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Resumo

O objetivo desta dissertação de mestrado é estudar o comportamento assintótico de equações

diferenciais parciais hiperbólicas não-autônomos com coeficientes dependentes do tempo. Para isso,

apresentamos a noção de atratores pullback para processos em espaços dependentes do tempo, onde

o operador solução é uma famı́lia de aplicações

U(t,τ) : Xτ → Xt , t ≥ τ ∈ R,

agindo em espaços dependentes do tempo. Além disso, exploramos a minimalidade da propriedade

de atração pullback e a existência desses atratores. Finalmente, aplicamos os resultados abstratos de

existência de atratores pullback para estudar o comportamento assintótico de equações de onda com

velocidade de propagação dependente do tempo.

Palavras-chave: Processos em espaços dependentes do tempo, Atratores pullback, Equações de on-

das.
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Abstract

The goal of this master’s degree dissertation is to study the asymptotic behavior of non-autonomous

hyperbolic partial differential equations with time-dependent coefficients. In order to achieve that, we

introduce the notion of pullback attractors for processes on time-dependent spaces, where the solution

operator is a family of maps

U(t,τ) : Xτ → Xt , t ≥ τ ∈ R

acting on a time-dependent family of spaces Xt . Furthermore, we exploiting the minimality with

respect to the pullback attraction property and the existence of those attractors. Finally, we applied

the abstract results on existence of pullback attractors to study the long term behavior of a damped

wave equation with time-dependent speed of propagation.

Keywords: Processes on time-dependent spaces, Pullback attractors, Wave Equations.
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Introduction

Differential Equations are models for several physical, chemical, biological and economic phe-

nomena. If the differential equation involves more than one independent variable, then it is a partial

differential equation.

The concept of a dynamical system is of fundamental importance in the understanding of many

natural phenomena. Mathematically, a dynamical system is a one-parameter family (generally time)

of maps of an abstract space (the set of states) to itself. Many problems in several applied areas, such

as physics, chemistry, economics, biology and mechanics, can be classified as dynamical systems. In

general, a dynamical system is associated with a differential equation.

Moreover, the evolution of systems arising from mechanics and physics is described in many

instances by differential equations of the form{
ut = A(u, t), t > τ

u(τ) = uτ ∈ X ,

where X is a normed space and for every fixed t, A(·, t) is a densely operator in X . Assuming the

Cauchy problem is well posed and calling u(t) the solution in time t, we can construct the family of

solving operators

U(t,τ) : X → X , t ≥ τ ∈ R,

by setting

U(t,τ)uτ = u(t).

Such family is called a process, characterized by the properties that U(τ,τ) = IX and

U(t,s)U(s,τ) =U(t,τ), f or all t ≥ s≥ τ ∈ R.

In order to understand the longtime behavior of solutions to dynamical systems we have to study

the dissipative properties of the operators U(t,τ). A well-established theory of attractors provides a

full description of many important autonomous systems from mathematical physics, including non-

autonomous models with time-dependent external forces (see [3], [13] and [7] for theoretical back-

ground and classical applications).

In evolution problems where the coefficients of the differential operator depend explicitly on time,

the standard theory generally fails to capture the dissipation mechanism. For example, consider the

1



2 Introduction

following nonlinear damped wave equation in a smooth domain Ω⊂ R3{
εutt(x, t)+ut(x, t)−∆u(x, t)+ f (u(x, t)) = g(x, t),
u(x, t)|x∈∂Ω = 0,

(1)

where ε > 0, f is a nonlinear term and g an external force. If g is independent of time, the system

is autonomous and the problem is completely understood within the theory of semigroups. In the

nonautonomous case, the dependence of g on time requires further integrability assumptions and the

theory of pullback attractors for processes can handle with these situations.

However, if in (1) we assume that ε is not a constant, but rather a positive decreasing function of

time ε(t) vanishing at infinity, the natural energy associated with the system is

E (t) =
∫

Ω

|∇u(x, t)|2dx+ ε(t)
∫

Ω

|ut(x, t)|2dx,

which exhibits a structural dependence on time. Moreover, the vanishing character of ε at infinity

alters the dissipativity of the system and prevents the existence of absorbing sets in the usual sense,

that is, bounded sets of the phase space X = H1
0 (Ω)∩ L2(Ω) absorbing all the trajectories after a

certain period of time.

In this case, a progress was made in [10]. The authors adopt the point of view of describing the

solution operator as a family of maps

U(t,τ) : Xτ → Xt , t ≥ τ ∈ R,

acting on a time-dependent family of spaces Xt . For instance, in system (1) all the spaces Xt coincide

with the linear space X , that is, are the same linear space. However, the Xt-norm is determinate by the

time-dependent energy E (t) of the solution at time t.

Based on this idea, the paper [10] provides a suitable modification of the classical notion of pull-

back attractor, establishing a new theory that can handle with time-dependent coefficients of the dif-

ferential operator in evolution problems. Moreover, the authors apply the framework in a oscillon

equation, more specifically, in a Klein-Gordon equation, with nonlinear potential, for a scalar field on

a manifold with the Robertson-Walker metric corresponding to an expanding universe with positive

Hubble constant. Additionally, the paper [9] based on the abstract theory developed by [10] applied

the framework on equation (1) with ε as a time-dependent function, positive decreasing and vanishing

at infinity, the same conditions that we refer in the example.

The aim of this master’s degree dissertation is to study the long term behavior of a damped wave

equation with time-dependent speed of propagation, the same as in [9], and presented the abstract

theory for this case. For this, we will study the theoretical background of [10] and [9] exploring the

notion of pullback attractor on time-dependent spaces and the minimality with respect to the pullback

attraction. Then we apply the abstract result (a result on the existence of pullback attractors) in the

non-autonomous case of equation (1).
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This dissertation is organized as follows. After this introduction, the subsequent chapter is devoted

to recall the notions of process and pullback attractors on fixed metric space X . Also, we will compare

these concepts with the semigroup theory. For Chapter 1 the reference used for theoretical background

is [5] and [4].

In Chapter 2 we present the abstract theory of pullback attractors on time-dependent spaces based

on [10] and [9]. In addition, we will make a comparison in relation to what was done in each article,

presenting and explaining the differences between them.

Finally, Chapter 3 is dedicated to apply the abstract results developed in Chapter 2 on the non-

autonomous case of (1) with time-dependent speed of propagation, following all the steps presented

in [9].
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CHAPTER 1

Process on fixed spaces

In this chapter we briefly recall the notions of process and semigroups in a fixed metric space

X . Also, we define global attractor for semigroups and pullback attractor for processes presenting a

result on the existence of attractors. All discussion is based on Chapters 1 and 2 of [5] (See also [14]

and [15]).

1.1 Processes and semigroups

Definition 1.1. A semigroup is a one-parameter family of mappings {T (t) : X → X}t≥0 satisfying

the following properties

i) T (0) = IdX ;

ii) T (t)T (s) = T (t + s) for s, t ≥ 0;

iii) {t ∈ R : t ≥ 0} 3 (t,x) 7→ T (t)x ∈ X is continuous.

Definition 1.2. A process is a two-parameter family of mappings {U(t,s) : X→X}t≥s with properties

i) U(t, t) = IdX ;

ii) U(t,τ)U(τ,s) =U(t,s), for all t ≥ τ ≥ s;

iii) {(t,s) ∈ R2 : t ≥ s} 3 (t,s,x) 7→U(t,s)x ∈ X is continuous.

The operator U(t,s) takes each state x in X at the initial time s and evolves it to the state U(t,s)x at

the time t. Under appropriate assumptions the solutions of the non-autonomous differential equation

ẋ = f (t,x) will generate a process if one sets U(t,s)x = x(t,s;x), that is, U(t,s) is the solution at time

t when x(s) = xs.

Note that, for a fixed τ the operator U(τ + s,s) will in general be different for each s ∈ R. Thus,

both the initial time s and the elapsed time play an important role in the evolution. A process for
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6 Chapter 1. Process on fixed spaces

which depends only the elapsed time generates an autonomous process, which is typically associated

with a semigroup.

As a convenient shorthand, we will refer to “the process U(·, ·)” rather than “the process {U(t,s) :

X → X}t≥s in all that follows.

Definition 1.3. Let {U(t,s) : X → X}t≥s be a process. We say that the process U(·, ·) is autonomous

if U(t,s) =U(t− s,0), for every t,s≥ 0.

Remark 1.4. Given a semigroup {T (t) : X → X}t≥0 define U(t,s) = T (t− s), t ≥ s. Then {U(t,s) :

X → X}t≥s is an autonomous process. Conversely, an autonomous process {U(t,s) : X → X}t≥s

defines a semigroup given by T (t) =U(t,0), t ≥ 0.

1.2 Attractors

Ideally, the attractor of a given dynamical system should contain all the assymptotic dynamics.

The theory of attractors for autonomous systems is well-established, see [3], [13] and [7] for theo-

retical background and classical applications. In the non-autonomous case the theory is still under

development, however we have solid references, e.g., [5] and [6].

Before defining the concept of attraction, we will recall some definitions and properties.

Definition 1.5. For a Banach space X and A,B⊂ X , we define the Hausdorff semidistance as

distX(A,B) = sup
x∈A

dX(x,B)

where

dX(x,B) = inf
y∈B
‖y− x‖X .

Remark 1.6. Observe that dist(A,B) 6= dist(B,A). In fact, consider X = R, A,B ⊂ X such that

A = {1,2} and B = {1}. Then,

dist(B,A) = sup
b∈B

inf
a∈A
‖b−a‖X

= sup
b∈B

inf{|1−2|, |1−1|}= {0}

and

dist(A,B) = max{|1−2|, |1−1|}= 1. (1.1)

Lemma 1.7. For a Banach space X and A,B ⊂ X, it follows that distX(A,B) = 0 if and only if A is

contained in the closure of B.

Proof. Suppose that distX(A,B) = 0. For a ∈ A we have infb∈B ‖b− a‖X = 0. Hence, there exists a

sequence {bn}n∈N ⊂ B such that

‖bn−a‖X
n→∞−→ 0.
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Thus, a ∈ B and consequently A⊂ B.

Conversely, assume that A⊂ B. Thus, for every a ∈ A there exists {bn}n∈N ⊂ B such that

‖bn−a‖X
n→∞−→ 0

and from the definition of infimum we obtain infb∈B ‖b− a‖X = 0, for all a ∈ A. Henceforth, the

lemma follows by taking the supremum over A.

Example 1.8. Consider X = R, A,B⊂ X such that A = (−1,1) and B = {1}. Then,

dist(B,A) = sup
b∈B

inf
a∈A
‖b−a‖X

= sup
b∈B

inf{|1− (−1)|, |1−1|}= {0}.

Hence, B⊂ A = [−1,1].

Definition 1.9. Let X be a normed space. For any given ε > 0, the ε-neighborhood of a set B⊂ X is

defined as

Oε(B) = {y ∈ X : inf
x∈B
‖x− y‖X < ε}.

Remark 1.10. Notice that if A,B⊂ X then

distX(A,B)< ε ⇔ sup
x∈A

inf
y∈B
‖y− x‖X < ε ⇔ inf

y∈B
‖y− x‖X < ε, ∀x ∈ A.

Which means that A⊂ Oε(B).

1.2.1 Global attractors for semigroups

Definition 1.11. Let B and C be subsets of X . We say that B attracts C if distX(T (t)C,B)→ 0, as

t→+∞.

Remark 1.12. The attraction property can be equivalently stated in terms of ε−neighborhood. In

fact, if

lim
t→∞

distX(T (t)C,B) = 0,

i.e., given ε > 0 there exists s = s(ε,C)> 0 such that

distX(T (t)C,B)< ε, f or all t ≥ s. (1.2)

It follows from (1.2) and Remark 1.10 that

T (t)C ⊂Oε(B), f or all t ≥ s.
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C = {x}

ε

B

B = {y}

T (s)x

Figure 1.1: B attracts C.

Definition 1.13. A subset A of X is called invariant under {T (t) : X → X}t≥0 if T (t)A = A, for all

t ≥ 0.

Definition 1.14. A set A ⊂ X is called the global attractor for a semigroup {T (t) : X → X}t≥0 if

i) A is compact;

ii) A is invariant;

iii) A attracts each bounded subset of X .

Lemma 1.15. The global attractor A of a semigroup is the minimal closed set that attracts each

bounded subset of X. In particular, the global attractor is unique.

Proof. Let B be a closed set that attracts each bounded subset of X . In particular, B attracts A , and

so, since A = T (t)A for all t ≥ 0

distX(A ,B) = lim
t→+∞

distX(T (t)A ,B) = 0.

Then, A ⊂ B = B, since B is closed.

1.2.2 Pullback attractors

Now, we recall the notion of pullback attraction.

Definition 1.16. Given t ∈R, a set K ⊂ X pullback attracts a set D at time t under the process U(·, ·)
if

lim
s→−∞

distX(U(t,s)D,K) = 0, (1.3)

K pullback attracts bounded sets at time t if (1.3) holds for each bounded set D of X .

A time-dependent family of subsets of X , K(·), pullback attracts bounded subsets of X under

U(·, ·) if K(t) pullback attracts bounded sets at time t under U(·, ·), for each t ∈ R.
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Remark 1.17. The pullback attraction property can be equivalently stated in terms of ε−neighborhood.

Indeed, for fixed t ∈ R, if

lim
s→−∞

distX(U(t,s)D,K(t)) = 0,

i.e., given ε > 0 there exists s0 = s0(t,D)≤ t such that

distX(U(t,s)D,K(t))< ε, f or all s≤ s0. (1.4)

It follows from (1.4) and Remark 1.10 that

U(t,s)D⊂ Oε(K(t)), f or all s≤ s0.

R

K(t)

t×Xr×Xs0×Xs1×Xs2×X· · ·

x x x x

U(t,s0)x

U(t,s1)x

U(t,s2)x

U(t,r)x

D = {x}

Figure 1.2: K(t) pullback attracts D for every time t.

Definition 1.18. A time-dependent family of sets D = {D(t)}t∈R is invariant under U(·, ·) if

U(t,s)D(s) = D(t), f or all t,s ∈ R with t ≥ s.

Definition 1.19. A family {A (t)}t∈R is the pullback attractor for a process U(·, ·) if

i) A (t) is compact for each t ∈ R;

ii) A (·) is invariant with respect to U(·, ·);

iii) A (·) pullback attracts bounded sets of X ;

iv) A (·) is the minimal family of closed sets with property (iii).

Example 1.20. Consider the following scalar equation

ẋ =−αx+ f (t) x(s) = x0. (1.5)
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This equation has a explicit solution

x(t) = e−α(t−s)x(s)+
∫ t

s
e−α(t−r) f (r)dr,

so if the limit

lim
s→−∞

∫ t

s
e−α(t−r) f (r)dr

exists, then {x∗(t) : t ∈ R} is the pullback attractor for (1.5), where

x∗(t) := lim
s→−∞

∫ t

s
e−α(t−r) f (r)dr. (1.6)

The following result shows that the global attractor for a semigroup {T (t) : t ≥ 0} and the pullback

attractor for {U(t,s) = T (t− s) : t ≥ s} are essentially the same.

Proposition 1.21. Let {T (t) : t ≥ 0} be a semigroup and {U(t,s) = T (t − s) : t ≥ s} be the cor-

responding autonomous process. {T (t) : t ≥ 0} has a global attractor A if and only if {U(t,s) =

T (t− s) : t ≥ s} has a pullback attractor {A (t) : t ∈ R}, and then A (t) = A for all t ∈ R.

Proof. If T (t) has a global attractor A we claim that A (t) = A defines the pullback attractor of

U(·, ·). Indeed, U(t,s)A = T (t− s)A = A and given a bounded subset B of X we have for each t

lim
s→−∞

distX(U(t,s)B,A ) = lim
s→−∞

distX(T (t− s)B,A ) = 0.

On the other hand, assume that U has a pullback attractor A (·). Then given a bounded subset B

of X we have

lim
s→−∞

distX(T (t− s)B,A (τ)) = 0, ∀t,τ ∈ R.

Thus, given τ ∈ R, by minimality A (t) = A (τ), for all t ∈ R. In this way, it is straightforward to

verify that A := A (0) is a global attractor for U .

1.2.3 Existence of pullback attractors

First, we will define the ω-limit set.

Definition 1.22. The pullback ω-limit of a subset B of X is the family ωB = {ωB(t)⊂ X}t∈R, where

ωB(t) is defined as

ωB(t) =
⋂
τ≤t

⋃
s≤τ

U(t,s)B
X
.

An equivalent characterization of the ω-limit set is the following proposition.

Proposition 1.23. Let B as in the definition above, then

ωB(t) = {z ∈ X : there are sequences sn→−∞ as n→+∞ and zn ∈ B

such that U(t,sn)zn→ z as n→+∞}.
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The proof is similar to the proof of Proposition 2.12 and will be omitted.

Remark 1.24. Let T (·) be a semigroup and U(·, ·) be the associated evolution process. Then, ωB(t)

is independent of t and coincides with the definition of the ω-limit set for semigroups (see [13] and

[17]):

ωB(t) =
⋂
s≥0

⋃
t≥s

T (t)B. (1.7)

Definition 1.25. Consider

K= {K = {K(t)}t∈R : K(t)⊂ X compact, K pullback attracts}. (1.8)

We say that the process U(·, ·) is asymptotically compact if K 6= /0.

Lemma 1.26. If U(·, ·) is an asymptotically compact process, then for any bounded sequence {xn},
sn→−∞, the sequence {U(t,sn)xn} has a convergent subsequence.

Proof. Let {K(t) : t ∈ R} be a family of compact sets that pullback attracts bounded subsets of X .

Take sequences sk ≤ t with sk → −∞ and {xk} ∈ X contained in a bounded set B. Since K(t) is

compact and distX(U(t,sk)xk,K(t))→ 0 as sk →−∞ it is straightforward to show that {U(t,sk)xk}
has a convergent subsequence.

Remark 1.27. In [5, Definition 2.8] the definition of asymptotically compactness is given by se-

quences as in the lemma above.

Lemma 1.28. Let U(·, ·) be an asymptotically compact process and B a bounded subset of X. Then

i) ωB(t) is a non-empty compact set for every t ∈ R.

ii) ωB(t) pullback attracts B at time t;

iii) {ωB(t) : t ∈ R} is invariant;

iv) ωB(t) is the minimal family of closed sets that pullback attracts B at time t.

Proof. i) First, note that there exists a time s0 such that

⋃
s≤s0

U(t,s)B (1.9)

is bounded. If not, there would exist a sequence sk →−∞ and a sequence {xk} ∈ B such that

{U(t,sk)xk} is unbounded, which would contradict the asymptotic compactness.

Now, for any sequences {xk} ∈ B and sk ≤ s0 with sk→−∞ as k→+∞, it follows from the fact

that U(·, ·) is asymptotically compact that there exists a convergent subsequence of {U(t,sk)xk}
that converges to some y ∈ ωB(t).
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Let us show that ωB(t) is compact for every t ∈ R. Given {yk} ⊂ ωB(t), there are xk ∈ B and

sk ≤min{s0,−k}, such that

d(U(t,sk)xk,yk)< 1/k.

Since {U(t,sk)xk} has a subsequence that converges to an element y of ωB(t), it follows that yk

has a subsequence that converges to y, and hence ωB(t) is compact.

ii) We will prove item ii) by contradiction. Indeed, suppose that there exists an ε > 0, a sequence

sn→−∞ and a sequence {xn} ∈ B such that

distX(U(t,sn)xn,ωB(t))> ε, f or all n ∈ N. (1.10)

On the other hand, since U(·, ·) is asymptotically compact, the sequence {U(t,sn)xn} has a

convergent subsequence whose limit belongs to ωB(t), contradicting (1.10).

iii) We will prove that U(t,s)ωB(s)=ωB(t), t ≥ s. In order to do this, we started with U(t,s)ωB(s)⊂
ωB(t), t ≥ s. Indeed, if ωB(s)= /0 there is nothing to show. If y∈ωB(s), then there exist {xn}∈B

and sn ≤ s such that sn→−∞ and y = limn→∞U(s,sn)xn. Thus, by continuity, we obtain

U(t,s)y = lim
n→∞

U(t,sn)xn ∈ ωB(t).

Conversely, let y ∈ ωB(t), then there exist xn ∈ B and sn →−∞ such that y = limnU(t,sn)xn.

There exists n0 ∈N such that sn ≤ s for any n≥ n0. Since U(·, ·) is asymptotically compact, the

sequence {U(s,sn)xn} has a convergent subsequence with limit x ∈ ωB(s). By continuity, we

see that U(t,s)x = y and we conclude that ωB(t)⊂U(t,s)ωB(s).

iv) Let {F(t) : t ∈R} be a family of compact set that pullback attracts B. By contradiction, assume

that there exists y ∈ ωB(t) and y /∈ F(t). Thus there exists δ > 0 such that

d(y,F(t))> 2δ .

There exist xn ∈ B and sn→−∞ such that U(t,sn)xn→ y as n→+∞. On the other hand, F(t)

attracts B at time t, so there exists s0 such that

U(t,s)B⊂Oδ (F(t)),

for every s ≤ s0. Hence d(y,F(t)) ≤ δ which is a contradiction. Therefore ωB(t) ⊂ F(t) for

every t ∈ R.

Theorem 1.29. Let U(·, ·) be an asymptotically compact process. Then there exists a pullback attrac-

tor {A (t)}t∈R. In fact, for each t ∈ R

A (t) =
⋃
{ωB(t) : B⊂ X , B bounded }. (1.11)
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Proof. Let {K(t) : t ∈R} be a family of compact sets that attracts every bounded subset of X . Define

for each t ∈ R, A (t) as above. Then, from Lemma 1.28 item iv), we have ωB(t) ⊂ K(t) for every

bounded set B in X . Thus A (t) ⊂ K(t) and so A (t) is a compact set for each t. Furthermore, from

Lemma 1.28 item ii) A (t) pullback attracts every bounded subset B of X at time t. The minimality

also follows from Lemma 1.28 item iv), so we only have to prove the invariance of the family {A (t) :

t ∈ R}.
Since U(t,s) is a continuous map for each t ≥ s and {ωB(t) : t ∈ R}, is invariant, we have that

U(t,s)A (s)⊂
⋃
{U(t,s)ωB(s) : B⊂ X , B bounded }= A (t). (1.12)

Let y∈A (t), then there exists yn ∈ωBn(t) with yn→ y as n→+∞. Thus there exists xn ∈ω(Bn,s)

such that U(t,s)xn = yn. Since xn ∈ A (s) and A (s) is compact, there is a subsequence xn j that

converges to some x0 ∈A (s), for which U(t,s)x0 = lim j→∞U(t,sn j)xn j = lim j→∞ yn j = y. It follows

that U(t,s)A (s)⊃A (t). This concludes the proof.

Corollary 1.30. Let T (·) be a semigroup in a metric space X and assume that there exists a compact

set K that attracts every bounded subset of X. Then T (·) has a global attractor, and in this case

A = ωK .

Proof. It follows from Theorem 1.29 and Proposition 1.21 that

A =
⋃
{ωB : B⊂ X , B bounded }. (1.13)

is the global attractor for T (·). It is immediate from this that ω(K) ⊆ A , while, since K attracts

bounded subsets of X , we must have ωB ⊆ ωK for all bounded subsets B of X , which completes the

proof.
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CHAPTER 2

Process on time-dependent spaces

The aim of this chapter is to study the abstract theory for processes U(t,s) : Xs → Xt on time-

dependent spaces. Henceforth, we will apply the results in the study of the asymptotic behavior of a

wave equation with a time-dependent propagation coefficient.

To this end, we will study the abstract theory developed in the papers [10] and [9] and we will

make a comparison between them. However, we will use the theory in [9] for the application in

Chapter 3.

First, we start defining processes on time-dependent spaces.

Definition 2.1. For t ∈ R, let Xt be a family of Banach spaces. A process is a two-parameter family

of mappings {U(t,s) : Xs→ Xt}t≥s with the following properties:

(i) U(t, t) = IdXt ;

(ii) U(t,τ)U(τ,s) =U(t,s) for t ≥ τ ≥ s.

If, in addition U(t,s) ∈ C (Xs,Xt), then the process is called a continuous process .

Remark 2.2. Note that the spaces Xt are all the same vector space with the norms ‖ · ‖Xt and ‖ · ‖Xs ,

equivalent for any t,s ∈ R. Whereas the equivalence blows up as we let s, t → +∞. However, this is

not necessary for most of the theory we develop hereafter in this chapter. We will explicitly use this

fact in Chapter 3. This remark will be further discussed in Chapter 3.

2.1 Attractors in time-dependent spaces

This section is devoted to present the abstract theory of [10]. For this, we will consider the process

U(·, ·) with the continuity condition for all that follows in this section.

15
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2.1.1 Pullback sets

Definition 2.3. A family of subsets B = {B(t)⊂ Xt}t∈R is pullback-bounded if

R(t) = sup
s∈(−∞,t]

‖B(s)‖Xs < ∞, f or all t ∈ R,

that is, the function s 7→ ‖B(s)‖Xs is bounded on s ∈ (−∞, t] for every t ∈ R.

Definition 2.4. A pullback-bounded family A= {A(t)}t∈R is pullback absorber if for every pullback-

bounded family B and for every t ∈ R there exists s0 = s0(t,B)≤ t such that

U(t,s)B(s)⊂ A(t), f or all s≤ s0.

R

A(t)

XtXrXs0Xs1· · ·

U(t,s1)x

U(t,s0)x

U(t,r)xB(s1) B(s0) B(r)

Figure 2.1: A = {A(t)} is pullback absorber.

Definition 2.5. A family D = {D(t)}t∈R is called pullback attracting if

lim
s→−∞

distXt (U(t,s)B(s),D(t)) = 0, (2.1)

for every pullback-bounded family B = {B(t)}t∈R and every t ∈ R.

For any ε > 0, the ε-neighborhood of a set B⊂ Xt is defined as

Oε
t (B) =

⋃
x∈B

{y ∈ Xt : ‖x− y‖Xt < ε}= {y ∈ Xt : inf
x∈B
‖x− y‖Xt < ε}.

Remark 2.6. The pullback attracting property can be equivalently stated in terms of ε−neighborhood.

Indeed, if

lim
s→−∞

distXt (U(t,s)B(s),D(t)) = 0,

i.e., given ε > 0 exists t0 = t0(t,B)≤ t such that

distXt (U(t,s)B(s),D(t))< ε, f or all s≤ t0, (2.2)
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we obtain from (2.2) and Remark 1.10 that

U(t,s)B(s)⊂ Oε
t (D(t)), f or all s≤ t0.

R

D(t)

XtXrXs0Xs1· · ·

U(t,s1)x

U(t,s0)x

U(t,r)xB(s1) B(s0) B(r)

Figure 2.2: D = {D(t)} is pullback attracting.

2.1.2 Invariant pullback attractor

In this subsection, our goal is to define the invariant pullback attractor for a process in a family of

normed spaces {Xt}t∈R.

Definition 2.7. A family of subsets A = {A (t)⊂ Xt}t∈R is an invariant pullback attractor for the

process U(·, ·) if it fulfills the following properties:

(i) A (t) is compact for every t ∈ R;

(ii) A (·) is invariant;

(iii) A (·) is pullback attracting;

iv) A (·) is the minimal family of closed sets with property (iii).

If property iii) holds uniformly with respect to t ∈ R, A is a uniform invariant pullback attractor.

Remark 2.8. In [5] the pullback attractor is always invariant. However, in this chapter we will

differentiate invariant pullback attractors because for non-continuous processes we do not require

invariance in the definition of pullback attractors as in Definition 2.30.

Remark 2.9.
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1. In general, conditions (i)-(iii) are not sufficient to guarantee the uniqueness of the invariant

pullback attractor. For example, consider the ordinary differential equation

ẏ+ y = 0,

the process it generates is

U(t,s)x = xe−(t−s).

Observe that the process U(·, ·) has infinitely many invariant pullback attractors in the sense of

the definition above; they are given by

Ac = {Ac(t) = ce−t}t∈R,

with c ∈ R. However, only A0 is also a pullback-bounded family.

2. For uniqueness, instead of (iv) we could require

(iv)’ A is a pullback-bounded family,

then it is possible to prove that there exists at most one family satisfying (i)-(iii), and (iv)′, that

is, a pullback-bounded invariant pullback attractor is unique in the class of pullback-bounded

families. This will be prove in the following proposition.

Proposition 2.10. If a family of sets A satisfies conditions (i)-(iii) of Definition 2.7 and A is a

pullback-bounded family, then A is the unique invariant pullback attractor for the process U(·, ·).

Proof. Indeed, suppose that A1 and A2 are two pullback-bounded families satisfying (i)-(iii) of

Definition 2.7. Fix t ∈ R and notice that from the pullback attraction property of A1 we obtain

distXt (U(t,s)A2(s),A1(t))→ 0 as s→−∞. However, since A2 is invariant we have U(t,s)A2(s) =

A2(t). Furthermore, since A1(t) is closed, it follows from Lemma 1.7 that A2(t)⊂A1(t). Similarly,

exchanging the roles of A1(t) and A2(t) we obtain the reverse inclusion. Therefore, A1(t) = A2(t)

for each t ∈ R the result is proved.

2.1.3 Time-dependent ω-limit

In the present section, we will introduce the notion of an ω-limit family in time-dependent spaces

and prove a characterization for this set.

Definition 2.11. The time-dependent ω−limit of a family of sets B = {B(t)⊂ Xt}t∈R is the family

ωB = {ωB(t)⊂ Xt}t∈R, where ωB(t) is defined as

ωB(t) =
⋂
τ≤t

⋃
s≤τ

U(t,s)B(s)
Xt
.

An equivalent characterization of the ω− limit family is the following proposition.
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Proposition 2.12. Let B as in Definition 2.11, then

ωB(t) = {z ∈ Xt : there are sequences sn→−∞ as n→ ∞ and zn ∈B(sn), such that

‖U(t,sn)zn− z‖Xt → 0 as n→ ∞}.

Proof. Fix t ∈ R and define

W (t) = {z ∈ Xt : there are sequences sn→−∞ as n→ ∞ and zn ∈B(sn), such that

‖U(t,sn)zn− z‖Xt → 0 as n→ ∞}.

We want to show that W (t) is equivalent to the Definition 2.11. Indeed, let z ∈ ωB(t) then

z ∈
⋃
s≤τ

U(t,s)B(s)
Xt
, f or all τ ≤ t.

In particular, for each n ∈ N, we have

z ∈
⋃

s≤t−n
U(t,s)B(s)

Xt
.

Consequently, there exists

yn ∈
⋃

s≤t−n
U(t,s)B(s)

such that ‖yn− z‖Xt <
1
n . Furthermore, there are sn ≤ t− n and zn ∈B(sn) such that yn = U(t,sn).

Therefore, sn→−∞ as n→ ∞ and

‖U(t,sn)zn− z‖Xt → 0 as n→ ∞,

which implies z ∈W (t).

Conversely, suppose that z ∈W (t). Hence, there exists sn→−∞ as n→ ∞ and zn ∈B(sn) such

that

‖U(t,sn)zn− z‖Xt → 0 as n→ ∞.

If τ ≤ t, then there is n(τ) ∈ N such that sn(τ) ≤ τ . Consequently,

U(t,sn)zn ∈
⋃
s≤τ

U(t,s)B(s), f or all n≥ n(τ).

Therefore,

z ∈
⋃
s≤τ

U(t,s)B(s)
Xt
.

Since τ ≤ t is arbitrary, we obtain z ∈ ωB(t) and this completes the proof.

Definition 2.13. Consider

K= {K = {K (t)}t∈R : K (t)⊂ Xt compact, K pullback attracting}. (2.3)

We say that the process U(·, ·) is asymptotically compact if K 6= /0.
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Remark 2.14. Observe that this is the same definition as in Chapter 1.

Lemma 2.15. Let U(·, ·) be an asymptotically compact process and B a pullback-bounded family.

Then

i) ωB(t) is a non-empty compact set for every t ∈ R.

ii) ωB(t) pullback attracts B at time t;

iii) {ωB(t) : t ∈ R} is invariant;

iv) ωB(t) is the smallest family of closed sets that pullback attracts B at time t.

Proof. The proof is the same of Lemma 1.28, with minimal changes.

2.1.4 Existence of the invariant pullback attractor

This section is devoted to prove a result on the existence of the invariant pullback attractor (The-

orem 2.18). However, for do this we will use the Kuratowski measure of noncompactness.

Definition 2.16. For a Banach space X and D⊂ X , the Kuratowski measure of noncompactness is

defined by

α(D) = inf{d > 0 : D has a f inite cover o f diameter less than d}.

Hereafter we recall some properties of the Kuratowski measure we are going to use, redirecting

to [13] for more details and proofs:

(K.1) α(D) = α(D).

(K.2) If r0 ∈ R and {Ur}r≥r0 is a family of nonempty closed subsets of X such that Ur2 ⊂ Ur1 for

every r2 > r1 ≥ r0 and limr→∞ α(Ur) = 0, then U =
⋂

r≥r0
Ur is nonempty and compact.

(K.3) Let {Ur}r≥r0 be as in (K.2) and let any two sequences rn→ ∞ and xn ∈Urn be given. Then, xn

possesses a subsequence that converges to some x ∈U .

Remark 2.17. The shorthand αt stands for the Kuratowski measure in the space Xt . Notice that, for

fixed s, t ∈R, αs and αt are equivalent measures of noncompactness whenever there is a Banach space

isomorphism between Xs and Xt .

Theorem 2.18. Assume that the process U(·, ·) possesses an absorber family A(·) such that

lim
s→−∞

αt(U(t,s)A(s)) = 0, f or all t ∈ R. (2.4)

Then, A (·) = ωA(·) is an invariant pullback attractor for U(·, ·). Furthermore, for each t ∈ R

A (t) =
⋃
{ωB(t) : B is a pullback-bounded family }. (2.5)
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Proof. First, we will prove the compacteness of ωA(t) for each t ∈R. Indeed, fix t ∈R. Given ε > 0,

it follows from (2.4) that there exists t0 ≤ t such that αt(U(t,s)A(s))< ε , whenever s≤ t0. Moreover,

from the absorber property of A, we can find s0 ≤ t0 satisfying

U(t0,s)A(s)⊂ A(t0) f or every s≤ s0.

Hence, for τ ≤ s0 we have

⋃
s≤τ

U(t,s)A(s) =
⋃
s≤τ

U(t, t0)U(t0,s)A(s)⊂
⋃
s≤τ

U(t, t0)A(t0) =U(t, t0)A(t0).

Setting

Uτ =
⋃
s≤τ

U(t,s)A(s),

we obtain αt(Uτ)< ε whenever τ ≤ s0. Observe that the sets Uτ are closed subsets of Xt and

lim
τ→−∞

αt(Uτ) = 0.

Thus, it follows by property (K.2) of the Kuratowski measure that

ωA(t) =
⋂
τ≤t

Uτ

is nonempty and compact.

Next, we will prove that ωA(t) has the pullback attracting property. Suppose not, that is, suppose

that there exists t ∈ R, a pullback-bounded family B, sn→−∞, zn ∈B(sn) and δ > 0 such that

inf
z∈ωA(t)

‖U(t,sn)zn− z‖Xt > δ . (2.6)

Extract a subsequence {snk} from {sn} as follows: given sn1, . . . ,snk , choose snk+1 ≤ snk such that

U(snk ,snk+1)B(snk+1)⊂ A(snk). Note that

U(t,snk+1)znk+1 =U(t,snk)U(snk ,snk+1)znk+1 =U(t,snk)wk,

with

wk =U(snk ,snk+1)znk+1 ∈ A(snk),

i.e.,

U(t,snk+1)znk+1 ∈Usnk
.

By property (K.3) of the Kuratowski measure, the sequence U(t,snk+1)znk+1 has an accumulation point

in ωA(t), which contradicts (2.6). Therefore, ωA is pullback attracting.

Now, we will proof that ωA is invariant. In fact, let s≤ t. We aim to prove that

U(t,s)ωA(s) = ωA(t).
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First, we will deal with the inclusion

U(t,s)ωA(s)⊂ ωA(t).

Indeed, let z ∈ ωA(s), then there are sequences sn→−∞ and zn ∈ A(sn) such that

‖U(s,sn)zn− z‖Xs → 0 as n→ ∞.

Now, extract again a subsequence {snk} as follows: given sn1, . . . ,snk , choose snk+1 ≤ snk such that

U(snk ,snk+1)A(snk+1)⊂ A(snk).

Moreover, set

w =U(t,s)z ∈U(t,s)ωA(s)

and

wk =U(snk ,snk+1)znk+1 ∈ A(snk).

Hence, we have

‖U(t,snk)wk−w‖Xt = ‖U(t,s)U(s,snk)wk−U(t,s)z‖Xt

= ‖U(t,s)U(s,snk+1)znk+1−U(t,s)z‖Xt
k→∞−→ 0.

This establishes that w =U(t,s)z ∈ ωA(t) and consequently U(t,s)ωA(s)⊂ ωA(t) as claimed.

We now turn to the reverse inclusion

U(t,s)ωA(s)⊃ ωA(t).

Let z ∈ ωA(t) be arbitrary. Choose sequences sn→−∞ and zn ∈ A(sn) such that sn ≤ s for every n

and

‖U(t,sn)zn− z‖Xt → 0 as n→ ∞.

Using the attraction property of ωA(t), proven in the first part, we have

lim
n→∞

inf
w∈ωA(s)

‖U(s,sn)zn−w‖Xs = 0.

Thus, there exists a sequence wn ∈ ωA(s) satisfying

lim
n→∞
‖U(s,sn)zn−wn‖Xs = 0.

By compacteness of ωA(s), we obtain wn→w∈ωA(s) in Xs. Thus, U(s,sn)zn→w in Xs. Further-

more, by continuity of U(t,s), we have U(t,sn)zn→U(t,s)w (in Xt) and consequently z =U(t,s)w.

Therefore, the proof of the second inclusion is complete.

Finally, we only need to show (2.5). Since A(·) is a pullback-bounded family we see that ωA(t) is

contained in the union of ω-limit sets. Conversely, the fact that A (·) is a closed family that pullback

attracts all pullback-bounded families and by the same argument of the proof of Lemma 1.28[item

iv)] we see that ωB(t)⊂A (t) for all t and every pullback-bounded family B. Thus the prove of (2.5)

is concluded and in turn, the proof of Theorem 2.18.
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Corollary 2.19. If the process U(·, ·) with absorber A possesses a decomposition

U(t,s)A(s) = P(t,s)+N(t,s)

where

lim
s→−∞

‖P(t,s)‖Xt = 0, ∀t ∈ R

and N(t,s) is a compact subset of Xt for all t ∈ R and s ≤ t, then A (t) = ωA(t) is an invariant

pullback attractor for the process U(·, ·).

First, for t ∈ R, let Xt be a family of normed spaces, we introduce the R-ball of Xt

Bt(R) = {z ∈ Xt : ‖z‖Xt ≤ R}.

Proof of Corollary 2.19. Given ε > 0, there exists s0 < 0 such that ‖P(t,s)‖Xt < ε for all s≤ s0. Thus

P(t,s)⊂ Bt(ε), f or all s≤ s0. (2.7)

Now, since N(t,s) is compact in Xt for every t ≥ s, there exist Bt(x1,ε), . . . ,Bt(xp,ε) such that

N(t,s)⊂
p⋃

i=1

Bt(xi,ε). (2.8)

Hence,

P(t,s)+N(t,s)⊂ Bt(ε)+
p⋃

i=1

Bt(xi,ε)⊂
p⋃

i=1

Bt(xi,2ε), (2.9)

and αt(P(t,s)+N(t,s))≤ 2ε for s≤ s0. Therefore, (2.4) is satisfy.

Corollary 2.20. Let Yt be a further family of Banach spaces satisfying, for every t ∈ R,

i) Yt is compactly embedded into Xt;

ii) denoting with It : Yt → Xt the canonical injection, the maps Is are equibounded for s≤ t, i.e.,

C(t) = sup
s≤t
‖Is‖L (Ys,Xs) < ∞;

iii) closed balls of Yt are closed in Xt .

Under the same assumptions as in Corollary 2.19, if in addition

h(t) = sup
s∈(−∞,t]

‖N(t,s)‖Yt < ∞ f or all t ∈ R,

then the pullback attractor A (t) is a pullback-bounded family. Furthermore, it satisfies

‖A (t)‖Yt ≤ h(t), f or all t ∈ R.
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Proof. Fix t ∈ R and z ∈A (t). By definition, there exists sequences sn→−∞, zn ∈ A(sn) such that

‖U(t,sn)zn− z‖Xt → 0 as n→ ∞. Using the decomposition of Corollary 2.19,

U(t,sn)zn = Pzn(t,sn)+Nzn(t,sn),

with Pzn(t,sn) ∈ P(t,sn) and Nzn(t,sn) ∈ N(t,sn). In particular,

‖Nzn(t,sn)‖Yt ≤ h(t),

i.e., the sequence Nzn(t,sn) is contained in the closed ball of Yt with radius h(t), which we call Bt .

Now, using ‖P(t,s)‖Xt → 0 as s→−∞

‖Nzn(t,sn)− z‖Xt ≤ ‖U(t,sn)zn− z‖Xt +‖Pzn(t,sn)‖Xt → 0, n→ ∞.

Therefore, z is an accumulation point of Bt (in the topology of Xt). By assumption, Bt is closed in Xt ,

so that z ∈ Bt as well.

This establishes that A (t)⊂ Bt , i.e.,

‖A (t)‖Yt ≤ h(t) f or all t ∈ R,

which in turn yields that A is a pullback-bounded family in Yt . The second assumption yields the

existence of C =C(t)> 0 such that

‖A (s)‖Xs = ‖IS(A (s))‖Xs ≤C(t)h(t), f or all s≤ t.

Taking supremum over s≤ t, since h is increasing by definition, we obtain

sup
s∈(−∞,t]

‖A (s)‖Xs ≤C(t)h(t),

i.e. A is a pullback-bounded family.

2.2 Pullback attractor

The aim of this section is to study the abstract theory of [9] which will be used in the application

in Chapter 3. Additionally, we will make comparisons with paper [10] presenting the purposes of

the changes from one to another. In all that follows for this section the process U(·, ·) will not be

continuous.

Definition 2.21. A family C = {C (t) ⊂ Xt}t∈R is called uniformly bounded if there exists R > 0

such that

C (t)⊂ Bt(R), f or all t ∈ R.
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Definition 2.22. A family D = {D(t)}t∈R is called pullback absorbing if it is uniformly bounded

and, for every R > 0, there exists t0 = t0(t,R)≤ t such that

U(t,s)Bs(R)⊂ D(t), f or all s≤ t0. (2.10)

The process U(·, ·) is called dissipative whenever it admits a pullback absorbing family.

Remark 2.23. Although it seems different, we will prove that definitions of pullback absorber (Defi-

nition 2.4 ) and pullback absorbing (Definition 2.22) are equivalent. Indeed, since any family of balls

{Bt(R)}t∈R is pullback-bounded, then (2.10) follows from Definition (2.4). Conversely, if B is any

pullback-bounded family with maximal size R(t) on (−∞, t], then

U(t,s)B(s)⊂U(t,s)Bs(R(t)), f or all s≤ t. (2.11)

Hence, if C is a pullback absorbing family in the sense of Definition 2.22 and t ∈R is any fixed time,

we have

U(t,s)B(s)⊂U(t,s)Bs(R(t))⊂ C (t) f or all s≤ t0,

for some t ≥ t0 = t0(t,R(t)), where R(t) depends only on B. However, this is exactly the absorption

property (2.11).

Remark 2.24. The notion of pullback attracting can be rephrased in the following way: a uniformly

bounded family D = {D(t)}t∈R is pullback attracting if and only if

lim
s→−∞

distXt (U(t,s)C (s),D(t)) = 0, (2.12)

for every uniformly bounded family C = {C (t)}t and every t ∈ R.

It was chosen by the authors of [9] to postulate in the definition of absorbing family the stronger

property of being uniformly bounded, instead of merely pullback-bounded. Because, such a notion

seems to reflect more closely the dissipation mechanism of most equations of mathematical physics,

where the dynamics at time are confined in bounded sets D(t) (the pullback absorbing family) whose

size in the phase space Xt remains bounded as t→ ∞.

Furthermore, having a pullback-bounded absorbing family does not prevent the possibility of D(t)
becoming larger and larger as time increases, in contrast with the common intuition of dissipation.

Remark 2.25. An interesting question is wheter property (2.12) holds uniformly with respect to

intervals of time. This not true in general. In particular, it cannot happen on unbounded intervals. The

next result shows that, if the process is sufficiently smooth, then the attraction exerted by any invariant

pullback attracting family (such as the time-dependent attractor) is uniform on compact intervals.

Proposition 2.26. Let D = {D(t)}t∈R be an invariant pullback attracting family. Assume that

‖U(t,s)z1−U(t,s)z2‖Xt ≤Q(t− s,r)‖z1− z2‖Xs , (2.13)
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for all t ≥ s ∈ R and ‖zi‖Xs ≤ r, where Q is a positive function, increasing in each of its arguments.

Then, for all R > 0,

lim
s→−∞

distXt (U(t,s)B(s)(R),D(t)) = 0,

uniformly for t belonging to a compact set.

Proof. Let [a,b] with −∞ < a < b < ∞ be given. Let R0 > 0 be such that

O1
a (D(a))⊂ Ba(R0).

For every q small enough, set

ε =
q

Q(b−a,R0)
< 1.

Since D is pullback attracting, for any given R > 0 there exists

s0 = s0(R,ε)< a

such that

U(a,s)Bs(R)⊂ OεD(a), f or all s < s0.

Now, let s < s0 be fixed, and select any x ∈ Bs(R). Calling z =U(a,s)x, choose d ∈D(a) for which

‖z−d‖Xa < ε.

Then, in light of (2.13), for all t ∈ [a,b] we have

‖U(t,a)z−U(t,a)d‖Xt ≤Q(t−a,R0)‖z−d‖Xa ≤ εQ(t−a,R0) = q.

Observe that, from the invariance of D

U(t,s)x =U(t,a)U(a,s)x =U(t,a)z and U(t,a)d ⊂D(t).

Thus,

inf
d∈D(t)

‖U(t,s)x−d‖Xt ≤ ‖U(t,a)z−U(t,a)d‖Xt ≤ q.

In conclusion, we proved that for all q > 0 small there exists s0 < a such that

distXt (U(t,s)Bs(R),D(t))≤ q, f or all s < s0.

Since s0 is independent of t ∈ [a,b], the proof is finished.
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2.2.1 Further lemmas

We can describe the pullback attraction in terms of sequences. To this aim, let Σt denote the

collection of all possible sequences of the form

yn =U(t,sn)xn

where sn→−∞ and xn ∈ Xsn is any uniformly bounded sequence. For any yn ∈ Σt , we denote

Lt(yn) = {x ∈ Xt : ‖yni− x‖Xt → 0, f or some subsequence ni→ ∞}.

It is immediately seen from the definitions that a uniformly bounded family K = {K (t)}t∈R is

pullback attracting if and only if

dXt (yn,K (t))→ 0, f or all yn ∈ Σt , (2.14)

for all t ∈R. In particular, each element of Lt(yn) belongs to the closure of K (t). Therefore, setting

A ∗(t) =
⋃

yn∈Σt

Lt(yn),

we have proved the following lemma.

Lemma 2.27. Assume that there exists a pullback attracting family of closed sets K = {K (t)}t∈R.

Then

A ∗(t)⊂K (t), f or all t ∈ R.

Lemma 2.28. If the process U(·, ·) is dissipative, then A ∗ = {A ∗(t)}t∈R coincides with the time-

dependent ω-limit of any pullback absorbing set B = {B(t)}t∈R, that is,

A ∗(t) =
⋂
s≤t

⋃
τ≤s

U(t,τ)B(τ)
Xt
. (2.15)

In particular, A ∗(t) is closed and contained in B(t) for all t ∈ R. Therefore, A ∗ is uniformly

bounded.

Proof. The validity of (2.15) is a direct consequence of the definitions. Moreover, it follows from

(2.15) that A ∗(t) is closed for all t ∈ R. Further, since B is uniformly bounded, it absorbs itself and

U(t,τ)B(τ)⊂B(t), f or all τ ≤ t0,

for some t0 = t0(t,B)≤ t, implying the inclusion A ∗(t)⊂B(t).

Lemma 2.29. Let K = {K (t)}t∈R be a uniformly bounded family of compact sets. Then, K is

pullback attracting if and only if for all t ∈ R

/0 6= Lt(yn)⊂K (t), f or all yn ∈ Σt .
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Proof. Let K = {K (t)}t∈R be a family of compact sets. If K is pullback attracting, then given

yn ∈ Σt we obtain Lt(yn)⊂K (t) and

‖ξn− yn‖Xt → 0, (2.16)

for some ξn ∈K (t). Since K (t) is compact, there exists ξ ∈K (t) such that (up to a subsequence)

‖ξn−ξ‖Xt → 0. (2.17)

It follows from (2.16) and (2.17) that

‖yn−ξ‖Xt → 0.

Thus, Lt(yn) 6= /0.

Conversely, if K is not pullback attracting, we deduce from (2.14) that

dXt (yn,K (t))> ε,

for some t ∈ R, ε > 0 and yn ∈ Σt . Therefore, Lt(yn)∩K (t) = /0.

2.2.2 Existence of pullback attractors

We can deduce from the earlier discussions that a pullback attracting family of compact sets is

capable of controlling the regime of the system at any time t ∈ R. This leads quite naturally to the

definition of an attractor as the smallest set possessing such a property. To this aim we consider the

collection

K= {K = {K (t)}t∈R : K (t)⊂ Xt compact, K pullback attracting} (2.18)

Definition 2.30. We call a pullback attractor the minimal element of K, that is, the family A =

{A (t)}t∈R ∈K such that

A (t)⊂K (t), f or all t ∈ R, (2.19)

for any element K = {K (t)}t∈R ∈K.

The following result is the main result of this abstract theory, because it will be used to prove

the existence of attractors for a damped wave equation with time-dependent coefficient in the next

chapter. Furthermore, the result tells that the definition is consistent: the minimal element of K exists

(and it is unique) if and only if K is not empty.

Theorem 2.31. If the process U(·, ·) is asymptotically compact, then the time-dependent attractor A

exists and coincides with A ∗ = {A ∗(t)}t∈R, where A ? is given in Lemma 2.27. In particular, it is

unique.
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Proof. Indeed, how the process is U(·, ·) is asymptotically compact then K 6= /0. Hence, let K =

{K (t)}t∈R be an element of K. Then, it follows from Lemma 2.27 and Lemma 2.29 that

/0 6= A ∗(t)⊂K (t), f or all t ∈ R.

Since U(t,τ) is dissipative, we know by Lemma 2.28 that A ∗ is uniformly bounded and A ∗(t) is

closed for all t ∈ R. Moreover, A ∗(t) is contained in (2.14), saying that A ∗ is an element of K.

Thanks to Lemma 2.27 it is also the minimal element of K, hence it is the (unique) pullback attractor.

The uniqueness follows by (2.19), that is, the minimality.

We now provide a necessary condition for K to be nonempty, which turns out to be sufficient

as well when the spaces Xt are complete. Additionally, we will be able to related the Kuratowski

measure of noncompactness with a process asymptotically compact.

Definition 2.32. A process U(·, ·) is ε-dissipative if for every t ∈R there exists a set F(t)⊂ Xt made

of a finite number of points such that the family {Oε
t (F(t))}t∈R is pullback absorbing.

The process is called totally dissipative whenever it is ε-dissipative for every ε > 0. Note that

the sets F(t) need not be the same for all ε .

Theorem 2.33. Assume that Xt is a Banach space for all t ∈ R. Then U(·, ·) is totally dissipative if

and only if K 6= /0.

Proof. If K 6= /0, then U(·, ·) is totally dissipative. Indeed, if K = {K (t)}t∈R belongs to K, it follows

from compactness that any K (t) can be covered by a finite number of ε-balls, and calling F(t) the

union of the centers of those balls, the family {Oε
t (F(t))}t∈R is pullback absorbing.

Conversely, if U(·, ·) is totally dissipative, for any arbitrary fixed ε > 0, we can choose a finite

set Fε(t) such that the family {Oε
t (F

ε(t))}t∈R is uniformly bounded and absorbing. If we select any

yn ∈ Σt , then yn eventually falls into

V ε(t) = Oε
t (Fε(t)).

Set

K (t) =
⋂
ε>0

V ε(t).

Accordingly, the family K = {K (t)}t∈R is uniformly bounded. Furthermore, both K (t) and {yn}
are covered by finitely many balls of arbitrarily small radius, which, in Banach spaces, means precom-

pactness. In particular, K (t) being closed, it is compact in Xt . Since the sequence yn is precompact,

then Lt(yn) is nonempty. Moreover, it is contained in every closed set V ε(t) and hence in their

intersection K (t). In other words,

dXt (yn,K (t))→ 0,

meaning that K is pullback attracting. Therefore, K ∈K.
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Now, taking together Theorem 2.31 and Theorem 2.33 we can conclude the following corollary.

Corollary 2.34. If the process U(·, ·) is totally dissipative, then the time-dependent attractor A exists

and coincides with the set A ∗. In particular, it is unique and uniformly bounded.

Remark 2.35. We can characterize a totally dissipative process based on the Kuratowski measure:

The process U(t,s) is totally dissipative if and only if there exists a pullback absorbing set B =

{B(t)}t∈R for which

lim
s→−∞

αt(U(t,τ)B(τ)) = 0, f or all t ∈ R.

As a result we obtain a relationship between the Kuratowski measure of non-compactness and a

process asymptotically compact.

Remark 2.36. Note that Definition 2.30 does no require the invariance as a property. However, this

property is a priori postulated in the literature. In particular, in Section 2.1.2 the invariant pullback at-

tractor is by definition a family of compact sets which is at the same pullback attracting and invariant,

and it existence is proved by exploiting the continuity of the process U(·, ·).
If K is an invariant pullback attracting family of compact sets, then K is the smallest element of

K, hence it coincides with the invariant pullback attractor A .

To this aim, we will prove by the following results that a pullback attractor is invariant whenever

the process U(·, ·) is T-closed for some T > 0.

Proposition 2.37. Let A = {A (t)}t∈R be a pullback attractor. If there exists T > 0 such that

A (t)⊂U(t, t−T )A (t−T ), f or all t ∈ R,

then A is invariant.

Proof. Fix t ∈ R. For any s≥ t and any n ∈ N, we obtain by induction

U(s, t)A (t)⊂U(s, t−T )A (t−T )⊂ ...⊂U(s, t−nT )A (t−nT ). (2.20)

Consequently,

distXs(U(s, t)A (t),A (s))≤ distXs(U(s, t−nT )A (t−nT ),A (s)).

Since A is attracting, , letting n→ ∞ we obtain

distXs(U(s, t)A (t),A (s)) = 0,

implying in turn, since A (s) is closed, that

U(s, t)A (t)⊂A (s), f or all s≥ t. (2.21)
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In particular, setting s = t it follows from (2.20) and (2.21) that

A (t)⊂U(t, t−nT )A (t−nT )⊂A (t), (2.22)

that is,

A (t) =U(t, t−nT )A (t−nT ).

Now, consider τ ≤ t. Taking n large enough, we infer from (2.21) and (2.22) that

A (t) =U(t, t−nT )A (t−nT ) =U(t,τ)U(τ, t−nT )A (t−nT )⊂U(t,τ)A (τ)⊂A (t),

proving the equality U(t,τ)A (τ) = A (t).

In order to establish an invariance criterion, we will need the following definitions.

Definition 2.38. For any pair of fixed times t ≥ τ , the map U(t,τ) : Xτ → Xt is said to be closed if{
xn→ x in Xτ

U(t,τ)xn→ y in Xt

then U(t,τ)x = y.

Definition 2.39. The process U(·, ·) is called

i) closed if U(t,τ) is a closed map for any pair of fixed times t ≥ τ;

ii) T-closed for some T > 0 if U(t, t−T ) is a closed map for all t.

Remark 2.40. Observe that if the process U(·, ·) is closed it is T -closed, for any T > 0. Note also

that if the process U(t,τ) is a continuous map for all t ≥ τ , then the process is closed.

Theorem 2.41. If U(·, ·) is a T -closed process for some T > 0, which possesses a pullback attractor

A = {A (t)}t∈R, then A is invariant.

Proof. In view of Proposition 2.37, it is enough to prove the inclusion

A (t)⊂U(t, t−T )At−T , f or all t ∈ R.

To this end, select an arbitrary y ∈A (t). By Theorem 2.31,

yn→ y f or some yn =U(t,τn)xn ∈ Σt .

Now, define the sequence

wn =U(t−T,τn)xn.



32 Chapter 2. Process on time-dependent spaces

On account of Lemma 2.29,

wn→ w f or some w ∈A (t−T ).

On the other hand,

U(t, t−T )wn =U(t,τn)xn,

which implies

U(t, t−T )wn→ y.

Moreover, since U(t, t−T ) is closed we conclude that

U(t, t−T )w = y.

Therefore,

y ∈U(t, t−T )A (t−T ),

yielding the desired inclusion.



CHAPTER 3

Wave equations with time-dependent speed
of propagation

This chapter is devoted to the study of damped wave equations. More precisely, based on [9],

we will applied the abstract results developed in Chapter 2 to study the long time behavior of wave

equations with time-dependent speed of propagation.

3.1 Physical Interpretation

First, we will give a physical interpretation for wave equations in general case. Indeed, consider

the equation

utt−∆u = 0, (3.1)

where t > 0 and x∈Ω, where Ω⊂Rn is open. The unknown variable is u : Ω× [0,∞)→R, u= u(x, t),

and the Laplacian ∆ is taken with respect to the spatial variables x = (x1, ...,xn).

The wave equation is a simplified model for a vibrating string (n = 1), membrane (n = 2), or

elastic solid (n = 3). In this case u(x, t) represents the displacement in some direction of the point x

at time t ≥ 0. Let U represent any smooth subregion of Ω. The acceleration within U is then

d
dt

∫
U

udx =
∫

U
uttdx

and the net contact force is

−
∫

∂U
F ·νdS,

where F denotes the force acting on U through ∂U and the mass density is taken to be unity. Newton’s

law asserts that the mass times the acceleration equals the net force:∫
U

uttdx =−
∫

∂U
F ·νdS.

This identity obtains for each subregion U and so

utt =−divF.

33
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For elastic bodies, F is a function of the displacement gradient ∇u, whence

utt +divF(∇u) = 0.

For small ∇u, the linearization F(∇u)≈−c∇u is often appropriate. Therefore,

utt− c∆u = 0.

This is the equation (3.1) if c = 1. This physical interpretation strongly suggests it will be mathemat-

ically appropriate to specify two initial conditions, on the displacement u and the velocity ut , at time

t = 0.

3.2 Hyperbolic damped wave equation

Now, we will introduce the damped wave equation with time-dependent speed of propagation.

Indeed, let Ω be a bounded domain of R3 with smooth boundary ∂Ω. For any τ ∈R, we consider the

hyperbolic evolution equation for the unknown variable u = u(x, t) : Ω× [τ,∞)→ R

εutt +αut−∆u+ f (u) = g, t > τ, (3.2)

with Dirichlet boundary condition

u|∂Ω = 0, (3.3)

and to the initial conditions

u(x,τ) = a(x) and ut(x,τ) = b(x), (3.4)

where a,b : Ω−→ R are assigned data. Moreover, ε = ε(t) is a function of t.

Remark 3.1. We can see equation (3.2) as a nonlinear damped wave equation with time-dependent

speed of propagation 1
ε(t) .

In order to understand the physical interpretation of each term of equation (3.2), we point out

which forces are acting in the system in relation to (3.1) and what they represent. In fact, we consider

i) g as an external force;

ii) αut as an external force depending on the speed, that is, is the damping force;

iii) f (u) as a restorative force.
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3.2.1 Conditions in terms of the equation

We postulate the following assumptions for the terms of equation (3.2).

Conditions on ε:
Suppose ε ∈ C 1(R), a decreasing bounded function satisfying

lim
t→+∞

ε(t) = 0. (3.5)

Proposition 3.2. With the hypotheses over ε described above, ε ′ is a bounded function.

Proof. Suppose not, then

lim
t→∞

ε
′(t) =−∞ (3.6)

or

lim
t→−∞

ε
′(t) =−∞. (3.7)

First, note that there exists N > 0 such that 0≤ ε(t)≤ N for every t ∈ R.

Now, suppose that (3.6) happens. Then, given M < 0 there exists R > 0 such that

ε
′(t)< M, f or all t > R.

In particular, for M =−1 there exists RM > 0 such that

ε
′(t)<−1, f or all t > RM. (3.8)

Integrating (3.8) we obtain ∫ t

RM

ε
′(s)ds <−

∫ t

RM

ds.

Hence,

ε(t)− ε(RM)< RM− t. (3.9)

Furthermore, since ε(t)> ε(RM), we have

ε(t)− ε(RM)≥−N.

Then,

−N < RM− t.

Setting t = RM +2N we have

−N < RM− (RM +2N) =−2N,

which is a contradiction.

On the other hand, if (3.7) happens, similarly to the arguments above we have for M < 0 there

exists T < 0 such that

ε
′(t)< M, f or all t < T.
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Then, for M =−1 there exists TM < 0 such that

ε
′(t)<−1, f or all t < TM. (3.10)

Integrating the above equation we obtain∫ TM

t
ε
′(s)ds <−

∫ TM

t
ds.

Thus,

−N ≤ ε(TM)− ε(t)< t−TM. (3.11)

Then, setting t = TM−2N we have

−N < (TM−2N)−TM <−2N,

which is a contradiction. Therefore, ε ′ is a bounded function.

Consequently, taken together there exists L > 0 such that

sup
t∈R

[|ε(t)|+ |ε ′(t)|]≤ L. (3.12)

Conditions on f :
Suppose f ∈ C 2(R), with f (0) = 0 satisfying, for every s ∈ R, the growth condition

| f ′′(s)| ≤ c(1+ |s|), f or some c≥ 0, (3.13)

and the dissipation condition

liminf
|s|→∞

f (s)
s

>−λ1, (3.14)

where λ1 > 0 is the first eigenvalue of the operator A : D(A)⊂ L2(Ω)→ L2(Ω) such that

A =−∆ with domain D(A) = H2(Ω)∩H1
0 (Ω).

The operator A is self-adjoint, positive definite and sectorial in L2(Ω) (for more details and proofs see

[7]). Moreover,

H2(Ω)∩H1
0 (Ω)b L2(Ω),

that is, H2(Ω)∩H1
0 (Ω) is compactly embedded in L2(Ω) (see [17]).

Note that, in equation (3.2) f takes values in Ω. Thus, was used

f e(u)(x) = f (u(x)), f or all x ∈Ω (3.15)

as the Nemytskii operator associated with f .

Conditions on α and g:
The damping coefficient α is a positive constant and the time-independent external source g= g(x)

is taken in L2(Ω).
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3.2.2 The functional setting

We set H = L2(Ω), with usual inner product 〈·, ·〉 and norm ‖ · ‖. Since A is a sectorial operator

we will define the fractional power spaces associated with it.

Hence, for 0≤ σ ≤ 2, we define the hierarchy of (compactly) nested Hilbert spaces

Hσ = D(A
σ

2 ), 〈w,v〉σ = 〈A
σ

2 w,A
σ

2 v〉, ‖w‖σ = ‖A
σ

2 w‖.

Then, for t ∈ R and 0≤ σ ≤ 2, we introduce the time-dependent spaces

H σ
t = Hσ+1×Hσ

endowed with the time-dependent product norms

‖{u1,u2}‖2
H σ

t
= ‖u1‖2

σ+1 + ε(t)‖u2‖2
σ .

The symbol σ is always omitted whenever is zero. In particular, the time-dependent phase space

where we settle the problem is

Ht = H1×H with ‖{u1,u2}‖2
Ht

= ‖u1‖2
1 + ε(t)‖u2‖2, (3.16)

where

H1 = D(A
1
2 ) = H1

0 (Ω).

In addition, how Ω is a bounded domains of R3, it follows by Poincaré inequality that

‖u1‖2
1 = ‖∇u1‖2 =

∫
Ω

|∇u1|2dx f or all u1 ∈ H1
0 (Ω). (3.17)

Furthermore, we have the compact embeddings

H σ
t b Ht , 0 < σ ≤ 2,

with injection constants independent of t ∈ R.

Note that the spaces Ht are all the same as linear spaces. Moreover, since ε(·) is a decreasing

function of t, for every z ∈ H1×H and t ≥ τ ∈ R there holds

‖z‖2
Ht
≤ ‖z‖2

Hτ
≤max

{
1,

ε(τ)

ε(t)

}
‖z‖2

Ht
.

Therefore, the norms ‖·‖2
Ht

and ‖·‖2
Hτ

are equivalent for any fixed t,τ ∈R. However, the equivalence

constant blows up when t→+∞.

In order to understand the phase space (3.16) where we settle the problem, we look at the energy

of the system. For this, multiplying (3.2) by 2ut , we obtain

〈2ut ,εutt〉+ 〈2ut ,αut〉+ 〈2ut ,−∆u〉+ 〈2ut , f (u)〉= 〈2ut ,g〉, (3.18)
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that is,

2ε

∫
Ω

ututtdx+2α

∫
Ω

|ut |2dx−2
∫

Ω

ut∆udx+2
∫

Ω

f (u)utdx = 2
∫

Ω

utgdx. (3.19)

First, we will solve each term of the left side of the equation (3.19). Indeed,

i)

2ε

∫
Ω

ututtdx = 2ε(t)
∫

Ω

ututtdx

= 2ε(t)
(

1
2

d
dt
〈ut ,ut〉

)
= ε(t)

d
dt
〈ut ,ut〉

=
d
dt

ε(t)‖ut‖2− ε
′(t)‖ut‖2.

(3.20)

ii)

2α

∫
Ω

|ut |2dx = 2α‖ut‖2. (3.21)

iii) It follows from Green’s Theorem, (3.3) and (3.17) that

−2
∫

Ω

ut∆udx =−2
(
−
∫

Ω

∇u∇utdx
)

= 2
1
2

d
dt

∫
Ω

|∇u|2dx

=
d
dt
‖u‖2

1.

(3.22)

iv)

2
∫

Ω

f (u)utdx = 2
∫

Ω

d
dt

(∫ u

0
f (s)ds

)
dx

= 2
d
dt

∫
Ω

(∫ u

0
f (s)ds

)
dx

= 2
d
dt

∫
Ω

F(u)dx

= 2
d
dt
〈F(u),1〉,

(3.23)

where, we set

F(u) =
∫ u

0
f (s)ds.

Now, for the right side we have

2
∫

Ω

gutdx = 2
∫

Ω

g(x)utdx

= 2
d
dt

∫
Ω

g(x)udx

= 2
d
dt
〈g,u〉.

(3.24)
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Taking all together we obtain

d
dt
(‖u‖2

1 + ε(t)‖ut‖2 +2〈F(u),1〉−2〈g,u〉) = [ε ′(t)−2α]‖ut‖2, (3.25)

where

ε
′(t)−2α < 0, f or all t ∈ R,

and

E (t) = ‖u‖2
1 + ε(t)‖ut‖2 +2〈F(u),1〉−2〈g,u〉.

Therefore, we can see that the natural energy associated with equation (3.2) posses a structural de-

pendence on time.

3.2.3 Technical lemmas

We shall exploit the following Gronwall-type lemma, that will be used in some results here after.

Lemma 3.3. Let Ψ : [τ,∞)→ R+ be an absolutely continuous function satisfying the inequality

d
dt

Ψ(t)+2ωΨ(t)≤ q(t)Ψ(t)+K

for some ω > 0, K ≥ 0 and where q : [τ,∞)→ R+ fulfills∫
∞

τ

q(y)dy≤ m,

with m≥ 0. Then,

Ψ(t)≤Ψ(τ)eme−ω(t−τ)+ kω
−1em.

Proof. Fix τ ∈ R. For t ∈ [τ,∞) we set

η(t) =
∫

∞

τ

q(y)dy−ω(t− τ)≤ m−ω(t− τ).

Then, by the Gronwall lemma we have

ψ(t)≤ ψ(τ)eη(τ)+
∫

∞

τ

eη(t)Kdt

≤ ψ(τ)em−ω(t−τ)+K
∫

∞

τ

em−ω(t−τ)dt

= ψ(τ)em−ω(t−τ)+Kemeωτ

∫
∞

τ

e−ωtdt.

Now, observe that ∫
∞

τ

e−ωtdt = lim
b→∞

−e−ωt

ω

∣∣∣b
τ

=
e−ωτ

ω
+ lim

b→∞

e−ωb

ω

=
e−ωτ

ω
.
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Therefore,

ψ(t)≤ ψ(τ)em−ω(t−τ)+Kem
ω
−1,

which concludes the proof.

In light of (3.14) we obtain the following lemma.

Lemma 3.4. The following inequalities holds for some 0 < v < 1 and c1 ≥ 0:

2〈F(u),1〉 ≥ −(1− v)‖u‖2
1− c1, (3.26)

〈 f (u),u〉 ≥ −(1− v)‖u‖2
1− c1, f or all u ∈ H1. (3.27)

Proof. We will start with (3.26). Indeed, note that

− liminf
|s|→∞

f (s)
s

= limsup
|s|→∞

− f (s)
s

.

Hence, rewriting (3.14) we obtain

limsup
|s|→∞

− f (s)
s

< λ1, (3.28)

and setting h(s) =− f (s),

limsup
|s|→∞

h(s)
s

< λ1. (3.29)

Now, recall that

limsup
x→∞

{h(x)}= inf
r>0

{
sup
x>r
{h(x)}

}
.

In addition, set

φ(r) := sup
x>r
{h(x)}.

It follows by (3.29) that inf
r>0

φ(r)< λ1. Then, there exists r1 > 0 such that

φ(r1)< λ1.

Set

η := φ(r1) = sup
|s|>r1

{h(s)
s

}
< λ1.

Thus,
h(s)

s
< λ1,

for all |s|> r1.

From the definition of supremum, we obtain

h(s)
s

6 η < λ1, for all |s|> r1.
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Set η−λ1 := γ < 0. Suppose that there exists s1 > r1 such that

h(s1)

s1
−λ1 > γ = η−λ1,

which implies that h(s1)
s1

> η . A contradiction. Therefore, there exists ξ > 0 (e.g., ξ = η−λ1
2 ) such

that
h(s)

s
−λ1 <−ξ , for all|s|> r1.

Hence,
h(s)

s
< (λ1−ξ ), f or all |s|> r1 (3.30)

Furthermore, how f is a continuous function, there exists M > 0 such that

|h(s)|6 M, for all |s|6 r1.

As a result 
h(s)< (λ1−ξ )s, for all s > r1,

h(s)> (λ1−ξ )s, for all s <−r1,

|h(s)|6 M, for all |s|6 r1.

Now, we will analyze the cases in which t > 0 and t < 0. In fact,

Case 1 (t > 0): Firs, suppose that r1 < t. Then,∫ t

0
h(s)ds =

∫ r1

0
h(s)ds+

∫ t

r1

h(s)ds 6
∫ r1

0
Mds+

∫ t

r1

(λ1−ξ )sds

= Mr1 +(λ1−ξ )
t2

2
− (λ1−ξ )

r2
1
2

= (λ1−ξ )
t2

2
+C,

where C = Mr1 + |λ1−ξ | r
2
1
2 .

If r1 > t, then ∫ t

0
h(s)ds 6

∫ t

0
Mds = Mt 6 Mr1 6 (λ1−ξ )

t2

2
+C,

where C = Mr1 + |λ1−ξ | r
2
1
2 .

Case 2 (t < 0): First, suppose r1 > 0 such that t <−r1 < 0. Thus,∫ t

0
h(s)ds =

∫ −r1

0
h(s)ds+

∫ t

−r1

h(s)ds

=−
∫ 0

−r1

h(s)ds−
∫ −r1

t
h(s)ds

6
∫ 0

−r1

Mds+
∫ −r1

t
−(λ1−ξ )sds

= Mr1− (λ1−ξ )
r2

1
2
+(λ1−ξ )

t2

2

= (λ1−ξ )
t2

2
+C,
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where C = Mr1 + |λ1−ξ | r
2
1
2 .

If −r1 < t, then ∫ t

0
h(s)ds 6

∫ t

0
Mds = Mt 6 Mr1 6 (λ1−ξ )

t2

2
+C,

where C = Mr1 + |λ1−ξ | r
2
1
2 .

Hence, ∫ t

0
h(s)ds 6 (λ1−ξ )

t2

2
+C,

that is,

2
∫ t

0
h(s)ds 6 (λ1−ξ )t2 +2C.

Therefore

2
∫ t

0
f (s)ds≥−(λ1−ξ )t2−2C.

Taking ξ ∈ (λ1− 1,λ1), setting ν = 1+ ξ −λ1 ∈ (0,1) and integrating over Ω we obtain the desire

inequality (3.26) where c1 = 2C|Ω|.
Finally, for (3.27), it follows from (3.30) that

h(s)s < (λ1−ξ )s2, f or all |s|> r1

With similar arguments we can conclude (3.30), see, e.g., [16].

Since the aim of the problem is work with time-dependent coefficient ε(t) in equation 3.2 , in

order to avoid technical complications only due to the nonlinear term f (u), we require the additional

assumption

2〈 f (u),u〉 ≥ 2〈F(u),1〉− (1− v)‖u‖2
1− c1. (3.31)

Condition (3.31) is ensured by asking, for instance, that

liminf
|s|→∞

f ′(s)>−λ1, (3.32)

which is slightly less general than (3.14) but still widely used in the literature, as in [8].

Remark 3.5. Recall that for x,y,n > 0, we obtain

(x+ y)n ≤ 2n max{xn,yn} ≤ 2n(xn + yn).

We will need the following lemma.

Lemma 3.6. Let f ∈C1(R) be a function such that there are constants C > 0 and ρ > 1 such that

| f ′(s)| ≤C(1+ |s|ρ−1), f or all s ∈ R.

Then,

| f (s)− f (t)| ≤ 2ρ−1C|s− t|(1+ |s|ρ−1 + |t|ρ−1)

for all s, t ∈ R.
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Proof. Consider s, t ∈ R, it follows from the Mean Value Theorem that there exists θ ∈ (0,1) such

that
| f (s)− f (t)|= |s− t|| f ′(s(1−θ)+ tθ)|

≤C|s− t|(1+ |s(1−θ)+ tθ |ρ−1)

≤ 2ρ−1C|s− t|(1+ |s(1−θ)|ρ−1 + |tθ |ρ−1)

≤ 2ρ−1C|s− t|(1+ |s|ρ−1 + |t|ρ−1),

which proves the result.

Remark 3.7. It follows from the growth condition (3.13) of f that

| f ′(s)| ≤C(1+ |s|2), s ∈ R.

Consequently, by Lemma 3.6 we obtain

| f (s)− f (t)| ≤ K|s− t|(1+ |s|2 + |t|2),

for all s, t ∈ R.

3.3 Well-posedness

For any τ ∈ R, we rewrite problem (3.2) - (3.4) as
εutt +αut +Au+ f (u) = g, t > τ

u(τ) = a,
ut(τ) = b.

(3.33)

Consider the family of maps

U(t,τ) : Hτ →Ht with t ≥ τ,

defined by

U(t,τ) = {u(t),ut(t)}.

Problem (3.33) generates a continuous process U(t,τ) : Hτ →Ht , for all t ≥ τ , this statement

follows by Theorem 3.8.

Global existence of (weak) solutions u of equation (3.33) is classical, and can be obtained by

means of a standard Galerkin scheme, as we can see the details and proofs in [17] and [11].

Furthermore, based on Lemma 3.10 described below we can obtain that such solutions satisfy, on

any interval [τ, t] with t ≥ τ ,

u ∈ C ([τ, t],H1)

and

ut ∈ C ([τ, t],H),

see, e.g., [17].

Moreover, the process U(·, ·) satisfies the following continuous dependence property.



44 Chapter 3. Wave equations with time-dependent speed of propagation

Theorem 3.8. Problem (3.33) generates a continuous process U(t,τ) : Hτ →Ht , with t ≥ τ ∈ R,

satisfying the following continuous dependence property: for every pair of initial data zi = {ai,bi} ∈
Hτ such that ‖zi‖Hτ

≤ R, i=1,2, the difference of the corresponding solutions satisfies

‖U(t,τ)z1−U(t,τ)z2‖Ht ≤ eK(t−τ)‖z1− z2‖Hτ
, f or all t ≥ τ, (3.34)

for some constant K = K(R)≥ 0.

Remark 3.9. Note that, uniqueness of solutions in problem (3.33) will follow by the continuous

dependence estimate (3.34). Indeed, for τ ∈ R and z = {a,b} ∈ Hτ such that ‖zi‖Hτ
≤ R. Let

U1(t,τ) and U2(t,τ) be solutions of (3.33), it follows by (3.34) that

U1(t,τ)z =U2(t,τ)z, f or all t ≥ τ.

Therefore, U1(t,τ) =U2(t,τ) for all t ≥ τ .

Taking all the discourses described above together, we can conclude that the family of maps

U(t,τ) : Hτ →Ht with t ≥ τ ∈ R,

defined by

U(t,τ)z = {u(t),ut(t)},

where u is the unique solution to (3.33) with initial time τ and initial condition z = {a,b} ∈Hτ ,

defines a continuous process on the family {Ht}t∈R.

For the proof of Theorem 3.8 we will need the following dissipation estimate.

Lemma 3.10. Let t ≥ τ . For z∈Hτ , let U(t,τ) be the solution of (3.33) with initial time τ and datum

z = {a,b}. Then, if (3.31) holds, there exist ω = ω(α,‖ε‖L∞ ,‖ε ′‖L∞)> 0, K1 ≥ 0 and an increasing

positive function ψ such that

‖U(t,τ)z‖Ht ≤ ψ(‖z‖Hτ
)e−ω(t−τ)+K1, f or all t ≥ τ.

Proof. Let C ≥ 0 be a generic constant independent of the initial datum z and denote

E(t) = ‖U(t,τ)z‖2
Ht

(double) the energy associated with problem (3.33). Due to (3.12), (3.13) and (3.26), the functional

ξ = E +δα‖u‖2 +2δε〈ut ,u〉+2〈F(u),1〉−2〈g,u〉

fulfills, for δ > 0 and some 0 < v < 1 provided by Lemma 3.4,

vE(t)−C ≤ ξ (t)≤CE(t)2 +C. (3.35)
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In light of (3.12), set δ > 0 small enough such that CLδ < α

2 , then it follows from Cauchy-Schwarz

and Young’s inequality that
2δε|〈ut ,u〉| ≤ 2δε‖ut‖‖u‖

≤ ε

2
‖ut‖2 +δ‖u‖2

≤ ε

2
‖ut‖2 +CLδ

2‖u‖2

≤ ε

2
‖u‖2 +

δα

2
‖u‖2.

Now, multiplying (3.2) by 2ut ,

d
dt
(E(t)+2〈F(u),1〉−2〈g,u〉)+ [2α− ε

′(t)]‖ut‖2 = 0. (3.36)

In addition, multiplying (3.2) by 2δu,

2δε〈utt ,u〉+2δα〈ut ,u〉−2δ 〈u,∆u〉+2δ 〈 f (u),u〉−2δ 〈g,u〉= 0.

Resolving some terms we obtain

2δ

[
d
dt

ε〈ut ,u〉− ε
′〈ut ,u〉− ε

′‖ut‖2
]
+2δα〈utt ,ut〉+2δ‖u‖2

1 +2δ 〈 f (u),u〉−2δ 〈g,u〉= 0. (3.37)

Then, summing (3.36) and (3.37) we obtain

d
dt

ξ +[2α− ε
′−2δε]‖ut‖2 +2δ‖u‖2

1 +2δ 〈 f (u),u〉−2δ 〈g,u〉= 2δε
′〈ut ,u〉.

Furthermore, by (3.12), Cauchy-Schwarz and Young’s inequality we have

2δ |ε ′〈ut ,u〉| ≤ 2Lδ |〈ut ,u〉|

≤ 2δL‖ut‖‖u‖

≤ α

2
‖ut‖2 +

δv
2
‖u‖2

1

for δ small, we arrive at

d
dt

ξ +

[
3
2
− ε
′−2δε

]
‖ut‖2 +δ

[
2− v

2

]
‖u‖2

1 +2δ 〈 f (u),u〉−2δ 〈g,u〉 ≤ 0. (3.38)

In light of (3.31) we can reconstruct the functional ξ , which provides

d
dt

ξ +δξ +α‖ut‖2 +Γ≤ δc1,

where

Γ =
[

α

2
− ε
′−3δε

]
‖ut‖2 +

δv
2
‖u‖2

1−δ
2
α‖u‖2−2δ

2
ε〈ut ,u〉.

Therefore, setting δ small enough so that Γ≥ 0, we end up with

d
dt

ξ +δξ +α‖ut‖2 ≤ δc1. (3.39)

Applying the Gronwall lemma, together with (3.35), we have proved Lemma 3.10.
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Proof of Theorem 3.8. Let z1,z2 ∈Ht be such that ‖zi‖Ht ≤ R, i = 1,2, and denote by C a generic

positive constant depending on R but independent of zi. We first observe that the energy estimate in

Lemma 3.10 ensures

‖U(t,τ)zi‖Ht ≤C. (3.40)

We call {ui(t),∂tui(t)} =U(t,τ)zi and denote z(t) = {u(t),ut(t)} =U(t,τ)z1−U(t,τ)z2. Then, the

difference between the two solutions satisfies

εutt +αut−∆u+ f (u1)− f (u2) = 0,

with initial datum z(τ) = z1− z2. Multiplying by 2ut we obtain

〈2ut ,εutt〉+ 〈2ut ,αut〉+ 〈2ut ,−∆u〉=−〈 f (u1)− f (u2),ut〉,

that is,

2ε

∫
Ω

ututtdx+2α

∫
Ω

|ut |2dx−2
∫

Ω

ut∆udx =−〈 f (u1)− f (u2),ut〉.

It follows from (3.20)-(3.22) that

d
dt

ε(t)‖ut‖2− ε
′(t)‖ut‖2 +2α‖ut‖2 +

d
dt
‖u‖2

1 =−〈 f (u1)− f (u2),ut〉.

Thus,
d
dt
‖z‖2

Ht
+[2α− ε

′]‖ut‖2 =−2〈 f (u1)− f (u2),ut〉. (3.41)

Observe that
−2〈 f (u1)− f (u2),ut〉 ≤ 2|〈 f (u1)− f (u2),ut〉|

≤ 2‖ f (u1)− f (u2)‖‖ut‖.

Furthermore,

‖ f (u1)− f (u2)‖2 =
∫

Ω

| f (u1)− f (u2)|2dx

=
∫

Ω

| f (u1(x))− f (u2(x))|2dx.

Now, it follows by Remark 3.7 that∫
Ω

| f (u1(x))− f (u2(x))|2dx≤ K
∫

Ω

|u1(x)−u2(x)|2(1+ |u1(x)|2 + |u2(x)|2)2dx.

Applying Holder’s inequality we obtain

∫
Ω

| f (u1(x))− f (u2(x))|2dx≤ K
(∫

Ω

|u1(x)−u2(x)|6dx
) 1

3
(∫

Ω

(1+ |u1(x)|2 + |u2(x)|2)3dx
) 2

3

= K
(
‖u‖6

L6

) 1
3
(∫

Ω

(1+ |u1(x)|2 + |u2(x)|2)3dx
) 2

3

.
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Using Remark 3.5 and the embedding H1
0 (Ω)⊂ L6(Ω) we have

∫
Ω

| f (u1(x))− f (u2(x))|2dx≤ K
(
‖u‖6

L6

) 1
3
(∫

Ω

(1+ |u1(x)|2 + |u2(x)|2)3dx
) 2

3

≤ K
(
‖u‖2

L6

)(
26
∫

Ω

(1+ |u1(x)|6 + |u2(x)|6)dx
) 2

3

= K
(
‖u‖2

L6

)(
26
[
|Ω|+‖u1‖6

L6 +‖u2‖6
L6

]) 2
3

≤ K
(
K1‖u‖2

1
)(

26
[
|Ω|+K2‖u1‖6

1 +K3‖u2‖6
1

]) 2
3
.

It follows from (3.40) that ∫
Ω

| f (u1(x))− f (u2(x))|2dx≤ L‖u‖2
1.

Consequently,

−2〈 f (u1)− f (u2),ut〉 ≤ 2L‖u‖1‖ut‖= 2L
2α

2α
‖u‖1‖ut‖.

Moreover, from Young’s inequality we obtain

−2〈 f (u1)− f (u2),ut〉 ≤M‖u‖2
1 +2α‖ut‖2,

where M = L
4α

. Furthermore, how ε is a decreasing function and satisfies (3.5) we can conclude that

−2〈 f (u1)− f (u2),ut〉 ≤ ε(t)‖ut‖2 +M‖u‖2
1

≤Mε(t)‖ut‖2 +M‖u‖2
1.

Therefore, we end up with the differential inequality

d
dt
‖z(t)‖2

Ht
≤M‖z(t)‖2

Ht
, (3.42)

and an application of the Gronwall lemma on [τ, t] completes the proof.

3.3.1 Absorbing sets

This subsection is devoted to studying the dissipation properties of the process U(·, ·) associated

with (3.33).

Definition 3.11. A time-dependent absorbing set for the process U(t,τ) is a uniformly bounded

family B = {B(t)}t∈R with the following property: for every R≥ 0 there exists θe = θe(R)≥ 0 such

that

U(t,τ)Bτ(R)⊂B(t) f or all τ ≤ t−θe,

where Bτ(R) denotes the R-ball of Ht .

Remark 3.12. The notion of absorption in Definition 3.11 is stronger than the pullback dissipativity

of Definition 2.22.
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The existence of a time-dependent absorbing set (hence pullback absorbing) for U(t,τ) it follows

by the next result.

Theorem 3.13. There exists R0 > 0 such that the family B = {Bt(R0)}t∈R is a time-dependent ab-

sorbing set for U(t,τ). Furthermore,

sup
z∈Bτ (R0)

[
‖U(t,τ)z‖Ht +

∫
∞

τ

‖ut(y)‖2dy
]
≤ I0, f or all τ ∈ R, (3.43)

for some I0 ≥ R0.

Remark 3.14. The first statement of the theorem above means: there exists R0 > 0 such that for every

R≥ 0 there exists θe = θe(R)≥ 0 with

τ ≤ t−θe =⇒ U(t,τ)Bτ(R)⊂ Bt(R0).

This implies that for z ∈ Bτ(R) yields

‖U(t,τ)z‖Ht ≤ R0.

Proof of Theorem 3.13. Let R0 = 1+2K1. An application of Lemma 3.10 for z ∈ Bτ(R) yields

‖U(t,τ)z‖Ht ≤Q(R)e−w(t−τ)+K1 ≤ 1+2K1 = R0,

provided that t− τ ≥ θe where

θe = max
{

0,w−1 log
Q(R)
1+K1

}
.

This concludes the proof of the existence of the time-dependent absorbing set. In order to prove the

integral estimate for ‖ut‖, it is enough to integrate (3.39) with δ = 0 on [τ,∞)

Remark 3.15. We can assume that the time-dependent absorbing set B(t) = Bt(R0) is positively

invariant (namely U(t,τ)B(τ)⊂ B(t) for all t ≥ τ). Indeed, calling θe the entering time of B(t) such

that

U(t,τ)B(τ)⊂ B(t), f or all τ ≤ t−θe,

we can substitute B(t) with the invariant absorbing family⋃
τ≤t−θe

U(t,τ)B(τ)⊂ B(t).

3.4 Existence of the pullback attractor

This last section is devoted to prove the main result of this chapter, that is, a result on the exis-

tence of the pullback attractor for the problem (3.33). Moreover, this result represents the asymptotic

behavior of the problem (3.33).



3.4. Existence of the pullback attractor 49

Theorem 3.16. The process U(t,τ) : Hτ −→Ht generated by problem (3.33) admits an invariant

pullback attractor A = {A (t) : t ∈ R}. Furthermore, A (t) is bounded in H 1
t , with a bound inde-

pendent of t.

The existence of the attractor, according to Definition 2.30, will be proved by a direct application

of the abstract Theorem 2.31. Precisely, in order to show that the process is asymptotically compact,

we shall exhibit a pullback attracting family of compact sets. To this aim, the strategy classically

consists in finding a suitable decomposition of the process in the sum of a decaying part and of a

compact one.

3.4.1 The decomposition

We write f = f0 + f1, where f0, f1 ∈C2(R) fulfill, for some k ≥ 0,

| f ′1(s)| ≤ k, f or all s ∈ R, (3.44)

| f ′′0 (s)| ≤ k(1+ |s|), f or all s ∈ R, (3.45)

f0(0) = f ′0(0) = 0, (3.46)

f0(s)s≥ 0, f or all s ∈ R. (3.47)

This is possible owing the assumptions (3.13) and (3.14) (as we can see in [2] and [12]).

Let B = {Bt(R0)}t∈R be a time-dependent absorbing set according to Theorem 3.13 and let τ ∈R
be fixed. Then, for any z ∈ Bτ(R0), we split U(t,τ)z into the sum

U(t,τ)z = {u(t),ut(t)}=U0(t,τ)z+U1(t,τ)z,

where

U0(t,τ)z = {v(t),vt(t)} and U1(t,τ)z = {w(t),wt(t)}

solve systems {
εvtt +αvt +Av+ f0(v) = 0,
U0(t,τ) = z,

(3.48)

and {
εwtt +αwt +Aw+ f (u)+ f0(v) = g,
U1(t,τ) = 0.

(3.49)

In what follows, the generic constant C ≥ 0 depends only on B.

Lemma 3.17. There exists δ = δ (B)> 0 such that

‖U0(t,τ)z‖Ht ≤Ce−δ (t−τ), f or all t ≥ τ.
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Proof. Repeating word by word of the proof of Lemma 3.10 with f0 instead of f we immediately

obtain the bound

‖U0(t,τ)z‖Ht ≤C. (3.50)

Then, denoting

E0 = ‖U0(t,τ)z‖2
Ht

+δα‖v‖2 +2δε〈vt ,v〉+2〈F0(v),1〉, (3.51)

with

F0(s) =
∫ s

0
f0(y)dy,

we multiply (3.48) by 2vt +2δv. In view of (3.47) and since g = 0, the analogous of the differential

inequality (3.38) now reads
d
dt

ξ0 +δ‖U0(t,τ)‖2
Ht
≤ 0.

Exploiting (3.50) and (3.51),

1
2
‖U0(t,τ)z‖2

Ht
≤ ξ0(t)≤C‖U0(t,τ)z‖2

Ht
.

Moreover, the Gronwall lemma completes the argument.

Remark 3.18. How U(·, ·) is a continuous process and we make a decomposition of this process in

the sum of a decaying part and a compact one, summing up, the following uniform bound holds,

sup
t≥τ

[‖U(t,τ)z‖Ht +‖U0(t,τ)z‖Ht +‖U1(t,τ)z‖Ht ]≤C. (3.52)

This fact will be used in the next result.

Lemma 3.19. There exists M = M(B)> 0 such that

sup
t≥τ

‖U1(t,τ)z‖H 1/3
t
≤M.

Proof. We choose δ > 0 small and C > 0 large enough such that, calling

Λ = ‖U1(t,τ)z‖2
H

1/3
t

+δα‖w‖2
1/3 +2δε〈wt ,A1/3w〉+2〈 f (u)− f0(v)−g,A1/3w〉+C,

we have
1
2
‖U1(t,τ)z‖2

H
1/3

t
≤ Λ(t)≤ 2‖U1(t,τ)z‖2

H
1/3

t
+2C. (3.53)

Indeed, in view of (3.52) and Remark 3.7,

2〈 f (u)− f0(v),A1/3w〉 ≤ 2‖ f (u)− f0(v)‖‖A1/3w‖ ≤C‖w‖2/3 ≤
1
4
‖w‖2

4/3 +C.
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Moreover, by (3.12), for δ small we can estimate

2δε|〈wt ,A1/3w〉| ≤ ε

2
‖wt‖2

1/3 +
δα

2
‖w‖2

1/3.

By multiplying (3.49) with 2A1/3wt +2δA1/3w, we infer that

d
dt

Λ+[2α− ε
′−2δε]‖wt‖2

1/3 +2δ‖w‖2
4/3 +2δ 〈 f (u)− f0(v)−g,A1/3w〉

= 2δε
′〈wt ,A1/3w〉+ I1 + I2 + I3,

where
I1 = 2〈[ f ′0(u)− f ′0(v)]ut ,A1/3w〉,

I2 = 2〈 f ′0(v)wt ,A1/3w〉,

I3 = 2〈 f ′1(u)ut ,A1/3w〉.
Then, for any fixed δ > 0 small enough, we obtain

d
dt

Λ+δΛ+α‖wt‖2
1/3 ≤ I1 + I2 + I3 +δC. (3.54)

By exploiting conditions (3.45)-(3.46) for f0 and the embeddings H(3p−6)/2p ⊂ Lp(Ω) (p > 2) (see

,e.g., for theoretical background [1] and [11]), we draw from (3.52)-(3.53) the estimates

I1 ≤C(1+‖u‖L6 +‖v‖L6)‖ut‖‖w‖L18‖A1/3w‖L18/5

≤C‖ut‖‖w‖2
4/3

≤ δ

2
Λ+C‖ut‖2‖w‖2

4/3,

I2 ≤C(‖v‖L6 +‖v‖2
L6)‖wt‖L18/7‖A1/3w‖L18/5

≤C‖v‖1‖wt‖1/3‖w‖4/3

≤ α

2
‖wt‖2

1/3 +C‖v‖2
1‖w‖2

4/3

Furthermore, in view of (3.44), we have

I3 ≤ k‖ut‖‖A1/3w‖ ≤ ‖ut‖2‖w‖2
4/3 +C.

As a consequence, inequality (3.54) improves to

d
dt

Λ+
δ

2
Λ≤ qΛ+C,

with q =C‖ut‖2 +C‖v‖2
1 satisfying

∫
∞

τ

q(y)dy≤C,

by virtue of the dissipation integral (3.13) and Lemma 3.17. By Lemma 3.3,

Λ(t)≤CΛ(τ)e−
δ

4 (t−τ)+C ≤C.

In turn, (3.53) yields the boundedness of U1(t,τ)z in H
1/3

t .
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3.4.2 Existence of the pullback attractor

According to Lemma 3.19, we consider the family K = {K (t)}t∈R where

K (t) = {z ∈H
1/3

t : ‖z‖
H

1/3
t
≤M}.

K (t) is compact by the compact embedding H
1/3

t b Ht . Furthermore, since the injection constants

are independent of t, K is uniformly bounded. Finally, Theorem 3.13, Lemma 3.17 and Lemma 3.19

show that K is pullback attracting. Indeed,

distXt (U(t,τ)Bτ(R0),K (t))≤Ce−δ (t−τ), f or all t ≥ τ.

Thus, the process U(·, ·) is asymptotically compact, which allows the application of Theorem 2.31

and proves the existence of the unique pullback attractor A = {A (t) : t ∈ R}. The invariance of A

follows by the abstract Theorem 2.41 due to the continuity of the process stated in Theorem 3.8. Note

that, how the process is continuous, then is T -closed.

Remark 3.20. The attraction exerted by the attractor is uniform on compact intervals of time by virtue

of Proposition 2.26, due to the continuous dependence estimate (3.34).

3.4.3 Regularity of the attractor

The minimality of K in K establishes that A (t)⊂K (t) for all t ∈R. Therefore, we immediately

have the following regularity result.

Corollary 3.21. A (t) is bounded in H
1/3

t (with a bound independent of t).

To prove that A (t) is bounded in H 1
t , as claimed in Theorem 3.16, we argue as follows. We

fix τ ∈ R and, for z ∈ A (τ), we split the solution U(t,τ)z into the sum U0(t,τ)z+U1(t,τ)z, where

U0(t,τ)z = {v(t),vt(t)} and U1(t,τ)z = {w(t),wt(t)}, instead of (3.48)-(3.49), now solve{
εvtt +αvt +Av = 0,
U0(t,τ) = z,

and {
εwtt +αwt +Aw+ f (u) = g,
U1(t,τ) = 0.

As a particular case of Lemma 3.17, we obtain

‖U0(t,τ)z‖Ht ≤Ce−δ (t−τ), f or all t ≥ τ. (3.55)

Lemma 3.22. We have the uniform bound

sup
t≥τ

‖U1(t,τ)z‖H 1
t
≤M1.

for some M1 = M1(K )> 0.
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Proof. We set

E1 = ‖U1(t,τ)z‖2
H 1

t
+δα‖w‖2

1 +2δε〈wt ,Aw〉−2〈g,Aw〉+ c,

for δ > 0 small and some c≥ 0 (depending on ‖g‖) large enough to ensure

1
4
‖U1(t,τ)z‖2

H 1
t
≤ E1(t)≤ 2‖U1(t,τ)z‖2

H 1
t
+2c. (3.56)

A multiplication by 2Awt +2δAw leads to the equality

d
dt

E1 +[2α− ε
′−2δε]‖wt‖2

1 +2δ‖w‖2
2−2g〈g,Aw〉

= 2δε
′〈wt ,Aw〉−2〈 f (u),Awt〉−2δ 〈 f (u),Aw〉

and after standard computations we get, for δ small enough,

d
dt

E1 +δE1 ≤−2〈 f (u),Awt〉−2δ 〈 f (u),Aw〉+δc.

Denoting by C > 0 a generic constant depending on the size of A (t) in H
1/3

t , we find, using the

invariance of the attractor,

‖U(t,τ)z‖
H

1/3
t
≤C.

Hence, exploiting the embeddings H4/3 ⊂ L18(Ω) and H1/3 ⊂ L18/7(Ω), we deduce the bound

‖ f (u)‖1 ≤ ‖ f ′(u)‖L9‖A1/2u‖L18/7 ≤C(1+‖u‖2
L18)≤C,

yielding

−2〈 f (u),Awt〉−2δ 〈 f (u),Aw〉 ≤ 2‖ f (u)‖1(‖wt‖1 +‖w‖1)≤
δ

2
E1 +C.

We finaly end up with
d
dt

E1 +
δ

2
E1 ≤C,

and an application of the standard Gronwall lemma, recalling (3.56), provides the uniform bounded-

ness of ‖U1(t,τ)z‖H 1
t

, as claimed.

We are now in position to conclude the proof of Theorem 3.16. Indeed, inequality (3.55) and

Lemma 3.22 imply that, for all t ∈ R,

lim
τ→−∞

distXt (U(t,τ)A (τ),K 1(t)) = 0,

having defined

K 1(t) = {z ∈H 1
t : ‖z‖H 1

t
≤M1}.

Since K is invariant, this means

distXt (A (t),K 1(t)) = 0.
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Therefore, A (t)⊂K 1(t) = K 1(t), proving that A (t) is bounded in H 1
t with a bound independent

of t ∈ R.
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