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Abstract
Perishability is a characteristic that affects several production systems. The loss of the value
of a product over time creates challenges and opportunities to integrate the production
and distribution planning, increases the complexity of inventory management, and also
influences the pricing practices. Such importance leads researchers to propose quantitative
models to solve problems that consider perishability. Although there is evidence that the
shorter the shelf life, the greater the benefits to solve the production and distribution
planning in an integrated way, there are still few studies investigating how the shelf
life influences the problem’s solution. Therefore, this study aims to analyze how the
shelf life influences the Integrated Production and Distribution Scheduling Problem For
Perishable Products (IPDSP-P). To make it possible, we also proposed a metric named
Normalized Shelf Life, which allowed us to compare several studies and propose a guideline
to classify the shelf life as "long" and "short". Another contribution of this work is the
proof of a theorem that allowed us to decompose the problem and create a model using the
Logic-based Benders Decomposition approach. This theorem is also the basis of a genetic
algorithm and an alternative form of the Mixed Integer Linear Programming (MILP)
model, named in this study as MILP-Distribution. Besides these two models, we also
developed a MILP model containing all production and distribution constraints (named
MILP-Full), and the performance of the proposed models was compared. The findings
suggest that shorter shelf lives make it more difficult for exact models to find a solution
and prove its optimality. For the genetic algorithm, although there was a fast convergence
to a single solution for the short shelf life instances, we observed a higher gap between
the solution and the lower bound obtained from a commercial solver. Finally, the genetic
algorithm could find the best solution for more instances when compared to the other
solution approaches. Thus, this study contributes to understanding how shelf life impacts
the solutions of IPDSP-P and the understanding of the performance of different approaches
to solve the problem.
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Resumo
A perecibilidade é uma característica que afeta muitos sistemas de produção. A perda
de valor ao longo do tempo cria desafios e oportunidades para integrar o planejamento
da produção com a distribuição, aumenta a complexidade em gerenciar os estoques, e
também influencia as práticas de precificação. Tamanha relevância levam pesquisadores a
propor modelos quantitativos para resolver problemas que lidam com produtos perecíveis.
Embora haja evidências de que quanto menor o shelf life, maiores são os benefícios de um
modelo que resolva o planejamento de produção e distribuição de forma integrada, ainda
há poucos estudos de como o shelf life influencia a resolução desse problema. Portanto,
essa pesquisa tem como objetivo estudar como o shelf life influencia o Problema Integrado
de Sequenciamento de Produção e Distribuição para Produtos Perecíveis (IPDSP-P). Para
tornar isto possível, nós também propusemos uma métrica chama Normalized Shelf Life,
que nos permitiu comparar diversos estudos a propor uma referência para diferenciar o
shelf life longo do curto. Outra contribuição desse trabalho foi provar um teorema que nos
permitiu decompor o problema e criar um modelo usando a técnica Logic-based Benders
Decomposition. Esse teorema também foi a base para o desenvolvimento de um algoritmo
genético e um modelo alternativo de Programação Linear Inteira Mista (MILP), identificado
como MILP-Distribution. Além desses dois modelos, também desenvolvemos um modelo
MILP contendo todas as restrições de produção e distribuição, que identificamos nesse
estudo como MILP-Full. Por fim, o desempenho de todos esses modelos foram comparados.
Os achados sugerem the quanto menor o shelf life, mais difícil fica para os modelos exatos a
encontrarem uma solução e provar a optimalidade. Para o algoritmo genético, embora haja
uma rápida convergência para as instâncias com shelf life curto, também foi observado um
gap maior entre a solução do algoritmo e o limite inferior obtido pelo solver comercial. Por
fim, quando comparado com os outros métodos, o algoritmo genético encontrou as melhores
soluções para um número maior de instâncias. Portanto, esse estudo contribui para o
entendimento de como o shelf life impacta as solução do IPDSP-P e para o entendimento
do desempenho de diferentes métodos para resolver o problema.

Palavras-chave: Shelf Life, Perecibilidade, Scheduling, Distribuição, Problemas Integrados
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1 Introduction

This chapter contextualizes the subject studied; specifying the goals and the
importance of the study. It also briefly describes the research method used.

1.1 Contextualization and Motivation

The idea of Enterprise-wide optimization (EWO) first appeared in Grossmann
(2005a). This paper defines the EWO as a research area that aims to optimize the
procurement, manufacturing, and distribution operations in an integrated way. Despite
the computational difficulty in solving these integrated optimization problems, there are
several reasons for the growth of this research area.

Computational studies show that integrated production and distribution planning
can lead to cost reductions ranging from 3% to 20% when compared with sequential
planning (Chandra; Fisher, 1994). Besides the benefits in costs, situations where the
inventory is constrained also benefit from adopting an integrated approach. Examples of
this are found in companies that adopt the make-to-order production system (Chen, 2010)
or companies that handle perishable products (Marandi; Zegordi, 2017), which are goods
that have physical deterioration or a decrease in the customer’s value perception over time
(Amorim et al., 2013). In this case, inefficiencies in the production planning will affect the
distribution system. Therefore, several authors often highlight the attractiveness of the
integrated planning (Amorim; Gunther; Almada-Lobo, 2012; Chen, 2010).

One characteristic that significantly influences operational planning for a perishable
product is its shelf life. When analyzing the integration of production scheduling and
vehicle routing problem for a product with a fixed shelf life, Amorim, Gunther and Almada-
Lobo (2012) observed that the integrated approach benefit is leveraged for products with
a higher perishability degree. Farahani, Grunow and Gunther (2012) reached the same
conclusion on a similar integrated problem. Despite these encouraging results, there is little
knowledge regarding how the problem’s characteristics impact the integration of these two
subproblems (Moons et al., 2017). This lead us to the following research question:

Does shelf life influence the expected performance of solution approaches that aim
to solve the integrated production and distribution scheduling problem for perishable
products (IPDSP-P)?

This research question is very broad as there are many ways to model the production
and distribution. For example, Moons et al. (2017) present a literature review about
the integrated production scheduling and distribution routing problem and classify the
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production environment by 10 characteristics and 15 for the distribution environment.
However, the literature review conducted by this study showed that only a small number of
articles were published about the IPDSP-P even for the simplest production environment,
namely the single machine environment, which suggests a gap of theoretical knowledge.
Therefore, this work focuses on analyzing the influence of shelf life for the IPDSP-P
modeled in the most simple way found in the literature, i.e., considering several orders of a
single perishable product that must be scheduled into a single machine and distributed to
customers before the product expires using an unlimited fleet of homogenous vehicles. It
is expected that the results from this specific problem can be evaluated for more complex
cases in future studies.

1.2 Objectives
The main objective of this study is to evaluate the influence of the shelf life on the

computational performance of several methods to solve the integrated production and
distribution scheduling problem for perishable products (IPDSP-P). However, to meet this
objective some specific objectives should be achieved:

• Provide a discussion of what an integrated problem is and an overview of how
research addresses the integrated production-distribution problem, i.e., present what
the common forms are to model and solve those problems.

• Provide an overview from the literature of how perishable products are modeled.

• Provide a simplification for the IPDSP-P when the problem consists of a single
machine production environment without setup times or costs and the distribution
must occur using a fleet of unlimited homogeneous vehicles that must deliver a single
perishable product with a fixed shelf life before it expires.

• Propose a standard metric for shelf life to enable researchers and practitioners to
distinguish the short from the long shelf life.

• Provide a comparison between different approaches to solve the IPDSP-P and analyze
if the shelf life equally influences the problem for the several solution approaches.

1.3 Justification
About one-third (approximately 1.3 billion tons per year) of all food produced

worldwide is lost during all the stages in the food supply chain (Gustavsson et al., 2011).
Despite the fact that one of the leading sources of waste relies on the final consumer, a
considerable share of that loss occurs from production to retailing stages. For example, in
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Latin America, almost 200kg per capita per year of food is lost from production to retailing
(Gustavsson et al., 2011). Futhermore, 492 million tons of fruits and vegetables were lost
worldwide due to inefficient and ineffective food supply chain management (Zhong; Xu;
Wang, 2017).

This loss can be reduced by using quantitative models. For example, optimizing
production, distribution, or even both in an integrated way. However, a preliminary
literature review shows that there are just a few studies that proposes quantitative
approaches to address this category of problem. As will be presented in Chapter 2, between
2011 and 2022, 23 articles were published regarding quantitative models to optimize the
production or distribution of perishable products. When we consider the IPDSP-P, the
number of articles falls to 5, which indicates a need for theoretical investigation even
for simple situations. As previously discussed, Farahani, Grunow and Gunther (2012)
and Amorim, Gunther and Almada-Lobo (2012) observed that the integrated approach
benefits over a decoupled approach are leveraged for products with a higher perishability
degree, however, no study was found about how the shelf life influences the capacity of
the implemented solution approach to reach a reasonable result.

To strengthen the findings of our computational experiments, two other solution
approaches besides the MILP were tested: a Logic-Based Benders Decomposition (LBBD)
and a Genetic Algorithm (GA). The Genetic Algorithm was chosen due to the ease of
integrating additional techniques into the steps of the algorithm and the promising results
found in different applications (e.g., see Shin, Lee and Lee (2022), Placido, Archetti and
Cerrone (2022), Türkyılmaz et al. (2022)). The other solution approach analyzed, the
Logic-Based Benders Decomposition, was selected because one major challenge of solving
an integrated problem using an exact method is the size of the resulting model (Grossmann,
2005b; Papageorgiou, 2009; Garcia; You, 2015). Thus, decomposition methods are often
applied to address the integrated problems (Grossmann, 2012). Moreover, the structural
properties of the problem (presented in Section 3.2) suggested that the IPDSP-P could be
decomposed into a master problem and subproblems, which supports the choice of the
LBBD as a solution approach.

1.4 Research method

As described in Section 1.2, two research methods were adopted in the present
study: literature review and quantitative modeling.

A literature review is a method that helps to organize and summarize the knowledge
about a research topic. A review can support a researcher identifying research questions,
develop contextualization for the research, and build understanding about concepts and
terminology (Rowley; Slack, 2004). However, many studies conduct a review by simply
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collecting papers as a narrative element of the work, which may lead to inappropriate
recommendations or conclusions.

Therefore, to minimize implicit biases of the researchers and provide a replicable and
transparent process that can be audited by reviewers, some of the guidelines proposed by
Tranfield, Denyer and Smart (2003) were followed. We used well-defined criteria to identify,
appraise and synthesize the literature. This way of conducting a review provides high-
quality evidence to answer research questions and may be the cornerstone for other research
methods. For example, the results obtained through the literature review conducted for
this study were used to delimit the problem that would be analyzed and the solution
methods that would be tested to answer our research question.

Quantitative modeling is a method that consists of describing processes and systems
in variables and mathematical relations. These mathematical representations are named
models, and it is expected that solving the model can provide insights into the real problem.
As the real world can be infinitely complex, the model must be sufficiently detailed to
capture key elements that will influence the decision, but it must also be simple enough to
be solved in an adequate amount of time (Arenales et al., 2015). The ability to solve a
quantitative model is directly related to the computational processing performance, and
the evolution of computing in recent years allows more difficult models to be solved by
many options of solution approaches.

In this study, several approaches were tested: two different MILP formulations
implemented in a commercial solver, a Logic-based Benders Decomposition and a genetic
algorithm, whose formulations are detailed, respectively, in Sections 3.1, 3.3, 4.1, and 4.2.

As both the production scheduling and the vehicle routing problem are difficult
problems to solve, it is expected that a commercial solver would hardly be able to find
the optimal solution for IPDSP-P instances in a reasonable time. Nevertheless, this study
evaluates the best solution a solver could provide for a limited amount of time, and
compares that solution to other solution methods. Although this practice is not very
common in the literature, the authors have already witnessed situations in companies in
which the best solution of a commercial solver running for a amount of time was considered
to support decision making.

After delimiting the problem and the solution methods, several computational
experiments, detailed in Chapter 5, were conducted to answer the research question.

1.5 Structure of this document

The remainder of this study is organized as follows. Chapter 2 provides a literature
review about perishable products and the integrated production-distribution scheduling
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problem for perishable products. Two different ways of modeling the problem as MILP
and the alternative solution methods are presented, respectively, in Chapters 3 and 4.
The experiments, results and discussions to answer the research question are presented in
Chapter 5. Finally, conclusions and further research opportunities are given in Chapter 6.
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2 Literature review

To determine how shelf life can influence quantitative modeling, we need to un-
derstand what a perishable product is and how perishability can be modeled. Moreover,
since the issues described in this paper contain elements of integrated production and
distribution problems, it is necessary to understand how these problems were handled
previously. In this chapter, we review the literature to answer these questions and support
our work.

This chapter is divided into four sections. Section 2.1 introduces what a perishable
product is, presenting definitions and frameworks in the literature about how to model
perishability. Section 2.2 provides the used method to conduct the review in a replicable
form. The results, separated by how perishability is modeled, how problems are modeled
and the solutions methods adopted are addressed, respectively, in Sections 2.3, 2.4 and
2.5. The findings from the literature review are discussed in Section 2.6.

2.1 Perishable products

It is simple to recognize a tomato or a strawberry or any other fruit or vegetable
as perishable. However, there are items whose perishability factor is not so clear, such
as newspaper or fashionable clothes. According to Wee (1993), one product is perishable
when spoilage, evaporation, obsolescence, pilferage, loss of utility or loss of marginal value
of a commodity results in a decreasing usefulness of that product. Although this definition
helps us to understand what a perishable product is, a more detailed definition is needed,
as it is still difficult to translate it into a mathematical formulation.

Nahmias (1982) proposes a classification that is more suitable for a mathematical
formulation. The author classifies the perishable products in two categories: fixed lifetime
and random lifetime. The former consists of products whose shelf life length is known
and is a problem parameter. The latter category consists of products whose shelf life is
stochastic and follows a probability distribution. This classification was extended by Goyal
and Giri (2001), who also included one more category: the deteriorating product. That
category consists of products whose quality decays proportionally to its age.

Another classification for perishable products was proposed by Amorim et al. (2013).
They developed a framework that categorizes a perishable based on three dimensions:
physical deterioration, descrease of customer value and limits imposed by authorities. A
product that suffers from physical deterioration loses its physical status through time,
for example, a medicine that loses its healing properties as it becomes older. The second
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dimension, the customer value, is another measure of perishability because there are
products, such as a newspaper, that does not suffer from physical deterioration, but it
still loses its value as there is little to none interest in old news. Finally, the authority
limits reflect external regulations that limit the period a product can be sold or consumed.
A product is considered perishable, if at least one of those dimensions applies to them.
Figure 1 summarizes the framework.

Figure 1 – Definition of perishability according to the framework proposed by Amorim et
al. (2013)

This framework brings more clarity on how to represent perisable issues into
mathematical formulations. For example, a product that is perishable by authority limits
will probably have a fixed lifetime (Amorim et al., 2013). On the other hand, items
such as fruits and vegetables that have physical deterioration but do not have authority
limits, will have its perishability modeled according to their physical deterioration. Pahl
and Voß (2014) summarize how the perishability can be modeled: fixed lifetime, discrete
deterioration, continuous deterioration. Figure 2 presents how in time.

This study will model the perishable product with a single fixed lifetime, i.e.,
products that maintain their total value while there is still some shelf life, as in the first
graph in Figure 2. In terms of mathematical formulations, the shelf life will be modeled as
a parameter of our models.
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Figure 2 – Perishability models proposed by Pahl and Voß (2014)

2.2 Review method
In order to ensure a transparent and replicable review, some of the guidelines

proposed by Tranfield, Denyer and Smart (2003) were followed. In the planning stage, we
defined the research questions, the search strategy and the criteria to include or exclude
studies. In this investigation, four questions were defined:

• How much activity has there been since 2011?

• How is shelf life modeled in studies about the IPDSP-P? How can one distinguish a
long from a short shelf life?

• What are the most common characteristics from production and distribution that
are modeled in studies about the IPDSP-P?

• What metrics do researchers aim to optimize when studying the IPDSP-P?

The search strategy consisted of a search using keywords in the bibliographic
database Compendex (Engineering Village) of articles written in English and published in
journals from 2011 to 2022. An article would only be located if its title explicitly indicated
that the paper was about optimization of the production and/or distribution problem
for perishable products. Therefore, to be a candidate for this review one of the following
search terms for each subject had to be found in its title:

• perishable products: "perishable", "perishability" , "fresh", "freshness", "deteriorating",
"decay", "short shelf life", "expiration date";

• optimization problems: "optimization", "planning", "optimisation";

• problem: "production", "production-distribution", "scheduling", "routing";

Through the database search, a total of 97 papers was obtained, and a content
analysis was conducted. This analysis consisted of the first evalution of title and abstract,
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and if no exclusion criteria were met, the full content was reviewed. Some examples of
papers that did not meet the inclusion criteria are studies that evaluated an integrated
optimization of inventory-distribution problems, studies about strategic decisions, such as
the facility location, and studies that the perishable products had no risk of expiration or
decrease of value over time. Table 1 summarizes the inclusion/exclusion criteria:

Inclusion/Exclusion criteria Example of what will be disconsidered
Only studies that present the quantitative opti-
mization model for the production, distribution
or integrated production-distribution problem
will be considered

Replenishment; integrated replenishment-
distribution problems; literature reviews

Only studies considering lot sizing, production
scheduling, direct shipment or the vehicle rout-
ing problem.

Facility location problem; Choice of distribu-
tion channels; Implementation of new technolo-
gies

The perishabilty must represent a risk of expi-
ration or decrease in the product value

Problems in which perishable products are con-
sidered, but the products do not run the risk
of losing their value or expiring, e.g., cases
where perishability only restricts the tempera-
ture and humidity levels of the operation

Only discrete production will be considered Problems from process manufacturing

Table 1 – Inclusion/exclusion criteria adopted for the literature review

From the 23 found, whose distribution over time is presented in Figure 3, 6
evaluated problems related to the production of perishables, 6 considered the distribution
of perishables and 11 considered the integrated problem, that is, considering production and
distribution in an integrated way. Only two papers, which were published in 2012, compare
the integrated approach with the sequential approach, i.e., the production-distribution
being solved as a single problem versus the production problem solution being used as
input for the distribution problem.

Figure 3 – Evolution of publications about production, distribution and integrated
production-distribution planning between 2011 and 2022

A database was created to classify the papers based on the following dimensions:



2.2. Review method 23

• How is perishability modeled?

• Which production-related characteristics were included in the model?

• Which distribution-related characteristics were included in the model?

• What solution method was used to solve these problems? What metric does the
study aim to optimize?

Regarding perishability dimension, the criteria used was based on the works from
Amorim et al. (2013) and Pahl and Voß (2014). The former reference was used to classify
the perishability according to the characteristics of the product and the latter to classify
how the perishability is included in the model. As most authors did not classify the product
according to the framework proposed by Amorim et al. (2013), on many occasions we
had to assume a classification according to the product studied or according to how the
perishability was modeled. This study also proposes a classification modeling perishability
based on the articles reviewed. Table 2 presents the criteria considered for the perishability
dimension.

Criterion Answer options Observation
Perishable product - When the product was not named,

it was classified as "generic"
Perishability by authority limits Fixed or Loose Criterion based on Amorim et al.

(2013)
Physical product deterioration Yes or No Criterion based on Amorim et al.

(2013)
Customer value Constant or Decreasing Criterion based on Amorim et al.

(2013)
How perishability is modeled $ - additional cost or rev-

enue in objective function;
velocity - the objective function
aims to maximize the fresh-
ness of the delivered products;
dem - demand variation ac-
cording to the product quality;
tw - time window constraint;
pt - perishability impacts the
processing time of the material;
lsl - the shelf life length depends
on a variable in the model

Classification proposed by authors
based on the articles reviewed

What’s the course of quality de-
cay?

Fixed time or Levels of deteriora-
tion or Continuous deterioration

Criterion based on Pahl and Voß
(2014)

Product lifetime Known or Random or Undefined Criterion based on Pahl and Voß
(2014)

Table 2 – Criteria to classify how the perishability aspect was considered in the paper

Regarding the production and distribution dimensions, both were adapted from
the classification proposed by Moons et al. (2017). However, instead of evaluating articles
that handle only scheduling and vehicle routing, we also analyzed studies that consider
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the lot sizing and the direct shipment problems due to the close relation between those
problems. In the literature, we found studies that integrate the production scheduling
+ direct shipment and lot sizing + vehicle routing problem. As the studies of lot sizing
problems were also included, the "batch processing" nor the "Production release date" were
considered because those characteristics are more related to the scheduling problem.

Tables 3 and 4 present the criteria used to classify the production and the distribu-
tion characteristics, respectively. Besides analyzing the problem, the solution method and
the objective function were also registered and presented in Table 5.

Criterion Answer options Observation
Production problem Lot sizing or Production Schedul-

ing
-

Number of plants Single plant or Multiple plants criterion based on Moons et al.
(2017) article

Machine environment Single machine or Parallel Ma-
chines or Flowshop or Jobshop or
Others

criterion based on Moons et al.
(2017) article

Does it considers production
cost?

Yes or No criterion based on Moons et al.
(2017) article

Setup times Yes or No criterion based on Moons et al.
(2017) article

Setup cost Yes or No criterion based on Moons et al.
(2017) article

Backorder Yes or No criterion based on Moons et al.
(2017) article

Precedence setup Yes or No criterion based on Moons et al.
(2017) article

Does it considers inventory? Yes or No criterion based on Moons et al.
(2017) article

Limited inventory capacity Yes or No criterion based on Moons et al.
(2017) article

Inventory holding cost Yes or No criterion based on Moons et al.
(2017) article

Table 3 – Criteria to classify the aspects related to the production

2.3 How perishability is modeled
This section describes, it is described how perishability is modeled in the reviewed

literature. For this analysis, we considered the 23 articles that met the inclusion and
exclusion criteria, i.e., studies that model the production problem, the distribution problem,
and articles that model the integrated production-distribution problem. This decision was
due to the perishability concept that was not related to the production or distribution
environment.

Besides the description, further analysis is conducted by linking the models’ charac-
teristics to the framework proposed by Amorim et al. (2013). This analysis was motivated
by questions of how certain aspects of the framework should be included in optimization
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Criterion Answer options Observation
Distribution problem Routing or Direct shipment -
Fleet type Homogeneous or Heterogeneous criterion based on Moons et al.

(2017) article
Multiple trips Yes or No criterion based on Moons et al.

(2017) article
Split delivery Yes or No -
Vehicle variable cost Yes or No criterion based on Moons et al.

(2017) article
Vehicle fixed cost Yes or No criterion based on Moons et al.

(2017) article
Loading times Yes or No criterion based on Moons et al.

(2017) article
Unloading times Yes or No criterion based on Moons et al.

(2017) article
Delivery constraint Due dates or Time window or No criterion based on Moons et al.

(2017) article

Table 4 – Criteria to classify the aspects related to the distribution

Criterion Answer options Observation
What was the objective function? - Classified according to the article,

but of studies considered cost or
profit as the objective function

What was the solution method
used?

E - Exact method;
D - Decomposition method,
i.e., any form to split the
problem in two or more parts;
DP - Dynamic programming;
H - Heuristic;
MH - Metaheuristic;
R - Robust optimization;
SP - Stochastic programming;
Sim - Simulation technique
employed to support an opti-
mization method

-

Table 5 – Criteria to classify what the model’s objective function was and the solution
method

problems. For example, how a product that physically deteriorates should be modeled?
Thus, a classification matrix is proposed and presented in Figure 4 at the end of the
section.

In the reviewed literature, a common way to model shelf life is as a single known
fixed parameter used as a deadline for the product to be delivered. All studies that modeled
the shelf life this way conducted the computational experiments using random instances or
instance generators from the literature (Amorim et al., 2013; Devapriya; Ferrell; Geismar,
2017; Seyedhosseini; Ghoreyshi, 2014; Marandi; Zegordi, 2017; Shirvani; Ruiz; Shadrokh,
2014).

Besides modeling a known and fixed shelf life as a time window, according to the
literature, other ways to model this situation are revenue/cost in the objective function or
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the velocity that products are delivered (or production orders that are completed). Chan
et al. (2020) modeled a meat product supply chain as a component in the multi-objective
function by maximizing the food quality level provided to consumers. The authors also
considered a time limit for perishablesl products because the food quality should not
exceed a threshold value. LI et al. (2016) modeled a generic perishable food using a food
quality index q ∈ Q = {0, 1, 2, Nbq}, where 0 is the initial quality of the newly produced
food. For each quality level, there is a different selling price. As there is a limited number
of levels, the product cannot fall below a minimum quality level (Nbq).

As presented in the previous examples, the product lifetime can also be a decreasing
value over time, which can be modeled as continuous deterioration or levels of deterioration.
According to the reviewed papers, the main difference between these two quality decays
is that the former is usually modeled as a variable in the objective function, while the
latter is usually modeled as one of the model’s indexes. Albrecht and Steinrucke (2018)
were motivated by a real-life German fresh produce distributor specializing in fruits. The
product has several quality grades that are modeled as an index in the model. Each quality
grade has a different sales price, and the product expires when its sales price reaches
zero. Piewthongngam, Chatavithee and Apichottanakul (2019) studied the disassembly
process for the meat processing industry. The disassembly process transforms an item into
several subproducts, which can also be disassembled into other subproducts. The authors
modeled these subproducts as different indexes, and specific holding costs and shelf lives
are considered for each. The model handles perishability by minimizing the cost of expired
items. Drenovac, Vidović and Bjelić (2020) studied the distribution of sugar beets, and
the perishability was included as a decay function that must be maximized.

When the lifetime is not a known value or function, five articles did not model
the product lifetime, and one article considered a random lifetime. In those cases, all
articles considered continuous deterioration or levels of deterioration. When the lifetime is
undefined, the perishability is included as a cost or quality decay in the objective function.
For example, Zhao, Li and Zhou (2020) transformed the loss of quality into a cost that
is included in the objective function. Matsumoto, Kashima and Ishii (2011) aimed to
minimize both orders finished before the due date (earliness), and orders finished after
the due date (tardiness). Farahani, Grunow and Gunther (2012) aimed to minimize food
decay, which is measured by the difference between the delivery time of an order and its
production finishing time. All these papers were classified as undefined lifetime because it
was impossible to infer the lifetime.

Regarding the study that considers perishability as random lifetime, Rahbari et
al. (2019) modeled the shelf life of the fresh products from their work as a decreasing
function. This decreasing function is modeled both with and without uncertainties. When
the uncertainties are present in the model, the authors solve them by robust optimization.
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Two studies modeled the perishability impacting the demand. Ahumada and
Villalobos (2011) developed a model for agricultural products. In this study, the perishability
impacts the demand because the customer has a preferred quality level, and if the delivered
products pass a determined threshold, the lot can be rejected, or the supplier must offer a
discount. Hsiao, Chen and Chin (2017) also considered the perishability impacting the
demand because, in their study of planning for cold chain distribution, the customers
demand the product at a specific quality level. The proposed model satifies the customers’
demand by delivering a higher quality product, incurring a substitution cost that is
calculated based on the price gap between the higher quality level delivered to customers
and the lower quality level initially required.

Besides modeling perishability such as cost, freshness, variation in demand, or time
window, Acevedo-Ojeda and Chen (2020) studied a situation where the feedstock has a
limited shelf life and its processing time (and cost) increases as time passes. Amorim,
Gunther and Almada-Lobo (2012) considered a scenario in which a model variable could
vary the shelf life length: the temperature at which products are stored at the distribution
centers. Furthermore, perishability was included in the objective function by maximizing
the product freshness. Besides the described scenario, named by the authors as "loose shelf
life", they also proposed and evaluated a model where the product has a fixed shelf life.

In the reviewed literature, we did not find the perishable products classified
according to (Amorim et al., 2013) proposed framework. Therefore, the articles were
categorized using the following steps: 1 - When the article refers to fresh produce or food,
we indicated physical deterioration. 2 - For generic products, physical deterioration was
considered when the content indicated it, for example, when the model aims to optimize
freshness or when the need for temperature control is indicated; 3 - Fruits and vegetables
were classified as loose authority limits; 4 - Most of the problems that limit the time
to deliver the product were classified as having a limit imposed by an authority. This
authority can be a governmental entity or a company policy restricting the minimum shelf
life for the products to be delivered to consumers. 5 - When the optimization objective
consists of maximizing the product freshness or different sales prices according to the
quality grade, the problem was classified as decreasing value for customers. Figure 4
presents the classification matrix.

2.4 Integrated Production-Distribution Problems

To analyze the integrated production and distribution problems in the literature,
the papers were divided according to the production environment, similarly to Moons et
al. (2017). The justification for that division is that authors can decide to include elements
in the model according to the production environment. The first category considered
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Figure 4 – Matrix linking the framework proposed by (Amorim et al., 2013) and the
modeling of perishability

the simplest production environments: single machine, single production level, and cases
where the supply connects directly to the demand, without an intermediary stage. The
articles from this category are presented in Subsection 2.4.1. The second category, whose
studies are presented in Subsection 2.4.2, consists of models considering a parallel machine
production environment and also simple supply. The cases not included in those two groups
are presented in Subsection 2.4.3. We present a classification matrix for each category that
combines the production and distribution characteristics.

2.4.1 Single machine environment

Seyedhosseini and Ghoreyshi (2014) integrated the lot sizing and direct shipment
problem considering a limited capacity inventory at the production site. The problem
consists of a single plant producing a product with a fixed shelf life. The decision on
production consists of defining the production level and how much to stock. When a
batch is produced, a setup cost and a variable production cost should be considered.
On the distribution aspect of the problem, a unlimited fleet of homogenous capacitated
vehicles must transport the products from the plant to several distribution centers with
an established demand at each period. The model must define the number of vehicles and
how many products will be delivered to customers during each period. Each vehicle can
supply one single distribution center at most, and each distribution center can receive at
most a single vehicle. The objective consists of minimizing the supply chain costs, i.e.,
production costs, setup costs, holding costs, and the total trip costs.

LI et al. (2016) integrated the lot sizing and the vehicle routing problem, considering
a limited capacity inventory. The production aspect of the problem is very similar to
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Seyedhosseini and Ghoreyshi (2014), considering production, setup, and holding costs. On
the distribution aspect, products must be delivered to several retailers by a limited number
of homogeneous capacitated vehicles. The model objective is to maximize the total profit.

Devapriya, Ferrell and Geismar (2017) integrated the production scheduling and
the vehicle routing problem. In this article, the objective is to minimize the total cost of
distribution to satisfy the customers’ demand considering a single plant that produces a
single perishable product with a fixed shelf life. The decision variables are the production
sequence and the routes for a limited number of vehicles. Multiple trips are allowed and
there is no inventory to store the goods. The authors named this problem an integrated
production and distribution scheduling problem.

Chan et al. (2020) integrated the lot sizing and the vehicle routing problem where the
inventory has a limited capacity. Concerning the production aspect, the authors considered
production costs, setup costs, and holding costs. For the distribution subproblem, the
transport of orders is done by a limited number of vehicles that are allowed to make
multiple trips. The authors also included the CO2 emission to be minimized in the objective
function. Besides that, the model also aims to maximize the freshness of the delivered
goods and minimize costs and delivery time.

Table 6 presents a classification matrix for the studies analyzed in this subsection.

2.4.2 Parallel machine environment

Amorim, Gunther and Almada-Lobo (2012) studied the benefits of solving the
production-distribution problem in an integrated way over the sequential approach. The
production part of the problem contains both characteristics of production scheduling
(decide the production sequence) and lot sizing problem (how much to produce) on
parallel production lines on multiple plants. Besides the production costs, the authors also
considered both sequence-dependent and independent setup times and costs. Regarding the
distribution aspect, the products are transported from the production site to distribution
centers via direct shipment with unlimited capacity considering only the variable transport
cost. During each period, there is a demand to be satisfied, and we considered that need
to deliver a quantity of goods at each period as a "due date" constraint. Products at the
distribution center can be used for customers’ orders or be stocked for subsequent periods.
The distribution center has unlimited inventory capacity, and there are no holding costs
for storing items. The model addresses a multi-objective problem, aiming to minimize
costs (production, transportation, and spoilage costs) and maximize the remaining shelf
life of the delivered items.

Farahani, Grunow and Gunther (2012) studied the integrated production scheduling
and vehicle routing problem for a catering company based in Copenhagen. The model



30 Chapter 2. Literature review
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Direct shipment 1 0 1 0 1 0 1 0 0 1 1 1
Routing 2 1 3 0 2 0 2 0 0 2 2 3

V
eh

ic
le

fle
et Single vehicle 0 0 0 0 0 0 0 0 0 0 0 0

Homogeneous fleet 3 1 4 0 3 0 3 0 0 3 3 4
Heterogeneous fleet 0 0 0 0 0 0 0 0 0 0 0 0
Unlimited number 0 1 1 0 0 0 0 0 0 0 0 1
Limited number 3 0 3 0 3 0 3 0 0 3 3 3

O
th

er

Multiple trips 1 1 2 0 1 0 1 0 0 1 1 2
Split delivery 0 0 0 0 0 0 0 0 0 0 0 0
Variable transportation cost 2 1 3 0 2 0 2 0 0 2 2 3
Fixed transportation cost 1 1 2 0 1 0 1 0 0 1 1 2
Loading times 0 0 0 0 0 0 0 0 0 0 0 0
Unloading times 0 0 0 0 0 0 0 0 0 0 0 0
Delivery due date 1 0 1 0 1 0 1 0 0 1 1 1
Time windows 0 0 0 0 0 0 0 0 0 0 0 0
Number of studies 3 1 4 0 3 0 3 0 0 3 3 4

Table 6 – Matrix of distribution and production characteristics for single machine environ-
ment

aims to minimize the weighted sum of the total setup costs, food decay, and variable
transportation costs. On the production side, the customers’ orders are produced at a
single production site that operates several identical ovens (parallel machines). Since each
order requires a unique combination of temperature and processing time, the production
decision consists of grouping customer orders with similar temperature requirements and
processing times and then sequencing those grouped orders to be processed in one of the
ovens. The temperature setting of the ovens create a condition of sequence-dependent
setup times. When the production finishes, the distribution consists of a vehicle routing
problem with time windows and a limited number of homogeneous vehicles that will deliver
the orders to customers.

Amorim et al. (2013) compared two problems: the integrated batching scheduling
vehicle routing problem with time windows (I-BS-VRPTW) and the integrated lot sizing
vehicle routing problem with time windows (I-LS-VRPTW). The difference between the
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two models is that the first can determine only the production sequence, while the second
also specifies how much to produce. Both models consider variable production cost and
sequence-dependent setup time and costs. Concerning the distribution aspect, a set of
limited homogeneous vehicles fleet delivers the customer orders. Each order must be
delivered within strict time windows, and the delivery demands a certain service time
when the vehicle arrives at the customer’s destination. There is a fixed cost for each vehicle
used and a variable cost proportional to the travel time.

Rahbari et al. (2019) studied the vehicle routing problem with cross-docking.
We considered this an integrated problem because the schedule of vehicles arriving and
departing from the cross-docking station is analogous to the production schedule problem.
Moreover, in the cross-docking station, there is the option to stock goods incurring in
holding costs. At the distribution part, it is considered a fixed cost for each vehicle and a
variable cost to transport the customers’ orders. This problem also considers the loading
time at the cross-docking and the service time at the customer. The demand must be
satisfied within a time window, and the objective function consists of minimizing costs
and maximizing the freshness of the product delivered.

2.4.3 Other production environments

Two articles considered other production environments. Marandi and Zegordi (2017)
integrated the flow-shop production scheduling to the vehicle routing problem. Their model
aims to set production scheduling and the vehicles’ routes to minimize the delivery and
tardy cost when the production due date is violated. The model does not consider any
setup time or cost. A heterogeneous fleet of vehicles is responsible for the delivery, and
variable transportation costs proportional to travel time are incurred.

Ahumada and Villalobos (2011) presented an MIP model for optimally scheduling
the harvesting and distribution operations for the fresh produce industry. Some of the
decisions included in the model are the frequency of harvest, the number of products
shipped to warehouses or customers, and the number of operator hours. The authors
applied the model to a hypothetical fresh produce grower who grows tomatoes and bell
peppers.

We did not find any article that proposes an integrated optimization of a job shop
production environment and a distribution problem.

2.5 Solution approaches

This section describes the solution methods applied in the papers mentioned in the
previous section. Those methods are summarized in Table 8.
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Direct shipment 1 0 0 1 1 1 1 0 1 0 0 1
Routing 1 3 4 0 2 3 3 0 3 0 1 4

V
eh

ic
le

fle
et Single vehicle 0 0 0 0 0 0 0 0 0 0 0 0

Homogeneous fleet 2 3 4 1 3 4 4 0 4 0 1 5
Heterogeneous fleet 0 0 0 0 0 0 0 0 0 0 0 0
Unlimited number 2 1 2 1 3 3 3 0 3 0 0 3
Limited number 0 2 2 0 0 1 1 0 1 0 1 2

O
th

er

Multiple trips 0 0 0 0 0 0 0 0 0 0 0 0
Split delivery 0 0 0 0 0 0 0 0 0 0 0 0
Variable transportation cost 2 3 4 1 3 4 4 0 4 0 1 5
Fixed transportation cost 1 2 3 0 2 2 2 0 2 0 1 3
Loading times 0 1 1 0 0 0 0 0 0 0 1 1
Unloading times 1 2 1 0 2 2 2 0 2 0 1 3
Delivery due date 1 0 0 1 1 1 1 0 1 0 0 1
Time windows 1 3 4 0 2 3 3 0 3 0 1 4
Number of studies 2 3 4 1 3 4 4 0 4 0 1 5

Although 4 articles were classified as "Parallel Machine", Amorim et al. (2013) studied two problems
in their paper: the I-BS-VRPTW and the I-LS-VRPTW. We counted each of them in this table,
resulting in 5 studies

Table 7 – Matrix of distribution and production characteristics for parallel machine envi-
ronment

Ahumada and Villalobos (2011), Amorim et al. (2013), and LI et al. (2016) con-
ducted computational experiments using a commercial solver as a solution method. Ahu-
mada and Villalobos (2011) applied the solver for a hypothetical fresh produce grower to
test the validity of the proposed method. Amorim et al. (2013) compared two production
situations, one that allows that model to set the production volume and the production
sequence (lot sizing) and a second model that controls only the production sequence
(production scheduling). The article concluded that in 5 out of 120 instances, the lot
sizing model reached a better solution than just scheduling the production, caused mainly
by the reduction in the setup times, which led to less product waste due to expiration.
LI et al. (2016) evaluated the model structure by generating random instances varying
several parameters, such as the minimum quality level, number of retailers, length of the
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planning horizon, and the number of available vehicles. Some of the conclusions are that
the number of vehicles impacts the computational time, the profits increase when the shelf
life is longer, and a limitation to optimally solve the problem using a commercial solver at
around 15 customers.

Devapriya, Ferrell and Geismar (2017), Marandi and Zegordi (2017), and Chan
et al. (2020) used metaheuristics as a solution approach for the proposed problems,
in all studies, the authors validate the proposed metaheuristic comparing it to a MIP
model implemented in a commercial solver. Devapriya, Ferrell and Geismar (2017) tested
three variations of the genetic algorithm for randomly generated problems. The solution
approaches were compared to CPLEX for small instances, while for large instances, they
used a non-parametric statistical test to evaluate differences between the median of the
percentage gap above a lower bound. Marandi and Zegordi (2017) proposed a metaheuristic
derived from the Particle Swarm Optimization (PSO) that was called Improved Particle
Swarm Optimization (IPSO). To evaluate the performance of the IPSO, the authors
compared it to the MILP model implemented in a commercial solver for small and medium
instances. For large instances, the algorithm was compared to the Genetic Algorithm, and
statistical tests were conducted to validate the proposed approach. Chan et al. (2020) also
proposed a metaheuristic derived from the PSO, which was named Multi-Objective Global
Local Near-Neighborhood Particle Swarm Optimization (MO-GLNPSO). To evaluate the
proposed solution method, the authors applied it in a case study of a meat product supply
chain from the literature and for several random instances. In both cases, the proposed
method is compared to other PSO variations. The authors also conducted a sensitivity
test to evaluate the influence of parameters on the solution result.

Amorim, Gunther and Almada-Lobo (2012), Farahani, Grunow and Gunther
(2012), and Devapriya, Ferrell and Geismar (2017) proposed hybrid solution methods
that decompose the integrated problem into subproblems that are solved using different
solution methods. The subproblems are connected using loop structures and applying
a subproblem solution as an input for the other subproblems. Amorim, Gunther and
Almada-Lobo (2012) evaluated the benefits of solving the production-distribution problem
in an integrated way compared to a sequential approach. To conduct that analysis, the
authors considered two cases of perishability: a case where perishable products have a
fixed shelf life and a case with loose shelf life. Thus, four solution methods were proposed:
An MILP model implemented in a commercial solver was proposed for the integrated
approach considering a fixed shelf life. For the decoupled approach, the authors solved
the production problem first and then used the solutions from the production subproblem
as input for the distribution problem. For the integrated approach with loose shelf life,
the authors combined the genetic heuristic that generated inputs for an MILP model
implemented in a commercial solver. For the decoupled approach with loose shelf life, an
MILP model generated solutions for the production subproblem that are used as input for
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the distribution problem that was solved using the genetic heuristic and commercial solver,
similar to the integrated approach. As a result, the authors verified that more weight of
the freshness reduces the differences between the integrated and the sequential approaches,
while more perishability increases the benefits of the integration.

Farahani, Grunow and Gunther (2012) solved the proposed problem using a hierar-
chical modeling approach that divides the entire planning problem into sub-problems. The
authors combined heuristic methods and the MILP model implemented in a commercial
solver to solve the sub-problems and compare that integrated solution approach to a
sequential one. Through computational experiments, the authors concluded that the bigger
the instance, the more significant the benefits of the integrated approach (around 9.5 to
28.2% of improvement in the objective function). In addition, the authors verified that the
integrated approach provided better results for more perishable products.

Seyedhosseini and Ghoreyshi (2014) also solved the integrated problem by decom-
posing the integrated model into two dependent submodels, the production submodel,
and the distribution submodel. The production submodels are solved using a commercial
solver, and the distribution submodel is solved using a metaheuristic: the Particle Swarm
Optimization (PSO). Both subproblems are connected by a loop that feeds the result of
one subproblem into the other until a stop criterion is met.

Lastly, Rahbari et al. (2019) studied the vehicle routing and scheduling problem
with cross-docking (VRPCD) for perishable products. The authors modeled the problem
in two ways: a deterministic model in a commercial solver to evaluate the effects of
perishability and two robust models to consider the uncertainties of shelf life and travel
time. The results of the robust models are compared to the "Soyster’s approach" and "Ideal
case." One conclusion is that the model increased the freshness of the delivered products
by 74.14% on average without increasing the distribution costs.

2.6 Discussion

The use of optimization models in production and distribution problems, when
considering perishability, is not very common. Compared to Moons et al. (2017) who found
20 studies integrating production scheduling and vehicle routing problems between 2011
and 2017, in our review, only five papers solved the same integrated problem for perishable
products between 2011 and 2022.

Concerning how perishability is modeled, we verified many articles modeling
perishability as a time limit to deliver the orders to consumers or to finish production orders.
Another common way is to model it in monetary terms included in the objective function.
This way to model the objective function differs from the standard metrics optimized in the
scheduling literature, usually related to weighted completion time, makespan, earliness, or
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Authors E D DP H MH R SP Sim Objective function
Single machine
LI et al. (2016) x Profit
Devapriya, Ferrell
and Geismar (2017)

x Cost

Seyedhosseini and
Ghoreyshi (2014)

x x x Cost

Chan et al. (2020) x Cost + Freshness +
CO2 emission + Deliv-
ery time

Parallel machine
Amorim et al.
(2013)

x Cost

Amorim, Gunther
and Almada-Lobo
(2012)

x x x Cost + Freshness

Farahani, Grunow
and Gunther (2012)

x x x Cost + Freshness

Rahbari et al.
(2019)

x Cost + Freshness

Other
Ahumada and Vil-
lalobos (2011)

x Profit

Marandi and Ze-
gordi (2017)

x Cost + Tardiness

Sinha and Anand
(2020)

x Cost

E = Exact method; D = Decomposition method; DP = Dynamic Programming; H = Heuristic;
MH = Metaheuristic; R = Robust Optimization; SP = Stochastic Programming; Sim = Simulation

Table 8 – Solution methods

tardiness (Pinedo, 2008; Fernandes; Filho, 2010). One possible explanation for optimizing
profit or costs in the objective function is that most of the studies consider fresh produce,
and for those items, consumers can distinguish the different quality grades by visual
inspection. Another possible reason may be the integration to the distribution problem
since Moons et al. (2017) also pointed out several articles that aim to optimize profit or
costs.

We also noticed that a standardized form to describe perishable products could
benefit future studies, similar to production scheduling studies where it is common to
follow the classification proposed by Pinedo (2008). This proposal is motivated by the
existing relation between the characteristics of perishable products and how they can be
modeled. Therefore, using a standard classification, such as the framework proposed by
Amorim et al. (2013), can make future works more transparent and help authors find and
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propose forms to model perishability.

Most of the problems that considered physical deterioration also modeled it as a
decreasing perceived value by customers. Only two studies did not consider the relationship
between physical deterioration and perceived customer value. According to Acevedo-Ojeda
and Chen (2020), the physical deterioration impacts processing the perishable feedstock,
increasing the processing time and cost as time passes. For Piewthongngam, Chatavithee
and Apichottanakul (2019), the physical deterioration incurred in discarding costs for
expired goods. Moreover, this review observed a prevalence of research on fruits, vegetables,
meat, and other fresh produce. In a world of fast fashion and planned obsolescence, there
is an opportunity to model perishability for other items such as clothes and electronics.

There is a key difference between how the authors face the challenge of integration:
a first group of studies considers a set of performance measures on both sub-systems (e.g.,
Chan et al. (2020) adopt production and distribution costs). Another approach considers
only the performance measures from one subsystem, and the integration arises when finding
viable solutions (e.g., Devapriya, Ferrell and Geismar (2017) adopts the distribution cost
as the objective function, and the solution space is given by a combination of production
and distribution constraints).

When comparing studies that analyzed the single machine production environment
to studies that considered the parallel machine environment, we noticed that the latter
included more characteristics from production and distribution in their proposed models.
Only one study of the single machine environment considered the production scheduling
problem, and none considered setup times between orders. On the other hand, most studies
from the parallel machine environment included sequence-dependent setup times in their
models. The same was noticed in the distribution aspect. The single machine environment
studies modeled the distribution as a vehicle routing problem with a homogeneous fleet
considering fixed and variable transportation costs. In contrast, many studies from parallel
machine environments also included service times at customer and time windows to deliver
orders.

Another aspect noticed was that only three articles evaluated different forms
to model a problem. Amorim et al. (2013) compared lot sizing to the batch scheduling.
Amorim, Gunther and Almada-Lobo (2012) compared four forms of modeling an integrated
production scheduling routing problem: they tested combinations of the decoupled approach
to the integrated approach and fixed shelf life and loose shelf life. Farahani, Grunow and
Gunther (2012) also compared the sequential versus the integrated planning approach.
Studies such as those support future works when authors must decide how to model and
implement the problem.

Regarding solution methods, this review reinforces that solving integrated problems
are benefited by alternative approaches such as decomposition methods and metaheuristics
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(Grossmann, 2005b; Papageorgiou, 2009; Garcia; You, 2015). The lack of studies considering
stochastic elements identified by Amorim et al. (2013) is also found in this review where
only Rahbari et al. (2019) implemented stochastic elements in the model.

This overview demonstrates that the literature on integrated production-distribution
optimization is still in the early step. The number of studies is small, and a fraction of those
test different forms to model the problem or solve it. Therefore, there is a gap in theoretical
studies that provides insights into modeling the integrated production-distribution problem
for perishable products, whether testing different forms and different solution approaches
or studying structural properties from the problem that can provide results to simplify it.
These kinds of studies could be a way to support future works and reinforce this research
topic in academia.
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3 Problem Characterization

This chapter presents the mathematical formulation and structural properties for
the integrated production and distribution scheduling problem for perishable products
(IPDSP-P). The quantitative model, presented in Section 3.1, was based on the work of
Amorim et al. (2013), but we removed all setup times and setup cost from the original
model. This adaptation was done to simplify the model because the focus of this work
lies on building theoretical knowledge about a simple form to model the IPDSP-P, and
we wanted to avoid any other component besides the shelf life influences the expected
performance in our experiments.

This simple model can be considered an integrated problem because when the
available time between the order placement and the delivery is short, such as problems
involving perishable products or a make-to-order system, integration is necessary. Below,
an example is provided to demonstrate the necessity of integration for time-sensitive
products.

Consider a company that produces a single perishable product and at the beginning
of the planning period, there are nine orders to be sequenced in a single machine. After
production, the order must be delivered to customers using identical vehicles that should
be routed by the optimization model. For each vehicle used, the company incurs a fixed
cost of $250. The variable cost for each combination of origin and destination is presented
in Table 9. The travel time is the same as the variable cost. Finally, Table 10 presents the
processing time for each order.

P 1 2 3 4 5 6 7
P - 15 16 40 50 50 45 27
1 15 - 21 52 63 46 32 34
2 16 21 - 53 43 65 54 44
3 40 52 53 - 61 50 70 21
4 50 63 43 61 - 97 96 66
5 50 46 65 50 97 - 34 32
6 45 32 54 70 96 34 - 49
7 27 34 44 21 66 32 49 -
P = Plant

Table 9 – Travel time and cost matrix for the plant and customers for an integration
example

Consider four levels of perishability to exemplify the necessity of integrated planning:

• Scenario 1: Non-perishable product

• Scenario 2: Product with long shelf life - Shelf life = 747 units of time
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Order Process time Demand
1 40 40
2 1 1
3 55 55
4 48 48
5 46 46
6 53 53
7 43 43

Table 10 – Process time and demand for each order of the integration example

• Scenario 3: Product with short shelf life - Shelf life = 340 units of time

• Scenario 4: Product with very short shelf life - Shelf life = 149 units of time

• Scenario 5: Minimum shelf life possible, i.e., the order must be delivered as soon as
the production is finished

Then, consider two solution methods to the problem:

• Method A: Using the shortest processing time (SPT) rule to the production and
optimization of the distribution

• Method B: Integrated optimization of the production and distribution

The results for scenarios are presented in Figures 5a, 5b, 5c, 5d. Figure 5a shows
the result for the scenarios 1, 2 and 3 using solution method A, while Figure 5b is the
result for the same scenarios using solution method B. For scenario 4, where the shelf
life is very short, it is not possible to solve the production and distribution separately,
because the optimal solution for the VRP, without the production problem, would be the
same as Figures 5a and 5b, i.e., using two vehicles. However, when solving the problem
in an integrated way, as presented in Figure 5c, the result shows that three vehicles are
needed for a feasible solution. Finally, for scenario 5, when the shelf life is so short that
the product must be delivered as soon as the production is finished, only the production
problem must be solved, because necessarily each vehicle will necessarily deliver a single
order.

Section 3.2 presents a set of structural properties that allows one to, in Section 3.3,
enhance the model described in Section 3.1.

3.1 Integrated production and distribution scheduling for perishable
products
This problem consists of a single machine or plant, which produces a particular

perishable product whose quality starts to decay right after the production starts. This
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(a) Results for scenario 1 using solution method
A (SPT rule for production and optimiza-
tion of vehicle routing problem)

(b) Results for scenario 2 using solution
method B (Integrated production-
distribution scheduling optimization)

(c) Results for scenario 3 using solution method
B (Integrated production-distribution
scheduling optimization)

(d) Results for scenario 4 using the SPT rule
for production

product must be delivered to a set of customers N = {1, . . . , n}. The delivery can occur
only while the product still has some shelf life and there is available capacity in one of the
|K| identical fixed capacity vehicles. These vehicles must be routed through a set A of
arcs contained in a directed graph G = (V, A). The customers and the plant represents
the vertices of this graph (V), V = N ∪ {0, n + 1}, where vertices 0 and n+1 represents
the production plant (start and ending of the route, respectivelly).

The notation adopted for this IPDSP-P model is:

Indices and sets

(c, d) ∈ N Customers
k ∈ K Vehicles

Parameters

demc Demand at customer c (units)
pt Processing time for one unit of product
CapV Vehicle capacity
ctcd Cost to transport products from customer c to d

ttcd Travel time to transport products from customer c to d

ft Fixed cost associated to each vehicle k

sl Product’s shelf life

Variables
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xk
cd assume the value of 1, if arc (c,d) is used by vehicle

k (0 otherwise)
wk

c arrival time of vehicle k at customer c
Vcd assume the value of 1, if customer d order is pro-

duced right after customer c order (0 otherwise)
Ctc completion time for customer c order

Based on these elements, the IPDSP-P may be formulated as follows:

Min ft
∑
k∈K

(1− xk
0,n+1) +

∑
k∈K

∑
c,d∈N

ctcdxk
cd (3.1)

Subject to Ct0 = 0 (3.2)∑
c∈N

Vcd = 1 ∀d ∈ N (3.3)
∑
d∈N

Vcd = 1 ∀c ∈ N (3.4)

Ctd ≥ Ctc + (ptd · demd)−M(1− Vcd) ∀

 d ∈ N

c ∈ N/{0, d}
(3.5)

∑
k∈K

∑
d∈N

xk
cd = 1 ∀c ∈ N (3.6)

∑
d∈N

xk
0d = 1 ∀k ∈ K (3.7)

∑
c∈N

xk
cd −

∑
c∈N

xk
dc = 0 ∀k ∈ K; d ∈ N (3.8)

∑
c∈N

xk
c,n+1 = 1 ∀k ∈ K (3.9)

wk
d ≥ wk

c + ttcd −M(1− xk
cd) ∀k ∈ K; c, d ∈ N (3.10)∑

c∈N

demc

∑
d∈N

xk
cd ≤ CapV ∀k ∈ K; c ∈ N (3.11)

Ctc − (pt · demd) + sl −
∑
k∈K

wk
c ≥ 0 ∀c ∈ N (3.12)

wk
0 ≥ Ctc −M(1−

∑
d∈N

xk
cd) ∀k ∈ K; c ∈ N (3.13)

wk
d , Ctc ≥ 0 ∀k ∈ K; c, d ∈ N (3.14)

xk
cd, Vcd ∈ {0, 1} ∀c, d ∈ N (3.15)

The objective function (3.1) minimizes the distribution costs, which are composed
of variable and fixed costs, based on the total travel time and the number of vehicles used,
respectively. The objective function does not consider production costs.

Constraints (3.2) to (3.4) are used to set the production sequence of customers’
orders and constraints (3.5) establish when each order is completed.



3.2. Structural properties 43

Constraints (3.6) to (3.11) refer to the distribution process. Constraints (3.6) ensure
that each origin has only one destination and is visited only by one vehicle. Constraints
(3.7) and (3.9) establish that each vehicle departing from the plant has only one destination
and each vehicle returning to the plant has only one origin, respectively. Constraints (3.8)
ensure that if a vehicle visits a client c, this node will be the next origin. (3.10) establishes
the time when a vehicle that departs from c to d will arrive at node d. Constraints
(3.11) enforces that the vehicle capacity is respected. As stated in (Amorim et al., 2013),
xk

0,n+1 = 1 means that the vehicle was not used.

Finally, constraints (3.12) enforce that the product is delivered while it still has
some shelf life, constraints (3.13) link the production to the distribution problem. The
domain of variables are stated in equations (3.14) and (3.15).

3.2 Structural properties

In this section, we analyze structural properties of the IPDSP-P. We found that if
any production sequence is feasible for a given distribution route, then the production
sequence that has the same order as the distribution route is also feasible. As the production
schedule does not impact the objective function, our goal is solely to find a production
schedule that satisfies the shelf life constraints for the optimal distribution route. This
simplification is possible if the following assumptions are true:

• Single machine environment;

• The size of each job is given

• Single product with a single shelf life length;

• No sequence dependent setup time or costs;

• The product’s quality starts to decay at the starting time of the production.

Lemma 1. Let σk ⊂ A be a feasible route of vehicle k for the distribution part of IPDSP-P.
Ei is the time between the start of the production of order i, i ∈ σk and its departure
from the plant, TSL is the total shelf life of the perishable product, and Traveli is the
time elapsed between the departure from the plant and the delivery to the customer i
for the given route. Considering this notation, the whole problem will be feasible only if
Ei ≤ SLi,∀i ∈ σk, where SLi is given by equation 3.16

SLi = TSL− Traveli (3.16)
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Proof. The route σk of the IPDSP-P will be feasible only if the total elapsed time between
production and delivery times for each customer order is lower than the total shelf life, i.e.,

Ei + Traveli ≤ TSL ∀i ∈ σk (3.17)

Combining equations 3.16 and 3.17, it can be stated that IPDSP-P will be feasible
only if Ei ≤ SLi.

Figure 6 presents an example of a scheduling with the variables Traveli, Ei, SLi

and TSL.

Figure 6 – A graphic representation of lemma 1

Lemma 2. If the route σk ⊂ A and the production sequence S = {x1, x2, ..., x|σk|} provide
a feasible solution for IPDSP-P, then Ei ≤ SLi for the orders i = 1, 2, ..., x1 in production
sequence S ′ = {1, ..., x1, ..., |σk|}

Proof. As the route is given and follows the order 1, 2, ..., |σk|, we may conclude that:

Travel1 ≤ Travel2 ≤ ... ≤ Travel|σk| (3.18)

Since TSL is constant, the following relationship can be stated:

SL|σk| ≤ SL|σk|−1 ≤ ... ≤ SL1 (3.19)
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Denoting Eoi and E ′
i as the Ei variable for S and S’, respectively, and as x1 is the

first job of the sequence S’, and S is feasible, we may assure that:

Eox1 =
|σk|∑
i=1

(pt ∗ demi) ≤ SLx1 ≤ SLx1−1 ≤ SLx1−2 ≤ ... ≤ SL1 (3.20)

Where (pt ∗ demi) is the processing time of any job i.

As S and S’ have the same number of jobs, and job 1 is the first job of sequence S’,
we may affirm that E ′

1 = Eox1 , and for any other job in S’, the following is true:

E ′
j = E ′

j−1 − pi ∀j > 1 (3.21)

As pi ≥ 0 then:

E ′
|σk| ≤ E ′

x1 ≤ E ′
x1−1 ≤ ... ≤ E ′

1 = Eox1 =
|σk|∑
i=1

pi (3.22)

According to (3.20) and (3.22):

E ′
|σk| ≤ E ′

x1 ≤ E ′
x1−1 ≤ ... ≤ E ′

1 = Eox1 ≤ SLx1 ≤ SLx1−1 ≤ ... ≤ SL1 (3.23)

Therefore,

E ′
i ≤ SLi ∀i ≤ x1 (3.24)

Figure 7 presents a graphical illustration of the lemma.

Lemma 3. If the route σk = {1, 2, ..., |σk|} and the production sequence S = {x1, x2, ..., xN}
provide a feasible solution for IPDSP-P. Then, Ei ≤ SLi for any job i that x1 + 1 ≤ i ≤ y

in sequence S ′ = {1, ..., x1, ..., y, ..., |σk|}, where y is the next job in S that y > x1.

Proof. Since y > x1, there will be no job y’ scheduled after x1 and before y that y′ > x1.
Thus:

Eoy = γ +
|σk|∑

i=x1+1
pi ≤ SLy (3.25)
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Figure 7 – A graphic representation of lemma 2

Furthermore,

E ′
x1+1 =

|σk|∑
i=x1+1

pi ≤ SLx1+1 (3.26)

Figure 8 – A graphic representation of lemma 3
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γ is a real number ≥ 0 and, from equations (3.25) and (3.26), E ′
x1+1 ≤ Eoy. Figure

8 provides a graphical support to prove that (3.26) is true. Finally, by the same logic
presented in 3.23:

E ′
|σk| ≤ E ′

y ≤ E ′
y−1 ≤ E ′

x1+1 ≤ Eoy ≤ SLy ≤ SLy−1 ≤ ... ≤ SLx1+1 (3.27)

Therefore,

E ′
i ≤ SLi ∀ x1 + 1 ≤ i ≤ y (3.28)

Theorem 1. If the route σk = {1, 2, ..., |σk|} and the scheduling sequence S = {x1, x2, ..., x|σk|}
provide a feasible solution for IPDSP-P, then the route σt and the production sequence S’
= {1,2, ..., |σk|} will also be feasible.

Proof. Lemma 2 proves that the production sequence S’ is feasible for all jobs i < x1.
Then, by repeating the lemma 3 until y = |σk|, the theorem is proved.

The following corollary then follows immediately.

Corollary 1. If the route σk = {1, 2, ..., |σk|} and the scheduling sequence S = {x1, x2, ..., x|σk|}
provide the optimal solution for IPDSP-P, then the route σk and the production sequence
S ′ = {1, 2, ..., |σk|} will also be optimal.

Proof. As the production sequence does not directly influence the objective function of
IPDSP-P, the objective function will be the same for S and S’. Thus, S’ is optimal.

3.3 Simplifying the model formulation

Given the corollary presented in the previous section, the model from Section 3.1
can be simplified by removing all constraints related to production, i.e, constraints (3.2)
to (3.4), and add the following constraints:
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Ctd ≥
∑
k∈K

(pt ∗ demd ∗ xk
0d) ∀d ∈ N (3.29)

Ctd ≥ Ctc + (pt ∗ demd)−M(1−
∑
k∈K

xk
cd) ∀

 d ∈ N

c ∈ N/{0, d}
(3.30)

∑
k∈K

wk
c − Ctc + (ptc ∗ demc) ≤ sl ∀c ∈ N (3.31)

wk
0 + M(1−

∑
d∈N

xk
cd) ≥ Ctc ∀k ∈ K; c ∈ N (3.32)

The main goal of those constraints from the new formulation is to assure the same
sequence for production and distribution and that orders will be delivered before the
product expires. More specifically, constraints (3.29) and (3.30) are responsible to keep
the production sequence the same as the distribution sequence. Constraint (3.31) assures
that the orders will be delivered while products still have some shelf life. Constraint (3.32)
links the production and distribution problems.

The reason to expect that the reformulated model outperforms the original model
formulation is related to the removal of the variables responsible for the production sequence
(Vcd). Even though, in Chapter 5, we compare the performance of this reformulated model
against the complete model from Section 3.1 and evaluate if there were any improvements.

Besides this new formulation that can be implemented in any commercial solver,
the corollary from the previous section also favors alternative solution approaches, such as
the genetic algorithm and Logic-Based Benders Decomposition, which will be detailed in
the next chapter.
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4 Solution approaches for IPDSP-P

As presented in the literature review, metaheuristics and decomposition methods
are popular approaches to solve the integrated production-distribution problem. Moreover,
as pointed out by several studies, one major challenge in integrating the production problem
into the distribution problem is the difficulty of solving the resulting model (Grossmann,
2005b; Papageorgiou, 2009; Garcia; You, 2015). This challenge was also observed during the
computational experiments when the IPDSP-P was implemented in a commercial solver.
Therefore, in addition to the MILP model, we also considered alternative approaches: the
Logic-Based Benders Decomposition (LBBD) and the Genetic Algorithm (GA). LBBD is
an exact approach proposed by Hooker and Ottosson (2003) that partitions the problem
into a master and subproblems. The method and the implementation of that approach
for IPDSP-P are explained in Section 4.1. The other alternative approach, the Genetic
Algorithm, is a metaheuristic procedure proposed by Holland (1975) that emulates an
evolutionary process to search for the best solution to an optimization problem. The
method and the implementation of GA for IPDSP-P are explained in Section 4.2. By
partitioning the problem or emulating an evolutionary process, it is expected that LBBD
and GA can find solutions for problems that a MILP model would not solve in a feasible
time.

4.1 LBBD approach to solve the IPDSP-P
From the corollary presented in the previous section, we found an opportunity to

create a model based on the decomposition of the integrated problem. For this reason, we
came up with a model using the LBBD. Our expectations for this model are that it can
solve larger instances of IPDSP-P compared to the MILP model.

As presented in Hooker and Ottosson (2003), the LBBD approach extends Benders
Decomposition strategy of "learning from one’s mistake" to a broader class of problems.
This approach partitions the problem into a master problem and one or more subproblems.
The subproblems are easier to solve, and their solution provides information to the master
problem, making it easier to solve. This information, which is called Benders’ cuts, can be
some set of variables’ values that makes the master problem infeasible (infeasibility cuts)
or can be a function that provides new lower bounds on the objective value for the master
problem (optimality cuts) (Kloimüllner; Raidl, 2017). Then, there is a new iteration to
solve the master problem with those further cuts that create a set of new subproblems.
Then, the whole process is repeated until it reaches the optimal solution.

To apply the LBBD to the IPDSP-P, we consider as the master problem a relaxed
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version of the model presented in Section 3.1, dropping all constraints related to the
production scheduling, namely constraints (3.2)–(3.5), and solve it using a commercial
MILP solver. When a solution for the distribution problem is found, we generate a candidate
solution S ⊂ A, where A is the set of arcs, for the complete problem considering the same
production schedule as the vehicles’ routes, based on the corollary from Section 3.2, and
evaluate if each tour σt from solution S satisfies the shelf life constraint. If the evaluation
shows that the solution is infeasible, we add cuts presented in constraints (4.1), which
forbid any infeasible route and the solution procedure of the master problem resumes.
Algorithm 1 presents the described process.

∑
{i,j}∈S

xijk ≤ |S| − 1 ∀k ∈ K (4.1)

Following the lemma presented by Chu and Xia (2004), the Benders Decomposition
will finitely converge to the optimality of the original problem only if the cuts introduced
by the subproblems satisfy two conditions:

1. If an infeasible solution is found in the master problem, the cut must exclude at
least that solution.

2. The cut must not exclude any feasible solution for the IPDSP-P.

The cut from constraints (4.1) satisfies the conditions because it only excludes
solutions that contain infeasible routes. This statement is true only because, based on the
corollary from Section 3.2, it is impossible to exist any other production schedule that
makes the IPDSP-P feasible when the schedule that uses the same sequence of the vehicles’
routes makes the IPDSP-P infeasible.

4.2 Evolutionary approach to solve IPDSP-P
In this section, we describe the implementation of the genetic algorithm for the

IPDSP-P, which consisted of applying the Split algorithm to produce feasible solutions for
the problem.

4.2.1 Split algorithm for IPDSP-P

The Split algorithm was introduced by Prins (2004), and is based on the method
proposed by Beasley (1983). The algorithm splits the complete route into sub-routes based
on vehicles’ capacity constraints from a complete tour containing all customers, which
creates feasible solutions. Then, the algorithm selects the best one. Figure 9 illustrates
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Algorithm 1 Logic-based Benders Decomposition for IPDSP-P
1: repeat
2: Run a MILP model considering just the distribution part (VRP problem) of IPDSP-P until a

solution is found
3: if solution is found then
4: for all subtour in solution do
5: ProductionScheduling = route
6: for all customer in route do
7: TotalTime ← Time elapsed between the start of the production and the delivery of the

customer order
8: if TotalTime > Available shelf life then
9: Create a cut to eliminate the route

10: end if
11: end for
12: end for
13: end if
14: until Solution - LowerBound ≤ Maximum GAP

return OptimalSolution

this process and Algorithm 2 presents the adapted Split algorithm for IPDSP-P. The use
of the Split algorithm in the genetic algorithm is presented in Algorithm 3.

Algorithm 2 Split algorithm for IPDSP-P
1: TSL ← Product’s shelf life
2: BestCost0 = 0
3: for all i in N do ▷ N is the set that contains all customers
4: BestCosti =∞ ▷ Contains the cost of the best solution containing customers 1 to i
5: end for
6: for all i in N do
7: load = 0; cost = 0; j = i
8: repeat
9: Add customer j to subtour (σji)

10: Update the vehicle load
11: Calculate σji distribution cost (Costσji)
12: for all c in σji do
13: Travelc ← Time between the depart from depot to arrival on customer c
14: Ec ← Time between the start of customer c order production and the depart from depot,

considering the production schedule = σji

15: RSLc = TSL− Ec − Travelc ▷ Remaining shelf life for customer c order
16: end for
17: if load < VehicleCapacity AND (RSLc > 0 ∀c ∈ σji) then
18: if Costσji−1 + Costσji

< BestCostj then
19: Solj ← Tour containing σji−1 and σji ▷ best tour from 1 to j
20: BestCostj = Costσji−1 + Costσji

21: end if
22: j = j+1
23: end if
24: until (j > size(N)) or (σji is not feasible)
25: end for
26: ProductionScheduling ← The same order in Soln

return Soln ▷ Selected tour, which contains all customers
return ProductionScheduling

Prins (2004) focuses on variations of the Vehicle Routing Problem (VRP) such as
distance-constrained VRP (DVRP) and Vehicle fleet mix problem (VFMP). To apply this
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Figure 9 – A graphical example of Split algorithm a

a Icons made by Monkik and Surang from flaticon.com
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method for perishable products, an additional procedure had to be included to ensure
that products still have some shelf life remaining when delivered to apply this method for
IPDSP-P (lines 12-17 in Algorithm 2).

Referring to the production component of the problem, we propose that customers’
orders must be scheduled in the same order as sub-tours, based on the corollary presented
in Section 3.2. For example, consider an IPDSP-P with three vehicles K = (k1, k2, k3),
and each vehicle k departs from the depot at time W k

0 , where W k1
0 < W k2

0 < W k3
0 . If

vehicle k1 serves customers a, b and c in that order, i.e., σk1 = (a, b, c); and σk2 = (d) and
σk3 = (e, f), then the production schedule sequence will be seq = (a,b,c,d,e,f).

4.2.2 Genetic algorithm for IPDSP-P

The genetic algorithm is a family of models based on the population evolution
process. Its implementation starts with a population of random chromosomes. Those
chromosomes are data structures that represent a solution to the target problem. The
evolution process occurs by combining those chromosomes to produce new (and possibly
better) solutions. This combination process is called crossover. Another form to obtain
new solutions is through random changes in an existing chromosome called mutation. This
process runs until a user-defined limit of generations is achieved.

Considering our particular problem, a chromosome (σ) is a complete tour containing
all customers, and each customer is a gene. When a chromosome is generated, the Split
algorithm, presented in Section 4.2.1, is employed to create feasible sub-tours (σj), and
consequently, a feasible solution for IPDSP-P. The fitness value is given by the total
distribution cost, as stated in Equation 3.1 in Section 3.1. Figure 10 provides an example
of a chromosome and its solution obtained from the Split Algorithm

The first-generation chromosomes are randomly generated. For the following gener-
ations, the roulette wheel selection process based on relative fitness selects a set of parents.
Each couple of chromosomes generates two children by a single-point crossover operator
based on a crossover probability. Every child has a chance, given by mutation probability,
to suffer mutation, performed by the SWAP algorithm. We used two stopping criteria: 1 - a
fixed number of generations and; 2 - the number of iterations without improvement. Figure
11 ilustrates the crossover and mutation operators. Algorithm 3 provides the procedure,
and Table 11 summarizes the operators used in this study.

Operator Value
Parents selection operator Weighted roulette wheel
Number of children per couple 2
Crossover operator Single-point crossover
Mutation operator SWAP Algorithm

Table 11 – Selected operators for the genetic algorithm
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Figure 10 – A graphical example of one chromosome and its solution for a problem with
nine customers/orders

Figure 11 – Illustration of the crossover and the mutation operations used in this study
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Algorithm 3 Pseudo-code for Genetic algorithm
1: PopulationSize = 0
2: BestSolution =∞
3: while PopulationSize < MaxPopulation do ▷ Generate initial population
4: σ ← random tour containing all customers
5: PopulationSize = PopulationSize + 1
6: end while
7: repeat
8: for all σ in Population do ▷ Find feasible solutions
9: Find a feasible sub-tour using Split algorithm

10: Calculate fitness value (Total distribution cost)
11: end for
12:
13: BestGen ← Best fitness value of generation ▷ Evaluate solutions
14: if BestGen is better than BestSolution then
15: BestSolution← BestGen
16: end if
17:
18: PopulationSize = 0 ▷ Create next generation
19: for i = 1 to MaxPopulation do
20: Select parents through Roulette Wheel process
21: end for
22: for all Parent do
23: Perform crossover considering the crossover probability
24: if Crossover was performed then
25: PopulationSize = PopulationSize + 1
26: Perform mutation using SWAP algorithm considering the mutation probability
27: end if
28: end for
29: while PopulationSize < MaxPopulation do
30: Copy the best chromosomes from previous generation
31: PopulationSize = PopulationSize + 1
32: end while
33: until Limit for number of generations or iterations without improvement is reached

return BestSolution
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5 Computational Experiments

This chapter presents the design and results of the computational experiments
designed to understand if the shelf life does actually influence the model’s expected
performance to solve the IPDSP-P. The experiments were conducted by implementing the
four solution approaches presented previously: 1 - The MILP model from Section 3.1 that
contains all constraints to solve IPDSP-P, which will be referred to in this chapter as "MILP-
Full", 2 - The simplified MILP model from Section 3.3 that does not contain production
sequence variables (MILP-Distribution); 3 - The Logic-Based Benders Decomposition model
(LBBD) from Section 4.1; 4 - Genetic Algorithm (GA) from Section 4.2. Those readers
who are interested can access data from the instances and the experiments results in the
following GitHub repository: <https://github.com/HerculesDantas/dissertation_data>

The remainder of this chapter is organized as follows. In Section 5.1, the parameters
for the computational experiments are presented. As we are analyzing the influence of
shelf life, we need to be able to distinguish a short from long shelf life. Since we could not
find any good suggestion in the literature, this study proposes a metric called Normalized
Shelf Life (NSL). This metric is explained in Section 5.2. The parameters for the genetic
algorithm, selected by the IRACE package (López-Ibáñez et al., 2016), are presented in
Section 5.3. In Section 5.4, we describe how the solution approaches were implemented
and the results obtained from the computational experiments. Finally, discussions on the
results are presented in Section 5.5.

5.1 Data generation
To achieve the aim of this paper, random instances were generated by the following

steps: Firstly, we have set the number of customers and the NSL, which is the metric we
developed to describe perishability in an operational context (see Section 5.2). The other
parameters were randomly generated by the same procedure used in (Amorim et al., 2013),
details of which are presented in Table 12.

Since several studies consider 5, 10, and 15 customers to perform the computational
experiments for the integrated production and distribution problem (LI et al., 2016;
Noroozi et al., 2018; Belo-Filho; Amorim; Almada-Lobo, 2015), we also chose to use these
customer numbers for our computational experiments. We also included instances with 7
customers to provide a better understanding of the problem. The NSL values were chosen
based on the analysis presented in Section 5.2. Then, five random instances were generated
for each combination of the number of customers and Normalized Shelf Life, resulting in a
total of 60 different instances.

https://github.com/HerculesDantas/dissertation_data


58 Chapter 5. Computational Experiments

Symbol Parameter Generation method
K Number of vehicles Equal to N (number of customers)

demc Customer’s demand 75% of demand follows a uni-
form distribution in the interval
U[40,60] and 25% is set to 0

ptc Production time (unit) 1
CapV Vehicle capacity 0.5 ∗

∑
c demc

c,d Node locations Customers were positioned ran-
domly in the x-y plane from (0,0)
to (100,100) and the plant is lo-
cated at position (50,50)

ttcd Travel times Travel times were determined by
the Euclidean distance between
nodes

ctcd Variable costs Variable costs are the same as the
travel times

ft Fixed cost 250 for each vehicle used

Table 12 – Procedure to generate the instances

We also wanted to simulate a real planning environment where there is a time
limitation to obtain a good operational plan. Therefore, for each instance we tested our
models considering several limits that seem adequate to an operational planning process.
Table 13 summarizes the chosen instances’ parameters.

Number of customers 5, 7, 10, 15
Execution time limits 30, 60, 300 and 1800 seconds

Normalized shelf life
short = 1.55
long = 4.56
very long = 10

Table 13 – Instances’ parameters

5.2 Normalized shelf life definition

The shelf life of a perishable product may vary from hours to weeks. In fact, the
shelf life in operational planning is relative and it is possible that a product that expires
in two days can be considered less perishable than a product that expires in a week. For
example, considering that the former product is delivered across the neighborhood and
the second is delivered all over the state, passing through several distribution centers,
the product that expires in two days may be considered less perishable in an operational
planning process. Therefore, time is not sufficient to characterize the shelf life length in
operational planning.

To come up with a standard metric, we tested metrics such as the ratio between
shelf life and the planning horizon, and the ratio between shelf life and the time of an
average route, i.e., the average trip time, but we discarded both options because the
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variation of the planning horizon should not affect the perishability degree of the product
and it should not be related to a decision variable of the problem.

Thus, we propose the following way to calculate the Normalized Shelf Life:

NSL = ShelfLife

AvgTT
(5.1)

The AvgTT is the average travel time from the depot (or plant) to customers. This
is a good alternative to calculate the Normalized Shelf Life because the travel time is a
model’s parameter and it shows how long a product can be stored in the most favorable
case, which is when the product goes directly from the depot to the customer.

The equation (5.1) fits situations where the shelf life starts to count after the
production finishes, however there are cases when the shelf life starts to count right after
the production starts (Amorim et al., 2013). In these cases, we must also consider the
average processing time (AvgPT), as shown below:

NSL = ShelfLife

AvgTT + AvgPT
(5.2)

To validate these metrics and to understand what a short shelf life is and a long
shelf life is, the equations (5.1) and (5.2) were tested on several works in the literature,
considering models containing either the vehicle routing or the direct shipment for the
distribution component of the problem. The procedure to convert the shelf life to the
Normalized Shelf Life for each paper is described in the following paragraphs. Table 14
summarizes the obtained values after applying the equations. Except for (Wang et al.,
2017), all analyzed papers considered more than one perishability degree. This helped to
understand what literature considers a short or long shelf life.

The models proposed by Amorim, Gunther and Almada-Lobo (2012), LI et al.
(2016), Li et al. (2020), Seyedhosseini and Ghoreyshi (2014), Coelho and Laporte (2014)
considered a direct shipment delivery, and there was no delay between the decision and
the delivery of the product. Thus, the AvgTT in those cases were set as 1.

To calculate the Normalized Shelf Lives for Amorim et al. (2013), Marandi and
Zegordi (2017), we generated a random instance following the instructions in the paper
and calculated the shelf life, the AvgTT, and AvgPT based on the generated instance.

In Albrecht and Steinrucke (2018), the authors analyzed the supply chain planning
for a perishable product. In this problem, the product departs from the supplier stage and
may pass through up to 3 distribution stages before arriving at the customer stage. The
supplier stage comprises five supplier sites, and each distribution stage is composed of
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Reference Short
shelf life

Long
shelf life AvgTT AvgPT

Short Nor-
malized

Shelf Life

Long Nor-
malized

Shelf Life
(Amorim et al.,

2013) 112.5 187.5 39 37.5 1.47 2.45

(Amorim;
Gunther;

Almada-Lobo,
2012)

2 8 1 - 2 8

(LI et al., 2016) 1 5 1 - 1 5
(Li et al., 2020) 1 5 1 - 1 5

(Albrecht;
Steinrucke,

2018)
4 6 5.27 - 0.76* 1.13*

(Marandi;
Zegordi, 2017) 96.92 241.53 69.80 - 1.39 3.46

(Seyedhosseini;
Ghoreyshi,

2014)
2 3 1 - 2 3

(Wang et al.,
2017) 28 28 0.75 - 37.48* 37.48*

(Coelho;
Laporte, 2014) 2 5 1 - 2 5

Average without outliers 1.55 4.56
* Outliers

Table 14 – Normalized shelf life for several models in literature

three warehouses and the customer stage comprises five customer sites. To calculate the
AvgTT, the average travel time between each stage was calculated and every possible route
was tested, for example, a route where the product is delivered directly from supplier to
customer or routes passing across one, two or three distribution stages before arriving at
the customer. The AvgTT was defined as the average travel time between all these routes.

In Wang et al. (2017), the authors provided the depot location and all customers’
locations as well. Thus, the AvgTT was calculated by dividing the average Euclidean
distance between the depot and customers by the vehicle’s average velocity.

The short and long Normalized Shelf Lives used in computational experiments
(1.55 and 4.56, respectively) were obtained from the average of Normalized Shelf Lives
calculated from the literature, not considering the values from the references Albrecht
and Steinrucke (2018) and Wang et al. (2017). Albrecht and Steinrucke (2018) was not
considered because in their problem, the delivery options had to be analyzed route by
route and not as an average, much so the short shelf life is lower than the AvgTT. The
reason why Wang et al. (2017) was not considered because the Normalized Shelf Life of
this work was an outlier compared to the others. We also added a very long shelf life
(Normalized Shelf Life = 10) to support our analysis.
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5.3 Parameter tuning for genetic algorithm

The selection of the genetic algorithm parameters may highly influence the per-
formance of the genetic algorithm. Due to this, the parameters have to be tuned. In this
study, we used the IRACE package (López-Ibáñez et al., 2016), which is an automatic
procedure that selects the best set of parameters for a given experiment.

We generated a set of random instances of different sizes using the same procedure
presented in Section 5.1, and the package selected the best parameters. These parameters
are presented in Table 15.

Parameter Value
MaxPopulation 790 chromosomes
Stopping criterion 87 generations
Crossover probability 73.86%
Mutation probability 01.27%

Table 15 – Parameters selected by IRACE package for Genetic algorithm

5.4 Computational Results

The LBBD model and the MILP models (MILP-Full and MILP-Distribution) were
implemented with CPLEX 20.1 and were run on a PC with an Intel Core i5 8265U @
1.6GHz 1.8GHz CPU and 8.0 GB of RAM. The genetic algorithm, implemented in Python,
was run in the same PC, and each instance was run 30 times to assure statistical relevance
of the results.

5.4.1 Comparison between solution approaches

Since there were several instances for which the exact models could not find a
feasible solution and the genetic algorithm found feasible solutions for every instance, we
decided to present the results of the exact models separated from the genetic algorithm
results. This visualization provides a better understanding of how the shelf life impacts
the expected performance of the exact solution methods.

For the exact approaches, i.e., the MILP-Full, MILP-Distribution and the LBBD
model, we computed how many times they could find and prove the found solution was
optimal, how many times they found a solution but without proving the optimality and
how many times they found no solution. This result is presented in Table 16. As we are
interested in the impact of the shelf life in those models, we grouped the data by the
Normalized Shelf Life and time limit. Thus, for each Normalized Shelf Life and each time
limit, 20 instances were solved (5 random instances * 4 different number of customers).



62 Chapter 5. Computational Experiments

MILP-Full
Normalized
Shelf Life

Time Limit No solution
found

Solution found Optimality
proven solution

1.55 30 10 5 5
60 10 5 5
300 10 5 5
1800 10 4 6

4.56 30 5 6 9
60 3 7 10
300 3 7 10
1800 3 7 10

10 30 10 10
60 10 10
300 10 10
1800 8 12

MILP-Destribution
Normalized
Shelf Life

Time Limit No solution
found

Solution found Optimality
proven solution

1.55 30 9 1 10
60 9 1 10
300 9 1 10
1800 9 1 10

4.56 30 10 10
60 10 10
300 10 10
1800 9 11

10 30 10 10
60 10 10
300 7 13
1800 7 13

Logic-Based Benders Decomposition
Normalized
Shelf Life

Time Limit No solution
found

Solution found Optimality
proven solution

1.55 30 10 5 5
60 10 2 8
300 6 4 10
1800 5 5 10

4.56 30 14 6
60 13 7
300 10 10
1800 10 10

10 30 15 5
60 13 7
300 10 10
1800 10 10

Table 16 – Exact models’ results categorized by solution status grouped by Normalized
Shelf Life and time limit
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GAP (%)
Number of
customers

Normalized
Shelf Life

30s 60s 300s 1800s

5 1.55 0.00 0.00 0.00 0.00
4.56 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00

7 1.55 29.01 29.01 29.01 29.01
4.56 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00

10 1.55 87.51 87.51 87.51 87.51
4.56 26.33 26.32 26.30 26.30
10 21.62 21.62 21.61 21.61

15 1.55 78.50 78.50 78.50 78.50
4.56 21.11 20.95 20.67 20.47
10 20.65 20.46 20.26 20.06

Table 17 – Results for the genetic algorithm

Regarding the genetic algorithm, we computed the gap between the average solution
from all runs and the instance lower bound provided by CPLEX after running the solver
for 3600s. Equation 5.3 shows how the GAP was calculated, and Table 17 summarizes the
results.

GAP =
∣∣∣∣∣ Avg(GA_runs)
CPLEX_Lower_Bound

− 1
∣∣∣∣∣ (5.3)

One impact of shelf life on the genetic algorithm is that it converged faster to a
single solution when the shelf life was shorter. Figure 12 shows a boxplot for one of the
instances with 15 customers that illustrate this finding. Other instances with the same
number of customers had a similar behavior. This effect is not clear on instances with
fewer customers because they had a fast convergence for the different shelf lives.

Finally, we provide a performance comparison among all models developed in this
study. To perform this test, we evaluated all the previous tests to obtain the best result
among all solution methods for each of the 60 instances. Then, we ran the models one
more time and registered the runtime each model took to achieve the best result. As the
genetic algorithm has a stochastic component, we ran it 30 times for each instance and
computed the best and the worst runtime. Moreover, the runtime was limited to 3600s for
all models. The results of the performance test are presented in Figure 13.

5.4.2 Effect of the shelf life on solving IPDSP-P

Another aspect that was analyzed in our study was the effect of the shelf life on
the capacity to find a feasible or optimal solution when solving the IPDSP-P. This analysis
was conducted by running 15 different random instances of IPDSP-P for each tested level
of the Normalized Shelf Life. In those experiments, the focus was on the influence of the
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Figure 12 – Boxplot of random instance "1" with 15 customers for genetic algorithm
computational experiment

Figure 13 – % of instances that each solution method finds the best solution as runtime
increases
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shelf life and not how fast the several solution approaches could convert to the optimal
solution. Thus, a fixed time limit of 1800 seconds was considered and only instances
with 10 customers. That number of customers was chosen because, based on the previous
experiments, this size was neither too small to make optimal solutions easy to be found,
nor too big, so the solver could not find any feasible solution. Regarding the levels of Shelf
Life, two scenarios were tested:

• Scenario 1 - This scenario consisted of varying the Normalized Shelf Life in a range
between the short (1.55) and the very long shelf life (10) from experiments in the
previous section;

• Scenario 2 - This scenario consisted of varying the Normalized Shelf Life in a
broader range, i.e., between 4.56 and 65.55. This new scenario was motivated by
the question if there is a level of Normalized Shelf Life that the implementation
of MILP-Distribution reaches the same results as the implementation of a classic
Capacitated Vehicle Routing Problem (CVRP).

All instances were solved using the MILP-Distribution implemented in CPLEX.
This method was selected because the gap is a metric provided by the commercial solver,
and the implementation of this model had a better performance when compared to the
other two exact solution approaches. The details of this computational experiment are
summarized in Table 18.

Solution method MILP-Distribution in CPLEX
Number of customers 10
Number of random in-
stances

15

Execution time limits 1800 seconds

Normalized shelf life Scenario 1 = 1.55 to 10.1
Scenario 2 = 4.56 to 65.55

Table 18 – Details of experiments to evaluate the Shelf Life

Figure 14 shows the percentage of instances classified in three categories: proven
optimal solution, feasible solution found, or no solution found for scenario 1. Another
result from that scenario is presented in Figure 15. This figure shows the mean gap from
the commercial solver for each Normalized Shelf Life level. A similar analysis for scenario
2 is presented in Figure 16. In this visualization, we also included two baseline levels:
the GAP for the MILP-Distribution when the Normalized Shelf Life is large (9999) and
the GAP for the "pure" CVRP problem. After all, without the shelf life constraint, the
production sequence becomes irrelevant.
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Figure 14 – The proportion of solution status for the 15 tested instances as the Normalized
Shelf Life levels increase

Figure 15 – Evolution of % gap, obtained from commercial solver, for Normalized Shelf
Lives in a range between 2 and 10.1

5.5 Discussions

Although several studies have shown that the integrated approach leverages the
results for products with shorter shelf lives (Amorim; Gunther; Almada-Lobo, 2012;
Farahani; Grunow; Gunther, 2012), Table 16 also shows that a shorter shelf life makes the
IPDSP-P harder to solve using exact approaches. This conclusion is based on the increase
in the number of instances for which no solution was found as the shelf life becomes shorter,
which happens for both the MILP and LBBD models.

The same conclusion cannot be drawn for the genetic algorithm. Although the
GAPs become higher as the shelf life gets shorter (Table 17), we also noticed that the
algorithm converged faster when the shelf life was shorter (Figure 12). This can indicate
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Figure 16 – Evolution of % gap, obtained from commercial solver, for Normalized Shelf
Lives in a range between 4.56 and 65.55

one of two things:

1. As can be seen in Table 12, the number of vehicles is not a constraint of the problem.
Therefore, the Split Algorithm will always find a feasible solution. However, the
solutions may be converging to a local optimum, which explains why the GAP is
higher for the shorter shelf lives.

2. Since the shorter shelf life makes it harder to find a feasible solution by means of an
exact approach, the lower bound found in CPLEX may be very unrealistic for the
short life situation.

The explanation for the difficulty to find a feasible solution using exact models when
the shelf life is very short may be due to the lower number of feasible solutions, and any
small change in the solution of a relaxed problem can violate the shelf life constraint, which
makes the problem infeasible. This may be the same reason why the genetic converges so
fast to a single solution. Therefore, solution methods that have good mechanisms to avoid
the solutions to get stuck in local optima can be good options when solving the IPDSP-P
for a product with a short shelf life.

Therefore, the shelf life of a product seems to be a relevant variable to be taken
into account when deciding between an integrated approach, or a decoupled one, or even
an iterative procedure.

When we compare the exact models and the genetic algorithm, considering both
the short and long runtime, the genetic algorithm found more best results than the other
models, as seen in Figure 13. This result may be explained by the difficulty for the exact
models to find even a feasible solution for instances where the shelf life is short and for
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bigger instances. On the other hand, the Split Algorithm always provides a feasible solution
for the problem studied in this paper, which benefits the genetic algorithm.

Comparing the exact methods: for most of the experiments, the MILP-Distribution
model outperformed the other methods. However, the LBBD model had an improvement
of performance when the solver was kept running for longer times, i.e., approximately 3300
seconds. This improvement was not seen in the other approaches, and the functioning
of the LBBD approach may explain that improvement. The LBBD breaks the problem
into a master problem and subproblems, which may cause many infeasible solutions to be
considered at the beginning of the execution. However, as the model runs for more time,
the subproblems eliminate many infeasible solutions, and the master problem’s solution
space resembles more the IPDSP-P ’s solution space. However, the master problem is still
a CVRP, which is already a difficult problem to solve. This may explain why the genetic
algorithm outperforms the LBBD model even when we leave the models running for a
long time.

Regarding the experiments that were designed to evaluate the effect of the shelf life
on solving the IPDSP-P, we verified an improvement in the mean gap, and the number of
optimal solutions as the Normalized Shelf Life increased from 1.55 to 4.56. From that level,
the visual analysis could not show any substantial improvement in those metrics. Even
when the shelf life was a large number, the solver could not find the same gap between the
MILP-Distribution and the CVRP. We expected a similar result because when the shelf life
is large, the shelf life constraint should become useless, and without that constraint, the
production component of the problem should become irrelevant, which would transform
the problem into the classic CVRP. However, this result tells us that the constraints that
connect the production problem to the distribution problem continue to influence the
search process for solutions even when the shelf life is large.
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6 Conclusions

This research investigates how the shelf life length impacts the solving process of
the integrated production-distribution scheduling problem (IPDSP-P). We considered a
single machine environment that produces one perishable product that must be delivered
by homogenous vehicles. There are two decisions regarding the routing strategy: the
allocation of client orders to vehicles and the delivery sequence of each route. This paper
proposes and implements a MILP model, a Logic-based benders decomposition model,
and a genetic algorithm to solve this problem. Several computational experiments were
conducted by varying the number of customers, the Normalized Shelf Life, and the time
available to run the model.

The Normalized Shelf Life is a metric proposed to unify the various definitions of
shelf life found in the literature into a single comparable measure. Therefore, this metric
may be valuable in future studies about operational planning for perishable products.

Our experiments showed that when the Normalized Shelf Life is short, the number
of instances for which both MILP and LBBD models could not find a feasible solution
was higher when compared to the instances with a long or very long Normalized Shelf
Life. This result contributes to the conclusion that the shelf life influences the difficulty of
solving the IPDSP-P by exact models. Regarding the genetic algorithm, our experiments
showed that the GAP between the lower bound obtained for the objective function and
the genetic algorithm solution was higher for the short shelf life instances. However, we
also found that the solutions converge to a single solution faster, in those cases. This result
may indicate that the genetic algorithm got stuck in a local optimum.

This work contributed to the literature by discussing an important variable for the
integrated production and distribution planning of perishable products: the shelf life. We
provided a common metric that can be useful to distinguish a short from long shelf life.
We evaluated the influence of shelf life on the expected performance for several solution
methods to solve the integrated production and distribution scheduling problem. We
also showed that is possible to simplify the problem by considering the same production
scheduling as the vehicles’ routing and developed an exact model and a genetic algorithm
based on this result.

However, there are still several opportunities for future research. For example, one
hypothesis for why the short shelf life makes the IPDSP-P harder to solve is that even
minor adjustments in a solution may violate the shelf life constraint, which makes the
problem infeasible. This may lead to the conclusion that the feasible solutions are more
scattered over the solution space. Therefore, we believe that there is a research opportunity
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in combining linear programming to heuristics (or metaheuristics) to either obtain a
favorable initial solution or assist the exploration of the search space. Moreover, we believe
that an MIP-Heuristic could be derived by dynamically adjusting the normalized shelf
life, and thus allowing the solver to enhance its response. Another research direction is to
analyze the influence of shelf life on more complex scenarios (or even empirical situations).
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