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Abstract
The generation of biphotons remains an important field of research, as several applications
require such sources. For instance, some of their properties are fundamental in quantum
communication, quantum computing, and quantum imaging.

Pairs of spatially correlated photons can be generated using four-wave-mixing (FWM)
processes, taking advantage of the third-order nonlinear susceptibility χ3 effect. A FWM
configuration consists of two counter-propagating excitation fields acting on a cold atomic
cloud which spontaneously generates pairs of photons in opposite directions through the
nonlinear effect. Current theoretical models used to explain FWM in two-level systems
have disregarded atomic interactions and considered an independent atom approach.
Nevertheless, recent experiments have shown evidence of collective (superradiant) behavior
in these types of systems.

In this context, we seek to understand the contributions of dipole-dipole interactions
in the generation of biphotons. To this end, we propose to use an ab initio model to
describe FWM in cold atomic clouds, where dipole-dipole interactions are accounted for.
Our exact simulations with N = 7 atoms are compatible with the results from recent
experiments. Furthermore, to simulate systems with a larger number of particles we derived
and implemented a new scheme considering exclusively the single- and double-excitation
subspace that is able to simulate systems of more than N = 100 scatterers.

Keywords: Four-wave-mixing, biphotons, collective effects.
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1 Introduction

Emissions of spatially and temporally correlated photons (biphotons) have attracted
much interest in recent years, since they are central to many quantum technologies. As
carriers of quantum information, such sources are fundamental for large-scale quantum
communications networks [3]. Also, correlated photons are very relevant in quantum
teleportation [4], security [5], and imaging [6, 7].

Biphotons are typically generated via spontaneous parametric down-conversion
(SPDC) using nonlinear crystals [8, 9]. However, photons generated this way are problematic
for large-scale fiber optical communications because they show a large bandwidth (THz),
and short coherence time (ps) and length (µm) [10]. On the other hand, another technique
that can produce pairs of correlated photons and does not have the aforementioned
limitations, is the four-wave-mixing (FWM) process.

FWM in two-level systems (TLS) has been used to produce pairs of photons
for many groups during the last decade [11, 12, 13, 14, 15]. It consists of two counter-
propagating excitation fields acting on an ensemble of cold two-level atoms. In the cloud, a
third-order nonlinear susceptibility effect χ3 comes up, which allows for the generation of
spatially and temporally correlated photons in opposite directions. Typically, this process
has been physically described as a vapor of independent [16, 17] atoms interacting
via dipole interaction with the quantized electromagnetic field. However, last year, a
experiment done in Recife (Brazil) [2] demonstrated evidence of collective behavior (i.e.
superradiance-like decay rate) in FWM in TLS. Furthermore, other experiments done in
similar conditions [11, 18, 19] also showed these effects. Such experimental observations of
collective effects, suggest the existence of interactions between the scatterers in the atomic
cloud.

In this context, the objective of our research is to identify and characterize
collective effects in FWM, considering N two-level atoms interacting through
coupled dipoles interaction.

To understand cooperative effects in atomic systems, it is interesting to first describe
the case of spontaneous emission. Consider an excitation field of wavelength λ being applied
on an ensemble of N excited two-level atoms, each particle having a natural decay rate of
Γ0. If the typical distances between the atoms are larger than λ, each particle scatters
light by its own, ignoring the presence of other scatterers. In this situation, the radiated
intensity is proportional to N and the system’s decay rate is proportional to e−Γ0t (Figure
1(a)).

On the other hand, when the separation between the atoms is comparable or smaller
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to λ, collective effects [20] arise 1. Cooperative interference between the atoms changes the
decay rate of the ensemble and the total radiated intensity. In the case of superradiance,
there is a burst, proportional to N2, and an enhanced decay rate proportional to e−NΓ0t

(Figure 1(b)).

Figure 1 – Radiated intensity of an ensemble of N atoms as a function of time for the
cases of (a) spontaneous emission and (b) superradiance.

In fact, it was precisely this enhancement in the decay rate that was reported in
the Recife experiment [2]. They observed faster decay in the second correlation function
(see Section 2.1.3) than what was expected by the independent atom approach. To account
for this novel behavior, an empirical fit modification of the theoretical function originally
proposed by Refs. [16, 17] was employed. In Section 3, we also compare this empirical fit
with our results.

This thesis is organized as follows. Chapter 2 describes our exact (Section 2.1) and
approximated (Section 2.2) models to describe the atomic system. Chapter 3 shows our
simulations results and benchmarkings. At last, Chapter 4 is dedicated to the final remarks
and future perspectives.

1 Notice that the true spatial dependency of collective effects is not with the atomic density as described
here but with the optical density b0 = 2N

(kr)2
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2 Dipole-dipole interactions model

2.1 Exact dynamics

2.1.1 Vector light model

Our theoretical model consists of a random cloud of N fixed two-level atoms excited
by two counter-propagating fields with linear polarization. The particles interact only
through light-induced dipole-dipole interactions. Our description closely follows Ref. [21].
We consider that the two pumps have the same Rabi frequency Ω and are detuned from
the atomic resonant frequency ω0 by ∆.

Figure 2 – Pictorical representation of FWM in TLS: dipole-dipole approach

Their dynamics is described considering Markov and rotating-wave approximations
by a quantum master equation of the form (ℏ ≡ 1):

d

dt
ρ̂ = H(ρ̂) + L(ρ̂) = −i[Ĥ, ρ̂] + L(ρ̂), (2.1)

where ρ̂ is the density matrix operator, and the Hamiltonian and Lindblandian,
respectively, are:
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Ĥ = Ĥatom + Ĥfield1 + Ĥfield2 + Ĥinteraction

= −∆
∑

i

σ̂+
i σ̂−

i + 1
2
∑

i

(
Ωeik·riσ̂+

i + H.c.
)

+ 1
2
∑

i

(
Ωe−ik·riσ̂+

i + H.c.
)

+
∑
i,j ̸=i

∆ijσ̂
+
i σ̂−

j .

(2.2)

L(ρ̂) = 1
2
∑
m,n

Γmn

(
2σ̂−

mρ̂σ̂+
n −

{
σ̂+

n σ̂−
m, ρ̂

})
. (2.3)

We have introduced ∆ij ≡ −ϵ̂∗
i · Re {Gij} · ϵ̂j and Γij ≡ ϵ̂∗

i · 2Im {Gij} · ϵ̂j. They represent
the elastic and inelastic terms of the dipolar interaction. The symbol ϵ̂i is the polarization
of the ith dipole that we take ϵ̂i = ϵ̂ = ẑ. Also, σ±

i represent the atomic raising and
lowering operators (for ground |g⟩ and excited |e⟩ state),

σ+
i = |g1⟩ ⊗ ... ⊗ |ei⟩ ⊗ ... ⊗ |gN⟩⟨g1| ⊗ ... ⊗ ⟨gi| ⊗ ... ⊗ ⟨gN | = |ei⟩⟨gi|,

σ−
i = |gi⟩⟨ei|.

The effective potential between atoms i and j is given by the Green’s tensor [22, 23, 24, 25]:

Gij ≡ G (rij) =
(

3Γ
4

eikrij

(krij)3

[(
k2r2

ij + ikrij − 1
)

13 −
(
k2r2

ij + i3krij − 3
) rijrT

ij

r2
ij

])
(2.4)

for i ≠ j, where rij ≡ ri − rj, and Gii = i(Γ/2)13 for the single-atom term, with
Γ0 = d2

0k
3/3πϵ0ℏ denoting the single-atom spontaneous decay rate, ϵ0 free space electric

permittivity, d0 the transition dipole moment, and k = ω0/c = 2π/λ its wave number. We
have taken the field propagation direction to be k = kŷ.

2.1.2 Scalar light model

Besides the vector light model explained in the previous section, we have also
implemented the scalar light approximation [26]. In this model, we disregard effects
due to the polarization of light and can simply take, Γij = 2 sin(krij)/krij and ∆ij =
− cos krij/krij

2.1.3 Scattered light statistics

In the context of FWM, we have an especial interest in biphoton emissions, looking
at the scattered light statistics by means of the second-order coherence function. This
quantity measures the probability of two photons at positions R1 and R2 being detected
with a time difference τ [27, 28]:

g
(2)
R1,R2(τ) ≡ lim

t→∞

〈
Ê−(R1, t)Ê−(R2, t + τ)Ê+(R2, t + τ)Ê+(R1, t)

〉
〈
Ê−(R1, t)Ê+(R1, t)

〉 〈
Ê−(R1, t)Ê+(R2, t)

〉 (2.5)
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where we have considered normal ordering. The scattered electric field is described in the
far-field approximation and in a given direction n̂, by

Ê± ∼
N∑

j=1
e∓ikn̂·rj σ̂∓

j . (2.6)

Also, an important quantity to characterize the scattered light statistics is the Cauchy-
Schwartz inequality. This function is smaller than 1 for classical fields and read as

R(τ) = ḡR1,R2(τ)ḡR1,R2(τ)
ḡR1,R1(0)ḡR2,R2(0) ≤ 1. (2.7)

2.2 Single and double excitation subspace dynamics

2.2.1 Analytical approach

The complete Hilbert space of our system has size 2N × 2N . Thus, we are only able
to simulate exact systems of N ≤ 7 atoms (128 × 128 matrices) before facing memory
issues in our cluster. To overcome this problem, we follow an analytical approach only
considering the subspace of single and double excited states.

Let us consider the following coefficients

βℓ(t) =
〈
σ−

ℓ

〉
= tr

{
ρ(t)σ−

ℓ

}
and βkℓ(t) =

〈
σ−

k σ−
ℓ

〉
= tr

{
ρ(t)σ−

k σ−
ℓ

}
.

The squared modulus of these quantities corresponds, respectively, to the probability that
atom ℓ is excited (and no photon in the field) and the probability that atom k and atom ℓ

are excited (and no photons in the field). Using Equation 2.1, calculating the commutation
relations and considering that the number of atoms N in the system is much larger than
the number of atomic excitations Nexc (weak-drive regime), we obtain the following system
of differential equations 1:

β̇t(t) =
(

i∆ℓ − Γℓℓ

2

)
βt(t) − i

2Ωt −
N∑

m̸=ℓ

Gtmβm(t) (2.8)

β̇kℓ(t) =
[
i (∆k + ∆ℓ) − 1

2 (Γkk + Γℓℓ)
]

βkℓ(t) − i

2 (Ωtβk(t) + Ωkβℓ(t))

−
N∑

m̸=ℓ

Gℓmβkm(t) −
N∑

m ̸=k

Gkmβmt(t)
(2.9)

where Gℓm = Γℓm/2+i∆ℓm. Furthermore, our main objective is to obtain the scattered light
statistics, so, using Equation 2.5 we calculate the expression for g(2)(0). The expectation
1 Full derivation is available on Appendix B
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value of the far-field E± operators are written using the single and double excitation state1

and are simplified in terms of the β coefficients. We find:

g
(2)
R1,R2(0) =

lim
t→∞

∑
lL̄mM̄

e−ik(n̂2(rl−rL̄))+n̂1(rm−rM̄ ))βl,m(t)β∗
L̄,M̄ (t)∑

lL̄
e−ikn1(rl−rL̄)

(
βl(t)β∗

L̄(t) +
∑

j
4βl,j(t)β∗

L̄,j(t)
)∑

lL̄
e−ikn2(rl−rL̄)

(
βl(t)β∗

L̄(t) +
∑

j
4βl,j(t)β∗

L̄,j(t)
) .

(2.10)
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3 Results

3.1 Exact simulations
We have implemented the exact scalar and vector light models described previously

(using QuTiP [29]) to investigate numerically the generation of biphotons. For each
calculation, a different random set of atomic positions was generated. The simulations
shown in this report are the result of the geometric average of many different atomic
configurations (at least 200). Overall, our calculations with N = 7 atoms are consistent
with recent experimental observations [2].

Figure 3 – g(2)(τ) between different directions for N = 5 atoms, with Ω = 2Γ and ∆ = 20Γ
in a dilute atomic cloud (b0 = 0.1). θ1 and θ2 refer to these directions, in
spherical coordinates (ϕ = 0). Correlations are stronger for the case of detectors
placed at opposite directions as expected from FWM.

The largest spatial correlations are found at opposite directions as expected for
biphotons in a FWM configuration (Figure 3). Moreover, in Figure 4(a) we focus on
the opposite-detection case and report results that are consistent with the experimental
data. The simulations (red/blue: with/without interaction) present a behavior similar to
the experimental observations displayed in Figure 4(b). Also, the empirical fit (red-solid
line), suggested by Araujo et al. to account for the collective effects, shows a χ coefficient
larger than one, which is a witness of the presence of collective behavior. However, our
simulations have maximum values of g(2)(τ) larger than the experimental data. This
problem is recurrent in our calculations. For instance, it appears again in the Cauchy-
Schwartz inequality simulations (Figure 4(d)). Nonetheless, it probably is a consequence
of the small number of atoms we can currently simulate. As we change the number of
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(a) (b)

(c) (d)

Figure 4 – (a) g(2)(τ) for N = 7 in a dilute atomic cloud simulated considering: with
interactions (red-dashed line), without interactions (blue-dashed line), the
single independent atom model (purple line) and the empirical fit to account
for collective effects (red-solid line). (b) Experimental observations from Ref [2],
where the blue line in the first picture stands for the observed g(2)(τ) in opposite
directions with Ω = 2Γ and ∆ = 20Γ and the second picture the corresponding
Cauchy-Schwartz inequality. (c) g(2)(τ) and max(g(2)(τ)) for different number
of atoms in a dilute atomic cloud. (d) Cauchy-Schwartz inequality for N = 7
atoms simulated by our model, turning on (red line) and off (blue line) the
interactions.
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particles (2 < N < 7), the maximum value changes without establishing a clear pattern
(see Figure 4(c)). To account for this, we derived and implemented the analytical approach,
described in Appendix B, that allows us to scale up the size of the system.

Furthermore, simulations with other optical densities, pump, and detuning conditi-
ons are available in the following table:

b0 Ω = 0.02, ∆ = 0 Ω = 1, ∆ = 0 Ω = 2, ∆ = 20
0.1 g(2), C-S g(2), C-S g(2), C-S
3 g(2), C-S g(2), C-S
5 g(2), C-S g(2), C-S

Table 1 – Hyperlinks to web folders with the corresponding simulation results.

The computer program made for the simulations is available and documented
on this repository.

3.2 Single and double excitation subspace simulations

3.2.1 Benchmarking

To verify our analytical approach, we compare, for a specific set of atomic positions,
⟨σ−

i ⟩ = βi(t) and ⟨σ−
i σ−

j ⟩ = βij(t), calculated from the expectation values of our exact
(scalar) simulations, to the coefficients obtained after solving the differential equations 2.8
and 2.9. In Figures 5(c) and 5(d), we show the results of both methods for different sizes
of the atomic cloud (b0 = 0.1 and 3) demonstrating the accuracy of our approximation in
the weak-drive regime. As can be seen, our approximated approach is able to correctly
reproduce the exact model results.

Moreover, in Figures 5(e) and 5(f) we also compare the g
(2)
R1,R2(0) quantity for

different directions when R1 is fixed at 25o. The correlation function is obtained from
exact simulations (scalar and vector models) and the subspace approach (Equation 2.10).
Overall, the subspace simulations are able to replicate the behavior of the exact scalar
equations.

3.2.2 Large systems

An important advantage of the subspace approach is that we are able to simulate
systems of N > 100 in a few hours whereas, with the exact simulations, it is impossible
to calculate clouds with more than N = 7 atoms with our computational resources. In
Figure 6(a), we show the time necessary to calculate g(2)(0) for different second detector
directions and how long it takes to solve the differential equations (2.8) and (2.9) as we
increase the number of atoms. We show the case of N = 40 (black circle) in Figure 6(b),
showing stronger correlations in opposite directions.

https://drive.google.com/drive/folders/124nBZbW6w33H3Nes-pcLfi12act2KAYJ?usp=sharing
https://drive.google.com/drive/folders/11WZRtC1e8pVjr3kHbqSAPSH2evpb_aQ2?usp=sharing
https://drive.google.com/drive/folders/1r19bbwBhEcKH_GFKgIYIGbsg6ZlgMa42?usp=sharing
https://drive.google.com/drive/folders/1U2lUqD_IY5RWE_q7XjeEAIQurudSNlUr?usp=sharing
https://drive.google.com/drive/folders/1_mhzIhFasernKXjuBu_EdRAGefi6FNqP?usp=sharing
https://drive.google.com/drive/folders/1WCoZqkDwkq9AcE5JKH5roMZDdkLQO2Ut?usp=sharing
https://drive.google.com/drive/folders/1_jtpKyanQ9ZdnUJ7qaUjWWpQo2wxxKPa?usp=sharing
https://drive.google.com/drive/folders/1RUYT-gsP4ZxeJ9zjS_fRZOa8_epO7Upt?usp=sharing
https://drive.google.com/drive/folders/1vFDy3ncbge4UR6DCEdXFGTw9UmtMf2QO?usp=sharing
https://drive.google.com/drive/folders/1tYGElMZybo4OXpEiXW1fMpyE8Y2c82as?usp=sharing
https://drive.google.com/drive/folders/1drWO6JteTQ0bAI26jBBG9kIIhSfD2mjb?usp=sharing
https://drive.google.com/drive/folders/1wf_m1aAR5XXDjBoPlTK93UDInmFLCa7S?usp=sharing
https://drive.google.com/drive/folders/1a0ZG3JUSC7IuXbF6B4IJZbg6g9NLjhpr?usp=sharing
https://drive.google.com/drive/folders/1KHYYF09am4JJaKudn5Ymwpar_m9x-HL_?usp=sharing
https://drive.google.com/drive/folders/1sGJX5ZwVGzoQyL9ZG9uvIJ9aZdfM7Y4K?usp=sharing
https://drive.google.com/drive/folders/1gFVCMjTLWLJ4SUCztVsuDqxHYkjUNvdE?usp=sharing
https://drive.google.com/drive/folders/121J2UvTlGZlgNyG6zcoXSCkSEsoS3qrN?usp=sharing
https://github.com/rupof/wavemixing_project
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Figure 5 – Left (right) column corresponds to a specific simulation with b0 = 3 (0.1),
N = 4 (6), Ω = 2Γ and ∆ = 20Γ. (a) and (b): Geometric representation of
the simulated atomic cloud. (c) and (d) In the second/third row, the values
of βj(t) = ⟨σj⟩ and βij(t) = ⟨σiσj⟩ are simulated using the subspace approach
[solid lines] and the expectation value of the steady-state from the exact scalar
model [dashed lines]. (e) and (f): Second-order correlation function for τ = 0
with the first detector fixed at θ1 = 25 and changing the angle θ of the second
sensor. Simulations are evaluated using the exact scalar (blue line) and the
subspace approach (orange line).
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(a)

(b)

Figure 6 – (a) Time to: solve differential equations (2.8) and (2.9) (yellow triangles),
obtain g(2)(0) from Equation 2.10 for 200 different angles (green circles), and
complete the simulation (blue triangles). (b) Polar plot of g(2)(τ = 0) for the
N = 40 (black circle of (a)) case. θ1 = 25◦ is the direction of the first detector
(blue-dashed line).
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4 Conclusion

Overall, we showed that considering dipole-dipole interaction in a four-wave-mixing
configuration enables us to obtain results consistent with experimental data. In other words,
this approach captures the experimental stronger correlations in opposite directions and
demonstrates a second-order correlation behavior similar to the laboratory observations
with collective effects. Moreover, the simulations considering the single- and double-
excitation subspace correctly replicate the exact approximation in the weak-drive regime.
This method is not only limited to the FWM configuration of this work and can be
applied to other situations where there is interest in two excitations. For instance, in
studying the contributions of an extra photon in light localization (eigenvalues analysis) [30].
Furthermore, using the quantum regression theorem, we plan to derivate and implement
the second-order correlation function for the subspace approach. These simulations will
allow us to characterize and investigate the collective effects for systems with a large
number of atoms in a possible future master’s project.
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APPENDIX A – Dipole-dipole interaction:
derivation outline

Many derivations of the coupled dipole model exist in the literature, from the older
pioneering works done by Refs. [22, 23, 24] to more modern ones [25, 31, 32]. Here we will
briefly outline the derivation conducted in Ref. [31].

Consider N two-level identical atoms fixed at positions r1, r2, ..., rN . In the electric
dipole approximation, the field is assumed to be uniform over the whole atom. Consequently,
the contribution of the atoms, field and the interaction give the following Hamiltonian:

H = HAtom + HF ield + HInteraction

= ω0

N∑
i=1

σ+
i σ−

i +
∑
k,λ

ωka†
k,λak,λ + −

N∑
i=1

di · E (ri) .

ω0 represents the frequency between |g⟩ and |e⟩, ωk the frequency of the kth mode and di

the dipole moment of the ith dipole. The contribution from the interaction can be written
in the second quantization formalism as,

HInteraction = i
N∑

i=1

∑
k,λ

gk,λ [ak,λ exp (ikri) − h.c. ]
(
σ+

i + σ−
i

)
.

with gk,λ =
√

ωk/2ϵ0V ek,λ ·µ. We have assumed that the atomic transition dipoles moments
all have an equal orientation and amplitude (i.e. µi = µ). Now, we shall calculate the
dynamics of the operators. First, we calculate the time evolution of ak,λ using Heisenberg
equation ∂tak,λ = i [H, ak,λ], which leads to

ak,λ(t) = ak,λ (t0) exp (−iωk (t − t0))

−
∫ t

t0
dt′ exp (−iωk (t − t′)) gk,λ

N∑
i=1

exp (−ikri)
(
σ+

i + σ−
i

)
︸ ︷︷ ︸

σx
i

(t′) . (A.1)

Similarly, we can calculate the dynamics of an arbitrary atomic operator O solving its
corresponding Heisenberg equation,

∂tO = i[H, O] = iω0

N∑
i=1

[
σ+

i σ−
i , O

]
− i

N∑
i=1

[d · E (ri, t) , O] , (A.2)

and substitute ak,λ given by Equation A.1. Now, the final objective is to simplify the
differential equation A.2 and replace O by ρ, obtaining the evolution of the density matrix.
To simplify the differential equation, we follow the steps below:
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1. Introduce normal ordering for photon creator and annihilator operators.

2. Replace the sum over all modes by an integral, i.e. , ∑k,λ → V/(2π)3 ∫ d3k

3. We perform the Markov approximation, i.e., σ+
i (t′)+σ−

i (t′) → σ+
j (t) exp (iω0 (t′ − t))+

σ−
j (t) exp (−iω0 (t′ − t))

4. Integrate over solid angles and perform rotating-wave approximation (neglect fast-
oscillating terms).

We obtain:

∂tO = i
∑

i

[(
ω0 − Ω+

ii

)
σ+

i (t)σ−
i (t) − Ω−

iiσ
−
i (t)σ+

i (t), O(t)
]

+ i
∑
i ̸=j

[
Ωijσ

−
i (t)σ+

j (t), O(t)
]

+ 1
2
∑
i,j

Γij

(
2σ+

i (t)O(t)σ−
j (t)

−σ+
i (t)σ−

j (t)O(t) − O(t)σ+
i (t)σ−

j (t)
)

,

which can be simplified as ∂tρ = i[ρ, H] + L[ρ] where Γij and Ωij are the same given by
Equation 2.4. Notice that Γij couples the atoms through the vacuum field so that the
spontaneous emission from each atom influences the spontaneous emission from the other.
On the other hand, the interaction term Ωij introduces a coherent coupling between the
atoms.
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APPENDIX B – Single and double excitation
subspace dynamics: derivation

Considering Equation 2.1, we can rewrite (2.2) and (2.3) as

H(ρ̂) = − i

ℏ

N∑
n=1

[Hn, ρ(t)] − i
N∑

n̸=m,m

∆nm

[
σ+

n σ−
m, ρ(t)

]
, (B.1)

L(ρ̂) = 1
2

N∑
n,m=1

Γmn

[
2σ−

n ρ(t)σ+
m −

{
σ+

mσ−
n , ρ(t)

}]
. (B.2)

We take Hn from Equation 2.2

H =
N∑

n=1

Hn︷ ︸︸ ︷
−ℏ

∆n

2 σz
n + ℏ

Ωn

2
(
σ+

n + σ−
n

)
+

N∑
n̸=m,m

ℏ∆nmσ+
n σ−

m, (B.3)

with Ωn = Ω
(
eik·rn + e−ik·rn

)
, ±σz

j = 2σ±
l σ∓

j − I and ∆n = ∆. We can define the subspace
dynamics coefficients :

βℓ(t) =
〈
σ−

ℓ

〉
= tr

{
ρ(t)σ−

ℓ

}
and βkℓ(t) =

〈
σ−

k σ−
ℓ

〉
= tr

{
ρ(t)σ−

k σ−
ℓ

}
.

Before expanding the expressions, the following commutation relations between the opera-
tors are very useful:

{
σ±

ℓ , σ±
j

}
= 2σ±

ℓ σ±
j ,

[
σ±

ℓ , σ±
j

]
= 0, (B.4)

{
σ±

ℓ , σ∓
j

}
= 2 (1 − δℓj) σ±

l σ∓
j + δℓjI, (B.5)

[
σ±

ℓ , σ∓
j

]
= 2σ±

ℓ σ∓
j −2 (1 − δℓj) σ±

ℓ σ∓
j −δℓjI = 2δℓjσ

±
ℓ σ∓

j −δℓjI = δℓj

[
2σ±

ℓ σ∓
j − I

]
= ±δℓjσ

z
j ,

(B.6)

[
σz

ℓ , σ±
j

]
= ±2δℓjσ

±
j ,

{
σz

ℓ , σ±
j

}
= 2

[
σz

ℓ σ±
j ∓ δℓjσ

±
j

]
, (B.7)

[
σ−

ℓ , Hm

]
= δℓm

[
σ−

ℓ , Hℓ(t)
]

. (B.8)

Then, for the single excitation case we have
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β̇ℓ(t) = tr
{
ρ̇(t)σ−

ℓ

}
= tr

{
H[ρ(t)]σ−

ℓ

}
+ tr

{
L[ρ(t)]σ−

ℓ

}
. (B.9)

For the second term,

tr
{
L[ρ(t)]σ−

ℓ

}
= 1

2

N∑
n,m=1

Γnm

[
2 tr

{
σ−

n ρ(t)σ+
mσ−

ℓ

}
− tr

{{
σ+

mσ−
n , ρ(t)

}
σ−

ℓ

}]

= 1
2

N∑
n,m=1

Γnm

[
2 tr

{
σ−

n ρ(t)σ+
mσ−

ℓ

}
− tr

{
σ+

mσ−
n ρ(t)σ−

ℓ + ρ(t)σ+
mσ−

n σ−
ℓ

}]

= 1
2

N∑
n,m=1

Γnm

[
tr
{
ρ(t)σ+

mσ−
ℓ σ−

n

}
+ tr

{
σ−

n ρ(t)σ+
mσ−

ℓ

}
− tr

{
σ−

n ρ(t)σ−
ℓ σ+

m + ρ(t)σ+
mσ−

n σ−
ℓ

}
= 1

2

N∑
n,m=1

Γnm

[
tr
{
σ−

n ρ(t)
[
σ+

m, σ−
ℓ

]}
+ tr

{
ρ(t)σ+

m

[
σ−

ℓ , σ−
n

]}]

= 1
2

N∑
n,m=1

Γnm tr
{
σ−

n ρ(t)δtmσz
m

}

= 1
2

N∑
n=1

Γnt tr
{
σ−

n ρ(t)σz
ℓ

}

= Γℓℓ

2 tr
{
ρ(t)σz

ℓ σ−
ℓ

}
+ 1

2

N∑
n ̸=ℓ

Γnt tr
{
σ−

n ρ(t)σz
ℓ

}

= −Γℓℓ

2 tr
{
ρ(t)σ−

ℓ

}
+ 1

2

N∑
n̸=ℓ

Γnℓ tr
{
σ−

n ρ(t)σz
ℓ

}
.

(B.10)
For the first term,

tr
{
H[ρ(t)]σ−

ℓ

}
= − i

ℏ

N∑
n=1

tr
{
[Hn(t), ρ(t)] σ−

ℓ

}
− i

N∑
n̸=m,m

∆nm tr
{[

σ+
n σ−

m, ρ(t)
]

σ−
ℓ

}

= − i

ℏ

N∑
n=1

tr
{
Hn(t)ρ(t)σ−

ℓ − ρ(t)Hn(t)σ−
ℓ

}
︸ ︷︷ ︸

T1

−i
N∑

n̸=m,m

∆nm tr
{[

σ+
n σ−

m, ρ(t)
]

σ−
ℓ

}
︸ ︷︷ ︸

T2

.

(B.11)
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Expanding T2 we have:

T2 =
N∑

n̸=m,m

∆nm

[
tr
{
σ+

n σ−
mρ(t)σ−

ℓ

}
− tr

[
ρ(t)σ+

n σ−
mσ−

ℓ

}]

=
N∑

n̸=ℓ

∆nℓ

[
tr
[
ρ(t)σ−

ℓ σ+
n σ−

ℓ

}
− tr

[
ρ(t)σ+

n σ−
ℓ σ−

ℓ

}]

+
N∑

n̸=m,m ̸=ℓ

∆nm

[
tr
{
ρ(t)σ−

ℓ σ+
n σ−

m

}
− tr

[
ρ(t)σ+

n σ−
mσ−

ℓ

}]

=
N∑

n̸=m,m ̸=ℓ

∆nm

[
tr
{
ρ(t)σ−

ℓ σ+
n σ−

m

}
− tr

{
ρ(t)σ+

n σ−
ℓ σ−

m

}]

=
N∑

n̸=m,m ̸=ℓ

∆nm tr
{
ρ(t)

[
σ−

ℓ , σ+
n

]
σ−

m

}

=
N∑

n̸=m,m ̸=ℓ

∆nm tr
[
ρ(t) (−δℓnσz

n) σ−
m

}
= −

N∑
m ̸=ℓ

∆lm tr
{
ρ(t)σz

ℓ σ−
m

}
.

(B.12)

And, for T1, using (B.8) we have:

T1 =
N∑

n=1
tr
{
Hnρ(t)σ−

ℓ − ρ(t)Hnσ−
ℓ

}
=

N∑
n=1

tr
{
ρ(t)σ−

ℓ Hn − ρ(t)Hnσ−
ℓ

}

=
N∑

n=1
tr
{
ρ(t)

[
σ−

ℓ , Hn

]}
= tr

{
ρ(t)

[
σ−

ℓ , Hℓ

]}
.

(B.13)

We can simplify the trace as follows:

T1 = tr
{
ρ(t)

[
σ−

ℓ , Hl

]}
= 1

2 tr
{
ρ(t)

[
σ−

ℓ , −∆ℓℏσz
ℓ + Ωℓℏ

(
σ+

ℓ + σ−
ℓ

)]}
= −1

2∆ℓℏ tr
{
ρ(t)

[
σ−

ℓ , σz
ℓ

]}
+ 1

2Ωℓℏ tr
{
ρ(t)

[
σ−

ℓ ,
(
σ+

ℓ + σ−
ℓ

)]}
= −1

2∆ℓℏ tr
{
ρ(t)

[
σ−

ℓ , σz
ℓ

]}
+ 1

2Ωℓℏ tr
{
ρ(t)

[
σ−

ℓ , σ+
ℓ

]}
,

(B.14)
and using the commutation relations we obtain:

tr
{
ρ(t)

[
σ−

ℓ , Hℓ

]}
= −1

2∆ℓℏ tr
{
ρ(t)

[
σ−

ℓ , σz
ℓ

]}
+ 1

2Ωℓℏ tr
{
ρ(t)

[
σ−

ℓ , σ+
ℓ

]}
= −1

2∆ℓℏ tr
{
2ρ(t)σ−

ℓ

}
− 1

2Ωℓℏ tr {ρ(t)σz
ℓ }

= −∆ℓℏ tr
{
ρ(t)σ−

ℓ

}
− 1

2Ωℓℏ tr {ρ(t)σz
ℓ } .

(B.15)

Putting the Hamiltonian part together,

tr
{
H[ρ(t)]σ−

ℓ

}
= − i

ℏ

(
−∆ℓℏ tr

{
ρ(t)σ−

ℓ

}
− 1

2Ωℓℏ tr {ρ(t)σz
ℓ }
)

− i

−
N∑

m ̸=ℓ

∆(m tr
{
ρ(t)σz

ℓ σ−
m

}
= i

(
∆ℓ tr

{
ρ(t)σ−

ℓ

}
+ 1

2Ωℓ tr {ρ(t)σz
ℓ }
)

+ i
N∑

m ̸=ℓ

∆ℓm tr
{
ρ(t)σz

ℓ σ−
m

}
,

(B.16)
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and adding the first and second terms of equation B.9, we obtain:

βl(t) =
(

i∆ℓ − Γℓℓ

2

)
βl(t) + i

2Ωℓ tr {ρ(t)σz
ℓ } +

N∑
m ̸=ℓ

Gℓm tr
{
ρ(t)σz

ℓ σ−
m

}
, (B.17)

where
Gℓm = Γℓm/2 + i∆ℓm.

At last, if we consider that the number of atoms N in the system is much larger
than the number atomic excitation Nexc , that is, the number of photons shared by the
atoms, we can assume that each atom is almost in the ground state, which corresponds to
tr {ρ(t)σz

ℓ } ≈ −1 and tr {ρ(t)σz
ℓ σ−

m} ≈ −βm(t). This regime is valid when tr {ρ(t)σ−
m} << 1

for all m, such that tr {ρ(t)σz
ℓ } ≈ −1, ∀m. In conclusion, we find the dynamics of the

single excitation sector as

β̇ℓ(t) =
(

i∆ℓ − Γℓℓ

2

)
βℓ(t) − i

2Ωℓ −
N∑

m ̸=ℓ

Gℓmβm(t).

A similar approach can be used for the βjm coefficients of the double excitation
part. Yielding, after approximations,

β̇kℓ(t) =
[
i (∆k + ∆l) − 1

2 (Γkk + Γlt)
]

βkℓ(t)−
i

2 (Ωtβk(t) + Ωkβt(t))

−
N∑

m̸=ℓ

Gℓmβkm(t) −
N∑

m ̸=k

Gkmβml(t).
(B.18)
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