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“All models are wrong, but some are useful.”
(George E. P. Box, 1976)






RESUMO

MOTA, ALEX LEAL. Modelagem de dados de sobrevivéncia baseada em uma distribui-
¢ao de Lindley ponderada reparametrizada. 2022. 129 p. Tese (Doutorado em Esta-
tistica — Programa Interinstitucional de Pds-Graduagdo em Estatistica) — Instituto de Cién-
cias Matematicas e de Computacdo, Universidade de Sdo Paulo, Sdao Carlos — SP, 2022.

Neste trabalho, propomos diferentes modelagens estatisticas para dados de sobrevivéncia basea-
das em uma distribuicdo de Lindley ponderada reparametrizada. Inicialmente, apresentamos esta
distribuicdo e estudamos suas propriedades matemdticas, estima¢ao de maxima verossimilhanca
e simulacdes numéricas. Em seguida, propomos um novo modelo de fragilidade usando a distri-
buicao de Lindley ponderada reparametrizada para modelar a heterogeneidade nao observada
em dados de sobrevivéncia univariados. A fragilidade € introduzida multiplicativamente na
funcdo de risco de base. Obtemos as fungdes de sobrevivéncia e risco ndo condicionais através
da funcao transformada de Laplace da distribuicdo de fragilidade. Assumimos as funcdes de
risco das distribuicdes Weibull e Gompertz como as fungdes de risco de base e usamos o método
de maxima verossimilhanga para estimar os parametros dos modelos resultantes. Estudos de si-
mulagdo sdo realizados para verificar o comportamento dos estimadores propostos sob diferentes
proporcdes de censura a direita e para avaliar o desempenho do teste da razao de verossimilhanca
para detectar heterogeneidade ndo observada em diferentes tamanhos amostrais. Além disso,
propomos um modelo de longa duragdo com fragilidade Lindley ponderada reparametrizada.
Uma vantagem do modelo proposto € modelar conjuntamente a heterogeneidade entre os pa-
cientes por suas fragilidades e a presenca de uma fracdo curada. Assumimos que 0 nimero
desconhecido de causas competitivas que podem influenciar o tempo de sobrevivéncia segue
uma distribuicdo binomial negativa e que o tempo para a k-€sima causa competitiva produzir
o evento de interesse segue o modelo de fragilidade de Lindley ponderado reparametrizado
com distribuicdo de base de Weibull. Alguns casos especiais do modelo sdo apresentados e a
fracao de cura é modelada usando a funcdo de ligagcdo logit. Novamente, usamos o método de
maxima verossimilhancga sob censura aleatéria a direita para estimar os parametros do modelo
proposto. Além disso, apresentamos estudos de simulagdo de Monte Carlo para verificar o
comportamento dos estimadores de maxima verossimilhanca assumindo diferentes tamanhos
de amostra e propor¢des de censura. Finalmente, estendemos o modelo de regressao logistica
generalizado dependente do tempo incorporando fragilidades de Lindley ponderadas reparame-
trizadas. Essa modelagem proposta possui vérias caracteristicas importantes, tais como riscos
ndo proporcionais, identifica a presenca de sobreviventes de longa duracao sem a adi¢ao de
novos parametros, captura a heterogeneidade ndo observada, permite a intersecao de curvas de
sobrevivéncia e permite funcao de risco decrescente ou unimodal. Novamente, a estimacao de
parametros € realizada usando o método de maxima verossimilhanga. Estudos de simulacao

de Monte Carlo sdao conduzidos para avaliar as propriedades assintéticas dos estimadores, bem



como algumas propriedades do modelo. A potencialidade de todos os modelos propostos é

analisada empregando conjuntos de dados reais e comparagdes de modelos sao realizadas.

Palavras-chave: distribuicdo Lindley ponderada reparametrizada, fracdo de cura, maxima
verossimilhanga, modelo de fragilidade, modelo logistico generalizado dependente do tempo,

riscos nao proporcionais.



ABSTRACT

MOTA, ALEX LEAL. Modeling survival data based on a reparameterized weighted Lin-
dley distribution. 2022. 129 p. Tese (Doutorado em Estatistica — Programa Interinstitucional
de P6s-Graduagdo em Estatistica) — Instituto de Ciéncias Matematicas e de Computac¢io, Universi-
dade de Sdo Paulo, Sao Carlos — SP, 2022.

In this work, we propose different statistical modeling for survival data based on a repara-
meterized weighted Lindley distribution. Initially, we present this distribution and study its
mathematical properties, maximum likelihood estimation, and numerical simulations. Then,
we propose a novel frailty model by using the reparameterized weighted Lindley distribution
for modeling unobserved heterogeneity in univariate survival data. The frailty is introduced
multiplicatively on the baseline hazard function. We obtain unconditional survival and hazard
functions through the Laplace transform function of the frailty distribution. We assume hazard
functions of the Weibull and Gompertz distributions as the baseline hazard functions and use the
maximum likelihood method for estimating the resulting model parameters. Simulation studies
are further performed to verify the behavior of maximum likelihood estimators under different
proportions of right-censoring and to assess the performance of the likelihood ratio test to detect
unobserved heterogeneity in different sample sizes. Also, we propose a frailty long-term model
where the frailties are described by reparameterized weighted Lindley distribution. An advantage
of the proposed model is to jointly model the heterogeneity among patients by their frailties and
the presence of a cured fraction of them. We assume that the unknown number of competing
causes that can influence the survival time follows a negative binomial distribution and that the
time for the k-th competing cause to produce the event of interest follows the reparameterized
weighted Lindley frailty model with Weibull baseline distribution. Some special cases of the
model are presented. The cure fraction is modeled by using the logit link function. Again, we
use the maximum likelihood method under random right-censoring to estimate the proposed
model parameters. Further, we present a Monte Carlo simulation study to verify the maximum
likelihood estimators’ behavior assuming different sample sizes and censoring proportions.
Finally, we extend the non-proportional generalized time-dependent logistic regression model by
incorporating reparameterized weighted Lindley frailties. This proposed modeling has several
important characteristics, such as non-proportional hazards, identifies the presence of long-
term survivors without the addition of new parameters, captures the unobserved heterogeneity,
allows the intersection of survival curves, and allows decreasing or unimodal hazard function.
Again, parameter estimation is performed using the maximum likelihood method. Monte Carlo
simulation studies are conducted to evaluate the asymptotic properties of the estimators as well
as some properties of the model. The potentiality of all the proposed models is analyzed by

employing real datasets and model comparisons are performed.



Keywords: cure fraction, frailty model, generalized time-dependent logistic model, maximum

likelihood method, non-proportional hazards, reparameterized weighted Lindley distribution.
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CHAPTER

INTRODUCTION

1.1 Introduction and bibliographical review

Survival analysis plays an important role in medicine, epidemiology, biology, demog-
raphy, economics, engineering, actuarial science, and other fields. It has expanded rapidly in
the last three decades, with works having been published in various disciplines in addition to
statistics. But what distinguishes survival analysis from other fields of statistics? Why does
survival data need a special statistical theory? The main problem is censoring, which means
that, for some individuals in the study population, the researcher only has the information that
the event of interest did not occur before a particular time point. To put it plainly, a censored
observation contains only partial information about the random variable of interest. Therefore,
this kind of incomplete observation needs special methods (WIENKE, 2010).

In statistical literature, several parametric and non-parametric methods are available for
modeling survival data (COLOSIMO; GIOLO, 2006; WIENKE, 2010; LAWLESS, 2011). The
Lindley distribution is a one-parameter lifetime distribution which was originally proposed by
Lindley (1958) in the context of Fiducial and Bayesian Statistics. Ghitany, Atieh and Nadarajah
(2008) studied its mathematical properties, such as moments, hazard, mean residual life, entropy
function, and asymptotic distribution of the extreme order statistics and inferential procedures.
Moreover, the authors showed that such distribution outperforms the exponential model in many
situations, which allowed its application in several real problems. However, the Lindley distribu-
tion supports solely increasing hazard function, and hence it does not provide enough flexibility
for analyzing different types of lifetime data. Therefore, in recent years, many generalizations
based on Lindley distribution have been proposed in the literature in order to increase its flexibil-
ity for modeling purposes. For example, generalized Lindley (ZAKERZADEH; DOLATI, 2009),
weighted Lindley (GHITANY et al., 2011), extended Lindley (BAKOUCH et al., 2012), Power
Lindley (GHITANY et al., 2013), Transmuted two-parameter Lindley (KEMALOGLU; YIL-
MAZ, 2017), Weibull Lindley (ASGHARZADEH; NADARAJAH; SHARAFI, 2018), Weibull
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Marshall-Olkin Lindley (AFIFY et al., 2020), among other distributions.

The weighted Lindley (WL) distribution has become much popular due to its simplicity,
attractive properties, and flexibility to fit data when compared with similar generalizations of the
exponential model, such as gamma and Weibull, among others. The use of the WL distribution
is particularly appealing because: (1) its probability density function (PDF) takes decreasing,
unimodal, or decreasing-increasing-decreasing shapes according to its shape parameter values.
Note that most classical two-parameter distributions such as gamma, Weibull, Lognormal, and
Gompertz distributions have either decreasing or unimodal densities. In contrast, the PDF
of the WL model adds an extra shape that can be useful for modeling bimodal data; (ii) its
hazard function presents monotone (increasing) and non-monotone (bathtub) shapes, thereby
making this distribution compatible with modeling biological data from mortality studies. A
few of the two-parameter lifetime distributions are capable of modeling the data exhibiting the
bathtub-shaped hazard function. Here, we can cite the Wilson-Hilferty (WILSON; HILFERTY,
1931; RAMOS et al., 2019), Nakagami-m (NAKAGAMI, 1960), exponential power (SMITH;
BAIN, 1975), and Chen (CHEN, 2000) distributions; (iii) finally, the WL distribution can
be written as a two-component mixture of gamma distributions, which facilitates obtaining
attractive statistical properties including moments, survival, hazard, mean residual life, and
characteristic functions, stochastic ordering, Bonferroni and the Lorenz curves, various entropies,
order statistics derivations among other properties (GHITANY ez al., 2011; ALI, 2015) as well
as efficient generation of random samples (MAZUCHELI et al., 2016).

Al-Mutairi, Ghitany and Kundu (2015) estimated the stress-strength parameter R =
P(Y < X) when X and Y are two independent WL random variables with a common shape
parameter. Mazucheli, Coelho-Barros and Louzada (2016) studied the Type I error rate and
power for various tests such as likelihood ratio, Wald, modified Wald, Score and Gradient used to
distinguish the WL distribution from basic Lindley distribution. By means of simulation studies,
the authors have concluded that likelihood ratio and Score tests perform better than others with
respect to size and power, respectively. Louzada and Ramos (2017) developed a long-term WL
model by using the standard mixture cure rate model (BERKSON; GAGE, 1952) and studied
its properties. Ghitany and Wang (2019) showed that as one of the shape parameters becomes
large (smaller) the WL distribution can be approximated by a normal distribution (exponential,
respectively). Bourguignon (2019) used the WL distribution as a conjugate prior probability
distribution for Poisson and normal (with mean known) distributions. Besides, the author argued
that the WL distribution can be used as a conjugate prior probability distribution to many other
likelihood distributions such as the exponential, Pareto (with a known minimum), gamma (with
the known shape), inverse gamma (with known shape parameter), lognormal (with known mean),
Weibull (with the known shape) and inverse Gaussian (with known mean). Accordingly, the
WL distribution of conjugate priors stands for a more flexible class of priors than the class of
gamma prior distributions. Classical and Bayesian estimation methods for the shape parameters
of the WL distribution can be found in Mazucheli, Louzada and Ghitany (2013), Al-Zahrani
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and Gindwan (2014), Ali (2015), Ramos, Louzada and Cancho (2017), Ghitany, Song and
Wang (2017), and Kim and Jang (2021). Some generalizations of the WL distribution are due
to Asgharzadeh et al. (2016), Ramos and Louzada (2016), and Shanker, Shukla and Leonida
(2019).

Models based on the hazard function became remarkable in survival analysis since the
construction of the Cox proportional hazards (PH) model (COX, 1972). According to Wienke
(2010), one of the reasons this model is so popular is the ease of dealing with technical troubles
such as censoring and truncation. This is due to the appealing interpretation of the hazard as
a risk that changes over time. Naturally, the concept allows for the entering of covariates in
order to describe their influence and to model different risk levels for different subgroups. In this
model, the PH assumption states that the hazard ratio for two subjects who are characterized by
different sets of covariates depends only on the values of these covariates and does not depend
on time. In other words: the hazard ratio is constant over time which means that the effect of
a given covariate on a hazard level is the same at all time (BORUCKA, 2014). However, in
practice, the PH assumption is restrictive and for various reasons, non-proportional hazards
(NPH) are often observed in many studies. For example, in medical studies, the most common
types of NPH are time-dependent treatment effects, delayed treatment effects, crossing hazards,
and diminishing treatment effects over time (FISHER; LIN, 1999; LIN ez al., 2020; PHINYO;
PATUMANOND; PONGUDOM, 2021). In such scenarios, the use of the Cox PH model, in
its original form, is not adequate (HOSMER; LEMESHOW, 1999; BOX-STEFFENSMEIER;
ZORN, 2001; COLOSIMO; GIOLO, 2006). Nevertheless, Schemper (1992) has noted that the
Cox model has undoubtedly been used in many cases in which proportionality assumptions are

violated, negatively impacting the results.

Modifications and extensions of Cox PH model to deal with NPH have been proposed by
several authors (SCHEMPER, 1992; HASTIE; TIBSHIRANI, 1993; KLEINBAUM; KLEIN,
2012a; KLEINBAUM; KLEIN, 2012b; BORUCKA, 2014; RATNANINGSIH; SAEFUDDIN;
KURNIA, 2021). Although this, there is no “natural”, widely accepted approach, and obtaining
a satisfactory model can be complicated. Furthermore, there are further concerns about the
complexity involved in the practical interpretation of the coefficients and in the robustness of such
models. Therefore, alternative NPH models have also been introduced in the statistical literature.
Aranda-Ordaz (1983) as well as Tibshirani and Ciampi (1983) have proposed proportional and
additive hazards models for grouped data. Thomas (1986) and Sasieni (1996) introduced excess
hazards models. Aalen (1980) developed additive hazard model and McKeague and Sasieni
(1994) presented a partly parametric version of it. Prentice (1978) proposed the accelerated
failure time (AFT) model, which considers that the covariates have a multiplicative effect both
on time and on the baseline hazard function and, hence, NPH situations are accommodated.
Etezadi-Amoli and Ciampi (1987) presented the extended hazard regression model, which is
currently known as hybrid hazard model since Cox’s PH and AFT models come up as special

cases. Generalizations of the hybrid hazards model have been made to allow the spread parameter
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to be dependent on covariates and to deal with latent competing risks (LOUZADA-NETO, 1997,
LOUZADA-NETO, 1999).

Another NPH model is the so-called generalized time-dependent logistic (GTDL) regres-
sion model. The GTDL regression model was introduced by Mackenzie (1996) as an alternative
to the Cox PH model. In this model, the time effect is captured by one of its parameters, allowing
NPH functions. However, when the time effect goes to zero, the GTDL model tends to be a
PH model. Accordingly, the GTDL is flexible enough to model PH and non-PH survival data.
An advantage of the GTDL model over the NPH models aforementioned is that its survival
function can be improper, that is, S(0) = 1 and S(c0) = lim;_,e S(¢) = po, Where pg € (0,1). For
censored data, this is a desirable property since in many studies the longest failure times tend to
be censored, and hence the empirical survivor function does not fall to 0 (MACKENZIE, 1996).
For example, in medical studies, po € (0,1) can be interpreted as a cure fraction or long-term
survivors proportion in the study population (MALLER; ZHOU, 1996; IBRAHIM; CHEN;
SINHA, 2001; KLEIN; MOESCHBERGER, 2003). A Bayesian approach for estimating the
GTDL model parameters based on Markov Chain Monte Carlo (MCMC) methods can be found
in (LOUZADA-NETO; CREMASCO; MACKENZIE, 2010). Extensions of the GTDL model
have been made by Milani et al. (2015) and Calsavara et al. (2019a) in order to give more
flexibility in the fitting of the univariate survival data. While earlier Ha and MacKenzie (2010)
introduced a multivariate version from the GTDL regression model to model multivariate (or

correlated) survival data.

Survival models with cure fraction often referred to as cure rate models (or long-term
models) have been used for modeling time-to-event data for various types of cancers, including
breast, non-Hodgkins lymphoma, leukemia, prostate, melanoma, and head and neck cancers,
where for these diseases, a significant proportion of patients are “cured" due to, for example,
by a genetic predisposition or a treatment (IBRAHIM; CHEN; SINHA, 2001). The two most
widely applied cure rate models are the standard mixture model (SMM) firstly proposed by
Boag (1949) and modified by Berkson and Gage (1952), and the promotion time model by
Yakovlev, Tsodikov and Bass (1993). These two approaches differ in how they deal with the
distribution of the latent number of causes of the event of interest. In the cure rate modeling
by using the SMM, the unknown number of competing causes is supposed to be a Bernoulli
random variable distributed, whereas, in the promotion time modeling, this number follows a
Poisson distribution. As pointed out by Ortega ef al. (2015), in a biological context, the idea
behind these assumptions lies within a latent competing cause structure, in the sense that the
event of interest can be a tumor recurrence or the death of a patient, occurring due to unknown
competing causes. According to Ibrahim, Chen and Sinha (2001), these latent competing causes
possibly are assigned to metastasis-competent tumor cells left active after initial treatment, such
as radiotherapy, chemotherapy, surgery, among others. A metastasis-competent tumor cell is a
tumor cell having the potential of metastasizing (TSODIKOV; YAKOVLEV; ASSELAIN, 1996).

If tumor recurrence or death did not occur, one can consider the patient to be cured. For a more
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detailed review of this and other cure rate models, the interested reader is referred to (MALLER;
ZHOU, 1996; IBRAHIM; CHEN; SINHA, 2001; TSODIKOV; IBRAHIM; YAKOVLEV, 2003).

Rodrigues ef al. (2009) proposed an unification of long-term survival models. In this
approach, the number of competing causes of the event of interest is assumed to follow any
positive discrete distribution possessing a probability generating function (PGF) (FELLER, 2008).
This approach extends and unifies the long-term survival models proposed by Berkson and Gage
(1952), Yakovlev, Tsodikov and Bass (1993) and Chen, Ibrahim and Sinha (1999). Many cure
rate models proposed in last years have been formulated by using different distributions for the
number of competing causes. Examples include the negative binomial (RODRIGUES et al.,
2009), COM-Poisson (RODRIGUES et al., 2011), power series (ORTEGA et al., 2015), Yule-
Simon (GALLARDO; GOMEZ; BOLFARINE, 2017), polylogarithm (GALLARDO; GOMEZ;
CASTRO, 2018), modified power series (GALLARDO et al., 2020) , zero-inflated power series
(CANCHO et al., 2020), zero-modified geometric (LEAO et al., 2020), Waring (VASQUEZ;
RODRIGUES; BALAKRISHNAN, 2020) and Bell (GALLARDO; CASTRO; GOMEZ, 2021)

distributions, among many others.

In practice, random effects or unexplained heterogeneity are very often present in survival
data, perhaps almost always (AALEN, 1988). Hence, it is useful to consider two sources of
heterogeneity in survival data: observed heterogeneity accounted for by observable risk factors
included in the model (and therefore theoretically predictable) and unobserved heterogeneity
caused by random effects being theoretically unpredictable. According to Hougaard (1991),
there are advantages in considering these two sources of heterogeneity separately: unobserved
heterogeneity may explain some unexpected results or gives an alternative explanation for
some aspects as, for example, nonproportional or decreasing hazard functions. Some authors
such as Struthers and Kalbfleisch (1986), Bretagnolle and Huber-Carol (1988), and Henderson
and Oman (1999) have investigated the effects of ignoring unobserved heterogeneity. These
studies concluded that biased regression estimates were obtained, which should not be used.
As an alternative, frailty models must be considered in analysis (DUCHATEAU; JANSSEN,
2007; WIENKE, 2010; HOUGAARD, 2012). In these models, an unobservable random effect
(termed by Vaupel, Manton and Stallard (1979) as “frailty”) is introduced on the baseline hazard
function to control for unobservable heterogeneity among subjects under study. Consequently, it
is expected that the subjects who are most frail will have a higher risk, and consequently, they

will experience the event of interest sooner than those who are less frail (WIENKE, 2010).

Due to the randomness of the frailty, it is commonly modeled by a probability distribution
usually referred to as frailty distribution. Even though a non-parametric specification of the
frailty distribution is possible (HOROWITZ, 1999; ALMEIDA et al., 2020), the parametric
approach is often employed by a question of mathematical convenience, as pointed out by
Wienke (2010). In addition, its variability determines the degree of unobserved heterogeneity

and indicates the inadequacy of the baseline model considered. Vaupel, Manton and Stallard
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(1979) first reported the use of gamma distribution as a standard assumption for frailty, which
continues to be used currently. This assumption is mainly employed because it provides an easy
mathematical treatment for obtaining analytical expressions for unconditional survival and hazard
functions by using the Laplace transform. Hence, traditional maximum likelihood (ML) methods
can be used for estimating the model parameters (WIENKE, 2010). However, other frailty
distributions have also been proposed as an alternative to the gamma distribution (HOUGAARD,
1995). For instance, uniform, Weibull, lognormal, positive stable, inverse Gaussian (IG), and
compound Poisson distributions, in addition to the power variance function (PVF), which
includes most of these models (VAUPEL; YASHIN, 1983; HOUGAARD, 1986; HOUGAARD,
1995; AALEN, 1988). Wienke (2010) and Hougaard (2012) compared most of these frailty
distributions and discussed their specific advantages and limitations in applications to real data
examples. Generalized gamma and Birnbaum-Saunders (BS) distributions have recently been
introduced as frailty distributions by Balakrishnan and Peng (2006) and Leao et al. (2017),
respectively. The generalized gamma distribution as frailty distribution has similar characteristics
as the PVF, which can also provide an excellent fit to the data. However, it has no closed-form
expression for the unconditional survival function, and more sophisticated estimation strategies
as numerical integration and Monte Carlo simulation are required, which can make the use of the
PVF preferable in practice. Finally, though the BS frailty distribution has a Laplace transform
mathematically tractable, its variance is limited. Hence, it should not be used in applications
with more significant unobserved heterogeneity (LOUZADA et al., 2020).

1.2 Objectives of the thesis

In recent years, some traditional distributions have been reparameterized in terms of
its mean and/or precision parameters to model real problems; see, e.g., Ferrari and Cribari-
Neto (2004), Cepeda and Gamerman (2005), Santos-Neto et al. (2016), Rigby et al. (2019),
Bourguignon and Gallardo (2020), Gallardo et al. (2020), and Bourguignon, Santos-Neto and
Castro (2021). Some advantages of using reparameterized distributions in statistical modeling
are: (1) they simplify the classical and Bayesian inferences; (ii) they facility the interpretation of
results; (iii) they allow us to model heteroscedasticity (in regression); (iv) in survival analysis,
they can be an alternative to existing frailty distributions (LEAO et al., 2018; LEAO et al.,
2017). Following this approach, Mazucheli, Coelho-Barros and Achcar (2016) introduced an
alternative parameterization for the WL distribution in the context of orthogonal parameters
(COX; REID, 1987), which we will call reparameterized WL (RWL) distribution throughout the
thesis. Orthogonal parameters have many advantages in the inference results as, for example,
for large sample sizes we have independence among the maximum likelihood of the orthogonal
parameters, since the Fisher information matrix is diagonal. Other advantages of orthogonal
parameters can be found in (COX; REID, 1987).

The general objective of this thesis is to propose different statistical modeling for survival
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data based on the RWL distribution. Some specific objectives are:

* to study several mathematical properties of the RWL distribution and propose maximum

likelihood estimation assuming the presence of censored and uncensored data;

* to propose a RWL frailty model as an alternative to the existing frailty models for modeling

unobserved heterogeneity in univariate survival data;

* to develop a new long-term frailty regression model based on the RWL distribution to
jointly account for the heterogeneity among patients by their frailties and the presence of a

cured fraction of them.

* to introduce a new extended version of the GTDL regression model by incorporating
RWL frailty in order to model survival data under non-proportional hazards, different time
effects in groups, cure fractions in one or both groups, and unobserved heterogeneity in

study population.

1.3 Organization of the chapters

The remainder of this thesis is organized as follows. In Chapter 2, we briefly presented
a background about survival analysis, genesis of the WL distribution and its main properties,
Cox PH, GTDL regression, cure rate, and frailty models. In Chapter 3, we discussed several
properties of the RWL distribution and propose maximum likelihood estimation assuming
the presence of censored and uncensored data. In Chapter 4, we introduce the RWL frailty
model for modeling unobserved heterogeneity in univariate survival data, while in Chapter 5 we
developed a new long-term frailty regression model based on the RWL distribution to jointly
model the heterogeneity among patients by their frailties and the presence of a cured fraction of
them. In Chapter 6, we consider the GTDL regression model with a RWL frailty term. Such a
methodology extends the GTDL model and identifies several important characteristics, such as
non-proportional hazards; identifying the presence of long-term survivors without the addition
of new parameters; capturing the unobserved heterogeneity (if present in the dataset); allowing
the intersection of survival curves, as well as decreasing and unimodal hazard functions. Finally,

we present a discussion, conclusions, and future research in Chapter 7.

1.4 Products of the thesis

* Mota, A., Ramos, P. L., Ferreira, P., Tomazella, V., & Louzada, F. (2021). A Reparame-
terized Weighted Lindley Distribution: Properties, Estimation and Applications. Revista
Colombiana de Estadistica, 44(1), 65-90. <http://dx.doi.org/10.15446/rce.v44n1.86566>
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e Mota, A., Milani, E. A., Calsavara, V. F., Tomazella, V. L., Ledo, J., Ramos, P. L., Fer-
reira, Paulo H., & Louzada, F. (2021). Weighted Lindley frailty model: estimation and

application to lung cancer data. Lifetime Data Analysis, 1-27. <https://doi.org/10.1007/
s10985-021-09529-1>

e Mota, A.L., Milani, Eder A., Ledo, Jeremias, Ramos, Pedro L., Ferreira, Paulo H., Gonzatto,
Oilson, Tomazella, Vera L. D., & Louzada, Francisco. (2021). A new long-term frailty
regression model based on a weighted Lindley distribution applied to stomach cancer data

(under review).

e Gazon, A. B., Milani, E. A., Mota, A. L., Louzada, F., Tomazella, V. D., & Calsavara, V. F.
(2021). Nonproportional hazards model with a frailty term for modeling subgroups with

evidence of long-term survivors: Application to a lung cancer dataset. Biometrical Journal,
63(6), 1-26. <https://doi.org/10.1002/bimj.202000292>
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CHAPTER

BACKGROUND

In this chapter, we present some basic concepts in survival analysis such as censoring
schemes, main functions used in this area and its mathematical relationships. We also present
briefly the original parameterization of the WL distribution and its main properties. The Cox PH
and GTDL models as well as the unified version of cure rate or long-term models proposed by
Rodrigues et al. (2009) are also discussed. Finally, we describe about frailty models and discuss

how to obtain the unconditional survival and hazard functions.

2.1 Basic concepts in survival analysis

Survival analysis is the collection of statistical procedures for data analysis in which
the response variable is time until an event of interest occurs (DAVID; MITCHEL, 2012). This
event of interest may be death, the appearance of a tumor, remission after some treatment,
equipment breakdown, divorce, cessation of smoking, and so forth. Depending on the type of
application, survival analysis is also known as lifetime data analysis, reliability analysis, time
to event analysis, and event history analysis. Hence, the response variable is also referred to as
survival time, failure time, lifetime, risk period, event time, time to event, and duration time
(WIENKE, 2010).

A key characteristic that distinguishes survival analysis from other areas in statistics is
that survival data are usually censored. Censoring is present when we have some information
about a subject’s event time, but we don’t know the exact event time. According to Klein and

Moeschberger (2006), possible censoring schemes are:

* right censoring: all that is known is that the individual is still alive at a given time;

* left censoring: all that is known is that the individual has experienced the event of interest

prior to the start of the study;
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* interval censoring: the only information is that the event occurs within some interval.

The right-censored observations can be Type I censoring, Type II censoring, or random
censoring. Type I censoring occurs when the event is observed only if it occurs prior to some
prespecified time. Type II censoring (often used in engineering) occurs when the study continues
until the failure of the first r subjects, where r is some predetermined integer (1 < r < n). Finally,
random censoring occurs when the subject leaves the study without having experienced the event
of interest, or when the subject may experience some competing event which causes them to be
removed from the study. In practice, random censoring is the most commonly censoring type.
Moreover, Type I and Type II right-censoring mechanisms can be seen as particular cases of
random censoring (COLOSIMO; GIOLO, 2006). Regardless of the type of censoring, we must
assume that it is non-informative about the event; that is, the censoring is caused by something

other than the impending failure.

Let T be a continuous nonnegative random variable representing the time from a well-
defined specific starting point until the occurrence of an event. The distribution of the random
variable 7' can be specified through mathematically related functions, where the knowledge of
one of them is sufficient to derive the others. These functions are called PDF, survival and hazard

functions and are particularly useful in survival applications.

The PDF, denoted by f(¢), is defined as limit of the probability that an individual fails in
the short interval [f,7 4 Az], per unit width Az, or simply as the probability of failure in a small
interval per unit time (LEE; WANG, 2003). Mathematically, the PDF is a continuous function at
t given by

Plt <T <t+A)|
Ar—0 At ’

>0, 2.1)

where f(t) > 0and [y f(t) = 1.

The survival function is defined as the probability of an individual does not fail until the
time ¢, that is, the probability of an individual’s surviving till time . Mathematically, the survival

function is expressed as
S(t)=P[T >1] = / Flw)du, >0, 2.2)
t

where f(+) is the corresponding PDF. Note that the survival function can be also expressed as
S(t)=1—F(t), where F(¢) is the cumulative distribution function, defined by F(r) = P[T <t] =
fot f(u)du. Hence, the cumulative distribution function represents the probability of an individual
fails before . The survival function, S(¢), is a nonicreasing continuous function of time ¢ with
properties: (i) S(0) = 1 and (ii) S(e0) = lim; o S(¢) = 0.

According to Wienke (2010), the major concept in survival analysis is the hazard function.

This function is also called (depending on the field of application), hazard rate, mortality rate,
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incidence rate, mortality curve, failure rate, or force of mortality. The hazard function, denoted

by A(t), is the instantaneous failure rate in time ¢, given survival up to time ¢ and is defined by,

. Pt <T<t+M|T >1]
1m

. 2.
At—0 At » 120 2:3)

The hazard function has been preferable by many authors to describe the behavior of
survival time due to its interpretation. Moreover, according to its behavior, the hazard function
can character special classes of the survival time distributions. for that reason, the modelling of

the hazard function is an important method for survival data analysis.

Another useful function in survival data analysis is called cumulative hazard function,
denoted by H(t), defined by

t
H(t) = /O h(u)du, >0, (2.4)

where A(-) is the hazard function. Even though the cumulative hazard function does not has
an direct interpretation, it is quite useful in the evaluation of the hazard function, specially in
nonparametric estimation, where it is possible to find an estimator with great properties for
cumulative hazard function, whereas the hazard function is difficult to be estimated (NELSON,
1972; AALEN, 1978; COLOSIMO; GIOLO, 2006).

Below we derive some useful relationships from these functions:

1. By definitions of the PDF, cumulative distribution function (CDF) and survival function,

we get

d d

fe) = F(t)= f(t) = ——5(). (2.5)

2. By definition of the hazard function, we have

Pt <T<t+A|T >t
W) = lim DESTSITANT 21
At—0 At
. Pt <T <t+A]
lim
a—0  AtP[T > 1]
F —
— lim (t+At)—F(t)] 1 .
At—0 At S(z)

By derivative definition (STEWART, 2015),
d 1
h(t) = |—F@)| ==
0 = |5F0] 5

and from (2.5), we obtain

(1) =, (2.6)
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3. From (2.5) and (2.6), we get

d
ht) = —%g) _ —%logS(t). @)

4. Now integrating both sides of (2.7), and then exponentiating, we are led
t
S(1) = exp (— / h(u)du) — exp(—H(1)). 2.8)
0

Since S(e0) = 0, it follows from (2.8) that H(eo) = lim;_,. H(¢) = o0. Hence, the hazard
function, A(t), has the properties

h(1) > 0 and /0 " h(t)dt = oo.

5. Finally, in addition to (2.8), if follows from (2.6) that

£(6) = h(0)S() = h(t)exp (~H(1)).

2.2 Original WL distribution

When an investigator records an observation by nature according to certain stochastic
model, the recorded observation will not have the original distribution unless every observation
is given an equal chance of being recorded. For example, suppose that the original observation
to comes from a distribution with PDF fy(zy | 6;), where 6, is a parameter vector, and that
observation ¢ is recorded according to a probability re-weighted by a weight function (¢ | 6;) >

0, with 6, being a new parameter vector, then t comes from a distribution with PDF

f(t]8)=Ao(t|62)fo(t | 61), (2.9)

where 6 = (6, 0,) and A is a normalizing constant. Distributions of this type are called weighted
distributions. This class of distributions was firstly introduced by Rao (1965) and a survey of
their applications can be found in (PATIL et al., 1977). When w(z | 6,) is a constant, we have
f(t]0)= fo(t | 01). On the other hand, if w(r | 6;) =1, the resulting weighted distribution is
called length-bias distribution (PATIL; RAO, 1978).

The class of the weighted distributions provides a new understanding of standard distribu-
tions as well as methods of extending distributions in order to add more flexibility in fitting data.
Taking into account this class, Ghitany et al. (2011) developed a two-parameter WL distribution
as a generalization of the lifetime Lindley distribution (LINDLEY, 1958). Let (t | 6,) = t9~1,
for ¢ > 0, and consider that fy(r | A) is the PDF of the one-parameter Lindley distribution
(LINDLEY, 1958), whose PDF is given by

2

fo(t|)»):)fL (1+t)exp(—At), A, t>0. (2.10)

+1
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Then, from (2.9) and (2.10), the class of WL distributions have PDFs given by
ft|A,0)=Bt* Y1 +1)exp(—At), >0, (2.11)

where B is a constant normalizing.
The PDF of the WL distribution introduced by Ghitany ef al. (2011) is expressed as

A0+1
(A +¢)T(9)

where A > 0 and ¢ > 0 are shape parameters, and ['(a) = [;"t* 'e™"dt is the gamma function.
Note that when ¢ = 1, the WL distribution reduces to Lindley distribution (LINDLEY, 1958).
On the other hand, as ¢ — o (¢ — 0) the WL distribution can be approximated by normal
distribution with mean ¢ /A and variance ¢ /A? (standard exponential) (GHITANY; WANG,
2019).

flt|A,¢)= 7 (1 +1)exp(=At), >0, (2.12)

According to Ghitany et al. (2011), the PDF (2.12) can be decreasing, unimodal, or
decreasing-increasing-decreasing depending on the values selected for the parameters. Most
classical two-parameter distributions such as Weibull, gamma and Gompertz distributions have
either decreasing or unimodal densities. The PDF of the WL model adds an extra shape which
can be useful for modeling bimodal data. In addition, the WL distribution can be written as a
two-component mixture as follows

A ¢

1130 = (505 ) At 200+ (155 ) A1 2.0) @13

where f;(t | A,¢) is the PDF of the gamma distribution, with shape parameter ¢ + j — 1 and scale
parameter A, denoted by Gamma(¢@ + j — 1,4), j = 1,2. This representation facilitates obtaining
properties of the WL distribution, since the properties of the gamma distribution are well-known
in the statistical literature. For example, the mean and variance of the WL distribution are readily

given by
OA+o+1)
AA+9)

@+ DA +9)>—2°

== ROer

and Var[T] =

respectively.

The cumulative distribution of the WL distribution is given by

(A +0)7(9, A1) — (A1)® exp(—A1)

Flld.0)= 1 9)r() ’

(2.14)

where y(a,b) = fé’ 1" Yexp(—t)dt, a,b > 0, is the lower incomplete gamma function.

From (2.14), the corresponding survival and hazard functions are expressed, respectively,

as

(A+@)T(¢, A1) + (A1)? exp(—At)

Sehe= (+9IT(9) /
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and

AOH9=1(1 +1)exp(—At)
(A+)T(9,A1) + (Ar)? exp{—Ar}’

h(t|2,9) =

where I'(a,z) = [;°t*" Yexp(—1)dt, a > 0 and z > 0, is the upper incomplete gamma function.
The hazard function, A(t), of the WL distribution is bathtub shaped (increasing) when 0 < ¢ < 1

(¢ > 1), forall A > 0 (GHITANY et al., 2011).

The mixture representation (2.13) is also useful to generate random samples from WL

distribution. In fact, in this case, we can generate random variables using the Algorithm 1:

Algorithm 1 — Generator of random numbers from WL distribution.

1: Define the values of @ = (1,¢)";
2: Generate u ~ Uniform(0, 1);

A
3 Ifu< m, generate t ~ Gamma(@, A ). Otherwise, generate t ~ Gamma(¢ + 1,1);

4. Repeat the previous steps to obtain the desired sample size.

Fortunately, the rwlindley () function within the LindleyR package can be used for this
purpose. In addition, this package computes the probability density, the cumulative distribution,
the quantile, and the hazard functions and generates random deviates from the discrete and
continuous Lindley distribution as well as for 19 of its modifications. It also generates censored
random deviates from any probability distribution available in R; see (MAZUCHELI et al., 2016;
R Core Team, 2021) for more details.

2.3 Cox PH model

The Cox PH regression model (COX, 1972) is essentially one of the most commonly
used models in survival analysis for investigating the association between the lifetimes of patients
and one or more covariates. One of the main reasons for this popularity is the ease with which
technical difficulties such as censoring and truncation are handled. This is due to the appealing
interpretation of the hazard rate as a risk that changes over time (WIENKE, 2010). Another
reason is because of the availability of easy-to-use software (HENDERSON; OMAN, 1999).

The idea of the Cox PH model is to define a hazard level as a dependent variable which
is explained by the time-related component (so-called baseline hazard) and the covariates-related
component. Let x = (x1,xp,. .. ,xp)T be a p x 1 vector of covariates. The Cox PH model is given
by

h(t]x) = ho(1) exp (xTﬁ) , (2.15)

where B is the p x 1 vector, for (p < n), of unknown regression coefficients associated with the

covariates x, and /() is called baseline hazard function because A(z|x) = ho(z) when x = 0. The
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exponential form exp (x" B) in (2.15) is usually used for convenience. If desired, exp (x' B) can

be replaced with some other nonnegative function g(x" B) such that g(0) = 1.

The baseline hazard function, 4(z), can be choice of two ways: non-parametrically or
parametrically. If the baseline hazard function is choice be non-parametric, then the Cox’s PH
model is termed semiparametric PH model, since exp (xT B) is a parametric component. In this
case, the model parameters are estimated by using the partial likelihood function (COX, 1975).
On the other hand, when the baseline hazard function is parametric, the Cox’s PH model is
termed fully parametric PH model or simply parametric PH model. Hence, traditional likelihood
methods for censored or uncensored data can be used for estimating the model parameters; see
(COLOSIMO; GIOLO, 2006; KLEIN; MOESCHBERGER, 2006; KALBFLEISCH; PRENTICE,
2011) for details.

The key assumption in the Cox regression model is of PH, which means that the hazard
ratio is constant over time, or that the hazard for an individual is proportional to the hazard for
any other individual. Let x| and x; be the covariates for two individuals, then the ratio hazards is
given by

h(t|x1)  ho(t)exp (x/ B) _exp (x/ B) B -
- T - T = eXp (xl _x2) ﬁ ) (2.16)
h(tlx2)  ho(t)exp (x; B)  exp (x; B)

which is a constant, independent of time. Hence, if an individual at the beginning of the study has

a hazard equal to twice the hazard of another individual, this hazard ratio will be the same for the
entire follow-up period (COLOSIMO; GIOLO, 2006). Therefore, the Cox’s model must not be
used in situations where the non-proportionally of hazards is evident. However, Schemper (1992)
have noted that the Cox model has undoubtedly been used in many cases in which proportionality
assumptions are violated, with consequences for the results. In order to detect the violations of
proportionally of hazards, we can use tests of proportionally, Schoenfeld residuals and graphical
methods; see (KLEIN; MOESCHBERGER, 2006; SCHOENFELD, 1982; HESS, 1995).

2.4 GTDL regression model: a NPH model

In practice, one usually fits a Cox PH model and assesses the proportionality assumption.
According to Calsavara et al. (2019a), when departures from assumption are detected, several
possible workarounds, such as redefinition of covariates, model stratification by a covariate
with a non-proportional hazard, use of time dependent covariate terms, use of separate models
for disjunct time periods, and fitting of a NPH model, can be applied. This latter approach
is becoming increasingly in analyzing survival data; see (AALEN, 1980; KALBFLEISCH;
PRENTICE, 2011; ETEZADI-AMOLI; CIAMPI, 1987) and references cited therein. In this
context, Mackenzie (1996) proposed a parametric NPHs model called GTDL regression model,
whose hazard function is written as
ho(t | Aot B) = Aexp(at +x| B) ,
1 +exp(ar+x| B)

(2.17)
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where 4 > 0 is a scalar, @ € R is a measure of the time effect, B = (Bi,...,5,) " is a vector of p

unknown parameters measuring the effect of the p covariates x; = (x,... ,Jclp)T

The ratio for the hazard functions of two individuals with different covariates is given by

ho(t | Ao, B,xy,)  1+exp(ar+x] B)

.
- X1, — X .
ho(t | A, o, B,x1,) 1+6Xp(oct+x1Tl[3)eXp[< 1, —X1,) B]

p(xlvxlz) =

Note that the time effect does not disappear, so the non-proportionality becomes evident.
Mackenzie (1996) argued that when [1 +exp(ar + x| B)] ~! ~ 1, the GTDL model becomes a
PH model and gives similar estimates to the Cox PH model. However, note that when the time
effect tends to zero, the hazard ratios tend to be constant over time. Accordingly, the GTDL is

flexible enough to model PH and non-PH survival data.

The respective cumulative hazard function is

A 1+exp(at+xTﬂ)]
Ho(t| Ao, B)==1o 1 2.18
1] 1,.8) = log | SRS @18
and the survival function is expressed by
Al
1+exp(at+x?ﬁ)]
Sot | A, B) = . 2.19
il 4,0 )= | HERE @19

The behavior of the hazard function (2.17) takes several forms according to the value of
a: for a > 0, the hazard function is increasing; for o < 0, it is decreasing; and for o = 0, this
function is constant. The survival function (6.1) also has its behavior determined by the value
of a. For o > 0, it is proper, i.e, So(0 | A,a,B) =1 and lim;_,. So(7 | A, o, B) = 0; while for
o < 0, it is improper because So(0 | A, a,B) = 1, but

Jim So(e | 1.2.B) = plx1) = {1+ exp(a] B))*/* € (0.1),

and, hence p(x;) can be interpreted as the proportion of long-term survivors in the study
population (MALLER; ZHOU, 1996).

An advantage of using the GTDL model is that it allows long-term survivors without
needed of extra parameters. In addition, it does not make assumptions about the existence of
long-term survivors in the study population. However, we notice that the time effect parameter,
a, is unique for all groups, leaving the model biologically limited, since groups of patients who
receive different treatments may have different time effects. Hence, a regression structure in this
parameter turns the model more flexible. In addition, patients can be long-term survivors and the
insertion of covariates in this parameter will reflect an estimate of @ < 0 (CALSAVARA et al.,
2019a).
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2.5 An unified version of the long-term survival models

Rodrigues et al. (2009) proposed an unification of long-term survival models, which
assume that the number of competing causes related of the event of interest follows any positive
discrete distribution possessing a PGF (FELLER, 2008). We describe such a methodology as
follows. For a subject in the population, let M be a positive unobserved discrete random variable
denoting the number of competing causes related to the occurrence of an event of interest. For
instance, in cancer studies M represents the number of carcinogenic cells at the end of treatment
that can produce a detectable cancer. Assume that M has probability mass function defined
by pm =P(M =m), m=0,1,.... Given M = m, let Wy, k = 1,...,m, be positive continuous
random variables representing the time-to-event due to the k-th competing cause. We suppose
that conditional on M, W;’s are independent and identically distributed (IID) random variables
with distribution function F(z) = 1 — S(z) that does not depend on M. The survival function
S(z) is proper, that is, S(0) = 1 and S(e0) = 0. Hence, exponential, piecewise exponential, and
Weibull distributions, for instance, can be used to represent Wy (IBRAHIM; CHEN; SINHA,
2001). Notwithstanding IID assumption on W;’s is surely strong, this option favors simplicity
and analytical tractability at the expense of a more general formulation (CASTRO; CANCHO;
RODRIGUES, 2009). In addition, notwithstanding this limitation, such models have proven to
be useful in many real-world applications (ORTEGA et al., 2015; LEAO et al., 2018; LEAO et
al., 2020). The number of competing causes M and the lifetime W, associated with a particular

cause are not observable (latent variables). Therefore, the observed lifetime is defined as

min (W, W,,....Wy), for M >1;
T — (W1, W, w) (2.20)
o0, if M=0;

which leads to a proportion of “cured" or “immune" individuals denoted by pg = P(M = 0).

Under this setup, the survival function for the population, S, (1), is given by

Spop(t) = P(T >1)
= PM=0)+P(W, >t,Wr>1,... Wy >t,M>1)

= po+ meP<Wl ZI,WZEI,...,WM2t|M:m)

m=1

= Gu(S()), (2.21)

where Gy(-) is the PGF of the random variable M, which converges when S(¢) € [0, 1].

From (2.21), note that S,,,(0) = 1 and S,,p(0) = limy e Spop(t) = po € (0,1). Thus
Spop(t) is an improper survival function and py is the cured fraction that may be present in
the population from which the data is taken (RODRIGUES et al., 2009). The corresponding
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improper PDF and hazard functions from (2.21) are given by

s:S(t)> ’
_ fpop(t)

f() (%GM(S) )
_ s=S(t)
Spop(t) Spop(t) ,

respectively, where f(t) = —<£5(t) is a proper PDF, that is, f(t) > 0 and [~ f(t)dt = 1.

fpop(l) = f(t) <iGM(S)

ds

and

hpop(t)

Different discrete distributions have been employed for modeling the number of com-
peting causes related to the occurrence of an event of interest. If the Bernoulli or the Poisson
distribution are used, we obtain the SMM and promotion time cure rate models, respectively; see
(BERKSON; GAGE, 1952; YAKOVLEYV; TSODIKOV; BASS, 1993). Rodrigues et al. (2009)
considered the negative binomial distribution which has the Bernoulli, binomial, Poisson and
Geometric distributions as particular cases, Rodrigues et al. (2009) utilized the COMP-Poisson
distribution, Ortega et al. (2015) employed the power series distribution, which has as special
cases the Binomial, Poisson, Geometric, Negative Binomial, Logarithmic distributions, among
others. Gallardo, Gémez and Bolfarine (2017) considered the Yale-Simon distribution, Ledo et
al. (2020) used the zero-modified geometric distribution, Vasquez, Rodrigues and Balakrishnan
(2020) considered the Waring distribution, and Gallardo, Castro and Gémez (2021) employed
the Bell distribution.

2.6 Frailty models

Frailty models can be used in survival analysis for modeling random effects or unex-
plained heterogeneity between individuals or groups (BARKER; HENDERSON, 2005). The
idea of these models is to introduce a non-negative random effect (frailty) multiplicatively on
the hazard function of the baseline model. As a consequence, subjects or groups which are most
frail will have a higher risk, and hence, they will experience the event of interest (e.g., death,
relapsed, or failure) sooner than those who are less frail (WIENKE, 2010).

Let T > 0 be a random variable representing the failure time and Z be an unobservable,
non-negative random variable denoting the frailty. The conditional hazard function of 7' given
Z = z is expressed as

h(t|z) = zho(t), (2.22)

where hg(-) is the baseline hazard function which is assumed to be the same for all subjects Note

that the frailty z factor acts multiplicatively on the baseline hazard function. Hence, frailty z
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increases or decreases the risk of occurrence of the event of interest if z > 1 or z < 1, respectively.

When z = 1 for all individuals, then the standard baseline model is obtained as a special case.

If some covariates are observed in the study, then they can be introduced in (2.22) of
similar way to the Cox model (2.15). So that, the conditional hazard function of 7" given Z =z

become
h(t|z,x) = zho(t)exp(x' B), (2.23)

where B is the p x 1 vector, for (p < n), of unknown regression coefficients associated with the

p % 1 vector of covariates x.

As in Cox’s model (2.15), the baseline hazard function, hg(-), can be chosen non-
parametrically or parametrically. In the non-parametric case, the Breslow and Nelson-Aalen
estimators, as well as their modified versions are commonly used to estimate the cumulative
hazard function. Hence, the model is known as a semiparametric frailty model, since it is assumed
a parametric frailty distribution; see (NIELSEN et al., 1992; KLEIN, 1992; PARNER et al.,
1998; BARKER; HENDERSON, 2005). On the other hand, in the parametric approach, baseline
hazard functions of the distributions such as exponential, lognormal, Gompertz, and Weibull,
among others, are often used (WIENKE, 2010).

The conditional survival function is obtained from (2.23) as follows
S(t|z,x) =exp | —zHo(t)exp(x ' B)|, (2.24)

where Hy(t) = [§ ho(s)ds is the cumulative baseline hazard function.

2.6.1 Unconditional survival and hazard functions

In order to obtain unconditional survival and hazard functions, that is, not depending on
unobserved quantities, we must integrate out the conditional survival function (2.24) on frailty.
This is equivalent to calculate the Laplace transform of the frailty distribution. The definition of

Laplace transform of a function is given as follows.

Definition 2.6.1. The Laplace transform of a function f(y), for y > 0, at s € C, is the function
Z(s), which is defined by

29 = [ exp{-s}f ().

Let f(z) be the frailty PDF. According to Elbers and Ridder (1982), to satisfy the
assumption of identifiability in resulting model, we need that the frailty distribution has mean

one, that is, E[Z] = 1. Thus, by integrating S(z | z,x) given in (2.24) on Z = z, we obtain

S(t | x) = /O " exp [—zHo(t)exp(xTﬁ) fR)dz =2 (Ho(t)exp(xTﬁ)), (2.25)
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where .Z (-) denotes the Laplace transform of the frailty distribution. Hence, the unconditional

hazard function can be obtained from Equation (2.25) as:

ho(t)exp(x' B).Z} (Ho(r)exp(x' B))
Zy (Ho(t)exp(x" B)) 7

where fji(t) is the first derivative of the Laplace transform with respect to time . The uncondi-

h(t|x)=—

(2.26)

tional survival and hazard functions (given above) measure, respectively, the survival and risk of

an individual randomly drawn from a study population (WIENKE, 2010).

As noted above, the use of a frailty distribution that has a Laplace transform on the
closed-form is essential for computing both unconditional survival and hazard functions, which
simplifies parameter estimation. However, when the frailty distribution has no Laplace transform
on the closed-form, numerical integration or Markov Chain Monte Carlo methods need to be
applied (BALAKRISHNAN; PENG, 2006; HOUGAARD, 2012; ROBERT; CASELLA, 2013).
In practice, computational convenience must be taken into account when considering frailty
distribution in univariate and multivariate survival data modeling (PICKLES; CROUCHLEY,
1995; WIENKE, 2010).
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CHAPTER

A REPARAMETERIZED WEIGHTED
LINDLEY DISTRIBUTION: PROPERTIES,
ESTIMATION AND APPLICATIONS

Although Mazucheli, Coelho-Barros and Achcar (2016) have proposed the RWL distri-
bution, the authors did not study its properties and, in addition, they also did not consider the
ML estimation for the parameters under censored data. Our objective in this chapter is to derive
and discuss many mathematical properties of this distribution, including its moments, mean and
median deviations, quantile, characteristic, hazard, mean residual life, and Laplace transform
functions. Also, we show that the second parameter of this distribution can be interpreted as a
precision parameter, which can be useful in further studies. The inference for the model parame-
ters is conducted under the classical (or frequentist) framework via the ML method assuming
the presence of uncensored and random censored data. Numerical simulations are carried out in
order to investigate the performance of the ML estimators (MLEs) under different sample sizes
and proportions of censored data. Finally, the applicability of the RWL distribution is illustrated

in two real data sets.

3.1 RWL distribution

Mazucheli, Coelho-Barros and Achcar (2016) proposed a new parameterization of the
WL distribution, which allows diverse features of data modeling to be considered. The RWL

distribution is obtained by transforming (A, ¢) into (i, ), where

(A +o+1)
O AA+9)
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is the mean of the original parameterization (2.12). Hence, by inverse transformation, we obtain
that

o 90— 1)+ /o= D2+ g (9 + 1)
2u '

Therefore, the PDF of the RWL distribution is expressed as

alp,9)2 1401 (1 4 ryexp { — U0 }

G.1)
2u)? [a(u,9) +2u0]T(9) , 1>0,

f(t|“7¢):

where a(t,¢) = ¢(1—p) ++/92(u — 1)2+4ud (¢ + 1), u > 0 is the mean, that is, E[T] = u
and ¢ > 0 is the shape parameter. From now on, 7 ~ RWL(u, ¢) will be used to denote that the

random variable T follows this distribution.

As the original WL distribution, the PDF (3.1) can be written as a two mixture of the

gamma distributions, that is,

flu,¢)=pfilt|w,¢)+(1—-p)fa(t|u,o), (3.2)

a(u,o)
a(,0) +2ue

041 .
fj(f|ﬂa¢)=(a(u’¢)) : r(t(H—Jzexp{—a(u’(p)t}, t>0,

where p =

2u p+j—1)

is the PDF of the gamma distribution with shape parameter ¢ 4+ j — 1 and scale parameter
a(it, 9)/2u, for j=1,2.
By using the mixture representation (3.2), we found that the variance of the PDF (3.1) is

given by

Var[T| =

<a(2u )2 (9 D (aw.0) +209) —a*(u.0)| .

1",9) (a(p,¢) +2u¢)

Figure 1 shows shapes of the PDF (3.1) considering different values of ¢, when u is fixed,
and RWL variance against ¢. We note that the variability decreases when the shape parameter ¢
increases (see bottom right panel). Thus, ¢ can be interpreted as a precision parameter. On the

other hand, when u increases, the probabilities decrease and vice versa.
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Figure 1 — Plots of PDF of the RWL distribution for different values of ¢ and u fixed (top left and right
panel and botton left panel), and RWL variance versus ¢ (botton right panel).

Source: Elaborated by the author.

Figure 2 displays shapes of the PDF (3.1) considering different values of u, when ¢
is fixed. Note that when p increases the distribution is more spread out and if ( decreases it
becomes more concentrated around the mean. Thus, u is the mean and also a scale parameter
of this distribution. On the other hand, again we see that when ¢ is higher, the distribution has

lower variability.

The corresponding survival and hazard functions of the RWL distribution are given,

respectively, by

¢ a(u,9)
o 1 a(u,q)) [Cl(‘LL,Q))I] exp{_Tl‘}
S(HM‘P)—W F(tb, o t) u Tl 0) 7 200] | (3.4)
and
la(u, )] 9 (1 +1)exp _alp9),
ht |, ¢) = { 2p } 35)

2u | (2p)9 [a(u, 9) +2u9]T (¢, “%mt) +la(p, 9)1]0 eXp{—“(é‘,f’)t}]
where, forall c > 0and d > 0,

I'(c,d) = /dootCIetdt,
is the upper incomplete gamma function. Since this function is widely available in computer

programs, the practical use of Equations (3.4) and (3.5) present no problem; see the zipfR
package within R software (EVERT; BARONI; EVERT, 2006).
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Figure 2 — Plots of PDF of the RWL distribution for different values of y and ¢ fixed.

Source: Elaborated by the author.

Figure 3 shows different shapes for the hazard function of the RWL distribution, con-
sidering distinct values of u and ¢. It can be noted that the hazard function has monotonically
increasing (¢ > 1) and bathtub (¢ < 1) shapes for all 4 > 0 (as the original WL distribution; see
(GHITANY et al., 2011)).

3.2 Further properties of the RWL distribution

In this section, we present some mathematical properties of the RWL distribution, such

as r-th moments, characteristic function, and Laplace transform, among others.

3.2.1 Quantile function

The quantile function of a probability distribution is useful in statistical applications and
Monte Carlo simulation. From (3.4), we have that the CDF of the RWL distribution is given by

a(,9) \  la(.9)? exp {4}
F(¢’ 24 t)+ u)?~ta(u,9) +2u¢]

F(rm,m:l—ﬁ

Hence, the p-quantile, 7, is obtained by solving the following equation:

lalp, )1y exp { el |
(2u)~a(u,9) +2u¢]

:F((]))(l—p)—r((l),a(g‘l’jmtp), (3.6)
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Figure 3 — Plots of the hazard function of the RWL distribution.

Source: Elaborated by the author.

for 0 < p < 1. Observe that if p = 0.5 we get the median of the RWL distribution.

Note that the quantile function does not have a closed mathematical expression. In this
case, the uniroot function of the R software can be used to find out the desired quantiles of the

data; see (BRENT, 1973; R Core Team, 2021).

3.2.2 Moments

Many important characteristics and properties of a probability distribution can be obtained

through its moments, such as mean, variance, skewness, and kurtosis.

Theorem 3.2.1. If T ~ RWL(u, @), then the r-th power, logarithmic and negative moments are

given, respectively, by

2u ] la(p, @) +2u¢ +-2ur]T(¢ +1)
a(u, o) la(u,¢) +2u]0(9)

i) Bllog (1] = [wio)+ 2 tog (1)),

a(u, ¢)} "T(¢—r)la(p,9)+2u(¢ —r)]
2u la(u,9)+2ud]T(9)

W e -|

(iii) E[T~"] = {

d
where y(k) = pra log (I'(k)) is the digamma function.
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Proof. We will only prove the item (i) of Theorem 3.2.1 because the proof for the other remaining
items follows similarly. In fact, let us use the mixture representation given in Equation (3.2). We
then have

B[] = (%) [ it oy + (%) A

where f;(t | i, ¢) is the PDF of the gamma distribution with shape parameter ¢ + j — 1 and scale
parameter a(él—:m, for j = 1,2. Note that

i (2w N1
e~ (e ) St =

Thus, after some algebraic manipulations, we finish the proof of this theorem. ]

The coefficient of variation (CV) is used to analyze the dispersion in terms of their
average value when two or more data sets have different units of measure. As a result, we can
say that the CV is a way of expressing the variability of the data, excluding the influence of the
variable’s order of magnitude. Often, the CV is given in percentage.

The CV of T ~ RWL(u, ¢) is given by

CVIT|= @ _ \/4 la(u,d)+2udp +4u]o(¢+1)
E(T] la(u,0)Pla(u, 9) +2u¢]

The next corollary gives us the harmonic mean of the RWL distribution. This measure
of central tendency can be useful in many real problems; see, e.g., Hasna and Alouini (2004),
Limbrunner, Vogel and Brown (2000) and Raftery ez al. (2006).

Corollary 3.2.1. The harmonic mean of the random variable Y ~ RWL(lL, ) is given by

(=[N 2ur(9)[a(i, §) +2u9]
Hn = (E H) = (o)L (0 — Dla(e. 0) 1 2u(p— 1)

Proof. This result can be established by using the item (iii) of Theorem 3.2.1 with r = 1 and

then taking the reciprocal of the resulting expression. |

Another way to characterize a distribution is by using its characteristic function (CF).
The CF of a random variable is also known as Fourier transform of its PDF and has applications
in the most diverse areas of scientific knowledge; see, e.g., Ingle, Kogon and Manolakis (2005),
Yu (2004) and Lukacs (1972). Besides, the CF is also useful to compute the r-th power moments;
see (BILLINGSLEY, 2008).

Theorem 3.2.2. If T ~ RWL(u,9), then its CF is given by

0= (srarams) (o) oo (1-it) |

forall s € R, where i = +/—1 is the imaginary unit.
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Proof. In fact, by the representation of mixture given in Equation (3.2), we have
Pr(s) = BT = [ (| o)
0
CZ(I.L,(Z)) )/Do ist ( 2,I.L(P )/w ist
_ e n,e)dt+ | ——— e (| u,e)de.
(atucstis) [ emetmonas (2 ) [ et me)

Now, as f;(t) is the PDF of gamma distribution with parameters ¢ + j— 1 and a(u,¢)/2u,

j = 1,2, we then obtain

Now, after some algebraic manipulations, we get the desired result. |

3.2.3 Mean residual life function

The mean residual life (MRL) function represents the expected additional lifetime given

that a component has survived or not failed until time 7. The MRL function is defined by

r(t|0)=E[T —t|T >t] =

S(tl\e) /tmyf(yle)dy—t,

where f(¢ | @) and S(¢ | @) are, respectively, the PDF and survival function of the random variable

T, and 0 is the parameter vector.

Proposition 3.2.1. The MRL function of the random variable T ~ RWL(L,®) is given by

2p
la(it,9) +2uQ]T(9)S(r | 1, ¢

2ul (¢ +2, a(u,9)t

a
) F(‘”“’ 2 a(1,9)

_t7

where S(t | L, @) is the survival function defined in Equation (3.4).

Proof. By using the mixture representation given in Equation (3.2), we have

[ or0100= (W0 oo w0y

2u¢
" (a(u,¢>+2u¢

a(u, )\ yri? a(y,9)
2u ) F(¢+j—1>eXp{_ 2u

where £y 1.0) = rhtorj =12
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Now, for j =1,2,

- B [a(u, )P+~ otj—1 (N7¢)
/t}’f]()’|“a¢)dy = (2p)9+i-10 ‘P"‘]_l/ v eXp{ 2u }dy

B = e _a(u,9)y

= a(u ¢)F(¢ —|—J_ 1) /I("éﬁ)fz +J leXp{—Z}dZ7 <Z— T)
2ur (9 -+ ), “420)

TR CES S (3.3)

Substituting Equation (3.8) into Equation (3.7), we can get the result after some algebraic

manipulations. |

Figure 4 shows the possible shapes for the MRL function of the RWL distribution. Note
that as the hazard function is bathtub-shaped (increasing), the MRL function has upside-down

bathtub (monotonically decreasing) shape according to Bryson and Siddiqui (1969) and Olcay
(1995).

1.2 1.00

1.1

0.75
1.0 0.50
0-9 0.25
0 1 2 3 4 5 0 1 2 3 4 5
t

—i=1.0,0=0.9 mmmpi=1.0, =08 mmmmp=1.0,=0.7 =10, =06 —i=1.0, 0=4.0 =m=pi=1.0, =3.0 mm=—p=1.0,0=2.0 p=1.0, 0=1.0

Figure 4 — Plots of the MRL function of the RWL distribution.

Source: Elaborated by the author.

3.2.4 Mean and median deviations

Mean and median deviations are useful for measuring the amount of scattering in a
population. They are defined as follows.



3.2. Further properties of the RWL distribution 49

Consider a random variable 7 with PDF f(¢) and let u and m denote, respectively, the
mean and median of T, that is, g = E[T| and m = Median|T|. Then, the mean and median

deviations are defined, respectively, by
6= [ lr—ulf©dr and &= [ li—mlsn)dr
After some algebraic manipulations, we find the following simplified expressions for &;
and &,:
61 =2[uF(u)—C(u)] and & =m—2L(m), (3.9)
where F () is the CDF of T and {(-) is defined as
£(s) = /Ostf(t)dt, 5> 0.

Proposition 3.2.2. The mean and median deviations for a random variable T ~ RWL(u, ) are

given, respectively, by

a(u,¢)
2u a(u,¢)) 2y (9+2,45%)
o = — )
V=2 ) G e T 20T ) y("’“’ 2 )T e G310
and
a(u,9)
o 21 ( | a9) ) 2W<"’+2 ) 1
2=mameraper(e) | T\ T ) T T - G1ID

where F(-) is the CDF of the RWL distribution given in Equation (3.6) and
C
¥(b,c) = / P~ e ar,
0

is the lower incomplete gamma function.

Proof. It is enough to solve the integral

S(s) = [ ofte mo)ar. s >0,

where f(-) is the PDF given in Equation (3.1). In fact, using the two-component mixture given

in Equation (3.2), we have

£(s) = (—(ufp‘;f)zu (p) [asitelwoyar+ (—a(u;‘ﬁzﬂ ¢) [iate | w,o)a

a(p,¢)\ ¢ o2 a(u,9)
2u ) F(¢+j—1)eXp{_ 2u

Letz = (“ (P)t sodz = (g L’l‘p)dt. Thus, after some algebraic manipulations, we get

a(u ¢)S>+ZW(¢+2 5 >

_ 2u ,
S0) = Gl 0) + 2091T(9) Y(‘]’“’ 2u (0, 9)

where f;(t | 1,9) = ( t},forj: 1,2.

(3.12)

Now, the results given in Equations (3.10) and (3.11) follow easily by using Equations
(3.9) and (3.12). |
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3.2.5 Laplace transform

The Laplace transform of a PDF is useful in several applications of mathematics, engi-
neering and statistics, such as frailty models, machine learning, complex differential equations,

signal processing, control systems, among others.

Proposition 3.2.3. The Laplace transform of the RWL distribution at a complex argument s is

given by

Lr(s) =

! a(u,0) "
(a(u,¢)+2u¢) (2us+a(u,¢)) la(p, @) +2u(s+¢)].

Proof. Let O = (u,¢). Then,

29 = [ et 0y

a(;u’7¢) « st 2‘u¢ oo .
(a(u)—+2u¢>/o ‘ fl(t"’)d”(m)/o e (] 0)dr, (3.13)

¢+j-1 o+j—2
where f](t ’ [J,,(P) = (a(‘;‘lfb)) mexp{—a(ztmt}, fOI‘jZ 1,2

Now, note that

e it 0y = (—a(% L

Thus, by substituting Equation (3.14) into Equation (3.13) and making some algebraic

manipulations, we obtain

B 1 a(u,9) \*
%= (aagrvans) (s tag)) [ 0) ¥ 2u(+0)

3.3 Estimation

We consider the situation where the lifetime is not completely observed and is subject
to random right-censoring. The mechanism of random right-censoring is what most occurs
in practical problems and it generalizes the Type I and Type II right-censoring mechanisms
(COLOSIMO; GIOLO, 2006).

Let C; denote the censoring time, and 7; be the lifetime of interest for the i-th sam-
pling unit. Suppose that the random variables C; and 7; are independent. We then observe
t; = min(7;,C;) and v; = I(T; < C;), where v; = 1 if T; is the observed lifetime and v; = 0 if it is
the censoring time. From n pairs of times and censoring indicators (1, V2), (2, V2), ..., (tn, Vu),

the observed likelihood function for @ = (i,¢) " under non-informative censoring is given by

n

L(O|t)=T]If(e|0)]"[S(:|6)' ", (3.15)

i=1
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where f(¢; | 8) and S(z; | 0) are the PDF and survival function of the RWL distribution, defined
in Equations (3.1) and (3.4), respectively.

16
Since h(t; | 0) = ua ), we then have that the likelihood function (3.15) reduces to
S(:i | 0)

n

L6 |t)=]]ln(| )" S| 6),

i=1
where h(t; | ) is the hazard function of the RWL distribution, given in Equation (3.5). Therefore,

the log-likelihood function for @ can be expressed as

0(0)t)=d(¢+1)logla(u,d)] + (¢ —1) Zv,log ) Zv,log1+r,
i=1 i=1

. _ a(p,9) a(u,rp)
-3 vioe | (2w)° e 0) + 20T (0,28 r,-)+[a<u,¢>>m¢exp{— e nH

(¢ a(,u7(]))t.>+[ a(u, 9)) eXp{ (“f)ri}
Coop ) ) ta(p, ) +2ue] |

(3.16)

—dlog(2u)—nlog(I'(¢))+ Zn: log |T

i=1

where d < n is the observed number of failures and a(, ¢) is defined as previously.

The MLE of parameter vector 8 can be found by maximizing the log-likelihood function
given in Equation (3.16). In this work, we used the R function maxLik, which is available in
the package of the same name to carry out such optimization procedure; see (HENNINGSEN;
TOOMET, 2011).

When we have uncensored data, v; = 1,Vi. In this case, the MLE of u is the sample
mean, [l = rl,):?:l t;, whereas the MLE of ¢ is found by maximizing the following log-likelihood

function:

(9 |t)o<n(¢+1)logla(ft,d)]+ (¢ —1) znllog(ti) + ilog(l +1;) — a(/ft;i(P) ili

i=1 i=1
—n@log(21) —nlog(I'(9)) —nlog(a(ft,¢) +201¢),
which can be made by using, for example, the maxLik function.

Under mild conditions, it can be shown that the MLE 0 is consistent and follows an
asymptotic bivariate normal distribution with mean vector 8 and covariance matrix equal to the

inverse of the expected Fisher information matrix .# (), that is,

(2,0) 2 No ((1,9),7 ' (11,9)), as n—eo,

where 2 denotes convergence in distribution. Unfortunately, the exact expected Fisher informa-
tion matrix is difficult to be obtained for the RWL distribution. In this case, we can approximate
it by its observed version obtained from the maxLik package results. Hence, we can construct ap-
proximate 100(1 — a)% confidence intervals for the individual parameters, along with hypothesis

tests, through the estimated marginal distributions (both normal).
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3.4 Results based on computation

In this section, we perform a Monte Carlo simulation study to verify the asymptotic be-
havior of MLEs of the RWL distribution parameters under different sample sizes and percentages
of censoring. All the analyses were carried out using the R software (R Core Team, 2021), and
the seed used in the pseudo-random number generators was 2020. The random samples of size n
from the RWL distribution with parameters y and ¢ were generated by adapting the Algorithm
1.

To evaluate the MLEs, the following performance criteria were considered: mean relative

estimate (MRE) and mean squared error (MSE), which are given, respectively, by

Iy 0 L v (4 .
MRE,:NZ7 and MSE;=—Y (6,,-6)", i=1.2,
j=1 7

N &

where 8 = (61,6,)" = (i, )" is the parameter vector and 8 = (6;,6,)" = (1,¢) " is its MLE,
while N = 10,000 is the number of estimates obtained through the proposed approach.

According to these criteria, it is expected that the MRE and MSE return values close
to one and zero, respectively. We also compute the coverage probabilities (CPs) of the 95%
confidence intervals. For a large number of experiments using 95% confidence intervals (CIs),
the relative frequencies of these intervals that covered the true values of @ should be closer to
0.95. The CPs were calculated using the numeric observed information matrix obtained from the

maxLik package results.

We considered a sample size n € {20,50,100,200,400} and 0 € {(0.5,0.7),(2,5)},
with censoring percentages of 0%, 25% and 50%. We selected these values for 6 in order to
get, respectively, bathtub-shaped and increasing hazard functions. The censoring times C; are
generated from the Uniform(0, &) distribution, with the values of & > 0 depending on n and of
censoring proportion (p). Let pj, j =1,2,...,N, denote the proportion of censored data in the
Jj-th sample, then according to this procedure it is expected that the mean for the proportions of
censored data (p) will be approximately 0, 0.25 and 0.5.

Under these scenarios, we report the values of the empirical MREs, MSEs, and CPs in
Tables 1 and 2. According to these tables, we can see that the MSEs of all estimators tend to zero
as the sample size increases, suggesting that all estimators are consistent with the parameters. In
contrast, the MRE values tend to one, meaning that the estimators are asymptotically unbiased
for the parameters, as expected. We can also see that, as the censoring percentage increases, the
MREs and MSEs of the MLEs also increase, as expected. Furthermore, we observe that, as n
increases, the CPs tend to the nominal level (0.95). Therefore, in general, all of these results

show the excellent performance of the MLEs of the corresponding parameters.
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Table 1 — MRE, MSE, CP and expected censoring proportion estimates for N = 10,000 samples of sizes
n € {20,50,100,200,400}, with 0%, 25% and 50% of random censored data, for t = 0.5 and
¢ =0.7.

1L =05 ¢ =0.7

n MRE MSE CP | MRE MSE CP

20 1.001 0.015 0910 | 1.147 0.080 0.964

50 1.000 0.006 0932 | 1.052 0.021 0950 -

0% 100 0.999 0.03 0.942 | 1.025 0.009 0.955 -
200 1.001 0.002 0.949 | 1.013 0.004 0948 -

400 1.001 0.001 0.944 | 1.006 0.002 0950 -

20 1.024 0.027 0904 | 1.153 0.098 0.956 0.250

50 1.011 0.010 0931 | 1.052 0.025 0.954 0.250

25% 100 1.007 0.004 0.946 | 1.025 0.011 0.952 0.250
200 1.005 0.002 0948 | 1.012 0.005 0.950 0.250

400 1.002 0.001 0.945| 1.007 0.002 0.955 0.249

20 1.093 0.088 0.888 | 1.192 0.168 0.959 0.500

50 1.031 0.020 0919 | 1.063 0.034 0.957 0.500

50% 100 1.017 0.09 0.938 | 1.030 0.014 0.953 0.500
200 1.010 0.004 0.945| 1.015 0.007 0.952 0.500

400 1.004 0.002 0.946 | 1.008 0.003 0.951 0.499

Source: Elaborated by the author.

=

Table 2 — MRE, MSE, CP and expected censoring proportion estimates for N = 10,000 samples of sizes
n € {20,50,100,200,400}, with 0%, 25% and 50% of random censored data, for 4 = 2 and

$=5.

u=2 o=>5
n MRE MSE CP | MRE MSE Cp p
20 1.002 0.038 0.929 | 1.150 4.548 0.942 -
50 1.002 0.015 0.936 | 1.066 1.457 0.949 -
0% 100 1.001 0.008 0.943 | 1.032 0.622 0.952 -
200 1.001 0.004 0950 | 1.017 0.292 0.952 -
400 1.001 0.002 0.945 | 1.009 0.141 0.951 -
20 1.004 0.049 0927 | 1.180 6.610 0.925 0.249
50 1.002 0.019 0.943 | 1.074 1.806 0.953 0.250
25% 100 1.001 0.009 0.948 | 1.035 0.791 0.952 0.250
200 1.001 0.005 0948 | 1.019 0.369 0.951 0.250
400 1.001 0.002 0946 | 1.011 0.178 0.947 0.250
20 1.010 0.080 0.927 | 1.232 11.910 0.902 0.498
50 1.003 0.029 0.942 | 1.092 2.621 0.943 0.500
50% 100 1.002 0.014 0.947 | 1.045 1.155 0.951 0.501
200 1.001 0.007 0.950 | 1.024 0.537 0.949 0.500
400 1.001 0.003 0.948 | 1.013 0.252 0.951 0.501
Source: Elaborated by the author.
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3.5 Real data examples

In this section, we illustrate the proposed methodology on electrical appliances data

(Section 3.5.1), as well as on lifetimes of an agricultural machine (Section 3.5.2).

We compared the results obtained by the RWL distribution with the corresponding ones
achieved with the use of other two-parameter lifetime distributions reparameterized by their
mean. Namely, the reparameterized inverse gamma, and reparameterized Birnbaum-Saunders
distributions (BOURGUIGNON; GALLARDO, 2020; SANTOS-NETO et al., 2012). We present
the PDFs of these distributions as follows:

* Reparameterized inverse gamma (RIG) distribution:
According to Bourguignon and Gallardo (2020), the PDF of the RIG distribution is given
by

0+2
fltlun,9)= M;J—ﬂ;f‘”*exp{—w}, t>0,

where ¢ > 0 is the mean parameter and ¢ > O is the precision parameter.

* Reparameterized Birnbaum-Saunders (RBS) distribution:
Presented by Santos-Neto et al. (2012), it has PDF given by

expigﬁ;ﬁ\}/ﬁ_ﬁ <t+ ¢¢+ﬂl> exp {—9 {(¢;ﬂ1)t + (q,ql“l)t} } :

4
for all + > 0, where 1 > 0 is the mean parameter and ¢ > 0 is the precision parameter.

[l u,9)=

In order to carry out the model selection, different discrimination criterion methods
based on log-likelihood function evaluated at the MLEs were considered. Let k be the number
of parameters in the model and 6 denote the MLE for the parameter vector 0. Then, the model
discrimination criteria used here are: Akaike Information Criterion (AIC) (AKAIKE, 1974),
Corrected AIC (AICc) (SUGIURA, 1978), Bayesian or Schwarz Information Criterion (BIC)
(SCHWARZ, 1978), Hannan-Quinn Information Criterion (HQIC) (HANNAN; QUINN, 1979),
and Consistent AIC (CAIC) (BOZDOGAN, 1987), which are computed, respectively, by

AIC = —2€(é;t>+2k,

AlCc = AIC+%,

BIC = —2€(é;t>+klog(n),
HQIC = -2/ (é;t>+2klog(log(n)),

CAIC = AIC+klog(n)— 1],

where /(. | t) is the log-likelihood function of the corresponding model and 7 is the sample size.

According to these criteria, the best model is the one that provides the minimum values. The
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Kolmogorov-Smirnov test with confidence level o = 0.05 was also considered for checking the
goodness-of-fit of models to the uncensored data (DANIEL, 1990).

3.5.1 Cycles up to the failure for electrical appliances

In this subsection, we reanalyzed the data set extracted from Lawless (2011), which
consists of a number of cycles, divided by 1,000, up to the failure for 60 electrical appliances
in a life test (see Table 3). Many authors have analyzed these uncensored data, including Reed
(2011), Khan (2018) and Ramos et al. (2019). Such data are known to have a bathtub-shaped

hazard function.

Table 3 — Number of cycles, divided by 1,000, up to the failure for 60 electrical appliances in a life test.

0.014 0.034 0.059 0.061 0.069 0.080 0.123 0.142 0.165 0.210

0.381 0.464 0.479 0.556 0.574 0.839 0917 0.969 0.991 1.064

1.088 1.091 1.174 1.270 1.275 1.355 1.397 1477 1.578 1.649

1.702 1.893 1.932 2.001 2.161 2.292 2326 2.337 2.628 2.785

2.811 2.886 2993 3.122 3.248 3.715 3.790 3.857 3.912 4.100

4,106 4.116 4.315 4.510 4.580 5.267 5.299 5.583 6.065 9.701
Source: Lawless (2011).

Table 4 displays the MLEs, standard errors (SEs) and 95% confidence intervals (Cls) for
the parameters u and ¢ of the RWL model. Note that the estimated mean number of cycles to
failure of an electrical appliance is 2.193 cycles. Furthermore, since (ﬁ = 0.733, the estimated
hazard function is bathtub-shaped, that is, it is characterized by an increased number of failures
(and thus, unavailability) in the initial period of electrical appliance usage after its commissioning,
followed by a long span of normal use with a small and roughly constant number of failures,
and finally, a period of a fast increasing number of failures occurring because of the age of the

observed electrical appliance.

Table 4 — MLEs, SEs and 95% Cls for the parameters of the RWL distribution, considering the electrical
appliances data.

Parameter MLE  SE 95% CI
u 2.193 0.272 [1.659;2.727]
()] 0.733 0.136 [0.466; 1.001]
Source: Elaborated by the author.

Table 5 gives the log-likelihood, AIC, AICc, BIC, HQIC, and CAIC values, along
with the Kolmogorov-Smirnov (KS) test statistics and their p-values, for all four distributions
considered. We can see that the RWL distribution offers a better fit to the electrical appliances

data than the other models considered since it has the minimum values of these criteria. In
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addition, the KS test indicates that the electrical appliances data are a random sample from a
RWL distribution with {I = 2.193 and ¢ = 0.733.

Table 5 — Model selection criteria values and KS test (statistic and p-values) for the fitted probability
distributions, considering the electrical appliances data.

Criterion RWL RIG RBS
Log-likelihood —105.774 —157.273 —118.912

AIC 215.548 318.546 241.824
AICc 215.759 318.756 242.035
BIC 219.737 322.734 246.013
HQIC 217.187 320.184 243.463
CAIC 221.737 324.734 248.013

KS statistic 0.072 0.496 0.285
p-value 0.907 < 0.0001 < 0.001

Source: Elaborated by the author.

Figure 5 presents the survival function adjusted by different probability distributions
(RWL, RIG and RBS distributions) superimposed to the estimated Kaplan-Meier (KM) survival
curve. From this figure, it can be observed that the RWL distribution provides the best fit to the
electrical appliances data. Therefore, from the proposed methodology, the data set related to the

failure times of 60 electrical appliances can be well-described by the RWL distribution.

3.5.2 Agricultural machine data

As a second application, in this subsection we reanalyzed the data related to the times up
to corrective maintenance of an agricultural machine, presented by Ramos ez al. (2019). This data
set includes two censored observations, both in 13 days. Its analysis can be useful to correctly

predict the next maintenance in order to reduce costs.

Table 6 — Times up to corrective maintenance of an agricultural machine ("+" denotes censoring).

1 1 1 1 1 11 2 2 3 3 3
3 3 4 4 4 4 4 4 4 5 5 5
5 5 5 5 5 5 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 ©
77 7 7 /A A A Y A Y |
7 7 8 8 &8 8 8 8 8 8 &8 8
&8 9 9 9 9 9 11 11 11 11 11 11
mnm 11 13 13+ 13+ - - - - - - -

Source: Ramos et al. (2019).

Table 7 shows the MLEs, SEs and 95% ClIs for the parameters t and ¢ of the RWL

distribution. Notice that the estimated mean time to occur a fail in the agricultural machine is
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Figure 5 — Left panel: Fitted survival functions superimposed to the estimated KM survival curve, con-

sidering the electrical appliances data. Right panel: Estimated hazard function of the RWL
distribution for these data.

Source: Elaborated by the author.

6.404 days. Also, the fit of the RWL distribution suggests an increasing-shaped hazard function:
¢ = 2.778 (see Figure 6, right panel).

Table 7 — MLEs, SEs and 95% Cls for the parameters of the RWL distribution, considering the agricultural
machine data.

Parameter MLE SE 95% Cl1
u 6.404 0.369 [5.680;7.127]
[0 2.778 0.491 [1.816;3.740]

Source: Elaborated by the author.

Table 8 reports the results from different model discrimination/selection criteria, such
as the log-likelihood, AIC, AICc, BIC, HQIC and CAIC, for the four considered probability
distributions. From these results, we see that the RWL distribution provides slightly better

description of the data compared to other candidate distributions, since it yields the lowest values
in all criteria.
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Table 8 — Model selection criteria values for the fitted probability distributions, considering the agricultural
machine data.

Criterion RWL RIG RBS
Log-likelihood —223.049 —248.159 —235.404
AIC 450.098 500.318 474.808
AICc 450.237 500.457 474.947
BIC 455.075 505.295 479.785
HQIC 452.104 502.324 476.814
CAIC 457.075 507.295 481.785

Source: Elaborated by the author.

Figure 6 exhibits the survival functions superimposed to the estimated KM survival
curve (left panel), as well as the estimated hazard function (right panel). From this figure, it
can be observed that the RWL distribution provides a good fit to the agricultural machine data.
Therefore, from the proposed methodology, the data set related to the failure times of agricultural
machine can be well-described by the RWL distribution.

0.4
1.00
0.3
0.75
(_g — KM .E
= RBS ﬁ 0.2
2 050 N
>
7] — RIG T
= RWL
L
0.1
0.25 |
—
0.00 0.0
0 5 10 0 5 10
Time Time

Figure 6 — Left panel: Fitted survival functions superimposed to the estimated KM survival function,
considering the lifetimes of an agricultural machine. Right panel: Estimated hazard function of
the RWL distribution for these data.

Source: Elaborated by the author.

A preventive approach for this agricultural machine is given as follows. Through the
quantile function of the RWL distribution given in Equation (3.6), we can get the number of

days that are expected to have a certain percentage of failures. Table 9 displays different times to
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failure, assuming different percentages. The results obtained from this table show that preventive
maintenance can be performed assuming different percentages of failures. Accordingly, we
recommend the agricultural enterprise to consider 4 days (25% of failures) after the last failure

to perform maintenance in this agricultural machine.

Table 9 — Days to perform preventive maintenance to agricultural machine by assuming different percent-
ages of failures, based on the RWL distribution.

10% 25% 50% 75% 99%
255 388 5.82 829 16.87

Source: Elaborated by the author.

3.6 Concluding remarks

In this chapter, we derived critical mathematical properties of the RWL distribution such
as power, logarithmic and inverse moments, coefficient of variation, harmonic mean, mean and
median deviations, Laplace transform among others. Under this parameterization, one of the
parameters is given by the mean, whereas the other parameter can be interpreted as a precision
parameter. The ML method for the parameters was discussed under random right-censoring.
An extensive Monte Carlo simulation study showed that the proposed estimators are consistent
and return reasonable estimates for the parameters of the RWL distribution. The proposed
methodology was used in two applications considering electrical appliances data and a data
set related to the lifetimes of an agricultural machine, in which we observed that the RWL
distribution returned best fit when compared to some well-known reparameterized models in the

statistical literature.
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CHAPTER

A WEIGHTED LINDLEY FRAILTY MODEL:
ESTIMATION AND APPLICATION TO A
LUNG CANCER DATASET

Traditional survival models implicitly assume a homogeneous population to be studied
(like in Chapter 3), but covariate information can be included to explain the observable het-
erogeneity. However, a portion of unobserved heterogeneity can be induced by several factors,
such as environmental or genetic factors, or information that was not considered in planning
study. Failing to account for this latter form of heterogeneity may lead to distorted results. In this
chapter, we introduce a novel frailty model for modeling unobserved heterogeneity in univariate
survival data. In this model, the RWL distribution is employed to describe the unobserved frailty.
For our model to be identifiable, we use the RWL distribution with mean one as frailty distri-
bution. By using the Laplace transform function of the RWL distribution, both unconditional
survival and hazard functions are obtained. We assume Weibull and Gompertz distributions
as the baseline hazard functions. Classical inference based on the ML method is developed.
Simulation studies are performed to verify the behavior of MLEs under different proportions of
right-censoring and to check the likelihood ratio (LR) test for detecting unobserved heterogeneity
under different sample sizes. Finally, to demonstrate the applicability of the proposed model,
we use it to analyze a medical dataset from a population-based study of incident cases of lung

cancer diagnosed in the state of Sao Paulo, Brazil.
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4.1 RWL frailty model

In conditional model (2.23), we suppose that the frailty variable Z ~ RWL(1,¢). Then,
according to Equation (3.1), the frailty PDF is given by

(Voo D) (1 +-g)exp (~2y/06 1 1))
(VoG +1)+0)T(9)

where ¢ is the (unknown) shape parameter. As mentioted in Chapter 2, problems of identifiability

flz] )= . z2>0, 4.1)

in the resulting model can occur. To avoid this, we have assumed E [Z] = 1; see (ELBERS;
RIDDER, 1982).

Usually, in a frailty model, the amount of unobserved heterogeneity in a study population
is quantified by the variance of the frailty variable. If we assume the PDF from Equation (4.1)
to be a frailty distribution, the variance is 6 = 2 (q) + \/m ) 71. Notice that this variance
decreases as ¢ increases, and it tends to infinite when ¢ tends to zero. Thus, small values of ¢

indicate the presence of higher unobserved heterogeneity among subjects.

From Proposition 3.2.3, we have that the Laplace transform of the frailty PDF (4.1)
depending on its variance, 0, is given by

~gte5a !
E@@p:0+%%%5?> o (LP?),seR. 4.2)

If we evaluate Equation (4.2) at s = Hy(t)&, where & = exp(x' B) for the sake of
simplicity, we find that unconditional survival function (2.25) with RWL-distributed frailty, is
given by

Ho(t)§9(9 +4>)_9(94H)_1 <1+H0<t)§6) . t> 0. (43)

2(0+2)

au@=0+ .

Then, the corresponding unconditional hazard function (2.26) becomes

_ 4+6(60+4) 0
h(t | x) = ho(1)& (2(9+2>+H0(t)§9(9+4> _2+Ho(t)e§9)’ t>0. (4.4)

Hereafter, we will call the model with unconditional survival and hazard functions as
RWL frailty model. As mentioned in Chapter 2, the baseline hazard function can be assumed
parametrically or non-parametrically. In this work, we use the parametric approach by employing
Weibull and Gompertz models as baseline hazard functions. These models are indexed by two
parameters and can accommodate constant, increasing, and decreasing hazard functions. The
Weibull distribution is often used in survival and reliability, whereas the Gompertz distribution is
preferred in actuarial and demographic applications (WIENKE, 2010; BOHNSTEDT:; GAMPE;
PUTTER, 2021). However, an advantage of using the Gompertz distribution as baseline hazard
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function in survival settings is that sometimes it may be “defective" (ROCHA et al., 2016;
CALSAVARA et al., 2019b; CALSAVARA et al., 2019c¢). This implies that not all subjects are
susceptible to the event of interest in the study, that is, they are considered cured or long-term
survivors; see (MALLER; ZHOU, 1996).

4.1.1 RWL frailty model with Weibull baseline hazard function
The baseline hazard and cumulative hazard functions of the Weibull distribution are
given, respectively, by
VA t

ho(t) = T Ho(t):(5> , >0, 4.5)

where Kk > 0 is the shape parameter and p > 0 is the scale parameter. For k¥ < 1 , the Weibull

hazard function decreases monotonously; when Kk = 1 (exponential distribution), it is constant
over time; and when k > 1, this function increases monotonously (WIENKE, 2010).

Therefore, using (4.5) into (4.3) and (4.4), the unconditional survival and hazard functions

of the RWL frailty model with Weibull baseline hazard function are, respectively,

[ t¥E(0 +4))e<e4+4>1 < z’<§9>
S(t\x)—(l+—2pk(9+2) 1+2PK , t>0 (4.6)
and
e 4+0(0+4) 0 )
hir | x) = 5(2pk(9+2)+tk§9(9+4) p<ige) 7Y 7

Figure 7 presents some examples of the shapes obtained for survival and hazard functions
of the RWL frailty model with Weibull baseline hazard function when selected values of the
parameters were used. With this graphical analysis, it is observed that the survival function of
this model is always proper, that is, S(0) = 1 and S(e0) = lim;_, S(¢) = 0. In addition, the hazard
function presents monotonically decreasing and unimodal shapes. It is important to point out

that the unimodal shape is not possible for the hazard function of the traditional Weibull model.

4.1.2 RWL frailty model with Gompertz baseline hazard function

The baseline hazard and cumulative hazard functions of the Gompertz distribution are,

respectively, given by
ho(t) =pe™ and  Ho(r) =2 (¥ —1), 1>0, 4.8)

where k¥ > 0 and p > 0 are shape and scale parameters, respectively. If k¥ < 0, the Gompertz
distribution is “defective" (ROCHA et al., 2016; CALSAVARA et al., 2019b; CALSAVARA
et al., 2019c), since its cumulative hazard function converges to the constant —% for t — oo,

which leads to a cure or long-term survivors fraction pg = exp ( %) in the study population. When
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Unconditional survival function Unconditional hazard function
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Figure 7 — Unconditional survival (left panel) and hazard (right panel) functions of the RWL frailty model
with Weibull baseline hazard function.

Source: Elaborated by the author.

Kk = 0, the exponential distribution is obtained as a special case. Thus, the hazard function of the

Gompertz distribution can be decreasing (k < 0), constant (kK = 0) or increasing (k > 0).

Using (4.8) into (4.3) and (4.4), the marginal survival and hazard functions of the RWL

frailty model with Gompertz baseline hazard function are, respectively,

Kt *ﬁ*l ekt —
S(t|x):(1+p(e 2x22)€f$+4)) o (1+—p( 2K1)§9), 4.9)
and
R 4+40(6+4) 6
Wt | x) = pre 5(21c(e)+2)+p(e'<t—1)59(9+4)_21<+p(e'<t—1)§9>’ (4.10)

for all r > 0.

If ¥ > 0, the marginal survival function (4.9) is proper, that is, lim,;_,oS(¢ | x) = 1 and
lim;_, S(¢ | x) = 0. On the other hand, if k¥ < 0, it is an improper marginal survival function,

since

p&EO(6+4) NG
- 2x(6+2) )

where pg denotes the cured or long-term survivors fraction in the study population.

1(1—’)‘5—9) € (0,1), (4.11)

lim S(# =po=1|{1
im (e 1) = o= a

t—ro0

Figure 8 displays some examples of the shapes obtained for marginal survival and hazard

functions of the RWL frailty model with Gompertz baseline hazard function for selected values
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Unconditional survival function Unconditional hazard function
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Figure 8 — Unconditional survival (left panel) and hazard (right panel) functions of the RWL frailty model
with Gompertz baseline hazard function for some parameter values.

Source: Elaborated by the author.

of the parameters. We can see that the marginal survival function is proper for k¥ > 0 and
improper for Kk < 0, as previously mentioned. In addition, this model supports unimodal-shaped,
monotonically increasing and monotonically decreasing marginal hazard functions. Therefore,
the RWL frailty model with Gompertz baseline hazard function is more flexible than the RWL

frailty model with Weibull baseline hazard function.

4.2 Inference methods

In this section, we describe the ML method for estimating parameters of the two RWL
frailty models. Under certain regularity conditions, MLEs have attractive properties, such as,
consistency, efficiency, asymptotic normality, among others (LEHMANN; CASELLA, 2006).

It is possible that lifetime data may not be available for all subjects in a study. For
example, some lifetimes are right-censored and it is only known that they are greater than the
recorded value. If so, let 7; and C; be the lifetime and censoring time variables, respectively,
for the ' subject in the population under study. Suppose 7; and C; are independent random
variables and let v; = I(7; < C;) be the censoring indicator (i.e, v; = 1 if T; is lifetime and v; = 0
otherwise). We then observe t; = min(7;,C;). Let x; denote a p x 1 vector of covariates, which

are observed in the /' subject. Then, from a sample of n subjects, the likelihood function for the
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parameter vector ¥ = (x,p, 0, ﬁT)T under non-informative censoring setting is given by

Hh 1i|x%:)ViS (4:|%:),

where S(-|x;) and A(-|x;) are unconditional survival and hazard functions for subject i given in

Equations (4.3) and (4.4), respectively.

Assuming the Weibull baseline hazard function and using (4.6) and (4.7), the log-
likelihood function for ¥ = (k,p, 0, BT)T is expressed as

K
T &i
((¥) = rlog(x +Zv, B+(x—1) Zv,log t; —|—Zlog (1+ ZpK)

i=1
4 ,'Kéi (6+4) n | |
- (m+ 1) l._leog (”m) +i_Zlvllog(nl>, (4.12)

44+-6(6+4) B 0
2p%(0+2)+1KE6(6+4)  2pK+1FE6°

exp(ch] +ﬁ2x2 +...+ Bpxp).

where 1; = r=Y'"_, v;is the failure number, and & = exp(x, B) =

Now, considering the Gompertz baseline hazard function and using (4.9) and (4.10), the

log-likelihood function for ¥ = (k, p, 6, f)’T)T becomes

(W) = rlog(px) + Ki Viti + i vix; B+ ilog (1 L Pl - 1)51-9)

i=1 i=1 i=1 2K

_ 4 - p(ei —1)EB(0+4)\ &

where r and &; are defined as previously, whereas

440(0+4) 0

U= k(0 42) T p(eXi —1)E6(0+4) 2kt plexi —1)E0"

The MLEs ¥ of respective parameter vectors ¥ can be obtained by maximizing the
log-likelihood functions (4.12) and (4.13). We note that for two RWL frailty models ¥ does not
have a closed-form. Hence, numerical nonlinear optimization methods such as best-performing
Broyden-Fletcher-Goldfarb-Shanno (BFGS) or quasi-Newton, Fisher scoring, general-purpose
unconstrained nonlinear optimization (cminf) and Simulated ANNealing (SANN) are required
in order to find a solution; see (NOCEDAL; WRIGHT, 1999; NIELSEN; MORTENSEN, 2016).
These and other optimization methods are implemented in various packages within R software
(R Core Team, 2021), such as stats (VENABLES; RIPLEY, 2013), maxLik (HENNINGSEN;
TOOMET, 2011), and optimx (NASH et al., 2020) packages.

Under standard regularity conditions, fulfilled for parameters in the interior of the
parameter space, but not on the boundary, the ML estimator W is consistent and follows a (p+3)-

variate asymptotic normal distribution with mean ¥ and a (p + 3) x (p + 3) variance-covariance
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matrix being equal to the inverse of the Fisher information matrix (LEHMANN, 2004). Then,

mathematically we have

2 N (B (F), asn— o, (4.14)

D e
where — represents convergence in distribution and

-5}

is the (p+3) x (p + 3) Fisher information matrix.

Unfortunately, the Fisher information matrix elements for the two RWL frailty models
cannot be obtained analytically, and hence, the Fisher information matrix does not have a
mathematical expression form. In this case, we approximate the Fisher information matrix by its
observed version, denoted by H (‘f’) which is calculated by dropping the expectation operator,
E(+), in the Fisher information matrix, and can be computed numerically without much trouble.

Thus, we can rewrite Equation (4.14) as

[N N p+3) (‘I‘,H‘%‘f‘)) , asn—»oo.

Therefore, SEs of the MLEs can be computed by taking the square root of the elements
diagonal of H ! (‘i‘) Hence, approximate Cls can subsequently be calculated, and hypothesis
tests for the model parameters based on asymptotic marginal normal distributions of the MLEs
can be generated. In the next section, we describe a simulation study performed to determine
whether the usual asymptotic properties of the MLEs hold and to assess the performance of the

LR test to detect unobserved heterogeneity.

4.3 Simulation study

In this section, we report two extensive Monte Carlo simulations. The first simulation
evaluated the performance of the MLEs of the two RWL frailty models parameters in response to
different sample sizes and censoring proportions. The second simulation was intended to verify
the behavior of the LR test to detect unobserved heterogeneity. To assess the effect of covariates
on the survival function, we divided the sample into two groups (X). We introduced one regression
parameter for & : & = exp(P1x;), where B is the parameter associated to covariate. To introduce
random right-censoring, the distribution of censoring times is assumed to be Uniform(0, €) where
€ > 0 is set to control the proportion of right-censored observations. In all of the simulation
studies performed, the datasets (#;, v;,x;) from the two RWL frailty models were generated by
using the Algorithm 2 (for Weibull baseline hazard function) and the Algorithm 3 (for Gompertz
baseline hazard function) given as follows
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Algorithm 2 — Generator of random numbers from the RWL frailty model with Weibull baseline hazard
function

1: Define the values of ¥ = (k, p, B,BT)T.
2: Generate u ~ Uniform(0, 1), then using a numerical method (e.g., uniroot function into
stats package) obtain the lifetime y from the equation:

4

() " (50)-

3: Draw ¢ ~ Uniform(0, €), and compute # = min(y, c).
4: If t =y, then v = 1, otherwise v = 0.
5: Repeat the previous steps to obtain the desired sample size.

Algorithm 3 — Generator of random numbers from the RWL frailty model with Gompertz baseline
hazard function

1: Define the values of ¥ = (k, p, O,ﬂT)T.
2: Generate u ~ Uniform(0, 1), then using a numerical method (e.g., uniroot function into
stats package) obtain the lifetime y from the equation

(1+p(e,<y2;(12)5f2<?+4)>—m—1 (1400 020)

3: Draw ¢ ~ Uniform(0, €), and compute # = min(y, c).
4: If t =y, then v = 1, otherwise v = 0.
5: Repeat the previous steps to obtain the desired sample size.

As shown in Step 3 of the algorithms above, the censoring times were generated from
the uniform distribution, where the minimum value is zero and the maximum value (¢ > 0) is
defined as a way to control the proportion of right-censored observations. The generation scheme
also considers covariates. In the following scenarios, we adopted a group indicator covariate:
x =0 (control) and x = 1 (treatment). We adopted that X ~ Bernoulli(p = 0.5) for generation of

the covariate values.

All simulations were based on 1,000 Monte Carlo runs. We obtained the MLEs by using
the optimr () function within the optimx package (NASH ez al., 2020), which is implemented
in R software (R Core Team, 2021).

4.3.1 Asymptotic properties

In this study, we evaluated the performance of the MLEs of the parameters of the two
RWL frailty models considering the following sample sizes: n = 50, 100, 300, and 1,000, and
censoring proportions: 0%, 10%, 30%, and 50%. For each combination of parameter values,

sample size, and censoring proportion, we computed average bias, the standard deviations of the



4.3. Simulation study 69

estimates (SDs), the root mean square errors (RMSESs) of the MLEs of the parameters, and the
empirical CPs of 95% Cls.

For the RWL frailty model with Weibull baseline we fixed p = 0.6, k = 1.1, 6 = 0.7 and
B1 = 0.7. While, for the RWL frailty model with Gompertz baseline, we use p = 0.6, k = 0.5,
06 = 0.8, and B; = 0.7. The results for the RWL frailty models with Weibull and Gompertz
baseline hazard functions are summarized in the Tables 10 and 11, respectively. Overall, the
estimation method performed very well for both models. As the sample size increased the bias,
RMSE, and SD converged to O for all parameters, as expected. Besides, the values of the RMSEs
and SDs get close. Empirical CPs for all of the parameters appeared to be reasonably close
to the nominal level with increasing sample size, regardless of the censoring rate. For a small
sample size (n < 100), the empirical CPs for the parameters are below the nominal level for
some scenarios. These results are also usually observed for other frailty models, for instance,
Barker and Henderson (2005) noted the increase of bias and computation issues for samples of
size 200 assuming the gamma frailty model. Also, we have observed that as the censoring rate
increases, the bias, RMSEs, and SDs increase for a given sample size, as expected. However,
when comparing the two studies, we noticed that the metrics RMSE, SD, and CP presented the

best performance when we adopted the model with the Weibull baseline hazard function.

4.3.2 Hypothesis testing Hy: 0 =0

In general, when using frailty models, the interest is in estimating the amount of unob-
served heterogeneity present in a sample. In the RWL frailty model with Weibull baseline hazard
function, the inclusion of the frailty term is assessed by using the null hypothesis, Hy : 8 = 0.
The statistic most commonly used for this purpose is the LR. Asymptotically, it has a chi-squared
distribution with one degree of freedom, %12 However, under H, the parameter value is on the
boundary of the parametric space, and problems can occur when testing the null hypothesis.
Under certain regularity conditions, it has been demonstrated that the statistical distribution
of A= 2{6(‘1\‘) - E(‘/I\-‘o)}, where W, is the ML estimator under Hy, is a 50/50 mixture of a X}
distribution and a point mass at 0 (MALLER; ZHOU, 1996).

To assess the behavior of the LR test in testing the null hypothesis, datasets were
simulated with different values of sample size and degree of unobserved heterogeneity. For
the RWL frailty model with Weibull baseline: we fixed p = 0.6, k = 1.1, B; = 0.7, and
6 € {0,0.01,0.10,0.20,0.50,0.75,1.00, 1.50}, thereby simulating arrangements with various
amounts of unobserved heterogeneity. Sample sizes were set as: n € {50, 100,200,300, 500,
1,000}. Censored times were generated from the Uniform(0, 10) distribution, with the propor-
tion of censoring times varying from 4% to 19%. For each scenario, the rejection rate of the
null hypothesis was calculated. The size and power of the tests are presented in Table 12. As
expected, the empirical power of test increases when the sample size increases, and/or when the

value of the parameter 0 increases. When 6 > 0.50 and n > 200, the power of the test is greater



70  Chapter 4. A weighted Lindley frailty model: estimation and application to a lung cancer dataset

Table 10 — Bias, RMSEs and SDs of the MLEs, and empirical CPs of 95% asymptotic Cls for the simulated
data of the RWL frailty model with Weibull baseline hazard function

n Bias RMSE SD CP Bias RMSE  SD Cp
0% censoring 30% censoring

50 p  —=0.0598 0.2660 0.2592 0.9220 —0.0043 0.2670 0.2670 0.8860
Kk —0.0660 0.2877 0.2801 0.9540 —0.1719 0.4499 0.4157 0.9600

0 0.0254 0.3956 0.3948 0.9440 —0.2141 0.7376 0.7058 0.9130

B1 —0.0219 0.5676 0.5672 0.9470 —0.1151 0.6831 0.6733 0.9630

100  p —0.0347 0.1703 0.1667 0.9360 —0.0142 0.1848 0.1843 0.9130
Kk —0.0196 0.1733 0.1722 0.9440 —0.0666 0.2141 0.2035 0.9630

6 0.0353 0.2588 0.2563 0.9360 —0.0660 0.4640 0.4592 0.9440

B1 —0.0144 0.3628 0.3625 0.9430 —0.0395 0.3689 0.3668 0.9580

300 p —0.0139 0.0934 0.0924 0.9490 —0.0154 0.1128 0.1118 0.9500
k —0.0044 0.0918 0.0917 0.9410 —0.0090 0.1111 0.1107 0.9540

6 0.0290 0.1467 0.1438 0.9430 0.0032 0.2642 0.2642 0.9410

B1  0.0107 0.2078 0.2075 0.9370 —0.0131 0.2096 0.2092 0.9470

1,000 p —0.0078 0.0485 0.0479 0.9490 —0.0012 0.0579 0.0579 0.9590
Kk 0.0041 0.0490 0.0488 0.9450 —0.0029 0.0582 0.0581 0.9520

6 0.0227 0.0788 0.0754 0.9370 0.0001  0.1383 0.1383 0.9470

Bi 0.0085 0.1055 0.1052 0.9540 0.0050 0.1123 0.1122 0.9470

10% censoring 50% censoring

50 p —=0.0398 0.2625 0.2594 0.9070 0.0271  0.3250 0.3239 0.8250
Kk —0.1126 0.3979 0.3816 0.9650 —0.3012 0.6893 0.6199 0.9670

0 —0.0694 0.5404 0.5359 0.9580 —0.5813 1.3113 1.1753 0.8300

B1 —0.0279 0.6535 0.6529 0.9380 —0.1970 0.8890 0.8669 0.9600

100 p —0.0268 0.1760 0.1739 0.9320 0.0173  0.2029 0.2021 0.8850
Kk —0.0305 0.1886 0.1862 0.9560 —0.1170 0.3005 0.2767 0.9560

6 —0.0014 0.3240 0.3240 0.9310 —0.2513 0.7645 0.7220 0.8840

B1 —0.0168 0.3721 0.3717 0.9380 —0.0880 0.4777 0.4695 0.9550

300 p —0.0038 0.0910 0.0909 0.9460 —0.0044 0.1334 0.1334 0.9200
Kk —0.0188 0.1015 0.0998 0.9530 —0.0306 0.1367 0.1333 0.9470

6 —0.0070 0.1703 0.1702 0.9590 —0.0566 0.4297 0.4260 0.9400

Bi  —0.0054 0.2060 0.2059 0.9400 —0.0304 0.2456 0.2437 0.9400

1,000 p —0.0006 0.0487 0.0487 0.9480 —0.0059 0.0752 0.0749 0.9450
Kk —0.0014 0.0527 0.0527 0.9390 —0.0052 0.0700 0.0699 0.9540

6 0.0038 0.0950 0.0950 0.9470 —0.0036 0.2393 0.2393 0.9420

B1  0.0054 0.1106 0.1104 0.9390 —0.0052 0.1244 0.1243 0.9550

Source: Elaborated by the author.
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Table 11 — Bias, RMSEs and SDs of the MLEs, and empirical CPs of 95% asymptotic Cls for the simulated
data of the RWL frailty model with Gompertz baseline hazard function.

n Bias RMSE SD Cp Bias RMSE SD Cp
0% censoring 30% censoring

50 p 0.0316 12150 1.2146 0.7960 0.1020  0.6801 0.6724 0.7240
Kk —2.1256 5.9750 5.5837 0.9550 —3.8753 9.6354  8.8209 0.9380

6 —1.1258 2.4923 2.2233 0.8880 —1.8748 3.3640 2.7925 0.8350

Bi —0.4093 1.1819 1.1087 0.9380 —0.6249 1.5812  1.4523 0.9310

100 p  0.0537 0.4879 0.4850 0.8650 0.1057 0.2603 0.2378 0.8310
Kk —1.1950 3.7216 3.5243 0.9440 —1.8679 49085 4.5388 0.9530

6 —0.7061 1.7635 1.6158 0.8930 —1.1024 2.1773  1.8773 0.8720

B —0.2371 0.6666 0.6229 0.9600 —0.3540 0.7536  0.6652 0.9590

300 p 0.0249 0.1129 0.1101 0.9270 0.0544  0.1310 0.1192 0.9210
Kk —0.2726 0.9365 0.8959 0.9240 —0.5662 1.5760 1.4707 0.9660

60 —0.1955 0.7389 0.7125 0.9240 —0.3965 1.0488 0.9709 0.9250

B —0.0717 0.2718 0.2622 0.9500 —0.1400 0.3322  0.3013 0.9660

1,000 p  0.0090 0.0564 0.0557 0.9440 0.0091  0.0627  0.0620 0.9590
Kk —0.0769 0.3266 0.3174 0.9410 —0.0942 0.4159 0.4051 0.9670

6 —0.0600 0.3431 0.3378 0.9390 —0.0718 0.4094  0.4031 0.9590

B —0.0234 0.1440 0.1421 0.9470 —0.0253 0.1498  0.1477 0.9550

10% censoring 50% censoring

50 p 0.0883 0.6221 0.6158 0.7770 0.1110  0.6504 0.6408 0.7320
K —2.6427 6.8031 6.2683 0.9520 —5.0985 12.0614 10.9296 0.9230

6 —1.3486 2.7344 2.3783 0.8710 —2.3711 3.9927 3.2116 0.8030

B —0.3914 1.1847 1.1182 0.9530 —0.6684 1.6334  1.4902 0.9550

100 p  0.0660 0.3080 0.3009 0.8650 0.1470  0.2935 0.2539 0.7830
Kk —1.4032 4.2897 4.0535 0.9550 —2.9580 6.3017 5.5636 0.9120

60 —0.7872 1.9220 1.7532 0.9010 —1.6751 2.8228 2.2715 0.8170

B —0.2733 0.7595 0.7086 0.9510 —0.4685 0.9488  0.8249 0.9360

300 p 0.0264 0.1138 0.1106 0.9260 0.0667  0.1514  0.1359 0.9020
Kk —03116 0.9951 0.9450 0.9420 —0.9323 2.8850 2.7301 0.9510

6 —0.2225 0.7873 0.7552 0.9210 —0.6520 1.3693  1.2039 0.9120

B —0.0701 0.2735 0.2644 0.9470 —0.1759 0.3898  0.3478 0.9590

1,000 p 0.0078 0.0574 0.0569 0.9550 0.0168  0.0732 0.0712 0.9540
Kk —0.0626 0.3229 0.3168 0.9250 —0.1834 0.5459 0.5141 0.9760

6 —0.0448 0.3443 0.3414 0.9260 —0.1561 0.5225 0.4986 0.9650

B —0.0179 0.1425 0.1413 0.9530 —0.0457 0.1603  0.1536 0.9730

Source: Elaborated by the author.
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than 0.9. When the null hypothesis is true, the rejection rate is close to the nominal significance

level.

Table 12 — Rejection rates of the null hypothesis (absence of unobservable heterogeneity) at 5% nominal
significance level for several unobserved heterogeneity and sample sizes considering the RWL
frailty model with Weibull baseline hazard function.

0
n 0 0.01 0.10 020 050 075 1.00 1.50
50 0.072 0.093 0.135 0.203 0.457 0.633 0.706 0.799
100 0.059 0.066 0.126 0.281 0.680 0.859 0.929 0.965
200 0.059 0.055 0.187 0.416 0.900 0.988 0.998 1.000
300 0.043 0.062 0.227 0.554 0969 0.997 1.000 1.000
500 0.048 0.062 0301 0.721 1.000 1.000 1.000 1.000
1,000 0.039 0.053 0.476 0.927 1.000 1.000 1.000 1.000
Source: Elaborated by the author.

For the RWL frailty model with Gompertz baseline we set Kk = 0.5, p = 0.6, B; = 0.7
and 6 € {0,0.01,0.10,0.20,0.50,0.75,1.00, 1.50}. The sample size was configured to study the
model with the Gompertz baseline hazard function. The censored times were generated from the
Uniform(0, 14) distribution, with the proportion of censoring times varying from 5% to 17%.
The results are shown in Table 13. Again, note that the results are similar to the model with the
Weibull baseline hazard function. However, to obtain test power greater than or equal to 0.9,
6 > 0.75 and n > 500 are required.

Table 13 — Rejection rates of the null hypothesis (absence of unobservable heterogeneity) at 5% nominal
significance level for several unobserved heterogeneity and sample sizes considering the RWL
frailty model with Gompertz baseline hazard function.

0
n 0 0.01 0.10 020 050 0.75 1.00 1.50
50 0.067 0.058 0.087 0.104 0.188 0.334 0.536 0.795
100 0.039 0.037 0.075 0.099 0.254 0.464 0.708 0.961
200 0.038 0.035 0.072 0.136 0.335 0.647 0.899 0.998
300 0.033 0.038 0.076 0.156 0410 0.741 0.964 1.000
500 0.027 0.032 0.103 0.188 0.527 0.898 0.999 1.000
1,000 0.028 0.026 0.142 0.321 0.769 0.993 1.000 1.000
Source: Elaborated by the author.

4.4 Application on lung cancer data

In this section, we illustrate the applicability of the proposed frailty model by analyzing
a real population-based lung cancer dataset. The results obtained from the RWL frailty model

with Weibull and gamma baseline distributions were compared to the gamma, BS, and IG frailty
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models, and the standard Cox PH model (no frailty). For details about these other frailty models,
the readers are referred to the book by Wienke (2010), and the paper by Ledo et al. (2017). We
consider the Weibull and Gompertz baseline hazard functions in all fitted models. For each fitted
model, we provide the point estimates and their respective SEs. To select the best model among
all fitted models to the data, the AIC, BIC and Bayes factor (BF) are provided. The BF is a useful
tool to evaluate the magnitude of the difference between two BIC values. The decision about the
best fit is made taking into account the interpretation of twice the natural logarithm of the BF;
see (KASS; RAFTERY, 1995; VILCA et al., 2011). The comparisons are performed between
models with the same baseline hazard function. Finally, we present an analysis of the Cox-Snell

residuals to assess the goodness-of-fit of the selected best model.

The lung cancer dataset is from a retrospective survey of 25,971 records of patients
diagnosed with lung in the state of Sdo Paulo, Brazil, between 2000 and 2014. The follow-up
of these patients was conducted until 2018. All of the patients were diagnosed with malignant
neoplasm of bronchus and lung (C34 - ICD-10 diagnosis code)', and both clinical stage III and
IV (metastatic) cases were included in the sample. The dataset was provided by the Sao Paulo
Oncocenter Foundation (FOSP), which is responsible for coordinating the Hospital Cancer Reg-
istry of the State of Sdo Paulo (<http://fosp.saude.sp.gov.br>). The FOSP is a public institution
connected to the State Health Secretariat, which assists in preparing and implementing healthcare
policies in Oncology. These policies serve as an instrument for oncology hospitals to prepare
their protocols and improve care practices (ANDRADE et al., 2012).

In this study, death due to cancer was defined as the event of interest. The main goal
was to evaluate the impact of covariates such as gender, age at diagnosis, clinical stage, surgery,
radiotherapy, and chemotherapy on specific survival time, and also to quantify the degree of
unobservable heterogeneity in the data. A descriptive analysis of observed covariates is presented
in Table 23. In the cohort examined (n = 25,971), 16,624 (64.01%) patients were male, 10,496
(40.41%) patients were younger (< 60 years old), and 16,771 (64.58%) patients were clinical
stage I'V. Regarding treatment, 3,143 (12.10%) patients underwent surgery, 10,509 (40.46%)
of them received radiotherapy, and 7,896 (30.40%) of them received chemotherapy. A total of
24,279 (93.49%) events occurred during the follow-up period. The maximum observation time

was approximately 18.75 years, while the median follow-up time was 6.28 years.

Figure 22 presents the KM estimate of the survival function for the lung cancer dataset.
According to the estimated curve, the survival rate appears to trend reasonably close to 0 when
the time is large. The median lung specific-survival period was approximately 0.620 years. The

2-, 5-, and 10-year specific survival rates are 0.154, 0.044, and 0.021, respectively.

Table 15 shows the summaries of the fitted frailty models with the Weibull and Gompertz

baseline hazard functions by considering all the observed covariates. Among the independent

I ICD-10 is the 10" revision of the International Statistical Classification of Diseases and Related Health
Problems (ICD), a medical classification list by the World Health Organization (WHO).


http://fosp.saude.sp.gov.br

74 Chapter 4. A weighted Lindley frailty model: estimation and application to a lung cancer dataset

Table 14 — Descriptive analysis of the observed covariates from the lung cancer dataset.

Covariate Code Category Number of patients (n = 25,971) Y%
Xj: Gender 0 Male 16,624 62.62%
1 Female 9,347 37.38%
X5: Radiotherapy 0 No 15,462 59.54%
1 Yes 10,509 40.46%
X3: Chemotherapy 0 No 7,896 30.40%
1 Yes 18,075 69.60%
X4: Clinical Stage 0 111 9,200 35.42%
1 10Y 16,771 64.58%
Xs: Surgery 0 No 22,828 87.90%
1 Yes 3,143 12.10%
Xo: Age (years) 0 <60 10,496 40.41%
1 > 60 15,475 59.59%

Source: Elaborated by the author.
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Figure 9 — Estimated survival curve obtained via KM for the lung cancer dataset.

Source: Elaborated by the author.

variables considered in the models, there is evidence that gender, radiotherapy, chemotherapy,
clinical stage, and surgery are significant factors in survival time of patients, regardless of
the model, since the 95% ClIs of the regression coefficients f; (j = 1,2,...,5), calculated by
[B\J +1.96 x SE(E )], do not include zero. In contrast, age at diagnosis (s) was not significant

for most models. Despite this, we keep it in the models since it is a clinically significant covariate.
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Note that in the fitted frailty models, the estimated amount of unobserved heterogeneity is
statistically different from zero (p-values of LR test are less than 0.0001), indicating a degree of
unobserved heterogeneity in the data. However, the estimated frailty variances are higher for the
frailty models with the Weibull baseline hazard function, inducing more significant heterogeneity

among patients.

We report that for the BS and IG frailty models, as well as the Cox PH model, the shape
parameter estimates of the Gompertz baseline distribution, K, are negative. According to the
results, these models indicate that there is a proportion of individuals in the study population that
are cured or long-term survivors (MALLER; ZHOU, 1996). The fitted frailty models presented a
better fit than the Cox PH models according to the AIC and BIC values, regardless of the baseline
hazard function. This result was expected since there is a degree of unobserved heterogeneity
in the sample, and the Cox PH model cannot capture it. Besides, the two RWL frailty models
have the lowest AIC and BIC values among all fitted models under the same baseline hazard
function. Thus, they provide the best fits to the data. This result is also confirmed by means of
twice the logarithm of BF values, which indicates a “very strong" evidence in favor of the two
RWL frailty models, except when compared to the gamma frailty model with Weibull baseline
hazard function. However, this latter BF still provides a “strong" evidence in favor of the RWL
frailty model with Weibull hazard function; see (KASS; RAFTERY, 1995; VILCA et al., 2011).

In terms of AIC and BIC, the RWL frailty model with Weibull baseline hazard function
provides a better fit than the RWL frailty model with Gompertz baseline hazard function. To

assess the goodness-of-fit of these two RWL frailty models, we performed an analysis of the
Cox-Snell residuals (COX; SNELL, 1968). The Cox-Snell residuals are defined by:

& =—log (S| %)), i=12...n, (4.15)

~

where S(7; | x;) is the estimated survival function of the RWL frailty model with Weibull baseline
hazard function for the i time survival. Thus, when the corresponding RWL frailty model is
correctly specified, the Cox-Snell residuals, ¢;’s, are a censored random sample from the standard
exponential distribution (LAWLESS, 2011).

Figure 10 shows exponential quantile-quantile (QQ) plots for Cox-Snell residuals defined
in (4.15) based on the two RWL frailty models. We can see that the RWL frailty model with the
Weibull baseline hazard function has the best goodness-of-fit for the lung cancer data because the
points are close to the identity line. This behavior is not observed using the RWL frailty model
with Gompertz baseline hazard function. Therefore, we selected the RWL frailty model with

Weibull baseline hazard function as our working model.

Some findings obtained with our working model are given as follows. Initially, ob-
serve that the exponential distribution is not supported with ¥ = 1.601 and CI(k;95%) =
[1.572;1.630], which suggests that the baseline hazard function is increasing. The working
model shows that the better survival rates are associated with young female clinical stage 111
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Table 15 — MLEs, SEs, information criteria and twice the logarithm of BF for the fitted frailty and Cox
PH models considering the lung cancer dataset. The BF values were calculated assuming the

RWL frailty models as correct.

Weibull baseline hazard function

RWL Gamma BS IG Cox PH
Parameter MLE (SE) MLE (SE) MLE (SE) MLE(SE) MLE (SE)
K 1.601 (0.015) 1.642 (0.017) 1.461 (0.015) 1.322 (0.011) 0.902 (0.004)
p 0.193 (0.004) 0.186 (0.004) 0.220 (0.006) 0.248 (0.006) 0.482 (0.011)
0 0.940 (0.020) 1.129 (0.021) 1.650 (0.055) 1.547 (0.082) -
Bi —0.295 (0.023) —0.303 (0.024) —0.311 (0.022) —0.290 (0.020) —0.214 (0.014)
B —0.677 (0.024) —0.701 (0.025) —0.574 (0.023) —0.487 (0.020) —0.279 (0.013)
B3 —2.199 (0.034) —2.250 (0.036) —1.748 (0.028) —1.553 (0.024) —0.928 (0.014)
Ba 0.587 (0.024) 0.605 (0.024) 0.630 (0.023) 0.583 (0.021) 0.431 (0.014)
Bs —1.024 (0.036) —1.053 (0.037) —1.067 (0.034) —0.989 (0.031) —0.705 (0.021)
Bs —0.028 (0.023) —0.026 (0.023) 0.034 (0.022) 0.034 (0.019) 0.047 (0.013)
—K(‘i’) 20,944.44 20,947.55 21,710.6 21,932.76 23,382.74
AIC 41,906.88 41,913.10 43,439.2 43,883.52 46,781.48
BIC 41,980.36 41,986.58 43,512.68 43,957.00 46,846.80
2log(Bi12) — >6 >10 > 10 > 10
Gompertz baseline hazard function
RWL Gamma BS IG Cox PH
Parameter MLE (SE) MLE (SE) MLE (SE) MLE (SE) MLE (SE)
K 0.036 (0.013) 0.018 (0.011) —0.089 (0.008) —0.095 (0.008) —0.212 (0.005)
p 3.470 (0.096) 3.413 (0.093) 3.011 (0.075) 2.985 (0.074) 2.476 (0.051)
0 0.335 (0.015) 0.320 (0.015) 0.225 (0.015) 0.216 (0.014) —
Bi —0.222 (0.017) —0.222 (0.017) —0.214 (0.015) —0.214 (0.015) —0.199 (0.014)
B —0.374 (0.017) —0.368 (0.017) —0.328 (0.015) —0.325 (0.015) —0.273 (0.013)
B3 —1.277 (0.021) —1.258 (0.020) —1.119 (0.018) —1.111 (0.017) —0.944 (0.014)
Ba 0.439 (0.017) 0.437 (0.017) 0.417 (0.016) 0.415 (0.016) 0.375 (0.014)
Bs —0.770 (0.026) —0.765 (0.026) —0.717 (0.024) —0.714 (0.024) —0.637 (0.021)
Be 0.008 (0.017) 0.010 (0.017) 0.018 (0.015) 0.018 (0.015) 0.020 (0.013)
—é(‘i’) 22,177.02 22,192.32 22,349.21 22,356.36 22,569.46
AIC 44,372.04 44,402.64 44716.42 44,730.72 45,154.92
BIC 44,445.52 44,476.12 44,789.90 44,804.20 45,220.24
2log(Bi12) - >10 >10 > 10 > 10

Source: Elaborated by the author.

patients who have undergone surgery followed by radiotherapy and chemotherapy. Table 16
shows the estimated 0.5-, 1-, 2-, 3-, and 5-year survival rates according to the RWL frailty model

with Weibull baseline hazard function and according to several observed patient characteristics.

As expected, female patients exhibited slightly better survival than male patients with the same

clinical stage and treatment. Meanwhile, in the absence of treatment, the survival rates are worse,

mainly in the later years of diagnosis, as expected.
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Figure 10 — Exponential QQ plots of Cox-Snell residuals from the RWL frailty models with Weibull (left
panel) and Gompertz (right panel) baseline hazard functions for the lung cancer dataset.

Source: Elaborated by the author.

4.5 Concluding remarks

The traditional Cox PH model is not appropriate for survival data in presence of unob-
served heterogeneity in a study population. Consequently, its use can lead to erroneous estimates
for the regression coefficients. Alternatively, a frailty term (or random effect) must be considered
in the Cox PH model to capture unobserved heterogeneity and improve its accuracy. In this chap-
ter, we have proposed a novel frailty model for modeling unobserved heterogeneity in survival
data. In this model, the RWL distribution with unitary mean is used as the frailty distribution.
When we calculated the Laplace transform of this frailty distribution, both unconditional survival
and hazard functions were identified. The Weibull and Gompertz hazard functions were selected
as the baseline hazard functions to derive the two RWL frailty models. Monte Carlo simulation
studies subsequently showed that the asymptotic properties of the MLEs under different propor-
tions of censoring were satisfied, as expected. Besides, the LR test demonstrated its ability to
detect unobserved heterogeneity in both small and large samples, also as expected. However,
comparing the simulations for both models, we reported that the RWL frailty model with Weibull
baseline hazard function presented better results. We applied our two RWL frailty models to a
real lung cancer dataset and compared our results with those given by gamma, BS and 1G frailty
models, as well as standard Cox PH model. According to AIC, BIC and BF, we reported that
the two RWL frailty models returned the best fits to the lung cancer data. Comparing these two
selected frailty models, we concluded that the RWL frailty model with Weibull baseline hazard
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Table 16 — Estimated specific lung survival rates for older patients stratified by gender, clinical stage and
treatment under RWL frailty model.

No Radiotherapy and No Chemotherapy

No Surgery Surgery
CS 111 CS1V CS I CS1v
Survival (years) Male Female Male Female Male Female Male Female
0.5 0.186 0.232 0.116 0.148 0.381 0.452 0.258 0.316
1.0 0.075 0.096 0.046  0.059 0.174 0.218 0.108 0.138
2.0 0.029 0.038 0.018 0.023 0.070  0.090 0.043 0.055
3.0 0.017 0.022 0.010 0.013 0.041 0.052 0.025 0.032
5.0 0.008 0.011 0.005 0.006 0.020 0.026 0.012 0.016
Radiotherapy and Chemotherapy
No Surgery Surgery
CS III CS1V CS III CS1V
Male Female Male Female Male Female Male Female
0.5 0.798 0.841 0.686 0.746 0.917 0.937 0.859 0.891
1.0 0.564 0.635 0.418 0.491 0.783 0.829 0.667 0.729
2.0 0.301 0.365 0.196  0.245 0.543 0.614 0.398 0.470
3.0 0.187 0.234 0.117 0.149 0.383 0.454 0.259 0.318
5.0 0.097 0.123 0.059 0.076 0.219 0.271 0.138 0.175

Source: Elaborated by the author.

function presented the best fit to the considered dataset. As for some findings, we reported that
female patients exhibited slightly better survival than male patients with the same clinical stage
and treatment, as expected. Meanwhile, as also expected, the survival rates are worse in the

absence of treatment, mainly in the later years of diagnosis.
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CHAPTER

A LONG-TERM FRAILTY REGRESSION
MODEL BASED ON RWL DISTRIBUTION
APPLIED TO STOMACH CANCER DATA

Recent advances in medical treatments have increased the interest of researchers in
survival models for cancer data incorporating the possibility of immune or cured patients. The
observation of an event (e.g., the patient’s death) may be due to one or more competing causes.
In addition, several unobserved external factors may influence the appearance of a tumor. Our
objective in this chapter is to propose a new long-term frailty regression model based on the
RWL distribution to jointly accommodate the heterogeneity among patients by their frailties
and the presence of a cured fraction of them. The proposed model is found by assuming that the
unknown number of competing causes that can influence the survival time follows a negative
binomial distribution, which possesses some particular cases. Besides, we suppose that the time
for the k-th competing cause to produce the event of interest follows the RWL frailty model with
Weibull baseline distribution, given in Chapter 4. A regression structure by considering the logit
link function is used to account for the covariate effects in the cure fraction. The proposed cure
rate model comprehends the standard mixture, promotion time, and geometric cure rate models.
A classical inference is conducted for the parameters of the proposed regression model through
ML methods under random right-censoring. Further, we present a Monte Carlo simulation study
to verify the MLEs’ behavior assuming different sample sizes and censoring proportions. Finally,
to illustrate the usefulness of the proposed model, we use it to describe the lifetimes of patients

with stomach cancer from a survey conducted in the state of Sdao Paulo, Brazil.

5.1 Model formulation

The proposed long-term frailty regression model is based on the unification of the cure

rate models proposed by Rodrigues et al. (2009) as follows (see Section 2.5 for details). Let M be
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an unobserved non-negative integer-valued random variable denoting the number of competing
causes related to the hazard for a sampling unit in the population. In order to take into account
for the underdispersion, equidispersion or overdispersion that can be present in the count data,
we suppose that M follows a negative binomial (NB) distribution with parameters § > —1 and
& > 0 (denoted by M ~ NB(J,&)). Then, its probability mass function is given by

o Tmts) [ &
pu=PM=m) == TE ) (1+5§

) (1+6868)7" Y% m=o0,1,...,

where I'(+) is the gamma function and 6& > —1. The mean and variance of the NB distribution
are E[M] = & and Var[M] = &(1 + &£0), respectively. This parameterization is more useful
than the traditional form because the parameter & gives the mean number of competing causes,
whereas the parameter § accounts for the inter-individual variance of the number of causes.
Besides, the NB distribution includes some well-known distributions as particular cases. In fact,
according to Piegorsch (1990), if 6 = —1/7, for 7 positive integer such that T > &, the NB
distribution with parameters & and —1/7 gives the same probabilities as a binomial distribution
with parameters T and £ /7, that is, M ~ Bin(7,§/7) for 0 < £ /7 < 1. As aresult, taking T = 1
implies § = —1 and we get a Bernoulli distribution with mean &. If § — 0, we obtain the Poisson
distribution with mean &, that is, M ~ Poisson(f). Finally, if 0 = 1, we have the geometric
distribution with parameter 1/(14 &), that is, M ~ Geo(1/(1+ &)). Moreover, as pointed out
by Castro, Cancho and Rodrigues (2009), if —1/& < § < 0, there is underdispersion from the
Poisson model and, on the other hand, if § > 0, the overdispersion is present. Therefore, we can
interpret 6 as a dispersion parameter (SAHA; PAUL, 2005).

Given M =m, let Wy, k = 1,2,...,m, be IID random variables denoting the time for the
k-th competing cause to produce the event of interest. We assume that conditional on M, Wy,
k=1,2,...,m, follows the RWL frailty model with baseline Weibull baseline hazard function
without observed covariates. Here, we use the Weibull distribution with shape parameter € > 0
and scale parameter 11 > 0. So that, unconditional survival and hazard functions of W;’s are

given, respectively, by

[ M[ (1)89}
S(t|9,s,n)_[1+(n) 2<9+2)] 1+ 1) 2| t>0, (5.1)

and

44+6(0+4) 0 ) 150, 52)

_ o€—1 —
h(t]|0,e,m) = et (2ns(9+2)+189(9+4) 2n¢ +1¢6

~1
where 60 =2 ((]5 +0(¢+ 1)> is the variance of RWL frailty distribution with unitary mean.
According to Rodrigues er al. (2009), the PGF of M ~ NB(9,&) at s € [0, 1] is given by

Gu(s) = (1+8E[1—s])"1/°. (5.3)
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Then, using (5.1) and (5.3), it follows that the population survival function (2.21) be-

comes

4 -1/8

AN 1\
SPUP(t|6787n757§): 1+€6 1_|:1+<E) m] |:1+(E) 7:| ,
5.4

for all # > 0. From (5.4), note that Spop(?) is improper, that is,
1im S0, (1 6,€,8,&) := po = (148€) /%,

with po > 0 being the fraction of cured subjects in the population.

The corresponding PDF and hazard function obtained from (5.4) are expressed, respec-

tively, as
S(t]0,e,m)h(t|0,¢,
frop(t]6,€,1,6,8) = o5 ] 8,8, )l | nl)ﬁ (5.5)
(1+68[1—-S(r]6,e,n)]) °
and
S(t|0,e,n)h(t|0O,¢,
hpop(t‘9787n767§):§ ( | n) ( | n> (5.6)

1+8E[1-S(t|6,e,1n)]’

where S(¢ | 0,€,n) and h(z | 0,€,m) are given in (5.1) and (5.2), respectively. Hereafter, we
will call the model with survival function (5.4), PDF (5.5) and hazard function (5.6) as Negative
Binomial Cure Rate Reparameterized Weighted Lindley Frailty (NBCrRWLF) model. In this
model, the frailty parameter 6 is used to quantify the unobserved heterogeneity among non-cured

subjects.

Figure 12 displays some examples of the shapes obtained for PDF, survival and hazard
functions of the NBCrRWLF model when selected values of the parameters were used. With
this graphical analysis, it is observed that the PDF and hazard functions present decreasing and

unimodal shapes.

5.1.1 Special cases of the NBCrRWLF model

As mentioned before, the NB distribution has, in particular cases, the Bernoulli, Poisson,
and geometric distributions. Hence, our NBCrRWLF model reduces to some specific submodels,

giving more flexibility to fit real data. These submodels are described as follows.

5.1.1.1 Bernoulli cure rate RWL frailty model

When 6 = —1, we get M ~ Bernoulli(&), where & € [0, 1] is the probability of success.
In this case, the NBCrRWLF model becomes the Bernoulli cure rate RWL frailty (BerCrRWLF)
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Figure 11 — Some shapes of PDF (right panel), survival (panel middle) and hazard (left panel) functions
of the NBCrRWLF model.

Source: Elaborated by the author.

model. The BerCrRWLF long-term survival function is

Spop (t]0,6,1,E)=1-E{ 1~ {1+ (%>8%]9<94+4>

—1 €
t 0
()3l e

for all # > 0. Notice that there is a relation between the model given in (5.7) and the SMM
(BERKSON; GAGE, 1952). In fact, we can rewrite the long-term survival function above as

SPOP(I | 953»77;5) :7'C+(1—7E>S(l | 978717)7

where 1 =1—& and S (7| 6,€,m) denotes the survival function for the non-cured group in the

population as defined in (5.1). In this case, the cure fraction is equal to po=mw=1—E.

5.1.1.2 Poisson cure rate RWL frailty model

If 6 — 0, we obtain M ~ Poisson(§ ), where & > 0 is the mean of the number of com-
peting causes. Hence, the NBCrRWLF model reduces to the Poisson cure rate RWL frailty

(PoCrRWLF) model, whose long-term survival function is given by

__4

smitaens ool <[ (3) 208 27y}
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for all > 0. Notice that we can express the POCrRWLF model as

Spop (l | 67871775) :exp{—é [1 _S(t | 9787”)]}1

where S (7 | 6,€&,m) is the survival function for the non-cured group in the population as defined
by (5.1). As a result, the POCrRWLF model can be seen as a particular case of the promotion
time cure rate model (YAKOVLEV; TSODIKOV; BASS, 1993), where the cure fraction is given
by po =% for & > 0.

5.1.1.3 Geometric cure rate RWL frailty model

If § =1, we have M ~ Geo (1/(1+4&)), for & > 0. Hence, the NBCrRWLF model turns
into the geometric cure rate RWL frailty (GeoCrRWLF) model with survival function expressed

as

4 -1

Surt18.0.8)= (10811 () 2ozt oy )

for all # > 0. Thus, the cure fraction of the GeoCrRWLF model is pg = (14 &)~! for £ > 0.
Figure 12 resumes the particular cases of the NBCrRWLF model through a flowchart.

NBCrRWLF
M ~ NB(6,§)
E>0,0> -1
5= —1 po = (1468)7%/° 5 =1
60— 0
BerCrRWLF GeoCrRWLF
M ~ Bernoulli(¢) PoCrRWLF M ~ Geo(1/(1 +¢))
¢€l01] M ~ Poisson(€) §>0
po=1-¢ €0 po=1/(1+¢)
po = exp(—¢&)

Figure 12 — Some particular cases of the NBCrRWLF model.

Source: Elaborated by the author.
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5.1.2 Inference methods

We suppose that some lifetimes are not completely observed for a portion of the in-
dividuals and can be subjected to right-censoring. Further, we assume that the censoring is
non-informative. Let v; denote the censoring indicator variable, taking value 1 if the failure
occurs for the i-th individual, and O otherwise. Hence, ¢; is a lifetime if v; = 1, and a censoring
time otherwise. Then, for n individuals with observed lifetimes (or censoring times) and their
censoring indicators, (t1,V1),(f2,V2),..., (ts, Vs) say, which are assumed as independent, the

corresponding likelihood function for the parameter vector ® = (0,¢€,71,8,&) " is given by
Z(®) = [T fpop (110)]" [Spop (1:©)]' ", (5.8)
i=1

where Sp,,(+) and fpp(-) are the improper survival and PDF functions defined, respectively, in
(5.4) and (5.5).

Since the main objective is to estimate the cured fraction in the population, pg, we put it
in the expression of the likelihood function (5.8), using the Fisher’s parameterization of the NB
distribution (ROSS; PREECE, 1985; CASTRO; CANCHO; RODRIGUES, 2009; LEAO et al.,
2018). For 6 > —1, we define

-5
5=—log<po>ﬂ<6=0>+<”°5 1)11(67&0),

where I (x € A) is the indicator function defined on set A.

Besides, it is well-suited to assume that the cure parameter pg could be related to a set of
explanatory variables. When these variables are incorporated into the model, we get a different
cure rate parameter for each individual, which is denoted by po,, for i = 1,2,...,n. Now, as
0 < po, < 1, we can use different link functions to express such a relationship, like probit, logit
and log-log, among others; see, e.g., McCullagh and Nelder (MCCULLAGH; NELDER, 1989).
In this work, we use the logit link function. Thus,

__owf{x/B}
po; = a1 =12,...,n,
1+exp{x/B}
where B = (Bo,B1,-..,B,) ", for g < n, is a vector of regression coefficients to be estimated,

which is related to explanatory variables x;, fori =1,2,...,n.

Let ¥ = (O, [3)T be the model parameters. Then, the log-likelihood function obtained

for W is expressed as
L(®) = 0 (¥)L(5=0)+ (2 (¥)I(5 £0), (5.9)
where

6 (W) =) vilog(—log(po,))+ ) vilog(h(si| 6,e,m))+ Y vilog(S(ti | 6,€,1M))
i=1 i=1 i=1
+Y log(po,)— Y. S(1 | 6,€,1)log(po,)
i=1 i=1
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and

i=1 i=1

-8
n Po. —1 n n
EZ(T):ZViIOg( 016 >+ZVilOg(h(ti|9,8,”))+2Vi10g<5(ti|O,S,n))
i=1 j

1

_é (vi+§> log <1+ (pal.‘s—l) [1-5(] 9a87”>]>7

with S(¢ | 0,e,m) and h (¢ | 0,€,M) being the unconditional survival and hazard functions of T
under a RWL frailty as defined in (5.1) and (5.2), respectively.

The MLE W of the parameter vector ¥ can be found by maximizing the log-likelihood
function given in (5.9), using some iterative procedure for nonlinear optimization, such as
Broyden-Fletcher-Goldfarb-Shanno (BFGS) or quasi-Newton, simulated annealing (SANN),
Nelder-Mead, among others (NOCEDAL; WRIGHT, 1999), which are implemented in computa-
tional routines of R software (R Core Team, 2021). In this work, we adopt the general-purpose
unconstrained nonlinear optimization (ucminf) algorithm (NIELSEN; MORTENSEN, 2016).

It is well known in the statistical literature that under certain regularity conditions
(LEHMANN; CASELLA, 20006), fulfilled for parameters in the interior of the parameter space
but not on the boundary, the MLE ¥ is consistent and follows a normal joint asymptotic

distribution with mean W and covariance matrix equal to the (¢ + 6) x (¢ + 6)-inverse of the

. . . . 9% (P) .
expected Fisher information matrix .# (¥) = { —E , that is,
Jyidy;

Y2 e (P77 (F)) asn— oo,

where 2 means convergence in distribution. Unfortunately, the exact mathematical expression

of the expected Fisher information matrix is difficult to be obtained for the NBCrRWLF model.
%L (P) }
Iyidy;

evaluated at ¥ = ¥, which can be obtained numerically from the computational routines’

In this case, we can approximate it by its observed version, defined as H (¥) = {

results employed. Hence, we can construct approximate 100(1 — p)% confidence regions for the

parameters, as well as hypothesis tests, through the estimated marginal distributions (all normal).

Due to the complexity of our model, the regularity conditions are not easy to check
analytically. Therefore, in the next section, we will perform a simulation study to investigate

whether the MLEs’ usual asymptotic properties hold.

5.2 Simulation study

In this section, we carried out a Monte Carlo simulation study to evaluate the MLEs
provided by the NBCrRWLF model under different sample sizes and censoring proportions. For
the sake of simplicity, we worked with € = 1 (baseline exponential) and 6 — 0 (PoCrRWLF
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model) fixed. In addition, we divided the sample into two groups (x): control (group 0) and

treatment (group 1). Therefore, the cure fraction is computed as

( exp (Bo)
= PV if x; = 0,
PO = T exp (Bo) i
Po; =
po1 = exp (Po 1) , ifx;=1.
| 1+exp(Bo+pB1)

We considered a sample size n € {100,500, 1000,2500,5000}, with 6 € {0.5,1,2},n €
{1,1,1}, poo € {0.10,0.25,0.90}, po; € {0.05,0.50,0.65}, total censoring proportion p.cens €
{0.15,0.35,0.75,0.85}, and observed maximum time #,,,, = 100. To simulate random samples
of size n from the POCrRWLF model, we used Algorithm 4.

Algorithm 4 — Generator of random numbers from the POCrRWLF model with € = 1.

Define ¥ = (6,1, Bo,B1) ;

Generate x; ~ Bernoulli(0.5);

Calculate po;

Generate u; ~ Uniform(0, 1);

Use a numerical method to obtain the lifetime y; from the equation:

6: If the root y; in Step 5 was not found, then y; = t,,,4, (censored time due to end of experiment);

7: Draw y? ~ Uniform(0,z,,.), where t, . is configured to obtain a total censoring proportion
equal to p.cens;

8: Determine #; = min(y;,y}). If t; = tyqx 01 t; = y7, then v; = 0, otherwise v; = 1.

9: Repeat the previous steps to obtain the desired sample size.

AN

All simulations were performed using the R software (R Core Team, 2021), with N =
1,000 Monte Carlo runs. The root in Step 5 was found employing uniroot function into stats
package. Finally, the following performance criteria were considered: MRE, RMSE, and 95%
CP, which are computed, respectively, by

N )
Z‘V’ RMSE({;) = !

MRE () = —
j=1 Yi Nj:l

1
N

and N
1 . .
)= L1 (e la”).
where y; is the ith component of vector ¥ and VJ; is its associated MLE, I(x € A) is the indicator
_

function defined on set A, whereas a( = P; —1.96 x SE({;) and bl(j) = P; 4+ 1.96 x SE(;).
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According to these criteria, it is expected that both RMSE and MRE return values closer to zero
and one, respectively. Also, we expected that for a large number of experiments using 95% Cls,
the relative frequencies of these intervals that covered the true values of parameters should be

closer to 0.95 (nominal level).

Figures 13, 14 and 15 shows the empirical MREs, RMSEs, and 95% CPs of the MLEs
for each value of the parameters and sample sizes considered under total censoring proportion
equal to 0.35, 0.75, and 0.85, respectively. The horizontal dashed lines in this figure correspond
to the values of RMSE, MRE, and 95% CP, equal to zero, one, and 0.95, respectively. We
observed that the MRE and RMSE of all estimators go to one and zero, respectively, as the
sample size increases, meaning that they are asymptotically unbiased and consistent, as expected.
On the other hand, as the sample size increases, the 95% CPs of all estimators are close to 0.95
(nominal level), suggesting that all estimators follow an approximately normal distribution, also
as expected. Therefore, all these results show that the MLEs’ usual asymptotic properties are

satisfied, and hence, we conclude that the proposed model returns good results.
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Figure 13 — Empirical MRE, RMSE and 95% CP for the MLEs of 0, 11, poo and po; from the POCrRWLF
model, under the indicated n, 8, 17, poo and pg; values, and also considering p.cens = 0.35.

Source: Elaborated by the author.

5.3 Application on stomach cancer patients

This section illustrates the applicability of the proposed model by adopting a new stomach
cancer data set. At first, we adjusted the NBCrRWLF model and its special cases. The point and
interval estimates are obtained for all models. The estimated survival curves are compared with
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Figure 14 — Empirical MRE, RMSE and 95% CP for the MLEs of 0, 17, poo and pg; from the POCrRWLF
model, under the indicated n, 0, 17, poo and pg; values, and also considering p.cens = 0.75.

Source: Elaborated by the author.
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Figure 15 — Empirical MRE, RMSE and 95% CP for the MLEs of 0, 11, poo and po; from the PoOCrRWLF
model, under the indicated n, 6, 17, poo and po; values, and also considering p.cens = 0.85.

Source: Elaborated by the author.

those obtained by the KM estimator (KAPLAN; MEIER, 1958). The choice of the model that
best fits the data is made using the AIC (AKAIKE, 1974). Finally, an analysis of the randomized
quantile residuals is also presented for the selected best model by AIC; see (DUNN; SMYTH,
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1996).

A retrospective survey of stomach cancer (ICD-10 diagnosis code: C16) patients was
obtained from the Funda¢dao Oncocentro de Sao Paulo (FOSP) (<http://fosp.saude.sp.gov.br/>).
The patients included in the study were diagnosed between 2000 and 2014 and were followed-up
until 2018. As these are registries from all over the State of Sao Paulo, 22,148 patients were
included in the study. The event of interest is death due to stomach cancer. We observed that
15,065 (68.02%) patients suffered the event of interest, while 7,083 (31.98%) had right-censored

times.

Figure 16 shows the survival function obtained by the KM estimator. We note that the
1-, 2-, 5- and 10-years specific survival rates were 0.537, 0.385, 0.277 and 0.246, respectively.
Besides, we observe that approximately 21.26% of the patients are long-term survivors.

1.00-

0.75-
%/ 0.50-
0.25-
0.00-

0 2 4 6 8 10 12 14 16 18 20

Time (years)
Number at risk
Overall- 22148 7165 4488 2963 1973 1262 776 434 198 43 0

0 2 4 6 8 10 12 14 16 18 20
Time (years)

Figure 16 — Estimated survival curve obtained via KM for the stomach cancer data set.

Source: Elaborated by the author.

The main objective is to assess the impact of clinical staging on patient survival and
capture the unobserved heterogeneity among the non-cured patients. According to the Brazilian
National Cancer Institute (INCA) (<https://www.inca.gov.br/>), staging a cancer case means
assessing the tumor’s degree of spread. Of the 22,148 patients, 5,744 (25.93%) were classified in
clinical stage I or II (group x = 0), while 16,404 (74.07%) were classified in clinical stage III or
IV (group x = 1).

Figure 17 shows the survival functions obtained by the KM estimator for both groups.


http://fosp.saude.sp.gov.br/
https://www.inca.gov.br/
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We note that patients classified in the group x = 0 have a much higher life expectancy than
patients in the group x = 1. We also note that the percentages of long-term survivors are 54.40%

and 9.19% for the groups x = 0 and x = 1, respectively.

1.00-
0.75-
e
= 0.50-
0.25-
0.00-
0 2 4 6 8 10 12 14 16 18 20

Time (years)
Clinical Stage == land Il [l and IV
Figure 17 — Estimated survival curve obtained via KM, adopting the clinical stage variable.

Source: Elaborated by the author.

We evaluated the effect of clinical staging by fitting the POCrRWLF, BerCrRWLF,
GeoCrRWLEF, and NBCrRWLF models to the data. The results of the fitted models are shown in
Table 17. We notice that the NBCrRWLF model’s parameter d is close to zero, indicating that a
PoCrRWLF model can be adopted. Analyzing the values of AIC, we reach the same conclusion.
We also observe that the POCrRWLF and NBCrRWLF models’ estimates are similar for all
parameters in common. Besides, we note that the estimate of the parameter € is greater than 1,
with a 95% CI not containing the value 1, indicating that the exponential distribution cannot be

used as baseline distribution.

The results obtained indicate a significant effect of clinical staging since the 95% CI of
the parameter 3; does not include the zero value, for all models. In addition, the estimate of the
frailty parameter, 0, is close to 0.65 in the POCrRWLEFE, BerCrRWLF, and NBCrRWLF models,
while in the GeoCrRWLF model the estimate is 0.339, indicating the existence of unobserved

heterogeneity among patients.

In the PoOCrRWLF model, the proportions of long-term survivors are: pgg = 0.584, with
95% CI = [0.565;0.603], and pg; = 0.081, with 95% CI = [0.072;0.090], where pog represents
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the proportion of the group x = 0, while pg; denotes the proportion of the group x = 1. Also for
the POCrRWLF model, we tested the hypothesis Hy : 6 = 0 using the LR test. The adopted test
statistic considers a correction, because under Hy the parameter value is on the boundary of the
parametric space; for more details, see (MALLER; ZHOU, 1996). We report that the p-value
obtained is <0.001, showing that the parameter 6 is significant. Hence, other important risk

factors influence the patients’ lifetimes.

Table 17 — MLE, SE, 95% asymptotic CIs, and AIC value obtained for the POCrRWLF, BerCrRWLF,
GeoCrRWLF and NBCrRWLF models considering clinical stage fitted to the stomach cancer

data.
Model BerCrRWLF PoCrRWLF
95% CI 95% CI
Parameter MLE SE Lower  Upper MLE SE Lower  Upper
€ 1.094 0.014 1.067 1.121 1.087  0.012  1.063 1.111
n 0.814  0.015 0.785 0.843 1.974 0.045  1.885 2.063
0 0.646  0.040 0.568 0.724 0.682  0.090 0.505 0.860
Bo 0.509 0.031 0.449 0.569 0.338  0.040 0.260 0.415
B1 (Il and 1IV) -3.007 0.066 -3.135  -2.878 -2.767  0.051 -2.867 -2.666
max £(-) —24,995.78 —24,804.24
AIC 50,001.55 49,618.47
Model GeoCrRWLF NBCrRWLF
95% CI 95% CI
Parameter MLE SE Lower  Upper MLE SE Lower  Upper
15} — - — — —0.010 0.050 —0.108 0.088
€ 1.182  0.010 1.162 1.202 1.087  0.012  1.062 1.111
n 3937 0.129 3.684 4.190 1.956  0.101 1.758 2.153
0 0.339 0.088 0.167 0.511 0.685 0.091 0.507 0.863
Bo 0.161 0.041  0.081 0.241 0.340 0.041 0.260 0.420
Bi1 (Il and IV) —-2207 0.034 -—-2.273 -2.141 —2.772 0.058 —2.887 —2.658
max £ (-) —24,985.91 —24,804.22
AIC 49,981.81 49,620.43

Source: Elaborated by the author.

Figure 18 presents the survival curves estimated using the parametric models and the KM
estimator. We observe a good approximation between the estimates, except for the BerCrRWLF
model for the group x = 1. We also note that the proportions of long-term survivors estimated by

both methods are close.

Although the fitted survival curves indicate a good fit of the POCrRWLF model to the data,
we will verify such supposition from a residual analysis, which provides us a better view of the
fit’s quality. The residual analysis is conducted by using the randomized quantile (RQ) residuals,
which were proposed by Dunn and Smyth (1996) and are widely used in generalized additive
models for location, scale, and shape (GAMLSS); see, e.g., (RIGBY; STASINOPOULQS, 2005).
However, in recent years, some applications of these residuals in survival analysis have been
developed (YIQI et al., 2016; LEAO et al., 2018; LOUZADA et al., 2020). Let §p0p(. | ‘/I\‘) be
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Figure 18 — First row, left to right: Estimated survival curve obtained via KM (solid lines) and BerCrRWLF
and PoCrRWLF models (dashed lines), respectively. Second row, left to right: Estimated
survival curve obtained via KM (solid lines) and GeoCrRWLF and NBCrRWLF models
(dashed lines), respectively.

Source: Elaborated by the author.

the fitted long-term survival function of the POCrRWLF model. The RQ residuals are defined by
=@ (Spoplti [ 9)), i=1.2,0m,

where @~ !(-) is the inverse cumulative distribution function of the standard normal distribution.
Accordingly, it is expected that the RQ residuals 7;’s are approximately standard normal if the
PoCrRWLF model is correctly specified.

In Figure 19, we present the RQ residuals, along with the 95% confidence limits. Note
that the relationship between the theoretical quantiles and the quantile residuals is approximately
linear, indicating that the normalized RQ residuals present a good agreement with the standard

normal distribution. Therefore, we can consider that the model fitted the data reasonably well.

5.4 Concluding remarks

In this chapter, we have proposed a new long-term frailty regression model based on
weighted Lindley distribution. The proposed NBCrRWLF model, came upon by assuming that
the unknown number of competing causes that probably affect the survival time follows a
negative binomial distribution, absorbing several particular cases. The frailty term was included

in the model to quantify the unobserved heterogeneity among non-cured subjects. Besides, we
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Figure 19 — Plot of normal theoretical quantiles versus quantile residuals considering the PoOCrRWLF
model.

Source: Elaborated by the author.

used the RWL distribution as frailty distribution due to its attractive properties, such as flexibility
on its probability density function, Laplace transform on closed-form, among others. We included
the cured fraction as a model parameter by using the Fisher’s reparameterization of the negative
binomial distribution, and it was linked to covariates employing the logit link function. An
advantage of the NBCrRWLF model is accommodating some specific compounding cure rate
regression models as special cases. Another advantage of the proposed model is the possibility
to jointly consider the heterogeneity among patients by their frailties and the presence of a
cured fraction of them. A classical inference was conducted for the parameters of the regression
model through ML methods under random right-censoring. Monte Carlo simulations showed
that the RMSE, MRE, and 95% CP performance criteria returned values reasonably close to their
desired levels as sample size increased for all MLEs. Thus, we concluded that the frequentist
properties of the MLEs were satisfied, as expected. The proposed model’s practical relevance
and applicability were demonstrated by describing the lifetime of 22,148 patients with stomach
cancer obtained from the Fundagao Oncocentro de Sao Paulo, Brazil. In this real example, we
evaluated the clinical staging variable’s effect and the frailty variable by fitting the NBCrRWLF
model and its special cases (POCrRWLF, BerCrRWLE, and GeoCrRWLF). The results showed
that regression and frailty parameters were statistically significant in all fitted models. Hence,

we concluded that the clinical staging variable affects stomach cancer patients’ lifetime as well
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as other risk factors that were not measured or considered in study planning. We reported that
the NBCrRWLF (full) and PoCrRWLF models returned the best fits to the data. We selected
the POCrRWLF model through the selection criterion AIC. Finally, an analysis of RQ residuals
indicated a good fit of the POCrRWLF model to the stomach cancer data.
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CHAPTER

NON-PROPORTIONAL HAZARDS MODEL
WITH A FRAILTY TERM FOR MODELING
SUBGROUPS WITH OR WITHOUT
EVIDENCE OF LONG-TERM SURVIVORS

NPHs are a common finding in survival analysis. For example, in medical studies, the
most common types of NPHs are time-dependent treatment effects, delayed treatment effects,
crossing hazards, and diminishing treatment effects over time. In addition, NPHs sometimes
also occur due to the random effects. In this chapter, we present a lung cancer dataset with
some covariates that exhibit NPHs. In addition, the presence of long-term survivors is observed
in subgroups. The proposed framework is based on the GTDL model with the time effect
in each subgroup and a random term effect (frailty) to quantify the amount of unobservable
heterogeneity. We suppose that the frailty variable follows the RWL distribution with unitary
mean. The resulting model allows NPHs and long-term survivors in subgroups. Parameter
estimation is performed using the ML method, and Monte Carlo simulation studies are conducted
to evaluate the performance of the estimators. We exemplify the use of this model by analysing

the survival times of patients diagnosed with lung cancer in the state of Sao Paulo, Brazil.

6.1 Model formulation

Let T > 0 be a random variable representing the failure time and Z > 0 be the frailty
variable. Using (2.17) and (2.22), we have that the conditional hazard function of the GTDL

frailty regression model is defined by

Aexp(at+x| B)
1 +exp(at+x]B)’

h(t|z) =z
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where A > 0 is a scalar, a € R is a measure of the time effect, B = (B1,...,B,) " is a vector
of p unknown parameters measuring the effect of the p covariates x| = (x1,,...,%] p)T, and ¢

represents the univariate survival times of the units.
The respective conditional survival function conditional on Z = z is expressed by
T —Z?L/ o
1 +exp(ar+x, B)
T
1+exp(x; B)

St|z)=

Milani et al. (2015) used the gamma distribution for describing the frailty variable,
whereas Calsavara et al. (2019a) assumed a PVF frailty distribution. In this work, we suppose
that the frailty Z follows the RWL distribution with mean one and shape parameter ¢, which
has PDF given in (4.1). After using the Laplace transform of the PDF frailty (4.2) at s =
% lo <w> , we find that the unconditional survival and hazard functions of the GTDL

1+exp(x| B)
regression modell with RWL frailty (in short, GTDL-RWLF model) are given, respectively, by

_ l+exp(at+x1TB)> 16(6 +4)} — st
sum,a,ﬁ,e)—{umg( e ) sao ) 3
1+exp(at+x1Tﬁ)> E]
[H—log( [Toxp(x| B) 2ol (6.1)
and
.
h(t| A,a,B,0) = Aexp(ot+x, B)[4+6(60+4)]

[1 —|—exp(oct+x1TB)] [2(0+2)+Hy(t| A, a,B)0(6+4)]

B OAexp(at+x| B) 6.2)
[1+exp(at+x{B)][2+Ho(t | A, a,B)6]

where Hy(-) is the cumulative hazard function of the GTDL model given in (2.18) and 6 =

2 <(Z> + \/m)l is the variance of frailty (frailty parameter). Note that the ratio for
the hazard functions of two individuals with different covariates x;, and xy,, p(x1,,x1,) =
%M’ is a function of time, so that the GTDL-RWLF model is of NPHs. Another
observation, if the frailty parameter 0 — 0, then the GTDL-RWLF model reduces to traditional

GTDL model (2.17).

The unconditional hazard function given in (6.2) can take the decreasing and unimodal
forms, see illustration in Figure 20 (right), in addition to the increasing, decreasing and constant
forms when 6 — 0. The unimodal form is not observed in the original version of the GTDL
model. In Figure 20 (left), we notice several interesting behaviors of the survival function, such
as: cure rate in one or both groups and the intersection of the curves. In short, the survival
function is proper if & > 0 and it is improper for ¢ < 0. Therefore, the corresponding long-term

survivors proportion is
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[)(x]) = rli_}IgS(tM,a,ﬁ,G)

e(e+4))‘9<94+@‘

(1 — glog (1 +exp(xrﬁ)) 2612) | (1 - %102‘; (1 +eXP(xTB)> g) €(0,1). (6.3)
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- -1 0=2 B--25x-0A-106-0.8
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Figure 20 — Unconditional survival (left panel) and hazard (right panel) functions from the GTDL-RWLF
model.

Source: Elaborated by the author.

In short, the proposed model has several important characteristics, such as: NPHs;
identifies the presence of a long-term survivors without the addition of new parameters; capture
the unobserved heterogeneity (if present in the dataset); admit the intersection of survival curves;

and allows decreasing and unimodal hazard functions.

6.2 Inference

As done in Calsavara et al. (2019a), we also incorporate explanatory variables in the
GTDL-RWLF model through parameter ¢, providing more flexibility to it. For example, when
treatment is good, patients can be long-term survivors and the insertion of covariates through
this parameter mus lead to estimates less than zero for it. Thus, covariates can be included in the

unconditional hazard function (6.2), such as

a=o(x)=0y+x, 0, (6.4)

where o is the intercept and & = (o, . . ., Ocq)T is a vector of g unknown parameters measuring
the effect of the covariates vector x, = (x3,, ... ,xzq)T. In practice, we can take x| = x; = x,
i.e., the covariate vectors may be the same, but we suggest link a subset of variables to the
o parameter whether the researcher has prior knowledge about the variables that possibly are

associated with the cure rate.

Consider that some lifetimes 7;’s are right-censored and we only know that they are

greater than the recorded value. Let C; denote the censoring time, for the ith individual in
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study population. Suppose the 7; and C; are independent random variables. Let v; = I(T; < C;)
be the censoring indicator, that is, v; = 1 if T; is lifetime and O otherwise. We observe ¥ =
{(t;,vi,x1;,%2i), i = 1,...,n}, where t; = min(T;, C;), whereas x}; and x»; are the covariates of ith
individual. Thus, likelihood function for the parameter vector ¥ = (A, o, @ ", B T, )" assuming

non-informative censoring is given by

n
L¥|2) = []lh®)]"s|P). (6.5)
i=1
where S(-) and A(-) are, respectively, the unconditional survival and hazard functions of the

GTDL regression model with weighted Lindley frailty defined in (6.1) and (6.2).

Then, taking the natural logarithmic from (6.5), we obtain the log-likelihood function,

given by

(¥19) =ox() Y i Y vilaen)i +x8) ~ X wlog (1-+explecCe -x18))
=1

n 44 60(0+4) 6
+Zvilog<2(0+2)—|—Ho(tl)9(6 +4) 2+H0(t,)9)

_ (ﬁ+ 1) glog (1+Ho(t,)z(( ))) +i_2110g (1+Ho<r,~>§) . (66)

~.
—
~.
—

where Hy(-) is the GTDL cumulative hazard function given in (2.18) considering the approach
described in (6.4), that is

1 N+ x|
H()(tl'> = l ' log +exp(o¢(x2,)t +x1lﬁ) s 1= 1,...,n.
o (x2) 1+exp(x/;B)

The estimates of the model parameters can be obtained by maximizing the log-likelihood
function (6.6) through numerical methods. In literature, there are several nonlinear optimization
algorithms such as best-performing Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton,
Nelder-Mead, simulated annealing among other algorithms (NOCEDAL; WRIGHT, 1999). In
general, we are also interested in the estimation of long-term survivors. Due to the invariance
property of the MLEs (LEHMANN; CASELLA, 2006), the point estimate is obtained using
Equation (6.3) and the point estimates of the parameters, while the corresponding SE can be

estimated using the delta method.

Let ¥ be the MLE of ¥. Under some standard regularity conditions, the MLE W is
consistent and follows a normal joint asymptotic distribution with mean ¥ and covariance matrix
2(‘?‘) Let I(¥) denote the (p+ ¢+ 3) x (p+ g+ 3)-expected Fisher information matrix, whose

elements are given by

2%(¥|2
uj(¥)=—Erw |:all/(l—a|lllj):| ;
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where IETH;[-] means that the expectancy is taken with respect to sample joint distribution of
lifetimes. For n large, we have that Z('i‘) =I! (‘i‘), where 1! ('i‘) is the inverse expected Fisher
information matrix (LEHMANN, 2004). However, the expected Fisher information matrix is
difficulty to compute with our model. Fortunately, we can approximate it by its observed version,
denoted by H ({I\‘), which is calculated by removing the expectation operator, [, in the expected
Fisher information matrix. The advantage of using this observed version is that it can be easily

computed by using various computational routines. As a result, we have

. o
2 A (‘I‘,H 1(\1!)) . asn—s oo,

D e . .
where — denotes convergence in distribution. Therefore, approximate Cls for each y; with

(1 —7y)100% are given by

[1171' —2Zy\/ h; ' (P): +Zy/2\//};iil(@):| ;

where y; is the MLE of y;, E;l (‘i‘) is the ith diagonal element of inverse observed Fisher
information matrix and zy/, denotes the quantile of the standard normal distribution leaving a
probability to the right tail with 7/2. Also, it is possible to conduct hypothesis tests for parameters
by using, for example, the ratio likelihood test (LEHMANN; CASELLA, 2006).

Due to the complexity of the GTDL-RWLF model, the regularity conditions are not easy
to verify analytically. In this case, simulation studies are required; see, e.g., (HA; MACKENZIE,
2010; ORTEGA et al., 2015; BARRIGA et al., 2019). Following this idea, in the next section,
we describe a simulation study performed to investigate whether the usual asymptotic properties
of the MLEs hold. We also evaluate the sensitivity of the proposed model in identifying the
existence or not of long-term survivors in a subgroup and a sensibility analysis to detect PH
when there is proportionality in the data. Besides, we performed a study to evaluate the impact

of the MLE caused by the omission of a significant covariate.

6.3 Simulation study

In this section, we report four simulation studies that were carried out to evaluate some
properties of the proposed model estimators. In all studies, we evaluated the metrics for different
sample sizes and censoring proportions. The simulations were performed with the R Core
Team (2021) with 1,000 Monte Carlo runs. We used the delta method with first-order Taylor’s
approximation to estimate the long-term survivors’ SE. The random right-censored data were
generated from the exponential distribution with a rate ) > 0, set to control the proportion of
right-censored observations. The censoring or failure times of the GTDL-RWLF model were
generated using the Algorithm 5, where we divided the sample into two groups (x): control
(group 0) and treatment (group 1). We used the same covariate in the two components (¢; and

B1 parameters).
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Algorithm 5 — Generator of random times from the GTDL-RWLF model.

1: Define the values of ¥ = (4, 0, a1, 31,0) .
2: Generate x ~ Bernoulli(p), with p € (0,1).
3: a(x) < 0, Determine the long-term survivors p(x);
Generate u* ~ Uniform(0, 1);
u* < p(x), setty = oo;
Generate u' ~ Uniform(0,1 — p(x));
Using a numerical method obtain the lifetime ¢y from the equation
Sty |¥)=1—us
Generate u ~ Uniform(0, 1);
Using a numerical method obtain the lifetime ¢y from the equation
Str|¥)=1—u.
Generate 7, ~ Exponential(1n).
Compute ¢ = min(t,1.).
If 1 =t, then v = 1, otherwise v = 0.
Repeat steps 2 and 6 to obtain the desired sample size.

AN

6.3.1 Asymptotic properties

In this study, we evaluated the performance of the MLEs through a Monte Carlo study.
We considered the following sample sizes: n = 50, 100, 300, 500, 1,000, 3,000, and 5,000. The
metrics adopted in this study were: bias, SDs, MSE, RMSEs, and the CPs of 95% Cls. We
denoted pg and p; as the long-term survivors for the control and treatment groups, respectively.

Three scenarios were considered:

(i) without long-term survivors, with 6 = 0.5, A = 1.5, 0y = 0.5, oy = 0.9, and f; = —1.5 and
censoring proportions of 10%, 20%, and 30%. The results are shown in Table 18;

(ii) without long-term survivors in the control group and with long-term survivors in the treat-
ment group, with 6 = 0.5, A = 1.5, ap = 0.5, oy = —0.9, B; = —0.9, and p; = 0.3732
and censoring proportions of 30%, 40%, and 50%. The results are shown in Table 19;

(iii) with long-term survivors in both groups, with 6 = 0.5, A = 1.5, ¢y = —0.2, a; = —0.4,
Bi = —0.9, pg = 0.0807, and p; = 0.4921 and censoring proportions of 40%, 50%, and
60%. The results are shown in Table 20.

We observed that the ML estimates worked very well for the three scenarios because,
with an increase in the sample size, the bias, RMSE, MSE, and SD decreased to zero for all
parameters. Moreover, the value of the RMSE tended to the SD value with increasing sample
size. However, we saw an increase in the bias, RMSE, and SD for fixed sample size when the
censoring proportion increased, as expected. Of note, for a sample size less than or equal to
1,000, the empirical CP was sometimes below the nominal level; but for a sample size greater

than or equal to 3,000, the empirical CP was close to the nominal level.
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Table 18 — Bias, RMSE, SD, MSE, and CP of ML estimates for simulated data considering the GTDL-
RWLF model for the scenario (i).

10% censoring 20% censoring 30% censoring
n Bias RMSE SD MSE CP Bias RMSE SD MSE CP Bias RMSE SD MSE CP

50 6 0.0849 0.2468 0.2318 0.2849 0.9650 0.0580 0.2742 0.2680 0.3410 0.9780  0.0355 0.3058 0.3037 0.4245 0.9820
A —0.0362 0.5919 0.5908 0.5984 0.9360 —0.1064 0.6526 0.6438 0.6599 0.9430 —0.1103 0.7139 0.7054 0.7062 0.9420
oy —0.5980 1.7564 1.6514 1.7509 0.8710 —0.7010 1.9438 1.8129 1.9223 0.8970 —0.7995 2.0839 1.9243 2.1696 0.9270
o —0.0538 2.0382 2.0375 2.4661 0.8710 —0.0859 2.3107 2.3091 2.7681 0.8970 —0.1156 2.5086 2.5060 3.0998 0.9270
Bi 0.3190 1.0901 1.0423 1.0944 0.9840 0.3676 1.1254 1.0636 1.1435 0.9750 0.3739 1.2245 1.1660 1.2386 0.9740

100 6  0.0945 0.2132 0.1911 0.1971 0.9090  0.0948 0.2330 0.2128 0.2337 0.9240 0.0779 0.2550 0.2428 0.2978 0.9540
A 0.0470 0.4210 0.4183 0.4052 0.8900 0.0479 0.4419 0.4393 0.4229 0.8960 0.0026 0.4812 0.4812 0.4616 0.9110
op —0.5850 1.8099 1.7127 1.3375 0.8210 —0.5897 1.7580 1.6560 1.4266 0.8640 —0.6652 1.9482 1.8310 1.7237 0.9040
o 0.1342 1.8211 1.8161 1.7616 0.8210 0.0709 1.8722 1.8709 1.8657 0.8640  0.1837 1.9803 1.9717 2.1309 0.9040
B 0.1087 0.7390 0.7310 0.7293 0.9630 0.1285 0.7903 0.7798 0.8033 0.9700 0.1412 0.8518 0.8400 0.8064 0.9660

300 6  0.0507 0.1276 0.1171 0.1092 0.9250  0.0577 0.1520 0.1406 0.1318 0.9160 0.0727 0.1837 0.1687 0.1635 0.9150
A 0.0424 0.2703 0.2669 0.2491 0.9100 0.0374 0.2746 0.2721 0.2570 0.9250 0.0434 0.2784 0.2750 0.2688 0.9180
op —0.3793 1.4128 1.3608 0.7949 0.8260 —0.4357 1.5599 1.4977 0.9217 0.8300 —0.3590 1.3402 1.2912 0.9302 0.8560
o 02473 1.2586 1.2340 0.9046 0.8260 0.3281 1.4127 1.3740 1.0218 0.8300 0.2128 1.3010 1.2835 1.0337 0.8560
B 0.0046 0.4042 0.4042 0.3897 0.9570 —0.0186 0.4196 0.4191 0.4017 0.9420 —0.0119 0.4308 0.4306 0.4254 0.9600

500 6 0.0310 0.0926 0.0872 0.0833 0.9160 0.0398 0.1141 0.1069 0.0999 0.9240 0.0468 0.1377 0.1295 0.1262 0.9230
A 0.0311 02111 0.2088 0.1991 0.9290  0.0250 0.2170 0.2155 0.2056 0.9280  0.0282 0.2267 0.2250 0.2155 0.9340
oy —0.2522 1.1165 1.0876 0.5784 0.8700 —0.2546 1.1844 1.1567 0.6453 0.8530 —0.2503 1.0870 1.0578 0.7033 0.8380
o  0.1671 0.9901 0.9758 0.6426 0.8700 0.1964 1.0853 1.0674 0.7010 0.8530 0.2012 0.9865 0.9658 0.7464 0.8380
B —0.0004 0.2976 0.2976 0.2965 0.9510 —0.0096 0.3147 0.3145 0.3062 0.9510 —0.0180 0.3217 0.3211 0.3199 0.9550

1,000 8 0.0215 0.0618 0.0579 0.0578 0.9290 0.0202 0.0723 0.0694 0.0689 0.9400 0.0285 0.0950 0.0907 0.0862 0.9250
A 0.0211 0.1637 0.1623 0.1444 0.9250 0.0150 0.1613 0.1606 0.1500 0.9370  0.0296 0.1720 0.1695 0.1557 0.9250
o —0.1316 0.7619 0.7505 0.3691 0.8990 —0.1108 0.6281 0.6182 0.3888 0.8980 —0.1945 0.9755 0.9559 0.4863 0.8900
o 0.1078 0.6905 0.6821 0.4009 0.8990 0.0842 0.5979 0.5919 0.4131 0.8980 0.1523 0.8489 0.8351 0.5001 0.8900
B —0.0189 0.2097 0.2089 0.2059 0.9460 —0.0113 0.2126 0.2123 0.2121 0.9590 —0.0139 0.2244 0.2240 0.2234 0.9560
3,000 @  0.0052 0.0325 0.0320 0.0321 0.9490 0.0052 0.0385 0.0381 0.0382 0.9470  0.0080 0.0498 0.0491 0.0485 0.9510
A 0.0058 0.0872 0.0870 0.0834 0.9380  0.0046 0.0883 0.0882 0.0858 0.9420  0.0059 0.0920 0.0918 0.0893 0.9510
o —0.0169 0.1773 0.1765 0.1693 0.9370 —0.0259 0.2852 0.2840 0.1888 0.9430 —0.0279 0.2649 0.2634 0.2176 0.9310
o 0.0076 0.1925 0.1924 0.1881 0.9370 0.0126 0.2836 0.2833 0.2028 0.9430  0.0264 0.2547 0.2533 0.2236 0.9310
B —0.0049 0.1179 0.1178 0.1165 0.9490 —0.0019 0.1220 0.1220 0.1199 0.9510 —0.0075 0.1242 0.1240 0.1251 0.9540
5000 @  0.0019 0.0249 0.0248 0.0247 0.9510  0.0033 0.0292 0.0290 0.0294 0.9480  0.0030 0.0379 0.0378 0.0371 0.9430
A —0.0005 0.0628 0.0628 0.0647 0.9600  0.0029 0.0643 0.0643 0.0661 0.9600 0.0015 0.0703 0.0703 0.0687 0.9460
o —0.0091 0.1255 0.1251 0.1288 0.9440 —0.0080 0.1398 0.1396 0.1402 0.9460 —0.0147 0.1714 0.1707 0.1611 0.9320
o 0.0030 0.1386 0.1385 0.1430 0.9440 0.0065 0.1516 0.1514 0.1511 0.9460 0.0082 0.1687 0.1685 0.1661 0.9320
B 0.0023 0.0852 0.0851 0.0898 0.9580 —0.0030 0.0899 0.0899 0.0924 0.9560 —0.0016 0.0959 0.0959 0.0962 0.9490

Source: Elaborated by the author.

6.3.2 Sensibility analysis to detect long-term survivors in a subgroup

As previously highlighted, the proposed model can identify long-term survivors’ ex-
istence, depending on the value of the parameter «. To evaluate the model’s sensitivity at
identifying the existence or not of long-term survivors, we performed a simulation study con-
sidering two groups, control (x = 0) and treatment (x = 1), with only long-term survivors being
observed in the treatment group. Therefore, p(x =0) =0 and p(x = 1) € (0, 1). To assess the
impact of a low probability of long-term survivors, we adopted p(x = 1) =0.2,0.15,0.1,0.05,
and 0.03 and different sample sizes. The other parameter values were fixed as 6 = 0.5, 4 = 1.5,
B1 = —0.9, and o = 0.3, with the value of ¢ being defined in such a way that the desired
long-term survivors were obtained. The proportion of censored data ranged from 33% to 38%.
For each simulated dataset, we fitted the model and then checked if ay > 0 and o + ¢ < 0,
indicating the absence and presence of long-term survivors in the control and treatment group,

respectively. Based on 1,000 Monte Carlo runs, we calculated the percentage of the number of
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Table 19 — Bias, RMSE, SD, MSE, and CP of ML estimates for simulated data considering the GTDL-
RWLF model for the scenario (ii).

30% censoring 40% censoring 50% censoring
n Bias RMSE SD MSE CP Bias RMSE SD MSE CP Bias RMSE SD MSE CP

50 6 0.0101 0.2892 0.2890 0.4466 0.9940 —0.0594 0.3617 0.3568 0.5661 0.9930 —0.1500 0.5066 0.4839 0.7576 0.9940
A —0.0759 0.6994 0.6952 0.6627 0.9100 —0.1193 0.7554 0.7459 0.7308 0.9300 —0.1889 0.8891 0.8688 0.8430 0.9350
oy —0.7664 1.8501 1.6837 1.4737 0.9060 —0.9343 2.0323 1.8045 2.0357 0.9630 —1.2555 2.4545 2.1087 3.0461 0.9880
o 0.8318 1.9022 1.7106 1.5103 0.9060 0.9889 2.0570 1.8034 2.1067 0.9630  1.2124 2.3451 2.0070 3.1410 0.9880
Bi —0.1208 0.8142 0.8052 0.8550 0.9800 —0.1187 0.9817 0.9745 1.0029 0.9750  0.0123 0.9945 0.9945 1.1025 0.9760
po 0.0007 0.1220 0.1220 0.1198 0.9390  0.0303 0.1794 0.1768 0.1663 0.8680  0.0559 0.2278 0.2208 0.2317 0.7440

6 0.0598 0.2311 0.2232 0.3137 0.9700 0.0062 0.2796 0.2795 0.3990 0.9800 —0.0302 0.3381 0.3367 0.5249 0.9910
A 0.0259 0.4590 0.4583 0.4380 0.9040 0.0145 0.4695 0.4692 0.4727 0.9100 —0.0051 0.5190 0.5190 0.5215 0.9260
oy —0.5960 1.5995 1.4842 1.1191 0.9120 —0.8080 1.8328 1.6448 1.5499 0.9520 —0.9318 2.0237 1.7962 2.0208 0.9780
ap  0.6455 1.6320 1.4987 1.1301 0.9120 0.8465 1.8874 1.6867 1.5651 0.9520 0.9626 2.0859 1.8503 2.0475 0.9780
Bi —0.1204 0.6062 0.5941 0.5680 0.9700 —0.1128 0.6526 0.6428 0.6388 0.9690 —0.1121 0.7630 0.7547 0.7300 0.9760
po —0.0033 0.0816 0.0815 0.0820 0.9500  0.0090 0.1244 0.1241 0.1125 0.9160 0.0396 0.1797 0.1753 0.1642 0.8420

300 6 0.0605 0.1742 0.1634 0.1923 0.9650 0.0450 0.1961 0.1909 0.2443 0.9620 0.0196 0.2353 0.2345 0.3161 0.9720
A 0.0626 0.2786 0.2715 0.2604 0.8910 0.0633 0.2920 0.2850 0.2755 0.9030  0.0708 0.3093 0.3011 0.2985 0.9100
ap —0.4197 1.3890 1.3240 0.7540 0.9000 —0.5100 1.4276 1.3333 0.9454 0.9540 —0.6598 1.5638 1.4176 1.3210 0.9770
orp 04429 1.4064 1.3347 0.7536 0.9000 0.5329 1.4517 1.3503 0.9423 0.9540 0.6953 1.6082 1.4500 1.3174 0.9770
Bi —0.0900 0.3670 0.3558 0.3317 0.9290 —0.1022 0.3994 0.3861 0.3603 0.9370 —0.1315 0.4315 0.4109 0.4078 0.9680
po 0.0007 0.0467 0.0467 0.0471 0.9520 0.0044 0.0606 0.0604 0.0616 0.9600 0.0094 0.0972 0.0967 0.0946 0.9370

500 6 0.0487 0.1430 0.1345 0.1546 0.9730 0.0541 0.1640 0.1549 0.2019 0.9850 0.0307 0.1914 0.1889 0.2627 0.9800
A 0.0394 02152 02115 0.2123 0.9310 0.0576 0.2339 0.2266 0.2166 0.9250  0.0557 0.2447 0.2383 0.2327 0.9230
oy —0.2686 1.1177 1.0849 0.6233 0.8770 —0.3591 1.1482 1.0905 0.7612 0.9540 —0.4183 1.2072 1.1323 0.9662 0.9870
o 02852 1.1260 1.0893 0.6213 0.8770  0.3854 1.1678 1.1023 0.7545 0.9540  0.4415 1.2369 1.1553 0.9528 0.9870
Bi —0.0529 0.2650 0.2597 0.2607 0.9470 —0.0912 0.3141 0.3006 0.2810 0.9410 —0.0742 0.3233 0.3147 0.3088 0.9540
po —0.0003 0.0356 0.0356 0.0363 0.9520 0.0010 0.0474 0.0474 0.0467 0.9460  0.0026 0.0716 0.0716 0.0706 0.9430

6 0.0430 0.1075 0.0985 0.1109 0.9740 0.0372 0.1301 0.1247 0.1464 0.9720  0.0263 0.1579 0.1557 0.1992 0.9710
A 0.0332 0.1669 0.1636 0.1498 0.9270 0.0338 0.1668 0.1633 0.1566 0.9410 0.0450 0.1841 0.1785 0.1725 0.9250
oy —0.1809 0.9584 0.9412 0.4167 0.8630 —0.1706 0.8418 0.8243 0.5100 0.9170 —0.2970 0.9782 0.9320 0.7379 0.9780
o 0.1907 0.9656 0.9466 0.4137 0.8630 0.1848 0.8502 0.8299 0.5026 0.9170  0.3092 0.9912 0.9417 0.7234 0.9780
Bi —0.0332 0.2080 0.2053 0.1831 0.9300 —0.0471 0.2185 0.2134 0.1974 0.9380 —0.0580 0.2403 0.2332 0.2240 0.9400
po 0.0002 0.0263 0.0263 0.0257 0.9460  0.0009 0.0326 0.0326 0.0331 0.9530 0.0039 0.0500 0.0498 0.0488 0.9530

3,000 6 0.0139 0.0648 0.0633 0.0627 0.9680 0.0187 0.0858 0.0837 0.0888 0.9620 0.0132 0.1156 0.1149 0.1260 0.9530
A 0.0096 0.0914 0.0909 0.0908 0.9530 0.0172 0.0994 0.0979 0.0953 0.9510 0.0262 0.1063 0.1030 0.1004 0.9450
ap —0.0280 0.2888 0.2874 0.2503 0.9490 —0.0792 0.5022 0.4959 0.3200 0.9340 —0.1154 0.5017 0.4882 0.4174 0.9660
op 0.0322 0.2881 0.2863 0.2483 0.9490 0.0840 0.5033 0.4962 0.3141 0.9340 0.1213 0.4980 0.4830 0.4042 0.9660
Bi —0.0095 0.1092 0.1088 0.1081 0.9530 —0.0148 0.1260 0.1252 0.1174 0.9450 —0.0308 0.1368 0.1333 0.1287 0.9470
po —0.0006 0.0151 0.0151 0.0148 0.9460 —0.0002 0.0202 0.0202 0.0191 0.9390  0.0013 0.0278 0.0277 0.0277 0.9510

5,000 6 0.0107 0.0542 0.0531 0.0477 0.9450 0.0139 0.0682 0.0668 0.0688 0.9720  0.0148 0.0957 0.0946 0.1044 0.9560
A 0.0037 0.0718 0.0717 0.0701 0.9400 0.0088 0.0700 0.0694 0.0730 0.9590 0.0125 0.0790 0.0780 0.0766 0.9530
ap —0.0149 0.2265 0.2260 0.1881 0.9530 —0.0228 0.2326 0.2315 0.2376 0.9600 —0.0457 0.3529 0.3499 0.3147 0.9500
o  0.0173 0.2233 0.2227 0.1866 0.9530  0.0278 0.2287 0.2270 0.2326 0.9600  0.0500 0.3466 0.3430 0.3022 0.9500
Bi —0.0021 0.0840 0.0840 0.0831 0.9400 —0.0093 0.0883 0.0878 0.0901 0.9550 —0.0117 0.1044 0.1038 0.0983 0.9410
po —0.0003 0.0116 0.0116 0.0115 0.9580 —0.0007 0.0155 0.0155 0.0147 0.9370  0.0003 0.0223 0.0223 0.0215 0.9360

100

1,000

Source: Elaborated by the author.

times the model correctly identified the sign of the parameters. The results are shown in Table 21.

For a fixed proportion of long-term survivors, the percentage of correctly identified
signal parameters (the model correctly identifies the long-term survivors in the treatment group
and non-immune subjects in the control group) increases with the sample size, as expected.
However, for fixed sample size, the percentage decreases as the proportion of long-term survivors
decrease mainly for small sample size, indicating a difficulty for the model to correctly identify
long-term survivors’ presence only in the treatment group. For a sample size of 3,000 or more,

the percentage is approximately 90%, regardless of the fixed proportion of long-term survivors.
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Table 20 — Bias, RMSE, SD, MSE, and CP of ML estimates for simulated data considering the GTDL-
RWLF model for the scenario (iii).

40% censoring 50% censoring 60% censoring
n Bias RMSE SD MSE CP Bias RMSE SD MSE CP Bias RMSE SD MSE CP

50 6 —0.0665 0.4068 0.4013 0.9081 0.9870 —0.0901 0.4804 0.4719 1.2724 0.9780 —0.0854 0.5549 0.5483 1.9487 0.9450
A —0.1739 0.6771 0.6544 0.7430 0.9680 —0.2966 0.8229 0.7675 0.8714 0.9760 —0.3561 0.9117 0.8393 1.0140 0.9890
op 0.0386 0.1583 0.1536 0.4078 1.0000 0.0779 0.2307 0.2171 0.7545 0.9990 0.1699 0.3717 0.3306 1.4232 0.9980
o 0.1150 0.4535 0.4387 0.5195 1.0000 0.2269 0.6894 0.6510 0.8746 0.9990 0.4915 1.0403 0.9167 1.5649 0.9980
pi —0.1523 0.8059 0.7913 0.8884 0.9910 —0.1351 0.9120 0.9019 1.0318 0.9860 —0.2251 0.8977 0.8690 1.2048 0.9970
po —0.0282 0.0816 0.0765 0.1475 0.9240 —0.0438 0.1071 0.0978 0.2358 0.8700 —0.0747 0.1562 0.1371 0.4208 0.8370
p1 0.0013 0.1140 0.1140 0.1161 0.9310 —0.0228 0.1371 0.1352 0.1415 0.9230 —0.0685 0.1602 0.1448 0.1798 0.8700

100 6 —0.0315 0.3265 0.3250 0.6168 0.9870 —0.0052 0.3693 0.3692 0.8989 0.9790 —0.0333 0.4440 0.4427 1.3481 0.9610
A —0.1224 0.4605 0.4439 0.4958 0.9680 —0.1088 0.4924 0.4802 0.5300 0.9730 —0.1468 0.5069 0.4851 0.6071 0.9740
op 0.0282 0.1339 0.1309 0.2724 0.9980 0.0506 0.1810 0.1737 0.5198 0.9980 0.1004 0.2686 0.2491 0.9511 0.9980
o 0.0261 0.2532 0.2519 0.3093 0.9980 0.0622 0.3506 0.3451 0.5199 0.9980 0.1970 0.6198 0.5877 0.9168 0.9980
B —0.0249 0.5221 0.5216 0.5549 0.9810 —0.0575 0.5931 0.5903 0.6245 0.9830 —0.1378 0.6858 0.6718 0.7465 0.9900
po  —0.0145 0.0585 0.0567 0.0851 0.9550 —0.0229 0.0800 0.0767 0.1607 0.9140 —0.0487 0.1208 0.1105 0.2913 0.8600
p1 0.0019 0.0769 0.0769 0.0811 0.9510 —0.0071 0.0992 0.0989 0.1020 0.9400 —0.0313 0.1188 0.1146 0.1431 0.9110

300 6 0.0223 0.2455 0.2445 0.3416 0.9900  0.0537 0.2697 0.2643 0.5175 0.9900  0.0517 0.3059 0.3015 0.8223 0.9850
A —0.0099 0.2588 0.2587 0.2589 0.9450 —0.0267 0.2566 0.2552 0.2842 0.9670 —0.0424 0.2708 0.2675 0.3189 0.9800
op 0.0142 0.0991 0.0981 0.1426 0.9970 0.0484 0.1423 0.1338 0.2884 0.9990 0.0764 0.1978 0.1824 0.5761 0.9940
o 0.0041 0.1396 0.1396 0.1593 0.9970 —0.0184 0.1957 0.1948 0.2706 0.9990 0.0098 0.2575 0.2573 0.4940 0.9940
B —0.0279 0.3235 0.3223 0.3049 0.9480 —0.0102 0.3272 0.3271 0.3306 0.9590 —0.0581 0.3541 0.3493 0.3806 0.9730
po —0.0027 0.0362 0.0361 0.0450 0.9650 —0.0129 0.0541 0.0525 0.0886 0.9560 —0.0259 0.0785 0.0741 0.1786 0.9390
p1 0.0022 0.0460 0.0459 0.0466 0.9490  0.0030 0.0570 0.0569 0.0578 0.9560  0.0007 0.0789 0.0789 0.0870 0.9560

500 6 0.0359 0.2188 0.2159 0.2620 0.9900  0.0644 0.2502 0.2417 0.3996 0.9950  0.0641 0.2838 0.2765 0.6497 0.9900
A 0.0089 0.1894 0.1892 0.1975 0.9500 0.0031 0.1986 0.1986 0.2147 0.9690 —0.0206 0.2089 0.2079 0.2434 0.9710
op 0.0126 0.0888 0.0879 0.1081 0.9910 0.0424 0.1338 0.1269 0.2201 0.9940  0.0832 0.1819 0.1617 0.4464 0.9970
og 0.0033 0.1182 0.1181 0.1207 0.9910 —0.0188 0.1649 0.1638 0.2049 0.9940 —0.0288 0.2142 0.2123 0.3769 0.9970
Bi —0.0243 0.2341 0.2328 0.2339 0.9540 —0.0130 0.2502 0.2499 0.2532 0.9520 —0.0248 0.2794 0.2783 0.2887 0.9630
po 0.0002 0.0299 0.0299 0.0342 0.9660 —0.0089 0.0460 0.0451 0.0698 0.9430 —0.0285 0.0694 0.0633 0.1412 0.9570
p1 0.0007 0.0367 0.0367 0.0361 0.9530 0.0010 0.0444 0.0444 0.0443 0.9480 —0.0003 0.0618 0.0618 0.0662 0.9640

1,000 6 0.0074 0.1789 0.1788 0.1798 0.9610  0.0592 0.2219 0.2139 0.2774 0.9980 0.0988 0.2530 0.2330 0.4608 0.9910
A —0.0056 0.1424 0.1423 0.1408 0.9480 0.0155 0.1447 0.1438 0.1496 0.9410 —0.0042 0.1477 0.1476 0.1685 0.9730
op 0.0022 0.0691 0.0691 0.0730 0.9760  0.0293 0.1137 0.1099 0.1518 0.9860 0.0802 0.1663 0.1456 0.3165 0.9930
og  0.0022 0.0806 0.0806 0.0823 0.9760 —0.0116 0.1204 0.1198 0.1416 0.9860 —0.0438 0.1712 0.1655 0.2659 0.9930
Bi —0.0078 0.1683 0.1681 0.1647 0.9460 —0.0136 0.1818 0.1813 0.1780 0.9470  0.0008 0.1891 0.1891 0.2000 0.9640
po 0.0013 0.0223 0.0223 0.0230 0.9680 —0.0039 0.0362 0.0359 0.0485 0.9460 —0.0212 0.0565 0.0523 0.0998 0.9550
p1 0.0014 0.0254 0.0254 0.0255 0.9490 —0.0003 0.0317 0.0317 0.0312 0.9530 —0.0016 0.0437 0.0437 0.0460 0.9480

3,000 6 0.0049 0.1056 0.1055 0.1023 0.9400 0.0105 0.1463 0.1459 0.1573 0.9670 0.0701 0.2050 0.1926 0.2710 0.9960
A 0.0017 0.0809 0.0809 0.0807 0.9530 —0.0029 0.0833 0.0833 0.0875 0.9660  0.0070 0.0917 0.0914 0.0966 0.9550
op 0.0007 0.0414 0.0414 0.0407 0.9500 0.0028 0.0801 0.0800 0.0875 0.9700 0.0482 0.1356 0.1268 0.1908 0.9720
o 0.0025 0.0468 0.0468 0.0466 0.9500 0.0016 0.0756 0.0756 0.0814 0.9700 —0.0246 0.1252 0.1228 0.1588 0.9720
B —0.0049 0.1011 0.1010 0.0948 0.9290 —0.0023 0.1000 0.1000 0.1027 0.9560 —0.0059 0.1183 0.1182 0.1152 0.9530
po  0.0007 0.0127 0.0127 0.0126 0.9560  0.0022 0.0261 0.0260 0.0289 0.9620 —0.0105 0.0431 0.0418 0.0641 0.9390
p1 —0.0002 0.0142 0.0142 0.0147 0.9570  0.0004 0.0172 0.0172 0.0180 0.9580 —0.0020 0.0264 0.0263 0.0262 0.9470

5,000 6 0.0034 0.0785 0.0784 0.0790 0.9590 0.0032 0.1229 0.1228 0.1204 0.9510 0.0447 0.1773 0.1716 0.2136 0.9790
A —0.0037 0.0636 0.0635 0.0627 0.9480 0.0012 0.0664 0.0664 0.0676 0.9540 0.0041 0.0728 0.0726 0.0750 0.9570
op 0.0017 0.0311 0.0310 0.0314 0.9600 —0.0009 0.0684 0.0684 0.0662 0.9610 0.0266 0.1175 0.1144 0.1542 0.9620
o —0.0007 0.0364 0.0364 0.0359 0.9600 0.0029 0.0625 0.0624 0.0619 0.9610 —0.0126 0.1008 0.1000 0.1279 0.9620
B 0.0006 0.0745 0.0745 0.0733 0.9400 —0.0039 0.0784 0.0783 0.0796 0.9530 —0.0056 0.0911 0.0909 0.0892 0.9440
po 0.0001 0.0094 0.0094 0.0097 0.9570  0.0022 0.0221 0.0220 0.0217 0.9540 —0.0040 0.0382 0.0380 0.0528 0.9310
p1 0.0004 0.0112 0.0112 0.0114 0.9570  0.0002 0.0137 0.0137 0.0139 0.9510 —0.0002 0.0202 0.0202 0.0204 0.9480

Source: Elaborated by the author.

6.3.3 Sensibility analysis to detect PH

The main assumption of the proposed model is the non-proportionality of the hazards.
We carried out a simulation study to analyze the proposed model’s behavior when such an
assumption is false. For this, we generated failure times from exponential distribution with
A =exp(Po+ PBix), where x is a group covariate, as previously defined, being generated from
the Bernoulli distribution (p = 0.5). We fixed By = 0, B; = 0.5 and considered different sample
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Table 21 — Percentage of the number of cases correctly identified by the proposed model when there was
long-term survivors in a subgroup.

Sample size
Long-term survivors fixed 50 100 300 500 1,000 2,000 3,000 5,000

0.20 76.77 825 845 849 841 86.8 87.8 91.7
0.15 7377 83.77 85.0 853 852 863 885 903
0.10 71.0 824 856 859 874 865 90.1 910
0.05 68.4 80.8 849 87.8 87.8 89.6 90.1 930
0.03 69.1 753 849 851 879 879 90.8 921

Source: Elaborated by the author.

sizes. The exponential model is a classic example that satisfies the assumption of PH. Based on
1,000 Monte Carlo runs, we calculated the proportion of times that the CIs of the parameters o,
oy, and 0 simultaneously contained the value zero, indicating that the hazards are proportional.

The results for different censoring rates are shown in Table 22.

Table 22 — Percentage of the number of cases identified with PH using the proposed GTDL-RWLF.

n 0% censoring 15% censoring 30% censoring

50 98.2 97.8 97.1
100 98.9 98.4 98.1
300 98.5 98.3 97.0
500 97.6 98.1 97.0
1000 96.1 96.6 95.8
3000 90.4 92.2 92.9
5000 87.1 88.5 91.0

Source: Elaborated by the author.

For fixed sample size, the percentage of the number of cases indicating PH presents a
slight variation when the censoring rates increase. However, when the censoring rate is fixed, the
percentage decreased as the sample size increased, as expected, and the point estimate of the
parameters 0, 01, and 0 tend to be close to zero when the sample size increased. Besides, when
the sample size is small, higher SEs are expected compared with the large sample size, which
can influence the amplitude of the confidence interval and, consequently, in coverage or not of
the value 0. According to the simulation study, approximately 90% or more of cases indicated
PH, which suggests an excellent performance of the proposed model in identifying PH when the

data is proportionality hazards.
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6.3.4 Analysis of bias caused by the absence of a covariate

In this simulation study, we are interested in analyzing the behavior of parameter esti-
mates in the absence of an important covariate in the explanation of failure times. For this, we
adopted the time generation process with two covariates, X and X3, both assuming only O or 1
values using the Algorithm 1 with an adaptation for two covariates. We can assume, for example,
that the variable X; refers to gender (female and male), while the variable X, is an indication
of the type of treatment received (control and treatment). The values of the adopted parameters
were: 0 =0.5,4 = 1.5, ap = —0.2, a; = —0.25, op = —0.55,—0.05,0.05 and 0.55, B; = —0.5
and B, = —0.9,—0.3,0.3 and 0.9.

We considered four different values for o and 3, in order to simulate covariates with
different levels of importance to explain the time to failure. For each combination, datasets
with several sample size n = 50, 100, 300, 500, 1000, 3000 and 5000 were generated. For each
dataset generated, we obtained the MLE of the fitted complete and incomplete model parameters.
For the complete model, both covariates were considered, while in the incomplete one, only the
covariate X; was considered. Based on 1,000 Monte Carlos runs, we calculated the bias of the

parameters for both fitted models.

In all the studied scenarios, the bias of the complete model’s parameters decreased with
the increase of the sample size, as expected. These results have been omitted here. Figure 21

shows the parameter biases of the incomplete model.

According to the results, when o, assumes the values 0.05 or —0.05 and 3, = —0.3 or
0.3, the estimated biases of the parameters 0, o, a; and B; tend to zero as sample size increase.
Regarding parameters A and f;, the results suggested that the estimated bias is positive when
B> is negative, while the estimated bias is negative if 3, is positive and slight variations were
observed when we vary the value of . Therefore, according to the simulation study, there is
evidence that the non-inclusion of a covariate with low influence (|0 | < 0.05 and |f;| < 0.3) in

the lifetime reflects in slightly biased estimates when the sample size is large.

6.4 Application on lung cancer data

In this section, the applicability of the proposed model is illustrated in a real lung cancer
dataset in Brazilian patients. We fitted the GTDL-RWLF model, in addition to the traditional
GTDL model to the dataset and compared with survival curve estimates obtained by using the
KM estimator kaplan. The MLEs, SEs, 95% Cls estimates for the parameters, and AIC values
(AKAIKE, 1974) were determined for each fitted model.

The data are part of a study about lung cancer comprising 30,900 records of patients

diagnosed with lung cancer in the State of Sao Paulo, Brazil, between 2,000 and 2,014, with
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Figure 21 — Estimated parameter biases associated to fitted incomplete model considering different pa-
rameter @ and 3, values.

Source: Elaborated by the author.

follow-up conducted until 2018. The diagnosis of malignant neoplasm of bronchus and lung
(C34 - ICD-10 diagnosis code)! were included in the sample. All records were provided by
the FOSP and it can be downloaded in <http://www.fosp.saude.sp.gov.br>. As mentioned by
Andrade et al. (2012) these policies serve as an instrument for oncology hospitals to prepare

their protocols and improve care practices.

In our study the event of interest was defined as death due to cancer. To identify the
effects of the observed independent variables on hazard function, such as gender, age at diagnosis,
clinical stage, surgery, radiotherapy, and chemotherapy as well as to capture the unobserved

heterogeneity are the main goals.

Initially, we present a descriptive analysis of observed covariates in Table 23. According
to Table 23, 19,657 (63.61%) patients were male, 11,090 (35.89%) patients were younger
(< 60 years-old), and the most of patients were in the clinical stage III or IV 25971 (84,05%)
patients. Regarding treatment, 5,899 (19.09%) patients underwent surgery, 11,709 (38.16%)
patients received radiotherapy, and 20, 134 (65.16%) patients received chemotherapy. A total of
27,479 (88.93%) events occurred during the follow-up period. The maximum observation time

I ICD-10 is the 10" revision of the International Statistical Classification of Diseases and Related Health
Problems (ICD), a medical classification list by the World Health Organization (WHO).
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was approximately 18.76 years, while the median follow-up time was 5.92 years.

Table 23 — Descriptive analysis of the observed covariates from the lung cancer dataset.

Covariate Code  Category Number of patients (n = 30,900) %
X;: Gender 0 Male 19,657 63.61%
1 Female 11,243 36.39%
X5: Age at diagnosis 0 Younger 11,090 35.89%
1 Older 19,810 64.11%
X3: Surgery 0 No 25,001 80.91%
1 Yes 5,899 19.09%
Xy: Clinical Stage (CS) (1,0,0) I 3,058 9.90%
(0,1,0) 11 1,871 6.06%
(0,0,1) 1 9,200 29.77%
(0,0,0) IV 16,771 54.27%
Xs5: Radiotherapy 0 No 19,109 61.84%
1 Yes 11,791 38.16%
Xs: Chemotherapy 0 No 10,766 34.84%
1 Yes 20,134 65.16%

Source: Elaborated by the author.

Figure 22 presents the overall estimated survival function obtained by KM estimator.
The survival rate appears to trend reasonably close to 0 as the lifetime increased, as expected,
once the most of patients were in the clinical stage III or IV. The median lung specific-survival
period was approximately 0.726 years. The 0.5-, 1-, 2-, 5-, and 10-year specific survival rates
are 0.599, 0.398, 0.215, 0.092, and 0.053, respectively.

Initially, we provide in Figure 23 a plot of log cumulative baseline hazards against
time (follow-up period) for gender, age at diagnosis, surgery, clinical stage, radiotherapy and
chemotherapy, respectively. According to Klein and Moeschberger (2003), if the proportionality
assumption holds, then these curves should be approximately parallel, with constant vertical
separation between them. The plots suggest that the hazard are non-proportional for the radiother-
apy and chemotherapy covariates. For the surgery covariate the proportionality is questionable
before 5 years, and is more evident for the radiotherapy and chemotherapy covariates, once that

occurred a intersection between the curves.

The results of PH assumption testing for a Cox regression model fit (GRAMBSCH;
THERNEAU, 1994) are displayed in Table 24; they provided strong evidence that the radiother-
apy, chemotherapy and clinical stage variables have a non-constant effect over time, while the
age at diagnosis and gender and surgery there are evidence of constant effect over time at 5%
significance level. However, when a 10% significance level is considered there is also evidence

of non-proportionality hazards for the surgery covariate.
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Figure 22 — Estimated survival curve obtained via KM for the lung cancer dataset.

Source: Elaborated by the author.
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Source: Elaborated by the author.

To evaluate the effect of the observed covariates in the hazard function, as well as in
the time effect , we fitted the traditional GTDL and GTDL-RWLF models to the dataset. For
illustrative purposes, we link parameter ¢ to covariates through an identity link function, as
described in Equation (6.4). In this study, we adopted the same subset covariates on the two

components (@ and B).
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Table 24 — Test of PHs assumption.

Variable p x? p-value

Gender 0.004 0462  0.497
Age at diagnosis  —0.005 0.692  0.405

Surgery —0.011 3.000 0.083

Clinical Stage I  —0.003  0.229  0.632

Clinical Stage III  0.024  15.857 <0.001

Clinical Stage IV 0.004  0.534  0.465
Radiotherapy 0.223 1374  <0.001
Chemotherapy 0454 5643 <0.001

Source: Elaborated by the author.

The results of the fitted GTDL and GTDL-RWLF models are given in Table 25. Accord-
ing to the AIC criterion value, the GTDL-RWLF model seems to be the best choice between
the GTDL model for all fitted models. Regardless of the fitted models, a significant effect in
the lifetime for all observed covariates as the 95% confidence interval for 8 does not include
0. Besides, the time effect measure differs between groups (0 and ; are significant) for all
covariates under GTDL model, while in the proposed model the time effects differ between

groups for the gender, surgery, clinical stage I1I, radiotherapy and chemotherapy.

Considering the AIC criterion values, max /(-) values, and the number of parame-
ters in the models, we select the GTDL-RWLF as our working model. We focused exclu-
sively on an interpretation of GTDL-RWLF model parameters. Note that for surgery covariate
the 0 > 0 and 0 + & < 0, which means that the distribution is proper in the no surgery
group, while it is improper in the surgery group, leading to long-term survivors p; = 0.138;
CI(95%) = [0.118;0.158]. For the clinical stage, the estimated time effects was 0y + 0 =
—0.181; CI(95%) = [—0.205;—0.156] in the clinical stage I; o + &t = —0.219; CI(95%) =
[—0.254;—0.183] in the clinical stage II; 0y + &3 = —0.169; CI(95%) = [—0.198;—0.141] in
the clinical stage Il and dp = —0.216; CI(95%) = [—0.265;—0.166] in the clinical stage IV.
As the time effect are negative, the model suggests that there are long-term survivors in each
subgroup; the estimated proportions are, respectively, p; = 0.233; CI(95%) = [0.203;0.262],
pn = 0.104; CI(95%) = [0.081;0.127], piy = 0.017; CI(95%) = [0.012;0.022] and pry = 0.005;
CI(95%) = [0.003;0.007]. Although the estimates long-term survivors are close to zero (in each
group), a better prognosis is associated with an early clinical stage. In addition, note that there is

a significant difference in the long-term survivors among the clinical stages.

The other observed covariates such as gender, age, radiotherapy and chemotherapy the
effect time was positive, which leads to the a proper survival function, that is, there is not evidence
of long-term survivors. Note that the estimates of 0 is greater than 0.6 for all fitted frailty models,

except to clinical stage, which indicates a reasonable degree of unobserved heterogeneity in
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the sample. Overall, the fitted models reasonably fit KM curves. However, the GTDL-RWLF
model enables quantifying unobserved heterogeneity, which is of great importance in clinical
practice, once those important covariates were not observed such as smoking, secondhand smoke,

personal or family history of lung cancer, exposure to asbestos?.

Figure 24 shows the estimated survival functions from the GTDL-RWLF model for
each observed covariate. The survival function estimates are close to the KM curves. Note that
the estimated curves for radiotherapy and chemotherapy covariates also cross over time. Such
crossing can not occur in the traditional GTDL model (considering the effect time o equals
in both groups) proposed by Mackenzie (1996), which is a disadvantage. The inclusion of a
covariate through the o parameter allowed the quantification of each group of patients’ effect,

and yielded the curves to cross, as can be seen in estimated survival function (Figure 24).

We also consider the risk factors previously mentioned in a full model and the results
of the fitted GTDL and GTDL-RWLF models are given in Table 26. According to the AIC
criterion values, GTDL-RWLF model seem to be the best choice. Among the observed covariates
considered in the models, there is evidence that all variables are important factors to explain
the failure rate and the time effect because the 95% confidence interval of the coefficients
ﬁT = (B] , ﬁz,ﬁ'j, B4,ﬁ5, B(,, B7, Bg) and @ = (OL(), o,0, 03,04, 05,06, 07, 068) do not include
0 regarding frailty model. Note that 6 = 0.993, which indicates a reasonable degree of unobserved

heterogeneity in the sample.

The GTDL-RWLF model allows quantifying the amount of unobserved heterogeneity
as previously mentioned. In this sense is important to test the suitability of the frailty term in
the frailty model using theLR test given by, A = 2{¢(P) — £(P,)}, where ¥, is the maximum
likelihood estimator of ¥ under the null hypothesis Hy : 6 = 0. As the parameter value is on the
boundary of the parametric space, Maller and Zhou (1996) showed that the statistic distribution
A is a mixture in proportions 50% /50% of a chi-squared distribution with one degree of freedom
and a point mass at 0, that is P[A < ] = 0.5+ 0.5P[x? < &] under certain regularity conditions.
We obtained A = 1,055.28 (p-value< 0.0001), which provides a strong evidence in favor of the

inclusion of the frailty term.

According to the results, as expected, slightly better survival rates were associated with
young patients, female in the clinical stage I and undergoing surgery. Before two years, a better
survival rates were observed for patients who did radiotherapy/chemotherapy. After two years

the effect of the treatment is lost and the survival rates are close in both treatments.

Table 27 shows the estimated survival rates at 0.5-, 1-, 2- and 10-year according to the
GTDL-RWLF model for older patients and some combinations of covariates clinical stages,
surgery, gender, radiotherapy and chemotherapy. As expected, patients with early-stage (clin-

ical stage I), female patients who have undergone surgery and who did not radiotherapy and

2 People who work with asbestos, such as in mills, mines, plants textile.
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Table 25 — MLEs, SEs, 95% ClIs, AIC value obtained for the traditional GTDL and GTDL-RWLF models
considering gender, age at diagnosis, surgery, clinical stage, radiotherapy and chemotherapy
fitted for the lung cancer dataset.

Model GTDL model GTDL-RWLF model
CI 95% CI 95%
Parameter MLE SE Lower  Upper MLE SE Lower  Upper
o —0.467 0.007 —0.482 —0.452 1.537  0.127  1.288 1.786
01 (Female) 0.059 0.013  0.034 0.083 —1.467 0.129 -1719 -1214
B(Female) —-0.430 0.024 -0.478 —0.383 —-0.122 0.049 -0.218 —0.025
A 2.197  0.020 2.157 2.236 2.380 0.045 2292 2.468
0 — 0.829  0.015  0.800 0.859
max £(-) —35,572.57 —35,293.64
AIC 71,153.14 70,597.28
o —-0.488 0.009 —-0.506 —0.470 1.673  0.164  1.352 1.995
Q1 (Older) 0.043  0.013  0.017 0.068 —-0.208 0.187 —0.574 0.158
B(older) 0.065 0.028 0.010 0.119 0.399  0.077 0.249 0.549
A 1.957 0.024 1910 2.003 2.006  0.050 1.907 2.104
0 0.870  0.013 0.844 0.896
max £ (-) —35,729.95 —35,379.72
AIC 71,467.90 70,769.43
o —0.400 0.007 —-0.415 -0.386 1.110  0.082  0.950 1.270
Q1 (Surgery) 0.139 0.012 0.116 0.163 —1.242 0.082 —1.402 —1.081
ﬁ(Surgery) —1.552 0.027 —-1.605 —1.499 —1.443 0.034 —-1510 —1.376
A 2394 0.019 2357 2.431 2,532 0.037 2.460 2.604
0 0.626  0.011  0.605 0.647
max £(-) —33,605.09 —33,460.14
AIC 67,218.17 66,930.28
(o7} —0.428 0.011 —-0.449 -0.407 —-0.216 0.025 —-0.265 —0.166
arcs -1 0.220 0.016  0.188 0.252 0.035 0.026 -0.016 0.086
0 (CS - 10) 0.155 0.020 0.116 0.194 —0.003 0.027 —0.056 0.050
03(Cs - 11 0.150 0.014 0.122 0.177 0.046  0.019  0.008 0.085
Bccs -1 —2203 0.038 —-2.278 —2.128 —2.249 0.040 —2.328 —2.171
Bcs - m —1.448 0.044 —1.535 —1.362 —1.475 0.046 —1.566 —1.384
Bcs - 1 —-0.826 0.024 -0.872 —0.780 —-0.851 0.026 —-0.901 —0.801
A 2.830 0.027 2.776 2.884 3.063 0.039 2.986 3.139
0 0.205 0.020 0.166 0.244
max £(-) —32,869.38 —32,815.27
AIC 65,754.76 65,648.54
o —-0.575 0.008 —-0.591 —-0.559 —-0.026 0.020 —-0.066 0.014
Ol (Radiotherapy) 0.306  0.012 0.282 0.330 1.761 0.071 1.622 1.900
BRadiotherapy) —-0.544 0.024 -0.590 —-0.497 —1.563 0.037 —-1.635 —1.490
A 2289  0.022  2.246 2.332 3.352  0.048  3.258 3.446
0 0.889 0.015 0.859 0.919
max £(-) —35,447.21 —34,640.59
AIC 70,902.41 69,291.18
o -0.967 0.015 —-0.996 —0.939 —0.106 0.020 —0.145 —-0.067
Ol (Chemotherapy) 0.733  0.016  0.702 0.765 2071 0.047 1978 2.163
B(Chemotherapy) —1.210 0.021 —-1.250 —1.169 —2.586 0.030 —2.645 —2.526
A 3.562 0.047  3.470 3.654 6.977  0.138  6.706 7.248
0 1.219  0.014 1.191 1.247
max £(-) —34,344.24 —32,433.39
AIC 68,696.48 64,876.77

Source: Elaborated by the author.
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Figure 24 — Estimated survival curve obtained via KM (full line) for lung cancer dataset, and estimated
survival function according to GTDL-RWLF model (dashed line) for gender, age at diagnosis,
surgery, clinical stage, radiotherapy and chemotherapy.

Source: Elaborated by the author.

chemotherapy have higher survival at 10-year; whereas patients diagnosed in clinical stage IV
have worst prognosis, regardless of the gender, treatment received and the estimated survival
rates at 10-year are close to zero for these patients. Overall the estimated survival rates at 0.5-year
are highly impacted by clinical stage (late diagnosis), once that the most of patients were with
metastatic disease (clinical stage IV).

6.5 Concluding remarks

In this chapter, we have extended the GTDL model by including a RWL frailty term

in the hazard function in order to quantify the amount of unobserved heterogeneity among
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Table 26 — MLEs, SEs, 95% asymptotic ClIs, AIC value obtained for the traditional GTDL and GTDL-
RWLF models considering gender, age at diagnosis, surgery, clinical stage, radiotherapy and

chemotherapy fitted for the lung dataset.

GTDL model GTDL-RWLF model
CI95% CI95%

Parameter MLE SE  Lower Upper MLE SE  Lower Upper

o —-0.794 0.017 —-0.827 —0.761 1.445 0.075 1.298 1.591
O] (Female) 0.046 0.009 0.027  0.064 —0.138 0.025 —-0.186 —0.089

00 (Older) 0.092 0.009 0.074 0.111 0.198 0.025 0.150  0.247
063 (Surgery) 0.111 0.011 0.090 0.133 —0.628 0.054 -0.734 —-0.521
4(cs -1 0.226  0.015 0.197 0.255 —1.108 0.067 —-1.239 -0.976
5(cs -1 0.074 0.017 0.041 0.107 —1.246 0.068 —-1.380 —1.112
Ol s - 1n) 0.020 0.011 —-0.003 0.042 —-0.929 0.061 -1.048 —0.809

07 (Radiotherapy) 0.139 0.010 0.120  0.157 0.333 0.033 0.268  0.398
08 (Chemotherapy) 0470 0.013 0.445 0.496 0.484 0.026 0432 0.536
B Female) —0.305 0.018 —-0.341 —-0.269 —0.299 0.028 —-0.354 —0.244
B2o1der) —-0.075 0.018 —-0.111 -0.039 —0.141 0.028 —-0.196 —0.086
B3 (surgery) —1.004 0.026 —1.056 —0.953 —1.027 0.042 —-1.109 —-0.944
Bacs -1 —1.933 0.038 —2.008 —1.858 —-2.009 0.057 -2.120 —1.898
Bscs -m —1.024 0.040 —1.103 —0.946 —0.747 0.061 —-0.866 —0.628
Be(cs -m —0.467 0.020 —-0.506 —0.428 —0.311 0.034 —-0.379 —-0.244
B7 Radiotherapy) —0.440 0.018 —-0476 —0.405 —0.864 0.029 -0.922 —0.806
B8 (hemotherapy) —1.428 0.019 —-1.465 —-1.392 —2.103 0.029 -2.160 —2.047
A 8.049 0.138 7.779 8.320 11.239 0.295 10.661 11.818

0 — — — — 0993 0.016 0.962 1.023

max £ (-) —29,340.89 —28,813.25
AIC 58,717.78 57,664.49

Source: Elaborated by the author.

individuals under study. An advantage of the GTDL-RWLF model over alternatives is that it does
not make assumptions about the existence of long-term survivors or subgroups with evidence
of long-term survivors since the survival function can be proper or improper; this makes the
model flexible and applicable to situations with or without (or both) long-term survivors. Besides,
it captures different time effects in the subgroups, which is biologically plausible. Simulation
studies showed that MLEs’ frequentist properties (consistency and asymptotic normality) of the
GTDL-RWLF model parameters were satisfied when the sample size increases, as expected.
Also, we have verified through simulation studies that the GTDL-RWLF model can identify the
accurate way the existence or not of long-term survivors in a subgroup and PH when, in fact,
there is the proportionally of hazards. Besides, misspecification simulation studies showed that
the GDTL-RWLF model can still yield reasonable estimates. The GTDL-RWL model’s practical

relevance and applicability were demonstrated using a real and novel lung cancer dataset, with
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evidence of long-term survivors

Table 27 — Estimated specific survival rates at 0.5-, 1-, 2- and 10-year for the GTDL-RWLF model
considering clinical stage, surgery, gender, radiotherapy and chemotherapy for older patients.

Clinical stage Surgery Gender Radiotherapy Chemotherapy S(0.5) S(1) S(2) S(10)
No No 0.672 0.485 0.287 0.031

Female Yes 0.932 0.843 0.616 0.028

Yes No 0.809 0.638 0.378 0.025

No Yes 0.967 0912 0.707 0.025
No No 0.603 0.406 0.220 0.024

Male Yes 0.907 0.787 0.506 0.024

Yes No 0.755 0.554 0.290 0.022

I Yes 0.954 0.877 0.602 0.023
No No 0.862 0.768 0.649 0.432

Female Yes 0.978 0.954 0.901 0.351

Yes No 0.931 0.868 0.757 0.294

Yes Yes 0.990 0.976 0.936 0.120
No No 0.820 0.699 0.550 0.262

Male Yes 0.970 0.935 0.853 0.150

Yes No 0.907 0.820 0.669 0.133

Yes 0.986 0.966 0.903 0.058

No No 0.279 0.149 0.073 0.016

Female Yes 0.603 0.327 0.117 0.017

Yes No 0.376  0.192 0.084 0.017

No Yes 0.753 0.449 0.139 0.018
No No 0.250 0.135 0.068 0.016

Male Yes 0.534 0.272 0.101 0.017

Yes No 0.329 0.167 0.076 0.016

v Yes 0.690 0.374 0.118 0.017
No No 0.447 0.261 0.124 0.018

Female Yes 0.821 0.614 0.279 0.020

Yes No 0.604 0.369 0.158 0.018

Yes Yes 0.907 0.748 0.350 0.020
No No 0.389 0.218 0.103 0.017

Male Yes 0.769 0.529 0.214 0.019

Yes No 0.534 0.305 0.127 0.018

Yes 0.875 0.673 0.268 0.019

Source: Elaborated by the author.

characteristics of NPHs, long-term survivors, and the intersection of survival functions for some
variables. In this real example, we concluded through AIC that the fit of the GTDL-RWLF model
was better than the traditional GTDL model. As a finding, we reported that, as expected, slightly

better survival rates were associated with patients who are young, female, in clinical stage I,

and underwent surgery. Before two years, better survival rates were observed for patients who

received radiotherapy or chemotherapy. After two years, the treatment’s effect was lost, and both

treatments’ survival rates were similar.
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CHAPTER

FINAL REMARKS

Survival data analysis has played an important role in diverse areas of knowledge. In
this work, we have proposed different methodologies for modeling survival data based on the
RWL distribution. Under this parameterization, one of the parameters is given by the mean,
whereas the other parameter can be interpreted as a precision parameter. We found the moments,
harmonic mean, mean and median deviations, and Laplace transform of this distribution. The
use of the ML estimation under random censoring was discussed in detail. In the real proposed
applications, we observed that the RWL distribution returned a better fit when compared to

similar reparameterized distributions.

The Laplace transform of the RWL distribution provided an easy mathematical treatment
for obtaining analytical expressions for unconditional survival and hazard functions of the RWL
frailty model. We showed that the RWL frailty model with Weibull returned better results in the
simulation studies than with the baseline Gompertz model. In the application with lung cancer
data, the RWL frailty models showed to be useful to capture the unobserved heterogeneity and
were highly competitive in terms of fitting when compared with gamma, BS, and 1G frailty
models. We reported that the Cox PH model had the worst fit for the data. According to the RWL
frailty model with Weibull baseline, we concluded that female patients exhibited slightly better
survival than male patients with the same clinical stage and treatment, as expected. Meanwhile,
as also expected, the survival rates are worse in the absence of treatment, mainly in the later

years of diagnosis.

We have introduced the unified long-term model with a RWL frailty term for modeling
jointly cure fraction and the frailty among non-cured patients. In this approach, the idea is that the
observation of an event of interest (e.g., the patient’s death) may be due to one or some competing
causes. The number of latent competing causes was assumed to follow a binomial distribution,
which is flexible and accommodates underdispersion, equidispersion, and overdispersion. We
included the cured fraction as a model parameter and linked it to covariates. Considering the ML
method, the POCrRWLF model presented great results in the simulated study. In the application
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with stomach cancer data, the model was useful to handle the cure fraction and quantify the

unobserved frailty among non-cured patients.

In modeling of survival data with proportional and non-proportional hazards, we proposed
the GTDL-RWLF model, which is an extension of GTDL model including a RWL frailty term to
quantify the amount of unobserved heterogeneity among individuals under study. This model
is flexible and applicable to situations with or without (or both) long-term survivors. Besides,
it captures different time effects in the subgroups, which is biologically plausible. Simulation
studies showed that MLEs’ asymptotic properties of the GTDL-RWLF model parameters were
satisfied when the sample size increases, as expected. Also, we have verified through simulation
studies that the GTDL-RWLF model can identify the accurate way the existence or not of
long-term survivors in a subgroup and PH when, in fact, there is the proportionally of hazards.
Moreover, misspecification simulation studies showed that the GDTL-RWLF model can still
yield reasonable estimates. An application to lung cancer was presented to illustrate its modeling
capability. In this real example, the GTDL-RWLF model was better than the traditional GTDL
model. According to GTDL-RWLF model, we concluded slightly better survival rates were
associated with patients who are young, female, in clinical stage I, and underwent surgery.
Before two years, better survival rates were observed for patients who received radiotherapy or
chemotherapy. After two years, the treatment’s effect was lost, and both treatments’ survival

rates were similar.

Future research

There are many possible extensions of the current work to consider further. Some are

given as follows.

* To develop other estimation methods for estimating the parameters of RWL frailty model

* To derive influence diagnostic tools in the regression cases to evaluate the effect of atypical

observations on the model

* To propose the accelerated failure time frailty model for modeling of multiple systems

subject to minimal repair



117

BIBLIOGRAPHY

AALEN, O. Nonparametric inference for a family of counting processes. The Annals of Statis-
tics, JSTOR, p. 701-726, 1978. Citation on page 31.

. A model for nonparametric regression analysis of counting processes. In: Mathematical
statistics and probability theory. [S.1.]: Springer, 1980. p. 1-25. Citations on pages 23 and 35.

AALEN, O. O. Heterogeneity in survival analysis. Statistics in medicine, Wiley Online Library,
v.7,n. 11, p. 1121-1137, 1988. Citations on pages 25 and 26.

AFIFY, A. Z.; NASSAR, M.; CORDEIRO, G. M.; KUMAR, D. The weibull marshall-olkin
lindley distribution: properties and estimation. Journal of Taibah University for Science,
Taylor & Francis, v. 14, n. 1, p. 192-204, 2020. Citation on page 22.

AKAIKE, H. A new look at the statistical model identification. IEEE transactions on automatic
control, Ieee, v. 19, n. 6, p. 716-723, 1974. Citations on pages 54, 88, and 105.

AL-MUTAIRI, D.; GHITANY, M.; KUNDU, D. Inferences on stress-strength reliability from
weighted lindley distributions. Communications in Statistics-Theory and Methods, Taylor &
Francis, v. 44, n. 19, p. 40964113, 2015. Citation on page 22.

AL-ZAHRANI, B.; GINDWAN, M. Parameter estimation of a two-parameter lindley distribu-
tion under hybrid censoring. International Journal of System Assurance Engineering and
Management, Springer, v. 5, n. 4, p. 628-636, 2014. Citation on page 23.

ALL S. On the bayesian estimation of the weighted lindley distribution. Journal of Statistical
Computation and Simulation, Taylor & Francis, v. 85, n. 5, p. 855-880, 2015. Citations on
pages 22 and 23.

ALMEIDA, M. P; PAIXAO, R. S.; RAMOS, P. L.; TOMAZELLA, V.; LOUZADA, F.; EHLERS,
R. S. Bayesian non-parametric frailty model for dependent competing risks in a repairable
systems framework. Reliability Engineering & System Safety, Elsevier, v. 204, p. 107145,
2020. Citation on page 25.

ANDRADE, C. T. d.; MAGEDANZ, A. M. P. C. B.; ESCOBOSA, D. M.; TOMAZ, W. M_;
SANTINHO, C. S.; LOPES, T. O.; LOMBARDO, V. The importance of a database in the
management of healthcare services. Einstein (Sao Paulo), v. 10, p. 360-365, 2012. Citations
on pages 73 and 106.

ARANDA-ORDAZ, F. J. An extension of the proportional-hazards model for grouped data.
Biometrics, JSTOR, p. 109-117, 1983. Citation on page 23.

ASGHARZADEH, A.; BAKOUCH, H. S.; NADARAIJAH, S.; SHARAFI, F. ef al. A new
weighted lindley distribution with application. Brazilian Journal of Probability and Statistics,
Brazilian Statistical Association, v. 30, n. 1, p. 1-27, 2016. Citation on page 23.

ASGHARZADEH, A.; NADARAIJAH, S.; SHARAFI, F. Weibull lindley distribution. REVSTAT
Statistical Journal, v. 16, p. 87-113, 2018. Citation on page 21.



118 Bibliography

BAKOUCH, H. S.; AL-ZAHRANI, B. M.; AL-SHOMRANI, A. A.; MARCHI, V. A
LOUZADA, F. An extended lindley distribution. Journal of the Korean Statistical Society,
Elsevier, v. 41, n. 1, p. 75-85, 2012. Citation on page 21.

BALAKRISHNAN, N.; PENG, Y. Generalized gamma frailty model. Statistics in medicine,
Wiley Online Library, v. 25, n. 16, p. 2797-2816, 2006. Citations on pages 26 and 40.

BARKER, P.; HENDERSON, R. Small sample bias in the gamma frailty model for univariate
survival. Lifetime data analysis, Springer, v. 11, n. 2, p. 265-284, 2005. Citations on pages 38,
39, and 69.

BARRIGA, G. D.; CANCHO, V. G.; GARIBAY, D. V,; CORDEIRO, G. M.; ORTEGA, E. M. A
new survival model with surviving fraction: An application to colorectal cancer data. Statistical
methods in medical research, SAGE Publications Sage UK: London, England, v. 28, n. 9, p.
2665-2680, 2019. Citation on page 99.

BERKSON, J.; GAGE, R. P. Survival curve for cancer patients following treatment. Journal
of the American Statistical Association, Taylor & Francis, v. 47, n. 259, p. 501-515, 1952.
Citations on pages 22, 24, 25, 38, and 82.

BILLINGSLEY, P. Probability and measure. [S.1.]: John Wiley & Sons, 2008. Citation on
page 46.

BOAG, J. W. Maximum likelihood estimates of the proportion of patients cured by cancer
therapy. Journal of the Royal Statistical Society. Series B (Methodological), JSTOR, v. 11,
n. 1, p. 15-53, 1949. Citation on page 24.

BOHNSTEDT, M.: GAMPE, J.;: PUTTER, H. Information measures and design issues in
the study of mortality deceleration: findings for the gamma-gompertz model. Lifetime Data
Analysis, Springer, p. 1-24, 2021. Citation on page 62.

BORUCKA, J. Extensions of cox model for non-proportional hazards purpose. Ekonometria,
Wydawnictwo Uniwersytetu Ekonomicznego we Wroclawiu, n. 45, p. 85-101, 2014. Citation
on page 23.

BOURGUIGNON, M. An alternative conjugate prior distribution for positive parameters. Annals
of Data Science, Springer, v. 6, n. 2, p. 237-243, 2019. Citation on page 22.

BOURGUIGNON, M.; GALLARDO, D. I. Reparameterized inverse gamma regression models
with varying precision. Statistica Neerlandica, Wiley Online Library, 2020. Citations on pages
26 and 54.

BOURGUIGNON, M.; SANTOS-NETO, M.; CASTRO, M. de. A new regression model for
positive random variables with skewed and long tail. Metron, Springer, v. 79, n. 1, p. 33-55,
2021. Citation on page 26.

BOX-STEFFENSMEIER, J. M.; ZORN, C. J. Duration models and proportional hazards in
political science. American Journal of Political Science, JSTOR, p. 972-988, 2001. Citation
on page 23.

BOZDOGAN, H. Model selection and akaike’s information criterion (aic): The general theory
and its analytical extensions. Psychometrika, Springer, v. 52, n. 3, p. 345-370, 1987. Citation
on page 54.



Bibliography 119

BRENT, R. P. Algorithms for Minimization without Derivatives, chap. 4. [S.1.]: Prentice-Hall
Englewood Cliffs, NJ, USA, 1973. Citation on page 45.

BRETAGNOLLE, J.; HUBER-CAROL, C. Effects of omitting covariates in cox’s model for
survival data. Scandinavian journal of statistics, JSTOR, p. 125-138, 1988. Citation on page
25.

BRYSON, M. C.; SIDDIQUI, M. Some criteria for aging. Journal of the American Statistical
Association, Taylor & Francis Group, v. 64, n. 328, p. 1472—-1483, 1969. Citation on page 48.

CALSAVARA, V. F; MILANL E. A.; BERTOLLI E.; TOMAZELLA, V. Long-term frailty mod-
eling using a non-proportional hazards model: Application with a melanoma dataset. Statistical
methods in medical research, p. 1-19, 2019. Citations on pages 24, 35, 36, 96, and 97.

CALSAVARA, V. F; RODRIGUES, A. S.; ROCHA, R.; TOMAZELLA, V.; LOUZADA, F.
Defective regression models for cure rate modeling with interval-censored data. Biometrical
Journal, Wiley Online Library, v. 61, p. 841-859, 2019. Citation on page 63.

CALSAVARA, V. F; RODRIGUES, A. S.; ROCHA, R.; LOUZADA, F.; TOMAZELLA, V;
SOUZA, A. C.; COSTA, R. A.; FRANCISCO, R. P. Zero-adjusted defective regression models
for modeling lifetime data. Journal of Applied Statistics, Taylor & Francis, v. 46, n. 13, p.
2434-2459, 2019. Citation on page 63.

CANCHO, V. G.; MACERA, M. A.; SUZUKI, A. K.; LOUZADA, F.; ZAVALETA, K. E. A new
long-term survival model with dispersion induced by discrete frailty. Lifetime data analysis,
Springer, v. 26, n. 2, p. 221-244, 2020. Citation on page 25.

CASTRO, M. d.; CANCHO, V. G.; RODRIGUES, J. A bayesian long-term survival model
parametrized in the cured fraction. Biometrical Journal: Journal of Mathematical Methods
in Biosciences, Wiley Online Library, v. 51, n. 3, p. 443-455, 2009. Citations on pages 37, 80,
and 84.

CEPEDA, E.; GAMERMAN, D. Bayesian methodology for modeling parameters in the two
parameter exponential family. Revista Estadistica, v. 57, n. 168-169, p. 93—-105, 2005. Citation
on page 26.

CHEN, M.-H.; IBRAHIM, J. G.; SINHA, D. A new bayesian model for survival data with a
surviving fraction. Journal of the American Statistical Association, Taylor & Francis, v. 94,
n. 447, p. 909-919, 1999. Citation on page 25.

CHEN, Z. A new two-parameter lifetime distribution with bathtub shape or increasing failure
rate function. Statistics & Probability Letters, Elsevier, v. 49, n. 2, p. 155-161, 2000. Citation
on page 22.

COLOSIMO, E.; GIOLO, S. Andlise de sobrevivéncia aplicada. 1* edicdo. Sao Paulo: Editora
Edgard Bliicher, 2006. Citations on pages 21, 23, 30, 31, 35, and 50.

COX, D. R. Regression models and life-tables. Journal of the Royal Statistical Society: Series
B (Methodological), Wiley Online Library, v. 34, n. 2, p. 187-202, 1972. Citations on pages
23 and 34.

COX, D. R. Partial likelihood. Biometrika, Oxford University Press, v. 62, n. 2, p. 269-276,
1975. Citation on page 35.



120 Bibliography

COX, D. R.; REID, N. Parameter orthogonality and approximate conditional inference. Journal
of the Royal Statistical Society: Series B (Methodological), Wiley Online Library, v. 49, n. 1,
p. 1-18, 1987. Citation on page 26.

COX, D. R.; SNELL, E. J. A general definition of residuals. Journal of the Royal Statistical
Society: Series B (Methodological), Wiley Online Library, v. 30, n. 2, p. 248-265, 1968.
Citation on page 75.

DANIEL, W. W. Applied nonparametric statistics. PWS-Kent Pub. Boston, 1990. Citation on
page 55.

DAVID, G. K.; MITCHEL, K. Survival Analysis: A Self-Learning Text. [S.1.]: Spinger, 2012.
Citation on page 29.

DUCHATEAU, L.; JANSSEN, P. The frailty model. [S.1.]: Springer Science & Business Media,
2007. Citation on page 25.

DUNN, P. K.; SMYTH, G. K. Randomized quantile residuals. Journal of Computational and
Graphical Statistics, Taylor & Francis, v. 5, n. 3, p. 236-244, 1996. Citations on pages 89
and 91.

ELBERS, C.; RIDDER, G. True and spurious duration dependence: The identifiability of the
proportional hazard model. The Review of Economic Studies, Wiley-Blackwell, v. 49, n. 3, p.
403-409, 1982. Citations on pages 39 and 62.

ETEZADI-AMOLL, J.; CIAMPI, A. Extended hazard regression for censored survival data with
covariates: A spline approximation for the baseline hazard function. Biometrics, JSTOR, p.
181-192, 1987. Citations on pages 23 and 35.

EVERT, S.; BARONI, M.; EVERT, M. S. The zipfR package. Available on-line at URL:
http://cran. r-project. org/doc/packages/zipfR. pdf, 2006. Citation on page 43.

FELLER, W. An introduction to probability theory and its applications. [S.1.]: John Wiley
& Sons, 2008. Citations on pages 25 and 37.

FERRARLI, S.; CRIBARI-NETO, F. Beta regression for modelling rates and proportions. Journal
of applied statistics, Taylor & Francis, v. 31, n. 7, p. 799-815, 2004. Citation on page 26.

FISHER, L. D.; LIN, D. Y. Time-dependent covariates in the cox proportional-hazards regression
model. Annual review of public health, Annual Reviews 4139 El Camino Way, PO Box 10139,
Palo Alto, CA 94303-0139, USA, v. 20, n. 1, p. 145-157, 1999. Citation on page 23.

GALLARDO, D. I.; CASTRO, M. de; GOMEZ, H. W. An alternative promotion time cure
model with overdispersed number of competing causes: An application to melanoma data.
Mathematics, Multidisciplinary Digital Publishing Institute, v. 9, n. 15, p. 1815, 2021. Citations
on pages 25 and 38.

GALLARDO, D. I.; GOMEZ-DENIZ, E.; LEAO, J.; GOMEZ, H. W. Estimation and diagnostic
tools in reparameterized slashed rayleigh regression model. an application to chemical data.
Chemometrics and Intelligent Laboratory Systems, Elsevier, p. 104189, 2020. Citation on
page 26.



Bibliography 121

GALLARDO, D. I.; GOMEZ, H. W.;: BOLFARINE, H. A new cure rate model based on the
yule—simon distribution with application to a melanoma data set. Journal of Applied Statistics,
Taylor & Francis, v. 44, n. 7, p. 1153-1164, 2017. Citations on pages 25 and 38.

GALLARDO, D. I; GOMEZ, Y. M.; CASTRO, M. de. A flexible cure rate model based on
the polylogarithm distribution. Journal of Statistical Computation and Simulation, Taylor &
Francis, v. 88, n. 11, p. 2137-2149, 2018. Citation on page 25.

GALLARDO, D. I.; GOMEZ, Y. M.; GOMEZ, H. W.; CASTRO, M. de. On the use of the
modified power series family of distributions in a cure rate model context. Statistical methods
in medical research, SAGE Publications Sage UK: London, England, v. 29, n. 7, p. 1831-1845,
2020. Citation on page 25.

GHITANY, M.; AL-MUTAIRI, D. K.; BALAKRISHNAN, N.; AL-ENEZI, L. Power lindley
distribution and associated inference. Computational Statistics & Data Analysis, Elsevier,
v. 64, p. 20-33, 2013. Citation on page 21.

GHITANY, M.; ALQALLAF, F.; AL-MUTAIRI, D. K.; HUSAIN, H. A two-parameter weighted
lindley distribution and its applications to survival data. Mathematics and Computers in
simulation, Elsevier, v. 81, n. 6, p. 1190-1201, 2011. Citations on pages 21, 22, 32, 33, 34,
and 44.

GHITANY, M.; SONG, P.; WANG, S. New modified moment estimators for the two-parameter
weighted lindley distribution. Journal of Statistical Computation and Simulation, Taylor &
Francis, v. 87, n. 16, p. 3225-3240, 2017. Citation on page 23.

GHITANY, M.; WANG, S. A note on parameter asymptotics for weighted lindley distribution.
Communications in Statistics-Simulation and Computation, Taylor & Francis, p. 1-12, 2019.
Citations on pages 22 and 33.

GHITANY, M. E.; ATIEH, B.; NADARAJAH, S. Lindley distribution and its application. Math-
ematics and computers in simulation, Elsevier, v. 78, n. 4, p. 493-506, 2008. Citation on
page 21.

GRAMBSCH, P. M.; THERNEAU, T. M. Proportional hazards tests and diagnostics based on
weighted residuals. Biometrika, Biometrika Trust, v. 81, p. 515-526, 1994. Citation on page
107.

HA, I. D.; MACKENZIE, G. Robust frailty modelling using non-proportional hazards models.
Statistical modelling, SAGE Publications Sage India: New Delhi, India, v. 10, n. 3, p. 315-332,
2010. Citations on pages 24 and 99.

HANNAN, E. J.; QUINN, B. G. The determination of the order of an autoregression. Journal of
the Royal Statistical Society: Series B (Methodological), Wiley Online Library, v. 41, n. 2, p.
190-195, 1979. Citation on page 54.

HASNA, M. O.; ALOUINI, M.-S. Harmonic mean and end-to-end performance of transmission
systems with relays. IEEE Transactions on communications, IEEE, v. 52, n. 1, p. 130-135,
2004. Citation on page 46.

HASTIE, T.; TIBSHIRANI, R. Varying-coefficient models. Journal of the Royal Statistical
Society: Series B (Methodological), Wiley Online Library, v. 55, n. 4, p. 757-779, 1993.
Citation on page 23.



122 Bibliography

HENDERSON, R.; OMAN, P. Effect of frailty on marginal regression estimates in survival
analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), Wiley
Online Library, v. 61, n. 2, p. 367-379, 1999. Citations on pages 25 and 34.

HENNINGSEN, A.; TOOMET, O. maxlik: A package for maximum likelihood estimation in
r. Computational Statistics, Springer, v. 26, n. 3, p. 443-458, 2011. Citations on pages 51
and 66.

HESS, K. R. Graphical methods for assessing violations of the proportional hazards assumption
in cox regression. Statistics in medicine, Wiley Online Library, v. 14, n. 15, p. 1707-1723, 1995.
Citation on page 35.

HOROWITZ, J. L. Semiparametric estimation of a proportional hazard model with unobserved
heterogeneity. Econometrica, Wiley Online Library, v. 67, n. 5, p. 1001-1028, 1999. Citation
on page 25.

HOSMER, D. W.; LEMESHOW, S. Applied survival analysis: Time-to-event. [S.1.]: Wiley-
Interscience, 1999. Citation on page 23.

HOUGAARD, P. Survival models for heterogeneous populations derived from stable distribu-
tions. Biometrika, Oxford University Press, v. 73, n. 2, p. 387-396, 1986. Citation on page
26.

. Modelling heterogeneity in survival data. Journal of Applied Probability, JSTOR, p.
695-701, 1991. Citation on page 25.

. Frailty models for survival data. Lifetime data analysis, Springer, v. 1, n. 3, p. 255-273,
1995. Citation on page 26.

. Analysis of multivariate survival data. [S.1.]: Springer Science & Business Media, 2012.
Citations on pages 25, 26, and 40.

IBRAHIM, J. G.; CHEN, M.-H.; SINHA, D. Cure rate models. In: Bayesian Survival Analysis.
[S.L]: Springer, 2001. p. 155-207. Citations on pages 24, 25, and 37.

INGLE, V.; KOGON, S.; MANOLAKIS, D. Statisical and Adaptive Signal Processing. [S.1.]:
Artech, 2005. Citation on page 46.

KALBFLEISCH, J. D.; PRENTICE, R. L. The statistical analysis of failure time data. [S.L.]:
John Wiley & Sons, 2011. Citation on page 35.

KAPLAN, E. L.; MEIER, P. Nonparametric estimation from incomplete observations. Journal
of the American Statistical Association, v. 53, p. 457-481, 1958. Citation on page 88.

KASS, R. E.; RAFTERY, A. E. Bayes factors. Journal of the american statistical association,
Taylor & Francis, v. 90, n. 430, p. 773-795, 1995. Citations on pages 73 and 75.

KEMALOGLU, S. A.; YILMAZ, M. Transmuted two-parameter lindley distribution. Commu-
nications in Statistics-Theory and Methods, Taylor & Francis, v. 46, n. 23, p. 11866—11879,
2017. Citation on page 21.

KHAN, S. A. Exponentiated weibull regression for time-to-event data. Lifetime data analysis,
Springer, v. 24, n. 2, p. 328-354, 2018. Citation on page 55.



Bibliography 123

KIM, H.-M.; JANG, Y.-H. New closed-form estimators for weighted lindley distribution. Journal
of the Korean Statistical Society, Springer, v. 50, n. 2, p. 580-606, 2021. Citation on page 23.

KLEIN, J. P. Semiparametric estimation of random effects using the cox model based on the em
algorithm. Biometrics, JSTOR, p. 795-806, 1992. Citation on page 39.

KLEIN, J. P.; MOESCHBERGER, M. L. Survival analysis: Statistical methods for censored and
truncated data. Springer Verlag, New York, 2003. Citations on pages 24 and 107.

. Survival analysis: techniques for censored and truncated data. [S.1.]: Springer Science
& Business Media, 2006. Citations on pages 29 and 35.

KLEINBAUM, D. G.; KLEIN, M. Extension of the cox proportional hazards model for time-
dependent variables. In: Survival analysis. [S.1.]: Springer, 2012. p. 241-288. Citation on page
23.

. The stratified cox procedure. In: Survival Analysis. [S.1.]: Springer, 2012. p. 201-240.
Citation on page 23.

LAWLESS, J. F. Statistical models and methods for lifetime data. [S.1.]: John Wiley & Sons,
2011. Citations on pages 21, 55, and 75.

LEAO, J.; BOURGUIGNON, M.; GALLARDO, D. I.; ROCHA, R.; TOMAZELLA, V. A new
cure rate model with flexible competing causes with applications to melanoma and transplantation
data. Statistics in Medicine, Wiley Online Library, v. 39, n. 24, p. 3272-3284, 2020. Citations
on pages 25, 37, and 38.

LEAO, J.; LEIVA, V.;: SAULO, H.; TOMAZELLA, V. Birnbaum—saunders frailty regression
models: Diagnostics and application to medical data. Biometrical Journal, Wiley Online Library,
v. 59, n. 2, p. 291-314, 2017. Citations on pages 26 and 73.

LEAO, J.; LEIVA, V.; SAULO, H.; TOMAZELLA, V. et al. A survival model with birnbaum—
saunders frailty for uncensored and censored cancer data. Brazilian Journal of Probability
and Statistics, Brazilian Statistical Association, v. 32, n. 4, p. 707-729, 2018. Citations on
pages 26, 37, 84, and 91.

LEE, E. T.; WANG, J. Statistical methods for survival data analysis. [S.1.]: John Wiley &
Sons, 2003. Citation on page 30.

LEHMANN, E. L. Elements of large-sample theory. [S.1.]: Springer Science & Business
Media, 2004. Citations on pages 67 and 99.

LEHMANN, E. L.; CASELLA, G. Theory of point estimation. [S.].]: Springer Science &
Business Media, 2006. Citations on pages 65, 85, 98, and 99.

LIMBRUNNER, J. F.; VOGEL, R. M.; BROWN, L. C. Estimation of harmonic mean of a
lognormal variable. Journal of hydrologic engineering, American Society of Civil Engineers,
v. 5,n. 1, p. 59-66, 2000. Citation on page 46.

LIN, R. S.; LIN, J.; ROYCHOUDHURY, S.; ANDERSON, K. M.; HU, T.; HUANG, B.; LEON,
L. F; LIAO, J. J.; LIU, R.; LUO, X. et al. Alternative analysis methods for time to event end-
points under nonproportional hazards: a comparative analysis. Statistics in Biopharmaceutical
Research, Taylor & Francis, v. 12, n. 2, p. 187-198, 2020. Citation on page 23.



124 Bibliography

LINDLEY, D. V. Fiducial distributions and bayes’ theorem. Journal of the Royal Statistical
Society. Series B (Methodological), JSTOR, p. 102-107, 1958. Citations on pages 21, 32,
and 33.

LOUZADA, F.; CUMINATO, J. A.; RODRIGUEZ, O. M. H.; TOMAZELLA, V. L.; MILANI,
E. A.; FERREIRA, P. H.; RAMOS, P. L.; BOCHIO, G.; PERISSINI, I. C.; JUNIOR, O. A. G. et
al. Incorporation of frailties into a non-proportional hazard regression model and its diagnostics
for reliability modeling of downhole safety valves. IEEE Access, IEEE, v. 8, p. 219757-219774,
2020. Citations on pages 26 and 91.

LOUZADA, F.; RAMOS, P. L. A new long-term survival distribution. Biostatistics and Bio-
metrics Open Access Journal, Juniper Publishers Inc., v. 1, n. 5, p. 104-109, 2017. Citation
on page 22.

LOUZADA-NETO, F. Extended hazard regression model for reliability and survival analysis.
Lifetime Data Analysis, Springer, v. 3, n. 4, p. 367-381, 1997. Citation on page 24.

LOUZADA-NETO, F. Polyhazard models for lifetime data. Biometrics, Wiley Online Library,
v. 55, n. 4, p. 1281-1285, 1999. Citation on page 24.

LOUZADA-NETO, F.; CREMASCO, C. P.; MACKENZIE, G. Sampling-based inference for
the generalized time-dependent logistic hazard model. Gowas Publishers, 2010. Citation on
page 24.

LUKACS, E. A survey of the theory of characteristic functions. Advances in Applied Proba-
bility, Cambridge University Press, v. 4, n. 1, p. 1-37, 1972. Citation on page 46.

MACKENZIE, G. Regression models for survival data: the generalized time-dependent logistic
family. Journal of the Royal Statistical Society: Series D (The Statistician), Wiley Online
Library, v. 45, n. 1, p. 21-34, 1996. Citations on pages 24, 35, 36, and 110.

MALLER, R. A.; ZHOU, X. Survival analysis with long-term survivors. [S.1.]: John Wiley &
Sons, 1996. Citations on pages 24, 25, 36, 63, 69, 75, 91, and 110.

MAZUCHELL, J.; COELHO-BARROS, E. A.; ACHCAR, J. A. An alternative reparametrization
for the weighted lindley distribution. Pesquisa Operacional, SciELO Brasil, v. 36, n. 2, p.
345-353, 2016. Citations on pages 26 and 41.

MAZUCHELLIL, J.; COELHO-BARROS, E. A.; LOUZADA, F. On the hypothesis testing for the
weighted lindley distribution. Chilean Journal of Statistics, v. 7, n. 2, p. 17-27, 2016. Citation
on page 22.

MAZUCHELL, J.; FERNANDES, L. B.; OLIVEIRA, R. P. de; MAZUCHELI, M. J. Package
‘LindleyR’. 2016. Citations on pages 22 and 34.

MAZUCHELL J.; LOUZADA, E.; GHITANY, M. Comparison of estimation methods for the
parameters of the weighted lindley distribution. Applied Mathematics and Computation,
Elsevier, v. 220, p. 463-471, 2013. Citation on page 22.

MCCULLAGH, P.; NELDER, J. Generalized linear models., 2nd edn.(chapman and hall: Lon-
don). Standard book on generalized linear models, 1989. Citation on page 84.

MCKEAGUE, 1. W.; SASIENI, P. D. A partly parametric additive risk model. Biometrika,
Oxford University Press, v. 81, n. 3, p. 501-514, 1994. Citation on page 23.



Bibliography 125

MILANI E. A.; TOMAZELLA, V. L.; DIAS, T. C.; LOUZADA, F. et al. The generalized
time-dependent logistic frailty model: an application to a population-based prospective study of
incident cases of lung cancer diagnosed in northern ireland. Brazilian Journal of Probability
and Statistics, Brazilian Statistical Association, v. 29, n. 1, p. 132-144, 2015. Citations on
pages 24 and 96.

NAKAGAMI, M. The m-distribution—a general formula of intensity distribution of rapid fading.
In: Statistical methods in radio wave propagation. [S.1.]: Elsevier, 1960. p. 3-36. Citation
on page 22.

NASH, J. C.; VARADHAN, R.; GROTHENDIECK, G.; NASH, M. J. C.; YES, L. Package
‘optimx’. 2020. Citations on pages 66 and 68.

NELSON, W. Theory and applications of hazard plotting for censored failure data. Technomet-
rics, Taylor & Francis, v. 14, n. 4, p. 945-966, 1972. Citation on page 31.

NIELSEN, G. G.; GILL, R. D.; ANDERSEN, P. K.; SORENSEN, T. I. A counting process ap-
proach to maximum likelihood estimation in frailty models. Scandinavian journal of Statistics,
JSTOR, p. 25-43, 1992. Citation on page 39.

NIELSEN, H. B.; MORTENSEN, S. B. ucminf: General-Purpose Unconstrained Non-Linear
Optimization. [S.1.], 2016. R package version 1.1-4. Available: <https://CRAN.R-project.org/
package=ucminf>. Citations on pages 66 and 85.

NOCEDAL, J.; WRIGHT, S. Numerical optimization springer-verlag. New York, 1999. Cita-
tions on pages 66, 85, and 98.

OLCAY, A. H. Mean residual life function for certain types of non-monotonic ageing. Com-
munications in statistics. Stochastic models, Taylor & Francis, v. 11, n. 1, p. 219-225, 1995.
Citation on page 48.

ORTEGA, E. M.; CORDEIRO, G. M.; CAMPELO, A. K.; KATTAN, M. W.; CANCHO, V. G.
A power series beta weibull regression model for predicting breast carcinoma. Statistics in
medicine, Wiley Online Library, v. 34, n. 8, p. 1366—-1388, 2015. Citations on pages 24, 25, 37,
38, and 99.

PARNER, E. et al. Inference in semiparametric frailty models. ACTA JUTLANDICA,
AARHUS UNIVERSITY PRESS, v. 73, p. 320-321, 1998. Citation on page 39.

PATIL, G. et al. The weighted distribution: A survey of their applications. 1977. Citation on
page 32.

PATIL, G. P.; RAO, C. R. Weighted distributions and size-biased sampling with applications to
wildlife populations and human families. Biometrics, JSTOR, p. 179-189, 1978. Citation on
page 32.

PHINYO, P.; PATUMANOND, J.; PONGUDOM, S. Time-dependent treatment effects of
metronomic chemotherapy in unfit aml patients: a secondary analysis of a randomised controlled
trial. BMC Research Notes, Springer, v. 14, n. 1, p. 1-6, 2021. Citation on page 23.

PICKLES, A.; CROUCHLEY, R. A comparison of frailty models for multivariate survival data.
Statistics in Medicine, Wiley Online Library, v. 14, n. 13, p. 1447-1461, 1995. Citation on
page 40.


https://CRAN.R-project.org/package=ucminf
https://CRAN.R-project.org/package=ucminf

126 Bibliography

PIEGORSCH, W. W. Maximum likelihood estimation for the negative binomial dispersion
parameter. Biometrics, JSTOR, p. 863-867, 1990. Citation on page 80.

PRENTICE, R. L. Linear rank tests with right censored data. Biometrika, Oxford University
Press, v. 65, n. 1, p. 167-179, 1978. Citation on page 23.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria,
2021. Available: <https://www.R-project.org/>. Citations on pages 34, 45, 52, 66, 68, 85, 86,
and 99.

RAFTERY, A. E.; NEWTON, M. A.; SATAGOPAN, J. M.; KRIVITSKY, P. N. Estimating the
integrated likelihood via posterior simulation using the harmonic mean identity. bepress, 2006.
Citation on page 46.

RAMOS, P.; LOUZADA, F. The generalized weighted lindley distribution: Properties, estimation,
and applications. Cogent Mathematics, Taylor & Francis, v. 3, n. 1, p. 1256022, 2016. Citation
on page 23.

RAMOS, P. L.; ALMEIDA, M. P.; TOMAZELLA, V. L.; LOUZADA, F. Improved bayes
estimators and prediction for the wilson-hilferty distribution. Anais da Academia Brasileira
de Ciencias, SciELO Brasil, v. 91, n. 3, 2019. Citations on pages 22, 55, and 56.

RAMOS, P. L.; LOUZADA, F.; CANCHO, V. G. Maximum likelihood estimation for the
weighted lindley distribution parameters under different types of censoring. Revista Brasileira

de Biometria/Biometric Brazilian Journal, v. 35, n. 1, p. 115-131, 2017. Citation on page
23.

RAO, C. R. On discrete distributions arising out of methods of ascertainment. Sankhya: The
Indian Journal of Statistics, Series A, JSTOR, p. 311-324, 1965. Citation on page 32.

RATNANINGSIH, D. J.; SAEFUDDIN, A.; KURNIA, A. Stratified-extended cox with frailty
model for non-proportional hazard: A statistical approach to student retention data from universi-
tas terbuka in indonesia. Thailand Statistician, v. 19, n. 1, p. 209-228, 2021. Citation on page
23.

REED, W. J. A flexible parametric survival model which allows a bathtub-shaped hazard rate
function. Journal of Applied Statistics, Taylor & Francis, v. 38, n. 8, p. 1665-1680, 2011.
Citation on page 55.

RIGBY, R. A.; STASINOPOULOS, D. M. Generalized additive models for location, scale and
shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), Wiley Online
Library, v. 54, n. 3, p. 507-554, 2005. Citation on page 91.

RIGBY, R. A.; STASINOPOULOS, M. D.; HELLER, G. Z.; BASTIANI, F. D. Distributions for
modeling location, scale, and shape: Using GAMLSS in R. [S.1.]: CRC press, 2019. Citation
on page 26.

ROBERT, C.; CASELLA, G. Monte Carlo statistical methods. [S.I1.]: Springer Science &
Business Media, 2013. Citation on page 40.

ROCHA, R.; NADARAJAH, S.; TOMAZELLA, V.; LOUZADA, E. Two new defective distri-
butions based on the Marshall-Olkin extension. Lifetime Data Analysis, Springer Verlag, New
York, v. 22, p. 216-240, 2016. Citation on page 63.


https://www.R-project.org/

Bibliography 127

RODRIGUES, J.; CANCHO, V. G.; CASTRO, M. de; LOUZADA-NETO, F. On the unification
of long-term survival models. Statistics & Probability Letters, Elsevier, v. 79, n. 6, p. 753-759,
2009. Citations on pages 25, 29, 37, 38, 79, and 80.

RODRIGUES, J.; CASTRO, M. de; BALAKRISHNAN, N.; CANCHO, V. G. Destructive
weighted poisson cure rate models. Lifetime data analysis, Springer, v. 17, n. 3, p. 333-346,
2011. Citation on page 25.

RODRIGUES, J.; CASTRO, M. de; CANCHO, V. G.; BALAKRISHNAN, N. Com—poisson cure
rate survival models and an application to a cutaneous melanoma data. Journal of Statistical
Planning and Inference, Elsevier, v. 139, n. 10, p. 3605-3611, 2009. Citation on page 38.

ROSS, G.; PREECE, D. The negative binomial distribution. Journal of the Royal Statistical
Society: Series D (The Statistician), Wiley Online Library, v. 34, n. 3, p. 323-335, 1985.
Citation on page 84.

SAHA, K.; PAUL, S. Bias-corrected maximum likelihood estimator of the negative binomial
dispersion parameter. Biometrics, Wiley Online Library, v. 61, n. 1, p. 179-185, 2005. Citation
on page 80.

SANTOS-NETO, M.; CYSNEIROS, F. J. A.; LEIVA, V.; AHMED, S. E. On new parameteriza-
tions of the birnbaum-saunders distribution. Pakistan Journal of Statistics, v. 28, n. 1, 2012.
Citation on page 54.

SANTOS-NETO, M.; CYSNEIROS, F. J. A.; LEIVA, V.; BARROS, M. Reparameterized
birnbaum-saunders regression models with varying precision. Electronic Journal of Statis-
tics, The Institute of Mathematical Statistics and the Bernoulli Society, v. 10, n. 2, p. 2825-2855,
2016. Citation on page 26.

SASIENI, P. D. Proportional excess hazards. Biometrika, Oxford University Press, v. 83, n. 1,
p. 127-141, 1996. Citation on page 23.

SCHEMPER, M. Cox analysis of survival data with non-proportional hazard functions. Journal
of the Royal Statistical Society: Series D (The Statistician), Wiley Online Library, v. 41, n. 4,
p.- 455-465, 1992. Citations on pages 23 and 35.

SCHOENFELD, D. Partial residuals for the proportional hazards regression model. Biometrika,
Oxford University Press, v. 69, n. 1, p. 239-241, 1982. Citation on page 35.

SCHWARZ, G. Estimating the dimension of a model. The annals of statistics, Institute of
Mathematical Statistics, v. 6, n. 2, p. 461-464, 1978. Citation on page 54.

SHANKER, R.; SHUKLA, K. K.; LEONIDA, T. A. Weighted quasi lindley distribution with
properties and applications. International Journal of Statistics and Applications, Scientific
& Academic Publishing Co., v. 9, n. 1, p. 8-20, 2019. Citation on page 23.

SMITH, R. M.; BAIN, L. J. An exponential power life-testing distribution. Communications in
Statistics-Theory and Methods, Taylor & Francis, v. 4, n. 5, p. 469-481, 1975. Citation on
page 22.

STEWART, J. Single variable calculus: Early transcendentals. [S.1.]: Cengage Learning, 2015.
Citation on page 31.



128 Bibliography

STRUTHERS, C. A.; KALBFLEISCH, J. D. Misspecified proportional hazard models.
Biometrika, Oxford University Press, v. 73, n. 2, p. 363-369, 1986. Citation on page 25.

SUGIURA, N. Further analysts of the data by akaike’s information criterion and the finite
corrections: Further analysts of the data by akaike’s. Communications in Statistics-Theory
and Methods, Taylor & Francis, v. 7, n. 1, p. 13-26, 1978. Citation on page 54.

THOMAS, D. C. Use of auxiliary information in fitting nonproportional hazards models. Mod-
ern statistical methods in chronic disease epidemiology, Wiley New York, v. 197210, 1986.
Citation on page 23.

TIBSHIRANI, R. J.; CIAMPI, A. A family of proportional-and additive-hazards models for
survival data. Biometrics, JSTOR, p. 141-147, 1983. Citation on page 23.

TSODIKOV, A.; IBRAHIM, J.; YAKOVLEV, A. Estimating cure rates from survival data: an al-
ternative to two-component mixture models. Journal of the American Statistical Association,
Taylor & Francis, v. 98, n. 464, p. 1063—-1078, 2003. Citation on page 25.

TSODIKOV, A. D.; YAKOVLEYV, A. Y.; ASSELAIN, B. Stochastic models of tumor latency
and their biostatistical applications. [S.1.]: World Scientific, 1996. Citation on page 24.

VASQUEZ, J. K.; RODRIGUES, J.; BALAKRISHNAN, N. A useful variance decomposition
for destructive waring regression cure model with an application to hiv data. Communications
in Statistics-Theory and Methods, Taylor & Francis, p. 1-12, 2020. Citations on pages 25
and 38.

VAUPEL, J. W.; MANTON, K. G.; STALLARD, E. The impact of heterogeneity in individual
frailty on the dynamics of mortality. Demography, Springer, v. 16, n. 3, p. 439-454, 1979.
Citations on pages 25 and 26.

VAUPEL, J. W.; YASHIN, A. I. The deviant dynamics of death in heterogeneous populations.
RR-83-001, 1983. Citation on page 26.

VENABLES, W. N.; RIPLEY, B. D. Modern applied statistics with S-PLUS. [S.1.]: Springer
Science & Business Media, 2013. Citation on page 66.

VILCA, F; SANTANA, L.; LEIVA, V.; BALAKRISHNAN, N. Estimation of extreme percentiles
in birnbaum—saunders distributions. Computational statistics & data analysis, Elsevier, v. 55,
n. 4, p. 1665-1678, 2011. Citations on pages 73 and 75.

WIENKE, A. Frailty models in survival analysis. [S.1.]: CRC press, 2010. Citations on pages
21, 23, 25, 26, 29, 30, 34, 38, 39, 40, 62, 63, and 73.

WILSON, E. B.; HILFERTY, M. M. The distribution of chi-square. proceedings of the National
Academy of Sciences of the United States of America, National Academy of Sciences, v. 17,
n. 12, p. 684, 1931. Citation on page 22.

YAKOVLEYV, A. Y.; TSODIKOV, A. D.; BASS, L. A stochastic model of hormesis. Mathe-
matical Biosciences, Elsevier, v. 116, n. 2, p. 197-219, 1993. Citations on pages 24, 25, 38,
and 83.

YIQI, B.; RUSSO, C. M.; CANCHO, V. G.; LOUZADA, F. Influence diagnostics for the
weibull-negative-binomial regression model with cure rate under latent failure causes. Journal
of Applied Statistics, Taylor & Francis, v. 43, n. 6, p. 1027-1060, 2016. Citation on page 91.



Bibliography 129

YU, J. Empirical characteristic function estimation and its applications. Econometric reviews,
Taylor & Francis, v. 23, n. 2, p. 93—-123, 2004. Citation on page 46.

ZAKERZADEH, H.; DOLATI, A. Generalized lindley distribution. JOURNAL OF MATHE-
MATICAL EXTENSION, 2009. Citation on page 21.



SSSSSSSSS



	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Introduction and bibliographical review
	Objectives of the thesis
	Organization of the chapters
	Products of the thesis

	Background
	Basic concepts in survival analysis
	Original WL distribution
	Cox PH model
	GTDL regression model: a NPH model
	An unified version of the long-term survival models
	Frailty models
	Unconditional survival and hazard functions


	A reparameterized weighted Lindley distribution: properties, estimation and applications
	RWL distribution
	Further properties of the RWL distribution
	Quantile function
	Moments
	Mean residual life function
	Mean and median deviations
	Laplace transform

	Estimation
	Results based on computation
	Real data examples
	 Cycles up to the failure for electrical appliances
	Agricultural machine data

	Concluding remarks

	A weighted Lindley frailty model: estimation and application to a lung cancer dataset
	RWL frailty model
	RWL frailty model with Weibull baseline hazard function
	RWL frailty model with Gompertz baseline hazard function

	Inference methods
	Simulation study 
	Asymptotic properties
	Hypothesis testing H0: =0

	Application on lung cancer data
	Concluding remarks

	A long-term frailty regression model based on RWL distribution applied to stomach cancer data
	Model formulation
	Special cases of the NBCrRWLF model
	Bernoulli cure rate RWL frailty model
	Poisson cure rate RWL frailty model
	Geometric cure rate RWL frailty model

	Inference methods

	Simulation study
	Application on stomach cancer patients
	Concluding remarks

	Non-proportional hazards model with a frailty term for modeling subgroups with or without evidence of long-term survivors
	Model formulation
	Inference
	Simulation study
	Asymptotic properties
	Sensibility analysis to detect long-term survivors in a subgroup
	Sensibility analysis to detect PH
	Analysis of bias caused by the absence of a covariate

	Application on lung cancer data
	Concluding remarks

	Final remarks
	Bibliography

