
Rafael Ajudarte de Campos

Aircraft routing under uncertainty via robust optimization

São Carlos - SP, Brazil
2022



Rafael Ajudarte de Campos 

 

 

 

 

 

 

 

 

 

Aircraft routing under uncertainty via robust optimization 

 

 

 

 

Dissertação submetida ao Programa de Pós-
Graduação em Engenharia de Produção da 
Universidade Federal de Santa Catarina como 
requisito parcial para a obtenção do título de 
Mestre em Engenharia de Produção. 

 
Orientador(a): Prof. Pedro Munari, Dr. 

 

 

 

 

 

 

 

 

 

 

São Carlos – SP, Brasil 

2022 



UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia

Programa de Pós-Graduação em Engenharia de Produção

Folha de Aprovação

Defesa de Dissertação de Mestrado do candidato Rafael Ajudarte de Campos, realizada em 02/09/2022.

Comissão Julgadora:

Prof. Dr. Pedro Augusto Munari Junior (UFSCar)

Prof. Dr. Reinaldo Morabito Neto (UFSCar)

Prof. Dr. Bruno Petrato Bruck (UFPB)

Prof. Dr. Walton Pereira Coutinho (UFPE)

Prof. Dr. Douglas José Alem Junior (Edin)

O Relatório de Defesa assinado pelos membros da Comissão Julgadora encontra-se arquivado junto ao Programa de

Pós-Graduação em Engenharia de Produção.



Statement of Authorship

I hereby declare that the dissertation submitted is my own work. All direct or indirect
sources used are acknowledged as references. I further declare that I have not submitted this
dissertation at any other institution in order to obtain a degree.



Statement of financial support

We are thankful to the São Paulo Research Foundation (FAPESP), process number
2019/22235-6, for funding this research. This study was also financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.



Acknowledgements

Embora minha dissertação esteja em inglês, eu optei por escrever meus agradecimentos em
português pois acredito que é a melhor língua para poder expressar meus sentimentos às pessoas
que eu gostaria de agradecer.

Primeiramente, gostaria de agradecer aos meus pais, Júlio e Erliane, por terem sempre me dado
todo o suporte necessário para obter esta conquista, além de todas as outras em minha vida.

Queria agradecer também ao meu irmão, Daniel, uma das melhores pessoas que conheço e com
quem posso sempre buscar para ter uma conversa interessante.

Sou muito grato também à minha noiva, Beatriz, que me acompanha nesta jornada desde minha
graduação e que sempre me apoiou e me estimulou a seguir em frente.

Agradeço também aos meus avós, Pedro e Maria, e meu tio Marco por estarem sempre preocupados
comigo e meu irmão e nos apoiando em cada etapa de nossas vidas.

Agradeço especialmente ao meu orientador, Prof. Dr. Pedro Munari, que me orientou e traba-
lhou comigo no desenvolvimento deste trabalho, provendo estrutura, conselhos e palavras de
encorajamento. Sou muito grato por todas as portas que você me abriu.

Agradeço aos membros da banca por todas as revisões e contribuições para melhoria deste
trabalho.

Agradeço a todos meus amigos e colegas do Grupo de Pesquisa Operacional (GPO) da UFSCar, em
especial Aura e Mateus, que frequentemente religaram meus computadores durante a pandemia.

Sou grato também aos meus amigos, Linneu, Diego, Giovane e Mariana com quem sempre posso
contar.

Agradeço, por fim, à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), número
de processo 2019/22235-6, e a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior –
Brasil (CAPES) pelo financiamento desta pesquisa.



Abstract
We address the robust vehicle routing problem (RVRP), focusing on the development of mathe-
matical models and solution methods to incorporate uncertainties regarding travel times and
demand, in traditional and practical variants. We are particularly interested in a practical variant,
the aircraft routing problem, motivated by the real case of an on-demand airline company.
Features such as heterogeneous fleet, time windows and maintenance requests are incorporated
into robust optimization models that allow for the variability of uncertain parameters to be
addressed. In particular, a new type of commodity flow model formulation, not yet explored
in the robust optimization literature, even in classical variants, was developed for both the
traditional RVRP and the aircraft routing problem. Moreover, we propose new compact models
and tailored branch-and-cut methods considering different types of uncertainty sets, namely the
cardinality constrained set and the single and multiple knapsack sets, using a recent approach
based on dynamic programming to obtain the robust counterparts. The developed approaches
were implemented and analyzed through computational experiments using instances from the
literature as well as real-world data related to aircraft routing.

Keywords: Vehicle Routing Problem, Robust Optimization, Aircraft Routing
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1 Introduction

In general, transportation costs represent between 10 to 20% of a product price (Khooban,
2011). Reducing these costs brings advantages to a company, as this can result in products
with lower prices or a greater mark up. The Vehicle Routing Problem (VRP) arises in this
context, aiming to reduce transportation costs, increase customer satisfaction, among many other
objectives (Irnich; Toth; Vigo, 2014). Although this problem has been studied for over 60 years
in the literature (Dantzig; Ramser, 1959; Balinski; Quandt, 1964), its practical relevance and
complexity makes it a relevant subject even nowadays (Toth; Vigo, 2014; Laporte; Toth; Vigo,
2013). Many studies usually focus on the development of mathematical models and algorithms
that are more efficient and/or closer to real-life situations by considering, for example, new types
of constraints (Irnich; Toth; Vigo, 2014) and parameter variability (Sungur; Ordonez; Dessouky,
2008).

The VRP consists of a set of customers that must be serviced by a fleet of vehicles
available in a depot. The main objective of this problem is to determine the optimal set of routes,
usually minimizing costs, in order to service every customer. In these routes, each vehicle must
depart from the depot, service its assigned customers, and then return to the origin. The most
traditional variant of the VRP is the capacitated VRP (CVRP) in which the vehicles have a
limited capacity (Irnich; Toth; Vigo, 2014) and each costumer’s demand uses part of this capacity.
A common extension of the CVRP is the VRP with time windows (VRPTW), in which we
are not only concerned with capacity of the vehicle but also with customer time windows, the
time intervals that restrict the exact time at which a vehicle can visit its assigned customers
(Desaulniers; Madsen; Ropke, 2014). If the vehicle arrives earlier than the opening of a customer’s
time window, it must wait until this time to start the service, whereas the vehicle must not arrive
after the closing of the time window.

Another relevant subject in the VRP literature is the existence of uncertainty in parame-
ters, which has gained increased attention in the last years. In most real-life applications, the
majority of parameters, such as travel times and demand, are not completely known during the
planning phase (Ordonez, 2010). Despite this observation, most works in literature consider the
parameters as deterministic values, which is unfortunate as optimal solutions based on these
values are likely to become infeasible in practice (Oyola; Arntzen; Woodruff, 2016a; Gendreau;
Jabali; Rei, 2016; De La Vega; Munari; Morabito, 2018). There are several approaches in the
literature that seek to incorporate these uncertainties into models and solution methods (Ordo-
nez, 2010). In particular, we are interested in the Robust Optimization (RO) approach, which
allows us to provide routes that are more realistic and have higher chances of remaining feasible
when executed, using knowledge from their maximum deviation (Ben-Tal; Nemirovski, 1999;
Bertsimas; Sim, 2004). The main advantage of this approach over other common ones is that it
does not require the choice of a probabilistic distribution to model the uncertain parameters,
as such requirement is usually hard to be accurately done in practice. To avoid creating overly
conservative solutions, where every uncertain parameter would assume its worst case, many
strategies have been proposed to define uncertainty sets with controlled robustness, such as
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limiting the number of parameters attaining their worst case in a route (Bertsimas; Sim, 2004)
or limiting the total deviation on it (Gounaris; Wiesemann; Floudas, 2013).

In this dissertation, we initially focus on the robust counterparts of a traditional variant
of the VRP, namely the robust VRPTW (RVRPTW), in which we consider uncertainty on
demand and travel time parameters. Then, we address robust approaches for a real-life variant
motivated by the case of an airline company (Munari; Alvarez, 2019), which is hereafter referred
to as the robust aircraft routing problem (RARP). The addressed aircraft routing problem is
motivated by the real-life case of a company that offers on-demand air transportation services.
These services typically arise in air taxi and fractional ownership contract companies (Yang et
al., 2008; Yao et al., 2008; Zwan; Wils; Ghijs, 2011). In these companies, unlike the traditional
ones, the customer defines the origin and destination of flights, departure times and the aircraft
type that has to be used. The company must ensure that the desired aircraft will be available
in the right place on time. Additionally, the company is responsible for the maintenance of the
aircraft and for scheduling the appropriate crew members. Therefore, additional requirements
should be considered when modelling this system in comparison to the traditional VRP variants,
such as: fleet heterogeneity, different types of request (customers’ and maintenance’s ones) and
crew requisites. To the best of our knowledge, there are no RO models fully addressing this
application in the literature so far. By reducing this gap, we have the potential of helping the
company’s decision-making process in a context of travel time uncertainty.

The application of different uncertainty sets in solution methods oftentimes results in
solutions with different cost and robustness levels (Subramanyam; Repoussis; Gounaris, 2020).
For a decision maker stand-point, having these different characteristics is attractive, since they
have more options to pick, and may choose the one that best suits their strategy. Nonetheless, the
use of different uncertainty sets has been little explored in the context of travel time variability.
While there are works that study different uncertainty sets for VRP under variability in demand
(Gounaris; Wiesemann; Floudas, 2013; Subramanyam; Repoussis; Gounaris, 2020), all RVRPTW
work under travel time variability have considered only the cardinality-constrained uncertainty
set so far (Lee; Lee; Park, 2012; Agra et al., 2012; Munari et al., 2019). Recently, Bartolini et
al. (2021) proposed a column generation algorithm that considers uncertainty on travel times
with a knapsack uncertainty set for the robust traveling salesman problem with time windows, a
variant of the RVRPTW with a single vehicle. Yet, there are still no compact formulations for
the RVRPTW under uncertainty on times.

Thus, the central objective of this work is to create new RO models and solution methods,
for traditional and practical variants, considering different types of uncertainty sets. It is worth
noting that we found no compact RO model in the VRPTW literature that uses an uncertainty
set other than the cardinality uncertainty set proposed by Bertsimas and Sim (2004). Therefore
the main contributions of this work are:

• We propose a new compact commodity flow formulation for the deterministic and robust
VRP with time windows (VRPTW). We are not aware of any compact formulation for
this variant in which both load and time propagation are modeled based on commodity
flow constraints, which are known for having stronger linear relaxation than those using
MTZ-based constraints;
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• We extend both the literature and the developed formulations to consider different uncer-
tainty sets, namely the single and multiple knapsack uncertainty sets, which were not yet
implemented in a context of VRPTW under uncertainty of travel times;

• We adapt the developed approaches to address the RARP, which is motivated by a real-life
case of an on-demand air transportation company.

The remainder of this document is structured as follows. Chapter 2 presents the funda-
mental theoretical aspects for this work and the literature review. In Chapter 3, we present the
new RO models we developed for the RVRPTW with different uncertainty sets and their compu-
tational studies. In Chapter 4, we study and develop models for a on-demand air transportation
company. Finally, in Chapter 5, we present some concluding remarks.
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2 Foundations and Literature Review

In this chapter, we review the most relevant models found in literature for the Robust
Capacitated Vehicle Routing Problem (RCVRP) and the Robust Vehicle Routing Problem with
Time Windows (RVRPTW). We describe both the traditional way to obtain a robust counterpart
from a deterministic formulation, namely using the dualization scheme, which is widely used in
the literature for VRP variants (Bertsimas; Sim, 2003; Agra et al., 2012; Gounaris; Wiesemann;
Floudas, 2013); and a recently introduced way that is based on the linearization of recursive
equations, proposed by Munari et al. (2019). Before that, to better understand the robust
models, we will first present different uncertainty sets that can be used to represent the uncertain
parameters.

The remainder of this chapter is structured as follows. In Section 2.1, we briefly present
two-index vehicle flow formulations for the traditional CVRP and the VRPTW, as they are used
to derive some robust formulations presented in the following sections. In Section 2.2, we review
the concept of RO that is adopted in this work and present different uncertainty sets existent in
literature. Section 2.3 describes RO models for variants of the VRP in literature. Lastly, other
relevant works on RO for VRP are summarized in Section 2.4.

2.1 Deterministic formulations of traditional VRPs

We present the traditional two-index vehicle flow formulation for the CVRP based
on Miller-Tucker-Zemlin (MTZ) constraints (Miller; Tucker; Zemlin, 1960). This particular
formulation serves as the basis for the application of a variety of RO approaches in literature
(Gounaris; Wiesemann; Floudas, 2013; Agra et al., 2013; Munari et al., 2019) and is also used for
the development of models in this work. The relevant sets and parameters for this model are:

• N : set of nodes;

• N∗: set of customer nodes;

• A: set of arcs;

• K: set of vehicles;

• n: number of customer nodes;

• di: demand from customer i, i = 1, . . . , n. We assume that di ≤ Q, in order to make
customer service feasible;

• Q: maximum load a vehicle can carry;

• cij : traveling costs between nodes i and j.

The problem can be represented by a network in which nodes numbered from 1 to n
correspond to customers. If it is possible to transport products from a node i to another node
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j, then these nodes are connected by an arc denoted as (i, j) ∈ A. To simplify the model and
without any loss of generality, the depot is represented by two nodes, 0 and n+ 1, where the
former represents the departing depot and the latter represents the arrival depot. This modeling
technique aims to simplify the formulation and does not require a physical separation between
the starting and ending points of vehicles. The decision variables used in the model are the
following, for all (i, j) ∈ A and j = 0, 1, . . . , n:

• xij =

1, if nodes i and j are visited consecutively;

0, otherwise.

• uj : the total load in the vehicle that visits node j, right after it serves this node;

Using the defined parameters and decision variables, we have the following model for the problem:

min
∑
i∈N

∑
i∈N

cijxij (2.1.1)

s.t.
∑
j∈N
j 6=i

xij = 1, i ∈ N∗, (2.1.2)

∑
i∈N
i 6=h

xih =
∑
j∈N
j 6=h

xhj , h ∈ N∗, (2.1.3)

∑
j∈N
j 6=0

x0j ≤ |K|, (2.1.4)

uj ≥ ui + dj −Q(1− xij), i, j ∈ N, i 6= j, i < n+ 1, j > 0, (2.1.5)

uj ≤ Q, j ∈ N, (2.1.6)

uj ≥ 0, j ∈ N. (2.1.7)

xij ∈ {0, 1}, i, j ∈ N. (2.1.8)

The objective function (2.1.1) seeks to minimize the total transportation cost, which corresponds
to the sum of the travel costs of all arcs used by the vehicles. Constraints (2.1.2) ensure that
each node i is visited by a single vehicle. Constraints (2.1.3) ensure that there can be a vehicle
departing from node i, only if there is a vehicle arriving to this node. Constraints (2.1.4) ensure
that at most |K| vehicles leave from the depart depot. Constraints (2.1.5) compute the load
being carried on a vehicle at each node and forbid subtours in the vehicle flow. To ensure that
the capacity of each vehicle is not exceeded, we use constraints (2.1.6). Finally, constraints
(2.1.7)-(2.1.8) guarantee the domain of the decision variables. It is worth noting that many other
models were established to address and extend this problem, either to incorporate new types of
practical characteristics or to obtain a formulation with improved computational performance
(Letchford; Salazar-González, 2006; Letchford; Salazar-González, 2015; Desaulniers; Madsen;
Ropke, 2014). Among the most common characteristics added are the time windows constraints,
addressed in the remainder of this section.

The VRPTW extends the CVRP by allowing customers to specify time windows in which
their service can start, and thus it can be more consistent with reality (Desaulniers; Madsen;
Ropke, 2014). It presents intra-route constraints that require, in addition to the requirements
considered by the CVRP, that each customer i must be visited within a time window [ai, bi]. The
following set of additional parameters are required to represent the problem:
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• ai: earliest time it is possible to start the service on node i;

• bi: latest time it is possible to start the service on node i;

• tij : travelling time between the nodes i and j;

• si: service time in node i.

It is important to note that for the arrival and departure depots, the opening times are usually
a0 = an+1 = 0. In addition, when ai = 0, for all i ∈ N , the problem is known as the VRP with
deadlines (Lee; Lee; Park, 2012).

In compact models, one of the most common strategies for adding constraints related
to time windows is to use an approach similar to the MTZ constraints (Miller; Tucker; Zemlin,
1960). To adapt the model (2.1.1)–(2.1.7) so that it considers time windows, we further define
the following decision variables:

wi : earliest time it is possible to start the service on node i.

Thus, the following constraints can be added to model (2.1.1)–(2.1.7):

wj ≥ wi + tij + si −M(1− xij), i, j ∈ N, i 6= j, i < n+ 1, j > 0, (2.1.9)

ai ≤ wi ≤ bi, i ∈ N. (2.1.10)

Constraints (2.1.9) guarantee that the service time on any node j will have a lower bound
composed by the arrival time at the previous node i plus the service time in i and the travel
time between i and j. A big-M parameter is used to inactivate this constraint if the arc (i, j) is
not used. Constraints (2.1.10) ensure that every customer i is not served after bi. If the vehicle
arrives before the lower bound of the time window, it must wait until ai to start the service.
These constraints also guarantee the non-negative domain of the variable wi since every ai is
greater than or equal to zero.

2.2 Incorporating uncertainty via Robust Optimization

Robust Optimization (RO) is an approach for modeling and solving mathematical
programming problems in which parameters are uncertain during the planning phase and are
only known during the implementation phase (Oyola; Arntzen; Woodruff, 2016b). There are
other approaches that also incorporate uncertainty, such as stochastic programming with chance-
constraints, the stochastic programming with recourse and the scenario-based formulations with
recourse. The first uses the cumulative probabilistic distribution from the uncertain parameter,
such as demand or travel time, to determine the value that should be used for this parameter
to ensure the feasibility of solution in α% of times. The second allows a recourse action, e.g.
the vehicle returns to the warehouse to restock in case the demand is greater than expected,
every time the solution would become infeasible, and evaluates the total expected costs of such
actions. Both stochastic programming approaches require the choice of probability distributions
to model the uncertain parameters, which is something that can be complex in real-life situations.
The recourse approach may also use scenario-based formulations, in which the decision-maker
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generates a finite set of scenarios, often using the underlying probability of the parameters, and
solves a first-stage problem that generates routes that are feasible for all scenarios simultaneously.
Then, in the second-stage, the recourse updates the routes to meet each realization. The main
challenge of this approach is the scenario-generation process, as usually real-world systems do
not have all theoretical requirements for using the available methods.

One perspective of robust optimization seeks for protecting solutions against the worst-
case variation of the input data. Yet, “worst-case” is problem-dependent. One very popular
way to perceive worst-case is the realization of uncertain parameters that deteriorates the
objective function the most. This approach then focus on providing solutions that are feasible
for any possible realization of the input data in a worst-case perspective. Unlike the stochastic
programming approaches, knowledge over the probabilistic distribution of the uncertain parameter
is not always necessary. While some RO approaches such as the Distributionally RO may require
some statistical data on the uncertain parameters, such as mean and variance (Rahimian;
Mehrotra, 2019), most standard approaches do not need this information. In fact, several works
in the RO literature require only an estimate of the worst-case values of the uncertain parameters
(Agra et al., 2012; Munari et al., 2019; Subramanyam; Repoussis; Gounaris, 2020).

A simple strategy to introduce RO paradigms into a solution method would be by solving
the problem assuming that all parameters attain their worst-case value simultaneously. This
would result in a solution that accounts for any possible data realization. From the perspective
of applications in VRP problems, opting for this strategy usually means getting a solution that
is feasible for any data realization. However, although this solution is considered “safe” from
becoming infeasible, its costs may be prohibitive. From the decision maker’s point of view, it may
be preferable to choose a solution that can balance cost and “safety”. To create more balanced
solutions, authors have proposed different uncertainty sets to represent the uncertain parameters
realization whose size can be controlled by the decision maker, thus possibly finding a solution
better aligned to their strategy. For example, one of the most traditional uncertainty sets studied
in literature is the cardinality constrained set (Bertsimas; Sim, 2004), in which the decision
maker chooses the number of parameters that can simultaneously attain their worst-case values.
Decreasing the budget size resulting in a cheaper, albeit less-safe, solution. Conversely, taking
higher uncertainty budgets ensures more conservative solutions. Other uncertainty sets were
also studied in the RO literature, and their particularities influence on how the problems are
modeled. Thus, it is important to understand these sets before formulating models, which is why
we introduce them in the next topic.

2.2.1 Uncertainty sets

2.2.1.1 Cardinality constrained set

The cardinality constrained set works with a budget, usually represented by Γ, which
can be understood as the threshold of the total scaled variation of the uncertain parameters.
Particularly, if Γ is integer we can interpret it as the number of parameters that can simultaneously
attain their worst-case value in a route (Bertsimas; Sim, 2004). As in most works on RVRP,
we assume that the worst-case value of the demand and travel time parameters occur when
they assume their highest possible value, since this impairs the feasibility of the route. Then, a
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solution is considered robust feasible for a determined budget Γ, if it is feasible when up to Γ
parameters assume their worst-case value. When we are addressing uncertainty on demand, that
means the solution must be feasible when the demand of any Γ customers assume their largest
value. Likewise, if the uncertain parameter is the travel time between nodes, the solution is only
robust if any combination of Γ arcs attain their worst-case time, while the other arcs assume
their expected value.

Regarding the uncertainty on travel times, we assume that the travel time value for each
arc (i, j) ∈ A, tij , ranges from its expected value t̄ij up to t̄ij + t̂ij , where t̂ij is the maximum
deviation. Let γtij , 0 ≤ γtij ≤ 1 be a random variable that represents a normalized scale deviation
for travel time. Hence, the travel time can be modelled with the following expression:

tij = t̄ij + γtij t̂ij , 0 ≤ γtij ≤ 1.

The size of the uncertainty set is controlled by limiting the sum of the variables γtij to be less
than a budget Γt. With this information, the travel time can be modeled with the following
polyhedral representation (Bertsimas; Sim, 2004):

U t = {t ∈ R|A| | tij = t̄ij + t̂ijγ
t
ij ,

∑
(i,j)∈A

γtij ≤ Γt, 0 ≤ γtij ≤ 1, (i, j) ∈ A}.

The uncertainty set representing the demand can be modeled with a similar strategy. In
this representation, the demand di ranges from d̄i to d̄i + d̂i, where d̄i represents the nominal
value and d̂i is the maximum deviation. For a given route, this set can be written in function of
γdi and Γd as follows:

Ud = {d ∈ R|N | | di = d̄i + d̂iγ
d
i ,
∑
i∈N

γdi ≤ Γd, 0 ≤ γdi ≤ 1, i ∈ N}.

It is worth noting that, for an integer budget value (Γd), despite γdi being a continuous
variable, and thus having infinite numbers of possible combinations (respect. γtij), the worst-case
scenario, i.e., the one that worsens the objective function the most for a determined budget,
happens when some specific nodes/arcs assume γdi = 1 (respect. γtij = 1), while the others assume
0 (Bertsimas; Sim, 2004). If the budget Γ is not integer, then the worst-case scenario can be
found by making bΓc parameters attaining their worst-case value and a single node/arc assume
γdi = 1− bΓc (respect. γtij = 1− bΓc).

2.2.1.2 Knapsack set

Unlike the cardinality constrained set, the knapsack uncertainty set does not limit the
number of worst-case realizations. Instead, it limits the total absolute deviation in a route,
considering one or many knapsacks (Subramanyam; Repoussis; Gounaris, 2020). Each knapsack
l involves a subset of nodes or arcs, depending on which parameter we are analyzing, with its
own budget of deviation ∆l. Usually, authors in the RVRP literature (Gounaris; Wiesemann;
Floudas, 2013; Subramanyam; Repoussis; Gounaris, 2020) model these knapsacks by relating the
realizations to geographical regions. For example, one may divide the nodes/arcs in 4 different
quadrants (NE, SE, NW, SW) and set a budget for each quadrant based on its characteristics. For
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instance a quadrant, with higher variability in customer’s demand may have higher budget than
others. Additionally, while usually there are no limitations on how the knapsacks are modeled,
authors usually build them as disjoint sets, meaning that their nodes/arcs do not overlap.

Let L be the set of knapsacks and Sld the set of nodes in each knapsack l. We define ∆d
l

as the budget for demand deviation in knapsack l ∈ L and ∆t
l as the budget for travel times in

knapsack l ∈ L with Stl defined accordingly. Then, we can model this set for demand, UdL, and
travel time, U tL, using the following expressions:

UdL = {d ∈ R|N | | d̄i ≤ di ≤ d̄i + d̂i,
∑
i∈Sl

d

(di − d̄i) ≤ ∆d
l , l ∈ L}.

U tL = {t ∈ R|A| | t̄ij ≤ tij ≤ t̄ij + t̂ij ,
∑

(i,j)∈Slt

(tij − t̄ij) ≤ ∆t
l , l ∈ L}.

The demand for each node i, di, in set UdL ranges from its expected value d̄i up to its
worst-case value d̄i + d̂i. The sum of all realized deviations of nodes, i.e., the difference between
the realized demand di and its expected value d̄i, in a given knapsack l is limited by ∆d

l . The
same is done for the travel time tij , whose realization ranges from t̄ij and t̄ij + t̂ij , and the sum
of all deviations is limited by ∆t

l .
In practical settings, this type of representation might be more appropriate than the

cardinality constrained set, especially regarding time uncertainty. It is often easier for a driver
to estimate how late is he or she is when travelling to a specific region than to tell how many
streets or roads usually assume their worst-case traffic.

To the best of our knowledge, there is no paper considering the multiple knapsack
uncertainty set for uncertain travel times so far in the literature. The works that use this
uncertainty set all consider uncertainty on demand only. Namely, one of the uncertainty sets
tested by Gounaris, Wiesemann and Floudas (2013), which proposed compact formulations the
RCVRP under demand uncertainty with general polyhedral sets representation, was the multiple
knapsack uncertainty set. Pessoa et al. (2020) tackled the same problem by proposing a branch-
and-cut-and-price algorithm. This set, among others, was also studied by Subramanyam, Repoussis
and Gounaris (2020) who proposed robust versions for node and arc exchange neighborhoods
that are commonly used in local search and then incorporate them into metaheuristic algorithms
for the heterogeneous VRP under demand uncertainty. It is worth noting that it is not trivial to
extend these methods to consider uncertainty on travel times because they were designed based
on the assumption that, if a knapsack is completely filled, it does not matter where in the route
the deviation was accounted for. However, we cannot make this assumption in problems with
uncertainty on travel times, as travel time deviations can be absorbed by the customer’s opening
time. Indeed, even after a long deviation in a given arc, the vehicle may still have to wait for the
exact time the window opens. Therefore, we cannot make the same assumption as in the case
with uncertain demand.

2.2.1.3 Other uncertainty sets in literature

In this subsection, we present uncertainty sets that have been explored for RO problems
in the literature, but are not considered in our approaches. Note that all the previously stated
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uncertainty sets and some that will be presented in this topic, namely the convex set proposed by
Soyster (1973) and the factor models uncertainty sets, are subsets of a general polyhedral uncer-
tainty set. As presented by Gounaris, Wiesemann and Floudas (2013), the general representation
of these sets for uncertainty on demand is given by:

UdW = {d ∈ R|N | |Wd ≤ h,W ∈ Rr×|N |, h ∈ Rr}.

This essentially means the uncertainty set can be represented as a polyhedron, and thus with
linear equations. In this general statement, we have r constraints limiting the total value the
demand can achieve, with a weight matrix (W ) of size r × |N | and an upper bound parameter
(h) for each constraint.

To our knowledge, Soyster (1973) was the first to consider a worst-case approach explicitly
in a model. In this work, the author proposed a convex set that basically defines that every
uncertain parameter assumes its worst-case value. The uncertainty set for demand is represented
by:

UdC = {d ∈ R|N | | di = d̄i + d̂i, i ∈ N}.

This is a simple approach to incorporate uncertainty into problems, although it usually results in
an excessively conservative solution, by protecting it from a scenario in which every uncertain
parameter assumes its worst-case value, which in practice is highly unlikely, resulting in a high
cost .

Ben-Tal and Nemirovski (1999) proposed the ellipsoidal uncertainty set. Unlike the one
proposed by Soyster (1973), this set is able to be adjusted in order to control the robustness of
solutions. We start by defining cov as the matrix specified by the decision maker that represents
the co-variance between the demand of two nodes. With this matrix, we can represent the set as
follows:

UdE = {d ∈ R|N | | di = d̄i + cov
1
2
i ξ, i ∈ N, ξ ∈ Ξ},

where Ξ = {ξ ∈ R|N ||ξT ξ ≤ 1}. The parameters represented by this set have its value ranging
inside an ellipsoidal representation centered in the expected value of the parameter. Despite
being less conservative than the convex set proposed by Soyster (1973), this set suffers from
non-linearity and hence results in approaches less computationally tractable (Subramanyam;
Repoussis; Gounaris, 2020).

Another uncertainty set found in literature is the factor models set (Ceria; Stubbs, 2006;
Gounaris; Wiesemann; Floudas, 2013; Subramanyam; Repoussis; Gounaris, 2020). For demand,
this specific set can be represented by:

UdF = {d ∈ R|N | | di = d̄i + Ψξ, i ∈ N, ξ ∈ Ξ},

where Ξ = {ξ ∈ [−1, 1]F : |eT ξ| ≤ βF}, and parameters Ψ ∈ R|N |xF , F ∈ R+ and β ∈ [0, 1] are
chosen by the decision maker and e ∈ RF is a vector of ones. This set represents the deviation
as a linear combination of independent factors ξ1, . . . , ξF within a factor loading matrix, Ψ,
that correlates these factors for the demand realization. To prevent every factor assuming its
worst-case value, the constraint |eT ξ| ≤ βF is used. The parameter β is a chosen limit for how
many factors assume its maximum value. For instance, β = 0 means there will be the same
number of factors with value greater than zero than factors that present negative values.
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A final possible uncertainty set is the discrete set, composed by a convex hull of finite
possible realizations of demands (Charris; Prins; Santos, 2015). Essentially, the decision maker
creates a set of D possible realization, stipulating the demand for each node in each realization.
With this information, it is possible to represent the uncertainty set as follows:

UdD = conv{d(j)|j = 1, . . . , D},

where conv represents the convex hull of the possible realizations. One way to model this set is
to use historical demand/time data as the realizations. It is important, however, to be careful
with possible outliers and overfitting of the solution (Subramanyam; Repoussis; Gounaris, 2020).

Finally, it is worth noting that all sets described in this subsection can be trivially
adapted to represent travel time uncertainty.

2.3 RO formulations for traditional VRPs

The use of RO to incorporate uncertainty into VRP variants is relatively new. Sungur,
Ordonez and Dessouky (2008) were the first to use this paradigm to consider demand uncertainty in
the CVRP. They proposed compact models based on convex hull, box, and ellipsoidal uncertainty
sets. These, however, simply replaced the nominal demand of the deterministic formulation by an
augmented modified demand, which resulted in overly conservative solutions when compared to
the stochastic methods with chance-constrained or recourse. Lee, Lee and Park (2012) used the
RO with bounded uncertainty to control the robustness of solution for the VRP with deadlines
under demand and travel time uncertainties. The authors proposed a three-index formulation
with MTZ constraints following the cardinality constrained uncertainty set. Due to the long
computational times required to solve the model, the authors also proposed a branch-and-price
algorithm to solve the problem. Even so, they were unable to solve several instances with 25
customers to optimality.

Agra et al. (2012) proposed the first RO formulation for the RVRPTW with uncertainty
on travel times, considering the cardinality constrained uncertainty set. They proposed a model
based on layered-graphs for a problem with heterogeneous fleet, but no capacity constraints,
which was applied in a context of maritime transportation. The proposed formulation was able
to solve the majority of the studied small scale instances (10 to 20 customer nodes), but failed to
find feasible solutions for some instances with 20 customers. This problem was later revisited by
Agra et al. (2013) who proposed two more efficient robust approaches, one extends the resource
inequalities formulation by employing adjustable robust optimization and the other generalizes a
path inequality formulation to consider uncertainty on travel time.

Gounaris, Wiesemann and Floudas (2013) proposed robust counterparts of several
traditional formulations for the CVRP considering uncertainty on demand. The proposed modeling
approach was able to introduce any convex uncertainty set into the problem. Additionally, they
also introduced a robust extension for the traditional rounded capacity inequalities (RCI) widely
used in the CVRP literature. To exemplify their method, the authors ran experiments with
a commercial solver, in which the robust RCI were introduced globally through user-defined
callbacks, considering the knapsack and the factor models uncertainty sets. The most efficient
formulations were able to solve most benchmark instances with fewer than 50 customers, but
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struggled with larger instances. Gounaris et al. (2016) proposed an adaptive memory programming
metaheuristic, which presented high quality solutions, for the same class of problems using the
cardinality constrained uncertainty set. Recently, Munari et al. (2019) proposed a new robust
counterpart model based on the linearization of recursive equations for the RVRPTW under
uncertainty on both demand and travel times considering the cardinality constrained uncertainty
set. The proposed model considerably outperformed other formulations based on traditional
methods (Agra et al., 2012) when using a general-purpose integer programming solver. Using
this model, the authors solved the majority of the instances with 25 customers to optimality and
found feasible solutions for all instances, while with other formulations no instance was solved to
optimality and feasible solutions were obtained for less than 60% of the instances. In the same
paper, the authors also proposed a branch-price-and-cut method based on a set partitioning
formulation of the problem that was able to solve most of benchmark instances, with up to 100
customers each, to optimality.

In the remainder of this section, we present some compact models proposed for the
RVRPTW in the literature. Firstly, we describe the traditional approach to create a robust
counterpart model, namely the dualization scheme proposed by Bertsimas and Sim (2004), and
present a few compact models that rely on this technique. Then, we present a more recent approach
to obtain robust counterparts proposed by Munari et al. (2019), based on the linearization of
recursive equations, which was used to derive the compact model that has currently the best
overall performance on benchmark instances. It is worth noting that each of these models consider
the cardinality constrained uncertainty set and, with the exception discussed in Subsection 2.3.1.3,
which was designed for a generic polyhedral uncertainty set, it is not trivial to adapt them
for other uncertainty sets, as their modeling strategies depend on some particularities of the
cardinality constrained set.

2.3.1 Dualization-based models

We first describe how the dualization scheme can be used to obtain robust counterparts
and then present some RO formulations of traditional VRPs that are obtained using this
technique. This approach was firstly proposed by Bertsimas and Sim (2003) and was designed for
the cardinality constrained set. It is based on the dualization of the maximization subproblem
that represents the worst-case scenario for the uncertain parameters in a given constraint of
the model. Before presenting this approach specifically for the VRP variants, it is important to
understand how it is used on a general integer linear optimization problem.

2.3.1.1 Dualization scheme for a generic problem

We start with a general integer problem for a set of n variables and m constraints:

min cTx (2.3.1)

s.t. Ax ≤ b (2.3.2)

l ≤ x ≤ u (2.3.3)

xi ∈ Z, i = 1, . . . , k. (2.3.4)
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Parameter c represents a cost vector of size n; l and u are, respectively, vectors that represent
the lower and upper bound for each variable; A is a coefficient matrix m× n, and b is a vector of
size m.

We consider that some coefficients of matrix A are uncertain, something like demand or
travel time parameters on the VRP. Let Ki be the set of uncertain coefficients in the ith row
of A. Using the cardinality constrained set, we assume that each entry aij such that j ∈ Ki

belongs to the interval [āij , āij + âij ], where āij is the nominal value of the parameter and âij is
its maximum deviation.

Let parameter Γia be the budget of the number of deviations in the uncertain parameters
of each constraint i (row i of matrix A). We define γij as the primitive random variable that
represents the fraction of the deviation with respect to the nominal value, i.e. aij = āij + âijγ

i
j .

Let Sia ⊂ Ki, such that |Sia| ≤ Γia, be the subset of coefficients for which γij > 0. Since we want
to optimize the worst-case scenario, model (2.3.1)-(2.3.4) can be rewritten as follows:

min c′x (2.3.5)

s.t.
∑
j

āijxj + max
Sia∈Ki,|Sia|≤Γia

{ ∑
j∈Sia

γij âij |xj |
}
≤ bi, i = 1, . . . , k, (2.3.6)

l ≤ x ≤ u, (2.3.7)

xi ∈ Z, i = 1, . . . , k. (2.3.8)

Since the resulting model has now maximization subproblems in the definition of its
constraints, it is no longer linear. However, Bertsimas and Sim (2004) were able to transform
those subproblems into linear constraints by the dualization strategy. To better exemplify how it
was made, we first rewrite the subproblem of the ith constraint as follows:

max
∑
j

γij âij |xj |, (2.3.9)

s.t.
∑
j

γij ≤ Γia, (2.3.10)

0 ≤ γij ≤ 1, j. (2.3.11)

Since this problem is feasible and bounded, by strong duality, its dual is also feasible and bounded
and their objective values coincide. The dual model is as follows:

min
∑
j

pij + Γiazi, (2.3.12)

s.t. pij + zi ≥ âij |xj |, (2.3.13)

pij , zi ≥ 0, j, (2.3.14)

where variable zi refers to constrains (2.3.10) from the primal problem, while pij refers to
constraints (2.3.11). It is possible to plug the dual subproblems into model (2.3.5)-(2.3.8),
resulting in the following model:

min c′x (2.3.15)

s.t.
∑
j

āijxj + min
{

Γiazi +
∑
j

pij

}
≤ bi, i = 1, . . . , k, (2.3.16)
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zi + pij ≥ âijyj , i, j (2.3.17)

zi, pij , yj ≥ 0, i, j (2.3.18)

−yj ≤ xj ≤ yj , j (2.3.19)

lj ≤ xj ≤ uj , j (2.3.20)

xi ∈ Z, i = 1, . . . , k. (2.3.21)

If there is a feasible solution (zi, pij) for the minimization subproblem that satisfies (2.3.16), then
the optimal solution (z∗i , p∗ij) of the corresponding subproblem also satisfies this constraint. Thus,
we can drop the “min” expression in constraints (2.3.16), resulting in the following model:

min c′x (2.3.22)

s.t.
∑
j

āijxj + Γiazi +
∑
j

pij ≤ bi, i = 1, . . . , k, (2.3.23)

zi + pij ≥ âijyj , i, j (2.3.24)

zi, pij , yj ≥ 0, i, j (2.3.25)

−yj ≤ xj ≤ yj , j (2.3.26)

lj ≤ xj ≤ uj , j (2.3.27)

xi ∈ Z, i = 1, . . . , k. (2.3.28)

This approach defines one uncertainty set for each constraint of the problem. Indeed, each
subproblem has its own budget of uncertainty and they are independent from each other. Hence,
the subproblem concerns only the deviations of a single constraint. If in the deterministic
formulation, the uncertain parameters are not all in the same constraint but their realizations
must belong to a common uncertainty set, we need to reformulate the model in order to have
all these parameters in a single constraint. For instance, both the standard formulations for the
CVRP and VRPTW presented in Section 2.1 need to be changed for this approach. Indeed,
each customer demand appears in a different constraint of those models and, hence, it is not
possible to straightforwardly impose that they belong to the same uncertainty set. In the following
subsection we exemplify how some authors adapted the traditional formulations in order to use
the dualization approach.

2.3.1.2 RVRPTW formulation based on the layered formulation

Agra et al. (2012) is an example of a RO formulation for the VRPTW that uses the
dualization approach to incorporate uncertainty into the compact model. To use this approach,
the authors reformulated the problem using a layered formulation. They considered uncertainty
in travel times only, based on a maritime transportation context with no capacity constraints,
and hence the authors did not consider uncertainty on demand. The proposed layered formulation
is based on the creation of a flow problem where a graph is defined for every vehicle and each one
of them has n layers. Each l-th layer represents the node that the vehicle is at after visiting l− 1
nodes on a path from the origin. For each layer, there is a set of possible arcs, α, that the vehicle
can take, based on the feasibility of the time windows’ constraints and the nodes previously
visited on the route. Figure 1 was extracted from Agra et al. (2012) and visually exemplifies the
layered representation.
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Figure 1 – (a) Network for a commodity k; (b) its representation in layers. Source: (Agra et al.,
2012)

Before discussing how uncertainty in the parameters is taken into account in the model,
it is important to understand the decision variables used on the deterministic problem:

xkij =
{

1, if vehicle k ∈ K visits node i ∈ N and j ∈ N consecutively,
0, otherwise;

zklij =
{

1, if vehicle k ∈ K visits node i ∈ N on the position l ∈ L on the way to node j ∈ N,
0, otherwise.

For the robust formulation, the travel time tij between nodes i and j can range from its
average t̄ij up to the value t̄ij + t̂ij , where t̂ij is the maximum possible variation. In the model,
the constraints associated with the uncertain parameter are:∑

(i,j)∈A:(j,i,l1)∈α
zkl1ij ai +

∑
l=l1,...,l2−1

∑
(i,j)∈A:(j,i,l)∈α

zklij t
k
ij ≤

∑
(i,j)∈A:(j,i,l2)∈α

zkl2ji bj ,

1 ≤ l1 ≤ l2 ≤ L, k ∈ K, (2.3.29)

These constraints compute the accumulated time in a route in the left hand side and ensure this
time does not exceed the closing time window. Notice that, differently from the two-index vehicle
flow formulation, constraints (2.3.29) of the layer formulation involve all the travel times of the
arcs that are traversed in a route that belongs to a feasible solution of the model.

To ensure the feasibility of constraints (2.3.29) for all possible realizations inside the
uncertainty set, the worst-case scenario of the uncertain parameters within the uncertainty set
must be analyzed. Given the type of the constraint, it is possible to rewrite it as follows:∑

j:(j,i,l1)∈α
zkl1ij ai +

∑
l=l1,...,l2−1

∑
(i,j)∈A

zklij t̄ij + maxSt⊂A,|St|≤Γt
∑

l=l1,...,l2−1

∑
(i,j)∈A

zklij γij t̂ij ≤
∑

j:(j,i,l2)∈α
zkl2ji bj ,

1 ≤ l1 ≤ l2 ≤ L, k ∈ K, (2.3.30)

where γij represents the fraction of the maximum deviation of the time parameter considered
in the worst-case scenario and St ⊂ A is the subset of arcs (i,j) for which γij > 0, such that
|St| ≤ Γt. Thus, for each l1, l2 and k ∈ K such that 1 ≤ l1 ≤ l2 ≤ L, the subproblem defined by
the internal maximization involving the sum of a product of variables in this constraint can be
rewritten as:

max
∑

l=l1,...,l2−1

∑
(i,j)∈A

zklij γij t̂ij (2.3.31)
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s.t.
∑

(i,j)∈A
γij ≤ Γt, (2.3.32)

0 ≤ γij ≤ 1, (i, j) ∈ A. . (2.3.33)

The objective function (2.3.31) aims to find the maximum total deviation. Constraints (2.3.32)
enforce that the total deviation cannot exceed the budget Γt. Constraints (2.3.33) guarantee that
the deviation in each arc is non-negative and limited by 100% of the maximum deviation.

Using the dualization scheme, this subproblem can be replaced by its dual problem given
as follows, since both result in the same optimal value.

min Γtvkl1l2 +
∑

(i,j)∈A
ukl1l2ij , (2.3.34)

s.t. ukl1l2ij + vkl1l2 ≥ t̂ij +
∑

l1≤l<l2
zklij , (i, j) ∈ A. (2.3.35)

vkl1l2 ≥ 0, (2.3.36)

ukl1l2ij ≥ 0, (2.3.37)

Variable vkl1l2 is the dual variable associated with constraints (2.3.32), while the dual variable
ukl1l2ij is associated to (2.3.33). We can now replace the maximization subproblem in (2.3.30)
with the objective function (2.3.34) from the dual subproblem and the additional constraints
(2.3.35)–(2.3.37). The resulting robust counterpart is as follows:

min
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij , (2.3.38)

s.t.
∑
k∈K

∑
j∈N :

(i,j)∈A

xkij = 1, i = 1. . . . , n, (2.3.39)

∑
j:(j,i,l−1)∈α

zkl−1
ji −

∑
j:(j,i,l)∈α

zklji =


−1, if i = 0,
1, if i = d and l = L,

0, otherwise.

1 ≤ l ≤ L, i ∈ N, k ∈ K, (2.3.40)∑
j:(j,i,l)∈α

zklji = xkij , (i, j) ∈ A, k ∈ K, (2.3.41)

∑
j:(j,i,l1)∈α

zkl1ij ai +
∑

(i,j)∈A
t̄ij

∑
l=l1,...,l2−1

zklij + Γtvkl1l2 +
∑

(i,j)∈A
ukl1l2ij ≤

∑
j:(j,i,l2)∈α

zkl2ji bj ,

1 ≤ l1 ≤ l2 ≤ L, k ∈ K, (2.3.42)

ukl1l2ij + vkl1l2 ≥ t̂ij +
∑

l1≤l<l2
zklij , (i, j) ∈ A, l1 ≤ l < l2 < L, (2.3.43)

vkl1l2 ≥ 0 1 ≤ l1 < l2 ≤ L, k ∈ K, (2.3.44)

ukl1l2ij ≥ 0 1 ≤ l1 < l2 ≤ L, k ∈ K, (i, j) ∈ A, (2.3.45)

xkij ∈ {0, 1}, k ∈ K, (i, j) ∈ A, (2.3.46)

zklij ∈ {0, 1}, k ∈ K, (i, j, l) ∈ α. (2.3.47)

The objective function (2.3.38) consists of minimizing the total travel costs. Constraints (2.3.39)
ensure that every customer node is visited exactly once. Constraints (2.3.40) guarantee the flow
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in the layers, which comes from the condition of the vehicle k departing only once from the node
i, making the difference between the number of arcs arriving at the starting node 0 and the
number of arcs departing from it equal to -1; the vehicle k must also depart from every customer
node that it visits, thus making the difference equal to 0; finally, the arriving depot node, n+ 1,
should be visited only once and the vehicle will not depart from it, resulting in a difference of 1.
Constraints (2.3.41) relate the variables zklij and xkij . Constraints (2.3.42) and (2.3.43) ensure that
customer time windows are respected for any possible realization of the uncertain travel times.
Constraints (2.3.44) and (2.3.45) set the domain of the continuous variables, and constraints
(2.3.46) and (2.3.47) set the domain for the binary variables.

Agra et al. (2012) used the described formulation to solve relatively small-scale instances
with 10 to 20 cargoes and 1 to 5 vehicles. They were all solved to optimality when using an
additional approach that reduces the maximum number of layers, with average computational
times of 225.29 seconds to solve the model, plus 107.64 seconds to run the layer-reduction
algorithm. The computational time of the reduction algorithm considerably increased depending
on the number of vehicles in the problem, ranging from 6.09 to 334 seconds, but still tends to be
more efficient than not using it. Notably, although the robust counterpart of the problem can
be computationally tractable, it is considerably more difficult to solve than the deterministic
formulation, and can take more than 10 times the time to solve, denoting a limited practicability
(Chen; Sim; Xiong, 2020) of the method. In fact, Munari et al. (2019) tested the same formulation
in instances from Solomon’s benchmark with 25 customers in order to compare it with their own
formulation. They noted that the layered formulation was not able to prove optimality for any
instance and found feasible solutions or proved infeasibility for only 59.48% of them within the
time limit of 3600 seconds.

2.3.1.3 RCVRP formulation using MTZ constraints

The formulations proposed by Gounaris, Wiesemann and Floudas (2013) for the RCVRP
use the dualization approach as well, but consider general polyhedral uncertainty sets. In this
subsection, we present their formulation based on MTZ constraints, considering specifically the
cardinality constrained uncertainty set, which is a special case of the polyhedral uncertainty set.

Starting from the standard deterministic two-index model with MTZ constraints for
CVRP (Toth; Vigo, 2002), presented in Section 2.1, it is possible to replace the product load
decision variable ui with

∑
l∈N vildl. This allows all demand parameters to be in the same

constraint, making it possible to apply the dualization approach. The proposed model, then,
results in:

min
∑

(i,j)∈A
cijxij , (2.3.48)

s.t.
n+1∑
j=1
j 6=i

xij = 1, i ∈ N∗, (2.3.49)

n∑
i=0
i 6=h

xih =
n+1∑
j=1
j 6=h

xhj , h ∈ N∗, (2.3.50)
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n∑
l=1

(vjl − vil)dl +Q(1− xij) ≥ dj , i, j ∈ N∗, i 6= j (2.3.51)

n∑
l=1

(vil)dl ≥ di, i ∈ N∗, (2.3.52)∑n
l=1(vil)dl ≤ Q, i ∈ N, (2.3.53)

vil ≥ 0, (i, l) ∈ A, (2.3.54)

xij ∈ {0, 1}, (i, j) ∈ A, (2.3.55)

In this model, dl is an uncertain parameter that belongs to the set [d̄l, d̄l + d̂l] where
d̄l is the expected value of dl, while d̂l is the maximum variation that this demand can have.
Then, following Bertsimas and Sim (2004) steps, we define the primitive random variable γdi that
represents the fraction of the maximum variation that the demand of the node presents. The
sum of all these variables must be limited by the budget Γd. Then, constraints (2.3.51) can be
rewritten for the robust problem as:
n∑
l=1

(vjl−vil)d̄l+max∑
l∈N∗ γ

d
l
≤Γd(

n∑
l=1

((vjl−vil)(d̂lγdl ))−(d̄j+d̂jγdj ))+Q(1−xij) ≥ 0, i, j ∈ N∗, i 6= j,

(2.3.56)
where N∗ is the set of all customer nodes. Then, the maximization subproblem can be represented
by:

max
n∑
l=1

(vjl − vil)(d̂lγdl )− (d̂jγdj ) (2.3.57)

0 ≤ γdl ≤ 1, l ∈ N∗, (2.3.58)∑
l∈N∗

γdl ≤ Γd. (2.3.59)

The dual of this subproblem is:

min
n∑
l=1

αlk + Γdµk (2.3.60)

αlk + µk ≥ d̂l(vjl − vil − 1), i, j, l ∈ N∗, i 6= j, l = j, k ∈ K, (2.3.61)

αlk + µk ≤ d̂l(vjl − vil), i, j, l ∈ N∗, i 6= j, l 6= j, k ∈ K. (2.3.62)

Finally, the robust counterpart is obtained by replacing constraints (2.3.51) with:

d̄j +
n∑
l=1

αlk + Γdµk −
n∑
l=1

(vjl − vil)d̄l ≤ Q(1− xij), i, j ∈ N∗, i 6= j, k ∈ K, (2.3.63)

αlk + µk ≥ d̂l(vjl − vil − 1), i, j, l ∈ N∗, i 6= j, l = j, k ∈ K, (2.3.64)

αlk + µk ≥ d̂l(vjl − vil), i, j, l ∈ N∗, i 6= j, l 6= j, k ∈ K. (2.3.65)

Similar steps need to be taken to constraints (2.3.52) and (2.3.53) – both constraints
have the uncertain parameter on them, and for this reason we also need their robust counterpart.
Constraints (2.3.52) are then represented by:

n∑
l=1

(vil)d̄l + max(
n∑
l=1

(vild̂l)γdl − (d̂i)γdi )− d̄i ≥ 0, i ∈ N∗.
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After dualizing the inner subproblem, we obtain:
n∑
l=1

(vil)d̄l +
n∑
l=1

α′lk + Γdµ′k − d̄i ≥ 0, i ∈ N∗, i 6= j, (2.3.66)

α′lk + µ′k ≥ d̂l(vil − 1), i, j, l ∈ N∗, i 6= j, l = j, k ∈ K, (2.3.67)

α′lk + µ′k ≥ d̂lvil, i, j, l ∈ N∗, i 6= j, l 6= j, k ∈ K, (2.3.68)

Note that we needed to create additional sets of variables which represent the dual variables
from this subproblem, α′lk and µ′k, for these constraints.

Lastly, we also transformed the robust counterpart of constraints (2.3.53):
n∑
l=1

(vil)d̄l + max
n∑
l=1

(vild̂l)γdl ≤ Q, i ∈ N,

into linear constraints by applying the same dualization approach, resulting in the following set
of constraints:

n∑
l=1

α′′lk + Γdµ′′k +
n∑
l=1

(vil)dl ≤ Q, i ∈ N∗, k ∈ K, (2.3.69)

α′′lk + µ′′k ≥ d̂lvil, i, j, l ∈ N∗, i 6= j, k ∈ K, (2.3.70)

The new variables α′′lk and µ′′k are also dual variables from the maximization sub-problem of the
original robust constraint. Thus, model (2.3.71)-(2.3.85) is obtained, which represents the full
robust counterpart of the problem.

min
∑

(i,j)∈A
cijxij (2.3.71)

s.t.
n+1∑
j=1
j 6=i

xij = 1, i ∈ N∗, (2.3.72)

n∑
i=0
i6=h

xih =
n+1∑
j=1
j 6=h

xhj , h ∈ N∗, (2.3.73)

d̄j +
n∑
l=1

αlk + Γdµk −
n∑
l=1

(vjl − vil)d̄l ≤ Q(1− xij), i, j ∈ N∗, i 6= j, k ∈ K, (2.3.74)

αlk + µk ≥ d̂l(vjl − vil − 1), i, j, l ∈ N∗, i 6= j, l = j, k ∈ K (2.3.75)

αlk + µk ≥ d̂l(vjl − vil), i, j, l ∈ N∗, i 6= j, l 6= j, k ∈ K (2.3.76)
n∑
l=1

(vil)d̄l +
n∑
l=1

α′lk + Γdµ′k − d̄i ≥ 0, i ∈ N∗, i 6= j, (2.3.77)

α′lk + µ′k ≥ d̂l(vil − 1), i, j, l ∈ N∗, i 6= j, l = j, k ∈ K, (2.3.78)

α′lk + µ′k ≥ d̂lvil, i, j, l ∈ N∗, i 6= j, l 6= j, k ∈ K, (2.3.79)
n∑
l=1

α′′lk + Γdµ′′k +
n∑
l=1

(vil)dl ≤ Q, i ∈ N∗, k ∈ K, (2.3.80)

α′′lk + µ′′k ≥ d̂lvil, i, j, l ∈ N∗, i 6= j, k ∈ K, (2.3.81)

xij ∈ {0, 1}, (i, j) ∈ A, (2.3.82)
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vij ≥ 0, (i, j) ∈ A, (2.3.83)

αik ≥ 0, i ∈ N, k ∈ K, (2.3.84)

µk ≥ 0, k ∈ K. (2.3.85)

Model (2.3.71)–(2.3.85) only protects against uncertainties on demand. The incorporation
of travel time uncertainty, however, is not trivial because this method assumes that the worst-case
scenario in a route can be identified by simply taking the combination of γdl that achieve the
highest absolute deviation in a route. While this assumption works fine for deviations in demand,
it is not true for deviations on travel time, as higher absolute deviations may be absorbed by
the waiting time at some customers and, thus, taking the worst-case value of another arc might
result in later arrival times in subsequent nodes in the route.

Gounaris, Wiesemann and Floudas (2013) also developed other models with the same
approach but different base formulations, some with better and other with worse results than
the one presented. We have chosen to present the formulation based on MTZ mainly because
it is a more traditional formulation. The highlighted models in their paper were the so-called
two-index models and the vehicle assignment models, both solved by tailored branch-and-cut
algorithms using robust rounded capacity inequalities cuts. These cuts were developed by the
authors as an extension of the rounded capacity inequalities widely used in the deterministic
VRP formulations (Poggi; Uchoa, 2014). They are stated as follows:∑

i∈N\S

∑
j∈S

xij ≥
⌈ 1
Q

max
d∈Ud

∑
i∈S

di

⌉
, S ⊂ N∗,

where S represents every possible subset of nodes. The main difference between these cuts and
the deterministic ones is that we must consider the maximum realization inside the polyhedral
set instead of using the sum of demands. Since considering every possible infeasible set would
make the problem prohibitively large, the authors dynamically introduced these cuts in a tailored
branch-and-cut algorithm.

Moreover, this algorithm frequently checks for violations on these constraints and thus is
important to have an efficient way to evaluate the right-hand sides of these constraints. Gounaris,
Wiesemann and Floudas (2013) presented analytical solutions for the multiple knapsack and
the factor model uncertainty sets. For example, for the multiple knapsack uncertainty set, with
L knapsacks, the maximum realization of the demand for a specific subset of nodes S can be
written as:

max
d∈Ud

∑
i∈S

di =
∑
i∈S

d̄i +
L∑
l=1

min
(

∆d
l ,

∑
i∈S∩Sl

d

d̂i

)
,

in which Sld represents the subsets of nodes that are in a given knapsack l. This method allows to
check violations in each subset S in time O(|S|). In the authors’ studies, even the formulations
that already incorporate uncertainty through a polynomial number of constraints had their
performance improved when those cuts were used.

2.3.2 Formulation based on the linearization of recursive equations

A recent alternative for the dualization scheme was proposed by Munari et al. (2019),
who developed an approach based on the linearization of recursive equations that model the
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worst-case realizations of the uncertain parameters. This linearization results in constraints that
guarantee a robust feasible solution in a compact model. This approach is one of the basis of this
work.

This formulation is based on the cardinality constrained uncertainty set and assumes
that the budget of uncertainty Γd is integer and defined as the maximum number of parameters
attaining their worst-case values simultaneously in the demand vector. Given a predefined route
r = (v0, v1, . . . , vh), the variable uvjγ represents the largest load required to serve all nodes in
the route r up to node vj , when the demands of γ ≤ Γd customers attain their worst-case values
simultaneously. The worst-case value of a vj node is the highest possible demand for this node.
Let d̄vj be the nominal demand of the vj node of the route and d̂vj the maximum variation of
this node. Then, the value of uvjγ can be computed using the following recursive equations:

uvjγ =


dv0 , if j = 0,
uvj−1γ + d̄vj , if γ = 0,
max{uvj−1γ + d̄vj , uvj−1(γ−1) + d̄vj + d̂vj}, otherwise,

(2.3.86)

for all j = 0, 1, . . . , h e 0 ≤ γ ≤ Γd. The first line of this expression defines that for the first node
of the route, v0, the total load must simply be its demand (typically zero, since it is the depot).
The second line determines that, when no parameter reaches its worst-case value, the total load
in a given node vj is the load in the previous node plus the demand of the node vj . These first
two lines work as boundary conditions. Finally, the third line selects, for each γ and vj node,
the option that gives the largest load: taking the worst γ cases from the nodes prior to vj and
add only the nominal demand of vj ; or taking the previous γ − 1 worst-case values and add the
demand for the worst-case realization of vj . Then, the maximum load is found in the variable
uvhΓd , where vh = n+ 1 is the last node of the route. It is also important to verify if this value
respects the vehicle capacity Q to guarantee the robust feasibility of the route.

Munari et al. (2019) converted these recursive equations into constraints for the compact
two-index vehicle flow model with MTZ constraints. The constraints associated with load
propagation and capacity satisfaction become:

ujγ ≥ uiγ + d̄jxij −Q(1− xij), (i, j) ∈ A, γ = 0, . . . ,Γd, (2.3.87)

ujγ ≥ ui(γ−1) + (d̄j + d̂j)xij −Q(1− xij), (i, j) ∈ A, γ = 1, . . . ,Γd, (2.3.88)

d̄j ≤ ujγ ≤ Q, j ∈ N, γ = 0, . . . ,Γd. (2.3.89)

Constraints (2.3.87) and (2.3.88) work similarly to the recursive equations (2.3.86), checking for
each γ whether the load up to a certain node j (ujγ) is greater if considering the γ worst cases
of the previous nodes, without the node j, or taking the γ − 1 worst-case values and adding
the worst-case value of j. Constraints (2.3.89) guarantee the feasibility of the route, in a given
robustness, by limiting the total load to the vehicle capacity. The lower bound in (2.3.89) aims
to better restrict the problem seeking a better linear relaxation.

It is possible to apply the same strategy for the travel time. It is important to pay
attention to the additional condition of respecting the time window’s opening time at node i (ai)
when computing the service’s starting time (wi). Moreover, the upper bound, in this case the
closing time of node i (bi), that acts similarly to the vehicle capacity still exists for this parameter.
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Thus, the new time flow variable is defined as wvjγ , which represents the service’s starting time
when considering γ worst-cases values in a route. With this information, the recursive equations
for time can be written as follows:

wvjγ =


av0 , if j = 0,
max{avj , wvj−1γ + svj−1 + t̄vj−1vj}, if γ = 0,
max{avj , wvj−1γ + svj−1 + t̄vj−1vj ,

wvj−1(γ−1) + svj−1 + t̄vj−1vj + t̂vj−1vj}, otherwise.

(2.3.90)

for all j = 0, 1, . . . , h e 0 ≤ γ ≤ Γt. Similarly to the demand, the first two lines of the recursive
equations are boundary conditions, which are used for the first node in the route and for the
calculation in the deterministic case, respectively. Notably, in this second line, a new element
was added, namely the opening time windows. When computing the times, it is fundamental to
always verify if the arrival time in a node is greater than its opening time. If it is not, the vehicle
must wait for avj before starting the service.

The third line checks if the worst-case scenario for the arrival time is given by verifying
which is higher: the opening time of the time window; taking the γ worst-case values before,
without using the last arc traveled; or using the previous γ − 1 worst-case values and considering
the worst-case value of the last arc. Thus, it is possible to linearize these equations using the
following constraints:

wjγ ≥ wiγ + (si + t̄ij)xij −Mij(1− xij), (i, j) ∈ A, γ = 0, . . . ,Γt, (2.3.91)

wjγ ≥ wi(γ−1) + (si + t̄ij + t̂ij)xij −Mij(1− xij), (i, j) ∈ A, γ = 1, . . . ,Γt, (2.3.92)

ai ≤ wiγ ≤ bi, i ∈ N, γ = 0, . . . ,Γt. (2.3.93)

Constraints (2.3.91) and (2.3.92) act similarly to the recursive function checking, for each γ up
to Γt and for each node j ∈ N , if the service begins later when taking the worst γ cases from the
previous arcs, without the worst-case value from arc (i, j), or taking the worst γ − 1 cases from
previous arcs and using the worst-case value of arc (i, j). The satisfaction of time windows is
ensured by constraints (2.3.93).

The model introduced by Munari et al. (2019) is an extension of the two-index vehicle
flow model presented in Section 2.1. In addition to the vehicle flow variables xij already defined,
we have the following additional variables:

• uiγ : the load in the vehicle after serving node i, considering γ worst-case realizations of the
demands;

• wiγ : the earliest time at which the vehicle can start the service at the node i, considering γ
worst-case realizations of the travel times;

The robust counterpart obtained by Munari et al. (2019) using the linearization of recursive
equations is given as follows:

min
∑

(i,j)∈A
cijxij , (2.3.94)

s.t.
n+1∑
i=1
j 6=i

xij = 1, j ∈ N∗, (2.3.95)
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n∑
i=0
i6=h

xih =
n+1∑
j=1
j 6=h

xhj , h ∈ N∗, (2.3.96)

ujγ ≥ uiγ + d̄jxij −Q(1− xij), (i, j) ∈ A, γ ≤ Γd, (2.3.97)

ujγ ≥ uiγ−1 + (d̄j + d̂j)xij −Q(1− xij), (i, j) ∈ A, 1 ≤ γ ≤ Γd, (2.3.98)

dj ≤ ujγ ≤ Q, i ∈ N, γ ≤ Γd, (2.3.99)

wjγ ≥ wiγ + (si + t̄ij)xij −M(1− xij), (i, j) ∈ A, γ ≤ Γt, (2.3.100)

wjγ ≥ wiγ−1 + (si + t̄ij + t̂ij)xij −M(1− xij), (i, j) ∈ A, 1 ≤ γ ≤ Γt, (2.3.101)

ai ≤ wiγ ≤ bi, i ∈ N, γ ≤ Γt, (2.3.102)

wiγ ≥ 0, i ∈ N, 0 ≤ γ ≤ Γt. (2.3.103)

xij ∈ {0, 1}, i, j ∈ N. (2.3.104)

The objective function (2.3.94) consists of minimizing the total traveling cost. Constraints (2.3.95)
ensure that every customer is visited only once, while (2.3.96) establishes the vehicle flow by
enforcing that every costumer is visited by one vehicle and only one vehicle must depart from
it. Constraints (2.3.97) and (2.3.98) ensure the load flow, forbidding subtours, and compute the
worst-case scenario of the load by choosing the greatest between using the γ worst previous cases
and adding the nominal demand (2.3.97) to it and using the γ − 1 worst previous cases and
adding the worst-case value from the current node (2.3.98). The vehicle capacity is imposed by
the constraints (2.3.99). Constraints (2.3.100) and (2.3.101) operate similarly as the constraints
(2.3.97) and (2.3.98), respectively, and (2.3.102) ensure that the time windows are respected.
Finally, constraints (2.3.103) and (2.3.104) set the domain of the variables.

By having fewer constraints and variables, this formulation performs better than the
ones using the dualization approach on benchmarking instances (Munari et al., 2019). Therefore,
it may be preferable to use this approach, as long as it is possible to model the problem with a
similar dynamic programming framework.

2.4 Other RO formulations in literature

In this section, we briefly present other interesting works in the literature that use RO
to develop models for VRP variants under uncertainty. Most of them also proposed different
exact and heuristic algorithms to solve the addressed problems, since the compact models were
not able to provide optimal solutions for the considered instances in practical computational
times. Moreover, the majority of works use the cardinality constrained uncertainty set in their
formulation. This data is also summarized in Table 1, which presents the variant addressed, the
main solution methods, uncertainty sets and parameters considered by each work.

• Solyali, Cordeau and Laporte (2012) developed a compact MIP formulation for the ro-
bust Inventory Routing Problem (IRP) under demand uncertainty. The authors used
the dualization approach, proposed by Bertsimas and Sim (2004), to create the robust
counterpart. To solve the problem, the authors proposed two robust MIP formulations
and implemented them within a branch-and-cut algorithm. One of the models follows a
more traditional approach in which all the decision variables must be chosen before the
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uncertainty realization, while the other allows that part of the variables can be selected
after the realization, in the called adjustable robust formulation (Ben-Tal et al., 2004).
Both formulations presented solutions immunized to uncertainty, with the adjustable one
being more computationally efficient albeit a little more expensive. Both formulations were
able to solve to optimality literature instances with up to 30 customers and seven periods
within 2 hours.

• Lee, Lee and Park (2012) tackled the robust vehicle routing problem with deadlines under
travel time and demand uncertainty. This particular variant is similar to the RVRPTW, but
imposes only the closing time of time windows. Thus, vehicles can start its service immedi-
ately after arriving in the customer, given the deadlines are respected. The authors used
the Bertsimas and Sim (2004) uncertainty set to represent the variable parameters. They
applied the Dantzig-Wolfe decomposition approach and the uncertainty was encapsulated in
the column generation subproblem. The authors tested their algorithm in adapted instances
from VRPTW and CVRP literature (Solomon, 1987; Augerat, 1995). The instances were
of relatively small size, with 25 customers for the ones originated from the VRPTW and
up to 40 nodes for the ones adapted from the CVRP. The proposed algorithm delivered
safer, albeit more expensive, solutions for all instances when compared to the deterministic
solution. However, it was only able to solve slightly more than half of the instances from
Solomon (1987) and only two from Augerat (1995) to optimality.

• Agra et al. (2013) studied the VRPTW under uncertainty on travel time in the same mari-
time transportation context as Agra et al. (2012). The authors proposed two formulations
for the problem. The first formulation extends the resource inequalities formulation by
employing adjustable robust optimization techniques. In adjustable RO, some decision
variables are allowed to adapt themselves as uncertain parameters vary in uncertainty sets.
The second formulation implicitly considers uncertainty in a path inequalities formulation.
Both formulations presented similar computational performance and were faster than the
layered formulation of Agra et al. (2012). Similarly to the model proposed by Agra et al.
(2012), while these new formulations were computationally tractable, they were considerably
more difficult to solve than the deterministic problem.

• Tajik et al. (2014) addressed the pollution routing problem with pickup and delivery under
uncertainty on service time, travel time, fuel consumption and CO2 emission cost. Pollution
routing differs from the traditional problems by not focusing only on costs, but also on
the fuel consumption, whose reduction may lesser the environmental and human health
impacts of the company. The authors developed an MILP formulation to solve the problem
and analysed the impact of using this technique over considering deterministic demand.
Notably, the objective function value of the robust models suffered less deviation than the
deterministic one.

• Hu et al. (2018) proposed a robust optimization model for the VRPTW with demand
and travel time uncertainty. They created, and used, an uncertainty set similar to the
cardinality constrained set but with the budget (Γ) size being dependent on the number of
nodes in the route. Essentially, Γ will be a percentage, chosen by the decision maker, of
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the route’s size. The authors developed the model by adapting the resource inequalities
formulation from Agra et al. (2013). To deal with bigger instances, they also designed a
two-stage algorithm based on a modified adaptive variable neighborhood search heuristic.

• De La Vega, Munari and Morabito (2018) proposed a compact formulation for the VRPTW
with multiple deliverymen under demand uncertainty, a variant in which the service time
in a node depends on the number of deliverymen assigned in the vehicle. To incorporate
variability, the authors proposed a compact formulation using the traditional dualization
approach Bertsimas and Sim (2004). Due to the long computational times required to solve
this formulation, the authors proposed a RO extension of the Solomon’s heuristic I1 to
obtain feasible solutions.

• Li and Chung (2019) worked with the RCVRP and the robust split delivery VRP under
demand and travel time uncertainty in a context of disaster relief routing. This problem
often arises in the aftermath of disastrous events, when delivering critical supplies and/or
services to the affected population in need. In this context, the focus is shifted from
costs/profit to the welfare of the victims. This is usually reflected on the objective function
by considering the time it takes to service the affected victims. The authors proposed RO
models considering a polyhedral uncertainty set with different objective functions, such
as summation of arrival times and the latest arrival time, and analysed their impact on
solution. They also proposed a two-stage heuristic method that combines insertion and
tabu search algorithms.

• Rahbari et al. (2019) developed two bi-objective formulations for the RCVRP with cross
docking in a context of perishable goods distribution. The first objective of these models
is minimizing the total delivery costs and the second objective is maximizing the total
weighted freshness of the delivered products. In one of the models the authors considered
uncertainty on travel times, while in the other they considered uncertainty on freshness-life
of product, both were developed by using an approach based on Gounaris, Wiesemann
and Floudas (2013). The results show that uncertainty in the travel time considerably
deteriorates objective function whereas uncertainty on the freshness-life has little impact
on distribution costs and highly increases the freshness of the delivered items.
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3 New Formulations for the VRPTW and
RVRPTW

Before addressing the practical aircraft routing problem, we first study a classical problem
to design the robust methods which will be later extended to tackle real-world instances. Thus,
in this chapter, we present a novel formulation for the traditional VRPTW based on commodity
flow and RO models which resort to the linearization technique of recursive equations proposed
by Munari et al. (2019) which will later serve as basis for our case study. In Section 3.1, we
present a new deterministic formulation for the VRPTW based on the single commodity flow
(CF) formulation. Then, we derive the robust counterpart of this formulation to obtain a new
RO model for the RVRPTW in Section 3.2, using the cardinality constrained uncertainty set.
Then, in Section 3.3, we show the models developed for the single knapsack uncertainty set and
in Section 3.4 we present the models for the multiple knapsack uncertainty set. In Section 3.5 we
explain the tailored B&C algorithm designed for this problem. Finally, in Section 3.6, we present
the results of computational experiments using benchmark instances from the literature.

3.1 CF formulation for the VRPTW

In this section, we describe the model for the (deterministic) VRPTW that inspired our
new formulation for the RVRPTW under time and demand uncertainty. This formulation is based
on the single commodity flow model for the CVRP (Gouveia, 1995; Letchford; Salazar-González,
2015) which is an extension of the model originally proposed by Gavish and Graves (1978) for
the Traveling Salesman Problem (TSP). This formulation is known for having stronger linear
relaxation than the formulation based on MTZ constraints.

While there are formulations based on commodity flow constraints for the CVRP in
literature (Gouveia, 1995) and variations of it with stronger linear relaxations (Letchford; Salazar-
González, 2006; Letchford; Salazar-González, 2015), we did not find any compact formulation
for the VRPTW based on commodity flow variables in the literature. There is, however, one
for the TSP with Time Windows (Langevin et al., 1993) and other for the Split Delivery
VRPTW (Bianchessi; Irnich, 2019), both in a deterministic context. Thus, this section presents
the adaptation developed on the formulation for the CVRP in order to introduce time windows
and time flow constraints.

Starting with the CF formulation of the CVRP, we use the same notation as in Chapter 2
and thus N = {0, . . . , n+ 1} is the set of nodes, where nodes 1, . . . , n represent customers, while
nodes 0 and n+ 1 represent, respectively, the departure and arrival depots. Set A comprises the
arcs between nodes (a complete graph is assumed). As parameters, we have the demand di for
each node i ∈ N , with d0 = dn+1 = 0; the capacity of vehicles, Q; and the travel cost cij for each
arc (i, j) ∈ A. The decision variables of this model are given by the binary variable xij which
indicates whether arc (i, j) ∈ A is traversed; and the continuous variable fij that represents the
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load of the vehicle that traverses this arc. The model is then given by:

min
∑

(i,j)∈A
cijxij , (3.1.1)

s.t.
n+1∑
i=1
i 6=j

xij = 1, j ∈ N∗, (3.1.2)

n∑
i=0
i 6=h

xih =
n+1∑
j=1
j 6=h

xhj , h ∈ N∗, (3.1.3)

n∑
h=0

fhi −
n+1∑
j=1

fij = di, i ∈ N∗, (3.1.4)

fij ≤ Qxij , (i, j) ∈ A, (3.1.5)

xij ∈ {0, 1}, fi,j ≥ 0, (i, j) ∈ A. (3.1.6)

The objective function (3.1.1) consists of minimizing the total traveling costs. Constraints
(3.1.2) ensure that each customer is visited only once, whereas (3.1.3) guarantee the correct
vehicle flow through the nodes. Constraints (3.1.4) impose the correct load flow, ensuring that
the load in the vehicle that leaves a node i is equal to the difference between the load when the
vehicle arrived at this node and the node demand di. These constraints also forbid subtours.
Constraints (3.1.5) prevent the vehicle from exceeding its capacity in any arc. Finally, (3.1.6)
define the domain of variables xij and fij .

It is possible to strengthen the model by replacing constraints (3.1.5) with tighter ones
(Gavish, 1984), such as:

djxij ≤ fij ≤ (Q− di)xij , (i, j) ∈ A. (3.1.7)

Note that these constraints have the same function as those of the original model, but the upper
and lower bounds are more restricted for each node. The lower bound of (3.1.7) is guaranteed
because when traveling to any node j from any node i, the vehicle must have at least the quantity
needed to supply j, while the upper bound is secured as the maximum quantity that can be
taken in arc (i, j) is the capacity of the vehicle minus the demand of node i.

To adapt this model to the VRPTW, we use the same logic as the original by treating
time as a second commodity. Thus, we introduce the continuous variable gij that represents the
elapsed time of a route (it can be seen as the “load” of this second commodity) when the vehicle
leaves node i towards node j. Thus, gij corresponds to the time the vehicle finishes serving
customer i and is available to travel to customer j if arc (i, j) is taken. Recall that the VRPTW
require the following additional parameters, as defined in Chapter 2: ai and bi, which represent
the opening and closing time of the node’s time windows, respectively; the service time at node
i, si; and the travel time when traversing arc (i, j), tij . The model does not allow the vehicle to
arrive at the customer after the closing time (bi) and the vehicle must wait until the opening
time (ai) to start its services, if it arrives earlier.

With these definitions, it is possible to develop the model for the VRPTW based on
commodity flow variables. To our knowledge, there was no compact formulation explicitly defined
for the VRPTW in which time propagation are modeled using this type of constraints. To
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introduce them, we add the following constraints to model (3.1.1)-(3.1.6):

n+1∑
j=1

gij ≥ si +
n∑
h=0

(ghi + thixhi), i ∈ N∗, (3.1.8)

(ai + si)xij ≤ gij ≤ (bi + si)xij , (i, j) ∈ A. (3.1.9)

Constraints (3.1.8) act similarly to (3.1.4) and impose the correct flow of time trough the visited
nodes in a route. Constraints (3.1.9) ensure that time windows are met. They also guarantee that
the variable gij is non-negative if arc (i, j) is traversed. At the lower bound, gij must assume at
least the value (si + ai), since the earliest possible time to finish the service on a node is when
the vehicle starts its service immediately after the customer opens. At the upper bound, the
maximum value that gij can assume is, by definition, the moment in which the vehicle starts
its service at the exact time that the time window closes. Furthermore, if an arc (i, j) is not
traversed, i.e xij = 0, constraints (3.1.9) ensure that gij is zero. Thus, (3.1.9) also impose that
the elapsed time is computed correctly in constraints (3.1.8), since the only variable gij allowed
to take a non-zero value is the one where xij = 1, resulting in a constraint equivalent to (2.1.9)
(when xij = 1) and turning-off any other constraint considering that uses arc (i, l), l 6= j. It is
worth noting that constraints (3.1.7) can be used instead of (3.1.5) in the formulation of the
VRPTW as well.

There are two notable differences between constraints (3.1.4) and (3.1.8). The first one
is that the order of the summations is reversed because, while in the product loading the amount
carried by the vehicle decreases after each visit (delivery), the time increases. For example,
suppose we have the route R = {0, i, n+ 1} in which di = 50, Q = 100, t0i = tin+1 = 60, si = 10,
ai = 30 and bi = 100. Then, the load variables f0i, which represent the total product load in the
vehicle when it arrives in node i, and fin+1, defined as the product load in the vehicle when it
departs from customer i, would take, respectively, the values 10 (or any value between di=10 and
Q=200) and 0 (or any value 10 units lower than f0i). This was imposed by constraints (3.1.4),
because:

n∑
h=0

fhi −
n+1∑
j=1

fij = f0i − fin+1 = di = 10,

f0,i = fin+1 + 10.

Conversely, for the time variables, the arrival time in node i, g0i, will be smaller than the arrival
time in the depot gin+1. Hence, g0i will assume a value of at least 60, whereas gin+1 needs to be
at least 130 due to constraints (3.1.8), according to the following equations:

g0i ≥ s0 +
n∑
h=0

(ghi + thixhi) = 0 + 0 + 60x0i = 60,

gin+1 ≥ si +
n∑
h=0

(ghn+1 + thn+1xhn+1) = g0i + si + 60xin+1 = 60 + 10 + 60 = 130.

The second difference between constraints (3.1.4) and (3.1.8) is the use of an inequality
instead of an equation because if the vehicle arrives before the opening of the time window,
an equality in (3.1.8) would make the solution infeasible. The following example shows why an
equality would not work in such case. Suppose in a solution that the minimum arrival time in node
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j after visiting node i is 60 minutes (gij), due to constraints (3.1.8); however, the lower bound
of the time windows for node j, enforced by constraints (3.1.9), is 90 minutes (i.e., ai > gij).
If (3.1.8) were equations, they would impose gij to be 60 minutes, and the solution would be
infeasible as the variable’s lower bound is 90 because of constraints (3.1.9). It is worth noting
that the use of inequalities does not affect the solution in terms of the vehicle flow.

3.2 CF formulation based on the cardinality constrained uncertainty set

In this section, we propose a new compact model for the RVRPTW considering the
traditional cardinality constrained uncertainty set, based on the CF formulation presented in the
previous section.

As observed in the literature review presented in Chapter 2, the cardinality constrained
set has been widely used in different contexts, such as maritime transportation (Agra et al.,
2012; Agra et al., 2013), urban delivery routing (De La Vega; Munari; Morabito, 2018), disaster
relief routing (Li; Chung, 2019), and on-demand air transportation (Campos; Alvarez; Munari,
2019). Currently, the best compact model for the RVRPTW is the one proposed by Munari
et al. (2019), which was obtained by the linearization of recursive equations. Hence, the same
approach is used to derive the robust counterpart of the CF formulation. This formulation has a
stronger linear relaxation than the one proposed by Munari et al. (2019) and hence might show
better computational times in general-purpose ILP solvers as well as in tailored branch-and-cut
methods.

To obtain the robust counterpart of the CF model, the first change is the incorporation
of the index γ into the variables fij and gij . As in the MTZ-based formulation of Munari et
al. (2019), this index represents the number of parameters that attains their worst-case values
simultaneously in a route for demand (γd ≤ Γd) and travel time (γt ≤ Γt). In this way, we have
the variables fijγ and gijγ that represents the load and elapsed time, respectively, for the vehicle
that traverses arc (i, j) considering γ worst-case realizations. With these variables we can redefine
the load and time flow constraints of the CF model. For instance, constraints (3.1.4) are replaced
with:

n∑
h=0

fhiγ ≥ d̄i +
n+1∑
j=1

fijγ , i ∈ N∗, γ = 0, . . . ,Γd, (3.2.1)

n∑
h=0

fhiγ ≥ d̄i + d̂i +
n+1∑
j=1

fij(γ−1), i ∈ N∗, γ = 1, . . . ,Γd. (3.2.2)

These constraints guarantee the worst-case load in the vehicle, according to the following cases:
γ worst-case realizations previously occurred and then we consider only the nominal demand of
node i, as computed in the right-hand side of (3.2.1); or γ − 1 worst-case realizations previously
occurred and we consider both the nominal demand of node i and its maximum deviation, as
calculated in the right-hand side of (3.2.2).

It is important to emphasize that, on the deterministic case (that is, for γ = Γd = 0),
constraints (3.2.2) are not defined and (3.2.1) becomes equivalent to (3.1.4). It is also worth
noting that it was necessary to replace the equality from (3.1.4) with an inequality, since the
problem would become infeasible by forcing two different equalities. This is without any loss



Chapter 3. New Formulations for the VRPTW and RVRPTW 43

of optimality, since fhiγ can still assume the lowest possible value, to keep the solution feasible
(according to the robust perspective).

Likewise, we can apply the same process to the constraints associated with time flow
and, then, we obtain the following RO model for the RVRPTW with uncertainties in demands
and travel times:

min
∑

(i,j)∈A
cijxij , (3.2.3)

s.t
n+1∑
i=1
i6=j

xij = 1, j ∈ N∗, (3.2.4)

n∑
i=0
i6=h

xih =
n+1∑
j=1
j 6=h

xhj , h ∈ N∗, (3.2.5)

n∑
h=0

fhiγ ≥ d̄i +
n+1∑
j=1

fijγ , i ∈ N∗, γ ≤ Γd, (3.2.6)

n∑
h=0

fhiγ ≥ d̄i + d̂i +
n+1∑
j=1

fij(γ−1), i ∈ N∗, 0 < γ ≤ Γd, (3.2.7)

d̄jxij ≤ fijγ ≤ (Q− d̄i)xij , (i, j) ∈ A, γ ≤ Γd, (3.2.8)
n+1∑
j=1

gijγ ≥ si +
n∑
h=0

(ghiγ + t̄hixhi), i ∈ N∗, γ ≤ Γt, (3.2.9)

n+1∑
j=1

gijγ ≥ si +
n∑
h=0

(ghiγ−1 + (t̄hi + t̂hi)xhi), i ∈ N∗, 0 < γ ≤ Γt, (3.2.10)

(si + ai)xij ≤ gijγ ≤ (bi + si)xij , (i, j) ∈ A, γ ≤ Γt, (3.2.11)

xij ∈ {0, 1}, (i, j) ∈ A, (3.2.12)

giγ ≥ 0, i ∈ N, 0 ≤ γ ≤ Γt. (3.2.13)

Objective function (3.2.3) consists of minimizing the total traveling costs. Constraints
(3.2.4) and (3.2.5) guarantee the correct vehicle flow. Load constraints (3.2.6) and (3.2.7) guaran-
tee the correct load propagation, and constraints (3.2.8) enforce the vehicles’ capacity. Constraints
(3.2.9) and (3.2.10) act similarly but for the time propagation. Constraints (3.2.11) ensure that
the time windows are respected that is, the vehicle must wait the time window open before it
can start the delivery service on the node and it cannot start the service after the time window
is closed. Finally, constraints (3.2.12) and (3.2.13) ensure the domain of the variables.

Thanks to the capacity and time windows constraints (3.2.8) and (3.2.11), only one
variable related to product load (fijγ) and time propagation (gijγ) is allowed to have a non-null
value for each i and γ, specifically the one related to arc (i, j) where xij = 1. Thus, suppose
that in an optimal solution, we have xi1j1 = 1 and xj1k1 = 1. Then, time constraints (3.2.9) and
(3.2.10) related to node j1, for any γ > 0, can be simply represented as follows:

gj1k1γ ≥ gi1j1γ + t̄i1j1 + sj1 , (3.2.14)

gj1k1γ ≥ gi1j1γ−1 + t̄i1j1 + t̂i1j1 + sj1 . (3.2.15)
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From the MTZ-based model discussed in Section 2.3.2, the time constraints related to node j1 in
path (i1, j1, k1) should be represented by the following constraints:

wj1γ ≥ wi1γ + t̄i1j1 + sj1 , (3.2.16)

wj1γ−1 ≥ wi1γ + t̄i1j1 + t̂i1j1 + sj1 . (3.2.17)

Given that variables gj1k1γ and wj1 both represent the departure times from node j1, then it
is possible to see that constraints (3.2.14)-(3.2.15) are equivalent to (3.2.16)-(3.2.17). A similar
conclusion can be drawn for the load constraints. Thus, since both models have equivalent load
and time constraints, and turn-off variables and constraints for arcs not used, we can conclude
that model (3.2.3)-(3.2.13) is equivalent to the one proposed by Munari et al. (2019). Finally, it
is possible to use this model for the RCVRP by simply dropping constraints (3.2.9)-(3.2.11)

3.3 Formulations based on the single knapsack uncertainty set

In this section, we extend the MTZ-based and the CF formulations for the RVRPTW
considering the single knapsack uncertainty set, a variant of the knapsack uncertainty set that
consider that there is a single knapsack encompassing all nodes/arcs. In this set, the decision
maker limits the sum of deviation value by a value ∆ for all routes, instead the maximum number
of parameters attaining their worst-case value simultaneously.

3.3.1 MTZ-based formulation for the RVRPTW

This model adapts the formulation described in Subsection 2.3.2 and adapts it for the
single knapsack uncertainty set. The vehicle flow variables are the same as the ones in model
(2.3.94)-(2.3.104), while the load and time variables have a slightly different meaning:

• uiδ: the load that the vehicle carried up to node i, considering up to a total deviation of δ
over the demand’s nominal value of all nodes visited until this node;

• wiδ: the earliest time that a vehicle can start the service at the node i, considering up to a
total deviation δ over the travel time’s nominal value of all arcs traversed until this node.

As we can see, now the index δ represents the summation of load/time units over the
nominal value considered until the current node instead of the number of parameters attaining
their worst-case values simultaneously. Note that these changes bring some limitations when
compared to the dualization scheme, namely the budget and deviations must be integer, since
the deviation is computed in the index, and the problem should have relatively small budgets,
because this size directly affects the number of decision variables in the problem. Later in this
section we will discuss some workarounds for these problems.

To help understanding these variables we created Figure 2, which presents an example
to study the behavior from product load variable uiδ. In this figure, we present a route R =
(r0, r1, . . . , r4, rn+1) where each node i in this route has a nominal demand d̄i and a maximum
deviation d̂i. In this example, we define the budget of uncertainty for demand, ∆d, as 30 product
units. Then, for the given route, we compute the value of variable uiδ and show the value inside a
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box that represents the node ri. Under each box there is a container representing their knapsack
and the total deviation already considered up to node i, represented by the blue boxes. Note that
uiδ accounts for the worst-case vehicle load when it arrives in node i, while delta accounts for
the total accumulated deviation in this load. If in a particular case the budget’s size is greater
than the total deviation of all nodes in a route, we simply need to consider the worst-case value
of all nodes in it, similarly to the approach used by (Soyster, 1973).

Δd = 30

0

𝑟0
𝑢0,0 = 0
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Figure 2 – Example of calculation of load variables for the single knapsack uncertainty set.

In this example, we can compute the total load in a node, considering the RO approach,
by simply adding the maximum deviation possible until the knapsack is filled to the total nominal
demand in the route. Thus, we can compute the value of each variable uiδ, by the following
formula:

uiδ =
i∑

j=0
d̄j +min(δ,

i∑
j=0

d̂j). (3.3.1)

In this particular example we start the route departing from depot r0, with a total load
of zero. When we visit the first customer of the route, the total load is filled by 60 units, 50
from the nominal demand (d̄1) and 10 units of deviation (d̂1). Since we considered 10 units of
deviation in our variables, we fill this value in the knapsack and set the variable u1,10 to 60,
meaning this is the load when we allow up to 10 units of deviation over the nominal demand.
Note that, by our definition of (3.3.1), if we use a δ greater than 10 we would still have a total
load of 60 in node 1 (for example, u1,30 = 60), since there is not another source of deviation
other than this first node. On the other hand, if δ is smaller than 10, we would simply need
to fill the knapsack as much as possible (up to δ) and the total load would be simply the total
nominal demand plus δ. Thus, in this first node δ = 10 is the first point in which we achieve the
maximum load possible (u1,10 = 60) and that’s why it is presented in the figure.

The second customer node of this example has a similar behavior as the first. Its deviation,
d̂2 = 10, can be inserted completely into the knapsack and thus, after taking into account for
the nominal demand, a total load in the route would be 120, and the knapsack would have a
total of 20 units. This time the maximum load is achieved when δ = 20 (u2,20 = 120), any value
higher than that would provide the same load while any δ lower than that would result in a load
where we simply fill the knapsack by adding δ to the nominal demand of the nodes in the route
up to the analyzed node. In the third customer of this example we finally face the situation in
which not all deviation from the node (d̂3 = 15) fits in the knapsack. In this case, we need to
simply fill the knapsack until it is completely full. In this example, that means consider 10 units
of deviation (in order to completely fill the knapsack), and not consider the excess (5 units).
Thus, after adding the nominal demand, we get a total load of u3,∆d = u3,30 = 205. Finally, since
the knapsack is already full, we only need to consider the nominal value of the last customer,
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resulting in a total load of u4,∆d = u4,30 = 255 and its whole deviation (d̂4 = 10) is ignored. Thus,
once the knapsack is completely filled we only need to consider the deterministic demand from
the remaining customers in the route.

To compute the value of the load variables in the model, we used a dynamic-programming
approach akin to the one used in the previous uncertainty set. Thus, for a given route R =
(r0, r1, . . . , rn), the recursive equations designed to compute these variable are the following:

urjδ =



d̄r0 , if j = 0,
urj−1δ + d̄rj , if δ < d̂rj ,

max{urj−1δ + d̄rj , urj−1(δ−d̂rj ) + d̄rj + d̂rj}, if d̂rj ≤ δ ≤ ∆d,

max{urj−1∆d + d̄rj , urj−1(∆d−λ) + d̄rj + λ}, if λ ≤ d̂rj , λ ≤ ∆d.

(3.3.2)

The first two lines are boundary conditions of the problem. The first one is used in the first node
in the route, the depot, and states that the total load in that node is its own demand, usually
zero. The second one is used in the deterministic case and computes the total load as the sum
of the nominal demands only. This second line is also used to compute the values of the load δ
when it is smaller than the deviation of the node, since we only need to check if uj,∆d is feasible,
the total deviation in those can be partially ignored. The third line is used when we try to fill
the knapsack with the full deviation from node rj , we choose the highest between not using the
deviation in that particular node and inserting its maximum deviation. To do this, we only need
to take the load from the previous node, considering a total deviation of δ − d̂rj . Finally, the last
line is used to fill the remaining space of the knapsack, when the deviation in a node is greater
than the remaining space, by choosing between not considering deviation in that node or taking
a value λ that fills it. The index λ in this last type of constraint was created to measure the
amount of deviation inserted in the knapsack when it is less than the maximum deviation of the
evaluated node. Note that in the case where δ = ∆d, the third and fourth line will be equivalent
if λ = d̂rj . So we can further simplify the recursive equations by reducing the domain of δ in the
third line to d̂rj ≤ δ < ∆d.

The travel time is trickier to compute due to the opening time windows. If we fill
the knapsack as quickly as possible like in the demand, we might choose a deviation that is
overshadowed by the waiting time (regarding the opening time of a customer time window),
whereas considering the same deviation value in a later point could turn the solution infeasible.
Thus, the dynamic programming equations are different from the demand, for the same route
R = (r0, r1, . . . , rn), because we are not allowed to apply the same simplifications as in the
demand. Thus, to compute variable wrjδ, which accounts for the worst-case vehicle arrival time
in node rj , considering a total deviation of δ ≤ ∆t time units, the following expression is used:

wrjδ =


ar0 , if j = 0,
max{arj , wrj−1δ + t̄rj−1rj + srj−1}, if δ = 0,
max{arj , wrj−1δ + t̄rj−1rj + srj−1 ,

wrj−1(δ−λ) + t̄rj−1rj + srj−1 + λ}, if λ ≤ t̂rj−1rj , λ ≤ δ ≤ ∆t.

(3.3.3)

Similarly to the equations for demand, the first two lines are boundary conditions. The first line
is used in the first node in the route and sets the starting time of the vehicle, while the second
one computes the deterministic elapsed time in the route. Note that for the elapsed time we
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must verify if the vehicle arrives before the opening time windows, and if it does, it must wait
until it is time to start the service. Finally, the third line tries to compute the highest elapsed
time when considering a deviation of δ. We need to check if it is better not to consider deviation
in that particular arc or taking some level of deviation (λ) that ranges from 1 unit up to the
deviation of the arc or δ, whichever is higher. We also need to confirm if the total elapsed time
respects the opening time windows. Note that these recursive equations are used to compute the
worst-case arrival time. In order to check the feasibility of the route we would need to check at
the end of each iteration of the dynamic programming algorithm if wrjδ ≤ brj for each rj ∈ R
and δ ≤ ∆t. In the compact model. these verifications are introduced as the upper-bound of the
time windows constraints.

With this new interpretation, we were able to develop the following model for this
uncertainty set:

min
∑

(i,j)∈A
cijxij , (3.3.4)

s.t.
n+1∑
i=1
i6=j

xij = 1, j ∈ N∗, (3.3.5)

n∑
i=0
i6=h

xih =
n+1∑
j=1
j 6=h

xhj , h ∈ N∗, (3.3.6)

ujδ ≥ uiδ + d̄j +M(xij − 1), i, j ∈ N, δ ≤ ∆d, (3.3.7)

ujδ ≥ ui(δ−d̂j) + d̄j + d̂j +M(xij − 1), i, j ∈ N, d̂j ≤ δ ≤ ∆d, (3.3.8)

uj∆d ≥ ui(∆d−λ) + d̄j + λ+M(xij − 1), i, j ∈ N,λ < d̂j , (3.3.9)

uj∆d ≤ Q, j ∈ N, (3.3.10)

wjδ ≥ wi(δ−λ) + t̄ij + λ+ si +M(xij − 1), i, j ∈ N, δ ≤ ∆t, λ ≤ t̂ij , λ ≤ δ, (3.3.11)

aj ≤ wjδ ≤ bj , j ∈ N, δ ≤ ∆t, (3.3.12)

xij ∈ {0, 1}, i, j ∈ N, (3.3.13)

uiδ ≥ 0, i ∈ N, 0 ≤ δ ≤ ∆d, (3.3.14)

wiδ ≥ 0, i ∈ N, 0 ≤ δ ≤ ∆t. (3.3.15)

The objective function (3.3.4) is the same as in the other formulations presented in this work
and thus it seeks to minimize the total travelling cost. Constraints (3.3.5) and (3.3.6) ensure,
respectively, that every customer node is visited only once and when a customer is visited one,
and only one, vehicle must depart from it. Constraints (3.3.7)-(3.3.9) tries to find the highest
load possible in node j considering a budget δ ≤ ∆d, similarly to the recursive equations (3.3.2).
Constraints (3.3.7) represent the case in which we only add the nominal demand of the node
into the vehicle’s load and consider the total deviation of δ units in the previous nodes of the
route, it is also used to find the deterministic load (when δ = 0). In Constraints (3.3.8) we try to
fit the whole deviation from the node into the knapsack of size λ, if possible, similarly to the
third line from recursive equations (3.3.2). Finally, constraints (3.3.9) try to fill the knapsack of
size ∆d using a similar approach as the fourth line from recursive equations (3.3.3), checking
different sizes (λ) of deviation, unit by unit, to be included into the variable up to d̂j . The model
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must attain the highest load between the three options. Constraints (3.3.10) ensure that vehicle
capacity is respected. Notably, we just need to verify for uj∆d , since ujδ ≤ uj∆d , δ < ∆d, if a
solution is feasible for uj∆d , it will be feasible for any δ ≤ ∆d. If we consider only these constraints
and the ones related to the variable’s domain (3.3.13 and 3.3.14), we have a formulation for the
RCVRP.

Constraints (3.3.11) are used to compute the elapsed time following a strategy close to
recursive equations (3.3.3). They compute the arrival time in node j considering a total deviation
of δ in the route. We evaluate the quantity of time deviation λ that should be considered from
that particular node, while the remaining δ − λ units of deviation happened in previous nodes
from the route, and choose the λ that results in the latest arrival time. Constraints (3.3.12)
ensure the time windows are respected. It is interesting to note that, due to the time windows’
opening time, we were unable to reduce the number of constraint as we did on demand for
in constraints (3.3.7)-(3.3.9). That happens because the maximum deviation in a route R for
the demand is basically the minimum between knapsack size (∆d) and the sum of maximum
deviation from each node (∑j∈R d̂j). However, due to the time windows, time must be evaluated
on every single node, since some deviations might be overshadowed by the opening time windows
if we simply fill the knapsack with the first deviation as we do in demand. Finally, the domain of
each variable is found in constraints (3.3.13), (3.3.14) and (3.3.15).

3.3.2 CF formulation for the RVRPTW

This model was developed by extending the deterministic CF model (3.1.1)-(3.1.9) to
consider uncertainty on demand and travel time using the approach used in the previous
formulation. The sets, parameters and binary variables are the same as the ones in model
(3.3.4)-(3.3.12), and the new load and time variables are:

• fijδ: the load of products carried between nodes i and j, with a deviation of δ over the
demand’s nominal value already considered;

• gijδ: the arrival time in node j if arc (i,j) is taken, with a deviation of δ over the travel
time’s nominal value already considered;

Now, it is possible to adapt the model (3.2.3)-(3.2.13) for the new uncertainty set. The new
model is as follows:

min
∑

(i,j)∈A
cijxij , (3.3.16)

s.t.
n+1∑
i=1
i 6=j

xij = 1, j ∈ N∗, (3.3.17)

n∑
i=0
i 6=h

xih =
n+1∑
j=1
j 6=h

xhj , h ∈ N∗, (3.3.18)

∑
h∈N

fhiδ −
∑
j∈N

fijδ ≥ d̄i, i ∈ N, δ ≤ ∆d, (3.3.19)
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∑
h∈N

fhiδ −
∑
j∈N

fijδ−d̂i ≥ d̄i + d̂i, i ∈ N, d̂i ≤ δ ≤ ∆d, (3.3.20)

∑
h∈N

fhi∆d −
∑
j∈N

fij∆d−λ ≥ d̄i + λ, i ∈ N,λ < d̂i, (3.3.21)

fijδ ≤ Qxij , i, j ∈ N, δ ≤ ∆d, (3.3.22)∑
j∈N

gijδ ≥
∑
h∈N
λ≤t̂hi

(ghiδ−λ + (t̄hi + λ)xhi) + si, i ∈ N, δ ≤ ∆t, λ ≤ δ, (3.3.23)

(aj + sj)xij ≤ gijδ ≤ (bj + sj)xij , i, j ∈ N, δ ≤ ∆t, (3.3.24)

xij ∈ {0, 1}, (i, j) ∈ A, (3.3.25)

fijδ ≥ 0, (i, j) ∈ A, 0 ≤ δ ≤ ∆d, (3.3.26)

gijδ ≥ 0, (i, j) ∈ A, 0 ≤ δ ≤ ∆t. (3.3.27)

As expected, this model works similarly to (3.2.3)-(3.2.13) but using the single knapsack uncer-
tainty set and the same approach done in (3.3.4)-(3.3.15). The objective function (3.3.16), again,
consists of minimizing the total travel costs. Constraints (3.3.17) and (3.3.18) ensure that each
costumer is visited only once and only one vehicle can depart from it. Constraints (3.3.19)-(3.3.21)
works similarly to (3.3.7)-(3.3.9), forbidding subtours and computing the demand’s worst-case
scenario, but using the commodity flow variable. Constraints (3.3.22) are capacity constraints.
Constraints (3.3.23) act the same way as (3.3.11) to compute the time, while the time windows
constraints are given by (3.3.24). The domain of the variables is defined in (3.3.25)–(3.3.27).

As an additional note, we mention a few difficulties that the models based on single
knapsack uncertainty sets might face and their possible workarounds. The first one is the large
number of extra variables aaded to the model when ∆ grows larger. A first point is made that the
value for ∆ in real contexts is usually not large. Pessoa et al. (2020), for instance, considered 100
minutes of deviation as an extreme case. This would be considered a highly unstable environment,
since the delay would take roughly 20% of a worker’s time, it is more likely that the company’s
time data is inaccurate than that the worker is late this much. A possible workaround is to
change the order of magnitude of δ, for instance, instead of using δ as an 1 minute variation,
one can use it as 5 minutes for each unity, this way it is possible to reduce the problem’s size to
some extent, since this particular dynamic programming has complexity O(nδ2). On the other
hand, the capacity Q has no impact in the computational performance, since it is only called at
the end of the algorithm to check if the solution is feasible (i.e., urn+1∆d ≤ Q), a O(1) process.
However, it is expected that instances with larger capacities have larger knapsacks, which will
make the problem hard to solve.

If this adaptation is applied, it is important to change the other parameters accordingly,
such as dividing ∆ and multiplying λ on constraints (3.3.21) and (3.3.23) by the chosen constant,
5 in our example. For better understanding, we present how the constraints (3.3.23) and (3.3.24)
would look if we change the meaning of δ to 5 time units instead of one:

∑
j∈N

gijδ ≥
∑
h∈N
λ≤t̂hi

(ghiδ−λ + (t̄hi + 5λ)xhi) + si, i ∈ N, δ ≤ ∆t

5 , λ ≤ δ, (3.3.28)

(aj + sj)xij ≤ gijδ ≤ (bj + sj)xij , i, j ∈ N, δ ≤ ∆t

5 . (3.3.29)
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These changes can reduce the model to a more tractable size. In a practical sense, using
a bigger variation for each δ such as this might be better to understand the solution than a
more fractional solution. A second limitation of these formulations is the impossibility of using
non-integer units for δ. This can be easily solved by the previous strategy, multiplying it with a
constant that turns that value into an integer, with the negative side of possibly worsening the
solution times.

3.4 Formulations based on the multiple knapsack uncertainty set

In this section, we present models for the multiple knapsack uncertainty set, the gene-
ralization of the single knapsack set. To model this problem, we need a set of knapsacks (S),
quadrants in which the nodes (or arcs) are divided with their own individual budget (∆s, s ∈ S),
and a set that indicates the nodes in each knapsack (Ss, s ∈ S). This uncertainty set can be more
appropriate in environments where it is possible to identify a shared limitation of the deviation in
demand/travel times for |S| sets of nodes/arcs. For example, in an instance where the customers
are split in a set of |S| clusters, it might make sense to limit the travel time deviation for each
cluster individually, as part of the delay in that route can be related to the travel time required
to reach the cluster from the depot.

3.4.1 MTZ-based formulation for the RVRPTW

This model is a extension of (3.3.4)-(3.3.15). To adapt it to the multiple knapsack
uncertainty set, we needed to change the load and time variables. We will exemplify the model
with a 2-knapsack problem, but it can be easily extended to the k-knapsack problem. The sets
are the same as (3.3.4)-(3.3.15) together with S and Ss. The parameters ∆d and ∆t are changed
to ∆d

s and ∆t
s, so we can incorporate the deviation limit for each knapsack. The variables of

these models are xij , which assumes the value of 1 if, and only if, arc (i, j) is traversed. The load
and time variables are similar to the ones in the single knapsack formulation, but with an index
δs for each knapsack. Thus, for the 2-knapsack problem we have:

• uiδ1δ2 : the load of the vehicle up to node i, with a total deviation δ1 over the demand’s
nominal value for the first knapsack and δ2 for the second one;

• wiδ1δ2 : the earliest time which is possible to start the service at the node i, with a total
deviation of δ1 over the travel time’s nominal value for the first knapsack and δ2 for the
second one;

Figure 3 exemplifies the behavior of the product load variable uiδ1δ2 . In this figure,
we present a route R = (r0, r1, . . . , r4, rn+1) where each node i in this route has a nominal
demand d̄i and a maximum deviation d̂i. In this example, we define the budget of uncertainty for
demand in two different knapsacks, a blue one (with budget ∆d

1=20), which limits the deviations
from customers inside a set S1, and a red one (with budget ∆d

2=15), which is related to a
customers’ subset S2. In this example, the subset S1 is composed by the odd-numbered customers
(S1 = (r1, r3)) while subset S2 contains the even-numbered customers (S2 = (r2, r4)). The blue
knapsack is only filled by the deviation from the nodes in S1, painted in blue in the figure, while
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the red knapsack considers the demand deviation from nodes in S2, painted in red. Thus, we
can interpret r1 and r3 as belonging to a quadrant and r2 and r4 being inside another quadrant.
Then, for the given route, we compute the value of variables uiδ1δ2 and show the value inside
a box that represents the node i. Under each box there are two containers representing the
knapsacks, the left one, filled in blue, represents the knapsack from the quadrant that contains
the odd customers while the right one, filled in red, does the same but for the even-numbered
customers.

1020100 10

Δ1
d = 20

Δ2
d = 15

0

𝑟0
𝑢0,0 = 0

ҧ𝑑1 = 50
መ𝑑1 = 10
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10
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መ𝑑3 = 15 𝑟3
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𝑢𝑛+1,20,15 = 260
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Figure 3 – Example of calculation of load variables for the multiple knapsack uncertainty set.

In this example, we start at the depot r0 with empty load and knapsacks. Then, at the
first customer node in the route, we are able to insert all their deviation (d̂1 = 10) into their
respective knapsack (the blue one), thus the total load in that node will be d̄1 + d̂1 = 50+10 = 60.
This way, we can represent the total load with the variable u1,10,0 = 60. Note that any value of δ1

greater than 10 and any δ2 will have the same total load of 60, since there is not another source
of deviation that could increase the total load in the route up to that node. The second customer
node in the route, r2, has a similar behavior but its deviation is inserted into the second knapsack.
Thus, by adding their nominal demand (d̄2 = 50) plus the deviation (d̂2 = 10) into the total load,
we result in u2,10,10 = 120. Now, in r3, we note that we are unable to insert the whole customer
deviation (d̂3 = 15), as there is an excess of 5 units, thus the complete load, after considering the
nominal demand (d̄3 = 75), is 205, which can be represented by the variable u3,20,10. Note that
although there was free space in the second knapsack to insert this additional deviation, we are
not allowed to do so because it can only be filled by nodes in its quadrant (in this case, the red
one). Finally, with the deviation of the last customer (d̂4 = 10) we completely fill the second
knapsack, and some excess of deviation is generated (5 units). Thus, after adding the nominal
demand (d̄4 = 50) the final load in the route is 260 units. The load variable associated to this
final load in the destination depot, rn+1, is un+1,∆d

1,∆d
2

= un+1,20,15 = 260. Thus, with all this
information the resulting model is given by:

min
∑

(i,j)∈A
cijxij , (3.4.1)

s.t.
n+1∑
i=1
i 6=j

xij = 1, j ∈ N∗, (3.4.2)

n∑
i=0
i6=h

xih =
n+1∑
j=1
j 6=h

xhj , h ∈ N∗, (3.4.3)

ujδ1δ2 ≥ uiδ1δ2 + d̄j +M(xij − 1), i, j ∈ N, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, (3.4.4)
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ujδ1δ2 ≥ uiδ1−d̂jδ2
+ d̄j + d̂j +M(xij − 1),

i, j ∈ N, j ∈ S1, j 6∈ S2, d̂j ≤ δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, (3.4.5)

ujδ1δ2 ≥ uiδ1δ2−d̂j + d̄j + d̂j +M(xij − 1),

i, j ∈ N, j 6∈ S1, j ∈ S2, δ1 ≤ ∆d
1, d̂j ≤ δ2 ≤ ∆d

2, (3.4.6)

ujδ1δ2 ≥ uiδ1−d̂jδ2−d̂j + d̄j + d̂j +M(xij − 1),

i, j ∈ N, j ∈ S1, j ∈ S2, d̂j ≤ δ1 ≤ ∆d
1, d̂j ≤ δ2 ≤ ∆d

2, (3.4.7)

uj∆d
1δ2
≥ ui∆d

1−λδ2
+ d̄j + λ+M(xij − 1),

i, j ∈ N,λ ≤ d̂j , δ2 ≤ ∆d
2, j ∈ S1, j 6∈ S2, (3.4.8)

ujδ1∆d
2
≥ uiδ1∆d

2−λ
+ d̄j + λ+M(xij − 1),

i, j ∈ N,λ ≤ d̂j , δ1 ≤ ∆d
1, j 6∈ S1, j ∈ S2, (3.4.9)

ujδ1∆d
2
≥ uiδ1−λ∆d

2−λ
+ d̄j + λ+M(xij − 1),

i, j ∈ N,λ ≤ d̂j , j ∈ S1, j ∈ S2, (3.4.10)

uj∆d
1∆d

2
≤ Q, j ∈ N, (3.4.11)

wjδ1δ2 ≥ wiδ1−λδ2 + t̄ij + si + λ+M(xij − 1),

i, j ∈ N,λ ≤ t̂ij , λ ≤ δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, j ∈ S1, j 6∈ S2, (3.4.12)

wjδ1δ2 ≥ wiδ1δ2−λ + t̄ij + si + λ+M(xij − 1),

i, j ∈ N,λ ≤ t̂ij , δ1 ≤ ∆t
1, λ ≤ δ2 ≤ ∆t

2, j 6∈ S1, j ∈ S2, (3.4.13)

wjδ1δ2 ≥ wiδ1−λδ2−λ + t̄ij + si + λ+M(xij − 1),

i, j ∈ N,λ ≤ t̂ij , λ ≤ δ1 ≤ ∆t
1, λ ≤ δ2 ≤ ∆t

2, j ∈ S1, j ∈ S2, (3.4.14)

aj ≤ wjδ1δ2 ≤ bj , i, j ∈ N, δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, (3.4.15)

xij ∈ {0, 1}, i, j ∈ N, (3.4.16)

uiδ1δ2 ≥ 0, i ∈ Nδ1 ≤ ∆d
1, δ2 ≤ ∆d

2, (3.4.17)

wiδ1δ2 ≥ 0, i ∈ N, δ1 ≤ ∆t
1, δ2 ≤ ∆t

2. (3.4.18)

Similarly to the previous models, the objective function (3.4.1) minimizes the total travelling
costs. Constraints (3.4.2) and (3.4.3) ensure that every costumer is visited and that only one
vehicle departs from it. Constraints (3.4.4)-(3.4.10) are responsible for computing the demand
for the worst-case scenario and forbid subtours. The load with a set δ1 and δ2 in each node will
be the greatest between considering deviation in the node, computed by (3.4.5)-(3.4.10), or not,
computed by (3.4.4) by just adding the nominal demand.

Constraints (3.4.5)-(3.4.7) work similarly to (3.3.8), where the algorithm tries to insert
the maximum demand in the node, if there is enough space in the knapsack, to compute the
worst-case demand. If the node belongs only to knapsack 1, only δ1 is affected as we have in
(3.4.5). Similarly, if the node is in the knapsack 2, only δ2 is affected and constraints (3.4.6) are
used. Finally, if the node belongs to both knapsacks, the line (3.4.7) is used. If the node does not
belong to any knapsack, we do not consider any deviation and simply use constraints (3.4.4).
Constraints (3.4.8), (3.4.9) and (3.4.10) are similar to (3.4.5), (3.4.6) and (3.4.7), respectively,
but for when the deviation in the node is greater than the remaining space in the knapsack,
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which will be filled. The vehicle’s capacity is ensured by constraints (3.4.11).
Constraints (3.4.12)-(3.4.14) are similar to (3.4.8)-(3.4.10), but for time and, due to how

the opening time windows require to be always verified or otherwise we might consider a deviation
that will be overshadowed by it, for all combination of δ1 ≤ ∆t

1 and δ2 ≤ ∆t
2. The time windows’

constraints are found in (3.4.15) and the domain of variables is defined in (3.4.16)-(3.4.18). Note
that we can easily extend this model for k knapsacks, by adding indices up to δk, although the
number of constraints grows as a function of k. In Appendix A.1, we present a model for the
3-knapsack uncertainty set as an example.

3.4.2 CF formulation for the RVRPTW

Similarly to how was done for the model with MTZ constraints, we extend formulation
(3.3.16)-(3.3.27) to consider multiple knapsacks. As in the last topic, we exemplify the model
with a 2-knapsack uncertainty set. This formulation can also be extended for the k-knapsack
uncertainty set, and an example for the model using the 3-knapsack uncertainty set is found in
Appendix A.2.

This formulation uses exactly the same sets and parameters as (3.4.1)-(3.4.16). This
model also uses the same binary variables xij , which represent if arc (i, j) is taken, while the
load and time variables are changed to:

• fijδ1δ2 : the load of products carried in the vehicle while traversing arc (i, j), with a deviation
of δ1 over the demand’s nominal value already considered for the first knapsack and δ2 for
the second one;

• gijδ1δ2 : the arrival time in node j if arc (i,j) is taken considering a deviation of δ1 over the
travel time’s nominal value already considered for the first knapsack and δ2 for the second
one;

The resulting model is given by:

min
∑

(i,j)∈A
cijxij , (3.4.19)

s.t.
n+1∑
i=1
i6=j

xij = 1, j ∈ N∗, (3.4.20)

n∑
i=0
i 6=h

xih =
n+1∑
j=1
j 6=h

xhj , h ∈ N∗, (3.4.21)

∑
h∈N

fhiδ1δ2 −
∑
j∈N

fijδ1δ2 ≥ d̄i, i ∈ N, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, (3.4.22)

∑
h∈N

fhiδ1δ2 −
∑
j∈N

fijδ1−d̂iδ2
≥ d̄i + d̂i,

i ∈ N, i ∈ S1, i 6∈ S2, d̂i ≤ δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, (3.4.23)∑
h∈N

fhiδ1δ2 −
∑
j∈N

fijδ1δ2−d̂i ≥ d̄i + d̂i,

i ∈ N, i 6∈ S1, i ∈ S2, δ1 ≤ ∆d
1, d̂i ≤ δ2 ≤ ∆d

2, (3.4.24)
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∑
h∈N

fhiδ1δ2 −
∑
j∈N

fijδ1−d̂iδ2−d̂i ≥ d̄i + d̂i,

i ∈ N, i ∈ S1, i ∈ S2, δ1 ≤ ∆d
1, d̂i ≤ δ2 ≤ ∆d

2, (3.4.25)∑
h∈N

fhi∆d
1δ2
−
∑
j∈N

fij∆d
1−λδ2

≥ d̄i + λ,

i ∈ N, i ∈ S1, i 6∈ S2, δ2 ≤ ∆d
2, λ < d̂i, (3.4.26)∑

h∈N
fhiδ1∆d

2
−
∑
j∈N

fijδ1∆d
2−λ
≥ d̄i + λ,

i ∈ N, i 6∈ S1, i ∈ S2, δ1 ≤ ∆d
1, λ < d̂i, (3.4.27)∑

h∈N
fhi∆d

1∆d
2
−
∑
j∈N

fij∆d
1−λ∆d

2−λ
≥ d̄i + λ,

i ∈ N, i ∈ S1, i ∈ S2, λ < d̂i, (3.4.28)

fijδ1δ2 ≤ Qxij , i, j ∈ N, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, (3.4.29)∑
j∈N

gijδ1δ2 ≥
∑
h∈N
λ≤t̂hi

(ghiδ1−λδ2 + (t̄hi + λ)xhi) + si,

i ∈ N, i ∈ S1, i 6∈ S2, λ ≤ δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, (3.4.30)∑
j∈N

gijδ1δ2 ≥
∑
h∈N
λ≤t̂hi

(ghiδ1δ2−λ + (t̄hi + λ)xhi) + si,

i ∈ N, i 6∈ S1, i ∈ S2, δ1 ≤ ∆t
1, λ ≤ δ2 ≤ ∆t

2, (3.4.31)∑
j∈N

gijδ1δ2 ≥
∑
h∈N
λ≤t̂hi

(ghiδ1−λδ2−λ + (t̄hi + λ)xhi) + si,

i ∈ N, i ∈ S1, i ∈ S2, λ ≤ δ1 ≤ ∆t
1, λ ≤ δ2 ≤ ∆t

2, (3.4.32)

(aj + sj)xij ≤ gijδ1δ2 ≤ (bj + sj)xij , i, j ∈ N, δ1 ≤ ∆t
1, δ2 ≤ ∆t

2 (3.4.33)

xij ∈ {0, 1}, (i, j) ∈ A, (3.4.34)

fijδ1δ2 ≥ 0, (i, j) ∈ A, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, (3.4.35)

gijδ1δ2 ≥ 0, (i, j) ∈ A, δ1 ≤ ∆t
1, δ2 ≤ ∆t

2. (3.4.36)

The objective function (3.4.19) and the vehicle flow constraints (3.4.20)-(3.4.21) are
exactly the same from previous models. Constraints (3.4.22)-(3.4.28) compute the worst total
capacity load in the same fashion as constraints (3.4.4)-(3.4.10) from the MTZ model. Constraints
(3.4.22) compute for the case when we do not consider the demand deviation in node i, while
constraints (3.4.23)-(3.4.25) are activated when the whole demand deviation fits in the knapsack
in which i is part of. The only difference among (3.4.23)-(3.4.25) is the choice of which knapsack
is filled, this is defined by the sets S1 and S2. If i belongs to subset S1 only, constraints (3.4.23)
are activated; if it only belongs to S2, then constraints (3.4.24) are activated; finally, if i is in
both sets, then (3.4.25) become active. Constraints (3.4.26)-(3.4.28) are also used to compute the
total capacity load, but for the case the total deviation of node i does not fit into the knapsack,
thus we fill it the maximum possible only. Capacity constraints are given by (3.4.29).

Similarly to (3.4.12)-(3.4.14), constraints (3.4.30)-(3.4.32) compute the total elapsed time.
Like the demand constraints, each one of these are activated based on which knapsack arc (i, j)
belongs to. The first constraint set is activated if the arc belongs to the first knapsack only; the
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second is activated if the arc belongs to the second knapsack; and the third constraint set is
activated if it belongs to both knapsacks. The time-windows are enforced in constraints (3.4.33).
Finally, the domain of variables is found in (3.4.34)-(3.4.36).

3.5 Branch-and-Cut

In addition to the compact formulations, we designed a tailored branch-and-cut (B&C)
algorithm so as to obtain a better computational performance when solving the studied models.
The cut separation was done using a combination of strategies: a dynamic programming based
algorithm, a heuristic algorithm created for the RCVRP (Gounaris; Wiesemann; Floudas, 2013)
and the CVRPSEP package (Lysgaard; Letchford; Eglese, 2004). The latter is a well known
library developed for generating valid inequalities for the deterministic CVRP. We use this library
to generate rounded capacity cuts only, which are stated as follows for a given set of nodes VS :

∑
i∈N\VS

∑
j∈VS

xij ≥

 1
Q

∑
j∈VS

d̄j

, VS ⊂ N. (3.5.1)

These cuts ensure that the number of vehicles entering set VS guarantee enough capacity to service
all nodes in VS . Since enumerating every possible set S would demand a long computational
time, the CVRPSEP uses an efficient heuristic algorithm to generate a limited number of sets
VS and relevant cuts.

Other than that, for instances with uncertainty on demand we also use the Robust
Rounded Capacity Inequality (RCI) proposed by Gounaris, Wiesemann and Floudas (2013).
These cuts are a robust extension of the capacity cut previously explained, represented by the
following inequalities:

∑
i∈N\VS

∑
j∈VS

xij ≥
⌈

1
Q
∗max
d∈Ud

∑
j∈VS

dj

⌉
, VS ⊂ C. (3.5.2)

Note that these are almost identical to the deterministic counterpart, the main difference
being that, in the robust one, we consider the maximum possible demand inside the uncertainty
set instead of the nominal demand. Similarly to the deterministic capacity cuts, enumerating
every possible RCI cut would be impractical and therefore we implemented a heuristic algorithm
to dynamically insert these cuts as needed, similar to the one proposed by Gounaris, Wiesemann
and Floudas (2013). We start with a solution and a randomly generated set of customers VS , then
we interactively perturb this set by inserting or removing a node from it. Every time we want to
add/remove a node from set VS , we analyze every possible customer and remove or insert the
one with the highest impact in the difference between the right-hand side and the left-hand side
of the corresponding RCI constraint. We also maintain a Tabu List of recently added/removed
customers that are not allowed to be moved in or out of the set while they are in the list. We use
this list to avoid cycles. We stop the algorithm when we do not improve the difference between
the right-hand side and the left-hand side of the inequality for a given number of iterations.

An important factor in this algorithm is the need to efficiently compute the right-hand side
of the inequality, since it requires this value to be frequently checked. To assist this calculation,
an auxiliary data structure should be created in order to minimize the number of steps calculated.
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For the cardinality constrained uncertainty set, we defined an auxiliary array (Q) containing
the demand deviation of all nodes in VS in descending order. We then compute the maximum
demand of this set DVS by computing the following formula

DVS =
∑
j∈S

d̄j +
Γd∑
γ=0
Qγ (3.5.3)

Then, for each iteration when we check the possibility of insertion/removal of a given node j, we
take the maximum demand of the current set VS (DVS ) and compute the new right-hand side for
that particular node (RSj) using the following expressions:

RSj = DVS + d̄j + max(d̂j −QΓd , 0), j 6∈ VS ; (3.5.4)

RSj = DVS − d̄j −max(d̂j −QΓd+1, 0), j ∈ VS . (3.5.5)

After choosing which node will be inserted/removed from set VS , we update the DVS with the
right side value (RSj) from that node and insert/remove its deviation from the auxiliary structure.
Note that we do not need to compute DVS again with the equation 3.5.3, we only need to use it
in the first iteration reducing the number of operations in the procedure.

For the single and multiple knapsack uncertainty sets, we used the formulas proposed by
Gounaris, Wiesemann and Floudas (2013), which calculate the maximum demand deviation in
this particular uncertainty set in O(|VS |). Let S be the set of knapsacks and Ss the subset of
nodes inside each knapsack s ∈ S. The right-hand side of the RCI inequality is given by:∑

i∈VS

d̄i +
∑
s∈S

min(∆d
s ,
∑
i∈VS
i∈Ss

d̂i). (3.5.6)

Since this is a heuristic algorithm, it might miss a violated constraint. Thus, we also check an
integer solution, using a dynamic programming algorithm based on the recursive equations (2.3.86).
Whenever the RCI is unable to find a new violated cut, this algorithm checks if the solution is
feasible and insert additional feasibility cuts if needed. If a given route r = (v0, v1, . . . , vh, . . . , vn)
is infeasible in node vh the following inequality is inserted into the problem:∑

0<i≤|h|
yvi−1vi < |h|. (3.5.7)

For the variants with uncertainty on time, we used a different approach. We initialize
the model with only the deterministic time flow constraints and dynamically insert the robust
constraints (3.2.9) and (3.2.10) whenever they are violated. To efficiently check the feasibility of
a solution, we constructed an algorithm based on dynamic programming. This algorithm uses
recursive equations similar to (2.3.90) and (3.3.3) to compute the maximum possible time and
identify if every time windows is respected in the route.

3.6 Computational results

In this section, we present the computational results of the proposed RO models using
benchmark instances from the literature. We analyze the impact of robustness using the cardinality
constrained uncertainty set and compare the computational performance of the proposed model
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against the state-of-the-art compact model for the RVRPTW. We also analyze the performance
of the designed B&C algorithm and compared the results when using it with both models. We
also studied the performance with the proposed compact formulations and B&C algorithm
for the single-knapsack uncertainty set and analyzed the impacts of using this set regarding
robustness and computational efficiency. All computational experiments were run in a computer
with processor Intel Core i7-8700 CPU @ 3.60 MHz and 16GB of RAM, using the solver IBM
CPLEX Optimization Studio v.12.10. We imposed a time limit of 3600 seconds in the experiments.

3.6.1 Instances description

In our computational experiments we use all the instances with 25 customers from the
benchmark proposed by Solomon (1987). Solomon’s benchmark is composed by six different sets
of instances: C1, C2, R1, R2, RC1, RC2. Classes C1 and C2 are defined by having the nodes
in clusters, R1 and R2 nodes are randomly distributed and classes RC1 and RC2 are a mix of
random and clustered structures. Moreover, problem sets C1, R1 and RC1 differ from C2, R2 and
RC2 by having shorter capacities and scheduling horizons, which results in only a few customers
per route.

We then adapted these instances to include uncertainty in demands and travel times
using a similar approach to Munari et al. (2019). For the cardinality constrained uncertainty
set, we created new parameters for every instance representing the budget of uncertainty for
demand (Γd) and travel time (Γt). These parameters can assume the values of 0, 1, 5 and 10,
in which 0 is the deterministic case. The new instances were divided in three groups based on
these parameters: instances in which there is only uncertainty on demand (Γd > 0,Γt = 0),
instances that only consider uncertainty on travel time (Γd = 0,Γt > 0) and instances in which we
consider uncertainty on both parameters (Γd > 0,Γt > 0). In this last group, the budgets for both
parameters are the same, i.e., Γd = Γt. To generate the single knapsack uncertainty set instances,
a similar strategy was employed, but we assume ∆q = {0, 20, 40, 60} and ∆t = {0, 20, 40, 60}.

We also defined the nominal value and maximum deviation for each uncertain parameter.
We used the original demands and travel times as their nominal values and the product of the
nominal value with a chosen constant to create the maximum deviation. We considered the
maximum percentage deviations for demand (Devd) and travel time (Devt) to be 10%, 25% and
50% of the nominal value, truncated on the first decimal place. Particularly, if the budget of
uncertainty for a specific parameter in the instance is zero, the maximum deviation for that
parameter (Devd or Devt) will also be zero. If the budget for both parameters is not zero, Devd

and Devt will have the same value. Thus, by having every possible combination of Γd (or ∆d), Γt

(or ∆t), and deviations, each original deterministic instance originated 27 new ones. We present
more complete tables for the computational results of the experiments with the RO models in
Appendix B.1 and B.2.

3.6.2 Computational performance of the compact formulations

In this subsection, we compare the performance of the commodity flow formulation and
the MTZ-based formulation in a general-purpose MIP solver, considering both the cardinality
constrained and the knapsack uncertainty sets.
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3.6.2.1 Cardinality constrained uncertainty set

We first compare the computational performance of the models across the different set
of instances studied. To do so, we solved the same instances for all proposed formulations and
compared their results. Table 2 summarizes the results for all combinations of Γd and Γt for both
the commodity flow formulation (CF) and the MTZ-based formulation (MTZ) of Munari et al.
(2019) using CPLEX default parameters. In this table, we present the average objective value
(Obj) and the average computational time in seconds (T) for the solutions obtained with the
linear programming (LP) relaxation and the MIP models. Furthermore, to assist the analysis of
the LP relaxation solutions, we also present the quality of the LP relaxation (QLR), which is
the percentage that the value of the solution of the LP relaxation is in relation to the integer
solution value. The closer this parameter is to 100%, the stronger the LP relaxation is. For the
MIP models, the table also shows the number of instances that were solved to optimality (Opt)
and the average optimality gap (Gap), given by the average of the relative differences between
the lower bound and the objective value of the best integer solution obtained by CPLEX. This
last value is larger than zero if the solver was unable to prove optimality within the time limit of
3600 seconds. It is worth mentioning that we have 56 instances for the deterministic case (when
Γd = Γt = 0) and 168 instances for the other combinations of Γd and Γt.

Table 2 – Average objective values and computational times of the solutions obtained from the
MTZ and CF formulations based on the uncertainty budgets’s size.

LP Relaxation MIP Model
MTZ CF MTZ CF

Γd Γt Obj QLR T(s) Obj QLR T(s) Obj Gap T(s) Opt Obj Gap T(s) Opt
0 0 177.23 53.5% 0.011 267.43 80.7% 0.030 331.27 3.7% 577.04 48 331.27 0.7% 282.68 52
1 0 177.23 53.0% 0.013 267.68 80.0% 0.060 334.63 4.3% 667.27 143 334.63 0.9% 357.69 154
5 0 177.23 50.5% 0.024 268.60 76.6% 0.208 350.73 7.2% 956.74 130 351.01 3.6% 1223.47 119

10 0 177.25 50.2% 0.026 270.19 76.6% 0.481 352.75 8.4% 1126.01 126 354.20 5.5% 1675.54 102
0 1 177.37 53.6% 0.014 261.58 79.1% 0.083 330.74 3.5% 564.19 142 330.31 0.9% 325.05 151
0 5 177.50 52.7% 0.028 262.73 77.9% 0.296 337.08 4.8% 697.58 135 335.23 1.9% 921.29 131
0 10 177.52 52.4% 0.032 263.53 77.8% 0.747 338.75 5.6% 835.98 132 337.47 3.3% 1335.51 115
1 1 177.37 53.1% 0.021 261.81 78.3% 0.106 334.33 4.4% 649.30 137 334.04 1.2% 454.73 148
5 5 177.50 50.3% 0.053 263.79 74.7% 0.513 353.00 7.5% 994.17 125 353.68 5.2% 1700.40 97

10 10 177.01 49.9% 0.058 266.00 75.0% 3.973 354.83 8.8% 1297.26 117 359.18 9.4% 2276.58 73
Total 177.32 51.9% 0.028 265.33 77.7% 0.650 341.81 5.8% 836.55 1235 342.10 3.3% 1055.29 1142

Regarding the LP relaxation of the formulations, we observe that in general CPLEX was
considerably faster with the MTZ model, whereas the CF model resulted in significantly stronger
linear relaxation. On average, the value of the linear relaxation of the CF model is 77.7% of
the integer solution against only 51.9% from the MTZ formulation. This behavior was expected,
since the CF formulations in literature are known for having tighter LP relaxations than those
that use constraints with big-M parameters (Letchford; Salazar-González, 2015).

For the mixed-integer programming formulations, using the MTZ model resulted in the
shortest solution times on average and more instances were solved to optimality. A notable
exception regarding MTZ model’s lead happens on the deterministic instances (Γd = Γt = 0), as
the CF formulation had a significantly better performance. The CF model also outperformed
the MTZ model in terms of computational times and number of optimal solutions in instances
where the uncertainty budgets (Γd and Γt) are equal to or less than 1. Furthermore, the average
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optimality gaps in the majority of combinations of Γd and Γt. That means, when the MTZ
model does not solve an instance to optimality, the gaps are considerably larger than the CF
formulation, which usually is closer to prove optimality of solutions in this situation, which is
explained by the stronger linear relaxation of the CF model.

We also identified the traditional behavior found in the majority of works from RO
literature (Ordonez, 2010; Agra et al., 2013; Munari et al., 2019) where increasing the budget’s
size also tends to increase the time it takes to solve the problem. This is expected, since the size
of the uncertainty budget directly impacts on the number of variables and constraints of the
formulations. This behavior can be identified in both models and for any combination of Γt and
Γd.

Now, it is interesting to evaluate the behavior of the models regarding the uncertainty
level. To do this, we created Table 3, which has the same structure as Table 2 but instead of
showing the results for all combinations of Γd and Γt, we present the results for the combinations
of deviation in demand (Devd) and time (Devt).

Table 3 – Average objective values and computational times of the solutions obtained from the
MTZ and CF formulations based on the deviation.

LP Relaxation MIP Model
MTZ CF MTZ CF

Devd Devt Obj QLR T (s) Obj QLR T (s) Obj Gap T (s) Opt Obj Gap T (s) Opt
0% 0% 177.23 53.5% 0.011 267.43 80.7% 0.030 331.27 3.7% 577.04 48 331.27 0.7% 282.68 52

10% 0% 177.23 52.4% 0.021 267.67 79.2% 0.234 337.94 5.7% 798.89 138 338.53 2.2% 921.88 134
25% 0% 177.23 51.1% 0.021 268.38 77.3% 0.247 347.12 6.7% 956.96 132 347.68 3.8% 1112.17 122
50% 0% 177.25 50.2% 0.021 270.42 76.6% 0.268 353.04 7.5% 994.17 129 353.62 4.1% 1222.65 119
0% 10% 177.43 53.3% 0.024 267.78 80.4% 0.409 332.95 5.0% 750.79 139 333.21 1.7% 812.86 138
0% 25% 177.65 52.5% 0.025 268.56 79.4% 0.356 338.34 4.2% 679.25 143 337.00 1.7% 842.41 139
0% 50% 177.31 52.9% 0.025 251.50 75.0% 0.361 335.28 4.6% 667.71 127 332.80 2.6% 926.58 120

10% 10% 177.43 52.2% 0.045 268.01 78.8% 1.521 340.07 6.2% 946.30 133 341.28 3.7% 1366.64 118
25% 25% 177.65 50.4% 0.045 269.45 76.4% 1.501 352.68 7.1% 1040.06 128 354.46 5.7% 1517.34 108
50% 50% 176.80 50.6% 0.042 254.14 72.7% 1.569 349.41 7.4% 954.37 118 351.15 6.5% 1524.75 92

Total 177.32 51.9% 0.028 265.33 77.7% 0.650 341.81 5.8% 836.55 1235 342.10 3.3% 1055.29 1142

We note that, in this table, similar conclusions to the ones found in Table 2 can be
inferred regarding the quality of the linear relaxation and average gaps, in which tests with the
CF model presented a better QLR and lower gaps in all combinations of Devd and Devt. We also
identified that the experiments with the MTZ model provided more optimal solutions than the
CF formulation for all pairs of deviation, with exception of the deterministic case. This differs
from the results sorted in function of Γd and Γt, in which the solver was best with the CF model
in some of combinations of budgets. We also noticed that, unlike the uncertainty budget’s size,
the models do not have an uniform behavior on computational times when deviation changes. For
example, while the solver’s average running times with the standalone MTZ model increased with
higher deviations in instances with deviation exclusively on demand, instances with deviation
exclusively on travel times had decreasing computational times. On the other hand, the model
took longer to solve instances using the CF model as we increase Devd and Devt, but with
lower impact than changes in the budget’s size (Γd and Γt). This is due to the fact that, the
uncertainty budget directly affect the number of constraints and variables of the problem, while
the deviation level just change the worst-case value parameters.

Finally, we studied the behavior of both models for the individual instance classes from
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Solomon (1987). To assist in this analysis we created Tables 4 and 5, which present the average
results of the MTZ and CF models, respectively. These tables follow a similar structure to the
previous ones.

The best performance for both models is observed on instances with clustered customers
(classes C1 and C2), where the MTZ formulation solved 88.02% (419) of instances to optimality,
with an average running time of 511.40 seconds while the CF model solved 93.48% (435) of the
instances with an average running time of 394.34 seconds. The main reason for this behavior is
that a considerably number of arcs connecting nodes from different clusters in these instances
are either infeasible or expensive, and thus they are less likely to be used in a LP relaxation and
even if they are, the branch-and-bound algorithm can cut them off quickly.

Conversely, instances with mixed geographic distribution of customers (classes RC1 and
RC2) were the most challenging for the models, the MTZ formulation solved only 48.43% (217)
of instances to optimality with an average running time of 1931.08 seconds while the CF model
solved 52.67% (236) of them with an average time of 1734.34 seconds. These instances were
harder mainly because they have a greater variety of feasible arcs with smaller trade-offs than the
ones from Class C1 and C2, making it harder to cutting off nodes from the branch-and-cut tree.

Using the MTZ formulation also performed particularly well on instances with randomly
distributed customer, especially class R2. With this model, 87.20% (293) and 99.35% (306) of
the instances from classes R1 and R2 were solved to optimality with average running times equal
to 360.12 and 266.77 seconds, respectively. This was significantly better than the results of the
CF formulation, which solved 77.38% (260) and 68.50% (211) of the instances in classes R1 and
R2 with average running times of 825.85 and 1341.52 seconds, in that order.

These results can be better visualised with the help of Figure 4. This figure shows the
number of instances each model resulted in an optimal solution within the time limit (Opt) per
instance class and uncertainty budget. The hatched columns represent the results using the CF
formulation whereas those completely filled show the number of optimal solutions obtained with
the MTZ model. The closer a column is from the horizontal green bar, which represents the total
number of instances tested for that combination of instance class and budget size, the better.

It is possible to see that, despite the generally better results from the MTZ model,
using the CF model actually outperformed the use of the MTZ formulation in some instance
classes, namely C1 and RC1. We also note that, other than class RC2, the CF formulation
resulted in optimality for all instances in the deterministic case (Γd=Γt=0), while optimality was
not proven for five of these instances with the MTZ formulation. Thus, we can infer that the
MTZ formulation can be more suitable for companies with few clients dispersed over a given
geographical area, whereas CF model adapts better to the situations where we have a greater
number of clustered clients. Other than checking clients dispersion, the decision maker should
also consider the budget of uncertainty size when choosing which model should be used to solve
a particular instance. When considering a large budget, such as Γ = 10, it might be advisable to
use the MTZ formulation to solve the problem, even if the customers are distributed in clusters.
On the other hands, it will probably be quicker to solve the problem using the CF formulation if
the decision maker is evaluating the deterministic case or a problem with a small uncertainty
budget (e.g. Γ = 1), independently of the customers distribution.



Chapter 3. New Formulations for the VRPTW and RVRPTW 61

Table 4 – Average results of the robust MTZ model with different values of budgets of uncertainty
Γ using instances from classes C1, R1 and RC1 with 25 customers.

MTZ
C1 R1 RC1

Γd Γt Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf
0 0 190.59 0.0% 419.28 9 8 0 463.37 0.0% 128.72 12 12 0 350.24 10.6% 1802.80 8 4 0
1 0 202.68 0.0% 578.20 27 23 0 463.37 0.0% 249.80 36 36 0 360.14 13.2% 1836.27 24 12 0
5 0 238.59 0.0% 1089.52 27 20 0 463.37 0.7% 417.86 36 33 0 432.49 25.8% 2713.30 24 8 0
10 0 245.18 0.4% 1426.92 27 17 0 463.37 0.8% 648.14 36 33 0 439.15 29.0% 2745.56 24 7 0
0 1 192.34 0.0% 446.19 27 24 0 470.33 0.0% 153.23 36 32 4 356.87 8.5% 1460.90 24 15 1
0 5 195.83 0.7% 532.82 27 24 0 478.40 0.7% 349.07 36 29 4 383.14 13.6% 1570.08 24 13 1
0 10 195.83 2.5% 706.38 27 24 0 479.60 1.2% 411.35 36 29 4 392.71 15.9% 1884.34 24 11 1
1 1 202.86 0.0% 587.00 27 23 0 470.33 0.0% 216.44 36 32 4 368.53 11.8% 1623.02 24 13 1
5 5 239.11 1.5% 1231.88 27 19 0 478.77 1.2% 403.11 36 29 4 444.47 23.3% 2318.55 24 9 1
10 10 245.73 4.8% 1576.89 27 16 0 479.38 1.8% 623.48 36 28 4 448.29 26.9% 2577.59 24 7 1

All 214.87 1.0% 859.51 252 198 0 471.03 0.7% 360.12 336 293 24 397.60 17.9% 2053.24 224 99 6
C2 R2 RC2

Γd Γt Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf
0 0 214.45 0.0% 13.28 8 8 0 382.15 0.0% 41.89 11 11 0 319.28 14.1% 1500.82 8 5 0
1 0 214.45 0.0% 17.20 24 24 0 382.15 0.0% 48.84 33 33 0 319.28 15.0% 1725.07 24 15 0
5 0 214.45 1.5% 52.44 24 24 0 382.15 0.0% 162.38 33 33 0 319.28 16.9% 1855.66 24 12 0
10 0 214.45 3.4% 106.79 24 24 0 382.15 0.0% 382.82 33 33 0 319.34 19.2% 1925.83 24 12 0
0 1 214.51 0.0% 17.81 24 24 0 383.86 0.0% 53.17 33 33 0 319.68 14.5% 1665.70 24 14 0
0 5 214.57 1.8% 164.66 24 24 0 384.80 0.0% 148.04 33 33 0 320.00 17.1% 1821.75 24 12 0
0 10 214.57 4.0% 245.14 24 23 0 384.89 0.0% 329.39 33 33 0 320.07 18.6% 1857.75 24 12 0
1 1 214.51 0.0% 24.22 24 24 0 383.86 0.0% 65.53 33 33 0 319.55 16.3% 1822.72 24 12 0
5 5 214.57 3.0% 229.61 24 23 0 384.80 0.0% 404.69 33 33 0 319.94 19.1% 1864.07 24 12 0
10 10 214.57 7.6% 326.61 24 23 0 384.92 0.2% 1031.00 33 31 0 320.38 19.4% 2049.80 24 12 0

All 214.51 2.1% 119.78 224 221 0 383.57 0.0% 266.77 308 306 0 319.68 17.0% 1808.92 224 118 0

Table 5 – Average results of the robust CF model with different values of budgets of uncertainty
Γ using instances from classes C1, R1 and RC1 with 25 customers.

CF
C1 R1 RC1

Γd Γt Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf
0 0 190.59 0.0% 0.61 9 9 0 463.37 0.0% 30.99 12 12 0 350.24 0.0% 3.14 8 8 0
1 0 202.68 0.0% 4.40 27 27 0 463.37 0.0% 46.12 36 36 0 360.14 0.7% 360.84 24 22 0
5 0 238.54 1.7% 1023.78 27 21 0 463.37 0.0% 297.91 36 36 0 433.79 13.3% 2804.37 24 6 0
10 0 245.57 5.4% 1644.64 27 16 0 463.45 0.4% 1048.73 36 32 0 443.55 16.7% 2895.70 24 5 0
0 1 192.34 0.0% 1.53 27 27 0 469.41 0.0% 84.22 36 32 4 355.20 0.0% 6.64 24 23 1
0 5 195.83 0.0% 9.14 27 27 0 477.18 0.7% 1188.49 36 26 4 370.67 1.0% 426.15 24 21 1
0 10 195.83 0.0% 61.42 27 27 0 478.48 2.5% 1785.62 36 18 4 378.80 3.1% 811.90 24 19 1
1 1 202.86 0.0% 6.18 27 27 0 469.41 0.0% 128.27 36 32 4 367.58 1.3% 582.62 24 20 1
5 5 239.02 2.1% 1285.61 27 20 0 477.40 1.5% 1524.88 36 22 4 446.09 17.2% 2737.15 24 5 1
10 10 247.62 10.0% 1910.34 27 14 0 479.56 4.8% 2123.29 36 14 4 456.60 20.5% 2970.52 24 5 1

All 215.09 1.9% 594.77 252 215 0 470.50 1.0% 825.85 336 260 24 396.26 7.4% 1359.90 224 134 6
C2 R2 RC2

Γd Γt Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf
0 0 214.45 0.0% 1.94 8 8 0 382.15 0.0% 83.19 11 11 0 319.28 5.0% 1812.10 8 4 0
1 0 214.45 0.0% 2.83 24 24 0 382.15 0.0% 180.54 33 33 0 319.28 5.6% 1817.78 24 12 0
5 0 214.45 0.0% 32.42 24 24 0 382.49 1.5% 1445.52 33 21 0 319.50 7.9% 2141.31 24 11 0
10 0 214.45 0.0% 203.66 24 24 0 384.01 3.4% 2070.16 33 16 0 321.91 10.7% 2359.64 24 9 0
0 1 214.51 0.0% 4.08 24 24 0 383.86 0.0% 230.42 33 33 0 319.64 6.0% 1819.76 24 12 0
0 5 214.57 0.0% 42.76 24 24 0 385.34 1.8% 1624.50 33 21 0 320.68 8.3% 1953.42 24 12 0
0 10 214.57 0.0% 277.31 24 24 0 387.36 4.0% 2356.57 33 16 0 323.15 10.3% 2271.57 24 11 0
1 1 214.51 0.0% 7.00 24 24 0 383.86 0.0% 414.57 33 33 0 319.73 6.6% 1824.06 24 12 0
5 5 214.57 0.0% 151.98 24 24 0 386.13 3.0% 2160.03 33 16 0 323.10 10.2% 2309.99 24 10 0
10 10 214.63 1.0% 934.88 24 20 0 393.21 7.6% 2849.72 33 11 0 328.01 15.2% 2778.25 24 9 0

All 214.51 0.1% 165.89 224 220 0 385.05 2.1% 1341.52 308 211 0 321.43 8.6% 2108.79 224 102 0
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(a) Number of optimal solution per instance class for instances with deviation in demand (b) Number of optimal solution per instance class for instances with deviation in time

(c) Number of optimal solution per instance class for instances with deviation in demand and time

Figure 4 – Number of optimal solutions obtained by the robust models per instance class and
uncertainty budget.

3.6.2.2 Knapsack uncertainty set

Similarly to the previous uncertainty set, we first compare the proposed formulations
regarding computational performance. Table 6 presents, for every combination of ∆d and ∆t,
the average objective solutions (Obj) and running times (T) of the LP relaxation and integer
solutions. Moreover, for the LP relaxation the table shows the quality of the LP relaxation (QLR).
Finally, for the solutions obtained with the MIP model, this table also presents the average
difference between the lower bound and the best integer solution (Gap), which is greater than
zero only if the solver was not able to obtain an optimal solution within the time limit of 3600
seconds, and the number of optimal solutions (Opt).

Table 6 – LP Relaxation and Integer Solution of the MTZ and CF formulations based on the
single knapsack uncertainty set based on the uncertainty budgets’ size

LP Relaxation MIP Model
MTZ CF MTZ CF

∆d ∆t Obj QLR T(s) Obj QLR T(s) Obj Gap T(s) Opt Obj Gap T(s) Opt
0 0 165.78 49.1% 0.069 272.68 80.8% 0.048 337.59 3.8% 592.70 26 337.59 0.9% 259.87 28

20 0 165.78 47.9% 0.091 273.22 78.9% 4.464 346.25 7.4% 1126.48 71 349.17 5.7% 1809.10 57
40 0 165.78 46.6% 0.169 273.62 76.9% 20.753 355.96 11.4% 1630.44 52 366.64 14.6% 2206.55 37
60 0 165.82 46.1% 0.298 274.03 76.2% 43.758 359.41 13.3% 1727.39 51 371.22 17.2% 2502.04 31
0 20 165.92 48.9% 1.148 272.81 80.3% 87.620 339.54 9.7% 1491.93 56 493.90 24.2% 2451.28 27
0 40 166.00 48.1% 4.110 280.62 81.3% 923.937 345.17 13.1% 1840.01 51 1168.65 63.0% 2815.86 20
0 60 166.04 47.4% 6.162 293.67 83.8% 1194.765 350.28 15.8% 2131.26 42 1025.75 53.2% 2780.25 14

20 20 165.92 47.4% 1.220 273.35 78.2% 106.106 349.73 12.1% 1644.30 56 568.60 29.1% 2543.69 27
40 40 166.00 45.2% 3.983 281.61 76.7% 1011.130 367.19 17.7% 2110.46 41 1170.30 63.0% 3105.86 16
60 60 166.94 44.8% 5.668 318.16 85.4% 2149.707 372.34 20.3% 2307.84 38 1271.08 69.5% 3128.97 6

All 166.00 47.2% 2.292 281.38 79.9% 554.229 352.35 12.4% 1660.28 484 3422.91 34.0% 2360.35 263

Similar conclusions as with the previous uncertainty set can be drawn from this table
regarding the quality of the linear relaxation and computational performance of the models.
Particularly, the CF formulation presented stronger linear relaxations overall, with a QLR of
79.9%, but presented worse results as a MIP model, since it resulted in less instances solved to
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optimality (263) than the MTZ model (484), in longer running times (2360.35 seconds against
1660.28 seconds from the MTZ model) and in greater average gaps (34% versus 12.4%). This is a
consequence of the CF model taking considerably longer to find a solution for the LP relaxation
in instances with larger ∆ values (e.g., 1194.76 seconds for ∆d = 0 and ∆t = 60, and 2149.71
seconds for ∆d = ∆t = 60), hindering the CF formulation efficiency. Notably, instances with
positive travel time deviation were harder to solve than those with deviation exclusively on
demand, which is a consequence of the models having more constraints related to time flow, as
we are unable to apply the same constraint reduction strategy used for constraints related to
demand deviation.

We also evaluate the behavior of the models regarding the uncertainty level. For this
purpose, we created Table 7, which has the same structure as Table 6 but instead of showing
the results for all combinations of ∆d and ∆t, we present the results for the combinations of
deviation in demand (Devd) and travel time (Devt).

Table 7 – LP Relaxation and Integer Solution of the MTZ and CF formulations based on the
single knapsack uncertainty set based on the deviation

LP Relaxation MIP Model
MTZ CF MTZ CF

Devd Devt Obj QLR T (s) Obj QLR T (s) Obj Gap T (s) Opt Obj Gap T (s) Opt
0% 0% 165.78 49.1% 0.069 272.68 80.8% 0.048 337.59 3.8% 592.70 26 337.59 0.9% 259.87 28

10% 0% 165.78 47.8% 0.143 273.19 78.8% 21.904 346.60 9.5% 1373.52 61 356.27 12.7% 2223.61 40
25% 0% 165.78 46.4% 0.145 273.63 76.5% 28.514 357.54 11.2% 1562.26 57 366.89 13.3% 2229.67 40
50% 0% 165.82 46.4% 0.270 274.05 76.7% 18.557 357.49 11.3% 1548.53 56 363.88 11.5% 2064.41 45
0% 10% 165.99 48.5% 4.056 276.81 80.9% 883.191 342.05 13.1% 1807.72 49 942.71 51.4% 2881.59 21
0% 25% 166.05 48.1% 4.636 282.06 81.7% 772.431 345.04 12.6% 1821.62 50 911.20 47.8% 2825.56 20
0% 50% 165.92 47.7% 2.727 288.22 82.8% 550.700 347.90 12.9% 1833.86 50 834.38 41.3% 2340.24 20

10% 10% 165.99 47.0% 3.942 286.46 81.1% 1040.757 353.22 15.7% 1995.54 45 970.43 53.2% 3115.67 18
25% 25% 166.05 45.3% 4.388 293.74 80.2% 1181.163 366.38 17.5% 2051.54 45 1041.54 57.5% 3101.78 15
50% 50% 166.82 45.1% 2.540 292.91 79.2% 1045.024 369.66 16.9% 2015.52 45 998.02 50.9% 2561.07 16

All 166.00 47.1% 2.292 281.38 79.9% 554.229 352.35 12.4% 1660.28 484 3422.91 34.0% 2360.35 263

We note that, in this table, similar conclusions to the ones found in Table 6 can be
inferred regarding the quality of the linear relaxation, average gaps and number of optimal
solutions. While the experiments with the CF model presented stronger QLR for all combinations
of deviation, solving the instances using the MTZ formulation provided better results in general,
with more instances solved to optimality and lower gaps obtained in any pair of Devd and Devt.
We also noticed that, similarly to the previous uncertainty set, there is not a standard behavior
on computational times when the deviation changes. For example, in the experiments with the
MTZ formulation, the average running time in instances with deviation exclusively on time
(Devd = 0 and Devt > 0) increased with bigger Devt, but tests in instances with deviation
exclusively on demand (Devd > 0 and Devt = 0) and those with deviation on both demand and
travel time (Devd > 0 and Devt > 0) resulted in instances with maximum deviation of 25%
actually taking slightly longer to be solved than the ones with a maximum deviation of 50%.
This implies that, on the average, high deviations in demand reduces the solution space of the
problem, when compared with smaller deviations, more than deviation of time, which helps the
solver to prove an optimal solution.

Finally, we study the behavior of both models for the individual instance classes from
(Solomon, 1987). To assist in this analysis we created Tables 8 and 9, which present the average
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results of instances for the MTZ and CF models, respectively. These tables follow a similar
structure to Tables 4 and 5. First, we note that using the MTZ model was better than the
CF formulation in every instance class, because more instances were solved to optimality and
we observe lower gaps and times. Other than that, we note that the performances for each
instance class follow the same patterns as the cardinality constrained uncertainty, with the models
performing particularly better with instances from classes C1 and C2 as opposed to classes RC1
and RC2. Notably, the MTZ model had a performance with instances from class R1 and R2
similar to those from class C1 and C2.

3.6.3 Computational performance of the B&C methods

3.6.3.1 Cardinality constrained uncertainty set

We now analyze the results from the B&C algorithm developed for both models in Section
3.5. Table 10 summarizes the results obtained for both models, and follows a similar structure to
the Table 2, showing, for each combination of Γd and Γt, the average objective solution value
(Obj), average optimality gap (Gap), average running time in seconds (T), total number of
instances (Ins), number of instances solved to optimality (Opt) and number of infeasible instances
(Inf ). This table does not show results for the LP relaxation, as they are equivalent to the ones
presented in Table 2.

As expected, the B&C algorithm outperformed solving the compact model with the
general-purpose MIP solver, since we start with the deterministic problem and add cut as they
are needed, thus having an initial (and usually a final) problem with considerably less constraints.

Table 8 – Average results for the robust models with different values of budgets for the single
knapsack uncertainty in instances from classes C1, R1 and RC1 with 25 customers.

MTZ
C1 R1 RC1

∆q ∆t Obj Gap Time Ins Opt Obj Gap Time Ins Opt Obj Gap Time Ins Opt
0 0 190.59 0.0% 422.10 9 8 463.37 0.0% 112.61 12 12 350.24 8.9% 1684.16 8 5
20 0 226.10 2.1% 1216.99 27 19 463.38 1.4% 1057.21 36 30 382.01 24.4% 2223.21 24 10
40 0 232.13 5.1% 1564.00 27 16 464.25 3.4% 1453.07 36 24 432.23 34.5% 2917.12 24 5
60 0 244.85 7.3% 1797.94 27 14 465.01 4.2% 1684.97 36 24 437.15 37.4% 2930.06 24 5
0 20 190.69 28.1% 1163.16 27 19 471.23 4.9% 1749.50 36 23 352.49 23.2% 1974.09 24 12
0 40 191.35 66.7% 1315.33 27 18 486.54 10.4% 2367.80 36 15 359.29 30.0% 2389.90 24 12
0 60 193.81 62.3% 1519.03 27 18 500.02 15.3% 2657.09 36 12 366.65 35.6% 3109.74 24 4
20 20 226.76 21.7% 1456.19 27 18 472.13 5.9% 2004.27 36 19 386.52 29.7% 2706.76 24 9
40 40 236.94 63.0% 2017.29 27 12 487.22 11.4% 2479.03 36 14 455.22 44.9% 3156.42 24 3
60 60 249.25 60.9% 2097.39 27 12 503.57 16.7% 2818.31 36 10 465.47 48.5% 3162.98 24 3

All 218.25 31.7% 1456.94 252 154 477.67 7.4% 1838.39 336 183 398.73 31.7% 2625.44 224 68
CF

C1 R1 RC1

∆q ∆t Obj Gap Time Ins Opt Obj Gap Time Ins Opt Obj Gap Time Ins Opt
0 0 190.59 0.0% 0.68 9 9 463.37 0.0% 25.68 12 12 350.24 0.0% 3.26 8 8
20 0 227.35 4.2% 1547.64 27 20 464.43 2.1% 2009.01 36 20 387.06 10.0% 2750.67 24 8
40 0 239.90 13.4% 2248.40 27 12 466.14 5.1% 2247.51 36 15 453.26 26.7% 3216.56 24 3
60 0 252.86 18.4% 2658.32 27 8 469.71 7.3% 2398.20 36 15 466.42 29.1% 3318.29 24 3
0 20 330.11 15.4% 2012.00 27 12 700.95 28.1% 2816.77 36 6 443.46 17.9% 3102.48 24 3
0 40 713.02 47.2% 2089.65 27 12 1131.21 66.7% 3096.48 36 5 1700.15 76.4% 3451.00 24 0
0 60 699.33 49.3% 2334.35 27 11 1062.45 62.3% 3029.12 36 3 1643.39 75.5% 3413.73 24 0
20 20 375.74 25.7% 2609.11 27 11 576.24 21.7% 2821.96 36 6 905.55 45.9% 3142.31 24 3
40 40 866.80 62.9% 3536.63 27 2 1131.74 63.0% 3047.59 36 5 1707.13 77.3% 3450.89 24 0
60 60 1018.93 79.0% 3722.74 27 0 1062.45 60.9% 3013.70 36 3 1884.40 88.1% 3562.96 24 0

All 491.46 31.6% 2275.95 252 97 752.87 31.7% 2450.60 336 90 994.11 44.7% 2941.22 224 28
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Table 9 – Average results for the robust MTZ model with different values of budgets for the single
knapsack uncertainty in instances from classes C2, R2 and RC2 with 25 customers.

MTZ
C2 R2 RC2

∆q ∆t Obj Gap Time Ins Opt Obj Gap Time Ins Opt Obj Gap Time Ins Opt
0 0 214.45 0.0% 27.20 8 8 382.15 0.0% 34.39 11 11 319.28 15.8% 1721.63 8 5
20 0 214.45 7.1% 272.91 24 24 382.21 0.4% 979.44 33 29 319.60 19.3% 2048.29 24 12
40 0 214.51 12.0% 547.55 24 21 382.52 1.7% 1434.49 33 24 319.79 22.9% 2250.51 24 10
60 0 214.45 14.2% 702.61 24 21 382.51 2.7% 1664.01 33 21 320.02 25.0% 2330.29 24 9
0 20 214.72 24.1% 692.79 24 20 384.12 3.4% 1797.76 33 21 320.40 25.3% 2306.87 24 9
0 40 216.55 73.1% 1047.08 24 18 394.98 9.6% 2753.80 33 12 328.01 29.8% 2739.70 24 6
0 60 219.39 64.1% 1581.82 24 17 403.30 13.6% 3039.79 33 6 329.83 35.3% 2796.09 15 6
20 20 214.72 40.7% 672.55 24 21 387.18 5.0% 2086.67 33 20 321.12 26.4% 2482.18 24 8
40 40 217.23 71.0% 1187.89 24 18 396.36 10.7% 2913.00 33 9 327.77 32.9% 2789.72 24 6
60 60 217.90 74.5% 1636.94 24 16 436.02 15.7% 3021.30 30 6 332.31 36.9% 3045.28 23 5

All 215.84 38.1% 836.93 224 184 393.14 6.3% 1972.46 305 159 323.81 27.0% 2451.06 214 76
CF

C2 R2 RC2

∆q ∆t Obj Gap Time Ins Opt Obj Gap Time Ins Opt Obj Gap Time Ins Opt
0 0 214.45 0.0% 1.67 8 8 382.15 0.0% 72.66 11 11 319.28 4.4% 1673.89 8 5
20 0 214.54 0.6% 794.73 24 22 387.28 7.1% 2781.50 33 12 323.57 15.6% 2605.81 24 9
40 0 221.38 6.2% 1383.65 24 16 392.23 12.0% 2963.86 33 6 331.08 27.3% 2784.29 24 6
60 0 220.05 6.4% 1807.14 24 14 397.03 14.2% 3104.11 33 6 335.05 34.8% 3153.44 24 3
0 20 320.05 17.8% 2337.77 24 11 511.44 24.1% 3278.74 33 3 600.02 43.7% 3160.29 24 3
0 40 1140.71 78.4% 3188.08 24 3 1173.57 73.1% 3351.50 33 3 1693.88 80.1% 3271.28 24 3
0 60 1105.90 75.9% 3126.86 24 3 986.11 64.1% 3668.83 33 2 1635.57 79.7% 3683.90 15 0
20 20 235.74 14.2% 2655.30 24 8 766.99 40.7% 3289.73 33 3 683.85 50.1% 3173.95 24 3
40 40 1052.52 71.4% 3178.28 24 4 1173.57 71.0% 3452.08 33 3 1693.88 80.5% 3404.89 24 3
60 60 1105.90 75.1% 3133.13 24 3 1090.23 74.5% 3724.72 30 0 1884.40 93.5% 3771.25 23 0

All 583.12 34.6% 2160.66 224 92 726.06 38.1% 2968.77 305 49 950.06 51.0% 3068.30 214 35

Table 10 – Average objective values and computing times of the solutions obtained for the
cardinality constrained uncertainty set using the B&C algorithm.

MTZ CF

Γq Γt Sol Gap T (s) Ins Opt Inf Sol Gap T (s) Ins Opt Inf
0 0 331.27 0.6% 224.01 56 53 0 331.27 0.7% 279.52 56 52 0
1 0 334.63 0.9% 268.11 168 158 0 334.63 0.8% 299.43 168 156 0
5 0 350.68 0.8% 304.31 168 157 0 350.73 0.9% 426.13 168 153 0

10 0 354.92 1.2% 509.17 168 147 0 354.93 1.4% 651.36 168 144 0
0 1 330.74 0.7% 235.06 168 154 5 330.73 0.7% 307.42 168 151 5
0 5 337.08 1.1% 334.21 168 150 5 337.14 1.4% 563.33 168 143 5
0 10 338.64 1.3% 392.45 168 146 5 338.88 1.9% 700.17 168 137 5
1 1 334.36 1.0% 341.11 168 152 5 334.35 0.9% 384.56 168 149 5
5 5 353.00 1.2% 495.85 168 146 5 353.53 1.6% 895.58 168 132 5

10 10 356.44 1.5% 585.00 168 139 5 356.72 2.0% 1085.92 168 123 5
All 342.18 1.0% 368.93 1568 1402 30 342.29 1.2% 559.34 1568 1340 30

The average solution times and gaps decreased, while the number of optimal solutions increased
in any combination of Γd and Γt. For example, the average solution time of the MTZ model
decreased from 836.55 seconds to 368.93 seconds, the average gap reduced from 5.8% to 1.0%
and the number of instances solved to optimality increased from 1235 to 1402. Similarly, the
average time of the B&C algorithm for the CF model was almost halved, decreasing from 1055.29
to 559.34 seconds, the average gap decreased from 3.3% to 1.2% and 198 more instances were
solved to optimality, in comparison to solving the compact formulation.

The MTZ formulation maintained the lead also within the proposed B&C, still taking
less time than the B&C based on the CF model, on average, to solve the instances (368.93
seconds against 559.34) and finding more optimal solutions (1402 against 1340). Additionally,
the B&C algorithm based on the MTZ model was superior even in the cases where its compact
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formulation had some advantage, namely the results from instances with Γ less than or equal to
1. Within the B&C, the optimality gaps for the MTZ model were lower than the ones for the CF
formulation (0.9% against 1.2%), solving more instances in all pairs Γd and Γt.

There are two main reasons for this change in behavior: the ability of the CVRPSep
package to strengthen the models’ linear relaxation and the MTZ formulation being quicker to
solve the LP relaxation. In more detailed terms, the first reason revolves around the strengthening
of the linear relaxation brought by the CVRPSep, which is particularly more helpful to the MTZ
formulation which usually has a weak LR. Consequently, this reduces one of the advantages the
CF model has over the MTZ formulation. The second reason is related to the time it takes to
solve each the LP relaxation on each node from the branch-and-bound. Since the solver usually
obtains the optimal solution for the LP relaxation faster with the MTZ model, it is able to solve
Branch-and-bound nodes quicker, and hence find an optimal solution before the CF model. In the
case where the models do not find an optimal solution within the time limit, the MTZ formulation
usually outperforms the CF model because, seeing as both models now have a stronger linear
relaxation, they start with a similar solution in the root node and, since the MTZ formulation is
quicker to compute the LP solution, it tends to get deeper in the decision tree and find a better
solution by the end of the experiment.

As in the previous section, we also created tables to summarize the results for individual
instance classes. Table 11 presents the results of the MTZ and CF model for the instance classes
C1, R1 and RC1 and Table 12 shows, in the same order, the results for instances from classes C2,
R2 and RC2. These tables follow the same structure of Tables 4-5. We observe that even with
the improvements from the B&C algorithm, the behavior of instance classes remained unchanged.
The instances with clustered customers (classes C1 and C2) still were the easiest to solve, and the
ones with mixed geographic distribution of customers (classes RC1 and RC2)were the hardest.
Both algorithms performed reasonably well in the instances from classes R1 and R2, which
algorithm using the MTZ formulation solving 98.75% (608) of the instances while the CF model
solved 92.70% (597) of them. Notably, the MTZ formulation had some advantage over the CF
for this set of instances, even solving all instances from class R2 to optimality. These results can
be visualised in figure 5, a column graph similar to Figure 4 that shows the number of instances
each robust model was able to solve to optimality for each instance class and uncertainty budget.

As noted previously, the B&C method with the MTZ formulation outperformed the one
with the CF model for the most classes, even in classes C1 and RC1 where it previously had a
better performance, solving more instances to optimality, with lower times and lower average
optimality gaps. Only in C2 the method with the CF model has a slight advantage, in which
it solved all the instances to optimality while the one with MTZ solved all but one. Thus, the
MTZ model proved to be more suitable for the B&C algorithm in the studied set of instances.
Likewise, a decision maker will probably have better results using the B&C algorithm with
the MTZ formulation to solve a real-world than with the CF model, when working with the
cardinality constrained uncertainty set. Additionally, we can infer, based on the results, that the
B&C algorithm is more suited for problems where the customers are either distributed in clusters
or completely randomly distributed, and less efficient in instances that combine both behaviors.
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3.6.3.2 Knapsack uncertainty set

Similarly to the previous topic, we present the results of the uncertainty set in function
of the uncertainty budgets ∆q and ∆t. These results are summarized in Table 13, which follows
a similar structure to Table 10, with the exception that we are using budget ∆ instead of Γ.
Additionally, as the solver did not find any infeasible instance, we omit column “Inf” from this
table. Most of the inferred conclusions for the cardinality constrained uncertainty set are also
true in the knapsack set. Using the B&C algorithm improved the computational performance
of the model, indicated by the lower average times and higher number of solved instances than
using the compact model. More specifically, the B&C algorithm with MTZ-based formulation
solved 824 instances compared to only 484 solved by the general-purpose MIP solver with the
compact formulation, and the B&C with the CF formulation solved 391 instances to optimality
compared to 263 instances with the compact model. Additionally, the better performance of the
B&C algorithm with the MTZ-based model is noticeable regarding computing times, number of
solved solutions and optimality gaps. This is a consequence of the strengthening of the linear
relaxation brought about by the algorithm, aided by the smaller size of the MTZ model when
compared to the CF formulation.

Despite that, it is worth noting that both algorithms had considerably greater difficulty to
solve most instances when compared to the deterministic solution. In fact, it is possible to notice
that, for the studied uncertainty budgets, the algorithm has considerably more difficulty to solve
the robust instances with the knapsack uncertainty set. To help visualize this information, we

Table 11 – Average results of the tailored B&C algorithm with different values of budgets of
uncertainty Γ using instances from classes C1, R1 and RC1 with 25 customers.

MTZ
C1 R1 RC1

Γd Γt Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf
0 0 190.59 0.0% 0.15 9 9 0 463.37 0.0% 63.52 12 12 0 350.24 0.0% 3.88 8 8 0
1 0 202.68 0.0% 0.32 27 27 0 463.37 0.0% 252.33 36 36 0 360.14 0.0% 9.26 24 24 0
5 0 238.50 0.0% 167.81 27 26 0 463.37 0.1% 253.71 36 35 0 432.17 0.0% 77.58 24 24 0
10 0 247.54 0.0% 597.95 27 23 0 463.37 0.1% 199.43 36 35 0 451.75 2.5% 1142.61 24 17 0
0 1 192.34 0.0% 0.13 27 27 0 470.33 0.0% 110.68 36 32 4 356.87 0.0% 5.37 24 23 1
0 5 195.83 0.3% 0.13 27 27 0 478.58 0.3% 265.85 36 31 4 383.09 1.7% 484.91 24 20 1
0 10 195.83 0.7% 0.14 27 27 0 478.99 0.4% 341.17 36 29 4 392.77 3.0% 763.52 24 18 1
1 1 202.86 0.0% 0.36 27 27 0 470.33 0.0% 389.09 36 32 4 368.53 0.4% 333.63 24 21 1
5 5 238.93 0.8% 167.94 27 26 0 478.53 0.6% 617.19 36 29 4 444.29 0.9% 857.61 24 19 1
10 10 248.19 1.0% 612.55 27 23 0 479.29 0.8% 518.72 36 29 4 461.78 2.7% 1143.81 24 15 1

All 215.33 0.3% 154.75 252 242 0 470.95 0.2% 301.17 336 300 24 400.16 1.1% 482.22 224 189 6
CF

C1 R1 RC1

Γd Γt Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf
0 0 190.59 0.0% 0.18 9 9 0 463.37 0.0% 31.21 12 12 0 350.24 0.0% 4.25 8 8 0
1 0 202.68 0.0% 0.53 27 27 0 463.37 0.0% 61.64 36 36 0 360.14 0.0% 14.38 24 24 0
5 0 238.52 0.1% 234.97 27 26 0 463.37 0.0% 74.08 36 36 0 432.56 0.2% 445.74 24 22 0
10 0 247.71 0.6% 822.89 27 23 0 463.37 0.0% 131.58 36 36 0 451.61 3.0% 1281.19 24 16 0
0 1 192.34 0.0% 0.18 27 27 0 470.33 0.0% 60.90 36 32 4 356.87 0.0% 81.70 24 23 1
0 5 195.83 0.0% 0.45 27 27 0 478.40 0.3% 505.23 36 30 4 383.53 3.5% 1000.97 24 17 1
0 10 195.83 0.0% 0.77 27 27 0 478.97 0.7% 759.51 36 28 4 393.50 5.4% 1241.24 24 15 1
1 1 202.86 0.0% 1.01 27 27 0 470.33 0.0% 123.91 36 32 4 368.59 0.4% 426.73 24 21 1
5 5 238.97 0.4% 471.38 27 24 0 478.50 0.8% 923.56 36 27 4 447.88 2.9% 1882.38 24 13 1
10 10 248.44 1.3% 1299.94 27 18 0 479.01 1.0% 1071.35 36 26 4 463.24 4.0% 1686.14 24 13 1

All 215.38 0.2% 283.23 252 235 0 470.90 0.3% 374.30 336 295 24 400.81 1.9% 806.47 224 172 6
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Table 12 – Average results of the tailored B&C algorithm with different values of budgets of
uncertainty Γ using instances from classes C2, R2 and RC2 with 25 customers.

MTZ
C2 R2 RC2

Γd Γt Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf
0 0 214.45 0.0% 0.95 8 8 0 382.15 0.0% 18.70 11 11 0 319.28 4.5% 1442.09 8 5 0
1 0 214.45 0.0% 1.26 24 23 0 382.15 0.0% 30.21 33 33 0 319.28 6.0% 1445.87 24 15 0
5 0 214.45 0.0% 1.37 24 24 0 382.15 0.0% 34.50 33 33 0 319.30 5.8% 1434.40 24 15 0
10 0 214.45 0.0% 1.47 24 24 0 382.15 0.0% 28.89 33 33 0 319.28 5.6% 1408.53 24 15 0
0 1 214.51 0.0% 0.92 24 24 0 383.86 0.0% 18.79 33 33 0 319.69 4.6% 1447.13 24 15 0
0 5 214.57 0.0% 1.41 24 24 0 384.80 0.0% 26.13 33 33 0 319.83 5.1% 1418.28 24 15 0
0 10 214.57 0.3% 1.38 24 24 0 384.89 0.0% 27.18 33 33 0 320.02 5.0% 1432.98 24 15 0
1 1 214.51 0.0% 1.62 24 24 0 383.86 0.0% 34.31 33 33 0 319.78 6.2% 1421.30 24 15 0
5 5 214.57 0.0% 1.58 24 24 0 384.80 0.0% 43.32 33 33 0 320.53 6.2% 1437.48 24 15 0
10 10 214.57 0.3% 1.63 24 24 0 384.89 0.0% 43.48 33 33 0 320.73 6.2% 1422.58 24 15 0

All 214.51 0.1% 1.36 224 223 0 383.57 0.0% 30.55 308 308 0 319.77 5.5% 1431.06 224 140 0
CF

C2 R2 RC2

Γd Γt Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf Obj Gap T(s) Ins Opt Inf
0 0 214.45 0.0% 1.67 8 8 0 382.15 0.0% 66.45 11 11 0 319.28 4.8% 1812.35 8 4 0
1 0 214.45 0.0% 1.54 24 24 0 382.15 0.0% 124.88 33 33 0 319.28 5.3% 1815.35 24 12 0
5 0 214.45 0.0% 2.72 24 24 0 382.15 0.0% 243.44 33 33 0 319.28 5.8% 1824.23 24 12 0
10 0 214.45 0.0% 3.92 24 24 0 382.15 0.0% 233.00 33 33 0 319.28 5.8% 1830.92 24 12 0
0 1 214.51 0.0% 1.53 24 24 0 383.86 0.0% 117.07 33 33 0 319.60 5.0% 1816.18 24 12 0
0 5 214.57 0.0% 2.84 24 24 0 384.80 0.0% 263.89 33 33 0 320.00 5.4% 1818.32 24 12 0
0 10 214.57 0.0% 2.94 24 24 0 385.08 0.3% 502.83 33 31 0 320.60 5.8% 1825.53 24 12 0
1 1 214.51 0.0% 2.76 24 24 0 383.86 0.0% 194.05 33 33 0 319.66 5.7% 1808.57 24 12 0
5 5 214.57 0.0% 3.81 24 24 0 384.80 0.0% 464.76 33 32 0 320.61 6.7% 1828.22 24 12 0
10 10 214.57 0.0% 7.88 24 24 0 385.06 0.3% 712.52 33 30 0 321.15 6.6% 1858.27 24 12 0

All 214.51 0.0% 3.16 224 224 0 383.60 0.1% 292.29 308 302 0 319.87 5.7% 1823.79 224 112 0
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Figure 5 – Number of optimal solutions obtained by the robust models per instance class and
uncertainty budget using the B&C algorithm.
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Table 13 – Average objective values and computational times of the solutions obtained for the
knapsack uncertainty set using the B&C algorithm.

MTZ CF
∆q ∆t Sol Gap T (s) Ins Opt Sol Gap T (s) Ins Opt
0 0 331.27 0.6% 224.01 56 49 331.27 0.6% 224.01 56 53

20 0 341.58 7.7% 1263.72 168 124 344.30 6.3% 2104.34 168 91
40 0 350.00 11.1% 1660.96 168 100 359.16 14.2% 2480.07 168 58
60 0 352.93 12.7% 1828.73 168 94 365.21 17.4% 2733.56 168 49
0 20 333.88 9.7% 1625.50 168 104 496.49 24.6% 2799.64 168 38
0 40 341.72 14.5% 2142.09 168 81 1233.65 69.8% 3073.46 168 26
0 60 348.46 18.6% 2478.64 167 63 1127.36 64.8% 3045.10 105 19

20 20 345.43 12.2% 1910.75 168 95 595.95 32.6% 2951.88 168 34
40 40 363.23 19.0% 2446.77 168 62 1247.16 70.3% 3332.96 168 17
60 60 378.05 23.3% 2645.94 164 52 1303.35 76.9% 3386.76 108 6

Total 318.84 12.9% 1822.71 1563 824 710.58 37.7% 2613.18 1445 391

present Figure 6, which shows the number of instances solved to optimality for each combination
of deviations ([Devq, Devt]), uncertainty sets (Card or Knap) and models (MTZ and CF ). The
green bar over the columns show the total number of instances for that combination of Devq

and Devt.
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Figure 6 – Number of instances solved to optimality by the B&C models for each combination
of [Devq,Devt].

It is easy to see that the B&C methods with the cardinality constrained uncertainty
set were able to find optimal solutions for considerably more instances than the methods with
the knapsack uncertainty set. Since the proposed models index the uncertainty budget on
the decision variables, by choosing larger budgets, the problem grows larger in number of
variables and constraints, becoming more difficult to solve. Thus, as the chosen budgets for
the knapsack uncertainty set (∆ = {20, 40, 60}) are considerably larger that those used for the
cardinality constrained set (Γ = {1, 5, 10}), instances using this set were considerably harder
to solve. Additionally, it is possible to see that the algorithm with the knapsack uncertainty
set had considerably more difficulty to solve instances with deviation on travel time, which is a
consequence of the impossibility of reducing the dynamic programming equations for time, as
done in demand.
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3.6.4 Robustness analysis

In this subsection, we analyze the impact of the proposed RO approach regarding the
objective function value and robustness of the solutions. The robustness of a solution is an
important information in the decision-making process, as it can be used to evaluate the trade-off
between cost and its “safety”, which in this work means the chance of a solution becoming
infeasible in practice. For example, the decision-maker might prefer a more expensive solution
that never fails over a cheaper solution that has a higher probability of becoming infeasible. To
estimate the robustness of solutions, we applied a Monte Carlo simulation. Essentially, every
solution was tested against 1000 randomly generated scenarios. In each scenario, the value of
uncertain parameters was generated between its nominal value and maximum deviation, following
a continuous uniform distribution. If a solution considers only uncertainty on demand (i.e.,
Γd > 0 and Γt = 0, or ∆d > 0 and ∆t = 0), the variability was applied to this parameter only.
This is similar for uncertainty on travel times only. The solutions for deterministic instances,
in particular, were tested for every combination of Devd and Devt in order to verify the risks
when considering no uncertainty when compared to the robust solutions. We can interpret the
percentage of simulated scenarios that were infeasible as the risk the solution becomes infeasible
when the uncertain parameters become known.

3.6.4.1 Cardinality constrained uncertainty set

To assist in this analysis, Tables 14 to 16 show the results for all instance classes
considering a maximum deviation of 10%, 25% and 50%, respectively. They summarize these
results for each individual instance class and show, for each combination of budgets (Γd and Γt)
and deviations (Dev), the price-of-robustness (PoR), which constitutes the percentage increase in
costs the robust solution has over the deterministic one, and the percentage of infeasible scenarios
in the Monte Carlo simulation (Risk). Furthermore, we also present the lowest and the highest
PoR among the solutions, represented by Best and Worst in the tables respectively, and the
normalized standard deviation (Std.Dev.) of all solutions for each combination. We show these
final parameters to evaluate the variability of solutions because, although the average robust
solution among the instances might be good, there is a risk of the worst-case performance being
considerably more expensive.

We noted that, by construction, greater budgets (Γd and Γt) enlarge the uncertainty sets,
and therefore, the probability of being infeasible decreases, but its cost increases accordingly.
This can be identified by comparing the PoR and the risk between solutions with same level of
deviation and different budgets. A clear example of this behaviour can be seen in the results of
instances from class RC1 with Γd > 0% and Γt = 0% with maximum deviation of Dev = 50%, in
which the costs increase whenever a larger budget is chosen. For example, the solution considering
Γd = 1 is 9.4% more expensive, on average, than the deterministic one. This growth is even
higher with Γd = 5 and Γd = 10, in which the average costs increased by 33.4% and 39.0% over
the deterministic solution, respectively.

The probability of constraint violation, on the other hand, tends to decrease the bigger
the chosen uncertainty budget Γ is. Returning to the example of class RC1 with maximum
deviation of Dev = 50% exclusively in the demand vector, we observe that for a higher budget Γ,
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Table 14 – Average, best and worst Price of robustness (PoR), probability of constraint violation
(Risk) and Standard Deviation of the solutions for instances with maximum deviation
of 10%,considering the cradinality-constrained uncertainty set.

Dev 10%
C1 R1 RC1

Γq Γt Risk PoR Best Worst Std.Dev. Risk PoR Best Worst Std.Dev. Risk PoR Best Worst Std.Dev.
0 0 47.7% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 14.0% 30.3% 0.0% 0.0% 0.0% 15.7%
1 0 41.1% 0.2% 0.0% 1.8% 0.2% 0.0% 0.0% 0.0% 0.0% 14.0% 30.0% 0.0% 0.0% 0.0% 15.7%
5 0 0.0% 18.6% 15.8% 23.2% 2.6% 0.0% 0.0% 0.0% 0.0% 14.0% 0.0% 9.4% 0.0% 20.7% 10.4%
10 0 0.0% 22.8% 20.0% 24.9% 1.6% 0.0% 0.0% 0.0% 0.0% 14.0% 0.0% 21.5% 0.0% 33.7% 5.8%
0 0 0.0% 0.0% 0.0% 0.0% 0.7% 23.1% 0.0% 0.0% 0.0% 14.0% 29.2% 0.0% 0.0% 0.0% 15.7%
0 1 0.0% 0.0% 0.0% 0.0% 0.7% 6.2% 0.8% 0.0% 6.8% 14.0% 17.7% 0.1% 0.0% 1.2% 16.0%
0 5 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 1.3% 0.0% 7.1% 13.7% 0.0% 0.6% 0.0% 1.3% 15.8%
0 10 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 1.5% 0.0% 7.1% 13.5% 0.0% 0.6% 0.0% 1.3% 15.8%
0 0 47.7% 0.0% 0.0% 0.0% 0.7% 23.1% 0.0% 0.0% 0.0% 14.0% 52.5% 0.0% 0.0% 0.0% 15.7%
1 1 42.4% 0.2% 0.0% 1.8% 0.2% 6.2% 0.8% 0.0% 6.8% 14.0% 40.6% 0.1% 0.0% 1.2% 16.0%
5 5 0.0% 18.7% 15.8% 23.2% 2.6% 0.0% 1.3% 0.0% 7.1% 13.7% 0.0% 11.1% 0.9% 21.0% 9.7%
10 10 0.0% 22.8% 20.0% 24.9% 1.6% 0.0% 1.5% 0.0% 7.1% 13.5% 0.0% 18.2% 1.2% 34.0% 6.0%
All 14.9% 6.9% 6.0% 8.3% 1.1% 4.9% 0.6% 0.0% 3.5% 13.8% 16.7% 5.1% 0.2% 9.5% 13.2%

C2 R2 RC2

Γq Γt Risk PoR Best Worst Std.Dev. Risk PoR Best Worst Std.Dev. Risk PoR Best Worst Std.Dev.
0 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
1 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
5 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
10 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
0 0 0.0% 0.0% 0.0% 0.0% 0.2% 9.4% 0.0% 0.0% 0.0% 9.1% 1.3% 0.0% 0.0% 0.0% 8.4%
0 1 0.0% 0.0% 0.0% 0.0% 0.2% 9.4% 0.0% 0.0% 0.0% 9.1% 1.5% 0.0% 0.0% 0.0% 8.4%
0 5 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.4% 0.0% 2.4% 8.7% 0.0% 0.0% 0.0% 1.2% 8.2%
0 10 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.4% 0.0% 2.4% 8.7% 0.0% 0.1% 0.0% 1.4% 8.1%
0 0 0.0% 0.0% 0.0% 0.0% 0.2% 9.4% 0.0% 0.0% 0.0% 9.1% 1.3% 0.0% 0.0% 0.0% 8.4%
1 1 0.0% 0.0% 0.0% 0.0% 0.2% 9.4% 0.0% 0.0% 0.0% 9.1% 1.4% 0.0% 0.0% 2.0% 8.0%
5 5 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.4% 0.0% 2.4% 8.7% 0.0% 0.0% 0.0% 0.3% 8.4%
10 10 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.4% 0.0% 2.4% 8.7% 0.0% 0.2% 0.0% 1.4% 8.1%
All 0.0% 0.0% 0.0% 0.0% 0.2% 3.1% 0.1% 0.0% 0.8% 9.0% 0.5% 0.0% 0.0% 0.5% 8.3%

the risk decreases from failing 98.8% of times in the deterministic case to always being feasible
when Γd = 10. It is up to the decision maker to select the most appropriate level of robustness.
For instance, he or she might opt for the solution of Γd = 5, resulting in an average risk of only
0.1%, a value considerably lower than the 98.8% of the deterministic solution and the 96.9% from
the solution with Γd = 1, but costing 33.4% more than the solution that considers no uncertainty.
They may also choose to increase the PoR yet 5.6% more to completely nullify the risks by taking
the solution with budget of uncertainty Γd = 10. This behavior consistently happens for any
deviation combination.

Interestingly, we note that the standard deviation of the robust solutions are close to, or
even smaller than, the deterministic solutions’ in the majority of the instances. The only outliers
of this trend are the instances from class C1 with worst-case deviation of 50% in time, whose
solutions’ relative standard deviation are more than 10 times greater than the deterministic’s.
This behavior happens because the deterministic solutions have relatively close optimal solutions
with different levels of tightness on time constraints, thus when we introduce deviation in this
parameter these instances’ optimal solutions grows in different rates, with some, like instances
C107-C109, not changing at all while others having a high increase. Since the standard deviations
are relatively small, it is expected that the majority of combinations of budget and instance
classes present a relatively small difference between their best and worst PoR, which is true for
most instances with the exception of the aforementioned instances of class C1 with high deviation
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Table 15 – Average, best and worst Price of robustness (PoR), probability of constraint violation
(Risk) and Standard Deviation of the solutions for instances with maximum deviation
of 25%, considering the cradinality constrained uncertainty set.

Dev 25%
C1 R1 RC1

Γq Γt Risk PoR Best Worst Std.Dev. Risk PoR Best Worst Std.Dev. Risk PoR Best Worst Std.Dev.
0 0 99.7% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 14.0% 84.0% 0.0% 0.0% 0.0% 15.7%
1 0 99.9% 0.2% 0.0% 1.8% 0.2% 0.0% 0.0% 0.0% 0.0% 14.0% 83.9% 0.0% 0.0% 0.0% 15.7%
5 0 0.0% 23.2% 20.0% 24.9% 1.6% 0.0% 0.0% 0.0% 0.0% 14.0% 0.0% 31.8% 10.1% 44.5% 6.1%
10 0 0.0% 32.4% 31.4% 33.5% 1.0% 0.0% 0.0% 0.0% 0.0% 14.0% 0.0% 32.0% 11.2% 44.5% 6.3%
0 0 0.0% 0.0% 0.0% 0.0% 0.7% 62.7% 0.0% 0.0% 0.0% 14.0% 72.6% 0.0% 0.0% 0.0% 15.7%
0 1 0.0% 0.0% 0.0% 0.0% 0.7% 15.7% 3.0% 0.0% 8.5% 15.2% 30.2% 0.7% 0.0% 3.1% 15.8%
0 5 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 3.9% 0.0% 8.5% 14.9% 0.0% 7.1% 0.1% 14.9% 19.5%
0 10 0.0% 0.0% 0.0% 0.0% 0.7% 0.0% 3.9% 0.0% 8.5% 14.9% 0.0% 8.6% 1.1% 23.5% 19.9%
0 0 99.7% 0.0% 0.0% 0.0% 0.7% 62.2% 0.0% 0.0% 0.0% 14.0% 98.8% 0.0% 0.0% 0.0% 15.7%
1 1 99.9% 0.2% 0.0% 1.8% 0.2% 14.9% 3.0% 0.0% 8.5% 15.2% 85.5% 0.7% 0.0% 3.1% 15.8%
5 5 0.0% 23.4% 20.0% 24.9% 1.7% 0.0% 3.9% 0.0% 8.5% 14.9% 0.0% 34.8% 11.6% 45.2% 7.0%
10 10 0.0% 32.8% 31.4% 34.0% 0.8% 0.0% 3.9% 0.0% 8.5% 14.7% 0.0% 35.2% 13.1% 45.2% 7.2%
All 33.3% 9.4% 8.6% 10.1% 0.8% 13.0% 1.8% 0.0% 4.3% 14.5% 37.9% 12.6% 3.9% 18.7% 13.4%

C2 R2 RC2

Γq Γt Risk PoR Best Worst Std.Dev. Risk PoR Best Worst Std.Dev. Risk PoR Best Worst Std.Dev.
0 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
1 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
5 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.3% 8.4%
10 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
0 0 10.6% 0.0% 0.0% 0.0% 0.2% 31.6% 0.0% 0.0% 0.0% 9.1% 11.3% 0.0% 0.0% 0.0% 8.4%
0 1 10.9% 0.0% 0.0% 0.0% 0.2% 3.4% 0.4% 0.0% 2.4% 8.7% 0.0% 0.1% 0.0% 1.4% 8.1%
0 5 0.0% 0.1% 0.0% 0.7% 0.0% 0.0% 0.5% 0.0% 3.0% 8.7% 0.0% 0.2% 0.0% 1.4% 8.1%
0 10 0.0% 0.1% 0.0% 0.7% 0.0% 0.0% 0.5% 0.0% 3.8% 8.6% 0.0% 0.2% 0.0% 1.4% 8.1%
0 0 10.7% 0.0% 0.0% 0.0% 0.2% 31.4% 0.0% 0.0% 0.0% 9.1% 11.3% 0.0% 0.0% 0.0% 8.4%
1 1 10.6% 0.0% 0.0% 0.0% 0.2% 3.4% 0.4% 0.0% 2.4% 8.7% 5.0% 0.1% 0.0% 0.7% 8.3%
5 5 0.0% 0.1% 0.0% 0.7% 0.0% 0.0% 0.5% 0.0% 3.0% 8.7% 0.0% 0.2% 0.0% 1.4% 8.1%
10 10 0.0% 0.1% 0.0% 0.7% 0.0% 0.0% 0.5% 0.0% 3.8% 8.6% 0.0% 0.3% 0.0% 2.2% 8.0%
All 3.6% 0.0% 0.0% 0.2% 0.2% 5.8% 0.2% 0.0% 1.5% 8.9% 2.3% 0.1% 0.0% 0.7% 8.3%

in time and instances from class RC1. From a decision maker’s standpoint, that means that using
the RO paradigms in an environment with customers randomly dispersed or localized in clusters
usually results in solutions with similar increments in costs over the deterministic solution, with
relatively low chances of increasing above the expected. This is particularly good for planning
because, once the relevant uncertainty budget’s are set, there is little need to test different RO
parameters for the new data when working with a certain target for costs. In the clustered
environments, there could unexpected surges in the PoR when operating in an environment with
high deviation in times, but it is worth noting a deviation of 50% is considerably extreme in most
real-world applications, and probably is a consequence of errors in data collection or analysis
processes.

Another side effect of choosing higher budgets of uncertainty is the chance of not existing
a feasible robust solution for that specific combination of Γ and Dev. This happens because
it might be impossible to determine feasible routes in a way that Γ parameters attain their
worst-case values simultaneously, while the deterministic formulation, or small enough Γ, might
not suffer with this problem. This happened in some instances when the maximum deviation in
travel time was Devt = 50%, namely R101, R102, R103, R104 and RC105. The models were able
to get deterministic solutions for instances, but considering any non-null budget of uncertainty in
travel time deemed them infeasible. Particularly for the tested instances, the ones that became
infeasible with this particular deviation of time happened because of one or more nodes whose
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Table 16 – Average, best and worst Price of robustness (PoR), probability of constraint violation
(Risk) and Standard Deviation of the solutions for instances with maximum deviation
of 50%,considering the cradinality constrained uncertainty set.

Dev 50%
C1 R1 RC1

Γq Γt Risk PoR Best Worst Std.Dev. Risk PoR Best Worst Std.Dev. Risk PoR Best Worst Std.Dev.
0 0 100.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 14.0% 98.8% 0.0% 0.0% 0.0% 15.7%
1 0 99.8% 18.6% 15.8% 23.2% 2.6% 0.0% 0.0% 0.0% 0.0% 14.0% 98.8% 9.4% 0.0% 20.7% 10.4%
5 0 1.1% 33.6% 31.9% 35.4% 1.2% 0.0% 0.0% 0.0% 0.0% 14.0% 0.1% 33.4% 11.2% 44.9% 6.5%
10 0 0.0% 34.4% 32.4% 35.6% 0.9% 0.0% 0.0% 0.0% 0.0% 14.0% 0.0% 39.0% 12.1% 56.1% 3.9%
0 0 0.0% 0.0% 0.0% 0.0% 0.7% 95.1% 0.0% 0.0% 0.0% 14.0% 96.5% 0.0% 0.0% 0.0% 15.7%
0 1 0.0% 2.7% 0.0% 24.7% 7.7% 57.9% 3.4% 0.0% 10.0% 12.1% 38.3% 6.2% 2.0% 16.6% 20.9%
0 5 0.0% 8.2% 0.0% 30.0% 10.7% 0.0% 6.9% 6.6% 17.6% 11.4% 0.0% 21.5% 6.8% 33.9% 15.6%
0 10 0.0% 8.2% 0.0% 30.0% 10.7% 0.0% 7.1% 6.6% 17.8% 11.3% 0.0% 28.7% 16.6% 53.6% 11.5%
0 0 100.0% 0.0% 0.0% 0.0% 0.7% 95.1% 0.0% 0.0% 0.0% 14.0% 100.0% 0.0% 0.0% 0.0% 15.7%
1 1 99.2% 18.9% 15.8% 24.7% 2.9% 56.3% 3.4% 0.0% 10.0% 12.1% 85.6% 16.8% 14.9% 27.0% 15.1%
5 5 1.0% 33.9% 31.9% 36.5% 1.4% 0.0% 7.0% 6.6% 17.6% 11.5% 0.0% 38.7% 16.6% 54.7% 5.3%
10 10 0.0% 35.1% 32.4% 38.1% 1.5% 0.0% 7.1% 6.6% 17.8% 11.3% 0.0% 40.2% 16.6% 56.2% 5.4%
All 33.4% 16.1% 13.4% 23.2% 3.5% 25.4% 2.9% 2.2% 7.6% 12.8% 43.2% 19.5% 8.1% 30.3% 11.8%

C2 R2 RC2

Γq Γt Risk PoR Best Worst Std.Dev. Risk PoR Best Worst Std.Dev. Risk PoR Best Worst Std.Dev.
0 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
1 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
5 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
10 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
0 0 12.5% 0.0% 0.0% 0.0% 0.2% 41.6% 0.0% 0.0% 0.0% 9.1% 12.5% 0.0% 0.0% 0.0% 8.4%
0 1 12.5% 0.1% 0.0% 0.7% 0.0% 9.1% 0.9% 0.0% 3.5% 9.6% 4.4% 0.3% 0.0% 2.2% 8.0%
0 5 0.0% 0.1% 0.0% 0.7% 0.0% 0.0% 1.3% 0.0% 3.8% 9.5% 0.0% 0.3% 0.0% 2.3% 8.0%
0 10 0.0% 0.1% 0.0% 0.7% 0.0% 0.0% 1.3% 0.0% 3.8% 9.5% 0.0% 0.5% 0.0% 3.7% 7.7%
0 0 12.5% 0.0% 0.0% 0.0% 0.2% 41.6% 0.0% 0.0% 0.0% 9.1% 12.5% 0.0% 0.0% 0.0% 8.4%
1 1 12.5% 0.1% 0.0% 0.7% 0.0% 9.1% 0.9% 0.0% 3.5% 9.6% 4.4% 0.2% 0.0% 1.8% 8.1%
5 5 0.0% 0.1% 0.0% 0.7% 0.0% 0.0% 1.3% 0.0% 3.8% 9.5% 0.0% 1.2% 0.0% 9.4% 6.8%
10 10 0.0% 0.1% 0.0% 0.7% 0.0% 0.0% 1.3% 0.0% 3.8% 9.5% 0.0% 1.2% 0.0% 9.3% 6.8%
All 4.2% 0.0% 0.0% 0.3% 0.1% 8.5% 0.6% 0.0% 1.9% 9.3% 2.8% 0.3% 0.0% 2.4% 8.0%

worst-case travel time from the depot already surpassed the closing time of the time window, i.e
a0 + 1.5t̄0j > bj .

We also evaluate the impact of the maximum percentage deviation of the parameters
(Dev) on the solution by analyzing the changes of costs and risks when Γd and Γt are fixed while
deviation changes. A first identified of higher deviation levels is, for any non-null combination
of budgets, an increase on costs of robust solutions. As an example, we can point the solutions
of class C1 using Γd = 5 and Γt = 0, in which the average PoR increases from 18.6% when
considering a deviation in time of 10%, and this value increases to 23.2%, when the deviation is
25%, and 33.6%, when Dev = 50%. This behaviour is expected, since the robust model might
have to take more conservative routes in order to consider this additional deviation.

Furthermore, an environment with high deviation have solutions with significantly more
risks, especially when we consider smaller budgets. For example, the solutions of instances from
class R1 with deviation only on time becomes riskier with greater values of Dev. We can highlight
solutions with Γt = 1 and Γd = 0, whose average risk is 6.2% when deviation is 10%, 15.7% when
it is 25% and 57.9% when the maximum deviation is 50%. This is expected since this additional
deviation makes it easier for parameters to surpass the capacity or time windows constraints, and
if the realization of these parameters do not fall inside the polyhedral set, the robust solution
does not ensure feasibility. Finally, higher deviation also increases the odds of feasible solutions
not existing, as the robust model might not be able to find feasible robust solutions for high
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levels of uncertainty. As previously noted, instances R101, R102, R103, R104 and RC105 were
infeasible whenever Γt > 0 and Dev = 50%.

These findings are illustrated by the graphs in Figure 7. They plot the risk versus the
PoR for each instance set (triangles for C1, diamonds for R1 and cross marks for RC1) and
different budget of uncertainty value. The values of deviation are indicated in the figures as
“[Devd; Devt]”. A more convex curve represents a better trade-off between risk and PoR of the
solution, because this means that the robust solution effectively reduce the risks with a small
increase in costs. Thus, some of solutions with the most expensive trade-off would be solutions
for instance class RC1 in Figures 7(c) and 7(f), where an increase of 30% in the costs is needed
to null the risks. We can also note that in some cases, namely class C1 in Figures 7(a), 7(b),
7(e) and 7(f), class R1 in 7(c) and class RC1 in 7(d), increasing the budget’s size increase the
solution costs with no impact in the risks. These cases happened when the solution with the
previous budgets had no risk already and using a more conservative Γ only increased the costs of
the solution. For a decision maker perspective there is no reason to use these over-conservative
solutions over the ones with zero-risk and lower costs. On the other hand, we also note that some
robust solutions, particularly the ones with deviation in time, greatly improve the robustness
of the solution, voiding all risks in the instances with a worst-case deviation of 10% with an
increase in costs as little as 1.3% .

Analysing the behavior of each individual instance classes when faced with uncertainty,
we noted that the ones with clustered customers (classes C1 and C2) were highly resistant to
uncertainty in travel time, particularly class C1 whose deterministic solution have not violated
any constraint in any instance (indicated by Risk=0.0%) with deviation exclusively in travel
time. Although there were deterministic solutions from class C2 that failed in some simulations,
resulting in an average fail rate of 10.6%, when Dev = 25%, and 12.5%, when Dev = 50%, the
robust alternative was able to void this risk for a negligible cost (PoR = 0.1%), so we can infer
this set of instances is also resistant to time variability.

Similarly, instances with randomly distributed customers (R1 and R2) were completely
unaffected by demand uncertainty, i.e., not only the risks of violating a constraint being always
zero but also the robust solutions were always the same as the deterministic. This can be identified
by PoR being zero in instances with uncertainty exclusively on demand. Since the distance
between customers in instances of these classes are relatively large, the routes in solution have
few customers, which allowed the vehicles to absorb the demand uncertainty naturally. On the
other hand, the instances from class RC1 were affected by both types of uncertainty.

We observed that classes R1 and R2 were not the only ones completely unaffected by
demand uncertainty, classes C2 and RC2 also presented this behavior but for a different reason.
The cause of this immunity is the vehicles’ capacity in this sets of instances being five times
larger than the ones in classes C1 and RC1 while the demands remain in a similar level and thus
the vehicles are able to absorb all deviation. Note that both class C2 and RC2 are affected by
uncertainty on demand, although this was less noticeable in class C2.

To visually exemplify on how the solutions can change when considering the RO approach,
Figure 8 presents the optimal routes for the deterministic (a) and robust (b) cases when considering
uncertain of instance C101 with 25 customers. This particular robust solution allows up to 5
nodes in a route to assume its worst-case value, i.e., Γd = 5, and the maximum deviation in
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Figure 7 – Trade-off between price of robustness (PoR) and probability of constraint violation
(Risk) for the instances of class C1, R1 and RC1.

demand is 10% of its nominal value. We also present the total nominal load on each route. The
capacity of each vehicle is 200 units.

As expected, the robust solution is more expensive than the deterministic, with the
optimal solution costs increasing from 191.3 to 235.6, or 23.2% more. However, the probability
of constraint violation in the robust solution is substantially lower. With the mild deviation
of only 10%, the deterministic solution failed in 39.5% of cases, while the robust solution was
feasible in every simulation. This analysis is also illustrated in Figure 9, where we plot the risk
versus the PoR for solutions of instance C101 with different levels of deviation. Each ordered
pair highlighted in the plot is associated with a different budget of uncertainty value.

Thus, it is possible to see that the RO approach can provide relevant solutions to support
the decision-making process of choosing vehicle routes. The decision-maker can create a set
of solutions with different trade-offs for risks and costs that should be considered. With this
information, they can make an informed choice and opt for a more robust solution, which
deteriorates the costs but ensure a better service level for customers, or assume more risks and
taking a cheaper solution.
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Figure 8 – Deterministic (a) and robust (b) solutions of instance C101 under uncertainty on
demand with maximum deviation of 10% over nominal demand
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Figure 9 – Trade-off between PoR and Risk for instance C101.

3.6.4.2 Knapsack uncertainty set

Similarly to the results for the cardinality constrained set, Tables 17 to 19 summarize the
results for each individual instance class and show, for each combination of budgets (∆d and ∆t)
and deviations (Dev), the average, best and worst the price-of-robustness (PoR), the probability
of constraint violation (Risk) and the normalized standard deviation of the solution. Table 17
presents the results for instance of all classes considering a maximum deviation of 10%; Table 18
summarize the results for the deviation of 25%; and Table 19 does the same with the results
from the instances with maximum deviation of 50%.

Similarly to the previous uncertainty set, as the budgets ∆d and ∆t increase, the solutions
become more conservative and the instances harder to solve. Thus, for the same level of deviation,
the price of robustness and solving times tend to get higher while the risks tend to lower.
A good example of this behavior is found in the solutions from instances of class C1 with
Dev = 50% and deviation on both demand and travel time (∆d = ∆t > 0), in which the
price-of-robustness increases up to 20.3% depending of the budget’s size, and the risks lower
from 100.0%, when ∆d = ∆t = 0 to 13.5%, when ∆d = ∆t = 60, consistently decreasing for
each level of robustness, as noted by the risk being 99.8% when ∆d = ∆t = 20 and 60.7%
when ∆d = ∆t = 40. An expected consequence of the uncertainty design, which becomes more
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Table 17 – Average, best and worst Price of robustness (PoR), probability of constraint violation
(Risk) and Standard Deviation of the solutions for instances with maximum deviation
of 10%, considering the single knapsack uncertainty set.

Dev 10%

∆q ∆t
C1 R1 RC1

Risk PoR Best Worst Std. Dev. Risk PoR Best Worst Std. Dev. Risk PoR Best Worst Std. Dev.
0 0 52.2% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 14.0% 30.3% 0.0% 0.0% 0.0% 15.7%
20 0 0.0% 18.6% 15.8% 23.2% 2.6% 0.0% 0.0% 0.0% 0.0% 14.0% 30.0% 10.3% 0.0% 21.0% 9.6%
40 0 0.0% 18.7% 15.8% 23.2% 2.6% 0.0% 0.0% 0.0% 0.4% 14.0% 0.0% 10.3% 0.0% 21.0% 9.6%
60 0 0.0% 18.7% 15.8% 23.2% 2.6% 0.0% 0.0% 0.0% 0.0% 14.0% 0.0% 10.7% 0.0% 22.4% 9.4%
0 0 0.0% 0.0% 0.0% 0.0% 0.7% 23.1% 0.0% 0.0% 0.0% 14.0% 29.2% 0.0% 0.0% 0.0% 15.7%
0 20 0.0% 0.0% 0.0% 0.0% 0.4% 6.2% 1.3% 0.0% 12.4% 13.1% 17.7% 0.6% 0.0% 2.2% 15.6%
0 40 0.0% 0.4% 0.0% 3.0% 1.2% 0.0% 3.9% 0.0% 20.0% 12.1% 0.0% 2.4% 0.0% 7.4% 14.5%
0 60 0.0% 1.1% 0.0% 5.2% 1.6% 0.0% 6.2% 0.0% 25.0% 10.8% 0.0% 3.9% 0.1% 9.9% 13.6%
0 0 52.9% 0.0% 0.0% 0.0% 0.7% 23.1% 0.0% 0.0% 0.0% 14.0% 52.5% 0.0% 0.0% 0.0% 15.7%
20 20 0.0% 19.1% 15.8% 23.2% 2.3% 6.2% 1.8% 0.0% 7.5% 12.7% 40.6% 10.9% 0.0% 25.3% 9.9%
40 40 0.0% 21.1% 15.8% 26.8% 2.2% 0.0% 4.2% 0.0% 12.0% 11.7% 0.0% 14.6% 0.9% 24.5% 7.6%
60 60 0.0% 20.6% 18.0% 23.2% 1.6% 0.0% 8.5% 0.0% 25.4% 9.9% 0.0% 16.2% 1.2% 29.5% 7.3%

All 8.8% 9.9% 8.1% 12.6% 1.6% 4.9% 2.1% 0.0% 8.6% 12.8% 16.7% 6.7% 0.2% 13.6% 12.0%

∆q ∆t
C2 R2 RC2

Risk PoR Best Worst Std. Dev. Risk PoR Best Worst Std. Dev. Risk PoR Best Worst Std. Dev.
0 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
20 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.3% 9.1% 0.0% 0.1% 0.0% 0.5% 8.4%
40 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.2% 0.0% 2.4% 8.9% 0.0% 0.4% 0.0% 2.8% 7.9%
60 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.2% 0.0% 1.5% 9.0% 0.0% 0.3% 0.0% 1.2% 8.1%
0 0 0.0% 0.0% 0.0% 0.0% 0.2% 9.4% 0.0% 0.0% 0.0% 9.1% 1.3% 0.0% 0.0% 0.0% 8.4%
0 20 0.0% 0.0% 0.0% 0.0% 0.2% 9.4% 0.7% 0.0% 3.6% 8.7% 1.5% 0.2% 0.0% 1.2% 8.3%
0 40 0.0% 0.6% 0.0% 4.7% 1.3% 0.0% 3.5% 0.0% 10.4% 7.1% 0.0% 2.9% 0.0% 12.5% 5.8%
0 60 0.0% 1.9% 0.0% 10.4% 3.3% 0.0% 5.9% 0.0% 15.3% 5.8% 0.0% 3.8% 0.0% 15.1% 4.9%
0 0 0.0% 0.0% 0.0% 0.0% 0.2% 9.4% 0.0% 0.0% 0.0% 9.1% 1.3% 0.0% 0.0% 0.0% 8.4%
20 20 0.0% 0.3% 0.0% 2.4% 0.5% 9.4% 1.3% 0.0% 8.0% 8.4% 1.4% 0.8% 0.0% 4.4% 7.6%
40 40 0.0% 1.5% 0.0% 10.0% 3.0% 0.0% 3.6% 0.0% 9.7% 7.2% 0.0% 2.2% 0.0% 5.3% 7.0%
60 60 0.0% 1.2% 0.0% 9.8% 2.9% 0.0% 7.5% 0.0% 32.8% 7.2% 0.0% 4.8% 0.0% 16.9% 4.9%

All 0.0% 0.5% 0.0% 3.1% 1.1% 3.1% 1.9% 0.0% 7.0% 8.2% 0.5% 1.3% 0.0% 5.0% 7.3%

Table 18 – Average, best and worst Price of robustness (PoR), probability of constraint violation
(Risk) and Standard Deviation of the solutions for instances with maximum deviation
of 25%, considering the single knapsack uncertainty set.

Dev 25%

∆q ∆t
C1 R1 RC1

Risk PoR Best Worst Std. Dev. Risk PoR Best Worst Std. Dev. Risk PoR Best Worst Std. Dev.
0 0 99.7% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 14.0% 84.0% 0.0% 0.0% 0.0% 15.7%
20 0 66.8% 18.6% 15.8% 23.2% 2.6% 0.0% 0.0% 0.0% 0.1% 14.0% 83.9% 9.5% 0.0% 20.7% 10.2%
40 0 0.0% 23.4% 20.0% 24.9% 1.5% 0.0% 0.1% 0.0% 1.1% 13.5% 0.0% 32.4% 10.1% 46.2% 5.8%
60 0 0.0% 33.2% 31.8% 34.3% 0.7% 0.0% 0.3% 0.0% 2.0% 13.6% 0.0% 33.8% 11.2% 47.5% 5.4%
0 0 0.0% 0.0% 0.0% 0.0% 0.7% 62.5% 0.0% 0.0% 0.0% 14.0% 72.6% 0.0% 0.0% 0.0% 15.7%
0 20 0.0% 0.0% 0.0% 0.0% 0.7% 15.7% 1.7% 0.0% 8.7% 15.5% 30.2% 0.4% 0.0% 1.3% 15.4%
0 40 0.0% 0.3% 0.0% 1.8% 0.7% 0.0% 4.5% 0.0% 8.5% 14.3% 0.0% 2.9% 0.1% 8.5% 14.0%
0 60 0.0% 1.8% 0.0% 11.0% 3.6% 0.0% 8.2% 0.0% 24.2% 12.4% 0.0% 5.4% 1.1% 14.3% 14.0%
0 0 99.7% 0.0% 0.0% 0.0% 0.7% 62.1% 0.0% 0.0% 0.0% 14.0% 98.8% 0.0% 0.0% 0.0% 15.7%
20 20 70.2% 18.9% 15.8% 23.2% 2.4% 14.9% 2.1% 0.0% 9.2% 15.2% 85.5% 12.1% 0.0% 22.4% 9.3%
40 40 0.0% 25.6% 22.0% 30.3% 2.1% 0.0% 4.7% 0.0% 11.4% 14.1% 0.0% 40.8% 11.6% 63.9% 3.5%
60 60 0.0% 35.8% 32.8% 42.0% 2.1% 0.0% 7.9% 0.0% 20.5% 12.0% 0.0% 43.7% 11.6% 72.2% 4.1%

All 28.0% 13.1% 11.5% 15.9% 1.5% 12.9% 2.5% 0.0% 7.2% 13.9% 37.9% 15.1% 3.8% 24.8% 10.7%

∆q ∆t
C2 R2 RC2

Risk PoR Best Worst Std. Dev. Risk PoR Best Worst Std. Dev. Risk PoR Best Worst Std. Dev.
0 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
20 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.3% 8.3%
40 0 0.0% 0.1% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
60 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.1% 0.0% 0.7% 9.1% 0.0% 0.3% 0.0% 1.5% 8.2%
0 0 17.1% 0.0% 0.0% 0.0% 0.2% 31.6% 0.0% 0.0% 0.0% 9.1% 11.3% 0.0% 0.0% 0.0% 8.4%
0 20 0.0% 0.1% 0.0% 0.7% 0.0% 3.4% 0.1% 0.0% 0.4% 9.1% 0.0% 0.6% 0.0% 2.2% 8.2%
0 40 0.0% 1.3% 0.0% 10.5% 3.2% 0.0% 4.0% 0.0% 11.2% 6.5% 0.0% 3.5% 0.0% 12.5% 5.7%
0 60 0.0% 2.8% 0.0% 10.0% 3.7% 0.0% 4.6% 0.0% 12.9% 6.0% 0.0% 3.6% 0.0% 15.4% 4.8%
0 0 17.0% 0.0% 0.0% 0.0% 0.2% 31.4% 0.0% 0.0% 0.0% 9.1% 11.3% 0.0% 0.0% 0.0% 8.4%
20 20 0.0% 0.1% 0.0% 0.7% 0.0% 3.4% 1.4% 0.0% 9.6% 8.5% 5.0% 0.6% 0.0% 2.8% 7.7%
40 40 0.0% 0.8% 0.0% 6.6% 1.9% 0.0% 4.1% 0.0% 15.1% 6.1% 0.0% 3.8% 0.0% 12.4% 4.9%
60 60 0.0% 1.9% 0.0% 8.8% 2.8% 0.0% 27.9% 0.0% 25.5% 50.5% 0.0% 3.4% 0.0% 18.5% 5.4%

All 2.8% 0.6% 0.0% 3.2% 1.1% 5.8% 3.5% 0.0% 6.3% 11.8% 2.3% 1.3% 0.0% 5.5% 7.2%
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Table 19 – Average, best and worst Price of robustness (PoR), probability of constraint violation
(Risk) and Standard Deviation of the solutions for instances with maximum deviation
of 50%, considering the single knapsack uncertainty set.

Dev 50%

∆q ∆t
C1 R1 RC1

Risk PoR Best Worst Std. Dev. Risk PoR Best Worst Std. Dev. Risk PoR Best Worst Std. Dev.
0 0 100.0% 0.0% 0.0% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 14.0% 98.8% 0.0% 0.0% 0.0% 15.7%
20 0 100.0% 18.6% 15.8% 23.2% 2.6% 0.0% 0.0% 0.0% 0.0% 14.0% 98.9% 10.3% 0.0% 21.0% 9.6%
40 0 63.9% 23.3% 20.0% 24.9% 1.6% 0.0% 0.0% 0.0% 0.1% 13.9% 0.1% 32.2% 10.1% 46.2% 5.9%
60 0 0.0% 33.4% 31.9% 35.6% 0.7% 0.0% 0.1% 0.0% 0.8% 13.4% 0.0% 34.9% 11.2% 54.2% 5.3%
0 0 0.0% 0.0% 0.0% 0.0% 0.7% 95.1% 0.0% 0.0% 0.0% 14.0% 96.5% 0.0% 0.0% 0.0% 15.7%
0 20 0.0% 0.0% 0.0% 0.2% 0.7% 57.9% 2.1% 0.0% 11.2% 15.3% 38.3% 0.5% 0.0% 2.3% 15.6%
0 40 0.0% 0.5% 0.0% 2.6% 0.6% 0.0% 6.9% 0.0% 21.2% 16.7% 0.0% 3.2% 0.3% 7.7% 14.2%
0 60 0.0% 2.2% 0.0% 10.6% 3.6% 0.0% 10.6% 1.1% 40.1% 15.7% 0.0% 5.8% 0.3% 15.3% 14.0%
0 0 100.0% 0.0% 0.0% 0.0% 0.7% 95.1% 0.0% 0.0% 0.0% 14.0% 100.0% 0.0% 0.0% 0.0% 15.7%
20 20 99.8% 18.9% 15.8% 23.2% 2.4% 56.3% 1.8% 0.0% 8.5% 15.5% 85.6% 11.3% 0.0% 22.1% 9.4%
40 40 67.0% 26.3% 24.0% 32.3% 2.2% 0.0% 6.8% 1.1% 17.1% 16.8% 0.0% 40.8% 12.4% 60.4% 3.9%
60 60 13.5% 36.0% 32.8% 40.4% 2.0% 0.0% 11.0% 1.1% 36.7% 15.7% 0.0% 45.7% 12.8% 70.4% 2.8%

All 45.4% 13.3% 11.7% 16.1% 1.5% 25.4% 3.3% 0.3% 11.3% 14.9% 43.2% 15.4% 3.9% 25.0% 10.6%

∆q ∆t
C2 R2 RC2

Risk PoR Best Worst Std. Dev. Risk PoR Best Worst Std. Dev. Risk PoR Best Worst Std. Dev.
0 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 0.0% 0.0% 0.0% 8.4%
20 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.3% 9.1% 0.0% 0.2% 0.0% 1.4% 8.2%
40 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.1% 0.0% 0.8% 9.0% 0.0% 0.1% 0.0% 1.1% 8.2%
60 0 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.1% 0.0% 0.7% 9.1% 0.0% 0.1% 0.0% 0.8% 8.5%
0 0 20.0% 0.0% 0.0% 0.0% 0.2% 41.6% 0.0% 0.0% 0.0% 9.1% 12.5% 0.0% 0.0% 0.0% 8.4%
0 20 0.0% 0.3% 0.0% 2.4% 0.5% 9.1% 0.9% 0.0% 9.4% 8.6% 4.4% 0.4% 0.0% 2.0% 8.3%
0 40 0.0% 1.1% 0.0% 8.4% 2.5% 0.0% 3.4% 0.0% 10.3% 6.7% 0.0% 2.6% 0.0% 11.3% 5.6%
0 60 19.8% 2.2% 0.0% 13.8% 4.2% 0.0% 7.4% 0.3% 20.1% 6.3% 0.0% 3.5% 0.0% 16.0% 5.2%
0 0 20.0% 0.0% 0.0% 0.0% 0.2% 41.6% 0.0% 0.0% 0.0% 9.1% 12.5% 0.0% 0.0% 0.0% 8.4%
20 20 0.0% 0.0% 0.0% 0.0% 0.2% 9.1% 1.6% 0.0% 8.8% 8.1% 4.4% 0.5% 0.0% 2.8% 7.9%
40 40 0.0% 1.5% 0.0% 8.1% 2.6% 0.0% 4.3% 0.0% 15.7% 6.6% 0.0% 2.7% 0.0% 7.5% 6.9%
60 60 0.0% 1.7% 0.0% 10.7% 3.2% 0.0% 3.3% 0.0% 16.4% 6.6% 0.0% 2.4% 0.0% 6.9% 4.2%

All 5.0% 0.6% 0.0% 3.6% 1.2% 8.5% 1.8% 0.0% 6.9% 8.1% 2.8% 1.0% 0.0% 4.1% 7.4%

conservative as the budget of uncertainty increases. Additionally, similarly to the results for
the cardinality constrained uncertainty set, the standard deviation of the robust solutions are
relatively close to, and sometimes even smaller than, the deterministic one. This implies that
the robust solutions provided by the algorithm, for a given combination of Dev and ∆, have a
similar level of increment for all instances of the same class. This is a positive behavior, as the
decision maker can have prior insight into the cost of the solution for that combination before
running a new instance, allowing them to better direct computational efforts.

Regarding the maximum deviation parameters (Dev), we note they mostly affect the
conservatism and risks of solutions. It is possible to evaluate this impact by analysing a fixed
budget parameters with different deviation levels. A good example from this behavior is found
in the instances from class R1 with deviation on both demand and travel time. By fixing
∆d = ∆t = 20 we note that the costs increase from an average PoR of 1.8% when Dev = 10%, to
2.1% when Dev = 25% and 3.1% when Dev = 50%. The increased costs arise from the models
trying to create a solution capable of absorb this additional variability. Despite of this, the risk
also increased for each level of deviation, for instance, in the previous example the average risks
were 6.2% when Dev = 10%, 14.9% when Dev = 25% and 56.3% when Dev = 50%. This happens
due to the budget taken being not enough to completely protect from this additional deviation.

Notably, with the chosen uncertainty budgets, the solutions using the knapsack uncertainty
set were relatively similar to those considering the cardinality constrained uncertainty set with
the same deviation level (Dev). This can be visualized in Figure 10, which presents the average
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Risk (a) and PoR (b) for each combination of [Devq,Devt] of the solutions obtained considering
the cardinality constrained and the knapsack uncertainty set.
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Figure 10 – Average Risk and PoR of for different deviation levels [Devq,Devt] and uncertainty
sets.

Particularly, the solutions considering the cardinality constrained set with Γ = 1 were
relatively similar to the solutions with the knapsack set and ∆ = 20, although the latter presented
slightly lower risks. However, the solutions considering ∆ = 20 were relatively cheaper on instances
with deviations exclusively on travel times, while retaining the same robustness level, highlighting
advantages of using the knapsack uncertainty set. Similarly, the solutions considering ∆ = 40
and ∆ = 60 outperform those with Γ = 5 and Γ = 10 in terms of risk and cost in the groups
with Dev = 10% and Dev = 25%. In the instances with Dev = 50%, on the other hand, there is
a trade-off between the solutions with Γ = 5 and Γ = 10, which have zero risk, and the solutions
with ∆ = 40 and ∆ = 60, which usually had slightly lower costs in exchange for slightly higher
risks. These results show that using the knapsack uncertainty set might be useful from the
decision maker’s point of view, as it can provide competitive solutions that can outperform some
solutions with the cardinality uncertainty set in some configurations.

Finally, by analyzing each instance class individually, we note a similar behavior as
identified in the previous uncertainty set. The instances with clustered customers (C1 and C2)
presented a strong natural resistance to travel time deviation, in which the deterministic solutions
were able to absorb all of this uncertainty (C1) or it was possible to null the risks with a negligible
increase in costs (C2). On the other hand, the instances with randomly distributed customers (R1
and R2) were immune to uncertainty on demand, although they were still affected by variability
in travel time. Class RC1, which is composed by instances with mixed geographic distribution
were susceptible by both demand and travel time, while instances from class RC2 are only affected
by travel time uncertainty due to the large capacity on their vehicles. We already discussed the
computational times in the previous topic, where we compared the CF formulation with the
MTZ model, but, in short, instance classes RC1 and RC2 were the hardest to solve while there
was no relevant difference between instances with randomly distributed and clustered customers
regarding the average running times.
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4 Robust aircraft routing for on-demand air
transportation

In the previous chapters, we investigated robust optimization approaches for the VRPTW,
which is classical and traditional problem in the VRP literature. We now extend these approaches
to model and solve a real-world application of the VRPTW. This is not a straightforward
application though, as we need to further incorporate additional characteristics that are faced by
the company in practice. The addressed problem commonly arises in the context of on-demand air
transportation companies, particularly in services in which customers choose the desired flights
and times and the company must service them while focusing on minimizing its operational
costs (Yao et al., 2008). In addition to designing the routes and schedules for each aircraft, we
also need to guarantee that these schedules obey the crew working hours and regulations, which
makes this problem even more challenging to solve.

Our contributions in this context are threefold. First, we develop a B&C method to
effectively solve the deterministic version of the addressed problem. This method starts from a
formulation that determines only the aircraft routes, and then gradually imposes crew require-
ments into this model. As a second contribution, we design a labeling algorithm to verify the
feasibility of aircraft routes regarding the crew regulations. In particular, we address most crew
requirements found in literature Haouari2019 and introduce the split duty rule, commonly used
by airlines to extend a crew’s duty based on the time they remain grounded. Finally, we extend
the model and B&C method to incorporate uncertainty on travel times via robust optimization
(RO).

The remainder of this chapter is structured as follows. The description of the real-world
problem is given in Section 4.1. We then present the deterministic and robust aircraft routing
models that are used as the starting model in the proposed B&C algorithm in Section 4.2. We
follow by explaining the labeling-based B&C algorithm designed to insert crew requirements
into the problems and its robust extension in Section 4.3. Then, in Section 4.4, we present the
computational results of the proposed algorithm using real-life data provided by a company.

4.1 Problem description

When dealing with real-world applications in logistics, traditional mathematical program-
ming formulations are usually insufficient to represent all the company’s requirements and hence
different constraints need to be added to these formulations. Particularly, in aircraft routing,
the subject of our study, some common additional characteristics usually considered are fleet
heterogeneity, i.e., each aircraft has different costs, speed and types of flights it can service
(Yao et al., 2008); different types of services, e.g., customer flight or maintenance event (Zwan;
Wils; Ghijs, 2011); and crew requirements such as minimum rest time and maximum flight time
(Shebalov; Klabjan, 2006; Haouari; Mansour; Sherali, 2019).
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A particular type of air company, whose services have been significantly growing in the
last years, relates to on-demand air transportation services (Yang et al., 2008; Yao et al., 2008;
Zwan; Wils; Ghijs, 2011). These services typically arise in air taxi and fractional ownership
contract companies. Unlike traditional airlines, these companies allow customers to choose the
itinerary, the departing time and the aircraft type they need. The company must ensure that the
desired aircraft will be available in the right place on time.

Fractional ownership companies, similar to the one studied in this work, are air trans-
portation companies in which customers acquire a contract giving them a fraction of an airship
(Lacasse-Guay; Desaulniers; Soumis, 2010). This contract owner, then, has the rights to fly in the
airship for a determined number of hours yearly. Customers have complete freedom to choose
the time and destination they wish. The main advantage of this type of service for the contract
owner is having a similar flexibility to owning a particular aircraft at a fraction of the costs.

For the company, this type of services results into some contractual obligations (Lacasse-
Guay; Desaulniers; Soumis, 2010). Namely, if the flight was booked at least 4 hours before the
departure, the company must guarantee that there will be an aircraft similar to, or better than,
the one hired by the customer ready at the departure airport on the agreed time. Thus, these
companies usually deal with a more dynamic and unpredictable environment than traditional
airlines. This results in a relatively short planning horizon (48-72h), that must be quickly updated
with new demands.

Since the flights with costumers are mandatory and generate revenue, the focus for this
type of company is to minimize their operational costs, often related to the positioning flights.
In this type of flight, the aircraft travels without passengers to a customer’s departure airport
without direct revenue (Yao et al., 2008). These positioning flights can comprise 35% or more
of the company’s total flying time. Since the company bears the costs from this type of flight,
focusing on minimizing them can improve its efficiency and competitiveness.

Additionally, when scheduling routes, the company must follow some requirements.
Among those, are internal policies regarding the aircraft routing planning, such as the maximum
service delay and type of aircraft that can be used for each demand. Moreover, the company must
also comply with international regulations related to crew working hours and resting periods.
These requirements are summarized in Table 20 and detailed in the following subsections.

Table 20 – Requirements for the route planning

Aircraft routing rules

Aircraft type for customer request Requested type or better
Aircraft in a maintenance event The one requested

Maximum delay for customer request 15 min
Maximum delay for a maintenance event 1440 min | 24h

Maximum time a maintenance event can be brought forward 1440 min | 24h

Crew requirement

Maximum duty time 780 min | 13h
Maximum flying time in a duty 600 min | 10h

Minimum resting time 600 min | 10h
Presentation time before a duty start (PRE) 40 min
Presentation time at the end of a duty (POS) 30 min

Considering these routing and crew requirements simultaneously in the planning stage,
albeit a more complex activity, brings considerable economic advantages to the solution (Sherali;
Bish; Zhu, 2006; Mercier; Soumis, 2007; Dunbar; Froyland; Wu, 2014). This is compatible with
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the company’s focus on minimizing operating costs and can be interesting to apply in practice.
However, it is worth noting that due to the high dynamics of this sector, it is essential to not only
generating an efficient solution, but also obtaining it in a short time span. This is particularly
more relevant in on-demand air transportation companies, such as the one studied in this paper,
because, by contract, customers can request a flight as little as four hours in advance. If for some
reason there is no aircraft available to service a customer, there is the possibility of outsourcing
the flight to another company, although this might be costly.

In the literature addressing models and solution approaches for aiding decision-making
in the described context, authors typically resort to specialized algorithms to effectively obtain
solutions, such as decomposition techniques (Mercier; Soumis, 2007), branch-and-price methods
(Yang et al., 2008) and heuristic approaches (Dunbar; Froyland; Wu, 2014). We emphasize that
the majority of works addressing integrated routing and crew requirements were developed for
traditional companies (Mercier; Soumis, 2007; Dunbar; Froyland; Wu, 2014). Furthermore, we
are not aware of any other study that considers all aspects of the situation addressed in this
work, in the context of on-demand air transportation.

4.1.1 Routing planning requirements

When defining the aircraft routes, the company must ensure that there is an aircraft
available at the departure airport of any given request with a maximum delay of 15 minutes.
Additionally, this aircraft must be of the same type or better than the one hired. Servicing a
customer with an aircraft better, and more expensive, than the one defined in the contract incur
in additional costs called upgrade. Despite the additional cost, an upgrade can be strategically
used by the company to save money with positioning flights. This allows the company to reduce
their total costs and meet requests that would be impossible otherwise (Munari et al., 2019).
The downside is that this freedom considerably increases the complexity of the decision-making
process. It should be noted that the company’s policy usually does not allow customers to be
serviced by aircraft that are inferior to the one requested (downgrade).

Moreover, the company is responsible for the fleet maintenance. Periodically, each aircraft
must go through a planned checking and maintenance process, becoming unavailable until this
event is finished. Although the start time of a maintenance event is pre-scheduled, the company
is typically allowed to advance or delay this time within a relatively large margin of 24 hours.
Thus, maintenance can be seen as a request in which the aircraft must be stationary at a single
airport for a certain period of time and which presents a comprehensive time window, allowing
greater flexibility.

4.1.2 Crew Requirements

Another important point the company must consider while planning the aircraft routes
is the various regulations related to the crew’s working and resting times. Some of the most
relevant are the maximum time allowed in duty, the maximum accumulated flight time in duty
and the minimum resting time between two duties (Shebalov; Klabjan, 2006; Haouari; Mansour;
Sherali, 2019). For the first requirement, the company must allow a maximum duty (MaxDuty)
of 13 hours. This is enforced by international regulations due to the risks associated with crew
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fatigue. Additionally, since flying the aircraft is an exhausting activity, regulators also impose
a maximum time the crew is allowed to fly in a single duty (MaxFly) of 10 hours. Eventually,
there might be situations in which the crew is asked to work overtime (when total duty time
exceeds the MaxDuty or the total flying time surpasses MaxFly). In these cases, the company
may negotiate with the crew to work this additional time in exchange for additional rest time or
extra pay. In this work, we incorporate this strategy by allowing the crew to work overtime, but
punishing the objective function with additional cost per minute worked.

Moreover, the company must ensure the crew has at least 10 hours (MinRest) of uninter-
rupted rest between two consecutive duties. Every time a complete rest occurs, the accumulated
duty is set to zero. A particularity on maintenance events is that, since the aircraft is parked
during the entire process, the crew is allowed to rest during the event and, hence, the company
can take advantage of the maintenance time. If maintenance lasts longer than MinRest, it is
interesting to extend the crew’s free time until it is finished, as there is no reason to keep the
pilots on stand-by if the aircraft is not ready yet. Conversely, if the duration of maintenance
is less than MinRest, the crew still needs to rest for the minimum time, even if the aircraft is
available earlier. Anyway, it is interesting to take advantage of maintenance to cover part of, or
completely, the resting time, as this allows for time saving and allows some solutions that would
be impossible otherwise.

Other important elements imposed to the company are the crew presentation times in
a duty to check the aircraft and analyze the weather conditions and itinerary. The first one
occurs at the beginning of the duty (PRE), taking 40 minutes. This first preparation time is
counted within the crew’s duty. The second one happens at the ending of a duty (POS), lasting
30 minutes and is neither counted in the duty nor the rest time. Thus, whenever there is a rest in
the planning horizon we must also insert the presentation times at the start and end of the duty.
Figure 11 illustrate these concepts by showing two examples of the different resting behaviors. In
both examples we have a route that, during the planning horizon, starts from a rest, followed
by a customer’s request. Then, the crew have a positioning flight in order to service another
request, takes a rest and finally services a last request. The only difference between the examples
is that in Example 1 the second request serviced by the aircraft is made by a customer while in
Example 2 we have a maintenance event. We can note that in Example 2, the crew is allowed
to start its rest after landing and do not need to be available during the whole maintenance
(represented by the green outline in the rest period), while in Example 1 the crew is required to
finish the service before starting their rest.

Another important strategy that the company employs regarding the crew total rest time
is the split duty rule, in which the crew is allowed to take a break, a pause period shorter than a
normal rest, and extend the duty duration by a fraction of the break time (BT). Essentially,
depending on the total break duration, the company is allowed to compute only a fraction of
that time as paid duty time, following the calculations in Table 21. If the break lasts for less
than 90 minutes, it is computed in the total duty time normally. Now, if the BT is longer than
90 minutes, but under 6 hours, any minute over 90 minutes is computed as only half. Finally,
if staying stationary for over 6 hours, but less than the minimum resting time (10 hours), the
company may add only 60 minutes in the accumulated duty time. If the break time would exceed
the minimum rest time, the crew takes a normal rest instead, setting the accumulated duty time
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Example 2

Example 1

PRE

Customer's Request

Positioning

Maintenance

POS

Rest

Figure 11 – Examples of rest behaviour for two vehicle routes.

to zero. To the best of our knowledge, no work in literature utilize this common strategy in a
solution method in an aircraft routing problem.

Table 21 – Split duty rule

Break time duration (min) Increase in duty time

Split duty rule

BT<90 BT
90≤ BT<360 BT−90

2 + 90
360≤ BT<MinRest 60

MinRest≤ BT Mandatory rest

4.2 Aircraft routing formulation

The B&C algorithm we propose in the next section is based on formulations of the
aircraft routing problem that is initially created without considering any crew requirements
(characteristics discussed in subsection 4.1.2). In this section, we present two base models that
are used to provide the initial solutions and that will later be used in the B&C algorithm. One
is based on MTZ constraints and has already been introduced by Munari and Alvarez (2019),
whereas the other was inspired by the CF formulation proposed in Chapter 3. The deterministic
formulation of these models are detailed in Subsection 4.2.1. These models are then extended
to account for uncertainty on travel times by following the RO paradigms and considering the
cardinality constrained uncertainty set, in Subsection 4.2.2, and the knapsack uncertainty set, in
Subsection 4.2.3.

4.2.1 Deterministic aircraft routing formulation

4.2.1.1 MTZ-based aircraft routing formulation

The model proposed by Munari and Alvarez (2019) addresses some of the critical
requirements of the company, such as maintenance events and possibility of upgrades, while
minimizing the overall positioning and upgrade costs. Let V be a fleet of aircraft, partitioned
in subsets Vp for each p in an ordered set of aircraft types P . The set of all requests, R, is
composed by the union of a dummy request 0, the set L of customer requests, and the set M
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of maintenance events. The airports are represented by the set K. The parameters used in the
model are as follow:

• cv: flight cost per unit of time of aircraft v ∈ V ;

• Cvrs: repositioning cost of aircraft v ∈ V when it fulfills the request s ∈ R immediately
after request r ∈ R;

• T pij : travel time between airports i ∈ K and j ∈ K for an aircraft of type p;

• AVv: the instant when the aircraft v ∈ V becomes available to fly for the first time in the
planning horizon;

• kv: is the initial airport of aircraft v ∈ V on the start in the planning horizon;

• tv: is the type of aircraft v ∈ V ;

• TAT rk : the turnaround time, i.e., the waiting time between flights at airport k ∈ K before
servicing the request r ∈ R;

• STr: the starting time of the request r ∈ R;

• ∆L: maximum time shift allowed to start a customer request;

• ∆M : maximum time shift allowed to start a maintenance event;

• ir: origin airport of request r ∈ R;

• jr: destination airport of request r ∈ R;

• pr: aircraft type required for the request r ∈ R;

• TLr: maintenance time of request r ∈M ;

• vr: index of the aircraft that must undergo the maintenance event r ∈M .

A feature that makes this model stand out among other compact formulations (Yang et
al., 2008; Jamili, 2017) is that instead of the usual graph representation for the VRP, in which
the airports are represented by nodes and the decision variables are associated to arcs linking the
nodes, Munari and Alvarez (2019) represented the problem using a request network, in which
nodes are associated to customer requests. Figure 12 is a visual representation of this network.

In this structure, every aircraft of the fleet starts in a dummy request used to represent
the start of a route in the planning horizon. From there, an aircraft can be assigned to any
compatible request r, in which a flight from airport ir to airport jr is performed. After servicing
a request, the aircraft can be assigned to another one, which may require a positioning flight,
or return to the dummy request, representing the end of its route in the planning horizon. As
observed by the authors, this approach is likely to reduce the problem size and result in better
computational times. With this graph representation in mind, the decision variables used in their
model are as follows:
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Figure 12 – Representation of the flow network through requests. Source: Munari and Alvarez
(2019)

• yvrs =

1, if aircraft v ∈ V services request s ∈ R immediately after request r ∈ R;

0, otherwise.

• wr: earliest time that request r ∈ R can start.

We extended this formulation to consider the possibility of outsourcing a customer’s request
if needed. For this purpose, we define a new binary decision variable outr, which represents if
request r ∈ L is outsourced in the solution, and parameter Coutr, which represents the cost of
outsourcing request r.

Finally, with all this information, the model is stated as:

min
∑
v∈V

∑
r∈R

∑
s∈R

Cvrsyvrs +
∑
r∈L

∑
s∈R
s 6=r

∑
p∈P
p>pr

∑
v∈Vp

(ctvT tvirjr − cprT
pr
irjr

)yvrs +
∑
r∈L

Coutroutr (4.2.1)

s.t.
∑
p∈P
p≥pr

∑
v∈Vp

∑
s∈R
s 6=r

yvrs + outr = 1, r ∈ L, (4.2.2)

∑
s∈R
s 6=r

yvrs = 1, r ∈M, v ∈ V, (4.2.3)

∑
s∈R
s 6=r

yvrs =
∑
s∈R
s 6=r

yvsr, v ∈ V, r ∈ R, r > 0, (4.2.4)

∑
s∈R

yv0s = 1 =
∑
r∈R

yvr0, v ∈ V, (4.2.5)

STr ≤ wr ≤ STr + ∆L, r ∈ L, (4.2.6)

STr −∆M ≤ wr ≤ STr + ∆M , r ∈M, (4.2.7)

ws ≥ wr +
∑
v∈V

(T prirjr + TAT rjr + T psjris + TAT sis)yvrs +M1
rs(
∑
v∈V

yvrs − 1),

r ∈ L, s ∈ R, r 6= s, s > 0, jr 6= is, (4.2.8)

ws ≥ wr +
∑
v∈V

(T prirjr + TAT sjs)yvrs +M2
rs(
∑
v∈V

yvrs − 1),

r ∈ L, s ∈ R, r 6= s, s > 0, jr = is, (4.2.9)

ws ≥ (AVv + T tvkvis + TAT sis)yv0s, s ∈ L, v ∈ V, kv 6= is, (4.2.10)
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ws ≥ (AVv + TAT sis)yv0s, s ∈ L, v ∈ V, kv = is, (4.2.11)

ws ≥ wr + TLr + T prjris + TAT sis +M3
rs(yvrrs − 1),

r ∈M, s ∈ R, r 6= s, s > 0, jr 6= is, (4.2.12)

ws ≥ wr + TAT sis +M4
rs(yvrrs − 1),

r ∈M, s ∈ R, r 6= s, s > 0, jr = is, (4.2.13)

ws ≥ (AVvs + T pskvs is)yvs0s, s ∈M,kvs 6= is, (4.2.14)

ws ≥ yvs0sAVvs , s ∈M,kvs = is, (4.2.15)

wr ≥ 0, r ∈ R, (4.2.16)

yvrs ∈ {0, 1}, outr ∈ {0, 1}, v ∈ V, s, r ∈ R. (4.2.17)

The objective function (4.2.1) consists of minimizing the operational costs. These costs are
composed by aircraft positioning, which arise in trips that the aircraft fly without any passenger,
represented by the first term; the upgrade cost, the increase in cost when servicing a request with
an aircraft better than the one contracted, represented by the second term; and the outsourcing
costs, in which another company is contracted to service a specific request, represented by the
third term. Constraints (4.2.2) ensure that each customers’ request r ∈ L is serviced exactly
once by an aircraft with the appropriate type (or better) or by outsourcing. Likewise, constraints
(4.2.3) ensure that every maintenance event r ∈ M is attended by the corresponding aircraft
(a maintenance event is defined for a particular aircraft). The flow of aircraft is imposed by
constraints (4.2.4). These constraints enforce that an aircraft can service a request only if it
services one request before it and another after it (both these requests can be a dummy request 0).
Constraints (4.2.5) guarantee that the first and last requests for every aircraft are dummy requests.
Constraints (4.2.6)-(4.2.7) impose that the time windows for costumers and maintenance events
are respected, respectively. Constraints (4.2.8)-(4.2.11) compute the starting time of requests
that are serviced right after customer requests. Constraints (4.2.8) compute the starting time for
request s ∈ R for the case in which the departure airport for this request is different from the
airport from its previous request. Constraints (4.2.9) are similar, but consider the case where
the destination airport from previous request and the departure airport from request s ∈ L are
the same. Constraints (4.2.10) and (4.2.11) compute the starting time for the first request on
the planning horizon for each aircraft, if it is a customer request; the former is activated when
a repositioning flight is needed and the latter is activated when the aircraft already is in the
departure airport of request s ∈ L. Constraints (4.2.12)-(4.2.13) act similarly to (4.2.8)-(4.2.9),
but for requests that succeed maintenance events. Likewise, constraints (4.2.14)-(4.2.15) refer to
the first request of each aircraft in the planning horizon, just like in (4.2.10)-(4.2.11), but for the
case in which the first request is a maintenance one. An important difference between this type
of request, when compared to customer requests, is that they must be serviced by a particular
aircraft, and not by any aircraft of one or more types. Moreover, in these requests, the vehicle
must stay still in the ground during the whole service, instead of flying to other location, during
a certain time (TLr). In addition to compute the starting times of every request, constraints
(4.2.8)-(4.2.15) also prevent subtours. Finally, constraints (4.2.16) and (4.2.17) state the domain
of the decision variables.

The size of the big-M constants strongly impact the quality of the linear relaxation.
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To avoid a big-M excessively large, Munari and Alvarez (2019) suggests M1
rs = STr + ∆L +

T prirjr + TAT sjr + T psjris + TAT sis ; M
2
rs = STr + ∆L + T prirjr + TAT sis , in constraints (4.2.9); M3

rs =
STr+∆M+TLr+T prjris+TAT

s
is , in constraints (4.2.12); and finallyM4

rs = STr+∆M+TLr+TAT sis ,
in constraints (4.2.13).

A robust counterpart of formulation (4.2.1)–(4.2.17) was developed by Campos, Alvarez
and Munari (2019) considering uncertainty on travel times and using the cardinality constrained
set, which is presented in Subsection 4.2.2 for completeness sake. Before that, we develop a novel
formulation for the deterministic problem based on the CF formulation, similarly as the one
presented in Chapter 3 for the traditional VRPTW.

4.2.1.2 CF aircraft routing formulation

We can develop a different compact model for the addressed deterministic aircraft routing
problem based on the CF formulation proposed in Section 3.1 for the traditional VRPTW. This
formulation was expected to provide stronger liner relaxation and possibly better deterministic
solutions than the MTZ model, similarly to the results in the literature instances for the VRPTW.
For this purpose, we define the continuous variable grs that represents the total elapsed time of
the aircraft when it arrives in node s immediately after servicing request r. The parameters and
remaining decision variables are the same as in the MTZ-based model (4.2.33)-(4.2.56), except
for variables ws that are not needed anymore. Therefore, the resulting CF formulation is stated
as follows:

min
∑
v∈V

∑
r∈R

∑
s∈R

Cvrsyvrs +
∑
r∈L

∑
s∈R
s 6=r

∑
p∈P
p>pr

∑
v∈Vp

(ctvT tvirjr − cprT
pr
irjr

)yvrs +
∑
r∈L

Coutroutr (4.2.18)

s.t.
∑
p∈P
p≥pr

∑
v∈Vp

∑
s∈R
s 6=r

yvrs + outr = 1, r ∈ L, (4.2.19)

∑
s∈R
s 6=r

yvrs = 1, r ∈M,v ∈ V, (4.2.20)

∑
s∈R
s 6=r

yvrs =
∑
s∈R
s 6=r

yvsr, v ∈ V, r ∈ R, r > 0, (4.2.21)

∑
s∈R

yv0s = 1 =
∑
r∈R

yvr0, v ∈ V, (4.2.22)

∑
v∈V

STsyvrs ≤ grs ≤
∑
v∈V

(STs + ∆L)yvrs, r ∈ R, s ∈ L, (4.2.23)

∑
v∈V

(STs −∆M )yvrs ≤ grs ≤
∑
v∈V

(STs + ∆M )yvrs, r ∈ R, s ∈M, (4.2.24)

∑
s∈R,s>0
s 6=r,jr 6=is

(grs −
∑
v∈V

(T tvirjr + TAT rjr + T tvjris + TAT sis)yvrs)+

∑
s∈R,s>0
s6=r,jr=is

(grs −
∑
v∈V

(T tvirjr + TAT sis)yvrs) ≥
∑
h∈R
h 6=r

ghr, r ∈ L, (4.2.25)

g0s −
∑
v∈V

(AVv + T tvkvis + TAT sis)yv0s ≥ 0, s ∈ L, kv 6= is, (4.2.26)



Chapter 4. Robust aircraft routing for on-demand air transportation 89

g0s −
∑
v∈V

(AVv + TAT sis)yv0s ≥ 0, s ∈ L, v ∈ V, kv = is, (4.2.27)

∑
s∈R,s>0
s 6=r,jr 6=is

(grs − (TLr + T prjris + TAT sis)yvrrs)+

∑
s∈R,s>0
s 6=r,jr=is

(grs − (TLr + TAT sis)yvrrs) ≥
∑
h∈R
h6=r

ghr, r ∈M, (4.2.28)

g0s − (AVvs + T pskvs is)yvs0s ≥ 0, s ∈M,kvs 6= is, (4.2.29)

g0s −AVvsyvs0s ≥ 0, s ∈M,kvs = is, (4.2.30)

grs ≥ 0, r, s ∈ R, (4.2.31)

yvrs ∈ {0, 1}, outr ∈ {0, 1}, v ∈ V, r, s ∈ R. (4.2.32)

The objective function (4.2.18) and constraints (4.2.19)-(4.2.22) are exactly the same as (4.2.1)-
(4.2.5) in the MTZ-based formulation. In a similar fashion as the MTZ model, the time windows
for costumer and maintenance requests are enforced by constraints (4.2.23)-(4.2.24), respectively.
The time flow constraints for each type of request, given by constraints (4.2.25)-(4.2.30), act
similarly as constraints (4.2.8)-(4.2.15) in the MTZ-based model, they only differ on the structure
due to variables wr being replaced for the commodity flow variables grs. Particularly constraints
(4.2.25), and their counterpart for maintenance events (4.2.28), encompass two sets of constraints
from the MTZ model: (4.2.8) and (4.2.9), or (4.2.12) and (4.2.13) in the case of maintenance
events. The first sum in constraints (4.2.25) and (4.2.28) are analogous to constraints (4.2.8) and
(4.2.12), respectively, in which we compute the elapsed time case jr 6= is whereas the second term
refers to the constraints where jr = is, (4.2.9 and 4.2.13). The remaining constraints related to the
first node in a route (4.2.26)-(4.2.27) and (4.2.29)-(4.2.30) are analogous to their counterpart in
the MTZ-based formulation (4.2.10)-(4.2.11) and (4.2.14)-(4.2.15). Remarkably, the constraints
in the new formulation do not need big-M parameters, strengthening their linear relaxation.
Finally, constraints (4.2.31) and (4.2.32) set the domain of decision variables.

4.2.2 RO formulations based on the cardinality constrained uncertainty set

4.2.2.1 MTZ-based RO formulation

To obtain a robust counterpart of the MTZ-based model (4.2.1)–(4.2.17), Campos, Alvarez
and Munari (2019) added the index γ to the continuous variable ws, thus resulting in the decision
variable wsγ . This index is to indicate the number of traversed arcs in which the travel costs
attain their worst-case values. Thus, variable wsγ represents the earliest time at which request
r ∈ R can be started assuming that γ traversed arcs attain their worst-case values in travel
time simultaneously. In addition, we now have that the travel time in a given arc is represented
by its nominal value (T̄ tvij ) and maximum deviation (T̂ tvij ). With these new parameters, the
robust counterpart of the MTZ-based model using the linearization technique based on dynamic
programming is given as follows:

min
∑
v∈V

∑
r∈R

∑
s∈R

Cvrsyvrs +
∑
r∈L

∑
s∈R
s 6=r

∑
p∈P
p>pr

∑
v∈Vp

(ctv T̄ tvirjr − cpr T̄
pr
irjr

)yvrs +
∑
r∈L

Coutroutr (4.2.33)
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s.t.
∑
p∈P
p≥pr

∑
v∈Vp

∑
s∈R
s 6=r

yvrs + outr = 1, r ∈ L, (4.2.34)

∑
s∈R
s6=r

yvrs = 1, r ∈M,v ∈ V, (4.2.35)

∑
s∈R
s6=r

yvrs =
∑
s∈R
s 6=r

yvsr, v ∈ V, r ∈ R, r > 0, (4.2.36)

∑
s∈R

yv0s = 1 =
∑
r∈R

yvr0, v ∈ V, (4.2.37)

STr ≤ wrγ ≤ STr + ∆L, r ∈ L, γ ≤ Γ, (4.2.38)

STr −∆M ≤ wrγ ≤ STr + ∆M , r ∈M,γ ≤ Γ, (4.2.39)

wsγ ≥ wrγ +
∑
v∈V

(T̄ prirjr + TAT rjr + T̄ psjris + TAT sis)yvrs +M1
rs(
∑
v∈V

yvrs − 1),

r ∈ L, s ∈ R, r 6= s, s > 0, jr 6= is, γ ≤ Γ, (4.2.40)

wsγ ≥ wr(γ−1) +
∑
v∈V

(T̄ prirjr + T̂ prirjr + TAT rjr + T̄ psjris + TAT sis)yvrs +M1
rs(
∑
v∈V

yvrs − 1),

r ∈ L, s ∈ R, r 6= s, s > 0, jr 6= is, 0 < γ ≤ Γ, (4.2.41)

wsγ ≥ wr(γ−1) +
∑
v∈V

(T̄ prirjr + TAT rjr + T̄ psjris + T̂ psjris + TAT sis)yvrs +M1
rs(
∑
v∈V

yvrs − 1),

r ∈ L, s ∈ R, r 6= s, s > 0, jr 6= is, 0 < γ ≤ Γ, (4.2.42)

wsγ ≥ wr(γ−2) +
∑
v∈V

(T̄ prirjr + T̂ prirjr + TAT rjr + T̄ psjris + T̂ psjris + TAT sis)yvrs

+M1
rs(
∑
v∈V

yvrs − 1), r ∈ L, s ∈ R, r 6= s, s > 0, jr 6= is, 1 < γ ≤ Γ, (4.2.43)

wsγ ≥ wrγ +
∑
v∈V

(T̄ prirjr + TAT sjs)yvrs +M2
rs(
∑
v∈V

yvrs − 1),

r ∈ L, s ∈ R, r 6= s, s > 0, jr = is, γ ≤ Γ, (4.2.44)

wsγ ≥ wr(γ−1) +
∑
v∈V

(T̄ prirjr + T̂ prirjr + TAT sjs)yvrs +M2
rs(
∑
v∈V

yvrs − 1),

r ∈ L, s ∈ R, r 6= s, s > 0, jr = is, 0 < γ ≤ Γ, (4.2.45)

wsγ ≥ (AVv + T̄ tvkvis + TAT sis)yv0s, s ∈ L, v ∈ V, kv 6= is, γ ≤ Γ, (4.2.46)

wsγ ≥ (AVv + T̄ tvkvis + T̂ tvkvis + TAT sis)yv0s,

s ∈ L, v ∈ V, kv 6= is, 0 < γ ≤ Γ, (4.2.47)

wsγ ≥ (AVv + TAT sis)yv0s, s ∈ L, v ∈ V, kv = is, γ ≤ Γ, (4.2.48)

wsγ ≥ wrγ + TLr + T̄ prjris + TAT sis +M3
rs(yvrrs − 1),

r ∈M, s ∈ R, r 6= s, s > 0, jr 6= is, γ ≤ Γ, (4.2.49)

wsγ ≥ wr(γ−1) + TLr + T̄ prjris + T̂ prjris + TAT sis +M3
rs(yvrrs − 1),

r ∈M, s ∈ R, r 6= s, s > 0, jr 6= is, 0 < γ ≤ Γ, (4.2.50)

wsγ ≥ wrγ + TAT sis +M4
rs(yvrrs − 1),

r ∈M, s ∈ R, r 6= s, s > 0, jr = is, γ ≤ Γ, (4.2.51)

wsγ ≥ (AVvs + T̄ pskvs is)yvs0s, s ∈M,kvs 6= is, γ ≤ Γ, (4.2.52)
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wsγ ≥ (AVvs + T̄ pskvs is + T̂ pskvs is)yvs0s, s ∈M,kvs 6= is, 0 < γ ≤ Γ, (4.2.53)

wsγ ≥ yvs0sAVvs , s ∈M,kvs = is, γ ≤ Γ, (4.2.54)

wrγ ≥ 0, r ∈ R, γ ≤ Γ, (4.2.55)

yvrs ∈ {0, 1}, outr ∈ {0, 1}, v ∈ V, r, s ∈ R. (4.2.56)

The objective function (4.2.33) and constraints (4.2.34)-(4.2.37) are exactly the same as
in the deterministic MTZ-based model. Similarly to (4.2.6)-(4.2.7), constraints (4.2.38)-(4.2.39)
enforce the time windows of requests. The only difference to the deterministic model is the
addition of the index γ in the time variables.

Constraints (4.2.40)-(4.2.43) are the robust counterpart of constraints (4.2.8). Essentially,
these constraints compute the earliest possible starting time for requests that follow a customer
request when considering that the travel times of γ traversed arcs attain their worst-case value
simultaneously. They determine the greatest value among four possibilities: (a) take only the
nominal travel times regarding the service of request r ∈ L and repositioning for the next request
while considering γ parameters attained their worst-case values on previous requests (4.2.40);
(b) consider that only the travel times for service r ∈ L assumes its worst-case value while the
repositioning flight assumes its nominal value and the other γ − 1 worst-case realizations happen
on previous requests (4.2.41); (c) consider that the travel times for service r ∈ L assumes a
nominal value while the repositioning flight assumes its worst-case value and the other γ − 1
worst-case realizations happen on previous requests (4.2.42); or (d) both flights assume their
worst-case value and the other γ − 2 worst-case realizations happen on previous requests (4.2.43).
The remaining constraints in the model follow a similar rationale and correspond to robust
counterparts of the time constraints in the MTZ-based model of the deterministic case.

4.2.2.2 Commodity Flow RO formulation

In this topic, we develop the robust counterpart of model (4.2.18)-(4.2.32) by adopting
the same strategy as in Section 3.2. In this formulation, we add the index γ to the variable grs,
thus resulting in the new robust variable grsγ that represents the elapsed time for the vehicle
that services requests r and s consecutively, considering that the travel times of γ traversed
arcs simultaneously attain their worst-case value. Changing the parameters the same way as in
previous section, we have the following CF model:

min
∑
v∈V

∑
r∈R

∑
s∈R

Cvrsyvrs +
∑
r∈L

∑
s∈R
s 6=r

∑
p∈P
p>pr

∑
v∈Vp

(ctv T̄ tvirjr − cpr T̄
pr
irjr

)yvrs +
∑
r∈L

Coutroutr (4.2.57)

s.t.
∑
p∈P
p≥pr

∑
v∈Vp

∑
s∈R
s 6=r

yvrs + outr = 1, r ∈ L, (4.2.58)

∑
s∈R
s 6=r

yvrs = 1, r ∈M,v ∈ V, (4.2.59)

∑
s∈R
s 6=r

yvrs =
∑
s∈R
s 6=r

yvsr, v ∈ V, r ∈ R, r > 0, (4.2.60)

∑
s∈R

yv0s = 1 =
∑
r∈R

yvr0, v ∈ V, (4.2.61)
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∑
v∈V

STryvrs ≤ grsγ ≤
∑
v∈V

(STr + ∆L)yvrs, r ∈ R, s ∈ L, γ ≤ Γ, (4.2.62)

∑
v∈V

(STr −∆M )yvrs ≤ grsγ ≤
∑
v∈V

(STr + ∆M )yvrs, r ∈ R, s ∈M,γ ≤ Γ, (4.2.63)

∑
s∈R,s>0
s 6=r,jr 6=is

(grsγ −
∑
v∈V

(T̄ prirjr + TAT rjr + T̄ psjris + TAT sis)yvrs)+

∑
s∈R,s>0
s 6=r,jr=is

(grsγ −
∑
v∈V

(T̄ prirjr + TAT sis)yvrs) ≥
∑
h∈R
h 6=r

ghrγ , v ∈ V, r ∈ L, γ ≤ Γ, (4.2.64)

∑
s∈R,s>0
s 6=r,jr 6=is

(grsγ −
∑
v∈V

(T̄ prirjr + T̂ prirjr + TAT rjr + T̄ psjris + TAT sis)yvrs)+,

∑
s∈R,s>0
s 6=r,jr=is

(grsγ −
∑
v∈V

(T̄ prirjr + T̂ prirjr + TAT sis)yvrs) ≥
∑
h∈R
h 6=r

ghr(γ−1),

v ∈ V, r ∈ L, 0 < γ ≤ Γ, (4.2.65)∑
s∈R,s>0
s 6=r,jr 6=is

(grsγ −
∑
v∈V

(T̄ prirjr + TAT rjr + T̄ psjris + T̂ psjris + TAT sis)yvrs) ≥
∑
h∈R
h 6=r

ghr(γ−1),

r ∈ L, r > 0, 0 < γ ≤ Γ, (4.2.66)∑
s∈R,s>0
s 6=r,jr 6=is

(grsγ −
∑
v∈V

(T̄ prirjr + T̂ prirjr + TAT rjr + T̄ psjris + T̂ psjris + TAT sis)yvrs) ≥
∑
h∈R
h 6=r

ghr(γ−2),

r ∈ L, r > 0, 1 < γ ≤ Γ, (4.2.67)

g0sγ −
∑
v∈V

(AVv + T̄ tvkvis + TAT sis)yv0s ≥ 0, s ∈ L, kv 6= is, γ ≤ Γ, (4.2.68)

g0sγ −
∑
v∈V

(AVv + T̄ tvkvis + T̂ tvkvis + TAT sisyv0s) ≥ 0,

s ∈ L, kv 6= is, 0 < γ ≤ Γ, (4.2.69)

g0sγ −
∑
v∈V

(AVv + TAT sis)yv0s ≥ 0, s ∈ L, v ∈ V, kv = is, γ ≤ Γ, (4.2.70)

∑
s∈R,s>0
s 6=r,jr 6=is

(grsγ −
∑
v∈V

(TLr + T̄ prjris + TAT sis)yvrrs)+,

∑
s∈R,s>0
s 6=r,jr=is

(grsγ −
∑
v∈V

(TLr + TAT sis)yvrrs) ≥
∑
h∈R
h 6=r

ghrγ , r ∈M,γ ≤ Γ, (4.2.71)

∑
s∈R,s>0
s 6=r,jr 6=is

(grsγ −
∑
v∈V

(TLr + T̄ prjris + T̂ prjris + TAT sis)yvrrs) ≥
∑
h∈R
h 6=r

ghr(γ−1),

r ∈M, 0 < γ ≤ Γ, (4.2.72)∑
s∈R,s>0
s 6=r,jr=is

(grsγ −
∑
v∈V

TAT sisyvrrs) ≥ 0, r ∈M,γ ≤ Γ, (4.2.73)

g0sγ −
∑
v∈V

(AVvs + T̄ pskvs is)yvs0s ≥ 0, s ∈M,kvs 6= is, γ ≤ Γ, (4.2.74)

g0sγ −
∑
v∈V

(AVvs + T̄ pskvs is + T̂ pskvs is)yvs0s ≥ 0, s ∈M,kvs 6= is, 0 < γ ≤ Γ, (4.2.75)

g0sγ −
∑
v∈V

AVvsyvs0s ≥ 0, s ∈M,kvs = is, γ ≤ Γ, (4.2.76)

grsγ ≥ 0, r, s ∈ R, γ ≤ Γ, (4.2.77)
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yvrs ∈ {0, 1}, outr ∈ {0, 1}, v ∈ V, r, s ∈ R. (4.2.78)

The objective function (4.2.57) and constraints (4.2.58)-(4.2.61) are exactly the same
as in the RO formulation with MTZ constraints presented in the previous section (4.2.33)-
(4.2.37). The time windows for costumer and maintenance requests are enforced by constraints
(4.2.62)-(4.2.63), respectively. Robust time flow constraints for each type of request, found in
constraints (4.2.64)-(4.2.76) works exactly the same for their equivalent in (4.2.40)-(4.2.54). The
main difference is that, similarly to the deterministic formulation, constraints (4.2.64), (4.2.65)
and (4.2.71) encompass a pair of set of constrains from MTZ, one for each sum in those constraints,
the first one of these sum in each constraint refers to the arcs where positioning is needed and
the second sum represent the case where the this type of flight is not necessary. For example,
constraints (4.2.64) are equivalent to (4.2.40) and (4.2.44) in the MTZ model. Note that some
time flow constraints, namely (4.2.66), (4.2.67) and (4.2.72) have a single sum term, and not
two as the other time flow constraints. This happens because these constraints, which represent
either delay in the positioning (4.2.66) and (4.2.72) or in both the service and positioning flights
(4.2.67), require a positioning to exist, thus we only need to consider the arcs in which jr 6= is

for these constraints. Finally, constraints (4.2.77) and (4.2.78) set the domain of variables.

4.2.3 RO formulations based on the single knapsack uncertainty set

4.2.3.1 MTZ-based RO formulation

To extend model (4.2.1)-(4.2.17) to incorporate this uncertainty set, we use the same
strategy we used for the model in Section 3.3. We add an index δ that represents the total
deviation already considered in a route into the time load variable wr. The new variable, wrδ,
represents the starting time of request r ∈ R considering that a total deviation δ ≤ ∆ already
occurred in the route, ∆ being the maximum deviation allowed. The travel time parameter (T pij)
is represented again by its nominal value (T̄ pij) and maximum deviation (T̂ pij). With no more
noticeable changes, the full robust model is as follows:

min
∑
v∈V

∑
r∈R

∑
s∈R

Cvrsyvrs +
∑
r∈L

∑
s∈R
s6=r

∑
p∈P
p>pr

∑
v∈Vp

(ctv T̄ tvirjr − cpr T̄
pr
irjr

)yvrs +
∑
r∈L

Coutroutr (4.2.79)

s.t.
∑
p∈P
p≥pr

∑
v∈Vp

∑
s∈R
s 6=r

yvrs + outr = 1, r ∈ L, (4.2.80)

∑
s∈R
s 6=r

yvrs = 1, r ∈M,v ∈ V, (4.2.81)

∑
s∈R
s 6=r

yvrs =
∑
s∈R
s 6=r

yvsr, v ∈ V, r ∈ R, r > 0, (4.2.82)

∑
s∈R

yv0s = 1 =
∑
r∈R

yvr0, v ∈ V, (4.2.83)

STr ≤ wrδ ≤ STr + ∆L, r ∈ L, δ ≤ ∆, (4.2.84)

STr −∆M ≤ wrδ ≤ STr + ∆M , r ∈M, δ ≤ ∆, (4.2.85)

wsδ ≥ wrδ +
∑
v∈V

(T̄ prirjr + TAT rjr + T̄ psjris + TAT sis)yvrs +M1
rs(
∑
v∈V

yvrs − 1),
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r ∈ L, s ∈ R, r 6= s, s > 0, jr 6= is, δ ≤ ∆, (4.2.86)

wsδ ≥ wr(δ−λ) +
∑
v∈V

(T̄ prirjr + TAT rjr + T̄ psjris + TAT sis + λ)yvrs +M1
rs(
∑
v∈V

yvrs),

r ∈ L, s ∈ R, r 6= s, s > 0, jr 6= is, 0 < λ ≤ δ ≤ ∆, λ ≤ (T̂ prirjr + T̂ psjris), (4.2.87)

wsδ ≥ wrδ +
∑
v∈V

(T̄ prirjr + TAT sjs)yvrs +M2
rs(
∑
v∈V

yvrs − 1),

r ∈ L, s ∈ R, r 6= s, s > 0, jr = is, δ ≤ ∆, (4.2.88)

wsδ ≥ wr(δ−λ) +
∑
v∈V

(T̄ prirjr + TAT sjs + λ)yvrs +M2
rs(
∑
v∈V

yvrs − 1),

r ∈ L, s ∈ R, r 6= s, s > 0, jr = is, 0 < λ ≤ δ ≤ ∆, λ ≤ T̂ prirjr , (4.2.89)

wsδ ≥ (AVv + T̄ tvkvis + TAT sis)yv0s, s ∈ L, v ∈ V, kv 6= is, δ ≤ ∆, (4.2.90)

wsδ ≥ (AVv + T̄ tvkvis + TAT sis + λ)yv0s,

s ∈ L, v ∈ V, kv 6= is, 0 < λ ≤ δ ≤ ∆, λ ≤ T̂ tvkvis , (4.2.91)

wsδ ≥ (AVv + TAT sis)yv0s, s ∈ L, v ∈ V, kv = is, δ ≤ ∆, (4.2.92)

wsδ ≥ wrδ + TLr + T̄ prjris + TAT sis +M3
rs(yvrrs − 1),

r ∈M, s ∈ R, r 6= s, s > 0, jr 6= is, δ ≤ ∆, (4.2.93)

wsδ ≥ wr(δ−λ) + TLr + T̄ prjris + TAT sis + λ+M3
rs(yvrrs − 1),

r ∈M, s ∈ R, r 6= s, s > 0, jr 6= is, 0 < λ ≤ δ ≤ ∆, λ ≤ T̂ prirjr , (4.2.94)

wsδ ≥ wrδ + TAT sis +M4
rs(yvrrs − 1),

r ∈M, s ∈ R, r 6= s, s > 0, jr = is, δ ≤ ∆, (4.2.95)

wsδ ≥ (AVvs + T̄ pskvs is)yvs0s, s ∈M,kvs 6= is, δ ≤ ∆, (4.2.96)

wsδ ≥ (AVvs + T̄ pskvs is + λ)yvs0s, s ∈M,kvs 6= is, 0 < λ ≤ δ ≤ ∆, λ ≤ˆ̂T pskvs is , (4.2.97)

wsδ ≥ AVvsyvs0s, s ∈M,kvs = is, δ ≤ ∆, (4.2.98)

wrδ ≥ 0, r ∈ R, δ ≤ ∆. (4.2.99)

yvrs ∈ {0, 1}, outr ∈ {0, 1}, v ∈ V, r, s ∈ R.(4.2.100)

Like the previous models, the objective function (4.2.79) and the first four sets of constraints,
the ones ensuring that every request is serviced and vehicle flow (4.2.80-4.2.83), are identical to
the ones in the original formulation (4.2.1-4.2.5). Likewise, the time windows constraints, (4.2.84)
and (4.2.85), are similar to (4.2.6) and (4.2.7), respectively, the only difference between the ones
in the robust model from the original model is the addition of index δ into the time variable.

Constraints (4.2.86) and (4.2.87) compute the earliest starting time of request s ∈ R
if it is serviced immediately after a customer request r ∈ L, and a positioning flight between
requests is needed. The starting time of a given request s ∈ R is the latest according to two
cases: considering a deviation of δ time units during the route but not in the previous request
(4.2.86), or by adding λ ≤ δ deviation into the request r and consider a deviation of only δ − λ
in the route previous to this request (4.2.87). The value of λ is also limited by the deviation
on the flights related to request r i.e., the sum of deviations from the repositioning flight, if
needed, and the flight boarded by the customer. Constraints (4.2.88) and (4.2.89) are similar to
(4.2.86) and (4.2.87), but for the case in which repositioning flight is not required. Constraints
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(4.2.90) and (4.2.91) are the robust extension of (4.2.10), and refers to the first request attended
by the aircraft during the planning horizon. (4.2.92) are essentially the same constraints as
(4.2.11), and refer to the first request of planing horizon of each aircraft when repositioning
is not needed. Constraints (4.2.93)-(4.2.98), are analogous to(4.2.86)-(4.2.92) but for the case
in which the previous attended request r was a maintenance one. Similarly to (4.2.8)-(4.2.15),
constraints (4.2.86)-(4.2.98) act twofold, not only they compute starting times of each request,
they also prevent the formation of subtours. Finally, constraints (4.2.99) and (4.2.100) determine
the domain of the variables.

4.2.3.2 Commodity Flow RO formulation

The same approach was used to develop a robust model based on the CF formulation for
the company’s case considering the knapsack uncertainty set. Similarly to the CF formulation
proposed for the cardinality constrained uncertainty set, the main differences from this robust
formulation to the deterministic model (4.2.18)-(4.2.32) is the addition of the index δ, that
represents the accumulate deviation in the route, into the variable grs and the split of the travel
time parameter into its nominal and maximum deviation value. The new variable grsδ represents
the total time load carried between requests r and s considering a total deviation of δ ≤ ∆
already computed in the route. The parameter ∆ is the budget of total deviation allowed in a
route.

min
∑
v∈V

∑
r∈R

∑
s∈R

Cvrsyvrs +
∑
r∈L

∑
s∈R
s 6=r

∑
p∈P
p>pr

∑
v∈Vp

(ctvT tvirjr − cprT
pr
irjr

)yvrs

+
∑
r∈L

Coutroutr (4.2.101)

s.t.
∑
p∈P
p≥pr

∑
v∈Vp

∑
s∈R
s 6=r

yvrs + outr = 1, r ∈ L, (4.2.102)

∑
s∈R
s 6=r

yvrs = 1, r ∈M, v ∈ V, (4.2.103)

∑
s∈R
s 6=r

yvrs =
∑
s∈R
s 6=r

yvsr, v ∈ V, r ∈ R, r > 0, (4.2.104)

∑
s∈R

yv0s = 1 =
∑
r∈R

yvr0, v ∈ V, (4.2.105)

∑
v∈V

STryvrs ≤ grsδ ≤
∑
v∈V

(STr + ∆L)yvrs, r ∈ R, s ∈ L, δ ≤ ∆, (4.2.106)

∑
v∈V

(STr −∆M )yvrs ≤ grsδ ≤
∑
v∈V

(STr + ∆M )yvrs, r ∈ R, s ∈M, δ ≤ ∆, (4.2.107)

∑
s∈R,s>0
s 6=r,jr 6=is

(grsδ − (T̄ prirjr + TAT rjr + T̄ psjris + TAT sis)yvrs)+

∑
s∈R,s>0
s6=r,jr=is

(grsδ − (T̄ prirjr + TAT sis)yvrs) ≥
∑
h∈R
h 6=r

ghrδ, v ∈ V, r ∈ L, δ ≤ ∆, (4.2.108)

∑
λ≤(T̂ prirjr+T̂ psjris )

s∈R,s>0
s 6=r,jr 6=is

(grsδ − (T̄ prirjr + TAT rjr + T̄ psjris + TAT sis + λ)yvrs)+
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∑
λ≤T̂ prirjr
s∈R,s>0
s 6=r,jr=is

(grsδ − (T̄ prirjr + TAT sis + λ)yvrs) ≥
∑
h∈R
h 6=r

ghr(δ−λ),

v ∈ V, r ∈ L, 0 < λ ≤ δ ≤ ∆, (4.2.109)

gv0sδ − (AVv + T̄ tvkvis + TAT sis)yv0s ≥ 0,

v ∈ V, s ∈ L, kv 6= is, 0 < δ ≤ ∆, (4.2.110)

gv0sδ − (AVv + T̄ tvkvis + TAT sis + λ)yv0s ≥ 0,

v ∈ V, s ∈ L, kv 6= is, 0 < λ ≤ δ ≤ ∆, λ ≤ T̂ tvkvis , (4.2.111)

gv0sδ − (AVv + TAT sis)yv0s ≥ 0,

v ∈ V, s ∈ L, kv = is, δ ≤ ∆, (4.2.112)∑
s∈R,s>0
s 6=r,jr 6=is

(grsδ − TLr + T̄ prjris + TAT sis)yvrs+

∑
s∈R,s>0
s 6=r,jr=is

(grsδ − TLr − TAT sis)yvrrs ≥
∑
h∈R
h6=r

ghrδ, r ∈M, δ ≤ ∆, (4.2.113)

∑
λ≤T̂ prjris
s∈R,s>0
s 6=r,jr 6=is

(grsδ − TLr + T̄ prjris + TAT sis + λ)yvrrs ≥
∑
h∈R
h 6=r

ghr(δ−λ),

r ∈M, 0 < λ ≤ δ ≤ ∆, (4.2.114)

gv0sδ − (AVvs + T̄ pskvs is)yvs0s ≥ 0, s ∈M,kvs 6= is, δ ≤ ∆, (4.2.115)

gv0sδ − (AVvs + T̄ pskvs is + λ)yvs0s ≥ 0,

s ∈M,kvs 6= is, 0 < λ ≤ δ ≤ ∆, λ ≤ T̂ pskvs is , (4.2.116)

gv0sδ − yvs0sAVvs ≥ 0, s ∈M,kvs = is, δ ≤ ∆, (4.2.117)

grsδ ≥ 0, v ∈ V, r, s ∈ R, λ ≤ ∆, (4.2.118)

yvrs ∈ {0, 1}, outr ∈ {0, 1}, v ∈ V, r, s ∈ R. (4.2.119)

This formulation is equivalent to the MTZ one for the same uncertainty set, with each constraint
acting similarly to their respective counterpart from the MTZ formulation. The only difference
between then is how the constraints are structured. The objective function of minimizing the
positioning, upgrade and outsourcing costs (4.2.101), is identical to the deterministic model.
The vehicle flow constraints (4.2.102)-(4.2.105), also have no changes from the deterministic
formulation. The time windows constraints, (4.2.102) and (4.2.105), are also similar to the
deterministic ones, and the only notable difference is the addition of index δ into the variable.
Time flow constraints for every type of request are found in (4.2.108)-(4.2.117). Constraints
(4.2.108)-(4.2.109) compute the earliest arrival time possible in request s, considering a total
deviation of δ, when the previous request serviced by aircraft v is a customer request. Constraints
(4.2.108) are used when no deviation is considered in the arc that arrives in s, while constraints
(4.2.109) consider λ units in this deviation. In both cases there are two sums, the first encompasses
the requests in which positioning is needed, whereas the second represents the case in which the
destination airport from the previous request is the same as the departure airport of request s.
Note that the index λ found in constraints (4.2.109) represent the total deviation considered in
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arc (r, s), thus its value is limited not only by δ but also the maximum deviation in that arc,
which is represented by (T̂ prirjr + T̂ prjris) if there is a positioning between nodes r and s, or simply
(T̂ prirjr) if no positioning is required. Constraints (4.2.110)-(4.2.112) are used for the first request
in the planning horizon of each aircraft, if it is a customer request. The first two constraints
are activated when repositioning flight is needed and the last one is when it is not. Constraints
(4.2.113)-(4.2.117) are similar to (4.2.108)-(4.2.112), but for maintenance requests. Lastly, the
domain of decisions variables are set in constraints (4.2.118) and (4.2.119).

4.3 Branch-and-cut algorithm

To incorporate crew assignment to the models described in the previous section, we
develop a B&C algorithm that dynamically introduces cuts into the proposed models when a
candidate solution is infeasible regarding crew rules. Additionally, to consider the possibility
and costs of allowing the crew members to work overtime, we adapt the proposed models by
introducing a new parameter covr, which represents an estimate unit cost for a crew to work
overtime on request r, and the positive continuous decision variable overr, which represent the
total overtime in request r in the solution. With these additional information, we update the
objective function of all models to also consider the overtime costs in the problem, resulting in
following objective function:

min
∑
v∈V

∑
r∈R

∑
s∈R

Cvrsyvrs +
∑
r∈L

∑
s∈R
s 6=r

∑
p∈P

p>pr

∑
v∈Vp

(ctv
T tv

irjr
− cpr

T pr

irjr
)yvrs +

∑
r∈L

Coutroutr +
∑
r∈R

covroverr.

This objective function minimizes the total operational cost with the last term representing the
costs related to overtime. Notice that we do not directly introduce any new constraint related to
overtime into the models, as the overtime is only related to the crew’s requirements and thus
will only be changed by the cuts generated by the algorithm. In the remainder of this section,
we present the separation algorithm developed for the problem, first for the deterministic case
(Subsection 4.3.1) and then its robust counterpart (Subsection 4.3.2).

4.3.1 Separation algorithm for the deterministic problem

The proposed separation algorithm consists of a labelling strategy (Feillet, 2010) based on
dynamic programming to verify whether a solution is feasible in the scope of crew requirements,
since it is impossible to define when the crew should rest in a route when analyzing the route only
up to a specific node, as this decision impacts following nodes. For example, resting before the
nth node in a route might not violate its time windows, but this extra time might make the time
window of the (n+ 1)th node infeasible. Thus, one should account for the different resting options
and possible future impacts in a route. For this purpose, we developed a labeling algorithm.
Firstly, in a given solution, let Rv = (r0, r1, r2, . . . , rn+1) be a route of aircraft v, where r0 and
rn+1 are nodes that represent the initial and final artificial requests. In the labeling framework,
we assign a bucket to each node and, inside each bucket, there are different labels related to this
node. Labels are data structures responsible to carry a series of essential information through
the buckets for calculating accumulated resources and checking the feasibility condition.

Regarding the crew requirements, we consider four resources: the total elapsed time
(Elapl); the total flying time (Flyl); the total duty time (DTl) since the last rest; and the
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total overtime cost (OTl) accumulated up to label l. In addition, each label keeps track of
the information of the parent (previous) label, useful for backtracking in post-processing. This
procedure is summarized in Algorithm 1.

Algorithm 1: Separation algorithm
Input: Solution candidate.
Output: Feasibility solution for the crew assignments.

1 foreach aircraft v ∈ V do
2 Get Rv;
3 Create a bucket for each node in Rv;
4 Create label l in the bucket of node r0 with the initial characteristics of the aircraft;
5 for i← 0 to n, step+ 1 do
6 foreach label l ∈ bucket of node ri do
7 Extend the current label l to all six possible cases and create child labels for

those that are feasible in ri+1;
8 end
9 Check whether the created child labels dominate or are dominated by other

existing labels in the bucket of node ri or by themselves;
10 Delete the dominated labels;
11 if there is no label in the current node then
12 Infeasible route: Add no-good cuts to eliminate solution;
13 break;
14 end
15 end
16 end
17 if cuts were not inserted in the model then
18 return Feasible solution for the crew requirements;
19 end
20 else
21 return Flag the solution candidate as infeasible for the crew requirements;
22 end

The first operation in Algorithm 1, after getting the route Rv and creating its respective
buckets, is defining a label at the bucket of node r0 with the initial characteristics of the aircraft,
such as the time it is available and the accumulated duty time since the last rest at the beginning
of the planning horizon. Accumulated duty values are non-zero when the company’s planning
starts in the middle of a duty of a specific aircraft. After creating the label for node r0, the
algorithm extends it to the bucket of the first request in the route, r1. Likewise, each generated
label will be extended to the next nodes of the route, or at least an attempt will be made. This
process is repeated until the last node in the route is reached or there is no way to create any
label for the next node in the route, in which case the solution is deemed infeasible. As pointed
out in line 5 of the algorithm, when extending a label, there are six different possible cases
related to rest decisions and whenever a verified case is feasible, a child label is generated using
its strategy. Thus, each label can have up to six children. The options related to rest between
requests that should be checked are represented in Figure 13. In this figure, a request that can
be of any type is represented by a blue box. The time windows for the start time of the second
request is represented with a black outline besides or inside it. If a case requires specifically
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a maintenance event, it is represented by a green box. Additionally, before the last request of
each case, there is a positioning flight (ferry), represented by a red box. Finally, resting and
presentation times, are represented by, respectively, yellow and brown/orange (depending if it is
at the beginning or end of the duty) boxes.

Case 6

Case 5

Case 4

Case 3

Case 2

Case 1 Request

Request

Request

Request

Request

Ferry

Ferry

Ferry

Ferry

Ferry

Ferry

POS

POS

POS

minRest

minRest

minRest minRest

minRest

PRE

PRE

PRE

PRE

PRE

Request

Request

Request

Request

Request

Request

Maintenance Maintenance

POS

Figure 13 – Visual representation of all cases checked when extending a label to the next node.

The first case is the option of executing request ri and immediately prepare to start
request ri+1, without any rest. In case 2, the crew delays the start of the service as much as
possible in order to take advantage of the split duty rule. Particularly, we try to extend the time
the crew stays stationary to make the total break duration fall under the third category of the
split duty rule (over 6 hours) so only 60 minutes are added in the accumulated duty time for
the whole break. Case 3 occurs when the crew takes a rest between requests ri and ri+1 at the
departure airport of request ri+1. In this case the aircraft will start request ri+1 immediately
after ending the rest. If a positioning is required, Case 3 can be interpreted as taking a rest
after the positioning flight. Conversely, if there is no positioning the rest starts immediately
after the end of request ri, if it is a customer request, or at the moment the aircraft arrived at
the designated airport, if it is a maintenance event. Case 4 only exists if a positioning between
requests ri and ri+1 is required and represents the possibility to rest before the positioning. This
option is usually taken when positioning would exceed the duty limit. Case 5 is a combination of
cases 3 and 4, and represents the attempt to take a complete rest before and after positioning,
this one is especially useful on particularly long positioning trips. Finally, case 6 can be chosen
in a particular situation where two consecutive maintenance events on an aircraft happen at
the same airport. This allows the second maintenance to start while the crew is still resting,
instead of forcing the crew to return to work to start the second maintenance like in case 2. Note
that the label generated in case 6 is not inserted in the next node of the route (ri+1), but in the
following one (ri+2).

When a label is created, the algorithm verifies if it dominates or is dominated by any
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other existing label in the evaluated node. A label l1 dominates a label l2 in the same node or
bucket if and only if:

• Elapl1 ≤ Elapl2 ;

• DTl1 ≤ DTl2 ;

• Flyl1 ≤ Flyl2 ;

• OTl1 ≤ OTl2 ;

In other words, label l1 dominates l2 if, and only if, it has lower or equal elapsed time, less
accumulated duty, flying time and accumulated overtime costs at the start of the evaluated
node. This can happen, for example, when it is possible to take a rest between two requests
and the total elapsed time is still lower than the opening time windows, and thus case 1 will be
dominated by the ones that allow resting. Another situation in which this usually happens is
when we compare cases 3 and 4. The former usually dominates the latter, since its accumulated
duty time at the start of the next request is lower, except in the situation case 3 is infeasible.

A label l in the bucket representing request ri is considered infeasible, and thus not
allowed to be inserted, only if it disrespect the time windows of request ri (Elapl > STri + ∆).
Exceeding the maximum duty and flying times, on the other hand, is allowed and only results in
an increase in the accumulated overtime cost. Let lp be the parent node of request l, then one
can generally compute OTl using the following expression:

OTl = OTlp + max{0, F lyl −MaxFly,DTl −MaxDuty}.

However, if the evaluated case uses a rest (Cases 3-6), it is also important to check if the crew
needs to work overtime before the rest start of the rest, as the total duty and flying times are reset
after the rest and this information would be lost. For example, let rp be the request associated
to the bucket where lp belongs, then the total overtime for case 3 can be computed with the
following expression:

OTl =


OTlp + max{0, DTl + T pvirpjrp −MaxDuty, F lyl + T pvirpjrp −MaxFly}

+ max{0, F lyl −MaxFly,DTl −MaxDuty} if rp ∈ L,
OTlp + max{0, DTl + TLrp −MaxDuty, F lyl + TLrp −MaxFly}

+ max{0, F lyl −MaxFly,DTl −MaxDuty} if rp ∈M.

Figure 14 presents a numerical and visual example on how the B&C algorithm checks the
feasibility of a route. In this example, we want to verify if route R = (r0, r1, r2, r3, r0) is feasible.
This particular route is composed by the artificial node r0 (from where the aircraft departs and
returns) and three customer requests. The time windows for each request is found just below
their respective bucket and the duration of each request is found above it, i.e., 50 minutes for
r1, 150 for r2 and 180 for r3. The positioning times are found over the arrow connecting two
consecutive requests, thus 50 minutes between r0 and r1, 20 between r1 and r2 and 90 minutes
between r2 and r3.

We start the algorithm by generating a label in node r0. This label has a total elapsed
time (E) and accumulated duty time (D) equal to 0. We then extend the generated label with
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the six possible cases, not forgetting to add the presentation time (PRE) in this first extension.
Since the time window from request r1 closes very early, cases 3 to 5 are all infeasible because if
the crew takes a rest the elapsed time will exceed the closing time windows. Furthermore, since
there is no maintenance event in this problem, case 6 will never be used. Thus, only two labels
remain, one generated by case 1 and other generated by case 2. In this example, extending the
start of the service (case 2) at customer r1 was not worth it, as it resulted in more accumulated
duty and elapsed time than simply start the service on time, and thus only the label generated
by case 1 remained. This label was then extended to request r2 and a behavior similar to the
previous case was identified. The only notable difference was that there was not a dominance
relationship between the labels generated by cases 1 and 2, as one presented lower total elapsed
time (case 1) and the other presented lower accumulated duty times (case 2). We now extend
both labels to the bucket of r3. This time, the label generated by case 3 dominated the other
ones. This bucket also exemplify why case 2 is relevant, as the child of the label generated by
this case was the one that provided the best result. Finally, we can easily extend the generated
label to the remaining node (r0). Thus, we were able to successfully generate labels for all nodes
in the route and confirm that this route is feasible.
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Figure 14 – Visual representation of a labeling structure.

If it is not possible to generate any label in some node, we consider the route infeasible
and cut-off the solution. For this purpose, we introduce feasibility cuts, in which we cut the
route up to the node with no labels, limiting the sum of the binary variables. Suppose route
Rv = (r0, r1, . . . , rk . . . , rn) is assigned to vehicle v and it becomes infeasible at node rk. The
algorithm would generate the following cut:

yvr0r1 + yvr1r2 + yvr2r3 + · · ·+ yvrk−1rk ≤ k − 1. (4.3.1)

This inequality prevents vehicle v to take this sequence of nodes up to node rk, and thus cutting
not only this route, but any other that would try this combination in v up to node rk.
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If a route is feasible, but an overtime is required, we check if the solution has already
set an appropriate value for each variable overr for each request rk in route R, i.e., we check if
overr ≥ OTrk −OTrk−1 . If the solution consider a total overtime in a request r smaller than the
value computed by the labelling algorithm, then the following cut is introduced into the problem:

(OTrk −OTrk−1)
(
yvr0r1 + yvr1r2 + yvr2r3 + · · ·+ yvrk−1rk − (k − 1)

)
≤ overr. (4.3.2)

This cut ensures that the overtime costs are properly computed in the objective function if that
specific route is taken.

4.3.2 Separation algorithm for the RO problem under time uncertainty

To extend the deterministic separation algorithm previously discussed, we adapt the
labelling structure of the problem to consider the uncertainty on travelling times with the studied
uncertainty sets. Particularly, instead of using a single value for Elapl in label l, we use an
array of size Γ + 1 (or ∆ + 1 if using the knapsack uncertainty set). Thus, in a problem with
the cardinality constrained uncertainty set, the elapsed time is represented by matrix Elaplγ ,
which constitutes the total elapsed time in label l when up to γ ∈ {0 . . .Γ} parameters attain
their worst-case value in the route. Similarly, in a problem with the knapsack uncertainty set
we use matrix Elaplδ to represent the total elapsed time in label l with a total deviation of
δ = {0, . . . ,∆}. The same changes are done to the remaining time variables computed in each
label (DTl, Flyl and OTl).

We use arrays to represent the total elapsed time, duty time, flying time and overtime
in each label so we can use a dynamic programming strategy inspired in equations (2.3.90), if
considering the cardinality constrained uncertainty set, and (3.3.3), for the knapsack uncertainty
set, to compute the worst-case value of these parameters when generating a label with one of
the six cases. For example, let l1 be a label children of l0 generated by case 1 in a problem that
considers the cardinality constrained uncertainty set and let the request related to the bucket of
label l0, r0, be a customer request which requires a positioning flight to the departure of the
request in the bucket of label l1, r1. Then, the total elapsed time can be computed with the
following expression:

Elapl1γ =



max{ar1 , Elapl0γ + T̄
pr0
i0j0

+ TAT rj0 + T̄ p1
j0i1

+ TAT si1}, if γ = 0,
max{ar1 , Elapl0γ + T̄

pr0
i0j0

+ TAT rj0 + T̄ p1
j0i1

+ TAT si1 ,

Elapl0γ−1 + T̄
pr0
i0j0

+ T̂
pr0
i0j0

+ TAT rj0 + T̄ p1
j0i1

+ TAT si1 ,

Elapl0γ−1 + T̄
pr0
i0j0

+ TAT rj0 + T̄ p1
j0i1

+ T̂ p1
j0i1

+ TAT si1}, if γ = 1,
max{ar1 , Elapl0γ + T̄

pr0
i0j0

+ TAT rj0 + T̄ p1
j0i1

+ TAT si1 ,

Elapl0γ−1 + T̄
pr0
i0j0

+ T̂
pr0
i0j0

+ TAT rj0 + T̄ p1
j0i1

+ TAT si1 ,

Elapl0γ−1 + T̄
pr0
i0j0

+ TAT rj0 + T̄ p1
j0i1

+ T̂ p1
j0i1

+ TAT si1 ,

Elapl0γ−2 + T̄
pr0
i0j0

+ T̂
pr0
i0j0

+ TAT rj0 + T̄ p1
j0i1

+ T̂ p1
j0i1

+ TAT si1}, if γ > 1.

(4.3.3)

Essentially, the algorithm computes the earliest time that the service can start at request
r1 when considering γ parameters attained their worst-case value by checking which of the
following strategies results in a higher value: request r1 opening time; γ flights before the
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departure of request attained their worst-case value while the flights between l0 and l1 took a
nominal time; γ−1 requests before r0 and a single flight between l0 and l1 (request or positioning
flights) attained their worst-case value; or both flights between l0 and l1 and γ − 2 previous
flights had maximum duration. If γ = 0 or γ = 1, the algorithm uses the first two lines in (4.3.3)
as boundary conditions.

The other time variables (DTlγ and Flylγ) are computed using a similar strategy. For
DTlγ we must consider the split duty rule, that is, when computing the accumulated duty
time, we should use one of the expressions in Table 21 depending on the time the crew remains
grounded. For variable Flylγ , only the flying time parameter(T prirjr) should be considered in the
calculations. Thus, Flylγ have a similar expression to (4.3.1) but does not consider maintenance,
turnaround times or other parameter not related to travel time. Finally, the overtime costs for
each can be computed with a similar strategy as in the deterministic case, with the exception that
to compute OTlγ we use Flylγ and DTlγ with the respective γ in the expression. Furthermore,
for an option that requires a rest, DTlγ and Flylγ take into account only the flights and their
respective deviations after the rest. For example, let DTl3γ be the duty time when we consider
case 3 and γ worst-case realizations, and let j0 and i3 be, respectively, the arrival airport at the
parent request of l3 and the departure airport of request related to label l3. Then, to compute
DTl3γ we employ the following expression:

DTl3γ =


PRE + T̄ p3

j0i3
+ TAT si3 , if γ = 0,

max{PRE + T̄ p3
j0i3

+ TAT si3 ,

PRE + T̄ p3
j0i3

+ T̂ p3
j0i3

+ TAT si3}, if γ ≥ 1.

Similarly, for the knapsack uncertainty set, we compute for each δ ≤ ∆ the total
elapsed time (Elaplδ), accumulated duty time (DTlδ) and flying time (Flylδ) using a dynamic
programming strategy. For this set, the algorithm uses equations inspired in (3.3.3) as basis. For
instance, if one wants to compute the total elapsed time using case 1, generating label l1, the
following expression should be used:

Elapl1δ = max
{
ar1 ,max{Elapl0(δ−γ)+

γ≤min{δ,T̂
pr0
i0j0

+T̂ p1
j0i1
}

T̄
pr0
i0j0

+ TAT rj0 + T̄ p1
j0i1

+ TAT si1 + γ}
}
. (4.3.4)

A solution is robust infeasible if there is no feasible labels (due to time windows constraints)
in one of the buckets. In this case, the same feasibility cuts used in the deterministic problem,
given by (4.3.1), are introduced into the model, cutting the solution off. Similarly, the constraints
added to enforce the computed overtime costs of the route, given by (4.3.2), are the same as
in the deterministic case, with the exception that we consider the overtime for the worst-case
scenario (OTrΓ or OTr∆) instead of the deterministic solution.

4.4 Computational results

In this section, we present the results of computational experiments carried out to verify
the performance of the proposed solution approaches and analyze their relevance to decision-
making in practice. The experiments were run on a PC with a processor Intel Core i7-4790 3.6
GHz CPU and 16 GB RAM. The algorithm was implemented in language C++, on top of the
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Concert Library of the IBM CPLEX Optimization Studio v.12.10, and the cuts were inserted
using the generic callback routines provided by the library.

4.4.1 Instance description

The instances used in these experiments are actual data provided by an airline company
and correspond to four months of flight logs. The first month comprises 10 days of operation
and a total of 112 requests (including customer requests and maintenance events); the second
involves 10 days and 129 requests; the third consists of 8 days and 107 requests; and the fourth
month, a higher demand period, has 16 days and 576 requests. As proposed in Munari and
Alvarez (2019), we group the flights of each month in instance classes M1 to M4, such that each
instance covers three days of operation, which is compatible with the company’s usual planning
horizon (up to three days). Table 22 summarizes the instance classes information, showing the
total number of days (Day), instances (Ins) and the total (Tot) and average (Avg) number of
customer flight requests (L), maintenance events (M) and total requests (n = L+M) for each
class. It also presents the average number of airports (Air), number of aircraft (V) and types of
aircraft (P ) available in the instances of that respective month.

Table 22 – General instance information

M Day Ins
L M n

Air V P
Tot Avg Tot Avg Tot Avg

M1 10 8 58 18.19 54 16.94 112 35.13 30.00 18.38 7
M2 10 8 42 13.27 87 27.48 129 40.75 29.88 22.00 7
M3 8 6 95 35.66 12 4.51 107 40.17 46.00 21.83 7
M4 16 14 362 68.82 214 40.68 576 109.5 82.79 49.71 7

Overall, the first three classes have relatively small instances. They differ in the proportion
of customer and maintenance requests. Particularly, M1 is characterized by having a more balanced
distribution, with a similar number of requests of each type. Instances in class M2, on the other
hand, have considerably more maintenance events while instances in M3 are composed almost
exclusively by customer flight requests. Additionally, instances in M3 tend to have more airports.
These differences are expected to impact computational performance and cost composition of
the solutions, with M3 being more complex and requiring more outsourcing as it contains more
customers requests. Finally, class M4 is considerably larger than the previous ones, averaging over
100 requests per instance and more than twice as many aircraft and airports. Thus, instances of
this month are expected to be considerably more challenging to be solved than the others.

While the data provided by the company may have served as the basis for setting most
parameters, not all information was available and had to be estimated. Table 23 details this
information, listing the model parameters and showing whether the data was provided by the
company or estimated, and how it was estimated. Additionally, since we have no information
about the crews’ duty status, we assume that all crew members start to work on the planning
horizon immediately after a rest.
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Table 23 – Data source description

Parameter
Data source

Estimation strategyProvided Estimated
AVv x
kv x
ir x
jr x
tv x
pr x Aircraft type used to serve request r in the flight logs
vr x
υp x
dij x Great circle distance
T̄ pij x dij

υp

TLr x
TAT rk x Estimated by the company as 20 min
cv x
Cvrs x ctv T̄

tv
jris

Coutr x 2cpr T̄
pr
irjr

covr x 1.5cpr

STr x
∆L x
∆M x

MaxDuty x
MaxFly x
PRE x
POS x

4.4.2 Computational performance of the deterministic approaches

In this topic, we compare the performance of the proposed formulations. For this purpose,
we present Table 24, which shows the average computational time (CPUt) and the number of
instances solved to optimality (Opt) per class of instances, when solving the deterministic problem
using the MTZ-based (MTZ) and commodity flow (CF) models. We present the results using
the compact models standalone and the results of the full B&C algorithm. Since all approaches
provided optimal solutions for all instances, we omit the solution cost information from Table 24.
An analysis of these solutions regarding their costs is presented in Section 4.4.3.

Table 24 – Comparative results between the MTZ and CF formulations as compact models and
within the proposed B&C method

Compact B&C
MTZ CF MTZ CF

Opt CPUt(s) No CPUt(s) Opt CPUt(s) Opt CPUt(s)
M1 8 0.14 8 0.31 8 0.11 8 0.31
M2 8 0.16 8 0.30 8 0.16 8 0.90
M3 6 0.27 6 1.20 6 0.65 6 1.68
M4 14 3.43 14 39.19 14 247.00 12 415.27

Total 36 2.06 36 22.96 36 96.23 34 242.46

As the results indicate, the MTZ model outperforms the commodity flow formulation for
each instance classes and for both solution approaches, as noted by the average computational
times. More importantly, there were two instances (M4_10to12 and M4_11to13) that the B&C
algorithm with a CF formulation failed to prove optimality within the time limit, while it
succeeded when using the MTZ model. With this strictly superior performance, we used the
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MTZ formulation as basis for the B&C algorithm developed for the RO problem, whose results
are presented in Section 4.4.4.

One may notice that the B&C algorithms took considerably longer to be solved than
the standalone compact formulations. That is because the compact formulations and the B&C
algorithms model different problems. The compact formulations only considers the routing
constraints of the problem, while the B&C algorithms also ensures the crew requirements
described in Section 4.1.2. In fact, the B&C algorithms start with a compact formulation and
only when the solver finds an integer solution that is feasible for the routing constraints, it runs
the separation algorithm to verify if it is also feasible for crew rules, and introduce cuts to remove
the solution if it is not. Thus, it is expected that the B&C algorithms take longer to be solved
than their respective compact formulation, since in the best-case scenario, where the standalone
compact models and the B&C algorithms have the same optimal solution, the B&C algorithm
must, in addition to following the same solution steps used to solve the standalone compact
model, run the separation algorithm at least once.

4.4.3 Solution quality in the deterministic approach

In this topic, we evaluate the performance of the proposed B&C method in a deterministic
scenario, and compare the obtained solutions against those implemented by the company.
Additionally, we asses the impact of the customer requirements on the solutions by comparing
the solutions from the compact model proposed in Munari and Alvarez (2019) with the solutions
provided by our B&C algorithm, which not only contemplates all routing characteristics considered
in the compact model, but also introduces the crew requirements discussed in Section 4.1.2.
Furthermore, we want to evaluate the impact of considering the split duty rule in the problem,
and its possible advantages for the company.

We present the results of the B&C method in Table 25. Under the header Instances,
we have columns ID, n, L and M, which details the characteristics of all instances. Column
ID identifies each instance in the format Mx_ytoz, where x indicates the month, and y and z
represent the first and last days covered by the instance, respectively. The next header shows the
cost of the solution implemented by the company, based on the provided flight logs. In the first
column of this header, we show the total positioning cost of the routes taken by the company
(Cpos). Since overtime costs were estimated and the company does not employ outsourcing, we
consider this value as the “real” value of the company’s solution. Additionally, we also present
an estimate solution cost for the routes provided by the company, when they are enforced in
the proposed algorithm considering all constraints and cost types (Est). Note that these routes
may correspond to an infeasible solution, as in practice the company may have done last-minute
operational adjustments that violate the desired requirements for the routes. If such solution is
infeasible regarding the constraints considered in our approaches, we write the term “Inf” instead
of the estimated cost. The remaining columns present the total cost (Ctot) and computational
time (CPUt) of the solutions with a compact formulation standalone and the B&C algorithm,
both using the MTZ-based constraints. We show the information for the MTZ-based model and
B&C algorithm because, as seen in Section 4.4.2, they perform better than their counterpart
based on CF constraints. Particularly for the B&C algorithm, we present the results without
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considering the split duty rules (B&C w.o. SD) and using this strategy (B&C SD). It is worth
noting that all instances were solved within the time limit (3600 s), and therefore we omit the
optimality gap in Table 25. To help illustrate these results, we also present Figure 15, which
shows the average solution costs for the routes provided by the company or by the proposed
algorithms.

A first point we identified is that, in general, our B&C algorithm was able to provide
competitive solutions that were cheaper than the positioning cost of the company’s solution for
the majority of instances in a relatively short time, taking less than 2 minutes on average. As
expected, the instances from the fourth month, which present considerably higher demand, were
the hardest to solve. Nevertheless, the B&C obtained optimal solutions for them with an average
time of 247 seconds, and only two of them took more than 5 minutes to be solved. Considering
that currently the decision maker has to design the routes manually, and our algorithm accounts
for most of the relevant crew and routing requirements, we believe that it may strongly assist
the company.
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Figure 15 – Average costs for each month of instances

In some instances from M3 and M4, the solution provided by our algorithm was more
expensive than the total positioning cost of the solution implemented by the company. This
behaviour particularly more noticeable in the instances from M3, whose average cost was
considerably higher than the company’s solutions. However, when enforcing the company to
follow the same constraints used in the B&C algorithm, we notice that many of them are not
feasible, or require additional overtime costs which make them more expensive than the solution
found by our algorithm.

When comparing the solutions with the standalone compact model, which only considers
the routing constraints, and the B&C algorithm, which extends the compact model to consider
the crew requirements, it is possible to notice that considering crew requirements had some
negative impacts in the optimal solution, increasing its cost by 22.5% on average. This was
expected since the B&C deals with more, and tighter, constraints. This difference was more
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noticeable in months with higher customer demand, such as months 3 and 4, because the crew has
less opportunities to rest than months with proportionally more maintenance events. Remarkably,
all instances in months 1 and 2 actually had the same solution to the problem with and without
crew requirements. Moreover, using the B&C algorithm to insert these constraints iteratively
resulted in longer solution times than simply running the compact model with no crew constraints.
Nevertheless, this increase was fairly small in the smaller instances (M1-M3), with increments of
less than 1 second for all instances, and even the instances from M4 were solved within the time
limit.

Finally, when comparing the results of columns “B&C w.o. SD” and “B&C SD”, it is
possible to note that split duty rule employed by the company brings benefits. First, using this
strategy can reduce the total cost of the solution in about 2%, because taking this strategy could
save some overtime costs or allow the company to take some routes that would not be available
otherwise. Not only that, but since this rule slightly relax the problem’s requirements, employing
the split duty rule can actually speed up the computational times of the B&C algorithm, as some
solutions that would be cut-off may be accepted, finishing the search quicker. This is noticeable
in Table 25, where instances were solved more than 40% quicker when the split duty rule was
employed, even though there is a slight increase in the time the algorithm takes to verify each
node in the tree, as it requires one more verification step.

After comparing the solutions provided by our algorithm with those used by the company
and study the impact of the crew requirements, we shift our focus to the solution cost and time
composition. As noted in the instances description, each month has different characteristics
regarding the proportion of customers request (M1-M3) or total demand (M4) and are expect to
behave differently because of this. Particularly, it is expected that instances with more customer
requests face more overtime and outsourcing costs, since there will be less resting opportunities
for the crew. To assist in this analysis we present Table 26, which details the solution costs
and times for each instance. Based on the solution provided by the B&C algorithm (with split
duty rules), we show the total positioning (Pos), upgrade (Up), outsourcing (Out) and overtime
(Over) costs and times. Additionally, we also present the aggregated total cost (Tot) and the total
time the crew members worked in customer requests (Req) in each instance. To help visualize
these values, we also present Figure 16, which illustrates the average cost and time composition
of the solutions for each month’s instances.
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A first information that can be extracted from these results is that the positioning costs
are the main component of the optimal solutions for all months and represents, on average, 18.5%
of the total flying time. This is a good result brought by our algorithm because, in general, air
transportation companies spend more than 35% of their fleet time on positioning flights (Yao et
al., 2008). In fact, even if we account for the outsourcing time, our solutions allow crew members
to use almost 80% of their flight time working on customer requests, a value considerably higher
than the industry average. This is considerably positive, as this reduction affects the main
operational cost of the company, and thus providing a significant competitive advantage for the
company.

We are also able to confirm the previous insight regarding the outsource and overtime
costs, which are non-existent in the months characterized by fewer customer requests (M1-M2)
and more frequent in the remaining periods. Even so, the solver tends to avoid these costs as
much as possible, as their unit costs are considerably high. Outsourcing costs in particular are
only used if the solver is unable to service a customer request on time, and are usually taken
twice at most in a single instance. This outsourcing is usually a consequence of the assumption
that, at the beginning of the planning horizon, each crew member has just finished their rest, so a
presentation time of 40 minutes (PRE) is required, which makes customer orders with very small
closing time windows. In the real-world application, it is possible that this presentation time
would not be required (if the crew was in the middle of their duty at the start of the planning
horizon), allowing the customer to be serviced on time. Additionally, even though we considered
time windows as strong constraints in our model, the company can simply choose to start the
service late and compensate the customer in some other less costly way.

Moreover, upgrade costs have little impact on the total solution costs, accounting for
only 2.3% of the total value. This is advantageous since it allows the solver to replace the more
expensive positioning, overtime and outsourcing costs with a cheaper strategy. Indeed, by looking
into M3 and M4 data, we notice that even though the solution has a longer upgrade time,
outsourcing and overtime increase the total costs much more than the upgrades, a consequence
of these strategies having considerably higher unit costs.

4.4.4 RO approaches and impact of uncertainty

In this topic, we evaluate the impact of the RO approaches on the solutions with respect
to cost, robustness and computational performance. For this purpose, we analyze the results
of the model considering two different uncertainty sets for time travel, namely the cardinality
constrained uncertainty set, with budget values Γ ∈ {0, 1, 5, 10}, and the knapsack uncertainty
set with ∆ ∈ {0, 20, 40, 60}. When Γ = 0 or ∆ = 0, the algorithm is solving the deterministic
case. For both uncertainty sets, we assume time deviations α ∈ {0.1, 0.25, 0.5}.

To evaluate the robustness of a solution, we run a Monte Carlo simulation with 1000
scenarios, in which the travel times are randomly generated value between T̄ pij and T̄

p
ij(1 + α),

following a continuous uniform distribution. We evaluate the feasibility of each scenario by
checking if it is possible to meet all requests, respecting the time windows, following the solution
route. Note that once the route is fixed in a solution, the positioning, upgrade and outsourcing
costs do not change as their parameter values are estimated a priori with the deterministic value,
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and thus only the overtime costs may change in a given scenario.
Table 27 summarizes the results for the B&C method using the cardinality constrained

uncertainty set. For each Γ, α and month, we present the total number of instances tested (Ins),
number of instances deemed infeasible (Inf) and solved to optimality (Opt) by the proposed B&C
algorithm. We also present the average computational time (CPUt) and optimality gap (Gap) to
solves instances of a specific group. Finally, we present the percentage of infeasible scenarios in
the Monte Carlo simulation (Risk) and the percentage increase in the cost of the robust solution
over the deterministic solution, named as the price-of-robustness (PoR), for each combination of
α and Γ.

As expected, the algorithm tends to be more conservative as Γ increases, resulting in
solutions with lower risks but higher costs. For example, in higher deviation scenarios (α = 0.5),
robust solutions may cost more than twice as much as the deterministic solution, but in return
they are nearly immune to variability. The decision maker is free to choose whether they take
a more expensive, and safer route, or prefers to risk a cheaper route. Regardless, the solutions
provided by the robust optimization method are generally relevant, with trade-offs that can help
decision makers take an informed decision. Thus, we can conclude that the proposed method can
be useful as a decision support tool.

Despite the generally competitive results, the RO models had some limitations. The
first one is that in more constrained problems, with higher deviation α and budget Γ, there is a
greater chance that the algorithm will deem the instance infeasible for this combination of α and
Γ. For example, more than half of the instances in M4 in a high deviation scenario (α = 0.5) were
proven to be infeasible when considering Γ = 10. Another limitation of the approach is that it
struggles to solve larger instances, especially in more constrained instances. While the algorithm
was able to solve all deterministic M4 instances, it did not find an optimal solution or prove
infeasibility to some instances with deviation. This is particularly more frequent in instances
with higher α and Γ, since the B&C tends to repetitively cut-off candidate solutions, as we have
a more restricted problem.

An outlier in Table 27 is that in some set of instances with a fixed deviation level α,
the average risk and PoR are lower in some instances with higher Γ. Notably, instances from
M4, α = 0.5 and Γ = 10 presented, on average, higher risks and lower costs. This behavior is
consequence of some of the more expensive, and risky, instances turning infeasible when we
considered higher budgets, lowering these average overall.

Analysing the average solutions per month, we notice that the deterministic solutions
for instances in months M3 and M4 were generally the ones with worst performance. This is
a consequence of the higher quantity of customer requests, which naturally have tighter time
windows, in those instances and small travel time deviations can easily make the aircraft arrive
too late to serve the demand. To avoid this problem, the RO approach generally uses more
aircraft, with less requests per route and possibly more positioning, and outsourcing, which
considerably increases the costs overall. This is particularly noticeable in instances from month 3
and 4 with α = 0.5, where the robust solutions cost more than twice as much as the deterministic
ones, in exchange for completely nullifying the risks (which were more than 70% originally).

When compared to instances from M3 and M4, the second month, which is characterize for
having proportionally more maintenance events, presented less variability between deterministic
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Table 27 – Results of the proposed B&C algorithm for the cardinality constrained uncertainty
set

α = 10%
Γ M Ins Inf Opt CPUt(s) Gap(%) Risk (%) PoR(%)

0
M1 8 0 8 0.11 0.0% 11.58% -
M2 8 0 8 0.16 0.0% 0.00% -
M3 6 0 6 0.65 0.0% 0.00% -
M4 14 0 14 247.00 0.0% 31.02% -

1
M1 8 0 8 0.12 0.0% 0.00% 0.37%
M2 8 0 8 0.17 0.0% 0.00% 0.16%
M3 6 0 6 1.63 0.0% 0.00% 5.57%
M4 14 1 9 1087.95 0.8% 16.67% 8.42%

5
M1 8 0 8 0.20 0.0% 0.00% 0.37%
M2 8 0 8 0.20 0.0% 0.00% 0.16%
M3 6 0 6 2.69 0.0% 0.00% 6.30%
M4 14 4 5 1314.38 1.5% 16.67% 9.02%

10
M1 8 0 8 0.29 0.0% 0.00% 0.37%
M2 8 0 8 0.28 0.0% 0.00% 0.16%
M3 6 0 6 3.55 0.0% 0.00% 5.80%
M4 14 5 4 616.41 1.4% 14.29% 8.09%

Total 144 10 120 204.74 0.23% 5.64% 3.73%
α = 25%

Γ M Ins Inf Opt CPUt(s) Gap(%) Risk(%) PoR(%)

0
M1 8 0 8 0.11 0.0% 27.66% -
M2 8 0 8 0.16 0.0% 14.36% -
M3 6 0 6 0.65 0.0% 26.70% -
M4 14 0 14 247.00 0.0% 50.94% -

1
M1 8 0 8 0.18 0.0% 0.05% 6.79%
M2 8 0 8 0.15 0.0% 7.06% 1.27%
M3 6 1 5 3.41 0.0% 0.00% 40.23%
M4 14 1 5 2066.31 10.5% 10.00% 23.07%

5
M1 8 0 8 0.22 0.0% 0.00% 7.28%
M2 8 0 8 0.27 0.0% 2.63% 2.21%
M3 6 2 4 7.58 0.0% 0.00% 60.03%
M4 14 4 6 1469.98 7.0% 0.00% 30.70%

10
M1 8 0 8 0.33 0.0% 0.00% 7.28%
M2 8 0 8 0.32 0.0% 2.63% 2.21%
M3 6 3 3 3.53 0.0% 0.00% 27.04%
M4 14 7 4 1629.95 6.6% 0.00% 24.71%

Total 144 18 111 339.38 1.51% 9.43% 19.40%
α = 50%

Γ M Ins Inf Opt CPUt(s) Gap(%) Risk(%) PoR(%)

0
M1 8 0 8 0.11 0.0% 47.90% -
M2 8 0 8 0.16 0.0% 31.81% -
M3 6 0 6 0.65 0.0% 79.48% -
M4 14 0 14 247.00 0.0% 71.51% -

1
M1 8 0 8 0.39 0.0% 0.00% 23.16%
M2 8 0 8 0.48 0.0% 11.50% 4.66%
M3 6 3 3 19.82 0.0% 2.77% 81.67%
M4 14 6 0 2064.51 19.4% 6.36% 71.87%

5
M1 8 0 8 0.55 0.0% 6.90% 21.61%
M2 8 0 8 0.41 0.0% 7.04% 6.39%
M3 6 4 2 43.09 0.0% 0.00% 122.47%
M4 14 10 0 1028.96 10.6% 0.00% 95.98%

10
M1 8 1 7 1.31 0.0% 7.89% 16.74%
M2 8 0 8 0.97 0.0% 7.04% 6.48%
M3 6 4 2 59.60 0.0% 0.00% 128.83%
M4 14 10 0 1288.34 15.7% 0.00% 122.99%

Total 144 38 90 297.27 2.85% 16.96% 58.57%
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and robust solutions. Particularly, the deterministic solution for these instances were less sensible
to deviation, presenting lower average risks than the other months. While more robust solutions
tend to increase costs and reduce risks, they do so less intensively. At the most conservative
configuration, with α = 0.5 and Γ = 10, the RO approach presents a solution only 6.48% more
expensive than the deterministic solutions, but it was unable to completely nullify the risks.
This behavior is consequence of the higher frequency of maintenance events in these instances,
which reduces the necessity and possibility of positioning, upgrades and outsourcing, as the
maintenance must be executed in a specific aircraft. Thus, the risks in the more conservative
route are result of maintenance events in which the designated aircraft is unable to service on
time, and it is not possible to outsource this service.

Table 28 present the results of the B&C method with the knapsack uncertainty set,
following a similar structure to Table 27, but showing the budget ∆ instead of Γ. Generally
speaking, one can reach similar conclusions as with the cardinality constrained uncertainty set.
Increasing the budget ∆ results in more conservative solutions, with higher costs but lower risks.
Additionally, more instances are deemed infeasible when higher values for α and ∆ are considered.
The main difference in behaviour between the solutions provided by the knapsack and cardinality
constrained uncertainty sets is a relatively more consistent performance among all deviation
levels (α). While the number of instances that the B&C algorithm was able to find an optimal or
prove infeasibility decreases with higher α with the cardinality constrained uncertainty set, the
number of instances successfully solved remains almost the same to all α when considered the
knapsack uncertainty set. This is due to ∆ limiting the total deviation regardless of α, while in
the cardinality constrained uncertainty set a fixed Γ may incorporate more deviation depending
on α size, tightening the problem considerably more when deviation increases.

Furthermore, the algorithm seems to be able to perform better with the knapsack uncer-
tainty set than with the cardinality constrained set, as seen for the lower average computational
times and optimality gaps. Thus, using this uncertainty set might be preferable to the decision
maker, as it offers solutions with similar robustness and costs as the cardinality constrained
uncertainty set, but with lower computational times and an easier-to-estimate budget. The
cardinality constrained uncertainty set, however, might be more suitable for instances with
lower deviation levels (α=0.1), as it finds more feasible instances than the knapsack set in this
environment.

To further explore cost behavior of the robust solutions, we present the results for instance
M3_5to7 in Table 29. For each combination of α and ∆, the cost composition of the corresponding
solution is given by the positioning (Pos), upgrade (Up), outsourcing (Out), overtime (Over) and
total (Tot) costs. Additionally, we present the percentage of infeasible scenarios in the Monte
Carlo simulation (Risk) for each solution. This instance was chosen for having a well defining
behavior when α increases. To help visualize the cost behavior, Figure 17 shows the composition
of the solution cost for each α and ∆.

Moreover, the algorithm proceeds to take more expensive strategies as α increases. When
considering a deviation of α = 0.1, the algorithm chooses to slightly increase the positioning
costs, opting routes with less requests each. Now, when α = 0.25, we notice an increase not only
in the positioning costs but also in upgrades, a consequence of the more conservative routes. For
this level of uncertainty, robust solutions have a positive impact on risk, decreasing the chance of



Chapter 4. Robust aircraft routing for on-demand air transportation 115

Table 28 – Results of the proposed B&C algorithm for the knapsack uncertainty set
α = 10%

∆ M Ins Inf Opt CPUt(s) Gap(%) Risk (%) PoR(%)

0
M1 8 0 8 0.14 0.0% 11.58% -
M2 8 0 8 0.19 0.0% 0.00% -
M3 6 0 6 0.60 0.0% 0.00% -
M4 14 0 14 268.34 0.0% 31.02% -

20
M1 8 0 8 0.42 0.0% 0.00% 0.37%
M2 8 0 8 0.46 0.0% 0.00% 0.00%
M3 6 0 6 1.50 0.0% 0.00% 6.66%
M4 14 2 9 471.21 0.8% 17.81% 6.10%

40
M1 8 0 8 0.81 0.0% 0.00% 0.37%
M2 8 0 8 0.80 0.0% 0.00% 0.16%
M3 6 0 6 5.02 0.0% 0.00% 6.76%
M4 14 8 6 32.08 0.0% 0.00% 1.39%

60
M1 8 0 8 1.15 0.0% 0.00% 0.37%
M2 8 0 8 1.22 0.0% 0.00% 0.64%
M3 6 1 5 8.02 0.0% 0.00% 4.29%
M4 14 11 3 2.33 0.0% 0.00% 0.96%

Total 144 22 119 49.64 0.05% 3.78% 2.34%
α = 25%

∆ M Ins Inf Opt CPUt(s) Gap(%) Risk(%) PoR(%)

0
M1 8 0 8 0.14 0.0% 27.66% -
M2 8 0 8 0.19 0.0% 14.36% -
M3 6 0 6 0.60 0.0% 26.70% -
M4 14 0 14 268.34 0.0% 50.94% -

20
M1 8 0 8 0.55 0.0% 16.65% 3.57%
M2 8 0 8 0.71 0.0% 14.36% 0.35%
M3 6 0 6 9.02 0.0% 6.60% 38.99%
M4 14 3 9 466.51 0.7% 13.44% 23.61%

40
M1 8 0 8 0.90 0.0% 0.00% 7.28%
M2 8 0 8 0.85 0.0% 7.06% 1.27%
M3 6 0 6 27.01 0.0% 6.55% 37.78%
M4 14 8 6 43.76 0.0% 5.07% 18.15%

60
M1 8 0 8 1.33 0.0% 0.00% 7.28%
M2 8 0 8 1.36 0.0% 7.04% 1.57%
M3 6 1 5 8.29 0.0% 0.00% 29.56%
M4 14 12 2 14.17 0.0% 10.13% 7.88%

Total 144 24 118 52.73 0.04% 12.91% 14.77%
α = 50%

∆ M Ins Inf Opt CPUt(s) Gap(%) Risk(%) PoR(%)

0
M1 8 0 8 0.14 0.0% 47.90% -
M2 8 0 8 0.19 0.0% 31.81% -
M3 6 0 6 0.60 0.0% 79.48% -
M4 14 0 14 268.34 0.0% 71.51% -

20
M1 8 0 8 0.39 0.0% 23.11% 14.66%
M2 8 0 8 0.40 0.0% 27.33% 4.84%
M3 6 0 6 2.30 0.0% 23.47% 108.79%
M4 14 4 9 752.21 0.8% 34.29% 118.08%

40
M1 8 0 8 0.90 0.0% 0.00% 18.25%
M2 8 0 8 0.85 0.0% 14.86% 6.59%
M3 6 0 6 4.53 0.0% 19.45% 92.23%
M4 14 10 4 32.05 0.0% 14.03% 55.63%

60
M1 8 0 8 1.36 0.0% 0.00% 19.33%
M2 8 0 8 1.25 0.0% 11.50% 4.66%
M3 6 1 5 13.80 0.0% 2.20% 92.44%
M4 14 13 1 6.78 0.0% 83.20% 68.45%

Total 144 28 116 67.88 0.05% 30.26% 50.33%
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Table 29 – Costs and risks of the solutions for instance M3_5to7.

α ∆ Pos ($) Up ($) Out ($) Over ($) Tot ($) Risk(%)

10%
0 176296.64 11005.47 0.00 30970.47 218272.58 0.00%

20 189696.44 11005.47 0.00 35200.47 235902.38 0.00%
40 189696.44 11005.47 0.00 44350.41 245052.32 0.00%
60 189696.44 11005.47 0.00 54500.33 255202.24 0.00%

25%
0 176296.64 11005.47 0.00 30970.47 218272.58 8.20%

20 247694.99 24927.72 0.00 38638.10 311260.81 0.00%
40 247694.99 24927.72 0.00 47788.04 320410.75 0.00%
60 247694.99 24927.72 0.00 70938.22 343560.93 0.00%

50%
0 176296.64 11005.47 0.00 30970.47 218272.58 76.60%

20 261170.48 24927.72 278908.04 38638.10 603644.34 0.00%
40 261170.48 24927.72 278908.04 47788.04 612794.28 0.00%
60 261170.48 24927.72 278908.04 58537.94 623544.18 0.00%

𝛼=10% 𝛼=25% 𝛼=50%

Figure 17 – Cost composition of the solutions for instance M3_5to7 with different configurations
of α and Γ.

the solution being infeasible from 9.2% to 0.0%. Finally, with α = 0.5, in addition to increase the
positioning costs a little more, the solver chooses to pay for a costly outsourcing to ensure that a
customer request is serviced. Although expensive, this strategy was very beneficial in terms of
service level, reducing the risks from 76.6% to 0.0%. For this particular instance, changes in ∆
with a fixed α have little effect in the solution, only changing the expected overtime costs.
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5 Concluding Remarks and Future Work

We addressed traditional and real-world variants of the robust vehicle routing problem,
with focus on effective modeling and solution approaches. We presented the foundations and
the relevant literature review and then proposed novel deterministic and robust optimization
formulations based on commodity flow (CF) constraints considering the traditional cardinality
constrained uncertainty set. Furthermore, we developed new approaches based on the single
and the multiple knapsack uncertainty sets, deriving robust counterparts using the linearization
technique of dynamic programming equation. It is worth noting we found no work in literature
that proposed a compact formulation for the robust VRP with time windows (VRPTW) under
uncertainty on travel time for the knapsack uncertainty sets.

Computational experiments for the robust VRPTW using using benchmark instances
adapted from the literature were conducted. The main objective of these experiments was to
compare the proposed approaches for the cardinality constrained uncertainty set with the state-of-
the-art compact model. The results show that our formulations has stronger linear relaxation and
better results in instances with lower uncertainty levels and in some instance classes. Moreover,
we implemented a tailored branch-and-cut (B&C) algorithm for both studied formulations to
improve their results in the benchmark instances. We noted that although our commodity flow
was improved by the B&C algorithm, the state-of-the-art model, based on MTZ-based constraints,
presents more advantages in general, solving more instances to optimality within the time limit
and having lower optimality gaps for the ones that were not solved.

We also developed new models and solution approaches for the addressed real-life variant,
considering the deterministic problem and its robust extension. This variant is an aircraft routing
problem motivated by the case of a company offering on-demand passenger transportation services.
In the compact formulations, we considered all the routing constraints of the problem, such as
different types of requests, time windows and possibility of upgrades. Additionally, we proposed a
B&C algorithm based on labeling strategies that dynamically introduces crew requirements into
the deterministic problem and its robust counterpart. The proposed algorithm considers most
requirements related to routing and crew regulation, namely the minimum rest time, maximum
duty time, maximum flying time in a single duty, presentation times at the start and end of a
duty, the split duty rule and the possibility of working overtime. This separation algorithm was
then extended to consider uncertainty in travel times following robust optimization paradigms,
and considering two different uncertainty sets: the traditional cardinality-constrained set and
the single knapsack set. To our knowledge, no work in the literature addresses an air transport
problem considering all of the previous requirements in a deterministic or stochastic scenario.

Computational experiments using real-life data provided by the company showed that
the deterministic approach obtained optimal solutions for all instances within reasonably short
computational times. Moreover, the solution costs were, on average, considerably lower than the
costs of the routes employed by the company. We also noted that the version of the algorithm
with MTZ-based constraints outperformed the one based on commodity flow constraints. The
experiments with the robust approaches were more computationally demanding, and they were
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unable to find the optimal solution for some larger instances. Nevertheless, the algorithm was
successful in providing interesting solutions with trade-offs between cost and robustness for most
instances, leaving it up to the decision maker to choose a solution aligned with their strategy.
Thus, we can be concluded that the proposed algorithm can serve as a useful decision support
tool for the company, and provide competitive solutions for real-world instances in a short time.

There are different possible directions for future works. One would be to develop branch-
price-and-cut algorithms to solve the literature’s RVRPTW instances as well as the robust aircraft
routing problem, which would allow us to solve larger instances of the problem. These algorithms
may be combined with heuristic approaches, leading to an effective exact hybrid method for the
studied variants. Another interesting topic would be to extend the proposed compact models and
branch-and-cut algorithms to other types of uncertainty sets used in the RO literature, such as
the ellipsoidal and factor models, which may show more suitable features in the decision making
process.
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APPENDIX A – Robust formulations for the
VRPTW using the 3-knapsack uncertainty set

A.1 MTZ-based formulation

min
∑

(i,j)∈A
cijxij , (A.1.1)

s.t
n+1∑
i=1
i 6=j

xij = 1, j ∈ N∗, (A.1.2)

n∑
i=0
i 6=h

xih =
n+1∑
j=1
j 6=h

xhj , h ∈ N∗, (A.1.3)

ujδ1δ2δ3 ≥ uiδ1δ2δ3 + d̄j +M(xij − 1), i, j ∈ N, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, δ3 ≤ ∆d
3 (A.1.4)

ujδ1δ2δ3 ≥ uiδ1−d̂jδ2δ3
+ d̄j + d̂j +M(xij − 1),

i, j ∈ N, j ∈ S1, j 6∈ S2, 6∈ S3, d̂jδ1 ≤ ∆d
1, δ2 ≤ ∆d

2, δ3 ≤ ∆d
3, (A.1.5)

ujδ1δ2δ3 ≥ uiδ1δ2−d̂jδ3
+ d̄j + d̂j +M(xij − 1),

i, j ∈ N, j 6∈ S1, j ∈ S2, j 6∈ S3, δ1 ≤ ∆d
1, d̂j ≤ δ2 ≤ ∆d

2, δ3 ≤ ∆d
3, (A.1.6)

ujδ1δ2δ3 ≥ uiδ1δ2δ3−d̂j + d̄j + d̂j +M(xij − 1),

i, j ∈ N, j 6∈ S1, j 6∈ S2, j ∈ S3, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, d̂j ≤ δ3 ≤ ∆d
3, (A.1.7)

ujδ1δ2δ3 ≥ uiδ1−d̂jδ2−d̂jδ3
+ d̄j + d̂j +M(xij − 1),

i, j ∈ N, j ∈ S1, j ∈ S2, j 6∈ S3, d̂j ≤ δ1 ≤ ∆d
1, d̂j ≤ δ2 ≤ ∆d

2, δ3 ≤ ∆d
3, (A.1.8)

ujδ1δ2δ3 ≥ uiδ1−d̂jδ2δ3−d̂j + d̄j + d̂j +M(xij − 1),

i, j ∈ N, j ∈ S1, j 6∈ S2, j ∈ S3, d̂j ≤ δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, d̂j ≤ δ3 ≤ ∆d
3, (A.1.9)

ujδ1δ2δ3 ≥ uiδ1δ2−d̂jδ3−d̂j + d̄j + d̂j +M(xij − 1),

i, j ∈ N, j 6∈ S1, j ∈ S2, j ∈ S3, δ1 ≤ ∆d
1, d̂j ≤ δ2 ≤ ∆d

2, d̂j ≤ δ3 ≤ ∆d
3, (A.1.10)

ujδ1δ2δ3 ≥ uiδ1δ3−d̂jδ2−d̂jδ3−d̂j + d̄j + d̂j +M(xij − 1),

i, j ∈ N, j ∈ S1, j ∈ S2, j ∈ S3, d̂j ≤ δ1 ≤ ∆d
1, d̂j ≤ δ2 ≤ ∆d

2, d̂j ≤ δ3 ≤ ∆d
3, (A.1.11)

uj∆d
1δ2
≥ ui∆d

1−γδ2δ3
+ d̄j + γ +M(xij − 1),

i, j ∈ N, γ ≤ d̂j , j ∈ S1, j 6∈ S2, j 6∈ S3, δ2 ≤ ∆d
2, δ3 ≤ ∆d

3, (A.1.12)

uj∆d
1δ2
≥ uiδ1∆d

2−γδ3
+ d̄j + γ +M(xij − 1),

i, j ∈ N, γ ≤ d̂j , j 6∈ S1, j ∈ S2, j 6∈ S3, δ1 ≤ ∆d
1, δ3 ≤ ∆d

3, (A.1.13)

uj∆d
1δ2
≥ uiδ1δ2∆d

3−γ
+ d̄j + γ +M(xij − 1),

i, j ∈ N, γ ≤ d̂j , j 6∈ S1, j 6∈ S2, j ∈ S3, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, (A.1.14)
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uj∆d
1δ2
≥ ui∆d

1−γ∆d
2−γδ3

+ d̄j + γ +M(xij − 1),

i, j ∈ N, γ ≤ d̂j , j ∈ S1, j ∈ S2, j 6∈ S3, δ3 ≤ ∆d
3, (A.1.15)

uj∆d
1δ2
≥ ui∆d

1−γδ2∆d
3−γ

+ d̄j + γ +M(xij − 1),

i, j ∈ N, γ ≤ d̂j , j ∈ S1, j 6∈ S2, j ∈ S3, δ2 ≤ ∆d
2, (A.1.16)

uj∆d
1δ2
≥ uiδ1∆d

2−γ∆d
3−γ

+ d̄j + γ +M(xij − 1),

i, j ∈ N, γ ≤ d̂j , j 6∈ S1, j ∈ S2, j ∈ S3, δ1 ≤ ∆d
1, (A.1.17)

uj∆d
1δ2
≥ ui∆d

1−γ∆d
2−γ∆d

3−γ
+ d̄j + γ +M(xij − 1),

i, j ∈ N, γ ≤ d̂j , j ∈ S1, j ∈ S2, j ∈ S3, (A.1.18)

uj∆d
1∆d

2∆d
3
≤ Q, j ∈ N, (A.1.19)

wjδ1δ2δ3 ≥ wiδ1−γδ2δ3 + t̄ij + si + γ +M(xij − 1),

i, j ∈ N, γ ≤ t̂ij , j ∈ S1, j 6∈ S2, j 6∈ S3, γ ≤ δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, δ3 ≤ ∆t
3, (A.1.20)

wjδ1δ2δ3 ≥ wiδ1δ2−γδ3 + t̄ij + si + γ +M(xij − 1),

i, j ∈ N, γ ≤ t̂ij , j 6∈ S1, j ∈ S2, j 6∈ S3, δ1 ≤ ∆t
1, γ ≤ δ2 ≤ ∆t

2, δ3 ≤ ∆t
3, (A.1.21)

wjδ1δ2δ3 ≥ wiδ1δ2δ3−γ + t̄ij + si + γ +M(xij − 1),

i, j ∈ N, γ ≤ t̂ij , j 6∈ S1, j 6∈ S2, j ∈ S3, δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, γ ≤ δ3 ≤ ∆t
3, (A.1.22)

wjδ1δ2δ3 ≥ wiδ1−γδ2−γδ3 + t̄ij + si + γ +M(xij − 1),

i, j ∈ N, γ ≤ t̂ij , j ∈ S1, j ∈ S2, j 6∈ S3, γ ≤ δ1 ≤ ∆t
1, γ ≤ δ2 ≤ ∆t

2, δ3 ≤ ∆t
3, (A.1.23)

wjδ1δ2δ3 ≥ wiδ1−γδ2δ3−γ + t̄ij + si + γ +M(xij − 1),

i, j ∈ N, γ ≤ t̂ij , j ∈ S1, j 6∈ S2, j ∈ S3, γ ≤ δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, γ ≤ δ3 ≤ ∆t
3, (A.1.24)

wjδ1δ2δ3 ≥ wiδ1δ2−γδ3−γ + t̄ij + si + γ +M(xij − 1),

i, j ∈ N, γ ≤ t̂ij , j 6∈ S1, j ∈ S2, j ∈ S3, δ1 ≤ ∆t
1, γ ≤ δ2 ≤ ∆t

2, γ ≤ δ3 ≤ ∆t
3, (A.1.25)

wjδ1δ2δ3 ≥ wiδ1−γδ2−γδ3−γ + t̄ij + si + γ +M(xij − 1),

i, j ∈ N, γ ≤ t̂ij , j ∈ S1, j ∈ S2, j ∈ S3, γ ≤ δ1 ≤ ∆t
1, γ ≤ δ2 ≤ ∆t

2, γ ≤ δ3 ≤ ∆t
3, (A.1.26)

aj ≤ wjδ1δ2δ3 ≤ bj , i, j ∈ N, δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, δ3 ≤ ∆t
3, (A.1.27)

xij ∈ {0, 1}, i ∈ N (A.1.28)

uiδ1δ2δ3 ≥ 0, i ∈ N, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, δ3 ≤ δ3 (A.1.29)

wiδ1δ2δ3 ≥ 0, i ∈ N, δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, δ3 ≤ ∆t
3. (A.1.30)

A.2 CF formulation

min
∑

(i,j)∈A
cijxij , (A.2.1)

s.t
n+1∑
i=1
i6=j

xij = 1, j ∈ N∗, (A.2.2)
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n∑
i=0
i6=h

xih =
n+1∑
j=1
j 6=h

xhj , h ∈ N∗, (A.2.3)

∑
h∈N

fhiδ1δ2δ3 −
∑
j∈N

fijδ1δ2δ3 ≥ d̄i, i ∈ N, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, δ3 ≤ ∆d
3, (A.2.4)

∑
h∈N

fhiδ1δ2δ3 −
∑
j∈N

fijδ1−d̂iδ2δ3
≥ d̄i + d̂i,

i ∈ N, i ∈ S1, i 6∈ S2, i 6∈ S3, d̂i ≤ δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, δ3 ≤ ∆d
3, (A.2.5)∑

h∈N
fhiδ1δ2δ3 −

∑
j∈N

fijδ1δ2−d̂iδ3
≥ d̄i + d̂i,

i ∈ N, i 6∈ S1, i ∈ S2, i 6∈ S3, δ1 ≤ ∆d
1, d̂i ≤ δ2 ≤ ∆d

2, δ3 ≤ ∆d
3, (A.2.6)∑

h∈N
fhiδ1δ2δ3 −

∑
j∈N

fijδ1δ2δ3−d̂i ≥ d̄i + d̂i,

i ∈ N, i 6∈ S1, i 6∈ S2, i ∈ S3, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, d̂i ≤ δ3 ≤ ∆d
3, (A.2.7)∑

h∈N
fhiδ1δ2δ3 −

∑
j∈N

fijδ1−d̂iδ2−d̂iδ3
≥ d̄i + d̂i,

i ∈ N, i ∈ S1, i ∈ S2, i 6∈ S3, d̂i ≤ δ1 ≤ ∆d
1, d̂i ≤ δ2 ≤ ∆d

2, δ3 ≤ ∆d
3, (A.2.8)∑

h∈N
fhiδ1δ2δ3 −

∑
j∈N

fijδ1−d̂iδ2δ3−d̂i ≥ d̄i + d̂i,

i ∈ N, i ∈ S1, i 6∈ S2, i ∈ S3, d̂i ≤ δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, d̂i ≤ δ3 ≤ ∆d
3, (A.2.9)∑

h∈N
fhiδ1δ2δ3 −

∑
j∈N

fijδ1δ2−d̂iδ3−d̂i ≥ d̄i + d̂i,

i ∈ N, i 6∈ S1, i ∈ S2, i ∈ S3, δ1 ≤ ∆d
1, d̂i ≤ δ2 ≤ ∆d

2, d̂i ≤ δ3 ≤ ∆d
3, (A.2.10)∑

h∈N
fhiδ1δ2δ3 −

∑
j∈N

fijδ1−d̂iδ2−d̂iδ3−d̂i ≥ d̄i + d̂i,

i ∈ N, i ∈ S1, i ∈ S2, i ∈ S3, d̂i ≤ δ1 ≤ ∆d
1, d̂i ≤ δ2 ≤ ∆d

2, d̂i ≤ δ3 ≤ ∆d
3, (A.2.11)∑

h∈N
fhi∆d

1δ2δ3
−
∑
j∈N

fij∆d
1−γδ2δ3

≥ d̄i + γ, i

i ∈ N, i ∈ S1, i 6∈ S2, i 6∈ S3, δ2 ≤ ∆d
2, δ3 ≤ ∆d

3, γ < d̂i, (A.2.12)∑
h∈N

fhiδ1∆d
2δ3
−
∑
j∈N

fijδ1∆d
2−γδ3

≥ d̄i + γ, i

i ∈ N, i 6∈ S1, i ∈ S2, i 6∈ S3, δ1 ≤ ∆d
1, δ3 ≤ ∆d

3, γ < d̂i, (A.2.13)∑
h∈N

fhiδ1δ2∆d
3
−
∑
j∈N

fijδ1δ2∆d
3−γ
≥ d̄i + γ, i

i ∈ N, i 6∈ S1, i 6∈ S2, i ∈ S3, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, γ < d̂i, (A.2.14)∑
h∈N

fhi∆d
1∆d

2δ3
−
∑
j∈N

fij∆d
1−γ∆d

2−γδ3
≥ d̄i + γ, i

i ∈ N, i ∈ S1, i ∈ S2, i 6∈ S3, δ3 ≤ ∆d
3, γ < d̂i, (A.2.15)∑

h∈N
fhi∆d

1δ2∆d
3
−
∑
j∈N

fij∆d
1−γδ2∆d

3−γ
≥ d̄i + γ, i

i ∈ N, i ∈ S1, i 6∈ S2, i ∈ S3, δ2 ≤ ∆d
2, γ < d̂i, (A.2.16)∑

h∈N
fhiδ1∆d

2∆d
3
−
∑
j∈N

fijδ1∆d
2−γ∆d

3−γ
≥ d̄i + γ, i
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i ∈ N, i 6∈ S1, i ∈ S2, i ∈ S3, δ1 ≤ ∆d
1, γ < d̂i, (A.2.17)∑

h∈N
fhi∆d

1∆d
2∆d

3
−
∑
j∈N

fij∆d
1−γ∆d

2−γ∆d
3−γ
≥ d̄i + γ, i

i ∈ N, i 6∈ S1, i ∈ S2, i ∈ S3, γ < d̂i, (A.2.18)

fijδ1δ2δ3 ≤ Qxij , i, j ∈ N, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, δ3 ≤ ∆d
3, (A.2.19)∑

j∈N
gijδ1δ2δ3 ≥

∑
h∈N
γ≤t̂hi

(ghiδ1−γδ2δ3 + (t̄hi + γ)xhi) + si,

i ∈ N, i ∈ S1, i 6∈ S2, i 6∈ S3, γ ≤ δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, δ3 ≤ ∆t
3, (A.2.20)∑

j∈N
gijδ1δ2δ3 ≥

∑
h∈N
γ≤t̂hi

(ghiδ1δ2−γδ3 + (t̄hi + γ)xhi) + si,

i ∈ N, i 6∈ S1, i ∈ S2, i 6∈ S3, δ1 ≤ ∆t
1, γ ≤ δ2 ≤ ∆t

2, δ3 ≤ ∆t
3, (A.2.21)∑

j∈N
gijδ1δ2δ3 ≥

∑
h∈N
γ≤t̂hi

(ghiδ1δ2δ3−γ + (t̄hi + γ)xhi) + si,

i ∈ N, i 6∈ S1, i 6∈ S2, i ∈ S3, δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, γ ≤ δ3 ≤ ∆t
3, (A.2.22)∑

j∈N
gijδ1δ2δ3 ≥

∑
h∈N
γ≤t̂hi

(ghiδ1−γδ2−γδ3 + (t̄hi + γ)xhi) + si,

i ∈ N, i ∈ S1, i ∈ S2, i 6∈ S3, γ ≤ δ1 ≤ ∆t
1, γ ≤ δ2 ≤ ∆t

2, δ3 ≤ ∆t
3, (A.2.23)∑

j∈N
gijδ1δ2δ3 ≥

∑
h∈N
γ≤t̂hi

(ghiδ1−γδ2δ3−γ + (t̄hi + γ)xhi) + si,

i ∈ N, i ∈ S1, i 6∈ S2, i ∈ S3, γ ≤ δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, γ ≤ δ3 ≤ ∆t
3, (A.2.24)∑

j∈N
gijδ1δ2δ3 ≥

∑
h∈N
γ≤t̂hi

(ghiδ1δ2−γδ3−γ + (t̄hi + γ)xhi) + si,

i ∈ N, i 6∈ S1, iinS2, i ∈ S3, δ1 ≤ ∆t
1, γ ≤ δ2 ≤ ∆t

2, γ ≤ δ3 ≤ ∆t
3, (A.2.25)∑

j∈N
gijδ1δ2δ3 ≥

∑
h∈N
γ≤t̂hi

(ghiδ1−γδ2−γδ3−γ + (t̄hi + γ)xhi) + si,

i ∈ N, i ∈ S1, i ∈ S2, i ∈ S3, γ ≤ δ1 ≤ ∆t
1, γ ≤ δ2 ≤ ∆t

2, γ ≤ δ3 ≤ ∆t
3, (A.2.26)

(aj + sj)xij ≤ gijδ1δ2δ3 ≤ (bj + sj)xij , i, j ∈ N, δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, δ3 ≤ ∆t
3, (A.2.27)

xij ∈ {0, 1}, (i, j) ∈ A, , (A.2.28)

fijδ1δ2δ3 ≥ 0, (i, j) ∈ A, δ1 ≤ ∆d
1, δ2 ≤ ∆d

2, δ3 ≤ ∆d
3, , (A.2.29)

gijδ1δ2δ3 ≥ 0, (i, j) ∈ A, δ1 ≤ ∆t
1, δ2 ≤ ∆t

2, δ3 ≤ ∆t
3. (A.2.30)
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APPENDIX B – Results from the compact
models for the literature instances

B.1 Cardinality-Constrained Uncertainty set

In this section, we present in more details the results of our computational experiments
in instances of the literature for the cardinality constrained uncertainty set using the compact
models. We created tables for each model (MTZ and CF) showing the relevant information for
each set of instances separately. In these tables, for every combination of Γt, Γd and deviation
(Dev) studied, we present the average solution value (Sol) and the time taken to solve the
problem (Time) of both the linear relaxation and integer problem, and the Price-of-Robustness
(PoR), which represents how much the robust solution costs more than the deterministic solution,
expressed in percentage. To better evaluate the computational results, we also present the
percentage gap between the best solution obtained in the time limit and its lower bound (Gap),
if the solution is optimal this difference is zero. Finally, we also present the number of instances
(Ins) evaluated in that combination of Γq, Γt and deviations, how many of those were solved to
optimality by the model within the time limit (Opt) and the number of infeasible instances (Inf )
in that group.
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B.1.1 MTZ-based formulation

Table 30 – Average results from the MTZ formulation for the RVRPTW instances of class C1

C1
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 76.75 0.011 190.59 419.28 0.0% 0.8% 9 8 0
1 10% 0 0% 76.75 0.010 190.97 441.69 0.2% 1.9% 9 8 0
1 25% 0 0% 76.75 0.011 190.97 466.34 0.2% 0.9% 9 8 0
1 50% 0 0% 76.75 0.019 226.10 826.58 18.6% 3.0% 9 7 0
5 10% 0 0% 76.75 0.020 226.10 924.74 18.6% 5.0% 9 7 0
5 25% 0 0% 76.75 0.019 235.10 979.01 23.4% 5.0% 9 7 0
5 50% 0 0% 76.75 0.030 254.57 1364.81 33.6% 7.2% 9 6 0
10 10% 0 0% 76.75 0.032 226.10 956.45 18.6% 4.9% 9 7 0
10 25% 0 0% 76.75 0.035 252.91 1662.15 32.7% 10.1% 9 5 0
10 50% 0 0% 76.76 0.010 256.53 1662.17 34.6% 10.6% 9 5 0
0 0% 1 10% 76.76 0.011 190.59 444.49 0.0% 0.9% 9 8 0
0 0% 1 25% 76.78 0.011 190.59 459.81 0.0% 1.8% 9 8 0
0 0% 1 50% 76.77 0.022 195.84 434.27 2.7% 0.8% 9 8 0
0 0% 5 10% 76.78 0.022 190.59 532.16 0.0% 2.0% 9 8 0
0 0% 5 25% 76.81 0.022 190.59 519.16 0.0% 1.3% 9 8 0
0 0% 5 50% 76.77 0.041 206.30 547.15 8.2% 1.2% 9 8 0
0 0% 10 10% 76.79 0.041 190.59 657.14 0.0% 2.0% 9 8 0
0 0% 10 25% 76.83 0.043 190.59 766.38 0.0% 2.1% 9 8 0
0 0% 10 50% 76.76 0.012 206.30 695.62 8.2% 1.6% 9 8 0
1 10% 1 10% 76.76 0.01 190.97 448.43 0.00 1.2% 9 8 0
1 25% 1 25% 76.78 0.01 190.97 461.41 0.00 1.1% 9 8 0
1 50% 1 50% 76.77 0.04 226.66 851.16 0.19 3.0% 9 7 0
5 10% 5 10% 76.78 0.04 226.32 1217.40 0.19 5.0% 9 6 0
5 25% 5 25% 76.81 0.04 235.50 1138.43 0.24 5.1% 9 7 0
5 50% 5 50% 76.77 0.08 255.52 1339.80 0.34 9.5% 9 6 0
10 10% 10 10% 76.79 0.09 226.53 1257.82 0.19 7.2% 9 6 0
10 25% 10 25% 76.83 0.08 253.07 1759.80 0.33 11.0% 9 5 0
10 50% 10 50% 84.15 0.00 257.60 1713.04 0.35 12.4% 9 5 0

All 77.04 0.03 216.61 890.95 0.14 4.2% 252 198 0

Table 31 – Average results from the MTZ formulation for the RVRPTW instances of class R1

R1
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 290.11 0.011 463.37 128.72 0.0% 0.0% 12 12 0
1 10% 0 0% 290.11 0.011 463.37 269.55 0.0% 0.0% 12 12 0
1 25% 0 0% 290.11 0.010 463.37 249.41 0.0% 0.0% 12 12 0
1 50% 0 0% 290.11 0.019 463.37 230.45 0.0% 0.0% 12 12 0
5 10% 0 0% 290.11 0.019 463.37 418.38 0.0% 0.8% 12 11 0
5 25% 0 0% 290.11 0.019 463.37 417.42 0.0% 0.9% 12 11 0
5 50% 0 0% 290.11 0.036 463.37 417.79 0.0% 0.5% 12 11 0
10 10% 0 0% 290.11 0.033 463.37 626.57 0.0% 0.8% 12 11 0
10 25% 0 0% 290.11 0.036 463.37 667.29 0.0% 0.7% 12 11 0
10 50% 0 0% 290.27 0.012 463.37 650.56 0.0% 0.8% 12 11 0
0 0% 1 10% 290.50 0.011 466.89 223.91 0.8% 0.0% 12 12 0
0 0% 1 25% 290.96 0.011 477.74 152.68 3.0% 0.0% 12 12 0
0 0% 1 50% 290.49 0.025 464.38 83.10 5.1% 0.0% 12 8 4
0 0% 5 10% 291.06 0.026 469.31 399.64 1.3% 0.6% 12 11 0
0 0% 5 25% 292.14 0.028 481.78 337.84 3.9% 0.7% 12 11 0
0 0% 5 50% 290.54 0.049 486.99 309.74 10.3% 1.0% 12 7 4
0 0% 10 10% 291.20 0.049 470.74 512.44 1.7% 1.2% 12 11 0
0 0% 10 25% 292.52 0.053 482.74 393.83 4.1% 1.0% 12 11 0
0 0% 10 50% 290.27 0.014 488.18 327.78 10.6% 1.5% 12 7 4
1 10% 1 10% 290.50 0.01 466.89 265.08 0.01 0.0% 12 12 0
1 25% 1 25% 290.96 0.01 477.74 282.02 0.03 0.0% 12 12 0
1 50% 1 50% 290.49 0.04 464.38 102.22 0.05 0.0% 12 8 4
5 10% 5 10% 291.06 0.04 469.31 476.71 0.01 1.0% 12 11 0
5 25% 5 25% 292.14 0.05 482.32 397.25 0.04 0.9% 12 11 0
5 50% 5 50% 290.54 0.10 487.64 335.35 0.11 1.9% 12 7 4
10 10% 10 10% 291.20 0.10 470.18 880.85 0.02 1.8% 12 10 0
10 25% 10 25% 292.52 0.10 482.32 624.16 0.04 1.5% 12 11 0
10 50% 10 50% 286.63 0.00 488.79 365.42 0.11 2.5% 12 7 4

All 290.61 0.03 471.86 376.65 0.03 0.7% 336 293 24
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Table 32 – Average results from the MTZ formulation for the RVRPTW instances of class RC1

RC1
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 95.04 0.011 350.24 1802.80 0.0% 10.6% 8 4 0
1 10% 0 0% 95.04 0.010 350.24 1802.48 0.0% 10.2% 8 4 0
1 25% 0 0% 95.04 0.010 350.24 1802.13 0.0% 10.7% 8 4 0
1 50% 0 0% 95.04 0.019 379.94 1904.19 9.4% 18.8% 8 4 0
5 10% 0 0% 95.04 0.020 380.36 1936.52 9.5% 19.3% 8 4 0
5 25% 0 0% 95.04 0.019 455.99 3070.53 32.0% 29.3% 8 2 0
5 50% 0 0% 95.04 0.034 461.11 3132.86 33.4% 28.6% 8 2 0
10 10% 0 0% 95.04 0.035 379.94 1992.88 9.4% 23.4% 8 4 0
10 25% 0 0% 95.04 0.035 456.73 3093.38 32.2% 29.9% 8 2 0
10 50% 0 0% 95.06 0.011 480.80 3150.44 39.6% 33.6% 8 1 0
0 0% 1 10% 95.08 0.011 350.91 1643.99 0.1% 9.8% 8 5 0
0 0% 1 25% 95.11 0.011 352.91 1503.28 0.7% 8.4% 8 5 0
0 0% 1 50% 95.06 0.021 368.19 1235.43 7.1% 7.0% 8 5 1
0 0% 5 10% 95.08 0.019 352.58 1802.92 0.6% 18.0% 8 4 0
0 0% 5 25% 95.13 0.020 377.04 1519.10 7.1% 9.4% 8 5 0
0 0% 5 50% 95.06 0.039 425.04 1388.24 24.6% 13.3% 8 4 1
0 0% 10 10% 95.09 0.042 352.60 1803.70 0.7% 16.8% 8 4 0
0 0% 10 25% 95.14 0.040 382.59 1594.29 8.6% 12.8% 8 5 0
0 0% 10 50% 95.06 0.012 450.13 2255.03 32.8% 18.6% 8 2 1
1 10% 1 10% 95.08 0.01 350.91 1802.16 0.00 13.3% 8 4 0
1 25% 1 25% 95.11 0.01 352.91 1460.91 0.01 9.5% 8 5 0
1 50% 1 50% 95.06 0.04 406.50 1605.99 0.19 12.8% 8 4 1
5 10% 5 10% 95.08 0.04 385.69 1964.36 0.11 19.9% 8 4 0
5 25% 5 25% 95.13 0.04 466.53 2955.14 0.35 27.8% 8 2 0
5 50% 5 50% 95.06 0.08 486.46 2036.16 0.44 22.1% 8 3 1
10 10% 10 10% 95.09 0.08 388.38 2118.40 0.12 22.9% 8 4 0
10 25% 10 25% 95.14 0.08 472.25 3150.23 0.37 31.2% 8 1 0
10 50% 10 50% 95.17 0.00 489.37 2464.13 0.45 26.5% 8 2 1

All 95.08 0.03 402.02 2071.13 0.16 18.4% 224 99 6

Table 33 – Average results from the MTZ formulation for the RVRPTW instances of class C2

C2
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 144.57 0.010 214.45 13.28 0.0% 0.0% 8 8 0
1 10% 0 0% 144.57 0.010 214.45 8.75 0.0% 0.0% 8 8 0
1 25% 0 0% 144.57 0.010 214.45 17.26 0.0% 0.0% 8 8 0
1 50% 0 0% 144.57 0.018 214.45 25.59 0.0% 0.0% 8 8 0
5 10% 0 0% 144.57 0.019 214.45 25.56 0.0% 0.0% 8 8 0
5 25% 0 0% 144.57 0.018 214.45 65.01 0.0% 0.0% 8 8 0
5 50% 0 0% 144.57 0.031 214.45 66.76 0.0% 0.0% 8 8 0
10 10% 0 0% 144.57 0.032 214.45 136.57 0.0% 0.0% 8 8 0
10 25% 0 0% 144.57 0.035 214.45 99.75 0.0% 0.0% 8 8 0
10 50% 0 0% 144.57 0.010 214.45 84.05 0.0% 0.0% 8 8 0
0 0% 1 10% 144.58 0.011 214.45 15.99 0.0% 0.0% 8 8 0
0 0% 1 25% 144.58 0.010 214.45 16.29 0.0% 0.0% 8 8 0
0 0% 1 50% 144.57 0.018 214.63 21.15 0.1% 0.0% 8 8 0
0 0% 5 10% 144.58 0.018 214.45 255.45 0.0% 0.0% 8 8 0
0 0% 5 25% 144.59 0.020 214.63 82.65 0.1% 0.0% 8 8 0
0 0% 5 50% 144.58 0.037 214.63 155.87 0.1% 0.0% 8 8 0
0 0% 10 10% 144.58 0.035 214.45 462.98 0.0% 0.8% 8 7 0
0 0% 10 25% 144.60 0.036 214.63 180.64 0.1% 0.0% 8 8 0
0 0% 10 50% 144.57 0.012 214.63 91.81 0.1% 0.0% 8 8 0
1 10% 1 10% 144.58 0.01 214.45 14.94 0.00 0.0% 8 8 0
1 25% 1 25% 144.58 0.01 214.45 42.23 0.00 0.0% 8 8 0
1 50% 1 50% 144.57 0.03 214.63 15.49 0.00 0.0% 8 8 0
5 10% 5 10% 144.58 0.03 214.45 111.75 0.00 0.0% 8 8 0
5 25% 5 25% 144.59 0.03 214.63 461.90 0.00 1.0% 8 7 0
5 50% 5 50% 144.58 0.08 214.63 115.17 0.00 0.0% 8 8 0
10 10% 10 10% 144.58 0.07 214.45 193.15 0.00 0.0% 8 8 0
10 25% 10 25% 144.60 0.07 214.63 464.35 0.00 1.4% 8 7 0
10 50% 10 50% 166.74 0.00 214.63 322.33 0.00 0.0% 8 8 0

All 145.37 0.03 214.51 127.38 0.00 0.1% 224 221 0
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Table 34 – Average results from the MTZ formulation for the RVRPTW instances of class R2

R2
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 279.82 0.011 382.15 41.89 0.0% 0.0% 11 11 0
1 10% 0 0% 279.82 0.010 382.15 52.97 0.0% 0.0% 11 11 0
1 25% 0 0% 279.82 0.010 382.15 46.32 0.0% 0.0% 11 11 0
1 50% 0 0% 279.82 0.019 382.15 47.22 0.0% 0.0% 11 11 0
5 10% 0 0% 279.82 0.020 382.15 180.29 0.0% 0.0% 11 11 0
5 25% 0 0% 279.82 0.020 382.15 171.29 0.0% 0.0% 11 11 0
5 50% 0 0% 279.82 0.034 382.15 135.54 0.0% 0.0% 11 11 0
10 10% 0 0% 279.82 0.033 382.15 356.32 0.0% 0.0% 11 11 0
10 25% 0 0% 279.82 0.033 382.15 423.91 0.0% 0.0% 11 11 0
10 50% 0 0% 279.83 0.011 382.15 368.22 0.0% 0.0% 11 11 0
0 0% 1 10% 279.85 0.011 382.15 48.50 0.0% 0.0% 11 11 0
0 0% 1 25% 279.88 0.010 383.55 67.03 0.4% 0.0% 11 11 0
0 0% 1 50% 279.83 0.020 385.88 43.99 0.9% 0.0% 11 11 0
0 0% 5 10% 279.85 0.020 383.55 143.83 0.4% 0.0% 11 11 0
0 0% 5 25% 279.88 0.021 383.73 161.54 0.5% 0.0% 11 11 0
0 0% 5 50% 279.83 0.041 387.14 138.75 1.3% 0.0% 11 11 0
0 0% 10 10% 279.85 0.039 383.55 351.87 0.4% 0.0% 11 11 0
0 0% 10 25% 279.88 0.040 383.98 292.54 0.5% 0.0% 11 11 0
0 0% 10 50% 279.83 0.013 387.14 343.75 1.3% 0.0% 11 11 0
1 10% 1 10% 279.85 0.01 382.15 58.98914 0.00 0.0% 11 11 0
1 25% 1 25% 279.88 0.01 383.55 63.11 0.00 0.0% 11 11 0
1 50% 1 50% 279.83 0.03 385.88 74.50 0.01 0.0% 11 11 0
5 10% 5 10% 279.85 0.04 383.55 442.51 0.00 0.0% 11 11 0
5 25% 5 25% 279.88 0.04 383.73 280.99 0.00 0.0% 11 11 0
5 50% 5 50% 279.83 0.08 387.14 490.56 0.01 0.0% 11 11 0
10 10% 10 10% 279.85 0.08 383.63 1050.34 0.00 0.3% 11 10 0
10 25% 10 25% 279.88 0.08 383.98 976.03 0.01 0.2% 11 10 0
10 50% 10 50% 262.45 0.00 387.14 1066.62 0.01 0.0% 11 11 0

All 279.22 0.03 383.67 282.84 0.00 0.0% 308 306 0

Table 35 – Average results from the MTZ formulation for the RVRPTW instances of class RC2

RC2
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 94.78 0.010 319.28 1500.82 0.0% 14.1% 8 5 0
1 10% 0 0% 94.78 0.010 319.28 1686.56 0.0% 14.3% 8 5 0
1 25% 0 0% 94.78 0.010 319.28 1791.88 0.0% 15.9% 8 5 0
1 50% 0 0% 94.78 0.020 319.28 1696.77 0.0% 14.7% 8 5 0
5 10% 0 0% 94.78 0.019 319.28 1859.49 0.0% 16.3% 8 4 0
5 25% 0 0% 94.78 0.019 319.28 1848.11 0.0% 16.8% 8 4 0
5 50% 0 0% 94.78 0.035 319.28 1859.37 0.0% 17.5% 8 4 0
10 10% 0 0% 94.78 0.035 319.34 1932.23 0.0% 19.6% 8 4 0
10 25% 0 0% 94.78 0.035 319.35 1928.81 0.0% 18.5% 8 4 0
10 50% 0 0% 94.78 0.010 319.34 1916.45 0.0% 19.5% 8 4 0
0 0% 1 10% 94.79 0.010 319.28 1810.25 0.0% 16.6% 8 4 0
0 0% 1 25% 94.79 0.011 319.75 1671.99 0.2% 13.4% 8 5 0
0 0% 1 50% 94.78 0.020 320.03 1514.86 0.3% 13.5% 8 5 0
0 0% 5 10% 94.79 0.019 319.66 1816.68 0.1% 17.7% 8 4 0
0 0% 5 25% 94.79 0.019 319.76 1833.63 0.2% 17.6% 8 4 0
0 0% 5 50% 94.78 0.038 320.59 1814.93 0.5% 15.9% 8 4 0
0 0% 10 10% 94.79 0.037 319.83 1864.38 0.2% 17.9% 8 4 0
0 0% 10 25% 94.79 0.036 319.84 1855.87 0.2% 19.0% 8 4 0
0 0% 10 50% 94.78 0.012 320.54 1853.01 0.5% 18.9% 8 4 0
1 10% 1 10% 94.79 0.01 319.28 1826.77 0.00 16.5% 8 4 0
1 25% 1 25% 94.79 0.01 319.50 1821.26 0.00 16.9% 8 4 0
1 50% 1 50% 94.78 0.03 319.89 1820.14 0.00 15.6% 8 4 0
5 10% 5 10% 94.79 0.03 319.88 1882.37 0.00 18.6% 8 4 0
5 25% 5 25% 94.79 0.04 319.89 1846.80 0.00 18.8% 8 4 0
5 50% 5 50% 94.78 0.08 320.05 1863.04 0.00 19.8% 8 4 0
10 10% 10 10% 94.79 0.08 319.85 2101.51 0.00 19.3% 8 4 0
10 25% 10 25% 94.79 0.07 320.40 2088.55 0.00 19.1% 8 4 0
10 50% 10 50% 82.71 0.00 320.90 1959.34 0.01 19.8% 8 4 0

All 94.35 0.03 319.71 1830.92 0.00 17.2% 224 118 0



APPENDIX B. Results from the compact models for the literature instances 131

B.1.2 CF formulation

Table 36 – Average results from the CF formulation for the RVRPTW instances of class C1

C1
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 177.96 0.030 190.59 0.61 0.0% 0.0% 9 9 0
1 10% 0 0% 178.31 0.055 190.97 2.35 0.2% 0.0% 9 9 0
1 25% 0 0% 178.97 0.057 190.97 1.26 0.2% 0.0% 9 9 0
1 50% 0 0% 180.38 0.055 226.10 9.58 18.6% 0.0% 9 9 0
5 10% 0 0% 178.96 0.168 226.10 220.66 18.6% 0.0% 9 9 0
5 25% 0 0% 181.73 0.206 234.84 845.79 23.2% 0.4% 9 8 0
5 50% 0 0% 187.54 0.224 254.68 2004.90 33.6% 4.7% 9 4 0
10 10% 0 0% 179.52 0.418 226.10 856.80 18.6% 1.1% 9 8 0
10 25% 0 0% 184.22 0.447 253.09 2048.65 32.8% 7.5% 9 4 0
10 50% 0 0% 195.80 0.647 257.52 2028.48 35.1% 7.6% 9 4 0
0 0% 1 10% 177.98 0.077 190.59 1.82 0.0% 0.0% 9 9 0
0 0% 1 25% 178.00 0.067 190.59 1.54 0.0% 0.0% 9 9 0
0 0% 1 50% 178.07 0.077 195.84 1.21 2.7% 0.0% 9 9 0
0 0% 5 10% 177.99 0.255 190.59 8.06 0.0% 0.0% 9 9 0
0 0% 5 25% 178.05 0.264 190.59 9.16 0.0% 0.0% 9 9 0
0 0% 5 50% 178.35 0.275 206.30 10.21 8.2% 0.0% 9 9 0
0 0% 10 10% 178.00 0.964 190.59 57.64 0.0% 0.0% 9 9 0
0 0% 10 25% 178.07 0.831 190.59 51.45 0.0% 0.0% 9 9 0
0 0% 10 50% 178.46 0.786 206.30 75.17 8.2% 0.0% 9 9 0
1 10% 1 10% 178.32 0.09 190.97 1.68 0.00 0.0% 9 9 0
1 25% 1 25% 179.00 0.09 190.97 2.46 0.00 0.0% 9 9 0
1 50% 1 50% 180.42 0.09 226.66 14.40 0.19 0.0% 9 9 0
5 10% 5 10% 178.98 0.43 226.32 447.74 0.19 0.0% 9 9 0
5 25% 5 25% 181.76 0.46 235.24 1391.84 0.23 0.6% 9 7 0
5 50% 5 50% 187.61 0.46 255.50 2017.26 0.34 5.6% 9 4 0
10 10% 10 10% 179.55 2.93 229.26 1486.52 0.20 6.2% 9 6 0
10 25% 10 25% 184.29 3.05 253.94 2149.61 0.33 12.2% 9 4 0
10 50% 10 50% 195.89 3.47 259.67 2094.90 0.36 11.5% 9 4 0

All 181.15 0.61 216.84 637.20 0.14 2.0% 252 215 0

Table 37 – Average results from the CF formulation for the RVRPTW instances of class R1

R1
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 396.37 0.027 463.37 30.99 0.0% 0.0% 12 12 0
1 10% 0 0% 396.37 0.052 463.37 50.02 0.0% 0.0% 12 12 0
1 25% 0 0% 396.37 0.061 463.37 37.81 0.0% 0.0% 12 12 0
1 50% 0 0% 396.37 0.060 463.37 50.52 0.0% 0.0% 12 12 0
5 10% 0 0% 396.37 0.179 463.37 380.87 0.0% 0.0% 12 12 0
5 25% 0 0% 396.37 0.205 463.37 261.67 0.0% 0.0% 12 12 0
5 50% 0 0% 396.37 0.194 463.37 251.17 0.0% 0.0% 12 12 0
10 10% 0 0% 396.37 0.419 463.37 1016.84 0.0% 0.3% 12 11 0
10 25% 0 0% 396.37 0.370 463.37 1050.72 0.0% 0.5% 12 10 0
10 50% 0 0% 396.37 0.478 463.62 1078.63 0.1% 0.4% 12 11 0
0 0% 1 10% 396.72 0.095 466.89 64.03 0.8% 0.0% 12 12 0
0 0% 1 25% 397.45 0.086 475.28 141.55 2.4% 0.0% 12 12 0
0 0% 1 50% 310.62 0.103 464.38 47.07 5.1% 0.0% 12 8 4
0 0% 5 10% 397.73 0.283 469.31 1041.32 1.3% 0.5% 12 10 0
0 0% 5 25% 400.71 0.311 480.51 1340.28 3.6% 0.6% 12 10 0
0 0% 5 50% 318.68 0.321 483.98 1183.89 9.6% 1.2% 12 6 4
0 0% 10 10% 398.43 1.067 470.39 2084.62 1.6% 2.1% 12 7 0
0 0% 10 25% 403.09 0.760 480.76 1894.77 3.7% 2.5% 12 7 0
0 0% 10 50% 323.88 0.720 487.21 1377.46 10.4% 3.1% 12 4 4
1 10% 1 10% 396.72 0.11 466.89 97.14 0.01 0.0% 12 12 0
1 25% 1 25% 397.45 0.11 475.28 181.82 0.02 0.0% 12 12 0
1 50% 1 50% 310.62 0.13 464.38 105.86 0.05 0.0% 12 8 4
5 10% 5 10% 397.73 0.54 469.40 1446.62 0.01 0.5% 12 11 0
5 25% 5 25% 400.71 0.50 480.76 1747.01 0.04 1.9% 12 7 0
5 50% 5 50% 318.68 0.51 484.38 1381.01 0.10 2.3% 12 4 4
10 10% 10 10% 398.43 5.21 472.32 2442.73 0.02 5.7% 12 4 0
10 25% 10 25% 403.09 4.36 481.55 2302.26 0.04 4.0% 12 6 0
10 50% 10 50% 323.88 5.13 487.43 1624.86 0.10 4.5% 12 4 4

All 380.65 0.80 471.25 882.63 0.03 1.1% 336 260 24
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Table 38 – Average results from the CF formulation for the RVRPTW instances of class RC1

RC1
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 290.87 0.037 350.24 3.14 0.0% 0.0% 8 8 0
1 10% 0 0% 290.97 0.065 350.24 5.62 0.0% 0.0% 8 8 0
1 25% 0 0% 291.15 0.068 350.24 5.63 0.0% 0.0% 8 8 0
1 50% 0 0% 291.54 0.065 379.94 1071.28 9.4% 2.0% 8 6 0
5 10% 0 0% 291.36 0.263 379.94 2107.46 9.4% 4.6% 8 4 0
5 25% 0 0% 292.72 0.241 456.58 3151.98 32.2% 17.5% 8 1 0
5 50% 0 0% 296.98 0.240 464.85 3153.68 34.6% 17.7% 8 1 0
10 10% 0 0% 292.02 0.453 388.66 2358.26 12.2% 8.9% 8 3 0
10 25% 0 0% 296.31 0.711 459.39 3157.01 33.0% 20.2% 8 1 0
10 50% 0 0% 313.37 0.568 482.61 3171.83 40.1% 20.9% 8 1 0
0 0% 1 10% 291.05 0.087 350.91 6.16 0.1% 0.0% 8 8 0
0 0% 1 25% 291.56 0.085 351.64 6.58 0.4% 0.0% 8 8 0
0 0% 1 50% 292.78 0.082 364.16 7.19 5.8% 0.0% 8 7 1
0 0% 5 10% 291.26 0.319 352.10 42.18 0.5% 0.0% 8 8 0
0 0% 5 25% 292.28 0.323 365.35 41.07 3.9% 0.0% 8 8 0
0 0% 5 50% 296.25 0.302 397.97 1195.21 16.1% 3.3% 8 5 1
0 0% 10 10% 291.38 1.021 352.10 149.06 0.5% 0.0% 8 8 0
0 0% 10 25% 292.78 0.865 366.83 266.81 4.3% 0.0% 8 8 0
0 0% 10 50% 298.96 0.974 423.00 2019.82 24.1% 10.1% 8 3 1
1 10% 1 10% 291.14 0.12 350.91 8.83 0.00 0.0% 8 8 0
1 25% 1 25% 291.81 0.11 351.64 11.05 0.00 0.0% 8 8 0
1 50% 1 50% 293.30 0.12 404.84 1727.97 0.19 4.4% 8 4 1
5 10% 5 10% 291.72 0.62 385.54 2360.07 0.11 7.1% 8 3 0
5 25% 5 25% 293.82 0.58 471.99 3151.11 0.37 21.8% 8 1 0
5 50% 5 50% 300.71 0.69 485.70 2700.27 0.44 23.6% 8 1 1
10 10% 10 10% 292.46 4.49 390.56 3049.27 0.13 10.0% 8 3 0
10 25% 10 25% 297.55 5.09 479.68 3161.60 0.39 25.3% 8 1 0
10 50% 10 50% 316.82 4.18 505.69 2700.69 0.51 26.9% 8 1 1

All 294.82 0.81 400.47 1456.82 0.16 8.0% 224 134 6

Table 39 – Average results from the CF formulation for the RVRPTW instances of class C2

C2
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 181.59 0.025 214.45 1.94 0.0% 0.0% 8 8 0
1 10% 0 0% 181.59 0.052 214.45 2.84 0.0% 0.0% 8 8 0
1 25% 0 0% 181.59 0.056 214.45 2.73 0.0% 0.0% 8 8 0
1 50% 0 0% 181.59 0.060 214.45 2.93 0.0% 0.0% 8 8 0
5 10% 0 0% 181.59 0.197 214.45 32.50 0.0% 0.0% 8 8 0
5 25% 0 0% 181.59 0.208 214.45 28.70 0.0% 0.0% 8 8 0
5 50% 0 0% 181.59 0.211 214.45 36.06 0.0% 0.0% 8 8 0
10 10% 0 0% 181.59 0.407 214.45 141.64 0.0% 0.0% 8 8 0
10 25% 0 0% 181.59 0.369 214.45 220.43 0.0% 0.0% 8 8 0
10 50% 0 0% 181.59 0.487 214.45 248.92 0.0% 0.0% 8 8 0
0 0% 1 10% 181.59 0.072 214.45 3.84 0.0% 0.0% 8 8 0
0 0% 1 25% 181.60 0.072 214.45 4.23 0.0% 0.0% 8 8 0
0 0% 1 50% 181.61 0.079 214.63 4.17 0.1% 0.0% 8 8 0
0 0% 5 10% 181.60 0.237 214.45 37.15 0.0% 0.0% 8 8 0
0 0% 5 25% 181.61 0.250 214.63 39.95 0.1% 0.0% 8 8 0
0 0% 5 50% 181.64 0.258 214.63 51.19 0.1% 0.0% 8 8 0
0 0% 10 10% 181.60 0.769 214.45 253.81 0.0% 0.0% 8 8 0
0 0% 10 25% 181.62 0.608 214.63 295.70 0.1% 0.0% 8 8 0
0 0% 10 50% 181.66 0.646 214.63 282.42 0.1% 0.0% 8 8 0
1 10% 1 10% 181.59 0.10 214.45 6.76 0.00 0.0% 8 8 0
1 25% 1 25% 181.60 0.10 214.45 6.59 0.00 0.0% 8 8 0
1 50% 1 50% 181.61 0.10 214.63 7.67 0.00 0.0% 8 8 0
5 10% 5 10% 181.60 0.63 214.45 123.84 0.00 0.0% 8 8 0
5 25% 5 25% 181.61 0.58 214.63 147.35 0.00 0.0% 8 8 0
5 50% 5 50% 181.64 0.60 214.63 184.75 0.00 0.0% 8 8 0
10 10% 10 10% 181.60 3.06 214.63 909.46 0.00 0.7% 8 7 0
10 25% 10 25% 181.62 3.77 214.63 903.98 0.00 0.7% 8 7 0
10 50% 10 50% 181.66 3.76 214.63 991.18 0.00 1.5% 8 6 0

All 181.61 0.63 214.52 177.60 0.00 0.1% 224 220 0
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Table 40 – Average results from the CF formulation for the RVRPTW instances of class R2

R2
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 313.97 0.025 382.15 83.19 0.0% 0.0% 11 11 0
1 10% 0 0% 313.97 0.058 382.15 134.83 0.0% 0.0% 11 11 0
1 25% 0 0% 313.97 0.056 382.15 198.77 0.0% 0.0% 11 11 0
1 50% 0 0% 313.97 0.058 382.15 208.01 0.0% 0.0% 11 11 0
5 10% 0 0% 313.97 0.215 382.68 1495.33 0.1% 1.7% 11 7 0
5 25% 0 0% 313.97 0.187 382.21 1401.58 0.0% 1.1% 11 7 0
5 50% 0 0% 313.97 0.178 382.57 1439.65 0.1% 1.7% 11 7 0
10 10% 0 0% 313.97 0.433 383.44 2077.64 0.4% 3.4% 11 5 0
10 25% 0 0% 313.97 0.441 384.96 2076.17 0.8% 3.8% 11 5 0
10 50% 0 0% 313.97 0.514 383.63 2056.69 0.4% 3.1% 11 6 0
0 0% 1 10% 313.99 0.085 382.15 200.23 0.0% 0.0% 11 11 0
0 0% 1 25% 314.02 0.075 383.55 234.24 0.4% 0.0% 11 11 0
0 0% 1 50% 314.09 0.086 385.88 256.80 0.9% 0.0% 11 11 0
0 0% 5 10% 314.03 0.292 383.96 1515.05 0.5% 1.6% 11 7 0
0 0% 5 25% 314.14 0.304 384.43 1633.58 0.7% 1.7% 11 7 0
0 0% 5 50% 314.37 0.323 387.62 1724.86 1.4% 2.0% 11 7 0
0 0% 10 10% 314.05 0.692 385.96 2325.91 1.1% 4.1% 11 5 0
0 0% 10 25% 314.21 0.554 387.18 2362.29 1.4% 4.0% 11 5 0
0 0% 10 50% 314.58 0.537 388.94 2381.51 1.8% 3.8% 11 6 0
1 10% 1 10% 313.99 0.11 382.15 263.6415 0.00 0.0% 11 11 0
1 25% 1 25% 314.02 0.10 383.55 540.59 0.00 0.0% 11 11 0
1 50% 1 50% 314.09 0.10 385.88 439.49 0.01 0.0% 11 11 0
5 10% 5 10% 314.03 0.46 385.17 2096.42 0.01 2.8% 11 6 0
5 25% 5 25% 314.14 0.43 384.42 2188.39 0.01 2.8% 11 5 0
5 50% 5 50% 314.37 0.42 388.80 2195.27 0.02 3.5% 11 5 0
10 10% 10 10% 314.05 3.84 390.18 2828.66 0.02 7.2% 11 3 0
10 25% 10 25% 314.21 3.47 396.66 2825.72 0.04 8.4% 11 4 0
10 50% 10 50% 314.58 3.77 392.79 2894.77 0.03 7.2% 11 4 0

All 314.09 0.64 385.26 1431.40 0.01 2.3% 308 211 0

Table 41 – Average results from the CF formulation for the RVRPTW instances of class RC2

RC2
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 173.10 0.038 319.28 1812.10 0.0% 5.0% 8 4 0
1 10% 0 0% 173.10 0.071 319.28 1816.86 0.0% 5.0% 8 4 0
1 25% 0 0% 173.10 0.072 319.28 1819.94 0.0% 5.4% 8 4 0
1 50% 0 0% 173.10 0.075 319.28 1816.55 0.0% 6.3% 8 4 0
5 10% 0 0% 173.10 0.238 319.28 2070.55 0.0% 7.7% 8 4 0
5 25% 0 0% 173.10 0.227 319.28 2272.78 0.0% 8.1% 8 3 0
5 50% 0 0% 173.10 0.212 319.96 2080.60 0.2% 7.9% 8 4 0
10 10% 0 0% 173.10 0.502 320.81 2339.06 0.5% 10.5% 8 3 0
10 25% 0 0% 173.10 0.551 324.03 2358.31 1.7% 11.3% 8 3 0
10 50% 0 0% 173.10 0.544 320.90 2381.56 0.5% 10.3% 8 3 0
0 0% 1 10% 173.13 0.087 319.28 1824.78 0.0% 5.9% 8 4 0
0 0% 1 25% 173.17 0.094 319.75 1818.91 0.2% 6.1% 8 4 0
0 0% 1 50% 173.24 0.085 319.89 1815.58 0.2% 5.9% 8 4 0
0 0% 5 10% 173.16 0.339 319.36 1958.85 0.0% 8.3% 8 4 0
0 0% 5 25% 173.24 0.345 320.31 1964.52 0.3% 7.9% 8 4 0
0 0% 5 50% 173.44 0.321 322.36 1936.89 1.1% 8.9% 8 4 0
0 0% 10 10% 173.17 0.559 323.14 2376.68 1.4% 10.7% 8 3 0
0 0% 10 25% 173.31 0.511 323.01 2301.66 1.4% 10.0% 8 4 0
0 0% 10 50% 173.70 0.557 323.30 2136.37 1.5% 10.3% 8 4 0
1 10% 1 10% 173.13 0.11 319.28 1829.14 0.00 6.7% 8 4 0
1 25% 1 25% 173.17 0.11 319.95 1828.79 0.00 6.6% 8 4 0
1 50% 1 50% 173.24 0.11 319.95 1814.25 0.00 6.6% 8 4 0
5 10% 5 10% 173.16 0.47 321.94 2303.15 0.01 10.2% 8 3 0
5 25% 5 25% 173.24 0.44 323.20 2307.97 0.01 10.2% 8 3 0
5 50% 5 50% 173.44 0.50 324.16 2318.84 0.02 10.2% 8 4 0
10 10% 10 10% 173.17 3.61 323.34 2816.88 0.01 13.7% 8 3 0
10 25% 10 25% 173.31 3.73 330.59 2856.85 0.04 15.2% 8 3 0
10 50% 10 50% 173.70 4.08 330.11 2661.01 0.04 16.6% 8 3 0

All 173.22 0.66 321.58 2129.98 0.01 8.8% 224 102 0
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B.2 Single knapsack Uncertainty set

In this section, we present in more details the results of our computational experiments
in instances of the literature for the cardinality constrained uncertainty set using the compact
models. We created tables for each model (MTZ and CF) showing the relevant information for
each set of instances separately. In these tables, for every combination of ∆t, ∆d and deviation
(Dev) studied, we present the average solution value (Sol) and the time taken to solve the
problem (Time) of both the linear relaxation and integer problem, and the Price-of-Robustness
(PoR), which represents how much the robust solution costs more than the deterministic solution,
expressed in percentage. To better evaluate the computational results, we also present the
percentage gap between the best solution obtained in the time limit and its lower bound (Gap),
if the solution is optimal this difference is zero. Finally, we also present the number of instances
(Ins) evaluated in that combination of ∆q, ∆t and deviations, how many of those were solved to
optimality by the model within the time limit (Opt) and the number of infeasible instances (Inf )
in that group.
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B.2.1 MTZ-based formulation

Table 42 – Average results from the MTZ formulation for the RVRPTW instances of class C1
with the single knapsack uncertainty set

C1
Linear Relaxation Integer Solution

∆ Devd ∆ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 76.89 0.068 190.02 758.05 0.0% 1.5% 5 4 4
20 10% 0 0% 76.89 0.073 224.58 1454.73 18.2% 11.1% 5 3 4
20 25% 0 0% 76.89 0.070 224.58 1509.07 18.2% 10.1% 5 3 4
20 50% 0 0% 76.89 0.137 224.58 1467.64 18.2% 9.9% 5 3 4
40 10% 0 0% 76.89 0.135 224.58 1526.61 18.2% 12.1% 5 3 4
40 25% 0 0% 76.89 0.131 235.08 2160.85 23.7% 14.9% 5 2 4
40 50% 0 0% 76.89 0.205 234.84 2160.74 23.6% 15.7% 5 2 4
60 10% 0 0% 76.89 0.216 224.58 1591.79 18.2% 12.2% 5 3 4
60 25% 0 0% 76.89 0.205 254.16 2166.14 33.8% 19.7% 5 2 4
60 50% 0 0% 76.91 0.436 254.94 2165.00 34.2% 19.3% 5 2 4
0 0% 20 10% 76.92 0.507 190.46 1459.69 0.2% 7.4% 5 3 4
0 0% 20 25% 76.92 0.526 190.02 1463.85 0.0% 7.3% 5 3 4
0 0% 20 50% 76.92 1.848 190.10 1462.17 0.0% 7.7% 5 3 4
0 0% 40 10% 76.93 3.075 190.22 1524.71 0.1% 9.7% 5 3 4
0 0% 40 25% 76.94 3.461 190.94 1599.89 0.5% 9.5% 5 3 4
0 0% 40 50% 76.92 3.652 191.22 1650.06 0.6% 9.7% 5 3 4
0 0% 60 10% 76.93 7.776 191.94 1714.03 1.0% 10.4% 5 3 4
0 0% 60 25% 76.96 9.108 191.88 1868.69 1.0% 10.6% 5 3 4
0 0% 60 50% 76.91 0.539 193.98 1906.88 2.1% 11.6% 5 3 4
20 10% 20 10% 76.92 0.62 225.56 1635.90 0.19 14.0% 5 3 4
20 25% 20 25% 76.92 0.59 225.00 1704.40 0.18 13.6% 5 3 4
20 50% 20 50% 76.92 1.83 224.98 1726.47 0.18 13.3% 5 3 4
40 10% 40 10% 76.93 2.79 230.64 2164.70 0.21 17.2% 5 2 4
40 25% 40 25% 76.94 3.35 238.34 2168.93 0.25 19.7% 5 2 4
40 50% 40 50% 76.92 3.51 240.28 2170.28 0.26 20.2% 5 2 4
60 10% 60 10% 76.93 7.54 228.54 2168.88 0.20 18.3% 5 2 4
60 25% 60 25% 76.96 8.58 259.86 2233.10 0.37 23.6% 5 2 4
60 50% 60 50% 90.21 0.01 259.58 2200.48 0.37 23.6% 5 2 4

All 77.39 2.18 219.48 1777.99 0.16 13.4% 140 75 112

Table 43 – Average results from the MTZ formulation for the RVRPTW instances of class R1
with the single knapsack uncertainty set

R1
Linear Relaxation Integer Solution

∆ Devd ∆ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 299.35 0.074 513.24 9.72 0.0% 0.0% 5 5 7
20 10% 0 0% 299.35 0.060 513.24 277.01 0.0% 0.0% 5 5 7
20 25% 0 0% 299.35 0.064 513.24 467.39 0.0% 0.0% 5 5 7
20 50% 0 0% 299.35 0.131 513.24 457.49 0.0% 0.0% 5 5 7
40 10% 0 0% 299.35 0.141 513.24 832.56 0.0% 1.1% 5 4 7
40 25% 0 0% 299.35 0.128 513.24 921.98 0.0% 1.2% 5 4 7
40 50% 0 0% 299.35 0.214 513.24 899.51 0.0% 1.0% 5 4 7
60 10% 0 0% 299.35 0.207 513.24 1103.33 0.0% 1.4% 5 4 7
60 25% 0 0% 299.35 0.211 514.54 1142.37 0.3% 1.8% 5 4 7
60 50% 0 0% 299.87 0.651 513.24 1042.80 0.0% 1.6% 5 4 7
0 0% 20 10% 299.98 0.687 513.24 918.22 0.0% 1.8% 5 4 7
0 0% 20 25% 299.99 0.708 523.76 1097.05 1.7% 1.4% 5 4 7
0 0% 20 50% 300.12 3.958 523.76 1168.95 1.7% 1.3% 5 4 7
0 0% 40 10% 300.48 4.942 516.14 1521.99 0.7% 4.4% 5 3 7
0 0% 40 25% 300.71 5.146 533.36 1549.96 3.9% 5.3% 5 3 7
0 0% 40 50% 300.25 8.495 553.12 1496.02 7.3% 4.9% 5 3 7
0 0% 60 10% 300.83 12.853 524.54 1556.82 2.7% 7.8% 5 3 7
0 0% 60 25% 301.36 12.998 540.24 1861.34 5.5% 8.4% 5 3 7
0 0% 60 50% 299.87 0.733 557.68 1817.51 8.4% 7.0% 5 3 7
20 10% 20 10% 299.98 0.75 519.18 1453.06 0.01 3.4% 5 3 7
20 25% 20 25% 299.99 0.73 523.84 1042.87 0.02 1.8% 5 4 7
20 50% 20 50% 300.12 4.10 526.54 1144.60 0.02 2.5% 5 4 7
40 10% 40 10% 300.48 4.89 517.50 1661.36 0.01 5.2% 5 3 7
40 25% 40 25% 300.71 4.81 534.52 1562.07 0.04 6.3% 5 3 7
40 50% 40 50% 300.25 8.15 554.32 1540.66 0.08 6.0% 5 3 7
60 10% 60 10% 300.83 12.07 524.16 1542.41 0.03 7.9% 5 3 7
60 25% 60 25% 301.36 12.57 537.56 2036.26 0.05 9.2% 5 3 7
60 50% 60 50% 291.02 0.01 555.30 1999.32 0.08 6.8% 5 3 7

All 299.73 3.59 525.45 1218.74 0.02 3.6% 140 103 196
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Table 44 – Average results from the MTZ formulation for the RVRPTW instances of class RC1
with the single knapsack uncertainty set

RC1
Linear Relaxation Integer Solution

∆ Devd ∆ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 95.63 0.072 372.72 1254.27 0.0% 5.6% 5 4 0
20 10% 0 0% 95.63 0.065 389.78 1541.00 5.2% 16.0% 5 3 0
20 25% 0 0% 95.63 0.065 390.12 1499.64 5.3% 16.6% 5 3 0
20 50% 0 0% 95.63 0.139 389.78 1552.64 5.2% 16.8% 5 3 0
40 10% 0 0% 95.63 0.138 389.78 1756.75 5.2% 16.7% 5 3 0
40 25% 0 0% 95.63 0.130 466.52 2883.36 26.8% 33.6% 5 1 0
40 50% 0 0% 95.63 0.206 466.84 2881.97 26.9% 30.2% 5 1 0
60 10% 0 0% 95.63 0.204 395.18 1809.60 7.0% 23.7% 5 3 0
60 25% 0 0% 95.63 0.221 473.16 2887.90 28.8% 33.5% 5 1 0
60 50% 0 0% 95.66 0.391 473.82 2886.68 28.9% 34.1% 5 1 0
0 0% 20 10% 95.70 0.439 374.18 1595.31 0.4% 18.2% 5 3 0
0 0% 20 25% 95.73 0.448 374.14 1670.94 0.3% 18.6% 5 3 0
0 0% 20 50% 95.66 2.426 374.34 1785.18 0.4% 16.8% 5 3 1
0 0% 40 10% 95.70 2.884 379.08 2338.40 1.9% 23.6% 5 3 0
0 0% 40 25% 95.76 3.311 378.72 2147.17 1.8% 20.6% 5 3 0
0 0% 40 50% 95.66 5.370 381.98 2058.02 2.7% 23.2% 5 3 1
0 0% 60 10% 95.70 6.685 383.06 2887.42 3.1% 30.1% 5 1 0
0 0% 60 25% 95.77 8.221 393.46 2886.85 6.1% 30.8% 5 1 0
0 0% 60 50% 95.66 0.494 393.58 2883.99 6.0% 27.0% 5 1 1
20 10% 20 10% 95.70 0.54 393.00 2092.70 0.06 21.4% 5 3 0
20 25% 20 25% 95.73 0.53 397.92 2519.77 0.08 22.0% 5 3 0
20 50% 20 50% 95.66 2.44 394.32 1899.69 0.07 21.6% 5 3 1
40 10% 40 10% 95.70 2.83 407.70 2890.43 0.11 31.4% 5 1 0
40 25% 40 25% 95.76 3.10 488.70 2891.78 0.33 41.9% 5 1 0
40 50% 40 50% 95.66 5.07 493.00 2887.94 0.34 38.1% 5 1 1
60 10% 60 10% 95.70 6.32 413.66 2894.03 0.12 35.6% 5 1 0
60 25% 60 25% 95.77 7.41 495.44 2911.01 0.35 46.3% 5 1 0
60 50% 60 50% 95.83 0.01 497.84 2895.42 0.36 41.0% 5 1 1

All 95.69 2.15 415.07 2324.64 0.12 26.3% 140 59 6

Table 45 – Average results from the MTZ formulation for the RVRPTW instances of class C2
with the single knapsack uncertainty set

C2
Linear Relaxation Integer Solution

∆ Devd ∆ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 145.32 0.069 214.38 43.32 0.0% 0.0% 5 5 0
20 10% 0 0% 145.32 0.077 214.38 361.07 0.0% 0.0% 5 5 0
20 25% 0 0% 145.32 0.059 214.38 482.34 0.0% 0.0% 5 5 0
20 50% 0 0% 145.32 0.184 214.38 454.98 0.0% 0.0% 5 5 0
40 10% 0 0% 145.32 0.172 214.38 791.25 0.0% 2.3% 5 4 0
40 25% 0 0% 145.32 0.181 214.66 1009.08 0.1% 1.8% 5 4 0
40 50% 0 0% 145.32 0.314 214.38 777.21 0.0% 1.8% 5 4 0
60 10% 0 0% 145.32 0.298 214.38 1367.24 0.0% 2.4% 5 4 0
60 25% 0 0% 145.32 0.333 214.38 982.92 0.0% 2.7% 5 4 0
60 50% 0 0% 145.33 0.373 214.38 915.40 0.0% 2.5% 5 4 0
0 0% 20 10% 145.33 0.438 214.38 1447.77 0.0% 3.4% 5 3 0
0 0% 20 25% 145.33 0.495 214.66 830.34 0.1% 2.7% 5 4 0
0 0% 20 50% 145.33 1.923 215.40 875.00 0.5% 2.1% 5 4 0
0 0% 40 10% 145.33 3.173 216.38 1508.85 0.9% 5.9% 5 3 0
0 0% 40 25% 145.34 3.676 218.84 1492.13 2.1% 7.5% 5 3 0
0 0% 40 50% 145.33 4.134 217.98 1492.85 1.7% 7.0% 5 3 0
0 0% 60 10% 145.34 7.679 220.92 1576.15 3.1% 8.6% 5 3 0
0 0% 60 25% 145.35 9.776 222.40 1678.94 3.8% 10.6% 5 3 0
0 0% 60 50% 145.33 0.502 221.98 1817.67 3.6% 10.7% 5 3 0
20 10% 20 10% 145.33 0.62 215.40 1147.43 0.00 3.6% 5 4 0
20 25% 20 25% 145.33 0.62 214.66 963.74 0.00 3.3% 5 4 0
20 50% 20 50% 145.33 2.28 214.38 966.43 0.00 3.0% 5 4 0
40 10% 40 10% 145.33 3.26 219.64 1535.33 0.02 7.9% 5 3 0
40 25% 40 25% 145.34 3.67 217.18 1504.96 0.01 6.7% 5 3 0
40 50% 40 50% 145.33 4.85 219.64 1514.70 0.02 8.0% 5 3 0
60 10% 60 10% 145.34 7.95 218.54 1667.81 0.02 8.3% 5 3 0
60 25% 60 25% 145.35 10.01 220.32 1650.85 0.03 10.8% 5 3 0
60 50% 60 50% 180.79 0.01 219.96 1770.99 0.03 10.4% 5 3 0

All 146.60 2.40 216.67 1165.24 0.01 4.8% 140 103 0
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Table 46 – Average results from the MTZ formulation for the RVRPTW instances of class R2
with the single knapsack uncertainty set

R2
Linear Relaxation Integer Solution

∆ Devd ∆ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 281.73 0.071 402.64 38.04 0.0% 0.0% 5 5 0
20 10% 0 0% 281.73 0.063 402.72 1224.88 0.0% 0.5% 5 4 0
20 25% 0 0% 281.73 0.063 402.64 985.02 0.0% 0.0% 5 5 0
20 50% 0 0% 281.73 0.134 402.64 1070.06 0.0% 0.0% 5 5 0
40 10% 0 0% 281.73 0.134 402.64 1484.64 0.0% 1.8% 5 3 0
40 25% 0 0% 281.73 0.142 402.64 1465.83 0.0% 2.0% 5 3 0
40 50% 0 0% 281.73 0.209 403.24 1464.75 0.2% 2.3% 5 3 0
60 10% 0 0% 281.73 0.207 402.72 1518.46 0.0% 2.8% 5 3 0
60 25% 0 0% 281.73 0.206 403.14 1528.92 0.1% 3.2% 5 3 0
60 50% 0 0% 281.76 0.432 403.14 1481.59 0.1% 3.4% 5 3 0
0 0% 20 10% 281.77 0.484 405.68 1521.16 0.8% 4.1% 5 3 0
0 0% 20 25% 281.77 0.461 402.94 1547.05 0.1% 3.3% 5 3 0
0 0% 20 50% 281.76 2.455 403.24 1513.15 0.2% 3.6% 5 3 0
0 0% 40 10% 281.78 3.643 410.60 1938.43 2.1% 7.1% 5 3 0
0 0% 40 25% 281.81 3.859 411.50 2149.81 2.4% 7.4% 5 3 0
0 0% 40 50% 281.76 5.123 411.56 1981.89 2.4% 7.2% 5 3 0
0 0% 60 10% 281.78 9.102 419.60 2318.30 4.6% 11.6% 5 2 0
0 0% 60 25% 281.83 10.470 409.96 2455.47 2.0% 9.8% 5 2 0
0 0% 60 50% 281.76 0.513 423.36 2323.78 5.5% 11.1% 5 2 0
20 10% 20 10% 281.77 0.53 406.88 1634.383 0.01 5.4% 5 3 0
20 25% 20 25% 281.77 0.53 406.62 1584.18 0.01 5.1% 5 3 0
20 50% 20 50% 281.76 2.33 406.46 1572.61 0.01 5.1% 5 3 0
40 10% 40 10% 281.78 3.47 411.18 2186.63 0.02 7.5% 5 3 0
40 25% 40 25% 281.81 3.56 410.90 2239.58 0.02 8.7% 5 2 0
40 50% 40 50% 281.76 4.82 411.70 2158.89 0.02 7.5% 5 3 0
60 10% 60 10% 281.78 8.53 412.98 2368.06 0.03 10.5% 5 2 0
60 25% 60 25% 281.83 8.83 415.12 2431.08 0.03 11.1% 5 2 0
60 50% 60 50% 243.53 0.00 424.58 2524.81 0.06 11.4% 5 2 0

All 280.40 2.51 408.32 1739.69 0.02 5.5% 140 84 0

Table 47 – Average results from the MTZ formulation for the RVRPTW instances of class RC2
with the single knapsack uncertainty set

RC2
Linear Relaxation Integer Solution

∆ Devd ∆ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 95.77 0.062 332.56 1452.77 0.0% 15.5% 5 3 0
20 10% 0 0% 95.77 0.063 333.02 1746.18 0.1% 16.9% 5 3 0
20 25% 0 0% 95.77 0.060 332.68 1857.97 0.0% 17.6% 5 3 0
20 50% 0 0% 95.77 0.127 332.56 1867.54 0.0% 17.3% 5 3 0
40 10% 0 0% 95.77 0.126 332.94 2162.07 0.1% 24.0% 5 2 0
40 25% 0 0% 95.77 0.133 332.56 2005.92 0.0% 18.8% 5 3 0
40 50% 0 0% 95.77 0.212 332.56 2162.85 0.0% 22.8% 5 2 0
60 10% 0 0% 95.77 0.205 333.36 2174.17 0.3% 25.1% 5 2 0
60 25% 0 0% 95.77 0.207 333.98 2163.94 0.5% 24.3% 5 2 0
60 50% 0 0% 95.77 0.365 333.06 2164.71 0.2% 25.0% 5 2 0
0 0% 20 10% 95.78 0.408 332.68 2170.15 0.0% 25.4% 5 2 0
0 0% 20 25% 95.79 0.430 334.86 2163.87 0.7% 25.3% 5 2 0
0 0% 20 50% 95.77 2.019 333.84 2164.84 0.4% 24.3% 5 2 0
0 0% 40 10% 95.78 2.515 336.38 2227.68 1.2% 27.4% 5 2 0
0 0% 40 25% 95.79 3.055 338.76 2228.78 1.9% 27.6% 5 2 0
0 0% 40 50% 95.77 4.459 336.30 2213.57 1.2% 27.8% 5 2 0
0 0% 60 10% 95.78 5.726 337.42 2313.93 1.6% 28.7% 5 2 0
0 0% 60 25% 95.79 7.297 337.90 2085.84 1.3% 20.6% 4 2 0
0 0% 60 50% 95.77 0.447 338.82 2398.01 2.0% 29.9% 5 2 0
20 10% 20 10% 95.78 0.49 333.60 2173.65 0.00 26.3% 5 2 0
20 25% 20 25% 95.79 0.52 333.54 2167.59 0.00 26.4% 5 2 0
20 50% 20 50% 95.77 1.90 333.26 2167.91 0.00 26.1% 5 2 0
40 10% 40 10% 95.78 2.29 337.70 2228.75 0.02 28.6% 5 2 0
40 25% 40 25% 95.79 2.86 337.96 2432.61 0.02 28.6% 5 2 0
40 50% 40 50% 95.77 4.40 338.56 2248.72 0.02 28.7% 5 2 0
60 10% 60 10% 95.78 5.44 342.08 2474.23 0.03 30.2% 5 2 0
60 25% 60 25% 95.79 6.72 337.40 2882.87 0.02 30.0% 5 2 0
60 50% 60 50% 95.56 0.00 339.24 2889.47 0.02 30.9% 5 1 0

All 95.77 1.88 335.34 2192.52 0.01 25.0% 139 60 0
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B.2.2 CF formulation

Table 48 – Average results from the CF formulation for the RVRPTW instances of class C1 with
the single knapsack uncertainty set

C1
Linear Relaxation Integer Solution

∆ Devd ∆ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 176.14 0.051 190.02 0.74 0.0% 0.0% 5 5 4
20 10% 0 0% 177.60 6.874 229.18 2099.34 20.6% 9.4% 5 3 4
20 25% 0 0% 178.62 8.592 225.58 1710.38 18.7% 5.2% 5 3 4
20 50% 0 0% 179.68 4.650 224.58 1025.26 18.2% 0.0% 5 5 4
40 10% 0 0% 178.08 26.531 239.12 2187.74 25.9% 16.0% 5 2 4
40 25% 0 0% 180.42 40.375 247.24 2258.50 30.1% 17.0% 5 2 4
40 50% 0 0% 182.38 24.351 244.16 2253.37 28.5% 15.1% 5 2 4
60 10% 0 0% 178.39 50.554 243.08 2204.13 28.0% 17.5% 5 2 4
60 25% 0 0% 181.95 80.049 257.30 2990.12 35.4% 22.0% 5 1 4
60 50% 0 0% 184.76 49.746 259.26 2975.51 36.4% 19.3% 5 1 4
0 0% 20 10% 176.16 59.761 378.04 2165.00 98.8% 20.1% 5 2 4
0 0% 20 25% 176.16 77.187 566.74 2167.42 199.8% 35.3% 5 2 4
0 0% 20 50% 176.16 77.168 378.72 2165.62 101.0% 20.3% 5 2 4
0 0% 40 10% 176.16 335.527 754.76 2193.43 298.6% 51.1% 5 2 4
0 0% 40 25% 176.17 573.585 754.76 2194.06 298.6% 51.1% 5 2 4
0 0% 40 50% 176.18 579.033 754.76 2237.04 298.6% 51.1% 5 2 4
0 0% 60 10% 176.17 1031.407 754.76 2309.20 298.6% 51.1% 5 2 4
0 0% 60 25% 179.00 1658.581 660.85 2023.52 247.0% 48.4% 4 2 4
0 0% 60 50% 184.71 1068.661 504.33 1873.73 164.7% 32.1% 3 2 4
20 10% 20 10% 177.61 106.32 255.06 2600.00 0.34 21.2% 5 2 4
20 25% 20 25% 178.64 109.23 421.60 2535.27 1.23 29.4% 5 2 4
20 50% 20 50% 179.69 108.20 595.08 2650.34 2.15 39.8% 5 2 4
40 10% 40 10% 178.10 644.05 775.64 3589.75 3.09 55.7% 5 1 4
40 25% 40 25% 180.44 902.17 952.06 3600.84 4.02 68.1% 5 0 4
40 50% 40 50% 182.39 820.21 954.04 3600.98 4.03 71.1% 5 0 4
60 10% 60 10% 187.30 2065.57 952.06 3851.71 4.02 76.0% 5 0 4
60 25% 60 25% 198.55 2237.86 1130.40 3879.65 4.92 89.6% 4 0 4
60 50% 60 50% 202.82 2246.79 1130.40 3748.54 4.92 86.7% 3 0 4

All 180.73 535.47 536.91 2467.54 1.83 36.4% 134 51 112

Table 49 – Average results from the CF formulation for the RVRPTW instances of class R1 with
the single knapsack uncertainty set

R1
Linear Relaxation Integer Solution

∆ Devd ∆ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 448.45 0.041 513.24 21.55 0.0% 0.0% 5 5 7
20 10% 0 0% 448.45 1.516 516.38 1454.75 0.8% 2.2% 5 3 7
20 25% 0 0% 448.45 1.461 513.24 1458.07 0.0% 1.1% 5 3 7
20 50% 0 0% 448.45 0.841 513.24 1187.70 0.0% 0.9% 5 4 7
40 10% 0 0% 448.45 3.168 513.24 1531.97 0.0% 3.0% 5 3 7
40 25% 0 0% 448.45 9.345 521.10 1537.61 1.8% 5.5% 5 3 7
40 50% 0 0% 448.45 6.371 515.02 1507.26 0.4% 3.2% 5 3 7
60 10% 0 0% 448.45 9.077 518.84 1571.86 1.3% 5.2% 5 3 7
60 25% 0 0% 448.45 19.171 516.88 1602.58 0.8% 5.2% 5 3 7
60 50% 0 0% 448.45 28.598 520.22 1566.51 1.6% 6.0% 5 3 7
0 0% 20 10% 448.82 94.417 680.56 2196.86 40.1% 20.1% 5 2 7
0 0% 20 25% 448.87 63.522 696.38 2191.32 42.9% 20.9% 5 2 7
0 0% 20 50% 448.87 66.850 582.43 770.16 2.8% 4.4% 5 2 9
0 0% 40 10% 449.28 892.742 976.28 2795.26 100.0% 46.5% 5 2 7
0 0% 40 25% 449.63 989.579 987.94 2935.28 101.9% 52.6% 5 1 7
0 0% 40 50% 450.22 1034.991 834.53 1139.25 48.6% 20.6% 5 2 9
0 0% 60 10% 512.72 1748.592 977.54 3132.50 100.2% 53.2% 5 1 7
0 0% 60 25% 513.51 653.684 928.20 2832.02 78.6% 42.4% 4 1 8
0 0% 60 50% 553.27 65.542 836.53 1454.24 48.9% 22.6% 5 1 9
20 10% 20 10% 448.82 79.00 555.40 2238.06 0.10 15.2% 5 2 7
20 25% 20 25% 448.87 65.83 560.12 2185.74 0.10 14.7% 5 2 7
20 50% 20 50% 448.87 88.96 588.83 772.13 0.04 5.9% 5 2 9
40 10% 40 10% 449.28 670.53 976.28 2571.22 1.00 41.3% 5 2 7
40 25% 40 25% 449.63 1010.29 991.52 2910.34 1.03 48.1% 5 1 7
40 50% 40 50% 450.22 978.43 834.53 1122.54 0.49 21.6% 5 2 9
60 10% 60 10% 512.72 1643.43 978.62 2914.77 1.00 53.4% 5 1 7
60 25% 60 25% 513.51 1785.75 820.93 2423.78 0.46 23.4% 3 1 9
60 50% 60 50% 553.27 89.13 836.53 1455.26 0.49 22.7% 5 1 9

All 465.53 432.17 707.31 1838.59 0.37 20.1% 137 61 211
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Table 50 – Average results from the CF formulation for the RVRPTW instances of class RC1
with the single knapsack uncertainty set

RC1
Linear Relaxation Integer Solution

∆ Devd ∆ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 301.22 0.053 372.72 4.43 0.0% 0.0% 5 5 0
20 10% 0 0% 301.69 6.324 395.28 2800.67 7.0% 7.7% 5 2 0
20 25% 0 0% 301.93 4.775 395.50 2154.65 6.9% 5.7% 5 3 0
20 50% 0 0% 302.29 2.566 399.24 1767.80 8.2% 6.6% 5 3 0
40 10% 0 0% 302.30 21.610 415.04 2952.10 12.8% 17.7% 5 1 0
40 25% 0 0% 302.62 18.689 490.90 3020.42 33.8% 28.2% 5 1 0
40 50% 0 0% 303.24 11.214 483.66 2986.83 31.9% 24.8% 5 1 0
60 10% 0 0% 303.12 41.627 421.28 2977.26 13.9% 19.1% 5 1 0
60 25% 0 0% 303.68 52.913 508.56 3278.22 38.9% 30.5% 5 1 0
60 50% 0 0% 304.46 27.919 498.56 3192.18 36.1% 28.3% 5 1 0
0 0% 20 10% 301.41 41.049 410.84 3024.75 10.4% 17.0% 5 1 0
0 0% 20 25% 301.48 48.421 410.28 3042.84 10.4% 16.5% 5 1 0
0 0% 20 50% 301.52 45.501 393.98 2343.37 9.5% 14.6% 5 1 1
0 0% 40 10% 301.50 257.968 1600.82 3601.09 355.2% 71.2% 5 0 0
0 0% 40 25% 301.65 328.025 1603.26 3601.01 355.7% 71.7% 5 0 0
0 0% 40 50% 301.78 552.729 1530.88 2880.86 354.6% 68.3% 5 0 1
0 0% 60 10% 301.54 748.311 1609.50 3601.32 357.0% 73.0% 5 0 0
0 0% 60 25% 301.89 996.315 1552.93 3601.73 320.3% 71.5% 4 0 0
0 0% 60 50% 319.43 587.000 1186.05 2401.23 220.7% 53.8% 3 0 1
20 10% 20 10% 301.86 74.45 1020.36 3083.59 1.78 45.5% 5 1 0
20 25% 20 25% 302.17 61.83 783.90 3181.36 1.29 39.8% 5 1 0
20 50% 20 50% 302.55 52.96 819.60 2337.50 1.47 37.3% 5 1 1
40 10% 40 10% 302.54 524.46 1600.82 3600.80 3.55 71.2% 5 0 0
40 25% 40 25% 302.95 575.85 1623.42 3600.94 3.60 74.6% 5 0 0
40 50% 40 50% 303.65 423.57 1545.80 2880.77 3.58 70.2% 5 0 1
60 10% 60 10% 310.34 1750.32 1884.40 3770.18 4.17 86.6% 5 0 0
60 25% 60 25% 320.77 1985.28 1884.40 3730.01 4.17 89.7% 5 0 0
60 50% 60 50% 312.27 1939.85 1884.40 2400.86 3.72 82.4% 3 0 1

All 304.21 399.34 990.23 2922.10 1.76 43.7% 135 25 6

Table 51 – Average results from the CF formulation for the RVRPTW instances of class C2 with
the single knapsack uncertainty set

C2
Linear Relaxation Integer Solution

∆ Devd ∆ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 183.34 0.043 214.38 2.48 0.0% 0.0% 5 5 0
20 10% 0 0% 183.34 8.754 214.66 1533.99 0.1% 2.5% 5 4 0
20 25% 0 0% 183.34 8.142 214.54 1309.26 0.1% 0.3% 5 4 0
20 50% 0 0% 183.34 4.781 214.38 846.94 0.0% 0.0% 5 5 0
40 10% 0 0% 183.34 31.464 227.42 2163.33 6.1% 11.0% 5 2 0
40 25% 0 0% 183.34 44.528 227.22 2163.19 6.0% 10.9% 5 2 0
40 50% 0 0% 183.34 24.848 221.74 1670.16 3.4% 8.0% 5 3 0
60 10% 0 0% 183.34 71.084 223.28 2164.19 4.1% 10.3% 5 2 0
60 25% 0 0% 183.34 93.527 229.58 2167.34 7.1% 12.1% 5 2 0
60 50% 0 0% 183.34 59.177 217.14 2163.79 1.3% 8.1% 5 2 0
0 0% 20 10% 183.35 114.563 438.72 2202.65 105.2% 27.1% 5 2 0
0 0% 20 25% 183.35 134.442 253.66 2242.04 18.3% 21.1% 5 2 0
0 0% 20 50% 183.35 126.862 438.72 2245.12 105.2% 27.1% 5 2 0
0 0% 40 10% 194.75 1607.497 1061.34 2924.01 395.2% 74.1% 5 1 0
0 0% 40 25% 194.75 1660.570 1061.34 2960.23 395.2% 74.1% 5 1 0
0 0% 40 50% 194.75 1657.968 1061.34 2937.05 395.2% 74.1% 5 1 0
0 0% 60 10% 194.75 2063.248 1061.34 3032.79 395.2% 76.7% 5 1 0
0 0% 60 25% 203.73 1454.393 920.23 2428.61 328.6% 57.0% 3 1 0
0 0% 60 50% 203.73 456.092 743.85 1827.05 246.5% 42.4% 2 1 0
20 10% 20 10% 183.35 149.05 239.06 2214.35 0.12 16.8% 5 2 0
20 25% 20 25% 183.35 136.49 239.06 2238.00 0.12 17.1% 5 2 0
20 50% 20 50% 183.35 151.86 239.06 2245.28 0.12 17.3% 5 2 0
40 10% 40 10% 194.75 1793.82 849.68 2796.10 2.97 57.2% 5 2 0
40 25% 40 25% 194.75 1763.36 1061.34 2998.36 3.95 73.9% 5 1 0
40 50% 40 50% 194.75 1699.58 849.68 2979.51 2.97 57.5% 5 1 0
60 10% 60 10% 203.73 2292.11 1061.34 3055.71 3.95 76.7% 5 1 0
60 25% 60 25% 203.73 2359.98 920.23 2498.14 3.29 61.6% 3 1 0
60 50% 60 50% 203.73 2056.71 743.85 1902.12 2.46 42.4% 2 1 0

All 189.84 786.61 551.72 2211.14 1.57 34.2% 130 56 0



APPENDIX B. Results from the compact models for the literature instances 140

Table 52 – Average results from the CF formulation for the RVRPTW instances of class R2 with
the single knapsack uncertainty set

R2
Linear Relaxation Integer Solution

∆ Devd ∆ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 335.56 0.048 402.64 70.24 0.0% 0.0% 5 5 0
20 10% 0 0% 335.56 2.372 407.38 2136.13 1.3% 5.8% 5 3 0
20 25% 0 0% 335.56 2.863 407.30 1946.55 1.3% 5.8% 5 3 0
20 50% 0 0% 335.56 2.599 406.02 2076.30 0.9% 4.8% 5 3 0
40 10% 0 0% 335.56 9.039 409.98 2186.72 2.0% 9.1% 5 2 0
40 25% 0 0% 335.56 10.982 410.52 2224.25 2.1% 9.8% 5 2 0
40 50% 0 0% 335.56 10.047 407.38 2190.19 1.3% 9.1% 5 2 0
60 10% 0 0% 335.56 23.285 414.00 2325.15 3.1% 10.9% 5 2 0
60 25% 0 0% 335.56 30.351 411.74 2857.19 2.5% 10.8% 5 2 0
60 50% 0 0% 335.56 34.713 412.04 2344.34 2.5% 10.9% 5 2 0
0 0% 20 10% 335.58 103.771 587.10 2892.17 47.4% 24.6% 5 1 0
0 0% 20 25% 335.59 101.351 446.44 2893.91 11.2% 18.0% 5 1 0
0 0% 20 50% 335.59 104.726 584.46 2891.61 46.4% 24.0% 5 1 0
0 0% 40 10% 335.60 1248.892 1088.34 3011.71 177.7% 64.7% 5 1 0
0 0% 40 25% 335.61 1110.017 1088.34 3050.74 177.7% 64.7% 5 1 0
0 0% 40 50% 335.62 1262.655 1088.34 3004.19 177.7% 64.7% 5 1 0
0 0% 60 10% 383.59 2638.823 984.17 3601.14 140.0% 66.7% 3 1 0
0 0% 60 25% 423.08 155.161 463.30 3305.82 0.0% 0.0% 1 1 0
0 0% 60 50% 423.11 173.569 862.70 3602.50 110.2% 38.4% 2 0 0
20 10% 20 10% 335.58 118.97 421.14 2922.213 0.05 14.5% 5 1 0
20 25% 20 25% 335.59 118.52 753.86 2914.33 0.94 34.9% 5 1 0
20 50% 20 50% 335.59 106.89 752.80 2913.85 0.94 34.5% 5 1 0
40 10% 40 10% 335.60 797.10 1088.34 3357.53 1.78 59.8% 5 1 0
40 25% 40 25% 335.61 1280.20 1088.34 3282.86 1.78 69.9% 5 1 0
40 50% 40 50% 335.62 1144.70 1088.34 3151.38 1.78 59.8% 5 1 0
60 10% 60 10% 383.59 2619.19 1049.63 3738.65 1.60 68.9% 4 0 0
60 25% 60 25% 383.60 2704.51 1244.60 3651.42 1.93 82.0% 2 0 0
60 50% 60 50% 423.11 118.95 480.80 3601.99 0.04 5.1% 1 0 0

All 350.10 572.65 687.50 2790.90 0.71 31.1% 123 40 0

Table 53 – Average results from the CF formulation for the RVRPTW instances of class RC2
with the single knapsack uncertainty set

RC2
Linear Relaxation Integer Solution

∆ Devd ∆ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 191.38 0.053 332.56 1459.76 0.0% 5.2% 5 3 0
20 10% 0 0% 191.38 5.343 335.46 2505.23 0.9% 21.8% 5 2 0
20 25% 0 0% 191.38 4.231 333.72 2304.98 0.4% 11.1% 5 2 0
20 50% 0 0% 191.38 3.662 339.36 2245.84 2.1% 11.4% 5 2 0
40 10% 0 0% 191.38 22.271 346.80 2344.55 4.4% 27.7% 5 2 0
40 25% 0 0% 191.38 43.845 342.90 2264.61 3.2% 25.7% 5 2 0
40 50% 0 0% 191.38 14.878 336.16 2275.15 1.1% 21.2% 5 2 0
60 10% 0 0% 191.38 53.377 342.48 2885.91 3.1% 31.6% 5 1 0
60 25% 0 0% 191.38 39.406 350.12 2886.14 5.4% 33.2% 5 1 0
60 50% 0 0% 191.38 23.068 337.64 2884.33 1.6% 29.4% 5 1 0
0 0% 20 10% 191.43 86.603 346.00 2893.07 4.2% 33.1% 5 1 0
0 0% 20 25% 191.45 107.834 661.86 2892.88 109.5% 42.2% 5 1 0
0 0% 20 50% 191.48 123.126 645.72 2902.31 95.8% 40.8% 5 1 0
0 0% 40 10% 191.44 694.032 1579.56 2989.97 384.0% 72.7% 5 1 0
0 0% 40 25% 191.48 894.960 1579.56 3153.71 384.0% 72.8% 5 1 0
0 0% 40 50% 191.53 950.104 1579.56 3076.57 384.0% 72.7% 5 1 0
0 0% 60 10% 204.77 2130.241 1884.40 3686.23 446.1% 91.3% 3 0 0
0 0% 60 25% 224.44 2097.886 1376.67 3701.86 305.1% 63.8% 3 0 0
0 0% 60 50% 283.55 477.955 1153.00 3691.50 237.3% 58.8% 2 0 0
20 10% 20 10% 191.43 135.80 366.70 2908.13 0.10 35.7% 5 1 0
20 25% 20 25% 191.45 117.37 664.00 2918.74 1.02 44.5% 5 1 0
20 50% 20 50% 191.48 128.18 963.22 2927.50 2.02 50.8% 5 1 0
40 10% 40 10% 191.44 1022.71 1579.56 3208.37 3.84 72.8% 5 1 0
40 25% 40 25% 191.48 1159.42 1579.56 3381.09 3.84 74.4% 5 1 0
40 50% 40 50% 191.53 989.90 1579.56 3272.04 3.84 72.8% 5 1 0
60 10% 60 10% 224.37 2246.76 1884.40 3761.45 4.54 91.1% 4 0 0
60 25% 60 25% 246.62 2886.98 1884.40 3681.25 4.40 92.2% 2 0 0
60 50% 60 50% 283.55 2994.36 1884.40 3761.83 4.40 92.2% 2 0 0

All 202.81 694.80 949.62 2959.46 1.85 49.8% 126 30 0
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APPENDIX C – Results from the B&C
algorithm for the literature instances

C.1 Cardinality-Constrained Uncertainty set

In this section, we present in more details the results of our computational experiments in
instances of the literature for the cardinality constrained uncertainty set using the B&C algorithm.
We created tables for each model (MTZ and CF) showing the relevant information for each set
of instances separately. In these tables, for every combination of Γt, Γd and deviation (Dev)
studied, we present the average solution value (Sol) and the time taken to solve the problem (T )
of both the linear relaxation and integer problem, and the Price-of-Robustness (PoR), which
represents how much the robust solution costs more than the deterministic solution, expressed in
percentage. To better evaluate the computational results, we also present the percentage gap
between the best solution obtained in the time limit and its lower bound (Gap), if the solution is
optimal this difference is zero. Finally, we also present the number of instances (Ins) evaluated in
that combination of Γq, Γt and deviations, how many of those were solved to optimality by the
model within the time limit (Opt) and the number of infeasible instances (Inf ) in that group.
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C.1.1 MTZ-based formulation

Table 54 – Average results from the MTZ formulation for the RVRPTW instances of class C1

C1
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 76.75 0.011 190.59 0.15 0.0% 0.0% 9 9 0
1 10% 0 0% 76.75 0.010 190.97 0.12 0.2% 0.0% 9 9 0
1 25% 0 0% 76.75 0.011 190.97 0.11 0.2% 0.0% 9 9 0
1 50% 0 0% 76.75 0.019 226.10 0.74 18.6% 0.0% 9 9 0
5 10% 0 0% 76.75 0.020 226.10 0.66 18.6% 0.0% 9 9 0
5 25% 0 0% 76.75 0.019 234.84 16.39 23.2% 0.0% 9 9 0
5 50% 0 0% 76.75 0.030 254.57 486.39 33.6% 0.1% 9 8 0
10 10% 0 0% 76.75 0.032 234.07 84.46 22.8% 0.0% 9 9 0
10 25% 0 0% 76.75 0.035 252.39 1260.77 32.4% 1.1% 9 6 0
10 50% 0 0% 76.76 0.010 256.18 448.63 34.4% 0.1% 9 8 0
0 0% 1 10% 76.76 0.011 190.59 0.16 0.0% 0.0% 9 9 0
0 0% 1 25% 76.78 0.011 190.59 0.11 0.0% 0.0% 9 9 0
0 0% 1 50% 76.77 0.022 195.84 0.12 2.7% 0.0% 9 9 0
0 0% 5 10% 76.78 0.022 190.59 0.10 0.0% 0.0% 9 9 0
0 0% 5 25% 76.81 0.022 190.59 0.10 0.0% 0.0% 9 9 0
0 0% 5 50% 76.77 0.041 206.30 0.18 8.2% 0.0% 9 9 0
0 0% 10 10% 76.79 0.041 190.59 0.12 0.0% 0.0% 9 9 0
0 0% 10 25% 76.83 0.043 190.59 0.12 0.0% 0.0% 9 9 0
0 0% 10 50% 76.76 0.012 206.30 0.17 8.2% 0.0% 9 9 0
1 10% 1 10% 76.76 0.01 190.97 0.17 0.00 0.0% 9 9 0
1 25% 1 25% 76.78 0.01 190.97 0.15 0.00 0.0% 9 9 0
1 50% 1 50% 76.77 0.04 226.66 0.75 0.19 0.0% 9 9 0
5 10% 5 10% 76.78 0.04 226.32 0.80 0.19 0.0% 9 9 0
5 25% 5 25% 76.81 0.04 235.24 10.06 0.23 0.0% 9 9 0
5 50% 5 50% 76.77 0.08 255.22 492.96 0.34 0.2% 9 8 0
10 10% 10 10% 76.79 0.09 234.07 70.78 0.23 0.0% 9 9 0
10 25% 10 25% 76.83 0.08 253.03 1255.82 0.33 1.2% 9 6 0
10 50% 10 50% 84.15 0.00 257.47 511.05 0.35 0.0% 9 8 0

All 77.04 0.03 217.10 165.79 0.14 0.1% 252 242 0

Table 55 – Average results from the MTZ formulation for the RVRPTW instances of class R1

R1
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 290.11 0.011 463.37 63.52 0.0% 0.0% 12 12 0
1 10% 0 0% 290.11 0.011 463.37 235.56 0.0% 0.0% 12 12 0
1 25% 0 0% 290.11 0.010 463.37 203.29 0.0% 0.0% 12 12 0
1 50% 0 0% 290.11 0.019 463.37 318.13 0.0% 0.0% 12 12 0
5 10% 0 0% 290.11 0.019 463.37 177.98 0.0% 0.0% 12 12 0
5 25% 0 0% 290.11 0.019 463.37 368.98 0.0% 0.2% 12 11 0
5 50% 0 0% 290.11 0.036 463.37 214.18 0.0% 0.0% 12 12 0
10 10% 0 0% 290.11 0.033 463.37 208.42 0.0% 0.0% 12 12 0
10 25% 0 0% 290.11 0.036 463.37 360.47 0.0% 0.2% 12 11 0
10 50% 0 0% 290.27 0.012 463.37 29.41 0.0% 0.0% 12 12 0
0 0% 1 10% 290.50 0.011 466.89 94.92 0.8% 0.0% 12 12 0
0 0% 1 25% 290.96 0.011 477.74 142.12 3.0% 0.0% 12 12 0
0 0% 1 50% 290.49 0.025 464.38 94.99 5.1% 0.0% 12 8 4
0 0% 5 10% 291.06 0.026 469.31 104.39 1.3% 0.0% 12 12 0
0 0% 5 25% 292.14 0.028 481.78 293.74 3.9% 0.0% 12 12 0
0 0% 5 50% 290.54 0.049 487.69 399.42 10.5% 1.2% 12 7 4
0 0% 10 10% 291.20 0.049 470.08 325.24 1.5% 0.3% 12 11 0
0 0% 10 25% 292.52 0.053 481.78 339.48 3.9% 0.1% 12 11 0
0 0% 10 50% 290.27 0.014 488.18 358.77 10.6% 1.1% 12 7 4
1 10% 1 10% 290.50 0.01 466.89 266.50 0.01 0.0% 12 12 0
1 25% 1 25% 290.96 0.01 477.74 517.04 0.03 0.0% 12 12 0
1 50% 1 50% 290.49 0.04 464.38 383.74 0.05 0.0% 12 8 4
5 10% 5 10% 291.06 0.04 469.31 309.51 0.01 0.0% 12 12 0
5 25% 5 25% 292.14 0.05 481.78 623.96 0.04 0.4% 12 11 0
5 50% 5 50% 290.54 0.10 487.51 918.09 0.10 1.8% 12 6 4
10 10% 10 10% 291.20 0.10 470.18 361.99 0.02 0.6% 12 11 0
10 25% 10 25% 292.52 0.10 482.48 685.12 0.04 0.6% 12 11 0
10 50% 10 50% 286.63 0.00 488.18 509.05 0.11 1.1% 12 7 4

All 290.61 0.03 471.78 318.14 0.03 0.3% 336 300 24
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Table 56 – Average results from the MTZ formulation for the RVRPTW instances of class RC1

RC1
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 95.04 0.011 350.24 3.88 0.0% 0.0% 8 8 0
1 10% 0 0% 95.04 0.010 350.24 3.36 0.0% 0.0% 8 8 0
1 25% 0 0% 95.04 0.010 350.24 3.90 0.0% 0.0% 8 8 0
1 50% 0 0% 95.04 0.019 379.94 20.53 9.4% 0.0% 8 8 0
5 10% 0 0% 95.04 0.020 379.94 35.37 9.4% 0.0% 8 8 0
5 25% 0 0% 95.04 0.019 455.46 173.89 31.8% 0.0% 8 8 0
5 50% 0 0% 95.04 0.034 461.11 23.48 33.4% 0.0% 8 8 0
10 10% 0 0% 95.04 0.035 420.09 1946.83 21.6% 6.1% 8 4 0
10 25% 0 0% 95.04 0.035 456.16 5.01 32.0% 0.0% 8 8 0
10 50% 0 0% 95.06 0.011 479.01 1476.00 39.1% 1.5% 8 5 0
0 0% 1 10% 95.08 0.011 350.91 3.26 0.1% 0.0% 8 8 0
0 0% 1 25% 95.11 0.011 352.91 5.15 0.7% 0.0% 8 8 0
0 0% 1 50% 95.06 0.021 368.19 7.71 7.1% 0.0% 8 7 1
0 0% 5 10% 95.08 0.019 352.58 3.41 0.6% 0.0% 8 8 0
0 0% 5 25% 95.13 0.020 377.04 32.15 7.1% 0.0% 8 8 0
0 0% 5 50% 95.06 0.039 424.87 1419.19 24.6% 5.5% 8 4 1
0 0% 10 10% 95.09 0.042 352.58 3.70 0.6% 0.0% 8 8 0
0 0% 10 25% 95.14 0.040 382.59 28.58 8.6% 0.0% 8 8 0
0 0% 10 50% 95.06 0.012 450.36 2258.27 32.9% 9.8% 8 2 1
1 10% 1 10% 95.08 0.01 350.91 2.68 0.00 0.0% 8 8 0
1 25% 1 25% 95.11 0.01 352.91 2.73 0.01 0.0% 8 8 0
1 50% 1 50% 95.06 0.04 406.50 995.47 0.19 1.2% 8 5 1
5 10% 5 10% 95.08 0.04 385.65 344.77 0.11 0.0% 8 8 0
5 25% 5 25% 95.13 0.04 466.35 413.32 0.35 0.0% 8 8 0
5 50% 5 50% 95.06 0.08 486.10 1814.73 0.44 3.0% 8 3 1
10 10% 10 10% 95.09 0.08 425.24 1374.60 0.21 5.2% 8 4 0
10 25% 10 25% 95.14 0.08 467.69 244.72 0.35 0.0% 8 8 0
10 50% 10 50% 95.17 0.00 491.57 1812.10 0.46 3.3% 8 3 1

All 95.08 0.03 404.55 516.39 0.17 1.3% 224 189 6

Table 57 – Average results from the MTZ formulation for the RVRPTW instances of class C2

C2
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 144.57 0.010 214.45 0.95 0.0% 0.0% 8 8 0
1 10% 0 0% 144.57 0.010 214.45 1.06 0.0% 0.0% 8 7 0
1 25% 0 0% 144.57 0.010 214.45 1.45 0.0% 0.0% 8 8 0
1 50% 0 0% 144.57 0.018 214.45 1.27 0.0% 0.0% 8 8 0
5 10% 0 0% 144.57 0.019 214.45 1.91 0.0% 0.0% 8 8 0
5 25% 0 0% 144.57 0.018 214.45 0.92 0.0% 0.0% 8 8 0
5 50% 0 0% 144.57 0.031 214.45 1.27 0.0% 0.0% 8 8 0
10 10% 0 0% 144.57 0.032 214.45 1.86 0.0% 0.0% 8 8 0
10 25% 0 0% 144.57 0.035 214.45 1.19 0.0% 0.0% 8 8 0
10 50% 0 0% 144.57 0.010 214.45 1.36 0.0% 0.0% 8 8 0
0 0% 1 10% 144.58 0.011 214.45 0.85 0.0% 0.0% 8 8 0
0 0% 1 25% 144.58 0.010 214.45 0.93 0.0% 0.0% 8 8 0
0 0% 1 50% 144.57 0.018 214.63 0.97 0.1% 0.0% 8 8 0
0 0% 5 10% 144.58 0.018 214.45 1.25 0.0% 0.0% 8 8 0
0 0% 5 25% 144.59 0.020 214.63 1.65 0.1% 0.0% 8 8 0
0 0% 5 50% 144.58 0.037 214.63 1.35 0.1% 0.0% 8 8 0
0 0% 10 10% 144.58 0.035 214.45 1.35 0.0% 0.0% 8 8 0
0 0% 10 25% 144.60 0.036 214.63 1.39 0.1% 0.0% 8 8 0
0 0% 10 50% 144.57 0.012 214.63 1.38 0.1% 0.0% 8 8 0
1 10% 1 10% 144.58 0.01 214.45 1.87 0.00 0.0% 8 8 0
1 25% 1 25% 144.58 0.01 214.45 1.28 0.00 0.0% 8 8 0
1 50% 1 50% 144.57 0.03 214.63 1.72 0.00 0.0% 8 8 0
5 10% 5 10% 144.58 0.03 214.45 1.29 0.00 0.0% 8 8 0
5 25% 5 25% 144.59 0.03 214.63 1.96 0.00 0.0% 8 8 0
5 50% 5 50% 144.58 0.08 214.63 1.49 0.00 0.0% 8 8 0
10 10% 10 10% 144.58 0.07 214.45 1.90 0.00 0.0% 8 8 0
10 25% 10 25% 144.60 0.07 214.63 1.23 0.00 0.0% 8 8 0
10 50% 10 50% 166.74 0.00 214.63 1.76 0.00 0.0% 8 8 0

All 145.37 0.03 214.51 1.39 0.00 0.0% 224 223 0
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Table 58 – Average results from the MTZ formulation for the RVRPTW instances of class R2

R2
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 279.82 0.011 382.15 18.70 0.0% 0.0% 11 11 0
1 10% 0 0% 279.82 0.010 382.15 27.61 0.0% 0.0% 11 11 0
1 25% 0 0% 279.82 0.010 382.15 29.35 0.0% 0.0% 11 11 0
1 50% 0 0% 279.82 0.019 382.15 33.68 0.0% 0.0% 11 11 0
5 10% 0 0% 279.82 0.020 382.15 28.70 0.0% 0.0% 11 11 0
5 25% 0 0% 279.82 0.020 382.15 34.79 0.0% 0.0% 11 11 0
5 50% 0 0% 279.82 0.034 382.15 40.03 0.0% 0.0% 11 11 0
10 10% 0 0% 279.82 0.033 382.15 34.06 0.0% 0.0% 11 11 0
10 25% 0 0% 279.82 0.033 382.15 25.83 0.0% 0.0% 11 11 0
10 50% 0 0% 279.83 0.011 382.15 26.79 0.0% 0.0% 11 11 0
0 0% 1 10% 279.85 0.011 382.15 17.23 0.0% 0.0% 11 11 0
0 0% 1 25% 279.88 0.010 383.55 19.68 0.4% 0.0% 11 11 0
0 0% 1 50% 279.83 0.020 385.88 19.47 0.9% 0.0% 11 11 0
0 0% 5 10% 279.85 0.020 383.55 23.96 0.4% 0.0% 11 11 0
0 0% 5 25% 279.88 0.021 383.73 22.90 0.5% 0.0% 11 11 0
0 0% 5 50% 279.83 0.041 387.14 31.53 1.3% 0.0% 11 11 0
0 0% 10 10% 279.85 0.039 383.55 22.14 0.4% 0.0% 11 11 0
0 0% 10 25% 279.88 0.040 383.98 23.45 0.5% 0.0% 11 11 0
0 0% 10 50% 279.83 0.013 387.14 35.96 1.3% 0.0% 11 11 0
1 10% 1 10% 279.85 0.01 382.15 36.645 0.00 0.0% 11 11 0
1 25% 1 25% 279.88 0.01 383.55 38.49 0.00 0.0% 11 11 0
1 50% 1 50% 279.83 0.03 385.88 27.79 0.01 0.0% 11 11 0
5 10% 5 10% 279.85 0.04 383.55 36.23 0.00 0.0% 11 11 0
5 25% 5 25% 279.88 0.04 383.73 38.66 0.00 0.0% 11 11 0
5 50% 5 50% 279.83 0.08 387.14 55.07 0.01 0.0% 11 11 0
10 10% 10 10% 279.85 0.08 383.55 26.79 0.00 0.0% 11 11 0
10 25% 10 25% 279.88 0.08 383.98 35.11 0.01 0.0% 11 11 0
10 50% 10 50% 262.45 0.00 387.14 68.53 0.01 0.0% 11 11 0

All 279.22 0.03 383.67 31.40 0.00 0.0% 308 308 0

Table 59 – Average results from the MTZ formulation for the RVRPTW instances of class RC2

RC2
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 94.78 0.010 319.28 1442.09 0.0% 4.5% 8 5 0
1 10% 0 0% 94.78 0.010 319.28 1455.93 0.0% 6.1% 8 5 0
1 25% 0 0% 94.78 0.010 319.28 1451.95 0.0% 5.6% 8 5 0
1 50% 0 0% 94.78 0.020 319.28 1429.73 0.0% 6.2% 8 5 0
5 10% 0 0% 94.78 0.019 319.28 1413.22 0.0% 5.6% 8 5 0
5 25% 0 0% 94.78 0.019 319.36 1485.67 0.0% 5.9% 8 5 0
5 50% 0 0% 94.78 0.035 319.28 1404.33 0.0% 5.8% 8 5 0
10 10% 0 0% 94.78 0.035 319.28 1398.92 0.0% 5.9% 8 5 0
10 25% 0 0% 94.78 0.035 319.28 1410.36 0.0% 5.5% 8 5 0
10 50% 0 0% 94.78 0.010 319.28 1416.31 0.0% 5.4% 8 5 0
0 0% 1 10% 94.79 0.010 319.28 1446.96 0.0% 4.5% 8 5 0
0 0% 1 25% 94.79 0.011 319.76 1447.30 0.2% 4.7% 8 5 0
0 0% 1 50% 94.78 0.020 320.03 1447.14 0.3% 4.6% 8 5 0
0 0% 5 10% 94.79 0.019 319.66 1418.02 0.1% 5.0% 8 5 0
0 0% 5 25% 94.79 0.019 319.76 1417.95 0.2% 5.0% 8 5 0
0 0% 5 50% 94.78 0.038 320.05 1418.88 0.3% 5.4% 8 5 0
0 0% 10 10% 94.79 0.037 319.76 1426.41 0.2% 5.0% 8 5 0
0 0% 10 25% 94.79 0.036 319.76 1428.30 0.2% 5.1% 8 5 0
0 0% 10 50% 94.78 0.012 320.53 1444.24 0.5% 4.8% 8 5 0
1 10% 1 10% 94.79 0.01 319.95 1441.03 0.00 6.1% 8 5 0
1 25% 1 25% 94.79 0.01 319.50 1399.29 0.00 6.0% 8 5 0
1 50% 1 50% 94.78 0.03 319.89 1423.57 0.00 6.3% 8 5 0
5 10% 5 10% 94.79 0.03 319.36 1416.06 0.00 5.8% 8 5 0
5 25% 5 25% 94.79 0.04 319.76 1461.96 0.00 6.0% 8 5 0
5 50% 5 50% 94.78 0.08 322.45 1434.42 0.01 6.9% 8 5 0
10 10% 10 10% 94.79 0.08 319.76 1412.55 0.00 5.6% 8 5 0
10 25% 10 25% 94.79 0.07 320.01 1428.87 0.00 6.2% 8 5 0
10 50% 10 50% 82.71 0.00 322.41 1426.30 0.01 6.9% 8 5 0

All 94.35 0.03 319.80 1430.28 0.00 5.6% 224 140 0
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C.1.2 CF formulation

Table 60 – Average results from the CF formulation for the RVRPTW instances of class C1

C1
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 177.96 0.030 190.59 0.18 0.0% 0.0% 9 9 0
1 10% 0 0% 178.31 0.055 190.97 0.23 0.2% 0.0% 9 9 0
1 25% 0 0% 178.97 0.057 190.97 0.24 0.2% 0.0% 9 9 0
1 50% 0 0% 180.38 0.055 226.10 1.14 18.6% 0.0% 9 9 0
5 10% 0 0% 178.96 0.168 226.10 2.57 18.6% 0.0% 9 9 0
5 25% 0 0% 181.73 0.206 234.84 57.09 23.2% 0.0% 9 9 0
5 50% 0 0% 187.54 0.224 254.61 645.26 33.6% 0.3% 9 8 0
10 10% 0 0% 179.52 0.418 234.07 178.41 22.8% 0.0% 9 9 0
10 25% 0 0% 184.22 0.447 252.74 1534.30 32.6% 1.5% 9 6 0
10 50% 0 0% 195.80 0.647 256.31 755.95 34.5% 0.4% 9 8 0
0 0% 1 10% 177.98 0.077 190.59 0.19 0.0% 0.0% 9 9 0
0 0% 1 25% 178.00 0.067 190.59 0.16 0.0% 0.0% 9 9 0
0 0% 1 50% 178.07 0.077 195.84 0.19 2.7% 0.0% 9 9 0
0 0% 5 10% 177.99 0.255 190.59 0.27 0.0% 0.0% 9 9 0
0 0% 5 25% 178.05 0.264 190.59 0.27 0.0% 0.0% 9 9 0
0 0% 5 50% 178.35 0.275 206.30 0.82 8.2% 0.0% 9 9 0
0 0% 10 10% 178.00 0.964 190.59 0.40 0.0% 0.0% 9 9 0
0 0% 10 25% 178.07 0.831 190.59 0.40 0.0% 0.0% 9 9 0
0 0% 10 50% 178.46 0.786 206.30 1.50 8.2% 0.0% 9 9 0
1 10% 1 10% 178.32 0.09 190.97 0.29 0.00 0.0% 9 9 0
1 25% 1 25% 179.00 0.09 190.97 0.29 0.00 0.0% 9 9 0
1 50% 1 50% 180.42 0.09 226.66 2.46 0.19 0.0% 9 9 0
5 10% 5 10% 178.98 0.43 226.32 2.95 0.19 0.0% 9 9 0
5 25% 5 25% 181.76 0.46 235.24 155.72 0.23 0.0% 9 9 0
5 50% 5 50% 187.61 0.46 255.33 1255.46 0.34 1.1% 9 6 0
10 10% 10 10% 179.55 2.93 234.07 522.01 0.23 0.1% 9 8 0
10 25% 10 25% 184.29 3.05 253.77 2003.69 0.33 2.6% 9 4 0
10 50% 10 50% 195.89 3.47 257.50 1374.11 0.35 1.1% 9 6 0

All 181.15 0.61 217.15 303.45 0.14 0.3% 252 235 0

Table 61 – Average results from the CF formulation for the RVRPTW instances of class R1

R1
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 396.37 0.027 463.37 31.21 0.0% 0.0% 12 12 0
1 10% 0 0% 396.37 0.052 463.37 57.78 0.0% 0.0% 12 12 0
1 25% 0 0% 396.37 0.061 463.37 59.31 0.0% 0.0% 12 12 0
1 50% 0 0% 396.37 0.060 463.37 67.83 0.0% 0.0% 12 12 0
5 10% 0 0% 396.37 0.179 463.37 90.52 0.0% 0.0% 12 12 0
5 25% 0 0% 396.37 0.205 463.37 50.13 0.0% 0.0% 12 12 0
5 50% 0 0% 396.37 0.194 463.37 81.59 0.0% 0.0% 12 12 0
10 10% 0 0% 396.37 0.419 463.37 122.98 0.0% 0.0% 12 12 0
10 25% 0 0% 396.37 0.370 463.37 131.70 0.0% 0.0% 12 12 0
10 50% 0 0% 396.37 0.478 463.37 140.05 0.0% 0.0% 12 12 0
0 0% 1 10% 396.72 0.095 466.89 33.98 0.8% 0.0% 12 12 0
0 0% 1 25% 397.45 0.086 477.74 112.77 3.0% 0.0% 12 12 0
0 0% 1 50% 310.62 0.103 464.38 35.94 5.1% 0.0% 12 8 4
0 0% 5 10% 397.73 0.283 469.31 136.87 1.3% 0.0% 12 12 0
0 0% 5 25% 400.71 0.311 481.78 418.78 3.9% 0.0% 12 12 0
0 0% 5 50% 318.68 0.321 486.99 960.05 10.3% 1.3% 12 6 4
0 0% 10 10% 398.43 1.067 470.03 426.19 1.5% 0.0% 12 12 0
0 0% 10 25% 403.09 0.760 481.78 733.35 3.9% 0.2% 12 11 0
0 0% 10 50% 323.88 0.720 488.18 1119.00 10.6% 2.3% 12 5 4
1 10% 1 10% 396.72 0.11 466.89 47.92 0.01 0.0% 12 12 0
1 25% 1 25% 397.45 0.11 477.74 182.82 0.03 0.0% 12 12 0
1 50% 1 50% 310.62 0.13 464.38 140.98 0.05 0.0% 12 8 4
5 10% 5 10% 397.73 0.54 469.31 203.74 0.01 0.0% 12 12 0
5 25% 5 25% 400.71 0.50 481.78 1289.12 0.04 0.2% 12 11 0
5 50% 5 50% 318.68 0.51 487.39 1277.81 0.10 2.8% 12 4 4
10 10% 10 10% 398.43 5.21 470.13 647.56 0.02 0.3% 12 11 0
10 25% 10 25% 403.09 4.36 481.78 1268.65 0.04 0.3% 12 11 0
10 50% 10 50% 323.88 5.13 488.18 1297.84 0.11 3.1% 12 4 4

All 380.65 0.80 471.72 398.80 0.03 0.4% 336 295 24
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Table 62 – Average results from the CF formulation for the RVRPTW instances of class RC1

RC1
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 290.87 0.037 350.24 4.25 0.0% 0.0% 8 8 0
1 10% 0 0% 290.97 0.065 350.24 3.32 0.0% 0.0% 8 8 0
1 25% 0 0% 291.15 0.068 350.24 3.89 0.0% 0.0% 8 8 0
1 50% 0 0% 291.54 0.065 379.94 35.93 9.4% 0.0% 8 8 0
5 10% 0 0% 291.36 0.263 379.94 55.86 9.4% 0.0% 8 8 0
5 25% 0 0% 292.72 0.241 455.51 819.86 31.8% 0.1% 8 7 0
5 50% 0 0% 296.98 0.240 462.23 461.51 33.7% 0.5% 8 7 0
10 10% 0 0% 292.02 0.453 419.80 1968.98 21.5% 6.5% 8 4 0
10 25% 0 0% 296.31 0.711 456.16 27.68 32.0% 0.0% 8 8 0
10 50% 0 0% 313.37 0.568 478.86 1846.92 39.0% 2.4% 8 4 0
0 0% 1 10% 291.05 0.087 350.91 6.00 0.1% 0.0% 8 8 0
0 0% 1 25% 291.56 0.085 352.91 8.19 0.7% 0.0% 8 8 0
0 0% 1 50% 292.78 0.082 368.19 230.90 7.1% 0.0% 8 7 1
0 0% 5 10% 291.26 0.319 352.58 25.87 0.6% 0.0% 8 8 0
0 0% 5 25% 292.28 0.323 377.04 961.41 7.1% 1.5% 8 6 0
0 0% 5 50% 296.25 0.302 426.31 2015.64 25.0% 9.8% 8 3 1
0 0% 10 10% 291.38 1.021 352.58 17.94 0.6% 0.0% 8 8 0
0 0% 10 25% 292.78 0.865 382.59 1422.55 8.6% 1.9% 8 5 0
0 0% 10 50% 298.96 0.974 452.74 2283.21 33.6% 15.7% 8 2 1
1 10% 1 10% 291.14 0.12 350.91 4.86 0.00 0.0% 8 8 0
1 25% 1 25% 291.81 0.11 352.91 9.48 0.01 0.0% 8 8 0
1 50% 1 50% 293.30 0.12 406.70 1265.86 0.19 1.4% 8 5 1
5 10% 5 10% 291.72 0.62 385.65 859.94 0.11 0.6% 8 7 0
5 25% 5 25% 293.82 0.58 469.34 2829.67 0.36 2.9% 8 3 0
5 50% 5 50% 300.71 0.69 494.47 1957.53 0.47 5.6% 8 3 1
10 10% 10 10% 292.46 4.49 425.33 1862.55 0.21 6.9% 8 3 0
10 25% 10 25% 297.55 5.09 469.96 1124.73 0.36 1.0% 8 7 0
10 50% 10 50% 316.82 4.18 493.47 2071.15 0.47 4.7% 8 3 1

All 294.82 0.81 405.28 863.77 0.17 2.2% 224 172 6

Table 63 – Average results from the CF formulation for the RVRPTW instances of class C2

C2
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 181.59 0.025 214.45 1.67 0.0% 0.0% 8 8 0
1 10% 0 0% 181.59 0.052 214.45 1.85 0.0% 0.0% 8 8 0
1 25% 0 0% 181.59 0.056 214.45 1.76 0.0% 0.0% 8 8 0
1 50% 0 0% 181.59 0.060 214.45 1.01 0.0% 0.0% 8 8 0
5 10% 0 0% 181.59 0.197 214.45 2.73 0.0% 0.0% 8 8 0
5 25% 0 0% 181.59 0.208 214.45 2.69 0.0% 0.0% 8 8 0
5 50% 0 0% 181.59 0.211 214.45 2.74 0.0% 0.0% 8 8 0
10 10% 0 0% 181.59 0.407 214.45 3.96 0.0% 0.0% 8 8 0
10 25% 0 0% 181.59 0.369 214.45 3.40 0.0% 0.0% 8 8 0
10 50% 0 0% 181.59 0.487 214.45 4.40 0.0% 0.0% 8 8 0
0 0% 1 10% 181.59 0.072 214.45 1.35 0.0% 0.0% 8 8 0
0 0% 1 25% 181.60 0.072 214.45 1.49 0.0% 0.0% 8 8 0
0 0% 1 50% 181.61 0.079 214.63 1.73 0.1% 0.0% 8 8 0
0 0% 5 10% 181.60 0.237 214.45 2.72 0.0% 0.0% 8 8 0
0 0% 5 25% 181.61 0.250 214.63 2.93 0.1% 0.0% 8 8 0
0 0% 5 50% 181.64 0.258 214.63 2.85 0.1% 0.0% 8 8 0
0 0% 10 10% 181.60 0.769 214.45 2.93 0.0% 0.0% 8 8 0
0 0% 10 25% 181.62 0.608 214.63 2.99 0.1% 0.0% 8 8 0
0 0% 10 50% 181.66 0.646 214.63 2.90 0.1% 0.0% 8 8 0
1 10% 1 10% 181.59 0.10 214.45 2.27 0.00 0.0% 8 8 0
1 25% 1 25% 181.60 0.10 214.45 3.33 0.00 0.0% 8 8 0
1 50% 1 50% 181.61 0.10 214.63 2.69 0.00 0.0% 8 8 0
5 10% 5 10% 181.60 0.63 214.45 4.19 0.00 0.0% 8 8 0
5 25% 5 25% 181.61 0.58 214.63 4.15 0.00 0.0% 8 8 0
5 50% 5 50% 181.64 0.60 214.63 3.08 0.00 0.0% 8 8 0
10 10% 10 10% 181.60 3.06 214.45 7.36 0.00 0.0% 8 8 0
10 25% 10 25% 181.62 3.77 214.63 7.59 0.00 0.0% 8 8 0
10 50% 10 50% 181.66 3.76 214.63 8.68 0.00 0.0% 8 8 0

All 181.61 0.63 214.51 3.27 0.00 0.0% 224 224 0
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Table 64 – Average results from the CF formulation for the RVRPTW instances of class R2

R2
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 313.97 0.025 382.15 66.45 0.0% 0.0% 11 11 0
1 10% 0 0% 313.97 0.058 382.15 99.15 0.0% 0.0% 11 11 0
1 25% 0 0% 313.97 0.056 382.15 119.73 0.0% 0.0% 11 11 0
1 50% 0 0% 313.97 0.058 382.15 155.75 0.0% 0.0% 11 11 0
5 10% 0 0% 313.97 0.215 382.15 220.93 0.0% 0.0% 11 11 0
5 25% 0 0% 313.97 0.187 382.15 194.51 0.0% 0.0% 11 11 0
5 50% 0 0% 313.97 0.178 382.15 314.87 0.0% 0.0% 11 11 0
10 10% 0 0% 313.97 0.433 382.15 195.37 0.0% 0.0% 11 11 0
10 25% 0 0% 313.97 0.441 382.15 224.58 0.0% 0.0% 11 11 0
10 50% 0 0% 313.97 0.514 382.15 279.05 0.0% 0.0% 11 11 0
0 0% 1 10% 313.99 0.085 382.15 89.98 0.0% 0.0% 11 11 0
0 0% 1 25% 314.02 0.075 383.55 122.09 0.4% 0.0% 11 11 0
0 0% 1 50% 314.09 0.086 385.88 139.14 0.9% 0.0% 11 11 0
0 0% 5 10% 314.03 0.292 383.55 125.79 0.4% 0.0% 11 11 0
0 0% 5 25% 314.14 0.304 383.73 225.32 0.5% 0.0% 11 11 0
0 0% 5 50% 314.37 0.323 387.14 440.56 1.3% 0.0% 11 11 0
0 0% 10 10% 314.05 0.692 383.55 320.93 0.4% 0.0% 11 11 0
0 0% 10 25% 314.21 0.554 383.98 517.92 0.5% 0.2% 11 10 0
0 0% 10 50% 314.58 0.537 387.70 669.63 1.5% 0.6% 11 10 0
1 10% 1 10% 313.99 0.11 382.15 209.1398 0.00 0.0% 11 11 0
1 25% 1 25% 314.02 0.10 383.55 145.36 0.00 0.0% 11 11 0
1 50% 1 50% 314.09 0.10 385.88 227.65 0.01 0.0% 11 11 0
5 10% 5 10% 314.03 0.46 383.55 250.92 0.00 0.0% 11 11 0
5 25% 5 25% 314.14 0.43 383.73 320.47 0.00 0.0% 11 11 0
5 50% 5 50% 314.37 0.42 387.14 822.89 0.01 0.1% 11 10 0
10 10% 10 10% 314.05 3.84 383.55 564.92 0.00 0.0% 11 11 0
10 25% 10 25% 314.21 3.47 384.24 680.68 0.01 0.4% 11 10 0
10 50% 10 50% 314.58 3.77 387.39 891.97 0.01 0.5% 11 9 0

All 314.09 0.64 383.71 308.42 0.00 0.1% 308 302 0

Table 65 – Average results from the CF formulation for the RVRPTW instances of class RC2

RC2
Linear Relaxation Integer Solution

Γ Devd Γ Devt Sol T(s) Sol T(s) PoR Gap Total Opt Inf
0 0% 0 0% 173.10 0.038 319.28 1812.35 0.0% 4.8% 8 4 0
1 10% 0 0% 173.10 0.071 319.28 1816.81 0.0% 5.4% 8 4 0
1 25% 0 0% 173.10 0.072 319.28 1815.85 0.0% 4.9% 8 4 0
1 50% 0 0% 173.10 0.075 319.28 1813.39 0.0% 5.4% 8 4 0
5 10% 0 0% 173.10 0.238 319.28 1826.73 0.0% 5.6% 8 4 0
5 25% 0 0% 173.10 0.227 319.28 1826.09 0.0% 5.7% 8 4 0
5 50% 0 0% 173.10 0.212 319.28 1819.87 0.0% 6.1% 8 4 0
10 10% 0 0% 173.10 0.502 319.28 1829.96 0.0% 5.7% 8 4 0
10 25% 0 0% 173.10 0.551 319.28 1822.20 0.0% 5.8% 8 4 0
10 50% 0 0% 173.10 0.544 319.28 1840.59 0.0% 6.0% 8 4 0
0 0% 1 10% 173.13 0.087 319.28 1818.41 0.0% 4.9% 8 4 0
0 0% 1 25% 173.17 0.094 319.50 1819.30 0.1% 5.1% 8 4 0
0 0% 1 50% 173.24 0.085 320.04 1810.85 0.3% 5.2% 8 4 0
0 0% 5 10% 173.16 0.339 319.36 1818.24 0.0% 5.1% 8 4 0
0 0% 5 25% 173.24 0.345 319.84 1818.29 0.2% 5.4% 8 4 0
0 0% 5 50% 173.44 0.321 320.81 1818.42 0.6% 5.8% 8 4 0
0 0% 10 10% 173.17 0.559 319.50 1825.46 0.1% 5.5% 8 4 0
0 0% 10 25% 173.31 0.511 320.01 1825.46 0.3% 5.5% 8 4 0
0 0% 10 50% 173.70 0.557 322.29 1825.65 1.1% 6.3% 8 4 0
1 10% 1 10% 173.13 0.11 319.28 1812.78 0.00 5.5% 8 4 0
1 25% 1 25% 173.17 0.11 319.76 1806.83 0.00 6.1% 8 4 0
1 50% 1 50% 173.24 0.11 319.95 1806.10 0.00 5.5% 8 4 0
5 10% 5 10% 173.16 0.47 319.36 1824.17 0.00 6.3% 8 4 0
5 25% 5 25% 173.24 0.44 320.03 1830.58 0.00 6.5% 8 4 0
5 50% 5 50% 173.44 0.50 322.45 1829.92 0.01 7.3% 8 4 0
10 10% 10 10% 173.17 3.61 319.85 1858.59 0.00 6.3% 8 4 0
10 25% 10 25% 173.31 3.73 321.20 1858.86 0.01 6.6% 8 4 0
10 50% 10 50% 173.70 4.08 322.41 1857.36 0.01 6.9% 8 4 0

All 173.22 0.66 319.92 1824.61 0.00 5.8% 224 112 0
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