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Abstract

Bose–Einstein condensates with their superfluidity property provide an interesting parallel to clas-
sical fluids. Due to the Kolmogorov spectrum of homogeneous turbulence the statistics of the incom-
pressible velocity field is of great interest, but in superfluids obtaining quantities such as the statistics
of the velocity field from the macroscopic wavefunction turns out be a complicated task; therefore,
most of the work up to now has been numerical in nature. We made use of the Weak Wave Turbu-
lence (WWT) theory, which provides the statistics of the macroscopic wavefunction, to obtain the
statistics of the velocity field, which allowed us to produce a semi analytical procedure for extracting
the incompressible energy spectrum in the WWT regime. This is done by introducing an auxiliary
wavefunction that preserves the relevant statistical and hydrodynamical properties of the condensate
but with a homogeneous density thus allowing for a simpler description of the velocity field.
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Resumo

Condensados de Bose–Einstein apresentam um paralelo interessante a fluídos clássicos devido a
sua propriedade de superfluidez. A estatística da parte incompressível do campo de velocidade é de
grande interesse devido ao espectro de Kolmogorov presente em turbulência homogênea, porém em
superfluídos quantidades relacionadas a estatística do campo de velocidades podem ser complicadas
de obter e a maior parte dos trabalhos até o momento tem sido de natureza numérica. Nós nos
aproveitamos da teoria de turbulência de ondas fracamente interagente, a qual descreve a estatística
da função de onda macroscópica, para obter a estatística do campo de velocidades. Essa abordagem nos
permitiu desenvolver um procedimento semi analítico para extrair o espectro de energia incompressível
no regime de turbulência de ondas. Este procedimento consiste em introduzir uma função de onda
auxiliar que preserva as propriedades estatísticas e hidrodinâmicas relevantes e possui um perfil de
densidade homogêneo, permitindo então uma descrição simplificado do campo de velocidades.
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Chapter 1

Introduction

Below a critical temperature liquid 4He behaves in an unfamiliar manner. This was first ob-
served independently in the late 1930s by Kapitza [1] and Allen and Misener [2] by managing
to cool liquid helium below a temperature of T = 2.17K. Below this temperature the fluid
could flow through extremely narrow channels without any measurable resistance, seemly like
an ideal fluid with zero viscosity, which led Kapitza to refer to it as a superfluid [3].

In an experiment using oscillating discs Keesom and Macwood [4] verified that while the
viscosity seemed to be positively dependent on the temperature, there was still a finite mea-
surable viscosity at temperatures below the lambda point. This was followed with the idea of
a two component fluid by Tisza [5] and later by Landau [6]. The two components consist of
a normal component and a superfluid component; the superfluid flows without viscosity while
the normal component behaves as a classical fluid. London [7] proposed that the superfluid
component could be understood as a manifestation of Bose–Einstein condensation. The results
of Keesom and Macwood experiment could be understood as the discs not being able to avoid
partial interaction with the normal fluid.

These ideas would be more formally defined throughout the next decades especially with the
formalization of a macroscopic wavefunction and the idealization of quantized vortices by Feyn-
man [8], Onsager [9], and Penrose and Onsager [10].

The following early experimental evidence of quantized circulation by Vinen [11] further
served to cement superfluidity as a quantum phenomenon, particularly a macroscopic observable
quantum effect.

1.1 Bose–Einstein Condensation

What is today called Bose–Einstein condensation was first postulated by Einstein [12] when
applying the recently developed Bose statistics to a monatomic non-interacting gas. Einstein

1



2 CHAPTER 1. INTRODUCTION

would find something quite puzzling, below a certain temperature it appeared that identical
particles seemed to be able to occupy the same state which he noted to be paradoxical [13]. The
superfluid discovery and the aforementioned connection with what then was already being called
Bose–Einstein condensation would for a long time be the strongest evidence of this phenomenon.

But a liquid, like superfluid helium, is quite far from the ideal non-interacting gas envisioned
by Einstein. In the decades followed by the superfluid discovery the theory of Bose–Einstein
Condensate (BEC) was expanded by Bogolubov [14], Gross [15], and Pitaevskii [16], among
others.

The experimental realization of a “true” atomic BEC would come approximately 70 years
after Einstein observations. In 1995 a team at the Joint Institute for Laboratory Astrophysics
(JILA) managed to cool a gas of rubidium to an unprecedented temperature of 20nK [17],
this was followed closely by a group at the Massachusetts Institute of Technology (MIT) which
achieved similar results with a gas of sodium [18]. These results were made possible by advances
in trapping techniques that enabled the combination of two cooling strategies, laser cooling and
evaporative cooling.

Since the realization of the first atomic BEC the field has seen a steady growth and only
a few years later we would see experimental observation of quantized vortices [19, 20, 21], the
use of condensates as atomic interferometers [22] and as possible analogues for the study of
black hole radiation [23]. Today the production of condensates are an everyday occurrence in
Laboratories throughout the world and recently even in orbit [24], which opens up the door for
more exploration in the behaviour of quantum systems in a microgravity environment.

Another field of interest that developed in parallel throughout the years was the field of
quantum turbulence. The idea of quantized vortices make superfluids attractive for the study of
turbulence since it offers simpler structures to deal with. Classical turbulence is characterized by
continuous three-dimensional vortex structures and largely non-linear behaviour. In spite of that
the well known Kolmogorov-Obukhov Spectrum (K41) and the Richardson cascade mechanism
serve as signatures for well-developed turbulence systems [25]. The first experimental evidence
of the presence of Kolmogorov like behaviour in superfluid helium was made by Maurer and
Tabeling [26] and although no Kolmogorov cascade has been observed in atomic BEC, only
vortex tangles like in [27], numerical works have demonstrated that it should be possible [28,
29, 30].

In this thesis we extend the current knowledge of quantum turbulence by providing a method
to obtain an analytical prediction for the incompressible energy spectrum. The method relies on
the so called Weak Wave Turbulence (WWT) theory which is similar to general turbulence but
instead of dealing with the non-linearity of the vortex interaction it concentrates on the non-
linear behaviour of the waves [31]. Its limitation is that is only well-defined for weakly interacting
systems limiting its application to atomic BEC [32]. We employ an auxiliary wavefunction to
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show that WWT and hydrodynamical turbulence are connected by demonstrating that the
velocity field statistics is dependent on the wave statistics.





Chapter 2

Atomic Bose–Einstein Condensate

Dilute gases

Dilute gases have much lower volumetric density when compared with other types of matter
such as liquids, solids or non dilute gases. If we call the average diameter of an atom in the gas
σ and the number density1 n then we say that a gas is dilute if nσ3 ≪ 1. This definition implies
that the average spacing between the atoms is large in comparison with the average diameter
of the atomic species, which in turn means that the gas behaves to great approximation as an
ideal gas [33].

The experimental realization of a BEC in dilute gases was achieved through the combina-
tion of laser and evaporative cooling techniques, leading to two separate groups managing to
cool a cloud of atoms below the necessary critical temperatures and to observe a macroscopic
occupation of the system’s ground state in 1995 [17, 18].

In the interest of developing some intuition about the scale of the physical quantities let
us make some naive approximations using dimensional analysis. The relevant quantities are
the reduced Planck constant h̄, the number density n, the atomic mass m and the Boltzman
constant κB, then we have

TC = f(h̄, n,m, κB) ⇒
[TC ] = [h̄]a[n]b[m]c[κ]d

[θ] = ([M ][L]2[T ]−1)
a
[L]−3b[M ]c([M ][L]2[T ]−2[θ]−1)

d

with [L], [M ], [T ], [θ] representing the irreducible unities of length, mass, time and temperature,

1Number of atoms per unit volume.

5



6 CHAPTER 2. ATOMIC BOSE–EINSTEIN CONDENSATE

respectively. Now, solving the resulting linear system

2a− 3b+ 2d = 0

a+ c+ d = 0

−a− 2d = 0

−d = 1

we find that a = 2, b = 2
3
, c = −1, d = −1, therefore

TC = α
h̄2n2/3

mκB
(2.1)

with α being a dimensionless proportionality constant dependent on the geometry and dimen-
sionality of the system. For a uniform gas in a three-dimensional box, α ≃ 3.31 [34].

2.1 Bose–Einstein Condensation: The Gross–Pitaevskii
Model

What is generally implied when the term Bose–Einstein condensation is used is the macro-
scopic occupation of the system’s ground state. One simple way of formalizing this idea is by
introducing the condensate fraction,

Fc =
N0

N
,

where N0 represents the number of particles in the ground state and N the total number of
particles. We follow by establishing the thermodynamic limit as being related to the density of
the system remaining finite as the size, V , and the number of particles grows to infinity:

lim
N,V→∞

N

V
= const. (2.2)

Then a criterion for condensation can be formulated as

lim
N→∞

Fc > 0 (2.3)

where the limit in (2.2) is assumed to exist. This is sometimes called the Einstein Criterion for
condensation [35].

In the following discussion we will assume a weakly interacting Bose gas at zero temperature
with Fc = 1, that is, all of its particles are in the ground state.

In such a system the following hypothesis can be assumed:
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• Since all the N atoms are in the same state the system can be described by the sym-
metrized state (2.4)

Ψ(r1, r2, . . . , rN) =
i=N∏
i=1

ψs(ri), (2.4)

with Ψ(r) representing the quantum state of the system and ψs (ri) the single state of the
i-th atom.

• In such a low temperature system only s − wave interactions need to be accounted for,
in this way the inter atomic interactions can be taken to be contact interactions with
interaction parameter

g =
4πh̄2a

m
, (2.5)

where a is the s-wave scattering length of the system, h̄ the reduced Planck constant and
m the atomic species mass.

• The single atom states are normalized:∫
dnr |ψs(r)|2 = 1. (2.6)

Introducing now the condensate wave function

ψ(r) = N 1/2ψs (r) , (2.7)

and the particle density

n (r) = |ψ (r)|2, (2.8)

the total energy of the system can be written as:

H (ψ) =

∫
dnr

[
h̄2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 + g

2
|ψ(r)|4

]
, (2.9)

where V (r) is some external potential. To find the ground state for ψ we can minimize (2.9)
with respect to the variations of ψ and ψ∗. This together with the condition that the total
number of particles

N =

∫
dnr |ψ (r)|2 (2.10)

remains constant can be simultaneously resolved by using Lagrange multipliers. Writing δH −
µδN = 0, wherein µ is the multiplier that insures the constant total number of atoms constraint.
This is equivalent to fixing µ and minimizing H − µN , that is by doing:

δ (H − µN)

δψ∗ (r) = 0, (2.11)
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we obtain

− h̄2

2m
∇2ψ (r) + V (r)ψ(r) + g|ψ (r)|2ψ (r) = µψ (r) , (2.12)

which is the time independent Gross–Pitaevskii Equation (GPE). Similarly, if we minimize the
action

S =

∫ t2

t1

L dt , (2.13)

with the Lagrangian given by

L =

∫
dnr ih̄

2

(
ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)
−H, (2.14)

we obtain

ih̄
∂ψ(r, t)
∂t

= − h̄2

2m
∇2ψ(r, t) + V (r, t)ψ(r, t) + g|ψ(r, t)|2ψ(r, t). (2.15)

which is the time dependent GPE.
To maintain the consistency between both equations the stationary solutions of Eq. (2.15)

must evolve in time as

ψstat(r, t) = e−iµ
t
h̄ψsol(r) (2.16)

with ψstat being a stationary solution of the time dependent GPE (2.15) and ψsol a solution of
the time independent GPE (2.12).

Healing Length

For a free uniform Bose gas with density n = N
V ol

and trapping potential V = 0 Eq. (2.12)
becomes

g|ψ|2ψ − µψ = 0 → µ = g|ψ|2 = gn, (2.17)

since n = |ψ|2.
We can then apply a standard nondimensionalization procedure to Eq. (2.12) by doing the

following change of variables:

r = ξr

ψ =

√
µ

g
ψ

then
−α∇2ψ (r) + |ψ (r)|2ψ (r) = ψ (r)



2.2. LINEAR PERTURBATIONS 9

with

α =
h̄2

2ξ2mµ
, (2.18)

and setting α = 1, so that both terms in the left side are of comparable order,

α = 1 → ξ =
h̄√
2mµ

. (2.19)

The quantity ξ is called the healing length and is the length at which the kinetic term, ∇2ψ, and
the interaction term, g|ψ|2ψ are of comparable order. The healing length gives the minimum
distance at which the condensate “heals” back to its bulk density from a localized perturbation
and its associated with the size of a quantized vortex core [15, 16].

2.2 Linear Perturbations
We can use Eq. (2.15) to study small perturbations around a uniform condensate.

To achieve that we consider small perturbations in the field ψ, keeping terms up to linear
order in the perturbation:

ψ(r, t) =
(√

n(r) + δψ(r, t)
)
, (2.20)

with δψ(r, t) being a small perturbation. Obtaining the pair of equations:

ih̄
∂δψ(r, t)

∂t
= − h̄2

2m
∇2δψ(r, t)− µδψ(r, t)− gn (2δψ(r, t) + δψ∗(r, t)) , (2.21)

−ih̄∂δψ
∗(x, t)
∂t

= − h̄2

2m
∇2δψ∗(r, t)− µδψ∗(r, t)− gn (2δψ(r, t)∗ + δψ(r, t)) . (2.22)

We can diagonalize this system by searching for solutions in the form of

δψ(r, t) = eiµ
t
h̄

[
u(r)e−iωt − v∗(r)eiωt

]
, (2.23)

then, inserting (2.23) into (2.21) and (2.22) and isolating the terms of eiωt and e−iωt leads to
the pair of equations [

− h̄2

2m
∇2 + 2gn− (µ+ h̄ω)

]
u(r)− gnv(r) = 0, (2.24)[

− h̄2

2m
∇2 + 2gn− (µ− h̄ω)

]
v(r)− gnu(r) = 0. (2.25)

Since we are considering a uniform condensate µ = gn, in momentum space this system becomes
algebraic [

h̄2k2

2m
+ gn− h̄ω

]
uk − gnvk = 0, (2.26)[

h̄2k2

2m
+ gn+ h̄ω

]
vk − gnuk = 0. (2.27)
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with

u(r) = uk
eik·r√
V
,

v(r) = vk
eik·r√
V
,

where uk and vk are amplitudes normalized as |vk|2 − |uk|2 = 1.

Solving the algebraic system leads to:

uk =
h̄2k2

2m
+ gn+ h̄ω

gn
vk, (2.28)

(h̄ω)2 =
h̄2k2

2m

(
h̄2k2

2m
+ 2gn

)
. (2.29)

Equation (2.29) gives the dispersion relationship

h̄ω = ±

√
h̄2k2

2m

(
h̄2k2

2m
+ 2gn

)
(2.30)

for small k we have

h̄ω ∼ ch̄k (2.31)

with c ≡
√

gn
m

being the sound speed.Conselho Nacional de Desenvolvimento Científico e Tec-
nológico (CNPq) The dispersion relationship, Eq. (2.30), is plotted in Fig. 2.1 where the long
and short wavelength behaviours are illustrated.



2.2. LINEAR PERTURBATIONS 11

Figure 2.1: Plot of the dispersion relationship Eq. (2.30) as a function of the wave number
expressed in the dimensionless variables h̄ω

gn
and ξk respectively. The dashed line represents the

long wavelength limit and the dotted line the short wavelength limit.

0.0 0.5 1.0 1.5 2.0
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0

1

2
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5
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Source: Produced by the author.

The coefficients vk and uk can be determined by choosing the energy and imposing the
normalization condition, for example considering h̄ω > 0

uk =
1√
2

(
∆ε

εk
+ 1

) 1
2

(2.32)

vk =
1√
2

(
∆ε

εk
− 1

) 1
2

(2.33)

with ∆ε = ε0 + gn, εk =
√
ε0(ε0 + 2gn), ε0 = ξ2k2gn and ξ is the condensate healing length

from (2.19).
The full picture of atomic BEC envolves exploring the behaviour of trapped condensates,

and the microscopical theory that supports the assumptions of the Gross–Pitaevskii model.
Such a discussion goes beyond the intention of this brief overview of the subject but can be
found in detail in text books such as [34, 36] and literature reviews [37, 35].





Chapter 3

Turbulence

In the next sections we will briefly review classical and quantum turbulence followed by a slightly
more in-depth discussion of wave turbulence.

3.1 Classical Turbulence

State Equations

To describe how a fluid moves we must be able to describe its properties at every point, es-
sentially we need state equations. The most fundamental state equation has to do with the
conservation of mass. Since a fluid is a continuous media its velocity is described by a vector
field with a velocity vector associated with each point, and its density by a scalar field that
describes the distribution of mass in each point. The mass current, or flux, of the fluid is given
by

j ≡ ρv (3.1)

with ρ being the density and v the velocity field.
The mass conservation equation, called the continuity equation, states that the outward flux

of the fluid must be equal to the rate of change of its density, that is:

∂ρ

∂t
+∇ · (ρv) = 0 (3.2)

when the density ρ is constant Eq. (3.2) reduces to

∇ · v = 0 (3.3)

and the fluid is said to be incompressible, this is the type of fluid we will concern ourselves
hereafter.

13
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The next state equation comes from newton second law of motion. Inside a static fluid the
net force per unit volume will be determined by the pressure gradient that balances any external
forces, like the effects of gravity. If we generalized gravity to any external force that can be
described by a scalar potential then a force balance equation for a static fluid can be stated as

−∇P − ρ∇Φ = 0 (3.4)

with P being the pressure and Φ some external scalar potential.
When we consider a fluid in motion Newton’s second law must be accounted for, so the

right-hand side in Eq. (3.4) is no longer zero

−∇P − ρ∇Φ = ρa (3.5)

the vector a represents the acceleration due to the variation of the velocity field.
It seems intuitive to assume that a = ∂v

∂t
, but we must be careful, since v (r, t) is a vector

field, so there will be a difference in the change of velocity between two points in space. We
can obtain this difference by writing out the variation in the velocity field due to a variation in
time, t+∆t:

∆v = v (r +∆r, t+∆t)− v(r, t)

∆r = v∆t⇒ ∆v =

[
(v · ∇) v +

∂v
∂t

]
∆t

a =
∆v
∆t

= (v · ∇) v +
∂v
∂t
. (3.6)

The operator, D
Dt

= ∂
∂t
+ v · ∇, is sometimes called the Lagrangian Derivative or Hydrodynamic

Derivative.
Equation (3.5) can now be fully written as

∂v
∂t

+ v · ∇v = −1

ρ
∇P − ρ∇Φ (3.7)

But our balance equation is still not complete, internal forces due the fluid’s viscosity and
any possible external forces must also be considered therefore the full equation, together with
Eq. (3.3), is given by:

∂v
∂t

+ v · ∇v = −1

ρ
∇P − ρ∇Φ + ν∇2v,

∇ · v = 0,

(3.8)

with ν being the fluid kinematic viscosity. This pair 1 of equations form the incompressible
Navier–Stokes equations, and is the main stage in the exploration of well-developed turbulence.

1The incompressible approximation is usually a good approximation for most fluids with a flow speed below
that of the sound speed [38, 39].
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Turbulence

Turbulence is hard to characterize, usually is easier to look at its features, some of the most
important being the chaotic nature and the non-zero vorticity 2 of the system. The Navier–
Stokes equations is believed to fully describe the motion of fluids, but it is a very complicated
non-linear differential equation and the full set of solutions is not yet generally known.

The main terms that influence the behaviour of the flow in Eq. (3.8) are v · ∇v and ν∇2v,
the balance between these two terms separates the regimes of well-behaved and smooth flow,
called laminar flow, and the chaotic flow dominated by eddies and vortices that is characteristic
of turbulent flow.

A quick indicator of these characteristics is the Reynolds number, Re = vD
ν

, where D is a
characteristic length dependent on the particular system, e.g. the diameter of a pipe, the length
of a container, etc. Therefore, a large Reynolds number can serve as a qualitative indicator of
the development of turbulence in the system.

In 1928 Richardson proposed [40] that a well-developed turbulent system could be under-
stood in terms of large eddies breaking down into smaller eddies which then in turn further
break down in a self-similar process until the smallest eddies would dissipate due to the internal
kinematic viscosity of the fluid, this idealized picture is know as the Richardson cascade.

An important quantity to understand the mechanism of the Richardson’s cascade is the
energy density per unit mass [41, 42] given, in terms of the statistics of the velocity field, by:

E =
1

2
⟨v(r)v(r)⟩ =

∞∫
0

Ekdk (3.9)

where Ek is the energy spectrum. Kolmogorov proposed [43, 25] that for a homogeneous,
isotropic and stationary turbulent flow, the energy per unit mass is distributed through a
cascade process between the length scales (Fig. 3.1) given by the characteristic length and the
length of the smallest eddies before dissipation, also called the Kolmogorov length. Inside this
so-called inertial range, the energy spectrum under Kolmogorov’s assumptions is determined
only by the energy rate and length scale, then the spectrum can be inferred by dimensional
analysis:

Ek = K0ε
2
3k−

5
3 . (3.10)

where ε is the energy injection rate and K0 is an experimentally determined constant. This
result is known as Kolmogorov-Obukhov Spectrum (K41).

A full discussion of the Kolmogorov-Obukhov theory, its applications and implications can
be found in [25, 41, 44].

2In the special case of wave turbulence vorticity is replaced by the non-linear interaction between the waves.
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Figure 3.1: Illustration of the energy cascade in the inertial range. Large eddies manifest at
the energy injection scale and small eddies dissipate near the Kolmogorov length, lk, scale.
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3.2 Quantum Turbulence
The Gross–Pitaevskii model also enable the study of the hydrodynamics of the system. By
multiplying the GPE,

ih̄
∂ψ(r, t)
∂t

= − h̄2

2m
∇2ψ(r, t) + V (r, t)ψ(r, t) + g|ψ(r, t)|2ψ(r, t), (2.15 revisited)

by ψ∗ and subtracting the complex conjugate we get the continuity equation:

∂n

∂t
+∇ · (nv) = 0, (3.11)

with velocity field given by:

v =
1

2i

(ψ∗∇ψ − ψ∇ψ∗)

|ψ|2
. (3.12)

We can further expand this by doing a Madelung transformation,

ψ =
√
neiS,

which takes us to two important equations:

v ?
= ∇S, (3.13)
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and
∂v
∂t

+∇
(
v2

2

)
= −(

1

ρ
∇p+ 1

m
∇V ) +

1

m
∇
[

h̄2

2m
√
ρ
∇2 (

√
ρ)

]
, (3.14)

with ρ = mn being the mass density and p = n2g
2

the pressure.
The symbol ?

= in Eq (3.13) indicates that the result is wrong and must be corrected. Notice
that as a consequence of this result the condensate appears to be irrotational since, w = ∇×v =

∇×∇S = 0. The second equation is an analogue to Eq. (3.8) with zero viscosity, in this case
called Euler’s equations, the extra term in the right-hand side is called the quantum pressure
and is associated with the zero-point motion [34].

Circulation and Vorticity

Equation (3.13) implies that hydrodynamic turbulence is not possible in condensates due to the
lack of vorticity, usually this is explained by analysing the circulation of the system.

Since the condensate wave function have to be single-valued and the phase field S is multi-
valued the change ∆S around a closed contour have to be a multiple of 2π, that is,

∆S =

∮
∇S · dr = 2πℓ, (3.15)

with ℓ ∈ Z. The velocity circulation is given by

Γ =

∮
v · dr =

∮
h̄

m
∇S · dr =

h̄

m
2πℓ = ℓ

h

m
. (3.16)

Equation (3.16) shows that the circulation is quantized in units of h/m . When taking this into
consideration a rotating superfluid will have its vorticity equal to zero everywhere except at the
location of a vortex line.

An alternative way of dealing with the problem posed by (3.13) is by correcting the hydro-
dynamic equations by taking into account the multivalued nature of the phase field S [45]. The
main idea is that the use of the chain rule in the operation

v =
e−iS∇eiS − eiS∇e−iS

2i
?
= ∇S

should not be done without care. For example consider a 2D isotropic vortex with the phase
field defined in the domain 0 ≤ S < 2π. Such a vortex can be described in polar coordinates as

ψ(r) = f(r)eiφ.

Then S = φ will be discontinuous at the cut line showed in Fig. 3.2 and

∇S =
φ̂

r
− 2πΘ(x)δ(y)ŷ. (3.17)
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A direct calculation of v will not produce the discontinuities giving simply v = φ̂
r
.

A correction is then proposed in both the velocity field and the chain rule:

v → ∇S + A, (3.18)

∇eiS → iveiS = i (∇S + A) eiS, (3.19)

where the vector potential A = 2πΘ(x)δ(y) compensates for the discontinuities in the phase
field S, equation (3.13) is also corrected:

w = ∇× v = ∇× (∇S + A) = ∇× A, (3.20)

which means that the vorticity of the system is contained in the field A.

Figure 3.2: Phase field profile showing a cut line in the positive x axis.
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Source: Produced by the author as an adaptation of Ref. [45, Fig. 1].

To account for changes of the type (3.15) the A field also has to change, otherwise the
velocity field would not remain invariant under phase transformations. If we add changes of the
type 2πℓ in the form of a scalar field Q, then we can write the transformation rules as:

S → S +Q, (3.21)

A → A −∇Q, (3.22)

being straightforward to check that v = ∇S+A remains invariant under these transformations.
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For the arbitrary dimensions case it is convenient to work with Einstein notation where
Greek indices are used for both time and space coordinates with values starting from 0, e.g.,
µ = 0, 1, 2, 3, Latin indices are used for space coordinates with values starting from 1, e.g.,
i = 1, 2, 3 and summation is implied for repeated indices. The velocity field, Eq. (3.12), is then
given by

vµ =
ψ∗∂µψ − ψ∂µψ

∗

2i
=
e−iS∂µe

iS − eiS∂µe
−iS

2i
= ∂µS + Aµ, (3.23)

where ∂µeiS = i(∂µS + Aµ)e
iS is the correction in the chain rule application, the gauge field

Aµ is chosen in such away to take into account all possible discontinuities in the phase S so
that its derivative does not present any problems. Since the discontinuities can be modified by
summing or subtracting a scalar field to S, Aµ has to be modified to take that into account.

The gauge transformations can be generalized as

S → S +Q, (3.24)

Aµ → Aµ + ∂µQ, (3.25)

where Q is a scalar field. For a phase field similar to the 2D example used in the beginning
0 ≤ S < 2π the gauge field is Aµ = 2πΘ(R)∂µΘ(I), with R and I being the real and imaginary
parts of the wavefunction respectively.

From Eq. (3.23) we can study the velocity flow directly, in order to do that it is convenient
to define the force field tensor

Fµν = ∂µAν − ∂νAµ

= ∂µvν − ∂νvµ,
(3.26)

then we can write the quantum analog for the Euler equation by writing

∂0vi = F0i + ∂iv0. (3.27)

Now, from Eq. (3.23), we can write

v0 =
1

2i
(ψ∗∂0ψ − ψ∂0ψ

∗) (3.28)

and since

∂0ψ =
∂ψ

∂t
, (3.29)

we can use Eq. (2.15) to write

v0 =
1

2

(
1

2ρ
∂i∂iρ−

1

4ρ2
|∂iρ|2 −

vivi
2

)
− V − gρ. (3.30)
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Inserting Eq. (3.30) into Eq. (3.27) we finally obtain

∂0vi = F0i + ∂i

[
1

2

(
1

2ρ
∂i∂iρ−

1

4ρ2
|∂iρ|2 −

vivi
2

)
− V − gρ

]
. (3.31)

One imediate noticeable difference between Eq. (3.31) and Eq. (3.14) is the added term F0i.
As was pointed out in [45] this term corrects the usual equation by providing information about
the vorticity of the system. If there are no vorticity in the system then Aµ = 0 and the term
F0i vanishes from (3.31). On the other hand, the moment that the vorticity of the system if not
zero, the dynamics of the velocity field will be directly affected by the presence of F0i.

Energy Spectrum

A suitable approach to obtain an analogue to the K41 spectrum in quantum turbulence is to
write (3.9) in terms of the velocity field (3.12) and directly calculate the spectrum. According
to the Helmholtz theorem the velocity field can be separated into its incompressible, ∇·v⊥ = 0,
and compressible, ∇× v∥ = 0, parts. Then, in analogy with classical turbulence, we can write
the incompressible kinetic energy per unit mass as:

E =
1

2
⟨v⊥(r)v⊥∗(r)⟩ =

∫
Ekdk (3.32)

where it was assumed that the system is homogeneous and isotropic. We can then obtain the
spectrum using the Fourier transform of the velocity field given by:

ṽ⊥(k) = 1

(2π)3

∫
v⊥(r)e−ik·rdr3, (3.33)

As one can see, due to the nature of the velocity field in Eq. (3.12), this integral can be quite
difficult to solve analytically mainly due to the |ψ|2 term in the denominator of v which would
cause discontinuities in any region where the particle density vanishes.

One way of solving this issue is by direct numerical simulation to analyse the energy spec-
trum [46, 47, 48, 49]. Two regimes [50, 51] were observed, the quasi-classical regime with
Ek ∼ k−

5
3 , compatible with Kolmogorv turbulence [52, 53] similar to classical fluids, and the

ultraquantum regime [54, 49], with Ek ∼ k−1, which was predicted to be compatible with Vinen
turbulence. Vinen turbulence differs from Kolmogorv turbulence both in the energy spectrum
and the vortex line length decay, and different from classical turbulence is not believed [55, 56]
to envolve a self-similar cascade process. The Kolmogorov like turbulence observed in numer-
ical simulations arises in the presence of large vortex tangles and is further characterized by
the decay of vortex line length density of order L ∼ t−

3
2 in time, with the vortex dissipation

happening at healing length. Vinen turbulence however is dominated by the effects of the im-
mediate neighbourhood of vortices and is characterized by a vortex line density length decay of
L ∼ t−1.
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Experimentally proper cascades were observed only in superfluid helium, the closest ex-
perimental results for atomic BEC are like the one obtained by Henn et al. [27, 21], but no
distinguishable spectrum was observed only the formation of a vortex tangle. A more thorough
review of quantum turbulence can be found in Ref. [28, 29, 30].

We intend to present a method for analytically obtain the incompressible energy spectrum
directly from the velocity field statistics, for that we will explore the connection between the
velocity field and the wavefunction to relate the statistics of the former to the latter.

3.3 Wave Turbulence

Up to this section we discussed turbulence in terms of the non-linear effects of the velocity field,
but the GPE (2.15) itself is a non-linear equation. Not only that, but the non-linear term is
related to the parameter that controls the interatomic interaction, this makes the atomic BEC
a strong candidate for the application of WWT theory.

The WWT theory is an analytical approach developed by Alexander Zakharov [57] as an
analogue to the Kolmogorv-Obukhov theory applied to the wave interactions. It consists of a
systematic approach to statistically describe the waves of the system and obtain wave spectra
analogous to the energy spectra previously mentioned in sections 3.1 and 3.2.

In the following we will describe briefly the main points of the theory and its results, for a
more thorough introduction to the subject see [58].

Nondimensionalization

We start by writing Eq. (2.15) in nondimensional units by making the following substitutions

r = χr′,
t = τt′,

ψ =
√
n0ψ

′,

where τ and χ being some characteristic time and distance determined by the boundary con-
ditions of the physical system and n0 = N

V
, with N being the total number of particles and V

the volume of the system. We will also assume a homogeneous system with trapping potential
V = 0.

The GPE can then be written as

i
∂ψ′(r′, t′)

∂t′
=

[
−α∇2 + β|ψ′|2

]
ψ′(r′, t′), (3.34)
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with

α =
h̄τ

2mχ2
,

β =
gn0τ

h̄
.

We are interested in the case where the effects of the non-linear interaction are weak

α = 1 ⇒ τ =
2mχ2

h̄
,

∴ β =

(
2gn0mχ

h̄

)2

= ϵ2.

Which, dropping the primes, gives the GPE in nondimensional units as

i
∂ψ(r, t)
∂t

= −∇2ψ(r, t) + ϵ2|ψ|2ψ(r, t). (3.35)

Next we will change to the momentum basis so that the interactions between different wave
numbers become explicit.

Fourier Representation

Let us consider that the system is in a periodic box, r ∈ T , with period L in all directions, so
that:

ψ(x+ lL, y +mL, z + pL, t) = ψ(x, y, z, t) (3.36)

for any {l,m, p} ∈ Z. Then the wavefunction can be represented in Fourier space as

ψ(r, t) =
∑
k

a(k, t)eik·r, (3.37)

a(k, t) = 1

LD

∫
T

ψ(r, t)e−ik·rdDr. (3.38)

with D representing the dimension.
Inserting (3.37) in (3.35) and using (3.38) we end up with

iȧk − k2ak − ϵ2
∑

k1,k2,k3

ak1ak2a
∗
k3
δk1+k2,k3+k = 0, (3.39)

notice that we introduced the following notations:

ḟ =
df

dt
,

f(k, t) = fk,

δi,j =

 1, i = j

0, i ̸= j
,
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with δ representing the Kronecker delta.
As is the case for hydrodynamical turbulence, wave turbulence is not independently sustain-

able, thus the available wave numbers are finite. Physically these will be determined by the size
of the inertial domain, with the smallest and largest available wave numbers being related to
the energy injection and energy dissipation scales.

Interaction Picture

Looking at Eq. (3.39) we see that when ϵ = 0 we are left with a simple linear equation

iȧk − k2ak = 0, (3.40)

with general solution ak = Ake
−iωkt, ωk = k2 being the dispersion relationship and Ak ∈ C

a constant complex amplitude. This solution represents the linear limit, where the system is
stationary and all the time evolution effects are concentrated in the phase oscillations, with
frequency ωk.

We will now introduce the interaction picture variable,

bk = ake
iω̃kt, (3.41)

with,
ω̃k = ωk + ωNL = ωk + 2ϵ2

∑
k

|ak|2.

The ωNL is called the non-linear frequency shift and gives the leading contribution to the non-
linear effects on the wave dynamics [58]. The effects related to the ωNL cancels out in the
interaction picture variable (3.41), this is a result of the interaction parameter of the GPE
being independent of the wave number. Now writing Eq. (3.39) in terms of (3.41)

iḃk = ϵ2
∑

k1,k2 ̸=k3

bk1bk2b
∗
k3
ei(ωk3

+ωk−ωk1
−ωk2

)tδk1+k2,k3+k. (3.42)

Looking to Eq. (3.42) it seems like we lost some information, since the linear term from
Eq. (3.39) apparently vanishes, but no approximations were made, both equations contain the
same information. But, the variable bk essentially separates the time scales of the linear and
non-linear regimes, and the time dependence appears in explicit form in the non-linear term on
the right-hand side.

Statistical Description

As previously mentioned the WWT theory takes a statistical approach to describe the non-linear
wave interactions, therefore we must define which are the statistical variables and assumptions
that will be used when applying the theory.
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We will assume that the wavefunctions ak are complex scalar fields and as such can be
represented by a phase and an amplitude so that

al =
√
JlΦl, (3.43)

whit Jl ∈ R+ being the amplitude of the mode l and Φl ∈ S1 its phase factor. Note that S1

represents the unitary circle, i.e., Φl = eiφl and φl ∈ [0, 2π).
For the statistical quantities we will consider the following definitions [58]:

Definition 1 (Random Phase and Amplitude (RPA)). A complex field al is said to be of RPA
type if the following is true:

• Both the phase and amplitude of al are independent random variables.

• The phase has a uniform distribution over S1.

Definition 2 (Moment-Generating Function). The moment-generating function for each mode
l is given by:

Ll{λl} =

〈
exp

[(
L

2π

)D

Jlλl

]〉
, (3.44)

with λl ∈ R and ⟨· · ·⟩ representing the average.

Definition 3 (Probability Density Function). The probability density function for each mode
l is given by the inverse Laplace transform of (3.44):

Pl =
1

2iπ

∫ ζ+i∞

ζ−i∞
e−λlLl{λl} dλl , (3.45)

where ζ must be chosen in such a way that the integration contour is to the right of all singu-
larities of Ll{λl} in the complex λl-plane.

Definition 4 (Wave Spectrum). The wave spectrum is defined as:

nl =

(
L

2π

)D

⟨Jl⟩ , (3.46)

or in terms of the probability density function

nl = [∂λl

〈
eλl(

L
2π

)DJl
〉
]λl=0 = [∂λlL λl]λl=0

=

(
L

2π

)D ∫ ∞

0

slP(sl) dsl .
(3.47)
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Theorem 1 (Wick Contraction Rule). For a field of type RPA averages of multiple fields can
be reduced by applying the following rule of thumb: If the number of conjugated fields “a∗”
is different to the number of non-conjugated fields“a” then the average is 0. In the case they
are equal then the average is the sum of all possible pairwise combinations of conjugated and
non-conjugated terms3, for instance:〈

al1al2a
∗
l3a

∗
l4

〉
= ⟨Jl1Jl2⟩J

〈
Φl1Φl2Φ

∗
l3Φ

∗
l4

〉
Φ

= ⟨Jl1Jl2⟩J (δl1,l3δl2,l4 + δl1,l4δl2,l3 − δl1,l2δl1,l3δl1,l4)

⟨Jl1Jl2⟩J =

 ⟨Jl1⟩ ⟨Jl2⟩ l1 ̸= l2〈
J2
l1

〉
l1 = l2

⇒
〈
al1al2a

∗
l3a

∗
l4

〉
= ⟨Jl1⟩ ⟨Jl2⟩ (δl1,l3δl2,l4 + δl1,l4δl2,l3) + (

〈
J2
l1

〉
− 2 ⟨Jl1⟩

2)δl1,l2δl1,l3δl1,l4 .

(3.48)

Power Series Expansion

To construct our solution we will consider a period τ that is larger than the linear period
τL ∼ 2π

ωk
, but not so large that the system is dominated by the non-linear dynamics. From

Eq. (3.42) we see that the time evolution of bk is of order ϵ2 for the first order time derivative,
with that in mind a convenient intermediary time scale is τ ∼ 2π

ϵ2ωk
so

2π

ωk
≪ τ ≪ 2π

ϵ4ωk
,

then we can expand bk in the instant t = τ in powers of ϵ,

bk(τ) =
∞∑
j=0

ϵ2jb
(j)
k (τ). (3.49)

To use (3.49) as a solution we need at least an initial state, so that the full series can be
built upon the 0th order term. Notice that at order ϵ0 we must have b(0)k independent of τ , so
it makes sense to take b(0)k = bk(0).

We can now calculate each term iteratively by using each preceding order to obtain the next,
as such the b(1)k is given by solving

iḃ
(1)
k =

∑
k1,k2 ̸=k3

b
(0)
k1
b
(0)
k2
b
(0)
k3

∗
ei(ωk3

+ωk−ωk1
−ωk2

)tδk1+k2,k3+k (3.50)

which gives

b
(1)
k (τ) = −i

∑
k1,k2 ̸=k3

bk1(0)bk2(0)b
∗
k3
(0)∆τ (Ω(k, k3, k1, k2))δk1+k2,k3+k, (3.51)

3The proof follows from Def. 1 and Def. 3 [58, see Sec. 5.6].
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with
Ω(l, k,m, n) = ωl + ωk − ωm − ωn,

and

∆τ (x) =

τ∫
0

eixt dt .

For the b(2)k term we must solve

iḃ
(2)
k =

∑
k1,k2 ̸=k3

b
(0)
k1
b
(0)
k2
b
(1)
k3

∗
ei(ωk3

+ωk−ωk1
−ωk2

)tδk1+k2,k3+k

+ 2
∑

k1,k2 ̸=k3

b
(1)
k1
b
(0)
k2
b
(0)
k3

∗
ei(ωk3

+ωk−ωk1
−ωk2

)tδk1+k2,k3+k,
(3.52)

the 2 in the second term on the right-hand side comes from the symmetry created by exchanging
k1 ↔ k2 indices in the summation.

Using the zeroth and first orders and integrating we end up with

b
(2)
k (τ) = Pk + 2Qk (3.53)

with

Pk =
∑

k1,k2 ̸=k3,k4,k5 ̸=k6

[
bk1(0)bk2(0)b

∗
k4
(0)b∗k5(0)bk6(0)

×Eτ (Ω(k, k3, k1, k2),Ω(k4, k5, k3, k6))δk1+k2,k3+kδk4+k5,k6+k3 ] ,
(3.54)

and

Qk =
∑

k2 ̸=k3,k4,k5 ̸=k6

[
bk4(0)bk5(0)b

∗
k6
(0)bk2(0)b

∗
k3
(0)

×Eτ (Ω(k, k3, k1, k2),Ω(k1, k6, k4, k5))δk1+k2,k3+kδk4+k5,k6+k1 ] ,
(3.55)

where

Eτ (x, y) =

τ∫
0

ei(x−y)t dt .

Higher order terms can be obtained similarly.

Moment Generating Function

The next step is calculate the statistical quantities. Once we have the moment generating
function 2 we can obtain all the other relevant quantities. The moment generating function at
instant τ can be obtained by taking

Jk(τ) = |bk(τ)|2 (3.56)
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and using Eq. (3.44) leading to

Lk(τ) =
〈

exp
(
|bk(τ)|2 λ̃k

)〉
with λ̃k =

(
L
2π

)D
λk for convenience. Resulting in

Lk(τ) ≈
〈

exp
{
λ̃k

∣∣∣b(0)k + ϵ2b
(1)
k + ϵ4b

(2)
k

∣∣∣2}〉
=

〈
exp

{
λ̃k

[∣∣∣b(0)k ∣∣∣2 + ϵ2
(
b
(0)∗
k b

(1)
k + c.c

)
+ ϵ4

(∣∣∣b(1)k ∣∣∣2 + b
(0)∗
k b

(2)
k + c.c

)]}〉
,

where we only kept terms up to the order of ϵ4 in bk(τ) and c.c represents the complex conjugate.
The exponential in the right-hand side can be also be expanded in power of ϵ

Lk(τ) =
〈
eλ̃kJ

(0)
k exp

{
λ̃k

[
ϵ2(b

(0)∗
k b

(1)
k + c.c) + ϵ4(|b(1)k |2 + b

(0)∗
k b

(2)
k + c.c)

]}〉
≈

〈
eλ̃kJ

(0)
k (1 + ϵ2α1k + ϵ4α2k)

〉
,

(3.57)

with

α1k = λ̃k(b
(0)∗
k b

(1)
k + c.c), (3.58)

α2k = λ̃k[(|b(1)k |2 + b
(0)∗
k b

(2)
k + c.c) + λ̃k

2
(2|b(0)k |2|b(1)k |2 + (b

(0)∗
k b

(1)
k )2 + c.c)]. (3.59)

We need to solve the averages in (3.57), for that we will consider that at t = 0 we have
bk(0) = ak(0). Taking ak(0) as a RPA field, as defined in Definition 1, the averages can be
reduced using the Wick contraction rule and in combination with the following relationships

⟨Jl⟩ =
(
2π

L

)D

nl,〈
eλkJl

〉
= Ll,〈

Jle
λlJl

〉
=

(
L

2π

)D
∂Ll

∂λl
,

we can obtain the expression:

Lk(τ)− Lk(0) =

2ϵ4
(
2π

L

)2D
[(

λkLk + λ2k
∂Lk

∂λk

) ∑
k1,k2,k3

nk1nk2nk3δk+k3,k1+k2 |∆τ (Ω(k, k3, k1, k2))|2

+ 2λk
∂Lk

∂λk

∑
k1,k2,k3

[nk1nk2 − nk3(nk1 + nk2)]δk+k3,k1+k2R(E(−Ω(k, k3, k1, k2),Ω(k, k3, k1, k2)))

]
.

(3.60)
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We follow by taking the large box limit and the weak non-linearity limit, L→ ∞ and ϵ→ 0.
The large box limit leads to the following rules of thumb:∑

k1,k2,k3

⇒
(
L

2π

)3D ∫
dDk1 dDk2 dDk3 , (3.61)

Kronecker–δ ⇒
(
2π

L

)D

Dirac–δ. (3.62)

For the weak non-linearity limit we remember that we set
2π

ωk
≪ τ ≪ 2π

ϵ4ωk
,

with τ ∼ 2π
ϵ2ωk

, so τ → ∞ as ϵ→ 0, which leads to the approximation

Lk(τ)− Lk(0)

τ
≈ L̇k. (3.63)

and the following limits

lim
τ→∞

|∆τ (x)|2 = 2πτδ(x), (3.64)

lim
τ→∞

R(E(−x, x)) = πτδ(x), (3.65)

with x = ωk+ωk3 −ωk1 −ωk2 , the emergence of the characteristic Dirac delta behaviour can be
observed in Fig. 3.3. Notice that this process is similar to the continuous limit in the transition
between two energy eigenstates given by Fermi’s golden rule of quantum mechanics, the differ-
ence here being that in the quantum mechanics case there are only two frequencies involved,
the frequency of te initial state and the frequency of the final state after the perturbation, while
is this case we have four frequencies due to the non-linear interaction between the waves.

Equation (3.60) becomes the time evolution equation of the moment-generating function

L̇k = λkηkLk + (λ2kηk − λkγk)
∂Lk

∂λk
, (3.66)

with

ηk = 4πϵ4
∫

δ(k + k3 − k1 − k2)δ(Ω(k, k3, k1, k2))nk1nk2nk3 dDk1 dDk2 dDk3 , (3.67)

γk = 4πϵ4
∫

δ(k + k3 − k1 − k2)δ(Ω(k, k3, k1, k2))[nk3(nk1 + nk2)− nk1nk2 ] dDk1 dDk2 dDk3 . (3.68)

Kinetic Equation

We can obtain the evolution equation for the probability density function by using the inverse
Laplace transform on Eq. (3.66)

Ṗk =
∂

∂sk

(
sk(γkPk + ηk

∂Pk

∂sk
)

)
. (3.69)
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Figure 3.3: Behaviour of |∆T |2 for increasing period T .
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Notice that Eq. (3.69) is a continuity equation and the right-hand side can be interpreted as a
probability flux, this guarantees probability conservation.

Then using the Definition 4 of the wave spectrum

nk =

∫ ∞

0

skPk dsk ,

and using Eq. (3.69)

ṅk = −
∫ ∞

0

(skγkPk + skηk
∂

∂sk
Pk) dsk , (3.70)

Integrating the right-hand side by making use of integral by parts and the unitary nature of the
probability density function, leading to

ṅk = ηk − γknk. (3.71)

Then inserting Eq. (3.67), Eq. (3.68) and Ω(l, k,m, n) = ωl + ωk − ωm − ωn into Eq. (3.71), we
obtain the kinetic equation

ṅk = 4πϵ4
∫
nknk1nk2nk3

[
1

nk
+

1

nk3
− 1

nk1
− 1

nk2

]
× δ(k + k3 − k1 − k2)δ(k

2 + k23 − k21 − k22) dDk1 dDk2 dDk3 .
(3.72)
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Equation (3.72) describes the evolution of the wave number distribution, nk. The delta functions
in the right-hand side integral guarantees conservation of momentum and of kinetic energy and
also characterize the system.

3.4 Wave Spectrum Cascades
In general, we can write for a conserved quantity Φ with associated density ρk:

Φ =

∫
ρknk dDk = const. (3.73)

For our system we have two conserved quantities, the total energy E with energy density
Ek = ωknk and the total number of particles N with density ρk = 1.

E =

∫
dDk ωknk = const, (3.74)

N =

∫
dDk nk = const. (3.75)

For each statistical invariant a stationary solution to the kinetic equation can be constructed
by looking for solutions of nk that maintain a constant flux. Zakharov [57] developed a system-
atic approach to obtain these solutions that makes use of isotropic and homogeneity assump-
tions. For 4-wave systems with a general interaction parameter W (k, k1, k2, k3) the homogeneity
considerations are stated as

ω(λk) = λαω(k)

W (λk, λk1, λk2, λk3) = λβW (k, k1, k2, k3)

n(k) ∼ kν

=⇒
nN (k) ∼ k−D−2β/3+α/3

nE(k) ∼ k−D−2β/3
(3.76)

with nN being the solution associated with conservation of number of particles and nE the
solution associated with energy conservation. For our system we have specifically:

ω(k) = k2

W kk1
k2k3

= g ∼ k0
=⇒

nN (k) = k−D+2/3

nE(k) = k−D
(3.77)

Due to its similarities with the velocity field related spectrum of hydrodynamic turbulence
these solutions are called Kolmogorov-Zakharov spectra. This state was experimentally verified,
both with harmonic [59] and box like [60, 61] traps.

There has been great effort exploring these solutions, the most complete numeric simulation
of the 3D case was done by Proment, Nazarenko, and Onorato [62, 63]. By introducing a forcing
term for large k in combination with a dissipative term for small k they managed to observe
stationary behaviour and measure both spectra in agreement with the theoretical predictions.
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It was also observed that without the dissipation at small k there is rapidly accumulation of
particles in the ground state leading to a breakdown of the 4-wave turbulence. The system then
undergoes a transition to a 3-wave turbulence system that can be understood by redeveloping
the theory but starting from Eq. (2.21) and Eq. (2.22) instead. This system can also be studied
numerically, see for example [64].

In the transition between the 4-wave and 3-wave systems a different type of spectrum was
observed [62] that could not be immediately understood from the WWT predictions. It was
called the “critical balance” spectrum [58, Chap 15] and argued to be a consequence of the
kinetic energy and interaction energy being of comparable order, resulting in a spectrum of
type n(k) ∼ k−4.

In summary the WWT is a well tested and fully developed theoretical tool to describe wave
interactions in a weakly interacting regime. In the next chapter we will propose a method to
connect the statistics of the velocity field with the statistics of the wavefunction enabling us to
analytically calculate the incompressible energy spectrum.





Chapter 4

Energy Spectra in the WWT Regime

In Chapter 2 we showed that an atomic BEC can be described by the Gross–Pitaevskii Equation
(GPE) (2.15). In Section 3.2 we showed the hydrodynamic equations and how a correction is
needed to account for the multivalued nature of the condensate phase and recover from the
apparent irrotational nature of the condensate. Lastly in section 3.3 we explored the WWT
theory and how the non-linearity of the GPE leads to an analogue to the K41 in the condensate
wave distribution.

In the following we will combine the hydrodynamics of the Gross–Pitaevskii model with the
wave statistics of the WWT theory to analytically obtain the incompressible energy spectrum
directly from the velocity field statistics.

4.1 Auxiliary Wavefunction
One of the main problems in an analytical calculation of the incompressible energy spectrum
is in how to account for the discontinuities in the velocity field caused by the vortices. To deal
with this obstacle we remember that the incompressible energy spectrum depends only on the
incompressible part of the velocity field. In Section 3.2 we discussed how the corrected velocity
field is represented [see 45]

v = ∇S + A (4.1)

with S being the phase and A the vector potential where all discontinuities are concentrated.
Keeping our convention of 0 ≤ S < 2π for the phase we construct an auxiliary wavefunc-

tion (4.2) for which the vector potential A = 2πΘ(R)∇Θ(I) appears directly on the particle
current, in this way no discontinuities need to be dealt with.

ϕ ≡
√
π

2
(sign(R) + i sign(I)) (4.2)

33



34 CHAPTER 4. ENERGY SPECTRA IN THE WWT REGIME

with R = Reψ and I = Imψ.
Before we proceed to analytically calculate the energy spectrum we need to verify the auxil-

iary wavefunction statistical properties. We must specially make sure if any of the WWT theory
results are still valid.

One way of investigating the validity of the auxiliary wavefunction (4.2) is numerically. Since
the waveturbulence state is already validated in the literature no direct simulation of the GPE
is needed, instead we construct the wavefunction in the WWT state and calculate the resulting
wavefunction ϕ. Then we verify by direct calculation if the RPA state and closure condition are
preserved.

Numerical Verification

First let us consider our system to be in the wave turbulent regime so that ψ̃(k) ∼ |k|α2 eiS, with
α ∈ R being the power-law coefficient of a stationary n(k) ∼ kα and 0 ≤ S < 2π a random
phase uniformly distributed in this interval.

Numerically, we initialize ψ̃(k) in a 10243 grid in Fourier space, and generate the phase
field S as a uniform distribution in the 0 ≤ S < 2π interval for each point k in the grid.
We then numerically obtain ψ(r) by using the inverse Fourier transform and construct the
auxiliary wavefunction ϕ(r) as described by Eq. (4.2). We proceed by applying the direct
Fourier transform to obtain ϕ̃(k).

By averaging the field over multiple samples we verify that S remains uniformly random in
momentum space, and observe that the density in real space is homogeneous for the auxiliary
wavefunction as can be seen in Fig. 4.1.

In addition to the randomness preservation we also see that the closure condition of the
two-point correlation is preserved as can be seen from, Fig. 4.2 which shows that ϕ has no
correlation between different wave numbers, this was done by directly calculating ⟨ϕ̃(k)ϕ̃∗(k′)⟩,
over multiple samples and averaging the results.

We also observed that ϕ̃(k) will have a power-law wave spectrum, kβ, preserving both the
statistical properties and the nature of the stationary solutions of the kinetic equation. To
obtain the relationship between the coefficients β and α we prepared several configurations of
ψ̃(k) with different coefficients α, and calculated the induced power-law coefficient β for the
auxiliary wavefunction, the results can be seen on Fig. 4.3. Surprisingly we found that β = α,
in the domain of coefficients predicted by WWT, −3 ≥ α ≤ −7

3
, as shown by the best fit

coefficients, the special case of α = −3 is shown as an example in Fig. 4.4. Therefore, in the
following we will consider nψ(k) ∼ nϕ(k).

With that we numerically demonstrated that inside the limits of the WWT the auxiliary
wavefunction ϕ̃(k) has similar statistical properties to the system’s wavefunction ψ̃(k). Par-
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Figure 4.1: Density and phase profiles of the original wavefunction, ψ and auxiliary wave-
function ϕ. We see that while the density of the auxiliary wavefunction is homogeneous the
randomness of the phase field in phase space appears to be preserved.
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ticularly, the wave spectrum of both fields obey the same power-law, this will enable us to
analytically calculate the incompressible energy spectrum of the system.

4.2 Incompressible Velocity Field
A direct calculation of the velocity field, shows that vϕ = 2

π
jϕ, with:

jϕ =
ϕ∗∇ϕ− ϕ∇ϕ∗

2i
=
π

2
(sign(R) + 1)∇sign(I)− π

4
∇[(sign(R)− 2)sign(I)] (4.3)

where the subscript ϕ indicates that the quantity is calculated in relation to the auxiliary
wavefunction ϕ, showing that the velocity and current fields are proportional to each other.

Now, taking π
2
(sign(R) + 1)∇sign(I), from the right-hand side of (4.3) and making the

following substitution:

sign(a) = 2Θ(a)− 1,

⇒ π

2
(sign(R) + 1)∇sign(I) = 2πΘ(R)∇(Θ(I)) = A,
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Figure 4.2: Cross-section of the 2 point correlator of the auxiliary wavefunction ϕ. Note that
the correlation is zero everywhere except when k = k′ demonstrating the closure condition of
the wave spectrum, i.e., ⟨ϕ̃(k)ϕ̃∗(k′)⟩ = ⟨|ϕ̃(k)|2⟩δ(k − k′).
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then:

jϕ = A − π

4
∇[(sign(R) + 2)sign(I)] (4.4)

where A is the vector that carries the information about the incompressible part of the system.
This result shows that v⊥ = π

2
v⊥
ϕ , that is, the incompressible part of the velocity field of the

wavefunction ψ is proportional to that of the auxiliary wavefunction ϕ.

4.3 Incompressible Energy Spectrum

Now we will show that one can infer the statistics of the incompressible velocity field directly
from the statistics of the wavefunction itself as long as the system is in a regime where the
full statistical description of the waves are known, such is the case of the weak wave turbulent
regime.
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Figure 4.3: Comparison between power-law coefficients of nψ(k) and nϕ(k), the horizontal axis
represents the prepared coefficients for the ψ wavefunction and the vertical axis the β coefficient
obtained from the calculated wave spectrum of the ϕ wavefunction. The straight line shows the
best fit approximation using a standard linear regression algorithm.
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For an isotropic system it can be shown that:

⟨v⊥(r)v⊥∗(r′)⟩ =
∫

⟨|ṽ⊥(k)|2⟩ek·(r−r′)d3k, (4.5)

then, the incompressible kinetic energy per unit mass of the fluid is given by:

E =
1

2
⟨v⊥(r)v⊥∗(r)⟩ = 1

2

∫
⟨|ṽ⊥(k)|2⟩d3k =

∫
E(k)d3k. (4.6)

To obtain the spectrum, Ek, we need to evaluate the quantity, ⟨|ṽ⊥(k)|2⟩, and as we previously
mentioned this is quite difficult to do in general due to the nature of the velocity field. We will
demonstrate that by using the fact that v⊥ = π

2
v⊥
ϕ ∝ j⊥ϕ , then it becomes straightforward.

From Eq. (4.6) we can start evaluating the spectrum by making use of the auxiliary wave-
function. We can obtain the incompressible part of a vector field in k − space in a general way
by using the following relationship

B⊥ = (I − kk
|k|2 ) · B, (4.7)
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Figure 4.4: Direct comparison of the wave spectrum and density profiles of the original wave-
function ψ and auxiliary wavefunction ϕ for the special case of α = −3.
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with I being the identity tensor and B a generic vector field. We also note that

v⊥ =
π

2
v⊥
ϕ = j⊥ϕ =⇒ E(k) = 1

2

〈
j̃⊥
ϕ̃
(k)̃j⊥∗

ϕ̃
(k′)

〉
δ (k − k′) , (4.8)

so calculating the correlation of the particle current of the auxiliary wavefunction is mathemati-
cally identical to calculating the same quantity for the velocity field of the original wavefunction.
To evaluate (4.8) we start by writing j̃ϕ as a function of the Fourier transform of the auxiliary
wavefunction ϕ,

j̃ϕ(k) =
1

(2π)3

∫
(2k1 − k) ϕ̃(k1)ϕ̃

∗(k1 − k)dk31, (4.9)

which is done by replacing directly the Fourier representation of ϕ into the definition of the
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particle current, then

j̃⊥ϕ (k) = (I − kk
|k|2

) · j̃ϕ(k)

bb =
1

(2π)3

∫ [
2k1 − 2

(
k · k1

|k|2

)
k
]
ϕ̃(k1)ϕ̃

∗(k1 − k)dk31,
(4.10)

gives us the incompressible part of the particle current which in turn leads to

Eϕ(k) =
1

2

〈
|̃j⊥ϕ (k)|2

〉
δ(k − k′)

=
δ(k − k′)

2(2π)6

∫
dk31|M(k, k1)|2n(k1)n(k1 − k),

(4.11)

with I representing the identity tensor,

M(u,w) = 2w − 2

(
u · w
|u|2

)
u, (4.12)

and we used the WWT to solve the auxiliary wavefunction correlators in terms of n(k).
Since n(k) = Akk

α, where Ak is a proportionality constant dependent on the system initial
conditions, we can write (4.11) as:

Eϕ(k) =
δ(k − k′)

2(2π)6

∫
dk1W (k, k1), (4.13)

with
W (k, k1) = kα+4

1

∫
dΩ (k21 − 2k1k cos θ + k2)α/2 sin2 θ,

dΩ = sin θ dθ dφ , φ ∈ [0, 2π), θ ∈ [0, π)

Using the isotropy and homogeneity of the system and a change of variables

k1 → kx

dk1 → k dx

W (k, k1) → k2α+5W (1, x)

(4.14)

leads to

Eϕ(k) =
δ(k − k′)

2(2π)5
A2
kk

2α+5

K+/k∫
K−/k

W (x)dx (4.15)

W (x) = x4+α
π∫

0

(x2 + 2x cos θ + 1)
α
2 sin3(θ)dθ (4.16)
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The limits K± represent the boundary of the inertial range in which the cascading solutions,
from the WWT, are valid. Then one can obtain the asymptotic behaviour by expanding W (x)

in the limits k ≪ K+ and k ≫ K− and solving the integral up to leading order in k.
For example, the leading behaviour of W (x) as x→ K+

k
is given by(

x2 + 2x cos θ + 1
)α/2 ∼ xα ⇒ W (x) ∼ x2α+4

and the convergence of the integral depends on the possible values of α, in this particular full
convergence of the integral is only possible if 2α + 5 < 0. If 2α + 5 = 0 the system will be
logarithmically divergent and if 2α + 5 > 0 it will have an ultraviolet divergence proportional
to the K+ boundary.

The solutions are then heavily dependent on the value of the power-law coefficient α,
Eq. (4.17) summarizes the different cases based both on the leading behaviours and the possible
values of α.

E(k) ∼



kα, if α < −5,

k−5 log(k), if α = −5,

k2α+5, if − 5 < α < −5
2
,

log
(
1
k

)
, if α = −5

2
,

k0, if α > −5
2
,

(4.17)

In the literature it is typical to discuss the energy spectrum in terms of the 1D spectrum given
as E (1D)(k) = 4πk2E(k). This is done by considering the isotropy of the system and integrating
out the solid angle in the last term of Eq. (4.6):∫

E(k)d3k =

∫
4πk2E(k)dk =

∫
E (1D)(k)dk.

Therefore, Eq. (4.17) can be written as

E (1D)(k) ∼



kα+2, if α < −5,

k−3 log(k), if α = −5,

k2α+7, if − 5 < α < −5
2
,

k2 log
(
1
k

)
, if α = −5

2
,

k2, if α > −5
2
.

(4.18)

4.4 Further Discussion
The spectra obtained in (4.18) are all dependent on the coefficient, α, but only a subset of
values is physically relevant. The WWT theory, in the 3D case, offers two cascading solutions
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for the kinetic equation, a waveaction cascade with α = −7
3

and an energy cascade with α = −3.
Aside from these two solutions there is also the critical balance conjecture, which considers the
system when the interaction and kinetic energy are comparable, such situation was observed
by Proment, Nazarenko, and Onorato [62] with n(k) ∼ k−4. With these values we see that the
physically relevant results from Eq. (4.18) are:

E (1D)(k) ∼

 k2α+7, if − 5 < α < −5
2
,

k2, if α > −5
2
,

(4.19)

The predicted WWT spectra E (1D)
WT ∼ kα+4 also coincides with the one obtained by our method

E (1D)(k) ∼ k2α+7 for the energy cascade solution, which seems to be coincidental since the WWT
energy spectra prediction represents the sum of compressible plus incompressible spectra.

The results predicted by the use of the auxiliary wavefunction can be verified by numerically
averaging the velocity field correlator and calculating the spectrum in Fourier representation.
Figures 4.5 and 4.6 shows the incompressible energy spectrum for ψ ∼ k−

3
2 and ψ ∼ k−2. A

linear regression showing the best fit approximation is included in both figures. The numerically
obtained coefficients shows agreement with the ones extracted from (4.19) for α = −3 and
α = −4.

Figure 4.5: Incompressible kinetic energy spectrum, calculated for ψ ∼ k−
3
2 , and best fit

(straight line) approximation.
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The spectrum of Fig. 4.6, E (1D)(k) ∼ k−0.898, obtained for α = −4 is related to the wave
spectrum of the critical balance conjecture and is comparable to the incompressible energy
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Figure 4.6: Incompressible kinetic energy spectrum, calculated for ψ ∼ k−2, and best fit
(straight line) approximation.
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spectrum observed in Proment, Nazarenko, and Onorato [62, see Fig. 21] near the critical
balance regime. We showed that this spectrum comes from the velocity field statistics as a
consequence of the wave spectrum and, since it happens in the transition from the 4-wave to
3-wave regime, it could indicate the manifestation of Vinen type turbulence in the transition
process, but more investigation would be needed particularly in the vortex decay near the 4-wave
to 3-wave transition.

It should be noted that the plots in Fig. 4.5 and Fig. 4.6 were obtained by preparing a wave
function with the characteristics of a WWT solution, in this case the energy cascade and critical
balance conjecture, respectively. After preparing the wavefunction we calculated the velocity
field and used the Helmholtz decomposition to obtain its incompressible part and calculated
the autocorrelation, a multiple sample average was used to reduce the noise from the random
phase field. To finally obtain the spectrum we used a radial average to integrate out the solid
angle, followed by the best fit analysis to numerically calculate the angular coefficient.

4.5 Final Remarks
In summary, we demonstrated that there is a direct relationship between the Kolmogorov–
Zakharov power law cascades from wave turbulence and the statistics of the incompressible
velocity field of an atomic BEC. That was done by analytically calculating an analogue to
the classical K41 spectrum directly from the statistical distribution of the velocity field, which
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was possible by using an auxiliary wavefunction that not only evades the discontinuities of the
velocity field but also reproduces the statistical properties of the GPE wavefunction. The result
obtained not only demonstrates a link between wave turbulence and hydrodynamic turbulence
but presents, as far as the author knows, the first analytical calculation of the velocity field
distribution spectrum for atomic BEC.

The possible connection with Vinen turbulence is the most interesting result since it offers a
theoretical explanation to the numerically observed k−1 spectrum of previously numerical simu-
lations of WWT. It is also interesting to note that recent [54] numerical investigations of Vinen
turbulence in atomic BEC observed possible signs of a wave turbulence happening simultane-
ously. This could mean that the accumulation of particles in the ground state characteristic of
WWT could serve as a driving mechanism for Vinen type turbulence. To further investigate
this possibility careful numerical investigations must be done with particular focus on the vortex
line decay and both the wave spectrum and incompressible energy spectrum near the transition
from 4-wave WWT to 3-wave WWT. Another consideration for future explorations is a more
formal interpretation on the relationship of the auxiliary wavefunction with the wave statistics
without needing to rely on numerics.
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