understood decisions [Tjoa e Guan 2019]. Especially, the question of the

relationship of the suspicious region for the physician and the most important regions for the

computer-based decision is of interest.

Current research suggests different methods and frameworks in the computational inter-

pretation of CNN, making the explainable artificial intelligence (XAI) a hotspot field to be

followed by the ML community. The visual explanation proposed by XAI algorithms tracks

the work process of deep learning techniques in visible ways, illustrating the learning process

that supports its final outputs. The visual interpretation achieved by XAI techniques provi-

des guiding posts for understanding not only correctness but errors behind the CNN learning

process [Doshi-Velez e Kim 2017, Tonekaboni et al. 2019, Lapuschkin et al. 2019]. Many

works have explored explainability in the medical field, such as the evaluation and analysis
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of sentiment with applications in medicine proposed by Zucco et al. [Zucco et al. 2018], in

which systematic methodologies were assessed to develop explainable Clinical Decision Sup-

port Systems. The evaluation of available interpretation models of cancer in chest radiography

images has been proposed by Kallianos et al. [Kallianos et al. 2019], who attested the lack of

effective and quantitative methods to cope with such a task. Lamy et al. [Lamy et al. 2019]

proposed a qualitative interpretation and detection of breast cancer in mammographic images

using a case-based reasoning approach with visual outcomes. The classification of melanoma

in hypertrophic cardiomyopathy-diagnosed images was conducted by Codella et al. [Codella et

al. 2018], with interpretation based on a evidence-based classification using CNN features and

kNN search and comparison of non-expert and automatic classifications (baseline and proposed

method) using Area Under Curve similarity metrics (0.772 and 0.874, respectively).

Even with the progress related to the interpretation of deep learning decisions, there is still

a long way to go in terms of interpretability, assessment, and criteria definition (in regard of

notions of “interpretability", “explainability"along with “reliability"and “trustworthiness") [Ri-

beiro, Singh e Guestrin 2016, Gilpin et al. 2018, Barredo-Arrieta et al. 2020].

This work aims at investigating the use of XAI techniques in the context of BE and early

esophageal adenocarcinoma detection. In a quantitative fashion, our work clarifies which image

regions are most important to discriminate these classes and compare them to experts’ delinea-

tions. In more details, we present the following main contributions:

• to introduce the use of XAI techniques at evaluating the classification rates in distin-

guishing between Barrett’s esophagus from adenocarcinoma;

• to propose a quantitative analysis of the CNN learning based on XAI techniques in the

context of BE and adenocarcinoma evaluation;

• to assess whether there is an agreement in the visual interpretation of XAI techniques and

visual interpretation provided by the experts in BE and adenocarcinoma image annota-

tion;

• to investigate what is the XAI technique that provides the most accurate visual interpre-

tation compared to the ground truth provided by different experts;

• to investigate if the agreement of XAI technique outputs and expert’s annotation is related

to higher and more accurate classification results of early-cancer BE diagnosed patients.

The remainder of this work is organized as follows. Section 5.2 presents a brief theoretical

background concerning XAI and the techniques used in the work, while Section 9.3 describes
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the methodology and the proposed method. Finally, Sections 9.4 and 9.5 state the experiments

and results, as well as discussion and conclusions, respectively.

10.2 Explanable Artificial Intelligence

As long as autonomous machines and black-box algorithms make decisions entrusted to

human knowledge, explaining themselves becomes necessary. Even considering the success in

a wide range of tasks, including advertising, movie and book recommendations, medical assis-

tance, and so on, there is in general mistrust about such black-box results. As the employment

of black-box ML models has currently increased, to make important predictions in critical con-

texts, the demand for transparency has also raised from stakeholders in AI [Preece et al. 2018].

This may be justified by the fact that some output decisions are not clearly justifiable, legitimate,

or with poor behavior details [Barredo-Arrieta et al. 2020].

The explanations behind the model’s output decision are crucial in several areas that require

high precision and figure experts requesting far more information from the model than just a

binary prediction without extra support for such diagnosis [Tjoa e Guan 2019]. Improvements

in understanding ML systems can lead to a better definition of its parameters, helping to ensure

impartiality in decision-making, i.e., to detect and correctly explain the bias for training sets

and tasks. Such improvements make the entire model’s generalization more robust by high-

lighting potential adversarial and intrinsic problems that could harm prediction and evaluation.

The explanation may be achieved by expressing which features are meaningful in the output

inference [Barredo-Arrieta et al. 2020].

Especially in the medical domain, it is crucial that the interpretation of ML decisions is

correlated to the human interpretation. Based on a previously trained ML model, the prediction

and interpretation of new samples rely on their propagation through the model, with pixel im-

pact visualizations (PIV) that may be based on layer, neuron, or prediction evaluations. This

work highlights five different PIV techniques employed as tool for understanding the behavior

behind CNN architecture decisions: saliency (SAL), guided backpropagation (GBP), integrated

gradients (IGR), input× gradients (IXG) and DeepLIFT (DLF). Figure 10.1 illustrates the PIVs

as heatmaps provided by each technique for an individual endoscopic instance.
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(a) Original Image (b) Saliency

(c) Integrated gradients (d) Input × gradients

(e) Guided backpropagation (f) DeepLIFT

Figure 10.1: Explanable AI heatmaps based on (a) Original image: (b) saliency, (c) integrated
gradients, (d) input × gradients, (e) guided backpropagation and, (f) DeepLIFT. The attributes’
colors range from blue (not discriminative) to white-green (discriminative), and are related to their
impact on the target’s class prediction.
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10.2.1 Saliency

Saliency methods, firstly proposed by Simonyan et al. [Simonyan, Vedaldi e Zisserman

2014], perform algorithm explanations by assigning values that reflect the importance of input

components in their contribution to the output prediction. These values could be part of proba-

bilities, heatmaps, or super-pixels. For such a method, having a previously trained deep model,

a given class’s spatial support is calculated for a classified image using a single backpropagation

pass through a classification step [Simonyan, Vedaldi e Zisserman 2014].

Given a fully trained CNN model and a class of interest, the saliency method provides a

numerically generated image, which is representative of this specific class and which is based

on the class scoring after a feedforward run through the model. This procedure is related to

the model’s training, and the backpropagation optimizes the layer weights regarding the input

image.

Therefore, for a given test image and a target class, the image’s pixels are ranked based on

their respective influence on a score function related to the output of the classification model.

Therefore, the class saliency map is calculated by means of the partial derivative of the class

score regarding each test image pixel using backpropagation. Each pixel’s single class saliency

value represents the derivative’s maximum magnitude across the color channels. Considering

that the saliency maps are extracted using a deep model trained over image class labels, no

additional annotation is required.

10.2.2 Guided Backpropagation

The guided backpropagation technique [Springenberg et al. 2015] modifies the traditional

backpropagation performed through the network to achieve inversion backward through a layer

by zeroing negative signals from both the output or the input. To visualize the most activating

image part for a specific high-level neuron (related to the highest value in the corresponding fea-

ture map), the guided backpropagation method performs a deconvolution backward pass, where

negative values of either input or output are set to zero. The inversion-based method backpropa-

gates the signal through the layers and still makes use of saliency maps for the activated signal

visualization [Springenberg et al. 2015].

For deconvolution [Zeiler e Fergus 2013], the CNN data flow is inverted starting from a

neuron activation in a higher layer down to the input image. Deconvolution and backpropa-

gation mainly differ in the way the rectified linear unit (ReLU) is handeled [Springenberg et

al. 2015]. As an output, a reconstructed image shows the region that presents the strongest
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influence in activating a neuron [Springenberg et al. 2015].

Guided backpropagation proposes the combination of both deconvolution and backpropa-

gation concepts, masking out only the values in which at least one is negative rather than mas-

king out values related to negative entries of the top gradient (deconvolution) or bottom data

(backpropagation). This means the corresponding neuron activation of the higher layers may be

visualized, even though they present a decrease in their activation [Springenberg et al. 2015].

10.2.3 Integrated Gradients and Input × Gradients

While saliency and guided backpropagation focus on the score gradients regarding the input

image, input× gradients also takes the input value into account. The attributes are computed by

means of a pixel-wise multiplication of the input value and the gradient for a specific pixel [Sh-

rikumar, Greenside e Kundaje 2017].

However, all these gradient-based methods share the same problem: if the gradient vanishes

during the backpropagation task, the respective pixel’s impact diminishes. However, a pixel

should present high impact if its existence makes a difference to the prediction outcome.

Therefore, the integrated gradients technique [Sundararajan, Taly e Yan 2017] not just com-

pute the gradient once for each input pixel, but instead, for a fixed input image, a sequence of m

intensity downscaled versions is generated applying a multiplication by R
m

(R = 1, ...,m). This

sequence simulates the stepwise vanishing of the signal at each pixel position. Then, the integra-

ted gradients method sums up all the gradients related to the images of the sequence. Finally,

and similar to input × gradients, this aggregated gradient is multiplied by the pixel intensity

over all image positions, respectively.

10.2.4 DeepLIFT

Deep Learning Important Features (DeepLIFT), proposed by Shrikumar [Shrikumar, Gre-

enside e Kundaje 2017], is a further development of integrated gradients. In such a method, the

contributions of an input pixel to the output score are measured in relation to a reference image.

This reference image should describe the unimportant background, which can be a constant zero

image as a first choice. Given that reference, the output difference-from-reference value is ex-

plained in terms of the inputs difference-from-reference value. These contributions are split into

positive and negative parts and backpropagated to all the neurons down to the input. Referring

to a background baseline enables DeepLIFT to reveal dependencies among input pixels.
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10.3 Methods and Material

This section presents the methodology adopted to cope with the XAI interpretation and

evaluation of Barrett’s esophagus and adenocarcinoma data.

10.3.1 Method

As mentioned earlier, one of the primary contributions of this work is to provide an inter-

pretability evaluation of positive samples in cancer diagnosed images using XAI techniques and

a comparison of segmentation outputs based on the experts’ annotations. To fulfill that purpose,

we considered four different CNN architectures as models to be trained and validated for the

XAI prediction interpretation, e.g., AlexNet, SqueezeNet, ResNet50, and VGG16, illustrated

in Figure 10.2. Such architectures were considered due to their extensive usage in the litera-

ture, but any other model could also be used. With several models, a more robust and cohesive

interpretation of deep networks could be delivered, aiming to understand the critical regions

of BE and adenocarcinoma context. Moreover, it is imperative to assess how different CNN

architectures can deal with the problem addressed in this work and whether they express or not

meaningful regions for early-stage adenocarcinoma prediction during the classification step.

Algorithm 1 summarizes the approach proposed in this study to quantitatively evaluate the

XAI techniques. The output prediction of each CNN model (after performing training and

testing tasks) is provided based on two different validation protocols, i.e., the leave-one-patient-

out (LOPO-CV) or the 20-fold (lines 3-5). Further, for all true positive (TP) and false negative

(FN) samples (inner loop in lines 6-12), the XAI heatmaps are calculated using five different

XAI techniques: saliency, guided backpropagation, integrated gradients, input × gradients,

and DeepLIFT (lines 6-7). Considering that the XAI output is the pixel attribution of each

evaluated sample, such attributes are normalized (line 8) for computing the OTSU threshold [Yu

et al. 2010] and producing a segmentation mask to be compared with the respective experts’

annotation (lines 9-10). Three agreement measures are then employed over such manual and

automatic segmentations: Cohen-Kappa (CK) [McHugh 2012], intersection-over-union (IoU)

and pixel accuracy (PA) (percentage of segmented pixels inside the expert’s annotated area)

(lines 11-12).
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(a) AlexNet

(b) SqueezeNet

(c) ResNet50

(d) VGG16

Figure 10.2: Illustration of the selected models to perform the prediction interpretation: (a) Alex-
Net, (b) SqueezeNet, (c) ResNet50, and (d) VGG16.
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Algorithm 1: Proposed method’s algorithm.
Result: Agreement Measures: CK, IoU and PA

1 Initialization: protocol definition (LOPO or 20-FOLD);
2 repeat
3 Definition of training and testing sets;
4 Train CNN architectures;
5 class← Classify testing samples;
6 for img as TP and FN samples of class do
7 attributesimg← img interpretation using XAI techniques (saliency, gpb, igr,

ixg, and dlf);
8 attributesnz← normalization of attributesimg;
9 threshold← OTSU thresold of attributesnz;

10 attributesbz← binarization of attributesnz based on threshold;
11 agreement_measures← segmentation_comparison(attributesbz,

GroundTruthimg), with segmentation_comparison ∈
12 (Cohen Kappa, Intersection over Union and Pixel Accuracy);
13 end
14 until protocol’s size;

10.3.2 Datasets

Two high-definition white-light endoscopic datasets were used for performing an in-depth

analysis of the proposed approach. The first dataset is composed of endoscopic examinations

provided by the University Hospital Augsburg, Medizinische Klinik III, Germany. The dataset

comprises a total of 76 endoscopic images captured from different BE-diagnosed patients, in

which 42 present only BE and 34 present BE and early-stage adenocarcinoma. One physician

manually annotated the cancerous biopsy-diagnosed images. Figure 10.3 displays some images

from the Augsburg dataset labeled as positive to adenocarcinoma.

The second dataset is composed of images from a benchmark dataset available at the “MIC-

CAI 2015 EndoVis Challenge"1, and called “MICCAI". Such a dataset was published to en-

courage researchers to conduct studies for differentiating BE and early-cancerous images con-

cerning how similar they look. Comprising 100 endoscopic images of the lower esophagus, the

samples of such dataset were captured from 39 individuals. The MICCAI dataset presents 22

samples diagnosed as BE and 17 diagnosed as early-stage esophageal adenocarcinoma. Each

patient figures a different amount of endoscopic images for this dataset, ranging from one to a

maximum of eight. The dataset presents, in total, 50 images displaying cancerous tissue areas

and 50 images showing BE disease. Five different experts have individually annotated suspici-

ous regions in cancerous samples. Figure 10.4 depicts some samples diagnosed as positive to

1https://endovissub-barrett.grand-challenge.org/home/
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adenocarcinoma from MICCAI dataset and their five respective experts’ annotations.

Figure 10.3: Some positive-to-adenocarcinoma images from the Augsburg dataset and their res-
pective delineation.

Figure 10.4: Some positive-to-adenocarcinoma images from the MICCAI dataset and their respec-
tive delineation.

10.3.3 Experimental Setup

This section presents the methodology used to conduct the model’s definition, classification,

and interpretation steps for further evaluation of the results.

10.3.3.1 Deep Model Definition

To cope with the model generation step, four different CNN architectures were evaluated,

i.e., AlexNet [Krizhevsky, Sutskever e Hinton 2017], SqueezeNet [Iandola et al. 2016], Res-

Net50 [He et al. 2016] and VGG16 [Simonyan e Zisserman 2014]. The main rationale behind

such choices are: (i) to evaluate the accuracy, sensitivity and specificity of current and trending

CNN architectures in the context of BE and adenocarcinoma diagnosis and; (ii) to understand
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the input discriminative parts learned by each CNN architecture and further assess their agre-

ement with the human-expert annotation of early-cancerous regions in positive samples. All

networks’ parameters were kept constant, with batch size of 4, and a learning rate of 0.001.

The Adam optimizer [Kingma e Ba 2015] was used with β1 = 0.5 and β2 = 0.999. Adam op-

timization has been widely employed in several classification tasks, due to its computationally

efficience, little memory requirement, invariance to diagonal rescaling of the gradients, and well

adaptation to problems that are large in terms of data and/or parameters. Also, such an opti-

mization technique presents an intuitive interpretation and does not typically require intense

tuning, being appropriate for non-stationary objectives and problems with very noisy and/or

sparse gradients [Souza Jr. et al. 2020, Souza Jr. et al. 2021, Kingma e Ba 2015]. Therefore,

we adopted standard values for all CNN’s model parameters, defined empirically, considering

the main scope was to assess the connection between the computational model and human in-

terpretations in the identification of early cancer in BE samples.

The experiments were conducted over 12,000 epochs, generating classification models ba-

sed on two different protocol approaches, i.e., 20-fold cross-validation and LOPO-CV. In the

20-fold cross-validation approach, 80% of samples were randomly selected for training, and the

remaining 20% were used for testing in each experimental fold. In the LOPO-CV approach, at

each iteration, a different patient was taken out of the entire set for testing purposes, while the

remaining samples were used as a training set. Using four CNN architectures and two different

protocols, eight different models for each dataset are provided to be interpreted using the XAI

techniques.

10.3.3.2 Explanable Artificial Intelligence Evaluation

The XAI interpretation was conducted to assess the most discriminative region of each

sample positive-to-cancer, regarding all five different XAI techniques applied to this study:

SAL, GBP, IGR, IXG and, DLF.

It is clearly important to understand which regions influenced the class prediction of sam-

ples and if the number of pixels inside such regions matches the expert’s annotations of cance-

rous regions. This may give insight into the correlation of the agreement between humans and

computational learnings in the definition of early-stage cancerous tissues for BE and adenocar-

cinoma samples.

The XAI techniques present as the output the evaluation of each pixel in the input samples

classified as TP or FN for the target prediction, i.e., for each pixel, attributions are calculated

with values correlated to its impact in the predicted class. A zero image was used as standard
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baseline to the techniques that are based on the first baseline assumption (integrated gradients

and DeepLIFT). After the XAI heatmap calculation, a min-max normalization was performed

for each image. However, the histograms of the pixel values for each image and XAI method

are different. Therefore, and in a way to define the best binarization threshold for each sample,

the OTSU threshold [Yu et al. 2010] was calculated to differentiate between meaningful and

non-meaningful attributes. This binarized output can then be compared to the experts’ ground

truth.

Furthermore, the comparison between the XAI segmented output and the ground truth of

positive samples was performed employing three different techniques: CK, IoU, and PA. Along

with the assessment of computational-and-human agreement for positive samples, the compa-

rison between TP and FN predictions may be conducted. The hypothesis is that there is a low

agreement of ground truth and meaningful pixels for each incorrectly predicted sample.

Last but not least, the correlation between the segmentation measures and the sensitivity

rates of each CNN architecture was performed employing the Spearman’s Correlation Test [Lo-

vie 1995]. With such a test, the agreement between computational and human segmentations

in the correct classification of cancerous samples can be highlighted, sharply increasing the

trustworthiness related to the CNN interpretation step.

10.4 Experimental Results

This section presents the experiments used to evaluate the proposed methodology. The

first round of experiments aimed at evaluating all the CNN architectures using the following

Accuracy (A), Sensitivity (S), and Specificity (P) rates:

S =
T P

T P+FN
·100, (10.1)

P =
T N

T N +FP
·100, (10.2)

and

A =
T P+T N

T P+T N +FP+FN
·100, (10.3)

with true positives (T P), true negatives (T N), false positives (FP), and false negatives (FN).

Additionally, a statistical evaluation using the signed-rank Wilcoxon test [Wilcoxon 1945]

was considered for comparison purposes between the segmentation measures over the XAI
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interpretation results.

The experiments were conducted on a 96 GB-memory computer equipped with an NVIDIA

TitanX Graphics Card of 12 GB and implementations were made using PyTorch and Captum.

10.4.1 Results on Augsburg Dataset

In this section, the Augsburg dataset results regarding the classification and XAI interpre-

tation are presented.

10.4.1.1 Classification

Table 10.1 presents the mean classification results related to the Augsburg dataset. Regar-

ding the 20-fold cross-validation approach, one can draw the following conclusions: (i) VGG16

model presented the highest accuracy (83.37%± 26.72%) and sensitivity (80.59%± 27.56%)

results; and (ii) AlexNet classifier provided the best specificity mean result (86.19%±22.59%).

Concerning the LOPO-CV approach results, the following outcomes could be observed: (i)

VGG16 model presented the highest accuracy (84.37%± 22.93%) and specificity (86.62%±
19.54%) results and; (ii) ResNet50 presented the best sensitivity rate (87.05%±8.84%) among

all configurations. The LOPO-CV results present higher accuracy, sensitivity, and specificity

outcomes in most experimental cases due to the training sets for such protocols comprising

more samples in a “patient-based"delineation for the classification step.

Table 10.1: Mean classification rates and time-consuming for the training task considering both
20-fold and LOPO-CV validation protocols for the Augsburg dataset. The best results for each
protocol are highlighted in bold, and the best overall result for each rate is marked with a ⋆ symbol.

Protocol Architecture Accuracy Sensitivity Specificity Time (min)

20-fold

AlexNet 0.80±0.26 0.72±0.29 0.86 ± 0.23 111.09±19.13
SqueezeNet 0.73±0.38 0.67±0.40 0.80±0.19 175.23±18.36
ResNet50 0.76±0.21 0.75±0.02 0.77±0.21 221.39±20.33
VGG16 0.82 ± 0.27 0.81 ± 0.28 0.84±0.28 137.14±15.58

LOPO-CV

AlexNet 0.83±0.23 0.81±0.29 0.84±0.20 139.20±19.25
SqueezeNet 0.79±0.11 0.73±0.11 0.84±0.12 201.15±21.37
ResNet50 0.84±0.10 ⋆0.87 ± 0.09 0.84±0.11 244.66±19.17
VGG16 ⋆0.84 ± 0.12 0.83±0.14 ⋆0.87 ± 0.11 152.21±12.11
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10.4.1.2 XAI Interpretation

Table 10.2 presents the best results related to the XAI interpretation of the Augsburg dataset

when SAL, GBP, IGR, IXG and DLF were applied to the model interpretation task, and CK,

IoU, and PA measures were applied to assess the computational and human segmentation agree-

ment2. In the evaluation of the 20-fold cross-validation approach, the saliency-based technique,

when compared to the experts’ segmentations using all three agreement measures, provided

the best results for every conducted experiment, outperforming the agreement observed in all

remaining XAI techniques. In addition, the agreement between computational and human in-

terpretations for TP samples was statistically higher for all the presented results (Table 10.2)

compared to the FN ones. Concerning CK, IoU, and PA measures, the best results were ob-

tained evaluating TP inputs of ResNet50 architecture, i.e., 0.332± 0.023, 0.258± 0.023, and

0.590±0.151, respectively.

The saliency technique applied to the LOPO-CV approach achieved the best results in all

conducted experiments, outperforming both the results observed for the TP inputs using the

other XAI techniques and the 20-fold CV outputs. For the Augsburg dataset, the obtained agre-

ement between computational and human segmentations was statistically higher for TP samples

than the FN ones. Concerning CK and IoU measures, the best mean results were obtained in the

interpretation of TP samples using the VGG16 model, i.e., 0.357± 0.092 and 0.250± 0.056,

while the best PA result was obtained for the interpretation of SqueezeNet positive-predicted

samples, i.e., 0.622±0.070.

The saliency method provided very satisfactory results for the BE positive-classified sam-

ples, showing the efficiency and importance of such a technique to interpret the sensitivity

values during the classification process of the evaluated CNN models.

10.4.2 Results on MICCAI Dataset

This section presents the results concerning the MICCAI dataset considering the classifica-

tion and XAI interpretation experiments.

10.4.2.1 Classification

Table 10.3 presents the mean results related to the MICCAI dataset. Regarding the 20-fold

cross-validation approach, one can draw the following conclusions: (i) VGG16 model presen-

2For the sake of clarity, we only displayed the results of the best XAI technique. The same is applied to the
results presented in section 10.4.2.2
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Table 10.2: CK, IoU, and PA mean values for the best XAI interpretation output of 20-fold and
LOPO-CV validations over the Augsburg dataset. The best results for each protocol are highligh-
ted in bold, and the best overall result for each masure is marked with a ⋆ symbol.

Protocol Architecture Prediction
Best

XAI technique
CK IoU PA

20-fold

AlexNet
TP SAL 0.30±0.03 0.25±0.03 0.59±0.04
FN SAL 0.14±0.02 0.09±0.09 0.34±0.10

SqueezeNet
TP SAL 0.33±0.03 0.24 ± 0.06 0.51±0.15
FN SAL 0.11±0.03 0.08±0.01 0.30±0.03

ResNet50
TP SAL 0.33 ± 0.02 ⋆0.26 ± 0.01 0.59 ± 0.15
FN SAL 0.20±0.03 0.13±0.02 0.42±0.06

VGG16
TP SAL 0.25±0.07 0.19±0.04 0.52±0.11
FN SAL 0.18±0.03 0.12±0.01 0.28±0.03

LOPO-CV

AlexNet
TP SAL 0.27±0.05 0.26±0.06 0.61±0.10
FN SAL 0.14±0.06 0.15±0.02 0.38±0.05

SqueezeNet
TP SAL 0.33±0.06 0.25 ± 0.04 ⋆0.62 ± 0.07
FN SAL 0.10±0.04 0.08±0.03 0.35±0.12

ResNet50
TP SAL 0.32±0.08 0.24±0.08 0.57±0.13
FN SAL 0.24±0.07 0.15±0.04 0.39±0.04

VGG16
TP SAL ⋆0.36 ± 0.09 0.25 ± 0.06 0.55±0.12
FN SAL 0.20±0.09 0.13±0.02 0.31±0.03

ted the highest accuracy (83.73%±23.83%) and specificity (85.16%±38.74%) results; and (ii)

ResNet50 classifier provided the best sensitivity mean value (88.77%± 11.75%). Concerning

the LOPO-CV approach results, the following outcomes could be observed: (i) ResNet50 ar-

chitecture presented the highest accuracy (86.55%±11.63%) and sensitivity (88.51%±7.84%)

results; and (ii) VGG16 classifier showed the best specificity rate (88.95%±10.21%) among all

configurations. The LOPO-CV results present higher accuracy, sensitivity, and specificity out-

comes in most experimental cases due to the training sets for such protocols comprising more

samples in a “patient-based"classification goal.

10.4.2.2 XAI Interpretation

Table 10.4 presents the best results related to the XAI interpretation of MICCAI dataset

using the five XAI evaluation techniques and the segmentation comparison measures for TP

and FN classified inputs of each CNN architecture. Regarding the 20-fold cross-validation

approach, the saliency technique provided the best agreement results for every conducted ex-

periment once again, outperforming the results observed in all remaining XAI techniques. It is

also important to highlight that, for the TP samples, the obtained agreement between computa-

tional and human segmentations was statistically higher for all the experiments when compared

to the FN ones. Concerning CK and IoU measures, the best results were obtained in the inter-
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Table 10.3: Mean classification rates and time-consuming for the training task of both 20-fold and
LOPO-CV validation protocols for the MICCAI dataset. The best results for each protocol are
highlighted in bold, and the best overall result for each rate is marked with a ⋆ symbol.

Protocol Architecture Accuracy Sensitivity Specificity Time (min)

20-fold

AlexNet 0.81±0.17 0.82 ± 0.17 0.81±0.19 119.45±21.11
SqueezeNet 0.77±0.20 0.75±0.15 0.78±0.32 182.13±22.27
ResNet50 0.81±0.14 ⋆0.89 ± 0.12 0.72±0.20 237.58±19.18
VGG16 0.84 ± 0.24 0.78±0.26 0.85 ± 0.39 144.53±18.02

LOPO-CV

AlexNet 0.85±0.05 0.82±0.10 0.89±0.09 146.33±20.46
SqueezeNet 0.88±0.07 0.86±0.09 0.89±0.08 206.39±20.44
ResNet50 ⋆0.87 ± 0.12 0.89 ± 0.08 0.844±0.113 251.05±17.57
VGG16 0.86±0.05 0.85±0.11 ⋆0.89 ± 0.10 156.17±14.28

pretation of TP inputs using VGG16’s model (0.311±0.039 and 0.293±0.014), while the best

PA measure was obtained in the interpretation of TP samples predicted by the ResNet50 model

(0.582±0.081).

For the LOPO-CV approach, one can observe that the saliency XAI technique provided,

once again, the best results in almost every conducted experiment, outperforming not only the

agreement observed in all remaining XAI techniques but also outperforming the 20-fold CV

outputs. Again, it is important to highlight that the obtained agreement between computational

and human segmentations was statistically higher for the TP samples compared to the FN results

of the same measures. The best-obtained results for the segmentation measures in this protocol

were: for CK and IoU obtained in the interpretation of TP inputs from AlexNet’s classification

(0.324± 0.058 and 0.318± 0.025), while the best PA result was obtained in the interpretation

of TP samples predicted with the SqueezeNet architecture (0.642±0.132).

As one can also observe, for the MICCAI dataset, the saliency method provided very sa-

tisfactory results for the positive-classified observation of BE context. The higher agreement,

when compared to the remaining techniques, gives us insights into how interesting the use of

such technique is to understand the interesting regions related to the correct and wrong classifi-

cation of cancerous samples.

10.4.3 Correlation Test

The correlation test refers to the sensitivity value and the final interpretation presented by

the use of XAI techniques. For such a task, the agreement measures and sensitivities of both

TP and FN classified-and-interpreted samples were considered in the evaluation of each CNN
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Table 10.4: CK, IoU and PA mean values for the best XAI interpretation output of 20-fold and
LOPO-CV validations of the MICCAI dataset. The best results for each protocol are highlighted
in bold, and the best overall result for each measure is marked with a ⋆ symbol.

Protocol Architecture Prediction
Best

XAI technique
CK IoU PA

20-fold

AlexNet
TP SAL 0.31±0.03 0.29±0.01 0.51±0.12
FN SAL 0.23±0.02 0.11±0.02 0.19±0.07

SqueezeNet
TP SAL 0.26±0.02 0.20±0.01 0.57±0.10
FN SAL 0.20±0.04 0.09±0.04 0.19±0.08

ResNet50
TP SAL 0.28±0.02 0.22±0.04 0.58 ± 0.08
FN SAL 0.13±0.11 0.08±0.04 0.12±0.07

VGG16
TP SAL 0.31 ± 0.04 0.29 ± 0.01 0.51±0.05
FN SAL 0.11±0.07 0.07±0.01 0.19±0.05

LOPO-CV

AlexNet
TP SAL ⋆0.32 ± 0.06 ⋆0.32 ± 0.03 0.63±0.06
FN SAL 0.26±0.04 0.11±0.03 0.24±0.06

SqueezeNet
TP SAL 0.28±0.06 0.22±0.05 ⋆0.64 ± 0.13
FN SAL 0.26±0.01 0.12±0.04 0.27±0.09

ResNet50
TP SAL 0.30 ± 0.03 0.19±0.02 0.47±0.14
FN SAL 0.18±0.07 0.11±0.05 0.24±0.05

VGG16
TP GBP 0.32 ± 0.03 0.30±0.02 0.56±0.14
FN SAL 0.18±0.03 0.10±0.05 0.23±0.10

model, taking its best protocol result into account. Table 10.5 presents the results of Spearman’s

correlation test for the very best results achieved for each CNN architecture in the evaluation

of both datasets, with bold values meaning the highest achieved correlation between sensitivity

and agreement measure.

After interpreting TP and FN samples by applying the methodology, we could observe

that saliency technique was clearly more related to the experts’ annotations than the others.

Such a method provides the heatmap based on the calculated gradients of the target class, and

for almost every experimental delineation, presented more attributes accorded to the experts’

annotation region. As a result, all CK, IoU, and PA measures were higher for saliency maps,

suggesting that this technique may work better than the remaining ones when dealing with

observation and description of similar tissues of different natures, as BE and early-cancer are

presented in the endoscopic instances. Besides, one can observe Figures 10.5 and 10.6, in which

the best interpretation outputs of TP samples (from the best XAI technique) are presented for

each CNN architecture. When analyzing such information, the attributes’ incidence inside the

physicians’ delineations may be highlighted, even the techniques showing up that there were

still relevant parts for the correct classification of positive samples outside of the agreement

regions. Still, when comparing CK, IoU and PA measures observed for TP and FN samples in

all experiments, FN-diagnosed segmentations presented lower values, corroborating the insights
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Table 10.5: Spearman’s correlation test among the best-obtained results of interpretation of each
CNN architecture and validation protocol. The best results for each dataset are highlighted in
bold, and the best overall result for each measure is marked with a ⋆ symbol.

Sperman’s Correlation Test

Dataset CNN
Best

Protocol
Best

XAI Technique

Sensitivity
×

CK

Sensitivity
×

IoU

Sensitivity
×
PA

Augsburg

AlexNet
LOPO

CV
SAL 0.53 0.51 0.62

SqueezeNet
LOPO

CV
SAL 0.48 0.52 0.57

ResNet50
20-fold

CV
SAL 0.62 0.63 0.61

VGG16
LOPO

CV
SAL 0.44 0.55 0.63

MICCAI

AlexNet
LOPO

CV
SAL 0.51 0.61 0.71

SqueezeNet
LOPO

CV
SAL 0.41 0.66 0.68

ResNet50
20-fold

CV
SAL 0.61 ⋆0.67 ⋆0.72

VGG16
LOPO

CV
GBP ⋆0.63 0.64 0.69

about the correlation among correct classification and region of interest agreement.

10.5 Discussion and Conclusions

In this paper, we dealt with computer-assisted Barrett’s esophagus and adenocarcinoma

identification, interpretation, and comparison by means of deeply-learnable features computed

using AlexNet, SqueezeNet, ResNet50 and VGG16 networks. Such architectures were selected

to make sure a robust evaluation of the approaches proposed in this paper. Well-known and wi-

dely employed models, ranging from simple (AlexNet) to sophisticated-and-deeper (ResNet50)

architectures, were selected to conduct the first quantitative comparison of human and compu-

tation interpretation of early cancer definition in the esophagus region.

We could not observe any previous study proposing the interpretation of deep learning mo-

dels in the BE and adenocarcinoma context to provide visual insights into the learning process.

In this work, we fostered the research toward such tasks by introducing an interpretation of

CNN classification based on XAI techniques, in both qualitative and quantitative assessment
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(a) AlexNet (b) SqueezeNet

(c) ResNet50 (d) VGG16

Figure 10.5: Computational segmentation of TP samples (black) and their respective ground truth
delineated area (red) over (a) AlexNet, (b) SqueezeNet, (c) ResNet50, and (d) VGG architectures
for Augsburg dataset. Every segmented sample is related to the best XAI interpretation technique
obtained for the respective CNN architecture.
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(a) AlexNet (b) SqueezeNet

(c) ResNet50 (d) VGG16

Figure 10.6: Computational segmentation of TP samples (black) and their respective ground truth
delineated area (red) over (a) AlexNet, (b) SqueezeNet, (c) ResNet50, and (d) VGG architectures
for MICCAI dataset. Every segmented sample is related to the best XAI interpretation technique
obtained for the respective CNN architecture.
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of it. Thus, we could extend some recently proposed works over similar database and proto-

col [Souza Jr. et al. 2018,Souza Jr. et al. 2019,Souza Jr. et al. 2017,Souza Jr. et al. 2018,Souza

Jr. et al. 2017]. Besides, we highlight three works that proposed the use of some interpretation

technique to light up the learning process behing the deep model generalizaion. The first one,

proposed by Gu et al. [Gu, Su e Zhao 2020], employs the use of extreme gradient boosting

to predict breast cancer and case-based reasoning to explain the computational decisions. The

second one, conducted by Moncada-Torres et al. [Moncada-Torres et al. 2021], designed a sys-

tem for interpreting breast cancer prediction based on several ML models and Shapley Additive

exPlanation. The last one from Sabol et al. [Sabol et al. 2020] showed improvements in the

accountability in decision-making of colorectal cancer comparing CNN model outcomes from

a novel XAI model that, besides the classification, presents: (i) a semantical explanation, (ii) a

visualization of the training image most responsible for a given prediction, and (iii) a visualiza-

tion of training images of other types of tissues to explain the decision. All the aforementioned

works show promising interpretation of ML model decisions. Obviously, the XAI application

to explain, in details, the ML decisions is crucial, but the proper quantitative evalulation is

necesssary to make such an interpretation robust enough, not only relying on the visual evalua-

tion of expert’s and computational outcomes. Therefore, our method proposes an interpretation

completely based on the quantitative correlation of manual and automatic explanations of the

decisions, not only relying on visual insights of its outcomes.

The interpretation of deep learning outcomes seems to be a must-do task, once machine le-

arning techniques have been widely applied to the medical field with promising results through

the years. As long as the results are improved, the decisions behind the black-box generaliza-

tion, learning process, and evaluation of samples must be understood, driving to the experts’

insights about how the problem was dealt, and further directions for closer observations of re-

gions they did not observe previously. Along with the CNN model, XAI tools can interpret

new-classified samples and further evaluate positive correct and incorrect classifications. Five

different techniques were assessed for the interpretation task, where after the heatmap been

calculated, the segmentation output was calculated based on the most discriminative features

provided by them. This allows to test the hypothesis that models with high sensitivity results

correspond to models with high agreement between high impact attributes and experts’ annota-

tions. Hence, the agreement of human and computational annotations was performed using the

CK, IoU, and PA measures to satisfy or deny such a hypothesis.

The Spearman’s correlation test was conducted to understand if the computational-segmented

images really presented correlation to the sensitivity results for both TP and FN interpretati-

ons. As one can observe in Table 10.5, the achieved relationship for all experimental sets lay
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on positive moderate to positive strong correlation among sensitivity and agreement measu-

res (moderate is the range within ±0.30 and ±0.49, and strong is the range within ±0.5 and

±1) [Spearman Rank Correlation Coefficient 2008].

In an in-depth analysis of the correlation results, one can observe that, with positive mo-

derate and strong correlations, as long as the number of interpreted pixels inside the experts’

annotations increases for the correct classification, the sensitivity result also increases. Consi-

dering the highest correlation result (i.e., MICCAI dataset for PA agreement measure in Res-

Net50 interpretation), one can observe that such outcome suggests how important the agreement

of computational and human region definitions is for the correct classification of positive-to-

cancer samples in the evaluated context. In addition, the correlation values for TP and FN were

quite far from each other. Moreover, the same behavior can be observed for the remaining

correlation results. For the higher ones, the difference between TP and FN measures was also

higher, showing that the sensitivity increasing may also be related to lower FN agreement within

human-annotated and computational-annotated regions. The same outcome could be observed

in many other correlation assessments. However, some high sensitivity values did not present

strong correlation to the segmentation measures (but moderate), suggesting that not only the

agreement region is important for the correct classification of positive samples, but also the at-

tributes highlighted on the outside (see Figures 10.5 and 10.6). Furthermore, even presenting

satisfactory human-and-computation agreement in the TP evaluation sets, a deeper look into

such defined attributes could be performed to find, perhaps, more discriminative regions for

cancerous instance sampling. The fuzzy-regions, defined as areas in which the experts’ annota-

tions do not agree in the manual definition of the ground truth, may be considered as a potential

discriminative region for the attribute definition.

Again, for the Augsburg dataset, the achieved results (even for the correlation task) were

lower than the MICCAI outcomes, reinforcing that the evaluation of such a dataset is more

challenging not only for the classification but also for the interpretation of the results. Even

though, still satisfactory outcomes could be achieved, outperforming the state-of-the-art full

image classification and interpretation of positive samples.

Finally, the main achieved contributions of the study are presented as follows:

• The interpretation of black-box generalization in BE endoscopic images based on XAI

techniques showed up to be promising, presenting trustworthy outputs to be compared

to experts’ interpretations of the same problem and encouraging new studies in which

cancerous samples must be interpreted after deep learning generalization.
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• The saliency technique, based on the interpretation of input’s gradients, achieved the best

results, suggesting promising behavior in the interpretation of cancerous tissues.

• The proposed hypothesis about “how related are the computational and human learnings

for BE and adenocarcinoma context?"could be answered after the conducted correlation

experiments, in a conclusion that, yes, the experts’ annotated regions present from mode-

rate to strong correlation to the correct classification of cancerous samples using black-

boxes models, even though outside regions defined as important by such deep learning

architectures also present relevance for the correct and incorrect predictions. Moreover,

we conclude that the FN-classified samples always presented lower agreement of impor-

tant regions with experts’ annotations, corroborating the importance of such delineations

in the computational learning and classification processes.

Similarly to the results obtained in this work, the study proposed by Souza Jr et al. [Souza

Jr. et al. 2019] aimed at understanding the impact of the handcrafted-feature localization on the

class prediction of cancerous-tissue over BE samples. For such, the authors evaluated the posi-

tion and amount of features inside the cancerous region, concluding that the higher the number

of features inside such a region, the higher the model’s capability of correctly predicting cance-

rous samples. Considering the nature of object detection techniques, such as SURF and SIFT

(assessed in the mentioned work), it is extremely important not only to perform the same evalu-

ation for CNN architectures (considering the high challenge in solving the black-box learning

process) but to highlight that the same interpretation could be achieved, suggesting once again

the importance of defining the correct cancerous region for its correct description, learning and

classification.

Regarding future work, we aim to consider more sophisticated and deeper CNN architec-

tures, such as GoogleNet and DenseNet, for the model generalization task and to compare the

results with more pixel-wise XAI techniques. Additionally, a layer-wise interpretation will be

conducted to assess each layer’s importance in the interpretation of positive sample generaliza-

tion and classification in BE and adenocarcinoma context. Moreover, we aim at validating the

proposed method in more datasets, when available.

10.6 Chapter’s Considerations

This Chapter continues the work related to the evaluation of deep-learnable features pro-

posed in the previous ones, in addition to the introduction of an interpretation technique for

visually understanding the behavior of deep models’ feature description while generalizing BE
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and adenocarcinoma context. To cope with such a task, after training deep models for the po-

sitive identification of cancer, we conducted experiments to interpret, using XAI techniques,

the learning behavior behind the CNN decision, finally comparing spatial influences of such a

prediction with experts’ annotations of the same input samples.

First, several CNN architectures, such as VGG-16 and ResNet-50, were evaluated for the

correct identification of early-cancerous tissue. After training, a deep model could be generali-

zed, and the interpretation step would occur. Such an interpretation was conducted by applying

XAI methods that, having pre-trained models, highlight important layers, neurons, or pixels

according to the observation of the learning process the net performed for its final decision. As

a first attempt, we focused on visually observing the learning behavior of deep architectures as

a way to correlate it to the understanding that the experts obtain during surveillance.

Then, the experimental delineation was composed of training and testing CNN models,

followed by the application of XAI techniques that provide the visual interpretation of the le-

arning process, finally enabling the comparison of computational and human impactful areas

of cancer-label decision. This design promotes substantial contribution, making capable the

spatial observation of deep-learnable features elected as discriminative in the adenocarcinoma

representation. We propose the use of four CNN architectures, AlexNet, SqueezeNet, ResNet-

50, and VGG-16, for the model’s training, and five XAI methods, saliency, integrated gradients,

input × gradients, guided back-propagation, and deep-lift, for the interpretation of impactful

pixels. To perform the correlation test, first, the annotation provided by experts and CNN archi-

tectures were compared using segmentation agreement measures, i.e., cohen kappa, intersection

over union, and pixel accuracy, for further application of spearman’s test.

From the obtained in this Chapter, we proposed a qualitative, quantitative, and effective

technique for observing the learning behavior performed by computational methods. As we

questioned in previous Chapters, do computers learn the same information the experts’ do for

its decision of cancer or not cancer classification regarding BE context? Obviously, the experts’

observation relies on visual insights, while CNN models perform convolutional-encoding pro-

cesses for describing, analyzing, and generalizing information. However, from the observed

in our experiments, XAI techniques positively highlight, in combination with correlation tests,

that what computers learn is directly related to what experts see for the correct identification of

cancerous regions in esophagus endoscopies. The correlation test has shown moderate to strong

correlation in the agreement of cancerous regions from humans’ and computers’ segmentations

and higher cancer identification accuracy, corroborating our insights about the importance of

both techniques in the correct classification we aim to deliver.
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Finally, the remarkable outcomes we achieved in this Chapter guided the proposed in the

next ones, in which a deeper understanding of neural networks would be proposed so the best

deeply-learnable features could be selected for properly composing a method that encodes both

human insights and computational learning for enhancing the classification of early cancer in

BE examinations.



Chapter 11
LAYER-SELECTIVE DEEP REPRESENTATION TO

IMPROVE ESOPHAGEAL CANCER

CLASSIFICATION

To propose an interpretation of the CNN black-box nature based on the layer-output eva-

luation, the study submitted to “Nature Biomedical Engineering"coped with such a task by

applying a two-step training to the classification of early cancer in Barrett’s esophagus samples.

11.1 Introduction

The last decades witnessed a world technological revolution, which established new pa-

radigms and completely changed the way most processes were performed. Despite the com-

putational power growth and the internet’s communication progress, artificial intelligence (AI)

and machine learning-based approaches assume a protagonist role, executing tasks once con-

sidered too complex to be automated. Besides, these techniques can also perform many tasks

once thought-out too dangerous, expensive, time-consuming, and annoying to be executed by

humans.

Several science and knowledge fields have been overly favored by machine learning (ML)

approaches, mentioning medicine amid the top ones. In this context, one can refer to appli-

cations for dementia [Zhou et al. 2020], breast mass [Ribeiro et al. 2015], and Parkinson’s

disease [Passos et al. 2018] identification, among others. Despite the success of traditional ML

methods, deep learning approaches recently imposed a new standard, providing paramount re-

sults in virtually any segment of medicine, e.g., exudate detection in fundus images [Khojasteh

et al. 2019,Atasoy et al. 2012] and neoplasia identification in patients with Barrett’s esophagus
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(BE) [de Groof et al. 2020, Hong, Park e Park 2017, Ghatwary, Zolgharni e Ye 2019, Ebigbo et

al. 2020], to cite a few.

BE is a disease that attacks the lower part of the esophagus, inducing changes in the mu-

cosa’s cells. In most cases, the cause of the disease is related to obesity and smoking [Lager-

gren e Lagergren 2010], while the condition’s remission depends on an early diagnosis [Dent

2011,Sharma et al. 2016,Phoa et al. 2016]. Moreover, late diagnosis or neglected treatment may

lead to more complicated scenarios, with risks of cancer development and even death [Shaheen

et al. 2009, Johnston et al. 2005].

Such a demand for BE analysis and early cancer detection associated with deep learning

models’ classification power flourished in several works. [Mendel et al. 2017], for instance,

proposed a deep learning approach based on Convolutional Neural Networks (CNN) for BE

analysis, extended by [Horie et al. 2019] and Souza Jr. et al. [Souza Jr. et al. 2021, Souza

Jr. et al. 2020], who proposed similar approaches for esophageal cancer detection. Other

works [Souza Jr. et al. 2018, Souza Jr. et al. 2017, Hassan e Haque 2015] aimed to use features

extracted from endoscopic images for the classification of Barrett’s esophagus and adenocar-

cinoma. Furthermore, Souza et al. [Souza Jr. et al. 2017, Souza Jr. et al. 2018, Souza Jr. et

al. 2019] conducted several studies comparing different approaches for handcrafted-feature ex-

traction in the context of BE and adenocarcinoma distinction. Aside from classification rates,

many works have also stressed the importance of prediction’s understanding and interpretabi-

lity. Concerning the problem of early cancer detection in BE, as well as most of the medical

and legal issues, transparency is not only about intellectual curiosity but also the risks and res-

ponsibilities intrinsic to the prediction’s output [Xie, Gao e Chen 2019,Cassel e Jameton 1981].

Unfortunately, most of the deep learning-based techniques yield a black-box-nature approach,

which result’s interpretation does not denote a trivial task, and the decision process lacks mea-

nings [Tjoa e Guan 2019]. Hence, a new trend in intelligent approaches emerged for predicti-

ons’ explanation, the so-called explainable artificial intelligence (XAI) [Lamy et al. 2019] and

the multistep training models [de Groof et al. 2020].

Such a requirement is essential for legal and ethics issues [Rudin 2019], healthcare and

criminal justice [Hacker et al. 2020], and financial risk assessment [Ma e Lv 2019]. Regar-

ding medical purposes, one can find XAI applications for breast cancer detection [Lamy et al.

2019], interpretable classification of Alzheimer’s disease pathologies [Tang et al. 2019], and

heart-attack prediction [Aghamohammadi et al. 2019], among others. Moreover, [Holzinger

et al. 2017] outlined some topics related to the subject, while [Tjoa e Guan 2019] compiled

several related approaches in a survey. Such XAI evaluation comprises a proper interpretation
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of the learning process related to the training and generalization of deep learning models [Lamy

et al. 2019]. Such interpretation may be related to pixel-wise visualization, layer-wise, and

neuron-wise activation interpretations [Souza Jr. et al. 2021]. The last two approaches cle-

arly present less intuitive understanding because they are not directly related to image regions.

However, the evaluation of the training process by means of the layers and neurons’ behavior

introduces a barely explored area. Instead of displaying visual insights of the input over the

deep model, the understanding considers a more abstract resource, i.e., the model presents a

different interpretation concerning the behavior of each layer or neuron outcome.

By providing a learning explanation, a multistep approach allied to an XAI-inspired evalu-

ation may enhance the classification rates and may help to interpret the training process once

several steps may address different problems described by the same assessed context. Conse-

quently, the multistep training field [de Groof et al. 2020] may be considered for enhancing and

filtering the training behavior, once some steps may increase the samples’ positive accuracy.

In this context, recent works [Toth e Brath 2007, Szegedy et al. 2015, Santana et al. 2019]

propose the application of multistep training methods to enhance the classification of medical

instances by calibrating data and pre-fine-tuning the learning process. Regarding BE and ade-

nocarcinoma problem, [de Groof et al. 2020] conducted experiments for detecting neoplasia

with higher accuracy through a multistep training and validation system based on a hybrid deep

learning model composed of ResNet and U-Net concepts.

By performing learning processes based on several levels of training, testing, and descrip-

tion, the interpretation of inner CNN models may be helped by local analysis encouraged by

modular approaches proposed by multistep and selective methods. The work conducted by Imai

et al. [Imai, Kawai e Nobuhara 2020] started the concept of knowledge growing based on the

selection of pre-trained weights. The aforementioned method, named PathNet, automatically

selects pre-trained modules in modular networks to improve the accuracy during the fine-tuning

process. The authors achieved up to 10% of accuracy improvement over the classification of

popular datasets such as CIFAR-100 and SVHN. The selective methods can also be employed

in different levels of abstraction, as the work proposed by [Geifman e El-Yaniv 2017], in which

a model is designed based on a risk function that selects the optimal coverage rate during the

generalization process. As the learning progresses, instances are rejected to ensure optimal

coverage. The authors achieved high accuracy results from the experiments conducted over CI-

FAR and imageNet datasets, close to 99% with 60% of test coverage. Considering such works

and the current importance of assessing the model-behavior during a CNN training process ba-

sed on non-trivial interpretation, and knowing that no work published to date addressed such a

problem for BE and adenocarcinoma in a multistep layer-evaluation, this paper introduces three
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main contributions:

• to propose a CNN-layer-wise interpretation model capable of presenting layer-fashion

insights regarding the model’s attention mechanisms;

• to introduce a layer-wise two-step approach to BE and adenocarcinoma context evalua-

tion;

• to support the literature regarding both BE and multistep-training-related-researches, pro-

posing a novel method and exposing new insights about intrinsic patterns observed over

BE and adenocarcinoma endoscopic images.

The remainder of the pa per is presented as follows. Section 11.2 introduces the main con-

cepts regarding ResNet-50 model’s learning, while Section 11.3 proposes a novel architecture

based on a CNN-layer evaluation. Further, Sections 11.4 and 11.6 describe the experimental

results and conclusions, respectively. Last but not least, future work is also discussed.

11.2 Theoretical Background

This section presents a brief theoretical background about learning interpretation and CNN

to provide a base knowledge to be followed by the proposed experimental approach of this

manuscript.

11.2.1 Model’s Learning Improvement

As the employment of black-box ML models has currently increased to make significant

predictions in critical contexts, the demand for transparency has also increased from stakehol-

ders in AI [Preece et al. 2018]. Such a demand regards not clearly justifiable or legitimate

output decisions, also presenting details of deficient behavior of ML models [Barredo-Arrieta

et al. 2020].

The understanding of the model’s behavior is crucial in several areas, such as medicine,

that requires high precision and requests more information from the model than just a final

prediction without extra support for the diagnosis [Tjoa e Guan 2019]. Improvements in un-

derstanding ML systems lead to a better definition of their parameters, ensuring impartiality in

the decision-making process. Such improvements make the entire model more robust by high-

lighting potential adversarial and intrinsic problems that could harm prediction [Barredo-Arrieta
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et al. 2020]. Understanding how the network behaves in several aspects may also improve the

correct classification of instances as long as deep networks tend to become deeper to generalize

more information, making such understanding even more complicated due to the large amount

of information encoded through the layers [Szegedy et al. 2017].

The explainability in the medical field has been explored in many works, such as the evalu-

ation of cancer in chest radiography images [Zucco et al. 2018], the detection and interpretation

of breast cancer in mammographic images [Lamy et al. 2019], and the classification of mela-

noma in hypertrophic cardiomyopathy-diagnosed images [Codella et al. 2018]. Even with the

progress related to the interpretation of deep learning decisions, a long way must be overtaken in

terms of interpretability, assessment, and criteria definition (in regard to notions of “interpretabi-

lity", “explainability"along with “reliability"and “trustworthiness") [Ribeiro, Singh e Guestrin

2016, Gilpin et al. 2018, Barredo-Arrieta et al. 2020].

Along with the explainability, which aims at interpreting the deep model’s decisions, the

proper definition of models and their parameters, as well as their deepness, are essential to

compose trustworthy, robust, and precise networks. The multistep field targets the improvement

of classification rates by proposing several steps in the training process, refining the parameter

calculation and model’s generalization at each module [Toth e Brath 2007,Szegedy et al. 2015,

Santana et al. 2019]. In this context, the generalization may decrease the network’s depth at

each step once several optimization tasks are performed in the training process. Still, different

problems in the same circumstances can be coped at each step in a “divide to conquer"learning

generalization process [de Groof et al. 2020, Szegedy et al. 2017].

Therefore, ML models must provide, along with their predictions, a set of human-capable

tools for interpreting and understanding the evaluated context, even though such decisions are

strongly related to the network’s capability to express the learned information. Based on a pre-

viously trained ML model, the prediction and interpretation of new samples rely on their propa-

gation through the model that may be based on layers, neurons, or prediction evaluations. Con-

sidering that most XAI methods for CNN interpretations are based on pixel-backpropagation-

techniques, which display the model’s activation in a pixel-fashion way through input sam-

ples [Barredo-Arrieta et al. 2020], the evaluation and interpretation of layer and neuron-based

methods need more related-knowledge concerning CNN architecture, deepness, and neuron-

configuration. This is explained by the fact that the output of a layer-or-neuron interpretation

technique is not properly a visual insight, but the behavior of a current layer, neuron or group of

neurons. The learning process performed by CNN models describes a hard task to be understood

once the convolutions, poolings, and activations related to such a task may “deconstruct"the in-
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put in a non-linear way.

The decomposition, local-evaluation, and understanding of layers may provide a key eva-

luation we use in a multistep-task learning process. Such characteristics may also suggest an

important approach towards evaluating the learning process besides increasing the accuracy ra-

tes. Even though some state-of-the-art works proposed to use the CNN training process as a

nested-step approach to enhance the accuracy rate [de Groof et al. 2020, Ismail et al. 2019],

none proposed using multistep training to evaluate any learning process besides enhancing ac-

curacy result.

As such, this work highlights two approaches for the layer-based enhancement of a ResNet-

50 model based on addition and concatenation of convolutional layer outputs, aiming at unders-

tanding the positive aspects through the learning process, later explained in Section 11.3.

11.2.2 Convolutional Neural Networks - ResNet50

Residual Networks (ResNets) [He et al. 2016] stand for a family of deep models proposed

to deal with the degradation of gradients in deeper architectures. In such an approach, sets of

layers are employed to fit a residual mapping F(xxx), described as follows:

F(xxx) = H(xxx)− xxx, (11.1)

where H(xxx) represents the underlying mapping and xxx denotes the input image. In a nutshell,

since optimizing the residual mapping is more accessible than the original mapping H(xxx), which

is recast into F(xxx)+ xxx, we can explicitly expect the stacked layers to approximate the residual

function instead of the original. The residual learning is adopted for each bottleneck, i.e., a

building block composed of a few stacked layers, defined as:

yyy = F(xxx,{Wi})+ xxx, (11.2)

where yyy stands for the output vector and {Wi} stands for the set filters in a block. Additionally,

the function F (xxx,{Wi}) formalizes the residual mapping, while the element-wise addition of xxx

in the Equation (11.2) represents a shortcut connection. If the dimension of xxx and yyy does not fit,

a projection shortcut allows dimension reduction with the help of the linear projection matrix

Ws:

yyy = F(xxx,{Wi})+Wsxxx. (11.3)
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Figure 11.1 depicts the pipeline of residual learning.

Figure 11.1: ResNet-50 bottleneck blocks: the left block denotes the identity shortcut, and the
right block stands for projection shortcut. Notice the latter is considered when the dimension of x

is different from the shortcut output size.

An attractive feature concerning convolutional neural networks regards the employment of

a transfer learning approach, which denotes the adaptation of parameters learned for a specific

task to a more general domain, capable of applying for different contexts and datasets [Yosinski

et al. 2014]. Besides, the new model can be fine-tuned using the well-known backpropagation

learning algorithm. In a nutshell, one can replace the base model’s input and output layers by

new ones from the target model and then train the network once again. Therefore, we opted to

employ ResNet-50 as the base model, which was pre-trained for object detection tasks over the

ImageNet 2012 [Russakovsky et al. 2015], which comprises 1.28 million images from 1,000

classes.

Figure 11.2 depicts a ResNet-50 architecture composed of five convolutional main stages.

As one can observe, some of these stages comprise a different number of identity blocks (id

block) stacked together one after another. Each id block is a standard ResNet-50 block of

transformations composed of two-dimensional convolutions, batch normalization, and ReLU

activation processes. To name an id block, its input and output dimensions must match, re-

quiring no transformation in the shortcut between them. On the other hand, the convolutional

blocks’ (conv block) input and output dimensions do not match, demanding transformations to

perform the shortcut, usually employing two-dimensional convolutions and batch normalizati-

ons. Along with the entire ResNet-50 architecture, several transformations are performed in

each convolutional main stage, starting with zero-padding and a 3×3 convolution, and ending

up with a fully connected layer that may define the number of classes for the problem to be eva-

luated using a softmax activation function. The regional property is lost as long the architecture

goes deeper, once the local representation is encoded into high-dimensional information.
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Figure 11.2: ResNet-50 architecture: the deep-neural network presents five main stages, composed
of two-dimensional convolutions, batch normalizations, ReLU activations, poolings (max and ave-
rage) for decreasing the output sizes, flatten (to reshape the output to one dimension), and finally,
a dense layer to redefine the number of classes of the problem. Many inner transformations are
applied in CONV and ID blocks, turning the architecture deeper and significantly increasing the
number of parameters and filters applied over the learning process. As long as the architecture
goes deeper, more regional information is encoded into high-dimensional representations, losing
its local property. Identity blocks are repeated two, three, five, and two times in stages two, three,
four, and five, respectively.

11.3 Methodology

This section presents the datasets, the proposed approach and experimental delineation.

11.3.1 Datasets

Two high-definition white-light endoscopic datasets were used for performing an in-depth

analysis of the proposed method. The first comprises endoscopic examinations provided by the

University Hospital Augsburg, Medizinische Klinik III, Germany. The dataset includes a total

of 76 endoscopic images captured from different BE-diagnosed patients, in which 42 presen-

ted only BE and 34 presented BE and early-stage adenocarcinoma. One physician manually

annotated the cancerous biopsy-diagnosed images. Figure 11.3 displays some images from the

Augsburg dataset labeled as positive to adenocarcinoma.

The second dataset is composed of images from a benchmark dataset available at the “MIC-

CAI 2015 EndoVis Challenge"1, hereinafter called “MICCAI", published to encourage resear-

chers to conduct studies for differentiating BE and early-cancerous images. Comprising 100

endoscopic images of the lower esophagus, the samples of such dataset were captured from 39

individuals. The MICCAI dataset presents 22 samples diagnosed as BE and 17 diagnosed as

early-stage esophageal adenocarcinoma. Each patient figures a different amount of endoscopic

images for this dataset, ranging from one to a maximum of eight. The dataset presents, in total,

50 images displaying cancerous tissue areas and 50 images showing BE disease. Five different

experts have individually annotated suspicious regions in cancerous samples. Figure 11.4 de-

1https://endovissub-barrett.grand-challenge.org/home/
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picts some instances diagnosed as positive to adenocarcinoma from MICCAI dataset and their

five respective experts’ annotations. For all images of both datasets the ground truth class was

confirmed by histopathologic evaluation of a biopsy. The manual delineations are not used for

our approach.

Figure 11.3: Some images positive to adenocarcinoma from the Augsburg dataset and their respec-
tive delineation.

Figure 11.4: Some images positive to adenocarcinoma from the MICCAI dataset and their respec-
tive delineation.

11.3.2 Layer-Selective Deep Representations

Considering the ResNet-50 network, the experimental delineation is based on changes in

its main architecture to assess each layer’s impact over training and classification. First of all,

each layer was evaluated by adding a fully connected layer to its output, so the training process

was based on each layer’s training, instead of evaluating the impact of all the layers through

the deep convolutional network. As an output, each layer’s accuracy value can be obtained,

bringing insights about how deep the network should be. In short, from each convolutional

layers that compose the entire ResNet-50 architecture, a fully connected layer is added to its
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output, changing the training target from one to n fully connected layers. The convolutional

layers are present inside several stages, as depicted in Figure 11.2, and are defined as layers

in which convolution transformation are applied. Therefore, each layer inside the ResNet-

50 model that comprises a convolution was employed in the process. A model based on n

convolution layer outputs is obtained from such a training step, so the classification step aims

to define the label of some input sample for each one of the ResNet-50 trained layers for the

entire network. In the end, instead of presenting one accuracy output for such evaluated input,

n accuracy measures related to each trained layer are calculated. Figure 11.5 illustrates the

layer-wise training step.

Further, the layer-wise accuracies were ranked to define the most discriminative ones for

the next step of the model, i.e., the shortcut-to-output step. In this context, for every layer

i, where i ∈ {1,2, · · · ,n}, a new model based on ResNet-50 is defined with a shortcut from

layer i to the model’s output, and a fully connected layer is added on the top of the model,

aiming at classifying BE and adenocarcinoma samples. This shortcut is performed based on

addition and concatenation transformations respectively, configuring two different approaches

to be evaluated. In a nutshell, m < n different models are selected and evaluated, each with a

different layer-to-output shortcut related to the best m layers calculated in the layer-wise step

and associated with the layer-wise accuracies. Such a structure has the purpose of defining the

best layer accuracies related to the layer-wise step, determining the proper layers for building

the selective ResNet-50 models with custom shortcuts in the shortcut-to-output step. Each

model’s training is based on the main output loss, configuring a conventional training in this

step. Figure 11.6 extends its interpretation, addressing the layers’ organization to compose the

best layer-wise-based models in the shortcut-to-output step.

The layer-wise step was performed over 350 epochs, while each shortcut-to-output step

was evaluated over 250 epochs. As a matter of comparison with state-of-the-art approaches,

80% of the data were randomly selected for training purposes, while the remaining 20% was

selected for testing (including both layer-wise and shortcut-to-output proposed steps). To keep

the fairness related to blind training and testing steps, from such 80% of the training samples,

40% were randomly selected for the layer-wise training step, and the remaining 40% were used

for the shortcut-to-output training task. The same was conducted over the testing tasks for both

method’s steps, with 10% of samples randomly selected for testing over layer-wise step and

10% chosen for testing the best models provided in the shortcut-to-output samples.

Indeed, two standalone training and test processes are performed for both layer-wise and

layer-to-output steps. The first step’s main goal is to define the most discriminative convolu-
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tional layers concerning BE and AD classification based on the fine-tuning of each FC weight

defined as outputs of the multi-output convolutional model. With the best convolutional layers

in hands, the second step aims to determine the shortcuts of such layers to the CNN’s main

output, building several learners influenced by the best layers in the model’s definition and

classification. Once both steps are performed in a standalone fashion, none of the weights are

shared during their training or testing tasks. The concept of a “pre-evaluation"is established in

a multi-training and testing approach to enhance the main classification outcome and to refine

the CNN encoded information related to the convolutional deepness addressed in the model

computation.

For comparison purposes, a standard ResNet-50 model with a fully connected layer attached

to its output and pre-trained with imageNet was trained and classified with the same amount of

samples used for training and testing each shortcut-to-output model. The experiments were

conducted: (i) 20-fold cross-validation (20-fold CV) and (ii) leave-one-out cross-validation

(LOO CV) protocols.

Figure 11.5: Layer-wise step: a base model composed of n convolutional and fully connected layers
(FC). While the training step consists of adjusting each layer’s weight based on the loss function
at the main output, the testing phase comprises the classification performed by each FC consistent
with Figure 11.2.

11.4 Experimental Results

This section presents the experiments used to evaluate the proposed methodology. The first

round of experiments aimed at evaluating the accuracy of each CNN-layer in the layer-wise

step, followed by the evaluation of the layer-to-output step also using the sensitivity (S) and

specificity (P), and accuracy (A) rates.

For the sake of keeping the results clear, the maximum number of CNN models comprising
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Figure 11.6: Best layers for the shortcut-to-output step: m (m < n) layers evaluated in the layer-
wise step define the best ResNet-50 models that are trained and classified with the implementation
of a shortcut from the layer i to the output. As one can observe, for each layer considered in the
best-accuracies, a brand new and independent ResNet-50 model is defined.

the shortcut-to-output step, described by m, was set to five. Therefore, the five best convolution

layers belonging to all five ResNet-50 stages were calculated in the layer-wise step, from which

up to five best models included in the shortcut-to-output step.

The experiments were conducted on a 96GB-memory computer equipped with an NVIDIA

TitanX Graphics Card of 12 GB, and implementations were made using Tensorflow and Keras.

Table 11.1: Shortcut-to-output mean accuracy results concerning Augsburg and MICCAI datasets.
Best models 1 to 5 mean the best model outcomes related to the best-layers-accuracies calculated
during the layer-wise step and defining the five best models of the shortcut-to-output step. The
statistically similar results are highlighted in bold, while the best overall result is marked with ⋆.

Protocol Dataset Shortcut Best-model-1 Best-model-2 Best-model-3 Best-model-4 Best-model-5 Baseline

20-fold CV
Augsburg

Concat 0.82 ± 0.03 0.79±0.03 0.77±0.04 0.76±0.03 0.74±0.02
0.69±0.16

Add 0.79±0.03 0.77±0.03 0.76±0.04 0.75±0.03 0.73±0.03

MICCAI
Concat 0.86 ± 0.02 0.84 ± 0.03 0.82±0.03 0.81±0.02 0.78±0.05

0.76±0.11
Add 0.85 ± 0.03 0.81±0.02 0.79±0.05 0.77±0.03 0.76±0.05

LOO CV
Augsburg

Concat 0.84 ± 0.06 0.82±0.02 0.81±0.07 0.80±0.05 0.76±0.04
0.80±0.11

Add 0.85±0.08 0.84±0.09 0.81±0.06 0.80±0.02 0.79±0.05

MICCAI
Concat ⋆0.90 ± 0.05 0.89 ± 0.08 0.87 ± 0.06 0.85±0.07 0.83±0.04

0.84±0.15
Add 0.88 ± 0.05 0.87 ± 0.04 0.86±0.09 0.85±0.04 0.85±0.04

11.4.1 Classification Results

After training the layers’ outputs belonging to ResNet-50 architecture in the layer-wise

step, the best layers can be obtained for each of the cross-validation runs. A further training and

classification were performed in the layer-to-output step, building a shortcut from the ith layer

to the CNN output to compose the flatten and final dense layer. Such layer-to-output task was

conducted over two different shortcut approaches, i.e., based on concatenation and addition

of ith layer’s output and CNN’s output, and considering only the best layers obtained in the
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Table 11.2: Layer-wise mean frequency (%) concerning Augsburg and MICCAI datasets for the
20-fold CV protocol. Best-layers 1 to 5 stand for the best layers selected during the layer-wise
step and defining the five best models of the shortcut-to-output step. CS represents the ResNet-
50 architecture’s Convolutional Stages. In a nutshell, this table provides the frequency at which
each ResNet-50 Convolutional Stage appeared in selecting each best five layers in the layer-wise
step. The best overall result of each dataset is marked with symbol ⋆, while the best result of each
approach is in bold.

Dataset Shortcut Convolutional Layer Best-layer-1 Best-layer-2 Best-layer-3 Best-layer-4 Best-layer-5 Best Block

Augsburg

Concat

CS1 0% 0% 0% 0% 20% 1
CS2 0% 0% 5% 15% 15% 4
CS3 20% 35% 40% 30% 15% 4
CS4 ⋆80% 60% 55% 40% 25% 4
CS5 0% 5% 0% 0% 25% 1

Add

CS1 0% 5% 10% 0% 25% 1
CS2 15% 0% 35% 15% 30% 3
CS3 15% 50% 35% 40% 30% 4
CS4 70% 45% 15% 40% 15% 3
CS5 0% 0% 5% 5% 0% 1

MICCAI

Concat

CS1 0% 0% 0% 15% 25% 1
CS2 0% 0% 0% 25% 30% 2
CS3 10% 15% 50% 20% 15% 4
CS4 ⋆90% 75% 50% 30% 20% 6
CS5 0% 10% 0% 10% 5% 2

Add

CS1 0% 0% 0% 5% 25% 1
CS2 10% 15% 35% 0% 15% 2
CS3 25% 40% 35% 45% 5% 3
CS4 75% 40% 25% 50% 25% 4
CS5 0% 5% 5% 0% 30% 1

layer-wise step, presented over 5-best outcomes (from the best five layers selected during the

layer-wise step). In other words, each best model result is presented, from the very-best to the

fifth-best. The layer-to-output classification results for both Augsburg and MICCAI datasets

can be observed in Table 11.1, in comparison to the plain CNN classification results (Baseline)

also presented and based on the same protocol.

As one can observe, for the 20-fold CV approach, the accuracy results of the shortcut-

to-output step decreased from Best model “1"to “5", i.e., using information from only one

intermediate layer (m = 1) is the best scenario. The best result for Augsburg dataset, i.e., the

value of 0.82± 0.03, was obtained in the concatenation-based shortcut approach. Concerning

MICCAI dataset, the best accuracy results were also achieved in the concatenation approach,

with a mean value of 0.86± 0.02. It is important to highlight that the results of all five best

models outperformed the final classification results using the standard ResNet-50 architecture

as a baseline for this classification approach.

A similar behavior recognized in the previous approach could also be observed concerning

the LOO CV approach, with a tendency of accuracy decreasing from “1"to “5"best-models. For

the Augsburg dataset, the best accuracy result was obtained in the add-based shortcut approach,

with a value of 0.85±0.08, while for the MICCAI dataset, the best accuracy result was achieved
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in the concatenation approach, with a mean value of 0.90±0.05.

(a) Original Image

(b) Conv. Stage 1 (c) Conv. Stage 2

(d) Conv. Stage 3 (e) Conv. Stage 4 (f) Conv. Stage 5

Figure 11.7: Convolutional stage outputs: the regional information is encoded through the deep
convolutional stages of ResNet-50. The images presented in viridis color palette illustrate the en-
coded information level related to each ResNet-50 stage (Figure 11.2). Such images comprise the
average value of all feature maps as output of a convolutional layer concerning each main stage.
Notice values range from dark blue (not discriminative) to green (discriminative). Even with less
local-visualizing information, the generalization achieved in deeper convolutional stages comprises
high discriminative features for the classification task.

For each trial of the cross-validation approach, different layers belonging to different con-

volutional blocks may be defined as the best ones. Therefore, each convolutional block’s fre-

quency to be selected as one of the five best layers in the layer-wise step over all the 20 runs

is presented in Table 11.2. Notice that ResNet-50 presents five main convolutional layers (con-

volutional stages) in its architecture, and each main convolutional layer is composed of sets of

inner layers, building its deep-convolutional nature. The “Best Block"column relates the convo-

lutional transformation inside each convolutional stage block that presented the best accuracy

result when selected for the best models’ definition during the layer-wise step of the model.

Each stage block is composed of several convolutions, poolings, and activations, and such a co-
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lumn expresses the inner convolutional transformation output that presented the best accuracy

for such a stage block. As one can observe, for all experiments, convolutional stage number

4 (CS4) always presented the highest frequency in the Best-model-1, and also high frequency

in Best-model-2 results, followed by convolutional stages 3 and 2, in both dataset analysis. As

long as the convolutional transformations are applied to the input image, less local information

can be observed, but more class meaningful information may be comprised, as one can observe

in Figure 11.7.

To calculate each pixel impact for all convolutional stages, one may consider that deeper

layers inside deep models present lower resolution but a higher number of channels. Due to

that, images belonging to deeper layers tend to lose their region features in encoded informa-

tion presented by the high-channel dimensionality. For the presented in Tables 11.1 and 11.2,

Figure 11.7 illustrates an input interpreted by a convolutional stage selected for a best-model.

Considering the wide range of channels, a mean channel was calculated, and the impact of each

pixel over all the channels could be achieved. The images are presented in virids color pallet,

highlighting the impact of the pixels over the mean-chanel transformed inputs.

11.5 Discussion

We could not observe any previous study proposing the evaluation of deep learning mo-

dels in the BE and adenocarcinoma context to provide layer-learning-insights into the model’s

generalization process. In this work, we fostered the research toward such tasks by introdu-

cing a CNN layer-wise technique for classification purposes inspired by multistep evaluation in

a quantitative assessment. We outperformed the results obtained in some recent classification

works with a similar database and protocol [Souza Jr. et al. 2018, Souza Jr. et al. 2019, Souza

Jr. et al. 2017, Souza Jr. et al. 2018, Souza Jr. et al. 2017]. Table 11.3 presents a more detai-

led comparison of the current results against a fair selection of recent state-of-the-art works in

which a similar protocol or dataset was employed.

With the wide application of ML techniques in the medical field, the decision’s interpreta-

tion seems to be a must-do task. As long as the results are improved, the black-box generali-

zation, learning process, and evaluation of samples must be understood and described, driving

insights into how the problem was dealt with. Along with the CNN model, tools can interpret

training and validation processes in the way of correct and incorrect classification assessment.

For ResNet-50, a powerful CNN architecture presenting very promising results through the

years and different fields, a better understanding of the impact of its deep-nature in the evalua-
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Table 11.3: Comparison against state-of-the-art works with the application of similar evaluation
protocols.

Dataset Method
Data

Augmentation
Images Protocol Outcome

MICCAI

[van der Sommen et al. 2016] No
Selected Region

of Interest
Leave-one-out

cross-validation
0.86 Sensitivity
0.87 Specificity

[Ghatwary, Zolgharni e Ye 2019] No Downsized Images
Leave-one-out

cross-validation
0.96 Sensitivity
0.92 Specificity

[Ghatwary, Ye e Zolgharni 2019] Yes
Selected Region

of Interest
Leave-one-out

cross-validation
0.95 Recall

0.91 Precision

[van der Putten et al. 2020] Yes
Preprocessed

Images
5-fold

cross-validation

0.88 Accuracy
0.93 Sensitivity
0.83 Specificity

[Souza Jr. et al. 2017] No Full-images
20-fold

cross-validation

0.74 Accuracy
0.73 Sensitivity
0.78 Specificity

[Souza Jr. et al. 2019] No Full-mages
20-fold

cross-validation

0.79 Accuracy
0.82 Sensitivity
0.76 Specificity

[Souza Jr. et al. 2018] No Full-images
20-fold

cross-validation

0.69 Accuracy
0.61 Sensitiviy
0.71 Specificity

[Passos et al. 2019] No Full-images
20-fold

cross-validation

0.67 Accuracy
0.58 Sensitivity
0.77 Specificity

[Souza Jr. et al. 2020] Yes Full-images
20-fold

cross-validation

0.85 Accuracy
0.88 Sensitivity
0.82 Specificity

Proposed Method No Full-images
20-fold

cross-validation

0.86 Accuracy
0.85 Sensitivity
0.90 Specificity

Proposed Method No Full-images
Leave-one-out

cross-validation

0.90 Accuracy
0.88 Sensitivity
0.94 Specificity

Augsburg

[Souza Jr. et al. 2019] No Full-images
20-fold

cross-validation

0.73 Accuracy
0.71 Sensitivity
0.75 Specificity

[Souza Jr. et al. 2018] No Full-images
20-fold

cross-validation

0.65 Accuracy
0.64 Sensitivity
0.66 Specificity

[Souza Jr. et al. 2020] Yes Full-images
20-fold

cross-validation

0.83 Accuracy
0.80 Sensitivity
0.86 Specificity

Proposed Method No Full-images
20-fold

cross-validation

0.82 Accuracy
0.79 Sensitivity
0.86 Specificity

Proposed Method No Full-images
Leave-one-out

cross-validation

0.85 Accuracy
0.83 Sensitivity
0.89 Specificity

tion of cancerous samples seems legit, considering many convolutional stages are related to the

performed learning process. As a matter of interpretation of layer-learning impact, the output

of each convolutional layer that comprises ResNet-50’s architecture was evaluated to the final

output.

In a close observation of the improved results regarding shallow ResNet architectures ins-

tead of its fully-deep version for defining the best deepness level by selecting the best convo-

lutional layers and blocks, one can presume the architecture deepness severely influences the

optimal classification result. Due to that, an ablation study was conducted to assess other Res-
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Net architectures and ensure that better results can be achieved when properly selecting the best

convolution level within the networks. For such, ResNet-18, ResNet-34, and Resnet-101 were

employed as deep networks in the ablation set of experiments, presented in Figure 11.8. The

same comparison protocol was applied during the ablation study, comparing the best models

with the baseline of the respective architectures, represented by its standard architecture pre-

trained over imageNet and with no layer evaluation applied to it. As one can observe, shallow

architectures, as ResNet-18, required more of its convolutional layers to achieve the best re-

sults, very close to the baseline one. From ResNet-34 to ResNet-101, the best results could be

achieved by applying our layer-selective method, with outcomes that outperformed the baseline

mostly by reducing the impact of deeper convolutional blocks in the composition of the last

feature maps, i.e., for ResNet-34, the best results lied on convolution block 4, while for ResNet-

101, the best results were obtained by highlighting convolutional block 3 impact on the final

feature map output. The improvements obtained applying the proposed layer-selective method

over ResNet architectures can also be observed, in visual terms, in Figure 11.8.

Table 11.4: Ablation study of ResNet architectures using the layer-selective method in the 20-fold
CV protocol. The statistically similar results are highlighted in bold, while the best overall result
of each ResNet architecture is marked with symbol ⋆.

Architecture Dataset Shortcut Best-model-1 Best-model-2 Best-model-3 Best-model-4 Best-model-5 Baseline

ResNet-18
Augsburg

Concat 0.65 ± 0.02 0.64±0.04 0.64±0.05 0.62±0.03 0.62±0.04
0.61±0.08

Add 0.66±0.04 0.65±0.05 0.63±0.03 0.62±0.07 0.61±0.04

MICCAI
Concat ⋆0.77 ± 0.04 0.75 ± 0.02 0.74±0.04 0.72±0.06 0.71±0.04

0.71±0.09
Add 0.76 ± 0.06 0.75±0.05 0.72±0.04 0.72±0.05 0.71±0.09

ResNet-34
Augsburg

Concat 0.70 ± 0.06 0.67±0.04 0.66±0.05 0.64±0.04 0.63±0.11
0.63±0.11

Add 0.68±0.05 0.67±0.04 0.65±0.02 0.63±0.11 0.62±0.09

MICCAI
Concat ⋆0.81 ± 0.04 0.80 ± 0.02 0.78±0.05 0.76±0.03 0.74±0.07

0.74±0.06
Add 0.79 ± 0.06 0.78±0.08 0.77±0.03 0.74±0.06 0.72±0.09

ResNet-101
Augsburg

Concat 0.83 ± 0.05 0.81±0.05 0.79±0.05 0.77±0.12 0.76±0.16
0.75±0.07

Add 0.81±0.08 0.79±0.06 0.78±0.09 0.76±0.15 0.75±0.07

MICCAI
Concat ⋆0.88 ± 0.09 0.87 ± 0.11 0.86 ± 0.06 0.85 ± 0.12 0.83±0.10

0.82±0.11
Add 0.86 ± 0.03 0.85 ± 0.11 0.85 ± 0.12 0.83±0.15 0.83±0.13

Concerning the time consumed to classify samples using the proposed method, one can

observe that due to keeping the original CNN architecture but only proposing a new shortcut

(that does not change the architecture itself), our proposed method does not increase the original

number of parameters during the learning process, maintaining the same time as the baseline

model. In comparison to the work proposed by [Hou et al. 2021], which achieved a refresh rate

of ≈ 60 frames per second during the classification task for the core model (using ResNet50

architecture), our can achieve a refresh rate value of ≈ 75 frames per second. In addition,

our method’s training process presents a modular nature, requiring significantly fewer epochs

to outperform the baseline model’s result (and not only for the core architecture but also for

other ones presented in 11.4), aforementioned in Section 11.3. Still, regarding the classification
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results, our method presents competitive ones compared to the literature, achieving sensitivity

and specificity extremely close to the ones obtained by [Hou et al. 2021], but in a model

designed to keep the original CNN structure with fast classification outcome without adding

extra and not necessary parameters that can increase its complexity.

In an in-depth analysis of the results presented in section 11.4, one can observe that inner

convolutional blocks provided the highest accuracy results for BE and adenocarcinoma identi-

fication. The very best results, presented over best-model-1 classification, have always shown

a convolutional layer from ResNet-50 stage 4. This outcome suggests an interesting interpreta-

tion, once all five best layers also outperformed the respective Baseline classification. For BE

and adenocarcinoma context, one can observe that the entire ResNet-50 architecture is not ne-

cessary to achieve promising results. Still, it may harm the classification rates with layer outputs

that do not present relevant meaning. Considering that convolutional stage 4 presented the very

best results, followed by stages 3 and 2, one can conclude that not only the regional information

is important (as observed in [Souza Jr. et al. 2019]), but also the convolutional-encoded infor-

mation (Figure 11.7). ResNet-50 architecture presents a high generalization ability. However,

the layer interpretation highlights relevant insights about BE and adenocarcinoma identifica-

tion, suggesting that less convolutional steps must be applied once a shallow architecture could

outperform its results.

Indeed, a close look at Figure 11.7 may raise the following question: do humans and CNNs

observe and understand the same set of information regarding BE and AD context? Given such

an assumption, one should consider that the processing applied to the input samples in the mo-

del’s generalization change the image nature in the long term, encoding information from all

processes that compose the net (convolution, normalizations, and so on). Even needing the

starting layers to obtain the best results, the outcome also suggests that some critical encoded

information related to all performed transformations is essential to enhance the classification

rate. Therefore, our result shows that the most relevant CNN information (the best classifi-

cation result) is not exactly the related to local-and-visual input information, once the most

discriminative block, CS4, regarding our results, encodes information to a less visual interpre-

tative level. Hence, the visual representation of early cancerous tissue is encoded through the

network layers [Souza Jr. et al. 2018, Souza Jr. et al. 2017, Souza Jr. et al. 2019], but at some

level of abstraction, it can be incorporated into human knowledge to improve even more the

classification of cancerous samples.

The shortcut task was based on concatenation and addition transformations. For both data-

sets, the concatenation approach presented the highest results, and this may be explained by the
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fact that concatenation needed less output processing than the addition one. For adding some

layer output to ResNet-50 final output, pooling and convolutional processes must be performed,

while for concatenating, only the pooling task must be done. These processes of convolution

and pooling must be performed for matching the outputs’ dimensions, and enable the proper en-

coding of information we aim at achieving. With less processing, the layer output may present

less changes to its original value, and observing the experimental results, may achieve higher

accuracy results.

Regarding the evaluation of both datasets, Augsburg dataset achieved results lower than the

MICCAI outcomes, reinforcing that the evaluation and interpretation of such a dataset are more

challenging. Even though still satisfactory outcomes could be achieved, outperforming the

state-of-the-art results by presenting a layer interpretation that enhances the adenocarcinoma

classification of cancerous instances for BE images.

11.6 Conclusion

In this paper, we dealt with computer-assisted Barrett’s esophagus and adenocarcinoma

identification, interpretation, and comparison by means of deeply-learnable features computed

using ResNet-50 network and its inner layers’ outputs.

The main achieved contributions of the study are presented as follows:

• The interpretation of black-box generalization in BE endoscopic images based on a two-

step layer-wise method showed up to be promising, presenting meaningful insights about

how deep a CNN architecture should be to present trustworthy accuracy outputs;

• The shortcut based on concatenation showed up better results than the ones based on

addition, but still figures as an interesting way to cope with the task of highlight more

meaningful layers in a CNN architecture;

• The convolutional layer 4, as the most discriminative one, highlights how important is

the combination of regional and meaningful features in the learning process of BE and

adenocarcinoma, reinforcing that CNN architectures may present strong generalization

ability, harming up the correct classification when too deep networks are employed;

Regarding future work, we aim to consider a more-discriminative layer combination for the

shortcut step, proposing an evaluation that keeps combining promising layer blocks to improve

even more the classification rates. Also, a more in-depth layer interpretation may be employed



11.7 Chapter’s Considerations 224

by evaluating most-discriminative layer neurons to define the most interesting layers to be eva-

luated.

11.7 Chapter’s Considerations

After evaluating the potential of CNN models in addressing BE and adenocarcinoma dis-

tinction, and corroborating its benefits when applied to the studied context, this Chapter’s main

goal is to propose a new XAI-inspired method of interpreting deep architecture’s learning by

extensivelly analysing layers’ information during training and testing tasks. Such a contribution

would promote understanding across deep networks’ decisions by understanding the transfor-

mations performed over each convolutional layer of its configuration. Finally, by observing the

discriminative power of each layer, the early cancer detection rate could be enhanced by impo-

sing more impact of such a layer on the final descriptor computing, using shortcuts present in

residual networks.

Residual deep networks, such as ResNet-based ones, are composed of weights sharing

within its configuration, called skip connections or more popularly shortcuts, to avoid gradient

vanishing and accuracy saturation. It is very well-known that deep convolutional nets change

the spatial nature of inputs due to convolutional and nonlinear transformations throughout its

training step. Hence, this manuscript adopted residual nets, such as ResNet-50, to understand

how impactful layers within the network are in the correct classification of esophageal cancer

tissue. By changing the natural linear workflow of classification performed by CNN models,

we propose a two-stage architecture in which the first one trains every convolutional layer that

composes the deep architecture, for observing the most discriminative ones for each class of in-

terest; and the second one adds a new skip connection of meaningful layers detected in first step

to the final composition of deeply-learnable features, for further performing the global training

and testing process themselves.

In a clear way of highlighting how important is enconding the spatial information to achieve

promising prediction results, from the obtained we could observe that, indeed, the local infor-

mation is encoded through deep architectures so global description is represented and enables a

more accurate definition of adenocarcinoma in BE images. Although this is extremely promi-

sing in computational terms, we observed that no visual meaning could be observed from the

most discriminative layers, the ones that provided the very best classification results. Our re-

sults, presented in sections above, suggest an interpretation of the CNN black-box nature based

on the interpretation of layers behavior among CNN architectures, and we successfully delive-
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red such an artifact. In fact, the transformation CNN imposes to input samples harms the visual

interpretation of its learning process. However, it is possible to observe that, at some point

within the layers, the network stops encoding discriminative information to its global represen-

tation of the problem, as our results highlight. Deep networks are important, as spatial infor-

mation, for the correct detection of cancerous regions in BE samples, and as a BoVW-inspired

process of encoding more and more information at each layer, CNN models can misunderstand

regions as humans do at some point of its generalization.

Our conclusion, by the end of this Chapter, is that spatial information is essential during

deeply-learnable features’ generalization, and a global-and-encoded representation is perfor-

med when deep models are employed to solve classification tasks. Hence, the deepness degree

of a convolutional net must be very well observed and analyzed to promote the best overall pre-

diction, as some non-discriminative regions may harm the CNN representation at some levels

of deep architectures, as we showed in the results of such Chapter. Finally, after extensively

evaluating handcrafted features, deeply-learnable features, and their relation to spatial informa-

tion in correlation to human insights, for the next and final Chapter, we aim at incorporating

all the remarkable achievements we presented until this point, proposing the actual fusion of

human-based and computation-based features, once we satisfactorily proved both esophageal

feature-representation natures are meaningful for the correct identification of esophageal can-

cer in BE.
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Figure 11.8: Ablation study of the proposed layer-selective method concerning several ResNet
architectures. An evident decreasing behavior can be observed over all evaluated architectures
from the best models 1 to 5, mostly all the time outperforming the respective baseline accuracy.



Chapter 12
DEEPCRAFTFUSE: HANDCRAFTED AND DEEPLY

LEARNABLE FEATURES WORK BETTER

TOGETHER FOR ESOPHAGEAL CANCER

DETECTION IN PATIENTS WITH BARRETT’S

ESOPHAGUS

To propose a final compilation of all the studied techniques and methods in the identification

of early cancer in BE patients, a deep architecture based on high-level regional information and

low-level global encoding is proposed, promoting the fusion of handcrafted features and deeply-

learnable features. Such a study was submitted to “MICCAI 2022", closing the current research

across the evaluation and proper combination of features to enhance the correct identification

of esophageal cancer in endoscopic examinations.

12.1 Introduction

Machine learning has shaped how we address tasks considered too complex to be auto-

mated. The rising of the deep learning concept helped considerably in such a context, for

information extracted from data did not require human intervention mostly. As time went by,

scientists realized that the performance of deep nets did not improve to a certain extent, either

by the lack of labeled data or their learning capacities were fulfilled.

Some applications require sharp and accurate outputs, for lives depend on it. Computer-

assisted medical diagnosis is paramount when dealing with either large amounts of exams or too

complex cases (e.g., a rare or improbable disease). In this paper, we are interested in identifying
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adenocarcinoma in patients affected by Barrett’s esophagus (BE), a disease located at the lower

part of the esophagus, inducing changes in the mucosa’s cells. In most cases, it is related

to obesity and smoking [Lagergren e Lagergren 2010], with remission depending on an early

diagnosis [Dent 2011, Sharma et al. 2016, Phoa et al. 2016]. Late diagnosis or neglected

treatment leads to more complicated situations, with risks of cancer development and even

death [Shaheen et al. 2009, Johnston et al. 2005].

Physicians often face the challenge that esophageal cancer is frequently misdiagnosed as

Barrett’s esophagus, decreasing the chances of starting early treatment. Some recent works ai-

med at better understanding the relations between esophageal cancer and BE using endoscopic

data. Ghatwary et al. [Ghatwary, Zolgharni e Ye 2019, Ghatwary, Ye e Zolgharni 2019] em-

ployed object detection techniques, such as Regional-based CNN, Fast Regional-based CNN,

Single-shot Multibox Detector, and Gabor filtering with a VGG-16-based backbone for feature

extraction, achieving remarkable results. Hou et al. [Hou et al. 2021] described esophageal

early-cancerous tissue using an attentive hierarchical aggregation mechanism, where features

aggregate information from adjacent layers from deep models. The idea is to describe the le-

arning meaning and representation capabilities progressively. Early cancer identification was

also considered by van der Putten et al. [van der Putten et al. 2020] with a multi-stage learning

strategy for classifying and localizing injured tissues in BE and adenocarcinoma samples. The

proposed architecture was based on U-Net and trained at different transfer learning stages to

compute fine-grained features and accurately describe cancerous regions.

All studies mentioned above employ deep learning methods to cope with the early can-

cer identification in patients affected by BE, but the models do not use prior knowledge from

humans. Although state-of-the-art works have shown promising results using deep nets to dis-

tinguish BE from adenocarcinoma, could human knowledge somehow contribute to such a pro-

cess? We are focused on addressing this question in the manuscript. We are aware of previous

works that attempted at a similar idea to some extent [Souza Jr. et al. 2021, Souza Jr. et al.

2020], but they did not blend information learned by deep models with humans’ knowledge.

This manuscript proposes DeepCraftFuse, which extends deep architectures to combine

handcrafted and deeply-learnable features in two modules called HCF-module and DLF-module,

followed by the FeatFusion-module where features from the two previous modules are enco-

ded together to make predictions jointly. DeepCraftFuse figures the following advantages: (i)

high-level spatial features and low-level semantic context provided by handcrafted and deeply-

learnable features can be effectively captured; (ii) it does not require severe changes to original

deep architectures but provides simple branches to reuse their flow; and (iii) it provides state-
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of-the-art results.

To the best of our knowledge, DeepCraftFuse is the only in-built architecture that gathers

deeply learnable and handcrafted features to improve esophageal cancer identification in pati-

ents affected by Barrett’s esophagus. The proposed approach figures the high-generalization

capabilities of deep models and can encode high-specialized knowledge provided by experts,

represented here by key points that object detectors found relevant. Findings enlightened by

Souza et al. [Souza Jr. et al. 2019] showed that such key points concentrate in the cancerous re-

gions annotated by experts. Experiments demonstrate that DeepCraftFuse outperforms several

other state-of-the-art techniques in two datasets composed of endoscopic images.

12.2 Proposed Method

DeepCraftFuse consists of three modules, two parallel and one sequential, that process

information differently:

1. DLF-module (Deeply-learnable Features): it uses the layers’ receptive fields to encode

features from a global perspective;

2. HCF-module (Handcrafted Features): it recovers local information from convolutions

performed with the deep architecture using any suitable object detection approach; and

3. Feat-Fuse-module: it combines the local information the HCF-module provides with the

global information the DLF-module delivers.

Figure 12.1 depicts the proposed workflow, where a different color represents each module. We

say that DLF and HCF modules work in parallel, for there is no need to wait for the entire

feature extraction flow of the backbone to compute the activation maps. After processing the

information flow in a particular convolutional layer, they are forwarded to the HCF-module.

Features provided by the first two modules feed the FeatFuse-module to compute the final

loss. There are two main benefits our DeepCraftFuse architecture offers: (i) first, the combina-

tion of local and global information to assist cancer identification, and (iii) to exploit simulta-

neously prior knowledge from experts and features learned automatically.

DLF-module. Usually, hundreds of layers in deep architectures end up in features that

encode global context at different levels of abstraction. The DFL-module allows any deep

architecture for such a purpose, provided we have a fully connected layer followed by a softmax
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Figure 12.1: DeepCraftFuse architecture (best viewed in color) and its three main modules. FL =
flattened layer, FC = fully connected layer, DR = dropout layer, SM = softmax layer, and the symbol
⊗

denotes the concatenation operation.

layer for evaluating purposes. This module is in charge of learning features to differentiate

positive or negative patients from esophageal cancer using the well-known binary cross-entropy

loss function LDFL. Moreover, the DLF-module is trivial, not presenting any changes in the

backbone used for feature extraction.

HCF-module. For each convolutional layer (conv layer) of the backbone used in the DLF-

module, we take its activations (i.e., feature maps) to compute a mean activation map. Object

detectors then extract features. In this work, we considered SURF (Speeded Up Robust Featu-

res) [Bay et al. 2008], SIFT (Scale-invariant Feature Transform) [Lowe 2004], and A-KAZE

(Accelerated KAZE) [Alcantarilla, Nuevo e Bartoli 2013] to extract key points from the activa-

tion map. Nonetheless, any other image description approach may work here. SURF, SIFT and

A-KAZE outputs are feature vectors of size 64, 128, and 61, respectively.

FeatFuse-module. To effectively combine features from the deep model and the ones from

object detector techniques, we propose a new FeatFuse-module, depicted in the red module in

Figure 12.1. The module first reshapes dimensions (Dim-reduction) to avoid bias towards either
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features coming from DLF-module or HCF-module. Further on, an Encoder concatenates the

reduced outputs. The distillation process takes place for the final loss computation, represented

by LFINAL.

Loss Function. The entire model is trained end-to-end with a binary cross-entropy loss

function. We elaborate a composite final loss function to improve the gradient flow by adding

the term LDLF. Tue final training loss balances the global knowledge the DLF-module enco-

des with the more localized information the HCF-module provides. The final loss function is

computed as follows:

LFINAL = αLDLF +LFeatFuse, (12.1)

where α is a tunable hyperparameter that controls the influence of the global information the

deep model provides.

12.3 Experiments and Results

Datasets. Two high-definition white-light endoscopic datasets were employed to evaluate

the proposed method. The first dataset comprises examinations from the University Hospital

Augsburg, Medizinische Klinik III, Germany, containing 76 endoscopic images captured from

different patients affected by BE, of which 42 are negative BE and 34 are positive to esophageal

cancer. One physician manually annotated the dataset. The second set of images belongs to a

benchmark dataset available at the “MICCAI 2015 EndoVis Challenge"1, hereinafter denoted

as “MICCAI”. The dataset comprises 100 endoscopic images of the lower esophagus captured

from 39 individuals positive to BE, of which 22 are patients negative to cancer and 17 are po-

sitive to early-stage esophageal cancer. Five different physicians have annotated the cancerous

samples. Figure 12.2 depicts exemplars from Augsburg and MICCAI datasets.

Figure 12.2: Images positive to cancer from Augsburg (first two from the left) and MICCAI (first
two from the right) datasets.

1https://endovissub-barrett.grand-challenge.org
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Evaluation Measures. We employed four well-known metrics to evaluate the proposed

approach: Sensitivity (S), Specificity (P), Accuracy (A), and F1-Score (F1). The experimental

setup also comprises a statistical evaluation using Wilcoxon’s signed-rank test [Wilcoxon 1945]

with a significance of 5%. Statistically similar results (based on measure A) are highlighted in

bold, and a ⋆ marks the best overall result.

Experimental Delineation. We used a ResNet-50 pre-trained on the ImageNet dataset as

a backbone in the DLF-module. DeepCraftFuse employs the Adam optimizer with a learning

rate of 10−4, β = 0.5, weight decay of 0.5, and momentum of 0.999 for fine-tuning ResNet-50

weights in the DLF-module and also to learn the weights in the Dim-reduction and Encoder

modules. This second-stage training uses 500 epochs with a batch size of 16, with 80% of

samples composing the training set and the remaining serving as the testbed. The training set

also comprises data augmentation, with new images generated by rotation, horizontal flipping,

and zooming. Each operation adds new images at a rate of 10% of the training set size, with

rotation degrees chosen at random within the interval {1◦,359◦}, and zooming rates chosen at

random up to 50% of the image size2. For statistical analysis, we considered a 20-fold cross-

validation approach.

Implementation Details. The experiments employ a computer with 96 GB RAM and an

NVIDIA TitanX® Graphics card of 12 GB RAM. The implementation used the TensorFlow 2.+

framework.

Classification Results. DeepCraftFuse focuses on three main aspects: feature learning

(DLF-module), handcrafted feature extraction (HCF-module), and feature fusion (FeatFuse-

module). Since we used ResNet-50 as the backbone, we evaluated DeepCraftFuse on each

convolutional layer individually. Table 12.1 presents the outcomes over Augsburg and MICCAI

datasets.

The results confirm that initial layers of deep architectures maintain some degree of visual

information from the input data, enabling its description using object detectors. The intro-

duction of handcrafted features can gradually increase the correct identification of cancerous

regions when calculated from initial convolutional blocks. This behavior is observed for both

datasets, with information extracted from the first convolutional layer allowing the best results.

It is also a consensus that using all object detectors is more appropriate. According to Souza et

al. [Souza Jr. et al. 2017, Souza Jr. et al. 2017, Souza Jr. et al. 2019, Souza Jr. et al. 2018], it is

of the great importance to adequately describe the handcrafted features once they must be spa-

tially correlated to the expert-annotated area to influence the classification of cancerous tissue

2We used such a zooming rate upper boundary to avoid missing important details of the esophagus area.
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Table 12.1: DeepCraftFuse classification results: (a) Augsburg and (b) MICCAI datasets.

Conv Block SURF SIFT A-KAZE DLF S P A F1

1

X x x x 0.75 0.82 0.80 0.79
X X x x 0.81 0.84 0.83 0.82
X X X x 0.85 0.89 0.87 0.86
X X X X ⋆0.86 0.89 0.87 0.87

2

X x x x 0.73 0.79 0.77 0.75
X X x x 0.80 0.85 0.83 0.82
X X X x 0.83 0.85 0.84 0.84
X X X X 0.84 0.89 0.86 0.85

3

X x x x 0.71 0.76 0.74 0.73
X X x x 0.70 0.77 0.75 0.72
X X X x 0.69 0.74 0.72 0.72
X X X X 0.73 0.79 0.77 0.75

4

X x x x 0.70 0.75 0.74 0.72
X X x x 0.70 0.76 0.74 0.73
X X X x 0.70 0.73 0.72 0.71
X X X X 0.72 0.78 0.76 0.74

5

X x x x 0.68 0.73 0.72 0.71
X X x x 0.68 0.71 0.70 0.70
X X X x 0.66 0.70 0.68 0.67
X X X X 0.70 0.74 0.73 0.72

Baseline x x x x 0.71 0.79 0.76 0.73

Conv Block SURF SIFT A-KAZE DLF S P A F1

1

X x x x 0.80 0.83 0.82 0.81
X X x x 0.86 0.90 0.88 0.87
X X X x 0.90 0.93 0.92 0.91
X X X X ⋆0.93 0.95 0.94 0.93

2

X x x x 0.78 0.82 0.81 0.80
X X x x 0.82 0.87 0.85 0.83
X X X x 0.85 0.91 0.88 0.86
X X X X 0.87 0.91 0.90 0.89

3

X x x x 0.75 0.81 0.79 0.77
X X x x 0.75 0.83 0.81 0.79
X X X x 0.75 0.83 0.81 0.79
X X X X 0.77 0.85 0.83 0.80

4

X x x x 0.70 0.77 0.76 0.73
X X x x 0.70 0.75 0.74 0.72
X X X x 0.68 0.74 0.72 0.71
X X X X 0.73 0.81 0.79 0.77

5

X x x x 0.70 0.73 0.72 0.71
X X x x 0.69 0.72 0.71 0.70
X X X x 0.67 0.72 0.70 0.69
X X X X 0.71 0.79 0.77 0.74

Baseline x x x x 0.74 0.81 0.80 0.78
(a) Augsburg (b) MICCAI

meaningfully.

Impact of Different Architectures. Different architectures allow us to draw more robust

conclusions. Besides ResNet-50, we also consider ResNet-18, VGG-16, and DenseNet ar-

chitectures pre-trained on ImageNet as backbones for the DLF-module. The same evaluation

protocol and hyperparameters are adopted, besides a number of epochs of 350. Table 12.2 pre-

sents the outcomes for Augsburg and MICCAI datasets. Similar behavior as in Table 12.1 is

observed, i.e., the first convolutional block allows the more accurate results. DeepCraftFuse

outperforms all scenarios’ baselines (i.e., using the DLF-module only). DenseNet provided the

best results (slightly better than ResNet-50), but at an expensive training step.

Table 12.2: Effect of different architectures for Augsburg and MICCAI datasets.

Backbone Best Conv Block S P A F1

ResNet-18
1 0.70 0.75 0.73 0.72

Baseline 0.61 0.66 0.64 0.63

ResNet-50
1 0.86 0.89 0.87 0.87

Baseline 0.71 0.79 0.76 0.73

VGG-16
1 0.84 0.87 0.86 0.85

Baseline 0.74 0.79 0.77 0.76

DenseNet
1 ⋆0.85 0.90 0.89 0.87

Baseline 0.78 0.82 0.80 0.79

Backbone Best Conv Block S P A F1

ResNet-18
1 0.74 0.79 0.77 0.76

Baseline 0.65 0.69 0.67 0.66

ResNet-50
1 0.93 0.95 0.94 0.93

Baseline 0.74 0.81 0.80 0.78

VGG-16
1 0.89 0.92 0.90 0.90

Baseline 0.79 0.83 0.81 0.70

DenseNet
1 ⋆0.93 0.96 0.95 0.94

Baseline 0.81 0.85 0.83 0.82
(a) Augsburg (b) MICCAI

State-of-the-art Comparison. We gathered recently and somehow similar works for com-

parison purposes against DeepCreaftFuse. Some do not employ the same protocol, but they

serve as a basis to evaluate the robustness of the proposed approach. Table 12.3 presents such

comparison, for which DeepCraftFuse outperforms all techniques in the two datasets.
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Table 12.3: Comparison against state-of-the-art techniques.

Dataset Method Year Input Protocol Outcome

MICCAI

van der Sommen et al. [van der Sommen et al. 2016] 2017
Selected Region

of Interest
Leave-one-out

cross-validation
0.86 Sensitivity
0.87 Specificity

Souza Jr. et al. [Souza Jr. et al. 2017] 2017 Full-images
20-fold

cross-validation

0.74 Accuracy
0.73 Sensitivity
0.78 Specificity

Mendel et al. [Mendel et al. 2017] 2017 Patches
Leave-one-patient-out

cross-validation
0.94 Sensitivity
0.88 Specificity

Riel et al. [van Riel et al. 2018] 2018 Downsized Images
Leave-one-patient-out

cross-validation
0.82 Sensitivity
0.80 Specificity

Souza Jr. et al. [Souza Jr. et al. 2018] 2018 Full-images
20-fold

cross-validation

0.69 Accuracy
0.61 Sensitiviy
0.71 Specificity

Ghatwary et al. [Ghatwary, Zolgharni e Ye 2019] 2019 Downsized Images
Leave-one-out

cross-validation
0.96 Sensitivity
0.92 Specificity

Ghatwary et al. [Ghatwary, Ye e Zolgharni 2019] 2019
Selected Region

of Interest
Leave-one-out

cross-validation
0.95 Recall

0.91 Precision

Passos et al. [Passos et al. 2019] 2019 Full-images
20-fold

cross-validation

0.67 Accuracy
0.58 Sensitivity
0.77 Specificity

Ohmori et al. [Ohmori et al. 2019] 2019 Downsized Images
Leave-one-patient-out

cross-validation

0.77 Accuracy
0.81 Sensitivity
0.73 Specificity

van der Putten et al. [van der Putten et al. 2020] 2020
Preprocessed

Images
5-fold

cross-validation

0.88 Accuracy
0.93 Sensitivity
0.83 Specificity

Souza Jr. et al. [Souza Jr. et al. 2019] 2020 Full-mages
20-fold

cross-validation

0.79 Accuracy
0.82 Sensitivity
0.76 Specificity

Souza Jr. et al. [Souza Jr. et al. 2020] 2020 Full-images
20-fold

cross-validation

0.85 Accuracy
0.88 Sensitivity
0.82 Specificity

Hou et al. [Hou et al. 2021] 2021 Full-images
Leave-one-patient-out
5-fold cross-validation

0.93 F1-score
0.91 Sensitivity
0.94 Specificity

Souza Jr. et al. [Souza Jr. et al. 2021] 2021 Full-images
Leave-one-patient-out

20-fold cross-validation

0.87 Accuracy
0.89 Sensitivity
0.84 Specificity

Gehrung et al. [Gehrung et al. 2021] 2021 Downsized Images Leave-one-patient-out
0.91 Accuracy
0.86 Sensitivity
0.95 Specificity

DeepCraftFuse 2021 Full-images
20-fold

cross-validation

0.95 Accuracy
0.93 Sensitivity
0.96 Specificity

Augsburg

Souza Jr. et al. [Souza Jr. et al. 2018] 2018 Full-images
20-fold

cross-validation

0.65 Accuracy
0.64 Sensitivity
0.66 Specificity

Ohmori et al. [Ohmori et al. 2019] 2019 Downsized Images
Leave-one-patient-out

cross-validation

0.71 Accuracy
0.78 Sensitivity
0.65 Specificity

Souza Jr. et al. [Souza Jr. et al. 2019] 2019 Full-images
20-fold

cross-validation

0.73 Accuracy
0.71 Sensitivity
0.75 Specificity

Souza Jr. et al. [Souza Jr. et al. 2020] 2020 Full-images
20-fold

cross-validation

0.83 Accuracy
0.80 Sensitivity
0.86 Specificity

Souza Jr. et al. [Souza Jr. et al. 2021] 2021 Full-images
Leave-one-patient-out

20-fold cross-validation

0.84 Accuracy
0.83 Sensitivity
0.87 Specificity

Gehrung et al. [Gehrung et al. 2021] 2021 Downsized Images Leave-one-patient-out
0.83 Accuracy
0.81 Sensitivity
0.86 Specificity

DeepCraftFuse 2021 Full-images
20-fold

cross-validation

0.89 Accuracy
0.85 Sensitivity
0.90 Specificity

Ablation Study. We conducted an ablation study to understand the impact of α in Equa-

tion 12.1, for it weights the impact of DLF-module in the final loss. We considered α ∈
{0,0.25,0.5,0.75,1} using the same set of parameters defined in the previous experiment, but

now performed over 250 epochs. Such a methodology lets us figure out how important the hand-

crafted features are concerning the ones learned by deep nets. Table 12.4 presents the ablation
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outcomes, with α = 0.5 leading to the more accurate results in all architectures and datasets.

Moreover, it is evident a degradation in performance when features learned by the backbone are

not used (α = 0).

Table 12.4: Ablation study for the assessment of α parameter.

Backbone α S P A F1

ResNet-18

0.0 0.65 0.70 0.68 0.67
0.25 0.67 0.70 0.69 0.68
0.50 0.68 0.72 0.71 0.70
0.75 0.66 0.71 0.69 0.66
1.0 0.66 0.72 0.69 0.68

Baseline 0.61 0.66 0.64 0.63

ResNet-50

0.0 0.73 0.74 0.74 0.73
0.25 0.75 0.83 0.80 0.78
0.50 0.82 0.86 0.85 0.84
0.75 0.80 0.86 0.84 0.83
1.0 0.78 0.87 0.83 0.81

Baseline 0.71 0.79 0.76 0.73

VGG-16

0.0 0.77 0.80 0.78 0.77
0.25 0.79 0.82 0.81 0.80
0.50 0.82 0.84 0.84 0.83
0.75 0.79 0.81 0.80 0.80
1.0 0.80 0.83 0.82 0.81

Baseline 0.74 0.79 0.77 0.76

DenseNet

0.0 0.79 0.82 0.81 0.80
0.25 0.80 0.84 0.83 0.82
0.50 ⋆0.83 0.86 0.85 0.84
0.75 0.81 0.85 0.84 0.82
1.0 0.78 0.85 0.82 0.80

Baseline 0.78 0.82 0.80 0.79

Backbone α S P A F1

ResNet-18

0.0 0.68 0.72 0.71 0.70
0.25 0.70 0.73 0.72 0.71
0.50 0.72 0.77 0.75 0.74
0.75 0.71 0.74 0.73 0.72
1.0 0.69 0.75 0.73 0.71

Baseline 0.65 0.69 0.67 0.66

ResNet-50

0.0 0.84 0.87 0.86 0.85
0.25 0.87 0.86 0.87 0.86
0.50 0.88 0.92 0.91 0.90
0.75 0.85 0.90 0.88 0.87
1.0 0.81 0.89 0.86 0.84

Baseline 0.74 0.81 0.80 0.78

VGG-16

0.0 0.80 0.83 0.82 0.81
0.25 0.81 0.84 0.83 0.82
0.5 0.85 0.86 0.86 0.85
0.75 0.80 0.83 0.82 0.81
1.0 0.82 0.84 0.84 0.83

Baseline 0.79 0.83 0.81 0.70

DenseNet

0.0 0.83 0.87 0.85 0.85
0.25 0.85 0.88 0.87 0.86
0.50 ⋆0.88 0.93 0.92 0.90
0.75 0.86 0.90 0.88 0.87
1.0 0.84 0.89 0.87 0.86

Baseline 0.81 0.85 0.83 0.82
(a) Augsburg (b) MICCAI

12.4 Conclusion

We present DeepCraftFuse, a novel approach for combining deep networks and object de-

tectors to improve esophageal cancer detection in patients diagnosed with Barrett’s esophagus.

Our approach does not require severe changes in the backbone configurations and object detec-

tors. DeepCraftFuse outperforms several state-of-the-art techniques in two datasets, including

baselines designed in different scenarios. This work aims to bring a new perspective on using

deep networks for feature extraction and information provided by experts, represented here

by object detectors. Future works include the evaluation of DeepCraftFuse on other medical-

related classification tasks.

12.5 Chapter’s Considerations

To compile all the developed work proposed in previous Chapters, this one explored the

possibility of combining the best achievements of using handcrafted features, deeply-learnable
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features, and proper classifiers for the identification of early esophageal cancer.

From the observed in Chapters 3 to 7, the extensive evaluation of handcrafted features

showed up its important relevance and relation to spatial insights provided by experts’ kno-

wledge in the correct identification of cancerous tissues. After, Chapters 8 to 11 extensively

assessed the computation of fully-automated features based on deep learning models, their in-

terpretation, and learning behavior in comparison to human observations of cancerous tissue

definition and localization. Moreover, this Chapter depicts all of the best knowledge this rese-

arch could build, reuniting high-level spatial information of esophageal cancer with low-level

global information deep learning models encode in the correct description of cancerous tissue.

To cope with the fusion we propose, we present a new architecture called DeepCraftFuse,

that uses deep learning models’ inner layers information for calculating spatial-and-relevant

information of the esophagus, while the prediction process is guided by a self-distillation me-

chanism that re-uses the global encoded generalization that CNN models provide. By the use of

object detector techniques for the spatial description and CNN models for the global represen-

tation, DeepCraftFuse promotes a fusion process that not only presents a novel way of cancer

identification but significantly enhances its accuracy in qualitative and quantitative ways, once

the natures of both features could be clearly studied and explained through this entire thesis.

This final Chapter aggregates the knowledge we could compute through the study period,

answering several questions about “how impactful could be the use of spatial and global in-

formation in the correct classification of esophageal cancer?; how could the learning process

provided by deep learning models be combined with the human’s knowledge described by

computational techniques?; and moreover, it could be possible to combine handcrafted and

deep learning features, taking advantage of the best of each description, for enhancing the iden-

tification of early cancer in BE patients?". The answers, described in detail all over this Chapter,

represent the relevance of this research for the medical and computational communities, once

we could satisfactorily propose an end-to-end model that effectively employs the best of human

and computational representations of a context, highlighting its advantages in an interpretable

and accurate unified method for early esophageal cancer prediction.



Chapter 13
CONCLUSIONS AND FUTURE WORK

The present text was organized into thirteen chapters, described as follows: the introduc-

tion describing the research context and the motivation and main contributions related to the

proposed subject as Chapter 1. Chapter 2 briefly presentes the theoretical background regar-

ding the objective of the research in a compilation of the most important works related to the

research subject. Chapter 3 presented the first proposed experiment in which the regions of

adenocarcinoma were evaluated by the feature dimension reduction of SURF descriptors, while

Chapters 4, 5, and 6 present the progressive evaluation of the adenocarcinoma and BE context

by the introduction of, respectively, the OPF classifier and SIFT technique for the feature cal-

culation, the color co-occurrence matrices in the feature extraction step, and the unsupervised

OPF and A-KAZE features in the feature extraction, in a concept of visual-words generalization.

Closing the handcrafterd features evaluation, Chapter 7 applied iRBM for Barret’s Esophagus

and adenocarcinoma detection. Every chapter regarding the evaluation of handcrafted features

were already published in high impactful conferences and journals.

The results obtained from Chapters 2 to 7 are related to handcrafted features and confirm

the promising research area proposed and followed during the first research period. Some te-

chniques for the “handcrafted features"evaluation of the problem were proposed, executed, and

published. The current results present an important understanding of the behavior of the hand-

crafted features for the BE and adenocarcinoma context evaluation. As long as these features

are obtained based on the representation of experts’ knowledge, it is important to realize how

such description may further contribute to the correct definition of early cancer in the esopha-

gus. Several classifiers also present an important understanding of the features’ behavior and

ways of evaluating them. The observation of handcrafted features was essential to understand

its relation to human knowledge and how impactful its correct localization is to the proper defi-

nition of cancer in BE-diagnosed patients. Moreover, satisfactory outcomes could be achieved,
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describing how important is the representation of experts’ insights for the correct cancer defini-

tion in our experiments, leading the next steps across the evaluation of features extracted using

deep learning techniques.

With the presented from Chapters 2 to 7, we could positively assess the specific hypothesis

concerning the importance of handcrafted features in the correct prediction of early cancer in

the esophagus, observing clear spatial correspondence in the computational feature extraction

and the experts’ cancer delineation for achieving promising results. Such achievements could

be obtained by the evaluation of several handcrafted features approaches, always combined with

different ML classifiers that highlighted the discriminative potential of each description method.

The assessments concerning the handcrafted features description allowed us to understand its

behavior in quantitative ways, totally related to the observed by the experts during early-cancer

surveillance, according to the assumption we first made with the hypothesis.

Following the research studies, chapters 8 to 12 focused on the evaluation of fully-automated

systems for BE and adenocarcinoma identification based on deep learning techniques. Chapter 8

introduced the use of GAN-technique for promoting a robust and high-quality synthetic image

data augmentation for BE and adenocarcinoma context for further classification, accepted for

publication at the journal “Computers in Biology and Medicine". Chapter 9 continued the work

proposed in Chapter 8 by proposing a GAN-hyperparameters fine-tuning using meta-heuristic

techniques. Chapter 10 applied XAI techniques to lighten up discriminative regions belonging

to the model generalization and classification of esophagus-cancerous samples, while the last

Chapter, 11, focused on enhancing the classification rates based on the pre-training of CNN

layer outputs, providing an understanding of learning behavior to be encoded into the correct

identification of samples. The results obtained in all the presented chapters confirm the promi-

sing research area proposed and followed during the research period, where some techniques

for the “deeply-learnable features"evaluation of the problem were proposed and executed.

With the presented from Chapters 8 to 12, we could evaluate the specific hypothesis re-

garding the impact of deep learning techniques in the correct detection of early cancer in the

esophagus. We were able to understand, in quantitative and qualitative ways, that the generali-

zation performed during deep models’ learning compromises visual insights of BE context, but

the final abstraction they compute is highly discriminative in the task of detecting early esopha-

geal cancer. Then, we could understand that the generalization performed by deep architectures

encodes the information needed to describe and predict esophageal cancer properly. Nowadays,

experts demand interpretative models that require deep models to highlight the behavior behind

its learning and decision activities. Hence, as a further and required observation, essential as-
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pects of interpretation arose to solve CNN models’ black-box nature, and the XAI application

was essential for us to express the prediction process of deep models we employed. Moreover,

such an achievement is correlated to spatial insights in the feature description step, as it is for

the manual definition performed when experts track the cancer tissue during surveillance.

Considering the main proposal of such a project, in which the handcrafted features would

somehow be merged with the fully-automated features, the results observed in Chapter 12, that

proposes the fusion of both description natures, present an important understanding of their

behavior and interpretation concerning BE and adenocarcinoma context. As long as these fea-

tures are obtained with and without experts’ knowledge, it is important to realize how such des-

criptions may further contribute to each other in a models’ generalization based on both musts,

which we presented in Chapter 12. Hence, our research has brought remarkable contributions

to both computational and medical fields, highlighting the importance of humans’ insights for

detecting early-esophageal cancer, the spatial importance and relevance in the calculation of

computational features, which must be correlated to experts’ regions to present proper mea-

ning of correct cancer and BE definitions, and finally, how impactful can be the association

of handcrafted and deeply-learnable features in the representation of cancerous esophageal tis-

sues, significantly enhancing the correct classification of cancerous samples but still carrying

important spatial and human-interpretable information to its core processing.

Our main hypothesis could be fully evaluated with the proposal of several ML and

image processing techniques to describe and identify cancer samples in BE images; the

evaluation of humans’ knowledge representation by the use of handcrafted features, showing

up its importance to the classification’s success; the relevance and meaning of applying

deep learning techniques to enhance the classification of early esophageal cancer, high-

lighting not only its generalization potential but also its correlation to human’s spatial

interpretations of the same problem; and by the end, how important is the representation

of esophageal cancer based on both handcrafted features, that provide high-level spatial

information, and deeply-learnable features, that encode low-level global meaning, in an

end-to-end model that comprises all the relevant factors of our proposals so far and high-

lights the complementary behavior we first assumed for both descriptions by presenting

the very best results, in quantitative and qualitative ways, we could ever achieve.

Moreover, part of the evaluation of deep learning features conducted abroad at the Ostbaye-

rische Technische Hochschule (OTH) Regensburg, led by the co-supervisor of the project,

Professor Christoph Palm, and supported by ReMIC research team showed to be very fruitful,

with several research papers proposed and executed, focused on the interpretation of deep le-
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arning’s behavior and video evaluation [Ebigbo et al. 2019, Ebigbo et al. 2020, Mendel et al.

2020].

13.1 Works developed during the study period

Table 13.1 presents the works produced during the study period, while Table 13.2 describes

the schedule adopted during the study.

13.2 Future Works

In regard to the notable impact of such research, with remarkable production potential as

the presented Chapters has shown, we propose its continuation by assessing new approaches

related to the evaluation of esophageal cancer in endoscopic examinations:

• First, a semantic segmentation based on siamese neural nets is proposed to detect, in

spatial means, the cancerous regions in BE samples.

• Second, we propose to extend or work of assessing the deepness of neural models by

employing Neural Architecture Search techniques in the task of defining the best archi-

tectures for the correct identification of cancer in the esophagus area.

• Finally, we aim to evaluate the degree of ill tissue by employing the Few-Shot Learning.

This will enable the correct definition of several cancer levels in the esophagus, even with

the lack of data for solving such a problem.
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Barrett’s Esophagus Identification Using Optimum-Path Forest Conference A3 2017 Published

[Souza Jr. et al. 2017]

A Survey on Barrett’s Esphagus Analysis Using Machine Learning Journal A2 2018 Published

[Souza Jr. et al. 2018]

Barrett’s Esophagus Analysis Using Color Co-occurrence Matrices Conference A3 2017 Published

[Souza Jr. et al. 2018]

Computer-aided diagnosis using deep learning Journal N/A 2018 Published

in the evaluation of early oesophageal adenocarcinoma

[Ebigbo et al. 2019]

Learning Visual Representations with Optimum-Path Forest Journal A1 2019 Published

and its Applications to Barrett’s Esophagus and Adenocarcinoma

Diagnosis [Souza Jr. et al. 2019]

Barrett’s Esophagus Analysis Using Infinity Restricted Journal A2 2018 Published

Boltzmann Machines [Passos et al. 2019]

Artificial Intelligence in Gastrointestinal Endoscopy: Journal A1 2019 Submitted

a Review

Real-time use of Journal N/A 2019 Published

artificial intelligence in the evaluation of

cancer in Barrett’s oesophagus [Ebigbo et al. 2020]

Semi-Supervised Segmentation Conference A1 2020 Published

based on Error-Correcting Supervision [Mendel et al. 2020]

Assisting Barrett’s Esophagus Identification Journal A2 2020 Published

Using Endoscopic Data Augmentation

Based on Generative Adversarial Networks [Souza Jr. et al. 2020]

Fine-tuning Generative Adversarial Networks Conference A3 2021 Published

Using Metaheuristics: A Case Study [Souza Jr. et al. 2021]

on Barrett’s Esophagus Identification

Convolutional Neural Networks Journal A2 2020 Published

for the Evaluation of Cancer in Barrett’s esophagus:

Explainable AI to lighten up the Black-Box [Souza Jr. et al. 2021]

Layer-Selective Deep Representation Journal A1 2021 Submitted

to Improve Esophageal cancer classification

DeepCraftFuse: Handcrafted and Deeply Learnable Journal A1 2021 Submitted

Features Work Better Together for Esophageal

Cancer Detection in Patients with Barrett’s Esophagus

Table 13.1: Works developed during the study period.
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Features Techniques Period

SURF features + SVM classifier (with BoVW using SVM)

Handcrafted SURF and SIFT features + OPF, SVM and Bayes

Features AKAZE, SURF and SIFT features + OPF, SVM and Bayes From 2017/1 to 2018/2

Evaluation Color co-occurrence matrix features + OPF, SVM and Bayes classifiers

(with BoVW using PCA)

SURF and SIFT feature optimization (using iRBM) +

OPF, SVM and Bayes classifiers

CNN evaluation + GAN augmented data From 2019/1 to 2019/2

Deeply- + GAN-hyperparameter fine-tuning

Learnable CNN + Semi-supervised segmentation (cancerous automatic segmentation) From 2019/2 to 2020/1

Features Pixel-wise Explanable Artificial Inteligence evaluation 2020/1

Layer-wise Explanable Artificial Inteligence evaluation From 2020/2 to 2021/1

Semantic-segmentation of cancerous tissues based on symetric CNN classifiers 2021/2

Feature Fusion Handcrafted + deeply learnable features fusion method From 2021/2 to 2022/1

Table 13.2: Schedule of the research.
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GLOSSARY

k-NN – k-nearest neighbors

A-KAZE – Accelerated-KAZE features

ACM – Association for Computing Machinery

ANN – artificial neural network

AUC – area under curve

BE – Barrett’s esophagus

BING – BE’s International NBI Group

BoVW – bag-of-visual-words

CAD – computer-assisted diagnosis

CE – capsule endoscopy

CLE – confocal laser endomicroscopy

CM – co-occurrence matrix

CNN – Convolutional Neural Network

CT – computed tomography

Citation-k-nn – Citation-k-nearest neighborhood

DL – Deep Learning

EAC – esophageal adenocarcinoma

EAC – gray-scale co-occurrence matrix feature

ELM – extreme learning

ESCC – esophageal squamous cell carcinoma
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EUS – endoscopic ultrasonography

GAN – Generative Adversarial Networks

GM – gastric metaplasia

HD-WLE – high-definition white light endoscopy

HRME – high-resolution microendoscopic

IM – intestinal metaplasia

LBP – Local Binary Pattern

LDA – linear discriminant analysis

LOO-CV – leave-one-out cross-validation

LOPO-CV – leave-one-patient-out cross-validation

LSO-CV – leave-some-out cross-validation

MDPI – Multidisciplinary Publishing Institute

MIL – multiple instance leraning

MLP – Multilayer Perceptron

ML – machine learning

NBI – narrow band imaging

NF-NBI – near-focus narrow-band imaging

NGLCM – Normalized Gray Level Co-occurrence Matrix

OPF – Optimum-Path Forest

OTH – Ostbayerische Technische Hochschule

PCA – Principal Component Analysis

RFA – radiofrequency ablation

ROC – Receiver Operating Characteristic

ROIs – regions of interest

SCM – Single-Channel co-occurrence matrix

SGS – subsquamous glandular structures
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SIFT – Scale-Invariant Feature Transform

SURF – Speed-Up Robust Features

SVM – Support Vector Machines

VLE – volumetric laser endomicroscopy

VOC – volatile organic compounds

WCE – wireless capsule endoscopy

WLE – white light endoscopy

XAI – Explainable Artificial Intelligence

iRBM – infinte Restricted Boltzmann Machines


