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ABSTRACT

MOREIRA, D. B. A nonparametric bayesian approach for modeling and comparison of
functional data. 2022. 79 p. Dissertação (Mestrado em Estatística – Programa Interinstitucional
de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computação, Universi-
dade de São Paulo, São Carlos – SP, 2022.

The current advances of technology provides, among other things, several ways of collecting
data, which enlarges the possibility of studying new phenomena. Researches focused on studying
the functional relation between a variable and some quantity (usually time) produce the called
functional data. The main feature of this kind of data is that they are registered using devices that
can record values almost continuously over time. Suppose two groups of functional data and the
interest is to evaluate the similarity of the groups over some range of time. This work proposes a
method to compare the groups using predictive samples. The method submit data to a smoothing
step using orthonormal functions series and the coefficients of the series are then used to model
functional data, due to the bijective relation between the target functions and their respective
coefficients. The goal is to estimate the multivariate density associated to the coefficients of
each group. Under nonparametric Bayesian context, the densities were estimated using Dirichlet
Process Mixture model. Comparison of the functional data groups were performed using a
dissimilarity index based on some L2-distance and estimated using the predcitive samples of
the fitted DPM model. The index has a great interpretative appeal and constitute an useful tool
for data analysis. Furthermore, it is proposed a bayesian scheme to test the homogeneity of
groups of functional data based on the distance between the distributions of the processes for
each instant of time. A quick simulation study is presented, as well as preliminary analysis in
real functional data set.

Keywords: Functional data, Density estimation, Dirichlet Process Mixtures, Bayesian inference,
Nonparametric, Dissimilarity.





RESUMO

MOREIRA, D. B. Uma abordagem bayesiana não paramétrica para modelagem e compara-
ção de dados funcionais. 2022. 79 p. Dissertação (Mestrado em Estatística – Programa Interins-
titucional de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2022.

Os recentes avanços na tecnologia fornecem, entre outras aspectos, diversas formas de
coletar dados, o que aumenta possibilidade de estudar novos fenômenos. Pesquisas cujo foco
seja estudar a relação funcional entre uma variável e uma grandeza física (geralmente o tempo)
produzem os chamados dados funcionais. A principal característica desse tipo de dado é que
eles são coletados utilizando dispositivos apropriados para registrar a informação quase que
continuamente ao longo do tempo. Suponha dois grupos de dados funcionais e que o interesse é
avaliar se os grupos são similares ou não em algum intervalo específico de tempo. Este trabalho
apresenta um método para comparação de dois grupos de dados funcionais utilizando amostras
preditivas. O método proposto submete os dados originais a uma etapa de suavização utilizando
aproximação por as séries de funções ortonormais e os coeficientes da série são utilizados
para modelagem dos dados funcionais, devido ao fato de existir uma relação bijetora entre as
funções alvo e seus respectivos coeficientes. O objetivo é estimar a densidade multivariada
associada aos coeficientes de cada grupos. No contexto de inferência Bayesiana não paramétrica,
as densidades foram estimadas através do uso de Misturas de Processos de Dirichlet (DPM).
A comparação dos grupos de dados funcionais é então performada atráves de um índice de
dissimilaridade baseado em uma medida de distância definida no espaço das funções e estimada
através das curvas preditivas amostradas usando o modelo DPM ajustado. O índice possui grande
apelo interpretativo e fornece uma ferramenta útil para análise dos dados. É proposto também
um esquema bayesiano para testar a homogeneidade das distribuições dos grupos baseado na
distância entre as distribuição dos processos para cada instante de tempo. Um rápido estudo de
simulação é apresentado, bem como análises preliminares em dados funcionais reais.

Palavras-chave: Dados funcionais, Estimação de densidades, Mistura de Processos de Dirichlet,
Inferência Bayesiana, Não paramétrica, Dissimilaridade.
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CHAPTER

1
INTRODUCTION

Functional Data Analysis (FDA) is a class of statistical methods used to model random
processes naturally described as functional in relation to some quantity (usually time), such as
meteorology, human growth or human gait studies. The first papers using FDA theory dates on
1990s with the works of James O. Ramsay and Bernard Silverman, who are widely recognized
as the founders of this branch of statistics. The technology advance in data collection turns FDA
much more feasible, since empirical curves can be recorded closer to the continuous nature
proposed by theory. Advances on storage, processing and computational analysis also contribute
to efficient application of FDA methods. Moreover, extending the statistical inference tools to
more complex spaces expands the range of scientific hypotheses that can be investigated.

Essentially, FDA is indicated when, for each i-th experimental unit, a real valued function
is recorded and the set of all curves constitutes the data to be explored, modeled and predicted.
The goals of FDA are the same of any other branch of statistics, with the particular feature
that FDA deals with whole curves, instead of scalar or vector of real numbers (RAMSAY;
SILVERMAN, 1997). Figure 1 shows two examples of functional data studies.

Figure 1 – Berkeley Growth Study Data with heights of 39 boys between the ages 1 and 18 years (left).
20 records of the position of the centre of the lower lip during the uttering of the syllable “bob”
(right).
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Each curve presented in Figure 1 is the conversion of the recorded values into a function
that is computable for any desired argument. If the discrete values are assumed to be errorless,
then this process is called interpolation, but if they have some observational error that needs
removing, then the conversion from discrete data to functions may involve smoothing. The
scheme below illustrates the idea of smoothing an empirical curve.

We propose to smooth data using basis function representation, where each process is
represented as a linear combination of orthonormal functions. Essentially, the idea is to model
the generating mechanism behind the linear coefficients using nonparametric Bayesian methods,
in such a way that we are able to replicate new samples of curves based on predictive distribution.
The use of the linear coefficients to represent the functions is feasible due to the strong property
that distinct smoothed processes produces distinct sets of linear coefficients.

Based on modeling, we tackled the problem of comparing two groups of functional data.
Given two independent groups of stochastic processes, we aim: (i) to assess the dissimilarity
of the measurements of each group for each point of the domain. (ii) to test the homogeneity
of the distributions of the processes for each point of the domain. The former expresses how
likely is to observe two functional measurements close to each other at a certain time and the
later is focused on searching for a bayesian criteria to test the following hypotheses:

H0,t : X D
= Y,

H1,t : X
D
̸= Y.

where D
= means "equal in distribution" and t ∈ I is the specific instant when the hypotheses are

being evaluated. Note that the second goal is different from the first one. While the former focus
on provide an intuitive and practical reference of closeness between the processes, the later focus
on assess and decide about the equality of the distributions of the processes.

This task has been discussed in several papers and many methods have been proposed.
(CUEVAS; FEBRERO; FRAIMAN, 2004) developed a frequentist solution to the problem,
comparing the averaged levels of a functional variable using adapted version of the one-way
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ANOVA. (ZHANG; PENG; ZHANG, 2010) proposed two statistics to test the equality of two
functional group means using Gaussian Process and Bootstrap sampling. (HALL; TAJVIDI,
2002) exhibited a nonparametric approach to test the equality of distributions of two independent
functional data groups through permutation tests. Although these tests present great power,
they have some inconveniences like assumption of specific parametric forms for the curves or
intensive computational needs. (PINI; VANTINI, 2017) provide a tool to test if the average
curves of each group are equal over some arbitrary restriction of the domain based on the L2

distance between the curves and decision is taken using adjusted p-values. The work is structured
as following. Chapter 2 discusses the theoretical issues related to smoothing curves using basis
function representation. Chapter 3 presents the nonparametric Bayesian models used to model
functional data and on Chapter 4, we present the methods to compare two independent groups of
functional data. Illustrations with simulated data are presented, as well as an application of the
model for the Canadian Data Temperature (RAMSAY; SILVERMAN, 1997).
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CHAPTER

2
CONCEPTS OF FUNCTIONAL ANALYSIS

AND FUNCTIONAL DATA
REPRESENTATION

On this chapter, we define smoothness, an important step on functional data analysis
that has direct impact on modeling. Here, we review some concepts of Functional Analysis, like
basis, inner product and orthogonality, which provide the mathematical guarantees needed to
represent functions using basis function representation. The contents here were almost integrally
taken from the book Introductory Functional Analysis With Applications (KREYSZIG, 1978).

2.1 A short review of Functional Analysis

Functional analysis (FA) is a branch of mathematics that study abstract spaces endowed
with limit-related structures and the linear functions defined on these spaces. Since functional data
is approximated by smoothed real continuous curves, it is important to formalize mathematically
the space where these curves are defined. For that, three important concepts of FA might be
presented: basis, inner product and orthogonality.

Consider an abstract normed space X that contains a sequence {ei}i≥1 of elements with
the property that for every x ∈ X there is an unique set of scalars {βk}k≥1 such that,

||x− (β1e1 + · · ·+βnen)|| −→ 0

where || · || denotes the norm. The set of {ei}i≥1 elements is called Schauder Basis (or basis)
for X . Moreover, the series

∞

∑
k=1

βkek
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is then called expansion of x with respect to (en) and

x =
∞

∑
k=1

αkek

An inner product defined on X is a mapping of X ×X into the scalar field K of X ;
that is, with every pair of vectors x ∈ X and y ∈ X , there is associated a scalar which is written
⟨x,y⟩ and is called “the inner product of x and y”, such that for all vectors x,y,z ∈ X and scalars
γ , the following properties hold,

(IP1) ⟨x+ y,z⟩= ⟨x,z⟩+ ⟨y,z⟩

(IP2) ⟨γx,y⟩= γ⟨x,y⟩

(IP3) ⟨x,y⟩= ⟨y,x⟩ ⟨x,x⟩ ≥ 0

(IP4) ⟨x,x⟩= 0 ⇐⇒ x = 0

An inner product space is a normed space endowed with inner product, that is, every
element of this space satisfies (IP1) to (IP4). If an inner product space X is complete, that is,
X contains the limits of every possible Cauchy sequence (see Appendix A for more details) of
elements of X , then X is a Hilbert Space. Particularly, an inner product on a Hilbert space
defines a norm on it given by,

||x||=
√
⟨x,x⟩.

Considering X as a Hilbert space, a measure of distance between distinct elements
x,y ∈ X is given by

d(x,y) = ||x− y||=
√
⟨x− y,x− y⟩

Finally, an element x ∈ X is said to be orthogonal to another element y ∈ X if,

⟨x,y⟩= 0

that is, if the inner product of x and y is zero. An orthogonal set M of X is a subset M ⊂ X

with elements that are pairwise orthogonal. Furthermore, M is said to be an orthonormal set if
its elements have norm qual to 1, that is, for all x,y ∈ M,

⟨x,y⟩=

0, if x ̸= y

1, if x = y

If an orthogonal or orthonormal set M is countable, we can arrange it in a sequence (xn)

and call it an orthogonal or orthonormal sequence, respectively.

Theorem 2.1. An orthonormal set is linearly independent.
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Using Theorem (2.1), we can assume an orthonormal set as a possible choice of basis
for X . The great advantage of using orthonormal sequences over arbitrary linearly independent
sequences as basis is that if we know that a given x can be represented as a linear combination of
some elements of an orthonormal sequence, then the orthonormality makes the actual determina-
tion of the coefficients very easy. In fact, if (e1,e2, . . .) is an orthonormal sequence in a Hilbert
space X and we have x ∈ span(e1, . . . ,en) (see Appendix A for definition of span), where n is
fixed, then

x =
n

∑
k=1

βkek

where

⟨x,e j⟩=
〈

∑βkek,e j

〉
= ∑βk

〈
ek,e j

〉
= β j.

Hence,

x =
n

∑
k=1

⟨x,ek⟩ek

which shows that the determination of the unknown coefficients in this case is simple.

The above construction can be extended to infinite series and convergence of the corre-
sponding series is discussed below. Given any orthonormal sequence (ek) in a Hilbert space X ,
we may consider series of the form,

x =
∞

∑
k=1

βkek (2.1)

where β1,β2, . . . are any scalars. Such a series converges and has the sum s if there exists an
s ∈ X such that the sequence (sn) of partial sums

sn = β1e1 + · · ·+βnen

converges to s. Other important practical advantage of using orthonormal sequences as basis is
that if we decide to increase the cutoff in order to improve approximations, it is not necessary to
recalculate all the coefficients. In fact, it’s only necessary to calculate the new ones. Theorem
(2.2) postulates some conditions to guarantee convergence of (2.1).

Theorem 2.2. Let (ek) be an orthonormal sequence in a Hilbert space X . Then:

(a) The series (2.1) converges (in the norm on X ) if, and only if,

∞

∑
k=1

|βk|2 < ∞

Moreover, the above series corresponds to ||x||2.
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(b) If (2.1) converges, then the coefficients βk are the Fourier coefficients ⟨x,ek⟩, where x

denotes the sum of (2.1); hence in this case, (2.1) can be written

x =
∞

∑
k=1

⟨x,ek⟩ek

(c) For any x ∈ X , the series (2.1) with βk = ⟨x,ek⟩ converges (in the norm of X ).

2.1.1 The L2[a,b] space

Let C be the vector space of all continuous real-valued functions on [a,b]⊂R. For every
x ∈ C , this space forms a normed space with norm defined by

||x||=
(∫ b

a
x(t)2dt

)1/2

This space is not complete, but it can be completed using the fact that every incomplete
space has a completion (see Chapter 1 of (KREYSZIG, 1978) for more details). Such completion
constitutes the called L2[a,b] space, which is the space of all squared Lebesgue-integrable
functions. In such space, the norm can be obtained from the inner product defined by,

⟨x,y⟩=
∫ b

a
x(t)y(t)dt

Since L2[a,b] is a complete inner product space, then it constitutes a Hilbert space. This
means that intuitive notions like distance and angles can be applied to the space of all squared
Lebesgue-integrable functions, as well as represent any element through a series of orthonormal
basis.

2.2 Functional data representation using Fourier Basis

The orthonormal series approach is the primary mathematical tool for approximation,
data compression, and presentation of curves, including functional data. Based on the concepts
of the previous section, a function f defined on L2[a,b] can be fully represented by the following
series expansion,

f (t) =
∞

∑
k=1

βkφk(t) βk =
∫ b

a
f (t)φk(t)dt (2.2)

where {β1,β2, . . .} represents the Fourier coefficients defined previously and {φ1,φ2, . . .} is the
set of known and fixed orthonormal functions which constitutes the basis of the L2[a,b] space.

Since functions {φi}i≥1 are known, the complete representation of f is achieved when
{βi}i≥1 is fully determined. However, for practical purposes, the series must be truncated in a



2.2. Functional data representation using Fourier Basis 29

value p, called cutoff, that is chosen according to some criteria like cross validation or limited
computational resources available.

A desirable characteristic of basis functions is that they have features matching those
known to belong to the functions being estimated. A widely used choice for basis functions is
the Fourier Orthogonal System, whose functions are denoted by,

φk(t) =


1, if k = 0,
√

2sin(π(k+1)t), if k = 1,3,5, . . . ,
√

2cos(πkt), if k = 2,4,6, . . . .

(2.3)

According to (RAMSAY; SILVERMAN, 1997), the Fast Fourier Transform (FFT) makes
it possible to find all the coefficients extremely efficiently. Furthermore, Fourier series is espe-
cially useful for extremely stable functions, meaning functions where there are no strong local
features and where the curvature tends to be of the same. Ideally, the periodicity of the Fourier
series should be reflected to some degree in the data, as is certainly the case for the temperature
and gait data.
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Figure 2 – Examples of smoothness using Fourier basis function.
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2.2.1 Estimation of Fourier coefficients using the method of Penal-
ized Least Squares

(GREEN; SILVERMAN, 1993) describes a method to estimate the Fourier coefficients
denoted by Penalized Least Squares. The procedure is similar to those used in Regression
Analysis, but here the approach has some adaptions to the case of functional data smoothing
with orthonormal basis.

Let {(xi j, ti j) : i = 1, . . . ,n; j = 1, . . . ,s} be a sample of n experimental units, where
for each one it were recorded s values of some variable of interest over time. For every i−th
individual, given any twice differentiable function fi ∈ L2[0,1] and a scalar λ > 0, the following
penalized sum of squares is defined,

S( fi) =
s

∑
j=1

(
xi j − fi(ti j)

)2
+λJ( fi). (2.4)

The penalized least square estimator f̂i corresponds to be the minimizes of the functional S( fi)

over all the functions of L2[0,1]. Here, J( fi) is a quadratic roughness functional of fi that
imposes restrictions to the smoothed curve in order to avoid overfitting problems and λ is a
tuning parameter that calibrate the weight of this penalizing and might be estimated.

Assuming the series expansion of xi(t) discussed previously (with some convenient
number of bases p), we can substitute it in (2.4) by,

fi(t) =
∞

∑
k=0

βkiφk(t)≈
p

∑
k=0

βkiφk(t) (2.5)

which implies that,

S( fi) =
s

∑
j=1

(
xi j −

p

∑
k=0

βkiφk(ti j)

)2

+λJ( fi) (2.6)

(GREEN; SILVERMAN, 1993) discusses the use of the following particular roughness
penalty J( fi)

J( fi) =
∫ 1

0

{
∂ 2 fi(t)

∂ t2

}2

dt

According to the authors, this rule has several convenient mathematical and computational
properties. For instance, if two functions differ only by a constant or a linear function, then their
roughness should be identical, which can be assessed by the second derivative of the curve under
consideration.

Since J( fi) is quadratic, there will be a (p+1)× (p+1) matrix such that, for any xi of
the form (2.5),

J( fi) = βiβiβi
TKβiKβiKβi
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where βiβiβi = (β0i,β1i, . . . ,βpi) are the Fourier coefficients and

Krs =
∫ 1

0

∂ 2 fr(t)
∂ t2

∂ 2 fd(t)
∂ t2 dt

Using matrix notation, we can rewrite Equation (2.6) as following,

S( fi) = (xi −Φβixi −Φβixi −Φβi)
T (xi −Φβixi −Φβixi −Φβi)+λβiβiβi

TKβiKβiKβi (2.7)

where

xixixi =


xi1

xi2
...

xis


s×1

ΦΦΦ =


φ0(t1) φ1(t1) . . . φp(t1)

φ0(t2) φ1(t2) . . . φp(t2)
...

φ0(ts) φ1(ts) . . . φp(ts)


s×(p+1)

Applying some manipulation in (2.7), we have that

S( fi) = xixixi
Txixixi −xixixi

T
ΦβiΦβiΦβi −βiβiβi

T
ΦΦΦ

Txixixi +βiβiβi
T

ΦΦΦ
T

ΦβiΦβiΦβi +λβiβiβi
TKβiKβiKβi

The minimum is achieved when every component of the gradient vector is zero, that is,
when

dS( fi)

dβiβiβi
= 000

The gradient of Si is given by

dS( fi)

dβiβiβi
=−2ΦΦΦ

Txixixi +2ΦΦΦ
T

ΦΦΦβiβiβi +2λKβiKβiKβi

and

dS( fi)

dβiβiβi
= 000 ⇐⇒ β̂îβîβi =

(
ΦΦΦ

T
ΦΦΦ+λKKK

)−1
ΦΦΦ

Txixixi (2.8)

To certificate that β̂iβ̂iβ̂i minimizes (2.7), the second derivative of Si with respect to βiβiβi applied to β̂iβ̂iβ̂i

must be positive. In fact,

d2S( fi)

dβiβiβi2
= 2ΦΦΦ

T
ΦΦΦ+2λKKK > 000

whatever the value of β̂iβ̂iβ̂i is. Hence, β̂iβ̂iβ̂i is the Penalized Least Square Estimator of the Fourier
coefficients for i-th individual.

Note that the estimator (2.8) was developed assuming a series of p+1 Fourier bases,
where p is fixed. On next subsection, we discuss some criteria to choose a good cutoff p, in order
to avoid under or overfitting and balance goodness-of-fit versus computational efforts.
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2.2.2 A good choice for the cutoff p

The complete representation of the function fi(t) using series expansion is achieved
when the number of bases p = ∞. Of couse, this is unmanageable in practice, which means
that we must choose p that provides a good representation of fi(t) and do not generate high
computational efforts on the next modeling steps. Here we discuss the choice of the cutoff p

based on k-fold cross validation (see Chapter 1 of (IZBICKI; SANTOS, 2020) for examples),
combined to the penalizing rule discussed previously. Basically, the method is performed as
following :

1. For each i-th individual, consider the observed points (xi1, . . . ,xis) split in k disjoint groups
named by L1, . . . ,Lk;

2. Apply the penalized least square estimator (2.8) with p basis to estimate the Fourier curve
fi(t) using all the observed points except those in L j. This estimated curve is denoted
f̂i− j

(t);

3. Estimate the Mean Squared Error associated to the estimated curve, named R( f̂i), using
the following measure,

R̂( f̂i) =
1
n

k

∑
j=1

∑
h∈L j

(
fih − f̂i− j

(th)
)2

(2.9)

Reproducing the steps 1 to 3 for other values of p makes it possible to compare the errors
associated to the choice of number of basis and then choose a good cutoff p, that is, the the one
that returns the minimum error.
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Figure 3 – MSE evaluated using k-fold cross validation (3 lotes) with penalizing rule on Figure 2. The
best number of basis was chosen fixing the tuning parameter estimated at α̂ = 13.98.
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CHAPTER

3
NONPARAMETRIC BAYESIAN ESTIMATION

OF FUNCTIONAL DATA DISTRIBUTION

The nonparametric Bayesian approach to model Functional Data is presented. The main
idea is to regard the Fourier coefficients obtained by some smoothing method as multivariate
observations arising from a discrete mixture of multivariate Normal densities. Methods to
estimate the distribution of the FD and to predict a new FD observation will be discussed.

Adopting the notation of Chapter 2, let {(xi j, ti j) : i = 1, . . . ,n, j = 1, . . . ,ki} be the
registered observations associated to the n experimental units. For each experimental unit i,
consider

βiβiβi = (β0,i,β1,i, . . . ,βp,i) ∈Rp+1, i = 1, . . . ,n,

the vectors of smoothed Fourier coefficients. Then, we shall assume that

β1β1β1, . . . ,βnβnβn
i.i.d∼ Pβββ ,

where Pβββ is a probability measure over Rp+1. The probability Pβββ characterizes the random
mechanism that originates the Fourier coefficients, which in turn, define a functional data obser-
vation. We assume that Pβββ is distributed as a mixture of Dirichlet Process prior (ANTONIAK,
1974), then we discuss methods of estimating the posterior distribution of Pβββ and the predictive
distribution of a new observation given the observed data (posterior predictive distribution).

The chapter is organized as following. Sections 3.1 and 3.2 defines the Dirichlet Process
and Dirichlet Process Mixture models, respectively. Section 3.2 approaches the specific case of
DPM model with Normal kernels. Section 3.4 exhibits the analytical distribution of X(t) for each
time t ∈ [0,1]. Section 3.5 illustrates the methods fitting DPM model to some simulated data.
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3.1 Dirichlet Process
The Dirichlet Process (DP), first introduced by (FERGUSON, 1973), is a nonparametric

Bayesian method to model the data generating mechanism as a random probability measure.
The DP can be seen as infinite-dimensional generalization of the k-variate Dirichlet distribution,
about which we shall make a brief review.

Definition 3.1 (Dirichlet Distribution). The random vector θ = (θ1, . . . ,θk) is said to follow a
Dirichlet distribution with parameter (α1, . . . ,αk) ∈ [0,+∞)k, θ ∼ Dirichlet(α1, . . . ,αk), if it can
be represented as

θ j =
U j

∑
k
i=1Ui

, j = 1, . . . ,k, (3.1)

where U1, . . . ,Uk are k independent random variables such that U j ∼ Gamma(α j,1), j = 1, . . . ,k.
The Gamma distribution with parameter (α,β ) has support on the non-negative real line [0,+∞),
where α ≥ 0 is the shape parameter and β > 0 is the scale parameter. If α = 0, the distribution
is degenerated at 0, whereas if α > 0 the distribution has density

f (u|α,β ) =
β α

Γ(α −1)
uαe−βxI[0,+∞)(u), u ∈ R,

where Γ(x) is the Gamma function.

From Definition 3.1, it follows that if θ = (θ1, . . . ,θk)∼ Dirichlet(α1, . . . ,αk), then

(i) θ j ∈ [0,1] for all j = 1, . . . ,k;

(ii) ∑
k
i=1 θi = 1.

Since a vector θ that satisfies properties (i) and (ii) characterizes the probability mass function of
a discrete random variable X assuming k distinct values, say 1,2, . . . ,k, the Dirichlet distribution
can be interpreted as a distribution over all probability mass function of that random variable.
The Dirichlet Process has an analogous interpretation for a general random variable X .

For θ = (θ1, . . . ,θk)∼ Dirichlet(α1, . . . ,αk) and all α j > 0, the vector (θ1, . . . ,θk−1) has
probability density function given by

p(θ1, . . . ,θk−1) =
Γ(α1 + · · ·+αk)

Γ(α1)Γ(α2) · · ·Γ(αk)
θ

α1−1
1 · · ·θ αk−1−1

k−1 θ
αk−1
k I∆k−1(θ1, . . . ,θk−1), (3.2)

where θk = 1−θ1 −·· ·−θk−1 and ∆k−1 is the (k−1)-dimensional simplex defined by

∆k−1 =

{
(θ1, . . . ,θk−1) ∈ [0,1]k−1 :

k−1

∑
i=1

θi ≤ 1

}
.

The following proposition characterizes the first two moments of the Dirichlet distribu-
tion.
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Proposition 3.1. If θ = (θ1, . . . ,θk)∼ Dirichlet(α1, . . . ,αk), then

(a) E[θ j] =
α j

∑
k
i=1 αi

, for j = 1, . . . ,k;

(b) Var[θ j] =
α j(α0 −α j)

α2
0 (α0 +1)

for j = 1, . . . ,k;

(b) Cov(θi,θ j) =−
αiα j

α2
0 (α0 +1)

if i ̸= j, i, j ∈ {1, . . . ,k}.

Proof. The proof of (a), (b) and (c) follows from the identity∫
∆k−1

θ
α1−1
1 · · ·θ αk−1−1

k−1 θ
αk−1
k dθ1 . . .dθk−1 =

Γ(α1)Γ(α2) · · ·Γ(αk)

Γ(α1 + · · ·+αk)
,

which is derived from the fact that (3.2) is a probability density function over ∆k−1. The details
are ommited.

Definition 3.2 (Dirichlet Process). Let (Ω,A ,P) be a probability space, that is, Ω is the sample
space, A a σ -field of subsets of Ω and P a probability measure over the measurable space
(Ω,A ). A random probability G follows a Dirichlet Process (DP) with baseline probability G0

and concentration parameter α , α > 0, if for each measurable partition {A1, . . . ,Ak} of Ω, k ≥ 1,
we have that

(G(A1),G(A2), . . . ,G(Ak))∼ Dirichlet(αG0(A1),αG0(A2), . . . ,αG0(Ak)) (3.3)

where Dirichlet(·|α1, . . . ,αk) represents the Dirichlet distribution with parameters α1, . . . ,αk ≥ 0.
The obtained random probability G is denoted by

G ∼ DP(α,G0).

A probability measure G sampled from a DP is regarded as a random selection of a probability
measure G over Ω.

The existence of a process {G(A) : A ∈ A } satisfying property (3.3) is proved in (FER-
GUSON, 1973) by the verification of the consistency conditions of the Kolmogorov Extension
Theorem (BILLINGSLEY, 2008).

Proposition 3.2 presents the mean and variance of G for a fixed A ∈ A .

Proposition 3.2. If G ∼ DP(α,G0) and A ∈ A , then

E[G(A)] = G0(A), (3.4)

Var[G(A)] =
G0(A)[1−G0(A)])

α +1
. (3.5)



36 Chapter 3. Nonparametric Bayesian Estimation of Functional Data Distribution

Proof. From property (3.3), it follows that (G(A),G(Ac))∼ Dirichlet(αG0(A),αG0(Ac)). Then,
from Proposition 3.1 we have that

E[G(A)] =
αG0(A)

α(G0(A)+G0(Ac))
= G0(A),

Var[G(A)] =
αG0(A)(α −αG0(A))

α2(α +1)
=

G0(A)(1−G0(A))
α +1

.

According to Proposition 3.2, G0 can be interpreted as the prior mean for the random
probability G and α as a degree of trust in G0, in the sense that larger values of α makes the
variance of G smaller.

Figure 4 – Illustration of Dirichlet Process. Black curves represents CDF of 10 DP samples of a DP with
baseline measure Γ(2,3) and concentration parameter α varying. Red line is the real CDF
curve.

Proposition 3.3. If G ∼ DP(α,G0), then G has the same support of G0 and is discrete almost
surely.

Proof. For detailed proof, see Section 4 of (FERGUSON, 1973).

The discreteness nature of DP priors makes it unappealing when we believe that data is
continuous. In Section 3.2, we will see a way to overcome this issue using mixtures of Dirichlet
Processes.

3.1.1 Posterior and predictive distributions of a DP prior

The most important and convenient property of Dirichlet Process prior, proved by
(FERGUSON, 1973), is its conjugacy under independent and identically distributed sampling.

Proposition 3.4. Let X1, . . . ,Xn|G
iid∼ G and G ∼ DP(α,G0). Then,

G|x1, . . . ,xn ∼ DP

(
α +n,

α

α +n
G0 +

n
α +n

n

∑
i=1

δxi

)
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where δxi is the Dirac measure, that is, for any A ⊆ Ω,

δxi(A) =

1, if xi ∈ A

0, if xi /∈ A

Furthermore, DP prior has closed form for posterior predictive distribution.

Proposition 3.5. Let X1, . . . ,Xn|G
iid∼ G and G ∼ DP(α,G0). Then,

Xn+1|X1, . . . ,Xn ∼
α

α +n
G0 +

n
α +n

F̂X ,

where

F̂X(A) =
1
n

n

∑
i=1

δXi(A), A ∈ A .

We note that the posterior baseline measure is a mixture of G0 and the empirical distribu-
tion function F̂X .

3.1.2 Stick Breaking representation

An alternative representation of the random probability measure G generated by the
Dirichlet Process (DP) was formulated by (SETHURAMAN, 1994). This representation makes
explicit the discreteness property of the probability measures generated from Dirichlet process,
besides providing a simple algorithm to simulate from the Dirichlet Process.

Theorem 3.1. If G ∼ DP(α,G0), then it can be represented, with probability one, by

G(A) =
∞

∑
i=1

ωiδxi(A), A ∈ A ,

where δx is the Dirac measure over x, x1,x2, . . . are i.i.d observations from G0, ω1,ω2, . . . are
weights given by the expressions

ω1 = θ1,

ωi = θi

i−1

∏
j=1

(1−θ j),

where θ1,θ2, . . . are i.i.d observations from Beta(1,α).

Proof. For a detailed proof, see (SETHURAMAN, 1994).

This method is known as Stick Breaking construction, alluding to the metaphor that
compares the weights to the length of a stick. At the beginning, the stick has length 1. In the first
step, we break up the stick at location θ1 ∼ Beta(1,α). After this step, the remaining stick has
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length 1−θ1 and it is broken at point θ2(1−θ1). The procedure goes on, always breaking up
the stick at a fraction θi of the length ∏

i−1
k=1(1−θk) of remaining stick at stage i = 1,2, . . ..

For simulation of Dirichlet Process using Stick Breaking, one can apply the following
algorithm.

Algorithm 1 – STICK BREAKING

Input: parameters α,G0 and error tolerance ε

Output: samples xxx of G0; weights ωωω

Initialize X1 ∼ G0, θ1 ∼ Beta(1,α), ωi = θi, i = 1

Repeat until ∑i≥1 ωi = 1− ε

Simulate Xi ∼ G0 and θi ∼ Beta(1,α)
Make ωi = θi ∏ j<i(1−θ j) using (1)
Increment i

3.2 Dirichlet Process Mixtures
One way to mitigate the discreteness limitation of the DP is to add to the discrete

distribution G a convolution with a continuous kernel. Let (X1,X2, . . . ,Xn) be an i.i.d. sample
with unknown distribution. A Dirichlet process mixture prior (DPM) posits that,

X1|θ1 ∼ f (x|θ1),
...

Xn|θn ∼ f (x|θn), (3.6)

θ1, . . . ,θn|G
i.i.d∼ G,

G ∼ DP(α,G0),

where f (xi|θ) is a parametric distribution (often referred to as the kernel of the mixture), which
is indexed by a finite dimensional parameter θ . The hierarchical model (3.7) implies on represent
the unknown distribution of X as a mixture of distributions with mixing measure given by G.
Observe that the above modelling is equivalent to assume that

X1, . . . ,Xn|G
i.i.d∼ fG(x) =

∫
f (x|θ)dG(θ),

G|α,G0 ∼ DP(α,G0).

Then, conditional on G, the distribution of Xi has a density that is a mixture of the
parametric family of densities { f (x|θ) : θ ∈ Ω} using the discrete distribution G over Ω. Since
the distribution G is discrete, we may assume the probability of a set A ⊂ Ω is

G(A) =
∞

∑
i=1

ωiδθi(A),
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where θi ∈ Ω, ωi ∈ [0,1], i = 1,2, . . ., and ∑i ωi = 1. Then, the mixed distribution fG is given by

fG(x) =
∞

∑
i=1

ωi f (x|θi). (3.7)

where

θi ∼ G0 ωi = vi ∏
k<i

(1− vk) vi ∼ Beta(1,α)

As argued by (MÜLLER; RODRIGUEZ, 2013), this representation highlights the nature
of the DPM model as a discrete mixture. DP mixtures are countable mixtures with an infinite
number of components and a specific prior on the weights and the component-specific parameters.
Working with an infinite number of components is particularly appealing because it ensures that,
for appropriate choices of the kernel f (xi|θ), the DPM model has support on a large classes of
distributions.

Figure 5 – Data (panel a) and posterior inference for G (panel b). Panel (b) shows 96 posterior draws of
the mixture model fG based on G ∼ p(G|xxx) (thin black curves) and the posterior mean E( fG|yyy)
(thick grey curve). For comparison the figure also shows a kernel density estimate (dashed
thick yellow line). Source: (MÜLLER et al., 2015)

Another consequence of DPM model is that it induces clustering among observations,
with α controlling the prior expected number of clusters on the sample. If α → 0, the model
reduces to a single component mixture, where all observations are i.i.d. from f (x|θ) and θ ∼ G0,
i.e., a fully parametric model. On the other hand, for α → ∞, each observation is assigned its
own singleton cluster and we have yi ∼

∫
f (xi|θ)dG0(θ).
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3.3 Modeling functional data using DPM with multivari-
ate normal kernels

Consider {X1(t),X2(t), . . . ,Xn(t)} to be random curves defined on t ∈ [0,1] and let
BBB = {β1β1β1, . . . ,βnβnβn} be their respective set of Fourier coefficients obtained after smoothing, where
βiβiβi = {β0i, . . . ,βpi}. Assuming a Dirichlet Process Mixture model with normal kernels, we have
the following hierarchical structure,

β1β1β1|µ1,Σ1 ∼ Np+1(µ1,Σ1)
...

βnβnβn|µn,Σn ∼ Np+1(µn,Σn)

(µi,Σi), . . . ,(µn,Σn)|G
iid∼ G (3.8)

G|α,G0 ∼ DP(α,G0)

(α,G0)|ψ ∼ πψ

which can be graphically represent as following,

Figure 6 – Illustration of the hierarchical structure of the DPM model.

Using (3.7), we conclude that,

βiβiβi|G
iid∼

∞

∑
h=1

ωhφp+1 (βiβiβi|µh,Σh) (3.9)
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where φp+1 represents the multivariate normal density with dimension p+ 1. The predictive
distribution of βiβiβi is given by,

p(βn+1βn+1βn+1|β1β1β1, . . . ,βnβnβn) =
∫

p(βn+1βn+1βn+1|θ1, . . . ,θn) d p(θ1, . . . ,θn|β1β1β1, . . . ,βnβnβn) (3.10)

where θ j = (µ j,Σ j). The integrand p(θ1, . . . ,θn|β1β1β1, . . . ,βnβnβn) is the posterior distribution of normal
parameters denoted by (MÜLLER; ERKANLI; WEST, 1996)

p(θ1, . . . ,θn|β1β1β1, . . . ,βnβnβn) ∝

n

∏
i=1

φp+1 (βiβiβi|θi)
αG0(θi)+∑ j<i δθi(θ j)

α + i−1
(3.11)

The other integrand in (3.10) can be rewritten as,

p(βn+1βn+1βn+1|θ1, . . . ,θn) =
∫

p(βn+1βn+1βn+1|θn+1)p(θn+1|θ1, . . . ,θn)dθn+1

Since θi has DP prior on its probability measure, the following property is attained,

θn+1|θ1, . . . ,θn ∼
αG0(θn+1)

α +n
+

∑
n
i=1 δθi(θn+1)

α +n
(3.12)

Moreover, relation (3.12) can be rewritten using the fact that DPM models is also used to cluster
data. In this sense, consider k groups of n j observations per group ( j = 1, . . . ,k), ∑

k
j=1 n j = n

and let θ *
j = (µ*

j ,Σ
*
j) be the normal parameters of group j. Then, (3.12) can be written as,

θn+1|θ1, . . . ,θn ∼
αG0(θn+1)

α +n
+

∑
k
j=1 n jδθ*

j
(θn+1)

α +n
(3.13)

Hence,

p(βn+1βn+1βn+1|θ1, . . . ,θn) =
α

α +n

∫
f (βn+1βn+1βn+1|θ)dG0(θ)+

1
α +n

k

∑
j=1

n j f (βn+1βn+1βn+1|θ *
j ) (3.14)

and, as argued by (MÜLLER; ERKANLI; WEST, 1996), for practically important cases where
α/n is negligible,

p(βn+1βn+1βn+1|θ1, . . . ,θn)≈
k

∑
j=1

w j f (βn+1βn+1βn+1|θ *
j )

where w j = n j/n.

Hence, if we were able to evaluate the posterior p(θ *
j |β1β1β1 . . . ,βnβnβn), then it would be

possible to evaluate p(βn+1βn+1βn+1|θ1, . . . ,θn) and, consequently, obtain the predictive samples of
Fourier coefficients.

3.3.1 Posterior simulation

Keeping the choices made by (MÜLLER; ERKANLI; WEST, 1996), we assumed that
the baseline measure G0 for (µi,Σi) is given by (assuming independence),

µi|m,V ∼ Np(µi;m,V )

Σ
−1
i |s,S ∼ Wp(Σ

−1
i ;s,(sS)−1)
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where Wp(Σ
−1
i ;s,(sS)−1) denotes the Wishart distribution with s degrees of freedom and expec-

tant matrix (sS)−1. The following priors for the hyperparameters m,S,V,δ and α were assumed
mutually independent:

m ∼ Np(m;a,A) S ∼Wp(S;q,q−1R) V−1 ∼Wp(V−1;c,(cC)−1) α ∼ Γ(α;a0,b0) (3.15)

(MÜLLER; ERKANLI; WEST, 1996) propose clustering observations using data aug-
mentation. Let θ (i) = (θ1,θ2, . . . ,θi−1,θi+1, . . . ,θn) denote the main parameter vector with θi

removed and ki being the number of distinct values in θ (i). Denote these distinct values by θ i*
j

and suppose that θ i*
j occurs ni j times. Denoting by BBB = {β1β1β1, . . . ,βnβnβn}, then

θi|θ (i),BBB,m,S,V,α ∼ qi0G(i)(θi)+
k

∑
j=1

qi jδθ i*
j
(θi)

where G(i) is the posterior of θi under the prior G0 updated by the likelihood f (Bi|θi) and the
mixing weights qi j are

qi0 ∝ α

∫
f (βiβiβi|θi)dG0(θi) qi j ∝ ni j f

(
βiβiβi|θ i*

j

)
j = (1, . . . ,ki)

Here, qi0 is interpreted as the probability of i-th observation belonging to a new cluster and qi j is
the probability of it be allocated to cluster j.

Based on the univariate approach developed by (MACEACHERN, 1994), labeling is
made introducing a configuration vector I = (I1, . . . , In), where each Ii takes values in the set
{1,2, . . . ,n} and will be updated at each Gibbs iteration using the posterior distribution of qi0

and qi j. For instance, if Ii = Ii′ = j , then observations Bi and Bi′ share a common parameter
θi = θi′ = θ *

j . Assuming this structure, the joint posterior distribution of the parameters is denoted
by,

p(θ *
θ
*

θ
*,m,S,V |BBB,I ,k,α) =

[
k

∏
j=1

[
∏

i:Ii= j
Np(βiβiβi; µ

*
j ,Σ

*
j)

]
·Np(µ

*
j ;m,V ) ·Wp

(
Σ
−1*
j ;s,(sS)−1

)]
× N(m;a,A) ·Wp

(
S;q,q−1R

)
·Wp

(
V−1;c,(cC)−1) (3.16)

To perform Gibbs sampling using (3.16), we need the full conditional posterior density
of each parameter. (MÜLLER; ERKANLI; WEST, 1996) provide these full conditionals and
more details about how to achieve these formulas. In Appendix (B), we present the pdf formulas
and some properties about the distributions used in this section, as well as the detailed step to
obtain the full conditional posterior densities. In (3.16), S, R abd A are covariance matrices, but
V−1 and C−1 are precision matrices. Conditioning on data and all other remaining parameters,
we have that the full conditional distributions of the main parameters are

µ
*
j |· ∼ N(µ*

j ;m j,Tj)

Σ
−1*
j |· ∼ Wp(Σ

−1*
j ;s+n j,S j)
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where,

T−1
j = V−1 +n jΣ

*−1

j

m j = Tj

(
V−1m+n jΣ

−1*
j b j

)
S−1

j = δ sS+n j(µ
*
j −b j)(µ

*
j −b j)

′
.

b j = n−1
j ∑

i:Ii= j
Bi

The full conditional distributions of the hyperparameters are,

m|· ∼ Np(â, Â)

S|· ∼ Wp
(
sk+q, R̂

)
V−1|· ∼ Wp(c+ k,Ĉ)

(3.17)

where tr(·) is the trace function. Defining µ̄*µ̄*
µ̄* = k−1

∑
k
j=1 µ*

j ,

Â−1 = A−1 + kV−1

â = Â
(
A−1a+ kV−1

µ̄
*

µ̄
*

µ̄
*)

R̂ =

(
qR−1 + s

k

∑
j=1

Σ
*−1

j

)−1

Ĉ =
(

cC+ k(m− µ̄
*

µ̄
*

µ̄
*)(m− µ̄

*
µ̄
*

µ̄
*)

′
)−1

Full conditional posterior is achieved for α using an auxiliary variable η ∈ (0,1) such
that,

η |· ∼ Beta(α +1,n)

α|· ∼ π1Γ(a0 + k,b0 − log(η))+π2Γ(a0 + k−1,b0 − log(η))

where,

π1 =
a0 + k−1

a0 + k−1+n(b0 − log(η))

π2 = 1−π1

We finish presenting the full conditional posterior formulas for configuration vector I.
Let I (i) = (I1, . . . , In−1, In+1, . . . , In) denote the configuration vector corresponding to the k(i)

distinct element θ i*
j in θ (i) = (θ1, . . . ,θi−1,θi+1, . . . ,θn). Then, for j = 1, . . . ,ki,

qi j|· ∝ ni jN(βiβiβi; µ
i*
j ,Σ

i*
j )

qi0|· ∝ αN(βiβiβi;m,Σ*
n+1 +V )
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where Σ*
n+1 is a new Wishart sample from the baseline measure G0. The following algorithm

summarizes simulation from posterior (3.16) using the full conditional distributions. Due to the
high dimension of the parameters, the initial values fixed to the set of hyperparameters (used
to start the chain) were obtained using the data. For example, the initial values of covariance
matrices S, R and A were set to be the unbiased estimator of the covariance matrix of the data.

Algorithm 2 – POSTERIOR SIMULATION OF DPM
Input: hyperparameters a,A,S,R,q,c,C,a0,b0;
data; sample size n;
Output: samples of (µ,Σ)

Initialize the labels with I = (1,2, . . . ,n)

Repeat N times
Simulate m,S,V,δ and α (1)
Simulate θ * = (µ*,Σ*)(2) using (1)
Simulate new labels I (3) using (2)

3.4 One-dimensional distribution of functional data

As discussed in Chapter 2, the representation of functions using orthonormal basis
expansion implies that each random process X(t) is represented as a linear combination of fixed
basis functions and a random set of Fourier coefficients (weights),

X(t) = β0φ0(t)+β1φ1(t)+ · · ·+βpφp(t)

= cp(t)cp(t)cp(t)T
βββ

where cp(t)cp(t)cp(t) = {φ0(t), . . . ,φp(t)} is a vector of fixed quantities and βββ = {β0, . . . ,βp} is the
random component we are interested to model. From DPM model (3.8), we concluded that,

βiβiβi|G
iid∼

∞

∑
h=1

ωhNp+1 (βiβiβi|µhµhµh,ΣhΣhΣh)

that is, the distribution of the set of Fourier coefficients is a mixture of multivariate densities.

The following results make it possible to derive the distribution of X(t) for a fixed
t ∈ [a,b].

Result 3.1. The following results are valid for multivariate Normal distributions.

a) If YYY is distributed as Np(µµµ,ΣΣΣ) then any linear combination of variables aTYaTYaTY = a1Y1 +

a2Y2 + · · ·+akYk is distributed as N1(aT µaT µaT µ,aT ΣaaT ΣaaT Σa).
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b) If YYY is distributed as infinite discrete mixture of multivariate Normal densities, that is, YYY

has p.d.f given by

fY (y) =
∞

∑
h=1

ωhφp(y|µh,Σh),

where φp(·|µ,Σ) denotes the p-variate Normal density with mean vector µ and variance-
covariance matrix Σ, and the weights (ωh)h≥1 satisfy

(i) ωh > 0 for all h ≥ 1,

(ii) ∑h≥1 ωh = 1,

then X = aTYaTYaTY = a1Y1 +a2Y2 + · · ·+akYk has p.d.f given by

fX(x) =
∞

∑
h=1

ωhφ1(x|aT
µhaT
µhaT
µh,aT

ΣhaaT
ΣhaaT
Σha). (3.18)

Proof. a) This is a standard result about the multivariate Normal distribution and can be found,
for instance, in (JOHNSON; WICHERN, 2002).

b) Since YYY is distributed as infinite discrete mixture of multivariate Normal densities, its
distribution can be derived from a two-step procedure:

1. Draw a discrete random variable H = h from the p.m.f given by

pH(h) =
∞

∑
i=1

ωiI{h}(i), h = 1,2, . . . ;

2. Draw Y = y from the φp(·|µh,Σh).

Since X = aTYaTYaTY , we can conclude from the previous procedure and from part a) that X is
obtained from the two-step procedure:

1. Draw a discrete random variable H = h from the p.m.f given by

pH(h) =
∞

∑
i=1

ωiI{h}(i), h = 1,2, . . . ;

2. Draw X = x from the φ1(·|aT µhaT µhaT µh,aT ΣhaaT ΣhaaT Σha).

Thus, from this procedure it follows that X has the p.d.f given in (3.18).

Using b) of Result 3.1, it follows that,

X(t)|G ∼
∞

∑
h=1

ωhN1

(
x,cp(t)T

µhcp(t)T
µhcp(t)T
µh,cp(t)T

Σhcp(t)cp(t)T
Σhcp(t)cp(t)T
Σhcp(t)

)
(3.19)

represents the analytical distribution of the process X(t), t ∈ [a,b].
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3.5 Illustration using simulated data
In this section we present some illustrations of multivariate density estimation and

prediction using Dirichlet Process Mixtures with normal kernels. For that, it was simulated two
groups of functional data {X1(t), . . . ,Xn1(t)} and {Y1(t), . . . ,Yn2(t)} with n1 = n2 = 50 and,

Xi(t) =
p

∑
j=1

β jiX
φ j(t) Yi(t) =

p

∑
j=1

β jiY
φ j(t) i = 1, . . . ,50

where p = 5 and {φ0, . . . ,φp} is the set of Fourier orthonormal basis functions defined as in (2.3).
It was assumed that,

βiXβiXβiX =
(

β0iX
,β1iX

, . . . ,βpiX

)
∼ Np+1(µX ,ΣX)

βiYβiYβiY =
(

β0iY
,β1iY

, . . . ,βpiY

)
∼ Np+1(µY ,ΣY )

and

µX =


20
3
−1
−1
−0.5

 ΣX =


0.45 0.10 −0.19 0.11 0.22
0.10 0.15 −0.21 0.12 −0.12
−0.19 −0.21 0.72 −0.37 −0.07
0.11 0.12 −0.37 0.32 0.17
0.22 −0.12 −0.07 0.17 0.66



µY =


15.4
3.4
−1.4
−3.4
−0.4

 ΣY =


1.38 0.62 −0.41 −0.75 0.39
0.62 0.46 −0.24 −0.20 0.17
−0.41 −0.24 0.55 0.17 −0.04
−0.75 −0.20 0.17 0.55 −0.31
0.39 0.17 −0.04 −0.31 0.58


Figure 7 shows the simulated samples of functional data for each group.
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Figure 7 – Functional data simulated using multivariate normal distribution with distinct parameters.
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The DPM model was applied to estimate the multivariate distribution of the coefficients
of each group. It was simulated N0 = 51000 predicted samples of Fourier coefficients and then
applied a burn of 1000 from the beginning of the chain (time until convergence) and a jump of 4
due to minimize correlation between the predictions. Figure 8 presents the predicted average
curve for both groups, as well as the predictive confidence interval with 95% of credibility.
Figures 10 and 11 present the projection of raw data and predicted samples from each two-by-
two dimensions, for group X and Y , respectively.

The results show that the DPM model using normal kernels is presenting great perfor-
mance on predicting high dimensional data, even with relatively small sample sizes. In both
simulations, we provided initials values for the hyperparameters of (3.15) based on Empirical
Bayes methods, due to the fact that as data dimension increases, the more difficult is the chain to
converge. The total time spent for each group simulation was about 30 minutes on a device 11th

Gen Intel(R) Core(TM) i7-1165G7 16Gb RAM.
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Figure 8 – Comparison between functional data and predicted mean for each group. The shaded areas
represent predictive confidence interval with 95% of credibility.
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Figure 9 – Convergence diagnostics of predictive samples using MCMC for simulated data.
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Figure 10 – Comparison between simulated data (large points) and predicted samples (small points) for
each pair of coefficients on group X .
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Figure 11 – Comparison between simulated data (large points) and predicted samples (small points) for
each pair of coefficients on group Y .
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CHAPTER

4
COMPARISON OF TWO INDEPENDENT

FUNCTIONAL DATA GROUPS

In this chapter, we present methods to compare two independent groups of functional
data based on two different notions of closeness: (1) assessment of the dissimilarity between the
groups and (2) evaluation of the homogeneity between the generating mechanisms of the curves
of each group. For the first goal, we proposed a Predictive Dissimilarity Index that measures
the distance between predicted curves of each group and has a strong interpretative appeal. For
the second goal, we used the result discussed on Section 3.4 to test the following hypotheses:

H0,t : Xt
D
= Yt , for t ∈ [a,b]

where D
= denotes "equals in distribution" and [a,b]⊆ [0,1].

4.1 Predictive Dissimilarity Index

Consider two independent stochastic processes X = {X(t) : t ∈ [0,1]}, Y = {Y (t) : t ∈
[0,1]} inside a fixed sub-interval [a,b]⊆ [0,1] of the domain. Consider a metric d between two
real functions X̃ ,Ỹ ∈ L2([a,b]). The dissimilarity between the processes can be assessed inside
[a,b] using the following measure

Dε(X ,Y ; [a,b]) = P
(
d(X̃ ,Ỹ )> ε

)
where X̃ ,Ỹ are the restrictions of X and Y to the sub-interval [a,b], and ε is fixed positive value
representing a practical significance level for the difference between the two measurements.
Hence, the dissimilarity Dε(X ,Y ; [a,b]) is the probability of observing a significant difference
between X and Y inside the interval [a,b]. The choice of the ε value is a subjective one and
should take into account the practical consequences associated to the problem at hand.



52 Chapter 4. Comparison of two independent functional data groups

In case this choice is not direct, the consideration of the following dissimilarity index
can be helpful

PDIα(X ,Y ; [a,b]) = sup
{

ε > 0 : Dε(X ,Y ; [a,b])≥ α

}
= sup

{
ε > 0 : P(d(X̃ ,Ỹ )> ε)≥ α

}
, (4.1)

where α ∈ [0,1] is a large probability indicating the degree of confidence desired. The index
PDIα(X ,Y ; [a,b]) represents the largest possible difference ε that we can state, with probability
α , that a practical significance difference exists. In other words, the PDI index is the (1−α)

quantile of the distribution of d(X̃ ,Ỹ ).
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Figure 12 – Illustration of PDI.

The greater the value of PDIα(X ,Y ; [a,b]), the greater is the difference between the
observed values of X and Y inside the sub-interval [a,b]. For instance, if PDI0.90(X ,Y ; [a,b]) = 5,
than there is a probability greater than 0.9 that the processes are 5 units apart. If one considers
that a difference up to ε = 1 is not relevant in practice, then he can conclude that a practical
difference exists, since the probability of [d(X̃ ,Ỹ )> ε] is greater than 0.9.

We used two possibilities for the metric d in L2([a,b]):

d1(X̃ ,Ỹ ) = sup
t∈[a,b]

|X̃(t)− Ỹ (t)|,

(4.2)

d2(X̃ ,Ỹ ) =
1

b−a

∫ b

a
|X̃(t)− Ỹ (t)|dt.

The metric d1 is the largest absolute difference between X̃ and Ỹ and the metric d2 is the mean
value of the absolute difference between X̃ and Ỹ , known as L1 norm. Considering these two
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metrics, we define

PDI1(α) = sup
{

ε > 0 : P(d1(X̃ ,Ỹ )> ε)≥ α

}
, (4.3)

PDI2(α) = sup
{

ε > 0 : P(d2(X̃ ,Ỹ )> ε)≥ α

}
. (4.4)

Estimates of PDI is achieved as following. Assuming two independent observed samples
of functional data {X1(t), . . . ,Xn1(t)} and {Y1(t), . . . ,Yn2(t)} and its respective Fourier coeffi-
cients BXBXBX =

{
β1Xβ1Xβ1X , . . . ,βn1Xβn1Xβn1X

}
and BYBYBY =

{
β1Yβ1Yβ1Y , . . . ,βn2Yβn2Yβn2Y

}
, where βi.βi.βi. = (β0i.

, . . . ,βpi.
), with p being

the number of basis (cutoff ) used in the smoothing step, we can evaluate PDI using predic-
tive samples {X*

1 (t),X
*
2 (t), . . . ,X

*
N(t)} and {Y *

1 (t),Y
*
2 (t), . . . ,Y

*
N(t)} obtained adjusting DPM

models.

In summary, we can use the observed samples of coefficients to estimate the probability
density and predictive distributions of each group, which enables us to get predictive samples{

β(n1+1)X
β(n1+1)X
β(n1+1)X

, . . . ,β(n1+N)X
β(n1+N)X
β(n1+N)X

}
and

{
β(n2+1)Y
β(n2+1)Yβ(n2+1)Y , . . . ,β(n2+N)Y

β(n2+N)Y
β(n2+N)Y

}
, where N is some arbitrary number of

predictive samples desired. Through these new samples of fourier coefficients, we can construct
new curves that is expected to have the same probabilistic behavior as the original functions,
which allows us to evaluate PDI in [a,b], according to some confidence level α .

Algorithm 3 – PREDICTIVE DISSIMILARITY INDEX

Input: predictive samples of Fourier coefficients for group 1 and 2; confidence level α , distance
metric, limits [a,b] of domain
Output: predicitive dissimilarity index PDI(α)

For each t ∈ [a,b], do
Repeat N times

Evaluate X*(t) and Y *(t) using the predictive samples of Fourier coefficients
Calculate d(X*(t),Y *(t)) using the input distance metric

Evaluate the quantile (1−α) of the Nestimateddistances

4.2 Hypothesis Test for Distribution Equality
Here we discuss the second approach to evaluate the closeness of two functional data

groups: hypotheses test. Assuming two independent stochastic processes X = {X(t) : t ∈ [0,1]},
Y = {Y (t) : t ∈ [0,1]} inside a fixed sub-interval [a,b]⊂ [0,1] of the domain, the hypothesis of
interest is,

H0,t : Xt
D
= Yt ,

H1,t : Xt
D
̸= Yt , (4.5)

for a fixed t ∈ [a,b], where D
= means "equals in distribution". In words, H0 suggests that the

processes are generated according to the same probabilistic mechanism over the period [a,b].
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To evaluate the plausibility of H0 using Bayesian principles, we might calculate the
posterior probability of H0, that is

P(H0,t |B) = P(FXt = FYt |B) (4.6)

where FX(t) and FY (t) are the distribution functions of X and Y at time t, respectively, and
B represents the data. Since the processes are continuous, the value of (4.6) is always zero.
For practical purposes, it is reasonable to substitute the original hypothesis of equality with
an enlarged one that means the same. (COSCRATO et al., 2019) calls this enlargement as
Pragmatic Hypothesis . Essentially, a pragmatic hypothesis is an imprecise hypothesis that is

sufficiently good from the practical purpose of an end-user of the theories, using an appropriate

precision level (ESTEVES et al., 2019).

∙ Definition (pragmatic hypothesis for a singleton): let H0 : θ = θ0, dZZZ be a predictive dis-
similarity function and γ > 0. The pragmatic hypothesis for H0, denoted by Pg({θ0},dZZZ,γ)

is,

Pg({θ0},dZZZ,γ) = {θ
* ∈ Θ : dZZZ(θ0,θ

*)≤ γ} (4.7)

Adapting definition (4.7) to the hypotheses postulated in (4.5), we have that,

Pg(H0,t ,dZZZ,γ) =
{(

F*
Xt
,F*

Yt

)
: dZZZ

(
F*

Xt
,F*

Yt

)
≤ γ
}

(4.8)

which means that using an appropriate precision level 0 ≤ γ ≤ 1 and a convenient dissimilarity
measure between distributions dZZZ , we can calculate the probability of the pragmatic version of
the hypothesis of interest. Here we used the Kolmogorv-Smirnov (KS) distance as a candidate to
dZZZ , that is,

dZZZ (FXt ,FYt ) = sup
x∈R

|FXt (x)−FYt (x)|

For the choice of the precision level γ , we suggests simulation studies. An alternative
way is given by (SWARTZ, 1999), that suggests to consider an initial measurement precision
γ0 of the variable of interest whose difference has little impact in decisions in practice (this
answer can be obtained using prior knowledge of the researcher). For instance, if the variable is
measured in feet and γ0 = 0.5, then we are stating that the values are rounded to the nearest foot
and, in practice, this rounding doesn’t cause significant impact in decisions. Having specified γ0,
we might evaluate the impact of this rounding over the distribution of the data. It is important to
highlight that the choice of this distribution might not consider the observed data, because the
definition of the scientific hypotheses is a previous step.

Hence, the researcher can provide an idea of scale σ of the variable of interest and
measure the impact of γ0 using the KS distance between the original distribution and the
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distribution offset by γ0. The distribution M might be in a location-scale family (Normal, Logistic,
etc), but the procedure is invariant by location. Then, a candidate for the precision level γ is
given by

γ
* = sup

x∈R

∣∣∣M(x+
γ0

σ

)
−M(x)

∣∣∣ (4.9)

Hence, with the precision level γ* at hand, we can rewrite the pragmatic hypotheses of
interest as following:

H0,t : Xt
D
= Yt , for t ∈ [a,b] =⇒ Pg(H0,t ;γ

*) : sup
x∈R

|FXt (x)−FYt (x)| ≤ γ
*

where FXt and FYt are the distribution of the process X and Y at time t, respectively.

Algorithm 4 – PROBABILITY OF PRAGMATIC NULL HYPOTHESIS

Input: posterior simulations of (µ,Σ); precision level γ*

Output: probability of pragmatic hypothesis P(P(H0,t ;γ*)|B)

For each t ∈ [a,b], do
Repeat N times

Estimate F̂Xt and F̂Yt using the posterior simulations of (µ,Σ)
Calculate dKS(F̂Xt , F̂Yt )
Estimate P(H0,t) = (1/n)∑

N
i=1 I(dKS(F̂Xt , F̂Yt )≤ γ*)

The decision criteria used to decide about the acceptance of the pragmatic null hypothesis
at t ∈ [a,b] is,

P(P(H0,t ,γ
*)|B)>

1
2

(4.10)

4.3 Illustration using simulated data
In this section, we evaluate the PDI index and KS distance over time using the same

simulations of Section (3.5). Figure 13 exhibits the results when the groups has the same
generating mechanism (H0 is true) and when they has distinct generating mechanisms (H0 is
false).

The results show that according to PDI1, there is a confidence level greater than 95%
that the maximum difference between the curves is greater than 2 units (over [0,1]) when the

groups are equally distributed and greater than 8 when the groups are not equally distributed.
Similarly, according to PDI2, there is a probability greater than 95% that the mean difference of
the curves is about 1 when the groups are equally distributed and about 4 when the groups are
not equally distributed (over the same domain).

Note that when the groups doesn’t have the same distribution over [0,1], PDI index
shows a high confidence level that the dissimilarity between the curves is relatively "far" from
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zero, with doesn’t happen when the groups have the same distribution, indicating that this index
has a good potential to detect dissimilarities on the processes over any subset [a,b]⊆ [0,1] and it
is easy to interpret.

The KS average kept very close to the real KS when the groups are not equally distributed.
However, when H0 is true, the KS average kept constant and close to 0.1, which can be a first
guess of the precision level γ used on pragmatic hypotheses discussed on Section 4.2. A more
extended simulation study is recommended to evaluate the behavior of this threshold varying the
sample sizes and distributions of the groups.

Another illustration was made using polynomial basis instead of Fourier basis (Figure
14), because the periodic outline of Fourier basis does not always fit well to some studies, making
it desirable that the methods performs well for other sets of basis functions, like polynomials,
splines, etc. In this scheme, we have processes {P1(t), . . . ,Pn1(t)} and {Q1(t), . . . ,Qn2(t)} with
n1 = n2 = 50 and,

Pi(t) =
p

∑
j=1

β̃ jiX
ψ j(t) Qi(t) =

p

∑
j=1

β̃ jiY
ψ j(t) i = 1, . . . ,50

where p = 5, {ψ0, . . . ,ψp} is the set of polynomial basis functions, that is, ψi(t) = t i, β̃iPβ̃iPβ̃iP ∼
Np+1(µP,ΣP) and β̃iQβ̃iQβ̃iQ ∼ Np+1(µQ,ΣQ), with

µP =


4.7
10.4
5.1
2.7
−0.3

 ΣP =


1.62 1.46 1.23 0.48 −0.04
1.46 2.42 1.61 −0.01 0.59
1.23 1.61 2.10 −0.60 1.21
0.48 −0.01 −0.60 2.66 −0.99
−0.04 0.59 1.21 −0.99 1.36



µQ =


12.0
8.9
1.2

10.3
9.5

 ΣQ =


0.65 −0.26 1.04 −0.81 1.51
−0.26 2.08 1.18 0.61 0.04
1.04 1.18 3.81 −1.55 3.32
−0.81 0.61 −1.55 1.81 −1.86
1.51 0.04 3.32 −1.86 5.73


The results show that the PDI index is performing well on estimate the expected and

maximum difference between the functional data smoothed using polynomial basis function.
The averaged KS Distance is closed to the real, but it seems to be relatively overestimated for
some regions of the domain, even when H0 is false.
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Figure 13 – Comparison of functional data groups using simulated data. On left, the PDI curve using both
d1 and d2 distances and KS average over time when H0 is true. On right, the same information
when H0 is false. The shaded pink areas corresponds to pointwise predictive bands with 90%
of credibility.



58 Chapter 4. Comparison of two independent functional data groups

H0H0H0 True H0H0H0 False

0

10

20

30

40

50

0.00 0.25 0.50 0.75 1.00
t

P(t) Q(t)

0

10

20

30

40

50

0.00 0.25 0.50 0.75 1.00
t

P(t) Q(t)

0

5

10

15

20

25

30

35

40

45

50

100 90 80 70 60 50 40 30 20 10 0
Confidence Level (%)

P
D

I o
ve

r 
[0

,1
]

Distance D1 Distance D2

0

5

10

15

20

25

30

35

40

45

50

100 90 80 70 60 50 40 30 20 10 0
Confidence Level (%)

P
D

I o
ve

r 
[0

,1
]

Distance D1 Distance D2

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
t

K
S

 D
is

ta
nc

e

KS Average KS Real

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
t

K
S

 D
is

ta
nc

e

KS Average KS Real

Figure 14 – Comparison of functional data groups using simulated data adjusted using polynomial basis.
On left, the PDI curve using both d1 and d2 distances and KS average over time when H0 is
true. On right, the same information when H0 is false. The shaded pink areas corresponds to a
pointwise predictive bands with 90% of credibility.
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CHAPTER

5
APPLICATION: CANADIAN WEATHER DATA

In this section, we present an application of the methods for a real functional data
set. (RAMSAY; SILVERMAN, 1997) introduce the famous Canadian Weather Data, where
temperature of 35 provinces across Canada were recorded daily by weather stations and averaged
over 34 years (1960 to 1994). The provinces are divided in four geographic climate regions:
Atlantic, Continental, Pacific and Arctic. Figure 15 shows the locations of the provinces grouped
by region and tables 1 and 2 show some details of the provinces and how data is structured,
respectively.

Figure 15 – Location of the weather stations across Canada, grouped by regions: Atlantic (red), Continen-
tal (green), Pacific (blue) and Arctic (black). Source: (PINI; VANTINI, 2017)
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Table 1 – Number of provinces and province names by region.

Region Number of provinces Province names

Atlantic 15

St. Johns
Halifax
Sydney
Yarmouth
Charlottvl
Fredericton
Scheffervll
Arvida

Bagottville
Quebec
Sherbrooke
Montreal
Ottawa
Toronto
London

Continental 12

Thunderbay
Winnipeg
The Pas
Churchill
Regina
Pr. Albert

Uranium Cty
Edmonton
Calgary
Whitehorse
Dawson
Yellowknife

Pacific 5
Kamloops
Vancouver
Victoria

Pr. George
Pr. Rupert

Arctic 3
Iqaluit
Inuvik Resolute

TOTAL 35

Table 2 – Structure of the Canadian Temperature dataset.

Date
Averaged Temperature (1961 - 1994)

Atlantic Continental Pacific Arctic
Province 1 . . . Province 15 Province 1 . . . Province 12 Province 1 . . . Province 5 Province 1 . . . Province 3

01/jan -3.6 . . . -5.2 -14.0 . . . -24.5 -5.3 . . . 0.4 -23.3 . . . -30.7
02/jan -3.1 . . . -5.7 -14.0 . . . -25.3 -5.6 . . . 0.5 -24.0 . . . -30.6
03/jan -3.4 . . . -5.3 -13.5 . . . -26.1 -6.5 . . . -0.2 -24.4 . . . -31.4
04/jan -4.4 . . . -5.8 -13.9 . . . -27.7 -6.8 . . . -0.6 -24.7 . . . -31.9
05/jan -2.9 . . . -6.5 -14.4 . . . -27.8 -7.3 . . . -1.0 -25.3 . . . -31.5

...
...

...
...

...
...

...
...

...
...

...
...

...
27/dez -12.4 . . . -5.6 -13.0 . . . -26.1 -4.3 . . . 0.8 -24.1 . . . -29.8
28/dez -10.1 . . . -4.1 -12.8 . . . -25.4 -6.2 . . . 0.1 -23.1 . . . -30.1
29/dez -9.1 . . . -4.7 -13.8 . . . -24.5 -7.0 . . . -0.1 -23.5 . . . -29.0
30/dez -11.3 . . . -5.7 -14.0 . . . -25.8 -6.4 . . . -0.1 -23.9 . . . -29.4
31/dez -10.7 . . . -4.9 -13.9 . . . -25.1 -6.3 . . . 0.0 -24.5 . . . -30.5

The data were smoothed using Fourier orthonormal basis functions of the form (2.3).
The number of basis functions were chosen using k-fold cross validation with penalizing rule
as presented in (2.6). Table 3 shows the best number of basis for each province as well as their
respective estimated MSE. Due to reduce computational efforts, we choose to assume 50 basis
functions for all the provinces (the computational costs using p = 95 were worse than the gains
of MSE involved). Figure 16 shows the raw recorded data and smoothed curves for each region
using p = 50.

The Fourier coefficients obtained from smoothing were modeled and predicted using
Dirichlet Process Mixtures with normal kernels as presented in (3.7). The initial values used
on MCMC were based on Empirical Bayes due to the high dimension of the data. For each
region, it was simulated N = 100,000 samples, with burn = 1000 and jump = 4 , due to guarantee
convergence of the chain and avoid high correlation between the samples. Figure 17 presents
some diagnostics that justify the choice of these quantities. Figure 18 shows the predicted average
for the functional processes of each region.
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Continental (raw) Continental (smoothed)
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Pacific (raw) Pacific (smoothed)
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Arctic (raw) Arctic (smoothed)
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Figure 16 – Raw recorded points (left) and smoothed curves (right) over time for the four regions of
Canada. Smoothing was made using p = 50 Fourier basis function.
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Table 3 – Best number of basis and estimated MSE for each province.

Province Number of basis with
smaller MSE

Estimated
MSE Province Number of basis with

smaller MSE
Estimated

MSE
St. Johns 75 0.3650 Churchill 75 0.3442
Halifax 55 0.3980 Regina 90 0.3832
Sydney 90 0.3419 Pr. Albert 65 0.3960

Yarmouth 75 0.3895 Uranium Cty 55 0.4066
Charlottvl 75 0.3966 Edmonton 95 0.3447
Fredericto 75 0.3958 Calgary 90 0.3335
Scheffervl 75 0.3413 Kamloops 65 0.3988

Arvida 75 0.3663 Vancouver 70 0.3950
Bagottvill 75 0.3799 Victoria 90 0.3427
Quebec 80 0.3540 Pr. George 65 0.3646

Sherbrooke 50 0.4184 Pr. Rupert 75 0.3551
Montreal 70 0.3936 Whitehorse 75 0.3928
Ottawa 90 0.3428 Dawson 75 0.3263
Toronto 80 0.3857 Yellowknife 90 0.3626
London 85 0.3993 Iqaluit 90 0.3758

Thunderbay 90 0.3583 Inuvik 55 0.4171
Winnipeg 65 0.3986 Resolute 80 0.3955
The Pas 75 0.3639
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Figure 17 – Convergence diagnostics for predictive samples using MCMC for Canadian Weather Data.
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Figure 18 – Predicted temperature (oC) over time for the four regions of Canada. Thicker lines represent
the predicted average and shaded areas represent pointwise predictive bands with 95% of
credibility.

The graphs presented in Figure 19 are related to the estimation of the Predictive Dis-
similarity Index over different periods (full year, summer and winter), using the two distance
metrics (4.2). The results show that considering the full year, the regions Pacific x Arctic have the
largest degree of dissimilarity when compared with other combinations two-by-two. For these
regions, there is a confidence level greater than 95% that the average difference between them is
expected to be greater than 13 oC and the maximum difference is expected to be greater than 30
oC. the regions Atlantic x Pacific have the smallest degree of dissimilarity when compared with
others. For these regions, there is a confidence level greater than 95% that the average difference
between them is expected to be greater than 3 oC and the maximum difference is expected to be
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greater than 9.3 oC. Table 4 highlights important values of PDI based on the graphs.

Looking at the PDI index for summer and winter periods, we observe that, in general, the
regions tend to have minor temperature dissimilarities on summer than on winter. Furthermore,
the temperature differences between Continental, Atlantic and Pacific are similar on summer,
and the Arctic appears to have higher but similar differences from the other regions during this
period. On winter, the average temperature difference tends to be distinct for each two-by-two
regions comparison. During the summer, Continental temperature seems to be more similar
to Pacific than the Arctic, bu on winter, Continental temperature seems to be more similar to
Arctic than to Pacific. This probably happened because there are four provinces classified on
Continental region (Churchill, Uranium Cty, Whitehorse and Dawson) that has latitudes closed
to latitudes of Arctic provinces.

The homogeneity of the distributions for every t ∈ [a,b] was evaluated through the KS
distance between the distributions of the processes (result (3.19)) using the posterior DPM
parameters simulated from the scheme presented in Section 3.3. Figure 20 shows the results of
homogeneity tests. The highlighted threshold γ* = 0.2 is a suggestion of precision level based on
the results of simulated data (Section 4.3) and it was used to calculate the pragmatic hypothesis
P(H0,t ;γ*) = d(FX ,FY )≤ γ*.

The graphs have the same display of the ones presented in (PINI; VANTINI, 2017), in
order to make it easy some comparisons between the results. Comparing Arctic to other regions,
the null hypothesis of homogeneity was rejected over the full year. Looking at Continental
versus Atlantic and Continental versus Pacific, we observe that the null hypothesis is rejected for
autumn and winter. Finally, when comparing Atlantic versus Pacific, we conclude that the null
hypothesis is rejected only for winter. The conclusions are similar to that presented in (PINI;
VANTINI, 2017), but on their work, the acceptance regions were lightly larger than the ones
presented here.

Table 4 – Predictive Dissimilarity Index varying periods of the year and confidence levels.

Confidence
Level Regions

Predictive Dissimilarity Index
Average Temperature

Difference
Maximum Temperature

Difference
Full Year Summer Winter Full Year Summer Winter

99%

Pacific - Arctic 13.08 7.53 13.47 27.19 22.46 19.07
Atlantic - Arctic 9.70 6.39 10.04 19.91 16.80 15.67

Continental - Arctic 5.32 4.79 3.46 14.58 12.99 7.98
Continental - Pacific 5.00 2.44 4.69 13.87 7.52 9.80

Atlantic - Continental 2.70 1.92 2.25 8.39 5.64 6.28
Atlantic - Pacific 2.60 1.84 1.73 7.90 5.34 4.26

95%

Pacific - Arctic 15.00 9.13 16.44 29.80 25.35 22.14
Atlantic - Arctic 11.53 8.16 12.73 22.41 19.48 18.50

Continental - Arctic 6.73 6.22 5.15 17.15 15.82 10.52
Continental - Pacific 6.17 2.95 6.76 16.58 9.22 12.73

Atlantic - Continental 3.36 2.27 3.22 10.27 6.71 8.36
Atlantic - Pacific 3.12 2.23 2.26 9.32 6.49 5.36

90%

Pacific - Arctic 16.05 10.19 18.07 31.24 26.84 23.79
Atlantic - Arctic 12.62 9.31 14.10 23.77 21.03 19.99

Continental - Arctic 7.68 7.17 6.27 18.53 17.29 12.03
Continental - Pacific 6.83 3.27 8.04 18.05 10.25 14.38

Atlantic - Continental 3.84 2.50 4.00 11.43 7.39 9.71
Atlantic - Pacific 3.46 2.47 2.66 10.24 7.21 6.05
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Figure 19 – Predictive Dissimilarity Index for regions two-by-two using distance metrics d1 (maximum
difference) and d2 (average difference) over full year, summer and winter.
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Figure 20 – On left: estimated KS Distance between the distributions of the curves for each groups two-
by-two over time (shaded areas represent pointwise predictive bands with 95% of credibility.).
On center: estimated probability of null hypothesis of homogeneity between the curves over
time. On right: overlap of observed curves of the compared groups (gray areas represent
periods where the hypothesis of homogeneity is rejected).
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CHAPTER

6
CONCLUSIONS

The focus of this work was to present Bayesian methods to model and compare two
groups of functional data. For that, we divided the problem into three main parts. The first is
functional data representation, which is a pre-processing step necessary to link the empirical
measurements collected to the functional nature presented in theory. This representation was
made using series expansion with orthonormal basis functions due to the bijective relation
between the curves and their respective coefficients of the series. This property enables us to
perform analyses only with coefficients, which makes it easier to apply statistical models.

The second step was modeling functional data. Considering that each individual is
associated to a vector of real coefficients, the challenge is resumed on modeling multivariate
data and the interest is to model the multivariate density associated to the coefficients. Under
nonparametric Bayesian methods, the densities were estimated using Dirichlet Process Mixture
model with normal kernels, where the fourier coefficients is distributed as a mixture of parametric
distributions (multivariate normals) and a Dirichlet Process prior is assumed to the mixing
measure. With the posterior simulations and estimated densities at hand, we were able to get
predictive samples of coefficients and build new predicted curves. This step demanded intensive
computational programming skills due to the complexity of the model and the dimension of data
involved. Simulations showed that up to now the model is predicting multivariate data in a very
effective way with relatively low time, even for high dimensions.

The third step was to propose methods to compare two groups of functional data. For
that, we suggested an index that measures the dissimilarity between the groups in some fixed
interval [a,b] of the domain, using predictive samples of the fitted model. Thie index is a great
tool to compare functional data groups global and locally and has a strong interpretative appeal,
providing the dissimilarity notion at the same scale of the interest variable. We also proposed
a bayesian approach to assess the homogeneity of the groups through the measure of distance
between the distributions of the processes for every point of time. The evaluation of probability
of null hypothesis is a topic to be explored with more details in future works. As we could see,
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the use of pragmatic hypothesis requires the choice of a precision level that can be difficult to
be found in practice and might be adjusted to the demands of the referred research. A detailed
simulation study can be done to specify sets of distance that, in practice, can be considered
references of how much the pragmatic hypothesis can be enlarged under equally distributed data.

In general, both modeling and comparison of functional data were successfully achieved
in this work. The next steps include studies of other decision rules to test the homogeneity of two
or more groups of functional data and compare the method to other tests proposed in literature,
like (PINI; VANTINI, 2017) and (KIM; LEE; LEI, 2019).

We finish acknowledging all the researchers and students who collaborate to the growth
and development of (R Core Team, 2021), the software where the analysis were integrally
performed.
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APPENDIX

A
FURTHER TOPICS IN FUNCTIONAL

ANALYSIS

A.1 Convergence and completeness of a metric space
Sequences plays an important role when studying convergence of real or complex

numbers and the same is applied for arbitrary metric spaces. The following definitions and
theorems explain these two important features of metric spaces, which shall be important on
later definitions.

Definition: A sequence {xn} in a metric space (X ,d) is said to converge if there is an
x ∈ X such that,

lim
n→∞

d(xn,x) = 0

So, x is called limit of {xn} and

lim
n→∞

xn = x.

Otherwise, {xn} is said to be divergent.

Here, d yields the sequence of real numbers an = d(xn,x) whose convergence defines that
of {xn}. Hence if xn → x, an ε being given, there is an N = N(ε) such that all xn with n > N lie
in the ε−neighborhood B(x;ε) of x. Finally, it’s notable that the limit of a convergent sequence
must be a point of the space X .

Theorem: Let (X ,d) be a metric space. Then,

(a) A convergent sequence in X is bounded and its limit is unique.

(b) if xn → x and yn → y, then d(xn,yn)→ d(x,y).
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Definition: A sequence {xn} in a metric space (X ,d) is said to be Cauchy if for every
ε > 0 there is an N = N(ε) such that,

d(xm,xn)< ε

for every m,n > N. The space (X ,d) is said to be complete if every Cauchy sequence in X

converges.

Theorem: Every convergent sequence in a metric space is a Cauchy sequence.

Theorem: Let M be a nonempty subset of a metric space (X ,d) and M its closure. Then:

(a) x ∈ M if and only if there is a sequence (xn) in M such that xn −→ x.

(b) M is closed if and only if the situation xn ∈ M, xn −→ x implies that x ∈ M.

Theorem: A subspace M of a complete metric space X is itself complete if and only if the
set M is closed in X .

The set X of the Riemann integrable and continuous functions in [a,b] is denoted by
L1([a,b]). It can be proved that the function space C[a,b], where a,b ∈R,a < b, is complete .
However, for the space L1([a,b]) and the metric

d(x,y) =
∫ b

a
|x(t)− y(t)|dt,

the L1([a,b]) is not complete. Fortunately, this problem can be corrected by completing the
space.

A.2 Completion of metric spaces
Definition: Let X = (X ,d) and X̃ = (X̃ , d̃) be arbitrary metric spaces. Then,

(a) A mapping T of X into X̃ is said to be isometric or an isometry if T preserves
distances, that is, if for all x,y ∈ X ,

d̃(T x,Ty) = d(x,y)

where T x and Ty are the images of x and y, respectively.

(b) The space X is said to be isometric with the space X̃ if there exists a bijective isometry
of X onto X̃ . The spaces X and X̃ are then called isometric spaces.

Theorem: For a metric space X = (X ,d) there exists a complete metric space X̂ = (X̂ , d̂)

which has a subspace W that is isometric with X and is dense in X̂ . This space X̂ is unique
except for isometries, that is, if X̃ is any complete metric space having a dense subspace
W̃ isometric with X, then X̃ and X̂ are isometric.
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This result allows us to complete the function space L1([a,b]). This first approach
introduced the concept of completeness and how the choice of d affects this important property
of a metric space. On next subsections we will see that important metric spaces, including
L1([a,b]), are obtained if we take a vector space and define on it a metric by means of a norm.

A.3 Vector spaces
Definition: A vector space (or linear space) over a field K is a nonempty set X of elements
x,y, . . . (called vectors) together with two algebraic operations. These operations are called
vector addition and multiplication of vectors by scalars, that is, by elements of K.

Definition: A subspace of a vector space X is a nonempty subset Y of X such that for all
y1,y2 ∈ Y and all scalars α,β , we have αy1 +βy2 ∈ Y .

Definition: A linear combination of vectors x1, . . . ,xm of a vector space X is an expression
of the form,

α1x1 +α2x2 + · · ·+αmxm

where {αi}1≤i≤m are any set of scalars.

Definition: For any nonempty subset M ∈ X , the set of all linear combinations of vectors
of M is called the span of M, written span(M).

Definition: For a given set M of vectors x1, . . . ,xr(r ≥ 1) in a vector space X such that

α1x1 +α2x2 + · · ·+αrxr = 0

where {αi}1≤i≤r are any set of scalars, if the only r−tuple of scalar for which the above
equation holds is α1 = α2 = · · · = αr = 0, then M is said to be linearly independent.
Otherwise, M is said to be linearly dependent.

Definition: A vector space X is said to be finite dimensional if there is a positive integer n

such that X contains a linearly independent set of n vectors whereas any set of n+1 or
more vectors of X is linearly dependent. n is called the dimension of X , written n= dim(X).
By definition, X = {0} is finite dimensional and dim(X) = 0. If X is not finite dimensional,
it is said to be infinite dimensional.

Definition: If dim(X) = n, a linearly independent n−tuple of vectors of X is called a
basis for X (or a basis in X). If {e1, ...,en} is a basis for X , every x ∈ X has a unique
representation as a linear combination of the basis vectors:

x = α1e1 +α2e2 + · · ·+αnen
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More generally, if X is any vector space, not necessarily finite dimensional, and B is a
linearly independent subset of X which spans X , then B is called a basis for X . Hence if B is a
basis for X , then every nonzero x ∈ X has a unique representation as a linear combination of
elements of B with nonzero scalars as coefficients.
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APPENDIX

B
DETAILS ABOUT FULL CONDITIONAL
DISTRIBUTIONS OF POSTERIOR DPM

WITH NORMAL KERNELS

Here we present the pdf formulas about the multivariate distributions used on Chapter 3.
Furthermore, we proof the full conditional distributions of DPM with normal kernels presented
by (MÜLLER; ERKANLI; WEST, 1996). Equation (B.1) represents the complete posterior
distribution which the full conditionals are derived.

B.1 Probability distribution functions

B.1.1 Multivariate Normal distribution

Definition: a random vector XXX = (X1,X2, . . . ,Xp) has multivariate normal distribution if,

fXXX(xxx|µµµ,ΣΣΣ) =
exp
(
−1

2(xxx−µµµ)TΣΣΣ−1(xxx−µµµ)
)√

(2π)p|ΣΣΣ|
where µ is the mean vector and Σ is the covariance matrix. The inverse of the covariance
matrix, Σ−1 is known as precision matrix. Notation: XXX ∼ Np(xxx;µµµ,ΣΣΣ).

Property: if XXX ∼ Np(xxx;µµµ,ΣΣΣ) then,

E[XXX ] = µµµ

V[XXX ] =ΣΣΣ

B.1.2 Wishart distribution

The Wishart distribution is a distribution over matrices elements. It is a generalization to
multiple dimensions of the gamma distribution.
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Definition: let ΣΣΣ be a p× p symmetric matrix of random variables that is positive semi-
definite. Then, if n ≥ p, ΣΣΣ has a Wishart distribution with n degrees of freedom if it has
the following probability density function,

fΣΣΣ(ΣΣΣ|n,VVV ) =
1

2np/2|VVV |n/2Γp
(n

2

) |ΣΣΣ|(n−p−1)/2 exp
{
−1

2
tr
(
VVV−1

ΣΣΣ
)}

where VVV is a symmetric positive definite matrix parameter of size p × p , Γp is the
multivariate gamma function and tr(·) is the trace function. Notation: ΣΣΣ ∼Wp(ΣΣΣ;n,VVV ).

Property 1: if ΣΣΣ ∼Wp(ΣΣΣ;n,VVV ) then,

E[ΣΣΣ] = nVVV

V[ΣΣΣi j] = (nv2
i j + viiv j j)

Property 2: in Bayesian context, if XXX = (X1, . . . ,Xm) is a random multivariate normal
samples of size m, where Xi ∼ Np(xxx;µµµ,ΣΣΣ) and a Wishart prior distribution is assigned to
the precision matrix ΩΩΩ =ΣΣΣ−1, that is, ΩΩΩ ∼Wp(ΩΩΩ; p,V−1V−1V−1), then,

ΩΩΩ|XXX ∼Wp
(
ΩΩΩ;n+m,(XXXXXXT )−1 +VVV−1)

B.2 Full Conditional Posterior densities

B.2.1 Complete Posterior Distribution

p
(

µ
*

µ
*

µ
*,Σ*−1

Σ
*−1

Σ
*−1

,m,S,V−1
∣∣∣∣BBB,I ,s,k,α

)
∝

k

∏
j=1

[∣∣∣Σ*−1

j

∣∣∣ s+n j
2 − 1

2

]

× exp

{
−1

2

k

∑
j=1

∑
i:Ii= j

(Bi −µ
*
j )

T
Σ
*−1

j (Bi −µ
*
j )

}

× exp

{
−1

2

k

∑
j=1

(µ*
j −m)TV−1(µ*

j −m)

}
(B.1)

× |S|
sk
2 exp

{
−1

2

k

∑
j=1

tr
(

sSΣ
*−1

j

)}

× exp
{
−
[

1
2
(m−a)T A−1(m−a)+1

]}
× |S|(q−p−1)/2 exp

{
−1

2
tr
(
qR−1S

)}
×

∣∣V−1∣∣(c+k−p−1)/2
exp
{
−1

2
tr
(
cCV−1)}
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B.2.2 Full conditional for µ*µ*
µ*

p
(

µ
*

µ
*

µ
*
∣∣∣∣·) ∝ exp

{
−1

2

k

∑
j=1

[
(µ*

j −m)TV−1(µ*
j −m)+ ∑

i:Ii= j
(zi −µ

*
j )

T
Σ
*−1

j (zi −µ
*
j )

]}

∝ exp

{
−1

2

k

∑
j=1

[
(µ*

j −m)TV−1(µ*
j −m)+ ∑

i:Ii= j
(µ*

j − zi)
T

Σ
*−1

j (µ*
j − zi)

]}

Property 1: Let Qi(x) = (x− ai)
T Ai(x− ai) be a quadratic form on x. So, ∑i Qi(x) = (x−

aaa)TAAA(x−aaa), where,

AAA = ∑
i

Ai

aaa =

[
∑

i

(
Ai +AT

i
)]−1

·

[
∑

i

(
Ai +AT

i
)

ai

]

Then,

p
(

µ
*

µ
*

µ
*
∣∣∣∣·) ∝ exp

{
−1

2

k

∑
j=1

[
(µ*

j −m)TV−1(µ*
j −m)+(µ*

j − z̄ j)
T
(

n jΣ
*−1

j

)
(µ*

j − z̄ j)
]}

∝ exp

{
−1

2

k

∑
j=1

[
(µ*

j −m j)
T T−1

j (µ*
j −m j)

]}

where, using Property 1,

T−1
j = V−1 +n jΣ

*−1

j

m j = Tj

(
V−1m+n jΣ

−1
j z̄ j

)
Then,

p
(

µ
*

µ
*

µ
*
∣∣∣∣·) ∝ exp

{
−1

2

k

∑
j=1

[
(µ*

j −m j)
T T−1

j (µ*
j −m j)

]}

=
k

∏
j=1

exp
{
−1

2

[
(µ*

j −m j)
T T−1

j (µ*
j −m j)

]}

∝

k

∏
j=1

Np(µ
*
j ;m j,Tj)

Assuming µ*µ*
µ* = (µ1, . . . ,µk) independents, the full conditional posterior density for µ*

j

is, (
µ
*
j

∣∣∣∣ Σ
*−1

j ,m,S,V−1,BBB,I ,s,k,α
)
∼ Np(m j,Tj) (B.2)
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B.2.3 Full conditional for Σ*−1
Σ*−1
Σ*−1

p
(

Σ
*−1

Σ
*−1

Σ
*−1
∣∣∣∣·) ∝

k

∏
j=1

[∣∣∣Σ*−1

j

∣∣∣ s+n j
2 − 1

2

]
exp

{
−1

2

[
k

∑
j=1

tr
(

sSΣ
*−1

j

)
+

k

∑
j=1

∑
i:Ii= j

(zi −µ
*
j )

T
Σ
*−1

j (zi −µ
*
j )

]}

∝

k

∏
j=1

[∣∣∣Σ*−1

j

∣∣∣ s+n j
2 − 1

2

]
exp

{
−1

2

[
str

(
S

k

∑
j=1

Σ
*−1

j

)
+

k

∑
j=1

[
(µ*

j − z̄ j)
T
(

n jΣ
*−1

j

)
(µ*

j − z̄ j)
]]}

∝

k

∏
j=1

[∣∣∣Σ*−1

j

∣∣∣ s+n j
2 − 1

2
exp
{
−1

2
tr
[(

sS+n j(µ
*
j − z̄ j)(µ

*
j − z̄ j)

T )
Σ
*−1

j

]}]

∝

k

∏
j=1

[∣∣∣Σ*−1

j

∣∣∣ s+n j
2 − 1

2
exp
{
−1

2
tr
(

S−1
j Σ

*−1

j

)}]

∝

k

∏
j=1

Wp

(
Σ
−1
j ;s+n j,S j

)
where,

S−1
j = sS+n j(µ

*
j − z̄ j)(µ

*
j − z̄ j)

T .

Assuming Σ*Σ*
Σ* = (Σ1, . . . ,Σk) independents, the full conditional posterior density of Σ*−1

j

is, (
Σ
*−1

j

∣∣∣∣ µ j,m,S,V−1,BBB,I ,s,k,α
)
∼Wp(s+n j,S j) (B.3)

B.2.4 Full conditional for m

p
(

m
∣∣∣∣·) ∝ exp

{
−1

2

[
(m−a)T A−1(m−a)+

k

∑
j=1

(m−µ
*
j )
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*
j )

]}

∝ exp
{
−1

2
[
(m−a)T A−1(m−a)+(m− µ̄

*
µ̄
*

µ̄
*)T (kV−1)(m− µ̄

*
µ̄
*

µ̄
*)
]}

∝ exp
{
−1

2
[
(m− â)T Â−1(m− â)

]}
∝ N(m; â, Â)

where,

Â−1 = A−1 + kV−1

â = Â
(
A−1a+ kV−1

µ̄
*

µ̄
*

µ̄
*)

The full conditional posterior density for m is,(
m
∣∣∣∣ µ

*
µ
*

µ
*,Σ*−1

Σ
*−1

Σ
*−1

,S,V−1,BBB,I ,s,k,α
)
∼ Np(â, Â) (B.4)
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B.2.5 Full conditional for S

p
(

S
∣∣∣∣·) ∝ |S|
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2 |S|
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2−
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2−

1
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[
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(
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)
+

k

∑
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[
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+
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∑
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2
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k
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j
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]}

∝ |S|
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1
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{
−1

2
tr
(
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)}
∝ Wp

(
S;sk+q, R̂

)
where,

R̂ =

(
qR−1 + s

k

∑
j=1

Σ
*−1

j

)−1

The full conditional posterior density for S is,(
S
∣∣∣∣ µ

*
µ
*

µ
*,Σ*−1

Σ
*−1

Σ
*−1

,m,V−1,BBB,I ,s,k,α
)
∼Wp

(
sk+q, R̂

)
(B.5)

B.2.6 Full conditional for V−1

p
(

V−1
∣∣∣∣·) ∝
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2 − p
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1
2 exp
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2
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2
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(
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*
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*
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*
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*
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*
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∣∣V−1∣∣ c+k

2 − p
2−

1
2 exp

{
−1

2
tr
[
Ĉ−1V−1]}

∝ Wp(V−1;c+ k,Ĉ).

where,

Ĉ =
(
cC+ k(m− µ̄

*
µ̄
*

µ̄
*)(m− µ̄

*
µ̄
*

µ̄
*)T)−1

The full conditional posterior density for B−1 is,(
V−1

∣∣∣∣ µ
*

µ
*

µ
*,Σ*−1

Σ
*−1

Σ
*−1

,m,S,BBB,I ,s,k,α
)
∼Wp(c+ k,Ĉ) (B.6)
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