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ABSTRACT 

Control charts are powerful tools used by many industries to monitor the quality of their 

processes and detect special causes of variation. They are often used to monitor the mean of 

some process quality characteristic with the well known 𝑋̅, while the process variability can be 

monitored with either a control chart for the range, called 𝑅 control chart, for the standard 

deviation, called 𝑆 control chart or for the variance, called 𝑆2 control chart. This work will 

focus on the 𝑆2 control chart. In their original formulation, if the actual process mean (𝜇) or 

variance (𝜎2) are different or larger from their specified in-control values (𝜇0 and 𝜎0
2, 

respectively), the process is declared out-of-control. However, in many practical situations, 

even though the process may be declared out-of-control, it might be still capable from a 

practical point of view in terms of the proportion of nonconforming items produced. Thus, it 

may not be necessary to stop the process and start looking for assignable causes, which can 

save time and resources. The Modified Control Charts were designed to monitor the process 

mean in such a capable situation. However, regarding the monitoring the process variance, there 

is still no control chart presented in the Statistical Process Control (SPC) literature that 

considers the capability of the process while monitoring the process variance. According to 

Juran and Godfrey (1998), capability is the sense of a competence, based on tested performance, 

to produce quality products. With this background as motivation, in this work, we derive a 

Modified Control Chart developed to monitor the mean, for monitoring the process variance, 

considering the capability of the process. 

Keywords: Modified Control Chart. 𝑆2 Control Chart. Chart Performance. 
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1 INTRODUCTION 

 

Control charts are powerful tools used by many industries to monitor the quality of 

processes and detect special cause of variations on them. The Shewhart 𝑆2 Control Chart is one 

of the most used tools to monitor if the variance of some quality characteristic (𝑋) that is 

assumed to be normally distributed and may change from an in-control (IC) to an out-of-control 

(OCC) situation. According to Montgomery (2009), an in-control process is subject only to 

natural variability under the presence of random, common, and inevitable causes. In other hand, 

an out-of-control process presents special, or unexpected causes, which move the process away 

from the statistical stability and indicate that there are problems that must be identified and 

corrected. In this way, Shewhart's Control Charts suggest that whenever special causes are 

detected, the process should be put to a stop for interventions to eliminate such causes and 

regain their stability. These graphs are based on the stability of the control variable, so that any 

change of this variable in relation to the nominal value (target) should be considered an out-of-

control situation (OCC). Therefore, the main objective of this chart is to detect increases of any 

magnitude in the process variance as soon as possible. In this context, if the actual process 

variance is larger than an in-control single level point, the process is considered being in an out-

of-control state.  

The basic procedure of the Shewhart 𝑆2 Control Chart is samples of size 𝑛 (of some 

quality characteristic, 𝑋, of the product being produced) are collected at regular intervals, so 

the sample variance (𝑆2) can be computed. This sample variance is compared with a control 

limit and if 𝑆2 is above the control limit, chances should be high that the process is out-of-

control, or in other words, chances should be high that the actual process variance is larger than 

the nominal in-control value.  

However, in some situations, even if a process is declared out-of-control, it might still 

be capable from a practical point of view in the sense that it still produces an acceptable low 

proportion of nonconforming items and hence the process does not need to be stopped in order 

to look for assignable causes. This can save valuable time and resources. In other words, if the 

process variance is allowed to be a bit larger than the in-control variance value and yet the rate 

of nonconforming items being produced is small enough, this may be a tolerable situation from 

a practical point of view. This relates to Process Capability Indices such 𝐶𝑝 and 𝐶𝑝𝑘 (see 3.3 

for detailed information), which have been proposed in the manufacturing industry to provide 

numerical measures of whether a process is capable of producing items within the preset 
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specification limits (OPRIME et al., 2019). A major reason for quantifying the process 

capability, for instance the process variation, is to be able to compute the ability of the process 

to hold product specifications (JURAN and GODFREY, 1998). The process capability relates 

to total amount of products that fall outside specification limits and therefore are claimed non-

conforming units. 

In summary, it is of interest to monitor the process mean and variance with control charts 

with a broader definition of “in-control” together with the capability of the process. 

Unfortunately, the original Shewhart 𝑋̅ and 𝑆2 control charts are not designed for this type of 

monitoring. Instead, in this situation, the Modified and the Acceptance charts (that are 

Shewhart-type charts) and introduced respectively by Hill (1956) and Freund (1957), are more 

appropriate tools, since they allow the process mean to vary between two specified/tolerated 

limits (MONTGOMERY, 2009). These charts also aim to ensure that only a small proportion 

of nonconforming items are produced, so there is no need to declare the process out-of-control 

and start a search for assignable causes. 

According to Montgomery (2009), modified charts use limits that are generally used in 

situations where the natural variability or “spread” of the process is considerably smaller than 

the spread in the specification limits, that is, 𝐶𝑝 and 𝐶𝑝𝑘 is far greater than 1. In other hand, the 

Acceptance control charts approach monitors the fraction of nonconforming units, or the 

fraction of units exceeding specifications. 

The Modified and Acceptance charts are also powerful tools to avoid many false alarms, 

which is very important nowadays where several systems with many control charts can be used 

simultaneously, as emphasized recently by Woodall and Faltin (2019). Modified (and 

Acceptance) control charts generate less false alarms (compared with the Shewhart 𝑋̅ chart) 

because, as explained above, they are designed to detected only genuinely important changes 

in the process mean (changes that generate a rate of nonconforming items larger than what is 

specified). So, even though these charts were created a long time ago (in the 50’s), they may be 

still of great value in practice today. We can find more applications of these types of charts in 

Mohammadian and Amiri (2012), Oliveira et al., (2018) and Wu (1998). 

Unfortunately, the Modified and Acceptance Control charts were designed only 

focusing on monitoring the process mean and as emphasized by several authors, see, for 

example, Hill (1956), monitoring the process variance is also important to avoid the production 

of an undesirable number of nonconforming units. Given this background as motivation, this 

work extent the idea of the Modified Control Charts by focusing on monitoring the process 

dispersion. 
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In this research, it is also discussed the effect of variance estimation, considering that 

usually the process parameters are unknown by practitioners and need to be estimated, which 

is done through sampling data, being expected a variation between the collected data and true 

process value. According to Chakraborti (2006), this variability negatively affects some 

properties of chart, such False Alarm Rate (FAR), which increases significantly. Since more 

false alarm are generated, the average length until a signal decreases. This also negatively affect 

the chart performance, which is usually measured by Average Run Length (ARL). Based on 

this, it is important to assess the effect of parameter estimation on the construction and use of 

the modified charts. 

The practical implication of this work is to develop an S2 Modified Control Chart that 

detects only genuinely increases in the process variance, which significantly increase the rate 

of nonconforming items being produced, preventing unnecessary process stop and assessment 

for assignable causes if only a small increase in the process variance occurs, contributing for 

higher process efficiency and reduce costs. 

The chart in scope of this work is to monitor process variance, as Shewhart 𝑆2 chart, 

considering that the variable to be monitored follows a normal distribution. 

 

1.1 RESEARCH QUESTION 

 

As described at Introduction, the modified chart is an important tool for controlling 

highly capable processes, since it allows certain shifts of mean, and in the scope of this work 

also variance, without considering it out-of-control. Industrial processes can greatly benefit 

from this approach, where costs can be reduced by improper process stops because of signaling 

events that do not actually affect nonconforming production rates. However, despite the 

importance of the subject, no such development has been done for variance monitoring and its 

performance during monitoring phase (Phase II) when variance is estimated. 

This literature gap motivated the development of the present study, which aims to 

propose and evaluate a statistical model for expanded control limits (Modified chart) for 

variance, taking into consideration the ability of the process produce conforming parts, 

contributing to reduce false alarms, where the process practitioner may claim that the process 

is out-of-control when actually the process compliance to the specification limits still meets the 

required quality performance avoiding losses due to process over-control. 

Based on these theoretical foundations, the following research question is proposed:  
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The use of Modified Control Chart for process variance can contribute to avoid 

unnecessary interventions in the process contributing to improve its efficiency? 

Some questions that motivated the research project are: 

• Why to control rigorously the process variance with traditional Shewart control chart 

when a certain variation may be allowed without cause harm to quality performance? 

• How modified chart could avoid process over-control and improve management by 

reducing false alarms in highly capable processes? 

• Due to the modified control limits are calculated with known parameters, can the 

modified control chart minimize the impact of False Alarm Rate and the control 

limits are estimated?  

To answer these questions, this work will propose statistical models to provide the exact 

calculation of modified control limits for variance and also the False Alarm Rate (FAR) and the 

average run length (ARL) when the process variance is known (Case K) and assess the chart 

performance measures when the process variance is unknown (Case U) and therefore, 

estimated. The Figure 1.1 summarizes the research questions in scope of this work. 

 

Figure 1.1 - Research Problem 

 

Source: The author (2021) 
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1.2 RESEARCH OBJECTIVE 

 

The objective of this research is to propose the chart named 𝑆2 modified control chart 

where the process variance (𝜎2) is allowed to be larger than the in-control variance value (𝜎0
2) 

until a maximum value (𝜎𝑀𝐴𝑋
2 ), as long as the process remains capable, in the sense that it 

produces a specified (tolerated) small fraction of nonconforming items. 

 

In addition to the objective listed above, the measures of the False Alarm Rate (FAR) 

and the average run length (ARL) when the process variance is known (Case K) and process 

variance is unknown (Case U), will be assessed. Data simulation was used for Phase II analysis 

for all three illustrative examples provided in this work to enhance the understanding of how 

the 𝑆2 control limit for both known and unknown variances, compares with the 𝑆2 modified 

control limit, in order to support process practitioner decisions. 

The main variable inputs for the model proposed are process variance (𝜎2), sample size 

(𝑚), number of elements in each sample (𝑛), upper and lower specification limits (𝐿𝑆𝐿 and 

𝑈𝑆𝐿) process specification limits and allowed a fraction of nonconforming items (𝛾). 

 

1.3 RESEARCH JUSTIFICATION 

 

A situation in which some slack is often allowed in the process occurs when the process 

is highly capable (WOODALL and FALTIN, 2019), however the traditional Shewhart control 

chart (SHEWHART, 1931, 1941) does not consider if the specification limits are so wide 

relative to the process variation that attention should be directed to more pressing issues, 

recommending to stop the process when there is an indication of special causes, in order to keep 

the production process at a stable variation level.  

Despite the relevance of the Modified Control Chart for industrial processes, that 

contributes to detection of important process shifts that genuinely shows an impact of the 

capacity of process manufacture compliant products and preventing unnecessary actions, little 

was done regarding process variance monitoring. Up to this date, no studies have been found 

on modeling the modified charts for 𝑆2 charts and the effects of estimating the process variance. 

This gap in the literature has opened an opportunity for the present work. 

The contribution of such chart is that  there are cases in which it is not financially 

appropriate to intervene, even in the presence of special causes. Starting also from the premise 
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that the purpose of a process control system is decision making that result in economic gains 

over the process, it is possible to balance the consequences of these decisions even considering 

two situations: (a) take action when not needed (over control), versus (b) does not take action 

when it is necessary (lack of control). For this reason, when the benefits of stopping the process 

in the presence of special causes are lower than the costs, it may be considered an over-control. 

Therefore, it is worth having an alternative method to achieve the benefit of both the control 

charts for variables and the process capability analysis (OPRIME et al., 2019). Therefore, have 

an allowed process variance (𝜎2) that can be larger as much a maximum value (𝜎𝑀𝐴𝑋
2 ), meeting 

the process acceptance criteria, based on the tolerated small fraction of nonconforming items, 

may facilitate the management by preventing process over-control and improve the decision-

making process. 

 

1.4 RESEARCH STRUCTURE 

 

The present research will be divided into three major steps:  

1. Bibliographic review of the modified chart, taking into consideration existing 

knowledge about modified control charts, fit it into the application proposed in this 

present research. 

2. Development of statistical models based on the theoretical framework that evaluates 

the performance of the chart using both known and unknown variance. The 

unconditional approach (does not consider the practitioner-to-practitioner 

variability) will be used for development of this research. A more detailed insight 

about the differences between these two perspectives is provided in section 4.2. In 

addition is presented the statistical models for in-control mean not centered between 

the specification limits and variance known. 

3. Validation of the models created by providing examples that show the usefulness of 

the proposed work. 

The division of this work is presented in Figure 1.2, where chapters 1 and 2 were 

elaborated for the presentation of the theme, research problem, research method, objective, and 

justification of this dissertation. chapter 3 regards to bibliographic review to substantiate the 

concepts of Statistical Process Control (SPC) and Modified Charts and chapter 4 develops the 

statistical models for the S2 Modified Control Chart, for three different cases, mean at the in-

control value and variance known, mean at the in-control value and variance unknown and 
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known mean but not centered between specification limits with variance. At last there is the 

conclusion chapter 5, with final considerations and suggestion of future works. 

 

Figure 1.42 - Research Structure 

 

Source: The author (2021) 

 

2 METHODS 

 

It is seen by many researchers as the validity of the results of a research (MIGUEL et 

al., 2012), that is, research is considered scientific as long as it meets some methodological 

criterion. 

The basic procedures proposed by the study of the methods can be divided into five 

major stages, that are: determination of the research approach, determination of the type of 

research, method chosen for the research, research project and research preparation. In this 

work, all these procedures were used as a path, which will be better clarified in the next topics. 
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2.1 RESEARCH APPROACH 

 

This dissertation has a quantitative approach, where the results presented will be 

expressed numerically, that is, in a quantified way. According to Bryman (2011), the major 

concerns of the quantitative approach are measurement, causality, generalization, and 

replication. The definition of each of these terms is described in Table 2.1 (MIGUEL et al., 

2012). 

 

Table 2.1 - Characteristics of quantitative research 

Characteristics Descriptions 

Measurement 
It refers to the ability to measure the variables in order to test the 

hypotheses. 

Causality 

It is related to the ability to establish relationships Refers to the causal 

relationship between the dependent variable (effect) and the 

independent variables (causes). The research seeks, therefore, to prove 

the existence of such a relationship between the variables. 

Generalization 
It deals with the possibility that the results obtained are generalized 

beyond the limits of the research. 

Replication 
It deals with the possibility for one researcher to repeat one search of 

another and find its results. 

Source: The author (2021) 

 

This dissertation fits into the description of the Measurement characteristic, where the 

hypotheses raised are going to be tested through a set of variables that can be measured. The 

present work is also classified as normative quantitative axiomatic research and will use the 

simulation method of generation of data to represent an actual manufacturing process. 

According to Miguel et al., (2012), quantitative axiomatic research produces knowledge about 

the behavior of certain variables of the model, based on assumptions about the behavior of 

certain variables of the model, and normative axiomatic research develops norms, policies, 

strategies and actions, in order to improve or compare the performance of strategies that deal 

with the same problem. 

The present work aims to build a statistical model, which is the Modified S2 Monitoring 

Chart for variance taking into consideration a permitted rate of undesirable nonconforming units 

(𝛾) and a highly capable process. Few illustrative examples will be provided to show its 

application for actual situations. See section 1.4 for further details about the research structure. 
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2.2 RESEARCH TYPE 

 

The research that intends to analyze quantitative models, with the main objective of 

understanding the modeled process or explaining its characteristics, is considered descriptive 

axiomatic in nature. In view of this, from an idealized problem (not observed) theories are 

created, supported by mathematical, statistical and computational methods in order to obtain a 

better understanding of the problem under study (MIGUEL et al., 2012). 

This work focus on understanding the theoretical statistical model existing in the 

literature on the modified graph/acceptance and, going from it, develop a new statistical model 

that use the variables of interest of the research question (process stability and capability), 

aiming that one day it may be used by practitioners in real processes, for monitoring and 

decision-making. For this reason, the nature of this work can be considered as descriptive 

axiomatic research. 

 

2.3 RESEARCH METHOD 

 

The method used in this dissertation is divided into two steps: the first, focused on the 

bibliographic review, in which the concepts related to process monitoring, modified and 

acceptance control charts, process capability and the effect of parameter estimation on control 

chart performance were assessed. The second step consists of the development of the statistical 

model for 𝑆2 Modified Control Chart, which was done for in-control mean centered between 

specification limits, for both known and unknown variance, and mean not centered between the 

specification limits, for known variance only. As informed in section 1.2, data simulation was 

used for Phase II analysis for all illustrative examples provided in this research.  

The bibliographic review provides insights about how the traditional Shewhart charts 

may be enhanced in order to accommodate a certain shift of the chart parameters to avoid over-

control and still meet the quality requirements in place. The effects caused by parameter 

estimation was also studied and additional chart design steps are proposed in a practical and 

user driven manner. 

According to Miguel et al. (2012) the act of measure a research variable is to measure 

research variables is the most outstanding characteristic of the quantitative approach. In this 

context, the researcher shall capture the research evidences by measuring the variables, thus, 

no subjectivism will be influencing the understanding of facts in the use of induction for the 
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generation of knowledge. The researcher also does not interfere or interfere with little in the 

research variables. 

In the context, to conduct the quantitative research proposed in this work, the research 

methods used is modeling and simulation, which according to Chung (2004), this is the process 

of creating and experimenting with a computerized mathematical model of a physical system. 

A system is defined as a collection of interacting components that receive input and provide 

output for some purpose. The simulation modeling and analysis of different types of systems 

are conducted for the purposes of: 

• Gaining insight into the operation of a system; 

• Developing operating or resource policies to improve system performance; 

• Testing new concepts and/or systems before implementation; 

• Gaining information without disturbing the actual system. 

In order to simulate a production process, in which it is possible to obtain the results of 

performance, this work used Microsoft Excel software to simulate Phase I (when applicable) 

and Phase II for all illustrative examples provided. The use of simulation to evaluate the 

performance of control charts, when parameters are estimated, and the design chart phases, is 

more realistic and gets closer to the process manager/user needs. This research is divided in 

three major steps, that are the literature review, the development of statistical models and 

validation of the models created by examples that show the usefulness of the proposed work. 

A illustrative example is provided for each of the models developed in chapter 4, with 

the objective to show its applicability in a practical and reasonable manner, to readers that are 

inserted in process manufacturing. 

 

3 LITERATURE REVIEW 

 

3.1 PROCESS MONITORING 

 

The control chart is one of the fundamental techniques used in SPC, given his alleged 

operational simplicity. According to Montgomery (2009), it contains a center line that 

represents the average value of the quality characteristic corresponding to the in-control state 

and one, or two horizontal lines called the upper control limit (𝑈𝐶𝐿) and lower control limit 

(𝐿𝐶𝐿). These control limits are chosen so that if the process is in control, nearly all the sample 

points will fall between them. When we work with a quality characteristic that is a variable, it 
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is necessary to monitor both the mean value of this characteristic and its variability. As 

previously stated, the major focus of this research is on the variability. Now, concerning the 

chart design, when the parameters of a certain characteristic quality are unknown, the control 

chart is usually built in two phases. In Phase I (pre-stage prospective) statistical control limits 

are estimated. When we use the traditional chart of Shewhart, it’s common the extract of 25 

samples of size five (𝑛 = 5) to estimate parameters of the process and the limits of statistical 

control. In Phase II, with the chart already set, new samples are taken, and it is considered that 

the process is stable when the result of the observed characteristic is plotted between the control 

limits. Otherwise, it follows that the process has lost its stability condition and is subject to the 

action of special causes (JENSEN et al., 2006; MONTGOMERY, 2009).  

As presented in the Introduction, the main objective of the 𝑆2 Control Chart is to detect 

increases (of any magnitude) in the process variance (𝜎2), as soon as possible. According to 

Chakraborti and Graham (2019), a process is considered in a state of statistical control or in-

control (IC) if it is operating according to what is targeted or expected in the presence of 

common causes. In contrast, the out-of-control (OOC) state is when there are reasons to believe 

that the of some special causes influences the process and this needs to be identified and if 

possible, eliminated, so the process is restored to the IC state. In this context, if the actual 

process variance (𝜎2) is larger (by any magnitude) than an in-control single level point (𝜎0
2), 

the process is considered being in an out-of-control state, otherwise the process is declared in-

control. Figure 3.1 illustrates this situation. 

 

Figure 3.1 - The In-Control and Out-of-Control Zones of the 𝑺𝟐 Control Chart 

 

Source: The author (2021) 

 

When the process parameters are unknown, the control chart creation goes through the 

two phases explained earlier in this section, which are Phase I, with estimation of the unknown 

parameter(s) and setup of control limits, and Phase II, the monitoring phase. 
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To monitor the process variance (𝜎2) with the 𝑆2 Control Chart, samples of size 𝑛 of 

the quality characteristic (𝑋) are collected at regular intervals so the sample variance (𝑆2) can 

be computed. 𝑆2 is also known as the plotting statistic of the chart and it is given by 

 

 𝑆2 =
1

𝑛−1
∑ (𝑋𝑗 − 𝑋̅)

2𝑛
𝑗=1 ,        (1) 

 

where 𝑋𝑗 is the 𝑗-th observation of the quality characteristic of each sample being 

collected at regular intervals (𝑗 = 1,2, … , 𝑛). 𝑋𝑗 is considered normally distributed with mean 

𝜇0 and variance 𝜎2, 𝑛 is the size of each sample being collected at regular intervals and 𝑋̅ is the 

sample mean of each sample given by 

 

𝑋̅ =
1

𝑛
∑ 𝑋𝑗

𝑛
𝑗=1 .         (2) 

 

By using 𝑋̅, one degree of freedom is lost and 𝑛 − 1 shall be used. The 𝑋̅ is used in 

equation 1 instead of 𝜇0 (𝑆2 =  ∑
(𝑥𝑖 − 𝜇0)2

𝑛

𝑛
𝑖=1 ), because in actual situations the actual process 

mean (𝜇) can change along the different sample subgroups collecting. If we use 𝜇0 (known or 

target mean) for calculation of subgroup variance, in case of the mean changes from 𝜇0 to 𝜇1, 

the S2 would notice this change and incorrectly would provide a signal of variance change when 

in reality it was the mean that changed. The Figure 3.2 below shows this event. 

 

Figure 3.2 - Demonstration of the use of 𝑿̅ instead of 𝝁𝟎 for S2 calculation 

 

Source: The author (2021) 
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3.2 MODIFIED CONTROL CHARTS AND ACCEPTANCE CONTROL CHARTS 

 

As stated by Montgomery (2009) the modified control limits are generally used in 

situations where the natural variability or “spread” of the process is considerably smaller than 

the spread in the specification limits; that is, 𝐶𝑝 or 𝐶𝑝𝑘 (see section 3.3 for further details about 

these indices) is much greater than 1, occurring occasionally in practice. In situations where six 

sigma (6σ) is much smaller than the spread in the specifications (𝑈𝑆𝐿– 𝐿𝑆𝐿), the process mean 

or variance can sometimes be allowed to vary up to a maximum value without having an 

important effect of the overall performance of the process. This chart was first introduced by 

Hill (1956). When this situation occurs (MONTGOMERY, 2009) we can use a modified control 

chart instead of the usual control chart for both mean, and as developed by this present work, 

for variance. The modified control chart is concerned only with detecting whether the true 

process mean (𝜇) or variance (𝜎2) is located such that the process is producing a fraction 

nonconforming over some specified value, allowing therefore, these the mean and variance to 

vary over a determined interval, as follows: 

 

𝜇𝐿 ≤ 𝜇 ≤ 𝜇𝑈 , where 𝜇𝐿 and 𝜇𝑈 are chosen as the smallest and largest permissible values 

of 𝜇 (mean), and 

𝜎𝐿
2 ≤ 𝜎2 ≤ 𝜎𝑈

2 , where 𝜎𝐿
2 and 𝜎𝑈

2 are chosen as the smallest and largest permissible values 

of 𝜎2 (variance). 

 

Considering the fact that the major concern regarding variance, is the chart user detect 

the increase of process dispersion (the lowest dispersion the better), this work will restrict to 

the case of the upper one-sided charts and largest permissible value of 𝜎2 (without a lower 

control limit and smallest permissible value). Therefore, this work considers the charts with just 

one upper control limit and the maximum value (𝜎𝑈
2 = 𝜎𝑀𝐴𝑋

2 ) allowed for process variance. 

Now, regarding the origin of the acceptance chart, it was created by Freund in 1957 with 

the aim of monitor the fraction of nonconforming units, or the fraction of units exceeding 

specifications (MONTGOMERY, 2009). 

The common sense between Hill (1956) and Freund (1957) is that highly capable 

process have a natural deviation that is much lower than the limits imposed by specifications, 

and for this reason there is no need to maintain the rigid control on mean or variance at a 
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nominal value, since a certain variation would not cause harm to the quality of the process in 

terms of the production of noncompliant items (OPRIME and MENDES, 2017).  

Some process parameters need to be defined for modified and acceptance chart design, 

where the main are: 𝛼 (probability of Type I error), 𝛽 (probability of Type II error), 𝛿 

(maximum rate acceptable of nonconforming), 𝛾 (a specific rate of undesirable nonconforming 

units). The process means (𝜇0) and standard deviation (𝜎0) can be known or estimated. The 

process specification limits, established by the project, manager or consumer, and the sample 

size for calculating the sample mean (𝑋̅) must also be defined. At Phase I, for SPC chart 

creation, it is required to know or estimate these parameters, since the control limits definition 

requires them. 

Therefore, the modified and acceptance charts are designed to detect only genuinely 

important in the process mean and/or variance, that generate a fraction of nonconforming no 

larger than is tolerable, being able to avoid false alarms, which is very important as emphasized 

by Woodall and Faltin (2019). 

The main difference between Modified and Acceptance Charts is the while the first 

controls the maximum probability of Type I error, the second controls a specified probability 

of the Type II error (see section 3.2.1 for literature review about Type I and Type II error). 

Usually, the practitioners are concerned with controlling the probability of rejecting the process 

when, in fact, it should be approved (Type I error - 𝛼), however, if the practitioner is interested 

in monitoring the probability of accepting the process when it should be rejected (𝛽), the option 

is the second chart, that is based on Type II error. 

In the SPC context, the Type I error is also known as the false alarm rate (FAR), so the 

Modified Control Chart is constructed for a maximum FAR, whereas the traditional Shewhart 

Control Charts, with a strict definition of in control and out-of-control process, are constructed 

for a specified FAR, being designed to provide a signal every time the monitored parameter, 

mean or dispersion, fall out-of-control limits (CHAKRABORTI, 2000). However, for the 

Modified Control Chart, there are many possible false alarm rates, since the process variance 

can vary within a range of values without being considered out-of-control. In such cases, a true 

alarm occurs every time the chart alerts out-of-control condition for a process whose variance 

has shifted out of the tolerable threshold. Hence, a false alarm is obtained every time a signal 

indicates an out-of-control condition, and the variance is still equal or below 𝜎𝑀𝐴𝑋
2 . As there are 

numerous permissible locations for the variance within the range of 0 to 𝜎𝑀𝐴𝑋
2 , for each location 

assumed, there is a new probability of a false alarm. The False Alarm Rate (FAR) is an 
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important measure because it occurs when the process is declared OOC when in fact it is IC, 

leading to unnecessary investigations and implementation of corrective action. 

 

3.2.1 Type I and Type II error 

 

According to Montgomery (2009) two kinds of errors may be committed when testing 

hypothesis. If the null hypothesis is rejected when it is true, a Type I error has occurred, while 

if we fail to reject the null hypothesis when it is false, then we have a Type II error. The 

probabilities of these two types of errors can be denoted as, 

 

𝛼 = 𝑃{𝑡𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟} = 𝑃{𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒}, and 

𝛽 = 𝑃{𝑡𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟} = 𝑃{𝑓𝑎𝑖𝑙 𝑡𝑜 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒}. 

 

Still, according to Montgomery (2009), sometimes it is more convenient to work with 

the power of a statistical test, where 𝑃𝑜𝑤𝑒𝑟 = 1 −  𝛽 =  {𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0|𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒}. 

Being the power, therefore, the probability of correctly reject 𝐻0. In quality control 

work, 𝛼 is sometimes called the producer’s risk because it denotes the probability of a good lot 

be rejected, or the probability that a process producing acceptable values of a particular quality 

characteristic will be rejected as performing unsatisfactorily. The 𝛽, in other hand, is sometimes 

called the consumer’s risk because it denotes de probability of accepting a lot of poor quality 

or allowing a process that is operating unsatisfactorily regarding a specific quality characteristic 

to continue in operation. 

The process owner can directly control or chose the 𝛼 risk and the 𝛽 risk, which is 

usually a function of sample size and how different the true value of a parameter is from the 

hypothesized value. The larger is the sample size used, the smaller is the 𝛽 risk. 

 

3.3 PROCESS CAPABILITY 

 

Process capability refers to the reproducibility over a long period of time with normal 

changes in workers, materials, and other process conditions (JURAN and GODFREY, 1998). 

In accordance with Montgomery (2009), process capability studies have a considerable impact 

on many management decision problems that occur during the product cycle, including 

production purchase decisions and process improvements that reduce process variability and 

contractual agreements with customers or suppliers regarding product quality. 
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According to Wu, Pearn and Kotz (2009), the Process Capability Indices (PCIs) have 

been developed in certain manufacturing industry as capability measures based on various 

criteria, including process consistency, process departure from a target, process yield, and 

process loss. The (PCI)s, are a popular numerical instrument for measuring process 

performance and providing information to the consumer and producer to assess whether a 

product complies with process specification requirements. Process capability indices such 𝐶𝑝 

and 𝐶𝑝𝑘, for example, have been proposed in the manufacturing industry and the service 

industry, providing numerical measurements on whether a process is capable of produce items 

within factory pre-set specification limits (PEARN and LIN, 2004). 

The 𝐶𝑝, 𝐶𝑝𝑘 and 𝐶𝑝𝑚 indices, according to Montgomery (2009), are defined by the 

quality characteristic with upper and lower limits of USL and LSL specification, respectively, 

as: 

 

𝐶𝑝 =
USL−LSL

6𝜎
Cp =

LSE-LIE

6σ
           (3) 

 

Where the 𝐶𝑝 does consider where the process mean is in relation to the specifications, 

measuring only the dispersion of the specifications in relation to the Six Sigma dispersion of 

the Process. In this sense, the 𝐶𝑝𝑘 index was proposed by Kane (1986), which considers both 

the deviation in the process and the displacement of the process in relation to the midpoint of 

the specification interval, and is defined as follows (Montgomery, 2009): 

 

𝐶𝑝𝑘 = Min {
LSE− µ

3𝜎
,

µ−LIE

3𝜎
}        (4) 

 

Where μ is the process mean, LSL is the lower specification limit, USL is the upper 

specification limit, and σ is the standard deviation of the process. 

In general, if 𝐶𝑝 = 𝐶𝑝𝑘, the process is centered on the midpoint of the specifications, 

and when 𝐶𝑝 < 𝐶𝑝𝑘, the process is decentralized. Figure 3.3 shows the relationship between 𝐶𝑝 

and 𝐶𝑝𝑘. 

The number of standard deviations used in equations 3 and 4 refers to a six-sigma 

process, the most common case studied in the literature, since it guarantees with a 99,73% 

chance that the sample data will fall within the specification limits. The natural limits of a six-

sigma process fluctuate within 3 standard deviations to the right and left, regarding its nominal 
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mean. As can be seen in equations 3 and 4, capacity indices are calculated based on process 

specification limits. 

 

Figure 3.2.13 - Relation between 𝐶𝑝 and 𝐶𝑝𝑘 

 

Source: Montgomery (2009) 

 

𝐶𝑝 and 𝐶𝑝𝑘 indices can be applied to products with higher and lower specifications. 

However, they cannot be used when the product has only a one-sided specification limit, so 

Kane (1986) has further proposed two one-sided capacity indices, 𝐶𝑝𝑈  (upper 𝐶𝑝) and 𝐶𝑝𝐿  

(lower 𝐶𝑝). The first is used to measure the process performance of the "the higher the better" 

quality characteristic with an 𝐿𝑆𝐿 (Lower Specification Limit), and the second is for the "the 

lower the better" type quality characteristic with an 𝑈𝑆𝐿 (Upper Specification Limit). They are 

defined as follows (MONTGOMERY, 2009): 

 

𝐶𝑝𝐿 =
µ−LSL

3𝜎
          (5) 
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𝐶𝑝𝑈 =
LSE− µ

3𝜎
          (6) 

 

Where μ is the process mean, LSL is the lower specification limit, USL is the upper 

specification limit, and σ is the standard deviation of the process. 

According to Montgomery (2009), the reason the 𝐶𝑝𝑘 index was initially created was 

because the 𝐶𝑝 index did not adequately address the case of a process with the mean not centered 

between specification limits, however, the 𝐶𝑝𝑘 itself is still an inadequate measure of 

centralization of a process, where a large 𝐶𝑝𝑘 value can say nothing about the location of the 

mean, in the range from 𝐿𝑆𝐿 to 𝑈𝑆𝐿. 

Where 𝑈𝑆𝐿 is the upper specification limit, 𝐿𝑆𝐿 is the lower specification limit, σ is the 

process standard deviation, μ is the process mean, and 𝑇 is the specification nominal value. 

However, usually the process standard deviation (σ) is unknown and should be replaced by an 

estimated parameter. 

The modified chart takes into consideration a specific rate of undesirable 

nonconforming units, here denoted as 𝛾, that has a direct relation with process capability ratio 

𝐶𝑝, that measures the ability of the process to manufacture a product that meet the specification. 

The Table 3.1 presents several values of 𝐶𝑝 along with the associated values of process fallout, 

expressed in defective parts or nonconforming units of product per million (ppm). These values 

were calculated following the assumptions that the quality characteristic has a normal 

distribution, the process is in statistical control and for the case of two-sided specifications, the 

process mean is centered between the lower and upper specification limits. 

For illustration, the table above shows that a process normally distributed with 𝐶𝑝 =

0,90 expresses a fallout rate of 6.934 products per million (ppm) for two-sided specifications, 

whereas a 𝐶𝑝 = 1,30 for this process implies a fallout rate of only 96 products per million (ppm) 

for two-sided specifications. The interpretation for one-sided specification is analogous for the 

two-sided specification. In this dissertation, the 𝐶𝑝 index is used for development of modified 

control chart when the process mean is centered between the specification limits (Section 4.1), 

while the 𝐶𝑝𝑘 is used when the process mean is no longer centered between specification limits 

(see section 4.3).  
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Table 3.2.11 - Values of the Process Capability Ratio (𝑷𝑪𝑹) and associated Fallout for a 

Normally Distributed Process (in Defective ppm) that is in statistical control. 

PCR 

Process Fallout (in Defective ppm) 

One-Sided Specifications Two-Sided Specifications 

0,25 226.628 453.255 

0,50 66.807 133.614 

0,60 35.931 71.861 

0,70 17.865 35.729 

0,80 8.198 16.395 

0,90 3.467 6.934 

1,00 1.350 2.700 

1,10 484 967 

1,20 159 318 

1,30 48 96 

1,40 14 27 

1,50 4 7 

1,60 1 2 

1,70 0,17 0,34 

1,80 0,03 0,06 

2,00 0,0009 0,0018 

Source: Montgomery (2009) 

 

3.4 ESTIMATION OF PARAMETERS AND THEIR EFFECTS ON CONTROL CHART 

PERFORMANCE 

 

A control chart is a process monitoring tool used to detect the presence of any assignable 

causes of variation, such as process shifts, so that any necessary corrective actions can be taken. 

However, in many control charting applications, the process mean and/or the standard 

deviations are unknown parameters, needing to be estimated and used instead of known 

parameter values (CHAKRABORTI, 2006). 

According to Chakraborti and Graham (2019) the SPC usually comprises of two phases, 

namely Phase I and Phase II, in which monitoring objectives are different so that the control 

charts are constructed under different performance criteria. The first phase, known as Phase I 

or the retrospective phase, is mainly exploratory and is typically used to establish control or 

stability of a process based on an analysis of historical or retrospective data. Then the unknown 

parameters are estimated, distributional assumptions are checked, and then control limits are 

calculated. The next part of SPC, which is the future monitoring of the process, is referred to 

Phase II, that is a prospective analysis. The phase II uses the parameter estimates and the control 

limits developed in the course of the Phase I analysis. When estimates are used in place of 
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known parameters, the variability of the estimators can result in chart performance that differs 

from that of charts designed with known parameters (JENSEN et al., 2006). 

Understand the statistical performance of a control chart is important, because when a 

charting statistic plots or falls on or outside the control limits, it signals the possibility of the 

presence of assignable causes and at that point the process may be declared OOC 

(CHAKRABORTI and GRAHAM, 2019). However, the process can be declared OOC when 

in fact it is IC, being this event called a false alarm and the probability of it occur referred to as 

the False Alarm Rate (FAR), and this understand contributes for a more appropriate chart design 

across the two Phases in order to prevent excessive false alarms, that may require unnecessary 

corrective actions being applied to the process. Still according to Chakraborti and Graham 

(2019), the performance of a control chart is studied via its run-length distribution, and the most 

popular performance measure is the expected value of the run-length distribution, the so-called 

average run-length (ARL). The ARL of a control chart is the expected number of charting 

statistics that must be plotted (subgroups that must be collected) before the control chart signals 

for the first time. 

According to Chakraborti (2006), some of the effects of parameter estimation in the 

calculation of FAR is the increase, sometimes substantial, of the number of false alarms that, 

as mentioned previously, results in a loss of time and money. In addition, both FAR and ARL 

become random variables, which are represented by probability distributions and have their 

own parameters (𝜇, 𝜎). This scenario may compromise the quality of these measurements, since 

the FAR and ARL means can significantly get itself away from the target value (got when the 

parameters are known). 

Still according to Chakraborti (2006), the interpretation and implementation of FAR is 

easy when the parameters are specified or known, but when the need to be estimated from data, 

the events when there is a signal become statistically dependent due to multiple uses of these 

estimates and because of the signaling events are dependent, the run-length distribution of the 

chart is no longer geometric and must be obtained by taking the effect of estimation and the 

resulting dependence into account. In section 4.2 we develop the modified control chart when 

the variance is estimated and present an additional Phase for chart design that we denote as 

Phase 0. 
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4 THE S2 MODIFIED CONTROL CHART MODEL 

 

4.1 MEAN AT THE IN-CONTROL VALUE (𝝁𝟎) AND VARIANCE IS KNOWN (𝝈𝟎
𝟐) 

 

Here, we assume the process mean at the in-control value (𝜇0) and at the exact middle 

point between the specification limits, consistently with the purpose of detecting relevant 

increases in the process variance only. As described previously, because of the major concern 

for variance is the chart user detects the increase of process dispersion, this work will restrict 

to the case of the upper one-sided charts and largest permissible value of 𝜎2. 

Suppose that (𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑚,𝑛) are random variables, and 𝑖 = 1,2, … 𝑚 are 

independent samples extracted from a process in Phase II, known variance 𝜎0
2, where 𝑖 which 

identifies the subgroup. In Phase II, the samples of size 𝑛 are extracted, and 𝑠𝑖
2 are calculated 

from {𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑛}, where the type I error is 𝛼 = 𝑃𝑟(𝑠𝑖
2  ∉ (0, 𝑈𝐶𝐿)) or 𝛼 = 1 −

𝑃𝑟(𝑠𝑖
2  ∈ (0, 𝑈𝐶𝐿)), and is represented by 𝛼𝑛𝑜𝑚. The 𝑈𝐶𝐿 is the Upper Control Limit. 

When the process is under control (IC), with mean centered between 𝑈𝑆𝐿 and 𝐿𝑆𝐿, and 

known variance, using 𝑋̅ as stated in section 3.1, can write the following equation 7: 

 

𝑃𝑟(𝑠𝑖
2 ≤ UCL

S2) = 𝑃𝑟 (𝑛 − 1 .
𝑠𝑖

2

σ0
2  ≤  𝜒𝑛−1,1−𝛼

2 ) =  𝑃𝑟 (𝑠𝑖
2 ≤  σ0

2 .
𝜒𝑛−1,1−𝛼

2

𝑛−1
)  (7) 

 

Therefore, we can get the Upper Control Limit for 𝑆2 by the following equation 8: 

 

UCL
S2= σ0

2 
χn-1, 1-α

2

n-1
,          (8) 

 

The plotting statistic (𝑆2) given by equation 1, should be compared with the Upper 

Control limit (𝑈𝐶𝐿𝑆2) of the 𝑆2 Control Chart, which is given by equation 8, where 𝜎0
2 is the 

nominal in-control process variance, χ
n-1, 1-α
2  is the (1-α)-quantile of a chi-square distribution 

with n-1 degrees of freedom and α is the nominal false alarm rate (or in other words, the false 

alarm probability) chosen by the practitioner (usually, 𝛼𝑛𝑜𝑚 = 0,0027).  

A false alarm is defined as a signal (alarm) when the process is in control. The maximum 

false alarm rate happens when 𝜎2 = 𝜎0
2. So, note that the Control Limits given by equation 8 is 

derived in order to provide a maximum false alarm rate equal to 𝛼𝑛𝑜𝑚, as shown in Equations 

9 and 10 below. 
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𝐹𝐴𝑅𝑀𝐴𝑋 = 1 − P(𝑆2 < 𝑈𝐶𝐿 𝑆2 | σ2= σ0
2) 

                                   = 1 − P (𝑆2 < σ0
2  

χn-1,1-α
2

n-1
|  σ2= σ0

2)    

                                    = 1 − P (
(n-1)𝑆2

σ0
2  < σ0

2
(n-1) χn-1,1-α

2

σ0
2(n-1)

),    (9) 

where 
(n-1)𝑆2

σ0
2 =  χ

n-1
2  is a random variable that follows a chi-squared distribution with 

𝑛-1 degrees of freedom, so 

 

𝐹𝐴𝑅𝑀𝐴𝑋 = 1 − 𝑃( 𝜒𝑛−1
2 < 𝜒𝑛−1,1−𝛼

2 ) =  𝛼𝑛𝑜𝑚.     (10) 

 

For highly capable processes, in situations where the natural variability is considerably 

smaller than the extension of specification limits, i.e., the 𝐶𝑝 and 𝐶𝑝𝑘 indices are much larger 

than 1,0 (OPRIME et al., 2019). When the actual variance of the process (𝜎2) is exactly at the 

specified or known in-control process variance (𝜎0
2) value, that meets the process requirements 

in terms of failures, the proportion of nonconforming units being produced should be small. In 

other words, the probability of the quality characteristic (𝑋) be smaller than the lower 

specification limits (𝐿𝑆𝐿) or larger than the upper specification limits (𝑈𝑆𝐿), should also be 

small. Figure 4.1 illustrates this situation. Note that these specification limits are provided by 

the project/manager. 

The 𝑆2 Control Chart is designed to detect increases (larger than 𝜎0
2) of any magnitude 

in the actual process variance (σ2), even increases that do not affect the rate of nonconforming 

items being produced and these increases will tend to produce a signal (alarm) on the control 

chart. Consider the illustration provided by Figure 4.2 where the actual process variance is 

larger than 𝜎0
2 ( σ2 = 𝜎1

2 > 𝜎0
2), but yet the rate of nonconforming items is still small. 

 

Figure 4.1 - Process running with the nominal in-control variance (σ2 = 𝜎0
2) with all the 

items being produced within the specification limits 

 

Source: The author (2021) 



35 

 

 

Figure 4.2 - Process running with a variance (𝝈𝟏
𝟐) larger than 𝝈𝟎

𝟐, but still with all the item 

being produced within the specification limits 

 

Source: The author (2021) 

 

Note that since 𝜎1
2 is larger than 𝜎0

2, from the perspective of the traditional 𝑆2 Control 

Chart, the process should be declared out-of-control. In this case, the chart will tend to signal 

an alarm. However, this may be a problem because, as can be seen in Figure 4.2, the process is 

still not producing numerous nonconforming items (almost all the items being produced are still 

within the specification limits, even though σ2 = 𝜎1
2 > 𝜎0

2. So, trying to fix this increase on the 

variance may be a waste of time and money, since in most of the cases, the process would have 

to be paused. Thus, it is of interest to monitor the process variance with a control chart with a 

broader definition of “in-control” which considers the specification limits. Here in chapter 4, 

we develop such kind of Control Chart for variance. We named this chart as the 𝑆2 Modified 

Control Chart, in consonance with the Modified Control chart for monitoring the process mean 

introduced by Hill (1956). 

Thus, it is possible to use the concept of practical significance to make economically 

viable decisions on the process condition. According to Woodall (1985) it is necessary to react 

in the presence of special causes. However, this decision is taken only when this special cause 

has a sufficient impact to be economically feasible for its removal, in order to improve quality 

indicators.  

From an economic point of view (it is recommended to consult the work of Magalhães 

et al., 2001, which deals with economical design of control charts) excessive intervention on 

the process because of false alarms is harmful to productivity. Adopting the same 

understanding, it is not convenient to act on small deviations in the parameter statistically 

monitored, even though the chart shows an alarm identification of a special cause. 

As discussed in the Introduction, the main idea of the chart proposed in this work is that 

the process variance (𝜎2) is allowed to be larger than the in-control variance value (𝜎0
2) until a 
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maximum value (𝜎𝑀𝐴𝑋
2 ), as long as the process remains capable, in the sense that it produces a 

specified (tolerated) small fraction of nonconforming items (𝛾). In the situation we are 

concerned with, instead of the in-control situation be represented by 𝜎2 ≤ 𝜎0
2 (where 𝜎0

2 

represents the specified in-control target value for the process variance), we allow the process 

to be “roughly in-control” or acceptable when 𝜎2 ≤ 𝜎𝑀𝐴𝑋
2  (where 𝜎0

2 ≤ 𝜎𝑀𝐴𝑋
2 ). If 𝜎2 assumes 

a value larger than 𝜎𝑀𝐴𝑋
2 , the process is deemed out-of-control (OOC). Figure 4.3 illustrates 

this situation. 

 

Figure 4.3 - In-Control Zone, Acceptable Zone and Out-of-Control Zone of the Modified 

Control Chart 

  

Source: The author (2021) 

 

The 𝜎𝑀𝐴𝑋
2  value must be chosen with care, depending on the lower and upper 

specification limits, 𝐿𝑆𝐿 and 𝑈𝑆𝐿, respectively, and the maximum rate (probability) of 

nonconforming units produced (denoted here by 𝛾) that may be tolerated (or allowed). 𝐿𝑆𝐿, 

𝑈𝑆𝐿 and 𝛾 are specified by the management/project and have the following relationship: 

𝛾 = 𝑃[(𝑋 < 𝐿𝑆𝐿) + (𝑋 > 𝑈𝑆𝐿)|𝜎2 = 𝜎𝑀𝐴𝑋
2 ] 

𝛾 = 1 − 𝑃[(𝐿𝑆𝐿 < 𝑋 < 𝑈𝑆𝐿)|𝜎2 = 𝜎𝑀𝐴𝑋
2 ],      (11) 

where 𝑋 is the quality characteristic of the process and follows a normal distribution 

with mean 𝜇0 and variance 𝜎2. As considered in the traditional 𝑆2 Control Chart, it is assumed 

that the process mean is in-control value (𝜇0). 

So 𝛾 is the maximum tolerated probability of 𝑋 being smaller than the 𝐿𝑆𝐿 or greater 

than the 𝑈𝑆𝐿 that can be tolerated in a specific application. Figure 4.4 illustrates this situation 

where the process is running at the maximum allowed tolerated rate of nonconforming units 

(𝛾), which happens when 𝜎2 = 𝜎𝑀𝐴𝑋
2 . Note that if 𝜎2 > 𝜎𝑀𝐴𝑋

2  the rate of nonconforming units 

produced will be larger than the specified 𝛾, and hence, the process will be declared OOC. 
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Figure 4.4 - Process running at the maximum rate of nonconforming units being produced 

(𝝈𝟐 = 𝝈𝑴𝑨𝑿
𝟐 ) 

 

Source: The author (2021) 

 

The maximum tolerated variance (σMAX
2 ) can be calculated given the specification limits, 

and the maximum tolerated rate of nonconforming units (𝛾). From Figure 4.4, one can write 

 

𝛾

2
 = 1 −  P(𝑋 <  𝑈𝑆𝐿| σ2= σMAX

2 ) =1 − P (
X – μ0

σMAX
 <

USL – μ0

σMAX
)  

𝛾

2
 = 1 − P (Z <

USL – μ0

σMAX
) = 1 − Φ ( 

USL – μ0

σMAX
),      (12) 

 

where Z is a random variable that follows a standard normal distribution and 𝛷(∗) is the 

cumulative distribution function (c.d.f.) of a standard normal random variable. From Equation 

12, one has: 

 

 
USL - μ0

σMAX
= Φ-1 (1 −

𝛾

2
) =z1- γ/2,        (13) 

 

where 𝛷−1 (1 −
𝛾

2
) = 𝑧1−𝛾/2 is the (

𝛾

2
)-quantile of a standard normal distribution. Since 

the normal distribution is symmetric around 𝜇0, one can write 𝑈𝑆𝐿 − 𝜇0 =
𝑈𝑆𝐿−𝐿𝑆𝐿

2
, so, 𝜎𝑀𝐴𝑋 

can be calculated as: 

 

 σMAX =
USL−LSL

2 z1-γ/2
.         (14) 

 

The equation 14 is useful because in practice, what is usually defined by the 

project/manager is the specification limits (𝑈𝑆𝐿 and 𝐿𝑆𝐿) and the maximum allowed rate of 

nonconforming units (𝛾). 
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To calculate the upper control limit (𝑈𝐶𝐿𝑀𝑜𝑑) of the 𝑆2 Modified Control Chart, one 

just need to replace σ0
2 in the original control limit equation of the 𝑆2 Control Chart (see equation 

8 by σMAX
2 , as shown below: 

 

𝑈𝐶𝐿𝑀𝑜𝑑= σMAX
2  

χn-1, 1-α
2

n-1
 = 

(𝑈𝑆𝐿−𝐿𝑆𝐿)
2 χn-1,1-α

2

4(n-1) (𝑧1−𝛾/2)
2 .         (15) 

 

The plotting statistic of the 𝑆2 Modified Control Chart is equal to the plotting statistic 

of the well-known 𝑆2 Control Chart, which is given by Equation 1. Therefore, the control limit 

showed in equation 15 is designed so that the maximum false alarm rate (which now happens 

when 𝜎2 = 𝜎𝑀𝐴𝑋
2 ) is actually 𝛼𝑛𝑜𝑚. This can be shown replacing σ0

2 by σMAX
2  in Equations 8 and 

9, as presented below.  

 

𝐹𝐴𝑅𝑀𝐴𝑋 = 1 − P(S
2
 <UCLMod | σ2= σMAX

2 ) 

=1 − P (S
2
 <  σMAX

2  
χn-1, 1-α

2

n-1
| σ2=σMAX

2 )  

=1 − P (
(n-1)S2

σMAX
2 <  σMAX

2  
χn-1, 1-α

2

(n-1)

(n-1)

σMAX
2  ) ,     (16)  

 

where 
(n-1)𝑆2

σMAX
2 =  χ

n-1
2  is a random variable that follows a chi-squared distribution with 

𝑛-1 degrees of freedom, so 

 

𝐹𝐴𝑅𝑀𝐴𝑋 = 1 − P ( χ
n-1
2 < χ

n-1, 1-α
2 ) = 𝛼𝑛𝑜𝑚.        (17) 

Note that 𝜎1
2 illustrated in Figure 4.2 is exactly in the Acceptable Zone showed in Figure 

4.3 (i.e., 𝜎0
2 ≤ 𝜎1

2 ≤ 𝜎MAX
2 ). So, differently from the well-known 𝑆2 Control Chart, the 𝑆2 

Modified Control Chart will not tend to signal an alarm when 𝜎2 = 𝜎1
2. This is desirable, since 

when 𝜎2 = 𝜎1
2, the process is still not producing an unacceptable rate of nonconforming units. 

In the next section, we provide an illustrative example showing the advantages of the proposed 

𝑆2 Control Chart in the case illustrated in Figure 4.2 (i.e., in the case of 𝜎2 = 𝜎1
2). 

Since the False Alarm Rate assumes numerous values within the acceptable zone, is 

possible to find a curve that characterizes the behavior of this rate for the Modified Chart. 

However, this curve does not indicate that the FAR is a random variable, it just points out that 

for each variance assumed by the process, there is a fixed-value for FAR. The FAR becomes a 
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random variable when it depends on another random variable, but in this section, the variance 

is known. The equation 18 below considers several variances 𝜎1
2 ∈ [0; σMAX

2 ) as follow: 

𝐹𝐴𝑅 = 1 − 𝑃(𝑆2 < 𝑈𝐶𝐿𝑀𝑜𝑑|𝜎1
2 ∈ (0; σMAX

2 ]) 

=1 − P (S
2
 <  σMAX

2  
χn-1, 1-α

2

n-1
|𝜎1

2 ∈ (0; σMAX
2 ])  

=1 − P (
(n-1)S

2

𝜎1
2 <  σMAX

2  
χ

n-1, 1-α
2

(n-1)

(n-1)

𝜎1
2  ) 

=1 − P (
(n-1)S2

𝜎1
2 <  

σMAX
2

𝜎1
2  χ

n-1, 1-α
2 ), 

where 
(n-1)𝑆2

𝜎1
2 =  χ

n-1
2  is a random variable that follows a chi-squared distribution with 

𝑛-1 degrees of freedom, so 

𝐹𝐴𝑅 = 1 − 𝑃 ( χ
n-1
2 <  

σMAX
2

𝜎1
2  χ

n-1, 1-α
2 )       (18) 

Figure 4.5 below shows an example of this curve, using the following parameters and 

variables, 𝛼𝑛𝑜𝑚 = 0,0027, 𝑛 = 5, σMAX
2 = 0,0225, and 𝜎1

2 varying from 0,100 to σMAX
2 . 

 The numeric data of Figure 4.5 is listed in Table 4.1 below. 

Figure 4.5 - False Alarm Rate curve for Modified Chart (Known Parameters) 

 

Source: The author (2021) 
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Table 4Erro! Nenhum texto com o estilo especificado foi encontrado no documento..1 – 

Numeric data of False Alarm Rate for Modified Chart 

𝜶𝒏𝒐𝒎 = 0,0027, 𝒏 = 𝟓,  

σMAX
2 = 𝟎, 𝟎𝟐𝟐𝟓 

𝝈𝟏
𝟐 FAR 

0,100 0,000000 

0,105 0,000001 

0,110 0,000004 

0,115 0,000015 

0,120 0,000042 

0,125 0,000105 

0,130 0,000237 

0,135 0,000485 

0,140 0,000918 

0,145 0,001622 

0,150 0,002700 

Source: The author (2021) 

The process user is more interested in the maximum occurrence probability of a false 

alarm (𝐹𝐴𝑅𝑀𝐴𝑋) and not the minimum, since it is when the process is about to move to out-of-

control state, with 𝜎1
2 coinciding with σMAX

2 . In the next section 4.1.1, the ARL when variance 

is known will be discussed. 

 

4.1.1 Average Run Length (ARL) when variance is known (𝝈𝟎
𝟐) 

 

The Average Run Length (ARL) is the average number of points that must be plotted 

before a point indicates an out-of-control condition and can be used to evaluate the performance 

of the control chart (MONTGOMERY, 2009) at monitoring stage (Phase II). According to 

Chakraborti (2000) for an “efficient” control chart, one would like to have the in-control ARL 

to be “large” and the out-of-control ARL to be “small”. According to Montgomery (2009) the 

in-control ARL is denoted 𝐴𝑅𝐿0 and the out-of-control, denoted as 𝐴𝑅𝐿1. 

The Run-length (RL) is a random variable whose experiment involves repeat the event 

of taking a sample from the process until the chart plotted data indicates an out-of-control state 

and when the process parameters are known (𝜇0 and 𝜎0
2), we can state that these trials are 

independent and have the same probability of occurrence. Since the probability 𝑝 of obtaining 

a success (an alarm) is constant, for this case, 𝑅𝐿0 follows a geometric distribution, with 

parameter 𝑝 (OLIVEIRA, 2020). 

For the modified chart, there are numerous possible False Alarm Rate (FAR), because 

for each value assumed by FAR there is a new parameter 𝑝 for distribution of 𝑅𝐿0, hence, the 
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smaller the process dispersion, here denoted by 𝜎1
2, is, smaller the FAR will be, and the 

probability 𝑝 will be equal to 𝐹𝐴𝑅𝑀𝐴𝑋 when the process variation moves towards to σMAX
2 . 

 

According to Chakraborti (2000), considering an IC process with known parameters, 

𝑅𝐿0 follows a geometric distribution, and its mean (𝐴𝑅𝐿0) is equal to the reciprocal of false 

alarm rate (FAR), hence, for S
2
 Shewhart chart 𝐴𝑅𝐿0 =  1 𝐹𝐴𝑅⁄ = 1 𝛼⁄ . Thus, we can say that 

the reciprocal of the maximum false alarm rate of the modified chart is the 𝐴𝑅𝐿0,𝐹𝐴𝑅𝑀𝐴𝑋
, where 

the 𝐹𝐴𝑅𝑀𝐴𝑋 is the worst scenario for chart 𝐹𝐴𝑅, which is when it is about to move from IC to 

OOC state. For 𝜎1
2 = σMAX

2 , it is expected the average number of samples required to detect the 

first alarm will be the lowest possible. This is when the 𝐴𝑅𝐿0 reaches its minimum value, as 

shown by equation 19. 

 

𝐴𝑅𝐿0,𝐹𝐴𝑅𝑀𝐴𝑋
= 

1

𝐹𝐴𝑅𝑀𝐴𝑋
=

1

1−𝑃( χn-1
2 < χ

n-1, 1-α
2 )

                  (19) 

 

When the process parameters are known, the 𝐴𝑅𝐿0 is not a random variable, and it is 

possible to describe graphically its behavior for Modified Chart for many variances within the 

acceptable range. 

 

Derived from equation 19, the equation 20 below considers several variances 𝜎1
2 ∈

(0; σMAX
2 ] as follows: 

 

𝐴𝑅𝐿0,𝐹𝐴𝑅= 
1

𝐹𝐴𝑅
=

1

1−𝑃( χn-1
2 < 

σMAX
2

𝜎1
2  χ

n-1, 1-α
2 )

      (20) 

 

It is worth to notice that 𝐴𝑅𝐿0,𝐹𝐴𝑅 = 𝐴𝑅𝐿0,𝐹𝐴𝑅𝑀𝐴𝑋
when 𝜎1

2 = σMAX
2 . The Figure 4.6 

shows the curve that describes the behavior of 𝐴𝑅𝐿0 for each shift of placement of 𝜎1
2,  𝛼𝑛𝑜𝑚 =

𝐹𝐴𝑅𝑀𝐴𝑋 = 0,0027, 𝑛 = 5, σMAX
2 = 0,0225, and 𝜎1

2 varying from 0,100 to σMAX
2 . 
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Figure 4.6 - 𝐴𝑅𝐿0 curve for Modified Chart (Known Parameters) 

 

Source: The author (2021) 

 

The numeric data in Figure 4.6 is listed in Table 4.2 below. 

 

Table 4.2 – Numeric data of Average Run Length for Modified Chart 

𝜶𝒏𝒐𝒎 = 0,0027, 𝒏 = 𝟓, σMAX
2 = 𝟒 

𝝈𝟏
𝟐 ARL 

0,100   4.517.034  

0,105      905.194  

0,110      226.420  

0,115        68.049  

0,120        23.840  

0,125           9.501  

0,130           4.224  

0,135           2.061  

0,140           1.089  

0,145              616  

0,150              370  
Source: The author (2021) 

 

When 𝜎1
2 is substantially lower than 𝜎𝑀𝐴𝑋

2 , the probability of a false alarm is too low, 

thus, the average number of samples to be collected before the control chart signals for the first 

time is extremely high. As example, when 𝜎1
2 = 0,100, the ARL is 4.517.034. 
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4.1.2 An Illustrative Example for mean (𝝁𝟎)variance (𝝈𝟎
𝟐) known  

 

We illustrate the ideas of the 𝑆2 Modified Control Chart for known variance in an 

automobile engine manufacturing process that uses a forging process to make piston rings. A 

more detailed description of this example is given in Montgomery (2009, p. 251). The quality 

characteristic variable (𝑋) is the internal diameter of the piston rings, which has a two-sided 

specification limits of 74,000 + 0,050 mm. It is assumed that the piston rings diameter (𝑋) 

follows a normal distribution. Different from the book, here we assume that the in-control mean 

(𝜇0) and the in-control standard deviation (𝜎0) of the piston rings diameter are known, being 

respectively 74,000 mm and 0,0100 mm. The process leadership defined as acceptable up to 96 

nonconforming parts per million (ppm) of units produced, which represents a potential capacity 

(Cp) of 1,30, according to Table 3.1.  

In other words, the maximum allowed rate of nonconforming items (𝛾) is 

96/1000000 =  0,000096, which provides 𝑧1−𝛾/2 = 3,9. So, the maximum standard-

deviation allowed (𝜎𝑀𝐴𝑋) for the piston ring diameter can be calculated using Equation 14, as 

shown below. 

σMAX =
USL − LSL

2 z1-γ/2

=
74,05 − 73,95

2×3,9
=

0,1

7,8
= 0,0128 

 

All parameters given by this example are summarized in Table 4.3. 

 

Table 4.3 - Parameters provided by the Example 

Source: The author (2021) 

 

The first analysis was done on the probability of nonconform units with 

σ0 = 0,0100, which provided a 𝐶𝑝 equal to 1,67, sigma level of 5 and a defective ppm of 0,57, 

which is significantly better than the process requirement. Therefore, the use of a modified 

acceptance chart has become appropriate. 

By using the data presented in Table 4.3, the upper control limits for the traditional S2 

chart and the modified chart for the process were defined, considering σ0 = 0,01, which are 

shown in Table 4.4. 

 

μ
0
 σ0 σMAX USL LSL 𝛾 

74,000 0,0100 0,0128 74,050 73,950 0,000096 
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Table 4.4 - Upper Control Limits for variance and potential capacity 

 

 

 

 

 

 

Source: The Author (2021) 

 

Suppose that the practitioner decides to monitor the process variance (𝜎2) with samples 

of size 𝑛 = 5 of the piston’s rings diameter collected at regular intervals. To this end, the 

practitioner can use the well-known 𝑆2 Control Chart or the 𝑆2 Modified Control Chart 

proposed here. Considering a maximum false alarm rate (𝛼) of 0,0027 for each chart, the control 

limits of both charts (𝑈𝐶𝐿 𝑆2 and 𝑈𝐶𝐿𝑀𝑜𝑑) can be calculated as shown below. 

 

UCL
S2= σ0

2 
χ

n-1, 1-α
2

n − 1
 = 0,0100

2 16,25

5 − 1
= 0,000406 

 

UCLMod= σMAX
2  

χ
n-1, 1-α
2

n − 1
=0,0128

2
 
16,25

5 − 1
= 0,00067 

 

Now, let’s suppose that the process standard deviation (𝜎) moved from the in-control 

value 𝜎 = 𝜎0 = 0,0100 to 𝜎 = 𝜎1 = 0,0114. Note that, since 𝜎0 < 𝜎1 < 𝜎𝑀𝐴𝑋, even though 

the process standard-deviation increased, it is still in the Acceptable Zone (see Figures 4.3, 4.4 

and 4.7), so the process is still producing an acceptable rate of nonconforming items (i.e., a rate 

smaller than 𝛾 =  0,000096). 

Figure 4.7 - Illustration showing the actual process standard deviation (𝜎) in the Acceptable 

Zone (𝜎 = 𝜎1 = 0,0114) 

 

Source: The author (2021) 

 

 Upper Limit for S i
2
 Equation 

𝑈𝐶𝐿𝑆2  0,000406 si
2 ≤ 

𝜎0
2

n-1
 .  χ

n-1,1-𝛼
2  

𝑈𝐶𝐿𝑀𝑜𝑑 0,00067 si
2 ≤

(USL-LSL)
2
. χ

n-1,1-α
2

4(n-1) zγ/2
2
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To further examine the behavior of both charts (the well-known 𝑆2 Control Chart and 

the 𝑆2 Modified Control Chart proposed here), we simulated one thousand independent samples 

of the piston ring diameter (each sample with size 5), from a normal distribution with mean 

𝜇0 = 74,000 and standard deviation 𝜎 = 𝜎1 = 0,0114. With the simulated data, we calculated 

the sample variances (𝑆2) using equation 1, which is the plotting statistic for both charts, and 

plotted these against the control limits values shown in Table 4.4. The simulated sample 

variances (𝑆2) and the control limits (𝑈𝐶𝐿 𝑆2 and 𝑈𝐶𝐿𝑀𝑜𝑑) are shown in Figure 4.8. 𝑈𝐶𝐿 𝑆2 is 

shown in a dashed grey line and 𝑈𝐶𝐿𝑀𝑜𝑑 in a solid black line. 

Figure 4.8 - The 𝑆2 Control Chart and the 𝑆2 Modified Control Chart for monitoring the 

variance of a process 𝑋~𝑁(𝜇0 = 74,000, 𝜎 = 𝜎1 = 0,0114) given the in-control 

parameters in Table 4.3 

 

Source: The author (2021) 

As it can be seen in Figure 4.8, signals above the 𝑈𝐶𝐿𝑆2 dashed line are frequent. If the 

user were using just the well-known 𝑆2 Control Chart, he would typically suspect that an 

assignable cause has occurred and that the process variance (𝜎2) is larger than the in-control 

target (𝜎0
2 = 0,012) increasing the production of nonconforming items. In this case, the user 

would stop the process and start looking for assignable causes, wasting time and decreasing 

production (what is also a waste of money). However, even though the process variance has 

indeed increased to 𝜎2 = 𝜎1
2 = 0,01142, it is still smaller than the maximum variance allowed 

(𝜎MAX
2 = 0,01282), this means that the proportion of nonconforming items being produced is 

still acceptable according to the specification of the project. Therefore, the production does not 

really need to be stopped to search for assignable causes. So, it is clear that the use of the well-

known 𝑆2 Control Chart alone can mislead the user. 

Now, considering the 𝑆2 Modified Control Chart proposed in this work, since the 

process is still capable in the sense it is still producing an acceptable rate of nonconforming 
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units, there is no signal above the 𝑈𝐶𝐿𝑀𝑜𝑑 black solid line, what is indeed expected since the 

probability of a false alarm when 𝜎2 = 𝜎1
2 = 0,01142 is smaller than  𝛼𝑛𝑜𝑚 = 0,0027, as 

shown below. 

 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 = 1 − 𝑃(𝑆2 < 𝑈𝐶𝐿𝑀𝑜𝑑|𝜎2 = 𝜎1
2 = 0,01142) 

=1 − P (S
2
 <  σMAX

2  
χn-1, 1-α

2

n-1
|𝜎2 = 𝜎1

2 = 0,01142)  

=1 − P (
(n-1)S2

𝜎1
2 <  

σMAX
2

𝜎1
2  χ

n-1, 1-α
2 ), 

 

where 
(n-1)𝑆2

𝜎1
2 =  χ

n-1
2  is a random variable that follows a chi-squared distribution with 

𝑛-1 degrees of freedom, so 

 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 = 1 − 𝑃 ( χn−1
2 <

0.01282

0.01142
 16,25) = 1 − 𝑃( χn−1

2 < 20,486) 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 = 0,0004 < 𝛼𝑛𝑜𝑚 = 0,0027 

 

The large number of signals between UCLS2 and UCL𝑀𝑜𝑑 control limits when the actual 

process variance (𝜎2) is in between 𝜎0
2 and 𝜎MAX

2  (as shown here with 𝜎2 = 𝜎1
2) and the smaller 

frequency of signal above UCL𝑀𝑜𝑑 given the small value of the false alarm rate in this case 

(𝐹𝐴𝑅 = 0,0004), motivates the use of the 𝑆2 Modified Control Chart proposed in the present 

work. 

In summary, as 𝜎2 moves from 𝜎0 towards 𝜎𝑀𝐴𝑋, the chart tends to more quickly signal 

points higher than UCLS2 and not higher than UCL𝑀𝑜𝑑 , since the process is still capable. If the 

process had been monitored only by using the 𝑆2 control chart (i.e., only by using the UCLS2 

control limit), it would have signaled several alarms, however, that do not compromise the 

process in meet its quality requirements, which could keep running in order to fulfill the process 

expectancies in terms of efficiency and quality. 

 

4.2 MEAN AT THE IN-CONTROL VALUE (𝜇0) AND VARIANCE UNKNOWN (𝜎2) 

 

Here, we also assume that the process mean is in-control value (𝜇0) and in the exact 

middle point between the specification limits, consistently with the purpose of detecting 

relevant increases in the process variance only. The estimation of the process variance is 
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traditionally done by collecting 𝑚 samples with size 𝑛 elements from an in-control (IC) process 

during Phase I. In this dissertation we also present the execution of what we call Phase 0 and a 

proposed change on how Phase I is executed, that are properly presented in section 4.2.2. 

Considering that the estimation is done from sampling data, there is a data variability when 

compared to the entire process data which is known as "practitioner-to-practitioner variability" 

(SALEH, et al., 2015) since each chart practitioner can get a different sample, which influences 

the parameter estimation, where the control limits become conditioned to these estimates and 

according to Chakraborti (2006), some operational properties of the control chart, such as 𝐹𝐴𝑅 

and 𝐴𝑅𝐿 are compromised. Some of the parameter estimation effects on 𝐹𝐴𝑅 calculation is the 

increase of false alarms. 

The analysis of the effects of parameter estimation on the performance of the control 

graph can be done based on two perspectives and according to Jardim, Chakraborti and 

Epprecht (2019), these are: conditional and unconditional perspectives.  

The conditional perspective considers the practitioner-to-practitioner variability, 

examining the performance of each control chart individually (assessing the graph based on the 

estimate of the parameter found). That is, the performance of the graph is conditioned to the 

value of the estimator, so 𝐹𝐴𝑅 conditioning is called 𝐶𝐹𝐴𝑅, and 𝐴𝑅𝐿 conditioning as 𝐶𝐴𝑅𝐿 

(JARDIM; CHAKRABORTI; EPPRECHT, 2019). 

The unconditional perspective does not take into account the practitioner-to-practitioner 

variability, since it analyzes the average performance of a many different control charts, each 

corresponding to a set of parameters estimated from samples of the same process 

(CHAKRABORTI, 2000). 

These both perspectives (conditional and unconditional) are going to be considered in 

this work, with only the process variance (𝑆2 chart) being estimated, with known process mean. 

However, the unconditional perspective developed in this present chapter will be further 

assessed in terms of chart performance and presentation of an illustrative example, whilst the 

conditional perspective will have only first developments and analysis, as a kick-off for future 

research. 

After the design phase of the control chart (Phase I), when the reference samples were 

collected and the control limits have been calculated from the estimated parameters (recalling 

that in this study, the process mean is known), the Phase II starts, which is when the process 

monitoring actually takes place, assessing process samples and if there are special causes that 

move the process from an in-control state (IC) to an out-of-control state (OOC). Here, the chart 

provides information to process user to act on the process, so it moves back to a control state. 
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Because the process monitoring is done based on sampling, a particular sample collected 

may show that the process is in control when actually it is not, and vice versa, it is important 

that the process manager assess the control chart performance in order to minimize or prevent 

unnecessary process stop, which contributes for lower process efficiency and increased costs. 

 According to Epprecht, Loureiro and Chakraborti (2015), due to the skewness of the 

distribution of 𝑆2, this study only considers the case of probability control limits, which aims 

to provide a pre-specified False Alarm Rate and upper one-sided charts (without a lower control 

limit), being the major concern of the chart user is to detect increases in process variance. 

For modified charts, because the standard deviation or variance shifts within the 

acceptable range, there are several possible values for the False Alarm Rate (𝐹𝐴𝑅). When the 

parameters are estimated, the control limits are affected by this estimation and, hence, the 

probability of a false alarm occurrence depends on this estimate. Thus, the false alarm rate 

becomes a random variable to the estimator (OLIVEIRA, 2020). 

Here we have the subgroups of Phase I and Phase II with same size (𝑛) and all the 

observations also follow a normal distribution, with known mean 𝜇0 and unknown variance 𝜎2. 

Thus, the process variance in phases I and II may be different. Based on this, we may state that: 

 

𝜔 =
𝜎

𝜎0
           (21) 

 

Where 𝜎2 is the unknown variance from Phase II and 𝜎0
2 the variance from Phase I. 

 When the process is In Control (IC), with 𝜎2 =  𝜎0
2, and hence 𝜔 = 1. If at a given 

moment during Phase II the process variance increases, then 𝜎2 =  𝜎1
2 >  𝜎0

2, and as a 

consequence, the process is deemed out-of-control (OOC), with 𝜔 > 1.  

Now, we denote 𝜎̂0
2 an estimator of 𝜎0

2 from the reference sample from Phase I and we 

have the error factor of the estimator (EPRECHT; LOUREIRO; CHAKRABORTI, 2015), that 

is defined as: 

 

𝜏 =
𝜎̂0

𝜎0
            (22) 

 

Once the estimator 𝜎̂0
2 is calculated, the UCL for the one sided 𝑆2 chart to be used during 

Phase II monitoring can be defined, for a specified or nominal False Alarm Rate (𝐹𝐴𝑅) and 

𝛼𝑁𝑂𝑀, equation 8 can be rewritten as: 
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𝑈𝐶𝐿̂
S2= 𝜎̂0

2 
χn-1, 1-α

2

n-1
                    (23) 

 

 In the next section we will discuss some properties of variance estimation. 

 

4.2.1 Probability of a Signal  

 

As previously described, a false alarm is defined as a signal (alarm) when the process is 

actually in-control. The maximum false alarm rate happens when 𝜎2 = 𝜎0
2, in this case, where 

the variance parameter is estimated, 𝜎̂0
2, and is not affected by change of the mean to a not 

centered location between the 𝑈𝑆𝐿 and 𝐿𝑆𝐿. The probability of a signal for the upper one sided 

𝑆2 from Phase II is defined by:  

 

𝐹𝐴𝑅𝑀𝐴𝑋 = P (𝑆2 > 𝑈𝐶𝐿 𝑆2  | σ2 = 𝜎̂0
2) 

                                   = P (𝑆2> 𝜎̂0
2 χn-1,1-α

2

n-1
|  σ2= 𝜎̂0

2)    

                                    = 1 − P (
(n-1)𝑆2

𝜎2  < 
𝜎̂0

2

𝜎0
2

𝜎0
2

𝜎2 χ
n-1,1-α
2 ), 

 

Which can be rewritten as 

 

𝐹𝐴𝑅𝑀𝐴𝑋 = 1 − P (
(n-1)𝑆2

𝜎2  < 
𝜏2

𝜔2 χ
n-1,1-α
2 ). 

 

Where 
(n-1)𝑆2

 σ2
=  χ

n-1
2  is a random variable that follows a chi-squared distribution with 

𝑛-1 degrees of freedom, so 

 

𝐹𝐴𝑅𝑀𝐴𝑋 = 1 − P ( χ
n-1
2  < 

𝜏2

𝜔2 χ
n-1,1-α
2 ).       (24) 

 

According to Epprecht, Loureiro and Chakraborti (2015), the probability of a signal in 

Phase II can be calculated conditionally on the Phase I estimator 𝜎̂0
2 or, unconditionally, 

averaging over the distribution 𝜎̂0
2, being this probability a function of the random variable 𝜏 

and given one particular value of 𝜏 and a given value of 𝜔 it assumes a single value, and the 
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distribution of the random variable “probability of signal” is parameterized by the number of 

retrospective sample 𝑚 and the size of the individual sample, 𝑛. 

Being the False Alarm Rate an important characteristic in the design and 

implementation phases and the probability of a signal, the occurrence of a signaling event when 

the process is actually in-control (IC), and in this case 𝜔 = 1. Hence, the actual FAR attained 

by a particular 𝑆2 chart, with an estimated parameter, here denominated 𝐹𝐴𝑅𝑀𝐴𝑋 may be 

obtained from equation 24 as: 

 

𝐹𝐴𝑅𝑀𝐴𝑋 = P(𝑆2 > 𝑈𝐶𝐿 𝑆2  | σ2 =  𝜎̂0
2) 

= 𝑃 (𝑆2 > 
𝜎̂0

2

𝜎0
2 χ

n-1,1-α
2 |σ2 =  𝜎̂0

2) 

= 𝑃 (𝑆2 >
𝜎̂0

2

𝜎0
2 χ

n-1,1-α
2 |σ2 =  𝜎̂0

2) 

𝐹𝐴𝑅𝑀𝐴𝑋 = 1- 𝐹χ𝑛−1
2 (

𝜎̂0
2

𝜎0
2  χ

n-1,1-α 
2 | σ2 = 𝜎̂0

2)  (25) 

 

Where the 𝐹χ𝑛−1
2 represents the c.d.f of the chi-square distribution with (𝑛 − 1) degrees 

of freedom. Thus, 𝐹𝐴𝑅𝑀𝐴𝑋 is a random variable, being a monotonically decreasing function of 

the Phase I variance estimator 𝜎̂0
2.  

According to Epprecht, Loureiro and Chakraborti (2015), the attained 𝐹𝐴𝑅𝑀𝐴𝑋 in 

equation 24 is in general different to 𝛼 even when the process is in-control (IC), as it depends 

on the ratio 𝜏2 =
𝜎̂0

2

𝜎0
2, the error factor of the estimate and due to this error factor 𝜔 is a random 

variable, the attained 𝐹𝐴𝑅𝑀𝐴𝑋 is also a random variable. The 𝐹𝐴𝑅𝑀𝐴𝑋 distribution is 

parametrized by 𝑚 and 𝑛 and when 𝑚 → ∞, 𝐹𝐴𝑅𝑀𝐴𝑋 → 𝛼𝑛𝑜𝑚, as in that case, 𝜎̂0
2 → 𝜎0

2 in 

probability, provided that 𝜎0
2 is a consistent estimator. Thus, when 𝑚 → ∞, that is, when there 

is a very large sample, the attained 𝐹𝐴𝑅𝑀𝐴𝑋 converges to the nominal FAR. 

In this dissertation, the estimator chosen and recommended is the pooled estimator (𝑆𝑝
2) 

based on the variances of the Phase I samples, that according to Mahmoud (2010), this is the 

best estimators for 𝜎0
2. The pooled variance (𝑆𝑝

2) is calculated by the sample variance means of 

the samples collected in Phase I, as shown: 

 

𝑆𝑝
2 =

1

𝑚
∑ 𝑆𝑖

2𝑚
𝑖=1 , where 𝑆𝑖

2 =
1

𝑛−1
∑ (𝑋𝑖,𝑗 − 𝑋̅𝑖)

2𝑛
𝑗=1        (26) 
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4.2.2 Unconditional Average-Run-Length (Traditional Shewhart’s 𝑺𝟐 chart) 

 

Suppose that (𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑚,𝑛) are random variables, and 𝑖 = 1,2, … 𝑚 are 

independent samples extracted from a process in Phase I, with variance 𝜎0
2 unknown, where 𝑖 

which identifies the subgroup. When the process is in control (IC), for 𝜎1 = ∆𝜎0 and traditional 

Shewhart’s 𝑆2 chart, we have that ∆= 1, and when the process is out-of-control (OOC), ∆> 1. 

For 𝜎0
2 unknown, the IC state occurs when 𝑠𝑖

2 ∈ (0, 𝑈𝐶𝐿̂𝑆2). 

In Phase II, the samples of size 𝑛 are extracted, and 𝑠𝑖
2 are calculated from 

{𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑛}, where the Type I error is 𝛼 = 𝑃𝑟(𝑠𝑖
2  ∉ (0, 𝑈𝐶𝐿̂𝑆2)) or 𝛼 = 1 −

𝑃𝑟(𝑠𝑖
2  ∈ (0, 𝑈𝐶𝐿̂𝑆2)), and is represented by 𝛼𝑁𝑂𝑀. As stated previously, for a OOC process 

for traditional Shewhart’s 𝑆2 chart, 𝜎1 = ∆𝜎0, for ∆> 1, and the estimation of Upper Control 

Limit is given by Equation 23, listed in section 4.2:  

 

𝑈𝐶𝐿̂𝑆2= 𝜎̂0
2 

χn-1, 1-α
2

n−1
          (23) 

 

For IC state, the equation 27 can be written: 

 

𝑃𝑟(𝑠𝑖
2 ≤  𝑈𝑆𝐶̂) = 𝑃𝑟 (

𝑠𝑖
2(𝑛−1)

𝜎1
2 ≤

𝑈𝐶𝐿̂ (𝑛−1)

𝜎1
2 )       (27) 

 

Developing the Equation 27 we have the following: 

 

𝑃𝑟(𝑠𝑖
2 ≤  𝑈𝑆𝐶̂) = 𝑃𝑟 (

𝑠𝑖
2(𝑛−1)

𝜎1
2 ≤

χ𝑛−1,1−𝛼𝑛𝑜𝑚
2 𝜎̂0

2 (𝑛−1)

(𝑛−1) 𝜎1
2 ), 

 

where 
𝑠𝑖

2 (n-1)

σ1
2 =  χ

n-1
2  is a random variable that follows a chi-squared distribution with 

𝑛-1 degrees of freedom, so 

 

𝑃𝑟(𝑠𝑖
2 ≤  𝑈𝑆𝐶̂) = 𝑃𝑟 (χ

𝑛−1
2 ≤

𝜎̂0
2

𝜎1
2 χ

𝑛−1,1−𝛼𝑛𝑜𝑚

2 ).     (28) 

 

Being 𝜎1
2 = ∆2𝜎0

2 and 𝜏2 =
𝜎̂0

2

𝜎0
2, we have the following Equation 29: 
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𝑃𝑟(𝑠𝑖
2 ≤  𝑈𝑆𝐶̂) = 𝑃𝑟 (𝑋𝑛−1

2 ≤ χ
n-1, 1-α
2 𝜏2 

∆2)                (29) 

 

Being Type I error 𝛼 = 1 − 𝑃𝑟 (𝑠𝑖
2  ∈ (0, 𝐿𝑆𝐶̂)) for, when ∆= 1 (In-Control Process), 

hence, 𝛼 = 1 −  𝑃𝑟 (𝑋2 ≤ χ
n-1, 1-α
2 𝜏2), resulting in the following equation: 

 

𝛼 = 1 −  𝐹𝑋2 (χ
n-1, 1-α
2 𝜏2 )        (30) 

 

The probability function of 𝑈 is 𝑓(𝑢) = 𝑚(𝑛 − 1) 𝑓𝑋2(𝑚(𝑛 − 1)𝑢) and the 

unconditional ARL is given by the following equation: 

 

𝐴𝑅𝐿 = ∫
1

𝛼
𝑓(𝑢)

∞

0
𝑑𝑢, where 𝛼 = 1 −  𝐹𝑋2 (χ

n-1, 1-α
2  𝜏2), thus 

 

𝐸(𝐴𝑅𝐿) = ∫
1

1 − 𝑃𝑟 (𝑋𝑛−1
2 ≤ χ

n-1, 1-α
2 𝜏2 

∆2 )
𝑓(𝑢)

∞

0

𝑑𝑢 

 

𝐸(𝐴𝑅𝐿) = ∫
1

1 − 𝑃𝑟 (𝑋𝑛−1
2 ≤ χ

n-1, 1-α
2 𝜏2 

∆2 )
𝑚(𝑛 − 1) 𝑓𝑋2(𝑚(𝑛 − 1)𝑢

∞

0

𝑑𝑢 

 

𝐴𝐴𝑅𝐿(𝑚, 𝑛, 𝛿) = ∫
1

1−𝐹𝑋2(
χn-1, 1-α
2 𝜏2

∆2 )

𝑚(𝑛 − 1)𝑓𝑋2(𝑚(𝑛 − 1)𝑢 𝑑𝑢)
∞

0
. 

 

Being χ
n-1, 1-α
2  the constant 𝑘 in terms of (1-α)-quantile of a chi-square distribution with n-1 

degrees of freedom and α is the nominal false alarm rate, we have: 

 

𝐴𝐴𝑅𝐿(𝑚, 𝑛, 𝑘, 𝛿) = ∫
1

1−𝐹𝑋2(
𝑘𝜏2

∆2 )
𝑚(𝑛 − 1) 𝑓𝑋2(𝑚(𝑛 − 1)𝑢 𝑑𝑢)

∞

0
    (31) 

 

Where 𝑓𝑋2 is the Probability Density Function of a chi-square distribution with 

𝑚(𝑛 − 1) degrees of freedom. 

The analysis of the performance of the Shewhart variance charts with estimated 

parameter was performed using the Maple Software, version 18. The numerical solution of the 



53 

 

ARL mathematical function is given by equation 31. This equation was obtained by the 

construction of the program according to Figure 4.9 shown below. 

Figure 4.9 - Mathematical function in software Maple version 18 

 

Source: The author (2021) 

 

Where 𝑚 is the number of samples taken in Phase I of size 𝑛; 𝑘 is a constant; and ∆ is 

the deviation of population variance. The following table presents the results obtained by 

numerical methods for 𝛼𝑛𝑜𝑚 = 0,0027 and ∆= {1,00; 1,05; 1,10; 1,15; 1,20; 1,25; 1,30; 1,35} 

 

Table 4.5 - Values of 𝐴𝑅𝐿 form 𝛼𝑛𝑜𝑚 = 0,0027 and ∆={1,00; 1,05; 1,10; 1,15; 1,20; 1,25; 

1,30; 1,35} 

M n 
𝛼𝑛𝑜𝑚 0,0027 ∆ 

𝑘 Performance 1 1,05 1,10 1,15 1,20 1,25 1,30 1,35 

20 

3 11,83 AARL 1110,4 516,2 271,9 158,0 99,3 66,5 46,9 34,5 

5 16,25 AARL 802,4 350,7 175,2 97,4 59,0 38,3 26,4 19,1 

9 23,57 AARL 667,0 254,5 114,5 58,7 33,5 20,8 13,9 9,8 

50 

3 11,83 AARL 541,9 291,6 171,4 108,4 72,7 51,2 37,7 28,7 

5 16,25 AARL 490,5 237,7 128,4 75,7 48,1 32,4 23,0 17,0 

9 23,57 AARL 460,9 191,3 91,6 42,7 29,1 18,6 12,7 9,2 

200 

3 11,83 AARL 405,2 230,1 141,1 92,2 63,5 45,7 34,2 26,4 

5 16,25 AARL 396,0 200,2 111,71 67,6 43,8 30,0 21,5 16,1 

9 23,57 AARL 390,0 168,0 82,7 45,4 27,3 17,7 12,2 8,9 

500 

3 11,83 AARL 383,9 220,1 136,0 89,4 61,8 44,7 33,5 25,9 

5 16,25 AARL 380,2 193,8 108,8 66,1 43,0 29,5 21,3 15,9 

9 23,57 AARL 377,7 163,8 81,1 44,7 27,0 17,5 12,1 8,8 

1000 

3 11,83 AARL 377,1 216,9 134,4 88,5 61,3 44,4 33,3 25,8 

5 16,25 AARL 375,1 191,7 107,8 65,7 42,7 29,4 21,2 15,9 

9 23,57 AARL 373,7 162,5 80,6 44,5 26,8 17,4 12,1 8,8 

Source: The author (2021) 
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The Table 4.5 shows that the ARL converges to 1 𝛼𝑁𝑂𝑀
⁄ = 370,4 as 𝑚 increases (see 

𝑚 = 1000) and the 𝐴𝑅𝐿 decreases as ∆ increases, meaning that the 𝐹𝐴𝑅 gets higher, which is 

expected, as ∆> 1. If we increase from 𝑛 = 3 to 𝑛 = 5 and 𝑛 =  9, for same 𝑚, the 𝐴𝑅𝐿 

converges slowly to 1 𝛼𝑁𝑂𝑀
⁄ , and faster as 𝑚 increases. 

The Modified control limit however, is not a random variable because it is not estimated, 

being calculated by given parameters such upper and lower specification limits that are defined 

by process manager or consumers and acceptance rate of nonconforming units, that are also 

defined by process manager in order to fulfil customer requirements. This being said, the 

Modified Chart for variance performance has the same behavior found for Shewhart’d 𝑆2 Chart 

when parameters are known. 

In order to evaluate how the 𝑈𝐶𝐿𝑀𝑂𝐷 and 𝑈𝐶𝐿̂
S2 correlates, we propose a additional 

Phase 0, before well known traditional Phase I. In addition, to provide to process practitioners 

guidance to define if the chart developed fits to real use, we also propose the assessment of the 

ratio between σMAX
2  and 𝜎0

2 as detailed in the following paragraphs. 

When we need to estimate 𝜎0
2, it means that the 𝑈𝐶𝐿̂

S2 may vary because the variance 

now is a random variable. However, the 𝑈𝐶𝐿𝑀𝑂𝐷, considering that the mean is between the 

𝑈𝑆𝐿 and 𝐿𝑆𝐿, does not shift. Thus, if the 𝑈𝐶𝐿̂
S2  is located below 𝑈𝐶𝐿𝑀𝑂𝐷 most of the time, it 

is possible to conclude that the issues caused by the estimations and its inherent errors could be 

less severe. Hence, we calculate the probability of 𝑈𝐶𝐿̂
S2 is less than 𝑈𝐶𝐿𝑀𝑂𝐷, that is 

𝑃(𝑈𝐶𝐿̂
S2 < 𝑈𝐶𝐿𝑀𝑂𝐷), recalling that the 𝑈𝐶𝐿𝑀𝑂𝐷 is calculated by using given parameters (see 

equation 15). 

The estimation of Upper Control Limit is given by Equation 23, already presented in 

section 4.2. 

 

𝑈𝐶𝐿̂
S2= 𝜎̂0

2 
χn-1, 1-α

2

n−1
         (23) 

 

As stated previously in section 4.2, according to Mahmoud (2010), the pooled variance 

(𝑆𝑝
2) is the best estimators for 𝜎0

2 and is calculated by equation 26. Replacing 𝜎̂0
2 by 𝑆𝑝

2 we have 

the equation (32). 

 

𝑈𝐶𝐿̂
S2= 𝑆𝑝

2 
χn-1, 1-α

2

n-1
          (32) 
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Therefore, 𝑃(𝑈𝐶𝐿̂
S2 < 𝑈𝐶𝐿𝑀𝑂𝐷) = 𝑃 (𝑆𝑝

2 
χn-1, 1-α

2

n-1
<  σMAX

2  
χn-1, 1-α

2

n-1
) 

             = 𝑃(𝑆𝑝
2 <  σMAX

2  )                          (33) 

 

Developing the Equation 33 we have the following: 

 

𝑃(𝑈𝐶𝐿̂
S2 < 𝑈𝐶𝐿𝑀𝑂𝐷) = 𝑃 ( 

𝑚(𝑛 − 1)𝑆𝑝
2

𝜎0
2 <

𝑚(𝑛 − 1) σMAX
2

𝜎0
2  ) 

where 
 𝑚(𝑛−1)𝑆𝑝

2

σ0
2 =  χ

𝑚(𝑛−1)
2 , here denoted as 𝑌, is a random variable that follows a chi-

squared distribution with 𝑚(𝑛 − 1) degrees of freedom, so we have the following Equation 34. 

Is important to notice that here we are still in Phase I, thus we have the in-control variance σ0
2 . 

 

𝑃(𝑈𝐶𝐿̂
S2 < 𝑈𝐶𝐿𝑀𝑂𝐷) = 𝑃 ( 𝑌 <

𝑚(𝑛−1) σMAX
2

𝜎0
2  )      (34) 

 

Recalling that 𝑈𝐶𝐿𝑀𝑂𝐷 has all parameters known and is fixed, after proper derivations, 

we found that the equation 34 depends on the in-control variance 𝜎0
2, which is unkwown. 

Assuming that the process practitioner does not known the actual value of 𝜎0
2, note that 

σMAX
2 𝜎0

2⁄ , is the ratio between σMAX
2  (the maximum value that the process variance is allowed to 

be compared with the in-control process value, in the sense that the process produces a tolerated 

small fraction of nonconforming items) and the in-control variance 𝜎0
2. By dividing σMAX

2  by 𝜎0
2, 

we may define how much larger the maximum allowed variance is required to be when 

compared with the the target variance. 

Hence, what should this ratio be so that the probability of the traditional 𝑆2 control limit 

of the estimated parameter is less than the modified control limit, at a given probability of 95%, 

90% or 99%? That is, 95% of all possible 𝑈𝐶𝐿̂𝑆2, due to 𝑆𝑝
2 is a random variable, will be smaller 

than 𝑈𝐶𝐿𝑀𝑂𝐷. The Figure 4.10 below shows graphically this behavior, for Phase I, where the 

green lines representing 𝑈𝐶𝐿̂𝑆2 were estimated for a 𝑚 = 25, 𝑛 = 5 and the parameters listed 

in Table 4.6, and the red line representing 𝑈𝐶𝐿𝑀𝑂𝐷, which is fixed and calculated in terms of  

σMAX, specification limits, degrees of freedom and 𝛼𝑛𝑜𝑚, all given parameters. 
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Table 4.6 - Parameters used for calculation of control limits of Figure 4.10 

Source: The author (2021) 

 

Figure 4.10 - Graphical demonstration of how the 𝑈𝐶𝐿̂𝑆2 locates around 𝑈𝐶𝐿𝑀𝑂𝐷 

  

Source: The author (2021) 

Is also important to notice that we can find different required ratios for 
 σMAX

2

𝜎0
2  by varying 

𝑚 and 𝑛. Based on these informations, we can raise the following question: 

What should be the value of 
 σMAX

2

𝜎0
2  so that 𝑃 ( 𝑌 <

𝑚(𝑛−1) σMAX
2

𝜎0
2  ) = 95% (or any other 

desired probability)? 

The chart user defines this probability, recalling that the ideal scenario would be that 𝜎0
2 

is known, however it is an unknown process parameter, that can be either given for calculation 

matters or replaced by the pooled variance (𝑆𝑝
2). 

For 𝑚 = 25, 𝑛 = 5 and 𝑃 = 95%, we have that σMAX
2 𝜎0

2⁄ = 1,2434, that means if the 

practitioner collects 25 samples of size 5 during Phase I, the σMAX
2  shall be at least 24% larger 

than the in-control variance, or in this case, the pooled variance (𝑆𝑝
2) from Phase I, given by 

equation 26. If the ratio is 1,2434, we have that 95% possible estimated 𝑆2 control limits 

(𝑈𝐶𝐿̂𝑆2), will locate below the modified control limit (𝑈𝐶𝐿𝑀𝑂𝐷). In a new scenario we raise 

𝑚 = 100 and keep 𝑛 = 5 and 𝑃 = 95%, and now we have that now σMAX
2 𝜎0

2⁄ = 1,1191, that 

𝜇0 σ0 σMAX USL LSL 𝛼 

74,000 0,0117 0,0128 74,050 73,950 0,27% 
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means, if the process practitioner wants to ensure that all possible 95% possible estimated 𝑆2 

control limits (𝑈𝐶𝐿̂𝑆2), will locate below the modified control limit (𝑈𝐶𝐿𝑀𝑂𝐷). 

In Table 4.7 below, there are several ratios to be considered varying 𝑚, 𝑛 and the given 

probability of 𝑈𝐶𝐿̂𝑆2 being less than 𝑈𝐶𝐿𝑀𝑂𝐷. Is possible to notice that as 𝑚 and 𝑛 get larger, 

the required ratio gets smaller, that means that σMAX
2  is required to be less in magnitude than 𝜎0

2, 

which can contribute to achieve the required ratio easier. 

 

Table 4.7 - Ratio σMAX
2 𝜎0

2⁄  calculation varying 𝑚, 𝑛 and the given probability of 𝑈𝐶𝐿̂𝑆2 

being less than 𝑈𝐶𝐿𝑀𝑂𝐷 

m n 
Degrees of Freedom 

𝑚(𝑛 − 1) 

Ratio 

(90%) 

Ratio 

(95%) 

Ratio 

(99%) 

25 

3 50 1,2633 1,3501 1,5231 

5 100 1,1850 1,2434 1,3581 

9 200 1,1301 1,1700 1,2472 

50 

3 100 1,1850 1,2434 1,3581 

5 200 1,1301 1,1700 1,2472 

9 400 1,0916 1,1191 1,1718 

100 

3 200 1,1301 1,1700 1,2472 

5 400 1,0916 1,1191 1,1718 

9 800 1,0646 1,0836 1,1200 

200 

3 400 1,0916 1,1191 1,1718 

5 800 1,0646 1,0836 1,1200 

9 1600 1,0456 1,0589 1,0841 

500 

3 1000 1,0577 1,0747 1,1070 

5 2000 1,0407 1,0526 1,0750 

9 4000 1,0288 1,0371 1,0528 

1000 

3 2000 1,0407 1,0526 1,0750 

5 4000 1,0288 1,0371 1,0528 

9 8000 1,0203 1,0261 1,0372 

2000 

3 4000 1,0288 1,0371 1,0528 

5 8000 1,0203 1,0261 1,0372 

9 16000 1,0144 1,0185 1,0262 
Source: The author (2021) 

 

Here, as stated previously, we propose one additional phase for chart design, when 

compared to what is traditionally accepted. In Phase 0, we determine 𝑈𝐶𝐿𝑀𝑂𝐷 and 𝑈𝐶𝐿̂𝑆2, 

following by the control limits and chart build. Then we have Phase I, that comprises to take 𝒎 

samples with 𝒏 elements and plot each 𝑠𝑖
2. If all points are within the two control limits, we 

approve the process to move on to monitoring phase (Phase II).  
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Figure 4.11 – Proposed steps to build the Modified Chart for unknown variance 

 

Source: The author (2021) 
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However, if any of the plotted points falls above 𝑈𝐶𝐿̂
S2 and under UCLMod, the process 

has presence of special causes of variation or excessive common causes of variation, that must 

be removed or reduced, respectively. In addition, if any of the plotted points falls above both 

𝑈𝐶𝐿̂
S2 and UCLMod, the special causes of variation, if present, must be removed as low as 

possible, the excessive common causes of variation must be reduced, and process capability 

must be improved. After all corrections required are completed, take another 𝒎 samples with 

𝒏 elements and plot each 𝑠𝑖
2, and verify if all of them fall under both control limits. The Figure 

4.11 shows the steps to be followed to build the Modified Chart for unknown variance. 

In the next section an illustrative example is provided to show the use of the proposed 

Modified Chart and its building steps when the in-control mean is centered between 𝐿𝑆𝐿 and 

𝑈𝑆𝐿 and the variance is unknown. 

It is at Phase II that the process control takes place, where through samples assessment, 

it is evaluated whether there is the presence of special causes that may lead it to an out-of-control 

condition. In this case, the chart alerts the process practitioner that some intervention may be 

needed in order to return the process to its control state. Some attributes of run-length distribution 

and False Alarm Rate (Type I error probability) are used to measure and describe chart 

performance. This work does not provide any new insights about Phase II and due to this stage 

be well known and developed in terms of literature, no further guidance will be provided in here. 

Some suggestions of literature regarding Phase II are Montgomery (2009), Chakraborti and 

Graham (2019) and Epprecht, Loureiro and Chakraborti (2015). 

  

4.2.3 An Illustrative Example for unknown variance (𝝈𝟎
𝟐) and in control mean 𝝁𝟎 

centered between LSL and USL 

 

In this section, we illustrate the use 𝑆2 Modified Control Chart for unknown variance 

using the same example from previous sections 4.1.2 and 4.2.1. Again, the quality characteristic 

variable (𝑋) is the internal diameter of the piston rings, which has a two-sided specification limits 

of 74.000 + 0.050 mm. It is assumed that the piston rings diameter (𝑋) follows a normal 

distribution and the in-control mean (𝜇0) is known, centered in the middle of specification limits. 

However, the in-control standard deviation (𝜎0) of the piston rings diameter is unknown and 

therefore it needs to be estimated, being the pooled variance (𝑆𝑝
2) used. Different from previous 

illustrative examples, the Phase I assessment needs to be executed, where according to 
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Montgomery (2009), typically 𝑚 = 20 or 25 subgroups are used in this phase. Here, the Phase I 

will change to the proposed method explained in the previous section. 

The process leadership still defined as acceptable up to 96 nonconforming parts per 

million (ppm) of units produced, which represents a potential capacity (Cp) of 1.30. Here we 

start the Phase 0, when the chart control limits (UCLMod and 𝑈𝐶𝐿̂𝑆2) will be defined. Starting 

with UCLMod, being USL, LSL and the acceptable nonconforming parts rate known, σMAX and 

UCLMod are calculated as follows (considering a maximum false alarm rate (𝛼) of 0,0027): 

 

σMAX =
USL − LSL

2 z1-γ/2

=
74,05 − 73,95

2×3,9
=

0,1

7,8
= 0,0128 

 

UCLMod= σMAX
2  

χn-1, 1-α
2

n−1
=0,0128

2
 

16,25

5−1
= 0,00067   

  

During Phase I, the process manager decided to take 𝑚 = 25 subgroups with 𝑛 = 5 

elements each. In addition, it is defined the 95% probability of 𝑆2 estimated upper control limit 

(𝑈𝐶𝐿̂𝑆2) is less of UCLMod. Thus, based on Table 4.7, the ratio σMAX
2 𝜎0

2⁄  shall be at least 1,2434 

and hence, considering that σMAX
2  is 0,000164 (𝜎𝑀𝐴𝑋 = 0,0128), the maximum in-control process 

tolerable variance 𝜎0
2 is 0,000132. Therefore, the 𝑈𝐶𝐿̂

S2 is calculated as follows (considering a 

maximum false alarm rate (𝛼) of 0,0027): 

 

𝑈𝐶𝐿̂
S2= (

σMAX
2

1,2434
)  

χ
n-1, 1-α
2

n − 1
 = 0,000132

16,25

5 − 1
= 0,00054 

 

Hence, after Phase 0, we have the following designed control chart shown in Figure 4.12 

and in the next phase, we will take 𝑚 samples with 𝑛 elements and plot each Phase I 𝑠𝑖
2, in the 

same chart designed shown in Figure 4.12. 

To examine the behavior of Phase I, we simulated 25 independent samples of the piston 

ring diameter (each sample with size 5), from a normal distribution with mean 𝜇0 = 74,000 and 

a standard deviation equals to σMAX
2 1,2434⁄ , based on Table 4.7 for 𝑚 = 25, 𝑛 = 5 and 𝑃 =

95%. The simulated sample variances (𝑆2) and the control limits (𝑈𝐶𝐿 𝑆2 and 𝑈𝐶𝐿𝑀𝑜𝑑) are 

shown in Figure 4.13. 𝑈𝐶𝐿𝑆2 is shown in a dashed grey line and 𝑈𝐶𝐿𝑀𝑜𝑑 in a solid black line. 
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Figure 4.12 - Graphical demonstration of how the 𝑼𝑪𝑳̂𝑺𝟐 locates around 𝑼𝑪𝑳𝑴𝑶𝑫 

 

Source: The author (2021) 

 

𝑈𝐶𝐿 𝑆2 is shown in a dashed grey line and 𝑈𝐶𝐿𝑀𝑜𝑑 in a solid black line. Supposing that 

the unknown process variance (unknown) is 𝜎2 = 0,000132, that equals to σMAX
2 1,2434⁄ , we 

have the chart shown in Figure 4.13. 

As we can see in Figure 4.13, signals above the 𝑈𝐶𝐿̂𝑆2 dashed line were not found and 

therefore, the practitioner can move to Phase II, process monitoring. Now in Figure 4.14, we 

simulated 1,000 Phase II samples variances with size 5. 

  

Figure 4.13 - The 𝑆2 Control Chart and the 𝑆2 Modified Control Chart for Phase I execution 

of a process  𝑋~𝑁(𝜇0 = 74,000, 𝜎2 = 0,000132) given the in-control 

parameters in the example 

 

Source: The author (2021) 
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Figure 4.14 - The 𝑆2 Control Chart and the 𝑆2 Modified Control Chart for monitoring the 

variance of a process 𝑋~𝑁(𝜇0 = 74, 𝜎2 = 0,000132) 

  

Source: The author (2021) 

We can also see in Figure 4.14 signals above the 𝑈𝐶𝐿̂𝑆2 dashed line, and again, instead 

of process practitioner suspect that an assignable cause has occurred, by using 𝑈𝐶𝐿𝑀𝑜𝑑, the 

process variance is still smaller than the maximum variance allowed (𝜎MAX
2 = 0,01282), so the 

proportion of nonconforming items being produced is still acceptable according to the 

specification of the project. 

The 𝑆𝑝
2 for the data shown in Figure 4.14 is 0, 0001322, so the probability of a false 

alarm is smaller than 𝛼𝑛𝑜𝑚 = 0,0027, as shown below. 

 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 = 1 − 𝑃(𝑆2 < 𝑈𝐶𝐿𝑀𝑜𝑑|𝑆𝑝
2 = 0,0001322) 

=1 − P (S
2
 <  σMAX

2  
χn-1, 1-α

2

n-1
|𝑆𝑝

2 = 0,0001322)  

=1 − P (
(n-1)S2

𝑆𝑝
2 <  

σMAX
2

𝑆𝑝
2  χ

n-1, 1-α
2 ), 

 

where 
(n-1)𝑆2

𝜎1
2 =  χ

n-1
2  is a random variable that follows a chi-squared distribution with 

𝑛-1 degrees of freedom, so 

 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 = 1 − 𝑃 ( χn−1
2 <

0,000164

0,0001322
 16,25) = 1 − 𝑃( χn−1

2 < 20,1365) 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 = 0,00047 < 𝛼𝑛𝑜𝑚 = 0,0027 
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The False Alarm Rate less than the Type I error (𝛼𝑛𝑜𝑚) determined by the process 

practitioner, means that it is expected less false signals that the process shifted when it is still 

actually, meeting the manufacturing requirements. This may contribute for even less 

unnecessary process stop. 

 

4.3 IN-CONTROL MEAN (𝜇0) BUT NOT CENTERED BETWEEN 𝑈𝑆𝐿 AND 𝐿𝑆𝐿, AND 

VARIANCE IS KNOWN (𝜎0
2) 

 

Here, we assume that the process mean is known and in-control (𝜇0) but not centered 

between the specification limits, and variance also known (𝜎0
2). The chart is still constructed 

with the purpose of detecting relevant increases in the process variance only. 

Suppose that (𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑚,𝑛) are random variables, and 𝑖 = 1,2, … 𝑚 are 

independent samples extracted from a process in Phase II, known variance 𝜎0
2, where 𝑖 which 

identifies the subgroup. In Phase II, the samples of size 𝑛 are extracted, and 𝑠𝑖
2 are calculated 

from {𝑋𝑖,1, 𝑋𝑖,2, … , 𝑋𝑖,𝑛}, where the type I error is 𝛼 = 𝑃𝑟(𝑠𝑖
2  ∉ (0, 𝑈𝐶𝐿)) or 𝛼 = 1 −

𝑃𝑟(𝑠𝑖
2  ∈ (0, 𝑈𝐶𝐿)), and is represented by 𝛼1. The UCL is the Upper Control Limit. 

When the process is in-control (IC), with mean not centered between USL and LSL, and 

known variance, using 𝑋̅ as stated in section 3.1, we can write the same equation 7, already 

written before: 

 

𝑃𝑟(𝑠𝑖
2 ≤ UCL

S2) = 𝑃𝑟 (𝑛 − 1 .
𝑠𝑖

2

σ0
2  ≤  𝜒𝑛−1,1−𝛼

2 ) =  𝑃𝑟 (𝑠𝑖
2 ≤  σ0

2 .
𝜒𝑛−1,1−𝛼

2

𝑛−1
)  (7) 

 

Therefore, we can get the Upper Control Limit for 𝑆2 by the same equation 8, already 

shown before. The shift of in-control value (𝜇0) does not affect the position of Upper Control 

Limit. 

 

UCL
S2= σ0

2 
χn-1, 1-α

2

n-1
,             (8) 

 

The plotting statistic (𝑆2) given by equation 1, should be compared with the Upper 

Control limit (𝑈𝐶𝐿𝑆2) of the 𝑆2 Control Chart which is given by equation 8, where 𝜎0
2 is the 

nominal in-control process variance, χ
n-1, 1-α
2  is the (1-α)-quantile of a chi-square distribution 
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with n-1 degrees of freedom and α is the nominal false alarm rate (or the false alarm probability) 

chosen by the practitioner (usually, 𝛼 = 0,0027).  

A false alarm is defined as a signal (alarm) when the process is in control. The maximum 

false alarm rate happens when 𝜎2 = 𝜎0
2 and is not affected by change of the mean to a not 

centered location between the USL and LSL, being the equation 10 already shown in section 

4.1. 

 

𝐹𝐴𝑅𝑀𝐴𝑋  =  1 −  𝑃( 𝜒𝑛−1
2 < 𝜒𝑛−1,1−𝛼

2 ) =  𝛼.      (10) 

 

When the actual variance of the process (𝜎2) is exactly at the in-control process variance 

(𝜎0
2) value, the proportion of nonconforming units being produced should be small, for slight 

changes in mean (𝜇1). In other words, the probability of the quality characteristic (𝑋) be smaller 

than the lower specification limits (LSL) or larger than the upper specification limits (USL), 

should be small, but higher when compared with the scenario where the mean in the middle 

point between the USL and LSL. Figure 4.15 illustrates this situation. Note that these 

specification limits are provided by the project/manager.  

The 𝑆2 Control Chart is designed to detect increases (larger than 𝜎0
2) of any magnitude 

in the actual process variance (σ2), even increases that do not affect the rate of nonconforming 

items being produced. These increases will tend to produce a signal (alarm) on the control chart. 

Considering now that the mean changed from 𝜇0 to 𝜇0
′ , by how large the actual variance 

𝜎1
2 could be compared to 𝜎0

2 to still provide a nonconforming rate that meets the company or 

consumer acceptance criteria (see Figures 4.15a and 4.15b)? 

Note that since 𝜎1
2 is larger than 𝜎0

2, with mean no more in the middle of the specification 

limits, from the perspective of the 𝑆2 Control Chart, the process should be declared out-of-

control, for this new scenario, the process may be still not producing many nonconforming 

items (almost all the items being produced are still within the specification limits even 

though σ2 = 𝜎1
2 > 𝜎0

2 and 𝜇 = 𝜇0 > 𝜇0
′  𝑜𝑟 𝜇0 < 𝜇0

′ . So, in the same way stated in section 4.1, 

trying to fix this increase on the variance may be a waste of time and money, since in most of 

the cases, the process would have to be paused. 

Starting from the premise of Section 3.1, that the purpose of a process control system is 

decisions making that result in economic gains over the process, it is possible to balance the 

consequences of these decisions even considering two situations: (a) take action when not 

needed (over control), versus (b) does not take action when it is necessary (lack of control). 
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Thus, it is possible to use the concept of practical significance to make economically viable 

decisions on the process condition. 

 

Figure 4.15 – 4.15a. Process running with the nominal in-control variance (σ2 = 𝜎0
2) with all 

the items being produced within the specification limits. 4.15b. Process running 

with the nominal in control variance (σ2 = 𝜎0
2) and mean changed from 𝜇0 to 𝜇0

′ . 

4.15c. Process running with variance changed from 𝜎0
2 to 𝜎1

2 and mean from 𝜇0 

to 𝜇0
′ , where 𝛾 maximum tolerated rate of nonconforming units 

   

Source: The author (2021) 

 

The 𝜎𝑀𝐴𝑋
2  value still must be chosen with care, depending on the lower and upper 

specification limits, LSL and USL, the magnitude of the change for the actual mean (𝜇 =  𝜇0
′ ), 

and the maximum rate (probability) of nonconforming units produced (denoted here by 𝛾) that 

may be tolerated (or allowed). 

Let us consider the figure 4.15c, where 𝜇0
′  is larger than the middle point: 

 

𝛾 =  1 −  𝑃(𝑋 <  𝑈𝑆𝐿| 𝜎2 =  𝜎𝑀𝐴𝑋
2 )  = 1 − 𝑃 (

𝑋 – 𝜇0
′

𝜎𝑀𝐴𝑋
 <

𝑈𝑆𝐿 – 𝜇0
′

𝜎𝑀𝐴𝑋
)  

𝛾 = 1 − 𝑃 (𝑍 <
𝑈𝑆𝐿 − 𝜇0

′

𝜎𝑀𝐴𝑋
) =  1 − 𝛷 ( 

𝑈𝑆𝐿 − 𝜇0
′

𝜎𝑀𝐴𝑋
)      (35) 
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where Z is a random variable that follows a standard normal distribution and 𝛷(∗) is 

the cumulative distribution function (c.d.f.) of a standard normal random variable. From 

equation 35, one has: 

 

𝑈𝑆𝐿 − 𝜇0
′

𝜎𝑀𝐴𝑋
=  𝛷−1(1 − 𝛾) = 𝑧1− 𝛾  

𝜎𝑀𝐴𝑋 =
𝑈𝑆𝐿 − 𝜇0

′

𝑧1− 𝛾
          (36) 

 

Is important to note that in the case presented, 𝑈𝑆𝐿 −  𝜇0
′  and 𝑧1− 𝛾 are positive values. 

Now, let us consider the case where 𝜇0
′  is smaller than the middle point. 

 

𝛾 =  𝑃(𝑋 <  𝐿𝑆𝐿| 𝜎2 =  𝜎𝑀𝐴𝑋
2 )  = 𝑃 (

𝑋 – 𝜇0
′

𝜎𝑀𝐴𝑋
 <

𝐿𝑆𝐿 – 𝜇0
′

𝜎𝑀𝐴𝑋
)  

𝛾 = 𝑃 (𝑍 <
𝐿𝑆𝐿 − 𝜇0

′

𝜎𝑀𝐴𝑋
) =  𝛷 ( 

𝐿𝑆𝐿 − 𝜇0
′

𝜎𝑀𝐴𝑋
) =  

𝐿𝑆𝐿 − 𝜇0
′

𝜎𝑀𝐴𝑋
=  𝛷−1(𝛾) = 𝑧 𝛾  

𝜎𝑀𝐴𝑋 =
𝐿𝑆𝐿 − 𝜇0

′

𝑧 𝛾
          (37) 

Note that in this case presented 𝜇0
′ − 𝐿𝑆𝐿 and 𝑧𝛾 are negative values. 

Given that the shift in the first case (where 𝜇0
′  is larger than the middle point) has the 

same length of the dislocation in the second case (where 𝜇0
′  is smaller than the middle point). 

We have: 

 

𝜎𝑀𝐴𝑋 =
𝐿𝑆𝐿 − 𝜇0

′

𝑧 𝛾
=

𝑈𝑆𝐿 − 𝜇0
′

𝑧1− 𝛾
         (38) 

 

To calculate the upper control limit (𝑈𝐶𝐿𝑀𝑜𝑑) of the 𝑆2 Modified Control Chart, one 

just need to replace σ0
2 in the original control limit equation of the 𝑆2 Control Chart (see equation 

8 by σMAX
2 , as shown below. 

For 𝜇0
′  larger than the middle point: 

 

𝑈𝐶𝐿𝑀𝑜𝑑= σMAX
2  

χn-1, 1-α
2

n-1
 = 

(𝑈𝑆𝐿−𝜇0
′ )

2
 χn-1,1-α

2

(n-1) (𝑧1−𝛾)
2 .        (39) 
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For 𝜇0
′  smaller than the middle point: 

 

𝑈𝐶𝐿𝑀𝑜𝑑= σMAX
2  

χn-1, 1-α
2

n-1
 = 

(𝐿𝑆𝐿−𝜇0
′ )

2
 χn-1,1-α

2

(n-1) (𝑧𝛾)
2 .        (40) 

 

 The 𝐹𝐴𝑅 and 𝐴𝑅𝐿 assessment executed in section 4.1, for in-control mean centered 

between USL and LSL and variance is known, extends to this section 4.2, where the only 

difference is the in-control mean no longer centered between USL and LSL. The reason is that 

the 𝐹𝐴𝑅 and 𝐴𝑅𝐿 for process variance are not affected if the in-control mean is centered between 

the specification limits or not. 

 

4.3.1 An Illustrative Example for variance known (𝝈𝟎
𝟐) and in control mean 𝝁𝟎

′  not 

centered between LSL and USL 

 

Returning to the same example shown in Section 4.1.1, to illustrate the ideas of the 𝑆2 

Modified Control Chart for known variance and mean changing from 𝜇0 to 𝜇1, in an automobile 

engine manufacturing process that uses a forging process to make piston rings. The quality 

characteristic variable (𝑋) is the internal diameter of the piston rings, which has a two-sided 

specification limits of 74,000 + 0,050 mm. It is assumed that the piston rings diameter (𝑋) 

follows a normal distribution. Now, we assume that the in-control mean (𝜇0) 74,000 mm shifted 

to 𝜇0
′ , being now the in-control mean equals to 74,007 and the in-control standard deviation (𝜎0) 

of the piston rings diameter are known, still being 0,010 mm. The process leadership defined 

as acceptable, still up to 96 nonconforming parts per million (ppm) of units produced, which 

represents a potential capacity (Cp) of 1,30, according to Table 3.1. 

In other words, the maximum allowed rate of nonconforming items (𝛾) is 

96/1000000 =  0,000096, which provides 𝑧1−𝛾 = 3,729. So, the maximum standard-

deviation allowed (𝜎𝑀𝐴𝑋) for the piston ring diameter can be calculated using Equation 21, as 

shown below. 

 

σMAX =  
𝑈𝑆𝐿−𝜇0

′  

𝑧1−𝛾
=

74,050−74,008

3,729
=  

0,042

3,729
 = 0,0113 
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As expected, by having the in-control shifted from 𝜇0 to 𝜇0
′ , no longer in the center point of 

USL and LSL, the σMAX is less than the one found in section 4.1.1, for centered in-control mean. 

All parameters given by this example are summarized in Table 4.8. 

 

Table 4.8 - Parameters provided by the Example 

Source: The author 

 

The first analysis was done on the probability of nonconform units with 

σ0 = 0,0100, which provided a 𝐶𝑝 equal to 1,67 and 𝐶𝑝𝑘 = min (𝐶𝑃𝐿 =  
µ−LSL

3𝜎
= 1,93; 𝐶𝑃𝑈 =

 
𝐿𝑆𝐸− µ

3𝜎
= 1,40) sigma level of 4.2 and a defective ppm of 13.3, which is still better than the 

process requirement (ppm of 96). Therefore, the use of a modified acceptance chart has become 

appropriate. 

By using the data presented in Table 11, the upper control limits for the traditional S2 

chart and the modified chart for the process were defined, considering σ0 = 0,01, which are 

shown in Table 6. 

Table 4.9 - Upper Control Limits for variance and potential capacity 

 

 

 

 

 

 

 

 

Source: The author (2021) 

Suppose that the practitioner decides to monitor the process variance (𝜎2) with samples 

of size 𝑛 = 5 of the piston’s rings diameter collected at regular intervals. To this end, the 

practitioner can use the well-known 𝑆2 Control Chart or the 𝑆2 Modified Control Chart 

proposed here. Considering a maximum false alarm rate (𝛼) of 0,0027 for each chart, the control 

limits of both charts (𝑈𝐶𝐿 𝑆2 and 𝑈𝐶𝐿𝑀𝑜𝑑) can be calculated as shown below. 

𝜇0
′  σ0 σMAX USL LSL 𝛾 

74,008 0,0100 0,0113 74,050 73,950 0,000096 

 Upper Limit for S i
2
 Equation 

𝑈𝐶𝐿𝑆2 0,000406 si
2 ≤ 

𝜎0
2

n-1
 .  χ

n-1,1-𝛼
2  

𝑈𝐶𝐿𝑀𝑜𝑑 0,00052 si
2 ≤

(𝐿𝑆𝐿 − 𝜇0
′ )

2
 χ

n-1,1-α
2

(n-1) (𝑧𝛾)
2
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UCL
S2= σ0

2 
χ

n-1, 1-α
2

n − 1
 = 0,0100

2 16,25

5 − 1
= 0,000406 

UCLMod= σMAX
2  

χ
n-1, 1-α
2

n − 1
=0,0113

2
 
16,25

5 − 1
= 0,00052 

 

Now, let’s suppose that the process standard deviation (𝜎) moved from the in-control 

value 𝜎 = 𝜎0 = 0,0100 to 𝜎 = 𝜎1 = 0,0110. Note that, since 𝜎0 < 𝜎1 < 𝜎𝑀𝐴𝑋, even though 

the process standard-deviation increased, it is still in the Acceptable Zone (see Figure 4.16), so 

the process is still producing an acceptable rate of nonconforming items (i.e., a rate smaller than 

𝛾 =  0,000096). 

Figure 4.16 - Illustration showing the actual process standard deviation (𝜎) in the Acceptable 

Zone (𝜎 = 𝜎1 = 0,0110) 

  

Source: The author (2021) 

 

To further examine the behavior of both charts (the well-known 𝑆2 Control Chart and 

the 𝑆2 Modified Control Chart proposed here), we simulated one thousand independent samples 

of the piston ring diameter (each sample with size 5), from a normal distribution with mean 

𝜇0
′ = 74,008 and standard deviation 𝜎 = 𝜎1 = 0,0110. With the simulated data, we calculated 

the sample variances (𝑆2) using Equation 1, which is the plotting statistic for both charts, and 

plotted these against the control limits values shown in Equations 22 and 23. The simulated 

sample variances (𝑆2) and the control limits (𝑈𝐶𝐿 𝑆2 and 𝑈𝐶𝐿𝑀𝑜𝑑) are shown in Figure 4.17. 

𝑈𝐶𝐿𝑆2 is shown in a dashed grey line and 𝑈𝐶𝐿𝑀𝑜𝑑 in a solid black line. 

As it can be seen in Figure 4.17, signals above the 𝑈𝐶𝐿𝑆2 dashed line are frequent. If 

the user were using just the well-known 𝑆2 Control Chart, he would still typically suspect that 

an assignable cause has occurred and that the process variance (𝜎2) is larger than the in-control 

target (𝜎0
2 = 0,0102) increasing the production of nonconforming items. In this case, the user 

would stop the process and start looking for assignable causes, wasting time and decreasing 

production (what is also a waste of money). However, even though the process variance has 

indeed increased to 𝜎2 = 𝜎1
2 = 0,01102, it is still smaller than the maximum variance allowed 
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(𝜎MAX
2 = 0,01132), this means that the proportion of nonconforming items being produced is 

still acceptable according to the specification of the project. Therefore, the production does not 

really need to be stopped to search for assignable and again, the use of the well-known 𝑆2 

Control Chart alone can mislead the user. 

Figure 4.17 - The 𝑆2 Control Chart and the 𝑆2 Modified Control Chart for monitoring the 

variance of a process 𝑋~𝑁(𝜇0
′ = 74,008, 𝜎 = 𝜎1 = 0,0110) given the in-control 

parameters in Table 4.8 

 

Source: The author (2021) 

 

Since the process is still capable in the sense it is still producing an acceptable rate of 

nonconforming units, there is no signal above the 𝑈𝐶𝐿𝑀𝑜𝑑 black solid line, what is indeed 

expected since the probability of a false alarm when 𝜎2 = 𝜎1
2 = 0,01102 is smaller than  𝛼 =

0,0027, as shown below. 

 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 = 1 − 𝑃(𝑆2 < 𝑈𝐶𝐿𝑀𝑜𝑑|𝜎2 = 𝜎1
2 = 0,01102) 

=1 − P (S
2
 <  σMAX

2  
χn-1, 1-α

2

n-1
|𝜎2 = 𝜎1

2 = 0,01102)  

=1 − P (
(n-1)S2

𝜎1
2 <  

σMAX
2

𝜎1
2  χ

n-1, 1-α
2 ), 

 

where 
(n-1)𝑆2

𝜎1
2 =  χ

n-1
2  is a random variable that follows a chi-squared distribution with 

𝑛-1 degrees of freedom, so 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 = 1 − 𝑃 ( χn−1
2 <

0.01132

0.01102
 16,25) = 1 − 𝑃( χn−1

2 < 17,034) 
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𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 = 0,0019 < 𝛼𝑛𝑜𝑚 = 0,0027 

 

As already stated previously, the False Alarm Rate less than the Type I error (𝛼𝑛𝑜𝑚) 

determined by the process practitioner may contribute for even less unnecessary process stop. 

 

4.4 IN-CONTROL MEAN (𝜇0) BUT NOT CENTERED BETWEEN 𝑈𝑆𝐿 AND 𝐿𝑆𝐿, AND 

VARIANCE IS UNKNOWN (𝜎2) 

 

 As stated previously in section 4.2, the estimation of the process variance is 

traditionally done by collecting 𝑚 samples with size 𝑛 elements from an in-control (IC) process 

during Phase I. In addition, in this dissertation we also present the execution of what we call 

Phase 0 and a proposed change on how Phase I is executed, that is explained in detail in section 

4.2.2 and remains valid to this section, due to the development previously done does not take 

in consideration the location of the in-control mean. Once the estimator 𝜎̂0
2 is calculated, the 

UCL for the one sided 𝑆2 chart to be used during Phase II monitoring can be defined, for a 

specified or nominal False Alarm Rate (𝐹𝐴𝑅) and 𝛼𝑁𝑂𝑀, through the equation 23 presented in 

section 4.2: 

 

𝑈𝐶𝐿̂
S2= 𝜎̂0

2 
χn-1, 1-α

2

n-1
                    (23) 

 

Therefore, the estimation of 𝑈𝐶𝐿̂
S2 is analogous to the in-control mean centered between 

the specification limits. A s stated previously in section 4.2.1, according to Mahmoud (2010), 

the pooled variance (𝑆𝑝
2) is the best estimators for 𝜎0

2 and is calculated by equation (33). 

Replacing 𝜎̂0
2 by 𝑆𝑝

2 we have the equation 32 of section 4.2.2. 

 

𝑈𝐶𝐿̂
S2= 𝑆𝑝

2 
χn-1, 1-α

2

n-1
           (32) 

 

The upper control limit (𝑈𝐶𝐿𝑀𝑜𝑑) of the 𝑆2 Modified Control Chart however, for not 

centered in-control mean, is calculated by equations 39 and 40, from section 4.3: 

 

For 𝜇0
′  larger than the middle point: 
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𝑈𝐶𝐿𝑀𝑜𝑑= σMAX
2  

χn-1, 1-α
2

n-1
 = 

(𝑈𝑆𝐿−𝜇0
′ )

2
 χn-1,1-α

2

(n-1) (𝑧1−𝛾)
2             (39) 

 

For 𝜇0
′  smaller than the middle point: 

 

𝑈𝐶𝐿𝑀𝑜𝑑= σMAX
2  

χn-1, 1-α
2

n-1
 = 

(𝐿𝑆𝐿−𝜇0
′ )

2
 χn-1,1-α

2

(n-1) (𝑧𝛾)
2             (40) 

 

Following the same steps proposed in section 4.2.2, here we also include the additional 

Phase 0, before the well-known Phase 1. Here we also need to estimate 𝜎0
2, it means that the 

𝑈𝐶𝐿̂
S2 may vary because the variance now is a random variable and the 𝑈𝐶𝐿𝑀𝑜𝑑, being larger 

or smaller than the middle point between 𝑈𝑆𝐿 and 𝐿𝑆𝐿. Thus, if the 𝑈𝐶𝐿̂
S2  is located below 

𝑈𝐶𝐿𝑀𝑂𝐷 most of the time, it is possible to conclude that the issues caused by the estimations 

and its inherent errors could be less severe. Hence, we calculate the probability of 𝑈𝐶𝐿̂
S2 is less 

than 𝑈𝐶𝐿𝑀𝑂𝐷, that is 𝑃(𝑈𝐶𝐿̂
S2 < 𝑈𝐶𝐿𝑀𝑂𝐷), recalling that the 𝑈𝐶𝐿𝑀𝑂𝐷 is calculated by using 

given parameters. 

 

 Therefore, analogous to what is shown in section 4.2.2, equation 33,  

 

𝑃(𝑈𝐶𝐿̂
S2 < 𝑈𝐶𝐿𝑀𝑂𝐷) = 𝑃 (𝑆𝑝

2 
χ

n-1, 1-α
2

n-1
<  σMAX

2  
χ

n-1, 1-α
2

n-1
) 

             = 𝑃(𝑆𝑝
2 <  σMAX

2  )       (33) 

 

Developing the Equation 33 we have the following: 

 

𝑃(𝑈𝐶𝐿̂
S2 < 𝑈𝐶𝐿𝑀𝑂𝐷) = 𝑃 ( 

𝑚(𝑛 − 1)𝑆𝑝
2

𝜎0
2 <

𝑚(𝑛 − 1) σMAX
2

𝜎0
2  ) 

where 
 𝑚(𝑛−1)𝑆𝑝

2

σ0
2 =  χ

𝑚(𝑛−1)
2 , here denoted as 𝑌, is a random variable that follows a chi-

squared distribution with 𝑚(𝑛 − 1) degrees of freedom, so we have the same Equation 34 first 

provided in section 4.2.2. Is important to notice that here we are still in Phase I, thus we have 

the in-control variance σ0
2 . 
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𝑃(𝑈𝐶𝐿̂
S2 < 𝑈𝐶𝐿𝑀𝑂𝐷) = 𝑃 ( 𝑌 <

𝑚(𝑛−1) σMAX
2

𝜎0
2  )      (34) 

 

Recalling from section 4.2.2, we have that 𝑈𝐶𝐿𝑀𝑂𝐷 has all parameters known and is 

fixed and the equation 34 depends on the in-control variance 𝜎0
2, which is unkwown. The ratio  

σMAX
2 𝜎0

2⁄ , between σMAX
2  (the maximum value that the process variance is allowed to be 

compared with the in-control process value, in the sense that the process produces a tolerated 

small fraction of nonconforming items) and the in-control variance 𝜎0
2, developed in details in 

section 4.2.2 for in-control mean centered between 𝑈𝑆𝐿 and 𝐿𝑆𝐿, including table 4.7 is still 

valid, being the only difference when compared with the in-control mean not centered between 

𝑈𝑆𝐿 and 𝐿𝑆𝐿, the way that σMAX
2  is calculeted. Therefore, dividing σMAX

2  by 𝜎0
2, we may define 

how much larger the maximum allowed variance is required to be when compared with the the 

target variance. 

Here we also propose one additional phase for chart design, when compared to what is 

traditionally accepted. In Phase 0, we determine 𝑈𝐶𝐿𝑀𝑂𝐷 and 𝑈𝐶𝐿̂𝑆2, following by the control 

limits and chart build. Then we have Phase I, that comprises to take 𝒎 samples with 𝒏 elements 

and plot each 𝑠𝑖
2. If all points are within the two control limits, we approve the process to move 

on to monitoring phase (Phase II). However, if any of the plotted points falls above 𝑈𝐶𝐿̂
S2 and 

under UCLMod, the process has presence of special causes of variation or excessive common 

causes of variation, that must be removed or reduced, respectively. In addition, if any of the 

plotted points falls above both 𝑈𝐶𝐿̂
S2 and UCLMod, the special causes of variation, if present, 

must be removed as low as possible, the excessive common causes of variation must be reduced, 

and process capability must be improved. After all corrections required are completed, take 

another 𝒎 samples with 𝒏 elements and plot each 𝑠𝑖
2, and verify if all them fall under both 

control limits. The Figure 4.11 shows the steps to be followed to build the Modified Chart for 

unknown variance. 

In the next section an illustrative example is provided to show the use of the proposed 

Modified Chart and its building steps when the in-control mean is not centered between 𝐿𝑆𝐿 and 

𝑈𝑆𝐿 and the variance is unknown. 
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4.4.1 An Illustrative Example for unknown variance (𝝈𝟎
𝟐) and in control mean 𝝁𝟎 not 

centered between LSL and USL 

 

In this section, we illustrate the use 𝑆2 Modified Control Chart for unknown variance and 

mean changing from 𝜇0 to 𝜇1, not centered between LSL and USL, using the same example from 

previous section 4.3.1. The quality characteristic variable (𝑋) is still the internal diameter of the 

piston rings, which has a two-sided specification limits of 74.000 + 0.050 mm. It is assumed that 

the piston rings diameter (𝑋) follows a normal distribution and the in-control mean 𝜇0
′  is known 

and is equal to 74,008, not centered in the middle of specification limits. However, the in-control 

standard deviation (𝜎0) of the piston rings diameter is unknown and therefore it needs to be 

estimated, being the pooled variance (𝑆𝑝
2) used. Different from illustrative example in section 

4.3.1, the Phase I assessment needs to be executed, where according to Montgomery (2009), 

typically 𝑚 = 20 or 25 subgroups are used in this phase. Here, the Phase I will change to the 

proposed method explained in the previous section. 

The process leadership still defined as acceptable up to 96 nonconforming parts per 

million (ppm) of units produced, which represents a potential capacity (Cp) of 1.30. First we 

execute the Phase 0, that is when the chart control limits (UCLMod and 𝑈𝐶𝐿̂𝑆2) will be defined. 

Starting with UCLMod, being USL, LSL and the acceptable nonconforming parts rate known, 

σMAX and UCLMod are calculated as follows (considering a maximum false alarm rate (𝛼) of 

0,0027): 

 

σMAX =  
𝑈𝑆𝐿−𝜇0

′  

𝑧1−𝛾
=

74,050−74,008

3,729
=  

0,042

3,729
  = 0,0113 

 

The maximum allowed rate of nonconforming items (𝛾) is 96/1000000 =  0,000096, 

which provides 𝑧1−𝛾 = 3,729. 

 

UCLMod= σMAX
2  

χn-1, 1-α
2

n−1
=0,0113

2
 

16,25

5−1
= 0,00052  

 

During Phase I, the process manager decided to take 𝑚 = 25 subgroups with 𝑛 = 5 

elements each. In addition, it is defined the 95% probability of 𝑆2 estimated upper control limit 

(𝑈𝐶𝐿̂𝑆2) is less of UCLMod. Thus, based on Table 4.7, the ratio σMAX
2 𝜎0

2⁄  shall be at least 1,2434 

and hence, considering that σMAX
2  is 0,000127 (𝜎𝑀𝐴𝑋 = 0,0113), the maximum in-control process 
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tolerable variance 𝜎0
2 is 0,000102. Therefore, the 𝑈𝐶𝐿̂

S2 is calculated as follows (considering a 

maximum false alarm rate (𝛼) of 0,0027): 

 

𝑈𝐶𝐿̂
S2= (

σMAX
2

1,2434
)  

χ
n-1, 1-α
2

n − 1
 = 0,000102

16,25

5 − 1
= 0,00041 

 

Hence, after Phase 0, we have the following designed control chart: 

 

Figure 4.18 - Graphical demonstration of how the 𝑈𝐶𝐿̂𝑆2 locates around 𝑈𝐶𝐿𝑀𝑂𝐷 

 

Source: The author (2021) 

 

In the next phase, we will take 𝑚 samples with 𝑛 elements and plot each Phase I 𝑠𝑖
2, in 

the chart designed in Figure 4.18. 

To examine the behavior of Phase I, we simulated 25 independent samples of the piston 

ring diameter (each sample with size 5), from a normal distribution with mean 𝜇0 = 74,008 and 

a standard deviation equals to σMAX
2 1,2434⁄ , based on Table 4.7 for 𝑚 = 25, 𝑛 = 5 and 𝑃 =

95%. The simulated sample variances (𝑆2) and the control limits (𝑈𝐶𝐿 𝑆2 and 𝑈𝐶𝐿𝑀𝑜𝑑) are 

shown in Figure 4.19. 𝑈𝐶𝐿𝑆2 is shown in a dashed grey line and 𝑈𝐶𝐿𝑀𝑜𝑑 in a solid black line. 

Supposing that the unknown process variance (unknown) is 𝜎2 = 0,000102, that equals 

to σMAX
2 1,2434⁄ , we have the chart shown in Figure 4.19.  

As we can see in Figure 4.19, signals above the 𝑈𝐶𝐿̂𝑆2 dashed line were not found and 

therefore, the practitioner can move to Phase II, process monitoring. Now in Figure 4.20, we 

simulated 1,000 Phase II samples variances with size 5. 
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Figure 4.19 - The 𝑆2 Control Chart and the 𝑆2 Modified Control Chart for Phase I execution of 

a process  𝑋~𝑁(𝜇0
′ = 74,008, 𝜎2 = 0,000102) given the in-control parameters in 

the example 

 

Source: The author (2021) 

Figure 4.20 - The 𝑆2 Control Chart and the 𝑆2 Modified Control Chart for monitoring the 

variance of a process 𝑋~𝑁(𝜇0 = 74,008, 𝜎2 = 0,000102) 

  

Source: The author (2021) 

We can also see in Figure 4.20 signals above the 𝑈𝐶𝐿̂𝑆2 dashed line, and again, instead 

of process practitioner suspect that an assignable cause has occurred, by using 𝑈𝐶𝐿𝑀𝑜𝑑, the 

process variance is still smaller than the maximum variance allowed (𝜎MAX
2 = 0,01132), so the 

proportion of nonconforming items being produced is still acceptable according to the 

specification of the project. 

The 𝑆𝑝
2 for the data shown in Figure 4.20 is 0,000104, so the probability of a false alarm 

is smaller than 𝛼𝑛𝑜𝑚 = 0,0027, as shown below. 
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𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 = 1 − 𝑃(𝑆2 < 𝑈𝐶𝐿𝑀𝑜𝑑|𝑆𝑝
2 = 0,000104) 

=1 − P (S
2
 <  σMAX

2  
χn-1, 1-α

2

n-1
|𝑆𝑝

2 = 0,000104)  

=1 − P (
(n-1)S2

𝑆𝑝
2 <  

σMAX
2

𝑆𝑝
2  χ

n-1, 1-α
2 ), 

 

where 
(n-1)𝑆2

𝜎1
2 =  χ

n-1
2  is a random variable that follows a chi-squared distribution with 

𝑛-1 degrees of freedom, so 

 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 = 1 − 𝑃 ( χn−1
2 <

0,000127

0,000104
 16,25) = 1 − 𝑃( χn−1

2 < 19,818) 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 = 0,00054 < 𝛼𝑛𝑜𝑚 = 0,0027 

 

As already stated previously, the False Alarm Rate less than the Type I error (𝛼𝑛𝑜𝑚) 

determined by the process practitioner may contribute for even less unnecessary process stop. 

 

5 CONCLUSION 

 

5.1 FINAL CONSIDERATIONS 

 

This work shows the reasons why the modified chart is useful when running high 

capable processes this is because, differently from the well-known 𝑆2 Control Chart, this new 

tool considers, in its formulation, the process specifications limits provided by the 

project/manager and not only the nominal in-control process variance. The dissertation author 

named this new chart as the 𝑆2 Modified Control Chart, since it is a natural extension of the 

Modified Control Chart for monitoring the process mean presented in Montgomery (2009) and 

introduced by Hill (1956). 

This allowed range for variation shift is defined based on the acceptable nonconforming 

index, which protects the process from produce a rate of defective items larger than what is 

accepted. The practical implication is that the 𝑆2 Modified Control Chart, designed to detect 

only genuinely increases in the process variance, may preventing unnecessary process stop and 

assessment for assignable causes and contribute to higher process efficiency. This is desirable 

in the sense that small increases in the variance may not affect much the rate of not-conforming 

items being produced and pausing the process generate extra costs. 
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In this present dissertation, it was developed 4 different scenarios involving variance 

monitoring, differing in if the mean in centered or not between the specification limits and if 

the variance is known or unknown. The σMAX
2  and modified control limit expressions have been 

performed for both mean centered and not centered between the specification limits, and its 

values calculated in illustrative examples. When mean is not centered, the σMAX
2  as consequence 

the modified control limit are lower than the scenario of centered mean. Now regarding when 

the variance is unknown, the main contribution of this work is to provide an additional work 

phase where the 𝑈𝐶𝐿̂𝑆2 is determined based on a desired probability of 𝑆2 control limit of the 

estimated variance parameter is less than the modified control limit. 

Despite being a relevant tool for process monitoring, none other work was found related 

to provide a range where the process variance may shift without compromising its ability to 

fulfil quality requirements. Hence, the present work aimed to define the variables and 

parameters necessary for the construction of the 𝑆2 Modified Control Chart for known and 

unknown variance (unconditional approach) and to expand the knowledge about the 

performance of this chart, which is important for the conduct of Phase II. This work also 

presented an additional step before Phase I, when the process variance is unknown, providing 

a practical approach on how to define the monitoring control limits, supporting the process 

manager decision. 

The performance measures false alarm rate (𝐹𝐴𝑅) and the average run length (𝐴𝑅𝐿) 

were considered in this work, for known and unknown variance, however taking the process 

mean as a known parameter, which is unlikely and is one limitation of the research. The chart 

performance when variance is unknown has been assessed in order to understand the effects of 

parameter estimation in these measurements, however this study focused mainly on the 

unconditional approach, proposing a new way to define the estimated control limit for variance, 

to work combined with modified control chart in a practical way that can be used for actual 

processes. The chart performance analysis for the conditional approach has been presented but 

further studies are suggested as future works, such compare its measures performance when 

compared to unconditional and provide guidance for more fit charts for the actual scenario of 

manufacturing process, where time and samples are important constraints when designing a 

statistical process control.  

It is possible to notice that the variance estimation compromises the performance of the 

graph, mainly due to the fact that 𝐹𝐴𝑅 and 𝐴𝑅𝐿 become random variables conditioned to the 

estimates. Once they become random variables, you can define their behavior from their 
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probability distributions, p.d.f. (probability distribution function) and c.d.f. (cumulative density 

function). 

Thus, the major contributions of this work were provided evidence that for highly 

capable processes, a certain room for variance shift may be allowed without harm quality 

performance and show how the modified chart can contribute to avoid process over-control and 

improve management by reducing false alarms. In addition, the use of the modified control 

chart may minimize the impact of the False Alarm Rate when the control limits are estimated 

due to estimation due to the modified control limit be defined based on known or target 

parameters. 

The 𝑆2 modified chart was briefly assessed when process mean is no longer centered 

between specification limits, with variance known and unknown, showing how the mean shift 

affect the maximum allowed variance and hence, the modified control limit. The effect of 

parameter estimation needs to be further assessed and is a suggestion for future research.  

Finally, it was possible to verify that the acceptance chart is actually indicated for highly 

capable processes, because, even if the variance slightly shifts from the nominal value within a 

specific range of values) and its capacity decreases moderately, the performance of the graph 

remains almost unchanged, with probability of a false alarm very close to zero. The analysis of 

the simulated data showed that by using the proposed 𝑆2 Modified Control Chart the number 

of unnecessary interventions in the process could be decreased, contributing to improve its 

efficiency. However, if the variance moves to a value close to the acceptance limit, the risks of 

a false alarm increase. And if the variance goes out of the specification limits, the process is 

then considered uncapable and hence, the chart would signal an out-of-control condition. 

 

5.2 FUTURE WORKS 

 

It is recommended as future studies aligned to what was presented in this research, the 

analysis of modified chart performance when both mean and variance are estimated, and the 

design of a modified chart providing combining the possibility of both mean and variance be 

able to shift within a tolerable range. As future work, also the assessment of what would be the 

most appropriate sample size to achieve a reasonable, practical, and economic significance for 

actual processes in order to provide both confidence and efficiency to monitoring of highly 

capable manufacturing processes. 
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