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RESUMO 

A atividade industrial é uma das principais responsáveis pelos impactos ambientais, 

sociais e econômicos, o que leva as indústrias a buscarem novas formas de gerenciar seus 

processos. Nesse cenário, o Lean tornou-se um forte aliado do setor industrial, uma vez 

que a aplicação do sistema sociotécnico Lean pode melhorar o desempenho da 

sustentabilidade. Além disso, o setor está passando por importantes mudanças 

tecnológicas em meio à Indústria 4.0 (I4.0) e entender como essas abordagens interagem 

é de grande interesse para acadêmicos e profissionais. Portanto, esta pesquisa se dedica a 

identificar e propor formas de integrar Lean e I4.0 e analisar o efeito dessas relações no 

desempenho da sustentabilidade. Para isso, foram realizadas duas Revisões Sistemáticas 

de Literatura. A primeira teve como objetivo analisar a integração entre os três temas, 

Lean, Sustentabilidade e I4.0, e a segunda mostra a relação entre Lean e I4.0 para apoiar 

a sustentabilidade. A segunda análise visa aprofundar como as relações e o apoio podem 

ocorrer, o que foi fortalecido pelo estudo de casos. Os resultados mostram que as 

indústrias podem se beneficiar da integração entre tecnologias da Indústria 4.0 e Práticas 

Lean para explorar o potencial tecnológico e humano e apoiar o sistema operacional na 

melhoria das medidas de sustentabilidade. A evidência inicial sugere um maior potencial 

de integração entre tecnologias da Indústria 4.0 como a Internet of Things (IoT) e Big 

Data Analytics (BDA), com práticas técnicas Lean como Total Preventive Maintenance 

(TPM) e Just-in-Time (JIT) e práticas sociais Lean, como Melhoria Contínua, 

Envolvimento do Cliente e Parceria com Fornecedores. Nesse sentido, os indicadores de 

Desempenho Econômico são os mais favorecidos, com poucas evidências na literatura de 

melhorias nos indicadores de desempenho ambiental e social decorrentes da integração 

entre tecnologias da Indústria 4.0 e práticas Lean. O estudo de casos confirma os achados 

da literatura e acrescenta evidências de como ocorrem as principais relações de apoio em 

um ambiente industrial, além de abordar aspectos negativos da integração. Os resultados 

da literatura orientaram a construção de um modelo conceitual testado por meio de survey 

com a técnica de Partial Least Squares Structural Equation Modeling (PLS-SEM). A 

survey foi desenvolvida para avaliar os efeitos diretos e indiretos das Big Data Analytics 

Capabilities (BDAC) no desempenho econômico, ambiental e social, na presença de 

práticas técnicas e sociais Lean como variáveis mediadoras. Os resultados confirmam a 

influência direta do BDAC no desempenho social e identificam as práticas técnicas Lean 

como variáveis mediadoras significativas que atuam como catalisadores para 

potencializar os impactos indiretos do BDAC no desempenho econômico. Esta pesquisa 

abrangente pode ajudar pesquisadores e profissionais a entender e se beneficiar 

totalmente da integração das tecnologias da Indústria 4.0, particularmente BDAC, com 

práticas Lean ao gerenciar questões de sustentabilidade. 
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ABSTRACT 

 

Industrial activity is one of the main responsible for environmental, social, and economic 

impacts, which leads industries to seek new ways to manage their processes. In this 

scenario, Lean has become a strong ally of the industrial sector since the application of 

the Lean socio-technical system can improve sustainability performance. In addition, the 

sector is undergoing important technological changes amid Industry 4.0 (I4.0) and 

understanding how these approaches interact is of great interest to academics and 

practitioners. Therefore, this research is dedicated to identifying and proposing ways to 

integrate Lean and I4.0 and analyze the effect of these relationships on sustainability 

performance. For this, two Systematic Literature Reviews (SLR) were conducted. The 

first aimed at analyzing the integration between the three themes, Lean, Sustainability, 

and I4.0, and the second shows the relationship between Lean and I4.0 to support 

sustainability. The second analysis aims to deepen how relationships and support can take 

place, which was strengthened by cases study. The results show that the industries can 

benefit from the integration between Industry 4.0 Technologies (I4T) and Lean Practices 

(LP) to exploit the technological and human potential and support the operational system 

in improving sustainability measures. The initial evidence suggests a greater potential for 

integration between I4T such as the Internet of Things (IoT) and Big Data Analytics 

(BDA), with Lean Technical Practices (LTP) such as Total Preventive Maintenance 

(TPM) and Just-in-Time (JIT), and Lean Social Practices (LSP) such as Continuous 

Improvement, Customer Involvement, and Supplier Partnership. In this sense, Economic 

Performance indicators are the most favored, with little evidence in the literature of 

improvements in environmental and social performance indicators resulting from the 

integration between I4T and LP. The cases study confirm the findings of the literature 

and add evidence of how the main support relationships occur in an industrial 

environment, in addition to addressing negative aspects of integration. The results of the 

literature guided the construction of a model conceptual model tested through survey 

research with the Partial Least Squares Structural Equation Modeling (PLS-SEM) 

technique. The survey research was developed to assess the direct and indirect effects of 

Big Data Analytics Capabilities (BDAC) on economic, environmental, and social 

performance, in the presence of Lean Socio-Technical Practices as mediating variables. 

The results confirm the direct influence of BDAC on Social Performance and identify 

Lean Technical Practices as significant mediating variables that act as a catalyst to boost 

the indirect impacts of BDAC on Economic Performance. This comprehensive research 

can help researchers and practitioners fully understand and benefit from the integration 

of I4T, particularly BDAC, with the LP while managing sustainability issues. 
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1 INTRODUCTION 

This chapter presents the contextualization of the research themes, questions and 

objectives, importance of the study, stages for the development, and the dissertation 

structure. 

 

1.1 Contextualization and Motivation 

Climate change, environmental degradation, and scarcity of natural resources are 

some of the biggest challenges that humanity has been facing amidst industrialization 

(Garza-Reyes et al., 2018). Industrial activities are largely responsible for environmental 

as well as economic and social impacts (Holton et al., 2010). In this sense, improving 

sustainability performance in the industrial sector has become a key objective for 

countries pursuing sustainable development (Holton et al., 2010). 

The often-quoted Brundtland report defined sustainable development as 

“development that meets the needs of the present without compromising the ability of 

future generations to meet their own needs” (World Commission on Environment and 

Development, 1987, p. 5). Thus, sustainability concept is based on the creations and 

maintenance of the conditions under which humans and nature can exist in productive 

harmony (Cakir et al., 2012). 

The Triple Bottom Line (TBL) represents the balance between the three 

dimensions of sustainability (Elkington, 1998) and can be incorporated into industrial 

strategy as a goal for performance measurement (Henao et al., 2018). The concept of 

sustainability considers the environmental, social, and economic pillars (Elkington, 

1998). Sustainability performance groups social and environmental values from business 

valuations, along with their economic importance (Sajan et al., 2017). In this context, 

industries are expected not to focus solely on maximizing profits (Thanki et al., 2016). 

Additional efforts are required to reduce environmental impacts, as well as the 

enhancement of the social aspect (McWilliams et al., 2014). 

To improve sustainability performance in operations, industries are driven to 

change their management efforts (Wong and Wong, 2014; Garza-Reyes, 2015). A viable 

path may be to explore beyond the operational potential of continuous improvement 

initiatives (Garza-Reyes et al., 2018; Costa et al., 2018). For example, Lean 

Manufacturing has led industries to go beyond the traditional parameters of quality and 

productivity, also achieving environmental efficiency in their processes (Garza-Reyes, 

2015). 
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Lean Manufacturing can be described as a management philosophy or strategy 

using a set of practices to minimize waste (Womack et al., 1990). Lean is considered a 

socio-technical approach, and, as such, it has two pillars of practices, social and technical 

(e.g., Bortolotti et al., 2015; Shah and Ward, 2007). Lean Technical Practices (LTP) refer 

to the implementation of a group of manufacturing practices that simultaneously focus on 

the reduction of non-value-added activities and people involvement (Chavez et al. 2015, 

2020). Lean Social Practices (LSP) relate to behavioral aspects and generally deal with 

human resource aspects such as training and education, leadership, teamwork, 

empowerment, customer and supplier participation, and organizational culture (Lewis et 

al., 2006). Implementation of Lean Practices (LP) affects the operational performance 

dimensions of companies (Khanchanapong et al., 2014), in addition to being positively 

associated with environmental performance (Bai et al., 2019) and social performance 

(Chavez et al., 2020b). 

The grouping of LP into Lean Socio-Technical practices is expected to promote 

the development of new processes, procedures, strategies, and work methods that further 

improve organizational performance and generate long-term competitive advantage 

(Abdallah et al., 2021). Thus, the current research investigates the relationships between 

the social and technical aspects of LP and their effects on organizational performance 

outcomes (Arumugam et al., 2020; Abdallah et al., 2021). For example, Sahoo (2019) 

argues that LSP can improve the organization's performance. In the same perspective, 

Chavez et al. (2020) claim that LTP can positively affect sustainability performance. 

In addition, industrial manufacturing is undergoing important technological 

changes. Companies are driven to upgrade their manufacturing systems to an intelligent 

level (Kamble et al., 2019), making it necessary to integrate the social and technical 

elements of Lean using advanced technologies (Mishra et al., 2014). Thus, companies 

worldwide are investigating how they can benefit from the emerging technology-based 

manufacturing paradigm (Buer et al., 2018), namely, Industry 4.0 (I4.0). 

I4.0 can be defined as a current trend of automation technologies in the 

manufacturing industry, and it mainly includes enabling technologies such as the Cyber-

Physical Systems (CPS), Internet of Things (IoT), and Cloud Computing (CC) (Hermann 

et al., 2016; Lu, 2017). Furthermore, I4.0 is based on Big Data, and how the data can be 

gathered, analyzed, and used to make the right decisions has become a competitive factor 

(Nagy et al., 2018). 
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On the other hand, I4.0 can create direct and indirect impacts on the three 

dimensions of sustainability (Felsberger et al., 2020). In that regard, Ferrera et al. (2017) 

argue that Industry 4.0 Technologies (I4T) carefully adapted and integrated for process 

monitoring and optimization can improve sustainability performance. Manufacturing 

companies adopting I4T must be prepared to take responsibility for their digitization 

process and lead it in a direction for improving economic, environmental, and social 

performance (Ghobakhloo and Fathi, 2020). Yet, it is still questionable whether the 

adoption of I4T can result in better environmental performance (Chiarini et al., 2020), as 

well as what impacts they can have on social performance. 

However, I4.0 does not replace Lean management practices (Rosin et al., 2019). 

Contrariwise, in the past few years, several papers have investigated how Lean can be 

matched with I4T to achieve strategic objectives (Chiarini et al., 2020). Wagner et al. 

(2017) considered that the features of I4.0 consolidate the Lean gains on processes, once 

I4.0 allows for the prevention and elimination of defects (Lai et al., 2019). In their study, 

Pagliosa et al. (2019) revealed that interactions between I4.0 and Lean were classified as 

highly synergistic. Their findings point to the existence of a favorable and collaborative 

relationship between I4T and LP, achieving greater operational performance. 

There is evidence that I4T have a direct effect on Lean goals and on sustainability 

performance (Kamble et al., 2019). Thus, the links between Lean, I4.0, and sustainability 

arouse the interest of academics and practitioners, as well as society in general (Varela et 

al., 2019). Companies must be aware of how the influence of the two production 

paradigms, Lean and I4.0, occurs on the three pillars of sustainability (Varela et al., 2019). 

A company that implements Lean can reap benefits of achieving goals of sustainability 

which can further be expedited with I4.0 (Khanzode et al., 2021). 

Although there is an initial evidence of synergy between Lean, I4.0, and 

sustainability, some gaps are presented: i) Deepening is needed on how  I4.0, Lean, and 

the three pillars of sustainability interact in manufacturing environments (Duarte et al., 

2020; Kamble et al., 2019; Dubey et al. 2017); ii) the organizations may not be able to 

clearly identify the effect of investments in technologies and Lean on improving financial, 

environmental, and social performance (Ghobakhloo and Fathi, 2020), and, for this 

reason, studies on how the companies could use the joint I4.0 and Lean effect to achieve 

results in different sustainability dimensions, need to be developed (Núñez-Merino et al., 

2020; Pagliosa et al., 2019). 
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In addition, this dissertation aims to help understand more specific issues 

regarding the interactions between approaches. In this sense, research is needed to 

examine the influence of Lean Socio-Technical practices on performance results, i.e., 

productivity, cost, quality, delivery, flexibility, and employee morale and safety (Sahoo, 

2019). Current research should investigate how companies are looking for insights into 

how and when to combine Lean and I4.0 (Chiarini et al., 2020). Earlier studies are not 

unanimous regarding the nature of the relationship between I4T and Lean and their 

combined effect on performance (Buer et al., 2020), and studies on the relationships 

between specific LP and specific I4T remain scarce (Buer et al., 2018; Ejsmont et al., 

2020). These gaps are also related to the general scarcity of empirical studies on the topic 

(Buer et al., 2018; Pagliosa et al., 2019). 

Sadiq et al. (2021) point out that studies can be carried out using the innovative 

concept of I4.0 in conjunction with Lean and environmental sustainability. However, I4.0 

and Lean cannot disregard objectives related to social responsibility beyond the 

environmental and economic aspects (Chiarini and Vagnoni, 2017). Thus, this 

Dissertation is unprecedented in questioning and answering the following General 

Research Question (GRQ): 

GRQ: What impact do the supportive relationships between Industry 4.0 

technologies and Lean socio-technical practices have on sustainability performance? 

The main objective of this research is to identify and propose ways to integrate 

I4.0 and Lean and to analyze the impact of the main relationships between I4T and Lean 

Socio-Technical practices on sustainability performance. For that, this Dissertation is 

structured in papers where the specific objectives are pursued that will contribute to 

achieve the main objective. Thus, the Dissertation will present repetitions of content, 

since the papers work on similar themes, however, observed from different perspectives 

that will make up the body of knowledge to draw conclusions about the research question. 

This Dissertation contributes to the theory and practice of research in I4.0 and 

Lean. The gaps presented are filled as this research details what and how the relationships 

between I4T and LP occur in theory and practice and the impact of them on economic, 

environmental, and social performance. In addition, the research empirically investigates 

the mediating effect of Lean Socio-Technical practices on the relationship between Big 

Data Analytics Capabilities (BDAC) and sustainability performance. The study of the 

relationship (technology-practices-sustainability performance) and the insights provided 

in this research can help professionals understand the requirements and anticipate the 
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effects of the integration between I4.0 and Lean. In addition, it can help academics 

identify directions for future research. 

 

1.2 Research method 

This topic summarizes the research methods, which will be detailed in each of the 

papers. This study is based on the existing literature and uses an empirical-oriented 

methodological approach. The methods of Systematic Literature Review (SLR), case 

study and survey research are applied.  

The SLR summarizes the field of research and supports the identification of 

specific issues (Rowley and Slack, 2004), involving a variety of techniques to minimize 

bias and errors, providing high-quality evidence (Tranfield et al., 2003). Your process 

follows planned steps to gather information on the proposed theme (Gough, 2007), justify 

and qualify the research question (Tranfield et al., 2003).Additionally, the SLR is 

important in supporting the identification of hypothesis; identifying the theory to which 

the research will contribute; building an understanding of theoretical concepts and 

terminology; facilitating the building of a bibliography or list of the sources that have 

been consulted; suggesting research methods that might be useful; and in, analyzing and 

interpreting results (Rowley and Slack, 2004). By its nature, SLR demands transparency 

(Rader et al., 2013). Scientific rigor in research reporting minimizes the risk of 

incomplete or inaccurate results (Rader et al., 2013). 

The case study contributes to the understanding of complex phenomena through 

an investigation that preserves the holistic and significant characteristics of the analyzed 

event (Yin, 2001, p. 21). Furthermore, it can be used to explain causal relationships 

between variables (Yin, 2001). Thus, it is suitable for investigating the evolution of 

management strategies and technological advances in an industrial environment (Lewis, 

1998). 

To fulfill the objectives of this study, two SLR were carried out with 

complementary objectives. The first SLR makes it possible to know the state of the art, 

structure the research field, identify gaps and contribute to the evolution of the theme. 

The second makes it possible to consolidate the understanding of the theme and point out 

possible directions for future studies. In addition, the case study strengthens the literary 

findings by improving the validity of the research. 

On the other hand, survey research provides preliminary evidence of an 

association between concepts (Forza, 2002). The survey takes on an exploratory character 
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when it is dedicated to obtaining an initial view of the phenomenon investigated and 

providing subsidies for future research (Forza, 2002). Typically, there is no defined model 

in the exploratory survey, and the concepts of interest need to be better understood and 

measured (Malhotra and Grover, 1998). Thus, survey research data are often analyzed in 

quantitative units (Yoshikawa et al., 2008). Malhotra and Grover (1998) establish that 

survey research involves: (a) definition of the unit of analysis; (b) collecting data in a 

structured format; (c) definition of variables and the relationships between them; and (d) 

specification of the sample, with the ability to generalize findings. Therefore, these steps 

will be detailed in the papers that follow. 

The research variables were used to develop the general research model (Figure 

1.1). The theoretical underpinnings of Big Data Analytics (Akter et al., 2016; Wamba et 

al., 2017) and of the Lean Socio-Technical System (Shah and Ward, 2003; 2007; 

Bortolotti et al., 2015) support the first hypothesis (H1), which investigates the 

development of Big Data Analytics Capabilities (BDAC) and application of Lean Socio-

Technical System in industries, and the direct effect of the BDAC on Lean technical and 

social practices. In addition, knowledge about the BDAC (Gupta and George, 2016; 

Belhadi et al., 2019) corroborates hypothesis 2, which analyzes the effect of specific 

resources, such as tangible resources, human skills, and intangible resources, on the 

sustainability performance of industries that operationalize their processes in a Lean 

environment. Finally, the findings of the SLR (Mesquita et al., 2021) and of the cases 

study support the investigation of the mediating effect of Lean technical and social 

practices on the relationship between BDAC and the sustainability performance 

(hypothesis H3). To examine the possible non-response bias, responses were compared 

to three control variables: company size, level of implementation of Lean practices, and 

knowledge of Industry 4.0 technologies. The methods and hypotheses of the model 

(Figure 1.1) will be discussed in detail in the chapters (papers) that follow. 

 

 

Figure 1.1. Theoretical conceptual model 
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The general research model (Figure 1.1) was developed specifically for BDA 

because, through its capabilities, this technology has the potential to integrate with Lean 

Practices and has a predominantly positive impact on sustainability, according to the SLR 

and cases study carried out (Chapters 3 and 4). Therefore, in Chapter 5 a model with 

BDAC, Lean Socio-Technical practices, and economic, environmental and social 

performances will be presented. 

 

1.3 Dissertation structure 

The present Dissertation is divided into 6 chapters (Figure 1.2). Chapter 3 (Paper 

1), Chapter 4 (Paper 2), and Chapter 5 (Paper 3) are structured in paper format, so 

necessarily some information appears more than once in the entire document. 

 

 

Figure 1.2. Dissertation structure 

 

After the contextualization and construction of the theoretical bases that support 

the study (Chapters 1 and 2), Chapter 3 (Paper 1) is dedicated to identifying what are the 

main integration relationships between Lean, Industry 4.0, and Environmental 

Sustainability. Findings indicate that there is a stronger integration between Industry 4.0 

technologies and Lean practices to achieve environmental sustainability. Technologies 
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such as Big Data and IoT present themselves as the most promising to support Lean 

practices related to processes and customers. 

In Chapter 4 (Paper 2), the Paper 1 findings contributed to a new SLR and cases 

study that investigate how Industry 4.0 technologies support Lean technical and social 

practices and the impact of these relationships on economic, environmental, and social 

performance. The findings allow us to identify the strengths of the integration between 

Industry 4.0 and Lean and confirm the results of Paper 1 since IoT (RFID, Sensor, and 

Actuator) and BDA strengthen the goals of Lean technical and social practices. BDA has 

relationships with Lean technical practices such as Total Preventive Maintenance (TPM) 

and Just-in-Time (JIT), and Lean social practices such as Continuous Improvement, 

Customer Involvement, and Supplier Partnership. The results also point to a more 

significant impact of relationships on Economic Performance indicators, with few 

benefits for the environmental and social aspects. 

Evidence from papers 1 and 2 shows that BDA can improve Lean system 

objectives and that the relationships between BDA and Lean technical and social practices 

can impact sustainability performance. Thus, through survey research, Chapter 5 (Paper 

3) investigates the mediating effect of Lean technical and social practices on the 

relationship between Big Data Analytics Capabilities and economic, environmental, and 

social performance. The results confirm the direct impact of BDA capabilities on 

Technical Lean and Social Lean. In addition, Lean technical practices fully mediate the 

relationship between BDA capabilities and economic performance. Finally, Chapter 6 

concludes the dissertation. 
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2 CONCEPTUAL BACKGROUND 

This chapter is a brief conceptual background on Lean and Industry 4.0 

approaches and sustainability performance in industrial manufacturing. 

 

2.1 Lean 

In 1940, Toyota Motor Company experienced a severe financial crisis that drove 

a series of revolutionary production innovations focused on eliminating waste and 

improving the company's core operations (Holweg, 2007). In this context, arise the 

Toyota Production System (TPS) (Holweg, 2007), by Taichii Ohno’s initiatives at Toyota 

Motor Company (Sanders et al., 2016). Then, since the 1950s in Japan, and since the 

1980s in the West, under the name Lean Manufacturing, companies have been 

implementing this approach and its philosophy (Rosin et al., 2019). 

Lean Manufacturing was understood from different complementary perspectives 

such as manufacturing system, set of practices, management philosophy, manufacturing 

paradigm and others (Shah and Ward, 2003, 2007; Treville and Antonakis, 2006; Li et 

al., 2005; Hopp and Spearman, 2004; MacDuffie, 1995; Womack et al., 1990). Many 

manufacturers consider Lean as an industrial strategy that provides the basis for 

operational excellence through process standardization, propagation of a culture of 

continuous improvement, and workforce empowerment (Bai et al., 2019). Thus, the Lean 

system is extensively deployed in manufacturing environments, mainly by companies 

operating under stable production producing large volumes of standardized products 

(Yadav et al., 2017). Lean develops activities such as evaluation, improvement, and 

performance monitoring (Ejsmont et al., 2020). 

Lean consists of numerous practices, methods, and tools (Möldner et al., 2020), 

which, of integrated and appropriately implemented, constitute a system for the gradual 

elimination of waste. Seven waste types are known in Lean Manufacturing: 

overproduction, inventory, extra processing, motion, waiting for time, defects, and 

transportation (Hicks, 2007; Amrina and Lubis, 2017). Furthermore, waste can be 

regarded as any activity that does not add value to the customer, such as unused employee 

creativity (Liker, 2004). However, the focus of the Lean approach should not just be on 

eliminating these wastes. Lean should also focus on other waste-generating elements such 

as mura (process variability) and muri (excessive workload) (Sony, 2018). 

Arlbjørn and Freytag (2013) have suggested a division of Lean into three levels, 

such as i) philosophy level which expresses the idea that Lean basically concerns reducing 
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waste and improving customer value, ii) principles level which comprises five principles 

deduced from the TPS, and iii) tools level that consists of several well-known tools 

primarily taken from Just-in-Time, Total Quality Management, and the Theory of 

Constraints.  Furthermore, the Lean system is commonly approached from two points of 

view (Ciano et al., 2020). Theoretically, it is related to guiding principles and general 

objectives (Womack and Jones, 1996). From a practical point of view, it is defined as a 

set of practices to achieve the objectives (Shah and Ward, 2003). Principles are the 

strategic components that refer to the ideals of the system (Souza and Alves, 2018), while 

practices are the components that operationalize such principles (Tortorella et al., 2017). 

Womack and Jones (1996) systematized Lean Thinking and brought together five 

critical principles of Lean implementation such as identifying value, mapping the value 

stream, creating flow, establishing pull, and seeking perfection. Shah and Ward (2003) 

group Lean management practices into four groups such as Just-in-Time (JIT), Total 

Quality Management (TQM), Total Preventive Maintenance (TPM), and Human 

Resource Management (HRM). Through this set of synergistic practices, Lean focuses on 

the systematic elimination of wastes and non-value added activities from a company’s 

manufacturing operations to produce products and services at the rate of demand 

(Womack et al., 1990; Shah and Ward, 2007), what gave rise to Lean Thinking 

(Bevilacqua et al., 2015). 

The Lean production system seeks to implement streamlined and continuous flow 

processes based on the adoption of a pull approach (Liker, 2004) to create the finished 

products at the required pace of customers (Shah and Ward, 2003), clearly identifying 

customer value and joining efforts to eliminate manufacturing waste (Liker, 2004). 

Sanders et al. (2016) present ten Lean dimensions and group them into four main factors. 

The supplier factors integrate suppliers into business processes with dimensions of 

supplier feedback, supplier development, and JIT delivery. The customer factor involves 

the customer in business processes. The process factors organize operations and process 

sequencing with the dimensions of pull production, continuous flow, and setup time 

reduction. The human and control factors structure the control system and motivate 

employees with the dimensions of Statistical Process Control (SPC), Total Productive 

Maintenance (TPM), and employee involvement. 

It is noticed that the Lean approach focuses on human-centered production 

systems (Ma et al., 2017). The implementation of Lean can be widely recognized when 

its practices extend to suppliers and customers, and continuous improvement programs 
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are strategically developed throughout the company (Mrugalska and Wyrwicka, 2017). 

In that regard, Shah and Ward (2007) define Lean as an integrated socio-technical system. 

The authors conceptualize Lean more holistically by capturing both internal and external 

practices to better align Lean objectives with its origins and develop an appropriate set of 

measures. Bortolotti et al. (2015) define a set of Lean socio-technical practices (Table 

2.1) and argue that Lean hard refers to technical practices introduced to improve 

production systems, while Lean soft is related to social practices focused on people 

involvement and human resource management. 

 

Table 2.1. Definition of Lean socio-technical practices 

Lean Technical Practices Definition 

Continuous flow 
Seeks to establish a simplified flow of products without major stops 

throughout the company (Sanders et al., 2016). 

Just-In-Time (JIT) 

Seeks to reduce unnecessary stocks by minimizing transport and storage 

costs, delivering pieces frequently and in small quantities (Goodarzi and 

Zegordi, 2018). 

Kanban 

Refers to a physical card that sends the demand signal from a 

downstream workstation to an upstream workstation preventing the 

work-in-process (WIP) accumulation between workstations. Kanban 

strategy is suitable for inventory control (Huang et al., 2020). 

Setup time reduction 

Refers to a set of coordinated activities that keep the time needed to 

adapt production resources to product variations to a minimum (Sanders 

et al., 2016). 

Statistical Process Control 

(SPC) 

Seeks to ensure that each process will provide defect-free units for the 

subsequent process (Shah and Ward, 2007). 

Autonomous maintenance 

Aims to reduce equipment downtime through complementary 

maintenance methods and techniques with strong human involvement 

(Tortorella et al., 2018; 2021). 

Lean Social Practices Definition 

Management leadership 

It establishes a culture where top managers act as role models to 

exemplify the desired behavior for Lean implementation, taking 

initiatives in defining and communicating the vision of change and 

setting goals (Gaiardelli et al., 2018). 

Supplier partnership 
Seeks long-term relationship between buyer and supplier based on trust, 

open communication, and close interaction (Gaiardelli et al., 2018). 

Small group problem 

solving 

Organization of employees in work teams and involvement in problem-

solving groups (Gaiardelli et al., 2018). 

Continuous improvement 

Establishes a culture of sustained improvement targeting the elimination 

of waste in all systems and processes of an organization (Singh and 

Singh, 2015). 

Training employees 
Seeks to establish formal job design, job rotation, and cross-functional 

training programs (Gaiardelli et al., 2018). 

Customer involvement 
Refers to a set of coordinated activities focused on a company's 

customers and their needs (Shah and Ward, 2007). 

 

Implementation of the Lean system has given rise to significant positive impacts 

on various industries during the past couple of decades (Shahin et al., 2020). Thus, Lean 

Practices (LP) have been extensively adapted and implemented in several sectors 
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(Tortorella et al., 2020b). There is evidence that LP are positively associated with 

sustainability performance categorized as economic, environmental, and social 

performance (Sajan et al., 2017). Furthermore, there is a significant positive effect of the 

simultaneous application of LP and Industry 4.0 Technologies (I4T) in cost reduction, 

product and process quality improvement, lead time, and flexibility (Khanchanapong et 

al., 2014). 

However, Lean is facing several challenges from an integration perspective. For 

example, more effective integration with suppliers and customers (Moyano-Fuentes et 

al., 2019). The acquisition of exact customer needs is getting more and more complex, 

pull production must face rapid changes in scheduling, and often the set-up time reduction 

is based exclusively on human experience (Sanders et al., 2016). Successful application 

of these practices depends primarily on data collection and analysis, which can be time-

consuming and costly (Uriarte et al., 2018) and requires workers to be highly experienced 

in increasingly complex and dynamic environments (Longo et al., 2017). In this context, 

attempts have emerged to integrate automation using emerging technologies into the Lean 

system (Kolberg et al., 2016). 

There is, therefore, a clear need to pursue the deployment of Lean management 

using I4T, according to the capability level targeted (Rosin et al., 2019). Thus, important 

questions arise about how a simultaneous implementation of LP and I4T affects the 

operational performance (Shahin et al., 2020) and sustainability performance of 

organizations (Kościelniak et al., 2019). 

 

2.2 Industry 4.0 

The term ‘Industry 4.0’, coined in 2011 at the Hannover Fair in Germany, 

describes an industry whose main characteristics comprehend connected machines, smart 

products and systems, and inter-related solutions (Tortorella and Fettermann, 2017). 

Using the Internet of Things (IoT), Big Data, and Cyber-Physical Systems (CPS), among 

other technologies, Industry 4.0 (I4.0) can reach levels of operational performance that 

were previously inaccessible (Rosin et al., 2019), in addition to defining a different 

approach to customer value (Kamble et al., 2019), as it allows you to dynamically 

reconfigure manufacturing systems based on your needs (Da and Duan, 2019). However, 

Ghobakhloo and Fathi (2020) present that there is no literary consensus on the emergence 

of the fourth industrial revolution or I4.0. Rifkin (2016) argues that the third industrial 
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revolution still has the potential for evolution to be considered complete. For this research, 

the emergence of Industry 4.0 will be considered. 

I4.0 and its international equivalents such as the Chinese movement ("Made in 

China 2025"), South Korean ("Manufacturing Industry Innovation 3.0") (Li, 2018), North 

American (“Advanced Manufacturing Partnership”), United Kingdom (“Smart Factory”) 

and others (Kumar et al., 2020), heavily rely on advanced technological innovations (Li, 

2018). Therefore, the I4.0 is a technology-driven approach that provides a modular and 

changeable production environment (Kolberg et al., 2016). In the context of I4.0, the 

physical facilities in an organization, when connected through embedded sensors, 

processors, and actuators can be controlled and monitored by cyber systems (Sony, 2020). 

I4.0 is a generic term for highly complex and automated manufacturing systems, 

services, and business processes, where devices are self-aware, communicate with one 

another and with humans and can be remotely accessed, using information available in 

the network and in the cloud (Kumar et al., 2020). Stork (2015, p.21) defines I4.0 as the 

introduction of technologies in the manufacturing industry to make factories smarter and 

increase adaptability, resource efficiency, and ergonomics. Furthermore, it refers to 

greater customer integration in the product definition phase as well as business partners 

into the value and logistic chains (Stork, 2015, p.21). The success of applying Industry 

4.0 technologies (I4T) is linked to a set of factors such as usability, selective provision of 

information, acceptance of users, consideration of ethical, legal, and social impacts, and 

profitability (Mayr et al., 2018). In this research, the main technologies adopted to 

compose I4.0 are defined in Table 2.2. 

 

Table 2.2. Definition of Industry 4.0 technologies 

Industry 4.0 technologies Definition 

Cloud Computing (CC) 

Is a technology that offers storage, access, and use of online computing 

services. It consists of three levels: infrastructure as a service, platform 

as a service, and software as a service. Moreover, it allows companies to 

access computing resources in a flexible way with low administrative 

effort and from different devices, offering agility, interoperability, and 

scalability (Arredondo-Méndez et al., 2021). 

Cyber-Physical System 

(CPS) 

System of the embedded computers and networks that monitor and 

control the physical processes, usually with feedback loops where 

physical processes affect computations and vice versa (Lee et al., 2015). 

Internet-of-Things (IoT) 

It refers to an Information and communication technology infrastructure 

with middleware functionality, which facilitates the interoperation of 

heterogeneous hardware and software components, that can operate 

inside or outside the industrial environment. IoT forms a broader and 

more scalable network of generic 'things' (i.e., sensors, actuators, 

controllers, smart objects, mobile devices, RFID devices, servers, ERP 
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and MES systems, third-party systems, cloud services, etc.) (Ferrera et 

al., 2017). 

Big Data/ Big Data 

Analytics (BDA) 

Big Data refers to large data sets, varied and complex, that can be 

difficult to analyze and identify patterns (LaValle et al., 2011). For that, 

BDA is the process of examining large and varied data sets to uncover 

hidden patterns, unknown correlations, market trends, customer 

preferences, and other useful information that can help organizations 

make more-informed business decisions (Abell et al., 2017). 

Automated guided vehicle 

(AGV) 

Defined as a driverless material handling system with applications in 

diverse areas such as manufacturing, distribution, transshipment, and 

external transportation. AGVs can be classified as unit load carrying, 

forked, mandrel, unit load deck, and load towing (Vlachos et al., 2021). 

Additive Manufacturing 

(AM) 

Can be called 3D printing, the AM is an umbrella term composed of a set 

of innovative technologies aimed at manufacturing various 3D objects 

directly from digital models, depositing and joining layers of polymers, 

ceramics, or metals (Ford, 2014). 

Augmented Reality (AR) 

System or set of technological devices that combines the real world with 

virtual reality through real-time interactions, which apply digital data and 

images, expanding physical reality by adding an extra layer of computer-

generated information to it (Koscielniak et al., 2019). 

 

Although it is often characterized by the composition of an extensive portfolio of 

disruptive digital technologies, the concept and implementation of I4.0 also rely on key 

design principles (Ghobakhloo, 2018) such as systems integration, decentralized 

decisions, interconnection, interoperability, modularity, information transparency, 

virtualization, technical assistance, service orientation (Tortorella et al., 2021), and real-

time capability (Santos et al., 2017). These design principles can support companies in 

the identification of the most appropriate solutions for their problems (Santos et al., 

2017). Thus, I4.0 can ensure better cooperation with stakeholders (Sanders et al., 2016). 

Due to the complexity and scope of the phenomenon, the concept of I4.0 is not 

unanimous in the literature (Ciano et al., 2020). Recent studies have found numerous 

definitions for I4.0 (Moeuf et al., 2017). Thus, there is no consensus among researchers 

and practitioners on which elements create I4.0, how these elements are interrelated and 

where I4.0 applies (Ejsmont et al., 2020). Pan et al. (2015) approach I4.0 by the ability 

to transmit and interpret information between industrial layers, i.e., effective 

communication between elements. In this research, it was assumed the definition that I4.0 

refers to digital advances where the internet and related technologies serve as a support 

to connect physical objects, human actors, intelligent machines, production lines, and 

processes, contributing to an integrated, flexible, and agile value chain (Schumacher et 

al., 2016). Furthermore, it is admitted that the adoption of I4.0 requires a socio-technical 

transformation that renews different levels and functionalities in industrial organizations 

(Zheng et al., 2020). 
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I4.0 is the sum of disruptive innovations derived and implemented in a company 

to address the trends of digitalisation, autonomization, transparency, mobility, 

modularisation, network collaboration, and socialising of products, processes, and 

partners (Pfohl et al., 2015). Therefore, designing an architecture for I4.0 implementation 

is a challenge due to technical, social, and organizational complexity (Sony, 2020). In 

that regard, Prinz et al. (2018) argue that an organisation implementing I4.0 without 

standardised and continuous flow processes will not be productive. On the other hand, 

I4.0 will bring about a change in work, requiring well-trained employees with different 

skills (Bittencourt et al., 2019). 

I4.0 is considered a step forward toward the industrial future of production, with 

highly connected environments (Ferrera et al., 2017). Refers to the digital manufacturing 

system provided by the successful integration of production processes, information 

technologies, and techniques (Kamble et al., 2019). Furthermore, I4.0 seeks the creation 

of a network among humans and objects connected through real-time data (Osterrieder et 

al., 2020; Jabbour et al., 2018; Wagner et al., 2017) that extends to the entire supply chain 

and results in horizontal integration between all stakeholders (Tortorella et al. 2020; 

Cifone et al., 2021), vertical integration between production and manufacturing levels 

(Tortorella et al. 2020), and end-to-end integration among smart machines, products, 

systems, and operators (Berger et al., 2016). 

I4.0 presents relationships with technical factors such as robust control system 

design, optimization of the manufacturing process, real-time feedback system, and 

monitoring mechanisms (Bhat et al., 2020; Cohen et al., 2019). Furthermore, socio-

cultural requirements such as top management leadership, employee adaptability, 

organizational strategy, structure, core competencies, priorities, tech-savvy stakeholders, 

motivation, and budget influence the successful implementation of this industrial 

approach (Bhat et al., 2020; Ghobakhloo, 2018). 

The advances achieved with I4.0 have changed the way companies interact with 

their employees, suppliers, customers, and partners (Reischauer, 2018; Tortorella et al., 

2021), and these relationships with technical, social, and cultural factors demonstrate 

synergies between I4.0 and Lean. Furthermore, deploying I4.0 introduces improvements 

in economic (Moeuf et al., 2017), ecological and social performance (Stock et al., 2018), 

impacting sustainability performance. 

In this research, in addition to investigating the general context of the integration 

between Industry 4.0, Lean, and Sustainability, we investigated in depth the relationships 
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between Big Data Analytics (BDA), Lean Socio-Technical Practices, and economic, 

environmental and social performance. This is because BDA has strong relationships with 

Lean and Sustainability. BDA is broadly defined as “a holistic process that involves the 

collection, analysis, use, and interpretation of data for various functional divisions to gain 

business value, and establish a competitive advantage” (Fosso Wamba et al., 2019). Large 

volumes of data are not handled with traditional tools, so BDA provides companies with 

the ability to manage their use of ever-growing databases (Ma et al., 2015). 

Yan et al. (2017) proposes the application of intelligent optimization algorithms 

to reduce total energy consumption with a Big Data processing platform. Jabbour et al. 

(2017) explored the synergistic relationships between the circular economy and Big Data 

and how it can enhance social and environmental sustainability, enabling the decoupling 

of environmental burden and economic growth. Bressanelli et al. (2018) establish that 

preventive and predictive maintenance promoted by BDA extends the life of machines, 

minimizing waste. Therefore, BDA can be used to improve economic, environmental, 

and social performances (Raut et al., 2019), and support Lean. 

 

2.3 Sustainability Performance 

In recent decades it has been argued that industries are not just economic units, 

they are components of society that transmit their role to progress, also from the point of 

view of sustainability (Tasleem and Athar, 2015). In addition to traditional economic 

goals, the industrial sector has sought ways to reduce risks and environmental impacts 

(Duarte et al., 2020). What makes it necessary to manage sustainability in economic, 

social, and environmental aspects (Garza-Reyes, 2015). 

Sustainability has become an invaluable tool for exploring ways to improve 

performance and promote fundamental internal changes in organizational strategy 

(Azapagic, 2003). However, failure to measure economic, environmental, and social 

performance over time can cause practices to become less indicative of what companies 

are achieving from a sustainability perspective (King et al., 2005). By measuring these 

performances, industries are better positioned to manage them and thus contribute to 

sustainable development both within and beyond their boundaries (Hourneaux Jr. et al., 

2014). 

In this sense, Jayakrishna et al. (2015) define that: (i) Economic Performance 

involves achieving better financial results by ensuring the future availability of scarce 

resources; (ii) Environmental Performance involves strategies to reduce impacts on the 
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environment caused by, products and processes, as well as initiatives to preserve the 

system in the future; and (iii) Social Performance measures involve the population, 

internal and external, in the organizational strategy, that is, it involves contributing to 

human needs, in addition to meeting other goals. 

To meet these expectations, industries are improving the management of 

sustainability performance indicators (Hourneaux Jr. et al., 2017). In this context, 

Economic Performance reflects the ability of a production unit to obtain maximal output 

from a given set of inputs and the production technology (Yang and Zhang, 2016). It can 

be measured through a set of economic indicators characterized by reduced overall 

production costs and profit maximization (Kamble, et al. 2019). 

From an environmental perspective, Haffar and Searcy (2018) propose a list with 

different categories of indicators, such as materials, energy, water consumption, 

biodiversity, emissions, effluents and waste, transport, products and services, compliance, 

environmental grievance mechanisms, supplier environmental assessment, and 

environment-related financial investments. Similarly, Popovic et al. (2018) propose a set 

of quantitative indicators to assess social sustainability in industries. Indicators reflect an 

organization's social context by evaluating categories such as work practice and human 

rights. 

For this research, we will adopt the economic, social, and environmental 

performance indicators defined by Kamble et al. (2019) (Table 2.3), used by several 

authors. 

 

Table 2.3. Sustainability performance indicators 

Sustainability 

Performance 
Performance Indicators 

Sources 

(Authors who reinforce that indicator is part of the 

performance) 

Economic 

Performance 

Reduced 

overall costs 

Reduced 

inventory 

Buer et al. (2020); Chavez et al. (2020); 

Hernandez-Matias et al. (2020); Baliga et al. 

(2019); Iranmanesh et al. (2019); Rossini et al. 

(2019); Tortorella et al. (2019); Shrafat and Ismail 

(2019); Yadav et al. (2018); Inman and Green 

(2018); Panwar et al. (2018); Sajan et al. (2017) 

Improved 

profits 

Quality 

Buer et al. (2020); Rossini et al. (2019); Tortorella 

et al. (2019); Shrafat and Ismail (2019); Inman and 

Green (2018) 

Flexibility 
Buer et al. (2020); Hernandez-Matias et al. (2020); 

Maware and Adetunji (2018) 

Productivity 

Chavez et al. (2020); Hernandez-Matias et al. 

(2020); Baliga et al. (2019); Iranmanesh et al. 

(2019); Rossini et al. (2019); Tortorella et al. 

(2019); Shrafat and Ismail (2019); Yadav et al. 

(2018); Panwar et al. (2018) 
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Efficiency Baliga et al. (2019) 

Reliability 
Iranmanesh et al. (2019); Maware and Adetunji 

(2018) 

Environmental 

Performance 

Reduced environmental impact 

Belhadi et al. (2019); Chavez et al. (2020); 

Agyabeng-Mensah et al. (2020); Baliga et al. 

(2019); Iranmanesh et al. (2019); Inman and Green 

(2018) 

Reduced gas emissions 
Chavez et al. (2020); Wong et al. (2018); Inman 

and Green (2018); Sajan et al. (2017) 

Reduction of liquid waste 
Chavez et al. (2020); Baliga et al. (2019); Inman 

and Green (2018) 

Reduction of solid waste 

Chavez et al. (2020); Agyabeng-Mensah et al. 

(2020); Baliga et al. (2019); Wong et al. (2018); 

Inman and Green (2018) 

Resource usage better 
Agyabeng-Mensah et al. (2020); Iranmanesh et al. 

(2019); Sajan et al. (2017) 

Reduced energy waste 
Agyabeng-Mensah et al. (2020); Wong et al. 

(2018); Sajan et al. (2017) 

Social 

Performance 

Improved working conditions Chavez et al. (2020); Baliga et al. (2019) 

Improved workplace safety 
Chavez et al. (2020); Iranmanesh et al. (2019); 

Baliga et al. (2019); Sajan et al. (2017) 

Improved employee health 
Chavez et al. (2020); Iranmanesh et al. (2019); 

Baliga et al. (2019); Sajan et al. (2017) 

Improved labor relations Sajan et al. (2017) 
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3 EXPLORING RELATIONSHIPS FOR INTEGRATING LEAN, 

ENVIRONMENTAL SUSTAINABILITY, AND INDUSTRY 4.0 

 

This chapter was published in the International Journal of Lean Six Sigma 

(https://doi.org/10.1108/IJLSS-09-2020-0145). 
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4 RELATIONSHIPS BETWEEN INDUSTRY 4.0 TECHNOLOGIES AND LEAN 

SOCIO-TECHNICAL PRACTICES 

 

Abstract 

A set of enabling technologies has evolved rapidly over the last decade giving rise to 

Industry 4.0 (I4.0). These technologies have shown support and interactions with the Lean 

socio-technical system. In addition, both I4.0 and Lean have been shown to encourage 

sustainability performance improvement, and there is growing interest in understanding 

the links between these themes. Thus, this paper seeks to identify how the support 

relationships that integrate Industry 4.0 technologies (I4T) and Lean socio-technical 

practices occur and the possible impact of these relationships on economic, 

environmental, and social performance. The proposed objective was achieved through 

Systematic Literature Review (SLR), where the data obtained were analyzed through 

descriptive analysis and content analysis. In addition, the literary findings were confirmed 

and deepened through two cases study in companies that have a consolidated Lean system 

and Industry 4.0 technologies at different levels of implementation. The findings allow 

us to identify the strengths of the integration between I4.0 and Lean and how the 

relationships between the approaches occur, in addition to the impacts of the relationships 

on sustainability performance. The results demonstrate that the Internet of Things (RFID, 

Sensor, and Actuator) and Big Data Analytics favor the relationships with Lean Practices 

(LP). In addition, Big Data Analytics has relationships with Total Preventive 

Maintenance, Just-in-Time and Customer Involvement. The results also point to a more 

significant impact of relationships on Economic Performance indicators, with few 

benefits for the environmental and social aspects. Therefore, this study helps managers 

and academics to understand ways to integrate I4T and LP aiming the sustainability 

performance. 

 

Keywords Industry 4.0 Technologies, Lean Technical Practices, Lean Social Practices, 

Sustainability Performance, Systematic Literature Review, Cases Study. 
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4.1 Introduction  

Lean is a widely applied production system composed of socio-technical practices 

(Bortolotti et al., 2015) aimed at cost efficiency and waste elimination (Tayaksi et al., 

2020). Lean comprises diversified sets of practices that vary in scope and approach 

(Tortorella et al., 2020), which support the Lean system and direct actions to achieve the 

intended goals (Iranmanesh et al., 2019).  Bortolotti et al. (2015) present Lean Technical 

Practices (LTP) related to industrial process management and Lean Social Practices 

(LSP) related to concepts, principles, and people management. Additionally, Lean can be 

aligned with environmental methods and social results (Martínez-Jurado and Moyano-

Fuentes, 2014), been used by industries to improve the economic, environmental, and 

social performance of production processes (Souza and Alves, 2018).  

On the other hand, companies are being directed towards digital transformation, 

which has been accelerated recently due to availability of hardware and software solutions 

realized by cheaper and more effective sensors and actuators, more powerful networking 

equipment and platforms using wireless and cloud computing and the development of big 

data analytics and artificial intelligence, giving rise to Industry 4.0 (I4.0) (Shahin et al., 

2020). I4.0 comprises principles related to the internet and future-oriented technologies 

and smart systems with improved paradigms of human-machine interaction (Sanders et 

al., 2016). 

Industry 4.0 Technologies (I4T) tend to be highly connected to Lean Practices 

(LP) (Kulinich et al., 2021), significantly improving industry results (Tortorella and 

Fettermann, 2017). Mesquita et al. (2021) make it clear that relationships, where I4T 

support LP in industrial processes, allow more significant benefits for environmental 

sustainability and good operational results. For example, Roy and Roy (2019) show that 

IoT is generating Big Data and that these efforts have resulted in significant 

improvements in streamlining operations, helping industries to achieve Lean and 

sustainable systems. Big Data generated by sensors and other IoT sources can support 

LP, fueling autonomous maintenance and continuous improvement projects, identifying 

excess energy and water consumption, resulting in reduced industrial waste and more 

efficient use of resources (Dubey et al., 2019; Raut et al., 2019). 

The connection between I4.0 and Lean in production environments have attracted 

the attention of researchers and practitioners (Shahin et al., 2020). This growing interest 

is driven by studies that indicate that I4.0 is highly and positively correlated with Lean, 

this occurs through I4.0 assisting LP to be carried out with greater support of data and 
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information (Tortorella et al., 2020; Shahin et al., 2020; Rosin et al., 2019). Tortorella et 

al. (2020) provide evidence of pairwise synergistic relationships between I4T and LP, 

indicating that the coexistence of both approaches is not conflicting. When used together, 

I4T and LP have a synergistic effect on performance that is greater than their individual 

effects added (Buer et al., 2020). Evidence suggests that the integration between I4T and 

LP can also be beneficial for sustainability performance (Kościelniak et al., 2019; Bonilla 

et al., 2018), considering the triple bottom line vision of economic, social, and 

environmental sustainability (He et al., 2019). 

Therefore, Lean, I4.0 and sustainability performance are relevant concerns for 

industries, and in general, for society, and there is a potential impact of Lean and I4.0 on 

the three dimensions of sustainability (Varela et al., 2019). Although some studies point 

out that there are positive impacts between I4.0 and Lean, there is no in-depth research 

on how these approaches can be integrated (Belhadi et al., 2019; Varela et al., 2019) or 

are being integrated in the real context of industries, since the results of the integration 

are scarce in the literature with few empirical results (Dubey et al., 2019; Kamble et al., 

2019).  Therefore, there is a gap on how these approaches can be integrated (Dubey et al., 

2019; Kamble et al., 2019; Duarte et al., 2020). Researches should be conducted to 

analyze the association between specific relationships of highly synergistic pairs formed 

by specific I4T and LP (Tortorella et al., 2020). In addition to understanding how I4.0 

technologies can support LP, it is necessary to highlight the effects of these relationships, 

that is, to understand exactly how a company's performance is affected by the integration 

(Tortorella et al., 2019), also considering the effect on sustainability performance, which 

are scarce in the literature (Dubey et al., 2019; Kamble et al., 2020; Sajan and Shalij, 

2021). Thus, one of the main questions that emerged is how to incorporate such disruptive 

technologies into a well-established management approache, such as Lean, in order to 

overcome current organizational challenges (Tortorella et al., 2020), in this sense, 

improving economic, social and environmental performances (Yu et al., 2020). 

In the context of the gaps presented, the research questions (RQ) are the following: 

RQ1. What are the relationships where Industry 4.0 technologies support Lean 

socio-technical practices, impacting economic, environmental, or social performance? 

RQ2. How can Industry 4.0 technologies support Lean socio-technical practices, 

benefiting economic, social, or environmental performance? 

The main purpose of this study is to identify, through a Systematic Literature 

Review (SLR) and cases study, how the I4T are supporting Lean Socio-Technical 
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Practices, and the possible impact of these relationships on sustainability performance. 

As an additional contribution, frameworks were proposed that demonstrate the most 

promising relationships in an industrial environment. 

To achieve the objectives, the paper is structured as follows. Section 4.2 defines 

the variables and presents the research method. Sections 4.3 and 4.4 show the results of 

the SLR and the cases study respectively. Discussions are presented in Section 4.5 and 

conclusions, limitations and academic and managerial implications are elaborated in 

section 4.6. 

 

4.2 Method 

To achieve the proposed objectives, the research methods chosen were the 

Systematic Literature Review (SLR) and the Case Study. The SLR (Figure 4.1) followed 

the research flow developed by Ferenhof and Fernandes (2016). 

 

 

Figure 4.1. Phases and activities of the SLR 

 

The search string focused on the search for documents that address the two themes 

(Lean and Industry 4.0) and their relationships. In order not to restrict the search, only the 

terms belonging to Lean and I4.0 constituted the string (Table 4.1), and the search for the 

relationship with sustainability occurred in each selected document. The databases used 

were Web of Science and Scopus, and the inclusion and exclusion criteria are presented 
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in Table 4.2. The search was carried out in 2022, and there was no time limit for 

publications, totaling 2,063 documents.  

The document management was carried out in the Nvivo software. Retrieved 

papers were organized and the filtering and analysis processes were performed. In the 

standardization and selection of documents, after removing documents by exclusion 

criteria, the exclusion and inclusion criteria were applied first in the content of title, 

abstract, and keywords, and second including introduction and conclusion. Finally, in the 

organization of the bibliographic portfolio, the 126 papers selected in Activity 4 were 

read in full to allow the exclusion of those that were not aligned with the research theme. 

At this phase, 46 documents presented relationships between I4T and Lean Socio-Technical 

practices that can contribute to sustainability performance. The snowball technique was 

applied, but no documents were added to the sample. 

 

Table 4.1. Search string 

Themes Keywords  

Lean 
Lean manufacturing; lean production; lean management; lean; process improvement; 

continuous improvement 

AND    

Industry 4.0 

Industry 4.0; industrie 4.0; internet of things; IoT; cyber-physical systems; cyber 

physical production system; cyber physical system; cyber physical systems; CPS; big 

data; cloud computing; augmented reality; additive manufacturing; 3D print; 3D 

prints; digitalization; digitalisation; digitization; smart factory; smart factories; smart 

manufacturing; industrial internet of things; cloud manufacturing; smart production; 

industrial internet; the 4th industrial revolution; the fourth industrial revolution; 

intelligent factory; factory of the future   

  

Table 4.2. Inclusion and exclusion criteria 

Topic Inclusion Criteria Exclusion Criteria 

Access 
Have access to the full paper and not 

be a duplicate paper. 

Not having access to the full paper or be a 

duplicate paper. 

Language Be written in English. Not be written in English. 

Source Journal and conference papers. 
Other type of document (e.g., books, books 

chapters, editorial, letter). 

Theme 

Industry 4.0 Technologies 

 

Lean Practices 

 

Sustainability Performance 

Present the technical part (systems operation) of 

an Industry 4.0 technology. 

 

Lean with other meanings (e.g., lean mass). 

 

Sustainability with other meanings (e.g., 

sustainable improvement, in the sense of 

improvement that is sustained over time). 

Focus 

The paper deals with the relationships 

between Industry 4.0 technologies and 

Lean Practices and the possible impact 

of these relationships on economic, 

environmental, or social performance. 

The paper does not address the relationships 

between Industry 4.0 technologies and Lean 

Practices that impact economic, environmental, 

or social performance. 
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In the second phase (Activity 2.1), the 46 papers related to the theme were 

analyzed to answer the first research question (what are the relationships where Industry 

4.0 technologies support Lean socio-technical practices, impacting economic, 

environmental, or social performance?). Then, an in-depth qualitative analysis was 

carried out in which 39 papers answered the second research question (i.e., how can 

Industry 4.0 technologies support Lean socio-technical practices, benefiting economic, 

social, or environmental performance?). 

Qualitative analysis (content analysis) was performed using the NVivo software. 

Content analysis provides a scientific method to evaluate the collected data (Kondracki 

et al., 2020). For the identification of I4T support relationships to Lean Socio-Technical 

practices, technologies and practices were codified based on the literature (Table 4.3). The 

main references for the variables were Bortolotti et al. (2015) for Lean Socio-Technical 

practices and Kamble et al. (2019) for I4T. In addition, to analyze the impact on 

sustainability performance, the economic, environmental, and social indicators defined 

by Kamble et al. (2019) were used. 

 

Table 4.3. Variables for Lean Practices and Industry 4.0 Technologies 

Theme Category Variables Code Source 

Lean 

Practices 

Lean 

Technical 

Practices 

Continuous flow CF 1; 2; 6 

Just-In-Time JIT 1; 2; 3; 6 

Kanban KAB 1; 2; 4; 5 

Setup time reduction SET 1; 2; 6 

Statistical Process Control  SPC 1; 2; 6 

Autonomous maintenance AUM 1; 2; 3; 6 

Lean Social 

Practices 

Management leadership MAL 1; 3; 6 

Supplier partnership SUP 1; 2; 4; 6 

Small group problem solving SGPS 1; 2; 6 

Continuous improvement COI 1; 2; 3; 5; 6 

Training employees TRE 1; 2; 3; 4; 6 

Customer involvement CUI 1; 2; 4; 5; 6 

Industry 4.0 

Technologies 

Integration 

technologies 

Cyber-Physical System CPS 7 

Cyber-Security System CSS 9 

Data 

technologies 

Big Data BD 7; 8; 9 

Cloud Computing CC 7; 8; 9 

Internet of Things (RFID, 

Sensor, Actuador)  

IoT 7; 8; 9 

Simulation/Digital Twins SIM 7 

Shop floor 

technologies 

Additive Manufacturing AM 7 

Virtual Reality VR 7; 8; 9 

Augmented Reality AR 7; 8; 9 

Robotic System (Collaborative 

Robot and Automated Guided 

Vehicle) 

RS 7; 8; 9 
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Table 4.3. (Continued) 

Theme Category Variables  Source 

Sustainability 

Performance 

Economic 

Performance 

Reduction in production costs - 10; 11 

Improvement in profits - 10; 11 

Reduction in energy costs - 11 

Reduction in stock costs - 11 

 

Reduction in rejection and 

rework costs 

- 11 

Reduction in raw material 

purchase costs 

- 11 

Reduction in waste treatment 

costs 

- 11 

Environmental 

Performance 

Reduction of atmospheric 

emissions 

- 12; 13 

Reduction of solid waste - 11; 12; 13 

Reduction of liquid waste - 11 

Reduction of energy waste - 11 

Decrease in the consumption of 

hazardous / harmful / toxic 

materials 

- 12; 13 

Decrease in the frequency of 

environmental accidents 

- 11; 12 

Improvement in the company's 

environmental performance 

- 11; 12; 13 

Social 

Performance 

Improvement in employee 

morale 

- 11; 12 

Work satisfaction - 12 

Improvement safety in the 

workplace 

- 11; 12 

Improvement in the health of 

employees 

- 11; 12 

Improvement in working 

relationships 

- 11 

Decrease in pressure at work - 11 

Improvement in working 

conditions 

- 11 

Reduction in health and safety 

incidents 

- 12 

Reduction in injuries and lost 

days related to injuries 

- 12 

Reduction in absenteeism - 12 

Sources for lean practices: 1- Bortolotti et al. (2015); 2- Sahoo (2020); 3-Arumugam et al. (2020); 4- 

Malik and Abdallah (2020); 5- Nagaraj and Jeyapaul (2020); 6- Abdallah et al. (2021) 

Sources for I4.0 technologies: 7- Frank et al., (2019); 8- Kamble et al., (2019); 9- Ciano et al. (2020) 

Sources for sustainability performance: 10- Baliga et al. (2019); 11- Kamble et al. (2019); 12- Chavez 

et al. (2020); 13- Inman and Green (2018) 

 

In the synthesis phase (Activity 3.1) and writing (Activity 4.1), information was 

compiled and presented through text and tables.  

After identifying the relationships in the literature and how they can occur, 

multiple cases were carried out to verify how companies are carrying out integration in 

practice. The case study can be used to explain causal relationships between variables 

(Yin, 2014). It can be part of a broader assessment, complementing and providing 
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explanatory information (Yin, 2014). In this research, the case study was applied to 

confirm the findings of the theoretical study (Yin, 2014). The steps for the conduction of 

the case study are shown in Figure 4.2. The phases comprised the Plan, with the selection 

of research questions, the Design, which comprises the theoretical basis for the case study, 

the definition of multiple cases and the company as a unit of analysis, since the practices 

Lean as well as technologies are embedded at the enterprise level. In the Prepare stage, 

the choice of cases occurred through the investigation of companies that had a high degree 

of implementation of Lean practices and I4T. The information was identified through 

websites and news on the internet and 5 companies were selected, two of which agreed 

to participate in the research. 

 

c  

Figure 4.2. Phases and activities of the case study 

 

In each of the companies studied, three key respondents were selected to carry out 

the interviews. After explaining the research objectives, the company itself indicated the 

people with the most knowledge on the subject, those responsible for the Lean system 

and projects related to Industry 4.0, including process, quality, and technology. The 

interviews were carried out based on a protocol, conducted by at least two researchers 

and based on a questionnaire with thirty-three open-ended questions. Interviews were 

conducted from July to August 2022. The interviews were then transcribed for coding 

purpose, using the same variables as those applied in the Systematic Review. Each 

interview lasted from 1 to 2 h producing qualitative data that were recorded. The 

interviews were summarized in a case report reviewed by each company for validation 

purposes. 
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Finally, the findings of the SLR and the cases study were synthesized 

demonstrating how I4T support Lean Socio-Technical practices and, and the impact of the 

relationships on economic, social, and environmental aspects. A conceptual framework 

was developed for both perspectives presented. 

 

4.3 Relationships between Industry 4.0 and Lean (SLR)   

The relationships identified in the content analysis show a potential to integrate 

I4T and LP in the industrial environment. The relationships between I4T and Lean Socio-

Technical practices are presented in Table 4.4. The numbers in Table 4.4 represent the total 

of authors that address relationships between I4T and LP, therefore, they represent the 

strength of these relationships in the literature. Table 4.4 allowed answering RQ1 from 

the SLR's point of view. To answer the RQ2, Tables 4.5 and 4.6 present an overview of 

how I4T can support Lean Socio-Technical practices. 

 

Table 4.4. Matrix of the relationships between Industry 4.0 and Lean (what) 

 Industry 4.0 Technologies  

Technical 

Practices 
AGV AM AR BDA CC CPS 

IoT (RFID, 

Sensor, Actuator) 

Simulation 

(Digital Twin) 

Total 

Continuous flow [1]  [1] [1] [1] [1] [4]  [9] 

JIT [4] [3] [3] [5] [1] [3] [7] [2] [28] 

Kanban [2]   [2] [1] [2] [7] [4] [18] 

Setup time 

reduction 
     [1] [7]  [8] 

SPC      [1] [3]  [4] 

TPM   [6] [5]   [9] [1] [21] 

Social Practices          

Continuous 

improvement 
  [1] [2] [1] [3] [5] [1] [13] 

Customer 

involvement 
 [2]  [4] [1] [1] [6]  [14] 

Supplier 

partnership 
   [1] [1] [1] [4]  [7] 

Training 

employees 
  [3]      [3] 

Total [7] [5] [14] [20] [6] [13] [52] [8] [125] 

 

The results of the contend analysis demonstrated that the I4T are able to support 

several Lean Technical Practices (LTP) (Table 4.5). In total, 125 supportive relationships 

were identified (Table 4.4). The most cited relationships in the literature involve IoT 

support for JIT, TPM, continuous flow, Kanban practices, setup time reduction, and SPC. 
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Often cited relationships also involve AR and BDA support for TPM and BDA support 

JIT (Table 4.4). IoT in conjunction with RFID, sensors and actuators can be used to 

support predictive maintenance (Chiarini and Kumar, 2020). The sensors enable to get 

information about vibration, noise, and heat, helping operators to detect abnormal 

conditions, identifying the most favorable moment to carry out maintenance (Satoglu et 

al., 2018). Machines can receive and send information to shop-floor and maintenance 

personnel about its production performance, indicating the need for maintenance to 

prevent future failures (Mora et al., 2017; Sanders et al., 2016). An intelligent information 

sharing and tracking system based on IoT gives accurate and timely information about 

the flows and materials throughout the supply chain, decreasing inaccuracies, and long 

lead times, which are vital to JIT performance (Zelbst et al., 2014). The use of IoT 

technologies in setup time reduction practices allows to reduce downtime whenever an 

operation change occurs (Tortorella et al., 2020), increasing the flexibility and 

productivity of production processes (Tortorella et al., 2019).  

The IoT evolve Kanban pull system into an autonomous process over the IoT 

(Chiarini and Kumar, 2020), where data can be transmitted wirelessly to an inventory 

control system in real-time (Sanders et al., 2016). The AR instructs, train, support, and 

guide employees during TPM activities (Mora et al., 2017; Satoglu et al., 2018; Mayr et 

al., 2018), enabling activities to be carried out efficiently and at the correct frequency 

(Valamede and Akkari, 2020). BDA can be used to predict defects in equipements, which 

may increase the life expectancy of these instruments (Mayr et al., 2018; Valamede and 

Akkari, 2020). Big data enables be self-aware and self-maintained machines (Sanders et 

al., 2016). Although less numerous in the literature, there are several other supporting 

relationships between I4T and LTP presented in Table 4.5. 

I4T supporting LTP improve economic performance indicators such as quality, 

flexibility, efficiency, productivity, costs reduction, reduced inventory, and reliability 

(Valamede and Akkari, 2020; Sanders et al., 2016), environmental performance 

indicators such as responsible use of resources (Núñez-Merino et al., 2020), and social 

performance indicators such as better working conditions and health of workers. 

When analyzing the relationships considering the Lean social system, the gains 

for organizations are increased when there is integration between I4T and Lean Social 

Practices (LSP) (Ghobakhloo and Fathi, 2020). The strongest relationships found are 

related to I4.0 support for customer involvement, continuous improvement and supplier 

partnership, mainly IoT, followed by AR support for employee training (Table 4.4). 
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The use of IoT technologies supports the implementation of continuous 

improvement practices by facilitating the identification of errors in the system, enabling 

the capture, processing, sharing and forwarding of information to stakeholders, and 

allowing greater involvement of suppliers and customers (Haddud and Khare, 2020). 

While the incorporation of the CPS provide more accurate data for decision-making in 

continuous improvement initiatives (Pagliosa et al., 2019).  BDA incorporates several 

data analysis tools, which allows the identification of root causes more accurately and 

quickly, helping continuous improvement (Peças et al., 2021; Valamede and Akkari, 

2020). 

Several authors propose the use of AR to facilitate employee training (Koscielniak 

et al., 2019; Sordan et al., 2021). AR work together with employees, helping them in their 

manual tasks to avoid possible errors, besides presenting instructions and virtual elements 

that facilitate the training and performance of activities (Valamede and Akkari, 2020). 

BDA, on the other hand, can give a better understanding of different customer segments' 

behavior and needs, enabling a proactive response to customer requirements (Núñez-

Merino et al., 2020). An information-sharing structure based on Big Data strengthens 

customer involvement (Raut et al., 2019), which becomes even more relevant given the 

continuous feedback facilitated by the IoT. Despite the identification of a smaller number 

of citations about I4T support for LSPs, several other relationships were found (Table 

4.6). 

Some economic, environmental, and social benefits are reported from the 

integration between I4.0 and LSP. For example, waste and cost reduction and negative 

environmental externalities (Ghobadian et al., 2018), the employees may move into roles 

with less physical monotony and more intellectual stimulation (Sanders et al., 2016), 

enhanced human learning through intelligent assistance systems as well as human-

machine interfaces that lead to increased employee satisfaction in industrial workplaces 

(Herrmann et al., 2014). 

 

 

 

 

 

 

 

 



42 

 

Table 4.5. How I4T support LTP 

Relationships / How 
Sustainability 

Performance 

Authors 

(Year) 

IoT / JIT    

The application of IoT technologies provides real-time data on product locations and 

characteristics, which improves traceability and minimizes delays and waiting times, 

leading to more effective inventory management, and, consequently, reduced lead 

times.  

IoT devices as sensors can detect the number of items in kanban baskets and 

automatically transmit the data to the control system. The system can automatically 

send orders to suppliers according to production line needs, which reduces stocks and 

frees up shop floor space.  

Using IoT technologies, one process can trigger the production of another, introducing 

a perfect one-piece-flow pull system, which enables JIT.  

IoT technologies: i) can send employees information if any product changes 

configuration or if the line balancing finds a new configuration.; ii) can display 

information corresponding to the precise product and phase of work on virtual work 

elements sheets; iii) can recognize different orders through barcode scanning devices 

and inform employees of the right components to assemble, which can dramatically 

reduce order preparation time. Thus, IoT accelerates work and avoids errors by 

strengthening JIT. 

Economic 

Performance 

(quality, stock 

cost reduction, 

efficiency, 

productivity, 

costs 

reduction) 

Anosike et 

al. (2021) 

Raji et al. 

(2021) 

Chiarini and 

Kumar 

(2020) 

Ciano et al. 

(2020) 

Bittencourt 

et al. (2019) 

Mayr et al. 

(2018) 

Valamede 

and Akkari 

(2020) 

Zelbst et al. 

(2014) 

IoT / Continuous flow   

Continuous flow seeks to establish a simplified flow of products without major stops 

throughout the company (Sanders et al., 2016). In this context, sensors can monitor 

production volumes and help companies reduce unfinished work in the process and 

resolve issues created by task switching and order reprioritizing, which allows for 

workflow improvements. 

Ghobakhloo 

and Fathi 

(2020) 

Ciano et al. 

(2020) 

Raji et al. 

(2021) 

IoT / Kanban   

IoT technologies can monitor kanban schedule changes and the charge level of the 

box, and the data can be automatically transmitted to a real-time inventory control 

system. Furthermore, real-time process monitoring allows minimum batch quantity to 

be set per workstation. When the workstation reaches minimum stock the information 

is displayed on the predecessor workstation to forward the material. 

Kumar et al. 

(2018) 

Sanders et 

al. (2016) 

IoT / TPM   

An IoT maintenance system allows a quick response to failures. The analysis of 

collected data can link the occurred failure with past patterns and causes, which can 

prevent potential failures. In addition, it is possible to request repairs and order spare 

pieces automatically. Advanced sensors can measure parameters in machines such as 

times, speed, pressures, vibrations, temperatures, etc. 

Anosike et 

al. (2021) 

Chiarini and 

Kumar 

(2020) 

Ghobakhloo 

and Fathi 

(2020) 

Tortorella et 

al. (2021) 

Raji et al. 

(2021) 

Sordan et al. 

(2021) 
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 Table 4.5. (Continued) 

Relationships / How 
Sustainability 

Performance 

Authors 

(Year) 

IoT / Setup time reduction    

Machines-embedded learning enabled by IoT technologies can support setup time 

reduction practices since machines can perform accurate Single-Minute Exchange of 

Dies (SMED) procedures followed consistently.  

IoT technologies can receive material, product, or work phase information and 

prepare the correct configuration of the machines.  

Sensors or RFID can recognize the right tool for the right machine or set the 

parameters corresponding to the new production cycle which results in a faster 

change of machine parameters according to the instructions read on the piece, 

reducing setup time. 

 Anosike et 

al. (2021) 

Ciano et al. 

(2020) 

Ciano et al. 

(2020) 

Sordan et al. 

(2021) 

Sanders et 

al. (2016) 

IoT / SPC   

IoT and Smart sensors for collecting data linked to characteristics of the process 

permit SPC with autonomous feedback to the machine in case of deviation from the 

limits and unlikely patterns in the data appear. In addition, communication can be 

done in real-time through supervisors’ smartphones. 

Chiarini and 

Kumar 

(2020) 

Sordan et al. 

(2021) 

BDA / JIT    

Data shared in the cloud between supply chain partners can be processed by BDA, 

which significantly reduces order execution time, can identify trends and assists in 

immediate decision-making. Moreover, it helps analyze demand trends, for example, 

during peak seasons, for proper forecasting and planning purposes, avoiding delays. 
Economic 

Performance 

(quality, 

efficiency, 

stock cost 

reduction, 

flexibility) 

Raji et al. 

(2021) 

Mayr et al. 

(2018) 

Valamede 

and Akkari 

(2020) 

BDA / Kanban   

BDA increases the transparency of material and process movements and enables the 

combination of target and actual values to remove excess inventories. 

Valamede 

and Akkari 

(2020) 

BDA / TPM   

BDA can analyze machine problems and anticipate potential breakdown and identify 

the root cause. Thus, Big Data capabilities allow to improve preventive maintenance 

routines, identifying patterns to optimize component life based on current usage 

conditions.  

Li (2019) 

Tortorella et 

al. (2021) 

Sanders et 

al. (2016) 

CPS / JIT    

CPS can control when the material stock reaches the minimum level and 

automatically generate a purchase order for the supplier.  

Economic 

Performance 

(quality, 

efficiency, 

stock cost 

reduction, 

flexibility, 

reliability, 

productivity) 

Santos et al. 

(2021) 

CPS / Continuous flow   

CPS allows the identification of cycle times to find the best solution between the 

highest possible capacity utilization per working station and a continuous flow of 

production. 

Kolberg and 

Zuhlke 

(2015)  

CPS / Kanban   

CPS integrated into the workstations can directly control the production process 

through the connected actuators and update data automatically. If the stock at a 

workstation drops under the reorder level, the CPS automatically sends a Kanban to 

the predecessor, operating on the principle of self-regulation Decentralized data 

collection and transfer allows full visibility of all processes that are part of the 

Kanban system. 

Kolberg et 

al. (2016) 

Pekarcikova 

et al. (2020) 

CPS / Setup time reduction   

CPS provides a flexible and modular production through its computing capacity and 

connectable sensors. Working stations or whole production lines can be efficiently 

reconfigured, significantly reducing setup time. 

Kolberg and 

Zuhlke 

(2015)  
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Table 4.5. (Continued) 

Relationships / How 
Sustainability 

Performance 

Authors 

(Year) 

CPS / SPC    

CPS can combine historical running data of the system to analyze abnormalities on 

the basis of mature data statistical analyses and mining algorithms. Moreover, define 

knowledge rules to predict possible system anomalies and sending pre-alarms 

production process based on SPC.  

 

Ma et al. 

(2017) 

AGV / Continuous flow    

The AGVs: i) allow autonomous control in operational functions and promote 

continuous flow; ii) identify routes and components for specific products, avoiding 

downtime and improving production flow by adding a sequential component to work 

in progress. 

Economic 

Performance 

(quality, 

flexibility, 

productivity, 

stock cost 

reduction) 

Ciano et al. 

(2020) 

Núñez-

Merino et al. 

(2020) 

Bittencourt 

et al. (2019) 

Mayr et al. 

(2018) 

AGV / JIT   

The AGV can automatically supply in-process stocks by transporting materials in the 

exact amount and time they are requested, minimizing stocks and favoring JIT. 

Mayr et al. 

(2018) 

Núñez-

Merino et al. 

(2020) 

Valamede 

and Akkari 

(2020) 

AGV / Kanban  

The AGV performs a coordinated supply of kanban boxes in order to avoid excess 

and lack of materials. 

Núñez-

Merino et al. 

(2020) 

Valamed 

and Akkari 

(2020) 

AR / JIT   

AR devices can provide individualized instructions about the tasks required to run 

and bring information about cycle times into the visual field of employees, supporting 

JIT processing.  

Economic 

Performance 

(quality, 

flexibility), 

Environmental 

Performance 

(reduction of 

environmental 

impacts, 

reduction 

pollution, 

reduction use 

of natural 

resources), 

and Social 

Performance 

(improvement 

of working 

conditions, 

reduction of 

the number of 

accidents at 

work) 

Kolberg and 

Zuhlke 

(2015)  

Ma et al. 

(2017) 

AR / TPM   

AR devices provide employees with precise instructions to routine maintenance or 

faulty components/items. 

Raji et al. 

(2021) 

Koscielniak 

et al. (2019) 

AR / Continuous flow  

AR provides cycle times information in the visual field of workers, allowing 

continuous production flow. 

Valamede 

and Akkari 

(2020) 

   



45 

 

Table 4.5. (Continued) 

Relationships / How 
Sustainability 

Performance 

Authors 

(Year) 

AM / JIT    

AM can offer shorter lead times and reduced inventory, can reduce the time required 

for tooling and retooling operations and enables the production of pieces and 

products close to the point of use by further decentralizing and redistributing 

manufacturing. AM technologies can meet exact customer requests using less raw 

material and process time as it produces just the amount needed with flexibility when 

adding layers of material. 

Economic 

Performance 

(production 

cost reduction, 

flexibility) 

Raji et al. 

(2021) 

Ghobadian 

et al. (2018) 

Valamede 

and Akkari 

(2020) 

AM / Setup time reduction   

AM equipment can produce a different object by altering the software. Thus, AM can 

produce varied workpieces with short setup times, i.e., selection, search, and 

adjustment times for tools and workpieces are technologically reduced to a minimum. 

Ghobadian 

et al. (2018) 

Mayr et al. 

(2018) 

Simulation / JIT    

Process simulation allow the visualization of the simulated environment to test if the 

layout configuration promotes a continuous flow. 

Economic 

Performance 

(stock cost 

reduction, 

productivity) 

Ciano et al. 

(2020) 

Simulation / TPM   

Digital Twin Simulation allow the application of different maintenance solutions and 

the prediction of future maintenance. 

Ciano et al. 

(2020) 

Simulation/ Kanban   

The simulation ensures the identification of optimal kanban parameters such as lot 

size, inventory, or delivery frequency. When external changes are required, the 

system updates the parameters autonomously.  

Mayr et al. 

(2018) 

Pekarcikova 

et al. (2020) 

CC / Kanban    

The cloud-based Kanban system has features for entering production data (e.g., 

number of machines available, number of employees, raw material availability) and a 

decision support system simulation. Factors such as labor hours, number of bad 

quality products, and production hours lost due to downtime are also entered to 

estimate the kanban ideals parameters. 

Economic 

Performance 

(quality, 

efficiency, 

stock cost 

reduction, 

flexibility) 

Shahin et al. 

(2020) 
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Table 4.6. How I4T support LSP 

Relationships / How 
Sustainability 

Performance 

Authors 

(Year) 

IoT / Continuous improvement    

IoT enables the data collection from machines where a machine learning algorithm 

can be used in conjunction with a problem-solving database to infer cause-problem 

relationships, which helps continuous improvement teams. The collected data from 

IoT can feed a system of indicators to promote continuous improvement projects 

aiming at more efficient use of resources and energy. Furthermore, IoT sensors on 

smart products can collect process data during and after production. Thus, it is 

possible to automatically gather information individualized by product and production 

line assisting in continuous improvement projects. 

Economic 

Performance 

(quality, costs 

reduction, 

efficiency, 

productivity) 

and 

Environmental 

Performance 

(reduction of 

environmental 

impacts, 

reduction of 

energy 

consumption) 

Peças et al. 

(2021) 

Haddud 

and Khare 

(2020) 

Ferrera et 

al. (2017) 

Kolberg 

and Zuhlke 

(2015)  

IoT / Customer involvement  

Products purchased can be registered using a QR Code to allow the companies to 

immediately capture user information, establishing greater proximity to customers’ 

needs. 

Li (2019) 

Sensors and IoT technologies can be applied in products to transform them into smart 

products (integrated with devices that track usage data and send for smart factories) 

allowing continuous feedback and usage analysis to understand and serve customers 

better. 

Sanders et 

al. (2016) 

IoT / Supplier partnership  

QR codes can be used for components delivered by suppliers, which will make 

delivery information clearer, plan changes easier to match, and reduce inventory.  

Ciano et al. 

(2020) 

Li (2019) 

BDA / Continuous improvement   

Analytics such as machine learning, data mining, root cause analysis, correlation 

analysis, and predictive analysis performed by BDA contributes to the process of 

continuous improvement by improving data analysis. Since, the use of advanced 

analysis tools capable of dealing with a large volume of data automatically collected, 

for example, from sensors overcomes the limitations of simpler analysis tools. 

Furthermore, data from stakeholders are collected through IoT devices and shared in a 

cloud computing environment with speed and variability. These data are processed by 

BDA and can be used in continuous improvement initiatives. 

Economic 

Performance 

(quality, 

efficiency), 

Environmental 

Performance 

(reduction of 

energy 

consumption, 

reduction of 

water 

consumption, 

reduced 

industrial 

waste, 

efficient use 

of resources) 

Peças et al. 

(2021) 

Valamede 

and Akkari 

(2020) 

BDA / Customer involvement  

Using specific algorithms, the BDA can filter and use a large amount of data from 

customers, including their requirements (voice of the customer) and perceptions about 

products and services, strengthening customer involvement strategies. 

Sordan et 

al. (2021) 

Núñez-

Merino et 

al. (2020) 

Raut et al. 

(2019) 

CPS / Continuous improvement   

CPS components on the workstation can provide historical data for fault analysis and 

continuous improvement processes. The digital information obtained by the physical 

system can generate a problem-solving mechanism by creating co-creative platforms 

that guide continuous improvement strategies. 

Economic 

Performance 

(quality, 

productivity, 

efficiency) 

Li (2019) 

Kolberg et 

al. (2016) 

CPS / Customer involvement  

CPS can transfer customer experience knowledge effectively linking this information 

to organizational capabilities and solving various problems at the manufacturing site 

autonomously and flexibly. 

Li (2019) 
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Table 4.6. (Continued) 

Relationships / How 
Sustainability 

Performance 

Authors 

(Year) 

AR / Training employees   

AR replaces traditional communication of operational standards on paper. Through 

tablets, head-mounted displays and three-dimensional holograms, AR can improve 

training employees' activities, what can decrease time the time to acquire the 

knowledge. The use of AR in training activities provides more in-depth knowledge 

about production processes. Thus, employees are empowered to find possible 

solutions to critical problems. 

 Sordan et 

al. (2021) 

Social 

Performance 

(improvement 

of worker 

health) 

Koscielniak 

et al. 

(2019) 

 Valamede 

and Akkari 

(2020) 

AM / Customer involvement   

There is greater customer involvement through the analysis of data that can be 

provided by using smart products and more easily customized products, through AM 

and the flexibility allowed by technologies, and a better understanding of customer’s 

requirements. 

 Hadud and 

Kare 

(2020) 

 Núñez-

Merino et 

al. (2020) 

Simulation / Continuous improvement   

Simulated models can be used to test improvements in the production system, 

evaluating their impact in a virtual environment. 

 Peças et al. 

(2021) 

 

 

4.4 Relationships between Industry 4.0 and Lean (cases study) 

This section presents the evidence from the cases study. The results were 

compiled according to the sections established in the research protocol, the 

characterization of the respondents and company; what and how I4T are supporting Lean 

Socio-Technical practices to improve sustainability performance and whether there are any 

negative effects of this integration. Table 4.7 presents the compilation of information 

about the company and the respondents.  

 

Table 4.7. Characterization of the company and the respondent (Sections A and B) 

 
Year 

founded 

Industrial 

sector 

Number of 

employees 
Experience in Lean Experience in I4.0 

C
o

m
p

a
n

y
 A

 

1956 

Manufacture 

of automotive 

pieces 

260 

Lean was implemented in 

2011. As of 2013, there 

was a process of 

disseminating the Lean 

culture and maturing the 

Lean system. 

The two companies 

began digital 

acceleration with 

greater force 

around 2016. 

C
o

m
p

a
n

y
 B

 

1957 
Automotive 

Sector 
4000 

Lean was implemented in 

the late 1990s. 

 

 

 



48 

 

Table 4.7. (Continued) 

R
es

u
lt

s 

in
 L

ea
n

 
Lean is disseminated in all areas and levels of both companies. 

R
es

u
lt

s 
in

 I
4

.0
 

The Company A adopted the German model (Alcatech) which comprises six levels of maturity 

in relation to technologies, the first two being related to the digitalization process (computers 

and connectivity) and the last four to I4.0 (data visualization, data transparency, prediction, and 

adaptability). For some technologies, the company is in the digitization phase, for others, in the 

I4.0 phase. It has 80% in the implementation of the MES system and cloud computing through 

Oracle, Power Bi, and Dashboards, 50% in the implementation of Big Data, 80% in AM, 70% 

in IoT, and 90% in CPS. 

At Company B, many Projects 4.0 were delivered in 2019. The automation engineering sector 

develops technological solutions for other sectors. Solutions can range from robotics, 

connecting machines to the industrial network, simulations, Augmented Reality, Virtual Reality, 

Big Data and analytics, cloud communication, software solutions, cyber security, and 

manufacturing systems integration. 

 Roles interviewed 
Time in the 

company 

Experience 

with Lean 

Experience 

with I4.0 

C
o

m
p

a
n

y
 A

 

re
sp

o
n

d
en

ts
 (A1) Process and quality 

engineering manager 
10 years 8 years 6 years 

(A2) Quality engineer specialist in 

process automation 
12 years 4 years 6 years 

(A3) Process engineer 10 years 9 years 6 years 

C
o

m
p

a
n

y
 B

 

re
sp

o
n

d
en

ts
 

(B1) Engineering manager 8 years 8 years 8 years 

(B2) Quality gate manager 18 years 18 years 10 years 

(B3) Automation engineering 

manager 
20 years 20 years 6 years 

 

 

The interviews reveal that the participating companies have extensive experience 

in Lean and have developed strategies for the implementation and consolidation of I4.0 

that improve sustainability. At Company A, a set of technologies control shop floor Lean 

operations, minimizing material waste and reducing gas emissions. LSP are supported by 

I4T, for example, access to Big Data makes it easier for small group problem-solving. 

At Company B, distributed sensors provide data for Kaizen events where 

Continuous Flow strategies are drawn. The company has AGV connected by IoT sensors 

that transport pieces from the logistics sector to the production process. AGV pass by 

delivering the Kanban boxes to each workstation. Company B has many tightening tools 

in the process that generate real-time data such as applied torque, torque angle, and 

deviations that occur. Based on this data, the automation team can develop a machine-

learning algorithm (Respondent B3). The company also is creating an algorithm to check 

equipment wear, directing when to intervene (Respondent B2). 

Table 4.8 summarizes the collaborative actions between I4.0 and Lean to achieve 

the sustainability goals revealed in the cases study. 
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Table 4.8. Support of I4T to LP and the impact on sustainability performance 

Company 

/Respondents 

I4.0 

technologies 
How relationship occurs 

Lean socio 

practices 
C

o
m

p
a

n
y

 A
 

A3 

BDA 

Big Data promotes analyses and Continuous 

Improvement. With the data provided by the CNC 

machine, the company makes improvements in the 

geometry of the pieces, which avoids unexpected 

stops in the production line due to the breakage of the 

piece. 

Continuous 

Improvement 

IoT 

technologies 

and BDA 

Sensors installed in the process provide data for root 

cause analysis, which makes problem-solving easier. 

Small group 

problem 

solving 

C
o

m
p

a
n

y
 B

 

B3 AR 

The augmented reality glasses project the assembly 

point of various pieces onto the vehicle, facilitating 

operator training. 

Training 

employees 

Company 

/Respondents 

I4.0 

technologies 
How relationship occurs 

Lean 

technical 

practices 

C
o

m
p

a
n

y
 A

 

A2 
IoT 

technologies 

The measuring instruments have IoT technologies 

(RFID and Bluetooth). When measuring a piece, the 

instrument sends the measurements in real-time to the 

system, which feeds a control chart. If two yellow 

dots appear, the system automatically sends an email 

to the supervisor, and actions must be taken to 

prevent the piece from arriving in red. That is, to 

prevent an error from occurring. 

SPC 

A3 
IoT 

technologies 

IoT technologies in the kanban system allow reducing 

work in process by supporting JIT. E-Kanban linked 

to the supplier allows make better use of internal 

space and internal transport and make better of the 

route and road resources. Thus, can reduce costs, 

reduce the emission of polluting gases, and reduce the 

carbon footprint, which improves economic and 

environmental sustainability. 

Kanban and 

JIT 

C
o

m
p

a
n

y
 B

 

B3 
IoT 

technologies 

The operator performs process control via cell phone. 

The cell phone displays images of the piece and the 

specific point of the product that the operator must 

check. If the operator says ‘no ok’, he photographs 

the product so that the information reaches the 

support teams in real time. The data automatically 

goes to the system that generates the KPI to control 

the defective pieces. 

SPC 

Sensors control whether the vehicle's bolts have been 

tightened, or if they are loosened due to operator 

forgetfulness. If the screw is loose, the production 

line does not follow and emits a, not ok, signal 

displayed on televisions. In addition, it is possible to 

control the correct force and torque, preventing the 

screws from being loosened due to vibrations. The 

company also has some controls in the process that 

verify if the color of a certain piece is by the 

customer's specifications. Also, when a vehicle has a 

deviation in a piece, the system registers it. When 

another vehicle has the same or similar piece, it is 

possible to carry out a predictive control of the 

process, preventing the same deviation from 

happening again. 
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Table 4.8. (Continued) 

Company 

/Respondents 

I4.0 

technologies 
How relationship occurs 

Lean 

technical 

practices 

C
o

m
p

a
n

y
 B

 

B2 

AGV 

The AGV supply the Kanbans in the production 

process, avoiding stoppages in the assembly line due 

to lack of pieces and controlling the formation of 

stocks. 

Continuous 

Flow and JIT 

B3 

B1 

IoT 

Technologies 

The sensors distributed on workstations provide data 

for Kaizen events such as operator movement and 

steps to carry out the work. This information helps 

improve process flow and achieve JIT goals. 

Continuous 

Flow and JIT 

B3 

B1 AM 

The company uses 3D Printer to produce prototypes 

of pieces with standardized fittings for the machine's 

devices, which reduces setup time. 

Setup Time 

Reduction 

Benefits for sustainability 

C
o

m
p

a
n

y
 

A
 Economic benefits (greater efficiency, agile processes, and flexible operations), 

environmental benefits (reduced consumption of resources), and social benefits (improved 

worker health and safety and minimization of the monotony of work) 

C
o

m
p

a
n

y
 

B
 

Economic benefits (cost savings, reduction of rework, reduction of material waste, shorter 

development time) and environmental benefits (reduction of solid waste, reduction of 

compressed air consumption, and reduction of energy consumption) 

 

Lean and I4.0 bring significant benefits to companies. For example, Company A 

recognizes that relationships between approaches provide faster and more effective 

decision-making and improve operational learning. The cases study confirm that these 

relationships have a synergistic effect that further benefits sustainability performance. 

On the other hand, conflicting points were highlighted due to the massive 

inclusion of technologies in the processes. For example, social impacts such as i) a 

significant reduction in human coexistence (Respondents A3 and B2) and higher 

unemployment (Respondent A1); ii) discomfort (Interviewee A2 and B1), operator 

vertigo and blind spots in the assembly, which generate the risk of accidents (Interviewee 

B3) due to the use of augmented reality glasses; iii) fatigue and lack of focus to the worker 

due to the excess of generated data (Respondent B1). In addition to economic impacts 
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such as i) loss of time and productivity due to the use of new technologies (Respondent 

A2); ii) increase in energy costs due to the increase in the number of TVs in the process 

(Respondent B1); increase in data security costs (Respondent B1). 

Finally, the two companies agree that Industry 4.0 is the natural evolution of Lean. 

Digitization is not the first step towards Industry 4.0. Lean allows us to move towards 

digitalization and Industry 4.0. Lean allows the control, standardization, and stability of 

processes. Therefore, it is the environment through which digitization begins. Lean is the 

way to reach higher levels of Industry 4.0 (Respondent A3). When a company has the 

Lean system consolidated, it facilitates the migration to Industry 4.0. Thus, a standardized 

process becomes necessary to use technologies efficiently (Respondent B1). 

 

4.5 Results 

Many relationships reveal that I4T strengthen the goals of LP (Table 4.4) and 

these relationships impact sustainability. Some relationships found in the SLR were 

confirmed in the cases study (Table 4.9), additionally, the companies showed that these 

relationships have potential to improve sustainability in an industrial environment. The 

letters (A and B) in table 4.9 refer to the cases (Company A and Company B) that 

confirmed the relationships and impact on sustainability. 

 

Table 4.9. Relationships identified in the SLR and confirmed in the case study 

 Industry 4.0 Technologies 

Technical 

Practices 
AGV AM AR BDA CC CPS 

IoT (RFID, Sensor, 

Actuator) 

Simulation 

(Digital 

Twin) 

Continuous flow B/X  X X X X B/X  

JIT B/X X X X X X A/B/X X 

Kanban B/X   X X X A/X X 

Setup time 

reduction 
 B/X    X   

SPC      X A/B/X  

TPM   X X   A/X X 

Social Practices         

Continuous 

improvement 
  X A/X X X B/X X 

Customer 

involvement 
 X  X X X X  

Supplier 

partnership 
   X X X X  

Training 

employees 
  B/X      
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Table 4.9. (Continued) 

Benefits for sustainability 

Economic Environmental Social 

Quality  
Environmental impact 

reduction 
 

Improvement in 

working conditions  
 

Stock cost reduction  
Reducing the use of natural 

resources 
A 

Reducing the 

number of 

accidents at work 

 

Reliability  Reducing pollution  
Improved worker 

health 
A 

Production cost reduction B 
Reduction of energy 

consumption 
B   

Efficiency A     

Productivity      

Flexibility A     

A - Evidence found in company A 

B – Evidence found in company B 

X - Evidence found in SLR 

 

The IoT/JIT and IoT/SPC relationships found in the SLR were confirmed by both 

cases (Companies A and B). These relationships have strong potential to integrate 

Industry 4.0 and Lean into an industrial environment. In addition, there is strong evidence 

that AGV strengthen practices such as continuous flow, JIT and Kanban, which were 

confirmed by company B. Companies also confirm relationships between BDA and 

continuous improvement (Company A) and IoT and continuous improvement (Company 

B). Economic (efficiency, flexibility and production cost reduction), environmental 

(reduction in the use of natural resources and energy consumption) and social (Improved 

worker health) benefits found in the literature review were confirmed by company A or 

company B. 

On the other hand, Company A mentions that IoT and BDA reinforce small group 

problem solving initiatives, as these technologies provide data for root cause analysis. 

These relationships were not found in the SLR. Furthermore, the relationships between 

I4.0 and Lean bring sustainability benefits that have been recognized by companies but 

are not clear in the literature. For example, Company A reveals benefits such as agile 

processes, minimizing waste material, reducing gas emissions, improved worker safety, 

and minimization of the monotony of work, and Company B points benefits such as 

reduction of rework, reduction of material waste, shorter development time, reduction of 

solid waste, and reduction of compressed air consumption. 

All technologies listed in the SLR showed a positive support relationship with 

TPM. IoT and sensors connected to machines allow the measurement of equipment 

parameters in real time (e.g., pressure, temperature), its verification enables planned and 

autonomous maintenance increases machine availability by contributing to TPM 
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(Chiarini et al., 2020; Tortorella et al., 2020). The analysis of collected data by IoT, 

allows the investigation of past patterns and failure causes, which can foster TPM and 

prevent potential future failures (Chiarini and Kumar, 2020; Chiarini et al., 2020; 

Ghobakhloo and Fathi, 2020). Sensors and IoT provide data for analysis, while BDA 

effectively allows this data to be analyzed, identifying machine patterns, recurrent 

problems, and failure causes, improving preventive maintenance (Sanders et al., 2016; 

Li, 2019; Tortorella et al., 2021). AR supports TPM activities, ensuring the efficiency of 

the maintenance steps providing precise instructions to routine maintenance, which 

reduces the number of work accidents, reduces pollution, and the use of natural resources 

(Koscielniak et al., 2019; Raji et al., 2021). While Digital Twin makes it possible to 

understand the impacts of different preventive maintenance solutions (Ciano et al., 2020). 

The use of technologies for TPM is confirmed in the case study, in which company A has 

future projects to use historical data and algorithms to predict equipment wear, avoiding 

downtime. 

The application of IoT/RFID for shop floor material management can provide 

information about delays, material consistency and accuracy, and process waste, 

improving the JIT (Wang et al., 2018). IoT technologies provides real-time data on 

product locations and quantities, which improves traceability and minimizes delays and 

waiting times, leading to more effective inventory management, automatic replacement 

of internal suppliers in pulling systems, and, consequently, reduced lead times (Raji et 

al., 2021; Ciano et al., 2020) and costs (Núñez-Merino et al., 2020). The system can 

automatically send orders to suppliers according to production line needs and enables 

intelligent reallocation of orders, which ensures on-time materials delivery, transport 

route optimization and reduces stocks (Mayr et al., 2018; Núñez-Merino et al., 2020). 

The use of technologies associated with JIT can impact economic performance resulting 

in increased quality, flexibility, efficiency, productivity, and reduced costs and inventory 

(Bittencourt et al., 2019; Mayr et al., 2018; Wang et al., 2018; Zelbst et al., 2014). 

Furthermore, in the studied companies, was exposed that IoT technologies (GPS sensors) 

help map operator movements and the data is used to improve process flow allowing 

continuous flow and JIT. Confirming the SLR findings, the two companies studied have 

systems that controls the process in real-time, issuing production alerts at Company A 

and signaling deviations through points of attention at Company B, which facilitates JIT 

activities and continuous flow. 
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Big Data increases the transparency of material and processes information and 

allows the comparison of target and actual values to remove unnecessary inventory 

(Valamede and Akkarin, 2020), supporting the JIT system (Bittencourt et al., 2019). 

Additionally, BDA techniques enable improved demand forecasting skills (Nunes-

Merino et al., 2020), and help to identify trends, peak seasons and assists in reduce order 

execution time analyzing data from the supply chain partners (Raji et al., 2021; Mayr et 

al., 2018). A JIT system through CPS is highly supported by the integration of big data, 

data analysis, and vertical integration of machine-to-machine communication (Tortorella 

et al., 2020). CPS can control when the material stock reaches the minimum level and 

automatically generate a purchase order for the supplier (Santos et al., 2021). AM can 

support JIT, offering shorter lead times and reduced inventory, meet exact customer 

specifications, in the in the requested amount using less raw material, process time with 

flexibility when adding layers of material (Raji et al., 2021; Ghobadian et al., 2018). 

AGV can transport products and materials to workstations in accordance with the 

real-time requirements, automatically, minimizing human mistakes as well as 

unnecessary trips, favoring JIT replenishment (Mayr et al., 2018; Núñez-Merino et al., 

2020; Valamede and Akkari, 2020). In this sense, the application of AGV can contribute 

to a JIT delivery to the workplace, since the materials arrive at the exact moment when 

they are required (Mayr et al., 2018), favoring a pull-type flow by promoting timely and 

automated delivery and logistics (Núñez-Merino et al., 2020). These findings were 

confirmed by company B where the AGV supply the kanban stations in process, 

facilitating JIT. The economic results generated are related to quality, flexibility, derived 

from the process integration, increased productivity, and reduced inventory (Valamede 

and Akkari, 2020; Mayr et al., 2018). 

The IoT technologies allow real-time stock monitoring, which increases the 

flexibility of the supply system and provides full visibility of all processes that are part of 

the pull Kanban system (Pekarcikova et al., 2020). IoT technologies monitor when the 

workstation reaches minimum stock and the information is displayed on the predecessor 

workstation to forward the material (Sanders et al., 2016; Kumar et al., 2018). By using 

sensors, information and communication technologies, an e-kanban system automatically 

recognizes missing and empty bins, being able to monitor the status, number, and location 

of material batches and triggers replenishment (Sanders et al., 2016; Satoglu et al., 2018; 

Tortorella et al., 2019). The integration of IoT and BDA into kanban systems, allows for 

the immediate detection of production errors, triggering automatic replenishment, and 
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increasing operational efficiency (Tortorella et al., 2019). BDA increases the 

transparency of material and process movements (Valamede and Akkari, 2020). These 

relationships were confirmed by company A, where IoT technologies link the kanban 

system to the supplier, avoiding excess inventory and providing better use of resources 

such as internal space and road resources, which generates benefits for sustainability. 

With the introduction of CPS, the Kanban becomes automated, i.e., intelligent 

storage tanks operate on the principle of self-regulation, which contributes to the 

decentralization of the information collection enabling full visibility of all processes that 

are part of the Kanban system (Pekarcikova et al., 2020). Other technologies can also 

help the kanban system, such as simulation and digital twin, which allows optimal kanban 

parameters and new kanban loops to be planned with more foresight and seamlessly 

integrated into the existing production environment (Mayr et al., 2018; 2019; Pekarcikova 

et al., 2020). CC based Kanban system has features for entering production data to 

estimate the kanban ideals parameters (Shahin et al., 2020). 

The e-kanban is also assisted by AGV, which can supply workstations according 

to real needs, reducing inventories, lead times, and unnecessary movements (Valamed 

and Akkari, 2020). The case study confirms this relationship once a respondent reports 

the use of the AGV to supply the kanban in process, identifying deviations in the assembly 

line to regulate the supply automatically. In addition, the e-Kanban in company A linked 

to the supplier optimizes deliveries, which reduces the emission of polluting gases due to 

the control of logistics operations. In the context of I4.0, production systems equipped 

with e-Kanban allow to exchange information, automatic material replenishment 

monitoring, schedule tracking, and pull system, making the production cycle more 

efficient (Sanders et al., 2016; Mora et al., 2017). Additionally, stock levels can be 

minimized, the required space drops which ultimately results in cost savings (Mayr et al., 

2019). 

Technologies like IoT, sensors, and actuators reduce the time needed to prepare 

for the next operation, by mitigating the need for machine adjustments after setup 

(Fatorachian and Kazemi, 2018), minimizing the occurrence of errors. Sensors and 

actuators indicate the right time to change tools and allow to identify process problems 

faster, anticipating the change when necessary (Tortorella et al., 2019). AM can 

contribute to lower setup times due to a reduction in complexity by modularizing 

production systems (Tortorella et al., 2019). IoT technologies can receive material, 

product, or work phase information and perform accurate Single-Minute Exchange of 
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Dies (SMED) and prepare the correct configuration of the machines (Sanders et al., 2016; 

Ciano et al., 2020; Sordan et al., 2021; Anosika et al., 2021). With CPS, working stations 

or whole production lines can be efficiently reconfigured, significantly reducing setup 

time (Kolberg and Zuhlke, 2015). The case study reveals that company B uses simulation 

to design pieces that are produced by AM. The pieces have standardized fittings for 

machines, which reduces setup time. 

The introduction of IoT and sensors gives data about the material distribution real-

time tracking of the movements of manufacturing resources and production station status, 

which provide feedback to employees, helps to eliminate delays, interruption, and waiting 

in the production line, enabling a continuous streamlined flow (Sanders et al., 2016; 

Fettermann et al., 2018; Ren et al., 2018b). The data from IoT devices and the production 

processes are analyzed by BDA and shared CC environment, contributing to achieving 

results and solutions that provide a continuous flow (Valamedi and Akkari, 2020). 

Confirming the SLR findings, the two companies studied has systems that controls the 

process in real-time, issuing production alerts, which facilitates continuous flow. 

AGV contribute to achieving Lean objectives since autonomous control in 

operational functions establishes a continuous flow of materials and favors a pull flow 

and JIT replenishment (Núñez-Merino et al., 2020). CPS also allows the identification of 

cycle times to find the best solution between the highest possible capacity utilization per 

working station and a continuous flow of production (Kolberg and Zuhlke, 2015). On the 

other hand, the use of AR device help employees to solve problems and take better 

decision quickly, additionally, cycle times information is provided in the workers' visual 

field for the continuous flow of production (Valamede and Akkari, 2020). 

From the data generated by sensors and actuators connected to the production 

system, it is possible to access data directly out of the machines to identify the instability 

of the process or avoid deviations related to the quality parameters increased the 

efficiency of inspection and SPC activities (Sordan et al., 2021). In addition, 

communication can be done in real-time through supervisors’ smartphones (Chiarini and 

Kumar, 2020). CPS can combine historical running data of the system to predict possible 

system anomalies and sending pre-alarms production process based on SPC (Ma et al., 

2017). When the technologies such as CC, Big Data, IoT, AM and AGV are implemented 

together, have a positive impact on the supply chain performance improvement 

(Tortorella et al., 2019b), as well as the possibility of having a new class of SPC with 

autonomous feedback to the machine (Chiarini and Kumar, 2020) and, consequently, 
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achieve the Lean objectives. This relationship is strongly confirmed in the case study, as 

both companies have sensors distributed in the process. Company A has IoT technologies 

installed in work equipment and connected to measuring instruments that can 

automatically send information to the system, promoting statistical control of the process 

in real time. At Company B, sensors analyze process parameters and statistical control is 

performed via cell phone. Therefore, a supply chain that integrates information 

technologies, data technologies, and shop floor technologies with Lean technical practices 

will provide more control of operations and activities (Chiarini and Kumar, 2020). 

On the other hand, some relationships between I4T and LSP also present strong 

evidence. For example, IoT and Continuous Improvement (Ferrera et al., 2017; Kolberg 

and Zuhlke, 2015), IoT and Supplier partnership (Ciano et al., 2020; Li, 2019), IoT and 

Customer involvement (Li, 2019), CPS and Continuous improvement (Kolberg et al., 

2016); CPS and Customer involvement (Li, 2019), BDA and Customer involvement 

(Sordan et al., 2021), and AR and Training employees (Koscielniak et al., 2019; Sordan 

et al., 2021). 

The SLR results show that continuous improvement is the main LSP supported 

by I4T, being promoted by IoT, CPS, Simulation, CC, BDA and AR. IoT, as well as 

RFID, sensors and actuators allow data collection during production, feeding indicators 

in real time, they also allow data collection after production, making it possible to have 

more information about product performance, promoting, in both cases, continuous 

improvement (Kolberg and Zuhlke, 2015; Ferrera et al., 2021; Peças et al., 2021). BDA 

contributes to the process of continuous improvement for enabling the use of advanced 

analysis tools and dealing with a large volume of data, oftentimes collected automatically 

(Valamede and Akkari, 2020). CPS components on the workstation can provide historical 

data for fault analysis and continuous improvement (Li, 2019). Therefore, these 

technologies help the process of continuous improvement by providing available data to 

define, measure and analyze situations in real time, fostering the continuous improvement 

process. The SLR results is confirmed by the cases, since at Company A, access to data 

promotes continuous improvement through incremental improvements in the geometry 

of manufactured items, in addition to providing correct information to assist in problem-

solving in small groups. One respondent emphasizes the importance of data for root cause 

analysis, which facilitates faster problem resolution promoting continuous improvement. 

The relationships between BDA and LSP (continuous improvement, supplier and 

customer integration) have a potential impact on environmental (e.g., reduction in air 
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pollution, water pollution, and solid pollutants) and economic (e.g., reduced costs, 

efficiency, and quality) sustainability (Raul et al., 2019). This relationship was confirmed 

in the cases studied. Through data sharing, the BDA ensures that employees, suppliers, 

and customers are actively involved in sustainability practices (Raut et al., 2019; Dubey 

et al., 2016) and top management must invest in training in BDA. 

The emerging technologies adoption on the Lean supply chain provides better 

integration of suppliers and customers (Núñez-Merino et al., 2020). IoT and BDA can 

overcome the bureaucracy of traditional communication channels by obtaining immediate 

and automatic feedback from customers and suppliers (Tortorella et al., 2019b). Sensors 

and IoT technologies enable smart products that send data to better understand customer 

behavior and meet their needs (Sanders et al., 2016). Through IoT, customers' inputs are 

collected and have a profound impact on the real-time adjustment of production, tailoring 

of product design, and providing post-sale feedback (Mesquita et al., 2021). Therefore, 

customer involvement is also supported by several technologies, BDA allows that a large 

amount of data from customers, including their requirements and perceptions about 

products and services, be used to increase customer satisfaction (Sordan et al., 2021). 

Customer involvement practice refers to a set of coordinated activities focused on 

a company's customers and their needs (Shah and Ward, 2007). Thus, contacts with 

customer can be reinforced using QR codes in products, increasing the capture of 

customer needs and perceptions about the product (Li, 2019). While, CPS can transfer 

customer experience knowledge effectively linking this information to organizational 

capabilities (Li, 2019). From the customer's point of view, data analytics provides patterns 

established by using smart products and AM through custom products for greater 

customer engagement (Hadud and Kare, 2020; Núñez-Merino et al., 2020). Sensors can 

be used for components delivered by suppliers, which will make delivery information 

clearer, and reduce inventory (Ciano et al., 2020). CPS structures a communication 

platform that allows knowing the status of the suppliers' production and even entering the 

stock system to remove the pieces, strengthening the bonds (Li, 2019). The introduction 

of smart technologies allows customers and suppliers to become real-time contributors to 

the data gathering. 

The implementation of networks for horizontal and vertical integration by I4.0 

allows a better involvement of customers and suppliers in the process of adding value. 

IoT enables CPS by connecting all distributed resources in the industry to gain data and 

in-depth knowledge of the internal and external environment (Ma et al., 2017). Data 
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captured by IoT technologies can be treated through BDA and transformed into useful 

information. With the help of cloud computing, information can be shared internally and 

with customers and suppliers (Raji et al., 2021). 

The main technologies to aid employee training are AR and Simulation. In AR 

displays, virtual and real information, previously acquired with a camera, are digitally 

merged and represented on a screen, creating an interactive training interface for 

employees (Mayr et al., 2018). These findings coincide with the case study since the two 

companies do not use AR glasses in the processes due to the discomfort caused to the 

operator, but Company B uses AR in the operator training to assemble the vehicle. 

Despite that, designing integrated management frameworks to implement I4T in 

conjunction with specific Lean Socio-Technical practices becomes a challenge due to 

technical, social, and organizational complexity (Sony, 2020). 

 

4.6 Conclusions 

This study identifies what and how I4T can support Lean Socio-Technical practices, 

which impact sustainability performance. Through content analysis, it was possible to 

identify that the technologies such as IoT (RFID, Sensor, and Actuator) and BDA stand 

out as the greatest facilitators of LTP and LSP. The JIT system and TPM seem to be more 

likely to be supported by I4T. JIT-related practices such as continuous flow and Kanban 

minimize waste, reduce inventories and overall production costs, helping with economic 

performance. TPM modalities such as autonomous maintenance, preventive maintenance 

and predictive maintenance minimize machine and equipment wear, prevent breakdowns, 

and improve operations performance. The improvements generated by these practices can 

have a greater effect from the integration with I4T. 

Furthermore, the links of customer involvement, supplier partnership, training 

employees, and continuous improvement with the technologies show better levels of 

quality, flexibility, and efficiency as well as present resource usage better and reduced 

environmental impact. 

Confirming the SLR findings, the cases study highlight the benefits of the 

integration between I4T and Lean in the economic pillar (cost savings, greater efficiency, 

agile processes, and flexible operations), environmental (reduction of resource 

consumption, reduction of electrical energy consumption and reduction of solid waste) 

and social (improvement of workers' health and safety and minimization of monotony at 

work). 
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On the other hand, the interviews reveal weaknesses due to the links between I4T 

and LP in an industrial environment. For example, i) social factors such as the significant 

reduction of human coexistence, worker fatigue due to exposure to big data, loss of 

detailed information due to data security, and lack of unskilled jobs; ii) economic factors 

such as the lost time and productivity due to changes in process and increased costs due 

to the need for data security; iii) environmental factors such as the increased energy 

consumption due to the introduction of technological resources on the factory floor. These 

sustainability issues are pointed out as a consequence of the massification of technologies 

in the processes. 

The analysis of the relationships identified in the SLR and in cases study shows a 

predominantly positive impact on economic indicators from the integration between I4T 

and LP, showing an imbalance in efforts to improve sustainability performance. However, 

it was identified that the impact on environmental and social aspects is not yet fully 

clarified in literature and in practice.  

 

4.6.1 Academic and managerial implications, limitations and future research 

Some researchers have suggested a positive relationship between I4.0 and Lean 

(Shahin et al., 2020; Dubey et al., 2019; Sinha and Matharu, 2019; Sanders et al., 2016). 

The present study confirms the results that point to a positive integration between the 

approaches helping to fill the gap of the need for research to confirm this synergy (Rossini 

et al., 2019), and understanding how the relationships between these approaches can 

affect the performance of companies (Kamble et al., 2020; Tortorella et al., 2019; Dubey 

et al., 2019). Furthermore, as proposed by Tortorella et al. (2019), this research 

contributes by including Lean social variables (e.g., employee involvement, and 

suppliers’ and customers’ relationship) and the use of I4T to observe the impact of these 

relationships on sustainability performance. 

This research sought evidence both in the literature and in practice, through the 

use of multiple methods, SLR and case study, to deepen knowledge on the relationships 

between technologies and Lean social and technical practices. The study identifies viable 

ways to integrate I4T and Lean Socio-Technical practices through supportive relationships 

that improve sustainability performance. Based on the findings, conceptual frameworks 

were proposed that demonstrate the most promising relationships, technical and social, 

valuing technological and human aspects in the management of industrial processes. 
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At some points, our findings coincide with the results of Pagliosa et al. (2019) 

that affirm IoT (RFID, Sensor, and Actuator) as the technology that presents the greater 

synergy with LP. Our analyzes show a strong link between these technologies and the JIT 

system, similar to the results of Rosin et al. (2019). In addition, the study innovates by 

identifying evidence that BDA can contribute to LTP, such as JIT and TPM, and to LSP 

such as continuous improvement and customer involvement, improving sustainability 

performance. From an academic point of view, the study advances by compiling how 

technologies can help Lean practices and verifying, from an empirical point of view, 

whether these relationships are evident in companies, as well as identifying the positive 

and negative empirical impacts. 

On the other hand, this study presents implications for practitioners. Additional 

efforts are needed to meet current internal demands related to sustainability, in addition 

to government and market requirements. It is important to develop management practices 

that positively impact economic, environmental, and social performance indicators. In 

this sense, managers can resort to the findings of this study to guide initiatives to introduce 

I4T in a Lean environment or even better leverage technologies already introduced by 

integrating them with Lean practices. For example, IoT, CPS, BDA, and AR can be 

applied together with the JIT system, and strengthen LP such as customer involvement, 

supplier partnership, continuous improvement, and training employees to improve the 

sustainability dimensions. Practitioners should be aware and invest in the integrated use 

of technologies that capture real-time data, such as the IoT, and large datasets, such as 

Big Data, to support the supply of production lines at the correct time, inventory 

reduction, producing the correct quantity of items, among others. Furthermore, AGV can 

enhance automated delivery of materials on time, minimizing errors and time to JIT. 

The results show that industries with a consolidated JIT system that intend to 

benefit from technologies to improve the flexibility, agility, efficiency, and quality of the 

processes and simultaneously improve sustainability performance should preferentially 

invest efforts in the adoption of IoT, BDA and AGV. Furthermore, the findings show that 

managers should develop continuous improvement practices to value human potential 

together with technological resources. The are evidences that social aspects and 

environmental indicators can be improved from the integration between customer, 

supplier, and employees’ practices with IoT, CPS, AR, and BDA. These practices add 

value to the customer. 
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On the other hand, the findings of the cases study reveal that despite the 

contribution that AR can bring to LP such as TPM, SPC, and employee training, the 

discomfort caused by glasses with this technology can cause some problems for workers. 

So, improvements must be made so that augmented reality glasses are applied on a large 

scale in the industrial environment. In addition, the use of technologies in processes can 

reduce human contact and the high availability of data can increase security costs. 

Therefore, managers must pay attention to the negative consequences of integration, 

which can occur, and the findings help at this point. 

In addition, the strongest linkages presented reveal the support that I4T provide 

to LP and alert the industrial sector to the benefits associated with these integration 

relationships. Through the cases studied, we concluded that the consolidated Lean system 

allows companies to move towards digitalization and Industry 4.0.  However, the study 

has limitations, such as the impossibility of generalizing the results obtained with the case 

study, since only two companies were observed. The study tried to overcome this 

limitation by looking at the studies already published on the topic. The study also has a 

partial view, as it focuses on a specific moment in time. 

The present study observed a substantial number of relationships between LSP 

and I4T and LTP and I4T that impact sustainability performance, this allowed a 

quantitative view of the number of relationships existing in the literature. The study also 

sought to delve into how these relationships occur, however, more specific empirical 

studies for each relationship are necessary, to delve into their positive and negative points. 

Therefore, longitudinal studies are needed to observe the adoption of technology and its 

evolution, as well as suveys, to measure the impacts generated. Other possibilities for 

future studies include action research to understand how the integration between Lean 

technologies and practices can occur at an operational level. Finally, issues such as the 

influence of the sector and the size of companies on the integration are also variables for 

future studies. 
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5 BIG DATA ANALYTICS AND LEAN PRACTICES: IMPACT ON 

SUSTAINABILITY PERFORMANCE 

 

Abstract 

Academics and practitioners have explored the potential of Big Data Analytics 

Capabilities (BDAC) to support the Lean Social-Technical System. Despite the pursuit of 

Big Data initiatives, there is still a limited understanding of how companies translate the 

potential of BDA to support Lean and can turn this relationship into sustainability 

benefits, impacting economic, social and environmental performance. Literature findings 

about BDA capabilities (BDAC) and Lean Social Practices (LSP) and Lean Technical 

Practices (LTP) were used to develop a comprehensive conceptual model that assesses 

the mediating effect of LSP and LTP on the relationship between BDAC and economic, 

environmental, and social performance. Partial Least Squares Structural Equation 

Modeling (PLS-SEM) was used with a sample of 108 respondents, from companies of 

different sizes and sectors, at different stages of Lean implementation and BDA adoption. 

The results show that BDAC positively impact Technical Lean and Social Lean. 

Statistical evidence supports that BDAC exert a positive effect on Social Performance 

(SOP), which includes, for example, aspects of work. Furthermore, the results confirm 

that the relationship between BDAC and Economic Performance (ECP) is completely 

mediated by Lean Technical Practices. The findings of this research contribute to 

revealing possible ways that link BDA and Lean and benefit sustainability with these 

relationships. 

 

Keywords: Big Data Analytics Capabilities; Lean Technical; Lean Social; Sustainability 

Performance; Systematic Literature Review; Structural Equation Modelling 
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5.1 Introduction 

To be competitive, in addition to concerns about Economic Performance (ECP), 

companies are concentrating efforts to improve sustainability performance (Garza-Reyes, 

2015), including environmental benefits and social equity (Miemczyk and Luzzini, 2018; 

Yun et al., 2018). In this sense, due to its structured practices and continuous improvement 

approach, Lean is effective in transforming ideas generated from innovativeness into 

environmental and social results (Yu et al., 2020) and in improving ECP. 

The Lean approach can be defined as a set of methods, tools (Lobo et al., 2018), 

and practices (Shah and Ward, 2003) that work synergistically to create a streamlined 

high-quality system that produces at the pace of the customer demand with little or no 

waste. Lean involves a collection of practices that assist in the process of improving work 

methods by eliminating waste (Shah and Ward, 2007).  In this study, Lean is considered 

a socio-technical system, and, as such, it has two pillars of practices, social and technical 

(Bortolotti et al., 2015; Shah and Ward, 2007). Lean Social Practices (LSP) relate to 

behavioral aspects and usually deal with human resources (Lewis et al., 2006) and 

continuous improvement strategies (Calvo-Mora et al., 2014). Lean Technical Practices 

(LTP) are systems-oriented and easier to quantify (Gadenne and Sharma, 2009).  

On the other hand, rapid industrialization has contributed to lower levels of health 

and safety of the workforce and greater environmental degradation (Luthra and Mangla, 

2018; Kamble et al., 2018). Industry 4.0 is expected to improve the economic, 

environmental, and social values using modern technologies and process integration 

(Stock and Seliger, 2016). For example, Big Data Analytics (BDA) can help companies 

obtain and suggest better performance measures (Gupta and George, 2016). Big Data and 

Big Data Analytics (BDA) are some of the key technologies in Industry 4.0 that support 

Lean and sustainability (Mesquita et al., 2021; Raut et al., 2019; Ren et al., 2018). 

BDA refers to the data sets and analytical techniques in applications that are so 

large and complex that they require advanced and unique storage, management, analysis, 

and visualization technologies (Chen et al., 2012). BDA is becoming a very popular 

concept in academia and in the industry (Raut et al., 2019). It helps companies to unveil 

the hidden patterns, market trends, customer preferences, unknown causality, and 

correlations between the different parameters (Kwon et al., 2014). Furthermore, Big Data 

can transform the manufacturing industry to apply practices of sustainability more 

efficiently (Raut et al., 2019). Dubey et al. (2016) correlate the application of BDA whit 

performance measures for the environment, social and economic gains. 
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BDA is becoming important to address unique customer requirements (Grover et 

al., 2018), making companies increasingly competitive. Côrte-Real et al. (2016) claim 

that BDA applications can generate value in several ways. However, there is still limited 

understanding of which Big Data Analytics Capabilities (BDAC) drive performance gains 

(Mikalef et al. 2019). It is imperative that companies know their actual accounting, 

economics, finance, and strategic value (Grover et al., 2018), in addition to the 

sustainability benefits. 

On the other hand, BDA presents relationships with Lean Practices such as Just-

In-Time (JIT), Kanban, Total Productive Maintenance (TPM), and continuous 

improvement (Mesquita et al., 2021; Valamede and Akkari, 2020). However, some 

literary gaps were found, such as i) relationships between Lean Practices and Big Data 

need to be better analyzed (Sony, 2020); ii) more studies are needed to establish the links 

between these two approaches (Ciano et al., 2019; Kang et al., 2016). In addition, iii) 

there are few empirical studies that establish the relationship between BDA and 

sustainability performance (Belhadi et al., 2019). Future research is highly encouraged to 

investigate how the dimensions of Lean and the interaction between Lean and new 

technologies such as BDA influence sustainability performance (Yu et al. 2020). 

Therefore, this research contributes to the debate forming a body of knowledge on the 

relationships between Lean Practices, BDAC, and Sustainability Performance, addressing 

the following research question: 

RQ: What effect do Lean Social Practices and Lean Technical Practices have on 

the relationship between Big Data Analytics Capabilities and economic, environmental, 

and social performance? 

This research is dedicated to investigating Lean and BDA. Furthermore, the 

objective is to analyze the mediation effect that Lean Socio-Technical Practices can exert 

on BDAC to improve sustainability performance. For this, a mixed-method approach was 

used. Section 2 shows the theoretical basis. The set of hypotheses developed is presented 

in Section 3. The method is presented in Section 4. Analyzes and results, and discussions 

and implications are presented in Sections 5 and 6, respectively. Section 7 chronicles the 

conclusions, limitations, and directions of future research. 
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5.2 Theoretical Background 

 

5.2.1 Big Data Analytics 

Notably, companies that digitize their processes can improve their capacity to 

acquire, analyze, and distribute strategic and operational knowledge. To achieve this 

digital transformation, the companies adopt enabling technologies, such as information 

systems and Big Data (Ardito et al., 2018). The term “Big Data” was initially coined to 

reflect the voluminous size of data generated because of the use of new forms of 

technology (e.g., social media, radio-frequency identification (RFID) tags, smartphones, 

and sensors) (Gupta and George, 2016). Big Data can be defined as amounts of various 

observational data that support different types of decisions, and as non-traditional forms 

of media data, driven by new technologies (Akter et al., 2016). Thus, Big Data is 

conceptualized as a significant organizational resource because of its potential to extract 

quality information from large datasets (Kuo and Kusiak, 2019). 

The potential of using Big Data is promising but restricted by the availability of 

technologies, tools, and skills available for analyzing data (Sivarajah et al., 2016). To 

meet these needs, Big Data Analytics (BDA) applies statistical, processing, and analytics 

techniques to Big Data (Grover et al., 2018). The generation of real-time data enables 

control of the industrial systems, and the analysis of this data can be applied in a vast 

scope in the companies through BDA (Burmeister et al., 2016). BDA refers to methods 

used to examine and attain intellect from large datasets and can be considered regarded 

as a sub-process in the whole process of insight extraction from Big Data (Sivarajah et 

al., 2016). 

A variety of technologies and infrastructure are enabled for BDA such as social 

media, mobile devices, automatic identification technologies enabling the internet of 

things, ERP systems, and cloud-enabled platforms (Wamba et al., 2017), and they can be 

given in text, graphic, audio, and video formats (Choi et al., 2018). To work with this 

data, Grover et al. (2018) argue that BDA includes all three types of analytics: (1) 

descriptive analysis that reports on the past; (2) predictive analysis that develops models 

based on past data for future prediction; and (3) prescriptive analysis that uses models to 

specify optimal behaviors and actions. 

On the other hand, Big Data alone is unlikely to be a source of competitive 

advantage, the Big Data Analytics Capability (BDAC), which is the organization's ability 

to handle, process and work with large volumes of data, needs data availability and data 
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processing capacity (Wamba et al., 2017). BDAC include the ability to manage and 

analyze data to create new insights and can economically generate value from data in a 

very large volume and variety, enabling high-speed capture, discovery, and/or analysis 

(Grover et al., 2018). For this, it uses data management (i.e., the ability to manage routines 

in a structured way), infrastructure (technologies such as applications, hardware, data, 

and networks), and talent (personnel capability, e.g., skills or knowledge) (Wamba et al., 

2017). 

In addition, BDA resources are critical in developing BDAC (Mikalef et al. 2019). 

Gupta and George (2016) propose seven resources that will allow companies to create 

BDAC such as tangible resources (i.e., data, technology, and basic resources such as time 

and investments), human resources (i.e., technical and managerial skills), and intangible 

resources (i.e., data-driven culture and intensity of organizational learning). To develop 

BDA capabilities, companies need to exploit their technological and human resources 

(Gawankar et al., 2019). 

For this investigation, we assume that BDAC are formed by a structure composed 

of tangible resources, human skills, and intangible resources (Gupta and George, 2016).  

The choice is due to the affinities with the Lean structure, composed of the technical and 

social systems. It is this structure that allows the large volume of structured and 

unstructured data to be processed and analyzed. 

 

5.2.2 Lean Practices 

Lean has evolved from its principles and practices (Marodin and Saurin, 2013). 

Its main objective is to maintain a production free of waste, in which waste is defined as 

any process error that adds costs such as overproduction, waiting, poor quality, 

unnecessary processing, transportation, or inventory and adds no value to the customer 

(Inman and Green, 2018). Thus, Lean can be considered a collection of practices to 

organize and improve production sites (Kolberg et al., 2016). 

The Lean system can be described from two points of view, that is, through a 

conceptual perspective related to guiding principles and overarching objectives (Womack 

and Jones, 1996) and from the practical perspective of a set of management practices, 

tools, or techniques to improve production processes (Shah and Ward, 2003). Shah and 

Ward (2007) grouped Lean Practices into bundles with consideration of the socio-

technical system. In this context, Paez et al. (2004) proposed a Lean structure in technical 

(hard practices) and human (soft practices) systems. Hard practices include technical and 
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analytical tools to improve production systems (e.g., statistical process control, kanban, 

and autonomous maintenance) (Bortolotti et al., 2015; Kariuki and Mburu, 2013), while 

soft practices are related to principles, managerial concepts, people, and relations (e.g., 

continuous improvement, top management leadership, customer, and supplier 

involvement) (Bortolotti et al., 2015). 

There is an increasing perception that Lean is a socio-technical phenomenon that 

emphasizes the importance of people to implement Lean Practices (Hadid et al., 2016). 

Lean comprises a philosophy of continuous improvement acquired by technical practices 

and respect for people that encompasses the human or social side (Muraliraj et al., 2019). 

Adopting Lean Practices in an industrial environment reduces organizational waste, 

leading to improved levels of sustainability performance (Dey et al., 2019). Thus, an 

efficient Lean structure can be composed of a set of technical and social practices. 

 

5.2.3 Sustainability Performance 

Elkington (1998) introduced the concept of TBL with a focus on three dimensions 

of performance, i.e., economic, environmental, and social. The pervading environmental 

issues, such as climate change and gas emissions, and social concerns, such as employee 

welfare, have forced many companies to integrate a wider set of objectives than just 

reaching an acceptable level of ECP (Varsei, 2014). However, some authors draw 

attention to the possible increase in costs due to the implementation of environmental or 

social initiatives, in the search for balance between the three pillars of sustainability 

performance (Wu and Pagell, 2011; Ross et al., 2012). Thus, the development of 

successful and long-term management strategies for sustainability and their performance 

measurement has attracted the attention of researchers and practitioners over the past two 

decades (Goyal et al., 2013). 

 

5.3 Hypotheses Development 

There is evidence that BDA is related to Lean technical and social practices 

(Mesquita et al., 2021; Valamede and Akkari, 2020). BDA is considered an enabler for 

process monitoring, supply chain visibility, and industrial automation (Wamba et al., 

2017). Regarding LTP, the application of Big Data and BDA enables analyze historical 

and real-time information, providing a huge amount of statistical data directly out from 

the machines to identify unstable process parameters, avoiding quality issues (Mayr et 

al., 2018; Wagner et al., 2017) and enabling continuous flow (Tortorella et al., 2019). 
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Moreover, BDAC contribute to constantly tracking workflow in progress, which provides 

automated logistics with intelligent inventory control and minimum intermediate material 

stocks (Valamede and Akkari, 2020), enabling the Kanban System (Tortorella et al., 

2019), and improving JIT efficiency (Wamba et al., 2017). 

Big Data increases the transparency of material and processes and allows the 

comparison of target and actual values to remove unnecessary inventory (Valamede and 

Akkari, 2020), supporting the JIT System (Bittencourt et al., 2019). The advanced 

analytics capability, inherent in Big Data, allows the production system to anticipate 

possible failures and identify, in real-time, unusual conditions and the identification of 

root causes (Stojanovic et al., 2015), connecting IoT technologies to machines (Sanders 

et al., 2016). Such machines assess their own operation and degradation and utilise data 

from other machines to avoid potential maintenance issues (Lee et al., 2015). Thus, it is 

possible to avoid unexpected interruptions in production and minimize errors, enabling 

continuous flow, JIT, and autonomous maintenance. Tortorella et al. (2019) provide 

arguments to examine the interactions between I4.0 and Lean, and suggest that LTP 

implementation may, in part, benefit significantly from the adoption of BDA. 

Regarding Lean Social Practices, BDA capabilities allow for greater customer 

involvement (Wamba et al., 2017), therefore enabling businesses to provide much more 

precisely tailored products or services, and substantially improve customer experience 

(Saggi and Jain, 2018; Grover et al., 2018; Choi et al., 2018). The use of IoT and Big 

Data to exchange information in real-time with suppliers overcome bureaucracies and 

inappropriate communication channels (Dworschak and Zaiser, 2014), reducing a source 

of waste (Tortorella et al., 2019b). One of the most powerful aspects of the Big Data 

revolution is the unification of large data sets with advanced analytics for problem-

solving (Ferraris et al., 2019), helping in small group problem solving. BDA talent 

capability supports employee development and has a positive relationship with learning 

performance (Bag et al., 2020). Thus, the following hypotheses were formulated: 

H1a. BDAC positively affect LSP. 

H1b. BDAC positively affect LTP. 

In fact, few studies exist that empirically establish the relationship between BDA 

and economic, environmental, and social performance.  BDA structure can transform the 

industrial sector by making the results of sustainability indicators more efficient (Dubey 

et al., 2016). The BDAC is expected to have a significant impact on the economic 

performance (ECP) of industries (Wamba et al., 2017; Akter et al., 2016), and can be 
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applied in areas such as demand forecasting, inventory management, marketing, 

transportation management, supply chain, and risk analysis (Choi et al., 2018). Thus, 

companies can use the insights provided by the BDA techniques to improve economic 

outcomes through the responsible use of resources (Nunes-Merino et al., 2020). BDA 

supports process integration by better information flow, improving quality, flexibility, 

and productivity (Müller and Voigt, 2018), impacting economic indicators. The BDA 

allows better accessibility and availability, creating a competitive advantage (Grover et 

al., 2018). 

In addition, the use of BDA optimizes the consumption of materials and energy, 

improving economic and environmental performance (Bonilla et al., 2018). Some authors 

identify the vast potential of BDA capabilities in the improvement of Environmental 

Performance (EP) and recommend further studies to empirically validate the relationships 

between BDA and EP (Belhadi et al., 2019; Dubey et al., 2019). The previous studies 

provide limited insights as they analyzed the influence of BDA capabilities only on. For 

example, Belhadi et al. (2019) investigate whether Lean Six Sigma and Green 

Manufacturing mediate the relationship between BDA capabilities and EP. Dubey et al. 

(2019) analyzed the influence of BDA on EP in the presence of flexible and control 

orientation. 

BDA resources like data-driven culture represent people's beliefs, attitudes, and 

opinions regarding data-driven decision-making (Arunachalam et al., 2017), which 

improves Social Performance (SOP) through valuing human resources. The increased use 

of BDA can free up a company's staff to focus on tasks where humans continue to 

outperform computers, such as judging information, increasing overall productivity 

(Ferraris et al., 2019). The findings by Gupta et al. (2019) reveal that companies identify 

a positive impact of the application of BDA in decision areas such as daily production 

and maintenance variability, manpower performance, health, safety and environment, and 

critical raw material availability status. Thus, BDA capabilities can be used to generate 

insights to integrate processes and people, which can elevate social sustainability 

performance (Gupta et al., 2019). 

On the other hand, BDA adoption includes new infrastructure costs, privacy 

issues, and other challenges in improving economic, environmental, and social 

performance (Raut et al., 2019). Therefore, despite the increasing popularity of this 

technology, there is ambiguity about how the development of Big Data capabilities can 

impact the sustainability performance of organizations (Dubey et al., 2019). However, 
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future socioeconomic developments rely heavily on Big Data and related information 

technologies and methods (Choi et al., 2018). The large-scale analysis of BDA techniques 

helps decision-making in complex economic activities, including sustainability issues 

(Gupta et al., 2019). In this sense, BDAC are a potential source of economic, 

environmental, and social value to gain a company's competitive advantage and human 

talent (Mikalef et al., 2019; Grover et al., 2018). Therefore, the hypotheses are proposed: 

H2a. BDAC influence the ECP of industries. 

H2b. BDAC influence the EP of industries. 

H2c. BDAC influence the SOP of industries. 

Some authors confirm the effects of Lean socio-technical practices on 

organisational performance, i.e., operational performance, financial performance, and 

development of employees (e.g., Abdallah et al., 2021; Arumugam et al., 2020; Sahoo, 

2020). The results of Chavez et al. (2020) indicate that LTP exert an effect on economic, 

environmental, and social performance. This result was reinforced by Chavez et al. 

(2020b) who reveal that LTP are significantly and positively associated with 

environmental and social performance. In this sense, some authors demonstrate that 

technical practices such as TPM and JIT positively impact economic measures such as 

flexibility (Bevilacqua et al., 2017), productivity, cost, quality, and flexibility (Jasti and 

Kodali, 2019; Belekoukias et al., 2014), and social measures such as employee morale 

and safety (Jasti and Kodali, 2019). 

However, some authors present controversial results. Studies claim that adopting 

Lean Practices does not improve emissions (Dieste and Panizzolo, 2018). For example, 

Amjad et al. (2020) state that to improve EP it is necessary to reduce the frequency of 

delivery, which reduces CO2 emissions, and this is opposed to Lean through the practice 

of JIT delivery, which can lead to negative impacts on the environment. 

On the other hand, social aspects are fundamental to successful Lean 

implementation as people are an essential element in operations (Arumugam et al., 2020). 

For example, Godinho Filho et al. (2016) found that employee engagement is key to 

organizational change. The commitment and leadership of top management are critical 

factors for Lean success and social performance improvement (Gelei et al., 2015). In 

addition, leadership, employee involvement, supplier development and partnership, and 

customer relationship positively impact economic measures such as productivity, cost, 

quality, delivery, and flexibility (Jasti and Kodali, 2019; Bevilacqua et al., 2017), and 

social measures such as employee morale and safety (Jasti and Kodali, 2019). 



85 

 

Despite the evidence that emphasizes a positive relationship between Lean 

Practices and sustainability performance, this study intends to compare the impacts of 

technical and social practices on economic, environmental, and social performance, as 

well as highlight the contradictory points of these relationships. Thus, the hypotheses are 

formulated: 

H3a. LSP impact the ECP of industries. 

H3b. LSP impact the EP of industries. 

H3c. LSP impact the SOP of industries. 

H4a. LTP impact the ECP of industries. 

H4b. LTP impact the EP of industries. 

H4c. LTP impact the SOP of industries. 

The application of Lean Practices and BDA can lead, to achieving better 

company's performance (Antony et al., 2018; Yang et al., 2013). Núñez-Merino et al. 

(2020) present the use of BDA acting in some Lean Practices with a multiplier effect on 

operational performance. There is evidence of the positive impact of these applications 

on operational and economic indicators, such as quality, flexibility, derived from the 

process integration, increased productivity, and reduced inventory (Valamede and 

Akkari, 2020; Mayr et al., 2018). 

Some researchers establish links between the BDA and the LSP that impact 

economic (Haddud and Khare, 2020; Tortorella et al., 2019b; Li, 2019; Wamba et al., 

2019), or environmental performance (Raut et al., 2019; Ren et al., 2018; Belhadi et al., 

2019). Sanders et al. (2016) point out that through a large set of data, the BDA can help 

in the development and improvement of products, establishing connections with LSP 

related to customer engagement. BDA enables an information-sharing structure that 

strengthens customer engagement (Raut et al., 2019; Núñez-Merino et al., 2020), and 

enables the participation of suppliers (Dworschak and Zaiser, 2014). Cochran et al. 

(2016) provide a model that integrates BDA and continuous improvement strategies to 

identify bottlenecks and improve overall system performance. Adenuga et al. (2019) 

propose an energy efficiency analysis system as a tool to estimate energy costs and 

provide consumer-oriented analysis. For this, they applied BDA techniques together with 

continuous improvement practices that improve sustainability performance (Adenuga et 

al., 2019). BDA technologies can support continuous improvement strategies by 

providing process data (Cochran et al., 2016) and consumer-oriented analytics (Adenuga 

et al., 2019), improving product and financial performances. 
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Technical Practices like Kanban and JIT can incorporate BDA techniques to 

improve the efficiency of the process (Mayr et al., 2018). The development of BDAC 

impacts the JIT System (Valamede and Akkari, 2020; Bittencourt et al., 2019). Big Data 

provides support to identify trends and deduce rules for the production system, which 

contributes to a continuous flow and allows for JIT (Mayr et al., 2018; Sanders et al., 

2016), reducing lead time, inventory and costs. By applying BDA, it is possible to 

guarantee constant monitoring of the work in process for intelligent inventory control 

(Valamede and Akkarin, 2020), meeting the goals of Kanban (Tortorella et al., 2019) and 

reducing transportation, working in process and costs. 

BDA identifies trends, parameter deviation, and correlations, contributing to a 

defect-free product (Sanders et al., 2016. Chiarini and Kumar, 2020), improving quality 

performance and environmental sustainability. Using technologies such as BDA, 

facilitates TPM activities by providing timely information-sharing and real-time data to 

ensure better inventory management, better maintenance predictions, and shorter 

downtimes (Haddud and Khare, 2020).. Big Data helps control resources and processes 

by providing a structure to compare target and actual values (Valamede and Akkarin, 

2020), supporting Statistical Process Control (SPC) (Bittencourt et al., 2019), and stable 

process and better products. The use of IoT enables the monitoring and reallocation of 

orders through a pull system, which assists JIT in the delivery of goods by suppliers 

(Sanders et al., 2016), presenting greater agility and flexibility to respond to fluctuations 

in demand, level minimum inventory, and using BDA can improve demand forecasting 

skills, which leads to more efficient production and responsible use of resources (Núñez-

Merino et al., 2020). 

Big Data and BDA applications enable real-time and historical data analysis and 

help identify unstable process parameters by providing large volumes of statistically 

processed data (Mayr et al., 2018; Wagner et al., 2017), preventing defects, and 

improving efficiency (Tortorella et al., 2019), which contributes to better the performance 

of the entire supply chain (Valamede and Akkari, 2020). It is possible to improve demand 

forecasting techniques by making this process intelligent and efficient through Big Data 

techniques to define market strategies and reach a responsible use of resources (Núñez-

Merino et al., 2020). Furthermore, BDA capabilities play a key role in empowering 

employees, improving decision-making (Bag et al., 2020). Training activities help the 

employees to optimize resource usage using BDA applications, which drives the 

sustainability performance of the supply chain (Bag et al., 2020). 
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However, the findings by Raut et al. (2019) contradict most studies when they 

point out that Lean Practices are negatively impacting BDA. Therefore, more studies are 

needed to investigate how these concepts interact (Belhadi et al., 2019). Furthermore, 

studies should be conducted to help companies develop BDAC to improve Sustainability 

Performance. Thus, this study is also dedicated to investigating the impact of BDAC on 

economic, environmental, and social performance in the presence of Lean technical and 

social practices. This helps companies understand whether Lean System consolidation 

forms the basis for developing BDAC to improve Sustainability Performance. Thus, the 

hypotheses are presented: 

H5a. LSP mediate the relationship between BDAC and ECP. 

H5b. LSP mediate the relationship between BDAC and EP. 

H5c. LSP mediate the relationship between BDAC and SOP. 

H6a. LTP mediate the relationship between BDAC and ECP. 

H6b.LTP mediate the relationship between BDAC and EP. 

H6c. LTP mediate the relationship between BDAC and SOP. 

 

5.4 Research Method 
 

5.4.1 Research Design 

This research addresses the research question using a mixed-method approach 

whose structure is composed of a survey and a SLR to improve the conceptual domain of 

the constructs and variables. The empirical study was carried out through survey research. 

The survey research provides preliminary evidence of an association between concepts 

(Forza, 2002), and involves: (a) definition of the unit of analysis and literature domain; 

(b) collecting data in a structured format; (c) definition of variables and the relationships 

between them; and (d) specification of the sample, with the ability to generalize findings 

(Malhotra and Grover, 1998). All these questions are presented in the following topics. 

The SLR was used to identify the building blocks of the Lean structure and BDA 

structure, to better define the conceptual domain of each construct and guide the 

elaboration of the research questionnaire. In this study, SLR followed the research flow 

developed by Ferenhof and Fernandes (2016), in which the four-phase procedure was 

divided into eight activities (Pagliosa et al., 2019), showed in Figure 5.1. The 71 

documents (Lean) and 40 documents (BDA) were, respectively, included in the sample 

of papers that present the Lean Social-Technical and BDA structures that help in the 
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construction of the questionnaire. They were analyzed using content analysis in the 

NVivo software. Content analysis provides a scientific method to evaluate the collected 

data (Kondracki et al., 2020). The SLR results will be presented in the 5.4.3 Research 

instrument design and variables. 

 

 

Figure 5.1. SLR research structure 
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5.4.2 Sampling and Data Collection 

The target population of the study were those responsible for the Lean program or 

Lean consultants from Brazilian manufacturing companies, who also have information 

about the Big Data Analytics structure in the company. Respondents were found and 

invited to participate in the survey through corporate social media, selecting professionals 

with experience in Lean and Big Data. Social media was used for its ease of finding 

potential target respondents with specific and accurate information about their 

experiences in management practices and skills, including Lean manufacturing skills 

(Potter, 2021). Target respondents were contacted via LinkedIn and received an 

explanation about the survey, those who showed interest in participating voluntarily 

received the online questionnaire, developed on the Google Forms platform. The 

questionnaire was sent to 774 potential respondents, obtaining 123 complete 

questionnaires. 

The 123 questionnaires were examined to check if the respondents met the basic 

requirements (working with Lean in manufacturing companies and knowing the Big Data 

structure), remove questionnaires with missing data, suspicious response patterns 

(straight lining or inconsistent answers), and outliers, to ensure data quality (Hair et al., 

2017a). A total of 14 questionnaires were removed from the sample because the 

respondents did not fulfill the basic requirements, mainly related to work in 

manufacturing companies. There was only one questionnaire with suspicious response 

pattern, no missing data and outliers were found. The outlier’s analysis was performed 

using the Mahalanobis distance, which is one of the most used approaches for outlier 

detection in multivariate data (Dai, 2020). Therefore, the final sample consisted of 108 

responses from professionals from manufacturing companies from different sectors. 

Table 5.1 shows that the positions that the most respondents have in the company 

are Manager (29%), Analyst (14%) and Director (14%). More than 56% of respondents 

have participated and 54% of respondents have coordinated more than 10 Lean projects. 

While 25% of respondents have been working with Lean for more than 15 years. 

Experience with data is less, but it shows that at least 77% of respondents have already 

participated in projects with Big Data and 48% have more than 1 year of experience with 

Big Data. Respondent profiles shows that they are qualified to answer the questions. 
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Table 5.1. Respondent description 

Respondent Position Number % Respondent Position Number % 

Manager 31 29%  Coordinator 10 9% 

Analyst (Lean, data, R&D) 15 14%  Supervisor 9 8% 

Director 15 14%  Owner 7 6% 

Specialist (Lean, data) 11 10%  Other 9 8% 
       

Lean projects participation    Big Data projects participation   

I never participated 4 4%  I never participated 36 33% 

Between 1 and 3 projects 18 17%  Between 1 and 3 projects 45 42% 

Between 4 and 6 projects 17 16%  Between 4 and 6 projects 19 18% 

Between 7 and 10 projects 8 7%  Between 7 and 10 projects 8 7% 

More than 10 projects 61 56%  More than 10 projects 0 0% 
       

Lean coordination    Big Data coordination   

I never coordinated 9 8%  I never coordinated 70 65% 

Between 1 and 3 projects 25 23%  Between 1 and 3 projects 26 24% 

Between 4 and 6 projects 12 11%  Between 4 and 6 projects 6 6% 

Between 7 and 10 projects 8 7%  Between 7 and 10 projects 6 6% 

More than 10 projects 54 50%  More than 10 projects 0 0% 
       

Time working with Lean    Time working with Big Data   

Less than 1 year 8 7%  Less than 1 year 32 30% 

Between 1 and 5 years 15 14%  Between 1 and 5 years 42 39% 

Between 5 and 10 years 24 22%  Between 5 and 10 years 5 5% 

Between 10 and 15 years 24 22%  Between 10 and 15 years 2 2% 

Over 15 years 27 25%  Over 15 years 2 2% 

Did not answer 10 9%  Did not answer 25 23% 

 

The companies in the sample (Table 5.2) belong mainly to the following 

manufacturing sectors Automotive (23%), Machines and equipment (17%), Food and 

drinks (9%), Consultancy in manufacturing industries (9%), and Chemical industry (8%). 

Most of the sample has Lean implemented for more than 5 years (56%), while 47% of the 

organizations have been using Big Data for less than 5 years. Most organizations (60%) 

have more than 500 employees and is considered large companies, while 43 are 

considered micro, small, and medium companies. 
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Table 5.2. Companies characteristics 

Sector Number %  Size (employees) Number % 

Automotive 25 23%  Micro (<20) 12 11% 

Machines and equipment 18 17%  Small (≥20 and <99) 7 6% 

Food and drinks 10 9%  Medium (≥100 and <499) 24 22% 

Consultancy 10 9%  More than 499 65 60% 

Chemical industry 9 8%     
Aerospace 4 4%     
Medical equipment 4 4%     
Electrical and electronics 3 3%     
Mechanical metal 2 2%     
Cellulose products 2 2%     
Steel mill 2 2%     
Other 19 18%     

       

       
Lean implementation Number %  Big Data Implementation Number % 

Less than 1 year 9 8%  Less than 1 year 19 18% 

Between 1 and 5 years 29 27%  Between 1 and 5 years 31 29% 

Between 6 and 10 years 22 20%  Between 6 and 10 years 15 14% 

More than 10 years 39 36%  More than 10 years 15 14% 

Don't know 9 8%  Don't know 28 26% 

 

5.4.3 Research instrument design and variables (SLR) 

Lean and BDA are widely discussed in the literature and there is no consensus on 

how to structure these variables. Thus, this SLR justifies the choice of variables and 

research instrument for Lean and BDA since this study is dedicated to investigating how 

Lean can influence the relationship between BDA and sustainability performance. It was 

searched in the literature how the authors structure Lean (Table 5.3) and BDA (Table 5.4) 

for a company with competitive capacity. The questionnaire was divided into four 

sections. The first one contains questions about company (size, sector, Lean and Big Data 

implementation) and respondent (position, experience with Lean and Big Data); while the 

second one encompasses questions about the use of Lean Social and Technical Practices 

in the company, followed by the third section about the Big Data Analytics Capability, 

finally, the last one has questions about sustainability performance (social, economic, and 

environmental). 
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Table 5.3. Variables for Lean 

Lean Social Practice Lean Technical Practice 

Management leadership  
1; 2; 5; 11; 16; 20; 27; 

28 
Continuous Flow  

5; 8; 11; 12; 14; 15; 17; 22; 

23; 24 

Supplier partnership 

1; 2; 4; 5; 8; 11; 12; 14; 

18; 19; 20; 21; 22; 23; 

25 

Just-in-Time 

2; 3; 5; 7; 8; 9; 10; 11; 12; 

13; 14; 16; 17; 18; 19; 20; 

21; 22; 23 

Small group problem 

solving 

1; 2; 5; 11; 15; 18; 19; 

21; 22; 24; 25 

Setup time 

reduction 

1; 2; 4; 5; 6; 7; 8; 10; 11; 

12; 14; 17; 18; 19; 21; 22; 

23; 25 

Continuous Improvement 2; 5; 11; 16; 27; 28; 29 
Total Productive 

Maintenance 

2; 3; 5; 8; 11; 12; 14; 15; 

17; 18; 19; 20; 21; 22; 23; 

24; 25; 26 

Training employees 
1; 2; 5; 16; 11; 20; 22; 

26; 28 

Statistical Process 

Control 

1; 2; 4; 5; 8; 10; 12; 14; 17; 

18; 19; 22; 23; 25 

Customer involvement 
2; 4; 5; 8; 10; 11; 12; 14; 

20; 21; 22; 23; 25; 30 

Workplace 

organization 
13; 16 

Human resource 

management 
10 Process Mapping 13; 16 

Reward system 16; 27 
Value Stream 

Mapping 
13; 16 

Communication system 16; 27 
Kaizen or Kaizen 

Blitzes 
13; 16 

Employee empowerment 16; 27 
Total Quality 

Management 
3; 10; 20 

Employee commitment 16; 27 

Production 

scheduling and 

systemization 

20 

Employee involvement 
4; 8; 12; 14; 16; 17; 20; 

22; 23; 25; 27 
5S 3 

Multifunctional employees 1; 2; 16; 24; 25; 27; 28 Pull System 
4; 8; 10; 12; 14; 15; 17; 22; 

23; 24; 25 

Lean Attitude 3 
Cellular 

manufacturing 
7 

Lean Leadership 3 Standardized Work 18; 19; 21; 23 

Lean Training 3 Production leveling 17; 23 

Lean Culture 3 Visual control 18; 19 

Top management 

commitment 
28     

Humane orientation 28    

Expert workforce 28    

Financial resources 28    

Skill intensification 28    

Employee commitment 28    

Teamwork 28    

Autonomous workers 28     
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Sources: 1- Abdallah et al. (2019); 2- Abdallah et al. (2021); 3- Arumugam et al. (2020); 4- Bevilacqua et 

al. (2016); 5- Bortolotti et al. (2015); 6- Chavez et al. (2015); 7- Cherrafi et al. (2018); 8- Costa et al. 

(2020); 9- Cua et al. (2001); 10- Furlan et al. (2011); 11- Gaiardelli et al. (2018); 12- Godinho Filho et al. 

(2016); 13- Gowen et al. (2012); 14- Inman and Green (2018); 15- Marodin et al. (2018); 16- Muraliraj et 

al. (2019); 17- Nawanir et al. (2012); 18- Panwar et al. (2017); 19- Panwar et al. (2018); 20- Sahoo 

(2020); 21- Sajan et al. (2017); 22- Shah and Ward (2007); 23- Tortorella and Fetterman (2017); 24- 

Tortorella et al. (2019); 25- Yadav et al. (2019); 26- Zeng et al. (2015); 27-Hadid et al., 2016); 28-

Hernandez-Matias et al. (2020); 29-Peng et al. (2011); 30-Rahman and Bullock (2005) 

 

Table 5.4. Variables for Big Data Analytics 

Big Data Analytics Capabilities 

Wamba et al. (2017) Gupta and George (2016)  

Infrastructure 
1; 2; 3; 4; 6; 7; 8; 9; 11; 12; 14; 16; 17; 

18; 19; 20; 21 
Tangible resources 

22; 23; 24; 25; 26; 27; 

28; 29 

Management 
1; 3; 4; 5; 6; 9; 10; 11; 12; 13; 14; 15; 

16; 17; 18; 19; 21 
Intangible resources 

22; 23; 24; 25; 26; 27; 

28; 29 

Personnel 
1; 2; 3; 4; 5; 10; 11; 13; 14; 16; 17; 19; 

20; 21 
Human skills 

22; 23; 24; 25; 26; 27; 

28; 29 

Sources: 1- Akter et al. (2016); 2- AlNuaimi et al. (2021); 3- Arunachalam et al. (2017); 4- Awan et al. 

(2021); 5- Bag et al. (2020); 6- Belhadi et al. (2019); 7- Corte-Real et al. (2016); 8- Dubey et al. (2019); 

9- Ferraris et al. (2019); 10- Grover et al. (2018); 11- Jha et al. (2020); 12- Pathak et al. (2021); 13- 

Popovic et al. (2016); 14- Rialti et al. (2019); 15- Saggi and Jain (2018); 16- Shamim et al. (2020); 17- 

Shokouhyar et al. (2020); 18- Sun and Liu (2020); 19- Wamba and Akter (2019); 20- Xiao et al. (2020); 

21- Yasmin et al. (2020); 22- Ciampi et al. (2021); 23- Lozada et al. (2019); 24- Mikalef and Krogstie 

(2018); 25- Mikalef and Krogstie (2020); 26- Mikalef et al. (2019); 27- Mikalef et al. (2019b); 28- 

Mikalef et al. (2019c); 29- Wetering et al. (2019) 

 

The Lean and BDA measurement scales were based on the SLR. Lean practices 

were divided into social and technical to better represent the concept of socio-technical 

system (Shah and Ward, 2007). The SLR findings (Table 5.3) identify that 66.33% of the 

authors studied based the Lean structure on the variables of Bortolotti et al. (2015). In 

addition, Bortolotti et al. (2015) based their Lean questionnaire on Shah and Ward (2003; 

2007) who are widely validated authors in the literature for having developed the basis of 

the Lean social and technical structure. Therefore, this research instrument was based on 

mainly on the validated measurement scale proposed by Bortolotti et al. (2015), the Lean 

Social Practices was represented by a second-order reflective construct composed of six 

first-order reflective constructs, while the Lean Technical Practices was structured as a 

second-order reflective construct composed of five also reflective first-order constructs. 

Furthermore, SLR identified that authors investigating BDA capabilities base 

their studies on two main authors, namely, Wamba et al. (2017) and Gupta and George 
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(2016) (Table 5.4), forming two important lines of research. Wamba et al. (2017) 

structure the BDAC in infrastructure, management, and personnel. Gupta and George 

(2016) structure the BDAC in tangible resources, intangible resources, and human skills. 

BDA resources are critical in developing BDA (Mikalef et al. 2019), so allow companies 

to create BDAC (Gupta and George, 2016). Thus, the Big Data Analytics Capability 

measurement scale was based mainly on Gupta and George (2016), where the Big Data 

Analytics Capability construct was considered as a multidimensional third-order 

formative construct composed of three second-order formative constructs; big data-

specific tangible, human skills, and intangible resources constructs, which in turn 

comprises seven first-order constructs. 

The sustainability performance was measured by three reflective constructs, to 

highlight the three dimensions of the triple bottom line, economic, social, and 

environmental. The constructs were based on the measurement scale developed by 

Kamble et al. (2019). 

The questionnaire used a five-point Likert scale, varying from 1 (“strongly 

disagree”) to 5 (“strongly agree”) (Hair et al., 2017a). The constructs, variables and 

references are presented in Appendix I (Table 5.12). Before the application of the 

questionnaire, the pre-test was carried out, which was developed following the 

recommendation of Forza (2002), the questionnaire was sent to 3 academic experts, who 

research Lean and Industry 4.0, 2 experts with experience in implementing Lean in the 

manufacturing sector of and 3 target respondents to verify the clarity of the questions, the 

questionnaire format, and the scale. 

 

5.4.4 Response and common method bias 

To avoid Common method variance (CMV), some recommendations were 

applied: the respondents were anonymous, there were explanations about each section 

and that there were no correct or wrong answers, there was a concern that the respondents 

had the knowledge to answer the questions, there were different sections and with 

different visual formats for the dependent and independent variables, in addition , the 

measurement scale was based on multi-item constructs to ensure the conceptual domain 

(Podsakf et al., 2003). The Harman's Single Factor Test were performed to verify the 

existence of CMV in the data analyzed, and the test showed that less than 50% of all 

variance (threshold value) was explained by one single factor (29.5%), ensuring that 

CMV was not present. Additionally, to test for possible non-response bias Levene’s test 
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and a t-test (to check equality of variance and means) was used to verify if the answers of 

the early and late respondents are similar. No differences were found in any variable (p-

value<0.05). 

 

5.4.5 Data analysis 

In recent years, there has been a large dissemination Partial Least Squares - 

Structural Equation Modeling (PLS-SEM), mainly in business research, but also in 

engineering and various fields of natural sciences (Ringle et al., 2018; Shiau et al., 2019). 

Many methodological developments have emerged for PLS-SEM in recent years, 

strengthening some reasons for choosing the method, especially when the structural 

and/or measurement models are complex (many constructs and/or items), formatively 

measured constructs are specified in the research, it is necessary to use latent variable 

scores in subsequent analyses, sample size is small, the scaling of responses is ordinal or 

nominal and the structural model will be estimated with a higher order construct (Hair et 

al., 2017b; Ringle et al., 2018). All these issues are present in the proposed model, and, 

for this reason, the PLS-SEM was chosen. 

Although the PLS-SEM is suitable for analysis with small samples, some rules of 

thumb were observed to ensure that the sample size of 108 respondents was adequate. 

Two rules for minimum suitable size were observed to verify the adequacy of the sample 

size: (i) the ten times rule (minimum sample size of 30), (ii) the minimum R-squared 

method with power of 0.90 (minimum sample size of 99) (Hair et al., 2017a). 

Models with higher-order constructs, as the one chosen for this research, allow 

researchers to model a concept in a more abstract dimension (higher-order components) 

and its more concrete sub-dimensions (lower-order components), increasing the chance 

of capturing the correct conceptual dimension of the abstract concept (Sarstedt et al., 

2019; Hair et al., 2021). Each lower-order component is a separate construct in a PLS 

path model and is measured by multiple items (Hair et al., 2021). In the present model, 

the Big Data Analytics Capability is a third-order formative construct, composed of three 

second-order constructs; Tangible Resources (formative-formative), Human Skills 

Resources (reflective-formative) and Intangible Resources (reflective-formative). Social 

and Lean Technical Practices are second-order constructs (reflective-reflective type), 

which are evaluated by concrete practices used in companies. Environmental, social and 

economic performance are first-order reflective constructs, with the objective of 

capturing sustainability performance in the three dimensions. Higher order models 
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require specific approaches for specifying and estimating higher-order constructs in PLS-

SEM (Hair et al., 2018; Sarstedt et al., 2019). The disjoint two-stage approach was used, 

which consists in considering only the lower-order components of the higher-order 

constructs in stage one, generating construct scores that will be used in the second stage 

to evaluate the structural model (Sarstedt et al., 2019). The same evaluation criteria for 

general measurement PLS-SEM models must also be used for higher-order models and 

the disjoint two-stage approach permits the application of all structural model assessment 

criteria and (Sarstedt et al., 2019). 

The hypothesised model is presented in Figure 5.2. 

 

 

Figure 5.2. Hypothesised model 

 

 

5.5 Analysis and Results 

 

5.5.1 Validation of measurement model and hypotheses 

The present model has low-order and second-order reflective and formative 

constructs and a third-order formative construct. Each type of measurement model (i.e., 

reflective or formative) has specific evaluation criteria (Hair et al., 2017; Sarstedt et al., 

2019). Satisfactory for the measurement model are a judgment for evaluating the 

relationships in the structural model (Hair et al., 2018). 

The criteria for reflective constructs in the measurement model encompass 

internal consistency, measured by Cronbach’s alpha (CA) and composite reliability (CR) 

(CA and CR > 0.70); convergent validity, evaluated by the item reliability (outer loadings 

for statistically significant and > 0.708) and Average Variance Extracted – AVE (AVE > 
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0.5); and discriminant validity, assessed by heterotrait-monotrait ratio – HTMT (HTMT 

< 0.90) (Hair et al., 2018; 2020; Sarstedt et al., 2019). In contrast, evaluation of formative 

measurement models involves testing the construct collinearity (VIF<5), measures’ 

convergent validity (CV) (path coefficient with a magnitude at a minimum 0.70) and the 

significance of the item outer weight (OW) (p-value<0.05) and relevance (outer loading 

is ¬> 0.5). Hair et al. (2017a) indicates that if the outer weights of formative items are not 

significant, outer loadings (OL) should be observed, if greater than 0.5, the items should 

be kept in the model. 

The model assessment first focuses on the reflective and formative models of the 

lower-order components, and in stage two, the latent variable scores of the lower order 

components obtained from stage one to create and estimate the stage two model (Sarstedt 

et al., 2019). As the model has a third-order construct, the same was done for the second-

order components, the measurement model was validated and the generated score was 

used in a new stage (Hair et al., 2018). One item in lower-order constructs (MS1) were 

removed because it did not meet the threshold for discriminant validity. Table 5.5 presents 

the item reliability (OL) assessment for the reflective constructs and the significance and 

relevance of the items for the formative constructs. Table 5.5 presents the values for the 

items that comprise the second and third order constructs. Table 5.6 shows the results of 

the measurement model for first, second and third-order constructs. All lower-order and 

higher-order constructs meet the reflective and formative measurement models criteria 

(Table 5.6). 

 

Table 5.5. Item reliability, relevance and significance 

High order construct Low order construct OL OL p-value OW OW p-value 

Lean Technical 

Practices (reflective) 

Continuous Flow  0.236 <0.001     

JIT 0.198 <0.001   

Setup time reduction 0.269 <0.001   

Statistical Process Control 0.279 <0.001   

TPM 0.270 <0.001     

Lean Social Practices 

(reflective) 

Management Leadership 0.212 <0.001     

Supplier Partnership 0.208 <0.001   

Small group problem solving 0.216 <0.001   

Continuous Improvement 0.198 <0.001   

Customer Involvement 0.170 <0.001   

Training Employees 0.244 <0.001     

Tangible resources 

(formative) 

Rasic Resources 0.741 <0.001 -0.373 0.124 

Data 0.894 <0.001 0.691 0.000 

Technology  0.908 <0.001 0.726 0.003 
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Human skills 

(formative) 

Managerial Skills 0.999 <0.001 0.100 0.531 

Technical Skills 0.854 <0.001 -0.071 0.864 

Intangible resources 

(formative) 

Data-Driven Culture 0.997 <0.001 0.936 0.000 

Organizational Learning 0.672 <0.001 0.100 0.531 

Big Data Analytics 

Capability (formative) 

Tangible Resources 0.849 <0.001 0.533 0.000 

Human Skills 0.626 <0.001 -0.164 0.270 

Intangible Resources 0.933 <0.001 0.697 0.000 

 

Table 5.6. Convergent validity, reliability and collinearity results 

Constructs CA CR AVE  CV VIF R2 

Continuous Flow 0.93 0.95 0.84    

JIT 0.87 0.91 0.66    

SPC 0.95 0.96 0.87    

Setup time reduction 0.92 0.94 0.80    

TPM 0.92 0.95 0.81    

Continuous Improvement 0.91 0.93 0.73    

Customer Involvement 0.87 0.91 0.72    

Supplier Partnership 0.92 0.94 0.81    

Training Employees 0.90 0.93 0.76    

Small group problem solving 0.94 0.95 0.79    

Management Leadership 0.92 0.94 0.76    

Basic Resources    0.9 3.69  

Data    0.8 4.07  

Technology    0.7 3.57  

Data Driven Culture 0.93 0.95 0.78    

Organization Learning 0.97 0.98 0.89    

Managerial Skills 0.98 0.99 0.94    

Technical Skills 0.97 0.97 0.86    

Economic Performance 0.91 0.93 0.66   0.37 

Environmental Performance 0.96 0.97 0.82   0.27 

Social Performance 0.96 0.97 0.76   0.46 

Lean Technical Practices * 0.89 0.91 0.64   0.41 

Lean Social Practices* 0.85 0.90 0.63   0.39 

Tangibles resources*    0.7 3.76  

Intangibles resources*    0.7 1.60  

Human Skills*    0.8 4.16  

Big Data Analytics Capability **    0.7 2.38  

*Second-order constructs, calculated in stage two; **Third-order constructs, calculated in stage two; VIF is 

calculated for each item, the highest value of the construct items was presented, which did not exceed the 

threshold value 

 

For reflective constructs, other criterion for the measurement model is the 

discriminant validity, which can be verified, even for a higher order construct, based on 

the HTMT, it is as a method more accurately to assess discriminant validity between 

constructs and has a 0.90 cutoff score for interpreting the results (Hair et al., 2018; 2020). 
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The discriminant validity between the higher-order construct and its lower-order 

construct is not relevant and meaningless, since conceptual and empirical redundancies 

are expected (Sarstedt et al., 2019). The HTMT results are shown in Table 5.7. 

 

Table 5.7. HTMT results 

 FLOW CI CUI DD ECP EP JIT ML MS OL SPC SETUP SGPS SOP SP TPM TS LSP 

FLOW 0.41                  

CI 0.37 0.58                 

DD 0.46 0.54 0.47                

ECP 0.52 0.28 0.27 0.47               

EP 0.32 0.44 0.31 0.36 0.63              

JIT 0.58 0.43 0.37 0.48 0.38 0.28             

ML 0.62 0.70 0.56 0.44 0.48 0.46 0.43            

MS 0.32 0.24 0.26 0.59 0.39 0.24 0.34 0.18           

OL 0.24 0.35 0.31 0.65 0.39 0.24 0.42 0.21 0.75          

SPC 0.56 0.37 0.28 0.61 0.51 0.35 0.51 0.45 0.40 0.34         

SETUP 0.75 0.54 0.37 0.53 0.52 0.48 0.60 0.62 0.31 0.26 0.66        

SGPS 0.39 0.80 0.59 0.56 0.39 0.43 0.49 0.67 0.29 0.30 0.53 0.51       

SOP 0.40 0.50 0.45 0.62 0.72 0.73 0.30 0.50 0.40 0.43 0.51 0.47 0.52      

SP  0.61 0.52 0.54 0.54 0.46 0.37 0.60 0.60 0.45 0.44 0.48 0.58 0.51 0.44     

TPM 0.55 0.50 0.35 0.47 0.59 0.47 0.46 0.62 0.26 0.27 0.55 0.64 0.60 0.46 0.59    

TS 0.25 0.21 0.24 0.55 0.33 0.19 0.35 0.12 0.89 0.80 0.37 0.26 0.22 0.33 0.43 0.25   

TE 0.56 0.66 0.60 0.59 0.53 0.45 0.47 0.66 0.40 0.40 0.56 0.61 0.69 0.58 0.62 0.61 0.36  

LSP     0.51 0.52        0.64     

LTP     0.66 0.50        0.56    0.83 

 

The structural model assessment starts with analyzing the relationships between 

the constructs (Sarstedt et al., 2019; Hair et al., 2018). The assessment of the stage two 

results addresses the structural model considering the latent variable scores of the lower-

order constructs (Sarstedt et al., 2019; Hair et al., 2018). The structural assessment 

encompasses the collinearity between constructs (via the inner VIF values, that should be 

less than 5.0), significance and relevance of the path coefficients, explanatory (R2) and 

predictive power (Hair et al., 2018; 2020; Sarstedt et al., 2019). Other criteria can be 

observed, such as the effect size (ƒ2). The path coefficient significance and relevance was 

verified by the bootstrapping procedure (Table 5.8) (Hair et al., 2018; 2020). 
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Table 5.8. Hypothesis testing (bootstrapping method - 5000 sub-samples) 

Hypothesis VIF f2 Path (β) Stdev p-value Result 

H1a: Big Data Analytics Capability -> Lean Social Practices 1.00 0.63 0.623 0.072 <0.001 Supported 

H1b: Big Data Analytics Capability -> Lean Technical Practices 1.00 0.70 0.642 0.065 <0.001 Supported 

H2a: Big Data Analytics Capability -> Economic Performance 1.86 0.02 0.162 0.157 0.302 Not Supported 

H2b: Big Data Analytics Capability -> Environmental Performance 1.86 0.01 0.134 0.158 0.396 Not Supported 

H2c: Big Data Analytics Capability -> Social Performance 1.86 0.17 0.419 0.126 0.001 Supported 

H3a: Lean Social Practices -> Economic Performance 2.34 0.00 0.021 0.133 0.876 Not Supported 

H3b: Lean Social Practices -> Environmental Performance 2.34 0.05 0.281 0.172 0.102 Not Supported 

H3c: Lean Social Practices -> Social Performance 2.34 0.08 0.314 0.154 0.042 Supported 

H4a: Lean Technical Practices -> Economic Performance 2.43 0.15 0.481 0.161 0.003 Supported 

H4b: Lean Technical Practices -> Environmental Performance 2.43 0.02 0.167 0.208 0.423 Not Supported 

H4c: Lean Technical Practices -> Social Performance 2.43 0.00 0.024 0.162 0.882 Not Supported 

 

The results in Table 5.8 show that five hypotheses (H1a, H1b, H2c, H3c, H4a) 

proposed in the research model are statistically supported.  The Big Data Analytics 

Capability have a positive and statistically significant impact on Lean Social (β = 0.623; 

p-value = <0.001) and Technical Practices (β = 0.642; p-value = <0.001). This 

demonstrates that the development of tangible and intangible factors and human skills for 

Big Data Analytics enables a better development of the social and technical practices of 

Lean. There is no statistical evidence to support that Big Data Analytics Capability 

directly impacts Environmental and Economic Performance, however, the results 

demonstrate that an investment in Big Data capacity positively impacts the Social 

Performance and aspects of work (β = 0.419; p-value = 0.001). 

Lean Social Practices impacts directly and positively affects Social Performance 

(β = 0.314; p-value = 0.042), that is, the presence of Lean Social Practices, such as 

incentives for continuous improvement, group problem solving, and employee training, 

have a positive impact on Social Performance such as absenteeism, health and safety, and 

worker satisfaction. However, the results did not demonstrate statistically significant 

relationships between Lean Social Practices and Economic and Environmental 

Performance. While Lean Technical Practices had a positive and significant impact only 

with the Economic Performance (β = 0.481; p-value = 0.003). The greater use of technical 

practices such as JIT, continuous flow, TPM, SPC and Setup time reduction, help to 

obtain better financial results, such as greater profit and reduction of production costs. 

The path coefficients and f2 effect size allows comparing the intensities of the 

relationships between the constructs and the importance (f2) of a specific construct to 

explain other endogenous latent variables (Hair et al., 2017a; 2018). ƒ2 values of 0.02, 

0.15, and 0.35, represent respectively small, medium, and large effects (Cohen, 1988). 
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The results show that the impact of Big Data Analytics Capability has a similar effect on 

Social and Lean Technical Practices, observing the magnitude of the path coefficient and 

ƒ2. As in the other cases only one relationship was statistically validated, comparisons 

are not possible, but the f2 effect size demonstrates that the impacts of Big Data Analytics 

Capability on Social Performance and of Lean Technical Practices on Economic 

Performance are medium, while the effect of Lean Social Practices on Social Performance 

is small, confirmed by the path coefficient, which is the lowest statistically significant of 

the analyzed model. 

Another important assessment for the structural model is the predictive power and 

generalizable findings, which requires assessing whether the results apply to in-sample 

and out-of-sample data sets (Shmueli et al., 2019; Hair et al., 2020). The coefficient of 

determination (R2) measures the in-sample predictive power (Hair et al., 2017; Shmueli 

et al., 2019), presented in Table 5.5. To assess the statistical model’s out-of-sample 

predictive power, we used the PLS predict procedure, in which Q2predict values are 

higher than 0 for all items; and the mean absolute error (MAE) values from the PLS-SEM 

analysis was smaller than the linear regression model (LM) results for all items (Shmueli 

et al., 2019; Hair et al., 2020). This suggests that the model has high predictive power 

(Shmueli et al., 2019). 

 

5.5.2 Mediation effect 

The model was also intended to investigate the mediating role of Lean technical 

and social practices in the relationship between Big Data Analytics Capability and 

Environmental, Social and Economic Performance. To verify the existence of the effect 

and the type of mediation, the first step addresses the significance of the indirect effect 

via the mediator variable (Hair et al., 2017a). If the indirect effect is not significant, the 

construct (Lean technical or social practices), does not function as a mediator in the tested 

relationship. If the indirect effect exists, it is necessary to verify the direct effect between 

the constructs to classify the type of mediation (Hair et al., 2017a). Table 5.9 shows the 

specific indirect effects considering the two mediators, Lean technical and social 

practices. 
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Table 5.9. Specific indirect effects (bootstrapping method - 5000 sub-samples) 

Indirect Effect Path (β) Stdev p-value Result 

BDAC -> LTP -> SOP 0.015 0.107 0.886 Not Supported 

BDAC -> LSP -> ECP 0.013 0.084 0.878 Not Supported 

BDAC -> LTP -> ECP 0.309 0.115 0.007 Supported 

BDAC -> LSP -> SOP 0.196 0.104 0.060 Not Supported 

BDAC -> LSP -> EP 0.175 0.115 0.129 Not Supported 

BDAC -> LTP -> EP 0.107 0.137 0.433 Not Supported 

 

Only the relationship between Big Data Analytics Capability and Economic 

Performance mediated with Lean Technical Practices showed statistical significance. As 

the direct relationship between Big Data Analytics Capability and Economic Performance 

was not statistically significant (Table 5.8), it is possible to state that the type of mediation 

that occurs in this case is full mediation. Where Big Data Analytics Capability affects 

Economic Performance only indirectly, through Lean practices, which manage to 

associate data usage capabilities with techniques to reduce waste from operational 

activities. 

 

5.5.3 Multigroup analysis 

Lean implementation maturity and company size were considered as variables that 

could imply heterogeneity and differences in the model. Company size considered the 

number of employees, less than 500 was considered micro, small, or medium companies, 

and large companies are those with 500 or more employees. Maturity considered the 

implementation time, level of dissemination of Lean practices and the perception of Lean 

level on implementation. Companies with more than 5 years of implementation, high 

level of practices dissemination and high implementation were classified as high maturity. 

The companies that did not show this evolution were considered as low maturity. As the 

variables were considered binary, the sample was separated into two groups, which allows 

greater consistency in the analyses due to the size of each group. The multigroup test was 

applied to verify the differences between groups in the relationships of the model (Hair 

et al., 2018). Multigroup test was applied via permutation, after confirmed the configural 

and compositional invariance based on the MICOM test (Henseler et al., 2016; Hair et 

al., 2018), was verified the differences in the path coefficients in the permutation test 

(Hair et al., 2018). The only difference found was for the relationship between Lean 

Technical Practices and Economic Performance (Table 5.10), which the relationship has 

greater magnitude for smaller companies than for large companies. Therefore, the 
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adoption of Lean Technical Practices is more important for micro, small and medium-

sized companies to achieve economic results. 

 

Table 5.10. Multigroup analysis (Permutation) 

Relationships 

Maturity (Time and implementation)  Size (employees) 

Low 

maturity 

High 

maturity 

Path 

Difference 

p-

value 
 

Up to 

499 

More 

than 

499 

Path 

Difference 

p-

value 

H1a: BDAC -> LSP 0.650 0.463 0.187 0.219  0.675 0.613 0.062 0.697 

H1b: BDAC -> LTP 0.672 0.548 0.124 0.349  0.673 0.620 0.054 0.686 

H2a: BDAC -> ECP 0.248 0.163 0.085 0.817  0.049 0.228 -0.179 0.627 

H2b: BDAC -> EP 0.135 0.214 -0.079 0.837  0.245 0.041 0.204 0.586 

H2c: BDAC -> SOP 0.399 0.430 -0.031 0.910  0.445 0.396 0.049 0.844 

H3a: LSP -> ECP 0.007 0.262 -0.255 0.359  -0.136 0.371 -0.508 0.069 

H3b: LSP -> EP 0.358 0.250 0.108 0.804  0.093 0.601 -0.508 0.196 

H3c: LSP -> SOP 0.324 0.301 0.023 0.966  0.217 0.527 -0.310 0.414 

H4a: LTP -> ECP 0.328 0.421 -0.093 0.774  0.789 0.038 0.751 0.040 

H4b: LTP -> EP 0.014 0.238 -0.223 0.614  0.289 -0.119 0.408 0.397 

H4c: LTP -> SOP 0.032 -0.036 0.068 0.860  0.122 -0.191 0.312 0.374 

n Group low maturity – 56; n Group high maturity – 52  

n Group up to 499 – 43; n Group more than 500 – 65 

 

5.6 Discussion and implications 

 

5.6.1 Theoretical implications 

This study empirically investigates the integration between BDAC, Lean Practices 

and sustainability performance holistically. Through a survey the study investigates i) the 

direct impacts of BDAC on Lean technical and social practices, ii) the direct impacts of 

BDAC on economic, environmental, and social performance, iii) the direct impacts of 

Lean technical and social practices on sustainability performance, and iv) Impacts of 

BDAC on the sustainability performance in the presence of Lean technical and social 

practices. We validate the relations between BDAC and Lean, BDAC and Social 

Performance, Social Lean and Social Performance, Lean Technical and Economic 

Performance, and the support relationship between BDAC and LTP to achieve higher 

economic performance. 

The findings of the present study had points of convergence and divergence with 

previous studies. In fact, BDAC has been found to have a positive and direct impact on 

Technical Lean and Social Lean. Large volumes of structured and unstructured data are 

captured and transformed into useful information by the BDA. The quality information 

feeds the Lean System for fast and accurate decision making, which strengthens Lean 
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technical and social practices. The targeted use of BDA resources improves the quality 

of products and processes (Mayr et al., 2018; Wagner et al., 2017) and helps achieve 

continuous flow and JIT goals (Bittencourt et al., 2019; Tortorella et al., 2019), as well 

as enables better reach of customer needs (Mesquita et al., 2021; Valamede and Akkari, 

2020; Saggi and Jain, 2018; Grover et al., 2018; Choi et al., 2018). BDA in conjunction 

with IoT technologies constantly monitors the process enabling inventory control, which 

allows for effective Kanban (Valamede and Akkari, 2020; Tortorella et al., 2019). 

Connecting machines and equipment via IoT allows BDA to unify large datasets for 

advanced analysis and help identify the root cause in problem solving in small groups 

(Ferraris et al., 2019; Sanders et al., 2016), and even allows you to identify patterns to 

avoid future errors (Lee et al., 2015). 

Although there is evidence in literature of a positive relationship between BDA 

and sustainability performance (Mikalef et al., 2019; Grover et al., 2018; Bonilla et al., 

2018; Gupta et al., 2019; Dubey et al., 2016), the results of this research do not confirm 

the direct impact of BDA on environmental and economic performance. The study found 

evidence that only social performance is directly impacted by the use of BDA in the 

industrial environment. This result contrasts with the findings of Belhadi et al. (2019) 

who identify that BDA resources can be used to analyze environmental data overcoming 

complex environmental issues. The authors confirm a positive and direct impact of BDA 

on environmental performance. Furthermore, some authors argue that BDA outputs can 

generate economic value while providing insights to reduce costs and improve 

productivity (Nunes-Merino et al., 2020; Valamede and Akkari, 2020; Mayr et al., 2018; 

Grover et al., 2018; Müller and Voigt, 2018; Chen et al., 2012). Brazilian companies may 

be at an initial level of insertion of BDA technology, which affects performance 

relationships. Many technologies only have a long-term payoff. On the other hand, the 

use of BDA quickly changes the style and quality of work, facilitating the worker's 

routine, which may have contributed to a positive perception of the impact of BDA on 

social performance. Having access to data can enable more consistent decision-making, 

reducing work pressure and improving working conditions. However, the findings of this 

research find support in Raut et al. (2019) who point to new organizational challenges 

and additional costs due to the adoption of BDA. Kamble et al. (2019) demonstrate that 

Industry 4.0 Technologies, including BDA, have a positive and direct effect on Lean 

Practices, but a negative and insignificant effect on Sustainability Performance. 
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Therefore, more research is needed to understand, from different points of view, how 

BDA can impact economic, environmental, and social performance. 

The findings of this research also indicate that the Lean Social System (continuous 

improvement, supplier partnership, customer involvement, and small group problem 

solving) directly and positively impacts Social Performance, while the Lean Technical 

System (Continuous Flow, JIT, TPM, Setup time reduction, and SPC) has a direct and 

positive effect on Economic Performance. It is clear that LTP improve the Economic 

Performance of companies (Jasti and Kodali, 2019; Bevilacqua et al., 2017; Belekoukias 

et al., 2014), and that LSP value people's participation (Arumugam et al., 2020; Godinho 

Filho et al., 2016), favor employee morale and safety (Jasti and Kodali, 2019). In addition, 

it is not uncommon to find results in which the coordinated use of Lean Practices does 

not favor Environmental Performance (Dieste and Panizzolo, 2018), since, for example, 

the JIT system requires a high frequency of deliveries, increasing CO2 emissions (Amjad 

et al., 2020). This point is consistent with our findings which did not confirm a positive 

relationship between Lean Practices and Environmental Performance. The results of this 

research also do not confirm hypotheses in which LTP favors social measures and LSP 

favors economic measures. In isolation, Lean Practices tend to directly favor only the 

pillar of sustainability that share the same goals, that is, LTP favor ECP and LSP favor 

SOP. 

Therefore, the findings of this research contradict evidence that STP, as TPM and 

JIT, affect social measures (Jasti and Kodali, 2019) and some LSP improve productivity, 

cost, quality, delivery, and flexibility (Jasti and Kodali, 2019; Bevilacqua et al., 2017). In 

addition, our results contradict Chavez et al. (2020) when they point out that LTP directly 

and positively affects sustainability performance, especially on the social and 

environmental side (Chavez et al., 2020b). One of the reasons that the relationship may 

not have been statistically supported is that the companies analyzed may not have 

incorporated environmental objectives into the LP, since when environmental measures 

are integrated into Lean strategies, improvements in environmental performance are 

noticeable (Inman and Green, 2018). 

Finally, this research confirms a full mediating effect of LTP on the relationship 

between BDAC and ECP, did not confirm the mediation of LTP in the relationships 

between BDAC and EP and BDAC and SOP, and did not confirm the mediation of LSP 

in the relationship between BDAC and economic, environmental and social performance. 

Thus, our findings are not consistent with Belhadi et al. (2019) and Kamble et al. (2019). 
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Due to the complexity of environmental measures, Belhadi et al. (2019) suggest that Lean 

improves Environmental Performance only through mediation between BDA resources 

and Environmental Performance. Kamble et al. (2019) found that Lean Practices have a 

significant mediating effect (full mediation) on the relationship between Industry 4.0 

Technologies, including BDA, and economic, environmental, and social performance. In 

Table 5.11 we synthesized the comparison of our results with the previous literature. 

 

Table 5.11. Comparison of the results with the literature 

Hypothesis Supported Consistent with 
Inconsistent 

with 

H1a. BDAC positively affect LSP. Yes 

2; 6; 8; 16; 17; 20; 

21; 24; 26; 29;30; 32; 

34; 37; 39; 40; 41; 

44; 49; 50; 52 

- 

H1b. BDAC positively affect LTP. Yes 

10; 15; 29; 30; 33; 

34; 44; 47; 48; 50; 

51; 52 

- 

H2a. BDAC influence the ECP of 

industries. 
Not 29; 39 

11; 14; 16; 19; 

24; 25; 33; 35; 

36; 37; 38; 50; 

H2b. BDAC influence the EP of 

industries. 
Not 29 

8; 11; 19; 24; 

25; 29; 34; 35; 

39; 40 

H2c. BDAC influence the SOP of 

industries. 
Yes 

5; 11; 19; 21; 24; 25; 

34; 35; 38; 39; 40 
29 

H3a. LSP impact the ECP of industries. Not - 

1; 4; 9; 19; 28; 

34; 39; 40; 42; 

53 

H3b. LSP impact the EP of industries. Not 3; 18 27 

H3b. LSP impact the SOP of industries. Yes 4; 22; 23; 28; 53 - 

H4a. LTP impact the ECP of industries. Yes 1; 4; 7; 9; 12; 28; 42 - 

H4b. LTP impact the EP of industries. Not 3; 18 12; 13; 27; 53 

H4c. LTP impact the SOP of industries. Not - 12; 13; 28; 53 

H5a. LSP mediate the relationship 

between BDAC and ECP. 
Not - 29 

H5b. LSP mediate the relationship 

between BDAC and EP. 
Not - 29 

H5c. LSP mediate the relationship 

between BDAC and SOP. 
Not - 29 

H6a. LTP mediate the relationship 

between BDAC and ECP. 
Full 29 - 

H6b.LTP mediate the relationship 

between BDAC and EP. 
Not - 29 

H6c. LTP mediate the relationship 

between BDAC and SOP. 
Not - 29 

Authors: 1- Abdallah et al. (2021); 2- Adenuga et al. (2019); 3- Amjad et al. (2020); 4- 

Arumugam et al. (2020); 5- Arunachalam et al. (2017); 6- Bag et al. (2020); 7- Belekoukias et 

al. (2014); 8- Belhadi et al. (2019); 9- Bevilacqua et al. (2017); 10- Bittencourt et al. (2019); 

11- Bonilla et al. (2018); 12- Chavez et al. (2020); 13- Chavez et al. (2020b); 14- Chen et al. 

(2012); 15- Chiarini and Kumar (2020); 16- Choi et al. (2018); 17- Cochran et al. (2016); 18- 
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Dieste and Panizzolo (2018); 19- Dubey et al. (2016); 20- Dworschak and Zaiser (2014); 21- 

Ferraris et al. (2019); 22- Gelei et al. (2015); 23- Godinho Filho et al. (2016); 24- Grover et al. 

(2018); 25- Gupta et al. (2019); 26- Haddud and Khare (2020); 27- Inman and Green (2018); 

28- Jasti and Kodali (2019); 29- Kamble et al. (2019); 30- Lee et al. (2015); 32- Li (2019); 33- 

Mayr et al. (2018); 34- Mesquita et al. (2021); 35- Mikalef et al. (2019); 36- Müller and Voigt, 

(2018); 37- Nunes-Merino et al. (2020); 38- Popovic et al. (2016); 39- Raut et al. (2019); 40- 

Ren et al. (2018); 41- Saggi and Jain (2018); 42- Sahoo (2020); 44- Sanders et al. (2016); 47- 

Stojanovic et al. (2015); 48- Tortorella et al. (2019); 49- Tortorella et al. (2019b); 50- Valamede 

and Akkari (2020); 51- Wagner et al. (2017); 52- Wamba et al. (2019); 53- Yu et al. (2020). 

 

5.6.2 Practical implications 

This study provides managers and practitioners with conceptual and practical 

evidence that BDAC, when well developed in companies, can improve the results of 

applying Lean technical and social practices. The research model (Figure 5.2) establishes 

a flow where the tangible resources, intangible resources, and human skills of BDA 

support Lean practices to improve sustainability performance. The model shows that 

BDA managers must support other company managers, suppliers, and customers in 

achieving their goals. The company must be able to develop BDA projects to improve 

shop floor operations through a JIT system and continuous flow strategies (related to 

Kanban, setup time reduction, TPM, and SPC). BDA teams must receive training in BDA 

technologies to properly support the industrial production system. The company must 

have access to data to conduct its operations effectively. In addition, engagement with 

suppliers and customers and continuous improvement strategies must be supported by 

BDAC. Companies interested in improving economic, environmental, and social results 

in a coordinated way can invest in technologies for efficiently collecting, processing, 

analyzing, and disseminating Big Data. 

The expensive investment and short-term view often make companies reluctant to 

implement BDAC and Lean initiatives (Belhadi et al., 2019; Kamble et al., 2019). 

However, our practical results confirm that BDAC directly and positively impact social 

performance and economic performance in the presence of the Lean system. . In addition, 

through the empirical research findings, top management that isolated Lean practices do 

not fully benefit sustainability. It is necessary to develop technical and social practices to 

improve economic, environmental, and social measures. 

Finally, the results guide decision makers to mobilize for a Big Data-driven 

decision. Therefore, the results of the present study motivate executives and top 

managers, to consider adopting Lean socio-technical practices and developing BDA 

capabilities to achieve improved economic, environmental, and social performance. 
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5.7 Conclusions 

BDA is emerging as a promising theme among academics and practitioners 

(Wamba et al., 2017). In addition, the challenge of remaining competitive with Lean and 

sustainable processes has been motivating companies to develop new forms of 

management. Thus, literature has evolved to point out ways to integrate innovative 

technologies, such as BDA, with continuous improvement approaches, such as Lean, to 

further improve economic performance (Haddud and Khare, 2020; Tortorella et al., 

2019b; Li, 2019; Wamba et al., 2019), environmental performance (Raut et al., 2019; Ren 

et al., 2018; Belhadi et al., 2019), and social responsibility.  

Studies suggest that companies with high BDA capabilities result in improved 

sustainable performance (Kamble et al., 2020; Belhadi et al., 2019). BDA will make great 

strides possible when companies are able to build BDA resources for data-driven 

decision-making, as well as leverage BDA insights to build predictive capability avoiding 

economic, environmental, and social negative impacts. In addition, the use of BDA 

resources in the Lean system also presents a high potential for integration with suppliers 

and customers. BDA capabilities can develop the full human potential, achieving one of 

the main goals of Lean. 

However, current literature provides limited possibilities to integrate BDA and 

Lean with conflicting and inconsistent results to improve sustainability (Belhadi et al., 

2019). This research goes one step further by providing conceptual and practical evidence 

of the benefits of this relationship. The present research aimed to understand how BDA 

capabilities can support the Lean socio-technical system to help the manufacturer achieve 

improved economic, environmental, and social performance. The objective was achieved 

by conceptually investigating a BDA structure and a Lean structure and the strengths of 

each of them that form the basis for the integration. A conceptual model points out ways 

in which BDA capabilities support Lean technical and social practices in the industrial 

production system. Finally, survey research evaluates the vision of 108 respondents, 

mostly Lean managers and BDA managers, to statistically validate these relationships. 

The conceptual results show that tangible resources, intangible resources, and 

human skills of BDA (Gupta and George, 2016) support the JIT System (Kanban) and 

Continuous Flow (reduction of setup time, TPM, SPC), and these relationships facilitate 

direct supplier contact and customer engagement, meeting their unique needs faster. 

Furthermore, the practical results show that the Lean socio-technical system improves 

economic and social performance and needs information (Big Data) to be more efficient 
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and achieve sustainability goals, also environmental. BDA capabilities can transform 

Lean into a data-driven system capable of achieving significant gains in sustainability. 

Overall, our practical results demonstrate that BDA capabilities reach their full potential 

to improve the economic performance of companies in the presence of Lean technical 

practices. Thus, more research is needed to empirically demonstrate that a data-driven 

Lean system can further improve sustainability performance. 

Finally, this study directs many opportunities for future research. For example, i) 

it is possible to confirm the validated hypotheses and/or investigate the hypotheses not 

statistically supported by applying the research with larger samples and/or in other 

countries, ii) it is possible to go into the detailed level of BDAC to investigate through a 

case study how each capability is developed in an industrial environment, and iii) it is 

feasible to investigate how specific relationships between BDAC and Lean Practices 

occur to support sustainability through a case study or survey research. These are some 

paths for future studies; however, researchers may have several other insights through 

this research. 
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5 Appendix I 

Table 5.12 

High order 

construct 

Low order 

construct 
Authors Code Item OL OL p-value OW OW p-value 

Lean 

Technical 

Practices 

(Reflective) 

Continuous 

flow 

(Reflective) 

7, 18, 

19, 21 

FLOW1 
Processes and/or machines stay 

close to each other. 
0.894 <0.001     

FLOW2 

Shop floor layout facilitates 

inventory reduction and 

production pace. 

0.947 <0.001   

FLOW3 

Processes are located close to 

each other, so that material 

handling and pieces storage are 

minimized. 

0.896 <0.001   

FLOW4 

Machines are located to 

support a Just-in-Time 

production flow. 

0.928 <0.001     

Just-in-time 

(Reflective) 

1, 3, 7, 

17, 18, 

19, 21 

JIT1 
The kanban system is used for 

production control. 
0.735 <0.001     

 JIT2 
Suppliers make frequent 

deliveries of materials. 
0.825 <0.001   

 JIT3 
Supplier deliveries are based 

on Just-in-Time. 
0.875 <0.001   

 JIT4 
Suppliers deliver in a short 

time. 
0.851 <0.001   

  JIT5 
We rely on punctual delivery 

from suppliers. 
0.765 <0.001     

Setup time 

reduction 

(Reflective) 

  SETUP1 
We seek to reduce setup times 

in our factory. 
0.888 <0.001     

 SETUP2 
The next operation is prepared 

while the machine is running. 
0.883 <0.001   

1, 7, 19, 

21 
SETUP3 

Equipment setup time is 

reduced in our factory. 
0.902 <0.001   

  SETUP4 
Our teams are constantly 

looking to reduce setup times. 
0.908 <0.001     

Statistical 

process 

control 

(Reflective) 

  SPC1 

Most shop floor processes are 

under statistical process 

control. 

0.895 <0.001     

7, 19, 21 SPC2 

We make extensive use of 

statistical techniques to reduce 

variation in processes. 

0.922 <0.001   

 SPC3 

We use charts to determine if 

our manufacturing processes 

are in control. 

0.934 <0.001   

  SPC4 

We monitor our processes 

using statistical process 

control. 

0.837 <0.001     

Total 

Productive 

Maintenance 

(Reflective) 

  TPM1 

Our employees understand the 

cause and effect of equipment 

deterioration. 

0.862 <0.001     

1, 3, 7, 

18, 19, 

21 

TPM2 

Our employees perform the 

cleaning and lubrication basic 

of the equipment. 

0.911 <0.001   

 TPM3 

Our employees inspect and 

monitor the performance of 

their own equipment. 

0.947 <0.001   

  TPM4 

Our employees are able to 

detect and treat abnormal 

operating conditions of your 

equipment. 

0.889 <0.001     

Lean Social 

Practices 

(Reflective) 

Management 

leadership 

(Reflective) 

  ML1 

Department heads within the 

factory accept their 

responsibility for quality. 

0.815 <0.001     

 ML2 

Our factory manager strives to 

promote quality improvement 

and quality products. 

0.910 <0.001   
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1, 7, 17, 

21  
ML3 

Our top management strongly 

encourages employee 

involvement in the quality 

improvement process. 

0.812 <0.001   

 ML4 

Our factory management 

reinforces and communicates a 

vision focused on quality 

improvement. 

0.930 <0.001   

  ML5 

Our factory management is 

personally involved in quality 

improvement projects. 

0.892 <0.001     

Supplier 

partnership 

(Reflective) 

  SP1 

We maintain cooperative 

relationships with our 

suppliers. 

0.895 <0.001     

 SP2 

We contribute with our 

suppliers to improve the 

quality of their processes. 

0.922 <0.001   

1, 7, 18, 

19, 21 
SP3 

We help our suppliers to 

improve their quality. 
0.934 <0.001   

  SP4 

Our main suppliers contribute 

to our product development 

projects. 

0.837 <0.001     

Small group 

problem 

solving 

(Reflective) 

  SGPS1 

During problem-solving 

sessions, we make an effort to 

get the opinions and ideas of 

all team members before 

making a decision. 

0.848 <0.001     

 SGPS2 
We form teams to solve 

problems. 
0.903 <0.001   

1, 7, 19, 

21 
SGPS3 

In the last three years, many 

problems have been solved 

through small group activities. 

0.902 <0.001   

 SGPS4 

Problem solving teams helped 

improve manufacturing 

processes at this plant. 

0.906 <0.001   

  SGPS5 

Improvement teams are 

encouraged to try to solve their 

own problems as much as 

possible. 

0.899 <0.001     

Continuous 

improvement 

(Reflective) 

  CI1 

We strive to continually 

improve aspects of products 

and processes, rather than 

taking a static approach. 

0.801 <0.001     

 CI2 

Our performance will be 

affected in the long term by the 

process of improvement and 

constant learning. 

0.836 <0.001   

7, 17, 21 CI3 

Continuous improvement 

constantly affects our 

performance measures, putting 

us ahead of our competitors. 

0.908 <0.001   

 CI4 

We believe that process 

improvement is never 

complete; there is always room 

for incremental improvement. 

0.840 <0.001   

  CI5 

Our company is not a static 

entity, but engages in 

continuous improvement 

processes to better serve its 

customers. 

0.876 <0.001     

Training 

employees 

(Reflective) 

  TE1 
Our employees receive training 

to carry out various operations. 
0.827 <0.001     

 TE2 
Our employees learn how to 

perform a variety of tasks. 
0.931 <0.001   

1, 7, 17, 

18, 19, 

21 

TE3 

The longer an employee stays 

at the factory, the more 

operations he learns to 

perform. 

0.836 <0.001   
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  TE4 

Our employees are trained in 

multiple operations at this 

plant so that they can replace 

others if necessary. 

0.899 <0.001     

Customer 

involvement 

(Reflective) 

  CUI1 
We are in frequent contact 

with our customers. 
0.866 <0.001     

 CUI2 

Our customers give us 

feedback on our overall 

quality. 

0.848 <0.001   

1, 7, 18, 

19, 21 
CUI3 

We strive to be highly 

responsive to our customers' 

needs. 

0.853 <0.001   

  CUI4 
We regularly research our 

customers' needs. 
0.818 <0.001     

Tangible 

Resources 

(TR) 

(Formative) 

Basic 

Resources 

(Formative) 

  BR1 
Our company adequately 

invests in BDA projects. 
0.958 <0.001 0.487 0.190 

6, 10, 

12, 13, 

14, 15, 

16, 20, 

22 

BR2 
Our company has the resources 

to manage Big Data projects. 
0.967 <0.001 0.551 0.130 

  BR3 

Top management and the 

teams involved dedicate 

enough time for BDA projects 

to achieve their goals.* 

        

Data 

(Formative) 

  D1 

We have access to large 

databases or unstructured data, 

for analysis. 

0.783 <0.001 0.056 0.815 

6, 10, 

12, 13, 

14, 15, 

16, 20, 

22  

D2 

We integrate data from 

multiple sources into software 

such as a data warehouse for 

easy access. 

0.892 <0.001 0.166 0.580 

  D3 

We integrate external data 

(e.g., customer data) with 

internal data (e.g., process 

data) to facilitate analysis of 

our business environment. 

0.994 <0.001 0.813 0.001 

  D4 

We have access to data that 

allows a positive return for our 

company. * 

        

Technology 

(Formative) 

6, 10, 

12, 13, 

14, 15, 

16, 20, 

22 

T1 

We explore or adopt 

computing approaches where 

multiple calculations are 

performed at the same time, 

i.e., parallel computing, for 

Big Data processing (e.g., 

Hadoop). 

0.852 <0.001 0.463 0.116 

  T2 
We explore or adopt different 

data visualization tools. 
0.855 <0.001 0.608 0.010 

  T3 
We explore or adopt cloud 

analytics capability services. 
0.726 <0.001 0.106 0.656 

  T4 
We explore or adopt open 

source software for BDA. 
0.507 <0.001 -0.595 0.038 

  T5 

We explore or adopt new 

forms of databases, such as 

Not Only SQL (NoSQL), for 

data storage. 

0.737 <0.001 0.421 0.196 

  T6 
Our company performs data 

management. * 
        

    TR 
Big Data resources are well 

structured in the company** 
        

Human 

Skills (HS) 

(Formative) 

Technical 

Skills 

(Reflective) 

  TS1 
We provide BDA training for 

our employees. 
0.844 <0.001     

  TS2 
We hire new employees who 

already have BDA skills. 
0.861 <0.001   



129 

 

6, 10, 

12, 13, 

14, 15, 

16, 20, 

22 

TS3 

Our BDA team has the right 

skills to do their jobs 

successfully. 

0.959 <0.001   

  TS4 
Our BDA team has adequate 

training to carry out her jobs. 
0.968 <0.001   

  TS5 

Our BDA team has adequate 

work experience to do their 

jobs successfully. 

0.961 <0.001   

  TS6 Our BDA team is well trained. 0.973 <0.001     

Managerial 

Skills 

(Reflective) 

 MS 1 

Our BDA managers 

understand and appreciate the 

needs of our company's other 

functional managers, suppliers, 

and customers. 

0.914 <0.001     

 MS 2 

Our BDA managers can work 

with other functional 

managers, suppliers, and 

customers within our company 

to determine the opportunities 

that big data can bring to our 

business. 

0.966 <0.001   

6, 10, 

12, 13, 

14, 15, 

16, 20, 

22 

MS 3 

Our BDA managers are able to 

coordinate big data related 

activities in order to support 

our company's other functional 

managers, suppliers, and 

customers. 

0.974 <0.001   

 MS 4 

Our BDA managers are able to 

anticipate the future business 

needs of our company's other 

functional managers, suppliers, 

and customers. 

0.976 <0.001   

 MS 5 

Our BDA managers have a 

good sense of where to apply 

the output extracted from big 

data. 

0.963 <0.001   

  MS 6 

Our BDA managers are able to 

understand and evaluate the 

output extracted from big data. 

0.979 <0.001     

    HS 

The company presents 

maturity of knowledge and 

application of Big Data 

analysis** 

        

Intangible 

Resources 

(Formative) 

Organization 

Learning 

(Reflective) 

 OL1 

We are able to seek out new 

and relevant knowledge about 

BDA. 

0.953 <0.001     

6, 10, 

12, 13, 

14, 15, 

16, 20, 

22 

OL2 

We are able to acquire new 

and relevant knowledge about 

BDA. 

0.968 <0.001   

 OL3 

We are able to assimilate 

relevant knowledge about 

BDA. 

0.967 <0.001   

 OL4 
We are able to apply the 

relevant knowledge of BDA. 
0.961 <0.001   

  OL5 

We have been striving to 

improve the exploitation of 

existing, new knowledge and 

skills from BDA. 

0.873 <0.001     

Data-driven 

Culture 

(Reflective) 

 DD1 
We consider data a tangible 

asset. 
0.783 <0.001     

 DD2 
We base our decisions on data, 

not instinct. 
0.917 <0.001   

6, 10, 

12, 13, 

14, 15, 

DD3 

We are willing to ignore our 

own intuition when the data 

contradict our views. 

0.907 <0.001   
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16, 20, 

22 

 DD4 

We continually evaluate and 

improve the company's 

strategic planning in response 

to insights extracted from the 

data. 

0.919 <0.001   

 DD5 

We continually train our 

employees to make data-driven 

decisions. 

0.875 <0.001   

    IR 

Big Data resources have 

already generated positive 

results by being disseminated 

across the various sectors of 

the company** 

        

BDAC     BDAC 
The company implements Big 

Data analytics*** 
        

 

Environmental 

Performance 

(Reflective) 

5, 8 EP1 

There was an improvement in 

the reduction of atmospheric 

emissions. 

0.883 <0.001     

 5, 8, 9  EP2 
There was an improvement in 

the reduction of solid waste. 
0.920 <0.001   

 9 EP3 
There was an improvement in 

the reduction of liquid waste. 
0.925 <0.001   

 9 EP4 
There was an improvement in 

the reduction of energy waste. 
0.921 <0.001   

 5, 8, 9 EP5 

There was a decrease in the 

consumption of hazardous / 

harmful / toxic materials. 

0.882 <0.001   

 2, 5 EP6 

There was a decrease in the 

frequency of environmental 

accidents. 

0.895 <0.001   

 2, 5, 8, 

9  
EP7 

There was an improvement in 

the company's environmental 

performance. 

0.915 <0.001     

 

Economic 

Performance 

(Reflective) 

4, 9  ECP1 
There was a reduction in 

production costs. 
0.768 <0.001     

 4, 9 ECP2 
There was an improvement in 

profits. 
0.747 <0.001   

 9 ECP3 
There was a reduction in 

energy costs. 
0.834 <0.001   

 9 ECP4 
There was a reduction in stock 

costs. 
0.874 <0.001   

 9 ECP5 
There was a reduction in 

rejection and rework costs. 
0.846 <0.001   

 9 ECP6 
There was a reduction in raw 

material purchase costs. 
0.760 <0.001   

 9  ECP7 
There was a reduction in waste 

treatment costs. 
0.834 <0.001     

 

Social 

Performance 

(Reflective) 

5, 9 SP1 
There was an improvement in 

employee morale. 
0.883 <0.001     

 5 SP2 
In general, our employees are 

satisfied with their work. 
0.855 <0.001   

 5, 9 SP3 
There has been improved 

safety in the workplace. 
0.849 <0.001   

 5, 9 SP4 
There was an improvement in 

the health of employees. 
0.861 <0.001   

 9 SP5 
There was improvement in 

working relationships. 
0.890 <0.001   

 9 SP6 
There was a decrease in 

pressure at work. 
0.883 <0.001   

 9 SP7 
There was improvement in 

working conditions. 
0.885 <0.001   

 5 SP8 
There was a reduction in health 

and safety incidents. 
0.818 <0.001   

 5 SP9 

There was a reduction in 

injuries and lost days related to 

injuries. 

0.901 <0.001   
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  5  SP10 
There was a reduction in 

absenteeism. 
0.864 <0.001     

*question to assess convergent validity in a first-order construct; **question to assess convergent validity in a second-order 

construct; ***question for evaluating convergent validity in a third-order construct 

Authors: 1- Abdallah et al. (2021); 2- Agyabeng-Mensah et al. (2020); 3- Arumugam et al. (2020); 4- Baliga et al. (2019); 5- 

Chavez et al. (2020); 6- Ciampi et al. (2021); 7- Gaiardelli et al. (2018); 8- Inman and Green (2018); 9- Kamble et al. (2019); 10- 

Lozada et al. (2019); 12- Mikalef and Krogstie (2018); 13- Mikalef and Krogstie (2020); 14- Mikalef et al. (2019); 15- Mikalef et 

al. (2019b); 16- Mikalef et al. (2019c); 17- Muraliraj et al. (2019); 18- Sahoo (2020); 19- Shah and Ward (2007); 20- Wetering et 

al. (2019); 21- Bortolotti et al. (2015); 22- Gupta and George (2016)  
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6 CONCLUSION 

Sustainability, constituted by the economic, social, and environmental pillars, is 

increasingly recognized as a mandatory and competitive criterion. Therefore, industries 

are looking for ways to manage and operationalize their processes incorporating 

environmental and social aspects without discarding the strategic objectives of 

profitability and efficiency. Lean has been an ally of the industrial sector by promoting 

recognized improvements in sustainability performance. Lean is a socio-technical system 

with technical practices, aimed at improving processes, and social practices, aimed at 

human resource management. Furthermore, new technological challenges are emerging 

in the fourth industrial revolution. Additional efforts are needed to meet market pressures 

such as high variety, speed, and flexibility in mass-production processes. For that, 

Industry 4.0 brings together a set of integration technologies, data technologies, and shop 

floor technologies. Thus, this study aimed to identify and propose ways to integrate 

Industry 4.0 and Lean and to analyze the impact of the main relationships between 

Industry 4.0 technologies, mostly Big Data Analytics, and Lean socio-technical practices 

on sustainability performance. 

To achieve the proposed objectives, this Dissertation followed a path that begins 

with two Systematic Literature Reviews (SLR). The first (Paper 1) identified the pillars 

of Industry 4.0, Lean and Sustainability, that is, 'what' most facilitates integration, in 

addition to identifying the direction of support between the approaches. The second 

(Paper 2) explained 'how' the relationships that integrate Industry 4.0 technologies and 

Lean socio-technical practices occur to improve sustainability performance. Paper 2 also 

has two cases study to demonstrate how the interactions between Industry 4.0 and Lean 

occur, in practice, which reinforces the conceptual findings. In addition, this Dissertation 

presents, in Paper 3, an SLR to identify a Lean structure and a Big Data Analytics 

structure, technology with great integration potential, which served as the basis for the 

development of a tested path model through Structural Equation Modeling in a Survey 

Research. 

The results of this study show that this is a new and little explored theme, with 

some conceptual research (e.g., Valamede and Akkari, 2020; Pagliosa et al., 2019; Rosin 

et al., 2019), and little empirical research that generically addresses Industry 4.0 

technologies (e.g., Tortorella et al., 2019b;2020; Kamble et al., 2019; Lugert et al., 2018) 

and specifically addresses Big Data Analytics (Belhadi et al., 2019; Gupta and George, 

2016). Some empirical studies indicate that Industry 4.0 and Lean can coexist in an 
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industrial environment and their synergistic effect presents improvements in operational 

performance (e.g., Tortorella et al., 2019; Haddud and Khare, 2020), and economic, 

environmental, and social performance (e.g., Kamble et al., 2019). In this context, the 

conceptual evidence of this Dissertation adds to the literature when they indicate that the 

synergies between Industry 4.0 technologies and Lean Practices positively influence 

economic performance indicators and, to a lesser extent, environmental and social 

performance indicators. The results of Paper 1 add to the literature by bringing specific 

relationships between Industry 4.0, Lean, and sustainability. Paper 1 shows that 29.1% of 

identified relationships are between Industry 4.0 technologies in support of Lean practices 

to improve environmental sustainability. Paper 2 shows that technologies such as Big 

Data and IoT facilitate integration with Lean socio-technical system to make industrial 

systems intelligent and connected, adding value to the customer. Furthermore, Lean 

technical practices such as JIT, Kanban, and Continuous Flow, some Lean tools such as 

VSM and Poka-Yoke, and the Jidoka principle are the most promising for integration 

with Industry 4.0 technologies to improve Economic Performance. Evidence also 

suggests that the JIT system integrated with integration technologies (CPS), data 

technologies (Big Data and IoT), and shop floor technologies (AGV) support the 

operating system and enable horizontal, vertical, and end-to-end integration improving 

the performance of the supply chain. On the other hand, Lean social practices such as 

customer engagement, supplier participation, and employee training also demonstrate 

adherence to Industry 4.0 technologies such as AM, Big Data, CC, CPS, IoT, and 

Simulation. These peer relations of the industry 4.0 technology categories and Lean socio-

technical system create a dynamic industrial environment driven by real-time 

information. The integration between Industry 4.0 and Lean provides for the 

harmonization of technological and human aspects, extracting the potential benefits of 

these connections. In Paper 2, the cases study findings confirm and reinforce the support 

that Industry 4.0 provides for Lean and the remarkable improvement that this relationship 

presents in sustainability performance. These data guide future research. 

New research opportunities arise from the connections between these approaches 

and the synergistic effect of the integration between specific Industry 4.0 technologies, 

mostly Big Data Analytics, and Lean socio-technical practices on economic, 

environmental, and social performance. Some studies have identified the potential of Big 

Data Analytics in improving Environmental Performance (Belhadi et al., 2019; Dubey et 

al., 2019). Furthermore, improvement approaches such as Lean appear to be more 
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successful in achieving better performance in a Big Data Analytics environment (Belhadi 

et al., 2019). Therefore, Paper 3 analyzed the mediation effect that Lean Socio-Technical 

Practices can exert on Big Data Analytics Capabilities to improve sustainability 

performance. The results of Paper 3 confirm that the relationship between Big Data 

Analytics Capabilities and Economic Performance is fully mediated by Lean Technical 

Practices. Likewise, the Lean socio-technical system needs the information provided by 

Big Data Analytics Resources to achieve higher economic, environmental, and social 

performance. 

All this research trajectory has brought relevant findings that benefit academics 

and professionals. The results of this study present conceptual and empirical data that 

form a robust theoretical basis for academics to delve deeper into the topic and explore 

new lines of research. The specific links between Industry 4.0 and Lean, presented 

conceptually in Paper 2, can inspire future research. For example, very strong supporting 

relationships (Strong +) such as IoT and JIT, IoT and Continuous flow, IoT and TPM, 

IoT and Setup Time Reduction, IoT and SPC, BDA and JIT, and BDA and TPM can be 

empirically investigated through Survey Research. In addition, new research can be 

developed to confirm or refute the Paper 3 hypotheses, with a larger sample, in Brazil or 

in other countries. To know, H1. Big Data Analytics capabilities positively affect Lean 

socio-technical practices (supported hypothesis); H2. Big Data Analytics capabilities 

influence the economic, environmental, and social performance of industries (supported 

hypothesis for social performance). H3. Lean socio-technical practices impact the 

economic, environmental, and social performance of industries (supported hypothesis for 

the relationships between social Lean and social performance and technical Lean and 

economic performance); H5. Lean social practices mediate the relationship between Big 

Data Analytics capabilities and economic, environmental, and social performance (not 

supported hypothesis); H6. Lean technical practices mediate the relationship between Big 

Data Analytics capabilities and economic, environmental, and social performance 

(supported hypothesis for the mediation effect that Lean technical practices exert on the 

relationship between Big Data Analysis capabilities and economic performance). 

In addition, the findings of this Dissertation guide management decisions about 

investing in innovative technologies. Industries now have a solid parameter of what 

results to expect from Industry 4.0 technologies and their coexistence with the Lean 

system to improve sustainability performance. Managers can also use the results of this 

research to develop a production system based on technologies and Lean. 
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However, some limiting factors of this study can be pointed out. For example, i) 

there is a limited literary collection on the theme studied; ii) Brazilian companies are 

starting to introduce technologies in production and management processes; therefore iii) 

Lean managers and technology managers have a partial and incomplete view of the 

potential that Industry 4.0 technologies integrated into the Lean system have for 

improving sustainability performance. Therefore, more dissertations can explore the 

interactions between Lean, Industry 4.0, and Sustainability as companies continue to 

advance in this perspective and new results can be expected. Finally, it is concluded that 

improvements can be achieved from the support that Industry 4.0 technologies provide to 

the Lean socio-technical system. Lean and Industry 4.0 form the basis for a production 

system with high economic, environmental, and social performance. 
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