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“Far better an approximate answer to the right question, which is often vague, than an exact
answer to the wrong question, which can always be made precise.”

(John W. Tukey)





RESUMO

LASSANCE, R. F. L. Testagem não-paramétrica de hipóteses pragmáticas. 2022. 71
p. Dissertação (Mestrado em Estatística – Programa Interinstitucional de Pós-Graduação em
Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2022.

Na área de testagem estatística, uma hipótese pragmática amplia uma hipótese precisa, tomando
casos na vizinhança da nula como sendo tão merecedores de consideração quanto ela. Ao contrário
dos métodos tradicionais, hipóteses pragmáticas permitem ao usuário avaliar suposições mais
relevantes e, simultaneamente, fornecem estratégias para lidar com Big Data de forma responsável,
evitando complicadores usuais. Contudo, até o presente momento, tais procedimentos só foram
aplicados em casos que já supõem uma família paramétrica para os dados. Nesta dissertação
de mestrado, nós exploramos hipóteses pragmáticas em um contexto não-paramétrico, o que
reduz drasticamente o número de suposições e fornece cenários mais realistas. Ao expandir a
teoria em Coscrato et al. (2019) para um contexto não-paramétrico, delimitamos os diferentes
tipos de hipóteses precisas de interesse, assim como os respectivos desafios que cada uma delas
apresenta. Daí, derivamos dois tipos de testes para hipóteses não-paramétricas: um que adere
aos procedimentos usuais e um que é agnóstico (que aceita, rejeita ou mantém a indecisão a
respeito de uma hipótese específica), sendo que ambos seguem a propriedade de monotonicidade.
Ao final, utilizamos o processo da árvore de Pólya para construir testes em múltiplas aplicações,
demonstrando como o tamanho da amostra, níveis de confiança/credibilidade e o limiar de uma
hipótese pragmática impactam na decisão do teste.

Palavras-chave: hipóteses pragmáticas, testes agnósticos, função de dissimilaridade, bayesiana
não-paramétrica.





ABSTRACT

LASSANCE, R. F. L. Nonparametric pragmatic hypothesis testing. 2022. 71 p. Disserta-
ção (Mestrado em Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2022.

In statistical testing, a pragmatic hypothesis is an extension of a precise one, taking cases on the
vicinity of the null as being equally worthy of appraisal. Unlike standard procedures, pragmatic
hypotheses allow the user to evaluate more relevant assumptions and, at the same time, provide
strategies to tackle Big Data responsibly, avoiding common drawbacks. However, up until now,
these procedures have been applied only when a parametric family is assumed for the data. In this
master’s thesis, we explore pragmatic hypotheses in a nonparametric setting, which drastically
reduces the number of presuppositions and provides more realistic scenarios. By expanding the
theory in Coscrato et al. (2019) to a nonparametric context, we delimit the different types of
precise hypotheses of interest and the respective challenges each of them presents. Then, we
derive two kinds of tests for nonparametric pragmatic hypotheses: one that adheres to standard
procedures and one that is agnostic (which accepts, rejects or remains undecided on a given
hypothesis), both obeying the property of monotonicity. Lastly, we use the Pólya tree process
for building tests in a multitude of applications, showing how sample size, confidence/credible
levels and the threshold of a pragmatic hypothesis impact the decision of the test.

Keywords: pragmatic hypotheses, agnostic tests, dissimilarity function, Bayesian nonparametrics.
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CHAPTER

1
INTRODUCTION

Although Science has brought countless contributions to humanity, it is important to
highlight that its foundations are a product of its time and are subject to change, which tends to
occur in moments of crisis. The fact that physicists only started to question the deterministic view
of the world by the end of the 19th century is a clear demonstration of this phenomenon. This
change in comprehension ensued because, although their measurements became more precise as
time went by, physicists still could not eliminate errors ever present in the predictions of physical
models (SALSBURG, 2002). Similarly to the structure of scientific revolutions (KUHN, 1962), it
was only as these contradictions became more predominant and detrimental that a new paradigm
emerged to replace the one before.

This new paradigm, statistical modeling, persists to this day and still sets the standards
of what is considered as valid scientific research. While statistical models have become the
predominant strategy of analysis in most areas of Science, statistical hypothesis testing in
particular is the go-to procedure to identify when an assertion is backed up by the data or not.
The reliance on Statistics has offered a robust procedure of analysis, since it is now possible to
derive conclusions even when the data is subject to random effects or perturbations.

However, in recent years, there is a new set of challenges that threaten the credibility
statistical tests have garnered in the scientific community. In particular, we highlight two problems
whose consequences seem to be the most deleterious: meaningless tests that will always reject the
null hypothesis and failure of replicating previous significant statistical findings. The first case
is mostly a consequence of dealing with large datasets, since tests become so precise that they
reject any hypothesis negligibly different from its theoretical result. The second case, although
possibly present since the beginning, has become increasingly evident nowadays thanks to the
coordinated effort of organizations (Open Science Collaboration, 2015).

Similarly to past iterations, these challenges point towards the need of proposing a new
paradigm for scientific research. Not only should scientists change their views on hypothesis
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testing, but the statistical methods themselves should be subject to adaptations as well (MAYO,
2018). When looking at the issues that standard tests present nowadays, Coscrato et al. (2019)
elicits three that are particularly troublesome: (i) difficulty in interpreting the outcomes of tests,
(ii) multiple hypothesis testing leading to logically incoherent conclusions and (iii) rejection of a
precise hypothesis not being relevant from a practical perspective. While (i) relates to the attitudes
of scientists towards testing, (ii) and (iii) are directly linked to the problems of replicability and
Big Data aforementioned. The complications that arise from (iii) are particularly problematic,
since precise hypotheses usually are the ones that interest scientists the most.

In order to face all of the three issues elicited, Coscrato et al. (2019) argue for the use of
agnostic tests and pragmatic hypotheses. The latter, which solves issue (iii) and the difficulties
presented by Big Data, can also be directly linked to the evolution of Science (ESTEVES et
al., 2019). These recent contributions offer a fresh view of statistical testing, providing a robust
foundation that can be used by frequentists and Bayesians alike.

Given its novelty, there are still open questions when dealing with pragmatic hypotheses.
Since they have only been applied in a context where the parametric family of the data is assumed,
it is still necessary to delimit how to expand the theory to a nonparametric scenario. That is the
main objective of this thesis. Also, given that they always reference a threshold of reasonable
deviations from the original hypothesis - an information that sometimes is not fully available to
researchers - it is pertinent to provide some possible rules of thumb to get to them as well.

The procedures used throughout this paper are based on the Pólya tree process (FER-
GUSON, 1974; LAVINE, 1992; LAVINE, 1994). This Bayesian nonparametric prior allows the
user to draw distribution functions, which are used here to evaluate if the distribution of the data
is sufficiently close to the null hypothesis. The proximity between the null hypothesis and the
distributions sampled from the Pólya tree is evaluated through a dissimilarity function, which is
the necessary tool to properly define the pragmatic space. We note, however, that using prior
processes is not the only way to obtain conclusions from these tests. As long as one is able to
provide a sampler of distribution functions based on data, the procedure remains feasible, even if
it abides to a frequentist paradigm.

The structure of this proposal is as follows. Chapter 2 provides the background that has
served as the foundation for our contribution until the present moment. Then, Chapter 3 expands
the current literature on pragmatic hypothesis and describes all the required concepts (types
of restriction on the null hypothesis, a sampler defined on the hypothesis space, new testing
procedures), while also providing novel theorems and examples of cases with clear-cut solutions.
Chapter 4 shows how to apply the developed tests in different applications, dealing with practical
issues such as determining a threshold for the pragmatic hypothesis. Lastly, Chapter 5 elicits the
current challenges and possible next steps for the research. There are also two sections on the
appendix, Appendix A and Appendix B, which respectively details the Pólya tree process and
presents the proofs of all the theorems developed.
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CHAPTER

2
BACKGROUND

2.1 Agnostic Tests

When talking about statistical tests, there is a slight disconnect between its possible
outcomes and what one actually wants to know about. After all, while a traditional statistical test
either rejects a hypothesis or not, its use had the intention of finding out if the data corroborates
the acceptance/refusal of the hypothesis or not. Thus, a traditional test amalgamates two credal
states (“accept 𝐻0” and “remain in doubt about 𝐻0”) into one single decision (not to reject 𝐻0).

While this configuration could adhere to a more falsificationist view of Science (POPPER,
1934), its sensitivities have become more exposed through time, as mentioned in Chapter 1. In
order to solve two of the major issues that a test presents (representing adequately the credal state
and ensuring that multiple testing will not lead to a logically incoherent conclusion), Coscrato et
al. (2019) presents the concept of an agnostic test.

Definition 1. (COSCRATO et al., 2019) Take D = {0, 1
2 ,1} as the set of possible outcomes of a

test, where 0 leads to acceptance of 𝐻0, 1 to rejection and 1
2 to neither, i.e., remaining undecided.

Thus, if X denotes the sample space, an agnostic test is a function 𝜙 : X →D.

From the formulation of Definition 1, although the credal states are respected, a new type
of error occurs, such as Table 1 demonstrates. Every time the test reaches an undecided state, it
commits a type III error. However, unlike the other error types, the type III error is always known.
Still, such tests allow for control of errors type I and II simultaneously (COSCRATO; IZBICKI;
STERN, 2020), a feature that is essential, but rarely evaluated with standard tests.

It automatically follows from Definition 1 that any standard test can be reframed as an
agnostic test, as long as 𝐼𝑚 [𝜙] = {0,1}. Thus, agnostic tests can be considered as a generalization
of standard tests, while having the benefit of equating the possible outcomes with the credal states
of interest. This is sufficient to solve issue (i) presented in Chapter 1. As for ensuring logical
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TEST OUTCOME

ST
A

TE
M

EN
T Accept 𝐻0 Remain agnostic Reject 𝐻0

𝐻0 is true No error Type III error Type I error

𝐻0 is false Type II error Type III error No error

Table 1 – Error types based on the outcome of an agnostic test

consistency between the outcomes, Coscrato et al. (2019) and Esteves et al. (2019) put forward
the notion of a region estimator.

Definition 2. (ESTEVES et al., 2019) Let X denote the sample space used to test a hypothesis. A
region estimator is a function 𝑅 : X → P(Θ), where P(Θ) is the power set of Θ, the parametric
space.

Based on Definition 2, it is possible to derive an agnostic test. After all, for a given data
𝒙 ∈ X, one could set

𝜙(𝒙) =


0, if 𝑅(𝒙) ⊆ 𝐻0;
1, if 𝑅(𝒙) ⊆ 𝐻𝑐

0;
1
2 , otherwise.

(2.1)

as the decision boundaries. As Figure 1 demonstrates, this construction is reasonable, since 𝜙(𝒙)
only makes an assertive decision if the whole region is contained either in 𝐻0 (leading to its
acceptance) or in 𝐻𝑐

0 (leading to the rejection of the null).

Figure 1 – Test outcome for each region estimate (source: Coscrato et al. (2019))

However advantageous this setup of agnostic tests is, it possesses a major drawback,
which is not being able to evaluate precise hypotheses in the same manner. Precise hypotheses
represent equality assumptions about the behavior of the data, such as 𝐻0 : \ = \0, for example.
Since 𝐻0 in this case has a measure of 0, any region estimator will either reject or remain agnostic
about 𝐻0, leading us back to a standard test.
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In order to sidestep this problem and, at the same time, provide a solution to issue (iii)
presented in Chapter 1, the notion of a pragmatic hypothesis is developed.

2.2 Pragmatic Hypotheses

In a parametric context, i.e., when a parametric family is assumed for the data, a precise
hypothesis is an equality assumption about one or more parameters of the statistical model.
Then, a pragmatic hypothesis is an enlargement of the precise one, evaluating its vicinity as an
equally viable assumption to be hold. If 𝐻0 is the precise hypothesis, we define 𝑃𝑔(𝐻0) as the
pragmatic hypothesis derived from it. In order to establish what is the vicinity of 𝐻0 that will
form 𝑃𝑔(𝐻0), we first need to set a dissimilarity function and a threshold of acceptable values
for the dissimilarity.

Take 𝐻0 : \ = \0 as the precise hypothesis of interest, where Θ is the parametric space
of \. As the name implies, the dissimilarity function evaluates how differently the data should
behave when \ = \∗, \∗ ∈ Θ, compared to the null hypothesis. Unlike a distance function, it does
not need to have 0 as its smallest value, although it has to be strictly non-negative. One of the
most commonly used dissimilarity functions is the classification dissimilarity, given by

𝑑𝑍 (\0, \
∗) = 0.5

[
P\0

(
𝑓 (𝑍 |\0)
𝑓 (𝑍 |\∗) > 1

���\ = \0

)
+P\∗

(
𝑓 (𝑍 |\∗)
𝑓 (𝑍 |\0)

> 1
���\ = \∗)] , (2.2)

where 𝑍 is a possible future observation of the data and 𝑓 (𝑍 |\) is its probability density function.
Since both terms in (2.2) are probabilities between 0.5 and 1 - after all, it is not possible for
any probability distribution to be closer to the data than its true distribution - the classification
dissimilarity only assumes values in [0.5,1]. Citing Coscrato et al. (2019), “the classification
dissimilarity is the highest achievable probability of correctly identifying which \ generated 𝑍 .”
Thus, the closest (2.2) is to 0.5, the more reasonable it is to assume that \∗ should belong to
𝑃𝑔(𝐻0).

Definition 3. Esteves et al. (2019) Let 𝐻0 : \ = \0, 𝑑𝑍 be a predictive dissimilarity function and
Y > 0. The pragmatic hypothesis for 𝐻0, 𝑃𝑔(𝐻0), is

𝑃𝑔(𝐻0) := {\∗ ∈ Θ : 𝑑𝑍 (\0, \
∗) < Y} .

As \∗ gets further apart from \0, the dissimilarity function gets higher or closer to its
maximum value, it is possible to fully identify the set \∗ ∈ Θ that belongs to 𝑃𝑔(𝐻0). And since
the choice of Y is entirely arbitrary, the pragmatic space can be as restrictive as one desires.

In case the sharp hypothesis is less restrictive than a point-wise assumption (such as
𝐻0 : \ ∈ Θ0, where dim(Θ0) < dim(Θ)), Definition 3 can straightforwardly be adapted to

𝑃𝑔(𝐻0) :=
⋃
\0∈Θ0

{\∗ ∈ Θ : 𝑑𝑍 (\0, \
∗) < Y} . (2.3)
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With the addition of the pragmatic hypothesis, the theory of agnostic tests presented in
section 2.1 can proceed exactly as described, since 𝑃𝑔(𝐻0) occupies a continuous region on
the hypothesis space. Not only that, but the use of pragmatic hypotheses allow for the user to
explicitly define what is considered as a meaningful deviation from 𝐻0 through the choice of Y.
Thus, it solves issue (iii) presented in Chapter 1 and provides a strategy that works as expected
even when dealing with a massive number of observations.

In closing, it is important to highlight that the choice of a predictive dissimilarity
function 𝑑𝑍 and a threshold Y should be a reflection of the researcher’s understanding of what
is an irrelevant deviation from 𝐻0. Still, given the novelty of the research and its additional
mathematical complexity, a choice of dissimilarity that leads to a mathematically convenient
solution can be valid in some cases.
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CHAPTER

3
METHOD

Since the previous contributions have been explored in Chapter 2, it is time to elicit the
novel results that this thesis has to offer. So far, both agnostic tests and pragmatic hypotheses
have only been applied in contexts where a parametric family is assumed for the data. Particularly
for pragmatic hypotheses, Equation 2.3 becomes meaningless in a nonparametric scenario,
since 𝑃𝑔(𝐻0) does not evaluate parameter values anymore, but more general concepts such as
cumulative distribution functions. In this section, we expand the notion of pragmatic hypotheses
to a nonparametric setting, providing a general framework to derive and apply new tests. The
proofs of all pertinent mathematical results are presented in Appendix B.

3.1 Nonparametric Pragmatic Hypotheses

We begin the section by providing an updated definition of the pragmatic hypothesis, in
order to highlight similarities and differences with the original concept.

Definition 4. (Nonparametric Pragmatic Hypothesis) Set H = 𝐻0 ∪𝐻𝑎 as the hypothesis space,
where 𝐻0 is a precise hypothesis and 𝐻𝑎 = 𝐻𝑐

0 . Take ℎ, ℎ∗ ∈ H as elements of such space. For a
given dissimilarity function 𝑑 (·, ·) and a threshold Y > 0, a nonparametric pragmatic hypothesis
is defined as

𝑃𝑔(𝐻0) =
⋃
ℎ∈𝐻0

𝐵(ℎ, 𝜖) =
⋃
ℎ∈𝐻0

{ℎ∗ ∈ H : 𝑑 (ℎ, ℎ∗) < Y} =
{
ℎ∗ ∈ H : inf

ℎ∈𝐻0
𝑑 (ℎ, ℎ∗) < Y

}
,

where 𝐵(ℎ, 𝜖) is an open ball (KREYSZIG, 1978).

From now on, we will use the initials NPHT to refer to a nonparametric pragmatic
hypothesis test.

From Definition 4, it is clear that many elements of a parametric pragmatic hypothesis are
being recycled with few significant changes. Similarly to Equation 2.3, there is still an interest in
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the elements of the space that are close enough to 𝐻0, based on a dissimilarity function. However,
in the nonparametric case, H is more abstract than Θ, even in settings where the null hypothesis
can be reframed as a region constrained to a specific parametric space. Also, the notion of a
dissimilarity function is still essential to determine negligible deviations from the null, even if
thinking about a future observation 𝑍 is not always relevant in the nonparametric case (which is
why the subscript of 𝑑𝑍 was dropped).

Unlike its parametric counterpart, it is not possible to fully specify all the elements of H
that belong to 𝑃𝑔(𝐻0) in the NPHT. Still, in any practical setting, it suffices to check if a specific
ℎ∗ ∈ H (which should be corroborated by the data) is such that infℎ∈𝐻0 𝑑 (ℎ, ℎ∗) < Y. For now,
we assume that an element ℎ∗ that adequately represents the data is known. In section 3.2, we
suggest a procedure to draw these reasonable candidates.

To ensure that the research could be completed in accordance to the time constraints of a
master’s thesis, the scope of the problem was reduced to cases where the data is independent and
identically distributed, univariate and presented no covariates. In general, but not always, we
will restrict ourselves to cases where the hypothesis space is the space of distribution functions,
represented by F.

3.2 Building the NPHT

3.2.1 Procedure overview

Now that 𝑃𝑔(𝐻0) has been defined in the context of the NPHT, it is time to propose
accessible guidelines that could allow for a researcher to devise a test. In this section, we present
the building blocks of a test that, while not necessarily being logically coherent, guarantees
that at least the property of monotonicity is achieved and is not affected by issues (i) and (iii)
presented at Chapter 1.

The first step is to identify the type of restriction that is being described in 𝐻0. This is
important for multiple reasons: it allows one to identify what the hypothesis space is, to establish
what are the more intuitive choices for the dissimilarity function and also to find infℎ∈𝐻0 𝑑 (ℎ, ℎ∗)
for a specific ℎ∗ ∈ H. Except for Y, this is enough to determine all the relevant parts of 𝑃𝑔(𝐻0).

Once the hypothesis space has been determined, the next step is to assign a model that is
capable of adequately representing the data in relationship to H. Given the scope restrictions
proposed in section 3.1, it is enough to provide a faithful representation in F, a feasible objective
as long as one uses a method that draws cumulative distribution functions based on data. To
achieve this, one valid approach is to resort to prior processes (PHADIA, 2016), although there
are no prohibitions on using frequentist methods as well. In general, we use H(𝒙) to represent a
model that draws objects in H based on a sample 𝒙.

Lastly, it is necessary to propose a test that can reach a decision based on how reasonable
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it is to assume that the data was generated by an element of 𝑃𝑔(𝐻0). Of course, this can be done
in multiple ways and should reflect the main interests of the researcher. One possibility is to
adhere to a setting that more closely resembles current standard tests. For a given significance
level 𝛼 and a threshold Y, one would reject the null hypothesis if

P

(
inf
ℎ∈𝐻0

𝑑 (ℎ,H(𝒙)) < Y
)
< 𝛼, (3.1)

i.e., if the probability that H(𝒙) belongs to 𝑃𝑔(𝐻0) is less than 𝛼. This test alone is enough to
solve issue (iii) presented in Chapter 1, since in this case the researcher directly informs which
cases constitute a considerable departure from 𝐻0 and which offer negligible differences based
on one’s practical setting.

Considering all issues in standard tests brought up in Chapter 1, we also put forth the idea
of using an agnostic test that is based on a region estimator, since they have the potential to solve
issues (i)-(iii) altogether. So far, we were able to propose a test that fully addresses (i) and (iii),
while partially addressing (ii) (it obeys monotonicity, i.e., it reaches coherent conclusions for a
pair of hypotheses when one is a subset of the other). To achieve this, we choose two quantiles of
infℎ∈𝐻0 𝑑 (ℎ,H(𝒙)), with respective probabilities 𝛼1 and 𝛼2 (𝛼1 ≤ 𝛼2). Then, if 𝑞𝑝 (·) represents
the 𝑝-th quantile,

𝜙(𝒙) =


0 (accept 𝐻0), if Y ≥ 𝑞𝛼2

[
infℎ∈𝐻0 𝑑 (ℎ,H(𝒙))

]
;

1 (reject 𝐻0), if Y < 𝑞𝛼1

[
infℎ∈𝐻0 𝑑 (ℎ,H(𝒙))

]
;

1
2 (remain agnostic), otherwise.

(3.2)

By choosing 𝛼2 = 𝛼1 = 𝛼, Equation 3.2 provides the exact same conclusion as Equation 3.1.

3.2.2 Part 1: Restriction types on 𝐻0

We now turn our attention to specific restrictions over 𝐻0, so as to evaluate how easily
one can derive 𝑃𝑔(𝐻0). It is important to note, however, that this list may not be exhaustive, but
they were sufficient to describe all kinds of nonparametric hypotheses that the authors thought
about during the research. For each restriction type, an example is provided to help develop an
intuition in every case.

3.2.2.1 Parametrical

This is the case that most closely resembles the context of Definition 3, so we develop
the first intuition of the theory from it. We start by noticing that the null hypothesis 𝐻0 : \ = \0

could be reframed as an assumption about the distribution of the data itself. If we take 𝐺𝑋 to be
the distribution function assumed for the data, then the following equivalence applies:

𝐻0 : \ = \0 ⇔ 𝐻0 : 𝑋 ∼ 𝐺𝑋 |\0 . (3.3)
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Although, conceptually speaking, the null hypothesis has not been changed, the right side of
(3.3) implies that the alternative hypothesis 𝐻𝑎 has become wider than in the original setting.
Now, 𝐻𝑎 encompasses any case where the distribution of the data is different than 𝐺𝑋 |\0 , which
implies that 𝑃𝑔(𝐻0) is a set that contains 𝐺𝑋 |\0 and a subset of distribution functions on H. Thus,
if F is the space that represents all possible distribution functions for the data 𝑋 , 𝑍 is a future
observation, 𝑑𝑍 is a dissimilarity function between probability distributions and Y > 0 is a given
threshold, the pragmatic space is described by

𝑃𝑔(𝐻0) =
{
𝐹 ∈ F : 𝑑𝑍 (𝐺𝑍 |\0 , 𝐹𝑍 ) < Y

}
. (3.4)

If we return to Definition 4, (3.4) is valid because H = F, and thus

𝑃𝑔(𝐻0) =
{
𝐹 ∈ F : inf

𝐺∈𝐻0
𝑑 (𝐺,𝐹) < Y

}
=

{
𝐹 ∈ F : 𝑑𝑍 (𝐺𝑍 |\0 , 𝐹) < Y

}
,

since 𝐺𝑋 |\0 is the only distribution function that belongs to 𝐻0.

We now present a parametrical restriction on 𝐻0 in its full generality. If we were to
expand Equation 3.4 and evaluate a hypothesis that more closely resembles Equation 2.3, it would
then become

𝑃𝑔(𝐻0) =
{
𝐹 ∈ F : inf

𝐺∈𝐻0
𝑑 (𝐺,𝐹) < Y

}
=

{
𝐹 ∈ F : inf

\∈Θ0
𝑑𝑍 (𝐺𝑍 |\ , 𝐹) < Y

}
. (3.5)

It could be assumed that Θ0 = Θ, the whole parametric space, since 𝐻0 : 𝑋 ∼𝐺𝑋 |\ , \ ∈ Θ, is also
a sharp hypothesis in this scenario. Hence, when the null hypothesis assumes that the data obeys
a specific distribution function or a parametric family, then it is said that there is a parametrical
restriction on 𝐻0.

Identifying if a candidate 𝐹 ∈ F belongs to 𝑃𝑔(𝐻0) is rather straightforward in this case,
since Equation 3.5 could be translated into an optimization procedure. For every given 𝐹, we find
\̂ ∈ Θ0 such that inf\∈Θ0 𝑑𝑍 (𝐺𝑍 |\ , 𝐹) = 𝑑𝑍 (𝐺𝑍 |\̂ , 𝐹). Then, if 𝑑𝑍 (𝐺𝑍 |\̂ , 𝐹) < Y, we could then
conclude that 𝐹 ∈ 𝑃𝑔(𝐻0). Since this procedure is rather general, any combination of parametric
families and dissimilarity functions could be evaluated this way.

Given how complex and plural the space F is, there is no direct method of explicitly
declaring the subfamily of F that forms 𝑃𝑔(𝐻0), i.e., it is not possible to elicit all functions that
belong to 𝑃𝑔(𝐻0). This implies that we must know of a restricted (discrete) group of functions
beforehand, one that would suffice to reach a valid conclusion. In practice, our interest resides
in checking if the distribution function of a given sample is sufficiently close to the parametric
family assumed at 𝐻0. Thus, in this particular case, the NPHT can be reframed as a problem of
density estimation.

In many cases, a dissimilarity function that works on the context presented in section 2.2
can be easily adapted to the fully restricted case. Take, for example, the classification dissimilarity
in (2.2). Then, its nonparametric counterpart is

𝑑𝑍 (𝐺,𝐹) = 0.5
[
P𝐺

(
𝑔(𝑍)
𝑓 (𝑍) > 1

���𝑍 ∼ 𝐺
)
+P𝐹

(
𝑓 (𝑍)
𝑔(𝑍) > 1

���𝑍 ∼ 𝐹
)]
, (3.6)
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where 𝑓 (.) and 𝑔(.) are, respectively, the probability density functions of 𝐹 and 𝐺.

Example 1 (𝐻0 : 𝑁 (𝑡), 𝑡 ∈ R+, is a Poisson process). The Poisson process (ROSS, 2009) is
perhaps the most widely known stochastic process in the literature. It is a counting process that
assumes that 𝑁 (𝑡) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(_𝑡),∀𝑡 ∈ R+. In this example, the interest here is twofold: to test if
the data behaves like a Poisson process and to find what are reasonable values for _.

If (𝑋1, · · · , 𝑋𝑛) is a sample of the moment in time each observation has occurred, it
follows from the properties of the process that, if 𝑇0 = 0 and 𝑇𝑖 = 𝑋𝑖 − 𝑋𝑖−1, 𝑖 ∈ {1, · · · , 𝑛}, then
𝑇𝑖
𝑖𝑖𝑑∼ 𝐸𝑥𝑝(1/_). Thus, the null hypothesis can be reframed as 𝐻0 : 𝑇 ∼ 𝐸𝑥𝑝(1/_), _ ∈ R+, which

is itself a parametrical restriction. Hence,

𝑃𝑔(𝐻0) =
{
𝐹 ∈ F : inf

_∈R+
𝑑𝑍 (𝐺𝑍 |_, 𝐹𝑍 ) < Y

}
,

where 𝐺𝑍 |_ ≡ 𝐸𝑥𝑝(1/_) in this case.

We now turn our attention to the choice of the dissimilarity function. If we were to use the
dissimilarity function that was just presented in Equation 3.6, it would be expressed as

𝑑𝑍 (𝐺𝑍 |_, 𝐹𝑍 ) = 0.5
[
P𝐺

(
exp(−𝑍/_)
_ 𝑓 (𝑍) > 1

���𝑍 ∼ 𝐺
)
+P𝐹

(
_ 𝑓 (𝑍)

exp(−𝑍/_) > 1
���𝑍 ∼ 𝐹

)]
.

Consequently, if 𝐹 ∈ F,

𝐹 ∈ 𝑃𝑔(𝐻0) ⇔ ∃_ ∈ R+ : P𝐺
(
exp(−𝑍/_)
_ 𝑓 (𝑍) > 1

���𝑍 ∼ 𝐺
)
+P𝐹

(
_ 𝑓 (𝑍)

exp(−𝑍/_) > 1
���𝑍 ∼ 𝐹

)
< 2Y.

(3.7)

If we were to accept the hypothesis, i.e., if the data consistently provided candidates for
𝐹 such that we could find a _ ∈ R+ that obeyed Equation 3.7, a possible next step would be to
obtain a point-estimate for _, or at least a set of reasonable values for it. A natural candidate for
this would be the maximum likelihood estimator, which in this case is given by _̂ =

∑𝑛
𝑖=1

𝑡𝑖
𝑛
, where

𝑡𝑖 is the observed value of 𝑇𝑖, 𝑖 ∈ {1, · · · , 𝑛}. Then, we could use the same procedure to test how
trustworthy _̂ is in this case by simplifying Equation 3.7 to

𝐹 ∈ 𝑃𝑔(𝐻0) ⇔ P𝐺
(
exp(−𝑍/_̂)
_̂ 𝑓 (𝑍)

> 1
���𝑍 ∼ 𝐺

)
+P𝐹

(
_̂ 𝑓 (𝑍)

exp(−𝑍/_̂)
> 1

���𝑍 ∼ 𝐹
)
< 2Y.

3.2.2.2 Functional

From this point on, no specific parametric family is assumed for 𝐻0. In this case, we
consider cases like 𝐻0 : ℎ(𝑋) = \0, i.e., where we restrict 𝐻0 to probability distributions that
obey a specific functional restriction. Unlike subsubsection 3.2.2.1, closed-form solutions may
vary depending on the null hypothesis and the dissimilarity function of choice.

If one attempts to follow a similar strategy as in subsubsection 3.2.2.1, this time it is
necessary to find a function 𝐺𝑋 that provides the smallest dissimilarity while at the same time
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being such that ℎ(𝑋) = \0. If 𝑑 is a metric over the space, then using functional analysis to find a
projection seems to a viable solution, although complex.

Another possible solution resides in considerably restricting the dissimilarity function
defined on F, such that it could be reshaped into a dissimilarity that only takes the functional into
account. In this particular case,

inf
𝐺∈𝐻0

𝑑 (𝐺,𝐹) ≡ 𝑑∗(\0, ℎ(𝑍 |𝐹)).

This is of course a poor decision, since it reduces the problem to one that may be exceedingly
simple, but it serves as a preliminary solution if one is unsure of how to derive a test.

Example 2 (𝐻0 : 𝐺 (𝑥0) = 𝑝0). This example illustrates the case of a quantile test, without
assuming any particular distribution for the data. For this case, we will choose the L1-distance
as the dissimilarity function. Thus, for any two probability distributions 𝐹,𝐺 ∈ F,

𝑑1(𝐺,𝐹) := ∥𝐺 −𝐹∥1 :=
∫
R
|𝐺 (𝑥) −𝐹 (𝑥) |𝑑𝑥.

Here, we take 𝐺 as a distribution function such that 𝐻0 is true and 𝐹 as a potential
candidate for a distribution function that belongs to 𝑃𝑔(𝐻0).

The following theorem provides a straightforward procedure for obtaining the infimum
of the dissimilarity function presented in Example 2.

Theorem 1 (Quantile test). Take 𝐻0 : 𝐺 (𝑥0) = 𝑝0 as the null hypothesis, 𝐹 as a distribution
function and

𝑑 (𝐺,𝐹) =
∫ ∞

−∞
|𝐺 (𝑥) −𝐹 (𝑥) |𝑑𝑥

as the dissimilarity function. Then, if 𝑎 = min(𝐹−1(𝑝0), 𝑥0) and 𝑏 = max(𝐹−1(𝑝0), 𝑥0),

𝛿 = inf
𝐺∈𝐻0

𝑑 (𝐺,𝐹) = inf
𝐺∈𝐻0

∫ ∞

−∞
|𝐺 (𝑥) −𝐹 (𝑥) |𝑑𝑥 =

∫ 𝑏

𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥. (3.8)

Example 2 (continued). In case 𝐹 (𝑥0) = 𝑝0, then 𝐹 also belongs to 𝐻0, which implies that
inf𝐺∈𝐻0 𝑑1(𝐺,𝐹) = 0. Now, if 𝐹 (𝑥0) < 𝑝0, (3.8) becomes

inf
𝐺∈𝐻0

𝑑1(𝐺,𝐹) =
∫ 𝑏

𝑥0

(𝑝0 −𝐹 (𝑥))𝑑𝑥 = (𝑏− 𝑥0)𝑝0 −
∫ 𝑏

𝑥0

𝐹 (𝑥)𝑑𝑥.

Equivalently, if 𝐹 (𝑥0) > 𝑝0,

inf
𝐺∈𝐻0

𝑑1(𝐺,𝐹) =
∫ 𝑥0

𝑎

(𝐹 (𝑥) − 𝑝0)𝑑𝑥 =
∫ 𝑥0

𝑎

𝐹 (𝑥)𝑑𝑥− (𝑥0 − 𝑎)𝑝0.

Then, if
∫ 𝑏

𝑎
𝐹 (𝑥)𝑑𝑥 cannot be explicitly obtained, a Monte Carlo integration procedure (ROBERT;

CASELLA, 2005) could be applied.
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3.2.2.3 Contextual

This restriction type is by far the most conceptually challenging, since it no longer equates
H to F and does not assume that the data is identically distributed (even if it could be split into
parts that are i.i.d.). More specifically, we assume that multiple datasets are provided, each of
them pertaining to a specific random variable, and that the hypothesis of interest is described
through a contextual relationship between these variables. Some hypotheses that belong to this
category are:

• Equality of the distribution functions of two populations;

• Independence between two random variables;

• Equality of variance of 𝑘 samples (a nonparametric adaptation of Levene’s test).

In general, if the null hypothesis assumes a relationship between 𝑘 > 1 random variables, then
H =

⊗𝑘

𝑖=1F𝑖, where F𝑖 represents the set of valid distribution functions of the 𝑖-th variable.

It is important to highlight that, even when the null hypothesis exhibits a functional
assumption, it is the contextual relationship between the variables that truly defines it. Take
for example the nonparametric Levene’s test: although it is assumed that the variance of each
variable is the same, their distribution function can assume any behavior and their variance
can take on any value, as long as it is the same for all. This is the reason why, unlike the other
restriction types, it is harder to propose a unified approach that, for a specific element of H, is
able to identify if it belongs to 𝑃𝑔(𝐻0). Not only are the comparisons more complex (since this
time we have to propose dissimilarity functions that work for higher dimensional objects), but it
may also prove difficult to find the infimum due to how loosely defined the null hypothesis is.

Example 3 (𝐻0 :𝐺𝑋 =𝐺𝑌 ). Tests that compare the equivalence between the distribution functions
of two populations are popular and widespread in the literature, with slight variations being
proposed through time (such as Holmes et al. (2015), Inácio, Izbicki and Salasar (2020) and
Ceregatti, Izbicki and Salasar (2021) to name a few). Here, we propose the NPHT version of it.

We highlight that H = F×F, i.e., the hypothesis space in this case is composed by the
Cartesian product of the distribution function space. In Figure 2, a visualization is provided to
give an idea of the peculiarities of such space. Each axis of the figure represents the distribution
function of a specific population. Then, the blue line represents the null hypothesis, where both
distributions are equal. Thus, while the red dot is an element ofH (i.e., a given pair of distribution
functions), the red arrow represents the closest distance between such element and 𝐻0.

The next theorem offers an intuitive solution for Example 3. Under rather general
conditions, instead of requiring the examination of pairs of distribution functions defined on
F×F, it allows one to just compare the distance between the two distribution functions that are
deemed as representative of the data - 𝐹𝑋 and 𝐹𝑌 .
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Figure 2 – Representation of the two population NPHT

Theorem 2 (Two sample test). Take 𝐻0 : 𝐺𝑋 = 𝐺𝑌 as the null hypothesis, 𝐹𝑋 and 𝐹𝑌 as two
distribution functions and

𝑑 [(𝐺𝑋 ,𝐺𝑌 ), (𝐹𝑋 , 𝐹𝑌 )] = 𝑑∗(𝐺𝑋 , 𝐹𝑋) + 𝑑∗(𝐺𝑌 , 𝐹𝑌 ),

where 𝑑∗(·, ·) is a distance function. Then

𝛿 = inf
(𝐺𝑋 ,𝐺𝑌 )∈𝐻0

𝑑 [(𝐺𝑋 ,𝐺𝑌 ), (𝐹𝑋 , 𝐹𝑌 )] = 𝑑∗(𝐹𝑋 , 𝐹𝑌 ).

Example 3 (continued). Based on Theorem 2, it is possible to use any dissimilarity function to
compare two pairs of distribution functions of interest, as long as the former is also a distance
function. This requirement is easily achievable by subtracting the dissimilarity function by its
minimum value. For example, if one were to use the classification dissimilarity of Equation 3.6, it
would have to be corrected to

𝑑∗(𝐹𝑋 , 𝐹𝑌 ) = 0.5
[
P𝐹𝑋

(
𝑓𝑋 (𝑍)
𝑓𝑌 (𝑍)

> 1
���𝑍 ∼ 𝐹𝑋

)
+P𝐹𝑌

(
𝑓𝑌 (𝑍)
𝑓𝑋 (𝑍)

> 1
���𝑍 ∼ 𝐹𝑌

)]
−0.5, (3.9)

where 𝑓𝑋 and 𝑓𝑌 are the respective density functions of 𝐹𝑋 and 𝐹𝑌 .

3.2.3 Part 2: Establishing H(·)

In this section, the main focus resides in determining elements of H that are somewhat
representative of the dataset. To achieve this, we propose a sampler H(·), which is responsible
to draw elements of H based on the data it receives. Hence, it is only at this point that any
information contained in a collected sample is actually used in the test. Once a sample 𝒙 is used
to inform how H(𝒙) should behave, no further references to the data are required for the test.
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Although there are conditions on what constitutes H(·), its structure is general enough
to allow for methods both frequentist and Bayesian. In subsection 3.2.2, it was shown for
the purposes of this thesis that H either represents the space of distribution functions or the
Cartesian of multiple distribution spaces. Furthermore, given the independence assumption
between observations, most nonparametric density estimation methods should be robust enough
to be used in this context.

There is, however, an important property of H(·) that should not be overlooked. Contrary
to section 2.2, where the whole uncertainty resided on the parametric space, in the NPHT case it
resides in the hypothesis space H. We call H(·) a sampler instead of a function per se due to the
importance of making explicit the uncertainty around which element of H is the true source of
the data. Thus, by treating H(·) as random, it directly follows that the dissimilarity function will
also be random, a feature that will be of utmost importance when deriving both standard and
agnostic tests (subsection 3.2.4).

As long as it can provide valid candidates of elements of H that are representative of
the data, there are no actual impediments on which statistical school of thought to abide by. In
frequentist statistics, density estimation methods with bootstrapping procedures usually provide
adequate candidates, while in Bayesian statistics there are prior processes which naturally keep
the uncertainty about the data generating process (FERGUSON, 1973; FERGUSON, 1974).

Example 4 (Basic distribution function estimator). Given a sample 𝒙 = (𝑥1, · · · , 𝑥𝑛), the simplest
distribution function estimator is perhaps

�̂�𝑌 |𝒙 (𝑦) =
𝑛∑︁
𝑖=1

I(𝑥𝑖 ≤ 𝑦)
𝑛

, (3.10)

where I(·) is the indicator function. Thus, if 𝒙𝐵 is a random bootstrap sample of 𝒙 and H = F, a
valid proposal for the sampler would be H(𝒙) = �̂�𝑌 |𝒙𝐵 (·). This, however, could be a poor choice
depending on the context. If 𝒙 was related to a continuous variable, then H(𝒙) would always
draw discrete distribution functions, thus not adequately representing F. And since no density
function could be derived from H(𝒙), it would not be possible to use a dissimilarity function
such as the one presented in Equation 3.6.

In general, there are at least three desirable properties one should take into account when
considering proposals for H(·):

• Adaptability: the proposal easily adapts to data and provides draws that actually belong to
the space H of interest;

• Generality: the proposal can be applied no matter the type of random variable one is
examining, such as discrete, absolutely continuous or singular continuous;

• Scalability: the proposal scales well even when dealing with larger sample sizes. In
particular, it is desirable for the method to be done in parallel if possible.
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3.2.4 Part 3: Testing procedures

This section details the testing procedures that have already been developed. All of the
code was developed in R (R Core Team, 2020) and is available upon request.

The first method proposed is the application of a pragmatic hypothesis in a standard
testing procedure. If 𝑑 (·, ·) is the elected dissimilarity function, Y > 0 is a threshold for the
dissimilarity and 𝛼 is a significance level, we could reject the null hypothesis if

P

(
inf
ℎ∈𝐻0

𝑑 (ℎ,H(𝒙)) < Y
)
< 𝛼, (3.11)

i.e., when the probability that the dissimilarity function does not exceed Y is less than a significance
𝛼. Thus, Equation 3.11 mirrors standard procedures of statistical testing, making it highly intuitive.
Then, even if one does not wish to use an agnostic test, it is still possible to evaluate a pragmatic
hypothesis.

There are, however, some conceptual differences between this test and standard procedures
that should be highlighted. Unlike p-values, there is neither a need to condition the probability on
𝐻0 nor a clear definition of what would be considered “more extreme” than the observed results.
Instead, through the use of the random function H(𝒙), the probability is built from reasonable
candidates of the true distribution function based on the sample data 𝒙. Also, since

P

(
inf
ℎ∈𝐻0

𝑑 (ℎ,H(𝒙)) < Y
)
= P (H (𝒙) ∈ 𝑃𝑔(𝐻0)) ,

this probability intrinsically carries the definition of a rejection region. After all, H(𝒙) ∉ 𝑃𝑔(𝐻0)
automatically implies that the differences between the sampler and 𝐻0 are not negligible and,
since all information our data provides is expressed through H(𝒙), it should lead to the rejection
of the null. Thus, once one sets Y and chooses through 𝛼 how improbable a setting has to be to
lead to its rejection, there is no further need to control for other factors such as sample size. This
effect is shown in Example 5.

Example 5 (Effect of sample size on decision). The purpose of this example is to demonstrate
how a standard test and a NPHT are affected as the sample size increases. To achieve this
and to keep the example as simple as possible, we sample (𝑋1, · · · , 𝑋𝑛) 𝑖𝑖𝑑∼ 𝑁 (`,1), where
𝑛 ∈ {50,500, · · · ,5×107} and ` ∈ {0.2,0.02,0.002}.

For the standard test, we assume that the parametric family of the data is known and
use a Student’s t-test to check 𝐻0 : ` = 0, registering its p-value. As for the NPHT, we test
𝐻0 : 𝑋 ∼ 𝑁 (0,1), using the classification dissimilarity proposed in Equation 3.6 and Y = 0.55.
As for H(·), we chose the Pólya tree process (LAVINE, 1992; LAVINE, 1994), using 𝑁 (0,1) as
the centering distribution.

Table 2 presents two terms in each cell, all represented as percentages: the first is the
p-value of the t-test, while the second is the smallest 𝛼 required to reject the null hypothesis of



3.2. Building the NPHT 39

the NPHT. Each cell represents a combination of the true value of ` and the sample size 𝑛. It is
clear that, for a large enough sample size, the t-test starts to reject the null hypothesis, no matter
how corroborated 𝐻0 seemed to be for smaller values of 𝑛. In opposition, the NPHT may be less
consistent for smaller sample sizes (which should be due to the prior choice and the uncertainty
surrounding the true distribution function, unlike the t-test that already takes it for granted), but
for larger samples it can adequately separate if the difference is too large (` = 0.2) or small
enough (` = 0.02 and ` = 0.002).

True `
Sample size (𝑛) 0.2 0.02 0.002

5×101 (31.7875, 21.9365) (66.6656, 22.3331) (22.9480, 19.6941)
5×102 (0.0245, 25.0548) (66.3828, 13.6322) (23.2528, 18.3166)
5×103 (0.00, 12.3468) (7.7806, 0.1401) (45.7200, 0.0837)
5×104 (0, 0.5186) (0.0037, 0.2402) (28.2979, 0.2080)
5×105 (0, 0) (0.00, 16.0659) (2.1192, 19.5977)
5×106 (0, 0) (0, 53.7031) (0.2567, 51.8039)
5×107 (0, 0) (0, 53.9987) (0, 55.5592)

Table 2 – Comparison between the p-value of a Student’s t-test and the smallest 𝛼 required to reject the
hypothesis in the NPHT, all probabilities are written as percentages

Inspired by Coscrato et al. (2019) and Esteves et al. (2019), we also propose an adaptation
of agnostic tests to a nonparametric pragmatic hypothesis. In a similar setting as Equation 3.11,
we derive a confidence/credible interval for the dissimilarity function infℎ∈𝐻0 𝑑 (ℎ,H|𝒙), whose
behavior will indicate what an adequate conclusion is.

By choosing the probabilities 𝛼1 and 𝛼2 (𝛼1 ≤ 𝛼2) and setting a threshold Y, we obtain
the respective quantiles of infℎ∈𝐻0 𝑑 (ℎ,H(𝒙)). Then, the following procedure applies:

• If Y < 𝑞𝛼1

[
infℎ∈𝐻0 𝑑 (ℎ,H(𝒙))

]
, we reject the hypothesis;

• If Y ≥ 𝑞𝛼2

[
infℎ∈𝐻0 𝑑 (ℎ,H(𝒙))

]
, we accept the hypothesis;

• Otherwise, we remain agnostic.

In general, we assume that 𝛼 := 𝛼1 = 1−𝛼2 and use a symmetrical interval instead. Still, if
𝛼2 = 𝛼1, this test would be equivalent to the one at Equation 3.11.

Being an agnostic test, this procedure automatically solves issue (i). Also, being derived
from a pragmatic hypothesis, it addresses issue (iii). And, even though it does not resolve issue
(ii), the test adheres to monotonicity, which is a property of logically coherent procedures.

Theorem 3 (Monotonicity property). Take 𝑃𝑔(𝐻0) as the nonparametric pragmatic hypothesis
of 𝐻0 and H(𝒙) as a method that randomly draws elements of H based on a sample 𝒙. Then, for
a precise hypothesis 𝐻0 ⊂ H and 𝛼1, 𝛼2 ∈ (0,1) where 𝛼2 ≥ 𝛼1, if a test is such that
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• If Y < 𝑞𝛼1

[
infℎ∈𝐻0 𝑑 (ℎ,H(𝒙))

]
, we reject the hypothesis;

• If Y ≥ 𝑞𝛼2

[
infℎ∈𝐻0 𝑑 (ℎ,H(𝒙))

]
, we accept the hypothesis;

• Otherwise, we remain agnostic;

it obeys the property of monotonicity, i.e., it is logically coherent for any two precise hypotheses
𝐻1

0 , 𝐻
2
0 ⊂ H if 𝐻1

0 ⊇ 𝐻2
0 , as shown in Table 3.

Table 3 – Possibility of each combination of decisions

Decisions Reject 𝐻1
0 Undecided on 𝐻1

0 Accept 𝐻1
0

Reject 𝐻2
0 Possible Possible Possible

Undecided on 𝐻2
0 Impossible Possible Possible

Accept 𝐻2
0 Impossible Impossible Possible

3.3 Commentaries on the choice of Y

In the whole theory of pragmatic hypotheses, one of the greater points of concern resides
in the choice of Y. Of course, this is a problem that should become less relevant as time goes
on, since the more researchers apply these tests, the easier it will get to develop intuitions
about reasonable values for Y. However, since its choice adds yet another layer of subjectivity, a
procedure that automatically suggests values of Y would be greatly appreciated.

In some cases (such as in subsection 4.2.1) there is available information which allows
one to directly derive a value for Y. In others, the researcher may be able to explicitly define what
are negligible deviations from 𝐻0 or to propose an educated guess, which opens room for more
subjective evaluations. There still may be cases in which there is available information, but not
enough to fully identify Y, or where there is no information at all.

If, for some reason, there is a need of a general procedure that could help delimit Y, some
possibilities are

• Sampling data from 𝐻0 multiple times and choosing the smallest Y such that, for a fixed
𝛼 ∈ (0,1), the test accepts the hypothesis with frequency (1−𝛼). This strategy has the
drawback of requiring previous knowledge of the sample size that will be used and may
not be feasible for all restriction types. Ideally, 𝑃𝑔(𝐻0) should be established without any
dependence on the sample size.

• Choosing two (or more) cases in the hypothesis space that have a negligible difference and
equate the dissimilarity between them (or the highest one observed) as an estimate for Y.
This represents a lower bound for the true Y and, in case the test leads to the acceptance of
𝐻0, provides exactly the same conclusion that Y would.
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• Ascribing a grid of reasonable values for Y (or sampling multiple values based on a
probability distribution), registering the conclusion for each value and taking the most
common decision as the final one, like a voting procedure. Even though this adds yet
another layer of subjectivity, it does not require the researcher to compromise to a specific
Y. Such procedure follows a similar inspiration than that of a prior distribution, an essential
concept in Bayesian inference (ROBERT, 2007).

• Plot the decision as a function of 𝛼 and Y and, instead of compromising to a specific value
of Y, evaluate what is the reasonable decision to make based on the figure. Although this
alternative might not apply for all contexts, it can completely sidestep the issue of choosing
Y in some clear-cut cases, such as the one presented in subsection 4.2.3.





43

CHAPTER

4
APPLICATIONS

This section details multiple applications of the NPHT, covering different hypothesis
types and dissimilarity functions. For all nonparametric tests, the method chosen for H(·) was the
Pólya tree process (LAVINE, 1992; LAVINE, 1994), even though any other method (frequentist
or Bayesian) that draws from H based on data is valid. This prior process has all the desirable
properties presented at subsection 3.2.3 (adaptability, generality and scalability) and possesses the
attribute of conjugacy as well, justifying its choice. We mention, however, that such process has
an infinite number of parameters, so the partially specified Pólya tree introduced in section A.4
was used instead. Since it is possible to control how close it can get to the true process, this caveat
was not considered to be particularly detrimental.

4.1 Application 1: Neuron Data Analysis

This application is meant as an illustrative example of the use of NPHT and does not
necessarily reflect the assumptions and procedures of neuroscientists. Rather, it uses the context
of neurons to derive tests that adhere to the limitations proposed in this thesis and to demonstrate
how to deal with practical issues that may arise throughout the analysis. The data used is publicly
available and can be accessed through the original article (FARAUT et al., 2018).

In the original dataset, 42 human epilepsy patients were exposed to a series of experiments
where pictures of different settings were used as stimuli. For each patient, their brain activity on
the amygdala and hippocampus during the experiments was recorded through the use of depth
electrodes, which allowed for the identification of clusters of activity, which were assumed to
be of individual neurons. When combining all patients, a total of 1576 individual neurons were
identified.

For each neuron, the dataset provides timestamps (in microseconds) for each time its
activity spiked throughout a given experiment (the same experiment could be performed in
multiple sessions, so we use the notation “a-b” to represent session b of experiment a). Thus,
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two questions that naturally arise are: 1. how to model the spiking behavior and 2. if the neuron
activity is the same across experiments (i.e., if the spiking frequency is affected by the type of
picture being shown to the patient). Since neuron spikes through time are a type of counting
process, a Poisson process such as presented in Example 1 seems like a valid candidate. And,
as for the spike frequency between experiments, evaluating if the same neuron keeps the same
distribution function when exposed to different experiments might be too strict. Rather, it seems
better to check if the median time between spikes (to avoid the influence of outliers) is consistent
throughout experiments.

For both tests, we first need to choose a model H(·) that can adapt to the data. As was
mentioned at the beginning of the chapter, a Pólya tree process (LAVINE, 1992; LAVINE, 1994)
will be used, but there is still a need to establish a distribution that will be used as its starting
point. As Figure 3 shows, the mean of the time between spikes for each combination of neuron
and experiment varies considerably, so trying to come up with a “one-size-fits-all” centering
distribution is ill-advised. Instead, we chose to do the following: for each neuron, an experiment
is selected at random and removed from the original sample to inform about the centering
distribution. We used a gamma distribution and the maximum likelihood estimator based on such
data for its parameters.

Figure 3 – Histogram of the mean of the time between spikes (log scale)

Since this application is meant to be illustrative rather than exhaustive, we restricted the
analysis to a single neuron between multiple experiments. The chosen neuron was the one with
index “2494” due to it having a high number of experiments applied (8 in total) and a reasonably
high sample size in each experiment (minimum of 693, maximum of 2691). Figure 4 shows the
estimated density (no model applied yet) for each experiment. This plot alone already puts the
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assumption of a Poisson process into question, since some cases exhibit a bimodal behavior with
peaks not that close to 0.

Figure 4 – Density of the time between spikes of neuron “2494” for each experiment

4.1.1 First test: Poisson process

If 𝑋 is the random variable that represents the time between spikes, then

𝐻0 : The data follows a Poisson process ⇐⇒ 𝐻0 : 𝑋 𝑖𝑖𝑑∼ 𝐸𝑥𝑝(_),_ ∈ R+.

This hypothesis offers a parametrical restriction (subsubsection 3.2.2.1), which implies that the
pragmatic hypothesis is given by

𝑃𝑔(𝐻0) =
{
𝐹 ∈ F : inf

_∈R+
𝑑 (𝐺_, 𝐹) < Y

}
.

Then, we chose the classification dissimilarity (Equation 3.6) and sampled 500 distribu-
tions for each experiment. Then, for each distribution, we found the value for _ that minimized the
dissimilarity function. As for Y, instead of choosing it directly, we fixed 𝛼 = 0.05 and evaluated
what value Y should take to avoid the rejection of 𝐻0. Table 4 shows that this would require a value
of Y of over 0.6, which means that we would be able to correctly identify the true distribution of
a new observation 60% of the time, a considerably high number.

Experiment 70-2 71-2 74-2 80-1 80-2 81-1 81-2 210-1
Y 0.7875 0.7690 0.6950 0.7820 0.7895 0.7495 0.6005 0.7900

Table 4 – Minimum value of Y needed to not reject 𝐻0 (𝛼 = 0.05).
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4.1.2 Second test: Median of time between spikes

Since this second test is a particular case of Example 2 (𝑝0 = 0.5), the testing procedure
itself is rather straightforward, with only two challenges remaining: what value to assume for
𝑥0 and how to derive a minimally adequate proposal for Y (unlike subsection 4.1.1, there is no
clear intuition of what values of the dissimilarity function could be considered “too large”).
For the former, we use once again the experiment that was removed from the original data,
which provides a sample median of around 0.1787 second between spikes, implying that the null
hypothesis can be expressed approximately as

𝐻0 : 𝐺 (0.1787) = 0.5, 𝐺 ∈ F.

As for the latter, we follow the second suggestion of section 3.3 and derive a lower bound for Y
based on cases which are sure to be indistinguishable in practice.

To obtain such lower bound, we use the fact that a neuron spike typically lasts for 1
millisecond, thus no spike could happen in that interval (this is corroborated by the fact that,
in the whole dataset, the minimum time observed between spikes is 0.0016 second, i.e, 1.6
milliseconds). Thus, by proposing two distribution functions, 𝐹𝐴 and 𝐹𝐵, that can reasonably
represent the data and whose difference could be attributed to the 1 millisecond threshold, it
would then be possible to obtain the lower bound for Y by taking 𝑑1(𝐹𝐴, 𝐹𝐵).

Since in subsection 4.1.1 we were led to reject the hypothesis that the time between spikes
is exponential, we model 𝐹𝐴 and 𝐹𝐵 based on gamma distributions. Even though, as shown in
Figure 4, part of the data presents a bimodal distribution, we judged that this behavior was not
so severe as to invalidate the gamma density as an approximation. Then, if 𝑡𝑜𝑙 = ±0.001 (the
tolerance between spikes is of 1 millisecond), the following procedure was used:

1. Take 𝐴 ∼ 𝐺𝑎𝑚𝑚𝑎(�̂�, 𝛽), where �̂� and 𝛽 are the maximum likelihood estimates obtained
from the experiment that was removed from the sample;

2. Take 𝐵 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼∗, 𝛽∗) such that E[𝐵] = E[𝐴] + 𝑡𝑜𝑙 (i.e., the means differ by at most 1
millisecond) and V[𝐵] = V[𝐴] (i.e., the variance is not affected);

3. Obtain 𝑑1(𝐹𝐴, 𝐹𝐵) for all possible tolerance values and take the greatest result as the lower
bound for Y.

Such procedure implies that 𝛽∗ = 𝛽 + 𝑡𝑜𝑙 × (𝛽2/�̂�) and 𝛼∗ = �̂� × (𝛽∗/𝛽) + 𝑡𝑜𝑙 × 𝛽∗. With this
information at hand, the lower bound obtained is of about 0.00101, quite close to the tolerance
we started with in the first place.

As Table 5 shows, experiment 81-2 seems to be the one that more closely adheres to
the null hypothesis, requiring 𝛼 ≥ 0.126 to lead to the rejection of 𝐻0, which implies that it
should not be rejected. All other experiments seem to lean towards the rejection of 𝐻0, with the
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Experiment Sample size Sample median 𝛼 for rejecting 𝐻0
70-2 693 0.1651 0.020
71-2 2388 0.1668 0.000
74-2 1834 0.1718 0.014
80-1 2487 0.0693 0.000
80-2 1919 0.1601 0.000
81-1 2691 0.0785 0.000
81-2 1547 0.1793 0.126
210-1 2279 0.0795 0.000

Table 5 – Comparison between experiments based on the sample median and the smallest value of 𝛼 that
would lead to the rejection of 𝐻0.

conclusion of experiments 70-2 and 74-2 being conditional on the choice of 𝛼 (if 𝛼 = 0.01, both
would not be rejected). This seems to be due to the fact that their sample medians are not that
distant from the one in 𝐻0 and their sample sizes are smaller than most of the others (notice
how the value of 𝛼 for experiment 70-2 is bigger than the one for experiment 74-2, even though
the latter has a sample median closer to 𝐻0. This indicates that the higher value of 𝛼 in 70-2
is a consequence of its smaller sample size, that there is still great uncertainty on the function
generating process H(𝒙)).

In general, Table 5 points out that there really is a difference on neuron spikes based on
the experiment being performed. Still, in some cases, there could be an equivalence between
tests for a given neuron, which in turn could suggest that some procedures are redundant and
could be eliminated without a significant loss of information, saving time and resources.

4.2 Application 2: The Water Droplet Experiment

The free falling water droplet experiment (DUGUID, 1969) was a study that seeked to
evaluate the behavior of small water droplets (ranging from 3 to 9 micrometers) as they fall
through a tube. More specifically, one of the main interests of the research was to test the validity
of Fick’s law of diffusion in a controlled setting. In this particular case, the law posits that, as
the droplet falls through the drift tube, its radius decreases linearly through time. Of course,
controlling all other variables is essential to ensure that the effect is genuinely described. Thus, to
ensure that all other factors of influence remain constant throughout the experiment, the apparatus
shown in Figure 5 was used.

The top part of the apparatus (diffusion cloud chamber) is responsible for generating
droplets within the specified radius of interest. To produce the droplets, the inside of the apparatus
requires humidity and air particles. However, the particles should not be too big, or else the
droplets will become too contaminated by them. Thus, room air is pumped into the apparatus
through the nuclei inlet, but only particles small enough to pass through the filter actually get
inside, reducing the contamination. As for the humidity, a humidifier was inserted at the bottom
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Figure 5 – Drop generator and drift tube (Source: Duguid (1969))

of the apparatus.

Once the droplet is formed, the sliding door is opened, letting the water fall through the
drift tube. To ensure that temperature variations do not influence the observations, the apparatus
was put on a water bath with constant temperature.

As the droplet falls, a camera takes pictures of the apparatus every 0.5 second. Since this
was not enough to infer the actual position of the drop, a grid with precise measurements was put
in front of the apparatus so as to be used as a ruler and provide an estimate. This, of course, is
a source of measurement error, leading to an error of around 𝛿 = ±0.07 for Δ𝑆, the change in
position between picture frames.

We highlight the fact that, although the main interest resides in retrieving the radius of
the droplet as it falls, it was never directly observed in the experiment. To actually obtain it,
Stokes’ law was applied, which asserts that

𝑉𝑇 =
𝑎2

𝐾𝑠
=⇒ 𝑎 =

√︁
𝑉𝑇𝐾𝑠, (4.1)
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where 𝑉𝑇 is the terminal velocity of the object, 𝑎 is the radius and 𝐾𝑠 is a known constant that
depends on factors such as temperature and humidity. This is not a serious issue, since the Stokes’
law adequately works for small objects such as the droplets of the experiment. Hence, we assume
that the formula holds true for this case.

This does not mean, however, that using (4.1) was enough to provide a trustworthy
estimate of the radius. In the experiment of Duguid (1969), the mean velocity (𝑉𝑀 = Δ𝑆

Δ𝑡
= 2Δ𝑆)

was used instead of the terminal velocity, leading to yet another source of measurement error.
Unfortunately, no estimate of this error was provided in the original paper.

With all these caveats in mind, Table 6 provides the data of a single water droplet as it
falls. In this particular case, 𝐾𝑠 = 8.446.

Table 6 – Data for an evaporating water droplet (Source: Duguid (1969))

Film frame Position of drop (𝑆, in mm) Δ𝑆 Elapsed time (sec)
1 4.7 NA 0
2 8.1 3.4 0.5
3 11.5 3.4 1
4 14.5 3.0 1.5
5 17.4 2.9 2
6 19.9 2.5 2.5
7 22.4 2.5 3
8 24.6 2.2 3.5
9 26.6 2.0 4
10 28.5 1.9 4.5
11 30.1 1.6 5
12 31.5 1.4 5.5
13 32.8 1.3 6
14 33.8 1.0 6.5
15 34.6 0.8 7

4.2.1 Margin of error of the experiment

Now that the experiment has been fully described, it is necessary to identify a margin
of error for the radius of the droplet. As it was mentioned, the two main sources of error are in
the estimation of Δ𝑆 and in exchanging 𝑉𝑇 for 𝑉𝑀 in Stokes’ law. If 𝑇 = {0,0.5, · · · ,6.5,7} and
[ = max𝑡∈𝑇 |𝑉𝑇 (𝑡) −𝑉𝑀 (𝑡) |, then it follows from Equation 4.1 that

𝑎(𝑡) =
√︁
𝐾𝑠𝑉𝑇 (𝑡) =

√︁
𝐾𝑠 (𝑉𝑀 (𝑡) ±[) =

√︁
𝐾𝑠 (2Δ𝑆(𝑡) ± 𝛿) ±[). (4.2)

If �̂�(𝑡) =
√︁

2𝐾𝑠Δ𝑆(𝑡) is our estimate of the radius at time 𝑡 ∈ 𝑇 , the margin of error for the radius
is Y = max𝑡∈𝑇 |𝑎(𝑡) − �̂�(𝑡) |. Thus, the only remaining element left to be identified is [.

The terminal velocity 𝑉𝑇 is the instantaneous velocity of the droplet, which in turn is
the derivative of the drop’s position through time. Hence, 𝑉𝑇 = 𝑑𝑆

𝑑𝑡
, which means that using a
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method that is capable of estimating derivatives should shed light on what would be a reasonable
margin of error. In this case, we follow the ideas presented in Wang and Lin (2015), which use
symmetric differences of the response and the explanatory variable as a new response variable
and apply locally weighted least squares regression to provide the estimate. For a fixed moment
in time, 𝑘 symmetric differences are calculated and used to estimate the derivative. In our case,
due to the small sample and the suggestion in Wang and Lin (2015) that 𝑘 < 𝑛/4, we opted to
use 𝑘 = 4. From this choice, it follows that the first and last 𝑘 derivatives need to be calculated
through a slightly different method due to lack of data. This change results in poorer estimates,
which, along with the fact that the sample size is small for our case, suggests that they should not
be as highly regarded as the estimates in the middle.

Table 7 shows the respective errors for both |𝑉𝑇 (𝑡) −𝑉𝑀 (𝑡) | and |𝑎(𝑡) − �̂�(𝑡) |. Since the
method proposed by Wang and Lin (2015) results in poorer estimates at the boundaries, the
first and last 𝑘 estimates were disregarded in the analysis, so [ = max𝑡∈𝑇 |𝑉𝑇 (𝑡) −𝑉𝑀 (𝑡) | ≃ 0.356.
Then, by plugging 𝛿 and [ in |𝑎(𝑡) − �̂�(𝑡) |, we observed the highest value for each 𝑡 ∈ 𝑇 , which
then shows that Y = max𝑡∈𝑇 |𝑎(𝑡) − �̂�(𝑡) | ≃ 0.622. This means that, for practical purposes, any
difference between radius below 0.622 micrometer is negligible for the analysis.

Table 7 – Margin of error for each 𝑡 ∈ 𝑇

Film frame 𝑉𝑀 = 2Δ𝑆 |𝑉𝑇 (𝑡) −𝑉𝑀 (𝑡) | |𝑎(𝑡) − �̂�(𝑡) | Elapsed time (sec)
1 NA NA NA 0
2 6.8 0.779 0.281 0.5
3 6.8 1.186 0.281 1
4 6.0 0.836 0.300 1.5
5 5.8 0.051 0.306 2
6 5.0 0.356 0.330 2.5
7 5.0 0.028 0.330 3
8 4.4 0.164 0.354 3.5
9 4.0 0.149 0.372 4
10 3.8 0.095 0.382 4.5
11 3.2 0.104 0.419 5
12 2.8 1.143 0.451 5.5
13 2.6 0.893 0.470 6
14 2.0 1.064 0.545 6.5
15 1.6 1.057 0.622 7

To end the discussion of this subsection, it is valid to ask why we do not use the estimated
𝑉𝑇 instead of 𝑉𝑀 . Some of the reasons are:

• 𝑉𝑇 has not been directly observed, while 𝑉𝑀 has

• Due to the small sample size, the estimates of 𝑉𝑇 are questionable, especially at the
boundaries. Using 𝑉𝑇 could result in an even smaller sample.
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• This change would provide a different setting than the one in Duguid (1969), which is our
reference.

4.2.2 First test: validity of Fick’s law

The first test consists of a parametric pragmatic test, so the methods presented in Chapter 2
apply in this case. In the context of the application, we assume that the data can be correctly
described by a polynomial model of, at most, degree 𝑝. And, since we are interested in testing
the validity of Fick’s law for this case, i.e., that the data could be described by a line, then

𝑎(𝑡) =
𝑝∑︁
𝑖=0

𝛽𝑖𝑡
𝑖 + 𝜖 (𝑡), 𝜖

𝑖𝑖𝑑∼ 𝑁 (0,𝜎2) =⇒ 𝐻0 : 𝛽2 = 𝛽3 = · · · = 𝛽𝑝 = 0.

This implies that, if𝐻0 is true, (𝜷0,𝜎0) = (𝛽0, 𝛽1, 𝛽2, · · · , 𝛽𝑝,𝜎0) ∈Θ0 =R
2×{0}𝑝−1×R+.

Then, the pragmatic hypothesis based on 𝐻0 should be such that, for all 𝑡 ∈ 𝑇 , the predictive
dissimilarity between any (𝜷0,𝜎0) ∈ Θ0 and a candidate (𝜷∗,𝜎∗) ∈ Θ should not surpass a
threshold a, i.e.,

𝑃𝑔(𝐻0) =
⋃

(𝜷0,𝜎0)∈Θ0

{
(𝜷∗,𝜎∗) ∈ Θ : max

𝑡∈𝑇
𝑑𝑍 [(𝑡, 𝜷0,𝜎0), (𝑡, 𝜷∗,𝜎∗)] ≤ a

}
. (4.3)

Hence, to identify 𝑃𝑔(𝐻0) and propose a testing procedure, the challenge is then to choose a
predictive dissimilarity function that could allow us to relate a and Y.

Definition 5. (ESTEVES et al., 2019) Let �̂� : Θ→X, where X represents all possible future
observations, be such that �̂�(\0) is the best prediction for 𝒁 given that \ = \0. For example, one
can take

�̂�(\0) = argmin
𝒛∈Z

𝛿𝒁,\0 (𝒛),

where 𝛿𝒁,\0 : X → R is such that 𝛿𝒁,\0 (𝒛) measures how bad 𝒛 predicts 𝒁 when \ = \0. The “best
prediction dissimilarity”, 𝐵𝑃𝒁 (\0, \

∗), measures how badly �̂�(\∗) predicts 𝒁 relatively to �̂�(\0)
when \ = \0. Formally,

𝐵𝑃𝒁 (\0, \
∗) = 𝑔

(
𝛿𝒁,\0 ( �̂�(\∗)) − 𝛿𝒁,\0 ( �̂�(\0))

𝛿𝒁,\0 ( �̂�(\0))

)
, (4.4)

where 𝑔 :R→R is a monotonic function. The choice of 𝑔 in a particular setting aims at improving
the interpretation of the best prediction dissimilarity criterion.

In particular, for the univariate case, if 𝑔(𝑥) =
√
𝑥, 𝛿𝑍,\0 (𝑧) = E[(𝑍 − 𝑧)2 |\ = \0] and 𝑍 is

Gaussian, then (4.4) simplifies to

𝐵𝑃𝑍 (\0, \
∗) = 𝜎−1

0 |\0 − \∗ |. (4.5)
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The best prediction dissimilarity, also known as 𝐵𝑃, allows one to evaluate differences
between predictions of the response variable directly. Then, based on Equation 4.5, for a fixed
𝑡, 𝜷0,𝜎 and 𝜷∗,

𝐵𝑃𝑍 [(𝑡, 𝜷0,𝜎0), (𝑡, 𝜷∗,𝜎∗)] = 𝜎−1
0 | (𝜷0 − 𝜷∗)′𝒕𝑝 | ≤ 𝜎−1

0 Y,

where 𝒕𝑝 = (1, 𝑡, 𝑡2, · · · , 𝑡 𝑝)′. This implies that, if a = 𝜎−1
0 Y, then Equation 4.3 simplifies to

𝑃𝑔(𝐻0) =
⋃

𝜷0∈𝐻0

{
(𝜷∗,𝜎∗) ∈ Θ : max

𝑡∈𝑇
| (𝜷0 − 𝜷∗)′𝒕𝑝 | ≤ Y

}
. (4.6)

Given that the model consists of a polynomial regression with normally distributed errors,
the MLE and its probability distribution is known. If

𝑇𝑝 = ((1,0.5,0.52, · · · ,0.5𝑝)′, (1,1,12, · · · ,1𝑝)′, · · · , (1,7,72, · · · ,7𝑝)′)′,

𝐻 = (𝑇 ′
𝑝𝑇𝑝)−1𝑇 ′

𝑝 and 𝒂 is the vector of the response variable (radius of the droplet), then �̂� = 𝐻𝒂

is the MLE of 𝜷 and

�̂� ∼ 𝑁𝑝+1
[
𝜷,𝜎2(𝑇 ′

𝑝𝑇𝑝)−1] ⇒ ( �̂�− 𝜷0)′𝒕𝑝 ∼ 𝑁
[
(𝜷− 𝜷0)′𝒕𝑝,𝜎2 𝒕′𝑝 (𝑇 ′

𝑝𝑇𝑝)−1 𝒕𝑝
]

(4.7)

Thus, for a fixed 𝜷0 and a confidence level of 1−𝛼, the confidence interval is

𝐶𝐼 [(𝜷− 𝜷0)′𝒕𝑝] (1−𝛼) = (𝐻𝒂− 𝜷0)′𝒕𝑝 ± 𝑞𝑡 (𝛼/2, 𝑛− (𝑝 +1))
√︃
�̂�2 𝒕′𝑝 (𝑇 ′

𝑝𝑇𝑝)−1 𝒕𝑝, (4.8)

where 𝑞𝑡 (., 𝑛− (𝑝 +1)) is the quantile function of the Student’s-t distribution with 𝑛− (𝑝 +1)
degrees of freedom and �̂�2 is the MLE of 𝜎2. With this information in mind, we can then derive
an agnostic test that will:

• Accept 𝐻0 if ∃𝜷0 ∈ 𝐻0 such that 𝐶𝐼 [(𝜷− 𝜷0)′𝒕𝑝] (1−𝛼) ⊆ [−Y, Y], ∀𝑡 ∈ 𝑇 ;

• Remain agnostic about 𝐻0 if the above condition is not true, but ∃𝜷0 ∈ 𝐻0 such that
𝐶𝐼 [(𝜷− 𝜷0)′𝒕𝑝] (1−𝛼) ∩ [−Y, Y] ≠ ∅, ∀𝑡 ∈ 𝑇 ;

• Reject 𝐻0 if, ∀𝜷0 ∈ 𝐻0 and 𝑡 ∈ 𝑇 , 𝐶𝐼 [(𝜷− 𝜷0)′𝒕𝑝] (1−𝛼) ∩ [−Y, Y] = ∅.

Of course, 𝜷0 ∈ 𝐻0 represents an infinite set of pairs (𝛽0, 𝛽1) ∈ R2, which could be
complex to evaluate in the test. Some possible solutions are:

• Reduce the complexity of the problem by evaluating the test only for �̂�0, i.e., the MLE of
the model under 𝐻0.
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• Use the context of the problem to derive a grid of reasonable values of (𝛽0, 𝛽1). In the
case of the experiment, given that we know that the radius of the droplet ranges between
3-9 micrometers and that it only decreases through time, we could check the hypothesis
only for a grid of (𝛽0, 𝛽1) that does not result in unreasonable values. Thus, 𝛽0 ∈ [3,9] and
𝛽1 ∈ [−𝛽0/max(𝑡),0] = [−𝛽0/7,0].

• For a large enough 𝑀 , sample 𝑀 values from the distribution of �̂�0 and check the result for
each of them. Since they are all reasonable candidates of the true 𝜷0, these comparisons
should be enough to get to a trustworthy statement.

In our case, using the first strategy was enough, since it led to the acceptance of the null
hypothesis. Figure 6 shows the confidence interval for each value of 𝑡 ∈ 𝑇 when 𝜷0 = �̂�0. Since
no interval leaves the tolerance region (which is represented by the blue area), we can safely
accept the hypothesis that Fick’s law is valid for the water droplet experiment.

Figure 6 – Confidence interval for the mean difference between the MLE under 𝑝 = 3 and 𝑝 = 1 (the blue
area represents the tolerance region of [−Y, Y]).

As for the Bayesian case, if we take the noninformative prior 𝑝(𝜷,𝜎2) ∝ 𝜎−2, then

𝜷|𝜎2, 𝒂,𝑇𝑝 ∼ 𝑁𝑝+1

(
�̂�,𝜎2(𝑇 ′

𝑝𝑇𝑝)−1
)
⇒ (𝜷− 𝜷0)′𝒕𝑝 |𝜎2, 𝒂,𝑇𝑝 ∼ 𝑁

(
( �̂�− 𝜷0)′𝒕𝑝,𝜎2 𝒕′𝑝 (𝑇 ′

𝑝𝑇𝑝)−1 𝒕𝑝
)
,

which implies that, by integrating 𝜎 out, we conclude that

(𝜷− 𝜷0)′𝒕𝑝 − ( �̂�− 𝜷0)′𝒕𝑝√︃
�̂�2 𝒕′𝑝 (𝑇 ′

𝑝𝑇𝑝)−1 𝒕𝑝

����𝒂,𝑇𝑝 ∼ 𝑡𝑛−(𝑝+1) .
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Hence, for this prior choice, both the frequentist confidence interval and the Bayesian credible
interval coincide in its values, leading then to the same conclusion in both cases. This is interesting
because it shows that it is possible to simply use this procedure to derive conclusions no matter
which Statistics’ school of thought the researcher adheres to.

4.2.3 Second test: residual normality

After subsection 4.2.2, in which the hypothesis that the droplet radius decreases linearly
through time was accepted, it is time to test the validity of different aspects of the model, such
as the normality of the residuals. This is a case of NPHT, since our hypothesis of interest
is 𝐻0 : 𝜖 ∼ 𝑁 (0,𝜎2),𝜎2 ∈ R+. It is a clear case of a parametrical restriction as presented in
subsubsection 3.2.2.1, so all that remains to be done is to choose a dissimilarity function, a prior
process and a threshold Y.

For this context, we opted to use the classification dissimilarity specified in Equation 3.6
and a Pólya tree process with the centering distribution being a Student-t with 3 degrees of
freedom. The first choice was due to the intuitive appeal of the classification dissimilarity, while
the second was because such centering distribution provides longer tails while having a variance
of 1 (this is a controlled experiment, so it is natural to assume that the variance of the variable is
relatively small).

Figure 7 – Decision region for 𝐻0 as a function of 𝛼 and 𝜖

Figure 7 shows the decision region as a function of 𝛼 and Y. As it can be seen, rejecting 𝐻0

would require 𝛼 to be around 0.2, which is considerably high. As for accepting 𝐻0, a considerably
high Y would be required to reach this conclusion for a reasonable 𝛼. The figure shows that,
if 𝛼 = 0.08, we would only accept the hypothesis if we were willing to correctly identify the
data generating process above 70% of the time. Thus, remaining agnostic seems to be the most
reasonable conclusion in this case, which makes sense due to the fact that the sample size is
rather small.
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4.3 Application 3: Pseudorandom Number Generators

Pseudorandom number generators (PRNG) are methods that allow the user to draw
numbers that behave similarly to a truly random number generator (RNG). In general, the
objective of such procedures are to generate numbers that closely resemble those of a𝑈 (0,1),
due to the fact that transforming these results allow for draws similar to those of many other
distributions. Using PRNG instead of RNG is usually due to two factors: reproducibility of the
results and that PRNG can draw numbers considerably faster than RNG.

Since PRNG are by design deterministic, it is of utmost importance to ensure that they
provide results considerably similar to a true 𝑈 (0,1), especially when it comes to correlated
results. Thus, this section proposes to compare how similar different procedures are, i.e., if one
procedure generates a sample 𝑿 and the other generates a sample 𝒀 , we wish to test if 𝐺𝑋 = 𝐺𝑌 .
This procedure is exactly the one described in Example 3.

(a) 𝑛 = 500 (b) 𝑛 = 1000

(c) 𝑛 = 2500 (d) 𝑛 = 5000

Figure 8 – Decision region of the comparison between pseudorandom number generators at different
sample sizes

Figure 8 shows the decision region when comparing the Mersenne-Twister and the
Marsaglia-Multicarry methods for different sample sizes. We once more used a Pólya tree process,
this time centered around a𝑈 (0,1). As for the distance function, we simply subtracted 0.5 to the
classification dissimilarity. It is clear that, as the sample size increases, the agnostic region gets
smaller, but also that there always seem to remain a difference between the two methods. Thus, if
one had a sample of a truly uniform distribution available, they could use this procedure as yet
another method of testing how trustworthy a given PRNG is.
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CHAPTER

5
CONCLUSION AND FUTURE WORK

Agnostic tests and pragmatic hypotheses offer a new paradigm for hypothesis testing, one
that is simultaneously theoretically defensible and adaptable to practical settings. In particular, the
NPHT (its nonparametric counterpart) has already shown promising results, offering adaptations
to tests that are widely used throughout the literature. Still, since this field of research is relatively
recent, there are still many gaps to be filled, which are the next steps this research intends to take.

Throughout Chapter 4, figures of the decision region were used to derive conclusions
about each agnostic test. Of course, if a confidence/credible level 𝛼 and a threshold Y are already
set, such figures are unnecessary, since there can be a clear-cut conclusion. Still, we find such
visualizations compelling, since they provide a more complete picture of the test being performed.
In cases such as Figure 7, the agnostic region was so wide that the only reasonable conclusion
seemed to be to remain agnostic. This implies that, to reach a more assertive decision, one should
collect more data, repeat the experiment or change the centering distribution of the prior process
(this third option is not ideal, since it could be seen as meddling with the test to achieve a desired
result). However, if for some reason one must achieve an assertive result (either rejecting or
accepting 𝐻0) without changing attributes of the test, then it is a matter of deciding which factor
is worth sacrificing more, 𝛼 or Y.

So far, all of the proposed tests were able to tackle issues (i) and (iii), while only partially
dealing with (ii). This is due to the fact that logical coherence can only be ensured if, instead of
proposing intervals for infℎ∈𝐻0 𝑑 (ℎ,H(𝒙)), we were able to devise intervals for H(𝒙) directly.
Even in simpler cases such as H(𝒙) = 𝐹 |𝒙, where 𝐹 is a Pólya tree process, proposing credible
bands for such process requires finding distribution functions 𝐹𝐿 and 𝐹𝑈 such that, for a specific
a,

P
(
𝐹𝐿 (𝑦) ≤ 𝐹𝑌 |𝒙 (𝑦) ≤ 𝐹𝑈 (𝑦),∀𝑦 ∈ X

)
= a.

This is the natural next step of the research, since solving issue (ii) completely has the potential
to make such methods even more appealing.
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Another direction the research should follow is to delve deeper into theories that may
help generalize the procedures even further. As was evident throughout subsubsection 3.2.2.2,
there are still many tests which have not yet been explored, since the theory still lacks general
guidelines. Promising areas that should help close these gaps, even if applicable in a limited
set of problems, are functional analysis (KREYSZIG, 1978) and entropy methods (ABBAS;
CADENBACH; SALIMI, 2017).

Lastly, frequentist methods still need to be proposed and evaluated for this context.
Bayesian nonparametrics, while useful, is certainly not the only available method for drawing
distributions based on data. One of the greatest advantages of the procedures proposed in this
paper is that they work no matter the method used to sample distributions from. Thus, as long as
one can draw distribution functions, either through frequentist or Bayesian methods, all tests
should work exactly as intended. Cases where the context demands multivariate models are of
special interest, given that only univariate solutions have been developed so far.
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APPENDIX

A
PÓLYA TREE PROCESS

This section is based on the results presented in Lavine (1992) and Lavine (1994).
However, the notation used follows more closely that of Holmes et al. (2015), since it is better
suited for the context of density estimation. It is important to remind that, since the Pólya Tree is
a nonparametric prior, the distribution function is a random variable itself and, in this particular
case, requires an infinite number of parameters. Thus, in order to sample from the data, one must
either obtain a fixed distribution first or integrate the parameters out.

A.1 Formalization of the Model

In order to fully specify the model, we first need to establish the set Π of probability
measures of interest. In the case of the Pólya tree, Π is a collection of separable binary trees of
partitions of Ω, the sample space. This means that, at the 𝑚-th level of the partition, we have a
collection of sets {𝐵(𝑚)

𝑖
; 𝑖 = 0, · · · ,2𝑚 −1} such that

2𝑚−1⋃
𝑖=0

𝐵
(𝑚)
𝑖

= Ω; 𝐵
(𝑚)
𝑖

∩𝐵(𝑚)
𝑗

= ∅,∀𝑖 ≠ 𝑗 ; 𝐵
(𝑚)
𝑖

= 𝐵
(𝑚+1)
2𝑖 ∪𝐵(𝑚+1)

2𝑖+1 .

Figure 9 provides an example of such partitions. Take the blue dot as the point that divides
the sample space, providing a partition. Once the sample space has been split, the point that splits
the set in two persists at all following levels. Then, at the first level, there is a single partition,
providing two interval sets that represent the sample space. At the second level, there are four
sets. At the third level, there are eight sets, and so on.

From now on, we’ll represent the subsets of Ω through base 2, allowing us to drop the
superscript. Thus, 𝐵0 represents the first set at the first level, 𝐵11 the fourth and last set of the
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Figure 9 – Partition Example

second level, 𝐵010 the third set of the third level and so on. Let 𝐵∅ = Ω and take

𝐸 = {0,1}, 𝐸𝑚 =

𝑚 times︷       ︸︸       ︷
𝐸 × · · · ×𝐸 = {0,1}𝑚, 𝐸0 = ∅, 𝐸∗ =

∞⋃
𝑚=0

𝐸𝑚 .

Now, we can define the Pólya tree process.

Definition 6. Lavine (1992). Let Π be a collection of separable binary trees of partitions of Ω.
Take A = {𝛼𝝐 : 𝝐 ∈ 𝐸∗} and Θ = {\𝝐 : 𝝐 ∈ 𝐸∗}. Also take 𝝐𝑚 = {𝜖𝑚1, · · · , 𝜖𝑚𝑚} as the record of
the whole trajectory up to 𝑚, i.e., 𝜖𝑚𝑖 = 0 if, at the 𝑖-th layer, we chose the set on the left and
𝜖𝑚𝑖 = 1 if we chose the set on the right.

𝐹 is said to have a Pólya tree distribution with parameters (Π,A), i.e., 𝐹 ∼ 𝑃𝑇 (Π,A),
if the following conditions are satisfied:

1. All random variables in Θ are mutually independent;

2. For every 𝑚 ∈ {1,2, · · · } and every 𝝐𝑚 ∈ 𝐸𝑚, \𝝐𝑚 ∼ 𝐵𝑒𝑡𝑎(𝛼𝝐𝑚0, 𝛼𝝐𝑚1);

3. For every 𝑚 ∈ {1,2, · · · } and every 𝝐𝑚 ∈ 𝐸𝑚,

𝑃(𝐵𝝐𝑚 |Θ) =
𝑚∏
𝑖=1

(\𝝐 𝑖−1)𝜖𝑖𝑖 (1− \𝝐 𝑖−1)1−𝜖𝑖𝑖 .

In the case of the Pólya tree, it is allowed for \𝝐𝑚 to have a degenerate distribution
(𝛼𝝐𝑚0 = 0 or 𝛼𝝐𝑚1 = 0). In this case, one would choose the set on the left or on the right with
probability one.

A.2 Model Properties

One of the most important aspects of the Pólya tree is the fact that its posterior is conjugate.
Based on a sample 𝒙 = (𝑥1, · · · , 𝑥𝑛), let 𝑛𝝐𝑚 =

∑𝑛
𝑗=1 I(𝑥 𝑗 ∈ 𝐵𝝐𝑚), for all 𝑚 ∈ {1,2, · · · }, where I(.)
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is the indicator function. Then, we can ensure that

𝐹 |𝒙 ∼ 𝑃𝑇 (Π,A∗); A∗ = {𝛼∗𝝐 : 𝝐 ∈ 𝐸∗}; 𝛼∗𝝐𝑚 = 𝛼𝝐𝑚 +𝑛𝝐𝑚 . (A.1)

This shows one of the greatest advantages of the process, since it remains tractable and is
updated in a sequential manner. If any 𝛼𝝐𝑚 is updated by an observation, then, at the next level, it
suffices to check if 𝛼𝝐𝑚0 or 𝛼𝝐𝑚1 should be updated as well. The conjugacy of the model remains
valid even when the data is partially observed, that is, if it presents any sort of censoring or is only
known up to an interval. In such a case, only finitely many parameters would need to be updated.

Based on the conjugacy statement and given the fact that all parameters on Θ are mutually
independent, we can derive the distribution of 𝑿 = (𝑋1, · · · , 𝑋𝑛) either with a fixed set of Θ or
integrating Θ out. In this case,

𝑃(𝑋1 ∈ 𝐵𝝐𝑚1
, · · · , 𝑋𝑛 ∈ 𝐵𝝐𝑚𝑛

|Θ,Π,A) =
𝑛∏
𝑗=1
𝑃(𝑌 𝑗 ∈ 𝐵𝝐𝑚𝑗

|Θ,Π,A)

=

𝑛∏
𝑗=1

𝑚 𝑗∏
𝑖=1
\
𝑛𝝐 𝑖0
𝝐 𝑖 (1− \𝝐 𝑖 )𝑛𝝐 𝑖1;

(A.2)

𝑃(𝑋1 ∈ 𝐵𝝐𝑚1
, · · · , 𝑋𝑛 ∈ 𝐵𝝐𝑚𝑛

|Π,A) =
𝑛∏
𝑗=1

𝑚 𝑗∏
𝑖=1

[
Γ(𝛼𝝐 𝑖0 +𝛼𝝐 𝑖1)
Γ(𝛼𝝐 𝑖0)Γ(𝛼𝝐 𝑖1)

Γ(𝛼𝝐 𝑖0 +𝑛𝝐 𝑖0)Γ(𝛼𝝐 𝑖1 +𝑛𝝐 𝑖1)
Γ(𝛼𝝐 𝑖0 +𝑛𝝐 𝑖0 +𝛼𝝐 𝑖1 +𝑛𝝐 𝑖1)

]
.

The result in (A.2) highlights the intuition behind the Pólya tree. With a fixed Θ, an observation
behaves as a particle that falls throughout the tree. With probability \𝝐 𝑖 , it goes to the left side
and, with probability 1− \𝝐 𝑖 , it goes to the right side. Then, after repeating this process infinitely
many times, the end of the trajectory results in a new observation. Thus, Π and Θ represent a
fixed distribution function, providing sufficient information to sample from 𝑋 . One can expect
that, as 𝑛 grows large, the posterior of 𝐹 gets arbitrarily close to the true distribution of the
data. This is in fact the case, and the proximity argument can be proved in at least two different
contexts, as shown in Theorems 4 and 5:

Theorem 4. Lavine (1992). Let Ω = R and take 𝐺 as the true distribution function of the data.
Then, for any Y > 0 and any [ ∈ (0,1), there exists a Pólya tree process F such that

𝑃
©«
⋂
𝑦∈Ω

|𝐹 (𝑦) −𝐺 (𝑦) | < Yª®¬ > [.
Theorem 5. Lavine (1994). Let 𝐺 be a probability measure with probability density function
𝑔(·). For any Y > 0 and any [ ∈ (0,1), there exists a Pólya tree process F with density 𝑓 (·) such
that

𝑃

(
𝑒𝑠𝑠 sup

𝑦∈Ω

����log
(
𝑓 (𝑦)
𝑔(𝑦)

)���� < Y) > [.
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A.3 Centering Distribution and Partition Choice

Another feature of this prior process that differs from many others in the literature is the
fact that it allows for discrete, continuous and singular continuous random variables as input.
Based on results reproduced in Phadia (2016), the following choice for the parameters on A can
guarantee that, with probability one, the distribution function is of the same type as that of X:

For all 𝑚 ∈ {1,2, · · · }, 𝛼𝝐𝑚0 = 𝛼𝝐𝑚1 =


1

2𝑚 , if X is discrete;
1, if X is continuous singular;
𝑚2, if X is absolutely continuous.

(A.3)

With the information of (A.3) at hand, one can fully specify the parameters according to the type
of distribution function one seeks. Now, it is time to specify an adequate collection of partitions
to accomodate the prior uncertainty about the model.

Unlike other usual nonparametric priors, such as the Dirichlet process, the Pólya tree
process is considerably dependent on the chosen set of partitions, since an ill-chosen set can slow
down considerably the process of fitting the data. While this can be seen as a disadvantage, it
allows one to place greater weights on regions deemed appropriate, reaffirming the value of an
adequate prior.

We now turn our attention to the conditional distribution 𝐵𝝐𝑚 |𝐵𝝐𝑚−1 . For a fixed Θ, 𝐹 is
known and the conditional distribution is given by

𝐹 (𝐵𝝐𝑚 |𝐵𝝐𝑚−1 ,Θ) = (\𝝐𝑚−1)𝜖𝑚 (1− \𝝐𝑚−1)1−𝜖𝑚 . (A.4)

Thus, we can use (A.4) to obtain the expectation (expressed as E(.)) of the process:

E𝐹 [𝐹 (𝐵𝝐𝑚 |𝐵𝝐𝑚−1)] = EΘ{E𝐹 [𝐹 (𝐵𝝐𝑚 |𝐵𝝐𝑚−1 ,Θ)]} = EΘ
[
(\𝝐𝑚−1)𝜖𝑚 (1− \𝝐𝑚−1)1−𝜖𝑚 ]

=

(
𝛼𝝐𝑚−10

𝛼𝝐𝑚−10 +𝛼𝝐𝑚−11

)𝜖𝑚 (
𝛼𝝐𝑚−11

𝛼𝝐𝑚−10 +𝛼𝝐𝑚−11

)1−𝜖𝑚
=

1
2
,

(A.5)

since 𝛼𝝐𝑚0 = 𝛼𝝐𝑚1.

Based on (A.5), one can set a centering distribution 𝐹0 with a known quantile function
𝑞𝐹0 (.) and choose the partitions accordingly, such that 𝐹0(𝐵0) = 𝐹0(𝐵1) = 1

2 and, ∀𝑚 = {1,2, · · · },
𝐹0(𝐵𝝐𝑚0 |𝐵𝝐𝑚) = 𝐹0(𝐵𝝐𝑚1 |𝐵𝝐𝑚) = 1

2 . By setting partitions that guarantee that such a result is true,
we can then verify that E𝐹 (𝐹) = 𝐹0.

As an example, take 𝐹0 ≡ N(0,1), i.e., 𝐹0 is a standard normal distribution. Then, at the
first level, 𝐵0 = (−∞,0] and 𝐵1 = (0,∞), since 𝐹0(𝐵0) = 𝐹0(𝐵1) = 1

2 . Now, at the second level,
𝐵00, 𝐵01 must be such that

𝐹0(𝐵00) = 𝐹0(𝐵00 |𝐵0)𝐹0(𝐵0) =
1
4
⇒ 𝐵00 = (−∞, 𝑞𝐹0 (0.25)];

𝐹0(𝐵01) = 𝐹0(𝐵01 |𝐵0)𝐹0(𝐵0) =
1
4
⇒ 𝐵01 = (𝑞𝐹0 (0.25),0] .
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From the same argument, we conclude that 𝐵10 = (0, 𝑞𝐹0 (0.75)] and 𝐵11 = (𝑞𝐹0 (0.75),∞). The
partitions at the next levels abide by the same logic.

Figure 10 demonstrates the construction of the partitions for different centering distribu-
tions. It clearly shows the pivotal role of the choice of the distribution. Even in lower layers, the
partition sets are considerably diverse.

(a) Normal(0,1) (b) Gamma(2,2)

(c) Student’s t(5) (d) Beta(4,2)

Figure 10 – Partitions on the first five levels for different centering distributions

A.4 Partially Specified Pólya Tree

Now that the model is fully specified and its properties have been explored, it is time to
look at its limitations. Since the Pólya tree process possesses an infinite number of parameters, it
is simply impossible to update them all. (LAVINE, 1994) provides two arguments to defend the
updating of the parameters only up to a level 𝑀:

1. Pólya trees may be constructed so that the parameters in A rapidly increase at each level.
Then, given a sample of size 𝑛 and a margin of error, one could set 𝑀 levels to be updated
and ignore the deeper levels, as long as the error based on this choice does not surpass the
established margin.
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2. It is unreasonable to expect of a professional to be able to fully specify the Pólya tree
structure, especially on the tails. However, it could be reasonable to assume that it is
possible to specify finitely many parameters responsibly.

Even if one is not in full agreement with these arguments, it is still possible to use a Pólya
tree that is specified only up to a level 𝑀 , which is called a partially specified Pólya tree. Phadia
(2016) reproduces that, as a rule of thumb, one could take 𝑀 to be of order of approximately
log2(𝑛), where 𝑛 is the sample size. This alternative allows one to not only obtain a completely
specified posterior, but also to sample data from such posterior. If, after level 𝑀, one tries to
obtain a probability, it can be done by taking 𝐹 (𝐵𝝐𝑀+1 |𝐵𝝐𝑀 ) = 𝐹0(𝐵𝝐𝑀+1 |𝐵𝝐𝑀 ), i.e., as long as
one knows the truncated distribution of 𝐹0, obtaining a full probability distribution and sampling
are possible. In this case, the prior process is still such that E𝐹 (𝐹) = 𝐹0.
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APPENDIX

B
PROOFS

B.1 Quantile test

Theorem 1 (Quantile test). Take 𝐻0 : 𝐺 (𝑥0) = 𝑝0 as the null hypothesis, 𝐹 as a distribution
function and

𝑑 (𝐺,𝐹) =
∫ ∞

−∞
|𝐺 (𝑥) −𝐹 (𝑥) |𝑑𝑥

as the dissimilarity function. Then, if 𝑎 = min(𝐹−1(𝑝0), 𝑥0) and 𝑏 = max(𝐹−1(𝑝0), 𝑥0),

𝛿 = inf
𝐺∈𝐻0

𝑑 (𝐺,𝐹) = inf
𝐺∈𝐻0

∫ ∞

−∞
|𝐺 (𝑥) −𝐹 (𝑥) |𝑑𝑥 =

∫ 𝑏

𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥. (3.8)

Proof. The proof is done in parts.

• If 𝐹 (𝑥0) = 𝑝0, then inf𝐺∈𝐻0 𝑑 (𝐺,𝐹) =
∫ 𝑏

𝑎
|𝑝0 −𝐹 (𝑥) |𝑑𝑥 =

∫ 𝑥0
𝑥0

|𝑝0 −𝐹 (𝑥) |𝑑𝑥 = 0.

Subproof. This case is trivial. If 𝐹 (𝑥0) = 𝑝0, then 𝐹 ∈ 𝐻0. If that is the case,

inf
𝐺∈𝐻0

∫ ∞

−∞
|𝐺 (𝑥) −𝐹 (𝑥) |𝑑𝑥 =

∫ ∞

−∞
|𝐹 (𝑥) −𝐹 (𝑥) |𝑑𝑥 =

∫ ∞

−∞
0𝑑𝑥 = 0.

■

• If 𝐹 (𝑥0) < 𝑝0, then inf𝐺∈𝐻0 𝑑 (𝐺,𝐹) =
∫ 𝑏

𝑎
|𝑝0 −𝐹 (𝑥) |𝑑𝑥.

Subproof. We begin by highlighting the fact that, since 𝐹 (𝑥0) < 𝑝0, then 𝑎 = 𝑥0. Now, let
us define the probability function 𝐹∗(·) such that

𝐹∗(𝑥) =
{

𝑝0, if 𝑥 ∈ [𝑥0, 𝑏];
𝐹 (𝑥), otherwise.
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Thus, proving that the argument is true is equivalent to showing that

inf
𝐺∈𝐻0

𝑑 (𝐺,𝐹) = 𝑑 (𝐹∗, 𝐹), since 𝑑 (𝐹∗, 𝐹) =
∫ 𝑏

𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥.

The proof is done by contradiction. Suppose there exists a probability function 𝐹′ ∈ F such
that 𝐹′(𝑥0) = 𝑝0 and 𝑑 (𝐹∗, 𝐹) > 𝑑 (𝐹′, 𝐹). Then, it necessarily follows that∫ 𝑏

𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥 >
∫ 𝑏

𝑎

|𝐹′(𝑥) −𝐹 (𝑥) |𝑑𝑥.

After all, ∫ ∞

−∞
|𝐹′(𝑥) −𝐹 (𝑥) |𝑑𝑥 ≥

∫ 𝑏

𝑎

|𝐹′(𝑥) −𝐹 (𝑥) |𝑑𝑥,

so it should be guaranteed that 𝐹′(·) provides a smaller dissimilarity at [𝑎, 𝑏]. Then,∫ 𝑏

𝑎

|𝐹′(𝑥) −𝐹 (𝑥) |𝑑𝑥 =
∫ 𝑏

𝑎

| [𝐹′(𝑥) − 𝑝0] − [𝐹 (𝑥) − 𝑝0] |𝑑𝑥.

For 𝑥 ∈ [𝑎, 𝑏], 𝐹′(𝑥) ≥ 𝑝0 and 𝐹 (𝑥) ≤ 𝑝0. Then, [𝐹′(𝑥) − 𝑝0] ≥ 0 and −[𝐹 (𝑥) − 𝑝0] ≥ 0.
Thus, since [𝐹′(𝑥) − 𝑝0] − [𝐹 (𝑥) − 𝑝0] = |𝐹′(𝑥) − 𝑝0 | + |𝐹 (𝑥) − 𝑝0 |,∫ 𝑏

𝑎

|𝐹′(𝑥) −𝐹 (𝑥) |𝑑𝑥 =
∫ 𝑏

𝑎

|𝐹′(𝑥) − 𝑝0 | + |𝐹 (𝑥) − 𝑝0 |𝑑𝑥

=

∫ 𝑏

𝑎

|𝐹′(𝑥) − 𝑝0 |𝑑𝑥 +
∫ 𝑏

𝑎

|𝐹 (𝑥) − 𝑝0 |𝑑𝑥 ≥
∫ 𝑏

𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥,

which is a contradiction. Thus, inf𝐺∈𝐻0 𝑑 (𝐺,𝐹) =
∫ 𝑏

𝑎
|𝑝0 −𝐹 (𝑥) |𝑑𝑥. ■

• If 𝐹 (𝑥0) > 𝑝0, then inf𝐺∈𝐻0 𝑑 (𝐺,𝐹) =
∫ 𝑏

𝑎
|𝑝0 −𝐹 (𝑥) |𝑑𝑥.

Subproof. In this case, we highlight that, since 𝐹 (𝑥0) > 𝑝0, then 𝑏 = 𝑥0. We now define a
sequence (𝐹∗

𝑛 )𝑛≥1 of probability functions such that

𝐹∗
𝑛 (𝑥) =

{
𝑝0, if 𝑥 ∈ [𝑎,𝑥0 + 1

𝑛
);

𝐹 (𝑥), otherwise.

By construction, 𝐹∗
𝑛 ∈ 𝐻0,∀𝑛 ≥ 1 and

𝑑 (𝐹∗
𝑛 , 𝐹) =

∫ 𝑥0+ 1
𝑛

𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥 =
∫ 𝑥0

𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥 +
∫ 𝑥0+ 1

𝑛

𝑥0

|𝑝0 −𝐹 (𝑥) |𝑑𝑥,

which converges decreasingly to
∫ 𝑥0
𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥 as 𝑛→∞.

Once again, the proof follows by contradiction. Suppose there exists 𝐹′ ∈ F in 𝐻0 such that
inf𝐺∈𝐻0 𝑑 (𝐺,𝐹) = 𝑑 (𝐹′, 𝐹) ≠

∫ 𝑏

𝑎
|𝑝0 −𝐹 (𝑥) |𝑑𝑥. By a similar argument than the one in the

previous subproof,∫ 𝑏

𝑎

|𝐹′(𝑥) −𝐹 (𝑥) |𝑑𝑥 =
∫ 𝑏

𝑎

| [𝐹 (𝑥) − 𝑝0] − [𝐹′(𝑥) − 𝑝0] |𝑑𝑥

=

∫ 𝑏

𝑎

|𝐹 (𝑥) − 𝑝0 |𝑑𝑥 +
∫ 𝑏

𝑎

|𝐹′(𝑥) − 𝑝0 |𝑑𝑥 ≥
∫ 𝑏

𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥,
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which leads us to conclude that 𝑑 (𝐹′, 𝐹) >
∫ 𝑏

𝑎
|𝑝0−𝐹 (𝑥) |𝑑𝑥. Then, there exists [ > 0 such

that 𝑑 (𝐹′, 𝐹) =
∫ 𝑏

𝑎
|𝑝0 −𝐹 (𝑥) |𝑑𝑥 +[.

However, since 𝑑 (𝐹∗
𝑛 , 𝐹) −→

𝑛→∞

∫ 𝑏

𝑎
|𝑝0−𝐹 (𝑥) |𝑑𝑥, then for the same [ > 0 there exists 𝑛0 ∈ N

such that, for 𝑛 ≥ 𝑛0,����𝑑 (𝐹∗
𝑛 , 𝐹) −

∫ 𝑏

𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥
���� = 𝑑 (𝐹∗

𝑛 , 𝐹) −
∫ 𝑏

𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥 < [

⇒ 𝑑 (𝐹∗
𝑛 , 𝐹) <

∫ 𝑏

𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥 +[,

which contradicts the fact that inf𝐺∈𝐻0 𝑑 (𝐺,𝐹) = 𝑑 (𝐹′, 𝐹). Then, we conclude that
inf𝐺∈𝐻0 𝑑 (𝐺,𝐹) =

∫ 𝑏

𝑎
|𝑝0 −𝐹 (𝑥) |𝑑𝑥. ■

Based on each of the subproofs presented, we can safely conclude that

inf
𝐺∈𝐻0

𝑑 (𝐺,𝐹) =
∫ 𝑏

𝑎

|𝑝0 −𝐹 (𝑥) |𝑑𝑥.

□

B.2 Comparison of the distribution of two samples

Theorem 2 (Two sample test). Take 𝐻0 : 𝐺𝑋 = 𝐺𝑌 as the null hypothesis, 𝐹𝑋 and 𝐹𝑌 as two
distribution functions and

𝑑 [(𝐺𝑋 ,𝐺𝑌 ), (𝐹𝑋 , 𝐹𝑌 )] = 𝑑∗(𝐺𝑋 , 𝐹𝑋) + 𝑑∗(𝐺𝑌 , 𝐹𝑌 ),

where 𝑑∗(·, ·) is a distance function. Then

𝛿 = inf
(𝐺𝑋 ,𝐺𝑌 )∈𝐻0

𝑑 [(𝐺𝑋 ,𝐺𝑌 ), (𝐹𝑋 , 𝐹𝑌 )] = 𝑑∗(𝐹𝑋 , 𝐹𝑌 ).

Proof. We begin by noticing that, since 𝐻0 presents a contextual restriction related to two
random variables, it follows that H = F×F. After all, if 𝑋 and 𝑌 were defined on different sample
spaces, it would make no sense to compare if their respective distribution functions are the same.
Furthermore, H has this specific structure because the alternative hypothesis is that 𝐺𝑋 and 𝐺𝑌
can take any element of F as long as 𝐺𝑋 ≠ 𝐺𝑌 . Thus, formally,{

𝐻0 : (𝐺𝑋 ,𝐺𝑌 ) ∈ F×F : 𝐺𝑋 (𝑧) = 𝐺𝑌 (𝑧),∀𝑧 ∈ X;
𝐻1 : (𝐺𝑋 ,𝐺𝑌 ) ∈ F×F : ∃𝑧 ∈ X such that 𝐺𝑋 (𝑧) ≠ 𝐺𝑌 (𝑧).

Since 𝐻0 assumes that 𝐺𝑋 = 𝐺𝑌 , we can drop the subscript and conclude that the
pragmatic hypothesis is given by

𝑃𝑔(𝐻0) =
{
(𝐹𝑋 , 𝐹𝑌 ) ∈ F×F : inf

(𝐺𝑋 ,𝐺𝑌 )∈𝐻0
𝑑 [(𝐺𝑋 ,𝐺𝑌 ), (𝐹𝑋 , 𝐹𝑌 )] < Y

}
(B.1)

=

{
(𝐹𝑋 , 𝐹𝑌 ) ∈ F×F : inf

𝐺∈F
𝑑 [(𝐺,𝐺), (𝐹𝑋 , 𝐹𝑌 )], < Y

}
. (B.2)
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From (B.2), we now need to establish how exactly these pairs of functions will be
compared. Given the statement of the proposition,

inf
𝐺∈F

𝑑 [(𝐺,𝐺), (𝐹𝑋 , 𝐹𝑌 )] = inf
𝐺∈F

[𝑑∗(𝐺,𝐹𝑋) + 𝑑∗(𝐺,𝐹𝑌 )] . (B.3)

Now, since 𝑑∗ from (B.3) is a distance function, it follows from the properties of symmetry and
triangle inequality (KREYSZIG, 1978) that

inf
𝐺∈F

[𝑑∗(𝐺,𝐹𝑋) + 𝑑∗(𝐺,𝐹𝑌 )] = inf
𝐺∈F

[𝑑∗(𝐹𝑋 ,𝐺) + 𝑑∗(𝐺,𝐹𝑌 )] ≥ 𝑑∗(𝐹𝑋 , 𝐹𝑌 ). (B.4)

Thus, if there exists 𝐺 ∈ F such that 𝑑∗(𝐹𝑋 ,𝐺) + 𝑑∗(𝐺,𝐹𝑌 ) = 𝑑∗(𝐹𝑋 , 𝐹𝑌 ), it will necessarily be
the infimum. However, since 𝐹𝑋 ∈ F, if 𝐺 = 𝐹𝑋 the equality is guaranteed. □

B.3 Monotonicity property of the test

Theorem 3 (Monotonicity property). Take 𝑃𝑔(𝐻0) as the nonparametric pragmatic hypothesis
of 𝐻0 and H(𝒙) as a method that randomly draws elements of H based on a sample 𝒙. Then, for
a precise hypothesis 𝐻0 ⊂ H and 𝛼1, 𝛼2 ∈ (0,1) where 𝛼2 ≥ 𝛼1, if a test is such that

• If Y < 𝑞𝛼1

[
infℎ∈𝐻0 𝑑 (ℎ,H(𝒙))

]
, we reject the hypothesis;

• If Y ≥ 𝑞𝛼2

[
infℎ∈𝐻0 𝑑 (ℎ,H(𝒙))

]
, we accept the hypothesis;

• Otherwise, we remain agnostic;

it obeys the property of monotonicity, i.e., it is logically coherent for any two precise hypotheses
𝐻1

0 , 𝐻
2
0 ⊂ H if 𝐻1

0 ⊇ 𝐻2
0 , as shown in Table 3.

Table 8 – Possibility of each combination of decisions

Decisions Reject 𝐻1
0 Undecided on 𝐻1

0 Accept 𝐻1
0

Reject 𝐻2
0 Possible Possible Possible

Undecided on 𝐻2
0 Impossible Possible Possible

Accept 𝐻2
0 Impossible Impossible Possible

Proof. To observe that the monotonicity property is obeyed, take any two precise hypotheses
𝐻1

0 , 𝐻
2
0 ⊂ H such that 𝐻1

0 ⊇ 𝐻2
0 . Then, it follows that

inf
ℎ∈𝐻1

0

𝑑 (ℎ, ℎ∗) = min

[
inf
ℎ∈𝐻2

0

𝑑 (ℎ, ℎ∗), inf
ℎ∈(𝐻1

0−𝐻
2
0 )
𝑑 (ℎ, ℎ∗)

]
≤ inf
ℎ∈𝐻2

0

𝑑 (ℎ, ℎ∗),∀ℎ∗ ∈ H

Since H(𝒙) provides elements in H, then infℎ∈𝐻1
0
𝑑 (ℎ,H(𝒙)) ≤ infℎ∈𝐻2

0
𝑑 (ℎ,H(𝒙)) as well.
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Now, take 𝑌 = I
(
infℎ∈𝐻1

0
𝑑 (ℎ,H(𝒙)) ≤ 𝑞

)
and 𝑍 = I

(
infℎ∈𝐻2

0
𝑑 (ℎ,H(𝒙)) ≤ 𝑞

)
, where

I(·) is the indicator function and 𝑞 ∈ R+. Therefore, 𝑌 ≥ 𝑍 , which implies that E[𝑌 ] ≥ E[𝑍].
However, due to the definition of 𝑌 and 𝑍 ,

E[𝑌 ] ≥ E[𝑍] ⇒ P
(

inf
ℎ∈𝐻1

0

𝑑 (ℎ,H(𝒙)) ≤ 𝑞
)
≥ P

(
inf
ℎ∈𝐻2

0

𝑑 (ℎ,H(𝒙)) ≤ 𝑞
)
, ∀𝑞 ∈ R+.

Hence, by taking 𝑞 = 𝑞𝛼
[
infℎ∈𝐻1

0
𝑑 (ℎ,H(𝒙))

]
, i.e., 𝑞 is the 𝛼 quantile of infℎ∈𝐻1

0
𝑑 (ℎ,H(𝒙)),

then

𝛼 ≥ P
(

inf
ℎ∈𝐻2

0

𝑑 (ℎ,H(𝒙)) ≤ 𝑞𝛼

[
inf
ℎ∈𝐻1

0

𝑑 (ℎ,H(𝒙))
])
, ∀𝛼 ∈ (0,1),

leading to the conclusion that 𝑞𝛼
[
infℎ∈𝐻1

0
𝑑 (ℎ,H(𝒙))

]
≤ 𝑞𝛼

[
infℎ∈𝐻2

0
𝑑 (ℎ,H(𝒙))

]
, ∀𝛼 ∈ (0,1).

Based on the result above, it is time to evaluate all possible decisions one can take towards
𝐻1

0 and what limitation each of them entails on the evaluation of 𝐻2
0 . By setting 𝛼1, 𝛼2 ∈ (0,1), it

can be concluded that

• Rejecting 𝐻1
0 implies that Y < 𝑞𝛼1

[
infℎ∈𝐻1

0
𝑑 (ℎ,H(𝒙))

]
≤ 𝑞𝛼1

[
infℎ∈𝐻2

0
𝑑 (ℎ,H(𝒙))

]
, thus

one must reject 𝐻2
0 as well;

• Accepting 𝐻1
0 implies that Y ≥ 𝑞𝛼2

[
infℎ∈𝐻1

0
𝑑 (ℎ,H(𝒙))

]
. This situation tells nothing about

the relationship between Y, 𝑞𝛼1

[
infℎ∈𝐻2

0
𝑑 (ℎ,H(𝒙))

]
and 𝑞𝛼2

[
infℎ∈𝐻2

0
𝑑 (ℎ,H(𝒙))

]
, so

any conclusion about 𝐻2
0 is theoretically feasible;

• Remaining agnostic about 𝐻1
0 implies that

𝑞𝛼2

[
inf
ℎ∈𝐻2

0

𝑑 (ℎ,H(𝒙))
]
≥ 𝑞𝛼2

[
inf
ℎ∈𝐻1

0

𝑑 (ℎ,H(𝒙))
]
> Y ≥ 𝑞𝛼1

[
inf
ℎ∈𝐻1

0

𝑑 (ℎ,H(𝒙))
]
,

which leads to the non-acceptance of 𝐻2
0 , but is still not informative enough to tell if one

should reject 𝐻2
0 or remain agnostic about it.

Thus, the results derived are exactly the same as those presented in Table 3, confirming the
monotonicity property of the test. □
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