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Abstract

In recent times, quantum computation has become a flourishing field of research with in-

creasing investment due to its promise to revolutionize computing, increasing the speed of

information processing to levels far beyond the supercomputers available today. However,

implementing these machines is not a simple task and several physical systems are proposed

for developing quantum processors. One of the most promising plataforms and focus of this

work are the artificial atoms built in superconducting circuits, also known as superconducting

qubits (two-level quantum systems). In this master dissertation, we will describe how these

superconducting circuits can be used as qubits. We will also apply Hamiltonian engineering

techniques to study a system of two superconducting qubits coupled through a supercon-

ducting loop. The analysis of this system will allow us to demonstrate that it behaves as a

quantum transistor, allowing to coherently transfer quantum information. To optimize the

interactions in this system, we use the methods of effective dynamics, which will allow us to

find the optimal parameters of the system and will allow us to understand in more detail

its physics. Although it is standard to treat artificial atoms as simple qubits, we will show

that such a simplification does not completely describe the dynamics of our transistor. It

will be necessary to take in consideration the existence of the third energy level, so that the

dynamics of the system can be adequately described. Our results reveal the fundamental

importance that the most excited levels of superconducting qubits play in its dynamics, even

if such states are never populated.

Keywords: Quantum Computation. Superconducting Qubits. Quantum Transistor. Effective

Dynamics.





Resumo

Recentemente a computação quântica vem se tornando um campo de pesquisa extremamente

fértil e com crescentes investimentos devido à sua promessa de revolucionar a computação,

aumentando a velocidade de processamento de informação para níveis muito além dos

supercomputadores atuais. No entanto, a implementação destas maquinas não é uma tarefa

simples, com diversos sistemas físicos sendo candidatos à plataforma padrão dos computado-

res quânticos. Um dos sistemas que ganha cada dia mais notoriedade e é foco deste trabalho,

são os átomos artificiais construídos em circuitos supercondutores, também conhecidos como

qubits (sistemas quânticos de dois níveis) supercondutores. Nesta dissertação, faremos uma

descrição sobre como estes circuitos supercondutores podem desempenhar o papel de qubits.

Também aplicaremos técnicas de engenharia de Hamiltonianos para estudar um sistema

de dois qubits acoplados por meio de um loop supercondutor. As análises do sistema nos

permitirão demonstrar que este circuito se comporta como um transistor quântico, con-

seguindo transferir informação quântica de forma coerente. Para optimizar as interações

neste sistema utilizamos métodos de dinâmicas efetivas, que nos permitirão entender os

parâmetros ótimos do sistema e nos permitirão entender em mais detalhes a física do mesmo.

Embora seja padrão tratar átomos artificiais como qubits simples, mostraremos que tal

simplificação não descreve adequadamente a dinâmica de nosso transistor. Será necessário

considerar a existência do terceiro nível de energia, para que a dinâmica do sistema seja

descrita adequadamente. Nossos resultados revelam a importância fundamental que os níveis

mais excitados do sistema desempenham em sua dinâmica, mesmo que tais estados nunca

sejam populados.

Palavras-chave: Computação Quântica. Qubits Supercondutores. Transistor Quântico. Dinâ-

micas Efetivas.
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Introduction

Computation is one of the most disruptive technologies we have been able to develop.

The ability to store, process and share information as never before, is one of the bases of

our society, with computers being fundamental in all aspects of our lives. Since its initial

developments, with Alan Turing’s theoretical propositions on computing machines [1] until

recent times, computers have completely changed our world. One of the most impressive

signs of progress in the field is the dramatic shrinkage, both in size and cost of computers.

Such enhancement was primarily allowed due to a simple yet powerful component,

the transistor. Composed of semiconductors doped with impurities [2], the transistors enabled

the miniaturization of processors, once they replaced the fragile and big electric valves, by

tiny and reliable electronic components. The continuous improvements in the manufacture

of those transistors in circuit boards, allowed to the so called Moore law, that predicted the

exponential reduction in the size of computer processors over time [3].

Allied with this technological leap, another revolution that began in the early XX cen-

tury and dramatically changed our understanding of the world was the Quantum Mechanics.

Starting with Max Plank’s demonstration that energy could be quantized [4] and leading to

Schrödinger’s description of particles through his wave equation [5]. The verification that

matter could have a dual aspect, behaving both as a particle and a wave, was a fundamental

turning point in our interpretation and description of the physical phenomena.

On their own, both those revolutions changed the world in unprecedented ways.

Therefore, the idea of joining those fields was naturally a promise of great progress. This

mixture is the field of quantum computing.

The field gained much relevance when Richard Feynman proposed that quantum

computers would be more efficient in solving some computational problems than the tradi-

tional ones [6]. This prediction fomented an expanding interest in the field, with notable
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progress in the past three decades. In this time we have faced the development of a huge

number of algorithms [7] 1 and quantum computers being capable to overcome traditional

ones in some tasks [8–10].

In the same manner, as in traditional computation where the fundamental concept is

the unity of information (bit), in quantum computation, we resort to an analogous concept,

the quantum bit or qubit, for short [11]. Just as bits can be either in 0 or 1 states, also qubits

can be in the states |0〉 and |1〉. Where | 〉 is the Dirac notation for representing quantum

states of a system. The fundamental difference relies on the fact that quantum bits can also

be in a linear combination of those states, i.e., the famous superposition quantum states,

with no counterpart in the classical world [11].

To the present date, one of the leading physical systems for developing quantum logic

elements is using anharmonic oscillators built in superconducting circuits, devices known

as superconducting qubits [12]. Those qubits are built using lithographic techniques on

superconducting materials so that it is possible to joint several qubits in a circuit to perform

logical operations [13].

Notwithstanding the techniques to realize those systems have been improved [14],
implementing quantum processors with more than a dozen of qubits is not yet a simple

task. Therefore, developing systems that can perform logical operations with the highest

fidelity and in a faster way, even with a few numbers of qubits, is a fundamental concern

if we want to improve the viability of using quantum computers in the near-future noisy

intermediate-scale quantum (NISQ) era [15].

Given that scenario, in this work, we will use a system of two superconducting

qubits coupled by a superconducting quantum device, to perform logic operations with

the highest possible fidelity and in a faster way. Specifically, we implement a quantum

transistor, the analogous of a classical transistor, which can handle quantum states. By

properly manipulating the Hamiltonian of the system, by choosing the best set of qubit

frequencies and couplings we were able to find the conditions needed to implement a

conditional transference of quantum information.

With this application, we were able to verify the existence of a correction term in

the effective coupling of the system. Such correction has significant consequences on the

theory of how the dynamics of superconducting qubits occur. Using the methods of effective

Hamiltonians, we theoretically demonstrated that the third level of superconducting quantum

anharmonic oscillators has a significant influence on the system’s effective dynamics. This

influence will be used to tune the system parameters to achieve the behavior of the quantum

transistor.

Both results described here were experimentally verified by a Chinese experimental
1 In the website https://quantumalgorithmzoo.org/ one can find a few hundred articles on quantum algo-

rithms.
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group, with which we have a collaboration that started more than two years ago. And the

experimental results demonstrate good agreement with the theory.

In this master dissertation, we will discuss the theory necessary to obtain and interpret

our results. In the second chapter, we present the theoretical framework needed to understand

the theory of quantum computation. Then we describe the theory of effective dynamics and

how to obtain effective Hamiltonians, the main technique we will use to analyze our system.

Chapter 4 is dedicated to understanding the physics and the functioning of superconducting

qubits, where we will introduce the physics of the Josephson junction and deduce the

Hamiltonian of a superconducting anharmonic oscillator. Chapter 5 will be dedicated to

show a deduction of the Hamiltonian for the specific superconducting circuit we used to

implement the quantum transistor. In chapter 6 we will introduce the dynamics of the system

and demonstrate that using the traditional two-level approximation for the circuit can not

describe the system behavior. In chapter 7, we will demonstrate that the effective dynamics

can precisely describe the system dynamics only when taking into account the third level of

energy, with total agreement with the experimental results. In chapter 8 we will simulate

the system in the dissipative regime, to demonstrate the quantum signature of the system.

The work will be finished in chapter 9, with some conclusions about the results achieved

and prospects.
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Theoretical Framework

In this chapter, we present the basic concepts necessary for this work. First, we do a

basic introduction to the concepts of quantum mechanics and the linear algebra used in this

work. Then we describe some basic principles of the theory of quantum computation and

define what is a quantum gate.
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2.1 Basic concepts of quantum mechanics

To initiate our work, it is useful to introduce some of the basic principles of quantum

mechanics, so we can understand how those concepts will be applied to quantum computation.

Therefore, this section will be dedicated to introducing the basics of the “Bracket” notation

and some concepts of linear algebra important to our work. However, our approach will be

synthetic and any reader seeking more detailed explanations should resort to the references

[16–19] in which this section is based.

In classical mechanics, the description of a system is carried out using its position

and momentum, with its time evolution being described using Newton’s second law or,

equivalently, using Langrange equations. In quantum mechanics, on the other hand, the

description of a quantum system is carried out using the quantum wave equation. The wave

function Ψ(x , t) may be a complex-valued function of position x and time t, that completely

describes the quantum system. In the quantum mechanical world, the analogous to Newton’s

second law is the Schrödinger wave equation, a linear differential equation that describes

how a quantum state will evolve in time

iℏ
∂

∂ t
Ψ(x , t) =
�

−ℏ2

2m
∂ 2

∂ x2
+ V (x , t)
�

Ψ(x , t), (2.1)

where “i” is the imaginary unity, m the mass of the system, V (x , t) the potential applied to

the system, and ℏ = h/2π is the normalized Planck constant, with h the Planck constant.

Most quantum mechanical problems will be concerned with solving Eq. (2.1) a task that, in

general, is not trivial. However, some techniques can be applied to facilitate this task.

Assuming that the potential in Eq. (2.1) is time independent, we can do a separation

of variables, which will lead to two ordinary differential equations

dφ(t)
d t

= −
iE
ℏ
φ(t), (2.2)

−
ℏ2

2m
d2ψ(x)

d x2
= Eψ(x)− V (x)ψ(x), (2.3)

where E stands for the separation constant and represents the energy of the system, φ(t)
the time dependent part of the wave function, and ψ(x) the spatial part. It is simple to

integrate Eq. (2.2) and verify that it has a simple solutionφ(t) = e−iEt/ℏ, independently of the

potential. Eq. (2.3), by the other hand, is called time independent Schrödinger Equation, and

its solution depends on the form of V (x), naturally. Therefore, obtaining an exact solution

for this equation is a fundamental task when dealing with quantum systems.

Just as in classical mechanics, in quantum mechanics the Hamiltonian of the system

plays a central role. Thus, we can define the Hamiltonian operator as

Ĥ = −
ℏ2

2m
d2

d x2
+ V̂ (x), (2.4)



2.1. Basic concepts of quantum mechanics 29

where the hat (ˆ) indicates that we are dealing with an operator and not a c-number. With

that, we can rewrite Schrödinger time independent equation as

Ĥψ= Eψ. (2.5)

Despite describing the state of a quantum system, the wave equation does not have a

physical meaning, since it is a complex-valued function. To acquire a physical interpretation

of it, we need to take the square of the absolute value of the wave equation, |Ψ(x , t)|2, which

defines the probability density of a measurement finding the particle in a defined position

x at a given time t. This description of the measurements in terms of probabilities leads

directly to the probabilistic interpretation of quantum mechanics.

As we mentioned, the Schrödinger equation is a linear differential equation, which

means that the phenomena that it describes will also be linear. Therefore, to deal with the

quantum world, we need to take into account the tools of linear algebra. In this framework,

the state of a system will be denoted by a vector in the Hilbert spaceH . A vectorial space of

infinite dimensions defined over the complex numbers.

A vector in this space can be represented in the Dirac notation as a ket denoted by

|Ψ〉 and can be interpreted as a column vector

|Ψ〉=







a1

a2
...






, (2.6)

with ai ∈ C the components of this vector. For every element in this Hilbert space, it is

possible associate one single element belonging to a dual space. The dual of a ket |Ψ〉 is

called in Dirac notation bra and denoted as 〈Ψ|. The components of such element can be

represented in a line vector as

〈Ψ|=
�

a∗1 a∗2 · · ·
�

, (2.7)

where the asterisk denotes the complex conjugate of each component.

This dual elements allow us to calculate the scalar product of a ket |Ψ〉 with a bra

〈Φ|, that will return a number a ∈ C

〈Φ|Ψ〉= a = 〈Ψ|Φ〉∗, (2.8)

with the third equality demonstrating that the order we calculate the scalar product does

matter in this situation. Given the scalar product, we can calculate the norm of a quantum

state simply making

||Ψ||2 = 〈Ψ|Ψ〉= a1a∗1 + a2a∗2 + · · ·= 1, (2.9)

where the last equality stands for the fact that states must be normalized.
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Just as we can define bras, which acts over kets to return a complex number, we

can also define linear operators, that will act over a ket to return another ket, or its adjoint

operator (defined below) will act over a bra, to return another bra. In matricial notation,

they can be represented as square matrices and their action can be read as

R̂ |Ψ〉= |Φ〉 , 〈Ψ| R̂† = 〈Φ| . (2.10)

Just as the order matter when calculating the scalar products, also it matter when

applying an operator. We can define the adjoint of an operator R̂ as

〈Ψ| R̂† |Φ〉= 〈Φ| R̂ |Ψ〉∗ , (2.11)

in matricial notation, one could obtain the adjoint of an operator simply transposing the

matrix, and taking the complex conjugate of its elements.

A class of operators with special relevance for quantum mechanics are the Hermitian

or self-adjoint operators. They are defined as the operators that are equal to their own adjoint

R̂† = R̂. Such operators are especially relevant since they can be used to represent measurable

properties. It is worth to notice that there is also a quantum mechanical theory that does not

use Hermitian operators, the so called “non-Hermitian quantum mechanics” [20]. However,

it will not be the focus of our work.

We can also define the inverse of an operator R̂ as the operator R̂−1 that respects the

relation

R̂R̂−1 = R̂−1R̂= 1, (2.12)

with 1 the identity matrix. If the inverse of an operator Û is equal to its adjoint, then Û is

said to be unitary and we can write,

Û Û† = Û†Û = 1. (2.13)

One last class of operators that will be useful in our work is the one composed by

projection operators. They are defined as the Hermitian operators that are equal to their

own square

P̂2 = P̂, (2.14)

for instance the operator |Ψ〉 〈Ψ|. Once acting over another state |Φ〉 this operator leads to

the projection of |Φ〉 over |Ψ〉,

(|Ψ〉 〈Ψ|) |Φ〉= 〈Ψ|Φ〉 |Ψ〉= α |Ψ〉 , (2.15)

with α ∈ C the component of |Φ〉 on |Ψ〉.
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The definition of operators allow us to define the eigenvectors (or eigenstates) of an

operator as the vectors that obeys the eigenvector equation,

R̂ |Ψ〉= λ |Ψ〉 , (2.16)

where λ ∈ C are the eigenvalues associated to the eigenvectors |Ψ〉 of the operator R̂. The

importance of this equation for quantum mechanics relies on the fact that Schrödinger time

independent equation (Eq. 2.5) is an eigenvector equation.

2.1.1 Composite systems

So far we assumed the system in analysis is composed of a single particle in a Hilbert

spaceH . However, if a system is composed of n quantum entities, each one will lie in its

own Hilbert spaceHi. Therefore, the system as a whole lives in a composite Hilbert space

Htotal =H1 ⊗H2 ⊗ ...⊗Hn, where ⊗ denotes the tensor product. Then, we can write the

state of the composite system

|Ψ〉= |ψ〉1 ⊗ |ψ〉2 ⊗ ...⊗ |ψ〉n . (2.17)

In such case, also the operators acting over this system must be written in a composite

form as

R̂= r̂1 ⊗ r̂2 ⊗ ...⊗ r̂n. (2.18)

This tensorial notation for composite systems has the great advantage of allowing us to

operate separately on each particle of this system. For example, if we have a bipartite system

and want to operate r̂1 over the state |ψ〉1 maintaining the estate |ψ〉2 unchanged, we could

write

R̂ |Ψ〉= (r̂1 ⊗ 1)(|ψ〉1 ⊗ |ψ〉2) = r̂1 |ψ〉1 ⊗ |ψ〉2 , (2.19)

where 1 is the identity matrix and we used the property 1 |ψ〉= |ψ〉.

To simplify the notation it is also common to omit the⊗ signal and write |ψ〉1 |ψ〉2 ... |ψ〉n
or, alternatively, |ψ1,ψ2, ...,ψn〉.

2.1.2 Density matrix

In some situations, the state of a quantum system is not completely known. In these

cases, the system could be in a given state |ψi〉 with a probability pi, with i = 1, 2, ..., n. As

an example, we could mention a source that emits a particle in a state |ψi〉 with probability

pi. This situation adds a randomness to the description of the system, which should not be

confused with the probabilistic nature of quantum mechanics [21].
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Those systems are in what is called mixture states, and are described using the density

matrix formalism. The density matrix of a given system is the generalization of a quantum

pure state and is defined as

ρ̂ =
N
∑

i

pi |ψi〉 〈ψi| , (2.20)

with pure states being the special case when N = 1 and p1 = 1.

In those mixture states, an observable Â will have an expectation value 〈ψi| Â |ψi〉
for each state and then, the mean value of this observable will be

〈Â〉=
N
∑

i

pi 〈ψi| Â |ψi〉 , (2.21)

then, applying Eq. (2.20) we find

〈Â〉= t r
�

ρ̂Â
�

, (2.22)

with t r() being the trace of the matrix ρ̂Â.

The evolution of the density matrix will be given in terms of the von-Neumann

equation,

dρ̂
d t
=

1
iℏ
�

Ĥ, ρ̂
�

, (2.23)

with Ĥ the system Hamiltonian. This equation can be understood as a generalization of

Schrödinger equation for mixed states [22].

2.1.3 The Bloch Sphere

It may be useful to have a graphical way to represent the state of a given qubit. This

is achieved, representing the qubit in a sphere called Bloch Sphere like that one shown in

Figure 1. In this sphere, the top of the z-axis (also called longitudinal axis) represent the |1〉
state and the bottom the |0〉. In this representation, we can parameterize the state of the

qubit as

|ψ〉= cos
�

θ

2

�

|0〉+ eiϕ sin
�

θ

2

�

|1〉 , (2.24)

with 0≤ θ ≤ π and 0≤ ϕ < 2π.

Alternatively, we could also represent a mixed state ρ̂ using the unitary matrix 1, the

three Pauli matrices σ̂x , σ̂y and σ̂z and a vector a⃗ called Bloch vector (or coherence vector)

as

ρ̂ =
1
2
(1+ a⃗ · σ⃗) =

1
2

�

1+ az ax − iay

ax + iay 1− az

�

, (2.25)
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with σ⃗ = (σ̂x , σ̂y , σ̂z) . In this representation the mixture states are represented inside the

Bloch sphere, while pure states are represented over the surface. To demonstrate that, first

we use Eq.(2.25) to find the eigenvalues of ρ̂

det(ρ̂ −λ1) = λ2 −λ+
1
4
(1− a2

x − a2
y − a2

z ) = 0, (2.26)

since density matrices must be positive semi-definite (must have non-negative eigenvalues),

the eigenvalues λ must satisfy λ ≥ 0. Defining the magnitude of the Bloch vector |a⃗| =
q

a2
x + a2

y + a2
z we can find the condition,

λ=
1
2
±
|a⃗|
2
≥ 0 =⇒ |a⃗| ≤ 1, (2.27)

we can notice that, when |a⃗|= 1 there is only one non-zero eigenvalue corresponding to a

pure state. On the other hand, when |a⃗|< 1 there are two different eigenvalues, implying

we have a mixture state and the Bloch vector will lie inside the Bloch sphere.

Figure 1 – An arbitrary vector |ψ〉 in the Bloch sphere. In such representation, the north pole
represents the |1〉 state and the south, the |0〉 state. Once we are representing
quantum normalized states, the sphere have unitary radius.

Source: The author.

2.2 Quantum computation

In view of the basic concepts of quantum mechanics introduced previously, we can

focus on analyzing how those concepts can be applied to store and process information,

which is the main focus of quantum computation [11].
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In classical computation, information is represented using bits, which are systems with

two distinguishable states, which are commonly called 0 and 1. In the same sense, quantum

computation represents information in qubits (abbreviation for quantum bits), which are

two states |0〉 and |1〉 of a quantum system [23], forming the so called computational basis

{|0〉 , |1〉}.

The major difference of a qubit over its classical counterpart is the fact that, while

traditional bits can only be in states 0 or 1, the quantum bits can be in a state |ψ〉 which

is a linear combination of those two states, forming the superposition states of |0〉 and |1〉.
In addition, considering two or more subsystems, the whole system can exist in collective

superposition states that cannot be factorized as a product of individual states of each

subsystem. In this case we say the system is in an entangled state. It is precisely these two

kinds of states: superposition of a single qubit or entangled state of two (or more) qubits,

that enable quantum computers to have advantages over the classical ones. Mathematically

a superposition state is written as a linear combination of the states in the computational

basis

|ψ〉= a |0〉+ b |1〉 , (2.28)

with a and b complex numbers satisfying the normalization condition |a|2 + |b|2 = 1 [23].

To understand how to use superposition to speed up calculations, we first analyze

how a quantum computer works. As an example we can consider the Deutsch algorithm,

which is used to know if a function is constant or balanced. Assuming we want to implement

a function f (x) : (0, 1) 7→ (0, 1), a quantum computer will take a two qubit initial state |x , y〉
and apply a transformation Û f in order to find

Û f |x , y〉 7→ |x , y ⊕ f (x)〉 , (2.29)

where ⊕ is the addition modulo 2 operation. However, if the input state |x〉 is a superposition

of n states, then the linear operator Û f would act in all states simultaneously

Û f

∑

x

|x , y〉 7→
∑

x

ax |x , y ⊕ f (x)〉 , (2.30)

which means that, in practical terms, all possible inputs of a given function would be evaluated

at the same time. This concept of using superposition to do calculations simultaneously is

called quantum parallelism and is the heart of quantum algorithms advantages.

Although this capability of being in superposition, quantum parallelism on its own,

is not able to generate useful outputs, since, to acquire information from a quantum state

(e.g. state in Eq. (2.28)), it is necessary to measure it. However, in this process, one will find

either the qubit in state |0〉 with probability |a|2 or in state |1〉 with probability |b|2. In this

scenario, to fully determine the coefficients of this superposition state, it would be needed to

do a high number of measurements, diminishing the advantage of these quantum computers

in some cases [23].
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To have a significant gain, a quantum algorithm should be able to maximize one of

those values |a|2 or |b|2, to maximize the probability of measuring the state of interest [21].

2.2.1 Quantum Gates

As mentioned above, to do a calculation, a quantum computer must be able to apply

transformations Û f to quantum states such as in Eq. (2.29). Those transformations are the

central part of the manipulation of quantum information and can be achieved using quantum

logic gates. They are deeply related to the classical logic gates in which bits are manipulated

in a circuit to return the desired output.

In quantum computation, a quantum gate is a unitary matrix Û which acts on a initial

state |ψin〉 in order to return a final state |ψout〉 = Û |ψin〉 [11]. It is interesting to notice that,

since any unitary operator can be understood as a quantum gate, there are many possible

gates to be used in quantum computation. Here, we mention some of the more relevant:

• Single qubit gates

The more basic quantum gates are those acting upon a single qubit. While in classical

computation there are only one of those gates (the NOT gate) in quantum computing, there

are infinite of them (since every unitary matrix is a valid gate), however the most relevant

are the X̂ , Ŷ and Ẑ gates, defined as

X̂ = |1〉 〈0|+ |0〉 〈1|=

�

0 1

1 0

�

, (2.31a)

Ŷ = i |0〉 〈1| − i |1〉 〈0|=

�

0 −i

i 0

�

, (2.31b)

Ẑ = |0〉 〈0| − |1〉 〈1|=

�

1 0

0 −1

�

, (2.31c)

such gates are also called Pauli gates, once they are the Pauli matrices σ̂x , σ̂y , σ̂z respectively

[23]. It is interesting to notice that, while the X̂ gate acts in the same manner as the NOT

classical gate, swapping states |0〉 and |1〉, the Ẑ gate inverts the signal of the state |1〉,
leaving state |0〉 unchanged.

Another relevant single qubit gate is Hadamard,

Ĥ ≡
1
p

2

�

1 1

1 −1

�

, (2.32)

which is a genuine quantum gate, once it have no classical counterpart. It can be used to

generate a superposition between |0〉 and |1〉. Once acted on a |0〉 state, Hadamard returns

(|0〉+ |1〉)/
p

2 and in state |1〉 it produces (|0〉 − |1〉)/
p

2.
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• Multiqubit Gates

Gates that act on multiple qubits at once are called multiqubit gates. They are

fundamental to do more complex manipulation of information. Some of those gates are

specifically meant to be used in specific algorithms, others can be demonstrated to be useful

in many different algorithms. Also, as discussed in detail in [11], it is possible to decompose

any complex logic gates in a small set of single- and two-qubit gates. For instance, arbitrary

single qubit rotations, as described previously, and the C-NOT gate (described below) are

called universal gates since any computation can be done using those gates. Among most

relevant multiqubit gates we could mention the CNOT, the Fredkin and the Toffoli gates.

The C-NOT gate is a two-qubit gate, with a control qubit and a target one. This gate

implement the X̂ gate on the target, only when the control qubit is in the state |1〉. Its action

can be written as

UCNOT = |0〉 〈0| ⊗ 1+ |1〉 〈1| ⊗ X̂ , (2.33)

and its representation along with the possible outputs of it action can be seen in Figure 2.

Figure 2 – Representation of the circuit of a C-NOT gate. This gate is composed of a control
bit and a target one. As we see in the table, when the control qubit is in the state
|0〉 the outputs are equal to the inputs. However, when the control is in state |1〉,
the target qubit is flipped.

Input OutputControl

Source: The author.

Originally proposed by Fredkin and Toffoli in 1982 [24], the Controlled-SWAP (c-

SWAP) or Fredkin gate, is a 3 bit logic gate that can perform a conditional transference of

states as depicted in Figure 3.

The implementation of such gate to deal with quantum information is of special

importance due to its wide usability in quantum computation, for instance to implement

quantum algorithms such as Shor’s algorithm [25], to perform codes for quantum error

correction [26], and to implement quantum cryptography protocols [27].
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Figure 3 – Schematic representation of the functioning of a Fredkin Gate. When the control
bit (the bit on the top) is in the state |0〉, the states |a〉 and |b〉 remain the same.
However, when the controller is in the state |1〉 the states |a〉 and |b〉 are flipped.

Fredkin

gate

Input Output

Fredkin

gate

Input Output

Source: The author.

The third multiqubit gate we emphasize here is Toffoli gate or controlled-controlled-

not [24]. It is composed of three qubits, and acts implementing an X̂ gate in one of the states,

only if the two control qubits are on state |1〉. Its representation can be seen in Figure 4.

Figure 4 – Circuit representation of a Toffoli gate along with the possible output for each
input. As we can see the Toffoli acts as a controlled-controlled-not gate, that
switches the state of a target qubit only when both control qubits are in state |1〉.

Input Output

Source: The author.
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Effective dynamics

In this chapter, we will discuss the methods of effective dynamics. Those methods

consists of a wide class of mathematical tools applied to simplify Hamiltonians, to allow

analytical insights into the dynamics of the system. This method will be a fundamental

part of the analysis of our system, and allied with numerical methods implemented to

solve Schrödinger equation, will constitute the core of the analysis in this work. In the first

section, we present the three most important representations of quantum dynamics, namely

Shrödinger, Heisenberg, and interaction pictures. Then, the second section is focused on

developing and describing the method we will use to obtain the effective Hamiltonians in

this work.
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3.1 The different representations of quantum mechanics

There are three most common ways to describe the time evolution of a quantum

system, named Schrödinger, Heisenberg and interaction pictures. The fundamental difference

between them relies on which mathematical entity will carry the time dependency [18].
Through this section, we will add an index ‘S’, ‘H’, and ‘I’ to denote kets and operators

in Schrödinger, Heisenberg, and Interaction pictures, respectively. It is important to high-

light that such different descriptions does not implies in a different physics or in different

behaviours of the systems. Those pictures are simply, different forms to represent the same

phenomena.

The first and more commonly used in simple systems is the Schrödinger picture, where

it is assumed that the observable are constant in time, and the quantum state |ψ(t)〉S will

evolve according the equation

iℏ
d
d t
|ψ(t)〉S = ĤS |ψ(t)〉S , (3.1)

which is the usual Schrödinger equation. Integrating it, we can find that the evolution of a

state will be given using a unitary operator, that acts on an initial state |ψ(t0)〉S to return a

new state

|ψ(t)〉S = Û(t, t0) |ψ(t0)〉S = e−i(t−t0)Ĥs/ℏ |ψ(t0)〉S , (3.2)

this operator Û(t, t0) is called the evolution operator [19].

While Schrödinger picture assumes that the operators are constant in time and the

vector states are the ones responsible for carrying the information about the dynamics,

Heisenberg picture assumes the exact opposite. In this representation, the state is constant

in time and the observable have a time dependency. The operator ÂH(t) can be written in

terms of its Schrödinger representation as

ÂH(t) = ei tĤs/ℏÂSe−i tĤs/ℏ. (3.3)

The evolution of this operator is given by Heisenberg equation of motion

dÂH(t)
d t

=
1
iℏ
�

ÂH(t), ĤS

�

, (3.4)

which is analogous to Schrödinger equation in this representation. It is important to notice

that, despite the different descriptions, scalar quantities (mean values and probabilities) will

be equal in every representation, meaning that the phenomena studied should be independent

on the picture used to describe it.

The third representation, that will play a major role in our analysis is the Interaction

picture (or Dirac picture), which is an intermediate between the former representations.

Here, both operators and states evolve in time. This description is commonly used when the
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Hamiltonian in Schrödinger picture can be split into two parts, one constant and the other

time-dependent

Ĥ = Ĥ0 + V̂ (t). (3.5)

In this representation, the vector state |ψ(t)〉I is defined in terms of its form in

Schrödinger picture as,

|ψ(t)〉I = Û0(t) |ψ(t)〉S , (3.6)

where, for simplicity we call t0 = 0, and defined the evolution operator Û0(t) = ei tĤ0/ℏ

in terms only of the constant Hamiltonian. With Eq.(3.6) we can calculate the dynamics of a

system in the Interaction picture as

iℏ
d
d t
|ψ〉I = −Ĥ0Û0(t) |ψ〉S + Û0(t)Ĥ |ψ〉S , (3.7)

then defining the interaction Hamiltonian in the interaction picture,

V̂I(t) = Û0V̂ (t)Û†
0 , (3.8)

we can write the Schrödinger equation in the interaction picture

iℏ
d
d t
|ψ〉I = V̂I(t) |ψ(t)〉I . (3.9)

In a similar way, observable will be defined in terms of the same unitary operators,

ÂI(t) = ei tĤ0/ℏ ÂSe−i tĤ0/ℏ, (3.10)

and the time evolution of the observable will be described with Heisenberg equation in the

interaction picture

dÂI(t)
d t

=
1
iℏ
�

ÂI(t), Ĥ0

�

. (3.11)

When we analyze Eq.(3.6) and Eq.(3.10) we can notice the intermediate character

of Interaction picture. In this frame of reference, both states and observable are evolving in

time, however, the states evolve only with the interaction part of the Hamiltonian. While the

observable evolve with the time-independent part of the Hamiltonian, H0 [16].

3.2 Time dependent perturbation theory

In quantum mechanics, one can entirely describe the time evolution of a state |Ψ(t)〉
using the Schrödinger equation. This means that knowing the Hamiltonian of a given system

and its initial state |Ψ(0)〉, we could deterministically describe the evolution of any system by
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just solving the Schrödinger equation [18]. However, for most systems of practical interest,

the form of the Hamiltonian is so complex that analytical approaches are unfeasible. Then,

a wide variety of methods have been developed to approximate the solution for different

problems. These techniques are called approximation methods. A class with especial relevance

to our work are the time dependent perturbation methods.

A perturbation method assumes that the Hamiltonian of a given system can be split

in two terms,

Ĥ = Ĥ0 + Ĥ1(t), (3.12)

with H0 the “unperturbed Hamiltonian” describing the simple part of the system, which is

assumed to have known eigenvalues and eigenvectors. In the time dependent methods, we

aim to find the solution for the Schrödinger equation. For that, first we write the system

dynamics in the Interaction picture,

iℏ
d
d t
|ψ(t)〉I = V̂I |ψ(t)〉I , (3.13)

with,

V̂I = Û Ĥ1(t)Û
†, (3.14)

where Û = e−iĤ0(t−t0)/ℏ is the time evolution operator as defined in the previous section.

Here, however, we do not assume t0 = 0. Then, the time evolution of the state vector in the

Interaction picture will be

|ψ(t)〉I = Û(t, t0) |ψ(t0)〉I . (3.15)

Then, applying Eq.(3.15) in Eq.(3.13) we find the equation for the motion of the

time propagator,

iℏ
d
d t

ÛI(t) = ĤI(t)Û(t), (3.16)

where we applied the initial condition,

Û(t0, t0) = 1. (3.17)

Eq.(3.16) can be integrated over time, to find the following integral equation,

Û(t, t0) = 1+
1
iℏ

∫ t

t0

ĤI(t1)Û(t1, t0)d t1, (3.18)

this equation can be integrated recursively to give,

Û(t, t0) = 1+
1
iℏ

∫ t

t0

ĤI(t1)

�

1+
1
iℏ

∫ t1

t0

ĤI(t2)Û(t2, t0)d t2

�

d t1

= 1+
1
iℏ

∫ t

t0

ĤI(t1)d t1 +
�

1
iℏ

�2
∫ t

t0

d t1

∫ t1

t0

d t2ĤI(t1)ĤI(t2)

+ · · ·+
�

1
iℏ

�n
∫ t

t0

d t1

∫ t1

t0

d t2 ...

∫ tn−1

t0

d tnĤI(t1)ĤI(t2) . . . ĤI(tn) + . . . , (3.19)



3.3. Effective Hamiltonians 43

which is the Dyson series [16]. If the energies in the perturbative terms are small compared

to the energies in the unperturbed Hamiltonian H0, Eq.(3.19) will converge after a few terms

and we could truncate the series, in order to find an approximation for Û(t, t0) [28], which

is the core concept on the perturbation methods we implement.

3.3 Effective Hamiltonians

Due to its usability, a wide range of techniques to obtain effective Hamiltonians have

been developed [28,29], each one with particular purposes. In this work we will implement

the method described in Ref. [30]. This approach uses Schrödinger equation in the interaction

picture as in Eq.(3.9). Integrating over time, we verify that a solution for such a equation

have the form

|ψ(t)〉I = |ψ(0)〉I +
1
iℏ

∫ t

0

V̂I(t
′) |ψ(t ′)〉I d t ′. (3.20)

Then, applying Equation (3.20) in Equation (3.9) we find

iℏ
d
d t
|ψ(t)〉I = V̂I(t) |ψ(0)〉I +

1
iℏ

V̂I(t)

∫ t

0

V̂I(t
′) |ψ(t ′)〉I d t ′. (3.21)

To simplify this dynamics, we can assume that V̂I(t) has highly oscillatory terms in comparison

with the terms in the time-independent Hamiltonian H0. In this situation we can neglect

the first term in the right-hand side of Eq.(3.21), since its contribution will be negligible,

on average. The second term, by the other hand, will be simplified considering that the

state |ψ(t)〉I will oscillate very slowly in comparison to the Hamiltonian V̂I(t), since, in

the Interaction picture, observable evolves according to Ĥ0 and states according to V̂I(t).
Therefore, the wave function can be assumed constant in time and removed from the integral.

Then, we find the approximate dynamics

iℏ
d
d t
|ψ(t)〉I ≈ Ĥe f f (t) |Ψ(t)〉I , (3.22)

where we define the effective Hamiltonian

Ĥe f f ≈
1
iℏ

V̂ (t)

∫ t

0

V̂ (t ′)d t ′
�

�

�

�

�

RWA

, (3.23)

where the RWA stands for Rotating Wave Approximation. This simplified Hamiltonian will

also have some terms that oscillate fast, and those will also be removed using the same

arguments. This simplification is analogous to doing a rotating wave approximation.

This simplified Hamiltonian will be fundamental to analyzing the qubit circuit in our

work, because the system will operate in this regime where the interactions are weaker than

the relevant frequencies. Then, simplifications will be possible, to achieve better insights into

the system dynamics.
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Physical qubits

This chapter is focused on describing how to physically implement a qubit using

superconducting circuits. First, we describe the simple form of this problem, the harmonic

oscillator, in terms of a superconducting LC-circuit. Then we describe how this same circuit

can be treated quantum-mechanically to find the Hamiltonian of the circuit. Then we apply the

same methods to a circuit containing a nonlinear inductor, called Josephson junction [31,32]
which allows us to create an atom-like structure in the energy levels of the system. At the

end, we describe the transmon qubit [33,34], which is the type of qubit used in our system.
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4.1 The artificial atom

In the path to developing quantum computers, it is crucial to understand how physical

systems can be used as qubits. In this sense, many natural quantum systems have been used to

implement quantum computers, like the spins of electrons in semiconductors [35,36], trapped

ions [37, 38], cavity quantum electrodynamics (cQED) systems [39] and others [40–42].
One of the most promising techniques now available and the focus of our work is the use of

“artificial atoms” built in superconducting circuits, which are called superconducting qubits.

Those type of qubits have a fundamental difference in comparison to the other

platforms for quantum technologies, since they are built using lithographic techniques in

macroscopic circuits [13]. Therefore, in superconducting qubits it is possible to use the

macroscopic parameters of the circuit, to control the microscopic quantum behavior of the

system [43]. This possibility to control the parameters, and the scalability of this model of

qubits is what has drawn great attention to this framework in the past years, with some of

the state-of-the-art quantum processors being built with those components [8,44–47].

The name “artificial atom” is due to the fact that those circuits use quantum anhar-

monic oscillators to simulate the different energy states of a real atom. To understand what

are those anharmonic oscillators, first we resort to the simple and classical counterpart, the

harmonic oscillator.

4.2 Harmonic oscillator - The LC circuit

To introduce the problem of the harmonic oscillator, both quantum and classical, we

begin by describing a simple LC circuit such as the one depicted in Figure 5. This system is

composed of a linear capacitor with capacitante C and a linear inductor of inductance L.

In this analysis, we assume the wires connecting the components to be perfect conductors

and then no resistance exists in the circuit. An assumption that is valid, since we deal with

superconducting circuits.

To describe our system, we define the total charge in the circuit and the magnetic

flux through the circuit as

Q(t) =

∫ t

−∞
I(t ′)d t ′, (4.1a)

Φ(t) =

∫ t

−∞
V (t ′)d t ′, (4.1b)

where the first equation uses the definition of a current I(t) through a circuit and the second

is Faraday’s induction law, for an electric potential V (t) [48] assuming both potential and

currents are zero at time t →−∞.



4.2. Harmonic oscillator - The LC circuit 47

Figure 5 – Simple LC circuit, composed of a capacitor of capacitance C , and an inductor of
inductance L. This circuit behaves in the same manner as a classical harmonic
oscillator.

Source: The author.

In the linear capacitor, the difference of potential is linearly dependent on the instan-

taneous charge q(t) stored in its plates

V (t) = Φ̇(t) =
q(t)

C
, (4.2)

where the dot denotes the time derivative. Then we can describe the energy stored in the

capacitor as

Ecap =

∫ t

−∞
I(t ′)V (t ′)d t ′ =

∫ t

−∞
Φ̇(t ′)
�

dq
d t ′

�

d t ′ =

∫ Φ

0

Φ̇(t)C dΦ̇=
1
2

CΦ̇2(t) (4.3)

In the inductor, by the other hand, we can describe the current in it as linearly

proportional to the magnetic flux,

I(t) = q̇(t) =
1
L
Φ(t). (4.4)

Then, we can calculate the energy in this component integrating over time as in Eq. (4.3) to

find

Eind =
Φ2(t)

2L
. (4.5)

With the energies in both elements, we can now write the Lagrangian of this circuit

as

L = T − V =
1
2

CΦ̇2(t)−
1

2L
Φ2(t), (4.6)

where we can notice that, the capacitive term is the kinetic part of the Lagrangian and the

inductive term, the potential. Then, choosing the generalized coordinates as

q = Φ(t), p =
∂L
∂ q̇
= CΦ̇(t) = q(t), (4.7)
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we can write the Euler-Lagrange equation

d
d t
∂L
∂ q̇
=
∂L
∂ q

, (4.8)

to find the equation of motion of the circut,

Φ̈+
1

LC
Φ= 0, (4.9)

which is the equation of a simple classic harmonic oscillator with angular frequency ω =
1/
p

LC . Then, we verify the analogous behavior of an LC circuit, with the mechanical

oscillator. Here, with the magnetic flux oscillating in time.

To obtain the system’s Hamiltonian we use the method of Legendre transformation

to obtain the expression [49]

H(p,q, t) = q̇p−L (q, q̇, t), (4.10)

and apply Eq.(4.6) and (4.7) to find,

H =
1
2

CΦ̇2 +
1

2L
Φ2 =

p2

2C
+

q2

2L
=

1
2C

q2 +
1

2L
Φ2, (4.11)

where the third equality was obtained by applying Eq. (4.3).

4.2.1 Quantization of the LC circuit

The Hamiltonian in Eq.(4.11) describes the classical electric oscillator. The quantum

description of this system can be obtained from promoting the canonical coordinates and

the Hamiltonian, to quantum operators,

q→ q̂,

p→ p̂, (4.12)

H → Ĥ,

where the position and momentum operators respects the commutation relation [q̂, p̂] = iℏ1,
where 1 is the identity matrix.

It should not be surprising the possibility to quantize the electric charge q(t), since it

is given by the electrons dislocated in the capacitor plates. The quantization of the magnetic

flux Φ(t), by the other hand is less obvious, but it is possible in integrated superconducting

circuits.

When cooled to very low temperatures, some metals can conduct electricity without

resistance and for that reason are called superconductors. In this situation, two electrons of

the metal can become bounded in a state called Cooper pair [50] which behaves as a bosonic

particle [51]. These pairs are the quasiparticles responsible for conducting the currents in
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superconductors, therefore, when describing the charges in a superconductor, it is convenient

to write the charge as q̂ = 2eĉ, with e the electronic charge and ĉ the number of Cooper pairs.

This behaviour of electrons gives rise to a wide variety of interesting phenomena. Among

them there is the fact that all external magnetic fields are expelled from the metal what is

called Meissner effect [51]. However, in a cylindrical superconductor, it is possible “trap” a

small magnetic flux, which will be quantized [52]. This is called the magnetic flux quantum

Φ0 = h/2e [53], and can be used to write a quantum operator called the reduced magnetic

flux φ̂ = 2πΦ/Φ0.

We can apply the quantization to find the Hamiltonian of the quantum LC circuit,

Ĥ =
p̂2

2C
+

q̂2

2L
= 4EC ĉ2 +

1
2

ELφ̂
2, (4.13)

where we defined EC = e2/2C , that represents the energy required to add a Cooper pair

in the capacitor and EL = Φ2
0/(2π)

2h the inductive energy. In general, however, it is more

convenient to write the Hamiltonian Ĥ in terms of the creation and annihilation operators â

and â†. For that, we do the transformation

p̂ = i

√

√ℏωC
2

�

â− â†
�

, (4.14)

q̂ =

√

√ℏωL
2

�

â+ â†
�

, (4.15)

which will allow us to write the Hamiltonian in the form

Ĥ =
ℏω
2

�

ââ† + â†â
�

. (4.16)

Applying the commutation relation [â, â†] = 1, we obtain the Hamiltonian of the quantum

harmonic oscillator

Ĥ = ℏω
�

â†â+
1
2

�

. (4.17)

This simple Hamiltonian is one of the most basic systems in quantum mechanics, and

a very powerful tool to describe the behavior of quantum systems, since it is possible to solve

it analytically. In this system, we define the states |n〉, called Fock or number states [54],
to be the eigenstates of the number operator n̂ = â†â with correspondent eigenenergies

nℏω. This means that all states in the quantum harmonic oscillator will be equally spaced as

represented in Figure 6, where we plot the energy states of the quantum harmonic oscillator

as a function of φ.

Such a property of having equally spaced states is a problem if we seek to use this

quantum system as a qubit, since the same energy ℏω can induce any transition in the

system, not just the ones in the computational basis (|0〉↔ |1〉). To mitigate this problem, it

is necessary to introduce some anharmonicity in the system.
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Figure 6 – Illustration of the energy levels of a quantum harmonic oscillator, as a function of
the reduced magnetic flux. Every transition in this system is equally spaced, as
denoted by the red arrows.

. . 
.

Source: The author.

4.3 Anharmonic oscillator - The artificial atom

In order to use a superconducting circuit as a qubit, it is necessary to introduce

an anharmonicity to the harmonic behavior of the LC circuit. This anharmonic term can

be achieved once we change the inductor in Figure 5 by a superconducting device called

Josephson junction [31,32], which is composed of two superconductors separated by a thin

potential barrier, which can be a layer of insulator or a non-superconducting material [55].
This setup, creates a potential barrier that could prevent the flow of Cooper pairs. However,

if the barrier is sufficiently thin, the wave functions of the pairs can extend through the

insulator, and the charge can tunnel from one side of the junction to the other one. This will

lead to a nonlinear dependency of the change with the magnetic flux, what means that the

system will act as a nonlinear inductor [56].

Figure 7 is a sketch of a Josephson junction withψ1 andψ2 representing the collective

wave functions of Cooper pairs in each side. These wave functions describe the charge

densities ρ1(x) and ρ2(x) of all Cooper pairs at a point x of the junction, with θ1 and θ2 the

phases of these wave functions. Once applying a difference of potential to this system, the

Cooper pairs in the superconductors can tunnel from one side of the barrier to the other. This
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Figure 7 – Schematic representation of a Josephson junction, composed of two superconduc-
tors separated by an insulator. The charge densities ρ1 and ρ2 are separated by a
potential barrier, however, if the barrier is sufficiently narrow, the wave functions
of the Cooper pairs (ψ1, ψ2) can tunnel and a highly nonlinear current can flow
through the superconductor.

... ...

Source: The author.

effect, will create a current that will depend on the phase difference φ between ψ1 and ψ2

I(t) = Ic sin(φ(t)), (4.18)

with Ic the critical current, a parameter that depends on the geometry of the junction, and

φ(t) = θ1(t)− θ2(t) [57]. The difference of potential in this device will be given by

V (t) =
ℏ
2e
φ̇. (4.19)

Using Eq.(4.18) we can write an equation that relates the charge q and the magnetic

flux Φ

q̇(t) = Ic sin
�

2π
Φ(t)
Φ0

�

, (4.20)

what can be used to find the energy in the Josephson junction in the same manner as done

with the inductor and the capacitor

E j j = EJ

�

1− cos
�

2πΦ
Φ0

��

, (4.21)

where we defined the Josephson energy EJ = IcΦ0/2π the parameter that characterizes the

junction. It is important to notice that, when dealing with the Lagrangian or Hamiltonian of

this system, we can omit the constant term, since it does not contributes to the dynamics.

We can now, substitute the linear inductor of the LC circuit, by a Josephson junction,

which is represented by a boxed “X” as seen in Figure 8. This new circuit will then be

described by the Hamiltonian

Ĥ = 4EC ĉ − EJ cos
�

φ̂
�

. (4.22)
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Figure 8 – Representation of the circuit of a superconducting circuit. This system is composed
of a linear capacitor of capacitance C and a Josephson junction characterized by
the Josephson energy EJ

Source: The author.

To better understand how this change in the Hamiltonian affects the system behavior,

it is interesting to study the transmon regime, where we assume EJ ≫ EC [34,56]. In this

situation, the qubit will be much less sensitive for charge fluctuations and the cossine term

will lead the dynamics. Thus, it allows us to expand the cossine in a Taylor series,

EJ cos φ̂ = EJ −
1
2

EJφ̂
2 +

1
24

EJφ̂
4 +O(φ̂6), (4.23)

and discard the terms of order higher than the fourth along with the irrelevant constant

term. Applying this expansion in the Hamiltonian, we notice that the second order term and

the capacitive one, form again the Hamiltonian of the quantum harmonic oscillator and one

more can be written using the annihilation and creation operators,

ĉ = i

√

√ 1
2ζ

�

â− â†
�

, (4.24)

φ̂ =

√

√ζ

2

�

â+ â†
�

, (4.25)

where we call ζ =
p

8EC/EJ . Applying the same transformation to the quartic term, we find

the Hamiltonian written in terms of the ladder operators

Ĥ =ω0 â†â+
α

12

�

â+ â†
�4

, (4.26)

where we defined ω0 =
p

8EC EJ the qubit frequency and α = −EJζ
2/8 = −EC the anharmo-

nicity.

The quartic term, describing the anharmonicity can be better understood, if we apply

a simplification that remove terms that do not conserves the total number of excitations in
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the system and that will oscillate rapidly in the rotating frame. The details of this calculations

can be seen in the Appendix A. This process yields the Hamiltonian

Ĥ =ω â†â+
α

2

�

â†â†ââ
�

, (4.27)

where ω =ωo +α. Therefore, we can verify that when the system is excited to states higher

than the first excited state, the energy levels will be shifted by a quantity proportional to α.

This change in the energy levels can be seen in Figure 9 and is the key feature that allows us

to use superconducting circuits as qubits. The unequal energy difference between the states

allows us to excite only a specific transition and leave the other states unpopulated. This

preserves the computational basis needed to perform quantum computing. However, as it

will be discussed later, despite being unpopulated, the higher levels still play a fundamental

role in the effective dynamics of the system and their effects can not be completely neglected.

Figure 9 – Schematic illustration the potential energy in a quantum harmonic oscillator
–QHO– (left) and a superconducting qubit (right), as a function of the supercon-
ducting phase φ. In the QHO, the energy states (horizontal lines) are equally
spaced, while in the qubit, the anharmonicity leads to unequal energy separations.
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Source: The author.

4.4 The tunable frequency qubit

In the previous section, the qubit Hamiltonian was characterized with two parameters,

namely, the frequency ω and the anharmonicity α. Since those two quantities have been

defined using the capacitance and the Josephson energy, the only way to choose a specific

value to the parameters of the circuit is during the qubit lithography. However it is possible

to build a qubit in which an external parameter (an external magnetic flux) can control the

qubit frequency. These are called transmon qubits [34].
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Figure 10 – a) Schematic representation of a SQUID, composed of a superconducting ring
with two Josephson junctions in parallel (in orange). To tune the frequency of
this qubit, we apply an external flux Φ̃ through the ring. b) Circuit representation
of a tunable frequency qubit.

a) b)

Source: The author.

This tunable qubit is made changing the single Josephson junction of a traditional

qubit by a superconducting quantum interference device (SQUID): a superconducting ring

with two Josephson junctions in parallel [58]. In this geometry, it is possible to introduce an

external magnetic flux Φ̃ through the ring that will allow us to externally control the frequency

of the qubit. In Figure 10, we show the sketch of a SQUID and the circuit representation of

the transmon qubit.

To understand how this parameter will allow to build a frequency tunable qubit,

we first write the energy of the SQUID. Given by the sum of two Josephson energies of

independent junctions

ÊSQU I D = −EJ ,l cos(φ̂l)− EJ ,r cos(φ̂r), (4.28)

where the indices stands for the left and right junctions. The relation between superconduc-

ting phases φ̂l and φ̂r will have a constraint, due to the physics of superconductors. Since

the wave functions that describe the collective Cooper pairs must be single valued, at a

given point, to have physical meaning, the total phase difference around the loop must be

an integer multiple of 2π, which is called the fluxoid quantization condition [59]. Since the

magnetic external flux will also affect the phase in the loop, we will have the condition,

φ̂l − φ̂r = 2πĉ + 2π
Φ̃

Φ0
. (4.29)

Then, we can write

φ̂l =
φ̂l − φ̂r

2
−
φ̂l + φ̂r

2
, and φ̂r =

φ̂l − φ̂r

2
+
φ̂l + φ̂r

2
, (4.30)
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to apply the trigonometric identity cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β) to rewrite

Eq.(4.28)

ESQU I D = −EJΣ

�

cos(α̂) cos(β̂)− d sin(α̂) sin(β̂)
�

, (4.31)

where EJΣ = EJ ,l + EJ ,r , α̂= (φ̂1 − φ̂2)/2, β̂ = (φ̂1 + φ̂2)/2 and we defined the asymmetry

between the two junctions d = (EJ ,l − EJ ,r)/EJΣ. Experimentally the asymmetry is due to

imperfections during the qubit manufacture and usual values of the parameter d are close

to 0.1 [34]. However, it is possible to assume that both junctions are identical, since this

assumption does not change the overall behaviour of the system.

Assuming junctions perfectly symmetrical (EJ = EJ ,l = EJ ,r) and using Eq.(4.29) we

can write the energy on the SQUID as a function of Φ̃/Φ0 as

ESQU I D = −2EJ cos

�

π
Φ̃

Φ0

�

cos ϕ̂, (4.32)

where one defines the new superconducting average phase ϕ̂ = (φ̂1 + φ̂2)/2 and a new

Josephson energy E′J(Φ̃) = 2EJ cos
�

πΦ̃/Φ0

�

that is function of the external flux. Applying

Eq.(4.32) to derive the Hamiltonian of the transmon qubit, it leads to a similar result as

made in the previous section for the fixed frequency qubit, with the final Hamiltonian

Ĥt ransmon = 4EC ĉ − E′J(Φ̃) cos (ϕ̂) . (4.33)

By applying the second quantization to write the Hamiltonian in terms of â and â† we

will have a qubit frequency that varies with the external flux as ω(Φ̃) =
q

8EC E′J(Φ̃)− EC .

This dependence on the external flux will allow us to control the interaction between the

elements of the circuit during the experiments. It allows, for example, for the possibility

to set multiple qubits in resonance for a desired period of time, a fundamental request for

interaction engineering between different qubits.





57

5C
ha

pt
er

The circuit of the quantum transistor

After understanding all the concepts regarding our work, we are able to build and

analyze the circuit of the quantum transistor. In this chapter, first we describe all the com-

ponents present in the real circuit that was used to obtain the experimental data. With this

information the circuit is modeled and the Hamiltonian is derived. For that, we will start

with the classical Lagrangian of the system and do a similar approach as described in [43].
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5.1 The experimental circuit

The circuit considered in our work is composed of two superconducting artificial

atoms (Q1 and Q2) coupled via a superconducting loop (called coupler C) which can be used

to create a tunable coupling between the atoms Q1 and Q2 [60]. Our system is composed of

three Xmon qubits [61].

A photo of the real circuit can be seen in Figure 11, where we can understand better

the different components of the studied circuit. The ressonators R1 and R2 that connects the

qubits Q1 and Q2 to the transmission line are the components that allow the reading of the

population in those qubits during the experiment. The XY lines are controls that implement

the pulses used to implement single qubit gates. Finally, the Z line, is used to control the

external flux through the superconducting loops in order to allow the frequency tuning of

each element. This means that, only the populations in Q1 and Q2 can be measured during

the experiment. Also, the population in the coupler can only be set before the beginning of

the experiment. Those two characteristics of the coupler are the fundamental differences on

the motivation for treating qubits and coupler in a different manner, despite the fact that

all elements are composed of the same types of superconducting loops. Another important

point to notice is that only the frequencies of Q1 and C can be tuned, with Q2 being a fixed

frequency qubit, since there is no Z line to control its external flux.

As we mentioned, the artificial atoms used in the circuit are Xmon qubits, however,

apart from some differences in the way the circuit is grounded, Xmon and transmon qubits

are equivalent. Both Xmons and transmons are built with a SQUID in parallel with a capacitor

and operate in the same regime EJ ≫ EC [61]. Therefore, Xmon qubits will be described by

the same Hamiltonian as the transmon. Therefore, for simplicity, in our work we will refer to

all qubits as transmons.

5.2 Obtaining the system Hamiltonian

To analyze the system dynamics, it is fundamental to derive its Hamiltonian. To do

that, we will use the method described in [43], where we begin by describing the classical

Lagrangian of the circuit and proceed to derive its quantum Hamiltonian. Here we only

describe the results of implementing this method, but the details can be seen in the Appendix

B. For instance, let the circuit in analysis be described as seen in the scheme in Figure 12.

Each of the superconducting qubits is assumed as a transmon tunable frequency qubit. Since

our main focus in this work is the description of the circuit dynamics, here we omit the

resonators from this scheme, assuming they will have no effect on the dynamics. Each of

the j qubits is directly coupled to the coupler, here depicted as a capacitor of capacitance

C jc. There is also a capacitive coupling C12 that connects both qubits. This coupling is much

weaker than the direct couplings and exists, for instance, due to the proximity of the qubits
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Figure 11 – Photography of the real circuit used in the experiments with the qubits highligh-
ted. Both Q1 (green) and Q2 (blue) are connected to the transmission line via
the resonators R1 and R2, allowing the population reading. The XY lines are
used to control the qubit initial state and the Control Z line is used to control
the frequencies on both Q1 and C .

Source: Adapted from original photo published in [62].

Q1 and Q2 in the circuit. In the circuit geometry, the arms of the qubits will act as parallel

plates of a capacitor, generating a capacitance that will affect the system behaviour.

The approach we used is similar to the implemented in Section 4.2 to derive the

Hamiltonian of the qubit. Here, however, to simplify the calculations, we define the relevant

quantities in terms of a capacitance matrix C and the conjugated coordinates of the circuit

are written as vectors φ⃗ and q⃗. This approach allow us to write the Lagrangian in Eq. (4.6)

in the matricial form

L =
1
2

˙⃗
φT C ˙⃗

φ −
∑

i=1,C ,2

EJi
cosφi, (5.1)

with the second term the Josephson energy for each transmon qubit. Using this matricial

notation, the work of finding the corresponding Hamiltonian for given a Lagrangian is a

simple task, that involves only inverting the capacitance matrix and calculating,

H =
1
2

q⃗T C−1q⃗+ UJ . (5.2)

Computing the inverse of C for our system results in an matrix with a large number

of terms. However, assuming that the capacitance from each transmon (C1, CC and C2)

is much greater than the capacitances that couples the qubits (C1C , C2C and C12), it is

possible to simplify the matrix, to just a few terms. Such assumption is based on the fact

that, experimental capacitances for the qubit modes are of the order of 100fF, while the
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Figure 12 – Diagram of the circuit in analysis. Each one of the three qubits are composed of
two Josephson junctions (EJi

) in parallel with a capacitor of capacitance Ci. The
direct couplings between the qubits and the coupler are modeled with capacitors
of capacitance C jC . The capacitive coupling is modeled with a capacitor C12 that
has a capacitance that respects C jC ≫ C12. The frequencies of Q1 and C can be
tuned using the external fluxes Φ1 and ΦC . Experimentally, Q2 is not connected
to a line that enables frequency tuning, therefore, no external flux for the second
qubit is considered in this diagram.

Source: The author.

qubit-coupler coupling is 1fF and the qubit-qubit capacitive coupling is closer to 0.01fF [62].
Applying the second quantization to this simplified Hamiltonian we can write it in terms of

the creation and annihilation operators as done for the case of a single artificial atom. This

process leads to the Hamiltonian,

H =
∑

i=1,2,c

�

ωia
†
i ai +

αi

2
a†

i a†
i aiai

�

+
∑

j=1,2

g j

�

a†
j ac + a ja

†
c

�

+ g12

�

a†
1a2 + a1a†

2

�

, (5.3)

with ωi the qubit frequency and αi the anharmonicity. gi denotes the coupling frequency

between the coupler and the i-th qubit and g12 the capacitive coupling between qubits 1 and

2. To simplify the notation, the hats (ˆ) in the operators will be omitted from now on, and

we assume ℏ= 1.

The first term in Eq.(5.3) represents the energy spectrum of the i-th qubit, with ωi

the energy difference between the states |0〉i and |1〉i. The αi parameter is the anharmonicity

of each qubit. The second and third terms describe the interaction between the qubits,

where the operators a ja
†
k models the excitation of one mode of the j-th atom, with the

consequent annihilation of one excitation in the k-th atom. This kind of term will conserve

the total number of excitations on the circuit. The rates gi and g12 will define how fast those
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Figure 13 – Schematic representation of the circuit studied. The qubits Q1 and Q2 are coupled
to a central superconducting loop C via the coupling frequencies g1 and g2. There
is also a capacitive coupling (g12) between Q1 and Q2.

Source: The author.

interactions occur. It is important to notice that, gi ≫ g12, since the capacitances CiC are also

much greater than C12 .

In Figure 13 we can see the schematic representation of the interactions that occur in

our system and the representation of the energy levels of each qubit. As we can see, only ω1

andωC can be changed, due to the absence of an external flux to controlω2. Since frequency

ω2 is fixed, a fundamental part of the analysis of our circuit will be finding ways to tune Q1

and C in order to control the interactions of the circuit to engineer the desired dynamics.
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Transistor dynamics

Once described the essential components of the circuit and defined its Hamiltonian,

we can proceed to simulate its dynamics and analyze the system behavior. In this chapter,

we demonstrate why the circuit is analogous to a classical transistor and demonstrate how

it could be used to control the information flux. Also, we present the techniques used to

simulate it.
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6.1 Simulations and numerical methods

As discussed in Section 3.3, the dynamics of a quantum closed system is ruled by

Schrödinger Equation (2.1), and by solving it we can completely describe the system dynamics.

In theory, this equation could be solved simply by diagonalizing the Hamiltonian matrix,

however, the level structure of our system is so complex, that analytical diagonalization

is unfeasible. This difficulty forces us to resort to numerical methods when studying our

system.

In our work, the numerical solution of the Schrödinger equation is calculated using

the Quantum Toolbox in Python (QuTiP) [63,64], a Python library specifically meant for

numerical simulations of quantum optics and quantum information systems. To represent a

quantum system, QuTiP describes both, quantum operators and states, as quantum objects

(Qobj) which are sparse matrices in a Hilbert space of finite dimension [63]. This represen-

tation allows doing a wide range of operations needed to represent/manipulate quantum

systems, such as matrix multiplication, tensorial products, conjugation, etc.

Once the Hamiltonian is written, QuTiP offers a number of routines to numerically

solve the Schrödinger equation. These routines are accessed through the function sesolve
which solves the quantum dynamics and returns the occupation probabilities for a desired

state. There are also routines for solving the dynamics considering the system interaction

with the environment, i.e., to solve the master equation, which is achieved, e.g., by using

the function mesolve. The reader interested in further details on the effects of energy loss

in quantum systems and how they will affect our system, can see the Appendix C where we

treat the dissipative dynamics.

As mentioned above, QuTiP quantum objects are sparse matrices of finite dimension,

however, the quantum operators a and a† used in Equation (5.3) to describe the system

Hamiltonian are infinite-dimensional. Once it is not possible to handle numerical calculations

on infinite-dimensional matrices, we need to truncate the computational space of our problem

to solve the dynamics with QuTiP. Since our system does not consider external sources, the

initial number of excitation will be conserved. Then, we can truncate the system dimension

with no loss of information.

It is important to highlight that the states and operators of our simulations will

be defined using tensorial products. In the simulations, the total Hilbert space will be

composed by the tensorial product of the spaces for each component, respecting the order

H =HQ1
⊗HC ⊗HQ2

. Therefore, throughout the text, this same order will be implicit for

all operators and states.
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Figure 14 – Schematic representation of a bipolar-junction-transistor (BJT). In this type of
transistor, two semiconductors of one type are separated by a thin layer of a
different semiconductor. The three regions are called collector, base and emitter,
with the base being the central part. In this schematic, the emitter is the part
where the currents will be flowing out and collector the region where the charges
flow in.

Base

Collector Emitter

Source: The author.

6.2 A brief review on the classical transistor

In this work, we are interested in describing a quantum device that has the same

properties as a classical transistor. However, classical transistors form a wide range of

electrical components, with several different applications and constructions [65]. Then, it is

fundamental to define which kind of transistor we aim to simulate and which applications it

could have.

The class of transistors here analyzed is called a bipolar-junction-transistor (BJT), and

their schematic representation can be seen in Figure 14 where two semiconductors of one

type (P or N) are separated by a thin layer of another semiconductor of the opposite type [65].
In these transistors, the central region is called base and the other two are called collector

and emitter. One should notice that the roles of emitter and base may vary depending on the

type of semiconductor used. However, for our study, it is sufficient to assume the emitter as

the region where the charges flow out, and the collector as the region where the charges

flow in.

Although being used in several applications as an amplifier of signal [66], the appli-

cation we discussed here, is the effect of an electrical switch. Any switch can be understood

as a device that has two well-defined different states. Once in the off state, the switch acts as

a cut in the electrical circuit, preventing the current to flow in the circuit. On the other hand,

when in the on state, the switch acts as a shorted circuit and the current can pass with little

resistance [66]. In the transistor, the switching between the on and off states can be done by

applying a current to the base. If no current is applied in the base, it acts as a barrier and no

current can flow through the circuit (off state). Once applying sufficient current, the base

can become saturated and allow the passage of current from the emitter to the collector (on

state).

This switching behavior of classical transistors has been one of the main reasons why
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such devices were fundamental to build modern computers. The capability of efficiently

controlling electricity with electricity unveiled a vast world of interactions that could be

engineered to develop the classical gates fundamental to do computation. It is precisely this

ability to control the passage of information conditioned to the state of a system, that we

seek to emulate with our quantum transistor.

6.3 Effective dynamics for a two level system

The effective dynamics is a good approach to describe how the system evolves in time.

By using this strategy we can find out a simplified version of driving Hamiltonian, what allow

us to find the optimal parameters for implementing a given quantum task. The first approach

we will use is considering the physical qubits of our circuit as perfect two-level systems. Such

assumption was already considered in previous works for similar circuits [62,67–74]. Once

the qubits are anharmonic systems, the energy difference between the transitions should be

high enough to prevent the qubit from populating the higher levels. Therefore, the effects

of these higher levels could be neglected. It is indeed truth that no excitation to the higher

levels will occur. However, as we shall see, despite not being populated, the third level of

energy does play a fundamental role in the effective dynamics of the system.

To describe the system as a two level perfect system, first we replace the infinite-

dimensional operators a and a† by the two level raising/lowering operators σ± in Eq. (5.3)

H =
∑

i=1,2

ωσ1
i +ωcσ

1
c + gi(σ

+
i σ
−
c + h.c.) + g12(σ

+
1σ
−
2 + h.c.), (6.1)

where σ+i = |1〉i 〈0| and σ−i = |0〉i 〈1|, such that in this notation we define the projectors

σ0
i = |0〉i 〈0| and σ1

i = |1〉i 〈1|. To simplify the calculations, we assumed ω1 =ω2 =ω, an

experimentally feasible frequency configuration for the qubits.

To calculate the effective Hamiltonian, first we have to write Eq. (5.3) in interaction

picture. To do that, let H0 = ω(σ1
1 + σ

1
2) +ωcσ

1
c be the unperturbed Hamiltonian. The

interaction picture for H can be found, using the unitary transformation

HI = UHU† −H0 = e−iH0 t HeiH0 t −H0, (6.2)

to find the resulting Hamiltonian

HI = g
�

σ+1 +σ
(+)
2

�

σ−c ei∆t + g
�

σ−1 +σ
−
2

�

σ+c e−i∆t + g12

�

σ+1σ
−
2 + h.c.
�

, (6.3)

where ∆ = ω−ωc and where are adopting, g = g1 = g2. Now, we can use Eq.(3.23) to

derive the effective Hamiltonian. The details of this deduction can be seen in Appendix D,

for now, it is worth to mention that the effective Hamiltonian is

He f f ≈ −iHI(t)

∫ t

0

HI(t
′)d t ′, (6.4)
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in which the product of HI(t) with its integral will result in a large amount of terms, some

of them proportional to exp(±2i∆t), some to exp(±i∆t) and some time independent. To

simplify the Hamiltonian, we remember that |∆| ≫ g, this means that terms with any

dependency on time will be highly oscillatory and on average will not contribute to the

dynamics. Then, we can remove them from the Hamiltonian to find

He f f ≈
g2

∆

�

(σ1
1 +σ

1
2)σ

0
c − (σ

0
1 +σ

0
2)σ

1
c + (σ

−
1σ

+
2 +σ

+
1σ
−
2 )(σ

0
c −σ

1
c )
�

+g12(σ
−
1σ

+
2 +σ

−
2σ

+
1 ). (6.5)

In Eq. (6.5), it is possible to separate the obtained terms in two classes concerning

qubit operators. The first are the phase terms, that do not promote changes in the population

of the qubits but apply a phase to a defined state. Here, such terms are the ones proportional

to the population operators σ j
1,2. The second class are the hopping terms, they will describe

the exchange of excitation between Q1 and Q2. For this reason they have the form σ±1,2σ
∓
2,1.

These interaction terms are the fundamental ones in the transistor description and therefore

are the main elements we will focus on.

This simple effective Hamiltonian already has a useful property that can be used to

deepen our understanding of the circuit and improve the information control. Since ∆ is a

tunable parameter, we can make ∆ = −g2/g12 to find a condition that completely blocks the

transference of information between the qubits. By applying this condition, we find

He f f ≈g12(σ
0
1 +σ

0
2)σ

1
c − g12(σ

1
1 +σ

1
2)σ

0
c + g12(σ

+
1σ
−
2 +σ

−
1σ

+
2 )(1c +σ

1
c −σ

0
c ), (6.6)

with 1c the identity matrix for the coupler. Analyzing the third term of Eq.(6.6) one realizes

that, when the coupler is initialized in the state |0〉, the term σ0
c will cancel out with the

identity matrix. Then, all hopping terms will be removed, and only phase terms will be

present. If on the other hand, we have |1〉c, the population term σ1
c will add with 1c and the

exchange of populations will appear. This behavior gives rise to a state-dependent on/off

dynamics of the system, a characteristic of classical transistor.

This effective Hamiltonian approach is convenient to find the solution of the Schrö-

dinger equation for the system, where the evolution operator reads U = e−i tHe f f . To do that,

first we divide Eq.(6.6) in two terms, Hph, which is the phase term and Hhop the hopping

term. Therefore, we write He f f = Hph+Hhop. Once [Hhop, Hph] = 0, the evolution of the state

will be

|Ψ(t)〉I = e−i tHph e−i tHhop |Ψ(0)〉 . (6.7)

Eq. (6.7) shows us that the evolution of the hopping part will be independent of the

global phase applied. If we set the initial state of the coupler to be |1〉c, the hopping term

will be

Hhop = 2g12(σ
+
1σ
−
2 +σ

−
1σ

+
2 ). (6.8)
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Using the basis {|0,1〉 , |1,0〉}, we can write this term in the matrix form

Hhop = 2g12

�

0 1

1 0

�

, (6.9)

that have the eigenenergies E± = ±2g12 and the eigenstates |Ψ±〉 = (|0,1〉± |1, 0〉)/
p

2. Now,

by solving |Ψ(t)〉hop = e−iHhop t |Ψ(0)〉 we can find the hopping dynamics. As an example, let

|Ψ(0)〉= |1,0〉1,2 |1〉c, then we find

|Ψ(t)〉hop =
1
p

2
e−2i g12 t |Ψ+〉 −

1
p

2
e2i g12 t |Ψ−〉

=
e−2i g12 t − e2i g12 t

p
2

|0,1〉+
e−2i g12 t + e2i g12 t

p
2

|1, 0〉

= cos(2g12 t) |0, 1〉 − i sin(2g12 t) |1, 0〉 . (6.10)

This shows that during the dynamics, both estates |1,0〉 and |0, 1〉 will be populated

in alternated times. After the time interval t t r = π/g12 our system will be in the state

|Ψ(t)〉hop = |0, 1〉1,2 |1〉c with maximal probability, and the information will be transferred

from Q1 to Q2 conditioned to the state of the coupler. To visualize this dynamics we can use the

QuTiP library to define the operators in Eq.(6.6) and numerically solve the effective dynamics.

In those simulations, we will assume the parameters as seen in Table 1. These are similar to

the parameters used in the experiment that demonstrated the transistor dynamics [75].

Table 1 – Parameters used in the numerical simulations of our system. All values were based
on the experimental values used in [75], however, they are not equal.

ω(GHz) α(MHz) Coupling (MHz)

Q1 Qc Q2 Q1 Qc Q2 g1 g12 g2

4.628 5.741 4.620 -210 -370 -240 122 12 105

As can be seen in Figure 15, when the initial state of the circuit is |Ψ0〉 = |1〉1 |0〉C |0〉2
the system state remains unchanged during the dynamics of the system, which means we

have the blockade of the information flow between Q1 and Q2. Here, this case is called

the “off” state of the transistor. In this figure, the σ j
i , represent the population of the i-th

qubit in the j-th state. On the other hand, if we prepare the system in the initial state

|Ψ0〉 = |1〉1 |1〉C |0〉2, we will have the “on” state of the transistor. As we can see in Figure 16,

the excitation initially in Q1 will be transferred to Q2 after an interaction time of ≈ 65ns,

while the coupler state remains in |1〉. These results demonstrate the concept of transference

of information conditioned to the initial state of the coupler. It is possible then, to conclude

that the coupler works as the base of a quantum transistor and Q1 and Q2 being the collector

and emitter. Here, however, due to the quantum aspect of our system, the information could

be transferred from Q1 to Q2 and vice-versa. Therefore, both Q1 and Q2 can work as the

emitter or the collector.
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Figure 15 – Effective dynamics of the system in the “off” state. Using |0〉c as the initial state,
our system is unable to perform the change between Q1 and Q2. To obtain this
transference blocking we used the condition∆ = −g2/g12. The other parameters
of the system remain the same as in Table 1.
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Figure 16 – Effective dynamics of our system in the ’on’ state in the two level approximation.
Using |1〉c as the initial state, we obtain a population transference between Q1

and Q2 maintaining the coupler state unchanged. The parameters used in this
simulation can be seen in Table 1.
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Once defined the effective dynamics, describing the behavior of the effective coupling

as a function of the detuning and other parameters, the next task to be done is its experimental

investigation. Such parameter (effective coupling) can be understood as the effective rate of

exchange of energy in our circuit and can be obtained from the interaction terms in Eq.(6.5)
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and reads

g |n〉ce f f (∆) = g12 + (−1)n
g2

∆
. (6.11)

In this expression, the variable ‘n’ denotes the coupler state, and it makes clear that

we have different effective dynamics depending on the coupler state |n〉c, n = 0,1. Such

equation was previously deduced in [70], however, as we will see, the assumption made of

neglecting the third level will result in an incomplete description of the real system evolution.

6.4 Total dynamics of the transistor

In order to confirm that the effective dynamics derived previously is describing the

behaviour of the system, we can proceed to simulate the total Hamiltonian for the circuit to

analyze its dynamics. Remembering the total Hamiltonian derived in Section 4.2, we have

H =
∑

i=1,2,c

�

ωia
†
i ai +

αi

2
a†

i a†
i aiai

�

+
∑

j=1,2

g j

�

a†
j ac + a ja

†
c

�

+ g12

�

a†
1a2 + a1a†

2

�

. (6.12)

Using QuTiP matrices to define this Hamiltonian, we can simulate its dynamics using

the appropriate solver, and plot the results, to see the behavior of the quantum transistor.

The parameters used are the same as those in Table 1 for the effective dynamics.

First we plot, in Figure 17, the dynamics for the initial “off” state of the transistor,

|Ψ0〉 = |0〉1 |0〉C |1〉2. As expected, there is no transference of the excitation in Q2 to Q1. Then,

using the “on” state |Ψ0〉 = |0〉1 |1〉C |1〉2, we see in Figure 18 the transference of information

conditioned to the coupler state.

We should remember, that, in this conservative case, our system conserves the total

amount of excitation, with one qubit only being excited in exchange for the decaying of the

other qubit. In addition, we can see, that neither the qubits nor the coupler, are ever excited

to states higher than the first excited. Therefore, we verify that it is sufficient to truncate

the numerical space for the simulations in 4 dimensions since no excitation to the |3〉 state

should be expected.

By comparing Figure 16 for the two-level approximation and Figure 18 the total

Hamiltonian one realizes that the exchange of excitation is occurring in the effective dynamics

much faster than the total Hamiltonian predicts. While in the total Hamiltonian, the inversion

occurs for t ≈ 160ns, in the effective Hamiltonian this transference occurs at t ≈ 65ns, less

than half the expected time. Such difference is one of the aspects pointing out that the

two-level effective Hamiltonian description is not completely valid. The solution to this

discrepancy will be detailed in next chapter.
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Figure 17 – Simulation of the dynamics for the complete Hamiltonian, using the experimental
parameters defined in Table 1 and the initial state |1, 0〉1,2 |0〉c. In this state, the
excitation in Q1 remains in this state through all the dynamics. For this reason
this is called the off state of the transistor. The parameters used in this simulation
can be seen in Table 1.
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Figure 18 – Dynamics of the populations of the qubits and coupler, considering |ψ(0)〉 =
|1,0〉1,2 |1〉c as the initial state to solve Equation (5.3), we can verify the trans-
ference of states between the logical qubits. Differently form the effective Ha-
miltonian, here we have a non-zero probability of populating the higher excited
states or our system. The parameters used in the simulation are in Table 1.
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The effective dynamics of a qutrit system

This chapter is focused on explaining the new approach for describing the effective

dynamics of our system of three artificial atoms in the configuration shown in Figure 12.

This will be done using the same tools of effective dynamics, but now in a system of qutrits.

The considerable gain in the number of terms will be balanced out with a more precise

description that will allow us for a deeper understanding of the circuit.
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7.1 Effective Hamiltonian of the qutrit

If a qubit is a quantum system that can store information in two states, it is also

valid to define the qutrit as the system that stores information in three levels. We could

also generalize this concept for a d-dimensional qudit [76]. As mentioned in the previous

chapters, the anharmonic oscillators used in superconducting circuits are usually treated as

two-level systems, due to the role that the anharmonicity has on preventing population of

the higher levels of energy. However, despite not being populated, such higher levels still

exist in the system and this presence will affect the dynamics.

To verify how this change occurs, we will again calculate the effective dynamics of

the system. The complete algebraic passages in this process can be seen in Appendix D.

To distinguish the three and two level approaches, entities that considers the system as a

qutrit will be denoted with a tilde (̃ ). Similarly as in Section 6.3, we start with the total

Hamiltonian Eq.(5.3), and define H̃0 =
∑

i=1,2,c

�

ωi a†
i ai +

αi
2 a†

i a†
i aiai

�

as the unperturbed

Hamiltonian and use the unitary operator U(t) = e−iH̃0 t to write the complete Hamiltonian in

the interaction picture. The key difference will be the definition of the population operators

Σi to describe the populations in our qutrits as

ai → Σ−i =
2
∑

k=1

p

k |k− 1〉 〈k| , a†
i → Σ

+
i =

2
∑

k=1

p

k |k〉 〈k− 1| . (7.1)

With this operators, we can show that the transformation HI = UHU† −H0 will lead

to the Hamiltonian in the interaction picture

H̃I =
∑

i=1,2

gi

�

U†(t)Σ+i U(t)U†(t)Σ−c U(t) + h.c.
�

+ g12

�

U†(t)Σ+1 U(t)U†(t)Σ−2 U(t) + h.c.
�

. (7.2)

Working out this expression, we can define the operators P(i)nm = |n〉i 〈m|, to write the Hamil-

tonian as

H̃I = H1,c(t) +H2,c(t) +H2(t), (7.3)

where

Hk,c(t) = gk

�

ei(ωk−ωc)t P(k)10 P(c)01 + ei(ωk−ω̃c)t
p

2P(k)10 P(c)12

+ei(ω̃k−ωc)t
p

2P(k)21 P(c)01 + 2ei(ω̃k−ω̃c)t P(k)21 P(c)12 + h.c.
�

(7.4)

and

H2(t) = g12

�

ei(ω1−ω2)t P(1)10 P(2)01 + ei(ω1−ω̃2)t
p

2P(1)10 P(2)12

+ei(ω̃1−ω2)t
p

2P(1)21 P(2)01 + 2ei(ω̃1−ω̃2)t P(1)21 P(2)12 + h.c.
�

, (7.5)
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with k = 1,2 and ω̃i =ωi +αi.

To simplify our calculations we assume the resonance of Q1 and Q2, ω1 =ω2 =ω.

We also consider α1 = α2 = α. This is a valid approximation, once the difference between α1

and α2 in our experimental setup is much smaller than α1 and α2. Then, we find the final

expression for the Hamiltonian in the interaction picture

H̃I = H0 +
p

2g12

�

ei tα
�

P(1)21 P(2)01 + P(1)01 P(2)21

�

+ e−i tα
�

P(1)12 P(2)10 + P(1)10 P(2)12

��

+
∑

k=1,2

gk

�

ei∆t P(k)10 P(c)01 + ei∆̃t
p

2P(k)10 P(c)12 + ei∆̃′ t
p

2P(k)21 P(c)01 + 2ei ˜̃∆t P(k)21 P(c)12 + h.c.
�

, (7.6)

with H0 = g12

�

P(1)10 P(2)01 + 2P(1)21 P(2)12 + h.c.
�

the time independent part of the Hamiltonian, and

∆̃=ω− ω̃c, ∆̃
′ = ω̃−ωc and ˜̃∆= ω̃− ω̃c the detunings.

Once in the interaction picture, we use Eq. (3.23) to find the effective Hamiltonian

as we did in the two level case. The rotating wave approximation can be done assuming

again ∆≫ g1, g2, in addition, we also assume α,αc ≫ g12 to obtain as result

He f f =
∑

k,m=1,2

gk gm

�

1
ω−ωc

(P(k)10 P(m)01 P(c)00 − P(k)01 P(m)10 P(c)11 ) +
2

ω− ω̃c
(P(k)10 P(m)01 P(c)11 − P(k)01 P(m)10 P(c)22 )

+
2

ω̃−ωc
(P(k)21 P(m)12 P(c)00 − P(k)12 P(m)21 P(c)11 ) +

4
ω̃− ω̃c

(P(k)21 P(m)12 P(c)11 − P(k)12 P(m)21 P(c)22 )
�

+
2g2

12

α

�

−P(1)11 P(2)11 + P(1)22 P(2)00 + P(1)20 P(2)02 + h.c.
�

+ g12

�

P(1)10 P(2)01 + 2P(1)21 P(2)12 + h.c.
�

. (7.7)

Comparing Eq. (7.7) with Eq. (6.5) it is simple to notice that the qutrit model leads

to a dramatic increase in the complexity of effective dynamics. With an explicit dependency

both on the anharmonicities and on the second excited state.

To verify how this new expression affects the dynamics, again we use QuTiP to

simulate the effective Hamiltonian. As expected, using the initial state |Ψ(0)〉= |1, 0〉 |0〉c in

Figure 19 we obtain the blockage of the information. Then, using |Ψ(0)〉= |1, 0〉 |1〉c we see

in Figure 20, the transference of excitation, but now occurring after an interaction time of

140ns. In both cases the parameters used are the same seen in Table 1, the only exception

being the definitions α= α1 and ω=ω1.

It is interesting to notice that now, the probability of the population exchange occur-

ring is ≈ 93% while in the two-level approximation such probability was closer to 100%.

Plotting all the three dynamics in the same graph using the same parameters and the initial

state |Ψ(0)〉 = |1, 1,0〉, we can verify in Figure 21 that the effective dynamics in the third

level approximation (H̃e f f ) is a better approximation to the total Hamiltonian (Htot) than

the two-level case. However, as we can see, the dynamics of Htot tend to be slightly slower

than H̃e f f . To understand the differences between the qutrit approximation and the total

Hamiltonian, it is useful to consider the anharmonicities 10 times larger than the real ones.

Under this regime, we see in Figure 22, a good agreement between Htot and H̃e f f . The
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Figure 19 – Effective dynamics in the three level approximation. In the initial state |Ψ(0)〉 =
|1, 0〉 |0〉c, the blocking of information is achieved as in the previous cases. Here
we consider both qubits Q1 and Q2 in perfect resonance, assuming α = α1 =
α2 = −210MHz and ω=ω1 =ω2 = 4.628GHz. The other parameters are the
same as in Table 1.
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Figure 20 – Effective dynamics considering three levels for the “on” state of the coupler. As
expected, the conditional state transference is maintained. In this simulation we
assumed α = α1 = α2 = −210MHz and ω = ω1 = ω2 = 4.628GHz, and used
the parameters from Table 1.
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two-level approximation, however, remains not a good approximation. This result has a

significant implication when concerning systems of transmons qubits coupled via a coupler,

that is, the impossibility to treat such a system as a real qubit when the coupler is exci-

ted. The accordance between the three Hamiltonians is only achieved when we assume an

anharmonicity 100 times higher.

In principle, it could be only an experimental problem of obtaining greater anharmo-

nicities. However such a regime would not be simple, once the anharmonicities are defined
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Figure 21 – Comparison between the dynamics of the system according to all three Hamilto-
nians deduced in this work, the Hamiltonian without approximations (Htot), the
effective Hamiltonians in the two (He f f ) and three (H̃e f f ) level approximations.
All using the same parameters from Table 1 and simulated with the initial state
|Ψ(0)〉= |1,1, 0〉

Source: The author.

in terms of the capacitive energy as α = −EC . The transmon regime, on the other hand,

requires EJ ≫ EC , therefore, augmenting the anharmonicity would require the increasing

of the Josephson energy. However, augmenting both EC and EJ will also increase the tran-

sition frequency ω =
p

8EC EJ − EC . This will lead to the problem that augmenting the

anharmonicity leads to a higher transition frequency, in a balance that is not trivial to obtain.

7.2 The effective coupling in the qutrit approximation

In section 6.3 we obtained the effective coupling in the two-level approximation.

However as we demonstrated, such an assumption is not valid. Once again, we can proceed

to deduce the effective coupling but now, for the Hamiltonian in Eq.(7.7). It can be shown

(see Appendix D) that the effective coupling can be written in the following form

g̃ |n〉ce f f (∆) = g12 + g1 g2

�

2
∆−δn1αc

−
1
∆

�

, (7.8)

where δn1 is the Kronecker delta, that is equal to 0 when n ̸= 1 and is 1 when n = 1. As

expected two different behaviors of the system are predicted. Comparing Eq. (7.8) with the

effective coupling obtained in Eq. (6.11) we can notice that both equations return the same

coupling when the coupler is in the ground state. This is precisely the condition that allow us

to set ∆ = −(g1 g2)/g12 to block the passage of information in the circuit when the transistor

is off.
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Figure 22 – Comparison between the dynamics of the system, under the assumption of
an anharmonicity 10 and 100 times higher than the experimental values. This
results demonstrate that even for a high anharmonicity, the artificial atoms in our
analysis can not be completely described as a two level system. The parameters
used are the ones in Table 1.
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The difference in our considerations will occur when the transistor is set on. In

this situation, the three-level effective coupling will be shifted by a factor of 2/(∆−αc)
in comparison to the two-level coupling. If we take the limit αc →∞ for the on state in

Eq.(7.8) we find

lim
αc→∞

g12 + g1 g2

�

2
∆−αc

−
1
∆

�

= g12 −
g1 g2

∆
, (7.9)

and recover the effective coupling for the two level approximation when g1 = g2 = g, which

is in accordance with the behavior presented in Figure 22. Thus, only for very high anharmo-

nicities the qubit approximation is valid. Since ∆> α, and ∆ is the tunable parameter of the

system, another interesting limiting case to analyze is

lim
∆→αc

g12 + g1 g2

�

2
∆−αc

−
1
∆

�

=∞. (7.10)

In this scenario, the more close ∆ gets to αc, faster the dynamics will be, tending to an

asymptotic behavior. This demonstrates that it is not possible to set the parameters in order

to mitigate the effects of the third level.

In Figure 23 we plot g |n〉ce f f (∆) and g̃ |n〉ce f f (∆) as a function of the detuning ∆ =ω−ωc.

In this graphic, we see the great impact the consideration of the third level of energy has in

the effective coupling. And also helps to explain the switching pattern. To block the passage

of information in the transistor, we set the detuning to ≈ 1.07GHz at the point where the
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effective coupling for the ground state will be zero. Then, maintaining the same detuning,

we change the coupler state to the first excited state. This will lead to a non-null effective

coupling allowing the passage of information between Q1 and Q2.

Figure 23 – Effective coupling in the two and three level approximations as a function of
the detuning. As we can see, the |0〉c state returns the same effective coupling.
However, when the transistor is turned on, the three level approximation is
shifted from the two level case. The curves of the two level approximation,
where plotted using Eq.(6.11) and the parameters from Table 1. The three
level approximation curves where plotted using Eq.(7.8) and the parameters in
Table 1.
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This behaviour is the same obtained in the article [75] where the experimental results

obtained in collaboration with a Chinese experimental team corroborate our theoretical

predictions. These results can be seen in Figure 24 that use experimental parameters slightly

different from the ones used previously in our work. We can notice that when the detuning is

set to ≈ 1.6GHz the predicted coupling in the two-level approximation is ≈ 28MHz, a value

higher than the experimentally measured 9MHz that fits the three-level effective dynamics.

This fact explains the faster transition predicted by the qubit approximation observed in

Figure 21.

As a last example, we can use the total Hamiltonian to map the exchange of population

in the system for different coupler frequencies. This map can be seen in Figure 25 where

we plot the Chevron pattern for the population transfer between Q1 and Q2 using the

same parameters from Table 1. In this figure, we can see the region marked with a dashed

line close to ωc = 5.6GHz called the idling point. Such a region is where the interaction

between the qubits is canceled and where experimentally the measurements of the circuit

are implemented. However, as we can see in Figure 26, when the coupler is set in the “on”

state, the idling point is shifted to ωc = 6.2GHz, and the previously non-interacting region

of ωc = 5.6GHz now promotes the exchange of excitation.
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Figure 24 – Experimental results (dots) for the effective coupling, along with the two and
three level approximations (solid lines). The behavior obtained is similar to the
theoretical predictions seen in Figure 23. The parameters used where the same in
the original paper, g1 = 110MHz,g2 = 105MHz, g12 = 7.6MHz, αc = −370MHz.

2 Lvl. Approx.
3 Lvl. Approx.

Source: Adapted from [75].

Figure 25 – Simulation of the population exchange for different frequencies of the coupler,
using the total Hamiltonian and the initial state |Ψ(0)〉 = |0,0, 1〉. The white
dashed line indicates the idling region, where the exchange of energy between
the qubits is blocked. The parameters used can be seen in Table 1.

Source: The author.
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Figure 26 – Simulation of the population exchange for different frequencies of the coupler,
using the total Hamiltonian and the initial state |Ψ(0)〉 = |0,1, 1〉. Here, the
idling point is shifted to a higher frequency. The parameters used can be seen in
Table 1.

Source: The author.
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Conclusions

In this master thesis, we obtained two main results. First, we described the theoretical

tools needed to develop and optimize a quantum transistor using superconducting qubits. In

addition to this, we were able to identify and explain an unexplored effect that the third

level of energy of superconducting circuits has on the dynamics of those devices. Both results

were in good agreement with the experimental results.

We demonstrated that the usual description of artificial atoms as simple two-level

systems was unable to accurately describe the dynamics of our quantum transistor when

the coupler was excited. To solve this problem, we introduced the consideration of the

third energy level in the deduction of the effective Hamiltonian, leading to more complex

and accurate effective dynamics. We considered also the interaction of this circuit with its

environment to describe the dissipative regime of the circuit, not described in the main

text, but discussed in the Appendix C. In this analysis, we demonstrated that, given the

experimental parameters, the effects of decoherence are negligible. However, this dissipative

description was used to demonstrate the quantum signature of our transistor. Once in the

highly dissipative regime of the coupler, the loss of coherence led to a vanishing of the

transistor behavior, making clear that this system depends on its quantum characteristics to

work properly.

Our results demonstrate that in the current age of artificial atoms with small anhar-

monicities, approximating such devices as perfect two-level systems is not an adequate

description. Therefore, we believe that the consideration of the higher states or energy in

superconducting qubits should be a factor of interest in further investigations on the subject,

once such effects can have significant effects on the system dynamics. In addition, efforts

on increasing the anharmonicities of superconducting qubits, while still maintaining the

transmon regime, would be a relevant addition to the field and could lead to significant

improvement in the fidelity of those devices.
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We hope the results presented here will contribute positively to the development of

new applications and devices in quantum computation, and could be useful in fomenting

more investigations about the effects here described.
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In this section we will focus ourselves in expanding the terms in the total Hamiltonian

for the qubit in Eq.(4.26)

H =

H0
︷ ︸︸ ︷

ω0a†a+
α

12
(a+ a†)4

︸ ︷︷ ︸

V

, (A.1)

with ω0 =
p

8Ec EJ and α = −Ec. To simplify the notation, in this Appendix, we will omit

the hats in the notation of the operators.

To do so, we will first write the Hamiltonian in the interaction picture, using the

transformation HI = U†V U where U = e−iH0 t/ℏ

HI = eiH0 t/ℏ α

12
(a+ a†)4e−iH0 t/ℏ. (A.2)

Expanding each of the terms in the Hamiltonian, we find 16 different combinations

of the annihilation and creation operators,

α

12
=
�

a+ a†
�4

(A.3)

=
�

aa+ aa† + a†a+ a†a†
�2

(A.4)

=
�

aaaa+ aaaa† + aaa†a+ aaa†a† (A.5)

+aa†aa+ aa†aa† + aa†a†a+ aa†a†a† (A.6)

+a†aaa+ a†aaa† + a†aa†a+ a†aa†a† (A.7)

+ a†a†aa+ a†a†aa† + a†a†a†a+ a†a†a†a†
�

. (A.8)

To understand how each term will be transformed in the interaction picture, first we

calculate the result of the transformation, eiH0 t/ℏae−iH0 t/ℏ. To do that we apply the Baker-

Campbell-Hausdorff formula [77],

eABe−A = B + [A, B] +
1
2
[A, [A, B]] + ...

1
n!
[A, [A, ...[A, B]...] + ... (A.9)

Calculating the commutator between H0 and the operator a , we find

[H0, a] =ω0a†aa−ω0aa†a =ω0(a
†a− aa†)a = −ω0a. (A.10)

Therefore, the final form of the annihilation operator in the interaction picture, will be

eiH0 t/ℏae−iH0 t/ℏ = ae−iω0 t/ℏ, (A.11)

a similar approach can be used to find that the creation operator will be

eiH0 t/ℏa†e−iH0 t/ℏ = a†eiω0 t/ℏ. (A.12)
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With those two relations, the terms in Eq.(A.3) can be find, simply applying the

identity between each operator, e.g. the term

U†aa†aaU = U†aUU†a†UU†aUU†aU

= aa†aae−2iωt/ℏ. (A.13)

Proceeding with this same calculation for the other 15 terms in Eq.(A.3), we will

find two different classes of terms. The first ones are those with a different number of

creation and annihilation operators. They will have a time dependence, that is proportional

to e±λiωt/ℏ. The second class is concerning the terms with the same number of creation

and annihilation operators. Those, on the other hand, will be time independent, since the

exponential terms will add to remove the time dependence. To simplify this Hamiltonian,

we can apply the Rotating wave approximation, to neglect all time dependent terms, since

those will oscillate very fast and will not contribute to the dynamics. This approximation

results in the approximate Hamiltonian

HI ≈ aaa†a† + aa†aa† + aa†a†a

+ a†aaa† + a†aa†a+ a†a†aa. (A.14)

Then, we can use the commutation relation
�

a, a†
�

= aa† − a†a = 1 to write these

terms in the normal order
�

a†
�n

am,

a†aa†a = a†(1+ a†a)a = a†a+ a†a†aa, (A.15)

a†aaa† = a†a(1+ a†a) = a†a+ a†aa†a = 2a†a+ a†a†aa, (A.16)

aa†a†a = (1+ a†a)a†a = a†a+ a†aa†a = 2a†a+ a†a†aa, (A.17)

aa†aa† = (1+ a†a)aa† = aa† + a†aaa† = 1+ 3a†a+ a†a†aa, (A.18)

aaa†a† = a(1+ a†a)a† = aa† + aa†aa† = 2+ 4a†a+ a†a†aa, (A.19)

Finally, using these relations, we can write the Hamiltonian of the qubit, considering

both the frequency and the anharmonic term simplified using the RWA,

HI =
α

12

�

3+ 12a†a+ 6a†a†aa
�

, (A.20)
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The term proportional to the identity will only add a shift of energy, and will not

contribute to the dynamics, therefore it can be neglected. The term a†a will be the same

number operator that appears in Eq.(A.1), therefore it can be considered as a simple correction

to the qubit frequency which then will be written as ω =ω0 +α =
p

8Ec E j − Ec. Finally, the

third term will describe the anharmonic effect of the Hamiltonian. It will shift the energy of

each level |n〉, by an amount proportional nα/2. In the superconducting device considered in

our work, this shift will be negative and the energy difference between each level becomes

smaller with the higher levels. The final for of the Hamiltonian will then be written as

H =ωa†a+
α

2
a†a†aa. (A.21)
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The approach we will use to deduce this Hamiltonian is mainly based in the method

presented in [43]. In this work, a general method is proposed to deduce any Hamiltonian for

a superconducting circuit, starting from its classical Lagrangian. The first step is to identify

every node in the circuit analyzed, which are the points where one or more components will

connect. Then we choose the spanning three of the circuit. This spanning three is the path

that will connected every node of the circuit only once. The spanning three and the fluxes

φλ for each node in the circuit can be seen in Figure 27. In this circuit we also considered

the two parallel Josephson junctions of each qubit as a single junction, with an energy

EJ ,i = −2EJ cos

�

π
Φ̃i

Φ0

�

cosφi. (B.1)

that depends on the external flux, as demonstrated in section 4.4.

Figure 27 – Circuit diagram with the spanning three defined to calculate the fluxesφλ passing
trough each element.

Source: The author.

Once we have defined the spanning three, we can write the flux vector and the

capacitance matrix. This approach of writing the circuit elements in a matricial form is a way

to simplify the notation and the calculations in circuits with a large number of components.

The flux vector,

φ⃗T =
�

φ1 φc φ2

�

, (B.2)

is the column vector whose elements are the fluxes passing through each node of the circuit.

Here, the T stands for the transpose of the vector.

We can also define the capacitance matrix as the square matrix whose nondiagonal

terms Cm,n corresponds to the capacitance that connects the nodes m and n. The diagonal



91

terms, consists of the sum of the capacitance that connect the respective node to the ground,

in addition to the off diagonal terms of each row or column, multiplied by −1. In our case,

the matrix will be written as

C =







C1 + C1C + C12 −C1C −C12

−C1C CC + C1C + C2C C2C

−C12 −C2C C2 + CC2 + C12






. (B.3)

The lagrangian of the circuit can then be written as

L = Tcap − UJ =
1
2

˙⃗
φT C ˙⃗

φ −
∑

i=1,C ,2

EJi
(1− cosφi) . (B.4)

To find the hailtonian, first we calculate the conjugate momentum

q⃗ =
dL

d ˙⃗
φ
= Cφ̇, (B.5)

and then use the expression,

H = ˙⃗
φT q⃗−L =

1
2

q⃗T C−1q⃗+ UJ . (B.6)

Therefore, if C is an invertible matrix, it is simple to find the Hamiltonian. Inverting

Eq.(B.3) we find

C−1 =
1
β







c11 c12 c13

c21 c22 c23

c31 c32 c33






, (B.7)

where β = C1CC C2 + C1C1C C12 + C1C12C1C + C1C C12CC + C1C1C C2C + C1C12C2C + C1CC C2C +
C1C CC C2C + C12CC C2C + C1C1C C2 + C1C C12C2 + C1C CC C2 + C12CC C2 + C1C2C C2 + C1C C2C C2 +
C12C2C C2, and, the terms cmn are

c11 = C2CC + C2(C1C + C2C) + CC(C2C + C12) + C1C C2C + C2C C12 + C1C C12; (B.8)

c22 = C1C2 + C1(C12 + C2C) + C2(C12 + C1C) + C1C C2C + C2C C12 + C12C1C ; (B.9)

c33 = C1CC + C1(C1C + C2C) + CC(C12 + C1C) + C1C C2C + C2C C12 + C12C1C ; (B.10)

c12 = c21 = C1C(C2 + C1C + C2C) + C2C C12; (B.11)

c23 = c32 = C1C2C + C12C1C + C1C C2C + C2C C12; (B.12)

c13 = c31 = CC C12 + C1C C2C + C12C1C + C2C C12. (B.13)

This elements can be simplified if we assume the capacitances of each qubit are

much greater than the capacitances coupling qubits, which means Ci ≫ C jC ≫ C12. This

assumption allow us to discard some terms of small magnitude in each of the elements of

the matrix, leading to β ≈ C1CC C2, c11 ≈ C2CC , c22 ≈ C1C2, c33 ≈ C1CC , c12 = c21 ≈ C2C1C ,
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c23 = c32 ≈ C1C2C , c13 = c31 ≈ CC C12 + C1C C2C , and the simplified approximate inverse

matrix,

C−1 ≈







1
C1

C1C
C1CC

C12
C1C2
(1+η)

C1C
C1CC

1
CC

C2C
CC C2

C12
C1C2
(1+η) C2C

CC C2

1
C2






, (B.14)

with η= C1C C2C/C12CC .

Then we use Eq.(B.6) to find the final Hamiltonian, assuming the vector of the node

charges is qT = (q1 qc q2),

H =
∑

i=1,C ,2

q2
i

2Ci
+ q1qC

C1C

C1CC
+ qCq2

C2C

CC C2
+ q1q2

C12

C1C2
(1+η) + UJ . (B.15)

Defining EC ,i = e2/2Ci, and promoting q and φ to quantum operators q = −2ce and

φ, we can manipulate this Hamiltonian to find

H = 4EC ,1c2
1 − EJ ,1 cosφ1 + 4EC ,C c2

C − EJ ,C cosφC + 4EC ,2c2
2 − EJ ,2 cosφ2

+ 8 c1cC

Æ

EC ,1EC ,C
C1C
p

C1CC

+ 8 cC c2

Æ

EC ,C EC ,2
C2C
p

CC C2

+ 8(η+ 1) c1c2

Æ

EC ,1EC ,2
C12
p

C1C2

. (B.16)

As done early, we expand in Taylor series the cossine terms, and assume the transmon

regime EJ ≫ EC , in order to exclude terms of order higher than 4. The final result

H = 4EC ,1c2
1 −

EJ ,1

2
φ2

1 + 4EC ,Cq2
C +

EJ ,C

2
φ2

C + 4EC ,2c2
2 +

EJ ,2

2
φ2

2

+
EJ ,1

24
φ4

1 +
EJ ,1

24
φ4

C +
EJ ,2

24
φ4

2

+ 8 c1cC

Æ

EC ,1EC ,C
C1C
p

C1CC

+ 8 cC c2

Æ

EC ,C EC ,2
CC2
p

CC C2

+ 8 c1c2

Æ

EC ,1EC ,2 (η+ 1)
C12
p

C1C2

, (B.17)

can be written in terms of the a and a† operators as follows,

H =
∑

i=1,C ,2

ωia
†
i ai +

αi

2
a†

i a†
i aiai +
∑

j=1,2

g j

�

a†
j aC + a ja

†
C

�

+ g12

�

a†
1a2 + a1a†

2

�

, (B.18)

where we defined,

ωi =
Æ

8EJ ,i EC ,i − EC ,i (B.19)

αi = −EC ,i (B.20)

g j =
1
2

C jC
p

C jCC

p

ω jωC (B.21)

g12 =
1
2
(1+η)

C12
p

C1C2

p

ω1ω2. (B.22)
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C.1 Disspative quantum systems

So far, we have considered the superconducting circuit as a closed system. That means,

no interaction with the environment was modeled. In general, superconducting circuits are

very well insulated in order to minimize any losses, since the quantum characteristics are

very sensible and unstable [43]. However, even when well insulated, every real system is

in contact with the environment, leading to losses of energy. In quantum computing, such

losses lead to noises and alterations in the quantum state of the system, in a process called

decoherence [21]. Then, it is necessary to take such interactions in consideration, when

analyzing any real system.

Let Hs be the Hamiltonian of the perfectly insulated system, then we define He as the

environment Hamiltonian and Hse as the interaction between the system and its environment.

Then, the total Hamiltonian is

HT = Hs +He +Hse, (C.1)

with the Hilbert space of the total systemHT =Hs⊗He being the product of both the system

Hs and environment He spaces. The total state of the system is described by the density

matrix ρ that, at the initial time t = 0 is

ρ = ρs ⊗ρe, (C.2)

with ρs(ρe) the density matrix of the system (environment).

In the context of superconducting qubits, the two main processes causing decoherence

are the longitudinal and transverse relaxation [13].

The longitudial relaxation rate, denoted Γ1 also called the “energy relaxation” or

“energy decay” describes the exchange of energy between the system and the environment. In

this process, both excitation and decaying of the qubit occurs at rates Γ+ and Γ− respectively

and we can write,

Γ1 = Γ+ + Γ−. (C.3)

However, since superconducting qubits are operated at very low temperatures, the

loss of energy from the qubit to the environment, is much greater than the opposite. Therefore,

the decaying rate Γ−≫ Γ+, and usually the excitation Γ+ can be neglected [43].

In the Bloch sphere, such relaxation can be interpreted as the movement of the state

towards the north pole (|0〉) as depicted in Figure 28.

Pure dephasing describes the depolarization along the x-y plane at a rate Γϕ. It causes

fluctuations in the qubit frequency such that it is no longer equal to the frequency in the

interaction frame. In the Bloch sphere, it will cause the state to precess forward or backward

in the x-y plane as denoted in Figure 29.
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Figure 28 – Representation of the longitudinal relaxation in the Bloch sphere. The longitudi-
nal noise in the x-y plane leads to |0〉↔ |1〉 transitions. The qubit in state |0〉
gains energy from the environment and is excited to the state |1〉 at a rate Γ+
(pink curved arrow). The state |1〉 on the other hand decays to |0〉 with a rate Γ−
(yellow curved arrow).

Noise

Noise

Source: The author.

Figure 29 – Representation of the pure dephasing in the Bloch sphere. The noise along the
z-axis will cause the state of a qubit to process in the x-y plane

Noise

Source: The author.
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The combined effects of pure dephasing and longitudinal noise leads to the transverse

relaxation, described by the rate

Γ2 =
Γ1
2
+ Γϕ. (C.4)

It describes the loss of coherence in a superposition state, due to noises in all the three axis

of the Bloch sphere. While the x-y noises will lead to losses of energy and decaying of the

excited state of the qubit. Z noises will shift the qubit frequency, in a process that causes loss

of coherence.

C.2 The master equation

The description of a quantum system interacting with the environment is done

using the formalism of the master equation. If we assume the system interaction with

the environment is weak, it is possible to treat it as a markovian system [22]. It means a

system where the dynamics do not depend on the past states of the system, only in its present

state [78]. In such markovian systems, the evolution of the complete Hamiltonian considering

the interactions with the environment will be described using the Lindblad master equation

d
d t
ρ(t) = −i [H,ρ(t)] +

∑

i

γi

�

LiρL†
i −

1
2

�

L†
i Li,ρ
	

�

, (C.5)

with the { , } the anticommutator of ρ with the operators Li that describes the i-th dissipative

mechanism of the system, and γi the rate at which a given mechanism dissipates energy [22].

In our system such operators Li will be the number operator a†
i ai of each mode

in the system when modeling the T2 process. The process T1 on the other hand, will be

described using the annihilation operators ai. Therefore, we can write the master equation

that describes the dynamics of our open system as

d
d t
ρ(t) = −i [H,ρ(t)] +

∑

i=1,C ,2

Γ1i

2

�

2aiρ(t)a
†
i −
�

a†
i ai,ρ(t)
	�

+
∑

i=1,C ,2

Γ2i

2

�

2a†
i aiρ(t)aia

†
i −
�

aia
†
i a†

i ai,ρ(t)
	�

, (C.6)

where Γ1i
(Γ1i
) is the longitudinal (transverse) relaxation rate of each qubit.

The numerical solution for Eq.(C.6) can be obtained defining the relevant operators

in QuTiP and using the numerical solver mesolve. Assuming Eq.(5.3) as the Hamiltonian of

the system and the parameters in Table 2 to describe the relaxation, we obtain the graphic

seen in Figure 30. As it can be seen, the relaxation rates are small enough to have a negligible

effect over the dynamics.

One elucidative way to demonstrate the quantum signature of our quantum transistor,

is assuming the coupler as a high dissipative element. For example, making the dissipation
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Table 2 – Longitudinal relaxation times T1 = 1/Γ1 and transverse relaxation times T2 = 1/Γ2,
for each superconducting element in the experimental circuit. Values obtained
from [62].

Q1 C Q2

T1 6.51 us 4.06 us 6.58 us
T2 0.54 us 0.27 us 7.43 us

Figure 30 – Comparison between the dissipative and the conservative dynamics for the tran-
sistor system using the total Hamiltonian and the initial state |Ψ(0) = |0, 1,1〉〉.
The dissipation rates used are the ones in Table 2. The other parameters of the
circuit are in Table 1.
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rate in the coupler equal to the coupling g1. In such high dissipative case, as we can see in

Figure 31, once on, the state of the transistor rapidly decays to the off state and no population

exchange occur. Such result demonstrate that only due to the quantum behaviour of the

system, the transistor can efficiently switch the information. Once the coherence is lost,

the fidelity of the transistor operations is drastically affected and therefore reassuring the

quantum aspect of this device.
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Figure 31 – Simulation of the system, when the dissipation rate on the coupler is equal to
the coupling Γ1c

= g1. In this high dissipative regime, the coupler rapidly loses
coherence and the population exchange between Q1 and Q2 can not occur. The
parameters used in the simulation are in Table 1.

0 50 100 150 200 250

Time(ns)

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
ti

on

|Ψ(0)〉 = |1, 1, 0〉
|1, 1, 0〉
|0, 1, 1〉

Source: The author.



99

DA
pp

en
di

x

Effective Hamiltonian for the transistor



100 APPENDIX D. Effective Hamiltonian for the transistor

D.1 Two level system effective Hamiltonian

If our system is described by the total Hamiltonian in Schrödinger picture

H =ω(σ1
1 +σ

1
2) +ωcσ

1
c + g12(σ

+
1σ
−
2 + h.c.) + g1(σ

+
1σ
−
c + h.c.) + g2(σ

+
2σ
−
c + h.c.), (D.1)

we can use an unitary transformation Hi = UHU† −H0,with H0 =ω(σ1
1 +σ

1
2) +ωcσ

1
c and

U = e−iH0 t to write it in the interaction picture as

Hi = g1(σ
+
1σ
−
c ei∆t + h.c.) + g2(σ

+
2σ
−
c e−i∆t + h.c.) + g12(σ

+
1σ
−
2 + h.c.)

= g(σ+1 +σ
+
2 )σ

−
c ei∆t + g(σ−1 +σ

−
2 )σ

+
c e−i∆t

︸ ︷︷ ︸

H(1)

+

H(2)
︷ ︸︸ ︷

g12(σ
+
1σ
−
2 + h.c.), (D.2)

where, ∆ =ω−ωc and, g = g1c = g2c. To calculate the effective dynamics, we then take the

time dependent terms in Eq.(D.2) to find the effective Hamiltonian according to Eq. (3.23)

H (1)e f f ≈
�

−iH1(t)

∫ t

0

H1(t
′)d t ′
�

RWA

≈− i g[(σ+1 +σ
+
2 )σ

−
c ei∆t + (σ−1 +σ

−
2 )σ

+
c e−i∆t]

×
∫ t

0

g[(σ+1 +σ
+
2 )σ

−
c ei∆t ′ + (σ−1 +σ

−
2 )σ

+
c e−i∆t ′]d t ′. (D.3)

Integrating and manipulating we find

H (1)e f f ≈− i g[(σ+1 +σ
+
2 )σ

−
c ei∆t + (σ−1 +σ

−
2 )σ

+
c e−i∆t] (D.4)

×
h g

i∆
(ei∆t − 1)(σ+1 +σ

+
2 )σ

−
c +

g
−i∆

(e−i∆t − 1)(σ−1 +σ
−
2 )σ

+
c

i

≈
g2

∆
(σ+1 +σ

+
2 )σ

−
c (σ

−
1 +σ

−
2 )σ

+
c −

g2

∆
(σ−1 +σ

−
2 )σ

+
c (σ

+
1 +σ

+
2 )σ

−
c

≈
g2

∆
[(σ+1σ

−
1 +σ

+
2σ
−
2 +σ

+
1σ
−
2 +σ

+
2σ
−
1 )σ

0
c − (σ

−
1σ

+
1 +σ

−
2σ

+
2 +σ

−
1σ

+
2 +σ

−
2σ

+
1 )σ

1
c ].

Then, taking the coupler operators to evidence, we find

H (1)e f f ≈
g2

∆
[(σ1

1 +σ
1
2)σ

0
c − (σ

0
1 +σ

0
2)σ

1
c + (σ

+
1σ
−
2 +σ

−
1σ

+
2 )(σ

0
c −σ

1
c )].

Finally, we add the time independent term H (2) and can write the total Hamiltonian

for the two level system in the interaction picture

He f f ≈
g2

∆

�

(σ1
1 +σ

1
2)σ

0
c − (σ

0
1 +σ

0
2)σ

1
c + (σ

−
1σ

+
2 +σ

+
1σ
−
2 )(σ

0
c −σ

0
1)
�

+g12(σ
−
1σ

+
2 +σ

−
2σ

+
1 )1c. (D.5)

if we assume ∆ = −g2/g12, we find the condition to the system behaving as a quantum

transistor

He f f ≈g12(σ
0
1 +σ

0
2)σ

1
c − g12(σ

1
1 +σ

1
2)σ

0
c + g12(σ

+
1σ
−
2 +σ

−
1σ

+
2 )(1c +σ

1
c −σ

0
c ). (D.6)
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D.2 Three level system effective Hamiltonian

Here we proceed with the detailed calculations on the effective Hamiltonian for the

qutrit system. To do so the fist step is to write Eq.(5.3) in the interaction picture, to do that

again we define U(t) = e−iH0 t and calculate the transformation Hi = UHU† −H0, that reads

HI = U†(t)V0U(t) =
∑

i=1,2

gi

�

U†(t)a†
i acU(t) + U†(t)aia

†
c U(t)
�

+ g12U†(t)
�

a†
1a2 + a1a†

2

�

U(t). (D.7)

Now, let us use the commutation relation [a, a†]=1, to write the commutator

[a†2a2, a†a] = [a†Na, N]

= a†N [a, N]
︸ ︷︷ ︸

a

+[a†, N]
︸ ︷︷ ︸

−a†

Na

= a†Na− a†Na = 0, (D.8)

then we can write

e−iωa†a−iα(a†)2a2
= e−iωa†ae−iα(a†)2a2

, (D.9)

for any α and ω. This allow us to write the operator U(t) as

U(t) = e
∑

k=1,2,c −iωka†
kak−i

αk
2 (a

†
k)

2a2
k

= e−iωa†
1a1−i

α1
2 (a

†
1)

2a2
1

︸ ︷︷ ︸

U1(t)

e−iωa†
c ac−i αc

2 (a
†
c )

2a2
c

︸ ︷︷ ︸

Uc(t)

e−iωa†
2a2−i α2

2 (a
†
1)

2a2
2

︸ ︷︷ ︸

U2(t)

= U1(t)Uc(t)U2(t). (D.10)

In addition, by acting (a†)2a2 in any Fock state |n〉 we get

(a†)2a2 |n〉= (a†)2a
p

n |n− 1〉

= (a†)2
Æ

n(n− 1) |n− 2〉= a†
Æ

(n− 1)
Æ

n(n− 1) |n− 1〉

=
�Æ

n(n− 1)
�2
|n〉= n(n− 1) |n〉 . (D.11)

Therefore, now we can make the consideration that each artificial atom in the circuit

is a three-level system, by doing the transformations

a j → Σ−j =
2
∑

k=1

p

k |k− 1〉 〈k| , a†
j → Σ

+
j =

2
∑

k=1

p

k |k〉 〈k− 1| , (D.12)

by doing that Eq. (D.11) reads

(Σ+j )
2(Σ−j )

2 |n〉= 2δ2,n |n〉 . (D.13)
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Now, it is easy to show that

U†
j (t) |n〉= eiω j a

†
j a j t+i

α j
2 (a

†
j )

2a2
j t |n〉= eiω j a

†
j a j t ei

α j
2 (a

†
j )

2a2
j t |n〉

= eiω j a
†
j a j t eiα jδ2,n t |n〉= eiα jδ2,n t eiω j a

†
j a j t |n〉

= eiα jδ2,n t eiω j nt |n〉 . (D.14)

Therefore

U†
j (t)Σ

−
j U j(t) =

2
∑

n=1

p
nU†

j (t) |n− 1〉 〈n|U j(t)

=
2
∑

n=1

p
n
�

U†
j (t) |n− 1〉
�

�

〈n|U j(t)
�

, (D.15)

where we can use that in the range where n = {0, 1, 2}we have U†
j (t) |n− 1〉=eiω j(n−1)t |n− 1〉,

thus we get

U†
j (t)Σ

−
j U j(t) =

2
∑

n=1

p
n
�

eiω j(n−1)t |n− 1〉
� �

〈n| e−iα jδ2,n t e−iω j nt
�

=
2
∑

n=1

p
neiω j(n−1)t e−iα jδ2,n t e−iω j nt |n− 1〉 〈n|

= e−iω j t
2
∑

n=1

p
ne−iα jδ2,n t |n− 1〉 〈n|

= e−iω j t
�

|0〉 〈1| j +
p

2e−iα j t |1〉 〈2| j
�

. (D.16)

Then, it is convenient to define the operators P( j)nm= |n〉 〈m| j, to simplify the notation,

so that

U†
j (t)Σ

−
j U j(t) = e−iω j t P( j)01 + e−iω̃ j t

p
2P( j)12 , (D.17)

where ω̃=ω j +α j. Then, the Hamiltonian in interaction picture reads

HI =
∑

k=1,2

gi

�

U†(t)Σ+k U(t)U†(t)Σ−c U(t) + h.c.
�

+ g12

�

U†(t)Σ+1 U(t)U†(t)Σ−2 U(t) + h.c.
�

. (D.18)

By working each term, we have

U†(t)Σ+k U(t)U†(t)Σ−c U(t) =
�

eiωk t P(k)10 +
p

2eiω̃k t P(k)21

� �

e−iωc t P(c)01 +
p

2e−iω̃c t P(c)12

�

= eiωk t P(k)10

�

e−iωc t P(c)01 +
p

2e−iω̃c t P(c)12

�

+ eiω̃k t P(k)21

p
2
�

e−iωc t P(c)01 +
p

2e−iω̃c t P(c)12

�

=
�

ei(ωk−ωc)t P(k)10 P(c)01 + ei(ωk−ω̃c)t
p

2P(k)10 P(c)12

�

+
�

ei(ω̃k−ωc)t
p

2P(k)21 P(c)01 + 2ei(ω̃k−ω̃c)t P(k)21 P(c)12

�

. (D.19)
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On the other hand, the hermitian conjugate will be

U†(t)Σ+1 U(t)U†(t)Σ−2 U(t) =
�

eiω1 t P(1)10 +
p

2eiω̃1 t P(1)21

� �

e−iω2 t P(2)01 +
p

2e−iω̃2 t P(2)12

�

=
�

ei(ω1−ω2)t P(1)10 P(2)01 + ei(ω1−ω̃2)t
p

2P(1)10 P(2)12

�

+
�

ei(ω̃1−ω2)t
p

2P(1)21 P(2)01 + 2ei(ω̃1−ω̃2)t P(1)21 P(2)12

�

. (D.20)

Therefore, the Hamiltonian is written as

HI = H1,c(t) +H2,c(t) +H2(t). (D.21)

where

Hk,c(t) = gk

�

ei(ωk−ωc)t P(k)10 P(c)01 + ei(ωk−ω̃c)t
p

2P(k)10 P(c)12

+ ei(ω̃k−ωc)t
p

2P(k)21 P(c)01 + 2ei(ω̃k−ω̃c)t P(k)21 P(c)12 + h.c.
�

, (D.22)

and

H2(t) = g12

�

ei(ω1−ω2)t P(1)10 P(2)01 + ei(ω1−ω̃2)t
p

2P(1)10 P(2)12

+ ei(ω̃1−ω2)t
p

2P(1)21 P(2)01 + 2ei(ω̃1−ω̃2)t P(1)21 P(2)12 + h.c.
�

. (D.23)

Calling ∆k =ωk −ωc, ∆̃k =ωk − ω̃c, ∆̃
′
k = ω̃k −ωc and ˜̃∆k = ω̃k − ω̃c

Hk,c(t) = gk

�

ei∆k t P(k)10 P(c)01 + ei∆̃k t
p

2P(k)10 P(c)12

+ ei∆̃′k t
p

2P(k)21 P(c)01 + 2ei ˜̃∆k t P(k)21 P(c)12 + h.c.
�

. (D.24)

Now we assume the condition of perfect resonance between Q1 and Q2, in order to

do ∆12 =ω1 −ω2 = 0. In the same way, we assume α1 = α2. With that, also ˜̃∆12 = 0, notice

however, that the terms ∆̃12 and ∆̃12 can not be supposed null. This lead the Hamiltonian

H2(t) to be divided in two parts,

H2(t) = g12

��

ei∆̃12 t
p

2P(1)10 P(2)12 + ei∆̃′12 t
p

2P(1)21 P(2)01 + h.c.
�

+
�

P(1)10 P(2)01 + 2P(1)21 P(2)12 + h.c.
��

, (D.25)

where ∆̃12 =ω1 − ω̃2 = −α, and ∆̃′12 = ω̃1 −ω2 = α.

After those considerations, our Hamiltonian assumes the form
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HI =

Hk,c(t)
︷ ︸︸ ︷

∑

k=1,2

gk

�

ei∆k t P(k)10 P(c)01 + ei∆̃k t
p

2P(k)10 P(c)12 + ei∆̃′k t
p

2P(k)21 P(c)01 + 2ei ˜̃∆k t P(k)21 P(c)12 + h.c.
�

+ g12

�

ei∆̃12 t
p

2P(1)10 P(2)12 + ei∆̃′12 t
p

2P(1)21 P(2)01 + h.c.
�

︸ ︷︷ ︸

H1,2(t)

+ g12

�

P(1)10 P(2)01 + 2P(1)21 P(2)12 + h.c.
�

︸ ︷︷ ︸

H0

,

(D.26)

and we can write the effective Hamiltonian as follows:

He f f ≈− i

�

Hk,c

∫ t

0

Hk,c

�

t ′
�

d t ′ +Hk,c

∫ t

0

H1,2

�

t ′
�

d t ′

+ H1,2

∫ t

0

Hk,c

�

t ′
�

d t ′ +H1,2

∫ t

0

H2

�

t ′
�

d t ′
�

+H0. (D.27)

Calculating the integrals we find for Hk,c

∫ t

0

Hk,c

�

t ′
�

d t ′ =
∑

k=1,2

∫ t

0

d t ′gk

�

ei∆k t ′P(k)10 P(c)01 +
p

2
�

ei∆̃k t ′P(k)10 P(c)12 + ei∆̃′k t ′P(k)21 P(c)01

�

+ 2ei ˜̃∆k t ′P(k)21 P(c)12 + h.c.
�

=
∑

k=1,2

gk

��

ei t∆k − 1
�

i∆k
P(k)10 P(c)01 −

�

e−i t∆k − 1
�

i∆k
P(k)01 P(c)10

+
p

2

�

ei t∆̃k − 1
�

i∆̃k

P(k)10 P(c)12 −
p

2

�

e−i t∆̃k − 1
�

i∆̃k

P(k)01 P(c)21

+
p

2

�

ei t∆̃′k − 1
�

i∆̃′k
P(k)21 P(c)01 −

p
2

�

e−i t∆̃′k − 1
�

i∆̃′k
P(k)12 P(c)10

+ 2

�

ei t ˜̃∆k − 1
�

i ˜̃∆k

P(k)21 P(c)12 − 2

�

e−i t ˜̃∆k − 1
�

i ˜̃∆k

P(k)12 P(c)21



 , (D.28)

and for H1,2

∫ t

0

H1,2

�

t ′
�

d t ′ =

∫ t

0

g12

�

ei∆̃12 t ′
p

2P(1)10 P(2)12 + ei∆̃′12 t ′
p

2P(1)21 P(2)01 + h.c
�

d t ′

=
g12

i

��

ei t∆̃12 − 1
�

∆̃12

�p
2P(1)10 P(2)12

�

−

�

e−i t∆̃12 − 1
�

∆̃12

�p
2P(1)01 P(2)21

�

+

�

ei t∆̃′12 − 1
�

∆̃′12

�p
2P(1)21 P(2)01

�

−

�

e−i t∆̃′12 − 1
�

∆̃′12

�p
2P(1)12 P(2)10

�

�

. (D.29)
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Then, we can calculate each term from the effective Hamiltonian and use the Rotating wave

approximation to neglect those fast oscillatory. The results are

H1,2

∫ t

0

H1,2

�

t ′
�

d t ′ =g12

�

ei∆̃12 t
p

2P(1)10 P(2)12 + ei∆̃′12 t
p

2P(1)21 P(2)01

+ e−i∆̃12 t
p

2P(1)01 P(2)21 + e−i∆̃′12 t
p

2P(1)12 P(2)10

�

×
g12

i

��

ei t∆̃12 − 1
�

∆̃12

�p
2P(1)10 P(2)12

�

−

�

e−i t∆̃12 − 1
�

∆̃12

�p
2P(1)01 P(2)21

�

+

�

ei t∆̃′12 − 1
�

∆̃′12

�p
2P(1)21 P(2)01

�

−

�

e−i t∆̃′12 − 1
�

∆̃′12

�p
2P(1)12 P(2)10

�

�

=
g2

12

i

�

2

∆̃12

�

P(1)00 P(2)22 − P(1)11 P(2)11

�

+
2

∆̃′12

�

P(1)11 P(2)11 − P(1)22 P(2)00

�

�

,

H1,2

∫ t

0

Hk,c

�

t ′
�

d t ′ =g12

�

ei∆̃12 t
p

2P(1)10 P(2)12 + ei∆̃′12 t
p

2P(1)21 P(2)01

+ e−i∆̃12 t
p

2P(1)01 P(2)21 + e−i∆̃′12 t
p

2P(1)12 P(2)10

�

×
∑

k=1,2

gk

��

ei t∆k − 1
�

i∆k
P(k)10 P(c)01 −

�

e−i t∆k − 1
�

i∆k
P(k)01 P(c)10

+
p

2

�

ei t∆̃k − 1
�

i∆̃k

P(k)10 P(c)12 −
p

2

�

e−i t∆̃k − 1
�

i∆̃k

P(k)01 P(c)21

+
p

2

�

ei t∆̃′k − 1
�

i∆̃′k
P(k)21 P(c)01 −

p
2

�

e−i t∆̃′k − 1
�

i∆̃′k
P(k)12 P(c)10

+ 2

�

ei t ˜̃∆k − 1
�

i ˜̃∆k

P(k)21 P(c)12 − 2

�

e−i t ˜̃∆k − 1
�

i ˜̃∆k

P(k)12 P(c)21





RWA
≈ 0,

Hk,c

∫ t

0

H1,2

�

t ′
�

d t ′ =
∑

k=1,2

gk

�

ei∆t P(k)10 P(c)01 + ei∆̃t
p

2P(k)10 P(c)12

+ ei∆̃′ t
p

2P(k)21 P(c)01 + 2ei ˜̃∆t P(k)21 P(c)12 + h.c.
�

×
2g2

12

iα

�p
2P(1)11 P(2)11 − P(1)22 P(2)00 − P(1)20 P(2)02 + h.c.

� RWA
≈ 0, (D.30)
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Hk,c

∫ t

0

Hk,c

�

t ′
�

d t ′ =
∑

k=1,2

gk

�

ei∆t P(k)10 P(c)01 + ei∆̃t
p

2P(k)10 P(c)12 + ei∆̃′ t
p

2P(k)21 P(c)01 + 2ei ˜̃∆t P(k)21 P(c)12

+ e−i∆t P(k)01 P(c)10 + e−i∆̃t
p

2P(k)01 P(c)21 + e−i∆̃′ t
p

2P(k)12 P(c)10 + 2e−i ˜̃∆t P(k)12 P(c)21

�

×
∑

m=1,2

gm

��

ei t∆ − 1
�

i∆
P(m)10 P(c)01 +

p
2

�

ei t∆̃ − 1
�

i∆̃
P(m)10 P(c)12 +

p
2

�

ei t∆̃′ − 1
�

i∆̃′
P(m)21 P(c)01

+2

�

ei t ˜̃∆ − 1
�

i ˜̃∆
P(m)21 P(c)12 −

�

e−i t∆ − 1
�

i∆
P(m)01 P(c)10 −

p
2

�

e−i t∆̃ − 1
�

i∆̃
P(m)01 P(c)21

−
p

2

�

e−i t∆̃′ − 1
�

i∆̃′
P(m)12 P(c)10 − 2

�

e−i t ˜̃∆ − 1
�

i ˜̃∆
P(m)12 P(c)21



 (D.31)

Hk,c

∫ t

0

Hk,c

�

t ′
�

d t ′ =
∑

k,m=1,2

gk gm

�

1
i∆
(P(k)01 P(c)10 P(m)10 P(c)01 − P(k)10 P(c)01 P(m)01 P(c)10 )

+
2

i∆̃
(P(k)01 P(c)21 P(m)10 P(c)12 − P(k)10 P(c)12 P(m)01 P(c)21 )

+
2

i∆̃′
(P(k)12 P(c)10 P(m)21 P(c)01 − P(k)21 P(c)01 P(m)12 P(c)10 )

+
4

i ˜̃∆
(P(k)12 P(c)21 P(m)21 P(c)12 − P(k)21 P(c)12 P(m)12 P(c)21 )

�

,

Hk,c

∫ t

0

Hk,c

�

t ′
�

d t ′ =
∑

k,m=1,2

gk gm

�

1
i∆
(P(k)01 P(m)10 P(c)11 − P(k)10 P(m)01 P(c)00 )

+
2

i∆̃
(P(k)01 P(m)10 P(c)22 − P(k)10 P(m)01 P(c)11 )

+
2

i∆̃′
(P(k)12 P(m)21 P(c)11 − P(k)21 P(m)12 P(c)00 )

+
4

i ˜̃∆
(P(k)12 P(m)21 P(c)22 − P(k)21 P(m)12 P(c)11 )

�

. (D.32)

Finally we can sum those terms to obtain the final effective Hamiltonian for the qutrit

system

He f f ≈
∑

k,m=1,2

gk gm

�

1
ω−ωc

(P(k)10 P(m)01 P(c)00 − P(k)01 P(m)10 P(c)11 ) +
2

ω− ω̃c
(P(k)10 P(m)01 P(c)11 − P(k)01 P(m)10 P(c)22 )

+
2

ω̃−ωc
(P(k)21 P(m)12 P(c)00 − P(k)12 P(m)21 P(c)11 ) +

4
ω̃− ω̃c

(P(k)21 P(m)12 P(c)11 − P(k)12 P(m)21 P(c)22 )
�

+
2g2

12

α

�

−P(1)11 P(2)11 + P(1)22 P(2)00 + P(1)20 P(2)02 + h.c.
�

+g12

�

P(1)10 P(2)01 + 2P(1)21 P(2)12 + h.c.
�

(D.33)
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D.2.1 Effective coupling

To obtain the effective coupling of the Hamiltonian, we need to apply He f f to both

possible states of the coupler, to verify how the interaction terms will behave.

• Coupler in the |0〉c state

First assuming |0〉c we have,

He f f |0〉c =
∑

k,m=1,2

gk gm

�

1
ω−ωc

(P(k)10 P(m)01 ) +
2

ω̃−ωc
(P(k)21 P(m)12 )
�

+
2g2

12

α

�

−P(1)11 P(2)11 + P(1)22 P(2)00 + P(1)20 P(2)02 + h.c.
�

+g12

�

P(1)10 P(2)01 + 2P(1)21 P(2)12 + h.c.
�

(D.34)

then, we take only the hopping terms in Eq.(D.34) since they will be the relevant for the

effective coupling.

He f f |0〉c =g1 g2

�

1
∆
(P(1)10 P(2)01 + h.c.) +

2
∆−α

(P(1)21 P(2)12 + h.c.)
�

+g12

�

(P(1)10 P(2)01 + h.c.) + 2(P(1)21 P(2)12 + h.c.)
�

, (D.35)

rearranging the terms we find,

He f f |0〉c = (P
(1)
10 P(2)01 + h.c.)
� g1 g2

∆
+ g12

�

+ 2(P(1)21 P(2)12 + h.c.)
�

g12 +
g1 g2

∆+α

�

. (D.36)

Since our Hamiltonian conserves the total amount of excitations, neither Q1 nor Q2

will ever populate the second excited state, if we only add one excitation to the system. Then,

it is possible to remove the second term in Eq.(D.36) to find the effective coupling

g̃ |0〉ce f f =
� g1 g2

∆
+ g12

�

�

P(1)10 P(2)01 + h.c.
�

. (D.37)

• Coupler in the |1〉c state

By the other hand, when we apply the “on” state of the coupler |1〉c in our Hamiltonian,

we find

He f f |1〉c =
∑

k,m=1,2

gk gm

�

−
P(k)01 P(m)10

∆
+

2P(k)10 P(m)01

∆−αc
−

2P(k)12 P(m)21

∆+α
+

4P(k)21 P(m)12

α−αc

�

+g12

�

P(1)10 P(2)01 + 2P(1)21 P(2)12 + h.c.
�

, (D.38)

which give us an effective coupling
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He f f |1〉c =g12

�

(P(1)01 P(2)10 + h.c.) + 2(P(1)12 P(2)21 + h.c.)
�

−g1 g2

�

(P(1)01 P(2)10 + h.c.)
∆

−
2(P(1)01 P(2)10 + h.c.)

∆−αc

+
2(P(1)12 P(2)21 + h.c.)

∆+α
−

4(P(1)21 P(2)12 + h.c.)
α−αc

�

, (D.39)

that assumes the form

He f f |1〉c =(P
(1)
01 P(2)10 + h.c.)
�

g12 − g1 g2

�

1
∆
−

2
∆−αc

��

+(P(1)12 P(2)21 + h.c.)
�

2g12 − 2g1 g2

�

1
∆+α

−
2

α−αc

��

. (D.40)

Here, again we find two terms describing the transitions |0〉 7→ |1〉 and |1〉 7→ |2〉. And

again, we apply the same considerations, to define the new effective coupling

g̃ |1〉ce f f =g12 − g1 g2

�

1
∆
−

2
∆−αc

�

(D.41)

Finally, we can write Eq.(D.37) and Eq.(D.41) in a single equation that describes the

effective coupling for our transistor system

g̃ |n〉ce f f (∆) = g12 + g1 g2

�

2
∆−δn1αc

−
1
∆

�

, (D.42)

where δn1 is the Kronecker delta.
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