
 
 
O autor teve financiamento da CAPES durante a elaboração deste trabalho.  
Processo CAPES número 88882.426771/2019-01. 

UNIVERSIDADE FEDERAL DE SÃO CARLOS 
CENTRO DE CIENCIAS EXATAS E DE TECNOLOGIA 

PROGRAMA DE POS-GRADUACAO EM MATEMATICA 
 
 
 
 
 
 
 
 
 
 

Fernando Gasparotto da Silva 
 
 
 
 
 
 
 
 

Polynomial Weingarten Surfaces of Tubular Type 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

São Carlos - SP 

2022 



 
 
O autor teve financiamento da CAPES durante a elaboração deste trabalho.  
Processo CAPES número 88882.426771/2019-01. 

Fernando Gasparotto da Silva 
 

 

 

 

 

 

 

 

 

 

Polynomial Weingarten Surfaces of Tubular Type 

 

 

 

 

 

 

 

Tese apresentada ao Programa de Pós-
Graduação em Matemática da Universidade 
Federal de São Carlos como parte dos 
requisitos necessários para a obtenção do 
título de Doutor em Matemática  

Orientador: Prof. Dr. Alexandre Paiva 
Barreto 

 

 

 

 

 

 

São Carlos - SP 

2022 



UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia
Programa de Pós-Graduação em Matemática

Folha de Aprovação

Defesa de Tese de Doutorado do candidato Fernando Gasparotto da Silva, realizada em 04/04/2022.

Comissão Julgadora:

Prof. Dr. Alexandre Paiva Barreto (UFSCar)

Prof. Dr. Rafael López Camino (UGR)

Prof. Dr. Marcos Martins Alexandrino da Silva (USP)

Prof. Dr. Guillermo Antonio Lobos Villagra (UFSCar)

Prof. Dr. Jose Nazareno Vieira Gomes (UFSCar)

O Relatório de Defesa assinado pelos membros da Comissão Julgadora encontra-se arquivado junto ao Programa de
Pós-Graduação em Matemática.



Contents

Abstract v

Resumo vii

Acknowlegements ix

Introduction xi

1 Semi-Riemannian Geometry, an overview 1
1.1 Semi-Riemannian manifold . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Levi-Civita connection . . . . . . . . . . . . . . . . . . . . . 3
1.3 Semi-Riemannian immersions and Hypersurfaces . . . . . . . . . 5

2 Weingarten Tubular Surfaces 7
2.1 Tubular Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Euclidean Tubular Surfaces . . . . . . . . . . . . . . . . . 8
2.1.2 Lorentzian Tubular Surfaces . . . . . . . . . . . . . . . . . 9
2.1.3 Hyperbolic Tubular Surfaces . . . . . . . . . . . . . . . . 13

2.2 Polynomials results for Tubular Surfaces . . . . . . . . . . . . . . 16
2.3 Main result and applications for Tubular Surfaces . . . . . . . . . 39

2.3.1 (k1; k2)-Weingarten Tubular Surfaces . . . . . . . . . . . . 47

3 Weingarten Cyclic Surfaces 53
3.1 Cyclic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Euclidean Cyclic Surfaces . . . . . . . . . . . . . . . . . . 54
3.1.2 Lorentzian Cyclic Surfaces . . . . . . . . . . . . . . . . . . 56

3.2 Polynomial results for Cyclic Surfaces . . . . . . . . . . . . . . . 65
3.3 Main result and applications for Cyclic Surfaces . . . . . . . . . . 87

4 Weingarten Canal Surfaces 117
4.1 Canal Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1.1 Euclidean Canal Surfaces . . . . . . . . . . . . . . . . . . 118
4.1.2 Lorentzian Canal Surfaces . . . . . . . . . . . . . . . . . . 119

4.2 Main result and applications for Canal Surfaces . . . . . . . . . . 125

iii



iv CONTENTS

A Appendix for Tubular Surfaces 135
A.1 Summatories Identities . . . . . . . . . . . . . . . . . . . . . . . . 135
A.2 Binomial Identities . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B Appendix for Cyclic Surfaces 151



Abstract

This work seeks to contribute to the classi�cation of Weingarten surfaces. More
precisely, it fully classi�es three families of surfaces (named tubular, cyclic and
canal surfaces) in a tridimensional space form (Euclidean, Lorentzian and Hy-
perbolic spaces) that verify an arbitrary polynomial relation among its Gaussian
and mean curvatures. The results obtained provide geometric features of the
surface as well as algebraic conditions over the polynomial that de�nes a surface
as Weingarten. Furthermore, results that allow us to investigate Weingarten
surfaces only by the polynomial analysis are presented.

Keywords:
Weingarten surfaces, Weingarten tubular surfaces, Weingarten cyclic sur-

faces, Weingarten canal surfaces, polynomial Weingarten surface.
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Resumo

Esse trabalho busca contribuir com a classi�cação de superfícies de Weingarten.
Mais precisamente, esse trabalho classi�ca três famílias de superfícies (a saber,
as superfícies: tubular, cíclica e canal) em um espaço tridimensional com cur-
vatura seccional constante (os espaços Euclidiano, Lorentziano e Hiperbólico)
que veri�cam uma relação arbitrária polinomial entre suas curvaturas Gaus-
siana e média. Os resultados obtidos fornecem características geométricas da
superfície bem como condições algébricas sobre o polinômio que a de�ne como
superfície de Weingarten. Além disso, são apresentados resultados que nos per-
mitem investigar superfícies de Weingarten exclusivamente através da análise
polinomial.

Keywords:
Superfície deWeingarten, Superfície tubular deWeingarten, Superfície cíclica

de Weingarten, superfície canal de Weingarten, Superfície polinomial de Wein-
garten.
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Introduction

An important research subject in classical di¤erential geometry is to dis-
cover which global properties of a manifold one can obtain from hypotheses on
its curvatures. The relevance of this topic initially throwbacks to Theorema
Egregium of Gauss until it culminates in Riemann�s groundbreaking achieve-
ments, named after him, Riemannian geometry.
In this direction, a topic that has received much attention over the years is

that of Weingarten surfaces in a space form, that is, two dimensional manifold
whose Gaussian curvature K, and mean curvature H, satisfy a smooth non
trivial relation in a space with constant sectional curvature:

� (K;H) � 0.

One of the many reasons that motivates the investigation of Weingarten surfaces
is that it includes relevant and well studied families of surfaces like CMC (con-
stant mean curvature), CGC (constant Gaussian curvature) and CCC (constant
Casorati curvature ). It is also worth to remark that Weingarten surfaces have
several applications in computer aided geometric design.
Despite being an ancient topic that attracts so much interest, there is still

much to be discovered about Weingarten surfaces, once in general, the results in
the literature classify a particular familiy of surfaces in a classical environment
and verifying a speci�c relation. For instance, the class of non-developable ruled
surfaces verifying a non-trivial relation in the Euclidean space (denoted by E3)
was presented by Beltrami and Dini, while in [5] Khünel and Dillen discussed
Weingarten ruled surfaces in Lorentzian 3-space (denoted by L3). Returning to
E3, Khünel in [10] revisited this class of surfaces presenting another proof by the
already known result and expanded the classi�cation considering other types of
curvatures (more precisely, the second Gaussian curvature KII). Following the
investigation of classifying ruled surfaces under other types of curvatures, F.
Dillen and W. Sodsiri in [6], [7], described ruled surfaces that verify a relation
among the KII and HII (where HII denotes the second mean curvature).
The classi�cation of translational surfaces was presented by Dillen, Goemans

and Woestyne in [4] that studied these surfaces in Euclidean and Lorentzian
spaces. Other examples can be found in [3] where Do Carmo and M. Dajczer
studied CMC helicoidal surfaces and Rosenberg and Sá Earp in [21] research
embedded surfaces in E3 that verify a linear relation. A rare analysis of a

xi
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non linear relation is given by A. Barreto, F. Fontenele and L. Hartmann that
classi�es CCC rotational surfaces in [1]. Finally, more recently, in the work [24]
López and Pámpano provided a classi�cation of linear Weingarten rotational
surfaces among its principal curvatures.
Concerning tubular surfaces, in [22] Sorour provides a classi�cation for the

linear relation among its gaussian and mean curvatures, besides KII and HII .
In Lorentzian space, Karacan, Yoon and Tuncer presented in [13] a classi�cation
for linear relations among every curvatures.
The CMC surfaces foliated by circles was fully classi�ed by López in Euclid-

ean, Hyperbolic and Lorentzian spaces in [28], who also provided a complete
classi�cation of Linear Weingarten (i.e., surface that verify a relation given by
the linear polynomial ax + by � c) in [16]. Then, the later relation was also
studied, now in L3, by Kallan, López and Saglam in [29].
For canal surfaces in the Euclidean 3-space, Kim, Liu and Qian in [30] clas-

si�ed the linear relation among the Gaussian, mean and second Gaussian cur-
vatures. While Tunçer and Yoon studied in [31] the relation ax + by + cz + d
among the three mentioned curvatures. In the Lorentzian 3-space, the Linear
Weingarten canal surface was classi�ed by J. Qian, M. Su, X. Fu and S. D. Jung
in [20] and [19].

The main challenge of classifying a surface locally parametrized by  (s; t)
that verify a non trivial relation � (x; y) is that usually the approach is based
on considering the following composition

(s; t) �! (K (s; t) ;H (s; t)) �! � (K (s; t) ;H (s; t)) ,

then the Weingarten hypothesis implies that

� (K (s; t) ;H (s; t)) � 0

hence, the derivative of above equation gives us

det (J�) = det

�
Ks Hs

Kt Ht

�
= 0

which implies to classi�cate surfaces which derivative in parameter s and t of
Gaussian and mean curvatures veri�es

KsHt �KtHs = 0. (1)

In general, expressing each of the previous terms is already a di¢ cult task.
Therefore, to compute (1) has several obstacles as computational limitations and
polynomial analysis. This process concluded, it is obtained a list of all possible
surfaces (of �xed family of surfaces) that may be Weingarten, however, there
is no information about the relation itself. In other words, for each particular
relation �, this procedure basically must be repetead (now using the explicit
expression of �) in order to classify which of the listed surfaces veri�es the
speci�c given relation.
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To exemplify, in [22] it is presented that every tubular surface in E3 is Wein-
garten (for some unknown relation) and it is given a classi�cation of linear
Weingarten tubular surfaces. Nevertheless for arbitrary relations this classi�ca-
tion was open untill this work. It occurs especially because even for polynomial
relation of degree 2, besides the early mentioned problems, we now also have
that the techniques of di¤erential equations are not applicable anymore.
Moreover, we must highlight that the previous technique does not always

apply, once for several families of surfaces the equation (1) is trivially satisfyied.
In other words, the di¤erential equation presented in (1) vanishes identically,
therefore there is no equation to be analysed (hence, no geometric description
of the surface is obtained).
Cases where the equation (1) does not provide information include, but do

not resume to, surfaces whose curvatures are in one parameter only, as the
rotational surface.
The latter statement can be illustrated in the work [1] that classi�es CCC

rotational surfaces by solving the following equation:

�
�0 (t)

�2
+
cos2 � (t)

z2 (t)
= 1. (2)

We observe that the Theory of Di¤erential Equations does not ensure the ex-
istence and uniqueness of the solution for the previous equation, therefore, the
analysis becomes very speci�c for each case. That is a relevant cause for the dif-
�culties of more general classi�cations of Weingarten surfaces and what makes
this topic so captivating.

Motivated by the aforementioned results, our work seeks to contribute to the
investigation of Weingarten surfaces. More precisely, we research Weingarten
surfaces whose relation veri�ed by its curvatures is a polynomial relation. In
other words, we suggest the following de�nition:

De�nition 1 A Polynomial Weingarten surface is a (Weingarten) surface whose
Gaussian and mean curvatures verify

Q (K;H) � 0

where Q (x; y) is a polynomial in R [x; y].

The relevance of this particular class (the Polynomial Weingarten surfaces
class) of Weingarten surfaces, lies on the fact that the most famous investigated
relations can be written as polynomials. Therefore, Polynomial Weingarten
surfaces provides classi�cation of several relations as CGC, CMC and Linear
Weingarten surfaces (which are given by a linear polynomial), as well as CCC
surface (which is given by a non linear relation 4H2�2K�c � 0 or, equivalently,
in terms of principal curvatures k21 + k

2
2 � c � 0).

Furthermore, we list all surfaces that verify a given polynomial relation.
More precisely, let us stablish an important (original) concept of this work:
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Given a polynomial Q (x; y) 2 R [x; y], we de�ne S (Q) the set of all regu-
lar surfaces (in this work we will study this set for tubular, cyclic and canal
surfaces) in a space form (we will study in the tridimensional spaces: Euclid-
ean, Lorentzian and Hyperbolic) whose Gaussian and mean curvatures verify
Q (K;H) � 0. So, �xed a polynomial Q (x; y) we will present geometric fea-
tures and also conditions over the surface whose Gaussian and mean curvatures
vanishes Q.
Conversely, for a given surface S, we de�neQ (S) as the set of all polynomials

Q (x; y) 2 R [x; y] verifying Q (K;H) � 0. For tubular surfaces (in E3, L3 and
H3) we are able to present a complete characterization of the set Q (S). For
cyclic and canal surfaces we obtain an important discriminant that provides
aspects of the elements (polynomials) of Q (S).
We point out that a Polynomial Weingarten surface is equivalent to the

Q (S) not being empty.

In the Chapter 2, we investigate tubular surfaces which are the surfaces
obtained by the moviment of a circle of constant radius r > 0 along a central
curve. Then, our discussion starts with the study of the linear polynomial
relations. So let us recall the de�nition:

De�nition 2 A Polynomial Weingarten surface is called linear when a linear
polynomial among its Gaussian and mean curvatures are veri�ed, that is,

aK + bH � c � 0

where a, b, c 2 R with (a; b) 6= (0; 0).

Endowed with the above presented nomenclature, the previous de�nition can
be expressed as: A Polynomial Weingarten surface S is said linear when there
exists a polynomial of degree 1 in Q (S). Associated with the above discussion,
we display the following result.

Theorem 3 Every Polynomial Weingarten tubular surface is linear. More pre-
cisely, every tubular surface of radius r > 0 verify the relation xr2 � 2ry + 1.

Proceeding with our analysis, we started the research of relations that are
not linear. However, we must observe that, once a surface veri�es a linear
polynomial ax+ by� c, it is clearly that it will verify (ax+ by � c)nR (x; y) for
every n 2 N and R (x; y) 2 R [x; y] not identically null, as well. Hence, we do
not consider the latter relation as a true non linear relation. Roughly speaking,
we study non linear polynomial relations that cannot be written as before.
In this direction, we want to understand which type of tubular surfaces ver-

ify a �xed polynomial relation Q (K;H) � 0 (i.e., we would like to know more
information about S (Q)) and which type of polynomial vanishes at the curva-
tures of a �xed tubular surface S (i.e., we would like to know more information
about Q (S)). Before to present this answers, we suggest some new de�nitions
that will help us to improve our analysis.
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De�nition 4 The degree of a surface S is de�ned by

@S = min f@Q ; Q 2 Q (S)g .

Where the symbol @ associated with a polynomial represents the degree of
the polynomial. Hence, a Polynomial Weingarten surface S is linear if and only
if @S = 1.
The degree of a surface measures the minimal required degree of a polynomial

to be an element of Q (S). Besides, the degree of a surface S also provides a �rst
discriminant that indicates which factor of a polynomial we should investigate.
For example, let S be a surface such that @S = 2, and consider the polyno-

mial Q (x; y) = Q1 (x; y)Q2 (x; y) 2 Q (S) given by

Q1 (x; y) = ax+ by � c and Q2 (x; y) = x2 � y2 (3)

where a, b, c 2 R with (a; b; c) 6= (0; 0; 0).
Then by the degree of the surface, we already know that Q1 62 Q (S), since

@Q1 < 2 = @S. So, we wonder which information we can gather about Q2 (x; y).
In this direction, we focus our attention to the study of the polynomials.

Once we set the de�nitions that are sensible to conditions over the surface,
we must understand the polynomials. More precisely, our goal is to obtain a
quality from the polynomials that indicates which cases the polynomial can be
factorized in a smaller polynomial that vanishes the curvatures of the surface.
Returning to the last example, where we have a surface S with @S = 2 and

a polynomial Q (x; y) = Q1 (x; y)Q2 (x; y) given by (3) where @Q = 3. Here, we
may have that the polynomial Q2 (x; y) of degree 2 is the responsible to vanish
the polynomial relation Q (K;H) � 0 or we may have that the polynomial
Q (x; y) as a whole is needed to verify Q (K;H) � 0.
In view of the above discussion, we present our next de�nition:

De�nition 5 Consider a Polynomial Weingarten surface S, and let Q be a
polynomial in Q (S). We de�ne the degree of Q relative to S by:

@SQ = f@R ; R 2 Q (S) and Q belongs to the ideal in R [x; y] generated by Rg :

We would like to remark that @SQ � @Q. Moreover, if Q is a irreducible
polynomial the equality is achieved. We also observe that the condition of
irreducibility of the polynomial is not a necessary condition for the equality to
be reached.
Endowed with the above terminology, we notice that, in the previous ex-

ample, the degree of polynomial Q (x; y) relative to S may be @SQ = 2 (if
Q2 (K;H) � 0 everywhere) or @SQ = 3 (otherwise).
The interest behind the previous de�nition lies on the fact that we are looking

for "true" relations, that is, we seek to investigate the essential factor of the
polynomial needed in order to the surface to verify the polynomial relation. In
suma, the de�nition of degree of the polynomial relative to the surface captures
this quality. Then, we are able to investigate only the relevant part of the
polynomial.
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Finally, in the aim to study "true" non linear relations, we suggest the next
de�nition:

De�nition 6 We said that Q (K;H) � 0 is a true nonlinear relation when
@SQ > 1.

In the view of above discussion we have the following theorem:

Theorem 7 The cylinders are the only tubular surfaces that verify a true non-
linear relation Q (K;H) � 0.

All the previous results are consequence of our main theorem of the Chapter
2. In the aim to present it in a more suitable way, we will �rst consider the
following de�nition:

De�nition 8 The radius of a polynomial Q (x; y) 2 R [x; y] is de�ned as the set

Rad (Q) =
�
r 2 (0;+1) ; Q

�
0; 12r

�
= 0
	
.

We say that Q is tubular or non tubular according to the Rad (Q) being either
non empty or empty, respectively.

The following result is what motivates the above de�nition. Furthermore,
our result provides a necessary and su¢ cient condition to the existence of Poly-
nomial Weingarten tubular surface:

Proposition 9 There is a Polynomial Weingarten tubular surface in Euclid-
ean (respect. Lorentzian or Hyperbolic) 3-spaces (of radius r > 0) verifying
Q (K;H) = 0 if and only if Q is tubular (and r 2 Rad (Q)).

Besides presenting a characterization of Polynomial Weingarten tubular sur-
faces, the previous theorem provides a list of all possible radius. The theo-
rem that determines the set of all polynomials whose set of zeros contains the
Gaussian and mean curvatures of a given regular tubular surface is read as
follows:

Theorem 10 Consider a regular tubular surface S of radius r > 0 in Euclid-
ean (respect. Lorentzian or Hyperbolic) 3-space and let K, H be its Gaussian
and mean curvatures. Denote by Q (S) the set of all polynomials Q 2 R [x; y]
verifying Q (K;H) � 0.

i. If S is a cylinder, then Q (S) = fQ 2 R [x; y] ; r 2 Rad (Q)g;

ii. If S is not a cylinder, then Q (S) is the ideal in R [x; y] generated by
xr2 � 2ry + 1.

In particular, every tubular surface is Polynomial Weingarten.
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As we indicated before, we were also able to describe the set of all tubular
surfaces whose Gaussian and mean curvatures vanishes at a given polynomial.

Theorem 11 Given a tubular polynomial Q (x; y) 2 R [x; y], denote by S (Q)
the set of all regular tubular surfaces in Euclidean (respect. Lorentzian or Hyper-
bolic) 3-space whose Gaussian and mean curvatures K, H verify Q (K;H) � 0.
Then, the elements of S (Q) are:

i. The cylinders whose radius r belongs to Rad (Q);

ii. The tubular surfaces of radius r 2 Rad (Q) such that Q is in the ideal of
R [x; y] generated by xr2 � 2ry + 1.

Many particular results can be obtained as consequence of our main theorems
of the Chapter 2. We feature here the classi�cation of tubular surfaces verifying a
linear relation and the classi�cation of tubular surfaces with second fundamental
form of constant length (or constant Casorati curvature):

Corollary 12 Let a; b; c be real numbers such that (a; b; c) 6= (0; 0; 0), and de�ne
� = b2 + 4ac. Consider the polynomial

Q (x; y) = ax+ by � c.

Then, S (Q) 6= ; if and only if b = c = 0 or bc > 0. Moreover:

i. If b = c = 0, then S (Q) contains all right cylinders of any radius r;

ii. If bc > 0 and � = 0, then S (Q) contains all tubular surfaces of radius b
2c ;

iii. If bc > 0 and � 6= 0, then S (Q) contains all right cylinders of radius b
2c .

Corollary 13 The cylinders are the unique regular tubular Weingarten sur-
faces with second fundamental form of constant length (or constant Casorati
curvature).

The next natural step is to investigate cyclic surfaces that, roughly speaking,
may be seen as tubular surfaces such that the radius r is a smooth function that
assumes only positive values. Hence, in Chapter 3 we discuss cyclic surfaces
that verify a polynomial relation among its Gaussian and mean curvatures. As
a matter of fact, we furnish a classi�cation of Polynomial Weingarten cyclic
surfaces in E3and L3.
Before presenting the statement of our theorems, we would like to remark

that this analysis yields the necessity to suggest another de�nition that is related
to the concept of tubular polynomial. Therefore, we de�ne:

De�nition 14 The radius star of a polynomial Q (x; y) 2 R [x; y] is de�ned as
the set

Rad� (Q) =
�
r 2 Rad (Q) ; Q (x; y) 2



xr2 � 2ry + 1

�	
.
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We recall that the symbol hI (x; y)i denotes the ideal in R [x; y] generated
by I (x; y).

In the view of the above de�nition, our main theorem of the Chapter 3 can
be stated as:

Theorem 15 Consider the polynomial Q (x; y) 2 R [x; y], and let S (Q) be the
set of all regular cyclic surfaces in Euclidean (respect. Lorentzian) 3-space whose
Gaussian and mean curvatures K, H verify Q (K;H) � 0. Then, the elements
of S (Q) are (smooth) combinations of Rotational surfaces and Tubular surfaces
of radius r 2 Rad� (Q).

The importance of our theorem lies on the fact that we provide geometric
features of cyclic surfaces. More precisely, a cyclic surface whose Gaussian and
mean curvatures vanish a polynomial relation has (at least) one of the following
properties: Locally, either the radius is constant (hence locally is a tubular
surface) or either the curvature of the central curve is identically null (hence
locally is a rotational surface). This characterizations have profund impact
in the curvatures of the surface and, in addition, we already have a complete
classi�cation of tubular surfaces.
When we articulate the previous theorem with the concept of polynomials

Q (x; y) 2 R [x; y] such that Rad� (Q) = ;, we obtain a characterization that
relates the set S (Q) with conditions over the polynomials Q (x; y) belonging to
the set Q (S).

Corollary 16 Let Q (x; y) 2 R [x; y] be a polynomial. Rad� (Q) = ; if and only
if the unique elements of S (Q) are the globally rotational surfaces.

Many particular results can be obtained as consequence of our main theorems
of the Chapter 3. We feature here the next result that provides that, for cyclic
surfaces verifying a linear relation, there is no combination of tubular surfaces
with rotational surfaces in S (Q). In other words, a LW-cyclic surface is globally
a tubular surface of radius r in the radius star or a globally rotational surface:

Corollary 17 Let a, b, c be real numbers such that (a; b) 6= (0; 0), and de�ne
� = b2 + 4ac. Consider the polynomial

Q (x; y) = ax+ by � c.

Besides, the set S (Q) contains only globally tubular surfaces or globally rota-
tional surfaces. More precisely:

i. If bc > 0 and � = 0, then S (Q) contains all tubular surfaces of radius b
2c ;

ii. Otherwise, we have that S (Q) contains rotational surfaces.

For the class of irreducible polynomials, we also have that the set S (Q) only
accepts one of the (mentioned) subclasses of cyclic surfaces. More precisely, we
have the following corollary:
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Corollary 18 If Q (x; y) 2 R [x; y] is an irreducible polynomial. Then, the
elements of S (Q) are globally rotational surfaces or globally tubular surfaces.

Finally, in Chapter 4, we study surfaces that are obtained by the sweeping of
1-parameter family of spheres with variable radius along a central curve. This
class of surfaces is named canal surfaces.
We start this chapter with the investigation of canal surfaces that verify

a polynomial relation among its principal curvatures. In the end, our analysis
leads us to a classi�cation of canal surfaces whose Gaussian and mean curvatures
verify Q (K;H) � 0. Thus, we obtain as the main theorem of this chapter:

Theorem 19 Consider the polynomial Q (x; y) 2 R [x; y] and let S (Q) be the
set of all regular canal surfaces in Euclidean (respect. Lorentzian) 3-space whose
Gaussian and mean curvatures K, H verify Q (K;H) � 0. Then, the elements
of S (Q) are (smooth) combinations of Rotational surfaces and Tubular surfaces
of radius r 2 Rad� (Q).

As a consequence of our main theorem of Chapter 4, we have the following
result:

Corollary 20 Let Q (x; y) 2 R [x; y] be a polynomial. Rad� (Q) = ; if and only
if the unique elements of S (Q) are the globally rotational surfaces.
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Chapter 1

Semi-Riemannian
Geometry, an overview

1.1 Semi-Riemannian manifold

A semi-Riemannian manifold is a smooth manifold M endowed with a
metric tensor

g : X (M)� X (M) �! C1 (M;R)

which induces in tangent plane of each p 2M a scalar product

gp : TpM � TpM �! R

of constant index (i.e., the largest natural that is the dimension of a subspace
� of TpM on which gpj� is negative de�nite). In particular, when the index of
g is 0, we obtain a Riemannian manifold.
An isometry between two semi-Riemannian manifolds (M; g) and (N;h) is

a di¤eomorphism f :M �! N such that

g (V;W ) = h (df (V ) ; df (W ))

for every V , W 2 X (M).

If x1; :::; xn is a coordinate system on a neighborhood 
 � M the compo-
nentes of the metric tensor g on 
 are

gi;j = g (@i; @j) 2 C1 (
;R) 1 � i � j � n.

Thus, for vector �elds V =
P
V i@i and W =

P
W i@i in X (
), we have

g (V;W ) =
X

gi;jV
iW j .

1
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A relevant example for our purposes is the Lorentzian n-space (n � 2),
denoted by Ln, which is the semi-Riemannian manifold obtained by endowing
Rn with the scalar product of index 1, given by

g (V;W ) =
n�1X
i=1

V iW i � V nWn

where V =
P
V iei and W =

P
W iei are vector �elds in X (Ln).

Let (M; g) be a semi-Riemannian manifold of index m > 0. A trichotomy
of vectors and subspaces classes named as causality arises because of index m.
The causality of a vector v 2 TpM is said

i. Spacelike, when gp (v; v) > 0 or v = 0;

ii. Timelike, when gp (v; v) < 0;

iii. Lightlike, when gp (v; v) = 0 and v 6= 0.

A vector subspace � of TpM will be denominated

i. Spacelike when the induced metric on � is positive de�nite, i.e., when all
vectors in � are spacelike;

ii. Timelike when the induce metric on � is nondegenerated and has index m,
i.e., there is no lightlike vector on � and the dimension of subspace of
TpM spanned by the timelike vectors is m;

iii. Lightlike when the induced metric is degenerated, i.e., � contains a lightlike
vector.

An immersion ' : S ,! M of a di¤erential manifold S on (M; g) is said to
be nondegenerated if dx' (TxS) is not lightlike for every x 2 S. A nonde-
generated immersion is named spacelike (timelike respect.) if dx' (TxS) is a
spacelike (timelike respect.) subspace of T'(x)M , for every x 2 S. Recall that
S always can be endowed with natural semi-Riemannian metric '�g induced by
the immersion ' and the semi-Riemannian metric g. More precisely

('�g)x (u; v) = g'(x) (dx' (u) ; dx' (v))

for every x 2 S, u; v 2 TxS. Note that, for spacelike immersions, (S; '�g) is a
Riemannian manifold.
An important example of spacelike immersion on semi-Riemannian manifold

is the Hyperbolic n-space

Hn =
�
x 2 Ln+1 ; g (x; x) = �1 where xn+1 > 0
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endowed with the metric induced by the canonical inclusion. It is possible to
show that Hn is isometric to

Hn = f(x1; :::; xn) 2 Rn ; xn > 0g

endowed with the Riemannian metric

hx (V;W ) =

P
ViWi

(xn)
2

where x = (x1; :::; xn) 2 Hn and V;W 2 TxHn.

The previous discussion on immersions has impact on Local Curve Theory,
speci�cally in the Frenet Frame of the curve. More precisely, let 
 be a smooth
regular (k
0kL 6= 0) curve in L3 parametrized by arc lenght. The curvature
of 
 is de�ned by � = k
00kL. When 
 is biregular (k
0kL 6= 0 and � 6= 0),
the tangent vector, the principal normal vector and binormal vector are given,
respectively, by

T = 
0, N = 
00

k
00kL
and B = T �L N ,

in that case, the causality of 
 is gp (T; T ).
A regular curve in L3, parametrized by arc lenght, is called a Frenet curve

if it is non degenated and all of its principal normals, where it is de�ned, are
spacelike or timelike. For Frenet curves, the torsion is de�ned by � = gp (N

0; B)
and the Frenet relations of the curve are given by0@ T 0

N 0

B0

1A =

0@ 0 � 0
�"T "N� 0 �

0 �"N"B� 0

1A0@ T
N
B

1A (1.1)

where "T = gp (T; T ), "N = gp (N;N), and "B = gp (B;B). Notice that the
previous coe¢ cients are related by

"T = �"N"B , "N = �"T "B and "B = �"T "N . (1.2)

Since "T = "N = "B = 1 in the Euclidean case, observe that the usual Euclidean
Frenet relations can also be retrieved by (1.1).

1.2 The Levi-Civita connection

An a¢ ne connection on a di¤erential manifold M is an application

(V;W ) 2 X (M)� X (M) �! rVW 2 X (M)

such that

C1. rfV1+gV2 (W ) = frV1 (W ) + grV2 (W );
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C2. rV (W1 +W2) = rV (W1) +rV (W2);

C3. rV (fW ) = (V f)W + frV (W )

where V1; V2;W1;W2 2 X (M) and f , g 2 C1 (M;R).
Its a well-know result the existence of a unique connection (called the Levi-

Civita) on a semi-Riemannian manifold M verifying:

C4. [V;W ] = rVW �rWV ;

C5. U hV;W i = hrUV;W i+ hV;rUW i,

for all U; V;W 2 X (M).
The a¢ ne connection of Ln and Rn is

rVW = dW (V )

for every V;W 2 X (M). And the a¢ ne conection of
�
H3; hx

�
is given by

rVW (p) = dW (V )�g (V (p) ; e3)
x3

W (p)�g (W (p) ; e3)

x3
V (p)+

g (V (p) ;W (p))

x3
e3

where x = (x1; :::; x3) 2 H3, feig is the canonical basis of R3 and V;W 2 TxHn.
To obtain the connection of Hn it is necessary to revisit the following result:
If ' : S ,!M is an immersion of di¤erential manifold S on a semi-Riemannian

manifold (M; g) then the Levi-Civita connection of (S; '�g) is given by

d' (rVW ) =
�
rVW

�| � '
where V;W 2 X (S), V ;W 2 X (M) are extensions of V and W (i.e., V � ' =
d' (V ) and W � ' = d' (W )), r is the Levi-Civita connection of M and (:)| is
the projection on d'

�
T'(:)S

�
.

Curvature

Let (M; g) be a semi-Riemannian manifold with Levi-Civita connection. The
tensor

R : X (M)� X (M)� X (M) �! X (M)

given by
R (U; V )W = r[U;V ]W �rUrVW +rVrUW

is called Riemannian curvature tensor of M .
For every nondegenerated plane � of TpM , we de�ne the sectional curva-

ture of � by

KM (�) =
g (R (v; w) v; w)

g (v; v) g (w;w)� g (v; w)2
, (1.3)
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where v; w is a basis of �. It is possible to prove that KM (�) is well de�ned
and it does not depend on the choice of the basis.
The sectional curvature of Euclidean n-space and Lorentzian n-space are null

for every � and the sectional curvature of Hyperbolic n-space is �1 for every
�.

1.3 Semi-Riemannian immersions and Hypersur-
faces

Let ' : S ,!M be a nondegenerated immersion of a di¤erential manifold S on
a semi-Riemannian manifold (M; g). The second fundamental form of ' is
the symmetric tensor given by

� : (V;W ) 2 X (M)� X (M) �!
�
rVW

�? 2 X (M)
where (:)? is the projection on the orthogonal complement of d'

�
T'(:)S

�
in

T'(:)M .
A particular relevant case of semi-Riemannian immersion is

dimM = dimS + 1.

In this case, S is said to be a semi-Riemannian hypersurface of M .

Consider a local unit normal vector �eld N on a semi-Riemannian hypersur-
face S of M . Using the canonical identi�cation between T(:)S and d'

�
T'(:)S

�
we can de�ne the self-adjoint operator (named shape operator)

A : V 2 X (S) �! �rVN 2 X (S) . (Weingarten Formula)

It is possible to show that

hA (V ) ;W i = h� (V;W ) ; Ni

for all V;W 2 X (S).
When the hypersurface is spacelike, the shape operator is diagonalizable

(this conclusion is guaranteed by Real Spectral Theorem). In this case, its
eingenvalues are called principal curvatures.

An important result relating the shape operator and sectional curvatures is
the Gauss equation:

KS (v; w) = KM (d' (v) ; d' (w))+"
g(d'(Av);d'(v))g(d'(Aw);d'(w))�g(d'(Av);d'(w))2
g(d'(v);d'(v))g(d'(w);d'(w))�g(d'(v);d'(w))2

(1.4)
where v; w 2 TxS and g (d'N ; d'N ) = ".

Now let us concentrate our atention on the particular case where dimS = 2
and dimM = 3 (this type of hypersurface is simply called surface). For a
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coordinate system u, v in S the components of the metric tensor are traditionally
denoted by

E = g (d'@u; d'@u) F = g (d'@u; d'@v) G = g (d'@v; d'@v)

where for indexing purposes u = u1 and v = u2.

The coe¢ cients of the second fundamental form � with respect to basis
B = f@u; @vg is expressed as

e = '�g (A@u; @u) = �g
�
N ; (r@u@u)

?
�
;

f = '�g (A@u; @v) = �g
�
N ; (r@u@v)

?
�
;

g = '�g (A@v; @v) = �g
�
N ; (r@v@v)

?
�
,

therefore the Gaussian and mean curvatures of a non degenerated surface locally
parametrized by an immersion ' are respectively given by

K = "
eg � f2
EG� F 2 and H = "

eG� 2fF + gE
2EG� F 2 , (1.5)

where " = g (N ;N ).
The previous formula can be rewritten as follows: Denote ! = EG � F 2,

where ! > 0 if the surface is spacelike and ! < 0 if the surface is timelike. Thus,
consider the normal vector

N =
'u � 'v

k'u � 'vkL
,

and we remark that k'u � 'vkL = 2
p
jEG� F 2j = �"!. Therefore, the formula

(1.5) is expressed by

K = �eg � f
2

!2
and H = �eG� 2fF + gE

2 (�"!)
3
2

. (1.6)

As mentioned before, the diagonalization of the Weingarten map is guaran-
teed only for spacelike surfaces. On the other hand, Gaussian and mean curva-
tures can be computed for every causality. Henceforth, we will call principal
curvatures every continuous solution of the system

k1k2 = "K and k1 + k2 = 2"H. (1.7)

Note that, in the Riemannian case and for spacelike surfaces, the above de�nition
of principal curvatures agrees with the usual ones.



Chapter 2

Weingarten Tubular
Surfaces

In this chapter we will classify Polynomial Weingarten tubular surfaces. In the
aim to accomplish that, in the Section 2.1 we will introduce the notion of tubular
surfaces and discuss the nuances whithin such geometrical objects immersed in
di¤erent environments (E3, L3 and H3).
Once the de�nition and characterization of tubular surface is well stablished,

we will change our focus and present the Section 2.2 which is an investigation
of polynomial results. More precisely, for a given polynomial P (x; y) 2 R [x; y],
we will study conditions of its coe¢ cients in order to determine when P (x; y)
belongs to the ideal in R [x; y] generated by xr2 � 2yr + 1, for some r > 0.
Proceeding through this chapter, in the Section 2.3 we fully classi�cate Poly-

nomial Weingarten tubular surface and present several applications. Moreover,
in Theorem 54 we describe every tubular surface whose Gaussian and mean cur-
vatures verify a given polynomial. Conversely, in Theorem 61, �xed a tubular
surface, we provide families of polynomials that verify P (K;H) � 0.

2.1 Tubular Surfaces

This section was elaborated to introduce tubular surfaces and discuss the nu-
ances whithin such geometrical objects immersed in di¤erent environments.
In the section�s �rst part, we brie�y discuss the well-known class of tubular

surface in Euclidean space, it is also exhibited the condition of regularity and
it is presented the Gaussian and mean curvatures. In contrast, the second and
third part, we investigate more profoundly the particularities of each space.
In the second part that correspondes to the Lorentzian 3-space, we analyze

the notion of "circle" and give a more wide conception of circle that is allowed
by the non de�nite positive scalar product. Indeed, the index 1 in metric of the
L3 generates several types of tubular surfaces, possibly with no circular orthog-
onal sections that are not isometric between them (since isometries preserves

7
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causality).
Besides that, the Lorentzian Weingarten map is not always diagonalizable,

therefore the existence of principal curvatures is no longer guaranteed. We
overcome this di¢ culty by providing natural functions with similar properties
(see (1.5) and (1.7) for more details).
Finally, we present the regularity condition for tubular surfaces in the Lorentzian

3-space, also the Gaussian and mean curvatures are computed and the principal
curvatures are presented.
The �nal part of the chapter concerns about the Hyperbolic 3-space. We

study the conditions to a tubular surface belong to Hn and how it in�uences on
its parametrization. Therefore, we present the regularity condition and present
the Gaussian and mean curvature. In this space form, we also have the Sectional
curvature.

2.1.1 Euclidean Tubular Surfaces

In the Euclidean 3-space, a tubular surface of radius r > 0 around a
regular curve 
 : (a; b) ! R3, called central curve, is the set obtained by the
union of all circles Sr (
 (s)) of radius r and center 
 (s) contained in the normal
planes Ts
? of 
.
In intervals where 
 is birregular, a tubular surface can be parametrized by

the application:

 : (s; t) 2 (a; b)� R 7�! 
 (s) + r cos (t)N (s) + r sin (t)B (s) 2 R3. (2.1)

In particular, if the central curve is a straight line, the Frenet Frame can be
regarded as a trivial orthogonal frame.

Proposition 21 Given a tubular surface in Euclidean 3-space of radius r > 0,
consider an interval I where the central curve 
 is birregular. The parametriza-
tion (2.1) is an immersion if and only if

�E (s; t) = 1� r�(s) cos t 6= 0, for every (s; t) 2 (a; b)� R.

Proof. Using (1.1) and (2.1) we obtain

 t = �r sin (t)N (s) + r cos (t)B (s) and  s = �ET + � t.

Therefore, the vectors  s and  t are linearly independent if and only if �E 6= 0,
for every (s; t) 2 I � R.
The above regularity condition provides that �E > 0 everywhere, since

�E
�
:; �2
�
= 1.

De�nition 22 A tubular surface is called regular if 
 is parametrized by arc
length and

�E (s; t) > 0, for every (s; t) 2 (a; b)� R:
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Proposition 23 Consider a regular tubular surface of radius r > 0 in Euclid-
ean 3-space and let 
 : (a; b)! R3 be its central curve. The principal curvatures
of the tubular surface are

k1 = �
� cos t

�E
and k2 =

1

r
.

Hence the Gaussian and Mean curvatures are respectively:

K = �� cos t
r�E

and H = �2r� cos t� 1
2r�E

Proof. In intervals where the central curve 
 is birregular, we can use the
parametrization  in (2.1) to obtain the coe¢ cients of the �rst and second
fundamental forms which are

E = �2E + (r�)
2

F = �r2 G = r2

e = r�2 � ��E cos t f = r� g = r.

Thus, on the image of  , the Gaussian and mean curvature of the tubular surface
are respectively indicate as

K = �� cos t
r�E

and H = �2r� cos t� 1
2r�E

and the principal curvatures are

k1 = �
� cos t

�E
and k2 =

1

r
.

Note that above curvatures are also valid in intervals where the curvature
� of 
 is null (i.e. where the surface is a right cylinder). By continuity, it is
concluded that expressions are true on the entire tubular surface.
Finally, observe that k1 � k2 once �E > 0 and

r� cos t > r� cos t� 1 = ��E

which implies
r� cos t

��E
< 1

and the statement is concluded.

2.1.2 Lorentzian Tubular Surfaces

Remember from Section 1.1 that Lorentzian 3-space, denoted by L3, is the semi-
Riemannian manifold obtained endowing R3 with the bilinear form of index 1

gL ((x1; x2; x3) ; (y1; y2; y3)) = x1y1 + x2y2 � x3y3,
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where (x1; x2; x3) ; (y1; y2; y3) 2 R3.

As a means to parametrize tubular surface in L3, it is necessary discuss the
notion of a tubular surface as the set obtained by moving a circle along a central
curve (see 2.1.1).
First, a circle (e.g. in Euclidean 3-space) is the set of all points contained

in a plane whose distance (called radius) from a �xed point (called center) is
constant. This de�nition is usually stablished with a norm k:k which is positive
de�nite (recall the Lorentzian norm is kxkL =

p
jgL (x; x)j, hence always pos-

itive). However this approach not fully utilizes the possibilities provided by a
scalar product with index (as the notion of negative distance). It motivates a
generalized idea of circle, named:

i. A Lorentzian circle is the set

Sr (c) =
�
x 2 L3 ; gL (x� c; x� c) = r2

	
;

ii. A Lorentzian hyperboles is the set

Sr (c) =
�
x 2 L3 ; gL (x� c; x� c) = �r2

	
.

Remark 24 We point out some authors may de�ne the same previous sets but
add the pre�x �pseudo�in the name.

In Lorentzian 3-space the Lorentzian circle and Lorentzian hyperboles plays
the same role as Euclidean spheres in E3, once the Gauss map has these as
codomain.
Finally note that Lorentzian hyperboles are always Euclidean hyperboles,

but Lorentzian circles can be Euclidean circles or Euclidean hyperboles. With
the new realization of circles, we are able to de�ne a tubular surface in Lorentzian
3-space.

In the Lorentzian 3-space, a tubular surface of radius r > 0 around
a regular curve 
 : (a; b) ! R3, called central curve, is the set obtained by
the union of all Lorentzian circles or Lorentzian hyperboles Sr (
 (s)) of radius
r and center 
 (s) contained in the normal planes Ts
? of 
.
It is important to emphasize that condition of 
 be regular is needed to

existence of well-de�ned normal subspace Ts
?.

In intervals where the central curve 
 � L3 is biregular, the tubular surface
admits a local parameterization that depends on the normal section, also de-
pends on the causality of the central curve and causality of the principal normal,
once each of these qualities impacts on Frenet formula. More precisely:
Let (a; b) be an interval where 
 is birregular and consider the abstract

parametrization of a tubular surface as the envelope of circles (i.e. set obtained
by moving a circle along a central curve)

 (s; t) = 
 (s) + f (s; t)T (s) + g (s; t)N (s) + h (s; t)B (s)
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where fT (s) ; N (s) ; B (s)g is the Frenet frame of 
 and f (s; t), g (s; t) and
h (s; t) are smooth functions de�ned in (a; b). Our objective is to explicitly
express those functions.
In order to do that, �rst notice that for each s0 2 (a; b) we want to describe

a circle of radius "r2 and center 
 (s0) contained in the normal plane Ts0

?,

that is

"T f
2 + "Ng

2 � "T "Nh2 = gL ( (s0;t)� 
 (s0) ;  (s0;t)� 
 (s0)) = "r2 (2.2)

where " 2 f�1; 1g �xed constant. The derivative in parameter s of these previ-
ous paramatrization and equation gives us

"T ffs + "Nggs � "T "Nhhs = 0 (2.3)

and

 s = (1 + fs � "N"T g�)T + (gs + f�+ "Th�)N + (hs + g�)B. (2.4)

Then, observe that  � 
 is a normal vector to the tubular surface, thus we
have

0 = gL ( � 
;  s) = "T f . (2.5)

Applying the condition (2.5) in Equation (2.3) it is obtained the following system

"Ng
2 � "T "Nh2 = "r2,

whose solutions are given by chosening the causality of central curve ("T ), of
principal normal ("N ) and the normal section (").
The table below contain all possibilities:

Curva Normal Section Parametrization
spacelike spacelike Lorentzian circles 
 � r cosh(t)N + r sinh(t)B
spacelike timelike Lorentzian circles 
 + r sinh(t)N � r cosh(t)B
timelike spacelike Lorentzian circles 
 + r cos(t)N + r sin(t)B
spacelike spacelike Lorentzian hyperboles 
 + r sinh(t)N � cosh(t)B
spacelike timelike Lorentzian hyperboles 
 � cosh(t)N + r sinh(t)B
timelike spacelike Lorentzian hyperboles Does not exist

Table 2.1: Table of Parametrizations

In the aim to encompass and deal with all possible local parametrizations
simultaneosly, we will use a pair of functions (� (t) ; � (t)) to represent one of
the followings pairs

(� cos t; sin t) , (� cosh t; sinh t) , (sinh t; � cosh t) . (2.6)

where � = �1. Then, in intervals where the central curve 
 � L3 is biregular,
the parametrizations presented in Table 2.1 can always be rewritten as

 (s; t) = 
 (s) + r� (t)N (s) + r� (t)B (s) . (2.7)
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For calculations purposes, it is observed that derivatives of � (t), � (t) behaves
as follow

�0 (t) = �"T � (t) and �0 (t) = �� (t) .

De�nition 25 A Lorentzian tubular surface is said regular when 
 is birreg-
ular and

�L (s; t) = 1 + "Br� (s)� (t) 6= 0, for every (s; t) 2 (a; b) . (2.8)

Despite the above condition be very similar to the Euclidean case, it is not
possible determine the signal of an arbitrary �L, since � (t) can be choosen as
any function in (2.6).

Proposition 26 Given a tubular surface in Lorentzian 3-space of radius r > 0,
consider an interval I where the central curve 
 is birregular. The parametriza-
tion (2.7) is an immersion if and only if �L 6= 0, for every (s; t) 2 I � R.

Proof. Using (1.1), (2.7) and (1.2) we obtain

 t = r�"TN + r�B and  s = �LT + �� t.

Therefore, the vectors  s and  t are linearly independent if and only if �L 6= 0,
for every (s; t) 2 I � R.
As mentioned before, self-adjoint endomorphisms are only diagonalizable

with the additional condition that the scalar product is positive de�nite. There-
fore, in the Lorentzian 3-space the Lorentzian Weingarten map is not always
diagonalizable, hence the existence of (usual) principal curvatures is no longer
guaranteed.
We overcome this di¢ culty by providing natural functions with similar prop-

erties (see (1.7)), which for convenience of the reader, it will be re-stated:
The continuous functions k1 and k2 are called principal curvatures if they

verify the system

k1k2 = "K and k1 + k2 = 2"H.

where K and H are, respectively, Gaussian and mean curvatures, N is the
normal vector to the surface and " = gL (N ;N ).
For us, the extended notion of principal curvatures are important because

allows us to demonstrate our main theorem, as we will see in Chapter 2.3.
So the next proposition provides the Gaussian and mean curvatures for a

regular tubular surface in Lorentzian 3-space (which always can be computed)
and exhibits their principal curvatures as well.

Proposition 27 Consider a regular tubular surface of radius r > 0 in Lorentzian
3-space an let 
 : (a; b) 2 L3 be its central curve. The Gaussian and Mean cur-
vature of S are respectively:

K = "
��"B
r�L

and H = "
�L + r��"B

r�L
. (2.9)
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In particular, the principal curvatures of the tubular surface are given by

k1 =
��"B
�L

and k2 =
1

r
. (2.10)

Proof. In intervals where the central curve 
 is birregular, consider the generic
parametrization in (2.7). In this case, the normal vector of the tubular surface
is

N = ��N � �B
and the coe¢ cients of �rst and the second fundamental forms are

E = "T �
2
L � ""T (r�)

2 , F = �""T ��r2, G = �""T r2

e = "T "B���L � ""T r�2; f = �""T �r� ; g = �""T r,
where " = gL (N ;N ).
Thus, on the image of  , the Gaussian and mean curvature of the tubular

surface are respectively indicate as

K = "
��"B
r�L

and H = "
�L + r��"B

r�L

and the principal curvatures are

k1 =
��"B
�L

and k2 =
1

r
.

Note that above curvatures are also valid in intervals where the curvature
� of 
 is null (i.e. where the surface is a right cylinder). By continuity, it is
concluded that expressions are true on the entire tubular surface.

Remark 28 When � (t) = � cos t or � (t) = sinhh (t) we must have �L > 0. As
in Euclidean case, this implies that k1 < k2. However, when � (t) = � cosh t,
the sign of �L (and the order of the principal curvtures) depends on the sign
of �. Note that, when �L < 0, the central curve cannot have points where the
curvature is zero.
To avoid ambiguity, from now on the principal curvatures k1 and k2 will

always correspond to the expressions in (2.10).

2.1.3 Hyperbolic Tubular Surfaces

The hyperbolic space is extensively studied once it was the �rst sample of non-
Euclidean geometry (i.e. a space obtained by revoking the famous �fth axiom
of Euclides). Moreover, this space has several model that are isometric between
them, for instance: Poincaré half plane model, Poincaré ball model, Beltrami�
Klein model.
For the purpose of explore tubular surfaces, a suitable model is the spacelike

immersion on semi-Riemannian manifold L4:
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H3 =
�
x 2 L4 ; gL (x; x) = �1 where x4 > 0

	
endowed with the metric induced by the canonical inclusion.

In the Hyperbolic 3-space, a tubular surface of radius r > 0 around
a regular curve 
 : (a; b) ! H3, called central curve, is the set obtained by
the union of all circles Sr (
 (s)) of radius r and center 
 (s) contained in the
normal planes Ts
? of 
.
It is important to emphasize that condition of 
 be regular is needed to

existence of well-de�ned normal subspace Ts
?.

Let (a; b) be an interval where 
 is birregular and consider the abstract
parametrization of a tubular surface as the envelope of circles (i.e. set obtained
by moving a circle along a central curve)

 (s; t) = 
 + f (s; t)T (s) + g (s; t)N (s) + h (s; t)B (s) (2.11)

where fT (s) ; N (s) ; B (s)g is the Frenet frame of 
 and f (s; t), g (s; t) and
h (s; t) are smooth functions de�ned in (a; b). Our objective is to explicitly
express those functions.
In order to do that, �rst notice that for each s0 2 (a; b) we want to describe

a circle of radius r2 and center 
 (s0) contained in the normal plane Ts0

?, that

is,
f2 + g2 + h2 = gL ( (s0;t)� 
 (s0) ;  (s0;t)� 
 (s0)) = r2

The derivative in parameter s of these previous paramatrization and equation
gives us

ffs + ggs + hhs = 0 (2.12)

and
 s = (fs � g�+ 1)T + (gs + f�� h�)N + (hs + g�)B. (2.13)

Then, observe that  � 
 is a normal vector to the tubular surface, thus we
have

0 = gL ( � 
;  s) = f (s; t) . (2.14)

Applying the condition (2.14) in Equation (2.12) it is obtained the following
system

g2 + h2 = r2

whose solutions are given by

g (s; t) = r cos t and h (s; t) = r sin t.

Therefore the parametrization is

 (s; t) = 
 + r cos tN (s) + r sin tB (s) , (2.15)
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however, notice that  (s; t) must belong to H3 for every (s; t) 2 I � R, which
yields

�1 = gL ( (s; t) ;  (s; t)) = �1 + r2

since r > 0, we do not achieved the desired (i.e.  62 H3). To correct this
problem, we add (a priori) functions �1 and �2 in (2.11) (a posteriori, it will
be proved they are constant) such that

�1 = gL ( (s; t) ;  (s; t)) = ��1 + �2r2.

Thus, the solutions are

�1 = � cosh r and �2 =
1

r
sinh r. (2.16)

In the view of above discussion, the parametrization of a tubular surface of
radius r in Hyperbolic 3-space is given by

 (s; t) = (cosh r) 
 + sinh r (cos tN + sin tB) . (2.17)

Proposition 29 Given a tubular surface in Hyperbolic 3-space of radius r > 0,
consider an interval I where the central curve 
 is birregular. The parametriza-
tion (2.17) is an immersion if and only if

�H (s; t) = cosh r � � cos t sinh r 6= 0, for every (s; t) 2 (a; b)� R.

Proof. Using (1.1) and (2.17) we obtain

 t = � sinh r sin tN (s) + sinh r cos tB (s) and  s = �HT + � t.

Therefore, the vectors  s and  t are linearly independent if and only if �H 6= 0,
for every (s; t) 2 I � R.
The above regularity condition provides that �H > 0 everywhere, since

cosh r � � cos t sinh r = 0() 1� � cos t tanh r = 0

hence �H
�
:; �2
�
= 1.

De�nition 30 A tubular surface is called regular if 
 is parametrized by arc
length and

�H (s; t) > 0, for every (s; t) 2 (a; b)� R:

Proposition 31 Consider a regular tubular surface of radius r > 0 in Euclid-
ean 3-space an let 
 : (a; b) 2 L3 be its central curve. The principal curvatures
of the tubular surface are

k1 = �
� cos t

�H
and k2 =

1

sinh r
.

Hence the Gaussian and Mean curvatures are respectively:

K = � � cos t

�H sinh r
and H =

cosh r � 2� cos t sinh r
2�H sinh r
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Proof. In intervals where the central curve 
 is birregular, we can use the
parametrization  in (2.1) to obtain the coe¢ cients of the �rst and second
fundamental forms which are

E = �2H + (� sinh r)
2

F = � sinh2 r G = sinh2 r

e = �2 sinh r � ��H cos t f = � sinh r g = sinh r.

Thus, on the image of  , the Gaussian and mean curvature of the tubular surface
are respectively indicate as

K = � � cos t

�H sinh r
and H =

cosh r � 2� cos t sinh r
2�H sinh r

and the principal curvatures are

k1 = �
� cos t

�H
and k2 =

1

sinh r
.

Corollary 32 The Sectional curvature of a tubular surface in Hyperbolic 3-
space is

KS = 1�
� cos t

�H sinh r
.

Note that above curvatures are also valid in intervals where the curvature
� of 
 is null (i.e. where the surface is a right cylinder). By continuity, it is
concluded that expressions are true on the entire tubular surface.
Finally, observe that k1 < k2. Indeed, since r > 0 it implies that cosh r > 0

and sinh r > 0, and by the remark in the beginning of section, we have

0 < �H = cosh r � � cos t sinh r

therefore, notice that � cos t�H
is the product of positive functions, so

�� cos t
�H

= k1 < 0

while
0 < k2 =

1

sinh r

and the statement is concluded.

2.2 Polynomials results for Tubular Surfaces

This section is devoted for analysis and characterization of polynomials of the
form Q (X;Y ) 2 R [x] which is obtained by the composition of a polynomial
Q (x; y) 2 R [x; y] with the polynomials X, Y 2 R [x] such that X (x) = x

r and
Y (x) = xr+1

2r .
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The interest to study this speci�c type of polynomial arises narutally in the
investigation of the geometric problem that is the classi�cation of Weingarten
surfaces whose polynomial relation its among the Gaussian curvature and mean
curvature. More precisely, in the aim to fully describe the set of all polynomials
Q such that Q (K;H) = 0 it leads us to an algebraic problem that is �nding
(a reasonably simple to check) condition to determine when Q (x; y) can be
factorized as

�
xr2 � 2yr + 1

�
R (x; y), where R (x; y) 2 R [x; y]. As a matter of

fact, we obtain the following theorem.

Theorem 33 Consider a polynomial Q (x; y) 2 R [x; y] and let r be nonzero
constant. Then Q belongs to the ideal generated by xr2 � 2yr + 1 if and only if
Q
�
x
r ;

xr+1
2r

�
2 R [x] is identically null.

In addition to the initial incentive of this result, the above theorem is an
alternative to the usual method to decide under which conditions one polynomial
can be rewritten as another two polynomials, where (at least) one of them is
linear.
A numerical example will show one �rst manner to apply the theorem.

Example 34 Consider the polynomial

Q (x; y) = 4x4 + 8x2y2 � 12xy3

+9x3 + 9x2y � 9xy2 � 4y3

+22x2 � 8xy � 7y2

�91x+ 98y
�24

and notice that Q
�
x
2 ;

2x+1
4

�
2 R [x] is identically null, it implies that

Q (x; y) = (4x� 4y + 1)R (x; y)
where R (x; y) 2 R [x; y]. Once the Theorem 44 already gives us one factor, the
another one is "easier" to obtain through the equality of polynomials. In fact,
we have that

R (x; y) = x3 + x2y + 3xy2 + 2x2 + 4xy + y2 + 5x+ 2y � 24.
Remark 35 The �rst presented propostion of this Chapter will furnish us a
proper way to express a polynomial of the form Q (X;Y ) in order to obtain
more information about R (x; y).

Another functionality of our result is that the Theorem 44 allows us to answer
in which cases a tubular surface of radius r > 0 veri�es a relation Q (K;H) � 0
(see Chapter 2.3 for more details), named:

Theorem 36 Consider a polynomial Q (x; y) 2 R [x; y]. If there is a non
cylindrical tubular surface S whose its Gaussian and mean curvatures verify
Q (K;H) � 0, then Q has a unique factorization

Q (x; y) =
�
xr2 � 2yr + 1

�m
R (x; y) ,

where r is the radius of S, m 2 N and R (x; y) 2 R [x; y] such that R (K;H) 6� 0.
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In other words, if we have a tubular surface verifying a polynomial relation
Q of degree n � 1, then Q is a multiple of a linear polynomial and the zero of
Q (K;H) = 0 comes from the linear relation. So, we obtain the theorem stated
in Introduction:

Corollary 37 Cylinder are the unique non linear Polynomial Weingarten sur-
faces.

Therefore the importance of this chapter lies on the connection established
by Theorem 44 between conditions on polynomials coe¢ cients and ideals in the
polynomial ring that Q belongs to. Furthermore, this result was the crucial
problem to be solved as a means to fully describe the set of all polynomials
whose zeros are the Gaussian and mean curvatures of a tubular surface.

The �rst di¢ culty we face when we are trying to classify polynomials is �nd-
ing a favorable expression that allows us to examine them. In this direction,
a polynomial Q 2 R [x; y] evaluated in X (x) = x

r and Y (x) =
xr+1
2r furnishes

a polynomial Q
�
x
r ;

xr+1
2r

�
2 R [x] whose expression is

nP
i=0

n�iP
j=0

ai;j
�
x
r

�i �xr+1
2r

�j
.

Then, the following Propostion provides a reorganization of coe¢ cients that
permits us to write in a more suitable (and canonical) way Q

�
x
r ;

xr+1
2r

�
=

nP
k=0

�k (r)x
k where each �k (r) are the constant coe¢ cents.

Proposition 38 Consider a polynomial Q (x; y) =
nP
i=0

n�iP
j=0

ai;jx
iyj 2 R [x; y]

and a nonzero number r. Then

Q

�
x

r
;
xr + 1

2r

�
=

nX
i=0

n�iX
j=0

ai;j
�
x
r

�i �xr+1
2r

�j
=

nX
k=0

�k (r)x
k,

where

�k (r) =
kX
i=0

0@n�kX
j=0

�
k�i+j
j

� ai;k�i+j
2k�i+jrj+i

1A . (2.18)

Proof. Going along the lines of the proof, we will demonstrate

nX
i=0

n�iX
j=0

ai;j
�
x
r

�i �xr+1
2r

�j � nX
k=0

�k (r)x
k = 0, (2.19)

by induction on n. Notice that the above relation is veri�ed for n = 1. Indeed,
a straightforward calculation provides

1X
i=0

1�iX
j=0

ai;j
�
x
r

�i �xr+1
2r

�j
= a0;0 +

1
2ra0;1 +

1
2a0;1x+

1
ra1;0x =

1X
k=0

�k (r)x
k
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which concludes this case. So assume that the relation (2.19) is true for some
n 2 N, i.e.,

nX
i=0

n�iX
j=0

ai;j

�x
r

�i �
xr+1
2r

�j � nX
k=0

�k (r)x
k = 0,

and consider the case n+ 1:

n+1X
i=0

n+1�iX
j=0

ai;j
�
x
r

�i �xr+1
2r

�j � n+1X
k=0

�k (r)x
k.

Replacing the de�nition of �k (r) as in (2.18) and by Proposition 127 & Propo-
sition 128 the previous equation can be rewritten as

n+1X
i=0

ai;n+1�i
�
x
r

�i �xr+1
2r

�n+1�i � n+1X
k=0

kX
i=0

��
n+1�i
n+1�k

� ai;n+1�i
2n+1�irn+1�k+i

�
xk

+
nX
i=0

n�iX
j=0

aii;j
�
x
r

�i �xr+1
2r

�j � nX
k=0

kX
i=0

0@n�kX
j=0

�
k�i+j
j

� ai;k�i+j
2k�i+jrj+i

1Axk

so the induction step implies

n+1X
i=0

ai;n+1�i

�x
r

�i �
xr+1
2r

�n+1�i � n+1X
k=0

kX
i=0

�
n+1�i
n+1�k

� ai;n+1�i
2n+1�irn+1�k+i

xk(2.20)

=

n+1X
i=0

n+1�iX
k=0

�
n+1�i
k

� ai;n+1�i
2n+1�iri+k

xn+1�k �
n+1X
k=0

kX
i=0

�
n+1�i
n+1�k

� ai;n+1�i
2n+1�irn+1�k+i

xk.

Before proceeding with the calculus of (2.20), let us focus our attention in
each of the terms above separately and rewrite them in a suitable way as follows:

n+1X
i=0

n+1�iX
k=0

�
n+1�i
k

� ai;n+1�i
2n+1�iri+k

xn+1�k

=
nX
i=0

n+1�iX
k=1

�
n+1�i
k

� ai;n+1�i
2n+1�iri+k

xn+1�k +
nX
i=0

ai;n+1�i
2n+1�irix

n+1 +
an+1;0
rn+1 x

n+1

therefore, we have

n+1X
i=0

n+1�iX
k=0

�
n+1�i
k

� ai;n+1�i
2n+1�iri+k

xn+1�k

=
nX
i=0

n�iX
k=0

�
n+1�i
k+1

� ai;n+1�i
2n+1�iri+k+1

xn�k +
n+1X
i=0

ai;n+1�i
2n+1�irix

n+1
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by Proposition 125 it is obtained

n+1X
i=0

n+1�iX
k=0

�
n+1�i
k

� ai;n+1�i
2n+1�iri+k

xn+1�k

=
nX
i=0

iX
k=0

�
i+1
k+1

� an�i;i+1
2i+1rn�i+k+1

xn�k +
n+1X
i=0

ai;n+1�i
2n+1�irix

n+1

and the Proposition 126 gives us

n+1X
i=0

n+1�iX
k=0

�
n+1�i
k

� ai;n+1�i
2n+1�iri+k

xn+1�k (2.21)

=
nX
k=0

kX
i=0

�
n+1�i
n+1�k

� ai;n+1�i
2n+1�irn+1�k+i

xk +
n+1X
i=0

ai;n+1�i
2n+1�irix

n+1.

Now, consider the other term that can be expressed as

n+1X
k=0

kX
i=0

�
n+1�i
n+1�k

� ai;n+1�i
2n+1�irn+1�k+i

xk (2.22)

=
nX
k=0

kX
i=0

�
n+1�i
n+1�k

� ai;n+1�i
2n+1�irn+1�k+i

xk +
n+1X
i=0

ai;n+1�i
2n+1�irix

n+1.

Given the further explored expressions (2.21) and (2.22) we are able to return
to the Equation (2.20) and obtain the desired conclusion:

n+1X
i=0

n+1�iX
j=0

ai;j

�x
r

�i�xr + 1
2r

�j
�
n+1X
k=0

�k (r)x
k

=
nX
i=0

kX
k=0

�
(n�i)+1
(n�k)+1

� ai;n�i+1
2n�i+1ri+n�k+1

xk +
n+1X
i=0

ai;n+1�i
2n+1�irix

n+1

�
nX
k=0

kX
i=0

�
n+1�i
n+1�k

� ai;n+1�i
2n+1�irn+1�k+i

xk �
n+1X
i=0

ai;n+1�i
2n+1�irix

n+1

= 0

As mentioned before, we will revisit the Example 34 to present how the
above Proposition 38 associated with the Theorem 44 allows us to gather more
information about a polynomial Q and explain how to choose r to test whether
Q
�
x
r ;

xr+1
2r

�
is identically null or not.
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Example 39 Consider the polynomial

Q (x; y) = 4x4 + 8x2y2 � 12xy3

+9x3 + 9x2y � 9xy2 � 4y3

+22x2 � 8xy � 7y2

�91x+ 98y
�24

presented in the Example 34. Without further explanation we took r = 2 and
verify that Q

�
x
2 ;

2x+1
4

�
� 0.

The �rst matter in question is: What did we base ourselves on for choosing
the r and what were the possible choices for that?
To answer that, we need to consider the polynomial Q

�
x
r ;

xr+1
2r

�
2 R [x]

which by Proposition 38 can be rewritten as

Q
�
x
r ;

xr+1
2r

�
= �4 (r)x

4 + �3 (r)x
3 + �2 (r)x

2 + �1 (r)x+ �0 (r) ,

where �k (r) are as in 2.18. To obtain the possible candidates r to verify if the
above expression is identically null or not , we compute just the 0-th coe¢ cient

�0 (r) =
49

r
� 7

4r2
� 1

2r3
� 24,

and notice that it admits the following factorization

�0 (r) = �
1

4r3
(8r � 1) (r � 2) (12r + 1) .

Therefore, we test Q
�
x
r ;

xr+1
2r

�
for r 2

�
� 1
12 ;

1
8 ; 2
	
to obtain that Q

�
�12x; 12x� 6

�
and Q

�
8x; 12x+ 4

�
are not identically null, while Q

�
x
2 ;

2x+1
4

�
is. By Theorem

44 we conclude that Q (x; y) belongs to the ideal generated by 4x� 4y + 1.

Remark 40 The last propostion on this chapter will provide the explication to
our require that �0 (r) be zero.

Remark 41 In the case of Weingarten surfaces, we assume only r > 0 (once
there is a geometrical meaning of r be the radius), so in the above example we
just have to test r 2

�
1
8 ; 2
	
.

The next proposition is a technical result that presents us a characterization
of polynomials Q that belongs to the ideal generated by xr2 � 2yr+1, in other
words, we describe conditions on coe¢ cients of Q in order to it be divisible by
xr2 � 2yr + 1.

Proposition 42 A polynomial Q (x; y) =
nP
i=0

n�iP
j=0

ai;jx
iyj 2 R [x; y] is divisible

by xr2 � 2yr + 1 if and only if there exists a family

C = fci;j 2 R ; i; j 2 Zg

such that:
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1. ci;j = 0 whenever i < 0 or j < 0 or i+ j � n;

2. ai;j = r2ci�1;j � 2rci;j�1 + ci;j, for every i; j 2 Z:

Proof. Suppose that

Q (x; y) =
nX
i=0

n�iX
j=0

ai;jx
iyj 2 R [x; y] (2.23)

is divisible byXr2�2Y r+1, then exists a family C = fci;j 2 R ; i, j 2 N and i+ j � n� 1g
such that

Q (X;Y ) =
�
xr2 � 2yr + 1

� n�1X
i=0

n�1�iX
j=0

ci;jX
iY j . (2.24)

Therefore, by (2.23) and (2.24) it is obtained the following relation

ai;j = r2ci�1;j � 2rci;j�1 + ci;j

for every i = 1; : : : ; n and for every j = 1; : : : ; n� i.
If we set

ci;j = 0

whenever i < 0 or j < 0 or i + j � n, hence we constructed a family C =
fci;j 2 R ; i; j 2 Zg verifying items 1 and 2.
Conversely, given a family

C = fci;j 2 R ; i; j 2 Zg

we de�ne the polynomial R (x; y) =
n�1P
i=0

n�1�iP
j=0

ci;jX
iY j . By hypothesis we have

Q (x; y) =

nX
i=0

n�iX
j=0

ai;jx
iyj

=
�
Xr2 � 2Y r + 1

� n�1X
i=0

n�1�iX
j=0

ci;jX
iY j

=
�
Xr2 � 2Y r + 1

�
R (x; y) ,

so Q is divisible by
�
Xr2 � 2Y r + 1

�
.

The following Proposition is an important result, once it articulates both of
the previous propositions: In one hand, it is considered the characterization of
polynomials in the ideal generated by xr2�2yr+1; In the other hand, we study
the consequences of Q

�
x
r ;

xr+1
2r

�
be identically null, that is, when �k (r) � 0 for

every (possible) k. Furthermore, in the aim to prove it, several results concerning
binomials identities and summatories identities are obtained (see Appendix A
for more details).
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Proposition 43 Given n 2 N, consider a family

A = fai;j 2 R ; i; j 2 Ng

such that ai;j = 0, whenever either i < 0 or j < 0 or i+ j > n.
Then there is a family

C = fci;j 2 R ; i; j 2 Ng

verifying

1. ci;j = 0 whenever i < 0 or j < 0 or i+ j � n;

2. ai;j = r2ci�1;j �2rci;j�1+ ci;j equivalently ci;j = ai;j � r2ci�1;j +2rci;j�1,
for every i; j 2 N

if and only if the coe¢ cients ai;j verify

�k (r) =
kX
i=0

0@n�kX
j=0

�
k � i+ j

j

�
1

2k�i+jrj+i
ai;k�i+j

1A = 0 8k = 0; : : : ; n.

(2.25)

Proof. Assume the existence of C = fci;j 2 R ; i; j 2 Ng and we will prove that
�k (r) = 0 for every k. To prove this �rst part, we will consider three cases for
k, named:
If k = 0, then

�0 (r) =
nX
j=0

1
2jrj a0;j =

nX
j=0

r2c�1;j�2rc0;j�1+c0;j
2jrj

= �
nX
j=1

c0;j�1
2j�1rj�1 �

c0;�1
2�1r�1 +

n�1X
j=0

c0;j
2jrj +

c0;n
2nrn

since c0;n = c0;�1 = 0 by hypothesis, it implies

n�1X
j=0

c0;j
2jrj �

nX
j=1

c0;j�1
2j�1rj�1 =

n�1X
j=0

c0;j
2jrj �

n�1X
j=0

c0;j
2jrj = 0,

which concludes this case.
If k = n, then

�n (r) =
nX
i=0

ai;n�i
2n�iri =

nX
i=0

r2ci�1;n�i�2rci;n�i�1+ci;n�i
2n�iri

once ci;n�i = 0 for every i (because i + n � i = n) and by de�nition c�1;n =
cn;�1 = 0, thus

nX
i=1

ci�1;n�i
2n�iri�2 �

n�1X
i=0

ci;n�i�1
2n�i�1ri�1 =

n�1X
i=0

ci;n�i�1
2n�i�1ri�1 �

n�1X
i=0

ci;n�i�1
2n�i�1ri�1 = 0,
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which concludes this case.

If k = 1; : : : ; n� 1, then

�k (r) =
kX
i=0

n�kX
j=0

�
k�i+j
j

� ai;k�i+j
2k�i+jrj+i

=
kX
i=0

n�kX
j=0

�
k�i+j
j

� r2ci�1;k�i+j�2rci;k�i+j�1+ci;k�i+j
2k�i+jrj+i

expanding the last term (which is possible since k � 1) it gives us the following
expression

n�kX
j=0

�
k+j
j

� c�1;k+j
2k+jrj�2

+
kX
i=1

n�kX
j=0

�
k�i+j
j

� ci�1;k�i+j
2k�i+jrj+i�2

(2.26)

�
k�1X
i=0

n�kX
j=0

�
k�i+j
j

� ci;k�i+j�1
2k�i+j�1rj+i�1

�
n�kX
j=0

ck;j�1
2j�1rj+k�1

+

k�1X
i=0

n�kX
j=0

�
k�i+j
j

� ci;k�i+j
2k�i+jrj+i

+

n�kX
j=0

ck;j
2jrj+k

Notice that

n�kX
j=0

�
k+j
j

� c�1;k+j
2k+jrj�2

= 0, (2.27)

once c�1;m = 0, for everym 2 N. Also, observe that next terms can be simpli�ed
as

n�kX
j=0

ck;j�1
2j�1rj+k�1

=
n�kX
j=1

ck;j�1
2j�1rj+k�1

+
ck;�1

2�1rk�1
=
n�kX
j=1

ck;j�1
2j�1rj+k�1

=
n�k�1X
j=0

ck;j
2jrj+k

(2.28)
and

n�kX
j=0

ck;j
2jrj+k

=
n�k�1X
j=0

ck;j
2jrj+k

+
ck;n�k
2n�krn

=
n�k�1X
j=0

ck;j
2jrj+k

(2.29)

since ck;n�k = 0 and cm;�1 = 0 for every m 2 N. Therefore by (2.27), (2.28) &
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(2.29) the expression (2.26) resumes to

k�1X
i=0

n�kX
j=0

�
k�i+j�1

j

� ci;k�i+j�1
2k�i+j�1rj+i�1

�
k�1X
i=0

n�kX
j=0

�
k�i+j
j

� ci;k�i+j�1
2k�i+j�1rj+i�1

+
k�1X
i=0

n�kX
j=0

�
k�i+j
j

� ci;k�i+j
2k�i+jrj+i

=
k�1X
i=0

ci;k�i�1
2k�i�1ri�1

+
k�1X
i=0

n�kX
j=1

�
k�i+j�1

j

� ci;k�i+j�1
2k�i+j�1rj+i�1

�
k�1X
i=0

ci;k�i�1
2k�i�1ri�1

�
k�1X
i=0

n�kX
j=1

�
k�i+j
j

� ci;k�i+j�1
2k�i+j�1rj+i�1

+
k�1X
i=0

n�kX
j=1

�
k�i+j�1
j�1

� ci;k�i+j�1
2k�i+j�1rj+i�1

+
k�1X
i=0

�
n�i
n�k
� ci;n�i
2n�irn�k+i

again, ci;n�i = 0 (because of i+ n� i = n), follows that

�k (r) =
kX
i=0

0@n�kX
j=0

�
k�i+j
j

� ai;k�i+j
2k�i+jrj+i

1A
=

k�1X
i=0

n�kX
j=1

��
k�i+j�1

j

�
�
�
k�i+j
j

�
+
�
k�i+j�1
j�1

�� ci;k�i+j�1
2k�i+j�1rj+i�1

�nally, by Pascal�s rule we have�
k�i+j
j

�
=
�
k�i+j�1

j

�
+
�
k�i+j�1
j�1

�
hence it is concluded

�k (r) =

kX
i=0

0@n�kX
j=0

�
k�i+j
j

� ai;k�i+j
2k�i+jrj+i

1A = 0,

for every 0 � k � n.
Reciprocally, consider the following de�nition

ci;j =

8<:
iP

k=0

�
jP
l=0

(�1)k
�
l+k
l

�
2lrl+2kai�k;j�l

�
if i; j 2 N

0 if i < 0 or if j < 0
, (2.30)

we proceed with this proof beginning by item 2. Our goal is to show

r2ci�1;j � 2rci;j�1 + ci;j = ai;j ,

for every i, j 2 N. Once again, we will consider several cases for indeces i and
j.
Choose i, j 2 N, if i = 0 = j, follows from (2.30) that

c0;0 = a0;0 and c�1;0 = 0 = c0;�1
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consequently

r2c�1;0 � 2rc0;�1 + c0;0 = c0;0 = a0;0,

and the desired is achieved.

If j = 0 and i � 1, we have

ci;0 =
iX

k=0

(�1)k r2kai�k;0

ci;0�1 = 0

ci�1;0 =

i�1X
k=0

(�1)k r2kai�1�k;0

hence

r2ci�1;0 � 2rci;0�1 + ci;0

= r2
i�1X
k=0

(�1)k r2kai�1�k;0 +
iX

k=0

(�1)k r2kai�k;0

=

i�1X
k=0

(�1)k r2(k+1)ai�1�k;0 +
iX

k=0

(�1)k r2kai�k;0

=
iX

k=1

(�1)(k�1) r2((k�1)+1)ai�1�(k�1);0 +
iX

k=0

(�1)k r2kai�k;0

= �
iX

k=1

(�1)k r2kai�k;0 +
iX

k=1

(�1)k r2kai�k;0 + ai;0

= ai;0

and the desired is achieved.

If i = 0 and j � 1 we have

c0;j =

 
jX
l=0

2lrla0;j�l

!

c0;j�1 =

 
j�1X
l=0

2lrla0;j�1�l

!
c0�1;j = 0
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hence

r2c0�1;j � 2rc0;j�1 + c0;j

= �2r
j�1X
l=0

2lrla0;j�1�l +

jX
l=0

2lrla0;j�l

= �
j�1X
l=0

2l+1rl+1a0;j�1�l +

jX
l=0

2lrla0;j�l

= �
jX
l=1

2(l�1)+1r(l�1)+1a0;j�1�(l�1) +

jX
l=0

2lrla0;j�l

= �
jX
l=1

2lrla0;j�l +

jX
l=1

2lrla0;j�l + a0;j

= a0;j

and the desired is achieved.

If i, j � 1, by de�nition (2.30) each c(i�1);j , ci;(j�1) and ci;j has the following
expression

c(i�1);j =

(i�1)X
k=0

 
jX
l=0

(�1)k
�
l+k
l

�
2lrl+2ka(i�1)�k;j�l

!

ci;(j�1) =
iX

k=0

0@(j�1)X
l=0

(�1)k
�
l+k
l

�
2lrl+2kai�k;(j�1)�l

1A
ci;j =

iX
k=0

 
jX
l=0

(�1)k
�
l+k
l

�
2lrl+2kai�k;j�l

!

then expanding each one in a suitable way, we have

r2
iX

k=1

jX
l=0

(�1)(k�1)
�
l+(k�1)

l

�
2lrl+2(k�1)ai�k;j�l (2.31)

= �
iX

k=1

(�1)k r2kai�k;j

+
iX

k=1

jX
l=1

(�1)(k�1)
�
l+(k�1)

l

�
2lrl+2kai�k;j�l
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�2r
iX

k=0

jX
l=1

(�1)k
�
(l�1)+k
(l�1)

�
2(l�1)r(l�1)+2kai�k;j�l (2.32)

= �
jX
l=1

2lrlai;j�l

�
iX

k=1

jX
l=1

(�1)k
�
(l�1)+k
(l�1)

�
2lrl+2kai�k;j�l

iX
k=0

jX
l=0

(�1)k
�
l+k
l

�
2lrl+2kai�k;j�l (2.33)

= ai;j +

jX
l=1

2lrlai;j�l +

iX
k=1

(�1)k r2kai�k;j

+

iX
k=1

jX
l=1

(�1)k
�
l+k
l

�
2lrl+2kai�k;j�l

replacing the above equalities in r2ci�1;j � 2rci;j�1 + ci;j it is obtained

iX
k=1

jX
l=1

(�1)(k) 2lrl+2k
�
�
�
l+(k�1)

l

�
�
�
(l�1)+k
(l�1)

�
+
�
l+k
l

��
ai�k;j�l + ai;j

�nally, the Pascal rule provides the identity�
l+k
l

�
=
�
l+k�1
l

�
+
�
l+k�1
l�1

�
which implies

r2ci�1;j � 2rci;j�1 + ci;j = ai;j

and the proof of item 2 is complete.
To prove item 1, by de�nition (2.30) remains to verify

ci;j = 0

whenever i + j � n, since the case ci;j = 0 for every i + j = n is a rather
di¢ culty, we will assume a priori ck;n�k = 0 for every k, then we will use it to
prove that

ci;j = 0,

for every i; j; l 2 N with l � 1 such that i + j = n + l. This proof is given by
induction on l.
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If l = 1, so

ci;j = ci;n+1�i

= ai;n+1�i � r2ci�1;n+1�i + 2rci;n�i
= �r2ci�1;n+1�i + 2rci;n�i
= 2rci;n�i

note that i+ j = n+ 1 hence i � n+ 1 implies i� 1 � n, so in case i = n+ 1,
it follows cn+1;n�(n+1) = cn+1;�1 = 0. In case of i � n, then ci;n�i = 0 by
hypothesis. Then it is concluded that ci;j is zero.
Proof. Assume that ci;n+l�i = 0 for some l and we will verify the equality for
l + 1. In fact,

ci;n+l+1�i = ai;n+l+1�i � r2ci�1;n+l+1�i + 2rci;n+l�i
= �r2ci�1;n+l+1�i + 2rci;n+l�i
= 0

and the desired is achieved. To �nish the demonstration of item 1, consequently
the Theorem, still necessary to prove that

ck;n�k = 0,

for every k 2 N, in the presence of the hypothesis (2.25), which for convenience
of the reader, it will be restated in a slightly di¤erent but very helpful way:

�i�k (r) =

(i�m)X
k=0

0@n�(i�m)X
l=0

�
(i�m)�k+l

l

� 1

2(i�m)�k+lrl+k
ak;(i�m)�k+l

1A = 0,

(2.34)
so we will show that each ci;n�i is a linear combination of certains �i�k (r).
More precisely,

ci;n�i =

iX
k=0

(�1)k
�
n�i+k
n�i

� (2r)n rk�i�k
2i

, (2.35)

where �i�k denotes �i�k (r) for practical reasons. In the aim to provide the
proof, it will be presented that the di¤erence of above equality is null. First
of all, is important do a treatment of expressions to express them in a proper
manner: Applying the Prop (Inversão de contagem) to ci;n�i gives us

ci;n�i =
iX

k=0

n�iX
l=0

(�1)i�k
�
l+i�k
l

�
2lrl+2i�2kak;n�i�l (2.36)

and consider the explicity expression of right side of Equation (2.35)
iX

k=0

(�1)k
�
n�i+k
n�i

� (2r)nrk�i�k
2i

=
iX

m=0

n�(i�m)X
l=0

i�mX
k=0

(�1)m 2k�l+m+n�2irm�l�k+n
�
n�i+m
n�i

��
i�m�k+l

l

�
ak;(i�m)�k+l
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then apply Proposition 130 to obtain

iX
k=0

(�1)k
�
n�i+k
n�i

� (2r)nrk�i�k
2i (2.37)

=
iX

k=0

i�kX
m=0

n�i+mX
l=0

(�1)m 2k�l+m+n�2irm�l�k+n
�
n�i+m
n�i

��
i�m�k+l

l

�
ak;(i�m)�k+l

so we de�ne

Hn = ci;n�i �
iX

k=0

(�1)k
�
n�i+k
n�i

� (2r)nrk�i�k
2i

by (2.36) and (2.37) we have

Hn =

iX
k=0

n�iX
l=0

(�1)i�k
�
l+i�k
l

�
2lrl+2i�2kak;n�i�l

�
iX

k=0

i�kX
m=0

n�i+mX
l=0

(�1)m 2k�l+m+n�2irm�l�k+n
�
n�i+m
n�i

��
i�m�k+l

l

�
ak;i�m�k+l

and our goal resumes to verify Hn = 0, so it is su¢ cienty verify

n�iX
l=0

(�1)i�k
�
l+i�k
l

�
2lrl+2i�2kak;n�i�l (2.38)

�
i�kX
m=0

n�i+mX
l=0

(�1)m 2k�l+m+n�2irm�l�k+n
�
n�i+m
n�i

��
i�m�k+l

l

�
ak;(i�m)�k+l

= 0

for each k = 0; :::; i. Observe that Equation (2.38) allows us to do further
simpli�cations. Rede�ne

p = i� k, q = n� i and bj = ak;j

hence the previous equation can be rewritten as

qX
l=0

(�1)p
�
l+p
l

�
2lrl+2pbq�l

�
pX

m=0

q+mX
l=0

(�1)m 2q+m�l�prm�l+p+q
�
q+m
q

��
p�m+l

l

�
bp�m+l

also notice that Proposition 125 furnishes the following equality

qX
l=0

(�1)p
�
l+p
l

�
2lrl+2pbq�l =

qX
l=0

(�1)p
�
q�l+p
q�l

�
2q�lrq�l+2pbl
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and the Proposition 126 gives us

pX
m=0

q+mX
l=0

(�1)m 2q+m�l�prm�l+p+q
�
q+m
q

��
p�m+l

l

�
bp�m+l

=

pX
m=0

q+(p�m)X
l=0

(�1)(p�m) 2q�m�lr2p�m�l+q
�
q+(p�m)

q

��
m+l
l

�
bm+l.

Finally, we set

Jp;q =

qX
l=0

(�1)p
�
q�l+p
q�l

�
2q�lrq�l+2pbl (2.39)

�
pX

m=0

q+(p�m)X
l=0

(�1)(p�m) 2q�m�lr2p�m�l+q
�
q+(p�m)

q

��
m+l
l

�
bm+l

and our goal is to verify that Jp;q = 0 which is equivalent to Hn = 0 (also
equivalent to (2.38) be null).

We have several cases to consider in order to prove that Jp;q = 0.

Case p = q = 0. A straighfoward computation provides

J0;0 = b0 � b0 = 0

which concludes this case.

Case p = q � 1, it implies that Equation (2.39) has the following expression

Jq;q =

qX
l=0

(�1)q
�
2q�l
q�l
�
2q�lr3q�lbl�

qX
m=0

2q�mX
l=0

(�1)q�m 2q�m�lr3q�m�l
�
2q�m
q

��
m+l
l

�
bm+l

(2.40)
and once again we need to do some simpli�cations in each of terms above.

In the aim to apply Theorem 129, we set

�m;l = (�1)q�m 2q�m�lr3q�m�l
�
2q�m
q

��
m+l
l

�
therefore, we have

�m;l�m = (�1)q�m 2q�lr3q�l
�
2q�m
q

��
l

l�m
�

�m;q+l�m = (�1)q�m 2�lr2q�l
�
2q�m
q

��
q+l

q+l�m
�
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hence

qX
m=0

2q�mX
l=0

(�1)q�m 2q�m�lr3q�m�l
�
2q�m
q

��
m+l
l

�
bm+l (2.41)

=

qX
l=0

lX
m=0

(�1)q�m 2q�lr3q�l
�
2q�m
q

��
l

l�m
�
bl

+

qX
l=1

qX
m=0

(�1)q�m 2�lr2q�l
�
2q�m
q

��
q+l

q+l�m
�
bq+l (2.42)

=

qX
l=0

lX
m=0

(�1)q�m 2q�lr3q�l
�
2q�m
q

��
l

l�m
�
bl

+

2qX
l=q+1

qX
m=0

(�1)q�m 2�l+qr3q�l
�
2q�m
q

��
l

l�m
�
bl (2.43)

where the last equality is furnished by rearranging the indices of last summatory.
Then the Equation (2.40) become by (2.41)

Jq;q =

qX
l=0

2q�lr3q�l (�1)q
 �

2q�l
q�l
�
�

lX
m=0

(�1)m
�
2q�m
q

��
l

l�m
�!

bl

�
2qX

l=q+1

 
qX

m=0

(�1)q�m 2�l+qr3q�l
�
2q�m
q

��
l

l�m
�!

bl

and once veri�ed the following statements

lX
m=0

(�1)m
�
2q�m
q

��
l

l�m
�
=
�
2q�l
q�l
�

and
qX

m=0

�
2q�m
q

��
l

l�m
�
= 0

we will achived the desired.
CLAIM 1:

lX
m=0

(�1)m
�
2q�m
q

�� l

m

�
=
�
2q�l
q

�
,

for l < q and q � 1.
Indeed, the Propostion 133 states

qX
m=0

(�1)m
�
2q�m
q

��
l
m

�
=
�
2q�l
q

�
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since l < q, it yields

lX
m=0

(�1)m
�
2q�m
q

��
l
m

�
+

qX
m=l+1

(�1)m
�
2q�m
q

��
l
m

�
=

qX
m=0

(�1)m
�
2q�m
q

��
l
m

�
=

�
2q�l
q

�
however

Pq
m=l+1 (�1)

m �2q�m
q

��
l
m

�
= 0 once

�
z
k

�
= 0 whenever k � z, thus

lX
m=0

(�1)m
�
2q�m
q

��
l
m

�
=
�
2q�l
q

�
so the Claim 1 is proved.
CLAIM 2:

qX
m=0

�
2q�m
q

��
l

l�m
�
= 0,

for every l 2 fq + 1; : : : ; 2qg.
In order to apply Proposition 132 we set

y = 2q, x = �1, r = q and n = l,

and we obtain
lX

m=0

(�1)m
�
2q�m
q

��
l
m

�
= 0.

Observe that 2q�m � 2q� l � 0, for every l � 2q, and note that 2q�m�q � 0
whenever q � m which implies �

2q�m
q

�
= 0,

for every m 2 fq + 1; : : : ; lg, thus

qX
m=0

(�1)m
�
2q�m
q

��
l
m

�
= 0

and the Claim 2 is proved.
Then Jq;q = 0 and the case p = q � 1 is �nalized.
Case p < q; In this case, we can consider the following expression of �rst



34 CHAPTER 2. WEINGARTEN TUBULAR SURFACES

summatory in (2.39):

qX
l=0

(�1)p
�
q�l+p
q�l

�
2q�lrq�l+2pbl (2.44)

=

pX
l=0

(�1)p
�
q�l+p
q�l

�
2q�lrq�l+2pbl

+

qX
l=p+1

(�1)p
�
q�l+p
q�l

�
2q�lrq�l+2pbl.

For the second summatory of (2.39), we de�ne

�m;l = (�1)p�m 2q�m�lr2p�m�l+q
�
q+p�m

q

��
m+l
l

�

the we have

�m;l�m = (�1)p�m 2q�lr2p�l+q
�
q+p�m

q

��
l

l�m
�

�m;p+l�m = (�1)p�m 2q�p�lrp�l+q
�
q+p�m

q

��
l+p

l�m+p
�

and once again we apply the Theorem 129, so it is obtained

pX
m=0

q+(p�m)X
l=0

(�1)(p�m) 2q�m�lr2p�m�l+q
�
q+(p�m)

q

��
m+l
l

�
bm+l (2.45)

=

pX
l=0

lX
m=0

(�1)p�m 2q�lr2p�l+q
�
q+p�m

q

��
l

l�m
�
bl

+

qX
l=1

pX
m=0

(�1)p�m 2q�p�lrp�l+q
�
q+p�m

q

��
l+p

l�m+p
�
bp+l
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then replacing (2.44) and (2.45) in (2.39) we have

Jp;q =

pX
l=0

(�1)p 2q�lrq�l+2p
 �

q�l+p
q�l

�
�

lX
m=0

(�1)m
�
q+p�m

q

��
l

l�m
�!

bl

+

q�pX
l=1

(�1)p 2q�l�prq�l+p
�
q�l
q�l�p

�
bp+l

�
qX
l=1

pX
m=0

(�1)p�m 2q�p�lrp�l+q
�
q+p�m

q

��
l+p

l�m+p
�
bp+l

=

pX
l=0

(�1)p 2q�lrq�l+2p
 �

q�l+p
q�l

�
�

lX
m=0

(�1)m
�
q+p�m

q

��
l

l�m
�!

bl

+

q�pX
l=1

(�1)p 2q�l�prq�l+p
 �

q�l
q�l�p

�
�

pX
m=0

(�1)m
�
q+p�m

q

��
l+p

l�m+p
�!

bp+l

�
qX

l=q�p+1

pX
m=0

(�1)p�m 2q�p�lrp�l+q
�
q+p�m

q

��
l+p

l�m+p
�
bp+l

thus, it will be show the following equalities

lX
m=0

(�1)m
�
q+p�m

q

�� l

m

�
=
�
q�l+p
p

�
for every l = 0; : : : ; p with p < q;

pX
m=0

(�1)m
�
q+p�m

q

��
l+p
m

�
=
�
q�l
p

�
for every l = 1; : : : ; q � p with p < q;

pX
m=0

(�1)m
�
q+p�m

q

��
l+p
m

�
= 0 for every l = q � p+ 1; : : : ; qwith p < q.

CLAIM 3:
lX

m=0

(�1)m
�
q+p�m

q

��
l
m

�
=
�
q+p�l
p

�
,

for every l = 0; : : : ; p with p < q. This claim follows immediatly from Propostion
133.
CLAIM 4:

pX
m=0

(�1)m
�
q+p�m

q

��
l+p
m

�
=
�
q�l
p

�
for every l = 1; : : : ; q�p with p < q. By Proposition 134, it is given the equality

nX
m=0

(�1)m
�
x�m
j

��
n
m

�
=
�
x�n
j�n
�
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then we choose x = q + p, j = q and n = l + p, hence

nX
m=0

(�1)m
�
(q+p)�m

(q)

��
(l+p)
m

�
=
�
q�l
q�l�p

�
=
�
q�l
q

�
and the Claim 4 is conluded.

CLAIM 5:
pX

m=0

(�1)m
�
q+p�m

q

��
l+p
m

�
= 0

for every l = q � p+ 1; : : : ; q with p < q. By Proposition 132 is given

nX
m=0

(�1)m
�
y+xm
r

��
n
m

�
= 0

for every x; y; r 2 Z such that r < n. So, we set n = l+ p, r = q, y = p+ q and
x = �1, therefore

l+pX
m=0

(�1)m
�
p+q�m

q

��
l+p
m

�
= 0

and notice that (p+ q �m)�q = p�m � 0() m � p which implies
�
p+q�m

q

�
=

0 for every m 2 fp+ 1; :::; p+ lg, then

0 =

l+pX
m=0

(�1)m
�
p+q�m

q

��
l+p
m

�
=

pX
m=0

(�1)m
�
p+q�m

q

��
l+p
m

�
and the Claim 5 is proved.

So the case p < q is demonstrated.

For the last case, consider q < p which is very similar to the previous one.
In Equation (2.39) once we set

�m;l = (�1)p�m 2q�m�lr2p�m�l+q
�
q+p�m

q

��
m+l
l

�
we obtain the following terms

�m;l�m = (�1)p�m 2q�lr2p�l+q
�
q+p�m

q

��
l

l�m
�

�m;l = (�1)p�m 2q�p�lrp�l+q
�
q+p�m

q

��
p+l

p+l�m
�

then using Theorem 129 in the second summatory in Equation (2.39), is rewrit-
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ten as

pX
m=0

q+p�mX
l=0

(�1)p�m 2q�m�lr2p�m�l+q
�
q+p�m

q

��
m+l
l

�
bm+l

=

pX
l=0

lX
m=0

(�1)p�m 2q�lr2p�l+q
�
q+p�m

q

��
l

l�m
�
bl

+

qX
l=1

pX
m=0

(�1)p�m 2q�p�lrp�l+q
�
q+p�m

q

��
p+l

p+l�m
�
bp+l

=

qX
l=0

lX
m=0

(�1)p�m 2q�lr2p�l+q
�
q+p�m

q

��
l

l�m
�
bl

+

pX
l=q+1

lX
m=0

(�1)p�m 2q�lr2p�l+q
�
q+p�m

q

��
l

l�m
�
bl

+

qX
l=1

pX
m=0

(�1)p�m 2q�p�lrp�l+q
�
q+p�m

q

��
p+l

p+l�m
�
bp+l

thus the Equation (2.39) is

Jp;q =

qX
l=0

(�1)p 2q�lrq�l+2p
 �

q�l+p
q�l

�
�

lX
m=0

(�1)m
�
q+p�m

q

��
l

l�m
�!

bl

�
pX

l=q+1

lX
m=0

(�1)p�m 2q�lr2p�l+q
�
q+p�m

q

��
l

l�m
�
bl

�
qX
l=1

pX
m=0

(�1)p�m 2q�p�lrp�l+q
�
q+p�m

q

��
p+l

p+l�m
�
bp+l

and we will prove the following claims:

lX
m=0

(�1)m
�
q+p�m

q

��
l
m

�
=
�
q�l+p
p

�
for every q < p and l = 0; :::; q;

lX
m=0

(�1)m
�
q+p�m

q

��
l
m

�
= 0 for every q < p and l = q + 1; :::; p;

pX
m=0

(�1)m
�
q+p�m

q

��
p+l
m

�
= 0 for every q < p and l = 1; :::; q.

CLAIM 6:
lX

m=0

(�1)m
�
q+p�m

q

��
l
m

�
=
�
q�l+p
p

�
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for every q < p and l = 0; :::; q. In Proposition 132 it is only necessary set
r = p� q and the result follows.
CLAIM 7:

lX
m=0

(�1)m
�
q+p�m

q

��
l
m

�
= 0

for every q < p and l = q + 1; :::; p. We de�ne

y = q + p, x = �1, r = q, n = l

and notice q < l, since l = q + 1; :::; p, so we are in hypothesis to apply Propo-
sition 132 and we obtain the desired.
CLAIM 8:

pX
m=0

(�1)m
�
q+p�m

q

��
p+l
m

�
= 0

for every q < p and l = 1; :::; q. We de�ne

y = q + p, x = �1, r = q, n = p+ l

and notice that q < p+ l, since q < p and l 2 f1; :::; qg. By Proposition 132 we
have

0 =

nX
m=0

(�1)m
�
y+xm
r

��
n
m

�
=

pX
m=0

(�1)m
�
q+p�m

q

��
p+l
m

�
+

p+lX
m=p+1

(�1)m
�
q+p�m

q

��
p+l
m

�
=

pX
m=0

(�1)m
�
q+p�m

q

��
p+l
m

�
+

p+l�(p+1)X
m=0

(�1)(m+p+1)
�
q+p�(m+p+1)

q

��
p+l

(m+p+1)

�
=

pX
m=0

(�1)m
�
q+p�m

q

��
p+l
m

�
and the desired is obtained.
So we demonstrated that

Jp;q = 0

for every p and q.

In view of the foregoing, we are able to proof the Theorem 44 which for
convenience of the reader, will be restated. We remark that theorem provides
the technical tool to demonstrate our main results in next chapter.
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Theorem 44 Consider a polynomial Q (x; y) 2 R [x; y] and let r be a strictly
positive constant. Then Q belongs to the ideal generated by xr2� 2yr+1 if and
only if Q

�
x
r ;

xr+1
2r

�
2 R [x] is identically null.

Proof. If Q
�
x
r ;

xr+1
2r

�
2 R [x] is identically null, by Proposition 38 we have that

�k (r) � 0 for each k, which is precisely the needed condition in Proposition
43 to conclude the existence of the family C = fci;j 2 R ; i; j 2 Ng. Finally, it
implies, by Proposition 42, that Q is divisible by xr2 � 2yr + 1, i.e., Q belongs
to ideal generated by xr2 � 2yr + 1.
The other direction is straightforward.

2.3 Main result and applications for Tubular Sur-
faces

In this section we present our main theorems that fully classify Polynomial
Weingarten tubular surfaces in Euclidean, Lorentzian and Hyperbolic 3-space.

In the aim to exemplify the type of problem and which challenges are pre-
sented in the classi�cation of Polynomial Weingarten tubular surfaces, let us
consider a polynomial Q (x; y) =

P2
i=0

P2
j=0 ai;jx

iyj 2 R [x; y] of degree 2 (one
of the most simple cases to be considered) and assume that Gaussian and mean
curvatures are roots of Q, then

0 � Q (K;H) = Q2 (s) cos
2 t+Q1 (s) cos t+Q0 (s) , (2.46)

where

Q2 (s) = �2
�
ra1;1 + r

2a1;0 + r
2a0;2 + r

3a0;1 + r
4a0;0 + a2;0

�
;

Q1 (s) = � 1
2�
�
2ra1;0 + 2ra0;2 + 3r

2a0;1 + 4r
3a0;0 + a1;1

�
;

Q0 (s) = a0;0r
2 + 1

2a0;1r +
1
4a0;2,

since the Equation (2.46) is valid for every t 2 R, it follows that each Qi (s)
must be null, for every i. This study leads us to the necessity to write Q in a
suitable way and also to investigate under which conditions the coe¢ cients ai;j
provides that Qi (s) � 0.
In the end, our researches gaves us that analogous conditions were requeried

for arbitrary polynomials of degree n. Hence, this is clearly the reason that
motivates the Chapter 2.2.
So, once detected the pattern, we can discuss the polynomials rather than

analyze enormous equations. Thus, we dodge the di¢ culty of studying partic-
ular polynomials and its associated equations to furnish a fully description of
tubular surfaces whose curvatures vanishes a polynomial.

Throughout this chapter we will represent the second principal curvature of
a tubular surface in Hyperbolic 3-space by k2 = 1

r instead of
1

sinh r . Since sinh r
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is constant, we named it by constant r. The only reason is to present the results
with simple statements and deal with all spaces at once.

We start this chapter recalling the de�niton exhibited in Introduction.

De�nition 45 The radius of a polynomial Q (x; y) 2 R [x; y] is de�ned as the
set

Rad (Q) =
�
r 2 (0;+1) ; Q

�
0; 12r

�
= 0
	
.

We say that Q is tubular or non tubular according to the Rad (Q) being either
non empty or empty, respectively.

De�nition 46 The radius star of a polynomial Q (x; y) 2 R [x; y], denoted by
Rad� (Q), is de�ned as the set of all r 2 Rad (Q) such that Q (x; y) belongs to
the ideal in R [x; y] generated by xr2 � 2ry + 1.

Remark 47 Given a polynomial Q (x; y) 2 R [x; y], by Proposition 38 we have

Q
�
x
r ;

xr+1
2r

�
=

nX
k=0

�k (r)x
k.

where �k (r) are as in (2.18). Notice that Q
�
0; 12r

�
is precisely �0 (r).

The terminology used in above de�nition is motivated, as we will see, by the
fact that exists a Weingarten tubular surface verifying a polynomial relation if
and only if the polynomial is tubular.
The next example illustrates the class of tubular polynomials of degree 2:

Example 48 Consider a polynomial of degree 2

Q (x; y) = a2;0x
2 + a1;1xy + a0;2y

2 + a1;0x+ a0;1y + a0;0 2 R [x; y] .

Follows from Theorem 38 that Q is tubular if and only if exists a strictly positive
real number r such that

�0 (r) =
1

2r
a0;1 +

1

4r2
a0;2 + a0;0 = 0.

Before to present the main theorem, let us re-state the Theorem 44 that
incorporates all results in Chapter 2.2 to show that the condition of a polynomial
Q to belong to the ideal generated by xr2�2yr+1 can be replaced by another one
that is more technical however, easier to check. Moreover, the next proposition
is an important argument in our main theorems.

Theorem 49 Consider a polynomial Q (x; y) 2 R [x; y] and let r be a nonzero
constant. Then Q belongs to the ideal generated by xr2 � 2yr + 1 if and only if
Q
�
x
r ;

xr+1
2r

�
2 R [x] is identically null.
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Hence, the above Proposition associated with previous De�nition 45, fur-
nishes that tubular polynomials contains the polynomials that are multiples of
xr2 � 2yr + 1 2 R [x; y], for which r 2 Rad (Q).

The below Lemma is the �rst acquired result such that an algebraic hypoth-
esis (on the polynomial) delivers a geometric feature on the tubular surface.

Lemma 50 Let Q (x; y) 2 R [x; y] be a polynomial that is not in the ideal gen-
erated by xr2 � 2ry + 1. If a tubular surface of radius r verify Q (K;H) = 0,
then

K � 0 and H � 1

2r
.

Proof. Since Q (x; y) 62


xr2 � 2ry + 1

�
it follows by Theorem 44 that

Q
�
x
r ;

xr+1
2r

�
6= 0

and considering the additional assumption that exists a tubular surface which
veri�es Q (K;H) = 0, it is concluded that k1 is constant equal to � 2 R, that
is,

k1 (s; t) =
� (s)� (t) "B

1 + r� (s)� (t) "B
= �.

If � 6= 0, the above equation gives us

"B� (s) (1� r�)� (t) = �

which implies that � (s) (1� r�) 6= 0, for every s 2 (a; b). Then, for a �xed
s0 2 (a; b), we have

� (t) =
�

"B� (s0) (1� r�)
for every t 2 R.

This yields that � is a constant function, which is an absurd because � (t)
represents � cos t, sin t, sinh t or � cosh t. Consequently it is obtained

k1 (s; t) = 0 ) K � 0 and H � 1

2r
,

which concludes this proof.

Remark 51 Going along the lines of previous proof, we remark that the same
argument is valid for the �rst principal curvature of a tubular surface in Euclid-
ean or in Hyperbolic 3-space which provides the same conclusion, that is, in
every case it is obtained that K � 0 and H � 1

2r .

In view of the above discussion, now we are able to state one of our main
theorems. The �rst Theorem presents the necessary and su¢ cient condition to
existence of Polynomial Weingarten tubular surface.
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Theorem 52 Consider a polynomial Q (x; y) 2 R [x; y]. There is a Weingarten
tubular surface in Euclidean (respect. Lorentzian or Hyperbolic) 3-spaces (of
radius r > 0) verifying Q (K;H) = 0 if and only if Q is tubular (and r 2
Rad (Q)).

Proof. If Q is tubular (and r 2 Rad (Q)) it is easy to see that every right cylin-
der of radius r veri�es Q (K;H) = 0. Conversely, suppose there is a tubular sur-
face S verifying the polynomial relation Q (x; y) among its Gaussian and mean
curvatures. If Q belongs to the ideal generated by xr2 � 2yr + 1, follows from
Theorem 44 that is equivalent to Q

�
x
r ;

xr+1
2r

�
be identically null, hence we set

x = 0 and the desired is concluded. Otherwise (that is, Q 62


xr2 � 2yr + 1

�
),

since Q (K;H) = 0, the Lemma 50 provides that

Q (K;H) = Q
�
0; 12r

�
= 0

which is the required condition to Q be a tubular polynomial.
As a consequence, the previous theorem establishes a relation between tubu-

lar polynomials and Polynomial Weingarten tubular surfaces that permits us to
study only the relation in the aim to classify the surfaces. We also remark that
theorem is what motivates the De�nition 45.
Now let us revisit the Example 48 to further explore.

Example 53 It is already known that a polynomial Q of degree 2 is tubular if
and only if there is r > 0 such that

1

2r
a0;1 +

1

4r2
a0;2 + a0;0 = 0.

In the case that a0;1, a0;2, a0;0 are all null, we have that

Rad (Q) = (0;+1)

therefore, for each �xed r 2 Rad (Q), the previous Theorem ensures the existence
of a tubular surface of radius r.

As illustrated by above example, the Theorem 52 guarantees the existence
of a Polynomial Weingarten tubular surface, however it still lacks in more infor-
mation as in which cases the tubular surface is a cylinder or an arbitrary tube.
In this sense, we are leaded to our next main theorem to �ll this gaps.

For a given �xed (tubular) polynomial Q (x; y) 2 R [x; y], the below Theorem
describes the set S (Q) of all regular tubular surfaces whose Gaussian and mean
curvatures are roots of Q. Moreover, the result gives geometric features of the
tubular surface. In other words, it is exhibit information about the required
radius r and condition on the curvature of central curve (see Chapter 2) in
order to the tubular surface be a Weingarten surface for the relation Q.

Theorem 54 Given a tubular polynomial Q (x; y) 2 R [x; y], denote by S (Q)
the set of all regular tubular surfaces in Euclidean (respect. Lorentzian or Hyper-
bolic) 3-space whose Gaussian and mean curvatures K, H verify Q (K;H) � 0.
Then, the elements of S (Q) are:
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i. The cylinders whose radius r belongs to Rad (Q).

ii. The tubular surfaces of radius r 2 Rad� (Q).

In particular, if Rad (Q) = ; then S (Q) is empty.

Proof. First, we will check that cylinders and tubular surfaces are, indeed,
elements of S (Q). It is immediate that cylinders of radius r 2 Rad (Q) belongs
to S (Q), once

Q (K;H) = Q
�
0; 12r

�
= 0.

For a tubular surface of radius r 2 Rad (Q) such that Q is in the ideal of
R [x; y] generated by xr2 � 2ry + 1, it is obtained that Q admits the following
factorization

Q (x; y) =
�
xr2 � 2ry + 1

�
R (x; y) where R (x; y) 2 R [x; y] ,

then, evaluating Q in (K;H), it yields

Q (K;H) =
�
k1
r r

2 � 2r
�
k1r+1
2r

�
+ 1
�
R (K;H) = 0,

and the desired is achieved. So it is veri�ed that tubular surfaces of type i and
type ii (as in the statement) are in S (Q) and the �rst part is �nished.
Now, let S be a tubular surface of radius r in S (Q) (which means that

r 2 Rad (Q)) and consider K and H its Gaussian and mean curvatures. Our
objective is describe the types of surfaces in S (Q). Hence consider the relation

0 = Q (K;H) .

If Q is in the ideal of R [x; y] generated by xr2� 2ry+1, as discussed above, we
have that S is of type ii. If Q 62
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�
, the Lemma 50 ensures that S

is of type i.
The example below elucidates the usefulness of the above theorem with a

numerical case:

Example 55 Consider the polynomial Q (x; y) = 14y�25x+100xy�40y2�1 2
R [x; y]. An easy calculation shows that

Rad (Q) = f2; 5g .

Note that Q
�
x
5 ;

5x+1
10

�
vanishes identically and Q

�
x
2 ;

2x+1
4

�
not. So, the tubular

surfaces that belongs to S (Q) are arbitrary regular tubular surfaces of radius
5 and right cylinders of radius 2. Ultimately, because of our Theorem 44 this
problem also can be solved by polynomial analysis, once we observe that

Q (x; y) = (25x� 10y + 1) (4y � 1)

and apply the Theorem 54.
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As a immediatly corollary of the Theorem 52 with the notation of Theorem
54 we have

Corollary 56 A polynomial Q (x; y) 2 R [x; y] is tubular if and only if S (Q) 6=
;. Consequently, we are always able to choose at least one regular tubular surface
whose Gaussian and mean curvatures vanishes a tubular polynomial.

Observe that the Theorem 54 allows us to classify tubular Polynomial Wein-
garten surfaces through the study of polynomials (exclusively). To portray the
funcionality, let us show how some well-known results can be obtained from it:

Example 57 The cylinders are the only tubular surfaces with constant mean
curvature. In fact, consider the polynomial

Q (x; y) = y � c 2 R [x; y] .

Note that Q is tubular if and only if c > 0. Therefore for each c 2 (0;+1),
we have that 1

2c belongs to Rad (Q) in Euclidean or Lorentzian 3-space. More-
over, in this case, follows immediately that Q (x; y) is not in the ideal of R [x; y]
generated by xr2 � 2ry + 1. So S (Q) only contains cylinders of radius 1

2c .

Example 58 The cylinders are the only tubular surfaces with constant (zero)
Gaussian curvature.
Indeed, given c 2 R, the polynomial relation is

Q (x; y) = x� c 2 R [x; y] .

Just for c = 0 we have that Q is tubular and, in this case, Rad (Q) =
(0;+1). Since Q is not in the ideal of R [x; y] generated by xr2 � 2ry + 1, it
implies that S (Q) contains all the right cylinders of radius r.

As mentioned in the introduction, a special and very studied polynomial
relation among the Gaussian and the mean curvatures, is the linear one. This
type of relation is relevant because it permits us to see each of curvatures as
function of another (i.e. K = f (H) or H = f (K)).

Corollary 59 Let a; b; c be real numbers such that (a; b; c) 6= (0; 0; 0) and de�ne
� = b2 + 4ac. Consider the polynomial relation

Q (x; y) = ax+ by � c.

Then, S (Q) 6= ; if and only if b = c = 0 or bc > 0. Moreover:

i. If b = c = 0, then S (Q) contains all right cylinders of any radius r > 0;

ii. If bc > 0 and � = 0, then S (Q) contains all tubular surfaces of radius b
2c ;

iii. If bc > 0 and � 6= 0, then S (Q) contains all right cylinders of radius b
2c .
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Proof. To prove that Q is tubular, it is su¢ cient to observe that Q
�
0; 12r

�
has

positive roots if and only if b = c = 0 or bc > 0. Then, by Corollary 56 we
obtain our �rst assertion. Moreover, we have

Rad (Q) = (0;+1) or Rad (Q) =

�
b

2c

�
in these cases.
When b = c = 0, we must have a 6= 0 by hypothesis. Hence Q (x; y) is not

in the ideal of R [x; y] generated by xr2 � 2ry + 1. Suppose now bc > 0. So
Q
�
2cx
b ;

2c+bx
2b

�
= 1

2b�x vanishes identically if and only if � = 0.
In the investigation of important relations, we also have the length of second

fundamental form and the Casorati curvature that are de�ned, respectively, by
the non-linear relations:

jAj =
p
4H2 � 2K and KC =

jAj
2
.

It follows from Example 48 that the polynomial Q (x; y) = �2x + 4y2 � c is

tubular whenever c > 0 and, in this case, Rad (Q) =
n

1
2
p
c

o
. Finally, notice that

Q
�p

cx; x+
p
c

2

�
= x2 2 R [x], so combining the Theorem 54 with this remark

we obtain the next corollary.

Corollary 60 The cylinders are the unique regular tubular Polynomial Wein-
garten surfaces with second fundamental form of constant length (or constant
Casorati curvature).

The remaining question will be answered by the our last main Theorem,
once it acts in the another direction of the previous one. More precisely, now we
consider a (�xed) regular tubular surface S and we present the set Q (S) of all
polynomials that vanishes in its Gaussian and mean curvatures. Furthermore,
an algebraic characterizations of the polynomials are expressed as a discriminant
to analyze tubular Polynomial Weingarten surfaces.

Theorem 61 Consider a regular tubular surface S of radius r > 0 in Euclid-
ean (respect. Lorentzian or Hyperbolic) 3-space and let K, H be its Gaussian
and mean curvatures. Denote by Q (S) the set of all polynomials Q 2 R [x; y]
verifying Q (K;H) � 0.

i. If S is a cylinder, then Q (S) = fQ 2 R [x; y] ; r 2 Rad (Q)g;

ii. If S is not a cylinder, then Q (S) = fQ 2 R [x; y] ; r 2 Rad� (Q)g.

In particular, every tubular surface is Weingarten.



46 CHAPTER 2. WEINGARTEN TUBULAR SURFACES

Proof. Let S be a cylinder and consider Q0 2 Q (S), it implies that

Q0 (K;H) = 0

since the Gaussian and mean curvatures of S are precisely

K � 0 and H = 1
2r , (2.47)

we have that 0 = Q0 (K;H) = Q
�
0; 12r

�
. Therefore r 2 Rad (Q) and conse-

quently Q0 2 fQ 2 R [x; y] ; r 2 Rad (Q)g. So

Q (S) � fQ 2 R [x; y] ; r 2 Rad (Q)g .

Similarly, for a given Q0 2 fQ 2 R [x; y] ; r 2 Rad (Q)g follows immediately
from (2.47) that 0 = Q0

�
0; 12r

�
= Q0 (K;H) then Q0 2 Q (S) and the equality

of the sets is obtained

Q (S) = fQ 2 R [x; y] ; r 2 Rad (Q)g .

If S is not a cylinder and consider K and H its Gaussian and mean curva-
tures, in a given order. If Q0 2 Q (S), it yields

0 = Q0 (K;H) .

In the aim to prove that Q0 is the ideal in R [x; y] generated by xr2 � 2ry + 1,
by Theorem 44 it is only necessary verify

Q0
�
x
r ;

xr+1
2r

�
� 0 8x.

Suppose that Q0
�
x
r ;

xr+1
2r

�
is not null, then by Lema 50 we have that S is a

cylinder and we arrive at a contradiction. Then

Q (S) �


xr2 � 2yr + 1

�
.

Conversely, consider Q0 2


xr2 � 2yr + 1

�
, the Theorem 44 provides that

0 = Q0
�
k1
r ;

k1r+1
2r

�
= Q0 (K;H)

thus Q0 2 Q (S). Hence it gives

Q (S) =


xr2 � 2yr + 1

�
.

An outcome of our last main theorem is presented in the next example:

Example 62 Denote by C the set of all cylinders in Euclidean (respect. Lorentzian
or Hyperbolic) 3-space and by Cr;
 the cylinder of radius r around the straight
line 
. Then, the ideal generated by x in R [x; y] verify

hxi =
\

S2C
Q (C) =

\
r2R�+

Q (Cr;
) ,
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for every �xed straight line 
.
In fact, if we consider Q (x; y) 2

T
S2CQ (S) it follows that

Q
�
0; 12r

�
= 0

for every radius r of a cylinder. Therefore, Q (0; y) 2 R [y] is identically null
and because Q (x; y) is a non trivial relation, it implies

Q (x; y) = xR (x; y)

where R (x; y) 2 R [x; y] not null. The conversely is straightforward.
The interesting in the second equality lies on the fact that is not necessary

consider every cylinder, it is only needed consider every cylinder around a �xed
straight line 
.

Finally, Theorem 61 promotes the answer (and proof) for the question about
non linear Weingarten surfaces for the case of tubular surfaces.

Theorem 63 The cylinders are the only tubular surfaces that verify a true
nonlinear relation Q (K;H) � 0.

We conclude this work achieving a complete classi�cation of Polynomial
Weingarten tubular surfaces for any polynomial relation. Furthermore, we pre-
sented the necessary and su¢ cient condition for existence of Polynomial Wein-
garten surfaces and we also proved that cylinders are the only non linear Wein-
garten tubular surfaces.
The fully description of the sets S (Q) and Q (S) allows us to construct

and analyse families of tubular surfaces that vanishes a relation and de�ne
but also study polynomials whose roots are the Gaussian and mean curvatures
of a tubular surface, respectively. Therefore, the investigation of Polynomial
Weingarten tubular surfaces is completed.

2.3.1 (k1; k2)-Weingarten Tubular Surfaces

Motivated by the observation that every polynomial relation P (K;H) = 0,
where K and H denotes the Gaussian and mean curvatures, can always be
rewritten as a polynomial relation between the principal curvatures, but the
conversely is not (necessarily) true. We propose to ourselves to investigate the
class of tubular surfaces whose principal curvatures verify an arbitrary poly-
nomial relation. Hence, these surfaces, sometimes called (k1; k2)-Weingarten
surfaces are the focus of our study in this section.
Inspired by the Theorem 61 and Theorem 54, this section fully classi�cates

Weingarten regular tubular surfaces in Euclidean, Lorentzian and Hyperbolic
3-space whose principal curvatures vanishes an arbitrary polynomial relation.
Furthermore, our results determines the set of all polynomials vanished by the
principal curvatures of a given regular tubular surface. More precisely, in Euclid-
ean case, we have the Theorem below:
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Theorem 64 Consider a regular tubular surface S and let k1 � k2 be its princi-
pal curvatures. Denote by P (S) the set of all polynomials P 2 R [x; y] verifying
P (k1; k2) � 0.

i. If S is a cylinder, then P (S) = fP 2 R [x; y] ; P (0; k2) � 0g

ii. If S is not a cylinder, then P (S) is the ideal in R [x; y] generated by y�k2.

In particular, S is a Weingarten surface.

Theorem 65 Consider a polynomial P (x; y) 2 R [x; y]. The set S (P ) of all
regular tubular surfaces whose principal curvatures k1 � k2 verify P (k1; k2) � 0
is composed by:

i. Cylinders of radius r > 0, where P
�
0; 1r
�
� 0

ii. Tubular surfaces of radius r > 0, where P
�
0; 1r
�
� 0 and P is in the ideal

of R [x; y] generated by y � 1
r .

In order to present the main theorem in a more suitable way, we will consider
the following de�nition:

De�nition 66 A polynomial P (x; y) = xnAn (y)+:::+xA1 (y)+A0 (y) is called
(k1; k2)-tubular, if A0 (y) has strictly positive roots. In this case, the set

RP =

�
r 2 R ; 1

r
is strictly positive roots of A0 (y)

�
is called the radius of P ; Otherwise,it will be called non (k1; k2)-tubular.

The terminology used in above de�nition is motivated, as we will see, by the
fact that exists a Weingarten tubular surface verifying a polynomial relation if
and only if the polynomial is tubular.
Before reformulating the statement of Theorems mentioned in the beginning

of the section, let us present a proposition showing that the condition of a
polynomial belong to the ideal generated by y � 1

r can be replaced by another
one that is easier to check.

Proposition 67 Consider a (k1; k2)-tubular polynomial P (x; y) 2 R [x; y] and
r 2 RadP . Then P is divided by y� 1

r if and only if P
�
x; 1r

�
2 R [x] is identically

null.

Proof. Consider polynomials Ai (y) 2 R [y] as in De�nition 45. and write

P

�
x;
1

r

�
= xnAn

�
1

r

�
+ :::+ xA1

�
1

r

�
+A0

�
1

r

�
,
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If P
�
x; 1r

�
is identically null, we have Ai

�
1
r

�
= 0, for every i = 1; : : : ; n. Then

each polynomial Ai (y) is factorized as Ai (y) =
�
y � 1

r

�
Bi (y) and this implies

that

P (x; y) =

�
y � 1

r

�
(xnBn (y) + :::+ xB1 (y) +B0 (y)) .

The other direction is straightforward.
To illustrate the previous de�nition and propositon, let us present below the

full classi�cation of (k1; k2)-tubular polynomial of degree 2.

Example 68 A polynomials of degree 2 is (k1; k2)-tubular if and only if is writ-
ten as

P1 (x; y) = ax2 + bxy + cy2 + dx� c
�
1

r1
+
1

r2

�
y + c

1

r1r2
;

P2 (x; y) = ax2 + bxy + dx+ ey � e

r1
;

P3 (x; y) = ax2 + bxy + dx.

where a, b, d, e 2 R, c 6= 0, e 6= 0, r1 > 0 and r2 2 R. In these cases

RadP1 =

�
fr1; r2g if r2 > 0
fr1g if r2 � 0

, RadP2 = fr1g , RadP3 = (0;+1) .

Moreover, Pi
�
x; 1rj

�
is identically null if and only if

a = 0 and b+ drj = 0,

for 1 � i � 3 and 1 � j � 2.

In view of the above discussion, Theorems 65 & 64 stated in the beginning
of this section are consequences of the following theorem:

Theorem 69 Let P (x; y) be a polynomial in R [x; y]. Then:

1. There is a Weingarten tubular surface in Euclidean, Lorentzian or Hyperbolic
3-spaces of radius r > 0 verifying P (k1; k2) = 0 if and only if P is (k1; k2)-
tubular and r 2 Rp.

Moreover, assuming P is (k1; k2)-tubular and r 2 Rp, we have

2. P
�
x; 1r

�
2 R [x] is identically null if and only if every tubular surface of

radius r 2 Rp verify P (k1; k2) = 0.

3. P
�
x; 1r

�
2 R [x] is not null if and only if cylinders of radius r 2 Rp are the

only tubular surfaces verifying P (k1; k2) = 0.
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Proof. First of all, let Ai (y) 2 R [y] be polynomials as in De�nition (66).
If P (x; y) is a (k1; k2)-tubular polynomial and r 2 RP , it is easy to see that

right cylinders of radius r verify P (k1; k2) = 0. Conversely, suppose there is a
tubular surface S verifying

0 = P (k1; k2) = (k1)
n
An (k2) + : : :+ k1A1 (k2) +A0 (k2) (2.48)

and consider the polynomial

P

�
x;
1

r

�
= xnAn

�
1

r

�
+ : : :+ xA1

�
1

r

�
+A0

�
1

r

�
. (2.49)

By De�nition (66), we only need to prove that A0
�
1
r

�
= 0.

Suppose that A0
�
1
r

�
is not null. Follows from (2.48) and (2.49) that k1 (s; t)

is a non zero constant function. More precisely, there is � 6= 0 such that

k1 (s; t) =
� (s)� (t) "B

1 + r� (s)� (t) "B
= �. (2.50)

The above equation provides

"B� (s) (1� r�)� (t) = � (2.51)

which implies that � (s) (1� r�) 6= 0, for every s 2 (a; b). Then,

� (t) =
�

"B� (s) (1� r�)
; (2.52)

for every (s; t) 2 (a; b)�R. This implies that � is a constant function, which is
an absurd because � (t) represents � cos t, sin t, sinh t or � cosh t. This concludes
the proof of item (1).
Assume that P is (k1; k2)-tubular and �x r 2 Rp. In this case

P

�
x;
1

r

�
= xnAn

�
1

r

�
+ : : :+ xA1

�
1

r

�
.

If P
�
x; 1r

�
is identically null, follows from (2.10) and Propostion 67 that

every tubular surface of radius r 2 RP veri�es P (k1; k2) = 0.
Suppose that P

�
x; 1r

�
is not identically null and consider a tubular surface

S verifying P (k1; k2). In this case, the principal curvature k1 (s; t) of S must
be a constant function. Moreover, k1 (s; t) must be identically null because,
as proved in Item (1), we arrive in a contradiction when k1 (s; t) is a non zero
constant function. Then

k1 (s; t) =
� (s)� (t) "B

1 + r� (s)� (t) "B
= 0 ) � (s)� (t) = 0,

for every (s; t) 2 (a; b) � R. Since � (t) represents cos t, sin t, sinh t or cosh t,
the above equality implies that the curvature � of the central curve of S is
identically null. As a consequence, the cylinders are the only tubular surfaces
of radius r verifying P (k1; k2) = 0. With this assertion we �nish the proof of
item (2) and (3).
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Remark 70 Notice that if exists a Weingarten tubular surface of radius r > 0
of some causality verifying P (k1; k2) = 0, in fact, exists a Weingarten tubular
surface of radius r > 0 verifying P (k1; k2) = 0, for every possible causality.

A special and very studied polynomial relation among the principal curva-
tures, as well as among the Gaussian and the mean curvatures, is the linear
one.

Corollary 71 Consider a; b; c 2 R, not all null.

1. There is a tubular surface in Euclidean Lorentzian or Hyperbolic 3-space
verifying the relation

ak1 + bk2 = c (2.53)

if and only if b = c = 0 or bc > 0.

More precisely, we have:

2. b = c = 0 if and only if every right cylinder verify Relation (2.53);

3. a = 0 and bc > 0 if and only if every tubular surfaces of radius b
c verify

Relation (2.53);

4. a 6= 0 and bc > 0 if and only if right cylinders of radius b
c verify Relation

(2.53).

Proof of the Euclidean case:. Consider the polynomial P (x; y) = ax+by�c.
To prove that P is tubular, it is su¢ cient to observe that A0 (y) = by � c has
positive roots if and only if b = c = 0 or bc > 0. Moreover, we have

RP = (0;+1) or RP =

�
b

c

�
is these cases.
When b = c = 0, we must have a 6= 0 by hypothesis. Hence P (x; y) = ax is

clearly not null. Suppose now bc > 0. So P
�
x; cb

�
= ax vanishes identically if

and only if a = 0.
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Chapter 3

Weingarten Cyclic Surfaces

In this chapter we will classify Polynomial Weingarten cyclic surfaces. We start
our discussion in Section 3.1 with the de�nition of cyclic surface in the Euclidean
3-space, thus we proceed to the investigation of cyclic surfaces in the Lorentzian
3-space, where for each combination of causality of central curve, causality of
principal normal and, �nally, foliation of cyclic surface (i.e. if the normal sec-
tions can be Lorentzian circles or Lorentzian hyperboles), there is a speci�c type
of cyclic surface.
In the Section 3.2, motivated by the challenges that we face in the study

of Polynomial Weingarten cyclic surface, we obtain several results concerning
polynomial characterization, degree of composition of polynomials and, also,
several summatory identities. A sample of the work presented in the Section 3.2
is that we are primarily interested in conditions to decide if either a polynomial
P (x; y) may be factorized as

�
�x+ y2

�n
R (x; y), where R (x; y) 2 R [x; y] and

n 2 N or not. This is relevant, once we remark that the algebraic condition
�x + y2 provides a geometric feature of the surface. More precisely, in E3, a
surface whose curvatures verify �K +H2 is a totally umbilic surface.
Once, we achieve several polynomial results, they are applied in the Section

3.3 where we display our main theorem that fully describe Polynomial Wein-
garten cyclic surfaces. The theorem 102 furnishes that a Weingarten cyclic sur-
face must be a (smooth) combination of tubular surface and rotational surface.
Moreover, we present conditions over the polynomial that allows us to conclude
when the cyclic surface is, indeed, a globally rotational surface. Finally, we give
several applications of our main result.

3.1 Cyclic Surfaces

In this section we will discuss cyclic surfaces in the Euclidean and in the
Lorentzian 3-space. We start in section�s �rst part that we study the class
of cyclic surface in Euclidean space where we will exhibit the condition of reg-
ularity and it is presented the Gaussian and mean curvatures.

53
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In the second part that correspondes to the Lorentzian 3-space, once again,
we will focus in the several possibilities of foliation for a cyclic surface. In other
words, cyclic surfaces may have Lorentzian circles or Lorentzian hyperboles as
foliation (which is a consequence of the index of the metric).
Moreover, we will use a di¤erent moving frame than the Frenet one to para-

metrize our cyclic surface. Speci�cally, here we will use the Monge frame that
is a moving frame that better suits our goals. The reason of this choice lies on
the necessity to have the expression of Gaussian and mean curvatures in a form
that we can easily apply our main theorem (see Section 3.3 for more details).
Then, we will present the Gaussian and mean curvatures of the cyclic surfaces
in L3.

3.1.1 Euclidean Cyclic Surfaces

In the Euclidean 3-space, a cyclic surface around a regular curve 
 : (a; b)!
R3, called central curve, with radius r : (a; b) ! R such that r (s) > 0 for
every s 2 (a; b), is the set obtained by the union of all circles Sr(s) (
 (s)) of
radius r (s) > 0 and center 
 (s) contained in the normal planes Ts
? of 
.
In intervals where 
 is birregular, a cyclic surface can be parametrized by

the application:

 (s; t) = 
 (s) + (r (s) cos t)N (s) + (r (s) sin t)B (s) , (3.1)

where fT;N;Bg is the Frenet frame.
To avoid undesirable cases, we will include in the de�nition an additional

condition for the regularity of curvature of central curve. We will say that a
cyclic surface is regular if there is an interval � � N (possibly in�nite) and there
is a strictly increasing sequence (�n)n2� in (a; b) of isolated points such that

i. The curvature � of 
 verify � (�n) = 0 for every n 2 �

ii. For every n 2 �, consider the set

�n =
�
t 2
�
�n; �n+1

�
; � (t) = 0

	
then

int�n = ; or int�n =
�
�n; �n+1

�
.

Proposition 72 Given a cyclic surface with central curve 
 and radius r (s) >
0 in Euclidean 3-space. Consider an interval I where 
 is birregular. The
parametrization (3.1) is an immersion if and only if

� (s; t) = r0 (s)
2
+ (1� � (s) r (s) cos t)2 > 0,

for every (s; t) 2 I � R.

Proof. Using (1.1) and (3.1) we obtain

 s = (1� r� cos t)T + (r0 cos t� r� sin t)N + (r0 sin t+ r� cos t)B (3.2)
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and
 t = � (r sin t)N + (r cos t)B (3.3)

therefore
k s �  tk

2
E = r2 (s)� (s; t)

since r (s) > 0 everywhere, we achieved the desired.

De�nition 73 A cyclic surface with central curve 
 and radius r (s) > 0 in
Euclidean 3-space is called regular if 
 is parametrized by arc length and

� (s; t) = r0 (s)
2
+ (1� � (s) r (s) cos t)2 > 0, (3.4)

for every (s; t) 2 I � R.

Proposition 74 Consider a regular cyclic surface with central curve 
 and
radius r (s) > 0 in Euclidean 3-space. The Gaussian and mean curvature are
respectively given by

K =
(r4�4) cos4 t�3r3�3 cos3 t+r2�(3�(r0)2+r�0r0+3��rr00�) cos2 t+r3r0�2� cos t sin t

r2((r0)2+(1��(s)r(s) cos t)2)
2

+
�r(2�(r0)2+r�0r0+��2rr00�) cos t�r2r0�� sin t�(r(r0)2�2+r00)

r2((r0)2+(1��(s)r(s) cos t)2)
2

and

H =
�2r4�3 cos3 t+5r3�2 cos2 t�r2(3�(r0)2+r�0r0+4��rr00�) cos t�r3r0�� sin t+r2((r0)2�rr00+1)

2r2((r0)2+(1��(s)r(s) cos t)2)
3
2

.

Proof. The coe¢ cients of �rst fundamental form are

E = (1� r� cos t)2 + r2�2 + (r0)2 , F = r2� , G = r2

and the coe¢ cients of second fundamental form are

e =
r0(�r�0 cos t�2r0� cos t+r�� sin t)+(r� cos t�1)(�r�2 cos2 t+� cos t�r�2+r00)

2
p
�

f =
r�(1��(s)r(s) cos t)+(r0)r� sin t

2
p
�

g = r(1��(s)r(s) cos t)
2
p
�

By the Formula 1.5 and by the above coe¢ cients, a straightforward calculus
provide the desired.

Notation 75 For practical purpposes, we will write the Gaussian and mean
curvatures of a regular cyclic surface as

K =
�

r2�2
and H =

�

2r2�
3
2

(3.5)
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where

� = r4�4 cos4 t� 3r3�3 cos3 t+ r2�
�
3�(r0)2 + r�0r0 + 3�� rr00�

�
cos2 t(3.6)

+r3r0�2� cos t sin t� r
�
2�(r0)2 + r�0r0 + �� 2rr00�

�
cos t

�r2r0�� sin t� r
�
r(r0)2�2 + r00

�
� = �2r4�3 cos3 t+ 5r3�2 cos2 t� r2

�
3�(r0)2 + r�0r0 + 4�� rr00�

�
cos t

�r3r0�� sin t+ r
�
(r0)2 � rr00 + 1

�
� = (r0)

2
+ (1� r� cos t)2

3.1.2 Lorentzian Cyclic Surfaces

In the Lorentzian 3-space, a cyclic surface around a regular curve 
 : (a; b)!
L3, called central curve, with radius r : (a; b)! R such that r (s) > 0 for every
s 2 (a; b), is the set obtained by the union of all Lorentzian circles or Lorentzian
hyperboles, Sr(s) (
 (s)), of radius r (s) > 0 and center 
 (s) contained in the
normal planes Ts
? of 
.
In intervals where 
 is birregular, a cyclic surface can be parametrized by

the application:

 (s; t) = 
 (s) + r (s) b (t)N (s) + r (s) c (t)B (s) , (3.7)

where fT;N;Bg is the Frenet frame and b (t), c (t) are smooth function that we
will study and explicit it later.
To avoid undesirable cases, we will include in the de�nition an additional

condition for the regularity of curvature of central curve. We will say that a
cyclic surface is regular if there is an interval � � N (possibly in�nite) and there
is a strictly increasing sequence (�n)n2� in (a; b) of isolated points such that

i. The curvature � of 
 verify � (�n) = 0 for every n 2 �

ii. For every n 2 �, consider the set

�n =
�
t 2
�
�n; �n+1

�
; � (t) = 0

	
then

int�n = ; or int�n =
�
�n; �n+1

�
.

Now, let us comeback to the investigation of the functions b (t) and c (t),
we decide express (3.7) with a generic parametrization because for each �xed
s0 2 (a; b), we have a Lorentzian circle or Lorentzian hyperbole in L3, then the
following system must be veri�ed

"r2 = gL ( (s0; t)� 
 (s0) ;  (s0; t)� 
 (s0)) = "Nr
2b2 + "Br

2c2,
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where " 2 f�1; 1g is �xed, depending on if Sr(s) (
 (s)) is a Lorentzian circle
(" = 1) which is given by the set

Sr(s) (
 (s)) =
n
x 2 L3 ; gL (x� 
 (s) ; x� 
 (s)) = r (s)

2
o
;

or if Sr(s) (
 (s)) is a Lorentzian hyperboles (" = �1) which is given by the
set

Sr(s) (
 (s)) =
n
x 2 L3 ; gL (x� 
 (s) ; x� 
 (s)) = �r (s)2

o
.

Therefore, the solutions of the system

"Nb (t)
2
+ "Bc (t)

2
= ".

are given by chosening the causality of central curve ("T ), of principal normal
("N ) and the normal section ("). Hence, we have the below cases to consider:
If 
0 = T is spacelike, "T = 1, it yields that "N"B = �1, so we have the

following cases to study:

1. If " = 1, then 0 < r = "Nb
2 + "Bc

2, in the case that "N = �1, it implies
that

b = sinh t and c = cosh t ;

2. If " = 1, then 0 < r = "Nb
2 + "Bc

2, in the case that "N = 1, it implies
that

b = cosh t and c = sinh t ;

3. If " = �1, then r = "Nb
2 + "Bc

2 < 0, in the case that "N = �1, it implies
that

b = cosh t and c = sinh t ;

4. If " = �1, then r = "Nb
2 + "Bc

2 < 0, in the case that "N = 1, it implies
that

b = sinh t and c = cosh t .

On the other hand, if we have 
0 = T timelike, "T = �1, it yields that
"N = 1 = "B , thus we have the following cases to study:

5. If " = 1, then 0 < r = b2 + c2 therefore

b = cos t and c = sin t ;

6. If " = �1, then r = b2 + c2 < 0 follows the non existence of this case.

In the next calculus we will present each possible conception of cyclic surface,
that is, we will rewrite (3.7) for each option of b (t) and c (t). In other words,
we will parametrize the cyclic surface for each of the above cases. Moreover, for
each of them, we will exhibt the Gaussian and mean curvature.
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The applied technique, however, is a little di¤erent than the one used in the
rest of the text, once we employ the Monge frame (instead of the Frenet frame),
but before to proceed to the discussion of moving frames, let us explain the
reason to make that choice.
In the aim to accomplish a theorem that holds for cyclic surfaces in the

Euclidean and in the Lorentzian 3-space, it is convenient that Gaussian and
mean curvatures were similar between the di¤erent spaces. So, the Monge frame
is the more suitable frame for our purpposes.
As you may known, the moving frame is a classical di¤erential geometry

method that transcribes (extrinsic) geometrical features trhough the study of
the notion of a local ordered basis of a vector space.
The Monge frame has the particular property that its undo the torsion pre-

sented in the surface, however, for cyclic surfaces, undo the torsion preserves
the geometric shape of the surface, since for circles we just consider a rotated
basis. Thus, the cyclic surface maintain the geometric form, but the calculus
become more convenient for us.

If the surface is of the type 1, the parametrization is

� (s; t) = �+ r (N sinh t+B cosh t)

where

N = cosh N + sinh B and B = sinh N + cosh B

with fT;N;Bg is the Frenet frame and  = �� .
As a matter of fact, the derivative of N provides

(N )
0
= (N )

0
= � cosh T +

�
� +  0

�
sinh N +

�
� +  0

�
cosh B

and since  = �� it follows

(N )
0
= � cosh T .

Similarly, we have that

(B )
0
= � sinh T +

�
� +  0

�
cosh N +

�
� +  0

�
sinh B

therefore we conclude that

(B )
0
= � sinh T .

Then, the Monge Frame in this case is0@ T 0

N 0
 

B0 

1A =

0@ 0 � 0
� cosh 0 0
� sinh 0 0

1A0@ T
N
B

1A .
We remark that causality of vectors are perserved, once we have

hN ; N i = �1 and hB ; B i = 1.

Moreover, fT;N ; B g is a orthonormal basis.
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Proposition 76 For cyclic surface with central curve 
 (s) and radius r (s) > 0
of the type 1 in the Lorentzian 3-space, the Gaussian and mean curvatures are
as follows:

K =
(r4�4) sinh4(t+ )+(3r3�3) sinh3(t+ )+r2�(3�(r0)2+r�0r0+3��rr00�) sinh2(t+ )+r3r0�2 0 sinh(t+ ) cosh(t+ )

r2((r� sinh(t+ )+1)2+(r0)2)
2

+
r(2�(r0)2+r�0r0+��2rr00�) sinh(t+ )+r2r0� 0 cosh(t+ )�r(r00�r(r0)2�2)

r2((r� sinh(t+ )+1)2+(r0)2)
2

H =
(2r4�3) sinh3(t+ )+(5r3�2) sinh2(t+ )+r2(3�(r0)2+r�0r0+4��rr00�) sinh(t+ )

2r2(")
3
2 ((r� sinh(t+ )+1)2+(r0)2)

3
2

+
r3r0� 0 cosh(t+ )+r((r0)2�rr00+1)

2r2(")
3
2 ((r� sinh(t+ )+1)2+(r0)2)

3
2

Proof. The coe¢ cients of �rst fundamental form are

E = (r� cosh (t+  ) + 1)
2
+ (r0)

2 , F = 0, G = �r2

and the coe¢ cients of second fundamental form are

e =
(�r2�3) sinh3(t+ )+(�2r�2) cosh2(t+ )+(�rr0� 0) cosh(t+ )

2
q
�"(�((r� sinh(t+ )+1)2+(r0)2))

+
+(rr00��r0(r�0+2r0�)��) sinh(t+ )+(2r�2+r00)

2
q
�"(�((r� sinh(t+ )+1)2+(r0)2))

f = �rr0� cosh(t+ )
2
q
�"(�((r� sinh(t+ )+1)2+(r0)2))

g = r(r� sinh(t+ )+1)

2
q
�"(�((r� sinh(t+ )+1)2+(r0)2))

By the Formula 1.6 and by the above coe¢ cients, a straightforward calculus
provide the desired.

If the surface is of the type 2, the parametrization is

� (s; t) = �+ r (N cosh t+B sinh t)

where

N = cosh N + sinh B and B = sinh N + cosh B

with fT;N;Bg is the Frenet frame and  = �� .
As a matter of fact, the derivative of N provides

(N )
0
= �� cosh T +

�
� +  0

�
N sinh +

�
� +  0

�
B cosh 

and since  = �� it follows

(N )
0
= �� cosh T .
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Similarly, we have that

(B )
0
= �� sinh T +

�
� +  0

�
N cosh +

�
� +  0

�
B sinh 

therefore we conclude that

(B )
0
= �� sinh T .

Then, the Monge Frame in this case is0@ T 0

N 0
 

B0 

1A =

0@ 0 � 0
�� cosh 0 0
�� sinh 0 0

1A0@ T
N
B

1A .
We remark that causality of vectors are perserved, once we have

hN ; N i = 1 and hB ; B i = �1.

Moreover, fT;N ; B g is a orthonormal basis.

Proposition 77 For cyclic surface with central curve 
 (s) and radius r (s) > 0
of the type 2 in the Lorentzian 3-space, the Gaussian and mean curvatures are
as follows:

K =
(r4�4) cosh4(t+ )�3r3�3 cosh3(t+ )+r2�(3�(r0)2+r�0r0+3��rr00�) cosh2(t+ )+r3r0�2 0 cosh(t+ ) sinh(t+ )

(r2)((1�r� cosh(t+ ))2+(r0)2)
2

+
�r(2�(r0)2+r�0r0+��2rr00�) cosh(t+ )+r2r0� 0 sinh(t+ )�(r2(r0)2�2+r00r)

(r2)((1�r� cosh(t+ ))2+(r0)2)
2

H =
�2r4�3 cosh3(t+ )+(5r3�2) cosh2(t+ )+r2(3�(r0)2+r�0r0+4��rr00�) cosh(t+ )

2r2(�")
1
2 ((1�r� cosh(t+ ))2+(r0)2)

3
2

+
r3r0� 0 sinh(t+ )+(r2r00�r((r0)2+1))

2r2(�")
1
2 ((1�r� cosh(t+ ))2+(r0)2)

3
2

Proof. The coe¢ cients of �rst fundamental form are

E = (1� r� cosh (t+  ))2 + (r0)2, F = 0, G = �r2

and the coe¢ cients of second fundamental form are

e =
(�r2�3) cosh3(t+ )+(2r�2) cosh2(t+ )+(�2�(r0)2�r�0r0��) cosh(t+ )

2
q
�"((1�r� cosh(t+ ))2+(r0)2)

+�rr0� 0 sinh(t+ )+rr00� cosh(t+ )�r00
2
q
�"((1�r� cosh(t+ ))2+(r0)2)

f = �r0r� sinh(t+ )
2
q
�"((1�r� cosh(t+ ))2+(r0)2)

g = r(r� cosh(t+ )�1)
2
q
�"((1�r� cosh(t+ ))2+(r0)2)
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By the Formula 1.6 and by the above coe¢ cients, a straightforward calculus
provide the desired.

If the surface is of the type 3, the parametrization is

� (s; t) = �+ r (N cosh t+B sinh t)

where

N = cosh N + sinh B and B = sinh N + cosh B

with fT;N;Bg is the Frenet frame and  = �� .
As a matter of fact, the derivative of N provides

(N )
0
= � cosh T +

�
� +  0

�
sinh N +

�
� +  0

�
cosh B

and since  = �� it follows

(N )
0
= � cosh T .

Similarly, we have that

(B )
0
= (� sinh )T +

�
� +  0

�
cosh N +

�
� +  0

�
sinh B

therefore we conclude that

(B )
0
= � sinh T .

Then, the Monge Frame in this case is0@ T 0

N 0
 

B0 

1A =

0@ 0 � 0
� cosh 0 0
� sinh 0 0

1A0@ T
N
B

1A .
We remark that causality of vectors are perserved, once we have

hN ; N i = �1 and hB ; B i = 1.

Moreover, fT;N ; B g is a orthonormal basis.

Proposition 78 For cyclic surface with central curve 
 (s) and radius r (s) > 0
of the type 3 in the Lorentzian 3-space, the Gaussian and mean curvatures are
as follows:

K = � (r
4�4) cosh4(t+ )+(3r3�3) cosh3(t+ )+r2�(�3�(r0)2�r�0r0+3�+rr00�) cosh2(t+ )�r3r0�2 0 cosh(t+ ) sinh(t+ )

r2((r� cosh(t+ (s))+1)2�(r0(s))2)
2

� r(��r0(r�0+2r0�)+2rr00�) cosh(t+ )�r2r0� 0 sinh(t+ )+(r2(r0)2�2+r00r)
r2((r� cosh(t+ (s))+1)2�(r0(s))2)

2

H =
�2r4�3 cosh3(t+ )�5r3�2 cosh2(t+ )�r2(�3�(r0)2�r�0r0+4�+rr00�) cosh(t+ )

2r2(�")
3
2 ((r0)2�(r� cosh(t+ )+1)2)

3
2

+
r3r0� 0 sinh(t+ )+(r((r0)2�1)�r2r00)

2r2(�")
3
2 ((r0)2�(r� cosh(t+ )+1)2)

3
2
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Proof. The coe¢ cients of �rst fundamental form are

E = (r� cosh (t+  ) + 1)
2 � (r0)2 , F = 0, G = r2

and the coe¢ cients of second fundamental form are

e =
(�r2�3) cosh3(t+ )+(�2r�2) cosh2(t+ )

2
q
�"((r� cosh(t+ (s))+1)2�(r0(s))2)

+
(r0(r�0+2r0�)���rr00�) cosh(t+ )+rr0� 0 sinh(t+ )�r00

2
q
�"((r� cosh(t+ (s))+1)2�(r0(s))2)

f = rr0� sinh(t+ )

2
q
�"((r� cosh(t+ (s))+1)2�(r0(s))2)

g = �r(r� cosh(t+ )+1)
2
q
�"((r� cosh(t+ (s))+1)2�(r0(s))2)

By the Formula 1.6 and by the above coe¢ cients, a straightforward calculus
provide the desired.

If the surface is of the type 4, the parametrization is

� (s; t) = �+ r (N sinh t+B cosh t)

where

N = cosh N + sinh B and B = sinh N + cosh B

with fT;N;Bg is the Frenet frame and  = �� .
As a matter of fact, the derivative of N provides

(N )
0
= (�� cosh )T +

�
� +  0

�
N sinh +

�
� +  0

�
B cosh 

and since  = �� it follows

(N )
0
= �� cosh T .

Similarly, we have that

(B )
0
= (�� sinh )T +

�
� +  0

�
N cosh +

�
� +  0

�
B sinh 

therefore we conclude that

(B )
0
= �� sinh T .

Then, the Monge Frame in this case is0@ T 0

N 0
 

B0 

1A =

0@ 0 � 0
�� cosh 0 0
�� sinh 0 0

1A0@ T
N
B

1A .
We remark that causality of vectors is perserved, once we have

hN ; N i = 1 and hB ; B i = �1.

Moreover, fT;N ; B g is a orthonormal basis.
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Proposition 79 For cyclic surface with central curve 
 (s) and radius r (s) > 0
of the type 4 in the Lorentzian 3-space, the Gaussian and mean curvatures are
as follows:

K = � (r
4�4) sinh4(t+ )+(�3r3�3) sinh3(t+ )+(r(2r�2+r�(��r0(r�0+2r0�)+rr00�))�r2(r0)2�2) sinh2(t+ )

r2(((1�r� sinh(t+ ))2�(r0)2))
2

� (�r
3r0�2 0) sinh(t+ ) cosh(t+ )+(�r(��r0(r�0+2r0�)+2rr00�)) sinh(t+ )+r2r0� 0 cosh(t+ )+(rr00�r2(r0)2�2)

r2(((1�r� sinh(t+ ))2�(r0)2))
2

H =
(2r4�3) sinh3(t+ )+(�5r3�2) sinh2(t+ )+(r2(��r0(r�0+2r0�)+rr00�)+r(2r��r�((r0)2�1))) sinh(t+ )

r2(�")
3
2 ((1�r� sinh(t+ ))2�(r0)2)

3
2

+
�r3r0� 0 cosh(t+ )+(r((r0)2�1)�r2r00)

r2(�")
3
2 ((1�r� sinh(t+ ))2�(r0)2)

3
2

Proof. The coe¢ cients of �rst fundamental form are

E = (1� r� sinh (t+  ))2 � (r0)2, F = 0, G = r2

and the coe¢ cients of second fundamental form are

e =
(r2�3) sinh3(t+ )+(�2r�2) sinh2(t+ )

2
q
�"((1�r� sinh(t+ ))2�(r0)2)

+
(��r0(r�0+2r0�)+rr00�) sinh(t+ )+(�rr0� 0) cosh(t+ )�r00

2
q
�"((1�r� sinh(t+ ))2�(r0)2)

f = �r0r� cosh(t+ )
2
q
�"((1�r� sinh(t+ ))2�(r0)2)

g = r(r� sinh(t+ )�1)
2
q
�"((1�r� sinh(t+ ))2�(r0)2)

By the Formula 1.6 and by the above coe¢ cients, a straightforward calculus
provide the desired.

If the surface is of the type 5, the parametrization is

� (s; t) = �+ r (N cos t+B sin t)

where

N = sin N + cos B and B = � cos N + sin B

with fT;N;Bg is the Frenet frame and  = �� .
As a matter of fact, the derivative of N provides

(N )
0
= (� sin )T +

�
 0 � �

�
cos N +

�
� �  0

�
sin 

and since  = � it follows
(N )

0
= � sin T .

Similarly, we have that

(B )
0
= (�� cos )T +

�
 0 � �

�
sin N +

�
 0 � �

�
cos B
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therefore we conclude that

(B )
0
= �� cos T .

Then, the Monge Frame in this case is0@ T 0

N 0
 

B0 

1A =

0@ 0 � 0
� sin 0 0
�� cos 0 0

1A0@ T
N
B

1A .
We remark that causality of vectors are perserved, once we have

hN ; N i = 1 and hB ; B i = 1.

Moreover, fT;N ; B g is a orthonormal basis.

Proposition 80 For cyclic surface with central curve 
 (s) and radius r (s) > 0
of the type 5 in the Lorentzian 3-space, the Gaussian and mean curvatures are
as follows:

K =
r4�4 sin4( �t)+3r3�3 sin3( �t)+r2�(�3�(r0)2�r�0r0+3�+rr00�) sin2( �t)+r3r0�2 0 sin( �t) cos( �t)

r2((r0)2�(r� sin( �t)+1)2)
2

+
�(�0r2r0�2r00�r2+2�r(r0)2��r) sin( �t)�r2r0� 0 cos( �t)+(r2(r0)2�2+r00r)

r2((r0)2�(r� sin( �t)+1)2)
2

H =
2r4�3 sin3( �t)+5r3�2 sin2( �t)+(r00�r3��0r3r0�3�r2(r0)2+4�r2) sin( �t)

2r2(�")
3
2 (�(r� sin( �t)+1)2+(r0)2)

3
2

+ �r3r0� 0 cos( �t)�r(r0)2+r2r00+r

2r2(�")
3
2 (�(r� sin( �t)+1)2+(r0)2)

3
2

Proof. The coe¢ cients of �rst fundamental form are

E = � (r� sin ( � t) + 1)2 + (r0)2 , F = 0, G = r2

and the coe¢ cients of second fundamental form are

e =
(r2�3) sin3( �t)+(2r�2) sin2( �t)+(��r0(r�0+2r0�)+rr00�) sin( �t)

2
q
�"(�(r� sin( �t)+1)2+(r0)2)

+ �rr0� 0 cos( �t)+r00
2
q
�"(�(r� sin( �t)+1)2+(r0)2)

f = r0r� cos( �t)
2
q
�"(�(r� sin( �t)+1)2+(r0)2)

g = �r(r�(sin( �t))�1)
2
q
�"(�(r� sin( �t)+1)2+(r0)2)

By the Formula 1.6 and by the above coe¢ cients, a straightforward calculus
provide the desired.
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3.2 Polynomial results for Cyclic Surfaces

This section is dedicated to the investigation of several parallel topics whose ne-
cessity for understanding emerged from the fact that they were crucial problems
in the geometric description of Polynomial Weingarten cyclic surfaces. More-
over, as consequence of this studies, we obtain several results that allows us to
achieve a complete classi�cation of such surfaces.
Brie�y, we can summarize the previous mentioned topics as the character-

ization of polynomials belonging to the ideal generated by �x + y2 2 R [x; y],
properties of degree of composition of polynomials in n-variables and, �nally,
we will present several results concerning summatories identities for polynomial
series. It is also relevant to observe that each of our results in this section has
it own value, besides potencial applications in other problems.

Throughout this section we use the symbol @ to represent the degree of a
polynomial, and we will assume without loss of generality that a polynomial
P (x; y) 2 R [x; y] always has the monomial of degree 2n, for some n 2 N. In
fact, in the case that @P = 2n� 1, we have P (x; y) =

P2n�1
i=0

P2n�1�i
j=0 ai;jx

iyj ,

hence we just consider the monomial
P2n
i=0 ai;2n�ix

iy2n�i such that ai;2n�i = 0
for every 0 � i � 2n, therefore we may write

P (x; y) =

2nX
i=0

2n�iX
j=0

ai;jx
iyj . (3.8)

Of course, this procedure does not a¤ect the degree of P .
We also recall that we may write the previous polynomial as

P (x; y) =
1X

i=�1

1X
j=�1

ai;jx
iyj

just setting ai;j = 0 whenever i < 0 or j < 0 or i + j > 2n. So, for a more
suitable expression of (3.8) we de�ne the following set


k = f(i; j) 2 Z� Z ; 0 � i � k and 0 � j � k � ig . (3.9)

Hence, the polynomial P (x; y) can be indicate as

P (x; y) =
X

(i;j)2
2n

ai;jx
iyj . (3.10)

Finally, we remark that even when P (x; y) is written as in (3.8) we still
understanding it as an in�nite polynomial as in (3.10) since the coe¢ cients ai;j 62

2n are necessarily zero. This technicalities are important because it permits
us to achieve our results especially those concerning summatories identities.

In the analysis of cyclic surfaces whose Gaussian and mean curvatures verify
P (K;H) � 0, it was needed to investigate under which conditions the following
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polynomial

P (x) =
2n�1X
i=0

1X
j=0

 
2n�i�jX
k=0

ai�k;j+2k

!
x4n�2i�j 2 R [x] . (3.11)

(which is obtained by rearranging the coe¢ cients of P (x; y) as in (3.8)) could
vanish identically. As a matter of fact, the investigation of above polynomial
leads us to our theorem that states that the hypothesis

2n�i�jX
k=0

ai�k;j+2k = 0 (3.12)

for every (i; j) 2 � = f0; : : : ; 2n� 1g�f0; 1g[f(2n; 0)g is precisely the su¢ cient
and necessary condition to the polynomial P (x; y) belong to the ideal in R [x; y]
generated by �x+ y2. A simple illustration of above remark can be checked in
the next example:

Example 81 Given the polynomial

P (x; y) = a1;1xy + a1;0x+ a0;2y
2 + a0;1y + a0;0 2 R [x; y]

consider the associated polynomial

P (x) = (a0;0 + a�1;2 + a�2;4)x4 + (a0;1 + a�1;3)x3 + (a1;0 + a0;2)x2 + a1;1x

since every coe�ciente verify ai;j = 0 whenever i < 0, or j < 0, we have

P (x) = a0;0x
4 + a0;1x

3 + (a1;0 + a0;2)x
2 + a1;1x.

Notice that P (x) may vanish identically. In fact, in order to obtain that it
is necessary choose a1;0 = �a0;2 and set all the others coe¢ cients as zero, hence
we obtain

P (x) � 0 (x) .
Then our theorem allows us to conclude information about P (x; y) 2 R [x; y] by
studying P (x) 2 R [x]. More precisely, we have that P (x; y) = y2a0;2 � xa0;2.

Remark 82 Usually and di¤erently from above example, we do not know (a
priori) the polynomial P (x; y), however from information gathered from P (x)
our theorem provides substantial details of P (x; y).

In other words, our theorem allow us to characterize polynomials of the form

P (x; y) =
�
�x+ y2

�n
R (x; y) 2 R [x; y]

for some n 2 N (possibly zero) and for some R (x; y) 2 R [x; y] through the study
of an associated polynomial P (x) 2 R [x] as in (3.11) which is signi�cantly easier
for computational calculus. The statement of our result is read as follows:
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Theorem 83 Given a positive integer n � 2, the polynomial

P (x; y) =
2nX
i=0

2n�jX
j=0

ai;jx
iyj =

X
(i;j)2
2n

ai;jx
iyj (3.13)

belongs to the ideal in R [x; y] generated by �x+ y2 if and only if its coe¢ cients
aij verify

2n�i�jX
k=0

ai�k;j+2k = 0 (3.14)

for every (i; j) 2 � = f0; : : : ; 2n� 1g � f0; 1g [ f(2n; 0)g.

Proof. Assume that P (x; y) belongs to the ideal in R [x; y] generated by �x+
y2, hence it yields that

P (x; y) =
�
�x+ y2

�
Q (x; y) (3.15)

where Q (x; y) 2 R [x; y] is a polynomial of degree 2n � 2 that may be written
as

Q (x; y) =

2n�2X
i=0

2n�2�iX
j=0

bi;jx
iyj =

X
(i;j)2
2n�2

bi;jx
iyj .

Moreover, if we de�ne

bi;j = 0 whenever (i; j) 2 Z� Z�
2n�2
it implies that

Q (x; y) =

1X
i=�1

1X
j=�1

bi;jx
iyj =

X
(i;j)2Z�Z

bi;jx
iyj .

Thus, by (3.13), (3.15) and the above remark, we have

ai;j = �bi�1;j + bi;j�2
for every i = 0; : : : ; 2n and j = 0; : : : ; 2n� i. Given (i; j) 2 �, it is obtained
2n�i�jX
k=0

ai�k;j+2k =

2n�i�jX
k=0

(�bi�k�1;j+2k + bi�k;j+2k�2)

= �
2n�i�j�1X

k=0

bi�k�1;j+2k � bi�(2n�i�j)�1;j+2(2n�i�j)

+bi;j�2 +

2n�i�jX
k=1

bi�k;j+2k�2

= �bj�2n�1+2i;4n�j�2i + bi;j�2

�
2n�i�j�1X

k=0

bi�k�1;j+2k +

2n�i�j�1X
k=0

bi�(k+1);j+2(k+1)�2

= �bj�2n�1+2i;4n�j�2i + bi;j�2.
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Notice that (i; j) 2 �, therefore j < 2 and

(j � 2n� 1 + 2i) + (4n� j � 2i) = 2n� 1 > 2n� 2

which implies that (j � 2n� 1 + 2i; 4n� j � 2i) =2 
2n�2, hence

2n�i�jX
k=0

ai�k;j+2k = �bj�2n�1+2i;4n�j�2i + bi;j�2 = 0� 0 = 0.

Reciprocally, assume that

2n�i�jX
k=0

ai�k;j+2k = 0

for every (i; j) 2 � = f0; : : : ; 2n� 1g � f0; 1g [ f(2n; 0)g.
If we set

ai;j = 0 for every (i; j) =2 
2n
it follows that we can write

P (x; y) =

1X
i=�1

1X
j=�1

ai;jx
iyj =

X
(i;j)2Z�Z

ai;jx
iyj .

Then, we de�ne

bi;j =

8<:
iP

k=0

ai�k;j+2k+2 se j � 0

0 se j < 0
; 8 (i; j) 2 Z� Z, (3.16)

also we consider the following polynomial

Q (x; y) =
2n�2X
i=0

2n�2�iX
j=0

bi;jx
iyj .

We de�ne

gP2n (x; y) = 2nX
i=0

2n�iX
j=0

gai;jxiyj = ��x+ y2�Q (x; y)
and we point out that gai;j = bi;j�2 � bi�1;j

for every (i; j) 2 
2n. Our objective is to show P2n =gP2n, so it is su¢ cient to
verify

ai;j =gai;j = bi;j�2 � bi�1;j ,

for every (i; j) 2 
2n.
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For every (i; j) 2 
2n such that j � 2, we have

gai;j = bi;j�2 � bi�1;j

=

2n�i�jX
k=0

ai�k;j+2k �
2n�i�jX
k=1

ai�k;j+2k

= ai;j +

2n�i�jX
k=1

ai�k;j+2k �
2n�i�jX
k=1

ai�k;j+2k

= ai;j .

thus, in this case, the desired is achieved.
Still remaining three cases to be considered, named (0; 0), (i; 0) and (i; 1).

First, let (i; j) = (0; 0) so in this case

ga0;0 = b0;0�2 � b0�1;0 = b0;�2 � b�1;0 = 0� 0 = 0. (3.17)

On the other hand, the hypothesis applied to (i; j) = (0; 0) provide to us

0 =

2nX
k=0

a�k;2k = a0;0 +

2nX
k=1

a�k;2k = a0;0. (3.18)

By Remarks 3.17 and 3.18, we conclude this case.
Proceeding to the case (i; 0) for every i 2 f1; : : : ; 2ng. Notice that, in on

hand we have

gai;0 = bi;�2 � bi�1;0 = �
i�1X
k=0

ai�(k+1);2(k+1) = �
iX

k=1

ai�k;2k.

On the other hand, the hypothesis applied for (i; 0) gives

0 =
2n�i�0X
k=0

ai�k;0+2k = ai;0 +
2n�iX
k=1

ai�k;2k, (3.19)

then

gai;0 = 0� iX
k=1

ai�k;2k =

 
ai;0 +

2n�iX
k=1

ai�k;2k

!
�

iX
k=1

ai�k;2k. (3.20)

i. If 2n� i = i, the Equality 3.20 is rewritten as

gai;0 = ai;0 +
iX

k=1

ai�k;2k �
iX

k=1

ai�k;2k = ai;0.

Proof.
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ii. If 2n� i > i, the Equality 3.20 is rewritten as

gai;0 = ai;0 +
2n�iX
k=i+1

ai�k;2k +
iX

k=1

ai�k;2k �
iX

k=1

ai�k;2k

= ai;0 +
2n�iX
k=i+1

ai�k;2k

therefore, notice that

i� k � i� (2n� i) = � (2n� 2i) < 0

since 2n� 2i > 0, so

gai;0 = ai;0 +
2n�iX
k=i+1

ai�k;2k = ai;0.

iii. If 2n� i < i, the Equality 3.20 is rewritten as

gai;0 = ai;0 +
2n�iX
k=1

ai�k;2k �
2n�iX
k=1

ai�k;2k �
iX

k=2n�i+1
ai�k;2k

= ai;0 �
iX

k=2n�i+1
ai�k;2k,

now note that

(i� k) + 2k = i+ k � i+ (2n� i+ 1) = 2n+ 1

therefore
ai�k;2k = 0

for every k 2 f2n� i+ 1; :::; ig. Hence this case is concluded.

In the case (i; j) = (0; 1), we have

ga0;1 = b0;1�2 � b0�1;1 = b0;�1 � b�1;1 = 0� 0 = 0.

While the hypothesis applied to (i; j) = (0; 1) gives us

0 =
2n�1X
k=0

a�k;1+2k = a0;1 +
2n�1X
k=1

a�k;1+2k = a0;1

so ga0;1 = 0 = a0;1.

Finally, the case that (i; 1) for every i 2 f1; : : : ; 2n� 1g. In one hand, we
have

gai;1 = bi;1�2 � bi�1;1 = �
i�1X
k=0

ai�(k+1);1+2(k+1) = �
iX

k=1

ai�k;1+2k.



3.2. POLYNOMIAL RESULTS FOR CYCLIC SURFACES 71

On the other hand, the hypothesis applied for (i; 1) provides

0 =
2n�i�1X
k=0

ai�k;1+2k = ai;1 +
2n�i�1X
k=1

ai�k;1+2k,

so

gai;1 = 0� iX
k=1

ai�k;1+2k = ai;1 +
2n�i�1X
k=1

ai�k;1+2k �
iX

k=1

ai�k;1+2k. (3.21)

i. If 2n� i� 1 = i, the Equality 3.21 is rewritten as

gai;1 = ai;1 +
iX

k=1

ai�k;1+2k �
iX

k=1

ai�k;1+2k = ai;1.

ii. If 2n� i� 1 > i, the Equality 3.21 is rewritten as

gai;1 = ai;1 +
2n�i�1X
k=i+1

ai�k;1+2k +
iX

k=1

ai�k;1+2k �
iX

k=1

ai�k;1+2k

= ai;1 +
2n�i�1X
k=i+1

ai�k;1+2k

= ai;1

iii. If 2n� i� 1 < i, the Equality 3.21 is rewritten as

gai;1 = ai;1 +

2n�i�1X
k=1

ai�k;1+2k �
2n�i�1X
k=1

ai�k;1+2k �
iX

k=2n�i
ai�k;1+2k

= ai;1 �
iX

k=2n�i
ai�k;1+2k

therefore

(i� k) + (1 + 2k) = k + i+ 1 � (2n� i) + i+ 1 = 2n+ 1

which yields
ai�k;1+2k = 0.

Proof. Then, we conclude that

P2n =gP2n,
and the proof is �nished.
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Now we proceed to the investigation of degree of composition of polynomials
in n-variables. This analysis is motivated by the challenge of to study the next
function

0 =

0@ nX
j=0

2n�2jX
i=0

22n�2jai;2jr
4n�2(i+2j)�4n�(2i+3j)�i�2j

1A2

��

0@ nX
j=1

2n�(2j�1)X
i=0

22n�(2j�1)ai;(2j�1)r
4n�2(i+(2j�1))�4n�2i�3j+1�i�(2j�1)

1A2

which is obtained from the assumption that 0 � P (K;H), where the Gaussian
and mean curvatures are expressed as in (3.5), but for convenience of the reader,
it will be restate:

K =
�

r2�2
and H =

�

2r2�
3
2

,

where we recall that �, � and � are smooth functions in parameter (s; t). So
we translate the above problem to the research of the next polynomial

P (x1; x2; x3) =

0@ nX
j=0

2n�2jX
i=0

22n�2jai;2jr
4n�2(i+2j)x

4n�(2i+3j)
3 xi1x

2j
2

1A2

�x3

0@ nX
j=1

2n�(2j�1)X
i=0

22n�(2j�1)ai;(2j�1)r
4n�2(i+(2j�1))x4n�2i�3j+12 xi1x

(2j�1)
2

1A2

that verify P (�; �; �) = 0. Although, with this change we must decide either
we have a monomial of maximum degree, that is, when the monomial provides
the degree of the polynomial. Hence, we stated the discussion of degree of
composition of polynomials.
Before to present our results, we recall that every polynomial P (x; y) 2

R [x; y] of degree n, always admits the following expression

P (x; y) = H (x; y) +Q (x; y) (3.22)

where H (x; y) is a monomial of degree n and Q (x; y) 2 R [x; y] a polynomial
such that @Q (x; y) < n. It is easy to check that expression (3.22) is unique.

In the aim to present the result that we apply in our analysis, it is necessary
other two propositions. In this direction, our �rst result studies a threshold for
the degree of Q (x; y) as in (3.22) in the case that P (x; y) is obtained by the
produtory of k-polynomials. More precisely:

Proposition 84 Consider the polynomials P1 (x; y) ; : : : ; Pk (x; y) 2 R [x; y] such
that the degree of Pi (x; y) is ni 2 N, for every 1 � i � k. For each i, we write

Pi (x; y) = Hi (x; y) +Qi (x; y)
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where Hi (x; y) is an homogeneous monomial of degree ni and Qi (x; y) 2 R [x; y]
is a polynomial such that @Qi < ni. Then

kY
i=1

Pi (x; y) =

 
kY
i=1

Hi (x; y)

!
+Q (x; y)

where @Q <
kP
i=1

ni = @

�
kQ
i=1

Hi (x; y)

�
.

Proof. The proof is given by induction on k. In the case that k = 1, the result
follows immediately. Assume that statement is valid for some k 2 N and we will
show that still true for k + 1.
In the case that we have P1 (x; y) ; : : : ; Pk (x; y) ; Pk+1 (x; y) 2 R [x; y], follows

from the hypothesis that

kY
i=1

Pi (x; y) =

 
kY
i=1

Hi (x; y)

!
+Q (x; y)

where @Q <
kP
i=1

ni = @

�
kQ
i=1

Hi (x; y)

�
. Therefore,

k+1Y
i=1

Pi (x; y) = Pk+1 (x; y)

kY
i=1

Pi (x; y)

= (Hk+1 (x; y) +Qk+1 (x; y))

  
kY
i=1

Hi (x; y)

!
+Q (x; y)

!

=

 
k+1Y
i=1

Hi (x; y)

!
+Q (x; y)

where

Q (x; y) = Hk+1 (x; y)Q (x; y)+Qk+1 (x; y)

 
kY
i=1

Hi (x; y)

!
+Qk+1 (x; y)Q (x; y)

(3.23a)
Then, notice that:

1. @
�
k+1Q
i=1

Hi (x; y)

�
= @Hk+1 (x; y) + @

�
kQ
i=1

Hi (x; y)

�
= nk+1 +

kP
i=1

ni =

k+1P
i=1

ni;

2. @ (Hk+1 (x; y)Q (x; y)) = @Hk+1 (x; y) + @Q (x; y) = nk+1 + @Q (x; y) <

nk+1 +
kP
i=1

ni =
k+1P
i=1

ni;
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3. @
�
Qk+1 (x; y)

�
kQ
i=1

Hi (x; y)

��
= @Qk+1 (x; y)+

kP
i=1

ni < nk+1+
kP
i=1

ni =

k+1P
i=1

ni;

4. @ (Qk+1 (x; y)Q (x; y)) = @Qk+1 (x; y)+@Q (x; y) < @Qk+1 (x; y)+
kP
i=1

ni <

nk+1 +
kP
i=1

ni =
k+1P
i=1

ni,

Then, follows from items 2, 3 and 4 that

@Q (x; y)

� max

(
@ (Hk+1 (x; y)Q (x; y)) ; @

 
Qk+1 (x; y)

kY
i=1

Hi (x; y)

!
; @ (Qk+1 (x; y)Q (x; y))

)

<
k+1X
i=1

ni

Thus, by (3.23a) and above remarks, it yields the conclusion of proof.
The other needed result provides a threshold for Q (x; y) when it is obtained

by the evaluation of k polynomials in a monomial of k-variables:

Proposition 85 For given k 2 N, Consider the monomial

M (X1; :::; Xk) = � (X1)
m1 : : : (Xk)

mk

where � 2 R. Let P1 (x; y) ; : : : ; Pk (x; y) 2 R [x; y] be polynomials whose degree
are n1; : : : ; nk 2 N, respectively. For each 1 � i � k, we write

Pi (x; y) = Hi (x; y) +Qi (x; y) ,

where Hi (x; y) is homogenous with degree ni and @Qi < ni. Then, exists a
polynomial Q (x; y) 2 R [x; y] verifying

M (P1 (x; y) ; : : : ; Pk (x; y)) =M (H1 (x; y) ; : : : ;Hk (x; y)) +Q (x; y)

such that @Q <
kP
i=1

mini = @ (M (H1 (x; y) ; : : : ;Hk (x; y))).

Proof. We remark that

(P1 (x; y))
m1 : : : (Pk (x; y))

mk =

m1Y
i=1

P1 (x; y) : : :

mkY
i=1

Pk (x; y)

therefore, follows from Proposition 84 that above equality is rewritten as

(H1 (x; y))
m1 : : : (Hk (x; y))

mk +Q (x; y)
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where

@Q < n1 + : : :+ n1 + : : :+ nk + : : :+ nk =
kX
i=1

mini

= @ (H1 (x; y))
m1 : : : (Hk (x; y))

mk .

Thus

M (P1 (x; y) ; : : : ; Pk (x; y)) = � (P1 (x; y))
m1 : : : (Pk (x; y))

mk

= � (H1 (x; y))
m1 : : : (Hk (x; y))

mk + �Q (x; y)

= M (H1 (x; y) ; : : : ;Hk (x; y)) +Q (x; y)

where Q (x; y) = �Q (x; y). Finally, we observe that

@Q (x; y) = @Q (x; y) <

kX
i=1

mini

since

@M (H1 (x; y) ; : : : ;Hk (x; y)) = @ (H1 (x; y))
m1 : : : (Hk (x; y))

mk =

kX
i=1

mini

so the desired is achieved.

Endowed with both previous results we are able to state the corollary that
is a natural next question about the threshold of Q (x; y) when we evaluete n
polynomials in a given polynomial of n variables.

Corollary 86 Consider the polynomial P (x1; : : : ; xk) 2 R [x1; : : : ; xk] such
that

P (x1; : : : ; xk) =
nX
l=0

Ml (x1; : : : ; xk)

where for every l, Ml (x1; : : : ; xk) = �l (x1)
ml1 : : : (xk)

mlk is a monomial (with
�l 2 R). Let P1 (x; y) ; : : : ; Pk (x; y) 2 R [x; y] be polynomials. For each 0 � i �
k, assume that

Pi (x; y) = aix
ni +Qi (x; y)

where ai 2 R nonzero and @Qi (x; y) < ni 2 N. Then

P (P1 (x; y) ; : : : ; Pk (x; y)) = P (a1x
n1 ; :::; akx

nk) +Q (x; y)

where @Q (x; y) < max
l

kP
i=1

mlini.
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Proof. The Proposition 85 ensures that for each 0 � l � n, we may express
the monomials as follows

Ml (P1 (x; y) ; : : : ; Pk (x; y)) =Ml (a1x
n1 ; : : : ; akx

nk) +Ql (x; y)

where @Ql (x; y) <
kP
i=1

mlini. Therefore,

P (P1 (x; y) ; : : : ; Pk (x; y)) =
nX
l=0

Ml (P1 (x; y) ; : : : ; Pk (x; y))

=
nX
l=0

Ml (a1x
n1 ; : : : ; akx

nk) +
nX
l=0

Ql (x; y)

= P (a1x
n1 ; : : : ; akx

nk) +Q (x; y)

where Q (x; y) =
Pn
l=0Ql (x; y). Then, notice that

@Q (x; y) � max
l
@Ql (x; y) < max

l

kX
i=1

mlini.

This result concludes the study of degree of composition of polynomials.

Finally, the last topic that we will show in this section is about polynomial
identities. More precisely, our theorem permits us to retrieve and articulate the
condition presented in the Theorem 83 with the writing of a polynomial P (x)
presented in (3.11). Moreover, given a polynomial

P (x) =
2n�1X
i=0

2n�iX
j=0

ai;jx
4n�j�2i 2 R [x] ,

our theorem presents a suitable expression that hightlights the condition (3.12),
that is

P (x) =
2n�1X
i=0

1X
j=0

 
2n�i�jX
k=0

ai�k;j+2k

!
x4n�2i�j

�
2n�1X
i=0

2n�(i+1)X
j=0

a�(i+1);2n+(i+1)�jx
2n+j+(i+1) 2 R [x] .

So the statement of our theorem is read as follows:

Theorem 87 For given n 2 N, the next polynomial equality holds
2n�1X
i=0

1X
j=0

 
2n�i�jX
k=0

ai�k;j+2k

!
x4n�2i�j

=
2n�1X
i=0

2n�iX
j=0

ai;jx
4n�j�2i +

2n�1X
i=0

2n�(i+1)X
j=0

a�(i+1);2n+(i+1)�jx
2n+j+(i+1).
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In order to transcribe the previous equality we will exhibit three auxiliary
results. The Proposition 88 deserves a special attention once its proof is di¤er-
ent from the usual induction proves, because in this case we have to add and
substract several terms to reach our goal.

Proposition 88 For given n 2 N, we have

2n�1X
i=0

2n�i�1X
j=0

Ai;j =
n�1X
i=0

2n�2i�1X
j=0

Aj;2n�2i�j�1 +
n�1X
i=0

2n�2i�2X
j=0

Aj;2n�2i�j�2 (3.24)

Proof. We will prove this statement by induction on n. It is easy to see that
above equality is valid for n = 1:

2(1)�1X
i=0

2(1)�i�1X
j=0

Ai;j = A0;0 +A0;1 +A1;0 =
1X
j=0

Aj;1�j +A0;0.

Suppose that Equality 3.24 its true for some n 2 N, we will show that the
equality for n+ 1. More precisely, we will verify that

2n+1X
i=0

2n�i+1X
j=0

Ai;j =
nX
i=0

2n�2i+1X
j=0

Aj;2n�2i�j+1 +
nX
i=0

2n�2iX
j=0

Aj;2n�2i�j .

The left-hand side of the above equality gives

2n+1X
i=0

2n�i+1X
j=0

Ai;j =

2n+1X
i=2n

2n�i+1X
j=0

Ai;j +

2n�1X
i=0

2n�i+1X
j=2n�i

Ai;j +

2n�1X
i=0

2n�i�1X
j=0

Ai;j

thus, the induction step implies

2n+1X
i=0

2n�i+1X
j=0

Ai;j =
2n+1X
i=2n

2n�i+1X
j=0

Ai;j +
2n�1X
i=0

2n�i+1X
j=2n�i

Ai;j

+

0@n�1X
i=0

2n�2i�1X
j=0

Aj;2n�2i�j�1 +
n�1X
i=0

2n�2i�2X
j=0

Aj;2n�2i�j�2

1A .
Rearranging the indices of previous terms, it is obtained

2n+1X
i=0

2n�i+1X
j=0

Ai;j =
2n+1X
i=2n

2n�i+1X
j=0

Ai;j +
2n�1X
i=0

2n�i+1X
j=2n�i

Ai;j

+

0@ nX
i=1

2n�2i+1X
j=0

Aj;2n�2i�j+1

1A+
0@ nX
i=1

2n�2iX
j=0

Aj;2n�2i�j

1A ,
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so if we add and subtract
2n+1P
j=0

Aj;2n�j+1 and
2nP
j=0

Aj;2n�j , it follows

2n+1X
i=0

2n�i+1X
j=0

Ai;j =
2n+1X
i=2n

2n�i+1X
j=0

Ai;j +
2n�1X
i=0

2n�i+1X
j=2n�i

Ai;j

+

0@ nX
i=1

2n�2i+1X
j=0

Aj;2n�2i�j+1 +
2n+1X
j=0

Aj;2n�j+1 �
2n+1X
j=0

Aj;2n�j+1

1A
+

0@ nX
i=1

2n�2iX
j=0

Aj;2n�2i�j +
2nX
j=0

Aj;2n�j �
2nX
j=0

Aj;2n�j

1A ,
hence

2n+1X
i=0

2n�i+1X
j=0

Ai;j (3.25)

=
2n+1X
i=2n

2n�i+1X
j=0

Ai;j +
2n�1X
i=0

2n�i+1X
j=2n�i

Ai;j

+

0@ nX
i=0

2n�2i+1X
j=0

Aj;2n�2i�j+1 �
2n+1X
j=0

Aj;2n�j+1

1A
+

0@ nX
i=0

2n�2iX
j=0

Aj;2n�2i�j �
2nX
j=0

Aj;2n�j

1A .
Finally, notice that

2n+1X
i=2n

2n�i+1X
j=0

Ai;j = A2n;0 +A2n;1 +A2n+1;0 (3.26)

and
2n�1X
i=0

2n�i+1X
j=2n�i

Ai;j =
2n�1X
i=0

Ai;2n�i +
2n�1X
i=0

Ai;2n�i+1 (3.27)

therefore, by the observations (3.26) and (3.27) we have

2n+1X
i=2n

2n�i+1X
j=0

Ai;j +
2n�1X
i=0

2n�i+1X
j=2n�i

Ai;j =
2nX
i=0

Ai;2n�i +
2n+1X
i=0

Ai;2n�i+1 (3.28)

So, replacing (3.28) into (3.25) it is obtained

2n+1X
i=0

2n�i+1X
j=0

Ai;j =
nX
i=0

2n�2i+1X
j=0

Aj;2n�2i�j+1 +
nX
i=0

2n�2iX
j=0

Aj;2n�2i�j
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which �nishes the demonstration.
As immediate consequence we have the next result which is a direction ap-

plication of the previous result to our case of interest.

Proposition 89 For any n 2 N, we have

2n�1X
i=0

2n�(i+1)X
j=0

a�(i+1);2n+(i+1)�jx
2n+j+(i+1) (3.29)

=
n�1X
i=0

2n�2i�1X
j=0

a�j�1;2j+2i+2x
4n�2i +

n�1X
i=0

2n�2i�2X
j=0

a�j�1;2j+2i+3x
4n�2i�1.

Proof. Consider

2n�1X
i=0

2n�(i+1)X
j=0

a�(i+1);2n+(i+1)�jx
2n+j+(i+1)

hence notice that if we set

Ai;j = a�(i+1);2n+(i+1)�jx
2n+j+(i+1)

it yields

Aj;2n�2i�j�1 = a�j�1;2j+2i+2x
4n�2i and Aj;2n�2i�j�2 = a�j�1;2j+2i+3x

4n�2i�1,

then, applying the Proposition 88, we achieve the desired.
The third and last technical result necessary to demonstrate the Theorem

87 is also a relevant identity of summations whose proof lies deeply in the de-
tailed analysis of each of the terms, as well as in the need to add and subtract
terms in order to reach the desired expression. As mentioned earlier, the fol-
lowing proposition also has potential applications in problems where rewriting
the coe¢ cients in a more appropriate way is relevant.

Theorem 90 For any n 2 N, we have
2n�1X
i=0

2n�iX
j=0

Ai;j =

n�1X
i=0

iX
j=0

Ai�j;2j+

2n�1X
i=n

2n�iX
j=0

Ai�j;2j+

n�1X
i=0

iX
j=0

Ai�j;1+2j+

2n�1X
i=n

2n�i�1X
j=0

Ai�j;1+2j.

(3.30)

Proof. This prove is given by induction on n. First, we observe that in the
case n = 1, the above equality is veri�ed:

1X
i=0

2�iX
j=0

Ai;j

= A0;0 +A0;1 +A1;0 +A0;2 +A1;1

= A0;0 +A0;1 +
1X
j=0

A1�j;2j +A1;1.
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Suppose that Equality (3.30) holds for some n 2 N. We will demonstrate that
equality is true also for n+ 1. More precisely, our goal is to prove:

2n+1X
i=0

2n�i+2X
j=0

Ai;j =
nX
i=0

iX
j=0

Ai�j;2j +
2n+1X
i=n+1

2n�i+2X
j=0

Ai�j;2j (3.31)

+
nX
i=0

iX
j=0

Ai�j;1+2j +
2n+1X
i=n+1

2n�i+1X
j=0

Ai�j;1+2j .

The left-hand side of the previous equality gives to us

2n+1X
i=0

2n�i+2X
j=0

Ai;j

=
2n�1X
i=0

2n�i+2X
j=0

Ai;j +
2n+1X
i=2n

2n�i+2X
j=0

Ai;j

=

2n�1X
i=0

0@2n�iX
j=0

Ai;j +Ai;2n�i+1 +Ai;2n�i+2

1A
+

1X
j=0

A2n+1;j +
2X
j=0

A2n;j

=

0@2n�1X
i=0

Ai;2n�i+2 +
2n�1X
i=0

Ai;2n�i+1 +
2n�1X
i=0

2n�iX
j=0

Ai;j

1A
+(A2n+1;1 +A2n+1;0 +A2n;2 +A2n;1 +A2n;0)

=

 
A2n+1;1 +A2n;2 +

2n�1X
i=0

Ai;2n�i+2

!
+

 
A2n+1;0 +A2n;1 +

2n�1X
i=0

Ai;2n�i+1

!

+A2n;0 +

0@2n�1X
i=0

2n�iX
j=0

Ai;j

1A
=

0@2n�1X
i=0

2n�iX
j=0

Ai;j

1A+ 2n+1X
i=0

Ai;2n�i+2

!
+

 
2n+1X
i=0

Ai;2n�i+1

!
+A2n;0,
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hence, follows from the induction step that

2n+1X
i=0

2n�i+2X
j=0

Ai;j (3.32)

=

0@n�1X
i=0

iX
j=0

Ai�j;2j +
2n�1X
i=n

2n�iX
j=0

Ai�j;2j +
n�1X
i=0

iX
j=0

Ai�j;1+2j +
2n�1X
i=n

2n�i�1X
j=0

Ai�j;1+2j

1A
+

 
2n+1X
i=0

Ai;2n�i+2

!
+

 
2n+1X
i=0

Ai;2n�i+1

!
+A2n;0.

Now we will examine and study several of above terms. First, we notice that

n�1X
i=0

iX
j=0

Ai�j;2j =
nX
i=0

iX
j=0

Ai�j;2j �
nX
j=0

An�j;2j (3.33)

moreover,

2n+1X
i=n+1

2n�i+2X
j=0

Ai�j;2j =
2n�1X
i=n+1

0@ 2n�i+2X
j=2n�i+1

Ai�j;2j +
2n�iX
j=0

Ai�j;2j

1A
+

2X
j=0

A2n�j;2j +

1X
j=0

A(2n+1)�j;2j

if we expand and rearrange the terms in a proper way, we get

2n+1X
i=n+1

2n�i+2X
j=0

Ai�j;2j =
2n�1X
i=n+1

A�2n+2i�2;4n�2i+4 +A2n;2 +A2n�2;4

+

2n�1X
i=n+1

A�2n+2i�1;4n�2i+2 +A2n+1;0 +A2n�1;2

+
2n�1X
i=n+1

2n�iX
j=0

Ai�j;2j +A2n;0,

therefore, if we add 0 =
nP
j=0

An�j;2j �
nP
j=0

An�j;2j it is obtained

2n+1X
i=n+1

2n�i+2X
j=0

Ai�j;2j (3.34)

=
2n+1X
i=n+1

A�2n+2i�2;4n�2i+4 +
2n+1X
i=n+1

A�2n+2i�1;4n�2i+2

�
nX
j=0

An�j;2j +A2n;0 +
2n�1X
i=n+1

2n�iX
j=0

Ai�j;2j +
nX
j=0

An�j;2j
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then

2n+1X
i=n+1

2n�i+2X
j=0

Ai�j;2j (3.35)

=
2n+1X
i=n+1

A�2n+2i�2;4n�2i+4 +
2n+1X
i=n+1

A�2n+2i�1;4n�2i+2

�
nX
j=0

An�j;2j +
2n�1X
i=n

2n�iX
j=0

Ai�j;2j +A2n;0.

Also observe that

n�1X
i=0

iX
j=0

Ai�j;1+2j =

nX
i=0

iX
j=0

Ai�j;1+2j �
nX
j=0

An�j;1+2j (3.36)

and note that

2n+1X
i=n+1

2n�i+1X
j=0

Ai�j;1+2j

= A2n+1;1 +A2n�1;3 +A2n;1 +

2n�1X
i=n+1

2n�i+1X
j=0

Ai�j;1+2j

if we expand and rearrange the terms in a proper way, we get

2n+1X
i=n+1

2n�i+1X
j=0

Ai�j;1+2j

=
2n�1X
i=n+1

2n�i�1X
j=0

Ai�j;1+2j

+
2n�1X
i=n+1

A2i�2n;4n�2i+1 +A2n;1

+
2n�1X
i=n+1

A2i�2n�1;4n�2i+3 +A2n+1;1 +A2n�1;3

moreover, simplifying the summations and adding 0 =
n�1P
j=0

An�j;1+2j�
n�1P
j=0

An�j;1+2j
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we have

2n+1X
i=n+1

2n�i+1X
j=0

Ai�j;1+2j

=
2n+1X
i=n+1

A�2n+2i�1;4n�2i+3 +
2nX

i=n+1

A�2n+2i;4n�2i+1

+
2n�1X
i=n+1

2n�i�1X
j=0

Ai�j;1+2j +

0@n�1X
j=0

An�j;1+2j �
n�1X
j=0

An�j;1+2j

1A
as consequence,

2n+1X
i=n+1

2n�i+1X
j=0

Ai�j;1+2j (3.37)

=
2n+1X
i=n+1

A�2n+2i�1;4n�2i+3 +
2nX

i=n+1

A�2n+2i;4n�2i+1

�
n�1X
j=0

An�j;1+2j +
2n�1X
i=n

2n�i�1X
j=0

Ai�j;1+2j .

Thus, by considereing (3.33),(3.35),(3.36) and (3.37) the Equality (3.32) is
rewritten as follows

2n+1X
i=0

2n�i+2X
j=0

Ai;j

=
nX
i=0

iX
j=0

Ai�j;2j +
2n+1X
i=n+1

2n�i+2X
j=0

Ai�j;2j

+
nX
i=0

iX
j=0

Ai�j;1+2j +
2n+1X
i=n+1

2n�i+1X
j=0

Ai�j;1+2j

+
2n+1X
i=0

Ai;2n�i+2 +
2n+1X
i=0

Ai;2n�i+1

�
2n+1X
i=n+1

A�2n+2i�2;4n�2i+4 �
2n+1X
i=n+1

A�2n+2i�1;4n�2i+2

�
2n+1X
i=n+1

A�2n+2i�1;4n�2i+3 �
2nX
i=n

A�2n+2i;4n�2i+1.
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Then, in the aim to prove the Equality (3.31) it is equivalent to show

0 =
2n+1X
i=0

Ai;2n�i+2 +
2n+1X
i=0

Ai;2n�i+1 (3.38)

�
2n+1X
i=n+1

A�2n+2i�2;4n�2i+4 �
2n+1X
i=n+1

A�2n+2i�1;4n�2i+3

�
2n+1X
i=n+1

A�2n+2i�1;4n�2i+2 �
2nX
i=n

A�2n+2i;4n�2i+1.

Again we will examine the previous terms individually. So, we point out that

2n+1X
i=n+1

A�2n+2i�2;4n�2i+4 =
nX
i=0

A�2n+2(i+n+1)�2;4n�2(i+n+1)+4 =
nX
i=0

A2i;2n�2i+2

2n+1X
i=n+1

A�2n+2i�1;4n�2i+3 =
nX
i=0

A�2n+2(i+n+1)�1;4n�2(i+n+1)+3 =
nX
i=0

A2i+1;2n�2i+1

2n+1X
i=n+1

A�2n+2i�1;4n�2i+2 =
nX
i=0

A�2n+2(i+n+1)�1;4n�2(i+n+1)+2 =
nX
i=0

A2i+1;2n�2i

2nX
i=n

A�2n+2i;4n�2i+1 =
nX
i=0

A�2n+2(i+n);4n�2(i+n)+1 =
nX
i=0

A2i;2n�2i+1

hence, applying the above remark in (3.38) it implies

0 =
2n+1X
i=0

Ai;2n�i+2 +
2n+1X
i=0

Ai;2n�i+1

�
nX
i=0

A2i;2n�2i+2 �
nX
i=0

A2i+1;2n�2i+1

�
nX
i=0

A2i+1;2n�2i �
nX
i=0

A2i;2n�2i+1

thus, we must verify the next equality:

2n+1X
i=0

Ai;2n�i+2 +
2n+1X
i=0

Ai;2n�i+1

=

 
nX
i=0

A2i;2n�2i+2 +
nX
i=0

A2i+1;2n�2i+1

!
+

 
nX
i=0

A2i;2n�2i+1 +
nX
i=0

A2i+1;2n�2i

!
.

By the Lemma 138, if we consider

k = n+ 1
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and we set

Bi = Ai;2n�i+2

which follows

2n+1X
i=0

Ai;2n�i+2 =
nX
i=0

A2i;2n�2i+2 +
nX
i=0

A2i+1;2n�2i+1 (3.39)

and by the Lemma 139, consider

k = n+ 1

and we set

Bi = Ai;2n�i+1

thus it is obtained

2n+1X
i=0

Ai;2n�i+1 =
nX
i=0

A2i;2n�2i+1 +
nX
i=0

A2i+1;2n�2i, (3.40)

so by (3.39) and (3.40) we conclude the desired.
We are in the position to prove the theorem mentioned in the beginning of

this topic.

Theorem 91 For given n 2 N, the next polynomial equality holds

2n�1X
i=0

1X
j=0

 
2n�i�jX
k=0

ai�k;j+2k

!
x4n�2i�j

=
2n�1X
i=0

2n�iX
j=0

ai;jx
4n�j�2i +

2n�1X
i=0

2n�(i+1)X
j=0

a�(i+1);2n+(i+1)�jx
2n+j+(i+1)

Proof. Notice that the left-hand side of the previous equality can be expressed
as

2n�1X
i=0

1X
j=0

 
2n�i�jX
k=0

ai�k;j+2k

!
x4n�2i�j (3.41)

=
2n�1X
i=0

 
2n�iX
k=0

ai�k;2k

!
x4n�2i +

2n�1X
i=0

 
2n�i�1X
k=0

ai�k;1+2k

!
x4n�2i�1.

Let us focus on the analysis of each of the above terms separately. The �rst one
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gives us

2n�1X
i=0

0@2n�iX
j=0

ai�j;2j

1Ax4n�2i =
n�1X
i=0

0@2n�iX
j=0

ai�j;2j

1Ax4n�2i +
2n�1X
i=n

0@2n�iX
j=0

ai�j;2j

1Ax4n�2i

(3.42)

=
n�1X
i=0

0@ iX
j=0

ai�j;2j

1Ax4n�2i +
n�1X
i=0

0@ 2n�iX
j=i+1

ai�j;2j

1Ax4n�2i +
2n�1X
i=n

0@2n�iX
j=0

ai�j;2j

1Ax4n�2i

=
n�1X
i=0

0@ iX
j=0

ai�j;2j

1Ax4n�2i +
n�1X
i=0

0@2n�i�(i+1)X
j=0

ai�(j+i+1);2(j+i+1)

1Ax4n�2i +
2n�1X
i=n

0@2n�iX
j=0

ai�j;2j

1Ax4n�2i

=
n�1X
i=0

0@ iX
j=0

ai�j;2j

1Ax4n�2i +
n�1X
i=0

0@2n�2i�1X
j=0

a�j�1;2j+2i+2

1Ax4n�2i +
2n�1X
i=n

0@2n�iX
j=0

ai�j;2j

1Ax4n�2i

while the second term can be express as

2n�1X
i=0

0@2n�i�1X
j=0

ai�j;1+2j

1Ax4n�2i�1 (3.43)

=

n�1X
i=0

0@2n�i�1X
j=0

ai�j;1+2j

1Ax4n�2i�1 +
2n�1X
i=n

0@2n�i�1X
j=0

ai�j;1+2j

1Ax4n�2i�1

=
n�1X
i=0

0@ iX
j=0

ai�j;1+2j

1Ax4n�2i�1 +
n�1X
i=0

0@2n�i�1X
j=i+1

ai�j;1+2j

1Ax4n�2i�1

+
2n�1X
i=n

0@2n�i�1X
j=0

ai�j;1+2j

1Ax4n�2i�1

=
n�1X
i=0

0@ iX
j=0

ai�j;1+2j

1Ax4n�2i�1 +
n�1X
i=0

0@2n�i�1�(i+1)X
j=0

ai�(j+i+1);1+2(j+i+1)

1Ax4n�2i�1

+
2n�1X
i=n

0@2n�i�1X
j=0

ai�j;1+2j

1Ax4n�2i�1

=
n�1X
i=0

0@ iX
j=0

ai�j;1+2j

1Ax4n�2i�1 +
n�1X
i=0

0@2n�2i�2X
j=0

a�j�1;2j+2i+3

1Ax4n�2i�1

+
2n�1X
i=n

0@2n�i�1X
j=0

ai�j;1+2j

1Ax4n�2i�1 (3.44)

Hence, by the previous studies in (3.42) and (3.43), we obtain that the
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Equality 3.41 is rewritten as

2n�1X
i=0

1X
j=0

 
2n�i�jX
k=0

ai�k;j+2k

!
x4n�2i�j =

n�1X
i=0

0@2n�2i�1X
j=0

a�j�1;2j+2i+2

1Ax4n�2i

+
n�1X
i=0

0@ iX
j=0

ai�j;2j

1Ax4n�2i +
2n�1X
i=n

0@2n�iX
j=0

ai�j;2j

1Ax4n�2i

+
n�1X
i=0

0@2n�2i�2X
j=0

a�j�1;2j+2i+3

1Ax4n�2i�1

+
n�1X
i=0

0@ iX
j=0

ai�j;1+2j

1Ax4n�2i�1 +
2n�1X
i=n

0@2n�i�1X
j=0

ai�j;1+2j

1Ax4n�2i�1.

The Theorem 89 provide to us

2n�1X
i=0

2n�(i+1)X
j=0

a�(i+1);2n+(i+1)�jx
2n+j+(i+1)

=

n�1X
i=0

2n�2i�1X
j=0

a�j�1;2j+2i+2x
4n�2i +

n�1X
i=0

2n�2i�2X
j=0

a�j�1;2j+2i+3x
4n�2i�1,

�nally, applying the Theorem 90 to
2n�1P
i=0

2n�iP
j=0

ai;jx
4n�j�2i, we obtain the follow-

ing equality

2n�1X
i=0

2n�iX
j=0

ai;jx
4n�j�2i =

n�1X
i=0

iX
j=0

ai�j;2jx
4n�2i +

2n�1X
i=n

2n�iX
j=0

ai�j;2jx
4n�2i

+

n�1X
i=0

iX
j=0

ai�j;1+2jx
4n�2i�1 +

2n�1X
i=n

2n�i�1X
j=0

ai�j;1+2jx
4n�2i�1,

then the desired is achieved.

3.3 Main result and applications for Cyclic Sur-
faces

In this section we present our main theorems that fully classify Polynomial
Weingarten cyclic surfaces in the Euclidean and in the Lorentzian 3-space.

The cyclic surface is the �rst and most natural generalization of tubular
surface, in the sense that we may obtain a cyclic surface as a tubular surface
that we permit the radius r to be a (smooth) function instead of being a constant
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number. For mathematical purposes, we have to demand that the radius satis�es
r (s) > 0 for every s 2 (a; b).
This simple and almost innocent change has a massive impact in the curva-

tures of the surface that (in the Euclidean case) are expressed as

K =
(r3�4) cos4 t�3r2�3 cos3 t+r�(3�(r0)2+r�0r0+3��rr00�) cos2 t

r((r0)2+(1��(s)r(s) cos t)2)
2

+
+r2r0�2� cos t sin t�(2�(r0)2+r�0r0+��2rr00�) cos t�rr0�� sin t�(r(r0)2�2+r00)

r((r0)2+(1��(s)r(s) cos t)2)
2

and

H =
�2r3�3 cos3 t+5r2�2 cos2 t�r(3�(r0)2+r�0r0+4��rr00�) cos t�r2r0�� sin t+r((r0)2�rr00+1)

2r((r0)2+(1��(s)r(s) cos t)2)
3
2

.

Moreover, the assumption that the above curvatures verify a polynomial
relation is a di¢ cult challenge since it leads us to arduous di¤erential equations
that cannot be solved with the techniques that are commonly used.
In order to exemplify the previous claim, let us consider the simplest poly-

nomial relation to be studied that is the linear one,

P (x; y) = a1;0x+ a0;1y + a0;0 2 R [x; y] ,

then the assumption that the cyclic surface is Polynomial Weingarten provides
that

0 � P (K;H) =
8X
i=0

1X
j=0

Pi;j (s) cos
i t sinj t (3.45)

where Pi;j (s) are smooth functions. The reason to omit the explicit expression
of the coe¢ cients Pi;j (s) is because of the size of the equations would make the
reading exaustive and because of the page formatting. Althoug to illustrate the
type of problem that we face, we will present some of Pi;j (s). For instance,

P8;0 (s) = 4r8�8r2a20;0 � r2a20;1 + 2ra0;0a1;0 + a21;0
P5;1 (s) = 8r0�a0;0r

8�6a1;0 � 4r0�r9�6a20;1 + 8r0�r7�6a21;0

and the coe¢ cient P3;1 = �2r5r0�3� eQ3;1 whereeQ3;1 = �24�a21;0 + 16r2�a20;1 � 12(r0)2�a21;0 + 5r2(r0)2�a20;1
+4rr00�a21;0 � 4rr0�0a21;0 � r3r00�a20;1 + r3r0�0a20;1
�40r�a0;0a1;0 � 8r(r0)2�a0;0a1;0.

Hence, our approach to deal with this type of problem, essentially, consists
in to consider an arbitrary polynomial P (x; y) 2 R [x; y] and investigate the
associated function

0 � P (K;H) =
X
i;j

fi;j (s) cos
i t sinj t
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which is obtained by the composition of P (x; y) with K (s; t) and H (s; t) (as
we presented in (3.45)). So, for each �xed s0 we de�ne P (s0; x; y) 2 R [x; y] the
polynomial that verify the following property

P (s0; cos t; sin t) = P (K;H) � 0

for every t 2 R. Then, we analyse the polynomialP (s0; x; y) under the algebraic
geometry point of view, which ensures us that we can analyse each fi;j (s) � 0
individually. This method allowed us to obtain our main result that full clas-
si�cates cyclic surface whose Gaussian and mean curvatures verify an arbitrary
polynomial relation. The statement of our result read as follows:

Theorem 92 A Polynomial Weingarten cyclic surface is a (smooth) combina-
tion of tubular surface with rotational surface.

A �rst impact of the previous theorem is a charactarization of geometric
features of the Polynomial Weingarten cyclic surface. More precisely, the above
classi�cation describes conditions in the curvature of the central curve of the
cyclic surface and also provides conditions on the radius functions.
As a consequence of our theorem, we obtain a classi�cation for Linear Wein-

garten cyclic surfaces:

Corollary 93 A Linear Weingarten cyclic surface is either a globally tubular
surface or globally a rotational surface.

The previous corollary provides an improvement in the complete classi�ca-
tion, in the sense that we proof that some particular relations does not accept
combinations between the forementioned surfaces. Indeed, we have obtained
the following result that ensures our claim.

Corollary 94 Let Q (x; y) 2 R [x; y] be a polynomial. Then Rad� (Q) = ; if
and only if the unique elements of S (Q) are the globally rotational surfaces.

Here we would like to recall that the set Rad� (Q) is the collection of the
r0 2 Rad (Q) such that Q (x; y) belongs to the ideal in R [x; y] generated by
xr20 � 2r0y + 1.
In other words, throughout the study of the polynomials, we can provide

a �rst discriminant that guarantees either the surface may or may not be a
combination of tubular and rotational surfaces.

Before we start, we would like to (brie�y) discuss about rotational surfaces.
A rotational surface (also known as surface of revolution) is a surface obtained
by the rotation of a plane curve g (s) around an axis in its plane. The parame-
trization of a rotational surface is given by

 (s; t) = (g (s) cos t; g (s) sin t; t)
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and its Gaussian and mean curvatures are

K =

0B@ �g00

g
�
1 + (g0)

2
�2
1CA and H =

 
(g0)2 � gg00 + 1
2g ((g0)2 + 1)

3
2

!
.

As mentioned before, in this section we will use a classical result of Algebraic
Geometry, but in order to proper state it, let us de�ne the following set of all
points (a; b) 2 R2 such that P (a; b) = 0, for a given polynomial P (x; y) 2
R [x; y]. We denote this set as

V (P ) =
�
(a; b) 2 R2 ; P (a; b) = 0

	
.

For example, in the case that P (x; y) 2 R [x; y] is given by P (x; y) = x� y,
we have that V (P ) is the principal diagonal of R2. Other example is if P (x; y) =
x2 + y2 � 1, then V (P ) has the geometric shape of a circle of radius 1 centered
in the origin.
With this newly notation, we are able to state the theorem of Algebraic

Geometry that we will made use:

Theorem 95 Let F (x; y) and G (x; y) be polynomials in R [x; y] with no com-
mon factors. Then V (F;G) = V (F )

T
V (G) is a �nite set of points.

The proof can be found in several classical books of algebraic geometry, we
suggest for instance [8].

In the direction to apply the forementioned theorem, we �rst must remark
that the polynomial x2 + y2 � 1 2 R [x; y] is irreducible, once it will play an
important role in the next result. In fact, asume by absurd the existence of two
polynomials of degree 1, named,

P1 (x; y) = ax+ by + c and P2 (x; y) = dx+ ey + f 2 R [x; y] (3.46)

such that
x2 + y2 � 1 = P1 (x; y)P2 (x; y) .

The polynomial equality provides that the following system must be veri�ed:

ad = 1, be = 1, cf = 1

ae+ bd = 0, af + cd = 0, ce+ bf = 0.

Therefore, in on hand we have a, b, d and e must be all nonzero, moreover the
coe¢ cients satisfy

a =
1

d
and b =

1

e
.

On the other hand, we observe that above conditions implies that

0 = ae+ bd =
e2 + d2

de
,
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hence
e = d = 0.

which is an absurd. Thus, we conclude that x2 + y2 � 1 is an irreducible poly-
nomial.
So the following result is a consequence of the Theorem 95 along with pre-

vious observation and is a fundamental argument in the demonstration of our
main theorem of classi�cation of Polynomial Weingarten cyclic surfaces. The
statement read as:

Lemma 96 Consider the polynomial

F (x; y) =
nX
i=0

1X
j=0

ai;jx
iyj =

 
nX
i=0

ai;0x
i

!
+

 
nX
i=0

ai;1x
i

!
y 2 R [x; y]

such that F (cos t; sin t) � 0 for every t in an interval. Then F (x; y) is the null
polynomial.

Proof. Consider the irreducible polynomial Q (x; y) = x2 + y2 � 1 and notice
that Q (cos t; sin t) � 0 for every t 2 R. Therefore, we remark that V (Q) is the
circle S1 of radius 1 and center in the origin. Furthermore, the hypothesis that
F (cos t; sin t) � 0 furnishes that V (F ) contains S1, thus

V (F )
\
V (Q) 6= 0.

By Theorem 95 we have that Q and F has a factor in common and since Q
is a irreducible polynomial, it implies that

F (x; y) = Q (x; y)R (x; y) =
�
x2 � 1

�
R (x; y) + y2R (x; y)

for some R (x; y) 2 R [x; y].
Notice that the power of variable y of polynomial F (x; y) is up to 1, by

hypothesis. This yields that R (x; y) must be identically null, thus F is the null
polynomial.
We remark that the above result naturally still holds in the case that the

polynomials is given by

F (x; y) =
nX
i=0

1X
j=0

ai;jy
ixj =

 
nX
i=0

ai;0y
i

!
+

 
nX
i=0

ai;1y
i

!
x 2 R [x; y] ,

which we will state, but the proof will be omitted since is completely analogous.

Lemma 97 Consider the polynomial

F (x; y) =
nX
i=0

1X
j=0

ai;jy
ixj =

 
nX
i=0

ai;0y
i

!
+

 
nX
i=0

ai;1y
i

!
x 2 R [x; y]

such that F (cos t; sin t) � 0 for every t in an interval. Then F (x; y) is the null
polynomial.
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For hyperbolic trigonometric functions (i.e. for the functions cosh t and
sinh t), there is a complete analogous result to the Lemma 96. But in order to
obtain that, �rst we have to notice that the polynomial x2 � y2 � 1 2 R [x; y] is
also irreducible. Therefore, we obtain the following:

Lemma 98 Consider the polynomial

F (x; y) =
nX
i=0

1X
j=0

ai;jx
iyj =

 
nX
i=0

ai;0x
i

!
+

 
nX
i=0

ai;1x
i

!
y 2 R [x; y]

such that F (cosh t; sinh t) � 0 for every t in an interval. Then F (x; y) is the
null polynomial.

Going along the lines to prove the above statement, it is only necessary
remark that Q (x; y) = x2 � y2 � 1 is irreducible and verify

0 � Q (cosh t; sinh t) = cosh2 t� sinh2 t� 1

for every t 2 R. Then, the result follows similarly as the prove of Lemma 96.

A relevant proposition is obtained when we articulate the previous lemma
along with the assuption that the Gaussian and mean curvatures of a cyclic
surface with central curve 
 and radius r vanishes the polynomial Q (x; y) =
x � y2. More precisely, the below proposition is the �rst acquired result that
describes geometric features of a cyclic surface that verify Q (K;H) � 0.
Moreover, our result garantees that under the previous conditions, the cur-

vature � of 
 vanishes everywhere which implies that cyclic surface is de�ned on
a straight line (hence, it belongs speci�cally to the class of rotational surfaces).
The precisely statement of our proposition follows:

Proposition 99 Let Q (x; y) 2 R [x; y] be the polynomial given by Q (x; y) =
x�y2. If a cyclic surface in the Euclidean 3-space is such that its Gaussian and
mean curvatures verify Q (K;H) � 0, then the surface is, in fact, a rotational
surface.

Proof. Assume the existence of a cyclic surface S with central curve 
 and
radius r such that its Gaussian and mean curvatures verify

0 = Q (K;H) = �K +H2.

The above equation implies that S must be a totally umbilical cyclic surface.
In fact,

0 = �K +H2 =
1

4
(k1 � k2)2 ,

where k1 and k2 are the principal curvatures of S. Since the class of totally
umbilical are well-known, our work resumes to analyse if S can be either (part
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of) a sphere or (part of) a plane. First, we assume the existence of a point
s0 2 I where the curvature � of central curve 
 is

� (s0) 6= 0,

therefore, there is an open interval J containing s0 such that � (s) 6= 0 for every
s 2 J . In this interval, we are able to parametrized the surface SJ which is
obtained by restricting S to J , more precisely:

 (s; t) = 
 (s) + (r (s) cos t)N (s) + (r (s) sin t)B (s)

where s 2 J and t 2 R.
Now we have two cases to examine, named, if SJ is contained in a sphere or

if SJ is contained in a plane.
Suppose that exists an open set 
 of SJ which is entirely contained in the

sphere of center � and radius r, named S (�; r). Thus, there is an open set
U = (a; b)� (c; d) � J � R, such that

g ( (s; t)� �;  (s; t)� �) = r2,

for every (s; t) 2 U .
So, the following equality is obtained by derivation of previous equation:

0 = g ( t;  � �)
= rg (N (s) ; � � 
 (s)) sin t� rg (B (s) ; � � 
 (s)) cos t.

Therefore, for each �xed s1 2 (a; b) we can apply the Lemma 96 that provides
g (N (s1) ; � � 
 (s1)) and g (B (s1) ; � � 
 (s1)) must vanish identically, since s1
is arbitrary, it implies

g (N (s) ; � � 
 (s)) � 0 and g (B (s) ; � � 
 (s)) � 0

for every s 2 (a; b). Finally, notice that

0 =
d

ds
g (N (s) ; � � 
 (s))

= g (��T; � � 
 (s)) + �g (B; � � 
 (s))
= ��g (T; � � 
 (s)) .

Then g (T; � � 
 (s)) must be null for every s 2 (a; b). As consequence, we have


 � � = g (T; 
 � �)T + g (N; 
 � �)N + g (B; 
 � �)B = 0,

that is, 
 (s) is constant (equal to �) which is an absurd with the regularity of

. We conclude that SJ cannot be part of sphere.
It still remains prove that SJ is not (part of) a plane. So suppose that

exists an open set 
 of SJ which is entirely contained in a plane � (v; d) =
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�
u 2 R3 ; hu; vi = d

	
where v 2 S2 � R3 and d 2 R constant. Thus, there is

an open set U = (a; b)� (c; d) � J � R, such that

g ( (s; t) ; v) = d

for every (s; t) 2 U .
Thus, the following equalities are obtained

g ( s; v) = 0 and g ( t; v) = 0,

we also remark that

0 = g ( s; v) = �g (N (s) ; v) sin t+ g (B (s) ; v) cos t.

For each s1 2 (a; b), the Lemma 96 provides that g (N (s1) ; v) and g (B (s1) ; v)
must vanish identically, since s1 is arbitrary, it yields

g (N (s) ; v) � 0 and g (B (s) ; v) � 0

for every s 2 (a; b). As consequence, we have

T (s) = v

for every s 2 (a; b), which is an absurd because the above equality gives

k (s) = kT 0k = 0,

hence, SJ cannot be part of a plane.
Then, we conclude that curvature of central curve must be null. Moreover,

a circle of radius r (s) along a straight line is a rotational surface.
We obtain the same conclusions of the above statement also for cyclic sur-

faces in the Lorentzian 3-space, that is, a cyclic surface with central curve 
 and
radius r that vanishes the polynomial Q (x; y) = x � y2 is, as a matter of fact,
a rotational surface. More precisely, the cyclic surface is de�ned on a straight
line.
However, we must to highlight that the arguments presented in the proof of

previous proposition are not valid for the Lorentzian 3-space. Since the class
of totally umbilical surfaces in L3 is, naturally, di¤erent than the ones in E3.
Moreover, the notion of totally umbilical surfaces requires that the Weingarten
map be diagonalizable.
In the end, we present the following result for a cyclic surface in L3 whithout

any additional hypothesis.

Proposition 100 Let Q (x; y) 2 R [x; y] be the polynomial given by Q (x; y) =
x�y2. If a cyclic surface in the Lorentzian 3-space is such that its Gaussian and
mean curvatures verify Q (K;H) � 0, then the surface is, in fact, a rotational
surface.
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Proof. Assume the existence of a cyclic surface S of type 1 (see Section 3.1.2
for more details) with central curve 
 and radius r such that its Gaussian and
mean curvatures verify

0 = Q (K;H) = �K +H2. (3.47)

We assume the existence of a point s0 2 I where the curvature � of central
curve 
 is � (s0) 6= 0,therefore, there is an open interval J containing s0 such
that � (s) 6= 0 for every s 2 J . In this interval, we are able to parametrized the
surface SJ which is obtained by restricting S to J , more precisely:

 (s; t) = �+ (r (s) sinh t)N + (r (s) cosh t)B 

where s 2 J and t 2 R.
Then, by the Proposition 76 and by (3.47) we obtain the following di¤erential

equation:

0 � 4r8�6 ("� 1) sinh6 (t+  ) + 20r7�5 ("� 1) sinh5 (t+  )

+r6�3
�
�40�+ 41�"� 16(r0)2�+ 12(r0)2�"
+4rr00�� 4rr0�0 � 4rr00�"+ 4rr0"�0

�
sinh4 (t+  )

+
�
4r7r0�4" 0 � 4r7r0�4 0

�
sinh3 (t+  ) cosh (t+  )

+2r5�2
�
�20�+ 22�"� 22(r0)2�+ 17(r0)2�"
+8rr00�� 6rr0�0 � 7rr00�"+ 5rr0"�0

�
sinh3 (t+  )

+2r6r0�3 0 (5"� 6) sinh2 (t+  ) cosh (t+  )

�r4
0@ 20�2 + 40(r0)2�2 + 12(r0)4�2 � 26�2"� 34(r0)2�2"� 9(r0)4�2"+ 4r2(r0)2�4

�24rr00�2 + 18rr00�2"+ 4r(r0)3��0 � 4r(r0)2r00�2 + 12rr0��0 � r2(r00)2�2"
�r2(r0)2"(�0)2 � 6r(r0)3�"�0 + 6r(r0)2r00�2"� 8rr0�"�0 + 2r2r0r00�"�0

1A sinh2 (t+  )
+2r5r0� 0

�
�6�+ 4�"� 2(r0)2�

+3(r0)2�"� rr00�"+ rr0"�0
�
sinh (t+  )

+
�
r6(r0)2�2"( 0)2

�
cosh2 (t+  )

+
�
2r4r0�" 0

�
(r0)2 � rr00 + 1

�
� 4r4r0� 0

�
(r0)2 + 1

��
cosh (t+  )

+
�
r2"
�
(r0)2 � rr00 + 1

�2
+ 4r3

�
(r0)2 + 1

� �
r00 � r(r0)2�2

��

Then, we notice that, in order to apply the Lemma 96, we must replace
every

cosh2 t = sinh2 t+ 1
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in above equation. Hence, it follows

0 � 4r8�6 ("� 1) sinh6 (t+  ) + 20r7�5 ("� 1) sinh5 (t+  )

+r6�3
�
�40�+ 41�"� 16(r0)2�+ 12(r0)2�"
+4rr00�� 4rr0�0 � 4rr00�"+ 4rr0"�0

�
sinh4 (t+  )

+4r7r0�4 0 ("� 1) sinh3 (t+  ) cosh (t+  )

+2r5�2
�
�20�+ 22�"� 22(r0)2�+ 17(r0)2�"
+8rr00�� 6rr0�0 � 7rr00�"+ 5rr0"�0

�
sinh3 (t+  )

+2r6r0�3 0 (5"� 6) sinh2 (t+  ) cosh (t+  )

�r4

0BBBB@
20�2 + 40(r0)2�2 + 12(r0)4�2 � 26�2"� 34(r0)2�2"

�9(r0)4�2"+ 4r2(r0)2�4 � 24rr00�2 + 18rr00�2"+ 4r(r0)3��0
�4r(r0)2r00�2 + 12rr0��0 � r2(r00)2�2"

�r2(r0)2"(�0)2 � 6r(r0)3�"�0 + 6r(r0)2r00�2"
�8rr0�"�0 + 2r2r0r00�"�0

1CCCCA sinh2 (t+  )
+2r5r0� 0

�
�6�+ 4�"� 2(r0)2�+ 3(r0)2�"

�rr00�"+ rr0"�0
�
sinh (t+  ) cosh (t+  )

�2r3

0BBBBBB@
2�� 4�"+ 6(r0)2�+ 4(r0)4�

�7(r0)2�"� 3(r0)4�"
�8rr00�+ 2rr0�0 + 4r2(r0)2�3 + 2r(r0)3�0

�r(r0)3"�0 � r2(r00)2�"
+5rr00�"� rr0"�0 � 4r(r0)2r00�
+4r(r0)2r00�"+ r2r0r00"�0

1CCCCCCA sinh (t+  )
�2r4r0� 0

�
�"+ 2(r0)2 � (r0)2"+ rr00"+ 2

�
cosh (t+  )

+r2"
�
(r0)2 � rr00 + 1

�2
+ 4r3

�
(r0)2 + 1

� �
r00 � r(r0)2�2

�
+ r6(r0)2�2"( 0)2

Now, we have that each term of above di¤erential equation must be null.

In the case that " = �1, we have

�8r8�6 � 0

which is an absurd since

r (s) > 0 and � (s) 6= 0

for every s 2 J , therefore, in this case we conclude that there is no point s0
such that � (s0) 6= 0.
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In the case that " = 1, the previous di¤erential equations becomes

0 � �r6�4 (2r0 � 1) (2r0 + 1) sinh4 (t+  )
�2r5�2

�
�2�+ 5(r0)2�� rr00�+ rr0�0

�
sinh3 (t+  )

�2r6r0�3 0 sinh2 (t+  ) cosh (t+  )

+r4

0BB@
6�2 � 6(r0)2�2 � 3(r0)4�2 + r2(r00)2�2
�4r2(r0)2�4 + r2(r0)2(�0)2 + 6rr00�2

+2r(r0)3��0 + r2(r0)2�2( 0)2

�2r(r0)2r00�2 � 4rr0��0 � 2r2r0r00��0

1CCA sinh2 (t+  )
+2r5r0� 0

�
�2�+ (r0)2�� rr00�+ rr0�0

�
sinh (t+  ) cosh (t+  )

�2r3
0@ �2�� (r0)2�+ (r0)4�� r2(r00)2�

�3rr00�+ rr0�0 + 4r2(r0)2�3
+r(r0)3�0 + r2r0r00�0

1A sinh (t+  )
�2r4r0� 0

�
rr00 + (r0)2 + 1

�
cosh (t+  )

+r2

0@ r2(r00)2 + 2rr00 + 2(r0)2 + (r0)4

�4r2(r0)2�2 � 4r2(r0)4�2 + 2r(r0)2r00
+r4(r0)2�2( 0)2 + 1

1A
From the �rst line, we have that

(2r0 � 1) (2r0 + 1) = 0

which yields that r0 (s) � � 1
2 for every s 2 J , consequently, r

00 � 0 in J . The
third line provides that

�2r6r0�3 0 � 0
so  0 (s) � 0 for every s 2 J . The second equation gives

�2r5�2
�
�2�+ 5(r0)2�� rr00�+ rr0�0

�
� 0

thus, in the case that r0 (s) � 1
2 the previous equation gives

1

2
r�0 � 3

4
� � 0

since r 6= 0 and � 6= 0 we can express �0 in terms of forementioned functions,
named

�0 =
3�

2r
.

Now, notice that in on hand, the last equality provides�
r2(r00)2 + 2rr00 + 2(r0)2 + (r0)4 � 4r2(r0)2�2
�4r2(r0)4�2 + 2r(r0)2r00 + r4(r0)2�2( 0)2 + 1

�
� 0

since r00 = 0 =  0 and r0 = 1
2 it follows

5

4
= r2�2. (3.48)
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On the other hand, the fourth equation is0BB@
6�2 � 6(r0)2�2 � 3(r0)4�2 + r2(r00)2�2
�4r2(r0)2�4 + r2(r0)2(�0)2 + 6rr00�2

+2r(r0)3��0 + r2(r0)2�2( 0)2

�2r(r0)2r00�2 � 4rr0��0 � 2r2r0r00��0

1CCA � 0,

then applying the already known information, we have

�1
4
�2 (2r�� 3) (2r�+ 3) � 0

therefore
2r�� 3 = 0 or 2r�+ 3 = 0.

Hence
r� =

3

2
or r� = �3

2
,

either way, we have (r�)2 =
�
� 3
2

�2
= 9

4 which contradicts to the required
condition in (3.48). So, in the case that r0 � 1

2 we conclude that there is no
s0 2 I such that � (s0) 6= 0. Then, the cyclic surface that verify �K +H2 � 0
is, indeed, a rotational surface.
In the case that r0 � � 1

2 , we already have that  
0 � 0 and r00 � 0 in J . The

second equation gives

�2r5�2
�
�2�+ 5(r0)2�� rr00�+ rr0�0

�
� 0

thus, the previous equation gives

�0 =
�3�
2r

.

Now, notice that in on hand, the last equality provides�
r2(r00)2 + 2rr00 + 2(r0)2 + (r0)4 � 4r2(r0)2�2
�4r2(r0)4�2 + 2r(r0)2r00 + r4(r0)2�2( 0)2 + 1

�
� 0

since r00 = 0 =  0 and r0 = � 1
2 it follows

r2�2 =
5

4
.

On the other hand, the fourth equation is0BB@
6�2 � 6(r0)2�2 � 3(r0)4�2 + r2(r00)2�2
�4r2(r0)2�4 + r2(r0)2(�0)2 + 6rr00�2

+2r(r0)3��0 + r2(r0)2�2( 0)2

�2r(r0)2r00�2 � 4rr0��0 � 2r2r0r00��0

1CCA � 0,

then applying the already known information, we have

�1
4
�2 (2r�� 3) (2r�+ 3) � 0
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therefore
2r�� 3 = 0 or 2r�+ 3 = 0.

Hence

r� =
3

2
or r� = �3

2
,

either way, we have (r�)2 =
�
� 3
2

�2
= 9

4 which contradicts to the required
condition in (3.48). So, in the case that r0 � �1

2 we conclude that there is no
s0 2 I such that � (s0) 6= 0. Then, the cyclic surface that verify �K +H2 � 0
is, indeed, a rotational surface.

Remark 101 Despite the proof of the Proposition 100 be made by the cyclic
surface of type 1 in Lorentzian 3-space, it is immediate to conclude that the
statement holds for cyclic surface of type 2, 3, 4 and 5, once the Gaussian and
mean curvatures of these surfaces has the only di¤erence in the cos t; sin t; cosh t
and sinh t. So we conclude that the result is valid for a cyclic surface (of any
type) in Lorentzian 3-space.

In view of the above discussion, we present our main theorem that provides
a geometric description of cyclic surfaces that verify a polynomial Q (x; y) 2
R [x; y]. Furthermore, the result achieves that in the aim to classify cyclic sur-
faces such that its curvatures verify Q (K;H) � 0, it is only needed investigate
(smooth) combinations of tubular surfaces and rotational surfaces whose curva-
tures vanishes the polynomial.
This is a relevant simpli�cation since locally either the radius is constant

or either the curvature of central curve is null. Finally, our theorem shows
conditions over the polynomial to guarantee existence of Polynomial Weingarten
cyclic surfaces.
The result exhibited in the beginning of this section is a simpli�ed version

of our main theorem whose precisely statement will be presented below.

Theorem 102 Consider the polynomial Q (x; y) 2 R [x; y] and let S (Q) be
the set of all regular cyclic surfaces in Euclidean 3-space whose Gaussian and
mean curvatures K, H verify Q (K;H) � 0. Then, the elements of S (Q) are
(smooth) combinations of Rotational surfaces and Tubular surfaces of radius
r 2 Rad� (Q).

Proof. Consider the following expression (which is always possible) of the given
polynomial

Q (x; y) =
�
�x+ y2

�n
P (x; y) ,

where n 2 N (possibly zero) and P (x; y) 2 R [x; y] is a polynomial that does
not belong to the ideal generated by �x+ y2.
For an arbitraty element s0 2 (a; b) such that the curvature � of the central

curve 
 is not null, that is � (s0) 6= 0, we have the existence of a neighborhood
J of s0 such that � (s) 6= 0 for every s 2 J . In this interval, we are able to
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parametrized the surface SJ which is obtained by the restriction of S to J ,
more precisely:

 (s; t) = 
 (s) + (r (s) cos t)N (s) + (r (s) sin t)B (s) (3.49)

where s 2 J and t 2 R. By the Proposition 99 we already have that the Gaussian
and mean curvatures of SJ does not vanish the polynomial �x + y2, therefore
the hypothesis that the Gaussian and mean curvatures of S verify Q (K;H) � 0
implies that P (K;H) must be null, that is

0 � P (K;H) =
2nX
j=0

2n�jX
i=0

ai;j (K)
i
(H)

j ,

and by the Notation 75 the previous equation is rewritten as

0 �
2nX
j=0

2n�jX
i=0

ai;j
�(s; t)

i
� (s; t)

j

2jr (s)
2(i+j)

� (s; t)
4i+3j
2

. (3.50)

So it is necessary express the above equation in a more suitable way. In
the aim to accomplish that, we �rst need to write every term with the same
denominator, then we have to analyze the exponent of � which is

4i+ 3j

2
= 2i+ j +

j

2
< 2i+ 2j � 4n.

So mulitplying the Equation 3.50 both sides by
�
2r2�2

�2n
it is obtained

0 =
2nX
j=0

2n�jX
i=0

22n�jai;jr
2n�2(i+j)�4n�

4i+3j
2 �i�j . (3.51)

Now the next step to reach our proper expression is to separate between the
terms whose � is to the power of odds and even numbers because our objective
is express the above equation as a polynomial, therefore we will study the nth
roots of �.
In this direction, it is easy to see that the parity of 4i+3j2 is given exclusively

by j, once 4i is even for every i 2 N. Thus, applying the Lemma 135 to the
Equation 3.51, it can be expressed as two summatories

nX
j=0

2n�2jX
i=0

22n�2jai;2jr
4n�2(i+2j)�4n�(2i+3j)�i�2j

+�
1
2

nX
j=1

2n�(2j�1)X
i=0

22n�(2j�1)ai;(2j�1)r
4n�2(i+(2j�1))�4n�2i�3j+1�i�(2j�1) = 0,
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which implies0@ nX
j=0

2n�2jX
i=0

22n�2jai;2jr
4n�2(i+2j)�4n�(2i+3j)�i�2j

1A2

=

0@�� 1
2

nX
j=1

2n�(2j�1)X
i=0

22n�(2j�1)ai;(2j�1)r
4n�2(i+(2j�1))�4n�2i�3j+1�i�(2j�1)

1A2

Finally, we achieve the following expression0@ nX
j=0

2n�2jX
i=0

22n�2jai;2jr
4n�2(i+2j)�4n�(2i+3j)�i�2j

1A2

(3.52)

��

0@ nX
j=1

2n�(2j�1)X
i=0

22n�(2j�1)ai;(2j�1)r
4n�2(i+(2j�1))�4n�2i�3j+1�i�(2j�1)

1A2

= 0.

Before to proceed, let us de�ne, for each s 2 J , the following polynomials

�s (x; y) = r4�4x4 � 3r3�3x3 + r2�
�
3�(r0)2 + r�0r0 + 3�� rr00�

�
x2

+r3r0�2�xy � r
�
2�(r0)2 + r�0r0 + �� 2rr00�

�
x

�r2r0��y � r
�
r(r0)2�2 + r00

�
�s (x; y) = �2r4�3x3 + 5r3�2x2 � r2

�
3�(r0)2 + r�0r0 + 4�� rr00�

�
x

�r3r0��y + r
�
(r0)2 � rr00 + 1

�
�s (x; y) =

�
r2�2

�
x2 + (�2r�)x+

�
(r0)2 + 1

�
where the functions r, r0, r00, �, � are evalueted in s (therefore they are scalars).
Notice that the above polynomials has the property that �s (cos t; sin t) =

� (s; t), �s (cos t; sin t) = � (s; t) and �s (cos t; sin t) = � (s; t) for every t 2 R.
Before to proceed, let us de�ne the polynomial P (x; y; z) 2 R [x; y; z], given by

P (x; y; z) =

0@ nX
j=0

2n�2jX
i=0

22n�2jai;2jr
4n�2(i+2j)z4n�(2i+3j)xiy2j

1A2

(3.53)

�z

0@ nX
j=1

2n�(2j�1)X
i=0

22n�(2j�1)ai;(2j�1)r
4n�2(i+(2j�1))z4n�2i�3j+1xiy(2j�1)

1A2

.

Now we consider the following map P (�s (x; y) ; �s (x; y) ; �s (x; y)) 2 R [x; y].
Moreover, we remark that P (�s (x; y) ; �s (x; y) ; �s (x; y)) has degree constant
equal to 16n. In fact, applying the Lemma 140 in (3.53) we are able to express
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P (x; y; z) as

P (x; y; z) =
nX
j=0

2n�2jX
i=0

nX
k=0

2n�2kX
l=0

24n�2k�2jr4n�2j�2k�l�iai;2jal;2kx
i+ly2j+2kz8n�3j�3k�2l�2i

�
nX
j=1

2n�(2j�1)X
i=0

nX
k=1

2n�(2k�1)X
l=0

24n�2k�2j+2r4n�2j�2k�l�i+2ai;2j�1al;2k�1x
i+ly2j+2k�2z8n�3j�3k�2l�2i+3.

then, we have that the degree of P (�s (x; y) ; �s (x; y) ; �s (x; y)) is calculated
as

4 (i+ l) + 3 (2j + 2k) + 2 (8n� 3j � 3k � 2l � 2i) = 16n
and also

4 (i+ l) + 3 (2j + 2k � 2) + 2 (8n� 3j � 3k � 2l � 2i+ 3) = 16n

Therefore, the Corollary 86 provides to us the existence of a polynomial
Qs (x; y) 2 R [x; y] such that

P (�s (x; y) ; �s (x; y) ; �s (x; y)) = P
�
r4�4x4;�2r4�3x3; r2�2x2

�
+Qs (x; y)

where @Qs < 16n.
Then, notice that

P (�s (cos t; sin t) ; �s (cos t; sin t) ; �s (cos t; sin t)) � 0

for every t 2 R. So replacing every y2 by 1� x2 in the next polynomial

P
�
�s0 (x; y) ; �s0 (x; y) ; �s0 (x; y)

�
= P

�
r4�4x4;�2r4�3x3; r2�2x2

�
+Qs0 (x; y)

we obtain a polynomial gPs0 (x; y) verifyinggPs0 (cos t; sin t) = 0
for every t. Follows from the Lemma 96 that gPs0 must be the null polynomial.
Furthermore, we remark that

0 (x; y) =gPs0 (x; y) = P �r4�4x4;�2r4�3x3; r2�2x2�+ fQs (x; y)
where @fQs � @Qs < 16n. It is important to observe that procedure of changing
y2 by 1 � x2 does not a¤ect the monomial P

�
r4�4x4;�2r4�3x3; r2�2x2

�
once

it is a polynomial in R [x]. Indeed, a straightfoward computation provides that

P
�
r4�4x4;�2r4�3x3; r2�2x2

�
(3.54)

= 24n�16n

0@ nX
j=0

2n�2jX
i=0

r2nr10n�2j�2iai;2j

1A2

x16n

�24n�16nr2
0@ nX
j=1

2n�(2j�1)X
i=0

r2nr10n�2j�2iai;2j�1

1A2

x16n,
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therefore we achieve this claim.
Furthermore, let us come back to the monomialP

�
r4�4x4;�2r4�3x3; r2�2x2

�
for further analysis. For practical purposes, we recall the next well-known prop-
erty

A2 �B2 = (A�B) (A+B)

it provides that the Equation 3.54 can be expressed as

P
�
r4�4x4;�2r4�3x3; r2�2x2

�
= 24n�16nr4nA (r)B (r)x16n

where A and B are de�ned as polynomials evalueted in r. More precisely, we
de�ne the next polynomials

A (w) =

0@ nX
j=0

2n�2jX
i=0

�
w10n�2j�2iai;2j

�
� w

nX
j=1

2n�(2j�1)X
i=0

�
w10n�2j�2iai;2j�1

�1A
(3.55)

and

B (w) =

0@ nX
j=0

2n�2jX
i=0

�
w10n�2j�2iai;2j

�
+ w

nX
j=1

2n�(2j�1)X
i=0

�
w10n�2j�2iai;2j�1

�1A
(3.56)

Since, by hypothesis, P (x; y) does not belong to the ideal in R [x; y] gener-
ated by �x+ y2 and it implies that

A (w)B (w) 6� 0 (w) ,

in other words, A (w)B (w) is not the null polynomial.
In fact, we will examine each of the polynomialsA (w) and B (w) individually.

Notice that, the Lemma 135, allows us to rewrite (3.55) and (3.56) respectively
as

A (w) =

0@ 2nX
j=0

2n�jX
i=0

(�1)j ai;jw4n�j�2i
1A

and

B (w) =

0@ 2nX
j=0

2n�jX
i=0

ai;jw
4n�j�2i

1A .
Thus, the Theorem 91 provides the following expression of above polynomials

A (w) =
2n�1X
i=0

1X
j=0

(�1)j
 
2n�i�jX
k=0

ai�k;j+2k

!
w4n�2i�j + a2n;0

and

B (w) =
2n�1X
i=0

1X
j=0

 
2n�i�jX
k=0

ai�k;j+2k

!
w4n�2i�j + a2n;0.
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It is relevant to notice that in previous polynomials each power of w appears
only one time. In fact,

A (w) =
2n�1X
i=0

 
2n�iX
k=0

ai�k;2k

!
w4n�2i�

2n�1X
i=0

 
2n�i�1X
k=0

ai�k;1+2k

!
w4n�2i�1+a2n;0

and

B (w) =
2n�1X
i=0

 
2n�iX
k=0

ai�k;2k

!
w4n�2i+

2n�1X
i=0

 
2n�i�1X
k=0

ai�k;1+2k

!
w4n�2i�1+a2n;0,

therefore, the polynomials will be null if and only if 
2n�iX
k=0

ai�k;2k

!
� 0 (3.57)

for every (i; j) 2 � = f0; : : : ; 2n� 1g � f0; 1g [ f(2n; 0)g which is precisely de
condition to apply our main Theorem 83 that gives to us that 3.57 vanishes
identically if and only if P (x; y) belongs to the ideal in R [x; y] generated by
�x+ y2 (which is not the case).
Then we conclude that A (w) and B (w) are non null, hence

A (w)B (w) 6� 0 (w) .

However, we recall that

P
�
r4�4x4;�2r4�3x3; r2�2x2

�
= 24n�16nr4nA (r)B (r)x16n (3.58)

whose degree is equal to 16n and since @fQs < 16n we conclude that (3.58) is, in
fact, the term of highest degree. On the other hand, it must be null, so it yields

A (r)B (r) = 0

since r 6= 0 for every s 2 (a; b), in particular r 6= 0 for every s 2 J , and r is a
smooth function whose vanishes a polynomial, then we conclude that r must be
constant, that is,

r (s) = r0

for every s 2 J .
If exists a r0 2 Rad� (P ), we conclude by Theorem 54 that the elements of

S (P ) are the tubular surfaces of radius r0.
So it remains to investigate the points s0 2 (a; b) such that � (s) = 0. If s0

is an isolated point, we notice that there is a neighborhood J of s0 such that
for every s 2 J � fs0g we have � (s) 6= 0, then the same argument as before
provides that we have a combination of tubular surfaces and since, in this case,
the radius is constant, it implies that the surface is a tubular surface in J .
Finally, in elements s0 2 (a; b) such that � (s0) = 0, where we have an open

neighborhood L such that � (s) = 0 for every s 2 L. So, if we consider SL which
is de�ned analagous to SJ , it follows that SL is a rotational surface. Then
we conclude that S is a smooth combination of tubular surfaces and rotational
surfaces.
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Remark 103 It is important to notice that the set S (Q) includes (but do not
resume to) surfaces that are combination of Tubular surface and Rotational sur-
faces, that is, the combination may be empty. In other words,we admit globally
tubular surface and globally rotational surfaces as combinations of the foremen-
tioned surfaces.

We also achieve a complete classi�cation of cyclic surfaces in Lorentzian 3-
space whose Gaussian and mean curvatures verify Q (K;H) � 0, for Q (x; y) 2
R [x; y] an arbitrary polynomial relation. As a matter of fact, the following
demonstration is completly analogous to the previous theorem. The only dis-
tinct point between the proofs is the presence of the signal " from the curvatures
in L3.

Theorem 104 Consider the polynomial Q (x; y) 2 R [x; y] and let S (Q) be the
set of all regular cyclic surfaces in Lorentzian 3-space whose Gaussian and mean
curvatures K, H verify Q (K;H) � 0. Then, the elements of S (Q) are (smooth)
combinations of timelike Rotational surfaces and timelike Tubular surfaces of
radius r 2 Rad� (Q).

Proof. Consider the following expression (which is always possible) of the given
polynomial

Q (x; y) =
�
�x+ y2

�n
P (x; y) ,

where n 2 N (possibly zero) and P (x; y) 2 R [x; y] is a polynomial that does
not belong to the ideal generated by �x+ y2.
Assume the existence of a cyclic surface S of type 1 (see Section 3.1.2 for more

details) with central curve 
 and radius r. For an arbitraty element s0 2 (a; b)
such that the curvature � of the central curve 
 is not null, that is � (s0) 6= 0,
we have the existence of a neighborhood J of s0 such that � (s) 6= 0 for every
s 2 J . In this interval, we are able to parametrized the surface SJ which is
obtained by the restriction of S to J , more precisely:

 (s; t) = �+ (r (s) sinh t)N + (r (s) cosh t)B (3.59)

where s 2 J and t 2 R. By the Proposition 100 we already have that the
Gaussian and mean curvatures of SJ does not vanish the polynomial �x + y2,
therefore the hypothesis that the Gaussian and mean curvatures of S verify
Q (K;H) � 0 implies that P (K;H) must be null, that is

0 � P (K;H) =
2nX
j=0

2n�jX
i=0

ai;j (K)
i
(H)

j ,

the previous equation is rewritten as

0 �
2nX
j=0

2n�jX
i=0

ai;j
�(s; t)

i
� (s; t)

j

2j (�")
3
2 j r (s)

2(i+j)
� (s; t)

4i+3j
2

, (3.60)
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where " = �1 if the surface is spacelike and " = 1 if the surface is timelike.
So it is necessary express the above equation in a more suitable way. In

the aim to accomplish that, we �rst need to write every term with the same
denominator, then we have to analyze the exponent of � which is

4i+ 3j

2
= 2i+ j +

j

2
< 2i+ 2j � 4n.

So mulitplying the Equation 3.60 both sides by
�
2R2�2

�2n
it is obtained

0 =
2nX
j=0

2n�jX
i=0

22n�j (�")
3
2 j ai;jr

4n�2(i+j)�4n�
4i+3j
2 �i�j . (3.61)

Now the next step to reach our proper expression is to separate between the
terms whose � is to the power of odds and even numbers because our objective
is express the above equation as a polynomial, therefore we will study the nth
roots of �.
In this direction, it is easy to see that the parity of 4i+3j2 is given exclusively

by j, once 4i is even for every i 2 N. Thus, applying the Lemma 135 to the
Equation 3.61, it can be expressed as two summatories

nX
j=0

2n�2jX
i=0

22n�2j (�")2j ai;2jr4n�2(i+2j)�4n�(2i+3j)�i�2j

+�
1
2

nX
j=1

2n�(2j�1)X
i=0

22n�(2j�1) (�")2j�1 ai;(2j�1)r4n�2(i+(2j�1))�4n�2i�3j+1�i�(2j�1) = 0,

which implies0@ nX
j=0

2n�2jX
i=0

22n�2j (�")2j ai;2jr4n�2(i+2j)�4n�(2i+3j)�i�2j
1A2

=

0@�� 1
2

nX
j=1

2n�(2j�1)X
i=0

22n�(2j�1) (�")2j�1 ai;(2j�1)r4n�2(i+(2j�1))�4n�2i�3j+1�i�(2j�1)
1A2

Finally, we achieve the following expression0@ nX
j=0

2n�2jX
i=0

22n�2j (�")i+2j ai;2jr2n�(i+2j)�4n�(2i+3j)�i�2j
1A2

(3.62)

��

0@ nX
j=1

2n�(2j�1)X
i=0

22n�(2j�1) (�")i+2j�1 ai;(2j�1)r2n�(i+(2j�1))�4n�2i�3j+1�i�(2j�1)
1A2

= 0.



3.3. MAIN RESULT AND APPLICATIONS FOR CYCLIC SURFACES 107

For each s 2 J , we de�ne the following polynomials

�s (x; y) = r4�4x4 � 3r3�3x3 + r2�
�
3�(r0)2 + r�0r0 + 3�� rr00�

�
x2

+r3r0�2�xy � r
�
2�(r0)2 + r�0r0 + �� 2rr00�

�
x

�r2r0��y � r
�
r(r0)2�2 + r00

�
�s (x; y) = �2r4�3x3 + 5r3�2x2 � r2

�
3�(r0)2 + r�0r0 + 4�� rr00�

�
x

�r3r0��y + r
�
(r0)2 � rr00 + 1

�
�s (x; y) =

�
r2�2

�
x2 + (�2r�)x+

�
(r0)2 + 1

�
where the functions r, r0, r00, �, � are evalueted in s (therefore they are scalars).
Notice that the above polynomials has the property that �s (cosh t; sinh t) =

� (s; t), �s (sinh t; cosh t) = � (s; t) and �s (sinh t; cosh t) = � (s; t) for every
t 2 R. Before to proceed, let us de�ne the polynomial P (x; y; z) 2 R [x; y; z],
given by

P (x; y; z) =

0@ nX
j=0

2n�2jX
i=0

22n�2j (�")i+2j ai;2jr4n�2(i+2j)z4n�(2i+3j)xiy2j
1A2

(3.63)

�z

0@ nX
j=1

2n�(2j�1)X
i=0

22n�(2j�1) (�")i+2j�1 ai;(2j�1)r4n�2(i+(2j�1))z4n�2i�3j+1xiy(2j�1)
1A2

.

Now we consider the following mapP (�s (x; y) ; �s (x; y) ; �s (x; y)) 2 R [x; y].
Moreover, we remark that P (�s (x; y) ; �s (x; y) ; �s (x; y)) has degree constant
equal to 16n. In fact, applying the Lemma 140 in (3.63) we are able to express
P (x; y; z) as

P (x; y; z) =
nX
j=0

2n�2jX
i=0

nX
k=0

2n�2kX
l=0

24n�2k�2jR4n�2j�2k�l�iai;2jal;2kx
i+ly2j+2kz8n�3j�3k�2l�2i

�
nX
j=1

2n�(2j�1)X
i=0

nX
k=1

2n�(2k�1)X
l=0

24n�2k�2j+2R4n�2j�2k�l�i+2ai;2j�1al;2k�1x
i+ly2j+2k�2z8n�3j�3k�2l�2i+3.

then, we have that the degree of P (�s (x; y) ; �s (x; y) ; �s (x; y)) is calculated
as

4 (i+ l) + 3 (2j + 2k) + 2 (8n� 3j � 3k � 2l � 2i) = 16n
and also

4 (i+ l) + 3 (2j + 2k � 2) + 2 (8n� 3j � 3k � 2l � 2i+ 3) = 16n

Therefore, the Corollary 86 provides to us the existence of a polynomial
Qs (x; y) 2 R [x; y] such that

P (�s (x; y) ; �s (x; y) ; �s (x; y)) = P
�
r4�4x4;�2r4�3x3; r2�2x2

�
+Qs (x; y)
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where @Qs < 16n.
Then, notice that

P (�s (cos t; sin t) ; �s (cos t; sin t) ; �s (cos t; sin t)) � 0

for every t 2 R. So replacing every y2 by 1� x2 in the next polynomial

P
�
�s0 (x; y) ; �s0 (x; y) ; �s0 (x; y)

�
= P

�
r4�4x4;�2r4�3x3; r2�2x2

�
+Qs0 (x; y)

we obtain a polynomial gPs0 (x; y) verifyinggPs0 (sinh t; cosh t) = 0
for every t. Follows from the Lemma 98 that gPs0 must be the null polynomial.
Furthermore, we remark that

0 (x; y) =gPs0 (x; y) = P �r4�4x4;�2r4�3x3; r2�2x2�+ fQs (x; y)
where @fQs � @Qs < 16n. It is important to observe that procedure of changing
y2 by 1 � x2 does not a¤ect the monomial P

�
r4�4x4;�2r4�3x3; r2�2x2

�
once

it is a polynomial in R [x]. Indeed, a straightfoward computation provides that

P
�
r4�4x4;�2r4�3x3; r2�2x2

�
(3.64)

= 24n�16n

0@ nX
j=0

2n�2jX
i=0

(�")2j r2nr10n�2j�2iai;2j

1A2

x16n

�24n�16n
0@r2 nX

j=1

2n�(2j�1)X
i=0

(�")2j�1 r2nr10n�2j�2iai;2j�1

1A2

x16n,

therefore we achieve this claim.
Furthermore, let us come back to the monomialP

�
r4�4x4;�2r4�3x3; r2�2x2

�
for further analysis. For practical purposes, we recall the next well-known prop-
erty

A2 �B2 = (A�B) (A+B)

it provides that the Equation 3.64 can be expressed as

P
�
r4�4x4;�2r4�3x3; r2�2x2

�
= 24n�16nr4nA (r)B (r)x16n

where A and B are de�ned as polynomials evalueted in r. More precisely, we
de�ne the next polynomials

A (w) =

0@ nX
j=0

2n�2jX
i=0

�
(�")2j w10n�2j�2iai;2j

�
� w

nX
j=1

2n�(2j�1)X
i=0

�
(�")2j�1 w10n�2j�2iai;2j�1

�1A ,
(3.65)
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and

B (w) =

0@ nX
j=0

2n�2jX
i=0

�
(�")2j w10n�2j�2iai;2j

�
+ w

nX
j=1

2n�(2j�1)X
i=0

�
(�")2j�1 w10n�2j�2iai;2j�1

�1A .
(3.66a)

Since, by hypothesis, P (x; y) does not belong to the ideal in R [x; y] gener-
ated by �x+ y2 and it implies that

A (w)B (w) 6� 0 (w) ,

in other words, A (w)B (w) is not the null polynomial.
In fact, we will examine each of the polynomialsA (w) and B (w) individually.

Notice that, the Lemma 135, allows us to rewrite (3.65) and (3.66a) respectively
as

A (w) =

0@ 2nX
j=0

2n�jX
i=0

(�1)j (�")j ai;jw4n�j�2i
1A

and

B (w) =

0@ 2nX
j=0

2n�jX
i=0

(�")j ai;jw4n�j�2i
1A .

Thus, the Theorem 91 provides the following expression of above polynomials

A (w) =
2n�1X
i=0

1X
j=0

(�1)j (�")j
 
2n�i�jX
k=0

ai�k;j+2k

!
w4n�2i�j + a2n;0

and

B (w) =
2n�1X
i=0

1X
j=0

(�")j
 
2n�i�jX
k=0

ai�k;j+2k

!
w4n�2i�j + a2n;0.

It is relevant to notice that in previous polynomials each power of w appears
only one time. In fact,

A (w) =
2n�1X
i=0

 
2n�iX
k=0

ai�k;2k

!
w4n�2i�

2n�1X
i=0

(�")
 
2n�i�1X
k=0

ai�k;1+2k

!
w4n�2i�1+a2n;0

and

B (w) =
2n�1X
i=0

 
2n�iX
k=0

ai�k;2k

!
w4n�2i+

2n�1X
i=0

(�")
 
2n�i�1X
k=0

ai�k;1+2k

!
w4n�2i�1+a2n;0,

therefore, the polynomials will be null if and only if 
2n�iX
k=0

ai�k;2k

!
� 0 (3.67)
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for every (i; j) 2 � = f0; : : : ; 2n� 1g � f0; 1g [ f(2n; 0)g which is precisely de
condition to apply our main Theorem 83 that gives to us that 3.57 vanishes
identically if and only if P (x; y) belongs to the ideal in R [x; y] generated by
�x+ y2 (which is not the case).
Then we conclude that A (w) and B (w) are non null, hence

A (w)B (w) 6� 0 (w) .

However, we recall that

P
�
r4�4x4;�2r4�3x3; r2�2x2

�
= 24n�16nr4nA (r)B (r)x16n (3.68)

whose degree is equal to 16n and since @fQs < 16n we conclude that (3.68) is, in
fact, the term of highest degree. On the other hand, it must be null, so it yields

A (r)B (r) = 0

since r 6= 0 for every s 2 (a; b), in particular r 6= 0 for every s 2 J , and r is a
smooth function whose vanishes a polynomial, then we conclude that r must be
constant, that is,

r (s) = r0

for every s 2 J .
If exists a r0 2 Rad� (P ), we conclude by Theorem 54 that the elements of

S (P ) are the tubular surfaces of radius r0.
So it remains to investigate the points s0 2 (a; b) such that � (s) = 0. If s0

is an isolated point, we notice that there is a neighborhood J of s0 such that
for every s 2 J � fs0g we have � (s) 6= 0, then the same argument as before
provides that we have a combination of tubular surfaces and since, in this case,
the radius is constant, it implies that the surface is a tubular surface in J .
Finally, in elements s0 2 (a; b) such that � (s0) = 0, where we have an open

neighborhood L such that � (s) = 0 for every s 2 L. So, if we consider SL which
is de�ned analagous to SJ , it follows that SL is a rotational surface. Then
we conclude that S is a smooth combination of tubular surfaces and rotational
surfaces.

Remark 105 Once again, we remark that the prove of the above theorem still
valid for cyclic surfaces of any type, since the only di¤erence in surfaces of
type 2, 3, 4 and 5 lies on the cos t; sin t; cosh t and sinh t of Gaussian and mean
curvatures of these surfaces and it does not a¤ect the conclusion. Then, we
conclude that the theorem is for a cyclic surface of any type.

As discussed in the beginning of this section, one �rst consequence of our
main theorem is that, in some sense, there is no Polynomial Weingarten cyclic
surface. In other words, the cylic surfaces whose Gaussian and mean curvatures
verify a polynomial relation belong, in fact, to subclasses (more speci�cally to
tubular surfaces and rotational surfaces). Since our Theorems 54 and 61 provide
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a complete classi�cation of tubular surfaces, it only remains to investigate the
rotational surfaces (which is being done by important authors as in [24], [25],
[1], [26], [27], among others).

Theorem 106 Let Q (x; y) 2 R [x; y] be a polynomial. Rad� (Q) = ; if and
only if the unique elements of S (Q) are the globally rotational surfaces.

Proof. If we have that
Rad� (Q) = ;,

it implies that for every r 2 Rad (Q), the polynomial Q (x; y) does not belong
to the ideal in R [x; y] generated by xr2 � 2ry + 1. Then by (the proof of) the
Theorem 102 we conclude that every cyclic surface S 2 S (Q) must be de�ne on
a straight line which concludes this direction.
Conversely, assume by the contraposition the existence of a cyclic surface

S 2 S (P ) with central curve 
 and radius r such that there is an element
s0 2 (a; b) where the curvature � (s0) 6= 0. Therefore, there is a neighborhood J
of s0 where � (s) 6= 0 for every s 2 J . Hence we consider the surface SJ which
is obtained by restricting the surface S on the interval J �R � (a; b)�R (as in
(3.49) in the Theorem 102). Then, we have that SJ is a tubular surface and the
Theorem 61 provides that the polynomial Q must verify Rad� (Q) 6= ;.

A famous and intensively investigate particular relation is the linear one, that
is, the relation given by a1;0x + a0;1y + a0;0, where (a1;0; a0;1; a0;0) 6= (0; 0; 0),
whose the main motivation to understand it, is because it allows us to relate the
Gaussian and mean curvature through a a¢ ne function which provides several
applications in various �elds (for instance, in engineer and architecture).
As consequence of our Theorem 102 we classify Linear Weingarten cyclic

surfaces and with a study of this particular relation we obtain an improvement
in the description of the surface. In the following sense, as mentioned in the
beginning we assets that the globally tubular surface and the globally rotational
surfaces are the cyclic surfaces that verify the linear relation.
The precisely statement of our corollary read as follows:

Theorem 107 Let a1;0, a0;1, a0;0 be real numbers such that (a1;0; a0;1) 6= (0; 0)
and de�ne � = a20;1 + 4a1;0a0;0. Consider the polynomial

Q (x; y) = a1;0x+ a0;1y � a0;0.

Then S (P ) contains only globally tubular surfaces or globally rotational surfaces.
More precisely:

i. If a0;1a0;0 > 0 and � = 0, then S (Q) contains all tubular surfaces of radius
a0;1
2a0;0

;

ii. Otherwise we have that S (Q) contains rotational surfaces.
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Proof. For the particular polynomial

P (x; y) = a1;0x+ a0;1y � a0;0 = 0 (3.69)

we may consider two cases in order to fully understand the above relation, named
a0;0 6= 0 and a0;0 = 0.
If a0;0 6= 0, we assume without loss of generality that a0;0 = 1, therefore

the relation becomes P (x; y) = a1;0x + a0;1y � 1. Hence, the Theorem 52
provides that a tubular surface verify P (K;H) � 0 if and only if P is a tubular
polynomial. Thus, we must have Rad (P ) 6= ;, more precisely it is obtained

Rad (P ) =
na0;1
2

o
as consequence, we conclude that a0;1 > 0.
We remark that the combination of cylinder with rotational surface is simply

a rotational surface. Then, assume the existence of tubular surfaces besides the
right cylinder in S (Q). By our Theorem 61 it implies that belongs to the ideal
in R [x; y] generated by x

�a0;1
2

�2 � 2 �a0;12 � y + 1. Thus, the previous condition
furnishes that the coe¢ cients of P (x; y) must satisfy

a1;0 = �
a20;1
4

and a0;1 > 0 (3.70)

Let c 2 (a; b) and suppose the existence of a cyclic surface S with central
curve 
 de�ned in (a; b) and radius r. Also suppose the following

1. In [a; c] the surface S is a rotational surface;

2. In [c; b] the surface S is a tubular surface of radius a0;12 di¤erent of a cylinder.

For rotational surface the associated di¤erential equation to the linear case
is expressed as

a1;0

0B@ �r00

r
�
1 + (r0)

2
�2
1CA+ a0;1 (r0)2 � rr00 + 1

2r ((r0)2 + 1)
3
2

!
� 1 = 0,

consequently, we have

2r
�
1 + (r0)

2
�2
= a0;1

�
1 + (r0)

2
� 3
2 �

�
2a1;0 + ra0;1

�
1 + (r0)

2
� 1
2

�
r00. (3.71)

CLAIM 1. Exists a number " with 0 < " < c� a such that

2a1;0 + ra0;1

�
1 + (r0)

2
� 1
2 � 0 (3.72)

for every s 2 (c� "; c).
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Indeed, suppose that claim is false, therefore it implies the existence of a
sequence (sn) 2 (a; c) such that sn ! c and�

2a1;0 + ra0;1

�
1 + (r0)

2
� 1
2

�
(sn) 6= 0

for every n 2 N. So, for every sn, by (3.70) and (3.71) we may write

r00 = �
2
�
(r0)2 + 1

� 3
2

a0;1
< 0.

hence

lim
n!1

r00 (sn) = lim
s!b

�
2
�
1 + (r0 (sn))

2
� 3
2

a0;1
= � 2

a0;1
6= 0.

Then, we have sn ! c but r00 (sn) 6! r00 (c) = 0 which is an absurd. Hence
we conclude the proof of our �rst claim.
Let us consider the number " given by the above statement. By the remark

that a1;0 = �
a20;1
4 , we have that Equation 3.72 becomes

1

2
a0;1

�
2r
p
(r0)2 + 1� a0;1

�
= 0

for all s 2 (c� "; c), which implies that�
2r
p
(r0)2 + 1� a0;1

�
� 0

since a0;1 > 0 (by (3.70)), hencep
(r0)2 + 1 =

a0;1
2r

therefore

(r0)2 =
a20;1 � 4r2

4r2
=
a20;1
4r2

� 1

for every s 2 (c� "; c). The derivative of above equality gives

2r0r00 = �8a20;1rr0 (3.73)

CLAIM 2. Exists a number � with 0 < � < " such that r0 � 0 in [c� �; c].
We observe that (3.73) is rewritten as

2
�
4ra20;1 + r

00� r0 = 0
and notice that �

4ra20;1 + r
00� (c) = 2a30;1 > 0

so by continuity there is � with 0 < � < " where
�
4ra20;1 + r

00� 6= 0 for every
[c� �; c). Hence r0 must be null in [c� �; c). Since r0 (c) = 0 the statement
holds.
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By the above claims we conclude that S is a tubular surface in [c� �; c).
We consider the following set

L = fs 2 (a; c) ; S is a tubular surface in [s; b)g

and we de�ne � = inf L. By construction, we already have that � � c and by
previous analysis we have � � c� �.
Note that � � a, then we assume by absurd that � > a. Then, in this case,

we have that S is a tubular surface in [�; b). Applying the previous argument
as before, it is obtained the existence of �0 > 0 such that S is a tubular surface
in
�
�� �0; b

�
, which is an absurd with minimality of �. So we conclude that

a = inf L

therefore S is a tubular surface in (a; b).
In the case that a0;0 = 0, the polynomial in (3.69) is expressed as

P (x; y) = a1;0x+ a0;1y,

so by the De�nition 45, it follows that P is a tubular polynomial if and only if
a0;1 = 0. Moreover, the Theorem 52 provides that exists a tubular surface if
and only if the polynomial is tubular. So it is necessary study only the case

P (x; y) = a1;0x

which lies on the classi�cation of developable surfaces, since we have a1;0K � 0.
Hence we conclude that is a cylinder (a particular case of tubular surface) or
part of a cone.

Several interesting and relevant results can be obtained when we add hy-
pothesis on the radius function or in the curvature of central curve. In order to
present particular results from our main theorem, let us discourse about gluing
points (presents in surfaces obtained by the combination of others surfaces).
We recall that the de�nition of regular cylcic surfaces requires the exis-

tence of an interval � � N (possibly in�nite) and the existence of a strictly
increasing sequence (�n)n2� in (a; b) of isolated points such that � (�n) = 0
for every n 2 �. Moreover, for each n 2 � we consider the following set
�n =

�
t 2
�
�n; �n+1

�
; � (t) = 0

	
which has the following property:

int�n = ; or int�n =
�
�n; �n+1

�
.

Then, we point out that for the regular cyclic surface which are obtained by
the (smooth) combination of tubular surface and rotational surface, the gluing
points are necessarily elements of (�n)n2�. Furthermore, for a gluing point �i
(for some i 2 �), the sets �i and �i+1 verify

int�i = ; and int�i+1 =
�
�i; �i+1

�
.

So our corollaries read as follows:
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Corollary 108 Given a polynomial Q (x; y) 2 R [x; y], consider Sr (Q) the set
of all regular cyclic surfaces in Euclidean (respect. Lorentzian) 3-space around a
central curve 
 with analytic radius r > 0 whose Gaussian and mean curvatures
K, H verify Q (K;H) � 0. Then, the elements of S (Q) are:

i. Globally Tubular surfaces of radius r 2 Rad� (Q);

ii. Globally rotational surface.

Proof. By the Theorem 102 it is only necessary to investigate the item i.
More precisely, we will show that there is globally tubular surface and globally
rotational surfaces as element of S (Q). Then, assume by absurd the existence
of a surface S 2 S (Q) such that S is a combination of tubular surface and
rotational surfaces.
So we consider the gluing point � 2 (a; b), that is, the point where the tubular

surface and the rotational surface are glued. Without loss of generality, assume
that (a; �) the surface is tubular and in (�; b) the surface is rotational.
Notice that in � the Gaussian and mean curvatures of tubular and of rota-

tional surfaces agrees and since r is a analytic function in (a; b) there is an open
neighborhood V� = (� � �; � + �), for some � > 0, of � such that

r (� + s) =

1X
n=0

r(n) (�)

n!
(s)

n

for every s 2 V�. On the other hand, r is constant (once is the radius of the
tubular surface), then the above equality is rewritten as

r (� + s) = r (�) � r0

for every s 2 V� which is an absurd, since � is the gluing point. In other words,
the radius r is constant in (�; b), which implies that the surface is tubular in
this interval, which is an absurd since we assumed that the surface is rotational
in (�; b). Then we conclude the desired.

A particular class of polynomials that attracts much interest and is very
studied is the class of irreducible polynomials. In the same direction of previous
corollaries, we have an improviment of the classi�cation of the set S (Q) when
Q (x; y) 2 R [x; y] is an irreducible polynomial.

Corollary 109 Given an irreducible polynomial Q (x; y) 2 R [x; y] and let S (Q)
be the set of all regular cyclic surfaces in Euclidean (respect. Lorentzian) 3-space
whose Gaussian and mean curvatures K, H verify Q (K;H) � 0. Then, the
elements of S (Q)are globally rotational surfaces or globally tubular surfaces of
radius r 2 Rad� (Q).

Corollary 110 Given an irreducible polynomial Q (x; y) 2 R [x; y] with @Q � 2
and let S (Q) be the set of all regular cyclic surfaces in Euclidean (respect.
Lorentzian) 3-space whose Gaussian and mean curvatures K, H verify Q (K;H) �
0. Then, the elements of S (Q)are globally rotational surfaces.
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Another consequence of our main theorem can be obtained if we assume that
the curvature of the central curve never vanishes:

Corollary 111 Given a polynomial Q (x; y) 2 R [x; y], consider S� (Q) the set
of all regular cyclic surfaces in Euclidean (respect. Lorentzian) 3-space around
a central curve 
 such that � 6= 0 everywhere and with radius r > 0 whose
Gaussian and mean curvatures K, H verify Q (K;H) � 0. Then, the elements
of S� (Q) are globally Tubular surfaces of radius r 2 Rad� (Q).

Besides the well-knonw CMC (Constant mean curvature) and CGC (constant
Gaussian curvature) surfaces, another important class of surfaces is the CCC
(Constant Casorati curvature) surfaces that relates the principal curvatures as
follows

k21 + k
2
2

2
� c

where c 2 R. The above relation can be obtained in terms of the Gaussian and
mean curvatures by the polynomial

�2K + 4H2 � 2c.

For CCC Cyclic surfaces we have the next result:

Corollary 112 The cylinders in E3 are the unique complete regular cyclic Wein-
garten surfaces with second fundamental form of constant length (or constant
Casorati curvature).

Proof. By the Theorem 102 and Theorem 106 it follows that the cyclic surface
must be a rotational surface and by Corollary 1.2 in [1] we achieve the desired.



Chapter 4

Weingarten Canal Surfaces

In this chapter we will classify Polynomial Weingarten cyclic surfaces. There-
fore, to achieve our goal, we �rst study the parametrization of canal surface in
E3 and L3, which is presented in Section 4.1. For canal surfaces in the Euclid-
ean and in the Lorentzian 3-space, we present the principal curvatures whenever
they exist.
Finally, in the Section 4.2 we present a technical results that provides a sum-

matory identity that plays an important role in the classi�cation of Polynomial
Weingarten canal surfaces. Proceeding in this section, we display our main the-
orem that fully characterizes Polynomial Weingarten canal surfaces among the
Gaussian and mean curvature and another theorem that characterizes Polyno-
mial Weingarten canal surfaces among its principal curvatures. In suma, our
main theorem provides that a canal surface that verify a polynomial relation is,
in fact, a (smooth) combination of tubular surface and rotational surface.

4.1 Canal Surfaces

This section was elaborated to introduce canal surface in the Euclidean and
in the Lorentzian 3-space. In the section�s �rst part, we discuss canal surface
where we present the parametrization and also exhibit the Gaussian and mean
curvatures.
Proceeding to the second part, we will study canal surface as the envelope of

Lorentzian spheres or Lorentzina hyperboles, so we obtain the parametrization
for each type of canal surface in L3. Finally, we presented the Gaussian and
mean curvatures of the canal surface.
Furthermore, we will present the principal curvatures of canal surface, for

those the principal curvatures exists, since in the Lorentzian 3-space this is not
always ensured. For the surface those the principal curvature does not exist, we
will present a pair of functions whose behavior is similar enough to the principal
curvatures. Here it is important to mention that pair of function, despite not
being the principal curvatures, they permit us to classify Polynomial Weingarten

117



118 CHAPTER 4. WEINGARTEN CANAL SURFACES

canal surfaces (see Section 4.2 for more details).

4.1.1 Euclidean Canal Surfaces

Given a smooth curve 
 (s) � R3 such that for each 
 (s) we de�ne a circle
of radius r > 0 (constant), then in the process of to unite every circle, it is
obtained the tubular surfaces. If it is permited that radius r > 0 be a smooth
function that never vanishes, the same procedure gives the cyclic surfaces. The
�nal next natural generalization is in the case that we consider spheres insted
of circles.
In this direction, we obtain the canal surface which is formed by the move-

ment of spheres of variable or constant radius. More precisely, we have:
In Euclidean 3-space, canal surface is de�ned as the envelope of a 1-parameter

family of spheres. The central curve is the name given for the curve whose cen-
ters of each sphere lies on. The radius function r : (a; b) �! R such that
r (s) > 0 for every s 2 (a; b) verify the condition that r (s) is the radius of
sphere S2 (s).
In case of central curve (denoted by) 
 : (a; b) �! R3 is parametrized by arc

lenght and biregular (k
k = 1, 
00 6= 0) the parametrization of canal surface is
expressed by

 (s; t) = 
 (s) + r (s)

�
�r0 (s)T (s) +

q
1� (r0)2 cos tN +

q
1� (r0)2 sin tB

�
(4.1)

where fT;N;Bg is the Frenet frame of 
. When 
 is a straigh line fT;N;Bg
can be regarded as constant vectors.
To avoid undesirable cases, we will include in the de�nition an additional

condition for the regularity of curvature of central curve. We will say that a
cyclic surface is regular if there is an interval � � N (possibly in�nite) and there
is a strictly increasing sequence (�n)n2� in (a; b) of isolated points such that

i. The curvature � of 
 verify � (�n) = 0 for every n 2 �

ii. For every n 2 �, consider the set

�n =
�
t 2
�
�n; �n+1

�
; � (t) = 0

	
then

int�n = ; or int�n =
�
�n; �n+1

�
.

For practical purposes, we notice that an inherent conditions over the deriv-
ative of radius functions emerge from the parametrization (4.1) which isq

1� (r0 (s))2 � 0

for every s 2 (a; b). Then, we may describe the function r0 : (a; b) �! R by an
another smooth function � (s) that veri�es

�r0 (s) = cos� (s) .
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where we have that � (s) 2 [0; �). Therefore, the parametrization (4.1) becomes

 (s; t) = 
 (s) + r (s) (�r0 (s)T (s) + sin� cos tN + sin� sin tB) (4.2)

Proposition 113 The Gaussian and mean curvatures of a canal surface in the
Euclidean 3-space are given by

K =
r00 + k sin� cos t

r2 (r00 + k sin� cos t)� r sin2 �
,

H =
1

2

2rr00 + 2kr cos t sin�� sin2 y
r
�
rr00 � sin2 �+ kr cos t sin�

�
Hence the principal curvatures are respectively:

k1 =
r00 + k sin� cos t

r (r00 + k sin� cos t)� sin2 �
and k2 =

1

r
.

Proof. Using (1.1) and (4.2) we obtain the coe¢ cients of the �rst fundamental
form

E = r
�
�4(r0)2�0 + r�2 sin�

�
sin� cos2 t+ 4r2r0��0 sin� cos t sin t

+2r�
�
� sin3 �� (r0)2 sin�+ rr00 sin�+ r(r0)2�0

�
cos t

+
�
2r2r0�� sin�

�
sin t

+
��
r0 sin�+ rr0�0

�2
+
�
rr00 � sin2 �

�2
+ r2(r0)2�2 + r2�2 sin2 �

�
f = �r2 sin2 �+ �r2r0 sin� sin t and G = r2 sin2 �.

And the coe¢ cients of the second fundamental form are

e = �r�2 sin2 � cos2 t+
�
� sin�� 2r��0

�
cos t

�2rr0�� sin� sin t� r
�
r
0
�2
�2 sin2 �� r

�
�0
�2
+ r00

f = �r� sin2 �� rr0� sin� sin t and g = �r sin2 �
By the Formula 1.5 and by the above coe¢ cients, a straightforward calculus
provide the desired.

4.1.2 Lorentzian Canal Surfaces

Motivated by the (abstract) de�nition of Canal surface in E3, the natural gen-
eralization of Canal surface in Lorentzian 3-space is to permit the envelope of
Lorentzian spheres or Lorentzian hyperboles.
So, let 
 : (a; b) �! L3 a smooth curve and consider the abstract parame-

trization of a canal surface as the envelope of Lorentzian spheres or Lorentzian
hyperboles (i.e. set obtained by moving a Lorentzian spheres or Lorentzian
hyperboles, respectively, along a central curve)

 (s; t) = 
 (s) + f (s; t)T (s) + g (s; t)N (s) + h (s; t)B (s)
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where fT (s) ; N (s) ; B (s)g is the Frenet frame of 
 and f (s; t), g (s; t) and
h (s; t) are smooth functions de�ned in (a; b) whose the explicitly expression
will be given later on. First, we would like to add one hypothesis to our curve.
To avoid undesirable cases, we will include in the de�nition an additional

condition for the regularity of curvature of central curve. We will say that a
cyclic surface is regular if there is an interval � � N (possibly in�nite) and there
is a strictly increasing sequence (�n)n2� in (a; b) of isolated points such that

i. The curvature � of 
 verify � (�n) = 0 for every n 2 �

ii. For every n 2 �, consider the set

�n =
�
t 2
�
�n; �n+1

�
; � (t) = 0

	
then

int�n = ; or int�n =
�
�n; �n+1

�
.

Now, let us comeback to explicity writing of the functions f (s; t), g (s; t)
and h (s; t). In order to do that, �rst notice that for each s0 2 (a; b) we want
to describe a Lorentzian spheres (" = 1) or Lorentzina hyperbole (" = �1) of
radius "r2,

"T f
2 + "Ng

2 + "Bh
2 = gL ( (s0;t)� 
 (s0) ;  (s0;t)� 
 (s0)) = "r2 (4.3)

where " 2 f�1; 1g �xed constant. The derivative in parameter s of these previ-
ous paramatrization and equation gives us

"T ffs + "Nggs + "Bhhs = "rr0 (4.4)

and

 s = (fs � g�"N"T + 1)T + (gs + f�� h�"B"N )N + (hs + g�)B (4.5)

Then, observe that  � 
 is a normal vector to the Canal surface, thus we
have

0 = gL ( � 
;  s) = "T f + "rr
0, (4.6)

which yields
f = �"T "rr0

Applying the condition (4.6) in Equation (4.4) it is obtained the following system

"Ng
2 + "Bh

2 = "r2 � "T (rr0)2 , (4.7)

whose solutions are given by chosening the causality of central curve ("T ), of
principal normal ("N ) and the normal section ("). Hence, we have the below
cases to consider:
In the case that we foliate the surface by Lorentzian circles, it yields that

" = 1, so we must consider the next options:
If we have that 
0 = T is spacelike, "T = 1, it yields that "N"B = �1, so we

have the following cases to study:
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1. If "N = �1, then (4.7) is rewritten as

�g2 + h2 = r2 � (rr0)2

then,

g = r

q
1� (r0)2 sinh t and h =

q
1� (r0)2 cosh t

2. If "N = 1, then (4.7) is rewritten as

g2 � h2 = r2 � (rr0)2

then,

g = r

q
1� (r0)2 cosh t and h =

q
1� (r0)2 sinh t

If we have that 
0 = T is timelike, "T = �1, it implies that "N = 1 = "B , so
we have that:

3. In this case (4.7) is rewritten as

g2 + h2 = r2 + (rr0)
2

then,

g = r

q
1 + (r0)

2
cos t and h =

q
1 + (r0)

2
sin t

In the case that we foliate the surface by Lorentzian hyperboles, it yields
that " = �1, so we must consider the next options:
If we have that 
0 = T is spacelike, "T = 1, it yields that "N"B = �1, so we

have the following cases to study:

4. If "N = �1, then (4.7) is rewritten as

�g2 + h2 = �r2 + (rr0)2

then,

g = r

q
1 + (r0)

2
cosh t and h =

q
1 + (r0)

2
sinh t

5. If "N = 1, then (4.7) is rewritten as

g2 � h2 = �r2 + (rr0)2

then,

g = r

q
1 + (r0)

2
sinh t and h = r

q
1 + (r0)

2
cosh t
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If we have that 
0 = T is timelike, "T = �1, it implies that "N = 1 = "B , so
we have that:

6. In this case (4.7) is rewritten as

g2 + h2 = �r2 + (rr0)2 ,

which follows the non existence of solutions in this case.

Then, we conclude the existence of �ve distinct types of Canal surface in L3.
In the following results, more speci�cally, in the Propositions 114, 115, 116,

117 and 119 where the Gaussian and mean curvatures of each type of canal sur-
face are exhibited, the detailed calculus will be omited, once this computations
can be found in the works [19] and [20] where the authors presented a profund
and precise study of the Gaussian and mean curvatures of each type of canal
surfaces in Lorentzian 3-space.

Canal surface of type 1. The parametrization is

 (s; t) = 
 (s)+r (s)

�
�r0 (s)T (s) +

q
1� (r0)2 sinh tN +

q
1� (r0)2 cosh tB

�
hence, once we consider the smooth function � (s) such that

�r0 (s) = cos�

the above parametrization is rewritten as

 (s; t) = 
 (s) + r (s) (�r0 (s)T (s) + sin� sinh tN + sin� cosh tB)

Proposition 114 The Gaussian and mean curvatures of a canal surface in
Lorentzian 3-space of type 1 are given by

K =
r00 � � sin� sinh t

r
�
rr00 � r� sin� sinh t� sin2 �

� ,
H =

2rr00 � 2r� sinh t sin�� sin2 �
2r
�
rr00 � r� sin� sinh t� sin2 �

�
Proof. See in [19] and [20].
Based on the previous proposition, we noticed that we could express the cur-

vatures as product and average of the following functions (principal curvatures)

k1 =
r00 � � sin� sinh t

r (r00 � � sin� sinh t)� sin2 �
and k2 =

1

r
(4.8)

and, therefore, they verify the condition (1.7).
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Canal surface of type 2. The parametrization is

 (s; t) = 
 (s)+r (s)

�
�r0 (s)T (s) +

q
1� (r0)2 cosh tN +

q
1� (r0)2 sinh tB

�
hence, once we consider the smooth function � (s) such that

�r0 (s) = cos�

the above parametrization is rewritten as

 (s; t) = 
 (s) + r (s) (�r0 (s)T (s) + sin� cosh tN + sin� sinh tB)

Proposition 115 The Gaussian and mean curvatures of a canal surface in
Lorentzian 3-space of type 2 are given by

K =
r00 + � sin� cosh t

r
�
rr00 + r� sin� cosh t� sin2 �

� ,
H =

2rr00 � sin2 �+ 2r� sin� cosh t
2r
�
rr00 � sin2 �+ r� sin� cosh t

�
Proof. See in [19] and [20].
Based on the previous proposition, we noticed that we could express the cur-

vatures as product and average of the following functions (principal curvatures)

k1 =
r00 + � sin� cosh t

r (r00 + � sin� cosh t)� sin2 �
and k2 =

1

r

and, therefore, they verify the condition (1.7).

Canal surface of type 3. The parametrization is

 (s; t) = 
 (s) + r (s)
�
�r0 (s)T (s) +

p
1 + r2s cos tN +

p
1 + r2s sin tB

�
hence, once we consider the smooth function � (s) such that

r0 (s) = tan�

the above parametrization is rewritten as

 (s; t) = 
 (s) + r (s) (�r0 (s)T (s) r + sec� cos tN + sec� sin tB)

Proposition 116 The Gaussian and mean curvatures of a canal surface in
Lorentzian 3-space of type 3 are given by

K =
r00 + � sec� cos t

r (rr00 + r� sec� cos t+ sec2 �)
,

H =
2rr00 + 2r� sec� cos t+ sec2 �

r (rr00 + r� sec� cos t+ sec2 �)
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Proof. See in [19] and [20].
Based on the previous proposition, we noticed that we could express the cur-

vatures as product and average of the following functions (principal curvatures)

k1 =
r00 + � sec� cos t

r (r00 + � sec� cos t) + sec2 �
and k2 =

1

r

and, therefore, they verify the condition (1.7).

Canal surface of type 4. The parametrization is

 (s; t) = 
 (s) + r (s)
�
r0 (s)T (s) +

p
1 + r2s cosh tN +

p
1 + r2s sinh tB

�
hence, once we consider the smooth function � (s) such that

r0 (s) = sinh�

the above parametrization is rewritten as

 (s; t) = 
 (s) + r (s) (r0 (s)T (s) + sinh� cosh tN + sinh� sinh tB)

Proposition 117 The Gaussian and mean curvatures of a canal surface in
Lorentzian 3-space of type 4 are given by

K = � (r00 + � cosh� cosh t)

r
�
rr00 + r� cosh� cosh t+ cosh2 �

� ,
H =

2rr00 + 2r� cosh� cosh t+ cosh2 �

2r
�
rr00 + r� cosh� cosh t+ cosh2 �

�
Proof. See in [19] and [20].
Based on the previous proposition, we noticed that we could express the

curvatures as the following functions

ek1 = (r00 + � cosh� cosh t)

r (r00 + � cosh� cosh t) + cosh2 �
and ek2 = 1

r

whose veri�es the condition

ek1 ek2 = �K and
ek1 + ek2
2

= H.

Remark 118 It is clear that functions are not the principal curvatures, how-
ever,for our purposes (see Section 4.2 for more details), we just need two func-
tions that behaves closes enough as principal curvatures, i.e. functions that
verify the above relation except by a sign.
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Canal surface of type 5. The parametrization is

 (s; t) = 
 (s) + r (s)
�
r0 (s)T (s) +

p
1 + r2s sinh tN +

p
1 + r2s cosh tB

�
hence, once we consider the smooth function � (s) such that

r0 (s) = sinh�

the above parametrization is rewritten as

 (s; t) = 
 (s) + r (s) (r0 (s)T (s) + cosh� sinh tN + cosh� cosh tB)

Proposition 119 The Gaussian and mean curvatures of a canal surface in
Lorentzian 3-space of type 5 are given by

K = � r00 � � cosh� sinh t
r
�
rr00 � r� cosh� sinh t+ cosh2 �

� ,
H =

2rr00 � 2r� cosh� sinh t+ cosh2 �
2r
�
rr00 � r� cosh� sinh t+ cosh2 �

�
Proof. See in [19] and [20].
Based on the previous proposition, we noticed that we could express the

curvatures as the following functions

ek1 = r00 � � cosh� sinh t
r (r00 � � cosh� sinh t) + cosh2 �

and ek2 = 1

r

whose veri�es the condition

ek1 ek2 = �K and
ek1 + ek2
2

= H

Remark 120 It is clear that functions are not the principal curvatures, how-
ever,for our purposes (see Section 4.2 for more details), we just need two func-
tions that behaves closes enough as principal curvatures, i.e. functions that
verify the above relation except by a sign.

4.2 Main result and applications for Canal Sur-
faces

In this section we present our main theorems that fully classify Polynomial
Weingarten canal surfaces in the Euclidean and in the Lorentzian 3-space.

Discovered and named by Monge in 1850, Canal surfaces (originaly created
in the Euclidean 3-space) are de�ned by the envelope of spheres whose center
belongs to a smooth central curve (see Sections 4.1.1 & 4.1.2 for details). This is
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a very interesting family of surfaces once they contains the class of tubular sur-
faces and have a large intersection with other important families like rotational
surfaces and cyclic surfaces just to name a few.
In applied context, Canal surfaces has an important part since they have

several utilities, as in the CAGD (computer aided geometric design), where
they are used to model infrastructures, buildings and biological structures.
Inspired by the importance and wide class of applications of the Canal sur-

face, we start to investigate those surfaces whose curvatures are roots of a poly-
nomial relation and, in the end, we fully classi�cates canal surfaces such that
P (K;H) � 0.
But, before to present our results, let us to illustrate the general technique

contained in our theorems, by presenting a particular case of a polynomial of
degree 2. It is relevant to mention that precisely particular case is what permits
us to achieve the complete classi�cation of Polynomial Weingarten canal surface.
Let P (x; y) 2 R [x; y] be a polynomial given by

P (x; y) = a2;0x
2 + a1;1xy + a0;2y

2 + a1;0x+ a0;1y + a0;0

then, we express the previous polynomial as

P (x; y) = x2A2 (y) + xA1 (y) +A0 (y)

where, each Ai (y) 2 R [y] whose explicity expression is given by

A2 (y) = a2;0;

A1 (y) = a1;1y + a1;0;

A0 (y) = a0;2y
2 + a0;1y + a0;0.

Follows from the assumption that the principal curvatures of a canal surface
vanishes P (x; y) that

P (k1; k2) � 0
and since

k1 =
r00 + k sin� cos t

r (r00 + k sin� cos t)� sin2 y
and k2 =

1

r
,

we obtain the next di¤erential equation:�
r00 + k sin y cos t

r (r00 + k sin y cos t)� sin2 y

�2
A2

�
1

r

�
+

�
r00 + k sin y cos t

r (r00 + k sin y cos t)� sin2 y

�
A1

�
1

r

�
+A0 (k2) � 0.

(4.9)
The previous di¤erential equation is what leads us to the investigation of

ours Lemmas 121 and 122. More precisely, in the aim to express (4.9) in a more
suitable way, we obtain the results that allows us express the above di¤erential
equation as

2X
i=0

0@ 2X
j=i

�
j

i

�
(r00)

j�i �
k2 sin2 �

�2�j
Rj (r)

1A (k sin y)i cosi t � 0 (4.10)
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where

Rj (r) =

jX
l=0

�
n� l
n� j

�
r2+j�lAi

�
1

r

�
.

The writing in (4.10) is relevant since it assosicated with Proposition 96 we
can conclude that for each 0 � i � n, the coe¢ cients

2X
j=i

�
j

i

�
(r00)

j�i �
k2 sin2 �

�2�j
Rj (r) (4.11)

must vanish identically. Therefore, the following system must be veri�ed for
every s 2 (a; b):

0 = A2 + rA1 + r
2A0

0 = 2
�
A2 + rA1 + r

2A0
�
r00 + (k sin y)

2
(A1 + 2rA0)

0 =
�
A2 +A1r +A0r

2
�
(r00)2 + (� sin y)

2
(A1 + 2rA0) r

00 + (k sin y)
4
A0

Let us remark that even more interesting is to notice the pattern present
in each line of the system. For instance, if the �rst line is identically null, we
obtain information in the second line and so on.
In the end, we replace the problem to solve the di¤erential equation (4.9) to

�nd a solution of the system (4.11).
The presented technique is the core to the analysis of a polynomial of degree

n.

Hence, in order to deal and encompass the investigation of Polynomial Wein-
garten Canal surfaces in the Euclidean and also in the Lorentzian 3-spaces,
evenly and simultaneously, we will introduce an abstract expression of the
(generic) principal curvatures presented in the previous section. More precisely,
we write

k1 (s; t) =
� (s; t)

� (s; t)
=

a+ b�

r (a+ b�) + c
(4.12)

where the function � (t) represents the trigonometric function (possibly hyper-
bolic trigonometric function) that depends on the parameter t, the function
� (s) stands for the trigonometric function (possibly hyperbolic trigonometric
function) that models the r0 function. Finally, the symbols stands for a = r00,
b = "b�� and c = "c�

2 with "b, "c 2 f�1; 1g.
For instance, a Canal surface in Euclidean 3-space, the above functions be-

comes
� (t) = cos t and � (s) = sin� (s)

hence, we obtain

k1 (s; t) =
r00 + � sin� cos t

r (r00 + � sin� cos t)� sin2 �

which agrees with the one exhibit in the Proposition 113.
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Another sample can be seen, when we choose

� (t) = sinh t and � (s) = sin� (s)

then, it is obtained

k1 (s; t) =
r00 � � sin� sinh t

r (r00 � � sin� sinh t)� sin2 �

which agrees with the one exhibit in (4.8).
Although the expression (4.12) seems to add unnecessary di�culty to write

each curvatures presented in the Sections 4.1.1 & 4.1.2, we point out that the
generic expression (4.12) allows us to analyse and study Canal surfaces in R3
and in L3 all at once.

The �rst obtained result is a summatory identity whose application to the
next result is very important.

Lemma 121 For given n 2 N, we have the following equality

nX
l=0

n�lX
j=0

n�jX
i=0

ai;j;l =
nX
i=0

nX
j=i

jX
l=0

ai;n�j;l.

Proof. We consider the summatory

nX
l=0

n�lX
j=0

n�jX
i=0

ai;j;l

for a given n 2 N. Then, we change the indices l and i, which implies

nX
l=0

n�lX
j=0

n�jX
i=0

ai;j;l =

nX
i=0

n�iX
j=0

n�jX
l=0

ai;j;l

(roughly speaking we rename the �rst and third indices). From the above equal-
ity we have the next expression

nX
i=0

n�iX
j=0

n�jX
l=0

ai;j;l =
nX
i=0

(n�i)+iX
j=i

n�(j�i)X
l=0

ai;(j�i);l =
nX
i=0

nX
j=i

n�(j�i)X
l=0

ai;j�i;l

then, we rede�ne the indice j as follows

nX
i=0

nX
j=i

n�(j�i)X
l=0

ai;j�i;l =
nX
i=0

nX
j=i

n�((n�j+i)�i)X
l=0

ai;(n�j+i)�i;l =
nX
i=0

nX
j=i

jX
l=0

ai;n�j;l

which concludes the demonstration.



4.2. MAIN RESULT AND APPLICATIONS FOR CANAL SURFACES 129

The next lemma is purely technical, however it plays a relevant role in our
main theorem. The reason lies on the fact that our main theorem is based on a
suitable expression of an arbitrary polynomial relation and it is achieved thanks
to the following lemma.
We also observe that the lemma is what allows us to transfer the problem

of solve a di¤erential equation to solve a system of di¤erential equations.

Lemma 122 For every a; b; c; x 2 R and for any n 2 N, the following equality
holds

nX
i=0

(a+ bx)
i
(r (a+ bx) + c)

n�iAi (r) =
nX
i=0

0@ nX
j=i

�
j

i

�
aj�icn�jRj (r)

1A bixi

where Rj (z) =
jP
l=0

�
n� l
n� j

�
zj�lAl (z).

Proof. In fact, notice that

nX
l=0

(a+ bx)
l
(r (a+ bx) + c)

n�lAl (r) (4.13)

where each of above terms that can be expanded as follows

(r (a+ bx) + c)
n�l

=
n�lX
j=0

�
n� l
j

�
rn�l�j (a+ bx)

n�l�j
cj

and

(a+ bx)
n�j

=

n�jX
i=0

�
n� j
i

�
an�j�ibixi

therefore (4.13) is rewritten as

nX
l=0

n�lX
j=0

n�jX
i=0

�
n� l
j

��
n� j
i

�
rn�l�jan�j�ibixicjAl (r) .

Applying the Lemma 121 in the previous equation, it is obtained the follow-
ing expression

nX
i=0

nX
j=i

jX
l=0

�
j

i

��
n� l
n� j

�
rj�laj�ibixicn�jAl (r)

and rearranging the terms, we have

nX
i=0

0@ nX
j=i

�
j

i

�
aj�icn�j

 
jX
l=0

�
n� l
n� j

�
rj�lAl (r)

!1A bixi.
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Finally, if we set

Rj (r) =

jX
l=0

�
n� l
n� j

�
rj�lAl (r)

the desired is achieved.

We start the study of canal surface whose principal curvatures verify P (k1; k2) �
0 (called (k1; k2)-Weingarten surfaces). As a consequence, we classi�cate the
canal surface whose Gaussian and mean curvatures verify Q (K;H) � 0 (where
Q
�
xy; x+y2

�
is the polynomial associated to P (x; y)), once this curvatures al-

ways can be rewritten as

K = k1k2 and H =
k1 + k2
2

.

Moreover, we noticed that we could investigate the classi�cation of surfaces
over two (or more) functions whose behavior is similar to the principal curva-
tures and still, the result will follows for Gaussian and mean curvatures. More
precisely, for canal surfaces in L3 of type 4 or type 5, we consider smooth func-
tions ek1 and ek2 that verify

�K = ek1 ek2 and H =
ek1 + ek2
2

.

Then, we remark that the sign does not a¤ect our analysis, because we study
an arbitrary polinomial, therefore, we may incorporate the minus sign in the
coe¢ cients of the polynomial.
We would like to highlight that the following theorem is, indeed, a classi�-

cation of Canal surface whose principal curvatures verify an arbitrary polyno-
mial, for canal surfaces in the Euclidean 3-space and for canal surfaces in the
Lorentzian 3-space of the type 1, 2 and 3. However, for canal surface in L3 of
type 4 or type 5, we classi�cate for functions ek1 and ek2.
Finally, the next theorem is the �rst (and fundamental) step to us to achieve

the classi�cation of (k1; k2)-Weingarten canal surface.

Theorem 123 A (k1; k2)-Weingarten Canal surface is a (smooth) combination
of tubular surface and rotational surface.

Proof. Given an arbitrary polynomial relation P (x; y) 2 R [x; y] we consider
the following generic representation (which always exists)

P (x; y) = xnAn (y) + x
n�1An�1 (y) + : : :+ xA1 (y) +A0 (y) , (4.14)

where for each 0 � i � n, we have that

Ai (y) =

miX
j=0

ai;jy
j 2 R [y] . (4.15)
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Let S be a canal surface with central curve 
 de�ned in (a; b). Suppose that
s0 2 (a; b) is such that � (s0) 6= 0, it yields the existence of an open neighborhood
J of 
 (s), with � (s) 6= 0, for every s 2 J . Consider the closed set J . Then, in
J � R, the abstract principal curvatures are

k1 =
� (s; t)

� (s; t)
=

a+ b cos t

r (a+ b cos t) + c
and k2 =

1

r
. (4.16)

Therefore, we consider the following relation

eP (x; y) = �nrmP (x; y) , (4.17)

where m = max fm1; : : : ;mng. Since P (k1; k2) � 0, it implies that eP (k1; k2) �
0.
Notice that (4.17) can be expressed as

eP (k1; k2) = nX
i=0

� (s; t)
n�i

� (s; t)
i
rmAi

�
1

r

�
= 0.

Then we de�ne the map

z 2 R� 7�! Ai (z) = zmAi

�
1

z

�
which yields

0 � eP (k1; k2) = nX
i=0

� (s; t)
i
� (s; t)

n�iAi (r)

thus, by (4.16) the above writing becomes

0 � eP (k1; k2) = nX
i=0

(a+ b cos t)
i
(r (a+ b cos t) + c)

n�iAi (r) .

Follows from Lemma 122 that

eP (k1; k2) = nX
i=0

0@ nX
j=i

�
j

i

�
aj�icn�jRj (r)

1A bi cosi t � 0

where

Rj (z) =

jX
l=0

�
n� l
n� j

�
zj�lAl (z) 2 R [z] : (4.18)

Before to proceed, let us de�ne, for each s 2 J , the following polynomials

Ps (x) =
nX
i=0

0@ nX
j=i

�
j

i

�
aj�icn�jRj (r)

1A bixi 2 R [x] (4.19)
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then we notice that
Ps (cos t) � 0

for every t 2 R. By the Lemma 96 it follows that

nX
j=i

�
j

i

�
aj�icn�jRj (r) b

i � 0

for each i 2 f0; :::; ng. We would like to recall that

b (s) = � (s) sin� (s) 6= 0

where � (s) 6= 0 on J . Furthermore, sin� (s) 6= 0 almost everywhere, otherwise
it will contradict the regularity of the surface. Finally, since c = sin2 � (s) we
have that

c (s) 6= 0.

Then, we conclude that

nX
j=i

�
j

i

�
aj�icn�jRj (r) � 0, (4.20)

for each i 2 f0; :::; ng, hence we must consider two cases, named the case that
exists Ri (z) not null (for some 0 � i � n) and the case that Ri (z) are all null.
CASE i. Assume the existence of i0 such that Ri0 (z) is not null and Ri (z)

is null for every i > i0. Follows from the (4.18), (4.19) and (4.20) that

nX
j=i0

�
j

i0

�
aj�i0cn�jRj (r) =

�
i0
i0

�
ai0�i0cn�i0Rj (r)+

nX
j=i0+1

�
j

i0

�
aj�i0cn�jRj (r)

it follows that
Ri0 (r (s)) � 0

for every s 2 J . Then we conclude that r (s) must be constant, as consequence,
the canal surface on J � R is, as a matter of fact, a tubular surface.
CASE ii. Every Ri (z) is null.
We will prove the following statement:
CLAIM: Every Ai (z) � 0.
Assume, by absurd, that statement is false. Consider i0 such that Ai0 (x) is

not null and Ai (x) = 0 for every i < i0. Then, we remark that

Ri0 (r) =

�
n� l
n� i0

�
ri0�lAl (r) =

�
n� i0
n� i0

�
ri0�i0Ai0 (r) = Ai0 (r) ,

so we reach that Ri0 is not null, which constradicts this case. Then, we have
that Ai (z) � 0 for every 0 � i � n.
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Let fAi (z) be the associated polynomial function to Ai (z). Since Ai is the
null polynomial, it implies that fAi (z) must vanish everywhere. Then, consider
the following relation fAi (z) = zm eAi�1

z

�
= 0

which implies that fAi (z) is null, therefore Ai (z) is the null polynomial. How-
ever, by the de�nition of Ai (z) in (4.15) and by (4.14) the previous conclusions
provides that the polynomial P (x; y) is the null polynomial, which is an absurd!
Therefore we conclude that, in J � R the canal surface is, as a matter of

fact, a tubular surface.
So it remains to investigate the points s0 2 (a; b) such that � (s0) = 0. If s0

is an isolated point, we notice that there is a neighborhood (s0 � �; s0 + �) of
s0 such that for every s 2 (s0 � �; s0 + �)� fs0g we have � (s) 6= 0.
Then the same argument as before provides that we have a combination of

two tubular surfaces, one de�ned in (s0 � �; s0) and another de�ned in (s0; s0 + �).
Since, in this case, the radius is constant, it implies that the surface is a tubular
surface in (s0 � �; s0 + �).
Finally, in elements s0 2 (a; b) such that � (s0) = 0, where we have an open

neighborhood L such that � (s) = 0 for every s 2 L, we conclude that, in L�R
the canal surface is, as a matter of fact, a rotational surface.

Once we classi�cated (k1; k2)-Weingarten Canal surface, we are able to the
next step which is investigate Weingarten Canal surfaces, that is, Canal surfaces
whose Gaussian and mean curvatures verify Q (K;H) � 0.
In the aim to accomplish that, we remark that it is only needed to notice

that in Section 4.1.1 and in Section 4.1.2, either we presented the principal
curvatures of the Canal surface or either we introduce a pair of functions whose
average provides the mean curvature of the Canal surface, while the product
gives minus the Gaussian curvature of the Canal surface.
Then, we always can to rewrite the Gaussian and mean curvatures in terms

of the principal curvatures k1 and k2 (or in terms of two functions that behaves
the same).
For a given a polynomial Q (x; y) =

Pp
i=0

Pq
j=0 aijx

iyj 2 R [x; y], the as-
sumption that the Canal surface verify P (K;H) � 0, provides that

0 � Q (K;H) =

pX
i=0

qX
j=0

aij (K)
i
(H)

j , (4.21)

so, we may express

K = "�k1k2 and H =
k1 + k2
2

where "� 2 f�1; 1g depending if k1 and k2 are the principal curvatures (in this
case "� = 1); Otherwise, we have "� = �1. Hence, (4.21) is rewritten as

0 � Q (K;H) =

pX
i=0

qX
j=0

jX
k=0

("�)
i
aij

2j

�
j

k

�
kj�k+i1 kk+i2 .
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Then, we de�ne

eQ (x; y) = pX
i=0

qX
j=0

jX
k=0

gai;jxj�k+iyk+i 2 R [x; y]
where gai;j = ("�)

i
aij

2j

�
j

k

�
and apply The Theorem 123 to the polynomial eQ (x; y) 2 R [x; y] which yields
the following result:

Theorem 124 Consider the polynomial Q (x; y) 2 R [x; y] and let S (Q) be the
set of all regular canal surfaces in Euclidean 3-space (Lorentzian 3-space) whose
Gaussian and mean curvatures K, H verify Q (K;H) � 0. Then, the elements
of S (Q) are (smooth) combinations of Rotational surfaces and Tubular surfaces
of radius r 2 Rad� (Q).



Appendix A

Appendix for Tubular
Surfaces

A.1 Summatories Identities

Proposition 125 Let n 2 N, then

nX
i=0

n�iX
k=0

Ai;k =

nX
i=0

iX
k=0

An�i;k

Proposition 126 Let n 2 N, then

nX
i=0

iX
k=0

Ai;k =
nX
k=0

kX
i=0

An�i;n�k. (A.1)

Proof. This prove is given by induction on n. Notice that (A.1) is valid for
n = 1,

(1)X
i=0

iX
k=0

Ai;k = A0;0 +A1;0 +A1;1 =

(1)X
k=0

kX
i=0

A(1)�i;(1)�k.

Thus, we assume that equality holds for some n 2 N:

nX
i=0

iX
k=0

Ai;k =
nX
k=0

kX
i=0

An�i;n�k

135
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and we will verify that (A.1) is valid for n+ 1. In fact,

(n+1)X
i=0

iX
k=0

Ai;k �
(n+1)X
k=0

kX
i=0

A(n+1)�i;(n+1)�k (A.2)

=
nX
i=0

iX
k=0

Ai;k +

(n+1)X
k=0

An+1;k (A.3)

�
nX
k=0

kX
i=0

A(n+1)�i;(n+1)�k �
(n+1)X
i=0

A(n+1)�i;0. (A.4)

Before to proceed with previous equation, we remark that

nX
k=0

kX
i=0

A(n+1)�i;(n+1)�k

= An+1;n+1 +
n�1X
k=0

kX
i=0

An�i;n�k +
nX
k=1

A(n+1);(n+1)�k

therefore, applying the above equality to (A.2) it is obtained

nX
i=0

iX
k=0

Ai;k +

nX
k=0

An+1;k �
n�1X
k=0

kX
i=0

An�i;n�k

�
nX
k=1

A(n+1);(n+1)�k �A(n+1);0 �
(n+1)X
i=1

An+1�i;0

=
nX
i=0

iX
k=0

Ai;k +
nX
k=0

An+1;k �
n�1X
k=0

kX
i=0

An�i;n�k

�
nX
k=1

A(n+1);(n+1)�k �A(n+1);0 �
nX
i=0

An�i;0

=

nX
i=0

iX
k=0

Ai;k �
nX
k=0

kX
i=0

An�i;n�k

+
nX
k=0

An+1;k �
nX
k=1

A(n+1);(n+1)�k �A(n+1);0.

The induction step gives us
nX
k=0

An+1;k �
nX
k=1

A(n+1);(n+1)�k �A(n+1);0

=
nX
k=0

An+1;k �
nX
k=0

An+1;n�k,

�nally, through the Propostion 125 we achieve the desired.
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Proposition 127

n+1X
i=0

n+1�iX
j=0

Mi;j =
n+1X
i=0

Mi;n+1�i +
nX
i=0

n�iX
j=0

Mi;j

Proof. The proof is by induction on n. First, notice the equality holds for
n = 1

2X
i=0

2�iX
j=0

Mi;j

= M0;0 +M0;1 +M1;0 +M0;2 +M1;1 +M2;0

=
2X
i=0

Mi;2�i +
1X
i=0

1�iX
j=0

Mi;j

and suppose that is also true for n = k:

k+1X
i=0

k+1�iX
j=0

Mi;j =

k+1X
i=0

Mi;k+1�i +

kX
i=0

k�iX
j=0

Mi;j ,

we will prove for n = k + 1.
In one hand, we have

(k+1)+1X
i=0

(k+1)+1�iX
j=0

Mi;j =

k+1X
i=0

k+1�iX
j=0

Mi;j +

k+1X
i=0

Mi;k+2�i +Mk+2;0

and the induction step gives

k+1X
i=0

Mi;k+1�i +

kX
i=0

k�iX
j=0

Mi;j +

k+1X
i=0

Mi;k+2�i +Mk+2;0.

On the other hand,

k+2X
i=0

Mi;k�i+2 +

k+1X
i=0

k+1�iX
j=0

Mi;j

=
k+1X
i=0

Mi;k+2�i +Mk+2;0 +
kX
i=0

k�i+1X
j=0

Mi;j +Mk+1;0

and the desired is obtained.

Proposition 128

n+1X
k=0

kX
i=0

n+1�kX
j=0

Mi;j;k =
n+1X
i=0

Mi;0;n+1 +
nX
k=0

kX
i=0

n+1�kX
j=0

Mi;j;k
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Proof. This demonstration is given by induction on n. When n = 1 is easy to
see that both sides agrees. Assume the equality is valid for n = l:

(l)+1X
k=0

kX
i=0

(l)+1�kX
j=0

Mi;j;k =

(l)+1X
i=0

Mi;0;(l)+1 +

(l)X
k=0

kX
i=0

(l)+1�kX
j=0

Mi;j;k

we will show the result holds for n = l + 1.
Indeed,

(l+1)+1X
k=0

kX
i=0

(l+1)+1�kX
j=0

Mi;j;k

=

l+1X
k=0

kX
i=0

l+2�kX
j=0

Mi;j;k +
l+2X
i=0

Mi;0;l+2

=
l+1X
k=0

kX
i=0

l+1�kX
j=0

Mi;j;k +
l+1X
k=0

kX
i=0

Mi;l+2�k;k +
l+2X
i=0

Mi;0;l+2

and the induction step provides

)

0@ l+1X
i=0

Mi;0;l+1 +
lX

k=0

kX
i=0

l+1�kX
j=0

Mi;j;k

1A
+
l+1X
k=0

kX
i=0

Mi;l+2�k;k +
l+2X
i=0

Mi;0;l+2

=
l+2X
i=0

Mi;0;l+2 +
l+1X
i=0

Mi;0;l+1

+
lX

k=0

kX
i=0

l+1�kX
j=0

Mi;j;k +
lX

k=0

kX
i=0

Mi;l+2�k;k +
l+1X
i=0

Mi;1;l+1.

Then observe that

(l+1)X
k=0

kX
i=0

(l+1)+1�kX
j=0

Mi;j;k

=
lX

k=0

kX
i=0

l+1�kX
j=0

Mi;j;k +
l+1X
i=0

Mi;0;l+1

+
lX

k=0

kX
i=0

Mi;l+2�k;k +
l+1X
i=0

Mi;1;(l+1)

which concludes the proof.
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Proposition 129

pX
m=0

q+p�mX
l=0

�m;lbm+l =

pX
l=0

lX
m=0

�m;l�mbl +

qX
l=1

pX
m=0

�m;p+l�mbp+l, (A.5)

for every p and q � 0.

Proof. This demonstration is given by induction on p 2 N. First, in the case
of p = 0, the left-hand side of the equation (A.5) provides

0X
m=0

q�mX
l=0

�m;lbm+l =

qX
l=0

�0;lbl.

while the right-hand side of the equation (A.5) gives us

(0)X
l=0

lX
m=0

�m;l�mbl +

qX
l=1

�0;lbl = �0;0b0 +

qX
l=1

�0;lbl =

qX
l=0

�0;lbl

therefore, the equality is obtained.

Assume that Equation (A.5) is true for some p and for every q � 1, that is,

pX
m=0

q+p�mX
l=0

�m;lbm+l =

pX
l=0

lX
m=0

�m;l�mbl +

qX
l=1

pX
m=0

�m;p+l�mbp+l.

Hence, we will verify that equality holds for p+ 1.

In on hand, we have

(p+1)X
m=0

q+(p+1)�mX
l=0

�m;lbm+l

=

pX
m=0

q+p�mX
l=0

�m;lbm+l +

pX
m=0

�m;q+(p+1)�mbq+(p+1)

+

qX
l=0

�p+1;lbp+1+l
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therefore, the induction step furnishes

pX
l=0

lX
m=0

�m;l�mbl +

qX
l=1

pX
m=0

�m;p+l�mbp+l

+

pX
m=0

�m;q+(p+1)�mbq+(p+1) +

qX
l=0

�p+1;lbp+1+l

=

pX
l=0

lX
m=0

�m;l�mbl +

q�1X
l=0

pX
m=0

�m;p+(l+1)�mbp+(l+1)

+

pX
m=0

�m;q+(p+1)�mbq+(p+1) +

qX
l=0

�p+1;lbp+1+l

=

pX
l=0

lX
m=0

�m;l�mbl +

qX
l=0

pX
m=0

�m;p+(l+1)�mbp+(l+1) +

qX
l=0

�p+1;lbp+1+l

=

pX
l=0

lX
m=0

�m;l�mbl +

qX
l=1

pX
m=0

�m;p+(l+1)�mbp+(l+1)

+

p+1X
m=0

�m;p+1�mbp+1 +

qX
l=1

�p+1;lbp+1+l.

On the other hand, we consider

(p+1)X
l=0

lX
m=0

�m;l�mbl +

qX
l=1

(p+1)X
m=0

�m;(p+1)+l�mb(p+1)+l

=

pX
l=0

lX
m=0

�m;l�mbl +

(p+1)X
m=0

�m;(p+1)�mb(p+1)

+

qX
l=1

pX
m=0

�m;(p+1)+l�mb(p+1)+l +

qX
l=1

�(p+1);(p+1)+l�(p+1)b(p+1)+l

=

pX
l=0

lX
m=0

�m;l�mbl +

qX
l=1

pX
m=0

�m;(p+1)+l�mb(p+1)+l

+

(p+1)X
m=0

�m;(p+1)�mb(p+1) +

qX
l=1

�(p+1);lb(p+1)+l

so we conclude that

(p+1)X
m=0

q+(p+1)�mX
l=0

�m;lbm+l =

(p+1)X
l=0

lX
m=0

�m;l�mbl +

qX
l=1

(p+1)X
m=0

�m;(p+1)+l�mb(p+1)+l
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Proposition 130 Let n 2 N, then the below equality is true

iX
m=0

n�(i�m)X
l=0

i�mX
k=0

Ak;m;l =
iX

k=0

i�kX
m=0

n�i+mX
l=0

Ak;m;l, (A.6)

for every i 2 f0; :::; ng.

Proof. Before to actually present the prove, it is relevant to note that for a
given n 2 N, it follows that Equality A.6 is valid for every i 2 f0; :::; ng. Indeed,
otherwise (i.e. i > n) we can express

i = n+ ",

where " > 0. Then, the second summand of the left-hand side of the Equation
A.6 becomes

n� (i�m) = n� ((n+ ")�m) = m� "
and notice that 0 � m � i = n+ ", hence

m� " � 0

which is not well-de�ned in the sum.
In the view of above discussion, now we will prove the Equation A.6 by

induction on n. In the case of n = 1, there is two possibilities for i, since
i 2 f0; 1g. For i = 0, a straightforward calculation provides

1X
l=0

A0;0;l = A0;0;0 +A0;0;1 =
1X
l=0

A0;0;l

which concludes this case. For i = 1, it follows

1X
m=0

mX
l=0

1�mX
k=0

Ak;m;l

= A0;0;0 +A0;1;0 +A1;0;0 +A0;1;1

=
1X
k=0

1�kX
m=0

mX
l=0

Ak;m;l

and the desired is achieved.
Assume that Equality A.6 is valid for some n 2 N and for every i 2 f0; :::; ng.

More precisely:

iX
m=0

n�(i�m)X
l=0

i�mX
k=0

Ak;m;l =
iX

k=0

i�kX
m=0

n�i+mX
l=0

Ak;m;l. (A.7)

Hence, it is necessary to verify that equality is still true for some n+ 1 and for
every i 2 f0; :::; n+ 1g.
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To prove that part, we will consider two cases, named: 0 � i � n and
i = n+1, it is important to remark that induction step does not stand for n+1,
so we have to separate the sums up to n and the sum n+ 1.
First, we consider i 2 f0; :::; ng, then

iX
k=0

i�kX
m=0

(n+1)�i+mX
l=0

Ak;m;l =
iX

k=0

i�kX
m=0

n�i+mX
l=0

Ak;m;l +
iX

k=0

i�kX
m=0

Ak;m;n+1�i+m

so, the induction step presented in (A.7) yields

iX
m=0

n�(i�m)X
l=0

i�mX
k=0

Ak;m;l +
iX

k=0

i�kX
m=0

Ak;m;n+1�i+m.

On the other hand,

iX
m=0

n�(i�m)X
l=0

i�mX
k=0

Ak;m;l +

iX
k=0

i�kX
m=0

Ak;m;n+1�i+m

=

iX
m=0

n�(i�m)X
l=0

i�mX
k=0

Ak;m;l +

iX
m=0

i�mX
k=0

Ak;m;(n+1)�(i�m),

which �nishes this case.
For the remaining case where i = n+ 1, we consider

n+1X
k=0

n+1�kX
m=0

mX
l=0

Ak;m;l (A.8)

=
nX
k=0

n�kX
m=0

mX
l=0

Ak;m;l +
nX
k=0

n+1�kX
l=0

Ak;n+1�k;l +A(n+1);0;0

=
nX
k=0

n�kX
m=0

mX
l=0

Ak;m;l +
n+1X
k=0

n+1�kX
l=0

Ak;n+1�k;l

consequently, the induction step for i = n gives us the following equality

nX
m=0

mX
l=0

n�mX
k=0

Ak;m;l =
nX
k=0

n�kX
m=0

n�n+mX
l=0

Ak;m;l,

for every i 2 f0; :::; ng. Thus, applying the above remark in Equation A.8 it is
obtained

nX
m=0

mX
l=0

n�mX
k=0

Ak;m;l +

n+1X
k=0

n+1�kX
l=0

Ak;n+1�k;l. (A.9)
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On the other hand,

(n+1)X
m=0

mX
l=0

(n+1)�mX
k=0

Ak;m;l (A.10)

=
nX

m=0

mX
l=0

n�mX
k=0

Ak;m;l +
n+1X
m=0

mX
l=0

An+1�m;m;l. (A.11)

Then, Equation by A.9 and by Equation A.10 we just have to prove:

n+1X
k=0

n+1�kX
l=0

Ak;n+1�k;l =
n+1X
m=0

mX
l=0

An+1�m;m;l. (A.12)

which is precisely the result contained in Proposition ??, because the Equality
A.12 resumes to

n+1X
k=0

Ak;n+1�k =
n+1X
m=0

An+1�m;m,

so we conclude this proof.

A.2 Binomial Identities

Proposition 131 (Pascal rule) Let n, k 2 Z, then the following identity is
true �

n

k

�
=

�
n� 1
k

�
+

�
n� 1
k � 1

�
.

Proposition 132 Given n 2 N�, the equality is true
nX

m=0

(�1)m
�
y + xm

r

��
n

m

�
= 0 (A.13)

for every x; y; r 2 Z such that r < n.

Proof. To prove the equality in (A.13) we proceed by induction on n. In case
n = 1, choose x, y, z 2 Z as in the statement and notice that r � 0. If r < 0,
we have �

y + xm

r

�
= 0 , 8m 2 Z

and the result follows immediately. Assume r = 0, then�
y + xm

0

�
=
(y + xm)0

0!
= 1 , 8m 2 Z

which implies

nX
m=0

(�1)m
�
y+xm
0

��
n
m

�
=

nX
m=0

(�1)m
�
n
m

�
= �n;0 = 0.
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Suppose the equality (A.13) is true for some n � 1:

nX
m=0

(�1)m
�
y+xm
r

��
n
m

�
= 0 (A.14)

and for every x; y; r 2 Z such that r < n. We will show the result is valid for
n+ 1. Since r < n+ 1 there is two distinct cases to consider, named r = n and
r < n.
So given x; y; r 2 Z such that r < n+1. First consider the case r = n. Thus

n+1X
m=0

(�1)m
�
y+xm
n

��
n+1
m

�
=
�
y
n

�
+

nX
m=1

(�1)m
�
y+xm
n

��
n+1
m

�
+ (�1)n+1

�
y+x(n+1)

n

�
applying Pascal�s formula in

�
n+1
m

�
it is obtained

�
y
n

�
+

nX
m=1

(�1)m
�
y+xm
n

��
n
m

�
+

nX
m=1

(�1)m
�
y+xm
n

��
n

m�1
�
+ (�1)n+1

�
y+x(n+1)

n

�
=

nX
m=0

(�1)m
�
y+xm
n

��
n
m

�
+

n+1X
m=1

(�1)m
�
y+xm
n

��
n

m�1
�

=

nX
m=0

(�1)m
�
y+xm
n

��
n
m

�
�

nX
m=0

(�1)m
�
(y+x)+xm

n

��
n
m

�
Notice that, the reverse Pascal�s formula provide�

y+xm
n

�
=
�
y+xm�1

n

�
+
�
(y�1)+xm

n�1
�

and �
(y+x)+xm

n

�
=
�
(y+x)+xm�1

n

�
+
�
(y+x�1)+xm

n�1
�

therefore, the above observation yields

nX
m=0

(�1)m
�
y+xm�1

n

��n
m

�
+

nX
m=0

(�1)m
�
(y�1)+xm

n�1
��n
m

�

�
nX

m=0

(�1)m
�
(y+x)+xm�1

n

��n
m

�
�

nX
m=0

(�1)m
�
(y+x�1)+xm

n�1
��n
m

�
.

Again, the Pascal�s formula gives

nX
m=0

(�1)m
�
y+xm�2

n

��
n
m

�
+

nX
m=0

(�1)m
�
(y�2)+xm

n�1
��
n
m

�
+

nX
m=0

(�1)m
�
(y�1)+xm

n�1
��
n
m

�
�

nX
m=0

(�1)m
�
(y+x)+xm�2

n

��
n
m

�
�

nX
m=0

(�1)m
�
(y+x)+xm�2

n�1
��
n
m

�
�

nX
m=0

(�1)m
�
(y+x�1)+xm

n�1
��
n
m

�
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however, now we are able to use the induction step in above equation, which
provides to us

nX
m=0

(�1)m
�
y+xm�2

n

��
n
m

�
�

nX
m=0

(�1)m
�
(y+x)+xm�2

n

��
n
m

�
,

repeating the above process yields
nX

m=0

(�1)m
�
y+xm�3

n

��
n
m

�
�

nX
m=0

(�1)m
�
(y+x)+xm�3

n

��
n
m

�
therefore,

nX
m=0

(�1)m
�
y+xm�4

n

��
n
m

�
�

nX
m=0

(�1)m
�
(y+x)+xm�4

n

��
n
m

�
proceeding in this way, consequently, we get

nX
m=0

(�1)m
�
y+xm��

n

��
n
m

�
�

nX
m=0

(�1)m
�
(y+x)+xm��

n

��
n
m

�
for some �; � � 0. We remark that � and � does not necessarily to be equal,
once we can apply the hypothesis only in one of the terms.
So take �, � � 0 such that

y � � = y + x� �
(which is always possible). In this case,

nX
m=0

(�1)m
�
y+xm��

n

��
n
m

�
�

nX
m=0

(�1)m
�
(y+x)+xm��

n

��
n
m

�
=

nX
m=0

(�1)m
�
(y��)+xm

n

��
n
m

�
�

nX
m=0

(�1)m
�
(y+x��)+xm

n

��
n
m

�
=

nX
m=0

(�1)m
�
(y��)+xm

n

��
n
m

�
�

nX
m=0

(�1)m
�
(y��)+xm

n

��
n
m

�
= 0.

Finally, assume that r < n, it follows
n+1X
m=0

(�1)m
�
y+xm
r

��
n+1
m

�
= (�1)n+1

�
y+x(n+1)

r

�
+

nX
m=1

(�1)m
�
y+xm
r

��
n+1
m

�
+
�
y
r

�
= (�1)n+1

�
y+x(n+1)

r

�
+

nX
m=1

(�1)m
�
y+xm
r

��
n
m

�
+

nX
m=1

(�1)m
�
y+xm
r

��
n

m�1
�
+
�
y
r

�
= (�1)n+1

�
y+x(n+1)

r

�
+

nX
m=0

(�1)m
�
y+xm
r

��n
m

�
+

nX
m=1

(�1)m
�
y+xm
r

��
n

m�1
�
,
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then, the induction step implies

(�1)n+1
�
y+x(n+1)

r

�
+

nX
m=1

(�1)m
�
y+xm
r

��
n

m�1
�

=
n+1X
m=1

(�1)m
�
y+xm
r

��
n

m�1
�

= �
nX

m=0

(�1)m
�
y+x(m+1)

r

��
n
m

�
= �

nX
m=0

(�1)m
�
(y+x)+xm

r

��
n
m

�
and applying again the induction step we achieved the desired and then con-
cludes the proof.

Proposition 133 Given p � q 2 N, we have

lX
m=0

(�1)m
�
q + p�m
q � r

��
l

m

�
=

�
q + p� l
p+ r

�
(A.15)

for every l 2 f0; : : : ; pg and r 2 f0; : : : ; q � pg.

Proof. The prove of equality (A.15) is given by induction on p. For p = 1, chose
q, l, r as in the statement and in this case l 2 f0; 1g. If l = 0, the conclusion is
immediate. If l = 1, we have

1X
m=0

(�1)m
�
q+1�m
q�r

��
1
m

�
=
�
q+1
q�r
�
�
�
q
q�r
�
,

applying Pascal rule in above equation, it is obtained the desired.
Assume the equality (A.15) is true for some p:

lX
m=0

(�1)m
�
q+p�m
q�r

��
l
m

�
=
�
q+p�l
p+r

�
(A.16)

and it will be shown that still valid for p+1. Consider q � p+1, l 2 f0; : : : ; p+ 1g
and r � q � (p+ 1). If l � p, then

lX
m=0

(�1)m
�
q+(p+1)�m

q�r
��

l
m

�
=

lX
m=0

(�1)m
�
(q+1)+p�m
(q+1)�(r+1)

��
l
m

�
,

the induction step and rearranging the coe¢ cients �nishes this case:�
(q+1)+p�l
p+(r+1)

�
=
�
q+(p+1)�l
(p+1)+r

�
.
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If l = p+ 1,

p+1X
m=0

(�1)m
�
q+(p+1)�m

q�r
��
p+1
m

�
=

�
q+p+1
q�r

�
+

pX
m=1

(�1)m
�
(q+1)+p�m

q�r
��
p+1
m

�
+ (�1)p+1

�
q
q�r
�

applying the Pascal rule to
�
p+1
m

�
in above equation provides

�
q+p+1
q�r

�
+

pX
m=1

(�1)m
�
(q+1)+p�m
(q+1)�(r+1)

��
p
m

�
(A.17)

+

pX
m=1

(�1)m
�
(q+1)+p�m

q�r
��

p
m�1

�
+ (�1)p+1

�
q
q�r
�
. (A.18)

Notice that induction step (A.16) gives

pX
m=1

(�1)m
�
(q+1)+p�m
(q+1)�(r+1)

��
p
m

�
=
�
q+1
p+r+1

�
�
�
q+1+p
q�r

�
replacing it on (A.17) we have

�
q+p+1
q�r

�
+
�
q+1
p+r+1

�
�
�
q+1+p
q�r

�
+

pX
m=1

(�1)m
�
(q+1)+p�m

q�r
��

p
m�1

�
+ (�1)p+1

�
q
q�r
�

and rearranging the coe¢ cients of the sum and observing

� (�1)(p+1)�1
�
q
q�r
�
= � (�1)(p+1)�1

�
q+p�((p+1)�1)

q�r
��

p
(p+1)�1

�
,

follows

�
q+1
p+r+1

�
�

p+1X
m=1

(�1)m�1
�
q+p�(m�1)

q�r
��

p
m�1

�
=

�
q+1
p+r+1

�
�

pX
m=0

(�1)m
�
q+p�(m)
q�r

��
p
(m)

�
the induction step furnishes�

q+1
p+r+1

�
�
�
q+p�p
p+r

�
=
�
q+1
p+r+1

�
�
�
q
p+r

�
�nally, the Pascal rule implies�

q
p+r+1

�
=
�
q+(p+1)�l
(p+1)+r

�
since l = p+ 1.
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Proposition 134 Let n 2 N and consider x; j 2 R, then
nX

m=0

(�1)m
�
x�m
j

��
n

m

�
=

�
x� n
j � n

�
.

Proof. The proof is by induction on n. Indeed, for n = 1 we have

1X
m=0

(�1)m
�
x�m
j

��
1
m

�
=
�
x
j

�
�
�
x�1
j

�
=
�
x�1
j�1
�

and the last equality is given by the Pascal rule.
Assume the equality is true for n:

nX
m=0

(�1)m
�
x�m
j

��
n
m

�
=
�
x�n
j�n
�

and we will prove for n+ 1,

(n+1)X
m=0

(�1)m
�
x�m
j

��
(n+1)
m

�
=

�
x
j

�
+

(n+1)X
m=1

(�1)m
�
x�m
j

��
(n+1)
m

�
the Pascal rule implies

�
x
j

�
+

(n+1)X
m=1

(�1)m
�
x�m
j

��
n
m

�
+

(n+1)X
m=1

(�1)m
�
x�m
j

��
n

m�1
�

=
nX

m=0

(�1)m
�
x�m
j

��
n
m

�
+ (�1)n+1

�
x�(n+1)

j

��
n

(n+1)

�
�

nX
m=0

(�1)m
�
(x�1)�m

j

��
n
m

�
notice, by de�nition,

�
n
n+1

�
is null, then

nX
m=0

(�1)m
�
x�m
j

��
n
m

�
�

nX
m=0

(�1)m
�
(x�1)�m

j

��
n
m

�
applying the induction step for each term yields�

x�n
j�n
�
�
�
(x�1)�n
j�n

�
.

Now, we have several cases to consider, since Pascal rule is not always ap-
plicable.

Case 1. If j � n < 0, follows j � n� 1 < 0, then�
x�n
j�n
�
= 0,

�
(x�1)�n
j�n

�
= 0 and

�
x�n�1
j�n�1

�
= 0

and the equality holds.
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Case 2. If j � n = 0, we have�
x�n
0

�
�
�
(x�1)�n

0

�
=
1

1!
� 1

1!
= 0 =

�
x�n�1
j�n�1

�
and the equality holds.

Case 3. If j � n � 1, there is some subcases to consider, named

� Case x � j + 1, the result follows immediately from Pascal rule.

� Case x = j, the equations are�
j�n
j�n
�
= 1,

�
(j�1)�n
j�n

�
= 0 and

�
j�n�1
j�n�1

�
= 1

and the result is valid.

� Case x < j, notice that�
x�n
j�n
�
�
�
(x�1)�n
j�n

�
= (x�n)(x�n�1)(x�n�2):::(x�n�(j�n)+1)

(j�n)! � (x�1�n)((x�1�n)�1)((x�1�n)�2):::((x�1�n)�(j�n)+1)
(j�n)!

= (x�n)(x�n�1)(x�n�2):::(x�j+1)�(x�n�1)(x�n�2)(x�n�3):::(x�j)
(j�n)!

= ((x�n�1)(x�n�2):::(x�j+1))
(j�n)! (j � n)

= ((x�n�1)(x�n�2):::(x�j+1))
(j�n�1)!

=
�
x�n�1
j�n�1

�
Since every possible case verify the equation, it is concluded

(n+1)X
m=0

(�1)m
�
x�m
j

��
(n+1)
m

�
=
�
x�(n+1)
j�(n+1)

�
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Appendix B

Appendix for Cyclic
Surfaces

Lemma 135

2nX
j=0

2n�jX
i=0

Ai;j =

nX
j=0

2n�2jX
i=0

Ai;2j +

nX
j=1

2n�(2j�1)X
i=0

Ai;2j�1

Proposition 136 For any n 2 N, we have
n�1X
i=0

n�1�iX
j=0

Ai;2j =
n�1X
i=0

iX
j=0

Ai�j;2j. (B.1)

The proof of this result is by induction on n. Notice that the Equality (B.1)
is valid for n = 1, in fact, the left-hand side of the equality provide to us

1�1X
i=0

1�1�iX
j=0

Ai;2j =

0X
i=0

0�iX
j=0

Ai;2j = A0;0,

which is precisely the same obtained by the right-hand side of the equality

1�1X
i=0

iX
j=0

Ai�j;2j =

0X
i=0

iX
j=0

Ai�j;2j = A0;0,

therefore, we conclude this case.
Assume that Equality (B.1) is true for some n 2 N. Our goal is to show that

equality still holds for n+ 1:

nX
i=0

n�iX
j=0

Ai;2j =

n+1�1X
i=0

n+1�1�iX
j=0

Ai;2j =

n+1�1X
i=0

iX
j=0

Ai�j;2j =

nX
i=0

iX
j=0

Ai�j;2j .

(B.2)
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In one hand, we have

nX
i=0

iX
j=0

Ai�j;2j =
nX
j=0

An�j;2j +
n�1X
i=0

iX
j=0

Ai�j;2j

by induction step it is obtained

nX
i=0

iX
j=0

Ai�j;2j =
nX
j=0

An�j;2j +
n�1X
i=0

n�1�iX
j=0

Ai;2j . (B.3)

On the other hand, when we consider

nX
i=0

n�iX
j=0

Ai;2j = An;0 +
n�1X
i=0

n�iX
j=0

Ai;2j

which can be rewritten as

nX
i=0

n�iX
j=0

Ai;2j (B.4)

= An;0 +
n�1X
i=0

0@Ai;2(n�i) + n�1�iX
j=0

Ai;2j

1A
= An;0 +

n�1X
i=0

Ai;2(n�i) +
n�1X
i=0

n�1�iX
j=0

Ai;2j .

Then, comparing (B.3) and (B.4), follows that it is su¢ cient verify:

nX
i=0

An�i;2i =
nX
j=0

An�j;2j = An;0 +
n�1X
i=0

Ai;2(n�i) =
nX
i=0

Ai;2(n�i). (B.5)

If we set

Bi = Ai;2(n�i) and Bn�i = An�i;2(n�(n�i)) = An�i;2i

the Equality (B.5) is expressed as

nX
i=0

Bn�i =
nX
i=0

Bi

which is trivial. So, we achieve the desired.

Proposition 137 For any n 2 N, we have
n�1X
i=0

n�1�iX
j=0

Ai;2j+1 =
n�1X
i=0

iX
j=0

Ai�j;1+2j. (B.6)
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The demonstration will be by induction on n. We remark that Equality
(B.6) is true for n = 2. Indeed,

(2)�1X
i=0

(2)�1�iX
j=0

Ai;2j+1 = A0;1 +A1;1 +A0;3 =

(2)�1X
i=0

iX
j=0

Ai�j;1+2j ,

so, we will assume that Equality (B.6) holds for some n 2 N, then we must
proof that it still valid for n+ 1, i.e.,

nX
i=0

n�iX
j=0

Ai;2j+1 =

(n+1)�1X
i=0

(n+1)�1�iX
j=0

Ai;2j+1 =

(n+1)�1X
i=0

iX
j=0

Ai�j;1+2j =
nX
i=0

iX
j=0

Ai�j;1+2j .

In one hand, the right-hand side of the above equality can be expressed as

nX
i=0

iX
j=0

Ai�j;1+2j =
n�1X
i=0

n�1�iX
j=0

Ai;2j+1 +
nX
j=0

An�j;1+2j . (B.7)

On the other hand, by the left-hand side of the equality we obtain

nX
i=0

n�iX
j=0

Ai;2j+1 =
n�1X
i=0

n�iX
j=0

Ai;2j+1 +An;1,

which can be write as

nX
i=0

n�iX
j=0

Ai;2j+1 =
n�1X
i=0

n�i�1X
j=0

Ai;2j+1 +
n�1X
i=0

Ai;2(n�i)+1 +An;1

therefore

nX
i=0

n�iX
j=0

Ai;2j+1 =
n�1X
i=0

n�i�1X
j=0

Ai;2j+1 +
nX
i=0

Ai;2(n�i)+1. (B.8)

Hence, by (B.7) and (B.8), still remains to prove that

nX
i=0

An�i;1+2i =
nX
j=0

An�j;1+2j =
nX
i=0

Ai;2(n�i)+1

so, we notice that when we de�ne

Bi = Ai;2(n�i)+1 and Bn�i = A(n�i);2(n�(n�i))+1 = An�i;2i+1

it follows that
nX
i=0

Bn�i =

nX
i=0

Bi

which is trivial. Then we conclude this demonstration.
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Lemma 138
2kX
i=0

Bi =
kX
i=0

B2i +
kX
i=1

B2i�1 (B.9)

This demonstration it will be given by induction on k. Note that the Equality
B.9 is true for k = 1, in fact

2X
i=0

Bi = B0 +B1 +B2 =
1X
i=0

B2i +
1X
i=1

B2i�1.

Assume the Equality B.9 holds for some k 2 N. We will show that its still valid
for k + 1. Thus, consider

2k+2X
i=0

Bi =
2kX
i=0

Bi +
2k+2X
i=2k+1

Bi,

follows from induction step that

2k+2X
i=0

Bi =
kX
i=0

B2i +
kX
i=1

B2i�1 +B2k+1 +B2k+2

=

k+1X
i=0

B2i +

k+1X
i=1

B2i�1.

Lemma 139
2k�1X
i=0

Bi =
k�1X
i=0

B2i +
k�1X
i=0

B2i+1

Lemma 140 For every n 2 N, we have the following equality0@ (n)X
j=0

2(n)�2jX
i=0

Ai;j

1A2

=

(n)X
j=0

2(n)�2jX
i=0

0@ (n)X
k=0

2(n)�2kX
l=0

Ai;jAl;k

1A
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