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Resumo

SINTESE COMBINATORIA MULTICOMPONENTE DE CATALISADORES PROLIL
PEPTIDEO-LIPOPEPTOIDES HIBRIDOS: APLICACAO NA ADICAO DE MICHAEL
ASSIMETRICA EM MEIO AQUOSO

Este estudo descreve a sintese de uma nova biblioteca de catalisadores hibridos de
peptideos prolil-lipopeptoides através de uma abordagem combinatéria multicomponente. Para
0 projeto deste catalisador, levamos em consideragéo o crescente interesse no desenvolvimento
de tecnologias mais sustentaveis e a recente contribuicao de nosso grupo de pesquisa nessa area.
Para este fim, usando o protocolo de Ugi-quatro componentes, incorporamos cadeias laterais
lipidicas na arquitetura do catalisador hibrido peptideo prolil-peptdide. A insercdo de
funcionalidades com propriedades anfifilicas fornece propriedades surfactante ao
organocatalisador. Os compostos foram ainda avaliados como organocatalisadores na adigéo
ambientalmente amigavel de aldeidos a nitrostirenos. Os adutos de Michael foram obtidos em
altos rendimentos, diastereosseletividades e excelentes enantiosseletividades utilizando baixa

carga de catalisador, empregando agua como solvente sem a adicdo de outro aditivo.
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Abstract

MULTICOMPONENT COMBINATORIAL SYNTHESIS OF PROLYL PEPTIDE-
LIPOPEPTOID HYBRID CATALYST: APPLICATION IN THE ASYMMETRIC
MICHAEL ADDITION UNDER AQUEOUS ENVIRONMENTAL

This study describes the synthesis of a new library of prolyl peptides-lipopeptoid
hybrids catalysts through a multicomponent combinatorial approach. For the design of this
catalyst library, we took into consideration the growing interest in the development of
environmentally friendly technologies and the recent contributions of our research group in
their field. To this end, by using the Ugi-four component protocol we have incorporated
lipidic side chains in the architecture of the proyl peptide-peptoid hybrid catalyst. The
insertion of functionalities with amphiphilic properties afford to the organocatalyst surfactant
properties. Therefore, they have been further evaluated as an organocatalysts in the
environmentally friendly enantioselective addition of aldehydes to nitrostyrenes. The Michael
adducts were obtained in high yields, diastereoselectivities and excellent enantioselectivities

using low catalyst loading under water as solvent without addition of any other additive.
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1 Introduction

The environmental concerns associated with synthetic organic chemistry have raised
rigorous and compelling demands for greener processes. The development of cost-effective and
environmentally benign catalytic systems has become one of the main topics of modern
chemistry. 2 Traditional organic synthesis relies heavily on organic solvents for a multitude
of tasks, including the dissolution of components and the facilitation of chemical reactions,
since many reactants and reactive species are incompatible or immiscible with water. Since
they are used in large quantities compared to the reactant’s solvents have been the focus of
environmental concerns due to their hazards.* Along with the reduction of the environmental
impact of organic synthesis, the use of water as a reaction medium also benefits chemical
processes by simplifying operations, allowing moderate reaction conditions and, on occasion,

providing unanticipated reactivity and selectivity.

1.1 Green Chemistry

According to United State Environmental Protection Agency, the ~"Green Chemistry™”: It
is the design of chemical products and processes that reduce or eliminate the use or generation
of hazardous substances. Green chemistry applies across the life cycle of a chemical product,
including its design, manufacture, use, and ultimate disposal. Green chemistry is also known

as sustainable chemistry.

1 TUCKER, J. L.; FAUL, M. M. Industrial research: Drugs companies must adopt green
chemistry. Nature. 2016, 534, 27-29.

2 SANDERSON, K., It is not easy being green. Nature. 2011, 469, 18-20.

$FEU, K. S.; DE LA TORRE, A. F.; SILVA, S.; DE MORAES JUNIOR, M. A. F.; CORREA,
A. G.; PAIXAO, M. W. Polyethylene glycol (PEG) as a reusable solvent medium for an asymmetric
organocatalytic Michael addition. Application to the synthesis of bioactive compounds. Green
Chem., 2014, 16, 3169-3174.

4 ALDER, C. M.; HAYLER, J. D.; HENDERSON, R. K.; REDMAN, A. M.; SHUKLA, L.;
SHUSTER, L. E.; SNEDDON, H. F. Updating and further expanding GSK's solvent sustainability
guide. Green Chem., 2016, 18, 3879-3890.

> KITANOSONO, T.; MASUDA, K.; XU, P.; KOBAYASHI, S. Catalytic organic reactions in
water toward sustainable society. Chem. Rev. 2018, 118, 679—-746.



This concept also involves 12 fundamental principles enunciated below:5 ’

e Waste prevention instead of remediation

e Atom efficiency

e Less hazardous/toxic chemicals

e Safer products by design

e Innocuous solvents and auxiliaries

e Energy efficient by design

e Preferably renewable raw materials

e Shorter syntheses (avoid derivatization)

e Catalytic rather than stoichiometric reagents
e Design products for degradation

¢ Analytical methodologies for pollution prevention

e Inherently safer processes

Beside to these principles, several metrics have been introduced to measure the degree of
greenness and sustainability. Two of the most important are the Atomic Economy (AE) and
the environmental factor (E). Professor Barry M. Trost was the first researcher to introduce the

term AE, 8 which is defining as “the ability of a chemical process to incorporate as many as

Vo

possible of the atoms. ” and can be calculated by the following equation:®, (FIGURE 1).

__MW (product)
~ Y MW (reagent)

AE X 100

FIGURE 1. Atom economy is defined as the ratio between the mass of the product obtained and the

mass of all the reagents used, expressed in percent.

In this way, chemical transformations that convert most of the starting materials into a

single desired product have a high atomic economy and are highly desired transformations in

® ANASTAS, P. T., WILLIAMSON T. C. ACS Symp.Ser., ed., 1996, ch. 1, 626, 1-17.

"SHELDON, R. A. Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc.

Rev. 2012, 41, 1437-1451.

8 TROST, B. M. The atom economy-A search for synthetic efficiency. Science. 1991, 254,

1471-1477.

LI, C-J.; TROST, B. M. Green chemistry for chemical synthesis. Proc Nat Acad Sci.,

2008,105, 13197-13202.



terms of sustainability, since they reduce the waste generated, and therefore their environmental

impact.

Additionally, Professor Rogers Sheldon has formulated another important metrics, the so-
called E Factor.1® Almost over twenty years E factor is an environmental measure that expresses
the relationship between the amount of product generated and the amount of waste generated

in the process't, as shown in FIGURE 2.

£ Factor = kgwaste
actor= kgproduct

FIGURE 2. E Factor equation.

High values of E Factor mean more waste so the ideal value of this measure would be
zero. An exception to this factor is that it does not include water as waste, only in some cases
the residual salts that are present in it are considered. So, the simple substitution in the use of

organic solvents for water could be the switch towards sustainability.

1.2 "On Water" or "In Water' Catalysis

In this sense, back to the 1980s, Breslow reported a pioneering work in the acceleration of
Diels-Alder reactions performed in water - i.e., 10-15 min versus 35-40 min - between

cyclopentadiene 1 and butanone 2 in aqueous emulsion? SCHEME 1.

O L A

-

SCHEME 1. [4+2] cycloaddition accelerated by hydrophobic effect in water.

Theoretical models are mainly focused on an explanation of how the rate of the chemical

reactions "on water" or "in water" is accelerated by a water molecule. This has been analyzed

10 SHELDON, R. A., Organic synthesis - Past, present, and future, Chem. & Ind., 1992, 903-
906.

11 SHELDON, R. A. The E factor: fifteen years on. Green Chem., 2007, 9, 1273-1283.

12 RIDEOUY, D. C.; BRESLOW, R. Hydrophobic acceleration of Diels-Alder reactions. J. Am.
Chem. Soc., 1980, 102, 7816-7817.



in comprehensive reviews and articles.’** Among them, the driving force that explains the
rate increase in the water-oil biphasic system was attributed mainly to hydrogen bonding

interactions in the interface and hydrophobic effects.'®

As such concepts, it is debated several types of terms to describe reactions proceeding "in

water"”, "under water", "in aqueous medium", or "on water", "in concentrated organic phases"
but none of those adequately represent the effect of water or the difference seem between
conditions with water present and solvent-free conditions. About this dilemma, two general
terms can be defined "a reaction in water" as one in which the reactant participating in the
reaction are dissolved homogeneously in water whereas "a reaction in the presence of water"
should be used for a reaction that proceeds in a concentrated organic phase with water being

present as a second phase that influences the reaction in the organic phase.

Moreover, in "on water"”, or "a reaction in the presence of water" catalysis, the transition
state occurs at the organic layer of the organic—water interface, this interaction with water is
strongly dependent on the properties of each substrate and can be explained by a simple acid-
catalysis mechanism facilitated by the strong adsorption of the hydroxide ion by-product at
the oil-water interface'® (FIGURE 3).

Y —H Y
Organic Reactant Organic Reactant
(Strong Base) (Weak Base)
Water Interface | Water Interface
Temporary Proton Transfer Interfacial H-Bonding

FIGURE 3. "On water" interaction.
1.3 Organocatalysis

Organocatalysis, the catalytic application of small organic molecules or also known as
catalysis in the absence of metals and enzymes, has become a well-recognized concept and a
highly active field of research. In recent years, reactions catalyzed by purely organic molecules
have found an increasing field for the synthesis of complex molecules.'”*8 As a consequence,

organocatalysis is unguestionably one of the pillars of asymmetric catalysis together with

13 BUTLER, R. N.; COYNE, G. Organic synthesis reactions on-water at the organic-liquid
water interface. Org. Biomol. Chem., 2016, 14, 9945-9960.

¥ BUTLER, R. N.; COYNE, A. G. Understanding ~“On-Water"~ catalysis of organic reactions.
Effects of H+ and Li+ ions in the agueous phase and nonreacting competitor H-bondacceptors
in the organic phase: On H20 versus on D-O for Huisgen cycloadditions. J. Org. Chem., 2015,
80, 1809-1817.



transition metal catalysis and biocatalysis.'® Primary chiral amines, thioureas and proline

derivatives are the most common organocatalysts used (FIGURE 4).

Secondary Amines Asymmetric Aminocatalysis Cinchona-based
Primary Amines
- . o
N7 ~COOH enamine o OR
H  L-proline * somo R? X &
R? NH;
Y 0O N
Me )
sl b b i |
r?;)f & iminium-ion —— - RZJ\/U\W N~ B}
oms ® R=H, Me
M"Lcl'vhllan Jargcnscn Hayashi
catalyst catalyst R2® ]
u dienamine ~——3 R
7z Substrate Scope
1
Substrate Scope @ R ®» g-branched aldehydes
o} 0 ® trienamine  ——3 R? g © ® g-branched enals
HJ\/\R H)Kl E = simple enones
m Aldehydes R ® g-branched enones

The Activation Modes

FIGURE 4. General methods in aminocatalysis

In organic synthesis, we usually think of catalysts as being transition metals, main
elements group, and other elements besides C, H, N, and O. Recently, however, there have
been significant advances in the organocatalysis field, with the development of new organic
systems that have desirable catalytic behaviors. Part of the motivation for such efforts is the
air and water instability often associated with metal-based systems, the environmental benefit
of avoiding toxic metals, and the ready availability of many enantiomerically pure organic
molecules. The well-defined geometry of the system produces very high stereoselectivities.
Furthermore, the benefits of inexpensive catalysts and the ability to run the reaction in the
open air with wet solvents often more than compensates. Using this approach, a variety of
reactions have succumbed to organocatalysis, including Diels-Alder and Friedel-Crafts
reactions, direct alkylations of heterocycles such as furan and indole, and a variety of Michael

additions.1® %
1.3.1 Asymmetric Enamine Catalysis
After the pioneering work by List, Lerner, and Barbas employing chiral secondary

amines (i.e., proline-type catalysts) to catalyze an intermolecular aldol reactions?* and the

successive

BGUO, W.; LIU, X.; LIU,Y.; LI, C. Chiral catalysis at the water/oil interface. ACS Catal. 2018,
8, 328-341.

18 BEATTIE, J. K., MCERLEAN, C. S. P., PHIPPEN, C. B. W. The mechanism of on-water
catalysis. Chem. Eur. J., 2010, 16, 8972 — 8974

I"WASER, M., Asymmetric organocatalysis in natural product syntheses. Springer, Vienna,
2012.

8 MARQUEZ-LOPEZ, E., HERRERA, R. P., CHRISTMANN, M., Asymmetric
organocatalysis in total synthesis-a trial by fire. Nat. Prod. Rep. 2010, 27, 1138-1167.



expansion of the research interest in organocatalysis. The general concept of enamine catalysis
was extensively applied to a wide variety of a-functionalization of carbonyl compounds, e.g.
aldol reactions, a- aminations, a-oxidations and a-halogenations, Mannich reactions as well as
Michael and hetero Michael reactions (SCHEME 2).%

0 RiR, Aldol 0 ReR,

. (0] R
" reactions -5 *
R1WEWG R, e N R1MN,R5
EWG R g ,

R, RyEWG Ry N R Rg R
Rs/EWG Mannich
Conjugate addition )?\ reactions

reactions

R4
R
a-Oxygenations via a-Amination
R\, .R
R. ° R
O °NH N i N. R O °NH
I R™ 0 R™ "N~ !
0 S it
1
Ro Re R2

SCHEME 2. Some a-functionalization of aldehydes or ketones promoted by proline-type catalysts via

enamine.?

A rational design is usually an enormous challenge and directly depends on the chosen of
asymmetric reaction to pursue. Rarely, the discovery of potential catalysts is successful. The
process often involves a separate synthesis of many catalysts and testing their catalytic
properties in individual reaction, like test-error. The development of an effective organocatalyst
usually needs further optimization process, in which both, the substituents and position of the

catalytic functions have been examined towards the reaction of interest.

19 ANSLYN, E. V., DOUGHERTY, D. A. Modern physical organic chemistry. University
Science Books. 2006, Chap. 9.

20 MACMILLAN, D. W. C., The advent and development of organocatalyst. Nature., 2008,
455, 304-308.

2L LIST, B., LERNER, R. A., BARBAS, C. F. Proline-catalyzed direct asymmetric aldol
reactions. J. Am. Chem. Soc. 2000, 122, 2395-2396.

22 MUKHERJEE, S., YANG, J. W., HOFFMANN, S., LIST, B. Asymmetric enamine catalysis.
Chem. Rev. 2007, 107, 5471-55609.

25 DUSCHMALE, J. Peptide catalyzed conjugate addition reactions of aldehydes to
nitroolefins-mechanistic investigations and challenging substrates. University of Basel. Ph.D.
thesis. 2013.



However, how the pyrrolidine-type catalysts induce stereoselectivity?

Let’s explain the enamine activation mechanism, the insights of the stereochemistry
induction for the substituents and catalytic function.

It is important to understand the basic principles of enantioselectivity induction to design

a new catalyst.
1.3.2 Mechanistic aspects

The enamine formation is produced after the condensation between pyrrolidine ring and
the correspondent carbonyl group (aldehyde or ketone) as shown in the catalytic cycle
(SCHEME 3). The generated enamine has two possible configurational isomers (E and Z), ina
thermodynamic equilibrium. Unless other general and specific interactions favor the enamine
Z, the enamine E is energetically most favored and always the formation of this configuration
is predominantly. Two rotational isomers (s-trans and s-cis) exist in the enamine E, whereby
steric interactions the most favorable is the s-trans-enamine E (SCHEME 3). It is generally
accepted that the s-trans-enamine is the most stable conformer, where the double bond is
situated in the opposite direction to the bulky group located in the 2-position of the pyrrolidine

ring.

Ri )\ (’J\ R R/Sh(

! s-trans s-cis Ry

Q_‘ L el
-

w H;0 R1 enamine F enamine £ ig
R
Ry

X

R
@ HOMO

higher in energy

SCHEME 3. Pyrrolidine-catalyzed activation cycle of enamine.

The s-trans conformer has also been considered as the most reactive intermediate until now
(vide infra). So far, the role of the pyrrolidine ring is to activate the oxo component increasing
the energy of the high occupied molecular orbital (HOMO) of the substrate when the enamine
is formed but not in the trajectory of the electrophile in the formation of the new stereogenic C-
C bond. The trajectory of the electrophile depends on the side group attached to the

pyrrolidine ring.
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The trajectory of the incoming electrophile has traditionally been proposed to follow either
of the two different models (A and B, FIGURE 5) based on the nature of catalysts. Model A
shows the induction of stereoselectivity by a hydrogen bond (HB) interaction, and model B
shows the approach of the electrophile ruled by steric interaction (SI).

Model A Model B

H-bond directing group Sterically directing groug

o e

] ke
|

attack from “"above”’ l attack from “‘below”’

FIGURE 5. Stereocontroller models A and B. Hydrogen Bonding vs. Steric Hindrance

In general, catalysts with a HB directing group (i.e. -COzH, -OH, -CONH,, etc...)** % 26
27. 28 4t the position 2 of the pyrrolidine ring, follows model A (see 4, 5, 6, 7, FIGURE 6). In
contrast, bulky substituents in the position 2 of pyrrolidine ring (i.e. -2Ph, -2PhCFs, etc...)?% 3

24 HAJOS, Z. G.; PARRISH, D. R., Stereocontrolled synthesis of trans-hydrindan steroidal
intermediates. J. Org. Chem., 1973, 38, 3239.

2> AHRENDT, K. A.; BORTHS, C. J.; MACMILLAN, D. W. C., New strategies for organic
catalysis: The first highly enantioselective organocatalytic Diels-Alder reaction”". J. Am. Chem.
Soc., 2000, 122, 4243.

26 WENNEMERS, H., Peptides as asymmetric aatalysis for Aldol reactions. Chimia., 2007, 61,
276.

2T'COBB, A.J. A.; SHAW, D. M.; LEY, S. V., 5-Pyrrolidin-2-yltetrazole: A new catalytic more
soluble alternative to proline in an organocatalytic asymmetric Mannich-type reaction. Synlett.,
2004, 3, 558.

28 VISHNUMAYA, R. M.; GINOTRA, S. K.; SINGH, V. K., Highly enantioselective direct
Aldol reaction catalyzed by organic molecules. Org. Lett., 2006, 8, 4097.

29 HALLAND, N., ABUREL, P. S.; Jargensen, K. A., Highly enantioselective organocatalytic
conjugate addition of malonates to acyclic a,p-unsaturated enones. Angew. Chem. Int. Ed.,
2003, 42, 661.

30 MELCHIORRE, P., JARGENSEN, K. A., Direct enantioselective Michael addition of
aldehydes to vinyl ketones catalyzed by chiral amines. J. Org. Chem., 2003, 68, 4151.



3L 32 \where the steric hindrance blocks one face of the enamine, agree with model B of

induction of stereoselectivity (see 8, 9, 10, FIGURE 6). Some pyrrolidine-type catalysts are
illustrated again in FIGURE 6 for better understanding; the red color in the structures refers to

the respective HB or Sl groups.

0

Hajos and Paris
Barbas II1

H-bonding
directing catalysts

5

0]

\\cnmers

Steric
directing catalysts

H . Ar
NH %—%A

Ar: 3,5'(CF3)2CGH3

Jorgensen
) Ar Ar
% L%Ar Ar
" Cl)k %Ph ﬁg OSiMe; , ﬁ OSiMe,
Ar: CgHs Ar: 4-(SCgH13)CgHy
Ley Smgh Hayashi Paixio

FIGURE 6. Some pyrrolidine-type catalysts with Hydrogen Bonding or Steric directing groups.

1.3.3 Conjugate Michael Addition Reactions of Aldehydes to Nitroolefins

Conjugate addition reactions of carbon nucleophiles to electron deficient double bonds are
widely used in organic synthesis in general**and in organocatalytic processes with enamine
activation.®* 3 3% The Michael reaction is one of the most useful methods for the mild
formation of C—C bonds that follows an enamine mechanism. It is, amongst other asymmetric

reactions, used to test new catalysts based on enamine activation. Nitroalkenes are

31 HAYASHI, Y.; GOTOH, H.; HAYASHI, T.; SHOJI, M. Diphenylprolinol silyl ethers as
efficient organocatalysts for the asymmetric Michael reaction of aldehydes and nitroalkenes.
Angew. Chem. Int. Ed., 2005, 44, 4412,

%2 DEOBALD, A. M., CORREA, A. G., RIVERA, D. G., PAIXAO, M. W., Organocatalytic
asymmetric epoxidation and tandem epoxidation/Passerini reaction under eco-friendly reaction
conditions. Org. Biomol. Chem., 2012, 10, 7681-7684.

33 PERLMUTTER, P., Conjugate addition reactions in organic synthesis, Pergamon Press,
Oxford, 1992.

% VICARIO, J. L., BADIA, D., CARRILLO, L., Organocatalytic enantioselective Michael and
Hetero-Michael reactions. Synthesis 2007, 14, 2065-2092.

% VICARIO, J. L., Organocatalytic enantioselective conjugate addition reactions: a powerful
tool for the stereocontrolled synthesis of complex molecules, Royal Society of Chemistry,
Cambridge, 2010.

% TSOGOEVA, S. B., Resent advances in asymmetric organocatalytic 1,4-conjugate additions.
Eur. J. Org. Chem. 2007, 11, 1701-1716.
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particularly attractive Michael acceptors due to their high electrophilicity®” and the synthetic
utility of the nitro group.®® The conjugate addition of aldehydes to nitroolefins provides -
nitroaldehydes that are versatile intermediates for the synthesis of, for example, chiral vy-

butyrolactones,® pyrrolidines,*° or y-amino acids*! (SCHEME 4).

R R3
*
N
H
o ) O R; O Ry
Aminocatalyst . NO * NH
R Ry NANO R : 2|77 HO * ’
RZ R2 R2
R, R
0’ N
H

SCHEME 4. Conjugate addition reactions of aldehyde to nitroolefins.

In SCHEME 5 it can be noted that the substituent attached to the pyrrolidine core is
important in the direction of the induction in both enantio- and diastereoselectivity of the
formed compounds. Four possible transition states (TS) can be drawn for both models (model
A and model B, SCHEME 5). These TS show that even with the possibility to form the s-cis-
enamine E (TS 111, IV, VII and VII1), the equilibrium is displaced to the formation of the most
stable s-trans-enamine E (TS I, Il, V and VI) of both models, and therefore, the difference in

terms of energy between these TS determines the course of stereoselectivity. Model A, also

$TZENZ, I, MAYR, H., Electrophilicities of trans-B-nitrostyrenes. J. Org. Chem. 2011, 76, 9370-
9378.

% ONO, N., The nitro group in organic synthesis, Wiley-VCH, New York, 2001.

% PALOMO, C., VERA, S., MIELGO, A., GOMEZ-BENGOA, E., Highly efficient
asymmetric Michael addition of aldehydes to nitroalkenes catalyzed by a simple 4-trans-
hydroxyprolylamida. Angew. Chem. Int. Ed. 2006, 45, 5984-5987.

“ RUIZ, N., REYES, E., VICARIO, J. L., BADIA, D., CARRILLO, L., URIA, U.,
Organocatalytic enantioselective synthesis of highly functionalized polysubstituted
pyrrolidines. Chem. Eur. J., 2008, 14, 9357-9367.

41 CHI, Y., GUO, L., KOPF, N. A, GELLMAN, S. H., Enantioselective organocatalytic
Michael addition of aldehydes to nitroethylene: efficient access to y>—amino acid. J. Am. Chem.
Soc. 2008, 130, 5608-56009.
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known as Houk-List model,*? 4 (SCHEME 5, TS I-1V) shows an HB between the proton of
the carboxylic acid and the nitro group of S-nitrostyrene. This HB directs the g-nitrostyrene to
the Re face of the enamine by a like approach, thus forming the S,R-diastereomer as the major
product. However, model B is determined by SI, the bulky group attached to pyrrolidine core
produces a steric hindrance capable of approaching the Si face of enamine to S-nitrostyrene and
thus produce the inversed R,S-configuration of Michael product (see model B in SCHEME 5).
In either case, model A or model B led to the formation of the major diastereomer syn.

Two factors are important for good stereoselection: 1) one face of the enamine must be less
accessible; 2) the equilibrium between the enamine rotamers must be well displaced to the one
side.

According to SCHEME 5, models A and B having the pyrrolidine-type catalyst with the
same configuration produce different stereoisomers. The Re-Re approach is favored for model
A and Si-Si for Model B. This makes us conclude that the stereoselection is totally influenced

by the linked functional group in the backbone of the catalyst.

42 BAHMANYAR, S., HOUK, K. N., Transition states of amine-catalyzed Aldol reactions
involving enamine intermediates: Theoretical studies of mechanism, reactivity, and
stereoselectivity. J. Am. Chem. Soc., 2001, 123, 11273.

4 BAHMANYAR, S., HOUK, K. N., MARTIN, H. J., LIST, B. Quantum mechanical
predictions of the stereoselectivities of proline-catalyzed asymmetric intermolecular Aldol
reactions. J. Am. Chem. Soc., 2003, 125, 2475.
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SCHEME 5. Transition states by HB and Sl control in Michael addition: A) HB with S-Proline
as catalyst, B) SI with Hayashi’s catalyst.

Not only the adopted model of the catalyst and/or backbone of catalysts, but also the
intermediates structures formed in the catalytic system can affect the stereoselectivity of the
final product. Thereafter, the tridimensional intermediates structure of catalysts and substrates
(Transitions States), as well as parasitic intermediates should also be taken in consideration.
Blackmond and co-workers** reported a kinetic study of the Michael reaction, where they found
a parasitic intermediated which influences the stereoisomers of the final product. In this work,
the conjugate addition of n-propanal to g-nitrostyrene, catalyzed by diarylprolinol silyl ether,
reveals that the formation of the product (iminium species, SCHEME 6) is the rate-determining
step of the reaction, and not the enamine formation as mentioned before. The formation of the
cyclobutane intermediate (SCHEME 6), called as “parasitic intermediate” during the catalytic
cycle, is very important to keep the high stereoselectivity in the final product. Interestingly, this

parasitic intermediate, which should delay the reaction, is important in the stereoselectivity.

4 BUR, J.. ARMSTRONG, A.. BLACKMOND, D. G. Mechanistic rationalization of
organocatalyzed conjugate addition of linear aldehydes to nitro-olefins. J. Am. Chem. Soc.,
2011, 133, 8822.
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SCHEME 6. Catalytic system for Michael reaction proposed by Blackmond.

These mechanistic principles help us to design new organocatalysts based in the covalent
enamine activation. Although a rational design is usually an enormous challenge, major is to

develop new ecofriendly and economic route to access a library of catalysts to test.

1.4 Peptides catalysts. A rational design

The invention of peptide synthesis in the 50" stimulated the development of different
application areas in which synthetic peptides are now used, including the development of
specific antibodies against pathogenic proteins, the study of protein functions, study of enzyme-
substrate interactions and catalysis. Every year it is being more evident that combinatorial
chemistry can face the synthesis and analysis not only of analogous entities (focused libraries)
of previously identified leads but also of truly new catalytic systems based on novel dissimilar

chemical functionalities.
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Small peptides employed as organocatalysts have molecular weights often comparable to
that of typical synthetic catalysts, and they provide the same and, in some cases, better results
in asymmetric enamine reactions. “°*How can we design a new peptide (or focused library)

catalyst?

In the same way, the first step is thinking of the target reaction (i.e., Aldol, Michael,
Mannich reaction, etc...), the mechanism and the reaction conditions. Second: selecting the
mode of activation (i.e., enamine, iminium...). This step is very dependent of the first step
where the peptide in point should carry a secondary or primary amine depending on the
asymmetric reaction selected. Third: improving the backbone in the structure of the peptide
catalyst considering model A or B explained in SCHEME 5. Some structural motifs of
peptides*® are represented in FIGURE 8; a-helix and p-turn are the major motifs adopted by
small-synthesized peptide catalysts. Fourth: screening peptide catalysts, the catalytic

efficiency, stereoselectivity and the scope of catalysts are followed in this step (FIGURE 7).

Asymmetric
Target Reaction

Optimizations
conditions

Michael, Aldol,
epoxidations, etc...

Secondary amine,
primary amine, etc...

FIGURE 7. Rational design of a new peptide catalyst.

The secondary structure in peptides is the ordered arrangement or conformation of amino
acids unfolded spatially to form the lowest energy conformation. The preferred peptide chain
conformation under physiological conditions is dominated by the energetically favored torsion

angles, together with

% COLBY, E. A.; MENNEN, S. M.; XU, Y.; MILLER, S. J. Asymmetric catalysis mediated
by synthetic peptides. Chem. Rev., 2007, 107, 5759.

4 VENKATRAMAN, J.; SHANKARAMMA, S.C.; BALARAM, P. Design of folded
peptides. Chem. Rev., 2001, 101, 3131.
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additional stabilizing factors such as HB and hydrophobic contacts. A hydrogen bonding is
formed between the NH group (hydrogen bond donor) and the carbonyl oxygen atom (hydrogen
bond acceptor) of peptide bonds. The energy of a single HB is quite low (20 kJmol™), compared
to a covalent bond (200-400 kJmol™). However, in most secondary structure elements
stabilized by HB it is multiple rather than single hydrogen bonds that are formed, and it is these
multiple interactions of such a cooperative system that result in considerable stabilization.
These interactions cause three different motifs: a-helix, p-sheet, and coil. % 4” Among these

secondary structures, a-helix and g-turn motifs are the major structures employed as catalysts.

The a-helix comprises a spiral arrangement of the peptide backbone with 3.6 amino acid
residues per turn (n = 3.6). It is stabilized by hydrogen bonds directed backwards from a C-
terminal NH to an N-terminal CO (NH"** — CO") forming a 13-membered ring (FIGURE 9).
Among the types of local structure in proteins, a-helix is the most regular and the most
predictable from sequence, as well as the most prevalent.

f"‘-'l'ermi':‘uso 3.643 helix (a-Helix)
1)
g P B | s
@ O R H O R H O
H
N N
T e
T @ H O R H O R H
$ ’-?*“‘oo?* l
‘- 3 ) “V » P - 3
) : ‘\?A
— ¢ 3.6 residues/turn ﬁ'A ﬁ
H 4 f-.
c \J J q ‘)". e |

: o ! €
C-Terminus

FIGURE 8. Hydrogen bond pattern in a-helical peptides and schematic representation.

A turn (loop) is an element of secondary structure in polypeptide or protein where the chain
reverses its overall direction. Often, but not necessarily, they are stabilized by an HB between
a C-terminal amino group and an N-terminal carboxy group. Turns are classified according to

the number of amino acid residues involved as y-turns (three amino acids), g-turn (four amino

47 SEWALD, N., JAKUBKE, H-D., Peptides: Chemistry and Biology. Copyright © 2002
Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30405-3 (Hardback); 3-527-60068-X
(Electronic), pp 36.
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acids), a-turn (five amino acids), or z-turn (six amino acids). g-turn are very common motifs.
A general criterion for the existence of a f-turn is that the distance of the atoms C (i) and C (i
+ 3) is smaller than 7 A. It is stabilized by hydrogen bonds directed backwards from a C-
terminal NH to an N-terminal CO (NH'*® — CO'). Also, it could be stabilized by certain alkyl
residues presented in position i+2 such as (a,a)-dialkylglycines such as aminoisobutyric acid
(Aib) (FIGURE 9).4

p—-Turns

FIGURE 9. Hydrogen bond representative of B-turns. Schematic representation.

1.5 Peptides of the Type Pro-Pro-Xaa as Catalysts in Conjugate Addition
Reactions between Aldehydes and Nitroolefins

Due to the high degree of rotational freedom even in short peptides, prediction of the
conformational properties and thereby the spatial arrangement of functional groups of potential
peptide catalysts is a challenge complicating their rational design. Thus, smart combinatorial
methods are attractive for the discovery of peptide catalysts.*® 4% % The modular nature of
linearly linked amino acid building blocks combined with the established synthetic protocols
in peptide synthesis (solid phase synthesis), allow for straightforward generation of diverse
libraries by the split-and-mix method. Such one-bead-one-compound libraries combined with
a cleverly designed screening method and an elegant way of identifying active species allow

for the discovery of very potent peptide catalysts.*

48 BERKESSEL, A., Curr. Opin. Chem. Biol. 2003, 7, 409-414.

49 REVELL, J. D., WENNEMERS, H., Peptidic catalyst developed by combinatorial screening
method. Curr. Opin. Chem. Biol. 2007, 11, 269-278.

0 REVELL, J. D., WENNEMERS, H., Top. Curr. Chem. 2007, 277, 251-261.
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Using the concept of catalyst substrate co-immobilisation (FIGURE 10, a)*! the two
tripeptides H-Pro-D-Ala-D-Asp-NH2 and H-Pro-Pro-Asp-NH. were identified as excellent
catalysts for aldol reactions of acetone with aromatic aldehydes.>? The corresponding aldol
products were obtained in high enantioselectivities using as little as 1 mol% of the peptidic
catalyst. Interestingly, in a lowest energy structure obtained by molecular modelling studies the
distance between the secondary amine and the carboxylic acid of H-Pro-Pro-Asp-NH: is
approximately 3 A greater than in proline. Inspired by this fact and hypothesising that these 3
A might provide enough space for two additional atoms (FIGURE 10, b), H-Pro-Pro-Asp-NH;
and closely related peptides Pro-Pro-Xaa, combining the Pro-Pro motif with a C-terminal amino

acid containing a carboxylic acid moiety (Xaa), were examined as catalysts for conjugate

\) catalystn \J catalyst n )

addition reactions.

a) b)

A A 1 ~ 2 —
O catalyst 1 . O catalyst 1 ke
Al e~

A
f 4 S A r v ~ o
\J 1 catalyst 3 O d ez - . \) catalyst 2 J 4

FIGURE 10. a.) The principle of catalyst-substrate co-immobilisation: the bead carrying an active
catalyst (catalyst 2) becomes labelled with a red dye. b.) The additional distance between the carboxylic

acid moiety and the secondary amine of H-Pro-Pro-Asp-NH, compared to proline.?®

Indeed, H-Pro-Pro-Asp-NH2 and in particular its diastereoisomer H-D-Pro-Pro-Asp-
NH2 proved to be very good catalysts for the conjugate addition reaction of various aldehydes
to aromatic as well as aliphatic -substituted nitroolefins providing the corresponding products
in excellent yields, diastereo- and enantioselectivities.® Further studies revealed that the closely
related analogue H-D-Pro-Pro-Glu-NH> is an even better catalyst for conjugate additions

1 KRATTIGER, P., MCCARTHY, C., PFALTZ, A., WENNEMERS, H., Catalyst-substrate
coimmobilization: a strategy for catalyst discovery in split-and-mix libraries. Angew. Chem.
Int. Ed. 2003, 42, 1722-1724.

%2 KRATTIGER, P., KOVASY, R., REVELL, J. D., IVAN, S., WENNEMERS, H., Increased
structural complexity leads to higher activity: peptides as efficient and versatile catalyst for
asymmetric aldol reactions. Org. Lett. 2005, 7, 1101-1103.

% WIESNER, M., REVELL, J. D., WENNEMERS, H., Tripeptides as efficient asymmetric
catalysis for 1,4-addition reactions of aldehydes to nitroolefins-a rational approach. Angew.
Chem. Int. Ed. 2008, 47, 1871-1874.
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between aldehydes and nitroolefins®* °° Detailed investigations revealed that within the
catalyst structure the turn-inducing D-Pro-Pro-motif as well as the C-terminal amide and the

carboxylic acid moiety in the side chain are crucial for effective catalysis.

In this sense, other studies done by Wennemers and co-worker®® with the analogue H-D-
Pro-Pro-Glu-NH; showed that the trans/cis ratio of the conformers (Ktransicis) are determinant
for the induction of stereoselectivity (SCHEME 7).

/i ( n o\« H O
|
N rans/cl N NH2
O
0 Solvent C{ko
NH
AN HO S0
trans
[Kf,.m.,C ;s ~ Enantioselectivity K ans/cis Diaslereoselectivity]

SCHEME 7. Trans/cis equilibrium of H-D-Pro-Pro-Glu-NH, type catalyst.

These studies showed that when the size of the proline ring adjacent to the proline core
employed as a catalyst is increased the trans/cis ratio is varied and can be controlled by using
a more significant amount of polar aprotic solvents (CHCI3/i-PrOH 9:1) to afford the trans
isomer, a marked increase in the trans/cis ratio of their conformers are observed. Tested in a
Michael addition of aldehydes to nitroolefins, the best stereoselectivities are obtained for a

better Kiransrcis. In this way, the sequence H-D-Pro-Pip-Glu-NH; presented the best result.

In counterpart, when the amount of polar protic solvent is increased (CHCI3/i-PrOH 1:1),
but in this case for adding aldehydes to maleimides, this ratio decreases, and it stops

depending on the size of the ring and decreases the stereoselectivity.

% WIESNER, M., NEUBURGER, M., WENNEMERS, H., Tripeptides of the type HDPo-
Pro-Xaa-NH; as catalysts for asymmetric 1,4-addition reactions: Structural requirements forhigh
catalytic efficiency. Chem. Eur. J. 2009, 15, 10103-10109.

% WIESNER, M., WENNEMERS, H., Peptide-catalyzed conjugate addition reactions of
aldehydes to nitroolefins. Synthesis 2010, 9, 1568-1571.

% SCHNITZER, T., WENNEMERS, H., Influence of the Trans/Cis conformer ratio on the
stereoselectivity of peptidic catalysts. J. Am. Chem. Soc., 2017, 139, 15356—15362.



19

1.6 Water-Compatible Organocatalysis

The development of organocatalytic processes that use water as the reaction medium has
attracted widespread attention over the last years®’: 58 5%:60.61 hecause water is the most abundant
solvent on earth, non-toxic, non-flammable and easy to handle and thus generally considered
as a “green solvent.” Since the conjugate addition reaction of carbonyl compounds to
nitroolefins is one of the most useful and widely researched organocatalytic transformations,
the development and optimization of secondary amine catalysts that allow this reaction to take
place in an agueous medium has received considerable research interest. In this context, several

catalysts have been reported that provide the corresponding y-nitro carbonyl compounds in

" MASE, N., BARBAS, C. F., In water, on water, and by water: mimicking nature's aldolases with
organocatalysis and water. Org. Biomol. Chem. 2010, 8, 4043-4050.

8 LINDSTROM, U. M., Organic reactions in water, Blackwell, 2007.

% RAJ, M., SINGH, V. K., Organocatalitic reactions in water. Chem. Commun. 2009, 6687-
6703.

% GRUTTADAURIA, M., GIACALONE, F., NOTO, R., Water in stereoselective
organocatalitic reactions. Adv. Synth. Catal., 2009, 351, 33-57.

1 PARADOWSKA, J., STODULSKI, M., MLYNARSKI, J., Catalysts based on amino acid
for asymmetric reactions in water. Angew. Chem. Int. Ed. 2009, 48, 4288-4297.
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good yields and stereoselectivities (SCHEME 8).62 63 64,6566, 67, 68,69, 70 A g the water-solubility
of the substrates is generally low, the reaction mixtures are in homogeneous, and the reactions
take place in or at the surface of a highly concentrated organic phase. The development of new
catalysts that can work in pure water is a challenge, especially for catalyzed asymmetric
reactions. The most used approach is the surfactant type design. Many approaches are based on
the introduction of lipid chains and others in the use of catalysts in the form of salts to make it
soluble in water. Consequently, the secondary amine catalysts that perform best in an aqueous
medium are amphiphilic, allowing for their solubility in the organic phase as well as
stabilization of an emulsion of the two phases.

2 MASE, N., WATANABE, K., YODA, H., TAKABE, K., TANAKA, F., BARBAS, C. F.,
Organocatalytic direct Michael reaction of ketones and aldehydes with p-nitrostyrene in brine.
J. Am. Chem. Soc. 2006, 128, 4966-4967.

637U, L., WANG, J., HAO, L., WANG, W., A recyclable fluorous (S)-pyrrolidine sulfonamide
promoted direct, highly enantioselective Michael addition of ketones and aldehydes to
nitroolefins in water. Org. Lett., 2006, 8, 3077-3079.

64 ZHU, S., YU, S., MA, D., Highly efficient catalytic system for enantioselective Michael
addition of aldehydes to nitroalkenes in water. Angew. Chem. Int. Ed. 2008, 47, 545-548.

% LOMBARDO, M., CHIARUCCI, M., QUINTAVALLA, A., TROMBINI, C., Highly
efficient ion-tagged catalyst for the enantioselective Michael addition of aldehydes to
nitroalkenes. Adv. Synth. Catal. 2009, 351, 2801-2806.

 ZHENG, Z., PERKINS, B. L., NI, B., Diarylprolinol silyl ether salts as new, efficient, water-
soluble, and recyclable organocatalysts for the asymmetric Michael addition on water. J. Am.
Chem. Soc. 2010, 132, 50-51.

" SARKAR, D., BHATTARAI, R., HEADLEY, A., NI, B., A novel recyclable organocatalytic
system for the highly asymmetric Michael addition of aldehydes to nitroolefins in Water.
Synthesis 2011, 12, 1993-1997.

8 LUO, S., MI, X., LIU, S., XU, H., CHENG, J.-P., Surfactant-type asymmetric organocatalyst:
organocatalytic asymmetric Michael addition to nitrostyrenes in water. Chem. Commun. 2006,
3687-36809.

% CAOQ, Y.-J., LAl Y.-Y., WANG, X., LI, Y.-J., XIAO, W.-J., Michael additions in water of
ketones to nitroolefins catalyzed by readily tunable and bifunctional pyrrolidine—thiourea
organocatalysts. Tetrahedron Lett., 2007, 48, 21-24.

OVISHNUMAYA, SINGH, V. K., Highly Enantioselective Water-Compatible Organocatalyst
for Michael Reaction of Ketones to Nitroolefins. Org. Lett., 2007, 9, 1117-1119.
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SCHEME 8. Selected examples of water-compatible organocatalysis.

Our research group has designed a new organocatalyst inspired in the seminal one
described independently by Hayashi and Jargensen. The new catalyst type is modified with
lipid side chains and has been used effectively in asymmetric transformations usingalternative

sustainable solvents.® 3”7

Short peptides have low molecular weight when compare with proteins, but at the same time,
consist of the same amino acid building blocks as enzymes. Thus, it is a highly interesting question
if and in how far enzymes can be mimicked by their low molecular weight analogues. In this
context, Wennemers’? reported the first lipopeptide used as an aminocatalyst in additions of
Michael using water as a solvent (SCHEME 9).

" FEU, K. S., DEOBALD, A. M., NARAYANAPERUMAL, S., CORREA, A. G., PAIXAO,
M. W., An eco-friendly asymmetric organocatalytic conjugate addition of malonates to a,f3-
unsaturated aldehydes: Application on the synthesis of chiral indoles. Eur. J. Org. Chem. 2013,
5917-5920.

2 DUSCHMALLE, J., KOHRT, S., WENNEMERS, H., Peptide catalysis in aqueous emulsions.
Chem. Commun., 2014, 50, 8109-8112.
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SCHEME 9. Michael addition catalyzed by amphiphilic lipopeptide under aqueous media.

Based on these observations, pyrrolidine-type peptides can be considered as very useful
organocatalysts for direct asymmetric catalysis. The major disadvantages of this peptide
catalysts remain in the linearity of the synthesis. Peptide synthesis often occurs by coupling
the carboxyl group of the incoming amino acid to the N-terminus of the growing peptide
chain. The growing peptide chain follows the stepwise method to add amino acids one- at-a-
time to the growing peptide chain. This produces low yields and atom economy. Peptide
coupling requires the activation of the C-terminal carboxylic acid of the incoming amino acid
using carbodiimides such as dicyclohexylcarbodiimide (DCC) or diisopropylcarbodiimide
(DIC). Carbodiimides form such a reactive intermediate that racemization of the amino acid
can occur. Therefore, reagents to avoid or reduce racemization are often added, including 1-
hydroxybenzotriazole (HOBt) and 2-(1H-benzotriazol 1-yl)-1,1,3,3-tetramethyluronium
hexafluorophosphate (HBTU). These coupling reagents, resin and additives are expensive and

sometimes are unrecovered.

1.7 Multicomponent reactions

Multicomponent reactions (MCRs) are convergent processes where three or more
compounds react sequentially to form a product that retains most of the atoms of the starting
materials. The exact nature of these reactions is difficult to assign given that in the theory of
collisions, the simultaneous interaction of three or more molecules results in lower reaction
rates. These processes occur through a series of bimolecular reactions, according to a cascade
of elementary reactions in equilibrium with a final flow towards an irreversible step that
yields the product. Many times, the presence of common substrates allows the occurrence of
collateral multicomponent reactions. Conducting a multicomponent reaction in a way that
leads to a majority product, will depend on the reaction conditions: solvent, temperature,

catalyst, concentration, type of starting materials and functional groups.”

8 ZHU, J.; BIENYAME, H., Multicomponent Reactions. 2da Eds, Wiley-VCH, Weinheim,
2005.
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MCRs generally have perfect atom economy and thus represent suitable synthetic tools for
addressing the Green Chemistry criterion. Usually, the starting materials of MCRs are readily

available, or can easily be prepared.

1.7.1 Isocyanide-based multicomponent reactions (I-MCRs)

The chemistry of isocyanides began in 1859 when Lieke obtained allyl-isocyanide by
reaction between allyl iodide and silver cyanide.”* However, during a whole century, only 12
isocyanides were prepared, whose chemical properties were not investigated in depth due to
their unpleasant odor. The isocyanides are characterized by three fundamental chemical
properties: i) the acidity of their position a, ii) the easy formation of radicals, and iii) the
double addition of electrophiles and nucleophiles; its most important chemical property

(Scheme 10).7>76.77

Electrophile
(LUMO, 1t"2p)

/!

QOO OD Nu', ]E+ Q)O O \\\\NU
RINGO N RT() GTE
Nucleophile

(HOMO, 6"2s)

SCHEME 10. Frontier orbital theory (FOT) of an isocyanide showing its ambiphilic reactivity.

Accordingly, in I-MCRs several chemical bonds are formed with high chemical efficiency,

and generating high levels of structural diversity and complexity such as pseudo-peptide (i.e.,

"4 UGI, L.; Recent progress in the chemistry of multicomponent reactions. Pure Appl. Chem.,
2001, 73, 187-191.

S UGI, L.; Isocyanide Chemistry, Academic Press, New York, 1971.

® DOMLING, A., Recent developments in isocyanide based multicomponent reactions in
applied chemistry. Chem. Rev., 2006, 106, 17-89.

"DOMLING, A., UGI, I.; Multicomponent reactions with isocyanides. Angew. Chem., 2000,
39, 3168-3210.
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depsipeptides,’® peptoids’*°81) and peptidomimetic (e.g., oxa-,%? dihydroimida-,® thia-,2* and
tetrazoles®®) motifs in a diversity-oriented manner without utilization of coupling agents or

additives like in peptide chemistry.

1.7.2 The Ugi-four component reaction (Ugi-4CR)

The reaction of Ugi is undoubtedly the most used I-MCR, not only in the way of
obtaining peptidomimetic structures but also in other very varied ones. Most chemical reactions
have their own scope and limitation, whereas the Ugi-4CR can convert almost all combinations
of starting materials into their products. Its simplest version is the condensation of an
aldehyde or ketone, a primary amine, a carboxylic acid, and an isocyanide to form an N-
substituted dipeptide.®® The use of a prochiral carbonyl compound leads to the formation of
mixtures of stereoimomers, because the reaction is not stereoselective®’888(SCHEME 11).

8 BANFI, L.; RIVA, R.; The Passerini reaction. Org. React., 2005, 65, 1-142.

" DOMLING, A.; UGI, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed.,
2000, 39, 3168.

8 DOMLING, A. Recent developments in isocyanide based multicomponent reactions in
applied Chemistry. Chem. Rev., 2006, 106, 17.

81 DOMLING, A.; WANG, W.; WANG, K. Chemistry and Biology of multicomponent
reactions. Chem. Rev., 2012, 112, 3083.

8 XIA, Q.; GANEM, B. Metal-promoted variants of the Passerini reaction leading to
functionalized heterocycles. Org. Lett., 2002, 4, 1631.

8 BON, R. S.; HONG, C. G.; BOUMA, M. J.; SCHMITZ, R. F.; DE KANTER, F. J. J.; LUTZ,
M.; SPEK, A. L.; ORRU, R. V. A. Novel multicomponent reaction for the combinatorial
synthesis of 2-imidazolines. Org. Lett., 2003, 5, 3759.

8 HENKEL, B.; BECK, B.; WESTNER, B.; MEJAT, B.; DOMLING, A. Convergent
multicomponent assembly of 2-acyloxymethyl thiazoles. Tetrahedron Letters, 2003, 44, 8947.
8 UGI, I.; WERNER, B.; DOMLING, A., The Chemistry of isocyanides, their multicomponent
reactions and their libraries. Molecules, 2003, 8, 53.

8 DOMLING, A., The discovery of new isocyanide-based multicomponent reactions. Curr.
Op. Chem. Biol., 2000, 4, 318-323.

8" RIVERA, D. G., PANDO, O., COLLI, F., Synthesis of peptidomimetic-spirostane hybrids
via Ugi reaction: a versatile approach for the formation of peptide—steroid conjugates.
Tetrahedron, 2006, 62, 8327-8334.

8 WESSJOHANN, L. A., RIVERA, D. G., COLL, F., Synthesis of steroid-biaryl ether hybrid
macrocycles with high skeletal and side chain variability by multiple multicomponent
macrocyclization including bifunctional building blocks. J. Org. Chem., 2006, 71, 7521-7526.
8 WESSJOHANN, L. A., RIVERA, D. G., Supramolecular compounds from multiple Ugi
multicomponent macrocyclizations: Peptoid-based cryptands, cages, and cryptophanes. J. Am.
Chem. Soc., 2006, 128, 7122-7123.


http://pubs.acs.org/action/doSearch?action=search&author=D%C3%B6mling%2C%2BA&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=D%C3%B6mling%2C%2BA&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Wang%2C%2BW&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Wang%2C%2BK&qsSearchArea=author
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SCHEME 11. The Ugi four-component reaction (Ugi-4CR).

This reaction consists of an ionic mechanism developed in polar protic solvents (such as
methanol). The mechanism of Ugi-4CR is shown in (SCHEME 12). 8 % |n the first step, the
amines and carbonyl compounds (aldehyde or ketone) condensed to the imine. The imine is
protonated by the carboxylic acid. Depending on the solvent, the ion can be as salt pair or
separately. Then, both ions react with the isocyanide component to form an imidate
intermediate. The last step is the Mumm rearrangement, consisting in an intramolecular

acylation and subsequent rearrangement forming a (C=0) double bond and consequently the

Ugi product.
O
X (e
- 2
R&™ Rs T Ry -H,O0 Ry” TR
j)\ R3Rz 1
N Mumm
Ri ".‘}WT Rs rearrangement

Dipeptide N-Substitute

O-acyl amide

SCHEME 12. General mechanism of the Ugi-4CR.

In accord with the ever-increasing demand for “atom economic” processes and efficient
methods to obtain compounds capable inducing good enantioselectivity, I-MCRs are an

unexploited and elegant field that deserve to be studied.

% RON, N. C.; RAMOZZI, R.; KAIM, L. E.; GRIMAUD, L.; FLEURAT-LESSARD, P.
Challenging 50 years of established views on Ugi reaction: A theoretical approach. J. Org.
Chem., 2012, 77, 1361.



26

In 2010, Orru and co-workers®* published an article with the Ugi type 3CR for the
straightforward synthesis of catalyst 20 (SCHEME 13) resembling the structure and catalytic

behavior of Wennemer’s catalyst 18.

+

C_EN_\— H H
H H o COOMe 1) pem, it, 24-48n N~
) -
2) NaOH, MeOH/DCM RSN
§ [ dcop : O ~o
N NH
Fmoc HO
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SCHEME 13. Ugi-type 3CR reaction developed by Orru and co-workers.

Recently, our research group using I-MCR developed the synthesis of a combinatorial
library of prolyl peptide-peptoid hybrids and their application as aminocatalysts (Scheme 14).9

RT (@] /Rs
O™ § Nl
1) Ugi-4CR (H ,R?
'}l 0 R2 R2 )94» N R?
Boc  + 2) TFA/DCM H O

+ -
1_ 3_N= then K,CO
R'—NH, R*-N=C e 13 examples, up to 93%

SCHEME 14. Prolyl peptide-peptoid hybrid catalyst library.

The best catalytic motif was obtained when a (L)-proline, (S)-a-methylbenzylamine,
acetone and cyclohexyl isocyanide are combined in the Ugi-4CR. The obtained catalyst 24
showed an exceptional performance in the Michael addition of aldehydes to nitrostryrenes

having toluene as a solvent system (SCHEME 15).

%1 ZNABET, A., RUUTER, E., de KANTER, F. J. J., KHLER, V., HELLIWELL, M.,
TURNER, N. J, ORRU, R. V. A, Highly stereoselective synthesis of substituted prolyl
peptides using a combination of biocatalytic desymmetrization and multicomponent reactions.
Angew. Chem. Int. Ed., 2010, 49, 5289 -5292.

%2 de la TORRE, A. F., RIVERA, D. G., FERREIRA, M. A. B., CORREA, A. G., PAIXAO,
M. W., Multicomponent combinatorial development and conformational analysis of prolyl
peptide—peptoid hybrid catalysts: Application in the direct asymmetric Michael addition. J.
Org. Chem., 2013, 78, 10221-10232.
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SCHEME 15. Michael addition of aldehydes to nitrostyrenes.

We have determined the optimized lowest-energy structure of the enamine with E
configuration, in toluene as a best solvent for Michael addition. FIGURE 11 shows a significant
overlap of the peptidic skeleton to the Re-face, which according to Seebach’s topological model

explains the high enantioselection of the catalyst 24.

Me

Ph_» ¢-CgH
m Pm UL b A 1)

z
Enamine E (s-trans)

A

FIGURE 11. Lowest-energy structure of the enamine E (s-trans) derived from catalyst 21.

FIGURE 11 clearly shows that the face (Re-face) of the enamine is totally blocked by the
peptidic skeleton (literally as a scorpion). Thus, this clearly justify how this catalyst works in
the configuration of enamine E (s-trans) and its influence in the enantioselectivity for Michael
adducts.

So, could it be possible to apply I-MCRs, specifically Ugi-4CR, to generate a new class of
prolyl peptide-lipopetoid hybrids catalyst library through the introduction of lipidic chains on
the same peptide skeleton of the catalyst previously developed by our group, capable to catalyze
chemical asymmetric reactions in pure water? Might it be an easy and green way to mix more

than one component in a one-pot process to get organocatalysts with surfactant properties?
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2 Objectives

The application of Ugi-4CR in the field of organocatalysis is a wonderful tool to generate
versatility in combinatorial approaches to rapidly, efficiently, and eco-friendly generate
peptide derivatives with catalytic potential in asymmetric catalysis. In accord to Green
Chemistry principles, the development of new catalyst synthetized with higher atom
economy, can be used in pure water is a true challenge and desirable. Therefore, the main
target in this work is a synthesis of a combinatorial library of prolyl peptide-lipopeptide
hybrids catalysts by Ugi-4CR. Evaluate its amphiphilic and catalytic properties through
catalysis via enamine in an addition of aldehydes to nitrostyrenes under water and other
environmentally benign solvents. Finally characterize the catalytic system formed by the
interaction of the catalyst-water and DFT calculations of the more stable enamine

conformation.
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3 Results and Discussion

3.1 Combinatorial multicomponent synthesis of prolyl pseudo-lipopeptides hybrid
catalysts

An isocyanide multicomponent reaction (I-MCR) approach based on the Ugi-4CR was
carried out for the synthesis and development of a new library of prolyl pseudo-lipopeptides
hybrid catalysts (FIGURE 12).

Hayashi-Jorgensen catalyst approach
modified with lipids

['I'wo Approaches Mixed J

NN
S
O p—turn inducers
O S\/\/\/ (1+1) 2 E (i+2)
N OTMs | 1
b, New prolyl pseudo-
This work lipopeptides hybrid
\ catalyst library
AMINE \ Y ! b3 \l/’/
= @ = H, OH or Lipid
&(N I CARBONYL @ = Cy or Lipid
H | OINH R — (§)-a—MeBn or Lipid

ACID

Secuence: R'-Pro-N-R2-Aib-NHR?

ISOCYANIDE

FIGURE 12. Combinatorial multicomponent strategy adopted for the preparation of the prolyl pseudo-
lipopeptide catalysts library.

For the catalyst design, we first have taken into consideration the fact that the N-
substitution at R? and the Aib residue derived from the carbonyl component - both beta turn
inducers - are responsible for the conformation restrictions (trans/cis equilibrium of the amide
bond), therefore shielding one face of the pro-chiral enamine. The influence of the trans/cis
conformer ration has been rationalized as one of the main contributors for the high
stereoselectivity of this catalyst series. Further, an additional aspect was the high efficiency
showed by the Hayashi-Jgrgensen type catalyst modified with lipid side chains recently
developed and applied by our group. Having these aspects in mind and that three different
elements of diversity could precisely be tuned during the multicomponent event (i.e. the amine,
the acid and the isocyanide components) we designed a series of prolyl pseudo-lipopeptides

hybrid catalysts presented in the FIGURE 12. To this end, (i) acetone was fixed as the carbonyl
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component to furnish the Aib moiety in the backbone; (ii) the chiral pyrrolidine core came
from N-Boc-proline, N-Boc-4-hidroxy-proline or from a lipidic derivative of this last one.

(iii) on the other hand, dodecylamine and (S)-a-methylbenzylamine were employed as amine
components alternatives, and cyclohexyl isocyanide and dodecyl isocyanide were evaluated as
isocyanide components. Therefore, it is possible to note that the multicomponent nature of this
process enables the direct generation of a series of prolyl pseudo-lipopeptides having the
generic sequences R-Pro-N-R2-Aib-NHR?, being R* = H, OH, n-C11H23COO; R? = (S)-a-
MeBn, n-C12Hzs, Diphenylmethanamine (Dpm); and R® = Cy, n-Ci2Hzs (TABLE 1).

Thus, the Ugi-4CR protocol®® was employed for the one-pot assembly of the lipopeptoid
skeleton followed purification of the corresponding N-Boc protected Ugi adduct by flash
chromatography. Under this concept, eight prolyl pseudo-lipopeptides of the type R -Pro-N-R?-
Aib-NHR?® were synthesized in moderate to good yields considering the nature and
complexity of this one-pot process (TABLE 1). Finally, the corresponding NH catalysts 24-31
were directly used after the N-Boc cleavage.

First, prior to introduce structural changes, the catalyst previously developed by our
research group was synthetized employing the already reported protocol.®* In this way, the
catalyst was obtained in the same yield previously reported (77% yield, TABLE 1, compound
24). Among the three possible elements of diversity, initial attention was given to the amine
component by exchanging the (S)-a-methylbenzylamine to dodecylamine (TABLE 1,
compound 25). The synthesis of this compound was carried out at room temperature for 24
hours. First, the imine was pre-formed by mixing dodecylamine with acetone in methanol for 2
hours. Subsequently, N-Boc-proline and cyclohexyl isocyanide were added to afford the
compound 25 with 70% of yield after additional 22 hours.

The second variation was focused on varying the isocyanide component by exchanging
cyclohexyl isocyanide for a lipidic isocyanide. However, dodecyl isocyanide 23 had to be firstly
synthesized from dodecylamine 22 in a one-pot two steps sequence in 71% of yield (Scheme
16).

B UGI, I.; MEYR, R.; FETZER, U.; Steinbriicker, C. Experiments with isocyanides. Angew.
Chem., 1959, 71, 386.

%“de la TORRE, A. F., Multicomponent reactions in the discovery of organocatalysts and the
diversification of organocatalytic approaches. PhD Thesis. 2015.
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SCHEME 16. Synthesis of commercially not available lipidic isocyanide 23.

With the isocyanide in hands, the reaction was carried out using (S)-a-methylbenzylamine,
acetone and N-Boc-proline as reaction components under the same conditions previously
employed. Thus, compound 26 (TABLE 1) was synthesized in 25% of yield. The observed low
yield shall be rationalized due to two fundamental factors: (a) first, there was no effective
formation of the imine at room temperature; (b) second, the lipidic isocyanide and final product
were poorly soluble in methanol. Those problems were solved using MW heating for both
steps and with the use of approximately 30% of THF as a co-solvent. This modification in the

reaction protocol afforded compound 26 in 54% of yield.
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TABLE 1. Multicomponent combinatorial synthesis of prolyl pseudo-lipopeptides hybrid catalysts
using the  Ugi-4CR.

| o Rl
Rl OH )J\ 1. Ugi-4CR in %, RZ O
N MeOH/THF ' \ R
‘Boc O\«N ’ H
2. TFA/ DCM N
H o]

R>—NH, R’—NC then NaHCO; (sat)
prolyl pseudo-lipopeptides
hybrid catalysts

N o <
P~ Q¢ n-Crabls 'y cy L s
.Cy N N N N
N N . H ~, H
y ~, H H 2 N
H o ° "o

24 25 26
“77% 70% €549,
O Ph_" O
- C12H"’;)L .n-CqzHas ¥ ,n-C4zHo5 y 1 7)LN,CY
N
H o
27 28 29
“57% 150% 173%

n- C11H23C00 Ph o Ph Pho
' ,n-CqoHos
Oﬁ( O\WN g H
N
H o

30 31
448%, d 550/,

aAll yield is referred of isolated pure N-Boc protected product.” Reaction conducted at room temperature
in MeOH for 24h.° Reaction conducted under microwave irradiation.” Only imine preforming by

microwave irradiation.

With the purpose of introducing two lipid chains at the same time in the same peptidic
skeleton as in the Barbas 111 catalyst®” dodecylamine and dodecyl isocyanide were used in an
alternative multicomponent reaction using N-Boc-proline and acetone under MW irradiation
and THF in MeOH as solvent system (30% v/v), archiving compound 27 (TABLE 1) in 57%
of yield. Taking advantage of the main characteristics of surfactants molecules, structures
which contain a nonpolar part and a polar part in opposite directions, therefore compound 28
(TABLE 1) was designed. This approach also had the aim to increase the amphiphilic
properties of the catalyst. To achieve the desired catalysts, N-Boc-proline was substituted for
N-Boc-trans-4-hydroxy-
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proline as the acid component in a fourth modification. Thus, the combination of (S)-a-
methylbenzylamine, acetone, N-Boc-trans-4-hydroxy-proline and dodecy! isocyanide afforded
compound 28 in 50 % of yield. This reaction was also carried out using MW heating to preform

imine and completed at room temperature to favor the Mumm rearrangement.

The polar pyrrolidine-containing hydroxyl group in the trans position was also used to
increase the polarity of the catalyst previously developed by our group. Compound 29
(TABLE 1) could be prepared from acetone, (S)-a-methylbenzylamine, N-Boc-trans-4-
hydroxy-proline and cyclohexyl isocyanide in 73% of yield. The presence of a hydroxy group
in the pyrrolidine core also opened a new perspective for functionalization. To investigate the
effect of the presence of a lipidic portion at this moiety, N-Boc-trans-4-hydroxy- proline was
acylated® with lauryl chloride and then used as an acid component, affording compound 30
(TABLE 1) in 48% of yield. In this case, the imine was also pre-formed under MW heating

and the reaction could be completed at room temperature.

Finally, one last consideration in the design of the catalytic motifs was carried out. Tothis
end a structural change was made based on compound 28, that in theory presents the best
surfactant type design. In this approach, the chiral amine (S)-a-methylbenzylamine
incorporated in compound 28 was replaced by the more hindered 2.2-diphenylglycine methyl
ester. Interestingly, after preparing the methyl ester and use as an amine component in the Ugi
reaction - employing the imine preformation under MW and allowing the completion of
reaction at room temperature - the final product undergoes decarboxylation, affording
compound 31 (TABLE 1) in 55% of yield. This decomposition probably occurs in the
preformation of the imine in methanol at 70 °C, through a nucleophilic attack of methanol to
the methyl ester, which gives rise to dimethylcarbonate and diphenylmethanamine (SCHEME
17).

% KRISTENSEN, T. E., HANSEN, F. K., HANSEN, T., The selective O-acylation of
hydroxyproline as a convenient method for the large-scale preparation of novel proline
polymers and amphiphiles. Eur. J. Org. Chem.,. 2009, 387—395.
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SCHEME 17. Decarboxylation mechanism of the 2.2-diphenylglycine methyl ester hydrochloride

during the preformation of imine in methanol.

To summarize, eight aminocatalysts have been synthesized, among then, seven are new in
the literature. A peptoid (compound 29) and six lipopeptoids presenting a wide structural

diversity and catalytic motifs.

3.2 Prolyl pseudo-lipopeptide hybrid catalysts: Evaluation in the asymmetric Michael
reaction under aqueous media

To evaluate the catalytic behavior of the prolyl pseudo-lipopeptides in the conjugate
addition reactions of aldehydes to nitroolefins, we chose to use n-butanal and (E)-(2-nitrovinyl)
benzene as model reaction (TABLE 2). As standard conditions a mixture of the S-nitrostyrene
and 2 equivalents of the aldehyde, were vigorously stirred in pure water (0.5 M concentration
of the nitroolefin), in the presence of 10 mol% of each catalyst, at room temperature for 24
hours. Prior to beginning the evaluation of the new catalysts synthesized by this new
methodology, the catalyst previously synthesized in our group (compound 24) was evaluated
(Entry 1, TABLE 2). As expected, this catalyst showed good results, both enantioselectivity
(95% e.e.) and diastereoselectivity (98:2 d.r.), however a low yield (34%) was observed. The
very low yield shall be related to the low solubility of the organocatalyst in water and the lack
of surfactant proprieties. With this result in hands, we started to evaluate the new lipopeptoids

based organocatalysts. Compound 25 showed significant improvements in terms of
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performance (75% of yield), but lower d.r. (76:24) and e.e. (85%) were observed (Entry 2,
TABLE 2). This preliminary result was very encouraging since our proposed methodology
seemed to work well in completely aqueous media. Then, compound 26 was further evaluated,
the lipid chain in the opposite direction of the pyrrolidine nucleus showed improvements in
terms of yield (88%), d.r. (89:11) and e.e. (92%) (Entry 3, TABLE 2). We expected an excellent
result for compound 27 since the design was centered on a structure similar to Barbas IlI
catalyst. However, this catalyst did not work as expected, since good performance (71% of
yield) but low selectivity (87% e.e. and 87:13 d.r.) were observed (Entry 4, TABLE 2). At this
point of the catalyst screening, the results obtained were good mainly in terms of yields, but

not yet satisfactory in terms of stereoselectivity.

TABLE 2. Asymmetric Michael reaction of n-butanal and g-nitrostyrene. Screening of different prolyl

pseudo-lipopeptide catalysts. 2

Rl
< R2
\ 0 s
Ny_)LN
N ., H
H o O Ph

O
R
- . Et .,

Entry RY RY R® Compound  Yield (%)° d.r. (syn/anti)® e.e. (%)°
1 H/ (S)-0-MeBn/ Cy 24 34 92:8 95
2 H/ n-Ci2Has/ Cy 25 75 76:24 86
3 H/ (S)-a-MeBn/ n-CioHzs 26 88 89:11 92
4 H/ n-Ci2Ha2s/ n-C12Has 27 71 87:13 87
5 OH/ (S)-a-MeBn/ n-C1oHzs 28 88 76:24 99
6 OH/ (S)-a-MeBn/ Cy 29 43 70:30 99
7 n-CuHzCOO/ (S)-0-MeBn/ Cy 30 23 89:11 99
8 OH/ Dpm/ n-Cy2H2s 31 84 79:21 89

@ All reactions were conducted using 2 equivalents of the aldehyde and 0.2 mmol of S-nitrostyrene in 0.4
mL of water.” Yield determined by 'H-NMR analysis with 1,2,3-trimethoxybenzene as standard.

¢ Determined by 'H NMR analysis of crude of the reaction mixture.® Determined by chiral-stationary
phase HPLC or UPC? analysis.

An excellent performance was also expected for compound 28, since the presence of a free

hydroxyl group in pyrrolidine ring would likely provide a better solubility. To our delight, us
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expectative became true, since a high yield accompanied by an excellent e.e. (99%) was observe
when the reaction was performed using this catalyst (Entry 5, TABLE 2). At that moment, it
became clear that the introduction of an additional chiral center was essential to the
improvement of the enantioselectivity. To confirm this, we have observed that the introduction
of this same chiral center into the catalyst previous developed in our group afforded better
results in performance (43% of yield) and enantioselectivities (99% of e.e.), although a
significant decrease in diastereoselectivity (d.r.: 70:30) was observed (Entry 6, TABLE 2). The
maintenance of the enantioselectivity and slightly higher d.r. was observed when the O-
substituted N-Boc-trans-4-C11H23COO-proline had its catalytic behavior evaluated. However,
a very poor yield (23%) was obtained (Entry 7, TABLE 2). In this case, despite the presence
of a lipid chain, it is placed on the polar side of the pyrrolidine nucleus, which leads to erosion
in terms of amphiphilicity. Additionally, this compound is extremely hydrophobic, so its
behavior in water is limited. The reaction performed using catalyst (compound 31, Entry 8,
TABLE 2), afforded the product in 84% of yield, 79:21 d.r. and 89% e.e. The decrease in
selectivity could be attribute to the replacement of a chiral (S)-a.-methylbenzyl in the side chain
of the lipopeptoid backbone by an achiral, but bulky diphenylmethane. These results showed
that the presence of a chiral center in this portion of the catalyst is also determinant for the

stereoselection.

3.3 Optimization of the catalytic system

From the results presented in TABLE 2, catalyst 28 was chosen for the next set of
optimization experiments, since it was considered to have the best combination
yield/enantioselectivity. As show in TABLE 3, we next evaluated catalyst loading and the
nature of the environmentally benign solvent under room temperature. Most of these reactions
were performed in triplicate to evaluate if the results obtained were reproducible (Entry 1, 2;
4-6 and 7-9, TABLE 3). Firstly, we turned our attention to study the amount of catalyst in the
Michael reaction. By lowering the catalyst loading to 5 mol%, the desired product 34 was
obtained in higher yield and excellent enantioselectivity, however, a moderate
diastereoisomeric ratio could be observed (Entry 3, TABLE 3). Further decreasing the catalyst
loading to 2.5 mol%, yields above 90% are obtained, again with a concomitant improvement
in the diastereomeric ratio and the maintenance of enantiomeric excesses (99%) (Entry 4-6,
TABLE 3). The use of 1 mol% of the catalyst leads to an erosion on chemical yields (Entry 7-
9, TABLE 3). The main differences in the obtained results in the catalyst loading study shall
be
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associated to the stability of the self-assembled water-oil catalytic system that is formed in
dependence on the quantities of catalyst. The use of 10 mol% of catalyst forms a self-assembled
water-oil system that is very stable and emulsified, therefore hydrophobic effects are
responsible for the slight decrease in yield and diastereoselectivity. While the use of 1 mol% of
catalyst forms an unstable water-oil system, and although the results in terms of d.r. and e.e.
were high, chemical yields are very poor, since the system formed does not allow the
solubility of the starting materials (so the intermediates) or the desired product. Thus, 2.5 mol%

of catalyst is sufficient to maintain good yields and enantioselectivities in pure water.

TABLE 3. Asymmetric Michael reaction of n-butanal and B-nitrostyrene catalyzed by 28. Optimization
of the system. ?

,N-C12Hz5

HO, Ph\\»“\ 0
(7t
N
H o}

o 28 (x mol%) i "
H)S v Ph/\/NOZ solvent, rt, 24h g H)KH\/NOZ
32 Et 33 Et 34
Entry  Catalyst (mol%) Solvent Yield (%)° d.r. (syn:anti)*  e.e. (%)°

1 10 H-20 76 87:13 98
2 10 H20 87 76:24 98
3 5 H20 90 90:10 99
4 2.5 H20 95 93:7 99
5 2.5 H20 96 93:7 99
6 2.5 H20 99(96) 93:7 99
7 1 H20 46 98:2 99
8 1 H20 45 98:2 99
9 1 H-0 65 98:2 99
10 25 Ethanol 26 85:15 98
11 2.5 Brine 84 95:5 99
12 2.5 PEG-300 54 82:18 98

2 Reactions using 2 equivalents of n-butanal and 0.2 mmol of g-nitrostyrene in 0.4 mL of solvent.” Yield
determined by *H-NMR analysis with 1,2,3-trimethoxybenzene as standard (isolated product).
¢ Determined by 'H NMR analysis of crude of the reaction mixture.? Determined by chiral-stationary

phase UPC? analysis.
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Furthermore, we decided to evaluate other green and sustainable solvents, employing 2.5
mol% of catalyst loading. Three systems were examined (ethanol, brine and PEG-300) as
alternative solvents of water. When the reaction was performed using ethanol and PEG-300
(Entry 10 and 12, TABLE 3) the desired products are obtained in low yields and good
stereoselectivities. The observed yield could be rationalized mainly since these solvents
completely dissolve the reagents. Therefore, there is no formation of a water-oil biphasic
system. On the other hand, a good result was obtained when brine was evaluated (Entry 11,
TABLE 3), showing that our catalytic system depends fundamentally on the formation of a
biphasic water-oil system and not of an emulsified or micellar system.

3.4 Scope and Limitations

Encouraged by these results and using the best reaction conditions for our catalytic system,
we next explored the scope and limitations of this enamine-type catalytic reaction with a

variety of aldehydes and several substituted nitrostyrenes in the para position (TABLE 4).
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TABLE 4. Scope of catalyst 28 in the asymmetric Michael reaction between different aldehydes and

B-nitrostyrenes. #

HO  Ph—-" O
) i n-CioHzs
O\WN : H
o)
O 0 R2
HJ‘H 2/\\/N02 28 (2.5 mol%) - H)H)VNOZ
TR Water, rt, 24h
R R
F
O @] O O
NO NO NO
H 2 H NO: H z H ?
34 15 36 37
b, -L( C 0/ =T b 1. 00/ b - Q l).’
yield: 99(96)% b yield: 91% yield: 79% yltl:i )tl(?%)) Yo
C ¢ - Q0
!a'.f 97:3 "a'r'()"'8 d.r:99:1 d.r:92:8
e.e.. 99% Lo o 990 e.0.099% e.e.: 98%
Cl Br OMe NO,
O @] O O
N N N
H 0, H NO, H (O H 0,
R 40 41
P yield: 95(91)% P yield: 96(94)% P yield: 87(84)% " yield: 89(80)%
“dr92:8 “dr92:8 "a' 7 03:7 “dr89:11
Lo e 99 Lo o- 08 Lo o O6% e 97%

& All reactions were conducted using 2 equivalents of aldehyde and 0.2 mmol of S-nitrostyrene in 0.4
mL of water. ° Yield determined by *H-NMR analysis with 1,2,3-trimethoxybenzene as standard and
(isolated product). ¢ Determined by *H NMR analysis of crude of reaction mixture. Determined by chiral-

stationary phase UPC? analysis.

All reactions were conducted in water at room temperature for 24 h in the presence of 2.5
mol% catalyst 28. In each case, smooth reactions occurred to generate Michael adducts in high
yields (80-96%), diastereoselectivities up to 99:1 and excellent enantioselectivities (from 96-
to 99% e.e.). By increasing the carbon side chain of the aldehyde, the desired product 35 was
delivered in the good yield and excellent estereoselectivity. Moreover, performing the reaction

in the presence of an aldehyde bearing a bulkier substituent in the g-position (i.e.
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isovaleraldehyde) afforded lower yield (79%), but 99:1 dr. and 99% ee have been observed
(product 36, TABLE 4). As depicted, S-nitrostyrenes bearing g-aryl substituents with
moderate electron withdrawing effect by electronegativity and electron donor due to
mesomeric effect (i.e, F, Cl, Br) had a similar behaviour in water. In all these cases, high
yields and excellent estereoselectivies were observed (products 37-39, TABLE 4).
Besides, the reaction also showed to be non-affected by the presence of strong fS-aryl
electron-rich or electron-withdrawing substituents. Intriguingly, a slight decrease in terms
ofyield, aswell as on the stereoselectivity were observed for the formation of produtcs 40 and
41.

These results demonstrate that the new prolyl-lipopeptoid hybrid catalyst 28 can be faced
as a good catalyst for conjugate addition reactions between a different substituted aromatic
nitroolefins and aldehydes. It is also important to emphasize that no additive was needed to

assist the catalytic activity, which implies in an even more sustainable process.
3.5 Conformational Study

~ E (s-frans) enamine
Proline ‘ moiety — .Si face

moiety A

-
2P =04
.‘ ff’ir” Li" Lr L?’Lr‘*

e

Aliphatic side chain

FIGURE 13. Conformational structure of the optimized enamine. In red, the oxygen atoms are
represented. In blue are the atoms of nitrogen, in gray the carbon atoms and in white the

hydrogen atoms.

The enamine type structure was optimized in a Gaussian 09 program, which afforded the

conformation shown in FIGURE 15.% Although not so precisely, this simple schematic

% CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org)
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representation of the enamine supports the explanation of the observed enantiomeric
discrimination. The enamine configuration is E (s-trans), which is likely the more stable
conformation, where the long alkyl chain is completely blocking one of the faces of the
enamine, that is, the Re-face. However, since it is a simple approximation proposed, a more

accurate DFT calculations still necessary.



42

4 Conclusions

In conclusion, a new catalyst library based on the prolyl peptide-lipopeptoid hybrid has
synthesized by Ugi-4CR. Thus, variation of three elements of diversity at the Ugi-derived N-
substituted peptide led to eight prolyl pseudo-lipopeptides catalysts of the type of Pro-N-R*-
Xaa- NHR?® in moderate to good yields (48-77%). This showed a remarkable improvement in
terms of chemical performance, maintaining high stereoselectivity compared to the catalyst
previously developed by our research group under these reaction conditions in aqueous media.
A low charge of the catalyst 28 (2.5 mol%) was necessary to afford the products with excellent

yield, diastereoselectivity and enantioselectivity without any further additive.
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5 Perspectives

— We intend to carry out a conformational study of the catalysts, as well as to increase

the number of examples of the scope.

— The use of N-Boc-trans-4-hydroxy-proline- as acid component could provide
alternatives for the further modifications on the hydroxyl group in this type of
catalyst e.g. lipid, pegylated, or support in a solid support that can be polystyrene
and polyethylene glycol resins or in silica to be able to recycle it.

— Due to the results presented for the prolyl pseudo-lipopeptide catalyst 28 in Michael
reaction under aqueous media we consider that new asymmetric reactions should be
evaluated in a sustainable way, especially remote asymmetric funcionalizations (i.e.

trienamine).
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6 Experimental Section

6.1 General Aspects

Materials and reagents were of the highest commercially available grade purchased from
Sigma-Aldrich, Oakwood Chemicals, and Strem Chemicals and used without further
purification. Flash chromatography was performed using silica gel 60, particle size 40-63 um
and analytical thin layer chromatography (TLC) was performed using silica gel aluminum
sheets. Compounds were visualized on TLC by UV, KMnOs, I2, H3[P(M03010)4] - XH20 (PMA)
and Vanillin solutions. Solvents for extractions and for column chromatography were
previously distilled. Chemical yields were given after chromatographical purification. *H NMR
and *C NMR spectra were recorded at 400 MHz for *H and 100 MHz for *3C, respectively.
Chemical shifts (5) are reported in parts per million relatives to the residual solvent signals
and coupling constants (J) are reported in hertz. High resolution ESI mass spectra were
obtained from a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, an
RF-only hexapole ion guide and an external electrospray ion source. HPLC analysis were
carried out on an analytical HPLC with a diode array detector SPD-M20A from Shimadzu
using Chiralpak column (OD-H) (250 mm x 4.6 mm) from Daicel Chemical Ind. LTD. UPLC
analysis were carrie out on Acquity UPC? system from Waters with a 2998 photodiode array
(PDA) and Xevo TQD triple cuadrupolo mass spectrometry detectors using Trefoil columns
(CEL2 and AMY1) (2.1mm x 50 mm) from Waters. Optical rotations were measured on a

Perkin Elmer Polarimeter 341.
6.2 General procedures

6.2.1 Synthesis of commercially not available lipidic isocyanide.

General procedure for the synthesis of isocyanide 23: In a 50 mL bottom flask,
commercially dodecylamine (2.00 g, 11 mmol) was dissolved in ethyl formate (20 mL). The
resulting solution was refluxed for 24 h at 60 ° C in a silicon bath and the quantitative formation
of formamide was checked by TLC (n-Hexane/EtOAc 1: 1). The reaction was concentrated by
reduced pressure; the crude product was dissolved in triethylamine (30 mL) and cooled down
to -70 °C. Then POCI3 3 mL (33 mmol) was added drop by drop during 15 min under argon
atmosphere. The reaction allowed stirring at room temperature for 48h and after this period the
resulting mixture was decanted. The solid obtained was washed with n-Hexane (2 x 25 mL),
decanted and the fractions of sobrenadant were united. The solvent was removed by reduced

pressure and the resulting very viscous oil is directly purified by column chromatography
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(Petroleum ether) to obtain pure dodecyl isocyanide as a light-yellow oil (1.50 g, 71%). R¢=
0.83 (n-Hexane/EtOAc 10: 1).

Spectroscopic data of dodecyl isocyanide 23:

S S NC

1H NMR (400 MHz, CDCls) & = 3.41 — 3.35 (m, 2H), 1.72 — 1.63 (m, 2H), 1.48 — 1.38 (m,
2H), 1.32 — 1.24 (m, 16H), 0.88 (t, J = 6.9 Hz, 1H).

13C NMR (101 MHz, CDCls) 8 = 155.43, 60.40, 41.57, 31.91, 29.60, 29.51, 29.37, 29.33,
29.11, 28.71, 26.32, 22.68, 14.12.

6.2.2 Synthesis of prolyl pseudo-lipopeptides by Ugi-4CR

ol

1 o 9 R! :

. N N Ugi-4CR L
‘Boc %N#H
R—NH, R®—NC éoc o

General procedure for the synthesis of compound 25: A solution containing acetone (3
equiv.) and amine (1.5 equiv.) and anhydrous sodium sulfate (3 equiv.) in methanol was stirred
at room temperature for 2 hours to preform the imine. After the addition of carboxylic acid (1.2
equiv.) and isocyanide (1 equiv.), the resulting mixture was allowed to stir at room temperature
for 24 h. Finally, the solvent was removed under reduced pressure and the residue was purified
by column chromatography.

Spectroscopic data of compound 25:
1-CizHas oy Dodecylamine (56 mg, 0.3 mmol), acetone (44 uL, 0.6 mmol), N-Boc-
N N7/\Lﬁ proline (52 mg, 0.24 mmol), cyclohexyl isocyanide (25 pL, 0.2 mmol)
Boc © and anhydrous sodium sulfate (85 mg, 0.6 mmol) were reacted in
MeOH (200 pL) according to the procedure described above. The resulting Boc protected
compound was subjected to flash column chromatography purification (EtOAc/n-Hexane 7:3)
affording the lipopeptoid hybrid 2 (77 mg, 70%) as a colorless oil.
R¢=0.60 (EtOAc/n-Hexanes 7:3).
[a] o =n.d.
!H NMR (400 MHz, CDCl3) 6 =5.76 (d, J = 7.6 Hz, 1H), 4.48 (dd, J = 7.6, 3.5 Hz, 1H), 3.74
—3.49 (m, 2H), 3.47 — 3.31 (m, 2H), 3.31 - 3.15 (m, 2H), 2.26 — 2.02 (m, 2H), 1.98 — 1.76 (m,
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7H), 1.73 — 1.54 (m, 4H), 1.46 — 1.41 (m, 13H), 1.35 — 1.18 (m, 20H), 1.16 — 0.98 (m, 3H), 0.87
(t, J = 6.8 Hz, 3H).

13C NMR (101 MHz, CDCls) § = 174.09, 173.29, 154.53, 79.41, 62.82, 56.95, 48.61, 47.17,
44.61, 33.04, 32.74, 32.51, 31.90, 31.25, 30.34, 29.60, 29.32, 29.13, 28.62, 27.01, 25.55, 25.48,
25.21, 24.97, 24.30, 23.82, 23.07, 22.68, 14.11.

General procedure for the synthesis of compound 24, 26 and 27: A solution
containing acetone (3 equiv.) and amine (1.5 equiv.) and anhydrous sodium sulfate (3 equiv.)
in MeOH/ THF (2:1 v/v) was stirred under microwave irradiation at 70 °C during 10 min to
preform imine. After the carboxylic acid (1.2 equiv.) and isocyanide (1 equiv.) were added,
the resulting mixture was stirred under microwave irradiation (at 70 °C) during 30 min.
Finally, the solvent was removed under reduced pressure and the residue was purified by

column chromatography. Note: Only THF was used for the synthesis of compounds 3 and 4.

Spectroscopic data of compound 24:

Ph\\.o‘\ 0 &y (S)-a-methylbenzylamine (39 pL, 0.3 mmol), acetone (44 uL, 0.6
%N ﬂ mmol), N-Boc-proline (52 mg, 0.24 mmol), cyclohexyl isocyanide (25
Boc © pL, 0.2 mmol) and anhydrous sodium sulfate (85 mg, 0.6 mmol) were

reacted in MeOH (200 pL) according to the procedure described above. The resulting Boc
protected compound was subjected to flash column chromatography purification (n-
Hexane/EtOAc 7:3) affording the peptoid hybrid 1 (75 mg, 77%) as a colorless oil.

Rf=0.30 (n-Hexane/EtOAC 7:3).

[a] o =n.d.

IH NMR (400 MHz, CDCls) 6 = 7.61 (d, J = 7.7 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.32 - 7.25
(m, 1H), 5.81 (d, J = 7.3 Hz, 1H), 5.14 (s, 1H), 4.31 - 4.07 (m, 1H), 3.75 - 3.55 (m, 1H), 3.54
—3.37 (m, 1H), 3.35 - 3.14 (m, 1H), 2.09 — 2.03 (m, 2H), 1.93 (d, J = 7.1 Hz, 3H), 1.89 - 1.73
(m, 2H), 1.72 - 1.53 (m, 8H), 1.53 — 1.38 (m, 11H), 1.39 — 1.26 (m, 3H), 1.21 — 1.09 (m, 3H).
13C NMR (101 MHz, CDCls) 6 = 174.37, 174.27, 154.30, 142.80, 128.68, 127.28, 127.16,
78.96, 64.32,58.91, 48.73,47.41, 32.56, 32.31, 28.80, 28.59, 25.48, 25.05, 24.86, 23.67, 18.93,
14.16.
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Spectroscopic data of compound 26:

-Coahag (S)-a-methylbenzylamine (39 L, 0.3 mmol), acetone (44 pL,
D\V fL 0.6 mmol), N-Boc-proline (52 mg, 0.24 mmol), dodecyl

isocyanide (45 uL, 0.2 mmol) and anhydrous sodium sulfate ( 85

mg, 0.6 mmol) were reacted in MeOH/ THF (200:100 pL v/v) according to the procedure
described above. The resulting Boc protected compound was subjected to flash column
chromatography purification (n-Hexane/EtOAc 7:3) affording the lipopeptoid hybrid 3 (62 mg,
54%) as a colorless oil.
Ri= 0.4 (n-Hexane/EtOAc 7:3).
[a] 0 = 13.58 (c 0.033, EtOAc, 20 °C).
IH NMR (400 MHz, CDCl3) 8 =7.53 (s, J = 48.5 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.31 - 7.25
(m, 1H), 6.40 (s, 1H), 5.10 (s, 1H), 4.13 — 3.95 (m, 1H), 3.46 — 3.16 (m, 3H), 2.98 — 2.82 (m,
1H), 2.04 — 1.89 (m, 3H), 1.86 — 1.57 (m, 8H), 1.50 — 1.41 (m, 11H), 1.31— 1.22 (m, 20H), 0.88
(t, J=6.8 Hz, 3H).
13C NMR (101 MHz, CDCls) 6 = 175.27, 154.56, 142.71, 128.75, 128.64, 127.24, 79.24,
64.70,59.21, 51.80, 47.53, 39.76, 31.91, 29.64, 29.39, 29.36, 28.82, 28.51, 26.98, 26.74, 24.37,
23.98, 22.68, 19.06, 14.12.

Spectroscopic data of compound 27:

N-C1oHos . Dodecylamine (56 mg, 0.3 mmol), acetone (44 uL, 0.6 mmol),
127125
N - - -
N N%LH N-Boc-proline (52 mg, 0.24 mmol), dodecyl isocyanide (45 L,
Boc © 0.2 mmol) and anhydrous sodium sulfate (85 mg, 0.6 mmol)

were reacted in MeOH/ THF (200:100 pL v/v) according to the procedure described above. The
resulting Boc protected compound was subjected to flash column chromatography purification
(n-Hexane/EtOAc 7:3) affording the lipopeptoid hybrid 4 (73 mg, 57%) as a colorless oil.
Re=0.50 (n-Hexane/EtOAC 7:3).

[a] p?°=-7.33 (¢ 0.033, EtOAcC, 20 °C).

'H NMR (400 MHz, CDCls) & = 6.31 — 6.16 (m, 1H), 4.47 (dd, J = 7.4, 4.6 Hz, 1H), 3.76 —
3.50 (m, 2H), 3.47 — 3.35 (m, 1H), 3.35 — 3.17 (m, 2H), 3.15 — 2.84 (m, 1H), 2.16 — 2.05 (m,
3H), 1.99 (m, 2H), 1.93 - 1.77 (m, 3H), 1.50 — 1.45 (m, 6H), 1.43 (s, 9H), 1.33 — 1.21 (m, 37H),
0.88 (t, J = 6.9 Hz, 6H).
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13C NMR (101 MHz, CDCls) 6 = 175.01, 173.39, 154.75, 79.53, 62.86, 56.79, 47.19, 44.57,
39.80, 32.06, 31.90, 30.20, 29.62, 29.53, 29.41, 29.35, 29.33, 29.14, 28.54, 28.47, 27.00, 26.11,
24.52, 23.56, 22.68, 14.11.

General procedure for the synthesis of compound 28-31: A solution containing acetone
(3 equiv.), amine (1.5 equiv.) and anhydrous sodium sulfate (3 equiv.) in MeOH/ THF (2:1 v/v)
was stirred under microwave irradiation at (70 °C) during 10 min to perform the imine. After,
carboxylic acid (1.2 equiv.) and isocyanide (1 equiv.) were added, the resulting mixture was
allowed to stir at room temperature for 24-48 h. Finally, the solvent was removed under reduced

pressure and the residue was purified by column chromatography.

Spectroscopic data of compound 28:
0, -CoraHa (S)-a-methylbenzylamine (39 pL, 0.3 mmol), acetone (44
O\W # pL, 0.6 mmol), N-Boc-trans-4-hydroxy-proline (56 mg, 0.24
mmol), dodecyl isocyanide (45 pL, 0.2 mmol) and anhydrous
sodlum sulfate (85 mg, 0.6 mmol) were reacted in MeOH/ THF (200:100 pL v/v) according to
the procedure described above. The resulting Boc protected compound was subjected to flash
column chromatography purification (EtOAc/n-Hexane 8:2) affording the lipopeptoid hybrid 5
(51 mg, 50%) as a colorless oil
Rf=0.40 (EtOACc/ n-Hexanes 8:2).
[a] p?°=n.d.
IH NMR (400 MHz, CDCl3) 6 =7.52 (s,J=71.2 Hz, 2H), 7.40 (t, ) = 7.5 Hz, 2H), 7.34 - 7.25
(m, 1H), 6.55 (s, 1H), 5.09 (s, 1H), 4.29 — 4.04 (m, 2H), 3.58 — 3.23 (m, 3H), 2.88 (s, 1H), 2.04
(s, 3H), 1.78 — 1.58 (m, 6H), 1.50 — 1.38 (m, 11H), 1.25 (s, 20H), 0.88 (t, J = 6.6 Hz, 3H).
13C NMR (101 MHz, CDCIs3) 6 = 175.22, 174.46, 154.64, 142.80, 128.80, 127.53, 127.37,
79.65, 69.78, 64.84, 58.15, 55.48, 51.76, 39.77, 37.86, 31.92, 29.66, 29.40, 29.36, 28.47, 26.99,
26.86, 24.21, 22.69, 19.07, 14.13.

Spectroscopic data of compound 29:

HO, Ph\\_»‘\ o} cy (S)-a-methylbenzylamine (39 pL, 0.3 mmol), acetone (44 uL, 0.6
%N ﬂ mmol), N-Boc-trans-4-hydroxy-proline (56 mg, 0.24 mmol),
Boc © cyclohexyl isocyanide (25 pL, 0.2 mmol) and anhydrous sodium

sulfate (85 mg, 0.6 mmol) were reacted in MeOH/ THF (200:100 pL v/v) according to the

procedure described above. The resulting Boc protected compound was subjected to flash
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column chromatography purification (EtOAc/n-Hexane 9:1) affording peptoid hybrid 6 (73 mg,
73%) as a colorless oil.

Rf=0.45 (EtOAc/ n-Hexanes 9:1).

[a] 0?° = 3.88 (c 0.033, EtOAC, 20 °C).

IH NMR (400 MHz, CDCls) 6 = 7.62 (d, J = 7.6 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.29 (t, J =
7.2 Hz, 1H), 5.87 (d, J = 7.5 Hz, 1H), 5.12 (s, 1H), 4.43 — 4.00 (m, 2H), 3.75 — 3.46 (m, 2H),
3.42 — 3.20 (m, 1H), 2.13 — 1.80 (m, 7H), 1.73 — 1.54 (m, 8H), 1.44 (s, 9H), 1.37 — 1.24 (m,
3H), 1.21 - 1.08 (m, 3H).

13C NMR (101 MHz, CDCIs) 6 = 174.47, 174.29, 154.46, 142.88, 128.73, 127.43, 127.30,
79.42,69.68, 64.40, 58.06, 55.44, 48.91, 37.98, 32.54, 32.28, 28.82, 28.62, 25.46, 25.12, 24.93,
19.00.

Spectroscopic data of compound 30:

n-C11H23C00_ Phj“‘\ 0 cy (S)-a-methylbenzylamine (97 pL, 0.75 mmol), acetone
MN g H (110 pL, 0.6 mmol), N-Boc-trans-4-C11H23COO-proline

N
Boc © (248 mg, 0.6 mmol), cyclohexyl isocyanide (62 uL, 0.5

mmol) and anhydrous sodium sulfate (213 mg, 1.5 mmol) were reacted in MeOH/ THF
(400:200 pL v/v) according to the procedure described above. The resulting Boc protected
compound was subjected to flash column chromatography purification (n-Hexane/EtOAc 8:2)
affording the lipopeptoid hybrid 7 (165 mg, 48%) as a colorless oil.

Rf=0.50 (n-Hexane/EtOAC 8:2).

[a] 0?°=17.70 (c 0.033, EtOAc, 20 °C).

'H NMR (400 MHz, CDCls) 6 =7.62 (d, J =7.7 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.29 — 7.24
(m, 1H), 5.85 (d, J = 7.6 Hz, 1H), 5.12 (s, 1H), 4.91 (s, 1H), 4.20 (s, 1H), 3.61 (d, J = 10.0 Hz,
2H), 3.39 (d, J = 10.8 Hz, 1H), 3.37 — 3.30 (m, 1H), 2.18 (t, J = 7.1 Hz, 2H), 2.07 — 1.91 (m,
5H), 1.87 (d, J = 10.1 Hz, 1H), 1.74 — 1.58 (m, 8H), 1.51 — 1.39 (m, 11H), 1.33 — 1.22 (m, 20H),
1.19 -1.08 (m, 3H), 0.88 (t, J = 6.9 Hz, 3H).

13C NMR (101 MHz, CDCls) 6 = 174.37, 172.91, 154.16, 142.88, 128.71, 127.53, 127.28,
79.63, 72.59, 64.39, 58.10, 53.36, 51.52, 48.86, 35.20, 34.28, 32.61, 32.36, 31.89, 29.61, 29.47,
29.32,29.30, 29.11, 28.78, 28.56, 25.49, 25.10, 24.92, 24.81, 22.67, 19.03, 14.11.
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Spectroscopic data of compound 31:

HO, Ph\\/PhO 2.2-diphenylglycine methyl ester hydrochloride (241 mg, 1
” -CyoH
O‘WN7)¥HIH 7% mmol), DIPEA (174 uL, 1 mmol), acetone (110 pL, 1.5
N 0 mmol), N-Boc-trans-4-hydroxy-proline (139 mg, 0.6 mmol),

dodecyl isocyanide (98 pL, 0.5 mmol) and anhydrous sodium
sulfate (213 mg, 1.5 mmol) was reacted in MeOH/ THF (400:200 pL v/v) according to the
procedure described above. The resulting Boc protected compound was subjected to flash
column chromatography purification (n-Hexane/EtOAc 1:1) affording the lipopeptoid hybrid 8
(193 mg, 55%) as a colorless oil.
Rf=0.30 (n-Hexanes/EtOAc 1:1).
[a] p?°=-21.76 (c 0.033, EtOAc, 20 °C).
IH NMR (400 MHz, CDCls) 6 =8.07 (d, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.37 - 7.23
(m, 7H), 6.54 (s, 1H), 6.29 (s, 1H), 4.26 (t, J = 7.3 Hz, 1H), 4.04 (s, 1H), 3.49 (dd, J = 11.5, 4.2
Hz, 1H), 3.42 — 3.27 (m, 2H), 2.97 — 2.83 (m, 1H), 1.72 (s, 3H), 1.47 (s, 9H), 1.45 — 1.33 (m,
6H), 1.31 —1.17 (m, 20H), 0.88 (t, J = 6.8 Hz, 3H).
13C NMR (101 MHz, CDCIs) & = 175.39, 174.78, 154.51, 142.28, 139.48, 130.51, 128.81,
128.70, 128.63, 127.98, 127.49, 79.79, 69.37, 65.82, 62.71, 59.76, 55.75, 39.57, 37.68, 31.93,
29.64, 29.62, 29.40, 29.37, 29.25, 28.48, 27.22, 26.90, 23.39, 22.70, 14.14.

6.2.3 Boc deprotection of prolyl pseudo-lipopeptides using TFA

General procedure: The N-Boc pure product resulting for the Ugi-4CR was cooled and
dissolved in 1 mL of a mixture of TFA/CH2Cl; 9:1 v/v at 0 °C. The reaction mixture was
allowed to stir for 30 min and then concentrated to reduced pressure (TFA was removed
completely by repetitive addition and evaporation of further CH.Cl>). The crude was dissolved
in 10 mL of EtOAc and washed with satured NaHCO3 (3 x 10 ml), brine (10 ml), dried over

anhydrous Na>SO4 and filtered evaporated under reduced pressure afforded to desired product.



6.2.3.1 High resolution mass spectra of the hybrid pseudo-lipopeptides used as
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FIGURE 14. ESI-MS spectrum of compound 24 N-Boc deprotected.

M[C23H3sN302+H]*calcd:

386.2729 Da,

found 386.280 Da.

Non-covalent

M[2x(C23H35N302)+H]* calcd: 771.5458 Da, found: 771.557 Da.

dimer
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FIGURE 15. ESI-MS spectrum of compound 25 N-Boc deprotected.

M[C27H51N3O2+H] calcd:  450.3981 Da, found 450.407 Da. Non-covalent dimer
M[2x(C27H51N302)+H]* calcd: 899.7962 Da, found: 899.798 Da.
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FIGURE 16. ESI-MS spectrum of compound 26 N-Boc deprotected.

M[C29Ha9N3O2+H]*calcd: 472.3825
M[2x(C29H49N302)+H]* calcd: 943.7650 Da, found: 943.761 Da.

Da, found 472.386 Da.
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FIGURE 17. ESI-MS spectrum of compound 27 N-Boc deprotected.

M[Cs3HesN3O2+H] calcd:  536.5077 Da, found 536.509 Da.
M[2x(C3s3HesN302)+H]* calcd: 1072.0154 Da, found: 1072.006 Da.
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FIGURE 18. ESI-MS spectrum of compound 28 N-Boc deprotected.

M[C29H49N303+H]*calcd:

488.3774 Da,

found 488.382 Da.

M[2x(C29H49N303)+H]* calcd: 975.7548 Da, found: 975.755 Da.

Non-covalent

dimer
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FIGURE 19. ESI-MS spectrum of compound 29 N-Boc deprotected.

M[C23H3asN3Os+H] calcd: 402.2678 Da, found 402.276 Da. Non-covalent dimer
M[2x(C23H35N303)+H]* calcd: 803.5356 Da, found: 803.545 Da.
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FIGURE 20. ESI-MS spectrum of compound 30 N-Boc deprotected.

M[CssHs7N3Os+H] calcd: 584.4349 Da, found 584.440 Da. Non-covalent dimer
M[2x(C3sHs57N304)+H]" calcd: 1167.8698 Da, found: 1167.871 Da.
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FIGURE 21. ESI-MS spectrum of compound 31 N-Boc deprotected.

M[C34H51N303+H]calcd: 550.3930 Da, found 550.400 Da.
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6.2.4 General procedure for asymmetric 1,4-addition of aldehydes to nitrostyrenes.

”,' \ /R‘;
L
N 2
0 H O 0o R?
HJ\ . Rz/\/|\jo2 Catalysts (X mol%) _ ! NO,
Water, rt, 24h
R’ R’

General procedure: A vial, was charged with the prolyl pseudo-lipopeptide 28 (X mol%),
the nitroolefin (0.2 mmol, 1.0 equiv) and 0.4 mL of water. The mixture was homogenized in an
ultrasound bath, treated with the aldehyde (0.40 mmol, 2.0 equiv) and was stirred for 24 h. After
this period, the resulting reaction mixture was extracted with EtOAc, dried over anhydrous
Na,SO. and concentrated under reduced pressure. The yield was determined by 'H NMR
analysis of resulting crude product with 1.2.3-trimethoxybenzene (0.2 mmol, 1.0 equiv) as
standard patron. The crude product was purified by flash column chromatography on silica gel
using n-hexane/EtOAc as eluent only for the compounds that require it. The distereoisomeric
ratio was determined by *H NMR analysis of crude of reaction mixture. Enantiomeric excess
(e.e.) was determined by chiral HPLC or UPC?analysis through comparison with the authentic

racemic material.

Spectroscopic data of compound 34: 2-ethyl-4-nitro-3-phenylbutanal
Prepared by reaction of n-butanal with trans-B-nitrostyrene according to the
0 procedure described above. The compound was purified by flash column
H NO2  chromatography (n-Hexane/EtOAc 9:1). The enantiomeric excess was
determined by chiral-stationary phase UPC?. Trefoil CEL2, CO./EtOH 100-
0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV detection at 210 nm: R¢: (Syn, major) = 4.13
min, (syn, minor) = 3.93 min.
Ri= 0.4 (n-Hexane/EtOAC 9:1).
!H NMR (400 MHz, CDCls3) 8 =9.71, 9.48 (2xd, J = 2.6 Hz, 1H, CHO), 7.37 — 7.27 (m, 3H,
Ph), 7.18 (d, J = 6.7 Hz, 2H, Ph), 4.72 (dd, J = 12.7, 5.0 Hz, 1H, CH2NO), 4.62 (dd, J = 12.7,
9.7 Hz, 1H, CH2NO), 3.79 (td, J=9.9, 5.0 Hz, 1H, CHPh), 2.71 - 2.64 (m, 1H, CHCHO), 1.56
—1.45 (m, 2H, CH), 0.82 (t, J = 7.5 Hz, 3H, CHa).
13C NMR (101 MHz, CDCls) 8 = 203.26, 136.82, 129.11, 128.24, 128.13, 128.02, 78.57,
54.97, 42.69, 20.35, 10.65.
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Spectroscopic data of compound 35: 2-(2-nitro-1-phenylethyl) hexanal
Prepared by reaction of n-Hexanal with trans-B-nitrostyrene according to
0 the procedure described above. The compound was purified by flash
H NO2  column chromatography (n-Hexane/EtOAc 9:1). The enantiomeric excess
was determined by chiral-stationary phase UPC?2. Trefoil CEL2, CO2/EtOH
100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV detection at 210 nm:
tR: (syn, major) = 6.95 min, (syn, minor) = 6.64 min.
Ri= 0.5 (n-Hexane/EtOAcC 9:1).
IH NMR (400 MHz, CDCls) & = 9.70 (2xd, J = 2.8 Hz, 1H, CHO), 7.36 — 7.27 (m, 3H, Ph),
7.17(d, J=6.9 Hz, 2H, Ph), 4.82 - 4.60 (m, 2H, CH2NO>), 3.78 (td, J = 9.7, 5.3 Hz, 1H, CHPh),
2.74 —2.65 (m, 1H, CHCHO), 1.43 — 1.12 (m, 6H, 3xCH), 0.78 (t, J = 7.0 Hz, 3H, CHs).
13C NMR (101 MHz, CDCls) 8 = 203.30, 136.80, 129.12, 128.23, 128.15, 128.01, 78.45,
53.88, 43.13, 28.52, 27.03, 22.49, 13.65.

Spectroscopic data of compound 36: 2-Isopropyl-4-nitro-3-phenylbutanal
Prepared from isovaleraldehyde and trans-B-nitrostyrene according to the
0 procedure described above. The compound was purified by flash column
H NOz  chromatography (n-Hexane/EtOAc 9:1). The enantiomeric excess was
determined by chiral-stationary phase UPC2. Trefoil CEL2, CO2/EtOH 100-
0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV detection at 210 nm: tR: (syn, major) = 3.97
min, (Syn, minor) = 3.68 min.
Re= 0.45 (n-hexane/EtOAC 9:1).
IH NMR (400 MHz, CDCls) & = 9.92, 9.47 (2xd, J = 2.4 Hz, 1H, CHO), 7.37 — 7.28 (m, 3H,
Ph), 7.19 (d, J = 6.8 Hz, 2H, Ph), 4.67 (dd, J = 12.5, 4.4 Hz, 1H, CH2NO), 4.57 (dd, J = 12.5,
10.0 Hz, 1H, CH2NO3), 3.90 (td, J = 10.4, 4.4 Hz, 1H, CHPh), 2.78 (ddd, J = 10.8, 4.1, 2.4 Hz,
1H, CHCHO), 1.76 — 1.66 (m, 1H, CH), 1.09 (d, J = 7.2 Hz, 3H, CH3), 0.88 (d, J = 7.0 Hz, 3H,
CHs3).
13C NMR (101 MHz, CDCIs) 6 = 204.40, 137.09, 129.17, 128.11, 127.97, 79.01, 58.75, 41.93,
27.92, 21.66, 16.98.
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Spectroscopic data of compound 37: 3-(4-Fluorophenyl)-2-ethyl-4-nitrobutanal
F Prepared from n-butanal and trans-4-fluoro-p-nitrostyrene according to the
procedure described above. The compound was purified by flash column
0 chromatography (n-Hexane/EtOAc 9:1). The enantiomeric excess was
NO2  getermined by chiral-stationary phase UPC?2 Trefoil CEL2, Grad:
CO2/EtOH 100-0% to 95-5% in 9 min; 100-0 % in 1 min at 2 ml/min at
25°C. UV detection at 210 nm: tR: (syn, major) = 6.88 min, (syn, minor) = 6.30 min.
R¢=0.30 (n-Hexane/EtOACc 9:1).
IH NMR (400 MHz, CDCls) 6 =9.71, 9.48 (2xd, J = 2.4 Hz, 1H, CHO), 7.17 (dd, J = 8.7, 5.2
Hz, 2H, Ph), 7.04 (t, J = 8.7 Hz, 3H, Ph), 4.72 (dd, J = 12.7, 4.8 Hz, 1H, CH2NO>), 4.59 (dd, J
=12.7, 10.0 Hz, 1H, CH2NO>), 3.80 (td, J = 10.0, 4.8 Hz, 1H, CHPh), 2.66 (dddd, J = 10.3,
8.2,4.3,2.4 Hz, 1H, CHCHO), 1.58 — 1.45 (m, 2H, CH>), 0.83 (t, J = 7.5 Hz, 3H, CHa).
13C NMR (101 MHz, CDCIs) 6 = 202.91, 163.57, 132.58, 129.68, 129.60, 116.24, 116.03,
78.56, 54.89, 41.92, 20.32, 10.54.

Spectroscopic data of compound 38: 3-(4-Chlorophenyl)-2-ethyl-4-nitrobutanal
Cl Prepared from n-butanal and trans-4-chloro-B-nitrostyrene according to the
procedure described above. The compound was purified by flash column
0 chromatography (n-Hexane/EtOAc 9:1). The enantiomeric excess was
NOz  determined by chiral-stationary phase UPC2 Trefoil AMY1, Grad:
CO2/MeOH 100-0% to 90-10 % in 6 min; 90-10 % in 3 min; 100-0 % in 1
min at 2 ml/min at 25°C. UV detection at 210 nm: tR: (syn, major) = 3.45 min, (syn, minor) =
3.77 min.,
Ri=0.25 (n-Hexane/EtOAC 9:1).
!H NMR (400 MHz, CDCl3) 6 =9.71, 9.48 (2xd, J = 2.3 Hz, 1H, CHO), 7.35 - 7.28 (m, 2H,
Ph), 7.14 (d, J = 8.5 Hz, 2H, Ph), 4.72 (dd, J = 12.8, 4.8 Hz, 1H, CH2NO>), 4.59 (dd, J = 12.8,
10.0 Hz, 1H, CH2NO), 3.79 (td, J = 9.9, 4.8 Hz, 1H, CHPh), 2.67 (dddd, J=10.3,8.2,4.2, 2.3
Hz, 1H, CHCHO), 1.55 — 1.45 (m, 2H, CH2), 0.83 (t, J = 7.5 Hz, 3H, CH3).
13C NMR (101 MHz, CDCIs) 6 = 202.83, 135.40, 134.01, 129.65, 129.40, 129.34, 129.27,
78.35, 54.67, 41.98, 20.29, 10.50.
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Spectroscopic data of compound 39: 3-(4-Bromophenyl)-2-ethyl-4-nitrobutanal
Br Prepared from n-butanal and trans-4-bromo-B-nitrostyrene according to the
procedure described above. The compound was purified by flash column
0 chromatography (n-Hexane/EtOAc 9:1). The enantiomeric excess was
NOz  determined by chiral-stationary phase UPC2 Trefoil AMY1, Grad:
CO2/MeOH 100-0% to 90-10 % in 6 min; 90-10 % in 3 min; 100-0 % in 1
min at 2 ml/min at 25°C. UV detection at 210 nm: tR: (syn, major) = 3.98 min, (syn, minor) =
4.44 min.
Rf=0.30 (n-Hexane/EtOAc 9:1).
IH NMR (400 MHz, CDCls) & = 9.70, 9.48 (2xd, J = 2.3 Hz, 1H, CHO), 7.50 — 7.43 (m, 2H,
Ph), 7.07 (d, J = 8.5 Hz, 2H, Ph), 4.72 (dd, J = 12.8, 4.8 Hz, 1H, CH2NO), 4.59 (dd, J = 12.8,
10.0 Hz, 1H, CH2NOy), 3.77 (td, J=9.9, 4.8 Hz, 1H, CHPh), 2.66 (dddd, J =10.3, 8.2, 4.2, 2.3
Hz, 1H, CHCHO), 1.57 — 1.43 (m, 2H, CH2), 0.83 (t, J = 7.5 Hz, 2H, CH3).
13C NMR (101 MHz, CDCIs) 6 = 202.72, 135.90, 132.32, 132.26, 129.97, 129.71, 122.16,
78.26, 54.63, 42.06, 20.33, 10.53.

Spectroscopic data of compound 40: 2-Ethyl-4-nitro-3-(4-methoxyphenyl) butanal
OMe Prepared from n-butanal and trans-4-methoxy-p-nitrostyrene according to
the procedure described above. The compound was purified by flash column
0 chromatography (n-Hexane/EtOAc 8:2). The enantiomeric excess was
NO2 " Getermined by chiral-stationary phase UPC? Trefoil CEL2, Grad:
CO2/EtOH 100-0% to 98-2 % in 19 min; 100-0 % in 1 min at 2.5 ml/minat
25°C. UV detection at 210 nm: tR: (syn, major) = 15.43 min, (syn, minor) = 14.88 min.
Re=0.20 (n-Hexane/EtOACc 9:1).
IH NMR (400 MHz, CDCls) 6 =9.70, 9.46 (2xd, J = 2.6 Hz, 1H, CHO), 7.09 (d, J = 8.7 Hz,
2H, Ph), 6.86 (d, J = 8.7 Hz, 2H, Ph), 4.69 (dd, J = 12.5, 4.8 Hz, 1H, CH2NO3), 4.57 (dd, J =
12.5, 9.9 Hz, 1H, CH2NOy), 3.78 (s, 3H), 3.76 — 3.69 (m, 1H, CHPh), 2.67 — 2.58 (m, 1H,
CHCHO), 1.55-1.45 (m, 2H, CH2), 0.82 (t, J = 7.5 Hz, 3H, CH3).
13C NMR (101 MHz, CDCIs) 6 = 203.36, 159.27, 129.33, 129.05, 114.48, 78.79, 55.24, 55.17,
42.03, 20.34, 10.68.
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Spectroscopic data of compound 41
. 2-ethyl-4-nitro-3-(4-nitrophenyl) butanal
NO, Prepared from n-butanal and trans-4-Bromo-B-nitrostyrene according to
the procedure described above. The compound was purified by flash
0 column chromatography (n-Hexane/EtOAc 8:2). The enantiomeric excess
NO2  \vas determined by chiral-stationary phase UPC?. Trefoil AMY1, Grad:
CO2/IPA 100-0% to 90-10 % in 18 min; 90-10 % in 2 min at 2 ml/min at
25°C. UV detection at 210 nm: tR: (syn, major) = 8.84 min, (syn, minor) = 10.04 min.
R¢= 0.40 (n-Hexane/EtOAC 8:2).
IH NMR (400 MHz, CDCIs) 6 =9.74, 9.53 (2xd, J = 2.0 Hz, 1H, CHO), 8.23 (d, J = 8.8 Hz,
2H, Ph), 7.43 (d, J = 8.7 Hz, 2H, Ph), 4.82 (dd, J = 13.1, 4.6 Hz, 1H, CH2NO>), 4.70 (dd, J =
13.1, 10.1 Hz, 1H, CH2NO3), 4.01 — 3.93 (m, 1H, CHPh), 2.84 — 2.71 (m, 1H, CHCHO), 1.63
—1.43 (m, 2H, CH»), 1.03 (t, J = 7.5 Hz, 3H, CHj).
13C NMR (101 MHz, CDCIs) 6 = 202.02, 147.70, 144.55, 129.43, 129.16, 124.32, 124.19,
77.80, 54.27, 42.16, 20.37, 10.42.
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FIGURE 1. 400 MHz *H NMR spectrum in CDClI; of compound 23 (SCHEME 18).
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FIGURE 2. 101 MHz *C NMR spectrum in CDCls of compound 23 (SCHEME 18).
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FIGURE 4. 400 MHz *H NMR spectrum in CDCls of compound 24 (TABLE 1).
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FIGURE 5. 101 MHz 3C NMR spectrum in CDCl; of compound 24 (TABLE 1).



67

Hg

R — S J// /]

CH, N

H3C /< [e]
o (o]

O

CH,
NH

S\
o T <t R B NS Sl
~ o o TN oo "38% e
5 = E Tes g 8 n22R8
3 3 3 N A 2 R FUgdd
T T T T T T T T T T T T T T T T T T T
9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 15 1.0 0.5 0.0
f1 (ppm)

FIGURE 6. 400 MHz *H NMR spectrum in CDCls of compound 25 (TABLE 1).
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FIGURE 7. 101 MHz *C NMR spectrum in CDCl; of compound 25 (TABLE 1).
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FIGURE 12. 400 MHz *H NMR spectrum in CDCI; of compound 28 (TABLE 1).
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FIGURE 13. 101 MHz C NMR spectrum in CDClI; of compound 28 (TABLE 1).
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FIGURE 19. 101 MHz C NMR spectrum in CDClI; of compound 31 (TABLE 1).
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FIGURE 20. 400 MHz *H NMR spectrum in CDCI; of compound 34 (TABLE 4).
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FIGURE 21. 101 MHz C NMR spectrum in CDCl; of compound 34 (TABLE 4).
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FIGURE 22. 400 MHz *H NMR spectrum in CDCl; of compound 35 (TABLE 4).
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FIGURE 23. 101 MHz C NMR spectrum in CDCl; of compound 35 (TABLE 4).
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FIGURE 26. 400 MHz *H NMR spectrum in CDCI; of compound 37(TABLE 4).
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FIGURE 27. 101 MHz BC NMR spectrum in CDCl; of compound 37 (TABLE 4)..
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FIGURE 30. 400 MHz *H NMR spectrum in CDCI; of compound 39 (TABLE 4).
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FIGURE 31. 101 MHz C NMR spectrum in CDCl; of compound 39 (TABLE 4).
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FIGURE 33. 101 MHz C NMR spectrum in CDCl; of compound 40 (TABLE 4).
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FIGURE 36. 400 MHz *H NMR spectrum in CDClI; of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by

the Michael reaction catalyzed by 10 mol% of compound 24 with 1,2,3-trimethoxybenzene as standard.

Yield: 34%. Entry 1, TABLE 2.
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FIGURE 37. 400 MHz *H NMR spectrum in CDCl; of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 24. Diastereoisomeric ratio (syn/anti): 92:08.
Entry 1, TABLE 2.
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FIGURE 38. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 25 with 1,2,3-trimethoxybenzene as standard.
Yield: 75%. Entry 2, TABLE 2.
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FIGURE 39. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by

the Michael reaction catalyzed by 10 mol% of compound 25. Diastereoisomeric ratio (syn/anti): 76:24.
Entry 2, TABLE 2.



84

68 67 66 65 64 63 62 61 60 59 58 57 55 54 53 52 51 50 49 48 47 46 45 44

5.6
f1 (ppm)
FIGURE 40. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 26. with 1,2,3-trimethoxybenzene as standard.
Yield: 88%. Entry 3, TABLE 2.
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FIGURE 41. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 26. Diastereoisomeric ratio (syn/anti): 89:11.
Entry 3, TABLE 2.
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FIGURE 42. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 27 with 1,2,3-trimethoxybenzene as standard.

Yield: 71%. Entry 4, TABLE 2.
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FIGURE 43. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 27. Diastereoisomeric ratio (syn/anti): 87:13.

Entry 4, TABLE 2.
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FIGURE 44. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 28 with 1,2,3-trimethoxybenzene as standard.

Yield: 88%. Entry 5, TABLE 2.
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FIGURE 45. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 28. Diastereoisomeric ratio (syn/anti): 76:24.
Entry 5, TABLE 2.
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FIGURE 46. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 29 with 1,2,3-trimethoxybenzene as standard
patron. Yield: 43%. Entry 6, TABLE 2.
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FIGURE 47. 400 MHz *H NMR spectrum in CDCl; of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 29. Diastereoisomeric ratio (syn/anti): 70:30.
Entry 6, TABLE 2.
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FIGURE 48. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 30 with 1,2,3-trimethoxybenzene as standard
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FIGURE 49. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 30. Diastereoisomeric ratio (syn/anti): 89:11.

Entry 7, TABLE 2.
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FIGURE 50. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 31 with 1,2,3-trimethoxybenzene as standard
patron. Yield: 84%. Entry 8, TABLE 2.
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FIGURE 51. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 31. Diastereoisomeric ratio (syn/anti): 79:21.
Entry 8, TABLE 2.
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FIGURE 52. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 28 with 1,2,3-trimethoxybenzene as standard

patron. Yield: 76%. Entry 1, TABLE 3.
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FIGURE 53. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by

the Michael reaction catalyzed by 10 mol% of compound 28. Diastereoisomeric ratio (syn/anti): 87:13.
Entry 1, TABLE 3.
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FIGURE 54. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 28 with 1,2,3-trimethoxybenzene as standard

patron. Yield: 87%. Entry 2, TABLE 3.
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FIGURE 55. 400 MHz *H NMR spectrum in CDCl; of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 10 mol% of compound 28. Diastereoisomeric ratio (syn/anti): 76:24.

Entry 2, TABLE 3.
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FIGURE 56. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 5 mol% of compound 28 with 1,2,3-trimethoxybenzene as standard

patron. Yield: 90%. Entry 3, TABLE 3.
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FIGURE 57. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by

the Michael reaction catalyzed by 5 mol% of compound 28. Diastereoisomeric ratio (syn/anti): 90:10.
Entry 3, TABLE 3.
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FIGURE 58. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 2.5 mol% of compound 28 with 1,2,3-trimethoxybenzene as standard

patron. Yield: 95%. Entry 4, TABLE 3.
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FIGURE 59. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by

the Michael reaction catalyzed by 2.5 mol% of compound 28. Diastereoisomeric ratio (syn/anti): 93:7.
Entry 4, TABLE 3.
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FIGURE 60. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 2.5 mol% of compound 28 with 1,2,3-trimethoxybenzene as standard

patron. Yield: 96%. Entry 5, TABLE 3.
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FIGURE 61. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 2.5 mol% of compound 28. Diastereoisomeric ratio (syn/anti): 93:7.

Entry 5, TABLE 3.
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FIGURE 62. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 2.5 mol% of compound 28 with 1,2,3-trimethoxybenzene as standard
patron. Yield: 99%. Entry 6, TABLE 3 and TABLE 4, compound 34.
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FIGURE 63. 400 MHz *H NMR spectrum in CDCls of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by

the Michael reaction catalyzed by 2.5 mol% of compound 28. Diastereoisomeric ratio (syn/anti): 93:7.
Entry 6, TABLE 3 and TABLE 4, compound 34.
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FIGURE 64. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 1 mol% of compound 28 with 1,2,3-trimethoxybenzene as standard
patron. Yield: 46%. Entry 7, TABLE 3.
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9.‘67 ‘ 9.‘65 ‘ 9.‘63 ‘ 9.‘61 ‘ 9.‘59 ‘ 9.‘57 ‘ 9.‘55 ‘ 9.‘53 ‘ 9.‘51 ‘ ‘?;423pp‘m)9.‘47 ‘ 9.‘45 ‘ 9.‘43 ‘ 9.‘41 9.39 9.‘37 ‘ 9.‘35 ‘ 9.‘33 ‘ 9.‘31 ‘
FIGURE 65. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 1 mol% of compound 28. Diastereoisomeric ratio (syn/anti): 98:2. Entry

7, TABLE 3.
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FIGURE 66. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 1 mol% of compound 28 with 1,2,3-trimethoxybenzene as standard

patron. Yield: 45%. Entry 8, TABLE 3.
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FIGURE 67. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 1 mol% of compound 28. Diastereoisomeric ratio (syn/anti): 98:2. Entry

8, TABLE 3.
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FIGURE 68. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 1 mol% of compound 28 with 1,2,3-trimethoxybenzene as standard
patron. Yield: 65%. Entry 9, TABLE 3.
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FIGURE 69. 400 MHz *H NMR spectrum in CDCl; of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 1 mol% of compound 28. Diastereoisomeric ratio (Syn/anti): 98:2. Entry
9, TABLE 3.
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FIGURE 70. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 2.5 mol% of compound 28 in EtOH with 1,2,3-trimethoxybenzene as
standard patron. Yield: 26%. Entry 10, TABLE 3.
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FIGURE 71. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 2.5 mol% of compound 28 in MeOH. Diastereoisomeric ratio (syn/anti):

85:15. Entry 10, TABLE 3.
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FIGURE 72. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 2.5 mol% of compound 28 in Brine with 1,2,3-trimethoxybenzene as

standard patron. Yield: 84%. Entry 11, TABLE 3.
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FIGURE 73. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 2.5 mol% of compound 28 in Brine. Diastereoisomeric ratio (syn/anti):

95:5. Entry 11, TABLE 3.
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FIGURE 74. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 2.5 mol% of compound 28 in PEG-300 with 1,2,3-trimethoxybenzene
as standard patron. Yield: 54%. Entry 12, TABLE 3.

‘ 9.‘69 ‘ ‘ 9.‘66 ‘ ‘ 9.63 9.‘60 ‘ ‘ 9.‘57 ‘ ‘ 9.‘54 ‘ ‘ ?1‘5(’1:@‘“) ‘ 9.‘48 ‘ ‘ 9.‘45 ‘ ‘ 9.‘42 ‘ 9.39 9.36 9.33
FIGURE 75. 400 MHz *H NMR spectrum in CDClIs of crude 2-ethyl-4-nitro-3-phenylbutanal obtained by
the Michael reaction catalyzed by 2.5 mol% of compound 28 in PEG-300. Diastereoisomeric ratio

(syn/anti): 82:18. Entry 12, TABLE 3.
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Totall 8798860 266854 100.000 100.000

10:

FIGURE 76. Chiral HPLC of racemic 2-ethyl-4-nitro-3-phenylbutanal. Chiralpak OD-H, n-Hexane/i-
PrOH 85:15, 25°C) at 0.9 ml/min. UV detection at 190 nm.
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PDA Ch1 190nm 4nm

Pealc? Ret. Time Area Height Area % Height %
1 19353 364981 10841 3958 5677
2 21.253 234312 7054 2541 3.694
3 23.840 306958 6806 3.329 3.564
4 24803 7999848 160922 86.760 84.267
5 41 648 314599 5344 3412 2799
Total 9220697 190967 100.000 100.000
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FIGURE 77. Chiral HPLC of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 10 mol% of compound 24. Chiralpak OD-H, n-Hexane/i-PrOH 85:15, 25°C) at 0.9 ml/min. UV
detection at 190 nm: tR: (Syn, minor) = 19.4 min, (syn, major) = 24.8 min. TABLE 2, Entry 1.
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PeakTable
PDA Chl 190nm 4nm
Peald Ret. Tume Area Height Area % Height %
1 18.287 1297924 40704 10.437 14.134
2 19.591 402348 12930 3.235 4.490
3 22.549 9057294 208475 72.830 72.392
4 36.665 1678633 25872 13.498 8.984
Totall 12436199 287981 100.000 100.000

FIGURE 78. Chiral HPLC of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 10 mol% of compound 25. Chiralpak OD-H, n-Hexane/i-PrOH 85:15, 25°C) at 0.9 ml/min. UV
detection at 190 nm: tR: (syn, minor) = 18.3 min, (syn, major) = 22.5 min. TABLE 2, Entry 2.
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FIGURE 79. Chiral HPLC of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 10 mol% of compound 26. Chiralpak OD-H, n-Hexane/i-PrOH 85:15, 25°C) at 0.9 ml/min. UV
detection at 190 nm: tR: (syn, minor) = 19.6 min, (syn, major) = 24.7 min. TABLE 2, Entry 3.
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FIGURE 80. Chiral HPLC of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 10 mol% of compound 27. Chiralpak OD-H, n-Hexane/i-PrOH 85:15, 25°C) at 0.9 ml/min. UV
detection at 190 nm: tR: (syn, minor) = 19.0 min, (syn, major) = 24.3 min. TABLE 2, Entry 4.
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FIGURE 81. Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal. Trefoil CEL2, CO,/EtOH 100-0%

t0 95-5 % in 10 min at 3 ml/min at 25°C. UV detection at 210 nm.
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FIGURE 82. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 10 mol% of compound 28. Trefoil CEL2, CO»/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.
UV detection at 210 nm: tR: (syn, minor) = 3.95 min, (syn, major) = 4.13 min. TABLE 2, Entry 5.
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FIGURE 83. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 10 mol% of compound 29. Trefoil CEL2, CO»/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.
UV detection at 210 nm: tR: (syn, minor) = 3.94 min, (syn, major) = 4.13 min. TABLE 2, Entry 6.
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FIGURE 84. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 10 mol% of compound 30. Trefoil CEL2, CO/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.
UV detection at 210 nm: tR: (syn, minor) = 3.95 min, (syn, major) = 4.13 min. TABLE 2, Entry 7.
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FIGURE 85. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 10 mol% of compound 31. Trefoil CEL2, CO»/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.
UV detection at 210 nm: tR: (syn, minor) = 3.94 min, (syn, major) = 4.13 min. TABLE 2, Entry 8.
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FIGURE 86. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 10 mol% of compound 28. Trefoil CEL2, CO»/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.
UV detection at 210 nm: tR: (syn, minor) = 4.01 min, (syn, major) = 4.18 min. TABLE 3, Entry 1.
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FIGURE 87. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 10 mol% of compound 28. Trefoil CEL2, CO»/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.
UV detection at 210 nm: tR: (syn, minor) = 3.92 min, (syn, major) = 4.11 min. TABLE 3, Entry 2.
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FIGURE 88. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 5 mol% of compound 28. Trefoil CEL2, CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.
UV detection at 210 nm: tR: (syn, minor) = 3.96 min, (syn, major) = 4.13 min. TABLE 3, Entry 3.
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FIGURE 89. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 2.5 mol% of compound 28. Trefoil CEL2, CO./EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.

UV detection at 210 nm: tR: (syn, minor) = 3.94 min, (syn, major) = 4.14 min. TABLE 3, Entry 4.
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FIGURE 90. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 2.5 mol% of compound 28. Trefoil CEL2, CO./EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.
UV detection at 210 nm: tR: (syn, minor) = 3.93 min, (syn, major) = 4.12 min. TABLE 3, Entry 5.
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FIGURE 91. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 2.5 mol% of compound 28. Trefoil CEL2, CO./EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.

UV detection at 210 nm: tR: (syn, minor) = 3.93 min, (syn, minor) = 4.13 min. TABLE 3, Entry 6 and
TABLE 4, compound 34.
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FIGURE 92. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 1 mol% of compound 28. Trefoil CEL2, CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.
UV detection at 210 nm: tR: (syn, minor) = 3.62 min, (syn, major) = 3.84 min. TABLE 3, Entry 7.
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FIGURE 93. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 1 mol% of compound 28. Trefoil CEL2, CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.
UV detection at 210 nm: tR: (syn, minor) = 3.79 min, (syn, major) = 4.00 min. TABLE 3, Entry 8.
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FIGURE 94. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 1 mol% of compound 28. Trefoil CEL2, CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.
UV detection at 210 nm: tR: (syn, minor) = 3.93 min, (syn, major) = 4.12 min. TABLE 3, Entry 9.
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FIGURE 95. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 2.5 mol% of compound 28 in EtOH as a solvent. Trefoil CEL2, CO/EtOH 100-0% to 95-5 % in 10
min at 3 ml/min at 25°C. UV detection at 210 nm: tR: (syn, minor) = 3.97 min, (syn, major) = 4.18 min.

TABLE 3, Entry 10.
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FIGURE 96. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 2.5 mol% of compound 28 in brine as a solvent. Trefoil CEL2, CO./EtOH 100-0% to 95-5 % in 10 min

at 3 ml/min at 25°C. UV detection at 210 nm: tR: (syn, minor) = 3.96 min, (syn, major) = 4.16 min.
TABLE 3, Entry 11.
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FIGURE 97. Chiral UPC? of 2-ethyl-4-nitro-3-phenylbutanal obtained by the Michael reaction catalyzed
by 2.5 mol% of compound 28 in PEG-300 as a solvent. Trefoil CEL2, CO,/EtOH 100-0% to 95-5 % in 10

min at 3 ml/min at 25°C. UV detection at 210 nm: tR: (syn, minor) = 3.96 min, (syn, major) = 4.16 min.
TABLE 3, Entry 12.
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FIGURE 98. Chiral UPC? of racemic 2-(2-nitro-1-phenylethyl) hexanal. Trefoil CEL2, CO/EtOH 100-
0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV detection at 210 nm.
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FIGURE 99. Chiral UPC? of 2-(2-nitro-1-phenylethyl) hexanal obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 28. Trefoil CEL2, CO,/EtOH 100-0% to 95-5 % in 10 min at 3

ml/min at 25°C. UV detection at 210 nm: tR: (syn, minor) = 6.64 min, (syn, major) = 6.95 min. TABLE 4,
compound 35.
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FIGURE 100. Chiral UPC? of racemic 2-isopropyl-4-nitro-3-phenylbutanal. Trefoil CEL2, CO,/EtOH
100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV detection at 210 nm.
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FIGURE 101. Chiral UPC? of 2-isopropyl-4-nitro-3-phenylbutanal obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 28. Trefoil CEL2, CO,/EtOH 100-0% to 95-5 % in 10 min at 3
ml/min at 25°C. UV detection at 210 nm: tR: (syn, minor) = 3.68 min, (syn, minor) = 3.97 min. TABLE 4,

compound 36.
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FIGURE 102. Chiral UPC? of racemic 2-ethyl-3-(4-fluorophenyl)-4-nitrobutanal. Trefoil CEL2, Grad:

CO,/EtOH 100-0% to 95-5% in 9 min; 100-0 % in 1 min at 2 ml/min at 25°C. UV detection at 210 nm.
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FIGURE 103. Chiral UPC? of 2-ethyl-3-(4-fluorophenyl)-4-nitrobutanal obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 28. Trefoil CEL2, Grad: CO»/EtOH 100-0% to 95-5% in 9 min; 100-
0 % in 1 min at 2 ml/min at 25°C. UV detection at 210 nm: tR: (syn, minor) = 6.30 min, (syn, major) =

6.88 min. TABLE 4, compound 37.
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FIGURE 104. Chiral UPC? of racemic 3-(4-chlorophenyl)-2-ethyl-4-nitrobutanal. Trefoil AMY1, Grad:
CO2/MeOH 100-0% to 90-10 % in 6 min; 90-10 % in 3 min; 100-0 % in 1 min at 2 ml/min at 25°C. UV

detection at 210 nm.
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FIGURE 105. Chiral UPC? of 3-(4-chlorophenyl)-2-ethyl-4-nitrobutanal obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 28. Trefoil AMY1, Grad: CO2/MeOH 100-0% to 90-10 % in 6 min;

90-10 % in 3 min; 100-0 % in 1 min at 2 ml/min at 25°C. UV detection at 210 nm: tR: (syn, major) = 3.45
min, (syn, minor) = 3.77 min. TABLE 4, compound 38.
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FIGURE 106. Chiral UPC? of racemic 3-(4-bromophenyl)-2-ethyl-4-nitrobutanal. Trefoil AMY1, Grad:

CO,/MeOH 100-0% to 90-10 % in 6 min; 90-10 % in 3 min; 100-0 % in 1 min at 2 ml/min at 25°C. UV
detection at 210 nm.
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FIGURE 107. Chiral UPC? of 3-(4-bromophenyl)-2-ethyl-4-nitrobutanal obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 28. Trefoil AMY1, Grad: CO,/MeOH 100-0% to 90-10 % in 6 min;
90-10 % in 3 min; 100-0 % in 1 min at 2 ml/min at 25°C. UV detection at 210 nm: tR: (syn, major) = 3.98

min, (syn, minor) = 4.44 min. TABLE 4, compound 39.
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FIGURE 108. Chiral UPC? of racemic 2-ethyl-3-(4-methoxyphenyl)-4-nitrobutanal. Trefoil CEL2, Grad:
CO,/EtOH 100-0% to 98-2 % in 19 min; 100-0 % in 1 min at 2.5 ml/min at 25°C. UV detection at 210

nm.
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FIGURE 109. Chiral UPC? of 2-ethyl-3-(4-methoxyphenyl)-4-nitrobutanal obtained by the Michael
reaction catalyzed by 2.5 mol% of compound 28. Trefoil CEL2, Grad: CO»/EtOH 100-0% to 98-2 % in 19
min; 100-0 % in 1 min at 2.5 ml/min at 25°C. UV detection at 210 nm: tR: (syn, minor) = 14.88 min, (syn,
major) = 15.43 min. TABLE 4, compound 40.
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FIGURE 110. Chiral UPC? of racemic 2-ethyl-4-nitro-3-(4-nitrophenyl) butanal. Trefoil AMY1, Grad:
CO2/IPA 100-0% to 90-10 % in 18 min; 90-10 % in 2 min at 2 ml/min at 25°C. UV detection at 210 nm.
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FIGURE 111. Chiral UPC? of 2-ethyl-4-nitro-3-(4-nitrophenyl) butanal obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 28. Trefoil AMY1, Grad: CO»/IPA 100-0% to 90-10 % in 18 min;
90-10 % in 2 min at 2 ml/min at 25°C. UV detection at 210 nm: tR: (syn, major) = 8.84 min, (syn, minor)
= 10.04 min. TABLE 4, compound 41.
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multicomponent reaction. Various structural motifs were tunably introduced on the catalyst backbone
with the aim of incorporating amphiphilic features. Consequently, they have further been evaluated in
the 1,4-addition of aldehydes to trans-B-nitrostyrene having water as the sole solvent. Under sustainable

reaction conditions, Michael adducts were obtained in excellent yields, diastereoselectivities, and
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Introduction

The construction of carbon-carbon bonds is one of the leading
chemical transformations in organic synthesis, especially in a
stereoselective fashion." Amongst a plethora of strategies
already developed, asymmetric aminocatalysis, since its con-
ception, has posed as one of the most important tools for
forging C-C and C-X bonds.”> Consequently, many proline-
based organocatalysts have been successfully developed and
further applied to a variety of synthetic transformations in the
presence of traditional organic solvents.®> However, environ-
mental concerns associated with synthetic organic chemistry
have posed stringent and compelling demands for greener
processes. Over the past few years, the replacement of organic
solvents for an environmentally benign reaction medium has
been pursued by the synthetic community in a quest for the
improvement of green metrics.”

In this regard, amphiphilic or water-compatible organic
molecules which successfully catalyzed asymmetric chemical
transformations “in-water”’, “on-water” or in the presence of a
small amount of water have been widely used as an excellent
environmentally benign alternative.” These molecules hold
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enantioselectivities using low catalyst loadings and without additives.

both hydrophilic and hydrophobic portions in their chemical
architecture, which allow them to act at the water-oil interface
by decreasing superficial tension.® Due to its intrinsic charac-
teristics, amphiphilic molecules have widespread applications,
mainly as surfactants,” and more recently in catalytic transfor-
mations in aqueous environments.®

Moreover, when an amphiphilic catalyst is employed under
aqueous conditions, two systems with different physical-
chemical features — micelles or self-assembly emulsions - are
expected to be formed, and therefore the catalysis could be
performed either inside the micelle’ or at the water-oil
interface."’

In this way, there are numerous reports in the literature that
have explored either the catalytic properties of micelles or the
amphiphilic properties of appropriate organocatalysts in chal-
lenging asymmetric transformations.™*

Wennemers and co-workers took advantage of the hydro-
philic nature of peptides developed through an effici-
ent lipopeptide-based organocatalyst by introducing on the
C-terminus a long alkyl chain in the known catalytic structural
motif (H-(D)Pro-Pro-Glu-NH,)."> This lipopeptide displayed
both high activity and stereocontrol upon the Michael addition
of aldehydes to nitrostyrene under aqueous conditions through
emulsion formation (Scheme 1A). Moreover, Alves and
co-workers designed a new lipopeptide-catalyzed stereoselective
aldol reaction in an aqueous microstructured environment
(micellar catalysis)."?

Likewise, we have also been involved in the design of new
catalytic structural motifs by exploiting the synthetic ability of
isocyanide-based multicomponent reactions (I-MCRs) to gen-
erate structural diversity (Scheme 1B)."* Therefore, we planned
to introduce a long alkyl chain onto the chemical architecture

New J. Chem.
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yield: 96%; d.r.: 93:7; e.e.: 99%
Scheme 1 (A) Amphiphilic lipopeptide organocatalyst having a H-(D)Pro-
Pro-Glu-NHC;,H,s sequence. (B) Prolyl peptide—peptoid hybrid catalyst
assembly by Ugi-4CR having a Pro-N((S)-MeBn)-Aib-NHCy structural
motif. (C) Merged N-alkylated lipopeptide organocatalyst trans-OH-Pro-
N((s)‘MeBﬂ)‘Aib-NHC12H25.

of the organocatalyst previously developed by our group to
generate an amphiphilic system (Scheme 1C).

Results and discussion

Herein, we describe a new amphiphilic organocatalyst which is
capable of performing a stereoselective carbon-carbon bond
forming reaction in an aqueous environment. We started our
investigation by synthesizing a library of N-alkylated lipopep-
tides through a widely employed isocyanide-based multicom-
ponent approach, the Ugi-4CR (Ugi-4-component reaction).
Under this environmentally benign reaction protocol, prolyl
pseudo-lipopeptides were obtained in moderate to excellent
yields (35-81%), having the generic sequence of R'-Pro-N-
alkyl-Aib-NHR? (Scheme 2A). With the library of N-alkylated
lipopeptide organocatalysts in hand, we turned to the evalua-
tion of their catalytic performance in the Michael reaction,
which is one of the most employed methods for both carbon-
carbon and carbon-heteroatom bond formation. For the initial
catalyst screening, butyraldehyde and trans-p-nitrostyrene were
chosen as model substrates (Scheme 2B). These reactions were
carried out using a catalyst loading of 10 mol%, and water
as the solvent at room temperature. In all cases, the

New J. Chem.
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A R'-Pro-N-alkyl-Aib-NHR?
3a.R'=H, R%=Cy; 77%
3b. R'= H, R%= n-C4,H,5; 54%
3c. R'= trans-OH, R%= Cy; 73%
3d. R'= trans-OH, R%= n-CgH43; 81%
3e. R'= trans-OH, R%= n-C4,H,s; 50%
3f. R'= cis-OH, R%= n-C1;H;5; 80%
3g. R'= trans-OH, R%= n-C4gH37; 35%

Me
5 RZ
3h.R'= trans—n—C11H23000 R2?= Cy; 48%
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N

3i. R%= Cy; 70% H 90 H
3j. R%= n-Cy,H,s; 57% 3k. R'= OH, R%= n-C4,H,5; 55%

:
o O Ph
H/U\ r Ph/\/ NO, 3a-3k (10 mol%) . ® . NO,
Et H,0, r.t., 24h Et
1a 2a 4a
Catalvst Yield (4a%) d.r. (syn/anti) e.e. (4a%)
3a 57 94:06 96
3b 90 89:11 94
3c 43 70:30 99
3d 72 81:19 97
3e 88 76:24 99
3f 78 79:21 94
3a 35 87:13 92
3h 23 89:11 99
3i 75 76:24 88
3i 87 88:12 83
3k 84 79:21 89

Scheme 2 (A) Structures and yields of N-alkylated lipopeptides synthe-
sized in this work. (B) Screening of organocatalysts 3a—3k upon the
addition of butyraldehyde to trans-B-nitrostyrene. All reactions were
carried out using 2 equivalents of butanal and 0.2 mmol of B-nitro-
styrene in 0.4 mL of solvent. The yield was determined by H NMR
spectroscopic analysis of the crude reaction mixture with 1.2,
3-trimethoxybenzene as the internal standard. The syn/anti ratio was
determined by *H NMR and the enantiomeric excess was determined via
chiral-stationary phase UPC? analysis.

stereoselectivity is influenced by the proline-core and confor-
mational rigidity of the catalyst, thereby leading to the for-
mation of the Michael adduct predominantly with the syn
relationship and (R,S)-absolute configuration.™

Moreover, many of the evaluated organocatalysts — specifically
3a-h - delivered the desired product 4a with moderate to excellent
diastereo- and enantioselectivities. These results are in agreement
with a previous observation by our group,'*'® where the beta-turn
structural motif -N((S)-MeBn)-Aib- is required to achieve high
levels of stereoinduction (compare 3a-h vs. 3i-k). Besides, no
considerable difference in terms of enantioselectivity was
observed among the organocatalysts of this series.

Notwithstanding the relative water-solubility of these N-
alkylated lipopeptides and due to the nonsoluble nature of

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021
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organic compounds, the reaction mixtures were a heteroge-
neous slurry or a biphasic water-oil system of the substrates in
the aqueous medium. In this sense, the introduction of a long
alkyl chain - of twelve carbon atoms - at the R*> position
improves the reaction performance, and hence the catalysts
bearing the sequence R'-Pro-N((S)-MeBn)-Aib-NHC;,H,s (i.e.,
3b, 3e-f, and 3j-k) render the products in a higher chemical
yield. On the other hand, the organocatalyst 3a, previously
developed by our group, afforded 4a in a moderate chemical
yield (57%). Based on these observations, we assume that the
hydrophobic effect is the main factor that causes the improve-
ment in terms of efficiency of the Michael reaction in an
aqueous environment. Additionally, the insertion of a lipidic
side chain at the R' position'” triggered an erosion in terms of
yield (3h). The hydroxyl group remains as a hydrophilic part or
head whereas the long alkyl chain acts as a hydrophobic part or
tail, reinforcing its amphiphilic features and allowing it to act
as a tenside. Besides, neither the incorporation of the hydro-
phobic chain nor the achiral bulky (N-o-diphenylmethane) as
an N-alkyl substituent into the catalyst backbone gave better
results for the asymmetric organic transformation than pre-
viously discussed catalysts (i.e., 3i—j and 3k). The fine-tuning of
the R" and R substituents incorporating the three-dimensional
beta-turn structural motif led to the organocatalyst trans-OH-
Pro-N((S)-MeBn)-Aib-NHC;,H,; (3e), which afforded the desired
Michael adduct in 88% yield, 76:14 d.r. and 99% e.e.

Once a suitable catalyst was identified, we continued the
optimization study by evaluating the catalyst loading of 3e, and
the influence of other environmentally friendly solvents (Table 1).

As shown in Table 1, by decreasing the catalyst loading to
5 mol%, the chemical yield was slightly improved and the
enantioselectivity of the Michael adduct 4a remained at
the same level - albeit, a great improvement was observed in
the diastereoselectivity ratio (Table 1, entry 1). To our delight,
with a catalyst loading of 2.5 mol%, compound 4a was obtained
in quantitative yield and with excellent levels of stereoselectivity
(Table 1, entry 2). Notwithstanding, upon decreasing the
catalyst loading to 1 mol%, the reaction underwent an erosion
in terms of chemical efficiency (Table 1, entry 3), although non-
substantial changes in diastereoselectivity and enantioselectivity
could be observed. Then, we turned our attention to evaluate the

Table 1 Optimization of the system. All reactions were carried out using
2 equivalents of butanal and 0.2 mmol of trans-B-nitrostyrene in 0.4 mL of
solvent for 24 h. The yield was determined by *H NMR spectroscopic
analysis of the crude reaction mixture with 1,2,3-trimethoxybenzene as the
internal standard (yield of the isolated product). The syn/anti ratio was
determined by *H NMR and the enantiomeric excess was determined by
chiral-stationary phase UPC? analysis

Yield dr.
Entry Deviation from initial conditions (%) syn:anti e.e. (%)
1 Using 5 mol% of catalyst loading 90 90:10 99
2 Using 2.5 mol% of catalyst loading 99 (96)  93:7 99
3 Using 1 mol% of catalyst loading 52 98:2 99
4 Brine instead water 84 95:5 99
5 Ethanol instead water 26 85:15 99
6 PEG-300 instead water 54 82:18 99

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021
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influence of other greener solvents on the catalytic activity. When
brine is used instead of water, the reaction undergoes a slight
change in the chemical efficiency (Table 1, entry 4). Moreover,
both ethanol and polyethylene glycol (PEG-300) delivered the
Michael adduct in low chemical yield, however, with moderate
diastereoselectivity and high enantioselectivity (Table 1, entry 5
and 6). A visual schematic representation of the optimized con-
dition in different stages is depicted in Fig. 1 showing the
emulsion formation upon the addition of all substrates to the
amphiphilic organocatalyst 3e in water.

With these notably improved reaction conditions in hand,
we explored the scope of the Michael addition between differ-
ent aldehydes and trans-p-nitrostyrene mediated by the orga-
nocatalyst 3e in an aqueous environment (Scheme 3).

Gratifyingly, the extension of this sustainable transforma-
tion to hexanal, under the previously established optimized
reaction conditions, resulted in the formation of product 4b in
91% yield, with 99% e.e. and 92:8 d.r. When isovaleraldehyde
was used as the donor, the reaction proceeded efficiently,
affording the corresponding product 4c¢ in 79% yield, with high
levels of stereoselectivities (d.r.: 99:1, e.e.: 99%). Additionally,
(R)-(+)-Citronellal was also compatible with the reaction, which
led to the desired Michael adduct 4d with moderate yield, good
diastereoselectivity and high enantioselectivity.

Moreover, a representative selection of trans-p-nitrostyrenes
was evaluated to establish the generality of this asymmetric
catalytic system. Of particular note, nitrostyrene bearing dis-
tinct substituents, either electron-withdrawing groups (i.e., F,
Cl, Br, NO, and CF;) (4e-i, 4m) or electron-donating groups
(i.e., OMe, Me and ¢-Bu) (4j-1, 4n) gave the desired Michael
adducts in moderate to excellent yields as well as diastereos-
electivities and maintained enantioselectivity ranges of
96-99%. Interestingly, modification of the aromatic ring to
introduce heterocycles such as furan was also well tolerated
(compound 4o, 83% yield, 99% e.e. and 82:18 d.r.). Moreover,
alteration to alkyl-substituted nitroolefins also afforded the
corresponding products in good yield and excellent stereo-
selectivity (4p and 4q).

Performing the reaction on a 2 mmol scale under a prolonged
reaction time of 72 hours afforded 4a in a similar yield and
enantioselectivity, albeit with a drop in the diastereoisomeric

W, 0

Fig. 1 (A) catalyst 3e in water; (B) mixture of butyraldehyde and trans-f-
nitrostyrene in water; (C) mixture of butyraldehyde, trans-B-nitrostyrene
and catalyst 3e in water; and (D) mixture of butyraldehyde, trans-p-
nitrostyrene and catalyst 3e in water after being stirred for 24 h.
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Scheme 3 Scope of reaction with catalyst 3e. All reactions were conducted using 2 equivalents of the aldehyde and 0.2 mmol of B-nitrostyrene in
0.4 mL of water. The yield was determined by *H NMR spectroscopic analysis of the crude reaction mixture with 1,2,3-trimethoxybenzene as the internal
standard (yield of the isolated product). The diastereoisomeric ratio was determined by *H NMR of the crude reaction mixture and the enantiomeric
excess was determined by chiral-stationary phase UPC? analysis. Note: The diastereoisomeric ratio for isolated products changes upon purification and

the values are reported in the ESI,f Section 17.

ratio (see the ESIt for further details, 90% yield, 72:28 d.. and
99% e.e.). To our delight, catalyst recycling was easily achieved after
filtration over a pad of silica flash using ethyl acetate as the mobile
phase for eluting the crude product with the organocatalyst being
trapped on the silica. Afterwards, the organocatalyst could be
recovered by passing methanol through the silica and evaporating
the solvent. Moreover, under the optimized reaction conditions, the
recovered organocatalyst 3e was successfully subjected to four
cycles delivering the desired product 4a with a stable tendency
for reproducibility over each cycle (see the ESIt for further
information).

New J. Chem.

Conclusions

In summary, we have developed an amphiphilic N-alkylated
lipopeptide (3e) which presented extraordinary catalytic activity
in the asymmetric Michael addition of aldehydes to trans-B-
nitrostyrene in water — neither organic solvent nor additional
additives were found to be necessary in this sustainable reac-
tion protocol. This new catalytic system is appropriate for
functionalization of an array of ¢trans-f-nitroolefins, including
aromatic and aliphatic, in good to excellent yields and stereo-
selectivities under low catalyst loadings. Furthermore, the
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reaction could be easily scaled-up and the catalyst could be
recycled, delivering the Michael adduct with similar results in
both cases. Hence, these remarkable advantages make this
catalytic system suitable for future pharmaceutical develop-
ments and opens new perspectives in stereoselective organic
synthesis in water.

Experimental
Materials and methods

All solvents were dried and distilled before use using standard
procedures and the reagents were of the highest commercially
available grade purchased from Sigma-Aldrich, Oakwood Che-
micals, and Strem Chemicals and used as received or purified
according to the procedures outlined in Purification of Com-
mon Laboratory Chemicals.'® Glassware used was dried in an
oven or flame dried under a vacuum and cooled under an inert
atmosphere. Column flash chromatography was performed
using silica gel 60 (230-400 mesh), and thin-layer chromato-
graphy (TLC) analysis was performed using silica gel aluminum
sheets. Compounds were visualized on TLC by UV-light,
KMnO,, I,, H3[P(M03040)4] X H,O (PMA) and Vanillin. Yields
refer to chromatographically and spectroscopically pure com-
pounds unless otherwise noted. "H NMR and "*C NMR spectra
were recorded at 400 and 100 MHz, respectively. Chemical
shifts () are reported in parts per million relative to the
residual solvent signals,"® and coupling constants (J) are
reported in hertz. The following abbreviations indicate the
multiplicity of each signal: (s), singlet; (bs), broad singlet; (d),
doublet; (t), triplet; (q), quartet; (p), pentet; (m), multiplet; (dd),
doublet of doublets; (dt), doublet of triplets; (dq), doublet of
quartet; (dp), doublet of pentet; (td), triplet of doublets; (ddt),
doublet of doublet of triplets; (dtd), doublet of triplet of
doublets; (ddd), doublet of doublet of doublets; (dddd), doublet
of doublet of doublet of doublets; (heptd), heptet of doublets.
High-resolution ESI mass spectra were obtained using a Waters
Acquity UPLC H-class liquid chromatograph coupled with a
Waters Xevo G2-XS QToF mass spectrometer with an electro-
spray interface (ESI). HPLC analysis was carried out on an
analytical HPLC using a diode array detector SPD-M20A from
Shimadzu using a Chiralpak column OD-H (250 mm X
4.6 mm) from Daicel Chemical Ind. LTD. UPLC analysis
was carried out on an Acquity UPC®> system from Waters
using a 2998 photodiode array (PDA) and Xevo TQD triple
quadrupole mass spectrometer as detectors using Trefoil
columns CEL2 and AMY1 (2.1 mm x 50 mm) from Waters.
Optical rotations were measured on a PerkinElmer
polarimeter.

General procedures for the synthesis of prolyl pseudo-
lipopeptides by Ugi-4CR:

General procedure A. A solution containing acetone
(3 equiv.), amine (1.5 equiv.) and anhydrous sodium sulfate
(3 equiv.) in MeOH was stirred at room temperature for 2 hours.
After the addition of carboxylic acid (1.2 equiv.) and isocyanide
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(1 equiv.), the resulting mixture was allowed to stir at room
temperature for 24 h. Finally, the solvent was removed under
reduced pressure and the residue was subjected to a deprotec-
tion procedure and purified using column chromatography.

General procedure B. A solution containing acetone
(3 equiv.) and amine (1.5 equiv.) and anhydrous sodium sulfate
(3 equiv.) in MeOH/THF (2:1 v/v) was stirred under microwave
irradiation at 70 °C for 10 min. After the carboxylic acid
(1.2 equiv.) and isocyanide (1 equiv.) were added, the resulting
mixture was stirred under microwave irradiation (at 70 °C) for
30 min. Finally, the solvent was removed under reduced
pressure and the residue was subjected to a deprotection
procedure and purified using column chromatography.

General procedure C. A solution containing acetone (3 equiv.),
amine (1.5 equiv.) and anhydrous sodium sulfate (3 equiv.) in
MeOH/THF (2:1 v/v) was stirred under microwave irradiation at
(70 °C) during 10 min to preform the imine. After carboxylic acid
(1.2 equiv.) and isocyanide (1 equiv.) were added, the resulting
mixture was allowed to stir at room temperature for 24-48 h.
Finally, the solvent was removed under reduced pressure and the
residue was subjected to the deprotection procedure and purified
using column chromatography.

N-Boc deprotection procedure of prolyl pseudo-lipopeptides:

The crude N-Boc product of the Ugi-4CR was dissolved in 1 mL
of a mixture of TFA/DCM 9:1 v/v at 0 °C. The reaction mixture
was allowed to stir for 30 min and then concentrated under
reduced pressure (TFA was entirely removed by repetitive addi-
tion and evaporation of further DCM). The crude product was
dissolved in 10 mL of DCM and neutralized over anhydrous
K,COs;, filtered and evaporated under reduced pressure afford
the crude product.

Peptide-lipopeptoid hybrid 3a. 'H NMR (400 MHz,
Methanol-d,) ¢ 7.64 (d, J = 7.7 Hz, 2H, CH), 7.42 (t, ] = 7.6 Hz,
2H, CH), 7.31 (t,J = 7.4 Hz, 1H, CH), 5.23 (q,J = 7.1 Hz, 1H, CH),
3.91 (s, 1H, NH), 3.62 (ddt, J = 9.8, 7.3, 3.6 Hz, 1H, CH), 3.20 (dt,
J =11.2, 6.7 Hz, 1H, CH,), 2.92 (dt, J = 11.5, 7.3 Hz, 1H, CH,),
1.90 (d, J = 7.1 Hz, 3H, CH3;), 1.87-1.70 (m, 5H,CH,), 1.69-1.42
(m, 9H, CH,, CH3), 1.38-1.13 (m, 6H, CH,). ">*C NMR (100 MHz,
Methanol-d,)  176.3 (2 x C=O0), 143.5 (C), 129.9 (CH), 128.5
(CH), 128.2 (CH), 65.9 (C), 61.4 (CH), 53.1 (CH), 50.4 (CH,), 48.0
(CH), 33.49 (CH,), 33.46 (CH,), 30.5 (CH,), 26.7 (CH,), 26.4
(CH3;), 26.0 (CH,), 25.6 (CH,), 24.8 (CH,), 20.2 (CH;). HRMS
(ESI-Q-TOF): m/z: 386.2808. Calcd. for [M + H]':386.2802.

Peptide-Lipopeptoid Hybrid 3b. 'H NMR (400 MHz,
Methanol-d,) 6 7.65 (d, J = 7.7 Hz, 2H, CH), 7.43 (t, J = 7.5 Hz,
2H, CH), 7.33 (t,J = 7.4 Hz, 1H, CH), 5.25 (q,J = 7.1 Hz, 1H, CH),
4.22 (s, 1H, CH), 3.36-3.31 (m, 1H, CH,), 3.25-3.09 (m, 3H,
CH,), 1.90 (d, J = 7.1 Hz, 3H, CHj;), 1.69-1.48 (m, 10H, CH,,
CH3,), 1.28 (s, 20H, CH,), 0.89 (t, ] = 6.5 Hz, 3H, CH;). **C NMR
(100 MHz, Methanol-d,) § 177.0 (C—=0), 171.4 (C=0), 142.9 (C),
130.0 (CH), 128.7 (CH), 128.4 (CH), 66.2 (CH), 61.2 (CH), 53.3
(C), 47.6 (CH,), 40.9 (CH,), 33.1 (CH,), 30.7 (CH,), 30.5 (CH,),
30.3 (CH,), 30.0 (CH,), 28.1 (CH3), 25.6 (CH,), 25.1 (CH,), 24.9
(CH,), 23.7 (CH3;), 20.0 (CH,), 14.4 (CH;). HRMS (ESI-Q-TOF):
m/z: 472.3876. Caled. for [M + H]": 472.3898.
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Peptide-lipopeptoid hybrid 3c. "H NMR (400 MHz,
Methanol-d,) ¢ 7.60 (d, J = 7.7 Hz, 2H, CH), 7.41 (t, ] = 7.6 Hz,
2H, CH), 7.30 (t,J = 7.4 Hz, 1H, CH), 5.20 (q,J = 7.2 Hz, 1H, CH),
4.28 (s, 1H, CH), 3.59 (dp, J = 11.6, 4.1 Hz, 1H, CH), 3.27 (ddd,
J = 6.8, 5.3, 3.8 Hz, 2H, CH,), 3.15-3.08 (m, 1H, CH), 1.88 (d,
J =7.1 Hz, 3H, CHj,), 1.85-1.70 (m, 4H, CH,), 1.69-1.46 (m, 8H,
CH,, CH;), 1.37-1.09 (m, 6H, CH,). “C NMR (100 MHz,
Methanol-d,) ¢ 174.8 (C=0), 170.8 (C=0), 141.7 (C), 128.7
(CH), 127.4 (CH), 126.8 (CH), 69.6 (CH), 64.8 (C), 58.6 (CH), 54.1
(CH), 49.1 (CH), 38.4 (CH,), 32.1 (CH,), 25.2 (CH,), 25.1 (CHs),
24.1 (CH,), 23.4 (CH,), 18.8 (CH;). HRMS (ESI-Q-TOF): m/z:
402.2757. Caled. for [M + H]": 402.2751.

Peptide-lipopeptoid hybrid 3d. 'H NMR (400 MHz,
Methanol-d,) 6 7.63 (d, J = 7.7 Hz, 2H, CH), 7.42 (t, ] = 7.6 Hz,
2H, CH), 7.31 (t,J = 7.4 Hz, 1H, CH), 5.20 (q,J = 7.1 Hz, 1H, CH),
4.26 (s, 1H, CH), 4.18 (s, 1H, NH), 3.24 (dd, J = 11.9, 3.9 Hz, 1H,
CH,), 3.16 (q,J = 6.7 Hz, 2H, CH,), 3.00 (d,J = 11.8 Hz, 1H, CH,),
1.90 (d,J = 7.0 Hz, 3H, CH3), 1.69-1.46 (m, 9H, CH,, CH;), 1.38-
1.26 (m, 6H, CH,), 0.88 (t, 3H, CH;). *C NMR (100 MHz,
Methanol-d,) é 177.1 (C=0), 173.5 (C=0), 143.4 (C), 130.0
(CH), 128.6 (CH), 128.1 (CH), 71.5 (CH), 65.9 (CH), 60.0 (CH),
55.6 (CH,), 53.0 (C), 40.9 (CH,), 40.0 (CH,), 32.7 (CH,), 30.3
(CH,), 27.8 (CH3), 25.6 (CH,), 24.8 (CH,), 23.7 (CH3), 20.4 (CH,),
14.4 (CH;). HRMS (ESI-Q-TOF): mj/z: 404.2906. Calcd. for
[M + H]™: 404.2908.

Peptide-lipopeptoid hybrid 3e. 'H NMR (400 MHz,
Methanol-d,) ¢ 7.65 (d, J = 7.7 Hz, 2H, CH), 7.45 (t, ] = 7.5 Hz,
2H, CH), 7.35 (t,J = 7.4 Hz, 1H, CH), 5.24 (q,J = 7.1 Hz, 1H, CH),
4.32 (s, 1H, CH), 3.31-3.28 (m, 2H, CH,), 3.18 (dd, J = 8.9, 5.7
Hz, 2H, CH,), 1.92 (d, J = 7.0 Hz, 3H, CH3;), 1.70-1.58 (m, 6H,
CH;), 1.57-1.50 (m, 2H, CH,), 1.29 (s, 20H. CH,), 0.92-0.87
(m, 4H, CH,, CH3). **C NMR (100 MHz, Methanol-d,) § 177.0
(C=0), 171.9 (C=0), 143.0 (C), 130.1 (CH), 128.8 (CH), 128.2
(CH), 70.8 (CH), 66.2 (CH), 60.0 (CH), 55.5 (CH,), 53.2 (C), 41.0
(CH,), 39.8 (CH,), 33.1 (CH,), 30.7 (CH,), 30.5 (CH,), 30.4 (CH,),
28.1 (CH3), 25.4 (CH,), 24.9 (CH,), 23.7 (CH3), 20.2 (CH,), 14.4
(CH;). HRMS (ESI-Q-TOF): m/z: 488.3827. Caled. for [M + H]":
488.3847.

Peptide-lipopeptoid hybrid 3f. 'H NMR (400 MHz,
Methanol-d,) 6 7.65 (d, J = 7.7 Hz, 2H, CH), 7.40 (t, J = 7.7 Hz,
2H, CH), 7.28 (t,J = 7.6 Hz, 1H, CH), 5.17 (q,J = 7.2 Hz, 1H, CH),
4.00 (s, 1H, CH), 3.62 (s, 1H, OH), 3.17 (td, J = 7.0, 3.9 Hz, 2H,
CH,), 2.95 (d, J = 12.0 Hz, 1H, CH,), 2.60 (dd, J = 12.4, 4.2 Hz,
1H, CH,), 1.89 (d, J = 7.0 Hz, 3H, CH3), 1.62-1.49 (m, 8H, CH,,
CHj,), 1.28 (s, 20H, CH,), 0.89 (t, ] = 6.7 Hz, 3H, CH3). *C NMR
(100 MHz, Methanol-d,) ¢ 177.3 (2 x C=0), 144.3 (C), 129.8
(CH), 128.2 (CH), 127.8 (CH), 73.2 (CH), 65.5 (CH), 60.8 (CH),
56.9 (CH,), 52.8 (C), 40.9 (CH,), 39.8 (CH,), 33.1 (CH,), 30.8
(CH,), 30.7 (CH,), 30.50 (CH,), 30.48 (CH,), 30.4 (CH,), 28.1
(CH3), 25.9 (CH,), 24.6 (CH,), 23.7 (CH3), 20.9 (CH,), 14.5 (CH3).
HRMS (ESI-Q-TOF): m/z: 488.3863. Caled. for [M + HJ"
488.3847.

Peptide-lipopeptoid hybrid 3g. 'H NMR (400 MHz,
Methanol-d,) § 7.52-7.26 (m, 5H, CH), 5.29-5.12 (m, 1H, CH),
4.64 (s, 1H, OH), 4.04-3.63 (m, 1H, CH), 3.54-3.31 (m, 2H, CH,),
3.20-3.13 (m, 2H, CH,), 2.58-1.82 (m, 3H, CH,), 1.78-1.39
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(m, 6H, CH,, CH3), 1.27 (s, 30H, CH,, CH;), 1.16-0.71 (m, 5H,
CH,, CH;). "*C NMR (100 MHz, Methanol-d,) § 172.7 (C=0),
169.6 (C—0), 140.0 (C), 129.9 (CH), 129.8 (CH), 129.5 (CH),
129.3 (CH), 129.2 (CH), 71.4 (CH), 61.8 (CH), 60.6 (CH), 59.8
(CH,), 56.8 (CH,), 55.0 (C), 40.9 (CH,), 40.8 (CH,), 39.5 (CH,),
33.1 (CH,), 30.8 (CH,), 30.5 (CH,), 30.46 (CH,), 30.43 (CH,),
28.7 (CH,), 28.1 (CH3), 23.7 (CH3), 17.1 (CH,), 14.5 (CH;). HRMS
(ESI-Q-TOF): m/z: 603.5006. Calcd. for [M + CH30H]": 603.4975.

Peptide-lipopeptoid hybrid 3h. 'H NMR (400 MHz,
Methanol-d,) § 7.68 (d, J = 7.7 Hz, 2H, CH), 7.47 (t, ] = 7.7 Hz,
2H, CH), 7.35 (t,/ = 7.7 Hz, 1H, CH), 5.27 (q,J = 7.1 Hz, 1H, CH),
3.74-3.61 (m, 1H, CH), 3.59 (dd, J = 12.9, 4.7 Hz, 2H, CH,), 3.40-
3.31 (m, 1H, CH), 2.34-2.19 (m, 2H, CH,), 1.94 (d,J = 7.0 Hz, 3H,
CH,), 1.92-1.55 (m, 13H, CH,, CHj), 1.44-1.14 (m, 25H, CH,),
0.92 (t, ] = 6.6 Hz, 3H, CH3). **C NMR (100 MHz, Methanol-d,) §
176.1 (C=0), 173.7 (C=0), 170.8 (C=0), 143.2 (C), 130.2 (CH),
128.9 (CH), 128.4 (CH), 73.8 (CH), 66.3 (CH), 60.3 (CH), 53.0 (C),
52.7 (CH,), 50.6 (CH), 37.1 (CH,), 34.8 (CH,), 33.5 (CH,), 33.1
(CH,), 30.7 (CH,), 30.6 (CH,), 30.5 (CH,), 30.2 (CH,), 26.6 (CH3),
26.5 (CH3), 25.9 (CH,), 25.7 (CH,), 25.5 (CH,), 24.8 (CH,), 23.7
(CH,), 20.1 (CH;), 14.4 (CH;). HRMS (ESI-Q-TOF): m/z:
584.4412. Calcd. for [M + H]": 584.4422.

Peptide-lipopeptoid hybrid 3i. 'H NMR (400 MHz,
Chloroform-d;) 6 5.97 (d, J = 8.2 Hz, 1H, NH), 4.66 (t, J = 7.6
Hz, 1H, CH), 3.67-3.57 (m, 1H, CH,), 3.53-3.39 (m, 3H, CH,),
3.31 (ddd, J = 16.3, 11.7, 5.3 Hz, 1H, CH), 2.44-2.33 (m, 1H,
CH,), 2.17-1.93 (m, 3H, CH,), 1.83 (dt, J = 14.4, 7.2 Hz, 2H,
CH,), 1.75-1.63 (m, 3H, CH,), 1.61-1.42 (m, 6H, CH,, CHjy),
1.33-1.09 (m, 24H, CH,), 0.89-0.82 (m, 3H, CH,, CH3). >*C NMR
(100 MHz, Chloroform-d;) 6 173.1 (C—=0), 168.8 (C—=0), 63.3
(CH), 58.9 (C), 48.9 (CH), 46.5 (CH,), 45.1 (CH,), 32.9 (CH,),
32.9 (CH,), 32.0 (CH,), 31.9 (CH,), 29.8 (CH,), 29.7 (CH,), 29.67
(CH,), 29.65 (CH,), 29.4 (CH,), 29.3 (CH,), 27.2 (CHj), 25.6
(CH,), 25.2 (CH,), 25.2 (CH,), 25.0 (CH,), 24.6 (CH,), 24.5 (CH,),
22.8 (CH,), 14.2 (CH;). HRMS (ESI-Q-TOF): m/z: 450.4043.
Calcd. for [M + HJ": 450.4054.

Peptide-lipopeptoid hybrid 3j. 'H NMR (400 MHz,
Methanol-d,) J 4.50-4.42 (m, 1H, CH), 3.50-3.32 (m, 3H,
CH,), 3.27-3.01 (m, 3H, CH,), 2.48 (dq, J = 13.0, 6.9, 5.4 Hz,
1H, CH,), 2.11-1.91 (m, 3H, CH,), 1.74-1.59 (m, 2H, CH,), 1.52
(s, 3H, CH3), 1.47 (s, 3H, CHj), 1.39-1.22 (m, 38H, CH,), 0.88
(t, J = 6.6 Hz, 6H. CH;). "*C NMR (100 MHz, Methanol-d,) ¢
176.9 (C=0), 169.8 (C=0), 64.2 (C), 60.4 (CH), 47.5 (CH,), 45.6
(CH,), 40.9 (CH,), 33.1 (CH,), 32.6 (CH,), 30.8 (CH,), 30.5 (CH,),
30.4 (CH,), 28.1 (CHj3), 27.9 (CH,), 25.4 (CH,), 24.8 (CH,), 24.3
(CH,), 23.7 (CH,), 14.4 (CH3). HRMS (ESI-Q-TOF): m/z:
536.5145. Caled. for [M + H]": 536.5150.

Peptide-lipopeptoid hybrid 3k. 'H NMR (400 MHz,
Methanol-d,)  7.52-7.41 (m, 4H, CH), 7.43-7.34 (m, 4H, CH),
7.34-7.24 (m, 2H, CH), 6.45 (bs, 1H, CH), 4.12 (s, 1H, CH), 3.88
(t,J/ = 7.8 Hz, 1H, CH), 3.26-3.15 (m, 2H, CH,), 3.12 (dd, J = 11.8,
4.7 Hz, 1H, CH,), 2.63 (d, J = 11.8 Hz, 1H, CH,), 1.72-1.59
(m, 3H, CH3), 1.57-1.45 (m, 5H, CH,, CH3), 1.38-1.24 (m, 20H,
CH,), 0.89 (t, J = 6.6 Hz, 3H, CH;). *C NMR (100 MHz,
Methanol-d,) § 177.5 (C=0), 177.1 (C=0), 143.1 (C), 139.9
(C), 130.1 (CH), 130.0 (CH), 129.9 (CH), 129.5 (CH), 128.9 (CH),
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128.8 (CH), 72.5 (CH), 66.0 (C), 62.2 (CH), 61.6 (CH), 56.1 (CH,),
40.9 (CH,), 39.7 (CH,), 33.1 (CH,), 30.8 (CH,), 30.7 (CH,), 30.50
(CH,), 30.47 (CH,), 30.4 (CH,), 28.1 (CHj3), 25.7 (CH,), 24.5
(CH,), 23.7 (CH,), 14.5 (CH;). HRMS (ESI-Q-TOF): m/z:
550.4002. Calcd. for [M + H]': 550.4003.

General procedure for asymmetric 1,4-addition of aldehydes to
nitrostyrenes

A vial was charged with the prolyl pseudo-lipopeptide hybrid
catalyst 3e (2.5 mol%), the nitrostyrene (0.2 mmol, 1.0 equiv.)
and 0.4 mL of water. The mixture was homogenized in an
ultrasound bath, the aldehyde (0.40 mmol, 2.0 equiv.) was
added and this mixture was stirred for 24 h. After this period,
the resulting reaction mixture was extracted with EtOAc, dried
over anhydrous Na,SO, and concentrated under reduced pres-
sure. The crude product was purified by flash column chroma-
tography on silica gel using n-hexane/EtOAc as the eluent. The
diastereoisomeric ratio was determined by "H NMR analysis of
the crude reaction mixture. Enantiomeric excess (e.e.) was
determined by chiral HPLC or UPC? analysis through compar-
ison with the authentic racemic material. Assignment of the
stereoisomers was performed by comparison with literature
data.¥
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1. General Information

All solvents were dried and distilled before use by standard procedures and
reagents were of the highest commercially available grade purchased from Sigma-
Aldrich, Oakwood Chemicals, and Strem Chemicals and used as received or purified
according to the procedures outlined in Purification of Common Laboratory
Chemicals." Glassware used was dried in oven or flame dried under vacuum and
cooled under an inert atmosphere. Column flash chromatography was performed using
silica gel 60 (230-400 mesh), and analytical thin-layer chromatography (TLC) was
performed using silica gel aluminum sheets. Compounds were visualized on TLC by
UV-light, KMnOy, |, H3[P(M03O4)4] x HO (PMA) and Vanillin. Yields refer to
chromatographically and spectroscopically pure compounds unless otherwise noted.
'H NMR and 3C NMR spectra were recorded at 400 and 100 MHz, respectively.
Chemical shifts (0) are reported in parts per million relative to the residual solvent
signals,? and coupling constants (J) are reported in hertz. the following abbreviations
indicate the multiplicity of each signal: (s), singlet; (bs), broad singlet; (d), doublet; (t),
triplet; (q), quartet; (p), pentet; (m), multiplet; (dd), doublet of doublets; (dt), doublet of
triplets; (dq), doublet of quartet; (dp), doublet of pentet; (td), triplet of doublets; (ddt),
doublet of doublet of triplets; (dtd), doublet of triplet of doublets; (ddd), doublet of
doublet of doublets; (dddd), doublet of doublet of doublet of doublets; (heptd), heptet
of doublets. High-resolution ESI mass spectra were obtained from a Fourier transform
ion cyclotron resonance (FT-ICR) mass spectrometer, an RF-only hexapole ion guide
and an external electrospray ion source. HPLC analysis were carried out on an
analytical HPLC with a diode array detector SPD-M20A from Shimadzu using
Chiralpak column OD-H (250 mm x 4.6 mm) from Daicel Chemical Ind. LTD. UPLC
analysis was carried out on Acquity UPC? system from Waters with 2998 photodiode
array (PDA) and Xevo TQD triple quadrupole mass spectrometry as detectors using
Trefoil columns CEL2 and AMY1 (2.1 mm x 50 mm) from Waters. Optical rotations

were measured on a Perkin Elmer Polarimeter.
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2. Synthesis of lipidic isocyanides

General procedure A

o
0" H POCI, ® O
R-NH, — = R-NHCHO — > R-N=C
60 °C, 24h NEt;
1 2

1a, R= n'C12H25 2a, R= n'C12H25
1b, R= n'C6H13 2b, R= n'C6H13
1C, R= n'C18H37 20, R= n'C18H37

In a 50 mL bottom flask, aliphatic amine 1a-c (11 mmol) was dissolved in
HCOOEt (20 mL). The resulting solution was refluxed at 60 °C for 24 h in a silicone
bath and the quantitative formation of formamide was verified by TLC (hexanes/EtOAc
1:1). The reaction was concentrated to dryness, the crude mixture was dissolved in
NEt; (30 mL) and cooled to -70 °C. Then POCI; (3 mL, 33 mmol, 3 equiv.) was added
dropwise during 15 min under argon atmosphere. The reaction mixture was stirred at
room temperature for 48h. The resulting mixture was decanted; the solvent removed
by reduced pressure and the resulting very viscous oil was directly purified by column
chromatography (hexanes, until 10% of EtOAc). The fractions containing the product
were combined and evaporated under reduced pressure to give the corresponding

isocyanides 2a-c.
3. Characterization data of compounds 2a-c

/\/\/\/\/\/\ﬁ o 1-isocyanododecane (2a)3:The title compound was
*C synthesized according to the general procedure A

in 71% (1.50 g) isolated yield as a light yellow oil. Rf= 0.83 (hexanes/EtOAc 10:1).
NMR 'H (400 MHz, CDCI,) 6 3.41 - 3.35 (m, 2H), 1.72 - 1.63 (m, 2H), 1.48 — 1.38 (m,
2H), 1.32-1.24 (m, 16H), 0.88 (t, J= 6.9 Hz, 3H). NMR "3C (100 MHz, CDCI3) 5 155.6,
60.5, 41.7, 32.0, 29.7, 29.6, 29.5, 29.5, 29.2, 28.8, 26.5, 22.8, 14.3.

1-isocyanohexane (2b)*: The title compound was synthesized

NN O

@
N\
~C

according to the general procedure A in 65% (795 mgq) isolated
yield as a light yellow oil. Rs= 0.90 (hexanes/EtOAc 10:1). NMR 'H (400 MHz, CDCI,)
0 3.38 (td, J=6.7, 2.1 Hz, 2H), 1.73 — 1.62 (m, 2H), 1.44 (p, J = 7.2 Hz, 2H), 1.37 —
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1.27 (m, 4H), 0.90 (t, J = 6.7 Hz, 2H). NMR "3C (100 MHz, CDCI;) 5 155.6, 41.7, 31.0,
29.2,26.1,22.6,14.1.

1-isocyanooctadecane (2c)3: The

/\/\/\/\/\/\/\/\/\%\\@

“C  tite compound was synthesized
according to the general procedure A in 76% (2.34 g) isolated yield as a light yellow
solid. Rs= 0.65 (hexanes). NMR 'H (400 MHz, CDCl;) 5 3.40 — 3.34 (m, 2H), 1.71 —
1.62 (m, 2H), 1.48 — 1.37 (m, 1H), 1.32 - 1.21 (m, 29H), 0.88 (t, J = 6.6 Hz, 3H). NMR
13C (100 MHz, CDCI;) 6 155.7, 41.7, 32.1, 29.8, 29.7, 29.5, 29.3, 28.9, 26.5, 22.8,

14.3.

4. General procedures for the synthesis of prolyl pseudo-lipopeptides by
Ugi-4CR

General Procedure B: A solution containing acetone (3 equiv.), amine (1.5 equiv.) and
anhydrous sodium sulfate (3 equiv.) in MeOH was stirred at room temperature for 2
hours. After the addition of carboxylic acid (1.2 equiv.) and isocyanide (1 equiv.), the
resulting mixture was allowed to stir at room temperature for 24 h. Finally, the solvent
was removed under reduced pressure and the residue was subjected to deprotection

procedure E and purified by column chromatography.

General Procedure C: A solution containing acetone (3 equiv.) and amine (1.5 equiv.)
and anhydrous sodium sulfate (3 equiv.) in MeOH/THF (2:1 v/v) was stirred under
microwave irradiation at 70 °C during 10 min. After the carboxylic acid (1.2 equiv.) and
isocyanide (1 equiv.) were added, the resulting mixture was stirred under microwave
irradiation (at 70 °C) for 30 min. Finally, the solvent was removed under reduced
pressure and the residue was subjected to deprotection procedure E and purified by

column chromatography.

General Procedure D: A solution containing acetone (3 equiv.), amine (1.5 equiv.) and
anhydrous sodium sulfate (3 equiv.) in MeOH/THF (2:1 v/v) was stirred under
microwave irradiation at (70 °C) during 10 min to preform the imine. After carboxylic
acid (1.2 equiv.) and isocyanide (1 equiv.) were added, the resulting mixture was

allowed to stir at room temperature for 24-48 h. Finally, the solvent was removed under
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reduced pressure and the residue was subjected to deprotection procedure E and

purified by column chromatography.

5. N-Boc deprotection of prolyl pseudo-lipopeptides

General procedure E: The crude N-Boc product of the Ugi-4CR was dissolved in 1 mL
of a mixture of TFA/DCM 9:1 v/v at 0 °C. The reaction mixture was allowed to stir for
30 min and then concentrated to reduced pressure (TFA was entirely removed by
repetitive addition and evaporation of further DCM). The crude was dissolved in 10 mL
of DCM and neutralized over anhydrous K,COg3, filtered and evaporated under reduced

pressure afforded to the crude product.

TABLE 1. Synthesis of prolyl pseudo-lipopeptides by Ugi-4CR.
(0]

R’ | OH i R RZ 0O
N A Ugi-4CR \ R
Boc + > N / Ir:ll
2. Deprotection N “
H o

R—NH, R®*-—NC

3a-k
prolyl pseudo-lipopeptides
hybrid catalysts

Entry R'/ R? R3 Catalyst Yield (%)?
1 H/ (S)-a-MeBn/ Cy 3a 77
2 H/ (S)—a-MeBn/ n-C12H25 3b 54
3 trans-OH/ (S)-a-MeBn/ Cy 3c 73
4 trans-OH/ (S)-a-MeBn/ n-CgHy3 3d 81
5 trans-OH/ (S)-a-MeBn/ n-C;H3s 3e 50
6 cis-OH/ (S)-a-MeBn/ n-C1oHzs 3f 80
7 trans-OH/ (S)-a-MeBn/ n-C4gH3s 3g 35
8 trans-n-C44H3CO0/ (S)-a-MeBn/ Cy 3h 48
9 H/ n-C12H25/ Cy 3i 70
10 H/ n—C12H25/ n-C12H25 3] 57
11 trans-OH/ a-PhBn / n-C4,H5s 3k 55

2 |solated yields after two step.
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6. Characterization data of compounds 3a-k

(S)-N-(1-(cyclohexylamino)-2-methyl-1-oxopropan-2-yl)-N-((S)-
Me\(© 1-phenylethyl)pyrrolidine-2-carboxamide (3a)°: (S)-a-
[HN 5 methylbenzylamine (39 pL, 0.3 mmol), acetone (44 uL, 0.6
H o OXNH mmol), N-Boc-proline (52 mg, 0.24 mmol), cyclohexyl isocyanide
(25 pL, 0.2 mmol) and anhydrous sodium sulfate (85 mg, 0.6
mmol) were reacted in MeOH (200 uL) according to the general
procedure C. Flash column chromatography purification 0-10% of MeOH in DCM
afforded the peptide-peptoid hybrid 3a in 77% (59 mg) as a colorless oil. Rf= 0.5
(DCM/MeOH 95:5). [a]p?® = -5.0 (c 0.1, MeOH, 23 °C). NMR 'H (400 MHz, Methanol-
dy) 6764 (d,J=7.7Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 5.23 (q,
J=7.1Hz, 1H), 3.91 (s, 1H), 3.62 (ddt, J = 9.8, 7.3, 3.6 Hz, 1H), 3.31 — 3.29 (m, 1H),
3.20 (dt, J=11.2, 6.7 Hz, 1H), 2.92 (dt, J = 11.5, 7.3 Hz, 1H), 1.90 (d, J = 7.1 Hz, 3H),
1.87 — 1.70 (m, 5H), 1.69 — 1.42 (m, 9H), 1.38 — 1.13 (m, 6H). NMR 13C (100 MHz,
Methanol-d,) 6 176.31, 173.88, 143.48, 129.92, 128.54, 128.18, 65.88, 61.37, 53.09,
50.35, 48.00, 33.49, 33.46, 30.52, 26.66, 26.40, 25.98, 25.64, 24.76, 20.22. HRMS
(ESI-Q-TOF): m/z: 386.2808. Calcd. for [M+H]*:386.2802.

(S)-N-(1-(dodecylamino)-2-methyl-1-oxopropan-2-yl)-N-((S)-1-
Me\(© phenylethyl)pyrrolidine-2-carboxamide (3b): (S)-a-
[HN 5 methylbenzylamine (39 pL, 0.3 mmol), acetone (44 uL, 0.6
H o} OXNH mmol), N-Boc-proline (52 mg, 0.24 mmol), n-dodecyl isocyanide
(45 pL, 0.2 mmol) and anhydrous sodium sulfate (85 mg, 0.6
mmol) were reacted in MeOH/THF (300 pL) according to the
general procedure C. Flash column chromatography purification
0-10% of MeOH in DCM afforded the peptide-lipopeptoid hybrid 3b in 54% (51 mg) as
a colorless oil. R¢= 0.30 (EtOAc/MeOH 10:1). [a]p?® =-1.2 (c 0.1, MeOH, 23 °C). NMR
H (400 MHz, Methanol-d4) 5 7.65 (d, J = 7.7 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (t,
J=7.4Hz, 1H), 5.25 (q, J = 7.2 Hz, 1H), 4.22 (s, 1H), 3.35 - 3.27 (m, 2H), 3.24 - 3.10
(m, 3H), 1.92 - 1.83 (m, 4H), 1.76 — 1.58 (m, 6H), 1.57 — 1.43 (m, 5H), 1.32 - 1.28 (m,
18H), 0.89 (t, J =6.5 Hz, 3H). NMR 3C (100 MHz, Methanol-d,) 5 177.0, 171.4, 142.9,
130.0, 128.7, 128.4, 66.2, 61.2, 53.3, 47.6, 40.9, 33.1, 30.7, 30.5, 30.3, 30.0, 28.1,
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256, 25.1, 24.9, 23.7, 20.0, 14.4. HRMS (ESI-Q-TOF): m/z: 472.3876. Calcd. for
[M+H]*: 472.3898.

(2S,4R)-N-(1-(cyclohexylamino)-2-methyl-1-oxopropan-2-yl)-
HO, Me\(© 4-hydroxy-N-((S)-1-phenylethyl)pyrrolidine-2-carboxamide

(HN g (3¢): (S)-a-methylbenzylamine (39 L, 0.3 mmol), acetone (44

” o OXNH L, 0.6 mmol), N-Boc-trans-4-hydroxy-proline (56 mg, 0.24

mmol), cyclohexyl isocyanide (25 upL, 0.2 mmol) and

anhydrous sodium sulfate (85 mg, 0.6 mmol) were reacted in

MeOH/THF (300 pL) according to the general procedure D. Flash column

chromatography purification 0-10% of MeOH in DCM afforded the peptide-peptoid

hybrid 3¢ in 73% (59 mg) as a colorless oil. Rf= 0.3 (DCM/MeOH 95:5). [a]p?® = 3.0 (c

0.1, MeOH, 23 °C). NMR "'H (400 MHz, Methanol-d;) 5 7.60 (d, J = 7.7 Hz, 2H), 7.41

(t,J=7.6 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 5.20 (q, J = 7.2 Hz, 1H), 4.28 (bs, 2H), 3.59

(dp, Jd = 11.5, 4.1 Hz, 1H), 3.31 - 3.23 (m, 2H), 3.20 — 3.08 (m, 1H), 1.88 (d, J = 7.1

Hz, 3H), 1.85-1.70 (m, 4H), 1.69 — 1.49 (m, 8H), 1.37 — 1.09 (m, 6H). NMR 13C (100

MHz, Methanol-d,) & 174.8, 170.8, 141.7, 128.7, 127 .4, 126.8, 69.6, 64.8, 58.6, 54.1,

49.1, 384, 32.1, 25.2, 25.1, 24.1, 23.4, 18.8. HRMS (ESI-Q-TOF): m/z: 402.2757.
Calcd. for [M+H]*: 402.2751.

(2S,4R)-N-(1-(hexylamino)-2-methyl-1-oxopropan-2-yl)-4-
HO, Me\(Q hydroxy-N-((S)-1-phenylethyl)pyrrolidine-2-carboxamide (3d):
(HN g (S)-a-methylbenzylamine (39 uL, 0.3 mmol), acetone (44 pL,
INI o} OX‘NH 0.6 mmol), N-Boc-trans-4-hydroxy-proline (56 mg, 0.24
mmol), n-hexyl isocyanide (27 uL, 0.2 mmol) and anhydrous
sodium sulfate (85 mg, 0.6 mmol) were reacted in MeOH/THF
(300 wL) according to the general procedure D. Flash column chromatography
purification 0-10% of MeOH in DCM afforded the peptide-peptoid hybrid 3d in 81% (66
mg) as a colorless oil. R;= 0.3 (DCM/MeOH 95:5). [a]p?® = -9.8 (c 0.1, MeOH, 23 °C).
NMR 'H (400 MHz, Methanol-d,;) 5 7.63 (d, J = 7.7 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H),
7.31(t,J=7.4Hz, 1H), 5.20 (q, J = 7.1 Hz, 1H), 4.26 (s, 1H), 4.18 (s, 1H), 3.24 (dd, J
=11.9, 3.9 Hz, 1H), 3.16 (q, J = 6.7 Hz, 2H), 3.00 (d, J = 11.8 Hz, 1H), 1.90 (d, J=7.0
Hz, 3H), 1.69 — 1.46 (m, 9H), 1.38 — 1.26 (m, 6H), 0.88 (t, 3H). NMR "3C (100 MHz,
Methanol-d,;)  177.1, 173.5, 143.4, 130.0, 128.6, 128.1, 71.5, 65.9, 60.0, 55.6, 53.0,
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40.9, 40.0, 32.7, 30.3, 27.8, 25.6, 24.8, 23.7, 20.4, 14.4. HRMS (ESI-Q-TOF): m/z:
404.2906. Calcd. for [M+H]*: 404.2908.

(2S,4R)-N-(1-(dodecylamino)-2-methyl-1-oxopropan-2-yl)-

HO Me\(© 4-hydroxy-N-((S)-1-phenylethyl)pyrrolidine-2-carboxamide
()\WN g (3e): (S)-a-methylbenzylamine (39 pL, 0.3 mmol), acetone (44
H o OXNH uL, 0.6 mmol), N-Boc-trans-4-hydroxy-proline (56 mg, 0.24
mmol), n-dodecyl isocyanide (45 uL, 0.2 mmol) and anhydrous
sodium sulfate (85 mg, 0.6 mmol) were reacted in MeOH/THF
(300 wL) according to the general Ugi-4CR-based procedure D.
Flash column chromatography purification 0-10% of MeOH in DCM afforded the
peptide-lipopeptoid hybrid 3e in 50% (49 mg) as a colorless oil. Rf= 0.4 (DCM/MeOH
95:5). [a]p?® = 3.2 (c 0.1, MeOH, 23 °C). NMR 'H (400 MHz, Methanol-d4) & 7.65 (d,
J=7.7Hz 2H), 745 (t, J=7.5Hz, 2H), 7.35 (t, J= 7.4 Hz, 1H), 5.24 (q, J = 7.1 Hz,
1H), 4.32 (s, 1H), 3.31 - 3.28 (m, 2H), 3.18 (dd, J = 8.9, 5.7 Hz, 2H), 1.92 (d, J=7.0
Hz, 3H), 1.70 — 1.58 (m, 6H), 1.57 — 1.50 (m, 2H), 1.29 (s, 20H), 0.92 — 0.87 (m, 4H).
NMR 13C (100 MHz, Methanol-d,;) 5 177.0, 171.9, 143.0, 130.1, 128.8, 128.2, 70.8,
66.2, 60.0, 55.5, 53.2, 41.0, 39.8, 33.1, 30.7, 30.5, 30.4, 28.1, 25.4, 24.9, 23.7, 20.2,

14.4. HRMS (ESI-Q-TOF): m/z: 488.3827. Calcd. for [M+H]*: 488.3847.

(2S,4S)-N-(1-(dodecylamino)-2-methyl-1-oxopropan-2-yl)-4-
HO Me\(© hydroxy-N-((S)-1-phenylethyl)pyrrolidine-2-carboxamide  (3f):
Z_HN g (S)-a-methylbenzylamine (39 pL, 0.3 mmol), acetone (44 L, 0.6
H o} OXNH mmol), N-Boc-cis-4-hydroxy-proline (56 mg, 0.24 mmol), n-
dodecyl isocyanide (45 uL, 0.2 mmol) and anhydrous sodium
sulfate (85 mg, 0.6 mmol) were reacted in MeOH/THF (300 pL)
according to the general procedure D. Flash column
chromatography purification 0-10% of MeOH in DCM afforded the peptide-lipopeptoid
hybrid 3f in 80% (78 mg) as a colorless oil. Rf= 0.45 (DCM/MeOH 95:5). [a]p?® = -21.2
(c 0.1, MeOH, 23 °C). NMR 'H (400 MHz, Methanol-d4) 5 7.65 (d, J = 7.7 Hz, 2H),
740 (t, J=7.7Hz 2H),7.28 (t, J=7.6 Hz, 1H), 5.17 (q, J = 7.2 Hz, 1H), 4.00 (s, 1H),
3.62 (s, 1H), 3.17 (td, J=7.0, 3.9 Hz, 2H), 2.95 (d, J = 12.0 Hz, 1H), 2.60 (dd, J=12.4,
4.2 Hz, 1H), 1.89 (d, J = 7.0 Hz, 3H), 1.62 — 1.49 (m, 8H), 1.28 (s, 20H), 0.89 (t, J =
6.7 Hz, 3H). NMR 3C (100 MHz, Methanol-d,;) 5 177.3, 144.3, 129.8, 128.2, 127.8,
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73.2,65.5,60.8, 56.9, 52.8, 40.9, 39.8, 33.1, 30.8, 30.7, 30.50, 30.48, 30.4, 28.1, 25.9,
24.6, 23.7, 20.9, 14.5. HRMS (ESI-Q-TOF): m/z: 488.3863. Calcd. for [M+H]*:
488.3847.

(2S,4R)-4-hydroxy-N-(2-methyl-1-
(octadecylamino)-1-oxopropan-2-yl)-N-((S)-1-
phenylethyl)pyrrolidine-2-carboxamide (3g): (S)-a-
methylbenzylamine (39 uL, 0.3 mmol), acetone (44 uL,
0.6 mmol), N-Boc-trans-4-hydroxy-proline (56 mg, 0.24

mmol), n-octadecyl isocyanide (56 mg, 0.2 mmol) and

anhydrous sodium sulfate (85 mg, 0.6 mmol) were
reacted in MeOH/THF (300 pL) according to the general Ugi-4CR-based procedure D.
Flash column chromatography purification 0-10% of MeOH in DCM afforded the
peptide-lipopeptoid hybrid 3g in 35% (40 mg) as a colorless oil. Ry= 0.2 (DCM/MeOH
95:5). [a]p?® = -38.4 (c 0.1, MeOH, 23 °C). NMR 'H (400 MHz, Methanol-d4) 6 7.52 —
7.26 (m, 5H), 5.29 — 5.12 (m, 1H), 4.64 (s, 1H), 4.04 — 3.63 (m, 1H), 3.54 — 3.31 (m,
2H), 3.20 — 3.13 (m, 2H), 2.58 — 1.82 (m, 3H), 1.78 — 1.39 (m, 6H), 1.27 (s, 30H), 1.16
—0.71 (m, 5H). NMR 3C (100 MHz, Methanol-d,;) 6 172.7, 169.6, 140.0, 129.9, 129.8,
129.5, 129.3, 129.2, 71.4, 61.8, 60.6, 59.8, 56.8, 55.0, 40.9, 40.8, 39.5, 33.1, 30.8,
30.5, 30.46, 30.43, 28.7, 28.1, 23.7, 17.1, 14.5. HRMS (ESI-Q-TOF): m/z: 603.5006.
Calcd. for [M+CH3;OH]*: 603.4975.

(3R,5S)-5-((1-(cyclohexylamino)-2-methyl-1-oxopropan-2-
g/’\j> yh)((S)-1-phenylethyl)carbamoyl)pyrrolidin-3-yl dodecanoate
o \(@ (3h): (S)-a-methylbenzylamine (97 uL, 0.75 mmol), acetone
O Me NS (110 pL, 0.6 mmol), (2S,4R)-4-(dodecanoyloxy)pyrrolidine-2-
% y carboxylic acid® (248 mg, 0.6 mmol), cyclohexyl isocyanide (62
"o 07 TH uL, 0.5 mmol) and anhydrous sodium sulfate (213 mg, 1.5 mmol)
O were reacted in MeOH/THF (600 uL) according to the general
procedure D. Flash column chromatography purification 0-10%
of MeOH in DCM afforded the peptide-lipopeptoid hybrid 3h in 48% (140 mg) as a
colorless oil. Rf= 0.50 (hexanes/EtOAc 7:3). [a]p?® = 8.6 (c 0.1, MeOH, 23 °C). NMR
H (400 MHz, Methanol-d4) 5 7.68 (d, J = 7.7 Hz, 2H), 7.47 (t, J = 7.7 Hz, 2H), 7.35 (t,
J=7.7Hz 1H), 5.27 (q, J = 7.1 Hz, 1H), 3.74 — 3.61 (m, 1H), 3.59 (dd, J = 12.9, 4.7
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Hz, 2H), 3.40 — 3.31 (m, 1H), 2.34 — 2.19 (m, 2H), 1.94 (d, J = 7.0 Hz, 3H), 1.92 — 1.55
(m, 13H), 1.44 — 1.14 (m, 25H), 0.92 (t, J = 6.6 Hz, 3H). NMR '3C (100 MHz, Methanol-
ds) 5176.1, 173.7,170.8, 143.2, 130.2, 128.9, 128.4, 73.8, 66.3, 60.3, 53.0, 52.7, 50.6,
37.1, 34.8, 33.5, 33.1, 30.7, 30.6, 30.5, 30.2, 26.6, 26.5, 25.9, 25.7, 25.5, 24.8, 23.7,
20.1, 14.4. HRMS (ESI-Q-TOF): m/z: 584.4412. Calcd. for [M+H]*: 584.4422.

(S)-N-(1-(cyclohexylamino)-2-methyl-1-oxopropan-2-yl)-N-

B dodecylpyrrolidine-2-carboxamide (3i): N-dodecyl amine
Q\WNX (56 mg, 0.3 mmol), acetone (44 uL, 0.6 mmol), N-Boc-
\H proline (52 mg, 0.24 mmol), cyclohexyl isocyanide (25 pL,
0.2 mmol) and anhydrous sodium sulfate (85 mg, 0.6 mmol)
were reacted in MeOH (200 uL) according to the general
procedure B. Flash column chromatography purification 0-10% of MeOH in DCM
afforded the peptide-lipopeptoid hybrid 3i in 70% (63 mg) as a colorless oil. R¢= 0.6
(DCM/MeOH 95:5). [a]p?® = -11.2 (c 0.1, MeOH, 23 °C). NMR 'H (400 MHz,
Chloroform-d;) 6 5.97 (d, J = 8.2 Hz, 1H), 4.66 (t, J = 7.6 Hz, 1H), 3.67 — 3.57 (m,
1H), 3.53 — 3.39 (m, 3H), 3.31 (ddd, J = 16.3, 11.7, 5.3 Hz, 1H), 2.44 — 2.33 (m, 1H),
217 —1.93 (m, 3H), 1.83 (dt, J = 14.4, 7.2 Hz, 2H), 1.75 - 1.63 (m, 3H), 1.61 — 1.42
(m, 6H), 1.33 — 1.09 (m, 24H), 0.89 — 0.82 (m, 4H). NMR *3C (100 MHz, Chloroform-
d;) & 173.1, 168.8, 63.3, 58.9, 48.9, 46.5, 45.1, 32.9, 32.9, 32.0, 31.9, 29.8, 29.7,
29.67, 29.65, 29.4, 29.3, 27.2, 25.6, 25.2, 25.2, 25.0, 24.6, 24.5, 22.8, 14.2. HRMS
(ESI-Q-TOF): m/z: 450.4043. Calcd. for [M+H]*: 450.4054.

(S)-N-dodecyl-N-(1-(dodecylamino)-2-methyl-1-

B oxopropan-2-yl)pyrrolidine-2-carboxamide  (3j): N-
%NXNH dodecyl amine (56 mg, 0.3 mmol), acetone (44 L, 0.6
mmol), N-Boc-proline (52 mg, 0.24 mmol), n-dodecyl
isocyanide (45 uL, 0.2 mmol) and anhydrous sodium
sulfate (85 mg, 0.6 mmol) were reacted in MeOH/THF
(300 pL) according to the general procedure C. Flash column chromatography
purification 0-10% of MeOH in DCM afforded the peptide-lipopeptoid hybrid 3j in 57%
(61 mg) as a colorless oil. Rs= 0.5-0.6 (DCM/MeOH 95:5). [a]p?® =-14.2 (c 0.1, MeOH,
23 °C). NMR 'H (400 MHz, Methanol-d,) 6 4.50 — 4.42 (m, 1H), 3.50 — 3.32 (m, 3H),
3.27 — 3.01 (m, 3H), 2.48 (dq, J = 13.0, 6.9, 5.4 Hz, 1H), 2.11 — 1.91 (m, 3H), 1.74 —
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1.59 (m, 2H), 1.52 (s, 3H), 1.47 (s, 3H), 1.39 — 1.22 (m, 38H), 0.88 (t, J = 6.6 Hz, 6H).
NMR 13C (100 MHz, Methanol-d,) 5 176.9, 169.8, 64.2, 60.4, 47.5, 45.6, 40.9, 33.1,
32.6, 30.8, 30.5, 30.4, 28.1, 27.9, 25.4, 24.8, 24.3, 23.7, 14.4. HRMS (ESI-Q-TOF):

m/z: 536.5145. Calcd. for [M+H]*: 536.5150.
0w 2,2-diphenylglycine methyl ester hydrochloride (241 mg, 1
hE NH Mmol), DIPEA (174 uL, 1 mmol), acetone (110 pL, 1.5 mmol), N-

~ O
HNQ\ Boc-trans-4-hydroxy-proline (139 mg, 0.6 mmol), n-dodecyl
OH

(2S,4R)-N-benzhydryl-N-(1-(dodecylamino)-2-methyl-1-
oxopropan-2-yl)-4-hydroxypyrrolidine-2-carboxamide  (3k):
N

O

isocyanide (98 uL, 0.5 mmol) and anhydrous sodium sulfate (213
mg, 1.5 mmol) were reacted in MeOH/THF (600 pL) according to
the general procedure D. Flash column chromatography purification 0-10% of MeOH
in DCM afforded the peptide-lipopeptoid hybrid 3k in 55% (151 mg) as a colorless oil.
R;= 0.5 (DCM/MeOH 95:5). [a]p?® = 2.6 (c 0.1, MeOH, 23 °C). NMR "'H (400 MHz,
Methanol-d;) 6 7.52 — 7.41 (m, 4H), 7.43 — 7.34 (m, 4H), 7.34 — 7.24 (m, 2H), 6.45
(bs, 1H), 4.12 (s, 1H), 3.88 (t, J = 7.8 Hz, 1H), 3.26 — 3.15 (m, 2H), 3.12 (dd, J = 11.8,
4.7 Hz, 1H), 2.63 (d, J = 11.8 Hz, 1H), 1.72 — 1.59 (m, 3H), 1.57 — 1.45 (m, 5H), 1.38
—1.24 (m, 20H), 0.89 (t, J = 6.6 Hz, 3H). NMR '3C (100 MHz, Methanol-d4) & 177.5,
177.1, 143.1, 139.9, 130.1, 130.0, 129.9, 129.5, 128.9, 128.8, 72.5, 66.0, 62.2, 61.6,
56.1, 40.9, 39.7, 33.1, 30.8, 30.7, 30.50, 30.47, 30.4, 28.1, 25.7, 24.5, 23.7, 14.5.
HRMS (ESI-Q-TOF): m/z: 550.4002. Calcd. for [M+H]*: 550.4003.

7. General procedure for asymmetric 1,4-addition of butanal to trans-g-
nitrostyrene: Catalyst Screening

General procedure F: A vial was charged with the prolyl pseudo-lipopeptides hybrid
catalyst 3a-k (10 mol%), trans-B-nitrostyrene’ (0.2 mmol, 1.0 equiv.) and 0.4 mL of
water. The mixture was homogenized in an ultrasound bath, butanal (0.40 mmol, 2.0
equiv.) was added and this mixture was stirred for 24 h. After this period, the resulting
reaction mixture was extracted with EtOAc, dried over anhydrous Na,SO, and
concentrated under reduced pressure. The yield was determined by 'H NMR analysis
of crude product with 1.2.3-trimethoxybenzene (0.2 mmol, 1.0 equiv.) as internal
standard. The crude product was purified by flash column chromatography on silica

gel using hexanes/EtOAc (9:1 v/v) as eluent. The diastereoisomeric ratio was
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determined by '"H NMR analysis of crude of the reaction mixture. Enantiomeric excess
(e.e.) was determined by chiral HPLC or UPC? analysis through comparison with the

authentic racemic material.

TABLE 2. Catalysts Screening.

R’ )
R® O
oy
NN
N ~, H
H
o) 3a-k O Ph
Catalysts (10 mol%) NO
/\/NOZ Yy /0, 2
H)H * Ph H,O, rt, 24h H
Et Et
4a
Entry Catalyst Yield (%)? d.r. (syn/anti)c e.e. (%)
1 3a 57 94:06 96
2 3b 90 89:11 94
3 3c 43 70:30 99
4 3d 72b 81:19 97
5 3e 88 76:24 99
6 3f 78b 79:21 94
7 3g 35b 87:13 92
8 3h 23 89:11 99
9 3i 75 76:24 88
10 3j 87 88:12 83
11 3k 84 79:21 89

@ Yield determined by 'H NMR spectroscopy analysis of crude of the reaction
mixture with 1,2,3-trimethoxybenzene as standard; ?Isolated yield; ¢ syn/trans ratio
determined by 'H NMR; 9 Determined by chiral-stationary phase HPLC or UPC?
analysis.
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8. Optimization of asymmetric Michael reaction of butanal and trans-f

nitrostyrene catalyzed by compound 3e

TABLE 3. Optimization of the system.

HO  Me_Fh
§ \E Me

@( =Me
H o j/‘\uxn'cu"'zs

0]
o 3e O Ph
NO (X mol%)
HJW +opn 2 H NO:
H,0, rt, 24h
Et Et
4a
Entry2  Catalyst (mol%) Solvent Yield (%) ° d.r. (synlanti) ¢ e.e. (%)Y
1 10 H,O 88 76:24 99
2 5 H,O 90 90:10 99
3 2.5 H,0 99(96) 93:7 99
4 1 H,O 65 98:2 99
5 2.5 Ethanol 26 85:15 98
6 2.5 Brine 84 95:5 99
7 2.5 PEG-300 54 82:18 98

aReactions using 2 equivalents of butanal and 0.2 mmol of B-nitrostyrene in 0.4 mL of solvent; © Yield
determined by 'H NMR spectroscopy analysis of crude of the reaction mixture (yield of isolated
product); ¢ syn/anti ratio determined by 'H NMR; ¢ Determined by chiral-stationary phase HPLC or

UPC2 analysis.
se | dadlh ek
"‘"zp Ha. H O

T :x'-t:; \aa./

FIGURE 1. Visual schematic representation of the optimized condition in different stages. (A) Catalyst 3e in water;
(B) mixture of butyraldehyde and trans-/nitrostyrene in water; (C) mixture of butyraldehyde, trans-#-nitrostyrene
and catalyst 3e in water; (D) mixture of butyraldehyde, trans-/nitrostyrene and catalyst 3e in water after stirred for
24h.

9. General procedure for asymmetric 1,4-addition of aldehydes to
nitrostyrenes
General procedure G: A vial was charged with the prolyl pseudo-lipopeptide hybrid
catalyst 3e (2.5 mol%), the nitrostyrene’ (0.2 mmol, 1.0 equiv) and 0.4 mL of water.
The mixture was homogenized in an ultrasound bath, the aldehyde (0.40 mmol, 2.0
equiv) was added and this mixture was stirred for 24 h. After this period, the resulting

reaction mixture was extracted with EtOAc, dried over anhydrous Na,SO, and
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concentrated under reduced pressure. The crude product was purified by flash column
chromatography on silica gel using hexanes/EtOAc as eluent. The diasterecisomeric
ratio was determined by 'H NMR analysis of crude of the reaction mixture.
Enantiomeric excess (e.e.) was determined by chiral HPLC or UPC? analysis through
comparison with the authentic racemic material.

TABLE 4. Scope of catalyst 3e in the asymmetric Michael reaction between different

aldehydes and trans-B-nitrostyrenes.

HO.  Mea_ PP
g \E Me

()ﬁ( =Me
H o ;Hzn'cﬂst

(o]
2.5 mol?
H)H . RZ/\/NO2 (2.5 mol%) HJ\‘)\/NOZ
H,0, rt, 24h
R1 R1
4a-p

Entry2 R? R2 Compound Yield d.r. e.e.
(%)* (synlanti)c  (%)?

1 Ethyl Phenyl 4a 99(96) 93:07 99
2 n-Butyl Phenyl 4b 91(n.d.) 92:08 99
3 i-Propyl Phenyl 4c 79(n.d.) 99:01 99
4 6-(2-methylhept-2-ene) Phenyl 4d (64) 86:14 98
5 Ethyl 4-FCgH, 4e 91(86) 92:08 98
6 Ethyl 4-CICgH,4 4f 95(91) 92:08 99
7 Ethyl 4-BrCgH, 4qg 96(94) 92:08 98
8 Ethyl 4-NO,CgH, 4h 89(80) 89:11 97
9 Ethyl 4-CF3CgH4 4i (64) 91:09 98
10 Ethyl 4-MeOCgH,4 4j 87(84) 93:07 96
11 Ethyl 4-MeCgH, 4k (82) 91:09 98
12 Ethyl 4-t-BuCgH,4 4 (67) 79:21 97
13 Ethyl 2-NO,CgH,4 4m (78) 75:25 97
14 Ethyl 2-MeOC¢H, 4n (71) 87:13 99
15 Ethyl 2-Furyl 40 (83) 82:18 99
16 Ethyl n-Pentyl 4p (73) 99:01 96
17 Ethyl i-Butyl 4q (66) 99:01 99

@ All reactions were conducted using 2 equivalents of the aldehyde and 0.2 mmol of B-nitrostyrene
in 0.4 mL of water; ? Yield determined by 'H-NMR analysis with 1,2,3-trimethoxybenzene as
internal patron and (isolated product); ¢ Determined by 'H NMR of crude of the reaction mixture;
9 Determined by chiral-stationary phase HPLC or UPC? analysis.

10. Scale-up

A vial was charged with the prolyl pseudo-lipopeptide hybrid catalyst 3e (2.5 mol%,
24 mg), the nitrostyrene’ (2 mmol, 298 mg, 1.0 equiv,) and 4 mL of water. The
mixture was homogenized in an ultrasound bath, the butanal (4 mmol, 361 uL, 2.0

equiv) was added and this mixture was stirred for 72 h. After this period, the
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resulting reaction mixture was extracted with EtOAc, dried over anhydrous Na,SO,
and concentrated under reduced pressure. The crude product was purified by flash
column chromatography on silica gel using (hexanes/EtOAc 9:1) to afford 4a in
90% (400.4 mg) as a colorless oil. The diastereocisomeric ratio was determined by
"H NMR analysis of crude of the reaction mixture. Enantiomeric excess (e.e.) was
determined by chiral UPC2analysis through comparison with the authentic racemic

material.

a) Catalyst 3e in water; b) After the addition of nitrostyrene and butanal; c) After
72h of reaction.

11.Catalyst recycle

A vial was charged with the prolyl pseudo-lipopeptide hybrid catalyst 3e (10 mol%),
the nitrostyrene’ (0.2 mmol, 1.0 equiv), and 0.4 mL of water. The mixture was
homogenized in an ultrasound bath, the aldehyde (0.40 mmol, 2.0 equiv) was
added and this mixture was stirred for 24 h. After this period, the resulting reaction
mixture was extracted with EtOAc, dried over anhydrous Na,SO,, and concentrated
under reduced pressure. The crude product was filtered by a small amount of silica
flash using ethyl acetate to afford 4a in as follows in Table 2, entry 5. After that, the
catalyst remains in the silica, and it is recovered by passing 50 ml of methanol
through the silica. Then, the solvent was removed by reduced pressure on
rotovapory and transferred to the 5 ml vial, and dried under a high vacuum for 2 h.
After this period, the nitrostyrene’ (0.2 mmol, 1.0 equiv) and 0.4 mL of water were
added into the vial containing the catalyst. The mixture was homogenized in an
ultrasound bath, the aldehyde (0.40 mmol, 2.0 equiv) was added and this mixture

was stirred for 24 h. The procedure was carried out over four times and the results
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are depicted in Figure 2. The yield was determined by '"H NMR analysis of the crude
product with 1.2.3-trimethoxybenzene (0.2 mmol, 1.0 equiv.) as an internal
standard. The diastereocisomeric ratio was determined by 1H NMR analysis of
crude of the reaction mixture. Enantiomeric excess (e.e.) was determined by chiral

UPC? analysis through comparison with the authentic racemic material.

Recycle 2 Yield (%) d.r. (synlanti) ¢ e.e. (%) ¢
1 90 80:20 99
2 87 91:9 99
3 88 92:8 99
4 88 93:2 99

2 Reactions using 2 equivalents of butanal and 0.2 mmol of 8-
nitrostyrene in 0.4 mL of solvent; ? Yield determined by "H NMR
spectroscopy analysis of crude of the reaction mixture; ¢ syn/anti
ratio determined by 'H NMR; ¢ Determined by chiral-stationary
phase HPLC or UPC2 analysis.

Recycle 1 Recycle 2 Recycle 3 Recycle 4

100

8

S

6

[}

4

o

2

(=)

S

myield (42 %) msynratio (4a) e.e. (4a %)

FIGURE 2. Catalyst recycled over four-times.

12.Characterization data of compounds 4a-q

(2R,3S)-2-ethyl-4-nitro-3-phenylbutanal (4a)8: Prepared by reaction

o of butanal with trans-B-nitrostyrene according to the procedure G.

H NO2 Flash chromatography (hexanes/EtOAc 9:1) afforded 4a in 96% (42
mg) as a colorless oil. The enantiomeric excess was determined by

chiral-stationary phase UPC?2. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5% in 9
min; 100-0 % in 1 min at 3 ml/min at 25°C. UV detection at 210 nm: R¢: (syn, major) =

4.13 min, (syn, minor) = 3.93 min. R;= 0.4 (hexanes/EtOAc 9:1). NMR 'H (400 MHz,
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CDCls) 3 9.65 (s, 1H), 7.30 — 7.20 (m, 3H), 7.11 (d, J = 7.6 Hz, 2H), 4.77 — 4.52 (m,
2H), 3.72 (td, J = 10.1, 5.3 Hz, 1H), 2.61 (dddd, J = 10.1, 7.5, 4.7, 2.2 Hz, 1H), 1.48 —
1.39 (m, 2H), 0.76 (t, J = 7.3 Hz, 3H). NMR *3C (100 MHz, CDCl;) & 203.4, 136.9,
129.3, 128.3, 128.1, 78.7, 55.1, 42.9, 20.5, 10.8.

(R)-2-((S)-2-nitro-1-phenylethyl)hexanal (4b)°: Prepared by reaction

o) of hexanal with trans-B-nitrostyrene according to the procedure G.

H NO2 Flash chromatography (hexanes/EtOAc 9:1) afforded 4b in 91%. The

enantiomeric excess was determined by chiral-stationary phase

UPC2. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5% in 9 min;

100-0 % in 1 min at 3 ml/min at 25°C. UV detection at 210 nm: R¢: (syn, major) = 6.95

min, (syn, minor) = 6.64 min. Rs= 0.5 (hexanes/EtOAc 9:1). NMR 'H (400 MHz, CDCl5)

09.70 (d, J = 2.8 Hz, 1H), 7.37 — 7.27 (m, 3H), 7.19 — 7.15 (m, 2H), 4.85 — 4.60 (m,

2H), 3.84 — 3.73 (m, 1H), 2.70 (dddd, J = 9.8, 8.9, 4.0, 2.8 Hz, 1H), 1.51 — 1.35 (m,

2H), 1.34 —1.24 (m, 2H), 1.22 - 1.12 (m, 2H), 0.79 (t, 3H). NMR 3C (100 MHz, CDCI,)
0 203.4, 136.9, 129.2, 128.3, 128.1, 78.6, 54.0, 43.2, 28.6, 27.1, 22.6, 13.8.

(2R,3S)-2-isopropyl-4-nitro-3-phenylbutanal (4c)>: Prepared by

o reaction of isovaleraldehyde with trans-B-nitrostyrene according to

H NO; the procedure G. Flash chromatography (hexanes/EtOAc 9:1)

afforded 4c in 79%. The enantiomeric excess was determined by

chiral-stationary phase UPC?2. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5% in 9

min; 100-0 % in 1 min at 3 ml/min at 25°C. UV detection at 210 nm: R¢: (syn, major) =

3.97 min, (syn, minor) = 3.68 min. Ry= 0.45 (hexanes/EtOAc 9:1). NMR 'H (400 MHz,

CDCI3)569.93(d, J=2.4Hz, 1H), 7.37 - 7.27 (m, 3H), 7.21 -7.17 (m, 2H), 4.71 — 4.53

(m, 2H), 3.90 (td, J = 10.3, 4.4 Hz, 1H), 2.77 (ddd, J = 10.8, 4.1, 2.4 Hz, 1H), 1.72

(heptd, J=7.1, 4.1 Hz, 1H), 1.10 (d, J = 7.2 Hz, 3H), 0.88 (d, J = 7.0 Hz, 3H). NMR

13C (100 MHz, CDCI3) 5 204.4, 137.1, 129.2, 128.1, 128.0, 79.0, 58.8, 41.9, 27.9, 21.7,
17.0.

(2R,3R)-3,7-dimethyl-2-((S)-2-nitro-1-phenylethyl)oct-6-enal  (4d):

o Prepared by reaction of (R)-(+)-Citronellal with frans-B-nitrostyrene

H NO: according to the procedure G. Flash chromatography

Me (hexanes/EtOAc 9:1) afforded 4d in 64% (38.6 mg) as a colorless oil.
S17
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The enantiomeric excess was determined by chiral-stationary phase UPC2. Trefoll
CEL1, Grad: CO,/ACN 100-0% to 98-2% in 9 min; 100-0 % in 1 min at 3 ml/min at
25°C. UV detection at 210 nm: Ry: (syn, major) = 4.09 min, (syn, minor) = 3.70 min. Ry
= 0.6-0.7 (hexanes/EtOAc 9:1). NMR 'H (400 MHz, CDCl;) 6 9.84 — 9.79 (m, 1H), 7.30
—7.20 (m, 3H), 7.10 (d, J = 8.2 Hz, 2H), 4.72 (t, J = 6.5 Hz, 1H), 4.64 — 4.46 (m, 2H),
3.87 (td, J=10.4,4.4 Hz, 1H), 2.68 (dt, J=10.7, 3.1 Hz, 1H), 1.90 - 1.79 (m, 1H), 1.64
—1.52 (m, 2H), 1.51 (s, 3H), 1.48 — 1.43 (m, 2H), 1.42 (s, 3H), 1.00 (d, J = 7.1 Hz, 3H).
NMR 3C (100 MHz, CDCI;) 5 204.14, 137.23, 132.29, 129.21, 128.19, 123.30, 79.22,
59.20, 41.70, 32.13, 31.48, 25.72, 25.70, 18.66, 17.67.

F (2R,3S)-2-ethyl-3-(4-fluorophenyl)-4-nitrobutanal (4e)2: Prepared by

reaction of butanal with trans-4-fluoro-gB-nitrostyrene according to the

o) procedure G. Flash chromatography (hexanes/EtOAc 9:1) afforded

H NO2 4fin 86% (41 mg) as a colorless oil. The enantiomeric excess was

determined by chiral-stationary phase UPC2. Trefoil CEL2, Grad:

CO,/EtOH 100-0% to 95-5% in 9 min; 100-0 % in 1 min at 2 ml/min at 25°C. UV

detection at 210 nm: R¢: (syn, major) = 6.88 min, (syn, minor) = 6.30 min. R¢= 0.3

(hexanes/EtOAc 9:1). NMR 'H (400 MHz, CDCIs) 6 9.72 (d, J = 2.4 Hz, 1H), 7.19 —

7.15(m, 2H), 7.07 - 7.00 (m, 2H), 4.83 —4.56 (m, 2H), 3.85 - 3.75 (m, 1H), 2.66 (dddd,

J=10.3,8.1,4.3, 2.4 Hz, 1H), 1.54 — 1.47 (m, 2H), 0.84 (t, J = 7.5 Hz, 3H). NMR 13C

(100 MHz, CDCI3) 6 202.9, 163.6, 161.1 (d, 'Jc.r = 247.2 Hz), 132.58, 132.55 (d, *Jcr

= 3.1 Hz), 129.7, 129.6 (d, 3Jc.r= 8.1 Hz), 116.3, 116.0 (d, 2Jc.Fr = 21.6 Hz), 78.6, 54.9,
42.0, 20.3, 10.6. 'F NMR (377 MHz, CDCI;) 6 -113.42 — -113.76 (m).

cl (2R,3S)-3-(4-chlorophenyl)-2-ethyl-4-nitrobutanal (4f)8: Prepared by
reaction of butanal with trans-4-chloro-B-nitrostyrene according to

o the procedure G. Flash chromatography (hexanes/EtOAc 9:1)

H NO; afforded 4g in 91% (46 mg) as a colorless oil. The enantiomeric
excess was determined by chiral-stationary phase UPC?2. Trefoil

AMY1, Grad: CO,/MeOH 100-0% to 90-10 % in 6 min; 90-10 % in 3 min; 100-0 % in
1 min at 2 ml/min at 25°C. UV detection at 210 nm: R¢: (syn, major) = 3.45 min, (syn,
minor) = 4.21 min. Rf= 0.25 (hexanes/EtOAc 9:1). NMR 'H (400 MHz, CDCIs) 5 9.71
(d, J=2.3Hz, 1H),7.35-7.28 (m, 2H), 7.16 — 7.11 (m, 2H), 4.82 — 4.55 (m, 2H), 3.79
(td, J = 9.9, 4.9 Hz, 2H), 2.67 (dddd, J = 10.3, 8.2, 4.2, 2.3 Hz, 1H), 1.55 — 1.45 (m,
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2H), 0.83 (t, J = 7.5 Hz, 3H). NMR 3C (100 MHz, CDCl;) 5 202.9, 135.5, 129.6, 129.5,
129.4,78.5, 54.8, 42.1, 20.4, 10.7.

Br (2R,3S)-3-(4-bromophenyl)-2-ethyl-4-nitrobutanal (4g)%: Prepared

by reaction of butanal with trans-4-bromo-B-nitrostyrene according to

o) the procedure G. Flash chromatography (hexanes/EtOAc 9:1)

H NO2 afforded 4h in 94% (57 mg) as a light yellow oil. The enantiomeric

excess was determined by chiral-stationary phase UPC?2. Trefoil

AMY1, Grad: CO,/MeOH 100-0% to 90-10 % in 6 min; 90-10 % in 3 min; 100-0 % in

1 min at 2 ml/min at 25°C. UV detection at 210 nm: R¢: (syn, major) = 3.98 min, (syn,

minor) = 6.71min. Rs= 0.3 (hexanes/EtOAc 9:1). NMR 'H (400 MHz, CDCl3) 5 9.71 (d,

J=23Hz, 1H), 7.50 — 7.44 (m, 2H), 7.10 — 7.05 (m, 2H), 4.82 — 4.55 (m, 2H), 3.83 —

3.74 (m, 1H), 2.67 (dddd, J = 10.3, 8.2, 4.2, 2.3 Hz, 1H), 1.54 — 1.47 (m, 2H), 0.84 (t,

J=7.5Hz, 2H). NMR'3C (100 MHz, CDCIl3) 5 202.8, 136.0, 132.4, 129.8, 122.3, 78.4,
54.8,42.2, 20.5, 10.7.

NO, (2R,3S)-2-ethyl-4-nitro-3-(4-nitrophenyl)butanal (4h): Prepared by

reaction of butanal with trans-4-nitro-g-nitrostyrene according to the

o procedure G. Flash chromatography (hexanes/EtOAc 8:2) afforded

H NO2 4iin 80% (43 mg) as a light yellow oil. The enantiomeric excess was

determined by chiral-stationary phase UPC?2. Trefoil AMY1, Grad:

CO,/IPA 100-0% to 90-10 % in 18 min; 90-10 % in 2 min at 2 ml/min at 25°C. UV

detection at 210 nm: R¢: (syn, major) = 8.84 min, (syn, minor) = 10.04 min. Rf= 0.4

(hexanes/EtOAc 8:2). NMR 'H (400 MHz, CDCI3) 6 9.74 (d, J = 1.9 Hz, 1H), 8.26 —

8.18 (m, 2H), 7.45 — 7.39 (m, 2H), 4.86 — 4.65 (m, 2H), 4.02 — 3.92 (m, 1H), 2.82 —

2.70 (m, 1H), 1.61 — 1.44 (m, 2H), 0.87 (t, J = 7.5 Hz, 3H). NMR '3C (100 MHz, CDCI,)
0202.1,147.8,144.7, 129.3, 124.4,77.9, 54 .4, 42.3, 20.5, 10.5.

CF, (2R,3S)-2-ethyl-4-nitro-3-(4-(trifluoromethyl)phenyl)butanal (4i):
Prepared by reaction of butanal with trans-4-trifluoromethyl-g-

o nitrostyrene according to the procedure G. Flash chromatography

H NO2 (hexanes/EtOAc 9:1) afforded 4j in 64% (37 mg) as a light yellow oil.
The enantiomeric excess was determined by chiral-stationary phase

UPC2. Trefoil CEL2, Grad: CO,/IPA 100- 0% to 95-05 % in 14 min; 100-0 % in 1 min
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at 1.5 ml/min at 25°C. UV detection at 210 nm: R¢: (syn, minor) = 10.69 min, (syn,
major) = 11.18 min. Rs= 0.3 (hexanes/EtOAc 9:1). NMR 'H (400 MHz, CDCI;) 5 =9.73
(d, J=2.0 Hz, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.83 — 4.63 (m,
2H), 3.89 (td, J = 10.0, 4.8 Hz, 1H), 2.78 — 2.69 (m, 1H), 1.57 — 1.44 (m, 2H), 0.85 (t,
J=7.5Hz, 3H). NMR'3C (100 MHz, CDCI;) 5 202.6, 141.3, 131.1, 130.8, 130.4, 130.1
(9, 2Jc.r = 32.4 Hz), 128.7, 128.0, 126.30, 126.26, 126.22, 126.18 (q, 3Jc.r = 4.0 Hz),
125.3, 122.6, 119.9 (q, Jc.r = 272.2 Hz)., 78.2, 54.7, 42.4, 20.5, 10.6. °F NMR (377
MHz, CDCI;) 6 -62.52 — -62.90 (m).

OMe (2R,3S)-2-ethyl-3-(4-methoxyphenyl)-4-nitrobutanal (4j): Prepared

by reaction of butanal with trans-4-methoxy-g-nitrostyrene according

o) to the procedure G. Flash chromatography (hexanes/EtOAc 8:2)

H NO; afforded 4k in 84% (42 mg) as a light yellow oil. The enantiomeric

excess was determined by chiral-stationary phase UPC2. Trefoil

CEL2, Grad: CO,/EtOH 100-0% to 98-2 % in 19 min; 100-0 % in 1 min at 2.5 ml/min

at 25°C. UV detection at 210 nm: R¢: (syn, major) = 15.43 min, (syn, minor) = 14.88

min. Rs= 0.2 (hexanes/EtOAc 9:1). NMR 'H (400 MHz, CDCI3) 5 9.71 (d, J = 2.7 Hz,

1H), 7.11 — 7.07 (m, 2H), 6.89 — 6.83 (m, 2H), 4.81 — 4.54 (m, 2H), 3.79 (s, 3H), 3.73

(dt, J=10.0, 5.1 Hz, 1H), 2.67 — 2.59 (m, 1H), 1.56 — 1.46 (m, 2H), 0.83 (t, J = 7.5 Hz,

3H). NMR 13C (100 MHz, CDCIl3) 5 203.5, 159.4, 129.4, 129.2, 114.6, 78.9, 55.4, 42.1,
20.5,10.8.

Me (2R,3S)-2-ethyl-4-nitro-3-(p-tolyl)butanal (4k): Prepared by reaction

of butanal with trans-4-methyl-B-nitrostyrene according to the

o procedure G. Flash chromatography (hexanes/EtOAc 9:1) afforded

H NO2 41 in 82% (39 mg) as a colorless oil. The enantiomeric excess was

determined by chiral-stationary phase UPC?2. Trefoil CEL2, Grad:

CO,/ACN 100- 0% to 90-10 % in 5 min; 90-10 % in 4 min; 100-0 % in 1 min at 1 ml/min

at 25°C. UV detection at 210 nm: R¢: (syn, minor) = 5.85 min, (syn, major) = 6.17 min.

R;= 0.45-0.50 (hexanes/EtOAc 9:1). NMR 'H (400 MHz, CDCI;) 6 9.70 (d, J = 2.3 Hz,

1H), 7.14 (d, J = 7.8 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 4.81 — 4.56 (m, 2H), 3.75 (id, J

=9.8, 5.1 Hz, 1H), 2.65 (dddd, J=10.2,7.7,4.5, 2.4 Hz, 1H), 2.32 (s, 3H), 1.57 — 1.44

(m, 2H), 0.82 (t, J = 7.5 Hz, 4H). NMR 13C (100 MHz, CDCI;) 6 203.5, 138.0, 133.8,
129.9, 128.0, 78.8, 55.2, 42.5, 21.2, 20.5, 10.8.

S20



tBu (2R,3S)-3-(4-(tert-butyl)phenyl)-2-ethyl-4-nitrobutanal (4l): Prepared

by reaction of butanal with trans-4-tert-butyl-B-nitrostyrene according

o) to the procedure G. Flash chromatography (hexanes/EtOAc 9:1)

H NO; afforded 4m in 67% (37 mg) as a light yellow oil. The enantiomeric

excess was determined by chiral-stationary phase UPC2. Trefoil

CEL2, Grad: CO,/EtOH 100-0% to 98-02 % in 19 min; 100-0 % in 1 min at 3 ml/min at

40°C. UV detection at 210 nm: R¢: (syn, minor) = 9.30 min, (syn, major) = 9.65 min. Ry

= 0.5 (hexanes/EtOAc 9:1). NMR 'H (400 MHz, CDCl3) 5 9.71 (d, J = 2.6 Hz, 1H), 7.35

—7.29 (m, 2H), 7.14 —-7.05 (m, 2H), 4.84 — 4.58 (m, 2H), 3.77 (td, J = 9.6, 5.3 Hz, 1H),

2.65 (dtd, J = 9.3, 6.4, 2.7 Hz, 1H), 1.51 (p, J = 7.2 Hz, 2H), 1.29 (s, 9H), 0.84 (t, J =

7.5 Hz, 3H). NMR 13C (100 MHz, CDCI;) 5 203.6, 151.1, 133.7, 127.7, 126.1, 78.6,
55.4,42.4,34.6, 31.4, 20.5, 11.0.

(2R,3S)-2-ethyl-4-nitro-3-(2-nitrophenyl)butanal (4m): Prepared by

o No, reaction of butanal with trans-2-nitro-B-nitrostyrene according to the

H NO2 procedure G. Flash chromatography (hexanes/EtOAc 7:3) afforded

4nin 78% (42 mq) as a light yellow oil. The enantiomeric excess was

determined by chiral-stationary phase UPC?. Trefoil CEL2, Grad: CO,/ACN 100-0% to

90-10 % in 5 min; 90-10 % in 4 min; 100-0 % in 1 min at 2 ml/min at 25°C. UV detection

at 210 nm: R¢ (syn, minor) = 5.77 min, (syn, major) = 7.14 min. R = 0.6

(hexanes/EtOAc 7:3). NMR 'H (400 MHz, CDCl;) 5 = 9.73 (d, J = 2.2 Hz, 1H), 7.90 —

7.86 (m, 1H), 7.64 — 7.58 (m, 1H), 7.50 — 7.36 (m, 2H), 4.92 — 4.70 (m, 2H), 4.42 (id,

J=9.2,4.2 Hz, 1H), 3.00 — 2.84 (m, 1H), 1.74 — 1.44 (m, 2H), 0.88 (t, J = 7.5 Hz, 3H).

NMR 13C (100 MHz, CDCI3) 6 = 202.6, 150.7, 133.4, 132.0, 129.1, 125.4, 77.4, 54 .4,
37.2,21.1,11.1.

(2R,3S)-2-ethyl-3-(2-methoxyphenyl)-4-nitrobutanal (4n)8: Prepared

o OMe by reaction of butanal with trans-2-methoxy-g-nitrostyrene according

H NO2 to the procedure G. Flash chromatography (hexanes/EtOAc 9:1)
afforded 40 in 71% (36 mg) as a light yellow oil. The enantiomeric

excess was determined by chiral-stationary phase UPC?2. Trefoil CEL2, Grad:
CO,/EtOH 100- 0% to 98-02 % in 19 min; 100-0 % in 1 min at 2 ml/min at 25°C. UV
detection at 210 nm: R¢: (syn, minor) = 11.37 min, (syn, major) = 12.03 min. R¢= 0.4

S21



(hexanes/EtOAc 9:1). NMR 'H (400 MHz, CDCl;) 5 9.63 (d, J = 2.6 Hz, 1H), 7.24 —
7.15 (m, 1H), 7.02 (d, J = 7.5 Hz, 1H), 6.86 — 6.80 (m, 2H), 4.80 — 4.55 (m, 2H), 3.95
(td, J = 9.7, 4.9 Hz, 1H), 2.95 — 2.82 (m, 1H), 1.45 — 1.35 (m, 2H), 0.73 (t, J = 7.5 Hz,
3H). NMR '3C (100 MHz, CDCl3) 5 203.9, 157.6, 130.6, 129.4, 121.1, 111.3, 55.5, 53.6,
39.6, 20.6, 10.9.

(2R,3R)-2-ethyl-3-(furan-2-yl)-4-nitrobutanal (40)%: Prepared by
reaction of butanal with trans-gB-nitrovinylfuran according to the

procedure G. Flash chromatography (hexanes/EtOAc 9:1) afforded

4p in 83% (35 mq) as a light yellow oil. The enantiomeric excess was
determined by chiral-stationary phase UPC?2. Trefoil CEL2, CO,/MeOH 98.5-1.5 in 8
min at 1 ml/min at 35°C. UV detection at 210 nm: R¢: (syn, minor) = 5.53 min, (syn,
major) = 5.78 min. Rs= 0.5 (hexanes/EtOAc 9:1). NMR 'H (400 MHz, CDCI;) 6 = 9.71
(s, 1H), 7.37 (d, J = 0.9 Hz, 1H), 6.34 — 6.28 (m, 1H), 6.20 (d, J = 3.3 Hz, 1H), 4.76 —
4.63 (m, 2H), 4.05 - 3.95 (m, 1H), 2.76 (dtd, J = 8.6, 6.9, 1.5 Hz, 1H), 1.62 — 1.52 (m,
2H), 0.90 (t, J= 7.5 Hz, 3H). NMR '3C (100 MHz, CDCl;) 5 202.5, 150.2, 142.8, 110.6,
108.9, 76.3, 53.5, 36.7, 20.1, 11.0.

(2R,3R)-2-ethyl-3-(nitromethyl)octanal (4p): Prepared by reaction of

butanal with (E)-1-nitrohept-1-ene according to the procedure G.

0 Flash chromatography (hexanes/EtOAc 9:1) afforded 4q in 73% (31

H mg) as a colorless oil. The enantiomeric excess was determined by
chiral-stationary phase UPC2. Trefoil CEL2, CO./IPA 99-1 in 8 min

at 1 ml/min at 35°C. UV detection at 210 nm: R¢: (syn, minor) = 5.71 min, (syn, major)
= 6.71 min. R¢g= 0.8 (hexanes/EtOAc 9:1). NMR H (400 MHz, CDCI3) & 9.69 (s, 1H),
449 — 4.31 (m, 2H), 2.68 — 2.53 (m, 1H), 2.43 — 2.31 (m, 1H), 1.84 — 1.70 (m, 1H),
1.59 — 1.43 (m, 1H), 1.42 — 1.20 (m, 8H), 1.03 — 0.94 (m, 3H), 0.90 — 0.84 (m, 3H).
NMR13C (100 MHz, CDCI;) 5 203.3, 54.0, 36.9, 31.7,29.2, 26.5, 22.5, 18.7, 14.1, 12.2.

(2R,3R)-2-ethyl-5-methyl-3-(nitromethyl)hexanal (4q)2: Prepared by
reaction of butanal with (E)-4-methyl-1-nitropent-1-ene according to
H the procedure G. Flash chromatography (hexanes/EtOAc 9:1)

afforded 4r in 66% (27 mg) as a colorless oil. The enantiomeric

S22



excess was determined by chiral-stationary phase UPC?2. Trefoil CEL2, CO,/MeOH 99-
1in 8 min at 1 ml/min at 35°C. UV detection at 210 nm: Ry: (syn, major) = 5.34 min. Ry
= 0.75 (hexanes/EtOAc 9:1). NMR H (400 MHz, CDCl;) 5 9.70 (s, 1H), 4.50 — 4.29
(m, 2H), 2.76 — 2.61 (m, 1H), 2.41 (dt, J = 9.0, 4.7 Hz, 1H), 1.85 - 1.72 (m, 1H), 1.64
—1.44 (m, 2H), 1.30 — 1.17 (m, 2H), 1.04 — 0.95 (m, 3H), 0.89 (dt, J = 5.8 Hz, 6H).
NMR3C (100 MHz, CDCI;) 5 203.2, 77.2,54.2, 38.4, 34.8, 25.3,22.8,22.2, 18.6, 12.3.

13.NMR Spectra: Isocyanides
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14.NMR Spectra: Catalysts
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15.NMR Spectra and Chromatograms: Catalyst Screening

T T T T T T T T T T T T T T T T T T T T T T T T
6.7 6.6 .5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 52 g1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3

f1 (ppm)

FIGURE 31. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction

catalyzed by 10 mol% of compound 3a with 1, 2, 3-trimethoxybenzene as standard. Yield: 57%.
TABLE 2, Entry 1.
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FIGURE 32. '"H NMR of crude compound 4a (400 MHz, CDCI3) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3a. Diastereoisomeric ratio (syn/anti): 94:06. TABLE 2, Entry 1.
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FIGURE 33. (a) Chiral UPC2 of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 10 mol% of
compound 3a. Trefoil CEL2, Grad: CO./EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: R¢: (syn, minor) = 3.87 min, (syn, major) = 4.11 min. TABLE 2, Entry 1
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FIGURE 34. '"H NMR of crude compound 4a (400 MHz, CDCI3) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3b with 1, 2, 3-trimethoxybenzene as standard. Yield: 90%.

TABLE 2, Entry 2.
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FIGURE 35. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3b. Diastereoisomeric ratio (syn/anti): 89:11. TABLE 2, Entry 2.
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FIGURE 36. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 10 mol% of
compound 3b. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: Ry: (syn, minor) = 3.87 min, (syn, major) = 4.09 min. TABLE 2, Entry 2.
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FIGURE 37. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3c with 1, 2, 3-trimethoxybenzene as standard. Yield: 43%.
TABLE 2, Entry 3.
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FIGURE 38. 'H NMR of crude compound 4a (400 MHz, CDCI3) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3c. Diastereoisomeric ratio (syn/anti): 70:30. TABLE 2, Entry 3.
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FIGURE 39. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 10 mol% of
compound 3c. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: R¢: (syn, minor) = 3.94 min, (syn, major) = 4.13 min. TABLE 2, Entry 3.
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FIGURE 41. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC?2 of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 10 mol% of
compound 3d. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: R¢: (syn, minor) = 4.84min, (syn, major) = 5.18 min. TABLE 2, Entry 4.
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FIGURE 42. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3e with 1, 2, 3-trimethoxybenzene as standard. Yield: 88%.
TABLE 2, Entry 5.
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FIGURE 43. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 76:24. TABLE 2, Entry 5.
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FIGURE 44. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 10 mol% of
compound 3e. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: R¢: (syn, minor) = 3.92 min, (syn, major) = 4.11 min. TABLE 2, Entry 5.
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FIGURE 45. '"H NMR of crude compound 4a (400 MHz CDCI5) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3f. Diastereoisomeric ratio (syn/anti): 79:21. TABLE 2, Entry 6.
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FIGURE 46. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC?2 of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 10 mol% of

compound 3f. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: R¢: (syn, minor) = 3.94 min, (syn, major) = 4.15 min. TABLE 2, Entry 6.
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FIGURE 47. '"H NMR of crude compound 4a (400 MHz, CDCIl;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3g. Diastereoisomeric ratio (syn/anti): 87:13. TABLE 2, Entry 7.
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FIGURE 48. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 10 mol% of
compound 3g. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: R¢: (syn, minor) = 3.93 min, (syn, major) = 4.14 min. TABLE 2, Entry 7.
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FIGURE 49. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3h with 1, 2, 3-trimethoxybenzene as standard. Yield: 23%.
TABLE 2, Entry 8.
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FIGURE 50. 'H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3h. Diastereoisomeric ratio (syn/anti): 89:11. TABLE 2, Entry 8.
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FIGURE 51. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 10 mol% of
compound 3h. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: R (syn, minor) = 3.95 min, (syn, major) = 4.13 min. TABLE 2, Entry 8.
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FIGURE 52. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3i with 1, 2, 3-trimethoxybenzene as standard. Yield: 75%.

TABLE 2, Entry 9.

S49



R £l

— T
10.2510.20 10.15 10.10 10.05 10.00 9.95 9.90 9.85 9.80 9.75 9.70 9.65 9.60 9.55 9.50 9.45 9.40| 9.35 9.30 9.25 9.20 9.15 9.10 9.0% 9.00 8.95 8.90 8.85 8.80
1 (ppm)

FIGURE 53. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3i. Diastereoisomeric ratio (syn/anti): 76:24. TABLE 2, Entry 9.
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FIGURE 54. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 10 mol% of
compound 3i. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: R¢: (syn, minor) = 3.91 min, (syn, major) = 4.11 min. TABLE 2, Entry 9.
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FIGURE 55. '"H NMR of crude compound 4a (400 MHz, CDCl;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3j with 1, 2, 3-trimethoxybenzene as standard. Yield: 87%.
TABLE 2, Entry 10.
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FIGURE 56. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3j. Diastereoisomeric ratio (syn/anti): 88:12. TABLE 2, Entry 10.
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FIGURE 57. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 10 mol% of
compound 3j. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV

detection at 210 nm: Rt: (syn, minor) = 3.89 min, (syn, major)
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FIGURE 58. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3k with 1, 2, 3-trimethoxybenzene as standard. Yield: 84%.
TABLE 2, Entry 11.
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FIGURE 59. 'H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 10 mol% of compound 3k. Diastereoisomeric ratio (syn/anti): 79:21. TABLE 2, Entry 11.
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FIGURE 60. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 10 mol% of
compound 3k. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: R¢: (syn, minor) = 3.94 min, (syn, major) = 4.13 min. TABLE 2, Entry 11.
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16.NMR Spectra and Chromatograms: Optimization
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FIGURE 61. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 5 mol% of compound 3e with 1, 2, 3-trimethoxybenzene as standard. Yield: 90%. TABLE

,

3, Entry 1.

T
10.15

T
10.05

T
9.85

T
9.65

HT
S
T

|
A\
L

T T T T T
9.55 9.45

.25

9.95

9.75

T
9.35 9.25 9.15 9.05 8.95 8.85 8.0

f1 (ppm)

FIGURE 62. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 90:10. TABLE 3, Entry 1.

S55



JACD-MA RAC PF-24-32_6_0Z_EtOH_100_85_10min_3mLmin_25C 2: Diode Array
4.12 210
391 prr ] 2
e 4233 Range: 7.641e-2
® 9.08-2 4230) TI|'| e
A Areah
8.0e-2 13
317
7.0e-2 38.19
> 6.0e-2
=
5.0e-2
4.0e-2
3.0e-2
2.0e-2
LA L Lo e o L A I B R B Ea R ARAAEAEa o RRAmanan Eo s s AR
240 2.60 2.80 3.00 320 3.40 360 3.80 400 420 440 460 480 5.00 5.20 5.40
JACD-ASS-MA-CATS-DESP-WATER_OPT-5MOL1%0Z_EtC-H_100_95_10min_3mLmin_25C+ 2: Diode Array
413

f! 230 3913

620

T4 £
3 52713 327205

AU

1: 210
3272 Range: 6 7472-2
8.0e-2 I Area

Time Height Area  Ared

FIGURE 63. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC?2 of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 5 mol% of compound
3e. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV detection at
210 nm: R¢: (syn, minor) = 3.96 min, (syn, major) = 4.13 min. TABLE 3, Entry 1.
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FIGURE 64. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e with 1, 2, 3-trimethoxybenzene as standard. Yield: 99%.
TABLE 3, Entry 2.
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FIGURE 65. '"H NMR of crude compound 4a (400 MHz, CDCl;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 93:07. TABLE 3, Entry 2.
TABLE 4, Entry 1.
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FIGURE 66. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 2.5 mol% of
compound 3e. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: R¢: (syn, minor) = 3.93 min, (syn, major) = 4.13 min. TABLE 3, Entry 2. TABLE 4,
Entry 1.
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FIGURE 67. '"H NMR of crude compound 4a (400 MHz, CDCl;) obtained by the Michael reaction
catalyzed by 1 mol% of compound 3e with 1, 2, 3-trimethoxybenzene as standard. Yield: 64%. TABLE
3, Entry 3.
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FIGURE 68. 'H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 1 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 97:03. TABLE 3, Entry 3.
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FIGURE 69. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 1 mol% of compound
3e. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV detection at
210 nm: R¢: (syn, minor) = 3.93 min, (syn, major) = 4.12 min. TABLE 3, Entry 3.
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FIGURE 70. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e in Brine as a solvent; 1, 2, 3-trimethoxybenzene as standard.
Yield: 84%. TABLE 3, Entry 4.
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FIGURE 71. '"H NMR of crude compound 4a (400 MHz, CDCl;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e in Brine as a solvent. Diastereoisomeric ratio (syn/anti): 95:05.
TABLE 3, Entry 4.

JACD-MA RAC PF-24-32_6_0Z_EtOH_100_95_10min_3mLmin_25C

2: Diode Array
@ 391 41 ?a"ge'?ﬁ4‘2e1g
9.0e-2 ‘—'J°T'| |I| _ A
|| | Height Arsa Area¥%
8.0e-2 ( [
i | I
7.08-2 A | ll
| |
i I |
6.08-2 : 371 . |
= ] w2 || ||
163 I{‘ll | | |
T A R
f AN B
40e-2 | \ ' '\j
| NS
2.0e-2
B eSS A — S —
240 260 2.80 3.00 320 340 3.60 3.80 4.00 420 4.40 460 4.80 5.00 520 5.40
JACD-ASS-MA-CATE-RMN-DESP-BRINE_OPT-2 SMOL%-T2_T2_0OZ_FEtO-H_100_%5_10min_3mLmin_25C+ 2: Diode Array
4 2
Range: 2.0%1e-1
Arsa
7 De_ Time Height Area%
2] 331 9761 3.80
i 375 1325 0.26
75e-1 306 1740 8236 s
416 191077 12875.66 9500
1.5e-1
=2 {25
1.0e-1

FIGURE 72. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC?2 of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 2.5 mol% of
compound 3e in Brine as a solvent. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3
ml/min at 25°C. UV detection at 210 nm: R¢: (syn, minor) = 3.96 min, (syn, major) = 4.16 min. TABLE
3, Entry 4.
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FIGURE 73. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e in Ethanol as a solvent; 1, 2, 3-trimethoxybenzene as

standard. Yield: 26%. TABLE 3, Entry 5.

L o L
1y L

T T T T T T T T T T T T y T T T T T T T T T T T T T T
10.2510.20 10.15 10.1/{05 10.90|9.95 9.p0 9.85 9.80| 9.75 9.70 9.65|(9.60 9.54 9.50 9.45 9.40|PH.35|9.30 9.25 9.20) 9.15 9.10 9.05 p.00 8.95 8.90 8.85 8.80

1 |(ppm)
FIGURE 74. 'H NMR of crude compound 4a (400 MHz, CDCI3) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e in Ethanol as a solvent. Diastereoisomeric ratio (syn/anti):
85:15. TABLE 3, Entry 5.
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FIGURE 75. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC?2 of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 2.5 mol% of
compound 3e in Ethanol as a solvent. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3
ml/min at 25°C. UV detection at 210 nm: R¢: (syn, minor) = 3.97 min, (syn, major) = 4.18 min. TABLE

3, Entry 5.
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FIGURE 76. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e in PEG-300 as a solvent; 1, 2, 3-trimethoxybenzene as
standard. Yield: 53%. TABLE 3, Entry 6.
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FIGURE 77. '"H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e in PEG-300 as a solvent. Diastereoisomeric ratio (syn/anti):
82:18. TABLE 3, Entry 6.
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FIGURE 78. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC?2 of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 2.5 mol% of
compound 3e in PEG-300 as a solvent. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at
3 ml/min at 25°C. UV detection at 210 nm: R¢: (syn, minor) = 3.96 min, (syn, major) = 4.16 min. TABLE
3, Entry 6.
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FIGURE 79. '"H NMR of compound 4a (400 MHz, CDClIs). Diastereoisomeric ratio (syn/anti): 85:15.
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FIGURE 80. "3C NMR of compound 4a (100 MHz, CDCl3).
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FIGURE 84. '3C NMR of compound 4c (100 MHz, CDCl3).
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FIGURE 95. '3C NMR of compound 4h (100 MHz, CDCl5).
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catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 92:08. TABLE 4, Entry 2.
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FIGURE 116. (a) Chiral UPC? of racemic 2-(2-nitro-1-phenylethyl) hexanal (4b); (b) Chiral UPC? of 2-
(2-nitro-1-phenylethyl) hexanal (4b) obtained by the Michael reaction catalyzed by 2.5 mol% of
compound 3e. Trefoil CEL2, Grad: CO2/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C.
UVdetection at 210 nm: R¢: (syn, minor) = 6.64 min, (syn, major) = 6.95 min. TABLE 4, Entry 2.
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FIGURE 117. 1H NMR of crude compound 4c (400 MHz, CDCIl;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 99:01. TABLE 4, Entry 3.
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FIGURE 118. (a) Chiral UPC? of racemic 2-isopropyl-4-nitro-3-phenylbutanal (4c); b) Chiral UPC? of 2-
isopropyl-4-nitro-3-phenylbutanal 4c obtained by the Michael reaction catalyzed by 2.5 mol% of
compound 3e. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: Ry: (syn, minor) = 3.68 min, (syn, major) = 3.97 min. TABLE 4, Entry 3.
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FIGURE 120. (a) Chiral UPC? of racemic 3,7-dimethyl-2-(2-nitro-1-phenylethyl)oct-6-enal (4d); (b)
Chiral UPC? of 3,7-dimethyl-2-(2-nitro-1-phenylethyl)oct-6-enal (4d) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Trefoil CEL1, Grad: CO,/ACN 100-0% to 98-2 % in 9 min;
100-0% in 1 min at 3 ml/min at 25°C. UV detection at 210 nm: R¢: (syn, minor) = 3.70 min, (syn, major)
=4.09 min. TABLE 4, Entry 4.
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FIGURE 121. '"H NMR of crude compound 4e (400 MHz, CDClI;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 92:08. TABLE 4, Entry 5.
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FIGURE 122. (a) Chiral UPC? of racemic 2-ethyl-3-(4-fluorophenyl)-4-nitrobutanal (4e); (b) Chiral
UPC?2 of 2-ethyl-3-(4-fluorophenyl)-4-nitrobutanal (4e) obtained by the Michael reaction catalyzed by
2.5 mol% of compound 3e. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5% in 9 min; 100-0 % in 1

min at 2 ml/min at 25°C. UV detection at 210 nm: R: (syn, minor) = 6.30 min, (syn, major) = 6.88 min.
TABLE 4, Entry 5.
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FIGURE 123. 'H NMR of crude compoundcrude compound 4f (400 MHz, CDCI3) obtained by the
Michael reaction catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 92:08.
TABLE 4, Entry 6.
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FIGURE 124. (a) Chiral UPC2 of racemic 3-(4-chlorophenyl)-2-ethyl-4-nitrobutanal (4f); (b) Chiral

UPC? of 3-(4-chlorophenyl)-2-ethyl-4-nitrobutanal (4f) obtained by the Michael reaction catalyzed by
2.5 mol% of compound 3e. Trefoil AMY1, Grad: CO,/MeOH 100-0% to 90-10 % in 6 min; 90-10 % in 3
min; 100-0 % in 1 min at 2 ml/min at 25°C. UV detection at 210 nm: R¢: (syn, major) = 3.45 min, (syn,

minor) = 4.21 min. TABLE 4, Entry 6.
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FIGURE 125. "H NMR of crude compound 4g (400 MHz, CDCl;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 92:08. TABLE 4, Entry 7.
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FIGURE 126. (a) Chiral UPC? of racemic 3-(4-bromophenyl)-2-ethyl-4-nitrobutanal (4g); (b) Chiral
UPC? of 3-(4-bromophenyl)-2-ethyl-4-nitrobutanal (4g) obtained by the Michael reaction catalyzed by
2.5 mol% of compound 3e. Trefoil AMY1, Grad: CO,/MeOH 100-0% to 90-10 % in 6 min; 90-10 % in 3
min; 100-0 % in 1 min at 2 ml/min at 25°C. UV detection at 210 nm: R¢: (syn, major) = 3.98 min, (syn,
minor) = 6.71min. TABLE 4, Entry 7.
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FIGURE 127. '"H NMR of crude compound 4h (400 MHz, CDCI3) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 89:11. TABLE 4, Entry 8.
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FIGURE 128. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-(4-nitrophenyl) butanal (4h); (b) Chiral UPC?
of 2-ethyl-4-nitro-3-(4-nitrophenyl) butanal (4h) obtained by the Michael reaction catalyzed by 2.5
mol% of compound 3e. Trefoil AMY1, Grad: CO,/IPA 100-0% to 90-10 % in 18 min; 90-10 % in 2 min
at 2 ml/min at 25°C. UV detection at 210 nm: R: (syn, major) = 8.84 min, (syn, minor) = 10.04 min.
TABLE 4, Entry 8.
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FIGURE 129. '"H NMR of crude compound 4i (400 MHz, CDCl;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 91:09. TABLE 4, Entry 9.
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FIGURE 130. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-(4-(trifluoromethyl)phenyl)butanal (4i); (b)
Chiral UPC2 of 2-ethyl-4-nitro-3-(4-(trifluoromethyl)phenyl)butanal (4i) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Trefoil CEL2, Grad: CO./IPA 100- 0% to 95-05 % in 14 min;
100-0 % in 1 min at 1.5 ml/min at 25°C. UV detection at 210 nm: Rg: (syn, minor) = 10.69 min, (syn,
major) = 11.18 min. TABLE 4, Entry 9.
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FIGURE 131. "H NMR of crude compound 4j (400 MHz, CDCIls) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 93:07. TABLE 4, Entry 10.
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FIGURE 132. (a) Chiral UPC? of racemic 2-ethyl-3-(4-methoxyphenyl)-4-nitrobutanal (4j); (b) Chiral
UPC? of 2-ethyl-3-(4-methoxyphenyl)-4-nitrobutanal (4j) obtained by the Michael reaction catalyzed by
2.5 mol% of compound 3e. Trefoil CEL2, Grad: CO»/EtOH 100-0% to 98-2 % in 19 min; 100-0 % in 1
min at 2.5 ml/min at 25°C. UV detection at 210 nm: R (syn, minor) = 14.88 min, (syn, major) = 15.43

min. TABLE 4, Entry 10.
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FIGURE 133. 'H NMR of crude compound 4k (400 MHz, CDCl;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 91:09. TABLE 4, Entry 11.
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FIGURE 134. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-(p-tolyl)butanal (4k); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-(p-tolyl)butanal (4k) obtained by the Michael reaction catalyzed by 2.5 mol% of
compound 3e. Trefoil CEL2, Grad: CO,/ACN 100- 0% to 90-10 % in 5 min; 90-10 % in 4 min; 100-0 %
in 1 min at 1 ml/min at 25°C. UV detection at 210 nm: R¢: (syn, minor) = 5.85 min, (syn, major) = 6.17
min. TABLE 4, Entry 11.
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FIGURE 135. '"H NMR of crude compound 4l (400 MHz, CDCl;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 79:21. TABLE 4, Entry 12.
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FIGURE 136. (a) Chiral UPC? of racemic 3-(4-(tert-butyl)phenyl)-2-ethyl-4-nitrobutanal (4l); (b) Chiral

UPC? of 3-(4-(tert-butyl)phenyl)-2-ethyl-4-nitrobutanal (4l) obtained by the Michael reaction catalyzed

by 2.5 mol% of compound 3e. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 98-02 % in 19 min; 100-0 %

in 1 min at 3 ml/min at 40°C. UV detection at 210 nm: R¢: (syn, minor) = 9.30 min, (syn, major) = 9.65
min. TABLE 4, Entry 12.
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FIGURE 137. 'H NMR of crude compound 4m (400 MHz, CDClI;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 75:25. TABLE 4, Entry 13.
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FIGURE 138. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-(2-nitrophenyl)butanal (4m); (b) Chiral UPC?
of 2-ethyl-4-nitro-3-(2-nitrophenyl)butanal (4m) obtained by the Michael reaction catalyzed by 2.5
mol% of compound 3e. Trefoil CEL2, Grad: CO,/ACN 100-0% to 90-10 % in 5 min; 90-10 % in 4 min;
100-0 % in 1 min at 2 ml/min at 25°C. UV detection at 210 nm: R¢: (syn, minor) = 5.77 min, (syn,
major) = 7.14 min. TABLE 4, Entry 13.
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FIGURE 139. '"H NMR of crude compound 4n (400 MHz, CDCI3) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 87:13. TABLE 4, Entry 14.
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FIGURE 140. (a) Chiral UPC? of racemic 2-ethyl-3-(2-methoxyphenyl)-4-nitrobutanal (4n); (b) Chiral
UPC? of 2-ethyl-3-(2-methoxyphenyl)-4-nitrobutanal (4n) obtained by the Michael reaction catalyzed by
2.5 mol% of compound 3e. Trefoil CEL2, Grad: CO»/EtOH 100- 0% to 98-02 % in 19 min; 100-0 % in
1 min at 2 ml/min at 25°C. UV detection at 210 nm: Ry: (syn, minor) = 11.52 min, (syn, major) = 12.13
min. TABLE 4, Entry 14.

S95



J

i

T

0181 | —

g

®
S

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
10.25 10.20 10.15 10.10 10.05 10.00 9.95 9.90 9.85 9.80 9.75 .70 9.65 9/60 9.55 9.50 9.45 9.40 9.35 9.30 9.25 9.20 9.15 9.10 9.05 9.00 8.95 8.90 8.85 8.£
f1 (ppm)

FIGURE 141. "H NMR of crude compound 40 (400 MHz, CDCl;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): 82:18. TABLE 4, Entry 15.
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FIGURE 142. (a) Chiral UPC? of racemic 2-ethyl-3-(furan-2-yl)-4-nitrobutanal (40); (b) Chiral UPC? of

2-ethyl-3-(furan-2-yl)-4-nitrobutanal (40) obtained by the Michael reaction catalyzed by 2.5 mol% of

compound 3e. Trefoil CEL2, CO,/MeOH 98.5-1.5 in 8 min at 1 ml/min at 35°C. UV detection at 210
nm: R¢: (syn, minor) = 5.49 min, (syn, major) = 5.83 min. TABLE 4, Entry 15.
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FIGURE 143. "H NMR of crude compound 4p (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): >99:1. TABLE 4, Entry 16.
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FIGURE 144. (a) Chiral UPC? of racemic 2-ethyl-3-(nitromethyl)octanal (4p); (b) Chiral UPC? of 2-
ethyl-3-(nitromethyl)octanal (4p) obtained by the Michael reaction catalyzed by 2.5 mol% of compound
3e. Trefoil CEL2, CO,/IPA 99-1 in 8 min at 1 ml/min at 35°C. UV detection at 210 nm: R (syn, minor)

= 5.71 min, (syn, major) = 6.71 min. TABLE 4, Entry 16.
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FIGURE 145. "H NMR of crude of crude 4q (400 MHz, CDClI5) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e. Diastereoisomeric ratio (syn/anti): >99:1. TABLE 4, Entry 17.
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FIGURE 146. (a) Chiral UPC? of racemic 2-ethyl-5-methyl-3-(nitromethyl)hexanal (4q); (b) Chiral UPC?
of 2-ethyl-5-methyl-3-(nitromethyl)hexanal (4q) obtained by the Michael reaction catalyzed by 2.5
mol% of compound 3e. Trefoil CEL2, CO,/MeOH 99-1 in 8 min at 1 ml/min at 35°C. UV detection at
210 nm: R¢: (syn, major) = 5.34 min. TABLE 4, Entry 17.
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19.NMR Spectra and Chromatograms: Scale-Up
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FIGURE 147. 'H NMR of crude compound 4a (400 MHz, CDCIl5) obtained by the Michael reaction
catalyzed by 2.5 mol% of compound 3e in a 2 mmol scale. Diastereoisomeric ratio (syn/anti): 72:28.
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FIGURE 148. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by 2.5 mol% of
compound 3e in a 2 mmol scale. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3

ml/min at 25°C. UV detection at 210 nm: R;: (syn, minor) = 3.72 min, (syn, major) = 3.97 min.
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20.NMR Spectra and Chromatograms: Catalyst recycle
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FIGURE 149. "H NMR of crude compound 4a (400 MHz, CDCIs) obtained by the Michael reaction
catalyzed by one-time recovered compound 3a with 1, 2, 3-trimethoxybenzene as standard. Yield:
90%.
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FIGURE 150. "H NMR of crude compound 4a (400 MHz, CDCI3) obtained by the Michael reaction
catalyzed by one-time recovered compound 3a. Diastereoisomeric ratio (syn/anti): 80:20.
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FIGURE 151. (a) Chiral UPC2 of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC?2 of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by one-time recovered
compound 3e. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV

detection at 210 nm: R¢: (syn, minor) = 3.88 min, (syn, major) = 4.11 min.
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FIGURE 152. 'H NMR of crude compound 4a (400 MHz, CDClI3) obtained by the Michael reaction
catalyzed by two-times recovered compound 3a with 1, 2, 3-trimethoxybenzene as standard. Yield:
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FIGURE 153. "H NMR of crude compound 4a (400 MHz, CDCI;) obtained by the Michael reaction
catalyzed by two-times recovered compound 3a. Diastereoisomeric ratio (syn/anti): 91:09.
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FIGURE 154. (a) Chiral UPC? of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by two-times recovered
compound 3e. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV

detection at 210 nm: R¢: (syn, minor) = 3.91 min, (syn, major) = 4.13 min.
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FIGURE 155. "H NMR of crude compound 4a (400 MHz, CDClI3) obtained by the Michael reaction
catalyzed by three-times recovered compound 3a with 1, 2, 3-trimethoxybenzene as standard. Yield:
88%.
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FIGURE 156. '"H NMR of crude compound 4a (400 MHz, CDClI3) obtained by the Michael reaction
catalyzed by three-times recovered compound 3a. Diastereoisomeric ratio (syn/anti): 92:08.

S104



JACD-MA RAC PF-24-32_6_OZ_EtOH_100_95_10min_3mLmin_25C 2: Diode Array
412 210
@ s 432%:]-'.\] 4233?1| Range: 7.665e-2
ST Area
|| ]| I Time Height Area  Area%
8.0e- [ I 328 25265 163B.0G  14.00
5 [ | | 371 23843 160248 1369
11 |1 391 59949 4229.94 36.14
7.0e- | | | | 412 59588 423278 36.17
60 'l l| |[ |
De- 37 I
2 2 w
5.08- I I
| [ |
| | |
4.0e- " \ ' \_Z
3.0e- _\’_’J-——— =
2.0e-2
AL L L B L L B L B L L B B L LR L B L LR L L BB S BRI LI LI LI AL L
240 260 2.80 3.00 320 3.40 3.60 3.80 4.00 420 4.40 460 4.80 5.00
07_05_2021_JACD-ASY-MA-Cat3e_Recup_Columna_0Z_EtO-H_100_95_10min_3mLmin_25C-Recycle-3 2: Diode Array
42 N 210
1 Range: 7.952e-1
Area
7.0e-1 | Time  Height Area  Area%
320 13477 71717 3.88
| 370 2431 13405 073
6.0e-1 | 4.1 390 2955  163.01 088
| 17451 411 234271 1745052 9451
5.0e-1 | Ilnl,l
| (&
2 40ed | [
| |1
|
3.0e-1 || | ]‘|
|\
|
20e-1 ‘ '| | \u/—
[ | 329
3.70 390
1.0e-1 N \ A 134 163 i___
R I I I B L B L B A B AL LA L I IR IS AL RS RS RS LRSS RS Renss RA R eenny LA
240 260 2.80 3.00 3.20 3.40 3.60 380 4.00 420 4.40 460 4.80 5.00

FIGURE 157. (a) Chiral UPC2 of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by three-times recovered
compound 3e. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: R¢: (syn, minor) = 3.90 min, (syn, major) = 4.11 min.
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FIGURE 158. 'H NMR of crude compound 4a (400 MHz, CDClI3) obtained by the Michael reaction
catalyzed by four-times recovered compound 3a with 1, 2, 3-trimethoxybenzene as standard. Yield:
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FIGURE 159. 'H NMR of crude compound 4a (400 MHz, CDClI3) obtained by the Michael reaction
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catalyzed by four-times recovered compound 3a. Diastereoisomeric ratio (syn/anti): 93:07.

S106



JACD-MA RAC PF-24-32_6_0Z_FEtOH_100_95_10min_3mLmin_25C 2: Diode Array
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FIGURE 160. (a) Chiral UPC2 of racemic 2-ethyl-4-nitro-3-phenylbutanal (4a); (b) Chiral UPC? of 2-
ethyl-4-nitro-3-phenylbutanal (4a) obtained by the Michael reaction catalyzed by four-times recovered
compound 3e. Trefoil CEL2, Grad: CO,/EtOH 100-0% to 95-5 % in 10 min at 3 ml/min at 25°C. UV
detection at 210 nm: R¢: (syn, minor) = 3.91 min, (syn, major) = 4.13 min.
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21.HRMS Spectra: Catalysts
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FIGURE 161. HRMS (ESI-Q-TOF) of compound 3a; m/z: 386.2808. Calcd. for
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[M+H]*:386.2802.
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FIGURE 162. HRMS (ESI-Q-TOF) of compound 3b; m/z: 472.3876. Calcd. for [M+H]"*:
472.3898.
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FIGURE 163. HRMS (ESI-Q-TOF) of compound 3¢; m/z: 402.2757. Calcd. for [M+H]*:

402.2751.
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FIGURE 164. HRMS (ESI-Q-TOF) of compound 3d; m/z: 404.2906. Calcd. for [M+H]*:
404.2908.
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FIGURE 165. HRMS (ESI-Q-TOF) of compound 3e; m/z: 488.3827. Calcd. for [M+H]*:
488.3847.
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FIGURE 166. HRMS (ESI-Q-TOF) of compound 3f; m/z: 488.3863
488.3847.
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FIGURE 167. HRMS (ESI-Q-TOF) of compound 3g; m/z: 603.5006. Calcd. for [M+CH3OH]*:
603.4975.
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FIGURE 168. HRMS (ESI-Q-TOF) of compound 3h; m/z: 584.4412. Calcd. for [M+H]*:
584.4422.
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FIGURE 169. HRMS (ESI-Q-TOF) of compound 3i; m/z: 450.4043. Calcd. for [M+H]*:

450.4054.
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FIGURE 170. HRMS (ESI-Q-TOF) of compound 3j; m/z: 536.5145. Calcd. for [M+H]*:

536.5150.
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FIGURE 171. HRMS (ESI-Q-TOF) of compound 3k; m/z: 550.4002. Calcd. for [M+H]*:

550.4003.
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